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ABSTRACT 

Calibration of crop models is an expensive and time intensive procedure, which is essential to 

accurately predict the possible crop yields given changing climate conditions. One solution is the 

utilization of unmanned aircraft systems (UAS) deployed with Red Green Blue Composite (RGB), 

and multispectral sensors, which has the potential to measure and collect in field biomass and yield 

in a cost and time effective manner. The objective of this project was to develop a relationship 

between remotely sensed data and crop indices, similar to biomass, to improve the ability to 

parametrize crop models for local conditions, which in turn could potentially improve the 

quantification of the effect of hydrological extremes on predicted yield. An experiment consisting 

of 750 plots (350 varieties) was planted in 2018, and a subset of 18 plots (9 varieties) were planted 

in 2019. The in-situ above ground biomass along with multispectral and RGB imagery was 

collected for both experiments throughout the growing season. The imagery was processed through 

a custom software pipeline to produce spectrally corrected imagery of individual plots. A model 

was fit between spectral data and sampled biomass resulting in an R-square of 0.68 and RMSE of 

160 g when the model was used to estimate biomass for multiple flight dates flights. The VIC-

CropSyst model, a coupled hydrological and agricultural system model, was used to simulate crop 

biomass and yield for multiple years at the experiment location.  Soybean growth was parametrized 

for the location using CropSyst’s Crop Calibrator tool. Biomass values generated from UAS 

imagery, along with the in-situ collected biomass values were used separately to parametrize 

soybean simulations in CropSyst resulting in very similar parameter sets that were distinct from 

the default parameter values. The parametrized crop files along with the default files were used 

separately to run the VIC-CropSyst model and results were evaluated by comparing simulated and 

observed values of yield and biomass values. Both parametrized crop files (using in-situ samples 

and UAS imagery) produced approximately identical results with a max difference of 0.03 T/Ha 

for any one year, compared to a base value of 3.6 T/Ha, over a 12-year period in which the 

simulation was ran. The parametrized runs produced yield estimates that were closer to in-situ 

measured yield, as compared to unparametrized runs, for both bulk varieties and the run 

experiments, with the exception of 2011, which was a flooding year. The parametrized simulations 

consistently produced simulated yield results that were higher than the measured bulk variety 

yields, whereas the default parameters produced consistently lower yields. Biomass was only 
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assessed for 2019, and the results indicate that the biomass after parametrization is lower than the 

default, which is attributed to the radiation use efficiency parameter being lower in the 

parametrized files, 2.5 g/MJ versus 2.25 g/MJ. The improved accuracy of predicting yield is 

evidence that the UAS based methodology is a suitable substitute for the more labor intensive in-

situ sampling of biomass for soybean studies under similar environmental conditions.
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 INTRODUCTION 

1.1 Background 

According to a World Bank census, global population numbers have risen from 6.11 billion in 

2000 to 7.53 billion in 2018 (World Bank, 2017). This population growth requires increased crop 

production to sustain (Cohen, 2003). However, crop production increase is limited due multiple 

factors similar to fertility and area of cultivation, as well as water and climactic stresses (Cohen, 

2003; Sinha et al., 1989). The Midwest is representative of this scenario, as climate models along 

with observational data, predict increased frequency of extreme weather in the future, which in 

turn could reduce crop yields (Cherkauer et al., 2010; Fan, 2014; Bowling et al., 2020). Two crops 

heavily affected by recent climate changes are corn and soybean, and the effects can be easily 

identified for the 2019 crop cycle. The combination of a long-wet spring and a dry summer resulted 

in decreases in both corn and soybean production by 5.3% and 19.8% respectively in the 

US (USDA, 2019). The hydrological climate extremes heavily affected corn in particular which 

experienced a drop in production even with an 8% rise in area planted for corn (USDA, 

2020). Hence, there is a need to further our understanding to the effects of droughts and floods on 

crop growth and yield under different climate scenarios.  

 

Research in agronomy, breeding and crop modeling further our knowledge into the dynamics 

governing crop growth as it is related to water stress and expected yield. This is achieved 

by relying on current knowledge along with the immense amount of agronomic and 

meteorological data collected annually. Currently crop breeders are utilizing different phenotypes 

on a field scale to evaluate the effects of water stress on growth (Araus and Cairns, 2014; Cabrera-

Bosquet et al., 2012). This procedure involves planting hundreds or thousands of different 

varieties of the similar crop within a field and tracking the development of different physical traits 

throughout the plant's growth for each of the varieties (Moreira et al., 2019). The physical traits or 

phenotypes, which include biomass and leaf area index, serve as indicators to the performance of 

the planted varieties under the specific conditions witnessed throughout the planting season, which 

helps identify high yielding varieties (de Paiva Rolla et al., 2014). Biomass is the weight of the 

above ground dry matter in the canopy, and it directly correlates to the yield of a crop through a 
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harvest index, such that as biomass increases, yield increases. Leaf area index is the measure of 

the amount of foliage in canopies, which is the surface area of leaves over a meter square of 

soil. Leaf area index determines the light interception capacity of a crop, in general higher leaf 

area index indicates higher crop productivity (Weraduwage et al., 2015). The relationship between 

plant phenotypes and plant growth is variable for the same crop varieties, as such multiple 

varieties must be screened simultaneously, under similar conditions so that varieties with desired 

characteristics can be easily identified. Increasing the speed and accuracy with which such 

measurements can be made will aid in rapidly identifying varieties that are more resistant to 

drought or flooding, while also identifying high yield potential.   

 

Substantial advancements have been achieved by conducting phenotypic studies at a field and plot 

scale. The field scale in such studies spans a few hectares while the plot scale is just a few square 

meters in area (Borra-Serrano et al., 2020). Experiments are typically designed to study hundreds 

to thousands of varieties within a field. The field is divided into small spatial plots, and each plot 

represents a single crop variety as such each plot usually requires separate observations and 

analysis. A prominent and recurring problem faced in such setups is the high variation within the 

field itself, especially in larger fields where soil and hydrologic conditions might differ. In such 

cases, multiple observations of the same variety crops are needed to account for in field 

variations (the environment). The large number of precise observations needed for such studies 

traditionally required a substantial amount of manual labor (Araus & Cairns, 2014). The high cost 

of manual labor along with the requirement for precise data results in a need to find a solution that 

cuts labor cost while maintaining a high level of precision of the data collected.   

 

To overcome the cost of labor and maintain a high level of data precision, researchers have started 

to exploit new methods for data collection. The use of Unmanned Aircraft Systems (UAS) 

equipped with imaging sensors are a possible solution (Borra-Serrano et al., 2020). UAS require 

minimal labor and can collect imagery for the entire field in a single flight. The spatial resolution, 

of approximately 1 cm/pixel to 3 cm/pixel, of the sensors allows researchers to assess individual 

plots within the field. Moreover, the UAS can be flown multiple times over the same fields, 

resulting in the introduction of a high temporal aspect to the data collected, for a lower cost than 

conventional remote sensing methods. The combination of both high spatial and temporal 
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resolutions allows researchers to accurately assess plant growth throughout the growing 

season (Tsouros et al., 2019).   

 

The initial difficulty in dealing with remote sensing data, retrieved via UAS, is the fact that the 

data are fundamentally different to datasets traditionally used for evaluating crop models, and 

relationships must be developed between what is measured from above the canopy by UAS 

imagery and the in-situ measurements collected manually within the field. Initial advancements in 

the field have linked canopy color and canopy cover size to crop characteristics similar to above 

ground biomass, LAI, and yield (Duchemin et al., 2008). Canopy coverage is defined as the 

proportion of the forest floor covered by the vertical projection of the tree crowns (USDA Forest 

Service, 2010). Canopy color is typically quantified using mathematical relationships between 

spectral bands to calculate UAS crop indices, which relate to chlorophyll content or photosynthetic 

activity. One example would be the normalized difference vegetation index (NDVI) which 

measures the state of plant health based on how the plant reflects light at certain frequencies (Rouse 

et al., 1974), given that the living green plants absorb solar radiation in the photosynthetically 

active radiation due to the chlorophyll content, and reflect at the near infra-red.   

 

Canopy coverage, which is a measure of how much the plant canopy covers the ground, has been 

crucial for high-throughput phenotyping at a field scale due to the relative ease of accurately 

calculating canopy cover from UAS images as well as its strong relation to light interception and 

yield (Holben Compton et al., 1980). The use of canopy cover is prevalent, and models rely on it 

as a measure to estimate LAI for plant growth estimates (Stockle et al., 1994). Multiple crop 

models utilize canopy cover in their calibration and parameterization processes. One such model 

is AquaCrop, which was developed by the United Nation’s Food and Agriculture Organization 

(FAO) to address food security and assess the effect of the environment and management on crop 

production. The model heavily depends on canopy cover estimates to approximate LAI and 

ultimately infer crop growth. The model utilizes canopy cover fractions as they are easier to 

collect than LAI measurements. Another older but more data intensive physically based simulation 

model is the Cropping Systems (CropSyst) simulation model. CropSyst is a multi-year, multi-crop, 

crop growth simulation model (Stockle, 1996). Originally it had been developed to serve as an 

analytic tool to study the effect of cropping systems management on productivity and the 
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environment. The model requires multiple inputs to describe crop properties, soil characteristics 

and metrological conditions, which is similar to AquaCrop; however, CropSyst is more data 

intensive and requires larger and more precise datasets. The complex nature of the model allows 

for its use in studying the effects of changing environments and crop types to potential yields. Both 

models are used to assess the environments effect on crop growth; however, AqauCrop is mostly 

utilized in conditions where water is limited, while CropSyst is a more holistic model, which more 

accurately models crop growth under different management practices, and environmental 

conditions. Crop modelling has continued to develop rapidly, and more complex models now exist, 

an example being the Agricultural Production Systems sIMulator (APSIM), which contains 

interconnected models to simulate systems comprising soil, crop, tree, pasture, and livestock 

biophysical processes (Holzworth et al., 2014).  Initially, APSIM was a cropping systems model 

that later evolved into an agro-ecosystem model, which means that APSIM not only models crop 

growth, but also contains soil and animal models. (Holzworth et al., 2014). APSIM relies on 

multiple input parameters that are hard to measure including radiation use efficiency 

and transpiration efficiency. CropSyst can simulate the effects of water stress on crops to better 

predict yield accordingly (Stockle et al., 2003). It is important to highlight that many of the crop 

models were built on the same fundamental equations, however the applications of these models 

through their integration with other models, and their customizability is what sets them apart.   

 

One example of the coupling of models impactful to this study is the coupling of the macroscale 

Variable Infiltration Capacity (VIC) hydrologic model and the CropSyst model to predict yield 

values, the coupled model is known as the VIC-CropSyst model. The VIC-CropSyst model allows 

for more accurate water use simulation, as the VIC model can accurately identify the available 

water for crop growth as dictated by a full water and energy balance at the land surface, and feed 

that data into the CropSyst model to determine water use (Malek et al., 2017).   

 

Crop parameters applied in these models are usually for general conditions, 

but parameter calibration can be conducted to better represent local conditions and crop 

varieties (Stockle et al., 2003). In addition, advancements in crop breeding have resulted in new 

crop varieties that may not be as well represented by the default parameterizations. The parameters 

required to populate these models are usually gathered in the field using both destructive and non-
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destructive methods. Field sampling is both costly and time consuming, which limits the number 

of samples taken both in space and time that what would be optimal to accurately model crop 

behavior. To increase the availability of data that can be used for parameterization of models, 

researchers have sought to supplant ground-based sampling with imagery-derived indices related 

to crop physical and physiological properties.  The use of crop indices such as NDVI, the soil 

adjusted vegetation index (SAVI) and others have been successfully employed in estimating plant 

biomass development through the growing season and potential yield at the end of the season. In 

season biomass, in particular, is useful for quantifying water stress effects in near-real time.  

For example, the relationship between biomass and NDVI has been used to help identify crops 

that might be experiencing moisture stress due to droughts and floods (Jones, 2004; Smith, 

2021). The acquisition of data for crop modeling is a daunting task, as the cost is high, and the 

time needed for collecting samples on a field scale is relatively lengthy and difficult. As such, 

utilizing Unmanned Aerial Systems (UAS) equipped with RGB, Multispectral and Thermal 

sensors is proposed as a way to cut down these costs. Use of inexpensive sensors collecting high-

resolution imagery as needed through the growing season allows for the rapid calculation of 

multiple crop indices that could potentially be used to predict biomass, LAI and final 

yield (Sankaran et al., 2015).   

 

High-throughput data, collected using UAVs, is usually more time efficient than in-situ sampling 

as data from the entire field can be collected within a few hours. This process generates a 

substantial amount of data when collecting high resolution imagery, as an experimental field can 

include upwards of a thousand plots that can be all collected and processed in a 

single flight operation. Handling all of the data, and quickly extracting useful agronomic 

information is necessary for remote sensing from UAS platforms to become an important tool. As 

such, this study aims to develop and evaluate a method for extracting phenotypic information from 

UAS imagery that has a direct application in the parametrization of crop models.  This research 

will focus on soybean varieties currently being tested at Purdue’s Agronomy Center for Research 

and Education (ACRE), which will support the simulation of multiple years of soybean growth 

and can potentially be used to quantify the impacts of hydrological extremes on crop yields. 

Development of these methods allows for production of a systematic procedure for the 

parametrization of different crop varieties under different hydrologic conditions.  
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1.2 Goals and Objectives  

The overall objective of this study is to accurately quantify soybean growth, relative to local 

environmental conditions and to quantify the effect of model parametrization using those 

observations on final crop yields under normal and extreme hydrologic conditions. Climate 

change is altering weather patterns in some areas, and the ability to quantify the effects of these 

changes on crop production is crucial for management of farms and maintaining high yield to 

sustain the growing population. This research will be performed in order to test the following 

hypotheses:  

1. Development of relationships between remotely sensed data and crop indices is expected 

to improve the ability to parametrize crops for local conditions.  

2. Parametrization of crop models for local conditions is expected to improve their ability to 

quantify the impact of hydrological extremes on predicted crop yields.  

These hypotheses will be addressed using the following procedures:  

1. Field measurements of biomass and LAI were collected for multiple varieties of soybean. 

In addition, field measurements for reflectance of spectral panels were collected to 

atmospherically correct UAS collected data.  

2. UAS data were collected regularly over soybean fields. The data collected was then 

atmospherically corrected using the empirical line method.  

3. Band algorithms were generated from atmospherically corrected plot images, and 

regression lines were developed that link field measurements with UAS collected data.  

4. The regression lines were used with data from previous seasons that demonstrate 

lower water stress for the same crop varieties, in order to estimate multiple values of 

biomass.  

5. The estimated biomass and measured LAI was used within CropSyst’s crop calibrator, to 

calibrate key parameters essential for crop growth.  

6. The parametrized crop files were then used within the VIC-CropSyst model to simulate 

multiple growing seasons and estimate final yields.   
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1.3 Thesis Organization 

This thesis is organized into five chapters. Chapter 1 provides an introduction to the developments 

of crop modelling as it pertains to the use of UAS imagery. It also provides the objective of this 

study and the hypotheses that will be assessed. Chapter 2 describes the process of high-throughput 

data collection and processing. The processes of plot extraction, atmospheric correction and 

development of regression lines using band indices and field measurements. 

Chapter 3 summarizes the VIC-CropSyst model along with CropSyst’s built in crop calibrator 

tool.  In chapter 4, simulation results of biomass and predicted yield are assessed to quantify the 

effect of using different data sources to parametrize the crop model. Finally, chapter 5 recaps and 

discusses the results of this study. In addition, it offers insight into future work and 

development that may be accomplished in this topic area.   
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 HIGH-THROUGHPUT DATA COLLECTION AND PROCESSING 

2.1 High-Throughput Data Overview 

High-throughput data are information generated quickly and automatically resulting in massive 

datasets that are being used to address large and complex problems. When applied in the field of 

agronomy, it often refers to the rapid collection of large amounts of phenotypic data, mostly 

through the application of remote sensing tools. This offers a non-destructive approach to plant 

screening (White et al., 2012). Improvements in remote sensing technologies along with advances 

in data processing have increased the application and improved the accuracy of high-throughput 

phenotyping (Leinonen and Jones, 2004), which has the potential to allow crop breeders to study 

specific traits with the objective of breeding a more productive and resilient crop. Many high-

throughput phenotyping platforms have been examined (e.g., Yang et al., 2013; Araus and Cairns, 

2014), and most are in controlled and fully automated environments such as greenhouses and 

growth chambers. The problem with such environments is that they simulate conditions that are 

removed from the reality that is occurring on the field scale. The initial application of remote 

sensing technologies, for crop studies on a field scale, came in the form of satellite imaging 

technologies (Sankaran et al., 2015). However, currently available satellite sensors have major 

limitations due to the high cost, low spatial resolution for the identification of desirable traits, the 

influence of atmospheric effects and lengthy periods between revisits (Issei et al., 2010). Given 

the limitations of satellite imagery, researchers are focusing on unmanned aircraft systems (UAS), 

which provide the potential for large-scale crop monitoring with a high spatial, spectral, and 

temporal resolutions. Initially, the use of such systems has been limited to research activities due 

to the high cost and complexity of the platforms (Chapman et al., 2014). Nevertheless, in today’s 

standards, these UAS are considered to be an affordable and powerful tool for crop phenotyping 

as compared to their satellite counterparts (Berni et al., 2009) as they offer a low-cost approach to 

meet the requirements of spatial, spectral, and temporal resolutions for a given site and study. 

 

Phenotype, in terms of crops, is the expression of the genotype (genetic constitution), 

environmental effects and the management practices that influence growth and development. 

Some traits such as Leaf Area Index (LAI), plant height, lodging and Canopy Cover (CC) are 
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considered geometric traits (related to the shape of the plant), while traits such as biomass and 

photosynthesis are considered physiological traits. In terms of management practices, those can 

relate to use of herbicides, quantity of supplied irrigation water, irrigation mode, pesticide 

application, tillage and other field management operations. In regards to this specific study, 

management practices are consistent for all fields and experiments, as such the effects of 

management practices are not considered.  

 

Distinct methods have been developed and proposed to evaluate phenotypic traits in the field, 

whether it be dependent on spectral signature, canopy temperature or reflectance (Araus and Cairns, 

2014). In general, geometric traits such as plant height or LAI are usually estimated by building a 

digital surface model or digital surface elevation of the canopy, along with image classification 

analysis (Hunt et al. 2005, 2010). Physiological traits are generally dependent on different plant 

indices built by using the reflectance and absorption from the canopies (Hunt et al. 2005, 2010). 

Estimating and predicting crop yield and growth will require the assessment of both geometric and 

physiological traits, as such both must be assessed, which would support their use in calibrating 

the crop model.   

2.2 Experiment Setup and Field Sampling 

To accurately predict crop growth and development, both field and UAS collected data are required. 

Data that was collected in the field includes biomass, LAI, dates at which crops reached a certain 

developmental stage and spectrometer reflectance from spectral calibration panels. UAS collected 

data included both multispectral and RGB images of the fields taken at different intervals during 

the growing season. Multiple flights for each sensor were performed per week, weather allowing, 

but not all flights resulted in data that are optimal in terms of both image quality and timing. The 

sensor data allows for the calculation of multiple crop indices including NDVI and SAVI, and the 

estimation of plant geometric traits such as canopy cover. Combining field and UAS data aids in 

the development of models that correlate band indices to crop growth phenotypes such as biomass 

accumulation. It is important to highlight that the fields are divided into multiple experiments, each 

focusing on a certain aspects of crop growth, and that this study considers only a subset of the 

overall set of experiments.   
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All high-throughput data along with field measurements were collected for the summer field 

seasons of 2018 and 2019, the locations of which are shown in Figure 1. These data sets were 

collected at the Agronomy Center for Research and Education (ACRE), which was established in 

1949 for research groups interested in field crops. Multiple varieties of soybeans were used in this 

study. Upwards of 384 unique varieties were tested in the field season of 2018, while nine focused 

groups were assessed in the summer of 2019.  

 

The 2018 experiment was made up of three sub experiments named RUE I, RUE II and RUE 

calibration. The three experiments were layout next to each other in the field as shown in Panel A 

in Figure 1. The RUE experiments are not complete replicates as the varieties used are not 

completely the same between experiments. RUE I and RUE II are the same size with 

approximately 350 varieties each, while RUE calibration is the smaller subset with 60 varieties in 

total. 

 

The choice of the nine focus classes was dependent on the lodging rate, which is the dislocation 

of stems or roots from their upright and proper placement, and yield values from the 2018 varieties. 

All nine varieties selected for the 2019 experiment had low lodging in 2018. In terms of yield, the 

varieties were chosen to represent the range of 2018 yield values, there were three low yielding 

varieties, three high yielding, two medium yielding varieties and one control line. The setup as 

well as the varieties chosen can be seen in Table 1. In total, 18 plots were assessed in 2019 (nine 

varieties by two replications), where plots 1 to 9 are the first repetition, and plots 10 to 18 are the 

second repetition. Each plot is made of eight rows (eight rows per plot). The use of eight rows is 

crucial as rows 1, 5 and 8 are used as border rows, rows 2, 3 and 4 are used for destructive biomass 

sampling and rows 6 and 7 are used for non-destructive LAI measurements and for extracting 

information from remote sensing images.  A similar plot layout was utilized for the 2018 RUE 

experiments.   
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Table 1: Genetic varieties used as well as their layout in the field and growth highlights for the 

2019 experiment. Range is the location of the field north to south based on the southern edge 

(Range 1) of the experiment, so Range 18 is the northernmost plot. 

Range  Cultivar  Yield  Growth Highlights  

18  DS11-06174  High  Hand planted, low development  

17  DS11-31160  Medium  Hand planted, low development  

16  DS11-34110  Low  NA  

15  DS11-06182  High  NA  

14  IA-3048  Control  NA  

13  DS11-42112  Low  NA  

12  DS11-03007  High  NA  

11  DS11-09043  Medium  NA  

10  DS11-40064  Low  NA  

9  DS11-06174  High  NA  

8  DS11-31160  Medium  NA  

7  DS11-34110  Low  NA  

6  DS11-06182  High  NA  

5  IA-3048  Control  NA  

4  DS11-42112  Low  NA  

3  DS11-03007  High  NA  

2  DS11-09043  Medium  Planted late, late development  

1  DS11-40064  Low  Planted late, late development  

 

Plots in the field are named depending on their location in the experiment. Row describes the plot’s 

location in the x-axis (East-West) while Range describes the plot’s location in y-axis (North-South). 

The southwestern corner is considered the first plot and as such is given the identification of row 

1, range 1. Table 1 shows the experimental setup of the 2019 experiment. This is a 1 row, 18 range 

experiment meaning that there are 18 plots in the y-axis all aligned along 1 row in the x-axis, so 

in total 18 plots constitute this experiment.  Each plot within the experiment is planted with eight 

rows of the same genetic material. Given the setup of the experiment, plot names are simplified to 
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only include the plot number, as such, plot 1 refers to row 1, range 1 and the same applies for all 

18 plots for this experiment.  

 

Biomass sampling occurred in the field approximately in two-week increments. Each sampling 

took place within one day of flight operations, so that the biomass sampled can be correlated with 

the imagery collected during the flights. The sampling procedure required the cutting of the plants 

from a specific location in the experiment and placing them in labelled mesh bags that were later 

placed in ovens for drying. After the drying process, the samples are weighed to obtain the weight 

of dry matter. Biomass collection is done using rows 2, 3 and 4 of each plot as mentioned earlier. 

Collection starts from row 2. The first 20 cm of the row were skipped, and then 50 cm were cut 

from the row for biomass collection. For the next data collection, the next 50 cm were skipped and 

the 50 cm after those were sampled. This process was repeated for each row until the end is reached, 

and no more locations from which 50 cm of plant biomass can be harvested; for this experiment, 

a row could be sampled three times. After row 2 was sampled, row 4 was sampled in a similar 

manner. When row 4 was fully sampled, sampling shifts to row 3. Sampling of row 3, unlike rows 

2 and 4, starts 20 cm plus 50 cm from the end of the row so that sampling occurs in areas where 

rows 2 and 4 are undisturbed.  Figure 2 shows the order in which each sample was taken. The first 

collection date was 30 days after planting, and a sample was taken every two weeks after that. In 

total, there were seven sample dates, four before maturity and three after. Biomass samples were 

dried for seventy-two hours in the oven set to 80ºC, which resulted in a sample with constant 

weight and no moisture. The samples were dried as soon as possible are harvesting since continued 

respiration could result in additional carbon loss, which would result in lower weights.   

 

LAI measurements were collected in the field whenever biomass sampling occurred. Initially, LAI 

measurements were collected from rows 6 and 7 of each plot, which were also used for the UAS 

sensor measurements as those rows are undisturbed and no destructive sampling occurs in them. 

The LAI-2200C Plant Canopy Analyzer (Danner et al., 2015) was used for the measurements. The 

canopy analyzer estimates LAI by measuring the sunlight that is received by the device while the 

rod is placed under the canopy. The LAI readings were taken diagonally from row 6 to row 7. This 

was repeated twice in the plot, once for each of the two diagonals shown in Figure 1. Given issues 

with the canopy analyzer later in the season, around August 8th, 2019, leaf area (LA) was measured 
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instead using the LI-3100C Area Meter. The Area Meter is basically a scanner in which individual 

leaves are scanned, and the total area of the leaves measured can be determined. Unlike the canopy 

analyzer, this is a destructive sampling method, so it could not be used on rows 6 and 7. Instead, 

area meter measurements were made using the leaves obtained from the biomass sample, so the 

leaves being measured are from rows 2, 3 and 4 rather than rows 6 and 7. During biomass sampling, 

leaves are separated from the plant stem for each sample, scanned, and then returned to the bag to 

be placed in the oven. To correlate between the LAI and leaf area values, leaf area was first 

converted to LAI by dividing the leaf area by the area of the plot that was sampled for biomass 

(Forest Ecosystems (Third edition), 2007).   

 

Figure 1: Experiment locations where panel A shows the 2018 experiments, and panel B shows 

the 2019 experiment. The three 2018 experiments are in the north field and the 2019 experiment 

is in the south field 
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Figure 1: Biomass and LAI sampling procedure for the 2019 experiment.  Image illustrates a 

single experimental plot within the field experiment.  The top black numbers indicate the row 

number within the plot (each plot has 8 rows of the same genetic material), the numbers within 

the canopy show the order in which biomass sampling is conducted, and the diagonal lines 

illustrate how LAI measurements were taken using the LAI-2200C Plant Canopy Analyzer.  This 

image was taken on August 1, 2019, after 5 biomass samples were collected, so gaps can be seen 

in the crop canopy for sampling locations 1-5.  Neighboring plants expand into the canopy holes 

over time, thus the largest gap in the canopy is visible at location 5 where sampling just 

occurred. 

Several criteria were considered prior to placing the 2019 experiment in its specific location in the 

field. The first consideration was that the experiment is not on the edge of the field as to avoid any 

edge effect on the plots (Langton, 1990). The second consideration was to avoid areas in the field 

that experienced ponding during the 2018 season, as prolonged saturation can severely lower 

productivity of soybean plants (Scott et al., 1989). This resulted in the experiment being placed in 

the center of the field in 2019, and its location within the field can be seen in Figure 2.   
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2.3 UAS Data Collection 

The field in which the UAS data are collected was divided into multiple experiments as shown in 

Figure 1. In order to distinguish the experiment locations in the UAS images, ground control points 

(GCP) were installed on the edges of the experiments. The ground control points are 1-meter by 

1-meter square panels and consist of a white center and a black border. Both the black and white 

material are made of cloth. The colors of the GCPs and their shape makes them distinguishable 

from their surroundings. In addition, the coordinates of the GCPs were captured using a TOPCON 

RTK (Real-time kinematic positioning) (Topcon, Tokyo Japan).  The GCPs remain in their 

location for the entire season and are removed once the field season is over.  

 

UAS data were collected throughout the planting season. Flights were conducted before planting 

to assess the flight plans for each field. In addition, these flights aided in checking if the installed 

ground control points (GCP) for the experiments were in the proper location in the images. Flights 

were generally performed close to solar noon, with the UAS system flying at an altitude of 

120 meters. Overlap between images was kept consistent during each field season. In 2018 the 

forward and side overlap were set to 85% and 70%, respectively, this was changed in 2019 to 

improve plot extraction and was set to 90% and 90%, respectively.   

 

The imagery collected was from two sensors, a Red Green Blue color scheme sensor (RGB) and a 

Multispectral sensor (MSP). The RGB data were collected using a S.O.D.A. camera (SenseFly 

Parrot Group, Switzerland), while the MSP data were collected with a 1.2 MP Parrot Sequoia 

camera (MicaSense Inc., Seattle, USA). The MSP has four discrete spectral bands: green (central 

wavelength = 550 nm, bandwidth = ± 20 nm), red (660 nm, ± 20 nm), red-edge (735 nm, ± 5 nm), 

and near-infrared (790 nm, ± 20 nm) (MicaSense Inc., Seattle, USA). Both sensors were attached 

to a SenseFLy eBee unmanned aerial vehicle (UAV). It is important to highlight that each sensor 

was flown on a separate flight with the RGB sensor flown over the field first, followed by the MSP 

sensor.   
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2.4 UAS Data Processing 

The data collected by the UAS were individual images of parts of the field experiment as shown 

in panel A of Figure 3. These images needed to be flattened, rotated and stitched together into a 

single orthomosaic image with correct earth coordinates, a process that was completed using 

Pix4D mapper (Pix4D SA, 2018). Within Pix4D mapper, the images were flattened and stitched 

to form an orthomosaic of the field from the individual images. The flattening is crucial for the 

MSP images as the sensor has a Fisheye lens that significantly distorts the images (Bellas et al., 

2009). The output of this procedure can be seen in panel B in Figure 3 where the images are stitched 

to form a single orthomosaic.     

 

The orthomosaics generated for each field by Pix4D mapper included multiple experiments as 

shown in Figure 2. To extract data on a plot scale for each experiment, two pipelines were built 

within MATLAB: Crop Image Extraction version 2 (CIE 2.0) and Vegetation Indices Derivation 

version 1 (VID 1.0) (Lyu et al., 2019).  

 

CIE extracts plot images from designed field experiments using RGB and multispectral (MSP) 

imagery captured by a UAS. The user configures the designed field experiment into CIE by 

providing metadata such as experiment location, number of rows and ranges, and size of plots. 

Once the experiment design is configured for the tool, CIE segments imagery to separate canopy 

from soil.  The segmented images are used to accurately and precisely identify plot midpoints 

which enable the automated and rapid extraction of plot images similar to the ones shown in panel 

C in Figure 3. CIE works entirely in MATLAB and can run batch processes on Linux computer 

clusters. In addition, CIE allows for the extraction of multiple repetitions for the same plot. This 

is achieved by providing the original images captured by the sensors during the flights. Given that 

the Parrot Sequoia camera has a Fisheye lens, the flattened images from Pix4D mapper are used 

instead of the raw imagery. Both the flattened raw images and orthomosaics are used as inputs for 

CIE.  

 

VID is the next step in the data processing pipeline. VID uses image attributes (e.g., row, range, 

date, image band) with customized functions such as band algorithms to quantify phenotypic traits 

from the extracted plot images. An automated and efficient trie structure is implemented in VID 
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and allows for rapid processing of multiple images for each experimental plot (Lyu et al., 2019). 

For instance, an experiment of approximately 400 plots takes less than 30 seconds to process for 

each vegetation index being evaluated. VID can also calibrate spectral images resulting in a 

conversion from a digital number to reflectance values using several methods. The tool also can 

be used to extract certain rows within the plot (e.g., the middle 4 rows of an 8-row plot) and 

calculate vegetation indices only for the specified subset of the plot thus removing edge or sampled 

rows from the analysis. Any combination of spectral bands and supplementary information can be 

built into a VID equation, and results can be output from VID as text files or individual images 

such as the NDVI images illustrated in panel D of Figure 3.  

 

Initially, this setup was developed for RGB imagery. When multispectral imagery was integrated 

into the system, it was evident that radiometric image calibration was needed to output accurate 

and meaningful results from VID, whether it be reflectance values or vegetation indices. This was 

resolved by developing a tool that would allow for the calibration of images before reflectance and 

vegetation index calculations.  

 

Figure 1: UAS data processing pipeline where panel A is a representative sample of raw images 

captured during flight operations.  The raw images are used as inputs to the Pix4D Mapper 

software to generate the orthomosaic shown in panel B. Both the flattened raw images and 

orthomosaic are provided as inputs to CIE and used to generate the segmented row images and 

then extract each plot from the field experiment as shown in panel C.  Outputs from CIE are used 

as inputs to VID and used to compute multiple vegetation indices, as illustrated with the sample 

images of NDVI in panel D. 
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2.4.1 UAS Image Calibration 

Radiometric calibration is required to minimize the effects of atmospheric absorption and 

scattering on the reflectance values captured by the UAS cameras.  Differences in lighting and 

atmospheric conditions can make it difficult to compare uncalibrated images between flight dates 

or even between different times of the day.  Calibrating the images can remove atmospheric effects 

and potentially correct for any sensor sensitivity issues (Iqbal et al., 2018). Atmospheric calibration 

was not part of the original image processing pipeline, so this section describes the introduction of 

a supplemental step, the image calibration (IC) tool, where the images can be corrected for the 

effects of the atmosphere.   

 

The radiometric calibration was carried out by utilizing a simplified empirical line method (Smith 

& Milton, 1999). The two factors considered for the empirical line method were the digital number 

(DN) of the raw images along with the reflectance for the plots from the UAS imagery (Iqbal et al. 

2018). The relationship can be represented by the following simple linear equation. 

 

 𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒 = 𝑠𝑙𝑜𝑝𝑒 × 𝐷𝑁 ± 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 (1) 

 

The calibration process works on the individual plot images extracted by CIE and utilizes five 

unique spectral panels reflecting a specific and consistent percentage of light throughout the light 

spectrum (7% 12%, 22%, 36%, and 48% reflectance). These panels were chosen as the expected 

reflectance profile of the canopy should be between 7% and 12% for the red and green bands, 

between 22% and 36% for the red edge band and between 36% and 48% for the Near Infrared 

band (Bai et al., 2016). The 7% panel was used in the 2019 flights only as it was purchased just 

before the 2019 field season began, and as such was not available in the 2018 field season. The 

panels are laid out on the side of field before each flight and need to be visible in the final 

orthomosaic in order to be used for the calibration process. The digital numbers (DNs) for each 

panel for each camera spectral band are extracted from the orthomosaic. Mean DN can be different 

for the same spectral calibration panel depending on atmospheric conditions, camera orientation 

and the change of sun angle with the time of flight. A handheld spectrometer ASD FieldSpec ® 4 

(ASD, Boulder, CO, USA) was used to measure the true reflectance of the panels while the 

multispectral images were collected. However, early in the 2019 season, the ASD broke, and a 
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handheld GER 1500 (GER 1500 Spectra Vista Corporation, Poughkeepsie, NY, USA) was used 

instead to record the reflectance over the panels. It is important to highlight that these 

spectrometers have different spectral ranges and resolutions.  The GER 1500 does not measure the 

near infrared and has a coarser spectral resolution (15 nm) compared to the ASD (1 nm). The 

spectrometer measurements were considered crucial for this experiment as there was concern that 

the panels might deviate from the intended reflectance under field conditions.  

  

When the MSP sensor was flown, the following sampling procedure was followed for both 

spectrometers, when they were available. The sampling starts with three measurements over a 

white Spectralon panel along with one observation with the cap over the sensor of the spectrometer. 

The white panel was designed for full (100%; white) reflectance over the full range of both 

spectrometers, whereas the cap closed observation was used to simulate no reflectance (0%; black). 

After the initial calibration recordings, three measurements were collected over one of the spectral 

panels followed by three measurements over the white panel to recalibrate. After recalibration, the 

spectrometer was moved to the next spectral panel and another three recordings were taken over 

that panel followed by three over the white panel. This process was repeated until all spectral 

panels were sampled. In addition, the full procedure was repeated twice, once at the beginning of 

the flight and once at the end of the flight which totals six measurements for each panel for a single 

flight.   
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Figure 2: Boxplot of measured reflectance as a percentage for each spectral panel, for all 2018 

flights, where the middle red line is the median, the box boundaries are the 25th and 75th 

percentiles, the whiskers extend to the most extreme data points not considered outliers, and the 

outliers are plotted individually using the ‘+’ symbol. 

Figure 4 illustrates the spread of reflectance values as measured by the ASD for all 2018 flights. 

From Figure 4 it can be seen that variability does in fact exist for different measurement dates for 

the same panels, but that variability is substantially smaller than the difference in reflectance 

between the different calibration panels. The low number of outliers and the fact that the values of 

the panels do not intersect is crucial as that clearly shows the robustness of the reflectance 

characteristics of the panels. In addition, Figure 4 illustrates the reliability of the panels across 

multiple flights. This is shown as the number of outliers is minimal with the varying atmospheric 

conditions between flights.   
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2.4.2 Image Calibration Tool Verification 

In developing the image calibration tool, multiple different approaches for the model were assessed 

to determine the optimum procedure that would produce results closest to the true field reflectance. 

These approaches were compared to the reflectance values extracted from the orthomosaic 

produced by Pix4D mapper, the expected value as measured by the spectrometer over the crops 

and expected soybean reflectance as observed in other literary work (Bai et al., 2016). Three 

different approaches to building the models were considered: (1) a simple empirical line method 

(Simple ELM) where no additional data were added to come up with the regression lines relating 

DN to reflectance, (2) an altered empirical line method where the line is forced to pass through the 

point of zero reflectance and zero DN, (0,0), and (3) an altered empirical line method which added 

the point of zero reflectance and zero DN but did not force the line through it. The addition of the 

zero point was to simulate the reality of how the multispectral sensor and spectrometer work even 

though 0% reflectance is typically not found in the field. At zero reflectance the multispectral 

sensor regardless of band measured should output a DN of zero. Three dates were utilized to test 

these equations; the results are summarized in Figure 5.   
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Figure 3: Image Calibration tool development, in which 3 different approaches are tested for 3 

separate dates, where the x-axis is the wavelength in nanometers, and the y-axis is reflectance 

in %, the red line showing the expected (measured) reflectance values, the pink line showing the 

reflectance values as extracted from Pix4D’s calibrated mosaics, the blue line showing the 

regression results if the simple ELM was used, the black line showing the regression results if 

the altered empirical line method which added the point of zero reflectance and zero DN was 

used, and the green line showing the regression results if the altered empirical line method which 

forced the line to pass through the point of zero reflectance and zero DN was used. 

The Simple ELM produced regression lines that resulted in a negative value for both the Green 

and Red bands. This is due to the sensitivity of the sensor for the Green and Red bands being high, 

as compared to the RedEdge and NIR bands for the Parrot Sequoia (MicaSense Inc., Seattle, USA). 

The Parrot Sequoia sensor produces 16-bit images that are optimized for agricultural imaging, as 

such the sensitivity to green wavelengths is augmented relative to the other parts of the spectrum. 

By observing the canopy pixels within the green band, it is evident that the values are higher than 

what is to be expected. The canopy should reflect between 8% and 12% (Bai et al., 2016), which 

is equivalent to a DN between 5400 and 7800 for the Green band, however the canopy in the raw 

images from the Green band had a DN close to 33000 on average, which corresponds to 50% 
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reflectance. An object that would reflect at 36% reflectance in the field would show as saturated 

(65536 DN) in the Green Band. If the point (0,0) is not added, the regression lines would produce 

negative reflectance values for the Green and Red bands as the top value would be approximately 

25000 DN rather than the full DN value 65536 based on the full bit depth. The sensor sensitivity 

depending on band can be observed in Figure 6 which was retrieved from Parrot Sequoia’s official 

documentation (Micasense, 2016).   

 

Figure 5 illustrates the results of using the three different methods in developing the regression 

lines for the reflectance values. The closer the estimated value is to the expected value, the more 

viable the method. In terms of the RedEdge band (730 nm to 740 nm), all methods produced results 

fairly similar to the expected values; however, by observing the results in Figure 5, it is clear that 

the Simple ELM is not an ideal option as it produces negative values in both the Green and Red 

bands for the three flights. The reflectance values were also extracted from Pix4D composite 

mosaics to compare those to the reflection values produces by the calibration approaches. The 

Pix4D extracted reflectance values are also not the best option as the NIR band reflectance is 

significantly lower than that of the measured value for two of the three flights, which is due to a 

combination of sensor sensitivity and calibration method utilized by Pix4D. The inclusion of the 

point of zero reflectance and zero DN eliminated the unwanted negative values for the Green and 

Red bands. Figure 5 illustrates the importance of including the point (0,0) in the empirical lines 

developed using this method. For all three dates tested, adding the point (0,0), while not forcing 

the line to pass through it performed better overall which can be linked to the sensitivity of the 

sensor. As such the IC tool uses only the simplified empirical line method after adding the point 

(0,0).  
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Figure 4: Parrot Sequoia's sensor sensitivity to sunlight for each band, where x-axis is 

wavelength and y-axis is reflectance (Micasense, 2016). 

The IC tool is currently used to generate the regression lines used for calibration for all flights.  

The process is fully automated and compatible with the spectrometers used in this experiment. The 

code is flexible enough to allow the introduction of new spectrometers with minimal effort. The 

correction of images to calibrated reflectance occurs within VID when output from the IC is passed 

to it. While the IC uses only one method to generate a linear regression calibration line from ground 

spectral targets, it can generate two versions of the calibration line: one utilizing the spectrometer 

readings, and one utilizing the given spectral panel reflectance values. The former is considered 

more accurate, but the latter allows the user to perform image calibration if there is no spectrometer 

available. A comparison between calibrated reflectance from both methods was performed to 

evaluate the impact of not using spectrometer measurements in the process. These comparisons 

were performed during flights where spectrometer data were collected, and the IC was run 
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generating the two distinct regression lines. The results are shown in Figure 7 as kernel density 

function (KDF) plots showing the difference between the reflectance values when using the 

spectrometer and when using the spectral panel values. 

 

 

Figure 5: Kernel density function (KDF) produced by subtracting the pixel values produced 

when utilizing the spectrometer by the pixel values produced without the use of the spectrometer 

values, for all canopy pixels for all RUE calibration 2018 flights, for the Green, Red, RedEdge 

and NIR bands, while utilizing the 12%, 24%, 36% and 48% spectral panels. 

By observing Figure 7, we can assume that using the given spectral panel values might be adequate 

given the low difference produced between both methods. The biggest difference for a single pixel 

(0.68%) occurred in the RedEdge band. The mean differences in reflectance for the Green, Red, 

Red-edge, and NIR bands were 0.38%, 0.20%, 0.22% and 0.29% respectively, which is close to 

negligible. An important observation is that the regression lines created while using the 

spectrometer data produced higher reflectance values for all bands except the RedEdge band, on 

average 0.01 reflectance for the Green, Red and NIR bands. The reason the RedEdge band did not 

show this trend has to do with the 22% reflectance panel. The 22% panel has been affected by dirt 

and dust and as such was not performing as expected, a problem discovered midway through the 

season. Given the fact that the panels are affected by dirt and sunlight conditions, it might be 

appropriate to utilize the spectrometer to accurately calibrate the images, rather than rely solely on 

the panel reflectance values, even though the improvements are minute enough, 0.1% reflectance 
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for all bands, to where the given spectral panel values might be used if a spectrometer is not 

available. Sample output regression line for the method utilizing the spectral bands, for the NIR 

band, is shown in Figure 8. Only one method is shown as the regression lines are similar. 

 

 

Figure 6: Sample output of the best fit line for the image calibration tool for the near infrared 

band for calibration utilizing the spectral bands as output by IC tool. 

2.5 Flights Used for Image Analysis and Simulations  

Flight operations were conducted throughout the growing season. Unless otherwise noted, RGB 

and MSP flights were collected for the same experiment on the same day. Exceptions were 

typically caused by problems with a specific sensor or the platform.  The flight data used for this 

analysis spans from the V1 soybean growth stage, or first Trifoliate in which one set of unfolded 

trifoliate leaves form until R7 growth stage, or the Beginning Maturity in which some pods have 

reached their mature pod color. Before V1, the sensors are not able to capture greenness as the size 
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of the crops is smaller than the resolution of the sensors. Beyond R7 is senescence which causes 

two problems. The first is that CIE cannot accurately extract the plots from the orthomosaic or 

images given that the coloration of the crops trends towards that of the soil (crops turn brown and 

loses leaves) which eventually makes them indistinguishable from the soil. The second problem is 

that after senescence biomass estimation models can no longer rely on NDVI and NIR values as 

the crop is no longer green and no longer transpiring.  Instead, biomass is contained in the stems, 

not the leaves, which cannot be sensed using the same method developed for earlier in the growing 

season.   

 

Initially 2019 flights were to be used for this study, however the 2019 field season had multiple 

complications. The first was the late planting date (mid-June rather than mid-May) which was 

caused by an especially wet spring resulting in substantial flooding in the field. The second 

complication was the visual stress on the crops caused by a drier than normal summer. Given that 

the crop parameter calibrator, which will be further expanded on in Chapter 3, requires datasets 

that are not stressed, that ruled out the use of the 2019 observations, so data from 2018 were used 

instead. In terms of the 2018 flights, seven dates on which flight operations occurred were used. 

The dates spanned June 18 to August 13. The flight dates are summarized in Table 2. All three 

RUE experiments highlighted in Figure 2 were used, as such only one flight per sensor is required 

to collect the image data. In terms of the spectrometer readings, only one run is required for each 

flight date during the MSP flight. In terms of spectrometer data used for IC, all flights had 

spectrometer data collected outside of July 17 where the spectrometer data were not available. For 

that date specifically, the factory spectral panel values were used. 

Table 2: Dates of flights used in the study as well as the spectrometer data collection days for the 

2018 Data 

Date of collection  RGB flight  MSP flight  Spectrometer Readings  

June 18  Collected  Collected  Collected  

June 28  Collected  Collected  Collected  

July 04  Collected  Collected  Collected  

July 09  Collected  Collected  Collected  

July 17  Collected  Collected  Not Collected  

August 01  Collected  Collected  Collected  

August 13  Collected  Collected  Collected  
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 HYDROLOGIC AND CROP SYSTEM MODELING 

3.1 VIC Model Overview 

The Variable Infiltration Capacity (VIC) Model is a land surface macroscale hydrologic model 

(Hamman et al., 2018; Liang et al., 1994). The VIC model simulates multiple components of the 

water and energy balance including base flow generation, cold-season processes, evaporation, 

runoff generation, transpiration components and water movement in soil (Markert, 2017). The 

resolution at which the VIC model runs is variable, a grid cell resolution can range from 1/16th to 

2 degrees latitude and longitude. The temporal resolution at which the VIC model runs is also 

variable and can range from hourly to daily. The VIC model can be run to process a small area 

which constitutes one grid cell (or point) or can be run to simulate multiple grid cells representing 

a large basin. To run large basins, the user needs to divide the area of interest to multiple grid cells 

of a consistent resolution. As of version 5 of VIC, there are two modes to run the model as it 

pertains to the space time continuum (Hamman et al., 2018). The first mode runs space before 

time. In this mode, for each time step, the model runs one individual grid cell for a single time 

step, and then moves on to the next cell until all cells are done for that time step. The model 

continues until all time steps have concluded. The second mode is time before space. In this mode, 

the model runs all the time steps for an individual grid cell, and then moves on to the next grid cell 

until all grid cells are simulated. In this study, version 4 of the VIC model is used and as such time 

before space is utilized. For the model to run, a minimum of three input types are required: 

meteorological data, soils data and land-use data. Each input is specified for the grid cell being 

run. Figure 9 shows a schematic overview of the process occurring within the model. Precipitation 

(P) is a driving factor as it is the only form of water that enters a grid cell. Precipitation that reaches 

the grid cell can have multiple outcomes. One possible outcome is the water that is captured by 

the canopy and then released as evaporation (Ec). Water that reaches the surface can infiltrate the 

soil (i), leave the grid cell as overland flow (R), or leave as evaporation from the soil, lakes or 

wetland (E). Water that infiltrates the soil surface might also leave the grid cell through 

transpiration by vegetation (Et), or as baseflow (B). Land cover is crucial as it determines the 

division between runoff and infiltration which is represented by the VIC model’s namesake, the 

variable infiltration capacity curve. The curve represents the variability in infiltration rate across a 



 

 

40 

large area such as a VIC model grid cell relative to the soil properties of that grid cell.  Figure 9 

illustrates the most common application of the VIC model with three soil layers.  Layers 0 and 1 

affect infiltration and surface runoff, baseflow comes from Layer 2 and vertical interflow is 

simulated between each of the soil layers (Liang et al., 1996). In theory the model can support an 

unlimited number of soil layers (Cherkauer et al., 2003) as well as vegetative classes for each grid 

cell. 

 

Figure 7: Schematic representation of the VIC model (Cherkauer et al., 2003) 
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3.2 CropSyst Model Overview  

CropSyst is a cropping system simulation model which was initially developed to study the impact 

of climate, management and soils on crop productivity and the surrounding environment (Stockle 

et al. 1994; Stöckle et al. 2003). CropSyst does this by simulating crop growth, crop development, 

the nitrogen budget, residue production and soil water as well as other natural mechanisms on a 

daily time step. CropSyst allows for the simulation of multiple years and multiple crops under 

different management and rotation decisions. The model’s primary purpose, however, is to 

simulate crop growth. Within CropSyst, crop development and growth depend on thermal time 

necessary to reach different growth stages (Stockle et al. 1994; Stöckle et al. 2003). The crop 

continues growing until it reaches maturity.  Crop growth is expressed as biomass accumulation 

and is dependent on three factors: available radiation, available soil water, and available nitrogen.  

Potential growth for each day is estimated using both the intercepted plant available radiation 

(PAR)-dependent biomass growth (Donatelli et al., 1997), and potential crop transpiration-

dependent biomass growth (Donatelli et al., 1997).  Actual biomass growth is limited by 

transpiration-limited biomass growth (based on availability of soil water), and nitrogen-limited 

biomass growth (Pala et al., 1996).  Each of these factors contributes to crop growth (biomass 

accumulation) as illustrated in Figure 10.  This study assumes no Nitrogen limitation, so the 

components of CropSyst related to nutrient uptake and use are not discussed further. For this study, 

when calculating biomass accumulation, the two determining factors are crop potential 

transpiration-dependent biomass production and intercepted PAR-dependent biomass production. 

Initially, the model calculates the potential transpiration dependent biomass growth and PAR 

dependent biomass growth. The crop potential transpiration-dependent biomass is growth of the 

canopy dependent on transpiration, while the intercepted PAR-dependent biomass is the canopy 

development dependent on sunlight and radiation. The lower of the two values is then selected as 

the potential biomass growth as it is limiting the growth rate. Biomass is accumulated on a daily 

basis until the end of the season when biomass stops increasing either due to the maturation of the 

crop or harvest of that crop. Finally, yield is calculated by utilizing the biomass output and a 

harvest index.   
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Figure 8: Schematic Representation of Biomass accumulation in CropSyst (Stöckle et al. 2003) 

Intercepted PAR-dependent biomass production, GR; (kg/(m² day)) is the growth of the crop 

depending on the light intercepted and temperature. It is calculated as follows: 

 

 𝐺𝑅 = 𝐿𝑡𝐵𝐶 × 𝑃𝐴𝑅 ×  𝐹𝐶𝐶𝑔𝑟𝑒𝑒𝑛 ×  𝑇𝑙𝑖𝑚 (2) 

 

where LtBC (kg/MJ) is a coefficient that represents the conversion of PAR to aboveground 

biomass, PAR (MJ/(m² day)) is the photosynthetically active radiation assumed to be half of the 

total solar irradiance (CropSyst’s Web Manual, Above-ground biomass accumulation). Solar 
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irradiance is obtained from local weather data or estimated by the model if not provided by 

utilizing a utility tool within CropSyst Suite (Marcello Donatelli et al., 2003).  FCCgreen is the 

fraction of incident PAR intercepted by the green canopy. FCCgreen is dependent on LAI which 

is determined internally as the crop develops. Tlim is the temperature limiting factor. This factor is 

a correction for radiation dependent growth based on radiation use efficiency. It is important to 

highlight that this factor does not impose heat stress, and is related to amount of light intercepted. 

The value of this factor depends on the actual air temperature versus the optimum air temperature 

in which the crop is intended to grow as well as the base temperature below which the crop stops 

growing. The value for Tlim is defined as: 

 

 T𝑙𝑖𝑚 = {

1 for 𝑇𝑎𝑣𝑔 >  𝑇𝑜𝑝𝑡

𝑇𝑎𝑣𝑔 −𝑇𝑏𝑎𝑠𝑒 

𝑇𝑜𝑝𝑡 −𝑇𝑏𝑎𝑠𝑒
 for 𝑇𝑜𝑝𝑡 ≥  𝑇𝑎𝑣𝑔 ≥  𝑇𝑏𝑎𝑠𝑒

0 for 𝑇𝑎𝑣𝑔 <  𝑇𝑏𝑎𝑠𝑒  

 

 

Where Tavg is the mean air temperature, Topt is the optimum air temperature for growth and Tbase 

is the base air temperature. 

 

Crop potential transpiration-dependent biomass production, GT (kg/(m² day)), is the growth of the 

crop depending on the actual available water. It is calculated as follows:   

 

 
𝐺𝑇 = 𝑇𝑟  × 

𝐵𝑇𝑅

𝑉𝑃𝐷
 

 

(3) 

   

Where Tr (m) is the actual transpiration or as defined within CropSyst, the crop water uptake.  

CropSyst assumes that there is no crop water storage within the leaves and stems; BTR (kPA/m) 

is the above ground biomass transpiration coefficient a value that is determined through 

parameterization of local crops; and VPD (kPa) is the daily mean vapor pressure deficit.  

 

Biomass production on any day is controlled by the lower of the values GT and GR, except when 

VPD is greater than the maximum allowed VPD, which is set as a crop parameter, in which case 

GR is chosen regardless of value, since transpiration is essentially shutdown. Equations 3 and 4 
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reflect the impact of radiation and water limitation on daily biomass production.  Crop growth is 

represented by biomass accumulation over all days from planting until maturity at which time the 

daily accumulation of biomass stops.  Maturity is controlled by crop specific parameters.    

 

The biomass production is crucial as it feeds into the final crop yield. Currently there are two ways 

in which crop yield is calculated. The first is yield based on stress from flowering and grain filling 

periods and the second is yield based on translocation, which is the movement of materials from 

leaves to other tissues throughout the plant. Both are calculated by CropSyst and the greater yield 

value is considered the final yield achieved.  

Yield based on stress from flowering and grain filling periods, is the first yield calculated within 

CropSyst as follows: 

 

 𝑌𝑖𝑒𝑙𝑑 = 𝐵𝑖𝑜𝑚𝑎𝑠𝑠ℎ𝑟𝑣  ×  𝐻𝐼 × (1 − 𝑎𝑣𝑔𝑠𝑡𝑟𝑒𝑠𝑠𝑓
𝑠𝑓

) × (1 − 𝑎𝑣𝑔𝑠𝑡𝑟𝑒𝑠𝑠𝑔𝑓
𝑠𝑔𝑓

) (4) 

 

Where Biomasshrv (kg/m²) is the total cumulative biomass at harvest; HI is the harvest 

index; avgStressf is the mean water stress index during the flowering period; avgStressgf is the 

mean water stress index during the grain filling period; sf is the harvest index adjustment parameter 

for water stress sensitivity during the flowering period; and sgf is the harvest index adjustment 

parameter for water stress sensitivity during the grain filling period.  

Yield based on translocation, is the second yield calculated in CropSyst and is as follows: 

 

𝑌𝑖𝑒𝑙𝑑 = 𝐵𝑖𝑜𝑚𝑎𝑠𝑠𝑓𝑙𝑜𝑤𝑒𝑟  ×  𝑡𝑟𝑎𝑛𝑠𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 × 𝑎𝑣𝑔𝑠𝑡𝑟𝑒𝑠𝑠𝑓 (5) 

 

Where Biomassflower (kg/m²) is the total biomass achieved at the flowering stage; and translocation 

is a crop specific parameter.  

 

Crop specific parameters are defined in separate crop parameterization files, one file for each type 

of crop being simulated.  This allows CropSyst to represent many different crop types during a 

single simulation and allows the user to customize parameters to best reflect the varieties and 

management practices representing their study location.   
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3.3 VIC-CropSyst Model Overview  

The coupled VIC-CropSyst model is utilized to run the simulations as part of this study. It is a 

coupling of the VIC model and CropSyst, in a spatially explicit manner (Malek et al., 2017). VIC-

CropSyst-v2 which is utilized in this study, is a coupling of VIC version 4.1.2-e and CropSyst-

v4.1.5 (Malek et al., 2017). All hydrologic processes excluding transpiration from defined crops 

are handled by the VIC model in this coupling. CropSyst handles crop growth and management 

practices as well as transpiration from crops.   

 

Figure 9: Schematic representation of the interaction between the VIC model and CropSyst 

(Malek et al., 2017) 

Figure 11 illustrates how different processes are handled within the VIC-CropSyst coupling. The 

VIC model is first utilized to simulate the land surface energy balance and partition available 

energy into different energy flux and storage components which are explained in greater detail by 

Cherkauer et al. (2003). Any remaining energy is then determined to be available for potential 

evapotranspiration. Bare soil evaporation (Es) and evaporation for water intercepted in the canopy 
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(Ec) are handled within the VIC model. Most agriculture in Indiana is rainfed and does not rely on 

irrigation, so we neglect irrigation sources and sinks, such as evaporation of irrigated water from 

bare soil (Esi) and from sprinkler droplets (Ed).   

 

Once the VIC model has finished its calculations for the simulation time step, it passes potential 

transpiration and soil moisture content within each of its soil layers to CropSyst.  CropSyst then 

calculates actual transpiration for each crop being simulated which in turn contributes to the 

estimation of crop biomass development and soil water extraction. After this, the amount of water 

extracted from the soil is passed back to the VIC model as well as updated LAI and simulated 

actual transpiration. This information is then used by the VIC model to continue its simulation and 

close the water balance for the grid cell. The simulation time step is limited to daily for VIC-

CropSyst-v2, though most recent VIC applications are run at sub-daily time steps. It is important 

to highlight that soil properties are retrieved from the VIC model and not CropSyst; however, 

many soil processes within the VIC model have been modified to increase the coupling of the 

models. The most significant change is the number of soil layers represented within the VIC model. 

The VIC model can have three or more soil layers, but most applications utilize three soil layers. 

The first thin soil layer helps with the energy balance (Liang 1996), while the first two layers 

influence infiltration and baseflow is extracted from the bottom layer.  Three layers are too course 

for CropSyst especially given that crop growth simulations are highly sensitive to soil moisture. 

VIC-CropSyst-v2 defaults to using 17 soil layers (Malek et al., 2017) in which the middle 15 layers 

are simulating the root zone where water uptake occurs. In the version of VIC-CropSyst utilized 

in this study, the top two layers are used layers for infiltration and runoff calculations, while all 

other layers are used for baseflow calculation, which aids in the simulation of the water balance. 

As CropSyst is focused on crop simulation, its internal simulation of water movement is simplified. 

By utilizing VIC-CropSyst, more accurate hydrologic modeling can be done which in turn will 

improve the results of biomass and yield estimates since there is a better simulation of the water 

than is available for the crops to be used as well as other hydrologic procedures (Malek et al., 

2017).   
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3.4 CropSyst Crop Parameter Calibrator Overview  

The Crop Parameter Calibrator is a program built into CropSyst’s CropSuite, a set of tools that is 

distributed with the CropSyst model, and allows for the calibration of crop parameters to improve 

crop growth simulations for specific locations, management practices and varieties. The crop 

calibrator is crucial for this project as it will be used to set crop parameters based on soybean 

biomass measured destructively in the field and estimated from UAS imagery. The crop parameter 

files developed using the CropSyst calibrator will then be used within the VIC-CropSyst model to 

simulate soybean growth over multiple growing seasons, which will allow for the assessment of 

how different parameterization methods affect simulation of crops under local weather conditions. 

The Crop Parameter Calibrator is a standalone tool run separately from the VIC-CropSyst model. 

It requires inputs of planting dates, and biomass, LAI, and weather conditions with time during the 

growing season.  Outputs from the calibrator include the above ground biomass-transpiration 

coefficient, the light to above ground biomass conversion factor, harvest index, leaf duration, and 

initial green leaf area index. 

 

To parametrize the crop model using the Crop Parameter Calibrator, the user is required to provide 

biomass and final yield values. The biomass values were generated using the biomass estimation 

equation, discussed in Chapter 4, which utilized the flights from Table 2, as well in-situ destructive 

biomass samples. Yield values were measured in-situ after the growing seasons. Initially, LAI was 

collected in order to compare simulated and observed leaf development but given that the 2018 

data were used to populate the model rather than 2019, and the Crop Parameter Calibrator requires 

the same number of LAI measurements as biomass measurements, that was deemed problematic 

as LAI was only collected on three dates in 2018. LAI was collected along with the biomass in 

2019 multiple times, yet given the hydrologic conditions discussed earlier, the values in 2019 could 

not be used. LAI values were not further pursued, as VIC-CropSyst-v2 does not model LAI growth 

using the specific leaf area and stem/leaf partition coefficients, which are the outputs of the Crop 

Parameter Calibrator if LAI was included. VIC-CropSyst-v2 utilizes canopy cover development 

indices to model LAI development. 
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The crop calibrator currently consists of four steps or modules (CropSyst’s Web Manual, Crop 

Calibrator) each that calibrates a specific component of crop growth for a location.  It is 

recommended that the user run each step in the following order: 

 

1) Step 1 - collect location specific information including weather. This step requires that the 

user provide weather files for the area in which the crop was grown. Soil is not needed as 

it does not have a direct effect on crop growth, but rather only governs the amount of water 

extracted from the soil layers, as such it is not needed here.   

2) Step 2 – quantify the phenology of the crop. In this step the user provides information on 

the timing of phonologically important stages in the development of the crop being 

calibrated.  Calibration can make use of approximate/typical seasonal values or specific 

dates collected from sites.  If the latter, empirical data, are chosen, the user inputs the dates 

after planting at which major phenological events were observed for the crop, such as 

emergence date or the beginning of grain filling.   

3) Step 3 - quantify the development of biomass with LAI. This step requires the input of LAI 

and biomass data collected from the crop in the field. As the crop parameters define optimal 

growth, the biomass and LAI data fed into the crop calibrator should be collected from 

unstressed crops. CropSyst will account for the effects of stress in simulations by reducing 

growth from the optimal path.  This step is used to calibrate for specific leaf area and 

stem/leaf partition coefficients that control early growth. 

4) Step 4 - calibrate biomass growth and yield. For this step the user inputs the final biomass 

and yield from a harvested crop. Preferably, this should be final (harvest) biomass and yield 

for multiple seasons to capture a range of conditions, which will in turn increase the 

reliability of the parameterization. For this study, the 2017, 2018 and 2019 data were used. 

The outputs of Step 4 are: the above ground biomass coefficient (BTR) that is used to 

calculate the transpiration dependent daily biomass growth (GT), radiation use efficiency 

(LtBC) which is used to calculate the radiation dependent daily biomass growth (GR), the 

unstressed harvest index (HIunstressed) used for yield estimation, and specific leaf area and 

leaf duration which are used for LAI simulation.   
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3.5 Datasets Required For VIC-CropSyst  

VIC-CropSyst is data intensive and requires data from multiple resources. VIC and CropSyst are 

coupled in this model and as such will share the same working space. The following datasets are 

required to run VIC-CropSyst:   

 

1) Meteorological Forcing Files: The meteorological forcing file can be summarized as a 

weather file. One text file is required for each cell being processed. The weather files for 

this study contain precipitation, maximum and minimum temperature, and mean wind 

speed on a daily basis from 2000 to 2019. The weather data from 2000 to 2018 is a 

composite of weather station information from ACRE and Purdue’s Throckmorton Purdue 

Agricultural Center (TPAC). A composite weather file was used as a significant amount of 

data from ACRE’s weather station was missing and needed to be filled. The 2019 data 

were not corrected or filled and was retrieved from the REACCH weather data which is 

hosted on Northwest Knowledge Network. The dataset is a blend of spatial attributes of 

gridded climate data from PRISM, which is a dataset developed and maintained by PRISM 

climate group based in Oregon State University (Berteaux et al., 2006), as well as desirable 

temporal attributes from regional reanalysis using NASA’s LDAS-2. The resolution of the 

grids is at 1/24th degree. Solar radiation is also required to run the model correctly, 

however the data are unavailable, as such it is to be estimated using the algorithm 

developed by Thornton and Running (1999), which is incorporated into the VIC model.   

2) Soil Parameter Files: The soil parameter files used in this study were modified from 

Cherkauer et al. (2021) where they were used to simulate soil conditions based on drainage 

area of each grid cell and were parameterized for the three-layer model. The files were 

adjusted to simulate a seventeen-layer soil file where the soil is poorly drained. The top 

two layers were preserved from the original dataset where both were defined as being 0.1 m 

thick.  The bottom layer was divided into fifteen layers, each at 0.083 m, to yield the 17 

soil layers required for CropSyst. The higher number of soil layers helps limit water access 

to roots as they grow.  If the root depth does not reach a specific soil layer, then moisture 

in that soil layer cannot be accessed.    

3) Vegetation Files: The vegetation library and parameter files use in this study were also 

obtained from Cherkauer et al. (2021). The vegetation parameter file and library include 
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information regarding the attributes of the vegetation in each grid cell. For the VIC-

CropSyst model simulations that default cropland class is replaced by crops defined using 

CropSyst’s crop parameter files. For the crops simulated by CropSyst, default values in the 

VIC model vegetation parameter file and vegetation library will be replaced by those 

provided by CropSyst as it simulates their growth. The VIC model vegetation files are 

therefore mostly used to control non-agricultural vegetation that exists in the grid cell being 

simulated. In this study, the only crop considered is soybean, and it fills the entirety of the 

grid cell, so in practice we are simulating one field of soybean.    

4) Crop Parameter Files: The crop parameter files contain all crop specific parameters 

required to simulate crop growth at the specified location. The crop parameter files used 

by the VIC-CropSyst model are transferred directly from CropSyst. The parameter files 

shared with CropSyst were developed by Stöckle et al. (2003) and represent default settings 

for multiple crop types in the U.S. The default soybean parameter file was used as a 

reference to compare how parameterization affects biomass and yield results. Modified 

crop parameter files created using CropSyst’s crop parameter calibrator and two different 

sources of local measurements of crop development were also used in this simulation.   
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 RESULTS 

The focus of this study is to demonstrate the potential for using UAS derived phenotypes for 

parameterizing the VIC-CropSyst model for a field site in Indiana.  Crop model parameterization 

using UAS derived phenotypes are evaluated in this chapter by (1) evaluating the relationship 

between crop biomass estimated using UAS imagery and ground reference samples of biomass; 

(2) quantifying changes in the parameters controlling the simulation of crop growth for different 

parameterization data sources; and (3) evaluating the results of a simulation experiment where the 

VIC-CropSyst model is used to predict biomass accumulation and yield at ACRE with the default 

and localized parameter sets.   

4.1 Biomass Estimation Model  

To accurately predict crop yield and biomass, the files used by the VIC-CropSyst coupled model 

to control crop growth must be parametrized for local environmental conditions and phenomics. 

The process of parametrization requires the collection of plant specific attributes (Biomass, LAI, 

yield, and timing of growth stages) that are input to CropSyst’s Crop Parameter Calibrator (Chapter 

3). These plant specific attributes are best collected in a representative field for the parametrization 

process to accurately represent crop physiology for the specific location of the simulation. 

Currently the majority of biomass measurements are done in-situ using destructive sampling 

methods that affect the canopy and the growth of plants around the sampling location. These 

destructive methods require a substantial number of man hours especially for large experiments 

which require researchers to balance the increased costs of a larger team with the amount of data 

it is possible to collect. For this study, a team of three working together was on average able to 

collect 100 destructive biomass samples in approximately three hours. The samples were then 

weighed, dried for three days in ovens, and then the dry weight was measured.  Measurement of 

weights took approximately two hours to complete. In total, the procedure would take five days to 

complete.  

 

An alternative for conventional in-situ biomass collection is the utilization of UAS based imagery 

to predict the above ground biomass of the crops. This process saves money by requiring the 
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employment of fewer workers. It also reduced the time required in the field and in processing the 

samples, as the usual process requires a full day of sampling and three days of drying versus the 

images which can produce results within 24-hours utilizing the CIE-VID workflow described in 

Chapter 2. UAS imagery has been utilized previously to estimate canopy closure fractions and 

rates (Lopez et al., 2021) and improve genomic selection in soybeans (Freitas et al., 2021).    

 

The equation used to estimate biomass from UAS imagery is based on the equation employed by 

Smith et al. (2021) to assess the relative change in soybean biomass from excess water stress. The 

biomass predictive model is defined as follows: 

 

 
𝐷𝑀 = (𝑎 ×  𝑁𝐷𝑉𝐼2 + 𝑏 × 𝑁𝐷𝑉𝐼) + (

𝑁𝐼𝑅𝑟𝑒𝑓

𝐺𝑟𝑒𝑒𝑛𝑟𝑒𝑓
 ×  

𝑁𝐷𝑉𝐼𝑚𝑎𝑥 −  𝑁𝐷𝑉𝐼𝑚𝑖𝑛

1 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛
) + 𝑐 

(6) 

   

Where DM (g) is the estimated biomass in the field. NDVI is the normalized difference vegetation 

index, which is a value between 0-1 that is correlated with vegetation health. NDVI is a simple 

division of NIR – Red / NIR + Red (Zhou et al., 2009). NIRref is the mean plot near-infrared band 

reflectance value and Greenref is the mean plot green reflectance value. NDVImax is the maximum 

NDVI for all plots under investigation, whereas NDVImin is the minimum NDVI value for the same 

plots. Finally, a, b and c are parameters used to fit the model using multiple regression.  For this 

study, these parameters are obtained from MATLAB’s function to fit nonlinear regression models 

using the non-linear least squares method (The MathWorks, 2020).  

 

The predictive model was developed in Smith et al. (2021) to quantify the effect of excess water 

stress on growth and is based on an earlier algorithm developed for satellite remote sensing 

imagery.  Smith et al. (2021) modified it to make use of higher resolution imagery from UAS. For 

this study, we evaluate the model's ability to predict biomass at the experimental plot level for 

multiple flight dates.  Accurate and consistent estimates of biomass through the growing season 

are critical for the model to produce data useful for parameterizing crops in the CropSyst model.  

In order to parameterize the model for a given location and crop, the model requires the collection 

of remote sensing imagery and biomass samples for the same plots.  

 



 

 

53 

Remote sensing data for fitting of the biomass model was extracted for two rows within each plot 

from the 2018 RUE experiments. For an eight-row experiment, that meant that rows 6 and 7 were 

utilized. Edge rows were not used to reduce interference from neighboring plots, and as rows 2-4 

of the 8 row plots were used for destructive biomass sampling row 5 also counts as an edge row to 

minimize the effect of destructive sampling.  The multispectral images were calibrated and then 

used to calculate NDVI for all image pixels.  Cropped two-row images (undisturbed rows 6 and 7) 

were then used to calculate mean NDVI, NIRref and Greenref for each plot.  Mean values of NDVI 

for all plots of interest were used to determine the maximum and minimum mean NDVI values for 

the field experiment.  Biomass samples were collected for the calibration plots by physically 

removing plants within one day of UAS flight operations (see Chapter 2 for sampling methods).  

The sampled biomass of each plot for each date is then used along with the respective remote 

sensing data for that plot to calibrate the biomass estimation model. The use of multiple 

observation dates is different from the method employed by Smith et al. (2021), as they used only 

a single date of observations for model calibration and quantified only relative differences in 

estimated biomass between plots on other dates to confirm the effect of excess water stress. 

Because the CropSyst calibrator requires accurate estimates of biomass throughout the growing 

season, this calibration process will utilize all flight dates to fit a single model. This was done to 

allow for the prediction of biomass for flights where no biomass sampling occurred by using the 

output regression lines. A boxplot showing the distribution of biomass samples and date of samples, 

as days after planting, is shown in Figure 12. The boxplot clearly illustrates the difference in 

population means between samples within each experiment, which should create distinct 

populations especially for RUE I and II. Furthermore, differences in the timing of the samples 

might produce problems with the fitting of growth curves as there is data missing between the 

samples that might be crucial when modelling crop biomass growth. For example, only the RUE 

Calibration plot was sampled prior to 40-days after planting, resulting in the lowest sampled 

biomass values. That sampling was completed before the plots reached the R1 growth stage. For 

all plots, the spread in biomass values increases as the crop develops for all plots. The spread of 

biomass values is likely dominated by the fact that different plots come from distinct varieties of 

soybean which are expressing different phenotypic variance stemming from their genetic 

difference.   
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Figure 10: Boxplot of biomass samples for each experiment, where each boxplot is a population 

of sample done a certain number of days after planting, while the middle red line is the median, 

the box boundaries are the 25th and 75th percentiles, the whiskers extend to the most extreme 

data points not considered outliers, and the outliers are plotted individually using the ‘+’ symbol. 

4.2 Biomass Estimation Validation  

In this section, two validation tests will be performed to assess the reproducibility of the biomass 

estimation model. If the biomass estimation is valid, it should be able to identify the differences 

between the distinct populations created by the sampling dates, and the distinct varieties used, 

where the values for one sampling date do not greatly intersect values from another sampling date. 

Cross-validation methods will be employed to evaluate the biomass estimation model performance. 

Cross-validation methods work by dividing the datasets into two parts, training data, and testing 

data. The training data are used to build the model, and the test data are used to validate the model. 
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The results of cross-validation are generally less biased or a less optimistic estimate of the model 

skill than other evaluation methods. The k-fold validation method (Anguita et al., 2012) will be 

utilized for this analysis.  It divides the sample dataset into k unique equal classes. Each time the 

model is run, k minus one dataset is used to train the model and one dataset is reserved to test the 

model. The test dataset is unique for every run as it utilizes a different subset of the full data. A 

10-fold validation was used for this study meaning that the test is run ten times, such that each of 

the 10 subsets was used for validation once while the model was built using the other 9 subsets 

(Refaeilzadeh et al., 2009).  

 

The second test utilized for this analysis is the train/test split, otherwise known as holdout 

validation (Korjus et al., 2016). This method of validation randomly divides the dataset into 2 parts, 

a test, and a training dataset. The training dataset usually contains more data than the test set and 

is used to generate the model, which is then evaluated versus the testing data subset. This method 

is usually used for larger datasets where the method is run once. In this study a 70-30 holdout 

method will be rerun multiple times, where each run is using a new random training and test 

datasets and the spread of the values generated will be compared to the original model. The 70-30 

method means that 70% of the dataset is used to establish the model, while evaluation makes use 

of the remaining 30%. The procedure was repeated 1000 times, where each application randomly 

divided the data into the two groups. The training dataset was approximately 735 points and the 

testing dataset consisted of 315points in each of the 1000 runs. It is important to highlight that the 

groups were randomly selected to create 1000 unique runs.   

The model performance metrics used for the validations included the root mean square error 

(RMSE) (Korjus et al., 2016) as well as the 80% confidence interval (CI) of the coefficients 

produced by the biomass prediction model. The use of the 80% CI is due to the fact that intra-field 

yield variation is approximately 20% (Joernsgaard & Halmoe, 2003). If the results of the validation 

procedures produce coefficients within the CI and a RMSE value close to that of the original 

dataset, it is implied that the model is not overfitted. Results for both validation methods are 

presented in Tables 3 and 4, in addition the spread of the RMSE error can be visualized in the 

histograms in Figure 11. No visualization was produced for the k-fold validation as the 

experiments are only divided into ten groups. The validation was performed for RUE 1 and RUE 
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2 only. RUE calibration was excluded as the number of points was not sufficient to perform both 

validation tests reliably. 

Table 3: Cross Validation results for RUE I experiment including Mean of the Model 

Coefficients in grams (Equation 6), as well as the 80% CI for the coefficients, for all subsets of 

the biomass sample dataset used for calibration and validation. 

Test Coefficient Mean CI 

70 - 30 holdout (1000)  a 5028  

NA 

b -4904  

c 1210  

k-fold (10)  

  

a 5008  

b -4859  

c 1189  

Full Dataset  a 5015  4614, 5433 

b -4885  -(5425, 4369) 

c 1204  1043, 1373 

 

Table 4: Cross Validation results for RUE II experiment including Mean of the Model 

Coefficients in grams (Equation 6), as well as the 80% CI for the coefficients, for all subsets of 

the biomass sample dataset used for calibration and validation. 

Test Coefficient Mean CI 

70 - 30 holdout (1000)  a 4825  

NA 

b -4529  

c 1080  

k-fold (10)  

  

a 4833  

b -4539  

c 1065  

Full Dataset  a 4888  4427, 5193 

b -4569  -(4989, 4030) 

c 1071  929, 1219 
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The results of the validation tests indicate that the equation used to estimate biomass produces 

similar results using both validation methods, even though the number of days for which the data 

were collected is not uniform (Figure 12). Furthermore, the coefficients produced when using the 

validation tests for both experiments are approximately equal to the coefficients obtained when 

fitting the model using all outputs, which suggests that the equation produces unbiased results 

(Berrar, 2018). In addition, all coefficients fall within the 80% CI which further supports the use 

of the model as it does not over fit the data and is reproduceable.   

 

 

Figure 11: Histogram of Holdout (70-30) Validation for RUE I and RUE II RMSE, where the red 

line in the figure is the real RMSE when using the entirety of the data to create the model 

The spread of the RMSE values within the histograms further supports the use of the biomass 

estimation equation as the RMSE values increase in count as they approach the mean value, which 
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falls within the interval with the largest count.  Furthermore, the spread of RMSE values follows 

a normal distribution for both validation methods, when looking at the histogram. This was further 

validated by running a Kolmogorov-Smirnov test on the datasets. The RMSE produced when using 

the entire dataset, 162 g and 163 g for RUE I and RUE II respectively, is similar to that of the 

mean RMSE for both validation experiments 163 g for both runs, which further supports the 

reliability of the model to produce the same results from different samples. 

 

The results of the model using 70% of the data as a training set, was evaluated for each of the three 

RUE experiments in 2018, in addition a fourth evaluation utilizing all three experiments was 

conducted. The results are listed in Table 5 which includes the parameter estimates (a, b and c), 

the coefficient of determination (R-square), root mean square error (RMSE and the number of 

dates used for each. Furthermore, Figure 14 illustrates the results as a scatter plot comparing 

predicted versus observed values of biomass (g), where the 1:1 reference line is drawn to show 

overestimation or underestimation.   

Table 5: Estimated Parameters for ACRE RUE experiments with coefficient of determination, 

root mean square error and number of dates used 

Experiment a b c R-square RMSE (g) 
Number of 

dates used 

RUE 

Calibration  

4986  -4800  1075  0.75  87  5  

RUE 1  5028  -4904  1210  0.63  162  3  

RUE 2  4825  -4529  1080  0.65  163  3  

All 2018  4958  -4705  1030  0.68  160  8  
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Figure 12: Biomass estimation results using only RUE Calibration, RUE I, and RUE II 

observations, and when using all observations.  Dates indicate when data were sampled in the 

field. The diagonal is the 1:1 line.   

Table 5 clearly shows that the regression line generated by using the data of RUE Calibration has 

a low RMSE as compared to the other regression varieties, which is due to multiple factors, First, 

RUE Calibration contains fewer genetic varieties (60 varieties) as compared to RUE I (350 

varieties) and RUE II (350 varieties) which should lead to less genetic variation. The second reason 

is associated with the fact that more sampling dates (5 total) are available for RUE Calibration 

than for either RUE I or RUE 2 (3 dates each) which increases the number of points defining the 

curve. The third reason is associated with the actual dates at which the sampling took place, and 

their sparsity. The last sampling date for RUE Calibration was August 1, as compared to August 

13 for RUE I and RUE II. The first signs of senescence appeared in mid-August for some of the 

plots, which could also explain why the observed biomass for these dates is higher than the 

predicted biomass. Senescence is important as the color of the canopy starts to turn yellow and can 

greatly skew our results.   
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When using all of the in-situ biomass measurements (Figure 14), some of the clusters overlap. This 

is an indication that the change in biomass between observation dates tends to be greater than that 

caused by genetic variability on a single sampling date. This is more evident when looking at only 

RUE I or RUE II as nearly no overlap exists between samples from different dates. Furthermore, 

the boxplots in Figure 12, for the separate sampling dates have close to no overlap. In viewing the 

RUE calibration data, it is clear that the early sampling date of June 18 does not fit the model, and 

it is assumed that this is because the crop canopy was still not sufficiently developed.  The RUE 

Calibration plots were still at pre-R1 growth stage, which is when flowering occurs. As such, the 

June 18 flight was not utilized as part of the inputs to CropSyst’s Crop Parameter Calibrator. The 

All 2018 figure which is the regression created by merging data from all 3 RUE experiments 

produces a slightly better fit than RUE I and RUE II, as the RMSE of All 2018 is lower while 

having a higher coefficient of determination (r2). As such, All 2018 is the most suitable regression 

equation and will be used for the applications in this study. RUE Calibration was not considered 

as the dataset was relatively small and does not have the same amount of genetic diversity. For 

future applications, there might be a need for more data collection points, to produce more accurate 

regression lines as well as better planning of the sampling dates, where samples should be taken 

after the R1 growth stage, and before senescence, while maintaining a low number of days between 

samples, as to not create distinct populations, and have a continuous spectrum of values.   

4.3 Crop Parametrization   

In order the test the effectiveness of the UAS-derived biomass estimates, two sets of crop 

parameters were developed: (1) a set based on the UAS biomass model, and (2) a set based directly 

on the in-situ biomass samples.  The UAS-derived biomass estimates used for the parametrization 

process were generated using the biomass estimation equation built on the 2018 UAS data (Table 

2). The mean biomass of the plots for the entire field was generated for each of those dates that 

were used as input into CropSyst’s Crop Parameter Calibrator for the calibration process described 

in Chapter 3 under the CropSyst Crop Parameter Calibrator Overview subsection. The output of 

this procedure was a new crop parameter file, that made use of the biomass estimates to tune 

simulated soybean growth to location conditions.  The second parametrization utilizing the actual 

in-situ destructive biomass samples was completed using the same procedures as used for the 

UAS-derived biomass estimates, but the mean in-situ plot biomass across all varieties was used as 
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the input for the parametrization process. The same LAI measurements, planting and harvesting 

dates were used for both parametrizations. 

 

The results of the parametrization process are summarized in Table 6 and presented along with the 

uncalibrated (original CropSyst) parameters. The above ground biomass-transpiration coefficient 

(BTR) and Light to above ground biomass conversion (LtBC) are the primary parameters 

responsible for daily biomass accumulation. BTR is influential in the computation of the 

transpiration dependent biomass production, while LtBC is important in the calculation of the 

radiation dependent biomass production. If both values increased after parametrization that would 

indicate that biomass accumulation at the end of the season, under optimum conditions, would be 

higher when utilizing the parametrized crop parameter files. However, BTR increased, while LtBC 

decreased relative to the uncalibrated crop file for both parameterizations, which does not clearly 

indicate if there is a change in final biomass. As noted in Chapter 2, actual biomass accumulation 

in CropSyst is controlled by the lower of two values – radiation dependent biomass growth [LtBC] 

and transpiration dependent biomass growth [BTR]. A lower LtBC might indicate that radiation 

dependent growth is almost always the dominant control locally, thus the lower value results in 

radiation control on biomass production in most cases.   

 

Three other parameters were also affected by the calibration process: the Harvest Index, the leaf 

duration and the initial green leaf area index.  The Harvest Index also increased after both 

parameterizations from 0.30 to 035, which should result in higher overall yield values, as it is 

multiplied versus final biomass to obtain harvested yield. Leaf duration influences the length of 

time it takes for a crop to reach senescence.  Within CropSyst, biomass stops accumulating when 

senescence is reached. As such, having a lower leaf duration (1100 versus 1200 degree-days) 

should lower the maximum potential biomass accumulation for both parameterization methods. 

The value of Initial green leaf area index will affect LAI development, which affects radiation 

dependent biomass production.  Both parameterizations dropped from an uncalibrated value of 

0.021 to 0.015. This parameter has an impact on the value of the FCCgreen parameter, the fraction 

of incident PAR intercepted by the canopy, in each timestep. Decreasing the initial value means 

that it will take a little longer for leaves to capture as much radiation after parameterization.    
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When comparing between both parametrization methods, the primary difference is between 

parameters BTR and LtBC, which are concerned with biomass growth. All other factors yield the 

same values after calibration; thus, the source of biomass data does not directly affect LAI or yield. 

Both the calibrated BTR and LtBC values based on the UAS-derived biomass estimates are slightly 

higher than those of the files generated when using the in-situ sampled biomass values. BTR is 

0.02 KPa/m larger, and LtBC is 0.01 g/MJ larger. The difference is low with respect to the overall 

base value; however, we should expect slightly, if not negligible, higher final biomass and yield 

values generated using the UAS estimated biomass. As such the use of UAS imagery to populate 

the crop calibrator tool is deemed appropriate as it provides approximately equal values to the case 

where the destructive biomass samples were used for the parametrization.  

 

Another change for all scenarios (calibrated and uncalibrated) was to the planting and harvesting 

dates. By changing the planting and harvesting dates, the real field and experiment conditions can 

be simulated, as the model is localized for conditions at the site of the experiments. The planting 

and harvesting dates are not shown in Table 4.4 as they are kept the same for both runs, and they 

are not an output of the crop calibrator. The planting date was set to May 25, and the harvesting 

date was set to October 25. 
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Table 6: Parameter outputs of the parametrization process via CropSyst’s Crop Parameter 

Calibrator as well the default files and description of the parameters 

Variable  Uncalibrated

  

UAS-

Biomass Cal

ibration  

In-

Situ Biomass Cali

bration  

Description  

Above 

ground biomass-

transpiration 

coefficient [BTR] 

(KPa/m) 

3.50  3.71  3.69  This value represents the 

above ground biomass 

production per meter of 

transpiration under given 

conditions of 

atmospheric vapor 

density deficit. 

Light to above 

ground biomass 

conversion [LtBC] 

(g/MJ)  

2.50  2.25  2.24  This value represents the 

above ground biomass 

production per unit of 

light intercepted by the 

crop canopy. Radiation 

Use efficiency. 

In CropSyst the value is 

on a Photosynthetically 

Active Radiation (PAR) 

basis. 

Harvest index  0.3  0.35  0.35  The ratio of yield to 

biomass for a crop 

without stress.  

Leaf Duration  

(deg-days)  

1200  1100  1100  This corresponds to the 

degree-days elapsed 

between the appearance 

and senescence of new 

green area index.  

Initial green leaf 

area index  

0.021  0.015  0.015  Initial green leaf area 

index. 
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4.4 VIC-CropSyst Simulation  

This section introduces the results of the VIC-CropSyst model simulations using the new crop 

parameter files described in the previous section. As with the parameterization process, three 

scenarios will be evaluated: without parameterization and after parameterization using UAS-

derived biomass estimates and using in-situ biomass, CropSyst parameters for each of these 

scenarios are summarized in Table 6. Evaluation of the simulations uses two datasets: (1) the in-

situ measurements of biomass and yield measured during the 2017, 2018 and 2019 field seasons 

for all genetic varieties, and (2) yield values going back to 2007 for bulk soybean fields at ACRE.  

The first dataset allows for the assessment of biomass predictions in select years, while the second 

dataset will allow for the evaluation of yield from 2007 to 2019, including the drought year of 

2012. A multi-year simulation allows for the evaluation of crop response to environmental 

variability.  The results of this section are crucial as they are directly relevant to the hypotheses of 

this study.   

 

The VIC-CropSyst simulation was run for each set of crop parameters shown in Table 6, while all 

other model parameters and inputs were kept constant. The outputs of each simulation are the daily 

biomass accumulation, LAI development across the season and yield at the end of the season. 

Evaluation of the simulated soybeans focused on multiple varieties for the years with additional 

data (2017-2019), and on final yield for all years of the simulation versus bulk soybean yields at 

ACRE. 

 

When assessing the 2017, 2018 and 2019 experiments, one thing was clear, which was that yield 

after parametrization was always higher than that of before parametrization (Figure 13 and Table 

7). This is expected given that both sets of calibration parameters had a harvest index greater than 

the uncalibrated parameter set. The in-situ measured yield is divided into two distinct values, one 

which is the mean of only the nine varieties picked for the 2019 experiment, and one which is the 

mean of the 30% training dataset for all the varieties, named all varieties, in the experiments. The 

distinction between the two in-situ yields is interesting as it sheds light on the variability, which 

was introduced by having different varieties. The difference between the yield of the nine- varieties 

chosen for 2019 and the yield of all varieties is small. This is to be expected as the criteria for the 

lines chosen for the 2019 experiment depended on observed yield from the previous season. The 
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varieties in 2019 were chosen to represent different yield potentials, three low, three medium and 

three high yielding, which can be referred to in Table 2. The value that stands out was the 2018 

yield estimation. Both crop files resulted in estimates that were significantly lower than the values 

measured in-situ. In addition, the 2018 results show the closest yield values before and after 

parametrizing. The reason this occured was linked to the Tlim value that was used in the radiation 

dependent biomass growth. One limitation of CropSyst is that it is simulated on a daily time step. 

Temperature on a daily basis was provided as a maximum and minimum, and within CropSyst, 

the mean temperature is derived from those two values. In 2018, there were many temperature 

fluctuations and colder periods that resulted in a drop in the radiation dependent biomass 

production. Furthermore, the parametrization process produced estimates that were closer to the 

in-situ measurements as compared to the results when the model was unparametrized. This can be 

seen from Table 7 as the yield after parametrization for all 3 years was closer to that of the in-situ 

measurements as compared to the yield produced by the model when not parametrized. This 

supports the first hypothesis that the development of relationships between crop indices and crop 

parameters is expected to improve the ability to simulate crop growth for local conditions. The 

2019 varieties refer to the nine genetic varieties utilized for the 2019 calibration experiment as 

chosen from varieties used in 2018. 

 

 

 

 

 

 

 

 

 

Figure 13: Measured and estimated yield values for 2017, 2018 and 2019 



 

 

66 

Table 7: Yield results for each simulation parameter set (uncalibrated, UAS calibrated, and in-

situ calibrated) as well as the in-situ measured yield mean, median and standard deviation (SD) 

for the nine varieties selected for the 2019 calibration study (2019 varieties), as well as all 

varieties included in the experimental plot for each year’s experiment (All varieties). 

Year 

Simulation mean yield (T/Ha) 
2019 varieties yield 

(T/Ha) 

All varieties (2018) 

yield (T/Ha) 

Uncalibrated 
UAS 

Calibration 

In-Situ 

Calibration 
Mean Median SD Mean Median SD 

2017 3.61 4.02 4.01 3.99 3.84 0.52 4.08 3.75 0.69 

2018 3.52 3.67 3.67 3.96 3.92 0.42 3.89 3.9 0.59 

2019 3.58 3.96 3.94 3.89 3.68 0.48 NA 

 

The mean, median and standard deviation of yields measured in the field from only the varieties 

included in the 2019 calibration experiment (2019 varieties) and for all genetic varieties in the full 

experiment (All varieties) demonstrate the yield variability that comes from the genetics (Table 

7). Working with a more limited number of varieties resulted in less interannual variability in the 

mean and median yields values between 2017 and 2018, and a lower standard deviation.  Varieties 

selected for the 2019 calibration experiment were not selected to be representative of the full extent 

of yield variance, so the lower standard deviation is expected. The variation in yield is also visible 

in Figure 15. Yields are relatively consistent in 2017 and 2018, while 2019 experienced a drop in 

yield.  Yields for 2019 may be adversely affected due to plots 1, 2, 17 and 18 which had problems 

when planting that resulted in lower yields. Additionally, lower yields may also be due to the late 

planting season and unique hydrologic conditions that were witnessed in 2019 which had an 

extremely wet early season that delayed planting followed by a drought period. When the larger 

population of all varieties planted in 2018 is considered for the years 2017 to 2019 (Table 7), the 

abnormally low yields are less prevalent and instead the mean yield between years is found to be 

quite similar. The inclusion the 2019 experiment in the plot for all varieties is to further verify that 

the spread of yield values for the 2019 experiment is falls within the 2017 and 2018 yields. 

 

Biomass development is harder to assess due to limited data collection. The only comparison of 

biomass development that can be properly evaluated is for the 2019 experiment. Within 2019, 

eight biomass measurements were taken for each of the eighteen plots in the experiment. The 

measured values were then averaged to obtain a single biomass value for the experiment. Plotting 
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the mean biomass measurement with time yields the biomass development curve for the 2019 field 

season (Figure 14). Also shown is the simulated biomass accumulation for both the uncalibrated 

and UAS calibrated VIC-CropSyst simulations.  As the simulation results from the in-situ 

calibration and the UAS calibration are virtually identical the remaining figures show only the 

results from the UAS calibrated simulations.  

 

Only small differences in biomass were observed between the simulation runs (Figure 14). As the 

parametrization process increased BTR (ET controlled biomass production) while decreasing 

LtBC (light-based biomass production) from the uncalibrated to the calibrated parameter sets, 

these results do not clearly identify the limiting factor for biomass growth. Instead, these results 

confirm that for the year 2019, the simulated yield difference is almost entirely dependent on the 

harvest index.  

 

 

Figure 14: Biomass accumulation curve for the 2019 season for the Uncalibrated and UAS 

calibrated simulations, as well as in-situ measurements. 

The crop calibration process focused only on data collected from experimental breeding plots.  In 

A broader test of the calibrated crop parameter files is conducted by running the VIC-CropSyst 

model and comparing with bulk soybean yields. Bulk soybean is planted and managed by the farm 

staff and is not part of any experiment, instead the bulk soybean field use seed and management 



 

 

68 

practices similar to those employed by farmers in the region.  The biggest advantage of using the 

bulk soybean data are that it gives us access to multiple years of yield data, as illustrated in Figure 

15. Also shown are simulated yield from two VIC-CropSyst simulations, the uncalibrated 

simulation and the simulation calibrated using UAS estimated biomass.  The in-situ biomass 

calibrated simulation results are not shown as they are almost identical to those from the UAS 

calibrated simulation. Bulk yield values represent mean yields in all bulk soybean fields from the 

years 2007 to 2019, except 2011 when yield data were not measured.  

 

On average, the uncalibrated model underestimated yield by 0.33 T/ha, while the calibrated model 

overestimated yield by 0.11 T/ha.  The biggest contributor to this difference is the harvest index 

which is higher in the parametrized crop files resulting in more of the accumulated biomass being 

converted to yield.  Additionally, the calibrated model yields track much closer to the observed 

yields, with a maximum deviation of 0.19 T/ha compared to the uncalibrated model with a 

maximum deviation of 0.42 T/ha.  Though the calibrated model overestimates yield in all years 

with yield data except 2017 and 2018.  Year 2010 and 2012 had lower than normal yields due to 

drought conditions.  Drought formed in summer and continued into fall in 2010, while 2012 was 

a significant drought for much of the Midwestern U.S. for all of the growing season.  The 

calibration process yielded the greatest improvement in simulated yield during these years 

impacted by drought.  This is likely a combination of the BTR parameter being increased through 

calibration, which increases the relative importance of transpiration dependent biomass growth. 

Given that these are drought years, transpiration rather than radiation should be the more important 

limiting factor to biomass accumulation.  

 

Low observed yields in 2011 were attributed to major flooding, which led directly to the bulk fields 

not being harvested and no yield being available for comparison. Yield for ACRE in 2011 was 

estimated from soybean yield in Indiana for the years 2011 to 2014, by obtaining the values from 

the USDA (“USDA National Agricultural Statistics Service,” 2020). By interpolating with the 

measured yield values from ACRE, for 2010 and 2012, and by considering the difference from the 

USDA report yield values, an estimated yield for 2011 of 3.2 T/ha is found.  This value was 

substantially closer to the value before parametrization. The calibration process did not change 

simulated yield for that year as much as for the years affected by drought.  A major shortcoming 
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of CropSyst is that flooding stress is not represented in the default model, so there was no direct 

mechanism in CropSyst to represent the effect of this type of stress on yield.  

 

These results partially support the studies second hypothesis that the parametrization of crop 

parameters is expected to improve our ability to quantify the impact of hydrological extremes on 

predicted crop yields. Under drought conditions the parametrization produced results that were 

closer to the actual values measured in the field as compared to the results when the model was 

not parametrized. The problem is the cases where flooding occurs. Given that CropSyst does not 

have a built-in way to account for flood stress, this cannot be further assessed. 

 

 

Figure 15: Yield development comparison for the uncalibrated run as well as the UAS calibrated 

run, along with the measured bulk yield for ACRE across multiple years. 
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 DISCUSSION AND CONCLUSIONS  

5.1 Discussion   

The utilization of remotely sensed images from UAS was evaluated as a new technique to 

parametrize crops to improve to prediction of crop yields while requiring less labor and fewer man-

hours than traditional in-situ sampling methods. In-situ and remotely sensed images were used to 

estimate biomass which was in turn used to parametrize crop growth via CropSyst’s crop 

parameter calibrator tool. The new soybean parameterizations were then used in VIC-CropSyst to 

simulate biomass and yield of soybeans at both the scale of a single field experimental plot and on 

average when compared to all bulk soybean plots at ACRE.  The successful development of this 

procedure will potentially improve the ability to predict crop yields, while allowing a user to 

rapidly collect data at a relatively low cost and labor.   

 

The development of a simplified procedure to calibrate remotely sensed MSP images was essential 

as it greatly improved the ability to consistently compute band algorithms across multiple dates 

that were vital in the biomass estimation equation. The procedure is relatively easy to use, as it 

only requires the use of spectral panels placed near the field being imaged to accurately calibrate 

the images. Furthermore, this procedure was incorporated into the CIE-VID processing pipeline 

which greatly improved its viability at producing accurate band indices and algorithms. All outputs 

and results can be credited to this calibration procedure.   

 

The use of estimated biomass values within CropSyst’s crop parameter calibrator yielded crop 

growth parameters similar to those derived when using in-situ biomass samples.  Both methods of 

calibration improved the representation of crop growth for the specific field site conditions. Five 

parameters were altered in the parametrization process. Two of these parameters, above ground 

biomass-transpiration coefficient and light to above ground biomass conversion were directly 

related to biomass production. Another two parameters, leaf duration and initial green leaf area 

index were directly related to leaf area development. The last parameter, harvest index, was 

directly influential in yield results as it controls the fraction of accumulated biomass that is 

harvested grain. Biomass production is controlled either by the availability of water or the plant's 
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ability to make use of solar radiation, which is in turn related to LAI development and temperature. 

The above ground biomass-transpiration coefficient increased slightly during calibration, while 

the light to above ground biomass conversion decreased indicating that the calibration process 

increased the importance of water availability on the accumulation of biomass relative to incoming 

radiation.  Neither the leaf duration or initial green leaf area index changed substantially with 

calibration, and those mostly impact LAI development and thus the radiation use efficiency of the 

plant. Harvest index was the parameter with the most substantial change. The change in harvest 

index was expected as the soybean parameters within the default crop parameter files were last 

calibrated in 2008 and major crop improvements have occurred since then. Furthermore, the 

phenotypes used to parametrize the models are indeterminate varieties which tend to have higher 

yields (Krashen, 1982), while the phenotypes used in the default files are determinate as they were 

developed based on southern soybean phenotypes.   

 

The simulation run with a UAS parametrized crop parameter file produced yield and biomass 

values that were closer to the in-situ measured values, as opposed to the simulation run with the 

default parameters. In addition, the simulations run with the UAS parametrized crop parameter file 

and the in-situ parametrized parameter file produced similar yield values with a max difference of 

0.02 T/Ha for both the research and bulk fields, which supports our first hypothesis that the 

development of relationships between remotely sensed data and crop indices is expected to 

improve the ability to parametrize crops for local conditions.  This is to be expected as any site-

specific calibration should improve model performance. The parametrization process utilized 2018 

field data from multiple phenotypes. Initially the 2019 experiment was intended to be used for 

parametrization, but given the stress conditions witnessed in 2019, 2018 was used instead. This 

posed a problem as 2018 contained multiple distinct varieties, while 2019 contained only nine that 

were picked from 2018 to represent a wide variety of yield potentials. When comparing the 

measured in-situ yield of the 9 varieties and all 2018 varieties, small differences can be seen. This 

is because the varieties picked for 2019 were not within the extremes of yield potential. 

Furthermore, by comparing both values to the outputs of the parametrized simulation, the 

differences are minute. Picking the mean yield of the field was a necessary simplification to test 

the robustness of the model as well as test the influence of multiple varieties on the outputs.   
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The simulated yield after parametrization was much closer to that of both the nine varieties of 2019 

and all varieties within the experiments as compared to the results of the default simulation, further 

supporting the first hypothesis. This validates the use of remote sensing images to parametrize the 

crop parameter files as the yield predictions greatly improved. When assessing for the yield of the 

bulk soybean within ACRE, more things become clear. First, the parametrization process produced 

yields that were generally overestimates of the measured yields, yet the mean differences to the 

true yield across twelve years was 0.11 T/ha which was a better estimate then the yield produced 

by the default parameter files which generally underestimated yield by an average of 0.33 T/Ha. 

This directly relates to the harvest index and suggests that the harvest index parametrized for is an 

overestimate to that of the bulk variety, as the biomass itself was well simulated, as the measured 

and simulated biomass were close in value.  

 

In terms of years where extreme weather conditions were observed, three stand out, being 2010, 

2011 and 2012. 2010 and 2012 were years where major droughts were experienced in Indiana. 

Drought stress is dependent on time in which the canopy received water as well as the quantity of 

water received. On average, we approximately expect 12.5 inches of rain in our study area. For 

2010 and 2012, those were 9.5 and 7 inches respectively during the growing season. The yield 

results of the unparametrized simulation were farthest from the actual measured values in those 

years, while the parameterized model performed similar to other years. This validates the second 

hypothesis in which the parametrization of crop models for local conditions is expected to 

improve their ability to quantify the impact of hydrological extremes on predicted crop yields, 

however, this is only valid for drought years. 2011, which was a wet year, had major in-field 

ponding as the rain was more intense and sporadic with a total of 15 inches of rain during the 

growing season. 2011 was the only instance in which all simulations overestimated the 2011-

estimated yield (Figure 17). In addition, the yield of the parametrized simulation was farther from 

the measured yield than the unparametrized run. This is due to CropSyst not having the ability to 

simulate excess water stress. Furthermore, given that above ground biomass conversion was higher 

in the parametrized soybean file, that meant that the transpiration dependent biomass growth would 

be higher, which in turn meant a higher biomass estimate thus a higher yield.  
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Biomass could only be assessed for 2019, as that is the only year with a complete biomass data 

collection. In terms of biomass prediction, both runs were able to produce values that were 

approximately equal to those measured in-situ, with a max difference of 0.5 T/Ha for any one date, 

and a mean difference of 0.1 T/Ha across all sampling dates. The difference between simulations 

was minute and was only distinguished at the end of the season. This was linked to the lower leaf 

duration within the parametrized simulation decreased biomass accumulation towards the end of 

the season. Given that the biomass estimates for both simulations for 2019 were fairly close, it can 

be easily concluded that harvest index is in fact the parameter that is generally affecting the yield 

most. An issue with biomass estimation within CropSyst, and other crop models in general, is the 

method in which biomass is accumulated. The model considers the lower of two values being 

radiation dependent biomass and transpiration dependent biomass. In reality, biomass growth will 

be impacted by both simultaneously as both will limit the crop growth not just one or the other. If 

more in-situ biomass data were available, a further thorough investigation could be performed.   

 

The type of soybean used within CropSyst is modeled on southern soybean which is predominantly 

determinant. Soybean grown in much of the Midwestern U.S. and specifically at ACRE is 

indeterminate. Indeterminate varieties start flowering several weeks before they terminate 

vegetative growth, which could potentially lead to improved yield than simulated in the case where 

early season stress slows biomass accumulation, but improved conditions later in the growing 

season allow the indeterminant crop to continue flowering and producing pods. This is crucial as 

CropSyst models crop growth similar to how determinate crops would grow. A solution to this 

problem is to alter the days required for each growth stage to something more comparable to 

indeterminate crop growth.  

 

Other research projects have used CropSyst, and parametrized crop files to simulate crop growth. 

Usually, parametrization occurs by measuring and estimating field values directly (Abi Saab et al., 

2015; Confalonieri & Bocchi, 2005). This study is introducing a new method in which 

parametrization can make use of biomass estimates from remote sensing imagery. In terms of yield 

estimates, this study had a mean error of estimation of 0.11 T/Ha as compared to 0.15 T/Ha in Abi 

Saab et al. (2015) which fully utilized in-situ data collection, which is an indicator that utilizing 

UAS imagery produces results on par with in-situ measurements.  
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5.2 Conclusion   

The overarching objective of this research project was to assess the ability of using remotely sensed 

data from UAS platforms to parametrize a crop model that could be used to simulate soybean 

biomass accumulation and yield. The initial hypothesis was that the development of relationships 

between remote sensing derived crop indices and parameters used by crop models would improve 

the simulation of crop growth for local conditions.  This process is already established when using 

in-situ measurements of crop development, but the use of remote sensing derived measurements 

could significantly reduce the effort required to collect the necessary data. Increasing the amount 

of data available for calibration of crop models should improve their ability to quantify the impact 

on hydrologic extremes on predicted crop yields. The research analysis revealed the following: 

 

• The implementation of image calibration for MSP images is crucial and a required to 

accurately analyze any images from the MSP sensor. 

• Biomass estimation via remote sensing images currently requires a combination of MSP 

images and field measurements to accurately develop the model. 

• The use of remote sensing derived estimated biomass to parametrize crop growth within 

CropSyst’s crop parameter calibrator proved to be successful. The biggest difference post 

parametrization was the Harvest Index which is likely caused due to phenotypic traits and 

environmental conditions. 

• Calibration of crop growth using both in-situ and remote sensing demonstrated that crop 

yield predictions can be improved substantially as compared to the unparametrized model. 

The yield from the parametrized simulations tended to slightly overestimate the measured 

yield especially for bulk varieties, which is to be expected as the parametrization was done 

for a different set of phenotypes and fields. Harvest Index proved to be the determining 

factor for yield predictions.   

• Under drought stress, the parameterized simulations were able to produce a better yield 

prediction that that of unparametrized simulations. The difference of yield between both 

methods was greatest during drought stress years as the unparametrized simulation tended 

to output results that were significantly an underestimate of the actual measure yield, 

whereas the parametrization was just slightly overestimating the yield. In terms of excess 

water stress, CropSyst currently has no integrated way to accurately simulate such 
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conditions and as such both simulations produced yield estimates that were significantly 

off as compared to the estimated field yield.   

• The work and methodology used in this study is crucial in the advancing of crop modeling. 

Not only does the parametrization using remote sensing images improve the predictions of 

crop models, but it also decreases the manpower and cost required to collect the different 

parameters needed to parametrize the cropping system models. The further use and 

development of remote sensing technology and band indices information will allow for a 

better understanding of the relation between remotely sensed data and crop parameters, and 

eventually the improvement of our ability to accurately predict crop growth which is 

essential to maintain future food securities.  

5.3 Future Work  

There are several ways in which the procedure and work introduced in this study can be expanded 

upon. The first would be the development of a biomass estimation equation that would be robust 

enough to handle multiple soybean phenotypes while requiring minimal field data to calibrate and 

to improve the prediction by decreasing RMSE and improving the fit of the model. Essentially this 

equation would be a combination of band indices and crop traits similar to plant height that would 

estimate soybean biomass. Some suggestions would be to follow a procedure similar to what is 

introduced in Maimaitijiang et al. (2019), where they introduce the use of stepwise multilinear 

regression of multiple crop indices from RGB cameras to estimate biomass. This can be altered to 

use MSP which would allow the use of the Red Edge and NIR bands which would improve the fit 

significantly. One issue with using multi linear regression models is the fact that often the multiple 

indices used are correlated, and as such there would be a need to decrease the number of inputs 

used to minimize correlation between the inputs. Another suggestion would be to incorporate 

different plant indices similar to plant height and LAI to improve the biomass estimation equation. 

In addition, the adaptation of a LAI estimation equation would allow the parametrization of LAI 

specific parameters and in turn the accurate modeling of LAI.  

 

The second way to expand this work is to further our ability to calibrate crop growth by eliminating 

the need to use the crop calibrator. In this study CropSyst’s crop parameter calibrator is used to 

output crop files with altered parameters. One possibility is to be able to estimate the specific crop 
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indices directly from remotely sensed data. In the application of CropSyst this might be 

problematic as the parameters are hard to estimate even as field measurements (Abi Saab et al., 

2015). This also introduces the possibility of expanding the work into different crop models similar 

to AquaCrop which uses crop parameters that are more easily estimated and readily available, yet 

might not be sufficient for hydrologic applications and climate change studies.  

 

The third way to expand this work is by the utilization of satellite-based imagery as opposed to 

UAS platforms. This would require new algorithms to be developed as the scale of the imagery is 

very different between the two methods. Another venture would be to develop and test biomass 

estimation algorithms for crops other than Soybean.  

 

One limitation of using CropSyst is the lack of ability to accurately simulate a plant's response to 

excessive soil moisture, which is shared by multiple cropping system models (e.g., Shaw et al., 

2013; Li et al., 2019). As part of Pasley et al. (2020), the APSIM model was modified to include 

an excess water stress function that would be accounted for in the estimation of radiation use 

efficiency and root length. The implementation of such an alteration in VIC-CropSyst, would 

improve the yield predictions under conditions of excess soil moisture and waterlogging.  
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