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ABSTRACT

As on 2017, US Energy Information Administration (US EIA) claims that 50 % of the to-

tal US energy consumption are contributed by Commercial and Industrial (C&I) end-users.

Most of the energy consumption by these users are in the form of the electric power. Electric

utilities, who usually supply the electric power, tend to care about the power consumption

profiles of these users mainly because of the scale of consumption and their significant contri-

bution towards the system peak. Predicting and managing the peaks of C&I users is crucial

both for the users themselves and for utility companies.

In this research, we aim to understand and predict the daily peaks of individual C&I

users. To empirically understand the statistical characteristics of the peaks, we perform

an extensive exploratory data analysis using a real power consumption time series dataset.

To accurately predict the peaks, we investigate indirect and direct learning approaches. In

the indirect approach, daily peaks are identified after forecasting the entire time series for

the day whereas in the direct approach, the daily peaks are directly predicted based on the

historical data available for different users during different days of the week. The machine

learning models used in this research are based on Simple Linear Regression (SLR), Multiple

Linear Regression (MLR), and Artificial Neural Networks (ANN).
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1. INTRODUCTION

‘Electric Power’ is one of the top leagues’ inventions of all time. The ability to physically

transmit it to larger distances makes it exceptional compared to other forms of energy. The

three stages of delivering the electric power are: Generation, Transmission, and Distribution.

Conventionally, it has been generated at massive power plants and moves through a com-

plex system called ‘grid’ of the electric substations, transformers, and power lines supplying

consumers the required power at any given time. The challenging aspect about the electric

grid lies in maintaining its stability as most of the associated parameters are changing al-

most instantaneously. The resilience of the grid is confronted mostly during the times of

peak power (or energy) consumption where the scope for any mismanagement is very little.

Furthermore, with the large scale deployment of Distributed Energy Resources (DERs) such

as roof-top solar, wind, batteries, EV chargers in the recent times and their integration with

the existing electric grid, the potential of situations like grid failure increases by numerous

folds, especially during the peak times.

1.1 Motivation

This research focuses on learning the peak power consumption values and their corre-

sponding times which are essential to manage for both electric utility companies and end-

users (mainly the commercial and industrial users). This section discusses the importance

of the peak values from both sides of the coin.

1.1.1 Electric Utility Companies’s Point of View

The primary objective of the electric utility companies is to maintain a proper equilibrium

between the generation and the consumption of electric power at all times. Behind-the-meter

distributed energy resources (DERs), transportation electrification, and the increasingly fre-

quent extreme climate events present novel challenges to these companies as these possess

the capability of producing high fluctuations in terms of the power demand in the power

system. The smart technologies such as energy management systems (EMSs) and smart
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meters associated with DERs and transportation electrification infrastructure enable them

to respond to time-varying prices which are usually set by these utility companies. Smart

households or industrial consumers tend to store energy in large storage units during the

low price rate duration and later consume the same during high price rates. This leads to

a situation where the peaks are created artificially at irregular times. Furthermore, DERs

adoption and the growing penetration of fast EV charging increasingly strains local distri-

bution network, makes it important to not only predict the aggregate peaks but also peaks

of smaller communities (e.g., behind the same local transformer ). Therefore, studying the

peaks of the influential consumers becomes more important than just focusing on the aggre-

gate peaks of all connected consumers together which are more predictable and continuous.

Moreover, having an good estimation of these peak power consumption values supports in

planning the distribution investments efficiently with keeping an eye on the total system

capacity along with network constraints.

1.1.2 Commercial & Industrial Users’s Point of View

Today, most of the required infrastructure in the power distribution industry is owned

by electric utility companies. These companies are responsible for the lines, poles, meters,

power outages, repairs, and other issues with how the electricity is delivered to all types

of consumers: residential, commercial, industrial, and agricultural. These companies read

consumer energy meters and bills on a monthly basis. Different utility companies charge at

different rates based on their current liabilities, fixed and variable costs, insurance, and rent

expenses. These vary based on the region, season, type of consumer, and, more importantly,

on the availability of electric power in the electricity markets. Normally, these companies

charge a residential or an agricultural user based on the total energy consumption at a vol-

umetric charge (usually defined in $ per kilowatt-hour) monthly. A typical electricity bill

of a residential user is shown in the figure 1.1 for reference. However, the same companies

charge a commercial or an industrial user with an additional charge called ‘Demand Charge’

(usually defined in $ per kilowatts). These demand charges accounts for the maximum power

consumption value by the individual on a certain month. These charges contribute signifi-

12



cantly towards the total monthly payment for any commercial or industrial user which they

try to reduce to the maximum extent possible. A typical electricity bill for the commercial

user is shown in figure 1.2.

Figure 1.1. Electricity bill of a residential user

Figure 1.2. Electricity bill of a commercial user

In the figure shown above, clearly demand charge for this C&I user contributes around

30% to the total cost which is fairly significant. Just as a side note, a electric utility com-

pany not only charges the consumer for their power consumption but also inculcates other

service charges like maintenance, connections, and adjustments in conjunction with the local

government regulations. The collection of electricity rates and additional service charges is

termed as a tariff.
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1.2 Literature Review

Historically, forecasting of the load has been broadly classified into four categories based

on the span of the forecasting: (a) very-short term (up to next 15-30 minutes), (b) short term

(up to next 24 hours), (c) medium term (up to one year ahead), and (d) long term (up to 5 to

10 years ahead). Load forecasting is typically based on a mathematical model which involves

different predictors and their combinations. To build this model, different methods have been

explored in the past. Regression methods, time series regression methods, support vector

regression, fuzzy logic and neural network are just to name a few. This section discusses

about these methods briefly to provide a high level understanding on each one of them.

Regression method is one of the widely used statistical techniques. These methods are

used to model the power consumption profile depending on the features like weather con-

ditions, day of week and customer classes [1][2][3]. This method is built on the assumption

that the power consumption can be regressed based on the linear relationship of the features

using the least squares method which minimizes the sum of the residuals to find the best fit

for the dataset.

Another form of the regression methods usually used in the areas of predicting the weather

data, heat rate monitoring, stock prices, and electric load forecasting is time series regression

methods. These are used in a specific way of analyzing a sequence of data points to capture

auto-correlation, trend, or seasonal variation rather than just recording the data points in-

termittently or randomly. Some of the time series models include Auto Regressive Integrated

Moving Average (ARIMA), exponential smoothing, state space models and spectral models.

[4] discusses the principles and the practices that is typically followed for time series analysis

across domains. An example on forecasting the short term load based on the time series

analysis is discussed in [5].

One of the most common machine learning methods used in the recent times is Support

Vector Regression (SVR) techniques. Their capability of not explicitly forming the feature

vectors rather forming them implicitly using kernels saves a lot of computational time and

provides the scope to include large number of relevant features that are useful to explain the

output variable. The application of Support Vector Regression method in the power system

14



domain for short term load forecasting is discussed in [6] whereas in [7], the same method is

applied for forecasting the electricity peaks.

Fuzzy logic is a technique of developing the qualitative inputs and output by assigning

numerical values to them. The main two types of this technique are many-valued logic or

Boolean logic. An input or output under many-valued logic takes a real number between 0

and 1 whereas under Boolean logic, it takes on a truth value of “0” or “1”. For example, a

temperature being ‘hot’, ‘pleasant’, or ‘cold’ can be assigned 0, 0.5, and 1 under many-valued

logic. After the logical processing of fuzzy inputs, qualitative outputs can be obtained by

‘defuzzification’. [8] discusses the short term load forecasting factoring weather parameters

using fuzzy logic.

Neural Networks like Artificial Neural Networks (ANN) are inspired by the biological

neural networks, have an extensive application because of their capability of evolution, self-

organizing, and adaption. The network comprises of the inputs, hidden layers, and output/s.

In each hidden layer, there are many neurons. These neurons are connected with the neurons

of the adjacent hidden layers and are associated with a weight and a threshold. [9] discusses

the short term forecasting using artificial neural network. [10] discusses the application

Recurrent Neural Network, which captures the sequential information present in the input

data, for short term load forecasting.

There are other methods which combines the usage of different methods into one. For

example, [11] discusses the approach where ANN is used as the first step to predict the load

and then SVM forecasting model is created on the basis of data points whose load type is the

same as the predict point. Another example combining two different methods is discussed

in [12]. In this paper, ANN structure with one input provided by a fuzzy weather controller.

The use of fuzzy logic will enhance the performance of the system as well as make it more

transparent and adaptable.

In some cases, optimization algorithms can be applied on methods like SVM and ANN

to further improve the forecasting on the parameters obtained after training the model. In

[13], particle swarm optimization is chosen as the optimization tool that is applied on the

weight matrix of ANN to improve results whereas genetic algorithm is used to optimize the

parameters for SVM model in [14].
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1.3 Thesis Outline

The remainder of this thesis constitutes of three chapters namely Exploratory Data Anal-

ysis, Machine Learning for Time Series Data, and Machine Learning for Peaks Data.

In chapter 2, basic insights about the dataset used for this research are discussed. Pre-

cisely, the variation of power consumption profiles for different users has been studied com-

prehensively for the entire time series. Also, elementary analysis on the daily peak values and

their corresponding times for different users has been discussed. By the end of this chapter,

the necessity of applying advanced machine learning algorithms on these power consumption

profiles will be realised.

Further in chapter 3, machine learning techniques, some of which are discussed in section

1.2, are performed on different users to forecast their power consumption profiles in a robust

manner for the entire 24-hour period. Specifically, first order auto regressive models and

artificial neural networks have been used as the mathematical models for forecasting the

load and more importantly, for forecasting the daily peak values and their corresponding

times.

Finally in chapter 4, machine learning models like simple linear regression, multiple linear

regression and artificial neural network have been applied on the peaks data to forecast the

daily peaks directly without predicting the entire time series for different users.
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2. EXPLORATORY DATA ANALYSIS

In this chapter, primitive observations of the dataset used for this research have been dis-

cussed using basic statistical concepts such as mean, median, and mode. These observations

provide a rough idea about the users’s power consumption profiles along with the distribu-

tion of their peak values over different periods. To start with, this chapter first describes

the dataset which is followed by the exploratory analysis of the power consumption values

for the entire time series and then for the daily peak values and their corresponding times.

2.1 Data Description

A dataset containing Irish smart meter data of 6000 electricity users from August 2009

to December 2010 is used for our study [15]. The metering interval (∆) for this dataset is

30 mins which makes the number of metering intervals equal to 48 for 24 hours. Precisely,

12:00 am to 12:29 am corresponds to the 1st metering interval, 12:30 am to 12:59 am to the

2nd and so on. All 6000 users have been ranked according to their peak energy consumption

for the entire 17 months and a subset of 75 users of the highest peaks is obtained specifically

for this study which are more likely to be Commercial and Industrial (C&I) users.

2.2 Exploratory Data Analysis for Power Consumption Time Series

As the power consumption values of all the users were recorded in a continuous manner,

the dataset is classified based on different metering intervals, days, weeks, and months. This

section broadly shows the variation of these power consumption values across different (a)

Time-of-Day, and (b) Day-of-Week for these 17 months. Also, a clustering analysis has been

performed where the users are grouped together on different days of the week depending

on their power consumption profiles. This analysis helps in understanding the correlation

among the users on different days.
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2.2.1 Time-of-Day Variations

A scatter plot and the box plot shown in figure 2.1 and 2.2 represents the power con-

sumption values of a C&I user (user ‘1’) against time for all 518 days present between

August 2009 to December 2010. It is evident from the interquartile (IQR) range (25th - 75th

percentile) of each box corresponding to the metering interval that the power consumption

values for this user are low and possess small variances during metering intervals 1-11 and

43-48, i.e., from 12:00 am to 05:29 am and from 09:00 pm to 11:59 pm. Moreover, very few

outliers (marked as ‘+’) are present during these metering intervals. However, the scenario

completely changes for the metering intervals 12-42, i.e., from 05:30 am to 08:59 pm. The

power consumption values during these metering intervals are higher, possess large variances

and have a significant number of outliers. It is trivial to understand the fact that narrow

variations are preferred to predict the power consumption value at certain metering interval.

Figure 2.1. Scatter plot of user 1’s power consumption profile for all 518 days

Figure 2.2. Box plot of user 1’s power consumption profile for all 518 days
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2.2.2 Day-of-Week Variations

To overcome large variances across different metering intervals, the dataset has been

further divided based on the days of the week. Precisely, day 1 corresponds to ‘Monday’,

day 2 corresponds to ‘Tuesday’, and so on. The total number of weeks present during August

2009 to December 2010 is 75. Figure 2.3 shown below displays the box plots of the same

user (user ‘1’) for all seven days of the week.

(a) Mondays

(b) Tuesdays

(c) Wednesdays

19



(d) Thursdays

(e) Fridays

(f) Saturdays

(g) Sundays

Figure 2.3. Power consumption profile of user ‘1’
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From figure 2.3, it can be clearly observed that the number of metering intervals with

the broader variation has been decreased as the dataset is further divided into different days

of the week. The reason is very straightforward. The power consumption by a specific user

during any day of the week does not necessarily have to be the same as on the other day of

the week. For example, this user on Mondays consumes very little power when compared to

Tuesdays at the 18th metering interval.

Secondly, an important observation for this user is the trend of the power consumption

values when plotted against time for all 518 days is similar to that of the power consumption

values when plotted against time for different days of the week which is not necessarily true

for all other users. For example, as shown in figures 2.4 and 2.5, user ‘2’ has an entirely

different trend of the power consumption values were plotted against time for all 518 days

to that of the power consumption values when plotted only for Mondays.

Figure 2.4. Power consumption profile of user ‘2’ for all days

Figure 2.5. Power consumption profile of user ‘2’ on Mondays
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Finally, dividing the data into different days of the week also helps in identifying the

pattern of power consumption values among different days of the week. For example, user

‘25’ consumes small amount of power on Sundays and Mondays, whereas a similar power

consumption pattern can be observed on all other days of the week.

(a) Sundays

(b) Mondays

(c) Tuesdays

22



(d) Wednesdays

(e) Thursdays

(f) Fridays

(g) Saturdays

Figure 2.6. Power consumption profile of user ‘25’
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2.2.3 Clustering Analysis

Most of the times, there exists a strong correlation among some users as they share several

factors together. For example, all commercial users in the fireworks business will experience

the same market demand for similar products during the same period of the year. So, it

is usually recommended to form clusters where the users with similar power consumption

profiles can be grouped together to enhance the load predictability. Clustering helps in

determining the internal structure and identifying the hidden patterns of the dataset. This

also helps in saving the computational time during the analysis of determining the peak

values and peak times by skipping the users with similar power consumption profiles. This

section discusses the analysis of cluster formation on the dataset used. To perform the same,

‘kmeans’ algorithm, as shown in figure 2.7, is used on the normalised mean values of the

power consumption values of each metering interval for all days of the week for all users.

Figure 2.7. K-means algorithm

For this study, all 75 users are categorized into 5 clusters as shown in figure 2.8. The

number of users in cluster 1, cluster 2, cluster 3, cluster 4, and cluster 5 are 14, 13, 13, 11,

and 24 respectively. Users belonging to different clusters show peculiar characteristics on

different days of the week. Users in cluster 5 consume a small amount of power on Sundays

and Mondays whereas the power consumption pattern on other days of the week is the same

throughout the day whereas the users in cluster 1 and cluster 4 display identical pattern on

all days of the week. Additionally, users belonging to cluster 2 and 3 exhibit same pattern

on all days of the week except Mondays. From the box plots of user ‘1’ and user ‘25’ shown

in figures 2.3 and 2.6, it can be easily identified that user ‘1’ belongs to cluster 2 whereas

user ‘25’ is a member of cluster 5.

24



(a) Cluster 1

(b) Cluster 2

(c) Cluster 3

(d) Cluster 4
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(e) Cluster 5

Figure 2.8. Clusters based on mean values of every metering interval for all
days of the week

This analysis not only suggests the pattern for the entire week but also provides with

a good estimation within the day of the week. For example, most of the users in cluster

2, cluster 3, and cluster consumes the maximum power during the middle of the day while

users belonging to cluster 1 and cluster 4 consumes the maximum close to midnight.

Same analysis has also been carried over the normalised median values, instead of nor-

malised mean values, of every metering interval which resulted in almost the same catego-

rization of users and profile patterns when divided into 5 clusters. This is because the mean

and the median values values of every metering interval during all days of the week for most

of the users are very close. The same has been shown in figure 2.9 for typical users belonging

to each cluster.

(a) User 19 in Cluster 1
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(b) User 1 in Cluster 2

(c) User 8 in Cluster 3

(d) User 23 in Cluster 4

(e) User 25 in Cluster 5

Figure 2.9. Mean and Median values of typical users from different clusters
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2.2.4 Stationary Tests

Stationary is an important aspect of time series analysis. By definition, a stationary time

series is one whose properties do not depend on the time at which the series is observed.

Time series with trends, or with seasonality, are not stationary. Figure 2.10 shows different

types of time series as examples. The time series shown is (a) is stationary whereas (b) and

(c) are not stationary as they possess a downward trend and seasonality respectively.

(a) Stationary time series (b) Time series with trend

(c) Time series with seasonality

Figure 2.10. Different types of time series

One way to determine more objectively whether the time series is non stationary is

through statistical hypothesis tests known as unit root tests. A unit root is a stochastic

trend in a time series. A unit root test tests whether a time series variable is non-stationary

and possesses a unit root. The null hypothesis is generally defined as the presence of a unit

root and the alternative hypothesis is either stationarity, trend stationarity or explosive root

depending on the test used. Unit root tests include (but limited to) Augmented Dickey–Fuller

(ADF) Test and Kwiatkowski–Phillips–Schmidt–Shin (KPSS) Test. These tests are discussed

to check the stationarity on the used dataset for all users on different days of the week in

the following subsections.
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Augmented Dickey–Fuller Test

An augmented Dickey–Fuller test tests that a unit root is present in a time series sample.

The model used for this test with y(t) as the time series sample is mentioned in eqn. 2.1.

yt = c + δt + φyt−1 + εt (2.1)

where c is the drift component, δt is the trend component, φyt−1 is the first order auto

regression component, εt represents the mean zero innovation process.

The null hypothesis and the alternative hypothesis for this test are given as the following

Null Hypothesis, Ho: φ = 1, meaning there is a possibility of a unit root,

Alternative Hypothesis, Ha: φ < 1, meaning no possibility of a unit root.

It should be noted that the model with δ = 0 has no trend component and with c = 0 has

no drift component. Figure 2.11 shows the number of stationary or trend-stationary days

for different users on different days of the week where the null hypothesis is rejected at a

significance level of 5%.

Figure 2.11. Augmented Dickey–Fuller Test

From the figure above, it is clear that there are quite a few users whose power consumption

profiles are either stationary or trend-stationary but for most of the users, power consumption

profiles are not stationary on different days of the week.
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Kwiatkowski–Phillips–Schmidt–Shin Test

This test tests that an observable time series is stationary around a deterministic trend

(i.e. trend-stationary) against the alternative of a unit root using the following model

yt = ct + δt + u1t, (2.2)

ct = ct−1 + u2t, (2.3)

where ct is the random walk term, δt is the trend component, u1t models the stationary

process, and u2t represents the independent and identically distributed process with mean 0

and variance σ2.

The null hypothesis and the alternative hypothesis for this test are given as the following

Null Hypothesis, Ho: σ2 = 0,

Alternative Hypothesis, Ha: σ2 > 0.

It should be noted that the null hypothesis σ2 = 0 implies that the random walk term

(ct) is constant and acts as the model intercept whereas the alternative hypothesis σ2 > 0

introduces the unit root in the random walk. Figure 2.11 shows the number of trend-

stationary days for different users on different days of the week where the null hypothesis

cannot be rejected at a significance level of 5%.

Figure 2.12. Kwiatkowski–Phillips–Schmidt–Shin Test

From the above figure, it can be said that most of the users’s power consumption profiles

are not stationary around a deterministic trend on different days of the week.
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2.3 Exploratory Data Analysis for Peak Values and Peak Times

In this section, distribution of the daily peak values and their corresponding times for all

users belonging to different clusters is discussed.

2.3.1 Empirical Distribution of Peak Values

Before analysing the distribution of peak values, it is important to understand the scale of

the peak power consumption values of the users representing the commercial and industrial

businesses specific this region. Figure 2.13 represents the mean and the median peak power

consumption values of all users on different days of the week.

(a) Mondays

(b) Tuesdays
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(c) Wednesdays

(d) Thursdays

(e) Fridays

(f) Saturdays
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(g) Sundays

Figure 2.13. Mean and median peak power consumption values

From the figures above, it can be depicted that both mean and median peak values for

most of the users coincide and are in the range of 10kW to 40kW. It should also be noted

that these values for some users may vary on different days of the week depending on the

cluster they belong to.

Historical data can provide a good understanding on the distribution of the peak values

for some users. For example, the peak power consumption values for user ‘16’ (belonging to

cluster 2) is close to 30 kW during all days of the week which can be inferred from the box

plot shown below in figure 2.14.

Figure 2.14. Peak power consumption values of user ‘16’ on different days of the week
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However, not every user exhibits the same characteristics as user ‘16’. To understand

how concentrated the peak values are for different users on all days of the week, percentage

of the peak values in the interval of +/- 10% of the mean peak value of the user on the

particular day of the week is calculated and plotted in figure 2.15.

(a) Mondays

(b) Tuesdays

(c) Wednesdays
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(d) Thursdays

(e) Fridays

(f) Saturdays

(g) Sundays

Figure 2.15. % of peak values in the interval of +/- 10% around user’s mean peak value
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It can be observed that the peak values for most of the users on different days of the

week do not lie in the vicinity of the mean peak value. Very few users on different days

of the week cross the 75% benchmark among which the users from cluster 2 and cluster 3

dominate clearly. It should also be noticed that the percentages of the peak values lying

near the mean peak value for the (different) users are not the same for different days of the

week. This means the peak values are distributed differently on different days of the week

around its mean.

Another natural way to analyse the distribution of the peak values for different users on

different days of the week is by testing whether these values come from a normally distributed

population. This can be examined using Lilliefors test. Figure 2.16 indicates the distribution

of number of users from each cluster whose peak values follow normal distribution on different

days of the week at a confidence level of 95%. Clearly, there are not many users whose peak

values are normally distributed on different days of the week.

Figure 2.16. No. of users whose peak values follow normal distribution

To have a direct comparison of the peak values against the standard normal quantities

graphically, QQ plots are used. Figure 2.17 (a) shows a user whose peak values are aligned

with the standard normal quantities on a particular day of the week whereas figure 2.17 (b)

implies that this user’s peaks values follow a heavy tail distribution on a different day of the

week, which is not trivial to identify.
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(a) Peaks values follow normal distribution

(b) Peak values do not follow normal distribution

Figure 2.17. Comparison against normal distribution

2.3.2 Empirical Distribution of Peak Times

In the previous subsection, distribution of peak values was discussed. But it is also

important to know when do these peaks occur. Like the mean and the median values used

for developing an understanding about the peak values, mode is used for analysing the peak

times. Figure 2.18 shows the times of all users where the peak happens with the maximum

frequency on different days of the week.
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(a) Mondays

(b) Tuesdays

(c) Wednesdays

(d) Thursdays
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(e) Fridays

(f) Saturdays

(g) Sundays

Figure 2.18. Mode of peak times

It can be observed that different users consume the maximum power during different

metering intervals. Clustering helps in identifying these peak metering intervals for the

majority of the users belonging to a specific cluster on different days of the week, but not

any every user within the cluster follow the same general trend of the cluster. This explains

how scattered these peak times are! To understand the gravity of the same numerically,
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percentage of peak times in the interval of +/- 1 of the mode peak time is plotted in figure

2.19 for all users on different days of the week, where most of the users fail to cross the 50%

benchmark.

(a) Mondays

(b) Tuesdays

(c) Wednesdays
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(d) Thursdays

(e) Fridays

(f) Saturdays

(g) Sundays

Figure 2.19. % of peak times in the interval of +/- 1 around user’s mode peak time
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2.4 Summary

The highlights of this chapter are the following:

1. Dividing the dataset of the power consumption values into different days of the week

helps in reducing large variances and in understanding the correlation among different

days of the week.

2. Clustering analysis assists in identifying strong correlation among users based on the

pattern recognition of the power consumption profiles.

3. Almost all power consumption profiles pertaining to different users on different days of

the week are not stationary.

4. Daily peak power consumption values and their corresponding metering intervals for

most of the users are widely distributed during different days of the week. Elementary

statistical methods such as mean, median and mode are not sufficient enough to predict

the same. Advanced machine learning methods are required.
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3. MACHINE LEARNING FOR TIME SERIES DATA

The primary goal of this study is to forecast the daily peak power consumption values and

their corresponding metering intervals of every user on different days of the week. This is

achieved by taking two different approaches. The first approach is by forecasting the entire

time series for 24 hours, starting from 12:00 am to 11:59 pm, for each user every day and

then computing the peak power consumption values using the predicted time series which is

referred as the indirect approach whereas the second approach is by directly forecasting the

peak power consumption values based on the historical data which is referred as the direct

approach. For both of these approaches, different machine learning techniques have been

explored and are discussed in chapter 3 (current chapter) and in chapter 4 (the following

chapter) respectively.

3.1 Actual data pertaining to case study

Before moving to the specifics of the machine learning algorithms, this section discuss

the information related to the case study used for this and for the following chapter. The

size of the dataset being large, some typical users on typical day of the week is chosen as a

part of case study. Specifically, the data pertaining to user ‘19’ and user ‘25’ on Wednesdays

is chosen for the case study. The reason for choosing these users is a part of cluster analysis

discussed in section 2.2.3. The idea is to choose the users from cluster 1 and cluster 5 as

these two clusters accommodate the 50% of total users (38 out of 75) when compared with

the other clusters. Therefore, user ‘19’ and user ‘25’ are chosen from cluster 1 and cluster 5

respectively. Secondly, the reason for choosing ‘Wednesdays’ as the typical day of the week

can also be explained using cluster analysis. Users belonging to cluster 1 have the same

power consumption profile on all days of the week, so choosing any other day from the week

other than Wednesdays will not result in a significant difference in the analysis whereas the

users belonging to cluster 5 barely consume any power on Mondays and Sundays which also

means that the peak power consumption is very low during these days of the week. The main

objective of this study being learning the peak power consumption values of C&I users which

are significant for both electric utilities and to the users themselves for the applications like
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demand charge reduction, near-zero peak on a weekend day does not matter much. Therefore,

choosing a typical working day makes more sense than merely choosing a non-working day

which justifies the selection of ‘Wednesdays’ for the case study.

To have visual understanding of the actual data, figure 3.1 represents the power con-

sumption profiles of user ‘19’ and user ‘25’ on Wednesdays for all 75 weeks present during

the period from August 2009 to December 2010.

(a) User ‘19’

(b) User ‘25’

Figure 3.1. Power consumption profiles of user ‘19’ and user ‘25’ on Wednesdays

As discussed in section 2.2.4, figure 3.2 displays the number of stationary days according

to the ADF and KPSS unit root tests for user ‘19’ and user ‘25’ on Wednesdays. ADF tests

suggests that there are no stationary or trend stationary days for both users while KPSS test

suggests that there are quite a few days which are stationary around a deterministic trend.

This supports the argument of choosing these users as the typical users as most of the power

consumption profiles for different users on different days of the week are not stationary.

44



Figure 3.2. Stationary days of user ‘19’ and user ‘25’ on Wednesdays

3.2 Machine Learning Models

Often times in machine learning techniques, the entire dataset is categorized into two

main groups, namely training and test in order to train and test the performance of the

model. In general, 70-80% of the dataset is used as the training set, whereas 20-30% is used

as the test set. In this study, the total number of weeks for each user and each day of the

week being equal to 75, the first 55 weeks are considered as the training weeks, whereas the

last 20 weeks (approximately 27% of the entire dataset) are considered as the test weeks.

The reason for selecting the last weeks of the dataset as the ‘test set’ is because the same

can be applied to any new user where the historical information of that user can be used

as the training set in order to predict the upcoming values. Figure 3.3 shows the power

consumption profiles of user ‘19’ and user ‘25’ forming training and test sets on Wednesdays

pertaining to the case study.
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(a) User ‘19’

(b) User ‘25’

Figure 3.3. Power consumption profiles of user ‘19’ and user ‘25’ forming
training and test Sets on Wednesdays

The symbolic representation of the entire training set consisting of the power consumption

values of K users at T metering intervals on all days of the week for W train weeks is given as

pk(t, d, w) with k ∈ K, t ∈ T , d ∈ D, and w ∈ W train whereas the test set can be represented

as pk(t, d, j) with k ∈ K, t ∈ T , d ∈ D, and j ∈ W test where,

K = {1, 2, ..., K}, with K = 75,

T = {1, 2, ..., T}, with T = 48,

D = {1, 2, 3, 4, 5, 6, 7},

Wtrain = {1, 2, ..., W train}, with W train = 55,

Wtest = {W train + 1, W train + 2, ..., W test}, with W test = 75.

For our case study, k = {19, 25}, d = {3} with all other variables as mentioned above unless

otherwise stated.
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3.2.1 Offline Average Model

The basic model of forecasting the power consumption values is the average model. In

offline average model, the forecasting of the power consumption values for the upcoming

metering intervals during the day is calculated by taking the average of all training data

corresponding to respective upcoming metering intervals on different days of the week for

different users. Mathematically, it can be expressed as

p̂k(τ, t, d, j) =


pk(t, d, j), ∀t < τ,

1
W train

W train∑
w=1

pk(t, d, w), ∀t ≥ τ .
(3.1)

In the above sets of equations, τ represents the metering interval at which the prediction

is done for the rest of the day. For example, figure 3.4 (a) shows the predicted power

consumption profile of user 25 on Wednesday of week 65 at τ = 5, where the forecasting is

done for the metering intervals greater than or equal to τ = 5. Moreover, the green curve

indicates the power consumption values occured in the past, the cyan curve indicates the

predicted power consumption values and the blue curve indicates the actual values for the

upcoming metering intervals for this user. It also shows the actual peak value with × and

the predicted peak with *. Figure 3.4 shows the predicted power consumption profiles for

user 25 on Wednesday of week 65 at different values of τ .

(a) τ = 5
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(b) τ = 15

(c) τ = 25

(d) τ = 35

(e) τ = 45

Figure 3.4. User 25’s predicted power consumption profile on Wednesday of
week 65 using offline average model
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The metric calculations for every model discussed in this chapter are based on three ob-

jectives (a) how good the model is predicting the power consumption values for the upcoming

metering intervals, (b) how good the model is predicting the peak values, and (c) how good

the model is predicting the metering interval corresponding to the peak power consumption

value. The metric calculations corresponding to each objective is termed as the Mean Abso-

lute Percentage Error (total), Mean Absolute Percentage Error (peak), and Mean Absolute

Error (peaktime), where the first two are expressed in % whereas the last one is expressed in

minutes. The notation used for these three metric values are MAPEtotal
k (d), MAPEpeak

k (d),

and MAEpeaktime
k (d) respectively. Mathematically, these values can be expressed as

MAPEtotal
k (d)(in %) =

(
2 × 100

|Wtest| · T 2 · (T + 1)

) ∑
j∈Wtest

T∑
τ=1

T∑
t=τ

|pk(t, d, j) − p̂k(τ, t, d, j)|
pk(t, d, j) , (3.2)

MAPEpeak
k (d)(in %) =

(
1 × 100

|Wtest| · T

) ∑
j∈Wtest

T∑
τ=1

|ppeak
k (d, j) − p̂peak

k (τ, d, j)|
pk(d, j) , (3.3)

MAEpeaktime
k (d)(in mins) =

(
∆

|Wtest| · T

) ∑
j∈Wtest

T∑
τ=1

|tpeak
k (d, j) − t̂peak

k (τ, d, j)|, (3.4)

where |Wtest| represents the number of elements present in the test set, ppeak
k (d, j) represents

the actual peak power consumption value, p̂peak
k (d, j) represents the predicted peak power

consumption value, tpeak
k (d, j) represents the metering interval corresponding to the actual

peak power consumption value and t̂peak
k (d, j) represents the metering interval corresponding

to the predicted peak power consumption value. Mathematically, these parameters can be

given as

ppeak
k (d, j) = max

t∈T
pk(t, d, j), (3.5)

p̂peak
k (τ, d, j) = max

t∈T
p̂k(τ, t, d, j), (3.6)
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tpeak
k (d, j) = arg max

t∈T
pk(t, d, j), (3.7)

t̂peak
k (τ, d, j) = arg max

t∈T
p̂k(τ, t, d, j). (3.8)

Using the equations mentioned in 3.2 - 3.4, the metric values obtained for the case study

using the offline average model are given in table 3.1.

Table 3.1. MAPE values using offline average model

Metric values User 19 User 25

MAPEtotal
k (d) 23.52 % 50.10 %

MAPEpeak
k (d) 11.39 % 20.34 %

MAEpeaktime
k (d) 305.22 mins ≈10.17 intervals 400.94 mins ≈13.36 intervals

Offline average model can be used as a base model which can be used to compare against

all the other models that will be discussed in the forthcoming subsections.

3.2.2 Online Average Model

In online average model, the idea is to include the precedent test weeks to the training

set in order to calculate the average power consumption values corresponding to respective

upcoming metering intervals on different days of the week for different users. Mathematically,

it can be expressed as

p̂k(τ, t, d, j) =



pk(t, d, j), ∀t < τ, j ∈ W test,

1
W train

W train∑
w=1

pk(t, d, w), ∀t ≥ τ, j = W train + 1,

1
j−1

j−1∑
w=1

pk(t, d, w), ∀t ≥ τ, ∀j > W train + 1.

(3.9)

Using the equations mentioned in 3.2 - 3.4, the metric values obtained by the online

average model for the case study are given in table 3.2.
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Table 3.2. MAPE values using online average model

Metric values User 19 User 25

MAPEtotal
k (d) 23.10 % 50.78 %

MAPEpeak
k (d) 11.36 % 19.94 %

MAEpeaktime
k (d) 304.47 mins ≈10 intervals 316.62 mins ≈10 intervals

By comparing the metric values of the offline and online average models, it can be seen

that there is a modest improvement on the total prediction of the power consumption values

for upcoming metering intervals and on the peak power consumption values for both users.

However, there is a drastic improvement in predicting the metering interval corresponding

to the peak power consumption value for user 25. The improvement of this model can be

attributed to the strong correlation of the power consumption values of the preceding weeks

which further helps the average values across all metering intervals to change accordingly.

3.2.3 First Order Auto Regression Model (Conventional Method)

Auto regression models are quite common for the studies of time series analysis. In

general, an auto regressive model is when a value from a time series is regressed on previous

values from that same time series. Specifically, a first order auto regressive model (or AR1)

of a stationary time series yt can be given as

yt = β0 + β1yt−1 + εt. (3.10)

But the time series for the most of the users in our dataset being non–stationary as discussed

in the section 2.4, the idea is to regress the model for every metering interval. Thereby, the

modified first order auto regression model used can be expressed as

pk(t, d, w) ∼ pk(t − 1, d, w), t > 1, (3.11)

p̂k(t, d, w) = αk(t, d)pk(t − 1, d, w) + βk(t, d), t > 1, (3.12)
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where w ∈ W train.

In order to calculate the model parameters αk(t, d) and βk(t, d), a squared loss objective

function formed for every metering interval can be used and minimized as shown in the

following expression:

min
αk(t,d),βk(t,d)

W train∑
w=1

(
pk(t, d, w) − p̂k(t, d, w)

)2

.

Based on the model parameters obtained, the predicted power consumption values are

p̂k(τ, t, d, j) =



1
W train

W train∑
w=1

pk(t, d, w), τ = 1, j = W train + 1,

1
j−1

j−1∑
w=1

pk(t, d, w), τ = 1, ∀j > W train + 1,

pk(t, d, j), ∀t < τ, ∀j ∈ W test,

αk(t, d)pk(t − 1, d, j) + βk(t, d), ∀t ≥ τ, ∀j ∈ W test.

(3.13)

Essentially, the above set of equation means that we predict the power consumption

values using an online average model at the beginning of the day (τ = 1) and thereby use the

model parameters for predicting the power consumption values for the upcoming metering

intervals based on the precedent power consumption values. It should also be noted that the

precedent power consumption values of the metering interval at that metering interval are

equal to their actual power consumption values.

Figure 3.5 shows the same example of user 25 on Wednesday of week 65 as mentioned

in the offline average model for different τ values for first order auto regression model. The

main difference that can be observed by comparing the two models is the variation of the

power consumption values for the upcoming metering intervals at different τ values. In offline

average model, the power consumption values for the upcoming metering intervals do not

change with different values of τ but in this model, the power consumption values for the

upcoming metering intervals do change with different values of τ making this model more

adaptive to the updated power consumption values within the day.
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(a) τ = 5

(b) τ = 15

(c) τ = 25

(d) τ = 35
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(e) τ = 45

Figure 3.5. User 25’s predicted power consumption profile on Wednesday of
week 65 using first order auto regression model (conventional method)

Again, to verify how well the model is behaving, we can use the same metric calculations

mentioned in eqns. 3.2 - 3.4. The metric values for the first order auto regression model are

shown in the table 3.3.

Table 3.3. MAPE values using first order auto regression model (conventional method)

Metric values User 19 User 25

MAPEtotal
k (d) 22.37 % 40.82 %

MAPEpeak
k (d) 10.17 % 19.35 %

MAEpeaktime
k (d) 298.10 mins ≈9.93 intervals 306.72 mins ≈10.22 intervals

Comparing this model to the other two models, the values across all parameters are

improved. The main improvement can be observed in the MAPEtotal
k (d) value of user 25. This

means that the first order models predicts the power consumption values of the upcoming

metering intervals with a better accuracy compared to the average models. Our main focus

being the peak values, there is a slight improvement in the MAPEpeak
k (d) values for both

users.
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3.2.4 First Order Auto Regression Model (Asymmetric Penalty Method)

In the previous model, first order auto regression model using a conventional method

is discussed. Since the improvement on the peak values when compared to the average

models was little, asymmetric penalty method of the same first order auto regression model

is discussed in this section. The model being the same as that of the conventional method,

it can be expressed as

pk(t, d, w) ∼ pk(t − 1, d, w), t > 1, (3.14)

p̂k(t, d, w) = αk(t, d)pk(t − 1, d, w) + βk(t, d), t > 1, (3.15)

where w ∈ W train.

The main difference in between the conventional method and the asymmetric method

lies in the way the model parameters αk(t, d) and βk(t, d) are obtained. Instead of using a

squared loss function, this method uses a dead band loss function with a hyper-parameter

γk(d) which is termed as the penalty. This loss function can be given as

min
αk(t,d),βk(t,d)

W train∑
w=1

(
p̂k(t, d, w), pk(t, d, w)

)
+

+ γk(d)
(

pk(t, d, w), p̂k(t, d, w)
)

+
,

where

(x, y)+ = max{0, (x − y)}. (3.16)

In the above expression,
(

p̂k(t, d, w), pk(t, d, w)
)

+
represents the overestimating com-

ponent whereas
(

pk(t, d, w), p̂k(t, d, w)
)

+
represents the underestimating component of the

loss function. Depending on the values of the penalty used, minimizing the loss function

will furnish us with model parameters which either overestimates or underestimates power

consumption values for the upcoming metering intervals. By this we mean, if the value of

the penalty is greater than 1 (γk(d) > 1), minimizing the loss function will provide us with

the model parameters which overestimates the power consumption values for upcoming me-

tering intervals whereas if the value of the penalty is between 0 and 1 (0 < γk(d) < 1) will
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correspond to the model parameters which underestimates the power consumption values

for upcoming metering intervals. If the value of the penalty is equal to 1 (γk(d) = 1), the

loss function will simply transform to the absolute loss function that can be expressed as

min
αk(t,d),βk(t,d)

W train∑
w=1

|pk(t, d, w) − p̂k(t, d, w)|.

To obtain the best value for the penalty γk(d) that provide can us with the model pa-

rameters αk(t, d) and βk(t, d) such that there can be an improvement in predicting the peak

values, following four steps are used for this method.

Step 1: Split the training data into pure training set and cross validation set

First, the training set is further is divided into pure training set and the cross validation

set. Symbolically, pk(t, d, w) with w ∈ Wpure represents the pure training set and pk(t, d, w)

with w ∈ Wcv represents the cross validation set such that Wpure ∪ Wcv = Wtrain. It should

be noted that the division to obtain the pure training set and cross validation set from the

training set is random.

Step 2: Train the model using the pure training set for different values of the

hyper-parameter γk(d) ∈ G = [gmin, gmax]

After the training set is split into pure training set and cross validation set, first order auto

regression model is built on the pure training set for different values of the hyper-parameter

in the range [gmin, gmax]. This can be represented as

pk(t, d, w) ∼ pk(t − 1, d, w), t > 1, (3.17)

p̂k(t, d, w) = αk,γk(d)(t, d)pk(t − 1, d, w) + βk,γk(d)(t, d), t > 1, (3.18)

where w ∈ Wpure. The model parameters αk,γk(d)(t, d) and βk,γk(d)(t, d) for different values of

hyper-parameter γk(d) can be obtained by minimizing the deadband loss function expressed

as

min
αk,γk(d)(t,d),βk,γk(d)(t,d)

W train∑
w=1

(
p̂k(t, d, w), pk(t, d, w)

)
+

+ γk(d)
(

pk(t, d, w), p̂k(t, d, w)
)

+
.
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Step 3: Based on the model parameters obtained, predict on cross validation set

After obtaining the model parameters for different values of the hyper-parameter, power

consumption values can be predicted on the weeks corresponding to the cross validation set

as follows

p̂k(τ, t, d, c) =



1
|Wpure|

∑
w∈Wpure

pk(t, d, w), τ = 1, c ∈ Wcv,

pk(t, d, c), ∀t < τ, c ∈ Wcv,

αk,γk(d)(t, d)pk(t − 1, d, c) + βk,γk(d)(t, d), ∀t ≥ τ, c ∈ Wcv.

(3.19)

Predicting the power consumption values on the cross validation set is quite similar to that

of the first order auto regression model using conventional method. The power consumption

values for all the metering intervals at the beginning of the day i.e at τ = 1 is given by

the offline average model of the pure training set and the power consumption values for the

upcoming metering intervals are given by the model parameters obtained for different values

of hyper-parameter. Again, it should be noted that the precedent power consumption values

of a metering interval at that metering interval can be given as the actual power consumption

values.

Step 4: Using metric calculations, choose the best value of γk(d)

Based on the prediction on the cross validation set using different model parameters

corresponding to different values of the hyper-parameter as mentioned in step 3, a metric

calculation used for the peak values (similar to eqn 3.3) can be used for finding the best

hyper-parameter value, which is shown in eqn. 3.20.

MAPEpeak
k (d)(in %) =

(
1 × 100

|Wcv| · T

) ∑
c∈Wcv

T∑
τ=1

|ppeak
k (d, c) − p̂peak

k (τ, d, c)|
pk(d, c) (3.20)
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where |Wcv| represents the number of elements present in the cross validation set. The best

value of the hyper-parameter is the one that corresponds to the lowest MAPEpeak
k (d) on the

cross validation set. This can be represented as

γbest
k (d) = arg min

γk(d)∈G
MAPEpeak

k,γk(d)(d). (3.21)

The values of the hyper-parameter γk(d) explored for the case study involving user 19

and user 25 on Wednesdays are in the interval of [0,4] which resulted in the MAPEpeak
k (d)

values on the cross validation set for different values of γk(d) shown in figure 3.6.

Figure 3.6. Variation of MAPE (peak) values on the cross validation set with
respect to different values of the hyper-parameter for user 19 and user 25 on
Wednesdays

The values of the hyper-parameter corresponding to the lowest MAPE (peak) values on

the cross validation set for user 19 and user 25 on Wednesdays are 1.9 and 2.25 respectively.

These values being greater than 1 suggest overestimation for predicting the peak values with

a better accuracy.
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Finally, the model parameters corresponding to the best value of the hyper-parameter

can be used for predicting on the test set which can be given as

p̂k(τ, t, d, j) =



1
W train

W train∑
w=1

pk(t, d, w), τ = 1, j = W train + 1,

1
j−1

j−1∑
w=1

pk(t, d, w), τ = 1, ∀j ≥ W train + 1,

pk(t, d, j), ∀t < τ, ∀j ∈ W test,

αk,γbest
k

(d)(t, d)pk(t − 1, d, j) + βk,γbest
k

(d)(t, d), ∀t ≥ τ, ∀j ∈ W test.

(3.22)

Using the best value of the hyper-parameter, the metric values for both users using this

method is shown in table 3.4.

Table 3.4. MAPE values using first order auto regression model (asymmetric
penalty method)

Metric values User 19 User 25

MAPEtotal
k (d) 33.98 % 62.58 %

MAPEpeak
k (d) 9.83 % 13.44 %

MAEpeaktime
k (d) 291.41 mins ≈9.71 intervals 155.5 mins ≈5.18 intervals

It can be seen that the error on the peak values (MAPEpeak
k (d)) do have a significant

improvement compared to all the other three methods. However, this improvement comes

with a larger error on the total prediction (MAPEtotal
k (d)) of the power consumption values.

Also, there is a drastic improvement in the prediction of the metering interval corresponding

to the peak power consumption value using this model.

59



3.2.5 Artificial Neural Network

Artificial Neural Networks are more advanced compared to the models previously dis-

cussed. ANNs are comprised of a node layers, containing an input layer, one or more hidden

layers, and an output layer. Each node, or artificial neuron, connects to another and has an

associated weight and threshold. A double layered artificial neural network is shown in the

figure 3.7.

Figure 3.7. Double layered feedforward artificial neural network

A network similar to the figure 3.7 is used for our case study. The four training inputs fed

to the network are the metering interval t which is defined a categorical variable, the power

consumption value at the previous metering interval pk(t−1, d, w), power consumption value

of the same metering interval on the previous day pk(t, d−1, w), and the power consumption

value of the same metering interval on the previous week pk(t, d, w −1). The training output

is the actual power consumption value on the metering interval pk(t, d, w), where t ∈ T \ {1}

and w ∈ W train \ {1, 2}.

The double layered artificial neural network can shown in figure can be build in MATLAB

using ‘feedforwardnet’ function which is shown in figure 3.8 for for the case study consisting

user 19 and user 25 on Wednesdays.
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(a) User ‘19’

(b) User ‘25’

Figure 3.8. Double layered artificial neural network used for predicting the
peak power consumption values for user ‘19’ and user ‘25’ on Wednesday using
indirect approach

Based on the trained network, the metric values for the case study are given in table 3.5.

Table 3.5. MAPE values using double layered artificial neural network

Metric values User 19 User 25

MAPEtotal
k (d) 19.90 % 37.43 %

MAPEpeak
k (d) 9.65 % 12.25 %

MAEpeaktime
k (d) 283.72 mins ≈9.46 intervals 150.83 mins ≈5 intervals

The above table suggests that with the right number of layers and the number of neurons

in each layer, the performance of ANN can be better compared to other models as the errors

corresponding to the entire power consumption values, peak values and the metering intervals

corresponding to the peak values are lesser compared to that of other models.
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3.3 Summary

The highlights of this chapter are the following:

1. The two-step process of predicting the power consumption values for the entire time

series and then identifying the peak power consumption value can be used for learning

the peaks for different users on different days of the week.

2. Highlights on the case study of user ‘19’ and user ‘25’ on Wednesdays.

• All models (offline average model, online average model, first order auto regression

model using conventional method, fist order auto regression model using asym-

metric penalty method, and artificial neural network) provide a decent prediction

on the peak values as the mean errors are less than 20%.

• Online average model performs better compared to that of the offline average

model.

• First order auto regression models work better compared to the average models.

• Overestimating the power consumption values at every metering interval helps in

the better prediction on the peak values but affects the prediction on the entire

time series.

• Artificial neural network using the appropriate features can be helpful for complex

relationships between the inputs and the output.
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4. MACHINE LEARNING FOR PEAKS DATA

In the previous chapter, forecasting the peak power consumption values of user ‘19’ (be-

longing to cluster 1) and user 25 (belonging to cluster 5) on Wednesdays were discussed

using the indirect approach. In this chapter, direct approach for forecasting the peak power

consumption values of the same users on Wednesdays is discussed.

4.1 Actual data pertaining to case study

Before discussing the machine learning algorithms used to forecast the peak values di-

rectly, it is important to visualize the input data which in our case study is the peak power

consumption values of user ‘19’ and user ‘25’ on Wednesdays across different weeks. The

same is plotted in figure 4.1. It can be observed that the actual peak power consumption

values are not steady, rather fluctuate a lot around their corresponding mean peak values

shown by the dashed lines (- -) which have the values close to 10kW and 20kW for user ‘19’

and for user ‘25’ respectively.

Figure 4.1. Peak values of user ‘19’ and user ‘25’ on Wednesdays

To perceive the above data numerically, histogram of the peak power consumption values

is shown in figure 4.2. About 30% (21 out of 75) of the peak values for user ‘19’ are in the

range of 9kW to 10kW and the rest of 70% values are widely scattered in the range of 7kW

to 15kW. The spread of the peak values for user ‘25’ is comparatively larger than that of the

user ‘19’. Merely, 10% (9 out of 75) of the peak values lie between 21kW to 22kW. Most of

the other peak values are fall in the range of 19kW to 28kW.
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(a) User ‘19’

(b) User ‘25’

Figure 4.2. Histogram of peak values of user ‘19’ and user ‘25’ on Wednesdays
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(a) User ‘19’

(b) User ‘25’

Figure 4.3. Comparison of peak values of user ‘19’ and user ‘25’ on Wednes-
days against normal distribution
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The figure 4.3 represents the comparison of the peak power consumption values of user

‘19’ and user ‘25’ against the standard normal distribution. Looking at these figures, it

can be claimed that the peak values do not follow normal or Gaussian distribution. The

exact probability distribution functions of these peak values are shown in figure 4.4. It

can be inferred that these distribution are heavy tailed i.e. tails are not exponentially

bounded. Theoretically, heavy tailed distribution are classified into three classes: the fat-

tailed distributions, the long-tailed distributions and the sub-exponential distributions. It

can be seen that the peak values of user ‘19’ belong to the sub-exponential class whereas the

peak values of user ‘25’ are of the long-tailed class.

Figure 4.4. Probability Distribution Functions (PDF) of peak values for user
‘19’ and user ‘25’ on Wednesdays

Forecasting the values which follow heavy tailed distribution is not trivial. Essentially,

it means that the dataset has a significant number of outliers that requires the application

of advanced machine learning techniques to capture them using different features for better

prediction.
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4.2 Machine Learning Models

In this section, different machine learning models used to forecast the peak power con-

sumption values directly is discussed. The study is performed on the same typical users i.e.

user ‘19’ from cluster 1 and user ‘25’ from cluster 5 on Wednesdays. Figure 4.5 shows the

values corresponding to their training and test sets. For each user, the first 55 Wednesdays

have been considered as the training set whereas the last 20 Wednesdays as the test set.

Figure 4.5. Peak values forming training and test sets for user ‘19’ and user
‘25’ on Wednesdays

The symbolic representation of the entire training set consisting of the peak power con-

sumption values of K users on all days of the week for W train weeks is given as ppeak
k (d, w)

with k ∈ K, d ∈ D, and w ∈ W train whereas the representation of the entire test set consist-

ing of the peak power consumption values for the same number of users on all days of the

week for W test weeks is given as ppeak
k (d, j) with k ∈ K, d ∈ D, and j ∈ W test where

K = {1, 2, ..., K}, with K = 75,

D = {1, 2, 3, 4, 5, 6, 7},

Wtrain = {1, 2, ..., W train}, with W train = 55,

Wtest = {56, 57, ..., W test}, with W test = 75.

For the case study, k = {19, 25}, d = {3} with all other variables as mentioned above unless

otherwise stated.
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4.2.1 Offline Average Model

One of the most basic models to start the discussion with on forecasting the peaks directly

is by taking the average of all the values pertaining to the training set. This model is referred

as the offline average model. Mathematically, the predicted peak power consumption values

using this model can be expressed as

p̂peak
k (d, j) = 1

W train

W train∑
w=1

ppeak
k (d, w); ∀j ∈ W test. (4.1)

The metric calculations for the models used in the process of directly predicting the peaks

can be expressed as

MAPEpeak
k (d)(in %) = 1 × 100

|Wtest|
∑

j∈Wtest

|ppeak
k (d, j) − p̂peak

k (d, j)|
ppeak

k (d, j)
, (4.2)

where |Wtest| represents the number of the elements in the test set.

With the offline average as the model, MAPE values obtained corresponding to the case

study are given in table 4.1.

Table 4.1. MAPE values using offline average model
Model User 19 User 25

Offline Average 17.39% 14.16%
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4.2.2 Online Average Model

With a slight modification in the way the average is calculated, the results can be im-

proved by appending the test weeks which would have already occured to the training set

and then calculating the average of the appended training data. This model is referred as

the online average model. Mathematically, the model can be expressed as

p̂peak
k (d, j) =


1

W train

W train∑
w=1

ppeak
k (d, w), j = W train + 1,

1
j−1

j−1∑
w=1

ppeak
k (d, w), ∀j ≥ W test + 1.

(4.3)

With the online average as the model, MAPE values obtained using the eqn. 4.6 corre-

sponding to the case study are given in table 4.2.

Table 4.2. MAPE values of online average model

Model User 19 User 25

Online Average 16.50% 13.49%

By comparing the MAPE values from table 4.1 and 4.2, it can be noticed that the online

average model performs better as compared to the offline average as the MAPE values are

smaller for online average model. This is because the peak power consumption values for any

user on different days of the week are highly correlated to their immediate previous values

as compared to the values that would have been recorded long back. With this idea, the

next models that are going to be discussed will contain the most related features, so that

the future values can be forecasting with a better accuracy.
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4.2.3 Simple Linear Regression (SLR) Model using previous week’s peak power
consumption value as the feature

One of the most common techniques used for forecasting is simple linear regression. The

idea in this technique is to find a single exploratory variable (or feature as otherwise known)

which has a linear relationship with the response variable. From online average, it is realised

that using the immediate previous week’s peak power consumption value definitely have the

chance in improving the forecasting. But using previous week’s power consumption value

as a feature directly will not help as it would essentially mean that the upcoming values

will always be either increasing or decreasing depending on the slope obtained using this

model. Hence, some kind of transformation is needed. In the model shown below, the value

online average of the previous weeks’ peak power consumption value is subtracted from the

previous week’s peak power consumption value for the same day of the week and is modelled

using simple linear regression. Mathematically, it can be expressed as

ppeak
k (d, w) − p̄peak

k (d, w) ∼ ppeak
k (d, w − 1) − p̄peak

k (d, w − 1), (4.4)

p̂peak
k (d, w) − p̄peak

k (d, w) = αk(d)ppeak
k (d, w − 1) − p̄peak

k (d, w − 1) + βk(d), (4.5)

where ppeak
k (d, w) is the true peak power consumption value present in the training set,

p̂peak
k (d, w) is the predicted peak power consumption value corresponding to the true value

present in the training set, p̄peak
k (d, w) is the online average component which can be given

as

p̄peak
k (d, w) =

(
1

w − 1

){
w−1∑
m=1

ppeak
k (d, m)

}
. (4.6)

For the model to be properly defined, the peak power consumption values corresponding

to the training week 1 and 2 should not be considered while training the model i.e. w ∈

Wtrain \ {1, 2}.

The model parameters αk(d) and βk(d) can be found by minimizing the total loss function

given by the following expression:

min
αk(d),βk(d)

W train∑
w=3

(
ppeak

k (d, w) − p̂peak
k (d, w)

)2

. (4.7)
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Based on the parameters obtained for the model, the predicted peak power consumption

values on the test set can be expressed as

p̂peak
k (d, j) = αk(d)ppeak

k (d, j − 1) − p̄peak
k (d, j − 1) + βk(d) + p̄peak

k (d, j), ∀j ∈ W test. (4.8)

With the SLR model with previous week’s peak power consumption values as the feature,

MAPE values obtained corresponding to the case study are given in table 4.3.

Table 4.3. MAPE values of SLR model using previous week’s peak power
consumption value

Model User 19 User 25
SLR using previous week’s peak value 15.75% 12.91%

4.2.4 Simple Linear Regression (SLR) Model using previous day’s peak power
consumption value as the feature

When compared to the online average model, SLR model with previous week’s peak power

consumption value as a feature improves the prediction for the future values. Continuing

the exploration with an idea similar to using the previous week’s peak power consumption

value, this time previous day’s peak power consumption value can be used as a feature. But

it should be noted that the users belonging to two dominating clusters, cluster 1 and cluster

5 have the different power consumption profiles (refer figure 2.8). So, the models for the

users belonging to cluster 1 and cluster 5 will be different although the feature used will be

the same (previous day’s peak power consumption value) which are given in the following

set of equations.

Case 1: For users belonging to cluster 1

Subcase 1: When d ∈ {2, 3, 4, 5, 6, 7},

ppeak
k (d, w) − p̄peak

k (d, w) ∼ ppeak
k (d − 1, w) − p̄peak

k (d − 1, w), (4.9)

p̂peak
k (d, w) − p̄peak

k (d, w) = αk(d)ppeak
k (d − 1, w) − p̄peak

k (d − 1, w) + βk(d). (4.10)
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Subcase 2: When d = 1,

ppeak
k (d, w) − p̄peak

k (d, w) ∼ ppeak
k (7, w − 1) − p̄peak

k (7, w − 1), (4.11)

p̂peak
k (d, w) − p̄peak

k (d, w) = αk(d)ppeak
k (7, w − 1) − p̄peak

k (7, w − 1) + βk(d). (4.12)

Case 2: For users belonging to cluster 5

Subcase 1: When d ∈ {3, 4, 5, 6},

ppeak
k (d, w) − p̄peak

k (d, w) ∼ ppeak
k (d − 1, w) − p̄peak

k (d − 1, w), (4.13)

p̂peak
k (d, w) − p̄peak

k (d, w) = αk(d)ppeak
k (d − 1, w) − p̄peak

k (d − 1, w) + βk(d). (4.14)

Subcase 2: When d = 2,

ppeak
k (d, w) − p̄peak

k (d, w) ∼ ppeak
k (6, w − 1) − p̄peak

k (6, w − 1), (4.15)

p̂peak
k (d, w) − p̄peak

k (d, w) = αk(d)ppeak
k (6, w − 1) − p̄peak

k (6, w − 1) + βk(d). (4.16)

The users belonging to cluster 5 barely consume any power on Sundays and Mondays, so

the online average model during these days of the week can furnish us with a good prediction.

For the model to be properly defined, the peak power consumption values corresponding to

the training week 1 and 2 should not be considered while training the model i.e. w ∈

Wtrain \ {1, 2}.

The model parameters αk(d) and βk(d) can be found by minimizing the total loss function

given by the following expression:

min
αk(d),βk(d)

W train∑
w=3

(
ppeak

k (d, w) − p̂peak
k (d, w)

)2

. (4.17)

It should also be noted that the online average component is subtracted from the feature

and from the response variable for the same reason stated for the previous model. Based on

the parameters obtained for this model, the predicted peak power consumption values can

be expressed as mentioned in the following equations for users belonging to different clusters.
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Case 1: For users belonging to cluster 1

Subcase 1: d ∈ {2, 3, 4, 5, 6, 7},

p̂peak
k (d, j) = αk(d)ppeak

k (d − 1, j) − p̄peak
k (d − 1, j) + βk(d) + p̄peak

k (d, j), ∀j ∈ W test. (4.18)

Subcase 2: d = 1,

p̂peak
k (d, j) = αk(d)ppeak

k (7, j − 1) − p̄peak
k (7, j − 1) + βk(d) + p̄peak

k (d, j); ∀j ∈ W test. (4.19)

Case 2: For users belonging to cluster 5

Subcase 1: When d ∈ {3, 4, 5, 6},

p̂peak
k (d, j) = αk(d)ppeak

k (d − 1, j) − p̄peak
k (d − 1, j) + βk(d) + p̄peak

k (d, j); ∀j ∈ W test. (4.20)

Subcase 2: When d = 2,

p̂peak
k (d, j) = αk(d)ppeak

k (6, j − 1) − p̄peak
k (6, j − 1) + βk(d) + p̄peak

k (d, j); ∀j ∈ W test. (4.21)

With the SLR model using previous day’s peak power consumption values as the feature,

MAPE values obtained corresponding to the case study are given in table 4.4.

Table 4.4. MAPE values of SLR model using previous day’s peak power
consumption value

Model User 19 User 25
SLR using previous day’s peak value 14.95% 12.51%

Comparing with all the other three models, this model performs the best for our case

study. However, as the number of features increases, there are better chances for explaining

the response variable. So, continuing the exploration in the direction of multiple features,

our next step is to discuss the models based on Multiple Linear Regression.
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4.2.5 Multiple Linear Regression (MLR) Model using previous seven days’ peak
power consumption values as the features

Multiple Linear Regression is a widely used method for forecasting in which the number

of predicting variables are more than one. In many cases, it is not possible to find a single

variable on which the response variable many be dependent on. In these cases, combination

of different variables can be useful in developing the model which can potential lead to better

performance. For our case study, a model with previous seven days peak power consumption

values without the respective online average components are considered as the features. The

corresponding mathematical model can be expressed as

ppeak
k (d, w) − p̄peak

k (d, w) ∼
7∑

n=1

(
ppeak

k (dn, wn) − p̄peak
k (dn, wn)

)
, (4.22)

p̂peak
k (d, w) − p̄peak

k (d, w) =
7∑

n=1
αk,n(d)

(
ppeak

k (dn, wn) − p̄peak
k (dn, wn)

)
+ βk(d). (4.23)

where n ∈ D = {1, 2, 3, 4, 5, 6, 7}, dn and wn can be given as

dn =


d − n, if d − n > 0,

7 + d − n, if d − n ≤ 0,

(4.24)

wn =


w, if d − n > 0,

w − 1, if d − n ≤ 0.

(4.25)

For the model to be properly defined, the peak power consumption values corresponding

to the training week 1 and 2 should not be considered while training the model i.e. w ∈

Wtrain \ {1, 2}.

The model parameters αk,n(d) and βk(d) can be found out by minimizing the total loss

function given by ther following expression:

min
αk,n(d),βk(d);n∈D

W train∑
w=3

(
ppeak

k (d, w) − p̂peak
k (d, w)

)2

. (4.26)
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Based on the model parameters, the prediction on the peak power consumption values

pertaining the test set can be expressed as

p̂peak
k (d, j) =

7∑
n=1

αk,n(d)
(

ppeak
k (dn, jn) − p̄peak

k (dn, jn)
)

+ βk(d) + p̄peak
k (d, j)∀j ∈ W test (4.27)

where n ∈ D = {1, 2, 3, 4, 5, 6, 7}, dn and jn can be given as

dn =


d − n, if d − n > 0,

7 + d − n, if d − n ≤ 0,

(4.28)

jn =


j, if d − n > 0,

j − 1, if d − n ≤ 0.

(4.29)

With the MLR model using previous seven day’s peak power consumption values as the

features, MAPE values obtained corresponding to the case study are given in table 4.5.

Table 4.5. MAPE values of MLR model using previous seven days’s peak
power consumption values

Model User 19 User 25
MLR using previous seven days peak power consumption values 13.21% 12.06%

In comparison to the previously discussed models, this model tops the list with the lowest

MAPE values. This model has the potential to capture the short time trend of users’ power

consumption behaviour which is believed as the primary advantage when compared to the

other models.
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4.2.6 Artificial Neural Network

As discussed in the indirect approach, ANNs can be helpful in building more complex

models. In all the previous models discussed, the input features were linearly regressed. But

ANNs have the capability of self building nonlinear models usually termed as the activation

functions present in each neuron of the hidden layers based on the features inputting to the

network. A single layered feedforward artificial neural network is shown in the figure 4.6.

Figure 4.6. Single-layer feedforward artificial neural network

The network that is built for the case study takes the same seven features as discussed for

the multiple linear regression. These are the previous seven days’ peak power consumption

values for each user. However, the input features supplied to the neural network do not have

the component of online average. Mathematically, these features for every user on different

days can be represented as ppeak
k (dn, wn) where n ∈ D = {1, 2, 3, 4, 5, 6, 7}, dn and wn can be

given as

dn =


d − n, if d − n > 0,

7 + d − n, if d − n ≤ 0,

(4.30)

wn =


w, if d − n > 0,

w − 1, if d − n ≤ 0.

(4.31)
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For having a well defined networks for all users on all days of the week, w ∈ W train \ {1}.

Any network can be built using the inputs with any number of neuron presents in the hidden

layers. But the down side on having too many neurons is over-fitting the network for the

training set. This results in a bad performance on the test set. In order to overcome this

issue, training set is further split into pure training set and cross validation set. The network

is built using the pure training set and then will be used to predict on the cross validation set.

By using certain metric calculations, the best number of neurons can be selected and later

can be used for the test set. The split of training set is generally in the ratio of 70% and 30%,

where 70% of the training set is pure training set and the remaining 30% can be used for cross

validation. It should be noted that the split is random for training the network efficiently.

Mathematical representation of the split can be expressed as Wtrain = Wpure ∪ Wcv. The

total number of training weeks (W train) being 55 for our case study, 40 weeks (around 72%) is

considered as the pure training set whereas the remaining 15 weeks(around 28%) is considered

as the cross validation set.

For building the network for the case study, MATLAB’s predefined Neural Network

function ‘feedforwardnet’ is used. The algorithm used for training the network is Levenberg-

Marquardt. The network is trained for a range of number of neurons r ∈ R = {1, 2, ...R}

with R = 50 for the case study. For different number of neurons, the MAPE values for both

training set and the cross validation set are calculated using the expressions below to identify

the optimized number of neurons for different users on different days of the week:

MAPEpure
k,r (d)(in %) = 1 × 100

|Wpure|
∑

w∈Wpure

|ppeak
k (d, w) − p̂peak

k,r (d, w)|
ppeak

k (d, w)
, (4.32)

MAPEcv
k,r(d)(in %) = 1 × 100

|Wcv|
∑

w∈Wcv

|ppeak
k (d, w) − p̂peak

k,r (d, w)|
ppeak

k (d, w)
. (4.33)

where |Wpure| represents the number of elements present in the pure training set and |Wcv|

represents the number of elements present in the cross validation set. The MAPE values

of the peaks values corresponding to the training set and to the cross validation set with

respect to the neuron size of user ‘19’ and user ‘25’ on Wednesdays are shown in figure 4.7.
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(a) User ‘19’

(b) User ‘25’

Figure 4.7. MAPE values of the peak values constituting the training set
and the cross validation set for user ‘19’ and user ‘25’ on Wednesdays using
single layered artificial neural network

It can be seen that the MAPE values corresponding to the cross validation set increase

after a certain neuron size whereas the MAPE values decrease largely because of over-fitting

the network for both users. The optimized number of neurons Nopt
k (d) that can be used for

building the model for the test set will correspond to the number of neurons that furnish us

with the lowest MAPEcv
k,r(d) for different users on different days of the week. Mathematically,

the expression for the optimized number of neurons can be given as

Nopt
k (d) = arg min

r∈R
{MAPEcv

k,r(d)}. (4.34)

For the case study, the optimised number of neurons for user ‘19’ is 3 whereas for user ‘25’

is 2. Figure 4.8 shows the single layers artificial neural network with the optimized number

of neurons which will be used for the test set.
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(a) User ‘19’

(b) User ‘25’

Figure 4.8. Single layered artificial neural network used for predicting the
peak power consumption values directly for user ‘19’ and user ‘25’ on Wednes-
days using the optimized number of neurons

The MAPE values for the test set using the network formed by the optimized number of

neurons are shown in table 4.6.

Table 4.6. MAPE values using single layered artificial neural network
Model User 19 User 25

Single layered artificial neural network 11.73% 9.64%

When comparing all the models discussed previously, single layered artificial neural net-

work improves the prediction by choosing a right number of neuron in the hidden layer. By

comparing the performance of ANN to the offline average model, the MAPE values have

been reduced by 5.66% and 4.52% for user ‘19’ and user ‘25’ on Wednesdays.
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4.3 Summary

The highlights of this chapter are the following:

1. Directly predicting the peak power consumption values does provide an alternative for

exploration instead of using an indirect approach as discussed in chapter 3 for different

users on different days of the week.

2. Highlights on the case study of user ‘19’ and user ‘25’ on Wednesdays.

• The peak power consumption values does suggest the values to be distributed and

possess heavy tailed distribution.

• Offline and online average models have a decent predictions on the test set.

• Using features like previous week’s or previous day’s peak power consumption

value improves the model suggesting a high correlation.

• Using multiple features like peak values corresponding to previous seven days adds

cherry on the top.

• Advanced machine learning algorithms like artificial neural network does capture

the nonlinear relationships which supports in explaining the model to a larger

extent.
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5. CONCLUSION AND FUTURE WORK

In this study, the main objective is to learn about the peak power consumption values of

Commercial and Industrial (C&I) users using the real dataset. To pursue the same, we first

analyzed the entire dataset in chapter 2. It is found that dividing the dataset into different

days of the week helps in reducing large variances for many metering intervals and also helps

us in understanding the general trend and correlation among different days of the week. It

is also identified that users can be grouped together who have similar power consumption

profiles during different days of the week and are divided into five different clusters. The

second aspect of the dataset discussed in chapter 2 is the about the peak power consumption

values and the metering intervals corresponding to these peak values. The peak values of the

C&I users are in the range of 10kW to 40kW. It is found that the mean or the median of the

peak values do not provide a good judgement as these values are scattered and follow heavy

tailed distribution. The story of the metering intervals corresponding to the peak value is

very similar. The mode of the metering intervals corresponding to the peak values do not

give a concrete understanding for different users across different clusters.

In chapter 3, indirect approach of predicting the daily peak values is discussed using a

case study pertaining to the users belonging to the dominant clusters on typical working

day. In this approach, power consumption profile for the entire day is predicted and then

the peak value is identified. Five models namely offline average model, online average model,

first order auto regression model using conventional and asymmetric penalty methods, and

artificial neural network are discussed and evaluated based on Mean Absolute Percentage

Error (MAPE) values. Although the error values corresponding to the peaks for all the

models is less than 20%, ANNs being advanced and complex perform better compared to

other models. It is also observed that selection of the appropriate features play a significant

role in developing the models. Features containing the most updated values tend to perform

better.

In chapter 4, direct approach of predicting the daily peak values is discussed using the

same case study as mentioned in chapter 3. In this approach, the peak power consumption

values are directly predicted instead of the two-step process in indirect approach. Six models
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namely, offline average model, online average model, simple linear regression model using

previous week’s peak values and previous day’s peak value, multiple linear regression model

using previous seven day’s peak values and artificial neural network with previous seven

days’ peak values as the input are discussed. Each model is evaluated using the same Mean

Absolute Percentage Error (MAPE) values as discussed in chapter 3. The error values for

all the models are small and are less than 20%. It is unfair to compare the MAPE values

of both approaches simultaneously as the indirect approach uses the values within the day

whereas the direct approach predicts the peak values at the beginning of the day. Similar to

indirect approach, ANNs perform better as they have the potential to enhance the network

with nonlinear features using activation functions.

Future Work

Some of the future work are mentioned as the following

1. Exploring different models with other features like moving average in both indirect

and direct approaches can improve the model. Adding features corresponding to the

external conditions like ambient temperature, humidity will certainly help in improving

the performance of the models. Also, extracting the features from other users’ power

consumption profiles belonging to the same clusters can be also be studied.

2. Specific to the direct approach, models involving the power consumption values within

the day can improve the prediction and will allow a direct comparison between the two

approaches. Also, predicting the metering intervals corresponding to predicted peak

values using this approach can be helpful.

3. Case study discussed in this research only considers typical users on typical days.

Carrying out similar analysis on users belonging to other clusters on different days of

the week can be executed.

4. The scope of this work can also be integrated by using the control algorithms for

subsidizing the peak values using Distributed Energy Resources (DERs) through smart

energy metering systems.
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