
JAMMING DETECTION AND CLASSIFICATION VIA
CONVENTIONAL MACHINE LEARNING AND DEEP

LEARNING WITH APPLICATIONS TO UAVS
by

Yuchen Li

A Thesis

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Master of Science in Electrical and Computer Engineering

Department of Electrical and Computer Engineering

Hammond, Indiana

December 2021

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Colin Elkin, Co-Chair

Department of Electrical and Computer Engineering

Dr. Khair Al Shamaileh, Co-Chair

Department of Electrical and Computer Engineering

Dr. Quamar Niyaz

Department of Electrical and Computer Engineering

Approved by:

Dr. Lizhe Tan

2

ACKNOWLEDGMENTS

Firstly, I would like to express my gratitude to my advisors and committee members Colin

Elkin, Khair Al Shamaileh, Quamar Niyaz, and Sidike Paheding for their helpful instruc-

tions and guidance during the period of my Master’s thesis research at Purdue University

Northwest.

Meanwhile, I am truly grateful to Dr. Colin Elkin for funding me as a research assistant

in the Department of Electrical and Computer Engineering. I am also grateful to Dr. Vijay

Devabhaktuni for his insightful comments. In addition I would like to thanks Dr. Chenn

Zhou for facilitating my admission as an exchange student.

Secondly, I would like to express my gratitude to Jered Pawlak, Joshua Allen Price, and

Matthew Allen Wright, who had helped me in the early stages of the project.

Thirdly, I sincerely appreciate my parents for their financial support and encouragement

while studying. I would like to thank my girlfriend for her help and encouragement.

Lastly, thanks to all professors and staff who helped me in the whole graduate career.

3

TABLE OF CONTENTS

LIST OF TABLES . 6

LIST OF FIGURES . 7

ABSTRACT . 8

1 INTRODUCTION . 9

1.1 Unmanned Aerial Vehicle’s Challenges . 9

1.2 Machine Learning . 10

1.3 Literature Review . 10

1.4 Thesis Outline . 12

2 JAMMING ATTACKS, EXPERIMENTAL SETUP, AND DATASET 13

2.1 Types of Jamming Attacks . 13

2.1.1 Barrage Jamming . 14

2.1.2 Single-tone Jamming . 14

2.1.3 Successive-pulse Jamming . 14

2.1.4 Protocol-aware Jamming . 14

2.2 Generating and Receiving Signals through GNU Radio 15

2.2.1 Jammer Side . 15

2.2.2 UAV Side . 16

2.3 Experimental Setup . 17

2.3.1 Qualitative Evaluation . 17

2.3.2 Quantitative Evaluation . 19

2.4 Feature and Spectrogram Datasets . 21

3 FEATURE-BASED CLASSIFICATION . 23

3.1 Machine Learning Algorithms . 23

3.1.1 Decision Tree . 23

3.1.2 K-Nearest Neighbors . 23

4

3.1.3 Logistic Regression . 25

3.1.4 Multi-layer Perceptron . 25

3.1.5 Naive Bayes . 26

3.1.6 Random Forest . 27

3.2 Training Environment and Cases . 27

3.3 Evaluation Methods and Results . 29

3.3.1 Evaluation Methods . 30

3.3.2 Conventional Machine Learning Results 31

4 SPECTROGRAM-BASED CLASSIFICATION 35

4.1 Deep Learning Models . 35

4.1.1 AlexNet . 36

4.1.2 VGG16 . 37

4.1.3 ResNet-50 . 37

4.1.4 EfficientNet-B0 . 38

4.2 Training Environment and Input Datasets 38

4.2.1 Training Environment . 38

4.2.2 Input Datasets . 39

4.3 Deep Learning Results . 39

5 CONCLUSION . 46

REFERENCES . 47

PUBLICATIONS . 53

5

LIST OF TABLES

2.1 Measured range of a successful jamming attempt. 17

2.2 Qualitative analysis for the four jamming types. 18

3.1 List of features used in each case. 29

3.2 Metrics for the two- and five-class jamming detection models (VA: Validation
Accuracy, DR: Detection Rate, FS: F-score, CTR: CPU Training Time, CTE:
CPU Testing Time). 34

4.1 Parameters of the images and deep learning algorithms. Stochastic gradient
descent solver with 100 epochs is considered. 37

4.2 Performance metrics of the CNN models (VA: Validation Accuracy, DR: Detec-
tion Rate, FS: F-score, GTR: GPU Training Time, GTE: GPU Testing Time,
CTR: CPU Training Time, CTE: CPU Testing Time). 40

4.3 Comparison between the proposed approach and other state-of-the-art approaches. 45

6

LIST OF FIGURES

2.1 Required hardware for the experiment. 13

2.2 Theoretical spectrum of different types of jamming. 15

2.3 Simplified GNU Radio flow graph for launching the jamming attacks. 16

2.4 Simplified GNU Radio flow graph for extracting the radiometric features. 17

2.5 Experimental setup to obtain effective jamming range. 18

2.6 Extraction of signal features and spectrogram images under no-jamming/jamming
scenarios at different jammer locations: (a) testing setup and (b) testing location
from Google maps. The 4, ∗, and × represent the trnasmitter, jammer, and
drone, respectively. 20

2.7 Spectrograms under (a) no jamming, (b) barrage, (c) single-tone, (d) successive-
pulse, and (e) P-aware jamming. 22

3.1 The structure of the decision tree. 24

3.2 The description of the KNN. 25

3.3 The structure of the multi-layer perceptron. 26

3.4 The structure of the random forest. 28

3.5 Confusion matrix of the five-class RF model for nine features. 32

3.6 Confusion matrix of the five-class RF model for eight features. 33

3.7 Confusion matrix of the five-class RF model for seven features. 33

4.1 The configurations of the four CNN-based classifiers. 36

4.2 Two-class models (a) loss and (b) accuracy. Five-class models (c) loss and (d)
accuracy. 41

4.3 ROC curve of the two-class CNN models. 42

4.4 Confusion matrix of the five-class CNN models for AlexNet. 43

4.5 Confusion matrix of the five-class CNN models for VGG16. 43

4.6 Confusion matrix of the five-class CNN models for ResNet-50. 44

4.7 Confusion matrix of the five-class CNN models for EfficientNet-B0. 44

7

ABSTRACT

With the constant advancement of modern radio technology, the safety of radio com-

munication has become a growing concern for us. Communication has become an essential

component, particularly in the application of modern technology such as unmanned aerial

vehicle (UAV). As a result, it is critical to ensure that a drone can fly safely and reliably

while completing duties. Simultaneously, machine learning (ML) is rapidly developing in the

twenty-first century. For example, ML is currently being used in social media and digital

marking for predicting and addressing users’ varies interests. This also serves as the impetus

for this thesis. The goal of this thesis is to combine ML and radio communication to identify

and classify UAV interference with high accuracy.

In this work, a ML approach is explored for detecting and classifying jamming attacks

against orthogonal frequency division multiplexing (OFDM) receivers, with applicability to

UAVs. Four types of jamming attacks, including barrage, protocol-aware, single-tone, and

successive-pulse jamming, are launched and analyzed using software-defined radio (SDR).

The jamming range, launch complexity, and attack severity are all considered qualitatively

when evaluating each type. Then, a systematic testing procedure is established, where a

SDR is placed in the vicinity of a drone to extract radiometric features before and after

a jamming attack is launched. Traditional ML methods are used to create classification

models with numerical features such as signal-to-noise ratio (SNR), energy threshold, and

important OFDM parameters. Furthermore, deep learning method (i.e., convolutional neural

networks) are used to develop classification models trained with spectrogram images filling

in it. Quantitative indicators such as detection and false alarm rates are used to evaluate the

performance of both methods. The spectrogram-based model correctly classifies jamming

with a precision of 99.79% and a false-alarm rate of 0.03%, compared to 92.20% and 1.35%

for the feature-based counterpart.

8

1. INTRODUCTION

Unmanned aerial vehicle (UAV) has become an indispensable tool in modern society. It

was initially applied in the military field, and then widely used in civil and scientific ap-

plications. Therefore, it is important to provide a safe and reliable environment for UAVs.

The main contribution of this thesis is to investigate jamming detection and classification

with applications to UAVs using realistic setup and attack seniors. By acquiring real-time

modulation parameters, a traditional machine learning (ML) model can identify weather the

UAV is jammed or not. Another deep learning method is also applied to improve the overall

jamming detection and classification accuracy. In this method the spectrogram are used as

a training dataset. A brief introduction of both UAV and ML is given in the subsequent

sections.

1.1 Unmanned Aerial Vehicle’s Challenges

A UAV (i.e., drone) does not have a human pilot, crew, or passengers on board. On

the military side, it has been used in some extremely dangerous scenarios such as search

and rescue missions to ensure the safety of military personnel. On the civil side, people use

drones in a number of applications including climate monitoring, disaster management, item

delivery, space research, and wildlife tracking [1]–[4].

The market of UAV is expected to expand from USD 27.4 billion in 2021 to USD 58.4

billion by 2026, according to a recent report [5]. The increasing demand for automation,

as well as the rapid advancements in enabling technology, are primarily responsible for this

predicted rise. Several initiatives have been launched to promote the control and navigation

of UAVs [6]–[17]. However, few have addressed the associated cybersecurity challenges de-

spite their potential in compromising UAVs performance, which may result in catastrophic

consequences in some cases [18]. For instance, an attacker can construct a drone to sniff

wireless signals from nearby targets, disconnect them from their legitimate networks, and

assemble an army of zombie drones, as seen in one case [19]. The GPS jamming brought

down 46 drones during a Hong Kong event and inflicted at least USD 127,000 in damage [20],

which is another case of drone accident. Therefore, further research on the cybersecurity

9

of UAVs that addresses the detection and mitigation of their associated cyberattacks is of

grave significance. Here, jamming detection is of a particular interest and is tackled with

two approaches that enable both attack detection and classification. Jamming mitigation,

on the other hand, is outside the scope of this effort. Nonetheless, several techniques were

reported in the literature, where the use of artificial intelligence (i.e., enforced learning),

path planning and rescheduling were proposed [21]–[25].

1.2 Machine Learning

ML refers to the use of computers to understand the inherent regularity information in

data in order to gain new experience and knowledge to increase the computer’s intelligence

and enable the computer to make judgments in the same way that people do. Specially,

deep learning is a successful method of artificial neural network, which belong to ML. Some

general ML algorithms are Linear Regression, Logistic Regression (LR), Naive Bayes (NB),

K-Nearest Neighbors (KNN), Support Vector Machine (SVM), Decision Tree (DT), and Ran-

dom Forest (RF). The common ML algorithms have been widely used in finance, medical,

environment, transportation and other fields, and can accurately identify and classify dif-

ferent events or results. Therefore, ML is adopted in this research. Here, we used a variety

of traditional ML and deep learning to predict and classify jamming attacks. The former

uses feature for detection and classification, while the latter uses spectrogram for the same

purpose.

1.3 Literature Review

Cyber attacks against drones include data interception, data manipulation, and denial of

service (i.e., jamming). Broadcast authentication and safe location verification can typically

prevent data interception/manipulation threats. The former employs encryption and non-

encryption techniques, whilst the latter validates the drone’s location using distance bounds,

group verification, Kalman filtering, multi-point placement, and traffic modeling. Although

these solutions have showed promise in enhancing drone safety, the inclusion of hardware

and/or software, as well as time stamp tweaks to current protocols, are the key limiting

10

constraints that will prevent their widespread use in the near future. In addition, these

approaches are ineffective in detecting interference. For example, disrupts communication

between the drone and the controller, thereby posing security risks and halting information

flow. An attacker may simply launch such interference utilizing off-the-shelf software-defined

radio (SDR) to interfere with the drone’s course, perhaps resulting in a collision. As a re-

sult, it is critical to build low-cost interference detection equipment that also fulfills existing

requirements. These approaches must promote high detection rates while minimizing false

alarms. Furthermore, they should allow for interference categorization in order to pick the

optimal countermeasure processes and assure operational safety through sound judgments.

It is worth mentioning that ML was proposed for satellite communications, vehicle Ad Hoc

networks (VANETs), 5G networks, Internet of Things (IoT), and UAVs with applications

including jamming detection [26]–[30], object detection, trajectory optimization, swarm com-

munication, situational awareness, and malicious attack mitigation [31]–[33].

In this work, the impacts of four jamming types on UAV security were analyzed qualita-

tively (i.e., range, complexity, severity) and quantitatively with conventional ML algorithms.

These algorithms were exploited for jamming detection/classification based on extracted

signal features. Meanwhile, deep learning models, i.e., four configurations of convolutional

neural networks (CNNs), are adopted based on spectrogram images. The spectrogram-based

approach improved the classification accuracy from 92.2% (i.e., feature-based approach) to

99.79% and reduced the false-alarm rate from 1.35% to 0.03% as will be presented in greater

detail in Chapter 3 and 4 . Finally, this work contributes an additional dataset (i.e., spectro-

gram images) for training and testing ML classifiers. This dataset and the spectrogram-based

approach proposed herein, were not provided nor explored in [34]. Also, this work differs

from other existing techniques in the following aspects:

1. In contrast to imposing modifications to the existing protocols [35]–[42], readily avail-

able radiometric features and spectrogram images are used to develop ML models for

detecting and classifying jamming.

11

2. In comparison to the simulation-based attack scenarios [43]–[51], this work utilizes

SDR for launching jamming attacks that facilitate detection and classification with

realistic environments and training datasets.

3. Here, jamming detection/classification via deep learning models is introduced. These

models are trained and tested with spectrograms that characterize the jamming spec-

trum. This approach outperforms its feature-based counterpart in classification accu-

racy.

4. The datasets that are collected and used to develop the feature- and spectrogram-based

classification models (i.e., features, images) are made publicly available.

1.4 Thesis Outline

This thesis is structured as follows:

• Chapter 2 introduces four different types of jamming attack and their generation

methods. Then, data collection process (features/spectrograms) with and without

the present of jamming are carried out.

• Chapter 3 discusses the establishment of conventional ML models (six algorithms),

analyzes the characteristics of the input data (three cases), and finally summarizes the

detection accuracy and false alarm rate results of the different algorithms.

• Chapter 4 presents the establishment of deep learning (four models), and finally sum-

marizes the detection accuracy and false alarm rate results of these models.

• In Chapter 5 , conclusions are made along with a discussion, reflection, and suggestions

for future work.

12

2. JAMMING ATTACKS, EXPERIMENTAL SETUP, AND

DATASET

This chapter introduces four types of interference attack scenarios, the lunching method, and

experimental settings. First, the characteristics of the four types of interference, transmission

and data types are introduced in detail. By adjusting the experimental distance and angle in

the real environment, all possible interference situations of the UAV can be realized. Figure

 2.1b , Holy Stone HS720E was used in this test, which has a small size and is convenient for

this test. The UAV with a communication distance and transmission power of 1000 meters

and 16 dBm respectively has the characteristics of small size and reliable performance. At the

same time, it also uses IEEE 802.11 Orthogonal Frequency Division Multiplexing (OFDM)

at 2.4 GHz 2.1a . The vast majority of UAV communication requirements provide a reliable

basis for the universality of the experiment. The B210 SDR from National Instruments and

GNU Radio, which were shown in Figure 2.1 , was used to transmit the four different types

of interference attacks within 40 MHz bandwidth to accommodate all subcarriers.

(a) Holy Stone HS720E (b) USRP B210

Figure 2.1. Required hardware for the experiment.

2.1 Types of Jamming Attacks

As mentioned before, four types of jamming were applied in this experiment, which

were Barrage, Single-tone, Successive-pulse, and Protocol-aware. All these jamming will be

13

detailed and interpreted using spectrogram in the subsections. The spectrum is illustrated

in Figure 2.2 .

2.1.1 Barrage Jamming

In this type, noise from normal distribution is launched at the communication band to

increase interference level at the receiver (i.e., UAV). Therefore, barrage is often used when

the transmission frequency is unknown to the jammer. Barrage jamming is simple to launch;

however, its efficiency reduces as the transmission bandwidth increases, as shown in Figure

 2.2a .

2.1.2 Single-tone Jamming

Here, a high-power interference is launched to interfere with the center frequency that

the target uses for data exchange, which is shown in Figure 2.2b . This interference signal is

generally denoted as J(t) = Ajcos(2πf0t + θj), where Aj is the jamming amplitude, f0 is the

center frequency, and θj is a phase shift.

2.1.3 Successive-pulse Jamming

In this type, pulse-sequence is launched to interfere with the target’s operation band,

and is given as:

J(t) = Aj

Nj∑
n=1

δ(t − nT), (2.1)

where Nj is the jamming tones. The period T is set such that 312.5 KHz frequency spacing

is realized between generated pulses (i.e., subcarrier spacing in IEEE 802.11 OFDM). The

spectrum is illustrated in Figure 2.2c .

2.1.4 Protocol-aware Jamming

This type transmits low interference via shot-noise pulses to corrupt the ongoing trans-

missions while minimizing detection probability. In other words, the jammer simulates the

14

transmitter of the targeted protocol without affecting other standards occupying the same

bandwidth [52]. The spectrum is exemplified in Figure 2.2d .

(a) Barrage Jamming (b) Single-tone Jamming

(c) Successive-pulse Jamming (d) Protocol-aware Jamming

Figure 2.2. Theoretical spectrum of different types of jamming.

2.2 Generating and Receiving Signals through GNU Radio

In this chapter, B210 SDRs and GNU Radio are mentioned to launch different jamming

attacks and extract signal features. As described in the previous section, USRP B210 is

not the only condition for transmitting interference. To use this SDR board, developers also

need a modular model on the software side as a driver, which is GNU Radio. This software is

normally installed in a Linux system, which is easier for developer to customize. Therefore,

the following section will mention how this project generates the jamming and receives the

features.

2.2.1 Jammer Side

Figures 2.3 (a) shows simplified GNU Radio flow graphs for launching the attacks, re-

spectively. Through the figure, we can clearly see that Barrage jamming is produced by

superimposing the USRP Sink with Gaussian white noise, which is marked in the red dashed

box. Similarly, Single-tone, Successful-pulse, and Protocol-Aware are marked in green, blue

and pink dotted boxes, respectively. They are generated by signal source, vector source and

15

random source superimposed on USRP sink respectively. All modules can be enabled and

disabled. In this way, when the experiment is in progress, disabling the unnecessary modules

and connecting the USRP B210 board can easily generate a specific interference. For exam-

ple, in order to launch Barrage Jamming, developers can disable all modules except Noise

Source and USRP Sink.

Figure 2.3. Simplified GNU Radio flow graph for launching the jamming attacks.

2.2.2 UAV Side

Figures 2.4 shows simplified GNU Radio flow graphs for extracting features. The system

first collects the radio signals into GNU Radio through the USRP board, and finally obtains

the parameters we need through a series of data processing. USRP Source is responsible for

receiving radio data obtained from the air. A series of modules in the middle are responsible

for processing data. Last, the Null sink is used for collecting data which can output as a text

file. It is worthy to mention that QT GUI Waterfall Sink was used to collect spcetrogram

images which can be used in Chapter 4 . Three important blocks are OFDM Estimator,

Energy Detector, and SNR Estimator Probe. The 1© OFDM Estimator block shown in 2.4

is used to extract OFDM features [53], (i.e., subcarrier length, cyclic prefix (CP) length,

subcarrier spacing, and symbol time). The 2© Energy Detector block is used to extract the

average received power and threshold [53]. Finally, three more features; namely, signal-to-

noise ratio (SNR), average signal power, and average noise power are extracted from the 3©

SNR Estimator Probe block.

16

Figure 2.4. Simplified GNU Radio flow graph for extracting the radiometric features.

2.3 Experimental Setup

Two experimental environments are established to evaluate the qualitative and quanti-

tative impacts of the jamming types. The qualitative evaluation analyzes severity, launch

complexity, and effective jamming range. The quantitative evaluation entails radiometric

extractions (i.e., signal features, spectrogram images) through data collection under differ-

ent jamming scenarios. Data is used for training and validating ML algorithms for jamming

detection and classification.

2.3.1 Qualitative Evaluation

The separation between the jammer (i.e., B210 SDR) and drone is fixed to 0.5 meter. To

measure the effective jamming range, the separation between the jammer-drone pair and the

transmitter is increased gradually for each jamming type in an unobstructed outdoor setup,

as shown in Figure 2.5 . Here, effective jamming is defined as a complete loss of signal and

is reported in Table 2.1 for each type. Results indicate that barrage jamming has the most

range among all types due to spreading interference over all OFDM subcarriers in comparison

to interfering with the center (or selected) frequencies as in single-tone and successive-pulse

jamming or transmitting shot-noise as in protocol-aware jamming.

Table 2.1. Measured range of a successful jamming attempt.
Type Barrage Single-tone Success.-pulse P-aware

Range (m) 80 145 350 155

17

Figure 2.5. Experimental setup to obtain effective jamming range.

Table 2.2 depicts the qualitative findings for launch complexity and severity in a scale of

1 to 4, where 4 is the highest score. Barrage has the least launch complexity, as it does not

require extensive knowledge about the communication bandwidth. Nonetheless, it has the

highest severity. Single-tone jamming is relatively simple to launch. Nevertheless, this type

is inefficient in scenarios in which multiple frequencies or subcarriers are used. Successive-

pulse jamming with Nj = 64 pulses has a moderate launch complexity as interference pulses

need careful positioning with respect to the center and subcarrier frequencies. The output

power, Pj, of the jammer is distributed on pulses in a way that the interference pulse power

is Pj/Nj. Therefore, it has the least severity. Protocol-aware jamming has the highest launch

complexity as it requires a thorough knowledge of the communication protocol. It also has a

moderate severity since limited-power interference is launched at the transmission bandwidth

to maintain low detection probability.

Table 2.2. Qualitative analysis for the four jamming types.
Complexity

Se
ve

ri
ty

1 2 3 4
1 Success.-pulse
2 P-aware
3 Single-tone
4 Barrage

18

2.3.2 Quantitative Evaluation

Radiometric data (i.e., signal features, spectrogram images) are collected for ML train-

ing/classification. The goal here is to develop models that not only detect jamming, but also

identify its type. To collect such data, the transmitter-drone separation is set to 350 me-

ters, which is the minimum separation where all jamming types are effective. Then, without

jamming presence, features and images are obtained at the drone with B210 SDR and GNU

Radio modules. The same procedure is repeated in the presence of each of the jamming

types, where a second SDR is utilized as jammer at eight locations Ji, i = 1, 2, 8, around the

drone as shown in Figure 2.6 . This procedure is performed for three radii r = 0.5, 1, and

1.5 meters.

19

Figure 2.6. Extraction of signal features and spectrogram images under no-
jamming/jamming scenarios at different jammer locations: (a) testing setup
and (b) testing location from Google maps. The 4, ∗, and × represent the
trnasmitter, jammer, and drone, respectively.

20

2.4 Feature and Spectrogram Datasets

According to the description in the previous section, nine features are extracted as a

dataset to train ML algorithms for detecting and classifying jamming attacks. They are

listed below:

• subcarrier length

• CP length

• subcarrier spacing

• symbol time

• average received power

• threshold

• signal-to-noise ratio

• average signal power

• average noise power

The subcarrier length represents the number of subcarriers being used. The CP length is

used to control symbol overlapping, and the subcarrier spacing is the frequency separation

between subcarriers, which is the reciprocal of symbol time [54]. The threshold is a binary

indicator that returns 1 once the average received power exceeds a certain level and returns

0 otherwise. It is paramount to point out that the average received power conveys noise

energy, whereas the average signal power presents the estimated signal power excluding noise

power. At the end of the experiment featured in Figure 2.6 , a total of 23,565 signal samples

are collected. These samples include 10,071 under no jamming and 13,494 in jamming

presence, which are divided into 3,392, 3,367, 3,378, and 3,357 samples for barrage, single-

tone, successive-pulse, and protocol-aware jamming, respectively. The complete training

dataset is given in [55].

21

Meanwhile, spectrogram images were also collected by the block QT GUI Waterfall Sink,

as mentioned in the previous section in Figure 2.4 . Figure 2.7 depicts sample images under

no jamming and others with jamming. At the end of the experiment, a total of 1578 images

were collected. These images were separated to 762 clean spectrogram and 204 jamming

spectrogram for each type of jamming. The complete image dataset is made available on

[55].

Figure 2.7. Spectrograms under (a) no jamming, (b) barrage, (c) single-tone,
(d) successive-pulse, and (e) P-aware jamming.

22

3. FEATURE-BASED CLASSIFICATION

As discussed in Chapter 2 , nine features are extracted through USRP B210 and GNU Radio

to train ML algorithms for detecting and classifying jamming attacks. This chapter mainly

discusses the structure four six ML model, the environment for running those model, the

detailed training and testing procedures and result for conventional machine learning model.

3.1 Machine Learning Algorithms

Through the comparison and analysis of common machine learning algorithms, finally, six

conventional algorithms were used to train the model, which are DT, KNN, LR, Multi-layer

Perceptron (MLP), NB, and RF. They were all detailed in the following subsections.

3.1.1 Decision Tree

DT is based on the known probability of occurring of various events, and it uses a decision

tree to calculate the chance that the expected value of the net present value is greater than

or equal to zero, to evaluate project risk, and to decide feasibility. It is a graphical technique

for using probability analysis intuitively. It is named as decision tree because this type of

decision-making branch is drawn into a graph like the branches of a tree, like Figure 3.1 . A

decision tree is a prediction model in machine learning that depicts a mapping connection

between object properties and object values. As described in the Figure 3.1 , through different

weather factors (outlook, humidity, or wind speed) the teacher can decide whether to continue

or suspend the class.

3.1.2 K-Nearest Neighbors

The KNN classification algorithm is a theoretically mature approach that is also one of

the most basic machine learning methods. The theory behind this technique is that if the

majority of the k nearest (i.e., the nearest neighbors in the feature space) samples near a

sample belong to a certain category, the sample should be classified to that category. As

described in the Figure 3.2 , circles and triangles are two different categories. To distinguish

23

Figure 3.1. The structure of the decision tree.

24

the newly input element, you need to find the categories of some elements closest to it, which

is K (K can be set as a positive integer). This process can predict the category of the input

element with the largest number of nearest element’s categories.

Figure 3.2. The description of the KNN.

3.1.3 Logistic Regression

LR is an algorithm that is widely used by people because it is easy to understand and very

efficient without much calculation. The logistic regression algorithm does not need to scale

the input features, does not require any adjustment, and outputs a well-calibrated prediction

probability. Like linear regression, both of them are often used in binary classification

algorithms, and they are both a kind of generalized linear model. Logistic regression assumes

that the dependent variable y follows a Bernoulli distribution, while linear regression assumes

that the dependent variable y follows a Gaussian distribution.

3.1.4 Multi-layer Perceptron

MLP is an artificial neural network with a forward structure that maps a set of input

vectors to a set of output vectors. MLP can be regarded as a directed graph, composed

of multiple node layers, and each layer is fully connected to the next layer. Except for the

25

input node, each node is a neuron (or processing unit) with a nonlinear activation function.

The structure of the MLP is shown in Figure 3.3 . In this example, only one hidden layer is

involved. The input has only three variables [x1, x2, x3] and a bias b, and the output layer

has three neurons.

Figure 3.3. The structure of the multi-layer perceptron.

3.1.5 Naive Bayes

NB is a method based on Bayes’ theorem and assumes that the feature conditions are

independent of each other. The joint probability distribution of the output, based on the

learned model, input X to find the output Y that maximizes the posterior probability.

Here’s the Bayes’s theorem:

p(Y | X) = p(X | Y)p(Y)
p(X) (3.1)

The denominator is removed from the calculation p(X) as it is a constant:

p(Y | X) = p(X | Y)p(Y) (3.2)

So:

26

p(yj | x1, x2, ..., xn) = p(x1, x2, ..., xn | yj)p(yj) (3.3)

These independent conditional variables can be then multiplied together:

p(yj | x1, x2, ..., xn) = p(x1 | yj)p(x2 | yj)p(x3 | yj)...p(xn | yj)p(yj) (3.4)

Finally, the label with the maximum posterior probability can be selected as the predic-

tion for the given instance.

MAPy = argmax
yj∈Y

p(yj | x1, x2, ..., xn)

= argmax
yj∈Y

p(x1 | yj)p(x2 | yj)p(x3 | yj)...p(xn | yj)p(yj)

= argmax
yj∈Y

n∏
i=1

p(x1 | yj)p(yj)

(3.5)

3.1.6 Random Forest

RF refers to a classifier that uses multiple decision trees to train and predict samples. Its

advantage is that it can produce a high-precision classifier and can handle a large number of

input variables. The disadvantage is that due to the larger parameters, the actual running

time is longer. As Figure 3.4 shows, the dataset can be fed into different decision trees to

get different results, which looks like a forest. By majority voting of or averaging N results,

RF can get a more accurate final result.

3.2 Training Environment and Cases

For training and testing models, a reliable and convenient environment is essential. For

traditional machine learning, a faster CPU can complete the task, so all classifiers for this

experiment are executed on a 64-bit Windows 8 machine with IntelrCoreTMi7-6900K CPU

@ 3.20 GHz processor and 128 GB memory. Install anaconda in the existing hardware

environment and load the machine learning libraries, Tensorflow, with Keras API to complete

the environment.

27

Figure 3.4. The structure of the random forest.

28

Also, it is found that the (symbol time, subcarrier length) and (threshold, average noise

power) feature pairs are highly correlated. Thus, different ML models are explored by

reducing the dimension of the features dataset. In Case 1, all the features were used for

machine learning. In Case 2, symbol time is eliminated; whereas symbol time and average

noise power are eliminated in Case 3. The list of features in each case is given in Table 3.1 .

Table 3.1. List of features used in each case.
Features

Case OFDM Estimator Energy Detector SNR Probe

1

Subcarrier Spacing
Symbol Time
Subcarrier Length
CP Length

Avg Received Power
Threshold

Avg Signal Power
Avg Noise Power
SNR

2
Subcarrier Spacing
Subcarrier Length
CP Length

Avg Received Power
Threshold

Avg Signal Power
Avg Noise Power
SNR

3
Subcarrier Spacing
Subcarrier Length
CP Length

Avg Received Power
Threshold

Avg Signal Power
SNR

The During model development, the dataset is split into 70% for training and 30% for

testing. Due to the uncertainty of machine learning results, we have applied each algorithm

multiple times and calculated the average of various results, especially the running time.

Because this experiment is an applied experiment, the more meaningful is timeliness and

applicability. Therefore, we measured the training and testing time of each algorithm five

times, and obtained more reliable data through repeated training.

3.3 Evaluation Methods and Results

In this section, detailed the parameters and methods for evaluating the performance of

the ML model are described. At the same time, the results of this experiment are compared

and discussed.

29

3.3.1 Evaluation Methods

This part demonstrated the performance metrics for ML model evaluation, which are

detection Rate (DR), precision, recall, F-score (FS), and false-alarm rate (FAR). DR denotes

the percent of correctly detected samples over total dataset samples.

DR = Correctly Predicted Samples

Samples in the Dataset
(3.6)

Precision is defined as the number of positive samples predicted as positive (i.e. true positive)

divided by the sum of true positive and negative samples predicted as positive (i.e. false

positive).

Precision = True Positive Samples

True Positive + False Positive Samples
(3.7)

Recall is the number of true positive samples divided by the sum of true positive and positive

samples predicted as negative (i.e. false negative).

Recall = True Positive Samples

True Positive + False Negative Samples
(3.8)

F-score is computed from precision and recall to represent their harmonic mean.

F − score = 2 × Precision × Recall

Precision + Recall
(3.9)

Lastly, FAR is the number of false positive samples divided by the sum of false positive and

true negative samples predicted by the model.

FAR = False Positive Samples

False Positive + True Negative Samples
(3.10)

Two- and five-class ML models are created for each of the cases summarized in Table 3.1 . The

two-class models predict whether a jamming attack is launched or not; whereas the five-class

models detect the jamming attack and identify its type (i.e., barrage, single-tone, successive-

pulse, and P-aware). Also, 10-fold cross-validation is used during the training/validation

stages. Once a model is trained, evaluation is performed on the test set; and the DR, F-

30

score, and FAR are computed. Grid search is used to find the optimal hyper-parameters for

each algorithm.

3.3.2 Conventional Machine Learning Results

The performance of the developed classifiers for the two- and five-class models are given

in Table 3.2 . All the six algorithms for two-class model classifiers achieved almost 100%

DR and validation accuracy (VA), which means to classifying records into “no-jamming”

or “presence of jamming”. Moreover, LR and RF perform well on all three cases, which

means they are the most suitable algorithm for this experiment. On the other hand, the RF

model has the highest VA of 91.80%, 92.20%, and 86.23% for Cases 1, 2, and 3, respectively,

among the five-class models. Also, Random Forest achieved the highest DR and F-score in

almost all cases with a DR of 92.11%, 92.20%, and 85.95% as well as an F-score of 0.92,

0.92, and 0.86 for Cases 1, 2, and 3, respectively. Finally, RF results in the highest training

and testing times of 5.4s and 0.410s, respectively, in comparison to the other conventional

algorithms due to the associated large number of decision trees. It is noteworthy to point

out that eliminating the symbol time from the dataset (i.e., Case 2) has a marginal effect

in improving classification. However, eliminating both symbol time and average noise power

(i.e., Case 3) degrades the performance significantly.

31

Figures 3.5 , 3.6 , and 3.7 show the confusion matrices of the five-class RF model for

each case. It is worth pointing out that none of the clean (i.e., non-jamming) records are

misclassified as jamming records. Rather, mis-classification occurs only among the jamming

types; particularly, barrage and protocol-aware, which is attributed to the similarity in their

spectral properties (i.e., interference in these types targets the entire transmission bandwidth,

but at different intensity levels).

Figure 3.5. Confusion matrix of the five-class RF model for nine features.

Finally, the weighed FAR values are obtained from Figures 3.5 , 3.6 , and 3.7 to be 1.35%

for Case 1, 1.33% for Case 2, and 2.38% for Case 3. There is no false-alarm in the two-class

models regardless of the number of features used in training/validation.

32

Figure 3.6. Confusion matrix of the five-class RF model for eight features.

Figure 3.7. Confusion matrix of the five-class RF model for seven features.

33

T
ab

le
3.

2.
M

et
ric

s
fo

r
th

e
tw

o-
an

d
fiv

e-
cl

as
s

ja
m

m
in

g
de

te
ct

io
n

m
od

el
s

(V
A

:V
al

id
at

io
n

A
cc

ur
ac

y,
D

R
:

D
et

ec
tio

n
R

at
e,

FS
:F

-s
co

re
,C

T
R

:C
PU

Tr
ai

ni
ng

T
im

e,
C

T
E:

C
PU

Te
st

in
g

T
im

e)
.

P
er

fo
rm

an
ce

m
et

ri
cs

fo
r

fiv
e-

cl
as

s
m

od
el

s
C

as
e

1:
N

in
e

Fe
at

ur
es

C
as

e
2:

E
ig

ht
Fe

at
ur

es
C

as
e

3:
Se

ve
n

Fe
at

ur
es

T
im

e
(C

as
e

2
)

M
L

C
la

ss
ifi

er
V

A
(%

)
D

R
(%

)
F

S
V

A
(%

)
D

R
(%

)
F

S
V

A
(%

)
D

R
(%

)
F

S
C

T
R

(s
ec

)
C

T
E

(s
ec

)
LR

82
.4

5
(±

0.
65

)
82

.9
0

0.
82

82
.7

5
(±

0.
67

)
82

.7
3

0.
82

79
.4

2
(±

0.
76

)
78

.9
5

0.
79

0.
86

0
0.

00
2

K
N

N
84

.4
7

(±
0.

74
)

84
.2

3
0.

84
84

.8
7

(±
0.

74
)

83
.5

0
0.

84
83

.7
0

(±
0.

72
)

83
.4

0
0.

83
0.

13
1

0.
13

0
N

B
79

.3
0

(±
0.

80
)

78
.7

4
0.

79
79

.4
0

(±
0.

80
)

78
.3

3
0.

78
77

.5
0

(±
0.

79
)

77
.8

0
0.

77
0.

00
2

3.
55

0
D

T
91

.6
0

(±
0.

70
)

92
.5

2
0.

93
91

.9
0

(±
0.

64
)

91
.7

5
0.

92
84

.9
6

(±
0.

75
)

84
.7

5
0.

85
0.

05
8

≈
0

R
F

91
.8

0
(±

0.
06

)
92

.1
1

0.
92

92
.2

0
(±

0.
60

)
92

.2
0

0.
92

86
.2

3
(±

0.
79

)
85

.9
5

0.
86

5.
40

4
0.

41
1

M
LP

78
.0

2
(±

1.
70

)
79

.6
0

0.
79

77
.5

0
(±

2.
13

)
76

.2
5

0.
75

77
.4

6
(±

1.
80

)
75

.6
0

0.
72

1.
80

7
0.

00
5

P
er

fo
rm

an
ce

m
et

ri
cs

fo
r

tw
o-

cl
as

s
m

od
el

s
L

R
10

0.
00

(±
0.

00
)

10
0.

00
1.

00
10

0.
00

(±
0.

00
)

10
0.

00
1.

00
10

0.
00

(±
0.

00
)

10
0.

00
1.

00
0.

02
2

0.
00

3
K

N
N

99
.9

2
(±

0.
07

)
99

.8
9

1.
00

99
.9

3
(±

0.
06

)
99

.9
4

1.
00

99
.9

3
(±

0.
06

)
99

.9
6

1.
00

0.
13

5
0.

13
5

N
B

99
.8

0
(±

0.
09

)
99

.7
9

1.
00

99
.7

7
(±

0.
12

)
99

.8
5

1.
00

99
.7

7
(±

0.
11

)
99

.8
6

1.
00

0.
00

6
≈

0
D

T
10

0.
00

(±
0.

02
)

99
.9

8
1.

00
10

0.
00

(±
0.

02
)

99
.9

8
1.

00
99

.9
8

(±
0.

03
)

10
0.

00
1.

00
0.

00
9

≈
0

R
F

10
0.

00
(±

0.
00

)
10

0.
00

1.
00

10
0.

00
(±

0.
00

)
10

0.
00

1.
00

10
0.

00
(±

0.
00

)
10

0.
00

1.
00

2.
34

4
0.

20
3

M
LP

99
.7

2
(±

0.
60

)
99

.9
8

1.
00

99
.2

3
(±

2.
50

)
99

.9
8

1.
00

99
.7

0
(±

0.
50

)
99

.8
9

1.
00

1.
11

2
0.

00
1

34

4. SPECTROGRAM-BASED CLASSIFICATION

To improve the five-class classification accuracy in Chapter 3 , deep learning models trained

with spectrogram images are developed. Four deep learning models, the environment for run-

ning those model, the detailed training and testing procedures, and result for deep learning

models are described in this chapter.

4.1 Deep Learning Models

Deep learning models have multiple processing layers that use backpropagation to model

the parameters of complex datasets (e.g., image, speech), thereby facilitating precise clas-

sification [56]. Here, CNNs are used for their leading advantage in processing images by

not only efficiently extracting image properties (e.g., size, color, pattern), but also pooling

a large number of pixels to reduce calculations.

The configuration of CNNs consists of input layer, convolution layer, pooling layer, fully-

connected layer, and output layer. The input layer feeds images to the hidden layers. The

convolution layer contains convolution kernels for extracting features, and their size gradually

decreases, or remains constant, as more convolution layers are added. The pooling layer

retains the highest-scoring features and discards others with low scores. It also reduces

model parameters; thus, reduces computations at later layers. The fully-connected layer is

similar to a regular neural network (i.e., neurons in one layer are connected to those in the

next layer). The output layer returns the probability of each class. Weights are adjusted

in the network via backpropagation. Spectrogram-based classification is realized with four

deep learning configurations: AlexNet, VGG-16, ResNet-50, and EfficientNet-B0, which are

shown in the next subsections. Figure 4.1 shows their structures and Table 4.1 details their

parameters.

35

Figure 4.1. The configurations of the four CNN-based classifiers.

4.1.1 AlexNet

AlexNet uses ReLu activation function and dropout method [57]. ReLu increases training

speed and the dropout is added in the first two fully-connected layers to minimize overfitting.

It starts with a convolution layer of 11 × 11 kernel size and 96 filters, which reduces to 5 × 5

and 256 filters. It also consists of three convolution layers with 3 × 3 kernel size and three

pooling layers. These layers are followed by three fully-connected layers and an output layer.

36

Table 4.1. Parameters of the images and deep learning algorithms. Stochastic
gradient descent solver with 100 epochs is considered.

Case Parameter Value

Raw image image size 1688 × 990 × 3
image type .jpg

Pre-processing image size 422 × 248 × 3
image type .jpg

AlexNet

Learning rate 0.001
Kernel size 11 × 11, 5 × 5, 3 × 3
Kernel stride 4, 2, 1
Batch size 64

VGG-16

Learning rate 0.0001
Kernel size 3 × 3
Kernel stride 2, 1
Batch size 32

ResNet-50

Learning rate 0.0001
Kernel size 7 × 7, 3 × 3, 1 × 1
Kernel stride 2, 1
Batch size 32

EfficientNet-B0

Learning rate 0.001
Kernel size 5 × 5, 3 × 3, 1 × 1
Kernel stride 2, 1
Batch size 32

4.1.2 VGG16

The VGG configuration adds more convolution layers to facilitate accuracy via deep

neural networks [58]. However, an excessive addition of such layers potentially leads to

gradient dispersion that results in training divergence. Here, VGG-16 is used for image

training with five groups of two or three convolution layers of 3 × 3 kernel size together with

five pooling layers, three fully-connected layers, and an output layer.

4.1.3 ResNet-50

The ResNet configuration addresses the vanishing gradient problem by exploiting batch

normalization and by skipping connections among convolution layers [59]. It also comes in

different structures including ResNet-18/34/50/101/152. Here, ResNet-50 is adopted, which

37

consists of a 7 × 7 convolution layer and groups of 1 × 1, 3 × 3, and 1 × 1 convolution layers.

It also has two pooling, one fully-connected, and output layers.

4.1.4 EfficientNet-B0

Lastly, EfficientNet improves accuracy through model scaling and branches into B0–7 [60].

In this work, EfficientNet-B0 is used for its compact architecture, which is characterized by a

3 × 3 convolution layer followed by moving reverse bottleneck convolution (MBConv) layers

with either 3 × 3 or 5 × 5 kernels. It also conveys 1 × 1 convolution, pooling, fully-connected,

and output layers.

4.2 Training Environment and Input Datasets

4.2.1 Training Environment

The training and testing of the four CNN models is performed in two systems. The first

uses a 64-bit Windows 8, Intel® Core™i7-6900K CPU @ 3.20 GHz processor and 128 GB

RAM. The second uses Google Colab with 16 GB RAM and Tesla P100 GPU. All Python

code uses Tensorflow with Keras interface.

38

4.2.2 Input Datasets

Spectrogram dataset (Figure 2.7) is collected with USRP B210 and QT GUI Waterfall

Sink block shown in Figure 2.4 . Python scripts are developed to capture real-time screenshots

during the testing procedure. A total of 1578 images are collected, which are divided into

762 images under no jamming and 204 images for each of the jamming types. The standard

image size is 1688 × 990 × 3 pixels, which is scaled down to 422 × 248 × 3 to reduce training

time. These images are separated into 70% training and 30% testing.

4.3 Deep Learning Results

Table 4.2 shows the DR, VA, F-score, and the training/testing times for the CNN clas-

sifiers. EfficientNet-B0 has the highest DR of 100% and 99.79% for the two- and five-class

models, respectively.

AlexNet results in the lowest training/testing times, highest VA, and fastest convergence

rate as shown in Figure 4.2 (a)-(d). It is also found that the training and testing times for the

CNN models are significantly higher than those obtained by the conventional ML algorithms,

which is attributed to the CNNs deep and complex architectures. However, since detection

times (i.e., GTE, CTE) result from classifying 472 images, the average processing times of

the five-class EfficientNet-B0 model to classify an image are 0.005s with GPU and 0.066s

with CPU, enabling real-time jamming detection and classification.

Figure 4.3 shows the receiver operating characteristic (ROC) of the two-class models and

indicates that EfficientNet-B0 outperforms other classifiers in jamming detection.

Lastly, the weighted FARs are computed from the confusion matrices, presented in Figure

 4.4 , 4.5 , 4.6 , and 4.7 , to be 0.60% for AlexNet, 1.55% for VGG-16, 1.86% for ResNet-50,

and 0.03% for EfficientNet-B0. It is noteworthy to mention that complexity and severity

of a given jamming type have no contribution to its classification accuracy. For example,

barrage jamming is the simplest to launch, whereas protocol-aware has the most launch

complexity. Yet, their feature- and spectrogram-based misclassifications are nearly 2.5% and

0%, respectively. Similarly, barrage has the highest severity among the four jamming types,

whereas successive-pulse has the lowest severity. Nonetheless, their feature- and spectrogram-

39

T
ab

le
4.

2.
Pe

rfo
rm

an
ce

m
et

ric
s

of
th

e
C

N
N

m
od

el
s

(V
A

:V
al

id
at

io
n

A
cc

ur
ac

y,
D

R
:D

et
ec

tio
n

R
at

e,
FS

:
F-

sc
or

e,
G

T
R

:G
PU

Tr
ai

ni
ng

T
im

e,
G

T
E:

G
PU

Te
st

in
g

T
im

e,
C

T
R

:C
PU

Tr
ai

ni
ng

T
im

e,
C

T
E:

C
PU

Te
st

in
g

T
im

e)
.

P
er

fo
rm

an
ce

m
et

ri
cs

fo
r

fiv
e-

cl
as

s
m

od
el

s
M

L
C

la
ss

ifi
er

V
A

(%
)

D
R

(%
)

F
S

G
T

R
(s

ec
)

G
T

E
(s

ec
)

C
T

R
(s

ec
)

C
T

E
(s

ec
)

A
le

xN
et

10
0.

00
99

.3
6

0.
99

17
4

0.
82

67
65

4.
90

V
G

G
-1

6
94

.0
3

94
.5

0
0.

94
14

79
5.

81
70

93
2

63
.3

0
R

es
N

et
-5

0
99

.8
2

98
.1

0
0.

98
11

18
2.

72
58

35
9

31
.8

4
E

ffi
ci

en
tN

et
-B

0
98

.5
5

99
.7

9
1.

00
15

30
2.

53
39

47
6

31
.2

2
P

er
fo

rm
an

ce
m

et
ri

cs
fo

r
tw

o-
cl

as
s

m
od

el
s

M
L

C
la

ss
ifi

er
V

A
(%

)
D

R
(%

)
F

S
G

T
R

(s
ec

)
G

T
E

(s
ec

)
C

T
R

(s
ec

)
C

T
E

(s
ec

)
A

le
xN

et
10

0.
00

99
.1

5
0.

99
17

1
0.

76
60

48
4.

86
V

G
G

-1
6

99
.9

1
99

.3
6

0.
99

14
78

5.
77

52
83

7
63

.4
3

R
es

N
et

-5
0

10
0.

00
99

.3
6

0.
99

11
14

2.
47

52
33

4
32

.0
0

E
ffi

ci
en

tN
et

-B
0

99
.9

1
10

0.
00

1.
00

14
89

2.
28

39
35

1
31

.5
5

40

Figure 4.2. Two-class models (a) loss and (b) accuracy. Five-class models
(c) loss and (d) accuracy.

41

Figure 4.3. ROC curve of the two-class CNN models.

based misclassifications are < 1% and 0%, respectively, as demonstrated in the confusion

matrices in Figures 4 and 9.

Table 4.3 shows a comparison between the proposed approach and those reported in

the literature in detecting and/or classifying jamming attacks with applications to satellite

communications, OFDM, VANETs, and 5G/IoT networks. This work entailed four different

jamming attacks with the highest detection and classification accuracy. Furthermore, six

conventional and four deep learning models are trained and tested with realistic datasets of

extracted signal features and images obtained after rigorous measurement routines.

42

Figure 4.4. Confusion matrix of the five-class CNN models for AlexNet.

Figure 4.5. Confusion matrix of the five-class CNN models for VGG16.

43

Figure 4.6. Confusion matrix of the five-class CNN models for ResNet-50.

Figure 4.7. Confusion matrix of the five-class CNN models for EfficientNet-B0.

44

T
ab

le
4.

3.
C

om
pa

ris
on

be
tw

ee
n

th
e

pr
op

os
ed

ap
pr

oa
ch

an
d

ot
he

r
st

at
e-

of
-t

he
-a

rt
ap

pr
oa

ch
es

.
R

ef
.

D
at

as
et

T
yp

e
D

at
as

et
So

ur
ce

M
L

T
yp

e
D

R
(%

)
A

pp
lic

at
io

n
Ja

m
m

in
g

T
yp

e

[2
6]

Sp
ec

tr
og

ra
m

s
Si

m
ul

at
io

ns
C

N
N

&
SV

M
93

.1
0

Sa
te

lli
te

s
B

ar
ra

ge
,P

ilo
t-

to
ne

,I
nt

er
m

it
te

nt
(D

et
ec

ti
on

)

[2
7]

Sp
ec

tr
og

ra
m

s
M

ea
su

re
m

en
ts

C
N

N
&

R
N

N
86

.1
0

O
F

D
M

B
ar

ra
ge

,R
ef

er
en

ce
Si

gn
al

(D
et

ec
ti

on
an

d
C

la
ss

ifi
ca

ti
on

)

[2
8]

Fe
at

ur
es

M
ea

su
re

m
en

ts
D

T
,A

da
B

oo
st

,S
V

M
97

.0
0

O
F

D
M

C
on

st
an

t,
R

ea
ct

iv
e

(D
et

ec
ti

on
)

[2
9]

Fe
at

ur
es

Si
m

ul
at

io
ns

D
T

,R
F

,S
V

M
99

.0
6

Io
T

N
et

w
or

ks
In

te
rm

it
te

nt
M

ea
su

re
m

en
ts

D
T

,R
F

,S
V

M
,K

N
N

89
.7

0
(D

et
ec

ti
on

)

[3
0]

Fe
at

ur
es

B
or

ro
w

ed
M

LP
,M

LP
&

SV
M

94
.5

1
5G

N
et

w
or

ks
C

on
st

an
t,

R
an

do
m

,D
ec

ep
ti

ve
,R

ea
ct

iv
e

(D
et

ec
ti

on
an

d
cl

as
si

fic
at

io
n)

[4
3]

Fe
at

ur
es

Si
m

ul
at

io
ns

K
-m

ea
ns

-
VA

N
E

T
C

on
st

an
t,

Sm
ar

t
(D

et
ec

ti
on

)

[4
4]

Fe
at

ur
es

Si
m

ul
at

io
ns

R
F

,S
V

M
,M

LP
97

.5
0

5G
N

et
w

or
ks

B
ar

ra
ge

(D
et

ec
ti

on
)

T
hi

s
W

or
k

Fe
at

ur
es

M
ea

su
re

m
en

ts
LR

,K
N

N
,N

B
,D

T
,R

F
,M

LP
92

.2
0

U
AV

s
B

ar
ra

ge
,S

in
gl

e-
to

ne
,S

uc
ce

ss
.-p

ul
se

,P
-a

w
ar

e
Sp

ec
tr

og
ra

m
s

M
ea

su
re

m
en

ts
C

N
N

99
.7

9
(D

et
ec

ti
on

an
d

cl
as

si
fic

at
io

n)

45

5. CONCLUSION

An ML approach is proposed to detect and classify four types of jamming attacks on OFDM-

based receivers with application to UAVs. Each attack is built using B210 SDR and launched

against a drone to qualitatively analyze its impacts considering severity, complexity, and jam-

ming range. Then, an SDR is used in proximity to the drone in systematic testing scenarios

to record key OFDM parameters, threshold, signal power, noise power, and SNR for the

feature-based approach as well as spectrogram images for the spectrogram-based approach.

The former is explored with six algorithms, whereas the latter is realized with four differ-

ent deep learning CNN algorithms to achieve higher jamming detection and classification

accuracy. All ML models are validated quantitatively with metrics including detection and

false alarm rates, and showed that jamming is detected with 92.2% and 99.79% confidence

following the feature-based and spectrogram-based classifiers, respectively. This approach

requires the integration of a data extraction module with the UAV receiver for obtaining

real-time signal features and/or images to facilitate the detection and classification routines.

This integration may impose the need for interface circuitry adjoined with a further anal-

ysis of power aspects and hardware imperfection. Future work could be installing a small

processor (i.e., Raspberry Pi) on the drone. By loading the ML and deep learning model

into this processor, the drone would have the ability to detect and classify jamming in real

time, which can further advance this technology to UAV industry. Future work could also

entail exploring more jamming types (e.g., deceptive, reactive), incorporating maximum-

likelihood-based classification and advanced SNR probing, and investigating UAV-specific

anti-jamming solutions (e.g., flight scheduling, path optimization).

46

REFERENCES

[1] M. Messinger and M. Silman, “Unmanned aerial vehicles for the assessment and mon-
itoring of environmental contamination: An example from coal ash spills,” Environmental
pollution, vol. 218, pp. 889–894, 2016.

[2] A. Bhardwaj, L. Sam, Akanksha, F. Martı́n-Torres, and R. Kumar, “Uavs as remote
sensing platform in glaciology: Present applications and future prospects,” Remote sensing
of environment, vol. 175, pp. 196–204, 2016.

[3] R. Allison, J. Johnston, G. Craig, and S. Jennings, “Airborne optical and thermal remote
sensing for wildfire detection and monitoring,” Sensors, vol. 16, no. 8, p. 1310, 2016.

[4] J. Qi, D. Song, H. Shang, et al., “Search and rescue rotary-wing uav and its application
to the lushan ms 7.0 earthquake,” Journal of Field Robotics, vol. 33, no. 3, pp. 290–321,
2016.

[5] Unmanned aerial vehicles UAV market, https://www.marketsandmarkets.com/Market-
Reports/unmanned-aerial-vehicles-uav-market-662.html Accessed on December 9, 2021.

[6] J. Paredes, C. Jacinto, R. Ramı́rez, I. Vargas, and L. Trujillano, “Simplified fuzzy-pd
controller for behavior mixing and improved performance in quadcopter attitude control
systems,” in 2016 IEEE ANDESCON, IEEE, 2016, pp. 1–4.

[7] P. Oettershagen, T. Stastny, T. Mantel, et al., “Long-endurance sensing and mapping
using a hand-launchable solar-powered uav,” in Field and Service Robotics, Springer, 2016,
pp. 441–454.

[8] J. Braga, H. Velho, G. Conte, P. Doherty, and É. Shiguemori, “An image matching
system for autonomous uav navigation based on neural network,” in 2016 14th International
Conference on Control, Automation, Robotics and Vision (ICARCV), IEEE, 2016, pp. 1–6.

[9] J. Tiemann, F. Schweikowski, and C. Wietfeld, “Design of an uwb indoor-positioning
system for uav navigation in gnss-denied environments,” in 2015 International Conference
on Indoor Positioning and Indoor Navigation (IPIN), IEEE, 2015, pp. 1–7.

[10] M. Mullins, M. Holman, K. Foerster, N. Kaabouch, and W. Semke, “Dynamic separation
thresholds for a small airborne sense and avoid system,” in AIAA Infotech @ Aerospace (I@A)
Conference, 2013, p. 5148.

[11] M. Mullins, K. Foerster, N. Kaabouch, and W. Semke, “Incorporating terrain avoidance
into a small uas sense and avoid system,” in Infotech@ Aerospace 2012, 2012, p. 2504.

47

https://www.marketsandmarkets.com/Market-Reports/unmanned-aerial-vehicles-uav-market-662.html
https://www.marketsandmarkets.com/Market-Reports/unmanned-aerial-vehicles-uav-market-662.html

[12] M. Mullins, K. Foerster, N. Kaabouch, and W. Semke, “A multiple objective and behav-
ior solution for unmanned airborne sense-and-avoid systems,” AUVSI’s Unmanned Systems
North America, 2012.

[13] F. Martel, M. Mullins, W. Semke, N. Kaabouch, et al., “Cooperative miniature colli-
sion avoidance system flight testing for small unmanned aircraft systems,” in Proceedings of
AUVSI conference, 2011.

[14] M. Mullins, K. Foester, and N. Kaabouch, “Traffic alerting system for manned-unmanned
aircraft airspace conflicts,” in ND EPSCoR/IDeA State Conference, 2017.

[15] K. Foerster, B. Whitney, J. Hahn, N. Kaabouch, and W. Semke, “A health monitoring
system for uas utilizing a miniature airborne sense and avoid system,” in AIAA Infotech@
Aerospace Conference, 2013, p. 4654.

[16] H. Reyes, N. Gellerman, and N. Kaabouch, “A cognitive radio system for improving
the reliability and security of uas/uav networks,” in 2015 IEEE Aerospace Conference, 2015,
pp. 1–9. doi: 10.1109/AERO.2015.7119159 .

[17] H. Reyes, N. Kaabouch, W. Semke, and S. Salle, “Fuzzy logic method for link loss
detection during unmanned aerial vehicle flights,” in Infotech@ Aerospace 2012, 2012, p. 2574.

[18] Drones are quickly becoming a cybersecurity nightmare, https://threatpost.com/drones-
breach-cyberdefenses/143075 Accessed on December 9, 2021.

[19] C. Albanesius, SkyJack Software Finds and Hijacks Drones, https://uk.pcmag.com/
security-devices-2/8285/skyjack-software-finds-and-hijacks-drones Accessed on December 9,
2021.

[20] S. McCarthy, HK$1 million in damage caused by GPS jamming that caused 46 drones
to plummet during Hong Kong show, https://sg.news.yahoo.com/hk-1-million-damage-
caused-080848555.html Accessed on December 9, 2021.

[21] K. Ibrahim, S. Ng, I. Qureshi, A. Malik, and S. Muhaidat, “Anti-jamming game to
combat intelligent jamming for cognitive radio networks,” IEEE Access, vol. 9, pp. 137 941–
137 956, 2021.

[22] G. Han, L. Xiao, and H. Poor, “Two-dimensional anti-jamming communication based
on deep reinforcement learning,” in 2017 IEEE international conference on acoustics, speech
and signal processing (ICASSP), 2017, pp. 2087–2091.

[23] B. Duan, D. Yin, Y. Cong, H. Zhou, X. Xiang, and L. Shen, “Anti-jamming path
planning for unmanned aerial vehicles with imperfect jammer information,” in 2018 IEEE
International Conference on Robotics and Biomimetics (ROBIO), IEEE, 2018, pp. 729–735.

48

https://doi.org/10.1109/AERO.2015.7119159
https://threatpost.com/drones-breach-cyberdefenses/143075
https://threatpost.com/drones-breach-cyberdefenses/143075
https://uk.pcmag.com/security-devices-2/8285/skyjack-software-finds-and-hijacks-drones
https://uk.pcmag.com/security-devices-2/8285/skyjack-software-finds-and-hijacks-drones
https://sg.news.yahoo.com/hk-1-million-damage-caused-080848555.html
https://sg.news.yahoo.com/hk-1-million-damage-caused-080848555.html

[24] H. Wang, J. Chen, G. Ding, and J. Sun, “Trajectory planning in uav communication
with jamming,” in 2018 10th International Conference on Wireless Communications and
Signal Processing (WCSP), IEEE, 2018, pp. 1–6.

[25] L. Xiao, X. Lu, D. Xu, Y. Tang, L. Wang, and W. Zhuang, “Uav relay in vanets against
smart jamming with reinforcement learning,” IEEE Transactions on Vehicular Technology,
vol. 67, no. 5, pp. 4087–4097, 2018.

[26] S. Gecgel and G. Kurt, “Intermittent jamming against telemetry and telecommand of
satellite systems and a learning-driven detection strategy,” in Proceedings of the 3rd ACM
Workshop on Wireless Security and Machine Learning, 2021, pp. 43–48.

[27] S. Gecgel, C. Goztepe, and G. Kurt, “Jammer detection based on artificial neural net-
works: A measurement study,” in Proceedings of the ACM Workshop on Wireless Security
and Machine Learning, 2019, pp. 43–48.

[28] O. Puñal, I. Aktaş, C. Schnelke, G. Abidin, K. Wehrle, and J. Gross, “Machine learning-
based jamming detection for ieee 802.11: Design and experimental evaluation,” in Proceeding
of IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks
2014, IEEE, 2014, pp. 1–10.

[29] B. Upadhyaya, S. Sun, and B. Sikdar, “Machine learning-based jamming detection in
wireless iot networks,” in 2019 IEEE VTS Asia Pacific Wireless Communications Symposium
(APWCS), IEEE, 2019, pp. 1–5.

[30] M. Hachimi, G. Kaddoum, G. Gagnon, and P. Illy, “Multi-stage jamming attacks detec-
tion using deep learning combined with kernelized support vector machine in 5g cloud radio
access networks,” in 2020 International Symposium on Networks, Computers and Commu-
nications (ISNCC), IEEE, 2020, pp. 1–5.

[31] P. Bithas, E. Michailidis, N. Nomikos, D. Vouyioukas, and A. Kanatas, “A survey on
machine-learning techniques for uav-based communications,” Sensors, vol. 19, no. 23, p. 5170,
2019.

[32] Q. Wu, H. Wang, X. Li, B. Zhang, and J. Peng, “Reinforcement learning-based anti-
jamming in networked uav radar systems,” Applied Sciences, vol. 9, no. 23, p. 5173, 2019.

[33] X. Lu, L. Xiao, C. Dai, and H. Dai, “Uav-aided cellular communications with deep
reinforcement learning against jamming,” IEEE Wireless Communications, vol. 27, no. 4,
pp. 48–53, 2020.

[34] J. Pawlak, Y. Li, J. Price, et al., “A machine learning approach for detecting and classi-
fying jamming attacks against ofdm-based uavs,” in Proceedings of the 3rd ACM Workshop
on Wireless Security and Machine Learning, 2021, pp. 1–6.

49

[35] M. Strohmeier, V. Lenders, and I. Martinovic, “On the security of the automatic de-
pendent surveillance-broadcast protocol,” IEEE Communications Surveys Tutorials, vol. 17,
no. 2, pp. 1066–1087, 2015. doi: 10.1109/COMST.2014.2365951 .

[36] M. Manesh and N. Kaabouch, “Analysis of vulnerabilities, attacks, countermeasures and
overall risk of the automatic dependent surveillance-broadcast (ads-b) system,” International
Journal of Critical Infrastructure Protection, vol. 19, pp. 16–31, 2017.

[37] K. D. Wesson, T. Humphreys, and B. Evans, Can cryptography secure next generation
air traffic surveillance? http : / / users . ece . utexas . edu / ~bevans / papers / 2015 / nextgen/

Technical Report, Accessed on December 9, 2021, 2021.

[38] C. Giannatto Jr, “Challenges of implementing automatic dependent surveillance broad-
cast in the nextgen air traffic management system,” 2015.

[39] B. Danev, H. Luecken, S. Capkun, and K. El Defrawy, “Attacks on physical-layer iden-
tification,” in Proceedings of the third ACM conference on Wireless network security, 2010,
pp. 89–98.

[40] S. Brands and D. Chaum, “Distance-bounding protocols,” in Workshop on the Theory
and Application of of Cryptographic Techniques, Springer, 1993, pp. 344–359.

[41] B. Xiao, B. Yu, and C. Gao, “Detection and localization of sybil nodes in vanets,” in
Proceedings of the 2006 workshop on Dependability issues in wireless ad hoc networks and
sensor networks, 2006, pp. 1–8.

[42] M. Sliti, W. Abdallah, and N. Boudriga, “Jamming attack detection in optical uav net-
works,” in 2018 20th International Conference on Transparent Optical Networks (ICTON),
IEEE, 2018, pp. 1–5.

[43] D. Karagiannis and A. Argyriou, “Jamming attack detection in a pair of rf communi-
cating vehicles using unsupervised machine learning,” Vehicular Communications, vol. 13,
pp. 56–63, 2018.

[44] Y. Arjoune, F. Salahdine, M. Islam, E. Ghribi, and N. Kaabouch, “A novel jamming
attacks detection approach based on machine learning for wireless communication,” in 2020
International Conference on Information Networking (ICOIN), IEEE, 2020, pp. 459–464.

[45] L. Mokdad, J. Ben-Othman, and A. Nguyen, “Djavan: Detecting jamming attacks in
vehicle ad hoc networks,” Performance Evaluation, vol. 87, pp. 47–59, 2015.

[46] A. Nguyen, L. Mokdad, and J. Ben Othman, “Solution of detecting jamming attacks
in vehicle ad hoc networks,” in Proceedings of the 16th ACM international conference on
Modeling, analysis & simulation of wireless and mobile systems, 2013, pp. 405–410.

50

https://doi.org/10.1109/COMST.2014.2365951
http://users.ece.utexas.edu/~bevans/papers/2015/nextgen/

[47] J. Grover, N. K. Prajapati, V. Laxmi, and M. Gaur, “Machine learning approach for
multiple misbehavior detection in vanet,” in International conference on advances in com-
puting and communications, Springer, 2011, pp. 644–653.

[48] H. Liu, B. Lang, M. Liu, and H. Yan, “Cnn and rnn based payload classification methods
for attack detection,” Knowledge-Based Systems, vol. 163, pp. 332–341, 2019.

[49] R. Vinayakumar, M. Alazab, K. Soman, P. Poornachandran, A. Al-Nemrat, and S.
Venkatraman, “Deep learning approach for intelligent intrusion detection system,” IEEE
Access, vol. 7, pp. 41 525–41 550, 2019.

[50] X. Wang, X. Wang, and S. Mao, “Rf sensing in the internet of things: A general deep
learning framework,” IEEE Communications Magazine, vol. 56, no. 9, pp. 62–67, 2018.

[51] C. Liu, J. Wang, X. Liu, and Y. Liang, “Deep cm-cnn for spectrum sensing in cognitive
radio,” IEEE Journal on Selected Areas in Communications, vol. 37, no. 10, pp. 2306–2321,
2019.

[52] A. Hussain, N. Saqib, U. Qamar, M. Zia, and H. Mahmood, “Protocol-aware radio
frequency jamming in wi-fi and commercial wireless networks,” Journal of communications
and networks, vol. 16, no. 4, pp. 397–406, 2014.

[53] S. Müller and C. Richardson, GitHub - gnuradio/gr-inspector: Signal Analysis Toolbox
for GNU Radio, https://github.com/gnuradio/gr-inspector Accessed on December 9, 2021.

[54] Y. Cho, J. Kim, W. Yang, and C. Kang, “Introduction to ofdm,” in MIMO-OFDM
Wireless Communications with MATLAB®. 2010, pp. 111–151. doi: 10.1002/9780470825631.
ch4 .

[55] GitHub: UAVs Jamming Detection and Classification, https://github.com/michaelevol/
uavs_jamming_detection Accessed on December 9, 2021.

[56] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553,
pp. 436–444, 2015.

[57] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet classification with deep con-
volutional neural networks,” Advances in neural information processing systems, vol. 25,
pp. 1097–1105, 2012.

[58] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image
recognition,” arXiv preprint arXiv:1409.1556, 2014.

51

https://github.com/gnuradio/gr-inspector
https://doi.org/10.1002/9780470825631.ch4
https://doi.org/10.1002/9780470825631.ch4
https://github.com/michaelevol/uavs_jamming_detection
https://github.com/michaelevol/uavs_jamming_detection

[59] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016,
pp. 770–778.

[60] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolutional neural
networks,” in International Conference on Machine Learning, PMLR, 2019, pp. 6105–6114.

52

PUBLICATIONS

A Machine Learning Approach for Detecting and Classifying Jamming Attacks Against

OFDM-based UAVs; Jered Pawlak, Yuchen Li, Joshua Price, Matthew Wright, Khair AI

Shamaileh, Quamar Niyaz, Vijay Devabhaktuni, Proceedings of the 3rd ACM Workshop on

Wireless Security and Machine Learning. 2021.

Jamming Detection and Classification in OFDM-based UAVs via Feature- and Spectrogram-

tailored Machine Learning; Yuchen Li, Jered Pawlak, Joshua Price, Khair AI Shamaileh,

Quamar Niyaz, Vijay Devabhaktuni, IEEE Access. 2021. (Second round review)

53

	TITLE PAGE
	COMMITTEE APPROVAL
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	INTRODUCTION
	Unmanned Aerial Vehicle's Challenges
	Machine Learning
	Literature Review
	Thesis Outline

	JAMMING ATTACKS, EXPERIMENTAL SETUP, AND DATASET
	Types of Jamming Attacks
	Barrage Jamming
	Single-tone Jamming
	Successive-pulse Jamming
	Protocol-aware Jamming

	Generating and Receiving Signals through GNU Radio
	Jammer Side
	UAV Side

	Experimental Setup
	Qualitative Evaluation
	Quantitative Evaluation

	Feature and Spectrogram Datasets

	FEATURE-BASED CLASSIFICATION
	Machine Learning Algorithms
	Decision Tree
	K-Nearest Neighbors
	Logistic Regression
	Multi-layer Perceptron
	Naive Bayes
	Random Forest

	Training Environment and Cases
	Evaluation Methods and Results
	Evaluation Methods
	Conventional Machine Learning Results

	SPECTROGRAM-BASED CLASSIFICATION
	Deep Learning Models
	AlexNet
	VGG16
	ResNet-50
	EfficientNet-B0

	Training Environment and Input Datasets
	Training Environment
	Input Datasets

	Deep Learning Results

	CONCLUSION
	REFERENCES
	PUBLICATIONS

