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ABSTRACT 

Evaluating large numbers of genotypes and phenotypes in multi-environment trials is key 

to crop improvement for biomass performance in sorghum.  In this dissertation, we developed an 

approach that integrates crop growth models with remote-sensing data and genetic information for 

modeling and predicting sorghum biomass yield. The goal of studies described in Chapter 2 was 

to parameterize the Agricultural Production Systems sIMulator (APSIM) crop growth models with 

remote-sensing and ground-reference data to predict variation in phenology and yield-related traits 

for 18 commercial grain and biomass sorghum hybrids. These studies showed that (i) biomass 

sorghum hybrids tended to have higher maximum plant height, final dry biomass and radiation use 

efficiency (RUE) than grain sorghum, (ii) photoperiod-sensitive sorghum hybrids exhibited greater 

biomass potential in longer growing environments and (iii) the parameterized APSIM models 

performed well in above-ground biomass simulations across years and locations. Crop growth 

models that integrate remote-sensing data offer an efficient approach to parameterize models for 

larger plant breeding populations. Understanding the genetic architecture of biomass productivity 

and bioenergy-related traits is another key aspect of bioenergy sorghum breeding programs. In 

Chapter 3, 619 sorghum genotypes from the sorghum diversity panel were individually crossed to 

ATx623 to create a half-sib population that was planted and evaluated in field trials in three 

consecutive years. Single-nucleotide polymorphisms (SNPs) were used in a genome-wide 

association study (GWAS) to identify genetic loci associated with variation in plant architecture 

and biomass productivity. A few SNPs associated with these traits were located in previously 

described genes including the sorghum dwarfing genes Dw1 and Dw3 and stay-green QTLs Stg1 

and Stg4. Of particular interest were seven genetic loci that were discovered for biomass yield. For 

three of these loci, the minor or uncommon allele exhibited a favorable effect on productivity 

suggesting opportunities to further improve the crop for biomass accumulation through plant 

breeding. Marker-assisted and genomic selection strategies may provide tools to introgress and 

exploit these genes for bioenergy sorghum development. Since parameterizing biophysical crop 

models requires extensive time and manual effort, a simple model was developed in Chapter 4 that 

used time-dependent measurements of RGB canopy cover and daily radiation coupled with end-

of-season biomass for estimating seasonal radiation use efficiency (SRUE) in 619 sorghum hybrids. 

SRUE was shown to be a stable and heritable trait that has a positive relationship with aboveground 



 

 

14 

dry biomass (ADB) over seasons. GWAS identified 11 SNPs associated with SRUE with the 

favorable effect represented by the minor allele for seven of these SNPs. Increasing the frequency 

of these favorable alleles may improve the breeding population. These results demonstrated that 

the simple model for calculating SRUE can be used in genetic studies and for parameterizing 

biophysical crop models. The studies integrating crop growth models with remote sensing 

technologies provide an opportunity to evaluate a large number of phenotypes for the target 

population to understand the underlying genetic variation of bioenergy sorghum. 
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 RESEARCH OVERVIEW 

1.1 Introduction 

Sorghum is a genus of angiosperms in the grass family Poaceae, the subfamily Panicoideae 

and the tribe Andropogoneae (Hamby and Zimmer 1988). Sorghum bicolor is one of the sorghum 

species that is native to Africa. All the cultivated sorghums belong to Sorghum bicolor subsp. 

bicolor, which can be classified into five races based on their physical characteristics: bicolor, 

guinea, kafir, caudatum, and durra (Harlan and Wet 1972; Smith and Frederiksen 2000). This crop 

serves as a staple food for millions of people in India and sub-Saharan Africa, especially for semi-

arid environments (FAOSTAT, 2019). Sorghum is also a major crop in the USA, India, Argentina, 

Mexico, Africa, China and Australia that is used for food, feed, forage, and biofuel production 

(Smith and Frederiksen 2000; Arendt and Zannini 2013; Singh et al. 2014; Borrell et al. 2014a).  

As a C4 crop, sorghum has higher light, nitrogen, and water use efficiency than C3 crops in 

hotter and drier conditions (Carpita and McCann 2008; Byrt et al. 2011). Compared with corn, 

another C4 crop, sorghum exhibits excellent drought and heat stress tolerance and produces 

acceptable yields in stressful environments and high yields in favorable environments (Jordan et 

al. 2012).  

Other than their scientific names, sorghum varieties can also be separated into several 

different types based on usage by growers, such as grain sorghum, sweet sorghum, Sorghum-

Sudangrass, forage sorghum, and biomass sorghum (Stefaniak et al. 2012). There are many shapes, 

sizes, and heights of sorghum. For example, some grain sorghums have a tightly-packed, round-

shaped panicles while others have open, droopy panicles. Sorghum grains can also be many 

different colors including red, orange, bronze, cream, yellow, white, and black. Traditionally, red, 

white, and bronze sorghums are used in all segments of the sorghum industry in the United States. 

Yellow, cream and white colored sorghum varieties are used to make flour, while black and 

burgundy varieties contain beneficial antioxidant properties and are utilized in other food 

applications (Harlan and Wet 1972; Smith and Frederiksen 2000). Sweet sorghums accumulate 

sugars in the stalk after flowering and are grown for production of sorghum syrup. Sweet sorghums 

are also used for biofuel and chemical production (Reddy et al. 2005).  
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Bioenergy is defined as a liquid or gaseous fuel that is produced from plant biomass. To 

enhance biomass yield of bioenergy sorghums, a new type of sorghum hybrid was designed for 

long growing seasons (Gill et al. 2014; Olson et al. 2012; Rooney et al. 2007; Truong et al. 2017). 

Olson et al. (2012) found that drought‐tolerant, annual energy sorghum hybrids have the genetic 

yield potential to contribute significantly to bioenergy production. Derived from forage sorghum 

varieties, biomass sorghum hybrids may be used for bioenergy production. This type of sorghum 

primarily is defined by high-biomass yields. Biomass sorghum variety development has prioritized 

cellulosic biomass yield, not sugar levels or grain production. This type of sorghum can reach a 

height of 6 meters in a normal growing season (Rocateli et al. 2012).  

The U.S. Environmental Protection Agency (EPA) defines biomass sorghum as Sorghum 

bicolor varieties that contain at least 75 percent cellulosic content. If a Sorghum bicolor and 

sudangrass cross contains at least 75 percent cellulosic content, then EPA also considers the cross 

to be biomass sorghum (EPA, 2015). Biomass sorghum is not commercially produced in the U.S. 

at this time. Its production has been limited to test plots for research. Biomass sorghum has 

potential throughout the Corn Belt and the southern U.S. Rooney et al. (2007) and Mullet et al. 

(2014) developed high biomass sorghum hybrids that were photoperiod sensitive. The later 

flowering times allowed the hybrids have longer vegetative growth duration and produce higher 

biomass yields in water-limited growing environments.  

The starches and sugars of sorghum can both be used as feedstocks for biofuel production. 

However, there are co-localizations between grain and stem sugar yield quantitative trait locus 

(QTLs) with height and flowering time QTLs. Some tradeoff may need to be considered (Murray 

et al. 2008). Structural carbohydrates provide a third source of biomass for energy production and 

are the only type that is produced in quantities sufficient to meet future energy demands (Tilman 

et al. 2006; Rubin 2008). Sorghum is efficient at producing structural carbohydrates for biofuel 

conversion including crop residue remaining from a sorghum grain crop, bagasse from sweet 

sorghum or forage sorghums, and biomass from a dedicated bioenergy crop (Rooney et al. 2007; 

Carpita and McCann 2008; Olson et al. 2012).  

Bioenergy sorghum hybrids are defined by high total dry biomass, plant height, and stem 

radial growth and low stem water contents. These traits may affect the structural carbohydrates in 

plants and ethanol production (Tilman et al. 2006; Rooney et al. 2007; Rubin 2008; Kong et al. 

2020). Biomass is a complex secondary trait that is affected by other yield related components, 
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such as plant height (Wilson and Eastin 1982; van Oosterom and Hammer 2008; George-Jaeggli 

et al. 2011; Olson et al. 2012), days to flowering (Rooney et al. 2007; Olson et al. 2012; Murphy 

et al. 2014; Meki et al. 2017), and leaf morphology (Sieglinger 1936; Rooney et al. 2007; Olson 

et al. 2012; Gill et al. 2014; Truong et al. 2017). Biomass production is also driven by radiation 

use efficiency multiplied by light intercepted (Falster and Westoby 2003), so radiation use 

efficiency is important for bioenergy sorghum (Kiniry et al. 1989; Narayanan et al. 2013). Leaf 

number, leaf area and leaf angle are key traits for radiation use efficiency since they play an 

important role in determination of light interception (Cho and Son 2007; Falster and Westoby 

2003).  

Bioenergy sorghum is targeted for production in water-limited areas; therefore, water use 

efficiency and drought tolerance are key traits (Narayanan et al. 2013). Plant water use efficiency 

is impacted by multiple physiological mechanisms and is affected by numerous genes and 

environmental factors (Han et al. 2015; Murray et al. 2008). Stay-green is one of the best studied 

drought tolerance traits of sorghum and has a direct impact on biomass production (Borrell et al. 

2014a). This complex trait can affect early canopy development, which allows crops to save water 

during the vegetative growth stage (Hammer et al., 2010; van Oosterom et al., 2010), 

photosynthesize for longer periods (Borrell et al. 2014), and yield more.  

1.2 Genotyping and Phenotyping 

Traditional plant breeding and genomic selection are two major strategies to improve or 

develop new cultivars. Marker-assisted selection (MAS) and genomic selection strategies use 

molecular markers for indirect selection of traits in crop improvement (Lande and Thompson 

1990). In recent decades, several types of molecular markers have been developed, such as the 

restriction fragment length polymorphism (RFLP) (Botstein et al. 1980), random amplification of 

polymorphic DNA (RAPD) (Williams et al. 1990), cleaved amplified polymorphic sequences 

(CAPS) (Konieczny and Ausubel 1993), simple sequence repeats (SSRs) (Litt and Luty 1989; 

Salimath et al. 1995), and amplified fragment length polymorphisms (AFLPs) (Vos et al. 1995). 

However, these types of molecular markers are limited and genotyping costs are high. Lander 

(1996) proposed single nucleotide polymorphisms (SNPs) as DNA markers. SNPs are abundant in 

a genome and appropriate for genome-wide analysis (Rafalski 2002).  SNPs are identified by DNA 

sequencing. The application of next-generation sequencing (NGS) technologies coupled with 
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Genotyping-by-sequencing (GBS) approaches provides high-throughput and low-cost sequencing 

data for plant genotyping and breeding (Elshire et al. 2011; Pareek et al. 2011; He et al. 2014). 

Researchers can analyze and interpret GBS datasets for implementing genome-wide association 

studies (GWAS), genomic diversity studies, genetic linkage analyses, molecular marker discovery 

and genomic selection (He et al. 2014; Huang and Han 2014).  

GWAS is an approach to scan genome to find the statistically significant associations 

between genetic and phenotypic variations (Myles et al. 2009). The first GWAS publication in 

plants appeared in the model plant Arabidopsis thaliana (Atwell et al. 2010). Since then GWAS 

studies were successfully used to identify significant markers and traits associations in cereal crops 

including rice (Huang et al. 2012), barley (Cockram et al. 2010), wheat (Neumann et al. 2011; 

Sukumaran et al. 2015), maize (Tian et al. 2011), and sorghum (Sukumaran et al. 2012; Morris et 

al. 2013). The pace of genotyping has increased exponentially, and the cost of sequencing has 

dramatically decreased. These advances provide the tools to better understand the biological 

determinants of quantitative phenotypic variation.  

The costs to obtaining high-quality phenotype data on thousands of plants is a bottleneck 

to variety development. While technical advances have accelerated the pace of genomic research,  

phenotyping has lagged behind and currently limits prospects for association mapping, gene 

discovery, and predictive genomic selection (GS) for crop improvement (Cobb et al. 2013, 2019). 

In conventional field trials, many crop breeding programs only have a single end-of-season 

biomass yield measurement for diverse environments over multiple seasons (Furbank and Tester 

2011). However, biomass yield is a complex trait and affected by many other related traits, such 

as height, days to flowering, and leaf morphology (Rooney et al. 2007; Olson et al. 2012). Biomass 

yield also generally exhibits lower heritability than other traits in sorghum breeding (Kenga et al. 

2006; Shiringani and Friedt 2011). This kind of low-throughput field phenotyping is a bottleneck 

and has driven intense interest in applying remote sensing technologies to measuring plant 

phenotypes.  

Most high-throughput phenotyping research programs use sensors and other imaging 

technologies to support rapid, low-cost measurements of plants across time and space (Furbank 

2009; Pauli et al. 2016). There are two basic phenotyping approaches called forward and reverse 

phenomics. Forward phenomics is defined as selecting collections of germplasm for trait analyses 

with phenotyping tools under certain condition. Depending on the breeding or experimental goals, 
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the phenotyping methods could be either high-throughput with low resolution or lower-throughput 

with higher-resolution. Treatments could include abiotic stresses such as drought, flooding, heat, 

or cold, or biotic stresses such as fungal or bacterial diseases. On the other hand, reverse phenomics 

involves the dissection of traits to reveal biological mechanisms. This can link a physiological trait 

to biochemical or biophysical processes including translational or post-translational regulation of 

genes, or even epigenetic control (Furbank and Tester 2011). 

High-throughput phenotyping research requires multi-disciplinary collaborations between 

plant biologists, computer scientists, statisticians and engineers (Cobb et al. 2013). Most 

phenotyping systems have been developed to measure phenotypes of individual plants with high 

frequency using platforms that combine robotics and image analysis with controlled environment, 

such as greenhouse and growth chamber (Furbank and Tester 2011). Although these systems could 

be applicable for certain research goals, the use of controlled environments to represent field 

environments has limitations. Limited space in greenhouse or growth chamber often results in 

plants not grown for a whole cycle, making it impossible to assess effects of biological or abiotic 

stresses during reproductive stage. The substrate volume for plant growth in pots or trays is far 

less than that available to plants in the field; therefore, differences in nutrient content and water 

availability alters normal patterns of growth and development (White et al. 2012). Solar radiation, 

air temperature, wind speed and evaporation rates typically are lower in controlled environment 

systems than under open-air field situations. Mechanical vibrations caused by wind can also affect 

plant growth and development (Biddington 1986; Chehab et al. 2009).  

Field-based phenotyping is more realistic for genetic improvements in yield potential of 

field crops, such as sorghum (Campos et al. 2004). Field-based phenotyping is gaining popularity 

as an appropriate approach to accurately describe traits developed in real cropping conditions in 

short time for plants at vegetative and reproductive stages (White et al. 2012).  

 

1.3 Remote sensing benefits breeding programs 

Quantifying variation in agronomic traits for crop improvement or association studies is a 

bottleneck in most plant breeding programs. Field-based phenotyping approaches that carry 

sensors to plants utilize remote and proximal sensing systems to capture variation in spectral or 

geometric features (White et al. 2012; Fiorani et al. 2012; Li et al. 2014). These systems rely on 
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different sensors such as RGB (Chen et al. 2017; Ribera et al. 2018; Freitas Moreira et al. 2021; 

Lin et al. 2021), multispectral (Potgieter et al. 2017), hyperspectral (Masjedi et al. 2020), and light 

detection and ranging (LiDAR) (Masjedi et al. 2020; Lin and Habib, 2021; Zhou et al. 2021) 

cameras. These instruments can be mounted on unmanned aerial vehicles (UAV) (Chen et al. 2017; 

Ribera et al. 2018; Ravi et al. 2019) or ground-based platforms (Ravi et al. 2018).  

The most commonly used remote sensing instruments include RGB, LiDAR, and 

hyperspectral sensors.  RGB imaging is based on visible light, which captures the information 

from red (~600 nm), green (~550 nm), and blue (~450 nm) spectral bands (Großkinsky et al. 2015). 

Compared with other types of sensing, RGB is widely used since it is reliable, low cost, easy to 

operate, and relatively simple in data processing (Zhao et al. 2019). LiDAR has been introduced 

in plant phenotyping platforms to measure geometric features of plants such as crop height 

(Hoffmeister et al. 2016). LiDAR measurements exhibit higher spatial resolution, higher 

throughput and independence from air temperature and wind speed (Tumbo et al. 2002; Escolà et 

al. 2011; Llorens et al. 2011). Since the laser beams can penetrate into canopies, computing the 

difference between the digital surface model and the digital terrain model can be used to estimate 

variations in plant height (Madec et al. 2017). The accuracy of plant height measurements derived 

from LiDAR techniques can be a few centimeters (Deery et al. 2014; Virlet et al. 2016). 

Hyperspectral imaging is able to capture a large number of spectral bands across the whole 

spectrum (Furbank et al. 2019). Based on its high spectral resolution, hyperspectral imaging has 

been used in different scales of agricultural studies, such as plant biochemical composition, 

vegetation mapping, nutrient content, moisture content, crop stress or disease, and yield estimation 

(Dale et al. 2013; Zhao et al. 2019). Hyperspectral imaging could also couple with LiDAR or RGB 

imaging to increase the spatial resolution and improve crop biomass prediction through regression 

models (Masjedi et al. 2020; Wang et al. 2021). 

As ground-based and UAV-based data acquisition systems continue to improve, data 

processing and feature extraction have become increasingly important (Pauli et al. 2016; Tardieu 

et al. 2017). Image and data processing includes georeferencing, geometric calibration, and 

spectral calibration to prepare the appropriate images. Some common methods include binarization, 

thresholding, resizing, normalization etc. reapplied on the sampled images (Kumar and Bhatia 

2014). Ravi et al. (2018b) proposed a calibration procedure for cameras based on using the 

conjugate points and linear or planar features in images and point clouds to align data derived from 
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different flight lines. For accurate georeferencing, establishing the angular relationship between 

the scanner and GNSS/INS coordinate systems is important. Habib et al. (2018) introduced three 

approaches to estimate this angular relationship for the hyperspectral push-broom scanner. After 

the calibration, the orthophotos were significantly improved. Hasheminasab et al. (2021) and Zhou 

et al. (2021) proposed new approaches for automated geometric calibration of RGB and 

hyperspectral cameras through tightly coupled camera/LiDAR integration for GNSS/INS 

coordinate systems mounted on UAV. For most applications of high-throughput plant phenotyping, 

accurate georeferencing is important in plant feature extraction, such as plant height, canopy cover 

(Ravi et al. 2018), plant count (Ribera et al. 2017), maize tassel detection (Olsen et al. 2018; 

Karami et al. 2021), sorghum panicle counting (Cai et al. 2021), leaf segmentation (Chen et al. 

2017; Chen et al. 2019), and plant location (Chen et al. 2018; Cai et al. 2020). He et al. (2018), 

Hasheminasab et al. (2020), and Lin et al. (2021) introduced modified Structure from Motion (SfM) 

strategies that are able to generate more accurate orthophotos for plant feature extraction. Lin and 

Habib (2021) also proposed an approach that can be used detect rows and alleys from LiDAR point 

cloud data. 

Feature extraction techniques are used to identify geometric and spectral features. 

Phenotypes are traditionally associated with both structural and spectral characteristics of plants, 

some of which can be measured directly, while others must be inferred from empirical or 

biophysical models (White et al., 2012; Holzworth et al., 2014). RGB imaging is a useful tool for 

plant morphological traits (Großkinsky et al. 2015; Zhao et al. 2019). This technology was 

successfully implemented for estimation of canopy cover in diverse crops. Hoyos-Villegas et al. 

(2014) used RGB images acquired each week to estimate soybean canopy cover and total 

aboveground biomass. Their study demonstrated that this digital imaging method has the potential 

to determine the dynamics of canopy cover and biomass accumulation. Duan et al. (2016) 

developed a workflow based on RGB images to monitor the dynamic growth and development of 

the wheat canopy. Guo et al. (2017) used a large number of RGB images to evaluate the ground 

coverage ratio of rice under variable field conditions. Ribera et al. (2018) presented methods to 

estimate sorghum leaf number, plant location, and leaf segmentation for canopy cover in RGB 

images. Similarly, Zhou et al. (2019) extracted coverage information of maize from RGB images 

through an image-segmentation method based on machine learning. Chen (2019) segmented 

sorghum plants from soil using HSV color information and estimated canopy cover in RGB images. 
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All of these approaches utilize RGB imaging to collect canopy-based phenotypes. Ribera et al. 

(2017) introduced a method to count sorghum plants in the field using RGB images and 

Convolutional Neural Networks (CNN). Karami et al. (2020a; 2020b) successfully using deep 

learning techniques to identify maize plant count and locations in RGB images acquired from UAV. 

These results exhibited an overall precision > 95% when the training and testing sets were from 

the same field. Cai et al. (2020) proposed a method to estimate plant centers using RGB images 

acquired by UAV coupled with transfer learning models. Karami et al. (2021) used deep learning 

methods to detect and count maize tassels in RGB images acquired by UAV. Yang et al. (2021) 

proposed a method that assumes the maize and sorghum were planted in a grid fashion to detect 

field row and range in UAV RGB images. The results demonstrated that the new approach 

increased plot extraction accuracy. Cai et al. (2021) introduced an approach to detect sorghum 

panicles and estimate flowering time using RGB images acquired by UAV and deep neural 

network structures. 

Plant height is one of the important and well-characterized quantitative traits in sorghum 

and maize (Salas Fernandez et al. 2009). It exhibits higher heritability and is highly correlated with 

biomass yield. Since data collection for plant height is more cost-effective than biomass, some 

indirect selection strategies may be conducted (Burks et al. 2015; Castro et al. 2015; Fernandes et 

al. 2018; Monk, Miller, and McBee 1984). Measuring height manually in the field is laborious and 

is typically obtained at only one terminal time point of growing season. Ravi et al. (2018) provided 

an approach that focused on wheel-based LiDAR data acquired by a ground-based platform for 

estimating sorghum plant height and canopy cover. Masjedi et al. (2020) used geometric features 

derived from LiDAR to characterize plant structure, such as plant height percentile, canopy volume, 

and canopy cover.  In wheat, LiDAR based estimates of plant heights were highly heritable and 

exhibited good consistency with manual measurements (Madec et al. 2017). LiDAR was also used 

for estimating height of sorghum and maize breeding programs over time to elucidate new 

phenotypes such as the growth curve (Pugh et al. 2018). Chu et al. (2018) used UAS structure-

from-motion photogrammetry to characterize canopy height of maize and reported that the 99th 

percentile height provided the best canopy height estimation accuracy. These research support that 

LiDAR technology is a useful tool for estimating plant height at multiple time points throughout 

the growing season and can add value in breeding programs. Masjedi and Crawford (2020) 

developed models for sorghum biomass prediction based on LiDAR and hyperspectral inputs 
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through Recurrent Neural Networks (RNNs). Masjedi et al. (2020) evaluated the impacts of 

sorghum biomass prediction using diverse models with HS-VNIR, HS-SWIR, and LiDAR data 

collected over time and reported that the data source was most important. Wang and Crawford 

(2021) introduced another approach that uses k-means assisted transfer learning to improve RNN 

models for sorghum biomass prediction based on features extracted from LiDAR, hyperspectral 

and weather data. 

High-throughput phenotyping enables breeders to evaluate thousands of genotypes in 

multi-environment field trials with non-destructive monitoring through the growing season (Zhao 

et al. 2019; Großkinsky et al. 2015). Remote sensing instrumentation can be used to collect 

phenotypes faster and cheaper and with less manpower. This also provides an efficient way to 

capture the temporal expression patterns of interesting phenotypes (Pauli et al. 2016), which can 

be used to evaluate time-dependent traits such as height (Campbell et al. 2019). Approaches for 

identifying genetic variation through plant height extracted from remote sensing data were 

successfully applied in maize and sorghum (Anderson et al. 2020; Miao et al. 2020). 

Biophysical crop models can be used to incorporate environmental factors into predictions 

of crop performance. However, challenges with parameterizing models for hundreds or thousands 

of genotypes have limited applications in plant breeding programs. Incorporating remote sensing 

into crop simulation models had been used either as a forcing function or simulation steering 

(Bouman 1995; Ines et al. 2013). The forcing function is applied to replace the input variable for 

simulation with the remote sensing observation. And the simulation steering is used to re-initialize 

by using sowing date and planting density, or re-parameterize the crop model by using canopy and 

growth parameters in a way that minimizes the differences between simulated and measured data 

(Ines et al. 2013). Most field-based phenotyping systems have focused on rapid assessment of 

individual traits or suites of traits with limited sensor and data processing capacity. Remote sensing 

can provide spatial information and improve the accuracy of crop models prediction, while crop 

models can derive time series or hard-to-measure phenotypes (Kasampalis et al. 2018; Yang et al. 

2021). Incorporating environment and plant physiology factors as input information using crop 

modeling could be the solution for modeling high-throughput phenotyping data. 
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1.4 Crop growth models 

In recent years, growers, the government, and companies have demanded more agricultural 

information to help make decisions on planting, growing and marketing crops. These needs from 

different groups are growing because of increased demands for agricultural products and limited 

land, water, and other natural resources, especially under climate change stresses (Wheeler and 

von Braun 2013). The data generated from traditional agricultural research methods do not meet 

these increasing needs. Traditional agronomic experiments are conducted at a specific point in a 

certain time and space, making results location- and time-specific, and data collection for these 

studies is laborious and expensive. Biophysical crop models are being developed to address this 

challenge to simulate crop production at a regional or country scale using inputs that are important 

for plant physiological and morphological functions (Bouman et al. 1996). Crop models vary in 

sophistication for integrating components across scales including gene interactions, metabolic 

pathways, cellular organization, tissue, and whole plant development (Zhu et al. 2016). Building 

models for complex crop phenotypes combine biological insights and mathematics to drive simple 

yet accurate equations to target processes of crop growth. Approaches that use a bottom-up 

approach without a fundamental plant sciences framework cannot provide more robust results than 

existing models in simulating phenotypes (Yin et al. 2021).  

Crop growth models integrate knowledge about soil, weather, crops, and field management 

to simulate crop production in diverse locations under a range of environmental conditions (Jones 

et al. 2003). Crop model systems provide a framework to understand how the system and its 

components function. Then we can integrate this understanding into crop growth models that 

predict the behavior of the system for given conditions. Once models are parameterized and well-

developed for simulation, large number of simulations can be performed for given environments 

to determine the best combination of management. Models that integrate quantitative genetics and 

gene-to-phenotype knowledge of traits are providing new tools for plant improvement because 

there are limitations to predicting plant phenotypes based solely on genotype, especially for 

complex adaptive traits. Crop models that are suitably constructed and well-tested have the 

potential to bridge this predictability gap by integrating solar radiation, water, and nitrogen inputs 

within a framework that predicts biomass accumulation and potential (Cooper et al. 2014).  

Simulation models are becoming increasingly popular tools for addressing research 

questions for growers, government, and companies. Several different dynamic crop growth models 
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are currently available for modelling and simulation including WOFOST (Diepen et al. 1989), 

DSSAT (Jones et al. 2003), APSIM (Holzworth et al. 2018; Keating et al. 2003), CROPSYST 

(Stöckle  2003), and EPIC (Williams et al. 1989; Williams et al. 1983; Bouman et al. 1996; Jones 

et al. 2017). These crop growth models provide valuable tools in research, crop management, and 

in policy decisions (Boote et al. 1996). Even though crop modeling has considerable potential, 

care must be taken to avoid misrepresentation, misuse, and misunderstanding of the tools. Despite 

concerns about validating models, crop models proposed for broader crop management 

applications should be tested widely and in diverse field environments.  

Agricultural Production Systems Simulator (APSIM) is a bio-physical modelling 

framework that was designed to simulate the dynamics of crop growth in response to soil, climate, 

and management conditions (Wang et al. 2002; Keating et al. 2003). This model has been used to 

investigate diverse questions related to food security, climate change adaptation and mitigation, 

economic risk evaluation, simulation of gene expression, and multi-trial simulation (Holzworth 

2014).   

Crop models can also be used to explore genotype by environment interactions affecting 

crop performance (Chapman et al. 2000a; Chapman et al. 2000b) in real-world and simulated plant 

breeding trials (Chapman 2008).  Similar models were effective for prediction of heading dates in 

rice (Onogi et al. 2016), assessment of VPD-limited transpiration traits to enhance biomass yield 

in water-limited environments (Truong et al. 2017), and opportunities to exploit G×E×M 

interactions for maize improvement in Ethiopia (Seyoum et al. 2018). Plant breeding has been 

revolutionized by genomic selection strategies that support a prediction of performance across 

environments for traits with additive gene effects (Jonas and de Koning 2013; Desta and Ortiz 

2014; Crossa et al. 2017). However, prediction of traits with non-additive gene effects and 

prediction of genotype by environment interactions (G×E) continues to be a challenge. 

Approximate Bayesian computation, a novel and powerful computational procedure to incorporate 

crop growth models directly into the estimation of whole-genome marker effects in whole-genome 

prediction, has been used to integrate crop growth models into whole genome prediction models 

(Technow et al. 2015). 
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1.5 Hypotheses and Objectives 

Well-developed crop growth models and high-throughput phenotyping approaches have 

been developed in recent years (Baret et al. 2018; Blancon et al. 2019; Casa et al. 2010; Demarez 

et al. 2008; Jiang et al. 2019; Parent et al. 2019); however, strategies that accommodate crop 

growth models and high-throughput phenotyping as part of breeding pipelines have not been 

thoroughly explored. We hypothesize that high-throughput phenotyping and crop growth 

modeling can offer effective approaches for modeling performance in bioenergy sorghum. The 

hypotheses and corresponding objectives that will be addressed in this dissertation include:  

1. Integration of remote sensing with ground reference data can be used to parameterize 

Agricultural Production Systems sIMulator (APSIM) crop growth models to predict 

biomass yield and related traits. The parameterized APSIM model can be used to predict 

sorghum performance across geographical regions through historical weather data. The 

objectives of this study were to develop a crop model for biomass sorghum that can predict 

seasonal biomass production of diverse hybrids over multiple seasons at different locations 

by combining high-throughput phenotyping and crop growth models. 

2. Genome wide association studies can identify genetic variation underlying important 

agronomic traits for bioenergy sorghum breeding programs including biomass yield.  The 

objectives of this study were to (a) evaluate hybrid performance in multi-year trials, (b) 

explore favorable alleles for aboveground dry biomass (ADB) (c) identify candidate genes 

for each trait, and (d) compare these identified candidate genes with published QTLs. 

3. Estimates of RGB canopy cover, daily radiation, and end-of season ADB can be used in 

simplified crop models for estimating seasonal radiation use efficiency (SRUE). Specific 

objectives that will be addressed in this study include (a) introduce a simplified crop 

growth model to estimate SRUE using time-dependent measurements of RGB canopy 

cover and daily radiation coupled with end-of-season biomass, (b) validate SRUE 

estimates with maximum RUE as APSIM inputs, (c) quantify heritability and stability of 

SRUE over seasons, and (d) conduct GWAS of SRUE in sorghum germplasm collections.  
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2.1 Abstract 

Plant phenotypes are often descriptive, rather than predictive of crop performance. As a result, 

extensive testing is required in plant breeding programs to develop varieties aimed at performance 

in the target environments. Crop models can improve this testing regime by providing a predictive 

framework to (i) augment field phenotyping data and derive hard-to-measure phenotypes and (ii) 
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estimate performance across geographical regions using historical weather data. The goal of this 

study was to parameterize the Agricultural Production Systems sIMulator (APSIM) crop growth 

models with remote-sensing and ground-reference data to predict variation in phenology and yield-

related traits in 18 commercial grain and biomass sorghum hybrids. Genotype parameters for each 

hybrid were estimated using remote-sensing measurements combined with manual phenotyping in 

West Lafayette, IN, in 2018. The models were validated in hybrid performance trials in two 

additional seasons at that site and against yield trials conducted in Bushland, TX, between 2001 

and 2018. These trials demonstrated that (i) maximum plant height, final dry biomass and radiation 

use efficiency (RUE) of photoperiod- sensitive and -insensitive forage sorghum hybrids tended to 

be higher than observed in grain sorghum, (ii) photoperiod-sensitive sorghum hybrids exhibited 

greater biomass production in longer growing environments and (iii) the parameterized and 

validated models perform well in above-ground biomass simulations across years and locations. 

Crop growth models that integrate remote-sensing data offer an efficient approach to parameterize 

larger plant breeding populations. 

2.2 Introduction 

2.2.1 Importance of forage sorghum in rainfed environments 

Sorghum (Sorghum bicolor) is commercially important in semi-arid environments due to 

its substantial heat and drought tolerance. Grain sorghum is the fifth most important cereal in 

global production with over 57 million tons of grain produced on 40 million ha in 2017 

(FAOSTAT). Sorghum also is an important forage and sugar crop and can be utilized to produce 

plant-based biofuels including starch from sorghum grain, sugar from sweet-stemmed sorghum 

and cellulose from plant leaves and stems. In the USA, almost one-third of the sorghum grain crop 

is processed through grain-based ethanol production systems. Limited quantities of sugar-based 

and cellulose-based biofuel are produced currently, but these are considered important feedstocks 

for the future, minimizing direct competition with food production (Tilman et al. 2006; Rubin 

2008).  

Biomass sorghums can reach heights of 4–5 m with biomass yields maximized by high 

crop growth rates throughout the available growing season (Rocateli et al. 2012). When planted at 

high density, commercial sorghum hybrids exhibit a diversity of plant and canopy types to quickly 
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reach maximum radiation interception (Rooney et al. 2007; Olson et al. 2012; Gill et al. 2014; 

Truong et al. 2017). Total leaf number was found to be highly correlated with length of vegetative 

period. Hence, early maturing sorghum has fewer leaves and lower biomass production (Sieglinger 

1936). In contrast, at high latitudes, spring-sown photoperiod-sensitive sorghum hybrids exhibit 

extended vegetative periods resulting in high biomass yields. Moreover, since sorghum exhibits 

better drought tolerance during vegetative growth stages, the longer period of vegetative growth 

results in better drought tolerance or drought avoidance in rainfed environments (Rooney et al. 

2007). 

2.2.2 High-throughput phenotyping methods potentially facilitate the measurement of 

canopy and crop growth through the entire cropping season 

Marker-assisted selection (MAS), next-generation sequencing (NGS) technologies and 

data analytics pipelines have contributed to the implementation of genome-wide association 

studies (GWAS), genomic diversity studies, genetic linkage analyses, molecular marker discovery 

and genomic selection in large-scale plant breeding programs (He et al. 2014). Although genomic 

technologies are developing quickly, understanding the biological determinants of quantitative 

phenotype variation remains the central challenge of modern genetic analysis. New, high-

throughput phenotyping (HTP) technologies are expected to be the next step in developing 

association mapping, gene discovery and developing predictive genomic selection models in crop 

improvement (Cobb et al. 2013).  

High labor costs often constrain crop breeding programs to single measurements of final 

yield in diverse testing environments over multiple seasons. This bottleneck in field phenotyping 

has driven intense interest in applying remote-sensing technologies to field crop monitoring 

(Furbank and Tester 2011). Remote sensing of crops includes passive and active sensing of plants 

to acquire and interpret data to extract information about features, objects and classes in the area 

of interest (Konare et al. 2003). Data are processed through an analysis pipeline to calibrate and 

convert digital data into interpretable information (Campbell 2006). For example, the dynamics of 

canopy cover influence the pattern of crop growth rate and eventual yield. Remote-sensing images 

acquired by unmanned aerial vehicles (UAVs) can be used directly for large-scale estimation of 

leaf coverage and are key components of high-throughput field phenotyping (Duan et al. 2014, 
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2017; Gouache et al. 2016; Stanton et al. 2017; Zhang et al. 2017; Masjedi et al. 2018; Ribera et 

al. 2018).  

Multiple remote-sensing approaches focused on quantifying variations in canopy cover and 

its dynamics have been investigated. An image-based workflow to monitor the growth and 

development of the wheat canopy dynamically using RGB cameras was developed by Duan et al. 

(2016). Similarly, Guo et al. (2017) evaluated the ground coverage ratio of rice from a large 

number of RGB images under variable field conditions. Light Detection and Ranging (LiDAR) 

has also been used to estimate canopy cover and above-ground biomass (Jimenez- Berni et al. 

2018). Masjedi et al. (2019) introduced a strategy that incorporates multi-sensor time series data, 

environmental inputs and use Recurrent Neural Networks to predict sorghum biomass. Blancon et 

al. (2019) reported a high-throughput, model-assisted method for quantifying green leaf area 

(GLAI) dynamics in maize using multispectral imagery. Zhou et al. (2019) used an image-

segmentation method based on machine learning to extract relatively accurate coverage 

information from RGB images. All of these approaches utilize remote-sensing technology to 

collect canopy-based phenotypes. However, interpreting dynamics of change is not easily done in 

empirical models. 

2.2.3 Crop growth models 

Dynamic crop growth modelling and simulation have become accepted tools for 

agricultural research (e.g. WOFOST (Diepen et al. 1989), DSSAT (Jones et al. 2003), APSIM 

(Keating et al. 2003; Holzworth et al. 2018), CROPSYST (Stöckle et al. 2003), EPIC (Williams et 

al. 1983, 1989)) (Bouman et al. 1996; Jones et al. 2017). Unlike purely statistical approaches, these 

models have functions that respond to external drivers and how those responses affect other 

components in the system (Wallach et al. 2018). Well-developed crop growth models as well as 

HTP approaches have been developed in recent years (Demarez et al. 2008; Casa et al. 2010; Baret 

et al. 2018; Blancon et al. 2019; Jiang et al. 2019; Parent et al. 2019); however, strategies that 

accommodate crop growth models as part of HTP pipelines have not been thoroughly explored. 

Agricultural Production Systems sIMulator (APSIM) is a biophysical simulation model for 

cropping systems that was designed to predict the dynamics of crop growth, including biomass 

and grain yield, in response to climate and management conditions (Keating et al. 2003). 

Agricultural Production Systems sIMulator incorporates a generic crop model that utilizes a library 
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of routines for simulating crop growth and development processes (Wang et al. 2002) and has been 

used to investigate diverse questions related to food security, climate change adaptation and 

mitigation, simulation of gene expression and multitrial simulation (Holzworth 2014). 

In the investigation of biomass growth in crops like biomass sorghum, the key 

physiological processes are phenology, leaf area development and crop growth rate as affected by 

weather and soil conditions. Simulated phenology in APSIM is based on thermal time elapsed in 

growth stages. Thermal time is calculated from a piecewise linear function of the mean air 

temperature, depending on base, optimum and maximal temperatures, which are 11, 30 and 42 °C 

for sorghum, respectively (Hammer et al. 1993). Panicle initiation (conversion of the meristem 

from production of vegetative initials to reproductive initials) is triggered at a genotype-specific 

thermal time, which can be further influenced by a genotype-specific photoperiod response. The 

accumulated thermal time between emergence and simulated panicle initiation determines the 

value of the total leaf number when divided by the plastochron (°Cd per leaf ), period between the 

appearances of two successive leaf primordia. Leaves are expanded at a rate determined by the 

phyllochron (°Cd per leaf ), period between the appearance of two successive leaves, and thus the 

product of total leaf number and phyllochron determines the thermal time to reach flag leaf stage 

(°Cd) (Hammer et al. 2010). The duration of growth stages such as flag leaf to anthesis, anthesis 

to start of grain filling and start to end of grain filling are also simulated in the model by 

accumulation of thermal time to reach genotype-specific target values (Muchow and Carberry 

1990; Hammer and Muchow 1994; Ravi Kumar et al. 2009). 

Canopy development is simulated based on the relationship between total plant leaf area 

(TPLA) and thermal time. Total plant leaf area accounts for the number of fully expanded leaves, 

size of each leaf and tiller number (Hammer et al. 1993, 2010). The model provides flexibility to 

simulate canopy development using other options such as leaf size distribution (Carberry et al. 

1993; van Oosterom et al. 2001; Hammer et al. 2010) or the extension rate of each leaf (Hammer 

et al. 2010; Chenu et al. 2018). In the standard version of APSIM, the above-ground dry biomass 

accumulation is simulated as the minimum of light-limited or water-limited growth, then biomass 

is partitioned in different ratios to plant parts depending on the plant developmental stages through 

founded functions (Hammer et al. 2010). 
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2.2.4 Bioenergy sorghum 

The objectives of this study were to develop a crop model for biomass sorghum that can 

predict seasonal biomass production of diverse hybrids over multiple seasons at different locations 

by combining HTP and crop growth models. Canopy cover estimated from RGB images was used 

to estimate key parameters describing leaf cover dynamics, light interception and radiation use 

efficiency (RUE). Other canopy properties were derived as outputs of the APSIM model. This 

method provides a new approach for understanding the adaptation of biomass sorghum and its 

interaction with the environment to identify trait targets for plant breeding. 

2.3 Materials and methods 

2.3.1 Genotypes and field management 

A set of 18 sorghum hybrids (S. bicolor) (Table 2.1) were grown in 2015, 2017 and 2018 at the 

Agronomy Center for Research and Education (ACRE) of Purdue University in West Lafayette, 

IN, USA. Daily solar radiation, maximum and minimum temperatures and precipitation were 

recorded at the experimental site. Field trials were conducted each year using a randomized 

complete block design with four replicates. The hybrid entries were evaluated in 12-row plots with 

76 cm spacing between rows measuring 3.81 m long. Seeds were sown at 30-mm depth on 19 May 

in 2015, 16 May in 2017 and 8 May in 2018 with emerged densities as shown (Table 2.1). Weeds 

and pests were controlled as required and there was negligible pest damage to the photosynthetic 

leaf surface throughout growth. 

2.3.2 Ground validation studies 

Ground-reference data from trials conducted in 2018 were used to parameterize the APSIM 

model. Plant population density was determined from row 2 and row 3 of each 12-row plot at 31 

days after sowing (DAS). Days to flowering were measured as the number of days from sowing to 

when 50 % of the panicles in the plot were at 50 % anthesis. Plant height was measured after 

flowering. 

Destructive harvests at four different stages of development were used to determine 

biomass yields; leaf, stem, tiller and panicle weights of individual plants; and leaf size distribution. 
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Four plants were harvested manually from plot row 11 on 7 June (31 DAS), two plants from plot 

rows 8 and 9 on 25 June (49 DAS), two plants from plot rows 5 and 6 on 12 July (66 DAS) and 

two plants from plot rows 2 and 3 on 9 August (94 DAS). After harvesting, each plant was 

dissected to determine the weight of the collared leaves, leaves that had not fully emerged, stems, 

tillers and panicle fractions. Leaves were removed from each plant in order and scanned 

individually to determine leaf size distribution using a LI-3100C Leaf Area Meter (LI-COR, 

Lincoln, NE, USA). The final tiller number was estimated from the tiller dry weight and total plant 

dry weight. Percent moisture of each plant was determined from the combined fresh weights and, 

later, dry weights of all fractions from each plant. 

Repeated non-destructive measurements of plant development were also made during the 

vegetative period including the number of fully expanded leaves (collared leaves) of four tagged 

plants in rows 2 and 3 of each plot. Collection dates were 7 June (31 DAS), 19 June (43 DAS), 28 

June (52 DAS), 5 July (59 DAS), 11 July (65 DAS) and 26 July (80 DAS). The final leaf numbers 

were the maximum value of leaf collar counts of each plot across dates. Final tiller number per 

plant was determined on 12 July (66 DAS). The average leaf biomass fraction and specific leaf 

weight (SLW) were used to compute leaf area and leaf area index (LAI) for each plot and sampling 

date. 

Total biomass yields were measured in each plot on 7 June (31 DAS), plot rows 8 and 9 on 

25 June (49 DAS), plot rows 5 and 6 on 12 July (66 DAS) and plot rows 2 and 3 on 9 August (94 

DAS); one replicate was not harvested at 49 DAS due to inclement weather. On 7 June (31 DAS), 

a 2-m section of row segment 11 was hand-harvested, weighed and dried to compare fresh weights 

and dry weights. For the next three harvest dates, the entire 2-row segment of each plot was 

harvested with a Wintersteiger Cibus 2-row Biomass Harvester (Wintersteiger Inc., Salt Lake City, 

UT, USA). After harvesting a plot, ~500 g of the shredded plant material from each plot was taken 

to determine fresh weight, dry weight and moisture content. For the mechanically harvested plots, 

a 0.614-kg fresh weight correction factor was added back to the biomass estimate of each plot to 

account for the short stem segments that were left behind after machine harvesting. At the last 

sampling date (94 DAS), several plots were lodged and could not be harvested. 
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Table 2.1 Details of the types and observed data for 18 hybrids in central-west Indiana from May to October. The value in a cell is mean 

plus minus standard deviation and the results of LSD test.   

Genotype† Type 2015 plant 

density 

2017 plant 

density 

2018 plant 

density 

2017 flowering 

date 

2018 flowering 

date 

2015 final dry 

biomass 

2017 final dry 

biomass 

2018 final dry 

biomass 

2015 max 

height 

2017 max 

height 

2018 max 

height   

stand count/m2 DAS g/m2 cm 

PH 849F Forage 

Sorghum 

15.5 

±1.3 

abcde 

15.9 

±1.3 

def 

18.3 

±0.8 

defg 

72.8 

±9.2 

ef 

74.0 

±4.0 

ef 

1670 

±194 

bc 

2258 

±382 

cde 

2040 

±111 

abc 

244.6 

±10.4 

Def 

242.5 

±29.7 de 

273.8 

±11.1 

bcd 

PH 877F Forage 

Sorghum 

16.1 

±1.6 

abc 

19.5 

±1.7 

a 

19.6 

±0.5 

ab 

66.3 

±1.9 

gh 

66.8 

±1.7 

gh 

1497 

±72 

cde 

2217 

±448.7 

cde 

2006 

±187 

abcd 

265.0 

±7.9 

C 

224.0 

±52.8 ef 

294.7 

±13.5 

ab 

RS 327x36 BMR Forage 

Sorghum 

15.6 

±1.1 

abcd 

18.5 

±2.0 

abc 

19.1 

±0.8 

abcde 

91.0 

±NA 

c 

83.8 

±12.5 

d 

1343 

±269 

def 

2245 

±401 

cde 

1645 

±118 

defg 

255.8 

±12.7 

Cde 

246.2 

±19.7 de 

250.0 

±9.6 

d 
RS 341x10 Food Grain 

white 

15.5 

±0.8 

abcde 

16.7 

±1.3 

cde 

17.4 

±1.1 

g 

68.8 

±0.5 

fgh 

65.5 

±1.3 

gh 

973 

±82 

g 

1465 

±191 

h 

1138 

±17 

h 

77.5 

±1.6 

J 

82.7 

±1.9 

I 

126.0 

±1.8 

h 

RS 366x58 Food Grain 

white 

12.9 

±1.8 

f 

12.7 

±0.3 

g 

15.9 

±0.7 

h 

77.3 

±3.1 

de 

73.8 

±2.1 

ef 

1139 

±85 

fg 

1939 

±160 

efg 

1366 

±173 

gh 

123.5 

±8.2 

I 

139.3 

±7.0 

 H 

153.3 

±9.4 

 g 
RS 374x66 Forage 

Sorghum 

14.2 

±1.2 

cdef 

13.9 

±0.6 

fg 

17.5 

±0.9 

fg 

75.0 

±4.8 

def 

69.8 

±2.1 

efg 

1634 

±143 

bc 

2049 

±346 

defg 

1988 

±211 

abcd 

263.1 

±21.2 

Cd 

264.7 

±8.9 

Cd 

263.9 

±3.0 

cd 

RS 392x105 

BMR 

Forage 

Sorghum 

16.4 

±1.0 

ab 

17.8 

±1.9 

abcd 

19.6 

±0.7 

abc 

91.0 

±0.0 

c 

90.0 

±0.0 

c 

1117 

±99 

fg 

2318 

±358 

bcd 

1563 

±196 

efg 

163.0 

±5.8 

H 

203.4 

±31.2 fg 

190.5 

±13.5 

f 
RS 400x38 BMR Sorghum-

sudangrass 

16.3 

±0.9 

ab 

17.7 

±1.8 

abcd 

18.6 

±1.0 

bcdef 

74.8 

±1.9 

def 

73.0 

±1.4 

ef 

1151 

±148 

fg 

1962 

±102 

defg 

1516 

±55 

fgh 

190.1 

±11.0 

G 

220.9 

± 7.3 ef 

216.5 

±3.6 

e 

RS 400x82 BMR Sorghum-
sudangrass 

13.7 

±1.3 

def 

14.1 

±0.8 

fg 

15.0 

±0.8 

h 

76.0 

±NA 

def 

104.0 

±5.7 

b 

1248 

±305 

efg 

2128 

±59 

cdefg 

1569 

±403 

efg 

242.6 

±6.0 

Def 

191.7 

±27.7 g 

202.8 

±6.4 

ef 
SP HIKANE II Forage 

Sorghum 

15.5 

±0.6 

abcde 

18.7 

±1.6 

abc 

20.1 

±0.7 

a 

74.0 

±2.6 

def 

70.3 

±1.3 

efg 

1607 

±237 

bc 

2230 

±372 

cde 

2080 

±203 

abc 

239.4 

±14.8 

Ef 

244.9 

±6.0 de 

254.5 

±30.1 

d 

SP NK300 Forage 
Sorghum 

16.8 

±2.1 

a 

19.4 

±2.0 ab 

19.4 

±1.0 

abcd 

79.3 

±1.0 

d 

75.3 

±3.3 

e 

1570 

±232 

bcd 

2140 

±290 

cdef 

1919 

±188 

bcd 

180.0 

±10.9 

Gh 

189.4 

±5.0 

 G 

189.6 

±13.1 

f 
SP NK5418 Grain 

Sorghum 

15.4 

±1.0 

abcde 

18.7 

±1.2 

abc 

19.4 

±0.5 

abcd 

68.0 

±1.0 

fgh 

65.3 

±1.9 

gh 

1069 

±94 

g 

1754 

±164 

gh 

1210±170 

h 

66.8 

±2.8 

J 

73.8 

±5.2 

I 

116.0 

±1.8 

h 

SP NK8416 Grain 
Sorghum 

13.5 

±1.7 

ef 

15.2 

±2.2 

ef 

15.4 

±1.1 

h 

79.3 

±1.7 

d 

70.3 

±1.3 

efg 

1183 

±151 

fg 

1929 

±222 

efg 

1364 

±310 

gh 

125.1 

±9.6 

I 

128.1 

±5.9 

 H 

167.4 

±8.9 

g 
SP Sordan 79 Forage 

Sorghum 

14.8 

±0.7 

abcdef 

18.2 

±2.3 

abcd 

17.7 

±0.8 

fg 

71.0 

±2.3 

fg 

69.3 

±2.9 

fg 

1795 

±134 

ab 

1942 

±111 

efg 

2209 

±221 

ab 

291.0 

±17.4 

B 

261.4 

±15.1 cd 

307.5 

±1.1 

a 
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Table 2.1 continued 

SP Sordan 

Headless 

Forage 

Sorghum 

Photoperio
d Sensitive 

15.1 

±1.2 

abcde 

18.0 

±1.3 

abcd 

18.5 

±0.4 

cdefg 

138.0 

±0.0 

a 

 

NA 

1525 

±217 

cde 

3117 

±98 

a 

1882 

±218 

cde 

240.9 

±20.7 

Ef 

297.6 

±7.4 

B 

257.8 

±13.5 

d 

SP SS405 Forage 

Sorghum 

14.2 

±1.3 

cdef 

17.4 

±0.8 

abcde 

18.1 

±0.5 

efg 

NA 

108.0 

±0.0 

b 

1976 

±70 

a 

2466 

±299 

bc 

2288 

±339 

a 

338.5 

±28.7 

A 

342.0 

±19.5 a 

296.0 

±13.8 

ab 
SP Trudan 8 Forage 

Sorghum 

12.9 

±1.6 

f 

17.1 

±2.3 

bcde 

15.2 

±0.3 

h 

63.7 

±0.6 

h 

62.8 

±0.5 

h 

1523 

±319 

cde 

1803 

±104 

fgh 

1834 

±300 

cdef 

227.1 

±11.4 

F 

200.8 

±18.7 fg 

287.7 

±1.7 

abc 

SP Trudan 

Headless 

Forage 

Sorghum 
Photoperio

d Sensitive 

14.5 

±2.8 

bcdef 

16.6 

±2.8 

cde 

15.2 

±0.8 

h 

131.5 

±7.5 

b 

120.0 

±NA 

a 

1628 

±165 

bc 

2634 

±191 

b 

1766 

±66 

cdef 

251.1 

±11.8 

Cde 

277.3 

±15.8 

Bc 

262.3 

±30.1 

d 

DF 
 

53 54 54 43 44 53 53 47 53 52 30 

Mean 
 

15.0 17.0 17.78 82.6 75.1 1427 2143 1777 209.8 212.2 224.1 

CV 
 

9.6 9.9 4.4 4.5 5.2 13 12 13 6.5 9.0 5.8 

p-value from 
ANOVA 

 

3.3e-03 1.2e-06 <2e-16 <2e-16 <2e-16 1.0e-10 5.4e-09 1.3e-08 <2e-16 <2e-16 <2e-16 

significance 
 

** ** ** ** ** ** ** ** ** ** ** 

** Significant at the 0.001 probability level.  

† PH, Seeds from Pioneer Hi-Bred; RS, Seeds from Richardson Seeds; SP, Seeds from Sorghum Partners. 
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2.3.3 Ground validation data from 2015 and 2017 

Replicated trials conducted in 2015 and 2017 were used to validate the parameterized 

APSIM models for each hybrid. Total above-ground biomass was measured by manual sampling 

and by machine harvesting. Manual sampling was conducted at 65 and 93 DAS in 2015, and 42, 

63, 84 DAS in 2017 by harvesting plants from three 1-m sections of row in rows 5–8 of the 12-

row plot. Plant count and biomass fresh weight and dry weight were measured for each sample. 

An individual plant from each sample was dissected to measure leaf, stem, tiller and panicle 

weights. The leaf sizes were determined using ImageJ, an open source software package developed 

by NIH for the analysis of scientific images (Schneider et al. 2012). The leaves were laid on a 

white board in leaf order from top to bottom. RGB images of the leaves were acquired using a 

Cannon EOS 6D camera with a Canon 35-mm lens under a white light source and ~1.5 m height. 

Leaves were segmented by thresholding in HSB (Hue, Saturation, Brightness) colour space with 

four thresholds. Total leaf area per plant and plant stand information were used to calculate the 

LAI. A Wintersteiger Cibus 2-row Biomass Harvester (Wintersteiger Inc., Salt Lake City, UT, 

USA) was also used to mechanically harvest plants from plot rows 10 and 11 on 25 August 2015 

(99 DAS) and 31 July 2017 (77 DAS) and from plot rows 2 and 3 on 27 September 2017 (135 

DAS) as described above. 

2.3.4 Remote-sensing data collection 

Remote-sensing data were used to measure canopy cover for each plot. RGB images were 

collected in 2017 and 2018 using a DJI Matrice M600 Pro UAV as a platform, equipped with an 

APX-15 V2 as the GNSS (Global Navigation Satellite System)/INS (Inertial Navigation System) 

unit for direct geo-referencing. Images were collected using a Sony Alpha 7R (ILCE-7R) camera 

with a Sony 35-mm lens at a height of 50 m, resulting in a ground sampling distance of 0.7 cm. 

Spatial and temporal calibration of the imaging systems in this study were done by methods 

described in Ravi et al. (2018). The RGB images were collected in 2017 on 6 June (22 DAS), 21 

June (37 DAS), 28 June (44 DAS), 5 July (51 DAS), 11 July (57 DAS), 17 July (63 DAS), 25 July 

(71 DAS), 2 August (79 DAS), 8 August (85 DAS), 16 August (93 DAS) and 30 August (107 

DAS). RGB images were taken in 2018 on 16 May (9 DAS), 22 May (15 DAS), 29 May (22 DAS), 
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4 June (28 DAS), 11 June (35 DAS), 20 June (44 DAS), 27 June (51 DAS), 2 July (56 DAS), 11 

July (65 DAS), 18 July (72 DAS), 23 July (77 DAS), 1 August (86 DAS) and 6 August (91 

DAS). The RGB images were collected in 2015 using a DJI Phantom 2 platform, and a GoPro 

Hero3+ camera at a height of 15 m, with ground sampling distance of 0.7 cm. The images were 

acquired on 15 June (28 DAS), 26 June (39 DAS), 6 July (49 DAS), 15 July (58 DAS) and 25 July 

(68 DAS). 

Orthomosaics were obtained using modified Structure from Motion (SfM) strategies 

introduced in He et al. (2018) with ground control targets, and then used to identify the coordinates 

of the plots and row segments. While multiple photos may have overlapping plot coverage, the 

image coordinates for the same row segment vary from photo to photo. Row segments at the image 

border suffer more lens and perspective distortion than the row segments at the photo centre, which 

will have a big impact on canopy cover calculation. Therefore, the photo where the plot is closest 

to the centre of the image was used for canopy cover estimation. Each row segment was defined 

by a rectangle whose dimensions were 0.76 m × 3.81 m on average, and then 0.4 m was trimmed 

from each end of the row to minimize effects of the alley between plots. The canopy cover was 

estimated for rows 2 and 3 as the ratio of vegetative to non-vegetative pixels within the box, using 

segmentation methods described previously (Ribera et al. 2018) and canopy cover for each plot 

taken as the average of the two rows. 

2.3.5 Agricultural Production Systems sIMulator 

Weather data, soil data, field management and sorghum physiological parameters were 

used to parameterize the APSIM model for West Lafayette. Weather data included daily solar 

radiation (MJ), maximum and minimum temperatures (°C) and precipitation (mm). Field 

management parameters included sowing date, sowing depth and plant density (Table 2.1). The 

sorghum physiological parameters included observed parameters (final leaf number, final tiller 

number, maximum leaf area (m2) and maximum leaf multiplier) and derived parameters 

(extinction coefficient of canopy (k) and RUE (g MJ−1)) determined from the 2018 data set (Table 

2.2, see explanation of computation of k and RUE below). 
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Table 2.2  2018 parameters from the pipeline calculating derived parameters based on observed 

parameters. K for extinction coefficient and RUE for radiation use efficiency. 

Genotype K RUE (g / MJ) 

PH 849F 0.57 1.47 

PH 877F 0.98 1.53 

RS 327x36 BMR 0.35 1.36 

RS 341x10 0.46 1.15 

RS 366x58 0.58 1.15 

RS 374x66 0.48 1.60 

RS 392x105 BMR 0.44 1.29 

RS 400x38 BMR 0.46 1.27 

RS 400x82 BMR 0.65 1.28 

SP HIKANE II 0.54 1.61 

SP NK300 0.84 1.40 

SP NK5418 0.79 0.97 

SP NK8416 0.55 1.10 

SP Sordan 79 0.69 1.64 

SP Sordan Headless 0.38 1.40 

SP SS405 0.35 1.70 

SP Trudan 8 1.43 1.44 

SP Trudan Headless 0.38 1.40 

2.3.6 Model calibration 

An R pipeline for APSIM parameters calculation was developed to process the 2018 data 

set. The input data included of weather data and sorghum physiological parameters by plot. 

Weather data were comprised of maximum daily temperature, minimum daily temperature, 

precipitation and solar radiation. The sorghum physiological parameters for APSIM: observed leaf 

number, final tiller number, two leaf size distribution parameters, observed canopy cover and 

observed biomass, were extracted after spatial analysis of the variable values using spline fits 

(Rodríguez-Á lvarez et al. 2018). Two leaf size distribution parameters, maximum leaf area 

(aMaxI) and maximum leaf multiplier (aX0) were determined for each hybrid. The leaf size 

functions were computed as follows (Carberry et al. 1993; Chenu et al. 2008): 

 

𝑎𝑀𝑎𝑥 = 𝑎𝑀𝑎𝑥𝑆 × 𝐹𝑖𝑛𝑎𝑙 𝑙𝑒𝑎𝑓 𝑛𝑢𝑚𝑏𝑒𝑟 (𝐹𝐿𝑁) + 𝑎𝑀𝑎𝑥                                                                   

For these data, we assume 𝑎𝑀𝑎𝑥𝑆 × 𝐹𝐿𝑁 = 0  so, 
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𝑎𝑀𝑎𝑥 = 𝑎𝑀𝑎𝑥𝐼 

𝐿𝑒𝑎𝑓 𝑆𝑖𝑧𝑒 = 𝑎𝑀𝑎𝑥 × exp(𝑎 × (𝐿𝑒𝑎𝑓 𝑛𝑢𝑚𝑏𝑒𝑟 − 𝐿𝑎𝑟𝑔𝑒𝑠𝑡 𝑙𝑒𝑎𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛)2 +

𝑏 × (𝐿𝑒𝑎𝑓 𝑛𝑢𝑚𝑏𝑒𝑟 − 𝐿𝑎𝑟𝑔𝑒𝑠𝑡 𝑙𝑒𝑎𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛)3) × 100; 

 

𝐿𝑎𝑟𝑔𝑒𝑠𝑡 𝑙𝑒𝑎𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 𝑎𝑋0 × 𝐹𝐿𝑁; 

 

𝑎 = 𝑎0 − exp(𝑎1 ∗ 𝐹𝐿𝑁) ; 

𝑏 = 𝑏0 − exp(𝑏1 ∗ 𝐹𝐿𝑁) ; 

 

𝑎0 = −0.009 𝑎1 = −0.2 

𝑏0 = 0.0006 𝑏1 = −0.43 

 

Using the leaf size function, the largest leaf area and the position multiplier of this leaf 

within the whole plant of each hybrid were determined. Leaf appearance rate was calculated using 

an assistant function created with global optimization through DEoptim from Package ‘RcppDE’ 

and read in the R pipeline. The leaf appearance rate was determined by plotting number of fully 

expanded leaves from the weekly measurements plotted against accumulated thermal time. The 

leaf appearance rate during the early vegetative stage is typically different from the late vegetative 

stage, so the regression was split into two parts, with the last four leaves set apart. Leaf appearance 

rates were determined from the estimated slope of a linear regression, leaf appearance rate 1 (early 

vegetative) and leaf appearance rate 2 (late vegetative). The fraction of incident radiation 

intercepted (RI) was computed as described previously (Charles-Edwards 1982; Lafarge and 

Hammer 2002): 

RI = 1 − e−k∗LAI 

RI is a function of the LAI and the canopy extinction coefficient (k), which is related to 

canopy structure. Each day the value of LAI was computed from a sigmoidal curve as a function 

of leaf number, leaf appearance rate, final tiller number and leaf size distribution through 

accumulated thermal time, and observed canopy cover was then used to derive k based on the RI 
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equation. To avoid any effects of senescent leaves, the canopy cover data collected after anthesis 

were not used for k calculation. 

The RUE is defined as the quantity of dry biomass produced under non-stressed conditions 

based on the amount of intercepted radiation (IR). The maximum RUE for each variety was 

determined using the slope of the estimated linear relationship between above-ground biomass and 

cumulative IR, which was derived from the calculated k, calculated LAI and daily radiation. 

2.3.7 Model validation 

The APSIM models were validated using the performance trials conducted in West 

Lafayette, IN, in 2015 and 2017. Agricultural Production Systems sIMulator models were also 

validated for nine of the hybrids evaluated in multi-year trials in Bushland, Texas as part of the 

Texas A&M Forage Sorghum Test (https://amarillo.tamu.edu/amarillo-center-

programs/agronomy/forage-sorghum/). For each hybrid, there were different sowing and 

harvesting dates. When plant stand count was not collected, we applied 90 % germination rate to 

the seeding rate as the assumed plant density (Table 2.3). Regression was used to compare 

predicted and observed values and slope and intercept parameters against the 1:1 line (Piñeiro et 

al. 2008). 

The validated models were used to run a long-term simulation for these hybrids from 1980 

to 2017 in both locations. In the simulation, we assumed the sowing date for all years in both 

locations was 1 June and the plant density was 20 plants per m2 with no irrigation in the West 

Lafayette simulation and with irrigation in the Bushland simulation. The simulation harvest dates 

were 80, 100 and 120 DAS. 

2.4 Results 

2.4.1 Field conditions 

The average maximum temperature from sowing to the end of October in 2015, 2017 and 

2018 were 26.1, 26.6 and 27.1 °C, respectively. The average minimum temperatures were 13.2, 

13.8 and 14.6 °C, respectively. Total precipitation from sowing date to the end of October in 2015, 

2017 and 2018 was 471.9, 628.4 and 722.2 mm, respectively, and the crops did not experience 

https://amarillo.tamu.edu/amarillo-center-programs/agronomy/forage-sorghum/
https://amarillo.tamu.edu/amarillo-center-programs/agronomy/forage-sorghum/
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water stress. 2015 and 2017 were slightly cooler and dryer years than 2018, but there were no 

extreme differences between the 3 years. 

2.4.2 Calibration of APSIM models 

The commercial sorghum hybrids were compared for variations in plant density, flowering 

date, final dry biomass and max height (Table 2.1). Significant variations in plant density were 

detected among hybrids within and between trials. These results demonstrated that plant stand 

count is an important parameter and should not be replaced by seeding rate. Most of the 18 hybrids 

flowered at ~75 DAS, except Sordan Headless, Trudan Headless, SP SS405 and RS 400x82 BMR, 

which exhibited substantially later flowering dates. Analyses of variation in plant height among 

hybrids revealed that forage sorghum hybrids were taller (average height ~200 cm) while the grain 

sorghum hybrids were shorter (average height ~100 cm). These differences in morphology 

between the two types of sorghum represent alternate ideotypes that optimize biomass production 

versus grain. Final dry biomass was collected on 25 August 2015 (98 DAS), 27 September 2017 

(134 DAS) and 9 August 2018 (93 DAS). In all 3 years, SP SS405 exhibited the highest final dry 

biomass and RS 341x10 exhibited the lowest final dry biomass. 

In addition to variation in plant development and productivity, the 18 sorghum hybrids also 

exhibited surprising variations in leaf size distribution (Fig. 2.1). Maximum leaf area of these 

hybrids ranged from 300 to 600 cm2. SP SS405 was late-flowering and exhibited the largest 

maximum leaf area while SP Trudan 8 was an early-flowering type and exhibited the smallest 

maximum leaf area (Fig. 2.1; Table 2.1). For most hybrids, the maximum leaf size occurred close 

to the middle leaf of the plant (Fig. 2.1). However, SP Sordan Headless and SP Trudan Headless 

are photoperiod sensitive and flower very late in temperate environments (120 to 138 DAS in West 

Lafayette, respectively; Table 2.1). During the data collection from 49 to 94 DAS, these two 

hybrids were in vegetative growth stage and produced more fullsize leaves than other hybrids. 

While the photoperiod-insensitive hybrids exhibit a clear, bell-shaped leaf size distribution with 

the largest leaf in the middle of the plant, the leaf size distribution for the photoperiod-sensitive 

hybrids show that each hybrid achieves a near-maximum leaf size at leaf 11 or 12, then continues 

to produce similar-sized leaves while the plant maintains vegetative growth (Fig. 2.1). This pattern 

of development is similar to what has been observed and parameterized for the APSIM sugarcane 
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model (Keating et al. 1999, 2003). Leaf size distributions show that each hybrid has a unique 

canopy structure. 

The management practices and biophysiological characteristics of each hybrid, including 

sowing date, sowing depth, plant density, observed final leaf number, final tiller number, two leaf 

size distribution parameters, leaf number, observed canopy cover and observed biomass were input 

to the pipeline for the APSIM simulation. The extinction coefficients (k) of the hybrids (Fig. 2.2) 

and estimates of RUE (Table 2.2) indicated that, whether photoperiod-sensitive or -insensitive, 

forage sorghum hybrids exhibited higher RUE. For k of all 18 hybrids, please see Supporting 

Information—Fig. A1. Thus, given the same amount of solar radiation, forage sorghum can fix 

more CO2 and produce more biomass per unit of land compared to dwarf or semi-dwarf grain 

sorghum hybrids or to sorghum-sudan hybrids used for hay production. 

To evaluate the accuracy of the parameterized and calibrated models, simulated and 

observed traits were evaluated over years and environments. For LAI, the six hybrids shown in 

Fig. 2.3 are representative of hybrids of different types of sorghum that farmers produce. The LAI 

for all 18 hybrids is in the Supporting Information—Fig. A2. Most of the simulation lines fall 

within 1 SEM, except under late-season conditions, when LAI is underestimated. 

Simulations of total plant biomass production and biomass partitioning into leaves, stems 

and panicles are shown in Fig. 2.4. The APSIM simulations report green stem and leaf weights; 

however, senesced and non-senesced leaves and stems were not differentiated in the observed data. 

Therefore, some leaf and stem simulation results are underestimated in the late-season data points. 

The simulations of senesced leaves show that the observed leaf dry biomass is close to the 

simulated green leaf dry biomass plus dead leaf dry biomass. The parameterized APSIM models 

performed well for most of the different types of sorghum; however, there are some differences 

between forage sorghum and grain sorghum hybrids. When we consider the stem and leaf dry 

biomass simulations, the simulations of grain sorghum (Fig. 2.4, O–R) exhibit a better fit than in 

the forage sorghum hybrids (Fig. 2.4, A–N). For the panicle dry biomass simulations, the models 

perform better for forage sorghum. 

2.4.3 Validation of APSIM models 

To validate the parameterized APSIM models over environments, LAI was simulated in 

West Lafayette using 2015 and 2017 weather data. The models performed well in both years with 
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simulations for six of the hybrids shown in Fig. 2.5. Model performance of 2015 and 2017 LAI 

for all 18 hybrids are shown in the Supporting Information—Fig. A3. Leaf area index was 

overestimated in hybrids with later flowering dates such as SP SS405 and SP Sordan Headless. 

Given these results, above-ground dry biomass production was simulated for West 

Lafayette, IN and Bushland, TX representing two very different production environments (Fig. 

2.6). The P-values in the plot test the null hypothesis that the fitted line slope is not different from 

1. Only SP SS405 exhibited a slope significantly lower than 1. 

 

Table 2.3 The genotypes and management details in Bushland trials. 

Genotype Year Sowing date Harvest date Stand count (Plts/m2) 

849F 2017 6/13 10/4 16.7 

849F 2016 6/8 9/15 17.8 

849F 2014 6/13 9/8 22.2 

849F 2011 5/19 9/2 22.2 

849F 2010 5/28 9/7 22.2 

849F 2009 5/28 9/9 22.2 

849F 2008 5/27 9/22 22.2 

849F 2007 5/30 9/25 20.0 

877F 2006 5/25 10/6 28.5 

HIKANE II 2016 6/8 8/27 17.8 

HIKANE II 2011 5/19 9/2 22.2 

HIKANE II 2009 5/28 9/16 22.2 

HIKANE II 2008 5/27 9/17 22.2 

HIKANE II 2007 5/30 9/25 20.0 

HIKANE II 2006 5/25 9/11 26.1 

HIKANE II 2005 5/25 9/8 26.7 

HIKANE II 2004 5/24 9/9 26.7 

HIKANE II 2003 5/21 9/5 26.7 

HIKANE II 2002 5/23 8/28 26.7 

NK 300 2016 6/8 9/26 17.8 

NK 300 2011 5/19 9/22 22.2 

NK 300 2009 5/28 10/14 22.2 

NK 300 2006 5/25 9/14 25.7 

NK 300 2004 5/24 9/9 26.7 

NK 300 2003 5/21 9/22 26.7 

NK 300 2002 5/23 9/27 26.7 

Sordan 79 2006 5/25 9/14 25.4 

Sordan 79 2005 5/25 9/29 26.7 

Sordan 79 2004 5/24 10/13 26.7 
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Table 2.3 continued 

Sordan Headless 2016 6/8 10/25 17.8 

Sordan Headless 2014 6/13 10/6 22.2 

Sordan Headless 2008 5/27 10/26 22.2 

Sordan Headless 2006 5/25 10/6 22.5 

Sordan Headless 2005 5/25 9/29 26.7 

Sordan Headless 2004 5/24 10/13 26.7 

Sordan Headless 2003 5/21 10/15 26.7 

Sordan Headless 2002 5/23 10/11 26.7 

SS405 2017 6/13 10/26 16.7 

SS405 2016 6/8 10/15 17.8 

SS405 2014 6/13 9/17 22.2 

SS405 2011 5/19 10/6 22.2 

SS405 2009 5/28 10/14 22.2 

SS405 2008 5/27 10/26 22.2 

SS405 2007 5/30 9/25 20.0 

SS405 2006 5/25 9/28 29.1 

SS405 2005 5/25 9/29 26.7 

SS405 2004 5/24 9/30 26.7 

SS405 2002 5/23 9/27 26.7 

SS405 2000 5/24 9/27 26.7 

Trudan 8 2006 5/25 8/31 23.8 

Trudan 8 2005 5/25 9/1 26.7 

Trudan 8 2004 5/24 9/9 26.7 

Trudan Headless 2014 6/13 10/6 22.2 

Trudan Headless 2008 5/27 10/26 22.2 

Trudan Headless 2006 5/25 10/6 24.5 

Trudan Headless 2005 5/25 9/29 26.7 

Trudan Headless 2004 5/24 10/13 26.7 

Trudan Headless 2003 5/21 10/15 26.7 

Trudan Headless 2002 5/23 10/11 26.7 
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Figure 2.1 Leaf size distributions collected from 25 June (48 DAS), 12 July (65 DAS) and 9 August 

(93 DAS) at West Lafayette, IN, in 2018. Vertical bars indicate ± 1 SEM for measured values. 

 

Given that APSIM models can simulate above-ground biomass in multiple years and 

different regions, the above-ground biomass for nine hybrids was simulated in West Lafayette, IN 

and Bushland, TX using historical weather data from 1980 to 2017. Results are shown in a biomass 

probability exceedance plot across years (Fig. 2.7). Overall, the simulated biomass in West 

Lafayette, IN was larger than in Bushland, TX for each of three different harvest dates. The 

patterns of hybrid biomass performance in the two locations differed. Considering the rank 

performance of hybrids, the ranks over the three harvest dates do not change much in Bushland, 

TX but show considerable variation from year-to-year in West Lafayette, IN. SP SS405 and the 

SP Sordan 79 hybrids had the highest simulated biomass, and SP Trudan Headless had the lowest 

biomass. Under early harvesting conditions in Bushland, TX, PH 849F, PH 877F, SP HIKANE II 

and SP Sordan Headless had similar simulated biomass production but indicated more variation 

when harvested later in the season. Plots of simulated biomass production in West Lafayette, IN 

showed that SP SS405 and SP Sordan 79 had highest simulated biomass yields and the SP Trudan 

Headless had the lowest simulated biomass at 80 DAS and 100 DAS. However, the hybrids with 

the highest biomass also have a large range of potential biomass. For example, SP SS405 has 

potential biomass between 2200 (g m−2) and 3950 (g m−2) at 120 DAS simulation, which has 
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larger range than other hybrids (Fig. 2.7, F). SP SS405, SP Sordan 79 and SP Sordan Headless had 

the highest simulated biomass in West Lafayette at 120 DAS. Other hybrids exhibited a similar 

range of simulated biomass yields. 

 

 

Figure 2.2 The canopy cover (CC) versus leaf area index (LAI) for different types of sorghum. 

The fitted curve (CC=1–e−k.LAI) indicates the extinction coefficient (k) of different types of 

sorghum and the values shown in Table 2.2. 

2.5 Discussion 

2.5.1 Plant height and final dry biomass of photoperiod-sensitive and -insensitive forage 

sorghum hybrids are similar and greater than grain sorghum in medium- and short-

season environments 

Renewable fuels produced from plants could help to ensure future energy sustainability. 

Different feedstocks are used in starch-based, sugar-based and cellulose-based ethanol production. 

Whereas starch and sugar-based ethanol compete with food production (Tilman et al. 2006), 
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lignocellulosic biofuels do not have a potential negative influence on food production (Rubin 

2008). 

Not surprisingly, the yield trials and simulation studies of biomass sorghum hybrids 

reported in this study showed that photoperiod-sensitive and photoperiod-insensitive forage 

sorghum hybrids have larger max height and final dry biomass than grain sorghum. This indicates 

that these types of sorghum can produce more lignocellulosic biomass for ethanol and are better 

choices as feedstocks compared to grain sorghum. Based on our final harvest data in 2018 (Fig. 

2.4), the proportion of stem to total biomass for forage sorghum and grain sorghum are 0.70 and 

0.37, respectively. Variation in maximum height and final dry biomass of these hybrid cultivars 

depends on the length of the growing season. The final dry biomass of the photoperiod-insensitive 

forage hybrids was higher than the photoperiod-sensitive sorghum in 2018 at 94 DAS, while the 

photoperiod-sensitive hybrids outperformed the photoperiod-insensitive hybrids at 99 DAS in 

2015 and 135 DAS in 2017 (Table 2.1). This is consistent with observations that the photoperiod- 

sensitive sorghum extends pre-floral development up to 8 months, resulting in taller plants with 

more leaves (Rooney 2004; Rooney et al. 2007; Clerget et al. 2008; Olson et al. 2012). 

Photoperiod-sensitive sorghum hybrids maximize the yield of lignocellulosic material not only 

directly through delay of reproductive growth stage but also indirectly through enhancement of 

drought tolerance or drought avoidance in rainfed environments (Rooney et al. 2007). Our results 

suggest that photoperiod-sensitive sorghum improves biomass production in longer growing 

periods by inhibiting the transition from vegetative to reproductive growth, which can add value 

to bioenergy production in locations that have longer growing periods with sufficiently warm 

temperatures. 

2.5.2 Sorghum hybrids exhibit diverse canopy structures 

In conditions of sufficient water supply, the crop biomass is determined by the accumulated 

radiation interception and the efficiency with which radiant energy is converted to dry matter 

(Monteith et al. 1977; Muchow 1989). The amount of RI is a function of the pattern of leaf area 

development. Therefore, leaf size distribution is an important determinant of crop growth. In 

maize, Hammer et al. (2009) found that the change in canopy architecture may also have indirect 

effects via leaf area retention and partitioning of carbohydrate to the ear. 
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The leaf size distributions vary considerably among the hybrids reported in this study (Fig. 

2.1). Some hybrids with larger leaf areas may produce more biomass in stress-free environments 

while hybrids with smaller leaf areas may perform better under drought stress. Hammer et al. 

(2009) found that crops with smaller leaf area have a yield advantage because they can reduce 

water use before flowering and conserve subsoil moisture that can then be accessed during the 

critical grain-filling period under drought stress (He et al. 2017). Borrell et al. (2014a, b) also found 

that the size of the crop canopy has important consequences for water use in sorghum, where the 

stay-green trait contributes to drought tolerance by conferring reduced tillering and smaller plant 

leaf areas before flowering. 

Photoperiod-sensitive sorghum can achieve higher biomass when there is a longer 

vegetative growth supporting its potential value as a feedstock for lignocellulosic biofuel. 

Photoperiod-sensitive sorghum hybrids exhibit a unique pattern of leaf size distribution (Fig. 2.1). 

These hybrids remain vegetative throughout the growing season and do not produce a flag leaf or 

have a clear maximum leaf in the leaf size distributions. These hybrids continued growing and 

producing more leaves until the last harvest date in 2018 at 94 DAS. This pattern may explain why 

the photoperiod-sensitive sorghum had larger final dry biomass when harvested at later dates (99 

DAS in 2015 and 135 DAS in 2017). 

 

Figure 2.3 Simulated crop leaf area index (LAI) throughout the crop life cycle (lines) compared to 

measured values (symbols) for six represented hybrids of each sorghum type. The experiments 

were sown on 8 May 2018 at West Lafayette. Vertical bars indicate ± 1 SEM for measured values. 
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2.5.3 Photoperiod-sensitive and photoperiod-insensitive forage sorghum hybrids exhibit 

similar RUE 

Radiation use efficiency is a robust and theoretically appropriate parameter for describing 

crop growth. The total production of dry matter is strongly correlated with intercepted solar 

radiation in many different species (Monteith et al. 1977). DeWit (1965) and Goudriaan (1982) 

found that RUE values are essentially stable throughout the growing season and over a wide range 

of production conditions for most crop species. Further analyses suggested that RUE is not 

particularly sensitive to leaf angle even with extreme leaf angles (Duncan 1971). Consistent with 

these findings, some of the hybrids in this study have relatively high extinction coefficients (k) 

and still have reasonable RUE (Table 2.2). In general, RUE is higher for C4 plants than C3 plants; 

Kiniry et al. (1989) reported the RUE for both C4 plants and C3 plants showing that C4 plants 

exhibited the highest RUE, with maize at 1.75 g MJ−1 and sorghum at 1.4 g MJ−1 of intercepted 

short-wave solar radiation. Other studies have shown maximum RUE of maize in the range 1.6–

1.7 g MJ−1 during vegetative growth and 1.2– 1.4 g MJ−1 for sorghum during vegetative growth, 

suggesting the range of potential RUE for sorghum is less than that of maize (Muchow and Davis 

1988; Muchow 1989; Muchow and Sinclair 1994; Sinclair and Muchow 1999; Lindquist et al. 

2005). 

Most of the RUE studies in sorghum are for grain cultivars; however, our studies in 

photoperiod-sensitive and photoperiodinsensitive forage hybrids showed that these hybrids have 

similar RUE to one another and higher RUEs than reported for grain sorghums. Within commercial 

forage sorghum hybrids, the observed RUE ranged from 1.29 to 1.70 g MJ−1 with the highest 

RUE similar to reports in maize (Sinclair and Muchow 1999). The sorghum hybrid with highest 

RUE of the 18 commercial grain and biomass sorghum hybrids in our studies was SP SS405 (Table 

2.2). This hybrid also exhibits a larger max height and greater final dry biomass. Other studies 

have reported similar findings of tall sorghum hybrids exhibiting 1.65 g MJ−1 RUE (Hammer et 

al. 2010). Narayanan et al. (2013) also reported that two taller sorghum hybrids had the highest 

biomass and RUE in their study. Conversely, to test the hypothesis that height affects RUE in 

sorghum, George-Jaeggli et al. (2011) used dwarf sorghum to examine the effects of plant height 

on RUE. They found that sorghum dwarfing genes negatively affect radiation capture and in some 

cases RUE. 
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Figure 2.4 Simulated crop attributes throughout the crop life cycle (lines) compared to measured 

values (symbols) for a range of treatments for the experiments sown on 8 May 2018 at West 

Lafayette. Vertical bars indicate ± 1 SEM for measured values. For each forage (A–N) and grain 

(O–R) type hybrid, the panel shows the time course of total and organ (stem, leaf, grain) biomass. 

The simulated lines are in the same colour as their measured types except the simulated total dry 

biomass (black line) and the simulated dead leaf dry weight (brown line). 
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Figure 2.5 Simulated crop leaf area index (LAI) throughout the crop life cycle (lines) compared to 

measured values (symbols) for six represented hybrids of each sorghum type sown on 19 May 

2015 and 16 May 2017 at West Lafayette. The simulated lines are in the same colour as their 

measured types. Vertical bars indicate ± 1 SEM for measured values. 

2.5.4 Forage sorghum models perform well in above-ground biomass simulations across 

years and locations 

The forage and grain sorghum biomass models described in this study performed well in 

simulations in both West Lafayette, IN and Bushland, TX. These studies showed that the simulated 

aboveground biomass was higher in West Lafayette than in Bushland over multiple years. Within 

the set of nine hybrids evaluated at both locations, SP SS405 and SP Sordan 79 exhibited the 

highest RUE and simulated biomass in both locations. The photoperiod-sensitive sorghum hybrids 

exhibited the highest predicted biomass yields over time. Interestingly, the photoperiod-sensitive 

sorghum hybrids did not perform as well in Bushland as in West Lafayette. This may be because 

West Lafayette has comparatively higher rainfall, and the photoperiod-sensitive sorghum hybrids 

had more vegetative growing time to produce biomass in West Lafayette than in Bushland. 

The APSIM models reported in this study can be used to explore differences in productivity 

among sorghum hybrids through long-term simulation. Hammer et al. (2014) have used APSIM 

to study locally optimal G × M combinations and demonstrated that significant improvements in 

yield and or reduction in failure risk are possible. Hammer et al. (2009) used the past 50 years of 
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climate data to simulate canopy and root system architecture effects for maize that was planted at 

a range of densities at three representative locations throughout the US Corn Belt. Their results 

indicated that change in canopy architecture had little direct effect on biomass accumulation and 

historical yield trends, but likely had important, indirect effects via leaf area retention and 

partitioning of carbohydrate to the ear (Hammer et al. 2009). 

Applying the APSIM model to sorghum can have similar benefits. White et al. (2015) 

simulated a rainfed sorghum–winter wheat rotation at Bushland, TX, from 1958 to 1999 comparing 

no-till versus tillage. The simulated grain sorghum biomass was lower than the one observed. 

Agricultural Production Systems sIMulator should also be able to improve mid-season predictions 

of yield. Soler et al. (2007) used CERES-Maize to simulate the impacts of different planting dates 

on four different maize hybrids under rainfed and irrigated conditions in a subtropical region of 

Brazil. These studies showed that an accurate yield forecast could be provided at ~45 days prior 

to the harvest date for all four maize hybrids (Soler et al. 2007). These kinds of studies are 

promising for farmers, decision makers and researchers, as they could provide longer-term 

information for strategic management decisions, without extensive yield trials. In the future, our 

adapted biomass sorghum models can be applied to diverse areas and provide credible simulations 

for sorghum crop growth and development across a range of environments and management 

practices. 
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Figure 2.6 Model validation through comparing observed and predicted biomass of West Lafayette 

2015, West Lafayette 2017 and Bushland data from 2000 to 2017. The P-value is to test the null 

hypothesis that the fitted line slope is not different from 1. 
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Figure 2.7 Biomass probability exceedance of nine hybrids from 1980 to 2017. The plots from (A) 

to (C) are harvested on 80, 100 and 120 DAS in Bushland, TX; the plots from (D) to (F) are 

harvested on 80, 100 and 120 DAS in West Lafayette, IN. 
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 ANALYSIS OF HYBRID SORGHUM BIOMASS YIELDS 

IN MULTI-YEAR PERFORMANCE TRIALS 

3.1 Abstract 

Sorghum is a productive, heat-tolerant and drought-tolerant crop that can be used for biomass and 

bioenergy production. However, few sorghum breeding programs focus on the improvement of 

traits related to bioenergy production. The objective of this study was to study the genetic 

architecture of biomass productivity and bioenergy-related traits in a large population of testcross 

hybrids representing genetically diverse accessions from the sorghum conversion program. A set 

of 619 sorghum genotypes was individually crossed to ATx623 to create a half-sib population that 

was planted and evaluated in field trials in three consecutive years. Single-nucleotide 

polymorphisms (SNPs) were used in a genome-wide association study (GWAS) to identify genetic 

loci associated with plant architecture and productivity using fixed and random model circulating 

probability unification (FarmCPU) strategies. GWAS identified 9, 6, 7, 8, 6, and 2 SNPs that were 

significantly associated with apex height, top collar height, aboveground dry biomass (ADB), 

moisture, days to flowering (FL) and stem base diameter, respectively. Several of the quantitative 

trait loci (QTLs) for apex height, top collar height and ADB mapped to previously described 

dwarfing genes Dw1 and Dw3. Genes associated with top collar height mapped to maturity gene 

Ma2. Genes for harvest moisture mapped to the stay-green loci Stg1 and Stg4. Other loci with 

significant effects on ADB were mapped to chromosomes 1, 2, 6, 7, 8, 9 with favorable alleles 

often represented at low frequencies in the sorghum germplasm collection. Dwarf Yellow Milo 

and Spur Feterita were shown to have favorable alleles for multiple SNPs for ADB and are unique 

resources for crop improvement. Most genetic studies in sorghum focus on inbred line 

performance, this study provided one of the first comprehensive assessments of genes contributing 

to biomass accumulation in hybrid sorghum. 

3.2 Introduction 

Sorghum (Sorghum bicolor (L.) Moench) is tolerant to abiotic stresses (such as drought 

and heat) and serves as a major food for millions of people in India and sub-Saharan Africa (Smith 

and Frederiksen 2000; Singh et al. 2014; Borrell, Oosterom, et al. 2014). It is also an important 
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grain crop for animal feed and biomass for biofuel markets (FAOSTAT, 2019; Jordan et al. 2012). 

The resilience of sorghum may be attributed to the breadth of genetic resources contributing to 

variation in physiological, anatomical, and agronomic traits for crop improvement (Morris et al. 

2013). 

Sorghum also is an important forage and biomass crop that can be used to feed livestock 

and produce plant-based biofuels. As a C4 plant, sorghum exhibits high maximum photosynthetic 

rates and high water use efficiency. Based on these attributes, sorghum was proposed as a good 

candidate for bioenergy feedstock production (Smith 1986). This highly productive, heat-tolerant, 

and drought-tolerant crop has a history in lignocellulose, sugar and starch improvement. Total dry 

biomass affects ethanol yield potential and is important target for bioenergy sorghum breeding 

(Tilman et al. 2006; Rooney et al. 2007; Rubin 2008; Kong et al. 2020). Few genetic studies have 

addressed the inheritance and expression of biomass production and adaptation traits in sorghum 

hybrids. 

Aboveground dry biomass (ADB) is a complex trait and the primary target for sorghum 

biomass breeding programs (Gill et al. 2014; Pfeiffer et al. 2019; de Oliveira et al. 2020). However, 

ADB generally exhibits low heritability. Shiringani and Friedt (2011) reported that broad-sense 

heritability for sorghum dry biomass was 0.13. Sorghum dry biomass may be affected by plant 

height (Wilson and Eastin 1982; van Oosterom and Hammer 2008; George-Jaeggli et al. 2011; 

Olson et al. 2012), days to flowering (Rooney et al. 2007; Olson et al. 2012; Murphy et al. 2014; 

Meki et al. 2017), and leaf morphology (Sieglinger 1936; Rooney et al. 2007; Olson et al. 2012; 

Gill et al. 2014; Truong et al. 2017). Plant height affects biomass accumulation and partitioning to 

grain yield (van Oosterom and Hammer 2008; Wilson and Eastin 1982). Days to flowering affects 

the length of vegetative growth and is a key trait associated with high biomass yield (Olson et al. 

2012; Rooney et al. 2007). Leaf morphology traits, such as leaf area and leaf number, contribute 

to a diversity of plant and canopy types thereby affecting radiation interception and biomass 

accumulation (Sieglinger 1936; Rooney et al. 2007; Olson et al. 2012). Incorporating these traits 

into a selection index while evaluating ADB may be a good approach for crop improvement. 

Usually, these traits exhibit higher heritability than biomass yield. Sami (2013) found the 

heritability of plant height was 0.69, and days to flowering was 0.83 in sweet sorghum. Kenga et 

al. (2006) found that heritability of plant height was 0.77, days to anthesis was 0.42, and grain 

yield was 0.14 in hybrid sorghum populations.  
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Plant height is often reported as one of the most important traits driving variation in ADB. 

Since measurements of plant height are easy and inexpensive, indirect selection strategies have 

been developed (Burks et al. 2015; Castro et al. 2015; Fernandes et al. 2018; Monk et al. 1984). 

Four major genes (Dw1-Dw4) have been reported for plant height with dwarfism exhibiting 

recessive inheritance (Quinby and Karper 1953). Dw1 (Sobic.009G230800) was identified in two 

different genetic studies (Hilley et al. 2016; Yamaguchi et al. 2016). Dw1 plays a role in the 

brassinosteroid signaling pathway and affects plant height by reducing cell proliferation activity 

in the internodes (Hirano et al. 2017). Dw3 (Sobic.007G163800) encodes a MDR transporter that 

plays a role in polar auxin transport and affects plant height by decreasing cell length and reducing 

length of the lower internodes. This transporter is orthologous to brachytic2 in maize (Multani et 

al. 2003). Some published studies report that there is epistatic interaction between Dw1 and Dw3 

(Brown et al. 2008; Hilley et al. 2016; Yamaguchi et al. 2016).  

Photoperiod sensitivity and flowering time have a major impact on biomass accumulation.  

Six genes (Ma1-Ma6) corresponding to flowering time or photoperiod sensitivity have been 

described in previous studies. Five of these gene have been cloned. Ma1 (Sobic.006G057866) is 

the major gene with the greatest influence on flowering time and encodes SbPRR37, a pseudo-

response regulator that inhibits flowering in long days for grain and bioenergy sorghum (Murphy 

et al. 2011). Ma2 (Sobic.002G302700) affects sorghum maturity and selectively enhances Ma1 

(Sobic.006G057866) expression to delay flowering in long days (Casto et al. 2019). Ma3 

(Sobic.001G394400) encodes a phytochrome B (Childs et al. 1997), and Ma5 (Sobic.001G087100) 

encodes phytochrome C (Yang et al. 2014). Ma6 (Sobic.006G004400) encodes Ghd7 and is a 

repressor of flowering in long days (Murphy et al. 2014).  

Stem diameter and water content are also salient plant traits in biofuel breeding programs 

(Kong et al. 2020). Plant water content is affected by many genes and environmental factors (Han 

et al. 2015; Murray et al. 2008). Stem diameter is associated with lodging resistance in plants with 

larger diameters of basal internodes (Esechie et al. 1977). Some co-localizations of genes 

impacting water content and other biomass-related traits, such as plant height and flowering time, 

have been reported. This suggests that the inheritance of these traits may be functionally or 

physically linked (Kong et al. 2020). The dry stalk (D) locus (Sobic.006G147400) maps to 

chromosome 6 and plays a major role in controlling plant water content (Zhang et al. 2018).  D 

(D_) is dominant and produces a white and dry stem, while the recessive allele (dd) produces a 



 

 

58 

green and juicy stem (Smith and Frederiksen 2000). The D locus was reported to have a significant 

effect on juice volume and stalk moisture in a sweet sorghum mapping population (Burks et al. 

2015). Stay-green, an integrated drought-tolerance trait in sorghum, also influences water content 

(Borrell et al. 2014a). This complex trait also can affect early canopy development, contributes to 

reduced water use before flowering (Hammer et al., 2010; van Oosterom et al., 2010), and late-

season photosynthesis (Borrell et al. 2014a). The stay-green trait is an important component of 

crop performance under drought stresses.  

The genetic architecture of complex polygenic traits can be investigated in genome-wide 

association studies (GWAS). Arabidopsis thaliana is the first plant used in GWAS study (Atwell 

et al. 2010). Subsequently, GWAS was used to explore significant marker and trait associations in 

many cereal crops including rice (Huang et al. 2012), barley (Cockram et al. 2010), wheat 

(Neumann et al. 2011; Sukumaran et al. 2015), maize (Tian et al. 2011), and sorghum (Sukumaran 

et al. 2012; Morris et al. 2013). False positives in GWAS can be controlled using the mixed linear 

model (MLM) that corrects for population structure (Q) + relative kinship (K) (Yu et al. 2006).  

The MLM model has been widely used in association mapping studies (Cruet-Burgos et al. 2020; 

Huang et al. 2012; Morris et al. 2013; Rhodes et al. 2017); however, this method may miss some 

true positives. The fixed and random model circulating probability unification (FarmCPU) 

approach was developed to address this challenge. FarmCPU uses the associated markers to define 

kinship to avoid over-fitting, which results in higher statistical power compared with other 

methods (Liu et al. 2016; Habyarimana et al. 2020; Wang et al. 2020; Kavuluko et al. 2021).  

The sorghum conversion program was initiated in the 1960s to convert tall, photoperiod-

sensitive, exotic sorghums from the world collection into short, photoperiod insensitive, early-

maturing sorghums (Rosenow et al. 1997; Stephens et al. 1967). The collection of sorghum 

conversion lines (SC lines) was developed to represent the genetic diversity of the crop (Hayes et 

al. 2015). The population exhibits genetic and phenotypic variation for most traits and has been 

used in GWAS to find the statistically significant associations between sequence variation in the 

genome and phenotypes of interest (Myles et al. 2009).  

In this study, GWAS approaches were used to identify genetic loci controlling biomass 

yield and adaptation traits in hybrid sorghum. For traits like biomass yield, end-of-season 

measurements provide an indication of differences in productivity at that time point; however, 

most agronomically important traits are dynamic and change throughout plant development. Field-
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based phenotyping technologies provide efficient tools for capturing spatial and temporal variation 

in plant phenotypes of crops like maize and sorghum (Pauli et al. 2016; Masjedi et al. 2018; 

Masjedi et al. 2019; Anderson et al. 2020; Miao et al. 2020; Masjedi et al. 2020). Relative 

differences in traits like plant height and biomass may be regulated by different sets of genes 

throughout the growing season (Campbell et al. 2019).  

Specific objectives of this study are (1) assess hybrid performance in multi-year trials via 

heritability and correlation, (2) identify candidate genes for important biomass production traits in 

sorghum hybrid, (3) explore favorable alleles for biomass yield, and (4) compare identified 

candidate genes for these traits with published QTLs. 

3.3 Materials and methods 

3.3.1 Genotypes and field management 

The sorghum conversion program converted tall and photoperiod sensitive alien sorghums 

from U.S. and international collections into short, photoperiod-insensitive, early-maturing 

sorghums (Rosenow et al. 1997; Rosenow et al. 1997; Stephens et al. 1967). The collection of 

sorghum conversion lines (SbDIV) was developed to represent the genetic diversity of the crop 

(Hayes et al. 2015). To study genes controlling variation in hybrid sorghum performance, SbDIV 

was testcrossed to tester ATx623 to create a population of testcross hybrids (SbDIV TC). In 2018, 

2019, and 2020, a set of 619 sorghum F1 hybrids were grown at the Agronomy Center for Research 

and Education (ACRE) in West Lafayette, IN. Field trials were conducted each year using a 

randomized complete block design with two replicates. The hybrids were evaluated in 4-row plots 

with 0.76 m spacing between rows with 3.05 m long. Seeds were sown on 8 May in 2018, 4 June 

2019 and 12 May 2020 with a planting rate of 22 plants/m2. For 2018, 28% liquid UAN fertilizer 

at 16 g N/m2 was applied on June 7. For 2019, 34 g/m2 of potash 0-0-60 (for potassium) and 1121 

g/m2 of lime were applied in October 2018 and 18 g N/m2 as anhydrous ammonia was applied on 

May 9. For 2020, 18 g N/m2 as anhydrous ammonia was applied on April 6. In each study, the 

experiment was planted with fields managed with a sorghum-soybean rotation. 
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3.3.2 Molecular background 

The SbDIV population was genotyped using genotype-by-sequencing (GBS) with enzyme 

PSTI. GBS data were aligned to reference genome Sorghum bicolor version 3 from Phytozome 

(Goodstein et al. 2012; McCormick et al. 2018) and imputed using Beagle version 4 (Browning 

and Browning 2007). The 80,103 single nucleotide polymorphism (SNP) markers were called on 

reference genome Sorghum bicolor version 3 and were filtered for a minor allele frequency (MAF) 

of 0.025. These SNPs were used in genome-wide association studies (GWAS). 

3.3.3 Field data collection 

Ground-reference traits include in-season and end-of-season performance traits that were 

used in trait correlations and GWAS. Plant stand counts were determined from row 2 and 3 of each 

4-row plot on 15 June in 2018 (38 days after sowing (DAS)), 24 June in 2019 (20 DAS), and 10 

June in 2020 (29 DAS). Days to flowering (FL) were measured as the number of days from 

planting to when 50% of the panicles in the plot were at 50% anthesis. ADB was measured on 

rows 2 and 3 in each plot on 14 August in 2018 (98 DAS), 12 September in 2019 (100 DAS) and 

19 August in 2020 (99 DAS). All plants in the entire 2-row segment (2 rows x  0.76m x 3.05m) of 

each plot were harvested with a Wintersteiger Cibus 2-row Biomass Harvester (Wintersteiger Inc., 

Salt Lake City, UT, USA). After harvesting a plot, ~500 g of the chopped biomass from each plot 

was taken to determine the fresh weight, dry weight, and moisture content. The moisture contents 

were defined as (𝑤𝑒𝑖𝑔ℎ𝑡𝑤𝑒𝑡 − 𝑤𝑒𝑖𝑔ℎ𝑡𝑑𝑟𝑦) 𝑤𝑒𝑖𝑔ℎ𝑡𝑤𝑒𝑡 × 100%⁄ . Tissue samples were dried at 72 

℃ for 10 d. In the biomass estimation, a 0.614-kg fresh weight correction factor was added back 

to each plot to account for the short stem segments that were left behind after machine harvesting. 

The end-of-season (around 1067 ℃𝑑) phenotyping was conducted after machine harvest on plants 

in rows 1 and 4 in each plot on 19 September in 2019 (107 DAS) and 20 August 2020 (100 DAS). 

In 2018, we did not record the exact date, but the data collection immediately followed harvest 

operations. Two plants from rows 1 and 4 of each plot were selected to measure the apex height, 

top collar height, stem base diameter and stem top collar diameter using rulers and calipers.  
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3.3.4 Remote-sensing data collection 

UAV platforms were used to collect multi-modal and multi-temporal remote sensing data 

in field trials conducted in 2018, 2019, and 2020 as described in Masjedi et al. (2020). Data were 

collected using a DJI Matrice M600 Pro UAV as a platform, equipped with an APX-15 V2 as the 

GNSS (Global Navigation Satellite System)/INS (Inertial Navigation System) unit for direct geo-

referencing. LiDAR data were acquired using a Velodyne VLP-16 Puck Lite laser scanner with a 

range accuracy of ±3 cm. Geometric calibration of the imaging systems in this study were 

performed using methods described in Ravi et al. (2018b).  

A data analytics pipeline was used to accommodate processing of remote sensing data. 

Orthomosaics were obtained using modified Structure from Motion (SfM) strategies (He et al. 

2018; Hasheminasab et al. 2020; Lin et al. 2021) with ground control targets and then used to 

identify the coordinates of the plots and row segments. Each row segment was defined by a 

rectangle whose dimensions were 0.76 m × 3.81 m on average, and then 0.4 m was trimmed from 

each end of the row to minimize effects of the alley between plots.  

The first LiDAR data each year were acquired before plants emerged.  It was assumed all 

points belong to the ground and were used to generate a DEM for later dates to extract non-ground 

points. Height was defined as the 99-percentile height of the non-ground points in rows 2 and 3 of 

each plot. The python code for extracting LiDAR features can be found in 

https://hackmd.io/@LiDAR-Feature-Extraction/r1HAB9Wuu/%2FDZXuQH1pQf-

KF0ZD0FrJAg. 

Daily maximum and minimum temperature data used to calculate growing degree days 

(GDDs) was downloaded from Midwestern Regional Climate Center (https://mrcc.illinois.edu/). 

Accumulated GDDs were calculated from the piecewise linear function of the mean air 

temperatures using the methods introduced in Hammer et al. (1993). There were multiple data 

acquisition dates in the three years. We selected dates near 400, 600, 800, and 1000 GDDs each 

year to represent different growth stages of hybrids to evaluate time-dependent LiDAR height. 

3.3.5 Statistical analysis 

Field trait data collected in 2018, 2019, and 2020 were analyzed for spatial variation by 

row, column, and replicate based on modeling spatial trends using two-dimensional Penalised 

https://hackmd.io/@LiDAR-Feature-Extraction/r1HAB9Wuu/%2FDZXuQH1pQf-KF0ZD0FrJAg
https://hackmd.io/@LiDAR-Feature-Extraction/r1HAB9Wuu/%2FDZXuQH1pQf-KF0ZD0FrJAg
https://mrcc.illinois.edu/
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splines (P-spline) models through SpATS R-package (Rodríguez-Á lvarez et al. 2018). The 

generalized heritability of traits was calculated using Oakey’s methods that set the genotypes as a 

random effect in splines through SpATS R-package (Oakey et al. 2007; Rodríguez-Á lvarez et al. 

2018). After spatial correction, Pearson correlation coefficients between traits were calculated 

using corrplot R-package version 0.90 (Taiyun 2021).  

The genotype main effects and genotype x year interaction effects were evaluated by a 

nested analysis of variance (ANOVA) using the lm function in R (Table 3.1). The genotype effects 

were larger than genotype x year interaction effects for most traits, so a combined analysis for the 

three years was conducted. The best linear unbiased prediction (BLUP) of each genotype was 

estimated using the lmer function in lme4 R-package (Bates et al. 2015). A mixed linear model 

was fitted to the data as described by Tolley et al. (2021): 

𝑌𝑖𝑗𝑘𝑙 = 𝜇 + 𝐻𝑖 + 𝑌𝑗 + 𝐻𝑌𝑖𝑗 + 𝑅 𝑌𝑗𝑘⁄ + 𝜀𝑖𝑗𝑘𝑙          (1) 

Where 𝑌𝑖𝑗𝑘𝑙 is the phenotypic measurement of the 𝑖𝑡ℎhybrid, in the 𝑗𝑡ℎyear, in the 𝑘𝑡ℎrep. 𝜇 is the 

overall mean; 𝐻𝑖 is the random effect of the 𝑖𝑡ℎ hybrid; 𝑌𝑗 is the fixed effect of 𝑗𝑡ℎ year; 𝐻𝑌𝑖𝑗 is  

random interaction effect of the 𝑖𝑡ℎ hybrid in the 𝑗𝑡ℎ year; 𝑅 𝑌𝑗𝑘⁄  is the fixed effect of the 𝑘𝑡ℎrep 

nested in the 𝑗𝑡ℎ year, and 𝜀𝑖𝑗𝑘𝑙 is the random effect of error.  

The BLUP values from the combined analysis were used as input phenotypes for GWAS 

using FarmCPU (Liu et al. 2016) and Mixed Linear Model (MLM) (Yu et al. 2006) with 80,103 

SNP markers. GWAS in this study was conducted by Genomic Association and Prediction 

Integrated Tool (GAPIT) (Zhang et al. 2010; Lipka et al. 2012; Wang and Zhang 2020). The 

FarmCPU and MLM in GAPIT were run with default settings. The threshold of significant SNPs 

was determined using FDR of adjusted p-values at 0.01 (Benjamini and Hochberg 1995). The 

candidate gene search window was set to 15kb upstream and downstream of each significant SNP 

with FDR of P-value at 0.01. Manhattan plots of GWAS results were created using the R package 

“qqman” (Turner 2014). Sorghum QTL publications was searched through the Sorghum QTL 

Atlas (Mace et al. 2019).  
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Table 3.1 ANOVA of performance traits measured in sorghum hybrids in replicated trials in 2018, 

2019, and 2020. 

Apex Height           

 Source of variation 
Degrees of 

freedom 

Sums of 

squares 

Mean 

square 
F value Pr(>F) 

Genotype  628 6410547 10208   39.2977 < 2e-16 *** 

Year 1 71590 71590 257.6040 < 2e-16 *** 

Rep nested in Year 1 22067 22067 84.9510 < 2e-16 *** 

Genotype by Year 628 142212 226 0.8718 0.9835 

Residuals                 2515 653291 260    

            

Top Collar Height           

 Source of variation 
Degrees of 

freedom 

Sums of 

squares 

Mean 

square 
F value Pr(>F) 

Genotype  628 6572507 10466 59.5250 < 2.2e-16 *** 

Year 1 27449 27449 156.1163 < 2.2e-16 *** 

Rep nested in Year 1 17388 17388 98.8946 < 2.2e-16 *** 

Genotype by Year 628 144844 231 1.3118 4.73e-06 *** 

Residuals                 2515 442191 176   
           

Stem Base Diameter           

 Source of variation 
Degrees of 

freedom 

Sums of 

squares 

Mean 

square 
F value Pr(>F) 

Genotype  628 6749.2 10.75 7.3081 < 2.2e-16 *** 

Year 1 440.1 440.05 299.2378 < 2.2e-16 *** 

Rep nested in Year 1 335.0 335.04 227.8302 < 2.2e-16 *** 

Genotype by Year 628 3545.6 5.65 3.8392 < 2.2e-16 *** 

Residuals                 2515 3698.5 1.47   
           

Aboveground Dry Biomass           

 Source of variation 
Degrees of 

freedom 

Sums of 

squares 

Mean 

square 
F value Pr(>F) 

Genotype  628 172648672 274918 6.6255 < 2e-16 *** 

Year 1 1735 1735 0.0418 0.838 

Rep nested in Year 1 30344448 30344448 731.3029 < 2e-16 *** 

Genotype by Year 628 51942577 82711 1.9933 < 2e-16 *** 

Residuals                 2515 104356598 41494     
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Table 3.1 continued 

Flowering           

 Source of variation 
Degrees of 

freedom 

Sums of 

squares 

Mean 

square 
F value Pr(>F) 

Genotype  628 30202.4 48.1 16.3135  <2e-16 *** 

Year 1 16694.1 16694.1 5662.7906 <2e-16 *** 

Rep nested in Year 1 2.7 2.7 0.9088 0.3405 

Genotype by Year 628 4471.3 7.1 2.4151 <2e-16 *** 

Residuals                 2515 7414.3 2.9     

            

Moisture           

 Source of variation 
Degrees of 

freedom 

Sums of 

squares 

Mean 

square 
F value Pr(>F) 

Genotype  628 3.3397 0.005318 7.4278 < 2.2e-16 *** 

Year 1 0.0001 0.000129 0.1800 < 2.2e-16 *** 

Rep nested in Year 1 0.0797 0.079725 111.3556 < 2.2e-16 *** 

Genotype by Year 628 0.9883 0.001574 2.1981 < 2.2e-16 *** 

Residuals                 2515 1.8006 0.000716   
           

Stem Top Collar Diameter           

 Source of variation 
Degrees of 

freedom 

Sums of 

squares 

Mean 

square 
F value Pr(>F) 

Genotype 628 1589.79 2.532 4.46664 < 2.2e-16 *** 

Year 1 196.24 196.236 361.7285 < 2.2e-16 *** 

Rep nested in Year 1 72.15 72.148 132.9928 < 2.2e-16 *** 

Genotype by Year 628 974.56 1.552 2.8606 < 2.2e-16 *** 

Residuals                 2515 1364.38 0.542   
           

Stand Count           

 Source of variation 
Degrees of 

freedom 

Sums of 

squares 

Mean 

square 
F value Pr(>F) 

Genotype  628 20759 33 4.3584 < 2.2e-16 *** 

Year 1 48608 48608 6408.9434 < 2.2e-16 *** 

Rep nested in Year 1 5854 5854 771.7937 < 2.2e-16 *** 

Genotype by Year 628 14387 23 3.0206 < 2.2e-16 *** 

Residuals                 2515 19075 8     

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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3.4 Results 

3.4.1 Trait heritability and correlations 

Analyses of heritability of important agronomic traits indicated apex height, top collar 

height, and FL have the highest heritability compared with other traits (Table 3.2). ADB is a 

secondary and more complex trait and the heritability was 0.5-0.67. The heritability of moisture 

were high in 2019 (0.65) and 2020 (0.71). However, the moisture heritability of 2018 (0.1) was 

much lower than the other two years. In 2018, the biomass harvesting began on 1 August, but 

mechanical and rain delays slowed progress until 13 August. The moisture measurement relies on 

environments. Delayed harvest times may be the reason for the 0.1 heritability of 2018. The stem 

top collar diameter, stem base diameter, and stand count are lower heritable than other traits (Table 

3.2). 

Table 3.2 Heritability of agronomic traits measured in sorghum hybrids in trials conducted in 2018, 

2019, and 2020. 

Heritability 

Year Moisture ADB FL Stand 

count 

Apex 

height 

Top collar 

height 

Top collar 

diameter 

Base 

diameter 

2018 0.10 0.50 0.79 0.30 0.94 0.95 0.17 0.22 

2019 0.65 0.57 0.84 0.47 0.97 0.98 0.41 0.35 

2020 0.71 0.67 0.83 0.41 0.97 0.98 0.45 0.47 

 

Table 3.3 shows the correlation between agronomic traits. Moisture exhibited a strong and 

positive correlation with flowering date as well as top collar diameter and base diameter.  ADB 

exhibited a strong and positive correlation with apex height and top collar height, and top collar 

diameter.  Flowering time exhibited a highly significant and positive correlation with moisture and 

base diameter and was also correlated with ABD. Apex height exhibited a near perfect correlation 

with top collar height and both measures of plant height were positively correlated with ADB. 

Although top collar diameter and base diameter were positively correlated, top collar diameter was 

positively correlated with biomass yield and base diameter was negatively correlated with biomass 

yield. The results indicate a complex relationship between stem diameter and biomass 

accumulation in this population. 
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Table 3.3 Correlations for agronomic traits measured in sorghum hybrids in trials conducted in 

2018, 2019, and 2020. Red cell color represents positive correlations, and green color represents 

negative correlations. 

 Moisture ADB FL 
Stand 

count 

Apex 

height 

Top 

collar 

height 

Top 

collar 

diameter 

Base 

diameter 

Moisture         

ADB -0.07        

FL 0.52** 0.13*       

Stand count 0.06 0.1* 0.12*      

Apex height -0.1* 0.77** 0.02 0     

Top collar height -0.09* 0.79** 0.01 0.01 0.99**    

Top collar diameter 0.15** 0.18** 0.12* -0.12* 0.07 0.11*   

Base diameter 0.29** -0.08* 0.37** -0.15** -0.16** -0.19** 0.49**  

*Significant at the 0.05 probability level. 

** Significant at the 0.001 probability level. 
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3.4.2 GWAS for biomass traits in sorghum hybrids 

 

Figure 3.1 A screen plot of principal components (x-axis) and their contribution to the variance 

determined from GBS data of SbDIV TC. 

 

The BLUPs of each trait and hybrid were used as input phenotypes in GWAS. The principal 

components (PCs) were calculated using GAPIT and set to 5 based on the number of PCs and their 

contribution to the variance as shown in Figure 3.1. The FarmCPU and MLM GWAS models were 

evaluated. As previously reported, the FarmCPU model generally exhibited better performance 

and higher statistical power than MLM (Liu et al. 2016). The Quantile-quantile (QQ)-plots of P-

values for six agronomic traits with significant SNPs detected by FarmCPU are shown in Figure 

3.2. The X-axis is the expected P-values which assumed uniform [0,1] distribution. The dotted line 

shows the 95% confidence interval under the null hypothesis that there is no association between 

the SNPs and the trait. The FarmCPU models detected SNPs associated with apex height, top collar 

height, base diameter, ADB, FL and moisture but no significant SNPs were discovered for stand 

count and top collar diameter.  
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A. Apex height B. Top collar height 

  
C. Base diameter D. Aboveground dry biomass 

  
E. Flowering F. Moisture 

  

Figure 3.2 Quantile-quantile (QQ)-plots of P-values for six agronomic traits using FarmCPU. 
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Manhattan plots of the significant SNPs detected for apex height, top collar height, base 

diameter, ADB, FL and moisture using FarmCPU are shown in Figure 3.3. GWAS results using 

the MLM model are shown in Appendix B.  

 

A. Apex Height 

 
B. Top collar height 

 
 

  



 

 

70 

Figure 3.3 continued 

C. Base diameter 

 
D. Aboveground dry biomass 
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Figure 3.3 continued 

E. Flowering 

 
F. Moisture 

 

Figure 3.3 Manhattan plots of the significant SNPs detected for (A) Apex height, (B) Top collar 

height, (C) Base diameter, (D) Aboveground dry biomass, (E) Flowering and (F) Moisture. 

 

GWAS using FarmCPU identified nine significant SNPs for apex height, six significant 

SNPs for top collar height, two significant SNPs for base diameter, seven significant SNPs for 

ADB, six significant SNPs for FL, and eight significant SNPs for moisture (Fig. 3.3). Some SNPs 

were significantly related to more than one trait. SNP S09_57212498 was significant in apex height 
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(Table 3.4) and top collar height (Table 3.5); SNP S07_59366675 was significant in apex height 

(Table 3.4), top collar height (Table 3.5), and ADB (MLM results in Table B.2); SNP 

S07_59768820 was significant in apex height (Table 3.4), top collar height (Table 3.5) and ADB 

(Table 3.7); SNP S07_61080813 was significant for apex height (Table B.1), top collar height 

(Table B.3), and ADB (Table 3.7); SNP S07_1078618 was significant for base diameter (Table 

3.6) and FL (Table 3.8).  

Linkage Disequilibrium (LD) decay in the SbDIV TC was estimated using GAPIT at 

approximated 12kb (Griebel et al. 2021). Therefore, a candidate gene search window was set to 

15kb upstream and downstream of each significant SNP with FDR of P-value at 0.01. One or more 

candidate genes were discovered flanking each of the SNPs associated with apex height (Table 

3.4), top collar height (Table 3.5), base diameter (Table 3.6), aboveground dry biomass (Table 3.7), 

flowering (Table 3.8), and moisture content (Table 3.9). Significant SNPs and identified candidate 

genes were on each sorghum chromosome except Chromosome 10.  

GWAS using MLM produced similar results (Appendix B). Of particular note, the gene 

for Dw3 (Sobic.007G163800) was identified as a candidate for apex height (Table B.1), top collar 

height (Table B.2), and ADB (Table B.3). A SNP located 3.96kbp downstream of the previously 

reported Dry Midrib (D) locus was identified as a candidate gene for moisture content in the SbDIV 

TC (Table B.4). 

For each SNP discovered by GWAS, either the major or minor allele contributed to the 

favorable effect.  If the SNP effect had a positive value, the minor allele was favorable, and if the 

SNP effect had a negative value, the major allele was favorable. A more in-depth analysis of the 

genes and alleles controlling aboveground dry biomass in the SbDIV TC indicated the minor allele 

for three of the SNPs discovered by FarmCPU contributed to increased biomass yield in hybrid 

sorghum (Table 3.7). The minor alleles for S07_59768820, S07_61080813 and S08_59178415 

had positive effects on hybrid performance and were present at frequencies of 0.18, 0.18, and 0.35, 

respectively, in the SbDIV population. The minor allele for three additional SNPs discovered by 

FarmCPU under FDR p-value between 0.01 and 0.05 also contributed favorable effects (Table 

B.6). The minor alleles for S01_ 74145303, S09_56521150, S06_2686264, and S02_2417641 also 

had positive effects on hybrid performance and were present at even lower frequencies of 0.12, 

0.31, 0.03, 0.04, respectively, in the SbDIV population. 
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Table 3.4 Significant SNPs and candidate genes for apex height identified by GWAS using the 

FarmCPU model at FDR 0.01. Candidate gene in blue color are not reported in prior QTL studies. 

SNP Chr. Position 

FDR_Adjusted

_P-values Effect CandidateGene Annotation 

S09_57212498 

  

  

  

  

9 

  

  

  

  

57212498 

  

  

  

  

2.14E-13 

  

  

  

  

19.36 

  

  

  

  

Sobic.009G231900 SUMO-PROTEIN LIGASE 

Sobic.009G232000 

RIBOSOME BIOGENESIS 

PROTEIN 

Sobic.009G232100 Fasciclin domain 

Sobic.009G232200 Fasciclin domain 

Sobic.009G232266 GLUTAREDOXIN 

S07_59366675 

  

  

  

  

7 

  

  

  

  

59366675 

  

  

  

  

1.04E-09 

  

  

  

  

19.36 

  

  

  

  

Sobic.007G158800 Galactolipase 

Sobic.007G158900 

SODIUM CHANNEL MODIFIER 

1 

Sobic.007G159000 

CHAPERONE DNAJ-DOMAIN 

CONTAINING PROTEIN 

Sobic.007G159100 Tetraspanin family 

Sobic.007G159200 PWWP domain 

S07_59768820 7 59768820 8.11E-05 15.25 Sobic.007G163300 - 

S07_5435798 

  

  

  

  

  

7 

  

  

  

  

  

5435798 

  

  

  

  

  

0.002566026 

  

  

  

  

  

11.84 

  

  

  

  

  

Sobic.007G053500 MOB kinase activator 1 

Sobic.007G053600 

DNA POLYMERASE DELTA 

SUBUNIT 4 

Sobic.007G053700 GB 

Sobic.007G053800 

RNA POLYMERASE SIGMA 

FACTOR 

Sobic.007G053900 - 

Sobic.007G054000 

LEUCINE-RICH REPEAT-

CONTAINING PROTEIN 

S02_73983796 

  

  

  

  

  

  

  

2 

  

  

  

  

  

  

  

73983796 

  

  

  

  

  

  

  

0.004214251 

  

  

  

  

  

  

  

-16.21 

  

  

  

  

  

  

  

Sobic.002G384500 - 

Sobic.002G384600 - 

Sobic.002G384700 

small subunit ribosomal protein 

S9e 

Sobic.002G384800 PPR repeat family 

Sobic.002G384900 - 

Sobic.002G385000 - 

Sobic.002G385100 

small subunit ribosomal protein 

S9e 

Sobic.002G385200 PPR repeat family 

S07_162826 

  

  

7 

  

  

162826 

  

  

0.004214251 

  

  

14.18 

  

  

Sobic.007G001800 

Late embryogenesis abundant 

protein 

Sobic.007G001900 

Late embryogenesis abundant 

protein 

Sobic.007G002000 

COPPER TRANSPORT 

PROTEIN 

S03_4997705 

  

  

  

  

  

3 

  

  

  

  

  

4997705 

  

  

  

  

  

0.006740849 

  

  

  

  

  

13.07 

  

  

  

  

  

Sobic.003G055500 SOLUTE CARRIER FAMILY 35 

Sobic.003G055600 

MINI-CHROMOSOME 

MAINTENANCE COMPLEX-

BINDING PROTEIN 

Sobic.003G055700 saposin 
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Table 3.4 continued 

     

Sobic.003G055800 - 

Sobic.003G055900 

phosphatidylinositol glycan, class 

H 

Sobic.003G056000 

Micrococcal nuclease / 

Micrococcal endonuclease 

S03_19146851 

  

  

  

  

  

3 

  

  

  

  

  

19146851 

  

  

  

  

  

0.008286311 

  

  

  

  

  

-24.05 

  

  

  

  

  

Sobic.003G160500 

THIAMIN 

PYROPHOSPHOKINASE 

Sobic.003G160600 - 

Sobic.003G160700 PROTEIN RALF-LIKE 22 

Sobic.003G160800 

MITOCHONDRIAL OUTER 

MEMBRANE PROTEIN 25 

Sobic.003G160900 

small subunit ribosomal protein 

S4e 

Sobic.003G161000 

LEUCINE-RICH REPEAT-

CONTAINING PROTEIN 

S07_60179636 

  

  

  

7 

  

  

  

60179636 

  

  

  

0.008984154 

  

  

  

11.38 

  

  

  

Sobic.007G166600 SUPEROXIDE DISMUTASE 

Sobic.007G166701 - 

Sobic.007G166800 

Domain of unknown function 

(DUF966) 

Sobic.007G166900 PROTEIN WALLS ARE THIN 1 

 

Table 3.5 Significant SNPs and candidate genes for top collar height identified by GWAS using 

the FarmCPU model at FDR 0.01. Candidate genes in blue color are not reported in prior QTL 

studies. 

SNP Chr. Position  

FDR_Adjusted

_P-values Effect CandidateGene Annotation 

S09_57212498 

  

  

  

  

9 

  

  

  

  

57212498 

  

  

  

  

2.57E-13 

  

  

  

  

20.04 

  

  

  

  

Sobic.009G231900 SUMO-PROTEIN LIGASE 

Sobic.009G232000 RIBOSOMAL PROTEIN 

Sobic.009G232100 Fasciclin domain 

Sobic.009G232200 Fasciclin domain 

Sobic.009G232266 GLUTAREDOXIN 

S07_59768820 7 59768820 1.49E-07 19.92 Sobic.007G163300 - 

S07_59366675 

  

  

  

  

7 

  

  

  

  

59366675 

  

  

  

  

1.33E-05 

  

  

  

  

16.87 

  

  

  

  

Sobic.007G158800 Galactolipase 

Sobic.007G158900 

SODIUM CHANNEL MODIFIER 

1 

Sobic.007G159000 

CHAPERONE DNAJ-DOMAIN 

CONTAINING PROTEIN 

Sobic.007G159100 Tetraspanin family 

Sobic.007G159200 PWWP domain 

S02_69475078 

  

  

  

  

  

  

2 

  

  

  

  

  

  

69475078 

  

  

  

  

  

  

0.003139243 

  

  

  

  

  

  

-10.28 

  

  

  

  

  

  

Sobic.002G323400 Lipase 

Sobic.002G323500 - 

Sobic.002G323600 - 

Sobic.002G323700 SYNTAXIN 

Sobic.002G323800 

Protein of unknown function 

(DUF1668) 

Sobic.002G323900 

Proline-rich nuclear receptor 

coactivator 
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Table 3.5 continued 

     Sobic.002G324000 Isocitrate lyase / Isocitritase 

S02_75333122 

  

  

2 

  

  

75333122 

  

  

0.007096102 

  

  

-15.87 

  

  

Sobic.002G402900 - 

Sobic.002G403000 ASPARTYL PROTEASES 

Sobic.002G403100 

PHOSPHATIDYLINOSITOL 4-

PHOSPHATE 5-KINASE 6 

S03_4997705 

  

  

  

  

  

3 

  

  

  

  

  

4997705 

  

  

  

  

  

0.007096102 

  

  

  

  

  

14.53 

  

  

  

  

  

Sobic.003G055500 SOLUTE CARRIER FAMILY 35 

Sobic.003G055600 

MINI-CHROMOSOME 

MAINTENANCE COMPLEX-

BINDING PROTEIN 

Sobic.003G055700 saposin 

Sobic.003G055800 - 

Sobic.003G055900 

phosphatidylinositol glycan, class 

H 

Sobic.003G056000 

Micrococcal nuclease / 

Micrococcal endonuclease 

 

Table 3.6 Significant SNPs and candidate genes for base stem diameter identified by GWAS using 

the FarmCPU model at FDR 0.01. 

SNP Chr. Position  

FDR_Adjusted

_P-values Effect CandidateGene Annotation 

S08_882967 

  

  

  

  

8 

  

  

  

  

882967 

  

  

  

  

0.000316375 

  

  

  

  

0.47 

  

  

  

  

Sobic.008G010500 PEROXIDASE 52 

Sobic.008G010600 

EPIDIDYMAL MEMBRANE 

PROTEIN 

Sobic.008G010700 

LEUCINE-RICH REPEAT-

CONTAINING PROTEIN 

Sobic.008G010750 - 

Sobic.008G010800 PROTEIN ACS-13, ISOFORM C 

S07_1078618 

  

  

7 

  

  

1078618 

  

  

0.001866466 

  

  

-0.28 

  

  

Sobic.007G011500 F-box domain 

Sobic.007G011600 

branch point binding protein (RRM 

superfamily) 

Sobic.007G011700 

BILE ACID BETA-

GLUCOSIDASE-RELATED 

 

Table 3.7 Significant SNPs and candidate genes for aboveground dry biomass identified by GWAS 

using the FarmCPU model at FDR 0.01. 

SNP Chr. Position 
FDR_Adjusted

_P-values 
maf† Effect CandidateGene Annotation 

S07_59768820 7 59768820 2.84E-12 0.18 88.39 Sobic.007G163300 - 

S03_60588984 3 60588984 0.0030591  0.44 -72.51 

Sobic.003G268900 
MITOGEN-ACTIVATED 

KINASE 

Sobic.003G269000 
MITOGEN-ACTIVATED 

KINASE 

Sobic.003G269100 AWPM-19-like family 

Sobic.003G269200 - 

S07_61080813 7  61080813 0.0030591 0.18 49.23  Sobic.007G176900 

BETA-

GALACTOSIDASE 11-

RELATED 
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Table 3.7 continued 

      

Sobic.007G177000 
L-ASCORBATE 

PEROXIDASE 3 

Sobic.007G177100 
MYB-LIKE DNA-

BINDING PROTEIN 

Sobic.007G177150 - 

S01_30652981  1  30652981  0.00902187  0.05 -70.95  

Sobic.001G258200 

SERINE/THREONINE 

PROTEIN 

PHOSPHATASE 

Sobic.001G258300 

ZINC FINGER FYVE 

DOMAIN CONTAINING 

PROTEIN 

S05_66379531  5  66379531  0.00902187 0.05 -60.13  

Sobic.005G180700 
ZINC FINGER-

CONTAINING PROTEIN 

Sobic.005G180800 
PHOSDUCIN-LIKE 

PROTEIN 1 

Sobic.005G180850 - 

Sobic.005G180900 
Protein of unknown 

function (DUF632) 

Sobic.005G181000 

ACYL-COENZYME A 

OXIDASE 2, 

PEROXISOMAL 

Sobic.005G181100 - 

S09_54144857 9 54144857 0.00919189 0.14 -42.94 

Sobic.009G189400 

Assimilatory sulfite 

reductase / Sulfite 

reductase (ferredoxin) 

Sobic.009G189501 - 

Sobic.009G189600 - 

Sobic.009G189700 - 

S08_59178415  8  59178415  0.00919189  0.35 48.62  

Sobic.008G158666 Protease inhibitor 

Sobic.008G158732 Protease inhibitor 

Sobic.008G158800 Protease inhibitor 

Sobic.008G158900 CHITINASE 

Sobic.008G159000 - 

† Minor allele frequency 
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Table 3.8 Significant SNPs and candidate genes for flowering time identified by GWAS using the 

FarmCPU model at FDR 0.01. Candidate genes in blue color are not reported in prior QTL studies. 

SNP Chr. Position  

FDR_Adjusted

_P-values Effect CandidateGene Annotation 

S09_58649847 

  

  

  

9 

  

  

  

58649847 

  

  

  

8.53E-09 

  

  

  

1.12 

  

  

  

Sobic.009G251400 

LYSOPHOSPHOLIPASE-

RELATED 

Sobic.009G251500 

structural maintenance of 

chromosome 3 (chondroitin sulfate 

proteoglycan 6) 

Sobic.009G251600 Cytochrome c oxidase 

Sobic.009G251700 Helix-hairpin-helix domain 

S07_1078618 

  

  

7 

  

  

1078618 

  

  

2.69E-05 

  

  

-1.00 

  

  

Sobic.007G011500 F-box domain 

Sobic.007G011600 

branch point binding protein (RRM 

superfamily) 

Sobic.007G011700 

BILE ACID BETA-

GLUCOSIDASE-RELATED 

S01_74762373 

  

1 

  

74762373 

  

0.002963546 

  

1.27 

  

Sobic.001G475200 Trypsin-like peptidase domain 

Sobic.001G475300 

ubiquitin carboxyl-terminal 

hydrolase 

S06_38161198 

  

  

6 

  

  

38161198 

  

  

0.003654368 

  

  

0.82 

  

  

Sobic.006G051700 NB-ARC domain 

Sobic.006G051750 - 

Sobic.006G051800 

CALMODULIN-BINDING 

TRANSCRIPTION ACTIVATOR 

4 

S07_156957 

  

  

  

7 

  

  

  

156957 

  

  

  

0.008657447 

  

  

  

0.93 

  

  

  

Sobic.007G001700 Transcriptional repressor 

Sobic.007G001800 

Late embryogenesis abundant 

protein 

Sobic.007G001900 

Late embryogenesis abundant 

protein 

Sobic.007G002000 

COPPER TRANSPORT 

PROTEIN 

S01_77989586 

  

  

1 

  

  

77989586 

  

  

0.008732666 

  

  

-0.82 

  

  

Sobic.001G512000 

CYCLIN-DEPENDENT KINASE 

INHIBITOR 1 

Sobic.001G512100 MAGNESIUM TRANSPORTER 

Sobic.001G512200 EXPRESSED PROTEIN 
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Table 3.9 Significant SNPs and candidate genes for moisture content identified by GWAS using 

the FarmCPU model at FDR 0.01. Candidate genes in blue color are not reported in prior QTL 

studies. 

SNP Chr. Position  

FDR_Adjusted

_P-values Effect CandidateGene Annotation 

S09_57846253 

  

  

  

  

  

9 

  

  

  

  

  

57846253 

  

  

  

  

  

5.35E-10 

  

  

  

  

  

0.01 

  

  

  

  

  

Sobic.009G241300 EXPRESSED PROTEIN 

Sobic.009G241400 - 

Sobic.009G241500 - 

Sobic.009G241600 butyrate response factor 1 

Sobic.009G241700 

2OG-FE II OXYGENASE 

FAMILY PROTEIN 

Sobic.009G241801 - 

S05_39908079 5 39908079 3.31E-05 -0.01 NA - 

S05_57225839 

  

  

  

5 

  

  

  

57225839 

  

  

  

6.62E-05 

  

  

  

0.01 

  

  

  

Sobic.005G131400 - 

Sobic.005G131500 

Nucleoside diphosphate 

phosphatase 

Sobic.005G131550 - 

Sobic.005G131600 

Leucine Rich Repeat/ Protein 

tyrosine kinase 

S03_62788762 

  

  

  

  

  

  

3 

  

  

  

  

  

  

62788762 

  

  

  

  

  

  

0.001410978 

  

  

  

  

  

  

-0.01 

  

  

  

  

  

  

Sobic.003G295400 

MACPF DOMAIN-

CONTAINING PROTEIN CAD1 

Sobic.003G295500 

OLIGOPEPTIDE 

TRANSPORTER-RELATED 

Sobic.003G295600 

Protein of unknown function 

(DUF1264) 

Sobic.003G295700 

ALKALINE CERAMIDASE-

RELATED 

Sobic.003G295800 RIBOSOMAL PROTEIN L13 

Sobic.003G295900 

HEAT SHOCK 

TRANSCRIPTION FACTOR 

Sobic.003G296000 

TREHALOSE-6-PHOSPHATE 

SYNTHASE 

S08_49686141 8 49686141 0.003688284 -0.01 Sobic.008G105432 - 

S03_54134664 

  

  

  

  

3 

  

  

  

  

54134664 

  

  

  

  

0.00687297 

  

  

  

  

0.00 

  

  

  

  

Sobic.003G209200 

PROTEIN PHOSPHATASE PP2A 

REGULATORY SUBUNIT B 

Sobic.003G209300 - 

Sobic.003G209400 - 

Sobic.003G209500 - 

Sobic.003G209600 PHOSPHATASE, ORPHAN 1, 2 

S08_56311247 

  

8 

  

56311247 

  

0.007633331 

  

0.02 

  

Sobic.008G134500 Receptor protein-tyrosine kinase 

Sobic.008G134600 - 

S04_54073211 

  

  

  

4 

  

  

  

54073211 

  

  

  

0.007633331 

  

  

  

-0.01 

  

  

  

Sobic.004G188600 

ubiquitin carboxyl-terminal 

hydrolase 12/46 

Sobic.004G188701 KOG0254 - Predicted transporter 

Sobic.004G188800 Sugar (and other) transporter 

Sobic.004G188900 

PUMILIO HOMOLOG 11-

RELATED 
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3.4.3 LiDAR height data description 

Variation in LiDAR plant height was estimated at four different time points at 

approximately 400GDD, 600GDD, 800GDD, and 1000GDD in 2018, 2019, and 2020 (Table 3.10).  

These time points correspond to different growth stages with floral initiation occurring between 

400GDD and 600GDD, flag leaf appearance at approximately 800GDD, average flowering time 

at 850GDD, and mid-grain filling at approximately 1000GDD based on NK300 performance. 

 

Table 3.10 GDD of LiDAR height data collection dates. 

Hybrids 

2018 SbDIV TC 2019 SbDIV TC 2020 SbDIV TC 

Date GDD (℃𝑑) Date GDD (℃𝑑) Date GDD (℃𝑑) 

6/11/2018 333.04 7/12/2019 411.21 6/19/2020 342.29 

7/2/2018 595.3 7/23/2019 562.43 7/8/2020 583.69 

7/11/2018 704.81 8/10/2019 751.89 7/25/2020 789.8 

8/1/2018 920.2 8/24/2019 913.26 8/6/2020 910.24 

 

Variations in LiDAR plant height at these time points are shown in Figure 3.4. At 400GDD 

and 600GDD, the population exhibited less variation in plant heights with most of the hybrids 

close the median. At later stages of development at 800GDD and 1000GDD, the population 

exhibited considerably more variation in plant height for all years. The median plant height at 1000 

GDD in 2018, 2019, and 2020 were 2.3m, 1.9m, and 2.2m, respectively.  
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Figure 3.4 Violin plots of LiDAR plant height of the SbDIV TC at 400GDD, 600GDD, 800GDD, 

and 1000GDD in 2018, 2019, and 2020. 

 

The heritability for LiDAR plant height at 400GDD, 600GDD, 800GDD, and 1000GDD are shown 

in Table 3.11. Higher heritabilities were observed in the later growing season in all three years. 

 

Table 3.11 Heritability of LiDAR plant height at 400GDD, 600GDD, 800GDD, and 1000GDD. 

LiDAR Height 

 2018 2019 2020 

400GDD 0.72 0.78 0.48 

600GDD 0.95 0.97 0.93 

800GDD 0.96 0.98 0.96 

1000GDD 0.96 0.96 0.96 

3.4.4 GWAS results of LiDAR height 

GWAS using the FarmCPU model identified four significant SNPs associated with LiDAR 

plant height at 600GDD, three significant SNPs at 800GDD, and seven significant SNPs at 

1000GDD (Figure 3.5). No significant SNPs were identified in 400GDD. Several of the SNP 

markers were significant over time points. 
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A. LiDAR height at 600GDD 

 
B. LiDAR height at 800GDD 

 

Figure 3.5 GWAS results of LiDAR plant height at (A) 600GDD, (B) 800GDD, and (C) 1000GDD. 
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Figure 3.5 continued 

C. LiDAR height at 1000GDD 

 

 

One or more candidate genes were discovered flanking each of the SNPs associated with 

LiDAR plant height at 600GDD (Table 3.12), at 800GDD (Table 3.13), and at 1000GDD (Table 

3.14). Significant SNPs and candidate genes were on sorghum chromosomes 1, 5, 7, and 9.  

Some SNPs for LiDAR plant height were significant at more than one time point. SNP 

S07_59366675 was significant at 800GDD (Table 3.13) and 1000GDD (Table 3.14) with effects 

0.21 and 0.19, respectively. SNP S07_59768820 was significant in 600GDD (Table 3.12) and 

1000GDD (Table 3.14) with effects of 0.13 and 0.14, respectively. SNP S09_57212498 was 

significant in 600GDD (Table 3.12), 800GDD (Table 3.13) and 1000GDD (Table 3.14) with 

effects of 0.06, 0.12 and 0.17, respectively. 

The candidate genes in the search window for S09_57212498 included Sobic.009G231900, 

Sobic.009G232000, Sobic.009G232100, Sobic.009G232200, and Sobic.009G232266 that map to 

the same region as the Dw1 gene. Five candidate genes were discovered in the search window for 

S07_59366675 including Sobic.007G158800, Sobic.007G158900, Sobic.007G159000, 

Sobic.007G159100, and Sobic.007G159200 that map to the same region as the Dw3 gene. 

Although Dw1 and Dw3 were not identifieid directly using FarmCPU, candidate gene 

Sobic.009G231900 is 99.74kb downstream to Dw1 and candidate gene Sobic.007G163300 is 

53.08kb upstream to Dw3.  
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Table 3.12 Significant SNPs and candidate genes for LiDAR plant height at 600GDD identified 

by GWAS using the FarmCPU model at FDR 0.01. Candidate genes in blue color are mapped to 

the same position as the dwarfing locus Dw1, candidate genes in green color are mapped to the 

same position as the dwarfing locus Dw3. 

SNP Chr. Position  

FDR_Adjusted

_P-values Effect CandidateGene Annotation 

S07_59768820 7 59768820 7.00E-14 0.13 Sobic.007G163300 - 

S07_59418009 

  

  

  

7 

  

  

  

59418009 

  

  

  

0.000723628 

  

  

  

0.08 

  

  

  

Sobic.007G159500 IMPACT-RELATED 

Sobic.007G159700 

F-type H+-transporting ATPase 

subunit d 

Sobic.007G159800 

Domain of unknown function 

(DUF296) 

Sobic.007G159900 

ubiquitin carboxyl-terminal 

hydrolase 36/42 

S09_57212498 

  

  

  

  

9 

  

  

  

  

57212498 

  

  

  

  

0.001282308 

  

  

  

  

0.06 

  

  

  

  

Sobic.009G231900 SUMO-PROTEIN LIGASE  

Sobic.009G232000 

RIBOSOME BIOGENESIS 

PROTEIN 

Sobic.009G232100 Fasciclin domain 

Sobic.009G232200 Fasciclin domain 

Sobic.009G232266 GLUTAREDOXIN 

S05_62313708 

  

  

  

  

  

  

5 

  

  

  

  

  

  

62313708 

  

  

  

  

  

  

0.001480724 

  

  

  

  

  

  

-0.07 

  

  

  

  

  

  

Sobic.005G152100 

SUBGROUP I 

AMINOTRANSFERASE 

RELATED 

Sobic.005G152200 

SUBGROUP I 

AMINOTRANSFERASE 

RELATED 

Sobic.005G152250 - 

Sobic.005G152300 - 

Sobic.005G152400 

Protein of unknown function 

(DUF2667) 

Sobic.005G152500 - 

Sobic.005G152550 

Adenylyl-sulfate reductase 

(glutathione) 
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Table 3.13 Significant SNPs and candidate genes for LiDAR plant height at 800GDD identified 

by GWAS using the FarmCPU model at FDR 0.01. Candidate genes in blue color are mapped to 

the same position as the dwarfing locus Dw1, candidate genes in green color are mapped to the 

same position as the dwarfing locus Dw3. 

SNP Chr. Position  

FDR_Adjusted

_P-values Effect CandidateGene Annotation 

S07_59366675 

  

  

  

  

7 

  

  

  

  

59366675 

  

  

  

  

4.92E-10 

  

  

  

  

0.21 

  

  

  

  

Sobic.007G158800 Galactolipase 

Sobic.007G158900 

SODIUM CHANNEL MODIFIER 

1 

Sobic.007G159000 

CHAPERONE DNAJ-DOMAIN 

CONTAINING PROTEIN 

Sobic.007G159100 Tetraspanin family 

Sobic.007G159200 PWWP domain 

S09_57212498 

  

  

  

  

9 

  

  

  

  

57212498 

  

  

  

  

9.53E-06 

  

  

  

  

0.12 

  

  

  

  

Sobic.009G231900 SUMO-PROTEIN LIGASE 

Sobic.009G232000 

RIBOSOME BIOGENESIS 

PROTEIN 

Sobic.009G232100 Fasciclin domain 

Sobic.009G232200 Fasciclin domain 

Sobic.009G232266 GLUTAREDOXIN 

S01_66709805 

  

  

  

1 

  

  

  

66709805 

  

  

  

0.00284104 

  

  

  

-0.11 

  

  

  

Sobic.001G378600 

RING FINGER DOMAIN-

CONTAINING 

Sobic.001G378700 Glutathione peroxidase 

Sobic.001G378800 Fumarate hydratase / Fumarase 

Sobic.001G378900 AP2 domain 

 

Table 3.14 Significant SNPs and candidate genes for LiDAR plant height at 1000GDD identified 

by GWAS using the FarmCPU model at FDR 0.01. Candidate genes in blue color are mapped to 

the same position as the dwarfing locus Dw1, candidate genes in green color are mapped to the 

same position as the dwarfing locus Dw3. 

SNP Chr. Position  

FDR_Adjusted

_P-values Effect CandidateGene Annotation 

S09_57212498 

  

  

  

  

9 

  

  

  

  

57212498 

  

  

  

  

2.20E-11 

  

  

  

  

0.17 

  

  

  

  

Sobic.009G231900 SUMO-PROTEIN LIGASE 

Sobic.009G232000 

RIBOSOME BIOGENESIS 

PROTEIN 

Sobic.009G232100 Fasciclin domain 

Sobic.009G232200 Fasciclin domain 

Sobic.009G232266 GLUTAREDOXIN 

S07_59366675 

  

  

  

  

7 

  

  

  

  

59366675 

  

  

  

  

3.52E-08 

  

  

  

  

0.19 

  

  

  

  

Sobic.007G158800 Galactolipase 

Sobic.007G158900 

SODIUM CHANNEL MODIFIER 

1 

Sobic.007G159000 

CHAPERONE DNAJ-DOMAIN 

CONTAINING PROTEIN 

Sobic.007G159100 Tetraspanin family 

Sobic.007G159200 PWWP domain 

S07_61080813 

  

  

  

7 

  

  

  

61080813 

  

  

  

3.93E-07 

  

  

  

0.15 

  

  

  

Sobic.007G176900 

BETA-GALACTOSIDASE 11-

RELATED 

Sobic.007G177000 

L-ASCORBATE PEROXIDASE 

3, PEROXISOMAL 
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Table 3.14 continued 

     

Sobic.007G177100 

MYB-LIKE DNA-BINDING 

PROTEIN 

Sobic.007G177150 - 

S07_59768820 7 59768820 0.000535332 0.14 Sobic.007G163300 - 

S01_66681653 

  

  

1 

  

  

66681653 

  

  

0.000535332 

  

  

-0.12 

  

  

Sobic.001G378500 

RING FINGER DOMAIN-

CONTAINING 

Sobic.001G378550 - 

Sobic.001G378600 

RING FINGER DOMAIN-

CONTAINING 

S06_43189859 

  

  

  

6 

  

  

  

43189859 

  

  

  

0.00728713 

  

  

  

0.14 

  

  

  

Sobic.006G068700 

ALPHA/BETA HYDROLASE 

FOLD-CONTAINING PROTEIN 

Sobic.006G068800 

Dihydrolipoyllysine-residue 

acetyltransferase / Transacetylase 

X 

Sobic.006G068900 - 

Sobic.006G069000 

FERREDOXIN-3, 

CHLOROPLASTIC 

S01_75602579 

  

1 

  

75602579 

  

0.00764457 

  

0.10 

  

Sobic.001G485200 

AP2-LIKE ETHYLENE-

RESPONSIVE TRANSCRIPTION 

FACTOR AIL1 

Sobic.001G485300 

transcription initiation factor TFIIE 

subunit beta (TFIIE2, GTF2E2, 

TFA2) 

3.5 Discussion 

3.5.1 The sorghum diversity testcrosses were competitive in yield with commercial 

sorghum hybrids 

The biomass yields of the sorghum diversity testcrosses (SbDIV TC) evaluated in 2018, 

2019, and 2020 ranged from 929 to 3309 g/m2, 1214 to 2548 g/m2, and 1061 to 2549 g/m2, 

respectively. The larger variation in 2018 may be due to the late fertilizer application after planting 

that year. In 2019 and 2020, the applied rate of N was a little higher than in 2018, but it was applied 

about 1 month prior to planting whereas in 2018 it was applied about 1 month after planting. The 

SbDIV TC hybrids were surprisingly productive compared with commercial hybrids evaluated in 

multi-environment trials in recent years. Ferraris (1981) reported the total dry biomass yield of 

sweet sorghum was around 1588 g/m2 under irrigation at Ayr, North Queensland. Felderhoff et al. 

(2012) found that the total dry biomass of sweet sorghum population in College Station, TX with 

irrigation ranged from 734 g/m2 to 2444 g/m2 in 2009 and from 417g/m2 to 2285g/m2 in 2010. Gill 

et al. (2014) studied the dry biomass of six sorghum genotypes (include sorghum-sudan forage 

hybrid and PS bioenergy hybrid) in seven locations. The range of dry biomass yield at these 

locations was 399 g/m2 to 2232 g/m2 in Kansas, 136 g/m2 to 2341 g/m2 in Texas, 435 g/m2 to 2794 
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g/m2 in Kentucky, 372 g/m2 to 3094 g/m2 in Mississippi, 807 g/m2 to 2585 g/m2 in Iowa, and 526 

g/m2 to 3729 g/m2 in North Carolina.  

3.5.2 Trait heritability and correlation between ground reference traits 

Apex height, top collar height, and flowering date of the SbDIV TC exhibited the highest 

heritability across the three years compared to other agronomic traits. Other studies have 

reported similar or somewhat lower heritabilities. Sami (2013) reported a heritability of H=0.69 

for plant height and H=0.83 days to flowering in a sweet sorghum population. Kenga et al. 

(2006) reported similar heritabilities for plant height (H = 0.77) and days to anthesis (H = 0.42) 

in hybrid sorghum.  

Heritability for dry biomass yield was somewhat lower (H = 0.5-0.67) than height and 

flowering time but still higher than reported in many recent studies (Table 3.2). Shiringani and 

Friedt (2011) reported a broad sense heritability of 0.13 for sorghum dry biomass. Plant height 

was highly correlated with dry biomass, exhibited higher heritability, and data collection is much 

easier (Burks et al. 2015; Castro et al. 2015; Fernandes et al. 2018; Monk et al. 1984). Higher 

heritabilities for these traits indicate they are likely to respond to selection and may provide an 

indirect selection strategy for biomass yield. Other stem morphology traits were also correlated 

biomass yields with top collar diameter positively correlated with ADB and base diameter 

positively correlated with moisture content. Kong et al. (2020) also found a similar relationship 

between basal stem diameter and rachis diameter (r = 0.56) and positive correlations with stem 

water content.  

3.5.3 Significant SNPs and candidate genes for hybrid sorghum performance 

GWAS using the FarmCPU and MLM models provided good control of false positives and 

supported identification of candidate genes for numerous traits.  Taken together, these GWAS 

studies provide some of the first insights into genes that control hybrid performance since most 

prior association studies have used populations of inbred sorghum lines.   

GWAS for plant height identified nine significant SNPs associated with apex height and 

six SNPs associated with top collar height on chromosomes 2, 3, 7, 9. The SNP associated with 

top collar height on chromosome 2 maps to the previously reported plant height QTL qHGHT2.12 
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(Liu et al. 2019). This QTL maps to the same region as the maturity locus Ma2 (Liu et al. 2019). 

The Ma2 gene (Sobic.002G302700) affects sorghum maturity and selectively enhances the Ma1 

gene (Sobic.006G057866) expression to delay flowering under long days (Casto et al. 2019). Since 

the plant reached their maximum height after flowering, flowering time would affect vegetative 

growth, the flag leaf appearance and plant height (Ciampitti and Prasad 2020). 

The SNPs associated with apex height and top collar height on chromosome 3 maps to the 

same region as the plant height QTLs qHGHT3.5 (Hart et al. 2001) and qHGHT3.4 (Phuong 2013). 

The SNP and candidate genes Sobic.007G158800, Sobic.007G158900, Sobic.007G159000, 

Sobic.007G159100, and Sobic.007G159200 on chromosome 7 associated with apex plant height 

map to the same position as plant height QTLs qHGHT7.62 (Zhang et al. 2015) and qHGHT7.91 

(Liu et al. 2019). Candidate genes Sobic.007G163300, Sobic.007G166600, Sobic.007G166701, 

Sobic.007G166800, and Sobic.007G166900 were reported as plant height QTL qHGHT7.45 

(Pereira and Lee 1995), qHGHT7.46 (Madhusudhana and Patil 2013), qHGHT7.62 (Zhang et al. 

2015), qHGHT7.76 (Yamaguchi et al. 2016), qHGHT7.83 (Girma et al. 2019), qHGHT7.91 and 

qHGHT7.92 (Liu et al. 2019), qHGHT7.93, qHGHT7.95, qHGHT7.96 and qHGHT7.97 (Marla et 

al. 2019). These QTLs map to the same position as the dwarfing locus Dw3 (Karper 1932). The 

Dw3 gene (Sobic.007G163800) is orthologous to brachytic2 in maize and encodes an MDR 

transporter that plays a role in polar auxin transport, hence influencing cell elongation and plant 

height (Multani et al. 2003). Dw3 affects height by reducing the lengths of lower internodes by 

decreasing cell lengths (Multani et al. 2003). In this study, the Dw3 locus showed a strong 

association with apex height, top collar height, and biomass yield. The other SNPs associated with 

apex plant height on chromosome 7 were previously reported as QTLs qHGHT7.2 (Wang et al. 

2014) and qHGHT7.3 (Shiringani et al. 2010). The SNPs associated with plant height on 

chromosome 9 map to the same positions as previously reported as plant height QTLs qHGHT9.10 

(Lin et al 1995); qHGHT9.64 and qHGHT9.65 (Zhang et al. 2015); qHGHT9.20, qHGHT9.21, 

qHGHT9.29, qHGHT9.30, qHGHT9.45 and qHGHT9.46 (Felderhoff et al. 2012); qHGHT9.16 

and qHGHT9.31 (Takai et al. 2012); qHGHT9.12 and qHGHT9.19 (Wang et al. 2014); and 

qHGHT9.81 (Boyles et al. 2017). These SNPs and QTL map to the same position as the Dw1 locus 

(Yamaguchi et al. 2016). The Dw1 gene plays a role in the brassinosteroid signaling pathway and 

reduce cell proliferation activity in the internodes, hence influencing plant height (Yamaguchi et 

al. 2016). 
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 GWAS for LiDAR plant height at 600GDD identified SNPs located on chromosomes 5, 

7, 9. The SNPs and candidate genes identified on chromosome 5 map to the previously reported 

QTLs qDMGR5.13 and qDMGR5.14, which are related to the initial dry matter growth rate 

(Fiedler et al. 2016). SNPs and candidate genes identified on chromosome 7 map to the same 

region as Dw3 (Karper 1932; Multani et al. 2003). The SNPs on chromosome 9 map to the Dw1 

locus (Yamaguchi et al. 2016). SNPs for LiDAR plant height at 800GDD are located on 

chromosomes 1, 7, 9. Candidate genes identified on chromosome 1 are Sobic.001G378600, 

Sobic.001G378700, Sobic.001G378800, and Sobic.001G378900 and map to the same position as 

previously reported QTL qSLIN1.1, which is related to stem internode length (Hilley et al. 2016); 

qDTFL1.25 (Mace et al. 2013), qDTFL1.26 (Srinivas et al. 2009), qDTFL1.27 (El Mannai et al. 

2011), and qDTFL1.65 (Guindo et al. 2019). Candidate genes on chromosomes 7 and 9 map to 

Dw1 and Dw3. SNPs for LiDAR plant height at 1000GDD are located on chromosomes 1, 6, 7, 9. 

Candidate genes on chromosome 1 are Sobic.001G485200 and Sobic.001G485300 and map to 

previously reported height QTLs qHGHT1.16 (Kebede et al. 2001), qHGHT1.17 (Wang et al. 

2014), and qHGHT1.18 (Lin et al. 1995). Candidate genes on chromosomes 7 and 9 map to Dw1 

and Dw3.  

Biomass productivity is the most important trait for many sorghum breeding programs (Gill 

et al. 2014; Pfeiffer et al. 2019; de Oliveira et al. 2020) and is affected by numerous traits, such as 

plant height (Wilson and Eastin 1982; van Oosterom and Hammer 2008; George-Jaeggli et al. 

2011; Olson et al. 2012), days to flowering (Rooney et al. 2007; Olson et al. 2012; Murphy et al. 

2014; Meki et al. 2017), and leaf morphology (Sieglinger 1936; Rooney et al. 2007; Olson et al. 

2012; Gill et al. 2014; Truong et al. 2017). The candidate genes associated with biomass yield 

mapped to chromosomes 1, 3, 5, 7, 8, and 9. Candidate genes Sobic.001G258200, and 

Sobic.001G258300 map to the same region as previously reported in height QTLs qHGHT1.5 

(Hart et al. 2001) and qHGHT1.6 (Nagaraja Reddy et al. 2013); and in stem dry weight QTL 

qSDWT1.1 (Kapanigowda et al. 2014). Candidate genes Sobic.003G268900, Sobic.003G269000, 

Sobic.003G269100, and Sobic.003G269200 map to the same regions of chromosome 3 as 

previously reported plant height QTLs qHGHT3.11 (Lin et al. 1995), qHGHT3.17 (Bai et al. 2017), 

and qHGHT3.14 (Phuong et al. 2013); days to flowering QTLs qDTFL3.22 (Feltus et al. 2006) 

and qDTFL3.37 (Guindo et al. 2019); green leaf area QTL qGLFA3.9 (Rama Reddy et al. 2014); 

leaf number QTL qLNUM3.6 (Nagaraja Reddy et al. 2013); leaf width QTLs qLFWD3.2 and  
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qLFWD3.3 (Shehzad and Okuno 2015); grain weight QTL qGWGT3.17 (Liu et al. 2019), and tiller 

number QTL qTNUM3.8 (Kong et al. 2014). Candidate genes Sobic.005G180700, 

Sobic.005G180800, Sobic.005G180850, Sobic.005G180900, Sobic.005G181000, and 

Sobic.005G181100 map to the same regions of chromosome 5 as previously reported in grain yield 

QTLs qGYLD5.5 (Gelli et al. 2016) and qGYLD5.7 (Guindo et al. 2019). Candidate genes 

Sobic.007G176900, Sobic.007G177000, Sobic.007G177100, and Sobic.007G177150 map to the 

same regions of chromosome 7 as previously reported dry stem biomass QTL qTDBM7.6 (Murray 

et al. 2008); plant height QTLs qHGHT7.59, qHGHT7.60 and qHGHT7.62 (Zhang et al. 2015), 

qHGHT7.91 and qHGHT7.92 (Liu et al. 2019), qHGHT7.45 (Pereira and Lee 1995), qHGHT7.46 

(Madhusudhana and Patil 2013), qHGHT7.76 (Yamaguchi et al. 2016), qHGHT7.83 (Girma et al. 

2019), qHGHT7.93, qHGHT7.95, qHGHT7.96, and qHGHT7.97 (Marla et al. 2019). These 

candidate genes and QTL all map to the Dw3 locus that has a major effect on plant architecture 

and productivity (Multani et al., 2003). Candidate genes Sobic.008G158666, Sobic.008G158732, 

Sobic.008G158800, Sobic.008G158900, and Sobic.008G159000 map to the same region on 

chromosome 8 as previously reported in grain yield QTL qGYLD8.4 (Felderhoff et al. 2012), 

height QTL qHGHT8.4 (Shehzad and Okuno 2015), and stem and leaf fresh weight QTL 

qFBMS8.1 (Guan et al. 2011). Candidate genes Sobic.009G189400, Sobic.009G189501, 

Sobic.009G189600, and Sobic.009G189700 map to the same region of chromosome 9 as 

previously reported in plant height QTLs qHGHT9.10 (Lin et al. 1995), qHGHT9.64 and 

qHGHT9.65 (Zhang et al. 2015), qHGHT9.20 (Felderhoff et al. 2012); grain yield QTL 

qGYLD9.11 (Sabadin et al. 2012), and vegetative dry biomass QTL qTDBM9.1 (Felderhoff et al. 

2012). These SNPs and QTL map to the previously described Dw1 locus (Yamaguchi et al. 2016). 

GWAS for base stem diameter discovered candidate genes on chromosomes 7 and 8. On 

chromosome 7, candidate genes Sobic.007G011500, Sobic.007G011600, and Sobic.007G011700 

were identified for both base diameter and flowering time and map to the same positions as 

previously reported in QTLs qTNUM7.1, qBRPN7.2, and qTNUM7.2 related to tiller number 

(Kong et al. 2014) and qDTFL7.2, qDTFL7.3, qDTFL7.4 (Wang et al. 2014) and qDTF7.1 (Mace 

et al. 2013) related to days to flowering. The candidate gene Sobic.007G011500 belongs to a family 

of auxin receptors and contains an F-box domain (Dharmasiri et al. 2005). Auxin appears to be a 

multi-function trigger in different plant developmental stages, such as shoot and flower 

development (Vanneste and Friml 2009). This may explain why this candidate gene was identified 
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for base diameter and FL. Candidate genes for base diameter on chromosome 8 include 

Sobic.008G010500, Sobic.008G010600, Sobic.008G010700, Sobic.008G010750, and 

Sobic.008G010800. These candidate genes map to the same regions as QTLs qBRPN8.1, 

qTNUM8.2, qTNUM8.3, qTNUM8.4, and qTNUM8.5 related to tiller number (Kong et al. 2014). 

Previous studies found that auxin from the shoot apical meristem inhibits the outgrowth of axillary 

buds of tillers, while acropetal movement of cytokinin promotes the outgrowth of tiller buds 

(Beveridge 2006; Ongaro et al. 2008). Between main stem and tillers, there is a competitive 

relationship in nutrient and biomass partitioning. Narrow main stems were associated with high 

tiller numbers (Alam et al. 2014). This suggests that stem diameter is affected by plant hormones 

and hence the tiller numbers.  

Candidate genes for flowering time were located on chromosomes 1, 6, 7, and 9. Candidate 

genes Sobic.001G512000, Sobic.001G512100, and Sobic.001G512200 from chromosome 1 map 

to the same position as QTL for days to flowering qDTFL1.45 (Bangbol Sangma 2013) and 

qDTFL1.64 (Cuevas and Prom 2020). On chromosome 6, candidate genes Sobic.006G051700, 

Sobic.006G051750, and Sobic.006G051800 map to the same position as flowering time QTLs 

qDTFL6.12 (Wang et al. 2014); qDTFL6.64 and qDTFL6.65 (Zhang et al. 2015); qDTFL6.71, 

qDTFL6.73, qDTFL6.69 (Sukumaran et al. 2016); qDTFL6.13 (Mace et al. 2013), and qDTFL6.83 

(Cuevas et al. 2016). Candidate genes for flowering time on chromosome 9 include 

Sobic.009G251400, Sobic.009G251500, Sobic.009G251600, and Sobic.009G251700 and map to 

flowering time QTLs qDTFL9.33 and qDTFL9.34 (Zhang et al. 2015); qDTFL9.29 and 

qDTFL9.30 (Nagaraja Reddy et al. 2013); qDTFL9.24, qDTFL9.25, qDTFL9.26, qDTFL9.27 and 

qDTFL9.28 (Higgins et al. 2014).  Although the genes and gene functions that control flowering 

time in sorghum are not yet clear, genes controlling flowering time of sorghum hybrids appear to 

be largely consistent with genes controlling flowering timing in inbred lines.  

Moisture content is related to multiple physiological mechanisms and can be affected by 

many genes and environmental factors (Han et al. 2015; Murray et al. 2008). Candidate genes 

identified for moisture content were located on chromosomes 3, 4, 5, 8, and 9. Candidate genes on 

chromosome 3 include Sobic.003G295400, Sobic.003G295500, Sobic.003G295600, 

Sobic.003G295700, Sobic.003G295800, Sobic.003G295900, and Sobic.003G296000 and map to 

the same genomic region as stay-green QTL Stg1 (Xu et al. 2000). These candidate genes also map 

to QTL for chlorophyll content qSTGR3.1 and qCHLC3.12 (Xu et al. 2000) and qCHLC3.11 



 

 

91 

(Rama Reddy et al. 2014). Candidate genes for moisture content on chromosome 4 include 

Sobic.004G188600, Sobic.004G188701, Sobic.004G188800, and Sobic.004G188900 and map to 

the same region as QTL for juice weight qJYLD4.2 (Guan et al. 2011); stay green qSTGR4.3 

(Kebede et al. 2001); transpiration rate qLFTE4.9 (Ortiz 2017), and stomatal conductance 

qSTCD4.1 (Ortiz et al. 2017). Candidate genes Sobic.005G131400, Sobic.005G131500, 

Sobic.005G131550, and Sobic.005G131600 on chromosome 5 map to the stay-green QTLs Stg4 

(Xu et al. 2000), qSTGR5.3 (Subudhi 2000), and qSTGR5.5 (Kebede et al. 2001). Candidate gene 

Sobic.008G105432 on chromosome 8 maps to the same positions as QTL for transpiration rate 

qLFTE8.1, qLFTE8.2, qLFTE8.59, qLFTE8.60, qLFTE8.3, qLFTE8.4, qLFTE8.28, qLFTE8.29, 

qLFTE8.5, qLFTE8.6, qLFTE8.7, qLFTE8.8, qLFTE8.9, qLFTE8.10, and qLFTE8.11 and QTL 

for stomatal conductance qSTCD8.14, qSTCD8.15, qSTCD8.16, qSTCD8.23, and qSTCD8.24 

(Ortiz et al. 2017). Candidate genes Sobic.009G241300, Sobic.009G241400, Sobic.009G241500, 

Sobic.009G241600, Sobic.009G241700, and Sobic.009G241801 map to the same position as Dw1 

and QTL qHGHT9.10 related to plant height (Lin et al. 1995). These candidate genes also map to 

the same position as QTL for transpiration rate qLFTE9.9, stomatal conductance qSTCD9.2 (Ortiz 

et al. 2017), and juice yield qJYLD9.2 (Felderhoff et al. 2012). One of the candidate genes for 

moisture discovered using the MLM model on chromosome 6 was Sobic.006G147450, which is 

3.96kb downstream from the Dry stalk (D) locus (Sobic.006G147400) (Zhang et al. 2018) (Table 

B.4). The D locus conditions a white and dry stem by a dominant allele (D-), while green and juicy 

stem by recessive genotypes (dd) (Smith and Frederiksen 2000). Another GWAS study in sweet 

sorghum mapped QTL with a significant effect for juice volume and stalk moisture on D locus 

(Burks et al. 2015). Since the female parent Tx623 carries the recessive green midrib allele (d) 

(Xia et al. 2018), we can evaluate which male parents carry the dominant allele (D-). These results 

verify earlier studies that moisture is influenced by QTLs with diverse functions and multiple 

physiological mechanisms. 

Many identified candidate genes in this study are also reported in previous published QTLs 

with similar functions; this supports the power of the method for gene discovery that was used in 

this study. We also identified many other candidate genes with unknown functions and not 

previously reported in other publications.  
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3.5.4 Trait heritability and significant SNPs for LiDAR plant height 

The average heritability of LiDAR height across 400, 600, 800, and 1000GDDs are 0.66, 

0.95, 0.97, and 0.96. Higher heritability occurs in the later growing season of all three years. 

Campbell et al. (2019) found that shoot growth of rice is dynamic and changes throughout growth 

stages. Genes controlling plant height in maize were also reported to be time-dependent with 

varying contributions over time (Anderson et al. 2020). GWAS for LiDAR plant height revealed 

a similar pattern in sorghum with four, three, and seven SNPs identified at 600GDD, 800GDD, 

and 1000GDD, respectively (Figure 3.5). No significant SNPs were identified at 400GDD, perhaps 

reflecting the narrow range of variation in plant height observed during the earlier vegetative 

period. Some of the SNPs were significant for a particular time point and other SNPs were 

significant across time points. For example, S07_59366675, a marker for Dw3, was significant at 

600GDD, 800GDD, and 1000GDD but had the largest effect at 800GDD, corresponding to the 

early flowering period. Dw3 is a polar auxin transporter that impacts cell elongation (Multani et 

al. 2003). In contrast, the effects of S09_57212498, representing Dw1, increased over time with 

the largest effect at 1000GDD.  Dw1 plays a role in brassinosteroid signaling (Yamaguchi et al. 

2016). These results demonstrate that plant height is dynamic with relative differences in plant 

height controlled by different genes at different stages of development.  

3.5.5 Favorable and rare alleles for hybrid sorghum biomass productivity 

Biomass accumulation is an important agronomic trait for many breeding programs. 

However, low heritability causes difficulty in biomass simulation and selection in breeding 

populations. This study revealed that height is highly correlated with biomass and has high 

heritability. Incorporating variation in plant height into biomass predictions may offer more 

accurate results. This could benefit bioenergy sorghum breeding programs in biomass 

improvement based on indirect selection. For bioenergy breeding programs, canopy development, 

juice yield, flowering time, stem diameter and moisture represent other key traits. However, not 

many publications evaluate these traits. The results of this chapter provide insight into trait 

correlations and information on candidate genes that may contribute to understanding the 

relationship between these agronomic traits in hybrids. Kong et al. (2020) reported similar results 
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with co-localizations between certain biomass-related traits. This may reveal that the inheritance 

of these traits may be functionally or physically linked. 

Genetic diversity is the life blood of plant breeding programs. New genes and alleles must 

be continuously infused into the elite gene pool to support long term improvement of a crop. In 

this study, seven different genetic loci were discovered that influence biomass accumulation with 

the minor or uncommon allele exhibiting positive affects at three of these genetic loci. In this 

scenario, the minor allele is the favorable allele. The minor allele frequencies for S07_59768820, 

S07_61080813, and S08_59178415 were 0.18, 0.18, and 0.35, respectively. Since there were 619 

hybrids in the population, there were around 111 hybrids with a favorable allele at the 

S07_59768820 and S07_61080813, plus around 217 hybrids with a favorable allele at the 

S08_59178415. Other SNPs with significant minor allele associations with biomass accumulation 

are S01_ 74145303, S09_56521150, S06_2686264, and S02_2417641 with minor allele 

frequencies of 0.12, 0.31, 0.03, and 0.04, respectively (Table B.6). These unique genes and alleles 

may play an important role in population improvement. More work is needed to introduce these 

genetic resources into our population to diversify the gene pool and increase the favorable allele 

frequency for biomass accumulation.  

In the sorghum diversity panel, Dwarf Yellow Milo exhibited minor and favorable alleles 

at the S02_2417641, S07_59768820, S07_61080813, and S08_59178415 and Spur Feterita 

exhibited the minor and favorable alleles at S01_74145303, S06_2686264, S07_59768820, 

S07_61080813, S08_59178415, and S09_56521150. These genotypes may represent unique 

genetic resources for future population improvement efforts.  

3.6 Conclusion 

This study provided one of the first comprehensive assessments of genes controlling 

biomass productivity in hybrid sorghum.  Some genes and trait correlations were known from prior 

studies. Dw1 and Dw3 were associated with apex height, top collar height, and ADB. The maturity 

gene Ma2 was associated with variation in top collar height. Genes for moisture content mapped 

to stay-green loci Stg1 and Stg4 and to the Dry (D) locus. Many other SNP markers and candidate 

genes were not previously reported.  GWAS for LiDAR plant height demonstrated that some SNPs 

associated with final plant height may not contribute to variation in the early growing season and 

exhibit a temporal-dependency. Genetic mapping studies for biomass yield indicated that some 
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favorable alleles exhibit low frequencies in the sorghum germplasm collections suggesting future 

targets for genetic selection. Dwarf Yellow Milo and Spur Feterita exhibited favorable alleles for 

multiple SNPs for biomass yield and are unique resources for future sorghum crop improvement.  
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 ESTIMATING SEASONAL RADIATION USE 

EFFICIENCY IN SORGHUM USING BIOMASS AND TIME-DEPENDENT 

MEASUREMENTS OF CANOPY COVER AND DAILY RADIATION 

4.1 Abstract 

The APSIM crop growth model can simulate sorghum biomass based on biophysiological 

information, such as radiation use efficiency (RUE). However, the parameterization of APSIM is 

challenging due to difficulties in acquiring radiation interception for calculating RUE, especially 

in large breeding populations. With the development of UAV-based RGB imaging systems, 

radiation interception can be efficiently derived based on measurements of canopy cover. Using 

time-series canopy cover and daily radiation coupled with end-of-season biomass, we proposed a 

simple model for estimating seasonal radiation use efficiency (SRUE). Studies of commercial 

sorghum hybrids showed that estimates of SRUE were highly coorelated with estimates of 

maximum RUE used in APSIM. Analyses of SRUE in 619 genetically diverse sorghum hybrids 

indicated heritabilities of 0.45, 0.51 and 0.63 in 2018, 2019 and 2020, respectively. Genome wide 

association studies identified 11 single-nucleotide polymorphisms (SNPs) that were associated 

with SRUE using a fixed and random model circulating probability unification model. These SNPs 

mapped to previously reported quantitative trait loci related to leaf angle, green leaf area, leaf 

chlorophyll content and fluorescence, the efficiency of energy captured by open PSII reaction 

centers, leaf senescence, plant height, tiller number, vegetative dry biomass, dry matter growth 

rate, and days to flowering. Moreover, the positive effect alleles for seven of these SNPs were 

present at low frequencies in the sorghum diversity panel, which suggests that changing the 

frequency of these alleles could improve SRUE in the population. The proposed model for 

calculating SRUE may be useful in parameterizing biophysical crop models like APSIM for 

simulating sorghum biomass in large breeding populations. 

4.2 Introduction 

Agronomically important traits of bioenergy sorghum were evaluated to identify candidate 

genes that drive biomass accumulation in Chapter 3. Genome wide association studies (GWAS) 

for LiDAR plant height provided a glimpse of the underlying time-dependency for developmental 
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characteristics; however, the rest of the traits evaluated in that study were based on end-of-season 

performance with little insight into the biophysical bases for observed differences in productivity.  

Bioenergy sorghums produce more leaves and a larger amount of stem biomass than other 

sorghum types. The higher leaf area increases the radiation interception and radiation use 

efficiency (RUE) resulting in more than twice the biomass of grain sorghum (Olson et al. 2012). 

The biomass yield of a crop is determined by the sum of radiation interception by its green leaf 

area through the growing season and the efficiency with which radiant energy is converted to dry 

matter in an environment without water stress (Monteith et al. 1977; Muchow 1989). The ratio of 

green leaf area is an estimation of radiation interception of crop canopy, and the slope of the 

regression line of biomass versus accumulated intercepted radiation is defined as RUE (Cooper 

1970; Sinclair and Muchow 1999). RUE is an important trait for biomass simulation since it 

quantifies the radiation captured by the crop and the efficiency of the crop to fix carbon without 

stress (Hatfield and Dold 2019). Improving RUE is one of the promising approaches to increase 

potential biomass yield (Asseng et al. 2019). The relationship between improving RUE and 

increasing biomass was found in wheat (Shearman et al. 2005a; Aisawi et al. 2015), maize (Luque 

et al. 2006; Messina et al. 2009), and sorghum (Curt et al. 1998; Borrell et al. 2021). 

Variation in the RUE of 18 commercial sorghum hybrids was reported in Chapter 2. The 

RUE of the five types of sorghum ranged from 0.97 g MJ-1 to 1.7 g MJ-1 with forage sorghums and 

photoperiod sensitive sorghums exhibiting higher RUE than grain sorghums. This reveals that 

RUE is a genotype-specific trait and can be an input parameter for biomass simulation. The APSIM 

model is a good tool to dissect the components of biomass. Remote sensing was integrated into 

the steps for parameterizing the crop growth model and was successfully applied in biomass 

sorghum simulation in different environments in the United States (Yang et al. 2021). Other 

approaches that combine genetic information and crop growth models also perform well in 

simulation of multi-environment trials (Chapman et al. 2003; Löffler et al. 2005; Cooper et al. 

2016; Meki et al. 2017; Cooper et al. 2020; Pokhrel et al. 2021). However, it is difficult to 

parameterize crop growth models for large breeding populations because the calculation of input 

parameters for RUE is complex with calculations involving daily LAI, canopy cover, daily 

radiation, k, and biomass harvested at multiple time points. RUE is measured at a canopy scale 

and is related to photosynthesis (McGrath and Long 2014), respiration, dry matter partitioning, 

canopy architecture (Sinclair and Muchow 1999; George-Jaeggli et al. 2013), vertical distribution 
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of radiation and N (Dreccer et al. 2000), dry matter assimilation rate and leaf nitrogen 

concentration (Sinclair and Horie 1989; Sinclair and Muchow 1999).  

Furbank et al. (2019) suggested that since current methods for estimating RUE are 

laborious, new techniques such as predictive models based on remote sensing features may be used 

to estimate the complex canopy-related traits. Chapman and Edmeades (1996) introduced a method 

for estimating seasonal RUE based on radiation interception and final biomass of tropical maize. 

Since the RUE represents the sum of many sub-traits that play a role in photosynthetic performance, 

dividing biomass accumulation by the sum of radiation intercepted during the growing season 

could be used to estimate the seasonal RUE of a crop (Murchie et al. 2018). Nevertheless, 

measuring canopy photosynthetic capacity rapidly and frequently on hundreds of germplasm 

entries in a breeding population is virtually impossible and estimates of canopy cover and RUE 

have not been a major focus of cereal breeding programs (Murchie et al. 2018).  

Field-based high-throughput phenotyping approaches may provide a solution for easily 

obtaining canopy structure traits. This approach relies on remote sensing to record spectral and/or 

geometric plant features throughout the growing season (White et al. 2012). RGB imaging is 

widely used for measuring plant morphological traits related to yield (Großkinsky et al. 2015) 

since it is reliable, inexpensive, and relatively simple in data processing (Zhao et al. 2019). RGB 

imaging from UAV platforms provides an efficient method to evaluate time-dependent traits such 

as canopy cover (Pauli et al. 2016). This approach has been successfully used in diverse crops 

including soybean (Hoyos-Villegas et al. 2014), wheat (Duan et al. 2016), rice (Guo et al. 2017), 

and maize (Zhou et al. 2019).  

Compared with the other cereal crops, there are fewer publications that report canopy 

structure in bioenergy sorghum; however, a well-developed data acquisition and processing 

pipeline has been developed for RGB imaging through UAV systems to extract canopy cover of 

bioenergy sorghum (Chen et al. 2017; Ribera et al. 2018). Using these systems, it is now possible 

to acquire canopy cover at multiple time points for hundreds of genotypes throughout the growing 

season and use these data to calculate seasonal RUE.  

Genome-wide association study (GWAS) is an approach to identify genomic differences 

and discover statistical associations between genetic and phenotypic variations (Myles et al. 2009). 

GWAS have been successfully implemented in recognizing marker and trait associations in 

multiple cereal crops including rice (Huang et al. 2012), barley (Cockram et al. 2010), wheat 
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(Neumann et al. 2011; Sukumaran et al. 2015), maize (Tian et al. 2011), and sorghum (Sukumaran 

et al. 2012; Morris et al. 2013). The Fixed and random model circulating probability unification 

(FarmCPU) model for GWAS uses the associated markers to define kinship to avoid over-fitting 

and resulting in higher statistical power compared with other existing methods (Liu et al. 2016; 

Habyarimana et al. 2020; Wang et al. 2020; Kavuluko et al. 2021).  

In this study, we explore the use of simplified crop models for estimating seasonal radiation 

use efficiency (SRUE) in large-scale sorghum breeding populations. Specific objectives that were 

addressed in this study include (1) estimation of SRUE using time-dependent measurements of 

canopy cover and daily radiation coupled with end-of-season biomass, (2) validation of our new 

SRUE method with inputs used in APSIM, (3) quantification of heritability and stability of SRUE 

over seasons, and (4) conducting GWAS for SRUE in sorghum germplasm collections. Comparing 

the candidate genes for canopy cover and SRUE discovered in this study with reported QTLs 

provided insight into the bases for variation in SRUE.  

4.3 Materials and methods 

4.3.1 Genotypes and field management 

Selected sorghum parent lines and inbred lines from the sorghum conversion program 

(Rosenow et al. 1997; Stephens et al. 1967) were used to represent the genetic diversity of sorghum 

(Hayes et al. 2015). These inbred lines were crossed to the tester ATx623 to create a population of 

619 half-sib sorghum hybrids. This population of F1 hybrids was grown in 2018, 2019 and 2020 

at the Agronomy Center for Research and Education (ACRE) of Purdue University in West 

Lafayette, IN, USA. Field trials were conducted each year using a randomized complete block 

design with two replicates. The plant materials were evaluated in 4-row plots with 0.76 m spacing 

between rows with 3.05 m long. Seeds were sown on 8 May in 2018, 4 June 2019 and 12 May 

2020 with a planting rate at 22 plants/m2. Aboveground dry biomass (ADB) measurements and 

the field fertilizer programs were described in Chapter 3.   

4.3.2 Molecular background 

The molecular markers used in Chapter 3 and 4 were the same. More detailed information 

of the genetic structure of the inbred lines can be found in Griebel et al. (2021). 
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4.3.3 Remote-sensing data collection 

UAV platforms were used to collect multi-modal and multi-temporal remote sensing data 

in field trials conducted in 2018, 2019, and 2020 as described in Masjedi et al. (2020) (Figure 4.1). 

In 2018, data were collected using a DJI Matrice M600 Pro UAV as a platform, equipped with an 

APX-15 V2 as the GNSS (Global Navigation Satellite System)/INS (Inertial Navigation System) 

unit for direct geo-referencing. Images were collected using a Sony Alpha 7R (ILCE-7R) camera 

with a Sony 35-mm lens at a height of 50 m, resulting in a ground sampling distance of 0.7 cm. 

Geometric calibration of the imaging systems were performed by methods described in Ravi et al. 

(2018b). The RGB images were collected in 2018 on May 16 (8 DAS), May 22 (14 DAS), May 

29 (21 DAS), June 4 (27 DAS), June 11 (34 DAS), June 20 (43 DAS), June 27 (50 DAS), July 2 

(55 DAS), July 10 (63 DAS), July 18 (71 DAS), July 23 (76 DAS), and Aug 1 (85 DAS).  

 

 

Figure 4.1 Unmanned aerial vehicle (UAV) used in this study. This system acquired hyperspectral, 

LiDAR, and RGB image. We use RGB data in this study. 

 

RGB images were collected in 2019 and 2020 using a DJI Matrice M600 Pro UAV as a 

platform, equipped with an APX-15 V3 as the GNSS (Global Navigation Satellite System)/INS 

(Inertial Navigation System) unit for direct geo-referencing. Images were collected using a Sony 

Alpha 7R Ⅲ (ILCE-7R) camera with a Sony 35-mm lens at a height of 44 m, resulting in a ground 

sampling distance of 0.6 cm. System calibration was performed as described previously. The RGB 

images were collected in 2019 on June 14 (10 DAS), June 18 (14 DAS), June 26 (22 DAS), July 

12 (38 DAS), July 23 (49 DAS), August 2 (59 DAS), August 10 (67 DAS), August 24 (81 DAS), 

and September 5 (93 DAS). RGB images were taken in 2020 on June 6 (25 DAS), June 12 (31 
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DAS), June 19 (38 DAS), June 25 (44 DAS), July 2 (51 DAS), July 8 (57 DAS), July 20 (69 DAS), 

July 25 (74 DAS), July 28 (77 DAS), August 6 (86 DAS), August 13 (93 DAS).  

Orthomosaics were obtained using a modified Structure from Motion (SfM) strategy that is 

conducive to high throughput phenotyping, as introduced Hasheminasab et al. (2020). Since the 

row segments at the image border suffer more lens and perspective distortion than the row 

segments at the center of the photo, the photos where the plot is closest to the center of the image 

were used for canopy cover estimation. Each row segment was defined by a rectangle whose 

dimensions were 0.76 m x 3.05 m on average, and then 0.4 m was trimmed from each end of the 

row to minimize effects of the alley between plots. The canopy cover was estimated for rows 2 

and 3 as the ratio of vegetative to non-vegetative pixels within the box, using segmentation 

methods described previously (Ribera et al. 2018; Chen 2019) and canopy cover for each plot 

taken as the average of the two rows.  

4.3.4 Statistical analysis 

The multiple dates of RGB canopy cover from trials in 2018, 2019, and 2020 were used to 

calculate SRUE. Spatial correction by row, column, and replicate was conducted based on 

modelling spatial trends using the two dimensional Penalised spline (P-spline) models through 

SpATS R-package (Rodríguez-Á lvarez et al. 2018). The generalized heritability of traits were 

calculated using Oakey’s methods, which set the genotypes as a random effect in splines through 

the SpATS R-package (Oakey et al. 2007; Rodríguez-Á lvarez et al. 2018).  

In SRUE (g/MJ) calculation, the estimation of the fraction of radiation interception (f) each 

day was fitted by a self-start logistic function against time: 

𝑓 = 𝐴𝑠𝑦𝑚 (1 + 𝑒(𝑥𝑚𝑖𝑑−𝑖𝑛𝑝𝑢𝑡) 𝑠𝑐𝑎𝑙⁄⁄ )       (4.1)          

Asym, xmid, and scale are parameters determined using the self-start logistic model through the 

SSlogis function in the R package stats version 3.6.3 (R Core Team 2020). Asym represents the 

asymptote, xmid represents the input value at the inflection point of the curve, scal represents a 

scale on the input axis. The radiation intercepted each day was estimated by multiplying the f and 

daily solar radiation (MJ/m2) from the Epply sensor. SRUE was calculated as end-of-season ADB 

over the sum of seasonal radiation interception between emergence and harvest. The end-of-season 

ADB data was described in Chapter 3.  
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Comparison of the maximum RUE (method of Chapter 2) and SRUE (method of Chapter 

4) of commercial sorghum hybrids (Hybcal panel) was conducted to validate the SRUE 

methodology. The maximum RUE of 18 commercial sorghum hybrids from trials in 2018 were 

reported in Table 2.2. For SRUE calculation, the RGB canopy cover, daily radiation, and final 

harvest dry biomass data using the same data set as maximum RUE calculation. The fitted line of 

SRUE and maximum RUE was estimated by the lm function, and RMSE of fitted values was 

calculated by the rmse function of the R package stats version 3.6.3 (R Core Team 2020). P-value 

was used to test the null hypothesis that there is no relationship between the SRUE and maximum 

RUE with results plotted by the R package ggplot2 (Villanueva and Chen 2019).  

After spatial correction, trait correlations between SRUE and ADB over seasons were 

calculated using the corrplot R-package version 0.90 (Taiyun 2021). Given similarities in response 

over years, a combined analysis of 2018, 2019, and 2020 was conducted by estimating the best 

linear unbiased prediction (BLUP) of each genotype using the lmer function in the lme4 R-package 

(Bates et al. 2015). The mixed linear model for fitting the data was described as formula (3.1) in 

Chapter 3.  

The fitted canopy cover at 400 GDD, 600 GDD, 800 GDD, and 1000 GDD and SRUE 

values of each hybrid genotype were used as input phenotypes for GWAS using FarmCPU (Liu et 

al. 2016) with 80,103 SNP markers. GWAS was conducted using the Genomic Association and 

Prediction Integrated Tool (GAPIT) (Zhang et al. 2010; Lipka et al. 2012; Wang and Zhang 2020). 

FarmCPU model was selected in GWAS since it uses the associated markers to avoid over-fitting, 

and has higher statistical power compared with other methods (Liu et al. 2016). The FarmCPU 

model in GAPIT was run with default settings. Thresholds of significant SNPs were determined 

using FDR of adjusted p-values at 0.05 (Benjamini and Hochberg 1995). Manhattan plots of 

GWAS results were created using the R package “qqman” (Turner 2014). Sorghum QTL 

publications was searched through the Sorghum QTL Atlas (Mace et al. 2019).  

4.4 Results 

4.4.1 Estimating seasonal radiation use efficiency 

The variation in SRUE calculated from RGB canopy cover and aboveground dry biomass 

in a collection of 619 diverse sorghum hybrids is presented in Figure 4.2. The mean values of the 
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SRUE of 2018, 2019, and 2020 are 1.35, 1.31, and 1.33 (g/MJ), respectively. Although the three 

years have a similar median value for RUE, the standard deviation was larger in 2018.  

 

 

Figure 4.2 Violin plot of SRUE calculated from RGB canopy cover and aboveground dry biomass 

of 619 sorghum testcross hybrids. The mean and standard deviation of 2018, 2019, and 2020 are 

1.35±0.31, 1.31±0.17, and 1.33±0.18, respectively. 

4.4.2 Validation using 2018 HybCAL panel 

Maximum RUE values were calculated with 18 commercial hybrids as an input parameter 

for APSIM in Chapter 2. The biophysical crop models for these commercial hybrids exhibited 

excellent performance; however, the estimation of maximum RUE was complex and required the 

time-series leaf area index (LAI), extinction coefficient (k), RGB canopy cover, daily radiation, 

and three ADB data points. Using the SRUE method may be a good alternative for large breeding 

population such as SbDIV TC since it only requires RGB canopy cover, daily radiation, and end-

of-season ADB. The relationships between maximum RUE and seasonal RUE for these 18 

commercial sorghum hybrids are shown in Figure 4.3. Maximum and seasonal RUE were highly 

and positively correlated (r = 0.97) with an RMSE of 0.04 (g/MJ). These data suggest that SRUE 

may provide a useful approximation for estimating maximum RUE.  Given the high-throughput 
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methodology for estimating canopy cover and ABD, this method will be particularly useful when 

parameterizing crop models for larger populations of lines or hybrids. 

 

 

Figure 4.3 Comparison of SRUE calculated from RGB canopy cover and aboveground dry 

biomass with maximum RUE used as input for APSIM in Chapter 2. The blue dashed line is the 

fitted line, and the black dashed line is one-to-one line. The P-value tests the null hypothesis that 

there is no relationship between the two types of RUE. 

4.4.3 Heritability of SRUE and biomass yield 

The heritability of SRUE and ADB are shown in Table 4.1. The heritability of SRUE 

ranged from 0.45 to 0.63.  Comparisons between heritability of ADB and SRUE show that SRUE 

is a heritable trait with similar or slightly lower heritability than ADB.  

Table 4.1 Heritability of SRUE and ADB through SpATS 

 Heritability 

 Traits 2018 2019 2020 

SRUE  0.45 0.51 0.63 
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ADB 0.51 0.57 0.67 

 

4.4.4 Correlations between SRUE and ADB 

Table 4.2 shows correlations between SRUE and ADB in 2018, 2019, and 2020. The 

average SRUE was positively correlated with SRUE2018, SRUE2019, and SRUE2020. Average 

SRUE was also highly correlated with average ADB, ADB 2018, ADB 2019, and ADB 2020. All 

correlation values were highly significant. These results show that SRUE is stable and exhibits a 

positive relationship with ADB over seasons.  

Hybrid SRUE and ADB values for each line of 2018, 2019, 2020, and the average across 

three years are shown in Table C.1.  

 

Table 4.2 SRUE and ADB correlation between three hybrid years and the average over years. Avg. 

is the average of three years for each hybrid. 

  ADB 2018 ADB 2019 ADB 2020 Avg. ADB SRUE2018 SRUE2019 SRUE2020 Avg. SRUE 

ADB 2018         

ADB 2019 0.4*       
 

ADB 2020 0.52* 0.48*      
 

Avg. ADB 0.85* 0.74* 0.81*     
 

SRUE2018 0.98** 0.37* 0.49* 0.82*    
 

SRUE2019 0.33* 0.97** 0.43* 0.68* 0.32*   
 

SRUE2020 0.48* 0.45* 0.96** 0.77* 0.47* 0.42*  
 

Avg. SRUE 0.83* 0.73* 0.79* 0.98** 0.83* 0.7* 0.79* 
 

*Significant at the 0.001 probability level. 

**Significant at the 0 probability level. 

4.4.5 GWAS for canopy cover and SRUE 

GWAS identified significant associations for differences in canopy cover (Figure 4.4) and 

SRUE (Figure 4.5). Seven SNPs were detected for canopy cover at 600GDD and 13 SNPs were 

detected for canopy cover at 800GDD. No significant associations for canopy cover were detected 

at 400GDD when the plants were small and weed and soil reflectance may have resulted in some 

noise in RGB imaging.  No significant SNPs for canopy cover were detected at 1000GDD when 

the canopy was essentially closed with plants in the grain filling stage.  Eleven SNPs were detected 
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for SRUE (Figure 4.5).  A candidate gene search window was set to 15kb upstream and 

downstream of each significant SNP with FDR of P-value at 0.05. One or more candidate genes 

were discovered flanking each of the SNPs identified in GWAS. SNP S03_4483384 was 

significant at both 600GDD (Table 4.3) and 800GDD (Table 4.4) with effects of -1.78 and -0.79, 

respectively. Four candidate genes were found in the search window including Sobic.003G048500, 

Sobic.003G048600, Sobic.003G048700, and Sobic.003G048900. SNP S09_57062019 was 

significant for canopy cover at 800GDD (Table 4.4) and identified candidate genes 

Sobic.009G230000, Sobic.009G230100, Sobic.009G230200, Sobic.009G230300, 

Sobic.009G230400, Sobic.009G230500, Sobic.009G230600, and Sobic.009G230700 in the search 

window.  

Seven SNPs were significant for both SRUE (Table 4.5) and ADB (Table B.6). These SNPs 

were located on chromosomes 1, 6, 7, 8, and 9. SNP S01_74145303 identified candidate genes 

Sobic.001G468400, Sobic.001G468500, Sobic.001G468600, and Sobic.001G468700. SNP 

S06_2686264 identified candidate genes Sobic.006G017000, Sobic.006G017100, and 

Sobic.006G017200. SNP S07_59768820 identified candidate gene Sobic.007G163300. SNP 

S08_2579008 identified candidate genes Sobic.008G028700, Sobic.008G028800, 

Sobic.008G028850, and Sobic.008G028900. SNP S08_59178415 identified candidate genes 

Sobic.008G158666, Sobic.008G158732, Sobic.008G158800, Sobic.008G158900, and 

Sobic.008G159000. SNP S09_54144857 identified candidate genes Sobic.009G189400, 

Sobic.009G189501, Sobic.009G189600, and Sobic.009G189700. SNP S09_56521150 identified 

candidate genes Sobic.009G222200, Sobic.009G222400, Sobic.009G222500, and 

Sobic.009G222600. Five of the seven SNPs associated with SRUE and ADB show that the minor 

allele or low frequency allele exhibited the favorable effect on sorghum hybrid performance 

suggesting opportunities for future crop improvement for SRUE and ADB in sorghum.  
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A.  

 
B.  

 

Figure 4.4 Manhattan plot from GWAS for RGB canopy cover in 619 sorghum hybrids at (A) 

600GDD, (B) 800GDD. 
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Figure 4.5 Manhattan plot from GWAS for seasonal radiation use efficiency in 619 sorghum 

hybrids. 

 

Table 4.3 GWAS for canopy cover at 600GDD in the SbDIV TC population of sorghum hybrids 

with significant SNPs and candidate genes at FDR 0.05. 

SNP Chr. Position  

FDR_Adjusted

_P-values Effect Candidate Gene Annotation 

S03_4483384 

  

  

  

3 

  

  

  

4483384 

  

  

  

6.39E-06 

  

  

  

-1.78 

  

  

  

Sobic.003G048500 

LYSOPHOSPHOLIPASE-

RELATED 

Sobic.003G048600 

GLUTAREDOXIN-RELATED 

PROTEIN 

Sobic.003G048700 

RIBOSOMAL PROTEIN S6 

KINASE 

Sobic.003G048900 - 

S07_59768820 7 59768820 2.50E-05 0.55 Sobic.007G163300 - 

S02_73763983 2 73763983 0.001469942 -0.78 NA - 

S08_60159594 

  

  

  

  

8 

  

  

  

  

60159594 

  

  

  

  

0.007667636 

  

  

  

  

0.78 

  

  

  

  

Sobic.008G167401 - 

Sobic.008G167500 

LEUCINE-RICH REPEAT-

CONTAINING PROTEIN 

Sobic.008G167400 Gamma-thionin family 

Sobic.008G167600 GDP-L-galactose phosphorylase 

Sobic.008G167700 - 

S09_54911979 

  

  

  

  

9 

  

  

  

  

54911979 

  

  

  

  

0.011182793 

  

  

  

  

-0.65 

  

  

  

  

Sobic.009G198700 

RAS-RELATED PROTEIN 

RABA1A 

Sobic.009G198800 Transcriptional repressor, Ovate 

Sobic.009G198900 

TREHALOSE-6-PHOSPHATE 

SYNTHASE 

Sobic.009G199001 Gamma-glutamyl hydrolase 
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Table 4.3 continued 

     Sobic.009G199100 gamma-glutamyl hydrolase (GGH) 

S06_29459729 6 29459729 0.036249821 0.56 NA - 

S04_68243431 

  

  

  

4 

  

  

  

68243431 

  

  

  

0.036249821 

  

  

  

-0.55 

  

  

  

Sobic.004G354800 - 

Sobic.004G355000 Phosphoinositide 5-phosphatase 

Sobic.004G355101 - 

Sobic.004G355200 

lysine-specific demethylase 3 

(KDM3) 

 

Table 4.4 GWAS for canopy cover at 800GDD in the SbDIV TC population of sorghum hybrids 

with significant SNPs and candidate genes at FDR 0.05. 

SNP Chr. Position  

FDR_Adjusted

_P-values Effect Candidate Gene Annotation 

S03_4483384 

  

  

  

3 

  

  

  

4483384 

  

  

  

5.92E-05 

  

  

  

-0.79 

  

  

  

Sobic.003G048500 

LYSOPHOSPHOLIPASE-

RELATED 

Sobic.003G048600 

GLUTAREDOXIN-RELATED 

PROTEIN 

Sobic.003G048700 

RIBOSOMAL PROTEIN S6 

KINASE 

Sobic.003G048900 - 

S09_57062019 

  

  

  

  

  

  

  

9 

  

  

  

  

  

  

  

57062019 

  

  

  

  

  

  

  

5.92E-05 

  

  

  

  

  

  

  

-0.52 

  

  

  

  

  

  

  

Sobic.009G230000 

CAMP-RESPONSE ELEMENT 

BINDING PROTEIN-RELATED 

Sobic.009G230100 

LRR RECEPTOR-LIKE 

SERINE/THREONINE-PROTEIN 

KINASE MRH1-RELATED 

Sobic.009G230200 Galactose oxidase 

Sobic.009G230300 - 

Sobic.009G230400 

GLUCOSYL/GLUCURONOSYL 

TRANSFERASES 

Sobic.009G230500 TUBBY-RELATED 

Sobic.009G230600 - 

Sobic.009G230700 

Transcription factor GT-2 and 

related proteins, contains trihelix 

DNA-binding/SANT domain 

S09_57576171 

  

  

  

9 

  

  

  

57576171 

  

  

  

0.001164059 

  

  

  

-0.37 

  

  

  

Sobic.009G237350 F-box domain (F-box) 

Sobic.009G237400 timeless 

Sobic.009G237500 

Protein of unknown function 

(DUF3143) 

Sobic.009G237600 

CAMP-RESPONSE ELEMENT 

BINDING PROTEIN-RELATED 

S07_60408666 

  

  

  

7 

  

  

  

60408666 

  

  

  

0.002667182 

  

  

  

0.21 

  

  

  

Sobic.007G169300 - 

Sobic.007G169500 

large subunit ribosomal protein 

L10Ae (RP-L10Ae, RPL10A) 

Sobic.007G169533 

large subunit ribosomal protein 

L10Ae (RP-L10Ae, RPL10A) 

Sobic.007G169566 - 

S01_73258930 

  

  

  

1 

  

  

  

73258930 

  

  

  

0.002667182 

  

  

  

0.51 

  

  

  

Sobic.001G456100 SOLUTE CARRIER FAMILY 35 

Sobic.001G456200 - 

Sobic.001G456300 GLYCOSYLTRANSFERASE 
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Table 4.4 continued 

     Sobic.001G456400 

Putative nuclear localisation signal 

(NINJA_B) 

S02_66173624 

  

  

  

  

  

  

  

2 

  

  

  

  

  

  

  

66173624 

  

  

  

  

  

  

  

0.002695331 

  

  

  

  

  

  

  

-0.25 

  

  

  

  

  

  

  

Sobic.002G279900 

BETA-GALACTOSIDASE 

RELATED 

Sobic.002G280001 - 

Sobic.002G280100 

minichromosome maintenance 

protein 10 (MCM10) 

Sobic.002G280200 SKP1 

Sobic.002G280300 

Cotton fibre expressed protein 

(DUF761) 

Sobic.002G280400 

ACYL CARRIER 

PROTEIN/ZINC FINGER 

PROTEIN 593-RELATED 

Sobic.002G280500 

ZINC FINGER FYVE DOMAIN 

CONTAINING PROTEIN 

Sobic.002G280600 

MEDIATOR OF RNA 

POLYMERASE II 

TRANSCRIPTION SUBUNIT 4 

S10_24107416 10 24107416 0.002695331 -0.38 Sobic.010G139550 Putative gypsy type transposon 

S05_21444078 5 21444078 0.004974387 -0.16 NA - 

S10_12178788 

  

10 

  

12178788 

  

0.005016464 

  

0.20 

  

Sobic.010G114700 

HEAT SHOCK FACTOR 

BINDING PROTEIN 1 

Sobic.010G114800 

CELL DIVISION PROTEIN 

KINASE 

S06_61183041 

  

6 

  

61183041 

  

0.008058085 

  

-0.24 

  

Sobic.006G281800 

Ras-related protein Rab-18 

(RAB18) 

Sobic.006G281900 No apical meristem (NAM) protein 

S03_72075544 

  

  

  

  

  

3 

  

  

  

  

  

72075544 

  

  

  

  

  

0.013864257 

  

  

  

  

  

-0.47 

  

  

  

  

  

Sobic.003G413300 - 

Sobic.003G413400 - 

Sobic.003G413500 - 

Sobic.003G413550 - 

Sobic.003G413600 

K+ POTASSIUM 

TRANSPORTER 

Sobic.003G413700 

K+ POTASSIUM 

TRANSPORTER 

S07_1657858 7 1657858 0.021880467 0.14 Sobic.007G018100 

NAC DOMAIN-CONTAINING 

PROTEIN 12 

S02_55714395 

  

  

  

2 

  

  

  

55714395 

  

  

  

0.02639782 

  

  

  

-0.40 

  

  

  

Sobic.002G177200 PHOSPHOLIPASE A1-IIDELTA 

Sobic.002G177300 Premnaspirodiene oxygenase 

Sobic.002G177400 

Plant family of unknown function 

(DUF810) 

Sobic.002G177500 SAWADEE domain 
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Table 4.5 GWAS for SRUE in the SbDIV TC population of sorghum hybrids with significant 

SNPs and candidate genes at FDR 0.05. 

SNP Chr. Position maf 
FDR_Adjusted

_P-values 
Effect Candidate Gene Annotation 

S07_59768820 7 59768820 0.18 1.00E-09 0.05 Sobic.007G163300 - 

S09_56521150 9 56521150 0.31 4.92E-07 0.02 

Sobic.009G222200 

RING FINGER AND CHY ZINC 

FINGER DOMAIN-CONTAINING 

PROTEIN 1 

Sobic.009G222400 

PHOSPHATIDYLINOSITOL N-
ACETYLGLUCOSAMINYLTRANS

FERASE SUBUNIT P DOWN 

SYNDROME CRITICAL REGION 
PROTEIN 5 -RELATED 

Sobic.009G222500 Uncharacterized conserved protein 

Sobic.009G222600 
Protein of unknown function 

(DUF1639) 

S08_2579008 8 2579008 0.39 0.000387114 -0.05 

Sobic.008G028700 SET DOMAIN PROTEINS 

Sobic.008G028800 WRKY DNA -binding domain 

Sobic.008G028850 - 

Sobic.008G028900 RING ZINC FINGER PROTEIN 

S01_74145303 1 74145303 0.12 0.001004336 0.04 

Sobic.001G468400 Homeobox domain 

Sobic.001G468500 Uncharacterized conserved protein 

Sobic.001G468600 SERYL-TRNA SYNTHETASE 

Sobic.001G468700 
AUXILIN/CYCLIN G-

ASSOCIATED KINASE-RELATED 

S07_61435836 7 61435836 0.28 0.001052593 0.03 Sobic.007G181100 
MULTIDRUG RESISTANCE 

PROTEIN 

S09_2949146 9 2949146 0.07 0.007975731 0.03 

Sobic.009G032500 

RNA POLYMERASE II SUBUNIT 

B1 CTD PHOSPHATASE RPAP2-
RELATED 

Sobic.009G032533 - 

Sobic.009G032566 - 

Sobic.009G032600 Peroxidase / Lactoperoxidase 

Sobic.009G032700 Peroxidase / Lactoperoxidase 

S06_2686264 6 2686264 0.03 0.017836345 0.05 

Sobic.006G017000 
pleiotropic regulator 1 (PLRG1, 
PRL1, PRP46) 

Sobic.006G017100 RIBOSOMAL PROTEIN L18 

Sobic.006G017200 
LEUCINE-RICH REPEAT-

CONTAINING PROTEIN 

S02_73819709 2 73819709 0.33 0.019769415 -0.03 

Sobic.002G381700 WD40 repeat-containing protein 

Sobic.002G381750 SKP1 

Sobic.002G381800 - 

Sobic.002G381900 Casein Kinase 2 substrate (CK2S) 

Sobic.002G382001 - 

Sobic.002G382100 Probable lipid transfer (LTP_2) 

S09_54144857 9 54144857 0.14 0.033770119 -0.02 

Sobic.009G189400 
Assimilatory sulfite reductase 
(ferredoxin) 

Sobic.009G189501 - 

Sobic.009G189600 - 

Sobic.009G189700 - 

S04_1304873 4 1304873  0.18  0.037372688  -0.03 Sobic.004G016250 - 
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Table 4.5 continued 

      

Sobic.004G016200 - 

Sobic.004G016300 PPR repeat family 

Sobic.004G016400 Ethanolaminephosphotransferase 

Sobic.004G016600 
ZINC FINGER FYVE DOMAIN 
CONTAINING PROTEIN 

Sobic.004G016500 PPR repeat 

S08_59178415 8 59178415 0.35 0.044238154 0.03 

Sobic.008G158666 
Protease inhibitor/seed storage/LTP 

family (Tryp_alpha_amyl) 

Sobic.008G158732 
Protease inhibitor/seed storage/LTP 

family (Tryp_alpha_amyl) 

Sobic.008G158800 
Protease inhibitor/seed storage/LTP 

family (Tryp_alpha_amyl) 

Sobic.008G158900 CHITINASE 

Sobic.008G159000 - 

4.5 Discussion 

4.5.1 SRUE value exhibits a similar range as previous publications 

Acquiring multiple time points of canopy cover increases the fit of logistic function and 

makes the estimation of SRUE possible. This estimation was under the assumption that there is no 

water stress in the environment. If there is water stress, dry biomass accumulation would decrease 

and affect the SRUE calculation. The SRUE values measured in a large set of genetically diverse 

testcross hybrids representing the sorghum diversity panel are presented in Figure 4.2. The median 

of the SRUE values in 2018, 2019, and 2020 are 1.35, 1.31, and 1.33 (g/MJ), respectively. 

Although the three years have a similar median of RUE, 2018 has a larger standard deviation than 

observed in 2019 and 2020. This may because that the nitrogen application of 2018 was one month 

after planting, while 2019 and 2020 were applied one month before planting. C4 plants like 

sorghum generally exhibit higher RUE (Sinclair and Muchow 1999) than C3 crops. Kiniry et al. 

(1989) reported that two important C4 crops, maize and sorghum, exhibited RUE of 1.75 g MJ-1 

and 1.4 g MJ-1 of intercepted short-wave solar radiation, respectively. Hammer et al. (2010b) found 

that RUE ranged between 1.2 and 1.4 g MJ-1 during vegetative growth. Some publications also 

reported that maximum RUE of maize in the range 1.6 to 1.7 g MJ-1 and 1.2 to 1.4 g MJ-1 for 

sorghum during vegetative growth. It suggests that the sorghum potential RUE is less than maize 

(Muchow and Davis, 1988; Muchow, 1989; Muchow and Sinclair, 1994; Sinclair and Muchow, 

1999; Lindquist et al., 2005). However, analyses of RUE and SRUE of commercial sorghum 

hybrids revealed variations from approximately 1.0 to 1.9 g MJ-1 with commercial forage hybrids 
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exhibiting values similar or higher than RUE and SRUE reported for maize. Variation in SRUE 

calculated by the simple model provided in this study exhibits a similar range as previous 

publications.  

4.5.2 SRUE is heritable and stable over seasons 

Across three hybrid years, SRUEs have heritability close to 0.5 (Table 4.1). This indicated 

that SRUE is heritable and can be used in genetic studies or as a selection criterion in sorghum 

breeding programs (Furbank et al. 2019). Since the SRUE calculation used RGB canopy cover, 

and it had lower heritability than ADB, SRUE has slightly lower heritability than ADB.  

Given the moderate heritability reported for SRUE and positive correlations with ADB 

over years (Table 4.2), SRUE appears to be a valuable trait that can be used in genetic studies and 

for exploration of components of ADB. Narayanan et al. (2013) reported that RUE has R2 = 0.9 

with dry biomass in sorghum. Some cereal breeding programs have successfully increased RUE 

with gains in grain yield (Shearman et al. 2005b; Sadras et al. 2011; Sadras et al. 2012). Other 

studies suggested that increased RUE may improve grain yield (Zhu et al. 2016; Asseng et al. 

2019). 

4.5.3 Favorable alleles for SRUE and ADB with low allele frequencies  

GWAS identified 11 SNPs associated with SRUE under FDR 0.05 significance level with 

the minor allele contributing the favorable effect for seven of these loci (Table 4.5). The minor 

allele frequencies of S07_59768820, S09_56521150, S01_74145303, S07_61435836, 

S09_2949146, S06_2686264, and S08_59178415 are 0.18, 0.31, 0.12, 0.28, 0.07, 0.03, and 0.35, 

respectively. Selection for these minor alleles will provide considerable opportunities for 

improving SRUE through breeding.   

GWAS identified 13 SNPs associated with ADB under FDR 0.05 significant level with the 

minor allele contributing the favorable effect for seven of these loci (Table B.6). Five of the SNPs 

(S07_59768820, S09_56521150, S01_74145303, S06_2686264, and S08_59178415) with minor 

alleles as favorable alleles were significant for SRUE and ADB under FDR p-value 0.05 

probability. SNPs S07_61080813 and S02_2417641 were only significant in ADB. This reveals 

that within the population, there are five SNPs that provide positive effects for both SRUE and 
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ADB with allele frequencies below 0.5. Efforts to increase these allele frequencies through 

breeding could simultaneously improve the germplasm for SRUE and ADB.  

Further analyses of sorghum accessions having favorable alleles represented in the SbDIV 

sorghum diversity panel showed that Dwarf Yellow Milo has minor and favorable alleles at the 

S07_59768820, S07_61435836, S08_59178415, and S09_2949146; KS19 has minor and 

favorable alleles at the S07_59768820, S07_61435836, S08_59178415, and S09_56521150; San 

Chi San has minor and favorable alleles at the S07_59768820, S07_61435836, S08_59178415, 

and S09_56521150; Spur Feterita has minor and favorable alleles at the S01_74145303, 

S06_2686264, S07_59768820, S07_61435836, S08_59178415, and S09_56521150. These 

genotypes represent valuable resources for future sorghum hybrid breeding efforts for improve 

SRUE. 

4.5.4 Mapping loci associated with canopy cover 

Canopy cover is a complex trait that reflects canopy level structure. The genes impacting 

canopy cover may be related to variation in an array of traits including leaf angle, leaf appearance 

rate, leaf area, chlorophyll content, leaf chlorophyll fluorescence, tiller number, plant height, 

amount of vegetative biomass, dry matter growth rate, and days to flowering.  Many of the SNPs 

identified for canopy cover in this study mapped to the same genomic locations as QTL for these 

other traits. 

GWAS for canopy cover at 600GDD identified SNPs and candidate genes on 

chromosomes 3, 4, 7, 8, and 9. Identified candidate genes and published QTLs are in Table 4.6. 
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Table 4.6 Identified candidate genes of RGB canopy cover at 600GDD and published QTLs. 

RGB canopy cover 

candidate genes at 

600 GDD 

Chr. 
position 

(bp) 
Published QTLs QTL Related Traits Note 

Sobic.003G048500

Sobic.003G048600

Sobic.003G048700

Sobic.003G048900 

3 
4469846-

4506317 

qLFAR3.13 (Fiedler et al. 2016); 

qCHLC3.30 (Fiedler et al. 2016); 

qCHLF3.13, qCHLF3.14,  

qCHLF3.15 (Fiedler et al. 2016);  

qHGHT3.3 (Feltus et al. 2006), 

qHGHT3.4 (Phuong et al. 2013), 

qHGHT3.5 (Hart et al. 2001); 

qTNUM3.5 (Kong et al. 2014); 

qDTFL3.3 (Wang et al. 2014); 

qDMGR3.13,  

qDMGR3.14 (Fiedler et al. 2016) 

leaf appearance rate;  

leaf chlorophyll content;  

leaf chlorophyll fluorescence; 

plant height; tiller number; 

days to flowering;  

dry matter growth rate 

 

Sobic.004G354800

Sobic.004G355000

Sobic.004G355101

Sobic.004G355200 

4 
68228025-

68263930 
qCHLF4.23 (Fiedler et al. 2016) leaf chlorophyll fluorescence  

Sobic.007G163300 7 
59767412-

59768828 

qLANG7.10, qLANG7.11, 

qLANG7.12, qLANG7.13 

(McCormick et al. 2016); 

qCHLC7.17, qCHLC7.20  

(Gelli et al. 2016);  

qHGHT7.45 (Pereira and Lee 1995), 

qHGHT7.46 (Madhusudhana and Patil 

2013), qHGHT7.62 (Zhang et al. 

2015), qHGHT7.76 (Yamaguchi et al. 

2016), qHGHT7.83 (Girma et al. 

2019), qHGHT7.91, qHGHT7.92 (Liu 

et al. 2019), qHGHT7.93, 

qHGHT7.95, qHGHT7.96, 

qHGHT7.97 (Marla et al. 2019); 

qTDBM7.6 (Murray et al. 2008) 

leaf angle;  

leaf chlorophyll content;  

plant height;  

stem dry biomass 

Dw3 

gene 

is in 

the 

same 

height 

QTLs. 

Sobic.008G167401

Sobic.008G167500

Sobic.008G167400

Sobic.008G167600

Sobic.008G167700 

8 
60151302-

60171528 

qLFAR8.16 (Fiedler et al. 2016); 

qLFLN8.3 (Shehzad and Okuno 

2015); qCHLF8.29, qCHLF8.30 

(Fiedler et al. 2016); qGLFA8.4 

(Haussmann et al. 2002); qDTFL8.23 

(Feltus et al. 2006); 

leaf appearance rate;  

leaf length;  

leaf chlorophyll fluorescence; 

green leaf area;  

days to flowering 

 

Sobic.009G198700

Sobic.009G198800

Sobic.009G198900

Sobic.009G199001

Sobic.009G199100 

9 
54895227-

54925186 

qLFAR9.9 (Fiedler et al. 2016); 

qCHLC9.30 (Gelli et al. 2016); 

qHGHT9.20, qHGHT9.21, 

qHGHT9.46 (Felderhoff et al. 2012), 

qHGHT9.64, qHGHT9.65 (Zhang et 

al. 2015), qHGHT9.8 (Feltus et al. 

2006), qHGHT9.10 (Lin et al. 1995), 

qHGHT9.75 (Bai et al. 2017); 

qDTFL9.15 (Feltus et al. 2006); 

qTDBM9.1 (Felderhoff et al. 2012), 

qSDWT9.4 (Zhang et al. 2015) 

leaf appearance rate;  

leaf chlorophyll content;  

plant height;  

days to flowering;  

vegetative dry biomass 

 

 

 

GWAS for canopy cover at 800GDD identified SNPs and candidate genes on 

chromosomes 1, 2, 3, 6, 7, 9, 10. Identified candidate genes and published QTLs are in Table 4.7. 
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Table 4.7 Identified candidate genes of RGB canopy cover at 800GDD and published QTLs. 

RGB canopy cover 

candidate genes at 

800 GDD 

Chr. 
position 

(bp) 
Published QTLs QTL Related Traits Note 

Sobic.001G456100

Sobic.001G456200

Sobic.001G456300

Sobic.001G456400 

1 
73254804-

73274411 

qCHLF1.32 (Fiedler et al. 2016); 

qHGHT1.21 (Mocoeur et al. 2015); 

qTNUM1.24, qTNUM1.25, qTNUM1.26 

(Kong et al. 2014); qSTGR1.3 (Wang et 

al. 2014); qDTFL1.34 (El Mannai et al. 

2011), qDTFL1.35 (Bangbol Sangma 

2013), qDTFL1.37 (Srinivas et al. 

2009); qDMGR1.21 (Fiedler et al. 2016) 

leaf chlorophyll 

fluorescence; 

 plant height;  

tiller number;  

stay-green;  

days to flowering;  

dry matter growth rate 

Ma3 is also 

in QTL 

qDTFL1.35

. 

Sobic.002G279900

Sobic.002G280001

Sobic.002G280100

Sobic.002G280200

Sobic.002G280300

Sobic.002G280400

Sobic.002G280500

Sobic.002G280600 

2 
66153611-

66189183 

qLFAR2.11 (Fiedler et al. 2016); 

qCHLC2.14, qCHLC2.16, qCHLC2.17 

(Sukumaran et al. 2016); qCHLF2.28, 

qCHLF2.29, qCHLF2.30 (Fiedler et al. 

2016); qHGHT2.12 (Liu et al. 2019); 

qDTFL2.20 (Mace et al. 2013), 

qDTFL2.22, qDTFL2.23 (Srinivas et al. 

2009), qDTFL2.24 (Phuong et al. 2013), 

qDTFL2.45 (Marla et al. 2019); 

qDMGR2.15 (Fiedler et al. 2016) 

leaf appearance rate; 

leaf chlorophyll 

content;  

leaf chlorophyll 

fluorescence;  

plant height;  

days to flowering; 

 dry matter growth rate 

 

Sobic.002G177200

Sobic.002G177300

Sobic.002G177400

Sobic.002G177500 

2 
55708840-

55733484 

qGLFA2.11 (Sabadin et al. 2012); 

qDTFL2.3 (Bangbol Sangma 2013), 

qDTFL2.34 (Mocoeur et al. 2015), 

qDTFL2.4, qDTFL2.5, qDTFL2.6 

(Wang et al. 2014) 

green leaf area;  

days to flowering 
 

Sobic.003G048500

Sobic.003G048600

Sobic.003G048700

Sobic.003G048900 

3 
4469846-

4506317 

qLFAR3.13 (Fiedler et al. 2016); 

qCHLC3.30 (Fiedler et al. 2016); 

qCHLF3.13, qCHLF3.14, qCHLF3.15 

(Fiedler et al. 2016); qHGHT3.3 (Feltus 

et al. 2006), qHGHT3.4 (Phuong et al. 

2013), qHGHT3.5 (Hart et al. 2001); 

qTNUM3.5 (Kong et al. 2014); 

qDTFL3.3 (Wang et al. 2014); 

qDMGR3.13, qDMGR3.14  

(Fiedler et al. 2016) 

leaf appearance rate; 

leaf chlorophyll 

content;  

leaf chlorophyll 

fluorescence;  

plant height;  

tiller number;  

days to flowering;  

dry matter growth rate 

 

Sobic.003G413300

Sobic.003G413400

Sobic.003G413500

Sobic.003G413550

Sobic.003G413600

Sobic.003G413700 

3 
72060603-

72093980 

qLFWD3.2, qLFWD3.3 (Shehzad and 

Okuno 2015), qLFWD3.4 (Feltus et al. 

2006); qCHLC3.27 (Sukumaran et al. 

2016); qHGHT3.16 (Nagaraja Reddy et 

al. 2013), qHGHT3.24 (Liu et al. 2019); 

qTNUM3.8 (Kong et al. 2014); 

qDTFL3.31 (Wang et al. 2014) 

leaf width;  

leaf chlorophyll 

content;  

plant height;  

tiller number;  

days to flowering 

 

Sobic.006G281800

Sobic.006G281900 
6 

61166869-

61179561 

qCHLC6.13 (Sukumaran et al. 2016); 

qCHLF6.17 (Fiedler et al. 2016); 

qDTFL6.59 (Bangbol Sangma 2013), 

qDTFL6.74 (Sukumaran et al. 2016); 

qSDWT6.3 (Shiringani and Friedt 2011) 

leaf chlorophyll 

content;  

leaf chlorophyll 

fluorescence;  

days to flowering; 

vegetative dry biomass 
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Table 4.7 continued 

Sobic.007G169300

Sobic.007G169500

Sobic.007G169533

Sobic.007G169566 

7 
60392556-

60419781 

qLANG7.10, qLANG7.11, qLANG7.12, 

qLANG7.13 (McCormick et al. 2016); 

qCHLC7.17, qCHLC7.20 (Gelli et al. 

2016); qHGHT7.45 (Pereira and Lee 

1995), qHGHT7.46 (Madhusudhana and 

Patil 2013), qHGHT7.62 (Zhang et al. 

2015), qHGHT7.76 (Yamaguchi et al. 

2016), qHGHT7.83 (Girma et al. 2019), 

qHGHT7.91 (Liu et al. 2019), 

qHGHT7.93, qHGHT7.95, qHGHT7.96, 

qHGHT7.97 (Marla et al. 2019); 

qTDBM7.6 (Murray et al. 2008) 

leaf angle;  

leaf chlorophyll 

content;  

plant height; 

vegetative dry biomass 

Dw3 is in 

the same 

height 

QTLs. 

Sobic.007G018100 7 
1663031-

1668132 

qCHLC7.2 (Rama Reddy et al. 2014); 

qCHLF7.18 (Fiedler et al. 2016); 

qTNUM7.1, qTNUM7.2 (Kong et al. 

2014); qSTGR7.1 (Subudhi et al. 2000); 

qDTFL7.2, qDTFL7.3, qDTFL7.4 

(Wang et al. 2014) 

leaf chlorophyll 

content;  

leaf chlorophyll 

fluorescence;  

tiller number;  

stay-green;  

days to flowering 

 

Sobic.009G230000

Sobic.009G230100

Sobic.009G230200

Sobic.009G230300

Sobic.009G230400

Sobic.009G230500

Sobic.009G230600

Sobic.009G230700 

9 
57045813-

57076364 

qLFAR9.9 (Fiedler et al. 2016); 

qCHLC9.30 (Gelli et al. 2016); 

qGLFA9.6 (Sabadin et al. 2012); 

qHGHT9.10 (Lin et al. 1995), 

qHGHT9.103 (Marla et al. 2019), 

qHGHT9.16 (Takai et al. 2012), 

qHGHT9.12, qHGHT9.19 (Wang et al. 

2014), qHGHT9.64, qHGHT9.65 

(Zhang et al. 2015), qHGHT9.20, 

qHGHT9.21, qHGHT9.29, qHGHT9.30, 

qHGHT9.45, qHGHT9.46 (Felderhoff et 

al. 2012), qHGHT9.81 (Boyles et al. 

2017); qTNUM9.7, qTNUM9.8 (Zhang 

et al. 2015); qDTFL9.15 (Feltus et al. 

2006), qDTFL9.33, qDTFL9.34 (Zhang 

et al. 2015); qTDBM9.1, qTDBM9.4 

(Felderhoff et al. 2012), qSDWT9.4, 

qSDWT9.5 (Zhang et al. 2015) 

leaf appearance rate; 

leaf chlorophyll 

content;  

green leaf area;  

plant height;  

tiller number;  

days to flowering; 

vegetative dry biomass 

Dw1 is in 

the same 

height loci. 

This gene 

can affect 

plant height 

by reducing 

cell 

proliferatio

n activity 

in the 

internodes 

(Hirano et 

al. 2017). 

Sobic.009G237350

Sobic.009G237400

Sobic.009G237500

Sobic.009G237600 

9 
57557464-

57585953 

qLFAR9.9 (Fiedler et al. 2016); 

qCHLC9.30 (Gelli et al. 2016); 

qGLFA9.6 (Sabadin et al. 2012), 

qGLFA9.2 (Rama Reddy et al. 2014); 

qTNGL9.1 (Rama Reddy et al. 2014); 

qHGHT9.10 (Lin et al. 1995), 

qHGHT9.16 (Takai et al. 2012), 

qHGHT9.19 (Wang et al. 2014), 

qHGHT9.20, qHGHT9.21, qHGHT9.29, 

qHGHT9.30, qHGHT9.44, qHGHT9.45, 

qHGHT9.46 (Felderhoff et al. 2012), 

qHGHT9.22, qHGHT9.23, qHGHT9.24, 

qHGHT9.25, qHGHT9.26, qHGHT9.27, 

qHGHT9.28, qHGHT9.32, qHGHT9.33, 

qHGHT9.34, qHGHT9.35, qHGHT9.36, 

qHGHT9.37, qHGHT9.38, qHGHT9.39 

(Higgins et al. 2014), qHGHT9.31, 

qHGHT9.49 (Takai et al. 2012), 

qHGHT9.56 (Pereira and Lee 1995), 

qHGHT9.64, qHGHT9.65 (Zhang et al. 

2015), qHGHT9.68 (Zhao et al. 2016), 

qHGHT9.73, qHGHT9.74 (Wang et al. 

2016), qHGHT9.81 (Boyles et al. 2017);  

leaf appearance rate; 

leaf chlorophyll 

content;  

green leaf area;  

total leaf number; 

plant height;  

tiller number;  

days to flowering; 

vegetative dry biomass 
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Table 4.7 continued 

   

qTNUM9.7, qTNUM9.8 (Zhang et al. 

2015); qDTFL9.15 (Feltus et al. 2006), 

qDTFL9.33, qDTFL9.34 (Zhang et al. 

2015); qTDBM9.1, qTDBM9.4 

(Felderhoff et al. 2012), qSDWT9.4, 

qSDWT9.5 (Zhang et al. 2015) 

  

Sobic.010G139550 10 
24112634-

24115120 

qLFAR10.7, qLFAR10.8 (Fiedler et al. 

2014), qLFAR10.15 (Fiedler et al. 

2016); qRLSN10.1 (Rama Reddy et al. 

2014); qLNUM10.1 (Rajkumar et al. 

2013); qCHLF10.17, qCHLF10.18, 

qCHLF10.19 (Fiedler et al. 2014), 

qCHLF10.24 (Fiedler et al. 2016); 

qHGHT10.2 (Pereira and Lee 1995), 

qHGHT10.17, qHGHT10.18 (Liu et al. 

2019), qHGHT10.5 (Shiringani et al. 

2010); qTNUM10.1 (Shiringani et al. 

2010), qTNUM10.2, qTNUM10.3, 

qTNUM10.4 (M. M. Alam et al. 2014); 

qDTFL10.13 (Felderhoff et al. 2012), 

qDTFL10.15 (Crasta et al. 1999), 

qDTFL10.18 (Bangbol Sangma 2013), 

qDTFL10.19, qDTFL10.20, 

qDTFL10.21 (Wang et al. 2014), 

qDTFL10.22 (Nagaraja Reddy et al. 

2013), qDTFL10.24 (Wang et al. 2014), 

qDTFL10.25 (Mace et al. 2013), 

qDTFL10.38 (Mocoeur et al. 2015), 

qDTFL10.43 (Guindo et al. 2019), 

qDTFL10.45, qDTFL10.46 (Liu et al. 

2019); qDMGR10.29 (Fiedler et al. 

2016); qTDBM10.1, qTDBM10.2 

(Felderhoff et al. 2012) 

leaf appearance rate; 

rate of leaf senescence; 

leaf number;  

leaf chlorophyll 

fluorescence;  

plant height;  

tiller number;  

days to flowering;  

dry matter growth rate; 

vegetative dry biomass 

 

Sobic.010G114700

Sobic.010G114800 
10 

12181779-

12188720 

qLFAR10.6 (Fiedler et al. 2014), 

qLFAR10.15 (Fiedler et al. 2016); 

qRLSN10.1 (Rama Reddy et al. 2014); 

qCHLF10.24 (Fiedler et al. 2016); 

qHGHT10.2 (Pereira and Lee 1995), 

qHGHT10.16 (Kong et al. 2018), 

qHGHT10.17, qHGHT10.18 (Liu et al. 

2019), qHGHT10.5 (Shiringani et al. 

2010); qTNUM10.1 (Shiringani et al. 

2010), qTNUM10.2, qTNUM10.3, 

qTNUM10.4 (M. M. Alam et al. 2014); 

qDTFL10.13 (Felderhoff et al. 2012), 

qDTFL10.15 (Crasta et al. 1999), 

qDTFL10.22 (Nagaraja Reddy et al. 

2013), qDTFL10.25 (Mace et al. 2013), 

qDTFL10.38 (Mocoeur et al. 2015), 

qDTFL10.39 (Miao et al. 2020), 

qDTFL10.43 (Guindo et al. 2019), 

qDTFL10.45, qDTFL10.46 (Liu et al. 

2019); qDMGR10.16, qDMGR10.17 

(Fiedler et al. 2014), qDMGR10.29 

(Fiedler et al. 2016); qTDBM10.1, 

qTDBM10.2 (Felderhoff et al. 2012) 

leaf appearance rate; 

rate of leaf senescence; 

leaf chlorophyll 

fluorescence;  

plant height;  

tiller number;  

days to flowering;  

dry matter growth rate; 

vegetative dry biomass 
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All identified candidate genes of RGB canopy cover were also reported in the traits related 

to canopy structure, such as leaf morphology, chlorophyll content and fluorescence, plant height, 

tiller number, vegetative biomass, and days to flowering. These results are not surprising since our 

approach for estimating SRUE involved multi-date canopy cover extracted from RGB images and 

fitted to logistic regression by days after sowing to estimate seasonal radiation interception for the 

SRUE calculation. The candidate genes for canopy cover from GWAS are consistent with 

published QTLs functions. This support that the remote sensing approach used in this study is 

reliable since it was supported by the genetic aspect. 

4.5.5 Mapping loci associated with SRUE 

SNPs associated with SRUE also show considerable overlap with QTLs related to canopy 

cover and ADB and previously reported QTL for leaf angle, green leaf area, leaf chlorophyll 

content and fluorescence, the efficiency of energy captured by open PSII reaction centers, leaf 

senescence, plant height, tiller number, vegetative dry biomass, dry matter growth rate, and days 

to flowering. A cluster of these QTLs map near the Dw3 locus, which is consistent with previous 

reports that sorghum dwarfing genes can affect light interception, canopy extinction coefficient 

(k), and RUE (George-Jaeggli et al. 2013). McCormick et al. (2016) reported that Dw3 can also 

influence leaf inclination angle and shoot height. This influence is time-dependent since leaf angle 

is affected prior to shoot height.  

GWAS for SRUE identified SNPs and candidate genes on chromosomes 1, 2, 4, 6, 7, 8, 

and 9. Identified candidate genes and published QTLs are in Table 4.8. Some of these genes and 

genetic loci were already discussed in Chapter 3 since these candidate genes were also identified 

for ADB. The major candidate gene on chromosome 7, Sobic.007G163300, mapped to same region 

of Dw3. A cluster of QTL have been mapped to this locus including four leaf angle QTLs 

(McCormick et al. 2016), two leaf chlorophyll content QTLs (Gelli et al. 2016), eleven plant height 

QTLs (Pereira and Lee 1995; Madhusudhana and Patil 2013; Zhang et al. 2015; Yamaguchi et al. 

2016; Marla et al. 2019; Girma et al. 2019; Liu et al. 2019), one stem dry biomass QTL (Murray 

et al. 2008). Another cluster of QTL have been mapped to the candidate gene on chromosome 8 

including a grain yield QTL (Felderhoff et al. 2012), height QTL (Shehzad and Okuno 2015), and 

stem and leaf fresh weight QTL (Guan et al. 2011). The QTL for SRUE on chromosome 9 map to 

the same region as a cluster of QTL for plant height QTLs (Lin et al. 1995; Felderhoff et al. 2012; 
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Zhang et al. 2015), a grain yield QTL (Sabadin et al. 2012), and a vegetative dry biomass QTL 

(Felderhoff et al. 2012). Other SNPs for SRUE are indicated in Table 4.8. 

 

Table 4.8 Identified candidate genes of SRUE and published QTLs. 

SRUE candidate 

genes 
Chr. 

position 

(bp) 
Published QTLs QTL Related Traits Note 

Sobic.001G468400

Sobic.001G468500

Sobic.001G468600

Sobic.001G468700 

1 
74135477-

74157363 

qGLFA1.12, qGLFA1.13 (Haussmann 

et al. 2002); qPSⅡ1.30 (Ortiz et al. 

2017); qCHLF1.32 (Fiedler et al. 

2016); qHGHT1.21 (Mocoeur et al. 

2015); qTNUM 1.24, qTNUM 1.25, 

qTNUM 1.26 (Kong et al. 2014); 

qDMGR1.21 (Fiedler et al. 2016) 

green leaf area; 

efficiency of energy 

captured by open PSII 

reaction centers;  

leaf chlorophyll 

fluorescence;  

plant height;  

tiller number; 

 dry matter growth rate 

 

Sobic.002G381700

Sobic.002G381750

Sobic.002G381800

Sobic.002G381900

Sobic.002G382001

Sobic.002G382100 

2 
73808198-

73833394 

qLSNS2.1 (Feltus et al. 2006); 

qCHLC2.19 (Fiedler et al. 2016); 

qTNUM2.15, qTNUM2.16 (Liu et al. 

2019);  

qDTFL2.31 (Wang et al. 2014); 

qTDBM2.4 (Mocoeur et al. 2015) 

leaf senescence; 

 leaf chlorophyll 

content;  

tiller number;  

days to flowering; 

vegetative fresh 

biomass 

 

Sobic.004G016250

Sobic.004G016200

Sobic.004G016300

Sobic.004G016400

Sobic.004G016600

Sobic.004G016500 

4 
1291907-

1320592 

qGLFA4.1 (Srinivas et al. 2009); 

qCHLF4.18 (Fiedler et al. 2016); 

qHGHT4.22 (Liu et al. 2019); 

qDMGR4.9 (Fiedler et al. 2016); 

qTDBM4.1 (Felderhoff et al. 2012) 

green leaf area;  

leaf chlorophyll 

fluorescence;  

plant height;  

dry matter growth rate; 

vegetative dry biomass 

 

Sobic.006G017000

Sobic.006G017100

Sobic.006G017200 

6 
2673409-

2688955 

qGLFA6.2 (Sabadin et al. 2012); 

qCHLC6.14 (Fiedler et al. 2016); 

qHGHT6.4 (Takai et al. 2012); 

qDTFL6.10 (Bangbol Sangma 2013), 

qDTFL6.70, qDTFL6.72 (Sukumaran 

et al. 2016);  

qFBM6.6 (Wang et al. 2016) 

green leaf area;  

leaf chlorophyll 

content;  

plant height;  

days to flowering; 

vegetative fresh 

biomass 

 

Sobic.007G163300 7 
59767412-

59768828 

qLANG7.10, qLANG7.11, 

qLANG7.12, qLANG7.13 

(McCormick et al. 2016); 

qCHLC7.17, qCHLC7.20 (Gelli et al. 

2016); qHGHT7.45 (Pereira and Lee 

1995), qHGHT7.46 (Madhusudhana 

and Patil 2013), qHGHT7.62 (Zhang 

et al. 2015), qHGHT7.76 (Yamaguchi 

et al. 2016), qHGHT7.83 (Girma et al. 

2019), qHGHT7.91, qHGHT7.92 (Liu 

et al. 2019), qHGHT7.93, 

qHGHT7.95, qHGHT7.96, 

qHGHT7.97 (Marla et al. 2019); 

qTDBM7.6 (Murray et al. 2008) 

leaf angle;  

leaf chlorophyll 

content;  

plant height;  

stem dry biomass 

Dw3 gene is 

in the same 

height 

QTLs. 

Sobic.007G181100 7 
61437163-

61442361 

qLFAR7.6 (Kapanigowda et al. 2014); 

qCHLC7.17 (Gelli et al. 2016); 

qHGHT7.45 (Pereira and Lee 1995), 

qHGHT7.46, qHGHT7.47, 

qHGHT7.48, qHGHT7.49, 

qHGHT7.50 (Madhusudhana and Patil 

2013), qHGHT7.76 (Yamaguchi et al. 

2016), qHGHT7.91 (Liu et al. 2019); 

leaf area;  

leaf chlorophyll 

content;  

plant height 

Dw3 is also 

in QTLs 

qHGHT7.45, 

qHGHT7.46, 

qHGHT7.76, 

and 

qHGHT7.91 
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Table 4.8 continued 

Sobic.008G028700

Sobic.008G028800

Sobic.008G028850

Sobic.008G028900 

8 
2546275-

2588560 

qLFAR8.4 (Fiedler et al. 2014); 

qCHLC8.4, qCHLC8.5 (Fiedler et al. 

2014), qCHLC8.16 (Fiedler et al. 

2016); qCHLF8.9, qCHLF8.10, 

qCHLF8.11, qCHLF8.12 (Fiedler et 

al. 2014); qTNUM8.2, qTNUM8.3, 

qTNUM8.4, qTNUM8.5 (Kong et al. 

2014), qTNUM8.6 (Mohammad 

Mobashwer Alam et al. 2014); 

qDTFL8.5, qDTFL8.6, qDTFL8.7 

(Wang et al. 2014), qDTFL8.8  

(Mace et al. 2013) 

leaf appearance rate; 

leaf chlorophyll 

content;  

leaf chlorophyll 

fluorescence;  

tiller number;  

days to flowering 

 

Sobic.008G158666

Sobic.008G158732

Sobic.008G158800

Sobic.008G158900

Sobic.008G159000 

8 
59163745-

59184476 

qHGHT8.4 (Shehzad and Okuno 

2015); qGYLD8.4 (Felderhoff et al. 

2012); qFBMS8.1 (Guan et al. 2011) 

plant height;  

grain yield;  

stem and leaf fresh 

weight; 

 

Sobic.009G189400

Sobic.009G189501

Sobic.009G189600

Sobic.009G189700 

9 
54132845-

54157512 

qHGHT9.10 (Lin et al. 1995), 

qHGHT9.64, qHGHT9.65 (Zhang et 

al. 2015), qHGHT9.20 (Felderhoff et 

al. 2012);  

qGYLD9.11 (Sabadin et al. 2012); 

qTDBM9.1 (Felderhoff et al. 2012) 

plant height;  

grain yield;  

vegetative dry biomass 

 

Sobic.009G222200

Sobic.009G222400

Sobic.009G222500

Sobic.009G222600 

9 
56508971-

56534265 

qLFAR9.9 (Fiedler et al. 2016); 

qGLFA9.6 (Sabadin et al. 2012); 

qTNGL9.1 (Rama Reddy et al. 2014); 

qCHLC9.30 (Gelli et al. 2016); 

qCHLF9.13 (Fiedler et al. 2014); 

qHGHT9.64, qHGHT9.65 (Zhang et 

al. 2015), qHGHT9.8 (Feltus et al. 

2006), qHGHT9.10 (Lin et al. 1995), 

qHGHT9.16 (Takai et al. 2012), 

qHGHT9.19 (Wang et al. 2014), 

qHGHT9.20, qHGHT9.21, 

qHGHT9.30, qHGHT9.45, 

qHGHT9.46  (Felderhoff et al. 2012); 

qTNUM9.7, qTNUM9.8 (Zhang et al. 

2015); qDTFL9.15 (Feltus et al. 

2006), qDTFL9.16 (Lin et al. 1995), 

qDTFL9.33, qDTFL9.34 (Zhang et al. 

2015); qDMGR9.17 (Fiedler et al. 

2014); qTDBM9.1, qTDBM9.4 

(Felderhoff et al. 2012), qSDWT9.4 

(Zhang et al. 2015) 

leaf appearance rate; 

green leaf area;  

total number of green 

leaves;  

leaf chlorophyll 

content;  

leaf chlorophyll 

fluorescence;  

plant height;  

tiller number;  

days to flowering;  

dry matter growth rate; 

vegetative dry biomass 

Dw1 is in 

the QTLs:  

qHGHT9.10, 

qHGHT9.16, 

qHGHT9.19, 

qHGHT9.20, 

qHGHT9.21, 

qHGHT9.30, 

qHGHT9.45, 

qHGHT9.46, 

qHGHT9.64, 

qHGHT9.65. 

Sobic.009G032500

Sobic.009G032533

Sobic.009G032566

Sobic.009G032600

Sobic.009G032700 

9 
2931347-

2961761 
qDMGR9.19 (Fiedler et al. 2016) dry matter growth rate  

 

The co-mapping of genes impacting SRUE with known QTL or genes impacting canopy 

cover and ADB and previously reported QTL for leaf angle, green leaf area, leaf chlorophyll 

content and fluorescence, the efficiency of energy captured by open PSII reaction centers, leaf 

senescence, plant height, tiller number, vegetative dry biomass, dry matter growth rate, and days 
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to flowering suggest that these loci represent genes or clusters of genes that have pleiotropic effects 

on multiple traits that are important for SRUE. 

4.6 Conclusions 

SRUE calculated from RGB canopy cover, accumulated radiation, and aboveground dry 

biomass exhibited similar values and ranges of variation in sorghum as the maximum RUE method 

reported in Chapter 2. Multi-year analyses in a panel of diverse sorghum hybrids indicated that the 

methodology for SRUE calculation is reliable and repeatable. SRUE had significant and positive 

relationships with ADB over seasons and similar heritabilities. Taken together, these studies reveal 

that SRUE is a valuable trait for crop improvement. Within the hybrid population, there are five 

low frequency SNPs that provide positive effects for both SRUE and ADB. Increasing the allele 

frequencies for these SNPs could improve the germplasm for SRUE and ADB.  

The candidate genes for canopy cover and SRUE from GWAS are consistent with 

published QTLs functions. This supports the assertion that the remote sensing approach, the 

simplified crop growth model for SRUE estimation, and model selected in GWAS were reliable, 

and applying our SRUE approach to a large breeding population is feasible. Moreover, the simple 

model for SRUE calculation can also be used to parameterize sophisticated biophysical crop 

models like APSIM. 

 

 

 

  



 

 

122 

 GENERAL CONCLUSIONS 

Evaluating a large number of genotypes and phenotypes in multiple environments is key 

to understanding the underlying genetic variation for agronomically important traits related to 

biomass in bioenergy sorghum breeding programs.  

An approach integrating crop growth models with RGB imaging for predicting dynamic 

sorghum leaf area index and biomass yield in Indiana and Texas across years was presented in 

Chapter 2. These models for 18 commercial sorghum hybrids, including biomass sorghum, 

indicated that (i) biomass sorghum hybrids tended to have higher maximum plant height, final 

dry biomass and RUE than grain sorghum, (ii) photoperiod-sensitive sorghum hybrids exhibited 

greater biomass potential in longer growing environments and (iii) the adapted APSIM models 

perform well in above-ground biomass simulations across years and locations. Crop growth 

models that integrate remote-sensing data offer an efficient approach to evaluate sorghum 

biomass-related traits in diverse environments. 

GWAS using FarmCPU was used to identify SNPs and candidate genes for bioenergy 

sorghum related traits including apex height, top collar height, ADB, moisture, FL, stem base 

diameter, top collar diameter, and stand count. The results presented in Chapter 3 confirm that 

SNPs associated with apex height, top collar height and ADB were located in dwarf QTLs Dw1 

and Dw3. SNPs associated with moisture were located in stay-green QTLs Stg1 and Stg4. SNPs 

and genes associated with top collar height mapped to maturity gene Ma2. Seven SNPs were 

detected for biomass productivity on chromosomes 1, 2, 6, 7, 8, 9. The genotypes such as Dwarf 

Yellow Milo and Spur Feterita exhibited favorable alleles for these SNPs and may represent unique 

resources for crop improvement. This chapter also evaluated LiDAR height at 400GDD, 600GDD, 

800GDD, and 1000GDD and demonstrated that the effects of height-related genes vary over the 

season. Many of the candidate genes were reported in published QTLs that have related functions 

indicating that our methodology was appropriate. The remaining candidate genes have not yet been 

published and may represent new deployment genes. Additional research for confirmation will be 

needed.   

The parameterized APSIM models introduced in Chapter 2 provided an approach to 

phenotype predictions in multiple environment trials. However, applying these models to large 

breeding populations is challenging. Therefore, we proposed a simple model for estimating SRUE 
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using time-dependent measurements of RGB canopy cover and daily radiation coupled with end-

of-season biomass in Chapter 4. This estimate of SRUE was stable and heritable with significant 

and positive relationships with ADB over seasons. All identified candidate genes for SRUE map 

to the same positions as previously reported QTLs for related traits. Increasing the allele 

frequencies for these loci may add value to SRUE and ADB in sorghum breeding programs. Taken 

together, these studies demonstrated that the simple model for calculating SRUE can be used in 

genetic studies and for parameterizing sophisticated crop models. 

Future studies that integrate crop growth models with remote sensing technologies provide 

an opportunity to extend these tools to larger numbers of genotypes and phenotypes in the target 

population of environments to improve our understanding of genetic variation for bioenergy 

sorghum improvement. Possible future work to extend these research findings include: 

 

1. Parameterize and validate APSIM models for SbDIV TC Cal using the pipeline described in 

Chapter 2 using 2019 and 2020 data. In the model validation, comparing the APSIM simulated 

results with remote sensing predicted biomass may be worth trying since people could use the 

remote sensing predicted biomass for parameterizing SbDIV TC, the larger population. 

2. Parameterize and validate the APSIM models for the SbDIV TC with 619 genotypes. The 

SRUE for these entries were already calculated for this population in Chapter 4 and the biomass 

of each genotype in different stages can be provided from remote sensing predictions. Since 

the SbDIV TC Cal is the subset of SbDIV TC, the rest of the input parameters of APSIM for 

SbDIV TC could be estimated from SbDIV TC Cal. There are two possible ways to estimate 

inputs from the SbDIV TC. The first approach involves classifying the range of input 

parameters from the SbDIV TC Cal and then assigning the value for SbDIV TC based on 

genetic cluster analyses. The other approach involves training and testing the genomic 

prediction models for the SbDIV TC Cal, and then applying the genomic prediction models 

for input parameters of the SbDIV TC. 

3. After the APSIM models for the SbDIV TC are developed and validated, performance of some 

or all of the hybrids could be simulated across the USA. Using these simulated phenotypes in 

GWAS could be useful for evaluating environment-dependent and time-dependent SNPs at a 

low cost. 
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4. Predicted biomass and canopy cover from remote sensing should be used to calculate SRUE. 

If these predictions are accurate, the SRUE calculation only needs the remote sensing inputs 

for RGB canopy cover and predicted final biomass and daily radiation. 
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APPENDIX A. CHAPTER 2 

SUPPORTING INFORMATION 

 

Figure A.1 The canopy cover (CC) versus leaf area index (LAI) for 18 sorghum hybrids. The fitted 

curve (CC = 1 − e−k·LAI) indicates the extinction coefficient (k) of different types of sorghum and 

the values shown in Table 2.3. 
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Figure A.2 Simulated crop leaf area index (LAI) throughout the crop life cycle (lines) compared 

to measured values (symbols) for all sorghum hybrids of each sorghum type. The experiments 

were sown on 8 May 2018 at West Lafayette. Vertical bars indicate ± 1 SEM for measured values. 
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Figure A.3 Simulated crop leaf area index (LAI) throughout the crop life cycle (lines) compared 

to measured values (symbols) for all sorghum hybrids of each sorghum type sown on 19 May 2015 

and 16 May 2017 at West Lafayette. The simulated lines are in the same colour as their measured 

types. Vertical bars indicate ± 1 SEM for measured values. 

 

DATA AVAILABILITY 

The ‘R Pipeline for Calculation of APSIM Parameters and Generating the XML File’ is 

stored at the Purdue University Research Repository and includes the data processing pipeline, 
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data for model input parameters and outputs comparisons, and R-codes for generating or 

processing central data sets (Yang et al. 2020a). The APSIM files used in the model calibration 

procedures are stored at the Purdue University Research Repository in ‘2018 West Lafayette 

Simulation of 18 Sorghum Hybrids’ (Yang et al. 2020b). The APSIM files used for model 

validations are stored at the Purdue University Research Repository in the ‘2015 West Lafayette 

Simulation of 18 Sorghum Hybrids’ (Yang et al. 2020c) and ‘2017 West Lafayette Simulation of 

18 Sorghum Hybrids’ (Yang et al. 2020d). The APSIM files used for the scenario simulations are 

stored at the Purdue University Research Repository in the ‘Texas Simulation of Sorghum Hybrids 

Using Historical Weather Data’ (Yang et al. 2020e) and ‘West Lafayette Scenario Simulation of 

Sorghum Hybrids Using Historical Weather Data’ (Yang et al. 2020f) using multi-year historical 

weather data of Bushland, TX, and West Lafayette, IN. 
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APPENDIX B. CHAPTER 3 

Table B.1 Top 30 significant SNPs for apex height identified by GWAS using the MLM model. 

The SNP associated with Dw3 is highlighted in red color. 

SNP Chromosome Position  FDR_Adjusted_P-values Effect Candidate Gene 

S07_59418009 7 59418009 1.32E-15 33.92189161   

S07_59406473 7 59406473 1.32E-15 33.60260527   

S07_59406503 7 59406503 1.32E-15 33.60260527   

S07_59366675 7 59366675 2.07E-15 32.84948767   

S07_59396111 7 59396111 1.03E-14 32.66580435   

S07_59404098 7 59404098 1.03E-14 32.09894474   

S07_59768820 7 59768820 1.03E-14 30.85283116   

S07_59519118 7 59519118 3.39E-14 18.67697807   

S07_59417972 7 59417972 8.29E-12 28.13954901   

S07_59439884 7 59439884 2.83E-11 27.6283758   

S07_59456813 7 59456813 6.90E-11 14.48470446   

S07_59456807 7 59456807 1.88E-09 25.30640307   

S07_59512451 7 59512451 5.62E-09 29.91113092   

S07_59858203 7 59858203 2.87E-08 25.58685947   

S07_59177463 7 59177463 7.97E-06 20.32407942   

S07_61080813 7 61080813 2.26E-05 20.98017729   

S07_59419274 7 59419274 3.09E-05 20.37433902   

S07_60179636 7 60179636 7.22E-05 20.7888479   

S07_61098841 7 61098841 8.25E-05 19.21926228   

S07_59867803 7 59867803 8.25E-05 22.94405957   

S07_59867807 7 59867807 8.25E-05 22.94405957   

S07_59867808 7 59867808 8.25E-05 22.94405957   

S07_59867811 7 59867811 8.25E-05 22.94405957   

S07_60104728 7 60104728 0.000126242 20.090935   

S07_59808206 7 59808206 0.000148646 22.96385605 Dw3 (Sobic.007G163800) 

S07_60734373 7 60734373 0.000325148 19.43527099   

S03_12923320 3 12923320 0.000419087 23.01086475   

S03_12923423 3 12923423 0.001202258 21.16817999   

S07_59953003 7 59953003 0.001499968 20.87815555   

S03_12923421 3 12923421 0.00161679 20.67916815   
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Table B.2 Top 30 significant SNPs for top collar height identified by GWAS using the MLM 

model. The SNP identified Dw3 is highlighted in red color. 

SNP Chromosome Position  FDR_Adjusted_P-values Effect Candidate Gene 

S07_59418009 7 59418009 2.64E-17 37.29117909   

S07_59768820 7 59768820 2.94E-17 35.06698942   

S07_59406473 7 59406473 2.94E-17 36.67021174   

S07_59406503 7 59406503 2.94E-17 36.67021174   

S07_59366675 7 59366675 3.80E-17 35.9829798   

S07_59404098 7 59404098 4.00E-16 35.05231585   

S07_59396111 7 59396111 5.63E-16 35.39298664   

S07_59519118 7 59519118 3.71E-15 20.12108814   

S07_59417972 7 59417972 2.33E-13 31.08293979   

S07_59439884 7 59439884 9.85E-13 30.48284523   

S07_59456813 7 59456813 2.02E-12 16.04872783   

S07_59858203 7 59858203 6.99E-11 30.11164071   

S07_59456807 7 59456807 6.99E-11 28.06369392   

S07_59512451 7 59512451 4.96E-10 32.72978253   

S07_59177463 7 59177463 7.96E-07 22.57499564   

S07_59419274 7 59419274 1.60E-06 23.16714808   

S07_59867803 7 59867803 1.90E-06 26.88128747   

S07_59867807 7 59867807 1.90E-06 26.88128747   

S07_59867808 7 59867808 1.90E-06 26.88128747   

S07_59867811 7 59867811 1.90E-06 26.88128747   

S07_61080813 7 61080813 5.83E-06 22.62566997   

S07_60179636 7 60179636 2.87E-05 22.22426852   

S07_60104728 7 60104728 2.95E-05 22.02893349   

S07_59953003 7 59953003 3.80E-05 24.99925212   

S07_61098841 7 61098841 5.11E-05 20.3324984   

S07_59808206 7 59808206 5.11E-05 24.82767244 Dw3 (Sobic.007G163800) 

S07_60734373 7 60734373 7.19E-05 21.36083259   

S03_12923320 3 12923320 0.000136873 24.98433788   

S03_12923423 3 12923423 0.000197993 23.61926533   

S03_12923421 3 12923421 0.000313052 23.00766472   
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Table B.3 Top 30 significant SNPs for ADB identified by GWAS using the MLM model. The 

SNPs identified Dw3 are highlighted in red color. 

SNP Chromosome Position  FDR_Adjusted_P-values Effect Candidate Gene 

S07_59768820 7 59768820 7.23E-12 118.6496394   

S07_59406473 7 59406473 4.65E-10 113.3968863   

S07_59406503 7 59406503 4.65E-10 113.3968863   

S07_59418009 7 59418009 1.77E-09 110.0597141   

S07_59519118 7 59519118 2.31E-09 64.50796374   

S07_59366675 7 59366675 3.56E-09 106.4584363   

S07_59404098 7 59404098 9.55E-09 104.5896615   

S07_59396111 7 59396111 1.87E-08 104.4990046   

S07_59456813 7 59456813 5.68E-08 52.25569666   

S07_59417972 7 59417972 6.78E-08 97.00163759   

S07_59858203 7 59858203 2.03E-07 101.2938716   

S07_59439884 7 59439884 9.24E-07 91.11319191   

S07_59456807 7 59456807 9.24E-07 90.36344323   

S07_59512451 7 59512451 3.01E-06 106.1016626   

S07_60179636 7 60179636 9.09E-06 91.34288674   

S07_59867803 7 59867803 1.60E-05 99.74843046   

S07_59867807 7 59867807 1.60E-05 99.74843046   

S07_59867808 7 59867808 1.60E-05 99.74843046   

S07_59867811 7 59867811 1.60E-05 99.74843046   

S03_12923423 3 12923423 0.000526931 91.29719661   

S07_60734373 7 60734373 0.00067338 77.95376467   

S07_59812218 7 59812218 0.001303313 86.93278687 Dw3 (Sobic.007G163800) 

S07_59808206 7 59808206 0.001542928 87.12364901 Dw3 (Sobic.007G163800) 

S07_61080813 7 61080813 0.001592638 73.35416016   

S03_12923421 3 12923421 0.002078499 85.1698318   

S07_59419274 7 59419274 0.003182467 69.94142254   

S07_60104728 7 60104728 0.005268951 71.33627934   

S07_60042381 7 60042381 0.006828875 97.80326848   

S07_59811910 7 59811910 0.006828875 80.0502064 Dw3 (Sobic.007G163800) 

S07_59788255 7 59788255 0.012359118 96.30598947   
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Table B.4 Significant SNPs and candidate genes for moisture identified by GWAS using the MLM 

model.  

SNP Chromosome Position FDR_Adjusted_P-values Effect Candidate Gene 

S06_50914827 6 50914827 0.004339062 0.0123007 Sobic.006G147450 

D locus (Sobic.006G147400) 

S06_50914738 6 50914738 0.041508039 0.011026165 Sobic.006G147450 

D locus (Sobic.006G147400) 
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Table B.5 Significant SNPs and candidate genes for apex height identified by GWAS using the 

FarmCPU model at FDR 0.05. 

SNP Chromosome Position  FDR_Adjusted_P-values Effect Candidate Gene 

S09_57212498 

  

  

  

  

9 

  

  

  

  

57212498 

  

  

  

  

2.14E-13 

  

  

  

  

19.36432133 

  

  

  

  

Sobic.009G231900 

Sobic.009G232000 

Sobic.009G232100 

Sobic.009G232200 

Sobic.009G232266 

S07_59366675 

  

  

  

  

7 

  

  

  

  

59366675 

  

  

  

  

1.04E-09 

  

  

  

  

19.3624711 

  

  

  

  

Sobic.007G158800 

Sobic.007G158900 

Sobic.007G159000 

Sobic.007G159100 

Sobic.007G159200 

S07_59768820 7 59768820 8.11E-05 15.25066826 Sobic.007G163300 

S07_5435798 

  

  

  

  

  

7 

  

  

  

  

  

5435798 

  

  

  

  

  

0.002566026 

  

  

  

  

  

11.83594916 

  

  

  

  

  

Sobic.007G053500 

Sobic.007G053600 

Sobic.007G053700 

Sobic.007G053800 

Sobic.007G053900 

Sobic.007G054000 

S02_73983796 

  

  

  

  

  

  

  

2 

  

  

  

  

  

  

  

73983796 

  

  

  

  

  

  

  

0.004214251 

  

  

  

  

  

  

  

-16.20805182 

  

  

  

  

  

  

  

Sobic.002G384500 

Sobic.002G384600 

Sobic.002G384700 

Sobic.002G384800 

Sobic.002G384900 

Sobic.002G385000 

Sobic.002G385100 

Sobic.002G385200 

S07_162826 

  

  

7 

  

  

162826 

  

  

0.004214251 

  

  

14.17623088 

  

  

Sobic.007G001800 

Sobic.007G001900 

Sobic.007G002000 

S03_4997705 

  

  

  

  

  

3 

  

  

  

  

  

4997705 

  

  

  

  

  

0.006740849 

  

  

  

  

  

13.06907546 

  

  

  

  

  

Sobic.003G055500 

Sobic.003G055600 

Sobic.003G055700 

Sobic.003G055800 

Sobic.003G055900 

Sobic.003G056000 

S03_19146851 

  

  

  

  

  

3 

  

  

  

  

  

19146851 

  

  

  

  

  

0.008286311 

  

  

  

  

  

-24.04725933 

  

  

  

  

  

Sobic.003G160500 

Sobic.003G160600 

Sobic.003G160700 

Sobic.003G160800 

Sobic.003G160900 
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Sobic.003G161000 

S07_60179636 

  

  

  

7 

  

  

  

60179636 

  

  

  

0.008984154 

  

  

  

11.37533094 

  

  

  

Sobic.007G166600 

Sobic.007G166701 

Sobic.007G166800 

Sobic.007G166900 

S05_65547442 5 65547442 0.015412995 18.47867137 NA 

S10_2514019 

  

  

  

10 

  

  

  

2514019 

  

  

  

0.015412995 

  

  

  

-19.82035373 

  

  

  

Sobic.010G030900 

Sobic.010G031000 

Sobic.010G031100 

Sobic.010G031300 

S02_64340809 

  

2 

  

64340809 

  

0.015412995 

  

-14.79558451 

  

Sobic.002G257500 

Sobic.002G257600 

          Sobic.002G257750 

S10_7243966 

  

  

  

10 

  

  

  

7243966 

  

  

  

0.015412995 

  

  

  

-10.61215355 

  

  

  

Sobic.010G084800 

Sobic.010G084900 

Sobic.010G085000 

Sobic.010G085100 

S02_69475078 

  

  

  

  

  

2 

  

  

  

  

  

69475078 

  

  

  

  

  

0.024599745 

  

  

  

  

  

-5.968266738 

  

  

  

  

  

Sobic.002G323400 

Sobic.002G323500 

Sobic.002G323600 

Sobic.002G323700 

Sobic.002G323800 

Sobic.002G324000 

S04_64174744 

  

  

  

4 

  

  

  

64174744 

  

  

  

0.028531137 

  

  

  

19.30975 

  

  

  

Sobic.004G302800 

Sobic.004G302900 

Sobic.004G303000 

Sobic.004G303100 
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Table B.6 Significant SNPs and candidate genes for ADB identified by GWAS using the FarmCPU 

model at FDR 0.05. maf is the minor allele frequency. 

SNP Chr. Position maf FDR_Adjusted_P-values Effect Candidate Gene 

S07_59768820 7 59768820 0.18 2.84E-12 88.39048698 Sobic.007G163300 

S03_60588984 3 60588984 0.44 0.0030591 -72.50751714 

Sobic.003G268900 

Sobic.003G269000 

Sobic.003G269100 

Sobic.003G269200 

S07_61080813 7 61080813 0.18 0.0030591 49.22520134 

Sobic.007G176900 

Sobic.007G177000 

Sobic.007G177100 

Sobic.007G177150 

S01_30652981  1  30652981  0.05 0.009021874  -70.94533737  
Sobic.001G258200 

Sobic.001G258300 

S05_66379531  5  66379531 0.05 0.009021874 -60.1349911 

Sobic.005G180700 

Sobic.005G180800 

Sobic.005G180850 

Sobic.005G180900 

Sobic.005G181000 

Sobic.005G181100 

S09_54144857 9 54144857 0.14 0.00919189 -42.93501107 

Sobic.009G189400 

Sobic.009G189501 

Sobic.009G189600 

Sobic.009G189700 

S08_59178415 8 59178415 0.35 0.00919189 48.62032508 

Sobic.008G158666 

Sobic.008G158732 

Sobic.008G158800 

Sobic.008G158900 

Sobic.008G159000 

S01_62076176 1 62076176 0.18 0.010002105 -45.72432058 

Sobic.001G332000 

Sobic.001G332050 

Sobic.001G332100 

Sobic.001G332200 

Sobic.001G332300 

Sobic.001G332400 

S08_2579008 8 2579008 0.39 0.010002105 -62.26467186 

Sobic.008G028700 

Sobic.008G028800 

Sobic.008G028850 

Sobic.008G028900 

S01_ 74145303 1 74145303 0.12 0.010002105 61.18914483 

Sobic.001G468400 

Sobic.001G468500 

Sobic.001G468600 
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Sobic.001G468700 

S09_56521150 9 56521150 0.31 0.01480418 20.52168866 

Sobic.009G222200 

Sobic.009G222400 

Sobic.009G222500 

Sobic.009G222600 

S06_2686264 6 2686264 0.03 0.015488734 83.18787512 

Sobic.006G017000 

Sobic.006G017100 

Sobic.006G017200 

S02_2417641  2  2417641  0.04 0.026634424  54.5982114  
Sobic.002G026200 

Sobic.002G026300 
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Table B.7 Top 30 significant SNPs for LiDAR height at 600GDD identified by GWAS using the 

MLM model. The SNPs identified Dw3 are highlighted in red color. 

SNP Chromosome Position  

FDR_Adjusted

_P-values Effect Candidate Gene 

S07_59768820 7 59768820 1.42E-18 0.193708677   

S07_59418009 7 59418009 7.83E-18 0.198339872   

S07_59366675 7 59366675 4.55E-17 0.190969365   

S07_59406473 7 59406473 1.37E-16 0.189838032   

S07_59406503 7 59406503 1.37E-16 0.189838032   

S07_59404098 7 59404098 3.58E-16 0.185543836   

S07_59519118 7 59519118 1.74E-15 0.107365342   

S07_59396111 7 59396111 2.07E-15 0.183684273   

S07_59417972 7 59417972 6.75E-15 0.17253425   

S07_59858203 7 59858203 5.46E-13 0.172278952   

S07_59439884 7 59439884 5.23E-12 0.156668435   

S07_59456813 7 59456813 1.01E-11 0.082473882   

S07_59512451 7 59512451 5.33E-11 0.179885772   

S07_59456807 7 59456807 3.97E-10 0.143383264   

S07_59419274 7 59419274 1.58E-07 0.129497825   

S07_59808206 7 59808206 6.99E-07 0.149449048 Dw3 (Sobic.007G163800) 

S07_59177463 7 59177463 3.18E-06 0.114571749   

S07_59811910 7 59811910 1.84E-05 0.134234256 Dw3 (Sobic.007G163800) 

S07_59867803 7 59867803 1.84E-05 0.132657602   

S07_59867807 7 59867807 1.84E-05 0.132657602   

S07_59867808 7 59867808 1.84E-05 0.132657602   

S07_59867811 7 59867811 1.84E-05 0.132657602   

S07_59812218 7 59812218 1.92E-05 0.133698204 Dw3 (Sobic.007G163800) 

S07_59995136 7 59995136 2.15E-05 -0.098264052   

S03_12923320 3 12923320 2.38E-05 0.139438609   

S07_59953003 7 59953003 3.30E-05 0.131859822   

S07_59995132 7 59995132 3.30E-05 -0.09648988   

S07_59995134 7 59995134 3.30E-05 -0.09648988   

S07_61080813 7 61080813 3.30E-05 0.112397406   

S07_59995137 7 59995137 5.08E-05 -0.095243569   
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Table B.8 Top 30 significant SNPs for LiDAR height at 800GDD identified by GWAS using the 

MLM model. The SNPs identified Dw3 are highlighted in red color. 

SNP Chromosome Position  

FDR_Adjusted

_P-values Effect Candidate Gene 

S07_59418009 7 59418009 7.05E-17 0.358474554   

S07_59366675 7 59366675 4.12E-16 0.343620962   

S07_59519118 7 59519118 1.76E-15 0.197134459   

S07_59404098 7 59404098 1.76E-15 0.33387843   

S07_59406473 7 59406473 1.76E-15 0.336866713   

S07_59406503 7 59406503 1.76E-15 0.336866713   

S07_59768820 7 59768820 1.76E-15 0.31900568   

S07_59396111 7 59396111 2.88E-15 0.336268672   

S07_59417972 7 59417972 1.61E-14 0.313185539   

S07_59439884 7 59439884 3.83E-11 0.279056642   

S07_59456813 7 59456813 1.59E-10 0.144728095   

S07_59512451 7 59512451 1.77E-10 0.323593629   

S07_59858203 7 59858203 5.53E-10 0.28007516   

S07_59456807 7 59456807 2.62E-09 0.253943097   

S07_59808206 7 59808206 1.06E-06 0.271401013 Dw3 (Sobic.007G163800) 

S07_59419274 7 59419274 4.44E-06 0.218155383   

S07_59177463 7 59177463 2.37E-05 0.19858549   

S07_61080813 7 61080813 2.37E-05 0.211524129   

S07_61098841 7 61098841 3.02E-05 0.201820446   

S07_59812218 7 59812218 3.02E-05 0.242568708 Dw3 (Sobic.007G163800) 

S07_59811910 7 59811910 6.44E-05 0.23647455 Dw3 (Sobic.007G163800) 

S07_60179636 7 60179636 8.66E-05 0.207567627   

S03_12923320 3 12923320 0.000233034 0.237619148   

S07_60036945 7 60036945 0.000277129 0.144571087   

S07_60104728 7 60104728 0.0003568 0.195326671   

S07_59995136 7 59995136 0.0003568 -0.163629241   

S03_12923423 3 12923423 0.000371423 0.222975898   

S07_60853629 7 60853629 0.000392736 0.182663559   

S07_59995132 7 59995132 0.00058065 -0.159987334   

S07_59995134 7 59995134 0.00058065 -0.159987334   
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Table B.9 Top 30 significant SNPs for LiDAR height at 1000GDD identified by GWAS using the 

MLM model. The SNPs identified Dw3 are highlighted in red color. 

SNP Chromosome Position  

FDR_Adjusted

_P-values Effect Candidate Gene 

S07_59418009 7 59418009 4.45E-15 0.334797294   

S07_59406473 7 59406473 1.47E-14 0.324542936   

S07_59406503 7 59406503 1.47E-14 0.324542936   

S07_59366675 7 59366675 1.47E-14 0.319555126   

S07_59519118 7 59519118 4.57E-14 0.186425955   

S07_59396111 7 59396111 4.59E-14 0.319059542   

S07_59404098 7 59404098 4.59E-14 0.313631686   

S07_59768820 7 59768820 6.34E-14 0.29881646   

S07_59417972 7 59417972 1.75E-12 0.287606289   

S07_59439884 7 59439884 1.45E-10 0.267969007   

S07_59456813 7 59456813 3.05E-10 0.140652223   

S07_59456807 7 59456807 6.76E-09 0.24586367   

S07_59512451 7 59512451 8.02E-09 0.295657397   

S07_59858203 7 59858203 1.09E-08 0.259798574   

S07_61080813 7 61080813 3.37E-06 0.220950541   

S07_59808206 7 59808206 8.73E-06 0.252537589 Dw3 (Sobic.007G163800) 

S07_60179636 7 60179636 1.62E-05 0.216922618   

S07_59177463 7 59177463 3.41E-05 0.193099312   

S07_59419274 7 59419274 4.31E-05 0.200080004   

S07_61098841 7 61098841 4.31E-05 0.196199472   

S03_12923320 3 12923320 0.00016134 0.238262923   

S07_60104728 7 60104728 0.000236365 0.196276839   

S07_59812218 7 59812218 0.000314729 0.220551477 Dw3 (Sobic.007G163800) 

S07_59867803 7 59867803 0.000475918 0.213811681   

S07_59867807 7 59867807 0.000475918 0.213811681   

S07_59867808 7 59867808 0.000475918 0.213811681   

S07_59867811 7 59867811 0.000475918 0.213811681   

S03_12923423 3 12923423 0.000492644 0.21748174   

S07_60734373 7 60734373 0.000676201 0.188044712   

S07_59811910 7 59811910 0.000706599 0.211843924 Dw3 (Sobic.007G163800) 
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Table B.10 Significant SNPs and candidate genes for LiDAR height at 600GDD identified by 

GWAS using the FarmCPU model at FDR 0.01-0.05.  

SNP Chromosome Position  FDR_Adjusted_P-values Effect Candidate Gene 

S04_19708160 4 19708160 0.013817917 -0.10 Sobic.004G132100 

S07_6406155 

  

  

7 

  

  

6406155 

  

  

0.016738529 

  

  

-0.05 

  

  

Sobic.007G060900 

Sobic.007G061000 

Sobic.007G061100 

S01_19694712 

  

  

  

  

  

  

1 

  

  

  

  

  

  

19694712 

  

  

  

  

  

  

0.017085552 

  

  

  

  

  

  

0.07 

  

  

  

  

  

  

Sobic.001G213100 

Sobic.001G213150 

Sobic.001G213200 

Sobic.001G213300 

Sobic.001G213400 

Sobic.001G213500 

Sobic.001G213666 

S05_2405371 

  

  

  

  

  

  

5 

  

  

  

  

  

  

2405371 

  

  

  

  

  

  

0.02598287 

  

  

  

  

  

  

0.09 

  

  

  

  

  

  

Sobic.005G026700 

Sobic.005G026800 

Sobic.005G026900 

Sobic.005G026966 

Sobic.005G027032 

Sobic.005G027100 

Sobic.005G027200 

S05_878607 

  

  

5 

  

  

878607 

  

  

0.02598287 

  

  

-0.05 

  

  

Sobic.005G010000 

Sobic.005G010100 

Sobic.005G010200 

S05_25002895 5 25002895 0.037074903 -0.05 NA 
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Table B.11 Significant SNPs and candidate genes for LiDAR height at 800GDD identified by 

GWAS using the FarmCPU model at FDR 0.01-0.05. 

SNP Chromosome Position  FDR_Adjusted_P-values Effect Candidate Gene 

S05_878607 

  

  

5 

  

  

878607 

  

  

0.022839766 

  

  

-0.10 

  

  

Sobic.005G010000 

Sobic.005G010100 

Sobic.005G010200 

S01_13896487 

  

  

  

1 

  

  

  

13896487 

  

  

  

0.035231064 

  

  

  

-0.14 

  

  

  

Sobic.001G166800 

Sobic.001G166900 

Sobic.001G167000 

Sobic.001G167100 

S02_3316734 2 3316734 0.042744968 -0.13 NA 

S01_75602579 

  

1 

  

75602579 

  

0.046834208 

  

0.09 

  

Sobic.001G485200 

Sobic.001G485300 
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Table B.12 Significant SNPs and candidate genes for LiDAR height at 1000GDD identified by 

GWAS using the FarmCPU model at FDR 0.01-0.05. 

SNP Chromosome Position  FDR_Adjusted_P-values Effect Candidate Gene 

S02_68931676 

  

  

  

  

  

  

  

2 

  

  

  

  

  

  

  

68931676 

  

  

  

  

  

  

  

0.010926168 

  

  

  

  

  

  

  

-0.19 

  

  

  

  

  

  

  

Sobic.002G315700 

Sobic.002G315800 

Sobic.002G315900 

Sobic.002G316000 

Sobic.002G316100 

Sobic.002G316200 

Sobic.002G316301 

Sobic.002G316400 

S07_60739929 

  

  

  

7 

  

  

  

60739929 

  

  

  

0.010926168 

  

  

  

-0.15 

  

  

  

Sobic.007G172200 

Sobic.007G172300 

Sobic.007G172400 

Sobic.007G172500 

S10_7243966 

  

  

  

10 

  

  

  

7243966 

  

  

  

0.010926168 

  

  

  

-0.11 

  

  

  

Sobic.010G084800 

Sobic.010G084900 

Sobic.010G085000 

Sobic.010G085100 

S01_78384379 

  

  

  

  

1 

  

  

  

  

78384379 

  

  

  

  

0.037993818 

  

  

  

  

-0.11 

  

  

  

  

Sobic.001G517400 

Sobic.001G517500 

Sobic.001G517600 

Sobic.001G517700 

Sobic.001G517800 

S03_19146851 

  

  

  

  

  

3 

  

  

  

  

  

19146851 

  

  

  

  

  

0.040134739 

  

  

  

  

  

-0.22 

  

  

  

  

  

Sobic.003G160500 

Sobic.003G160600 

Sobic.003G160700 

Sobic.003G160800 

Sobic.003G160900 

Sobic.003G161000 
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APPENDIX C. CHAPTER 4 

Table C.1  SRUE and ADB values for each genotype in the SbDIV TC in 2018, 2019, 2020, and 

the average across three years. SRUE is seasonal radiation use efficiency.  ADB is aboveground 

dry biomass. 

ID Genotype ADB18 ADB19 ADB20 Avg.ADB SRUE18 SRUE19 SRUE20 Avg.SRUE 

  g/m2 g/MJ 

1 BOK11 1919.38 1427.94 1469.92 1605.75 1.48 1.05 1.10 1.21 

2 BQL41 1349.74 1640.69 1495.98 1495.47 1.13 1.30 1.17 1.20 

3 BTx2752 1565.50 1458.54 1644.45 1556.16 1.18 1.11 1.27 1.19 

4 BTx3042 1280.80 1769.19 1531.07 1527.02 0.95 1.37 1.16 1.16 

5 BTx3197 1359.35 1461.40 1522.33 1447.69 1.07 1.14 1.18 1.13 

6 BTx378 1756.96 1687.96 1486.50 1643.80 1.38 1.29 1.13 1.27 

7 BTx399 1292.62 1453.84 1493.22 1413.23 1.01 1.11 1.11 1.08 

8 BTx615 1708.46 1548.29 1574.72 1610.49 1.31 1.18 1.20 1.23 

9 BTx641 2247.45 1585.19 1352.92 1728.52 1.78 1.19 1.03 1.33 

10 BTx642 1653.35 1615.15 1634.73 1634.41 1.23 1.24 1.25 1.24 

11 BTx643 1529.42 1395.64 1061.27 1328.78 1.24 1.04 0.86 1.05 

12 BTx645 1765.94 1446.45 1524.00 1578.79 1.43 1.19 1.25 1.29 

13 Caprock 1374.18 1359.94 1253.22 1329.11 1.05 1.00 0.95 1.00 

14 Comb7078 1614.38 1540.49 1494.62 1549.83 1.22 1.19 1.18 1.20 

15 Day 1623.19 1673.52 1500.51 1599.08 1.25 1.24 1.13 1.21 

16 Dorado 1782.55 1755.70 1796.43 1778.23 1.38 1.35 1.37 1.37 

17 DwfYellMilo 3271.80 2204.50 2549.05 2675.12 2.31 1.60 1.80 1.91 

18 KS19 1696.08 1459.37 1540.65 1565.37 1.26 1.13 1.15 1.18 

19 Martin 1507.03 1404.56 1249.55 1387.05 1.18 1.10 0.99 1.09 

20 MR732 2024.03 1631.28 1821.88 1825.73 1.59 1.28 1.43 1.43 

21 P_721 1950.09 1487.95 1531.04 1656.36 1.42 1.14 1.17 1.24 

22 P9517 1715.82 1599.43 1356.70 1557.32 1.32 1.25 1.01 1.19 

23 Redbine 1511.53 1417.31 1477.68 1468.84 1.11 1.09 1.11 1.10 

24 RTAM2566 1509.10 1427.53 1319.78 1418.80 1.20 1.11 1.01 1.10 

25 RTAM428 1535.04 1376.44 1356.34 1422.61 1.26 1.06 1.12 1.15 

26 RTx2917 1980.95 1334.00 1454.04 1589.66 1.55 1.06 1.11 1.24 

27 RTx434 1757.38 1468.42 1700.32 1642.04 1.31 1.12 1.25 1.23 

28 RTx437 1994.13 1556.85 1534.26 1695.08 1.57 1.19 1.22 1.33 

29 SanChiSan 1896.21 1786.18 2074.94 1919.11 1.45 1.37 1.57 1.47 

30 SC0002 1627.94 1755.34 1487.72 1623.67 1.22 1.32 1.12 1.22 

31 SC0003 1544.82 1376.73 1800.34 1573.96 1.17 1.08 1.45 1.23 

32 SC0004 1337.92 1608.99 1542.31 1496.41 1.04 1.24 1.20 1.16 

33 SC0007 1954.46 1702.63 1877.96 1845.01 1.48 1.29 1.39 1.39 

34 SC0012 1894.40 1776.62 1741.87 1804.30 1.50 1.48 1.33 1.44 
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35 SC0013 1605.21 1454.39 1664.86 1574.82 1.20 1.06 1.28 1.18 

36 SC0015 1647.87 1696.09 1666.97 1670.31 1.27 1.30 1.23 1.27 

37 SC0016 2132.49 1662.56 1902.13 1899.06 1.65 1.26 1.43 1.45 

38 SC0017 1494.42 1518.46 1729.36 1580.75 1.18 1.21 1.34 1.24 

39 SC0019 2014.61 1854.36 1902.51 1923.83 1.66 1.47 1.45 1.53 

40 SC0020 1689.74 1692.56 1628.40 1670.23 1.30 1.31 1.22 1.28 

41 SC0021 1809.38 1630.79 1686.99 1709.05 1.41 1.27 1.38 1.35 

42 SC0022 1998.48 1654.55 1620.25 1757.76 1.57 1.23 1.18 1.33 

43 SC0027 1907.80 1707.81 1894.39 1836.66 1.46 1.23 1.44 1.38 

44 SC0033 1691.97 1553.88 1484.10 1576.65 1.26 1.26 1.19 1.24 

45 SC0035 1857.32 1452.16 1590.24 1633.24 1.39 1.12 1.19 1.23 

46 SC0037 1807.05 1708.78 1583.12 1699.65 1.48 1.31 1.21 1.33 

47 SC0041 1952.17 1742.26 1633.01 1775.81 1.51 1.40 1.27 1.39 

48 SC0042 1766.94 1616.73 1731.45 1705.04 1.40 1.32 1.35 1.35 

49 SC0043 1793.10 1678.35 1809.19 1760.22 1.46 1.26 1.40 1.37 

50 SC0044 2049.46 1639.58 2374.65 2021.23 1.57 1.31 1.74 1.54 

51 SC0048 1077.01 1440.02 1743.59 1420.20 0.84 1.15 1.31 1.10 

52 SC0049 1917.68 1425.13 1875.78 1739.53 1.50 1.04 1.44 1.33 

53 SC0050 1388.45 1541.58 1792.37 1574.13 1.11 1.23 1.42 1.25 

54 SC0051 1299.98 1568.56 1613.63 1494.05 0.97 1.19 1.20 1.12 

55 SC0052 1578.38 1834.68 1552.52 1655.19 1.27 1.44 1.19 1.30 

56 SC0053 2022.04 1922.69 2026.82 1990.52 1.48 1.44 1.49 1.47 

57 SC0054 2256.63 1769.61 2008.57 2011.60 1.70 1.35 1.55 1.53 

58 SC0056 1543.82 1550.39 1667.87 1587.36 1.21 1.16 1.36 1.24 

59 SC0058 1467.37 1683.98 1775.71 1642.35 1.10 1.28 1.38 1.25 

60 SC0059 2237.18 1759.96 2195.84 2064.32 1.65 1.35 1.71 1.57 

61 SC0060 2089.50 2056.20 1720.29 1955.33 1.53 1.51 1.31 1.45 

62 SC0062 1358.22 1429.86 1505.52 1431.20 1.08 1.15 1.17 1.14 

63 SC0063 2128.48 1533.35 1852.04 1837.96 1.63 1.13 1.36 1.38 

64 SC0066 1467.09 1662.79 1436.16 1522.01 1.18 1.28 1.17 1.21 

65 SC0067 2024.11 2131.21 2214.11 2123.14 1.46 1.51 1.60 1.52 

66 SC0068 1205.24 1646.75 1737.88 1529.96 0.97 1.25 1.33 1.18 

67 SC0069 2221.95 2251.31 1568.28 2013.85 1.73 1.76 1.16 1.55 

68 SC0072 2247.74 1970.97 2111.26 2109.99 1.72 1.48 1.60 1.60 

69 SC0073 1431.25 1568.51 1621.46 1540.41 1.15 1.29 1.28 1.24 

70 SC0074 1524.02 1287.26 1446.60 1419.29 1.21 1.01 1.19 1.14 

71 SC0075 1567.32 1752.70 1557.33 1625.79 1.23 1.36 1.21 1.27 

72 SC0077 2343.92 1863.35 2027.73 2078.33 1.81 1.43 1.55 1.60 

73 SC0078 1848.56 1519.86 1698.11 1688.85 1.44 1.18 1.36 1.33 

74 SC0079 1781.35 1711.60 1760.87 1751.28 1.48 1.36 1.38 1.41 

75 SC0080 1881.97 2062.96 1963.94 1969.62 1.45 1.62 1.54 1.54 

76 SC0083 1688.93 2004.12 2031.14 1908.06 1.30 1.62 1.55 1.49 

77 SC0085 1635.60 1577.64 1489.61 1567.62 1.24 1.31 1.22 1.26 
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78 SC0086 1548.32 1428.43 1563.96 1513.57 1.22 1.16 1.22 1.20 

79 SC0087 2218.89 1843.92 2027.50 2030.10 1.67 1.38 1.51 1.52 

80 SC0091 2353.49 1775.78 2254.13 2127.80 1.89 1.29 1.76 1.64 

81 SC0092 2136.41 1818.74 2221.27 2058.81 1.61 1.34 1.60 1.51 

82 SC0093 1300.74 1780.47 1711.81 1597.67 1.02 1.38 1.29 1.23 

83 SC0094 1703.21 1758.68 1725.46 1729.12 1.26 1.35 1.27 1.30 

84 SC0097 1462.00 1520.46 1696.12 1559.53 1.17 1.21 1.29 1.22 

85 SC0098 2020.12 1712.97 2173.77 1968.95 1.52 1.26 1.58 1.45 

86 SC0101 1242.06 1627.08 1623.23 1497.46 0.98 1.27 1.27 1.17 

87 SC0103 1698.91 1763.42 1656.47 1706.27 1.33 1.31 1.24 1.29 

88 SC0105 1319.96 1724.20 1565.73 1536.63 1.01 1.35 1.17 1.18 

89 SC0106 1517.21 1693.60 1789.61 1666.81 1.14 1.29 1.38 1.27 

90 SC0108 1641.09 1601.06 1602.26 1614.80 1.29 1.23 1.28 1.27 

91 SC0109 1220.99 1351.45 1371.80 1314.75 0.91 1.05 1.03 1.00 

92 SC0110 1649.56 1528.00 1530.57 1569.38 1.26 1.15 1.21 1.21 

93 SC0111 2004.15 1808.04 1839.41 1883.86 1.46 1.32 1.36 1.38 

94 SC0112 1855.30 1770.20 1615.68 1747.06 1.44 1.33 1.30 1.36 

95 SC0113 1271.67 1440.31 1507.02 1406.33 1.08 1.16 1.17 1.14 

96 SC0114 1920.82 1948.10 2038.08 1969.00 1.49 1.40 1.49 1.46 

97 SC0115 1745.64 1569.54 1483.36 1599.51 1.32 1.25 1.13 1.23 

98 SC0118 1026.91 1723.75 1723.60 1491.42 0.78 1.33 1.27 1.13 

99 SC0119 1529.51 1649.86 1492.01 1557.13 1.18 1.25 1.14 1.19 

100 SC0121 2158.55 1837.96 1950.48 1982.33 1.62 1.39 1.45 1.49 

101 SC0123 1488.60 1919.84 1917.51 1775.32 1.14 1.44 1.47 1.35 

102 SC0124 1743.16 1686.82 2015.99 1815.32 1.27 1.24 1.41 1.31 

103 SC0126 1715.73 1945.26 1840.03 1833.67 1.36 1.47 1.41 1.41 

104 SC0127 1253.22 1717.20 1561.96 1510.79 0.99 1.28 1.21 1.16 

105 SC0131 1673.27 1597.38 1834.18 1701.61 1.30 1.21 1.41 1.31 

106 SC0134 1451.96 1686.53 1847.04 1661.84 1.11 1.33 1.41 1.28 

107 SC0136 1483.23 1621.83 1505.32 1536.79 1.24 1.32 1.22 1.26 

108 SC0137 1710.82 1649.84 1741.50 1700.72 1.32 1.29 1.30 1.30 

109 SC0138 1258.36 1916.42 1733.57 1636.12 0.99 1.46 1.37 1.27 

110 SC0139 1504.58 1857.94 1656.29 1672.94 1.17 1.47 1.34 1.33 

111 SC0140 2059.76 1639.65 1908.40 1869.27 1.56 1.25 1.45 1.42 

112 SC0142 1288.40 1506.75 1480.94 1425.36 1.00 1.16 1.15 1.11 

113 SC0146 1548.39 1521.82 1474.87 1515.03 1.23 1.15 1.12 1.17 

114 SC0147 1920.30 1760.79 1687.50 1789.53 1.42 1.34 1.26 1.34 

115 SC0150 1444.02 1747.38 1773.58 1654.99 1.07 1.38 1.34 1.26 

116 SC0154 1608.99 1407.22 1508.61 1508.27 1.25 1.08 1.16 1.16 

117 SC0156 2112.11 1501.01 1778.05 1797.05 1.66 1.10 1.35 1.37 

118 SC0157 1604.27 1430.33 2003.79 1679.46 1.25 1.10 1.52 1.29 

119 SC0159 2297.96 1354.56 1956.97 1869.83 1.82 1.02 1.48 1.44 

120 SC0161 2101.49 2338.91 2166.27 2202.22 1.55 1.68 1.56 1.60 
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121 SC0165 1641.65 1658.84 1790.85 1697.11 1.22 1.21 1.33 1.25 

122 SC0166 1746.88 1479.52 1719.43 1648.61 1.37 1.17 1.28 1.27 

123 SC0171 1945.25 1805.73 1504.03 1751.67 1.59 1.36 1.14 1.36 

124 SC0172 1548.51 1370.88 1488.12 1469.17 1.14 1.05 1.25 1.15 

125 SC0173 1516.68 1566.39 1259.42 1447.49 1.21 1.24 1.04 1.16 

126 SC0175 1922.96 2015.88 2231.16 2056.67 1.49 1.48 1.67 1.55 

127 SC0176 1478.31 1706.72 1453.71 1546.25 1.14 1.30 1.15 1.20 

128 SC0178 1473.84 1651.83 1611.79 1579.16 1.17 1.25 1.17 1.20 

129 SC0179 1472.47 1682.33 1853.64 1669.48 1.15 1.23 1.37 1.25 

130 SC0181 1694.04 1718.98 1615.24 1676.08 1.28 1.29 1.19 1.26 

131 SC0182 1888.73 1332.64 1424.92 1548.76 1.38 0.98 1.04 1.13 

132 SC0183 2060.35 1684.83 1510.70 1751.96 1.71 1.30 1.13 1.38 

133 SC0184 1379.47 1541.18 1597.35 1506.00 1.09 1.19 1.17 1.15 

134 SC0186 1484.05 1507.25 1590.88 1527.39 1.16 1.14 1.21 1.17 

135 SC0187 1212.61 1575.21 1671.45 1486.42 0.94 1.19 1.22 1.12 

136 SC0188 1546.83 2056.07 1859.02 1820.64 1.17 1.54 1.35 1.35 

137 SC0191 1870.44 1676.10 2184.15 1910.23 1.41 1.27 1.62 1.43 

138 SC0192 1448.04 1689.71 1702.15 1613.30 1.12 1.25 1.28 1.22 

139 SC0201 2980.58 1869.62 1988.82 2279.67 2.22 1.32 1.43 1.66 

140 SC0202 1382.26 1513.70 1404.28 1433.41 1.02 1.17 1.14 1.11 

141 SC0207 1960.59 1595.31 1395.99 1650.63 1.47 1.24 1.06 1.26 

142 SC0208 1754.93 1475.76 1716.94 1649.21 1.35 1.16 1.33 1.28 

143 SC0210 1871.03 1703.12 1543.18 1705.78 1.47 1.35 1.13 1.32 

144 SC0211 1535.41 1556.96 1391.15 1494.51 1.17 1.20 1.07 1.15 

145 SC0212 1324.56 1724.65 1750.39 1599.87 1.07 1.32 1.34 1.24 

146 SC0214 1276.85 1577.56 1358.45 1404.29 0.95 1.18 1.11 1.08 

147 SC0215 1691.45 1463.45 1352.29 1502.39 1.33 1.12 1.10 1.18 

148 SC0217 1829.14 1807.27 1953.19 1863.20 1.43 1.36 1.47 1.42 

149 SC0218 1902.99 1705.19 1591.89 1733.36 1.46 1.28 1.30 1.35 

150 SC0221 1503.04 1489.09 1602.40 1531.51 1.12 1.11 1.18 1.14 

151 SC0223 1566.57 1809.29 1505.16 1627.01 1.25 1.35 1.13 1.24 

152 SC0224 2598.63 1961.36 2155.78 2238.59 2.00 1.56 1.63 1.73 

153 SC0226 1793.55 1767.02 1613.25 1724.61 1.45 1.38 1.31 1.38 

154 SC0228 1480.97 1729.36 1821.38 1677.24 1.17 1.35 1.38 1.30 

155 SC0230 1981.35 1600.53 1322.91 1634.93 1.63 1.25 1.08 1.32 

156 SC0233 1441.92 1581.74 1474.51 1499.39 1.22 1.30 1.21 1.24 

157 SC0235 1383.36 1718.02 1700.93 1600.77 1.10 1.38 1.33 1.27 

158 SC0236 2257.51 1862.67 1967.55 2029.24 1.74 1.38 1.46 1.53 

159 SC0239 2533.67 1932.34 1533.16 1999.73 1.90 1.47 1.21 1.53 

160 SC0241 1600.84 1765.51 1890.34 1752.23 1.23 1.43 1.41 1.36 

161 SC0243 1823.22 1850.91 1966.17 1880.10 1.42 1.46 1.49 1.46 

162 SC0244 1397.78 1559.04 1536.99 1497.94 1.08 1.27 1.25 1.20 

163 SC0247 1466.07 1566.02 1730.73 1587.61 1.09 1.16 1.24 1.16 



 

 

147 

164 SC0249 2235.56 1865.57 2077.78 2059.64 1.68 1.39 1.57 1.55 

165 SC0250 1850.64 1776.84 1886.89 1838.12 1.36 1.34 1.45 1.38 

166 SC0253 1992.27 1575.18 2045.21 1870.89 1.51 1.17 1.53 1.40 

167 SC0254 2205.88 1717.23 1728.23 1883.78 1.69 1.25 1.31 1.42 

168 SC0256 1622.35 1613.21 1763.69 1666.42 1.22 1.24 1.33 1.26 

169 SC0257 1964.69 1907.84 2146.26 2006.26 1.49 1.47 1.59 1.52 

170 SC0258 1736.38 1898.01 1645.04 1759.81 1.33 1.44 1.27 1.35 

171 SC0259 1786.12 1404.13 1802.44 1664.23 1.37 1.09 1.32 1.26 

172 SC0261 1788.25 1521.04 1965.20 1758.16 1.38 1.27 1.53 1.39 

173 SC0262 1753.04 1504.31 1948.68 1735.34 1.36 1.18 1.51 1.35 

174 SC0265 1716.23 1690.93 1588.59 1665.25 1.35 1.37 1.28 1.33 

175 SC0266 1895.86 1788.63 2070.11 1918.20 1.49 1.40 1.52 1.47 

176 SC0268 1604.17 1588.06 1607.38 1599.87 1.36 1.21 1.30 1.29 

177 SC0269 1856.79 1798.37 1658.76 1771.31 1.41 1.41 1.30 1.37 

178 SC0270 2427.80 2208.98 2116.07 2250.95 1.82 1.65 1.54 1.67 

179 SC0272 1554.68 1733.66 1812.37 1700.24 1.18 1.40 1.37 1.32 

180 SC0273 2076.02 1757.99 2126.47 1986.83 1.56 1.31 1.57 1.48 

181 SC0275 1623.98 1712.82 1768.58 1701.79 1.24 1.36 1.32 1.30 

182 SC0276 1994.03 1946.06 2334.81 2091.63 1.51 1.48 1.75 1.58 

183 SC0277 1677.76 1727.81 2185.11 1863.56 1.31 1.34 1.62 1.42 

184 SC0278 1321.56 1631.10 1416.65 1456.44 1.06 1.28 1.12 1.15 

185 SC0279 1484.12 1704.83 1723.70 1637.55 1.15 1.27 1.30 1.24 

186 SC0280 1661.79 2089.21 2156.52 1969.17 1.31 1.56 1.66 1.51 

187 SC0282 1819.46 1694.86 1665.99 1726.77 1.52 1.33 1.22 1.36 

188 SC0283 1969.85 1719.16 1552.55 1747.19 1.47 1.32 1.20 1.33 

189 SC0284 1430.29 1539.39 1900.31 1623.33 1.09 1.18 1.44 1.24 

190 SC0287 2400.60 1515.76 1589.75 1835.37 1.87 1.21 1.20 1.42 

191 SC0289 1846.38 1392.71 1804.70 1681.26 1.39 1.05 1.32 1.25 

192 SC0290 2486.92 1213.93 1834.64 1845.16 1.89 0.92 1.35 1.38 

193 SC0291 1735.49 1855.88 1886.33 1825.90 1.30 1.40 1.44 1.38 

194 SC0292 1649.21 1944.01 1869.07 1820.77 1.27 1.48 1.45 1.40 

195 SC0293 2157.90 1574.20 1646.38 1792.83 1.62 1.17 1.55 1.45 

196 SC0295 2352.46 1957.54 2171.07 2160.36 1.68 1.43 1.61 1.57 

197 SC0296 1166.81 1444.85 1330.03 1313.90 0.89 1.17 1.02 1.03 

198 SC0297 1552.14 1459.61 2217.03 1742.93 1.26 1.12 1.71 1.36 

199 SC0298 2463.06 1295.12 1994.50 1917.56 1.81 0.99 1.46 1.42 

200 SC0299 1996.18 2020.13 1901.41 1972.57 1.45 1.49 1.37 1.44 

201 SC0300 1603.73 1466.50 1421.64 1497.29 1.21 1.11 1.13 1.15 

202 SC0301 1742.68 1343.46 2154.13 1746.76 1.31 1.04 1.53 1.29 

203 SC0303 1665.41 2156.62 1955.09 1925.71 1.30 1.61 1.49 1.47 

204 SC0305 1752.14 1411.30 1601.25 1588.23 1.34 1.09 1.18 1.20 

205 SC0308 1601.54 1642.95 1824.73 1689.74 1.17 1.27 1.37 1.27 

206 SC0309 1774.96 1543.21 1815.41 1711.19 1.35 1.21 1.34 1.30 
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207 SC0311 1828.09 1550.10 1671.86 1683.35 1.41 1.17 1.29 1.29 

208 SC0314 1987.62 1664.41 1779.05 1810.36 1.53 1.25 1.34 1.37 

209 SC0315 1916.69 1898.54 1644.45 1819.89 1.52 1.39 1.23 1.38 

210 SC0317 2359.29 2065.79 1934.36 2119.81 1.78 1.57 1.42 1.59 

211 SC0319 2111.37 1526.68 1815.11 1817.72 1.57 1.12 1.40 1.36 

212 SC0320 1388.22 1458.99 1497.83 1448.35 1.07 1.11 1.12 1.10 

213 SC0322 1264.52 1517.12 1547.02 1442.89 1.01 1.18 1.19 1.13 

214 SC0323 2187.41 1667.54 2150.48 2001.81 1.77 1.30 1.63 1.57 

215 SC0325 1775.28 1407.14 1724.54 1635.66 1.39 1.10 1.29 1.26 

216 SC0328 2013.14 2085.54 2409.72 2169.47 1.52 1.63 1.79 1.65 

217 SC0329 1964.03 1804.87 1900.48 1889.80 1.45 1.40 1.46 1.43 

218 SC0330 2498.67 2159.53 2047.17 2235.12 1.88 1.63 1.53 1.68 

219 SC0331 1803.59 1933.46 1747.52 1828.19 1.45 1.48 1.34 1.42 

220 SC0333 1874.87 1516.81 1757.78 1716.49 1.46 1.19 1.26 1.30 

221 SC0334 1715.73 1745.89 2030.70 1830.77 1.35 1.33 1.51 1.40 

222 SC0335 1692.21 1980.45 1850.49 1841.05 1.24 1.48 1.43 1.38 

223 SC0336 1231.96 1483.52 1473.12 1396.20 0.94 1.15 1.15 1.08 

224 SC0337 1756.96 1870.22 1801.58 1809.58 1.38 1.43 1.44 1.42 

225 SC0338 2101.52 1992.89 1579.30 1891.24 1.50 1.45 1.25 1.40 

226 SC0340 1556.23 1550.67 1445.79 1517.57 1.22 1.22 1.15 1.20 

227 SC0343 2189.16 2178.54 1481.80 1949.83 1.63 1.53 1.03 1.40 

228 SC0344 1351.92 1452.93 1486.28 1430.38 1.08 1.11 1.15 1.11 

229 SC0345 1754.56 1516.24 1710.28 1660.36 1.32 1.21 1.32 1.28 

230 SC0348 1900.03 1447.51 1558.85 1635.47 1.59 1.10 1.26 1.32 

231 SC0349 1927.77 1913.51 1538.54 1793.27 1.42 1.43 1.18 1.35 

232 SC0351 1256.87 2296.97 1816.25 1790.03 0.95 1.75 1.39 1.36 

233 SC0352 1707.94 1813.90 1792.00 1771.28 1.31 1.36 1.33 1.33 

234 SC0353 1768.09 1873.64 1827.26 1823.00 1.30 1.41 1.37 1.36 

235 SC0354 1620.62 1917.47 1466.58 1668.23 1.41 1.48 1.18 1.36 

236 SC0356 1141.21 1683.43 1739.86 1521.50 0.87 1.27 1.34 1.16 

237 SC0358 1697.47 1812.66 1764.27 1758.13 1.27 1.38 1.32 1.32 

238 SC0362 1377.31 1594.61 1637.48 1536.47 1.13 1.20 1.25 1.20 

239 SC0366 1424.92 1773.81 1498.61 1565.78 1.17 1.43 1.19 1.26 

240 SC0367 2002.36 1784.47 1884.75 1890.53 1.52 1.31 1.38 1.40 

241 SC0368 1867.51 1694.51 2031.22 1864.41 1.42 1.29 1.57 1.43 

242 SC0369 1699.30 1883.68 1967.79 1850.26 1.27 1.39 1.48 1.38 

243 SC0371 1459.74 1686.30 1740.75 1628.93 1.20 1.25 1.36 1.27 

244 SC0373 2080.27 1998.80 2062.60 2047.22 1.59 1.48 1.53 1.54 

245 SC0374 1277.28 1492.52 1776.58 1515.46 1.00 1.16 1.30 1.15 

246 SC0377 1736.43 1770.60 1895.62 1800.88 1.42 1.40 1.44 1.42 

247 SC0380 1220.34 1868.91 1728.32 1605.86 0.96 1.36 1.31 1.21 

248 SC0382 1408.97 1949.03 1901.90 1753.30 1.09 1.45 1.46 1.33 

249 SC0384 1605.21 1580.15 1459.52 1548.29 1.26 1.24 1.15 1.22 
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250 SC0386 1658.34 1829.98 2118.41 1868.91 1.29 1.38 1.57 1.41 

251 SC0388 1324.77 1483.97 1549.10 1452.61 1.03 1.13 1.21 1.12 

252 SC0391 1561.73 1575.94 2065.35 1734.34 1.22 1.18 1.56 1.32 

253 SC0393 1296.83 1594.48 1498.69 1463.33 0.99 1.15 1.13 1.09 

254 SC0394 1762.17 1634.03 1824.70 1740.30 1.35 1.25 1.39 1.33 

255 SC0396 2034.15 1620.28 2046.56 1900.33 1.62 1.21 1.53 1.45 

256 SC0397 1241.91 1338.80 1600.32 1393.68 0.98 1.08 1.22 1.09 

257 SC0399 2254.45 1959.77 2136.52 2116.91 1.79 1.50 1.57 1.62 

258 SC0400 2130.99 1722.01 1978.36 1943.79 1.61 1.28 1.51 1.47 

259 SC0401 1514.05 1973.72 1966.01 1817.92 1.18 1.50 1.50 1.39 

260 SC0402 1925.29 1894.38 1837.59 1885.75 1.42 1.47 1.47 1.45 

261 SC0403 2012.90 2053.04 1642.93 1902.96 1.50 1.56 1.20 1.42 

262 SC0405 1572.78 1498.59 1811.43 1627.60 1.18 1.13 1.30 1.20 

263 SC0406 1573.82 1776.14 1943.89 1764.62 1.29 1.42 1.41 1.37 

264 SC0407 2027.83 2339.78 2255.25 2207.62 1.57 1.74 1.67 1.66 

265 SC0408 1806.99 1676.15 1936.45 1806.53 1.39 1.29 1.42 1.37 

266 SC0409 2343.85 1663.57 2224.29 2077.24 1.79 1.26 1.62 1.55 

267 SC0411 1538.36 1534.58 1443.73 1505.55 1.17 1.16 1.13 1.15 

268 SC0412 1815.66 1633.32 1484.03 1644.34 1.45 1.26 1.18 1.29 

269 SC0413 1654.33 1840.71 2088.40 1861.15 1.32 1.39 1.61 1.44 

270 SC0418 1946.96 1770.40 1860.31 1859.22 1.48 1.36 1.40 1.41 

271 SC0420 2131.04 1886.11 2037.80 2018.32 1.60 1.43 1.53 1.52 

272 SC0422 1633.24 1867.24 1597.40 1699.29 1.33 1.46 1.23 1.34 

273 SC0423 2022.42 1656.98 1730.74 1803.38 1.50 1.24 1.32 1.35 

274 SC0424 1624.28 1596.64 1531.97 1584.30 1.27 1.22 1.21 1.23 

275 SC0426 2226.14 2022.57 2040.47 2096.39 1.65 1.50 1.48 1.54 

276 SC0430 1826.57 1518.17 1693.10 1679.28 1.39 1.12 1.29 1.27 

277 SC0432 1669.92 1721.27 2130.19 1840.46 1.27 1.38 1.64 1.43 

278 SC0436 1692.57 1423.40 1389.68 1501.88 1.33 1.10 1.06 1.16 

279 SC0438 1541.40 1657.33 1403.51 1534.08 1.14 1.30 1.05 1.16 

280 SC0449 1778.98 2195.09 1951.90 1975.32 1.32 1.70 1.45 1.49 

281 SC0452 1730.37 1412.99 1623.05 1588.80 1.38 1.10 1.25 1.24 

282 SC0456 1444.27 1748.99 1736.82 1643.36 1.07 1.35 1.37 1.26 

283 SC0457 1458.80 1596.34 1598.57 1551.24 1.25 1.35 1.21 1.27 

284 SC0458 1362.53 1576.99 1607.68 1515.73 1.09 1.17 1.23 1.16 

285 SC0462 1473.94 1818.08 1490.03 1594.02 1.13 1.43 1.19 1.25 

286 SC0463 1670.99 1968.76 1778.48 1806.08 1.28 1.53 1.50 1.44 

287 SC0465 2099.66 1805.27 2189.56 2031.50 1.62 1.36 1.62 1.53 

288 SC0466 1392.47 1419.79 1588.56 1466.94 1.11 1.05 1.22 1.13 

289 SC0467 1462.24 1544.61 1350.88 1452.58 1.17 1.22 1.07 1.15 

290 SC0468 1552.70 1427.19 1551.52 1510.47 1.18 1.09 1.19 1.15 

291 SC0470 1754.04 1956.17 1779.41 1829.87 1.36 1.49 1.34 1.40 

292 SC0472 1624.05 1491.12 1795.18 1636.78 1.26 1.20 1.36 1.28 
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293 SC0475 2027.97 1986.85 2055.67 2023.50 1.54 1.42 1.49 1.48 

294 SC0477 1546.63 1832.60 1300.24 1559.82 1.20 1.36 1.01 1.19 

295 SC0490 1845.41 1676.13 1604.11 1708.55 1.36 1.34 1.24 1.31 

296 SC0497 1538.76 1591.22 1699.75 1609.91 1.19 1.23 1.30 1.24 

297 SC0501 1148.45 1646.74 1381.09 1392.09 0.87 1.35 1.00 1.07 

298 SC0502 929.21 1626.52 1631.00 1395.58 0.74 1.27 1.25 1.09 

299 SC0504 1436.61 1346.56 1510.26 1431.14 1.16 1.04 1.21 1.13 

300 SC0505 1870.04 1603.59 1789.57 1754.40 1.41 1.22 1.33 1.32 

301 SC0508 1773.29 1491.32 1903.00 1722.54 1.36 1.12 1.41 1.30 

302 SC0512 1708.65 1515.03 1469.80 1564.49 1.35 1.18 1.13 1.22 

303 SC0514 2318.09 2142.57 1986.39 2149.02 1.87 1.59 1.44 1.63 

304 SC0516 1521.63 2039.21 1771.57 1777.47 1.15 1.51 1.31 1.32 

305 SC0517 1672.92 1624.20 1722.07 1673.06 1.29 1.27 1.30 1.29 

306 SC0519 1602.16 1758.46 1685.80 1682.14 1.23 1.37 1.29 1.29 

307 SC0521 2029.02 1847.10 1942.56 1939.56 1.52 1.38 1.47 1.45 

308 SC0522 1524.90 1580.68 1707.41 1604.33 1.15 1.18 1.30 1.21 

309 SC0523 1613.64 2098.99 1775.84 1829.49 1.21 1.58 1.34 1.38 

310 SC0525 1293.06 1688.45 1564.67 1515.39 1.09 1.31 1.20 1.20 

311 SC0526 1998.35 1786.76 1786.79 1857.30 1.54 1.33 1.34 1.40 

312 SC0528 1507.14 1716.93 1824.70 1682.93 1.11 1.27 1.38 1.25 

313 SC0534 1188.71 1656.16 1833.85 1559.57 0.94 1.33 1.42 1.23 

314 SC0537 1804.83 1908.37 1589.46 1767.55 1.36 1.52 1.22 1.37 

315 SC0538 1421.67 1977.43 1470.00 1623.03 1.15 1.51 1.11 1.25 

316 SC0540 1454.30 2006.55 1838.91 1766.59 1.10 1.53 1.37 1.33 

317 SC0541 1998.90 1848.73 1704.18 1850.60 1.65 1.40 1.27 1.44 

318 SC0542 1513.34 1675.47 1763.39 1650.74 1.16 1.25 1.34 1.25 

319 SC0543 1489.76 2123.95 1891.98 1835.23 1.12 1.59 1.41 1.37 

320 SC0544 1929.44 2036.44 1894.04 1953.31 1.40 1.55 1.37 1.44 

321 SC0545 1924.45 1855.98 1688.33 1822.92 1.41 1.35 1.23 1.33 

322 SC0546 1666.04 1593.65 1369.35 1543.01 1.33 1.21 1.06 1.20 

323 SC0547 1659.68 2066.17 1593.86 1773.24 1.30 1.53 1.19 1.34 

324 SC0549 2138.81 1822.28 2121.36 2027.49 1.65 1.37 1.53 1.52 

325 SC0550 1828.65 1789.25 1972.72 1863.54 1.52 1.37 1.53 1.47 

326 SC0551 1427.25 1972.86 1560.85 1653.65 1.11 1.50 1.30 1.30 

327 SC0556 1444.65 1760.04 1528.98 1577.89 1.12 1.38 1.18 1.23 

328 SC0557 1918.90 1819.05 2100.78 1946.24 1.44 1.44 1.56 1.48 

329 SC0559 1578.33 1553.31 1433.60 1521.75 1.19 1.16 1.10 1.15 

330 SC0562 1466.58 1731.92 1726.92 1641.81 1.14 1.37 1.33 1.28 

331 SC0563 1813.66 1646.69 1855.48 1771.95 1.50 1.24 1.44 1.39 

332 SC0565 2207.18 1821.22 1913.31 1980.57 1.71 1.41 1.78 1.63 

333 SC0566 1797.34 1796.18 1638.77 1744.10 1.49 1.49 1.32 1.43 

334 SC0567 1519.30 1379.87 1633.54 1510.90 1.23 1.13 1.25 1.20 

335 SC0568 1918.04 1490.01 1775.81 1727.95 1.59 1.13 1.38 1.37 
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336 SC0569 1745.34 1562.84 1517.67 1608.62 1.36 1.23 1.20 1.26 

337 SC0572 1742.45 1723.31 1786.92 1750.89 1.36 1.26 1.43 1.35 

338 SC0574 1543.94 1689.46 1779.50 1670.97 1.16 1.32 1.35 1.28 

339 SC0575 1987.15 1681.09 1828.44 1832.23 1.44 1.22 1.37 1.34 

340 SC0577 1869.76 1689.77 2066.76 1875.43 1.37 1.23 1.49 1.36 

341 SC0578 1371.14 1953.10 1841.31 1721.85 1.09 1.55 1.43 1.35 

342 SC0584 1961.37 1544.19 1792.18 1765.91 1.50 1.17 1.42 1.36 

343 SC0590 1899.08 1817.76 1836.56 1851.13 1.49 1.38 1.42 1.43 

344 SC0593 1594.27 1903.07 1648.64 1715.33 1.29 1.52 1.27 1.36 

345 SC0599 1717.15 1506.70 1459.29 1561.04 1.25 1.12 1.11 1.16 

346 SC0600 1542.93 1598.51 1529.26 1556.90 1.18 1.23 1.16 1.19 

347 SC0601 1673.05 1704.22 1649.39 1675.55 1.24 1.26 1.27 1.25 

348 SC0602 1426.87 1774.44 1612.26 1604.52 1.08 1.38 1.29 1.25 

349 SC0603 1597.93 1388.46 1525.35 1503.91 1.22 1.05 1.17 1.15 

350 SC0604 2359.36 2031.79 2054.77 2148.64 1.80 1.48 1.52 1.60 

351 SC0605 1675.44 1718.04 2125.79 1839.76 1.31 1.30 1.61 1.41 

352 SC0606 2094.99 1439.51 1943.74 1826.08 1.64 1.12 1.47 1.41 

353 SC0609 1186.78 1699.62 1454.28 1446.89 0.95 1.36 1.15 1.16 

354 SC0610 1570.31 2214.09 1871.80 1885.40 1.22 1.58 1.41 1.40 

355 SC0614 1904.61 1509.86 1597.15 1670.54 1.46 1.18 1.21 1.28 

356 SC0615 1469.82 1561.60 1590.12 1540.51 1.24 1.30 1.22 1.25 

357 SC0618 1788.14 1466.26 1578.04 1610.82 1.47 1.19 1.29 1.32 

358 SC0621 1755.07 2116.79 1684.64 1852.17 1.33 1.58 1.32 1.41 

359 SC0623 1802.46 1436.21 2185.57 1808.08 1.38 1.10 1.61 1.36 

360 SC0625 1813.44 1513.09 1511.76 1612.77 1.41 1.16 1.16 1.25 

361 SC0626 1826.50 1942.14 1943.76 1904.13 1.41 1.51 1.40 1.44 

362 SC0627 1430.59 1621.21 1364.37 1472.06 1.18 1.25 1.08 1.17 

363 SC0628 1469.18 1340.20 1448.04 1419.14 1.18 1.07 1.19 1.15 

364 SC0629 1426.81 1737.34 1359.19 1507.78 1.05 1.33 1.04 1.14 

365 SC0630 1649.63 1982.12 1549.18 1726.98 1.25 1.51 1.20 1.32 

366 SC0631 1431.43 1359.09 1614.03 1468.18 1.19 1.18 1.24 1.21 

367 SC0632 1519.98 1227.12 1568.12 1438.41 1.20 1.00 1.21 1.14 

368 SC0635 1389.17 1490.34 1381.29 1420.27 1.11 1.16 1.07 1.11 

369 SC0636 1367.37 1518.69 1928.91 1604.99 1.04 1.18 1.53 1.25 

370 SC0637 2074.46 2422.85 2132.33 2209.88 1.50 1.75 1.62 1.62 

371 SC0639 1667.41 1702.26 1673.01 1680.89 1.23 1.34 1.23 1.27 

372 SC0641 1873.04 1773.31 1933.53 1859.96 1.47 1.34 1.41 1.41 

373 SC0642 1995.07 1667.81 1752.36 1805.08 1.48 1.22 1.29 1.33 

374 SC0643 2150.79 1370.35 1994.04 1838.39 1.63 1.03 1.51 1.39 

375 SC0644 1377.67 1564.04 1642.05 1527.92 1.02 1.18 1.27 1.16 

376 SC0645 2074.78 1964.93 1961.15 2000.29 1.61 1.47 1.45 1.51 

377 SC0646 1451.08 1519.72 1664.15 1544.98 1.18 1.21 1.26 1.22 

378 SC0647 1593.40 1458.06 1508.26 1519.91 1.19 1.09 1.14 1.14 
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379 SC0648 1467.01 1534.11 1537.26 1512.79 1.15 1.14 1.15 1.15 

380 SC0649 1412.74 1854.67 1768.55 1678.65 1.09 1.42 1.40 1.31 

381 SC0652 1363.69 1686.44 1366.82 1472.32 1.03 1.31 1.08 1.14 

382 SC0653 1307.68 1813.84 1709.23 1610.25 1.01 1.42 1.31 1.25 

383 SC0655 1911.03 1941.46 2004.68 1952.39 1.45 1.41 1.48 1.45 

384 SC0657 1470.59 1563.14 1631.09 1554.94 1.10 1.18 1.27 1.19 

385 SC0659 1306.31 1594.61 1544.64 1481.85 0.98 1.18 1.17 1.11 

386 SC0663 1777.76 1655.17 1797.78 1743.57 1.35 1.28 1.35 1.33 

387 SC0671 1496.99 1516.72 1627.62 1547.11 1.14 1.17 1.24 1.18 

388 SC0672 1667.06 1693.64 1732.77 1697.82 1.34 1.34 1.43 1.37 

389 SC0673 1385.92 1726.43 1682.02 1598.12 1.08 1.27 1.30 1.22 

390 SC0679 1425.61 1647.48 1721.07 1598.06 1.13 1.31 1.35 1.26 

391 SC0680 1428.74 1527.89 1489.87 1482.17 1.07 1.17 1.13 1.12 

392 SC0682 1248.82 1650.04 1580.69 1493.18 1.00 1.30 1.26 1.18 

393 SC0683 2397.07 1822.88 1909.31 2043.09 1.82 1.43 1.43 1.56 

394 SC0685 1945.07 1752.06 1798.54 1831.89 1.47 1.32 1.32 1.37 

395 SC0686 2304.59 1989.41 2213.02 2169.01 1.67 1.48 1.63 1.59 

396 SC0687 1679.10 1451.42 1526.78 1552.43 1.28 1.09 1.17 1.18 

397 SC0689 2433.53 2208.76 2017.89 2220.06 1.79 1.65 1.53 1.65 

398 SC0691 1935.96 2016.25 1620.95 1857.72 1.58 1.56 1.29 1.48 

399 SC0692 1848.71 1956.24 1964.86 1923.27 1.42 1.48 1.52 1.47 

400 SC0693 2104.61 1787.05 1915.49 1935.72 1.69 1.38 1.55 1.54 

401 SC0694 2055.39 2180.04 1813.36 2016.26 1.55 1.67 1.40 1.54 

402 SC0695 2015.93 1570.70 1821.74 1802.79 1.53 1.21 1.39 1.38 

403 SC0700 1455.49 1524.06 1436.80 1472.12 1.19 1.19 1.10 1.16 

404 SC0701 2162.52 2079.96 1795.38 2012.62 1.65 1.51 1.30 1.48 

405 SC0704 1919.14 2077.37 1985.02 1993.84 1.43 1.52 1.46 1.47 

406 SC0705 1342.77 1495.72 1211.14 1349.87 1.04 1.15 1.02 1.07 

407 SC0706 1929.95 1676.57 1942.78 1849.77 1.42 1.28 1.44 1.38 

408 SC0708 3308.81 2254.54 1863.72 2475.69 2.45 1.65 1.35 1.81 

409 SC0709 1273.52 1658.88 1529.57 1487.32 0.95 1.27 1.15 1.12 

410 SC0713 1544.70 1458.49 1195.21 1399.46 1.29 1.25 0.98 1.17 

411 SC0715 1862.20 1777.91 1705.89 1782.00 1.37 1.32 1.26 1.32 

412 SC0716 2171.98 1915.96 2013.90 2033.95 1.59 1.51 1.48 1.53 

413 SC0720 2034.81 1741.38 2284.37 2020.19 1.52 1.30 1.69 1.50 

414 SC0723 1393.27 1711.80 1121.23 1408.77 1.04 1.28 0.82 1.05 

415 SC0724 1311.98 1355.67 1416.67 1361.44 1.05 0.97 1.08 1.03 

416 SC0725 1779.57 1423.50 1822.41 1675.16 1.28 1.09 1.33 1.23 

417 SC0726 2044.57 1860.27 1780.56 1895.13 1.49 1.35 1.31 1.39 

418 SC0727 1768.98 2288.17 2303.43 2120.19 1.29 1.63 1.64 1.52 

419 SC0728 1866.87 2113.59 1993.11 1991.19 1.39 1.55 1.49 1.48 

420 SC0730 2310.44 1645.92 1975.05 1977.14 1.71 1.21 1.49 1.47 

421 SC0731 2112.85 1866.23 1475.92 1818.33 1.57 1.40 1.10 1.36 
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422 SC0732 2199.06 1758.93 2142.50 2033.50 1.57 1.26 1.54 1.45 

423 SC0733 1583.85 1412.06 1564.46 1520.12 1.23 1.14 1.21 1.19 

424 SC0734 1854.91 1471.19 1539.84 1621.98 1.37 1.09 1.14 1.20 

425 SC0736 1463.52 1565.12 1571.07 1533.23 1.12 1.18 1.21 1.17 

426 SC0738 1853.23 2057.47 1912.19 1940.96 1.43 1.55 1.43 1.47 

427 SC0741 1824.61 2096.80 1756.05 1892.49 1.44 1.70 1.38 1.51 

428 SC0747 1701.54 1499.38 1084.91 1428.61 1.23 1.15 0.86 1.08 

429 SC0748 1943.65 2145.88 2007.22 2032.25 1.41 1.57 1.48 1.49 

430 SC0749 2009.62 1739.38 1676.52 1808.51 1.47 1.31 1.26 1.35 

431 SC0751 2128.56 2170.01 1849.36 2049.31 1.60 1.60 1.38 1.53 

432 SC0753 1281.28 1428.97 1466.12 1392.12 1.03 1.08 1.10 1.07 

433 SC0755 2063.38 1771.84 2021.59 1952.27 1.66 1.33 1.52 1.50 

434 SC0756 2242.07 2547.93 1977.37 2255.79 1.69 1.93 1.46 1.69 

435 SC0757 1193.89 1415.93 1112.62 1240.82 0.96 1.15 0.85 0.98 

436 SC0760 1589.45 1845.00 2007.48 1813.98 1.17 1.32 1.49 1.33 

437 SC0761 1737.37 1693.29 1433.17 1621.28 1.34 1.28 1.06 1.23 

438 SC0762 2351.12 1700.62 2088.74 2046.83 1.74 1.23 1.58 1.52 

439 SC0763 1360.77 1554.13 1537.12 1484.01 1.10 1.19 1.17 1.15 

440 SC0764 1780.08 1484.04 1491.26 1585.13 1.32 1.10 1.07 1.16 

441 SC0770 2197.93 1995.28 1778.69 1990.64 1.65 1.45 1.34 1.48 

442 SC0773 1968.72 1873.25 1870.66 1904.21 1.47 1.37 1.40 1.41 

443 SC0774 2515.65 1642.49 1971.92 2043.35 1.91 1.28 1.44 1.55 

444 SC0781 2098.00 1407.46 1795.91 1767.12 1.61 1.08 1.33 1.34 

445 SC0782 2290.29 2051.80 2191.98 2178.03 1.70 1.63 1.65 1.66 

446 SC0784 2186.84 2088.19 2041.01 2105.35 1.66 1.60 1.53 1.60 

447 SC0790 1908.17 1778.32 1483.15 1723.21 1.44 1.35 1.17 1.32 

448 SC0797 2252.32 2074.45 1756.79 2027.86 1.74 1.50 1.36 1.53 

449 SC0800 1738.72 1852.02 1909.72 1833.49 1.35 1.34 1.41 1.37 

450 SC0803 1852.02 1658.51 1749.47 1753.33 1.36 1.23 1.32 1.31 

451 SC0804 1555.68 1524.25 1638.05 1572.66 1.22 1.18 1.26 1.22 

452 SC0807 1431.55 1646.23 1338.26 1472.01 1.14 1.30 1.08 1.17 

453 SC0808 1617.47 1533.70 1717.18 1622.78 1.23 1.25 1.29 1.26 

454 SC0810 1719.29 1942.50 1935.02 1865.60 1.36 1.50 1.50 1.45 

455 SC0814 1591.70 1627.14 1840.07 1686.30 1.29 1.24 1.42 1.32 

456 SC0817 1682.79 1903.14 1825.95 1803.96 1.25 1.49 1.40 1.38 

457 SC0823 1878.15 1636.08 1684.21 1732.81 1.44 1.24 1.25 1.31 

458 SC0830 1599.66 1805.88 1897.62 1767.72 1.21 1.36 1.42 1.33 

459 SC0832 2524.60 1732.13 1851.29 2036.01 2.06 1.37 1.49 1.64 

460 SC0833 1708.12 1877.30 1627.44 1737.62 1.33 1.43 1.28 1.35 

461 SC0835 1497.30 1625.76 1626.06 1583.04 1.19 1.22 1.21 1.21 

462 SC0837 1283.54 1500.94 1199.59 1328.03 1.02 1.15 0.91 1.03 

463 SC0839 1334.37 1553.83 1879.01 1589.07 1.02 1.17 1.42 1.20 

464 SC0841 1873.48 1608.53 1986.88 1822.96 1.47 1.24 1.46 1.39 
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465 SC0842 2646.96 2390.88 2184.41 2407.42 1.90 1.73 1.63 1.75 

466 SC0847 1694.07 1791.64 1875.48 1787.06 1.37 1.33 1.43 1.38 

467 SC0851 1342.64 1693.09 1395.30 1477.01 1.05 1.37 1.16 1.19 

468 SC0852 1922.71 1850.50 2082.80 1952.00 1.52 1.45 1.60 1.52 

469 SC0854 2003.98 2173.76 1965.37 2047.70 1.55 1.63 1.48 1.55 

470 SC0855 1674.76 1808.61 1662.41 1715.26 1.26 1.38 1.26 1.30 

471 SC0859 1627.27 1535.20 1530.41 1564.29 1.29 1.14 1.19 1.21 

472 SC0860 1569.63 1732.84 1888.91 1730.46 1.18 1.34 1.42 1.31 

473 SC0864 1890.72 1940.39 1861.81 1897.64 1.43 1.46 1.39 1.43 

474 SC0865 1900.71 1633.26 1827.22 1787.06 1.55 1.23 1.39 1.39 

475 SC0868 1358.06 1725.53 1582.88 1555.49 1.09 1.34 1.23 1.22 

476 SC0876 1582.27 1824.84 1719.62 1708.91 1.27 1.41 1.29 1.32 

477 SC0877 1709.54 1833.95 1980.21 1841.23 1.29 1.39 1.48 1.39 

478 SC0878 1781.17 2024.32 1996.47 1933.99 1.45 1.48 1.51 1.48 

479 SC0891 1470.72 1537.84 1528.97 1512.51 1.17 1.09 1.15 1.14 

480 SC0893 2097.31 1634.07 1921.08 1884.15 1.65 1.21 1.48 1.45 

481 SC0895 2242.04 1361.14 2380.78 1994.65 1.72 0.97 1.80 1.50 

482 SC0902 1476.61 1635.37 1518.31 1543.43 1.13 1.28 1.20 1.20 

483 SC0906 1868.33 1564.10 2002.27 1811.57 1.38 1.11 1.44 1.31 

484 SC0913 1893.29 1774.14 2232.63 1966.69 1.46 1.34 1.60 1.47 

485 SC0914 1290.38 1569.61 1411.56 1423.85 0.97 1.26 1.07 1.10 

486 SC0919 1763.72 1760.75 1884.92 1803.13 1.36 1.40 1.45 1.40 

487 SC0921 1952.48 1616.52 1734.03 1767.68 1.49 1.28 1.31 1.36 

488 SC0923 1492.31 1457.73 1392.14 1447.39 1.21 1.10 1.05 1.12 

489 SC0929 1442.89 1615.43 1553.01 1537.11 1.09 1.20 1.18 1.16 

490 SC0937 1680.13 1724.29 2058.48 1820.97 1.33 1.41 1.77 1.50 

491 SC0942 1734.71 1554.12 1689.92 1659.58 1.33 1.26 1.36 1.32 

492 SC0947 1345.41 1639.17 1618.48 1534.36 1.05 1.35 1.30 1.23 

493 SC0949 1601.89 1859.14 1756.30 1739.11 1.31 1.48 1.39 1.39 

494 SC0950 1651.64 1771.56 1666.09 1696.43 1.24 1.33 1.29 1.29 

495 SC0951 1949.53 1958.70 2172.98 2027.07 1.48 1.45 1.64 1.52 

496 SC0958 1941.27 2187.64 2094.85 2074.59 1.44 1.67 1.54 1.55 

497 SC0963 1949.62 1869.38 1902.65 1907.22 1.45 1.35 1.47 1.42 

498 SC0964 2135.07 1943.59 1792.99 1957.22 1.57 1.46 1.38 1.47 

499 SC0965 1377.56 1325.62 1434.87 1379.35 1.15 1.10 1.15 1.13 

500 SC0968 1619.82 1564.12 1696.24 1626.73 1.21 1.17 1.28 1.22 

501 SC0975 1673.80 1737.45 1734.44 1715.23 1.28 1.36 1.37 1.34 

502 SC0979 2169.79 1913.34 1860.49 1981.21 1.67 1.41 1.42 1.50 

503 SC0982 2298.28 1479.16 1829.33 1868.92 1.70 1.13 1.37 1.40 

504 SC0987 1756.93 1820.46 1770.27 1782.55 1.34 1.36 1.33 1.34 

505 SC0991 1469.92 1859.13 1820.31 1716.45 1.13 1.39 1.40 1.31 

506 SC0998 1541.09 1722.69 1795.43 1686.40 1.20 1.32 1.37 1.30 

507 SC0999 2232.71 1723.89 1686.02 1880.87 1.83 1.30 1.27 1.47 
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508 SC1014 1286.41 1695.86 1983.72 1655.33 1.03 1.28 1.49 1.27 

509 SC1015 1722.75 1658.92 1481.46 1621.04 1.31 1.26 1.14 1.24 

510 SC1017 1664.40 1745.36 1481.13 1630.30 1.25 1.33 1.07 1.22 

511 SC1019 1978.30 2252.64 1836.61 2022.52 1.48 1.65 1.38 1.50 

512 SC1021 1862.41 1846.17 1854.99 1854.53 1.44 1.42 1.45 1.43 

513 SC1022 1546.15 1788.47 1600.34 1644.99 1.17 1.37 1.26 1.27 

514 SC1023 1211.24 1624.55 1821.99 1552.59 0.89 1.21 1.32 1.14 

515 SC1024 2058.23 1991.42 2046.45 2032.03 1.54 1.51 1.49 1.51 

516 SC1025 1709.65 1595.74 1756.40 1687.27 1.23 1.18 1.27 1.23 

517 SC1031 1362.41 1557.31 1681.55 1533.76 1.04 1.18 1.34 1.19 

518 SC1038 1445.43 1789.63 1636.98 1624.01 1.15 1.34 1.24 1.25 

519 SC1039 1543.85 1578.55 1727.66 1616.69 1.16 1.21 1.30 1.23 

520 SC1040 1544.66 1517.35 1427.13 1496.38 1.18 1.19 1.12 1.16 

521 SC1046 1872.39 1684.16 1766.03 1774.19 1.38 1.33 1.35 1.36 

522 SC1055 2255.12 2354.98 1610.66 2073.59 1.75 1.75 1.24 1.58 

523 SC1056 2157.05 1965.92 1674.05 1932.34 1.59 1.41 1.33 1.44 

524 SC1063 1476.32 1568.08 1654.52 1566.31 1.11 1.23 1.25 1.20 

525 SC1067 2047.79 1495.25 2152.18 1898.41 1.53 1.09 1.64 1.42 

526 SC1069 1679.21 1872.93 1553.86 1702.00 1.44 1.42 1.23 1.36 

527 SC1072 1376.18 1607.63 1506.14 1496.65 1.06 1.22 1.17 1.15 

528 SC1074 1459.28 1791.34 1794.56 1681.73 1.12 1.39 1.38 1.30 

529 SC1076 1142.01 1710.12 1988.61 1613.58 1.12 1.30 1.47 1.30 

530 SC1077 1965.75 1639.86 1979.61 1861.74 1.46 1.26 1.45 1.39 

531 SC1079 2020.11 1944.29 1888.44 1950.95 1.50 1.46 1.40 1.45 

532 SC1080 1760.65 1531.09 1680.93 1657.56 1.32 1.17 1.27 1.25 

533 SC1083 1896.92 1318.20 1718.02 1644.38 1.59 0.99 1.25 1.28 

534 SC1084 1935.93 1491.17 1370.30 1599.13 1.50 1.06 1.05 1.20 

535 SC1089 2081.23 1873.30 2149.12 2034.55 1.58 1.36 1.71 1.55 

536 SC1097 1977.55 1449.82 1903.11 1776.83 1.51 1.10 1.45 1.35 

537 SC1101 1815.72 1655.72 2035.10 1835.51 1.37 1.24 1.56 1.39 

538 SC1104 1738.30 1524.03 1699.44 1653.92 1.40 1.24 1.26 1.30 

539 SC1107 2295.24 2097.96 2179.52 2190.91 1.74 1.56 1.61 1.64 

540 SC1111 1782.41 1724.68 1806.25 1771.12 1.35 1.32 1.37 1.35 

541 SC1114 1401.41 1596.45 1867.88 1621.91 1.05 1.16 1.36 1.19 

542 SC1116 1469.91 1403.30 1574.93 1482.71 1.11 1.09 1.17 1.12 

543 SC1117 1902.39 1846.63 1819.51 1856.18 1.47 1.37 1.32 1.39 

544 SC1118 1445.59 1347.63 1315.44 1369.55 1.11 1.06 1.57 1.25 

545 SC1119 1494.14 1925.03 1653.66 1690.94 1.17 1.50 1.27 1.31 

546 SC1120 1976.94 2263.76 1929.30 2056.67 1.52 1.66 1.45 1.54 

547 SC1123 1817.53 1599.99 1740.51 1719.34 1.40 1.22 1.31 1.31 

548 SC1124 1540.71 1723.33 1921.00 1728.35 1.22 1.37 1.43 1.34 

549 SC1125 2123.29 2168.32 1657.48 1983.03 1.54 1.59 1.20 1.44 

550 SC1133 1444.44 1810.58 1971.90 1742.30 1.17 1.42 1.56 1.38 
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551 SC1154 1533.72 1807.33 1610.32 1650.46 1.13 1.38 1.24 1.25 

552 SC1155 2014.97 1631.49 1912.12 1852.86 1.53 1.22 1.43 1.40 

553 SC1156 1190.93 1571.27 1476.53 1412.91 0.92 1.26 1.22 1.13 

554 SC1157 1803.56 2056.11 1969.18 1942.95 1.38 1.55 1.51 1.48 

555 SC1158 1355.45 1505.71 1430.45 1430.54 1.05 1.11 1.13 1.10 

556 SC1159 1879.76 2226.03 2381.66 2162.49 1.43 1.61 1.75 1.59 

557 SC1160 1800.36 2097.69 1614.60 1837.55 1.38 1.59 1.29 1.42 

558 SC1166 1708.16 1488.77 1517.33 1571.42 1.33 1.14 1.22 1.23 

559 SC1170 2068.86 1854.51 1881.16 1934.85 1.54 1.43 1.46 1.48 

560 SC1172 1660.31 1744.62 1996.40 1800.44 1.23 1.32 1.45 1.33 

561 SC1177 1703.93 1888.67 1613.61 1735.40 1.31 1.51 1.21 1.34 

562 SC1178 1494.16 1511.83 1573.89 1526.63 1.23 1.15 1.23 1.20 

563 SC1186 1742.88 1440.34 1326.35 1503.19 1.32 1.11 1.13 1.19 

564 SC1203 2001.24 1516.36 1746.72 1754.77 1.55 1.24 1.36 1.38 

565 SC1205 1901.10 1652.75 2002.86 1852.24 1.48 1.24 1.46 1.39 

566 SC1211 1878.63 2139.19 2279.61 2099.14 1.46 1.61 1.67 1.58 

567 SC1212 1658.14 1835.12 1520.85 1671.37 1.20 1.41 1.12 1.24 

568 SC1214 1859.04 1516.34 1829.48 1734.95 1.42 1.17 1.35 1.31 

569 SC1215 1455.14 1747.07 1875.77 1692.66 1.11 1.40 1.48 1.33 

570 SC1222 1710.17 1641.68 1811.27 1721.04 1.33 1.23 1.34 1.30 

571 SC1229 1602.47 1689.29 1641.57 1644.44 1.29 1.38 1.23 1.30 

572 SC1237 1593.36 1772.69 1718.51 1694.86 1.25 1.46 1.38 1.36 

573 SC1251 1790.66 1258.08 1404.77 1484.50 1.36 1.01 1.08 1.15 

574 SC1261 1646.26 1534.71 1765.49 1648.82 1.29 1.21 1.39 1.30 

575 SC1262 1378.37 1614.90 1687.12 1560.13 1.08 1.27 1.31 1.22 

576 SC1271 1918.04 1809.18 1900.54 1875.92 1.45 1.31 1.45 1.41 

577 SC1277 2409.50 2002.18 2227.79 2213.16 1.90 1.48 1.62 1.67 

578 SC1287 2494.28 2108.07 2010.68 2204.34 1.84 1.61 1.45 1.64 

579 SC1293 1543.05 1854.34 1869.79 1755.73 1.22 1.41 1.41 1.35 

580 SC1300 1443.23 1484.82 1431.48 1453.18 1.13 1.12 1.07 1.11 

581 SC1302 1805.25 1411.14 1683.03 1633.14 1.36 1.09 1.31 1.25 

582 SC1305 1502.92 1675.72 1603.21 1593.95 1.17 1.27 1.21 1.22 

583 SC1307 1554.01 1652.70 1737.29 1648.00 1.15 1.24 1.42 1.27 

584 SC1313 1912.90 2119.85 1861.36 1964.71 1.51 1.59 1.43 1.51 

585 SC1314 1977.22 1941.05 1852.53 1923.60 1.55 1.46 1.38 1.46 

586 SC1317 2369.64 1858.33 1956.19 2061.39 1.81 1.39 1.43 1.54 

587 SC1318 2661.59 1697.88 1679.03 2012.83 1.98 1.29 1.33 1.53 

588 SC1319 1729.74 1763.84 1916.39 1803.32 1.33 1.32 1.42 1.36 

589 SC1320 2257.04 1927.28 1856.97 2013.76 1.65 1.42 1.39 1.49 

590 SC1321 1491.40 1481.37 1562.66 1511.81 1.13 1.10 1.20 1.14 

591 SC1322 2704.04 1804.36 2105.41 2204.60 2.12 1.34 1.53 1.66 

592 SC1325 1892.44 1842.66 1935.55 1890.22 1.44 1.35 1.48 1.42 

593 SC1328 1609.56 1718.33 1753.69 1693.86 1.25 1.30 1.29 1.28 
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594 SC1329 2307.01 1818.01 2191.92 2105.65 1.64 1.30 1.60 1.51 

595 SC1330 2176.30 2217.42 2036.93 2143.55 1.62 1.66 1.52 1.60 

596 SC1332 2181.95 1545.69 1973.68 1900.44 1.66 1.19 1.46 1.44 

597 SC1333 1784.05 2134.26 1999.80 1972.70 1.37 1.60 1.47 1.48 

598 SC1337 1994.76 2231.59 1985.25 2070.53 1.49 1.71 1.46 1.55 

599 SC1341 1407.55 1951.98 2098.89 1819.47 1.11 1.48 1.56 1.38 

600 SC1342 1724.29 1731.28 1856.79 1770.79 1.35 1.31 1.36 1.34 

601 SC1345 2279.83 1922.98 1303.51 1835.44 1.78 1.41 0.93 1.37 

602 SC1351 1383.49 1486.50 1874.22 1581.40 1.15 1.20 1.48 1.27 

603 SC1356 1435.30 1647.22 1585.25 1555.92 1.19 1.30 1.23 1.24 

604 SC1416 1951.72 2100.93 1993.37 2015.34 1.49 1.53 1.49 1.50 

605 SC1426 1436.95 1962.59 1724.34 1707.96 1.22 1.56 1.34 1.37 

606 SC1429 2139.86 1446.78 2138.70 1908.45 1.68 1.09 1.62 1.46 

607 SC1441 1353.95 1708.68 1702.68 1588.44 1.04 1.29 1.29 1.21 

608 SC1442 1495.03 1827.67 1770.17 1697.62 1.17 1.34 1.38 1.29 

609 SC1446 1859.75 2247.52 1794.88 1967.39 1.43 1.74 1.42 1.53 

610 SC1471 2136.84 1772.95 1780.39 1896.72 1.62 1.34 1.39 1.45 

611 SC1476 1779.77 1414.45 1928.46 1707.56 1.32 1.11 1.44 1.29 

612 SC1484 1681.10 1729.39 1517.86 1642.78 1.34 1.31 1.13 1.26 

613 SC1489 1614.05 1294.39 1381.64 1430.03 1.23 1.01 1.11 1.12 

614 SC1494 2346.21 2269.62 2110.08 2241.97 1.78 1.64 1.58 1.66 

615 Soberano 2238.19 1858.61 1863.44 1986.75 1.79 1.41 1.47 1.55 

616 SpurFeter 2537.90 2458.35 1935.70 2310.65 1.92 1.86 1.63 1.81 

617 SRN39 1761.50 1858.09 1850.27 1823.29 1.39 1.42 1.38 1.40 

618 Tx2741 1497.98 1558.04 1580.98 1545.67 1.18 1.21 1.21 1.20 

619 Tx2911 1583.77 1386.49 1658.58 1542.94 1.16 1.06 1.23 1.15 

 

 

  



 

 

158 

REFERENCES 

Anbarjafari, Gholamreza. 2018. 1. Introduction to Image Processing. 

Adhikari, Pragya, Santiago X. Mideros, and Tiffany M. Jamann. 2021. “Differential Regulation of 

Maize and Sorghum Orthologs in Response to the Fungal Pathogen Exserohilum 

Turcicum.” Frontiers in Plant Science 12:930. doi: 10.3389/fpls.2021.675208. 

Aisawi, K. a. B., M. P. Reynolds, R. P. Singh, and M. J. Foulkes. 2015. “The Physiological Basis 

of the Genetic Progress in Yield Potential of CIMMYT Spring Wheat Cultivars from 1966 

to 2009.” Crop Science 55(4):1749–64. doi: 10.2135/cropsci2014.09.0601. 

Alam, M. M., E. S. Mace, E. J. van Oosterom, A. Cruickshank, C. H. Hunt, G. L. Hammer, and D. 

R. Jordan. 2014. “QTL Analysis in Multiple Sorghum Populations Facilitates the 

Dissection of the Genetic and Physiological Control of Tillering.” Theoretical and Applied 

Genetics 127(10):2253–66. doi: 10.1007/s00122-014-2377-9. 

Alam, Mohammad Mobashwer, Graeme L. Hammer, Erik J. van Oosterom, Alan W. Cruickshank, 

Colleen H. Hunt, and David R. Jordan. 2014. “A Physiological Framework to Explain 

Genetic and Environmental Regulation of Tillering in Sorghum.” New Phytologist 

203(1):155–67. doi: 10.1111/nph.12767. 

Anderson, Steven L., Seth C. Murray, Yuanyuan Chen, Lonesome Malambo, Anjin Chang, Sorin 

Popescu, Dale Cope, and Jinha Jung. 2020. “Unoccupied Aerial System Enabled 

Functional Modeling of Maize Height Reveals Dynamic Expression of Loci.” Plant Direct 

4(5):e00223. doi: 10.1002/pld3.223. 

Arendt, Elke K., and Emanuele Zannini. 2013. Cereal Grains for the Food and Beverage 

Industries. Elsevier. 

Asseng, Senthold, Pierre Martre, Frank Ewert, M. Fernanda Dreccer, Brian L. Beres, Matthew 

Reynolds, Hans-Joachim Braun, Peter Langridge, Jacques Le Gouis, Jérôme Salse, and P. 

Stephen Baenziger. 2019. “Model-Driven Multidisciplinary Global Research to Meet 

Future Needs: The Case for ‘Improving Radiation Use Efficiency to Increase Yield.’” Crop 

Science 59(3):843–49. doi: 10.2135/cropsci2018.09.0562. 

Atwell, Susanna, Yu S. Huang, Bjarni J. Vilhjálmsson, Glenda Willems, Matthew Horton, Yan Li, 

Dazhe Meng, Alexander Platt, Aaron M. Tarone, Tina T. Hu, Rong Jiang, N. Wayan 

Muliyati, Xu Zhang, Muhammad Ali Amer, Ivan Baxter, Benjamin Brachi, Joanne Chory, 

Caroline Dean, Marilyne Debieu, Juliette de Meaux, Joseph R. Ecker, Nathalie Faure, Joel 

M. Kniskern, Jonathan D. G. Jones, Todd Michael, Adnane Nemri, Fabrice Roux, David 

E. Salt, Chunlao Tang, Marco Todesco, M. Brian Traw, Detlef Weigel, Paul Marjoram, 

Justin O. Borevitz, Joy Bergelson, and Magnus Nordborg. 2010. “Genome-Wide 

Association Study of 107 Phenotypes in Arabidopsis Thaliana Inbred Lines.” Nature 

465(7298):627–31. doi: 10.1038/nature08800. 



 

 

159 

Bai, Chunming, Chunyu Wang, Ping Wang, Zhenxing Zhu, Ling Cong, Dan Li, Yifei Liu, Wenjing 

Zheng, and Xiaochun Lu. 2017. “QTL Mapping of Agronomically Important Traits in 

Sorghum (Sorghum Bicolor L.).” Euphytica 213(12):285. doi: 10.1007/s10681-017-2075-

1. 

Bangbol Sangma, Harriet. 2013. “Genetic Characterization of Flowering Time in Sorghum.” 

Baret, Frederic, Simon Madec, Kamran Irfan, Jeremy Lopez, Alexis Comar, Matthieu Hemmerlé, 

Dan Dutartre, Sebastien Praud, and Marie Helene Tixier. 2018. “Leaf-Rolling in Maize 

Crops: From Leaf Scoring to Canopy-Level Measurements for Phenotyping.” Journal of 

Experimental Botany 69(10):2705–16. doi: 10.1093/jxb/ery071. 

Bates, Douglas, Martin Mächler, Ben Bolker, and Steve Walker. 2015. “Fitting Linear Mixed-

Effects Models Using Lme4.” Journal of Statistical Software 67(1):1–48. doi: 

10.18637/jss.v067.i01. 

Benjamini, Yoav, and Yosef Hochberg. 1995. “Controlling the False Discovery Rate: A Practical 

and Powerful Approach to Multiple Testing.” Journal of the Royal Statistical Society: 

Series B (Methodological) 57(1):289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x. 

Beveridge, Christine A. 2006. “Axillary Bud Outgrowth: Sending a Message.” Current Opinion 

in Plant Biology 9(1):35–40. doi: 10.1016/j.pbi.2005.11.006. 

Biddington, Norman L. 1986. “The Effects of Mechanically-Induced Stress in Plants — a Review.” 

Plant Growth Regulation 4(2):103–23. doi: 10.1007/BF00025193. 

Blancon, Justin, Dan Dutartre, Marie-Hélène Tixier, Marie Weiss, Alexis Comar, Sébastien Praud, 

and Frédéric Baret. 2019. “A High-Throughput Model-Assisted Method for Phenotyping 

Maize Green Leaf Area Index Dynamics Using Unmanned Aerial Vehicle Imagery.” 

Frontiers in Plant Science 10. doi: 10.3389/fpls.2019.00685. 

Boote, Kenneth J., James W. Jones, and Nigel B. Pickering. 1996. “Potential Uses and Limitations 

of Crop Models.” Agronomy Journal 88(5):704–16. doi: 

10.2134/agronj1996.00021962008800050005x. 

Borrell, Andrew K., Graeme L. Hammer, and Andrew C. L. Douglas. 2000a. “Does Maintaining 

Green Leaf Area in Sorghum Improve Yield under Drought? I. Leaf Growth and 

Senescence.” Crop Science 40(4):1026–37. doi: 10.2135/cropsci2000.4041026x. 

Borrell, Andrew K., John E. Mullet, Barbara George-Jaeggli, Erik J. van Oosterom, Graeme L. 

Hammer, Patricia E. Klein, and David R. Jordan. 2014. “Drought Adaptation of Stay-Green 

Sorghum Is Associated with Canopy Development, Leaf Anatomy, Root Growth, and 

Water Uptake.” Journal of Experimental Botany 65(21):6251–63. doi: 10.1093/jxb/eru232. 

Borrell, Andrew K., Erik J. van Oosterom, John E. Mullet, Barbara George-Jaeggli, David R. 

Jordan, Patricia E. Klein, and Graeme L. Hammer. 2014. “Stay-Green Alleles Individually 

Enhance Grain Yield in Sorghum under Drought by Modifying Canopy Development and 

Water Uptake Patterns.” New Phytologist 203(3):817–30. doi: 10.1111/nph.12869. 



 

 

160 

Borrell, Andrew, Erik van Oosterom, Barbara George-Jaeggli, Daniel Rodriguez, Joe Eyre, David 

J. Jordan, Emma Mace, Vijaya Singh, Vincent Vadez, Mike Bell, Ian Godwin, Alan 

Cruickshank, Yongfu Tao, and Graeme Hammer. 2021. “Chapter 5 - Sorghum.” Pp. 196–

221 in Crop Physiology Case Histories for Major Crops, edited by V. O. Sadras and D. F. 

Calderini. Academic Press. 

Botstein, D., R. L. White, M. Skolnick, and R. W. Davis. 1980. “Construction of a Genetic Linkage 

Map in Man Using Restriction Fragment Length Polymorphisms.” American Journal of 

Human Genetics 32(3):314–31. 

Bouman, B. a. M. 1995. “Crop Modelling and Remote Sensing for Yield Prediction.” Netherlands 

Journal of Agricultural Science 43(2):143–61. doi: 10.18174/njas.v43i2.573. 

Bouman, B. A. M., H. van Keulen, H. H. van Laar, and R. Rabbinge. 1996. “The ‘School of de 

Wit’ Crop Growth Simulation Models: A Pedigree and Historical Overview.” Agricultural 

Systems 52(2):171–98. doi: 10.1016/0308-521X(96)00011-X. 

Boyles, Richard E., Brian K. Pfeiffer, Elizabeth A. Cooper, Kelsey J. Zielinski, Matthew T. Myers, 

William L. Rooney, and Stephen Kresovich. 2017. “Quantitative Trait Loci Mapping of 

Agronomic and Yield Traits in Two Grain Sorghum Biparental Families.” Crop Science 

57(5):2443–56. doi: 10.2135/cropsci2016.12.0988. 

Brown, Patrick J., William L. Rooney, Cleve Franks, and Stephen Kresovich. 2008. “Efficient 

Mapping of Plant Height Quantitative Trait Loci in a Sorghum Association Population 

With Introgressed Dwarfing Genes.” Genetics 180(1):629–37. doi: 

10.1534/genetics.108.092239. 

Browning, Sharon R., and Brian L. Browning. 2007. “Rapid and Accurate Haplotype Phasing and 

Missing-Data Inference for Whole-Genome Association Studies By Use of Localized 

Haplotype Clustering.” The American Journal of Human Genetics 81(5):1084–97. doi: 

10.1086/521987. 

Burks, Payne S., Chris M. Kaiser, Elizabeth M. Hawkins, and Patrick J. Brown. 2015. 

“Genomewide Association for Sugar Yield in Sweet Sorghum.” Crop Science 55(5):2138–

48. doi: 10.2135/cropsci2015.01.0057. 

Byrt, Caitlin S., Christopher P. L. Grof, and Robert T. Furbank. 2011. “C4 Plants as Biofuel 

Feedstocks: Optimising Biomass Production and Feedstock Quality from a Lignocellulosic 

PerspectiveFree Access.” Journal of Integrative Plant Biology 53(2):120–35. doi: 

10.1111/j.1744-7909.2010.01023.x. 

Cai, Enyu, Sriram Baireddy, Changye Yang, Melba Crawford, and Edward J. Delp. 2020. “Deep 

Transfer Learning for Plant Center Localization.” Pp. 62–63 in. 

Cai, Enyu, Sriram Baireddy, Changye Yang, Edward J. Delp, and Melba Crawford. 2021. “Panicle 

Counting in UAV Images for Estimating Flowering Time in Sorghum.” Pp. 6280–83 in 

2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. 



 

 

161 

Campbell, Malachy, Mehdi Momen, Harkamal Walia, and Gota Morota. 2019. “Leveraging 

Breeding Values Obtained from Random Regression Models for Genetic Inference of 

Longitudinal Traits.” The Plant Genome 12(2):180075. doi: 

https://doi.org/10.3835/plantgenome2018.10.0075. 

Campos, H., M. Cooper, J. E. Habben, G. O. Edmeades, and J. R. Schussler. 2004. “Improving 

Drought Tolerance in Maize: A View from Industry.” Field Crops Research 90(1):19–34. 

doi: 10.1016/j.fcr.2004.07.003. 

Carberry, P. S., R. C. Muchow, and G. L. Hammer. 1993. “Modelling Genotypic and 

Environmental Control of Leaf Area Dynamics in Grain Sorghum. II. Individual Leaf 

Level - ScienceDirect.” Field Crops Research 33(3):311–28. 

 

Carpita, Nicholas C., and Maureen C. McCann. 2008. “Maize and Sorghum: Genetic Resources 

for Bioenergy Grasses.” Trends in Plant Science 13(8):415–20. doi: 

10.1016/j.tplants.2008.06.002. 

Casa, R., F. Baret, S. Buis, R. Lopez-Lozano, S. Pascucci, A. Palombo, and H. G. Jones. 2010. 

“Estimation of Maize Canopy Properties from Remote Sensing by Inversion of 1-D and 4-

D Models.” Precision Agriculture 11(4):319–34. doi: 10.1007/s11119-010-9162-9. 

Casto, Anna L., Ashley J. Mattison, Sara N. Olson, Manish Thakran, William L. Rooney, and John 

E. Mullet. 2019. “Maturity2, a Novel Regulator of Flowering Time in Sorghum Bicolor, 

Increases Expression of SbPRR37 and SbCO in Long Days Delaying Flowering.” PLOS 

ONE 14(4):e0212154. doi: 10.1371/journal.pone.0212154. 

Castro, Fernanda Maria Rodrigues, Adriano Teodoro Bruzi, José Airton Rodrigues Nunes, Rafael 

Augusto Costa Parrella, Gabrielle Maria Romeiro Lombardi, Carlos Juliano Brant 

Albuquerque, and Maurício Lopes. 2015. “Agronomic and Energetic Potential of Biomass 

Sorghum Genotypes.” American Journal of Plant Sciences 06(11):1862. doi: 

10.4236/ajps.2015.611187. 

Chapman, S. C., M. Cooper, D. G. Butler, and R. G. Henzell. 2000. “Genotype by Environment 

Interactions Affecting Grain Sorghum. I. Characteristics That Confound Interpretation of 

Hybrid Yield.” Australian Journal of Agricultural Research 51(2):197–208. doi: 

10.1071/ar99020. 

Chapman, S. C., M. Cooper, G. L. Hammer, and D. G. Butler. 2000. “Genotype by Environment 

Interactions Affecting Grain Sorghum. II. Frequencies of Different Seasonal Patterns of 

Drought Stress Are Related to Location Effects on Hybrid Yields.” Australian Journal of 

Agricultural Research 51(2):209–22. doi: 10.1071/ar99021. 

Chapman, S. C., G. L. Hammer, D. G. Butler, and M. Cooper. 2000. “Genotype by Environment 

Interactions Affecting Grain Sorghum. III. Temporal Sequences and Spatial Patterns in the 

Target Population of Environments.” Australian Journal of Agricultural Research 

51(2):223–34. doi: 10.1071/ar99022. 



 

 

162 

Chapman, Scott C. 2008. “Use of Crop Models to Understand Genotype by Environment 

Interactions for Drought in Real-World and Simulated Plant Breeding Trials.” Euphytica 

161(1–2):195–208. doi: 10.1007/s10681-007-9623-z. 

Chapman, Scott, Mark Cooper, Dean Podlich, and Graeme Hammer. 2003. “Evaluating Plant 

Breeding Strategies by Simulating Gene Action and Dryland Environment Effects.” 

Agronomy Journal 95(1):99–113. doi: 10.2134/agronj2003.9900. 

Charles-Edwards, D. A. 1982. “Physiological Determinants of Crop Growth.” 25. 

 

Chehab, E. Wassim, Elizabeth Eich, and Janet Braam. 2009. “Thigmomorphogenesis: A Complex 

Plant Response to Mechano-Stimulation.” Journal of Experimental Botany 60(1):43–56. 

doi: 10.1093/jxb/ern315. 

Chen, Yuhao. 2019. “ESTIMATING PLANT PHENOTYPIC TRAITS FROM RGB IMAGERY.” 

thesis, Purdue University Graduate School. 

Chen, Yuhao, Sriram Baireddy, Enyu Cai, Changye Yang, and Edward J. Delp. 2019. “Leaf 

Segmentation by Functional Modeling.” Pp. 0–0 in. 

Chen, Yuhao, Javier Ribera, Christopher Boomsma, and Edward Delp. 2017. “Locating Crop Plant 

Centers From UAV-Based RGB Imagery.” Pp. 2030–37 in. 

Chen, Yuhao, Javier Ribera, Christopher Boomsma, and Edward J. Delp. 2017. “Plant Leaf 

Segmentation for Estimating Phenotypic Traits.” Pp. 3884–88 in 2017 IEEE International 

Conference on Image Processing (ICIP). 

Chen, Yuhao, Javier Ribera, and Edward J. Delp. 2018. “Estimating Plant Centers Using A Deep 

Binary Classifier.” Pp. 105–8 in 2018 IEEE Southwest Symposium on Image Analysis and 

Interpretation (SSIAI). 

Chenu, K., E. J. Van Oosterom, G. McLean, K. S. Deifel, A. Fletcher, G. Geetika, A. Tirfessa, E. 

S. Mace, D. R. Jordan, R. Sulman, and G. L. Hammer. 2018. “Integrating Modelling and 

Phenotyping Approaches to Identify and Screen Complex Traits: Transpiration Efficiency 

in Cereals.” Journal of Experimental Botany 69(13):3181–94. doi: 10.1093/jxb/ery059. 

 

Chenu, Karine, Scott C. Chapman, Graeme L. Hammer, Greg Mclean, Halim Ben Haj Salah, and 

François Tardieu. 2008. “Short-Term Responses of Leaf Growth Rate to Water Deficit 

Scale up to Whole-Plant and Crop Levels: An Integrated Modelling Approach in Maize.” 

Plant, Cell & Environment 31(3):378–91. doi: 10.1111/j.1365-3040.2007.01772.x. 

 

Childs, K. L., F. R. Miller, M. M. Cordonnier-Pratt, L. H. Pratt, P. W. Morgan, and J. E. Mullet. 

1997. “The Sorghum Photoperiod Sensitivity Gene, Ma3, Encodes a Phytochrome B.” 

Plant Physiology 113(2):611–19. doi: 10.1104/pp.113.2.611. 

 



 

 

163 

Cho, Young Yeol, and Jung Eek Son. 2007. “Estimation of Leaf Number and Leaf Area of 

Hydroponic Pak-Choi Plants (<Emphasis Type="Italic">Brassica Campestns</Emphasis> 

Ssp,<Emphasis Type="Italic">chinensis</Emphasis>) Using Growing Degree-Days.” 

Journal of Plant Biology 50(1):8. doi: 10.1007/BF03030593. 

Chu, Tianxing, Michael J. Starek, Michael J. Brewer, Seth C. Murray, and Luke S. Pruter. 2018. 

“Characterizing Canopy Height with UAS Structure-from-Motion Photogrammetry—

Results Analysis of a Maize Field Trial with Respect to Multiple Factors.” Remote Sensing 

Letters 9(8):753–62. doi: 10.1080/2150704X.2018.1475771. 

Ciampitti, Ignacio A., and P. V. Vara Prasad. 2020. Sorghum: State of the Art and Future 

Perspectives. John Wiley & Sons. 

Clerget, B., M. Dingkuhn, E. Gozé, H. F. W. Rattunde, and B. Ney. 2008. “Variability of 

Phyllochron, Plastochron and Rate of Increase in Height in Photoperiod-Sensitive 

Sorghum Varieties.” Annals of Botany 101(4):579–94. doi: 10.1093/aob/mcm327. 

Cobb, Joshua N., Genevieve DeClerck, Anthony Greenberg, Randy Clark, and Susan McCouch. 

2013. “Next-Generation Phenotyping: Requirements and Strategies for Enhancing Our 

Understanding of Genotype–Phenotype Relationships and Its Relevance to Crop 

Improvement.” Theoretical and Applied Genetics 126(4):867–87. doi: 10.1007/s00122-

013-2066-0. 

Cobb, Joshua N., Roselyne U. Juma, Partha S. Biswas, Juan D. Arbelaez, Jessica Rutkoski, Gary 

Atlin, Tom Hagen, Michael Quinn, and Eng Hwa Ng. 2019. “Enhancing the Rate of 

Genetic Gain in Public-Sector Plant Breeding Programs: Lessons from the Breeder’s 

Equation.” Theoretical and Applied Genetics 132(3):627–45. doi: 10.1007/s00122-019-

03317-0. 

Cockram, James, Jon White, Diana L. Zuluaga, David Smith, Jordi Comadran, Malcolm Macaulay, 

Zewei Luo, Mike J. Kearsey, Peter Werner, David Harrap, Chris Tapsell, Hui Liu, Peter E. 

Hedley, Nils Stein, Daniela Schulte, Burkhard Steuernagel, David F. Marshall, William T. 

B. Thomas, Luke Ramsay, Ian Mackay, David J. Balding, The AGOUEB Consortium, 

Robbie Waugh, and Donal M. O’Sullivan. 2010. “Genome-Wide Association Mapping to 

Candidate Polymorphism Resolution in the Unsequenced Barley Genome.” Proceedings 

of the National Academy of Sciences 107(50):21611–16. doi: 10.1073/pnas.1010179107. 

Condon, A. G., R. A. Richards, G. J. Rebetzke, and G. D. Farquhar. 2002. “Improving Intrinsic 

Water-Use Efficiency and Crop Yield.” Crop Science 42(1):122–31. doi: 

10.2135/cropsci2002.1220. 

Cooper, JP. 1970. “Potential Production and Energy Conversion in Temperate and Tropical 

Grasses.” Herb Abstr 40:1–15. 

  



 

 

164 

Cooper, Mark, Carlos D. Messina, Dean Podlich, L. Radu Totir, Andrew Baumgarten, Neil J. 

Hausmann, Deanne Wright, Geoffrey Graham, Mark Cooper, Carlos D. Messina, Dean 

Podlich, L. Radu Totir, Andrew Baumgarten, Neil J. Hausmann, Deanne Wright, and 

Geoffrey Graham. 2014. “Predicting the Future of Plant Breeding: Complementing 

Empirical Evaluation with Genetic Prediction.” Crop and Pasture Science 65(4):311–36. 

doi: 10.1071/CP14007. 

Cooper, Mark, Tom Tang, Carla Gho, Tim Hart, Graeme Hammer, and Carlos Messina. 2020. 

“Integrating Genetic Gain and Gap Analysis to Predict Improvements in Crop Productivity.” 

Crop Science 60(2):582–604. doi: 10.1002/csc2.20109. 

Cooper, Mark, Frank Technow, Carlos Messina, Carla Gho, and L. Radu Totir. 2016. “Use of Crop 

Growth Models with Whole-Genome Prediction: Application to a Maize 

Multienvironment Trial.” Crop Science 56(5):2141–56. doi: 10.2135/cropsci2015.08.0512. 

Crasta, O. R., W. W. Xu, D. T. Rosenow, J. Mullet, and H. T. Nguyen. 1999. “Mapping of Post-

Flowering Drought Resistance Traits in Grain Sorghum: Association between QTLs 

Influencing Premature Senescence and Maturity.” Molecular and General Genetics MGG 

262(3):579–88. doi: 10.1007/s004380051120. 

Crossa, José, Paulino Pérez-Rodríguez, Jaime Cuevas, Osval Montesinos-López, Diego Jarquín, 

Gustavo de los Campos, Juan Burgueño, Juan M. González-Camacho, Sergio Pérez-

Elizalde, Yoseph Beyene, Susanne Dreisigacker, Ravi Singh, Xuecai Zhang, Manje Gowda, 

Manish Roorkiwal, Jessica Rutkoski, and Rajeev K. Varshney. 2017. “Genomic Selection 

in Plant Breeding: Methods, Models, and Perspectives.” Trends in Plant Science 

22(11):961–75. doi: 10.1016/j.tplants.2017.08.011. 

Cruet-Burgos, Clara, Sarah Cox, Brian P. Ioerger, Ramasamy Perumal, Zhenbin Hu, Thomas J. 

Herald, Scott R. Bean, and Davina H. Rhodes. 2020. “Advancing Provitamin A 

Biofortification in Sorghum: Genome-Wide Association Studies of Grain Carotenoids in 

Global Germplasm.” The Plant Genome 13(1):e20013. doi: 10.1002/tpg2.20013. 

Cuevas, Hugo E., and Louis K. Prom. 2020. “Evaluation of Genetic Diversity, Agronomic Traits, 

and Anthracnose Resistance in the NPGS Sudan Sorghum Core Collection.” BMC 

Genomics 21(1):88. doi: 10.1186/s12864-020-6489-0. 

Cuevas, Hugo E., Chengbo Zhou, Haibao Tang, Prashant P. Khadke, Sayan Das, Yann-Rong Lin, 

Zhengxiang Ge, Thomas Clemente, Hari D. Upadhyaya, C. Thomas Hash, and Andrew H. 

Paterson. 2016. “The Evolution of Photoperiod-Insensitive Flowering in Sorghum, A 

Genomic Model for Panicoid Grasses.” Molecular Biology and Evolution 33(9):2417–28. 

doi: 10.1093/molbev/msw120. 

Curt, M. D., J. Fernandez, and M. Martinez. 1998. “Productivity and Radiation Use Efficiency of 

Sweet Sorghum (Sorghum Bicolor (L.) Moench) Cv. Keller in Central Spain.” Biomass 

and Bioenergy 14(2):169–78. doi: 10.1016/S0961-9534(97)10025-3. 

 



 

 

165 

Dale, Laura M., André Thewis, Christelle Boudry, Ioan Rotar, Pierre Dardenne, Vincent Baeten, 

and Juan A. Fernández Pierna. 2013. “Hyperspectral Imaging Applications in Agriculture 

and Agro-Food Product Quality and Safety Control: A Review.” Applied Spectroscopy 

Reviews 48(2):142–59. doi: 10.1080/05704928.2012.705800. 

Deery, David, Jose Jimenez-Berni, Hamlyn Jones, Xavier Sirault, and Robert Furbank. 2014. 

“Proximal Remote Sensing Buggies and Potential Applications for Field-Based 

Phenotyping.” Agronomy 4(3):349–79. doi: 10.3390/agronomy4030349. 

Demarez, Valérie, Sylvie Duthoit, Frédéric Baret, Marie Weiss, and Gérard Dedieu. 2008. 

“Estimation of Leaf Area and Clumping Indexes of Crops with Hemispherical 

Photographs.” Agricultural and Forest Meteorology 148(4):644–55. doi: 

10.1016/j.agrformet.2007.11.015. 

Desta, Zeratsion Abera, and Rodomiro Ortiz. 2014. “Genomic Selection: Genome-Wide 

Prediction in Plant Improvement.” Trends in Plant Science 19(9):592–601. doi: 

10.1016/j.tplants.2014.05.006. 

DeWit, C. T. de. 1965. Photosynthesis of Leaf Canopies. 663. Wageningen: Pudoc. 

 

Dharmasiri, Nihal, Sunethra Dharmasiri, Dolf Weijers, Esther Lechner, Masashi Yamada, 

Lawrence Hobbie, Jasmin S. Ehrismann, Gerd Jürgens, and Mark Estelle. 2005. “Plant 

Development Is Regulated by a Family of Auxin Receptor F Box Proteins.” Developmental 

Cell 9(1):109–19. doi: 10.1016/j.devcel.2005.05.014. 

Diepen, C. A. van, J. Wolf, H. van Keulen, and C. Rappoldt. 1989. “WOFOST: A Simulation 

Model of Crop Production.” Soil Use and Management 5(1):16–24. doi: 10.1111/j.1475-

2743.1989.tb00755.x. 

Dreccer, M. F., M. van Oijen, A. H. C. M. Schapendonk, C. S. Pot, and R. Rabbinge. 2000. 

“Dynamics of Vertical Leaf Nitrogen Distribution in a Vegetative Wheat Canopy. Impact 

on Canopy Photosynthesis.” Annals of Botany 86(4):821–31. doi: 10.1006/anbo.2000.1244. 

Duan, Si-Bo, Zhao-Liang Li, Hua Wu, Bo-Hui Tang, Lingling Ma, Enyu Zhao, and Chuanrong Li. 

2014. “Inversion of the PROSAIL Model to Estimate Leaf Area Index of Maize, Potato, 

and Sunflower Fields from Unmanned Aerial Vehicle Hyperspectral Data.” International 

Journal of Applied Earth Observation and Geoinformation 26:12–20. doi: 

10.1016/j.jag.2013.05.007. 

 

Duan, T., S. C. Chapman, E. Holland, G. J. Rebetzke, Y. Guo, and B. Zheng. 2016. “Dynamic 

Quantification of Canopy Structure to Characterize Early Plant Vigour in Wheat 

Genotypes.” Journal of Experimental Botany 67(15):4523–34. doi: 10.1093/jxb/erw227. 

Duan, T., S. C. Chapman, Y. Guo, and B. Zheng. 2017. “Dynamic Monitoring of NDVI in Wheat 

Agronomy and Breeding Trials Using an Unmanned Aerial Vehicle.” Field Crops 

Research 210:71–80. doi: 10.1016/j.fcr.2017.05.025. 

 



 

 

166 

Duncan, W. G. 1971. “Leaf Angles, Leaf Area, and Canopy Photosynthesis 1.” Crop Science 

11(4):482–85. doi: 10.2135/cropsci1971.0011183X001100040006x. 

El Mannai, Yousra, Tariq Shehzad, and Kazutoshi Okuno. 2011. “Variation in Flowering Time in 

Sorghum Core Collection and Mapping of QTLs Controlling Flowering Time by 

Association Analysis.” Genetic Resources and Crop Evolution 58(7):983. doi: 

10.1007/s10722-011-9737-y. 

Elshire, Robert J., Jeffrey C. Glaubitz, Qi Sun, Jesse A. Poland, Ken Kawamoto, Edward S. 

Buckler, and Sharon E. Mitchell. 2011. “A Robust, Simple Genotyping-by-Sequencing 

(GBS) Approach for High Diversity Species.” PLOS ONE 6(5):e19379. doi: 

10.1371/journal.pone.0019379. 

Escolà, Alexandre, Santiago Planas, Joan Ramon Rosell, Jesús Pomar, Ferran Camp, Francesc 

Solanelles, Felip Gracia, Jordi Llorens, and Emilio Gil. 2011. “Performance of an 

Ultrasonic Ranging Sensor in Apple Tree Canopies.” Sensors 11(3):2459–77. doi: 

10.3390/s110302459. 

Esechie, H. A., J. W. Maranville, and W. M. Ross. 1977. “Relationship of Stalk Morphology and 

Chemical Composition to Lodging Resistance in Sorghum1.” Crop Science 

17(4):cropsci1977.0011183X001700040032x. doi: 

10.2135/cropsci1977.0011183X001700040032x. 

Falster, Daniel S., and Mark Westoby. 2003. “Leaf Size and Angle Vary Widely across Species: 

What Consequences for Light Interception?” New Phytologist 158(3):509–25. doi: 

10.1046/j.1469-8137.2003.00765.x. 

Farquhar, G. D., J. R. Ehleringer, and K. T. Hubick. 1989. “Carbon Isotope Discrimination and 

Photosynthesis.” Annual Review of Plant Physiology and Plant Molecular Biology 

40(1):503–37. doi: 10.1146/annurev.pp.40.060189.002443. 

Felderhoff, T. J., S. C. Murray, P. E. Klein, A. Sharma, M. T. Hamblin, S. Kresovich, W. Vermerris, 

and W. L. Rooney. 2012. “QTLs for Energy-Related Traits in a Sweet × Grain Sorghum 

[Sorghum Bicolor (L.) Moench] Mapping Population.” Crop Science 52(5):2040–49. doi: 

10.2135/cropsci2011.11.0618. 

Feltus, F. A., G. E. Hart, K. F. Schertz, A. M. Casa, S. Kresovich, S. Abraham, P. E. Klein, P. J. 

Brown, and A. H. Paterson. 2006. “Alignment of Genetic Maps and QTLs between Inter- 

and Intra-Specific Sorghum Populations.” Theoretical and Applied Genetics 112(7):1295. 

doi: 10.1007/s00122-006-0232-3. 

Ferraris, R. 1981. “Early Assessment of Sweet Sorghum as an Agro-Industrial Crop. I. Varietal 

Evaluation.” Australian Journal of Experimental Agriculture 21(108):75–82. doi: 

10.1071/ea9810075. 

 



 

 

167 

Fernandes, Samuel B., Kaio O. G. Dias, Daniel F. Ferreira, and Patrick J. Brown. 2018. “Efficiency 

of Multi-Trait, Indirect, and Trait-Assisted Genomic Selection for Improvement of 

Biomass Sorghum.” Theoretical and Applied Genetics 131(3):747–55. doi: 

10.1007/s00122-017-3033-y. 

Fiedler, Karin, Wubishet A. Bekele, Ria Duensing, Susann Gründig, Rod Snowdon, Hartmut 

Stützel, Arndt Zacharias, and Ralf Uptmoor. 2014. “Genetic Dissection of Temperature-

Dependent Sorghum Growth during Juvenile Development.” Theoretical and Applied 

Genetics 127(9):1935–48. doi: 10.1007/s00122-014-2350-7. 

Fiedler, Karin, Wubishet A. Bekele, Claudia Matschegewski, Rod Snowdon, Silke Wieckhorst, 

Arndt Zacharias, and Ralf Uptmoor. 2016. “Cold Tolerance during Juvenile Development 

in Sorghum: A Comparative Analysis by Genomewide Association and Linkage Mapping.” 

Plant Breeding 135(5):598–606. doi: 10.1111/pbr.12394. 

Furbank, Robert T. 2009. “Plant Phenomics: From Gene to Form and Function.” Funct. Plant Biol. 

2009 10–11. 

Furbank, Robert T., Jose A. Jimenez-Berni, Barbara George-Jaeggli, Andries B. Potgieter, and 

David M. Deery. 2019. “Field Crop Phenomics: Enabling Breeding for Radiation Use 

Efficiency and Biomass in Cereal Crops.” New Phytologist 223(4):1714–27. doi: 

10.1111/nph.15817. 

Furbank, Robert T., and Mark Tester. 2011. “Phenomics – Technologies to Relieve the 

Phenotyping Bottleneck.” Trends in Plant Science 16(12):635–44. doi: 

10.1016/j.tplants.2011.09.005. 

Gelli, Malleswari, Sharon E. Mitchell, Kan Liu, Thomas E. Clemente, Donald P. Weeks, Chi 

Zhang, David R. Holding, and Ismail M. Dweikat. 2016. “Mapping QTLs and Association 

of Differentially Expressed Gene Transcripts for Multiple Agronomic Traits under 

Different Nitrogen Levels in Sorghum.” BMC Plant Biology 16(1):16. doi: 

10.1186/s12870-015-0696-x. 

George-Jaeggli, B., D. R. Jordan, E. J. van Oosterom, I. J. Broad, and G. L. Hammer. 2013. 

“Sorghum Dwarfing Genes Can Affect Radiation Capture and Radiation Use Efficiency.” 

Field Crops Research 149:283–90. doi: 10.1016/j.fcr.2013.05.005. 

George-Jaeggli, B., D. R. Jordan, E. J. van Oosterom, and G. L. Hammer. 2011. “Decrease in 

Sorghum Grain Yield Due to the Dw3 Dwarfing Gene Is Caused by Reduction in Shoot 

Biomass.” Field Crops Research 124(2):231–39. doi: 10.1016/j.fcr.2011.07.005. 

Gill, John R., Payne S. Burks, Scott A. Staggenborg, Gary N. Odvody, Ron W. Heiniger, 

Bisoondat Macoon, Ken J. Moore, Michael Barrett, and William L. Rooney. 2014. “Yield 

Results and Stability Analysis from the Sorghum Regional Biomass Feedstock Trial.” 

BioEnergy Research 7(3):1026–34. doi: 10.1007/s12155-014-9445-5. 

 



 

 

168 

Girma, Gezahegn, Habte Nida, Amare Seyoum, Moges Mekonen, Amare Nega, Dagnachew Lule, 

Kebede Dessalegn, Alemnesh Bekele, Adane Gebreyohannes, Adedayo Adeyanju, Alemu 

Tirfessa, Getachew Ayana, Taye Taddese, Firew Mekbib, Ketema Belete, Tesfaye Tesso, 

Gebisa Ejeta, and Tesfaye Mengiste. 2019. “A Large-Scale Genome-Wide Association 

Analyses of Ethiopian Sorghum Landrace Collection Reveal Loci Associated With 

Important Traits.” Frontiers in Plant Science 10. doi: 10.3389/fpls.2019.00691. 

Goodstein, David M., Shengqiang Shu, Russell Howson, Rochak Neupane, Richard D. Hayes, Joni 

Fazo, Therese Mitros, William Dirks, Uffe Hellsten, Nicholas Putnam, and Daniel S. 

Rokhsar. 2012. “Phytozome: A Comparative Platform for Green Plant Genomics.” Nucleic 

Acids Research 40(Database issue):D1178–86. doi: 10.1093/nar/gkr944. 

Gouache, David, Katia Beauchêne, Agathe Mini, Antoine Fournier, Benoit de Solan, Fred Baret, 

and Alexis Comar. 2016. “Applying Remote Sensing Expertise to Crop Improvement: 

Progress and Challenges to Scale up High Throughput Field Phenotyping from Research 

to Industry.” P. 986604 in Autonomous Air and Ground Sensing Systems for Agricultural 

Optimization and Phenotyping. Vol. 9866. International Society for Optics and 

Photonics. 

Goudriaan, J. 1982. “Potential Production Processes.” Pp. 98–113 in Simulation of plant growth 

and crop production. Pudoc. 

Griebel, Stefanie, Adeyanju Adedayo, and Mitchell R. Tuinstra. 2021. “Genetic Diversity for 

Starch Quality and Alkali Spreading Value in Sorghum.” The Plant Genome 14(1):e20067. 

doi: 10.1002/tpg2.20067. 

Großkinsky, Dominik K., Jesper Svensgaard, Svend Christensen, and Thomas Roitsch. 2015. 

“Plant Phenomics and the Need for Physiological Phenotyping across Scales to Narrow the 

Genotype-to-Phenotype Knowledge Gap.” Journal of Experimental Botany 66(18):5429–

40. doi: 10.1093/jxb/erv345. 

Guan, Yan-an, Hai-lian Wang, Ling Qin, Hua-wen Zhang, Yan-bing Yang, Feng-ju Gao, Ru-yu 

Li, and Hong-gang Wang. 2011. “QTL Mapping of Bio-Energy Related Traits in Sorghum.” 

Euphytica 182(3):431. doi: 10.1007/s10681-011-0528-5. 

Guindo, Diarah, Niaba Teme, Michel Vaksmann, Mohamed Doumbia, Ingrid Vilmus, Baptiste 

Guitton, Aliou Sissoko, Christian Mestres, Fabrice Davrieux, Geneviève Fliedel, 

Mamoutou Kouressy, Brigitte Courtois, and Jean-Francois Rami. 2019. “Quantitative Trait 

Loci for Sorghum Grain Morphology and Quality Traits: Toward Breeding for a 

Traditional Food Preparation of West-Africa.” Journal of Cereal Science 85:256–72. doi: 

10.1016/j.jcs.2018.11.012. 

Guo, Wei, Bangyou Zheng, Tao Duan, Tokihiro Fukatsu, Scott Chapman, and Seishi Ninomiya. 

2017. “EasyPCC: Benchmark Datasets and Tools for High-Throughput Measurement of 

the Plant Canopy Coverage Ratio under Field Conditions.” Sensors 17(4):798. doi: 

10.3390/s17040798. 



 

 

169 

Habib, Ayman, Tian Zhou, Ali Masjedi, Zhou Zhang, John Evan Flatt, and Melba Crawford. 2018. 

“Boresight Calibration of GNSS/INS-Assisted Push-Broom Hyperspectral Scanners on 

UAV Platforms.” IEEE Journal of Selected Topics in Applied Earth Observations and 

Remote Sensing 11(5):1734–49. doi: 10.1109/JSTARS.2018.2813263. 

Habyarimana, Ephrem, Paolo De Franceschi, Sezai Ercisli, Faheem Shehzad Baloch, and Michela 

Dall’Agata. 2020. “Genome-Wide Association Study for Biomass Related Traits in a Panel 

of Sorghum Bicolor and S. Bicolor × S. Halepense Populations.” Frontiers in Plant Science 

11:1796. doi: 10.3389/fpls.2020.551305. 

Hamby, R. Keith, and Elizabeth A. Zimmer. 1988. “Ribosomal RNA Sequences for Inferring 

Phylogeny within the Grass Family (Poaceae).” Plant Systematics and Evolution 

160(1):29–37. doi: 10.1007/BF00936707. 

Hammer, G. L., P. S. Carberry, and R. C. Muchow. 1993. “Modelling Genotypic and 

Environmental Control of Leaf Area Dynamics in Grain Sorghum. I. Whole Plant Level.” 

Field Crops Research 33(3):293–310. doi: 10.1016/0378-4290(93)90087-4. 

Hammer, G. L., and R. C. Muchow. 1994. “Assessing Climatic Risk to Sorghum Production in 

Water-Limited Subtropical Environments I. Development and Testing of a Simulation 

Model - ScienceDirect.” Field Crops Research 36(3):221–34. 

Hammer, Graeme L., Zhanshan Dong, Greg McLean, Al Doherty, Carlos Messina, Jeff 

Schussler, Chris Zinselmeier, Steve Paszkiewicz, and Mark Cooper. 2009. “Can Changes 

in Canopy and/or Root System Architecture Explain Historical Maize Yield Trends in the 

U.S. Corn Belt?” Crop Science 49(1):299–312. doi: 10.2135/cropsci2008.03.0152. 

Hammer, Graeme L., Greg McLean, Scott Chapman, Bangyou Zheng, Al Doherty, Matthew T. 

Harrison, Erik van Oosterom, and David Jordan. 2014. “Crop Design for Specific 

Adaptation in Variable Dryland Production Environments.” Crop and Pasture Science 

65(7):614–26. doi: 10.1071/CP14088. 

Hammer, Graeme L., Erik van Oosterom, Greg McLean, Scott C. Chapman, Ian Broad, Peter 

Harland, and Russell C. Muchow. 2010. “Adapting APSIM to Model the Physiology and 

Genetics of Complex Adaptive Traits in Field Crops.” Journal of Experimental Botany 

61(8):2185–2202. doi: 10.1093/jxb/erq095. 

Han, Yucui, Peng Lv, Shenglin Hou, Suying Li, Guisu Ji, Xue Ma, Ruiheng Du, and Guoqing Liu. 

2015. “Combining Next Generation Sequencing with Bulked Segregant Analysis to Fine 

Map a Stem Moisture Locus in Sorghum (Sorghum Bicolor L. Moench).” PLOS ONE 

10(5):e0127065. doi: 10.1371/journal.pone.0127065. 

Harlan, J. R., and J. M. J. de Wet. 1972. “A Simplified Classification of Cultivated Sorghum1.” 

Crop Science 12(2):cropsci1972.0011183X001200020005x. doi: 

10.2135/cropsci1972.0011183X001200020005x. 

 



 

 

170 

Hart, G. E., K. F. Schertz, Y. Peng, and N. H. Syed. 2001. “Genetic Mapping of Sorghum Bicolor 

(L.) Moench QTLs That Control Variation in Tillering and Other Morphological 

Characters.” Theoretical and Applied Genetics 103(8):1232–42. doi: 

10.1007/s001220100582. 

Hasheminasab, Seyyed Meghdad, Tian Zhou, and Ayman Habib. 2020. “GNSS/INS-Assisted 

Structure from Motion Strategies for UAV-Based Imagery over Mechanized Agricultural 

Fields.” Remote Sensing 12(3):351. doi: 10.3390/rs12030351. 

Hasheminasab, Seyyed Meghdad, Tian Zhou, Lisa M. LaForest, and Ayman Habib. 2021. 

“Multiscale Image Matching for Automated Calibration of UAV-Based Frame and Line 

Camera Systems.” IEEE Journal of Selected Topics in Applied Earth Observations and 

Remote Sensing 14:3133–50. doi: 10.1109/JSTARS.2021.3062573. 

Hatfield, Jerry L., and Christian Dold. 2019. “Chapter 1 - Photosynthesis in the Solar Corridor 

System.” Pp. 1–33 in The Solar Corridor Crop System, edited by C. L. Deichman and R. 

J. Kremer. Academic Press. 

Haussmann, B., V. Mahalakshmi, B. Reddy, N. Seetharama, C. Hash, and H. Geiger. 2002. “QTL 

Mapping of Stay-Green in Two Sorghum Recombinant Inbred Populations.” Theoretical 

and Applied Genetics 106(1):133–42. doi: 10.1007/s00122-002-1012-3. 

Hayes, Chad M., Gloria B. Burow, Patrick J. Brown, Carrie Thurber, Zhanguo Xin, and John J. 

Burke. 2015. “Natural Variation in Synthesis and Catabolism Genes Influences Dhurrin 

Content in Sorghum.” The Plant Genome 8(2):plantgenome2014.09.0048. doi: 

10.3835/plantgenome2014.09.0048. 

He, Fangning, Tian Zhou, Weifeng Xiong, Seyyed Meghdad Hasheminnasab, and Ayman Habib. 

2018. “Automated Aerial Triangulation for UAV-Based Mapping.” Remote Sensing 

10(12):1952. doi: 10.3390/rs10121952. 

He, Jiangfeng, Xiaoqing Zhao, André Laroche, Zhen-Xiang Lu, HongKui Liu, and Ziqin Li. 2014. 

“Genotyping-by-Sequencing (GBS), an Ultimate Marker-Assisted Selection (MAS) Tool 

to Accelerate Plant Breeding.” Frontiers in Plant Science 5:484. doi: 

10.3389/fpls.2014.00484. 

He, Jin. 2017. “Conserved Water Use Improves the Yield Performance of Soybean (Glycine Max 

(L.) Merr.) under Drought.” Agricultural Water Management v. 179:236–45. doi: 

10.1016/j.agwat.2016.07.008. 

Higgins, R. H., C. S. Thurber, I. Assaranurak, and P. J. Brown. 2014. “Multiparental Mapping of 

Plant Height and Flowering Time QTL in Partially Isogenic Sorghum Families.” G3 

Genes|Genomes|Genetics 4(9):1593–1602. doi: 10.1534/g3.114.013318. 

Hilley, Josie, Sandra Truong, Sara Olson, Daryl Morishige, and John Mullet. 2016. “Identification 

of Dw1, a Regulator of Sorghum Stem Internode Length.” PLoS ONE 11(3). doi: 

10.1371/journal.pone.0151271. 



 

 

171 

Hirano, Ko, Mayuko Kawamura, Satoko Araki-Nakamura, Haruka Fujimoto, Kozue Ohmae-

Shinohara, Miki Yamaguchi, Akihiro Fujii, Hiroaki Sasaki, Shigemitsu Kasuga, and 

Takashi Sazuka. 2017. “Sorghum DW1 Positively Regulates Brassinosteroid Signaling by 

Inhibiting the Nuclear Localization of BRASSINOSTEROID INSENSITIVE 2.” Scientific 

Reports 7(1):126. doi: 10.1038/s41598-017-00096-w. 

Hoffmeister, D., G. Waldhoff, W. Korres, C. Curdt, and G. Bareth. 2016. “Crop Height Variability 

Detection in a Single Field by Multi-Temporal Terrestrial Laser Scanning.” Precision 

Agriculture 17(3):296–312. 

Holzworth, Dean, N. I. Huth, J. Fainges, H. Brown, E. Zurcher, R. Cichota, S. Verrall, N. I. 

Herrmann, B. Zheng, and V. Snow. 2018. “APSIM Next Generation: Overcoming 

Challenges in Modernising a Farming Systems Model.” Environmental Modelling & 

Software 103:43–51. doi: 10.1016/j.envsoft.2018.02.002. 

Holzworth, Dean P. 2014. “APSIM – Evolution towards a New Generation of Agricultural 

Systems Simulation.” Environmental Modelling & Software v. 62:327–50. doi: 

10.1016/j.envsoft.2014.07.009. 

Hoyos-Villegas, V., J. h. Houx, S. k. Singh, and F. b. Fritschi. 2014. “Ground-Based Digital 

Imaging as a Tool to Assess Soybean Growth and Yield.” Crop Science 54(4):1756–68. 

doi: 10.2135/cropsci2013.08.0540. 

Huang, Xuehui, and Bin Han. 2014. “Natural Variations and Genome-Wide Association Studies 

in Crop Plants.” Annual Review of Plant Biology 65(1):531–51. doi: 10.1146/annurev-

arplant-050213-035715. 

Huang, Xuehui, Yan Zhao, Xinghua Wei, Canyang Li, Ahong Wang, Qiang Zhao, Wenjun Li, 

Yunli Guo, Liuwei Deng, Chuanrang Zhu, Danlin Fan, Yiqi Lu, Qijun Weng, Kunyan Liu, 

Taoying Zhou, Yufeng Jing, Lizhen Si, Guojun Dong, Tao Huang, Tingting Lu, Qi Feng, 

Qian Qian, Jiayang Li, and Bin Han. 2012. “Genome-Wide Association Study of Flowering 

Time and Grain Yield Traits in a Worldwide Collection of Rice Germplasm.” Nature 

Genetics 44(1):32–39. doi: 10.1038/ng.1018. 

Ines, Amor V. M., Narendra N. Das, James W. Hansen, and Eni G. Njoku. 2013. “Assimilation of 

Remotely Sensed Soil Moisture and Vegetation with a Crop Simulation Model for Maize 

Yield Prediction.” Remote Sensing of Environment 138:149–64. doi: 

10.1016/j.rse.2013.07.018. 

J. R. Williams, C. A. Jones, J. R. Kiniry, and D. A. Spanel. 1989. “The EPIC Crop Growth Model.” 

Transactions of the ASAE 32(2):0497–0511. doi: 10.13031/2013.31032. 

Janick, Jules. 2010. Plant Breeding Reviews. John Wiley & Sons. 

Jiang, Rong, Wentian He, Wei Zhou, Yunpeng Hou, J. Y. Yang, and Ping He. 2019. “Exploring 

Management Strategies to Improve Maize Yield and Nitrogen Use Efficiency in Northeast 

China Using the DNDC and DSSAT Models.” Computers and Electronics in Agriculture 

166:104988. doi: 10.1016/j.compag.2019.104988. 



 

 

172 

Jimenez-Berni, Jose A., David M. Deery, Pablo Rozas-Larraondo, Anthony (Tony) G. Condon, 

Greg J. Rebetzke, Richard A. James, William D. Bovill, Robert T. Furbank, and Xavier 

R. R. Sirault. 2018. “High Throughput Determination of Plant Height, Ground Cover, and 

Above-Ground Biomass in Wheat with LiDAR.” Frontiers in Plant Science 9. doi: 

10.3389/fpls.2018.00237. 

Jonas, Elisabeth, and Dirk-Jan de Koning. 2013. “Does Genomic Selection Have a Future in Plant 

Breeding?” Trends in Biotechnology 31(9):497–504. doi: 10.1016/j.tibtech.2013.06.003. 

Jones, J. W., G. Hoogenboom, C. H. Porter, K. J. Boote, W. D. Batchelor, L. A. Hunt, P. W. 

Wilkens, U. Singh, A. J. Gijsman, and J. T. Ritchie. 2003. “The DSSAT Cropping System 

Model.” European Journal of Agronomy 18(3–4):235–65. doi: 10.1016/S1161-

0301(02)00107-7. 

Jones, James W., John M. Antle, Bruno Basso, Kenneth J. Boote, Richard T. Conant, Ian Foster, 

H. Charles J. Godfray, Mario Herrero, Richard E. Howitt, Sander Janssen, Brian A. Keating, 

Rafael Munoz-Carpena, Cheryl H. Porter, Cynthia Rosenzweig, and Tim R. Wheeler. 2017. 

“Brief History of Agricultural Systems Modeling.” Agricultural Systems 155:240–54. doi: 

10.1016/j.agsy.2016.05.014. 

Jordan, D. R., C. H. Hunt, A. W. Cruickshank, A. K. Borrell, and R. G. Henzell. 2012. “The 

Relationship Between the Stay-Green Trait and Grain Yield in Elite Sorghum Hybrids 

Grown in a Range of Environments.” Crop Science 52(3):1153–61. doi: 

10.2135/cropsci2011.06.0326. 

Kapanigowda, Mohankumar H., William A. Payne, William L. Rooney, John E. Mullet, Maria 

Balota, Mohankumar H. Kapanigowda, William A. Payne, William L. Rooney, John E. 

Mullet, and Maria Balota. 2014. “Quantitative Trait Locus Mapping of the Transpiration 

Ratio Related to Preflowering Drought Tolerance in Sorghum (Sorghum Bicolor).” 

Functional Plant Biology 41(11):1049–65. doi: 10.1071/FP13363. 

Karami, Azam, Melba Crawford, and Edward J. Delp. 2020a. “A Weakly Supervised Deep 

Learning Approach for Plant Center Detection and Counting.” Pp. 1584–87 in IGARSS 

2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium. 

Karami, Azam, Melba Crawford, and Edward J. Delp. 2020b. “Automatic Plant Counting and 

Location Based on a Few-Shot Learning Technique.” IEEE Journal of Selected Topics in 

Applied Earth Observations and Remote Sensing 13:5872–86. doi: 

10.1109/JSTARS.2020.3025790. 

Karami, Azam, Karoll Quijano, and Melba Crawford. 2021. “Advancing Tassel Detection and 

Counting: Annotation and Algorithms.” Remote Sensing 13(15):2881. doi: 

10.3390/rs13152881. 

Kasampalis, Dimitrios A., Thomas K. Alexandridis, Chetan Deva, Andrew Challinor, Dimitrios 

Moshou, and Georgios Zalidis. 2018. “Contribution of Remote Sensing on Crop Models: 

A Review.” Journal of Imaging 4(4):52. doi: 10.3390/jimaging4040052. 



 

 

173 

Kavuluko, Jacinta, Magdaline Kibe, Irine Sugut, Willy Kibet, Joel Masanga, Sylvia Mutinda, Mark 

Wamalwa, Titus Magomere, Damaris Odeny, and Steven Runo. 2021. “GWAS Provides 

Biological Insights into Mechanisms of the Parasitic Plant (Striga) Resistance in Sorghum.” 

BMC Plant Biology 21(1):392. doi: 10.1186/s12870-021-03155-7. 

Keating, B. A., M. J. Robertson, R. C. Muchow, and N. I. Huth. 1999. “Modelling Sugarcane 

Production Systems I. Development and Performance of the Sugarcane Module.” Field 

Crops Research 61(3):253–71. doi: 10.1016/S0378-4290(98)00167-1. 

Keating, B. A., P. S. Carberry, G. L. Hammer, M. E. Probert, M. J. Robertson, D. Holzworth, N. 

I. Huth, J. N. G. Hargreaves, H. Meinke, Z. Hochman, G. McLean, K. Verburg, V. Snow, 

J. P. Dimes, M. Silburn, E. Wang, S. Brown, K. L. Bristow, S. Asseng, S. Chapman, R. L. 

McCown, D. M. Freebairn, and C. J. Smith. 2003. “An Overview of APSIM, a Model 

Designed for Farming Systems Simulation.” European Journal of Agronomy 18(3–4):267–

88. doi: 10.1016/S1161-0301(02)00108-9. 

Kebede, H., P. K. Subudhi, D. T. Rosenow, and H. T. Nguyen. 2001. “Quantitative Trait Loci 

Influencing Drought Tolerance in Grain Sorghum (Sorghum Bicolor L. Moench).” 

Theoretical and Applied Genetics 103(2):266–76. doi: 10.1007/s001220100541. 

Kenga, R., A. Tenkouano, S. C. Gupta, and S. O. Alabi. 2006. “Genetic and Phenotypic 

Association between Yield Components in Hybrid Sorghum (Sorghum Bicolor (L.) 

Moench) Populations.” Euphytica 150(3):319–26. doi: 10.1007/s10681-006-9108-5. 

Kim, Hae Koo, Delphine Luquet, Erik van Oosterom, Michael Dingkuhn, and Graeme Hammer. 

2010. “Regulation of Tillering in Sorghum: Genotypic Effects.” Annals of Botany 

106(1):69–78. doi: 10.1093/aob/mcq080. 

Kiniry, J. R., C. A. Jones, J. C. O’toole, R. Blanchet, M. Cabelguenne, and D. A. Spanel. 1989. 

“Radiation-Use Efficiency in Biomass Accumulation Prior to Grain-Filling for Five Grain-

Crop Species.” Field Crops Research 20(1):51–64. doi: 10.1016/0378-4290(89)90023-3. 

Konare, D., S. Pierre, J. Y. Weng, and E. Morand. 2003. “Real-Time Image Processing for 

Remote Sensing.” Pp. 699–702 vol.2 in CCECE 2003 - Canadian Conference on 

Electrical and Computer Engineering. Toward a Caring and Humane Technology (Cat. 

No.03CH37436). Vol. 2. 

Kong, Wenqian, Hui Guo, Valorie H. Goff, Tae-Ho Lee, Changsoo Kim, and Andrew H. Paterson. 

2014. “Genetic Analysis of Vegetative Branching in Sorghum.” Theoretical and Applied 

Genetics 127(11):2387–2403. doi: 10.1007/s00122-014-2384-x. 

Kong, Wenqian, Huizhe Jin, Valorie H. Goff, Susan A. Auckland, Lisa K. Rainville, and Andrew 

H. Paterson. 2020. “Genetic Analysis of Stem Diameter and Water Contents To Improve 

Sorghum Bioenergy Efficiency.” G3 Genes|Genomes|Genetics 10(11):3991–4000. doi: 

10.1534/g3.120.401608. 

 



 

 

174 

Kong, WenQian, Changsoo Kim, Dong Zhang, Hui Guo, Xu Tan, Huizhe Jin, Chengbo Zhou, 

Lan-shuan Shuang, Valorie Goff, Uzay Sezen, Gary Pierce, Rosana Compton, Cornelia 

Lemke, Jon Robertson, Lisa Rainville, Susan Auckland, and Andrew H. Paterson. 2018. 

“Genotyping by Sequencing of 393 Sorghum Bicolor BTx623 × IS3620C Recombinant 

Inbred Lines Improves Sensitivity and Resolution of QTL Detection.” G3 

Genes|Genomes|Genetics 8(8):2563–72. doi: 10.1534/g3.118.200173. 

Konieczny, Andrzej, and Frederick M. Ausubel. 1993. “A Procedure for Mapping Arabidopsis 

Mutations Using Co-Dominant Ecotype-Specific PCR-Based Markers.” The Plant Journal 

4(2):403–10. doi: 10.1046/j.1365-313X.1993.04020403.x. 

Kumar, Gaurav, and Pradeep Kumar Bhatia. 2014. “A Detailed Review of Feature Extraction in 

Image Processing Systems.” Pp. 5–12 in 2014 Fourth International Conference on 

Advanced Computing & Communication Technologies. Rohtak, India: IEEE. 

Lafarge, T. A., and G. L. Hammer. 2002. “Predicting Plant Leaf Area Production:: Shoot 

Assimilate Accumulation and Partitioning, and Leaf Area Ratio, Are Stable for a Wide 

Range of Sorghum Population Densities.” Field Crops Research 77(2):137–51. doi: 

10.1016/S0378-4290(02)00085-0. 

Lande, R., and R. Thompson. 1990. “Efficiency of Marker-Assisted Selection in the Improvement 

of Quantitative Traits.” Genetics 124(3):743–56. 

Lin, Y. R., K. F. Schertz, and A. H. Paterson. 1995. “Comparative Analysis of QTLs Affecting 

Plant Height and Maturity across the Poaceae, in Reference to an Interspecific Sorghum 

Population.” Genetics 141(1):391–411. 

Lin, Yi-Chun, and Ayman Habib. 2021. “Quality Control and Crop Characterization Framework 

for Multi-Temporal UAV LiDAR Data over Mechanized Agricultural Fields.” Remote 

Sensing of Environment 256:112299. doi: 10.1016/j.rse.2021.112299. 

Lin, Yi-Chun, Tian Zhou, Taojun Wang, Melba Crawford, and Ayman Habib. 2021. “New 

Orthophoto Generation Strategies from UAV and Ground Remote Sensing Platforms for 

High-Throughput Phenotyping.” Remote Sensing 13(5):860. doi: 10.3390/rs13050860. 

Lindquist, John L., Timothy J. Arkebauer, Daniel T. Walters, Kenneth G. Cassman, and Achim 

Dobermann. 2005. “Maize Radiation Use Efficiency under Optimal Growth Conditions.” 

Agronomy Journal 97(1):72–78. doi: 10.2134/agronj2005.0072. 

Lipka, Alexander E., Feng Tian, Qishan Wang, Jason Peiffer, Meng Li, Peter J. Bradbury, Michael 

A. Gore, Edward S. Buckler, and Zhiwu Zhang. 2012. “GAPIT: Genome Association and 

Prediction Integrated Tool.” Bioinformatics 28(18):2397–99. doi: 

10.1093/bioinformatics/bts444. 

Litt, M., and J. A. Luty. 1989. “A Hypervariable Microsatellite Revealed by in Vitro Amplification 

of a Dinucleotide Repeat within the Cardiac Muscle Actin Gene.” American Journal of 

Human Genetics 44(3):397–401. 



 

 

175 

Liu, Huanhuan, Hangqin Liu, Leina Zhou, and Zhongwei Lin. 2019. “Genetic Architecture of 

Domestication- and Improvement-Related Traits Using a Population Derived from 

Sorghum Virgatum and Sorghum Bicolor.” Plant Science 283:135–46. doi: 

10.1016/j.plantsci.2019.02.013. 

Liu, Xiaolei, Meng Huang, Bin Fan, Edward S. Buckler, and Zhiwu Zhang. 2016. “Iterative Usage 

of Fixed and Random Effect Models for Powerful and Efficient Genome-Wide Association 

Studies.” PLOS Genetics 12(2):e1005767. doi: 10.1371/journal.pgen.1005767. 

Llorens, Jordi, Emilio Gil, Jordi Llop, and Alexandre Escolà. 2011. “Ultrasonic and LIDAR 

Sensors for Electronic Canopy Characterization in Vineyards: Advances to Improve 

Pesticide Application Methods.” Sensors 11(2):2177–94. doi: 10.3390/s110202177. 

Löffler, Carlos M., Jun Wei, Tim Fast, Joe Gogerty, Steve Langton, Marlin Bergman, Bob Merrill, 

and Mark Cooper. 2005. “Classification of Maize Environments Using Crop Simulation 

and Geographic Information Systems.” Crop Science 45(5):1708–16. doi: 

10.2135/cropsci2004.0370. 

Luque, Sergio F., Alfredo G. Cirilo, and María E. Otegui. 2006. “Genetic Gains in Grain Yield 

and Related Physiological Attributes in Argentine Maize Hybrids.” Field Crops Research 

95(2):383–97. doi: 10.1016/j.fcr.2005.04.007. 

Mace, E. S., C. H. Hunt, and D. R. Jordan. 2013. “Supermodels: Sorghum and Maize Provide 

Mutual Insight into the Genetics of Flowering Time.” Theoretical and Applied Genetics 

126(5):1377–95. doi: 10.1007/s00122-013-2059-z. 

Mace, E., Innes, D., Hunt, C., Wang, X., Tao, Y., Baxter, J., ... & Jordan, D. (2019). The Sorghum 

QTL Atlas: a powerful tool for trait dissection, comparative genomics and crop 

improvement. Theoretical and applied genetics, 132(3), 751-766. 

 

Madec, Simon, Fred Baret, Benoît de Solan, Samuel Thomas, Dan Dutartre, Stéphane Jezequel, 

Matthieu Hemmerlé, Gallian Colombeau, and Alexis Comar. 2017. “High-Throughput 

Phenotyping of Plant Height: Comparing Unmanned Aerial Vehicles and Ground LiDAR 

Estimates.” Frontiers in Plant Science 8:2002. doi: 10.3389/fpls.2017.02002. 

Madhusudhana, R., and J. V. Patil. 2013. “A Major QTL for Plant Height Is Linked with Bloom 

Locus in Sorghum [Sorghum Bicolor (L.) Moench].” Euphytica 191(2):259–68. doi: 

10.1007/s10681-012-0812-z. 

Marla, Sandeep R., Gloria Burow, Ratan Chopra, Chad Hayes, Marcus O. Olatoye, Terry 

Felderhoff, Zhenbin Hu, Rubi Raymundo, Ramasamy Perumal, and Geoffrey P. Morris. 

2019. “Genetic Architecture of Chilling Tolerance in Sorghum Dissected with a Nested 

Association Mapping Population.” G3 Genes|Genomes|Genetics 9(12):4045–57. doi: 

10.1534/g3.119.400353. 

Masjedi, Ali. 2020. “MULTI-TEMPORAL MULTI-MODAL PREDICTIVE MODELLING OF 

PLANT PHENOTYPES.” 



 

 

176 

Masjedi, Ali, and Melba M. Crawford. 2020. “PREDICTION OF SORGHUM BIOMASS USING 

TIME SERIES UAV-BASED HYPERSPECTRAL AND LIDAR DATA.” Pp. 3912–15 in 

IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium. 

Masjedi, Ali, Melba M. Crawford, Neal R. Carpenter, and Mitchell R. Tuinstra. 2020. “Multi-

Temporal Predictive Modelling of Sorghum Biomass Using UAV-Based Hyperspectral 

and LiDAR Data.” Remote Sensing 12(21):3587. doi: 10.3390/rs12213587. 

Masjedi, Ali, Neal R. Carpenter, Melba M. Crawford, and Mitch R. Tuinstra. 2019. “Prediction 

of Sorghum Biomass Using Uav Time Series Data and Recurrent Neural Networks.” Pp. 

0–0 in. 

Masjedi, Ali, Jieqiong Zhao, Addie M. Thompson, Kai-Wei Yang, John E. Flatt, Melba M. 

Crawford, David S. Ebert, Mitchell R. Tuinstra, Graeme Hammer, and Scott Chapman. 

2018. “Sorghum Biomass Prediction Using Uav-Based Remote Sensing Data and Crop 

Model Simulation.” Pp. 7719–22 in IGARSS 2018 - 2018 IEEE International Geoscience 

and Remote Sensing Symposium. 

McCormick, Ryan F., Sandra K. Truong, and John E. Mullet. 2016. “3D Sorghum Reconstructions 

from Depth Images Identify QTL Regulating Shoot Architecture.” Plant Physiology 

172(2):823–34. doi: 10.1104/pp.16.00948. 

McCormick, Ryan F., Sandra K. Truong, Avinash Sreedasyam, Jerry Jenkins, Shengqiang Shu, 

David Sims, Megan Kennedy, Mojgan Amirebrahimi, Brock D. Weers, Brian McKinley, 

Ashley Mattison, Daryl T. Morishige, Jane Grimwood, Jeremy Schmutz, and John E. 

Mullet. 2018. “The Sorghum Bicolor Reference Genome: Improved Assembly, Gene 

Annotations, a Transcriptome Atlas, and Signatures of Genome Organization.” The Plant 

Journal 93(2):338–54. doi: 10.1111/tpj.13781. 

McGrath, Justin M., and Stephen P. Long. 2014. “Can the Cyanobacterial Carbon-Concentrating 

Mechanism Increase Photosynthesis in Crop Species? A Theoretical Analysis.” Plant 

Physiology 164(4):2247–61. doi: 10.1104/pp.113.232611. 

Meki, Manyowa N., Richard M. Ogoshi, Jim R. Kiniry, Susan E. Crow, Adel H. Youkhana, Mae 

H. Nakahata, and Kerrie Littlejohn. 2017. “Performance Evaluation of Biomass Sorghum 

in Hawaii and Texas.” Industrial Crops and Products 103:257–66. doi: 

10.1016/j.indcrop.2017.04.014. 

Messina, Carlos, G. Hammer, Zhanshan Dong, Dean Podlich, and Mark Cooper. 2009. “Modelling 

Crop Improvement in a G×E×M Framework via Gene–Trait–Phenotype Relationships.” 

Crop Physiology: Applications for Genetic Improvement and Agronomy 235–65. doi: 

10.1016/B978-0-12-374431-9.00010-4. 

Miao, Chenyong, Yuhang Xu, Sanzhen Liu, Patrick S. Schnable, and James C. Schnable. 2020. 

“Increased Power and Accuracy of Causal Locus Identification in Time Series Genome-

Wide Association in Sorghum.” Plant Physiology 183(4):1898–1909. doi: 

10.1104/pp.20.00277. 



 

 

177 

Mocoeur, Anne, Yu-Miao Zhang, Zhi-Quan Liu, Xin Shen, Li-Min Zhang, Søren K. Rasmussen, 

and Hai-Chun Jing. 2015. “Stability and Genetic Control of Morphological, Biomass and 

Biofuel Traits under Temperate Maritime and Continental Conditions in Sweet Sorghum 

(Sorghum Bicolour).” Theoretical and Applied Genetics 128(9):1685–1701. doi: 

10.1007/s00122-015-2538-5. 

Monk, R. L., F. R. Miller, and G. G. McBee. 1984. “Sorghum Improvement for Energy Production.” 

Biomass 6(1):145–53. doi: 10.1016/0144-4565(84)90017-9. 

Monteith, J. L., Moss C. J., Cooke George William, Pirie Norman Wingate, and Bell George 

Douglas Hutton. 1977. “Climate and the Efficiency of Crop Production in Britain.” 

Philosophical Transactions of the Royal Society of London. B, Biological Sciences 

281(980):277–94. doi: 10.1098/rstb.1977.0140. 

Morris, Geoffrey P., Punna Ramu, Santosh P. Deshpande, C. Thomas Hash, Trushar Shah, Hari D. 

Upadhyaya, Oscar Riera-Lizarazu, Patrick J. Brown, Charlotte B. Acharya, Sharon E. 

Mitchell, James Harriman, Jeffrey C. Glaubitz, Edward S. Buckler, and Stephen Kresovich. 

2013. “Population Genomic and Genome-Wide Association Studies of Agroclimatic Traits 

in Sorghum.” Proceedings of the National Academy of Sciences 110(2):453–58. doi: 

10.1073/pnas.1215985110. 

Muchow, R. C. 1989. “Comparative Productivity of Maize, Sorghum and Pearl Millet in a Semi-

Arid Tropical Environment I. Yield Potential.” Field Crops Research 20(3):191–205. doi: 

10.1016/0378-4290(89)90079-8. 

Muchow, R. C., and R. Davis. 1988. “Effect of Nitrogen Supply on the Comparative Productivity 

of Maize and Sorghum in a Semi-Arid Tropical Environment II. Radiation Interception and 

Biomass Accumulation.” Field Crops Research 18(1):17–30. doi: 10.1016/0378-

4290(88)90056-1. 

Muchow, R. C., and P. S. Carberry. 1990. “Phenology and Leaf-Area Development in a Tropical 

Grain Sorghum - ScienceDirect.” Field Crops Research 23(3–4):221–37. 

Muchow, R. C., and T. R. Sinclair. 1994. “Nitrogen Response of Leaf Photosynthesis and Canopy 

Radiation Use Efficiency in Field-Grown Maize and Sorghum.” Crop Science 34(3):721–

27. doi: 10.2135/cropsci1994.0011183X003400030022x. 

Mullet, John, Daryl Morishige, Ryan McCormick, Sandra Truong, Josie Hilley, Brian McKinley, 

Robert Anderson, Sara N. Olson, and William Rooney. 2014. “Energy Sorghum—a 

Genetic Model for the Design of C4 Grass Bioenergy Crops.” Journal of Experimental 

Botany 65(13):3479–89. doi: 10.1093/jxb/eru229. 

Multani, Dilbag S., Steven P. Briggs, Mark A. Chamberlin, Joshua J. Blakeslee, Angus S. Murphy, 

and Gurmukh S. Johal. 2003. “Loss of an MDR Transporter in Compact Stalks of Maize 

Br2 and Sorghum Dw3 Mutants.” Science 302(5642):81–84. doi: 

10.1126/science.1086072. 



 

 

178 

Murchie, Erik H., Shawn Kefauver, Jose Luis Araus, Onno Muller, Uwe Rascher, Pádraic J. Flood, 

and Tracy Lawson. 2018. “Measuring the Dynamic Photosynthome.” Annals of Botany 

122(2):207–20. doi: 10.1093/aob/mcy087. 

Murphy, Rebecca L., Robert R. Klein, Daryl T. Morishige, Jeff A. Brady, William L. Rooney, 

Frederick R. Miller, Diana V. Dugas, Patricia E. Klein, and John E. Mullet. 2011. 

“Coincident Light and Clock Regulation of Pseudoresponse Regulator Protein 37 (PRR37) 

Controls Photoperiodic Flowering in Sorghum.” Proceedings of the National Academy of 

Sciences 108(39):16469–74. doi: 10.1073/pnas.1106212108. 

Murphy, Rebecca L., Daryl T. Morishige, Jeff A. Brady, William L. Rooney, Shanshan Yang, 

Patricia E. Klein, and John E. Mullet. 2014. “Ghd7 (Ma6) Represses Sorghum Flowering 

in Long Days: Ghd7 Alleles Enhance Biomass Accumulation and Grain Production.” The 

Plant Genome 7(2):plantgenome2013.11.0040. doi: 10.3835/plantgenome2013.11.0040. 

Murray, Seth C., William L. Rooney, Sharon E. Mitchell, Arun Sharma, Patricia E. Klein, John E. 

Mullet, and Stephen Kresovich. 2008. “Genetic Improvement of Sorghum as a Biofuel 

Feedstock: II. QTL for Stem and Leaf Structural Carbohydrates.” Crop Science 

48(6):2180–93. doi: 10.2135/cropsci2008.01.0068. 

Myles, Sean, Jason Peiffer, Patrick J. Brown, Elhan S. Ersoz, Zhiwu Zhang, Denise E. Costich, 

and Edward S. Buckler. 2009. “Association Mapping: Critical Considerations Shift from 

Genotyping to Experimental Design.” The Plant Cell 21(8):2194–2202. doi: 

10.1105/tpc.109.068437. 

Nagaraja Reddy, R., R. Madhusudhana, S. Murali Mohan, D. V. N. Chakravarthi, S. P. Mehtre, N. 

Seetharama, and J. V. Patil. 2013. “Mapping QTL for Grain Yield and Other Agronomic 

Traits in Post-Rainy Sorghum [Sorghum Bicolor (L.) Moench].” Theoretical and Applied 

Genetics 126(8):1921–39. doi: 10.1007/s00122-013-2107-8. 

Narayanan, Sruthi, Robert M. Aiken, P. V. Vara Prasad, Zhanguo Xin, and Jianming Yu. 2013. 

“Water and Radiation Use Efficiencies in Sorghum.” Agronomy Journal 105(3):649. doi: 

10.2134/agronj2012.0377. 

Neumann, K., B. Kobiljski, S. Denčić, R. K. Varshney, and A. Börner. 2011. “Genome-Wide 

Association Mapping: A Case Study in Bread Wheat (Triticum Aestivum L.).” Molecular 

Breeding 27(1):37–58. doi: 10.1007/s11032-010-9411-7. 

Oakey, Helena, Arūnas P. Verbyla, Brian R. Cullis, Xianming Wei, and Wayne S. Pitchford. 2007. 

“Joint Modeling of Additive and Non-Additive (Genetic Line) Effects in Multi-

Environment Trials.” Theoretical and Applied Genetics 114(8):1319–32. doi: 

10.1007/s00122-007-0515-3. 

de Oliveira, Amanda Avelar, Marcio F. R. Resende, Luís Felipe Ventorim Ferrão, Rodrigo 

Rampazo Amadeu, Lauro José Moreira Guimarães, Claudia Teixeira Guimarães, Maria 

Marta Pastina, and Gabriel Rodrigues Alves Margarido. 2020. “Genomic Prediction 

Applied to Multiple Traits and Environments in Second Season Maize Hybrids.” Heredity 

125(1):60–72. doi: 10.1038/s41437-020-0321-0. 



 

 

179 

Olsen, Peder A., Karthikeyan Natesan Ramamurthy, Javier Ribera, Yuhao Chen, Addie M. 

Thompson, Ronny Luss, Mitch Tuinstra, and Naoki Abe. 2018. “Detecting and Counting 

Panicles in Sorghum Images.” Pp. 400–409 in 2018 IEEE 5th International Conference on 

Data Science and Advanced Analytics (DSAA). 

Olson, Sara N., Kimberley Ritter, William Rooney, Armen Kemanian, Bruce A. McCarl, Yuquan 

Zhang, Susan Hall, Dan Packer, and John Mullet. 2012. “High Biomass Yield Energy 

Sorghum: Developing a Genetic Model for C4 Grass Bioenergy Crops.” Biofuels, 

Bioproducts and Biorefining 6(6):640–55. doi: 10.1002/bbb.1357. 

Ongaro, Veronica, Katherine Bainbridge, Lisa Williamson, and Ottoline Leyser. 2008. 

“Interactions between Axillary Branches of Arabidopsis.” Molecular Plant 1(2):388–400. 

doi: 10.1093/mp/ssn007. 

Onogi, Akio, Maya Watanabe, Toshihiro Mochizuki, Takeshi Hayashi, Hiroshi Nakagawa, 

Toshihiro Hasegawa, and Hiroyoshi Iwata. 2016. “Toward Integration of Genomic 

Selection with Crop Modelling: The Development of an Integrated Approach to Predicting 

Rice Heading Dates.” Theoretical and Applied Genetics 129(4):805–17. doi: 

10.1007/s00122-016-2667-5. 

van Oosterom, E. J., P. S. Carberry, and G. J. O’Leary. 2001. “Simulating Growth, 

Development, and Yield of Tillering Pearl Millet: I. Leaf Area Profiles on Main Shoots 

and Tillers - ScienceDirect.” Field Crops Research 72(1):51–66. 

van Oosterom, E. J., A. K. Borrell, K. S. Deifel, and G. L. Hammer. 2011. “Does Increased Leaf 

Appearance Rate Enhance Adaptation to Postanthesis Drought Stress in Sorghum?” Crop 

Science 51(6):2728–40. doi: 10.2135/cropsci2011.01.0031. 

van Oosterom, E. J., and G. L. Hammer. 2008. “Determination of Grain Number in Sorghum.” 

Field Crops Research 108(3):259–68. doi: 10.1016/j.fcr.2008.06.001. 

Ortiz, Diego, Jieyun Hu, and Maria G. Salas Fernandez. 2017. “Genetic Architecture of 

Photosynthesis in Sorghum Bicolor under Non-Stress and Cold Stress Conditions.” 

Journal of Experimental Botany 68(16):4545–57. doi: 10.1093/jxb/erx276. 

Pareek, Chandra Shekhar, Rafal Smoczynski, and Andrzej Tretyn. 2011. “Sequencing 

Technologies and Genome Sequencing.” Journal of Applied Genetics 52(4):413–35. doi: 

10.1007/s13353-011-0057-x. 

Parent, Boris, Emilie J. Millet, and François Tardieu. 2019. “The Use of Thermal Time in Plant 

Studies Has a Sound Theoretical Basis Provided That Confounding Effects Are Avoided.” 

Journal of Experimental Botany 70(9):2359–70. doi: 10.1093/jxb/ery402. 

Pauli, Duke, Scott C. Chapman, Rebecca Bart, Christopher N. Topp, Carolyn J. Lawrence-Dill, 

Jesse Poland, and Michael A. Gore. 2016. “The Quest for Understanding Phenotypic 

Variation via Integrated Approaches in the Field Environment.” Plant Physiology 

172(2):622–34. doi: 10.1104/pp.16.00592. 



 

 

180 

Pereira, M. G., and M. Lee. 1995. “Identification of Genomic Regions Affecting Plant Height in 

Sorghum and Maize.” Theoretical and Applied Genetics 90(3):380–88. doi: 

10.1007/BF00221980. 

Pfeiffer, Brian K., Dennis Pietsch, Ronnie W. Schnell, and William L. Rooney. 2019. “Long-Term 

Selection in Hybrid Sorghum Breeding Programs.” Crop Science 59(1):150–64. doi: 

10.2135/cropsci2018.05.0345. 

Phuong, Nguyen, H. Stützel, and R. Uptmoor. 2013. “Quantitative Trait Loci Associated to 

Agronomic Traits and Yield Components in a Sorghum Bicolor L. Moench RIL Population 

Cultivated under Pre-Flowering Drought and Well-Watered Conditions.” Agricultural 

Sciences 4(12):781–91. doi: 10.4236/as.2013.412107. 

Piñeiro, Gervasio, Susana Perelman, Juan Guerschman, and José Paruelo. 2008. “How to 

Evaluate Models: Observed vs. Predicted or Predicted vs. Observed?” Ecological 

Modelling 216(3–4):316–22. doi: 10.1016/j.ecolmodel.2008.05.006. 

Pokhrel, Pramod, Nithya Rajan, John Jifon, William Rooney, Russell Jessup, Jorge da Silva, Juan 

Enciso, and Ahmed Attia. 2021. “Evaluation of the DSSAT-CANEGRO Model for 

Simulating the Growth of Energy Cane (Saccharum Spp.), a Biofuel Feedstock Crop.” 

Crop Science n/a(n/a). doi: 10.1002/csc2.20648. 

Potgieter, Andries B., Barbara George-Jaeggli, Scott C. Chapman, Kenneth Laws, Luz A. Suárez 

Cadavid, Jemima Wixted, James Watson, Mark Eldridge, David R. Jordan, and Graeme L. 

Hammer. 2017. “Multi-Spectral Imaging from an Unmanned Aerial Vehicle Enables the 

Assessment of Seasonal Leaf Area Dynamics of Sorghum Breeding Lines.” Frontiers in 

Plant Science 8:1532. doi: 10.3389/fpls.2017.01532. 

Pugh, N. Ace, David W. Horne, Seth C. Murray, Geraldo Carvalho Jr, Lonesome Malambo, Jinha 

Jung, Anjin Chang, Murilo Maeda, Sorin Popescu, Tianxing Chu, Michael J. Starek, 

Michael J. Brewer, Grant Richardson, and William L. Rooney. 2018. “Temporal Estimates 

of Crop Growth in Sorghum and Maize Breeding Enabled by Unmanned Aerial Systems.” 

The Plant Phenome Journal 1(1):170006. doi: 10.2135/tppj2017.08.0006. 

Quinby, J. R., and R. E. Karper. 1953. “Inheritance of Height in Sorghum.” Inheritance of Height 

in Sorghum. 

R Core Team. 2020. “R: The R Project for Statistical Computing. R Foundation for Statistical 

Computing, Vienna, Austria.” Retrieved October 26, 2021 (https://www.r-project.org/). 

Rafalski, Antoni. 2002. “Applications of Single Nucleotide Polymorphisms in Crop Genetics.” 

Current Opinion in Plant Biology 5(2):94–100. doi: 10.1016/S1369-5266(02)00240-6. 

Rajkumar, B. Fakrudin, S. P. Kavil, Y. Girma, S. S. Arun, D. Dadakhalandar, B. H. Gurusiddesh, 

A. M. Patil, M. Thudi, S. B. Bhairappanavar, Y. D. Narayana, P. U. Krishnaraj, B. M. 

Khadi, and M. Y. Kamatar. 2013. “Molecular Mapping of Genomic Regions Harbouring 

QTLs for Root and Yield Traits in Sorghum (Sorghum Bicolor L. Moench).” Physiology 

and Molecular Biology of Plants 19(3):409–19. doi: 10.1007/s12298-013-0188-0. 



 

 

181 

Rama Reddy, Nagaraja Reddy, Madhusudhana Ragimasalawada, Murali Mohan Sabbavarapu, 

Seetharama Nadoor, and Jagannatha Vishnu Patil. 2014. “Detection and Validation of 

Stay-Green QTL in Post-Rainy Sorghum Involving Widely Adapted Cultivar, M35-1 and 

a Popular Stay-Green Genotype B35.” BMC Genomics 15(1):909. doi: 10.1186/1471-

2164-15-909. 

Ravi, Radhika, Yun-Jou Lin, Magdy Elbahnasawy, Tamer Shamseldin, and Ayman Habib. 2018a. 

“Bias Impact Analysis and Calibration of Terrestrial Mobile LiDAR System With Several 

Spinning Multibeam Laser Scanners.” IEEE Transactions on Geoscience and Remote 

Sensing 56(9):5261–75. doi: 10.1109/TGRS.2018.2812782. 

Ravi, Radhika, Yun-Jou Lin, Magdy Elbahnasawy, Tamer Shamseldin, and Ayman Habib. 2018b. 

“Simultaneous System Calibration of a Multi-LiDAR Multicamera Mobile Mapping 

Platform.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote 

Sensing 11(5):1694–1714. doi: 10.1109/JSTARS.2018.2812796. 

Ravi, Radhika, Yun-Jou Lin, Tamer Shamseldin, Magdy Elbahnasawy, Ali Masjedi, Melba 

Crawford, and Ayman Habib. 2018. “Wheel-Based Lidar Data for Plant Height and 

Canopy Cover Evaluation to Aid Biomass Prediction.” Pp. 3242–45 in IGARSS 2018 - 

2018 IEEE International Geoscience and Remote Sensing Symposium. 

Ravi Kumar, S., Graeme Hammer, Ian Broad, Peter Harland, and Greg McLean. 2009. 

“Modelling Environmental Effects on Phenology and Canopy Development of Diverse 

Sorghum Genotypes - ScienceDirect.” Field Crops Research 111(1–2):157–65. 

Reddy, Belum VS, S. Ramesh, P. Sanjana Reddy, B. Ramaiah, P. M. Salimath, and Rajashekar 

Kachapur. 2005. “Sweet Sorghum - a Potential Alternate Raw Material for Bio-Ethanol 

and Bio-Energy.” Journal of SAT Agricultural Research. 

Rhodes, Davina H., Leo Hoffmann, William L. Rooney, Thomas J. Herald, Scott Bean, Richard 

Boyles, Zachary W. Brenton, and Stephen Kresovich. 2017. “Genetic Architecture of 

Kernel Composition in Global Sorghum Germplasm.” BMC Genomics 18(1):15. doi: 

10.1186/s12864-016-3403-x. 

Ribera, Javier, Yuhao Chen, Christopher Boomsma, and Edward J. Delp. 2017. “Counting Plants 

Using Deep Learning.” Pp. 1344–48 in 2017 IEEE Global Conference on Signal and 

Information Processing (GlobalSIP). 

Ribera, Javier, Fangning He, Yuhao Chen, Ayman F. Habib, and Edward J. Delp. 2018. 

“Estimating Phenotypic Traits From UAV Based RGB Imagery.” ArXiv:1807.00498 [Cs]. 

Rocateli, A. C., R. L. Raper, K. S. Balkcom, F. J. Arriaga, and D. I. Bransby. 2012. “Biomass 

Sorghum Production and Components under Different Irrigation/Tillage Systems for the 

Southeastern U.S.” Industrial Crops and Products 36(1):589–98. doi: 

10.1016/j.indcrop.2011.11.007. 



 

 

182 

Rodríguez-Á lvarez, María Xosé, Martin P. Boer, Fred A. van Eeuwijk, and Paul H. C. Eilers. 2018. 

“Correcting for Spatial Heterogeneity in Plant Breeding Experiments with P-Splines.” 

Spatial Statistics 23:52–71. doi: 10.1016/j.spasta.2017.10.003. 

Rooney, William L. 2004. Advances in Agronomy. Academic Press. 

Rooney, William L., Jürg Blumenthal, Brent Bean, and John E. Mullet. 2007. “Designing Sorghum 

as a Dedicated Bioenergy Feedstock.” Biofuels, Bioproducts and Biorefining 1(2):147–57. 

doi: 10.1002/bbb.15. 

Rosenow, D. T., J. A. Dahlberg, J. C. Stephens, F. R. Miller, D. K. Barnes, G. C. Peterson, J. W. 

Johnson, and K. F. Schertz. 1997. “Registration of 63 Converted Sorghum Germplasm 

Lines from the Sorghum Conversion Program.” Crop Science 37(4):1399–1400. doi: 

10.2135/cropsci1997.0011183X003700040090x. 

Rosenow, D.T., D. T. Rosenow, J. A. Dahlberg, G. C. Peterson, and L. E. Clark. 1997. 

“Registration of Fifty Converted Sorghums from the Sorghum Conversion Program.” Crop 

Science v. 37(4):1397–98. doi: 10.2135/cropsci1997.0011183X003700040089x. 

Rossi, Evandrei S., Maurício C. Kuki, Ronald J. B. Pinto, Carlos A. Scapim, Marcos V. Faria, and 

Natalia De Leon. 2020. “Genomic-Wide Association Study for White Spot Resistance in a 

Tropical Maize Germplasm.” Euphytica 216(1):15. doi: 10.1007/s10681-019-2550-y. 

Rubin, Edward M. 2008. “Genomics of Cellulosic Biofuels.” Nature 454(7206):841–45. doi: 

10.1038/nature07190. 

Sabadin, P. K., M. Malosetti, M. P. Boer, F. D. Tardin, F. G. Santos, C. T. Guimarães, R. L. 

Gomide, C. L. T. Andrade, P. E. P. Albuquerque, F. F. Caniato, M. Mollinari, G. R. A. 

Margarido, B. F. Oliveira, R. E. Schaffert, A. A. F. Garcia, F. A. van Eeuwijk, and J. V. 

Magalhaes. 2012. “Studying the Genetic Basis of Drought Tolerance in Sorghum by 

Managed Stress Trials and Adjustments for Phenological and Plant Height Differences.” 

Theoretical and Applied Genetics 124(8):1389–1402. doi: 10.1007/s00122-012-1795-9. 

Sadras, V. O., C. Lawson, and A. Montoro. 2012. “Photosynthetic Traits in Australian Wheat 

Varieties Released between 1958 and 2007.” Field Crops Research 134:19–29. doi: 

10.1016/j.fcr.2012.04.012. 

Sadras, Victor O., Chris Lawson, Victor O. Sadras, and Chris Lawson. 2011. “Genetic Gain in 

Yield and Associated Changes in Phenotype, Trait Plasticity and Competitive Ability of 

South Australian Wheat Varieties Released between 1958 and 2007.” Crop and Pasture 

Science 62(7):533–49. doi: 10.1071/CP11060. 

Salas Fernandez, Maria G., Philip W. Becraft, Yanhai Yin, and Thomas Lübberstedt. 2009. “From 

Dwarves to Giants? Plant Height Manipulation for Biomass Yield.” Trends in Plant 

Science 14(8):454–61. doi: 10.1016/j.tplants.2009.06.005. 



 

 

183 

Salimath, Shanmukhaswami S., Antonio C. de Oliveira, Jeffrey L. Bennetzen, and Ian D. Godwin. 

1995. “Assessment of Genome Origins and Genetic Diversity in the Genus Eleusine with 

DNA Markers.” Genome 38(4):757–63. doi: 10.1139/g95-096. 

Sami, Rukaiya. 2013. “Heritability Studies In Some Sweet Sorghum (Sorghum Bicolor. L. Moench) 

Genotypes.” Journal of Biology, Agriculture and Healthcare 3. 

Schneider, Caroline A., Wayne S. Rasband, and Kevin W. Eliceiri. 2012. “NIH Image to ImageJ: 

25 Years of Image Analysis.” Nature Methods 9(7):671–75. doi: 10.1038/nmeth.2089. 

Seyoum, Solomon, Rao Rachaputi, Yash Chauhan, Boddupalli Prasanna, and Solomon Fekybelu. 

2018. “Application of the APSIM Model to Exploit G × E × M Interactions for Maize 

Improvement in Ethiopia.” Field Crops Research 217:113–24. doi: 

10.1016/j.fcr.2017.12.012. 

Shearman, V. J., R. Sylvester-Bradley, R. K. Scott, and M. J. Foulkes. 2005. “Physiological 

Processes Associated with Wheat Yield Progress in the UK.” Crop Science 

45(1):cropsci2005.0175. doi: 10.2135/cropsci2005.0175a. 

Shehzad, Tariq, and Kazutoshi Okuno. 2015. “QTL Mapping for Yield and Yield-Contributing 

Traits in Sorghum (Sorghum Bicolor (L.) Moench) with Genome-Based SSR Markers.” 

Euphytica 203(1):17–31. doi: 10.1007/s10681-014-1243-9. 

Shiringani, Amukelani L., and Wolfgang Friedt. 2011. “QTL for Fibre-Related Traits in 

Grain × Sweet Sorghum as a Tool for the Enhancement of Sorghum as a Biomass Crop.” 

Theoretical and Applied Genetics 123(6):999. doi: 10.1007/s00122-011-1642-4. 

Shiringani, Amukelani Lacrecia, Matthias Frisch, and Wolfgang Friedt. 2010. “Genetic Mapping 

of QTLs for Sugar-Related Traits in a RIL Population of Sorghum Bicolor L. Moench.” 

Theoretical and Applied Genetics 121(2):323–36. doi: 10.1007/s00122-010-1312-y. 

Sieglinger, J. B. 1936. “Leaf Number of Sorghum Stalks.” Agronomy Journal 28(8):636–42. doi: 

10.2134/agronj1936.00021962002800080005x. 

Sinclair, T. R., and T. Horie. 1989. “Leaf Nitrogen, Photosynthesis, and Crop Radiation Use 

Efficiency: A Review.” Crop Science 29(1):cropsci1989.0011183X002900010023x. doi: 

10.2135/cropsci1989.0011183X002900010023x. 

Sinclair, Thomas R., and Russell C. Muchow. 1999. “Radiation Use Efficiency.” Pp. 215–65 in 

Advances in Agronomy. Vol. 65, edited by D. L. Sparks. Academic Press. 

Singh, Piara, S. Nedumaran, P. C. S. Traore, K. J. Boote, H. F. W. Rattunde, P. V. Vara Prasad, 

N. P. Singh, K. Srinivas, and M. C. S. Bantilan. 2014. “Quantifying Potential Benefits of 

Drought and Heat Tolerance in Rainy Season Sorghum for Adapting to Climate Change.” 

Agricultural and Forest Meteorology 185:37–48. doi: 10.1016/j.agrformet.2013.10.012. 

Smith, C. Wayne, and Richard A. Frederiksen. 2000. Sorghum: Origin, History, Technology, and 

Production. John Wiley & Sons. 



 

 

184 

Smith, W. H. 1986. “Biomass Energy Development.” 

Soler, Cecilia Manuela Tojo, Paulo César Sentelhas, and Gerrit Hoogenboom. 2007. 

“Application of the CSM-CERES-Maize Model for Planting Date Evaluation and Yield 

Forecasting for Maize Grown off-Season in a Subtropical Environment.” European 

Journal of Agronomy 27(2):165–77. doi: 10.1016/j.eja.2007.03.002. 

Srinivas, G., K. Satish, R. Madhusudhana, R. Nagaraja Reddy, S. Murali Mohan, and N. 

Seetharama. 2009. “Identification of Quantitative Trait Loci for Agronomically Important 

Traits and Their Association with Genic-Microsatellite Markers in Sorghum.” Theoretical 

and Applied Genetics 118(8):1439–54. doi: 10.1007/s00122-009-0993-6. 

Stanton, Carly, Michael J. Starek, Norman Elliott, Michael Brewer, Murilo M. Maeda, and 

Tianxing Chu. 2017. “Unmanned Aircraft System-Derived Crop Height and Normalized 

Difference Vegetation Index Metrics for Sorghum Yield and Aphid Stress Assessment.” 

Journal of Applied Remote Sensing 11(2):026035. doi: 10.1117/1.JRS.11.026035. 

Stefaniak, Thomas R., Jeffery A. Dahlberg, Brent W. Bean, Nilesh Dighe, Edward J. Wolfrum, 

and William L. Rooney. 2012. “Variation in Biomass Composition Components among 

Forage, Biomass, Sorghum-Sudangrass, and Sweet Sorghum Types.” Crop Science 

52(4):1949–54. doi: 10.2135/cropsci2011.10.0534. 

Stephens, J. C., F. R. Miller, and D. T. Rosenow. 1967. “Conversion of Alien Sorghums to Early 

Combine Genotypes 1.” Crop Science 7(4):396–396. doi: 

10.2135/cropsci1967.0011183X000700040036x. 

Stöckle, Claudio O., Marcello Donatelli, and Roger Nelson. 2003. “CropSyst, a Cropping Systems 

Simulation Model.” European Journal of Agronomy 18(3):289–307. doi: 10.1016/S1161-

0301(02)00109-0. 

Subudhi, P. K., D. T. Rosenow, and H. T. Nguyen. 2000. “Quantitative Trait Loci for the Stay 

Green Trait in Sorghum (Sorghum Bicolor L. Moench): Consistency across Genetic 

Backgrounds and Environments.” Theoretical and Applied Genetics 101(5):733–41. doi: 

10.1007/s001220051538. 

Sukumaran, Sivakumar, Susanne Dreisigacker, Marta Lopes, Perla Chavez, and Matthew P. 

Reynolds. 2015. “Genome-Wide Association Study for Grain Yield and Related Traits in 

an Elite Spring Wheat Population Grown in Temperate Irrigated Environments.” TAG. 

Theoretical and Applied Genetics. Theoretische Und Angewandte Genetik 128(2):353–63. 

doi: 10.1007/s00122-014-2435-3. 

Sukumaran, Sivakumar, Xin Li, Xianran Li, Chengsong Zhu, Guihua Bai, Ramasamy Perumal, 

Mitchell R. Tuinstra, P. V. Vara Prasad, Sharon E. Mitchell, Tesfaye T. Tesso, and 

Jianming Yu. 2016. “QTL Mapping for Grain Yield, Flowering Time, and Stay-Green 

Traits in Sorghum with Genotyping-by-Sequencing Markers.” Crop Science 56(4):1429–

42. doi: 10.2135/cropsci2015.02.0097. 



 

 

185 

Sukumaran, Sivakumar, Wenwen Xiang, Scott R. Bean, Jeffrey F. Pedersen, Stephen Kresovich, 

Mitchell R. Tuinstra, Tesfaye T. Tesso, Martha T. Hamblin, and Jianming Yu. 2012. 

“Association Mapping for Grain Quality in a Diverse Sorghum Collection.” Plant Genome 

5(3):126–35. doi: 10.3835/plantgenome2012.07.0016. 

Taiyun. 2021. Taiyun/Corrplot. 

Takai, Tomoyuki, Jun-ichi Yonemaru, Hirokazu Kaidai, and Shigemitsu Kasuga. 2012. 

“Quantitative Trait Locus Analysis for Days-to-Heading and Morphological Traits in an 

RIL Population Derived from an Extremely Late Flowering F1 Hybrid of Sorghum.” 

Euphytica 187(3):411–20. doi: 10.1007/s10681-012-0727-8. 

Tardieu, François, Llorenç Cabrera-Bosquet, Tony Pridmore, and Malcolm Bennett. 2017. “Plant 

Phenomics, From Sensors to Knowledge.” Current Biology 27(15):R770–83. doi: 

10.1016/j.cub.2017.05.055. 

Technow, Frank, Carlos D. Messina, L. Radu Totir, and Mark Cooper. 2015. “Integrating Crop 

Growth Models with Whole Genome Prediction through Approximate Bayesian 

Computation.” PLOS ONE 10(6):e0130855. doi: 10.1371/journal.pone.0130855. 

Tian, Feng, Peter J. Bradbury, Patrick J. Brown, Hsiaoyi Hung, Qi Sun, Sherry Flint-Garcia, 

Torbert R. Rocheford, Michael D. McMullen, James B. Holland, and Edward S. Buckler. 

2011. “Genome-Wide Association Study of Leaf Architecture in the Maize Nested 

Association Mapping Population.” Nature Genetics 43(2):159–62. doi: 10.1038/ng.746. 

Tilman, David, Jason Hill, and Clarence Lehman. 2006. “Carbon-Negative Biofuels from Low-

Input High-Diversity Grassland Biomass.” Science 314(5805):1598–1600. doi: 

10.1126/science.1133306. 

Tolley, Seth A., Amritpal Singh, and Mitchell R. Tuinstra. 2021. “Heterotic Patterns of Temperate 

and Tropical Maize by Ear Photometry.” Frontiers in Plant Science 12:1117. doi: 

10.3389/fpls.2021.616975. 

Truong, Sandra K., Ryan F. McCormick, and John E. Mullet. 2017. “Bioenergy Sorghum Crop 

Model Predicts VPD-Limited Transpiration Traits Enhance Biomass Yield in Water-

Limited Environments.” Frontiers in Plant Science 8. doi: 10.3389/fpls.2017.00335. 

Tumbo, S. D., M. Salyani, J. D. Whitney, T. A. Wheaton, and W. M. Miller. 2002. “Investigation 

of Laser and Ultrasonic Ranging Sensors for Measurements of Citrus Canopy Volume.” 

Applied Engineering in Agriculture. 

Turner, Stephen D. 2014. Qqman: An R Package for Visualizing GWAS Results Using Q-Q and 

Manhattan Plots. doi: 10.1101/005165. 

Vanneste, Steffen, and Jiří Friml. 2009. “Auxin: A Trigger for Change in Plant Development.” 

Cell 136(6):1005–16. doi: 10.1016/j.cell.2009.03.001. 



 

 

186 

Villanueva, Randle Aaron M., and Zhuo Job Chen. 2019. “Ggplot2: Elegant Graphics for Data 

Analysis (2nd Ed.).” Measurement: Interdisciplinary Research and Perspectives 

17(3):160–67. doi: 10.1080/15366367.2019.1565254. 

Virlet, Nicolas, Kasra Sabermanesh, Pouria Sadeghi-Tehran, Malcolm J. Hawkesford, Nicolas 

Virlet, Kasra Sabermanesh, Pouria Sadeghi-Tehran, and Malcolm J. Hawkesford. 2016. 

“Field Scanalyzer: An Automated Robotic Field Phenotyping Platform for Detailed Crop 

Monitoring.” Functional Plant Biology 44(1):143–53. doi: 10.1071/FP16163. 

Vos, Pieter, Rene Hogers, Marjo Bleeker, Martin Reijans, Theo van de Lee, Miranda Hornes, 

Adrie Friters, Jerina Pot, Johan Paleman, Martin Kuiper, and Marc Zabeau. 1995. “AFLP: 

A New Technique for DNA Fingerprinting.” Nucleic Acids Research 23(21):4407–14. doi: 

10.1093/nar/23.21.4407. 

Wallach, Daniel, David Makowski, James W. Jones, and Francois Brun. 2018. Working with 

Dynamic Crop Models: Methods, Tools and Examples for Agriculture and Environment. 

Academic Press. 

Wang, E., M. J. Robertson, G. L. Hammer, P. S. Carberry, D. Holzworth, H. Meinke, S. C. 

Chapman, J. N. G. Hargreaves, N. I. Huth, and G. McLean. 2002. “Development of a 

Generic Crop Model Template in the Cropping System Model APSIM.” European Journal 

of Agronomy 18(1):121–40. doi: 10.1016/S1161-0301(02)00100-4. 

Wang, Hai-Lian, Hua-Wen Zhang, Rui-Heng Du, Gui-Ling Chen, Bin Liu, Yan-Bing Yang, Ling 

Qin, Er-Ying Cheng, Qiang Liu, Yan-An Guan, Hai-Lian Wang, Hua-Wen Zhang, Rui-

Heng Du, Gui-Ling Chen, Bin Liu, Yan-Bing Yang, Ling Qin, Er-Ying Cheng, Qiang Liu, 

and Yan-An Guan. 2016. “Identification and Validation of QTLs Controlling Multiple 

Traits in Sorghum.” Crop and Pasture Science 67(2):193–203. doi: 10.1071/CP15239. 

Wang, Jiabo, and Zhiwu Zhang. 2020. GAPIT Version 3: Boosting Power and Accuracy for 

Genomic Association and Prediction. doi: 10.1101/2020.11.29.403170. 

Wang, Jianan, Zhenbin Hu, Hari D. Upadhyaya, and Geoffrey P. Morris. 2020. “Genomic 

Signatures of Seed Mass Adaptation to Global Precipitation Gradients in Sorghum.” 

Heredity 124(1):108–21. doi: 10.1038/s41437-019-0249-4. 

Wang, Taojun, and Melba M. Crawford. 2021. “Multi-Year Sorghum Biomass Prediction with 

UAV-Based Remote Sensing Data.” Pp. 4312–15 in 2021 IEEE International Geoscience 

and Remote Sensing Symposium IGARSS. 

Wang, Xuemin, Emma Mace, Colleen Hunt, Alan Cruickshank, Robert Henzell, Heidi Parkes, and 

David Jordan. 2014. “Two Distinct Classes of QTL Determine Rust Resistance in 

Sorghum.” BMC Plant Biology 14(1):366. doi: 10.1186/s12870-014-0366-4. 

Wheeler, Tim, and Joachim von Braun. 2013. “Climate Change Impacts on Global Food Security.” 

Science 341(6145):508–13. doi: 10.1126/science.1239402. 



 

 

187 

White, J. W., G. Alagarswamy, M. J. Ottman, C. H. Porter, U. Singh, and G. Hoogenboom. 

2015. “An Overview of CERES–Sorghum as Implemented in the Cropping System 

Model Version 4.5.” Agronomy Journal 107(6):1987–2002. doi: 10.2134/agronj15.0102. 

White, Jeffrey W., Pedro Andrade-Sanchez, Michael A. Gore, Kevin F. Bronson, Terry A. Coffelt, 

Matthew M. Conley, Kenneth A. Feldmann, Andrew N. French, John T. Heun, Douglas J. 

Hunsaker, Matthew A. Jenks, Bruce A. Kimball, Robert L. Roth, Robert J. Strand, Kelly 

R. Thorp, Gerard W. Wall, and Guangyao Wang. 2012. “Field-Based Phenomics for Plant 

Genetics Research.” Field Crops Research 133:101–12. doi: 10.1016/j.fcr.2012.04.003. 

Williams, J. R., K. G. Renard, and P. T. Dyke. 1983. “EPIC: A New Method for Assessing 

Erosion’s Effect on Soil Productivity.” Journal of Soil and Water Conservation 38(5):381–

83. 

Williams, John G. K., Anne R. Kubelik, Kenneth J. Livak, J. Antoni Rafalski, and Scott V. Tingey. 

1990. “DNA Polymorphisms Amplified by Arbitrary Primers Are Useful as Genetic 

Markers.” Nucleic Acids Research 18(22):6531–35. doi: 10.1093/nar/18.22.6531. 

Wilson, G. L., and J. D. Eastin. 1982. “The Plant and Its Environment.” Sorghum in the Eighties: 

Proceedings of the International Symposium on Sorghum. 2 7 November 1981, ICRISAT 

Center Patancheru, A. P. India. 1:101–19. 

Xia, Jingnu, Yunjun Zhao, Payne Burks, Markus Pauly, and Patrick J. Brown. 2018. “A Sorghum 

NAC Gene Is Associated with Variation in Biomass Properties and Yield Potential.” Plant 

Direct 2(7):e00070. doi: 10.1002/pld3.70. 

Xu, Wenwei, Prasanta K. Subudhi, Oswald R. Crasta, Darrell T. Rosenow, John E. Mullet, and 

Henry T. Nguyen. 2000. “Molecular Mapping of QTLs Conferring Stay-Green in Grain 

Sorghum (Sorghum Bicolor L. Moench).” Genome 43(3):461–69. doi: 10.1139/g00-003. 

Yamaguchi, Miki, Haruka Fujimoto, Ko Hirano, Satoko Araki-Nakamura, Kozue Ohmae-

Shinohara, Akihiro Fujii, Masako Tsunashima, Xian Jun Song, Yusuke Ito, Rie Nagae, 

Jianzhong Wu, Hiroshi Mizuno, Jun-ichi Yonemaru, Takashi Matsumoto, Hidemi Kitano, 

Makoto Matsuoka, Shigemitsu Kasuga, and Takashi Sazuka. 2016. “Sorghum Dw1, an 

Agronomically Important Gene for Lodging Resistance, Encodes a Novel Protein Involved 

in Cell Proliferation.” Scientific Reports 6(1):28366. doi: 10.1038/srep28366. 

Yang, Changye, Sriram Baireddy, Enyu Cai, Melba Crawford, and Edward J. Delp. 2021. “Field-

Based Plot Extraction Using UAV RGB Images.” ArXiv:2109.00632 [Cs]. 

Yang, Kai-Wei, Scott Chapman, Neal Carpenter, Graeme Hammer, Greg McLean, Bangyou 

Zheng, Yuhao Chen, Edward Delp, Ali Masjedi, Melba Crawford, David Ebert, Ayman 

Habib, Addie Thompson, Clifford Weil, and Mitchell R. Tuinstra. 2021. “Integrating Crop 

Growth Models with Remote Sensing for Predicting Biomass Yield of Sorghum.” In Silico 

Plants 3(1). doi: 10.1093/insilicoplants/diab001. 

 



 

 

188 

Yang, Shanshan, Rebecca L. Murphy, Daryl T. Morishige, Patricia E. Klein, William L. Rooney, 

and John E. Mullet. 2014. “Sorghum Phytochrome B Inhibits Flowering in Long Days by 

Activating Expression of SbPRR37 and SbGHD7, Repressors of SbEHD1, SbCN8 and 

SbCN12.” PLOS ONE 9(8):e105352. doi: 10.1371/journal.pone.0105352. 

Yin, Xinyou, Paul C. Struik, and Jan Goudriaan. 2021. “On the Needs for Combining 

Physiological Principles and Mathematics to Improve Crop Models.” Field Crops 

Research 271:108254. doi: 10.1016/j.fcr.2021.108254. 

 

Yu, Jianming, Gael Pressoir, William H. Briggs, Irie Vroh Bi, Masanori Yamasaki, John F. 

Doebley, Michael D. McMullen, Brandon S. Gaut, Dahlia M. Nielsen, James B. Holland, 

Stephen Kresovich, and Edward S. Buckler. 2006. “A Unified Mixed-Model Method for 

Association Mapping That Accounts for Multiple Levels of Relatedness.” Nature Genetics 

38(2):203–8. doi: 10.1038/ng1702. 

Zhang, Dong, Wenqian Kong, Jon Robertson, Valorie H. Goff, Ethan Epps, Alexandra Kerr, 

Gabriel Mills, Jay Cromwell, Yelena Lugin, Christine Phillips, and Andrew H. Paterson. 

2015. “Genetic Analysis of Inflorescence and Plant Height Components in Sorghum 

(Panicoidae) and Comparative Genetics with Rice (Oryzoidae).” BMC Plant Biology 

15(1):107. doi: 10.1186/s12870-015-0477-6. 

Zhang, Li-Min, Chuan-Yuan Leng, Hong Luo, Xiao-Yuan Wu, Zhi-Quan Liu, Yu-Miao Zhang, 

Hong Zhang, Yan Xia, Li Shang, Chun-Ming Liu, Dong-Yun Hao, Yi-Hua Zhou, Cheng-

Cai Chu, Hong-Wei Cai, and Hai-Chun Jing. 2018. “Sweet Sorghum Originated through 

Selection of Dry, a Plant-Specific NAC Transcription Factor Gene.” The Plant Cell 

30(10):2286–2307. doi: 10.1105/tpc.18.00313. 

Zhang, Xiaoxiang, Zhongrong Guan, Lei Wang, Jun Fu, Yinchao Zhang, Zhaoling Li, Langlang 

Ma, Peng Liu, Yanling Zhang, Min Liu, Peng Li, Chaoying Zou, Yongcong He, Haijian 

Lin, Guangsheng Yuan, Shibin Gao, Guangtang Pan, and Yaou Shen. 2020. “Combined 

GWAS and QTL Analysis for Dissecting the Genetic Architecture of Kernel Test Weight 

in Maize.” Molecular Genetics and Genomics 295(2):409–20. doi: 10.1007/s00438-019-

01631-2. 

Zhang, Zhiwu, Elhan Ersoz, Chao-Qiang Lai, Rory J. Todhunter, Hemant K. Tiwari, Michael A. 

Gore, Peter J. Bradbury, Jianming Yu, Donna K. Arnett, Jose M. Ordovas, and Edward S. 

Buckler. 2010. “Mixed Linear Model Approach Adapted for Genome-Wide Association 

Studies.” Nature Genetics 42(4):355–60. doi: 10.1038/ng.546. 

Zhang, Zhou, Ali Masjedi, Jieqiong Zhao, and Melba M. Crawford. 2017. “Prediction of 

Sorghum Biomass Based on Image Based Features Derived from Time Series of UAV 

Images.” Pp. 6154–57 in 2017 IEEE International Geoscience and Remote Sensing 

Symposium (IGARSS). 



 

 

189 

Zhao, Chunjiang, Ying Zhang, Jianjun Du, Xinyu Guo, Weiliang Wen, Shenghao Gu, Jinglu Wang, 

and Jiangchuan Fan. 2019. “Crop Phenomics: Current Status and Perspectives.” Frontiers 

in Plant Science 10:714. doi: 10.3389/fpls.2019.00714. 

Zhao, Jing, Maria B. Mantilla Perez, Jieyun Hu, and Maria G. Salas Fernandez. 2016. “Genome-

Wide Association Study for Nine Plant Architecture Traits in Sorghum.” The Plant 

Genome 9(2). doi: 10.3835/plantgenome2015.06.0044. 

Zhou, Chengquan, Hongbao Ye, Zhifu Xu, Jun Hu, Xiaoyan Shi, Shan Hua, Jibo Yue, and Guijun 

Yang. 2019. “Estimating Maize-Leaf Coverage in Field Conditions by Applying a Machine 

Learning Algorithm to UAV Remote Sensing Images.” Applied Sciences 9(11). doi: 

10.3390/app9112389. 

Zhou, Tian, Seyyed Meghdad Hasheminasab, and Ayman Habib. 2021. “Tightly-Coupled 

Camera/LiDAR Integration for Point Cloud Generation from GNSS/INS-Assisted UAV 

Mapping Systems.” ISPRS Journal of Photogrammetry and Remote Sensing 180:336–56. 

doi: 10.1016/j.isprsjprs.2021.08.020. 

Zhu, Guanglong, Shaobing Peng, Jianliang Huang, Kehui Cui, Lixiao Nie, and Fei Wang. 2016. 

“Genetic Improvements in Rice Yield and Concomitant Increases in Radiation- and 

Nitrogen-Use Efficiency in Middle Reaches of Yangtze River.” Scientific Reports 

6(1):21049. doi: 10.1038/srep21049. 

Zhu, Xin-Guang, Jonathan P. Lynch, David S. LeBauer, Andrew J. Millar, Mark Stitt, and Stephen 

P. Long. 2016. “Plants in Silico: Why, Why Now and What?—An Integrative Platform for 

Plant Systems Biology Research.” Plant, Cell & Environment 39(5):1049–57. doi: 

10.1111/pce.12673. 


