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 STATE ALGORITHM FOR GPS EVALUATION  

1.1 Abstract 

Farmers run complex operations to fully plant, manage, grow, and harvest crops through the 

seasons. Careful consideration must be taken when making decisions about machinery usage and 

the available labor on hand. To help alleviate the tough decision-making process, tools have been 

created to inform farmers about their machinery and field status. These tools provide useful 

feedback and large value to farmers looking to plant and harvest. GPS localization and machine 

state identification provides useful information back to the manager. The tool that was created 

successfully utilizes GPS data taken from loggers on tractors, combines, and grain trucks to 

successfully identify the states of all the machines in the field, including, idle, active, on the go, 

and stationary unload. Initial results of the algorithm provide a 96% success rate in determining 

the state of the combine during harvest. Additionally, the algorithm was accurate at determining 

the state of grain carts and grain trucks at the boundaries of the field 94% of the time.  

1.2 Introduction 

In a world with an ever-growing population and an increase in year over year growth rates, 

it is imperative that basic human necessities be met for everyone. Chief among these necessities is 

food and water. Large geographical areas such as the Great Plains of the Midwest provide ample 

land and area that is suitable for crop growth and the production of foodstuffs. However, in order 

to create and produce the quantities of harvest that is required, operations and farmers must operate 

at peak efficiency for the yearly cycle of the land. Commodity crop operations yearly cycles are 

defined by the planting and harvesting times of their respective crops. It is essential that farmers 

plant crops at an appropriate time or else the yield will suffer. Roekel and Coulter (2011) showed 

in Minnesota that a planting delay of two weeks, till May 30, did not significantly impact the yield 

come harvest time, however when planting was delayed by four weeks, the harvest yield was 

reduced by an average of 15%. Similarly, it is imperative that harvest operations are performed in 

a timely manner. With poor weather conditions and large land areas, it is of utmost importance 

that all machines and workers be operating at maximum efficiency during harvest.  
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In addition to large land masses which require attention and care in the harvest season, 

farmers are placed under time pressure due to weather. Coupled with this time pressure, farm 

managers have seen a steep decline in available workers to man the machinery on the farm. Bronars 

showed that from 2002 to 2013 “The number of full-time equivalent field and crop workers has 

dropped by at least 146,000 people, or by more than 20%” (Bronars 2015). Farm managers are 

faced with the tough decision of how to best manage the full gamut of machinery available to 

them, in addition, they must also make tough choices for the application of available manpower. 

With large fields sizes, it is a challenging task to harvest in a timely manner. Managers can be 

forced to decide between operating additional grain carts or rather utilizing the available manpower 

for the use of transporting harvest to storage sights.  

  On farm decision making should be an informed process which utilizes all the available 

data at hand; in addition, it should account for variables such as weather, yield, and machine 

throughput to name a few. Machine labor allocation decisions can be complex with a high number 

of variables to consider in order to achieve the optimal output of the farm system. These systems 

can have high variability in machine allocation to account for and no decision can be made lightly 

or without thought. Farming operations will often utilize high cost, high throughput machines such 

as large combines, grain carts, tractors, and grain carts. This combination of machinery can 

perform at high rates to fulfill the needs of the operation; however, each machine has a large cost 

associated with obtaining the machinery and running the equipment in the field. In addition, the 

problem of in the field operation becomes more convoluted when considering the teamwork and 

cooperation needed to align all the appropriate parts of the machinery.  

 One common harvest machinery set is two combines, two grain carts, and four trucks, to 

remove the grain from the field and transport it to the storage bins and elevators. To achieve 

maximum output from the machinery selected, the combines field capacity and throughput must 

be carefully selected and matched with the other equipment in the field to properly utilize the other 

large machines. Buckmaster and Hilton (2005) showed how important it was to properly evaluate 

and model each individual system to achieve peak efficiency and utilization. For example, a system 

capacity could drop by 20% when travelling long distances to unload grain from the grain truck 

and not enough grain trucks were available to ensure the proper utilization of the harvester in the 

field. To compound the issue, the combine and grain cart can be used for different purposes come 

harvest time. Combines will regularly operate both in corn and in soybeans each calendar year. As 
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such, the output of the combine will drastically differ for both crop types as the bushels per acre 

for corn and soybeans are largely different. Also, the combine head can vary in width for both corn 

and soybeans. It is challenging to optimally manage and sync all the machinery that is used in the 

field. Farmers and managers are always looking for more tools to be able to inform their decision 

making so that they can properly utilize their fleet of machines. These same tools can also be useful 

when it comes time to purchase new equipment. A large portion of farmers seek to mitigate the 

risk that is associated with not being able to fully harvest the crop by purchasing the largest 

harvester that is available to them in the budget, however, optimization tools could provide the 

knowledge and insight to make the choice to downsize the harvester or grain cart thus saving 

money for the farm in the form of upfront cost.  

 With farmers seeking optimization tools, it becomes imperative to supply and create the 

methods necessary to make informed decisions about the utilization of all the implements in the 

field. This can be seen in the various works that are already in the field of agricultural engineering 

and harvest optimization. Busato and team sought to improve and optimize the logistics for silage 

operations with the use of a linear programming model. (Busato et al. 2019) This model was used 

to determine the proper number of units in the field for silage operations, combines and carts, and 

had an error rate of 3.15% when comparing the simulation model with the field data collected. In 

addition, the model was capable of prioritizing optimal silage harvest with time constraints 

imposed on it.  

 Amiama focused on the creation of a simulation of silage harvest to provided help in 

optimal decision making. (Amiama et al. 2015) The model used state machines to inform the 

simulation as to proper event ordering in the field. The tool was useful in determining bottlenecks 

in the system due to waiting on trucks to return from silos or other hold ups. The model could 

efficiently inform farm users as to the appropriate number of self-propelled harvesters necessary 

or the effects that other variables such as the number of packers could have on the time savings of 

the harvest operation.  

 Heizinger generated an algorithm which would rate the transportation efficiency of grain 

transport from field to silo. (Heizinger and Bernhardt n.d.) The system was effective at determining 

the rate and optimization of the transporters using set zones in the field which were created by the 

model makers. Transporting units’ efficiency and overall uptime could be evaluated by tracking 
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the GPS points relative to the infield boundaries which were created and the relations between the 

machines.  

 A model was built by Layton which would determine which field locations were harvested 

by which combine when  multiple harvesters were present in the field. (Layton et al. 2017) This 

model utilized GPS logs to create a history of points which were then assigned to a grid the size 

of the header of the harvester. Using this grid, the model could successfully determine which points 

of the field were harvested by which combine.  

 Tools for modeling the transportation from the edge of the field to the storage bins were 

also considered. Turner made a discrete event simulation model to determine the transportation of 

grain to the storage facility.(Turner 2018). The system could then be used to evaluate the 

performance trucks and their overall efficiency when matching truck size and speed to grain 

harvesting capabilities of the combine.  

 Zhang created a neural network that could identify and apply the appropriate activity state 

to data collected for combines (Zhang et al. 2017). In addition to the creation of a neural network, 

a rule-based algorithm was applied to identify unloading, loading, and harvest states to combines 

and grain carts. The rule-based algorithm required heavy inputs from expert knowledge to inform 

states while the neural network could be easily added onto and expanded. 

  Bochtis showed how vehicle routing problems could be applied to in field operations of 

combines, and grain carts (Bochtis and Sørensen 2009). Thus, the paths of combines could be 

solved using previously developed methods for problems such as the travelling salesman problem. 

This allowed for better path planning in field for combines and carts.  

 Haffar instrumented a model to inform farming operations the proper selection of 

machinery needed to optimize the operation. (Haffar and Khoury 1992) The model can consider 

prior owned machinery and selects the least annual cost solution that is available to meet the 

harvest requirements. Additionally, the model can output schedules for fields with associated 

machinery required for each field.  

Work was done by Zhang to identify transfers between implements and storage bins using 

traceability trees. (Zhang et al. 2020) This work built on tree data structures for the GPS logs that 

were taken in the field. The traceability trees are utilized in tracing harvest from the field, through 

the implements used in harvesting, and into the storage bins or final destination of the grain.  

 



 
 

17 

From the prior work, it becomes clear that there are many tools or concepts of tools to help 

farmers make informed decisions about their fleet, however, a large portion of these models are 

either predictive or difficult to set up and fully utilize. There is space for a model that uses simple 

inputs such as GPS that can inform managers how all the machines are performing on a daily basis. 

Creating a model that uses simple GPS points would be easy to implement as GPS modules are 

most likely already installed on machines in the field. Such a tool would also be able to look at 

historical GPS data to calculate state information and inform users of potential time savings from 

alternative decisions. It would also have the capacity to identify idle times and track unloading 

events both in the form of “on the go unloads” and stationary unloads. Such a tool would provide 

useful information to farmers to make informed decisions about the overall efficiency of their fleet 

in the fields.  

1.3  Objectives  

The goal of this project was to determine how accurately harvest states could be determined from 

time-series location data. To achieve this, the following objectives were identified: 

1) Benchmark Data Collection: Collect data for the use of accurately identifying and 

labeling spatial temporal machinery state data for all equipment in the harvest operation, 

including, an idle, active, on the go, and stationary unload state for the combine, and a 

waiting, transporting, on the go, stationary unload, and cart unload for the grain cart 

2) Algorithm Development: Generate an algorithm to determine machinery states using 

time-series location data and heuristic rules 

3) Algorithm Optimization: Tune the developed algorithm parameters to reduce estimation 

error 

1.4 Methods and Materials 

1.4.1 Data Collection 

Benchmarking data was collected from grain harvest machinery used at Purdue’s 1600-

acre Agronomy Center for Research and Education (ACRE) farm in north central Indiana. The 

data was collected during the 2021 grain harvest and was comprised of meta-data in the form of 

daily fields notes, machinery J1939 Controller Area Network (CAN) bus data, and GPS location 
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data from all machines used in the harvest operation. Machinery included two grain trucks 

(~35m3), two John Deere combines (S660 and S670), and one John Deere tractor (8R370) and 

grain cart (Brandt 1020XR) combination.  

Data collection hardware consisted of Kvaser Memorator Pro 2xHS (Kvaser Inc., Sweden) 

loggers for machines with a CAN bus and Columbus V-990 Mark II GPS loggers (Columbus, 

Hokkaido, Japan) were used to receive and store time-series location data for machines without 

CAN bus technology. The Kvaser loggers were powered directly from the J1939 CAN bus port 

and automatically recorded data when bus traffic was detected. The Kvaser logger stored all the 

messages published on the CAN bus in a proprietary .kfm file on a SD card. After the data was 

collected a database (.dbc) file was loaded into the Kvaser Memorator Config Tool program a used 

to decode the raw data and store in a CSV file.  

 

  

Figure 1.1: Columbus V990 Logger and Kvaser Memorator Pro 2x HS GPS Logger 
 

The Columbus logger stored GPS data directly to a CSV file. The loggers were powered 

via micro-USB and featured a battery backup. The loggers featured a motion detection mode that 

started logging when motion was detected and stopped the log when machines went idle. This 

allowed for robust data collection that did not require operators to activate the loggers and 

drastically cut down on the points that were logged This was especially useful for machines such 

as grain trucks which could be sitting waiting in the field for extended periods of time. The 

Columbus could receive and capture GPS streams from multiple satellite systems. These systems 

included the Russian Glonass system, the Japanese Quasi-Zenith Satellite System (QZSS), and the 

American GPS system. Because of this redundancy, the unit was fit to capture location to a more 
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accurate degree. In total, the unit had approximately 4m accuracy when viewing an average 

number of satellites (~8).  

 Data was collected from four production fields (see table) ranging from 12.4 to 75.9 

hectares. In two of the fields (58 and 200) both harvesters were used simultaneously, while in the 

two others (57 and 70) only the S660 was used. For corn harvest the S660 was equipped with an 

eight-row head (6.096 m). In soybeans the S660 and S670 were equipped with a 9.14m and 6.10m 

grain heads, respectively. Both combines had 10.53m3 capacity grain tanks and augers capable of 

unloading at 0.134 m3/sec. The grain cart had a capacity of 35.24m3 and an unload rate of 0.29m3  

 

Table 1.1 Field Identification, Size, Crop, and Harvester Used 

Field ID  Size (Hectares)  Crop Harvester 

57 18.9 Soybeans  S660 

58 12.4 Soybeans  S660 & S670 

70 20.2 Corn S660 

200 75.9 Soybeans S660 & S670 

 

 Harvest in all four fields was supported by the grain cart and two trucks. All five machines 

were equipped with logging equipment. As can be seen in Table 1.1 the S660 was responsible for 

harvesting in all four fields while the S670 was used in only two of the fields. The harvesters and 

grain cart tractor were equipped with the Kvaser loggers. For the combine harvesters this allowed 

for messages relevant to the combine operational status to be collected such as engine rpm, wheel 

speed, auger status, and highly accurate GPS data. For the grain cart messages were collected for 

the GPS location, speed, PTO rpm, and heading. The harvesters and grain cart tractor also featured 

real time kinematic (RTK) differentially corrected GPS receivers that were capable of centimeter 

level accuracy. The grain trucks did not have a CAN bus and were instead equipped with the 

Columbus V990 Mark II GPS loggers.  

1.4.2 Data Processing  

 Before the data was  used to benchmark the model, the individual machinery logs needed 

to be processed into files for each crop field harvested, containing the time synchronized machine 
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state data for all the machines. This required creating a data processing pipeline to convert the 

Kvaser and Columbus logger files to a standard format, merge, and then spilt by harvested field.  

Kvaser Data Sub-Pipeline  

The Kvaser loggers used on the harvesters and grain cart tractor stored data in a proprietary 

binary format. The data was filtered and decoded to the desired signals using the Kvaser 

Memorator Config Tool Program and a J1939 database file. The resulting CSV files contained the 

time-series georeferenced machinery state data desired but still in separate files for each machine 

in a format that was not conducive to merging. The CSV files were processed with a created  

Python function, found in the appendix, that reformatted the data, specifically, merging the 

individual time and date component fields into a Datetime data class recognized by Python. The 

resulting dataset consisted of georeferenced machine information at a 1 Hz interval with a Python 

readable datetime stamp. 

Columbus Logger Data Sub-Pipeline  

The data logs for all machines were first exported into comma separated value sheets so 

that other programs such as Python and Excel could read and write to the files. The data was 

imported into Excel for minor corrective errors such as number formatting and date formatting. 

Data types that would not be useful to the algorithm were stripped from the logs to reduce the 

overall size of the data logs. Data that was corrected included GPS based speed readings for 

Columbus loggers, and other extraneous information. Included with the removal of data, minor 

corrections were made such that the data was in a more easily readable format. GPS latitude and 

longitude points were properly formatted into long float point convention. East and West was 

removed from the data points and proper sign convention was applied. In addition to the GPS point 

formatting, time formatting was required. Time logs were formatted to the same convention, yyyy-

mm-dd hh:mm:ss , for all of the data files. This change was implemented both for the Columbus 

loggers and for the Kvaser CANbus loggers. Because of this time formatting, data points were 

aligned to the correct time across the various machines in the field. In addition to time formatting, 

the logs were split into day-by-day logs such that each file contained all the points for each harvest 

event. These logs were then time shifted into the correct time zone being eastern central time. 
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Some harvest events were split across two days as the workers went on into the night past midnight. 

Manual checking was performed across the full range of dates to ensure that no data was lost to a 

cutoff around midnight.  A visual representation of the pipeline can be seen in Figure 1.2 

 

 

Figure 1.2: GPS data pipeline of transformations 

Data Merge and State Assignment 

All data points were migrated into QGIS, a program for the visualization of locational data, 

to verify the validity of the now-cleaned data points. Visual inspection, utilizing QGIS, was done 

of the points to ensure that all GPS points fell within appropriate field boundaries and no errors 

were missed when removing unwanted data. Once in QGIS, the data was separated into the four 

various field boundaries which were identified earlier. Extra data was corrected to further simplify 
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the data set. This extra data came in the form of transportation data outside the scope of working 

time in the fields. When powered on, these machines loggers were activated and tracking data, 

however the combines or grain carts sometimes were not yet in the fields harvesting. Data points 

of the machines moving from barn to field were corrected. Thus, extraneous transportation data of 

the day staring up was corrected in the data set and did not inform the model. This practice was 

also used regarding the end of the day, where excess data points of the returning grain carts and 

combines was corrected to ensure a clean and accurate data set.  

 The remaining dataset could then be imported into Python for the analysis and creation of 

the state algorithm. The goal was to create an algorithm which could identify the states of each 

machine as it moved throughout the workday. In order to accommodate this algorithm creation, a 

few more data transformation measures needed to be applied. GPS points were collected in decimal 

degrees, a useful information from all the implements was the transformation from decimal 

degrees into a speed using the clock cycle of the data points. Equation 1 was used to transform 

each subsequent pair of GPS points into a useable speed for the machine.  

 
 

Equation 
1 
 

Speed (kmh-1) =  6371.37∗ 3600 ∗ 2 ∗ 

arcsin �sin �
𝑙𝑙𝑙𝑙𝑙𝑙2 − 𝑙𝑙𝑙𝑙𝑙𝑙1

2 � ∗ 2 + cos(𝑙𝑙𝑙𝑙𝑙𝑙2) ∗ cos(𝑙𝑙𝑙𝑙𝑙𝑙1) ∗ 𝑠𝑠𝑠𝑠𝑠𝑠 �
𝑙𝑙𝑙𝑙𝑠𝑠2 − 𝑙𝑙𝑙𝑙𝑠𝑠1

2 � ∗ 2 

 

The speeds for all implements were calculated and expressed as kmh-1. In addition to the 

speed calculation, a moving average was utilized to ensure the data was resistant to position errors 

or missing data points. A five-point windowed moving average was used thus ensuring smooth 

speed transitions and no erroneous jumps in speed.  

Truth Data State Assignment   

With a useful speed, work was started on creating a state identification algorithm for all 

the implements in the field. Each machine only has a set number of states that it could be in at any 

given time thus identifying the total states of all the machines was the first step in creating the 

algorithm. The harvester was selected as the first machine to have states created. As all the other 
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machines were dependent on the workings of the harvester, its states were of the upmost 

importance. The following states seen in Table 1.2 were identified for the combines in the field. 

 

Table 1.2: Combine Operating States 

State: Description 

Working Moving in the field or harvesting 

Idle No movement in the field and not unloading 

On the go Unloading at speed into the grain cart while harvesting 

Stationary Unloading into grain cart while remaining stationary 

NA Catch all for NA values in data set 

 

This encapsulated all the states that the combine could be in at any point in time while in the field. 

Of second importance, the grain cart was crucial in connecting the combine and the trucks.  

 

Table 1.3: Grain Cart Operating States 

State: Description 

Waiting No movement and no unloading loading from combine 

Transporting Transporting grain to field edge or moving to unload combine 

On the go Receiving grain from combine while moving in the field  

Stationary combine unload Receiving grain from combine while stationary 

Stationary unload to truck Unloading grain into truck while at field edge 

NA Catch all for NA values in data set 

 

These states, shown in Table 1.3, fully captured all the available operating states the grain cart and 

tractor have in the field. Lastly, the states of the grain trucks were identified and quantified and 

can be seen in Table 1.4. 
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Table 1.4: Grain Truck Operating States 

State: Description 

Waiting No movement or unloading from grain cart 

Transporting Movement along field boundaries, transporting grain to bins 

Stationary loading Receiving grain from grain cart while stationary 

NA Catch all for NA values in data set 

 

Not included in the grain truck state list was unloading from the truck to a grain bin or 

commercial elevator. The focus of this work was to understand the in-field machinery states and 

how the machines in the system effected each other’s states. For this, the value of the truck data 

was to know if the grain cart or combine was idle because the truck had not returned, not the states 

of the truck after leaving the field.  

To compare the collected data with the results of the state algorithm, a truth data set needed. 

This “truth data” was created using the other information the Kvaser loggers had collected mainly 

the PTO rpm, speed, and auger location. With the information that was collected, the states were 

verified by comparing the true data with the state tables that were created by the algorithm. The 

truth data identified states based on the following requirements seen in Table 1.5. 

 

Table 1.5: Combine Truth Rules 

Combine Truth States 

Idle Speed < .048 kmh-1  Auger Off 

Working Speed > .048 kmh-1 Auger Off 

On the go Speed > .048 kmh-1 Auger On 

Stationary unload Speed < .048 kmh-1 Auger On 

 

Additionally, requirements were placed on the grain cart to identify the true states which can be 

seen in Table 1.6. 
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Table 1.6: Grain Cart Rules 

Grain Cart Truth States 

Waiting Speed < .048 kmh-1  Auger Off 

Transporting Speed > .048 kmh-1 Auger Off 

On the go Speed > .048 kmh-1 Combine state = on the go 

Stationary combine unload Speed < .048 kmh-1 Combine state = stationary 

Stationary unload to truck Speed < .048 kmh-1 Auger On 

 

Truth data could not be created for the grain trucks as the GPS logging that was created was based 

on the mark II logger which did not have access to CANbus data that the combine and grain cart 

had. As such optimization of the algorithm centered on the grain cart data and the combine data. 

In addition, the grain truck data was robust to state changes as the majority of the time was spent 

either in transit to grain bins or stationary at the field edge.  

1.4.3 Algorithm Creation 

 Using the predefined states in Table 1.3 and Table 1.4 work was begun on creating an 

algorithm which would identify the states of all the machines in the field based on the time-series 

location data and a set of heuristics rules. 

Rule Generation for State Estimation   

Rules were generated for each of the states that were available for the machines in the field. 

To accomplish this, the rules shown in Table 1.7 were created for the combine states. Also, the 

grain cart states were made with the rules shown in Table 1.8. Lastly, the states for the grain trucks 

were created and are seen in Table 1.9. 
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Table 1.7: Combine State Rules 

State: Rule 
Working: Measured speed > Idle Threshold 

Idle: Measured speed < Idle Threshold and 
distance to cart > Coordination Threshold 

On the go: 
Measured speed > Idle Threshold and 

distance to cart < Coordination Threshold and 
relative speed < Relative speed Threshold 

Stationary 
Measured speed < Idle Threshold and 

distance to cart < Coordination Threshold and 
relative speed < Relative speed Threshold 

NA: Catch all for NA values in data set 

 

Table 1.8: Grain Cart State Rules 

State: Rule 

Waiting 
Measured speed < Idle Threshold and 

distance to combine > Coordination Threshold and 
distance to truck > GPS cart range 

Transporting 
Measured speed > Idle Threshold and 

distance to combine > Coordination Threshold and 
distance to truck > Cart coordination threshold 

On the go 
Measured speed > Idle Threshold and 

distance to combine < Coordination Threshold and 
relative speed < Relative speed Threshold 

Stationary combine unload 
Measured speed < Idle Threshold and 

distance to combine < Coordination Threshold 
and relative speed < Relative speed Threshold 

Stationary unload to truck 
Measured speed < Idle Threshold and 

distance to truck < Coordination Threshold cart range 
and relative speed < Relative speed Threshold 
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Table 1.9: Grain Truck State Rules 

State: Description 

Waiting Measured speed < Idle Threshold 
distance to cart > Cart coordination threshold 

Transporting Measured speed > Idle Threshold 
distance to cart > Cart coordination threshold 

Stationary loading Measured speed < Idle Threshold 
distance to cart < Cart coordination threshold 

NA Catch all for NA values in data set 

Rule Application to Data 

The algorithm would iterate through the combined data set of all the GPS points for the 

machines in the field labeling each point with the appropriate state. From these initial results, a 

table of states was created for all the machines as shown in Table 1.10 

 

Table 1.10: Example Data Log 

 S660 Combine Grain Cart Truck 

State: time 10:01:02 Working Transporting Waiting 

State: time 10:01:03 Working Transporting Waiting 

State: time 10:01:04 Idle Transporting Waiting 

State: time 10:01:05 Working Transporting Waiting 

State: time 10:01:06 On the go On the go Waiting 

State: time 10:01:07 On the go On the go Waiting 

State: time 10:01:08 On the go On the go Waiting 

 

This initial run would only look at the current GPS location of all the field implements and 

the speeds of the machines. However, from this, slight errors would come about due to the unstable 

nature of the speed and GPS accuracy. This would induce faults in states as can be seen by the 

erroneous “idle” in the S660 combine states. While this point should have been a harvest point, 

the GPS location may have wavered enough to reduce the speed below the idle thresh hold thus 
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inducing an idle point. To correct for these errors the state tables were modified to highlight errors 

in the data.  

 The state table was changed from a list of states and converted into a list of concurrent 

states. This would provide the model with a list of how long the machine had been in that specific  

state. From this table of concurrent states, a history of how long each state was active was created. 

This was helpful for the removal of incorrect states.  

 

Table 1.11: Concurrent State Count Log 

S660 Combine Grain Cart Truck 
State Time in State (s) State Time in State (s) State Time in State (s) 

Working 629 Transporting 200 Waiting 700 

Idle 2 Waiting 329 Transporting 200 

Working 122 Transporting 66 Waiting  203 

On the go 95 On the go 95 Transporting 504 

Working 273 Transporting 105 Waiting 192 

 

Table 1.11 highlighted that the idle count for the S660 does not provide much valuable 

information to the model. The event most likely came about by a reduction in speed for something 

such as a cornering event. Thus, the idle count can be corrected via a “history check”. The goal of 

the check was to remove any state that lasted less than a certain timeframe and did not provide 

useful information. The combine or trucks and carts should be in a single state for longer than a 

set timeframe for it to be considered an event such as unloading on the go. Thus, any state counts 

that are small enough can be corrected in the state table and the unnecessary values can be either 

back filled or forward filled to correct for the values. 

Rule Parameter Optimization  

The rules that determined the various states were tuned on a selected field to “train” the 

model to have better results. Field 70 was selected to tune the algorithm. Field 70 harvest data 

featured little overlap or unnecessary movement made by the combine. In addition, each state was 

represented well in the data for the field. Stationary unloads were performed at the edge of the 

field, also, the combine unloaded on the go multiple times into the grain cart.  
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The rules for each state were tuned around a set of variables that had a large impact on the 

output of the system. As such, the following variables in Table 1.12 were selected to tune the 

algorithm around.  

 
Table 1.12: Variables for Tuning of State Algorithm 

Criteria Description 

Idle Threshold Value for determining idle vs movement 

Relative Speed 
Threshold 

Value for determining relative speed between machines 

Coordination 
Threshold 

Value for determining if combines and grain carts were “near” or “far” 

History Value for how many consecutive states required for it to be a true state 

Cart 
Coordination 

Threshold 
Value for determining if grain carts and trucks were “near” or “far” 

 

Each variable was tuned from a list of selected values that can be seen in Table 1.13. 

 

Table 1.13: Tuning Variable Range 

Criteria  Candidate Values 

Idle Threshold (kmh-1) .40, .80, 1.21, 1.61, 2.01, 2.41 

Relative speed Threshold (kmh-1) .20, .40, .80 

Coordination Threshold 

(Decimal degrees) 
.00014, .00015, .00016, .00017, .00018, .00019 

History 0, 1, 2, 3, 4, 5, 6, 7 

Cart coordination threshold 

(Decimal degrees) 
.00016, .00017, .00018, .00019 

 

The algorithm was then run through each possible combination of the variables in Table 

1.13. The output of the algorithm was then checked against the truth data that was compiled. The 

checking was done in an event-by-event manner. The truth data for each event was checked against 

the matching time of the algorithm output. Events that matched across the truth data and algorithm 
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output were labeled as correct. The best set of variables that had the most matching states between 

the algorithm output and the truth data was selected for use and testing the other three fields.  

Further exploration of the tuning variables was performed to identify the effect that certain 

variables had on the output of the algorithm. The overall output of the tuning algorithm can be 

seen in Figure 1.3. 

 

 

Figure 1.3: Maximum output of tuning conditions for all variables of state algorithm 
 

The visualization highlights some anomalies in the tuning parameters. The large gap that is 

in the data occurred due to the “Relative Speed Threshold” parameter. At 0.2 kmh-1 the algorithm 

was not able to identify the coordinating states between the grain cart and the combine due to such 

a tight restriction in speed. This bias caused the large gap that can be seen separating the maximums 

and minimums in Figure 1.3.  

 In addition to the relative speed threshold, the idle speed threshold also played large part 

in the total maximum of the algorithm. The idle speed threshold was critical in determining if the 

combine and grain cart were experiencing movement or not. The parameter had large impacts on 
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the overall output of the algorithm. The idle threshold was isolated and the effect it had on the total 

maximum of the algorithm can be seen in Figure 1.4. 

 

 

Figure 1.4: Maximum Output vs Idle Threshold  
 

It was evident that the speed had a sharp decline at 0.8 kmh-1 with a local maximum at the point. 

The effects that the speed had can also be visualized and seen in Figure 1.3 where the overall slope 

of the figure is trending downwards across the sequence. Also of note, the coordination threshold 

for the combine and grain cart played a large role in tuning for the maximum output.  

 The coordination threshold was critical in determining if the combine was interacting with 

another machine in the field. The distance between the two machines played a large role in 

determining which state the machines were in.  

22600

22650

22700

22750

22800

22850

0.3 0.8 1.3 1.8 2.3

A
lg

or
ith

m
 M

ax
im

um
 C

or
re

ct

Idle Threshold (kmh-1)



 
 

32 

 
Figure 1.5: Maximum Output vs Coordination Threshold 

 

The effect that the coordination threshold had can be seen in Figure 1.5. A sharp drop off can be 

seen at .00016 decimal degrees. At .00016 decimal degrees the machines are approximately 18 m 

away from each other. The cutoff at that distance points to a common distance that the machines 

are when interacting with each other. Because of this, it can be strongly inferred that the machines 

interact with each other within an 18m radius and a coordination threshold larger than 18m would 

introduce errors where the machines are close but not interacting.  

1.5 Results 

 The algorithm was run on all four fields that were selected for analysis. Each field that was 

analyzed had distinct differences in either the size, crop, or machinery used. The fields were 

harvested between September 29th and October 2nd, 2021. 

1.5.1 Parameter Tuning Results  

The first field that was analyzed was field 70. The field had an appropriate number of 

unload events and, it had simple track lines from end to end. As seen in Figure 1.6 there was very 

little wasted movement which made this a good candidate for the tuning of the algorithm.  
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Figure 1.6: Field 70 combine working state and on the go in field paths 
 

The optimization from field 70, and the configuration results can be seen in Table 1.14: 

Tuning-Selected Parameters  

 

Table 1.14: Tuning-Selected Parameters from Field 70 Harvest Data 

Idle Threshold .8 kmh-1 

Relative speed Threshold .8 kmh-1 

Coordination Threshold .00014 (~16m) 

History 2 values 

Cart coordination threshold .00016 (~18m) 

 

Working         = 

 

On the go        =    
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Utilizing the selected parameters, the script was run for the data set and the states were 

assigned to the GPS points for the whole day. The results of the tuning run for the combine can be 

seen in Table 1.15: Field 70  

  

Table 1.15: Field 70 Tuning Results for Combine with Truth Data Comparison 

State State Algorithm 
Predicted 

State Algorithm 
Correct 

False 
Positive 

False 
Negative 

Percent 
Error 

Working 10175 9969 206 152 1.50% 

Idle 172 146 26 34 18.90% 

On the go 1672 1545 127 218 12.37% 

Stationary 
Unload 279 217 62 17 7.26% 

 
This field provided a good benchmark of the state algorithm’s ability to identify the 

working state of the machines. The truth data had an adequate amount of all four main states. In 

total from the verification against the truth data, the state algorithm was over 96% accurate when 

determining the status of the combine. Overall, only 421 points were missed out of 12,000. The 

largest percent error was in the idle state, however, in total only 34 points were missed for the idle 

state. The ide error was accounted for in the abnormal unload behavior. The combine would unload 

on the go till the end of the field at which point it would unload in a stationary manner. After that, 

the combine would sometimes sit idle for a few seconds next to the grain cart, thus the state 

algorithm logged the behavior as stationary unloading rather than idle. The unload on the go to 

stationary behavior can be seen in Figure 1.7: Field 70 unload   
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Figure 1.7: Field 70 unload on the go to stationary behavior 
 

In addition to the on the go to stationary error, the state algorithm had small issues 

identifying on the go states. A good example of the error can be seen in Figure 1.8.  

 

 

Figure 1.8: Map showing leading and lagging errors in field 70 
 

The leading and lagging error was common in the analysis of the field. This error occurred during 

the alignment of the grain cart and the combine. The grain cart driver could arrive at the combine 

and be ready to receive the grain long before the button to unload was pushed. As such, the model 

struggled to identify at what time the combine began to truly unload into the grain cart. Similarly, 

after the unload process was complete the drive of the grain cart could wait for a few seconds 

Working       =   Idle   = 

 

On the Go     =   Stationary unload        = 

Working             = 

 

On the Go           = 

 

Incorrect State    = 
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before pulling away. When observing from GPS points, there is no distinguishing moment to 

identify the shift in state. The variance in alignment time between grain cart and combine caused 

the state algorithm to incorrectly label certain points.  

The grain cart for the field was also tracked using the state algorithm and the logs can be 

seen in Table 1.16 

 

Table 1.16: Field 70 Grain Cart State Analysis 

State 

Truth 

Data 

Values 

State 

Algorithm 

Predicted 

State 

Algorithm 

Correct 

False 
Positive 

False 
Negative 

Percent 
Success 

Transport 4543 4483 4259 224 284 93.75% 

Waiting 4385 3912 3742 170 643 85.34% 

Grain Cart 

Unload 
1373 1949 1311 638 62 95.49% 

On the go 1763 1662 1556 106 207 88.25% 

Stationary 

unload 
234 292 224 68 10 95.73% 

 

 The states for the grain cart had a fairly large success rate at over 90% accuracy. The largest 

percent errors occurred at the waiting state rather than one of the relatively smaller sized states. 

This behavior was due to the grain cart resting near the trucks when not in motion. This placement 

of the two implements caused the state algorithm to fail by reducing the waiting state and 

increasing the grain cart unload state.  

1.5.2 Algorithm Validation Results 

Field 200 

The state algorithm was optimized using field 70. To verify the results of the optimization, 

the state algorithm was run on the three remaining fields to identify the accuracy of the model. 
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Field 200 was a large field that had all the potential states included. The field was harvested 

by two different combines and thus was split across two logs. The paths of the combines can be 

seen in Figure 1.9 and Figure 1.10 

 

 

Figure 1.9: Field200 S660 harvester tracks 

Working          = 

 

On the go        =    
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Figure 1.10: Field 200 S670 harvester path 

 

The output of the machine state for the S660 can be seen in Table 1.17 Field 200 S660 State and 

the S670 in Table 1.18. 

 

Table 1.17 Field 200 S660 State Analysis 

State 
Truth 
Data 

Values 

State 
Algorithm 
Predicted 

State 
Algorithm 

Correct 

False 
Positive 

False 
Negative 

Percent 
Correct 

Working 32650 32298 32090 208 560 98.28% 

Idle 2875 2569 2211 358 664 76.90% 

On the go 1171 1005 871 134 300 74.38% 

Stationary 
Unload 1086 1910 1050 860 36 96.69% 

Working       = 

 

On the Go     =    
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Table 1.18: Field 200 S670 State Analysis 

State Truth Data 
Values 

State 
Algorithm 
Predicted 

State 
Algorithm 

Correct 

False 
Positive 

False 
Negative 

Percent 
Correct 

Working 33344 33081 32905 176 439 98.68% 

Idle 3274 3239 2795 444 479 85.37% 

On the go 1542 1535 1320 215 222 85.60% 

Stationary 
Unload 565 870 363 507 202 64.25% 

 

Overall, the state algorithm was very accurate for determining the states in the field. 

Overall, the accuracy of the model was just under 96%. The working state of the S670 had an 

exceptional 98.68% success rate. The model most likely worked hard to reduce the error count of 

the working state because of the point difference in the states. The working state accounts for 

almost 10 times the points as the others and thus the model will most likely work to reduce the 

error in the working state. In addition to the combine output, the grain cart outputs can be seen in 

Table 1.19 and Table 1.20 respectively.  

 

Table 1.19: Field 200 S660 Grain Cart States Analysis 

State 
Truth 
Data 

Values 

State 
Algorithm 
Predicted 

State 
Algorithm 

Correct 

False 
Positive 

False 
Negative 

Percent 
Correct 

Transport 15420 15049 14793 256 627 95.93% 

Waiting 16880 16699 15309 1390 1571 90.69% 

Grain Cart 
Unload 3225 3118 2188 930 1037 67.84% 

On the go 1171 997 886 111 285 75.76% 

Stationary 
unload 1086 1919 1058 861 28 97.42% 
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Table 1.20 Field 200 S670 Grain Cart States Analysis 

State 
Truth 
Data 

Values 

State 
Algorithm 
Predicted 

State 
Algorithm 

Correct 

False 
Positive 

False 
Negative 

Percent 
Correct 

Transport 15489 15000 14738 262 751 95.15% 

Waiting 17898 18431 16756 1675 1142 93.62% 

Grain Cart 
Unload 3231 2894 2183 711 1048 67.56% 

On the go 1542 1533 1344 189 198 87.16% 

Stationary 
Unload 565 867 366 501 199 64.78% 

 

 The model also experienced error when the combine unloaded directly into a grain truck at 

the edge of the field. The state algorithm has no state for unloading into the truck for the combine, 

as such, the truth data classified the unload as a stationary unload, however the state algorithm had 

classified the time period as ide. This accounted for a large portion of extra idle state algorithm 

labels and accounted for a large portion of the missed stationary unload points, approximately 200. 

The state algorithm also failed when the combine was stopped and idle directly next to the grain 

cart.  The behavior can be seen in Figure 1.11. Because the two machines were located near each 

other while idle, the state algorithm continued to mark both machines in the stationary unload 

point.  
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Figure 1.11: Grain cart idle near combine 
 

This behavior accounted for approximately 450 miss-logged idle points in the S670 state 

table. The points were logged as stationary unload when they should have been labeled as idle. To 

fix this issue, a state limit could be implemented. Such a limit would kick the state algorithm out 

of the stationary unload state after a set amount of time and move it into another state. This would 

limit the number of missed points when the combine and grain cart idle next to one another. 

Another solution that could help reduce the missed logs for near idling would be the 

implementation of same heading checks.  A same heading check could reduce the errors by not 

allowing the stationary unload if the two machines do not have the same heading, however 

implementing that state could cause more errors when the combine does unload in a stationary 

manner.  

Field 58 

Field 58 was also harvested by two separate combines. The paths that the two combines 

took for field 58 can be seen in Figure 1.12. 

Grain Cart   =  

 

Combine     =  
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Figure 1.12: Field 58 S660 and S670 combine tracks 
 

The results of the state algorithm for the S660 and S670 combines can be seen in Table 

1.21 and Table 1.22 respectively.  

  

Working State  = 

 

On the go          =    
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Table 1.21: Field 58 S660 States Analysis 

State 
Truth 
Data 

Values 

State 
Algorithm 
Predicted 

State 
Algorithm 

Correct 

False 
Positive 

False 
Negative 

Percent 
Correct 

Working 7196 7086 7056 30 140 98.05% 
Idle 264 281 208 73 56 78.88% 

On the go 331 327 263 64 68 79.46% 
Stationary 

Unload 43 140 43 97 0 100.00% 

 

Table 1.22: Field 58 S670 States Analysis 

State 
Truth 
Data 

Values 

State 
Algorithm 
Predicted 

State 
Algorithm 

Correct 

False 
Positive 

False 
Negative 

Percent 
Correct 

Working 6834 6719 6697 22 137 98.00% 
Idle 802 899 784 115 18 97.76% 

On the go 187 192 164 28 23 87.70% 
Stationary 

unload 87 100 80 20 7 91.95% 

 

The field had overall good results for the outcome of the model. With an overall success 

rate of 96.6% in the S660 field, the model showed good success. In the S670 portion of the field, 

the state algorithm was accurate at predicting 6697 points out of 7725 only missing 185 points 

over the whole day. While the combine was in the field for over two hours, the model was 

inaccurate for only three minutes of log time. The largest percent error for the S670 was the on the 

go state. In total 23 points were improperly predicted. Of the 23 points, 100% of the misses were 

due to leading and lagging errors in transition from one state to another. Likewise, in the S660 

field 24 of the misses in the on the go state were due to leading and lagging errors. The S660 state 

algorithm had an error due to the evaluation of the truth data. The threshold for movement was set 

at .048 kmh-1 to evaluate if the combine was moving or not. Because of this, the combine was in 

the movement state during an unload event, even though it would be classified as a stationary 

unload by an operator. This behavior can be seen Figure . This on the go unload would have been 
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better classified as a stationary unload in the truth data, and it accounts for the remainder of the 

error in the on the go state for the S660.  

 

 

Figure 1.13 Stationary unload points classified as on the go 
 

Table 1.23: Field 58 S660 Grain Cart States Analysis 

State 
Truth 
Data 

Values 

State 
Algorithm 
Predicted 

State 
Algorithm 

Correct 

False 
Positive 

False 
Negative 

Percent 
Correct 

Transport 2465 2665 2294 371 171 93.07% 
Waiting 4565 4933 4502 431 63 98.62% 

Grain Cart 
Unload 460 98 98 0 362 22.80% 

On the go 331 328 265 63 66 80.06% 

Stationary 
Unload 43 140 43 97 0 100.00% 

 
  

On the go        =    

3m 
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Table 1.24: Field 58 S670 Grain Cart States Analysis 

State 
Truth 
Data 

Values 

State 
Algorithm 
Predicted 

State 
Algorithm 

Correct 

False 
Positive 

False 
Negative 

Percent 
Correct 

Transport 2631 2556 2514 42 117 95.55% 

Waiting 4577 4968 4560 408 17 99.63% 

Grain Cart 
Unload 428 101 101 0 327 23.60% 

On the go 187 188 166 22 21 88.77% 

Stationary 
Unload 87 97 81 16 6 93.10% 

 

In comparison to the combine state predictions, seen in Table 1.23, the grain cart machine 

performed adequately as seen in Table 1.24. However, it did not do as well as the combines. In 

total the machines were accurate 92% and 94% of the time respectively. A large portion of the 

errors are shared by the grain cart unload state. The grain cart unload was responsible for 300 

missed states, however, when the state algorithm predicted an unload into the grain cart it 

performed at 100% accuracy as seen by the 101 correct logs in the S670 state algorithm. The error 

for the two machines should appear very similar when the grain cart is not interacting with a 

combine. The log is identical for the S670 and S660, as there was only one grain cart in the field. 

The difference in the two predictions lies in how the log was compared to the combine. Because 

of this interaction, the failed grain cart unload event appears twice in the metrics, one for the S670 

and one for the S660 because at that time the grain cart does not interact with the combine.  

The failed interaction between the grain cart and the grain trucks was not a byproduct of 

the state algorithm. Upon visual inspection in QGIS, it was revealed that the grain cart unloaded 

twice into wagons instead of the grain trucks. The state algorithm did not have a state to account 

for the interaction between the wagons and the grain cart. From inspection in QGIS 327 points 

were classified as grain cart unload in the truth data when no grain truck was available to receive 

an unload. The two unloads into wagons accounted for all the error in the grain cart unload state 

and also accounted for the excess states that were logged as waiting. Once the points were 

corrected from the dataset, the accuracy of the grain cart unload state was increased to 100% 
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accuracy for the S670. In addition, the overall percent error of the grain cart model was reduced to 

2.12% which was a much better overall result.  

Field 57 

Field 57 was a relatively simple field with only unloading on the go. The field was a good 

benchmark for what a fully optimized combine would look like. During the entire field, the 

combine was kept moving and it did not have to wait for a grain cart or truck to unload into. The 

tracks the combine took can be seen in Figure 1.14. 

 

 

Figure 1.14: Field 57 
  

Harvest State      = 

 

On the Go           = 

 

Incorrect State    = 
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The results of the state algorithm can be seen in Table 1.25.  

Table 1.25: Field 57 Combine States Analysis 

State 
Truth 
Data 

Values 

State 
Algorithm 
Predicted 

State 
Algorithm 

Correct 

False 
Positive 

False 
Negative 

Percent 
Correct 

Working 9021 8952 8927 25 94 98.96% 

Idle 0 0 0 0 0 100.00% 

On the go 642 711 617 94 25 96.11% 

Stationary 
Unload 0 0 0 0 0 100.00% 

 

As seen from the results, the combine did not have any idle times during the field. It was 

fully utilized during its harvest route. The overall success rate of the model was extremely good; 

it yielded a percent error of only 1.23%. Field 57 specifically highlighted the leading and lagging 

error that was present for all the fields. A good example of the error can be seen in Figure 1.15 

 

 

Figure 1.15: Leading and lagging errors 
 

The leading and lagging error was present because of the alignment time of the combine 

and the grain cart driver. The alignment time between the two machines was never exactly perfect 

and consistent. Thus, the state algorithm struggled to correctly identify when the combine and 

grain cart began the unloading sequence. The error did have a unique property, the lag error could 

On the Go           = 
 
Leading Error     = 
 
Lagging Error    = 
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very closely be swapped with the lead error. Most lag error events were offset with the leading 

error. For every point that was misses at the start due to alignment, an almost identical point was 

incorrectly added at the end of the unload when the combine and grain cart parted ways. In addition 

to the combine data, the grain cart results were also collected and can be seen in Table 1.26. 

 

Table 1.26: Field 57 Grain Cart States Analysis 

State 
Truth 
Data 

Values 

State 
Algorithm 
Predicted 

State 
Algorithm 

Correct 

False 
Positive 

False 
Negative 

Percent 
Correct 

Transport 1713 1609 1527 82 186 89.14% 

Waiting 6790 6915 6651 264 139 97.95% 

Grain Cart 
Unload 518 428 409 19 109 78.96% 

On the go 642 711 621 90 21 96.73% 

Stationary 
Unload 0 0 0 0 0 100.00% 

  

The grain cart state algorithm performed well overall. The overall success rate of the 

machine was just under 93%. The greatest error of the state algorithm was in the grain cart unload 

state. Upon inspection all 109 missed logs of the state occurred at the alignment of the grain cart 

and the grain truck. The long length of the truck and the placement of the logger in the cab placed 

the initial unload logs just outside the boundary of the cart coordination threshold. However, the 

unload event was still captured but, the distance between loggers and the poor GPS quality of the 

trucks led to the mis-labeling of the initial cart unload states.  

1.5.3 Overall Model Results 

Overall, the model was very successful in backing out the states from the GPS data alone. 

The overall model success rate for the combines can be seen in Table 1.27 and was 96.6%.  
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Table 1.27: Cumulative Fields Multiple Combine States Algorithm Output 

State State Algorithm Correct Truth Data Values Percent Correct 

Harvest 87675 89045 98.46% 

Idle 5998 7215 83.13% 

On the go 3235 3873 83.53% 

Stationary unload 1536 1781 86.24% 

 

Additionally, the grain cart was also evaluated for total success, sitting at just above 91% correct, 

the model was very accurate when predicting the state of the grain cart as well as the combine. The 

overall success rates can be seen in Table 1.28.  

 

Table 1.28: Cumulative Field Grain Cart States Algorithm Output 

State State Algorithm Correct Output Desired count Percent Correct 

Transport 35866 37718 95.09% 

Waiting 47926 50710 94.51% 

Grain Cart unload 4979 7208 69.08% 

On the go 3282 3873 84.74% 

Stationary Unload 1548 1781 86.92% 

 

Utilizing the state algorithm, some interesting data points were derived from the data that 

would otherwise be unavailable without the CAN bus logs. In total the state algorithm predicted 

5998 logs of idle time across the three fields. Converting the time of the logs, the overall idle time 

of the combine in the field was shown to be just under 100 minutes lost to idling. In addition to 

the idle times, the combine also unloaded in a stationary manner into the grain cart. In total, the 

combine sat stationary unloading for 25 minutes, as was predicted by the state algorithm. For the 

three fields, the combine was not harvesting for over 125 minutes of operational time.  

 In addition to idle time, the state algorithm was also able to see the impact that unloading 

on the go had on the harvest operation. The combine unloaded on the go for just under 54 minutes 

rather than unloading at the edge of the field. Additionally, the total unload time of the harvester 

was just under 150 minutes for the whole harvest duration. The state algorithm successfully 

captured 65 out of 65 unload events from the combine into the grain cart. Overall, 20 stationary 
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unload events were captured and 45 on the go events were successfully reported. As a check, the 

on the go and stationary unload total time log aligned with the total count of unload events. Each 

unload event took approximately 70 seconds which aligned with the auger of the combine.   

 Useful field metrics can also be calculated from the results of the state algorithm. For the 

three fields, the combine utilization was found to be 94.4% with the idle times and the stationary 

unloads detracting from the utilization. Additionally, the combine was idle for 7.1% of the time in 

the field. The combine was unloading, either stationary or on the go for 9.1% of the time in the 

field.  

The state algorithm was largely successful in identifying the states of the machines in the 

fields, however, the algorithm had higher percent errors for the states outside of the “Working” 

state. This was most likely due to the tuning of the algorithm as the working state held much more 

weight due to the number of points that were harvest, as such the tuning most likely selected results 

which prioritized the working state as it contained an order of magnitude more points than other 

states. Thus, if desired the model could be changed to optimize for the maximum correct values of 

idle, on the go, and stationary unload points. As these three states are highly related, most errors 

of the smaller states were shared with one another. Errors in unload on the go were most likely 

shared with stationary unload, and stationary unload errors were most likely shared with idle rather 

than the working state. Thus, tuning could be done to improve the error of the smaller states at a 

loss to the overall model correctness.  

1.6 Conclusion 

Farmers and managers are pressed into making hard decisions for the betterment of their 

machines and equipment. To assist in this endeavor, a tool to help with the optimization of the 

equipment fleets was created. A data pipeline was successfully created to capture truth data for the 

2021 harvest. An algorithm was created and applied to the data to label the states of all the event 

logs that were captured. To make the tool more widely usable, the algorithm was constrained to 

only using GPS points that could be captured off the already existent CAN bus or by installing 

inexpensive GPS loggers. The algorithm parameters were tuned using truth datal collected via 

CAN bus message and validated on three production fields. In total, the model was able to correctly 

identify the states of the combine with an accuracy of 96.6%. Additionally, the model predicted 

the states of the grain carts and grain trucks with an accuracy of 91.75%. This algorithm will enable 



 
 

51 

future work in both real time and post operational logistical analysis that will empower farmers to 

identify inefficiencies and bottleneck in their harvest operation.  
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 LORA EVALUATION FOR LONG RANGE AND HIGH SPEED 

2.1 Abstract 

 Harvest operations have many constraints to operate at full efficiency. Correct pairing of 

harvester and transport must be assured to fully utilize implements and workers that are available. 

Downtime of the harvest operation can occur when the harvester’s hopper is filled, and no grain 

truck is available for unload. During this interaction, the harvester waits until and truck is available 

for unload. This interaction downtime could be reduced via proper planning and information. If 

informed that no truck will be available soon, harvesters could choose to perform low efficiency 

work and not fill the hopper thus incurring downtime. LoRa was identified as a technology that 

could provide real time information for harvesters thus giving them the tools needed to make 

informed decisions. LoRa was tested with differing configurations to identify if it would be an 

appropriate tool for mobile applications at long ranges such as 16 km. From the testing, LoRa’s 

applicable range varied based upon line of site and height of antenna with a maximum applicable 

range of 9.6 km. Additional testing was done regarding the use of LoRa at speeds ranging from 32 

kmh-1 to 97 kmh-1 to identify the effect that high speed had on signal strength. The speed of the 

mobile end node had large impacts on the resilience of the LoRa signal. At 16 kmh-1 the signal 

reliability dropped from 77% to 53%.  

2.2 Introduction 

 With an increase in world population across the past decade, it has become imperative that 

commodity operations increase in both yield and efficiency to meet the needs of an ever-growing 

world. From 2015 to 2020 the world’s population has grown by 400,000,000 people. 

(Worldometers, 2020) With this exponential growth in population, food scarcity and commodity 

crops have been a focus of improvement to meet the increasing demand for yield. As such, it is 

important that farmers and harvest operations have peak efficiency during operating hours to 

maintain high rates of harvest with as much resource and logistical optimization as possible. 

Inefficient harvesting operations lengthen harvest duration and increase the risk of field loss due 

to over mature crops and weather events. 
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 Improper sizing of machinery can create waste both in the form of unneeded excess capital 

spending, or in the form of harvester downtime due to a lack of trucking capacity. Buckmaster and 

Hilton (2005) showed that the matching of harvester and transporter directly correlated to 

theoretical field efficiency, and additionally created a digital model which would allow users the 

ability to correctly size and utilize the equipment and labor force that was available to them. With 

a declining trend in labor availability, it has become imperative to use as few implements as 

possible. From 1950 to 20000 there has been a decline of over 50% of hired farm laborers across 

America (Anon 2020b). This decline has forced a focus on larger machinery and higher total 

implement capacity with a reduction in implement count. This higher capacity machinery is wasted 

if the system cannot keep up and carries a high initial capital cost that carries over in energy costs 

and total farm costs. Utilizing proper path planning and whole farm modeling, harvest operations 

could improve the system capacity and throughput without an increase in machinery count or 

capacity. This improvement to capacity would allow for downsizing of machinery and a reduction 

in total system cost. It would also have the added benefit of a reduction in worker count for the 

operation.  

 To achieve proper path planning, real time system monitoring must be in place for all 

implements within the field. Harvest operations often perform kilometers from base points or 

unloading areas. As such, it is imperative that long range technologies be considered when 

selecting an appropriate technology to create a real time mapping tool for in field operations. 

Cellular technologies provide simple and elegant solutions for fleet management and other such 

tracking operations. Its simple success can be seen throughout public use with the implementation 

of google maps and other connectivity programs. However, cellular connection suffers greatly in 

areas with low population density and rural areas. Due to the lack of coverage within rural areas, 

utilizing cellular connections for fleet tracking yields poor results with regards to long-distance, 

real-time tracking. Coverage of rural areas within America was classified as “Cropland areas 

where farming occurs still lag far behind in adequate fixed and mobile broadband access.” (Kane 

and Borghei 2017) With the vast area of rural America lagging behind in LTE and broadband 

coverage, technologies beyond cellular must be examined for use within the long-range 

communication sphere as the inadequate coverage of cellular signal would not be a reliable 

solution. 
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 To circumnavigate the lack of coverage within rural areas, M2M (Machine to Machine) 

and low power wide area (LPWA) networks were evaluated for their ability to send and receive 

data across long distances that harvest operations would require. Often LPWA networks sacrifice 

high data rates to gain high range and noise resistance. LoRa was identified as a potential 

technology which could fill the gap in long range communication in real time. LoRa is a 

proprietary radio modulation technology which operates within the 915MHz license free range 

band for US operators. Radio nodes can be assembled to form a LPWAN called LoRaWAN as 

seen in Figure 2.1. LoRaWAN is often configured in a star shaped network such that end nodes 

communicate with gateways which in turn transmit data onto central servers at which point end 

users can access the data in a variety of ways such as tablet or mobile device. 

 

 

Figure 2.1: LoRa star network configuration 

 

This long range M2M technology makes it ideal for communication within the field of agriculture 

as it is resistant to noise and can travel long distances. In addition, data rates that are needed for 

real time localization of in field machines is rather low and can be handled by the physical 

limitation of LoRa.  

2.2.1 Internet of Things Within Agriculture 

Lakhwani et al. (2019) focused on the potential uses of the Internet of Things within 

developing agricultural fields such as in India. Within the review, some key benefits of IoT were 

identified, including, efficiency of input, cost reduction, profitability, sustainability, food safety, 

and environmental protection. The paper also focused on some of the challenges of agriculture and 
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the benefits of having implemented an IoT solution. Issues such as crop growth timing were 

addressed in addition to watering solutions, and crop profit calculations. Utilizing the IoT, farmers 

were able to check on plant stages during the growth phase and predict future outcomes for profit 

and cost analysis. Additionally, farmers had the ability to properly plan irrigation schedules in 

accordance with other data inputs, such as weather patterns and history. The IoT within the review 

allowed farmers to check current outputs and in field metrics with historical data within the cloud 

and perform checks and comparison to previous years. Furthermore, farmers could monitor real 

time changes within the field and make proper decisions based on data gathered from the sensor 

clusters within the fields.  

Zhao et al (2010) explored the use of IoT within greenhouse production environments. 

Data was collected within a greenhouse using IoT style sensors and clusters. Temperature and 

humidity data was collected in a machine to machine (M2M) style of network. The M2M network 

was then supported with real time data transfer using a mobile terminal via a short messaging 

service (SMS) gateway. Data was then transferred via a GSM modem which enabled users’ access 

to data via mobile web apps. Additionally, GSM modem alternative uses were explored such as its 

use in vehicle tracking or home automation. Researchers were able to display stored data from the 

greenhouse in formats which would provide value to users of the system. Data was stored in online 

databases and could be queried by users to obtain, 24 hour, weekly, or monthly data. This data 

could also be used within the real time to provide alarms or alerts when temperatures fell below a 

set threshold.  

Farooq’s review paper sought to evaluate the evolution of the IoT within the most recent 

developmental phase (Farooq et al. 2020). The paper targeted seven main research questions which 

pertain to all facets of the IoT within agriculture. Within the seven research questions, five were 

directly related to the development of solutions using IoT for cycle analysis. Mainly, how has the 

frequency of approaches been changed related to IoT agriculture over time? What approaches are 

used to address problems related IoT agriculture? What are the main application domains of IoT 

in agriculture? What were the primary focuses of the selected studies? What type of IoT 

devices/sensors have been used in agriculture? Which IoT network/communication protocols are 

used in agriculture? From the data and papers which were reviewed, it was determined that interest 

in IoT within agriculture has been rising steeply since 2015 with over double the number of papers 

published from 2015 to 2018. Additionally, the review identified how IoT was being applied to 
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each separate domain. 70% of the papers reviewed used IoT as a monitoring system for operations 

such as temperature monitoring, or humidity and soil temperature monitoring. 25% of studies 

focused on controls while only 5% of the papers reviewed focused on the tracking domain. 

Additionally, the papers were sorted with respect to the major focus of each study. A breakdown 

of each focus could be seen in Figure 2.2. 

 

 

Figure 2.2: IoT application focus breakdown (Farooq et al. 2020) 
 

Moreover, the review identified which communication technologies were being developed for use 

with IoT. From the papers reviewed, 29% used wireless sensor network (WSN) and 15% utilized 

WIFI connections. Long range radio (LoRa) was the fifth most popular communication technology 

within the study with Zigbee and Radio-Frequency Identification (RFID) being more utilized. The 

review also identified issues that an IoT user could expect to deal with when setting up or using a 

network. The large issues facing IoT users were cost based, the creation of a large scale IoT 

solution carried many costs that compounded for small users creating large costs. Each device and 

sensor accrued project cost. In addition, subscriptions to mobile fees for a large sensor count could 

create a high cost to the end user. Aside from cost, lack of knowledge affected the implementation 

of IoT. Rural farmers were unable or unwilling to understand the technology necessary to properly 

implement and maintain a IoT solution. Lastly, the review determined security issues within IoT. 
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Inherently, IoT had many security risks within its systems due to the low energy hardware. 

Complex algorithms and high-level securities could not be run on hyper efficient modules which 

utilized extremely low amounts of energy. Cloud services could also be targeted with denial-of-

service attacks or other database attacks.  

Khanna and Kaur performed a thorough review on the uses and growth of the IoT within 

precision agriculture (Khanna and Kaur 2019). Among the review work done, the amount of 

communication standards available to IoT was identified. From the technologies identified, LoRa 

was identified as being a long-range option with ranges from 3000m to 5000m. Other technologies 

offered greater data rates however, provided much less range than LoRa. The researchers 

highlighted the varying novel uses of each communication technology and it potential to increase 

value for farmers. Importantly, the creation of an intuitive communication interface and cost were 

key challenges to IoT. Additionally, availability for users, and data confidentiality were issues 

impeding the growth of the IoT sector within agricultural practices.  

Another paper strove to evaluate the theoretical limits of LoRa utilizing the standard 

protocols used under the European standards (Petäjäjärvi et al. 2017). Because of this the team 

tested LoRa with a spreading factor of 12 rather than the normal spreading factor of 10 in the 

United States. The increase in spreading factor would contribute to a longer-range transmission 

over the North American standard of 10. The team determined that between 2 and 5 km the end 

node successfully transmitted its data at 85% and 88% success rate. In addition, they observed 

signal deterioration at speeds of 40km/h.  

Lavric and Popa sought to determine the effect that multiple end nodes would have on a 

large-scale system that could be utilized in a variety of civil fields (Lavric and Popa 2018). In large 

endeavors multiple end nodes would be competing for the same broadcasting time for the gateways 

in the system. As such, packet collision could occur in the network and packets would be lost. The 

team determined at high spreading factors; the long transmission time adversely affected the 

performance of the network as collisions would surely occur. However, utilizing the lowest duty 

cycle, the gateway could support just shy of 1000 end nodes. For an eight-channel gateway the 

network could support approximately 8000 end nodes.  
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2.2.2 Farm Management  

 This review identified research studies performed withing farm management systems from 

2008 to 2017 (Tummers, Kassahun, and Tekinerdogan 2019). From the systematic search, 38 

studies were deemed to be of high enough standards. The review classified a farm management 

information system (FMIS) as “an FMIS supports decision making and helps with keeping track 

of the current business process to maximize the profit of a farm.” From the review, seven research 

questions were used to evaluate the various studies. Pertinent to this study are the following 

questions: what are the current FMIS described in the literature, which domains are supported, 

what are the delivery models, what are the features of existing FMIS, and what are the obstacles 

to existing FMIS? From the review, 28 of the studies die not name a specific FMIS or rather 

proposed a new design for the creation of a FMIS. Concurrently, of the studies 16 were performed 

in the arable farming domain. The livestock domain was the second most common with 5 studies 

being reviewed on the topic. Continued from the review, a majority of studies utilized an 

application approach for developing a FMIS for the end user. Applications could be applied locally 

on any computer. In contrast, only 6 of the studies utilized a platform approach which would allow 

users to create and input their own plugins to enhance the capabilities of the platform. 81 separate 

features were identified from the various studies. All 32 studies identified the farmer as a key 

feature within the FMIS, in contrast, only 4 studies identified machinery tracking as a key feature 

in a FMIS. Likewise, 4 studies identified harvest management as a key feature, and only 2 studies 

identified driver assistance as key features within a FMIS. The review also recognized over 53 

separate obstacles in the development of a FMIS. Adoption rates of FMIS was a chief obstacle, 

socio-demographic factors and other contingent factors hindered the implementation. Cost 

remained an obstacle, not all FMIS provided immediate or observable value to farmers, or simply 

cost too much for farmers to see profitability from the system. Other issues remained inhibitors to 

FMIS, for example, understandability was a key factor for farmers using management systems. 

The systems must be easy to operate and easy to introduce to the farm for value to be seen. 

Connection to internet was an issue that prohibited adoption; not all farmers had wireless 

connection to internet in rural areas in the fields, as such, farm management systems that utilized 

heavy internet traffic could be inefficient or unavailable to many farmers in areas with 

connectivity.  
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This work performed by Buckmaster focused on the benefits and potential efficiency gains 

that could be made via the optimization of machinery selection and cycle timing (Buckmaster and 

Hilton 2005). An optimization tool was created by analyzing and diagraming cycle times of various 

farming implements during the harvesting season. The spreadsheet tool that was created was useful 

in that varying inputs could be selected to manage differing farm sizes or machinery selection. 

Analysis was performed on a self-propelled forage harvesting system. The harvester had a capacity 

of 40Mg DMh-1 with a field efficiency of 80%. This harvesting system was then analyzed for total 

system capacity with a range of transport systems. System capacity rose as transport count rose, 

however, labor utilization for all implements stayed the same for each scenario. Increasing the 

count of transporters, increased the system capacity, increased the harvester efficiency, and the 

labor utilization remained similar. In addition, transport distance was also considered in the model. 

As transport distance rose, system capacity dropped significantly. Beyond 16km, system capacity 

dropped by over 20% with transporters being more fully utilized in the 10 – 15 km range.  

2.2.3 The Case for the Use of IoT Within Cycle Management 

As can be seen from the previous exploration into IoT and system management, farmers 

are looking for a way to properly manage their fleet such that labor utilization can be optimized, 

profits and yields can be maximized, and overall system downtime can be reduced. IoT provides 

a unique opportunity for farmers to get real time data about various implements and factors from 

their fields into their hands. By utilizing the developing technology that is IoT farmers can make 

informed decisions on the fly and be able to increase the overall system capacity of their overall 

operation.  

From the previous work shown, IoT has its own problems and issues that must be dealt 

with to create a system which provides real value to farmers in a way that is both economical and 

efficient. Farooq’s work showed that over 70% of developmental work in agricultural IoT was in 

monitoring specifically about temperature, moisture, and humidity monitoring. While these 

methods can provide value to farmers, value can be extracted from IoT in other ways, especially 

with regard to tracking and controlling. There is a large gap within the research area for tracking 

farm implements and controlling destinations. Farooq’s work shows that approximately 5% of 

papers published within the agricultural IoT domain dealt with tracking and fleet management. 

This can be in part to the lack of long-range technology that is utilized for IoT work. Khaana 
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identifies and classifies the various technologies that are available to work with IoT. Among them, 

LoRa stands out as having long range application that may be suitable for working with a tracking 

application.  

Developing an IoT tracking solution would be able to provide a discernible amount of value 

to customers and adopters of the technology. As can be seen from Buckmaster’s work, total system 

capacity fell by 20% when transporters were forced to travel more than 16km. The drop in capacity 

could be offset by increasing the number of total transporters in the system to ensure that the 

harvester is always operating in the field. However, increasing the count of transporters is not 

always a viable option for farmers. Farmers are already struggling with finding and maintaining 

capable workers during the harvesting season and may not be able to accrue enough workers for 

their fleet. Additionally, extra transporters require more storage space and upfront cost to purchase. 

Farmers may view the reduced system capacity as an acceptable loss when compared to the upfront 

and long-term cost of utilizing another transporter. With IoT and LoRa farmers may be able to 

offset the loss from lack of transport availability. LoRa systems could be created such that harvest 

operators could remain informed of wait times and choose to operate within low efficiency fields 

to mitigate the wait time and reduce the overall downtime of the combine. By doing so, the 

operators could increase the overall system capacity.  

When developing IoT solutions for agricultural use, care must be taken to avoid or resolve 

potential issues and conflicts that would halt the adoption of said technology. From the review 

papers, multiple common issues or inhibitors arose that must be dealt with. Cost remained a large 

issue and a common theme among the IoT review studies. Tracking large fleets would require a 

large count of sensors. Thankfully, LoRa sensors are relatively cheap, at less than $100, and due 

to the low power nature of them, using milliwatts, require little to no upkeep. LoRa technology 

also has the large benefit of operating within the unlicensed spectrum of 915 MHz Operating in 

the 915 MHz range allows for cheaper systems as no monthly subscription upkeep cost is needed 

such as with LTE technology 5g phone service.  

In addition to cost, ease of application and ease of implementation must be considered 

when developing. Utilizing LoRa a system can be made which allows combine or harvester 

operators to see in real time the location of the implements in the field and the transporters ferrying 

goods. This type of a system could be made in a way which is easy to setup via prepackaged code 

and easy to utilize as it requires very little beyond LoRa modules. In addition, the system can be 
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made using off the shelf components which are open source such as Arduino or Raspberry PI. This 

will further reduce the complexity and cost of said systems thus encouraging the adoption of the 

technology.  

Multiple review papers also identified data security as a large issue with regards to IoT Lora 

signals can be send encrypted or unencrypted, however the security of the system can be drastically 

reduced with the removal of cloud computing and cloud access. LoRa signals could be sent directly 

to basepoints in the combine and all computations could be performed locally. This removal of the 

networking step would allow for increased security for farmers and would remove the upkeep and 

excess steps of maintaining and utilizing cloud data.  

2.3 Objectives 

The goal of this work was to evaluate LoRa as a communication technology for tracking grain 

trucks that are used to transport grain away from the field to storage or market. To complete the 

evaluation the following objectives were created:  

1. Create a LoRa system to be used in testing for long range and high-speed application 

2. Create and maintain a data pipeline for retrieval and evaluation of geospatial data 

3. Perform long range and high-speed testing of the LoRa system 

2.4 Methods and Materials 

2.4.1 LoRa System  

 The LoRa system that was created was based on the Semtech SX1276 chip. This chip was 

a proprietary chip featuring multichannel spread spectrum communications. Semtech advertised 

the following capabilities from the chip: 168 dB maximum link budget, 127 dB dynamic range 

received signal strength indicator (RSSI), 20dBm constant RF output vs. V supply. (Semtech, n.d.) 

This chip was housed within an Arduino shield which was sourced from Dragino Technology Co. 

The Arduino shield was directly compatible with an Arduino Uno. This allowed for quick 

assembly and integration of the SX1276 with an Arduino microcontroller. In addition, the Dragino 

shield housed a MT3339 style sticker global positioning unit (GPS).  
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Figure 2.3: Dragino LoRa shield  

 

The Arduino shield also had mounting points for external antennas both for LoRa mounting 

and for the GPS unit. A 28dB gain 3V SMA style GPS antenna (WGP supply, Unites States) was 

sourced for the project to always assure proper GPS fixes. This antenna, seen in Figure 2.3, could 

be mounted in various locations such that it was not influenced by the orientation of the Arduino 

shield and could be attached to metal surfaces via a magnetic backer. In addition to the GPS 

antenna, an antenna tuned for the 915MHz frequency was used to boost the LoRa signals being 

sent and received. Initial testing of the unit was performed using a .9 dBi helical antenna that was 

received stock with the unit. After initial testing, a 6 dBi HGV-906U omnidirectional antenna (L-

com, United States) was obtained to boost signal strength. The antenna, shown in Figure 2.4, was 

an omnidirectional antenna with a 30-degree vertical beam width and 50-ohm impedance. (L-com 

n.d.) Also, the antenna could withstand winds of up to 108MPH which made it ideal for high-speed 

mobile testing. This 23-inch antenna was attached using N to SMA adapters and could be mounted 

with an angled bracket on a mast.  
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Figure 2.4: HGV-906U Antenna and radiation pattern at 960 MHZ (L-com) 

 

To contrast the Dragino Arduino shield, am OLG01 gateway was used to create a 

connection point with the end nodes. This gateway was also sourced from Dragino and has built 

in 3g/4g capabilities. Within the unit, it is controlled via a 400MHz processor running Linux, 

additionally the unit housed 16 MB of flash memory which could be written or read from. The unit 

was powered via 12V input and had Wi-Fi access point capabilities for controlling and 

programming the unit.  

To help in the selection of antennas and appropriate hardware the Egli (1957) pathloss 

shown in  Equation 2 was utilized to make approximations about the range of the equipment. 

Equation 2: 𝑃𝑃𝑃𝑃 = 𝐺𝐺𝐺𝐺 ∗ 𝐺𝐺𝐺𝐺 ∗ �
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Where:  

• PL = pathloss(dB) 

• Gt = Transmitting antenna gain 

• Gr = Receiving antenna gain 

• Ht = height of transmitting antenna (m) 

• Hr = height of receiving antenna (m) 

• d = distance between transmitting and receiving antenna (m) 

• f = operating frequency (MHz)  
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2.4.2 Data Processing Pipeline  

A pipeline for data retrieval and analysis was necessary for the evaluation of LoRa at long 

distance and high speed. GPS points were broadcasted using a mobile end node. Simultaneously, 

the same GPS point was recorded via serial into a text file to be used later in the analysis. The 

recorded GPS point was then stripped of excess data and transformed into a .csv file with time logs 

and location logs. The GPS point that was broadcasted at the end node was received by the gateway 

antenna. The point was then recorded as a LoRa packet and sent into Excel for data cleaning and 

transformation. The data was then transformed into a .csv file of the same layout as the initially 

recorded GPS point. The two .csv files were imported into QGIS for future analysis and 

comparison of the sent data and received data. The pipeline was visually represented in Figure 2.5. 

 

 

Figure 2.5: Data pipeline of GPS points sent and received at end node and gateway 
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2.4.3 System Testing  

Testing was carried out at the Agricultural Center for Research and Education (ACRE) at 

Purdue University. Testing was done using a mobile truck and stationary tower antenna located at 

the center of the farm.  

Range Testing  

To evaluate the capabilities of the LoRa system, a path was planned through the city of 

West Lafayette and though the agricultural sector north of ACRE. To create a valid path through 

the city, Radio Mobile Online was used to create raster maps of potential coverages which the 

LoRa system could provide. Radio Mobile is an online tool which uses the Irregular Terrain Model 

developed by Hufford. (Hufford 1982) The online tool considered many different parameters 

which were useful for testing. The tool could be calibrated for antenna type, antenna height, 

elevation, line losses, and many other parameters. Radio mobile was calibrated with the same setup 

used for testing to gather a proper idea of where and how far coverage would be seen with the 

LoRa network. Coverages could be made for 3 distinct setups which were carried out: gateways at 

7m, 10m, and 16m. Coverage maps were then overlayed in QGIS, an open-source GIS software, 

and path lines for testing were drawn out.  

 

 

Figure 2.6: 16m High gateway coverage map of West Lafayette 
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From the coverage maps which were created and shown in Figure 2.6, a grid path was 

chosen through the high coverage (green) areas. The path chosen in Figure 2.7 traveled 190km 

both through rural and urban terrain. This path utilized country and county roads which harvest 

operations would be likely to use.  

 

 

Figure 2.7: Path through coverage map 

A stationary gateway was placed at ACRE farms in the center of the pattern and elevated using a 

telescoping tower with 12V solar power available. The mobile Arduino end node and was 

connected to the back of a truck via a mast, as seen in Figure 2.8 and powered with on board 12V 

from laptops.  
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Figure 2.8: Telescoping tower and truck mount 

 

Data was collected in real time as the truck drove the given path. The trucks velocity was 

the maximum velocity of each road, with speeds ranging from 50 kmh-1 to 110 kmh-1. In contrast 

to the normal star network which LoRa utilizes, end node data was collected directly from the 

LG01 gateway. Normal star network utilized the gateway as a bridge between the end nodes and 

servers, however, with a lack of broadband connectivity and access to the internet in rural areas it 

was imperative that the system be able to pull data directly from the gateway without accessing 

the server side as it would in real world applications. As such, utilizing a bash script, RSSI and 

LoRa messages were stored directly on the gateway and pulled off the gateway in real time 

mimicking real-world applications.  

 The route was driven with the telescoping tower in three different configurations, once with 

the stationary gateway at each height: 7m, 10m, and 16m. In all three configurations, the end node 

was located at a height of 2.4 m from ground height. The route was driven with both low and high 

gain antennas to evaluate the impact that each antenna had on signal strength and on signal 

reliability.  

The end node had the following configuration which maximized range of the system and 

additionally maximized robustness to noise. The node was set to transmit using the PA boost pin 

available to the chip. As such, the board was transmitting at 20 dBm, which was the maximum 

hardware limit set by the FCC. With the high gain antenna, the system reached a transmission level 
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of 26 dBm minus minor cable and connection losses. The chip operated at a spreading factor of 10 

and a bandwidth of 125kHz. This configuration produced packets with an on the airtime of 370.7 

ms. The mobile end node sent a packet once per 2.4 seconds.  

 Arduino programming was done utilizing the open-source IDE available online. The initial 

sketch to transmit data utilized prebuilt libraries to make integration and creation of the LoRa 

network simpler. The Radiohead library (kenbiba, 2016) was useful in creating sketches to fully 

utilize the abilities of the Semtech chip and Dragino shield. This library was coupled with the 

TinyGPS library (Lee, 2019) to create sketches that could read NMEA streams from the external 

GPS unit. Additionally, for further testing, the LMIC library (Kooijman, 2015) was used to create 

sketches which utilized LoRaWAN capabilities and OTAA.  

Speed Testing 

 After initial testing was finished, further testing was required to determine the accuracy 

and use of LoRa under high-speed conditions. Testing was performed in a similar manner as in 

previous experiments. However, constraints were placed upon speed and careful attention was 

placed on maintaining steady speeds. Testing was performed with gateway at 3.7m of elevation 

from ground level. Like the first testing, the mobile end node was placed at the top of a truck for 

data transmission. Unlike prior work, the route driven was in a previously established high 

reception area seen in Figure 2.9. As such, a low gain antenna was used for ease of testing.  

 

 

Figure 2.9: High Speed Testing Location 
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 The route taken was approximately 2 km in length in a tangential direction to the gateway. 

An initial baseline was taken of the route with 6 stops taken along the way. The truck with the end 

node waited at each stop for approximately 2 minutes. After the baseline was taken, a slow pass 

of the route was taken at 16 kmh-1. Thereafter, the route was driven at increasing speeds 

incrementing by 8 kmh-1 to 105 kmh-1. Each lap had a set amount of acceleration length which was 

not tracked, and high speeds laps over 65 kmh-1 were taken twice.  

2.5 Results 

2.5.1 Range Testing 

 Initial testing of the network was performed at ACRE farms at Purdue. With an initial route 

due north of the stationary gateway, the system was expected to have range between 8 and 16 

kilometers. Line of sight for the area was high with little to no impedances to visibility over a long 

range other than the slope of the terrain at various intervals. Tree cover was low to the north and 

no large buildings or compounds were directly north of the gateway.  

 

Figure 2.10: 7m gateway north bound testing with a max range of 7600m 

Driven path                 =  

Received GPS points =        
Gateway                      = 
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From the initial testing shown in Figure 2.10, the maximum distance that the signal could 

be received was 7.6 km from the gateway to node. However, at that distance, signal strength and 

reliability were low with only 4 points being recieved. Signal was unexpectedly lost at 5.2 km 

from the gateway and only returned on two occasions once at 7.4km and once at 7.7km. Of 55 

packets that were sent at that range only four were received. Lidar data from National Resources 

Conservation Service (NRCS) was obtained and utilized in QGIS to identify the geographical 

landmarks which potentially interfered with the signal. The LiDAR elevation was accurate to 

.300m. (Jinha 2020a)  

  

Figure 2.11: 7m gateway path overlayed on elevation raster highlighting missed data points 

 

The elevation data shown in Figure 2.11 proved that there was little terrain change that 

would impact signal. The Lidar did show that the points in at the top of the map where slightly 

higher with an elevation of 238m compared to the surrounding landscape at 222m potentially 

allowing for signal reception and successful packet transfer.   

Received GPS points =      

 m 

 

 

m 
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 Further testing was also done to compare the signal strength and range of the gateway when 

changing the ground elevation of the gateway.  

 

Figure 2.12: 10m gateway received data points with max range of 10500m 

 

A large difference in coverage was expected when comparing results from the 7m gateway, 

shown in Figure 2.12, with the 10m gateway. The extra 3m of height allowed for better line of site 

over terrain variance and small obstacles such as trees or bushes. By elevating the gateway by 3 

additional meters, the range of the LoRa system increased by over 2.9 km with a total range of 

10.5 km. Similar to the 7m gateway the system failed to transmit reliable data as the range 

increased. Reliability of the system dropped dramatically at 6.3 km which was a marked 

Driven path                 =  

Received GPS points =        
Gateway                      = 
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improvement over the 7m gateway at 5.2 km. The drop in signal could be due to a grove of trees 

along the sightline of the signal and thus would inhibit both signals reducing their overall range. 

However, the signal could be received when the truck moved east and thus cleared the obstacle 

impeding the signal.  

In addition to testing at 7m and 16m heights, the gateway was also placed at a height of 

16m off the ground. Like the previous routes, the truck was driven north with an eastward dogleg 

along the path shown in Figure 2.13.  

 

 

Figure 2.13: 16m gateway received data points with max range of 8300m 

 

Utilizing the Egli (1957) model from Equation 2, it was expected that the 16m gateway 

would have much better signal capabilities. However, the maximum range of the 16m gateway 

was 8.3 km, like the 7m gateway. Comparative to the previous tests, the signal was severely limited 

above a range of 6.3 km from the gateway. Because of the similarities in signal degradation 

between all three tests, it was assumed that some obstacle was obstructing the line of sight between 

Driven path                 =  

Received GPS points =        
Gateway                      = 
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the gateway and the end node and thus signal was lost at the same range for all the subsequent 

tests. The test showed that it was imperative for LoRa operations that line of sight between the end 

nodes and the gateway was always maintained. Without line of sight, the signal loss became too 

large for the gateway to obtain a useable symbol and thus corruption or packet loss can occur.  

 

Table 2.1: Packet Reliabilty Within Receiving Range of Gateway 

Tower Height Packets Sent Packets Received Success Rate 

7m 261 105 40.2% 

10m 331 128 38.7% 

16m 362 157 43.4% 

 

Table 2.1 shows the direct reliability of the LoRa signal that was experienced at highway 

speeds of approximately 95 kmh-1 while moving with little angular velocity to t 

he gateway itself. Only packets sent within the reliable data range were considered and 

extreme outliers were corrected for packet reliability. From this, a large packet drop was seen 

across the different configurations, independent of the height of the gateway, when the signal was 

steady. Upon closer inspection of the packets as viewed in Figure 2.14, at regular intervals the 

signal being sent from the end node was not received by the gateway due to weak signal. 

 

 

Figure 2.14: Packet reliability 

Driven path                 =  

Received GPS points =        
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As can be seen in Figure 2.14 the gateway received approximately one in three sent signals from 

the end node even when within the range of the LoRa signal. 

2.5.2 Secondary Range Testing  

 Continued testing was done utilizing the capabilities of the telescoping tower to further 

understand the range of the network, especially with regards to larger areas and more dynamic 

land coverages. As such, data was collected from areas all around West Lafayette. In addition to 

the range testing, line of sight was to be evaluated with the use of local forests in the area. Urban 

areas were also evaluated to ascertain the capabilities of the LoRa signal. However, urban 

landscapes were unable to have direct line of sight to the gateway without heavy forest initially 

impeding the signal.  

 

 

Figure 2.15: Cross valley testing of LoRa signal with a 16m gateway 

 

Driven path                 =  

Received GPS points =        
Gateway                      = 
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As can be seen from Figure 2.15 the end node signal did not penetrate the landscape to 

make it back to the gateway. The heavy forest inhibited the signal to the point where no readable 

data was received. Closer inspection of the data showed how drastically the wooded area blocked 

the signal transmission.  

 

 

Figure 2.16: Forest impeding line of sight at close range of gateway 

 

Figure 2.16 shows the immediate the effect the forest had on the signal that was received. 

Previous testing revealed that the signal could be received at over 10 km in distance, however, 

from this test the signal was only received at 1.2 km. Due to the strong restriction in signal range, 

it was hypothesized that the signal could not propagate south past the heavily forested area to reach 

the other side of the valley. Even if the signal had the ability reach that high range and pass over 

the flat lands and low valley, the forested area would cut the ability of the signal to such a high 

degree that no packets would make it to or from the gateway due to the heavy vegetation.  

 More testing was performed on the system to identify the potential range with a higher 

variety of land covers. It was also critical to identify if LoRa could penetrate through small, 

wooded areas and still receive signal on the other side. Data was collected utilizing the northern 

Driven path                 =  

Received GPS points =        
Dense Forest 
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fields of the ACRE properties which had wide areas with little to no ground cover which could 

interfere with the radio signal.  

 

Figure 2.17: 7m gateway path and received packets 

 

 Figure 2.17 highlights the path that was driven to fully test the properties of the LoRa signal 

at ACRE farms. The maximum range that the system was able to achieve with the tested route was 

10 km. This testing aligned with previous testing that was done, however, the range of this test in 

comparison was approximately 2.5 km longer than prior testing as seen in Figure 2.10. Due to the 

unreliable nature of the radio as established in Table 2.1, the increase in range could be due to 

mere chance that more packets were received at a greater distance than before. Alternatively, other 

factors outside the scope of the experiment could be a root cause of the difference in results. These 

factors could range from weather conditions to relative humidity to speed of the end node varying.  

 The results from the test highlight some more interesting useful information to identify. 

The data collection especially highlighted the effect that line of sight had on the network of LoRa 

signals which can be seen in Figure 2.18. 

Driven path                 =  

Received GPS points =        
Gateway                      = 
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Figure 2.18: Line of sight infringement 

 

Following the tree line just northeast of the gateway tower, a line was drawn beyond which, 

little to no LoRa signals are received as seen in Figure 2.18. The forest coverage on the ground, 

seen in red, severely restricts the capabilities of the system to send and receive messages.   

 This testing was also performed with the gateway at 16m to identify the difference an 

additional 31’ of height would add or retract from the range of the system. The full data collection 

of the 16m gateway can be seen in Figure 2.19.  

Driven path                 =  

Received GPS points =        
Gateway                      = 



 
 

78 

 

Figure 2.19: 16m gateway testing path with received points 
 

From Figure 2.19 it can be seen in contrast to the 7m gateway in Figure 2.17, the higher 

elevation gateway performed poorer than the lower gateway. Curiously, it was expected that the 

higher elevation of the gateway would allow for more terrain clearance and provide a better line 

of sight for the mobile end node. From the testing however, the 16m gateways maximum range 

was only 8.16 km. Testing done prior also confirmed this maximum range of the gateway as seen 

in Figure 2.13. From Equation 2 it was seen that the height of the gateway should increase the 

range of the signal by a factor of the square of the heights. As such the results from the 16m 

gateway were unexpected. By increasing the height of the gateway, the overall range of the system 

was reduced by 1850 meters. It was expected to see an increase of 3.7 km. 

This decrease in range was an unexpected result from the testing. Continued testing was 

also done with the gateway at 10m ground height to determine any large differences in previous 

testing.  

Driven path                 =  

Received GPS points =        
Gateway                      = 
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Figure 2.20: 10m gateway testing path with received points highlighting tree coverage 

 

The data from the 10m gateway produced similar results to the 16m gateway. The southern 

legs of the 10m gateway test highlighted the inability of the LoRa signal when pertaining to 

piercing through heavy forest and ground cover. As seen in Figure 2.20 the signals were dropped 

at a rate of near 100% when south of the tree line. The heavy forest did not allow for signal to pass 

through. The maximum range received from the 10m testing was 8300 meters. This coincided with 

the reliable data signal range seen in Figure 2.12. However, from the testing of the 10m tower, 

distinct packet loss was seen along the route, specifically along the most northern leg. Previous 

testing had shown that area to be within the range of the gateway and yet, a large portion of packets 

were lost along the route. Like the 16m gateway, the expected outcome of the testing was greater 

than what was experimentally obtained.  

Packet loss across all three gateways heights was measured and compared as seen in Table 

2.2. This was collected only in a 10 km distance in areas where signal strength was high and could 

be counted as moderately reliable, thus ignoring areas with no signal reception of any manner.  

Driven path                 =  

Received GPS points =      

Tree Line            = 

Gateway                        =    
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Table 2.2: Packet reliability of high signal strength 

Tower Height Packets Sent Packets Received Success Rate 

7m 411 188 45.7% 

10m 259 74 28.5% 

16m 411 167 40.6% 

 

In addition, as all three tests were performed in the same area with a data rate of 0.41 Hz, 

numerical values for sent and received packets within an area can be collected and compared. 

Directly north of ACRE was an area where high signal was obtained for all three gateways across 

multiple tests, as such a suitable area to compare signal strength of the three heights in the same 

area can be selected in the fields north of ACRE. This allows for an accurate comparison of the 

packet reliability in a broad area free from obstacles.  

 

Table 2.3: Varied heights gateway packet reliability 

Tower Height Packets Sent Packets Received Success Rate 

7m 978 210 21.5% 

10m 703 90 12.8% 

16m 978 224 22.9% 

 

Table 2.3 highlights some potential issues that LoRa faces when being utilized in mobile 

applications. In an area where signal strength has been proven to be strong and where messages 

are reaching the gateway, the reliability rate of the packet reception is remarkably low. The 10m 

gateway has extremely poor values in comparison to the 16m and 7m gateway. This potentially 

could be accounted for based on the position of the gateway upon setup of the telescoping tower. 

The 10m test varied in that the gateway signals could have been blocked by the material of the 

tower, while testing of the 7m and 16m gateway took this into account when positioning the 

gateways.  
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Figure 2.21: Illustration of tower material interference with LoRa signal reception 
 

In Figure 2.21, it can be seen how the material of the tower itself could inhibit the signals 

from making it to the antenna of the gateway at near and far ranges. As such, signals originating 

from the northwest of the tower could be obscured from view of the gateway. However, this 

phenomenon does not explain the poor performance of the 10m gateway with respect to the routes 

that were due north of its position. In addition, as seen in Table 2.2Table 2.2 the 10m gateway also 

performed poorly when receiving signals in high reliability areas with a success rate of 28.5%.  

Curiously, the 7m gateway outperformed the 16m gateway by 1700m for total range. Table 

2.2 and Table 2.3 show similar results when comparing packet loss across the two systems. From 

Table 2.2 the 16m gateway had a higher packet reliability but a lower overall range. It can be 

inferred then that the taller gateway had a more reliable signal to closer instances while having a 

poorer overall range. This was most likely due to the height advantage that the gateway had over 

the 7m tall tower. However, it was surprising that the 7m tower still outperformed the other 

gateway by 1700m.  

The 7m gateway could have been performing so much better than the other gateway due to 

the high gain of the mobile antenna. Figure 2.22 showed how radiation pattern of the antenna 

coupled with the uneven terrain could have created a situation with poor reception for the taller 

gateway on sloped terrain. Thus, the taller gateway would have better reliability when it was 

connected due to its height, however it may not have had the range due to the signal radiation 

missing the height of the gateway and impacting the ground. This could also explain why the 7m 
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gateway had better results than the 10m gateway as it was most likely in a more calibrated height 

than the others, thus giving it more range but poorer reliability due to its height.  

 

 
Figure 2.22: High gain antennas irradiation patterns on uneven terrain – not to scale 

 

 To further test this, the high gain antenna was removed from the end node to identify what 

effect it had on the system and if better results could be captured from the higher elevation 

gateways.  

 

 

Figure 2.23: Received points with low gain antenna testing 

 

Driven path                 =  

Received GPS points =        
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As can be seen in Figure 2.23, the max range of the system without the high gain antenna 

was 1110 meters from the gateway. This testing solidified the need for a properly calibrated 

antenna when utilizing LoRa systems as high gain antennas drastically improved the output of the 

system in comparison to lower gain antennas.  

The full set of trial runs and intermediate routes could be compiled to obtain a full coverage 

map of ACRE farms for all the varying setups of the gateways. From this coverage map, an idea 

of dead spots on the farm and other high coverage areas can be obtained.  

 

 

Figure 2.24: ACRE LoRa coverage map from testing runs connecting to 7, 10, and 16m gateway 
 

This map highlights a major key to utilizing mobile LoRa: line of sight is top priority. From 

Figure 2.24 it can be seen how drastically the tree coverage and landscape shaped the total area of 

the network signal. South of the gateway no signals were able to penetrate the wooded area which 

ran along the length of the road. To the northeast, a 45-degree line of coverage can be seen which 

follows the tree line of the forest. From this, it can be assumed that care must be taken when placing 

gateways for network creation.  

Driven path                 =  

Received GPS points =        
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The full coverage map also provides more useful insight. Figure 2.24 shows that there is 

reliable coverage with a maximum reach of 13 km from end to end. Additionally, the gateways 

cover over 95 square kilometers of land. However, the reliability of the network was extremely 

poor. Table 2.2 and Table 2.3 showed a reliability of approximately 40% in areas where signal was 

regular and only a 23% reliability in areas where signal was known to be strong but signal was 

irregular. This irregularity can also be seen when comparing the full coverage map to individual 

tests. The western half of the coverage area was not received during testing as seen in Figure 2.20 

but via the coverage map the area tested at that time has full reception and can be received by the 

gateway at various heights. Due to this, the unreliability of the system is extremely high, when 

performing optimally, a large area is covered and would be useful for logistical tracking, however, 

the network does not always receive signals from those areas that had previously been receiving 

packets.  This could be due to the gateway acquiring the signal of the end node as it travels across 

the landscape. At high speeds, a delay of 1 minute in acquiring the signal can results in kilometers 

of missed packets.  

2.5.3 Speed Testing 

To verify this high-speed interaction, testing was done along the same strip with the 

gateway set at the same height for each pass. The speed of the mobile node was increased to 

ascertain any differences in signal due to the speed of the end node. It was hypothesized that at 

higher speeds, the gateway would struggle to obtain signal from the gateway and in addition have 

a higher packet loss.  
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Figure 2.25: Speed testing route 

 

 The testing path shown in Figure 2.25 was performed from 8 kmh-1 to 96 kmh-1, and the 

maximum range of the test was 2400 meters, and the data rate was 0.41 Hz. Additionally, the area 

that testing was performed in was a well know high signal strength area. As such, it was expected 

that the gateway would be able to see the end node in any stationary configuration.   

  

Table 2.4: High speed packet reliability at 2400m 

Speed (kmh-1) Packets Sent Packets Received Success Rate 

0 123 100 81% 

8 292 225 77% 

16 230 121 53% 

24 163 86 53% 

32 117 60 51% 

40 102 50 49% 

48 76 36 47% 

64 61 27 44% 

96 35 15 43% 

Driven path                =   
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Table 2.4 the high success rate of the baseline stationary testing can be seen. When stable 

and stationary in the field the LoRa end node transmitted strong steady signals to the gateway with 

very little packet loss. Diving further into the baseline data, the dropped packets were concentrated 

at the start of the stationary positions. Thus, the packets that were lost when performing stationary 

testing, could have been a result of the change in velocity from high speed to 0 kmh-1 when the 

truck came to a stop. The signal would not have had a chance to be connected until after a few 

seconds had passed at 0 kmh-1, thus the assumed success rate of the baseline can be marginalized 

as slightly above 81%.  

 

 

Figure 2.26: Reliability vs travel speed at 0.41 Hz data rate at 2400m 
 

Visualizing the data from Table 2.4 in Figure 2.26, a sharp decline in packet success rate 

can be seen around the 5mph mark with a steady decline in packet reliability as speed increases. 

The high-speed testing reveals that the previous unreliability issues with the gateway were most 

likely due to the speed of the end node as it traveled cross country. The effects of this can be seen 

dramatically in Figure 2.20 with the 10m gateway. When testing was done on that gateway, the 

mobile end node was traveling eastward across the northern routes at speeds excess of 96 kmh-1. 

From the high-speed testing, the packet reliability of that route was at best 43% disregarding other 
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factors such as line of sight, obstacles, or distance to gateway. When considering the high-speed 

aspect of the testing, the lack of coverage on the western portion of the map is confirmed as the 

signal was struggling to be acquired at such high speeds. This would confirm the large difference 

in packet loss when comparing the total coverage map of ACRE with the coverage test of the 10m 

gateway. This high-speed packet loss effect can also be seen in the other coverages including the 

7m gateway and the 16m gateway.  

The high-speed effect also showcased the increase in packet loss around obstacles or 

intrusions in line of sight. When navigating around obstacles which would impede the LoRa signal, 

the slower speeds had better reconnecting times with the gateway when compared to the increased 

speed testing. Additionally, the high speed of the end node increased the effect that the obstacle 

had on the signal. Intrusions into the line of sight would cause much larger signal loss when 

compared at high speeds when compared with lower speeds.  

 

 
 

Figure 2.27: 8kmh-1 and 96 kmh-1 packet reception at 2400m 
 

 Figure 2.27 highlights the effect that the high speed had on packet loss around line-of-sight 

obstacles. As seen by the dark blue, the driven path extends equally along the route, however, at 

two distinct points obstacles stop the LoRa signal as seen by the two gaps in the cyan markets. 

Signal were received in between the two points, yet the 96 kmh-1 testing had no reception through 

the whole area. The obstacles impeded the signal such that the gateway fully lost reception of the 

signal and reacquisition took much long at speed. Thus, a large gap was seen where coverage drops 

and remains unreachable in an area where it is known to have high signal.  

 

Driven path                                  =  
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2.6 Conclusion  

  A LoRa network was created in order fully test the capabilities of the technology at ACRE 

farms in West Lafayette. A mobile end node was used in conjunction with gateways at varying 

heights to identify and create a coverage map of the area. Further testing was performed on the 

network to identify the effect that high speed had on the system. From the testing it was found that 

under best circumstances, the network had a packet reliability of 45.7% while testing using a 

mobile end node. This reliability decreased further when looking at set areas where signal strength 

was known to be acceptable. High speed testing revealed that at speeds of 16 kmh-1 the reliability 

of the network drops by 24% in comparison to 5mph. The high-speed aspect of fleet tracking 

makes LoRa an unsuitable technology for its use in agriculture. Similar tests produced wide 

varieties of coverage maps using the same techniques. The high speed interfered too much with 

the signal reliability to be utilized it in a fleet tracking manner for grain trucks. In addition, testing 

revealed the effect line of sight had on the system. Heavily wooded areas produced dead zones 

which would not allow signal through it. The terrain of rural America would heavily interfere with 

signal with regards to dynamic systems such as grain truck pathing. As such, LoRa is not a suitable 

technology for use in mobile high speed fleet tracking. However, from the analysis of the data, 

LoRa could be utilized for in field tracking of slower machines such as combines and grain carts, 

under the condition that line of sight can be made between machine and gateway.  
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APPENDIX 

Code 

Data Frame Join 

# -*- coding: utf-8 -*- 

""" 

Created on Tue Oct 19 10:54:31 2021 

 

@author: loghe 

""" 

 

### CREATE SIUNGULAR DATA FRAME from mismatched cels 

 

import pandas as pd 

 

date = "10-2"             

 

 

graincart =     pd.read_csv(r'C:/Users/loghe/Desktop/ACRE unload/cleaned grain cart data/' + date 

+ '.csv') 

combine =       pd.read_csv(r'C:/Users/loghe/Desktop/ACRE unload/cleaned S660 data/' + date + 

'.csv') # s660 

# combine =       pd.read_csv(r'C:/Users/loghe/Desktop/ACRE unload/cleaned S670 data/' + date 

+ '.csv') # s660 

freightliner =  pd.read_csv(r'C:/Users/loghe/Desktop/ACRE unload/cleaned freight data/' + date + 

'.csv') 

international = pd.read_csv(r'C:/Users/loghe/Desktop/ACRE unload/cleaned int data/' + date + 

'.csv') 
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graincart = graincart.set_index(graincart['TIME']) 

# graincart = graincart.dropna() 

# graincart.index = pd.to_datetime(graincart.index) 

# graincart.index = graincart.index + pd.Timedelta(hours = -5) 

 

combine = combine.set_index(combine['TIME']) 

# combine.index = pd.to_datetime(combine.index) 

# combine.index = combine.index + pd.Timedelta(hours = -5) 

 

 

freightliner =  freightliner.set_index(freightliner['TIME']) 

# freightliner.index = pd.to_datetime(freightliner.index) 

# freightliner.index = freightliner.index + pd.Timedelta(hours = -5) 

 

international = international.set_index(international['TIME']) 

# international.index = pd.to_datetime(international.index) 

# international.index = international.index + pd.Timedelta(hours = -5) 

 

df= combine.join(graincart,lsuffix = " S660" ,rsuffix =' Grain Cart') 

df = df.join(international, rsuffix = ' international') 

df = df.join(freightliner, rsuffix = ' freightliner') 

 

df = df.drop(labels = ['DAY S660','Hours S660','Minutes S660','Seconds S660', 'Year S660' , 

                        'Month S660','DAY Grain Cart','Hours Grain Cart','Minutes Grain Cart', 

                        'Month Grain Cart','Seconds Grain Cart','Year Grain Cart','TIME S660', 

                        'TIME','TIME Grain Cart','D1','D5','D0','ABSTime S660', 

                        'TIME freightliner','ABSTime Grain Cart', 

                        'Heading Grain Cart' 

                         ],axis = 1)  #'Unnamed: 0 S660','Unnamed: 0 Grain Cart', 

df['Lat Grain Cart'].fillna(method = 'ffill',inplace = True) 

df['Long Grain Cart'].fillna(method = 'ffill',inplace = True) 
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df['Lat int'].fillna(method = 'ffill',inplace = True) 

df['Long int'].fillna(method = 'ffill',inplace = True) 

 

df['Lat freight'].fillna(method = 'ffill',inplace = True) 

df['Long freight'].fillna(method = 'ffill',inplace = True) 

 

df.to_csv(r'C:/Users/loghe/Desktop/ACRE unload/combined data/'+ date + ' combined.csv') 

 

 

State algorithm 

 

# -*- coding: utf-8 -*- 

""" 

Created on Wed Apr 21 22:25:18 2021 

 

@author: loghe 

""" 

## SCRIPT FOR COMBINED DATA 

 

import pandas as pd 

import math 

from math import radians, cos, sin, asin, sqrt 

import numpy as np 

 

 

date2 = "10-2"             
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# perfected = pd.read_csv(r'C:/Users/loghe/Desktop/ACRE unload/full data/' + date2 + '/combined 

data.csv') 

perfected = pd.read_csv(r'C:/Users/loghe/Desktop/ACRE unload/cleaned combined data points/' 

+ date2 + '.csv') 

perfect_S660 = perfected['state'].tolist() 

perfect_S660_index = perfected.TIME 

perfect_grain_cart = perfected['Cart State'].tolist() 

 

# perfect_Grain_Cart = perfected['Cart state'].tolist() 

 

 

def script(speed , gps_offset , list_length, closing_speed, truck_gps_offset): 

     

     

    tic = 1 

     

    for zz in range(tic): 

        # df = pd.read_csv(r'C:/Users/loghe/Desktop/ACRE unload/full data/' + date2 + '/combined 

data.csv') 

        df = pd.read_csv(r'C:/Users/loghe/Desktop/ACRE unload/cleaned combined data points/' + 

date2 + '.csv') 

        df = df[ int(len(df)/(tic)*zz) : int(len(df)/(tic)*(1 + zz))] 

         

        S660LAT = df['Lat S660'].tolist() #combine 

        S660LONG = df['Long S660'].tolist() 

        # S660SPEED = df['SPEEDS660'].tolist() 

         

        Grain_CartLAT = df['Lat Grain'].tolist() #cart 

        Grain_CartLONG = df['Long Grain'].tolist() 

        # Grain_CartSPEED = df['SPEEDGrain_Cart'].tolist() 
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        internationalLAT = df['Lat int'].tolist() #truck 

        internationalLONG = df['Long int'].tolist() 

        # internationalSPEED = df['SPEEDinternational'].tolist() 

         

        # ih19LAT = df['LATih19'].tolist() #truckpd  

        # ih19LONG = df['LONGih19'].tolist() 

        # # ih19SPEED = df['SPEEDih19'].tolist() 

         

        freightlinerLAT = df['Lat freight'].tolist() #truck 

        freightlinerLONG = df['Long freight'].tolist() 

        # freightlinerSPEED = df['SPEEDfreightliner'].tolist() 

         

        # df = df.set_index(df['DATE']) 

         

         

        dftime = df.index.tolist() 

 

         

         

        f = open(r'C:/Users/loghe/Desktop/unloads/STATEMACHINE/' + date2 +'interim.txt',"w") 

        f.close 

        f = open(r'C:/Users/loghe/Desktop/unloads/STATEMACHINE/' + date2 + 'interim.txt',"a") 

         

        

        state = '' 

         

        speedS660 =[] 

        speedGrain_Cart = [] 

        speedinternational = [] 

        # speedih19 = [] 

        speedfreightliner = [] 
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        statelist = []                     

         

        def haversine(lon1, lat1, lon2, lat2): 

            """ 

            Calculate the great circle distance between two points  

            on the earth (specified in decimal degrees) 

            """ 

            # convert decimal degrees to radians  

            lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2]) 

         

            # haversine formula  

            dlon = lon2 - lon1  

            dlat = lat2 - lat1  

            a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2 

            c = 2 * asin(sqrt(a))  

            r = 3959 # Radius of earth in mi. Use 3959 for miles 

            return c * r * 3600 

         

        for j in range(len(dftime)): 

                speedS660.append(haversine(S660LONG[j-1], S660LAT[j-1], S660LONG[j], 

S660LAT[j]))   

                speedGrain_Cart.append(haversine(Grain_CartLONG[j-1], Grain_CartLAT[j-1], 

Grain_CartLONG[j], Grain_CartLAT[j])) 

                speedinternational.append(haversine(internationalLONG[j-1], internationalLAT[j-1], 

internationalLONG[j], internationalLAT[j])) 

                # speedih19.append(haversine(ih19LONG[j-1], ih19LAT[j-1], ih19LONG[j], 

ih19LAT[j])) 

                speedfreightliner.append(haversine(freightlinerLONG[j-1], freightlinerLAT[j-1], 

freightlinerLONG[j], freightlinerLAT[j])) 
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        speedS660[0] = 0 

        speedinternational[0] = 0 

        speedGrain_Cart[0] = 0 

        # speedih19[0] = 0 

        speedfreightliner[0] = 0  

         

         

        #calculate moving average of the speed the length of the window and place in a holder 

        window = 5 

        intermediate_avspeedS660 = np.convolve(speedS660, np.ones(window)/window, 

mode='valid') 

        intermediate_avspeedGrain_Cart = np.convolve(speedGrain_Cart, 

np.ones(window)/window, mode='valid') 

        intermediate_avspeedinternational = np.convolve(speedinternational, 

np.ones(window)/window, mode='valid') 

        # intermediate_avspeedih19 = np.convolve(speedih19, np.ones(window)/window, 

mode='valid') 

        intermediate_avspeedfreightliner = np.convolve(speedfreightliner, 

np.ones(window)/window, mode='valid') 

         

        avspeedS660 = [] 

        avspeedGrain_Cart = [] 

        avspeedinternational = [] 

        avspeedfreightliner = [] 

        # avspeedih19 = [] 

         

        # fixes the first portion of the window due to no moving average there and place into final 

average speed list for each 

        for i in range(window-1): 

            avspeedS660.append(speedS660[i]) 
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        for i in range(len(intermediate_avspeedS660)): 

            avspeedS660.append(intermediate_avspeedS660[i]) 

             

             

        for i in range(window-1): 

            avspeedGrain_Cart.append(speedGrain_Cart[i]) 

        for i in range(len(intermediate_avspeedGrain_Cart)): 

            avspeedGrain_Cart.append(intermediate_avspeedGrain_Cart[i]) 

             

             

        for i in range(window-1): 

            avspeedinternational.append(speedinternational[i]) 

        for i in range(len(intermediate_avspeedinternational)): 

            avspeedinternational.append(intermediate_avspeedinternational[i]) 

             

             

        # for i in range(window-1): 

        #     avspeedih19.append(speedih19[i]) 

        # for i in range(len(intermediate_avspeedih19)): 

        #     avspeedih19.append(intermediate_avspeedih19[i]) 

             

         

        for i in range(window-1): 

            avspeedfreightliner.append(speedfreightliner[i]) 

        for i in range(len(intermediate_avspeedfreightliner)): 

            avspeedfreightliner.append(intermediate_avspeedfreightliner[i]) 

         

             

        """USES MPH FROM HAVERSINE""" 
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        """FIRST STATE MACHINE FOR COMBINE 

        # 

        # 

        # 

        """ 

         

        # gps_offset = .00017 

         

         

        for j in range(len(dftime)): 

             

          # """setup state  machine and state swaps""" 

                #harvest moving and not near grain cart 

                 

            if (avspeedS660[j] >= speed) and (abs(S660LAT[j]-Grain_CartLAT[j]) >= gps_offset or 

abs(S660LONG[j]-Grain_CartLONG[j]) >= gps_offset):  

                state = "harvest" 

                # statelist.append('1') 

                statelist.append('harvest') 

                 

            #unload on go - moving and near cart - and similar speed as prior 

            elif (avspeedS660[j] >= speed)  and (abs(S660LAT[j]-Grain_CartLAT[j]) <= gps_offset 

and abs( 

                    S660LONG[j]-Grain_CartLONG[j]) <= gps_offset) and abs(avspeedS660[j] - 

avspeedGrain_Cart[j]) < closing_speed :  

                state = "onthego"      

                # statelist.append('2') 

                statelist.append('on the go') 

             

            #harvest - moving and near cart but not same speed 
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            elif (avspeedS660[j] >= speed)  and (abs(S660LAT[j]-Grain_CartLAT[j]) <= gps_offset 

and abs( 

                    S660LONG[j]-Grain_CartLONG[j]) <= gps_offset) and abs(avspeedS660[j] - 

avspeedGrain_Cart[j]) >= closing_speed :  

                state = "harvest"      

                # statelist.append('2') 

                statelist.append('harvest') 

     

            #stationary unload - not moving and near cart   and similar speed   

            elif (avspeedS660[j] < speed) and (abs(S660LAT[j]-Grain_CartLAT[j]) <= gps_offset and 

abs( 

                    S660LONG[j]-Grain_CartLONG[j]) <= gps_offset) and abs(avspeedS660[j] - 

avspeedGrain_Cart[j]) < closing_speed: 

                state = "stationary" 

                # statelist.append('3') 

                statelist.append('stationary unload') 

                 

            #idle - not moving and near cart  and not similar speed   

            elif (avspeedS660[j] < speed) and (abs(S660LAT[j]-Grain_CartLAT[j]) <= gps_offset and 

abs( 

                    S660LONG[j]-Grain_CartLONG[j]) <= gps_offset) and abs(avspeedS660[j] - 

avspeedGrain_Cart[j]) >= closing_speed: 

                state = "idle" 

                # statelist.append('3') 

                statelist.append('idle') 

                 

            #idle - not moving and not near cart 

            elif (avspeedS660[j] < speed) and (abs(S660LAT[j]-Grain_CartLAT[j]) > gps_offset or 

abs( 

                    S660LONG[j]-Grain_CartLONG[j]) > gps_offset): 

                state = "idle" 
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                # statelist.append('3') 

                statelist.append('idle') 

                 

     

                #check for na 

            elif math.isnan(Grain_CartLAT[j]) or math.isnan(Grain_CartLONG[j]) or 

math.isnan(S660LAT[j]) or math.isnan(S660LONG[j]): 

                    statelist.append('5') 

                 

                #catch all for states 

            else : 

                    statelist.append('6') 

                 

                 

                 

                     

              #  """ start of states and state work""" 

        S660_state = statelist     

        updatedstate = statelist 

     

         

        df_S660 = pd.DataFrame(S660_state) 

        df_S660.columns = ['STATE'] 

        df_S660['SHIFT'] = df_S660.STATE.shift(periods = -1, fill_value = 1) 

         

         

         

        shift = df_S660['SHIFT'].to_list() 

        step = [0] * len(shift) 

        count = [0] * len(shift) 

        p = 0  
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        #sets the step based on the differences in the offset we use this step later to fix the "true state" 

also creates the count of in a row counter 

        for i  in range(len(shift)): 

            if S660_state[i] != shift[i]: 

                step[i] = S660_state[i] 

                 

        for i in range(len(shift)): 

            if step[i] != 0 : 

                count[i] = 0 

                p = 0 

            elif step[i] == 0 : 

                p = p + 1 

                count[i] = p 

                 

         

        df_S660['STEP'] = step 

        df_S660['COUNT'] = count 

        df_S660['COUNT'] = df_S660.COUNT.shift(periods = 1, fill_value = 1) 

         

        df_S660_reduced = df_S660.loc[(df_S660['STEP'] != 0 ) & (df_S660['COUNT'] > 

list_length)] 

         

         

        S660_time = df_S660_reduced.index.tolist() 

        time =[0]* len(df_S660_reduced) 

         

         

        for i in range(len(S660_time)): 

            time[i] = dftime[S660_time[i]] 
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        df_S660_reduced['TIME'] = time 

        del df_S660_reduced['SHIFT'] 

        del df_S660_reduced['STEP'] 

         

        index = list(df_S660_reduced.index.values) 

        statelist = df_S660_reduced['STATE'].tolist() 

        countlist = df_S660_reduced['COUNT'].tolist() 

        updatedstate_S660 = [0] * len(S660LAT) 

         

        #changes statelist with the updated states. this will apply backwards for unkown areas where 

it flips bewtween states 

        for i in range(len(index)-1): 

                for j in range(index[i],index[i+1]): 

                    updatedstate_S660[j] = df_S660_reduced.STATE.iloc[i+1] 

        for i in range(index[0]): 

            updatedstate_S660[i] = statelist[0] 

        for i in range(index[-1],len(updatedstate_S660)): 

            updatedstate_S660[i] = statelist[-1] 

             

             

             

        """added work for grain cart to truck unloads 

         

         

            ### 

            # 

            # 

            # 

            # 

            """ 
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        cart_state = [0]*len(updatedstate) 

        #these are repeated values from above which can be changed for the grain cart state machine 

        # gps_offset = .00017 

         

         

        for j in range(len(cart_state)): 

     

            ##on the go 

            if (avspeedGrain_Cart[j] >= speed)  and (abs(S660LAT[j]-Grain_CartLAT[j]) <= 

gps_offset and abs( 

                    S660LONG[j]-Grain_CartLONG[j]) <= gps_offset) and abs(avspeedS660[j] - 

avspeedGrain_Cart[j]) < closing_speed:  

                cart_state[j] = "on the go"  

             

                 

                 

            ##transporting - moving and near cart but not same speed 

            elif (avspeedGrain_Cart[j] >= speed)  and (abs(S660LAT[j]-Grain_CartLAT[j]) <= 

gps_offset and abs( 

                    S660LONG[j]-Grain_CartLONG[j]) <= gps_offset) and abs(avspeedS660[j] - 

avspeedGrain_Cart[j]) >= closing_speed:  

                cart_state[j] = "transporting"  

             

                 

            #stationary unload 

            elif (avspeedGrain_Cart[j] < speed)  and (abs(S660LAT[j]-Grain_CartLAT[j]) <= 

gps_offset and abs( 

                    S660LONG[j]-Grain_CartLONG[j]) <= gps_offset) and abs(avspeedS660[j] - 

avspeedGrain_Cart[j]) < closing_speed:  

                cart_state[j] = "stationary" 
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            #waiting - near cart but not same speed 

            elif (avspeedGrain_Cart[j] < speed)  and (abs(S660LAT[j]-Grain_CartLAT[j]) <= 

gps_offset and abs( 

                    S660LONG[j]-Grain_CartLONG[j]) <= gps_offset) and abs(avspeedS660[j] - 

avspeedGrain_Cart[j]) >= closing_speed:  

                cart_state[j] = "waiting" 

                 

            #stationary unload to international 

            elif (avspeedGrain_Cart[j] < speed) and (abs(internationalLAT[j]-Grain_CartLAT[j]) <= 

truck_gps_offset and abs(internationalLONG[j]-Grain_CartLONG[j]) <= truck_gps_offset) and 

abs(avspeedinternational[j] - avspeedGrain_Cart[j]) < closing_speed:  

                cart_state[j]  = "cart unload"  

     

     

            #stationary unload to freightliner 

            elif (avspeedGrain_Cart[j] < speed) and (abs(freightlinerLAT[j]-Grain_CartLAT[j]) <= 

truck_gps_offset and abs(freightlinerLONG[j]-Grain_CartLONG[j]) <= truck_gps_offset) and 

abs(avspeedfreightliner[j] - avspeedGrain_Cart[j]) < closing_speed:  

                cart_state[j]  = "cart unload" 

                 

             

            # #stationary unload to freightliner 

            # elif (avspeedGrain_Cart[j] < speed) and (abs(ih19LAT[j]-Grain_CartLAT[j]) <= 

truck_gps_offset and abs(ih19LONG[j]-Grain_CartLONG[j]) <= truck_gps_offset) and 

abs(avspeedih19[j] - avspeedGrain_Cart[j]) < closing_speed:  

            #     cart_state[j]  = "ih19 unload" 

                 

                 

            ##last three without similar speeds    
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            #stationary unload to international 

            elif (avspeedGrain_Cart[j] < speed) and (abs(internationalLAT[j]-Grain_CartLAT[j]) <= 

truck_gps_offset and abs(internationalLONG[j]-Grain_CartLONG[j]) <= truck_gps_offset) and 

abs(avspeedinternational[j] - avspeedGrain_Cart[j]) >= closing_speed:  

                cart_state[j]  = "waiting"  

     

     

            #stationary unload to freightliner 

            elif (avspeedGrain_Cart[j] < speed) and (abs(freightlinerLAT[j]-Grain_CartLAT[j]) <= 

truck_gps_offset and abs(freightlinerLONG[j]-Grain_CartLONG[j]) <= truck_gps_offset) and 

abs(avspeedfreightliner[j] - avspeedGrain_Cart[j]) >= closing_speed:  

                cart_state[j]  = "waiting" 

                 

             

            # #stationary unload to freightliner 

            # elif (avspeedGrain_Cart[j] < speed) and (abs(ih19LAT[j]-Grain_CartLAT[j]) <= 

truck_gps_offset and abs(ih19LONG[j]-Grain_CartLONG[j]) <= truck_gps_offset) and 

abs(avspeedih19[j] - avspeedGrain_Cart[j]) >= closing_speed:  

            #     cart_state[j]  = "waiting" 

             

             

            #waiting 

            elif (avspeedGrain_Cart[j] < speed): 

                cart_state[j] = "waiting" 

              

            #idle 

            elif(avspeedGrain_Cart[j] >= speed): 

                cart_state[j] = "transporting" 

       

            #NA 

            else: 
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                cart_state[j] = "NA" 

         

         

        df_cart = pd.DataFrame(cart_state) 

        df_cart.columns = ['STATE'] 

        df_cart['SHIFT'] = df_cart.STATE.shift(periods = -1, fill_value = 1) 

         

         

         

        shift = df_cart['SHIFT'].to_list() 

        step = [0] * len(shift) 

        count = [0] * len(shift) 

        p = 0  

         

        #sets the step based on the differences in the offset we use this step later to fix the "true state" 

also creates the count of in a row counter 

        for i  in range(len(shift)): 

            if cart_state[i] != shift[i]: 

                step[i] = cart_state[i] 

                 

        for i in range(len(shift)): 

            if step[i] != 0 : 

                count[i] = 0 

                p = 0 

            elif step[i] == 0 : 

                p = p + 1 

                count[i] = p 

                 

         

        df_cart['STEP'] = step 

        df_cart['COUNT'] = count 
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        df_cart['COUNT'] = df_cart.COUNT.shift(periods = 1, fill_value = 1) 

         

        df_cart_reduced = df_cart.loc[(df_cart['STEP'] != 0 ) & (df_cart['COUNT'] > list_length)] 

         

         

        cart_time = df_cart_reduced.index.tolist() 

        time =[0]* len(df_cart_reduced) 

         

         

        for i in range(len(cart_time)): 

            time[i] = dftime[cart_time[i]] 

         

         

        df_cart_reduced['TIME'] = time 

        del df_cart_reduced['SHIFT'] 

        del df_cart_reduced['STEP'] 

         

        index = list(df_cart_reduced.index.values) 

        statelist = df_cart_reduced['STATE'].tolist() 

        countlist = df_cart_reduced['COUNT'].tolist() 

        updatedstate_cart = [0] * len(S660LAT) 

         

        #changes statelist with the updated states. this will apply backwards for unkown areas where 

it flips bewtween states 

        for i in range(len(index)-1): 

                for j in range(index[i],index[i+1]): 

                    updatedstate_cart[j] = df_cart_reduced.STATE.iloc[i+1] 

        for i in range(index[0]): 

            updatedstate_cart[i] = statelist[0] 

        for i in range(index[-1],len(updatedstate_cart)): 

            updatedstate_cart[i] = statelist[-1] 
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        """ TRUCK STATES""" 

        #international   

         

        international_state = [0]*len(updatedstate) 

        # speed = 1 

        # gps_offset = .00015 

         

         

        for j in range(len(international_state)): 

         

                ##moving 

                if (avspeedinternational[j] >= speed):  

                    international_state[j] = "transporting"  

                 

                     

                #stationary unload from cart 

                elif (avspeedinternational[j] < speed)  and (abs(internationalLAT[j]-Grain_CartLAT[j]) 

<= gps_offset and abs(internationalLONG[j]-Grain_CartLONG[j]) <= truck_gps_offset):  

                    international_state[j] = "stationary unload from cart" 

                     

                     

                #stationary unload to international 

                elif (avspeedGrain_Cart[j] < speed) and (abs(internationalLAT[j]-Grain_CartLAT[j]) > 

truck_gps_offset or abs(internationalLONG[j]-Grain_CartLONG[j]) > truck_gps_offset):  

                    international_state[j]  = "waiting"          

           

                #NA 
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                else: 

                    international_state[j] = "NA" 

         

        df_international = pd.DataFrame(international_state) 

        df_international.columns = ['STATE'] 

        df_international['SHIFT'] = df_international.STATE.shift(periods = -1, fill_value = 1)     

         

        shift = df_international['SHIFT'].to_list() 

        step = [0] * len(shift) 

        count = [0] * len(shift) 

        p = 0  

         

        #sets the step based on the differences in the offset we use this step later to fix the "true state" 

also creates the count of in a row counter 

        for i  in range(len(shift)): 

            if international_state[i] != shift[i]: 

                step[i] = international_state[i] 

                 

        for i in range(len(shift)): 

            if step[i] != 0 : 

                count[i] = 0 

                p = 0 

            elif step[i] == 0 : 

                p = p + 1 

                count[i] = p 

                 

         

        df_international['STEP'] = step 

        df_international['COUNT'] = count 

        df_international['COUNT'] = df_international.COUNT.shift(periods = 1, fill_value = 1) 
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        df_international_reduced = df_international.loc[(df_international['STEP'] != 0 ) & 

(df_international['COUNT'] > list_length)] 

         

         

        international_time = df_international_reduced.index.tolist() 

        time =[0]* len(df_international_reduced) 

         

         

        for i in range(len(international_time)): 

            time[i] = dftime[international_time[i]] 

         

         

        df_international_reduced['TIME'] = time 

        del df_international_reduced['SHIFT'] 

        del df_international_reduced['STEP'] 

         

        index = list(df_international_reduced.index.values) 

        statelist = df_international_reduced['STATE'].tolist() 

        countlist = df_international_reduced['COUNT'].tolist() 

        updatedstate_international = [0] * len(S660LAT) 

         

        #changes statelist with the updated states. this will apply backwards for unkown areas where 

it flips bewtween states 

        for i in range(len(index)-1): 

                for j in range(index[i],index[i+1]): 

                    updatedstate_international[j] = df_international_reduced.STATE.iloc[i+1] 

        for i in range(index[0]): 

            updatedstate_international[i] = statelist[0] 

        for i in range(index[-1],len(updatedstate_international)): 

            updatedstate_international[i] = statelist[-1] 
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        # """ IH19""" 

         

        # #ih19   

         

        # ih19_state = [0]*len(updatedstate) 

        # # speed = 1 

        # # gps_offset = .00015 

         

         

        # for j in range(len(ih19_state)): 

         

        #         ##moving 

        #         if (avspeedih19[j] >= speed):  

        #             ih19_state[j] = "transporting"  

                 

                     

        #         #stationary unload from cart 

        #         elif (avspeedih19[j] < speed)  and (abs(ih19LAT[j]-Grain_CartLAT[j]) <= gps_offset 

and abs(ih19LONG[j]-Grain_CartLONG[j]) <= gps_offset):  

        #             ih19_state[j] = "stationary unload from cart" 

                     

                     

        #         #stationary unload to ih19 

        #         elif (avspeedGrain_Cart[j] < speed) and (abs(ih19LAT[j]-Grain_CartLAT[j]) > 

gps_offset or abs(ih19LONG[j]-Grain_CartLONG[j]) > gps_offset):  
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        #             ih19_state[j]  = "waiting"          

           

        #         #NA 

        #         else: 

        #             ih19_state[j] = "NA" 

         

        # df_ih19 = pd.DataFrame(ih19_state) 

        # df_ih19.columns = ['STATE'] 

        # df_ih19['SHIFT'] = df_ih19.STATE.shift(periods = -1, fill_value = 1)     

         

        # shift = df_ih19['SHIFT'].to_list() 

        # step = [0] * len(shift) 

        # count = [0] * len(shift) 

        # p = 0  

         

        # #sets the step based on the differences in the offset we use this step later to fix the "true 

state" also creates the count of in a row counter 

        # for i  in range(len(shift)): 

        #     if ih19_state[i] != shift[i]: 

        #         step[i] = ih19_state[i] 

                 

        # for i in range(len(shift)): 

        #     if step[i] != 0 : 

        #         count[i] = 0 

        #         p = 0 

        #     elif step[i] == 0 : 

        #         p = p + 1 

        #         count[i] = p 

                 

         

        # df_ih19['STEP'] = step 
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        # df_ih19['COUNT'] = count 

        # df_ih19['COUNT'] = df_ih19.COUNT.shift(periods = 1, fill_value = 1) 

         

        # df_ih19_reduced = df_ih19.loc[(df_ih19['STEP'] != 0 ) & (df_ih19['COUNT'] > 

list_length)] 

         

         

        # ih19_time = df_ih19_reduced.index.tolist() 

        # time =[0]* len(df_ih19_reduced) 

         

         

        # for i in range(len(ih19_time)): 

        #     time[i] = dftime[ih19_time[i]] 

         

         

        # df_ih19_reduced['TIME'] = time 

        # del df_ih19_reduced['SHIFT'] 

        # del df_ih19_reduced['STEP'] 

         

        # index = list(df_ih19_reduced.index.values) 

        # statelist = df_ih19_reduced['STATE'].tolist() 

        # countlist = df_ih19_reduced['COUNT'].tolist() 

        # updatedstate_ih19 = [0] * len(S660LAT) 

         

        # #changes statelist with the updated states. this will apply backwards for unkown areas where 

it flips bewtween states 

        # for i in range(len(index)-1): 

        #         for j in range(index[i],index[i+1]): 

        #             updatedstate_ih19[j] = df_ih19_reduced.STATE.iloc[i+1] 

        # for i in range(index[0]): 

        #     updatedstate_ih19[i] = statelist[0] 
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        # for i in range(index[-1],len(updatedstate_ih19)): 

        #     updatedstate_ih19[i] = statelist[-1] 

             

         

                

         

         

         

         

         

        """ freightliner""" 

         

        freightliner_state = [0]*len(updatedstate) 

        # speed = 1 

        # gps_offset = .00015 

         

         

        for j in range(len(freightliner_state)): 

         

                ##moving 

                if (avspeedfreightliner[j] >= speed):  

                    freightliner_state[j] = "transporting"  

                 

                     

                #stationary unload from cart 

                elif (avspeedfreightliner[j] < speed)  and (abs(freightlinerLAT[j]-Grain_CartLAT[j]) <= 

truck_gps_offset and abs(freightlinerLONG[j]-Grain_CartLONG[j]) <= truck_gps_offset):  

                    freightliner_state[j] = "stationary unload from cart" 

                     

                     

                #stationary unload to freightliner 
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                elif (avspeedGrain_Cart[j] < speed) and (abs(freightlinerLAT[j]-Grain_CartLAT[j]) > 

truck_gps_offset or abs(freightlinerLONG[j]-Grain_CartLONG[j]) > truck_gps_offset):  

                    freightliner_state[j]  = "waiting"          

           

                #NA 

                else: 

                    freightliner_state[j] = "NA" 

         

        df_freightliner = pd.DataFrame(freightliner_state) 

        df_freightliner.columns = ['STATE'] 

        df_freightliner['SHIFT'] = df_freightliner.STATE.shift(periods = -1, fill_value = 1)     

         

        shift = df_freightliner['SHIFT'].to_list() 

        step = [0] * len(shift) 

        count = [0] * len(shift) 

        p = 0  

         

        #sets the step based on the differences in the offset we use this step later to fix the "true state" 

also creates the count of in a row counter 

        for i  in range(len(shift)): 

            if freightliner_state[i] != shift[i]: 

                step[i] = freightliner_state[i] 

                 

        for i in range(len(shift)): 

            if step[i] != 0 : 

                count[i] = 0 

                p = 0 

            elif step[i] == 0 : 

                p = p + 1 

                count[i] = p 
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        df_freightliner['STEP'] = step 

        df_freightliner['COUNT'] = count 

        df_freightliner['COUNT'] = df_freightliner.COUNT.shift(periods = 1, fill_value = 1) 

         

        df_freightliner_reduced = df_freightliner.loc[(df_freightliner['STEP'] != 0 ) & 

(df_freightliner['COUNT'] > list_length)] 

         

         

        freightliner_time = df_freightliner_reduced.index.tolist() 

        time =[0]* len(df_freightliner_reduced) 

         

         

        for i in range(len(freightliner_time)): 

            time[i] = dftime[freightliner_time[i]] 

         

         

        df_freightliner_reduced['TIME'] = time 

        del df_freightliner_reduced['SHIFT'] 

        del df_freightliner_reduced['STEP'] 

         

        index = list(df_freightliner_reduced.index.values) 

        statelist = df_freightliner_reduced['STATE'].tolist() 

        countlist = df_freightliner_reduced['COUNT'].tolist() 

        updatedstate_freightliner = [0] * len(S660LAT) 

         

        #changes statelist with the updated states. this will apply backwards for unkown areas where 

it flips bewtween states 

        for i in range(len(index)-1): 

                for j in range(index[i],index[i+1]): 

                    updatedstate_freightliner[j] = df_freightliner_reduced.STATE.iloc[i+1] 
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        for i in range(index[0]): 

            updatedstate_freightliner[i] = statelist[0] 

        for i in range(index[-1],len(updatedstate_freightliner)): 

            updatedstate_freightliner[i] = statelist[-1] 

             

         

         

         

         

         

        """FINAL  LAST TOUCH UPS TO DF AND FINAL PRODUCT //  PLOT CREATION 

            ### 

            # 

            # 

            # 

            # 

            """ 

   #commmented out for speed 

        for i in range(len(updatedstate)): 

            if updatedstate[i] == 1: 

                updatedstate[i] = "harvest" 

            elif updatedstate[i] == 2: 

                updatedstate[i] = "on the go" 

            elif updatedstate[i] == 3: 

                updatedstate[i] = "stationary"  

            elif updatedstate[i] == 4: 

                updatedstate[i] = "idle" 

            else: 

                updatedstate[i] = updatedstate[i] 

                 

        # df_final = pd.DataFrame(updatedstate_S660) 
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        # df_final.columns = ['Combine State'] 

        # df_final['Cart state'] = updatedstate_cart 

         

         

        # df_final['international state'] = international_state 

        # df_final['freightliner state'] = freightliner_state 

        # df_final['ih19 state'] = ih19_state 

         

        # df_final['index'] =  list(range(len(df))) 

        # df_final['time'] = dftime 

         

        # df_final['S660 lat'] = S660LAT 

        # df_final['S660 Long'] = S660LONG 

         

        # df_final['Grain_Cart Lat'] = Grain_CartLAT 

        # df_final['Grain_Cart Long'] = Grain_CartLONG 

         

        # df_final['international Lat'] = internationalLAT 

        # df_final['international Long'] = internationalLONG 

         

        # df_final['ih19 Lat'] = ih19LAT 

        # df_final['ih19 Long'] = ih19LONG 

         

        # df_final['freightliner Lat'] = freightlinerLAT 

        # df_final['freightliner Long'] = freightlinerLONG 

        # df_final['S660 speed'] = avspeedS660 

        # df_final['Grain_Cart speed'] = avspeedGrain_Cart 

     

     

 

        # df_S660_reduced['TIME'] =    df_S660_reduced['TIME'].shift(periods = 1)  
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        # df_cart_reduced['TIME'] =    df_cart_reduced['TIME'].shift(periods = 1)  

        # df_international_reduced['TIME'] =    df_international_reduced['TIME'].shift(periods = 1)  

        # df_ih19_reduced['TIME'] =    df_ih19_reduced['TIME'].shift(periods = 1)  

        # df_freightliner_reduced['TIME'] =    df_freightliner_reduced['TIME'].shift(periods = 1)  

         

         

        # df_reduced = pd.concat([df_S660_reduced, df_cart_reduced, df_international_reduced, 

df_ih19_reduced, df_freightliner_reduced ], axis = 1) 

        # df_reduced.columns = ['S660 state', 'S660count','time1', 'Grain_Cart state', 'Grain_Cart 

count','time2' , 'international state', 'international count','time3', 

        #                       'ih19 state', 'ih19 count', 'time4', 'freightliner state', 'freightliner count','time5']                    

        # df_reduced['time'] = df_reduced.time1.combine_first(df_reduced.time2)   

        # df_reduced['time'] = df_reduced.time.combine_first(df_reduced.time3)  

        # df_reduced['time'] = df_reduced.time.combine_first(df_reduced.time4)   

        # df_reduced['time'] = df_reduced.time.combine_first(df_reduced.time5)   

        # del df_reduced['time1'] 

        # del df_reduced['time2'] 

        # del df_reduced['time3'] 

        # del df_reduced['time4'] 

        # del df_reduced['time5'] 

        # df_reduced[['S660 state','Grain_Cart state','international state', 'freightliner state' , 'ih19 

state']] = df_reduced[['S660 state','Grain_Cart state','international state', 'freightliner state' , 'ih19 

state']].fillna(method = "bfill") 

         

        df['UPDATEDSTATE'] = updatedstate 

        df['CARTSTATE'] = cart_state 

        # df['index'] = list(df2.index.values) 

         

        # df_final.to_csv(r'C:/Users/loghe/Desktop/unloads/STATES/updated' + date2 + " 10_tic " + 

str(zz) +'.csv' )     
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        # harvest = ['harvest'] * 34428 

         

        S660_same = sum(x == y for x, y in zip(perfect_S660,updatedstate)) 

        Grain_Cart_same = sum(x == y for x, y in zip(perfect_grain_cart ,updatedstate_cart)) 

        return(S660_same,Grain_Cart_same, updatedstate , updatedstate_cart, df) 

 

 

record =[] 

 

gps_list = [.00014,.00015,.00016,.00017,.00018,.00019] 

speed_list =[.125,.25,.5,.75,1,1.25,1.5] 

closing_speed = [ .125,.25,.5] 

a = 1 

y = 1 

for i in speed_list: #cut off speed 

     for j in gps_list: # gps set  

         for k in range(0,6): # list length 

             for l in closing_speed: # list length 

                 for m in gps_list: #truck offset 

              

                    output = script(i,j,k,l,m) 

                    record.append('S660 = ' + str(output[0]) + ' Grain_Cart = ' + str(output[1]) +  ' sum = 

'  

                              + str(output[0] + output[1]) + " values " + str(i) + ", " + str(j) + ", " + str(k) + 

"," + str(l) + ", " + str(m)) 

                    y = y + 1 

                    print(y) 

                    if ((output[0] + output[1]) > a): 

                        a = output[0] + output[1] 

                        b = (i,j,k,l,m) 
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print(a,b) 

c = script(b[0],b[1],b[2],b[3],b[4])    

df = c[4] 

df['state machine S660'] = c[2] 

df['state machine grain cart'] = c[3] 

df.to_csv(r'C:/Users/loghe/Desktop/ACRE unload/state machine output/'+ date2 + ' state 

machined.csv') 

 

LoRa End Node Code 

#include <SPI.h> 

#include <RH_RF95.h> 

#include <SoftwareSerial.h> 

#include <TinyGPS.h> 

TinyGPS gps; 

SoftwareSerial ss(3, 4); 

#include <LoRa.h> 

 

 

int count = 0; 

int device_id = 10009; // ID of this End node 

 

void setup() { 

  Serial.begin(9600); 

  ss.begin(9600); 

  //while (!Serial); 

 

  Serial.println("LoRa Sender"); 

 

  if (!LoRa.begin(915E6)) { 
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    Serial.println("Starting LoRa failed!"); 

    while (1); 

  } 

  LoRa.setSyncWord(0x34); 

  LoRa.setTxPower(20); 

  LoRa.setSpreadingFactor(10); 

} 

 

void loop() { 

    bool newData = false; 

    for (unsigned long start = millis(); millis() - start < 1000;) 

  { 

    while (ss.available()) 

    { 

      char c = ss.read(); 

      // Serial.write(c); // uncomment this line if you want to see the GPS data flowing 

      if (gps.encode(c)) // Did a new valid sentence come in? 

        newData = true; 

    } 

  } 

  float flat, flon; 

  gps.f_get_position(&flat, &flon); 

  long lat = flat * 1000000; 

  long lng = flon * 1000000; 

  Serial.print("Sending packet: "); 

  Serial.println(count); 

  // compose and send packet 

  LoRa.beginPacket(); 

  LoRa.print("<"); 

  LoRa.print(device_id); 

  LoRa.print(">"); 
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  LoRa.print(lat); 

  Serial.print(flat , 6); 

 // LoRa.print("&field2="); 

  LoRa.print(lng); 

  Serial.print(flon , 6); 

  // LoRa.print(counter); 

  LoRa.endPacket(); 

  count++; 

  delay(1000); 

} 
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