
GRAIN HARVEST LOGISTICS TRACKING TOOLS
by

Logan Heusinger

A Thesis

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Master of Science in Agricultural and Biological Engineering

School of Agricultural and Biological Engineering

West Lafayette, Indiana

December 2021

2

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF COMMITTEE APPROVAL

Dr. John Evans IV, Chair

School of Agricultural and Biological Engineering

Dr. John Lumkes

School of Agricultural and Biological Engineering

Dr. Dennis Buckmaster

School of Agricultural and Biological Engineering

Approved by:

Dr. Nathan S. Mosier

3

Dedicated to my wife

4

ACKNOWLEDGMENTS

To my peers and mentors, a large thank you for your constant support and help. Covid-19

has not made graduate school easy however, all of you have been a blessing. To Eric Kong thank

you for being a good peer. Dr. Evans I am supremely thankful for your patience and support

through the long process that has been my graduate school studies.

5

TABLE OF CONTENTS

LIST OF FIGURES .. 7

LIST OF TABLES .. 9

LIST OF EQUATIONS .. 11

LIST OF ABBREVIATIONS ... 12

 STATE ALGORITHM FOR GPS EVALUATION ... 13

1.1 Abstract .. 13

1.2 Introduction .. 13

1.3 Objectives ... 17

1.4 Methods and Materials ... 17

1.4.1 Data Collection ... 17

1.4.2 Data Processing ... 19

1.4.3 Algorithm Creation ... 25

1.5 Results .. 32

1.5.1 Parameter Tuning Results ... 32

1.5.2 Algorithm Validation Results ... 36

1.5.3 Overall Model Results .. 48

1.6 Conclusion .. 50

 LORA EVALUATION FOR LONG RANGE AND HIGH SPEED 52

2.1 Abstract .. 52

2.2 Introduction .. 52

2.2.1 Internet of Things Within Agriculture .. 54

2.2.2 Farm Management .. 58

2.2.3 The Case for the Use of IoT Within Cycle Management 59

2.3 Objectives ... 61

2.4 Methods and Materials ... 61

2.4.1 LoRa System ... 61

2.4.2 Data Processing Pipeline... 64

2.4.3 System Testing .. 65

2.5 Results .. 69

2.5.1 Range Testing ... 69

6

2.5.2 Secondary Range Testing ... 74

2.5.3 Speed Testing .. 84

2.6 Conclusion .. 88

BIBLIOGRAPHY ... 89

APPENDIX ... 92

7

LIST OF FIGURES

Figure 1.1: Columbus V990 Logger and Kvaser Memorator Pro 2x HS GPS Logger 18

Figure 1.2: GPS data pipeline of transformations ... 21

Figure 1.3: Maximum output of tuning conditions for all variables of state algorithm 30

Figure 1.4: Maximum Output vs Idle Threshold .. 31

Figure 1.5: Maximum Output vs Coordination Threshold ... 32

Figure 1.6: Field 70 combine working state and on the go in field paths 33

Figure 1.7: Field 70 unload on the go to stationary behavior ... 35

Figure 1.8: Map showing leading and lagging errors in field 70 .. 35

Figure 1.9: Field200 S660 harvester tracks .. 37

Figure 1.10: Field 200 S670 harvester path .. 38

Figure 1.11: Grain cart idle near combine .. 41

Figure 1.12: Field 58 S660 and S670 combine tracks .. 42

Figure 1.13 Stationary unload points classified as on the go .. 44

Figure 1.14: Field 57 ... 46

Figure 1.15: Leading and lagging errors ... 47

Figure 2.1: LoRa star network configuration .. 54

Figure 2.2: IoT application focus breakdown (Farooq et al. 2020) .. 56

Figure 2.3: Dragino LoRa shield .. 62

Figure 2.4: HGV-906U Antenna and radiation pattern at 960 MHZ (L-com) 63

Figure 2.5: Data pipeline of GPS points sent and received at end node and gateway 64

Figure 2.6: 16m High gateway coverage map of West Lafayette ... 65

Figure 2.7: Path through coverage map .. 66

Figure 2.8: Telescoping tower and truck mount ... 67

Figure 2.9: High Speed Testing Location ... 68

Figure 2.10: 7m gateway north bound testing with a max range of 7600m 69

Figure 2.11: 7m gateway path overlayed on elevation raster highlighting missed data points 70

Figure 2.12: 10m gateway received data points with max range of 10500m 71

Figure 2.13: 16m gateway received data points with max range of 8300m 72

Figure 2.14: Packet reliability ... 73

8

Figure 2.15: Cross valley testing of LoRa signal with a 16m gateway .. 74

Figure 2.16: Forest impeding line of sight at close range of gateway .. 75

Figure 2.17: 7m gateway path and received packets .. 76

Figure 2.18: Line of sight infringement .. 77

Figure 2.19: 16m gateway testing path with received points.. 78

Figure 2.20: 10m gateway testing path with received points highlighting tree coverage 79

Figure 2.21: Illustration of tower material interference with LoRa signal reception 81

Figure 2.22: High gain antennas irradiation patterns on uneven terrain – not to scale 82

Figure 2.23: Received points with low gain antenna testing .. 82

Figure 2.24: ACRE LoRa coverage map from testing runs connecting to 7, 10, and 16m gateway
... 83

Figure 2.25: Speed testing route ... 85

Figure 2.26: Reliability vs travel speed at 0.41 Hz data rate at 2400m .. 86

Figure 2.27: 8kmh-1 and 96 kmh-1 packet reception at 2400m ... 87

9

LIST OF TABLES

Table 1.1 Field Identification, Size, Crop, and Harvester Used ... 19

Table 1.2: Combine Operating States ... 23

Table 1.3: Grain Cart Operating States ... 23

Table 1.4: Grain Truck Operating States .. 24

Table 1.5: Combine Truth Rules ... 24

Table 1.6: Grain Cart Rules .. 25

Table 1.7: Combine State Rules .. 26

Table 1.8: Grain Cart State Rules ... 26

Table 1.9: Grain Truck State Rules ... 27

Table 1.10: Example Data Log ... 27

Table 1.11: Concurrent State Count Log .. 28

Table 1.12: Variables for Tuning of State Algorithm ... 29

Table 1.13: Tuning Variable Range .. 29

Table 1.14: Tuning-Selected Parameters from Field 70 Harvest Data ... 33

Table 1.15: Field 70 Tuning Results for Combine with Truth Data Comparison 34

Table 1.16: Field 70 Grain Cart State Analysis .. 36

Table 1.17 Field 200 S660 State Analysis .. 38

Table 1.18: Field 200 S670 State Analysis ... 39

Table 1.19: Field 200 S660 Grain Cart States Analysis ... 39

Table 1.20 Field 200 S670 Grain Cart States Analysis .. 40

Table 1.21: Field 58 S660 States Analysis ... 43

Table 1.22: Field 58 S670 States Analysis ... 43

Table 1.23: Field 58 S660 Grain Cart States Analysis ... 44

Table 1.24: Field 58 S670 Grain Cart States Analysis ... 45

Table 1.25: Field 57 Combine States Analysis ... 47

Table 1.26: Field 57 Grain Cart States Analysis... 48

Table 1.27: Cumulative Fields Multiple Combine States Algorithm Output 49

Table 1.28: Cumulative Field Grain Cart States Algorithm Output ... 49

Table 2.1: Packet Reliabilty Within Receiving Range of Gateway .. 73

10

Table 2.2: Packet reliability of high signal strength ... 80

Table 2.3: Varied heights gateway packet reliability .. 80

Table 2.4: High speed packet reliability at 2400m ... 85

11

LIST OF EQUATIONS

Equation 1 ... 22

Equation 2: .. 63

12

LIST OF ABBREVIATIONS

ACRE Agricultural Center for Research and Education

CR Coding Rate

FEC Forward Error Correction

FMIC Farm Management Information System

IoT Internet of Things

LoRa Long Range Radio

LPWA Low Power Wide Area

M2M Machine to Machine

NRCS National Resources Conservation Services

OTAA Over the Air Activation

RFID Radio Frequency Identification

RSSI Received Signal Strength Indicator

SMS Short Messaging Service

WSN Wireless Sensor Network

13

 STATE ALGORITHM FOR GPS EVALUATION

1.1 Abstract

Farmers run complex operations to fully plant, manage, grow, and harvest crops through the

seasons. Careful consideration must be taken when making decisions about machinery usage and

the available labor on hand. To help alleviate the tough decision-making process, tools have been

created to inform farmers about their machinery and field status. These tools provide useful

feedback and large value to farmers looking to plant and harvest. GPS localization and machine

state identification provides useful information back to the manager. The tool that was created

successfully utilizes GPS data taken from loggers on tractors, combines, and grain trucks to

successfully identify the states of all the machines in the field, including, idle, active, on the go,

and stationary unload. Initial results of the algorithm provide a 96% success rate in determining

the state of the combine during harvest. Additionally, the algorithm was accurate at determining

the state of grain carts and grain trucks at the boundaries of the field 94% of the time.

1.2 Introduction

In a world with an ever-growing population and an increase in year over year growth rates,

it is imperative that basic human necessities be met for everyone. Chief among these necessities is

food and water. Large geographical areas such as the Great Plains of the Midwest provide ample

land and area that is suitable for crop growth and the production of foodstuffs. However, in order

to create and produce the quantities of harvest that is required, operations and farmers must operate

at peak efficiency for the yearly cycle of the land. Commodity crop operations yearly cycles are

defined by the planting and harvesting times of their respective crops. It is essential that farmers

plant crops at an appropriate time or else the yield will suffer. Roekel and Coulter (2011) showed

in Minnesota that a planting delay of two weeks, till May 30, did not significantly impact the yield

come harvest time, however when planting was delayed by four weeks, the harvest yield was

reduced by an average of 15%. Similarly, it is imperative that harvest operations are performed in

a timely manner. With poor weather conditions and large land areas, it is of utmost importance

that all machines and workers be operating at maximum efficiency during harvest.

14

In addition to large land masses which require attention and care in the harvest season,

farmers are placed under time pressure due to weather. Coupled with this time pressure, farm

managers have seen a steep decline in available workers to man the machinery on the farm. Bronars

showed that from 2002 to 2013 “The number of full-time equivalent field and crop workers has

dropped by at least 146,000 people, or by more than 20%” (Bronars 2015). Farm managers are

faced with the tough decision of how to best manage the full gamut of machinery available to

them, in addition, they must also make tough choices for the application of available manpower.

With large fields sizes, it is a challenging task to harvest in a timely manner. Managers can be

forced to decide between operating additional grain carts or rather utilizing the available manpower

for the use of transporting harvest to storage sights.

 On farm decision making should be an informed process which utilizes all the available

data at hand; in addition, it should account for variables such as weather, yield, and machine

throughput to name a few. Machine labor allocation decisions can be complex with a high number

of variables to consider in order to achieve the optimal output of the farm system. These systems

can have high variability in machine allocation to account for and no decision can be made lightly

or without thought. Farming operations will often utilize high cost, high throughput machines such

as large combines, grain carts, tractors, and grain carts. This combination of machinery can

perform at high rates to fulfill the needs of the operation; however, each machine has a large cost

associated with obtaining the machinery and running the equipment in the field. In addition, the

problem of in the field operation becomes more convoluted when considering the teamwork and

cooperation needed to align all the appropriate parts of the machinery.

 One common harvest machinery set is two combines, two grain carts, and four trucks, to

remove the grain from the field and transport it to the storage bins and elevators. To achieve

maximum output from the machinery selected, the combines field capacity and throughput must

be carefully selected and matched with the other equipment in the field to properly utilize the other

large machines. Buckmaster and Hilton (2005) showed how important it was to properly evaluate

and model each individual system to achieve peak efficiency and utilization. For example, a system

capacity could drop by 20% when travelling long distances to unload grain from the grain truck

and not enough grain trucks were available to ensure the proper utilization of the harvester in the

field. To compound the issue, the combine and grain cart can be used for different purposes come

harvest time. Combines will regularly operate both in corn and in soybeans each calendar year. As

15

such, the output of the combine will drastically differ for both crop types as the bushels per acre

for corn and soybeans are largely different. Also, the combine head can vary in width for both corn

and soybeans. It is challenging to optimally manage and sync all the machinery that is used in the

field. Farmers and managers are always looking for more tools to be able to inform their decision

making so that they can properly utilize their fleet of machines. These same tools can also be useful

when it comes time to purchase new equipment. A large portion of farmers seek to mitigate the

risk that is associated with not being able to fully harvest the crop by purchasing the largest

harvester that is available to them in the budget, however, optimization tools could provide the

knowledge and insight to make the choice to downsize the harvester or grain cart thus saving

money for the farm in the form of upfront cost.

 With farmers seeking optimization tools, it becomes imperative to supply and create the

methods necessary to make informed decisions about the utilization of all the implements in the

field. This can be seen in the various works that are already in the field of agricultural engineering

and harvest optimization. Busato and team sought to improve and optimize the logistics for silage

operations with the use of a linear programming model. (Busato et al. 2019) This model was used

to determine the proper number of units in the field for silage operations, combines and carts, and

had an error rate of 3.15% when comparing the simulation model with the field data collected. In

addition, the model was capable of prioritizing optimal silage harvest with time constraints

imposed on it.

 Amiama focused on the creation of a simulation of silage harvest to provided help in

optimal decision making. (Amiama et al. 2015) The model used state machines to inform the

simulation as to proper event ordering in the field. The tool was useful in determining bottlenecks

in the system due to waiting on trucks to return from silos or other hold ups. The model could

efficiently inform farm users as to the appropriate number of self-propelled harvesters necessary

or the effects that other variables such as the number of packers could have on the time savings of

the harvest operation.

 Heizinger generated an algorithm which would rate the transportation efficiency of grain

transport from field to silo. (Heizinger and Bernhardt n.d.) The system was effective at determining

the rate and optimization of the transporters using set zones in the field which were created by the

model makers. Transporting units’ efficiency and overall uptime could be evaluated by tracking

16

the GPS points relative to the infield boundaries which were created and the relations between the

machines.

 A model was built by Layton which would determine which field locations were harvested

by which combine when multiple harvesters were present in the field. (Layton et al. 2017) This

model utilized GPS logs to create a history of points which were then assigned to a grid the size

of the header of the harvester. Using this grid, the model could successfully determine which points

of the field were harvested by which combine.

 Tools for modeling the transportation from the edge of the field to the storage bins were

also considered. Turner made a discrete event simulation model to determine the transportation of

grain to the storage facility.(Turner 2018). The system could then be used to evaluate the

performance trucks and their overall efficiency when matching truck size and speed to grain

harvesting capabilities of the combine.

 Zhang created a neural network that could identify and apply the appropriate activity state

to data collected for combines (Zhang et al. 2017). In addition to the creation of a neural network,

a rule-based algorithm was applied to identify unloading, loading, and harvest states to combines

and grain carts. The rule-based algorithm required heavy inputs from expert knowledge to inform

states while the neural network could be easily added onto and expanded.

 Bochtis showed how vehicle routing problems could be applied to in field operations of

combines, and grain carts (Bochtis and Sørensen 2009). Thus, the paths of combines could be

solved using previously developed methods for problems such as the travelling salesman problem.

This allowed for better path planning in field for combines and carts.

 Haffar instrumented a model to inform farming operations the proper selection of

machinery needed to optimize the operation. (Haffar and Khoury 1992) The model can consider

prior owned machinery and selects the least annual cost solution that is available to meet the

harvest requirements. Additionally, the model can output schedules for fields with associated

machinery required for each field.

Work was done by Zhang to identify transfers between implements and storage bins using

traceability trees. (Zhang et al. 2020) This work built on tree data structures for the GPS logs that

were taken in the field. The traceability trees are utilized in tracing harvest from the field, through

the implements used in harvesting, and into the storage bins or final destination of the grain.

17

From the prior work, it becomes clear that there are many tools or concepts of tools to help

farmers make informed decisions about their fleet, however, a large portion of these models are

either predictive or difficult to set up and fully utilize. There is space for a model that uses simple

inputs such as GPS that can inform managers how all the machines are performing on a daily basis.

Creating a model that uses simple GPS points would be easy to implement as GPS modules are

most likely already installed on machines in the field. Such a tool would also be able to look at

historical GPS data to calculate state information and inform users of potential time savings from

alternative decisions. It would also have the capacity to identify idle times and track unloading

events both in the form of “on the go unloads” and stationary unloads. Such a tool would provide

useful information to farmers to make informed decisions about the overall efficiency of their fleet

in the fields.

1.3 Objectives

The goal of this project was to determine how accurately harvest states could be determined from

time-series location data. To achieve this, the following objectives were identified:

1) Benchmark Data Collection: Collect data for the use of accurately identifying and

labeling spatial temporal machinery state data for all equipment in the harvest operation,

including, an idle, active, on the go, and stationary unload state for the combine, and a

waiting, transporting, on the go, stationary unload, and cart unload for the grain cart

2) Algorithm Development: Generate an algorithm to determine machinery states using

time-series location data and heuristic rules

3) Algorithm Optimization: Tune the developed algorithm parameters to reduce estimation

error

1.4 Methods and Materials

1.4.1 Data Collection

Benchmarking data was collected from grain harvest machinery used at Purdue’s 1600-

acre Agronomy Center for Research and Education (ACRE) farm in north central Indiana. The

data was collected during the 2021 grain harvest and was comprised of meta-data in the form of

daily fields notes, machinery J1939 Controller Area Network (CAN) bus data, and GPS location

18

data from all machines used in the harvest operation. Machinery included two grain trucks

(~35m3), two John Deere combines (S660 and S670), and one John Deere tractor (8R370) and

grain cart (Brandt 1020XR) combination.

Data collection hardware consisted of Kvaser Memorator Pro 2xHS (Kvaser Inc., Sweden)

loggers for machines with a CAN bus and Columbus V-990 Mark II GPS loggers (Columbus,

Hokkaido, Japan) were used to receive and store time-series location data for machines without

CAN bus technology. The Kvaser loggers were powered directly from the J1939 CAN bus port

and automatically recorded data when bus traffic was detected. The Kvaser logger stored all the

messages published on the CAN bus in a proprietary .kfm file on a SD card. After the data was

collected a database (.dbc) file was loaded into the Kvaser Memorator Config Tool program a used

to decode the raw data and store in a CSV file.

Figure 1.1: Columbus V990 Logger and Kvaser Memorator Pro 2x HS GPS Logger

The Columbus logger stored GPS data directly to a CSV file. The loggers were powered

via micro-USB and featured a battery backup. The loggers featured a motion detection mode that

started logging when motion was detected and stopped the log when machines went idle. This

allowed for robust data collection that did not require operators to activate the loggers and

drastically cut down on the points that were logged This was especially useful for machines such

as grain trucks which could be sitting waiting in the field for extended periods of time. The

Columbus could receive and capture GPS streams from multiple satellite systems. These systems

included the Russian Glonass system, the Japanese Quasi-Zenith Satellite System (QZSS), and the

American GPS system. Because of this redundancy, the unit was fit to capture location to a more

19

accurate degree. In total, the unit had approximately 4m accuracy when viewing an average

number of satellites (~8).

 Data was collected from four production fields (see table) ranging from 12.4 to 75.9

hectares. In two of the fields (58 and 200) both harvesters were used simultaneously, while in the

two others (57 and 70) only the S660 was used. For corn harvest the S660 was equipped with an

eight-row head (6.096 m). In soybeans the S660 and S670 were equipped with a 9.14m and 6.10m

grain heads, respectively. Both combines had 10.53m3 capacity grain tanks and augers capable of

unloading at 0.134 m3/sec. The grain cart had a capacity of 35.24m3 and an unload rate of 0.29m3

Table 1.1 Field Identification, Size, Crop, and Harvester Used

Field ID Size (Hectares) Crop Harvester

57 18.9 Soybeans S660

58 12.4 Soybeans S660 & S670

70 20.2 Corn S660

200 75.9 Soybeans S660 & S670

 Harvest in all four fields was supported by the grain cart and two trucks. All five machines

were equipped with logging equipment. As can be seen in Table 1.1 the S660 was responsible for

harvesting in all four fields while the S670 was used in only two of the fields. The harvesters and

grain cart tractor were equipped with the Kvaser loggers. For the combine harvesters this allowed

for messages relevant to the combine operational status to be collected such as engine rpm, wheel

speed, auger status, and highly accurate GPS data. For the grain cart messages were collected for

the GPS location, speed, PTO rpm, and heading. The harvesters and grain cart tractor also featured

real time kinematic (RTK) differentially corrected GPS receivers that were capable of centimeter

level accuracy. The grain trucks did not have a CAN bus and were instead equipped with the

Columbus V990 Mark II GPS loggers.

1.4.2 Data Processing

 Before the data was used to benchmark the model, the individual machinery logs needed

to be processed into files for each crop field harvested, containing the time synchronized machine

20

state data for all the machines. This required creating a data processing pipeline to convert the

Kvaser and Columbus logger files to a standard format, merge, and then spilt by harvested field.

Kvaser Data Sub-Pipeline

The Kvaser loggers used on the harvesters and grain cart tractor stored data in a proprietary

binary format. The data was filtered and decoded to the desired signals using the Kvaser

Memorator Config Tool Program and a J1939 database file. The resulting CSV files contained the

time-series georeferenced machinery state data desired but still in separate files for each machine

in a format that was not conducive to merging. The CSV files were processed with a created

Python function, found in the appendix, that reformatted the data, specifically, merging the

individual time and date component fields into a Datetime data class recognized by Python. The

resulting dataset consisted of georeferenced machine information at a 1 Hz interval with a Python

readable datetime stamp.

Columbus Logger Data Sub-Pipeline

The data logs for all machines were first exported into comma separated value sheets so

that other programs such as Python and Excel could read and write to the files. The data was

imported into Excel for minor corrective errors such as number formatting and date formatting.

Data types that would not be useful to the algorithm were stripped from the logs to reduce the

overall size of the data logs. Data that was corrected included GPS based speed readings for

Columbus loggers, and other extraneous information. Included with the removal of data, minor

corrections were made such that the data was in a more easily readable format. GPS latitude and

longitude points were properly formatted into long float point convention. East and West was

removed from the data points and proper sign convention was applied. In addition to the GPS point

formatting, time formatting was required. Time logs were formatted to the same convention, yyyy-

mm-dd hh:mm:ss , for all of the data files. This change was implemented both for the Columbus

loggers and for the Kvaser CANbus loggers. Because of this time formatting, data points were

aligned to the correct time across the various machines in the field. In addition to time formatting,

the logs were split into day-by-day logs such that each file contained all the points for each harvest

event. These logs were then time shifted into the correct time zone being eastern central time.

21

Some harvest events were split across two days as the workers went on into the night past midnight.

Manual checking was performed across the full range of dates to ensure that no data was lost to a

cutoff around midnight. A visual representation of the pipeline can be seen in Figure 1.2

Figure 1.2: GPS data pipeline of transformations

Data Merge and State Assignment

All data points were migrated into QGIS, a program for the visualization of locational data,

to verify the validity of the now-cleaned data points. Visual inspection, utilizing QGIS, was done

of the points to ensure that all GPS points fell within appropriate field boundaries and no errors

were missed when removing unwanted data. Once in QGIS, the data was separated into the four

various field boundaries which were identified earlier. Extra data was corrected to further simplify

22

the data set. This extra data came in the form of transportation data outside the scope of working

time in the fields. When powered on, these machines loggers were activated and tracking data,

however the combines or grain carts sometimes were not yet in the fields harvesting. Data points

of the machines moving from barn to field were corrected. Thus, extraneous transportation data of

the day staring up was corrected in the data set and did not inform the model. This practice was

also used regarding the end of the day, where excess data points of the returning grain carts and

combines was corrected to ensure a clean and accurate data set.

 The remaining dataset could then be imported into Python for the analysis and creation of

the state algorithm. The goal was to create an algorithm which could identify the states of each

machine as it moved throughout the workday. In order to accommodate this algorithm creation, a

few more data transformation measures needed to be applied. GPS points were collected in decimal

degrees, a useful information from all the implements was the transformation from decimal

degrees into a speed using the clock cycle of the data points. Equation 1 was used to transform

each subsequent pair of GPS points into a useable speed for the machine.

Equation
1

Speed (kmh-1) = 6371.37∗ 3600 ∗ 2 ∗

arcsin �sin �
𝑙𝑙𝑙𝑙𝑙𝑙2 − 𝑙𝑙𝑙𝑙𝑙𝑙1

2 � ∗ 2 + cos(𝑙𝑙𝑙𝑙𝑙𝑙2) ∗ cos(𝑙𝑙𝑙𝑙𝑙𝑙1) ∗ 𝑠𝑠𝑠𝑠𝑠𝑠 �
𝑙𝑙𝑙𝑙𝑠𝑠2 − 𝑙𝑙𝑙𝑙𝑠𝑠1

2 � ∗ 2

The speeds for all implements were calculated and expressed as kmh-1. In addition to the

speed calculation, a moving average was utilized to ensure the data was resistant to position errors

or missing data points. A five-point windowed moving average was used thus ensuring smooth

speed transitions and no erroneous jumps in speed.

Truth Data State Assignment

With a useful speed, work was started on creating a state identification algorithm for all

the implements in the field. Each machine only has a set number of states that it could be in at any

given time thus identifying the total states of all the machines was the first step in creating the

algorithm. The harvester was selected as the first machine to have states created. As all the other

23

machines were dependent on the workings of the harvester, its states were of the upmost

importance. The following states seen in Table 1.2 were identified for the combines in the field.

Table 1.2: Combine Operating States

State: Description

Working Moving in the field or harvesting

Idle No movement in the field and not unloading

On the go Unloading at speed into the grain cart while harvesting

Stationary Unloading into grain cart while remaining stationary

NA Catch all for NA values in data set

This encapsulated all the states that the combine could be in at any point in time while in the field.

Of second importance, the grain cart was crucial in connecting the combine and the trucks.

Table 1.3: Grain Cart Operating States

State: Description

Waiting No movement and no unloading loading from combine

Transporting Transporting grain to field edge or moving to unload combine

On the go Receiving grain from combine while moving in the field

Stationary combine unload Receiving grain from combine while stationary

Stationary unload to truck Unloading grain into truck while at field edge

NA Catch all for NA values in data set

These states, shown in Table 1.3, fully captured all the available operating states the grain cart and

tractor have in the field. Lastly, the states of the grain trucks were identified and quantified and

can be seen in Table 1.4.

24

Table 1.4: Grain Truck Operating States

State: Description

Waiting No movement or unloading from grain cart

Transporting Movement along field boundaries, transporting grain to bins

Stationary loading Receiving grain from grain cart while stationary

NA Catch all for NA values in data set

Not included in the grain truck state list was unloading from the truck to a grain bin or

commercial elevator. The focus of this work was to understand the in-field machinery states and

how the machines in the system effected each other’s states. For this, the value of the truck data

was to know if the grain cart or combine was idle because the truck had not returned, not the states

of the truck after leaving the field.

To compare the collected data with the results of the state algorithm, a truth data set needed.

This “truth data” was created using the other information the Kvaser loggers had collected mainly

the PTO rpm, speed, and auger location. With the information that was collected, the states were

verified by comparing the true data with the state tables that were created by the algorithm. The

truth data identified states based on the following requirements seen in Table 1.5.

Table 1.5: Combine Truth Rules

Combine Truth States

Idle Speed < .048 kmh-1 Auger Off

Working Speed > .048 kmh-1 Auger Off

On the go Speed > .048 kmh-1 Auger On

Stationary unload Speed < .048 kmh-1 Auger On

Additionally, requirements were placed on the grain cart to identify the true states which can be

seen in Table 1.6.

25

Table 1.6: Grain Cart Rules

Grain Cart Truth States

Waiting Speed < .048 kmh-1 Auger Off

Transporting Speed > .048 kmh-1 Auger Off

On the go Speed > .048 kmh-1 Combine state = on the go

Stationary combine unload Speed < .048 kmh-1 Combine state = stationary

Stationary unload to truck Speed < .048 kmh-1 Auger On

Truth data could not be created for the grain trucks as the GPS logging that was created was based

on the mark II logger which did not have access to CANbus data that the combine and grain cart

had. As such optimization of the algorithm centered on the grain cart data and the combine data.

In addition, the grain truck data was robust to state changes as the majority of the time was spent

either in transit to grain bins or stationary at the field edge.

1.4.3 Algorithm Creation

 Using the predefined states in Table 1.3 and Table 1.4 work was begun on creating an

algorithm which would identify the states of all the machines in the field based on the time-series

location data and a set of heuristics rules.

Rule Generation for State Estimation

Rules were generated for each of the states that were available for the machines in the field.

To accomplish this, the rules shown in Table 1.7 were created for the combine states. Also, the

grain cart states were made with the rules shown in Table 1.8. Lastly, the states for the grain trucks

were created and are seen in Table 1.9.

26

Table 1.7: Combine State Rules

State: Rule
Working: Measured speed > Idle Threshold

Idle: Measured speed < Idle Threshold and
distance to cart > Coordination Threshold

On the go:
Measured speed > Idle Threshold and

distance to cart < Coordination Threshold and
relative speed < Relative speed Threshold

Stationary
Measured speed < Idle Threshold and

distance to cart < Coordination Threshold and
relative speed < Relative speed Threshold

NA: Catch all for NA values in data set

Table 1.8: Grain Cart State Rules

State: Rule

Waiting
Measured speed < Idle Threshold and

distance to combine > Coordination Threshold and
distance to truck > GPS cart range

Transporting
Measured speed > Idle Threshold and

distance to combine > Coordination Threshold and
distance to truck > Cart coordination threshold

On the go
Measured speed > Idle Threshold and

distance to combine < Coordination Threshold and
relative speed < Relative speed Threshold

Stationary combine unload
Measured speed < Idle Threshold and

distance to combine < Coordination Threshold
and relative speed < Relative speed Threshold

Stationary unload to truck
Measured speed < Idle Threshold and

distance to truck < Coordination Threshold cart range
and relative speed < Relative speed Threshold

27

Table 1.9: Grain Truck State Rules

State: Description

Waiting Measured speed < Idle Threshold
distance to cart > Cart coordination threshold

Transporting Measured speed > Idle Threshold
distance to cart > Cart coordination threshold

Stationary loading Measured speed < Idle Threshold
distance to cart < Cart coordination threshold

NA Catch all for NA values in data set

Rule Application to Data

The algorithm would iterate through the combined data set of all the GPS points for the

machines in the field labeling each point with the appropriate state. From these initial results, a

table of states was created for all the machines as shown in Table 1.10

Table 1.10: Example Data Log

 S660 Combine Grain Cart Truck

State: time 10:01:02 Working Transporting Waiting

State: time 10:01:03 Working Transporting Waiting

State: time 10:01:04 Idle Transporting Waiting

State: time 10:01:05 Working Transporting Waiting

State: time 10:01:06 On the go On the go Waiting

State: time 10:01:07 On the go On the go Waiting

State: time 10:01:08 On the go On the go Waiting

This initial run would only look at the current GPS location of all the field implements and

the speeds of the machines. However, from this, slight errors would come about due to the unstable

nature of the speed and GPS accuracy. This would induce faults in states as can be seen by the

erroneous “idle” in the S660 combine states. While this point should have been a harvest point,

the GPS location may have wavered enough to reduce the speed below the idle thresh hold thus

28

inducing an idle point. To correct for these errors the state tables were modified to highlight errors

in the data.

 The state table was changed from a list of states and converted into a list of concurrent

states. This would provide the model with a list of how long the machine had been in that specific

state. From this table of concurrent states, a history of how long each state was active was created.

This was helpful for the removal of incorrect states.

Table 1.11: Concurrent State Count Log

S660 Combine Grain Cart Truck
State Time in State (s) State Time in State (s) State Time in State (s)

Working 629 Transporting 200 Waiting 700

Idle 2 Waiting 329 Transporting 200

Working 122 Transporting 66 Waiting 203

On the go 95 On the go 95 Transporting 504

Working 273 Transporting 105 Waiting 192

Table 1.11 highlighted that the idle count for the S660 does not provide much valuable

information to the model. The event most likely came about by a reduction in speed for something

such as a cornering event. Thus, the idle count can be corrected via a “history check”. The goal of

the check was to remove any state that lasted less than a certain timeframe and did not provide

useful information. The combine or trucks and carts should be in a single state for longer than a

set timeframe for it to be considered an event such as unloading on the go. Thus, any state counts

that are small enough can be corrected in the state table and the unnecessary values can be either

back filled or forward filled to correct for the values.

Rule Parameter Optimization

The rules that determined the various states were tuned on a selected field to “train” the

model to have better results. Field 70 was selected to tune the algorithm. Field 70 harvest data

featured little overlap or unnecessary movement made by the combine. In addition, each state was

represented well in the data for the field. Stationary unloads were performed at the edge of the

field, also, the combine unloaded on the go multiple times into the grain cart.

29

The rules for each state were tuned around a set of variables that had a large impact on the

output of the system. As such, the following variables in Table 1.12 were selected to tune the

algorithm around.

Table 1.12: Variables for Tuning of State Algorithm

Criteria Description

Idle Threshold Value for determining idle vs movement

Relative Speed
Threshold

Value for determining relative speed between machines

Coordination
Threshold

Value for determining if combines and grain carts were “near” or “far”

History Value for how many consecutive states required for it to be a true state

Cart
Coordination

Threshold
Value for determining if grain carts and trucks were “near” or “far”

Each variable was tuned from a list of selected values that can be seen in Table 1.13.

Table 1.13: Tuning Variable Range

Criteria Candidate Values

Idle Threshold (kmh-1) .40, .80, 1.21, 1.61, 2.01, 2.41

Relative speed Threshold (kmh-1) .20, .40, .80

Coordination Threshold

(Decimal degrees)
.00014, .00015, .00016, .00017, .00018, .00019

History 0, 1, 2, 3, 4, 5, 6, 7

Cart coordination threshold

(Decimal degrees)
.00016, .00017, .00018, .00019

The algorithm was then run through each possible combination of the variables in Table

1.13. The output of the algorithm was then checked against the truth data that was compiled. The

checking was done in an event-by-event manner. The truth data for each event was checked against

the matching time of the algorithm output. Events that matched across the truth data and algorithm

30

output were labeled as correct. The best set of variables that had the most matching states between

the algorithm output and the truth data was selected for use and testing the other three fields.

Further exploration of the tuning variables was performed to identify the effect that certain

variables had on the output of the algorithm. The overall output of the tuning algorithm can be

seen in Figure 1.3.

Figure 1.3: Maximum output of tuning conditions for all variables of state algorithm

The visualization highlights some anomalies in the tuning parameters. The large gap that is

in the data occurred due to the “Relative Speed Threshold” parameter. At 0.2 kmh-1 the algorithm

was not able to identify the coordinating states between the grain cart and the combine due to such

a tight restriction in speed. This bias caused the large gap that can be seen separating the maximums

and minimums in Figure 1.3.

 In addition to the relative speed threshold, the idle speed threshold also played large part

in the total maximum of the algorithm. The idle speed threshold was critical in determining if the

combine and grain cart were experiencing movement or not. The parameter had large impacts on

21200

21400

21600

21800

22000

22200

22400

22600

22800

23000

0 500 1000 1500 2000 2500 3000

E
ve

nt
s C

or
re

ct

Algorithm Sequence

31

the overall output of the algorithm. The idle threshold was isolated and the effect it had on the total

maximum of the algorithm can be seen in Figure 1.4.

Figure 1.4: Maximum Output vs Idle Threshold

It was evident that the speed had a sharp decline at 0.8 kmh-1 with a local maximum at the point.

The effects that the speed had can also be visualized and seen in Figure 1.3 where the overall slope

of the figure is trending downwards across the sequence. Also of note, the coordination threshold

for the combine and grain cart played a large role in tuning for the maximum output.

 The coordination threshold was critical in determining if the combine was interacting with

another machine in the field. The distance between the two machines played a large role in

determining which state the machines were in.

22600

22650

22700

22750

22800

22850

0.3 0.8 1.3 1.8 2.3

A
lg

or
ith

m
 M

ax
im

um
 C

or
re

ct

Idle Threshold (kmh-1)

32

Figure 1.5: Maximum Output vs Coordination Threshold

The effect that the coordination threshold had can be seen in Figure 1.5. A sharp drop off can be

seen at .00016 decimal degrees. At .00016 decimal degrees the machines are approximately 18 m

away from each other. The cutoff at that distance points to a common distance that the machines

are when interacting with each other. Because of this, it can be strongly inferred that the machines

interact with each other within an 18m radius and a coordination threshold larger than 18m would

introduce errors where the machines are close but not interacting.

1.5 Results

 The algorithm was run on all four fields that were selected for analysis. Each field that was

analyzed had distinct differences in either the size, crop, or machinery used. The fields were

harvested between September 29th and October 2nd, 2021.

1.5.1 Parameter Tuning Results

The first field that was analyzed was field 70. The field had an appropriate number of

unload events and, it had simple track lines from end to end. As seen in Figure 1.6 there was very

little wasted movement which made this a good candidate for the tuning of the algorithm.

22640

22660

22680

22700

22720

22740

22760

22780

22800

22820

0.00013 0.00014 0.00015 0.00016 0.00017 0.00018 0.00019

A
lg

or
ith

m
 M

ax
im

um
 C

or
re

ct

Coordination Threshold (decimal degrees)

33

Figure 1.6: Field 70 combine working state and on the go in field paths

The optimization from field 70, and the configuration results can be seen in Table 1.14:

Tuning-Selected Parameters

Table 1.14: Tuning-Selected Parameters from Field 70 Harvest Data

Idle Threshold .8 kmh-1

Relative speed Threshold .8 kmh-1

Coordination Threshold .00014 (~16m)

History 2 values

Cart coordination threshold .00016 (~18m)

Working =

On the go =

34

Utilizing the selected parameters, the script was run for the data set and the states were

assigned to the GPS points for the whole day. The results of the tuning run for the combine can be

seen in Table 1.15: Field 70

Table 1.15: Field 70 Tuning Results for Combine with Truth Data Comparison

State State Algorithm
Predicted

State Algorithm
Correct

False
Positive

False
Negative

Percent
Error

Working 10175 9969 206 152 1.50%

Idle 172 146 26 34 18.90%

On the go 1672 1545 127 218 12.37%

Stationary
Unload 279 217 62 17 7.26%

This field provided a good benchmark of the state algorithm’s ability to identify the

working state of the machines. The truth data had an adequate amount of all four main states. In

total from the verification against the truth data, the state algorithm was over 96% accurate when

determining the status of the combine. Overall, only 421 points were missed out of 12,000. The

largest percent error was in the idle state, however, in total only 34 points were missed for the idle

state. The ide error was accounted for in the abnormal unload behavior. The combine would unload

on the go till the end of the field at which point it would unload in a stationary manner. After that,

the combine would sometimes sit idle for a few seconds next to the grain cart, thus the state

algorithm logged the behavior as stationary unloading rather than idle. The unload on the go to

stationary behavior can be seen in Figure 1.7: Field 70 unload

35

Figure 1.7: Field 70 unload on the go to stationary behavior

In addition to the on the go to stationary error, the state algorithm had small issues

identifying on the go states. A good example of the error can be seen in Figure 1.8.

Figure 1.8: Map showing leading and lagging errors in field 70

The leading and lagging error was common in the analysis of the field. This error occurred during

the alignment of the grain cart and the combine. The grain cart driver could arrive at the combine

and be ready to receive the grain long before the button to unload was pushed. As such, the model

struggled to identify at what time the combine began to truly unload into the grain cart. Similarly,

after the unload process was complete the drive of the grain cart could wait for a few seconds

Working = Idle =

On the Go = Stationary unload =

Working =

On the Go =

Incorrect State =

36

before pulling away. When observing from GPS points, there is no distinguishing moment to

identify the shift in state. The variance in alignment time between grain cart and combine caused

the state algorithm to incorrectly label certain points.

The grain cart for the field was also tracked using the state algorithm and the logs can be

seen in Table 1.16

Table 1.16: Field 70 Grain Cart State Analysis

State

Truth

Data

Values

State

Algorithm

Predicted

State

Algorithm

Correct

False
Positive

False
Negative

Percent
Success

Transport 4543 4483 4259 224 284 93.75%

Waiting 4385 3912 3742 170 643 85.34%

Grain Cart

Unload
1373 1949 1311 638 62 95.49%

On the go 1763 1662 1556 106 207 88.25%

Stationary

unload
234 292 224 68 10 95.73%

 The states for the grain cart had a fairly large success rate at over 90% accuracy. The largest

percent errors occurred at the waiting state rather than one of the relatively smaller sized states.

This behavior was due to the grain cart resting near the trucks when not in motion. This placement

of the two implements caused the state algorithm to fail by reducing the waiting state and

increasing the grain cart unload state.

1.5.2 Algorithm Validation Results

Field 200

The state algorithm was optimized using field 70. To verify the results of the optimization,

the state algorithm was run on the three remaining fields to identify the accuracy of the model.

37

Field 200 was a large field that had all the potential states included. The field was harvested

by two different combines and thus was split across two logs. The paths of the combines can be

seen in Figure 1.9 and Figure 1.10

Figure 1.9: Field200 S660 harvester tracks

Working =

On the go =

38

Figure 1.10: Field 200 S670 harvester path

The output of the machine state for the S660 can be seen in Table 1.17 Field 200 S660 State and

the S670 in Table 1.18.

Table 1.17 Field 200 S660 State Analysis

State
Truth
Data

Values

State
Algorithm
Predicted

State
Algorithm

Correct

False
Positive

False
Negative

Percent
Correct

Working 32650 32298 32090 208 560 98.28%

Idle 2875 2569 2211 358 664 76.90%

On the go 1171 1005 871 134 300 74.38%

Stationary
Unload 1086 1910 1050 860 36 96.69%

Working =

On the Go =

39

Table 1.18: Field 200 S670 State Analysis

State Truth Data
Values

State
Algorithm
Predicted

State
Algorithm

Correct

False
Positive

False
Negative

Percent
Correct

Working 33344 33081 32905 176 439 98.68%

Idle 3274 3239 2795 444 479 85.37%

On the go 1542 1535 1320 215 222 85.60%

Stationary
Unload 565 870 363 507 202 64.25%

Overall, the state algorithm was very accurate for determining the states in the field.

Overall, the accuracy of the model was just under 96%. The working state of the S670 had an

exceptional 98.68% success rate. The model most likely worked hard to reduce the error count of

the working state because of the point difference in the states. The working state accounts for

almost 10 times the points as the others and thus the model will most likely work to reduce the

error in the working state. In addition to the combine output, the grain cart outputs can be seen in

Table 1.19 and Table 1.20 respectively.

Table 1.19: Field 200 S660 Grain Cart States Analysis

State
Truth
Data

Values

State
Algorithm
Predicted

State
Algorithm

Correct

False
Positive

False
Negative

Percent
Correct

Transport 15420 15049 14793 256 627 95.93%

Waiting 16880 16699 15309 1390 1571 90.69%

Grain Cart
Unload 3225 3118 2188 930 1037 67.84%

On the go 1171 997 886 111 285 75.76%

Stationary
unload 1086 1919 1058 861 28 97.42%

40

Table 1.20 Field 200 S670 Grain Cart States Analysis

State
Truth
Data

Values

State
Algorithm
Predicted

State
Algorithm

Correct

False
Positive

False
Negative

Percent
Correct

Transport 15489 15000 14738 262 751 95.15%

Waiting 17898 18431 16756 1675 1142 93.62%

Grain Cart
Unload 3231 2894 2183 711 1048 67.56%

On the go 1542 1533 1344 189 198 87.16%

Stationary
Unload 565 867 366 501 199 64.78%

 The model also experienced error when the combine unloaded directly into a grain truck at

the edge of the field. The state algorithm has no state for unloading into the truck for the combine,

as such, the truth data classified the unload as a stationary unload, however the state algorithm had

classified the time period as ide. This accounted for a large portion of extra idle state algorithm

labels and accounted for a large portion of the missed stationary unload points, approximately 200.

The state algorithm also failed when the combine was stopped and idle directly next to the grain

cart. The behavior can be seen in Figure 1.11. Because the two machines were located near each

other while idle, the state algorithm continued to mark both machines in the stationary unload

point.

41

Figure 1.11: Grain cart idle near combine

This behavior accounted for approximately 450 miss-logged idle points in the S670 state

table. The points were logged as stationary unload when they should have been labeled as idle. To

fix this issue, a state limit could be implemented. Such a limit would kick the state algorithm out

of the stationary unload state after a set amount of time and move it into another state. This would

limit the number of missed points when the combine and grain cart idle next to one another.

Another solution that could help reduce the missed logs for near idling would be the

implementation of same heading checks. A same heading check could reduce the errors by not

allowing the stationary unload if the two machines do not have the same heading, however

implementing that state could cause more errors when the combine does unload in a stationary

manner.

Field 58

Field 58 was also harvested by two separate combines. The paths that the two combines

took for field 58 can be seen in Figure 1.12.

Grain Cart =

Combine =

42

Figure 1.12: Field 58 S660 and S670 combine tracks

The results of the state algorithm for the S660 and S670 combines can be seen in Table

1.21 and Table 1.22 respectively.

Working State =

On the go =

43

Table 1.21: Field 58 S660 States Analysis

State
Truth
Data

Values

State
Algorithm
Predicted

State
Algorithm

Correct

False
Positive

False
Negative

Percent
Correct

Working 7196 7086 7056 30 140 98.05%
Idle 264 281 208 73 56 78.88%

On the go 331 327 263 64 68 79.46%
Stationary

Unload 43 140 43 97 0 100.00%

Table 1.22: Field 58 S670 States Analysis

State
Truth
Data

Values

State
Algorithm
Predicted

State
Algorithm

Correct

False
Positive

False
Negative

Percent
Correct

Working 6834 6719 6697 22 137 98.00%
Idle 802 899 784 115 18 97.76%

On the go 187 192 164 28 23 87.70%
Stationary

unload 87 100 80 20 7 91.95%

The field had overall good results for the outcome of the model. With an overall success

rate of 96.6% in the S660 field, the model showed good success. In the S670 portion of the field,

the state algorithm was accurate at predicting 6697 points out of 7725 only missing 185 points

over the whole day. While the combine was in the field for over two hours, the model was

inaccurate for only three minutes of log time. The largest percent error for the S670 was the on the

go state. In total 23 points were improperly predicted. Of the 23 points, 100% of the misses were

due to leading and lagging errors in transition from one state to another. Likewise, in the S660

field 24 of the misses in the on the go state were due to leading and lagging errors. The S660 state

algorithm had an error due to the evaluation of the truth data. The threshold for movement was set

at .048 kmh-1 to evaluate if the combine was moving or not. Because of this, the combine was in

the movement state during an unload event, even though it would be classified as a stationary

unload by an operator. This behavior can be seen Figure . This on the go unload would have been

44

better classified as a stationary unload in the truth data, and it accounts for the remainder of the

error in the on the go state for the S660.

Figure 1.13 Stationary unload points classified as on the go

Table 1.23: Field 58 S660 Grain Cart States Analysis

State
Truth
Data

Values

State
Algorithm
Predicted

State
Algorithm

Correct

False
Positive

False
Negative

Percent
Correct

Transport 2465 2665 2294 371 171 93.07%
Waiting 4565 4933 4502 431 63 98.62%

Grain Cart
Unload 460 98 98 0 362 22.80%

On the go 331 328 265 63 66 80.06%

Stationary
Unload 43 140 43 97 0 100.00%

On the go =

3m

45

Table 1.24: Field 58 S670 Grain Cart States Analysis

State
Truth
Data

Values

State
Algorithm
Predicted

State
Algorithm

Correct

False
Positive

False
Negative

Percent
Correct

Transport 2631 2556 2514 42 117 95.55%

Waiting 4577 4968 4560 408 17 99.63%

Grain Cart
Unload 428 101 101 0 327 23.60%

On the go 187 188 166 22 21 88.77%

Stationary
Unload 87 97 81 16 6 93.10%

In comparison to the combine state predictions, seen in Table 1.23, the grain cart machine

performed adequately as seen in Table 1.24. However, it did not do as well as the combines. In

total the machines were accurate 92% and 94% of the time respectively. A large portion of the

errors are shared by the grain cart unload state. The grain cart unload was responsible for 300

missed states, however, when the state algorithm predicted an unload into the grain cart it

performed at 100% accuracy as seen by the 101 correct logs in the S670 state algorithm. The error

for the two machines should appear very similar when the grain cart is not interacting with a

combine. The log is identical for the S670 and S660, as there was only one grain cart in the field.

The difference in the two predictions lies in how the log was compared to the combine. Because

of this interaction, the failed grain cart unload event appears twice in the metrics, one for the S670

and one for the S660 because at that time the grain cart does not interact with the combine.

The failed interaction between the grain cart and the grain trucks was not a byproduct of

the state algorithm. Upon visual inspection in QGIS, it was revealed that the grain cart unloaded

twice into wagons instead of the grain trucks. The state algorithm did not have a state to account

for the interaction between the wagons and the grain cart. From inspection in QGIS 327 points

were classified as grain cart unload in the truth data when no grain truck was available to receive

an unload. The two unloads into wagons accounted for all the error in the grain cart unload state

and also accounted for the excess states that were logged as waiting. Once the points were

corrected from the dataset, the accuracy of the grain cart unload state was increased to 100%

46

accuracy for the S670. In addition, the overall percent error of the grain cart model was reduced to

2.12% which was a much better overall result.

Field 57

Field 57 was a relatively simple field with only unloading on the go. The field was a good

benchmark for what a fully optimized combine would look like. During the entire field, the

combine was kept moving and it did not have to wait for a grain cart or truck to unload into. The

tracks the combine took can be seen in Figure 1.14.

Figure 1.14: Field 57

Harvest State =

On the Go =

Incorrect State =

47

The results of the state algorithm can be seen in Table 1.25.

Table 1.25: Field 57 Combine States Analysis

State
Truth
Data

Values

State
Algorithm
Predicted

State
Algorithm

Correct

False
Positive

False
Negative

Percent
Correct

Working 9021 8952 8927 25 94 98.96%

Idle 0 0 0 0 0 100.00%

On the go 642 711 617 94 25 96.11%

Stationary
Unload 0 0 0 0 0 100.00%

As seen from the results, the combine did not have any idle times during the field. It was

fully utilized during its harvest route. The overall success rate of the model was extremely good;

it yielded a percent error of only 1.23%. Field 57 specifically highlighted the leading and lagging

error that was present for all the fields. A good example of the error can be seen in Figure 1.15

Figure 1.15: Leading and lagging errors

The leading and lagging error was present because of the alignment time of the combine

and the grain cart driver. The alignment time between the two machines was never exactly perfect

and consistent. Thus, the state algorithm struggled to correctly identify when the combine and

grain cart began the unloading sequence. The error did have a unique property, the lag error could

On the Go =

Leading Error =

Lagging Error =

48

very closely be swapped with the lead error. Most lag error events were offset with the leading

error. For every point that was misses at the start due to alignment, an almost identical point was

incorrectly added at the end of the unload when the combine and grain cart parted ways. In addition

to the combine data, the grain cart results were also collected and can be seen in Table 1.26.

Table 1.26: Field 57 Grain Cart States Analysis

State
Truth
Data

Values

State
Algorithm
Predicted

State
Algorithm

Correct

False
Positive

False
Negative

Percent
Correct

Transport 1713 1609 1527 82 186 89.14%

Waiting 6790 6915 6651 264 139 97.95%

Grain Cart
Unload 518 428 409 19 109 78.96%

On the go 642 711 621 90 21 96.73%

Stationary
Unload 0 0 0 0 0 100.00%

The grain cart state algorithm performed well overall. The overall success rate of the

machine was just under 93%. The greatest error of the state algorithm was in the grain cart unload

state. Upon inspection all 109 missed logs of the state occurred at the alignment of the grain cart

and the grain truck. The long length of the truck and the placement of the logger in the cab placed

the initial unload logs just outside the boundary of the cart coordination threshold. However, the

unload event was still captured but, the distance between loggers and the poor GPS quality of the

trucks led to the mis-labeling of the initial cart unload states.

1.5.3 Overall Model Results

Overall, the model was very successful in backing out the states from the GPS data alone.

The overall model success rate for the combines can be seen in Table 1.27 and was 96.6%.

49

Table 1.27: Cumulative Fields Multiple Combine States Algorithm Output

State State Algorithm Correct Truth Data Values Percent Correct

Harvest 87675 89045 98.46%

Idle 5998 7215 83.13%

On the go 3235 3873 83.53%

Stationary unload 1536 1781 86.24%

Additionally, the grain cart was also evaluated for total success, sitting at just above 91% correct,

the model was very accurate when predicting the state of the grain cart as well as the combine. The

overall success rates can be seen in Table 1.28.

Table 1.28: Cumulative Field Grain Cart States Algorithm Output

State State Algorithm Correct Output Desired count Percent Correct

Transport 35866 37718 95.09%

Waiting 47926 50710 94.51%

Grain Cart unload 4979 7208 69.08%

On the go 3282 3873 84.74%

Stationary Unload 1548 1781 86.92%

Utilizing the state algorithm, some interesting data points were derived from the data that

would otherwise be unavailable without the CAN bus logs. In total the state algorithm predicted

5998 logs of idle time across the three fields. Converting the time of the logs, the overall idle time

of the combine in the field was shown to be just under 100 minutes lost to idling. In addition to

the idle times, the combine also unloaded in a stationary manner into the grain cart. In total, the

combine sat stationary unloading for 25 minutes, as was predicted by the state algorithm. For the

three fields, the combine was not harvesting for over 125 minutes of operational time.

 In addition to idle time, the state algorithm was also able to see the impact that unloading

on the go had on the harvest operation. The combine unloaded on the go for just under 54 minutes

rather than unloading at the edge of the field. Additionally, the total unload time of the harvester

was just under 150 minutes for the whole harvest duration. The state algorithm successfully

captured 65 out of 65 unload events from the combine into the grain cart. Overall, 20 stationary

50

unload events were captured and 45 on the go events were successfully reported. As a check, the

on the go and stationary unload total time log aligned with the total count of unload events. Each

unload event took approximately 70 seconds which aligned with the auger of the combine.

 Useful field metrics can also be calculated from the results of the state algorithm. For the

three fields, the combine utilization was found to be 94.4% with the idle times and the stationary

unloads detracting from the utilization. Additionally, the combine was idle for 7.1% of the time in

the field. The combine was unloading, either stationary or on the go for 9.1% of the time in the

field.

The state algorithm was largely successful in identifying the states of the machines in the

fields, however, the algorithm had higher percent errors for the states outside of the “Working”

state. This was most likely due to the tuning of the algorithm as the working state held much more

weight due to the number of points that were harvest, as such the tuning most likely selected results

which prioritized the working state as it contained an order of magnitude more points than other

states. Thus, if desired the model could be changed to optimize for the maximum correct values of

idle, on the go, and stationary unload points. As these three states are highly related, most errors

of the smaller states were shared with one another. Errors in unload on the go were most likely

shared with stationary unload, and stationary unload errors were most likely shared with idle rather

than the working state. Thus, tuning could be done to improve the error of the smaller states at a

loss to the overall model correctness.

1.6 Conclusion

Farmers and managers are pressed into making hard decisions for the betterment of their

machines and equipment. To assist in this endeavor, a tool to help with the optimization of the

equipment fleets was created. A data pipeline was successfully created to capture truth data for the

2021 harvest. An algorithm was created and applied to the data to label the states of all the event

logs that were captured. To make the tool more widely usable, the algorithm was constrained to

only using GPS points that could be captured off the already existent CAN bus or by installing

inexpensive GPS loggers. The algorithm parameters were tuned using truth datal collected via

CAN bus message and validated on three production fields. In total, the model was able to correctly

identify the states of the combine with an accuracy of 96.6%. Additionally, the model predicted

the states of the grain carts and grain trucks with an accuracy of 91.75%. This algorithm will enable

51

future work in both real time and post operational logistical analysis that will empower farmers to

identify inefficiencies and bottleneck in their harvest operation.

52

 LORA EVALUATION FOR LONG RANGE AND HIGH SPEED

2.1 Abstract

 Harvest operations have many constraints to operate at full efficiency. Correct pairing of

harvester and transport must be assured to fully utilize implements and workers that are available.

Downtime of the harvest operation can occur when the harvester’s hopper is filled, and no grain

truck is available for unload. During this interaction, the harvester waits until and truck is available

for unload. This interaction downtime could be reduced via proper planning and information. If

informed that no truck will be available soon, harvesters could choose to perform low efficiency

work and not fill the hopper thus incurring downtime. LoRa was identified as a technology that

could provide real time information for harvesters thus giving them the tools needed to make

informed decisions. LoRa was tested with differing configurations to identify if it would be an

appropriate tool for mobile applications at long ranges such as 16 km. From the testing, LoRa’s

applicable range varied based upon line of site and height of antenna with a maximum applicable

range of 9.6 km. Additional testing was done regarding the use of LoRa at speeds ranging from 32

kmh-1 to 97 kmh-1 to identify the effect that high speed had on signal strength. The speed of the

mobile end node had large impacts on the resilience of the LoRa signal. At 16 kmh-1 the signal

reliability dropped from 77% to 53%.

2.2 Introduction

 With an increase in world population across the past decade, it has become imperative that

commodity operations increase in both yield and efficiency to meet the needs of an ever-growing

world. From 2015 to 2020 the world’s population has grown by 400,000,000 people.

(Worldometers, 2020) With this exponential growth in population, food scarcity and commodity

crops have been a focus of improvement to meet the increasing demand for yield. As such, it is

important that farmers and harvest operations have peak efficiency during operating hours to

maintain high rates of harvest with as much resource and logistical optimization as possible.

Inefficient harvesting operations lengthen harvest duration and increase the risk of field loss due

to over mature crops and weather events.

53

 Improper sizing of machinery can create waste both in the form of unneeded excess capital

spending, or in the form of harvester downtime due to a lack of trucking capacity. Buckmaster and

Hilton (2005) showed that the matching of harvester and transporter directly correlated to

theoretical field efficiency, and additionally created a digital model which would allow users the

ability to correctly size and utilize the equipment and labor force that was available to them. With

a declining trend in labor availability, it has become imperative to use as few implements as

possible. From 1950 to 20000 there has been a decline of over 50% of hired farm laborers across

America (Anon 2020b). This decline has forced a focus on larger machinery and higher total

implement capacity with a reduction in implement count. This higher capacity machinery is wasted

if the system cannot keep up and carries a high initial capital cost that carries over in energy costs

and total farm costs. Utilizing proper path planning and whole farm modeling, harvest operations

could improve the system capacity and throughput without an increase in machinery count or

capacity. This improvement to capacity would allow for downsizing of machinery and a reduction

in total system cost. It would also have the added benefit of a reduction in worker count for the

operation.

 To achieve proper path planning, real time system monitoring must be in place for all

implements within the field. Harvest operations often perform kilometers from base points or

unloading areas. As such, it is imperative that long range technologies be considered when

selecting an appropriate technology to create a real time mapping tool for in field operations.

Cellular technologies provide simple and elegant solutions for fleet management and other such

tracking operations. Its simple success can be seen throughout public use with the implementation

of google maps and other connectivity programs. However, cellular connection suffers greatly in

areas with low population density and rural areas. Due to the lack of coverage within rural areas,

utilizing cellular connections for fleet tracking yields poor results with regards to long-distance,

real-time tracking. Coverage of rural areas within America was classified as “Cropland areas

where farming occurs still lag far behind in adequate fixed and mobile broadband access.” (Kane

and Borghei 2017) With the vast area of rural America lagging behind in LTE and broadband

coverage, technologies beyond cellular must be examined for use within the long-range

communication sphere as the inadequate coverage of cellular signal would not be a reliable

solution.

54

 To circumnavigate the lack of coverage within rural areas, M2M (Machine to Machine)

and low power wide area (LPWA) networks were evaluated for their ability to send and receive

data across long distances that harvest operations would require. Often LPWA networks sacrifice

high data rates to gain high range and noise resistance. LoRa was identified as a potential

technology which could fill the gap in long range communication in real time. LoRa is a

proprietary radio modulation technology which operates within the 915MHz license free range

band for US operators. Radio nodes can be assembled to form a LPWAN called LoRaWAN as

seen in Figure 2.1. LoRaWAN is often configured in a star shaped network such that end nodes

communicate with gateways which in turn transmit data onto central servers at which point end

users can access the data in a variety of ways such as tablet or mobile device.

Figure 2.1: LoRa star network configuration

This long range M2M technology makes it ideal for communication within the field of agriculture

as it is resistant to noise and can travel long distances. In addition, data rates that are needed for

real time localization of in field machines is rather low and can be handled by the physical

limitation of LoRa.

2.2.1 Internet of Things Within Agriculture

Lakhwani et al. (2019) focused on the potential uses of the Internet of Things within

developing agricultural fields such as in India. Within the review, some key benefits of IoT were

identified, including, efficiency of input, cost reduction, profitability, sustainability, food safety,

and environmental protection. The paper also focused on some of the challenges of agriculture and

55

the benefits of having implemented an IoT solution. Issues such as crop growth timing were

addressed in addition to watering solutions, and crop profit calculations. Utilizing the IoT, farmers

were able to check on plant stages during the growth phase and predict future outcomes for profit

and cost analysis. Additionally, farmers had the ability to properly plan irrigation schedules in

accordance with other data inputs, such as weather patterns and history. The IoT within the review

allowed farmers to check current outputs and in field metrics with historical data within the cloud

and perform checks and comparison to previous years. Furthermore, farmers could monitor real

time changes within the field and make proper decisions based on data gathered from the sensor

clusters within the fields.

Zhao et al (2010) explored the use of IoT within greenhouse production environments.

Data was collected within a greenhouse using IoT style sensors and clusters. Temperature and

humidity data was collected in a machine to machine (M2M) style of network. The M2M network

was then supported with real time data transfer using a mobile terminal via a short messaging

service (SMS) gateway. Data was then transferred via a GSM modem which enabled users’ access

to data via mobile web apps. Additionally, GSM modem alternative uses were explored such as its

use in vehicle tracking or home automation. Researchers were able to display stored data from the

greenhouse in formats which would provide value to users of the system. Data was stored in online

databases and could be queried by users to obtain, 24 hour, weekly, or monthly data. This data

could also be used within the real time to provide alarms or alerts when temperatures fell below a

set threshold.

Farooq’s review paper sought to evaluate the evolution of the IoT within the most recent

developmental phase (Farooq et al. 2020). The paper targeted seven main research questions which

pertain to all facets of the IoT within agriculture. Within the seven research questions, five were

directly related to the development of solutions using IoT for cycle analysis. Mainly, how has the

frequency of approaches been changed related to IoT agriculture over time? What approaches are

used to address problems related IoT agriculture? What are the main application domains of IoT

in agriculture? What were the primary focuses of the selected studies? What type of IoT

devices/sensors have been used in agriculture? Which IoT network/communication protocols are

used in agriculture? From the data and papers which were reviewed, it was determined that interest

in IoT within agriculture has been rising steeply since 2015 with over double the number of papers

published from 2015 to 2018. Additionally, the review identified how IoT was being applied to

56

each separate domain. 70% of the papers reviewed used IoT as a monitoring system for operations

such as temperature monitoring, or humidity and soil temperature monitoring. 25% of studies

focused on controls while only 5% of the papers reviewed focused on the tracking domain.

Additionally, the papers were sorted with respect to the major focus of each study. A breakdown

of each focus could be seen in Figure 2.2.

Figure 2.2: IoT application focus breakdown (Farooq et al. 2020)

Moreover, the review identified which communication technologies were being developed for use

with IoT. From the papers reviewed, 29% used wireless sensor network (WSN) and 15% utilized

WIFI connections. Long range radio (LoRa) was the fifth most popular communication technology

within the study with Zigbee and Radio-Frequency Identification (RFID) being more utilized. The

review also identified issues that an IoT user could expect to deal with when setting up or using a

network. The large issues facing IoT users were cost based, the creation of a large scale IoT

solution carried many costs that compounded for small users creating large costs. Each device and

sensor accrued project cost. In addition, subscriptions to mobile fees for a large sensor count could

create a high cost to the end user. Aside from cost, lack of knowledge affected the implementation

of IoT. Rural farmers were unable or unwilling to understand the technology necessary to properly

implement and maintain a IoT solution. Lastly, the review determined security issues within IoT.

57

Inherently, IoT had many security risks within its systems due to the low energy hardware.

Complex algorithms and high-level securities could not be run on hyper efficient modules which

utilized extremely low amounts of energy. Cloud services could also be targeted with denial-of-

service attacks or other database attacks.

Khanna and Kaur performed a thorough review on the uses and growth of the IoT within

precision agriculture (Khanna and Kaur 2019). Among the review work done, the amount of

communication standards available to IoT was identified. From the technologies identified, LoRa

was identified as being a long-range option with ranges from 3000m to 5000m. Other technologies

offered greater data rates however, provided much less range than LoRa. The researchers

highlighted the varying novel uses of each communication technology and it potential to increase

value for farmers. Importantly, the creation of an intuitive communication interface and cost were

key challenges to IoT. Additionally, availability for users, and data confidentiality were issues

impeding the growth of the IoT sector within agricultural practices.

Another paper strove to evaluate the theoretical limits of LoRa utilizing the standard

protocols used under the European standards (Petäjäjärvi et al. 2017). Because of this the team

tested LoRa with a spreading factor of 12 rather than the normal spreading factor of 10 in the

United States. The increase in spreading factor would contribute to a longer-range transmission

over the North American standard of 10. The team determined that between 2 and 5 km the end

node successfully transmitted its data at 85% and 88% success rate. In addition, they observed

signal deterioration at speeds of 40km/h.

Lavric and Popa sought to determine the effect that multiple end nodes would have on a

large-scale system that could be utilized in a variety of civil fields (Lavric and Popa 2018). In large

endeavors multiple end nodes would be competing for the same broadcasting time for the gateways

in the system. As such, packet collision could occur in the network and packets would be lost. The

team determined at high spreading factors; the long transmission time adversely affected the

performance of the network as collisions would surely occur. However, utilizing the lowest duty

cycle, the gateway could support just shy of 1000 end nodes. For an eight-channel gateway the

network could support approximately 8000 end nodes.

58

2.2.2 Farm Management

 This review identified research studies performed withing farm management systems from

2008 to 2017 (Tummers, Kassahun, and Tekinerdogan 2019). From the systematic search, 38

studies were deemed to be of high enough standards. The review classified a farm management

information system (FMIS) as “an FMIS supports decision making and helps with keeping track

of the current business process to maximize the profit of a farm.” From the review, seven research

questions were used to evaluate the various studies. Pertinent to this study are the following

questions: what are the current FMIS described in the literature, which domains are supported,

what are the delivery models, what are the features of existing FMIS, and what are the obstacles

to existing FMIS? From the review, 28 of the studies die not name a specific FMIS or rather

proposed a new design for the creation of a FMIS. Concurrently, of the studies 16 were performed

in the arable farming domain. The livestock domain was the second most common with 5 studies

being reviewed on the topic. Continued from the review, a majority of studies utilized an

application approach for developing a FMIS for the end user. Applications could be applied locally

on any computer. In contrast, only 6 of the studies utilized a platform approach which would allow

users to create and input their own plugins to enhance the capabilities of the platform. 81 separate

features were identified from the various studies. All 32 studies identified the farmer as a key

feature within the FMIS, in contrast, only 4 studies identified machinery tracking as a key feature

in a FMIS. Likewise, 4 studies identified harvest management as a key feature, and only 2 studies

identified driver assistance as key features within a FMIS. The review also recognized over 53

separate obstacles in the development of a FMIS. Adoption rates of FMIS was a chief obstacle,

socio-demographic factors and other contingent factors hindered the implementation. Cost

remained an obstacle, not all FMIS provided immediate or observable value to farmers, or simply

cost too much for farmers to see profitability from the system. Other issues remained inhibitors to

FMIS, for example, understandability was a key factor for farmers using management systems.

The systems must be easy to operate and easy to introduce to the farm for value to be seen.

Connection to internet was an issue that prohibited adoption; not all farmers had wireless

connection to internet in rural areas in the fields, as such, farm management systems that utilized

heavy internet traffic could be inefficient or unavailable to many farmers in areas with

connectivity.

59

This work performed by Buckmaster focused on the benefits and potential efficiency gains

that could be made via the optimization of machinery selection and cycle timing (Buckmaster and

Hilton 2005). An optimization tool was created by analyzing and diagraming cycle times of various

farming implements during the harvesting season. The spreadsheet tool that was created was useful

in that varying inputs could be selected to manage differing farm sizes or machinery selection.

Analysis was performed on a self-propelled forage harvesting system. The harvester had a capacity

of 40Mg DMh-1 with a field efficiency of 80%. This harvesting system was then analyzed for total

system capacity with a range of transport systems. System capacity rose as transport count rose,

however, labor utilization for all implements stayed the same for each scenario. Increasing the

count of transporters, increased the system capacity, increased the harvester efficiency, and the

labor utilization remained similar. In addition, transport distance was also considered in the model.

As transport distance rose, system capacity dropped significantly. Beyond 16km, system capacity

dropped by over 20% with transporters being more fully utilized in the 10 – 15 km range.

2.2.3 The Case for the Use of IoT Within Cycle Management

As can be seen from the previous exploration into IoT and system management, farmers

are looking for a way to properly manage their fleet such that labor utilization can be optimized,

profits and yields can be maximized, and overall system downtime can be reduced. IoT provides

a unique opportunity for farmers to get real time data about various implements and factors from

their fields into their hands. By utilizing the developing technology that is IoT farmers can make

informed decisions on the fly and be able to increase the overall system capacity of their overall

operation.

From the previous work shown, IoT has its own problems and issues that must be dealt

with to create a system which provides real value to farmers in a way that is both economical and

efficient. Farooq’s work showed that over 70% of developmental work in agricultural IoT was in

monitoring specifically about temperature, moisture, and humidity monitoring. While these

methods can provide value to farmers, value can be extracted from IoT in other ways, especially

with regard to tracking and controlling. There is a large gap within the research area for tracking

farm implements and controlling destinations. Farooq’s work shows that approximately 5% of

papers published within the agricultural IoT domain dealt with tracking and fleet management.

This can be in part to the lack of long-range technology that is utilized for IoT work. Khaana

60

identifies and classifies the various technologies that are available to work with IoT. Among them,

LoRa stands out as having long range application that may be suitable for working with a tracking

application.

Developing an IoT tracking solution would be able to provide a discernible amount of value

to customers and adopters of the technology. As can be seen from Buckmaster’s work, total system

capacity fell by 20% when transporters were forced to travel more than 16km. The drop in capacity

could be offset by increasing the number of total transporters in the system to ensure that the

harvester is always operating in the field. However, increasing the count of transporters is not

always a viable option for farmers. Farmers are already struggling with finding and maintaining

capable workers during the harvesting season and may not be able to accrue enough workers for

their fleet. Additionally, extra transporters require more storage space and upfront cost to purchase.

Farmers may view the reduced system capacity as an acceptable loss when compared to the upfront

and long-term cost of utilizing another transporter. With IoT and LoRa farmers may be able to

offset the loss from lack of transport availability. LoRa systems could be created such that harvest

operators could remain informed of wait times and choose to operate within low efficiency fields

to mitigate the wait time and reduce the overall downtime of the combine. By doing so, the

operators could increase the overall system capacity.

When developing IoT solutions for agricultural use, care must be taken to avoid or resolve

potential issues and conflicts that would halt the adoption of said technology. From the review

papers, multiple common issues or inhibitors arose that must be dealt with. Cost remained a large

issue and a common theme among the IoT review studies. Tracking large fleets would require a

large count of sensors. Thankfully, LoRa sensors are relatively cheap, at less than $100, and due

to the low power nature of them, using milliwatts, require little to no upkeep. LoRa technology

also has the large benefit of operating within the unlicensed spectrum of 915 MHz Operating in

the 915 MHz range allows for cheaper systems as no monthly subscription upkeep cost is needed

such as with LTE technology 5g phone service.

In addition to cost, ease of application and ease of implementation must be considered

when developing. Utilizing LoRa a system can be made which allows combine or harvester

operators to see in real time the location of the implements in the field and the transporters ferrying

goods. This type of a system could be made in a way which is easy to setup via prepackaged code

and easy to utilize as it requires very little beyond LoRa modules. In addition, the system can be

61

made using off the shelf components which are open source such as Arduino or Raspberry PI. This

will further reduce the complexity and cost of said systems thus encouraging the adoption of the

technology.

Multiple review papers also identified data security as a large issue with regards to IoT Lora

signals can be send encrypted or unencrypted, however the security of the system can be drastically

reduced with the removal of cloud computing and cloud access. LoRa signals could be sent directly

to basepoints in the combine and all computations could be performed locally. This removal of the

networking step would allow for increased security for farmers and would remove the upkeep and

excess steps of maintaining and utilizing cloud data.

2.3 Objectives

The goal of this work was to evaluate LoRa as a communication technology for tracking grain

trucks that are used to transport grain away from the field to storage or market. To complete the

evaluation the following objectives were created:

1. Create a LoRa system to be used in testing for long range and high-speed application

2. Create and maintain a data pipeline for retrieval and evaluation of geospatial data

3. Perform long range and high-speed testing of the LoRa system

2.4 Methods and Materials

2.4.1 LoRa System

 The LoRa system that was created was based on the Semtech SX1276 chip. This chip was

a proprietary chip featuring multichannel spread spectrum communications. Semtech advertised

the following capabilities from the chip: 168 dB maximum link budget, 127 dB dynamic range

received signal strength indicator (RSSI), 20dBm constant RF output vs. V supply. (Semtech, n.d.)

This chip was housed within an Arduino shield which was sourced from Dragino Technology Co.

The Arduino shield was directly compatible with an Arduino Uno. This allowed for quick

assembly and integration of the SX1276 with an Arduino microcontroller. In addition, the Dragino

shield housed a MT3339 style sticker global positioning unit (GPS).

62

Figure 2.3: Dragino LoRa shield

The Arduino shield also had mounting points for external antennas both for LoRa mounting

and for the GPS unit. A 28dB gain 3V SMA style GPS antenna (WGP supply, Unites States) was

sourced for the project to always assure proper GPS fixes. This antenna, seen in Figure 2.3, could

be mounted in various locations such that it was not influenced by the orientation of the Arduino

shield and could be attached to metal surfaces via a magnetic backer. In addition to the GPS

antenna, an antenna tuned for the 915MHz frequency was used to boost the LoRa signals being

sent and received. Initial testing of the unit was performed using a .9 dBi helical antenna that was

received stock with the unit. After initial testing, a 6 dBi HGV-906U omnidirectional antenna (L-

com, United States) was obtained to boost signal strength. The antenna, shown in Figure 2.4, was

an omnidirectional antenna with a 30-degree vertical beam width and 50-ohm impedance. (L-com

n.d.) Also, the antenna could withstand winds of up to 108MPH which made it ideal for high-speed

mobile testing. This 23-inch antenna was attached using N to SMA adapters and could be mounted

with an angled bracket on a mast.

63

Figure 2.4: HGV-906U Antenna and radiation pattern at 960 MHZ (L-com)

To contrast the Dragino Arduino shield, am OLG01 gateway was used to create a

connection point with the end nodes. This gateway was also sourced from Dragino and has built

in 3g/4g capabilities. Within the unit, it is controlled via a 400MHz processor running Linux,

additionally the unit housed 16 MB of flash memory which could be written or read from. The unit

was powered via 12V input and had Wi-Fi access point capabilities for controlling and

programming the unit.

To help in the selection of antennas and appropriate hardware the Egli (1957) pathloss

shown in Equation 2 was utilized to make approximations about the range of the equipment.

Equation 2: 𝑃𝑃𝑃𝑃 = 𝐺𝐺𝐺𝐺 ∗ 𝐺𝐺𝐺𝐺 ∗ �
𝐻𝐻𝐺𝐺 ∗ 𝐻𝐻𝐺𝐺
𝑑𝑑2 �

2

∗ �
40
𝑓𝑓 �

2

Where:

• PL = pathloss(dB)

• Gt = Transmitting antenna gain

• Gr = Receiving antenna gain

• Ht = height of transmitting antenna (m)

• Hr = height of receiving antenna (m)

• d = distance between transmitting and receiving antenna (m)

• f = operating frequency (MHz)

64

2.4.2 Data Processing Pipeline

A pipeline for data retrieval and analysis was necessary for the evaluation of LoRa at long

distance and high speed. GPS points were broadcasted using a mobile end node. Simultaneously,

the same GPS point was recorded via serial into a text file to be used later in the analysis. The

recorded GPS point was then stripped of excess data and transformed into a .csv file with time logs

and location logs. The GPS point that was broadcasted at the end node was received by the gateway

antenna. The point was then recorded as a LoRa packet and sent into Excel for data cleaning and

transformation. The data was then transformed into a .csv file of the same layout as the initially

recorded GPS point. The two .csv files were imported into QGIS for future analysis and

comparison of the sent data and received data. The pipeline was visually represented in Figure 2.5.

Figure 2.5: Data pipeline of GPS points sent and received at end node and gateway

65

2.4.3 System Testing

Testing was carried out at the Agricultural Center for Research and Education (ACRE) at

Purdue University. Testing was done using a mobile truck and stationary tower antenna located at

the center of the farm.

Range Testing

To evaluate the capabilities of the LoRa system, a path was planned through the city of

West Lafayette and though the agricultural sector north of ACRE. To create a valid path through

the city, Radio Mobile Online was used to create raster maps of potential coverages which the

LoRa system could provide. Radio Mobile is an online tool which uses the Irregular Terrain Model

developed by Hufford. (Hufford 1982) The online tool considered many different parameters

which were useful for testing. The tool could be calibrated for antenna type, antenna height,

elevation, line losses, and many other parameters. Radio mobile was calibrated with the same setup

used for testing to gather a proper idea of where and how far coverage would be seen with the

LoRa network. Coverages could be made for 3 distinct setups which were carried out: gateways at

7m, 10m, and 16m. Coverage maps were then overlayed in QGIS, an open-source GIS software,

and path lines for testing were drawn out.

Figure 2.6: 16m High gateway coverage map of West Lafayette

66

From the coverage maps which were created and shown in Figure 2.6, a grid path was

chosen through the high coverage (green) areas. The path chosen in Figure 2.7 traveled 190km

both through rural and urban terrain. This path utilized country and county roads which harvest

operations would be likely to use.

Figure 2.7: Path through coverage map

A stationary gateway was placed at ACRE farms in the center of the pattern and elevated using a

telescoping tower with 12V solar power available. The mobile Arduino end node and was

connected to the back of a truck via a mast, as seen in Figure 2.8 and powered with on board 12V

from laptops.

67

Figure 2.8: Telescoping tower and truck mount

Data was collected in real time as the truck drove the given path. The trucks velocity was

the maximum velocity of each road, with speeds ranging from 50 kmh-1 to 110 kmh-1. In contrast

to the normal star network which LoRa utilizes, end node data was collected directly from the

LG01 gateway. Normal star network utilized the gateway as a bridge between the end nodes and

servers, however, with a lack of broadband connectivity and access to the internet in rural areas it

was imperative that the system be able to pull data directly from the gateway without accessing

the server side as it would in real world applications. As such, utilizing a bash script, RSSI and

LoRa messages were stored directly on the gateway and pulled off the gateway in real time

mimicking real-world applications.

 The route was driven with the telescoping tower in three different configurations, once with

the stationary gateway at each height: 7m, 10m, and 16m. In all three configurations, the end node

was located at a height of 2.4 m from ground height. The route was driven with both low and high

gain antennas to evaluate the impact that each antenna had on signal strength and on signal

reliability.

The end node had the following configuration which maximized range of the system and

additionally maximized robustness to noise. The node was set to transmit using the PA boost pin

available to the chip. As such, the board was transmitting at 20 dBm, which was the maximum

hardware limit set by the FCC. With the high gain antenna, the system reached a transmission level

68

of 26 dBm minus minor cable and connection losses. The chip operated at a spreading factor of 10

and a bandwidth of 125kHz. This configuration produced packets with an on the airtime of 370.7

ms. The mobile end node sent a packet once per 2.4 seconds.

 Arduino programming was done utilizing the open-source IDE available online. The initial

sketch to transmit data utilized prebuilt libraries to make integration and creation of the LoRa

network simpler. The Radiohead library (kenbiba, 2016) was useful in creating sketches to fully

utilize the abilities of the Semtech chip and Dragino shield. This library was coupled with the

TinyGPS library (Lee, 2019) to create sketches that could read NMEA streams from the external

GPS unit. Additionally, for further testing, the LMIC library (Kooijman, 2015) was used to create

sketches which utilized LoRaWAN capabilities and OTAA.

Speed Testing

 After initial testing was finished, further testing was required to determine the accuracy

and use of LoRa under high-speed conditions. Testing was performed in a similar manner as in

previous experiments. However, constraints were placed upon speed and careful attention was

placed on maintaining steady speeds. Testing was performed with gateway at 3.7m of elevation

from ground level. Like the first testing, the mobile end node was placed at the top of a truck for

data transmission. Unlike prior work, the route driven was in a previously established high

reception area seen in Figure 2.9. As such, a low gain antenna was used for ease of testing.

Figure 2.9: High Speed Testing Location

69

 The route taken was approximately 2 km in length in a tangential direction to the gateway.

An initial baseline was taken of the route with 6 stops taken along the way. The truck with the end

node waited at each stop for approximately 2 minutes. After the baseline was taken, a slow pass

of the route was taken at 16 kmh-1. Thereafter, the route was driven at increasing speeds

incrementing by 8 kmh-1 to 105 kmh-1. Each lap had a set amount of acceleration length which was

not tracked, and high speeds laps over 65 kmh-1 were taken twice.

2.5 Results

2.5.1 Range Testing

 Initial testing of the network was performed at ACRE farms at Purdue. With an initial route

due north of the stationary gateway, the system was expected to have range between 8 and 16

kilometers. Line of sight for the area was high with little to no impedances to visibility over a long

range other than the slope of the terrain at various intervals. Tree cover was low to the north and

no large buildings or compounds were directly north of the gateway.

Figure 2.10: 7m gateway north bound testing with a max range of 7600m

Driven path =

Received GPS points =
Gateway =

70

From the initial testing shown in Figure 2.10, the maximum distance that the signal could

be received was 7.6 km from the gateway to node. However, at that distance, signal strength and

reliability were low with only 4 points being recieved. Signal was unexpectedly lost at 5.2 km

from the gateway and only returned on two occasions once at 7.4km and once at 7.7km. Of 55

packets that were sent at that range only four were received. Lidar data from National Resources

Conservation Service (NRCS) was obtained and utilized in QGIS to identify the geographical

landmarks which potentially interfered with the signal. The LiDAR elevation was accurate to

.300m. (Jinha 2020a)

Figure 2.11: 7m gateway path overlayed on elevation raster highlighting missed data points

The elevation data shown in Figure 2.11 proved that there was little terrain change that

would impact signal. The Lidar did show that the points in at the top of the map where slightly

higher with an elevation of 238m compared to the surrounding landscape at 222m potentially

allowing for signal reception and successful packet transfer.

Received GPS points =

 m

m

71

 Further testing was also done to compare the signal strength and range of the gateway when

changing the ground elevation of the gateway.

Figure 2.12: 10m gateway received data points with max range of 10500m

A large difference in coverage was expected when comparing results from the 7m gateway,

shown in Figure 2.12, with the 10m gateway. The extra 3m of height allowed for better line of site

over terrain variance and small obstacles such as trees or bushes. By elevating the gateway by 3

additional meters, the range of the LoRa system increased by over 2.9 km with a total range of

10.5 km. Similar to the 7m gateway the system failed to transmit reliable data as the range

increased. Reliability of the system dropped dramatically at 6.3 km which was a marked

Driven path =

Received GPS points =
Gateway =

72

improvement over the 7m gateway at 5.2 km. The drop in signal could be due to a grove of trees

along the sightline of the signal and thus would inhibit both signals reducing their overall range.

However, the signal could be received when the truck moved east and thus cleared the obstacle

impeding the signal.

In addition to testing at 7m and 16m heights, the gateway was also placed at a height of

16m off the ground. Like the previous routes, the truck was driven north with an eastward dogleg

along the path shown in Figure 2.13.

Figure 2.13: 16m gateway received data points with max range of 8300m

Utilizing the Egli (1957) model from Equation 2, it was expected that the 16m gateway

would have much better signal capabilities. However, the maximum range of the 16m gateway

was 8.3 km, like the 7m gateway. Comparative to the previous tests, the signal was severely limited

above a range of 6.3 km from the gateway. Because of the similarities in signal degradation

between all three tests, it was assumed that some obstacle was obstructing the line of sight between

Driven path =

Received GPS points =
Gateway =

73

the gateway and the end node and thus signal was lost at the same range for all the subsequent

tests. The test showed that it was imperative for LoRa operations that line of sight between the end

nodes and the gateway was always maintained. Without line of sight, the signal loss became too

large for the gateway to obtain a useable symbol and thus corruption or packet loss can occur.

Table 2.1: Packet Reliabilty Within Receiving Range of Gateway

Tower Height Packets Sent Packets Received Success Rate

7m 261 105 40.2%

10m 331 128 38.7%

16m 362 157 43.4%

Table 2.1 shows the direct reliability of the LoRa signal that was experienced at highway

speeds of approximately 95 kmh-1 while moving with little angular velocity to t

he gateway itself. Only packets sent within the reliable data range were considered and

extreme outliers were corrected for packet reliability. From this, a large packet drop was seen

across the different configurations, independent of the height of the gateway, when the signal was

steady. Upon closer inspection of the packets as viewed in Figure 2.14, at regular intervals the

signal being sent from the end node was not received by the gateway due to weak signal.

Figure 2.14: Packet reliability

Driven path =

Received GPS points =

74

As can be seen in Figure 2.14 the gateway received approximately one in three sent signals from

the end node even when within the range of the LoRa signal.

2.5.2 Secondary Range Testing

 Continued testing was done utilizing the capabilities of the telescoping tower to further

understand the range of the network, especially with regards to larger areas and more dynamic

land coverages. As such, data was collected from areas all around West Lafayette. In addition to

the range testing, line of sight was to be evaluated with the use of local forests in the area. Urban

areas were also evaluated to ascertain the capabilities of the LoRa signal. However, urban

landscapes were unable to have direct line of sight to the gateway without heavy forest initially

impeding the signal.

Figure 2.15: Cross valley testing of LoRa signal with a 16m gateway

Driven path =

Received GPS points =
Gateway =

75

As can be seen from Figure 2.15 the end node signal did not penetrate the landscape to

make it back to the gateway. The heavy forest inhibited the signal to the point where no readable

data was received. Closer inspection of the data showed how drastically the wooded area blocked

the signal transmission.

Figure 2.16: Forest impeding line of sight at close range of gateway

Figure 2.16 shows the immediate the effect the forest had on the signal that was received.

Previous testing revealed that the signal could be received at over 10 km in distance, however,

from this test the signal was only received at 1.2 km. Due to the strong restriction in signal range,

it was hypothesized that the signal could not propagate south past the heavily forested area to reach

the other side of the valley. Even if the signal had the ability reach that high range and pass over

the flat lands and low valley, the forested area would cut the ability of the signal to such a high

degree that no packets would make it to or from the gateway due to the heavy vegetation.

 More testing was performed on the system to identify the potential range with a higher

variety of land covers. It was also critical to identify if LoRa could penetrate through small,

wooded areas and still receive signal on the other side. Data was collected utilizing the northern

Driven path =

Received GPS points =
Dense Forest

76

fields of the ACRE properties which had wide areas with little to no ground cover which could

interfere with the radio signal.

Figure 2.17: 7m gateway path and received packets

 Figure 2.17 highlights the path that was driven to fully test the properties of the LoRa signal

at ACRE farms. The maximum range that the system was able to achieve with the tested route was

10 km. This testing aligned with previous testing that was done, however, the range of this test in

comparison was approximately 2.5 km longer than prior testing as seen in Figure 2.10. Due to the

unreliable nature of the radio as established in Table 2.1, the increase in range could be due to

mere chance that more packets were received at a greater distance than before. Alternatively, other

factors outside the scope of the experiment could be a root cause of the difference in results. These

factors could range from weather conditions to relative humidity to speed of the end node varying.

 The results from the test highlight some more interesting useful information to identify.

The data collection especially highlighted the effect that line of sight had on the network of LoRa

signals which can be seen in Figure 2.18.

Driven path =

Received GPS points =
Gateway =

77

Figure 2.18: Line of sight infringement

Following the tree line just northeast of the gateway tower, a line was drawn beyond which,

little to no LoRa signals are received as seen in Figure 2.18. The forest coverage on the ground,

seen in red, severely restricts the capabilities of the system to send and receive messages.

 This testing was also performed with the gateway at 16m to identify the difference an

additional 31’ of height would add or retract from the range of the system. The full data collection

of the 16m gateway can be seen in Figure 2.19.

Driven path =

Received GPS points =
Gateway =

78

Figure 2.19: 16m gateway testing path with received points

From Figure 2.19 it can be seen in contrast to the 7m gateway in Figure 2.17, the higher

elevation gateway performed poorer than the lower gateway. Curiously, it was expected that the

higher elevation of the gateway would allow for more terrain clearance and provide a better line

of sight for the mobile end node. From the testing however, the 16m gateways maximum range

was only 8.16 km. Testing done prior also confirmed this maximum range of the gateway as seen

in Figure 2.13. From Equation 2 it was seen that the height of the gateway should increase the

range of the signal by a factor of the square of the heights. As such the results from the 16m

gateway were unexpected. By increasing the height of the gateway, the overall range of the system

was reduced by 1850 meters. It was expected to see an increase of 3.7 km.

This decrease in range was an unexpected result from the testing. Continued testing was

also done with the gateway at 10m ground height to determine any large differences in previous

testing.

Driven path =

Received GPS points =
Gateway =

79

Figure 2.20: 10m gateway testing path with received points highlighting tree coverage

The data from the 10m gateway produced similar results to the 16m gateway. The southern

legs of the 10m gateway test highlighted the inability of the LoRa signal when pertaining to

piercing through heavy forest and ground cover. As seen in Figure 2.20 the signals were dropped

at a rate of near 100% when south of the tree line. The heavy forest did not allow for signal to pass

through. The maximum range received from the 10m testing was 8300 meters. This coincided with

the reliable data signal range seen in Figure 2.12. However, from the testing of the 10m tower,

distinct packet loss was seen along the route, specifically along the most northern leg. Previous

testing had shown that area to be within the range of the gateway and yet, a large portion of packets

were lost along the route. Like the 16m gateway, the expected outcome of the testing was greater

than what was experimentally obtained.

Packet loss across all three gateways heights was measured and compared as seen in Table

2.2. This was collected only in a 10 km distance in areas where signal strength was high and could

be counted as moderately reliable, thus ignoring areas with no signal reception of any manner.

Driven path =

Received GPS points =

Tree Line =

Gateway =

80

Table 2.2: Packet reliability of high signal strength

Tower Height Packets Sent Packets Received Success Rate

7m 411 188 45.7%

10m 259 74 28.5%

16m 411 167 40.6%

In addition, as all three tests were performed in the same area with a data rate of 0.41 Hz,

numerical values for sent and received packets within an area can be collected and compared.

Directly north of ACRE was an area where high signal was obtained for all three gateways across

multiple tests, as such a suitable area to compare signal strength of the three heights in the same

area can be selected in the fields north of ACRE. This allows for an accurate comparison of the

packet reliability in a broad area free from obstacles.

Table 2.3: Varied heights gateway packet reliability

Tower Height Packets Sent Packets Received Success Rate

7m 978 210 21.5%

10m 703 90 12.8%

16m 978 224 22.9%

Table 2.3 highlights some potential issues that LoRa faces when being utilized in mobile

applications. In an area where signal strength has been proven to be strong and where messages

are reaching the gateway, the reliability rate of the packet reception is remarkably low. The 10m

gateway has extremely poor values in comparison to the 16m and 7m gateway. This potentially

could be accounted for based on the position of the gateway upon setup of the telescoping tower.

The 10m test varied in that the gateway signals could have been blocked by the material of the

tower, while testing of the 7m and 16m gateway took this into account when positioning the

gateways.

81

Figure 2.21: Illustration of tower material interference with LoRa signal reception

In Figure 2.21, it can be seen how the material of the tower itself could inhibit the signals

from making it to the antenna of the gateway at near and far ranges. As such, signals originating

from the northwest of the tower could be obscured from view of the gateway. However, this

phenomenon does not explain the poor performance of the 10m gateway with respect to the routes

that were due north of its position. In addition, as seen in Table 2.2Table 2.2 the 10m gateway also

performed poorly when receiving signals in high reliability areas with a success rate of 28.5%.

Curiously, the 7m gateway outperformed the 16m gateway by 1700m for total range. Table

2.2 and Table 2.3 show similar results when comparing packet loss across the two systems. From

Table 2.2 the 16m gateway had a higher packet reliability but a lower overall range. It can be

inferred then that the taller gateway had a more reliable signal to closer instances while having a

poorer overall range. This was most likely due to the height advantage that the gateway had over

the 7m tall tower. However, it was surprising that the 7m tower still outperformed the other

gateway by 1700m.

The 7m gateway could have been performing so much better than the other gateway due to

the high gain of the mobile antenna. Figure 2.22 showed how radiation pattern of the antenna

coupled with the uneven terrain could have created a situation with poor reception for the taller

gateway on sloped terrain. Thus, the taller gateway would have better reliability when it was

connected due to its height, however it may not have had the range due to the signal radiation

missing the height of the gateway and impacting the ground. This could also explain why the 7m

82

gateway had better results than the 10m gateway as it was most likely in a more calibrated height

than the others, thus giving it more range but poorer reliability due to its height.

Figure 2.22: High gain antennas irradiation patterns on uneven terrain – not to scale

 To further test this, the high gain antenna was removed from the end node to identify what

effect it had on the system and if better results could be captured from the higher elevation

gateways.

Figure 2.23: Received points with low gain antenna testing

Driven path =

Received GPS points =

83

As can be seen in Figure 2.23, the max range of the system without the high gain antenna

was 1110 meters from the gateway. This testing solidified the need for a properly calibrated

antenna when utilizing LoRa systems as high gain antennas drastically improved the output of the

system in comparison to lower gain antennas.

The full set of trial runs and intermediate routes could be compiled to obtain a full coverage

map of ACRE farms for all the varying setups of the gateways. From this coverage map, an idea

of dead spots on the farm and other high coverage areas can be obtained.

Figure 2.24: ACRE LoRa coverage map from testing runs connecting to 7, 10, and 16m gateway

This map highlights a major key to utilizing mobile LoRa: line of sight is top priority. From

Figure 2.24 it can be seen how drastically the tree coverage and landscape shaped the total area of

the network signal. South of the gateway no signals were able to penetrate the wooded area which

ran along the length of the road. To the northeast, a 45-degree line of coverage can be seen which

follows the tree line of the forest. From this, it can be assumed that care must be taken when placing

gateways for network creation.

Driven path =

Received GPS points =

84

The full coverage map also provides more useful insight. Figure 2.24 shows that there is

reliable coverage with a maximum reach of 13 km from end to end. Additionally, the gateways

cover over 95 square kilometers of land. However, the reliability of the network was extremely

poor. Table 2.2 and Table 2.3 showed a reliability of approximately 40% in areas where signal was

regular and only a 23% reliability in areas where signal was known to be strong but signal was

irregular. This irregularity can also be seen when comparing the full coverage map to individual

tests. The western half of the coverage area was not received during testing as seen in Figure 2.20

but via the coverage map the area tested at that time has full reception and can be received by the

gateway at various heights. Due to this, the unreliability of the system is extremely high, when

performing optimally, a large area is covered and would be useful for logistical tracking, however,

the network does not always receive signals from those areas that had previously been receiving

packets. This could be due to the gateway acquiring the signal of the end node as it travels across

the landscape. At high speeds, a delay of 1 minute in acquiring the signal can results in kilometers

of missed packets.

2.5.3 Speed Testing

To verify this high-speed interaction, testing was done along the same strip with the

gateway set at the same height for each pass. The speed of the mobile node was increased to

ascertain any differences in signal due to the speed of the end node. It was hypothesized that at

higher speeds, the gateway would struggle to obtain signal from the gateway and in addition have

a higher packet loss.

85

Figure 2.25: Speed testing route

 The testing path shown in Figure 2.25 was performed from 8 kmh-1 to 96 kmh-1, and the

maximum range of the test was 2400 meters, and the data rate was 0.41 Hz. Additionally, the area

that testing was performed in was a well know high signal strength area. As such, it was expected

that the gateway would be able to see the end node in any stationary configuration.

Table 2.4: High speed packet reliability at 2400m

Speed (kmh-1) Packets Sent Packets Received Success Rate

0 123 100 81%

8 292 225 77%

16 230 121 53%

24 163 86 53%

32 117 60 51%

40 102 50 49%

48 76 36 47%

64 61 27 44%

96 35 15 43%

Driven path =

86

Table 2.4 the high success rate of the baseline stationary testing can be seen. When stable

and stationary in the field the LoRa end node transmitted strong steady signals to the gateway with

very little packet loss. Diving further into the baseline data, the dropped packets were concentrated

at the start of the stationary positions. Thus, the packets that were lost when performing stationary

testing, could have been a result of the change in velocity from high speed to 0 kmh-1 when the

truck came to a stop. The signal would not have had a chance to be connected until after a few

seconds had passed at 0 kmh-1, thus the assumed success rate of the baseline can be marginalized

as slightly above 81%.

Figure 2.26: Reliability vs travel speed at 0.41 Hz data rate at 2400m

Visualizing the data from Table 2.4 in Figure 2.26, a sharp decline in packet success rate

can be seen around the 5mph mark with a steady decline in packet reliability as speed increases.

The high-speed testing reveals that the previous unreliability issues with the gateway were most

likely due to the speed of the end node as it traveled cross country. The effects of this can be seen

dramatically in Figure 2.20 with the 10m gateway. When testing was done on that gateway, the

mobile end node was traveling eastward across the northern routes at speeds excess of 96 kmh-1.

From the high-speed testing, the packet reliability of that route was at best 43% disregarding other

Pe
rc

en
t R

ec
ei

ve
d

Speed kmh-1

87

factors such as line of sight, obstacles, or distance to gateway. When considering the high-speed

aspect of the testing, the lack of coverage on the western portion of the map is confirmed as the

signal was struggling to be acquired at such high speeds. This would confirm the large difference

in packet loss when comparing the total coverage map of ACRE with the coverage test of the 10m

gateway. This high-speed packet loss effect can also be seen in the other coverages including the

7m gateway and the 16m gateway.

The high-speed effect also showcased the increase in packet loss around obstacles or

intrusions in line of sight. When navigating around obstacles which would impede the LoRa signal,

the slower speeds had better reconnecting times with the gateway when compared to the increased

speed testing. Additionally, the high speed of the end node increased the effect that the obstacle

had on the signal. Intrusions into the line of sight would cause much larger signal loss when

compared at high speeds when compared with lower speeds.

Figure 2.27: 8kmh-1 and 96 kmh-1 packet reception at 2400m

 Figure 2.27 highlights the effect that the high speed had on packet loss around line-of-sight

obstacles. As seen by the dark blue, the driven path extends equally along the route, however, at

two distinct points obstacles stop the LoRa signal as seen by the two gaps in the cyan markets.

Signal were received in between the two points, yet the 96 kmh-1 testing had no reception through

the whole area. The obstacles impeded the signal such that the gateway fully lost reception of the

signal and reacquisition took much long at speed. Thus, a large gap was seen where coverage drops

and remains unreachable in an area where it is known to have high signal.

Driven path =

Received 96 kmh-1 GPS points =

Received 8 kmh-1 GPS points =

88

2.6 Conclusion

 A LoRa network was created in order fully test the capabilities of the technology at ACRE

farms in West Lafayette. A mobile end node was used in conjunction with gateways at varying

heights to identify and create a coverage map of the area. Further testing was performed on the

network to identify the effect that high speed had on the system. From the testing it was found that

under best circumstances, the network had a packet reliability of 45.7% while testing using a

mobile end node. This reliability decreased further when looking at set areas where signal strength

was known to be acceptable. High speed testing revealed that at speeds of 16 kmh-1 the reliability

of the network drops by 24% in comparison to 5mph. The high-speed aspect of fleet tracking

makes LoRa an unsuitable technology for its use in agriculture. Similar tests produced wide

varieties of coverage maps using the same techniques. The high speed interfered too much with

the signal reliability to be utilized it in a fleet tracking manner for grain trucks. In addition, testing

revealed the effect line of sight had on the system. Heavily wooded areas produced dead zones

which would not allow signal through it. The terrain of rural America would heavily interfere with

signal with regards to dynamic systems such as grain truck pathing. As such, LoRa is not a suitable

technology for use in mobile high speed fleet tracking. However, from the analysis of the data,

LoRa could be utilized for in field tracking of slower machines such as combines and grain carts,

under the condition that line of sight can be made between machine and gateway.

89

BIBLIOGRAPHY

Amiama, Carlos, José M. Pereira, Angel Castro, and Javier Bueno. 2015. “Modelling Corn Silage
Harvest Logistics for a Cost Optimization Approach.” Computers and Electronics in
Agriculture 118:56–65. doi: 10.1016/j.compag.2015.08.024.

Anon. 2020b. “(Infographic) The U.S. Farm Labor Shortage.” AgAmerica. Retrieved June 16,
2021 (https://agamerica.com/blog/the-impact-of-the-farm-labor-shortage/).

Bochtis, Dionysis, and Claus Sørensen. 2009. “The Vehicle Routing Problem in Field Logistics
Part I.” Biosystems Engineering 104. doi: 10.1016/j.biosystemseng.2009.09.003.

Bronars, Stephen. 2015. “A Vanishing Breed How the Decline in U.S. Farm Laborers Over the
Last Decade Has Hurt the U.S. Economy and Slowed Production on American Farms.”
Partnership for a New American Economy 25.

Buckmaster, Dennis R., and James W. Hilton. 2005. “Computerized Cycle Analysis of Harvest,
Transport, and Unload Systems.” Computers and Electronics in Agriculture 47(2):137–47.
doi: 10.1016/j.compag.2004.11.015.

Busato, Patrizia, Alessandro Sopegno, Niccolò Pampuro, Luigi Sartori, and Remigio Berruto.
2019. “Optimisation Tool for Logistics Operations in Silage Production.” Biosystems
Engineering 180:146–60. doi: 10.1016/j.biosystemseng.2019.01.008.

Farooq, Muhammad Shoaib, Shamyla Riaz, Adnan Abid, Tariq Umer, and Yousaf Bin Zikria.
2020. “Role of IoT Technology in Agriculture: A Systematic Literature Review.”
Electronics 9(2):319. doi: 10.3390/electronics9020319.

Haffar, Imad, and Ramzi Khoury. 1992. “A Computer Model for Field Machinery Selection under
Multiple Cropping.” Computers and Electronics in Agriculture 7(3):219–29. doi:
10.1016/S0168-1699(05)80021-3.

Heizinger, Valentin, and Heinz Bernhardt. n.d. “Algorithmic Efficiency Analysis of Harvest and
Transport of Biomass.” 5.

Hufford, George A. 1982. “A Guide to the Use of the ITS Irregular Terrain Model in the Area
Prediction Mode.”

Ji-chun Zhao, Jun-feng Zhang, Yu Feng, and Jian-xin Guo. 2010. “The Study and Application of
the IOT Technology in Agriculture.” Pp. 462–65 in 2010 3rd International Conference on
Computer Science and Information Technology. Vol. 2.

J. J. Egli, "Radio Propagation above 40 MC over Irregular Terrain," in Proceedings of the IRE,

vol. 45, no. 10, pp. 1383-1391, Oct. 1957, doi: 10.1109/JRPROC.1957.278224.

90

Jung, Jinha. 2020a. “Indiana DEP Lidar Data Products Data Accuracy and Data Access.”
Https://Lidar.Jinha.Org/. Retrieved July 6, 2021
(https://lidar.jinha.org/docs/Indiana_3DEP_Lidar_Data_Products_Data_Accuracy_and_D
ata_Access.pdf).

Kane, Tom, and Bernard Borghei. 2017. “WIA_RuralAmerica-2.Pdf.” WIA. Retrieved June 23,
2021 (https://wia.org/wp-content/uploads/WIA_RuralAmerica-2.pdf).

Kenbiba. 2016. GitHub Repository, https://github.com/kenbiba/RH-RF95.

Khanna, Abhishek, and Sanmeet Kaur. 2019. “Evolution of Internet of Things (IoT) and Its
Significant Impact in the Field of Precision Agriculture.” Computers and Electronics in
Agriculture 157:218–31. doi: 10.1016/j.compag.2018.12.039.

Kooijman, Matthijs. (2015). GitHub Repository https://github.com/Matthijskooijman/Arduino-
Lmic.

Lakhwani, Kamlesh, Hemant Gianey, Niket Agarwal, and Shashank Gupta. 2019. “Development
of IoT for Smart Agriculture a Review.” Pp. 425–32 in Emerging Trends in Expert
Applications and Security. Vol. 841, Advances in Intelligent Systems and Computing,
edited by V. S. Rathore, M. Worring, D. K. Mishra, A. Joshi, and S. Maheshwari.
Singapore: Springer Singapore.

Lavric, Alexandru, and Valentin Popa. 2018. “Performance Evaluation of LoRaWAN
Communication Scalability in Large-Scale Wireless Sensor Networks.” Wireless
Communications and Mobile Computing 2018:e6730719. doi: 10.1155/2018/6730719.

Layton, Alexander W., Yaguang Zhang, James V. Krogmeier, and Dennis R. Buckmaster. 2017.
“Determining Harvesting Efficiency via Multiple Combine GPS Logs.” in 2017 Spokane,
Washington July 16 - July 19, 2017. American Society of Agricultural and Biological
Engineers.

Lee, Junhyuk. (2019). GitHub Repository https://github.com/Neosarchizo/TinyGPS.

L-com. n.d. “HyperLink Wireless 800/900 MHz 6 DBi High Performance Omnidirectional
Antenna.” L-Com Global Connectivity. Retrieved June 24, 2021a (https://www.l-
com.com/Images/Downloadables/Datasheets/ds_HGV-906U.pdf).

Petäjäjärvi, Juha, Konstantin Mikhaylov, Marko Pettissalo, Janne Janhunen, and Jari Iinatti. 2017.
“Performance of a Low-Power Wide-Area Network Based on LoRa Technology: Doppler
Robustness, Scalability, and Coverage.” International Journal of Distributed Sensor
Networks 13(3):1550147717699412. doi: 10.1177/1550147717699412.

Roekel, Ryan J. Van, and Jeffrey A. Coulter. 2011. “Agronomic Responses of Corn to Planting
Date and Plant Density.” Agronomy Journal 103(5):1414–22. doi:
10.2134/agronj2011.0071.

91

Semtech. n.d. “SX1276 | 137MHz to 1020MHz Long Range Low Power Transceiver | Semtech.”
Retrieved June 24, 2021b (https://www.semtech.com/products/wireless-rf/lora-
core/sx1276).

Tummers, J., A. Kassahun, and B. Tekinerdogan. 2019. “Obstacles and Features of Farm
Management Information Systems: A Systematic Literature Review.” Computers and
Electronics in Agriculture 157:189–204. doi: 10.1016/j.compag.2018.12.044.

Turner, Aaron P. 2018. “Development of a Decision Support System for Capacity Planning from
Grain Harvest to Storage.” University of Kentucky Libraries.
doi.org/10.13023/etd.2018.376

Zhang, Yaguang, Aaron Ault, James V. Krogmeier, and Dennis Buckmaster. 2017. “Activity
Recognition for Harvesting via GPS Tracks.” in 2017 Spokane, Washington July 16 - July
19, 2017. American Society of Agricultural and Biological Engineers.

Zhang, Yaguang, James V. Krogmeier, Aaron Ault, and Dennis Buckmaster. 2020. “APT3:
Automated Product Traceability Trees Generated from GPS Tracks.” Transactions of the
ASABE 63(3):571–82. doi: 10.13031/trans.13384.

92

APPENDIX

Code

Data Frame Join

-*- coding: utf-8 -*-

"""

Created on Tue Oct 19 10:54:31 2021

@author: loghe

"""

CREATE SIUNGULAR DATA FRAME from mismatched cels

import pandas as pd

date = "10-2"

graincart = pd.read_csv(r'C:/Users/loghe/Desktop/ACRE unload/cleaned grain cart data/' + date

+ '.csv')

combine = pd.read_csv(r'C:/Users/loghe/Desktop/ACRE unload/cleaned S660 data/' + date +

'.csv') # s660

combine = pd.read_csv(r'C:/Users/loghe/Desktop/ACRE unload/cleaned S670 data/' + date

+ '.csv') # s660

freightliner = pd.read_csv(r'C:/Users/loghe/Desktop/ACRE unload/cleaned freight data/' + date +

'.csv')

international = pd.read_csv(r'C:/Users/loghe/Desktop/ACRE unload/cleaned int data/' + date +

'.csv')

93

graincart = graincart.set_index(graincart['TIME'])

graincart = graincart.dropna()

graincart.index = pd.to_datetime(graincart.index)

graincart.index = graincart.index + pd.Timedelta(hours = -5)

combine = combine.set_index(combine['TIME'])

combine.index = pd.to_datetime(combine.index)

combine.index = combine.index + pd.Timedelta(hours = -5)

freightliner = freightliner.set_index(freightliner['TIME'])

freightliner.index = pd.to_datetime(freightliner.index)

freightliner.index = freightliner.index + pd.Timedelta(hours = -5)

international = international.set_index(international['TIME'])

international.index = pd.to_datetime(international.index)

international.index = international.index + pd.Timedelta(hours = -5)

df= combine.join(graincart,lsuffix = " S660" ,rsuffix =' Grain Cart')

df = df.join(international, rsuffix = ' international')

df = df.join(freightliner, rsuffix = ' freightliner')

df = df.drop(labels = ['DAY S660','Hours S660','Minutes S660','Seconds S660', 'Year S660' ,

 'Month S660','DAY Grain Cart','Hours Grain Cart','Minutes Grain Cart',

 'Month Grain Cart','Seconds Grain Cart','Year Grain Cart','TIME S660',

 'TIME','TIME Grain Cart','D1','D5','D0','ABSTime S660',

 'TIME freightliner','ABSTime Grain Cart',

 'Heading Grain Cart'

],axis = 1) #'Unnamed: 0 S660','Unnamed: 0 Grain Cart',

df['Lat Grain Cart'].fillna(method = 'ffill',inplace = True)

df['Long Grain Cart'].fillna(method = 'ffill',inplace = True)

94

df['Lat int'].fillna(method = 'ffill',inplace = True)

df['Long int'].fillna(method = 'ffill',inplace = True)

df['Lat freight'].fillna(method = 'ffill',inplace = True)

df['Long freight'].fillna(method = 'ffill',inplace = True)

df.to_csv(r'C:/Users/loghe/Desktop/ACRE unload/combined data/'+ date + ' combined.csv')

State algorithm

-*- coding: utf-8 -*-

"""

Created on Wed Apr 21 22:25:18 2021

@author: loghe

"""

SCRIPT FOR COMBINED DATA

import pandas as pd

import math

from math import radians, cos, sin, asin, sqrt

import numpy as np

date2 = "10-2"

95

perfected = pd.read_csv(r'C:/Users/loghe/Desktop/ACRE unload/full data/' + date2 + '/combined

data.csv')

perfected = pd.read_csv(r'C:/Users/loghe/Desktop/ACRE unload/cleaned combined data points/'

+ date2 + '.csv')

perfect_S660 = perfected['state'].tolist()

perfect_S660_index = perfected.TIME

perfect_grain_cart = perfected['Cart State'].tolist()

perfect_Grain_Cart = perfected['Cart state'].tolist()

def script(speed , gps_offset , list_length, closing_speed, truck_gps_offset):

 tic = 1

 for zz in range(tic):

 # df = pd.read_csv(r'C:/Users/loghe/Desktop/ACRE unload/full data/' + date2 + '/combined

data.csv')

 df = pd.read_csv(r'C:/Users/loghe/Desktop/ACRE unload/cleaned combined data points/' +

date2 + '.csv')

 df = df[int(len(df)/(tic)*zz) : int(len(df)/(tic)*(1 + zz))]

 S660LAT = df['Lat S660'].tolist() #combine

 S660LONG = df['Long S660'].tolist()

 # S660SPEED = df['SPEEDS660'].tolist()

 Grain_CartLAT = df['Lat Grain'].tolist() #cart

 Grain_CartLONG = df['Long Grain'].tolist()

 # Grain_CartSPEED = df['SPEEDGrain_Cart'].tolist()

96

 internationalLAT = df['Lat int'].tolist() #truck

 internationalLONG = df['Long int'].tolist()

 # internationalSPEED = df['SPEEDinternational'].tolist()

 # ih19LAT = df['LATih19'].tolist() #truckpd

 # ih19LONG = df['LONGih19'].tolist()

 # # ih19SPEED = df['SPEEDih19'].tolist()

 freightlinerLAT = df['Lat freight'].tolist() #truck

 freightlinerLONG = df['Long freight'].tolist()

 # freightlinerSPEED = df['SPEEDfreightliner'].tolist()

 # df = df.set_index(df['DATE'])

 dftime = df.index.tolist()

 f = open(r'C:/Users/loghe/Desktop/unloads/STATEMACHINE/' + date2 +'interim.txt',"w")

 f.close

 f = open(r'C:/Users/loghe/Desktop/unloads/STATEMACHINE/' + date2 + 'interim.txt',"a")

 state = ''

 speedS660 =[]

 speedGrain_Cart = []

 speedinternational = []

 # speedih19 = []

 speedfreightliner = []

97

 statelist = []

 def haversine(lon1, lat1, lon2, lat2):

 """

 Calculate the great circle distance between two points

 on the earth (specified in decimal degrees)

 """

 # convert decimal degrees to radians

 lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2])

 # haversine formula

 dlon = lon2 - lon1

 dlat = lat2 - lat1

 a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2

 c = 2 * asin(sqrt(a))

 r = 3959 # Radius of earth in mi. Use 3959 for miles

 return c * r * 3600

 for j in range(len(dftime)):

 speedS660.append(haversine(S660LONG[j-1], S660LAT[j-1], S660LONG[j],

S660LAT[j]))

 speedGrain_Cart.append(haversine(Grain_CartLONG[j-1], Grain_CartLAT[j-1],

Grain_CartLONG[j], Grain_CartLAT[j]))

 speedinternational.append(haversine(internationalLONG[j-1], internationalLAT[j-1],

internationalLONG[j], internationalLAT[j]))

 # speedih19.append(haversine(ih19LONG[j-1], ih19LAT[j-1], ih19LONG[j],

ih19LAT[j]))

 speedfreightliner.append(haversine(freightlinerLONG[j-1], freightlinerLAT[j-1],

freightlinerLONG[j], freightlinerLAT[j]))

98

 speedS660[0] = 0

 speedinternational[0] = 0

 speedGrain_Cart[0] = 0

 # speedih19[0] = 0

 speedfreightliner[0] = 0

 #calculate moving average of the speed the length of the window and place in a holder

 window = 5

 intermediate_avspeedS660 = np.convolve(speedS660, np.ones(window)/window,

mode='valid')

 intermediate_avspeedGrain_Cart = np.convolve(speedGrain_Cart,

np.ones(window)/window, mode='valid')

 intermediate_avspeedinternational = np.convolve(speedinternational,

np.ones(window)/window, mode='valid')

 # intermediate_avspeedih19 = np.convolve(speedih19, np.ones(window)/window,

mode='valid')

 intermediate_avspeedfreightliner = np.convolve(speedfreightliner,

np.ones(window)/window, mode='valid')

 avspeedS660 = []

 avspeedGrain_Cart = []

 avspeedinternational = []

 avspeedfreightliner = []

 # avspeedih19 = []

 # fixes the first portion of the window due to no moving average there and place into final

average speed list for each

 for i in range(window-1):

 avspeedS660.append(speedS660[i])

99

 for i in range(len(intermediate_avspeedS660)):

 avspeedS660.append(intermediate_avspeedS660[i])

 for i in range(window-1):

 avspeedGrain_Cart.append(speedGrain_Cart[i])

 for i in range(len(intermediate_avspeedGrain_Cart)):

 avspeedGrain_Cart.append(intermediate_avspeedGrain_Cart[i])

 for i in range(window-1):

 avspeedinternational.append(speedinternational[i])

 for i in range(len(intermediate_avspeedinternational)):

 avspeedinternational.append(intermediate_avspeedinternational[i])

 # for i in range(window-1):

 # avspeedih19.append(speedih19[i])

 # for i in range(len(intermediate_avspeedih19)):

 # avspeedih19.append(intermediate_avspeedih19[i])

 for i in range(window-1):

 avspeedfreightliner.append(speedfreightliner[i])

 for i in range(len(intermediate_avspeedfreightliner)):

 avspeedfreightliner.append(intermediate_avspeedfreightliner[i])

 """USES MPH FROM HAVERSINE"""

100

 """FIRST STATE MACHINE FOR COMBINE

 #

 #

 #

 """

 # gps_offset = .00017

 for j in range(len(dftime)):

 # """setup state machine and state swaps"""

 #harvest moving and not near grain cart

 if (avspeedS660[j] >= speed) and (abs(S660LAT[j]-Grain_CartLAT[j]) >= gps_offset or

abs(S660LONG[j]-Grain_CartLONG[j]) >= gps_offset):

 state = "harvest"

 # statelist.append('1')

 statelist.append('harvest')

 #unload on go - moving and near cart - and similar speed as prior

 elif (avspeedS660[j] >= speed) and (abs(S660LAT[j]-Grain_CartLAT[j]) <= gps_offset

and abs(

 S660LONG[j]-Grain_CartLONG[j]) <= gps_offset) and abs(avspeedS660[j] -

avspeedGrain_Cart[j]) < closing_speed :

 state = "onthego"

 # statelist.append('2')

 statelist.append('on the go')

 #harvest - moving and near cart but not same speed

101

 elif (avspeedS660[j] >= speed) and (abs(S660LAT[j]-Grain_CartLAT[j]) <= gps_offset

and abs(

 S660LONG[j]-Grain_CartLONG[j]) <= gps_offset) and abs(avspeedS660[j] -

avspeedGrain_Cart[j]) >= closing_speed :

 state = "harvest"

 # statelist.append('2')

 statelist.append('harvest')

 #stationary unload - not moving and near cart and similar speed

 elif (avspeedS660[j] < speed) and (abs(S660LAT[j]-Grain_CartLAT[j]) <= gps_offset and

abs(

 S660LONG[j]-Grain_CartLONG[j]) <= gps_offset) and abs(avspeedS660[j] -

avspeedGrain_Cart[j]) < closing_speed:

 state = "stationary"

 # statelist.append('3')

 statelist.append('stationary unload')

 #idle - not moving and near cart and not similar speed

 elif (avspeedS660[j] < speed) and (abs(S660LAT[j]-Grain_CartLAT[j]) <= gps_offset and

abs(

 S660LONG[j]-Grain_CartLONG[j]) <= gps_offset) and abs(avspeedS660[j] -

avspeedGrain_Cart[j]) >= closing_speed:

 state = "idle"

 # statelist.append('3')

 statelist.append('idle')

 #idle - not moving and not near cart

 elif (avspeedS660[j] < speed) and (abs(S660LAT[j]-Grain_CartLAT[j]) > gps_offset or

abs(

 S660LONG[j]-Grain_CartLONG[j]) > gps_offset):

 state = "idle"

102

 # statelist.append('3')

 statelist.append('idle')

 #check for na

 elif math.isnan(Grain_CartLAT[j]) or math.isnan(Grain_CartLONG[j]) or

math.isnan(S660LAT[j]) or math.isnan(S660LONG[j]):

 statelist.append('5')

 #catch all for states

 else :

 statelist.append('6')

 # """ start of states and state work"""

 S660_state = statelist

 updatedstate = statelist

 df_S660 = pd.DataFrame(S660_state)

 df_S660.columns = ['STATE']

 df_S660['SHIFT'] = df_S660.STATE.shift(periods = -1, fill_value = 1)

 shift = df_S660['SHIFT'].to_list()

 step = [0] * len(shift)

 count = [0] * len(shift)

 p = 0

103

 #sets the step based on the differences in the offset we use this step later to fix the "true state"

also creates the count of in a row counter

 for i in range(len(shift)):

 if S660_state[i] != shift[i]:

 step[i] = S660_state[i]

 for i in range(len(shift)):

 if step[i] != 0 :

 count[i] = 0

 p = 0

 elif step[i] == 0 :

 p = p + 1

 count[i] = p

 df_S660['STEP'] = step

 df_S660['COUNT'] = count

 df_S660['COUNT'] = df_S660.COUNT.shift(periods = 1, fill_value = 1)

 df_S660_reduced = df_S660.loc[(df_S660['STEP'] != 0) & (df_S660['COUNT'] >

list_length)]

 S660_time = df_S660_reduced.index.tolist()

 time =[0]* len(df_S660_reduced)

 for i in range(len(S660_time)):

 time[i] = dftime[S660_time[i]]

104

 df_S660_reduced['TIME'] = time

 del df_S660_reduced['SHIFT']

 del df_S660_reduced['STEP']

 index = list(df_S660_reduced.index.values)

 statelist = df_S660_reduced['STATE'].tolist()

 countlist = df_S660_reduced['COUNT'].tolist()

 updatedstate_S660 = [0] * len(S660LAT)

 #changes statelist with the updated states. this will apply backwards for unkown areas where

it flips bewtween states

 for i in range(len(index)-1):

 for j in range(index[i],index[i+1]):

 updatedstate_S660[j] = df_S660_reduced.STATE.iloc[i+1]

 for i in range(index[0]):

 updatedstate_S660[i] = statelist[0]

 for i in range(index[-1],len(updatedstate_S660)):

 updatedstate_S660[i] = statelist[-1]

 """added work for grain cart to truck unloads

 ###

 #

 #

 #

 #

 """

105

 cart_state = [0]*len(updatedstate)

 #these are repeated values from above which can be changed for the grain cart state machine

 # gps_offset = .00017

 for j in range(len(cart_state)):

 ##on the go

 if (avspeedGrain_Cart[j] >= speed) and (abs(S660LAT[j]-Grain_CartLAT[j]) <=

gps_offset and abs(

 S660LONG[j]-Grain_CartLONG[j]) <= gps_offset) and abs(avspeedS660[j] -

avspeedGrain_Cart[j]) < closing_speed:

 cart_state[j] = "on the go"

 ##transporting - moving and near cart but not same speed

 elif (avspeedGrain_Cart[j] >= speed) and (abs(S660LAT[j]-Grain_CartLAT[j]) <=

gps_offset and abs(

 S660LONG[j]-Grain_CartLONG[j]) <= gps_offset) and abs(avspeedS660[j] -

avspeedGrain_Cart[j]) >= closing_speed:

 cart_state[j] = "transporting"

 #stationary unload

 elif (avspeedGrain_Cart[j] < speed) and (abs(S660LAT[j]-Grain_CartLAT[j]) <=

gps_offset and abs(

 S660LONG[j]-Grain_CartLONG[j]) <= gps_offset) and abs(avspeedS660[j] -

avspeedGrain_Cart[j]) < closing_speed:

 cart_state[j] = "stationary"

106

 #waiting - near cart but not same speed

 elif (avspeedGrain_Cart[j] < speed) and (abs(S660LAT[j]-Grain_CartLAT[j]) <=

gps_offset and abs(

 S660LONG[j]-Grain_CartLONG[j]) <= gps_offset) and abs(avspeedS660[j] -

avspeedGrain_Cart[j]) >= closing_speed:

 cart_state[j] = "waiting"

 #stationary unload to international

 elif (avspeedGrain_Cart[j] < speed) and (abs(internationalLAT[j]-Grain_CartLAT[j]) <=

truck_gps_offset and abs(internationalLONG[j]-Grain_CartLONG[j]) <= truck_gps_offset) and

abs(avspeedinternational[j] - avspeedGrain_Cart[j]) < closing_speed:

 cart_state[j] = "cart unload"

 #stationary unload to freightliner

 elif (avspeedGrain_Cart[j] < speed) and (abs(freightlinerLAT[j]-Grain_CartLAT[j]) <=

truck_gps_offset and abs(freightlinerLONG[j]-Grain_CartLONG[j]) <= truck_gps_offset) and

abs(avspeedfreightliner[j] - avspeedGrain_Cart[j]) < closing_speed:

 cart_state[j] = "cart unload"

 # #stationary unload to freightliner

 # elif (avspeedGrain_Cart[j] < speed) and (abs(ih19LAT[j]-Grain_CartLAT[j]) <=

truck_gps_offset and abs(ih19LONG[j]-Grain_CartLONG[j]) <= truck_gps_offset) and

abs(avspeedih19[j] - avspeedGrain_Cart[j]) < closing_speed:

 # cart_state[j] = "ih19 unload"

 ##last three without similar speeds

107

 #stationary unload to international

 elif (avspeedGrain_Cart[j] < speed) and (abs(internationalLAT[j]-Grain_CartLAT[j]) <=

truck_gps_offset and abs(internationalLONG[j]-Grain_CartLONG[j]) <= truck_gps_offset) and

abs(avspeedinternational[j] - avspeedGrain_Cart[j]) >= closing_speed:

 cart_state[j] = "waiting"

 #stationary unload to freightliner

 elif (avspeedGrain_Cart[j] < speed) and (abs(freightlinerLAT[j]-Grain_CartLAT[j]) <=

truck_gps_offset and abs(freightlinerLONG[j]-Grain_CartLONG[j]) <= truck_gps_offset) and

abs(avspeedfreightliner[j] - avspeedGrain_Cart[j]) >= closing_speed:

 cart_state[j] = "waiting"

 # #stationary unload to freightliner

 # elif (avspeedGrain_Cart[j] < speed) and (abs(ih19LAT[j]-Grain_CartLAT[j]) <=

truck_gps_offset and abs(ih19LONG[j]-Grain_CartLONG[j]) <= truck_gps_offset) and

abs(avspeedih19[j] - avspeedGrain_Cart[j]) >= closing_speed:

 # cart_state[j] = "waiting"

 #waiting

 elif (avspeedGrain_Cart[j] < speed):

 cart_state[j] = "waiting"

 #idle

 elif(avspeedGrain_Cart[j] >= speed):

 cart_state[j] = "transporting"

 #NA

 else:

108

 cart_state[j] = "NA"

 df_cart = pd.DataFrame(cart_state)

 df_cart.columns = ['STATE']

 df_cart['SHIFT'] = df_cart.STATE.shift(periods = -1, fill_value = 1)

 shift = df_cart['SHIFT'].to_list()

 step = [0] * len(shift)

 count = [0] * len(shift)

 p = 0

 #sets the step based on the differences in the offset we use this step later to fix the "true state"

also creates the count of in a row counter

 for i in range(len(shift)):

 if cart_state[i] != shift[i]:

 step[i] = cart_state[i]

 for i in range(len(shift)):

 if step[i] != 0 :

 count[i] = 0

 p = 0

 elif step[i] == 0 :

 p = p + 1

 count[i] = p

 df_cart['STEP'] = step

 df_cart['COUNT'] = count

109

 df_cart['COUNT'] = df_cart.COUNT.shift(periods = 1, fill_value = 1)

 df_cart_reduced = df_cart.loc[(df_cart['STEP'] != 0) & (df_cart['COUNT'] > list_length)]

 cart_time = df_cart_reduced.index.tolist()

 time =[0]* len(df_cart_reduced)

 for i in range(len(cart_time)):

 time[i] = dftime[cart_time[i]]

 df_cart_reduced['TIME'] = time

 del df_cart_reduced['SHIFT']

 del df_cart_reduced['STEP']

 index = list(df_cart_reduced.index.values)

 statelist = df_cart_reduced['STATE'].tolist()

 countlist = df_cart_reduced['COUNT'].tolist()

 updatedstate_cart = [0] * len(S660LAT)

 #changes statelist with the updated states. this will apply backwards for unkown areas where

it flips bewtween states

 for i in range(len(index)-1):

 for j in range(index[i],index[i+1]):

 updatedstate_cart[j] = df_cart_reduced.STATE.iloc[i+1]

 for i in range(index[0]):

 updatedstate_cart[i] = statelist[0]

 for i in range(index[-1],len(updatedstate_cart)):

 updatedstate_cart[i] = statelist[-1]

110

 """ TRUCK STATES"""

 #international

 international_state = [0]*len(updatedstate)

 # speed = 1

 # gps_offset = .00015

 for j in range(len(international_state)):

 ##moving

 if (avspeedinternational[j] >= speed):

 international_state[j] = "transporting"

 #stationary unload from cart

 elif (avspeedinternational[j] < speed) and (abs(internationalLAT[j]-Grain_CartLAT[j])

<= gps_offset and abs(internationalLONG[j]-Grain_CartLONG[j]) <= truck_gps_offset):

 international_state[j] = "stationary unload from cart"

 #stationary unload to international

 elif (avspeedGrain_Cart[j] < speed) and (abs(internationalLAT[j]-Grain_CartLAT[j]) >

truck_gps_offset or abs(internationalLONG[j]-Grain_CartLONG[j]) > truck_gps_offset):

 international_state[j] = "waiting"

 #NA

111

 else:

 international_state[j] = "NA"

 df_international = pd.DataFrame(international_state)

 df_international.columns = ['STATE']

 df_international['SHIFT'] = df_international.STATE.shift(periods = -1, fill_value = 1)

 shift = df_international['SHIFT'].to_list()

 step = [0] * len(shift)

 count = [0] * len(shift)

 p = 0

 #sets the step based on the differences in the offset we use this step later to fix the "true state"

also creates the count of in a row counter

 for i in range(len(shift)):

 if international_state[i] != shift[i]:

 step[i] = international_state[i]

 for i in range(len(shift)):

 if step[i] != 0 :

 count[i] = 0

 p = 0

 elif step[i] == 0 :

 p = p + 1

 count[i] = p

 df_international['STEP'] = step

 df_international['COUNT'] = count

 df_international['COUNT'] = df_international.COUNT.shift(periods = 1, fill_value = 1)

112

 df_international_reduced = df_international.loc[(df_international['STEP'] != 0) &

(df_international['COUNT'] > list_length)]

 international_time = df_international_reduced.index.tolist()

 time =[0]* len(df_international_reduced)

 for i in range(len(international_time)):

 time[i] = dftime[international_time[i]]

 df_international_reduced['TIME'] = time

 del df_international_reduced['SHIFT']

 del df_international_reduced['STEP']

 index = list(df_international_reduced.index.values)

 statelist = df_international_reduced['STATE'].tolist()

 countlist = df_international_reduced['COUNT'].tolist()

 updatedstate_international = [0] * len(S660LAT)

 #changes statelist with the updated states. this will apply backwards for unkown areas where

it flips bewtween states

 for i in range(len(index)-1):

 for j in range(index[i],index[i+1]):

 updatedstate_international[j] = df_international_reduced.STATE.iloc[i+1]

 for i in range(index[0]):

 updatedstate_international[i] = statelist[0]

 for i in range(index[-1],len(updatedstate_international)):

 updatedstate_international[i] = statelist[-1]

113

 # """ IH19"""

 # #ih19

 # ih19_state = [0]*len(updatedstate)

 # # speed = 1

 # # gps_offset = .00015

 # for j in range(len(ih19_state)):

 # ##moving

 # if (avspeedih19[j] >= speed):

 # ih19_state[j] = "transporting"

 # #stationary unload from cart

 # elif (avspeedih19[j] < speed) and (abs(ih19LAT[j]-Grain_CartLAT[j]) <= gps_offset

and abs(ih19LONG[j]-Grain_CartLONG[j]) <= gps_offset):

 # ih19_state[j] = "stationary unload from cart"

 # #stationary unload to ih19

 # elif (avspeedGrain_Cart[j] < speed) and (abs(ih19LAT[j]-Grain_CartLAT[j]) >

gps_offset or abs(ih19LONG[j]-Grain_CartLONG[j]) > gps_offset):

114

 # ih19_state[j] = "waiting"

 # #NA

 # else:

 # ih19_state[j] = "NA"

 # df_ih19 = pd.DataFrame(ih19_state)

 # df_ih19.columns = ['STATE']

 # df_ih19['SHIFT'] = df_ih19.STATE.shift(periods = -1, fill_value = 1)

 # shift = df_ih19['SHIFT'].to_list()

 # step = [0] * len(shift)

 # count = [0] * len(shift)

 # p = 0

 # #sets the step based on the differences in the offset we use this step later to fix the "true

state" also creates the count of in a row counter

 # for i in range(len(shift)):

 # if ih19_state[i] != shift[i]:

 # step[i] = ih19_state[i]

 # for i in range(len(shift)):

 # if step[i] != 0 :

 # count[i] = 0

 # p = 0

 # elif step[i] == 0 :

 # p = p + 1

 # count[i] = p

 # df_ih19['STEP'] = step

115

 # df_ih19['COUNT'] = count

 # df_ih19['COUNT'] = df_ih19.COUNT.shift(periods = 1, fill_value = 1)

 # df_ih19_reduced = df_ih19.loc[(df_ih19['STEP'] != 0) & (df_ih19['COUNT'] >

list_length)]

 # ih19_time = df_ih19_reduced.index.tolist()

 # time =[0]* len(df_ih19_reduced)

 # for i in range(len(ih19_time)):

 # time[i] = dftime[ih19_time[i]]

 # df_ih19_reduced['TIME'] = time

 # del df_ih19_reduced['SHIFT']

 # del df_ih19_reduced['STEP']

 # index = list(df_ih19_reduced.index.values)

 # statelist = df_ih19_reduced['STATE'].tolist()

 # countlist = df_ih19_reduced['COUNT'].tolist()

 # updatedstate_ih19 = [0] * len(S660LAT)

 # #changes statelist with the updated states. this will apply backwards for unkown areas where

it flips bewtween states

 # for i in range(len(index)-1):

 # for j in range(index[i],index[i+1]):

 # updatedstate_ih19[j] = df_ih19_reduced.STATE.iloc[i+1]

 # for i in range(index[0]):

 # updatedstate_ih19[i] = statelist[0]

116

 # for i in range(index[-1],len(updatedstate_ih19)):

 # updatedstate_ih19[i] = statelist[-1]

 """ freightliner"""

 freightliner_state = [0]*len(updatedstate)

 # speed = 1

 # gps_offset = .00015

 for j in range(len(freightliner_state)):

 ##moving

 if (avspeedfreightliner[j] >= speed):

 freightliner_state[j] = "transporting"

 #stationary unload from cart

 elif (avspeedfreightliner[j] < speed) and (abs(freightlinerLAT[j]-Grain_CartLAT[j]) <=

truck_gps_offset and abs(freightlinerLONG[j]-Grain_CartLONG[j]) <= truck_gps_offset):

 freightliner_state[j] = "stationary unload from cart"

 #stationary unload to freightliner

117

 elif (avspeedGrain_Cart[j] < speed) and (abs(freightlinerLAT[j]-Grain_CartLAT[j]) >

truck_gps_offset or abs(freightlinerLONG[j]-Grain_CartLONG[j]) > truck_gps_offset):

 freightliner_state[j] = "waiting"

 #NA

 else:

 freightliner_state[j] = "NA"

 df_freightliner = pd.DataFrame(freightliner_state)

 df_freightliner.columns = ['STATE']

 df_freightliner['SHIFT'] = df_freightliner.STATE.shift(periods = -1, fill_value = 1)

 shift = df_freightliner['SHIFT'].to_list()

 step = [0] * len(shift)

 count = [0] * len(shift)

 p = 0

 #sets the step based on the differences in the offset we use this step later to fix the "true state"

also creates the count of in a row counter

 for i in range(len(shift)):

 if freightliner_state[i] != shift[i]:

 step[i] = freightliner_state[i]

 for i in range(len(shift)):

 if step[i] != 0 :

 count[i] = 0

 p = 0

 elif step[i] == 0 :

 p = p + 1

 count[i] = p

118

 df_freightliner['STEP'] = step

 df_freightliner['COUNT'] = count

 df_freightliner['COUNT'] = df_freightliner.COUNT.shift(periods = 1, fill_value = 1)

 df_freightliner_reduced = df_freightliner.loc[(df_freightliner['STEP'] != 0) &

(df_freightliner['COUNT'] > list_length)]

 freightliner_time = df_freightliner_reduced.index.tolist()

 time =[0]* len(df_freightliner_reduced)

 for i in range(len(freightliner_time)):

 time[i] = dftime[freightliner_time[i]]

 df_freightliner_reduced['TIME'] = time

 del df_freightliner_reduced['SHIFT']

 del df_freightliner_reduced['STEP']

 index = list(df_freightliner_reduced.index.values)

 statelist = df_freightliner_reduced['STATE'].tolist()

 countlist = df_freightliner_reduced['COUNT'].tolist()

 updatedstate_freightliner = [0] * len(S660LAT)

 #changes statelist with the updated states. this will apply backwards for unkown areas where

it flips bewtween states

 for i in range(len(index)-1):

 for j in range(index[i],index[i+1]):

 updatedstate_freightliner[j] = df_freightliner_reduced.STATE.iloc[i+1]

119

 for i in range(index[0]):

 updatedstate_freightliner[i] = statelist[0]

 for i in range(index[-1],len(updatedstate_freightliner)):

 updatedstate_freightliner[i] = statelist[-1]

 """FINAL LAST TOUCH UPS TO DF AND FINAL PRODUCT // PLOT CREATION

 ###

 #

 #

 #

 #

 """

 #commmented out for speed

 for i in range(len(updatedstate)):

 if updatedstate[i] == 1:

 updatedstate[i] = "harvest"

 elif updatedstate[i] == 2:

 updatedstate[i] = "on the go"

 elif updatedstate[i] == 3:

 updatedstate[i] = "stationary"

 elif updatedstate[i] == 4:

 updatedstate[i] = "idle"

 else:

 updatedstate[i] = updatedstate[i]

 # df_final = pd.DataFrame(updatedstate_S660)

120

 # df_final.columns = ['Combine State']

 # df_final['Cart state'] = updatedstate_cart

 # df_final['international state'] = international_state

 # df_final['freightliner state'] = freightliner_state

 # df_final['ih19 state'] = ih19_state

 # df_final['index'] = list(range(len(df)))

 # df_final['time'] = dftime

 # df_final['S660 lat'] = S660LAT

 # df_final['S660 Long'] = S660LONG

 # df_final['Grain_Cart Lat'] = Grain_CartLAT

 # df_final['Grain_Cart Long'] = Grain_CartLONG

 # df_final['international Lat'] = internationalLAT

 # df_final['international Long'] = internationalLONG

 # df_final['ih19 Lat'] = ih19LAT

 # df_final['ih19 Long'] = ih19LONG

 # df_final['freightliner Lat'] = freightlinerLAT

 # df_final['freightliner Long'] = freightlinerLONG

 # df_final['S660 speed'] = avspeedS660

 # df_final['Grain_Cart speed'] = avspeedGrain_Cart

 # df_S660_reduced['TIME'] = df_S660_reduced['TIME'].shift(periods = 1)

121

 # df_cart_reduced['TIME'] = df_cart_reduced['TIME'].shift(periods = 1)

 # df_international_reduced['TIME'] = df_international_reduced['TIME'].shift(periods = 1)

 # df_ih19_reduced['TIME'] = df_ih19_reduced['TIME'].shift(periods = 1)

 # df_freightliner_reduced['TIME'] = df_freightliner_reduced['TIME'].shift(periods = 1)

 # df_reduced = pd.concat([df_S660_reduced, df_cart_reduced, df_international_reduced,

df_ih19_reduced, df_freightliner_reduced], axis = 1)

 # df_reduced.columns = ['S660 state', 'S660count','time1', 'Grain_Cart state', 'Grain_Cart

count','time2' , 'international state', 'international count','time3',

 # 'ih19 state', 'ih19 count', 'time4', 'freightliner state', 'freightliner count','time5']

 # df_reduced['time'] = df_reduced.time1.combine_first(df_reduced.time2)

 # df_reduced['time'] = df_reduced.time.combine_first(df_reduced.time3)

 # df_reduced['time'] = df_reduced.time.combine_first(df_reduced.time4)

 # df_reduced['time'] = df_reduced.time.combine_first(df_reduced.time5)

 # del df_reduced['time1']

 # del df_reduced['time2']

 # del df_reduced['time3']

 # del df_reduced['time4']

 # del df_reduced['time5']

 # df_reduced[['S660 state','Grain_Cart state','international state', 'freightliner state' , 'ih19

state']] = df_reduced[['S660 state','Grain_Cart state','international state', 'freightliner state' , 'ih19

state']].fillna(method = "bfill")

 df['UPDATEDSTATE'] = updatedstate

 df['CARTSTATE'] = cart_state

 # df['index'] = list(df2.index.values)

 # df_final.to_csv(r'C:/Users/loghe/Desktop/unloads/STATES/updated' + date2 + " 10_tic " +

str(zz) +'.csv')

122

 # harvest = ['harvest'] * 34428

 S660_same = sum(x == y for x, y in zip(perfect_S660,updatedstate))

 Grain_Cart_same = sum(x == y for x, y in zip(perfect_grain_cart ,updatedstate_cart))

 return(S660_same,Grain_Cart_same, updatedstate , updatedstate_cart, df)

record =[]

gps_list = [.00014,.00015,.00016,.00017,.00018,.00019]

speed_list =[.125,.25,.5,.75,1,1.25,1.5]

closing_speed = [.125,.25,.5]

a = 1

y = 1

for i in speed_list: #cut off speed

 for j in gps_list: # gps set

 for k in range(0,6): # list length

 for l in closing_speed: # list length

 for m in gps_list: #truck offset

 output = script(i,j,k,l,m)

 record.append('S660 = ' + str(output[0]) + ' Grain_Cart = ' + str(output[1]) + ' sum =

'

 + str(output[0] + output[1]) + " values " + str(i) + ", " + str(j) + ", " + str(k) +

"," + str(l) + ", " + str(m))

 y = y + 1

 print(y)

 if ((output[0] + output[1]) > a):

 a = output[0] + output[1]

 b = (i,j,k,l,m)

123

print(a,b)

c = script(b[0],b[1],b[2],b[3],b[4])

df = c[4]

df['state machine S660'] = c[2]

df['state machine grain cart'] = c[3]

df.to_csv(r'C:/Users/loghe/Desktop/ACRE unload/state machine output/'+ date2 + ' state

machined.csv')

LoRa End Node Code

#include <SPI.h>

#include <RH_RF95.h>

#include <SoftwareSerial.h>

#include <TinyGPS.h>

TinyGPS gps;

SoftwareSerial ss(3, 4);

#include <LoRa.h>

int count = 0;

int device_id = 10009; // ID of this End node

void setup() {

 Serial.begin(9600);

 ss.begin(9600);

 //while (!Serial);

 Serial.println("LoRa Sender");

 if (!LoRa.begin(915E6)) {

124

 Serial.println("Starting LoRa failed!");

 while (1);

 }

 LoRa.setSyncWord(0x34);

 LoRa.setTxPower(20);

 LoRa.setSpreadingFactor(10);

}

void loop() {

 bool newData = false;

 for (unsigned long start = millis(); millis() - start < 1000;)

 {

 while (ss.available())

 {

 char c = ss.read();

 // Serial.write(c); // uncomment this line if you want to see the GPS data flowing

 if (gps.encode(c)) // Did a new valid sentence come in?

 newData = true;

 }

 }

 float flat, flon;

 gps.f_get_position(&flat, &flon);

 long lat = flat * 1000000;

 long lng = flon * 1000000;

 Serial.print("Sending packet: ");

 Serial.println(count);

 // compose and send packet

 LoRa.beginPacket();

 LoRa.print("<");

 LoRa.print(device_id);

 LoRa.print(">");

125

 LoRa.print(lat);

 Serial.print(flat , 6);

 // LoRa.print("&field2=");

 LoRa.print(lng);

 Serial.print(flon , 6);

 // LoRa.print(counter);

 LoRa.endPacket();

 count++;

 delay(1000);

}

	LIST OF FIGURES
	LIST of tables
	LIST of equations
	LIST of abbreviations
	1. STATE ALGORITHM FOR GPS EVALUATION
	1.1 Abstract
	1.2 Introduction
	1.3 Objectives
	1.4 Methods and Materials
	1.4.1 Data Collection
	1.4.2 Data Processing
	Kvaser Data Sub-Pipeline
	Columbus Logger Data Sub-Pipeline
	Data Merge and State Assignment
	Truth Data State Assignment

	1.4.3 Algorithm Creation
	Rule Generation for State Estimation
	Rule Application to Data
	Rule Parameter Optimization

	1.5 Results
	1.5.1 Parameter Tuning Results
	1.5.2 Algorithm Validation Results
	Field 200
	Field 58
	Field 57

	1.5.3 Overall Model Results

	1.6 Conclusion

	2. LORA EVALUATION FOR LONG RANGE AND HIGH SPEED
	2.1 Abstract
	2.2 Introduction
	2.2.1 Internet of Things Within Agriculture
	2.2.2 Farm Management
	2.2.3 The Case for the Use of IoT Within Cycle Management

	2.3 Objectives
	2.4 Methods and Materials
	2.4.1 LoRa System
	2.4.2 Data Processing Pipeline
	2.4.3 System Testing
	Range Testing
	Speed Testing

	2.5 Results
	2.5.1 Range Testing
	2.5.2 Secondary Range Testing
	2.5.3 Speed Testing

	2.6 Conclusion

	BIBLIOGRAPHY
	APPENDIX

