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ABSTRACT

In this thesis, we proposed a deep learning based emotion recognition system in order

to improve the successive classification rate. We first use transfer learning to extract visual

features and use Mel frequency Cepstral Coefficients(MFCC) to extract audio features, and

then apply the recurrent neural networks(RNN) with attention mechanism to process the

sequential inputs. After that, the outputs of both channels are fused into a concatenate layer,

which is processed using batch normalization, to reduce internal covariate shift. Finally, the

classification result is obtained by the softmax layer. From our experiments, the video and

audio subsystem achieve 78% and 77% respectively, and the feature fusion system with

video and audio achieves 92% accuracy based on the RAVDESS dataset for eight emotion

classes. Our proposed feature fusion system outperforms conventional methods in terms of

classification prediction.
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1. INTRODUCTION

1.1 Literature Review

Today, due to rapid development of artificial intelligence, emotion recognition systems

are widely used in mobile applications, human-computer interaction, criminal investigation,

mental health disease diagnosis, and interactive gaming. At present, the accuracy of emotion

recognition has already exceeded that of thorugh human beings.

There are several approaches to recognize emotions. Emotion recognition using speech

can be found in [ 1 ][ 2 ][ 3 ][ 4 ][ 5 ]. Emotion recognition using facial images is reported in [  6 ][ 7 ] .

Emotion recognition using physiological information like electroencephalogram (EEG) from

brain signals can be found in [ 8 ]. For further improvement of prediction accuracy of the

emotions, a multi-modal method, where emotion expressions are combined with voice and

visual data, is proposed to achieve more efficient and accurate classification accuracy[ 9 ][ 10 ].

1.2 Motivation

Studies on facial expression recognition (FER) and speech emotion recognition have been

done independently over the years. It is known that using, a single modality such as speech

or facial expression may not correctly detect emotions in some scenarios. Therefore, a multi-

modal emotion recognition system using a feature fusion method can be applied and further

investigated. Attention mechanism has been successfully and widely used in neural language

process[ 11 ] and computer vision[ 12 ]. Similarly, for the video and audio data, we can apply

a recurrent neural network (RNN) to process the sequential information at each time step,

and then use the attention model to assign different weights to obtain the weighted average

as the input of RNN to improve classification rate of the emotions.

1.3 Thesis Scope

In this study, we investigate the recent trend of deep learning techniques, including

transfer learning, batch normalization, optimization algorithms, and popular neural network

structures. We design a video subsystem and an audio subsystem for single modality emotion

10



recognition. Next, we adopt a feature fusion using the video and audio data to develop a new

multi-modal system to improve the emotion recognition accuracy. Finally, we compare the

performance of our developed systems with the systems from the other researchers’ methods

using the same dataset.

1.4 Contribution of Thesis

We used transfer learning for visual feature extraction and GRU, and developed the video

subsystem.

We used MFCC for audio feature extraction and GRU, and developed the audio subsys-

tem.

We applied concatenative feature fusion with video and audio subsystems, and developed

a multi-modal emotion recognition system.

We adopted attention mechanism with GRU in both subsystems to further improve the

emotion recognition accuracy.

1.5 Organization of Thesis

This thesis is organized into following.

Chapter 1 Introduction: this chapter conducts literature review and briefly introduces

the recent research and applications of emotion recognition.

Chapter 2 Background: this chapter reviews recurrent neural network, convolutional

neural network, transfer learning, MFCC, and attention mechanism. Then, the methods of

visual and audio feature extraction are developed.

Chapter 3 Methodology: In this chapter we describe details about thesis research, envi-

ronment setup.

Chapter 4 Evaluation and Result: this chapter discuss our proposed system performance

and accuracy, and compares with the other state-of-the-art methods.

Chapter 5 Conclusion and future work: we finally present the summary of this study and

recommendations for our future work.

11



2. BACKGROUND

2.1 Transfer Learning

2.1.1 Introduction of Transfer Learning

Transfer Learning is a popular method in deep learning. It is a process of transferring

the learned model parameters to a new model to solve another problem. For the tasks in

related fields, transfer learning allows sharing the learned model parameters to a new model

to speed up the learning efficiency of the model without learning from scratch [ 13 ]. As shown

in Figure  2.1 , we train the model from scratch for task 1, obtain a pre-trained model and

freeze the layers, then add trainable layers after the pre-trained model to train the new layers

for task 2.

Figure 2.1. Transfer learning

2.1.2 Neural Network Models

VGGNet

VGGNet is a popular method for transfer learning. VGG is a model proposed by K.

Simonyan and A. Zisserman from the University of Oxford[ 14 ]. VGG uses multiple con-

volutional layers with 3 × 3 convolution kernels instead of larger 7 × 7 kernels as used in

12



Table 2.1. VGGNet architecture
ConvNet ConFigureuration

A A-LRN B C D E
11 weight
layers

11 weight
layers

13 weight
layers

16 weight
layers

16 weight
layers

19 weight
layers

input(244× 244 RGB image)
conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64

LRN conv3-64 conv3-64 conv3-64 conv3-64
maxpool

conv3-128 conv3-128 conv3-128 conv3-128 conv3-128 conv3-128
conv3-128 conv3-128 conv3-128 conv3-128

maxpool
conv3-256 conv3-256 conv3-256 conv3-256 conv3-256 conv3-256
conv3-256 conv3-256 conv3-256 conv3-256 conv3-256 conv3-256

conv1-256 conv3-256 conv3-256
conv3-256

maxpool
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512

conv1-512 conv3-512 conv3-512
conv3-512

maxpool
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512

conv1-512 conv3-512 conv3-512
conv3-512

maxpool
FC-4096
FC-4096
FC-1000
soft-max

AlexNet[ 15 ], which reduces the parameters and increased the expressing ability of the net-

work. The architecture of VGG is shown in Table  2.1 .

2.2 Architecture of Multilayer Perceptron (MLP)

A multilayer perceptron introduces one or more hidden layers on the top of the single-

layer neural network. The hidden layer is located between the input layer and the output

13



layer[ 16 ]. Figure  2.2 shows a typical multi-layer perceptron (MLP) with an input layer, two

hidden layers, and an output layer.

Figure 2.2. Multi-layer perception with 2 hidden layers

2.2.1 Activation Function

The activation function is required in the multilayer perceptron neural network. Consider

a multi-layer perceptron neural network without activation. We denote input layer as Xi ,

hidden layer(s) as Hj, output layer as Yk, weights as W , and bias as b, respectively. The

hidden layer can be calculated as[ 16 ]:

H = XWj + bj (2.1)

The output layer can be calculated as:

Y = HWk + bk (2.2)

Y = (XWj + bj)Wk + bk = XWjWk + bjWk + bk (2.3)

14



As shown in Equation  2.3 , the neural network without an activation function is equal to

linear regression, adding more hidden layers does not make any difference. The following

common activation functions are used.

Sigmoid Function

Sigmoid Function is defined as[ 16 ]:

f(x) = sigmoid(x) = 1
1 + e−x (2.4)

Figure  2.3 shows the plot of the sigmoid function. The derivative of the sigmoid function is

Figure 2.3. Sigmoid function

given below:

f ′(x) = f(x)(1− f(x) (2.5)

Tanh Function

Tanh function is defined as[ 16 ]:

f(x) = tanh(x) = 2
1 + e−2x − 1 (2.6)

Tanh is plotted in Figure  2.4 , the derivative of the Tanh function is expressed in Equation

15



Figure 2.4. Tanh function

 2.4 :

f ′(x) = 1− f(x)2 (2.7)

Softmax Function

Softmax function is defined as[  16 ]:

f(x)i = exj∑K
j=1 exj

(2.8)

Rectified Linear Unit(ReLU)

The Rectified linear unit is shown in the Figure  2.5 and defined as[ 16 ]:

f(x) =


x if x < 0

0 if x ≥ 0
(2.9)

The derivative of the ReLU function is expressed as :

f ′(x) =


0 if x < 0

1 if x ≥ 0
(2.10)

16



Figure 2.5. ReLU

ReLU function has better efficiency and is less computationally expensive when comparing

with the sigmoid and tanh function.

2.3 Loss Function

To train the neural networks, loss function is used to estimate the inconsistency between

the prediction value and the ground truth value. The smaller the loss function, the better

performance of the model[ 17 ].

2.3.1 Cross Entropy

To calculate the error of the classification problem, we use the cross-entropy as our loss

function. For two discrete probability distributions p and q, the cross-entropy is defined as

follows[ 17 ]:

Cross Entropy Loss = −
C∑

i=1
yi · log(ŷi) (2.11)

The derivative of the cross-entropy loss function for the softmax function is shown below:

∂ξ

∂zi
= yi − ŷi (2.12)

17



where ξ denotes cross-entropy loss function, zi denotes softmax input, yi denotes ground

truth, ŷi denotes output probability, C denotes output size. Note that the softmax function

is described in Equation  2.8 .

2.4 Architecture of Convolutional Neural Networks(CNN)

2.4.1 Convolution Layer

Convolution Operation

For a 2 dimension signal I, convolution kernel K, convolution operation at (u, v) defined

in Equation  2.13 .

(I ∗K)(u, v) =
∑

i

∑
j
I(i, j) ·K(u− i, v − j) (2.13)

Figure 2.6. Convolution operation

Padding

For convolution operation, padding is usually added due to the fact that pixels on the

edge will never be located in the center of the convolution kernel after the input is processed

by the convolution operation, the part of the information will be lost. To extend the area of

a convolution neural network process, add padding pixels to the border to allow convolution

kernel scanning out of the original edge. The value of padding pixels is usually set to zero.

The padding operation example is shown in Figure  2.7 .

18



Figure 2.7. Padding

2.4.2 Activation Layer

Similar to the multi-layer perceptron, convolutional neural networks also need activa-

tion functions to introduce non-linear transformation. The common choices of activation

functions are sigmoid, tanh, ReLU, etc.

2.4.3 Pooling Layer

The pooling operation samples the features contained within a sub-region of the feature

map. The main purpose of the pooling layer is to reduce the dimensions of the feature map,

the number of parameters, and computation in the neural network. The common polling

methods include the maximum polling, average polling, and global polling, which will be

described below.

Max Pooling

Max pooling operation selects the maximum element in the specified filter. An example

of Max pooling operation with 2× 2 pool size and 2 strides is shown in Figure  2.8 .

19



Figure 2.8. Max-pooling

Average Pooling

Average pooling operation computes the average of all elements in the filter, An example

of Average pooling operation with 2× 2 pool size and 2 strides is shown in Figure  2.9 .

Figure 2.9. Average-pooling

Global Pooling

Global pooling operation does the pooling operation in the whole channels. It can be

either global max pooling or global average pooling, as shown in Figure  2.10 .

2.4.4 Fully-connected Layer

Similar to the multi-layer perception, fully-connected layers in the convolutional neural

networks have full connections to the previous activation layer for nonlinear mapping.
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Figure 2.10. Global Pooling

2.4.5 Architecture of Recurrent Neural Network(RNN)

Long Short-term Memory(LSTM)

Recurrent neural network(RNN) suffers from vanishing and exploding gradients. Long

short term memory network solves this problem by utilizing input gate it, forget gate ft,

output gate ot and memory cells c̃t. as defined in the Figure  2.11 and Equations  2.14 to  2.19 

[ 18 ]:

Figure 2.11. LSTM Architecture

ft = σg(Wfxt + Ufht−1 + bf ) (2.14)

it = σg(Wixt + Uiht−1 + bi) (2.15)
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ot = σg(Woxt + Uoht−1 + bo) (2.16)

ĉt = σc(Wcxt + Ucht−1 + bc) (2.17)

ct = ft ◦ ct−1 + it ◦ ĉt (2.18)

ht = ot ◦ σh(ct) (2.19)

Gate Recurrent Unit(GRU)

Gated recurrent unit (GRU) is a type of recurrent neural network (RNN) introduced in

[ 19 ]. A GRU operates using an update gate and reset gate. The update gate controls how

much past information pass to the next states while the reset gate controls how much past

information to forget. The difference between LSTM and GRU is that GRU uses hidden

state to the transfer function and does not have a cell state. The GRU only has two gates,

reset gate rt and update gate zt. The structure of GRU and operation equations are depicted

in the Figure  2.12 and Equations  2.20 to  2.23 [ 18 ]:

Figure 2.12. GRU architecture
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hj
t = (1− zj

t)� hj
t−1 + zj

t � ĥt
j (2.20)

zj
t = σ(Wzxt + Uzht−1)j (2.21)

ĥj
t = tanh(Wxt + U(rt � ht−1))j (2.22)

rj
t = σ(Wrxt + Urht−1)j (2.23)

Note that σ denotes the sigmoid function, xt denotes input vector, ht denotes output vector,

ĥt denotes candidate activation vector, W,U and b denotes parameter matrices and vector,

and � denotes the element-wise multiplication.

2.5 Audio/Speech Features of MFCC

In the speech processing area, the most commonly used voice feature is the Mel-scale

frequency cepstral coefficients(MFCC)[ 20 ]. In the research of human hearing mechanisms,

the human has different hearing sensitivity to different sound frequencies ranging from 200

Hz to 5000 Hz. The MFCC computation consists of the following steps:

2.5.1 Pre-emphasis

The first step of getting the MFCC feature is passing the voice signal via a high-pass

filter. Pre-emphasis is used to boost the high-frequency section of a signal and flatten the

frequency spectrum of the signal, it also increases the Signal-to-Noise Ratio (SNR). The

high-pass filter is defined as:

H(z) = 1− a× z−1 (2.24)

Note that the constant α denotes pre-emphasis coefficient.
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2.5.2 Frame Blocking

This step divides the audio signal into short frames with overlapping between adjacent

audio.

2.5.3 Windowing

To increase the continuity between each frame, adjacent audio frames are multiplied by

a Hamming window [ 21 ]. The Hamming window shown in Figure  2.13 is defined as:

Figure 2.13. Hamming Window

w(n) = 0.54− 0.46 cos(2π
n

N
), 0 ≤ n ≤ N. (2.25)

2.5.4 Fast Fourier Transform

Since the transformation of the signal in time domain is usually difficult to see the char-

acteristics of the signal, it is necessary to retrieve the energy distribution in the frequency

domain. The energy distributions can effectively represent the characteristics of voice fea-

tures.
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2.5.5 Triangular Bandpass Filters

The audio is passed through a set of triangular bandpass filters, which is a filter bank

with M filters, to get the log energy. Converting from frequency to Mel scale is defined as:

mel(f) = 2595× log10(1 + f

700) (2.26)

Figure  2.14 displays the frequency responses of the Mel filter bank.

Figure 2.14. Mel filter bank

2.5.6 Discrete Cosine Transform

MFCC takes the log energy into the discrete cosine transform to get the mel-scale cep-

strum of order L. The discrete cosine transform is defined as:

C(n) =
m=0∑
N−1

s(x) cos(πn(m− 0.5)
M

), n = 1, 2, ..., L (2.27)

2.6 Attention Mechanism

The attention mechanism in neural networks is similar to attention in humans. At

present, the attention mechanism has become one of the most widely used methods in the
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field of natural language processing, and computer vision, as examples in BERT[ 22 ], Trans-

former[ 23 ] etc. There are two types of attention: soft attention[  24 ] and hard attention[ 25 ].

2.6.1 Soft Attention

Soft attention is deterministic, given an input x, soft attention discredits irrelevant ar-

eas by multiplying a smaller attention score and high attention area multiplying a greater

attention score. To compute the attention score si for the input xi , we have:

si = tanh(Wcht−1 +Wxxi) (2.28)

We use softmax normalization to compute attention weight ai.

ai = softmax(si) = esi∑ esi
(2.29)

Then, the weighted average of xi is computed as.

Z =
∑

aixi (2.30)

2.6.2 Hard Attention

Hard attention only focuses on one region stochastically. For the given input xi, the hard

attention uses attention weight ai to stochastic sampling as follows:

Z ∼ xi, ai

2.7 Batch Normalization

During the deep neural network training stage, the process of changing the distribution

of internal nodes due to changes in the parameters of the network is called the internal

covariate shift. Internal covariate shift can cause the following problems:
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1. Upper layers network needs to constantly adjust to adapt to change of input data

disruption, resulting in decreased learning speed.

2. When using the saturated activation functions in neural networks, such as sigmoid and

tanh, it is easy for the model training to fall into the saturated regime. When this

happens, the gradient will become very small, which will slow down the convergence

speed. To solve those problems, we use batch normalization to fix the means and

variances of each layer’s input. The batch normalization is conducted using Equations

 2.31 to  2.34 . First, we calculate the mean and variance for the mini-batch B[ 26 ].

µB = 1
m

m∑
i=1

xi (2.31)

σ2
B = 1

m

m∑
i=1

(xi − µB)2 (2.32)

Then, we normalize xi:

x̂i = xi − µB√
σ2
B + ε

(2.33)

Finally, the output from the batch normalization is given by:

yi = γx̂i + β ≡ BNγ,β(xi) (2.34)

where m denotes the batch size, ε denotes a positive constant for numerical stability.

2.8 Dropout

In machine learning, if a large model is trained on relatively a small number of training

samples, the trained model is prone to be over-fitting. Over-fitting is specifically manifest

in the model which has a small error on the training data but the error on the test data is

relatively large[ 27 ].

Dropout is randomly ignoring a certain percentage of neurons during the training stage,

which makes the model more generalized and does not rely too much on some local fea-
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tures. Consider a neural network with L hidden layers l ∈ 1, ..., L, forward propagation with

dropout operation defined as Equation  2.35 to  2.38 . zl denote the input to layer l, yl denote

the output from the layer l, f denote the activation function. Figure  2.15 shows an example

of dropout operation in a 1 input layer, 2 hidden layers, 1 output layer neural network with

0.5 dropout probability.

(a) Neural network without dropout (b) Neural network with dropout

Figure 2.15. Dropout operation

r
(l)
j ∼ Bernouilli(p) (2.35)

ỹ(l) = r(l) ∗ y(l) (2.36)

z
(l+1)
i = w

(l+1)
i ỹl + b

(l+1)
i (2.37)

y
(l+1)
i = f(z(l+1)

i ) (2.38)
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2.9 Optimization Algorithm

2.9.1 Gradient Descent

Gradient descent is a first-order optimization for finding local minimum. Let f be a

continuously differentiable function, f ′ is the derivative of f , . Then, define a small constant

α > 0 as the learning rate [ 28 ].

f(x+ ε) ' f(x) + εf ′(x) (2.39)

replacing ε by the gradient of function f at x: f ′(x) leads to.

f(x− αf ′(x)) ' f(x)− αf ′(x)2 (2.40)

if f ′(x) 6= 0, ηf ′(x)2 > 0.

f(x)− αf ′(x) ≤ f(x) (2.41)

Then, use Equation  2.42 

x← f(x)− ηf ′(x) (2.42)

to iterate for finding the local minimum until the stop condition is reached. For a training

dataset with n samples, the gradient of the loss function denoted by f , that is the objective

function, can be calculated as:

∇f(x) = 1
n

n∑
i=1
∇fi(x) (2.43)

2.9.2 Stochastic Gradient Descent(SGD)

Different from gradient descent, stochastic gradient descent does not calculate gradient

for all training samples, stochastic gradient descent computes the gradient at a random
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point for each iteration to reduce the computational cost. The objective function J of the

stochastic gradient is calculated using Equation  2.44 [ 28 ]:

θ = θ − η · ∇θJ(θ;x(i); y(i)) (2.44)

where x denotes training example, y denotes label, θ denotes model’s parameter.

2.9.3 Adam

Adam is an first-order gradient-based optimization algorithm. It does an exponentially

weighted moving average of small batch stochastic gradients based on the RMSProp algo-

rithm[ 29 ]. Adam defined in Equations  2.46 to  2.50 , α denotes step size, β1, β2 ∈ [0, 1] is

exponential decay rates for the moment estimates. f denotes stochastic objective function.

Default setting: α = 0.001, β1 = 0.9, β2 = 0.999 ,β1β2 ∈ [0, 1), and ε = 10−8 is recommended.

gt ← ∇θft(θt−1) (2.45)

mt ← β1 · vt−1 + (1− β2) · gt (2.46)

vt ← β2 · vt−1 + (1− β2) · g2
t (2.47)

m̂t ← mt/(1− βt1) (2.48)

v̂t ← vt/(1− βt2) (2.49)

θt ← θt−1 − α · m̂t/(
√
v̂t + ε) (2.50)

The algorithm keeps iterating until the stop condition is reached[ 30 ].
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3. DEVELOPMENT OF VIDEO AUDIO BASED DEEP

LEARNING NEURAL NETWORKS

3.1 Experiment environment

Colaboratory known as ”Colab”, it was developed by Google Research team. Colab is

adopted for our research. Using Colab, user can edit and execute Python code, for ma-

chine learning projects, data analysis, and education purpose. Colab has hosted a Jupyter

notebook service that user can run their code without setting up the environment. Colab

also offers free Graphics processing units(GPU)[  31 ] and Tensor Processing Unit(TPU)[ 32 ]

computing resources.

3.2 Dataset

3.2.1 FER2013

The FER2013 dataset has approximately 30, 000, 48 × 48 pixel grayscale images of 7

types emotions: angry, disgust, fear, happy, sad, surprise and neutral[  33 ].

Figure 3.1. JAFFE example
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3.2.2 JAFFE

The JFAAE(Japanese Female facial expression) data set has 213 images from 10 Japanese

female subjects. Each person makes 7 expressions : sad, happy, angry, disgust, surprise, fear,

neutral[ 34 ].

Figure 3.2. FER2013 example

3.2.3 RAVDESS

The Ryerson Audio-Visual Database [ 35 ] of Emotional Speech and Song (RAVDESS),

which contains 7356 files, including audio and visual data from 24 actors consisting of 12

males and 12 females. Speech data contains eight emotions, that is, neutral, calm, happy,

sad, angry, fearful, disgust, and surprise whereas song data contains calm, happy, sad, angry,

and fearful emotions. We only used the speech-video data in this thesis, which comprises

1440 audio-visual files (96 files for neutral, 192 calm, 192 happy, 192 sad, 192 angry, 192

fearful, 192 disgust, and 192 surprise). Each audio-visual file has video recording format

with a scan resolution of 1920x1080 pixels at a frame rate of 30 frames per second (fps) and

speech recording format at a sampling rate of 48 kHz at 16-bit resolution[ 36 ].
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Figure 3.3. Example of RAVDESS data set

3.3 Training Process

The RAVDESS speech subset contains 1440 samples, we applied 10 fold cross-validation

to evaluate our methods.

3.3.1 Cross-validation

We can separate the data set by K folds. we use each subset of data as a validation

set, and use the remaining K − 1 subsets of data as the training set, K models will be

obtained as shown in Figure  3.4 . Average of K validation error is the cross-validation error.

Cross-validation effectively uses in the limited data and the evaluation result can be more

accurate.

3.4 Neural Network Implementation

3.4.1 Feature Fusion Model

The feature fusion model contains two subsystems: video and audio. The video subsystem

takes video as input, then perform face detection to video frames, and uses the pre-trained
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Figure 3.4. K-fold cross validation

VGG16 model to obtain features. Then we use gated recurrent unit(GRU) layer to combine

with attention mechanism. Similarly, the audio subsystem takes audio signal as input,

generates Mel frequency cepstral coefficients(MFCC) for audio features. The sequence of

MFCC features is fed to the GRU layer combining with attention mechanism. The video and

audio features from the fully connected layer of both subsystems are fused by concatenation

operation. Finally, using batch normalization and dropout layer, we get the classification

results by the softmax operation. The feature fusion model is shown in Figure  3.5 .

Figure 3.5. Feature Fusion model
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3.4.2 Video Subsystem

The video subsystem is shown in Figure  3.6 . For the pre-processing, the frame rate of the

input video clips was reduced from 30 FPS to 7.5 FPS. Then, A face detector was applied to

the video frames and resized to 48× 48× 3. The VGG16-GRU subsystem has a pre-trained

VGG16 model, one GRU layer followed by an attention layer, a fully connected layer, batch

normalization layer, and softmax layer. The VGG16 model was described in Table  2.1 . The

transfer learning model was pre-trained on the ImageNet [ 37 ] dataset. During the training

weights of all convolutional blocks in the VGG16 pre-trained model are frozen.

Figure 3.6. Video subsystem

3.4.3 Audio Subsystem

In the MFCC-GRU subsystem, the Mel frequency cepstral coefficients(MFCC) features

are extracted at the pre-processing stage of the audio signal shown in the Figure  3.7 . Thirteen

MFCC coefficients of speech signals are calculated. The length of each speech signal clip

is 4096. The details about obtaining MFCC features is described in Chapter2. We obtain

MFCC features of audio clips as input features, similar to our video subsystem, the audio

subsystem is cascaded with stacked GRU layers and attention layer, followed by a fully

connected layer, batch normalization layer, and softmax layer.
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Figure 3.7. Audio subsystem

3.5 Performance Evaluation

3.5.1 Accuracy

Accuracy is the most common evaluation index and it is defined as:

Accuracy = Number of correct prediction
Total number of samples (3.1)

Accuracy is a very intuitive evaluation index. However, in the situation of an unbalanced

data set. High accuracy does not mean high performance. For example, given a data set that

has n% positive samples and 1− n% negative samples, even the model predicts all samples

as positive, the final accuracy will be higher than n%. Therefore, using accuracy as the only

metric to evaluate a machine learning model is not sufficient.

3.5.2 Confusion Matrix

Each column of the confusion matrix represents the predicted category, while each row

represents the true category of the data. The sum of each row denotes the actual sample

size of the category, the sum of each column denotes the number of samples predicted to be

the category. Table  3.1 shows an example of confusion matrix.
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Table 3.1. Confusion matrix example
True

Category1 Category2 Category3

Predicted
Category1 - - -
Category2 - - -
Category3 - - -

37



4. Performance Evaluation and Comparison

4.1 Video Subsystem Result

We used the video subsystem alone to test the performance of our system. The result is

shown in Table  4.1 , which contains the test accuracy of different hyper-parameters: number of

stacked GRU layers, number of units in each GRU layer, the option for batch normalization,

and the option for attention mechanism for GRU [ 36 ].

Table 4.1. Video Subsystem Result
GRU layers GRU units Batch normalization Attention Test accuracy

1 256 Yes No 78%
3 256 Yes No 74%
1 512 No No 76%
1 512 Yes No 79%
3 512 No No 74%
3 512 Yes No 76%
1 1024 No No 77%
1 1024 Yes No 77%

(a) Previous video subsystem result confu-
sion matrix

(b) Video subsystem with attention result
confusion matrix

Figure 4.1. Video subsystem results comparison

From the experiments shown above, VGG16 with 1-layer 512 units GRU obtains 79%

accuracy, applying attention mechanism obtains 83% accuracy. The previous model confu-
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Table 4.2. Video subsystem with attention result(10-Fold CV)
Average Accuracy Best Accuracy Lowest Accuracy STD

78.19% 83.33% 73.61% 0.03

sion matrix is shown in the Figure  4.1a . The emotion ”claim” has the highest accuracy of

95%, ”fearful” has the lowest accuracy of 53%. There are 19% ”fearful” was classified to

disgust and 15% ”neutral” was classified to ”clam”. After applied attention mechanism the

confusion matrix is shown in the Figure  4.1b . The emotion ”claim” has the highest accuracy

of 93%, ”surprised” has the lowest accuracy of 70%.

4.2 Audio Subsystem Result

The results from the audio subsystem with out applying attention mechanism shown in

the Table  4.3 [ 36 ].

Table 4.3. Audio subsystem result
GRU layers GRU units Batch normalization Attention Test accuracy

1 256 No No 69%
1 256 Yes No 75%
3 256 No No 75%
3 256 Yes No 80%
3 512 No No 75%
1 512 Yes No 79%

Table 4.4. Audio subsystem result(10-Fold CV)
Average Accuracy Best Accuracy Lowest Accuracy STD

76.52% 81.25% 68.75% 0.04

From the experiments shown in Table  4.3 , applying MFCC features with 3-layers and 256

units GRU and batch normalization obtains 80% accuracy. In Table  4.4 , applying attention

mechanism on our model obtains 76% average accuracy, 81% best accuracy, and 69% lowest

accuracy and 0.04 standard deviation. The accuracy of emotions ”neutral”, ”happy”, ”sad”,

”fearful”, and ”disgust” are increased , while the accuracy of other emotions is decreased.
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(a) Previous audio subsystem result confu-
sion matrix

(b) Audio subsystem with attention result
confusion matrix

Figure 4.2. Audio subsystem results comparison

The final accuracy increases. From the confusion matrix shown in Figure  4.2b . The emotion

”fearful” has the highest accuracy of 90%, ”sad” has the lowest accuracy of 68%.

4.3 Feature Fusion System Result

The proposed feature fusion model is shown in Figure  3.5 , confusion matrix are shown in

Figures  4.3a and  4.3b . By using VGG16 attention GRU video subsystem, MFCC attention

GRU audio subsystem, and concatenative feature fusion, our proposed method achieves 92%

average accuracy, 94% best accuracy, 88% lowest accuracy, and 0.04 standard deviation of

10-fold cross-validation. The confusion matrices shown in Figure  4.3 demonstrate that in

our previous model emotion ”happy” achieves 100% accuracy, ”sad” has the lowest accuracy

of 74%. In the new model, emotion ”neutral”, ”happy”, and ”sad” achieve 100% prediction

accuracy, ”angry” has the lowest accuracy of 79%. The results show that the feature fusion

model significantly improves the accuracy compared with our subsystems. For the emotion

classes in which our subsystem did not perform well, the feature fusion system achieved a

better accuracy.

Table  4.6 summarizes our video subsystem, audio subsystem, and feature fusion system

results compared with other’s published methods, using human volunteers’ accuracy as a
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(a) Feature fusion system result confusion
matrix

(b) Feature fusion system with attention re-
sult confusion matrix

Figure 4.3. Feature fusion system results comparison

(a) Training and test accuracy (b) Training and test Loss

Figure 4.4. Feature Fusion Model Accuracy and Loss

baseline. Our video subsystem has the accuracy of 83% and including the human volunteers

achieve 72%, while our audio subsystem has the accuracy of 81%, human volunteers only

achieve 62%. Our video and audio feature fusion system obtain the highest accuracy of 91%.

Our model outperforms the other methods using both audio and video data proposed by

Ghaleb et al [ 38 ], Mustaqeem et al. [ 39 ], and Issa et al. [ 40 ]. Note that all the accuracy and

confusion matrix results shown above are the best accuracy of 10 fold cross-validation.

41



Table 4.5. Feature Fusion model result(10-Fold CV)
Average Accuracy Best Accuracy Lowest Accuracy STD

91.25% 94.44% 87.50% 0.02

Table 4.6. Comparison with other methods
Method Accuracy

Multi-modal and temporal perception(Audio & Video)[ 38 ] 68%
Incorporating learned features and deep BiLSTM(Audio & Video)[ 39 ] 77%

Deep convolutional neural networks(Audio)[ 40 ] 72%
Human volunteers(Audio)[ 35 ] 62%
Human volunteers(Video)[ 35 ] 72%

Human volunteers(Audio and Video)[ 35 ] 80%
Ours(Audio) 81%
Ours(Video) 83%

Ours(Audio & Video) 92%

4.4 Future Work

In the future, we can test our system on more datasets especially data in real-world

scenarios to validate the ability of generalization such as AFEW[ 41 ]. Furthermore, we will

be in cooperation with our research results with psychology professionals. Besides, we can

use vision transformer on the visual input, instead of applying face detection to video frames.

Also, the attention mechanism could be used to replace RNN to process sequential inputs.
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5. CONCLUSION

In this thesis, we have reviewed the machine learning concepts used in this thesis research.

We proposed a multi-modalities system using visual and audio data for emotion recogni-

tion.

We have developed a VGG16 transfer learning model to extract visual features and MFCC

for speech audio features.

Then, we applied GRU with attention mechanism to process sequential inputs from both

channels.

Moreover, we adopted concatenative feature fusion to fuse outputs from video and audio

channels.

Finally, we evaluate our system and compare the performance with others’ methods and

discuss our future work to improve the proposed system.
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