
ADAPTIVE MULTI-TIME-STEP METHODS FOR DYNAMIC CRACK
PROPAGATION

by

Mriganabh Boruah

A Thesis

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Master of Science

Lyles School of Civil Engineering

West Lafayette, Indiana

December 2021

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Arun Prakash, Chair

Lyles School of Civil Engineering

Dr. Pablo D. Zavattieri

Lyles School of Civil Engineering

Dr. Mohammad R. Jahanshahi

Lyles School of Civil Engineering

Dr. Akanshu Sharma

Lyles School of Civil Engineering

Approved by:

Dr. Dulcy Abraham

2

ACKNOWLEDGMENTS

First and foremost, I would like to thank Professor Arun Prakash for his constant support and

guidance for the past three and a half years. Coming into masters, I was horrified by the complex

math associated with mechanics. I got lost in the formulas and missed the bigger picture. I am

forever indebted to him for instilling the ideology that math is just a tool to mimic the real physical

world.

I would like to show gratitude to my committee, Professor Pablo D. Zavattieri, Professor Mo-

hammad R. Jahanshahi and Professor Akanshu Sharma for taking the time and effort to go through

my work and for their valuable feedback.

I must express my appreciation towards my friends and family for the continuous encourage-

ment when I doubted myself. Their continual reinforcement through thick and thin helped me

maintain a level head through the course of my masters degree.

I am grateful to be part of a convivial and competitive lab where I am always learning new

things about my research topic and recent developments in the industry.

3

TABLE OF CONTENTS

LIST OF TABLES . 6

LIST OF FIGURES . 7

ABSTRACT . 9

1 INTRODUCTION . 11

2 FORMULATION . 13

2.1 SPATIAL DISCRETIZATION . 13

2.2 TEMPORAL DISCRETIZATION . 14

2.3 QUASI-BRITTLE CRACKING . 16

2.4 NUMERICAL EXAMPLE . 18

2.4.1 Measures of Error . 24

2.4.2 Pixelation for Computing Error . 26

2.4.3 Computational Runtime Cost Model . 29

2.4.4 Computational Runtime . 32

3 MULTI-TIME-STEP METHODS . 34

3.1 SINGLE-TIME-STEP FORMULATION . 34

3.1.1 Computing v . 36

3.1.2 Computing Y . 37

3.1.3 Computing λλλ n+1 . 37

3.1.4 Computing w . 37

3.1.5 Computing u . 38

3.2 MULTI-TIME-STEP FORMULATION . 38

3.2.1 Computing v . 39

3.2.2 Computing Y . 39

3.2.3 Computing λλλ n+1 . 40

3.2.4 Computing w . 40

4

3.2.5 Computing u . 40

3.3 NUMERICAL EXAMPLE . 40

3.3.1 MTS Computational Runtime Cost Model 41

3.3.2 Computational Runtime . 45

4 ADAPTIVE MULTI-TIME-STEP METHOD . 48

4.1 ADAPTIVITY SCHEME . 48

4.1.1 Criteria to define regions of interest . 48

4.1.2 Mesh refinement and coarsening . 49

4.1.3 Data transfer between two successive mesh states 54

4.2 DATA TRANSFER VERIFICATION . 57

4.3 NUMERICAL EXAMPLE . 61

4.3.1 Reduction in runtimes due to adaptivity 62

4.3.2 Limitations to adaptivity . 65

5 SUMMARY AND CONCLUSIONS . 68

5.1 Future Directions . 69

REFERENCES . 70

5

LIST OF TABLES

2.1 Uniform Time Step Cost Model Information . 30

2.2 UTS Results and Predictions from UTS Cost Model 32

3.1 MTS Results and Predictions from MTS Cost Model 46

4.1 Hanging node element refinement information . 52

4.2 Different Adaptive Meshes vs Refined Mesh-2 with UTS 65

4.3 Adaptive Mesh-1 Results Comparison . 66

6

LIST OF FIGURES

2.1 Local Coordinate System of crack . 17

2.2 Notched three-point bending model . 18

2.3 3 point bending test - Reference mesh 1 . 19

2.4 0.05 mm mesh in ABAQUS at 100 µsec . 19

2.5 Crack-tip time-history for different meshes in ABAQUS 20

2.6 Reference mesh 1 in ABAQUS and In-house code at 50 µsec respectively 21

2.7 Reference mesh 1 in ABAQUS and In-house code at 60 µsec respectively 21

2.8 Reference mesh 1 in ABAQUS and In-house code at 100 µsec respectively 22

2.9 Crack-tip Time History in Ref Mesh-1 . 23

2.10 Crack Normal stress vs crack Normal strain for element-1496 23

2.11 Displacement Error - ABAQUS vs In-house . 25

2.12 3 point bending test - Different Discretization . 26

2.13 Crack-tip time-history for different Reference and Refined Meshes 27

2.14 Reference mesh 2 and 3 at 100 µsec respectively 28

2.15 3 mm rectangle pixel mesh . 28

2.16 Maximum LIRE in Damage translated to 3mm rectangle pixel 29

2.17 UTS Cost Model - Initialization Runtime vs DOFs 31

2.18 UTS Cost Model - Timeloop Runtime vs DOFs . 31

3.1 Refined mesh 2 at 100 µsec for mAB = 1, 2, 5 & 10 respectively 41

3.2 Crack-tip time-history in refined mesh-2 for mAB = 1, 2, 5 & 10 42

3.3 Maximum Damage LIRE in refined mesh-2 for mAB = 1, 2, 5 & 10 42

3.4 MTS Cost Model: Predictor-A Runtime per small timestep, ∆tB vs DOFs 43

3.5 MTS Cost Model: Predictor-B Runtime per small timestep, ∆tB vs DOFs 44

3.6 MTS Cost Model: Interface Runtime per small timestep, ∆tB vs DOFs 44

3.7 MTS Cost Model: Corrector-A Runtime per small timestep, ∆tB vs DOFs 45

3.8 MTS Cost Model: Corrector-B Runtime per small timestep, ∆tB vs DOFs 45

4.1 Example of evolving mesh states generated from an initial mesh 49

4.2 Sample Level-0, Level-1, Level-2 refinements . 50

7

4.3 Possible children elements of Type-1 parent element 51

4.4 Possible children elements of Type-2 parent element 51

4.5 Possible children elements of Type-3 parent element 51

4.6 Reference point and ROI in Level-0 mesh for Mesh State-1 52

4.7 Level-1 mesh with Hanging nodes for Mesh State-1 53

4.8 Level-1 mesh for Mesh State-1 . 53

4.9 Level-2 mesh or Mesh State-1 . 53

4.10 Regions for Elemental Data Transfer in mesh state-1 54

4.11 Nodes part of newly formed coarse elements in mesh state-2 55

4.12 Wave propagation . 58

4.13 Wave propagation : Six regular meshes . 59

4.14 Wave propagation : Adaptive Mesh-1 (3 transitions) 59

4.15 Wave propagation : Adaptive Mesh-2 (4 transitions) 60

4.16 Wave propagation : Adaptive Mesh-3 (5 transitions) 60

4.17 Displacement LIRE for different discretizations . 61

4.18 Input Mesh for Adaptive meshes . 62

4.19 Mesh States of Adaptive mesh 1 (5 mm x 7 mm with 2 transitions) 63

4.20 Mesh States of Adaptive mesh 2 (5 mm x 8 mm with 2 transitions) 63

4.21 Mesh States of Adaptive mesh 3 (5 mm x 9 mm with 1 transition) 64

4.22 Damage Error Translated to 3mm rectangle pixel 64

4.23 Response before the third transition in Adaptive mesh-4 66

4.24 Response immediately after the third transition in Adaptive mesh-4 67

4.25 Response at 100 µsec in Adaptive mesh-4 . 67

8

ABSTRACT

Problems in structural dynamics that involve rapid evolution of the material at multiple scales

of length and time are challenging to solve numerically. One such problem is that of a structure un-

dergoing fracture, where the material in the vicinity of a crack front may experience high stresses

and strains while the remainder of the structure may be unaffected by it. Usually, such problems

are solved using numerical methods based on a finite element discretization in space and a finite

difference time-stepping scheme to capture dynamic response. Regions of interest within the struc-

ture, where high transients are expected, are usually modeled with a fine discretization in space and

time for better accuracy. In other regions of the model where the response does not change rapidly,

a coarser discretization suffices and helps keep the computational cost down. This variation in

spatial and temporal discretization is achieved through domain decomposition and multi-time-step

coupling methods which allow the use of different levels of mesh discretization and time-steps in

different regions of the mesh.

For problems where the region of interest evolves in time, such as those with an advancing

crack front, the discretization of the problem domain must evolve as well so that the region of fine

spatial and temporal discretization is able to track the region of interest. This need for adaptively

refining and coarsening different regions of a numerical model presents several challenges. First,

one must establish criteria based on the physical characteristics of the dynamic response of the

material to identify the regions of interest that require a fine discretization in space and time. Then,

one must devise a strategy to ensure that the region of fine discretization encompasses the region

of interest at all times during the simulation without necessarily having to constantly modify the

discretization at every time step. As the mesh discretization changes dynamically, an accurate

and efficient mapping algorithm must also be implemented to transfer the state variables from

the coarse mesh to the fine mesh and vice versa. Lastly, quantities associated with the domain

decomposition and multi-time-step coupling method must also be updated every time the mesh

discretization changes. These include the subdomain mass, stiffness and damping matrices and

the interface coupling matrices needed to ensure spatial continuity of the solution between the

subdomains.

9

In this study, all the challenges associated with dynamically evolving fine and coarse mesh dis-

cretizations are addressed by developing an adaptive multi-time-step (AMTS) domain decompo-

sition and coupling method. Some of the challenges associated with adaptivity are also addressed

in existing literature on adaptive mesh refinement, for example, but the approach described in this

study is distinct from existing methods. First, two different criteria are investigated for identifying

the regions of interest in a mesh. One is based on identifying regions of high spatial gradients in

the solution, which would be regions of high stress and strain in the model, while the other is based

on identifying the location of a dynamically propagating crack front in a brittle material. These

regions are encapsulated with a fine discretization, which is periodically updated as the physical

characteristics of the solution evolve. A nested mesh refinement and coarsening strategy is de-

veloped to ensure accurate mapping of the solution variables and efficient data transfer between

the meshes. Finally, a novel method for storing and updating subdomain and interface matrices is

described that minimizes the overhead associated with adaptivity.

Two numerical examples, one of a wave propagation in a rectangular plate and another of

crack propagation in a notched beam, are used to demonstrate the effectiveness of the AMTS

method developed in this study. The solution from this approach is compared to those obtained

from three existing approaches. The first is the conventional non-adaptive uniform time-stepping

(UTS) approach where all the possible regions of interest at all times during the simulation are

identified a priori. These regions use a fine discretization in space but the problem is solved with

a fine time step over the entire domain. In the second approach, adaptive mesh refinement is used

to identify and refine the regions of interest, but the problem is solved with a uniform time step

for the entire domain (AUTS). The third is a non-adaptive multi-time-step (MTS) approach, where

pre-defined regions of interest are refined in space and different time steps are used in the coarse

and fine regions of the mesh for computational efficiency. Reference solutions to these problems

are obtained using a fine discretization in space and time over the entire problem domain. Results

show that, for comparable solution accuracy, the AMTS method developed in this study is the most

computationally efficient way of solving problems with evolving dynamics.

10

1. INTRODUCTION

Evaluating the response of a structure to external loads is central to the study of structural dy-

namics. This response is governed by a set of time-dependent partial differential equations which

cannot be solved analytically for all but the most simple problems. Instead, approximate numerical

solutions are obtained by using a combination of two methods - the finite element method (FEM)

and finite difference (FD) method - which are used to discretize the governing partial differential

equations in space and time respectively. The finite element method partitions the body into a

number of small parts (elements), makes approximations on the kinematic quantities within each

element using pre-defined functions, and combines these approximations across all the elements

to evaluate the global response of the structure. The finite difference method approximates the

time-derivatives in the equation of motion using difference formulas written at discrete instants of

time and then advancing the solution by small increment, called a time-step. Chapter-2 provides

further details regarding the spatial and temporal discretization used in this study.

When using finite difference methods for numerical time integration, it is common to advance

the entire system of equations by a single time-step that must satisfy the accuracy and stability

requirements of all elements in the model. The work of Felippa, Park & Underwood [1], [2], [3]

allowed the use of larger time-steps in explicit time integration. Researchers, including Bergan &

Mollestad [4] and Hulbert & Jang [5] found that updating the time-step size in real-time during

a simulation could help reduce the computational run-time. However, for problems involving

multiple spatial and temporal scales, usually there are small regions of interest in a large overall

model of a structure. Since the regions of interest are usually associated with fine-scale dynamics,

the maximum time-step size for the entire model is governed by the stringent accuracy and stability

requirements of these regions. This makes the use of a uniform time-stepping (UTS) scheme

computationally intensive because it constrains the entire problem domain to use the same time-

step.

Related research in the area of multi-scale problems includes the work of Bettinotti, Allix and

Malherbe [6], who developed a global/local non-intrusive coupling method to allow an overlap-

ping local analysis to be activated only when necessary along with the global analysis. Ghosh and

Cheng [7] proposed a subcycling algorithm that introduces different time steps in each subdomain

11

which are adaptively partitioned in the evolving computational domain based on the strain-rates.

El-Amin et al [8] combined the concepts of automatic selection of time-step size with multi time-

stepping and applied them to two-phase flow. Sanchez-Rivadeneira and Duarte [9] presented an

approach based on generalized finite element method to reduce the computational time in analy-

sis. This approach involves using enrichment functions within finite elements to capture localized

singularities and discontinuities thereby allowing relatively coarser meshes. Soares [10]–[12] in-

troduced explicit time integration schemes where the algorithmic parameters of the scheme are

adaptively updated during the simulation to achieve greater accuracy at a reduced computational

cost.

Belytschko and co-workers [13]–[15] proposed the method of decomposing the domain into

different subdomains and solving them at different time-steps to overcome this problem. Finite

element tearing and interconnect (FETI) by Farhat and Roux [16], [17] for static and transient

problems is another common method which involves sub-structuring. Gravouil and Combescure

(GC-method) [18], [19] extended FETI to enable the use of different time-steps between subdo-

mains by prescribing continuity of velocities at the interface. Prakash and Hjelmstad (PH-method)

[20], [21] improved the GC-method by eliminating numerical dissipation and reducing the com-

putational cost of domain decomposition and mult-time-step (MTS) methods for linear and non-

linear problems. However, in all of the studies mentioned above, the subdomains were usually

pre-defined and the decomposition was assumed to remain constant for the entire simulation. This

strategy works when the region of interest does not evolve as the simulation progresses, but for

problems where it does, such as crack propagation, using a static domain decomposition for the

entire simulation is not effective.

In this study, a new approach to track the region of interest in a large structural model is devel-

oped. Based on the physical characteristics of the solution, the regions of interest are identified and

encompassed in subdomains that are integrated with a small time-step while the rest of the model

employs a larger time-step for computational efficiency. The decomposition into subdomains is

adaptively updated as the region of interest evolves. This adaptive multi-time-step (AMTS) method

improves computational performance in the numerical analysis of crack propagation problems.

12

2. FORMULATION

This chapter briefly discusses the spatial and temporal discretization of the equation of motion

along with the primary material model used in this study. A numerical example of crack propaga-

tion in a notched beam is presented and used as a benchmark for evaluating the results obtained

from methods discussed in the subsequent chapters of this thesis. Detailed descriptions of the

formulation summarized in this chapter are available in standard texts (see [22]–[24]).

2.1 SPATIAL DISCRETIZATION

We employ the finite element method (FEM) to discretize the equation of motion in space.

This method consists of splitting the body into numerous smaller parts (finite elements) to form a

mesh which are combined together to closely resemble the original structure. The vertices of the

elements in the mesh are called nodes. Nodes play an integral part in approximating the different

kinematic quantities using shape functions. Additionally, each node is assigned a fixed number of

degree of freedom depending on the problem.

The semi-discretized governing equation of motion for non-linear dynamic behaviour (assum-

ing no damping) using finite element discretization along with the initial and boundary conditions

can be written as:

MMMüuu(t)+ ppp(t) = fff (t) (2.1)

uuu(t) = ūuu(t) on ΓD (2.2)

fff (t) = f̄ff (t) on ΓN (2.3)

uuu(t0) = uuu0 ; u̇uu(t0) = vvv0 (2.4)

Matrices and vectors in the above equations are assembled from the individual element contribu-

tion. Matrix MMM represents the mass matrix, üuu denotes the acceleration, ppp is the internal force vector

and fff is the external force vector. The initial displacement and velocity are specified as uuu0 and vvv0

respectively. The Dirichlet boundary with displacements specified is denoted as ΓD and ΓN repre-

sents the Neumann boundary with force boundary conditions. It is important to note that equations

2.1 -2.3 are discrete in space but continuous in time.

13

2.2 TEMPORAL DISCRETIZATION

The semi-discrete system of ordinary differential equations 2.1 can be converted into a fully

discrete system using a finite difference (FD) method for direct numerical time integration. In

FD, the equations are solved at discrete instants of time and the solution is advanced by a small

increment called a time step. Equation 2.1 is discretized and solved at individual instants of time

tn over the interval of interest [0,T] where tn = t0 +Σn
i=1∆ti with t0 = 0, tN = T , and ∆ti is called

the time-step. Written at tn+1, Equation 2.1 takes the form:

MMMüuun+1 + pppn+1 = fff n+1 (2.5)

where üuun+1, uuun+1, pppn+1 and fff n+1 are the acceleration, displacement, internal force and external

force vectors, respectively, at the instant tn+1.

Time integration schemes can be categorized as - implicit and explicit and each has its ad-

vantages and disadvantages. Implicit schemes require solving a full system of equations at every

time-step but are usually stable for large time steps. Some implicit schemes are unconditionally

stable. The Newmark method [25], Bathe method [26] and Wilson method [27]–[29] are examples

of implicit schemes. Explicit schemes usually lead to a diagonal mass matrix that helps reduce the

computational cost of one time step substantially. However, these schemes are only stable for time

steps smaller than the Courant limit [24]:

∆t ≤ ∆tcr =
L
c

(2.6)

The Courant limit is determined by the highest natural frequency of the model which is influenced

by the size of the smallest element in the mesh (L) and the wave speed in the material c. Examples

of explicit schemes are the central difference method (which is a special case of the Newmark

[25]), Chung and Lee [30], Zhai [31], and Hulbert and Chung [32]. In this study, we use the

central difference explicit scheme.

14

With central difference explicit time integration, the displacement at time tn+1 can be evaluated

from known quantities at time tn as:

uuun+1 = uuun +∆t u̇uun +
∆t2

2
üuun (2.7)

Once uuun+1 is known, the incremental strain dεεε at instant tn +1 can be computed using shape func-

tions of individual elements. We use triangular three node (T3) elements for spatial discretization

in this study. From incremental strain dεεε , incremental stress dσσσ is obtained from a constitutive

model of the material, which is then used to compute the local state of stress σσσn+1. In this study, a

quasi-brittle material model is used, as described in section 2.3 . Internal force vector pppn+1 is then

computed as:

pppn+1 =
m

A
e=1

NeBBBeT
σσσ

e
n+1 (2.8)

where m is the number of elements in the model, Am
e=1 is the assembly operator for combining the

internal force vectors of all the elements, Ne is the area-integral of the T3 element, BBBe is the matrix

of derivatives of the shape functions and σσσ e
n+1 is the stress vector in element e.

After computation of the internal force pppn+1 in equation-(2.8), the acceleration and subse-

quently velocity at time tn+1 can be computed as:

üuun+1 =MMM−1[fff n+1 − pppn+1] (2.9)

and

u̇uun+1 = u̇uun +
∆t
2

üuun +
∆t
2

üuun+1 (2.10)

This advances the solution by one time-step and the entire process is then repeated for the subse-

quent time steps.

15

2.3 QUASI-BRITTLE CRACKING

A brittle material behaves like an elastic material up till the ultimate load at which failure

occurs, i.e. brittle fracture corresponds to small deformation. Brittle fracture is controlled by flaws

or defects present in the material. Glass is a common example of a brittle material. Materials

like concrete and polycrystalline ceramics behave like brittle material to an extent. However, they

exhibit measurable deformation prior to failure and are classified as quasi-brittle. Once the ultimate

stress is reached in these materials, they exhibit negative stiffness until complete failure, i.e. the

stress and strain are inversely proportional. However, post failure, they look similar to a classically-

brittle failed specimen. In this study, we limit our focus to quasi-brittle materials.

Researchers found that regularization techniques which establish a characteristic length within

the discretization and separate crack interface behaviour from the constitutive behaviour of rest of

the materials are ideal for representing quasi-brittle behavior. In this study, we focus on a technique

called the smeared crack model [33]–[35]. The smeared crack model is based on the principle of

spreading the energy release associated with fracture along the width of the localization band which

in most cases is within a single element. The width of the band is calibrated to accurately model

the dissipated energy.

A version of smeared crack model applied to concrete was developed by Rots and Blaauwen-

drad [36], [37] which is based on the crack band theory developed by Bazant and Oh [33]. This

material model is adopted in this study and described briefly henceforth. In this model, once the

maximum principal tensile stress (MPTS) exceeds the tensile strength of the material, a crack initi-

ates in the element. The crack is oriented such that the normal to the crack surfaces aligns with the

MPTS direction. The direction of crack in each element is fixed throughout the simulation. Post

crack initiation, it is convenient to set up the crack traction-crack strain relations in the rectangular

Cartesian system aligned with the crack, see Figure 2.1 .

Once the total incremental strain (dεεε) is computed as per section 2.2 , it is decomposed into

strain representing the uncracked continuum between cracks (dεεεel), and strain for the cracked part

(dεεεck):

dεεε = dεεε
el +dεεε

ck (2.11)

16

For a 2-D plane stress configuration, the global crack strain vector consists of three components:

dεεε
ck = [dε

ck
11 dε

ck
22 dγ

ck
12]T (2.12)

which are related to the local crack strain components:

deeeck = [deck
nn dgck

ns]T (2.13)

using the transformation matrix, NNN:

dεεε
ck =NNNdeeeck (2.14)

The existing mode-I and mode-II crack properties help create a cracking matrix, DDDck, which pro-

vides a relation between local cracking strains, eeeck and local cracking stresses, ttt as:

dttt =DDDckdeeeck (2.15)

Figure 2.1. Local Coordinate System of crack

Finally, we can write the global stress increment as:

dσσσ =DDDel(dεεε −NNNdeeeck) (2.16)

Upon arithmetic transformations and using the cracking conditions, we get:

dσσσ = [DDDel −DDDelNNN(DDDck +NNNTDDDelNNN)−1NNNTDDDel]dεεε =DDDecdεεε (2.17)

17

2.4 NUMERICAL EXAMPLE

In this section, we study crack propagation in a notched beam under three-point bending as

shown in Fig. 2.2 . The dimensions of the model are chosen to be 10 mm wide and 55 mm long. It

contains a 45°notch of depth 2 mm situated halfway along the length. The model is pinned in the

y-axis at a distance of 7 mm from each end and a linearly ramped load starting with 0 N/mm at t =

0 sec to 10 N/mm at t = 100 µsec is applied as shown Fig. 2.2 .

Figure 2.2. Notched three-point bending model

Material properties chosen for this problem are for glass (see [38]). The following material

parameters are employed: Young’s modulus E = 70×103 N/mm2, Poisson’s ratio ν = 0.23, density

ρ = 2.6×10−9 tonne/mm3, tensile strength σtu = 70 N/mm2, critical stress intensity factor KI
c =

15.8-23.7 N/mm2 mm1/2. Mode-I fracture energy (GI
f) is computed to be 0.0036-0.008 N/mm

using GI
f =

KI2
c
E . Glass cracks at a tensile strain of ecr

u = 0.08 - 0.10 % (see [39]).

The quasi-brittle smeared crack material model described in section 2.3 is adopted to model

the response of glass in this simulation. Even though glass is more akin to a brittle material, this

model is used here with a small strain softening branch to approximate the brittle behavior of glass

and to maintain stability of the in-house code. Nevertheless, this smeared crack material model

is known to be mesh dependent and one must choose an appropriate element size when using this

model (see [36], [37]). The characteristic length lc for the model is given by:

lc = 2∗
GI

f

σtu
∗ 1

ecr
u

(2.18)

18

where GI
f , σtu and ecr

u are known material properties. From Eqn. 2.18 , the characteristic length is

computed to be 0.10−0.23 mm and based on this, one may choose an element size h to adequately

represent the material response around the crack-tip. In this study, square root of the area of the

element is chosen as a measure of the element size and it is determined that T3 elements with an

edge length of 0.125−0.250 mm are required for this simulation.

Figure 2.3. 3 point bending test - Reference mesh 1

Figure 2.4. 0.05 mm mesh in ABAQUS at 100 µsec

This problem is first simulated in the commercial FEM software ABAQUS [40] using the

explicit version of the software. The material library of ABAQUS also includes a smeared crack

model which is primarily intended to model unreinforced concrete but can be useful for other

materials like ceramics, glass and brittle rocks. Similar to the material model used in this study,

the ABAQUS material model is also based on the research of Rots and Blaauwendraad [36], [37].

The sample is discretized such that finer elements are around the notch tip in a region of 5 mm x

10 mm and rest of the domain is modeled using comparatively larger elements as shown in Figure

2.3 . To investigate the mesh-dependence of this model, different discretizations are created where

the size of the smallest elements in the cracking region range from 0.05 mm to 0.5 mm. Figure

19

Figure 2.5. Crack-tip time-history for different meshes in ABAQUS

2.4 shows the response of the finest mesh with 0.05 mm elements in the cracking region. Figure

2.5 shows a plot of the evolution of the crack-tip with time. Note that the crack-tip starts at 2 mm

due to the presence of 2mm deep notch. It is observed that crack initiation is delayed as the size of

the element grows. Since the size of the elements in the coarsest mesh (0.05 mm) are larger than

the characteristic length for the model, a crack did not initiate in this mesh during the 100 µsec

simulation. Conversely, as the element size decreases, the damage localizes within a thin line of

elements along the crack-path and does not exhibit the characteristic length (0.125 mm - 0.25 mm)

for the model parameters. This confirms the mesh-dependent behavior of the smeared crack model

since the results do not converge as the size of the elements is reduced.

Based on the results from different element sizes, the discretization with 0.125 mm elements in

the cracking region is chosen to track the crack propagation and is labelled as ‘Reference mesh 1.’

In the in-house code, simulations are conducted with a time step of 5×10−9 sec using central dif-

ference explicit time integration scheme. This is lower than the stable time increment of 2.3×10−8

sec for the 0.125 mm present in the mesh. Results from the in-house code developed during this

study are compared to results from the commercial FEM software ABAQUS [40] for the same

20

(a)

(b)

Figure 2.6. Reference mesh 1 in ABAQUS and In-house code at 50 µsec respectively

(a)

(b)

Figure 2.7. Reference mesh 1 in ABAQUS and In-house code at 60 µsec respectively

discretization of Reference mesh 1 in Figures 2.6 , 2.7 and 2.8 . In ABAQUS the crack initiates at

the notch around 49 µsec whereas it initiates at 49.22 µsec in the in-house code, see figure 2.9 .

21

(a)

(b)

Figure 2.8. Reference mesh 1 in ABAQUS and In-house code at 100 µsec respectively

As discussed in Section 2.3 , the maximum principal tensile stress in the element exceeding

the tensile strength of the material leads to creation of an initial crack in the element. A damage

measure (Dmg) was developed to represent the extent of failure in the element beyond this point:

Dmg =
ecr

cur
ecr

u
(2.19)

where ecr
cur is the current crack normal strain in the element and ecr

u is the tensile cracking strain

which is a material property. Damage Dmg can take values from 0 to 1, where 0 signifies absence of

initial crack and 1 signifies complete failure of element. To verify the strain-softening behavior of

the quasi-brittle model, a plot of crack normal stress and crack normal strain is shown for element-

1496 in Figure 2.10 as it undergoes cracking. We observe a linear decrease in traction across the

crack surface which is consistent with the quasi-brittle material model used.

22

Figure 2.9. Crack-tip Time History in Ref Mesh-1

Figure 2.10. Crack Normal stress vs crack Normal strain for element-1496

23

2.4.1 Measures of Error

To quantify the differences between the ABAQUS vs in-house code results, we have developed

four measures of errors -

1. Local Instantaneous Relative Error (LIRE) -

ε
m
n (x) =

|xm
n − x̄m

n |
max(|x̄|)

(2.20)

where n refers to the time-step number, m refers to the DOF, x is the quantity under

consideration (for example-displacement, velocity, acceleration, nodal stresses, etc.),

xn refers is the subject solution, x̄n denotes the datum solution, max(|x̄|) denotes the

absolute maximum datum value throughout the simulation. LIRE is a local measure

of error which is evaluated at every time-step at each DOF or element of the reference

solution.

2. Local Cumulative Relative Error (LCRE) -

ϑm(x) =
1
N

N

∑
n=1

|xm
n − x̄m

n |
max(|x̄|)

(2.21)

where N refers to total number of timesteps. This is also a local measure of error which

is the ratio of area enclosed between datum and subject solutions to the total area of

the plot under max(|x̄|).

3. Global Instantaneous Relative Error (GIRE) -

εn(x) =
1
M

M

∑
m=1

|xm
n − x̄m

n |
max(|x̄|)

(2.22)

where M refers to total number of DOFs in the datum solution. GIRE is a global

measure of error which is the average LIRE over all nodes or elements, i.e. GIRE is

evaluated at every time-step.

24

4. Global Cumulative Relative Error (GCRE) -

θ(x) =
1
M

M

∑
m=1

1
N

N

∑
n=1

|xm
n − x̄m

n |
max(|x̄|)

(2.23)

This is a global measure of error which is the average LCRE over all DOFs. GCRE is

a unique value.

While quantifying the accuracy of the in-house code, the datum and subject solutions are the

solutions from ABAQUS and in-house code respectively. In Fig-2.11 , the kinematic value under

consideration is displacement. The maximum LIRE in Fig-2.11 is the maximum value of LIRE

of all the nodes at a particular instant of time and GIRE is as per the above definition. The LIRE

attains a maximum value of 5.57% whereas the GIRE attains a maximum value of 0.18%. The

maximum LCRE is 1.2 % and GCRE is 0.04 %. The small value of local and global cumulative

errors suggest that the results from the in-house code and ABAQUS compare well. It should be

noted that the there is no difference/error until 49 µs, the time at which the crack starts initiating

from the notch (see Figure 2.9).

Figure 2.11. Displacement Error - ABAQUS vs In-house

25

Figure 2.12. 3 point bending test - Different Discretization

2.4.2 Pixelation for Computing Error

Smeared crack models in finite element analysis have been known to exhibit mesh orientation

bias or mesh sensitivity, refer Section 2.3 . This means the orientation of the smeared crack depends

on the orientation of the discretization. To account for this mesh sensitivity, the domain in Fig.

2.2 is discretized into four additional meshes, Reference mesh - 2, Reference mesh - 3, Refined

mesh - 1 and Refined mesh - 2 as shown in Figure 2.12 . Similar to Reference mesh - 1 (Figure

2.3), Reference meshes 2 and 3 are discretized using 0.125 mm T3 elements in the 5 mm x 10

mm region around the notch tip but with different mesh orientations in that region while Refined

meshes 1 and 2 are discretized using 0.250 mm T3 elements.

Crack tip time history for all the Reference and Refined meshes is also shown in Figure 2.13 .

Note that while the time taken for the crack to propagate through the width of the plate is similar

among all meshes, crack initiation is slightly delayed for the refined meshes. Damage patterns at

26

the end of the simulation (at 100 µs) in Reference meshes 2 and 3 are shown in Figures 2.14a

and 2.14b respectively. Comparing these patterns to that of Reference mesh 1 in Figure 2.8b , it

is evident that the damage pattern is different for all three cases and this leads to large errors in

local quantities, such as displacement, in the cracked region. Global measures of error may still be

compared, but they are not a good indicator of the quality of the solution in the region of interest -

which is of primary concern in multi-scale problems and is the main objective of multi-time-step

methods.

Figure 2.13. Crack-tip time-history for different Reference and Refined Meshes

The measures of error, as defined in section 2.4.1 , work well for comparing different solutions

obtained from the same spatial discretization. However, when solutions from different discretiza-

tion have to be compared, they must first be mapped onto a common mesh to allow a direct one-

to-one comparison. To facilitate this mapping, we introduce a pixelation of the problem domain,

shown in Figure 2.15 onto which solutions from different meshes are mapped. Node-related so-

lution quantities, such as displacements, are mapped to the nodes of the pixel mesh by simply

projecting the finite element solution from the Reference and Refined meshes onto the pixel nodes.

Element-related quantities, such as damage, are mapped by overlaying the pixel mesh on the finite

27

(a)

(b)

Figure 2.14. Reference mesh 2 and 3 at 100 µsec respectively

element mesh and computing the fraction of area of each pixel that overlaps with a particular ele-

ment. The value to be assigned to a pixel, of damage for example, is then computed as a weighted

average of the damage of its overlapping elements, weighted by the proportion of the overlapping

area. The size of the pixel (3 mm) is chosen in such a way that it is insensitive to the variability in

crack patterns and yet sensitive to the intensity of damage and its time-history of evolution as the

crack propagates.

Figure 2.15. 3 mm rectangle pixel mesh

To compare the evolution of damage among all the Reference and Refined meshes, the four

measures of error defined in section 2.4.1 are computed on the pixel mesh. Damage variables from

Reference meshes 1, 2 and 3 are mapped to the pixel mesh and their average is used as the datum for

computing damage error. Time history of evolution of maximum LIRE in damage from different

28

discretizations is shown in Figure 2.16 . The maximum damage error over the entire simulation for

the reference and refined meshes are in the range of 0.3-0.5% and 3.5-4% respectively.

Figure 2.16. Maximum LIRE in Damage translated to 3mm rectangle pixel

2.4.3 Computational Runtime Cost Model

In this section, we develop a computational cost model to estimate the runtimes for different

simulations solved using central difference explicit time integration scheme. When a uniform time-

step (UTS) is used throughout the domain, then runtime is function of the number of Degrees of

Freedom (DOFs) and the material model e.g. Linear Elastic, HyperElastic, Smeared Crack Model

etc. To keep the cost model general and to decouple it from the cost associated with different

material models, we will not consider the runtime spent in the computation of the internal force

which depends on the material model being used. Hence, for UTS simulations, the runtime is just

a function of DOFs.

29

The runtime can be split into two parts - initialization runtime and timeloop runtime. The

initialization runtime consists of constructing the matrices required for time-stepping and initial

acceleration calculation. The timeloop runtime is the runtime per time-step multiplied by the

number of time-steps. For UTS, the number of time-steps are fixed and hence the timeloop runtime

is a function of runtime per time-step. Table 2.1 lists the initialization and timeloop runtimes for

the in-house code running on a standard desktop computer for meshes with different number of

degrees of freedom. These data are plot in Figures 2.18 and 2.17 respectively and the resulting

trendline serves as a computational cost model for UTS, allowing us to estimate the runtimes for

different meshes used in the 3-point bending simulation of a notched beam. The total runtime can

be estimated using the equation

(3.761×10−8x2 +2.599×10−4x)+N× (3.423×10−7x) (2.24)

where ’x’ is the Dofs in the system and ’N’ is the total number of timesteps.

Table 2.1. Uniform Time Step Cost Model Information
Initialization Runtime per timestep w/o

DOFs Runtime internal force computation
(#) (sec) (sec)

1,122 0.46 4.37×10−4

1,904 0.76 6.56×10−4

4,242 1.71 1.48×10−3

8,120 4.56 2.74×10−3

16,482 14.5 5.65×10−3

30

Figure 2.17. UTS Cost Model - Initialization Runtime vs DOFs

Figure 2.18. UTS Cost Model - Timeloop Runtime vs DOFs

31

2.4.4 Computational Runtime

Runtimes associated with the different Reference and Refined meshes used in this study are

listed in Table 2.2 . Employing a time-step of 5×10−9 sec for all the discretizations, the system

was advanced through 20,000 timesteps during the simulation, (0 sec to 100 µsec).

Table 2.2. UTS Results and Predictions from UTS Cost Model
Estimated Actual Relative

Initialization Initialization Difference
Mesh Dofs runtime runtime in estimation

(#) (sec) (sec) (%)
Reference mesh-1 7,660 4.20 4.60 9.59
Reference mesh-2 7,792 4.31 4.93 14.4
Reference mesh-3 7,766 4.29 4.44 3.58
Refined mesh-1 2,422 0.85 0.97 14.10
Refined mesh-2 2,430 0.85 0.96 12.46

Estimated Runtime Actual Runtime Relative Total Max.
per timestep w/o per timestep w/o Difference Computational Damage

internal force comp internal force comp in estimation Runtime Error
(sec) (sec) (%) (sec) (%)

2.62×10−3 2.90×10−3 10.60 12,930 0.47
2.67×10−3 2.81×10−3 5.35 13,216 0.41
2.66×10−3 2.70×10−3 1.57 13,030 0.41
8.29×10−4 9.48×10−4 14.35 4,256 3.98
8.31×10−4 9.60×10−4 15.41 4,073 3.73

Table 2.2 shows that the initialization and runtime per timestep (excluding the internal force

computation) predicted by the cost model, as discussed in Section 2.4.3 , are 3.5-14.5% and 1.6-

15.5% lower respectively than the actual runtimes. The total computational time reported in Table

2.2 is the entire time spent in the simulation which includes initialization runtime, timeloop runtime

and internal force computation runtime.

In most dynamic simulations, the timeloop runtime including the internal force computation

is the biggest component of the total runtime, much more than the initialization runtime. The

timeloop runtime depends on the size of timestep, number of timesteps and the material model.

Therefore, if one is either able to reduce the number of time-steps (by using larger time-steps)

or reduce the average runtime per timestep, that can lead to a significant reduction in the total

32

runtime of the simulation. With UTS methods, however, the largest timestep that can be used in

a simulation is governed by the fine-scale dynamics and that restricts the timestep for the entire

domain. This in-turn places a restriction on the minimum number of timesteps in a simulation.

An alternative way to reduce computational cost is to split the domain into multiple subdo-

mains and to solve subdomains of interest, which have fine-scale dynamics, with a small timestep

and solve other subdomains with a large time step. Such methods, called multi-time-step (MTS)

methods, are able to capture the fine-scale dynamics in the regions of interest accurately while

allowing other regions to be solved at a much larger timestep without being restricted by a global

maximum timestep. Chapter-3 discusses MTS methods in detail.

33

3. MULTI-TIME-STEP METHODS

Using a conventional time-integration method with an uniform time-step for the entire domain in

large-scale problems containing elements of varying sizes can be computationally inefficient. One

solution to this problem is to split the domain into multiple smaller subdomains and to solve each

subdomain with a different time-step in accordance with its stability and accuracy requirements. In

this study, we will employ the MTS-PH method which is a FETI-based multi-time-step coupling

method [20], [21], which is summarized in this chapter.

For simplicity, we will decompose the domain two subdomains A and B. The semi-discrete

governing equations of motion (assuming no damping) for the domain split into two subdomains

ΩA and ΩB with an interface Γl are given by:

MMMAüuuA + pppA +CCCAT
λλλ = fff A (3.1)

MMMBüuuB + pppB +CCCBT
λλλ = fff B (3.2)

CCCAu̇uuA +CCCBu̇uuB = 0 (3.3)

where λλλ denotes the vector of Lagrange multipliers used to enforce the continuity of velocities

across the interface Γl and the matrices CCCA and CCCB are connectivity matrices that relate degrees of

freedom from subdomains ΩA and ΩB respectively to degrees of freedom on the interface Γl . Note

that Equation (3.3) enforces the constraint of continuity of velocities across Γl .

3.1 SINGLE-TIME-STEP FORMULATION

In this section, we first present the single-time-step (STS) method where both subdomains

are solved with the same time-step, ∆t. This is a special case of MTS and will help towards the

formulation of MTS-PH method.

34

Recall that the central difference explicit time integration scheme allows the state of subdomain

A to be advanced through one time-step (from tn to tn+1) using:

MMMAüuuA
n+1 + pppA

n+1 +CCCAT
λn+1λn+1λn+1 = fff A

n+1 (3.4)

u̇uuA
n+1 = u̇uuA

n +
∆t
2

üuuA
n +

∆t
2

üuuA
n+1 (3.5)

uuuA
n+1 = uuuA

n +∆t u̇uuA
n +

∆t2

2
üuuA

n (3.6)

Equations (3.5), (3.6) and (3.6) can be written as:

MAUA
n+1 +PA

n+1 +CA
λλλ n+1 = FA

n+1 −NAUA
n (3.7)

where

MA =


MMMA 0 0

−1
2∆tIIIA IIIA 0

0 0 IIIA

 , NA =


0 0 0

−1
2∆tIIIA −IIIA 0

−1
2∆t2IIIA −∆tIIIA IIIA



PA
n+1 =


pppA

n+1

0

0

 , UA =


üuuA

n+1

u̇uuA
n+1

uuuA
n+1

 , FA =


fff A

n+1

0

0

 , CA =


CCCAT

0

0


(3.8)

Since subdomain A and B have the same timesteps, the system of equations for subdomain B can

be written as:

MBUB
n+1 +PB

n+1 +CB
λλλ n+1 = FB

n+1 −NBUB
n (3.9)

The continuity of velocities across the interface is ensured at the end of each time-step in this

section:

CCCAu̇uuA
n+1 +CCCBu̇uuB

n+1 = 0 (3.10)

Equations (3.7), (3.9) and (3.10) can be combined together and written in the form:


MA 0 CA

0 MB CB

BA BB CA




UA
n+1

UB
n+1

λλλ n+1

 =


FA

n+1 −NAUA
n − pAn+1

FB
n+1 −NAUB

n − pBn+1

0

 (3.11)

35

where Bk = [0 Ck 0]. Note that the first row represents the system of equations for subdomain A,

the second row for subdomain B and the last row imposes the continuity of velocity constraint at

the final time step.

Equation (3.11) as can be solved using a bordered system approach. The subdomain blocks

can be collected together and the system expressed as:

[
M C

B 0

][
u

λλλ n+1

]
=

[
f

0

]
(3.12)

Let

u = v + w where v = M-1f, w = -Yλλλ n+1 and Y = M-1C (3.13)

The assumption from Equation (3.13) ensures that the first row in (3.12) is satisfied as:

Mu + Cλλλ n+1 = f =⇒ Mv + Mw + Cλλλ n+1 = f

=⇒ (Mv - f) = (MY - C) λλλ n+1

(3.14)

Using the second row of Equation (3.12), the interface forces can be computed as

Bu = 0 =⇒ Bv + Bw = 0 =⇒ [BY]λλλ n+1 = Bv (3.15)

3.1.1 Computing v

Use Mv = f to compute v.

[
MA 0

0 MB

][
VA

n+1

VB
n+1

]
=

[
FA

n+1 −NAUA
n −PA

n+1

FB
n+1 −NAUB

n −PB
n+1

]
(3.16)

The first row of Equation (3.16) can be expanded to:

MMMAv̈vvA
n+1 = fff A

n+1 − pppA
n+1

v̇vvA
n+1 = u̇uuA

n +
∆t
2

üuuA
n +

∆t
2

v̈vvA
n+1

vvvA
n+1 = uuuA

n +∆t u̇uuA
n +

∆t2

2
üuuA

n

(3.17)

36

3.1.2 Computing Y

Use MY = C to compute Y.

[
MA 0

0 MB

][
YA

n+1

YB
n+1

]
=

[
CA

n+1

CB
n+1

]
(3.18)

The first row of Equation (3.18) can be expanded to:

MMMAŸYY A
n+1 =CCCAT

ẎYY A
n+1 = ẎYY A

n +
∆t
2

ŸYY A
n +

∆t
2

ŸYY A
n+1

YYY A
n+1 =YYY A

n +∆t ẎYY A
n +

∆t2

2
ŸYY A

n

(3.19)

3.1.3 Computing λλλ n+1

Use (BY)λλλ n+1 = BV to compute λλλ n+1.

[
BA BB

][YA
n+1

YB
n+1

]
λλλ n+1 =

[
BA BB

][VA
n+1

VB
n+1

]
(3.20)

The Equation (3.20) can be expanded to:

(CCCAẎYY A
n+1 +CCCBẎYY B

n+1)λλλ n+1 =CCCAV̇VV A
n+1 +CCCBV̇VV B

n+1 (3.21)

3.1.4 Computing w

Use w = -Yλλλ n+1 to compute w.

[
WA

n+1

WB
n+1

]
=−

[
YA

n+1

YB
n+1

]
λλλ n+1 (3.22)

37

The first row of Equation (3.22) can be expanded to:

wwwA
n+1 =−YYY A

n+1λλλ n+1

ẇwwA
n+1 =−ẎYY A

n+1λλλ n+1

ẅwwA
n+1 =−ŸYY A

n+1λλλ n+1

(3.23)

3.1.5 Computing u

From sections - 3.1.1 and 3.1.4 , u = v + w is computed. When using smeared crack model,

damage in the domain is updated after the computation of u.

3.2 MULTI-TIME-STEP FORMULATION

This section has the same semi-discretized equations of motion as Section 3.1 which are Equa-

tions (3.2), (3.3 and (3.3). However, the subdomain A and B are solved at different time-step, ∆T

and ∆t respectively where ∆T = m∆t. MTS-PH method allows both the subdomains to be solved at

their respective time-steps and require the continuity Equation (3.3) to be solved only at the bigger

time-step i.e. ∆T . For convenience, the coupling method is shown for proceeding the solution by

∆T from t0 to tm = t0 +∆T . This can be easily extended for proceeding the solution from tn to

tn+m. The fully discretized equations of motion for subdomain A and B and continuity equation

can be written as:

MAUA
m +PA

m +CA
λλλ m = FA

m −NAUA
0 (3.24)

MBUB
j +PB

j +CB
λλλ j = FB

j −NBUB
j−1 ∀ j ε [1,2, ...,m] (3.25)

CCCAu̇uuA
m +CCCBu̇uuB

m = 0 (3.26)

38

Upon arithmetic transformations (see MTS-PH method for details), Equations (3.25), (3.26) and

(3.26) can be combined together and written in the form:



MB 1
mC

B

NB MB 2
mC

B

.

NB MB CB

MA CA

BB BA 0





UB
1

UB
2
...

UB
m

UA
m

λλλ n+1


=



FB
1 −NBUB

0 −PB
1 −CBS1

FB
2 −PB

2 −CBS2
...

FB
m −PB

m −CBSm

FA
m −PA

m −NAUA
0

0


(3.27)

where Sj = (1− j
m)λλλ 0+CCCA[fff A

j −(1− j
m) fff A

0 −
j
m fff A

m]. Using the bordered procedure again, Equation

(3.27) is solved in the following sections.

3.2.1 Computing v

Use Mv = f to compute v:

MB

NB MB

.

NB MB

MA





VB
1

VB
2
...

VB
m

VA
m


=



FB
1 −NBUB

0 −PB
1 −CBS1

FB
2 −PB

2 −CBS2
...

FB
m −PB

m −CBSm

FA
m −PA

m −NAUA
0


(3.28)

3.2.2 Computing Y

Use MY = C to compute Y.

MB

NB MB

.

NB MB

MA





YB
1

YB
2
...

YB
m

YA
m


=



1
mC

B

2
mC

B

...

CB

CA


(3.29)

39

3.2.3 Computing λλλ n+1

Use (BY)λλλ n+1 = BV to compute λλλ n+1.

(CCCAẎYY A
m +CCCBẎYY B

m)λλλ m =CCCAV̇VV A
m +CCCBV̇VV B

m (3.30)

3.2.4 Computing w

Use w = -Yλλλ n+1 to compute w.

WB
1

WB
2

...

WB
m

WA
m


=−



YA
1

YA
2
...

YA
m

YB
m


λλλ m (3.31)

3.2.5 Computing u

From sections - 3.2.1 and 3.2.4 , u = v + w is computed. When using smeared crack model,

damage in the domain is updated after the computation of u.

3.3 NUMERICAL EXAMPLE

In this section, we solve the same problem discussed in Section 2.4 using MTS-PH method and

evaluate the computational gain achieved over the uniform time-step (UTS) method. We choose

"Refined mesh-2" (see Figure 2.12) as the discretization for the sample. The 5 mm x 10 mm

region around the notch tip is specified to be subdomain B and is always solved using a timestep

of 5×10−9, i.e. ∆tB = 5× 10−9. The rest of the domain, i.e. subdomain A is either solved at

5×10−9, 1×10−8, 2.5×10−8 or 5×10−8 with timestep ratios (mAB) 1, 2, 5 and 10, respectively.

The final state at 100 µsec of the beam for these four MTS simulations is shown in Figure 3.1 . The

corresponding crack-tip time-histories are plot in Figure 3.2 and Figure 3.3 shows the maximum

LIRE in Damage.

40

(a)

(b)

(c)

(d)

Figure 3.1. Refined mesh 2 at 100 µsec for mAB = 1, 2, 5 & 10 respectively

3.3.1 MTS Computational Runtime Cost Model

Similar to Section 2.4.3 , we develop a runtime cost model for MTS as well. The initialization

runtime cost for MTS depends only the total number of degrees of freedom and is similar to UTS

cost model (Table 2.1 and Figure 2.17). Hence, we focus on the timeloop runtime in MTS which

depends on a number of factors listed below:

1. Degrees of Freedom in subdomain A (DOFs-A)

2. Degrees of Freedom in subdomain B (DOFs-B)

41

Figure 3.2. Crack-tip time-history in refined mesh-2 for mAB = 1, 2, 5 & 10

Figure 3.3. Maximum Damage LIRE in refined mesh-2 for mAB = 1, 2, 5 & 10

3. Degrees of Freedom along the interface (iDOFs)

4. Time-step ratio (mAB)

42

Note that the total degrees of freedom is the sum of DOFs-A and DOFs-B minus the iDOFs.

The timeloop runtime can be further split into five parts - Predictor-A, Predictor-B, Interface,

Corrector-A and Corrector-B. This segregation allows us to determine the effects of the individual

factors on the timeloop runtime, see Figures 3.4 , 3.5 , 3.6 , 3.7 and 3.8 . It is evident from Figures

3.5 and 3.8 that the timestep ratio (mAB) has no effect on the runtimes for subdomain-B. The

computational gain when using MTS is due to the use of coarser time-steps in subdomain-A. One

of the primary reasons to develop the MTS cost model is to determine the conditions when it is

beneficial to use MTS over UTS. The total timeloop runtime per ∆tB can be estimated using the

equation

mAB× (3.316×10−8 ×Dofs-A)+(3.534×10−7 ×Dofs-B)

+mAB× (4.628×10−7 × idofs)+mAB× (1.206×10−8 ×Dofs-A)

+(9.749×10−7 ×Dofs-B)

(3.32)

Figure 3.4. MTS Cost Model: Predictor-A Runtime per small timestep, ∆tB vs DOFs

43

Figure 3.5. MTS Cost Model: Predictor-B Runtime per small timestep, ∆tB vs DOFs

Figure 3.6. MTS Cost Model: Interface Runtime per small timestep, ∆tB vs DOFs

44

Figure 3.7. MTS Cost Model: Corrector-A Runtime per small timestep, ∆tB vs DOFs

Figure 3.8. MTS Cost Model: Corrector-B Runtime per small timestep, ∆tB vs DOFs

3.3.2 Computational Runtime

This section outlines the runtime details associated with using the Refined mesh-2 discretiza-

tion for different timestep ratios (mAB) in the notched three-point bending problem. The sub-
45

domains decomposition is kept constant throughout the simulation, i.e. the fine discretization

around the notch tip is specified as the subdomain-B while the rest of the domain is specified as

subdomain-A. The values of Dofs-A, Dofs-B and idofs for this discretization are 266, 2272 and

108 respectively. Employing a small time-step (∆tB) of 5×10−9 sec, the simulation is conducted

for 100×10−6 sec. In Table 3.1 , we compare the actual runtimes against the runtimes predicted by

the MTS cost model. We take the UTS runtime for Refined Mesh-2 (4,073 sec from Table 2.2) as

the baseline.

Table 3.1. MTS Results and Predictions from MTS Cost Model
Estimated Estimated Estimated Estimated Estimated Estimated

Predictor-A Predictor-B Interface Corrector-A Corrector-B Runtime per
mAB Runtime Runtime Runtime Runtime Runtime Timestep

(#) (sec) (sec) (sec) (sec) (sec) (sec)
UTS N/A N/A N/A N/A N/A 8.31×10−4

1 9.10×10−5 8.17×10−4 5.02×10−4 3.57×10−5 2.23×10−4 1.67×10−3

2 4.41×10−5 8.13×10−4 2.30×10−4 1.63×10−5 2.32×10−4 1.34×10−3

5 1.75×10−5 7.90×10−4 1.02×10−4 6.42×10−6 2.17×10−4 1.13×10−3

10 8.86×10−6 7.90×10−4 5.91×10−5 3.37×10−6 2.14×10−4 1.08×10−3

Actual Actual Actual Actual Actual Actual
Predictor-A Predictor-B Interface Corrector-A Corrector-B Runtime per

Runtime Runtime Runtime Runtime Runtime Timestep
(sec) (sec) (sec) (sec) (sec) (sec)
N/A N/A N/A N/A N/A 9.60×10−4

3.13×10−4 1.03×10−3 5.37×10−4 7.15×10−5 2.23×10−4 2.17×10−3

1.53×10−4 9.72×10−4 2.82×10−4 3.63×10−5 2.19×10−4 1.66×10−3

6.00×10−5 9.31×10−4 1.15×10−4 1.58×10−5 2.22×10−4 1.34×10−3

3.64×10−5 1.04×10−3 6.47×10−5 9.18×10−6 2.24×10−4 1.37×10−3

In Table 3.1 , “+/-" runtime difference denote increase and decrease respectively, with respect

to UTS. It is observed that mAB = 1 (STS) has worse performance than UTS due to the additional

computational cost of coupling required at every time-step, while MTS with mAB = 10 has the

best performance. We observe a 12.4% reduction in runtime from using MTS mAB = 10 versus

UTS while maintaining similar level of maximum damage error.

46

Relative Total Runtime Max.
Difference computational Difference Damage

in estimation runtime from UTS Error
(%) (sec) (%) (%)
15.4 4,073 NA 3.73
29.9 4,235 +4.0 3.73
23.9 3,860 -5.2 3.77
18.6 3,578 -12.2 3.82
26.9 3,568 -12.4 3.88

The computational gain through MTS in this crack propagation problem using Refined mesh-2

as the discretization is limited because of the relatively large size of subdomain B in comparison

to subdomain A. If we can limit the fine discretization region to a small region around the crack

tip instead of having fine discretization throughout the width of the specimen, we can significantly

reduce the number of Dofs in subdomain B, which can in-turn reduce the total computational

cost. This would require adaptation of the region around the crack tip as the crack propagates. An

adaptive multi-time-step (AMTS) method that enables the evolution of the region of interest during

the simulation is discussed in Chapter-4 .

47

4. ADAPTIVE MULTI-TIME-STEP METHOD

Fine-scale dynamics in problems involving fracture are usually are focussed around the crack tip.

The rest of the domain away from the crack does not typically require a fine spatial discretization

allowing one to reduce the total number of Dofs present in the system. However, this reduction

in Dofs requires the focused fine-mesh region to be updated dynamically as the crack propagates

through the material. In this chapter, we develop a method which updates the fine-mesh region of

interest around the crack tip adaptively.

4.1 ADAPTIVITY SCHEME

Three key steps are needed to adaptively track the region of interest in a dynamically evolving

problem:

• Criterion to define the region of interest as it evolves during runtime

• Mesh refinement and coarsening strategy

• Mapping of data from one mesh discretization to another

Since undertaking any of these steps during a simulation can add a significant computational over-

head, their implementation in a computationally efficient manner is key to realizing any gains from

adaptivity.

4.1.1 Criteria to define regions of interest

In this study, two different criteria are used for two different types of problems. One criterion

is based on identifying high spatial gradients in stress in the problem domain and can be used for

tracking the wave-front in wave-propagation problems. Usually, one needs a fine discretization at

the wave-front to resolve the wave form while a coarse discretization suffices elsewhere. Another

criterion is based on locating the crack-tip in problems involving fracture and is used to adpatively

refine the region around the crack tip as it moves through the problem domain.

For the stress-gradient criterion, one can compute approximate spatial gradients by taking the

difference of a stress-measure between neighboring elements and dividing it by the distance be-

48

tween their centroids. We adopt a simple measure of stress in an element as the trace of the stress

tensor i.e. volumetric stress and we define neighboring elements as those which share at least

one node. Once stress gradients are computed for all neighboring element-pairs in the mesh, we

create a distribution of this data and use a threshold value to determine which element-pairs have

high gradients compared to the rest of the mesh. Elements associated with a high stress gradients

are assumed to be experiencing fine-scale dynamics and these elements, along with their first and

second neighbors, are identified as being in the region of interest.

For crack-propagation problems, we use damage, as defined in Equation 2.19 , and its rate of

increase with time as an indicator of the location of the crack-tip. Elements that are associated

with a high rate of increase of damage are assumed to be at or near the crack-tip and are therefore

included in the region of interest, along with their first and second neighbors.

4.1.2 Mesh refinement and coarsening

Once regions of interest are identified, the mesh is decomposed into subdomains A and B ac-

cordingly, which is updated subsequently as the regions of interest evolve. The number of times

we need to update the subdomains depends on the rate of deformation or the rate of crack propa-

gation. Each update creates a new discretization - a new mesh state - where some elements may

be refined while others are merged together into coarser elements. Updating the mesh can be done

using techniques similar to adaptive mesh refinement.

Figure 4.1. Example of evolving mesh states generated from an initial mesh

The in-house code developed in this study allows the user to provide an initial mesh which is

adaptively refined by creating finer elements in the regions of interest in a nested manner as shown

49

in Figure 4.1 . To create the different mesh states shown in Figure 4.1 , elements in the initial mesh

are divided into smaller elements. Elements in the initial mesh are referred to as ’Parent (Level-0)’

elements and subsequent smaller elements created from them in different mesh states are referred

to as ’Children (Level-1)’ and ’Grandchildren (Level-2)’ elements. In the mesh states shown in

Figure 4.1 , parent elements undergo two levels of refinement, first into children elements and then

into grandchildren elements. A sample two-level refinement of a parent element is shown in Figure

4.2 .

Figure 4.2. Sample Level-0, Level-1, Level-2 refinements

We adopt the following rules for refinement of parent elements to ensure that element quality

is maintained upon refinement. Elements are first classified into three types based on their shape:

Type 1: Elements for which all three edges satisfy the condition:
(

li
lmax

)
> 0.6

Type 2: Elements for which two edges satisfy the condition:
(

li
lmax

)
> 0.6

Type 3: Elements for which only one edge satisfies the condition:
(

li
lmax

)
> 0.6

where li (i = 1,2,3) is length of edge i and lmax is the length of the longest edge. Depending upon

its type, a parent element may lead to different number of children elements after one level of

refinement. As shown Figures 4.3 , 4.4 and 4.5 , a Type-1 parent element has 10 possible children

elements, a Type-2 has 8 possible children elements and Type-3 has 6 possible children elements

. Once all the possible children elements are generated, subsequent grandchildren elements are

created from each of the children elements using the same procedure. Thus, a Type-1 element can

have a maximum of 100 possible grandchildren elements after two levels of refinement, if each of

its 10 children elements are also of Type-1.

50

Figure 4.3. Possible children elements of Type-1 parent element

Figure 4.4. Possible children elements of Type-2 parent element

Figure 4.5. Possible children elements of Type-3 parent element

Using the rules defined above, the mesh is refined in the regions of interest (ROI) as determined

by the criteria from section 4.1.1 . Elements in the level-0 mesh with 2 or more nodes within the

ROI are divided into their respective level-1 elements. In Figure 4.6 , the first 5 elements on the

left are in the ROI. However, this leads to the creation of hanging nodes as shown in Figure 4.7 ,

where element ’X’ contains the hanging node. Depending upon the type of element ’X’ is and the

edge containing the hanging node, element ’X’ is divided into either 2 or 4 level-1 elements.

51

Table 4.1. Hanging node element refinement information
Element Hanging Node Level-1

Type Edge Elements
1 A 3,4
1 B 5,6
1 C 1,2
2 A 3,4
2 B 5,6,7,8
2 C 1,2
3 A 3,4,5,6
3 B 1,2
3 C 3,4,5,6

Table-4.1 lists the possible level-1 elements obtained from a level-0 element shown in Figures

4.3 , 4.4 and 4.5 . In Figure 4.7 , element ’X’ is a type-1 element. Hence, it is divided into two level-

1 elements and the final level-1 mesh is shown in Figure 4.8 . The process is repeated to refine

level-1 mesh into level-2 mesh (that leads to Mesh State-1) as shown in Figure 4.9 . Once Level-2

mesh is created, smaller elements are categorized as subdomain-B while the rest of the system is

classified as subdomain-A for the MTS method. As the ROI evolves, the process to create mesh

states 2 and 3 is identical to that of mesh state-1, as discussed above.

Figure 4.6. Reference point and ROI in Level-0 mesh for Mesh State-1

Note on Implementation: Conducting mesh refinement to compute mesh states during the simu-

lation can be very time consuming and has the potential to negate any computational gains that one

may hope to achieve with adaptivity. To facilitate fast transitions from one mesh state to another

when the ROI evolves, we pre-compute the possible mesh states before commencing time-stepping.

This is done by creating all possible level-1 and level-2 children of parent elements in the initial

mesh that are likely to be refined during the simulation. Quantities associated with all such children

52

Figure 4.7. Level-1 mesh with Hanging nodes for Mesh State-1

Figure 4.8. Level-1 mesh for Mesh State-1

Figure 4.9. Level-2 mesh or Mesh State-1

and grandchildren elements - such as derivatives of shape functions, mass and stiffness matrices -

are stored in a hierarchical manner linked to their parent element. During runtime, elements are

simply switched on and off as refinement and coarsening occurs. Subdomain matrices are also

easily modified using this strategy because when an element is turned on or off, its contribution to

the subdomain mass and stiffness matrix is added to or subtracted from the previous subdomain

matrix. Even though saving all this information requires a lot more storage than a conventional

mesh, it helps reduce the overhead associated with implementation of adaptivity and allows rapid

transitions between mesh states. For moderate-size problems, consisting of 10,000-20,000 Dofs,

this implementation can drastically reduce the runtime at the expense of some additional storage.

However, for large problems involving millions of Dofs, this implementation would lead to non-

trivial storage issues.

53

4.1.3 Data transfer between two successive mesh states

The final piece of the puzzle to implementing adaptivity is transferring the state of the prob-

lem from one mesh-state to another. Data that need to be transferred between successive mesh

states can be classified into elemental and nodal quantities. Elemental quantities include the el-

ement stress, strain and crack properties and nodal quantities include displacement, velocity and

acceleration.

Element data to be transferred from the present mesh-state to the next mesh-state may be clas-

sified into one of the following:

1. No change: For unchanged elements in between the two mesh states, the values are directly

copied from the present to future mesh state.

2. Refinement: When the elements undergo refinement, the newly created elements in future

mesh state are assigned the same values as that of the original element in the present mesh

state.

3. Coarsening: For fine elements coarsened from present to future mesh state, area weights of

the present elements combining to form the future element are used to compute the values.

For example, Figure 4.10 shows the elements undergoing refinement and coarsening in mesh state-

1 for data transfer between mesh state-1 and mesh state-2 in Figure 4.1 . All other elements are

unchanged between the two mesh states.

Figure 4.10. Regions for Elemental Data Transfer in mesh state-1

Nodes in the present mesh-state and the next mesh-state can be classified into one of the fol-

lowing and the values of the nodal variables determined as noted:

54

1. Nodes in both mesh states and not a part of newly refined or coarsened elements: Values are

directly copied from the present to next mesh-state.

2. Nodes created as part of newly formed refined elements in the next mesh state: Values are

interpolated using the shape functions of elements in the present mesh-state.

3. Nodes in both mesh states and part of newly formed coarse elements in the next mesh-state:

Values are computed using a minimization of the error between the present and the next

mesh-state as described next.

Figure 4.11 shows the nodes which are a part of newly formed coarse elements in mesh state-2 for

data transfer between mesh state-1 and mesh state-2 in Figure 4.1 .

Figure 4.11. Nodes part of newly formed coarse elements in mesh state-2

The following data transfer strategy is employed to compute the future mesh state values. We

define a measure of error, ε , between the fine vs coarse element values as:

ε =
∫∫

B

(
f F − fC

)2
dB (4.1)

=
n

∑
j=1

∫∫
Bj

(
f F − fC

)2
dBj (4.2)

=
n

∑
j=1

m

∑
k=1

∫∫
Ωk

(
3

∑
α=1

Nk
α f kF

α −
3

∑
β=1

Sj
β

f jC
β

)2

dΩ
k (4.3)

where B is the combined domain of all the coarse elements under consideration, Bj is the area

under ’j’ coarse element, n is the total number of coarse elements in the domain, Ωk is the area

under ’k’ fine element, m is the total number of fine elements in the ’j’ coarse element, f F and f kF

are the global and elemental values in the fine elements, fC and f jC are the global and elemental

values in the coarse elements, Nk
α are the shape functions in the ’k’ fine element and Sj

β
are the

shape functions in the ’j’ coarse element.

55

Minimizing the error ε with respect to the coarse element values fC
γ , we get:

dε

d fC
γ

= 0 (4.4)

⇒
n

∑
j=1

m

∑
k=1

∫∫
Ωk

2

(
3

∑
α=1

Nk
α f kF

α −
3

∑
β=1

Sj
β

f jC
β

)
Sj

γ dΩ
k = 0 (4.5)

Using 3-point Gauss quadrature to compute the above integral, we get:

n

∑
j=1

m

∑
k=1

3

∑
gp=1

1
3

(
3

∑
α=1

N̄k
α f kF

α −
3

∑
β=1

S̄jk

β
f jC
β

)
S̄jk

γ Ω
k = 0 (4.6)

where N̄k
α and S̄jk

β
denote the fine and coarse shape function values at the gauss points of the fine

element ’k’ respectively.

n

∑
j=1

m

∑
k=1

3

∑
gp=1

1
3

(
S̄jk

γ Ω
k

3

∑
α=1

N̄k
α f kF

α

)
−

n

∑
j=1

m

∑
k=1

3

∑
gp=1

1
3

(
S̄jk

γ Ω
k

3

∑
β=1

S̄jk

β
f jC
β

)
= 0 (4.7)

Upon simplification, the above equation can be written in matrix form as:

n

∑
j=1

m

∑
k=1

3

∑
gp=1

1
3

Ω
kS̄SSjk

S̄SSjkT

fff jC =
n

∑
j=1

bbbj (4.8)

56

where

S̄SSjk
=


S̄jk

1

S̄jk

2

S̄jk

3

 ; fff jc =


f jC
1

f jC
2

f jC
3

 ;N̄NNk
=


N̄k

1

N̄k
2

N̄k
3

 ; fff kF =


f kF
1

f kF
2

f kF
3

 ;

bbbj =PPPQQQjF

PPP =

[
Ω1

3 ∑
3
gp=1 S̄SSj1

N̄NN1T
.... Ωm

3 ∑
3
gp=1 S̄SSjm

N̄NNmT
]

; QQQjF =



fff 1F

.

.

fff mF



(4.9)

Equation-(4.8) is in the elemental form. The vectors and matrices can be assembled as:

LLLfffC = bbbG (4.10)

where

LLL =
n

A
j=1

(
m

∑
k=1

3

∑
gp=1

1
3

Ω
kS̄SSjk

S̄SSjkT
)
, fffC =

n

A
j=1

fff jC, bbbG =
n

A
j=1

bbbj (4.11)

Equation 4.10 can be solved for fffC to obtain the coarse mesh values from fine scale variables.

4.2 DATA TRANSFER VERIFICATION

To evaluate the accuracy of the data transfer strategy described in section 4.1.3 , we consider

a wave propagation problem in a rectangular plate that is 1 m wide and 8 m long, see Figure

4.12 . One edge of the model is fixed and a uniform step-load of 1 N/m is applied throughout the

simulation (0-8 sec). The plate is composed of a linear-elastic material (Young’s Modulus E = 2

Pa, Poisson’s ratio ν = 0.25, Density ρ = 2 kg/m3) with 10% mass proportional Rayleigh damping.

The model is discretized using nine different meshes - six regular (as shown in Figure 4.13)

and three adaptive meshes with predefined mesh-states (as shown in Figure 4.14 , 4.15 and 4.16

57

Figure 4.12. Wave propagation

respectively). For the adaptive meshes, the input mesh is provided by the user and is used only to

create the multiple mesh-states - it is not used during the simulation. The simulation starts with the

model in an initial discretization of mesh state-1. Adaptive meshes 1, 2 and 3 undergo 3, 4 and 5

mesh transitions respectively.

All nine discretizations of the model are run using central-difference explicit time integra-

tion scheme. The stable time-increment for the most refined mesh (16 elements along width) is

6.25×10−2 sec. Hence, all meshes are solved with a time-step of 4×10−2 sec and measures of er-

ror are computed. Accuracy of the data transfer is evaluated using the local instantaneous relative

error (LIRE) in displacement (see section-2.4), which requires mapping of results of all the dis-

cretizations to a reference or pixel mesh (see section sec:pixelation). The reference or pixel mesh

adopted for error computations is the 16 elem along width mesh in Figure 4.13 . The datum and

58

Figure 4.13. Wave propagation : Six regular meshes

Figure 4.14. Wave propagation : Adaptive Mesh-1 (3 transitions)

subject solutions for the LIRE are the original reference mesh values and the mapped reference

mesh values for different discretizations.

59

Figure 4.15. Wave propagation : Adaptive Mesh-2 (4 transitions)

Figure 4.16. Wave propagation : Adaptive Mesh-3 (5 transitions)

LIRE in displacement for different subject meshes with respect to the datum mesh are shown

in Figure 4.17 . It is apparent from the plots that as the refinement of the meshes increases, the

errors tend to decrease. An important thing to note is that the first transition from mesh state-1

60

to mesh state-2 occurs at 2 sec in adaptive mesh-3 occurs and the errors are comparable to the

refined regular meshes up until about 2.5-2.6 sec. The errors increase after this point in time due

to dispersion of the wave and presence of non-causal waves that travel in advance of the wave-

front and end up outside the refinement region. It can be argued that since errors do not jump up

immediately after the mesh transition and stay within the range of the refined and regular meshes,

therefore the data transfer strategy is accurate. A similar trend is observed in Adaptive meshes 1

and 2 where the first transition occurs at 4 sec and 3 sec respectively.

Figure 4.17. Displacement LIRE for different discretizations

4.3 NUMERICAL EXAMPLE

We consider the notched 3-point bending problem discussed previously in Section-2.4 and 3.3 .

The initial input mesh for this problem, shown in Figure 4.18 , is only used to create the different

adaptive mesh states and does not serve any other purpose during the simulation. Three different

adaptive meshes created from this initial mesh are used to compare the performance of the adaptive

uniform time-step method (AUTS) method and the adaptive multi-time-step (AMTS) method to

61

their original (non-adaptive) UTS and MTS counterparts. Key characteristics of these meshes are

listed as follows:

1. Adaptive mesh-1 consists of a fine mesh region of 5 mm x 7 mm and undergoes 2 transitions

to track the crack propagation - see Figure 4.19

2. Adaptive mesh-2 consists of a fine mesh region of 5 mm x 8 mm and undergoes 2 transitions

to track the crack propagation - see Figure 4.20

3. Adaptive mesh-3 consists of a fine mesh region of 5 mm x 9 mm and undergoes 1 transitions

to track the crack propagation - see Figure 4.21

All three adaptive meshes are made up of 0.250 mm elements in the fine mesh region.

Figure 4.18. Input Mesh for Adaptive meshes

First, the three adaptive meshes are used with the AUTS method and maximum LIRE in dam-

age is compared to that obtained from Refined meshes 1 and 2 run with the UTS method in Figure

4.22 . The maximum damage error over the entire simulation for the refined meshes is in the range

of 3.82-3.98% respectively, whereas maximum damage error in the adaptive mesh-1, 2 and 3 is

around 3.88%, 3.87% and 4.47%, respectively. Since errors from the adaptive meshes are similar

to those from the refined meshes, this validates the results from the adaptive meshes.

4.3.1 Reduction in runtimes due to adaptivity

Table-4.2 compares the runtimes for different adaptive meshes against refined mesh-2 when an

uniform time-step (UTS) is used throughout the domain. The total DOFs for the adaptive meshes

are shown as a range since each adaptive mesh is made up of various mesh-states. The mesh-

states runtime is the time spent in pre-computing the various mesh states prior to the time-loop.

62

Figure 4.19. Mesh States of Adaptive mesh 1 (5 mm x 7 mm with 2 transitions)

Figure 4.20. Mesh States of Adaptive mesh 2 (5 mm x 8 mm with 2 transitions)

We note that the computational overhead associated with adaptivity is relatively small: 2.7 sec,

5.18 sec and 5.02 sec for adaptive mesh-3, adaptive mesh-2 and adaptive mesh-1 respectively.

However, adaptive mesh-1 and 2 undergo two transitions each and hence, the runtime overhead

associated with adaptivity is around 2.5-2.7 sec per transition which is much smaller compared to

63

Figure 4.21. Mesh States of Adaptive mesh 3 (5 mm x 9 mm with 1 transition)

Figure 4.22. Damage Error Translated to 3mm rectangle pixel

the reduction in runtime achieved through adaptivity. Adaptive mesh-1 has the smallest fine mesh

region among the adaptive meshes and contains the minimum number of DOFs which results in

64

Table 4.2. Different Adaptive Meshes vs Refined Mesh-2 with UTS
Total Number of Mesh States Initialization Runtime

Mesh DOFs Transitions Runtime Runtime per Timestep
(#) (#) (sec) (sec) (sec)

Refined Mesh-2 2,430 N/A N/A 0.96 9.60×10−4

Adaptive Mesh-3 2,270-2,278 1 137.2 1.15 1.07×10−3

Adaptive Mesh-2 2,040-2,120 2 209.5 1.35 8.76×10−4

Adaptive Mesh-1 1,828-1,924 2 191.5 1.22 8.81×10−4

Adaptivity Total Runtime Difference Maximum
Runtime Runtime from UTS Damage Error

(sec) (sec) (%) (%)
N/A 4,073 N/A 3.82
2.79 4,016 -1.4 4.47
6.01 3,597 -11.7 3.87
5.65 3,528 -13.4 3.84

the maximum reduction in runtime of about 13.4%. This is not surprising as this is the idea behind

adaptive mesh refinement where the fine discretization is limited to regions of interest.

Next, we study if similar gains in computational efficiency can be achieved with the AMTS

method in comparison to the original (non-adaptive) MTS method. Factors governing the runtime

of the AMTS method are the same as the ones discussed in section-3.3 for the MTS method.

Table-4.3 presents this comparison for adaptive mesh 1 compared to refined mesh 2. Note that

mAB = 0 denotes the UTS method which is taken as the baseline case. We note that the runtime

reduces by about 32% with AMTS method compared to the UTS method and is also less than the

original (non-adaptive) MTS method by about 12%. Additionally, we observe that the maximum

damage error with respect to the datum mesh is around 3-4 % for different time step ratios in both

refined mesh-2 and adaptive mesh-1. Hence, we conclude that AMTS method can help reduce the

runtime while maintaining the accuracy of the solution.

4.3.2 Limitations to adaptivity

Having demonstrated the benefits of the AMTS method, we now define the boundaries to

such adaptivity. As discussed in Section-4.1.2 , prior knowledge of the body’s response under the

65

Table 4.3. Adaptive Mesh-1 Results Comparison
Total Runtime Difference Max. Damage

Mesh mAB Adaptivity Runtime from UTS Error
(sec) (%) (%)

Refined mesh-2 0 No 4,073 N/A 3.73
Refined mesh-2 1 No 4,245 +4.0 3.73
Refined mesh-2 2 No 3,860 -5.2 3.77
Refined mesh-2 5 No 3,587 -12.2 3.82
Refined mesh-2 10 No 3,568 -12.4 3.88

Adaptive mesh-1 1 Yes 3,633 -10.8 3.84
Adaptive mesh-1 2 Yes 3,191 -21.7 3.86
Adaptive mesh-1 5 Yes 2,820 -30.8 3.93
Adaptive mesh-1 10 Yes 2,784 -31.6 3.97

specified loads is needed to create pre-defined mesh states. In addition, the current data transfer

strategy requires the original notch tip to always have fine discretization even when the actual

crack tip is away from it. When the fine element at the notch tip, which is fully damaged, undergoes

coarsening, the coarsened element might not be fully damaged since not all of its children elements

in the previous mesh state were fully damaged. This is an inaccurate representation of the crack

which leads to inaccurate results. In the numerical problem that has been discussed in this study

has a 2mm deep notch and since the fine mesh travels 1 mm with every transition, we are currently

limited to a maximum of two transitions.

Figure 4.23. Response before the third transition in Adaptive mesh-4

A new mesh, Adaptive mesh-4 with a fine mesh region of 5 mm x 7 mm with 3 transitions is

tested as well. The response before and after the third transition is shown in Figures 4.23 and 4.24

respectively. We note that the original notch tip is intact immediately after third transition which is

inaccurate. This leads to inaccurate results after the third transition as shown in Figure 4.25 . The

66

Figure 4.24. Response immediately after the third transition in Adaptive mesh-4

Figure 4.25. Response at 100 µsec in Adaptive mesh-4

inaccuracy in the data transfer when a fully damaged element is coarsened is a limitation of the

current study. One possible way to overcome this limitation is to use element weakening method

instead of element elimination to represent the crack. The element weakening method will allow

assignment of weak properties or reduced stiffness to selected elements once the they undergo

complete failure. Consequently, a newly coarsened element after a transition may be assigned a

reduced stiffness based on the area weights of all the fine elements which are a part of it.

Despite these limitations and the challenges involved with adaptivity, we conclude that the

AMTS method can improve the computational efficiency for simulating dynamically evolving

problems in comparison to most existing methods in the literature.

67

5. SUMMARY AND CONCLUSIONS

The present Adaptive Multi Time-step (AMTS) method provides an efficient way to solve multi-

scale problems where the region of interest evolves dynamically during the simulation. This

method is an extension of the unconditionally stable, energy preserving multi-time-step method

developed by Prakash and co-workers [20], [21] which allows domain decomposition alonog with

the use of multiple time steps and different time-stepping schemes.

The current study uses the central difference explicit time integration method to advance the

solution in time. We focus on crack propagation in a notched 3-point bending test for quasi-brittle

material and use the smeared crack model to simulate cracking. The smeared crack model intro-

duces a parameter called the characteristic length which depends upon the material properties. The

characteristic length in turn governs the element size in the mesh. For glass, the element size has to

be in the range of 0.125-0.250 mm for accurate representation of cracks. The material model is first

validated against a commercial finite element software ABAQUS which also allows simulation of

brittle cracking using a smeared crack model. Comparison of results from ABAQUS and the in-

house code show that the maximum instantaneous difference in the displacement response is about

5-6%. This difference is due to minor inconsistencies between the respective material models and

implementation. Additionally, the damage error is compared for different discretizations against

a datum mesh. We find that using the 0.250 mm mesh instead of the 0.125 mm mesh reduces the

computational runtime upto 70% when a uniform time-step (UTS) method is employed throughout

the domain. Discretizations used for UTS simulations consist of a refined region of small elements

throughout the width of the domain along the prospective crack path. The maximum instantaneous

damage error in the 0.125 mm mesh is found to be about 0.4% and in the 0.250 mm mesh it is

about 4.0%.

A multi time-step (MTS) method where the domain is split into two fixed subdomains and

the refined region is solved at the same timestep as the UTS method and the remainder of the

mesh is solved at larger time-step with a ratios of 2, 5 and 10, is also used for the 3-point bending

simulation. For a a time-step ratio of 10, the MTS method is found to be 12.4% more efficient that

the UTS method for similar levels of error.

68

The adaptive multi time-step method (AMTS) where the subdomain of fine mesh refinement

is adaptively updated to track the crack tip is developed. Unlike UTS and MTS, with AMTS,

one is able to choose a smaller region of the domain for mesh refinement and therefore reduce

the computational cost of the simulation. Adaptivity requires three components: a criterion to

determine the region of interest experiencing fine-scale dynamics at runtime, a strategy for adaptive

mesh refinement, and a scheme for mapping data from one mesh to another. To save computational

time during the simulation, we precompute the possible mesh states of the domain with focused

refined region along the prospective crack path. Upon simulating the notched 3-point bending test

using AMTS, a 32% runtime reduction is observed over the UTS runtime while maintaining the

damage error in the same range.

5.1 Future Directions

Precomputation of various the mesh states of the domain requires prior knowledge or estima-

tion of the body’s response to the loading. For the notched 3-point bending test, the crack path is

predictable but for general crack propagation problems, this is not the case. Hence, incorporating

a method which does not require precomputation of mesh states would be the first step towards

improving this method. This would also help overcome the challenge of storage and memory

requirements for larger problems.

The central difference explicit time integration restricts the maximum time-step which can be

used due to stability reasons. Exploring damage models which are not limited to explicit time

integration is another direction for improvement.

Lastly, the current method uses element elimination to delete fully damaged elements. How-

ever, using an element weakening method which allows assignment of weakened properties or

reduced stiffness to selected elements once the they undergo complete failure may be helpful dur-

ing data transfer from fine to coarse elements.

69

REFERENCES

[1] C. Felippa and K. Park, “Direct time integration methods in nonlinear structural dynamics,”
Computer Methods in Applied Mechanics and Engineering, vol. 17-18, pp. 277–313, 1979.
DOI: https://doi.org/10.1016/0045-7825(79)90023-9 .

[2] K. Park and P. Underwood, “A variable-step central difference method for structural dynam-
ics analysis part 1. theoretical aspects,” Computer Methods in Applied Mechanics and En-
gineering, vol. 22, pp. 241–258, 1980. DOI: https://doi.org/10.1016/0045-7825(80)90087-0 .

[3] P. Underwood and K. Park, “A variable-step central difference method for structural dy-
namics analysis- part 2. implementation and performance evaluation,” Computer Methods
in Applied Mechanics and Engineering, vol. 23, pp. 259–279, 1980. DOI: https://doi.org/10.
1016/0045-7825(80)90009-2 .

[4] P. Bergan and E. Mollestad, “An automatic time-stepping algorithm for dynamic problems,”
Computer Methods in Applied Mechanics and Engineering, vol. 49, pp. 299–318, 1985.
DOI: https://doi.org/10.1016/0045-7825(85)90127-6 .

[5] G. Hulbert and I. Jang, “Automatic time step control algorithms for structural dynamics,”
Computer Methods in Applied Mechanics and Engineering, vol. 126, pp. 155–178, 1995.
DOI: https://doi.org/10.1016/0045-7825(95)00791-X .

[6] O. Bettinotti, O. Allix, and B. Malherbe, “A coupling strategy for adaptive local refinement
in space and time with a fixed global model in explicit dynamics,” Computational Mechan-
ics, vol. 53, pp. 561–574, 2013. DOI: https://doi.org/10.1007/s00466-013-0917-9 .

[7] S. Ghosh and J. Cheng, “Adaptive multi-time-domain subcycling for crystal plasticity FE
modeling of discrete twin evolution,” Computational Mechanics, vol. 61, pp. 33–54, 2018.
DOI: https://doi.org/10.1007/s00466-017-1421-4 .

[8] M. El-Amin, J. Kou, and S. Sun, “Adaptive time-splitting scheme for nanoparticles transport
with two-phase flow in heterogeneous porous media,” Computational Science ICCS 2018,
pp. 366–378, 2018. DOI: https://doi.org/10.1007/978-3-319-93713-7_30 .

[9] C. Sanchez-Rivadeneira A.G. aand Duarte, “A high-order generalized finite element method
for multiscale structural dynamics and wave propagation,” Computer Methods in Applied
Mechanics and Engineering, vol. 384, 2021. DOI: https: / /doi .org/10.1016/j .cma.2021.
113934 .

[10] D. Soares, “A simple and effective single-step time marching technique based on adaptive
time integrators,” International Journal for Numerical Methods in Engineering, vol. 109,
pp. 1344–1368, 2016. DOI: https://doi.org/10.1002/nme.5329 .

70

https://doi.org/https://doi.org/10.1016/0045-7825(79)90023-9
https://doi.org/https://doi.org/10.1016/0045-7825(80)90087-0
https://doi.org/https://doi.org/10.1016/0045-7825(80)90009-2
https://doi.org/https://doi.org/10.1016/0045-7825(80)90009-2
https://doi.org/https://doi.org/10.1016/0045-7825(85)90127-6
https://doi.org/https://doi.org/10.1016/0045-7825(95)00791-X
https://doi.org/https://doi.org/10.1007/s00466-013-0917-9
https://doi.org/https://doi.org/10.1007/s00466-017-1421-4
https://doi.org/https://doi.org/10.1007/978-3-319-93713-7_30
https://doi.org/https://doi.org/10.1016/j.cma.2021.113934
https://doi.org/https://doi.org/10.1016/j.cma.2021.113934
https://doi.org/https://doi.org/10.1002/nme.5329

[11] D. Soares, “Nonlinear dynamic analysis considering explicit and implicit time marching
techniques with adaptive time integration parameters,” Acta Mech, vol. 229, pp. 2097–2116,
2018. DOI: https://doi.org/10.1007/s00707-017-2104-0 .

[12] D. Soares, “An enhanced explicit time-marching technique for wave propagation analysis
considering adaptive time integrators,” Computer Methods in Applied Mechanics and Engi-
neering, vol. 363, 2020. DOI: https://doi.org/10.1016/j.cma.2020.112882 .

[13] T. Belytschko, H. Yen, and R. Mullen, “Mixed methods for time integration,” Computer
Methods in Applied Mechanics and Engineering, vol. 17-18, pp. 259–275, 2 1979. DOI:
https://doi.org/10.1016/0045-7825(79)90022-7 .

[14] W. Liu and T. Belytschko, “Mixed-time implicit-explicit finite elements for transient analy-
sis,” Computers & Structures, vol. 15, pp. 445–450, 4 1982. DOI: https://doi.org/10.1016/
0045-7949(82)90079-7 .

[15] P. Smolinski, T. Belytschko, and M. Neal, “Multi-time-step integration using nodal parti-
tioning,” International Journal for Numerical Methods in Engineering, vol. 26, pp. 349–
359, 1988.

[16] C. Farhat and F. Roux, “A method for finite element tearing and interconnecting and its
parallel solution algorithm,” International Journal for Numerical Methods in Engineering,
vol. 32, pp. 1205–1227, 1991. DOI: https://doi.org/10.1002/nme.1620320604 .

[17] C. Farhat, L. Crivelli, and F. Roux, “A transient FETI methodology for large-scale parallel
implicit computations in structural mechanics,” International Journal for Numerical Meth-
ods in Engineering, vol. 37, pp. 1945–1975, 1994. DOI: https : / / doi . org /10 .1002 /nme .
1620371111 .

[18] A. Gravouil and A. Combescure, “Multi-time-step explicitimplicit method for non-linear
structural dynamics,” International Journal for Numerical Methods in Engineering, vol. 50,
pp. 199–225, 2001. DOI: https://doi.org/10.1002/1097-0207(20010110)50:1<199::AID-
NME132>3.0.CO;2-A .

[19] A. Gravouil and A. Combescure, “A numerical scheme to couple subdomains with different
time-steps for predominantly linear transient analysis,” Computer Methods in Applied Me-
chanics and Engineering, vol. 191, pp. 1129–1157, 11-12 2002. DOI: https://doi.org/10.
1016/S0045-7825(01)00190-6 .

[20] A. Prakash and K. Hjelmstad, “A FETI-based multi-time-step coupling method for newmark
schemes in structural dynamics,” International Journal for Numerical Methods in Engineer-
ing, vol. 61, pp. 2183–2204, 2004. DOI: https://doi.org/10.1002/nme.1136 .

71

https://doi.org/https://doi.org/10.1007/s00707-017-2104-0
https://doi.org/https://doi.org/10.1016/j.cma.2020.112882
https://doi.org/https://doi.org/10.1016/0045-7825(79)90022-7
https://doi.org/https://doi.org/10.1016/0045-7949(82)90079-7
https://doi.org/https://doi.org/10.1016/0045-7949(82)90079-7
https://doi.org/https://doi.org/10.1002/nme.1620320604
https://doi.org/https://doi.org/10.1002/nme.1620371111
https://doi.org/https://doi.org/10.1002/nme.1620371111
https://doi.org/https://doi.org/10.1002/1097-0207(20010110)50:1<199::AID-NME132>3.0.CO;2-A
https://doi.org/https://doi.org/10.1002/1097-0207(20010110)50:1<199::AID-NME132>3.0.CO;2-A
https://doi.org/https://doi.org/10.1016/S0045-7825(01)00190-6
https://doi.org/https://doi.org/10.1016/S0045-7825(01)00190-6
https://doi.org/https://doi.org/10.1002/nme.1136

[21] A. Prakash, E. Taciroglu, and K. Hjelmstad, “Computationally efficient multi-time-step
method for partitioned time integration of highly nonlinear structural dynamics,” Computers
and Structures, vol. 133, pp. 51–63, 2014. DOI: https://doi.org/10.1016/j.compstruc.2013.
11.013 .

[22] K. D. Hjelmstad, Fundamentals of Structural Mechanics, Second Edition. Springer, 2005,
ISBN: 978 0 387 23330 7.

[23] W. Lai, D. Rubin, and E. E. Krempl, Introduction to Continuum Mechanics, Fourth Edition.
Butterworth-Heinemann, 2010, ISBN: 978 0 7506 8560 3.

[24] O. Zienkiewicz, R. Taylor, and J. Zhu, The Finite Element Method: Its Basis and Funda-
mentals, Seventh Edition. Butterworth-Heinemann, 2013, ISBN: 978 1 85617 633 0.

[25] N. Newmark, “A method of computation for structural dynamics,” Journal of Engineering
Mechanics, vol. 85, pp. 67–94, 1959.

[26] K. Bathe and M. Baig, “On a composite implicit time integration procedure for nonlinear
dynamics,” Computers & Structures, vol. 83, pp. 2513–2524, 2007. DOI: https://doi.org/10.
1016/j.compstruc.2005.08.001 .

[27] E. Wilson, “A computer program for the dynamic stress analysis of underground structures,”
Earthquake Engineering & Structural Dynamics, vol. 1, pp. 241–252, 1968. DOI: https :
//doi.org/10.1002/eqe.4290010305 .

[28] E. Wilson, I. Farhoomand, and K. Bathe, “Nonlinear dynamic analysis of complex struc-
tures,” SESM Report No.68-1, Division of Structural Engineering Structural Mechanics,
University of California, Berkeley, 1972.

[29] K. Bathe and E. Wilson, “Stability and accuracy analysis of direct integration methods,”
Earthquake Engineering & Structural Dynamics, vol. 1, pp. 283–291, 1972. DOI: https :
//doi.org/10.1002/eqe.4290010308 .

[30] J. Chung and J. Lee, “A new family of explicit time integration methods for linear and non-
linear structural dynamics,” International Journal for Numerical Methods in Engineering,
vol. 37, pp. 3961–3976, 1994. DOI: https://doi.org/10.1002/nme.1620372303 .

[31] W. Zhai, “Two simple fast integration methods for large scale dynamic problems in engi-
neering,” International Journal for Numerical Methods in Engineering, vol. 39, pp. 4199–
4214, 1996. DOI: https://doi.org/10.1002/(SICI)1097-0207(19961230)39:24<4199::AID-
NME39>3.0.CO;2-Y .

72

https://doi.org/https://doi.org/10.1016/j.compstruc.2013.11.013
https://doi.org/https://doi.org/10.1016/j.compstruc.2013.11.013
https://doi.org/https://doi.org/10.1016/j.compstruc.2005.08.001
https://doi.org/https://doi.org/10.1016/j.compstruc.2005.08.001
https://doi.org/https://doi.org/10.1002/eqe.4290010305
https://doi.org/https://doi.org/10.1002/eqe.4290010305
https://doi.org/https://doi.org/10.1002/eqe.4290010308
https://doi.org/https://doi.org/10.1002/eqe.4290010308
https://doi.org/https://doi.org/10.1002/nme.1620372303
https://doi.org/https://doi.org/10.1002/(SICI)1097-0207(19961230)39:24<4199::AID-NME39>3.0.CO;2-Y
https://doi.org/https://doi.org/10.1002/(SICI)1097-0207(19961230)39:24<4199::AID-NME39>3.0.CO;2-Y

[32] G. Hulbert and J. Chung, “Explicit time integration algorithms for structural dynamics with
optimal numerical dissipation,” Computer Methods in Applied Mechanics and Engineering,
vol. 137, pp. 175–188, 1996. DOI: https://doi.org/10.1016/S0045-7825(96)01036-5 .

[33] Z. Bazant and B. Oh, “Crack band theory for fracture of concrete,” Materials and Construc-
tion, vol. 16, pp. 155–177, 1983.

[34] M. Jirasek and T. Zimmermann, “Analysis of rotating crack model,” Journal of Engineering
Mechanics, vol. 124, pp. 842–851, 1998. DOI: https : / / doi . org / 10 . 1061 / (ASCE) 0733 -
9399(1998)124:8(842) .

[35] M. Jirasek and T. Zimmermann, “Rotating crack model with transition to scalar damage,”
Journal of Engineering Mechanics, vol. 124, pp. 277–284, 1998. DOI: https://doi.org/10.
1061/(ASCE)0733-9399(1998)124:3(277) .

[36] J. Rots and J. Blaauwendraad, “Crack models for concrete: Discrete or smeared? fixed,
multi-directional or rotating?” Heron, vol. 34, pp. 1–59, 1989.

[37] J. Rots, P. Nauta, G. Kusters, and J. Blaauwendraad, “Smeared crack approach and fracture
localization in concrete,” Heron, vol. 30, pp. 1–48, 1989.

[38] A. Varshneya and J. Mauro, Fundamentals of Inorganic Glasses, Third Edition. Elsevier,
2019, ISBN: 978 0 12 816225 5.

[39] W. Callister Jr. and D. Rethwisch, Materials Science and Engineering: An Introduction,
10th Edition. Wiley, 2018, ISBN: 978 1 119 40549 8.

[40] Abaqus unified FEA, URL: https://www.3ds.com/products-services/simulia/products/abaqus/,
2021.

73

https://doi.org/https://doi.org/10.1016/S0045-7825(96)01036-5
https://doi.org/https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(842)
https://doi.org/https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(842)
https://doi.org/https://doi.org/10.1061/(ASCE)0733-9399(1998)124:3(277)
https://doi.org/https://doi.org/10.1061/(ASCE)0733-9399(1998)124:3(277)

	TITLE PAGE
	COMMITTEE APPROVAL
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	INTRODUCTION
	FORMULATION
	SPATIAL DISCRETIZATION
	TEMPORAL DISCRETIZATION
	QUASI-BRITTLE CRACKING
	NUMERICAL EXAMPLE
	Measures of Error
	Pixelation for Computing Error
	Computational Runtime Cost Model
	Computational Runtime

	MULTI-TIME-STEP METHODS
	SINGLE-TIME-STEP FORMULATION
	Computing v
	Computing Y
	Computing λ-.4n+1
	Computing w
	Computing u

	MULTI-TIME-STEP FORMULATION
	Computing v
	Computing Y
	Computing λ-.4n+1
	Computing w
	Computing u

	NUMERICAL EXAMPLE
	MTS Computational Runtime Cost Model
	Computational Runtime

	ADAPTIVE MULTI-TIME-STEP METHOD
	ADAPTIVITY SCHEME
	Criteria to define regions of interest
	Mesh refinement and coarsening
	Data transfer between two successive mesh states

	DATA TRANSFER VERIFICATION
	NUMERICAL EXAMPLE
	Reduction in runtimes due to adaptivity
	Limitations to adaptivity

	SUMMARY AND CONCLUSIONS
	Future Directions

	REFERENCES

