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ABSTRACT

In recent times, as the National Aeronautics and Space Administration (NASA) focuses

on establishing a sustained presence in cislunar space, there has been an increase in planned

missions to the cislunar vicinity for lunar exploration. Due to this increase in planned mis-

sions, the use of cislunar structures available in the Circular Restricted Three-Body Problem

(CRTBP) has become of greater interest. Traditionally, transfers that leverage CRTBP

structures in the cislunar vicinity have been generated as point designs. As a consequence of

the non-linearity of this model, transitioning these point designs to other epochs or mission

scenarios is non-trivial. Hence, a trade space of transfer solutions, that leverage the under-

lying dynamics, is of interest for rapid mission design. In this study, numerical methods

and dynamical systems theory are leveraged to extract available dynamical structures in the

model, which are subsequently exploited for transfer design. A trade space of relatively low

time of flight, two-maneuver transfers, from a 500 km altitude Low Earth Orbit (LEO) to

the Earth-Moon L1 Lyapunov orbit family is generated and analyzed.
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1. INTRODUCTION

The exploration of structures in the Earth-Moon Circular Restricted Three-Body Problem

(CRTBP) near the cislunar region is of great interest. The ARTEMIS mission (THEMIS

continuation) was the first mission to successfully leverage Earth-Moon CRTBP dynamical

structures in space [  1 ]. Since, multiple missions that leverage such structures in the Earth-

Moon system have been proposed [  2 ][ 3 ][ 4 ]. Mainly, the National Aeronautics and Space

Administration (NASA) has identified one of these dynamical structures in cislunar space

as the target orbit for its gateway program [  5 ]. It follows, that, to support the gateway

program and lunar exploration, an increase of missions to cislunar space is forthcoming.

Transfer design to the cislunar vicinity has frequently been achieved by generating reference

trajectories as point designs. Due to the non-linearity of the CRTBP, these solutions are

not easily transitioned to different mission scenarios, leading to mission designers having

to restart the design process; or if the previous arc meets the mission contraints, the same

solution will be reused, even if transfer solutions that better suit the mission’s needs exist.

Consequently, a trade space of transfer solutions that leverage the underlying dynamics and

allows for rapid, informed, mission design is of interest. A trade space of two-maneuver

transfer solutions from Low Earth Orbit (LEO) to the Earth-Moon L1 Lyapunov family is

generated and evaluated in this study, as to identify preferable solutions that leverage the

underlying dynamics of the model.

1.1 Previous Contributions

Multiple authors have considered transfers from the Earth to CRTBP structures in the

cislunar vicinity. Recently, Pritchett evaluated transfer trajectories to lunar orbits leverag-

ing low-thrust for the Lunar IceCube mission [ 6 ], Zimovan-Spreen focused on trajectories

that transit towards the orbit selected for the gateway program, by leveraging structures

of higher period orbits in the target orbits vicinity [  7 ], and Scheuerle investigated ballistic

lunar transfers that leverage the solar perturbation to reduce insertion cost into their target

orbit [  8 ]. More specifically, several authors have focused on interior, two-maneuver, trans-

fers from Earth to the cislunar vicinity. Rausch evaluated direct transfers from an Earth

12



parking orbit to Halo orbits in cislunar space[  9 ], Folta evaluated design considerations for

direct transfers to periodic and quasi-periodic orbits in the L1 and L2 vicinity [ 10 ], while,

Dunham et al. and Jesick focused on direct insertion transfers with free return possibilities

for human exploration missions [  11 ][ 12 ]. In 2008, Parker and Born conducted an extensive

study of two-maneuver transfers to L1 and L2 Halo orbits, focused on both direct insertion

transfers and transfers that leverage the target orbits stable manifold, while comparing the

benefits of trading time of flight for maneuver cost [  13 ]. An extension of this problem was

conducted by Pavlak in 2013, with a focus on three-maneuver and free return transfers [ 14 ].

Additional authors have also evaluated this problem[  15 ][ 16 ][ 17 ]. The work presented here is

not an all encompassing list, but merely a representative set of the previous contributions

available. These previous studies provide insight into available transfer solutions and guide

the transfer generation process followed in this study.

1.2 Document Overview

The focus of this study is to construct and analyze transfers from LEO to the L1 Lyapunov

family. This document is structured to that end, as:

• Chapter 2: The dynamical model implemented in the study is described in this

chapter. While the general gravitational field acting on a particle of interest is defined

by the N-body problem, the lower fidelity CRTBP is used in order to uncover useful

structures for transfer design. This model possesses an integral of the motion, and a

set of 5 equilibrium solutions, which provide insight into the motion available.

• Chapter 3: To analyze motion in the CRTBP, numerical tools leveraging dynamical

systems theory are implemented. The linear variational equations are leveraged to

realize linear motion in the vicinity of the equilibrium points. The State Transition

Matrix (STM) allows for the study of stability information of reference trajectories.

Differential corrections facilitates the transition from these linear predictions into the

full non-linear model. Additionally, differential corrections allows for the targeting

of desired conditions in a given trajectory, a capability that is leveraged in transfer

design. Continuation methods are exploited to expand on the set of available solutions,
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and generate a more complete picture. Finally, the stability characteristics of periodic

orbits in this model are utilised to uncover helpful dynamical structures in their vicinity.

• Chapter 4: This chapter focuses on the generation and evaluation of relatively low

time of flight transfer solutions from LEO to the L1 Lyapunov family. Transfers that

insert directly into the target orbit are analyzed before expanding the space to include

insertion into stable manifolds of said orbit. Next, the performance of tangent and

non-tangent insertion transfers is compared. Locations along the stable manifold that

provide transfers with low-cost insertion maneuvers are identified as Regions of Interest

(ROI). Finally, the solution space in these ROIs is expanded to additional manifold arcs

on a given orbit, and to other orbits in the same family, to generate a representative

set of the transfers available to this family of orbits, for the times of flight analyzed.

• Chapter 5: The final chapter provides an overview of the presented results in the

form of key takeaways. Additionally, a road map of future work to expand this study

is included.
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2. SYSTEM MODELS

The two-body problem is a model that includes two isolated bodies moving under their mu-

tual gravitational attraction. It is assumed that both bodies are centrobaric. The two-body

problem is well known and possesses analytical solutions that are leveraged for dynami-

cal analysis in space mission design. A model that includes three or more bodies is more

complex, where the influence of the mutual gravitational forces govern the behavior. The

inclusion of an additional body results in a mathematical model that does not possess an

analytical solution. While more complex, this model provides distinct dynamical structures

that are not available in the lower-fidelity two-body model and which potentially offer unique

options for cislunar mission design.

2.1 The Circular Restricted Three-Body Problem

A model that leverages the mutual gravitational influence of three celestial bodies is

known as the three-body problem. If one of the bodies possesses a mass that is negligible in

comparison to the other two bodies, a simplified version of this model emerges and is denoted

the Circular Restricted Three-Body Problem (CRTBP). The CRTBP provides additional in-

sight into the motion of the infinitesimal body as a particle of interest. With the two bodies

of finite mass exhibiting Keplerian motion, a new set of differential equations governs a wide

variety of behaviors for the particle of interest. However, with no analytical solution, the

motion of the infinitesimal body is necessarily explored via numerical integration. Dynamical

systems theory also offers some understanding of the fundamental structures in the problem

that influence the behavior. The motion governed in this dynamical regime, and the under-

lying structures in cislunar space, are currently of great interest. To analyze the motion in

this model, the equations of motion are first derived.

2.1.1 Equations of Motion

To derive the equations of motion in the CRTBP, begin with the more general N-body

problem (NBP). The NBP models the gravitational force of N-1 bodies on a single body in
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the system to examine their influence on the subsequent evolution of its path. Assume that

all the bodies are centrobaric and, thus, are represented as particles. Then, the force vector

due to a single gravity field on the particle of interest [ 18 ] is defined as

~fij = Gmi
mj ~rij

r3
ij

(2.1)

where G is the universal gravitational constant, mi and mj are the masses of the particle of

interest and one of the N-1 gravitational bodies, respectively, and ~rij is the position vector

of the particle i relative to particle j. Combining the gravitational influence of all other N-1

gravitational bodies on particle i leads to the resultant force, i.e.,

~fi =
N−1∑
j=1

~fij = Gmi

N−1∑
j=1

mj ~rij

r3
ij

(2.2)

It then follows from equation (  2.2 ) that the force on an individual particle in the general

three-body problem is simply

~fi = Gmi

2∑
j=1

mj~rij

r3
ij

= Gmi

(
m1~ri1

r3
i1

+ m2~ri2

r3
i2

)
(2.3)

The CRTBP then is comprised of 3 total bodies; P1, the larger celestial body (mass m1),

P2, the smaller celestial body (mass m2), and P3, the particle of interest of mass m3 (i.e.,

a spacecraft, for example). It is assumed that the mass of P3 is negligible in comparison to

the masses of P1 and P2, hence, the motion of P1 and P2 is defined by two-body Keplerian

dynamics. An inertial frame centered on the barycenter B is then defined. The inertial

X̂ − Ŷ plane represents the P1 and P2 orbital plane as:
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Figure 2.1. Three-Body Problem Inertial Frame Definition

The force experienced by an object of constant mass is equal to its mass times its acceleration

( ~F = m~a) [  18 ]. Using ~̇r and ~̈r to represent the first and second time derivatives of ~r,

respectively, equation ( 2.3 ) is rewritten in the form

m3~̈r3 = −G

(
m3m1

r3
13

~r13 + m3m2

r3
23

~r23

)
(2.4)

The model is, then, further simplified by assuming circular motion of the primaries about

B, so that the distance between P1 and P2 remains fixed. A rotating frame is defined, given

B as the origin, which moves with the motion of the primaries P1 and P2, such that the unit

vector x̂ is defined along the line from P1 to P2, ẑ is parallel to the direction of the angular

momentum vector for the orbit of the primaries, and ŷ completes the orthonormal set as

apparent in Figure  2.2 .
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Figure 2.2. Rotating Frame Definition

Notice that P1 and P2 are fixed points in the rotating frame. Given the definitions in Figure

 2.2 , equation ( 2.4 ) is rewritten as follows

~̈p = −G
m1

D3
~D − G

m2

R3
~R (2.5)

For convenience, and to expand their use, the equations of motion are non-dimensionalized

by exploiting a set of characteristic quantities. The characteristic quantities are defined for

the fundamental properties of length, mass and time. For the characteristic length, l∗, the

semimajor axis of the orbit of P2 about P1 is typically employed. The sum of the primary

masses, m1 and m2, is leveraged as the characteristic mass, m∗. Finally, the characteristic

time, t∗, is defined such that the nondimensional gravitational constant Gnon−dim is equal to

one. In summary:

l∗ = r1 + r2

m∗ = m1 + m2

t∗ =
√

l∗3

Gm∗
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Now, convenient nondimensional quantities are defined; the nondimensional primary masses

are

µ = m2

m∗

1 − µ = m1

m∗

The nondimenzional position vectors for the infinitesimal mass, P3, relative to the primaries

are denoted

~r =
~R

l∗ and ~d =
~D

l∗

Then, the non-dimensional position of P3 with respect to the barycenter is defined

~ρ = ~p

l∗ = xx̂ + yŷ + zẑ

where the nondimensional components in terms of the rotating frame are x, y, and z. The

position vectors for the primaries relative to the barycenter are then expressed as

~r1 = −µx̂

~r2 = (1 − µ)x̂

The nondimensional position of P3 relative to P1 and P2, ~d and ~r are decomposed into

~d = (x + µ)x̂ + yŷ + zẑ

~r = (x − 1 + µ)x̂ + yŷ + zẑ

Finally, G, the mean motion (N) and time are non-dimensionalized using

Gnon−dim = G

(l∗)3 m∗(t∗)2 = 1
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N =

√√√√G(m1 + m2)
a3

dim
=
√

Gm∗

a(l∗)3 =
√

Gm∗

(l∗)3

n = Nt∗ =
√

Gm∗

(l∗)3

√
(l∗)3

Gm∗ = 1

τ = t

t∗

where n and τ are the nonsimensional mean motion and time, respectively. The classical

equations of motion are produced as the characteristic quantities are introduced into equation

( 2.5 ) and yield
d2~ρ

dτ 2 = ~̈ρ = −(1 − µ)
~d

d3 − µ
~r

r3 (2.6)

Note, the dots represent derivatives with respect to nondimensional time, τ . The left side

of the previous expression requires a kinematic expansion to derive the equation of motion.

Recall

~ρ = ~p

l∗ = xx̂ + yŷ + zẑ

and, since this vector quantity is defined in a rotating frame, its time derivative is derived

from the basic kinematic equation as

i~̇ρ = r ~̇ρ + i~ωr × ~ρ

i~̇ρ = ẋx̂ + ẏŷ + żẑ + (nẑ) × (xx̂ + yŷ + zẑ)

i~̇ρ = (ẋ − ny)x̂ + (ẏ + nx)ŷ + żẑ
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where i~̇ρ is the derivative with respect to the inertial frame, r ~̇ρ is the derivative with respect

to the rotating frame and i~ωr = nẑ is the rate at which the rotating frame rotates with

respect to the inertial frame. Similarly

i~̈ρ = r ~̈ρ + i~ωr × ~̇ρ

i~̈ρ = (ẍ − nẏ)x̂ + (ÿ + nẋ)ŷ + z̈ẑ + (nẑ) × ((ẋ − ny)x̂ + (ẏ + nx)ŷ + żẑ)

i~̈ρ = (ẍ − 2nẏ − n2x)x̂ + (ÿ + 2nẋ − n2y)ŷ + z̈ẑ (2.7)

Finally equations ( 2.6 ) and ( 2.7 ) are combined, and yield three scalar equations such that

ẍ − 2nẏ − n2x = −(1 − µ)(x + µ)
d3 − µ(x − 1 + µ)

r3 (2.8)

ÿ + 2nẋ − n2y = −(1 − µ)y
d3 − µy

r3 (2.9)

z̈ = −(1 − µ)z
d3 − µz

r3 (2.10)

Additionally, the equations of motion are further simplified by introducing the pseudo-

potential function as

U∗ = 1 − µ

d
+ µ

r
+ n2(x2 + y2)

2 (2.11)

which is employed to rewrite the equations of motion as follows

ẍ − 2nẏ = U∗
x (2.12)

ÿ + 2nẋ = U∗
y (2.13)
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z̈ = U∗
z (2.14)

where U∗
i represents the partial derivative of the pseudo-potential function with respect to

state i, ∂U∗

∂qi
. Finally, if an initial position and velocity state is in the x-y plane and ż0 = 0,

it remains in the x-y plane, as z̈ equals zero for the entire trajectory.

2.1.2 Jacobi Constant

Integrals of the motion offer further insight into potential structures in the CRTBP.

Previous authors have successfully determined an integral of the motion in the CRTBP[ 19 ].

This integral of the motion emerges as an energy-like constant, denoted the Jacobi Constant

(JC ). To produce an expression for this integral of the motion, operate on the differential

equations such that a scalar equation can be integrated. Begin by leveraging the dot product

between ~̇ρ and ~̈ρ, computed such that

~̇ρ · ~̈ρ = ẋẍ + ẏÿ + żz̈ = U∗
x ẋ + U∗

y ẏ + U∗
z ż

Since the model is time-independent, the right side of the equation represents the total time

derivative of the pseudo-potential (dU∗

dτ
). Then, integrating the scalar dot product results in

ẋ2 + ẏ2 + ż2

2 = U∗ + constant

v2 = 2U∗ − JC (2.15)

JC = 2U∗ − v2 (2.16)

where v is the magnitude of the velocity in the rotating frame, and the constant of in-

tegration is labeled as −JC
2 . This integral of the motion reduces the dimensionality of the
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problem by one and provides insight concerning boundaries of motion for a given energy level.

This energy-like quantity is leveraged to determine the minimum ∆v that is required

to link states with two different energies at a desired location. The minimum ∆v occurs

when the change in velocity works exclusively towards changing velocity magnitude, and not

adjusting direction (i.e., applying maneuver along initial velocity vector). This assumption

on the maneuver direction defines that for the minimum case ∆v = v2 − v1, and

vi =
√

2U∗ + JCi

thus,

∆vmin =
√

2U∗ + JC2 −
√

2U∗ + JC1 (2.17)

that demonstrates a minimum ∆v as not only a function of the difference in JC, but also

dependent upon location (through the pseudo-potential function). Of course, this quantity

is minimized when the JC s are nearly equal in value, or when U∗ approaches infinity. During

transfer scenarios where the JC of both the initial and final arcs are fixed, the theoretical

minimum ∆v offers a point of comparison in support of mission design efforts.

2.1.3 Equilibrium Solutions

Equilibrium solutions offer insight into available motion in the CRTBP. To determine

the equilibrium solutions, all time derivatives in the equations of motion are set to zero, by

definition. Applying these conditions to the equations of motion reduces them to

−x = −(1 − µ)(x + µ)
d3 − µ(x − 1 + µ)

r3 (2.18)

−y = [ − (1 − µ)
d3 − µ

r3 ]y (2.19)

0 = [ − (1 − µ)
d3 − µ

r3 ]z (2.20)
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Notice that satisfying the last equation, requires that equilibrium solutions lay in the x̂ − ŷ

plane. Additionally, for y = 0, the second equation is satisfied; thus, some equilibrium

solutions exist on the x̂ axis and the focus is initially on this type of solution. Simplifying

the remaining equation yields

0 = x − (1 − µ)(x + µ)
(x + µ)3 − µ(x − 1 + µ)

(x − 1 + µ)3

0 = x − (1 − µ)sgn(x + µ)
(x + µ)2 − µ

sgn(x − 1 + µ)
(x − 1 + µ)2

Three different cases arise that provide equilibrium solutions depending on the sign of the

encapsulated quantities. The solutions then vary depending on the location along the x̂ axis:

x < −µ (i.e., further along the negative x̂-axis than P1), −µ < x < 1 − µ (i.e., between P1

and P2) and x > 1 − µ (i.e., further along the positive x̂-axis than P2). These points are

denoted as the collinear points as they all lie on the same line (the x̂-axis). To construct the

remaining equilibrium solutions, y is allowed to be nonzero. Removing the y = 0 assumption,

the following expression must hold to satisfy equation ( 2.19 ).

(1 − µ)
d3 + µ

r3 − 1 = 0 (2.21)

Introducing the previous expression into equation ( 2.18 ) and rearranging leads to

x[(1 − µ)
d3 + µ

r3 − 1] + µ[(1 − µ)
d3 + µ

r3 ] − µ

r3 = 0

x[0] + µ[1] − µ

r3 = 0

This expression exemplifies that r3 = 1, hence r = 1. Introducing r = 1 back into equation

( 2.21 ) demonstrates that d must also be 1. Recall that r and d are the distances from the

primaries, this constraint is represented by a circle of radius 1 emanating from each primary,

which leads to the conclusion that two additional equilibrium points arise where these circles

intersect.
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Figure 2.3. Equilibrium Points in the Rotating Frame

Information about dynamical structures in the CRTBP is gained by leveraging the stability

characteristics of these equilibrium points, providing insight into motion in their immediate

vicinity.

2.1.4 Zero Velocity Surfaces

Though an analytical solution to the equations of motion does not exist for analyzing

the behavior, conditions that bound the available regions for P3 are available. From the JC

equation (  2.15 ), notice that for the velocity of P3 to be real, the quantity 2U∗ − JC must be

greater than zero; Since U∗ is solely a function of position, locations where this inequality

holds for a given JC (or energy level) are computed. This expression yields the boundary

condition 2U∗ − JC = 0, where the velocity is equal to zero and, hence, is denoted Zero

Velocity Surface (ZVS). A section of these surfaces intersect the x̂ − ŷ plane, generating a

curve, denoted the Zero Velocity Curve (ZVC). Notice that at the equilibrium points (where

v = 0) there is an energy value denoted JCLi . At this energy level there is an associated

ZVC that includes the point Li.
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The available ZVC behaviors are characterized into different categories depending on

energy level. These categories, in decreasing JC , are, when JC is greater than JCL1 , when

JCL1 > JC > JCL2 , when JCL2 > JC > JCL3 , when JCL3 > JC > JCL4−5 and finally when

JC < JCL4−5 , which is a case where the ZVC no longer exists. Visual representations of

these categories are shown below

(a) JC > JCL1 (b) JCL1 > JC > JCL2

(c) JCL2 > JC > JCL3 (d) JCL3 > JC > JCL4−5

Figure 2.4. ZVCs at a range of energy levels in the Earth-Moon system

Notice that as JC increases, the available transit region shrinks; hence, to transit from P1

to P2 near the L1 vicinity, the JC of a transfer arc must be less than JCL1 . This principle

provides a bound for the energy of transfer arcs used for transit into the cislunar vicinity.
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3. DYNAMICAL SYSTEMS THEORY

Dynamical systems theory provides a variety of tools to predict motion in non-linear systems

(like the CRTBP). Through the use of linear variational equations, motion around equilib-

rium points is determined. Differential corrections allows for the transition of the linear

predictions into desirable motion in the non-linear system. Shooting methods are used in

the context of differential corrections to converge on periodic solutions or other transfer so-

lutions of interest, which when combined with continuation methods, can yield families of

solutions. Invariant manifold theory allows for the study of natural pathways in and out

of periodic solutions. Finally bifurcation theory allows for the discovery of periodic orbit

family intersections, which lead to the construction of alternate families. These techniques

are leveraged in this investigation as they provide different dynamical structures that are

useful for transfer design.

3.1 Linear Variational Equations and Motion Near the Equilibrium Points

The stability information of the equilibrium points offers an understanding of the available

motion in their immediate vicinity. To extract the stability information of points in the

CRTBP, the linear variational equations are used. The state vector for the CRTBP system

is defined to develop the variational equations for the system, as

x̄ =



x

y

z

ẋ

ẏ

ż


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The equations of motion (equations ( 2.8 )-( 2.10 )) are used to define the time derivative func-

tion as

f̄(x̄) = ˙̄x =



ẋ

ẏ

ż

2ẏ + U∗
x

−2ẋ + U∗
y

U∗
z


With these definitions, the linearization about the equilibrium solutions is, then, conducted.

From the state vector of the equilibrium point Li(x̄Li), the perturbed solution is defined

using a small variation (δx) such that

x̄ = x̄Li + δx

Next, the time derivative of the perturbed state is computed

f̄(x̄) = f̄(x̄Li + δx) = ˙̄xLi + δẋ

and, since δx is not an explicit state, but a variation vector, a Taylor Series expansion must

be used to represent δẋ, as

˙̄xLi + δẋ ≈ f̄(x̄Li) + ∂f̄

∂x̄

∣∣∣∣∣
x̄Li

δx̄ + ...

where all additional terms are higher order terms that are ignored for the purposes of this

linear analysis. Additionally, the evaluation of this quantity at the equilibrium point provides
˙̄xLi = f̄(x̄Li) = 0 by definition, so the expression reduces to

δẋ ≈ ∂f̄

∂x̄

∣∣∣∣∣
x̄Li

δx̄ (3.1)
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where ∂f̄
∂x̄

is the Jacobian matrix of the system equations of motion

∂f̄

∂x̄
= A =



∂ẋ
∂x

∂ẋ
∂y

∂ẋ
∂z

∂ẋ
∂ẋ

∂ẋ
∂ẏ

∂ẋ
∂ż

∂ẏ
∂x

∂ẏ
∂y

∂ẏ
∂z

∂ẏ
∂ẋ

∂ẏ
∂ẏ

∂ẏ
∂ż

∂ż
∂x

∂ż
∂y

∂ż
∂z

∂ż
∂ẋ

∂ż
∂ẏ

∂ż
∂ż

∂ẍ
∂x

∂ẍ
∂y

∂ẍ
∂z

∂ẍ
∂ẋ

∂ẍ
∂ẏ

∂ẍ
∂ż

∂ÿ
∂x

∂ÿ
∂y

∂ÿ
∂z

∂ÿ
∂ẋ

∂ÿ
∂ẏ

∂ÿ
∂ż

∂z̈
∂x

∂z̈
∂y

∂z̈
∂z

∂z̈
∂ẋ

∂z̈
∂ẏ

∂z̈
∂ż



Evaluating this matrix in the CRTBP, and, introducing it to equation ( 3.1 ) provides

δ ˙̄x ≈ Aδx̄ =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

U∗
xx U∗

xy U∗
xz 0 2 0

U∗
yx U∗

yy U∗
yz −2 0 0

U∗
zx U∗

zy U∗
zz 0 0 0





δx

δy

δz

δẋ

δẏ

δż



where U∗
ij represents the partial derivative of U∗ with respect to state i and state j ( ∂2U∗

∂qi∂qj
).

Finally, the expression is decomposed into its scalar components to get the variational equa-

tions of motion:

∂ẍ − 2∂ẏ = U∗
xx∂x + U∗

xy∂y + U∗
xz∂z

∂ÿ + 2∂ẋ = U∗
yx∂x + U∗

yy∂y + U∗
yz∂z

∂z̈ = U∗
zx∂x + U∗

zy∂y + U∗
zz∂z

These variational equations of motion are used to analyze the stability characteristics of

the equilibrium points, revealing information about motion in their proximity. Since the
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equilibrium points all lie in the x̂-ŷ plane, the variational equations of motion are reduced

by evaluating at z = 0

∂ẍ − 2∂ẏ = U∗
xx∂x + U∗

xy∂y (3.2)

∂ÿ + 2∂ẋ = U∗
yx∂x + U∗

yy∂y (3.3)

∂z̈ = U∗
zz∂z (3.4)

Notice that equation (  3.4 ) completely governs out of plane motion, as it is decoupled from

the rest of the equations of motion. This separation allows for a reduced four-dimensional

system when focusing on planar motion

δ ˙̄x ≈ Aδx̄ =



0 0 1 0

0 0 0 1

U∗
xx U∗

xy 0 2

U∗
yx U∗

yy −2





∂x

∂y

∂ẋ

∂ẏ



where the eigenvalues of the A matrix provide the stability information of the equilibrium

points. These eigenvalues are found through det(λI − A) = 0 and solving for λ (i.e., the

roots of the characteristic polynomial)

λ4 + (4 − U∗
xx − U∗

yy)λ2 + U∗
xxU∗

yy − U∗
yxU∗

xy = 0 (3.5)

Recall that the collinear points lie on the x̂-axis, which allows for the simplification of

equation ( 3.5 ), such that

λ4 + (4 − U∗
xx − U∗

yy)λ2 + U∗
xxU∗

yy = 0

This expression is represented as a second order polynomial, as

Λ2 + 2β1Λ − β2
2 = 0
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where Λ = λ2, β1 = 2 − U∗
xx+U∗

yy

2 and β2
2 = −U∗

xxU∗
yy. The roots of the binomial evaluate to

Λ1 = −β1 +
√

β2
1 + β2

2

Λ2 = −β1 −
√

β2
1 + β2

2

thus,

λ1,2 = ±
√

Λ1

λ3,4 = ±
√

Λ2

For the collinear points, U∗
xx evaluates as > 0, and, U∗

yy < 0. This evaluation leads to β2
2 > 0

which defines Λ1 > 0 and Λ2 < 0. It follows, that, λ1 and λ2 are real, while λ3 and λ4 are

imaginary. A solution to the variational equations of motion is defined as a combination of

the eigenvalues as exponentials

ξ̄(t) = C1eλ1t~v1 + C2eλ2t~v2 + C3eλ3t~v3 + C4eλ4t~v4

where ~vi is the corresponding eigenvector to λi, and Ci are constants defined based on the

initial conditions. Initial conditions that isolate the desired eigenvalue behavior are available.

Notice, then, that solutions that exponentially approach or depart from the equilibrium point

exist (from λ1 or λ2), as well as periodic solutions that oscillate around the equilibrium points

(from λ3 and λ4). Initial conditions that lead to periodic motion in the Earth-Moon CRTBP

are computed and propagated in the linearized system as
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Figure 3.1. Linear oscillatory behavior in L1 vicinity of Earth-Moon CRTBP

These linearized solutions provide insight into the available motion in the full non-linear

system.

3.2 State Transition Matrix

A more general relationship relating an initial variation from a reference solution δx̄(t0),

to a final variation after propagation δx̄(tf ), provides additional insight into motion in the

model. This more general solution is written in the form

δx̄(tf ) = Φ(tf , t0)δx̄(t0) (3.6)

where t0 and tf are some initial and final times, and Φ(t0, tf ) is

Φ(tf , t0) =



∂xf

∂x0

∂xf

∂y0

∂xf

∂z0

∂xf

∂ẋ0

∂xf

∂ẏ0

∂xf

∂ż0
∂yf

∂x0

∂yf

∂y0

∂yf

∂z0

∂yf

∂ẋ0

∂yf

∂ẏ0

∂yf

∂ż0
∂zf

∂x0

∂zf

∂y0

∂zf

∂z0

∂zf

∂ẋ0

∂zf

∂ẏ0

∂zf

∂ż0
∂ẋf

∂x0

∂ẋf

∂y0

∂ẋf

∂z0

∂ẋf

∂ẋ0

∂ẋf

∂ẏ0

∂ẋf

∂ż0
∂ẏf

∂x0

∂ẏf

∂y0

∂ẏf

∂z0

∂ẏf

∂ẋ0

∂ẏf

∂ẏ0

∂ẏf

∂ż0
∂żf

∂x0

∂żf

∂y0

∂żf

∂z0

∂żf

∂ẋ0

∂żf

∂ẏ0

∂żf

∂ż0


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This 6 x 6 matrix, where the rows represent the partial derivative of the variation on a

final state with respect to the variation of each initial state, is known as the state transition

matrix (STM)[ 20 ]. The STM possesses some useful properties. Consider separating equation

( 3.6 ) into 2 segments, stopping at some intermediate time t1, such that

δx̄(t1) = Φ(t1, t0)δx̄(t0)

δx̄(tf ) = Φ(tf , t1)δx̄(t1)

These equations are combined as

δx̄(tf ) = Φ(tf , t1)δx̄(t1) = Φ(tf , t1)Φ(t1, t0)δx̄(t0)

From this combination, the first useful property of the STM is deduced, Φ(tf , t0) = Φ(tf , t1)Φ(t1, t0).

This property is leveraged when segments are propagated separately, and the total STM,

from t0 to tf , is desired. Additionally, equation (  3.6 ) is rearranged as

Φ−1(tf , t0)δx̄(tf ) = δx̄(t0)

and, from the same definition in equation ( 3.6 )

δx̄(t0) = Φ(t0, tf )δx̄(tf )

Hence, another property of the STM is Φ(tf , t0) = Φ−1(t0, tf ). Finally

δx̄(t0) = Φ(t0, t0)δx̄(t0)

So Φ(t0, t0) must be the identity matrix. The properties described above, are leveraged to

facilitate the construction of the STM in this model.

33



To obtain the STM of a desired segment, numerical integration is done alongside the

states of said segment. The differential equation for the STM is found by taking the time

derivative of equation ( 3.6 ) evaluated at some time t as

δ ˙̄x(t) = Φ̇(t, t0)δx̄(t0)

Recall that δ ˙̄x(t) = A(t)δx̄(t), such that

A(t)δx̄(t) = Φ̇(t, t0)δx̄(t0)

introducing the expression from equation ( 3.6 ) provides

A(t)Φ(t, t0)δx̄(t0) = Φ̇(t, t0)δx̄(t0)

which provides the differential equation for the STM, as

Φ̇(t, t0) = A(t)Φ(t, t0)

Since the CRTBP model does not posses an analytical solution to its equations of motion,

these linear predictions of motion provided by the STM, are essential for analyzing the

motion.

3.3 Differential Corrections

Generating desired solutions in the non-linear CRTBP is complex, so a numerical correc-

tions scheme is implemented. Insights gained from the linear approximations of the CRTBP

model are leveraged to compute the desired solutions. A multi-dimensional Newton-Raphson

algorithm is employed to converge on solutions that meet specific constraints. A Newton-
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Raphson scheme allows for root-finding of some continuous function F̄ (X̄) [ 21 ]. This method

works by defining a vector of design variables

X̄ =



X1

X2
...

Xn


and a vector of desired constraint equations

F̄ (X̄) =



F1(X̄)

F2(X̄)
...

Fm(X̄)


Since the Newton-Raphson method is a root finding scheme, constraints are formulated such

that all Fi(X̄f ) = 0 when fulfilled, where X̄f is the set of design variables that satisfies the

constraints. Achieving perfect convergence (i.e., |F̄ (X̄f )| = 0) using numerical methods is

infeasible, thus, convergence is defined when the norm of the constraint constraint vector is

less than a chosen tolerance |F̄ (X̄f )| < tol. To compute X̄f , the set of design variables that

satisfies the constraints, an expression that relates it to the initial design variable vector X̄0

and the initial constraint vector F̄ (X̄0) is desired. A first order Taylor Series expansion of

F̄ (X̄f ) about X̄0 yields

F̄ (X̄f ) ≈ F̄ (X̄0) + DF (X̄0)[X̄f − X̄0] ≈ 0̄ (3.7)
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where DF is the n x m matrix representing the partial derivative of the constraint vector

with respect to the design variable vector as

DF (X̄) = ∂F̄ (X̄)
∂X̄

=



∂F1(X̄)
∂X1

∂F1(X̄)
∂X2

. . . ∂F1(X̄)
∂Xn

∂F2(X̄)
∂X1

∂F2(X̄)
∂X2

. . . ∂F2(X̄)
∂Xn

... ... . . . ...
∂Fm(X̄)

∂X1

∂Fm(X̄)
∂X2

. . . ∂Fm(X̄)
∂Xn



The expression in equation (  3.7 ) is rearranged to solve for the final set of desired design

variables, such that

X̄f = X̄0 − DF (X̄0)−1F̄ (X̄0)

However, since this provides a linear approximation to a non-linear system, the predicted

X̄f will likely not satisfy the constraint vector to the desired tolerance in a single evaluation.

Hence, the process is iterated as

X̄i+1 = X̄i − DF (X̄i)−1F̄ (X̄i)

Until the actual X̄f that will satisfy the constraints to the desired tolerance is found. Notice

that if m < n (i.e., there are more free variables than constraints) the system is under-

constrained and an infinite number of solutions are available[ 22 ]. Additionally, in the case

of an under-constrained system, the DF matrix is not invertible. To analyze this kind of

system, a minimum-norm solution is implemented, as it returns the nearest solution to the

initial guess. This formulation provides

X̄i+1 = X̄i − (DF (X̄i)DF (X̄i)T )−1F̄ (X̄i)

where DF (X̄i)T represents the transpose of the matrix DF (X̄i). These methods are leveraged

to locate desired periodic orbits as well as transfer solutions in the non-linear CRTBP.
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3.3.1 Single Shooter Application to Periodic Orbits in CRTBP

Periodic motion is shown to exist in the vicinity of the equilibrium points when consid-

ering a linear approximation. These approximations are used as an initial guess in the full

non-linear model. Symmetry in the CRTBP is also exploited to compute periodic orbits in

the vicinity of the equilibrium points. This symmetry provides that, when starting from a

perpendicular crossing of the x̂− ẑ plane, periodic motion can be guaranteed by constraining

a following crossing to also be perpendicular[ 23 ]. Propagating a perpendicular crossing of

the linearized system, as an initial condition, for half a period, does not lead to a perpen-

dicular crossing in the non-linear CRTBP equations of motion. Given that this condition

is not met, differential corrections are required to achieve the desired result. In the general

case there are 4 free variables (x0, z0, ẏ0 and T , the time of flight) and 3 constraints (yf , ẋf

and żf ), making the system under-constrained, meaning there are infinitely many solutions.

The design variable and constraint vectors are defined as

X̄ =



x0

z0

ẏ0

T


, F̄ =


yf

ẋf

żf

 (3.8)

such that

DF (X̄) =


∂yf

∂x0

∂yf

∂z0

∂yf

∂ẏ0

∂yf

∂T

∂ẋf

∂x0

∂ẋf

∂z0

∂ẋf

∂ẏ0

∂ẋf

∂T

∂żf

∂x0

∂żf

∂z0

∂żf

∂ẏ0

∂żf

∂T

 =


Φ21 Φ23 Φ25 ẏf

Φ41 Φ43 Φ45 ẍf

Φ61 Φ63 Φ65 z̈f


where Φij represents the term on row i and column j of the STM from t0 to T . Alternatively,

if one of the design variables is fixed to a desired value, the DF matrix becomes invertible

and a single solution is avilable. An L1 Lyapunov in the Earth-Moon CRTBP is computed

using the aforementioned process
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Figure 3.2. Initial guess (blue) and corrected (red) L1 Lyapunov orbit in
Earth-Moon system

where the blue arc represents the initial guess from the linearized system, propagated until

the next x̂-axis crossing, in the CRTBP non-linear model, and the red arc is the corrected

orbit. Periodic orbits are of interest as they provide repeatable motion where a spacecraft

can loiter and complete their mission.

3.4 Continuation Methods

It is possible for solutions to come in sets of families[ 24 ], hence, a continuation scheme

that provides adequate initial guesses, and allows for the exploration of structures near a

converged solution, is necessary. Families of periodic orbits and transfer solutions are studied

in this investigation.

3.4.1 Natural Parameter Continuation

A simple continuation scheme, natural parameter continuation, allows for the exploration

of solutions while following a natural parameter of the system, such as, position, velocity,

time of flight or JC. This method provides an initial guess in the vicinity of a previously

converged solution, by using the design variables of the previous solution. This parameter,

along which the continuation takes place, remains fixed for the corrections process. Fixing

the continuation parameter is achieved by either, explicitly constraining it to the desired
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value, or, by excluding it from the design variables. The initial guess is then corrected at

the new location, in order to generate an additional solution. This process is repeated until

the desired amount of solutions is found, or the end of the family is reached [ 24 ].

3.4.2 Natural Parameter Continuation Application to Periodic Orbits in CRTBP

Natural parameter continuation is applied to periodic orbits in the CRTBP to compute

families that are leveraged for transfer design. To implement this method, a parameter is

fixed for the corrections process. For this example, x is fixed by removing it from the design

variable vector shown in equation (  3.8 ), providing a square system. Given that x is fixed, a

natural parameter continuation scheme along this variable is used. Define the design vector

of a previously converged solution as X̄k−1, with an initial set of conditions x̄k−1 = [x0 0 z0 0

ẏ0 0]T and time of flight T0. The continued solution is then computed at location x0 + scont,

where scont is the continuation step, with initial guess x̄k = [x0 + scont 0 z0 0 ẏ0 0]T and time

of flight T0. This approach provides the initial design vector X̄k,0 = [z0 ẏ0 T0]T . Notice this

design vector matches that of the previous solution as

X̄k,0 = X̄k−1

Alternatively, once more than one solution has been computed, a linear prediction of the

next solution is available to be used for the initial guess

X̄k,0 = X̄k−1 + scont,k
X̄k−1 − X̄k−2

scont,k−1

where scont,k is the continuation step used to go from solution k − 1 to solution k. An

application of this method on an L1 Lyapunov orbit in the CRTBP provides the L1 Lyapunov

family of periodic orbits. This process is then repeated for L2 and L3 to compute the

respective families.
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Figure 3.3. Lyapunov orbit families in the Earth-Moon system

Note that these are not the entirety of the Lyapunov families, simply a representative set of

the orbits that encompass them. The computation of families expands the available trade

space of solutions that can be targeted for mission design.

3.5 Stability of Periodic Orbits

An analysis of the stability of periodic orbits in the CRTBP provides information about

structures in their vicinity, such as pathways in and out of the orbit, or other periodic

orbits. To analyze the stability characteristics of a periodic orbit in the CRTBP, the orbit is

discretized into returns to a stroboscopic map. Doing this provides that the linear stability

of the orbit is given by the STM after one period of the orbit, denoted the Monodromy

matrix (M). The eigenspace of the Monodromy matrix then provides the desired stability

information. In contrast to the stability analysis of the equilibrium points, the Monodromy

matrix maps the variation of a discrete time system. Recall that

δx̄(TP ) = Φ(TP + t0, t0)δx̄(t0) = Mδx̄(t0)
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where TP is the orbital period. Notice, that, δx̄(TP ) represents the variation from the

reference state on the map. Consider the case after N returns to the map, when the initial

variation occurs along an eigenvector

δx̄(NTP ) = MN~vi

where ~vi is an eigenvector of M . Using the eigenvalue equation M~vi = λi~vi, this expression

becomes

δx̄(NTP ) = λN
i ~vi (3.9)

Hence, the eigenvalues represent the rate of departure from a reference point on the map,

which, in this case, is the fixed point representing the periodic orbit. From equation ( 3.9 ),

notice that when |λ| > 1 a variation along the corresponding eigenvector leads to motion

departing the periodic orbit, when |λ| < 1 a variation along the corresponding eigenvector

leads to motion approaching the periodic orbit, and when |λ| = 1 a variation along the

corresponding eigenvector leads to motion that maintains a constant distance away from the

orbit. These eigenvectors are leveraged to compute motion near a periodic orbit that follows

the desired characteristics.

3.5.1 Invariant Manifold Theory

The eigenspace of the Monodromy matrix provides key information about motion into

and out of a periodic orbit. Given that a certain periodic orbit has an eigenvalue |λ| > 1,

a variation along the corresponding eigenvector leads to departing behavior. This variation

is applied along all the states on a periodic orbit, and propagating the perturbed solutions

forward in time generates a surface of solutions. This surface is dubbed the unstable man-

ifold. Similarly, a stable manifold exists when |λ| < 1 and is computed by propagating

the corresponding perturbed states in backwards time. The eigenvalues of the Monodromy

matrix in the CRTBP come in reciprocal pairs [  25 ], hence, if a periodic orbit possesses an

unstable manifold, it also possesses a stable manifold. The stable and unstable manifolds of

a sample L1 Lyapunov orbit in the Earth-Moon system are shown
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Figure 3.4. L1 Lyapunov orbit invariant manifolds in the Earth-Moon system

Stable manifold arcs are leveraged for transfer design in this investigation, since they provide

natural pathways that approach orbits ballistically.

3.5.2 Bifurcation Theory

Bifurcation theory allows for the discovery of periodic orbit families, through the evalu-

ation of the eigenvalue evolution of periodic orbits. A bifurcation occurs when the order of

stability of a fixed point changes. Recall that the stability of periodic orbits in the CRTBP is

analyzed through the use of a stroboscopic map, such that the periodic orbit becomes a fixed

point on said map. Notice from equation ( 3.9 ), if an eigenvalue of the Monodromy matrix is

equal to one, then the perturbed solution will remain fixed relative to the reference solution

on the map. The corresponding eigenvector then must point in the direction of a periodic

orbit. Eigenvalues of the Monodromy matrix in the CRTBP come in reciprocal pairs, and

there is always a pair that is equal to one [ 25 ]. This trivial pair of eigenvalues correspond

to, a mode that follows the periodic orbit in question, and a mode that follows the periodic
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orbit family that encompasses it. A change in order of stability then occurs when one of the

non-trivial pairs of eigenvalues along the family does one of three things:

• Tangent Bifurcation: A tangent bifurcation occurs when the family crosses over

λ = 1. An additional pair of eigenvalues equal to one suggests additional periodic

modes, meaning, new variation directions which point to a periodic solution on the

map exist. It is important to note that not every tangent bifurcation leads to a new

family of solutions [  26 ]. If a tangent bifurcation occurs at a JC extremum of the family,

it is denoted a cyclic fold, and does not result in a new family of solutions.

• Period Doubling Bifurcation: A bifurcation for which the period of the underlying

orbit is doubled occurs when λ = −1. Notice that after an initial variation of the state

along the corresponding eigenvector, the first return to the map will not match the

varied state in this case

δx̄(1Tp) = λ1~vi = −1~vi

However, the second return matches the initial variation

δx̄(2Tp) = λ2~vi = ~vi

This means that a periodic orbit exists along this variation direction, though it has a

period that is twice the period of the bifurcating orbit.

• Secondary Hopf Bifurcation: This kind of bifurcation occurs when the eigenvalues

along a family collide on the unit circle and depart it, at a location other than λ = ±1.

This type of bifurcation is less typical in the CRTBP than the other bifurcations

described.

43



(a) Tangent (b) Period doubling (c) Secondary Hopf

Figure 3.5. Eigenvalue behavior for different types of bifurcations, visualized
on unit circle

Analyzing the eigenvalues of the orbits in the L1 Lyapunov family leads to the discovery

of a tangent bifurcation in close vicinity to L1. The initial state of the bifurcating orbit is

perturbed by the eigenvector of the second pair of unity eigenvalue. This perturbed state

is then used as an initial guess for the corrections process. This application leads to the

generation of a spatial Halo orbit. Using a continuation scheme the Halo family is computed

from this first generated orbit. A set of orbits from the L1 and L2 Halo families is shown
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Figure 3.6. L1 and L2 Halo orbit family in Earth-Moon system

Note, that, this kind of family also exists around L3. These Halo orbit families possess

spatial target orbits, which provide alternate lunar coverage options, that may be desirable

for mission design.

Other Period Multiplying Bifurcations

Period multiplying bifurcations exist at locations where the order of stability of the

underlying orbit does not change. Recall the analysis of a period doubling bifurcation. A

similar analysis can be conducted for an arbitrary period NTp. An N-period bifurcation then

occurs when an initial variation off of a periodic orbit returns to itself after N returns to the

stroboscopic map. Hence, for an N-period bifurcation to exist, we must have

δx̄(NTp) = λN~vi = ~vi

Notice, that, in order for this expression to hold, λ must be an Nth root of unity, such that

λN = 1. For example, consider a 3-period bifurcation. For this bifurcation to exist, the

eigenvalues of the bifurcating orbit must be the third root of unity, which corresponds with
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an angle in the unit circle of 2π

3 and 4π

3 . An angle of 0 corresponds to λ = 1 and is technically

a root of unity, and, since a variation along this eigenvector is fixed after 1 revolution, it is

clear that it must then also remain fixed for 3 revolutions. However, since this location corre-

sponds to a tangent bifurcation, it is excluded from consideration for an N-period bifurcation

location, as it simply represents the same underlying orbits, propagated for N revolutions

of their orbital period. For 2π

3 and 4π

3 the variation will not repeat onto itself after the first

return, but it will after the third return to the map, leading to an orbital period of 3 times

that of the initial orbit.

Analyzing the eigenvalues of the L2 Halo family shows that it possesses several oppor-

tunities for N-period bifurcations, as it possesses eigenvalues that evolve along the unit

circle. These bifurcations include one 3-period bifurcation, three 4-period bifurcations and

six 5-period bifurcations. Following the notation introduced by Zimovan-Spreen [  7 ], a set of

5-period families are generated

(a) L2 P5HO2 (b) L2 P5HO3 (c) L2 P5HO5

Figure 3.7. L2 Halo 5-period orbit bifurcating families

where the black marker represents the lunar position. The discovery of new periodic orbit

families provides an increased amount of natural structures that can be leveraged during

mission transfer design.
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3.6 Other topics to consider

May also write about multiple shooter and pseudo arclength if I have time at the end,

but it’s not necessary.
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4. TRANSFERS TO THE EARTH-MOON L1 VICINITY

The purpose of this investigation is to study the characteristics of two-maneuver transfers,

from a 500 km altitude, circular Low Earth Orbit(LEO) to the Earth-Moon L1 vicinity. As

a baseline, a 59,000 km ŷ amplitude L1 Lyapunov orbit, similar to that of the ARTEMIS

mission[ 27 ], is considered. Transfers with direct insertion into a target orbit are analysed

first, before expanding the trade space to leverage stable manifold arcs for orbital insertion.

Tangent insertion transfers are studied first, as they represent the ideal maneuver direction

and simplify the available transfer space. This transfer space is subsequently expanded,

by studying transfers that leverage non-tangent insertions. Finally, transfer solutions are

extended past the baseline case, through different orbits of the L1 Lyapunov family. This

extended transfer space provides opportunities that can be leveraged in support of mission

design.

4.1 Transfers with Direct Insertion into Baseline Orbit

One of the simplest kind of transfers from LEO to an orbit in the L1 vicinity, is a two-

maneuver direct insertion transfer. The two maneuvers represent: a Trans-Lunar Injection

maneuver (TLI) to depart LEO, and an insertion maneuver to enter the final orbit. Only

TLIs that are applied along the velocity direction are considered for departure, to make

efficient use of the typically large maneuvers[ 28 ][ 29 ]. Additionally, the study focuses on short

time of flight (TOF) transfers that remain internal to the Earth-Moon system. Focusing on

tangent insertion transfers allows for the reduction of the transfer space, as a first step to

evaluate possible transfer solutions to the L1 vicinity. A tangential insertion is defined as an

insertion where the incoming velocity of the departure arc is parallel to the velocity of the

target insertion state. From this definition, there are two possible scenarios for a tangential

insertion, one where the incoming and target velocity are in the same direction and one

where they are in opposite directions, as
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Figure 4.1. Tangent insertion options

where Vi is the incoming velocity on the transfer arc and Vt is the velocity of the target

state. A tangential insertion where the incoming velocity and the target velocity point in

the same direction, represents the theoretical minimum ∆V required to bridge the energy

gap between the transfer arc JC and the target orbit JC . To construct such transfers, the fact

that L1 Lyapunovs have perpendicular crossings of the x̂− ẑ plane is leveraged. Starting at a

perpendicular crossing on an orbit, vary ẏ and propagate in negative time until the transfer

arc reaches perigee. These sets of arcs are evaluated to find which arc provides a similar

perigee altitude to that of the desired LEO (500 km in this case). This solution is used as

the initial guess for a corrections process, where ẏ and TOF are design variables used to

target a final state perigee with a 500 km altitude. This process is continued to other orbits

in the family, by varying the perpendicular crossing location. A set of transfers to the L1

Lyapunov family leveraging the perpendicular crossing nearest to the Moon, are shown

Figure 4.2. Transfers to L1 Lyapunov orbits perpendicular crossings
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Alternatively, instead of continuing along the family, a continuation scheme is applied to

compute other transfer solutions along a given orbit. Since these other locations are no

longer perpendicular crossings, both ẋ and ẏ at the insertion location are allowed to vary,

while simultaneously constraining them to be tangent to the orbital velocity at that location.

The application of this method on a sample L1 Lyapunov is shown

Figure 4.3. Tangent transfers to baseline orbit

where the color of the transfer arc represents the insertion ∆V in km/s. Define the departure

angle (θ), as the angle between the Earth-Moon line and the line connecting the Earth to

the point where the TLI is applied

Figure 4.4. Departure angle definition
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where the red line represents a departure arc (or transfer arc) after the TLI has been applied.

This definition allows for the analysis of the departure characteristics of the family of solu-

tions shown in Figure  4.3 . Given that the transfer family maintains similar geometry for its

entirety, it is expected that the departure characteristics are bounded within a small region

of values, as shown in Figure  4.5 . Note, that, the TLIs displayed fall near the lower limit of

the TLIs used during the Apollo program[  29 ], as they provide transfer arcs that don’t reach

the Moon. Additionally, notice that the solutions with the lowest insertion maneuver cost

occurs a few hours past the Earth-Moon line along the orbit.

(a) Insertion ∆V (b) Trans-Lunar Injection (c) Departure Angle

Figure 4.5. Tangent transfer characteristics to baseline orbit

As the continuation process approaches the region near the maximum ŷ amplitude of the

orbit, the corrections algorithm has higher difficulty converging. This is explained by points

near this location having an orbital velocity that points towards or away from the barycenter

of the system, denoted as Zero Momentum Points (ZMP)[ 30 ]. These points denote the

boundaries for the region where the continuation scheme for tangential transfers is successful.

When the target velocity points away from the barycenter of the system, the corrector tends

towards a solution with an infinitely large TLI, such that the transfer arc resembles a straight

line. Alternatively, when the target velocity points towards the barycenter, the corrector

tends towards a solutions that has an apogee past the Moon, before returning to the target

location. This continuation barricade necessitates that solutions on one side of the ZMP

are continued independently from solutions on the other side of it. Thus, the process is

repeated from the alternate perpendicular crossing on the orbit (where the orbital velocity

points along positive ŷ direction) and continued towards the ZMPs to generate a picture
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of available direct transfers to the desired orbit. While tangent direct insertion provides

relatively simple transfers, it is limited in breadth, resulting in a small solution space.

4.2 Transfers Leveraging Stable Manifolds of Baseline Orbit

Stable manifolds provide natural pathways into periodic orbits that expand available

transfer options. L1 Lyapunov orbits possess eigenvalues such that |λ| > 1, meaning they

also possess stable and unstable manifolds. The stable manifold is of interest, as the focus

of the investigation is to enter orbits in the L1 vicinity. Stable manifolds arrive at the orbit

from two different directions; for L1 Lyapunov orbits one half-manifold arrives from the

direction of the Earth (denoted left half-manifold) and the other arrives from the direction

of the moon (denoted right half-manifold).

4.2.1 Tangent Vs Non-Tangent Insertion Transfers

Leveraging manifold arcs provides additional insertion locations that are leveraged for

transfer design. The left half-manifold provides arcs with ample transfer insertion opportu-

nities, which arrive onto the orbit from the Earth side of the orbit.

Figure 4.6. Left half-manifold arcs of baseline orbit

The right half-manifold is more complex, as it is comprised of arcs that arrive from the lunar

side of the orbit. Propagating the stable right half-manifold in backwards time provides

mostly arcs that approach the orbit from outside of the system, as they enter through the L2

gateway. However, a portion of this half-manifold includes arcs that incorporate a lunar flyby
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as they approach from the Earth vicinity. This excursion near the Earth vicinity provides

similar insertion locations as the left half-manifold.

Figure 4.7. Stable right half-manifold arcs of baseline orbit

To characterize the effect of different insertion locations, consider a single manifold arc

within the manifold tube. Since tangential transfers cover a narrower solution space, they

are evaluated first. Transfers are generated by selecting a point on the manifold arc, and

using differential corrections to target a perigee with 500 km altitude in backwards time,

where the velocity magnitude at the insertion point and TOF are allowed to vary. Starting

on a manifold state near the target orbit, an initial guess is generated by using a nearby

direct insertion transfer solution. Once the converged transfer for the first state on the

manifold arc is computed, it is leveraged in a continuation scheme that progresses to other

insertion locations along the stable manifold arc, as it gets further away from the orbit.

Given that the maneuver is constrained to be tangential, this continuation process struggles

with convergence as it approaches the ZMPs on the stable manifold, as discussed with

direct insertion transfers. Nonetheless, independently computing transfers to the different

insertion locations is an option. By manually varying the velocity magnitude and propagating

in backwards time, a feasible initial guess is procured at each desired insertion location.

Following this methodology, a trade space of solutions is generated for a large portion of the

manifold arc. A set of the available geometries is displayed
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Figure 4.8. Tangential transfers to stable left half-manifold arc of baseline orbit

where the coasting arc between the TLI and the insertion maneuver, or transfer arc, is shown

in red, the stable manifold arc is shown in blue and the target orbit is shown in yellow.

Similarly, a single manifold arc is chosen on the right half-manifold. An arc that traverses

from the Earth vicinity towards the orbit, and leverages a lunar fly-by before approaching

the orbit from the right side is selected. Computing transfers in the same manner as for the

left half-manifold arc, produces the geometries shown
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Figure 4.9. Tangential transfers to stable right half-manifold arc of baseline orbit

While this stable manifold arc provides a distinctly different lunar fly-by, notice the similarity

in the available transfer geometries. Additionally, notice the large variety of transfer arc size,

required to maintain the tangential insertion constraint for both manifold arcs considered.

This large variety is achieved through the variation of TLI magnitude, which leads to a

large trasnfer arc energy range over the solution space. While tangent insertion provides the

theoretical minimum ∆V to bridge the energy gap between two states at a given location, the

departure energy is largely variable for the computed tangent insertion transfers. Removing

the tangentiality constraint provides additional flexibility, allowing for transfer options that

possess a smaller energy gap at the insertion point. For this reason, transfers that are not

constrained to possess tangential insertion are considered next, and are denoted non-tangent

transfers. If no additional constraints are included, the corrections scheme for a non-tangent

transfer represents an under-constrained system. To compare the performance of the two

insertion methods, non-tangent insertion transfers are converged by using the same initial

guess provided to the tangential insertion transfers. Since a minimum norm formulation is

used for the convergence of the under-constrained system, it is expected that the converged
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solution will remain near the initial guess. Insertion locations along the manifold arc are

defined as the time away from manifold insertion into the target orbit, meaning, if insertion

is conducted at -5 days, the spacecraft will coast on the stable manifold arc for 5 days before

it naturally arrives at the target orbit. A visual representation of the insertion location on

each of the manifold arcs to be analyzed is provided.

(a) Left half-manifold (b) Right half-manifold

Figure 4.10. Insertion location along manifold arc

Once transfers using both methodologies are generated, their characteristics are compared.

First, focus on the insertion maneuver angle, which is defined as the angle from the target

velocity at the insertion point Vt to the incoming velocity on the transfer arc Vi.

Figure 4.11. Insertion angle definition

Evaluating this quantity for the computed tangent and non-tangent insertion transfers pro-

vides
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(a) Left half-manifold (b) Right half-manifold

Figure 4.12. Insertion ∆V comparison

Notice that the tangent transfers have either θins = 0 deg or θins = 180 deg, as expected

from the definition in Figure  4.1 . Additionally, notice that the non-tangent transfers do not

deviate from their tangent counterparts significantly at most insertion locations, as the initial

guess provided was tangent, and a minimum norm approach was implemented in corrections.

Next, focus on the insertion maneuver magnitude

(a) Left half-manifold (b) Right half-manifold

Figure 4.13. Insertion ∆V comparison

where the transfers denoted with a positive ∆V refer to the tangent type where the velocities

are in the same direction and a negative ∆V refers to the tangent type where the velocities

57



are in opposite directions, as defined in Figure  4.1 . Notice that the insertion locations that

provide the lowest insertion ∆V s appear near the target orbit and near the first apogee

after flying past the Earth, while the insertion locations near perigee display comparatively

large insertion maneuvers for both kinds of transfers. Additionally, notice that both the left

and right half-manifold arcs analyzed display the trend described. Given that a tangential

maneuver, when the velocities are in the same direction, provides the theoretical minimum

∆V to bridge the energy gap at the maneuver location, one might expect for the non-

tangential transfer to require a larger maneuver. However, since the transfer arc is not fixed

to a given energy, it is possible for the non-tangent transfer to bear a smaller energy gap,

between transfer and target arc, than the tangent transfer. This variation in energy gap

can reduce maneuver size as displayed at various insertion locations in Figure  4.13 . This

variation is exemplified by evaluating the transfer arc JC characteristics for the computed

transfers

(a) Left half-manifold (b) Right half-manifold

Figure 4.14. Transfer arc JC comparison

Notice again that, the characteristics remain similar between both types of transfers at most

locations. However, at some insertion locations, a noticeable difference in transfer arc JC

is apparent. These insertion locations correspond to the locations that display the largest

insertion ∆V difference, between tangential and non-tangential transfers, in Figure  4.13 .

Recall that JC is a function of both position (through U∗) and velocity, hence, the transfer
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arc JC is a function of the departure location along the 500 km LEO orbit as well as the

initial velocity of the transfer arc, which is comprised of the circular velocity of the orbit

in addition to the TLI applied. To understand how each of these conditions affect the JC ,

consider a sample departure trade. This trade is constructed by applying a TLI of 3 km/s

at all departure angles θ on a 500 km LEO. The transfer arc JC at each location is then

evaluated

Figure 4.15. JC variation along 500 km LEO with 3 km/s TLI

Notice that JC varies very slightly with respect to departure location θ for a given TLI.

Recall that JC varies with the magnitude of the non-dimensional velocity squared (equation

( 2.15 )), and U∗ is purely a function of position. For the range of TLIs witnessed in the

solution space, the non-dimensional velocity magnitude is on the order of ten, hence, a

small variation in TLI has a much larger effect on JC than the observed effect from varying

departure angle. This is corroborated by the TLIs of the converged transfers
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(a) Left half-manifold (b) Right half-manifold

Figure 4.16. Transfer arc TLI comparison

Notice that the trend matches that of Figure  4.14 almost exactly, except for it being mirrored

vertically, given that a smaller velocity corresponds to a larger JC . Recall that the theoretical

minimum ∆V to overcome a given energy gap is a function of maneuver location and it is

minimized when U∗ is maximized, as seen in equation (  2.17 ). Notice from the definition of

U∗ (equation ( 2.11 )), that U∗ is maximized when the distance to the primaries is minimized

or when the quantity x2 +y2 is maximized. Hence, performing a maneuver in close proximity

to the Earth presents a low transfer cost opportunity. However, the computed transfers show

the opposite trend, displaying large insertion maneuvers for insertion locations near perigee.

The explanation for this phenomenon is rather simple. Notice that the TLI of the transfers

that use an insertion location near perigee is much lower than the TLI at other locations, as

a factor of attempting a tangential insertion much closer to the original orbit. This smaller

TLI leads to the energy gap to overcome at the insertion location being larger than the

energy gap at the other locations analyzed. Essentially, the transfers that insert into the

manifold near perigee partially delay the energy change, from LEO to the insertion location,

leading to a higher insertion cost. Finally, analyse the range of departure angles available

for the transfers computed
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(a) Left half-manifold (b) Right half-manifold

Figure 4.17. Departure angle (θ) comparison

The wide variety of departure angle options from both types of transfers is notable, given

that direct insertion transfers provide a very limited range of options. Finally, note that the

transfers that leverage the right half-manifold showcase similar cost and behavior as those

that leverage the left half-manifold. Overall, transfers that leverage the stable manifolds

provide transfer opportunities that cover a wider range of departure conditions, allowing for

flexibility in mission transfer design.

4.2.2 Expanding Beyond Baseline Orbit

To verify that characteristics evaluated for the baseline orbit actually represent the char-

acteristics of the general space, additional orbits in the L1 vicinity are analyzed. Focus on

two L1 Lyapunov orbits, with 45,000 km and 30,000 km ŷ amplitudes. Consider first the

left half-manifolds of these orbits. Notice that these half-manifolds are similar in geometry

to the ones of the baseline orbit.
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(a) 45,000 km ŷ amplitude (b) 30,000 km ŷ amplitude

Figure 4.18. Left half-manifold of L1 Lyapunov orbits

Individual manifold arcs that closely resemble the geometry shown in Figure  4.10 are selected

for each orbit. Defining the insertion location as before, the selected arcs are shown

(a) 45,000 km ŷ amplitude (b) 30,000 km ŷ amplitude

Figure 4.19. Selected left half-manifold arcs

Again, initial guesses for tangent maneuver solutions are generated independently for differ-

ent insertion locations along the selected manifold arcs, and, these initial guesses are used

to converge both the tangent transfer and the non-tangent transfer at each location. Similar

trajectory geometries arise as those seen in Figure  4.8 , which is expected, given the similarity

in manifold arc geometry.
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(a) 45,000 km ŷ amplitude (b) 30,000 km ŷ amplitude

Figure 4.20. Transfer characteristics for left half-manifold arcs of alternate
L1 Lyapunov orbits
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Characteristics of the computed transfers are shown in Figure  4.20 . Notice again that non-

tangent transfers provide lower maneuver cost solutions at several insertion locations as they

provide more flexibility in transfer arc JC , through the variation of TLI. Additionally, trans-

fers that possess insertion locations near the manifold arcs perigee display higher maneuver

costs, as the TLI decreases, in order to accommodate for a tangential arrival in the initial

guess at these locations. Notice as well that a large range of departure options are avail-

able and they vary based on insertion location along the manifold arcs. The similarity of

these results to the characteristics of the baseline orbit suggest that continuation of transfers

between orbits of the same family is possible, which allows for the construction of a more

complete trade space of available solutions towards the L1 vicinity. This process is then

repeated on the same orbits, but with right half-manifold arcs. These orbits possess stable

manifold arcs that approach from the Earth after a lunar fly-by as used on the baseline orbit.

Right half-manifold arcs that display similar geometry to the one in Figure  4.10 are chosen

(a) 45,000 km ŷ amplitude (b) 30,000 km ŷ amplitude

Figure 4.21. Selected left half-manifold arcs

Tangent and non-tangent transfers are generated following the methodology previously de-

scribed, and their characteristics are compared in Figure  4.22 .
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(a) 45,000 km ŷ amplitude (b) 30,000 km ŷ amplitude

Figure 4.22. Transfer characteristics for right half-manifold arcs of alternate
L1 Lyapunov orbits
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Notice that the characteristics witnessed in the previously compared manifold arcs are re-

peated here. Mainly, non-tangent transfers provide the targeter more flexibility (uncovering

lower cost transfers), lower insertion ∆V solutions are found near the target orbit and near

the first apogee after Earth fly-by, a broad range of departure angles are available, and the

lower TLI solutions near perigee lead to larger insertion costs. The similarity in solution

characteristics across different sized orbits in the L1 Lyapunov family, once again suggests

that continuation, from one orbit to another in the same family, is a viable way to gen-

erate a a larger trade space of transfer solutions. Notice from all the right half-manifold

arcs evaluated, that including a lunar fly-by in the transfer solution does not provide lower

insertion cost solutions. In the two-body problem, executing a fly-by of a secondary celestial

body provides an effectively free ∆V relative to the primary celestial body, dubbed a gravity

assist. However, in the CRTBP, simply flying near a primary does not change the energy of

the trajectory, as the gravitational influence of the primary is already included in the model.

Recall from the minimum theoretical ∆V equation (equation ( 2.17 )) that the best locations

to perform a maneuver are in close proximity to a primary. Hence, right half-manifold arcs

that possess low-altitude lunar fly-bys can be leveraged through an insertion maneuver in

the near vicinity of the Moon, however, simply transiting near the vicinity of the moon does

not affect the energy of the trajectory. From this phenomenon, and the similarity in transfer

characteristics discussed, it is noted that right half-manifold arcs add complexity and risk

by performing a lunar fly-by, and do not improve transfer cost. As a result, the investigation

will focus on transfers to the left half-manifold moving forward.

4.3 Expanding Transfer Trade Space on Regions of Interest

From the characteristics displayed in the analysis comparing tangent and non-tangent

insertion transfers, two Regions of Interest (ROI) are introduced; a region near the target

orbit, and a region near the apogee on the left side of the Earth. Orbits in the L1 Lyapunov

family have different periods and stability characteristics, which lead to different arrival rates

of the stable manifold. Because of this variation, time of flight away from orbit insertion is

not a good metric to define the ROI near the vicinity of the target orbit, instead a physical
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boundary in position is used. The ROI near the target orbit is then defined as the area of

the left half-manifold that is to the right of x = 0.7[nd] (about 69% of the way to the Moon),

since this location represent a point where the manifold arcs slow down as they approach

from the Earth, allowing for cheaper non-tangential insertion maneuvers.

(a) Baseline orbit (b) Selected manifold arc

Figure 4.23. Near orbit ROI for baseline orbit

Continuation Methodology

A single arc on this half-manifold is selected and a trade space of transfer solutions

is constructed. Starting with a non-tangent transfer solution previously computed at an

insertion location of 0 days, a continuation scheme along insertion location is used to build

a family of solutions. Notice that ZMPs are not a point of concern once the constraint

for the insertion maneuver to be tangential is removed, as the velocity direction at the

insertion location does not pose any issues for convergence with this formulation. Two

different TOF quantities are then defined; the transfer arc TOF, which corresponds to the

time from departure to manifold insertion, and total TOF, which corresponds to the time

from departure to orbit insertion (transfer arc TOF plus time spent on manifold arc). To

prevent the system from being under-constrained, transfer arc TOF is fixed for the corrections

process. Then, a continuation scheme along TOF is implemented, where all the solutions

along insertion location are computed for a given TOF before continuing to the next. To

67



conduct this continuation, the converged solution at a given insertion location with transfer

arc TOF k-1 is used as an initial guess for the same insertion location and transfer arc TOF

k. Once this initial solution at the new TOF is computed, it is continued onto the rest of

the manifold arc (i.e., only a single solution at a given insertion location is continued along

TOF, before being subsequently continued along insertion location).

Transfer Solutions

A sample set of computed transfers for different transfer arc TOF is shown

(a) TOFt = 2.17 days (b) TOFt = 3.91 days (c) TOFt = 6.09 days

Figure 4.24. Sample transfers to baseline orbit ROI

where TOFt refers to the transfer arc TOF. This application of continuation in two directions

generates a surface of transfer solutions. The insertion ∆V variation along this surface is

seen in Figure  4.25 . Notice that the transfers with the shortest transfer arc TOF display the

highest insertion cost, as they approach the insertion location at non-ideal angles and high

velocity. Additionally, notice that the lowest ∆V transfers do not necessarily correspond to

highest computed transfer arc TOF, instead they lay at some intermediate location along

the surface. Finally notice that the lowest insertion ∆V magnitude varies depending on

insertion location.
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Figure 4.25. Insertion ∆V for ROI

Next, consider how the TLI varies along the surface of solutions

Figure 4.26. Trans-Lunar Injection for ROI

Notice that TLI remains bounded over a small range or maneuver sizes for most of the

surface, with the exception of the shortest transfer arc TOFs, as these solutions require a

higher departure speed in order to reach the target location in the desired time. This increase

in TLI for the shorter transfer arc TOF transfers increases the energy gap that needs to be

overcome at the insertion location, leading to higher insertion cost as seen in Figure  4.25 .

This observation is confirmed by evaluation the relationship between insertion ∆V and TLI
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Figure 4.27. Maneuver characteristics for ROI

where the higher TLI transfers clearly show an increasing insertion ∆V cost. Finally, consider

the departure angles available for the computed set of transfers

Figure 4.28. Departure angle for ROI

Notice that a larger range of departure angles are available as compared to the direct insertion

transfers, shown in Figure  4.5 . However, transfer arcs are still bounded to depart from the

third quadrant around the Earth. A similar analysis is then conducted for the ROI that lays

in the vicinity of the first apogee on the left side of the Earth. This ROI is defined as the

region within 2.5 days of the apogee on the manifold arc. A representation of this region in

the sample baseline manifold arc is shown
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Figure 4.29. Apoapse ROI definition visualization

where the baseline orbit is shown in black, the selected manifold arc is shown in blue and the

ROI in question is shown in red. The same methodology to generate a family of transfers is

applied to this ROI; a previously computed non-tangent transfer solution is used as starting

point, before continuing the solution to different insertion locations within this ROI, and

continuing to other transfer arc TOFs. A sample set of transfer geometries available to the

apogee ROI is shown

(a) TOFt = 2.17 days (b) TOFt = 3.91 days (c) TOFt = 6.09 days

Figure 4.30. Sample transfers to baseline orbit apogee ROI

A surface of transfer solutions is again generated leveraging this multidimensional continu-

ation scheme, as seen in Figure  4.31 . Notice the larger availability of low insertion ∆V as
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compared to the near orbit ROI (Figure  4.25 ), at the expense of a larger total TOF before

reaching the target orbit.

Figure 4.31. Transfer characteristics for apoapse ROI of baseline orbit
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Notice the larger availability of low insertion ∆V as compared to the near orbit ROI (Figure

 4.25 ), at the expense of a larger total TOF before reaching the target orbit. Additionally,

notice that transfers with longer transfer arc TOF show larger insertion maneuvers in the

region before apogee (insertion location < -22 days) and lower insertion maneuvers in the

region after apogee, while transfers with shorter transfer arc TOF show the opposite trend.

Evaluating Figure  4.30 suggests that this trend is explained by the velocities aligning more

closely in the low cost regions, as transfers with short transfer arc TOF (a) display an

insertion angle closer to zero in the region before apogee, while transfers with long transfer

arc TOF (c) display an insertion angle closer to zero in the region after apogee. Notice again

that TLI remains bounded over a small range for the majority of the surface, apart from it

quickly raising to accommodate for the short transfer arc TOFs selected.

Figure 4.32. Maneuver characteristics for apoapse ROI

Notice that in this case not all solutions that possess higher insertion maneuvers also possess

higher TLI values. That is, some of the solutions with TLI in the bounded region also possess

high insertion maneuvers, in contrast to the other ROI, seen in Figure  4.27 . This is attributed

to the directionality of the insertion maneuver as described above, and corroborated by

Figure  4.33 
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Figure 4.33. Insertion angle variation for apoapse ROI

where, as solutions approach ±180 degrees, the insertion cost rapidly climbs. Additionally,

notice that the high insertion cost solutions that possess more favorable insertion angles

correspond to the solutions with shorter transfer arc TOF and higher TLI values seen in

Figure  4.32 . Finally, notice from Figure  4.31 that the departure arcs for the computed

solutions remain bounded. However, these bounds are different than the ones seen in Figure

 4.28 . While the ROI near the target orbit displays transfer solutions that depart from the

third quadrant around the Earth, the ROI near apogee contains solutions that depart from

the first and fourth quadrants around the Earth. This variety provides flexibility in mission

design, as different departure characteristics that can be leveraged, are included within this

trade space.

4.3.1 Continuation to Alternate Manifold Arcs on Single Orbit

Traditionally, spacecraft don’t target a specific manifold arc for insertion, apart from

rendezvous missions. Instead, spacecraft tend to have a desired target orbit or a range of

desired target orbits that they arrive upon to achieve their mission. Hence, transfers to a

single manifold arc of a desired periodic orbit may not accurately represent the breadth of

transfer options available for a mission. Given that manifold arcs are simply members of a

continuous manifold surface, a continuation scheme is implemented to transition solutions

from the presented manifold arc to other manifold arcs on the baseline orbit.
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Continuation Methodology

A methodology to continue solutions for a single manifold arc has been previously defined.

In order to expand this methodology to additional manifold arcs, a single solution at a

given insertion location and TOF is used as an initial guess to transition from the current

manifold arc to the next. After this first solution is converged, the transfer space for the

entire manifold arc is, then, computed using the methodology previously described. Here,

after the first solution for each manifold arc is computed, the transfer space for each manifold

arc is computed independently from the rest.

Transfer Results

First, focus on the ROI near the target orbit, and choose a set of manifold arcs along

the surface, as shown in Figure  4.23 . Notice that, since transfers are continued in three

separate dimension, a volume of available transfer solutions arises. This volume of solutions

is comprised of continuously varying surfaces that each correspond to an individual arc within

the manifold. Recall that the boundary of the ROI near the target orbit is not defined based

on a specific time along the manifold arc, but instead as a location in space. From this

definition, notice that if the surfaces are characterized using the previously seen definition of

manifold insertion location (in days), the surface will span different ranges in this dimension,

as different manifold arcs will take varying amounts of time to reach the defined boundary.

To overcome this circumstance, a new definition of manifold insertion location is used for

this ROI, normalizing each curve by the time at which the manifold arc intersects x = 0.7,

so that the insertion location is defined as a percentage of time along the corresponding

manifold arc. A sample set of surfaces using this definition is shown in Figure  4.34 , where

the red arc represents the arc used to generate the surface, 0% along the manifold represents

the intersection with the orbit, and 100% along the manifold represents the intersection with

x = 0.7. Notice that solutions are now colored by total TOF instead of transfer arc TOF.

Additionally, since the curve representing the manifold arcs is a closed curve, the evolution

of the solution surfaces is periodic.
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Figure 4.34. Solution surface evolution for different manifold arcs of baseline orbit
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Notice that for this volume of solutions, the minimum insertion cost at all insertion locations

remains around 450-500 m/s, in contrast to Figure  4.25 , where the minimum insertion cost

varied heavily with insertion location.

Figure 4.35. Insertion ∆V for ROI

Additionally, notice that most of the high cost solutions result from short arc TOFs as seen

previously for the single arc.

Figure 4.36. Trans-Lunar Injection for ROI

Again, notice that the TLI of the computed transfers remains bounded to a small range of

values for the majority of the volume, with the exception of solutions that possess a short
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transfer arc TOF, since a higher TLI is required to reach the vicinity of the orbit in a shorter

amount of time.

Figure 4.37. Departure angle for ROI

Further, notice that an increased range of departure angles is available, as compared to

Figure  4.28 , though, solutions are still bounded to the third quadrant around the Earth.

Figure 4.38. Insertion cost of solutions at various departure angles

Also, note, that not only is there solutions available over the shown range of departure angles,

but there are relatively low insertion cost solutions for the majority of the range considered,

with the exception of the -160 to -170 degree range, where the minimum insertion cost rises

to between 700-800 m/s. Similarly, this methodology is applied to the ROI near the first
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apogee prior to Earth fly-by. Since the time of flight along the manifold, between apogee

and orbit insertion, varies for different manifold arcs, surfaces along the volume representing

transfers to this ROI will span different ranges of the initial definition for manifold insertion

location. To overcome this, an alternate definition of insertion location is devised, using days

away from apogee as the characteristic that provides insertion location information, since

this is how the ROI is defined.

Figure 4.39. Insertion ∆V for apoapse ROI

Insertion maneuver cost displays similar characteristics as those seen in Figure  4.31 , where

negative time represents days before reaching apogee. Notice again that low-cost solutions

appear at all insertion locations relative to apogee, with low transfer arc TOF solutions

favoring insertion locations before apogee and high transfer arc TOF solutions favoring

insertion locations after apogee. Additionally, notice the large range of total transfer TOFs

available (21-38 days) for this ROI.
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Figure 4.40. TLI for apoapse ROI

TLI characteristics for all manifold arcs along the baseline orbit closely resemble those for

the initially computed arc in Figure  4.31 , where TLI remains bounded over a small range of

values for most transfer solutions, with the exception of the short transfer arc TOF transfers,

as a higher departure velocity is required to reach the insertion location in the desired amount

of time, as described previously.

Figure 4.41. Departure angle for apoapse ROI

Additionally, transfer solutions to this ROI display an increased range of departure angles

available, as compared to the ROI near the target orbit. Again, the displayed departure
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angles not only encompass a larger range, but they cover an entirely different set of angles

(-25 to 125 degs), as compared to those available for the ROI near the target orbit (-170

to -90 degs). However, in contrast to Figure  4.38 , a smaller percentage of departure angles

available possess insertion maneuvers in the lower range of cost. While approximately 86%

of the available departure angles possess solutions with an insertion maneuver < 700 m/s in

Figure  4.38 , only about 65% of the available departure angles display this behavior.

Figure 4.42. Insertion cost of solutions at various departure angles

The volumes displayed in this section provide a representation of the available trade space

of transfer solutions, that leverage stable manifold arcs into the baseline orbit, for the TOF

and ROIs considered.

4.3.2 Continuation to Similar Manifold Arcs on Additional Orbits Along the
Family

The volumes of solutions computed for the baseline orbit provide a plethora of available

transfer solutions. However, transfer solutions to additional orbits in the L1 vicinity are of

equal interest. As suggested in section  4.2.2 , manifold arcs and transfer solutions maintain

similar characteristics for different orbits in the L1 Lyapunov family. Therefore, solutions can

be continued from one orbit to the next along the family. Manifold arcs from a range of L1

Lyapunov orbits (24,000-79,000 km ŷ-amplitude) are selected to implement this continuation

scheme. Similar manifold arcs are chosen along the family by stepping from the orbit onto
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the manifold at similar locations along each orbit. Recall that one can step onto the manifold

at any location along the orbit. This location is characterized by a certain TOF away from

the perpendicular crossing nearest to the moon. Then, to maintain this similarity across

orbits, a parameter to represent the location at which the step onto the manifold occurs, is

defined as τ = T OFpc

Tp
, where TOFpc is the TOF from the perpendicular crossing nearest to

the moon to the step off location, and, Tp is the period of the orbit at hand. This definition

is analogous to the percentage of the TOF along the orbit at which the step off onto the

manifold is conduced. An implementation of this strategy, provides the manifold arcs that

are used for this continuation scheme, as shown

Figure 4.43. Similar manifold arcs along L1 Lyapunov family

where the target orbits are shown in black, and the ROIs are shown in red.

Continuation Method

Continuing from one manifold arc to a similar arc in a nearby orbit is a similar process

to continuing from one manifold arc to the next one along the same orbit. Hence, a similar

process is used. A single solution at a given insertion location and TOF is used as an initial

guess to transition from the current orbit to the next in the family. Again, once this first

solution is computed, the process outlined to build a surface of solutions for a given manifold

arc is followed.
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Figure 4.44. Solution surface evolution for manifold arcs of varying orbits
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Transfer Solutions

First, focus on the ROI near the target orbit. Recall that since we are continuing in

three dimensions, a volume of solutions arises. This volume is comprised of surfaces, where

each surface represents the manifold arc of a different orbit. Since the orbital family is not

represented by a closed curve, the evolution of these surfaces will not be periodic as seen in

the previous example. The evolution of these surfaces is depicted by displaying a subset of

them, as the continuation process progresses through orbits of increasing amplitude, as seen

in Figure  4.44 . Notice that the surfaces shown all display fairly similar shape, in contrast

to Figure  4.34 , which shows much more variation from one surface to the next. This small

variation in surfaces suggests that a small, contained, volume is formed from this continuation

process.

Figure 4.45. Insertion ∆V for ROI

Notice that the volume of solutions remains remarkably similar to the surface displayed by

the single manifold arc, as seen in Figure  4.25 (the x-axis of these plots are inverted as 100%

along the manifold corresponds to the insertion location furthest away from the target orbit).

In contrast, Figure  4.35 displays a much larger trade space of solutions when continuing to

other manifold arcs on the same orbit, and produces a larger volume.
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Figure 4.46. Trans-Lunar Injection for ROI

Again, TLI displays bounded motion for the majority of the space, with the exception of short

transfer arc TOF solutions where the TLI increases significantly. Similarly to the insertion

maneuver cost, this volume of solutions remains largely similar to the surface generated for

a single manifol arc, seen in Figure  4.26 , while the continuation to other manifold arcs on

the same orbit shows a much larger volume.

Figure 4.47. Departure angle for ROI

The departure angles available in the volume of solutions generated again remains in the

near vicinity of the surface generated for a single manifold arc, as seen in Figure  4.28 . So, if

the geometry from the selected manifold arcs is desired, the departure characteristics remain
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fairly bounded to the range shown above. The evolution of the surfaces throughout the

volume is also visible when coloring transfer solutions by orbital amplitude as

Figure 4.48. Surface variation along L1 Lyapunov family

Again, notice that solutions vary continuously and show limited deviation from the smallest

to the largest orbit considered. From these results, it is fair to say that variation in the

solution space to the ROI near the target orbit, is much larger along different manifold arcs

on the same orbit, than it is for similar manifold arcs on different orbits of the L1 Lyapunov

family.

To analyze the variation in transfer characteristics to the apogee ROI, along the Lyapunov

family, a similar study is conducted for the set of desired insertion locations corresponding

to this ROI. The transfer characteristics of the volume generated by this process are shown

in Figure  4.49 . Similar to the ROI near the target orbit, the volume of solutions is relatively

small and contained. This volume does not deviate far from the surfaces generated for the

single manifold arc, seen in Figure  4.31 (recall that the x-axis of these plots are mirrors of

each other, as 100% along the manifold represents the location furthest away from the target

orbit). Insertion maneuvers available display similar values and a matching trend, to the

solutions space for a single manifold arc. TLI again remains bounded for the majority of

transfer arc TOF, deviating when transfer arc TOF is reduced past a certain point.
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Figure 4.49. Transfer characteristics for apoapse ROI of various orbit

The similarity of departure angles again demonstrates that, if the geometry shown on this

manifold arc is desired, a comparable range of options are available regardless of which orbit
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along the family is desired. In contrast, recall that continuation to other manifold arcs on

the same orbit increased the available departure geometries, as seen in Figure  4.41 . Given

these transfer characteristics, a similar conclusion is made for the apoapse ROI, as is made

for the ROI near the target orbit; variation along different manifold arcs on the same orbit

has a much larger effect on the size of the volume of available transfers, as compared to

the variation to similar manifold arcs on different orbits of the L1 Lyapunov family. These

results additionally suggest that, a generated volume of transfer solutions to a representative

set of manifold arcs on any given L1 Lyapunov orbit will be similar to the volumes seen in

Figures  4.35 - 4.37 and Figures  4.39 - 4.41 .

4.3.3 Continuation to Several Manifold Arcs Along Family of Orbits

A complete trade space of two-maneuver transfers from LEO to a range of orbits in the

L1 Lyapunov family, not only encompasses a single manifold arc over on each orbit, but,

includes all the manifold arcs on each orbit. To create a representation of this space, a set

of 12 orbits with 24,000-79,000 km ŷ-amplitude is selected, as well as 25 manifold arcs along

each of these orbits.

Continuation Methodology

In order to achieve this continuation in one additional dimension, two previous method-

ologies are combined. A starting orbit is first selected, and the trade space to all of its

manifold arcs is computed, using the methodology discussed in section  4.3.1 . After this

volume of solutions is computed, a single solution is continued from this orbit to the next,

following the methodology discussed in section  4.3.2 . Next, once this initial solution is con-

verged on the new orbit, it is continued onto the rest of the manifold arcs on this orbit,

again, following the methodology described in section  4.3.1 . This process is repeated until

all the desired orbits have been evaluated. Since continuation occurs in 4 different dimen-

sions (insertion location, TOF, manifold arc and orbit), a 4-dimensional surface of solutions

is generated. This higher dimensional surface is comprised of volumes of solutions, each

representing one of the orbits analyzed. A representative volume is seen in section  4.3.1 .
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Figure 4.50. Solution volume evolution for manifold arcs of varying orbits
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Transfer Solutions

First, focus on the ROI near the target orbit. The evolution of the volumes described

along the selected range of the L1 Lyapunov family is displayed in Figure  4.50 . Notice that, as

the algorithm progresses through the family, the volumes expand in size, while maintaining

similar shape. This evolution suggests that larger amplitude L1 Lyapunov orbits have a

larger variety of solutions available, but maintain similar trade space trends as the smaller

orbits in the family. Of course, the transfer characteristics of this 4-dimensional surface can

be represented in 2-D and 3-D space, as accomplished previously.

Figure 4.51. Insertion ∆V along L1 Lyapunov family

Notice the similarity of the insertion ∆V s to the solutions seen in Figure  4.35 , particularly,

the availability of low cost transfers at all insertion locations along the manifolds analyzed.

Note, that, there is an increase in the range of available solutions seen in Figure  4.35 , as

this 4-d surface of solutions possesses transfers with lower and higher insertion costs. As

displayed in Figure  4.50 , the volume of available solutions, for each orbit along the family,

expands as orbit ŷ-amplitude increases.
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Figure 4.52. TLI along L1 Lyapunov family

TLI is again bounded to a small region of maneuver costs for the majority of the surface, with

the exception of a portion of the low transfer arc TOF transfers, where the TLI increases

in order to accommodate the shorter transit time. The total surface trend is repeated from

Figure  4.36 , as predicted.

Figure 4.53. Departure angle along L1 Lyapunov family

Again, notice that the trend from Figure  4.37 is maintained. However, notice that the range

of departure angles is slightly increased, with some long transfer arc TOF solutions moving

slightly into the fourth quadrant around the Earth. Next, repeat the analysis for the ROI

near apogee. The characteristics of these transfer solutions are shown in Figure  4.54 .
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Figure 4.54. Transfer characteristics for apoapse ROI along L1 Lyapunov family

Again, notice that the solution characteristics closely resemble those seen in Figures  4.39 - 4.41 ,

as projected. While trends are maintained, notice that the range of available solutions char-
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acteristics is increased, as seen in the ROI near the target orbit. Again, notice that the

inclusion of larger L1 Lyapunov orbits provides transfer options that possess departure an-

gles outside of the range displayed in Figure  4.41 . Additionally, the range of departure angles

at which there is an insertion maneuver < 800 m/s available also increases.

Figure 4.55. Insertion cost of solutions at various departure angles

Notice that the upper boundary on this condition is increased to approximately 120 deg,

from just under 90 deg, as seen in Figure  4.42 . As predicted in section  4.3.2 , the trade space

of solutions encompassing all the manifolds of the range of L1 Lyapunovs selected closely

resemble the volumes of transfer solutions calculated in section  4.3.1 . These solution spaces

computed, represent the entire set of available transfers to the ROIs, within the transfer arc

TOFs defined. These 4-dimensional surfaces can be leveraged to select a desirable transfer

that satisfies the conditions necessary to achieve a mission at hand.
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5. SUMMARY AND FUTURE WORK

5.1 Investigation Summary

With the introduction of the gateway program, there is an increase in proposed missions

to the cislunar vicinity, that leverage structures from the Earth-Moon Circular Restricted

Three-Body Problem (CRTBP). Knowledge of transfer characteristics from Low Earth Orbit

(LEO) to orbits in the lunar region is of great interest, as it allows for rapid mission design.

Explicitly, this study focuses on relatively short time of flight, two-maneuver, transfers from a

500 km altitude LEO to the L1 Lyapunov family of orbits. Underlying structures of the space

are utilized in order to facilitate the construction of said transfers. A large set of transfers is

generated and their characteristics are evaluated. From these transfer characteristics, a set

of key takeaways arises:

• While a tangential maneuver in the CRTBP represents the minimum required ∆V

to bridge the energy gap between two arcs, non-tangent transfers provide additional

flexibility in departure arc geometry and energy. This flexibility allows for insertion

maneuvers that possess a smaller energy gap than their tangent counterparts, even if

the maneuver direction is sub-optimal. From this, non-tangent transfers provide viable

low-cost solutions at an increased range of locations, when compared to tangential

transfers.

• Transfers leveraging right half-manifold of L1 Lyapunov orbits incorporate a ballistic

lunar fly-by. This fly-by introduces additional complexity without improving transfer

performance, when compared to the left half-manifold. A simple transit near the lunar

region does not change the energy of the transfer arc, as the gravitational influence of

the Moon is already accounted for within the model.

• When considering transfers that leverage the left half-manifold, two regions of interest

appear: one near the target orbit and one at the first apogee prior to Earth fly-by.

These locations are regions of interest as they posses low cost transfer solutions.

• Continuation schemes can be applied to non-tangent transfers in order to expand

the trade space to other manifold arcs on the same manifold, and to other orbits in
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the family. Continuation to various manifold arcs on the same orbit provides larger

variation in the solution space, when compared to continuation to other orbits in the

family. Though the variation of the transfer space along the family is limited, larger

orbits provide lower insertion cost opportunities when compared to smaller orbits in

the family.

These key takeaways, along with the transfer characteristics presented, can be leveraged

to rapidly construct desired solutions for the mission at hand.

5.2 Future work

While the work presented in this investigation provides great insight into two-maneuver

transfers to the L1 Lyapunov family, other orbits in the cislunar vicinity are also of interest

for mission design. A set of tasks that expand the work of this study are proposed:

• The L1 Halo family shares a common orbit with the L1 Lyapunov family, as continua-

tion has been proven to be successful from one orbit to another along the same family,

it follows that a continuation scheme can be implemented to transition solutions from

the planar Lyapunov family to the spatial Halo family.

• Similar structures of interest exist around Earth-Moon L2. Hence, an extension of

this work, to orbits in the L2 vicinity, would provide additional insight of interest to

mission designers.

• A subsection of the halo family, the Near Rectilinear Halo Orbits (NRHOs), possesses

stable or nearly stable orbits which do not have well-defined stable manifolds. Previous

authors have implemented methodologies to generate transfers to specific orbits within

this range, through the use of other dynamical structures in their vicinity [ 7 ]. An

expansion of this methodology to the more general case, as well as to L1, would allow

for the generation of a trade space of solutions to these orbits. Such a trade space

would provide insight to designers that wish to leverage these nearly stable orbits.

• The incorporation of intermediate maneuvers are also of interest. This study focused

purely on two-maneuver transfers, however, intermediate maneuvers may be imple-
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mented to the benefit of performance, or, to meet additional constraints required by

the mission scenario.

• Finally, transitioning these solutions to the Ephemeris model is a key validation step.

A step required before designers can leverage the structures demonstrated in the real

mission scenario.

These additional tasks would provide additional insight into the transfer space from the

Earth to orbits in the cislunar vicinity, leading to rapid, informed, mission design.
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