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ABSTRACT

The National Aeronautics and Space Administration (NASA) has a vision for Advanced

Air Mobility (AAM) based on safely introducing aviation services to missions that were pre-

viously not served or under-served. Many potential AAM missions lie in metropolitan areas

that are beset by various types of uncertainty and potential constraints. Radio interference

from other electronic devices can render unreliable communication between flying vehicles

to ground operators. Buildings have irregular surfaces that degrade GPS localization perfor-

mance. Skyscrapers can induce spontaneous turbulence that degrades vehicles’ navigational

accuracy. However, the potential market demands for aerial passenger-carrying and package

delivery services have attracted investments. For example, Google WingX, Amazon Prime

Air, and Joby Aviation are well-known companies developing AAM systems and services. If

the market visions are realized, how will safety be assessed and maintained with high-density

AAM operations?

While there are multiple technology candidates for realizing high-density AAM operations

in urban environments, the means to accomplish the requisite first step of assessing the

airspace safety of an integrated AAM eco-system from the candidate technologies is crucial

but as yet unclear. This dissertation proposes an entropy-based framework for assessing the

airspace safety level for low-altitude airspace in an AAM setting. The framework includes

a conceptual model for depicting the information flows between air vehicles and an air

traffic authority (ATA) and the use of a probability distribution to represent the traffic

state. Subsequently, the framework embeds three airspace-level metrics for assessing airspace

safety and uncertainty levels. The traffic safety severity metric quantifies the traffic safety

level. The traffic entropy quantifies the uncertainty level of the traffic state distribution.

Finally, the temperature is the ratio of the traffic safety severity to the traffic entropy. The

temperature is similar to the traffic safety severity but gives a higher weight to the instance

with a safe traffic state.

Simulation studies show that the combined use of the three metrics can evaluate rela-

tive airspace safety levels even if the unsafe conditions do not occur. The use cases include

using the metrics for real-time airspace safety level monitoring and comparing the design

12



of airspace systems and operational strategies. Additionally, this study demonstrates using

a heat map to visualize vehicle-level metrics and assess designs of UAM airspace struc-

tures. The contribution of this study includes two parts. First, the temperature metric

can heuristically assess a probability function. Based on the definition of the cost function,

the temperature metric gives a higher weighting to the instance of the probability function

with a lower cost value. This study constructs several triggers for predicting if a near-miss

event would happen in the airspace. The temperature-based trigger has a better prediction

accuracy than the cost-function-based trigger. Secondly, the temperature can visualize the

safety level of an airspace structure with the considerations of the environmental and vehicle

state measurement uncertainty. The locations with high-temperature values indicate that

the regions are more likely to have endangered vehicles. Although this framework does not

provide any means of resolving the unsafe conditions, it can be powerful in the comparison

of different airspace design concepts and identify the weaknesses of either airspace design or

operational strategies.
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1. INTRODUCTION

1.1 Motivation

Advanced Air Mobility (AAM) is an emerging aviation industry which focuses on devel-

oping ecosystems for Urban Air Mobility (UAM) and Unmanned Aircraft Systems (UAS) [ 1 ].

Research reports [  2 ], [  3 ] estimate that UAS and UAM vehicles will create significant air traf-

fic in urban areas when the market matures. These UAM and UAS vehicles will be fully

autonomous to enable high-density urban operations, ensure airspace safety, and generate

various UAM/UAS related services, like parcel delivery [  1 ], [  4 ], [  5 ]. Until the autonomous

technologies mature and become ubiquitous, the heterogeneous air traffic will be a mix of

human-piloted, remote-piloted, and autonomous vehicles based on diverse flight mission re-

quirements. Additionally, metropolitan areas have unpredictable micro-weather phenomena

and radio interference due to buildings and civil activities [ 1 ]. These factors increase the diffi-

culties associated with having a safe and secure AAM ecosystem and with properly assessing

airspace safety level.

To integrate the new types of air vehicles to the National Airspace System (NAS), the

Federal Aviation Administration (FAA) illustrates the concept of segregated airspace for

UAS, UAM, and commercial aviation in the UAS Traffic Management (UTM) Concept

of Operations [ 6 ]–[ 8 ] and the UAM Concept of Operations [  9 ], [ 10 ]. In these operational

concepts, the UAS Service Suppliers (USS) and the Providers of Services to UAM (PSU)

receive the broadcasted flight statuses from the air vehicles. They can dynamically close

and open airspace for responding to airspace complexity. However, the broadcasted vehicle

flight statuses may be unreliable because of degraded vehicle navigational performances in

urban environments [ 11 ]. Urban micro-weather phenomena also increase the uncertainty of

assessing air vehicle status [ 12 ], [  13 ]. Additionally, heterogeneous types of air vehicles pose

the challenges of mid-air separation and real-time vehicle tracking [ 14 ]. To manage resources

of the USS and PSU for monitoring and resolving any potential issues, one or several metrics

are needed to quantify airspace complexity under various uncertainty sources for ensuring

airspace safety [ 11 ].
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It is challenging to assess the airspace-related policies due to the novel operational con-

cepts and lack of understandings of the rapidly growing industry. Although the UAM Con-

cept of Operation [  9 ], [ 10 ] and the UTM Concept of Operation [ 6 ]–[ 8 ] draw a big picture

about how different actors interact with each other, they are lacking detailed definitions

and detailed regulations of some identified concepts. For example, the UAM Concept of

Operation [  9 ], [  10 ] mentions that the UAM vehicles will fly in corridors between the ori-

gins and destinations. The detailed corridor descriptions are missing from the documents.

Several studies [  15 ]–[ 17 ] already show that the detailed designs of UAM corridors or con-

flict resolution algorithms can influence air traffic throughput and airspace safety. However,

these studies do not account for vehicle navigational uncertainty. Additionally, their airspace

safety metric is the number of loss of separation (LOS) [ 16 ]. If the relative distance between

two vehicles are slightly higher than the LOS criterion, the number of LOS cannot be used

to evaluate the effectiveness of airspace-related policies or collision resolution algorithms.

If the rate of LOS is low, copious simulation data are also required for statistical analysis.

Hence, the metrics should also be associated with the airspace-related policies for continu-

ously assessing the airspace-related policies and reducing the number of required simulation

runs.

The stakeholders in the AAM industry, like the PSU, the USS, remote pilots, or UAM

operators, etc., are interested in different factors which are related to airspace complexity.

Prof. DeLaurentis et al. [ 18 ] have justified that researchers can analyze the air transportation

system (ATS) with a system-of-systems (SoS) perspective. Since the AAM is the subsys-

tem of a whole ATS and has SoS characteristics [  18 ]–[ 20 ], researchers need to be aware of

a common phrase, “[a] whole is greater than the sum of its parts.” The metrics should

consider different factors, which are the focuses of different stakeholders, to represent the

airspace complexity. For example, different air traffic patterns influence the number of path

conflict points. Micro-weather phenomena have various impact levels on the different sizes

of air vehicles. Compositions of types of vehicles in air traffic can increase air traffic het-

erogeneousness, which indicates the diversity of vehicle autonomous capabilities, sizes, and

flight dynamics, etc. Air traffic heterogeneousness also makes airspace complexity increase.

15



Then, the SoS analysis methodologies provide a framework to organize the stakeholders’

expectations to help this study generate metrics associated with airspace complexity.

The current NAS comprises air traffic control sectors with different capacity limits [ 21 ].

And, the airspace complexity is associated with the air traffic control sector capacity [ 21 ]. To

estimate an air traffic control sector capacity limit, the current approaches rely on the number

of air traffic controllers, airspace sector complexity, and airspace sector uncertainty [  21 ], [  22 ].

However, autonomy capability of air vehicles is not accounted for in the workload assessment

models [  22 ]. If one merely implements the same airspace capacity assessment models [  22 ] on

the AAM traffic management system, it might underestimate AAM air traffic throughput

because it ignores that autonomous systems can agilely resolve some contingent events.

Hence, there is a need to include autonomy capability of air vehicles to estimate AAM traffic

throughput and ensure airspace safety. This study intends to use the entropy-based metrics

for assessing airspace complexity to estimate AAM traffic capacity and provide suggested

actions for any air traffic authorities.

1.2 System-of-Systems Perspectives to Frame Research Scope

The AAM system is part of the ATS and contains the follow six traits. Maier stated

that an SoS should have the first first trait, which is the Operational & Managerial indepen-

dence [  19 ]. Hence, the AAM system is an SoS. Moreover, the AAM system also inherits the

other five traits from the ATS. DeLaurentis discussed the six traits of the ATS SoS and their

implications to the simulations and design methodologies [  18 ]. In conclusion, the design and

analysis of the AAM system should consider its SoS properties.

• Operational & Managerial Independence: subsystems are independently operated and

managed. For example, operators of UAM/UAS vehicles and the UAM/UTM service

providers are operationally and managerially independent.

• Geographic Distribution: subsystems are geographically distributed. For example,

operators of air vehicles and UAM/UTM service providers are at different locations.
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• Evolutionary Behavior: subsystems are never complete. For example, as technology

evolves, new types of UAM/UTM infrastructures and air vehicles will emerge in the

UTM system, and old subsystems may be retired.

• Emergent Behavior: properties of the AAM SoS are not apparent from the constituted

subsystems. For example, the air traffic congestion can happen either en-route or at

the landing ports; however, the design goals of both en-route routs or landing ports

are to ensure efficient UAM/UTM operations.

• Networks: subsystems are connected via physical or abstract network connections.

For example, Unmanned Aerial Vehicle (UAV) package delivery system are connected

through one or more links of logistic systems. Vehicle operators connect to each other

via internet for exchanging flight plans.

• Heterogeneity: subsystems of the AAM differ significantly from each other.

• Trans-domain: operations of AAM subsystems need to consider economic sustainabil-

ity, community acceptance, and environmental influences.

Prof. DeLaurentis [  20 ] proposes an SoS lexicon to categorizing subsystems of an SoS

and drawing an SoS hierarchy. There are four perspectives of an SoS: Resources, Opera-

tions, Policies, and Economics. Resources represent physical components of an SoS, while

Operations show activities of physical or non-physical entities. Policies include regulations

which influence operations of physical or non-physical entities in an SoS, while Economics

show incentives or costs for physical or non-physical entities to execute operations in an SoS.

Table  1.1 shows the SoS Lexicon for the AAM Transportation System.

An SoS comprises several levels. An upper level contains collections of lower level systems.

Taking the AAM SoS as an example, the α level is the component level, which includes air

vehicles for airline operations and traffic surveillance radars for air traffic monitoring. The

β level includes the collections of α level systems. Airlines or air service providers belong to

this level. The γ level represents the collections of β level systems. For example, airlines in

one nation or regional air traffic control sectors are in this level. Finally, the δ level systems
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are the collections of γ level systems. Global ATS or international air traffic service systems

are in this level.

This study intends to develop entropy-based metrics to assess airspace complexity with

the considerations of various vehicle autonomy levels, environmental perturbations, and

airspace-related policies. This research focuses on levels of α and β and on both Resources

and Operations perspectives of the AAM Transportation System in Table  1.1 .

1.3 Research Questions

Section  1.1 described why it is necessary to have metrics to assess the AAM airspace

complexity with considerations of vehicle autonomous levels, localization or wind uncertainty,

and airspace-related regulations. Because the AAM system is part of ATS, it is important

to ensure the existence of stable-intermediate forms during ATS evolutions [ 18 ], [  19 ]. The

future AAM system should inherit features from ATS for reducing integration difficulties and

ensuring a stable ATS evolution. Hence, the study proposes a novel AAM traffic framework

(for both low altitude airspace and controlled airspace) with the following rules:

• The airspace is split into several airspace control sectors.

• There is at least one authority (humans or automation algorithms) in each airspace

control sector monitoring air traffic.

• The authority (humans or automation algorithms) can decide whether an air vehicle

can enter the airspace or not.

• Autonomous air vehicles or remote pilots have ways to communicate with the authority

by sending requests or listening to commands.

• There are standard communication protocols between air vehicles and authorities.

With these assumptions in mind, the research question of this research is: How can an

air traffic control authority dynamically assess mixed air traffic conditions including vehicles

with various autonomy levels and flying capabilities? In a hypothetical scenario, even if every

vehicle is autonomous with proper navigation and collision avoidance systems, collisions can
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still occur due to environmental uncertainty, like wind perturbations, etc. Environmental

uncertainty will increase the uncertainty of a vehicle’s estimated state. Hence, the air traffic

authority should use metrics related to the vehicle state uncertainty to identify actions to

manage the airspace complexity.

The study intends to answer the research question with a bottom-up approach. The

following list shows the working tasks and the sub-questions of this study.

1. Which metrics can quantify the uncertainty of a vehicle’s estimated state with consider-

ations of vehicle autonomy levels, vehicle flying capabilities, environmental uncertainty,

and operational regulations?

2. How does an air traffic authority use the metrics to estimate airspace safety in real-time

with at least 0.5 vehicles per square kilometers?

3. How does an airspace designer use the metrics for designing/enhancing air traffic

management systems with at least 0.5 vehicles per square kilometers?

1.4 Research Contribution

The contribution of this research is providing a new approach of using information theory

and control theory to derive the metrics, which represent the system status of a multi-agent

system under uncertainty in the air traffic management research. In the real world, know-

ing exact vehicle locations is impossible due to various sources of uncertainty, like radar

measurement errors, wind perturbations, etc. For commercial aviation traffic, a popular

approach for considering the impacts of uncertainty is introducing a safety bubble around

vehicles. Vehicle manufacturers must ensure that their navigation devices can estimate ve-

hicle status with errors within the safety bubble criterion. So, air traffic controllers only

give commands to separate vehicles by ensuring no overlapping between the vehicle safety

bubbles. However, the AAM industry will introduce the high density of air vehicles with dif-

ferent autonomous flying capabilities in metropolitan areas. Additionally, cities have various

uncertainty sources, which influences AAM operations. For example, radio interference can
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unpredictably influence vehicle localization capabilities. Buildings can also induce sponta-

neous wind turbulence. These uncertainty sources may impose a large safety bubble around

the vehicles with the safety bubble approach. With the conservative safety bubble criterion,

the airspace may not provide enough volume to accommodate high-density urban air traffic.

Multiple control theories can estimate probability distributions of estimated vehicle sta-

tuses and are possible to replace the safety bubble criterion. Instead of estimating the exact

positions of vehicles, air traffic authorities can estimate the probability distributions of vehi-

cles and identify a minimum separation criterion. The Kalman Filter is one of the algorithms

estimating the probability distribution of a vehicle status by fusing a vehicle dynamics model

and different sources of vehicle status measurements together. From the air traffic author-

ity perspective, it can estimate the vehicle status probability distributions of all vehicles in

airspace. However, with the collections of the probability distributions of estimated vehi-

cle statuses, it is unclear which metrics can help air traffic authorities assess the airspace

complexity and manage air traffic. This study proposes a traffic entropy metric, a traffic

temperature metric, and a traffic safety severity metric for quantifying air traffic conditions.

These metrics are independent of the vehicle’s flying capabilities and autonomous levels.

Several algorithms, like the Kalman filter algorithm, can estimate vehicle states with the

vehicle dynamic model in the form of the vehicle probability density function. A collection of

vehicle probability density functions is the traffic probability density function. The proposed

metrics can quantify the traffic safety levels according to the traffic probability density

function.

There are two potential use cases for these metrics. First, if the vehicle status probability

distribution is associated with the real-time vehicle state, these metrics can help monitor the

air traffic conditions. If the vehicle status probability distribution is associated with the

average behaviors of the air vehicles in the airspace, these metrics can help decision-makers

compare different airspace structure designs.
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1.4.1 Real-Time Airspace Monitoring

The traffic entropy summarizes the uncertainty level of estimations of air traffic conditions

and helps air traffic authorities identify when extra communication channels can reduce

the vehicle state estimation uncertainty. Firstly, The traffic entropy metric can quantify

the uncertainty level of an air traffic condition. By introducing information theory, the

traffic entropy is associated with the information entropy and the communication channels

between air vehicles and air traffic authorities. During radio interference conditions, the

traffic entropy can identify if extra communication channels can improve traffic condition

estimations. However, the traffic entropy only relies on probability distributions of estimated

traffic statuses. The traffic entropy cannot assess how accurately air traffic follows airspace

regulations, like the minimum mid-air separation requirement.

With given airspace regulations, the traffic temperature heuristically quantifies traffic

status probability distributions. The traffic temperature is a ratio of a traffic safety severity to

the traffic entropy. The traffic safety severity is the expected cost value based on traffic status

probability distributions and the given airspace regulations. If vehicles in air traffic violate

the airspace regulations, the traffic safety severity should increase based on the severity of

the violations. Therefore, the traffic temperature indicates the traffic safety severity per

unit of traffic status uncertainty. A higher traffic temperature implies that there is a higher

confidence in the possibility of severe airspace regulation violation by the vehicles.

Finally, the definition of the traffic temperature makes the traffic temperature indepen-

dent from the number of vehicles in air traffic. This property makes the traffic temperature

a good metric for assessing different designs of airspace or monitoring airspace statuses.

1.4.2 Airspace Structure Design Assessment

Since the AAM is an emerging and rapidly growing industry, technologies and regulations

related to airspace management are still evolving. The AAM airspace is a dynamic environ-

ment with spontaneous on-demand air traffic, unpredictable wind perturbations, or random

radio interference. Hence, it is hard to compare different technologies and regulations un-

der a dynamic environment. Researchers use the number of LOS for evaluating airspace
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safety [  16 ]; however, this metric can fluctuate violently if there are strong environmental

perturbations. Hence, the traffic temperature can assess the safety level of the airspace and

identify potential hot spots.

The decision-makers of the airspace structure can conduct simulations to identify the ve-

hicle status probability distributions with some airspace management technologies and reg-

ulations. Then, the decision-makers can use the temperature metric to assess airspace safety

and compare airspace management technologies and regulations. The traffic temperature

metric can be either at the airspace level or the vehicle level. The traffic temperature metric

in the airspace level can help decision-makers compare different designs of airspace struc-

tures by comparing either the average temperature or the maximum temperature through

simulations. A higher temperature value indicates a higher confidence level that the airspace

is in unfavorable conditions. Additionally, the traffic temperature metric at the vehicle level

can show the hot spots in the airspace. The decision-maker can create a heat map according

to the locations and temperature of each air vehicle. The heat map shows hot spots and

hot routes, which require extra attention from the decision-makers for resolving any unfavor-

able event. These hot spots can be due to high environmental perturbations, strong radio

interference, or a high density of path conflict points.

23



2. LITERATURE REVIEW

NASA’s vision of the AAM includes the new air transportation systems providing services to

areas that are not served or under-served by aviation. The air transportation systems contain

the existing and evolving UTM for managing air traffic and ensuring airspace safety for small

UAS. The UAM is part of the AAM and encompasses freight delivery and passenger-carrying

services in urban environments. The UAM also includes manual or autonomous vehicles with

either conventional or vertical take-off and landing capabilities. However, these new aerial

operations should not endanger the existing and busy National Airspace System (NAS).

The National Academies of Sciences, Engineering, and Medicine also published a report [  1 ]

and listed its AAM vision and the gaps preventing the vision from being realized. They

mentioned how to ensure airspace safety with introductions of new concepts of operations,

technologies, and business models will be one of the technical obstacles. Moreover, Chao et

al. and Reiche et al. identified that the weather issue is one of the obstacles preventing a

reliable UAM service [  23 ], [  24 ]. Chao et al. further identified that wind perturbations are

the most influential weather condition [ 23 ]. Isik et al. also identified the safety risk with

the degraded accuracy of Global Navigation Satellite Systems (GNSS) based navigation [ 25 ].

The following sections will illustrate the concepts of UTM, UAM, and the NAS to create a

foundation for identifying the integration challenges. Finally, the last section will show the

literature review related to the identified gaps.

2.1 UAS Traffic Management

The FAA published the UTM Concept of Operations (Conops) for identifying the partic-

ipants of the UTM, defining the UTM system architecture, and illustrating UTM operations

under various operational conditions and environments [  6 ]–[ 8 ]. Figure  2.1 shows the notional

UTM architecture from the FAA [  8 ]. The UTM participants and their responsibilities are

as follows.

• UAS: The aerial vehicles fly in the air and provide aerial services.

24



UAS 
Service 
Supplier

Supplemental Data Service Provider

UAS 
Operator

UAS 
Operator

UAS UAS

Public 
Safety

Public

Fl
ig

ht
 In

fo
rm

at
io

n 
M

an
ag

em
en

t S
ys

te
m

Constraints, Requests for Information

Responses, Operations, Notification

Inter-Data Provider 
Communication & 
Coordination

Inter-USS 
Communication & 
Coordination

Terrain, Weather, 
Surveillance, 
Performance

Operations, 
Constraints, 
Notifications, 
Information

Operation 
Intent, Real-
time Info

Other Operators’ Ops 
Intent, Constraints, 
Notification

Terrain, Weather, 
Surveillance, 
Performance

V2V Comm.

Figure 2.1. UTM Notional Architecture [ 8 ]

• UAS Operator: The operators of the aerial vehicles. They can be either with visual

line of sight (VLOS) or beyond visual line of sight (BVLOS) from the aerial vehi-

cles. They can be either human operators or autonomous systems monitoring vehicle

operations.

• Public Safety/Public: The involved ground communities or entities. They can

access the UTM data to ensure safety and privacy.

• Supplemental Data Service Provider (SDSP): The service providers provide

extra information to help operators or USS ensure airspace safety. The example data

include terrain information, weather information, and constraint information.

• UAS Service Suppliers (USS): The service suppliers help the UAM operators re-

view and ensure compliance with any regulatory or operational requirements. They
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also provide real-time information to UAM operators to ensure airspace safety. Fi-

nally, they archive all flight data for analysis, regulatory, and Operator accountability

purposes.

• Flight Information Management System (FIMS): The FIMS is the gateway

between the UTM and FAA systems. It can exchange airspace information, operational

constraints, or other regulatory information to ensure airspace safety.

After several revisions and amendments, the 14 Code of Federal Regulation (CFR) Part

107 provides guidelines and rules for regulating small UAS operations by operators with

various flight intents and skills [  8 ], [  26 ]. The CFR Part 107 categorizes pilots into two

types, a certified remote pilot and a recreational pilot [  27 ]. There are fewer restrictions

on recreational UAS or responsibility on recreational remote operators. But, recreational

operators can only operate their UAS in designated areas, which segregate the traffic of

recreational UAS from others [  8 ], [  27 ]. For example, recreational pilots can only fly their

vehicles in uncontrolled airspace and less than 400 foot. The certified remote pilots can fly

VLOS, BVLOS, and in controlled airspace with Airspace Authorizations if their UAS also

satisfy certification regulations [  8 ], [ 27 ]. For example, UAS have to equip with the Remote ID

system to broadcast (1) the vehicle’s identification number, (2) the locations of the ground

station and the vehicle, (3) a time mark, and (4) an indication of the emergency status [ 28 ].

Before the flight, the certified remote operators should file a flight intent with the flight

path and the time through each waypoint. If there are conflicts between flight intents, the

certified remote pilots have to negotiate and generate tactically deconflicted flight intents

with the help of the USS. During the flight, the vehicles report locations and statuses back to

the certified remote pilots and the USS. The USS is responsible for monitoring the airspace

and ensuring the conformance of the flight intents. If there is any contingent event affecting

several UAS operations in the far enough future, the USS negotiates with the impacted

remote pilots for generating new conflict-free flight intents. After the vehicles land, the USS

should archive the flight intent and the flight data for future analysis and study purposes [ 8 ].

The USSs have to monitor the air traffic based on the reported telemetry data from the

UAS operators or UAS according to the UTM Conops [  8 ]. Hence, the GPS signal inter-
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ference directly influences the errors of telemetry data and impacts the capabilities of USS

airspace monitoring. Additionally, the USS relies on the real-time air traffic information and

stakeholders’ requirements to generate new flight intents for tactical or strategical deconflic-

tion when new vehicles enter the airspace or any contingent events happen [  8 ]. The USSs

have some leverages to control the air traffic operations.

2.2 Urban Air Mobility

The UAM includes various types of aerial operations in metropolitan areas. For regulat-

ing novel air operations in populated areas, the FAA and NASA published the UAM Con-

cept of Operations [  9 ], [  10 ] to depict how the UAM operations will happen under different

UAM Maturity Levels (UML). The FAA’s Conops constructs a UAM notional architecture

(Fig.  2.2 ) based on the UML-1 scenario, which focuses on the late-stage certification test-

ings and operational demonstrations in a limited environment [ 9 ]. NASA’s UAM Coonops

focuses on the UML-4 scenario, which focuses on the medium density and complexity opera-

tions with collaborative and responsible automated systems [  10 ]. The notional architecture

identifies several stakeholders and their responsibilities as follows.

• UAM Aircraft: Aircraft that provide aerial services, like passenger transportation

and freight delivery. Additionally, the aerial vehicles might have diverse mission profiles

and flight characteristics. For example, the Joby S2 vehicle is a two-seat electric vertical

take-off and landing (eVTOL) [  29 ] with a cruise speed of 200 mph and a design range

of 200 miles. The NASA X-57 Maxwell demonstrator is a fully electric conventional

take-off and landing (CTOL) vehicle [ 30 ]–[ 32 ]. Both configurations could be suitable

for UAM-related missions, but they have different design concepts and mission profiles.

• UAM Operator: The UAM operators operate the UAM vehicles for providing aerial

services. They are responsible for communicating with other stakeholders and ensuring

airspace safety.

• USS: The UTM Service Suppliers need to communicate with the UAM transportation

systems to share critical information for ensuring airspace safety and efficiency.
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• SDSP: The SDSP from the UTM notional architecture can provide their services to

the UAM stakeholders. For example, the micro-weather and terrain information is

critical for both UAS and UAM aircraft to ensure safety.

• Public Safety/Public: The general public or law enforcement agents should have

the right to be aware of the UTM and UAM operations. Additionally, due to the

higher maximum take-off weights of the UAM aircraft than the small UAS, the UAM

aircraft might generate more noise and create higher safety risks to local communities.

Hence, it would be critical to ensure a smooth integration of UAM operations in local

communities.

• Provider of Services for UAM (PSU): The PSU has a similar role and responsi-

bility as the USS from the UTM notional architecture. The PSU are responsible for

helping airspace users communicate and share flight intents. The PSU aid the UAM

operator in creating a conflict-free flight intent. They also monitor the UAM oper-
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ation to ensure conformance with the submitted flight intent. They are responsible

for helping the UAM operators to generate emergent flight intents for resolving any

contingent events.

• FAA — Industry Data Exchange Protocol: The data gateway ensures a smooth

and secured data exchanging between the systems of the UAM and FAA.

For realizing NASA’s UAM vision, NASA holds the AAM National Campaign for building

up discussion platforms between public and private sectors [  33 ], [  34 ]. According to the

published documentation and the FAA’s Conops, the PSU plays roles during the pre-flight,

the in-flight, and the post-flight phases. Additionally, the UAM aircraft should only fly in

the designated UAM corridors.

During the pre-flight phase, the PSU help the UAM operators generate a conflict-free

flight intent through a series of corridors [ 9 ]. If any parts of the flight path enter controlled

airspace, the PSU help the UAM operators file the flight intent to the FAA for receiving

the authentication of entering the controlled airspace [ 9 ]. During the in-flight phase, the

UAM operator is responsible for sending the flight telemetry information back to the PSU

for ensuring the flight conformance to the submitted flight intent [  9 ]. The PSU monitor

the airspace and listen to the requests from the FAA, the UAM operators, and the general

public [ 9 ]. If there is any significant change to the airspace statuses, the PSU shall collab-

orate with the UAM operators to generate emergent flight intents for resolving contingent

events [  9 ]. After the flight, the PSU archives the flight intents and the flight data for future

analysis and study purposes [ 9 ].

The PSU from NASA’s UAM Conops has a similar role as the USS from the FAA’s UAM

Conops. NASA’s UAM Conops focuses on a scenario with more matured UAM technologies.

The PSU need to help UAM operators generate flight intents, ensure flight conformance to

the flight intents, and archive the flight data even if some UAM aircraft are fully autonomous

or remote-pilot [ 10 ].

The PSU from both UML-1 and UML-4 scenarios have to (1) help the UAM operators

generate the flight intent, (2) monitor the airspace condition, ensure the conformance to the

flight intent, (3) listen to emergent requests from the UAM stakeholders, and (4) archive the

29



flight data [ 9 ], [  10 ]. Additionally, the PSU should (1) identify if a contingent situation arises

and (2) help the UAM operators generate emergent flight intents for resolving the contingent

events. The PSU have the responsibility for ensuring airspace safety and some leverages for

regulating the UAM traffic.

2.3 National Airspace System

The National Airspace System (NAS) is a complicated and critical system for ensuring

airspace efficiency and safety. It embraces controlled airspace and uncontrolled airspace

with proper regulations and equipment for air traffic regulations. Figure  2.3 illustrates the

airspace classes [  35 ], [  36 ], in which every airspace class except Class G is the controlled

airspace. Most of the UTM traffic is in the Class G airspace. And, the UTM traffic can

enter the controlled airspace around airports with Airspace Authorizations. Additionally,

the UAM traffic should not enter the Class A airspace. However, the UAM traffic can enter

other controlled airspace depending on mission requirements and with authorizations.

Class A
18,000’ MSL

Class B

Class C

Class D

Class G Class G Class GClass GClass G

14,500
MSL

1,200 AGL

700 AGL

Nontowered 
Airport 
with 
instrument 
approach 700 AGL

1,200 AGL

Class E

Figure 2.3. Airspace Classes Illustration

In the controlled airspace, the Air Traffic Control system oversees and regulates air vehicle

operations. John Hansman et al. summarized how the Air Traffic Control (ATC) systems

operate [  21 , Ch. 13]. The ATC system includes levels of control authorities for long-term,

near-term, short-term, and real-time traffic prediction, traffic condition assessments, and
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traffic management. For real-time traffic management, there are three sectors regulating air

traffic and ensuring airspace safety.

• Air Traffic Control Tower (ATCT): The ATCT regulates the air traffic around

airport areas and includes departure and arrival operations.

• Terminal Radar Approach Control (TRACON): When the air traffic is too far

away from airport areas, the TRACON takes over the traffic and provides guidelines

and comments for ensuring airspace safety. The TRACON usually includes active

surveillance radar for air traffic monitoring. Additionally, TRACON provides services

to low-altitude aircraft with VFR or IFR flight plans.

• Air Route Traffic Control Center (ARTCC): When the aircraft leaves from lower

altitudes, the ARTCC takes over the air traffic and provides navigational services. The

ARTCC has similar responsibilities as the TRACON. But, the ARTCC is responsible

for high-altitude airspace.

The U.S. airspace consists of multiple airspace sectors. And the airspace sectors have

one or more control authorities managing air traffic. Figure  2.4 shows the map of ARTCC

sector distributions. The shapes and sizes of the ARTCC sectors depend on the amount of

traffic flow and the traffic pattern. Similarly, TRACON consists of multiple airspace sectors

for providing navigational services to air traffic. Regardless of the ARTCC sectors or the

TRACON sectors, they collaborate and communicate for ensuring airspace efficiency and

airspace safety.

The performance of air traffic controllers in ARTCC or TRACON decreases with an

increasing number of aircraft in the sectors. Hence, there is a need to have the airspace

sector capacity for traffic planning and managing. The ARTCC and TRACON sectors can

collaborate and avoid accumulating air traffic in one airspace sector and endangering airspace

safety. Because the human factor is the main bottleneck for airspace sector operations,

the stream of research focuses on predicting and assessing how air traffic patterns create

workloads of air traffic controllers. Majumdar et al. [ 22 ], [  38 ] used simulation models for

predicting the air traffic controller workloads and conducted surveys for adjusting model
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Figure 2.4. The U.S. ARTCC Sector Geographical Distribution [ 37 ]

parameters. However, their methodology may not apply to the AAM traffic management

system. The new types of air vehicles, novel concepts of operations, and increasing levels

of air vehicle autonomy can create different types of workloads for air traffic controllers.

Additionally, air traffic controllers may longer be the bottleneck for airspace sector operations

due to the introduction of autonomous functions in traffic management systems.

The future AAM traffic management system should include an actor having similar re-

sponsibilities as the ATC system. Based on the released Conops, the USS and PSU manage

and monitor UAS or UAM traffic. Considering various AAM vehicles and diverse mission

profiles, there is a need for having metrics assessing airspace safety for the AAM traffic man-

agement systems. The following section will review the recently developed methodologies

for traffic safety assessment.
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2.4 Airspace Traffic Safety Assessment

Prior works from various research fields have tried to quantify traffic complexity and

safety by using physics-related quantities. For example, in traffic flow theory, Miura et al.

discretized a 1-D highway, calculate the correlations among the relative distance between

vehicles and their speeds, and derived the traffic entropy and temperature [  39 ]. Kerner et

al. considered the ground traffic on a highway as a compressible continuous steady flow [ 40 ]

and obtained the traffic temperature and the traffic entropy. Reiss et al. discussed why

the maximum entropy principle is preferable for inferencing the probability distribution of

vehicle states in a traffic flow [  41 ]. They subsequently derived the traffic temperature and the

traffic pressure with the Lagrangian multiplier technique [ 41 ]. However, these research efforts

are not directly applicable to real-world air traffic systems. They either rely on continuous

and equilibrium flow assumptions or require the system to be 1-D, which the 3-D air traffic

system cannot satisfy either assumption.

Instead of applying thermodynamics to air traffic systems, several researchers attempt

to adopt thermodynamic concepts to derive entropy value to quantify the air traffic system

complexity. Michael Lowry proposed how the entropy metric can be applied to the air traffic

control problem [ 42 ]. Daniel et al. used a different approach by creating a hypothetical

velocity field to match the known vehicle statuses of all aerial vehicles in airspace [ 43 ].

They formulated an optimization problem to minimize the difference between the actual

velocity vectors reported by the aircraft and a hypothetical velocity field at the reported

aircraft locations. Their formulation included constraints to ensure the continuality of the

velocity field. Then, they defined the complexity of the airspace as low if the optimization

problem had a feasible solution. Ishutkina et al. built on this idea and used the topological

entropy of the hypothetical velocity field to quantify airspace complexity [  44 ]. However,

these techniques do not apply to UTM and UAM related problems. The high-density traffic

requires excessive computational resources to solve the hypothetical velocity fields within an

acceptable duration.

The traffic management problem is one type of centralized multi-agent control prob-

lem [  45 ]–[ 47 ]. Hamidi et al. used a multi-agent system framework to analyze and improve
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ground transportation systems [  45 ] although their work cannot apply to the air transporta-

tion system. Hill et al. developed a distributed air traffic control with a multi-agent system

architecture [  46 ]. Their work adopted Game Theory to enable the distributed agents to

collaborate and converge to unselfish, efficient, and conflict-free solutions [  46 ]. Brittain et

al. generated a reinforcement learning model for the distributed agents [  47 ]. Their model

enables the distributed agents to avoid collisions [  47 ]. Although both works do not include

potential wind perturbations and location measurement errors, which are common environ-

mental perturbations in urban areas, they demonstrate that there might have some metrics

from the multi-agent control field for assessing airspace complexity.

Control systems research commonly adopts the information entropy metric to identify the

potential trade-off between controller performance and communication requirements. How-

ever, the relevant methodologies have not been applied to the airspace complexity assessment

problem yet. Weidemann et al. and Touchette et al. used information theory to analyze

the communication requirements of a discrete or continuous system [  48 ], [  49 ]. And Li et

al. proposed a framework to analyze the relationships between communication requirements

and state control uncertainty for a cyber-physical system [  50 ]–[ 57 ]. Colonius et al. used

the topological entropy to create a mathematical foundation for identifying the minimum

invariant entropy and stabilizing an unstable system [ 58 ]. Christoph Kawan discussed the

relationship between invariant entropy and minimum data rate requirements [  59 ]. Extending

the communication channel from sensors to the computed control output can derive both

the computational requirements of a controller and the communication requirements between

sensors and a controller. Finally, Tanaka et al., Tatikonda et al., and Kostina et al. examined

the trade-off between the controller performance and the communication requirements of a

linear quadratic Gaussian controller [  60 ]–[ 62 ]. With the maximum acceptable cost in the op-

timal control context, their approaches identified the minimum communication requirements

for achieving the desired control performance. These methodologies might help air traffic

control problems quantify air traffic conditions and assess communication requirements.
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2.5 Summary & Research Gap

Tables  2.1 and  2.2 summarize the identified gaps from the literature review. The literature

review includes five distinct topics as follows.

1. En-Route Airspace Sector Capacity Estimation: The related research focuses

on assessing en-route airspace sector capacity in the NAS. The recent studies show that

the bottleneck of limiting air traffic throughput without sacrificing airspace safety is the

air traffic controller workloads. Hence, these studies focus on developing frameworks

for identifying correlations between traffic throughput, traffic patterns, and workloads

of traffic controllers. However, their methodologies are not applicable for AAM traffic.

There is no historical data to identify the correlations of air traffic controller workloads

and novel mission profiles.

2. Physics-related Quantities for Quantifying Traffic Complexity: Regarding

1-D highway traffic as a 1-D continuous flow, the related research derived the physics-

related quantities for analyzing highway traffic. However, their methodologies do not

apply to air traffic because aerial traffic is a 3-D flow and violates the continuous flow

assumption.

3. Topological Entropy for Quantifying Airspace Complexity: This methodology

generates a hypothetical velocity field based on known vehicle statuses. Then, it applies

the topological entropy calculation based on a hypothetical velocity field. However, this

methodology can be unstable with wind perturbations and vehicle state measurement

errors.

4. Multi-agent system for Traffic Problems: Several research groups adopted the

methods for a multi-agent system control problem to develop distributed traffic man-

agement models. However, the recent related works usually ignored the potential

environmental perturbations of the vehicle operations.

5. Information Entropy & Control Theory: Multiple research teams attempt to

derive the correlations between communication capacities and controller performances
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of Cyber-Physical systems. However, some works do not consider the multi-agent

problem or the air traffic management problem. Also, their methodologies have not

been applied to quantify airspace complexity.

The future AAM traffic includes high density and highly diverse traffic in urban areas,

where strong wind perturbations and high measurement errors are more likely to happen.

Hence, there is a need to identify airspace complexity metrics, which consider environmental

disturbance, various types of AAM aircraft, and diverse flight missions. The aforementioned

research topics provide methodologies to solve parts of the problem. And, it lacks a com-

prehensive study considering the identified factors.
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3. ENTROPY-BASED SYSTEM UNCERTAINTY

ESTIMATION & MANAGEMENT

The previous chapter identifies gaps between research questions and current research progress.

In this study, the proposed entropy-based traffic management framework and two metrics for

quantifying airspace status should fill the identified gaps. The following section will illustrate

the framework. Subsequently, the derivations of the two metrics are presented.

3.1 Entropy-based Traffic Management Framework

Section  1.3 lists the research questions of this study. Before defining the metrics to

assess airspace safety levels under various sources of uncertainty, it is important to identify

the information flow between air vehicles and air traffic authorities. The information flow

should illustrate the available information of air vehicles and air traffic authorities at each

time step. Moreover, it should present the sequence of actions of air vehicles and air traffic

authorities.

In this study, airspace is composed of several airspace sectors. In each airspace sector,

there are one or more control authorities, which are named air traffic authorities (ATA),

monitoring and managing air traffic. The ATAs do not have active sensing radar for airspace

surveillance. The ATAs passively monitor air traffic by receiving telemetry data from air

vehicles. Therefore, the air vehicles inside an airspace sector periodically broadcast their

flight telemetry data to neighboring vehicles and the ATAs. The vehicle telemetry data are

inaccurate due to the message dropping, GPS signal interference, or wind perturbations.

The ATAs should also identify any near-miss events, which occur when two vehicles are too

close, and take actions to resolve near-miss events.

Figure  3.1 shows the flowchart of the proposed information flow of the air traffic manage-

ment framework. The diamond shape in the figure shows information, while the square box

presents actions. By starting from the air vehicle box, an air vehicle requires three pieces

of information to estimate its state. The three pieces of information are the air vehicle dy-

namic model, the collision avoidance model, and the localization system specification. The
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air vehicle dynamic model should describe the vehicle behaviors under the nominal condi-

tion. The collision avoidance model illustrates vehicle responses to avoid mid-air collision

against other vehicles or obstacles. And the localization system specification describes the

location estimation accuracy. The air vehicles use these pieces of information to generate air

vehicle telemetry data with uncertainty estimations.

The ATA is responsible for monitoring the airspace sector. And it receives the vehicle

telemetry data from all vehicles in the airspace. The ATA also predicts the states of air

vehicles in the airspace sector with weather information and assumptions that all vehicles

follow the nominal operations. Moreover, the ATA fuses the predicted vehicle states with

the received telemetry for generating the estimated vehicle states with lower uncertainty

levels. Subsequently, the ATA evaluates airspace metrics based on the estimated air vehicle

telemetry. The following sections will introduce the airspace metrics. Finally, the ATA

determines actions to manage the air traffic for ensuring airspace safety and compliance to

given airspace regulations. The ATA’s actions should include sending commands to certain

air vehicles to avoid adverse conditions.

3.2 Statistical Physics, Information Theory, and Kalman Filter

Rudolf Clausius proposed the concept of entropy for describing the observations of irre-

versible energy flows [ 63 ]. The application of this concept to statistics roots from the work

of Ludwig Boltzmann [  64 ] in 1866. Entropy can explain ample physics phenomena from

classical physics, statistical mechanics, and quantum physics [  65 ]. In 1948, Claude Shannon

adopted this concept to communication technologies [  66 ], which built up the foundation of

modern communication theory. His work quantified the maximum communication channel

capacity and the information entropy of transmitted information [ 66 ]. Although the term

“information” creates multiple discussions about whether this theory is applicable beyond

communication research, Prof. Leon Brillouin published a book and reviewed the successful

applications of information theory in physics fields [  67 ]. In 1957, Jaynes proved that infor-

mation entropy and statistical entropy are equivalents [  68 ]–[ 70 ]. This section consists of two

parts for building the foundation of the derivations of the proposed metrics. The first part
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Figure 3.1. Information Flow of Air Traffic Management Framework

reviews Jaynes’ work. The second part revisits the derivation of the Kalman filter and the

related information entropy.

Two sets of parameters, which are micro-parameters and macro-parameters, can describe

a physics system. For a physics system including multiple particles, there are two ways to

describe the system’s behaviors. Firstly, researchers can track the positions and velocities of

each particle in the system. The parameters related to the state of each particle are the micro-

parameters. On the other hand, macro-parameters describe the collective system properties,

such as temperature, pressure, volume, etc. Macro-parameters are not associated with any

specific particle, but they are related to the collective behaviors of all particles. Tracing the

state of every particle in the system is infeasible due to the large number of particles. The

only practical way to describe the system is by using the statistical properties of all particles
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in the system. For example, temperature and pressure are common statistical properties.

These statistical properties are the macro-parameters of the system. Both macro-parameters

and micro-parameters can describe the behaviors of the systems. The micro-parameters can

illustrate the fundamental interactions between the particles, while the macro-parameters

can capture the collective behaviors of the systems.

Jaynes’ work in 1957 [  68 ] showed that using the maximum entropy principle can derive a

fundamental state distribution function by formulating an information entropy maximization

problem (Eq.  3.1 ). The objective function in the information entropy maximization problem

(Eq.  3.1a ) shows the information entropy of the state distribution function (P (x)) and is

scaled by the Boltzmann constant (kB). And xj is a discrete random variable representing

the concatenated states of all particles. The subscription j indicates one of the possible

drawn outcomes from the probability function.

The maximization problem also includes the constraints for ensuring that (1) the state

distribution function is a legit probability function (Eq.  3.1b ) and (2) the expectation values

of mapping functions match with the measured values, such as pressure or temperature

(Eq.  3.1c ). I ∈ [1, I] indicates all expected system quantities, while the mapping function

(fi (xj)) maps the instance of particle states to the system quantity (i) value. 〈fi (xj)〉

indicates the expected value of the mapping function.

max
P (x)

−kB

∑
j

P (xj) ln P (xj) (3.1a)

subject to ∑
j

P (xj) = 1 (3.1b)

∑
j

P (xj) fi (xj) = 〈fi (x)〉 , ∀i ∈ I (3.1c)

The Lagrange multiplier method can solve this maximization problem. Equation  3.2 

shows the generic solution of the state distribution in terms of Lagrangian multipliers (µi)

and the mapping functions (fi (xj)). µ is the collection of the Lagrangian multipliers in

a vector form (µ = (µ0, µ1, · · · )). To satisfy the normalization constraint in Eq.  3.1b ,
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Jaynes [  68 ] derived µ0 and defined a partition function (Z (µ)) in Eq.  3.3 . In statistical

physics, the partition function depends on the particle state distribution and is associated

with the number of randomly drawn states (j) to achieve the same expected system quantity,

which is shown in the derived partition function in Eq.  3.3 .

The Lagrange multiplier method also shows that every system quantity has a conjugated

Lagrangian multiplier. Equation  3.4a is from Eq.  3.1c and shows the relationships between

the expected system quantity and the Lagrangian multiplier. The value of the expected value

function is the derivation of the partition function with the conjugated Lagrangian multiplier.

Equation  3.4a also shows that the partition function includes the system properties, which

are the collective behaviors of the constituted particles.

Eq.  3.4b shows the relationship between physics entropy (S), Lagrange multipliers, and

the expected values of the mapping functions. Physics entropy is one of the properties of

the system and only depends on the Lagrangian multipliers and the values of the expected

mapping functions. From information perspective, physics entropy is information entropy

related to the state distribution function and is scaled by the Boltzmann constant (Eq.  3.4b ).

Physics entropy relies on the collective behaviors of the systems, while information entropy

depends on the state distribution of the constituent particles. The ratio of the physics

entropy to the information entropy is just the Boltzmann constant.

P (xj|µ) = exp
−µ0 −

∑
i∈I

µifi (xj)
 = 1

exp (µ0)
exp

−
∑
i∈I

µifi (xj)
 (3.2)

Z (µ) =
∑

j

exp
∑

i∈I

−µifi (xj)
 = exp (µ0) (3.3)

〈fi (x)〉 =
∑

j

P (xj) fi (xj)

= 1
Z (µ)

∑
j

exp
∑

i∈I

−µifi (xj)
 fi (xj)

= − ∂

∂µi

ln Z (µ) , ∀i ∈ I

(3.4a)
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S = kB

µ0 +
∑
i∈I

µi 〈fi (x)〉
 = kB

−
∑

j

P (xj) ln P (xj)
 (3.4b)

Although the derivation only uses discrete random variables (xj), the aforementioned

derivations can be applied to continuous variables without modification except for Eq.  3.4b [ 69 ].

Eq.  3.4b shows that physics entropy equals the multiplication of the information entropy and

the Boltzmann constant. However, by replacing the probability function (P (xj)) with a prob-

ability density function (p (xj)), Eq  3.4b is not invariant under coordinate transformation

and is not strictly positive. Jaynes discretized a continuous random variable and applied

the information entropy equation [ 69 ] for addressing this issue. The information entropy

of continuous random variables follows Eq.  3.5 [ 69 ], where n is the number of discretization

cells, and m (x) shows the distribution of the discretization cells. Finally, multiplying Eq.  3.5 

with a Boltzmann factor results in the physics entropy for continuous random variables.

SC
info = ln n −

∫
p (x) ln

(
p (x)
m (x)

)
dx (3.5)

S = SC
infokB (3.6)

The number of particles that a parameter is associated with can determine if it is a

micro-parameter or a macro-parameter. For example, the state vector xj from the previous

deviations is a micro-parameter because each element in the state vector only relates to one

dimension of the state of one particle. On the other hand, scientists usually set the system

quantity mapping function as the Hamiltonian function, which represents the system’s total

energy and depends on the collective behaviors of all particles. Hence, the Hamiltonian

function and the associated Lagrangian multiplier are macro-parameters.

Macro-parameters summarize properties of air traffic in airspace and are beneficial to

decision-makers of airspace for assessing airspace-related policies and monitoring airspace

statuses. From the ATA’s perspective, the traffic management problem is a multi-agent con-

trol problem. The air vehicles in the airspace are the constituted agents. And the goal of the

ATA is to control the system to the desired state. Due to the high dimensions of the system
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state vector, summarizing the system status of a multi-agent system is difficult. If the goal

of a study is to understand the collective behaviors of the whole system, macro-parameters

can reduce the difficulties by reducing the number of variables, which describe the behaviors

of a system. Since both physics systems and multi-agent systems compose multiple parti-

cles/agents, researchers can use Jaynes’ derivation to derive macro-parameters associated

with a multi-agent system. Then, the macro-parameters related to air traffic can summa-

rize properties of airspace and help decision-makers assess different airspace management

options.

Researchers can use Jaynes’ derivation to identify a probability distribution about the

statuses of the constituted particles. On the other hand, due to the measurement uncertainty

and wind perturbation, the exact locations of air vehicles in the airspace are unknown. Hence,

researchers can use the same approach to derive the probability distribution about the statues

of air vehicles in the airspace. The derived probability distribution should match with the

probability distributions from other algorithms in control theory.

The Kalman filter is a common algorithm for estimating system states under state mea-

surement noises and environmental perturbations. The Kalman filter generates expected

system states with a corresponding covariance matrix for describing estimation uncertainty.

The definition of an estimation state error is the difference between a true system state to

an expected system state. The Kalman filter assumes that estimation state errors, mea-

surement noises, and environmental perturbations independently follow multivariate normal

distributions. The probability density function of the true state follows Eq.  3.7 with a given

expected state vector (x̂). P is the covariance matrix of the estimation state errors, while

x is the true system state. Afterwards, rearranging Eq.  3.7 to a form similar to Eq.  3.2 can

identify the system quantity mapping functions.

p (x|x̂, P) = det (2πP)− 1
2 exp

(
−1

2 (x − x̂)T P−1 (x − x̂)
)

= exp
(

−1
2 ln (det (2πP)) − 1

2 (x − x̂)T P−1 (x − x̂)
) (3.7)
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Rearranging the second term on the right-hand side of Eq.  3.7 based on the exponents of

x results in Eq.  3.8 . Subsequently, the definitions of the Lagrangian multipliers and mapping

functions of the system quantities are shown in Eq.  3.9 , where nx is the number of elements

in the state vector (x). The mapping functions and conjugated Lagrangian multipliers are

micro-parameters because they depend on the state of one agent in the system.

p (x|x̂, P) = exp
(

−1
2
(
ln (det (2πP)) + x̂T P−1x̂

)
− 1

2xT P−1x −
(
−x̂T P−1x

))
(3.8)

µ0 = 1
2
(
ln (det (2πP)) + x̂T P−1x̂

)
(3.9a)

µ1,i = −
∑

j

(
P−1

)
j,i

x̂j, ∀i ∈ [1, nx] (3.9b)

µ2,i,j = 1
2
(
P−1

)
i,j

, ∀i ∈ [1, nx] , j ∈ [1, nx] (3.9c)

f1,i = xi, ∀i ∈ [1, nx] (3.9d)

f2,i,j = xixj, ∀i ∈ [1, nx] , j ∈ [1, nx] (3.9e)

Z (µ) = exp (µ0) = exp
(1

2 x̂T P−1x̂
)

det (2πP)
1
2 (3.9f)

3.2.1 Traffic Entropy

Evaluating the statistical entropy from the Kalman filter requires the definition of dis-

cretization cells based on Eq.  3.6 and Eq.  3.5 . The first term on the right-hand side of

Eq.  3.5 is the number of discretization cells. And the second term is the Kullback-Leibler

divergence, which is the relative entropy of the probability density function of the discretiza-
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tion cell distribution m (x) to the probability density function of the state vector distribution

p (x).

There is a need for understanding the meanings of the discretization cell probability dis-

tribution and the state vector probability distribution before illustrating the meaning of the

continuous statistical entropy. The discretization cell distribution shows the initial guess of

the state vector distribution before any measurements. Without prior knowledge about the

state vector distribution, it is logical to use the uniform distribution as the discretization

cell distribution. In other words, the uniform discretization distribution says that the mea-

surement of the vehicle state can be any value because no information can help the ATA

estimate the air vehicle state.

The ATA can estimate the potential state of the air vehicle by using the Kalman filter

algorithm with the vehicle state measurement data. The state vector distribution shows that

the true vehicle state should be somewhere nearby the state measurement. Hence, the state

vector distribution has a much lower vehicle state uncertainty than the discretization cell

distribution, which has no prior knowledge about the air vehicle state. The ATA can gain

some information from the vehicle state measurement and reduce the vehicle state estimation

uncertainty. And the relative entropy can be used to quantify the information gain.

The continuous statistical entropy quantifies the uncertainty of system statuses by using

the discretization cell distribution as the baseline. The extra information gained from the

vehicle state measurement reduces the continuous statistical entropy because it reduces the

uncertainty level of the vehicle state estimation. Hence, the continuous statistical entropy

presents the uncertainty level of the vehicle state distribution.

Without any prior information, it is reasonable to assume the discretization cells uni-

formly distribute in the phase space of the state vector. The phase space is the space that

all potential state vectors exist in. If the definition of the state vector includes both locations

and velocities, the phase space is the product of the location space and the velocity space.

Hence, the statistical entropy follows Eq.  3.10 , where Vd is the volume of the phase space.

And the last term in Eq.  3.10 is the differential entropy of a multivariate normal distribution.

Even though the differential entropy could be negative, the first two terms in Eq.  3.10 can

ensure that the statistical entropy is positive.
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Eq.  3.10 defines traffic entropy, which equals statistical entropy. Researchers need to

determine the number of discretization cells and the volume of phase space for applying

Eq.  3.10 to quantify airspace uncertainty. The discretization cells should be small enough to

have enough resolutions to present the probability distribution of the state vector. Addition-

ally, the discretization cells should cover the entire phase space for including any potential

vehicle state measurement. The phase space volume of an air vehicle is the product of the

physical volume of airspace (Vspace) and the velocity space volume (∏i∈[x,y,z] (vi,max − vi,min)).

Consequently, the total phase space volume equals the product of the phase space volume

of an air vehicle through all vehicles in the airspace (Eq.  3.11 ), where AC indicates the set

of the types of the air vehicle.

Sx|x̂ = kB

(
ln n − ln Vd + 1

2 ln (det (2πeP))
)

(3.10)

Vd =
∏

ac∈AC

Vspace ×
∏

i∈[x,y,z]
(vac,i,max − vac,i,min)

 (3.11)

This work illustrates the properties of the Kalman filter from statistical mechanics and

information theory perspectives. From the statistical mechanics perspective, a Lagrange

multiplier is a conjugate variable to the corresponding macro-parameter mapping function.

Together, the macro-parameter mapping functions and the conjugated Lagrange multipli-

ers can summarize the properties of the multi-particle system with fewer variables than the

micro-parameters. From the Kalman filter perspective, the Lagrange multipliers and the

system quantity mapping function from Eq.  3.9 are associated with each dimension of each

constituted agent under a multi-agent system context. The system quantity mapping func-

tions and the Lagrange multipliers are still micro-parameters, but it is possible to rearrange

the system quantity mapping function to deduce macro-parameters. The next section shows

the derivation of macro-parameters, which are analogous to energy and temperature from

statistical mechanics.
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Statistical Entropy Parameter Setting

Equation  3.10 should always be higher than zero since statistical entropy is always pos-

itive. However, the last term in Eq.  3.10 is the differential information entropy of a mul-

tivariate normal distribution. The last term can be negative if the uncertainty level of a

multivariate normal distribution is low. For example, if a vehicle uses GPS measuring its

location with measurement error last than 1 meter and the measurement error follows a

multivariate normal distribution, the differential information entropy should be negative, as

shown in Eq.  3.12 .

ln det




σ2

x 0 0

0 σ2
y 0

0 0 σ2
z



 = ln det




0.9 0 0

0 0.9 0

0 0 0.9



 = ln
(
0.93

)
= −0.3162 (3.12)

The number of discretization cells is critical for ensuring positive statistical entropy.

Before using this metric, researchers should estimate the minimum covariance matrix and

the size of phase space from their systems. The minimum number of discretization cells

should be high enough to ensure the statistical entropy is positive.

3.2.2 Traffic Safety Severity & Traffic Temperature

In statistical mechanics, there is no restriction on how to construct a system quantity

mapping function. Scientists commonly use the Hamiltonian of all particles as the system

quantity. In a multi-agent system, the system quantities from the previous section relate to

each dimension of the state vector. Hence, it is possible to rearrange system quantities to

derive a new system quantity mapping function, which summarizes system behavior, reduces

the dimension of interesting variables, and keeps the state distribution function from the

Kalman filter intact.

The regrouped system quantities should present the collective behaviors of the system.

This study uses the quadratic cost function from optimal control theory as a system quantity
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mapping function. First, the cost function quantifies the quality of system states and control

actions into a single number. Furthermore, the quadratic cost function can preserve the

estimated state distribution from the Kalman filter algorithm. Equation  3.13 shows the

quadratic cost function (J (x|Q)), where Q is a semi-positive matrix and determines the

weights of each dimension of the state vector. And the conjugated Lagrangian multiplier of

the quadratic cost function is defined as β, as shown in Eq.  3.14a .

J (x|Q) = xT Qx (3.13)

To derive a macro-parameter related to the cost function, it is necessary to insert the

multiplication of the cost function and the conjugated Lagrange multiplier in Eq.  3.8 . The

following section shows the procedure for inserting the multiplication in the probability

function. Adding and subtracting the multiplication generate Eq.  3.14a . This operation

does not influence the estimated state distribution because the last two terms in Eq.  3.14a 

cancel out each other. Then, the quadratic cost function can replace the last two terms to

simplify Eq.  3.14a . Next, merging the second-order state vector term with the second-last

term in Eq.  3.14a results in Eq.  3.14b .

Eq.  3.15 shows how the covariance matrix (P) can include two new terms. The first term

represents the uncertainty in terms of the quadratic cost function. And the second term

(P′−1) shows the reciprocal residual covariance matrix. For evaluating the expected cost

function value, the original covariance matrix (P) in Eq.  3.9f replaces the new two terms

from Eq.  3.15 . Additionally, using Eq.  3.4a can derive the expected cost function as shown
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in Eq.  3.16b . Finally, since the statistical entropy only depends on the probability density

function, the formation of the statistical entropy is the same as Eq.  3.10 .

p (x|x̂, P, Q) = exp
(

−1
2
(
ln (det (2πP)) + x̂T P−1x̂

)
− 1

2xT P−1x

−
(
−x̂T P−1x

)
+ βxT Qx − βxT Qx

)
(3.14a)

= exp
(

−1
2
(
ln (det (2πP)) + x̂T P−1x̂

)
− 1

2xT
(
P−1 − 2βQ

)
x

−
(
−x̂T P−1x

)
− βJ (x|Q)

)
(3.14b)

P−1 = 2βQ + P′−1 (3.15)

Z (µ, β) = exp
(1

2 x̂T P′−1x̂ + x̂T Qβx̂
)

det
(

2π
(
P′−1 + 2βQ

)−1
) 1

2
(3.16a)

〈J (x|Q)〉 = − ∂

∂β
ln Z (µ, β)

= x̂T Qx̂ + Tr (QP)
(3.16b)

The role of the cost function in control theory is similar to the role of the Hamiltonian

of physics systems in statistical mechanics. The Hamiltonian of physics systems includes

all types of energy based on the states of constituent particles, like kinetic energy, electrical

potential, etc. The cost function also maps the states of constituted agents to a positive

number. When net heat flows in or out of a multi-agent system, it perturbs the system

and increases/decreases the value of the cost function. Additionally, if the boundary of the

system interacts with the agents in the system, the boundary change influences the cost

function. This process is like expanding or compressing gas in a can with a piston. These

mechanisms are similar to the first law of thermodynamics, as shown in Eq.  3.17 . In this

study, the air traffic sector volume is fixed and has no interaction with the air vehicles.
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Hence, the volume difference (dV ) and the pressure (P ) are zero. The impacts from the net

heat flow (δQ) equal the cost function difference (dU).

dU = δQ − PdV (3.17)

The entropy from the classical thermodynamics formulation depends on the net heat flow

and the system temperature, which is shown in Eq.  3.18 as the first inequality equation. The

discussion in the previous paragraph concluded that the net heat flow is related to a change

of the cost function values, which is represented by the second and third equality signs in

Eq.  3.18 . Finally, Eq.  3.19 shows the rearranged version of Eq.  3.18 .

dS ≥ δQ

T

= dU

T

= d 〈J (x)〉
T

(3.18)

d 〈J (x)〉 ≤ TdS (3.19)

Equation  3.19 shows that the difference of the cost function is less than or equal to the

multiplication of the temperature and change of the statistical entropy. The equality sign

holds only when the process is reversible. Deriving the definition of the traffic temperature

requires defining the initial (i) and final (f) states of the systems. And there is a reversible

process from an initial state to a final state to ensure that the equality sign holds.

The study assumes that a conceptual process for creating the system from vacant space

to the final system state exists. Because there is no vehicle in the vacant space, the entropy

and cost function are zero. Additionally, the conceptual process is assumed to be isothermal,

so the traffic temperatures at the initial state and the final state are the same. Subsequently,

52



the traffic temperature in Eq.  3.21 is the ratio between the expected cost function value and

the total entropy at the final state.

〈J (x)〉f − TSf = 〈J (x)〉i − TSi = 0 (3.20)

T = 〈J (x)〉
S

= x̂T Qx̂ + Tr (QP)
kB

(
ln n − ln Vd + 1

2 ln (det (2πeP))
) (3.21)

The temperature metric is the second metric proposed by this study. Finally, the numer-

ator, which is the expected cost function, is the third metric. The expected cost function is

the traffic safety severity measure, which quantifies the airspace safety level according to the

airspace-related regulations. Further discussions will be included in the following sections.

3.2.3 Traffic Temperature Discussion

Figure  3.2 summarizes the flowchart of calculating the traffic temperature metric. The

three colors in the flowchart represent the different types of inputs, outputs, and functions for

the calculation. The shapes with grey outlines show the policy-related inputs and functions.

Under the context of the air traffic management, the cost function in Eq.  3.21 depends on

the given airspace regulations and should quantify the traffic safety severity level based on

the traffic state. In Fig.  3.2 , the cost function is the traffic state safety severity function.

The shapes with blue outlines show that inputs and functions, which are related to vehicle

state estimation and prediction. The “data fusion and vehicle state prediction” procedure

estimates or predicts the vehicle states based on the air vehicle states and the state covariance

matrix. The algorithm does not output a vector to represent the estimated or predicted

vehicle state. Instead, the algorithm generates the air traffic state distribution to show

the all possible states of all vehicles in the air traffic. Although it is more comprehensive
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to consider all possible outcomes from the air traffic state distribution, it should have a

metric to summarize the traffic condition from the state distribution for helping operators

understand the distribution. The traffic temperature metric can summarize the air traffic

state distribution.

The shapes with green outlines indicate the steps of calculating the traffic temperature.

The traffic safety severity function evaluates the safety severity level of vehicles in the air

traffic according to a traffic instance. Subsequently, the expected traffic safety severity

uses the air traffic state distribution to calculate the average safety severity. Next, the

“state estimation uncertainty evaluation” calculates the traffic entropy of the air traffic state

distribution. The higher traffic entropy indicates that there is higher uncertainty on the

estimated or predicted traffic state. Finally, the traffic temperature is the ratio of the

expected traffic severity over the traffic entropy.

Air Vehicle 
State  

Air Vehicle 
State 

Covariance 
Matrix

Data Fusion & 
Vehicle State 

Prediction

Air Vehicle 
Operational 
Regulations

Traffic State Safety 
Severity Function

Air Traffic 
State 

Distribution

State Estimation 
Uncertainty 
Evaluation

Expected 
Traffic Safety 

Severity

Air Traffic 
Entropy

Traffic 
Temperature

Figure 3.2. Flowchart of Traffic Temperature Evaluation (The shapes with
grey outlines indicate policy-related functions and inputs. The shapes with
blue outlines show the functions and inputs relate to vehicle state estimation
and prediction. The shapes with green outlines present functions and input-
s/outputs related to the traffic temperature calculations. The boxes show
functions or procedures, while the parallelograms indicate the inputs and out-
puts of functions.)

The traffic temperature has two convenient properties for air traffic management appli-

cations. First, it is suitable for assessing the effectiveness of various airspace technologies
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in scenarios with various number of vehicles because it is an intrinsic quantity, which does

not depend on the number of vehicles in the airspace. Second, the traffic temperature is

directly associated with the traffic state safety severity. The traffic temperature increases

with a more severe traffic condition and indicates that the behaviors of vehicles in the air

traffic are unfavorable based on given airspace regulations.

Although the the traffic state safety severity function and the traffic temperature are sim-

ilar, they have different interpretations. The traffic state safety severity function quantifies

how severely vehicles in air traffic violate given airspace regulations. On the other hands,

the traffic temperature quantifies the degree of confidence about how severely air vehicles

violate given airspace regulations.

3.3 Charged Particle based Air Vehicle Model

The traffic entropy and the traffic temperature depend on the estimated states of air

vehicles in the airspace (Fig.  3.1 ). Hence, the ATA should predict the behaviors of air vehicles

under nominal and contingent conditions. Because this study intends to demonstrate the

capability of the airspace metrics instead of realistically modeling the dynamics of the air

vehicles, the air vehicle model should be simple enough to reduce simulation complexity.

Hence, this study uses a 2-D charged-particle vehicle model to include the following vehicles’

activities.

1. Navigation System: The vehicle has an onboard navigation system that navigates

the air vehicle from its origin to its destination.

2. Collision Avoidance System: The vehicle executes collision avoidance maneuvers

if the distance to a neighboring vehicle is less than the collision avoidance distance

(CAD).

3. Limited Motor Output: The vehicle cannot execute aggressive maneuvers due to

limited motor outputs.
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4. Telemetry Data Broadcasting: The vehicle periodically broadcasts its telemetry

data to the ATA and neighboring vehicles within the broadcasting range. The default

setting of the telemetry data broadcast frequency is 1 second.

5. State Measurement Error: The vehicle can measure its state with some state

measurement errors.

6. Wind Perturbations: The vehicle experiences wind perturbations, which push the

air vehicle away from its original course.

The 2-D charged-particle vehicle model can simplify simulation complexity and model

the navigation and collision avoidance systems. The vehicle model uses a single point particle

with assigned charges (qi) and masses (mi) to represent a vehicle without simulating vehicle

flight dynamics. The model uses a constant magnitude electric field (E) to represent the

strength of the navigation system. In Eq.  3.22a , rd represents the distance from the vehicle

i to its destination. The electric field points to the destination (rd/ |rd|) and guides the air

vehicle while the air vehicle is off course. Repelling forces from the same charges represent

the collision avoidance system to keep two or more vehicles apart. In Eq.  3.22b , ri,j indicates

the distance from the neighboring vehicle j to the vehicle i. Additionally, the air vehicle uses

motors with limited power output for executing commands from the navigation and collision

avoidance systems. Hence, the maximum output from all motors is a g (Eq.  3.22c ) in this

study.

There is a drag force to slow down the vehicle (Eq.  3.22d ) in the simulation. The combined

effects of the drag force and the navigation force can determine the cruise speed of the air

vehicle. Additionally, the drag coefficient determines how sensitive the air vehicle is to

wind perturbations. Wind turbulence is easier to push the air vehicles with a higher drag

coefficient.

Fnav = rd

|rd|
Eqi (3.22a)

Fcol =
∑
j∼i

ri,jqiqj

|ri,j|3
(3.22b)
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Ftot = (Fnav + Fcol) × max (|Fnav + Fcol| , g × mi)
|Fnav + Fcol|

(3.22c)

Fdrag = −Cdvi (3.22d)

In this simplified model, both the navigation force and the collision avoidance force are

nonlinear. Hence, the Extended-Kalman Filter (EKF) can be used to estimate vehicle state.

The Euler integration scheme also helps convert the continuous-time representation to the

discrete-time representation.

The magnitude of the charge determines the minimum separation distance between two

vehicles. In an ideal situation with a large enough charge setting, the repelling force can

stop and drive the air vehicles in the opposite directions to avoid the mid-air collision. In

other words, increasing the magnitude of the charge can increase the minimum separation

distance.

3.4 Two Proposed Actions for Air Traffic Authority

Figure  3.1 shows that the ATA should determine the actions to manage the air traffic. The

ATA’s actions should generate commands that the air vehicles can execute. Although the

vehicle model from Section  3.3 is simple, it captures the critical behaviors of air vehicles. The

ATA’s actions include the following mechanisms, which change the simulation parameters of

the simplified model.

• Vehicle Telemetry Broadcast Frequency (VTBF) Adjustment Mechanism:

The estimated state of the air vehicles can be high due to unreliable communication,

high state measurement errors, or strong wind perturbation. Hence, the ATA agent

can require the air vehicles to increase the telemetry broadcasting frequency for the

uncertainty reduction of the estimated vehicle states.

• Minimum Separation Criterion Adjustment Mechanism: The ATA should re-

quire air vehicles to increase the minimum separation criterion from neighboring vehi-

cles if they have a high likelihood of violating airspace regulations. In this study, the
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ATA can increase the magnitude of the vehicle’s charge and effectively increase the

minimum separation distance.

3.4.1 Entropy-based Trigger for Adjusting Vehicle Telemetry Broadcast Fre-
quency

Equation  3.10 shows that the statistical entropy is the summation of the information en-

tropy and some constants. In information theory, information entropy relates to the channel

capacity of a communication channel. Tanaka et al. [  60 ] showed that their Linear-Quadratic-

Gaussian (LQG) controller achieves the minimum communication data rate from the plant

to the controller. Hence, the ATA can assess if the available communication data rate can

support the desired controller performances. Then, the ATA ask for increasing the commu-

nication data rate by increasing the vehicle telemetry broadcast frequency.

Review of Information Theory

Equations  3.23 and  3.24 can simplify the derivation of the VTBF adjustment mechanism.

Equation  3.23 shows that xt is a vector with all elements are at time t. Equation  3.24 shows

that xt stacks all vectors from time t to time 0 for representing x revolution.

xt = [x1,t, x2,t, · · · ]T (3.23)

xt =
[
xT

0 , xT
1 , · · · , xT

t

]T
=
[
xt−1T

, xT
t

]T
(3.24)

Figure  3.3 presents the relationship between information entropy (H (·)), mutual infor-

mation (I (·; ·)), and conditional information (H (·|·)). In the diagram, both X and Y are

stochastic variables. The information entropy of X and Y are shown in the blue and red

circles, respectively. The conditional entropy of Y given X is in the red area, while the con-

ditional entropy of X given Y is in the blue region. The intersection between the two circles

is the mutual information of X and Y . The mutual information is the shared information
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between variables X and Y . Finally, the information entropy of X and Y is the area covered

by the union of the two circles.

𝑯 𝑿 𝒀𝑰 𝑿; 𝒀𝑯 𝒀|𝑿

𝑯 𝒀 𝑯 𝑿

𝑯 𝑿, 𝒀

Figure 3.3. Information Venn Diagram shows the relationships between in-
formation entropy (H (·)), mutual information (I (·; ·)), and conditional infor-
mation (H (·|·))

Equation  3.25a shows that the mutual information equals the subtraction of the infor-

mation entropy of X from the conditional information entropy of Y given X. And Eq.  3.25b 

shows that the total information entropy of both X and Y equals the summation of the

information entropy of X and the conditional information entropy of Y given X. Finally,

Eq.  3.25c shows the alternative formulation of the conditional entropy of X given Y.

I (X; Y) = H (X) − H (X|Y) = H (Y) − H (Y|X) (3.25a)

H (X, Y) = H (X) + H (Y|X) = H (Y) + H (X|Y) (3.25b)

H (X|Y) = H (X) + H (Y|X) − H (Y) (3.25c)
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Derivation of Upper Bound of Directed Information

Figure  3.4 shows the communication channel from the vehicle telemetry broadcast to the

ATA vehicle state estimation. Firstly, the onboard sensor measures the latest vehicle state.

And the communication encoder converts the sensor outputs to a message signal (mt). The

encoder-sensor mechanism is in P (mt|xt, mt−1) and depends on the history of the vehicle

state (xt) and the history of broadcast messages (mt−1). The new message (mt) travels

through a wireless communication channel (shown in dashed line in Fig.  3.4 ) to the ATA,

where lt indicates the length of the message in binary. The ATA decodes the message as an

observation (yt). Subsequently, the ATA uses the Kalman filter algorithm (P (x̂t|yt, x̂t−1))

to estimate the air vehicle state (x̂t).

Figure 3.4. Communication Channel from Vehicle State Measurement to
ATA Vehicle State Estimation

Tanaka et al. defined that the directed information (I
(
xW → x̂W

)
) from the true state

(xW ) to the estimated state (x̂W ) of the vehicle (Eq.  3.26 ) [  60 ]. I (xt; x̂t|x̂t−1) is the sum-

mation of the conditional mutual information between the history of the true state and the

latest state estimation given the history of the estimated states through each time step. In

other words, the directed information quantifies the amount of information shared between

the true state and the estimated state. Tanaka et al. also showed that the minimum chan-

nel capacity (R) from all channels in Fig.  3.4 should be larger than the average directed

information (Eq.  3.27 ) [ 60 ].

I
(
xW → x̂W

)
≡

W∑
t=1

I
(
xt; x̂t|x̂t−1

)
(3.26)

DR ≡
I
(
xW → x̂W

)
W

≤ R (3.27)
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In this study, the air vehicles broadcast their telemetry data to the ATA. Then, the ATA

uses the Kalman filter algorithm to estimate the states of the air vehicles. This study assumes

that the ATA has enough computational power to execute the Kalman filter algorithm. The

only bottleneck from the information pathway is the wireless communication from the air

vehicle to the ATA. If the average directed information from the true state of the air vehicle

to the estimated state is known, the ATA can identify if extra communication capacity is

necessary to help the information flow.

To derive the directed information for this study, it is necessary to review the mutual

information at time t from Eq.  3.26 . Using the Information Venn Diagram relationships

from Fig.  3.3 results in the derivation in Eq.  3.28 . The first equality sign holds because of

expanding the mutual information by applying the relationship in Eq.  3.25a . By applying

Eq.  3.25b , decomposing the information entropy to isolate the state at time t makes the

second equality sign hold. Regrouping terms with and without the given true state (xt) at

time t results in the third equality sign. Finally, the items in the same parenthesis follow

the definitions of the mutual information.

I
(
xt; x̂t|x̂t−1

)
=H

(
xt|x̂t−1

)
− H

(
xt|x̂t−1, x̂t

)
=
(
H
(
xt−1|x̂t−1, xt

)
+ H

(
xt|x̂t−1

))
−
(
H
(
xt−1|x̂t−1, x̂t, xt

)
+ H

(
xt|x̂t−1, x̂t

))
=
(
H
(
xt−1|x̂t−1, xt

)
− H

(
xt−1|x̂t−1, x̂t, xt

))
+
(
H
(
xt|x̂t−1

)
− H

(
xt|x̂t−1, x̂t

))
=I

(
xt−1; x̂t|x̂t−1, xt

)
+ I

(
xt; x̂t|x̂t−1

)

(3.28)

The first term on the right-hand side of the last equality sign in Eq.  3.28 is related to

the information flow of the Kalman filter framework. The Kalman filter framework forms a

Markov Chain process shown in Eq.  3.29 . The history of the trues state before time t (xt−1)

results in the history of the estimated state before time t (x̂t−1) and the latest true state
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(xt). Then, the history of the estimated state (x̂t−1) and the latest true state (xt) can help

the Kalman filter algorithm to generate the estimated state vector at time t (x̂t).

xt−1 →
(
x, x̂t−1

)
→ x̂t (3.29)

In Eq.  3.28 , the first term on the right-hand side of the last equality sign is the mutual

information associated with the Markov Chain process in Eq.  3.29 . The mutual information

from Eq.  3.28 calculates the mutual information between the first and third terms in Eq.  3.29 

given the second term in Eq.  3.29 . However, since the values of the second term in Eq.  3.29 

are known, there is no shared information between the two end-nodes in the Markov Chain

process. In other words, in Eq.  3.28 , the first term on the right-hand side of the last equality

sign equals 0. Equation  3.30 shows the simplified Eq.  3.28 . The term on the right-hand

side of Eq.  3.30 describes the shared information between the latest true state and the latest

estimated state vector given the history of the estimated state.

I
(
xt; x̂t|x̂t−1

)
= I

(
xt; x̂t|x̂t−1

)
(3.30)

The Kalman filter framework also forms another Markov Chain process for describing the

estimation step shown in Eq.  3.31 . The latest true state (xt) results in a state measurement

vector (yt). Then, the Kalman filter algorithm uses the state measurement to generate

the latest estimated state (x̂t). During this process, the mutual information between the

true state and the estimated state is lower than the mutual information between the state

measurement and the estimated state. Hence, this relationship results in the first inequality

sign in Eq.  3.32 .

xt → yt → x̂t (3.31)

The inequality sign in Eq.  3.32 shows the upper bound of the directed information.

However, it is still not easy to calculate the right-hand side of the inequality sign. Hence,

using Eq.  3.25a from the Information Venn Diagram (Fig.  3.3 ) results in the second row.

Using Eq.  3.25c can decompose the second term on the right-hand side of the first equality
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sign in Eq.  3.32 and result in the second equality sign. In the third row, the first term on

the right-hand side of the equality sign can cancel out with the first term in the parenthesis.

The simplified form is in the last row of Eq.  3.32 .

I
(
xt; x̂t|x̂t−1

)
≤I

(
yt; x̂t|x̂t−1

)
=H

(
yt|x̂t−1

)
− H

(
yt|x̂t−1, x̂t

)
=H

(
yt|x̂t−1

)
−
(
H
(
yt|x̂t−1

)
+ H

(
x̂t|yt, x̂t−1

)
− H

(
x̂t|x̂t−1

))
=H

(
x̂t|x̂t−1

)
− H

(
x̂t|yt, x̂t−1

)
(3.32)

The first term on the right-hand side of the last equality sign in Eq.  3.32 represents the

information entropy of the prior state from the Kalman filter framework. Additionally, the

second term is the information entropy of the posterior state from the Kalman filter frame-

work. In other words, the upper bound of the directed information is based on the difference

of the information entropy between the prior state and the posterior state (Eq.  3.33 ).

I
(
xW → x̂W

)
≤

W∑
t=1

H
(
x̂t|x̂t−1

)
− H

(
x̂t|yt, x̂t−1

)
(3.33)

Telemetry Broadcast Rate Adjustment Mechanism

Figure  3.5 shows the flowchart of the mechanism for adjusting the VTBF. This mechanism

requires three settings. First is the measurement window (W ). The ATA counts the

number of the received messages from the air vehicle (nrcv) within the measurement time

window. Additionally, the measurement time window can derive the average upper bound of

the directed information. The second setting is the message length (lm) about the vehicle

state information in binary. And, the last setting is the upper limit of VTBF.

The ATA evaluates the communication channel capacity and the upper bound of the

directed information based on Eq.  3.34 in Fig.  3.5 . Subsequently, the ATA checks if the

inequality constraint holds. If the upper bound of the directed information exceeds the

communication channel capacity, the ATA doubles the broadcast frequency of the air vehicle.
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Then, the ATA checks if the new broadcast frequency exceeds the upper limit setting. The

ATA sends the new broadcast frequency command to the air vehicle if the new broadcast

frequency is below the upper limit.

R = nrcvlm ≥ 1
W

W∑
t=T −W

H
(
x̂t|x̂t−1

)
− H

(
x̂t|yt, x̂t−1

)
(3.34)

Evaluate Comm.
Channel Capacity

Evaluate Upper Bound of
Direct Information.

Yes

No

Is infor upper 
bound higher than comm.

capacity

Yes

Double Tele. Broadcast
Frequency

No

Does Tele. Broadcast 
Freq. exceed an upper bound

Send Broadcast Freq. Adj.
commands

Figure 3.5. Flowchart of Entropy-based Vehicle Telemetry Broadcast Fre-
quency (VTBF) Adjustment Mechanism

3.4.2 Temperature-based Trigger for Adjusting Minimum Separation Criterion

Figure  3.6 shows the temperature-based trigger for adjusting the minimum separation

criterion. This mechanism depends on the traffic temperature metric for identifying when
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and which vehicles to send the commands to. And this mechanism requires two settings.

The first setting is the temperature trigger threshold, which triggers the adjustment of

the minimum separation criterion if the traffic temperature is high enough. The second one

is the charge multiplier, which defines what the new minimum separation criterion is.
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Predict status of air 
vehicle

Figure 3.6. Flowchart of Temperature-based Trigger for Adjusting Minimum
Separation Criterion Mechanism

Because the goal of this mechanism is to prevent the minimum separation distance viola-

tion, the ATA has to look ahead to the status of the air vehicles at a certain period. The ATA
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agent can use the Kalman filter prediction algorithm to predict the states of all air vehicles

with the predicted state distributions. According to Fig.  3.6 , the airspace traffic tempera-

ture depends on the predicted state distributions. Then, the ATA calculates the difference

of the airspace traffic temperatures of the current and previous time step. If the difference of

the airspace traffic temperature is higher than the temperature trigger threshold, the ATA

evaluates the temperature difference of every air vehicle.

The calculations of the traffic temperatures for each vehicle is similar to the one for the

airspace. First, the ATA agent identifies which air vehicles belong to the same collision

avoidance cluster. Based on the expected state of all air vehicles, two air vehicles with a

relative distance less than the CAD belong to the same group. Then, the ATA calculates

the distance between either one of the vehicles from the group to a third vehicle. If any one

of the relative distances is less than the CAD, the third vehicle belongs to the same group.

The ATA continuous this procedure until it examines all air vehicles in the airspace.

The ATA evaluates the vehicle temperature for each vehicle in each cluster. Since the

safety severity function is the total vehicle energy. The vehicle safety severity includes the

kinetic energy and the electric potential energy of the vehicle. For the vehicle entropy,

the ATA calculates the statistical entropy of the cluster. Then, the cluster entropy is split

according to the ratio of the vehicle uncertainty level to the cluster uncertainty level. Finally,

the vehicle temperature is the ratio of the vehicle safety severity to the vehicle uncertainty.

The ATA marks all vehicles with a traffic temperature difference higher than the temper-

ature trigger threshold. Subsequently, the ATA increases the minimum separation criterion

of these vehicles by multiplying the charges of the marked air vehicles with the charge mul-

tiplier setting. Then, the ATA sends commands with the new charge values to all marked

vehicles and waits for their acknowledgment. If the ATA does not receive an acknowledg-

ment signal from any marked vehicle within one second, it will resend the command until

an acknowledgment is received.
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4. RESULTS & DISCUSSION

This study designs three experiments to understand the properties of traffic temperature

and traffic entropy. The first experiment includes scenarios with two air vehicles traveling

in opposite directions and experiencing environmental perturbations containing wind distur-

bance, unreliable communications, and degraded GPS signals. This experiment intends to

understand how traffic temperature and entropy evolve with different environmental con-

ditions. The setups of the second experiment include multiple vehicles with various traffic

patterns. The design of this experiment intends to show how ATA can use the temperature

metric to reveal the properties of different traffic patterns. Finally, the third experiment

models scenarios with hypothetical UAM traffic in the Chicago metropolitan area. The goal

is to show the potential applications of the temperature metric on air traffic monitoring and

airspace structure design.

4.1 Computational Analysis of Temperature Metric

This section presents a simplified computational model for testing the relationships of

the temperature metric with the vehicle states and the state estimation errors. The compu-

tational model includes two stationary points and respective state estimation uncertainty.

Figure  4.1 shows four setups of location and state estimation uncertainty of the points. The

blue dots indicate the expected location of the points. And the blue areas depict one stan-

dard deviation of the probability distribution. The upper left plot shows the baseline setup,

in which both points have the same state estimation standard deviation on the x-axis and

y-axis. The computational model assumes that the state estimation error follows a multi-

variate normal distribution. Additionally, the traffic safety severity function (Eq.  4.1 ) is four

over the relative distance between the two points. The following discussions will show that

this definition of the safety severity function causes the variance in different directions to

have unequal contributions to the temperature.

J (~x1, ~x2) = 4
|~x1 − ~x2|

(4.1)
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Figure 4.1. Four Different Relative Distance and State Estimation Uncer-
tainty Setups. (The blue dots indicate the expected locations of the points.
The blue areas indicate one standard deviation area. The upper left plot
shows the baseline setup. The lower left figure indicates the experiment by
varying the standard deviation on the x-axis, while the upper right figure
shows the testing by changing the standard deviation on the y-axis. Finally,
the lower right plot shows the setup by changing the relative distance between
two points.)

The lower left plot in Fig.  4.1 shows the setup obtained by changing the standard devia-

tion on the x-axis. The two points are at −1 and 1 on the x-axis, respectively. The relative

distance based on the expected point locations is 2. Additionally, the y-axis standard de-

viation is 0.2. Figure  4.2 shows the simulation results corresponding to this setup. The

horizontal axis is the variance along the x-axis, in logarithmic scale, varying from 10−2 to

10.

This study uses the Monte Carlo Integration for calculating the temperature, the expected

relative distance (rmean), and the expected safety severity function (Jmean). The first step

of the Monte Carlo Integration samples the locations of the two points based on the given

probability distribution function. Then, the second step uses the sampled point to calculate

the metrics. Finally, the expected values of the metrics are the mean of the sampled points.
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Figure 4.2. Results of the experiment by changing the x-axis variance. (The
x-axis shows the variance in the logarithmic scale. The first plot shows the
trend of the temperature metric, while the second plot presents the expected
relative distance between the two points. The third plot shows the trend of
the expected safety severity. Finally, the last plot shows the entropy.)
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When the x-axis variance is small, the sampled points surround the expected locations.

Hence, the expected relative is slightly higher than 2 (Fig.  4.2 ). During the Monte Carlo

Integration process, when the sampled points lie in the region between two points, the relative

distance value is lower and positive. The relative distance increases when the sampled points

are outside the inner area. Hence, the expected relative distance is slightly higher than the

relative distance based on the expected locations because the relative distance is always

positive. The increasing variance on the x-axis also makes the expected relative distance

increase.

The expected safety severity function has a different trend from the expected relative

distance. The expected safety severity function also increases as the x-axis variance reaches

the peak value when the x-axis variance is about 2. When the x-axis variance increases, the

sampled points between the two points have a higher chance of getting closer to each other

and increasing the expected traffic safety severity. The peak value occurs because the regions

of one standard deviation from both points start overlapping when the x-axis variance is over

1. Then, the expected safety severity function reaches the maximum value. The overlapping

standard deviation region increases further as the x-variance increase, so chances that the

sampled points with a short relative distance decrease due to increasing expected relative

distances. And, this phenomenon drives down the expected safety severity.

The entropy has a simple relationship with the x-axis variance. It increases linearly

with the logarithm of the x-axis variance. In other words, the higher variance on the x-axis

corresponds to the higher uncertainty levels of expected point locations.

The temperature is defined as the ratio of the expected safety severity to the entropy. In

the region where the change of the expected safety severity is small (10−2 ≤ σ2
x ≤ 10−1), the

temperature slightly decreases as the x-axis variance increases. The safety severity function

gives a relatively higher weight to the instance that the sampled points are closer to each

other. On the other hand, the temperature takes a higher weight in cases where the sampled

points are farther apart. Hence, the temperature identifies that the condition with a slightly

higher variance is better. As the x-axis variance increases further, the temperature follows

a similar trend in the region.
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Figure  4.3 shows the experiment by varying the y-axis variance, shown in the upper

right plot in Fig.  4.1 . The expected relative distance increases with the increasing y-axis

variance. Instead, the expected safety severity decreases as the y-axis variance increases.

The increasing y-axis variance results in more sampled points with longer relative distance

and a lower safety severity. Furthermore, the entropy follows the same trend in Fig.  4.2 and

increases linearly with the logarithm of the y-axis variance. Finally, the temperature follows

a similar trend as the expected safety severity. The reduction rate of the temperature is

faster than the expected safety severity because the temperature puts higher weighting on

the instance further away.

Figure  4.4 shows the results of changing the relative distance between two points (lower

right plot in Fig.  4.1 ). The expected relative distance increases almost linearly when the

expected locations of the two points increase. Furthermore, the expected safety severity and

the temperature decrease with the same trend because the entropy is constant, due to the

fixed covariance matrix.

These results show that the variances on different axes have inequivalent influences on the

temperature. The traffic safety severity function defines the primary axis that distinguishes

variances on different axes. The temperature function and traffic safety severity function have

different trends when the variance in the primary axis increases. On the other hand, the

temperature monotonically decreases if the increasing standard deviations are on the axes

normal to the principal axis. Additionally, these results show that the temperature gives

more weight on the instance that two points are apart, while the safety severity function

emphasizes conditions where points are close to each other.

4.2 Metric Property Analysis with Two-Vehicle Simulation

This experiment includes scenarios with two air vehicles traveling in opposite directions

from the opposite sides of a virtual world. The region at the center of the virtual world is

characterized by more severe wind perturbations, more unreliable communications, and more

vehicle state measurement errors. The experiment’s goal is to understand how the traffic

temperature and the traffic entropy change when the air vehicles are at different conditions.
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Figure 4.3. Simulation results of the experiment by changing the standard
deviation on the y-axis. (The x-axis shows the variance in the logarithmic
scale. The first plot shows the trend of the temperature metric, while the
second plot presents the expected relative distance between the two points.
The third plot shows the trend of the expected traffic state safety severity
function. Finally, the last plot presents the entropy.)
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4.2.1 Two-Vehicle Simulation Description

This simulation includes a 2-D virtual world with two air vehicles traveling from the

opposite sides of the map (Fig.  4.5 ). The 2-D virtual world is a square with 6000 meter-

long edges. At the center of the virtual world, this experiment implements a rectangular

area, shown as a green box in Fig.  4.5 , that centers around the y-axis, and measuring

2000 meters in width and 6000 meters in length. Inside the green area, the air vehicles

experience severer wind perturbations, more unreliable communications, or more localization

measurement errors. In the simulation, one air vehicle (blue trajectories in Fig.  4.5 ) travels

from the left-hand side of the map to the right-hand side. Another vehicle (red trajectories

in Fig.  4.5 ) travels from the right-hand side of the map to the left-hand side. Without

corrections, the air vehicles have a very high chance of experiencing a near-miss event at the

center of the map.

Defining a function for traffic safety severity is necessary to use the traffic temperature

metric. In this study, the safety severity function is the total energy of all vehicles (Eq.  4.2 ).

The first term in Eq.  4.2 shows the kinetic energy of vehicle aci, where AC is a set of vehicles

in the airspace. The second term is the electric potential between vehicles aci and acj, where

NVaci
is the set of the neighboring vehicles of the vehicle aci, whose distances from the

vehicle aci are lower than the collision range (rcol). Finally, raci,acj
is the estimated relative

distance from vehicle aci to vehicle acj. The safety severity function shows that the air traffic

measures a lower safety severity if air vehicles fly slower and are further apart.

J (x) =
∑

aci∈AC

maci
|vaci

|2

2 +
∑

acj∈NVaci

qaci
qacj

2
∣∣∣raci,acj

∣∣∣
 (4.2)

The experiment consists of two parts. In the first part of the experiment, the ATA actions

are not put into place, so the experiment results reveal how the traffic temperature and the

traffic entropy evolve according to the conditions of both vehicles. The wind perturbation

and the state measurement error follow the multivariate normal distribution with 0 mean

and given covariance matrix (Table  4.1 ). The ATA’s actions are active in the second part

of the experiment to understand how effective the mechanisms are. For both parts of the
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Figure 4.5. Example of 2-D Simulation Environment with Vehicle Trajecto-
ries (The blue vehicle comes from left to right, while the red vehicle travels
from right to left. The solid lines show the true vehicle trajectories; the dashed
lines show the estimated trajectories by the vehicles; the dotted lines show the
estimated trajectories by the ATA.)

test, the baseline settings related to the air vehicles are shown in Table  4.2 . Table  4.1 

shows the baseline settings of the diagonal elements of the covariance matrices for the wind

perturbation and the state measurement error.

Table 4.1. Baseline Measurement and Wind Perturbation Variance Settings
Measurement Error Variance Wind Perturbation Variance

σ2
x 1.00 [m2] σ2

wx 0.50 [(m/s)2]
σ2

y 1.00 [m2] σ2
wy 0.50 [(m/s)2]

σ2
vx 2.00 [(m/s)2]

σ2
vy 2.00 [(m/s)2]
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Table 4.2. Simulation Parameter Settings
Parameter Value Parameter Value

mi 1.00 [kg] qi 81.8392 [C]
E 0.01 [V/m] Cruise Speed 10.00 [m/s]

rcol 600 [m] Broadcasting Range 1500 [m]

The goal of the first part of the experiment is to reveal how the traffic entropy and

the traffic temperature respond to environmental perturbations and LOS. This study intro-

duces uncertainty multipliers to increase the strength of uncertainty for wind perturbations

and state measurement errors. The wind perturbation multiplier affects the baseline wind

perturbation covariance matrix, while the measurement error multiplier influences the mea-

surement error covariance matrix. Additionally, since both air vehicles and the ATA rely

on the broadcast telemetry from air vehicles, the unreliable broadcast system can influence

airspace safety. This study also sets the message reception rate for modeling unreliable com-

munications. Table  4.3 lists the uncertainty multipliers and message reception rate settings.

Table 4.3. Variance Multipliers and Receiving Rate Settings
Variable Values
Measurement Error Multiplier [1.0, 20.0, 40.0]

Wind Perturbation Multiplier [1.0, 20.0, 40.0]

Message Reception Rate [1.0, 0.66, 0.33]

The goal of the second part of the experiment is to assess the impacts of the ATA’s

traffic management mechanisms. This study focuses on three mechanism settings, turning

on/off the VTBF adjustment, changing the temperature trigger threshold, and changing the

charge multiplier. The setting of the temperature trigger threshold depends on the results

of the first part of the experiment. Table  4.4 summarizes the settings of the ATA traffic

management mechanisms for this study.

For each combination of the variance multipliers, receiving rate, and TA Traffic Manage-

ment Mechanism setting, 50 runs of the simulation are conducted. The simulation results

and discussion are in the following sections.
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Table 4.4. Setting for ATA Traffic Management Mechanisms
Parameter Values

VTBF Adjust. Mechanism [On, Off]

Temp. Trigger Threshold Off [0.005, 0.01, 0.05]

Charge Multiplier Off [1.2, 1.5, 1.8]

4.2.2 Metric Property Analysis

The first part reveals how the metrics evolve under different environmental conditions for

both vehicles. Figures  4.6 to  4.8 show the evolution of the metrics based on real-time vehicle

state estimations under different variance multipliers and receiving rate settings. The solid

lines indicate the mean values of the metrics from the simulation results, while the shaded

areas present the regions covered by one standard deviation of the simulation results.

The Kalman filter algorithm makes the three metrics converge to stable values within 50

seconds. Then, both vehicles stay in the region of higher variance or low message reception

rate from about 200 to 400 seconds. Within this region, both air vehicles start executing

collision avoidance behaviors from about 275 to 350 seconds. They reach the point with

the shortest relative distance at about 300 seconds. Finally, they continue their journeys

without further maneuvers after 400 seconds. The entropy metric quantifies the uncertainty

level and increases when either vehicle enters the region of high variance or low message

reception rate. The safety severity function quantifies how severely both air vehicles violate

given airspace regulations and increases when both air vehicles get too close to each other.

Finally, the traffic temperature is the ratio of the two metrics and indicates the level of

confidence of how severely vehicles violate airspace regulations.

Figure  4.6 shows the evolution of the three metrics when varying the message reception

rate. When both vehicles enter the low message reception rate region, the entropy increases

between 200 and 425 seconds. In the same period, the traffic temperature drops a little bit

because the ATA has less confidence in the situations of both vehicles due to the dropped

messages. When both air vehicles are at the minimum relative distance, the entropy also

reaches the highest value due to the collision avoidance system. Since the collision avoid-
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Figure 4.6. Metrics Evolution according to Real-Time Vehicle State Estima-
tions with Changing Message Reception Rate (The plots from the top row
to the bottom row show the temperature, the entropy, and the safety severity
evolution. The solid lines show the mean of the results, while the shaded areas
show the one-standard-deviation regions.)
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Figure 4.7. Metrics Evolution according to Real-Time Vehicle State Esti-
mations with Changing Measurement Noise Multiplier (The plots from
the top row to the bottom row show the temperature, the entropy, and the
safety severity evolution. The solid lines show the mean of the results, while
the shaded areas show the one-standard-deviation regions.)
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ance system relies on the estimated states of both vehicles, the uncertainty from one air

vehicle influences the uncertainty level of the other. At the same time, the safety severity

increases and reaches peak values. Due to the increasing severity of the traffic conditions,

the temperature also increases even if the vehicle state uncertainty is high.

Similar phenomena also happen in the scenarios by changing the measurement error

multipliers (Fig.  4.7 ). The main difference is the impact of the measurement error mul-

tiplier on the entropy evolution. Since the measurement error directly influences vehicle

state estimations, a higher measurement error multiplier significantly increases the uncer-

tainty level of vehicle state estimations. Additionally, the traffic temperature gives a higher

weighting to the instance with safe traffic conditions. The high uncertainty levels of vehicle

state estimations indicate that the true states of air vehicles might be farther away from

the expected vehicle states. Also, the traffic temperature metric takes the true air vehicle

states as stochastic variables and considers all potential random-drawing outcomes. For each

time step, the temperature value with a higher measurement error multiplier is lower than

the temperature with a lower measurement error multiplier. Nonetheless, the temperature

reaches a similar peak value regardless of the measurement error setting when the two vehi-

cles are at the minimum distance condition. Since the two air vehicles are at the minimum

distance condition, all random-drawing instance has unfavorable traffic condition and makes

the temperature reach a similar peak value.

The wind perturbation multiplier results in similar behaviors of the three metrics (Fig.  4.8 )

as other results. The wind perturbation pushes/pulls air vehicles and increases the standard

deviation of the safety severity and the traffic temperature. The impact level of the wind

perturbation multiplier on the entropy is as significant as the impact of the measurement

error multiplier. Additionally, the traffic temperature slightly drops when both vehicles enter

the high wind perturbation region. Then, when the relative distance between air vehicles

is less than the collision avoidance distance, the traffic temperature increases and indicates

that both vehicles are under a more unsafe condition.

The metrics based on the vehicle state prediction with a 20-second window (from Figs.  4.9 

to  4.11 ) have similar trends as the metrics based on the real-time state estimation. The main

difference from the metrics based on real-time state estimation is that the peaks lead to about
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20 seconds. Based on the predicted vehicle state, the Kalman filter algorithm can identify if

a near-miss event happens. And, the near-miss event increases the traffic temperature value

because the Kalman filter has higher confidence that both vehicles are in unsafe conditions.

The predicted vehicle state comes with a high uncertainty value. Comparing plots from

Figs.  4.6 to  4.11 , the entropy metric based on the predicted vehicle state has higher entropy

than the value based on the real-time estimation. This phenomenon indicates that the

predicted vehicle state has a higher uncertainty than the real-time estimation. Additionally,

the traffic temperature based on the predicted vehicle state is lower than the temperature

based on real-time state estimation. The traffic temperature shows a lower level of confidence

based on how severe the conditions between vehicles are.

The simplified simulation scenarios can help understand the metrics. The safety severity

quantifies the safety level of the conditions of all vehicles. However, it is not sensitive to the

uncertainty levels of the vehicle state estimations and predictions. Instead, the entropy value

can represent the uncertainty level of the vehicle state estimations and predictions. When

there is a higher uncertainty setting in the simulation, the entropy metric can truthfully

quantify the uncertainty level of the vehicle state estimations and predictions. Finally, the

traffic temperature is the ratio between the safety severity to the entropy. It can represent

the level of confidence of how severe the traffic condition is. Although the traffic temperature

decreases with a higher uncertainty setting, it can truthfully represent the near-miss event by

reaching peak values. Hence, the temperature peak value detection can be an accurate trigger

to identify if a near-miss event happens. Figure  4.12 shows the difference of a metric value

with the value at the previous time step based on the 20 seconds vehicle state prediction.

The first row of Fig.  4.12 shows the difference of the traffic temperature based on 20

seconds vehicle state prediction. The first dip at around 200 seconds indicates that vehicles

enter the high uncertainty region. The first peak happens at around 250 seconds when the

Kalman filter algorithm estimates that the relative distance between the vehicles is less than

the collision avoidance distance. Hence, the traffic safety severity function starts to include

the electric potential energy part. Then, the second peak happens at around 280 seconds

when the Kalman filter algorithm predicts that the vehicles are at the minimum distance
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Figure 4.9. Metrics Evolution based on 20 Seconds State Predictions with
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Changing Variance Multipliers and Receiving Rate Settings — Measurement
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point. Finally, the second dip happens about 290 seconds because the Kalman filter predicts

that both air vehicles will slow down and depart from each other.

The entropy plot in the second row of Fig.  4.12 tells a similar story. Both vehicles enter

the high uncertainty region at around 200 seconds. Then, the second peak happens at around

280 seconds because the Kalman filter predicts that both air vehicles will reach the minimum

relative distance 20 seconds later. The collision avoidance system makes both air vehicles rely

on each other’s locations. The state estimation uncertainty from one vehicle immediately

influences the state estimation accuracy of another. Hence, the collision avoidance drives up

the vehicle state estimation uncertainty. Subsequently, the third peak happens at around

300 seconds because the vehicles reach the point of the minimum distance. The Kalman

filter algorithm cannot predict vehicle states with low uncertainty levels due to the design

of the collision avoidance system.

The safety severity plot in Fig.  4.12 includes three peaks at around 250 seconds, 280

seconds, and 300 seconds. The first peak happens because the collision avoidance system

starts to activate. The second peak happens when the vehicles reach the minimum distance

point. The third peak occurs when the collision avoidance system pushes the vehicles away

from each other.

The one-step difference of the three metrics is eligible as the near-miss event trigger. The

next section shows the results with the trigger using the Closest Point of Approach (CPA) as

the baseline. The following section includes the comparison of the CPA trigger with triggers

based on the differences of the three proposed metrics.

4.2.3 Temperature-based Trigger Performance Analysis

The CPA generates two outputs, which are the time to the closest point of approach

(tCP A) and the minimum distance. The near-miss trigger activates if both outputs are lower

than pre-set respective thresholds. This study also uses 20 seconds as the threshold for tCP A.

The minimum distance threshold for the CPA is adjustable to influence the sensitivity of the

near-miss event trigger based on the CPA.
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A near-miss event happens when two vehicles are too close to each other. Under an ideal

scenario without any perturbation or message dropping, the near-miss event would never

happen. Figure  4.13 shows the vehicle trajectories in 1-D space with the setting of the ideal

scenario. The y-axis of Fig.  4.13 shows the evolution of the time, while the x-axis shows

the position of the vehicles. The blue vehicle travels from the left-hand side of the space to

the right-hand side, while the red vehicle moves in the opposite direction. Fig.  4.13 is based

on the settings in Table  4.2 . The resulting minimum distance between the two air vehicles

is about 46 meters. In the following results, a near-miss event happens when the relative

distance between two air vehicles is less than 46 meters.

Figure 4.13. Trajectories of Vehicles with the Charged Particle Dynamic
Model (Blue vehicle moves from left to right, while the red vehicle travels
from right to left. The x-axis shows the locations, while the y-axis shows
time.)
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The near-miss event triggers based on the one-time step differences of the three metrics

need a threshold setting to adjust their sensitivity. A high threshold setting requires a sudden

change of the metric value to trigger a near-miss event warning. Although a high threshold

setting can reduce the false-positive alarm, the high threshold setting can also reduce the

true-positive alarm.

An ideal trigger should reach a 100% true-positive rate and a 0% false-positive rate.

However, based on threshold settings, both true-positive rates and false-positive rates vary

between 0% and 100%. The Receiver Operation Characteristic (ROC) is a line showing the

relationship between the true-positive rate (y-axis) and the false-positive rate (x-axis) of a

trigger (Fig.  4.14 ) by varying the trigger threshold. A commonly used metric to quantify

the performance of a trigger is the Area Under the ROC Curve (AUC), which is the shaded

area in Fig.  4.14 . The ideal trigger (with a 100% true-positive rate and a 0% false-positive

rate) will have an AUC score of 1.00.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver Operating Characteristic - Example

Example - ROC curve (area = 0.9387)

Figure 4.14. Example of Receiver Operation Characteristic (ROC) and Area
Under the Curve (AUC) (The ROC is the light blue dashed line, while the
AUC is the shaded area under the blue line.)

Figure  4.15 shows the ROC curves and lists AUC scores for the triggers based on the

CPA and differences of the three metrics. The CPA-based near-miss event trigger has an

AUC score of 0.9435. The trigger based on the difference of the traffic temperature has an
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AUC score of 0.9422, which is close to the CPA-based trigger. The trigger based on the

difference of the safety severity has an AUC score of 0.9410, which is also marginally worse

than the CPA-based trigger. Finally, the trigger based on the difference of the entropy has

the worst performance with an AUC score of 0.4417.
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Figure 4.15. Receiver Operating Characteristic (ROC) and Area Under the
Curve (AUC) for Trigger based on Metrics and Closest Point of Approach
(CPA) (The solid light blue line and the solid orange line shows the ROC of
entropy-based and safety-severity-based triggers, respectively. The blue solid
line shows the ROC of the temperature-based trigger. The dashed blue line
presents the ROC of the CPA-based trigger.)

The trigger based on the difference of the entropy has the worst performance among the

chosen three triggers. The difference of the entropy values in Fig.  4.12 shows three peaks

indicating three different events between both air vehicles. The first peak happens when

either vehicle enters the high uncertainty region. Although the second peak is associated

with the predicted near-miss event based on the Kalman filter algorithm, the first peak is

much higher than the second one and shadows the performance of the entropy-based trigger.

Results in Fig.  4.15 are based on the assumption that the setting of the high uncertainty

region is unknown. However, since there are different possible combinations of the settings

in the high-uncertainty region, the performance of the trigger changes. Figure  4.16 shows

the distributions of the AUC scores based on different settings for the high uncertainty
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region. The AUC score distributions of the triggers based on the temperature difference and

the safety severity difference are similar and consistent. The AUC score distribution of the

CPA-based trigger is more consistent than the triggers based on the temperature difference

or the safety severity difference, but it is more skewed towards lower values of AUC. Finally,

the trigger based on the entropy difference is consistently lower than the other three triggers.
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Figure 4.16. AUC Score Distribution based on Various Environmental Per-
turbation Setting

The results show that the trigger based on the traffic temperature difference should be

sufficient for the near-miss event detection. The optimal threshold of the trigger is the

temperature difference threshold corresponding to the sum of the true-positive rate and the

false-positive rate equals one. The resulting threshold is about 0.019.
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4.2.4 Effectiveness of ATA Traffic Management Mechanisms

This section describes results to assess the effectiveness of the ATA traffic management

mechanisms. Table  4.5 shows the near-miss rate based on various combinations of the settings

of the traffic management mechanisms, assuming that the settings of the high uncertainty re-

gion are unknown. The baseline scenario, which disables all traffic management mechanisms,

has 56% of the near-miss rate. Based on the setting of the traffic management mechanisms,

the lowest near-miss rate is 21.7% when the broadcast rate adjustment mechanism is inactive

and the scenario has a low-temperature trigger threshold (0.005) and high charge multiplier

(1.8) settings. Subsequently, the results include the near-miss rate based on the combination

of settings of the traffic management mechanisms and of the high uncertainty region. This

study also includes a linear regression model to understand the relationships between the

near-miss rate and the settings of the traffic management mechanisms.

Equation  4.3 shows the linear regression model to identify the effectiveness of the traf-

fic management mechanisms. RNear-Miss shows the near-miss rate, while C (·) indicates the

variable inside this function is a categorical variable. Sbroadcast indicates if the VTBF adjust-

ment mechanism is active or not. Strigger : Smultiplier shows a combination of the temperature

trigger threshold and the charge multiplier settings. Finally, Table  4.6 shows the coefficients

and p-values of the linear regression model based on Eq.  4.3 .

RNear-Miss ∼ C (Sbroadcast) + C (Strigger : Smultiplier) (4.3)

Table  4.6 reveals the different properties of the two traffic management mechanisms.

The VTBF adjustment can reduce the near-miss rate by about 1.78%. But the effectiveness

of VTBF adjustment is statistically insignificant. Results also show how the minimum

separation criterion adjustment mechanism is only effective with certain combinations of the

settings. The mechanism is effective when the temperature threshold is low enough (0.005)

and the charge multiplier is high enough (1.2). In these cases, the minimum separation

criterion adjustment mechanism can reduce the near-miss rate by about 12% to 34%.

Figure  4.17 shows the average traffic temperature based on real-time state estimation

through each simulation run, with the mechanism combination shown in Table  4.5 . The
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Table 4.5. Near-miss Rate Associated with Different Settings for ATA Traffic
Management

Broadcast Rate
Adjustment

Temperature
Trigger Threshold

Charge
Multiplier

Near-Miss
Rate

False

None None 56.07%

0.005
1.2 45.26%
1.5 30.74%
1.8 21.70%

0.010
1.2 52.52%
1.5 38.00%
1.8 24.30%

0.050
1.2 55.78%
1.5 55.63%
1.8 57.48%

True

None None 56.22%

0.005
1.2 42.59%
1.5 28.30%
1.8 21.93%

0.010
1.2 48.22%
1.5 34.97%
1.8 24.96%

0.050
1.2 53.19%
1.5 54.44%
1.8 54.89%

effective combination of ATA traffic management mechanism settings should reduce the

average traffic temperature. The VTBF adjustment mechanism just slightly reduces the

mean of the traffic temperature, as can be observed by comparing the bars with the active
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Table 4.6. Coefficient of Linear Regression Model for Eq.  4.3 

Variable Coefficient. p-value
Baseline 57.04% 0.000

Sbroadcast [True] -1.78% 0.259
Strigger : Smultiplier [0.005:1.2] -12.22% 0.001
Strigger : Smultiplier [0.005:1.5] -26.63% 0.000
Strigger : Smultiplier [0.005:1.8] -34.33% 0.000
Strigger : Smultiplier [0.01:1.2] -5.78% 0.101
Strigger : Smultiplier [0.01:1.5] -19.67% 0.000
Strigger : Smultiplier [0.01:1.8] -31.52% 0.000
Strigger : Smultiplier [0.05:1.2] -1.67% 0.636
Strigger : Smultiplier [0.05:1.5] -1.11% 0.752
Strigger : Smultiplier [0.05:1.8] 0.04% 0.992

Adj. R-square 0.287

VTBF against the inactive one. When the temperature trigger threshold is low enough (0.01

and 0.005), the higher charge multipliers can reduce the average traffic temperature. The

higher charge multiplier effectively increases the minimum separation distance and reduces

the safety severity of the traffic conditions.

In conclusion, although the VTBF adjustment mechanism can reduce the near-miss rate,

its impact is marginal according to the statistical analysis results and on the average traffic

temperature. The adjustment of the minimum separation criterion is an effective mechanism

for resolving a near-miss event when the traffic temperature threshold is low enough.

4.3 Temperature Property Analysis with Multi-Vehicle Simulation

This section investigates how the temperature can help an ATA identify unsafe air traffic

situations. The first part of the section will discuss the simulation scenario setups. Then,

the following section will show the simulation results.

4.3.1 Multi-Vehicle Simulation Description

This section includes two traffic patterns for investigating how the temperature metric

responds to different traffic conditions. The structured corridor airspace contains two chan-
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Figure 4.17. Average Temperature Value Distribution based on Various ATA
Traffic Management Mechanism Settings

nels with vehicles flying in opposite directions (Fig.  4.18 ). The green triangles in Fig.  4.18 

show the origin locations of the air vehicles, while the grey lines show their trajectories

through the simulation. The air vehicles in the upper half of the airspace travel from the

left-hand side of the map to the right-hand side. The air vehicles in the lower half of the

airspace go from the right-hand side to the left-hand side. The maximum distance between

the origin locations of the air vehicles in the same corridor is 600 meters. If there are more

than five vehicles in the same channel, the air vehicles are evenly placed across the width of

the corridor. Finally, the goal of the air vehicles is to travel to the opposite side of the map.
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Figure 4.18. Structured Corridor Traffic Pattern (Vehicles can only fly
from left-to-right on the upper half of the map, while they can only travel from
right-to-left on the bottom half of the map. Green triangles indicate origins
of air vehicles, while the grey solid lines show their trajectories.)
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Figure 4.19. Random Traffic Pattern (Vehicles randomly start on either
one of the edges of the map to another random place on the other side of the
map. Green triangles indicate origins of air vehicles, while the grey solid lines
show their trajectories.)
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In the random airspace, the origins and destinations of the air vehicles are randomly

distributed on the edges of the virtual world (Fig.  4.19 ). If the relative distance between

any two origins is less than the collision avoidance distance (600 meters), the simulation ran-

domly generated two new starting points for ensuring that no air vehicle is in the contingent

situation at the beginning of the simulation.

In both types of airspace, there are regions with either a higher measurement error

multiplier, a higher wind perturbation multiplier, or a lower message reception rate. These

high uncertainty regions can mutually overlap and result in different combinations and sizes

of the high environmental uncertainty areas. The list of the multipliers and message reception

rate settings for the high uncertainty regions are as follows.

• Measurement Error Multiplier: 40

• Wind Perturbation Multiplier: 40

• Message Reception Rate: 0.5

The air vehicle in the multiple vehicle simulation follows the same setting in Table  4.2 .

The number of air vehicles in the airspace can be either 6, 10, 20, or 30. Each simulation uses

a different combination of the ATA traffic management mechanism settings in Table  4.7 and

the number of air vehicles. For each combination of the simulation setting, the simulation

repeats 40 times with different random seeds. The following section shows the analyzed

simulation results.

Table 4.7. Setting for ATA Traffic Management Mechanisms for Multi-vehicle Simulation
Parameter Values

Broadcast Freq. Adjust Mechanism [On, Off]

Temp. Trigger Threshold Off [0.005, 0.01, 0.05]

Charge Multiplier Off [1.2, 1.5, 1.8]
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4.3.2 Comparison of Different Traffic Patterns

The traffic temperature can represent the level of confidence of how severely the air traffic

violates airspace regulations. Figure  4.20 shows the average temperature evolution based on

different traffic patterns and the activation of the VTBF adjustment mechanism. The blue

lines show the results with the random traffic pattern setting. And the orange lines present

the structured corridor traffic pattern results. The solid lines indicate the scenario without

activating the VTBF adjustment mechanism, while the dashed lines show the runs with the

activated VTBF adjustment mechanism. Additionally, the shaded area indicates the one

standard deviation range of the traffic temperature. Each plot in Fig.  4.20 shows the runs

with the different numbers of the air vehicles.
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Figure 4.20. Traffic Temperature Evolution with Different VTBF Adjust-
ment Mechanism Settings (The blue and orange lines show the scenarios with
random and structured traffic pattern settings, respectively. The solid and
dashed lines show the scenario with active and inactive VTBF settings. Each
plot shows the simulation results with a different number of vehicles.)
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The simulation results show that the number of vehicles influences the evolution of the

traffic temperature. With six air vehicles, the traffic temperature from the structured traffic

pattern is lower than the temperature from the random traffic pattern. Additionally, the

random traffic pattern results in higher traffic temperature variation than the structured

traffic pattern. When the number of vehicles increases, the temperature from the random

traffic pattern slightly increases. Because there are higher chances that air vehicles in the

random traffic pattern have conflicted flight paths, the increasing temperature responses to

the higher confidence that the air vehicles are in an unsafe situation.

The average temperature from the structured traffic pattern increases faster than the

random traffic pattern as the number of air vehicles increases. Due to the design of the

structure corridor, air vehicles in the same channel get closer to accommodate more air

vehicles. Although all air vehicles in the same corridor travel in the same direction, they

need to pay more attention to the nearby air vehicles to ensure no near-miss situation would

happen. Hence, the ATA has a higher and more consistent level of confidence that the air

traffic in the structure airspace is more dangerous than the random airspace.

As the simulation proceeds in the structured traffic pattern, the vehicles from the opposite

traveling direction corridors meet at the center of the map. Hence, the collision avoidance

system of the air vehicles at the center of the map has to be aware of the nearby air vehicles

and the vehicles traveling toward them as a temperature peak occurs at around 300 seconds

in Fig.  4.20 . Similar phenomena also happen in the simulation with the random traffic

pattern. Since all vehicles start from the map boundary, they converge to the center of

the virtual world and spread out again as the simulation proceeds. Therefore, the average

temperature with the random traffic pattern presents a peak at around 300 seconds.

Air vehicles in the structured traffic pattern are squeezed on the y-axis at the beginning

of the simulation. As the simulation proceeds, the air vehicles gradually spread out on the

y-axis. Some air vehicles leave from the map due to collision avoidance maneuvers. This

phenomenon reduces the vehicle density in the airspace and reduces the traffic safety severity

level. Hence, the average temperature of the simulation with the structured traffic pattern

reduces along with the simulation.
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The VTBF adjustment mechanism has an insignificant impact on the average temper-

ature. Figure  4.20 shows that the average temperature evolution is similar between the

scenarios with and without the VTBF adjustment mechanism. The solid lines and the

dashed lines almost overlap regardless of the number of air vehicles or the traffic patterns.

The minimum separation criterion adjustment mechanism happens more frequently as

the number of air vehicles increases. Figure  4.21 shows the 30 vehicles simulation results with

different mechanism settings. The columns show results with different temperature trigger

threshold settings. And the rows show results with different charge multiplier settings.
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Figure 4.21. 30 Vehicles Traffic Temperature Evolution with Different Set-
tings for Minimum Separation Adjustment Mechanism (The rows from top to
bottom show the charge multiplier settings from 1.2, 1.5, and 1.8, respectively.
The columns from left to right show results with temperature trigger thresholds
from 0.005, 0.01, and 0.05. The blue and orange lines show the results with
random and structured traffic patterns, respectively. The solid and dashed
lines present the results with and with the VTBF adjustment mechanism.)
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The minimum separation criterion adjustment mechanism is effective in the scenarios

with a low enough temperature trigger threshold and a high enough charge multiplier setting.

First, the separation criterion adjustment mechanism with the temperature trigger threshold

of 0.05 is ineffective. The plots on the most right column in Fig.  4.21 are similar to Fig.  4.20 .

And, the cases with the structured corridor traffic pattern and the low trigger threshold

(0.005 and 0.01) have different trends from other scenarios. With the 0.01 temperature

trigger threshold, the results with the VTBF adjustment mechanism have a lower average

temperature than the result without the VTBF adjustment mechanism. And, with a higher

charge multiplier setting, the average temperature drops more quickly from 50 to 200 seconds.

Due to the high charge multiplier setting, some air vehicles aggressively spread out and leave

the simulation. This phenomenon reduces the number of air vehicles, the traffic safety

severity level, and the average temperature. Finally, the air vehicles in the structured traffic

pattern have to pay attention to the head-on traffic at around 300 seconds. With a low

trigger threshold (0.005) and a high charge multiplier (1.8) setting, the air vehicles may have

an aggressive collision-avoidance maneuver and make the average temperature fluctuate.

Figures  4.22 and  4.23 show the example scenario that illustrates the correlations between

the temperature metrics, the minimum distance between all vehicles, and the near-miss

event. Figure  4.22 shows the temperature evolution based on the real-time state estimation

and the minimum distance between air vehicles. The plot shows a local temperature peak

whenever the minimum vehicle distance reaches a local minimum. It seems that the two

metrics have a negative correlation. Furthermore, Fig.  4.23 shows the temperature evolution

based on 20 seconds vehicle state predictions and the number of near-miss events. The plots

show that the temperature hits a peak several seconds before the near-miss event occurs.

Hence, there should have a positive correlation between the temperature and the number of

near-miss events.

The results use cross-correlation to quantify the correlations between the two pairs of the

lines in Figs.  4.22 and  4.23 . However, the minimum vehicle distance and the temperature

based on the real-time state estimations have non-zero auto-correlation. Several research

groups show that the auto-correlations influence the assessment of the cross-correlations
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Figure 4.22. Temperature Based On Real-Time State Estimation vs. Mini-
mum Vehicle Distance (The blue lines follow the left-y-axis, while the orange
lines go with the right-y-axis.)
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Figure 4.23. Temperature Based on 20 Seconds Vehicle State Prediction vs
# Near Miss Event (The blue lines follow the left-y-axis, while the orange lines
go with the right-y-axis.)
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between two trends [  71 ], [ 72 ]. Hence, a pre-whitening procedure is necessary before the

cross-correlation calculation.

This study pre-whitens the signals and calculates the cross-correlation between two fac-

tors for each simulation run. Figure  4.24 shows the cross-correlation distribution of the

minimum vehicle distance and the temperature based on the real-time state estimation. The

results show that the median of the cross-correlation is negative and confirms the previous

observation from Fig.  4.22 . Furthermore, the VTBF adjustment mechanism does not signif-

icantly influence the median of the cross-correlation. One of the surprising findings is that

the cross-correlation is related to the traffic pattern. The structured traffic pattern results

in a wider spread of the cross-correlation distribution than the random traffic pattern.
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Figure 4.24. Cross-Correlation Distribution of Temperature Based On Real-
Time State Estimation vs. Minimum Vehicle Distance (The blue boxes show
the results with inactive VTBF adjustment mechanism, while the orange boxes
present the results with active VTBF adjustment mechanism. The notches on
the boxes show the 95% confidence interval of the median of the correlation.)
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Figure 4.25. Cross-Correlation Distribution of Temperature Based on 20
Seconds Vehicle State Prediction vs Number of Near Miss Event (The blue
boxes show the results with inactive VTBF adjustment mechanism, while the
orange boxes present the results with active VTBF adjustment mechanism.
The notches on the boxes show the 95% confidence interval of the median of
the correlation.)

Since there is no auto-correlation for the number of the near-miss trend, there is no

need to execute a pre-whitening procedure before the cross-correlation analysis. Figure  4.25 

shows the cross-correlation distribution for the number of near-miss and the temperature

based on the 20 seconds state predictions. Based on the discussion from the previous sec-

tion, the temperature based on the 20-second state predictions is a good predictor for the

near-miss event. Figure  4.25 confirms the previous findings because it shows the positive

cross-correlation between the two factors. However, for the simulation with the structured

traffic pattern, the temperature based on the 20 seconds state prediction does not perform

well. Because these vehicles are traveling in parallel, it is difficult to predict how a small
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perturbation pushes an air vehicle away from its course and results in a near-miss event.

However, vehicles are traveling in different directions in a random traffic pattern. The head-

ings of the flight courses have a more significant influence on resulting in a near-miss event

than any random perturbation.

4.4 Analysis of Chicago Downtown UAM Traffic

The applications of the traffic temperature are real-time airspace monitoring and the

airspace structure design assessment. The following sections will use a hypothetical UAM

traffic pattern in the Chicago metropolitan area from the works of Maheshwari et al. [ 73 ]–

[ 75 ]. Their work assesses the potential UAM-preferred trip demands distribution through a

day based on publicly available data. The UAM-preferred trip demand distribution considers

the demographics of the Chicago population, existing highway infrastructures, existing po-

tential UAM vertiports, and commuter demand distribution throughout a typical day. They

identified 45 active vertiports and 6,305 UAM-preferred commuter trips from 6,221,968 com-

muter trips under the no UAM ride-sharing and full-network scenario. Additionally, they

provide origin vertiports, destination vertiports, departure times, and arrival times of each

UAM-preferred commuter trip.

The real-time airspace monitoring demonstration shows how the traffic temperature met-

ric is associated with the LOS indicator, the minimum distance between vehicles, and the

number of vehicles in the airspace. The demonstration also includes scenarios with different

environmental uncertainty settings and shows how the traffic temperature responds to vari-

ous uncertainty conditions. Furthermore, the airspace structure design assessment uses the

temperature metric to identify the hot spots with given airspace structures. The airspace

structure includes the geographical layouts of flight paths and the ATA’s state estimation

and commands logic. The decision-makers of the airspace structures can identify any hot

spots and assess the airspace structure safety levels.
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4.4.1 Chicago Downtown UAM Traffic Scenario Setup

Figure  4.26 shows the trajectories, origin vertiports, and the current locations of the

UAM-preferred trips at 6 PM in the Chicago metropolitan area. The blue dots represent the

origin vertiports, while the orange dots show the current location of the UAM vehicles. The

blue lines show the trajectories of the UAM vehicles, while the blue box shows the study

region. The study is a square with 28.8 kilo-meters-long edges. Furthermore, the study

region is at a place with enough UAM traffic density and without any vertiports. Finally,

Fig.  4.26 only visualizes the flights going through the study region.

Figure  4.27 shows the zoom-in snapshot around the study region. Since there is a high-

throughput hub on the right of the study region, multiple UAM traffic converges to it. The

hub also creates tremendous UAM traffic in the east-west direction. Due to the city layout,

ample UAM traffic goes through the study region in the north-south direction.

Figure  4.28 shows the number of vehicles within the study region from 0:00 AM to 11:59

PM. The figure shows the highest density of the UAM vehicles happens at around 6:00 PM

with 41 UAM vehicles in the square with 28.8 km-long edges. The second-highest density

happens around 8:30 AM with about 25 UAM vehicles. The first peak represents the work-

to-home traffic, while the second peak indicates the home-to-work trips.

The simulation includes three scenarios with different amounts of traffic. A low traffic

scenario chooses the traffic condition at 10:30 AM as shown in the box with dotted edges in

Fig.  4.28 . The low traffic scenario has approximately 8 UAM vehicles in the study region.

A mid traffic scenario uses the traffic condition at 8:30 AM as shown in the box with dashed

edges in Fig.  4.28 . Finally, a high traffic scenario is based on the traffic condition at 5:55

PM as shown in the box with solid edges. Each traffic scenario includes the entry time, the

entry locations, and the existing locations of all vehicles traveling through the study region

for generating the traffic pattern. The recording of each traffic pattern proceeds for 600

seconds.

The settings of the charged particle model are updated to match with the specification

of the modeled UAM vehicle from Maheshwari et al. [  73 ]–[ 75 ]. Table  4.8 shows the updated

setting of the charged particle model. The cruise speed increases from 10 m/s to 68 m/s to

107



9.86 9.84 9.82 9.80 9.78 9.76 9.74
1e6

5.10

5.12

5.14

5.16

5.18

5.20

5.22

5.24

1e6 Time: 64800 seconds

Figure 4.26. Snapshot of Chicago Downtown UAM-preferred Trips at 6 pm

respond to the cruise speed of the modeled UAM vehicle. The simulation also includes a

different charge setting of 1043.4498 C to respond to the faster cruise speed and ensure that

the collision avoidance system can execute effective collision avoidance maneuvers. Finally,

the collision avoidance radius and the telemetry broadcast radius increase to 1500 and 3000

meters, respectively.
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Figure 4.27. Snapshot of Airspace Condition of the Study Region

Table 4.8. Updated Simulation Parameter Settings of Charged Particle Model
Parameter Value Parameter Value

mi 1.00 [kg] qi 1043.4498 [C]
E 0.01 [V/m] Cruise Speed 68.00 [m/s]

rcol 1500 [m] Broadcasting Range 3000 [m]

The simulation includes two sets of environmental uncertainty settings. Table  4.9 shows

the parameters of the Nominal uncertainty setting. Additionally, the High uncertainty sce-

nario involves stronger wind disturbances, higher state measurement errors, and lower mes-

sage reception rates.

Figure  4.29 shows the trajectories of the flights from the high traffic scenario. The colors

of the trajectories are according to the heading angles. The west-to-east traffic is in solid
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Figure 4.28. Number of Vehicle in Study Region for Every Second Through
A Day Since Mid-Night

Table 4.9. Environment Uncertainty Setting
Scenario Nominal High

Wind Perturbation Multiplier 1.0 40.0
Measurement Error Multiplier 1.0 40.0

Message Reception Rate 1.0 0.5

lines, while the east-to-west traffic is in dotted lines. Without any manipulation, the west-to-

east traffic and the east-to-west traffic overlap with each other. The head-to-head near-miss

scenario is inevitable. Hence, there is a need to separate the east-to-west traffic and the

west-to-east traffic apart.
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Figure 4.29. Vehicle trajectories of the high traffic scenario in the Chicago
downtown area. Vehicle Trajectories are colored based on the heading an-
gles. The west-to-east trajectories are in solid lines, while the east-to-west
trajectories are in dotted lines.

The baseline separation structure separates the traffic in opposite directions by 200 me-

ters. Figure  4.30 shows the resulting trajectories in the Chicago urban area. The trajectories

pointed by the two blue arrows in Fig.  4.29 are separate apart in Fig.  4.30 . The traffic in

Figs.  4.31 and  4.32 in the opposite directions from the different traffic scenarios separate

from each other in the baseline separation distance.

The study also includes the two extra trajectory separation distance scenario for inves-

tigating how the temperature metric responses to the different airspace structure. A loose

structure has the increased trajectory separation distance from 200 meters to 800 meters

(Fig.  4.33 ). Although the loose separation distance can reduce the chance of the head-to-

hear near-miss event, the structure increases the potential path conflicts with other trajec-
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Figure 4.30. Vehicle trajectories of the high traffic scenario in the Chicago
downtown area with the Baseline Separation Distance. Vehicle Trajectories
are colored based on the heading angles. The west-to-east trajectories are in
solid lines, while the east-to-west trajectories are in dotted lines.

tories. On the other hand, a tight structure scenario has the decreased trajectory separation

distance from 200 meters to 100 meters (Fig. ??). The tight structure reduces the chances

of the path conflict with other trajectories, but it increases the chance of the head-to-head

near-miss events.

This study intents to investigate how the temperature metric responds to (1) different

amount of air traffic, (2) different types of ATA mechanism, and (3) various airspace struc-

ture. Table  4.10 summarizes the setting of the fixed factor and control factors of simulation

scenarios. The expected results of the simulation scenario are as follows.

1. Traffic Throughput Scenario: Since the temperature metric is an intrinsic variable,

it should not depend on the number of vehicles in the airspace. In other words, the
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Figure 4.31. Vehicle trajectories in the Chicago downtown area with the
Baseline Separation Distance and Low Traffic Scenario (Vehicle Trajectories
are colored based on the heading angles. The west-to-east trajectories are in
solid lines, while the east-to-west trajectories are in dotted lines.)

113



150

100

50

0

50

100

150

Tr
aj

ec
to

ry
 H

ea
di

ng
 [d

eg
re

e]

Figure 4.32. Vehicle trajectories in the Chicago downtown area with the
Baseline Separation Distance and Mid Traffic Scenario (Vehicle Trajectories
are colored based on the heading angles. The west-to-east trajectories are in
solid lines, while the east-to-west trajectories are in dotted lines.)
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Figure 4.33. Vehicle trajectories in the Chicago downtown area with Loose
Structure Scenario (Vehicle Trajectories are colored based on the heading an-
gles. The west-to-east trajectories are in solid lines, while the east-to-west
trajectories are in dotted lines.)
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Figure 4.34. Vehicle trajectories in the Chicago downtown area with Tight
Structure Scenario (Vehicle Trajectories are colored based on the heading an-
gles. The west-to-east trajectories are in solid lines, while the east-to-west
trajectories are in dotted lines.)
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Table 4.10. Summary of Simulation Scenarios
Scenario Control Factors Fixed Factors

Traffic Throughput
Scenario

Traffic Throughput,
Uncertainty Level

Inactive ATA Mechanism,
Baseline Traffic Separation
Distance

ATA Mechanisms
Traffic Throughput,
Uncertainty Level,
ATA Mechanisms

Baseline Traffic Separation
Distance

Airspace Structure Traffic Separation Distance,
Uncertainty Level

High Traffic Throughput,
Inactive ATA Mechanism

temperature value should reveal the confidence level of how severe the airspace is. The

temperature should only depend on the minimum distance between vehicles or number

of near-miss event.

2. ATA Mechanisms: Since the goal of the ATA mechanisms should regulate the air

traffic, the temperature metric should reveal the effectiveness of the mechanism. Ad-

ditionally, it should reveal how different mechanism influences the air traffic patterns.

3. Airspace Structure: Different traffic separation distances can result in different types

of safety threats. A tight traffic structure may cause the head-to-head near-miss event,

while the loos traffic structure may increase the path conflict between the trajectories

of the air vehicles. The temperature metric should reveal the strength and weakness

of different airspace structure designs.

4.4.2 Temperature Responds to Traffic Throughput

With different traffic throughput, the temperature metric should be independent from

the number of air vehicles and reveal the confidence level of how severe the airspace is. This

section includes the simulation results with different air traffic settings and environmental

uncertainty level.
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Airspace-Level Analysis — Real-Time Airspace Monitoring

The traffic temperature metric should help the ATA identify the status of air traffic in

airspace. Figure  4.35 shows the traffic status of the Chicago downtown area with the traffic

temperature and other metrics of scenarios with Nominal uncertainty. The first row shows

the traffic temperature evolution based on the real-time vehicle state estimations under

different traffic conditions. And the blue, orange, and green lines show the Low traffic, Mid

traffic, and High traffic conditions, respectively. The second row in Fig.  4.35 the minimum

distance between all vehicles in the airspace. The red dashed line indicates the near-miss

threshold. A near-miss event happens if any two vehicles have a relative distance shorter than

the threshold. Then, the third row shows how many near-miss events are identified every

second. Unfortunately, there is no near-miss event from these simulation results. Finally,

the last row in Fig.  4.35 shows the number of vehicles in the airspace for each second.

It is hard to use one metric to summarize the safety level of airspace. The minimum

distance between vehicles metric (the second row in Fig.  4.35 ) shows the pair of vehicles with

the most unsafe condition. It cannot show if other air vehicles were in unsafe conditions or

not. The number of the near-miss events (the third row in Fig.  4.35 ) is not ideal neither

because it shows values after the near-miss event happened. Additionally, if there is no near-

miss event, it cannot present the airspace condition or compare airspace safety level. Finally,

the number of vehicle counts (the last row in Fig.  4.35 ) can show the vehicle density. However,

high-density airspace may not be dangerous if there are an effective airspace structure and

operational regulations. For example, the last plot in Fig.  4.35 shows that the high traffic

scenario is always more dangerous than the other scenarios because it has the highest vehicle

counts.

The temperature metric can summarize airspace safety level and is independent of the

number of UAM vehicles in the airspace, so it is helpful to compare the airspace conditions

with fluctuating traffic flows. Although the different traffic patterns result in various numbers

of UAM vehicles in the airspace, the traffic temperature values are similar between these

traffic thresholds. Additionally, the first row and the second row of Fig.  4.35 show that the
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Figure 4.35. Nominal Environmental Uncertainty with Traffic Temperature,
Minimum Distance Between Vehicles, Number of Near Miss, and Vehicle Count
Evolution (There is no near-miss event in these simulations.)
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temperature tends to be higher if the minimum distance between vehicles is lower because

the temperature indicates the level of confidence of how severe the air traffic condition is.

Two factors can also influence temperature evolution. The state estimation error is the

first factor and can reduce the temperature peaks. If the state estimation errors are not on

the principal axes of the traffic safety severity function, the state estimation errors reduce the

temperature peak value. If the state estimation errors are on the principal axes, it is more

likely that vehicles are closer than the distance based on the estimated locations. Hence,

the temperature increases. The second factor is the number of vehicles pairs that are too

close to each other. Since the minimum vehicle distance metric can only show the worst

case, it cannot identify how many other vehicle pairs might have a slightly longer distance

than the minimum vehicle distance. If the relative distances between other vehicle pairs are

also short, the temperature peaks are much higher. For example, the temperature from the

high-traffic scenario hovers around 13 from 230 to 320 seconds. During the same period, the

minimum vehicle distance stays below 500 meters. During this period, many vehicles are

close to each other. Whenever a pair of air vehicles start to separate, the other vehicle pairs

can keep converging. Hence, the minimum vehicle distance keeps below 500 meters during

this period. And the temperature responds to this scenario and keeps the value above 13.

The first and third rows in Fig.  4.35 demonstrate that the temperature metric can sum-

marize air traffic condition even if there is no near-miss event. The ATA can easily set an

upper bound to identify if the airspace is unsafe for new vehicles to join in. For example,

the temperature of 11 can be a satisfying threshold. Then, the airspace with the low traffic

throughput is under unsafe state from 440 to 460 seconds. And, from the minimum dis-

tance graph, some vehicles are too close to each other and activate the collision avoidance

algorithm. Similarly, the airspace with the high traffic throughput is unsafe from 120 to 380

seconds. During the same period, the minimum distance between vehicles is lower than 700

meters.

Figure  4.36 shows the same plots with the higher environmental uncertainty condition.

The relationships between the temperature, the minimum vehicle distance, the number of

near-miss events, and the vehicle count are the same. However, the traffic temperature
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under the high uncertainty scenario (Fig.  4.36 ) is slightly lower than the temperature in the

Nominal uncertainty scenario (Fig.  4.35 ).

This phenomenon happens because the uncertainty increases on all dimensions of the

state vector. For example, the temperature is stable with the low traffic throughput scenario

from 80 to 320 seconds. During this period, the air vehicles are far away. Then, only

the uncertainty on the velocity dimensions can influence the temperature and traffic safety

severity function. Since the true vehicle states are stochastic variables, vehicles can have

the same velocity values and at different locations. The temperature metric considers that

these cases dilute the level of confidence of the traffic safety severity assessment and produce

a lower temperature value. However, when the near-miss event is about happening, the

uncertainty on the location dimensions can also influence the temperature and traffic safety

severity function. Hence, the temperature peaks are similar between the nominal and high

uncertainty scenarios.

If an authority needs to monitor the traffic conditions of several traffic sectors, the traffic

temperature metric can identify the traffic condition and help the authority make decisions.

A traffic sector is too unsafe if the temperature is too hot, Instead of checking the vehicle

states from each airspace sector, the temperature metric should help the authority quickly

compare the traffic conditions between different sectors in real-time.

Vehicle-Level Analysis — Airspace Structure Design Assessment

The traffic temperature can assess the level of confidence of how severe the traffic con-

dition is. It can also evaluate the confidence level of how severe the vehicle condition

is. Hence, a heat map based on the locations and temperature of UAM vehicles in the

airspace can visualize the geographical distribution of the vehicle temperature. The heat

map generation procedure is as follows.

1. Discretize the airspace

2. Calculate the vehicle temperature and record the location of the vehicle

3. Use the vehicle locations and temperature to calculate the temperature of each cell
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Figure 4.36. High Environmental Uncertainty with Traffic Temperature,
Minimum Distance Between Vehicles, Number of Near Miss, and Vehicle Count
evolution
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4. Go through each time step through the simulation to identify the average temperature

of each airspace

Figure  4.37 shows the heat maps of the Chicago Downtown. The first column and the

second column show the nominal and high environmental uncertainty conditions, respec-

tively. The rows from top to down show the scenarios with the Low, the Mid, and the High

traffic throughput. The areas surrounded by the dashed line show the higher temperature

regions. The lines in Fig.  4.37 represent the flight trajectories of the air vehicles by compar-

ing the figure with Figs.  4.30 ,  4.31 , and  4.32 . The hotter routes indicate that the ATA has

higher confidence that the vehicles on the hotter routes are under unsafe condition. In other

words, these routes are the unsafe areas in the Chicago downtown airspace. Additionally,

the airspace around the vertiport on the right-hand side of the study region in Fig.  4.27 has

hotter temperatures during the High traffic conditions. Without a proper take-off or land-

ing procedure of the vertiport, high throughput traffic makes airspace around the vertiport

unsafe.

The areas surrounded by the dashed lines represent the higher temperature and unsafe

areas. For the Mid traffic throughput scenarios, the upper right and left bottom regions

are the high-temperature regions. These regions are due to the high amount of traffic flying

in both directions. Air Vehicles in these regions may be in dangerous situations if the

onboard flight controllers cannot maintain the required navigational accuracy. Or, a strategic

deconflict mechanism can reduce the temperature in this area.

For the High traffic throughput scenarios under the Nominal uncertainty setting, the area

on the middle right of the map shows a high temperature region. The high traffic throughput

and the complicated airspace structure result in a higher chance of the near-miss event.

Furthermore, the upper left and bottom left regions also have a higher temperature due to

the crossing traffic. Although no near-miss event happened in the Nominal environmental

uncertainty scenario, the temperature metric can still identify the dangerous areas and helps

the airspace designer improve airspace safety.

For the scenarios with a High Uncertainty setting, the heat maps are similar to the High

Uncertainty setting results. The hot spots from the Nominal uncertainty region are still hot
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Figure 4.37. Heat Map of Chicago Downtown (The dashed areas indicate
high temperature region. The dotted areas show the higher uncertainty region
with low temperature.)
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spots in the High Uncertainty region. This phenomenon shows that the traffic patterns induce

these hot spots. However, the High uncertainty conditions can affect the peak temperature

values. Since the heat map depends on the vehicle statuses at each location, the high

uncertainty condition induces an instance that might be more dangerous or safe than the

Nominal uncertainty condition. Although this study shows one instance of the simulation

results, researchers can conduct the Monte Carlo simulation to smooth out the statistical

fluctuation and identify the hot spots in the airspace.

4.4.3 Temperature Responds to ATA Traffic Management Mechanism

This study focuses on how the temperature metric responds to the different ATA traffic

management mechanisms. The ATA traffic management mechanisms are the VTBF adjust-

ment mechanism and the Minimum Separation adjustment mechanism. The results show

how the two mechanisms affect the temperature evolution, the number of near-miss events,

and the minimum distance between vehicles. The results also reveal how effective the two

mechanisms are.

Airspace-Level Analysis — Real-Time Airspace Monitoring

Figure  4.38 shows the results with the high environmental uncertainty and the active

VTBF adjustment mechanism. Figure  4.38 has minor differences from Fig.  4.36 , which is

the baseline. The main difference is from 280 seconds to 340 seconds of the high traffic

throughput scenario. The temperature peak values from the scenario with the active VTBF

adjustment mechanism are slightly lower than the scenario without the VTBF adjustment

mechanism. The decrements of the temperature peak values are due to the increments of the

minimum vehicle distance. And, there is one less near-miss event. In summary, the VTBF

adjustment mechanism has a minor impact on temperature evolution. But, the mechanism

can improve airspace safety by resolving a few potential near-miss events.

Figure  4.39 shows the metric evolutions from the scenario with the Nominal environmen-

tal uncertainty and the active Minimum Separation adjustment mechanism. The tempera-

ture values from Fig.  4.39 are lower than the baseline case in Fig.  4.35 . The low temperature
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Figure 4.38. High Environmental Uncertainty and Active VTBF Adjustment
Mechanism with Traffic Temperature, Minimum Distance Between Vehicles,
Number of Near Miss, and Vehicle Count evolution
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is due to the increasing minimum vehicle distance and slower vehicle speeds. The minimum

vehicle distance plots show that the case with the active Minimum Separation adjustment

mechanism can effectively increase the minimum vehicle distance. Additionally, the temper-

ature of the high traffic throughput scenario from 200 to 380 seconds is much lower from the

scenario with the active mechanism than the inactive mechanism. This phenomenon shows

that the Minimum Separation adjustment mechanism can also increase the relative distance

of other vehicles.

The temperature evolution from the mid and high traffic throughput scenarios can be

lower than the low traffic throughput scenario. For example, the temperature from 400 to

440 seconds from the Mid and High traffic scenario is lower. During the same period, the

minimum vehicle distances of the two cases increase from 200 to 800 meters. The minimum

vehicle distance plots show that some vehicles during this period execute collision avoidance

maneuvers. The collision avoidance maneuvers can increase the vehicle state estimation

uncertainty and slow down the air vehicles. Section  4.2.2 shows that the impacts of the state

estimation uncertainty on the temperature are minor. The temperature decrements are due

to the slow vehicle speed. Because the traffic safety severity function includes the kinetic

energy, the slow vehicle speed reduces the safety severity level and the temperature.

Figure  4.39 also shows that the peak of the vehicle count from the high traffic throughput

scenario is higher than the baseline scenario from Fig.  4.35 . Due to the aggressive collision

avoidance maneuvers, the vehicles have to detour from their original courses, slows down,

and increase the traveling time. Hence, the Minimum Separation mechanism can increase a

higher density of air vehicles than the scenario without the traffic management mechanism.

Vehicle-Level Analysis — Airspace Structure Design Assessment

The vehicle-level analysis can show the effectiveness of the traffic management mech-

anisms in the different areas in the airspace. Figure  4.40 compares the results with and

without the VTBF adjustment mechanism. The traffic throughput increases from the top

row to the bottom row. The left column shows the simulation without the VTBF adjustment

mechanism, while the right column presents the results with the active mechanism.
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Figure 4.39. Nominal Environmental Uncertainty and Active Minimum Sep-
aration Adjustment Mechanism with Traffic Temperature, Minimum Distance
Between Vehicles, Number of Near Miss, and Vehicle Count evolution
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Figure 4.40. Heat Map of Chicago Downtown with High Environmental Un-
certainty Setting (The right column shows the results with the active VTBF
adjustment mechanism, while the left column shows the results with no mech-
anism.)
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The results show that the difference between the heap maps with and without the VTBF

adjustment mechanism is insignificant. The VTBF adjustment mechanism supposes to help

the vehicle state estimation. However, the heat map shows that the temperature distri-

butions through the airspace are almost identical with and without the VTBF adjustment

mechanism. The results are consistent with the previous studies that the effectiveness of the

VTBF adjustment is insignificant.

Figure  4.41 shows the results with and without the Minimum Separation adjustment

mechanism. The left column shows the results without the mechanism, while the right

column presents the results with the active Minimum Separation adjustment mechanism.

The heat maps show that the Minimum Separation adjustment mechanism can result in

more chaotic collision avoidance trajectories. The heat maps with the minimum separation

adjustment mechanism reveal that the trajectories spread out in the airspace due to vehicles’

collision avoidance maneuvers. Additionally, the vehicle temperature is lower when the

trajectories curve away from their original courses. Since the safety severity includes the

kinetic energy, the collision avoidance maneuvers slow down the vehicles and reduce the

temperature on the collision avoidance trajectories.

Even though the minimum separation adjustment mechanism can reduce the tempera-

ture, the heap maps still show a few hot spots from the High traffic throughput scenario.

The hot spots happen around the center-right edge of the study region. Because there is an

aerodrome outside of the center-right edge (Fig.  4.27 ), the high-density traffic increases the

chance of the near-miss with the new air vehicles even with the active Minimum Separation

adjustment mechanism. The results echo with previous studies that a good landing and

take-off procedure is necessary around the aerodrome.

4.4.4 Temperature Responds to Airspace Structure

This study investigates how the temperature metric responds to the different airspace

structures. The temperature metric can help airspace structure designers identifies hot spots

and cold regions from an airspace structure. This study uses heat maps to visualize the safety

level of the airspace structure under different environmental uncertainty scenarios.
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Figure 4.41. Heat Map of Chicago Downtown with Nominal Uncertainty
Setting. (The right column shows the results with the active Minimum Sep-
aration adjustment mechanism, while the left column shows the results with
no mechanism.)
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This study aims to demonstrate how to use the temperature metric to identify unsafe

conditions of an airspace structure. The goal is not to distinguish which airspace struc-

tures are the safest for the Chicago Downtown airspace. If an airspace structure designer

proposes an optimal airspace structure for Chicago airspace, the airspace structure designer

can use the temperature metric to assess the airspace safety levels under different air traffic

throughput and environmental uncertainty scenarios. Furthermore, if researchers can well

model the vehicle collision avoidance maneuvers, the temperature metric can also reveal how

the collision avoidance maneuvers influence the ATA’s vehicle state estimation accuracy and

how likely the collision avoidance maneuvers induce other unsafe conditions.

Vehicle-Level Analysis — Airspace Structure Design Assessment

Figure  4.42 shows the heat maps of the simulation results with different airspace structure

settings and environmental uncertainty settings. The left column shows the results with

the nominal uncertainty setting, while the right column shows the results with the high

uncertainty scenario. The top row presents the baseline airspace structure with the baseline

separation between the traffic, while the bottom row shows the loos airspace structure with

the 800 meters separation distance between the traffic. Last, the areas circled by dashed

lines represent the high-temperature regions.

In the scenarios with the baseline separation distances, there are several hot spots on each

stream of the traffic. The hot spots indicate where the air vehicles are too close due to either

the head-on or crossing traffic. Additionally, the area around the center-right edge of the

map has a broad high-temperature region. The high temperature is due to the converging

traffic to the aerodrome, which is just outside of the study area. When vehicles approach

the aerodrome, the relative distances between the traffic streams are shorter and shorter.

Additionally, an inbound traffic stream may need to cross several outbound traffic streams

for leaving the aerodrome. These two phenomena increase the likelihood of the near-miss

event and endanger airspace safety.

The number of hot spots from the scenarios with the loos airspace structure reduces. For

example, there is a hot spot due to the crossing traffic in the top-left corner of the baseline
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Figure 4.42. Heat Map of Chicago Downtown with different Airspace Struc-
tures (The right column shows the results with the Nominal Uncertainty Set-
ting, while the left column shows the results with the High Uncertainty Set-
ting.)

airspace structure scenario. The same area has a lower temperature in the loose airspace

structure scenario. The widely spread traffic from the loose airspace structure increases the

relative distance between vehicles and airspace safety. However, there is still a few very

hot spots from the loose traffic structure scenario. A strategical separation mechanism is

necessary for completely removing these hot spots.

The area around the center-right edge is still a high-temperature region from both sce-

narios. Although the exact locations of the hot spots are different from both cases, the loose
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traffic structure still cannot effectively mitigated the traffic safety severity. The converging

traffic to the aerodrome requires better take-off or landing procedures to regulate the traffic

and increase airspace safety.

The impact of the environmental uncertainty on the heat maps is not significant. Fig-

ure  4.42 shows that the hot spots from the Nominal uncertainty scenario are at similar loca-

tions as the ones from the High uncertainty scenario. But, the temperature at the hot spots

might be higher or lower. Since the vehicle temperature depends on the locations of other

vehicles at the same time step, the environmental perturbations can shift vehicle locations,

influence the accuracy of vehicle state estimations, and affect the temperature values. The

traffic pattern determines approximately where two vehicles can get too close to each other,

while the environmental perturbation influences the exact relative distance between two ve-

hicles, the vehicle state estimation accuracy, and the temperature value. Running multiple

simulations with the same settings can mitigate this type of statistical fluctuation.

Figure  4.43 shows the heat maps of the scenarios with the baseline airspace structure

and the tight airspace structure. The top row shows the results from the baseline airspace

structure, while the bottom row shows the results from the tight airspace structure with 100

meters traffic separation distance.

The tight airspace structure should make vehicles have a higher chance to fly by from

each other in a shorter relative distance. Figure  4.43 reveals that more hot spots are from

the tight airspace structure than the baseline airspace structure scenarios with the same

environmental uncertainty setting. The higher number of hot spots indicates that vehicles

are too close to each other at different locations on the map. Additionally, most of the hot

spots from the tight airspace structure have higher temperature values than the same hot

spots from the baseline airspace structure scenario. This phenomenon confirms that the

tight airspace structure is more dangerous than the baseline airspace structure because the

tight airspace structure induces hotter and more hot posts in the airspace.

Some hot spots from the tight structure are at the crossing of air traffic streams (Fig.  4.43 ).

The tight airspace structure increases the traffic safety severity on the traffic streams with

lots of bi-directional traffic. Also, the tight airspace structure can increase the temperature

at the crossing of the traffic streams. One possible explanation is that the vehicles do not
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Figure 4.43. Heat Map of Chicago Downtown with different Airspace Struc-
tures (The right column shows the results with the Nominal Uncertainty Set-
ting, while the left column shows the results with the High Uncertainty Set-
ting.)
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have enough room to clear airspace for the crossing traffic. Whenever one vehicle executes

any collision avoidance maneuvers, it interferes with the nearby vehicles due to the tight

traffic separation distance. Hence, the temperature at hot spots around the crossings of

traffic streams can be higher than the baseline structure scenario.

The impacts from the environmental uncertainty are the same on the tight airspace

structure. The hot spots from the Nominal uncertainty scenario are very likely to happen

from the High uncertainty scenario. And, the temperature of the hot spots might be different

from one scenario to the other. Since the heat maps from Fig.  4.43 just shows one simulation

results from one combination of the setting, it is hard to distinguish the hot spots are a special

case or are the properties of the airspace structure. Hence, using the Monte Carlo Simulation

can smooth the statistical fluctuation and reveal the real properties of the structure.

This study reveals that the loose airspace can induce fewer hot spots in the airspace than

other airspace structures. But, air vehicles need to cross more traffic streams to reach their

destinations. The crossings of the traffic streams result in hot spots in the airspace and reduce

airspace safety. Hence, a strategical deconfliction mechanism can help the loose airspace

structure reduce the vehicle temperature from the crossing traffic conditions and improve

airspace safety. Finally, the heat map shows that the tight airspace structure increases the

number of hot spots and the hot spot temperature. A sufficient separation distance between

the traffic is still necessary.
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5. CONCLUSION

This dissertation developed, demonstrated, and evaluated the traffic temperature and the

traffic entropy as means for quantifying the air traffic safety levels. The metrics leverage the

information from the state probability density functions, which consider the state uncertainty

level, rather than estimate of the exact vehicle state. This approach is applicable to either

piloted or autonomous vehicles if the vehicle state prediction/estimation algorithms can

be applied to both types of vehicles. This study uses the Kalman filter to illustrate how

an Air Traffic Authority (ATA) can track the evolution of the state probability density

function. Three increasingly complex simulation scenarios are established for investigating

the properties of the proposed metrics and demonstrating the potential use-cases. The latter

of the scenarios uses data and constraints from a downtown Chicago simulation for UAM

operations.

5.1 Properties of Traffic Temperature & Traffic Entropy

The traffic entropy quantifies the uncertainty level of the vehicle state probability func-

tion. In the two-vehicle simulation setup, the results show that the traffic entropy can reveal

when air vehicles enter a region with high wind perturbations, degraded GPS signals, and

a lower message receiving probability. However, the traffic entropy is not suitable for quan-

tifying the traffic conditions with different numbers of air vehicles in the airspace because

the traffic entropy increases with traffic throughputs. The traffic entropy equals the sum-

mation of the information entropy of the state probability function and a constant. Because

the traffic entropy is directly related to information entropy, an ATA can use the traffic

entropy to develop mechanisms for the regulation of airspace traffic. The Vehicle Teleme-

try Broadcast Frequency (VTBF) adjustment mechanism uses information entropy to assess

communication capacity for lowering traffic estimation uncertainty. Although the VTBF ad-

justment mechanism only reduces 1% of the near-miss rate, it demonstrates the possibilities

of developing algorithms based on statistical entropy or information entropy.

The traffic temperature quantifies the level of confidence of how severely air vehicles

violate given airspace regulations. Additionally, the traffic temperature is independent of the
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number of air vehicles in the airspace. Hence, the traffic temperature can represent the level

of confidence of the airspace safety severity. The two-vehicle simulation setup demonstrates

that the temperature-based near-miss event trigger is as effective as the CPA-based near-

miss event trigger. The multi-vehicle simulation setup shows that the traffic temperature

represents the safety severity levels of the structure traffic pattern and the random traffic

pattern. The interesting results show that the traffic temperature from the scenarios with

the structure traffic pattern is higher than the scenarios with the random traffic pattern. As

the number of air vehicles in the same corridor increases, the relative distance between the

air vehicles decreases and results in unsafe conditions. Finally, the multi-vehicle simulation

also reveals that the minimum vehicle distance and the traffic temperature have a negative

correlation. The negative correlation indicates that the temperature increases as the safety

level, based on the minimum vehicle distance, decreases.

The Chicago Downtown airspace simulation setup demonstrates the potential applica-

tions of the traffic temperature. Even if the number of air vehicles in the airspace keeps

changing, the traffic temperature can represent the relative airspace safety severity level

through the simulations and between the scenarios with different air traffic throughput. The

simulation results show that the traffic temperature is associated with the minimum distance

between air vehicles and with the number of near-miss events. The traffic temperature at the

vehicle level can show the safety level of the airspace structure. The demonstrated results

reveal the hot spots of the Chicago downtown airspace based on the scenarios with different

amounts of air traffic. The airspace decision-makers can leverage this information to identify

the strategies of managing the air traffic around the hot spots for enhancing airspace safety.

5.2 Potential Application of Metrics

There are two use cases for the traffic temperature metric. The “Real-time airspace

monitoring for multiple airspace sectors” can help the ATA monitor the airspace safety level

and the air traffic state estimation accuracy in real-time. If the traffic temperature is out

of a reasonable range, the ATA should respond to resolve any contingent event. Secondly,

the “Airspace Structure Assessment” shows how to assess different designs of routes or in-
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frastructure even if the contingent events rarely happen. The decision-makers can use the

traffic temperature to identify the dangerous points in the airspace system. The following

sections include detailed discussions about the two potential applications based on the traffic

temperature.

5.2.1 Real-Time Airspace Monitoring for Multiple Airspace Sectors

This dissertation reveals that the temperature metric can represent the level of confidence

of how severe the traffic condition is. Ch.  4.2 shows that, with measurement noise, the

temperature metric is associated with the near-miss event between two vehicles based on

the given traffic safety severity function. By using the probability function of the predicted

vehicle state, the temperature metric can even reach a similar near-miss prediction accuracy

as the CPA. Furthermore, Ch.  4.3 discusses that the traffic temperature relates to the near-

miss event and the minimum vehicle distance under different airspace structures. The results

show that the traffic temperature can be a good metric for summarizing the air traffic states.

Chapter  4.4 constructs scenarios similar to real-world conditions with different environ-

mental uncertainty settings. The results show that the airspace traffic temperature can

summarize air traffic safety levels based on given airspace regulations. The traffic tempera-

ture rises when vehicles are too close to each other. And the traffic temperature lowers down

when the traffic safety level increases. Hence, the results demonstrate that the ATA should

confine the temperature within a reasonable range. A high-temperature condition indicates

that the airspace is likely to encounter contingent events, while the low temperature means

that the airspace many operate with high effectiveness.

A higher-level airspace control authority might need to monitor the conditions of multiple

airspace sectors. Then, real-time traffic temperature monitoring can help the authority

identify and compare the traffic conditions between airspace sectors. For example, if the

temperature in an airspace sector increases, the authority can limit entries of new vehicles

to the airspace sector by deferring take-off of vehicles in the airspace sector and diverting

air traffic to low-temperature sectors. The authority can also develop mechanisms based on

the traffic temperature for (1) triggering warning signals to the authority, (2) resolving any
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unsafe events, and (3) adjusting the airspace operational regulations for ensuring airspace

safety.

5.2.2 Airspace Structure Assessment

An airspace structure designer needs some metrics for assessing the safety level of the

airspace structure design, which includes the corridor structure designs, the airspace op-

erational regulations, the ATA traffic management mechanisms, etc. The metric should

summarize the overall air traffic safety level. The minimum vehicle distance is not an opti-

mal metric because it only focuses on the worst-case and ignores the number of vehicle pairs

under dangerous conditions. Additionally, the number of near-miss events is not ideal be-

cause it is hard to assess different airspace structure design when the near-miss event rarely

occurs. Finally, for the urban air vehicle operations, the airspace designer has to consider the

impacts of environmental perturbations on the vehicle navigation accuracy. In conclusion,

the traffic temperature can be a good candidate for airspace structure designers to assess

the safety levels of their designs.

Chapter  4.4 introduces the heat map based on the vehicle-level traffic temperature. The

traffic temperature is a metric that converts a probability distribution of a state of an aerial

vehicle to a positive number. Hence, calculating the traffic temperature of a single air

vehicle is also doable. Discretizing airspace into cells is the first step to generating a heat

map. Then, the next step is calculating the average temperature of each cell according to the

vehicle locations and the vehicle temperature. The geographical temperature distribution

can reveal the safety severity level in the airspace and the regions with higher environmental

uncertainty.

Chapter  4.4 also demonstrates how the heat map can reveal the critical spots with a given

airspace structure, a pre-set environmental uncertainty setting, and given ATA traffic man-

agement mechanisms. Although the simulation result may not have any contingent event,

the heat map can still highlight the unsafe areas. The hot spots highlight regions where an

airspace designer should focus. For example, Ch.  4.4 demonstrates that the area around the

aerodrome is the hot region regardless of the airspace structure and ATA traffic manage-
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ment mechanism. Hence, the airspace designer should develop mechanisms and regulations

for managing air traffic. The simulation results also reveal that the loose airspace structure

can increase the relative distance between vehicles in the same traffic stream. However, it

cannot resolve the locations with many crossing traffic streams. The strategical deconfliction

mechanism is still necessary for resolving the situation.

The vehicle-level traffic temperature can continuously identify the level of confidence of

how severe the vehicle state is. Even if the unsafe event rarely occurs in the simulation, the

airspace structure designer can still assess the safety severity levels of the airspace structure

with the temperature metric. The heat map can visualize the geographical distribution of

the temperature and help the airspace structure designer identify the hot spots and enhance

airspace safety.

5.3 Future Work

The proposed metrics quantify the safety level of a traffic state distribution function.

They can also evaluate the heterogeneous traffic containing vehicles with various autonomous

levels and flying capabilities, as long as the vehicle state estimation/prediction algorithms

can handle the heterogeneity. It is worth further exploring the properties of the metrics in

the following two future research directions.

5.3.1 Predicting Airspace Condition

Predicting airspace conditions is essential for managing air traffic. There are two possi-

ble approaches for estimating the future airspace states with the developed metrics. Since

the developed metrics can quantify the traffic safety level according to a given traffic state

distribution, the metrics can analyze the predicted traffic state distributions. For example,

Kalman filter algorithms and deep learning techniques can predict the traffic state distri-

butions. Then, the proposed metrics can summarize the information from the distribution

functions and help ATA assess airspace conditions.

The second approach is analyzing the dynamics of the proposed metrics based on real-

time traffic state estimations. Some machine learning (ML) techniques can learn complex
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dynamics from historical data. Hence, the ML techniques can learn from the dynamics of

the past temperature evolution. Then, the ATA can predict the future temperature with the

trained ML model.

Both approaches can assess the future values of the proposed metrics. These values can

predict airspace safety levels and help ATA manage air traffic. However, it is unclear about

the strength and weaknesses of both approaches. The first approach relies on a good traffic

state prediction algorithm, which is a challenging research problem. The second approach

depends on the ML model for learning the complex dynamics of the temperature evolution.

Since the proposed metrics map complex airspace operations to a few values, it is unknown

if any ML model can perform well for predicting the metrics.

5.3.2 Scaling for Very High Density Vehicle Operations

This dissertation applied the proposed metrics to various traffic density conditions. How-

ever, it had not pushed the metrics to extreme conditions, like a very high-density traffic

scenario. Because traffic entropy and traffic safety severity depend on the number of vehi-

cles, their values can be large and hard to understand. However, the traffic temperature

is independent of the number of air vehicles. The traffic temperature can still present the

traffic safety level for extremely high-density traffic scenarios. However, its properties may

change based on the number of air vehicles. The traffic temperature should increase with the

fraction of vehicle pairs under dangerous conditions. If there is a pair of air vehicles under

unsafe situations in high-density traffic, the change of the traffic temperature may be smaller

than low-density traffic. The small temperature change may decrease the sensitivity of iden-

tifying dangerous traffic conditions. However, further research is necessary for quantifying

the impacts of traffic density on traffic temperature evolution.
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