
BEARING FAULT DIAGNOSIS USING DEEP LEARNING NEURAL

NETWORKS WITH INPUT PROCESSING

by

Yuanyang Cai

A Thesis

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Master of Science in Electrical and Computer Engineering

Department of Electrical and Computer Engineering

Hammond, Indiana

December 2021

2

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF COMMITTEE APPROVAL

Dr. Lizhe Tan, Chair

Department of Electrical and Computer Engineering

Dr. Constantin Apostoaia

Department of Electrical and Computer Engineering

Dr. Colin P Elkin

Department of Electrical and Computer Engineering

Approved by:

Dr. Lizhe Tan

3

ACKNOWLEDGMENTS

I would like to thank the committee chair, Dr. Tan Lizhe, for his guidance and meticulous

care during the year and a half of the research process, especially during the special period of the

global epidemic. I have learned how to become a better researcher while focusing on work ethic

and professionalism. Dr. Li-Zhe Tan's overwhelming achievements and contributions to the

scientific community showed me a different perspective on possibility with dedication.

I would also like to thank the committee members, Dr. Constantin Apostoaia and Dr. Colin

P Elkin, for their endless patience and commitment in helping me throughout the years.

4

TABLE OF CONTENTS

LIST OF TABLES .. 6

LIST OF FIGURES .. 7

ABBREVIATIONS .. 9

ABSTRACT .. 10

 INTRODUCTION ... 11

 Literature Review.. 11

 Research and Motivation .. 12

 Organization of Thesis .. 12

 Contribution of Thesis .. 12

 BEARING FAULT DATASET .. 14

 Case Western Reserve University Bearing Dataset .. 14

 Experiment Data Setup ... 16

 SIGNAL PREPROCESSING TECHNIQUES .. 18

 Overall Steps of Signal Processing ... 18

 Signal Processing Methods ... 19

3.2.1 Cepstrum .. 19

3.2.2 Wavelet Packet Transform .. 20

3.2.3 Empirical Mode Decomposition .. 22

3.2.4 Short-time Fourier Transform .. 23

 PERFORMANCE OF MACHINE LEARNING TECHNIQUES .. 24

 K Nearest Neighbors (KNN) .. 24

 Support Vector Machine (SVM) ... 25

4.2.1 Hard Margin Problem .. 26

4.2.2 Soft Margin Problem ... 28

4.2.3 Kernel Trick ... 29

4.2.4 Multi-class SVM .. 30

 Random Forest .. 31

 Machine learning experiment results .. 32

4.4.1 Parameter Setting ... 32

5

 DEEP LEARNING NEURAL NETWORKS PERFORMANCE ... 33

 Convolutional Neural Network ... 33

 Long Short-Term Memory .. 35

 Experiment Results ... 37

5.3.1 Results for CNN .. 38

5.3.2 Results for LSTM .. 44

5.3.3 Comparison and Evaluation ... 49

 DESIGN OF 1D CONVOLUTIONAL NEURAL NETWORK ... 51

 1D-CNN Structure .. 51

6.1.1 Forward Propagation ... 53

6.1.2 Backpropagation .. 54

6.1.3 Parameter Update ... 58

6.1.4 Initialization of Parameters .. 58

 Experimental Results .. 58

 CONCLUSION AND FUTURE WORK .. 60

REFERENCES ... 61

PUBLICATIONS .. 65

6

LIST OF TABLES

Table 2-1 Classes in CWRU Bearing Dataset .. 16

Table 3-1 Number of Coefficients in Each Wavelet Packet ... 21

Table 4-1 Accuracy of machine learning algorithms .. 32

Table 5-1 Information of CNN Layers ... 35

Table 5-2 CNN Classification Accuracy .. 44

Table 5-3 LSTM models Accuracy... 49

Table 6-1 Accuracy and MSE with different input data size .. 59

7

LIST OF FIGURES

Figure 2-1 Experimental setup for CWRU bearing dataset [17] .. 14

Figure 2-2 Structure of a rolling element bearing [19] ... 15

Figure 2-3 Selection of data .. 17

Figure 3-1 Transformed image and data sequence ... 18

Figure 3-2 WPT framework .. 20

Figure 3-3 Wavelet packet selection ... 21

Figure 3-4 Composition of a signal after EMD .. 22

Figure 4-1 Two-classification ... 25

Figure 4-2 Optimal hyperplane ... 26

Figure 4-3 Importance of kernel trick ... 30

Figure 5-1 Structure of CNN .. 34

Figure 5-2 Structure of LSTM .. 36

Figure 5-3 LSTM frame .. 37

Figure 5-4 Confusion matrix for EMD-CNN ... 39

Figure 5-5 Training progress for EMD-CNN ... 39

Figure 5-6 Confusion matrix for Cepstrum-CNN ... 40

Figure 5-7 Training progress for Cepstrum-CNN .. 40

Figure 5-8 Confusion matrix for WPT-CNN .. 41

Figure 5-9 Training progress for WPT-CNN.. 41

Figure 5-10 Confusion matrix for STFT-CNN ... 42

Figure 5-11 Training progress for STFT-CNN ... 42

Figure 5-12 Confusion matrix for Raw-CNN ... 43

Figure 5-13 Training progress for Raw-CNN ... 43

Figure 5-14 Confusion matrix for Cepstrum -LSTM ... 45

Figure 5-15 Training progress for Cepstrum-LSTM .. 45

Figure 5-16 Confusion matrix for WPT-LSTM.. 46

Figure 5-17 Training progress for WPT-LSTM ... 46

8

Figure 5-18 Confusion matrix for STFT-LSTM ... 47

Figure 5-19 Training progress for STFT-LSTM .. 47

Figure 5-20 Confusion matrix for Raw-LSTM ... 48

Figure 5-21 Training progress for Raw-LSTM .. 48

Figure 5-22 Accuracy versus signal processing methods ... 50

Figure 6-1 Structure of 1D-CNN .. 52

Figure 6-2 Training error of proposed 1D CNN ... 59

9

ABBREVIATIONS

CNN Convolutional neural network

LSTM long-short term memory

STFT Short-time Fourier transform

WPT Wavelet packet transform

EMD Empirical mode decomposition

CWRU Case Western Reserve University

MCSA Motor current signature analysis

ANN Artificial neural networks

PCA Principal component analysis

SVM Support vector machines

K-NN K-nearest neighbors

AE Auto-encoder

RNN Recurrent neural network

GAN Generative adversarial network

WNN wavelet neural network

RUL Remaining useful life

EDM Electro-discharge machining

IR inner raceway

OR outer raceway

IMF

ML

DL

DFT

HP

DE

STD

MSE

Intrinsic mode functions

Machine learning

Deep learning

Discrete Fourier transform

Horsepower

Drive End

Standard Deviation

Mean Square Error

10

ABSTRACT

The roller bearings are widely used in aviation cargo systems, engines, agriculture, heavy

equipment and machinery, solar panels, medical equipment, automobile industry, powerhouses,

and many others. Bearing faults during the operation process will result in downtime, economic

loss, and even human injury. To prevent these from happening, rolling bearing fault diagnosis has

become a mature discipline. Deep learning networks have been known as effective methods for

bearing fault diagnoses. Deep learning neural networks such as the convolutional neural network

(CNN) use the images as inputs. In contrast, the others, such as long-short term memory (LSTM),

may apply data sequences as inputs. This thesis research work focuses on performance evaluations

of deep learning networks according to the classification accuracy by utilizing various signal

transforms to form the network inputs. CNN and LSTM are adopted as our deep learning network

structures. Besides raw data, the algorithms for processing input signals include short-time Fourier

transform (STFT), Cepstrum, wavelet packet transform (WPT), and empirical mode

decomposition (EMD). In addition, this paper also applies three commonly used machine learning

algorithms for comparison, namely K nearest neighbor (KNN), support vector machine (SVM),

and random forest (RF). Finally, a one-dimensional CNN structure is designed and implemented.

Our simulations validate the effectiveness for each network input formulation based on the Case

Western Reserve University (CWRU) bearing dataset.

11

 INTRODUCTION

 Literature Review

The fault diagnosis of rotating machinery has been of great practical significance in industrial

applications to avoid economic losses and enhance machine availability [1]. The vibration signal

preprocess is essential in rolling bearing fault diagnosis and is most widely used. During the

bearing operation process, the force transmitted from other parts to the bearing is unstable and

changes with time. Hence, any precision bearing produces vibration signals. The contact force of

a properly working bearing is time continuous in a normal condition. However, if bearing wear

and scratches occur, they will generate periodic impulsive vibration signals different from those

in a normal operation. These vibration signals can be captured via sensors and analyzed using

signal processing techniques to extract signal features [2]-[10].

 For vibration signal processing, the methods in time, frequency, and time-frequency domains

are usually used to extract the sensitive characteristic index of the vibration signal. By feature

extraction, one can identify the fault type more accurately. At present, bearing fault diagnosis

methods are usually divided into three categories.

a. Conventional model based: vibration analysis, motor current signature analysis (MCSA),

and principal component analysis (PCA).

b. Machine learning based: support vector machines (SVM), K-nearest neighbors (K-NN),

and random forest (RF).

c. Deep learning based: Artificial neural networks (ANN), auto-encoder (AE), deep belief

network (DBN), generative adversarial network (GAN), wavelet neural network (WNN),

convolutional neural network (CNN), and recurrent neural network (RNN).

Among those machine-learning approaches, deep learning networks [11]-[16] have

demonstrated significant efficiency with a high classification rate. However, most of the research

focuses on improving network structures and the classification rate with less emphasis on the

effects of processing signals for network inputs. In this thesis research, the short-time Fourier

transform (STFT), Cepstrum, wavelet packet transform (WPT), and empirical mode

decomposition (EMD) techniques are applied. Through the preprocessing and feature extraction

of sensor signals using signal processing techniques to formulate feasible inputs for deep learning

12

networks, the condition of fault diagnosis can be evaluated. This thesis research will focus on two

popular structures: 1D and 2D convolutional neural network (CNN) and long-short term memory

(LSTM) and validate their performances in terms of accuracy and stability using various signal

processing methods.

 Research and Motivation

Fault diagnosis can usually be made through traditional signal processing techniques as well

as artificial intelligence methods. So far, the application of deep learning networks in this field has

been studied extensively and proved to be very effective. However, most of the research focuses

on the modification of network structures for the performance improvement of the classification

rate with less concern on the effects of processing signals for network inputs. Therefore, how deep

learning networks respond to different signal processing of inputs still leaves room for us to

investigate.

 Organization of Thesis

This thesis work is organized as follows. Chapter 2 introduces the concept of the rolling

bearing fault and the dataset used in the experiment. Chapter 3 describes five methods of

preprocessing input signals. Chapter 4 applies the commonly used machine learning algorithm.

Chapter 5 depicts several fault detection methods based on two deep learning networks combing

with five signal processing techniques and evaluates each combination's results. Chapter 6

explores and demonstrates the results of machine fault detection using a one-dimensional

convolutional neural network. Chapter 7 presents the conclusions and future work.

 Contribution of Thesis

a. In this thesis work, various machine learning methods are studied and applied in bearing

fault detection as the baseline.

b. Throughout the evaluation of deep learning neural networks with input processing for

bearing fault diagnosis, a classification method (STFT-CNN and STFT-LSTM) with the

highest accuracy is validated.

13

c. The feasibility of machine fault classification using a one-dimensional (1D) convolutional

neural network is explored in order to reduce computational complexity.

14

 BEARING FAULT DATASET

Data is the foundation for all the Artificial Intelligent algorithms. A good collection of datasets

is of great importance to develop effective Machine learning (ML) and Deep learning (DL)

algorithms for bearing fault diagnosis. Since the natural bearing degradation is a gradual process

and may take many years, most people conduct the experiment and collect data either using

bearings with artificially induced faults or with accelerated life testing methods. Common datasets

currently available on the network include the Paderborn University dataset and the Intelligent

Maintenance System (IMS) dataset, often used for bearing remaining useful life (RUL) predictions.

In addition, there are PADERBORN dataset and Case Western University Dataset especially

suitable for bearing fault detection.

 Case Western Reserve University Bearing Dataset

In this work, the vibration data files from the Case Western Reserve University Bearing

(CWRU) bearing fault dataset serves as a fundamental dataset to validate the performance of

different ML and DL algorithms, are adopted, which were recorded and made publicly available

on the CWRU bearing data center website [17], [18]. Figure 2-1 describes the experimental

platform.

Figure 2-1 Experimental setup for CWRU bearing dataset [17]

15

The bearings support the motor shaft. The single-point artificial faults were seeded in the

bearing's inner raceway (IR), outer raceway (OR), and rolling element (Ball) with an electro-

discharge machining (EDM) operation [19]. Figure 2-2 depicts the structure of a rolling element

bearing.

Figure 2-2 Structure of a rolling element bearing [19]

In our experiments for validation, we chose the vibration data files produced using three

horsepower (HP) engine running at 1772 RPM with the motor shaft bearings having faults in depth

from 0.000 (none), 0.007, 0.014, 0.021, and 0.028 inches and various fault locations (inner race,

rolling element, and outer race). In the CWRU experiment, an accelerometer was attached at the

12'clock position at the motor housing's drive end (DE) to measure the vibrations. The acquired

signals were sampled at 12 kHz. The data files contain one normal class and 11 single point fault

classes after merging outer race positions relative to the load zone shown in Table 2-1.

16

Table 2-1 Classes in CWRU Bearing Dataset

Fault depth Fault name Class Name Used

0.028
0.028-Ball No.1 (28-Ball)

0.028-InnerRace No.2 (28-IR)

0.021

0.021-Ball No.3 (21-Ball）

0.021-InnerRace No.4 (21-IR）

0.021-OuterRace12

0.021-OuterRace6

0.021-OuterRace3

No.5 （21-OR）

0.014

0.014-Ball No.6 （14-Ball）

0.014-InnerRace No.7 （14-IR）

0.014-OuterRace6 No.8 （14-OR）

0.07

0.007-Ball No.9 （07-Ball）

0.007-InnerRace No.10 （07-IR）

0.007-OuterRace3

0.007-OuterRace6

0.007-OuterRace12

No.11 （07-OR）

0 Normal No.12 （Normal)

 Experiment Data Setup

As shown in Table 2-1, there are 12 data categories in the experiments. For the training set,

we used 180 groups of data for each type. For the category of outer race fault at different locations,

we selected 60 groups for locations 3:00, 6:00, and 12:00, respectively, and merged them into one

type.

17

For the testing set, we set 60 groups of data for each category. For the type of outer race fault

with different locations, we chose 20 groups for locations of 3:00, 6:00, and 12:00, respectively,

and merged them into one category. The ratio of the training set to the test set is 3:1. To adapt the

input data to the convolutional neural network, the length of each sample data is 64x64, and there

are totally 180x12 training samples and 60x12 testing samples, as shown in Figure 2-3.

Figure 2-3 Selection of data

18

 SIGNAL PREPROCESSING TECHNIQUES

 Overall Steps of Signal Processing

When vibration signals are acquired via data acquisition, they need to be preprocessed to

generate network inputs for training and testing. This process consists of random signal

segmentation, transformation, and packing. We will explain how to convert the raw signal into the

form of data that the deep learning networks can accept.

Figure 3-1 depicts the procedure to generate a training or a testing sample. It takes three steps.

Figure 3-1 Transformed image and data sequence

Step 1: A raw signal is randomly segmented into a set of signal frames each with a size of

W W data samples. The random signal segmentation produces multiple random starting points

and thus offers flexibility to generate sufficient signal frames.

Step 2: After signal segmentation, each frame is further split into W pieces of data blocks.

19

Step 3: For a deep learning network such as the 2-dimensional (2-D) CNN network, W raw

data blocks or W transformed data blocks are normalized and stacked into 2-D images for the

network inputs. For the LSTM network, W raw data blocks or W transformed data blocks are

cascaded into an array to form the network input. In addition, the one-dimensional preprocessing

signal can also be used as the input of the machine learning algorithm and one-dimensional CNN

algorithm.

 Signal Processing Methods

3.2.1 Cepstrum

Cepstrum analysis [20] is a nonlinear signal processing method that is defined as the inverse

of discrete Fourier transform (DFT) of the logarithm of the absolute value of the DFT of the input

signal. The Cepstrum is defined as follows.

1
2 /

10

0

1
ˆ Re log | () | 0,1,2,..., 1

W
kn N

n

k

x X k e n W
W

−

−

=

= = −

 (3.1)

where ()X k is the discrete Fourier transform of the signal ()x n .

This method is convenient for extracting and analyzing the periodic signals, which are difficult

to recognize in the original spectrum. The Cepstrum indicates the concentration of the energy of

the periodic frequency structure component on the original spectrum, and it gives higher weight to

the low amplitude component in the logarithmic conversion of power, and lower weight to the

high amplitude component, so the small-signal period is highlighted.

In the actual work, the failure of rotating machinery may be accompanied by the generation

of the side frequency band. It is difficult to see the sideband structure in a complex spectral

environment when multiple sidebands cross each other. Generally, it is impossible to quantitatively

estimate the overall level of the side frequency in the power spectrum. Still, the Cepstrum can

clearly show the periodic component in the power spectrum, so the original group's side frequency

band spectral lines are simplified to a single spectral line, which is easy to observe. Meanwhile,

the Cepstrum is not affected by the location of the sensor and the transmission path. For sensors

arranged in different positions, their power spectra are different due to different transfer paths.

However, the vibration effect of the signal source is separated from the effect of the transmission

20

path in the Cepstrum. In Cepstrum analysis, the attenuation and the calibration coefficient of the

signal can be eliminated. This advantage is beneficial for fault identification.

3.2.2 Wavelet Packet Transform

Wavelet decomposition (wavelet transform) [21] decomposes a signal into low-frequency

band A1 and high-frequency and D1. In the decomposition, the information lost in low-frequency

information A1 is captured by high-frequency D1. Wavelet Packet Transform (WPT) method is a

generalization of WT that offers more signal analysis. Wavelet packet atoms are waveforms

indexed by three naturally interpreted parameters: position, scale, and frequency. The wavelet

packets can be used for numerous expansions of a given signal. We then select the most suitable

decomposition of a given signal with respect to an entropy-based criterion. Compared to WT, WPT

decomposes not only the low-frequency part but also the high-frequency part. As shown in Figure

3-2, at the level-2 decomposition, A1 is further decomposed into two parts: low-frequency

components of AA2 and high-frequency components of DA2. Note that the D1 signal undergoes

a similar process to achieve AD2 and DD2. Therefore, wavelet packet decomposition is a more

widely used wavelet decomposition method applied to signal decomposition, coding, denoising,

compression, and other aspects.

Figure 3-2 WPT framework

Two filters, corresponding to the wavelet, are the low-pass filter of ()h k and high-pass filter

of ()g k each with a length of N , are given as

2 1

2

0

() 2 () (2)
N

m m

k

W n h k W n k
−

=

= − (3.2)

21

2 1

2 1

0

() 2 () (2)
N

m m

k

W n g k W n k
−

+

=

= − (3.3)

where m is designated as the decomposition level. Equation (3.2) and (3.3) represent the wavelet

packet of low-frequency and high-frequency components, respectively. Note that (), 0,1,2,...mW n m =

and 0() ()W n x n= .

For our study, the wavelet packet transform (WPT) is used to transform each data block.

Figure 3-3 displays a dyadic decomposition used.

Figure 3-3 Wavelet packet selection

Compared with Figure 3-2, the WPT continues to decompose the lower frequency band and keep

the higher frequency band at each level. In our study, Figure 3-3 shows the decomposition at level

6. The red boxes indicate the wavelet packet we need. Table 3-1 further lists the details of a WPT

transformed data block with a size of 64 (wavelet coefficients).

Table 3-1 Number of Coefficients in Each Wavelet Packet

WP 1,1W
 2,1W

 3,1W
 4,1W

 5,1W
 6,0W

 6,1W

No. 32 16 8 4 2 1 1

22

3.2.3 Empirical Mode Decomposition

The empirical mode decomposition (EMD) is an adaptive signal stabilization processing

method proposed by Huang N E [22] in 1998. It can decompose the fluctuation or trend of different

scales in the signal step by step as well as subdivide the signal into a finite number of intrinsic

mode functions (IMF). This method is suitable for nonlinear and non-stationary signals. An IMF

is an oscillatory function with an equal number of extrema and zero crossings while having

envelopes symmetrical with respect to zero [23]. There are two conditions that an IMF must satisfy:

(1) In the whole data set, the number of extrema and the number of zero-crossings must either be

equal or differ at most by one. (2) At any point, the mean value of the envelope is defined by the

local maxima, and the envelope defined by the local minima is zero.

Figure 3-4 shows an example in which a signal is decomposed into 9 IMFs with a display of

the first 3 IMFs and a residue. The residue is essentially a portion from the original signal, which

the EMD cannot further decompose.

Figure 3-4 Composition of a signal after EMD

In our data formulation, the first 5 IMFs from decomposing a length of 4096 points raw data

with by the EMD are obtained first. Among these 5 IMFs, the one having the largest cross-

23

correlation with the original raw signal is selected. Then the selected IMF is mixed with the

original raw signal according to

 (1)* *y x IMF = − + (3.5)

where is chosen to be 0.3 in our study.

3.2.4 Short-time Fourier Transform

The Short-time Fourier transform (STFT) is a Fourier related transform used to determine the

sinusoidal frequency and phase content of local sections of a signal as it changes over time [24].

In the discrete-time case, the data to be transformed could be broken up into frames (which usually

have a fixed overlap). Each frame is Fourier transformed, and the complex result is added to a

matrix, which records magnitude and phase for each point in time and frequency. This can be

expressed as equation 4.5.

1

2 /

0

1
[() ()] 0,1,..., 1

W
j kn W

k

n

A x n w n e k W
W

−

−

=

= = − (3.6)

where ()x n is the original signal, ()w n is the window function, which can reduce the leakage of

the spectrum.

24

 PERFORMANCE OF MACHINE LEARNING TECHNIQUES

Before applying the deep learning network, we tested several common machine learning

algorithms and compared their performance in terms of classification accuracy. This chapter

mainly introduces the following algorithms and tests the accuracy based on the one-dimensional

4096 STFT data.

 K Nearest Neighbors (KNN)

The KNN algorithm is a nonparametric machine learning method used for classification in

bearing fault detection [25]. In KNN classification, the output is the Class of an object, which is

identified by a majority vote of its k nearest neighbors [26].

One early implementation of the KNN classifier on bearing fault diagnostics can be found in

[27], where KNN acts as the ceramic bearing fault classifier using acoustic signals. After that, the

other researchers [28]-[29] employ KNN to apply into a distance analysis on each new data sample

and determine whether it belongs to a specific fault class.

The measurement of the distance between two points in the sample space indicates the degree

of similarity between two sample points: the shorter the distance, the higher the degree of similarity;

on the contrary, the degree of similarity is lower. To measure the distance between

points p and q in a feature space, the Euclidean distance function is the most widely used one,

which is shown (4.1). In Euclidean n-space, the distance between p and q is given by the training

samples and its testing samples.

 2

1

(,) ()
n

i i

i

d p q q p
=

= − , (4.1)

where 1 2 3(, , ,...,)np p p p p= , and n is the number of the space for a certain point.

Since each sample in the experimental data set belongs to a multi-space sample, it is difficult

to display it through the figure. The following only uses a two-dimensional space data point double

classification as an example.

25

Figure 4-1 Two-classification

Figure 4-1 shows the two-class classification response for "categories" (A and B). If the k is

set as 3, the three training samples nearest to the testing sample will be chosen. As indicated in

Figure 3-1, there are one Class A sample and two Class B samples within the circled region. Thus,

the testing sample belongs to Class B. Similarly, and when k is set as 7, the testing sample belongs

to Class A.

The number of neighbors nearest to the new sample, k, is selected as an odd integer value

because when an even number is chosen for k, there is a possibility of a tie, in which case it is

possible or random to return a classification with uncertainty. In the classification phase, all test

samples are unlabeled data. Each test sample will be assigned to its predicted label according to

the most frequent training labels among k training samples closest to that test sample [30]-[32].

 Support Vector Machine (SVM)

Support vector machine (SVM) is a supervised machine learning algorithm used as a margin

classifier. The SVM finds an optimal hyperplane that separates data into two classes. The optimal

hyperplane as depicted in Figure 4-2 is calculated to have the maximal margin (the distance from

it to the nearest data point belonging to each lass) possible from patterns of each class. Most of the

derivations in this section can be referred to [33]-[34].

26

Figure 4-2 Optimal hyperplane

4.2.1 Hard Margin Problem

Assume training dataset D is linearly separable and belongs to two classes are given by:

 1{(,) | , { 1,1}}n m

i i i i iD x y x y == − , (4.2)

where ix is the thi training data vector with an n dimensions iy represents the lass, and each data

belongs to (-1 or 1). Any hyperplane can be written as the set of points x satisfying:

 0x b + = , (4.3)

In definition, is the weight vector and b is the bias. If the point (,)x y does not locate on

the hyperplane, the value x b + could be positive or negative. For all the training data vectors,

the goal is to obtain the closest point to the hyperplane. | |x b = + can be calculated to find

which point is closest to the hyperplane. This Equation is constrained by:

1...

min | | 1
i m

x b
=

+ = . (4.4)

In a canonical form, the separating hyperplane must satisfy the following constraints,

 () 1, 1,...,i iy x b i m + = (4.5)

The distance from a point to a hyperplane is,

| |

|| ||

x b
d

+
= (4.6)

27

The margin denoted by is given as,

, 1 , 1

, 1 , 1

min() min ()

| | | |
min () min ()

|| || || ||

2

|| ||

i i i i

i i i i

x y x y

i i

x y x y

d d

x b x b

= =−

= =−

= +

+ +
= +

=

 (4.7)

The optimal hyperplane is obtained by maximizing the margin , which is equivalent to

minimizing
21

|| ||
2

 under the constraints.

The SVM optimization problem can be restated using the Lagrange multiplier method. When

finding the minimum of f under the equality constraint g , the Equation of gradient is,

 () () 0f x g x − = , (4.8)

where can be defined as the Lagrange multiplier. In the SVM optimization

problem,
21

() || ||
2

f = , (,) () 1, 1,...,i ig b y x b i n = + − = . The Lagrangian function is

expressed as,

2

1

1
(, ,) || || [() 1]

2

n

i i ii
L b y x b

=
= − + − . (4.9)

The dual problem can be introduced that Equation (4.9) must be minimized with respect to , b

and be maximized with respect to . The dual problem is shown as

,

min max (, ,)
b

L b

 , (4.10)

 0, 1...isubject to i m = .

Taking the partial derivatives of (, ,)L b to and b , respectively, and setting them to zero

leads to:

1

1

(, ,) 0

(, ,) 0

m

i i i

i

m

b i i

i

L b y x

L b y

=

=

 = − =

 = − =

 (4.11)

Substituting (4.11) into (4.9), the dual problem can be given further by,

1 1 1

1
(,)

2

m m m

i i j i j i j

i i j

W b y y x x
= = =

= − (4.12)

28

The dual problem is thus stated as:

 1 1 1

1
max (,)

2

m m m

i i j i j i j

i i j

W b y y x x

= = =

= −
 , (4.13)

1

 0, 1... , 0
m

i i i

i

subject to i m y
=

 = = .

Note that the Lagrange multipliers method is extended to the KKT (Karush-Kuhn-Tucker)

conditions because the constraints are inequalities. The complementary slackness condition of

KKT conditions can be wittten as:

 [() 1] 0i iy x b + − = (4.14)

where xare the points where we reach the optimal. The value of α is positive for these points.

And the value of α value for the other points is close to zero. So () 1iy x b + − must be zero.

These examples are called support vectors, which are the nearest points to the hyperplane.

 Finally, and b can be computed as:

1

1

1
()

m

i i i

i

s

i

i

y x

b y x
S

=

=

=

= −

, (4.15)

where S is the number of support vectors.

The classifier is then given as

() sgn()f x x b= +

 (4.16)

The Equation (4.16) is called Hard Margin SVM. The problem with Hard Margin SVM is that it

does not tolerate outliers or work with non-linearly separable data because of outliers.

4.2.2 Soft Margin Problem

The problem with Hard Margin SVM is that it only works for linearly separable data. However,

it is most likely that the data will contain some noise in practical cases and might not be linearly

separable. The Soft Margin SVM will be introduced to solve this problem.

In Soft Margin SVM, the constraints are written as:

 () 1 , 1,...,i i iy x b i m + − = (4.17)

where i is a slack variable.

29

When minimizing the objective function, adding the slack variables makes it possible to satisfy

the constraint even if the example does not meet the original constraint. When 0i , the

hyperplane is derived by:

2

, ,
1

1
min || ||

2

m

i
b

i

C

=

+ (4.18)

 to () 1 , 1,... , 0, 1,...i i i isubject y x b i m i m + − = =

where C is regularization parameter C to determine how the importance of . Again, the

optimization problem could be transformed into a dual problem as:

1 1 1

1
max (,)

2

m m m

i i j i j i j

i i j

W b y y x x

= = =

= − (4.19)

1

 0 , 1... , 0
m

i i i

i

subject to C i m y
=

 = =

Note that by using the Lagrange multipliers similar to the hard margin method, the above result

can be obtained.

4.2.3 Kernel Trick

In some practical problems, it is often the case that the data is not linear, and a hyperplane

cannot separate the datasets. The kernels are introduced to map the input data to a high-dimensional

space non-linearly. The new mapping is then linearly separable. Now, let a kernel function defined

as (,)i j i jK x x x x= , the dual problem can be rewritten as:

1 1 1

1
max (,) (,)

2

m m m

i i j i j i j

i i j

W b y y K x x

= = =

= − (4.20)

1

 0, 1... , 0
m

i i i

i

subject to i m y
=

 = =

Kernel trick (dot product) can transform the dimensionality of the data's feature space to

define a similarity measure. For example, in Figure 4-3, the kernel trick increases the origin space

(left) into a higher space (right), then the two classes become linearly separable. Multiple kernels

could be used to classify the data. Some of the most popular ones are the linear kernel, polynomial

kernel, and RBF kernel. In this test work, the linear kernel function is applied.

30

Figure 4-3 Importance of kernel trick

4.2.4 Multi-class SVM

Binary (two-class) classification using support vector machines (SVMs) is a well-developed

technique. However, when applying the SVM to the problems with more than two classes, the

better approach is to use a combination of several binary SVM. A multi-class problem can be

decomposed into a series of two-class problems, which can be defined as the one-against-all

methods. The one-versus-all method is used for distinguishing between one label and other labels.

In this thesis work, twelve two-class classifiers need to be trained. Take an example. When the thi

sub-classifier is training, the samples belonging to the thi class are labeled as positives while other

samples are labeled as negatives. In the testing phase, all classifiers are applied to a test sample

with an unknown class and predict its label, which is the most common among all classifier outputs.

The function is given by

{1,..., }

arg max ()k
k K

y f x

= , (4.20)

where kf are classifiers for {1,..., }k K .

31

 Random Forest

Random forest (RF) is one of the most used algorithms because of its simplicity. This section

gives a brief overview of RF.

The ‘forest’, an ensemble of decision trees, is usually trained with the bagging method. The

bagging method goes through various combinations of learning models and merges them to get

better performance [35]. To classify a new object from an input vector, put the input vector down

each of the trees in the forest. Each individual decision tree in the random forest will return a class

prediction, and the class with the most votes becomes the model’s prediction [36]. Each tree is

grown as following rules [37]:

a. If the number of cases in the training set is N, sample N cases at random - but with

replacement, from the original data. This sample will be the training set for growing the

tree.

b. If there are M input variables, a number m<<M is specified such that at each node, m

variables are selected at random out of the M, and the best split on these M is used to split

the node. The value of m is held constant during the forest growing.

c. Each tree is grown to the largest extent possible. There is no pruning.

To maximize the role of each model (tree) as a committee, we need to make sure that the

behavior of each tree in a random forest has a low correlation with the other trees. It uses two

methods that can be used:

a. Feature Randomness: Ensure that each tree in a random forest can only be selected from a

random subset of features. Hence, there is more variation between trees in the model,

leading to less correlation and greater diversity among trees.

b. Bagging (Bootstrap Aggregation): RF utilizes the sensitivity of decision tree structure to

training data, allowing each tree to randomly extract replacement samples from the data

set, resulting in different trees. This process is known as bagging. The general technique of

bootstrap aggregating or bagging is applied to train the algorithm for random forests. Given

the training set as 1,..., NX x x= with the assigned classes, bagging can repeatedly select a

random sample with replacement from a training set to these samples for N times.

32

 Machine learning experiment results

4.4.1 Parameter Setting

According to our experiments, three machine learning methods as described in Sections 4.1-

4.3 could not perform fault recognition satisfactorily using the raw fault signals without

preprocessing. Therefore, one-dimensional STFT signals with a data length of 4096 were adopted

in the ML experiments. The accuracy of each machine learning algorithm was obtained by

averaging values from 10 independent runs. The specific parameter settings are described as

follows. For the KNN algorithm, K was set to 3, and the distance criterion is Euclidean distance.

For the Multi-SVM algorithm, the kernel function was selected as the linear kernel. For the

Random Forest algorithm, the number of the decision tree was set to 100. The values of the fault

classification accuracy are shown in Table 4-1.

Table 4-1 Accuracy of machine learning algorithms

Algorithm Acc-max (%) Acc-min (%) Acc-avg (%) STD

KNN 98.380 96.065 97.222 0.780

SVM 100 99.691 99.985 0.178

RF 100 98.611 99.537 0.577

It can be seen from the results that the signal after feature extraction can be used as the input

of the machine learning algorithm to achieve relatively high accuracy, among which STFT-SVM

has the highest precision and the best stability.

33

 DEEP LEARNING NEURAL NETWORKS PERFORMANCE

 Convolutional Neural Network

A Convolutional neural network (CNN) is a neural network that has one or more convolutional

layers and is used mainly for image processing, classification, segmentation, and other

autocorrelated data. As one of the most effective deep learning models, CNN can complete the

whole process of feature extraction, feature dimensionality reduction, and classifier classification

through a neural network.

The CNN is a multistage neural network, including the filtering stage and classification stage.

Among them, the filter stage is used to extract the features of input signals, the classification stage

classifies the extracted features, and the network parameters of the two stages are obtained through

joint training. The filter stage consists of three basic components: convolutional layer, pooling

layer, and activation layer, while the classification stage is generally composed of the full

connection layer. The purpose of these four layers can be described as:

a. Convolutional layer: the Convolutional layer uses the convolutional kernels to take

convolution operations on the local region of the input signal and generate corresponding features.

Weights sharing is the most important feature of the convolutional layer, that is, the same

convolution kernel traverses the input once with a fixed stride. The first logits value is obtained by

multiplying the corresponding coefficient of the convolution kernel and the neuron in the rolled

region in the convolution process. Next, the convolution kernel is moved with step size, and the

previous operation is repeated until the convolution kernel traverses all regions of the input signal.

b. Activation layer: the activation function non-linearly transforms the logits value of each

convolution output. The purpose of the activation function is to map the original linear indivisible

multidimensional feature to another space, in which the linear separability of the feature will be

enhanced. The commonly used activation function in neural networks includes the sigmoid

function, hyperbolic tangent function Tanh, and modified linear unit rectified linear unit (RELU).

c. Pooling layer: The pooling layer is used for downsampling, with the main purpose of

reducing the neural network parameters. Pooling functions include average pooling and max

pooling. Mean (average) pooling takes the mean value of neurons in the perception domain as the

34

output value, while maximum pooling takes the maximum value in the perception domain as the

output value.

d. Full connection layer: the full connection layer classifies the features extracted from the

filter stage. Specifically, the output of the last pooling layer is first spread out into a one-

dimensional feature vector as the input of the full connection layer. The full connection layer is

made of a full connection between the input and output.

In this test work, each of the input maps can be described as 1 1W W from the previous layer

(1)i − in convolutional or pooling layers. Hence, the output size after the layer i is

 1
2

2
1

W F P
W

S

− +
= + , (5.1)

where F is the size of kernel filters, S is the number of strides, and P is the number of padding

zeros.

Figure 5-1 depicts the proposed Convolutional neural network (CNN) structure, and Table 5-

1 lists the details.

Figure 5-1 Structure of CNN

35

Table 5-1 Information of CNN Layers

Layer name CNN Models (Kernel Filter, Activation Function, Strides, Padding)

C1 Conv (32*3*3, ReLU, 1, None)

MXP1 Maxpooling (2,2,1)

C2 Conv (64*3*3, ReLU, 1, None)

MXP2 Maxpooling (2,2,1)

C3 Conv (128*3*3, ReLU, 1, None)

MXP3 Maxpooling (2,2,1)

FC1 Fullyconnect (160, ReLU)

FC2 Fullyconnect (80, ReLU)

FC3 Fullyconnect (12, ReLU)

Output Softmax, Classification

We adopt three successive convolutional and pooling layers to extract high-level features. The

activation function of ReLU is used for each convolutional layer. The maximum pooling operation

is applied to each poling layer. Finally, three fully connected layers, each with the ReLU activation

function, are adopted. The classified output is achieved through a soft-max layer.

 Long Short-Term Memory

The long short-term memory (LSTM) network is an artificial recurrent neural network (RNN)

architecture used in deep learning. The RNN was firstly introduced [38] to solve time sequence

learning problems. It applies the backpropagation algorithm for training. In principle, the RNN

connects previous information to the present task. However, the RNN cannot capture the long-

term dependencies, so it will face the problem of vanishing gradients in practice. Notice that the

LSTM network is a special kind of RNN, capable of learning short-term dependencies [39]. A

standard LSTM unit comprises a cell, an input gate, an output gate, and a forgetting gate. The cell

36

remembers values over arbitrary time intervals, whereas the three gates regulate the flow of

information into and out of the cell. Figure 5-2 shows the components of the LSTM network.

Figure 5-2 Structure of LSTM

Specifically, at each time step t , the hidden state th is updated by fusion of data at the same

step tx , input gate ti , forgetting gate tf , output gate to , memory cell tc , and hidden state 1th − at

last time step. The updated equations are as follows:

 1()t g o t o t oo W x U h b −= + +
 (5.2)

 1()t c c t c t cc W x U h b −= + +
 (5.3)

 1()t g f t f t ff W x U h b −= + +
 (5.4)

 1()t g i t i t ii W x U h b −= + +
 (5.5)

()t t h th o c=

 (5.6)

 1t t t t tc f c i c−= + (5.7)

where W , U , and b are the weight matrices and a bias vector, respectively. tc is the cell input

activation vector, while c is the hyperbolic tangent function, g is the sigmoid function. The

operator denotes the Hadamard product.

37

 Figure 5-3 displays the proposed LSTM frame, a 1-D feature vector with a size of 4096 is

chosen as the input for the LSTM. Notice that the LSTM hidden layer has 500 units, and the rest

includes a fully connected layer, soft-max layer, and classification layer to generate the classified

output.

Figure 5-3 LSTM frame

 Experiment Results

The proposed feature extraction methods and two fault detection models are built by using

MATLAB R2019a. The training and testing process are all run by a laptop with a single NVIDIA

1070 Max-Q GPU.

The adaptive learning rate optimizer (Adam) with a learning rate is set to 0.0001 and

categorical cross-entropy serves as a cost function for training the model. Each network will be

trained and tested 10 times. This experiment will mainly focus on the classification accuracy in

every type of fault. The final accuracy will be chosen based on the average accuracies.

38

Note that the numbers in the x and y label of the confusion matrix below can be matched to

the type of fault in the 3rd column of table 2. The figures for the confusion matrix and training

progress are both randomly selected from 10 trials.

To validate the feasibility of signal transformations, a raw data block was adopted for

performance comparison.

After all the preparations are completed, we can begin the simulation validation.

5.3.1 Results for CNN

In CNN training model, the maximum number of epochs is set to 50, and the minimum batch

size is set to 30 for all feature extraction methods.

(1) EMD-CNN

The average accuracy is 99.71%, and the STD is 0.202. It takes 2 mins and 4 sec to finish the

training. Figures 5-4 and 5-5 show that the method has high classification accuracy and converges

in about 27 epochs.

39

Figure 5-4 Confusion matrix for EMD-CNN

Figure 5-5 Training progress for EMD-CNN

40

(2) Cepstrum-CNN

The average accuracy is 99.16%, the STD is 0.111, and it will take 2 mins and 25 sec to finish

the training. Figures 5-6 and 5-7 indicate that a small number of samples are misclassified, and the

overall convergence speed is fast.

Figure 5-6 Confusion matrix for Cepstrum-CNN

Figure 5-7 Training progress for Cepstrum-CNN

41

(3) WPT-CNN

The average accuracy is 99.9%, the STD is 0.077. Training time is 2 mins and 20 sec. The further

results are shown in Figures 5-7 and 5-8.

Figure 5-8 Confusion matrix for WPT-CNN

Figure 5-9 Training progress for WPT-CNN

42

(4) STFT-CNN

The average accuracy is 99.999%, the STD is 0.042, and it only takes 27 sec to finish the training.

Figures 5-10 and 5-11 show that this method is accurate for each fault classification and has the

fastest convergence speed.

Figure 5-10 Confusion matrix for STFT-CNN

Figure 5-11 Training progress for STFT-CNN

43

(5) Raw-CNN

The average accuracy is 99.515%, the STD is 0.248, and it takes 44 sec to finish the training.

The further results are shown in Figures 5-12 and 5-13.

Figure 5-12 Confusion matrix for Raw-CNN

Figure 5-13 Training progress for Raw-CNN

44

(6) CNN results in comparison

Based on the accuracy in Table 4-3 and combined with STD and time consumption, STFT-CNN

is the best CNN classification model. Every method except for Cepstrum has some progress in

accuracy compared to the Raw-CNN. The Cepstrum-CNN has the disadvantage to adopt due to

the cost of formulating input data while obtaining lower classification accuracy.

Table 5-2 CNN Classification Accuracy

Classifier Network Acc-max(%) Acc-min(%) Acc-avg(%) STD

Raw-CNN 100 99.31 99.515 0.248

STFT-CNN 100 99.986 99.999 0.003

Cepstrum-CNN 99.3 99 99.16 0.111

WPT-CNN 100 99.7 99.9 0.077

EMD-CNN 100 99.4 99.71 0.202

5.3.2 Results for LSTM

The maximum number of epochs are set to 100, and the minimum batch size is set to default

(128) for all feature extraction methods. The gradient is clipped to 1 if it exceeds the value of 1.

(1) Cepstrum-LSTM

The average accuracy is 90.946%, the STD is 0.464, and it will take 1 min 40 sec to finish the

training. The further results are shown in Figures 5-14 and 5-15.

45

Figure 5-14 Confusion matrix for Cepstrum -LSTM

Figure 5-15 Training progress for Cepstrum-LSTM

46

(2) WPT-LSTM

 The average accuracy is 93.48%, the STD is 0.611, and it will take 1 min 43 sec to finish

the training. The further results are shown in Figures 5-16 and 5-17.

Figure 5-16 Confusion matrix for WPT-LSTM

Figure 5-17 Training progress for WPT-LSTM

47

(3) STFT-LSTM

 The average accuracy is 100%, the STD is 0, and it will take 1 min 40 sec to finish the

training. The further results are shown in Figures 5-18 and 5-19.

Figure 5-18 Confusion matrix for STFT-LSTM

Figure 5-19 Training progress for STFT-LSTM

48

(4) Raw-LSTM

 The average accuracy is 63.914%, the STD is 0.645, and it will take almost 12 mins to

finish the training. The further results are shown in Figures 5-20 and 5-21. This combination has

low test accuracy, but the accuracy of the training set is high, which is a situation of overfitting.

Figure 5-20 Confusion matrix for Raw-LSTM

Figure 5-21 Training progress for Raw-LSTM

49

(5) LSTM result in comparison

Table 5-3 lists the LSTM comparison results. EMD-LSTM is not listed because the accuracy

rate was much lower than expected. Compared with raw data results, STFT-LSTM, Cepstrum-

LSTM, and WPT-LSTM achieve an accuracy average above 90%. The STFT-LSTM offers the

best classification result.

Table 5-3 LSTM models Accuracy

Classifier Network Acc-max(%) Acc-min(%) Acc-avg(%) STD

Raw-LSTM 65.1 63.1 63.717 0.645

STFT-LSTM 100 99.986 99.999 0.042

Cepstrum-LSTM 91.53 90.3 90.946 0.464

WPT-LSTM 94.3 92.1 93.48 0611

5.3.3 Comparison and Evaluation

Figure 5-22 provides a general performance comparison of the CNN and LSTM networks.

The CNN performs better than the LSTM. CNN has strong feature extraction ability, which

enables raw signals to be accurately classified. Both STFT-CNN and STFT-LSTM achieve the

same performance. STFT-CNN offers the highest accuracy in the CNN-based network, while the

STFT-LSTM network obtains the highest accuracy in the LSTM based network. The EMD-LSTM

network does not perform well.

50

Figure 5-22 Accuracy versus signal processing methods

51

 DESIGN OF 1D CONVOLUTIONAL NEURAL NETWORK

The experimental results in Chapter 4 have demonstrated that the CNN network structure has

more advantages in machine fault classification. In this chapter, we attempt to develop a one-

dimensional (1D) CNN network structure by modifying the existing 2D CNN to reduce the

computational complexity of the original network. Meanwhile, we will continue to use the one-

dimensional discrete-time Fourier transform of the fault signal as the input for testing.

The conventional CNN presented in the previous chapter is designed to operate on 2D data.

Therefore, it is often defined as “2D CNN”. The application of 1D CNN means that we can input

one-dimensional vibration signals directly acquired by sensors into the network for operation.

The recently emerged 1D CNN immediately achieved impressive performance levels in

several applications such as structural health monitoring, personalized biomedical data

classification and early, anomaly detection and identification in power electronics, and motor-fault

diagnosis. A significant advantage is that the compact and straightforward configuration of 1D

CNN makes a real-time and low-cost hardware implementation feasible [40]-[41].

 1D-CNN structure

This section serves as the development of one-dimensional CNN similar to [42], including the

structure, forward propagation, and backward propagation algorithms. Figure 6-1 depicts the

overall structure of the proposed 1D-CNN.

52

Figure 6-1 Structure of 1D-CNN

53

6.1.1 Forward Propagation

We define pN as the number of the C1 feature map (p=1, 2, …, pN). 1k is the kernel of the

C1 layer,
1b is the basis, and I is the input signal. The convolution layer C1 can be expressed as,

1 1 1

1,(*)p p pC I k b= + , (6.1)

where is the sigmoid function

1
()

1 x
x

e

−
=

+ (6.2)

The average pooling layer S1 can be obtained as

1 1 11
() ((2 1) (2)) 1,2, ,

2
p p p jS j C j C j j N= − + = . (6.3)

where jN is the total number of columns of the feature map.

Then, we define qN as the number of the C2 feature map, and q=1, 2, …, qN . The convolution

layer C2 is

2 1 2 2

,

1

(*)
qN

p q p q p

q

C S k b
=

= +
 (6.4)

The average pooling layer S2 is

2 2 21
() ((2 1) (2))

2
q q qS j C j C j= − + (6.5)

Now, we let f denotes the concatenation of
2

qS

2 2 2

1 2; ; ...;
qNf S S S =

 (6.6)

The size of the concatenation result of the network output can be obtained by

1 2

1
(1)

2

2

k k

q

l n n

S N

− + −

= , (6.7)

where l is the length of the input signal,
1kn and

2kn are kernel size of the C1 and C2 layer,

respectively.

For the FC layer, weight W is a (R x S) matrix, and bias B is a (R x1) matrix. R is the number of

classes.

The output of the fully connected (FC) layer should be

54

TZ W f B= + (6.8)

The output of the SoftMax layer in a vector form is

1()y Z= , (6.9)

1 is the SoftMax function, which is defined as

1

1

()
i

j

z

i i m
z

j

e
y z

e

=

= =

, (6.10)

where m is the dimension of the array, which is the number of fault types.

The loss function we used is the cross-entropy, which is given by

 ln
m

i i

i

L d y= − , (6.11)

where id is the training label and iy the predicted probability for class i. For class i, d has the

following vector form: 0 0 1 0
T

d = .

6.1.2 Backpropagation

In the backpropagation, we update the parameters from the back to start, namely W and B,

2

,p qk and
2

qb ,
1

1, pk and
1

pb .

 Note that the optimization goal of the multi-classification problem is to minimize L.

Therefore, we can define the gradient of L as

L L y

z y z

=

 (6.12)

Taking partial derivative of L with respect to each component of y leads to

1
,

0,

i

i

i oL
y

y
i o

− =

=
 (6.13)

where o is the index corresponding to the target category. The first term on the right-hand side of

Equation (6.12) can be rewritten as

55

 0

 0

 0

1

 0

 .

 0

o

L

y y

 = −

, (6.14)

the second term is a Jacob matrix

1 1 1 1

1 2 3

2 2 2 2

1 2 3

1 2 3

 ...

 ...

 ...

m

m

m m m m

y y y y

z z z z

y y y y
y

z z z z
z

y y y y

z z z

 =

 mz

 (6.15)

When iy takes the partial with respect to iz

(1),

,

i ii

i oi

y y i oy

y y i oz

− =
=

−
, (6.16)

Finally, (6.15) can be expressed in matrix form

1 1 2 1 3 1 1

1 2 2 2 3 2 2

1 3 2 1 3 3 3

1 2 3

(1) ...

 (1) ...

 (1) ...

 ... (1

m

m

m

m m m m

y y y y y y y y

y y y y y y y yy

y y y y y y y yz

y y y y y y y

− − − −

− − − −
=

− − − −

− − −)my

−

 (6.17)

Then, we can combine (6.13) and (6.15), Equation (6.12) becomes

56

1 1 2 1 3 1 1

1 2 2 2 3 2 2

1 3 2 1 3 3 3

1 2 3

(1) ...

 (1) ...

 (1) ...

 .

m

m

m

m m m

L L y

z y z

y y y y y y y y

y y y y y y y y

y y y y y y y y

y y y y y y

=

− − − −

− − − −
=

− − − −

− − −

1 1

2 2

3 3

1 1

 0

 0

 0

1

.. (1) 0

 .

 0

0

0

0

. .

1 1

0

. .

0

o

m m

o o

o o

m m

y

y y

y y

y y

y y

y y

y y

y y

+ +

 −

−

−

−

 −

 =
 − −

−

 −

L

y d
z

 = −

 (6.18)

According to the chain derivation rule,

L L z

W
W z W

 = =

TL

W f
z

 =

 (6.19)

L L z
B

B z B

 = =

L

B
z

 =

 (6.20)

L L z
f

f z f

 = =

TL

f W
z

 =

 (6.21)

57

Before calculating 2

,p qk , we need to know the C2 layer’s error 2

qC . From Equation (6.6), we

reshape the error array f into

 2 1

1,2,...,
()

q
q q N

S F f−

=
 = (6.22)

which is also the error of S2 layer. Then we get C2 layer’s error by up sampling

2 21
() ([/ 2])

2
q qC j S j = (6.23)

Now 2

,p qk can be represented by

2

, 2

,

2

2 2

,

2 2 2 1

()

()

() ()(1 ()) (1)

p q

p q

q

q p q

q q q p q

L
k

k

C jL

C j k

C j C j C j S N j

 =

=

= − + −

 (6.24)

Then, we define

2 2 2 2

, () () ()(1 ())q q q qC j C j C j C j = − (6.25)

1 1

, 180 () (1)p rot p qS j S N j= + −
 (6.26)

Therefore, Equation (6.24) will turn into

2 1 2

, , 180 ,p q p rot qk S C = (6.27)

21

1
(1) 1

2
2 2

, ()

k kn n n

q q

j

b C j

− + − +

 = (6.28)

The process of derivation of 1

1, pk is similar to 2

,p qk , we can first get the error of S1 layer 1

pS ,

and then derive error of C1 layer 1

pC .

1 2 2

, , , 180

1

qN

p q p q rot

q

S C k
=

 = (6.29)

1 11
() ([/ 2])

2
p pC j S j = (6.30)

1 1 1 1

, () () ()(1 ())p p p pC j C j C j C j = − (6.31)

1

1, pk can be calculated as

58

1 1

1, 180 ,p rot pk I C = (6.32)

1

1

1 1

, ()
kn n

p p

j

b C j

− +

 = (6.33)

6.1.3 Parameter Update

Finally, the updated parameters can be obtained by,

1 1 1

1, 1, 1,p p pk k k= −
 (6.34)

1 1 1

p p pb b b= −
 (6.35)

2 2 2

, , ,p q p q p qk k k= − (6.36)

2 2 2

q q qb b b= −
 (6.37)

where is the learning rate.

6.1.4 Initialization of Parameters

The input signal to the 1D CNN is a short-term Fourier transform (STFT) signal with a size

of (1x1024). For the C1 layer, the kernel
1k has the size of (1 x 5), and the bias

1b has the size of

(1 x 1). For the C2 layer, the kernel
2k has the size of (1 x 7), and the bias

2b has the size of (1 x

1). For the FC layer, weight W has the size of (12 x 3024), and bias B has the size of (12 x 1).

All bias,
1

pb ,
2

qb , and B, are initialized to zero. The others are drawn randomly from a uniform

distribution defined based on the kernel size and number of input and output maps on

 corresponding layers. 63.98*10−

 Experimental Results

In this experiment, the maximum number of epochs is set to 500, and the learning rate is

selected as 0.01. The input signal to the 1D CNN is a one-dimensional signal with a length of 1024,

which is obtained from a short-time Fourier transform (STFT). We achieved the average accuracy

59

of prediction as 94.444% through 10 independent runs. The training progress is shown in Figure

6-2.

Figure 6-2 Training error of proposed 1D CNN

Table 6-1 Accuracy and MSE with different input data size

Input data size Accuracy (%) MSE

128 88.890 43.02*10−

256 93.333 63.98*10−

512 94.444 74.78*10−

1024 94.444 83.56*10−

Table 6-1 lists the performance of classification accuracy in terms of the input data length.

As indicated in Table6-1, the accuracy rate does not increase further after the data length exceeds

512, although the mean square error is further decreased after training. The classification

accuracy of the network can reach more than 90 percent. However, this 1D CNN network has

performance degradation and cannot surpass the STFT-CNN model presented in Chapter 5 in

terms of accuracy. Although the curve in Figure 6-2 does not converge ultimately after 500

60

training epochs, adding more training epochs and longer signal length could not improve the

accuracy in our further experiments.

 CONCLUSION AND FUTURE WORK

The bearing fault diagnosis methods based on traditional machine learning and deep learning

are reviewed and summarized in this thesis work.

Three machine learning algorithms, K-nearest-neighbor (KNN), multi-class support vector

machine (multi-SVM), and random forest (RF), are applied to bearing fault detection.

The performance of popular deep learning networks of convolutional neural networks (CNN)

and long-short term memory (LSTM) networks for bearing fault diagnosis based on input signal

processing have been validated. The signal processing methods include the raw signal (no

processing), short-time Fourier transform (STFT), Cepstrum, wavelet packet transform (WPT),

and empirical mode decomposition (EMD). The Case Western Reserve University's (CWRU)

bearing dataset is adopted for our simulations. The STFT-CNN achieves the highest accuracy in

the CNN-based networks, and the STFT-LSTM networks have the highest accuracy in the LSTM-

based networks. The CNN-based networks perform better than the LSTM networks in general.

The network input formulation using STFT offers the best performance. Our simulations validate

the effectiveness of each network input formulation.

Moreover, the one-dimensional convolutional neural network is studied and constructed.

In the future, we will continue to explore the improved methods of one-dimensional CNN.

Increasing the number of inputs channels using the signal decomposition and applying batch

normalization may have potential. [43]-[45].

61

REFERENCES

[1] Y. Lei, Intelligent Fault Diagnosis and Remaining Useful Life Prediction of Rotating

Machinery. Butterworth-Heinemann, pp. 67-174, 2017.

[2] R. B. Randall, “A history of Cepstrum analysis and its application to mechanical problems,

Mechanical Systems and Signal Processing,” vol. 97, pp. 3-19, 2017.

[3] A. Rai, S. H. Upadhyay. "A review on signal processing techniques utilized in the fault

diagnosis of rolling element bearings," Tribology International, vol 96, pp. 289-306. 2016.

[4] X. Zhang, Y. Liang, et al., “A novel bearing fault diagnosis model integrated permutation

entropy, ensemble empirical mode decomposition and optimized SVM,” Measurement, vol.

69, pp. 164-179, 2015.

[5] A. Soualhi, K. Medjaher, N. Zerhouni, “Bearing health monitoring based on Hilbert--

Huang transform, support vector machine, and regression,” IEEE Transactions on

Instrumentation and Measurement, vol. 64, no.1, pp. 52-62, 2015.

[6] D. Wang, “K-nearest neighbors-based methods for identification of different gear crack

levels under different motor speeds and loads: Revisited,” Mechanical Systems and Signal

Processing, vol. 70, pp. 201-208, 2016.

[7] R. Zhao, R. Yan, et al., “Deep learning and its applications to machine health monitoring,”

Mechanical Systems and Signal Processing, vol. 115, pp. 213-237, 2019.

[8] L. Wen, X. Li, L. Gao, et al. “A new convolutional neural network-based data-driven fault

diagnosis method,” IEEE Transactions on Industrial Electronics, vol 65, no 7, pp. 5990-

5998, 2018.

[9] Y. Cai, L. Tan and J. Chen, “Evaluation of Deep Learning Neural Networks with Input

Processing for Bearing Fault Diagnosis,” 2021 IEEE International Conference on Electro

Information Technology (EIT), pp. 140-145, 2021.

[10] Y. Song, Y. Cai and L. Tan, “Video-Audio Emotion Recognition Based on Feature Fusion

Deep Learning Method,” 2021 IEEE International Midwest Symposium on Circuits and

Systems (MWSCAS), pp. 611-616, 2021.

[11] D. Gray, Z. Zhang, C. Apostoaia and C. Xu, “A neural network based approach for the

detection of faults in the brushless excitation of a synchronous motor,” 2009 IEEE

International Conference on Electro/Information Technology, pp. 423-428, 2009.

62

[12] C. M. Apostoaia and M. Cernat, “Fault detection in synchronous motor drives, a co-

simulation approach,” 2015 Intl Aegean Conference on Electrical Machines & Power

Electronics (ACEMP), 2015 Intl Conference on Optimization of Electrical & Electronic

Equipment (OPTIM) & 2015 Intl Symposium on Advanced Electromechanical Motion

Systems (ELECTROMOTION), pp. 617-622, 2015.

[13] F. Jia, Y. Lei, J. Lin, et al. “Deep neural networks: A promising tool for fault characteristic

mining and intelligent diagnosis of rotating machinery with massive data,” Mechanical

Systems and Signal Processing, vol. 72, pp. 303-315, 2016.

[14] M. Gan and C. Wang, “Construction of hierarchical diagnosis network based on deep

learning and its application in the fault pattern recognition of rolling element bearings,”

Mech. Syst. Signal Process, vol. 72, pp. 92-104, May 2016.

[15] J. Chen, J, J. Jiang, X. Guo, L. Tan, “An efficient CNN with tunable input-size for bearing

fault diagnosis,” International Journal of Computational Intelligence Systems, vol. 14, no.

1, pp. 625–634, 2021.

[16] J. Chen, J. Jiang, X. Guo, L. Tan, “A self-Adaptive CNN with PSO for Bearing Fault

Diagnosis,” Systems Science & Control Engineering, vol. 8, no. 1, pp. 11-22, 2021.

[17] Case Western Reserve University (CWRU) Bearing Data Center.

Accessed: Dec. 2018. [Online]. Available: https://csegroups.case.edu/

bearingdatacenter/pages/welcome-case-western-reserve-universitybearing-data-center-

website

[18] W. A. Smith, and R. B. Randall, “Rolling element bearing diagnostics using the Case

Western Reserve University data: A benchmark study,” Mechanical Systems and Signal

Processing, vol. 64, pp. 100-131, 2015.

[19] R. Randall, Vibration-Based Condition Monitoring: Industrial Aerospace and Automotive

Applications. Wiley, 2011.

[20] Advantages of cepstrum analysis in gear fault diagnosis:

https://www.zhygear.com/advantages-of-cepstrum-analysis-in-gear-fault-diagnosis/

[21] Wavelet Packets Introduction. Available: https://www. mathworks.com/help/wavelet

https://www.mathworks.com/help/

63

[22] N. Huang, Z., Shen, S. Long, et al, “The empirical mode decomposition and the Hilbert

spectrum for nonlinear and non-stationary time series analysis,” Proceedings Mathematical

Physical and Engineering Sciences, 454(1971), pp. 903-995, 1998.

[23] P. Zou, et al, “Bearing fault diagnosis method based on EEMD and LSTM,” International

Journal of Computers Communications & Control, February 2020.

[24] L. Tan, J. Jiang, Digital Signal Processing: Fundamentals and Applications. Third Edition,

Elsevier/Academic Press, 2018.

[25] Altman, N. S., “An introduction to kernel and nearest-neighbor nonparametric regression”.

The American Statistician, vol.46, no. 3, pp. 175-185,1992.

[26] S. ZHANG, B. Wang, and T. HABETLER, "Deep Learning Algorithms for Bearing Fault

Diagnostics—A Comprehensive Review," February 2020.

[27] D. He, R. Li, J. Zhu, and M. Zade, “Data mining based full ceramic bearing fault diagnostic

system using AE sensors,” IEEE Trans. Neural Network, vol. 22, no. 12, pp. 2022–2031,

Dec. 2011.

[28] M. M. Ettefagh, M. Ghaemi, and M. Y. Asr, “Bearing fault diagnosis using hybrid genetic

algorithm K-means clustering,” in Proc. Int. Symp. Innov. Intell. Syst. Appli. (INISTA),

Alberobello, Italy, pp. 84–89, Jun. 2014.

[29] J. Tian, C. Morillo, M. H. Azarian, and M. Pecht, “Motor bearing fault detection using

spectral kurtosis-based feature extraction coupled with K-nearest neighbor distance

analysis,” IEEE Trans. Ind. Electron., vol. 63, no. 3, pp. 1793–1803, Mar. 2016.

[30] T. W. Rauber, F. De Assis Boldt, and F. M. Varejao, “Heterogeneous feature models and

feature selection applied to bearing fault diagnosis,” IEEE Trans. Ind. Electron., vol. 62,

no. 1, pp. 637–646, Jan. 2015.

[31] K Nearest Neighbors Tutorial: https://people.revoledu.com/kardi/tutorial/KNN/

[32] Euclidean distance: https://en.wikipedia.org/wiki/Euclidean_distance

[33] Jingzhao Dai, "Sparse Discrete Wavelet Decomposition and Filter Bank Techniques for

Speech Recognition," May 2019.

[34] Vikramaditya Jakkula, “Tutorial on Support Vector Machine (SVM),” School of EECS,

Washington State University, Pullman 99164.

[35] A Complete Guide to the Random Forest Algorithm. Available: https://builtin.com/data-

science/random-forest-algorithm

64

[36] Understanding Random Forest: How the Algorithm Works and Why it Is So Effective.

Available: https://towardsdatascience.com/understanding-random-forest-58381e0602d2

[37] Random Forests, Leo Breiman and Adele Cutler. Available:

https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm#workings

[38] S. Hochreiter, J. Chmidhuber, “Long short-term memory,” Neural Computation, vol. 9 no.

8, pp. 1735-1780, November 1997.

[39] Zhang, Ran & Tao, Hongyang & wu, Lifeng & Guan, Yong. “Transfer Learning With

Neural Networks for Bearing Fault Diagnosis in Changing Working Conditions.” IEEE

Access. pp. 1-1, 2017.

[40] Jin Woo Oh, Jongpil Jeong, “Data augmentation for bearing fault detection with a light

weight CNN,” vol. 175, pp. 72-79, 2020.

[41] Zhang, Zhifei. “Derivation of Backpropagation in Convolutional Neural Network (CNN).”

July 2016.

[42] Sergey Ioffe and Christian Szegedy. “Batch normalization: accelerating deep network

training by reducing internal covariate shift.” In Proceedings of the 32nd International

Conference on International Conference on Machine Learning, vol. 37, pp.448–456, 2015.

[43] T. Ince, S. Kiranyaz, L. Eren, M. Askar and M. Gabbouj, “Real-Time Motor Fault

Detection by 1-D Convolutional Neural Networks,” in IEEE Transactions on Industrial

Electronics, vol. 63, no. 11, pp. 7067-7075, Nov. 2016.

[44] S. Kiranyaz, O. Avci, O. Abdeljaber, T. Ince, M. Gabbouj, D. J. Inman, “1D convolutional

neural networks and applications: A survey,” Mechanical Systems and Signal Processing,

vol.151, 2021.

[40] Xiaochen Zhang, Yiwen Cong, Zhe Yuan, Tian Zhang, Xiaotian Bai, “Early Fault

Detection Method of Rolling Bearing Based on MCNN and GRU Network with an

Attention Mechanism,” Shock and Vibration, vol. 2021, pp.13, 2021.

[45] G. Jiang, H. He, J. Yan and P. Xie, “Multiscale Convolutional Neural Networks for Fault

Diagnosis of Wind Turbine Gearbox,” in IEEE Transactions on Industrial Electronics, vol.

66, no. 4, pp. 3196-3207, April 2019.

65

PUBLICATIONS

Conference Publication

Y. Cai, L. Tan and J. Chen, “Evaluation of Deep Learning Neural Networks with Input Processing

for Bearing Fault Diagnosis,” 2021 IEEE International Conference on Electro Information

Technology (EIT), 2021, pp. 140-145.

Y. Song, Y. Cai and L. Tan, “Video-Audio Emotion Recognition Based on Feature Fusion Deep

Learning Method,” 2021 IEEE International Midwest Symposium on Circuits and Systems

(MWSCAS), 2021, pp. 611-616.

	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONs
	ABSTRACT
	1. INTRODUCTION
	1.1 Literature Review
	1.2 Research and Motivation
	1.3 Organization of Thesis
	1.4 Contribution of Thesis

	2. Bearing fault dataset
	2.1 Case Western Reserve University Bearing Dataset
	2.2 Experiment Data Setup

	3. signal preprocessing techniques
	3.1 Overall Steps of Signal Processing
	3.2 Signal Processing Methods
	3.2.1 Cepstrum
	3.2.2 Wavelet Packet Transform
	3.2.3 Empirical Mode Decomposition
	3.2.4 Short-time Fourier Transform

	4. PERFORMANCE of Machine Learning techniques
	4.1 K Nearest Neighbors (KNN)
	4.2 Support Vector Machine (SVM)
	4.2.1 Hard Margin Problem
	4.2.2 Soft Margin Problem
	4.2.3 Kernel Trick
	4.2.4 Multi-class SVM

	4.3 Random Forest
	4.4 Machine learning experiment results
	4.4.1 Parameter Setting

	5. Deep Learning Neural Networks performance
	5.1 Convolutional Neural Network
	5.2 Long Short-Term Memory
	5.3 Experiment Results
	5.3.1 Results for CNN
	5.3.2 Results for LSTM
	5.3.3 Comparison and Evaluation

	6. Design of 1D convolutional neURal network
	6.1 1D-CNN structure
	6.1.1 Forward Propagation
	6.1.2 Backpropagation
	6.1.3 Parameter Update
	6.1.4 Initialization of Parameters

	6.2 Experimental Results

	7. CONCLUSION and future work
	REFERENCES
	PUBLICATIONS

