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ABSTRACT

Quantifying the dynamics and rheology of soft biological suspensions such as red blood

cells, vesicles, or capsules is paramount to many biomedical and computational applications.

These systems are multiphase flows that can contain a diverse set of deformable cells and rigid

bodies with complex wall geometries. For this thesis, we are performing several numerical

simulations using boundary element methods (BEM) for biological suspensions in biomed-

ically relevant conditions. Each simulation is devised to answer fundamental questions in

modeling these systems.

Part of this thesis centers around the fluid mechanics of giant unilamellar vesicles (GUVs),

fluid droplets surrounded by a phospholipid bilayer. GUVs are important to study because

they mimic the dynamics of anuclear cells and are commonly used as a basis for artificial cells.

The dynamics of vesicles in simple shear or extensional flows have been extensively studied.

However the conditions seen in microfluidic devices or industrial processing are not always

described by steady shear or extensional flows alone, and require more investigation. In our

first study, we investigate the shape stability of osmotically deflated vesicles in a general

linear flow (i.e., linear combinations of extensional and rotational flows). We modeled the

vesicles as a droplet with an incompressible interface with a bending resistance. We simulated

a range of flow types from purely shear to purely extensional at viscosity ratios ranging from

0.01 to 5.0 and reduced volumes (measured asphericity, higher is more spherical) from 0.60

to 0.70. The vesicle’s viscosity ratio appears to play a minimal role in describing its shape

and stability for many mixed flows, even in cases when significant flows are present in the

vesicle interior. We find in these cases that the bending critical capillary number for shape

instabilities collapse onto similar values if the capillary number is scaled by an effective

extensional rate. These results contrast with droplet studies where both viscosity ratio and

flow type have significant effects on breakup. Our simulations suggest that if the flow type is

not close to pure shear flow, one can accurately quantify the shape and stability of vesicles

using the results from an equiviscous vesicle in pure extension. Only when the flow type

is nearly shear flow, do we start to see deviations in the observations discussed above. In
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this situation, the vesicle’s stationary shape develops a shape deviation, which introduces a

stabilizing effect and makes the critical capillary number depend on the viscosity ratio.

Continuing with our research on single vesicle dynamics, we have performed simulations

and experiments on vesicles in large amplitude oscillatory extensional (LAOE) flows. By

using LAOE we can probe the non-linear extension and compression of vesicles and how

these types of deformation affect dilute suspension microstructure in time-dependent flows

through contractions, expansions, or other complex geometries. Our numerical and experi-

mental results for vesicles of reduced volumes from 0.80 to 0.95 have shown there to be three

general dynamical regimes differentiated by the amount of deformation that occurs in each

half cycle. We have termed the regimes: symmetrical, reorienting, and pulsating in reference

to the type of deformation that occurs. We find the deformation of the quasispherical vesi-

cles in the microfluidic experiments and boundary element simulations to be in quantitative

agreement. The distinct dynamics observed in each regime result from a competition be-

tween the flow frequency, flow time scale, and membrane deformation timescale. Using the

numerical results, we calculate the particle coefficient of stresslet and quantify the nonlinear

relationship between average vesicle stress and strain rate. We additionally present some re-

sults on the dynamics of tubular vesicles in LAOE, showing how the experiments suggest the

vesicles undergo a shape transformation over several strain rate cycles. Broadly, our work

provides new information regarding the transient dynamics of vesicles in time-dependent

flows that directly informs bulk suspension rheology.

Our most recent project deals with the accuracy of discretized double layer integrals

for Stokes flow in the boundary element method. In the fluid mechanics literature, the

chosen parameterization, meshing procedure, and singularity handling are often selected

arbitrarily or based on a convergence study where the number of elements is decreased

until the relative error is sufficiently low. A practical study on the importance of each

of these parameters to the accurate calculation of physically relevant results, such as the

particle stresslet, could alleviate some of the guesswork required. The analytical formulas

for the eigenfunctions/eigenvalues of the double layer operator of an ellipsoidal particle in a

quadratic flow were recently published [ 1 ], providing an analytical basis for testing boundary

element method discretization accuracy. We use these solutions to examine the local and
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global errors produced by changing the interpolation order of the geometry and the double-

layer density. The results show that the local errors can be significant even when the global

errors are small, prompting additional study on the distribution of local errors. Interestingly,

we find that increasing the interpolation orders for the geometry and the double layer density

does not always guarantee smaller errors. Depending on the nature of the meshing near

high curvature regions, the number of high aspect ratio elements, and the flatness of the

particle geometry, a piecewise-constant density can exhibit lower errors than piecewise-linear

density, and there can be little benefit from using curved triangular elements. Overall, this

study provides practical insights on how to appropriately discretize and parameterize three-

dimensional (3D) boundary-element simulations for elongated particles with prolate-like and

oblate-like geometries.
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1. INTRODUCTION

The physics of cells has been of central interest in many fields. These systems have sizes in

the range of 1 to 10 µm, allowing them to be visible by optical microscopy. The membranes

acting as the boundary of cells are particularly interesting, as these structures modulate

the interactions between the cell and external variables. It is not yet possible to empty the

contents of a cell and study the membrane independently. If such a process were developed,

studying such a system would still be complicated by the presence of membrane proteins, ion

channels, and other lipid species. In the fluid dynamics literature, researchers use simplified

systems and models for these cell-like systems. Of particular focus in fluids research are the

dynamics of these systems in microhydrodynamic settings, like the microcirculation of the

body or flow in microfluidic devices. Recent innovations and discoveries have renewed the

community’s interest in examining these systems. For example, several groups have designed

microfluidic devices to separate suspensions of blood without the need for centrifugation [ 2 ],

[ 3 ]. Other groups have worked on ideas such as designing devices that can measure single cell

properties at a high throughput to screen for diseases [ 4 ]–[ 6 ]. Many models and numerical

frameworks have been proposed for capsule and vesicle dynamics alongside with advances

in experimental methods [ 7 ]–[ 9 ]. The many advancements and open questions in the field

motivates the research in this thesis on numerical simulations of giant vesicles.

1.1 Vesicle dynamics

Vesicles consist of a droplet enclosed by a phospholipid bilayer membrane of thickness

≈ 5 nm, as imaged in  Fig. 1.1 . For part of this thesis, we examine the dynamics of giant

unilamellar vesicles (GUVs), which are vesicles with a diameter of around 10 µm. GUVs are

similar to common anuclear cells in both size and composition, which is why they have been

used as a model system to study the structure, mechanics, and function of phospholipid

bilayers [ 7 ], [ 10 ]. In recent years, GUVs have been used in a wide array of applications

such as bioinspired microreactors [ 11 ], [ 12 ] or platforms for rapid gene expression [ 13 ], [ 14 ].

Therefore for using GUVs as a model system and in applications, precise characterization of

vesicle dynamics in fluid flow is of fundamental importance.
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Figure 1.1. Diagram of a lipid vesicle. Adapted from MDougM, Public
domain, via Wikimedia Commons

The lipid membrane of a vesicle can be approximated as an elastic, two-dimensional,

fluid interface at the length scale of GUVs [ 15 ]. Due to the elastic membrane of a vesicle,

the dynamics of these systems are different from those of droplets. Researchers commonly

assume that the lipid membrane flows freely [  16 ]. The elastic deformation of the membrane

can be described by surface dilation and bending [  15 ]. The bending modulus of vesicles

can be measured by membrane aspiration or thermal fluctuation analysis [  16 ], [ 17 ]. For

the spherical vesicle case, that occurs during swelling for example, only the dilation needs

to be taken into account as bending is not possible. On the other hand for osmotically

deflated vesicles, the resistance to bending deformations is on the order of 2 − 50kBT while

the stretching energy is very large. [ 17 ]. The large stretching energy and the fact that

the number of lipids in the membrane is constant, makes it reasonable to assume that the

membrane is incompressible, preventing any surface dilation [ 16 ]. These deflated vesicles

can have conformations similar to ones seen for anuclear cells, such as the biconcave shape
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of red blood cells. The osmotically deflated vesicle system is therefore a good model system

for studying the dynamics of bendable, cell-like particles.

With constant surface area and volume, the configurations of vesicles can be described by

the minimization of the bending energy theory introduced by Helfrich in the seventies [ 15 ],

[ 18 ]. Theoretical work alongside experiments in the nineties used this model to analyze

the equilibrium shapes of vesicles, as reviewed by Seifert [ 19 ]. More recent experimental,

theoretical, and computational research on vesicle dynamics in flow have largely focused on

vesicle dynamics in steady shear flows [ 16 ]. Prior studies have observed three dynamical

regimes: tumbling, vacillating-breathing, and tank-treading; of which the tumbling and

tank-treading regimes have been observed for red blood cells [ 16 ]. The dynamic observed

depends on the imposed shear rate, amount of osmotic deflation, and the ratio between

the inner and outer fluid viscosity [ 20 ]–[ 25 ]. The phase diagrams of the dynamical regimes

in shear flow have been analyzed over a number of studies, and the theory agrees well with

experiments and simulations [  22 ], [ 26 ]–[ 28 ]. Knowledge of vesicle dynamics has been essential

for interpreting the behavior of similar cell-like systems and the bulk rheological response for

dilute vesicle suspensions. For example, we now know that the tank-treading to tumbling

behavior of vesicles directly affects the bulk viscosity of the suspension [ 29 ].

Extensional flows, simple linear flows that effectively stretch or compress a deflated vesi-

cle, are another important flow type to understand vesicle dynamics in. These flow types are

commonly encountered in microfluidic devices that use contractions or expansions, porous

media, and other complex channel geometries. Examining vesicle dynamics in these flow

types has been essential to improving our understanding of how vesicles and other cell-like

particles stretch and compress in biological systems or microfluidic devices. In a steady

extensional flow, it is known that highly deflated tubular vesicles deform into a symmetric

dumbbell shape [ 30 ]–[ 33 ]. On the other hand, moderately deflated vesicles transition to an

asymmetric dumbbell shape above a critical flow strength [ 33 ]–[ 35 ]. For both highly and

moderated deflated vesicles, a tether forms such that the vesicle can be stretched far from

its initial quiescent shape [  36 ].

In this thesis, we examine the shape stability of vesicles in extensional flows with a vortic-

ity component (mixed flows) and vesicle dynamics in large amplitude oscillatory extension.
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While the shape stability of vesicles in extensional flows is well studied in the literature, it

is unclear how adding a rotational component to the external flow affects the stability. Note

that, unlike for the droplet case, vesicles do not experience breakup or large deformations in

shear flows. On the other hand, our study on vesicle in oscillatory extensional flow addresses

the literature gap on time-dependent vesicle dynamics. Understanding these time-dependent

dynamics are important for systems like in vivo capillaries and complex microfluidic devices

that have many bifurcations and sharp directional changes that routinely encounter time-

dependent pulsatile flows. From this view, there is a need for comprehensive studies on how

microscopic stretching and compression of vesicles in complex, time-dependent oscillatory

flows will affect their shape and bulk rheology.

1.2 Modelling vesicles

Here we will briefly show how one can model a GUV system at the continuum level as

a droplet with a two-dimensional incompressible fluid membrane. At the length scale of a

cell (∼ 10 microns), the Reynold’s number (Re) is generally very small. We can model the

system with the assumption of negligible Reynold’s number, allowing us to model the fluids

with the Stokes equations:

∂ρ

∂t
+ ∇ · (ρv) = 0, ∇ · σ = 0 (1.1)

where ρ is the density, v is the velocity and σ is the stress tensor. We assume that the

vesicle maintains a constant volume over an experimental timeframe of 10 to 15 minutes[ 9 ].

Researchers also commonly assume the inner and outer fluids of a vesicle or red blood cell

are Newtonian. Assuming the inner fluid is poroelastic would be more accurate for cells, as

that would take into account the cytoskeleton. However adding poroelasticity complicates

the model significantly, and using a Newtonian inner fluid assumption produces results com-

parable to those seen in experiments [  8 ]. Assuming the fluid is Newtonian, we get a set of

linear equations for the mass and momentum balances:

∇ · v = 0, ∇p = µ∇2v (1.2)

19



The vesicle system is subject to continuity of velocity and a traction balance across the

interface. At the timescales and strain rates used in previous studies, membrane dilatation

is negligible [ 17 ], [  37 ]. Vesicles are also known to have negligible shear rigidity as they do

not have a cytoskeletal network or an actin cortex. We can therefore use a simplified version

of the Helfrich model [ 15 ] for the membrane:

H =
∮ κ

2 (2H)2dA +
∮

σdA. (1.3)

In  Eq. (1.3) , H represents the elastic energy of the vesicle membrane, κ is the membrane

bending modulus, H is the mean curvature, and σ is the surface tension. The surface

tension is a spatially varying Lagrange multiplier that ensures local area conservation on the

interface:

∇s · u = 0, (1.4)

where ∇s = (I −nn) · ∇. Here we neglect contributions from thermal fluctuations, sponta-

neous curvature, and bilayer friction [ 19 ], [  38 ].

The first variation of  Eq. (1.3)  with respect to the interface can be calculated to produce

the membrane traction from the bending resistance. The same procedure can be performed

for the surface tension term to produce the following traction balance:

[[f ]] = [[T · n]] = ft + fb

ft = (2Hσn− ∇sσ)

fb = κ(4KH − 4H3 − 2∇2
sH)n (1.5)

where [[f ]] is the jump in viscous traction across the interface which can be decomposed

to the bending (fb) and tension (ft) contributions, n is the outward-pointing unit normal

vector, and K is the Gaussian curvature of the interface. The mean curvature H is defined

to be one for the unit sphere. We now have a set of equations (  Eq. (1.2) ) for the inner and

outer fluids with a hydrodynamic traction balance boundary condition.
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1.3 Simulating vesicles with the boundary element method

The boundary element method is a Green’s function method, some of the main benefits

of which include a reduction in dimensionality and a straightforward implementation of

deformable boundaries. The equations from the previous section can be solved directly by

several other methods ranging from front-tracking to finite-element-based methods [ 39 ]–[ 42 ].

For the volume-based methods, we would discretize the system into volume elements such as

tetrahedrons. However as the equations are linear, we can use Green’s functions to simplify

the system. Firstly, we identify two of the free-space Green’s functions for Stokes flow, the

Stokeslet and stresslet:

Gij(x,x0) = δij

r
+ x̂ix̂j

r3 (1.6)

Tijk(x,x0) = −6 x̂ix̂jx̂k

r5 (1.7)

Where r = |x̂|, x̂ = x− x0, and x0 is the source point. Repeated indices are assumed to be

summed over. G is the solution for Stokes flow from a point force and T is the corresponding

solution for the stress tensor. Now to derive the boundary integral, we start from the Lorentz

reciprocal identity:

∇ · (v′ · σ − v · σ′) = 0 (1.8)

where (v′, σ′) and (v, σ) are two velocity and stress fields that satisfy the Stokes equations.

We identify the primed flow as that resulting from a point force with strength g located at

the point x0 such that:

v′
i(x) = 1

8πµ
Gij(x,x0)gj σ′

ik(x) = 1
8π

Tijk(x,x0)gj (1.9)

Substituting in the primed components and discarding the arbitrary constant g:

∂

∂xj

[Gij(x,x0)σik(x) − µvi(x)Tijk(x,x0)] = 0 (1.10)
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Figure 1.2. Arbitrary control volume V and closed surface D. Normal vectors
n all point into the control volume. Interior x0 point with small surrounding
surface Sϵ.

Now we proceed to convert the expression into an integral form by considering an arbi-

trary control volume V bounded by the closed surface D, as shown in Fig.  1.2 . We define

the interior side as that in the control volume and the exterior side as everything else. The

normal vector is defined to be pointing into the interior side. We want a formulation to solve

for either the tractions or velocities on D, therefore we need to do a limiting procedure for x0

from the interior or exterior to the surface D. For x0 outside of V ,  Eq. (1.10) is regular over

the control volume so we can integrate over V and use the divergence theorem to convert to

a surface integral. Thus for points x0 exterior to V the boundary integral is:

∫
D

[Gij(x,x0)σik(x) − µvi(x)Tijk(x,x0)]nk(x) dS(x) = 0 (1.11)

For points inside V , we use a limiting routine to integrate over the volume V − Vϵ where

Vϵ is a sphere of radius ϵ around x0. Using the divergence theorem and taking the limit as

ϵ → 0, we obtain the boundary integral form for interior points:

vj(x0) = − 1
8πµ

∫
D

σik(x)nk(x)Gij(x,x0) dS(x) + 1
8π

∫
D

vi(x)Tijk(x,x0)nk(x) dS(x)

(1.12)

In  Eq. (1.12) , we identify the first integral on the right-hand side as the single layer potential

and the second integral as the double layer potential. Note that the single layer potential
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varies continuously across the boundary D while the double layer potential experiences a

jump. If D has a continuously varying normal vector and velocity, we deduce the limit of

the double layer potential as x0 approaches D as the following identity:

lim
x0→D

∫
D

vi(x)Tijk(x,x0)nk(x) dS(x) = ±4πvj(x0) +
∫ P V

D
vi(x)Tijk(x,x0)nk(x) dS(x)

(1.13)

where the plus sign applies for interior flows and the minus for exterior flows. The superscript

PV denotes the principal value when x0 is on D. Substituting the proper form of  Eq. (1.13) 

into  Eq. (1.11)  or  Eq. (1.12) , we find the formulation for x0 on D

vj(x0) = − 1
4πµ

∫
D

σik(x)nk(x)Gij(x,x0) dS(x) + 1
4π

∫
D

vi(x)Tijk(x,x0)nk(x) dS(x)

(1.14)

Figure 1.3. Sketch of arbitrary interface between two fluids. Normal vector
always points towards the selected control volume.

Many of the systems of interest have constitutive equations defined as surface force jumps

at the interface. Therefore we commonly use an altered version of the boundary integral

equations that are more accessible for interfacial boundary conditions, and are defined with

respect to the force jump across the interface and the viscosity ratio between the interior

and exterior fluids. A sketch of the configuration is shown in Fig.  1.3 , where we define two

fluids separated by an interface S. Starting with fluid 1 as the control volume, we choose a
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source point inside of fluid 1. We use the interior form of the boundary integral (BI) equation

( Eq. (1.12)  ) and get

v
(1)
j (x0) = − 1

8πµ1

∫
S

f
(1)
i (x)Gij(x,x0) dS(x) + 1

8π

∫
S

vi(x)Tijk(x,x0)nk(x) dS(x) (1.15)

where the superscript (1) corresponds to the interior fluid values and f is the traction σ ·n,

such that f (1) is the traction over side 1 of the interface. For the same source point but fluid

2 as the control volume, we use the exterior BI ( Eq. (1.11) )

∫
S

f
(2)
i Gij(x,x0) dS(x) − µ2

∫
S

vi(x)Tijk(x,x0)nk(x) dS(x) = 0 (1.16)

Combining these two equations, we get the desired form for velocity in fluid 1:

v
(1)
j (x0) = − 1

8πµ1

∫
S
[[fi(x)]]Gij(x,x0) dS(x)+ 1 − λ

8π

∫
S

vi(x)Tijk(x,x0)nk(x) dS(x) (1.17)

where λ = µ1/µ2 and [[f ]] is the surface force jump.

The same process can be carried out for the velocity in fluid 2, obtaining the equation

v
(2)
j (x0) = − 1

8πµ1λ

∫
S
[[fi(x)]]Gij(x,x0) dS(x) + 1 − λ

8πλ

∫
S

vi(x)Tijk(x,x0)nk(x) dS(x)

(1.18)

Then by having the point x0 approach the interface from either fluid 1 or fluid 2, we find

both  Eq. (1.17) and  Eq. (1.18) reduce to

vj(x0) = − 1
(4πµ1)(λ + 1)

∫
S
[[fi(x)]]Gij(x,x0) dS(x) + (1 − λ)

4π(1 + λ)

∫ P V

S
vi(x)Tijk(x,x0)nk(x) dS(x)

(1.19)

This is the formulation that will be used for simulating vesicles. We could use the formulation

from  Eq. (1.5) for [[f ]], however the bending traction requires us to calculate a Laplace-

Beltrami operator on the curvature. To avoid high order numerical differentiation, we apply

24



the virtual work principal and perform a finite difference scheme on the energy term for

interface changes. The hydrodynamic force on the surface at a location β would thus be

[[f ]]β = 1
Aβ

∂W

∂xβ

. (1.20)

Where W is the surface energy functional, which is the Helfrich energy from  Eq. (1.3) . Aβ

is the local surface area at the point β.

With the boundary integral formulation, the Stokes flow can be computed using a surface

mesh rather than a volume mesh, potentially reducing computational complexity. The sur-

face can be discretized into elements, with some commonly used ones being quadrilaterals,

three node flat triangles, or six node curved triangles [ 43 ]. In our simulations, we use an

unstructured mesh consisting entirely of triangles. The surface is put in the parametric de-

scription to allow the same shape functions to be used over each local element. The positions

and density distributions on the surfaces are generally interpolated from the nodal values

(except for a piece-wise constant density distribution) as

xi =
nodes∑
n=1

ϕnx̂n
i (1.21)

where x̂n are the nodal vector values and ϕn are the nodal shape functions. We approximate

the curvature of the surface by using a Loop subdivision surface as done in Spann, et al for

vesicles and first presented for thin-shell finite-element analysis by Cirak, et al. [ 35 ], [ 44 ].

Elements that contain the point x0 or are close to the source point will be singular or nearly

singular, respectively. Several methods have been proposed in the literature to handle the

singularity, we use the Duffy transformation and singularity subtraction [  45 ], [ 46 ]. For time

integration, we use a semi-implicit procedure that is equivalent to the one in [ 47 ].
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2. VESICLE DYNAMICS IN MIXED FLOWS
Note: Reproduced from C. Lin and V. Narsimhan, “Shape stability of deflated vesicles
in general linear flows,” Physical Review Fluids, vol. 4, no. 12, p. 123 606, 2019, with the
permission of APS [ 48 ].

2.1 Summary

The dynamics of vesicles in simple shear or extensional flows have been extensively stud-

ied, but the conditions where vesicles experience more complex flow types, such as those

seen in microfluidic devices or industrial processing conditions, warrants greater investiga-

tion. In this study, we used the boundary element method to investigate the shape stability

of deflated vesicles in a general linear flow (i.e., linear combinations of extensional and ro-

tational flows). We modeled the vesicles as a droplet with an incompressible interface with

a bending resistance. We simulated a range of flow types from purely shear to extensional

at viscosity ratios ranging from 0.01 to 5.0 and reduced volumes from 0.60 to 0.70. The

vesicle’s viscosity ratio appears to play a minimal role in describing its shape and stability

for many mixed flows, even in cases when significant flows are present in the vesicle interior.

We find in these cases the critical capillary number for shape instabilities collapse onto sim-

ilar values if the capillary number is scaled by an effective extensional rate. These results

contrast with droplet studies where viscosity ratio and flow type both have significant effects

on breakup. Our simulations suggest that if the flow type is not close to pure shear flow,

one can accurately quantify the shape and stability of vesicles using the results from an

equiviscous vesicle in pure extension. When the flow type is nearly shear flow, we start to

see deviations in the observations discussed above. In this situation, the vesicle’s stationary

shape develops a shape deviation, which introduces a stabilizing effect and makes the critical

capillary number depend on the viscosity ratio.

2.2 Introduction

Vesicles are a paradigmatic model system for studying the dynamics of cellular systems.

Part of the popularity of vesicles originates from their ease of manufacture through electro-

formation and their large size that can be easily tracked by optical microscopy [  49 ], [ 50 ].
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The giant unilamellar vesicle (GUV) system is also similar in both size and composition to

common anuclear cells. GUVs have been used to describe the motion of red blood cells [ 29 ],

[ 51 ], such as their tank-treading/tumbling/vacillating-breathing behavior in shear flow [ 29 ],

[ 52 ]. From a more functional viewpoint, vesicles are vital components of countless biologi-

cal processes including cellular digestion [ 53 ], cell signaling [  54 ], or exocytosis [ 55 ]. Vesicles

have also been directly applied to engineering applications such as biocompatible drug de-

livery [ 56 ], [ 57 ] or micro-reactors for miniaturization studies [ 11 ], [ 58 ]. Further motivation

for vesicle research originates from the inability of droplet studies alone to describe all of

the possible mechanics of vesicles/cells. Some of the differences include the possibility of

non-spherical vesicle shapes at global equilibrium [ 59 ] and soft, long-wavelength membrane

fluctuations [ 50 ]. These numerous applications have prompted the biophysics community to

be highly interested in studies examining the dynamics of vesicles.

Of interest is vesicle dynamics in external flows like those observed in microfluidic devices

or biological systems. Previous research on vesicles in purely extensional flows include the

work by Kanstler, et al. who experimentally observed that highly deflated, high aspect ratio

vesicles extend out into dumbbell-like shapes at extension rates above a critical value [ 60 ].

For intermediate-aspect-ratio vesicles, Spjut and Muller observed vesicles transitioning into

an asymmetrical dumbbell shape at extension rates above a critical value [  34 ], [ 61 ]. Following

these results, the Shaqfeh group has done several computational and theoretical studies on

the stability and transitional shapes observed from vesicles in extensional flow [ 31 ], [ 32 ], [ 35 ],

[ 47 ]. Some of the main conclusions from these studies include the negligible dependence of

the critical extension rate on the viscosity ratio between the vesicle and the solution, and

the importance of the steady-state shape on shape transitions under tension.

At the time of writing, few studies have examined deflated vesicles in general linear flows

(i.e., linear combinations of rotational and extensional flows), even though the flow fields a

vesicle will experience in complex geometries will not be perfectly shear or extensional. In

such flows, determining the stability characteristics of vesicles is essential for manipulating

vesicle dynamics.

In this paper, we use numerical simulations to probe the stability of deflated vesicles in a

general linear flow field. There have been other experimental and theoretical studies exam-
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ining vesicles in such flows, but they have focused on the motion of nearly spherical vesicles,

characterizing the phase boundaries between tank-treading, tumbling, and the transitional

regimes [ 28 ], [ 29 ], [ 62 ]. We note that studies on droplets in mixed flows have shown that

the slender-drop and small deformation theories are close approximations of experimental

results for critical extension rate, deformation, and orientation [ 63 ], [ 64 ]. But the stability

of vesicles in such flows is qualitatively different from those observed for droplets. For ex-

ample, droplets are known to breakup readily in a wide range of flow types, but this does

not appear to be the case for vesicles, which appear to be quite stable in nearly shear flows.

Furthermore, internal viscosity appears to play a significant role in droplet breakup, but

the simulations in this paper do not show such an effect for vesicles, even when significant

internal flows are present. We will describe our simulation method, present our stability

results and explain our findings in the sections that follow.

2.3 Model and Methods

2.3.1 Governing Equations

We model our system as a droplet surrounded by a two-dimensional incompressible fluid

with a bending resistance. At the length scale of a GUV (a ∼ 10µm) with deformation

rates at ϵ̇ ∼ 1s−1, the inner and outer fluids of the system are effectively very viscous with

negligible inertial effects. This allows us to model the velocity field inside and outside the

vesicle using the Stokes equations.

∇ · u = 0, ∇p = µ∇2u (2.1)

In the above equation, u is fluid velocity, p is the pressure, and µ is the fluid viscosity

(µin for the inner fluid and µout for the outer fluid). The system is subject to continuity of

velocity across the interface and a force balance across the phospholipid bilayer. The short

timescales and low deformation rates used in previous studies makes membrane dilatation

negligible [ 17 ], [ 37 ]. Vesicles are also known to have negligible shear rigidity as they do not
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have a cytoskeletal network or an actin cortex. We therefore choose to use the Helfrich

model [ 15 ], a commonly used model that takes these factors into account.

H =
∮ κ

2 (2H)2dA +
∮

σdA (2.2)

In  Eq. (2.2)  , H represents the elastic energy of the vesicle membrane. κ is the membrane

bending modulus, H is the mean curvature, and σ is the surface tension. The surface tension

is a spatially varying Lagrange multiplier that ensures local area conservation. Previous liter-

ature has shown that local area conservation leads to good global area incompressibility [ 65 ],

[ 66 ]. The surface tension enforces ∇s · u = 0 on the interface, where ∇s = (I − nn) · ∇.

We note that the original Helfrich model includes spontaneous curvature, a parameter to

describe a membrane’s curvature preference when the sides of the bilayer are chemically

different. While vesicles in-vivo may have multiple lipid components or chemical differences

between the inner and outer fluids [ 18 ], [ 67 ], [ 68 ], experimental studies have focused on single

component vesicles with only a viscosity difference between the fluids, prompting a negligi-

ble spontaneous curvature. We have additionally neglected any contributions from thermal

fluctuations, membrane viscosity, and bilayer friction [  19 ], [  38 ].

At mechanical equilibrium, the force balance at the membrane surface becomes:

[[f ]] = [[T · n]] = ft + fb = (2Hσn− ∇sσ) + (κ(4KH − 4H3 − 2∇2
sH)n) (2.3)

[[f ]] is the jump in viscous traction across the interface which can be decomposed to the

bending (fb) and tension (ft) contributions, where n is the outward-pointing unit normal

vector, and K is the Gaussian curvature of the interface. The mean curvature H is defined

to be 1 for the unit sphere.

The vesicle is placed in an external, linear flow field described by u∞ = ∇u∞ · x. We

define it as:

∇u∞ = ϵ̇

2


α + 1 1 − α 0

α − 1 −1 − α 0

0 0 0

 (2.4)
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where ϵ̇ is the deformation rate and α is a flow parameter that controls the flow type the

vesicle experiences. The value α = 1 corresponds to planar extensional flow, α = 0 is

shear flow, and α = −1 is pure rotation. We additionally define an exit streamline as the

eigenvector corresponding to the principal eigenvalue:

b = (−1 −
√

α

−1 +
√

α
, −1) α ̸= 1 (2.5)

The membrane area (A) is kept constant by the incompressiblity constraint while the

low permeability of the membrane allows us to assume that the volume (V ) of the vesicle is

constant during the timescale of experiments (minutes). Therefore, we non-dimensionalize

distances by the equivalent radius a =
√

A/(4π), time scales by ϵ̇−1, velocities by ϵ̇a, stresses

by µoutϵ̇, and surface tensions by µoutϵ̇a. We obtain four dimensionless groups of interest

from the non-dimensionalization:

Ca ≡ µoutϵ̇a
3

κ
, λ ≡ µin

µout

, ν ≡ 3V

4πa3 , α (2.6)

The capillary number (Ca) compares the bending timescale to flow timescale. Therefore,

a high Ca would mean the vesicle shape is dominated by the external flow. The viscosity

ratio (λ) is the ratio of inner and outer fluid viscosity. As cellular systems such as RBCs

commonly have a more viscous inner fluid, the parameter can be tuned to more closely

model the system of choice. The reduced volume (ν) is a measure of the asphericity of the

vesicle, or a measure of its osmotic deflation. For example, a reduced volume of 1 would be

a perfect sphere, while a value of 0.2 would be highly deflated. One can experimentally alter

the reduced volume of a vesicle by introducing an osmotic shock such as adding sucrose to

the outer fluid. The flow parameter α was described earlier, and it describes what type of

mixed flow the vesicle will experience (pure rotation to pure extension).

Applying this non-dimensionalization, the force balance becomes:

[[T · n]] = ft + Ca−1fb (2.7)
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2.3.2 Boundary Integral Formulation

The Stokes flow assumption allows us to use the boundary integral (ie, Green’s function)

formulation to simulate the vesicle. We recast the Stokes equations into a boundary integral

form:

1 + λ

2 uj(x0) = u∞
j (x0) − 1

8π

∫
S

Gij(x,x0)[[fi]](x)dA(x) + 1 − λ

8π

∫
S

Tijk(x,x0)ui(x)nk(x)dA(x)

(2.8)

where u∞
i is the external velocity field and [[fi]] is the jump in viscous traction across the

interface, given by  Eq. (2.7) . The kernels Gij(x,x0) and Tijk(x,x0) are the Stokeslet (point

force) and stresslet (point dipole) solutions to Stokes flow:

Gij(x,x0) = δij

r
+ x̃ix̃j

r3 (2.9)

Tijk(x,x0) = −6 x̃ix̃jx̃k

r5 (2.10)

where x̃ = x − x0 and r = |x̃|. Repeated indices are assumed to be summed in the above

equations. These equations are also subject to the membrane incompressibility constraint:

∇s · u = 0 (2.11)

Our simulations use code extended from Spann, et al. [ 35 ]. The simulation procedure

begins by discretizing the vesicle surface into an unstructured mesh of at least 5120 trian-

gular elements. We solve for the velocity, pressure, and surface tension at each mesh point

by using the predictor-corrector scheme from [ 69 ]. For computing the bending forces, we

first approximate the curvature with Loop subdivision [ 35 ] and then apply the virtual work

principle on the Helfrich energy functional [ 35 ]. After solving for the velocity at each mesh

point, we translate the vertices by their normal velocity. The tangential velocity component

is replaced by a mesh relaxation scheme similar to the one mentioned in [ 70 ]. Finally, we

enforce the constant volume constraint by performing an affine transformation on the vesicle

shape. This process is repeated until the desired amount of time has been simulated.

31



2.3.3 Vesicle Shape Stability

(a) (b)

Figure 2.1. (a) steady state vesicle shapes and the corresponding external
velocities. The arrows correspond to the exit streamline. (b) simulated asym-
metrical instability and surface velocities.

In this study, we examine the stability of a vesicle under a steady, linear flow field.

When a vesicle is deflated (reduced volume 0.58 < ν < 0.75), a vesicle under pure extension

will transition to an asymmetric dumbbell above a critical capillary number ( Fig. 2.1 ). The

shape instabilities we examine in mixed flows will look similar to this process, although there

will now be internal flows inside the vesicle due to the imposed vorticity. The asymmetric

dumbbell deformation is assumed to grow indefinitely, suggesting breakup, but could also

lead to additional stationary shapes. The origin of the asymmetric dumbbell instability is

outlined in Narsimhan et al., [ 31 ] but briefly, it arises due to the Laplace pressure induced in

the pinched side of the vesicle, which drives flow toward the expanded side. Since the surface

tension of the membrane is a function of the flow, this effect only occurs above a critical

flow strength. To avoid highly deformed meshes and large capillary numbers, we decided to

limit our simulations to the range of ν = 0.60 to 0.70. We note that the history of the flow

field, such as sudden increase in flow strength, could also affect vesicle stability, but topic is

outside the scope of the paper and will be examined in a future manuscript.
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The simulation procedure begins by first obtaining a vesicle at steady-state, which is

accomplished by simulating a prolate spheroidal mesh in external flow until the normal ve-

locities at the vertices approach zero. This method differs from previous spectral simulations,

where they discarded the asymmetric contributions of the shape to obtain the equilibrium

shape [ 47 ]. We then apply a small sinusoidal perturbation to the steady-state mesh, and

determine the conditions under which this perturbation will grow. Experimentally, this per-

turbation would occur spontaneously due to additional factors such as thermal fluctuations

or minor flow perturbations. This perturbation is necessary for the simulation because while

our simulation does not automatically enforce symmetry, the minor asymmetries present in

the finite mesh representation of the vesicle will not spontaneously start the instability for

capillary numbers close to the critical value. The perturbation is defined as:

r(z) = r0(z) + β sin(2πz/zmax) (2.12)

Where r is the distance from the interface to the major axis of the vesicle shape, and β a

small number, usually of order 0.01 times the original radius r0. Visually, this perturbation

makes one side of the vesicle slightly larger than the other ( Fig. 2.1  ). Above a critical

capillary number, the perturbation will grow, while below the critical capillary number the

perturbation will return to its steady configuration.

We note that the growth rate of the instability becomes increasingly small as the capillary

number is near its critical value. This effect is significant because one typically has to simulate

for long periods of time to visualize the instability at this transition. We decided to use a

more robust method for determining the stability of a simulation by tracking the growth of

the asymmetric perturbation. Previous simulations that tested vesicle stability in uniaxial

extension were able to extract the Legendre polynomial representation of the vesicle shape

and check the growth rate of the odd modes [ 35 ], [ 69 ]. Our simulations of vesicles in mixed

flows will not be radially symmetric, but we can do the same analysis for a z = 0 slice of the

vesicle shape (i.e., the plane where flow occurs).

Our procedure consists of first projecting all the vertices onto the z = 0 plane and

then using a concave hull algorithm [ 71 ] to select the vertices enclosing the projection. We
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Figure 2.2. Odd Legendre polynomials for a stable and unstable simulation.
The stable (unstable) simulation decrease (increase) exponentially after some
transient initial effects. Mixed and extensional flows show qualitatively similar
results for this analysis. The dips in the coefficients are some transient behavior
and were also seen in Spann, et al. [ 35 ].
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record the distances from the vertices to the vesicle’s major axis, re-scale the points so

that the endpoints of the major axis are at ±1, and fit the shape to Legendre polynomials

up to order 32 using the least squares method. If the resultant coefficients for odd order

polynomials consistently increase with time, we determine that the sinusoidal perturbation

grows, eventually leading to the asymmetric instability. The even polynomial coefficients are

constant until the shape becomes significantly deformed. This method allows us to determine

the stability with fewer timesteps. An example of the odd Legendre coefficients is shown in

 Fig. 2.2  .

2.4 Results and Discussion

The shape stability of a vesicle in pure planar extensional flow (α = 1) has been studied

extensively by Kantsler et al. and Dahl et al. in experiments [ 34 ], [ 60 ], as well as in

computational works by Shaqfeh and co-workers [  35 ], [ 69 ]. We benchmarked our simulations

with the latter two studies and have been able to replicate their stability phase diagrams.

This study focuses on mixed flows with an extensionally dominated component (0 < α < 1),

which has not been addressed up until this point.  Fig. 2.3 shows the stability boundary

for vesicles in such flows over several reduced volumes ν and viscosity ratios λ. The critical

capillary number diverges with a power-law behavior (exponent roughly 0.6) as the flow type

approaches pure shear (i.e., α → 0), leading to no asymmetrical dumbbell deformations for

purely shear flows. We note that this behavior is quite different than those observed for

droplets, which can readily break up in shear flow if its interior viscosity is not too large [ 63 ],

[ 72 ].

Another interesting finding from the graphs is the dependence of vesicle stability on its

viscosity ratio (λ). In previous studies under pure extension (α = 1), Narsimhan et al.

showed that viscosity ratio plays an inconsequential role in vesicle shape stability, since the

vesicle experiences negligible flow in its interior due to membrane incompressibility [ 31 ].

The latter statement is not true in mixed flows, since external vorticity leads to substantial

circulation in the vesicle interior. Yet, viscosity ratio has a negligible effect on vesicle stability

over a wide range of mixed flows, with a deviation occurring close to the pure shear flow
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Figure 2.3. Predicted stability boundaries for several reduced volumes ν and
viscosity ratios λ. Several of the boundaries overlap exactly. All viscosity
ratios were simulated for a reduced volume of 0.65. Simulations of viscosity
ratios of 1.0, and 5.0 are shown for a reduced volume of 0.60. The boundaries
for the reduced volume 0.70 runs are larger due to higher Ca requiring longer
simulation times.
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Figure 2.4. Orientation angle of vesicle simulations compared to the exit
streamline for vesicles near the stability boundary. Inset focuses on the low
alpha regime for ν = 0.65.

(α = 0) limit. This observation is in contrast to what is observed for droplet suspensions

where the internal fluid plays a significant role in break up [ 64 ].

To explain the power law dependence of vesicle stability with flow type, we begin with

some observations. Firstly, all unstable vesicles we simulated have been in the tank-treading

regime. We tracked the orientation angle of the vesicles over time and found all of them stay

constant after reaching their steady-state orientation. One can simulate the tumbling and

vacillating-breathing regimes by further increasing the viscosity ratio or decreasing α. The

majority of the relevant stability boundary will be in the tank-treading regime however, as

the rotation timescale for the VB/TU regimes will likely be significantly smaller than the

inverse growth rate of the asymmetrical instability, leading to no perceived shape instability.
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Figure 2.5. Rescaled stability boundaries by
√

α, corresponding to the effec-
tive extension along the exit streamline.
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Note that the results for λ = 5.0 suggest that the critical viscosity ratio for the TT-TU

transition is affected by the flow type. We have not examined this effect in this study and

may examine it in future work.

Secondly, the orientation of the tank-treading vesicles determines the effective extension

it experiences. We define the effective extension as:

ϵ̇eff = c · ∇u∞ · c = ϵ̇(1 + α

2 ) cos(2θ); 0 < θ < π (2.13)

where θ is the orientation angle of the vesicle and c is the major axis of the ellipsoidal vesicle.

The vesicle will experience maximum extension when aligned with the x-axis (θ = 0ř) and a

minimum extension when aligned at θ = −45°. We can re-define our capillary number based

on this effective extension rate

Caeff = (1 + α

2 ) cos(2θ)Ca, (2.14)

but this representation requires the orientation angle, which is not known a priori. Instead,

we observe from  Fig. 2.4  that the vesicles align closely with the exit streamline of the mixed

flow (i.e, the eigenvector of  Eq. (2.4) with a positive eigenvalue) for flow types not close to

shear flow. The inclination angle differs by at most 4 degrees from the exit streamline for

α ≥ 0.250, suggesting that c ≈ b. This observation and the approximate power law exponent

of roughly 0.60, motivates us to reexamine our data by scaling the capillary number by the

effective extension rate along the exit streamline, which is
√

αϵ̇. The resultant dimensionless

parameter corresponds to the effective capillary number along the exit streamline:

Cas =
√

αCa. (2.15)

Once applying this scaling in  Fig. 2.5 , we observe that most of the stability boundary

becomes invariant with flow type. These results suggest that the stability of vesicles of any

viscosity ratio can be explained by the purely extensional case and a scaled deformation rate

if the flow type is α ≥ 0.500. The stability boundary only begins to diverge from a purely

effective extensional effect at close to pure shear flow (α = 0).
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This simple geometric argument for deflated vesicles is remarkable, since it is well known

that droplets do not always align well with the flow principal axis. Significant differences in

droplet orientation angle have been observed in several experiments, (e.g., Stone, Bentley and

Leal, etc. [ 64 ], [ 73 ]) and helps explain why the stability boundary’s dependence on flow type

and viscosity ratio has a much more complicated relationship for droplets than the geometric

arguments listed above. We note that for vesicles, the orientation angle can deviate greatly

from the exit streamline, but this effect only appears important when its shape is quasi-

spherical (ν > 0.80), or when the flow type is nearly shear flow. A good reference for studies

in the quasi-spherical regimes is in Mishbah and Zhao and Shaqfeh [ 20 ], [ 22 ], [ 65 ], and a good

reference for low reduced volume vesicles/cells in shear flow is Keller and Skalak [ 74 ]. In

our study, the asymmetric dumbbell instabilities occur at reduced volumes 0.58 < ν < 0.75

and the flow types significantly away from pure shear, which allows one to make the simple

geometry arguments listed above.

In the last part of this section, we will make a few more statements that illuminate the

physics of the shape instabilities in mixed flows. In previous studies, researchers found the

asymmetric dumbbell shapes arise from a competition between bending forces that try to

stabilize the vesicle, and membrane tension that tries to destabilize the vesicle. The first

effect is primarily due to geometry (i.e., curvature of the membrane), while the latter effect is

coupled through the flow. For more information on vesicle stability in mixed flows, we decided

to measure the steady-state vesicle geometry and tensions near the stability boundary.

To begin our analysis, we focus on the moderate to high α regime (α ≥ 0.500). Let us

examine two vesicles with Cas = 3.00, ν = 0.65, and λ = 1: one is in pure extension α = 1,

and the other is in a mixed flow at α = 0.5. Although both vesicles will experience the

same effective extension, the vorticity will be noticeably different, leading to different flow

patterns in and around the vesicle. How do these flow patterns affect the vesicle shape? We

plot the shapes of the two vesicles overlaying each other in  Fig. 2.6  (a). Overall, the shapes

are almost identical, suggesting that the internal circulation induced by vorticity does not

appreciably alter vesicle shape at moderate flow parameter α. Vesicles of the same shape

have the exact same bending forces, therefore the stabilizing force for the instability will be

the same.
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Figure 2.6. Comparing the stationary vesicle shape for vesicles in a purely
extensional flow to those seen in mixed flows. Both plots have the parameters:
λ = 1.00 and Cas = 3.00. The α = 0.500 flow (a) results in a stationary shape
that closely follows the extensional case. The α = 0.125 stationary shape (b)
deviates significantly from the extensional case. The y-axis scaling for (b) has
been increased to make the shape deviation more noticeable.
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We plotted the maximum tension profile along the major axis of the vesicle of the same

case in  Fig. 2.7 . From that figure we see that the tension profile is also invariant for α ≥ 0.500

at the same scaled capillary number. Overall, the tension profile is similar for most flow types

except near shear flow (α ≤ 0.25). From  Fig. 2.7 , we also observe that the tension profile is

independent of viscosity ratio for α ≥ 0.500. These results suggest that the internal flows

in the vesicle do not play a significant role in modifying the tension on the membrane, most

likely because such flows are primarily rotational and hence do not stretch the material

elements in the membrane appreciably. With both the membrane bending and tension

contributions invariant at the same scaled capillary number for moderate alpha values, we

conclude that the vorticity has no significant effect in this regime. Additionally, the stability

is independent of the flows internal to the vesicle, and hence does not depend on λ.

Figure 2.7. Maximum tension values along the major axis of the vesicle sta-
tionary shape. Note these are the tensions non-dimensionalized by the bending
modulus, equivalent to σCa. Tension is maximized on the z = 0 plane of the
vesicle in the planar flow.

When vesicles approach pure shear flow (α = 0), we notice that flow type and viscosity

ratio start having significant consequences on its stability. To understand the role of these

parameters in this regime, we examine the vesicle’s shape and orientation. In  Fig. 2.4 ,

we observe that that vesicles with higher viscosity ratios align more closely with the exit

streamline than those with lower viscosity ratios. This orientation effect leads to the more

viscous vesicles experiencing a lower effective extension ( Fig. 2.4  ), which would make one

naively conclude that such vesicles would become more stable in flow. This observation is not
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1.000 simulations. Inset: exaggerated perturbed shape for reference.

borne by our simulations. Indeed, if one looks at  Fig. 2.5 , we instead observe the viscosity

ratio λ = 5.0 vesicle has a lower critical capillary number (i.e., more unstable) than an

equi-viscous λ = 1 vesicle. The origin of this counter-intuitive observation is likely due to a

change in shape. We see in  Fig. 2.6 (b) that the shape near shear flow starts developing small,

off-center deviations resulting in an “S”-like shape, as is seen for prolate vesicles in shear

flow [ 65 ]. We emphasize that the vesicle is no longer symmetrical here. The “S”-like shapes

are less prominent in higher viscosity ratio vesicles ( Fig. 2.8 ), and it appears that when such

shape deviations are absent, the stability trend follows the same trends as α ≥ 0.500 cases.

However, the shape deviation seen in  Fig. 2.6 is a relatively small change, and it does

not change drastically even with large differences in viscosity ratio ( Fig. 2.8  ). To probe the
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cause for increased vesicle stability for low α flows, we need to examine the driving force

that increases the sinusoidal perturbation by pushing the internal fluid from the smaller to

larger ends. We decided to calculate the pressure profile along the major axis of the vesicle

as it is a good indicator of the internal fluid flow. The pressure at a point x0 inside of the

vesicle can be calculated using Green’s functions:

p(x0) = −1
8πλ

∮
Pi(x0,x)[[fi]](x)dS(x) + 1 − λ

8πλ
µext

∮
ui(x)Πij(x0,x)nj(x)dS(x) (2.16)

Pi = 2x̂i

r3 ; Πij = 4(−δik

r3 + 3 x̂ix̂j

r5 ) (2.17)

where x̂ = x0 − x. We proceed as in Zhao and Shaqfeh [ 69 ] and decompose the pressure as

p = pB + pU , where pB is the contribution from bending while pU is from the external flow.

We calculate pB by solving  Eq. (2.8)  with u∞ = 0 and then calculate the resultant pressure

profile. This profile will include a non-zero tension that minimizes the area divergence of

the bending forces. pU is calculated similarly by setting fb = 0 such that [[f ]] = fs and is

determined by the external flow only.

We use the pressure profiles to examine vesicles at the same effective extension  Eq. (2.14) 

but different flow types. We keep the effective extension constant rather than the scaled cap-

illary number ( Eq. (2.15) ) because our simulations have shown that vesicles in close to shear

flows do not always align with the exit streamline. We simulate at α = [0.125, 0.500, 1.000],

ν = 0.65, λ = 1.00, and an effective capillary number ( Eq. (2.14) ) of 3.00. These parameters

result in an “S”-like stationary shape at α = 0.125 but a symmetric shape at α = 0.500

and 1.000. To determine how a shape perturbation affects the internal pressure profile, we

examine the pressure difference between the perturbed and stationary configurations. The

perturbed pressure profile is measured at times ∼ 0.1/ϵ̇ after perturbation to allow transient

effects to dissipate and allow the profile to approximate that of the most unstable mode. For

an unstable parameter set, we expect the total pressure (p = pB + pU) difference profile to

give an internal flow that increases the perturbation — in other words, be positive on the
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left half of the vesicle and negative on the right for the schematic in  Fig. 2.9 . We observe for

all simulations that the bending contributions pB are stabilizing while the flow contributions

pU are destabilizing, which is as expected.

Our calculations show that the pressure difference profiles for α = 0.5 and α = 1.0

vesicles are very similar, which is further confirmation that flow types not close to shear can

be explained by the previously proposed scaling. For the close to shear flow case (α = 0.125)

however, the total pressure profile shows a stable configuration, suggesting an increased

stability at the same effective capillary number. The increased external flow vorticity here

results in a decreased destabilizing external flow contribution and a slightly altered bending

contribution. One can see from  Fig. 2.10 that the tension profile for α = 0.125 shows lower

values, suggesting that the altered external flow contribution originates from this decreased

tension since ∆pU ∼ σ∆H [ 31 ]. It is interesting that the stabilizing effect from the shape

deviations or their interaction with the sinusoidal perturbation is due to changes in flow

forces rather than bending forces. This indicates that if such “S”-like shapes exist for other

soft membrane systems like red blood cells, a similar mechanism may occur to describe

their stability in flow, even if the membrane mechanics are more closely dominated by shear

elasticity than bending. This shape deviation may also be a major factor in why red blood

cells and other similar cellular systems have not been observed to breakup in shear flows even

with large strain rates. It would be interesting to test these conjectures through simulations

and experiments.

2.5 Conclusions

We have used a boundary element method to evaluate the stability of deflated vesicles

in general linear flows. Our simulations agree with previous literature results for planar

extensional flow. After introducing the rotational flow component, we observe that most of

the mixed flow phase space can be explained by a scaled extensional rate — i.e., a scaled

capillary number Cas =
√

αCa, where α is the flow parameter defined in  Eq. (2.4)  and Ca is

a bending capillary number. For α ≥ 0.500, vesicles at the same scaled capillary number Cas

have nearly the same shape and tension profile for the simulated viscosity ratios (0.01 to 5.00)
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and reduced volumes (0.60 to 0.70). This is because the vesicles all align very closely with

the exiting streamline, and the vesicle’s internal flows do not stretch the material elements

in the membrane appreciably. In this regime, one can accurately quantify the shape and

stability of vesicles for a wide range of flow types and viscosity ratios using the results from

an equiviscous vesicle under pure extension [ 31 ].

For flows close to pure shear flow (α ≤ 0.25), we observe that vesicle stability depends

significantly on flow type and viscosity ratio, with the critical capillary number diverging at

pure shear flow (α = 0). In this flow regime, vesicles develop an “S”-like shape and exhibit

lower tensions at similar effective extension rates. We note that the presence of such “S”-like

shapes depend on the internal viscosity of the vesicle and only occur if the viscosity ratio is

not too large, which explains why this parameter plays a crucial role in this regime. It will

be interesting to know if such ideas hold for other soft membrane systems like red blood cells,

where the membrane mechanics are more closely dominated by shear contributions rather

than bending.
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3. VESICLE DYNAMICS IN LARGE AMPLITUDE
OSCILLATORY EXTENSIONAL FLOW

Note: Reproduced from C. Lin, D. Kumar, C. M. Richter, et al., “Vesicle dynamics in
large amplitude oscillatory extensional flow,” Journal of Fluid Mechanics, vol. 929, A43,
2021. doi:  10.1017/jfm.2021.885 , with the permission of Cambridge University Press [  75 ].
Supplementary materials can be found on the Journal of Fluid Mechanics website or through
the DOI link.

3.1 Summary

Although the behavior of fluid-filled vesicles in steady flows has been extensively studied,

far less is understood regarding the shape dynamics of vesicles in time-dependent oscillatory

flows. Here, we investigate the nonlinear dynamics of vesicles in large amplitude oscillatory

extensional (LAOE) flows using both experiments and boundary integral (BI) simulations.

Our results characterize the transient membrane deformations, dynamical regimes, and stress

response of vesicles in LAOE in terms of reduced volume (vesicle asphericity), capillary

number (Ca, dimensionless flow strength), and Deborah number (De, dimensionless flow

frequency). Results from single vesicle experiments are found to be in good agreement with

BI simulations across a wide range of parameters. Our results reveal three distinct dynamical

regimes based on vesicle deformation: pulsating, reorienting, and symmetrical regimes. We

construct phase diagrams characterizing the transition of vesicle shapes between pulsating,

reorienting, and symmetrical regimes within the two- dimensional Pipkin space defined by

De and Ca. Contrary to observations on clean Newtonian droplets, vesicles do not reach

a maximum length twice per strain rate cycle in the reorienting and pulsating regimes.

The distinct dynamics observed in each regime result from a competition between the flow

frequency, flow time scale, and membrane deformation timescale. By calculating the particle

stresslet, we quantify the nonlinear relationship between average vesicle stress and strain rate.

Additionally, we present results on tubular vesicles that undergo shape transformation over

several strain cycles. Broadly, our work provides new information regarding the transient

dynamics of vesicles in time-dependent flows that directly informs bulk suspension rheology.
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3.2 Introduction

In recent years, fluid-filled vesicles have been used in a wide array of technological ap-

plications ranging from food products to bioinspired microreactors, and reagent delivery

applications in functional materials [ 76 ]. Moreover, giant vesicles are widely regarded as

a model membrane system in various biophysical and biochemical processes [ 7 ], [ 10 ]. In

these applications, precise characterization of the membrane shape dynamics in response to

a fluid flow is of fundamental importance. Despite the increasing prevalence of vesicles in

biophysics and materials science, we lack a complete understanding of how time-dependent

flows influence the membrane shape dynamics and overall rheological response of vesicle

suspensions [ 16 ], [ 29 ]. Lipid vesicles consist of a small amount of fluid enclosed by a bilayer

membrane of thickness ≈ 5 nm. This molecularly thin membrane enables intriguing morpho-

logical dynamics for vesicles, including complex conformations in linear flows [ 23 ], [  33 ], [  34 ],

[ 48 ], non-linear stretching behavior, and heterogeneous relaxation following deformation [ 36 ],

[ 77 ], [  78 ].

Recent advances in experiments, computations, and theory have largely focused on vesicle

dynamics in steady shear flows [ 16 ]. These studies have revealed three dynamical regimes:

tumbling, trembling, and tank-treading. Relevant research in shear flow includes investi-

gation of the hydrodynamic lift of a single vesicle near a wall [ 79 ]–[ 81 ], pair interactions

between two vesicles [ 30 ], [ 82 ], the amplification of thermal fluctuations in the transition

regime between tumbling and tank treading [ 83 ]–[ 85 ], and characterization of tank-treading,

vacillating-breathing (trembling), and tumbling motion with increasing viscosity ratio be-

tween the interior and the exterior of the vesicle [ 20 ]–[ 25 ]. The phase diagrams of the dy-

namical regimes in simple shear flow have been well analyzed over a number of studies, and

the theory agrees well with experiments and simulations [ 22 ], [  26 ]–[ 28 ] Knowledge of single

vesicle dynamics has been essential for interpreting the bulk rheological response for dilute

vesicle suspensions. For instance, it is now known that the tank-treading to tumbling be-

havior of vesicles directly affects the bulk viscosity of the suspension, where tumbling results

in a higher bulk viscosity with the minimum bulk viscosity occurring at the tank-treading

to tumbling transition [ 29 ].
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Compared to the vast body of experiments in shear flows, vesicle dynamics in hyper-

bolic flows even for the canonical case of steady elongational flow are more challenging to

understand. In extensional flow, fluid elements separate exponentially in time [  86 ], and it

is generally not possible to observe a single vesicle in flow for long periods of time in the

absence of feedback controllers. Automation in flow control techniques using sophisticated

feedback algorithms has recently enabled the precise characterization of vesicle dynamics in

elongational flows [ 87 ]–[ 91 ]. In a steady extensional flow, it is known that highly deflated

tubular vesicles undergo a conformation change to a symmetric dumbbell shape [ 30 ]–[ 33 ]

while moderately deflated vesicles transition to an asymmetric dumbbell shape [ 33 ], [ 34 ].

Precise control over the center-of-mass position of single vesicles led to detailed studies of

the transient and steady-state stretching dynamics of membranes [  33 ], and direct observa-

tion of the double-mode relaxation following high deformation [  36 ]. Prior work in unsteady

flows has been limited to a one-time reversal of elongational flow and reported membrane

wrinkling shapes for quasi-spherical vesicles [ 92 ].

Extensional flows are commonly encountered in microfluidic devices that utilise contrac-

tions or expansions, porous media, and other complex channel geometries. Moreover, in vivo

capillaries and complex microfluidic devices that have many bifurcations and sharp direc-

tional changes routinely encounter time-dependent pulsatile flows. The biomedical commu-

nity has created several biomimetic capillary designs that contain several rows of bifurcations

and contractions with small angle zigzags in between, resulting in improved flow control and

lower fluid flow resistance [ 93 ], [  94 ]. In general, elastic particles traversing through these flu-

idic systems experience spatially dependent external flows and will not reach a steady-state

conformation. From this view, there is a need for comprehensive studies on how microscopic

stretching and compression of vesicles in complex, time-dependent oscillatory flows will affect

their shape and bulk rheology.

Recently, the shape dynamics of elastic capsules were studied numerically in large am-

plitude oscillatory extensional (LAOE) flow [ 95 ]. However, the non-equilibrium stretching

and compression dynamics of lipid vesicles in LAOE flows is largely unexplored. Vesicle

dynamics are strongly governed by membrane bending elasticity; therefore, we anticipate

that vesicles will exhibit qualitatively different behavior than capsules in time-dependent
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extensional flow. In this paper, we study the dynamics of single vesicles in LAOE using

a combination of microfluidic experiments and boundary integral (BI) simulations. LAOE

experiments are performed using the Stokes trap [ 87 ]–[ 90 ], which is a new method for control-

ling the center-of-mass position, orientation and trajectories of freely suspended single and

multiple vesicles using only fluid flow. We find that single vesicles experience periodic cycles

of compression and extension in LAOE with membrane dynamics governed by the dimen-

sionless flow strength Capillary number (Ca), reduced volume (measure of vesicle asphericity,

ν) and flow frequency Deborah number (De). Experimental results are compared to BI sim-

ulations without thermal fluctuations, and our results show that BI simulations accurately

capture the dynamics of single quasi-spherical vesicles over a wide range of parameters. In

addition, we identify three distinct dynamical regimes for vesicle dynamics, including the

pulsating, reorienting, and symmetrical regimes, based on the amount of deformation occur-

ring in each half cycle of the LAOE flow. The qualitatively different dynamics observed in

each regime results due to a competition between the flow frequency, flow time scale, and

membrane deformation timescale. We further construct precise phase diagrams characteriz-

ing the transition of vesicle shapes between pulsating, reorienting, symmetrical regimes. We

find that the relationship between average vesicle stress and strain rate is nonlinear, which

is discussed in the context of bulk suspension rheology. Finally, we present results on the

shape dynamics of long tubular vesicles in LAOE which exhibit markedly different behavior

in flow compared to their quasi-spherical analogues. Taken together, our results provide new

insights into the direct observation of membrane dynamics during time-dependent oscilla-

tory flows, which opens new avenues for understanding bulk suspension rheology in unsteady

flows.

3.3 Methods

3.3.1 Vesicle preparation

A mixture of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC, Avanti Polar Lipids) and

0.12 mol% of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sul-

fonyl) (DOPE-Rh, Avanti Polar Lipids) is used to generate giant unilamellar vesicles (GUVs)
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Figure 3.1. Stokes trap for studying vesicle dynamics in large amplitude oscil-
latory extensional (LAOE) flow. (a) Schematic of the experimental setup used
to generate planar extensional flow. Inlet/outlet channels in the microfluidic
device are connected to fluidic reservoirs containing the vesicle suspension and
pressurized by regulators controlled by a custom LabVIEW program, thereby
generating pressure-driven flow in the cross-slot. (b) Schematic of the sinu-
soidal strain rate input function for one full cycle. Inset: schematics showing
the oscillatory extensional flow profile in the microfluidic cross-slot device dur-
ing the first half (0 < t < T/2), and second half period (T/2 < t < T ) of the
cycle.
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with the electroformation process described by [ 96 ]. For electroformation of GUVs, a stock

lipid solution in chloroform is prepared with 25 mg/mL DOPC and 0.04 mg/mL DOPE-Rh

for fluorescent imaging. Next, 10 µL of the lipid solution in chloroform is spread on a con-

ductive indium tin oxide (ITO) coated glass slide (resistance 5 Ω, 25×50×1.1 mm, Delta

Technologies) and dried under vacuum overnight. The pair of ITO slides are sandwiched

together using a 1.5 mm Teflon spacer, forming a chamber with a volume of ≈ 2.4 mL and

coupled to a function generator (Agilent 33220 A). The electroformation chamber is filled

with a mixture of 100 mM sucrose solution (Sigma-Aldrich), and glycerol-water is added to

achieve a total viscosity of 0.030 Pa-s measured using a benchtop viscometer (Brookfield) at

22◦C. An alternating current (AC) electric field of 2 V/mm is then applied at 10 Hz for 120

min at room temperature (22◦C). Under these conditions, DOPC lipid remains in the fluid

phase [ 24 ]. Most of the vesicles prepared by this method are quasi-spherical and unilamellar

with few defects in the size range of 5–25 µm in radius.

3.3.2 Stokes trap for large amplitude oscillatory extension

It is challenging to observe vesicle dynamics in time-dependent extensional flow for long

periods of time while simultaneously imposing precisely controlled flow rates. To achieve this,

we used the Stokes trap [ 87 ], [  89 ] to precisely position the center-of-mass of single vesicles

near the center of a cross-slot microfluidic device for long times using model predictive

control ( Fig. 3.1 a). Briefly, the centroid of a single vesicle is determined in real-time using

image processing and fluorescence microscopy and is communicated to the controller. The

controller determines the optimal flow rates through four-channels of the device to maintain

a fixed vesicle position with desired strain rate. The flow rates are then applied through

four independent pressure regulators (Elveflow). During this process, the device operates at

a net positive pressure so that each of the four ports can act as inlet or outlet. This whole

procedure requires ≈ 30 ms in a single cycle, as previously described [  87 ], [ 97 ], [ 98 ]. In this
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work, a sinusoidal strain rate input is imposed ( Fig. 3.1 b) while simultaneously trapping a

single vesicle such that:

ϵ̇x(t) = −ϵ̇0 sin
(2π

T
t
)

(3.1)

ϵ̇y(t) = ϵ̇0 sin
(2π

T
t
)

(3.2)

where T is the period of the sinusoidal cycle and ϵ̇0 is the maximum strain rate in one cycle.

During the first half-cycle for 0 < t < T/2, the x-axis is the compressional axis and y-axis is

the elongational axis (ϵ̇x(t) < 0, ϵ̇y(t) > 0), and the fluid is delivered from the two horizontal

inlets of the microfluidic device by the pressure regulators (  Fig. 3.1 b). During the second

half-cycle for T/2 < t < T , the direction of flow reverses, and fluid is delivered by the two

vertical ports in the cross-slot device as shown in  Fig. 3.1 b. We note that during vesicle

trapping, the correctional pressure required for controlling the vesicle’s position is small

compared to the magnitude of the base pressure used to generate the oscillatory extensional

flow [ 87 ]. Thus, the strain rate is well defined during the LAOE cycle, which is determined

as a function of the input pressure using particle tracking velocimetry (PTV) as previously

described [ 33 ]. We also determined the characteristic response time for actuating fluid flow

in the microfluidic device in response to a step change in pressure. For an extreme change in

pressure from 0 to 4 psi (strain rate jump from 0 to ∼ 30 s−1), the rise time and settling time

are ∼20 ms and ∼300 ms respectively (Fig. S1). However, the maximum value of pressure

used in our experiments is 0.4 psi, which is continuously varied with small incremental

changes during the LAOE cycle, for which we generally expect much smaller characteristic

response times. Nevertheless, the lowest cycle time T in our experiments is 2 seconds which

is much larger than the maximum characteristic response time for actuating flow in the

device corresponding to a step input pressure.

For all experiments, single vesicles are first trapped and imaged for 10–30 s under zero

flow conditions to allow for equilibration, followed by LAOE flow for at least 2 strain rate

cycles. During the equilibration step, the vesicle reduced volume ν and equivalent radius
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a are determined, as previously described [ 33 ], [ 34 ]. Reduced volume ν is a dimensionless

quantity that measures the amount of osmotic deflation, and is described as:

ν = 3V
√

4π

A3/2 (3.3)

where V and A are the vesicle volume and surface area, respectively. The equivalent radius

a of the vesicle is obtained as a =
√

A/4π. Specifically, ν is a measure of vesicle asphericity

such that ν = 1 represents a perfectly spherical shape. For the experiments in  Sections 3.4.1 ,

 3.4.2 ,  3.4.4 and  3.4.5 , the typical range of reduced volume is 0.75 < ν < 1, while vesicles in

 Section 3.4.6 have ν < 0.75.

The maximum strain rate ϵ̇0 experienced by a vesicle in a half-cycle is non-dimensionalized

to define a capillary number Ca = µoutϵ̇0a
3/κ where µout is the suspending medium viscosity,

a is the equivalent vesicle radius, and κ is the membrane bending modulus. Prior to vesicle

experiments in LAOE flow, we determined the average bending modulus of nearly spherical

vesicles to be κ = (22.3 ± 0.5)kBT using contour fluctuation spectroscopy [ 33 ]t Similarly,

the cycle period is rendered dimensionless by the bending time scale to define the Deborah

number De = µouta
3/κT . Single vesicle experiments are generally performed in the range

10 < Ca < 1000 and 0.1 < De < 100 by adjusting the input pressures and strain rate

cycle periods. Only vesicles near the center plane of the microchannel (with respect to

the z-direction) are considered during experiments. Single vesicle trajectories are analyzed

using a custom MATLAB program that allows for determination of the vesicle deformation

parameter in flow.

3.3.3 Numerical methods

Governing equations and non-dimensionalization

The system is modeled as a droplet surrounded by a two-dimensional incompressible

membrane with a bending resistance. At the length scale of a GUV (a ≈ 10 µm) with a

strain rate at ϵ̇ ≈ 1 s−1 the Reynolds number is Re = ϵ̇ρa2/µ ≈ 10−4, allowing us to model

the inner and outer velocity fields using the Stokes equations. Due to the nature of the
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time-dependent flow, it is also important to check the Womersley number to assess whether

the time-dependent Stokes equations are required. At a flow frequency of ω = 10 s−1, the

Womersley number is α =
√

ωρa2/µ ≈ 0.03. In this work, the flow frequencies are ω < 10

s−1, therefore the time-dependent Stokes equations are not necessary. The Stokes equations

are:

∇ · u = 0, ∇p = µ∇2u. (3.4)

where u is fluid velocity, p is the pressure, and µ is the fluid viscosity (µin for the inner

fluid and µout for the outer fluid). The system is subject to continuity of velocity across the

interface and a traction balance across the phospholipid bilayer. The short timescales and low

deformation rates used in previous studies makes membrane dilatation negligible [ 17 ], [ 37 ].

Vesicles are also known to have negligible shear rigidity as they do not have a cytoskeletal

network or an actin cortex. We therefore use the Helfrich model [ 15 ] for the membrane:

H =
∮ κ

2 (2H)2dA +
∮

σdA. (3.5)

In  Eq. (3.5) , H represents the elastic energy of the vesicle membrane, κ is the membrane

bending modulus, H is the mean curvature, and σ is the surface tension. The surface tension

is a spatially varying Lagrange multiplier that ensures local area conservation. The surface

tension enforces ∇s · u = 0 on the interface, where ∇s = (I − nn) · ∇. We note that

the original Helfrich model includes spontaneous curvature, a parameter to describe a mem-

brane’s curvature preference when the sides of the bilayer are chemically different. Although

biological vesicles may have multiple lipid components or chemical differences between the

inner and outer fluids [ 18 ], [ 67 ], [ 68 ], our experiments focus on simple vesicles with only a

viscosity difference between the inner and outer fluids, prompting a negligible spontaneous

curvature. We further neglect contributions from thermal fluctuations, membrane viscosity,

and bilayer friction [ 19 ], [  38 ].
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The force balance at the membrane surface is:

[[f ]] = [[T · n]] = ft + fb (3.6)

ft = (2Hσn− ∇sσ) (3.7)

fb = κ(4KH − 4H3 − 2∇2
sH)n (3.8)

where [[f ]] is the jump in viscous traction across the interface which can be decomposed

to the bending (fb) and tension (ft) contributions, n is the outward-pointing unit normal

vector, and K is the Gaussian curvature of the interface. The mean curvature H is defined

to be one for the unit sphere.

The vesicle is placed in a time-dependent extensional flow field described by u∞ = ∇u∞·x

and defined as:

∇uuu∞ = ϵ̇0


− sin(2πωt) 0 0

0 sin(2πωt) 0

0 0 0

 (3.9)

where ω is the frequency of the oscillatory flow and ϵ̇0 is the maximum strain rate.

The membrane area (A) is maintained constant by the incompressibility constraint while

the low permeability of the membrane allows us to assume that the volume (V ) of the vesicle

is constant during the timescale of experiments (minutes). Therefore, we non-dimensionalize

distances by the equivalent radius a =
√

A/(4π), time scales by κ/a3µout, velocities by

κ/a2µout, stresses by κ/a3, and surface tensions by κ/a2. We obtain four relevant dimension-

less groups from the non-dimensionalization:

Ca ≡ µoutϵ̇0a
3

κ
, De ≡ ωa3µout

κ

λ ≡ µin

µout

, ν ≡ 3V

4πa3 (3.10)

These parameters were previously described in  Section 3.3.2 and are elaborated upon here.

The base capillary number (Ca) compares the viscous stress to the bending stress and corre-

sponds to the non-dimensionalized, maximum extension rate experienced by the vesicle dur-

ing the flow cycle. De is the flow frequency non-dimensionalized by the bending timescale.
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When De ≫ 1, the fluid flow will have a short cycle time compared to the membrane’s bend-

ing time. The viscosity ratio (λ) is the ratio of inner and outer fluid viscosities. Cellular

systems such as red blood cells (RBCs) commonly have a more viscous inner fluid, and this

parameter can be tuned to more closely model the system of choice. The reduced volume

(ν) is a measure of the asphericity of the vesicle, corresponding to its osmotic deflation. For

example, a reduced volume of ν = 1 corresponds to a perfectly spherical vesicle shape, while

a value of ν = 0.2 would be highly deflated. One can experimentally alter the reduced vol-

ume of a vesicle by introducing an osmotic pressure difference between the inner and outer

membranes, for example by adding sucrose to the outer fluid.

Applying this non-dimensionalization, the external velocity gradient becomes:

∇uuu∞ = Ca


− sin(2πDe t) 0 0

0 sin(2πDe t) 0

0 0 0

 (3.11)

where all parameters are assumed to be non-dimensional from this point forward.

Boundary integral formulation

The Stokes flow assumption enables the use of the boundary integral (Green’s function)

formulation to simulate vesicle shape dynamics. The Stokes equations are recast into a

boundary integral form:

1 + λ

2 uj(x0) = u∞
j (x0) − 1

8π

∫
S

Gij(x,x0)[[fi]](x)dA(x)

+ 1 − λ

8π

∫
S

Tijk(x,x0)ui(x)nk(x)dA(x) (3.12)

where u∞
i is the external velocity field, x0 is the singularity point, and [[fi]] is the jump

in viscous traction across the interface, given in  Eq. (3.8) . The kernels Gij(x,x0) and

Tijk(x,x0) are the Stokeslet (point force) and stresslet (point dipole) solutions to Stokes

flow:

Gij(x,x0) = δij

r
+ x̃ix̃j

r3 (3.13)
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Tijk(x,x0) = −6 x̃ix̃jx̃k

r5 (3.14)

where x̃ = x − x0 and r = |x̃|. Repeated indices are assumed to be summed in the above

equations. These equations are also subject to the membrane incompressibility constraint:

∇s · u = 0 (3.15)

Implementation details

Implementation details for the simulations are similar to prior work [ 48 ]. Here, we re-

iterate how some aspects are handled and highlight a few key differences. We solve the

BEM system with the general minimal residual method (GMRES) in parallel using PETSc

over the message passing interface (MPI). The curvature of the surface is approximated by

a subdivision surface [ 35 ], [ 44 ]. Integrals over the triangular elements are evaluated using

Gaussian quadrature, where singular elements are handled by using the Duffy quadrature

rule for singular kernels [ 99 ]. We use a timestepping procedure that is equivalent to the one

in [ 47 ]. The surface incompressbility constraint is enforced by the Lagrange multiplier σ,

which is locally determined with each timestep. The constant volume constraint is inherently

enforced by the Stokes flow assumption for the inner and outer fluids, but the timestepping

procedure used for the surface positions can still give a slight drift in volume over long times

([ 47 ]). We use a scaling procedure with an arbitrary relaxation parameter of 0.1 that limits

the scaling such that the correction is not immediately applied but rather applied over sev-

eral timesteps to keep the volume consistent. Graphs showing the surface area and volume

error are shown in the supplementary information (Fig. S11). These errors oscillate and the

maximum surface area errors are below 0.1% while the maximum volume errors are below

0.2%.

For meshing the vesicle, we start with an icosahedron and subdivide the mesh into 1280

elements for a quasi-spherical vesicle; 5120 elements for the tubular vesicles. In the following

sections, we analyze the deformation parameter of the vesicles; we found the 1280 element

mesh to be sufficiently accurate capturing this information. A figure comparing the defor-

mation parameter over several flow cycles for the 1280 element mesh and a 9680 element
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mesh is in the supplementary materials (Fig. S12). We tested mesh sizes from 720 elements

to 9680 elements and found no significant difference in the deformation parameter over the

flow cycles between them. However, the 1280 element mesh used does not accurately resolve

the wrinkling dynamics. Our implementation does not take into account thermal fluctua-

tions, making it unlikely the simulations would accurately predict the wrinkling dynamics

even with smaller element sizes. Therefore, we chose to use lower element meshes to reduce

computation time.

To form the initial vesicle shape for our simulations, we use a scaling transformation

on the subdivided icosahedron to deform the mesh into a prolate spheroid with the desired

reduced volume ν, followed by relaxing the mesh to its equilibrium (no flow) configuration.

In this way, the vesicle has a prolate spheroid-like shape at the start of any cycle. It is

possible to start with an oblate spheroid or any arbitrary ellipsoid-like shape, but it has

been shown that the global minimum energy state for a vesicle with reduced volume greater

than 0.652 is of the prolate shape family[ 19 ]. After forming the initial vesicle shape, vesicle

dynamics are simulated in oscillatory flow with a timestep of 10−3 strain units.

The majority of the analysis in this study is focused on vesicle behavior that has reached

a steady limit cycle in time-dependent flow, such that the dynamics are the same regardless

of the number of additional strain rate cycles. The startup dynamics have been simulated

but are not elaborated on in this paper. We simulate vesicles of reduced volumes between

0.60 < ν < 0.90 and viscosity ratios λ = 0.1, 1.0, and 10 for flows with capillary numbers

1 < Ca < 80 and Deborah numbers 1 < De < 10. Significantly higher capillary numbers

(Ca ⪆ 200) become numerically intractable as the timestep needed for convergence in our

implementation becomes prohibitively small. Higher and lower De can be simulated, but the

current range of values is sufficient for comparison to the majority of experimental conditions

for GUVs in microfluidic devices.

We define the parameter:

Cax(t) ≡ −Ca sin(2πDe · t) (3.16)

61



which represents the time-dependent capillary number in the x-direction. This will be the

measure used for the instantaneous strain rate. We also define a deformation parameter:

D ≡ lx − ly
lx + ly

(3.17)

where lx and ly are the x- and y-axis lengths of the vesicle respectively, or the length of

the axes of the equivalent ellipsoid. In the experiments, lx and ly are computed from the

vesicle microscopy movies using a custom image processing algorithm as described in [ 98 ]

and [  33 ]. For the simulations, the lengths of the vesicle in the x- and y-axes are computed.

The deformation parameter (D) provides a measure of vesicle shape distortion. For D values

near zero, the vesicle shape projected in the x-y plane will be circular. Positive values of

D ≈ 0.50 correspond to prolate spheroid like shapes along the x-axis, while negative values

correspond to the same shapes along the y-axis.

3.4 Results and Discussion

3.4.1 Dynamical regimes

Experiments were performed in the range of approximately 10 < Ca < 1000 and 0.5 <

De < 100, whereas the majority of the simulations are in the range of 1 < Ca < 40 and

1 < De < 10. Simulations were performed for several vesicles matching the conditions in

the experiments, as discussed in the following section ( Fig. 3.2 ,  Fig. 3.3 and  Fig. 3.4 ). It is

possible to perform additional simulations at Ca ≈ 100, but current results suggest that the

vesicle dynamics do not significantly change at higher Ca for quasi-spherical vesicles.

We observe three dynamical regimes of vesicle dynamics based on the ratio between Cap-

illary number and Deborah number. We refer to these regimes as symmetrical, reorienting,

and pulsating. The transitions between these regimes are continuous — in other words, there

is no bifurcation between the regimes in the sense that the dynamics change suddenly. We

define the regimes based on the deformation characteristics of vesicles in each case: sym-

metrical when the vesicle deforms to the same length in both orientations, pulsating when

the vesicle’s major axis stays along the same orientation, reorienting for the region between
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symmetrical and pulsating where the vesicle major axis changes orientation but does not

deform to the same maximum length in both directions. Vesicles in all three regimes can ex-

perience significant non-linear stress responses. Snapshots of vesicle shapes from simulations

and experiments for each of these regimes over a full strain rate cycle are shown in  Fig. 3.5 

and  Fig. 3.6  .

We quantitatively compare the simulations and experiments by plotting the deformation

parameter D (defined in  Eq. (3.17) ) and instantaneous strain rate Cax (defined in  Eq. (3.16) )

as a function of time, as shown in  Figs. 3.2 and  3.3 . Experimental trajectories are generally

limited to 2–4 strain rate cycles due to the photobleaching of the vesicle membrane during

fluorescence imaging experiments. Observing vesicle deformation over more strain rate cycles

is experimentally feasible, however, we generally opted to observe dynamics under different

experimental parameters (Ca, De) for the same vesicle in a series of subsequent experiments.

For the numerical data, we simulated vesicle dynamics over at least 10 strain rate cycles.

Symmetrical regime:

Starting with the symmetrical regimes results, we find the symmetrical regime occurs

under flow conditions where the vesicle deformation timescale is shorter or exactly equal to

half of a strain rate cycle. Based on our simulations, this occurs approximately when Ca ≥

3.33De for a vesicle with a reduced volume ν = 0.80. Our experiments and simulations show

that vesicle dynamics in the symmetrical regime are described by two common characteristics

( Fig. 3.4 ). First, the vesicle reaches approximately the same maximum length twice during

one strain rate cycle, regardless of Ca. The observation of a maximum length is reasonable for

quasi-spherical vesicles, as it has been shown that vesicles with ν > 0.75 have a stable steady-

state shape at infinite Ca, regardless of viscosity ratio [ 31 ]. Second, vesicle membranes exhibit

transient wrinkling when vesicles are exposed to the compressional cycle of the oscillatory

extensional flow. The transient wrinkling behavior is examined later in this section. These

features are illustrated in  Fig. 3.4 , where a characteristic time series of images of vesicle

shape in LAOE is qualitatively compared to the equivalent numerical simulation. In general,

vesicle shapes determined from experiments are in good agreement with those determined
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Figure 3.2. Transient deformation parameter D for vesicle dynamics in time-
dependent LAOE from experiments and simulations. All vesicles have a vis-
cosity ratio of λ = 1.0. The ϵ̇/Ca line is the instantaneous strain rate of the
external flow along the x-axis. A negative ϵ̇/Ca value is compression along the
x-axis.
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Figure 3.3. Lissajous-type curves of the deformation parameter D versus the
dimensionless instantaneous strain rate. All vesicles have a viscosity ratio of
λ = 1.0. Black data points are experimental data; purple data points show
numerical data. The oscillatory strain rate cycle is separated into four parts
that have been noted with different markers, as shown in the legend in the
bottom right hand corner.
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t = 12.066s t = 16.000s t = 18.466s t = 20.666s t = 22.734s

10.93T 11.25T 11.46T 11.64T 11.81T

Figure 3.4. Comparison of the experimental and simulation vesicle shapes
in the symmetrical regime over one flow cycle at the same conditions of Ca =
10.9, De = 3.0, ν = 0.88, λ = 1.00. The times in the figure are in seconds
for the experimental video. Shapes from the simulations at the same non-
dimensional cycle times are shown below. T is the non-dimensional period,
defined as T = 1/De.

from numerical simulations. Turning to the deformation parameter plots ( Fig. 3.2 and

 Fig. 3.3 ), we see the simulations and experiments agree well at the majority of the tested

parameters. Some of the experimental datasets show fluctuations in the deformation over the

strain rate cycles and disagreement between the simulations on the maximum deformation.

These discrepancies likely occur due to challenges in imaging a three-dimensional object in

a two-dimensional plane and because the experiments are limited to a few strain rate cycles.

Nevertheless, we generally observe good agreement between simulations and experiments in

terms of the deformation parameter in transient flows.

Transient wrinkling dynamics were first reported by [  92 ] for a single cycle of suddenly

reversed extensional flow and subsequently elaborated upon by [ 100 ]. Wrinkling behavior

is caused by a negative surface tension created during vesicle compression. Moreover, a

critical compression rate exists below which thermal fluctuations dominate the observed

wrinkling. In our work, we study vesicle dynamics in an extensional flow with smoothly

varying sinusoidal strain rate dependence, rather than an abrupt step-function reversal of

compressional/extensional axes. We observe qualitatively the same membrane wrinkling
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features as those reported in prior work. In the experiments, we observe some wrinkling in the

majority of the videos; it is unclear if this is from thermal fluctuations or the negative surface

tension. In the simulations, we only observe significant wrinkling in the symmetrical regime.

Our simulations do not take into account thermal fluctuations, therefore we hypothesize

that the critical wrinkling strain rate required for a given flow frequency is only reached in

the symmetrical regime. Additional experimental snapshots of vesicles showing wrinkling

dynamics are included in the supplementary materials (Fig. S2, Fig. S3, Fig. S4 and Fig.

S5).

Reorienting regime:

At lower Ca/De ratios (when Ca ≈ 2De for ν = 0.80), the vesicle’s major axis for orient

along the x- and y-axes during the flow cycle, but the stretching along these axes will no

longer be equal. The creates a deformation parameter that is negative during part of the

cycle, but whose mean value is non-zero ( Fig. 3.2d ). We notes that prior work on droplets

in oscillatory extensional flow do not observe this behavior, as only symmetrical deforma-

tion (i.e., equal deformation in the x- and y- orientations) has been reported regardless of

flow strength and oscillatory frequency [ 101 ], [  102 ] Single polymers in LAOE also deform

symmetrically between the two half cycles for the range of Weissenberg and Deborah num-

bers studied in prior work [ 98 ]. The phenomenon of asymmetric stretching of vesicles along

the two axes arises due to the enclosed membrane for fluid-filled vesicles. In particular, we

posit that the asymmetrical deformation occurs because the energetically preferred shape

for quasi-spherical vesicles at equilibrium is a prolate dumbbell [ 19 ]. By deforming in this

asymmetrical manner, the vesicle shape deviates less from the equilibrium shape over the

strain rate cycle than it would if it deformed symmetrically.

Pulsating regime:

At even lower Ca/De, the vesicle no longer reorients and simply pulsates along one axis

during LAOE. We refer to this dynamical regime as the pulsating regime, which approxi-

mately occurs when Ca ≤ 2De for ν = 0.80. Note that the strain in the pulsating regime is
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not necessarily infinitesimal. As shown in  Fig. 3.2g , the deformation parameter curve illus-

trates that vesicles are generally oriented along the x-axis and can deform significantly in this

regime. It is possible to probe the small amplitude oscillatory extension regime by keeping

the De constant and reducing the Ca. In the small amplitude regime, vesicles do not deform

appreciably, and the Lissajous curve approaches a constant value, thereby informing on the

linear viscoelastic rheology of vesicle suspensions. Similar behavior occurs when increasing

the De and keeping Ca constant at small values. In this case, the membrane does not have

appreciable time to reorient during the time at which the strain rate changes.

3.4.2 Quasi-spherical initial shape and orientation

The simulations discussed up to this point (including results in  Fig. 3.5 and  Fig. 3.2 )

were performed using a prolate-like initial shape, because it is the global equilibrium shape

for reduced volumes ν ≥ 0.652 [  19 ]. These results suggest that the unequal stretching

observed in the pulsating and reorienting regimes occurs during the steady limit cycle, for

this particular initial shape. However, there are other local minimum energy shapes for

vesicles, such as the oblate shape family. To determine whether the pulsating and reorienting

regimes are possible with a different initial condition, we performed simulations using an

oblate shape such that the initial deformation parameter was set to zero. We examined this

initial condition because vesicle shape is isotropic in the x-y plane, where an image obtained

through optical microscopy would show a circle. The oblate initial condition simulations test

if the anisotropic deformations will still occur if the vesicle starts with a shape isotropic in

the x-y plane rather than an initially anisotropic shape. Simulation results for the oblate

initial condition are plotted in  Fig. 3.7 , which shows that vesicle dynamics during the steady

limit cycle for the oblate initial condition ( Fig. 3.7a  ) are the same as that observed from

the prolate-like initial condition ( Fig. 3.7b ). We repeated these simulations at several other

capillary numbers and Deborah numbers, observing no change in the dynamics.

We additionally examined different starting orientations of the prolate initial shape.

Aligning the prolate vesicle with the y-axis instead of the x-axis does not change the dy-

namics significantly. The symmetrical regime remains unchanged, while the pulsating and
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Figure 3.5. Snapshots
of vesicle shapes from sim-
ulations over a flow cy-
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Figure 3.7. Lissajous type deformation parameter curves from an oblate
shape initial condition and a prolate shape initial condition. Top right legend
indicates color coding for the strain rate cycle. The black circle marks the
deformation parameter of the initial shape.
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reorienting regimes preferentially stretch along the y-axis instead of the x-axis. The observed

dynamics change when aligning the prolate vesicle along the z-axis — i.e., orthogonal to the

flow plane. At lower ratios of Ca/De, the vesicle deforms symmetrically while maintaining

the major axis orientation along the z-axis. At higher ratios of Ca/De, the dynamics become

the same as those observed in the symmetrical regime with other starting orientations. We

also simulated vesicles at other out-of-plane orientations and found they can maintain their

orientation at low ratios of Ca/De over 15 flow cycles. Simulation videos files of vesicle

dynamics starting from the z-axis orientation and angled at 70 degrees between the x- and

z-axes are included in the supplementary materials (movies 8–10).

Experimentally, we have not observed any of the dynamics suggested by the simulations

with alternative starting orientations. It is unclear if these orientations are unstable to

perturbation or if the experimental methods limit the possible orientations of the vesicles.

One would need to use a microscopy method that can obtain z-axis information to better

understand the effect of starting orientation.

3.4.3 LAOE analysis considerations

In regards to application of LAOE for vesicle analysis, we note that it may be possible to

extract some material properties of the vesicle by LAOE analysis. One could fit the deforma-

tion parameter over time of an experimental run to that of a simulation to approximate an

unknown parameter, such as the reduced volume or capillary number. There are significant

error margins when approximating experimental parameters, such as reduced volume, so

confirmation with LAOE could be beneficial. We have not tested the feasibility or accuracy

of such a process in this study however.

3.4.4 Quasi-spherical phase diagrams

By comparing the deformation parameter results for each simulation, we can plot a phase

diagram of different dynamical regimes observed during oscillatory flows. Which regime a

vesicle experiences can be quantitatively determined by assessing the minimum and maxi-

mum deformation parameter over a cycle. If both the minimum and maximum deformation
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Figure 3.8. Phase diagrams for the low to medium to high deformation
regimes for vesicles of reduced volume ν = 0.80 and ν = 0.90. Lines in
the diagrams are from the semi-analytical theory presented near the end of

 Section 3.4.1 . Due to uncertainty in determining the Do value, a 5% error has
been included on the lines.

parameter are positive, the vesicle dynamics are classified as the pulsating regime, reflecting

that the vesicle does not change orientation. If the vesicle has a positive maximum D and a

negative minimum D, we check if the differences in magnitudes are within a threshold value

of 0.01. Should they be within 0.01 of each other, the vesicle is in the symmetrical regime,

since the vesicle reaches the same maximum length twice a cycle. This threshold value was

chosen heuristically to reflect the discretization accuracy. If the magnitudes are not within

this threshold value, vesicle dynamics are classified as the reorienting regime. Results from

this analysis is plotted in  Fig. 3.8  

The phase boundaries appear to be mostly linear, suggesting that the dynamics result

from a simple interaction between the flow frequency and the strain rate, Ca/De = ϵ̇0/ω.

Here, we derive the phase boundaries in the limit of a quasispherical vesicle [ 22 ]. For small

excess area (∆ = 4π(ν−2/3 − 1) ≪ 1), the vesicle shape is characterized by a perturbation
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series in terms of spherical harmonics [ 22 ]. In a planar extensional flow, there are only two

modes excited for the leading order correction to the vesicle shape. When one solves for the

deformation parameter as defined in  Eq. (3.17)  , one obtains

D(t) = (L∞ − 1)1 − 2
(

1 +
(1 + Ao

1 − Ao

)
exp

(
60

π(32 + 23λ)
Ca
De

1
L∞ − 1 [cos(2πDe t) − 1]

))−1
 ,

(3.18)

where parameters L∞ = 1+
√

15/8
(
ν−2/3 − 1

)1/2
and Ao = (ν−1/3lmax

x /2−1)/(L∞ −1); lmax
x

is the maximum x-axis length of the vesicle. For the detailed derivation of these results, one

can refer to the supporting information.

Following the definitions of the phase boundaries discussed previously, we can derive the

two phase boundaries in the limit of A0 ≪ 1, i.e. ln
(

1+Ao

1−Ao

)
≈ 1

(L∞−1) ln
(

1+Do

1−Do

)
,

Ca
De = π(32 + 23λ)

120 log
(1 + Do

1 − Do

)
for pulsating/reorienting phases, (3.19)

Ca
De = π(32 + 23λ)

60 log
(1 + Do

1 − Do

)
for reorienting/symmetrical phases (3.20)

In the above equations, D0 is the maximum deformation parameter during the LAOE cycle.

Note that the value of Do is determined by our numerical runs at the highest Ca and De

numbers. Based on the quasispherical vesicle theory, the deformation phase boundaries

depend on the viscosity ratio, where the factor (23λ + 32)−1 is related to the relaxation

time of the quasi-spherical vesicle [ 22 ].  Fig. 3.8a  shows the phase boundaries are accurately

calculated by using  Eq. (3.19) and  Eq. (3.20) when the reduced volume is ν = 0.8. Increasing

ν from 0.80 to 0.90 shifts the phase boundaries downwards, but maintains a similar linear

relation (  Fig. 3.8b ). We also simulated viscosity ratio λ = 10 and found that higher viscosity

ratios shift the boundaries to higher capillary numbers. We include the dynamics evolution

of lx and ly (simulations vs. analytical solutions) and λ = 10 results in the supplementary

materials for brevity.
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Figure 3.9. Normal stress differences versus time for simulations in the pul-
sating, reorienting, and symmetrical regimes. Data over two strain rate cycles
is plotted. The ϵ̇/Ca dotted line is the strain rate of the external flow; it is
used to show the directionality of the flow. Parameters used are included in
the figure legends.
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3.4.5 Stress response and dilute suspension rheology

For dilute vesicle suspensions where the macroscopic length scale is large in comparison

to the size of the vesicles, the extra stress (the bulk stress contribution from the particles) is

the product of the number density of particles and the particle stresslet: σP
ij = n S̃P

ij . Using

the boundary integral formulation, we calculate the particle stresslet [ 43 ]:

S̃P
ij =

∫
D

1
2([[fi]]xj + [[fj]]xi) dS −

∫
D

(1 − λ)µout(vinj + vjnj) dS (3.21)

where [[f ]] is the surface traction, λ is the viscosity ratio, µout is the outer viscosity, v is

the velocity, and n is the normal vector. We define the dimensionless particle coefficient of

stresslet as:

Sij =
S̃P

ij

ϵ̇µoutVp

(3.22)

where Vp is the vesicle volume and ϵ̇ is the strain rate. Similarly the normal stress differences

are defined as:

N1 = Sxx − Syy (3.23)

N2 = Syy − Szz (3.24)

Comparing the normal stress differences to the strain rate, we can derive the rheological

characteristics of a dilute vesicle suspension, such as the effective viscosity and bulk normal

stresses [ 103 ]. For extensional flow rheology, a key quantity of interest is the extensional

viscosity of a solution. Extensional viscosity is often characterized using a quantity known

as a Trouton ratio (ratio of extensional to shear viscosity), which for a planar extensional

flow is a multiple of N1. For a planar flow, the extensional viscosity is

ηE = σ11 − σ22

ϵ̇
. (3.25)
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The planar Trouton ratio is

ηE

η
= 4 + ϕ ∗ N1, (3.26)

where ϕ is the volume fraction of vesicles in the suspensions, and N1 is the first normal stress

difference. Our simulations have focused on rather large deformations of the vesicle shape,

therefore the stress response analysis will reflect the non-linear viscoelasticity.

We examine the stress response for a vesicle that starts off oriented along the x-axis.

To link the single vesicle stress response to the expected bulk response for a suspension of

randomly oriented vesicles, one needs to average over all possible orientations. Therefore the

following results would instead be indicative of a suspension of vesicles all initially oriented

along the x-axis. However in the symmetrical regime, all of the starting orientations we tested

lead to the same dynamics for the limit cycle behavior. It is possible that the bulk stress

response in the symmetrical regime at the limit cycle does not depend on starting orientation.

In the pulsating and reorienting regimes on the other hand, the stable orientations depend

on several parameters that we have not examined in detail in this study; as reported in

 Section 3.4.2 .

Using the definitions of the particle stresslet and normal stress differences, we determine

the vesicle stress as a function of time in extensional flow. In  Fig. 3.9 , we show the stress

response over two cycles for three sets of parameters; one from each of the three dynamical

regimes discussed before. A linearly viscoelastic material will show purely sinusoidal normal

stress differences for this type of plot, as there is a simple linear relation between the strain

rate and the stress. On the other hand, for non-linear viscoelasticity, the normal stress

differences will display more complex behaviors.

 Fig. 3.9 shows that vesicle dynamics in the three regimes (symmetrical, reorienting, and

pulsating) have non-linear characteristics. To analyze these stress responses, we re-plot the

data from  Fig. 3.9 into a Lissajous-type form with the instantaneous strain rate (Cax) on the

x-axis and the stress response on the y-axis ( Fig. 3.10 ). For this type of plot, a purely viscous

material would display a straight line, whereas a purely elastic material would produce an

elliptical curve. For example, the first and second normal stress difference for Newtonian
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flow around a rigid sphere corresponds to the lines: N1 = 10 ·Cax/Ca and N2 = −5 ·Cax/Ca.

Here, we focus on N1 because it is related to the extensional viscosity of the solution (Trouton

ratio). We also discuss the N2 stress differences for completeness.

In the symmetrical regime ( Fig. 3.10a  ), we observe that N1 is symmetric across the

origin and that the lines for increasing and decreasing strain rate are nearly the same for

−2 < Cax < 2. On the other hand, N2 differs significantly depending on the directionality

of the flow. The N1 curve is mostly linear in the region −2 < Cax < 2 and is approximately

equal to zero when the strain rate is zero, suggesting that the vesicle contributes a purely

viscous response in that region. We further examine this region in more detail by comparing

the vesicle deformation to the stress response. From the simulation video and the Lissajous-

type deformation parameter curve ( Fig. 3.3 ), we know that the vesicle retains a prolate

spheroid like shape and only changes marginally for the −2 < Cax < 2 region. The relatively

small amount of deformation that occurs in the −2 < Cax < 2 region suggests that the vesicle

acts like a rigid particle there, explaining the close to linear stress response for N1 in the

region. In the other strain rate regions, the stress differences shift rapidly in accordance to

the vesicle’s large deformations and reorientation.

In the reorienting and pulsating regimes (  Figs. 3.10b and  3.10c ), the N1 curves are no

longer symmetric across the origin, and the stress responses for increasing and decreasing

strain rate are distinct. The maximum N1 response is larger in magnitude than the minimum

for both regimes; this is likely due to the unequal amounts of deformation between the two

strain rate period halves ( Fig. 3.3 ). For this analysis, qualitative differences between the

shape of the reorienting and pulsating regime curves correspond to the extent of asymmetry

in the N1 response. Moreover, we observe vesicles in the pulsating regime can have a non-zero

normal stress difference when the time-dependent strain rate is zero, as seen in  Fig. 3.10c .

For a more quantitative analysis, we decomposed the stress responses into a Fourier

series. A similar decomposition was performed by [ 104 ] to analytically examine the stress

over vesicles over all orientations in small amplitude oscillatory shear with a background

constant shear rate under the quasi-spherical assumption. This decomposition is commonly

applied to large amplitude oscillatory shear (LAOS) experiments and is known as Fourier

transform (FT) rheology. FT rheology is commonly performed using oscillatory shear flows
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Figure 3.10. Lissajous-type normal stress difference versus strain rate (Cax)
curves for simulations in the pulsating, reorienting, and symmetrical regimes.
The strain rate cycle is separated into four periods demarcated by the line
formatting. Parameters used are included in the figure legends.
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on polymeric liquids to probe the shear stress response in the non-linear regime [ 105 ], [ 106 ].

The computation is straightforward and relies on taking the Fourier transform of the N1 or

N2 stress difference:

f(k) =
∫ ∞

−∞
N1,2(t)e−2πitk dt, (3.27)

In this way, the periodic stress signal is transformed into frequency space. Because the

external flow field is sinusoidal, the strain rate (ϵ̇) and strain (ϵ) are proportional to sine and

cosine functions. Therefore, the Fourier transformed data provide a description of how the

stress depends on different orders of the strain and strain rate. If the stress response was

purely linear order, the Fourier transformation would show a single peak at the first mode.

A non-linear stress response would have additional peaks at higher modes.

The Fourier decompositions for both N1 and N2 are shown in  Fig. 3.11 , where it is

clear that all three regimes show higher order behavior. For all regimes, we observe the

expected behavior of the linear order mode being the highest amplitude with the higher

order modes decreasing monotonically for N1. On the other hand, the highest amplitude

mode for N2 is not the linear order mode, with the highest generally being the second or

third mode. Comparing the N1 decompositions between the dynamical regimes, we observe

that the symmetrical regime does not have even order modes, whereas the reorienting and

pulsating regimes have even higher order modes. This change in FT rheology is consistent

with the phase boundary defined in  Section 3.4.1 , and this transition can be used instead of

the deformation parameter analysis to demarcate the phase boundary.

In large amplitude oscillatory shear (LAOS), the typical macroscopic stress response

shows that the stress is an odd function of the direction of shearing[  105 ]. Such a restriction

is not necessarily expected in an extensional flow, but would be related to whether the

microstructure of the fluid stretches symmetrically during these flows. In the symmetrical

regime, both the vesicle stress response and deformation are time symmetric, leading to only

odd order Fourier modes. The time symmetry does not hold for the reorienting or pulsating

regimes, allowing for even order modes. Based on the currently available results, we do not

expect droplets to have even order Fourier modes in LAOE, regardless of flow rate or flow

frequency [ 102 ]. Broadly speaking, our results show that membrane-bound vesicles are an
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Figure 3.11. Fourier decompositions of the stress responses for indicative
parameter sets in each of the dynamical regimes.

interesting example of how anisotropic microstructural deformations can lead to complex

rheology.
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(a) Pulsating regime, T= 4 s

(b) Pulsating regime, T= 8 s

(c) Symmetric full reorientation, T= 15 s

Figure 3.12. Dynamics of a tubular vesicle with reduced volume ν =
0.64±0.02 in LAOE. (a) Snapshots showing pulsating dynamics of a vesicle over
one sinusoidal strain rate input cycle with time period T = 4 s at Ca = 21.3
and De = 17.7. (b) Snapshots showing pulsating dynamics with wrinkles of
a vesicle over one sinusoidal strain rate input cycle with time period T = 8
s at Ca = 21.3 and De = 8.9. (c) Snapshots showing change in 2D shape
of a vesicle over one flow cycle with time period T = 15 s at Ca = 21.3 and
De = 4.7. Scale bar is 20 µm. False coloring is applied to the grayscale images
for resolution enhancement.
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Figure 3.13. Experimental and simulation single vesicle Lissajous curves and
deformation plots for ν = 0.64.

3.4.6 Transient dynamics of tubular vesicles in large amplitude oscillatory ex-
tension

We also investigated the transient dynamics of tubular vesicles in large amplitude oscilla-

tory extension ( Fig. 3.12 ). In general, we find that tubular vesicles undergo wrinkling/buck-

ling instabilities during the compression phase of the flow cycle similar to quasi-spherical

vesicles. However, we occasionally observe buckling instabilities that induce unexpected

shape changes. In these situations, the vesicle’s initial, tubular shape is not recovered at the

end of the flow cycle.

 Fig. 3.12  a shows experimental snapshots of a tubular vesicle with reduced volume ν =

0.64±0.02 exposed to a sinusoidal strain rate at Ca = 21.3 and De = 17.7. In this situation,

the vesicle exhibits pulsating motion along the x-axis with buckles during the compressional
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part of the flow cycle. The vesicle’s starting, tubular shape is recovered at the end of the

LAOE cycle. To further demonstrate this behavior, we construct single vesicle Lissajous

curves (  Fig. 3.13 (d)) defined as plot of deformation parameter as a function of Ca, and

deformation parameter as a function of time ( Fig. 3.13 (a)). These plots show the vesicle

reaches the same value of deformation parameter D ≈ 0.7 at the end of each of the three

repeated flow cycles, implying that the vesicle conformation is fully recovered after defor-

mation. There is decent agreement in the qualitative dynamics between the simulations and

experiments in this region, but the simulated deformation parameters appear to be lower

than the ones measures experimentally.

When the same vesicle is exposed to a flow cycle at a lower frequency (De = 8.9), the

membrane has more time to deform in response to the flow. Here, the vesicle undergoes

pulsating motion with wrinkles ( Fig. 3.12 b) and we observe appreciable deformation along

y axis in both the simulations and experiments, as shown in  Fig. 3.13 b,e. Surprisingly, the

experimental results show the vesicle deformation parameter reducing with each subsequent

LAOE cycle. The deformation at the end of first cycle is D ≈ 0.7 and it decreases to

D ≈ 0.6 at the end of second cycle, and further to D ≈ 0.5 at the end of third cycle.

Experimentally, it seems that the vesicle conformation changes over each LAOE cycle while

our simulations predict no change over the strain rate cycles. By the end of third repeated

cycle, we experimentally observe that the 2D shape of vesicle appears to be more spheroidal

than tubular. Interestingly, the vesicle did not recover its original tubular shape even when

relaxed for ≈ 2 min. It is noteworthy that we did not observe any reduction in deformation

parameter at the higher flow frequency discussed previously (De = 17.7). These observations

suggest that for a given Ca, there appears to be a critical De below which the change occurs.

Finally, the same vesicle is exposed to LAOE flow cycle with an even lower frequency

(De = 4.7). We observe that the vesicle undergoes full reorientation from the x axis to y

axis, undergoes a wrinkling instability during compression and the initial spheroidal shape

changes to a more spherical shape at the end of the first periodic cycle ( Fig. 3.12 c). The

deformation behavior seen experimentally during the second repeated cycle is symmetric

and follows similar dynamics as those observed for quasi-spherical vesicles. This behavior

is more apparent in  Fig. 3.13 c,f which shows a slight reduction in deformation at the end
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of first cycle. We observe a large difference in deformation between the simulations and

experiments at these parameters. Where the simulations predict the vesicle stretching to

D ≈ 0.63, the experiments only reach D ≈ 0.25. Additionally, the simulations show that the

vesicle does not deform symmetrically at these parameters, reaching D ≈ −0.5 and D ≈ 0.6.

The experiments were performed sequentially from the higher to lower De on the same vesicle

in the experiments, and it seems that the gradual change in vesicle deformation carried over

from the previous experiments.

In summary, the experimental data in  Fig. 3.12 and  Fig. 3.13 shows that the maximum

deformation of tubular vesicles may decrease in repeated LAOE cycles and the initial tubu-

lar shape may not be recovered. In contrast, the quasi-spherical vesicles always recover a

prolate shape following repeated LAOE deformation cycles. We conjecture that the observa-

tion of shape transition from prolate tubular to oblate spheroid during LAOE deformation

in  Fig. 3.12 b,c can be explained in the context of the area-difference elasticity model [ 19 ].

Briefly, the negative membrane tension on the vesicle membrane during the compressional

phase of LAOE flow leads to a decrease in area per lipid which reduces the preferred mono-

layer area difference [  107 ], [ 108 ]. The decrease in monolayer area difference triggers the shape

transition from a prolate tubular shape to an oblate spheroid in accordance with the ADE

model [ 19 ], [ 109 ]. This hypothesis is consistent with prior observations where the prolate to

oblate transition was triggered by chemical modification of the ambient environment of vesi-

cles [  110 ]. Resolving what exactly is occurring during compressional flow requires additional

experiments, likely with 3D confocal microscopy to obtain the full three dimensional vesicle

shape.

Additional experimental data on dynamics of highly deflated vesicles (ν = 0.35) is in-

cluded in the Supplementary Information (Fig. S6 and Fig. S7).

In steady extensional flow with De = 0, the critical capillary number required to trigger

dumbbell shape transition is a function of reduced volume and the comprehensive phase

diagram in Ca − ν space has been reported in an earlier work [ 33 ]. The dumbbell-like shape

has also been observed in simulations of a reduced volume ν = 0.60 vesicle in a steady shear

flow [ 111 ].  Fig. 3.14 qualitatively demonstrates how oscillatory extensional flow alters these

shape instabilities. At De = 1.2, we observe that the critical capillary number Ca required to
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Figure 3.14. Asymmetric dumbbell formation in a vesicle with reduced
volume ν = 0.69 exposed to LAOE flow at Ca = 52.5 and De = 1.2. Scale bar
is 10 µm.

induce asymmetric dumbbell is much higher compared to steady extensional flow at De = 0.

For instance, the critical Ca required to generate asymmetric dumbbell in steady extension

for ν = 0.69 is ≈ 5.3 [  33 ]. However, in LAOE flow at De = 1.2, the transition to dumbbell

shape occurs at Ca = 52.5 which is approximately ten times higher than the critical Ca for

steady flow. This observation can be rationalized by considering the competition between

flow cycle time T and inverse of the predicted growth rate of asymmetric instability from

linear stability analysis [ 32 ]. Briefly, the presence of flow oscillations (De > 0) prevents any

instability formation which requires a time scale larger than cycle time T . Thus, a large Ca is

needed to reduce the time scale of instability sufficiently to observe the dumbbell formation

within the flow cycle time T . While it is possible to explore the phase diagram describing

conformation change to asymmetric/symmetric dumbbell on Ca − De space for the entire

range of reduced volumes using the Stokes trap, the parameter space is vast and it remains

a ripe area for future numerical simulations.

3.5 Conclusions

In this work, we examined the dynamics of vesicles in large amplitude oscillatory exten-

sional (LAOE) flow using both experiments and numerical simulations. The experiments

were carried out using the Stokes trap experimental technique while the simulations were

done with the boundary element method. For quasi-spherical vesicles, the simulations are

found to capture the transient wrinkling dynamics as well as the overall vesicle shapes from
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experiments. We have identified three dynamical regimes based on their deformation char-

acteristics and named them the symmetrical, reorienting, and pulsating regimes. Based on

these results, we generated a phase diagram in capillary number and Deborah number space

for the dynamical regimes; our data suggest that the phase boundaries are linear. The

unique deformation observed in the pulsating and reorienting regimes also has interesting

effects on the stress response in that the time symmetry of the stress does not hold. Addi-

tional analysis of the stress response and confirmation by experimental studies is required

for a better idea of the dynamics. Finally, we presented results on highly deflated tubular

vesicles which shows that lower reduced volume vesicles tend to undergo a shape change

following repeated LAOE deformation. From a broad perspective, we have shown through

experiments and simulations that the vesicle system shows interesting dynamics in exten-

sional oscillatory flows. We have also shown how microstructural changes from extensional

and compression of a cell-like suspension can affect the overall rheology. Similar dynamics

might be observed in other cell-like systems such as red blood cells or single-celled organisms,

prompting additional study into time dependent flows for these systems.
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4. SURFACE DISCRETIZATION CONSIDERATIONS FOR
THE BOUNDARY ELEMENT METHOD APPLIED TO
THREE DIMENSIONAL ELLIPSOIDAL PARTICLES IN

STOKES FLOW
Note: Reproduced from C. Lin, S. Wang, V. Narsimhan, et al., “Surface discretization consid-
erations for the boundary-element method applied to three-dimensional ellipsoidal particles
in stokes flow,” Physics of Fluids, vol. 33, no. 11, p. 113 106, 2021, with the permission of
AIP Publishing [ 112 ].

4.1 Summary

The boundary-element method has often been used for simulating particle motion in

Stokes flow, yet there is a scarcity of quantitative studies examining local errors induced by

meshing highly elongated particles. In this paper, we study the eigenvalues and eigenfunc-

tions of the double-layer operator for an ellipsoid in an external linear or quadratic flow.

We examine the local and global errors induced by changing the interpolation order of the

geometry (flat or curved triangular elements) and the interpolation order of the double-layer

density (piecewise-constant or piecewise-linear over each element). Our results show that

local errors can be quite large even when the global errors are small, prompting us to ex-

amine the distribution of local errors for each parameterization. Interestingly, we find that

increasing the interpolation orders for the geometry and the double layer density does not

always guarantee smaller errors. Depending on the nature of the meshing near high cur-

vature regions, the number of high aspect ratio elements, and the flatness of the particle

geometry, a piecewise-constant density can exhibit lower errors than piecewise-linear den-

sity, and there can be little benefit from using curved triangular elements. Overall, this

study provides practical insights on how to appropriately discretize and parameterize three-

dimensional (3D) boundary-element simulations for elongated particles with prolate-like and

oblate-like geometries.
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4.2 Introduction

There has been recent interest in high fidelity fluid dynamic simulations of systems such

as red blood cell flow in capillaries, the sedimentation of many micron-sized particles, or com-

plex microfluidic flows [ 8 ], [ 70 ], [ 113 ]–[ 116 ]. In the fluids literature, the boundary-element

method (BEM) is often used for these types of problems in the Stokes flow regime. For

problems with a low surface area to fluid volume ratio, the boundary-element method ben-

efits from a reduction in dimensionality that potentially improves computational efficiency

by reducing the number of unknowns. The BEM is also very efficient for systems with a

deformable boundary, as the same deforming boundary is modeled by a surface mesh to solve

the interior and exterior flow problems. This is in contrast to other methods, for instance

the immersed boundary method that requires both a surface mesh to track the deforming

boundary and a volume mesh for evaluating flow variables. Due to the mentioned bene-

fits and other considerations, researchers have used the BEM for several complex particulate

flows. Several groups have used boundary integral methods for single particle and large-scale

suspensions of rigid particles and developed scalabe algorithms for these systems [ 117 ]–[ 119 ].

Boundary integral methods are also often used for droplet dynamics [ 120 ]–[ 122 ]. Addition-

ally, a significant portion of continuum level red blood cell, capsule, and vesicle simulations

employ boundary integral methods [ 8 ], [ 9 ], [ 123 ], [ 124 ], where researchers have developed

large scale and fast implementations [  118 ], [  125 ], [  126 ]

The prevalent use of the BEM for modelling microfluidics motivates studying the numer-

ical errors of these systems. Mathematical analysis has been done on the convergence of the

boundary-element method and for evaluating singular and nearly singular integrals [ 127 ]–

[ 129 ]. In each of the applications mentioned, there is a requirement to perform error analysis

on the implementation to ensure proper results from simulations. Generally, a significant

portion of the error in these simulations comes from the discretization of the domain [ 43 ].

Some discretization methods used in the literature include spectral methods [ 130 ], [ 131 ], iso-

geometric methods that directly use a mesh from computer-aided development (CAD) [ 132 ],

[ 133 ], and the most common method is parametric interpolation over a discrete mesh [ 43 ].

For the parametric interpolation method, commonly a convergence test is performed by in-
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creasing the overall number of elements until the error measure drops below a threshold [ 8 ],

[ 132 ]. In most of the mentioned studies a global parameter, such as particle translational ve-

locity, was the parameter of interest. It has been shown that the boundary-element method

produces accurate results even at relatively coarse discretizations for these parameters [ 43 ].

On the other hand, the discretization properties with regard to local errors have not been

tested as widely. The local errors would be important for problems that require accurate

resolution of local dynamics, such as resolving the tractions between closely spaced particles.

There are heuristic methods available for controlling discretization errors, such as con-

centrating mesh points around regions of high boundary curvature or where the solution is

expected to show strong variations [  43 ]. Additionally several groups have devised boundary-

element implementations for Stokes flow with quadratic or higher order parameterizations

of both densities and the geometry [  132 ], [ 134 ]. It is still unclear if these higher order

methods improve the numerical accuracy or efficiency significantly enough over lower order

parameterizations to warrant the additional programming required. Some previous studies

have analyzed errors in comparison to analytical solutions, but they have been limited to

spherical, 2D, or resistance matrix values [ 135 ], [ 136 ]. For 3D problems, the study by Chan,

Beris, and Advani examined several sources of error in the BEM for closely spaced spheroidal

particles [ 137 ]. Some of their results for discretization error include the findings that BEM

benefits significantly from quadratic geometric interpolation for spherical geometries and

that local traction calculations converge with mesh refinement. They also found that the

local traction solutions can perform very poorly in comparison to the global metrics, such

as the particle rotational velocity.

It may be appropriate for the ultimate paragraph of the introduction to include some

personal reflections on the honoree, Prof. R. (Bob) Byron Bird. In 1982, one of the co-

authors of this contribution (Sangtae Kim) was recruited by the legendary “BSL transport

phenomena trio” of Professors Bird, Stewart and Lightfoot to continue the legacy of transport

phenomena at the University of Wisconsin. The initial thought of joining a different campus

in warmer climes was trumped by a personal letter from Bob Bird containing the words

“we need you!” What followed were many snowy years in Madison filled with great memo-

ries and the opportunity to forge a unique identity within transport phenomena in Stokes
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flows of particulate systems. Over the years, the emphasis in this line of research evolved

towards computational biology and computer-aided drug discovery. But recent forays back

to particulate Stokes flow (of ellipsoidal particles) were motivated in part by the continuing

correspondence with Professor Bird. In this study, we expanded our understanding of the

discretization of 3D Stokes flow problems for the Boundary Element Method (BEM), focus-

ing on high aspect ratio particles where meshing errors are more pronounced. Studying these

high aspect ratio particle system is important for understanding the dynamics of needle- or

disc-shaped particles. The analytical formulas for the eigenfunctions/eigenvalues of the dou-

ble layer operator of an ellipsoidal particle in a quadratic flow were recently published in

Physics of Fluids for the celebration of Professor Bird’s 95th birthday [ 1 ]. The formulas

provide a new basis for testing boundary-element method discretization effects on accuracy.

Comparing against the analytical solution, we will investigate the local and global error prop-

erties for the BEM implemented with the collocation method and parametric interpolation

over a triangular mesh.

4.3 Methods

4.3.1 Boundary integral formulation and definition of double layer operator

The steady Stokes flow of an incompressible Newtonian fluid can be formulated as

∇ · v = 0 (4.1)

∇p = µ∇2v, (4.2)

where v is the velocity, p is the pressure, and µ is the viscosity. These equations are linear,

therefore we can re-write the velocity field as an integral equation in terms of Green’s func-

tions. First, we identify two of the free-space Green’s functions for Stokes flow, the Stokeslet

and Stresslet:

Gij(x,x0) = δij

r
+ x̂ix̂j

r3 (4.3)

Tijk(x,x0) = −6 x̂ix̂jx̂k

r5 (4.4)

90



where r = |x̂|, x̂ = x − x0, and x0 is the source point. Repeated indices are assumed

to be summed over. G is the solution for Stokes flow from a point force and T is the

corresponding solution for the stress tensor. Performing a standard derivation based on the

Lorentz’s reciprocal theorem [  43 ], we write the integral equation that describes the velocity

field inside, outside, and on a prescribed surface D:

C(x0)vj(x0) = − 1
8πµ

∫
D

σik(x)nk(x)Gij(x,x0) dS(x) + 1
8π

∫
D

vi(x)Tijk(x,x0)nk(x) dS(x).

(4.5)

In the above equation, D is a prescribed surface, ni is the outward pointing normal vector,

and σij is the stress tensor for Stokes flow. The coefficient C(x0) = 1 if x0 is inside the

surface, C(x0) = 0 if x0 is outside the surface, and C(x0) = 1/2 if x0 lies on the surface

(provided the surface is sufficiently smooth). The first integral of  Eq. (4.5)  is identified as

the single layer integral while the second is the double layer integral. In this paper, we will

examine the double layer operator:

(Kq)(x0) = 1
4π

∫
D

qi(x)Tijk(x,x0)nk(x) dS(x). (4.6)

Physically, this operator represents the flow created by a distribution of point dipoles on

surface D with density q(x). For a closed surface like an ellipsoid, the flow field created

by Kq decays to zero far away from the surface, has continuous traction across the surface,

and experiences a velocity jump across the surface. As one approaches the surface D, the

operator satisfies:

lim
ϵ→0

(Kq)(x0 ± ϵn) = (Kq)(x0) ± q(x0); x0 ∈ D

= 1
4π

∫ P V

D
qi(x)Tijk(x,x0)nk(x) dS(x) ± q(x0). (4.7)
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Note that whenever we calculate the double layer operator at position x0 ∈ D, we compute

the principal value of the surface integral (PV ). The information above will be useful in

describing the eigenspectrum of the operator K as discussed in the next section.

An accurate numerical representation of the double layer operator is vital in many appli-

cations. For example, the boundary integral formulation for rigid particles can be recast in

terms of K only [ 138 ], [ 139 ], which is advantageous numerically because it forms a Fredholm

integral equation of the second kind and hence does not face issues with ill-posedness [ 46 ].

This paper will discuss analytical solutions to the eigenvalues/eigenvectors of the double

layer operator, and quantify errors that arise when numerically discretizing the double layer

operator.

4.3.2 Analytical eigenvalues and eigenfunctions of double layer operator

For a given surface D, the double layer operator K in  Eq. (4.6) has an infinite number of

eigenvalues λ and eigenfunctionsψ(x). These eigensolutions cannot be evaluated analytically

for a general shape. However, analytical solutions are available for ellipsoids undergoing

rigid body motion, motion in a rate-of-strain field, and motion in a general quadratic flow

field [ 1 ]. We will summarize the results in the literature in the next subsections. In general,

one analytically determines the eigenvalues and eigenfunctions by solving the flow around

a prescribed surface subject to the conditions of (a) zero velocity far from the surface, (b)

continuity of traction across the surface, and (c) a prescribed velocity jump across the surface.

For each eigenfunction/eigenvalue pair (ψ, λ), the velocity jump satisfies:

v(o) = Kψ +ψ = (λ + 1)ψ (4.8)

v(i) = Kψ −ψ = (λ − 1)ψ (4.9)

where v(0) is the flow field as the particle surface is approached from the outside, and v(i) is

the flow field as the particle surface is approached from the inside. Thus, if one determines

the conditions under which the outer and inner velocities are collinear, one can determine
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the eigenvalues λ and eigenfunctions ψ. The eigenvalues range within the real interval

λ ∈ [−1, 1] [  46 ].

Rigid Body Motion

For any surface D, the rigid body motions vRBM = {V , Ω ×x} are eigenfunctions of the

double layer operator. The corresponding eigenvalue is λ = −1:

(KvRBM)(x0) = 1
4π

∫ P V

D
vRBM

i (x)Tijk(x,x0)nk(x) dS(x) = −vRBM(x0), (4.10)

The Torque-Free Ellipsoid in a Constant Rate-of-Strain Field

There are five eigenfunction/eigenvalue pairs for a torque-free ellipsoid in a constant rate-

of-strain field v∞ = E∞ ·x. We decompose the field into off-diagonal and diagonal ambient

fields. These two problems are solved and analyzed separately, with the simpler off-diagonal

case discussed first.

For the off-diagonal rate-of-strain fields, we decompose E∞ into

E∞ = E(12) +E(13) +E(23),

E(12) =


0 E12 0

E12 0 0

0 0 0

 , E(13) =


0 0 E13

0 0 0

E13 0 0

 , E(23) =


0 0 0

0 0 E23

0 E23 0

 , (4.11)

Each of these components gives rise to an eigenvector/eigenvalue pair. To determine the

eigenvectors driven by E12, E13, or E23, we solve for the disturbance velocity field inside

and outside a torque-free ellipsoid with continuous traction across the surface. The eigen-

vector is related to the jump in velocity across the surface as 2ψ = v(o) − v(i), and the

eigenvalue is determined by noting that v(i) = v(o)(λ–1)/(λ + 1). We obtain for the three

eigenvector/eigenvalue pairs:
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λ(12) = γ′
0(a2 + b2) − 1, ψ(12) = E(12) · x−

(
a2 − b2

a2 + b2

)
E12δ3 × x,

λ(13) = β′
0(a2 + c2) − 1, ψ(13) = E(13) · x−

(
c2 − a2

a2 + c2

)
E13δ2 × x,

λ(23) = α′
0(b2 + c2) − 1, ψ(23) = E(23) · x−

(
b2 − c2

b2 + c2

)
E23δ1 × x. (4.12)

In the above equation, a, b, c are the semi-axes of the ellipsoid, while γ
′
0, α

′
0, and β

′
0 are

elliptic integrals. The elliptic integral γ′
0 =

∫∞
0 dt/((a2 + t)(b2 + t)∆(t)), where ∆(t) =√

(a2 + t)(b2 + t)(c2 + t). The other elliptic integrals are obtained by permutation of the

semi-axes a, b, c.

All three eigenvalues above are equal to λ = −1/5 for the degenerate case of the sphere,

a = b = c.  Fig. 4.1 (a-c) shows the eigenfunctions associated with the flows E(12), E(23), and

E(13) for a prolate ellipsoid (a = 4, b = c = 1). For an oblate ellipsoid (a = b = 4, c = 1),

the eigenfunctions are shown in  Fig. 4.1  (f-h).

Next, we consider a diagonal rate-of-strain field

E∞ =


E11 0 0

0 E22 0

0 0 E33

 , E11 + E22 + E33 = 0. (4.13)

To determine the two eigenvectors/eigenvalue pairs associated with this field, we solve

the disturbance flow field around a torque-free ellipsoid with continuous traction across its

surface for arbitrary E11 and E22. If we make the inner and outer velocities at the surface

of the ellipsoid collinear, i.e., v(i) = κv(o) = v(o)(λ–1)/(λ + 1), this will yield an eigenvalue

problem. There will be two eigenvalues λ, and each will be associated with an admissible

pair (E11, E22) up to a scaling constant (which allows one to compute the eigenvector ψ).

We state the results below:
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E(12) E(23) E(31) E(+) E(-)

(a) (b) (c) (d) (e)

(j)(i)(h)(g)(f)

Figure 4.1. Linear ROS eigenfunctions where sub-figures (a) – (e) are for an
a = 4, b = 1, c = 1 prolate spheroid while sub-figures (f) – (j) are for a a = 4, b =
4, c = 1 oblate spheroid. Flows E(12), E(23), and E(31) are planar off-diagonal
flows. The first three columns of figures show 2D plots of the off-diagonal
flows. Note the orientation difference between (a) and (c), similarly for (g)
and (h). (a) and (c) resemble a simple shear flow, the eigenfunctions approach
simple shear flow with increasing particle aspect ratio of the spheroids; the
same applies for (g) and (h). The E(+) and E(−) flows are planar extension
and uniaxial extension for spheroids.

κ± =
(

λ − 1
λ + 1

)±

= 1 − 2
3d

(α′′
0 + β′′

0 + γ′′
0 ) ± 2

3d

[
(α′′

0 − β′′
0 )2 + (β′′

0 − γ′′
0 )2 + (γ′′

0 − α′′
0)2
]1/2

,

where

d = α′′
0β′′

0 + β′′
0 γ′′

0 + γ′′
0 α′′

0, γ′′
0 =

∫ ∞

0

tdt

(a2 + t)(b2 + t)∆(t) , (4.14)

Similar to what was discussed before, the other elliptic integrals, α′′
0 and β′′

0 , are defined

by cyclic permutation of the semi-axes. We denote the values of (E11, E22, E33) associated

with eigenvalues λ± as E(+) and E(−), respectively. In  Fig. 4.1 (d,e), we plot flows associated

with E(+) and E(−) for a prolate ellipsoid (a = 4, b = c = 1). For the oblate ellipsoid

(a = b = 4, c = 1), the two flows associated with E(+) and E(−) are displayed in  Fig. 4.1  (i,j).
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Ellipsoid in Quadratic Flow Field – 3 × 3 System

A force-free, torque-free ellipsoid submerged in a viscous quadratic flow field v∞ = H : xx

is now considered, where the origin of the coordinate system is chosen to be the particle’s

center of mass. Note that the third order tensor Hijk possesses 15 independent variables,

and the disturbance velocity generated by this quadratic field for a rigid ellipsoid is discussed

in Kim and Arunachalam [  140 ] as a function of Pj and Pjkl – i.e., the strengths of force and

quadrupole moments.

Due to particle symmetry, the general ambient quadratic flow field can be divided into

four decoupled systems [ 140 ]: one 3 × 3 and three 5 × 5 systems, where the 5 × 5 systems

have three redundant equations in order to have 15 independent components. In this work,

we focus on the eigenvalues and eigenfunctions of the 3 × 3 system, while one can refer to

[ 1 ], [  119 ], [  141 ], [  142 ] for the 5 × 5 systems.

The ambient field of the 3 × 3 system involves three independent variables

v∞
1 = H1x2x3, v∞

2 = H2x1x3, v∞
3 = H3x1x2. (4.15)

where

H1 = H123 + H132, H2 = H213 + H231, H3 = H312 + H321, (4.16)

In Kim and Arunachalam, the disturbance velocity for this field is related to the quadrupole

moments (P123 + P132), (P213 + P231), and (P312 + P321). By determining the flow velocity at

the particle surface, the relationship between Hijk and Pijk is found to be

H1 = A1
(
K23 + a2K123

)
+ A2

(
−K13 + b2K123

)
+ A3

(
−K12 + c2K123

)
,

H2 = A1
(
−K23 + a2K123

)
+ A2

(
K13 + b2K123

)
+ A3

(
−K12 + c2K123

)
,

H3 = A1
(
−K23 + a2K123

)
+ A2

(
−K13 + b2K123

)
+ A3

(
K12 + c2K123

)
, (4.17)
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where

A1 = 15
32πµ

(P123 + P132) , A2 = 15
32πµ

(P213 + P231) , A3 = 15
32πµ

(P312 + P321) . (4.18)

In the above equations, Kij and Kijk are elliptic integrals defined in reference [ 1 ], [ 141 ]

and are related to the elliptic integrals α, β, and γ from the rate-of-strain problem.

To determine the eigenvector/eigenvalue pairs, one needs an additional relationship be-

tween the quadrupole moments (A1, A2, A3) and the velocity moments (H1, H2, H3). To do

this, we will set the velocity field inside the surface of the ellipsoid to v(i) = κv(o), where

κ = (λ–1)/(λ + 1) is related to the eigenvalue λ, and v(o) is the disturbance velocity field on

the surface. We will then equate the traction inside the surface to the traction outside the

surface from the disturbance field, which yields the relationship [ 1 ]:

4A1

abc
= (1 − κ)

[
(b2 + c2)H1 + c2H2 + b2H3

]
,

4A2

abc
= (1 − κ)

[
c2H1 + (a2 + c2)H2 + a2H3

]
,

4A3

abc
= (1 − κ)

[
b2H1 + a2H2 + (a2 + b2)H3

]
, (4.19)

 Eq. (4.17) and  Eq. (4.19) now allow us to determine the eigenvalues λ, which are related to

κ by κ = (λ − 1)/(λ + 1). By substituting Ai in terms of Hi using Eq. ( 4.17 ), an equation of

the form BijHj = 0 is found. For a nontrivial solution to exist, det(Bij) = 0, and the roots of

the resulting cubic equation are solved to determine three eigenvalues λ and the associated

eigenfunctions ψ. We denote the velocity moments (H1, H2, H3) associated with the three

eigenvalues by Q(1), Q(2) and Q(3), respectively.  Fig. 4.2 (a-c) show plots of the eigenfunctions

associated with Q(1), Q(2) and Q(3) for a prolate ellipsoid (a = 4, b = c = 1), where Q(1)

corresponds to the largest eigenvalue and Q(3) to the least eigenvalue. For the oblate particle

(a = b = 4, c = 1), the corresponding eigenfunctions are shown in  Fig. 4.2  (d-f).
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Q(2) Q(3)Q(1)

(a) (b) (c)

(d) (e) (f)

Figure 4.2. Streamlines for quadratic order eigenfunctions where sub-figures
(a) – (c) are for a = 4, b = 1, c = 1 prolate spheroid while sub-figures (d) –
(e) are for a = 4, b = 4, c = 1 oblate spheroid. Q(1): Quadratic eigenfunction
corresponding to the largest eigenvalue of the 3x3 system. Q(2): Quadratic
eigenfunction corresponding to the middle eigenvalue of the 3x3 system. Q(3):
Quadratic eigenfunction corresponding to the least eigenvalue of the 3x3 sys-
tem.

4.3.3 Numerical representation of double layer operator for ellipsoids

In this section, we will discretize the double layer operator in  Eq. (4.6) using the boundary-

element method (BEM). We will then compare the eigensolutions of this discretized operator

to the analytical solutions, to benchmark the numerical accuracy of BEM for highly elon-

gated ellipsoidal particles in different flow types. Details of the numerical representation are

given below along with notation for the different parameterizations studied.

Numerical Details

Meshing:

We represent the ellipsoidal particle with an unstructured triangular mesh. The elements

are either flat triangles with 3 nodes (linear geometric interpolation) or curved triangles with

6 nodes (quadratic geometric interpolation). Higher order geometric parameterizations (cu-
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bic or higher) could lead to further improvements in practice, but are rarely implemented

due to coding complexity. We generate the surface mesh by taking a hard-coded icosahedron

mesh, subdividing the mesh to a desired number of triangles (via geodesic subdivision), and

projecting the vertices onto a unit sphere. The curved (quadratic) meshes are created by

adding vertices to the middle of mesh edges after the geodesic subdivision step. It is impor-

tant that the mid-edge vertices are also projected onto the unit sphere, otherwise the higher

order interpolation will not be of much benefit. We then apply a scaling transformation to

move the mesh vertices to the desired ellipsoidal surface ( Fig. 4.3  ).

We use this icosahedron subdivision method because it is simple to implement and is

commonly used in the literature [ 35 ], [  143 ]. However the method has clear pitfalls, such

as how the scaling transformation applied will produce highly stretched triangles at higher

particle aspect ratios. Additionally, the surface normal vector is not enforced to be continuous

across the elements. Other simplistic meshing methods also have clear deficiencies [ 144 ],

[ 145 ], such as having to deal with the singularities at the geometric poles of an ellipsoid

when using a structured mesh. This paper will illustrate how a common meshing procedure

can lead to unintuitive errors.

Parametric interpolation:

To discretize the double layer operator in  Eq. (4.6) , one can apply sets of interpolation

and weighting functions over the mesh. A commonly applied method in the finite element

literature is to use the same functions for both the interpolation over elements and the

weighting for residual minimization, known as the Galerkin method [ 146 ]. However even

though the Galerkin method has better accuracy for the same number of unknowns, the

collocation method is more commonly used in the BEM literature [ 143 ]. This is mainly due

to the fact that the Galerkin method requires evaluating a double surface integral, while the

collocation method only requires a single surface integral. We will be using the collocation
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method in this study. The interpolation functions generally chosen are piecewise polynomials

up to quadratic order [ 143 ] such that a density q is approximated over the surface as

qi(ξ, η) =
nodes∑
n=1

ϕn(ξ, η)q̂(n)
i , (4.20)

where ϕ are the interpolation functions that depend on the parametric position (ξ, η) and q̂(n)

is the value of q at node n. We consider piecewise-constant and piecewise-linear interpolation

of the double layer densities. For the piecewise-constant density we use the element centroids

as nodes, while the mesh vertices are used as nodes for the piecewise-linear density.

Quadrature and singularity subtraction:

To evaluate the surface integrals over the mesh elements we use six-point Gauss-Legendre

quadrature, which is sufficient for accurately evaluating over quadratic elements [  147 ]. For

integrals over singular elements, we use the singularity subtraction method detailed in [ 46 ].

Specifically, we use the λ = −1 eigenvalue solution that is valid over any closed surface to

remove the singularity

1
4π

∫ P V

D
qi(x)Tijk(x,x0)nk(x) dS(x) =

1
4π

∫ P V

D
(qi(x) − qi(x0))Tijk(x,x0)nk(x) dS(x) − qi(x0)δij. (4.21)

where PV represents the principal value of the integral. Our current implementation does

not make any distinction for nearly singular integrals because the ellipsoidal meshes and

parameterizations tested do not have nearly singular node pairs.

Notation

The boundary-element collocation scheme creates a discretized version of the double layer

operator K and the double layer density q(x) on the ellipsoid surface. From here on out, we

will denote by symbols with a hat over them as the discretized versions over N nodes, while

symbols without the hat represent the continuous counterparts. For example, the discretized
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Figure 4.3. Icosahedron subdivision meshing procedure. From left to right:
initial icosahedron mesh, subdivided mesh projected onto unit sphere, and
scaling transformation applied to that mesh.

double layer density q̂ is a 3N × 1 vector of all nodal values on the ellipsoidal surface, i.e.,

q̂ = [q̂(1); q̂(2); . . . ; q̂(N)] for all N nodes. The discretized version of K is K̂, which is an

3N × 3N matrix such that K̂ · q̂ yields the approximate value of Kq on all N nodes of the

surface. From a bookkeeping standpoint, the matrix K̂ can be decomposed into several 3×3

sub-blocks K̂(nm) (n, m = 1, 2, . . . N), where the (n, m) sub-block represents the influence of

node m on the velocity at node n. We will test how well the eigensolutions of the discretized

operator K̂ match those of the analytical solutions.

The notation we employ for the discretization types used in this study is shown in

 Table 4.1 . For example, a discretization scheme that uses linear interpolation functions

for the double-layer density and quadratic interpolation functions for the geometry would

be denoted ld-qe. Additionally we list the ellipsoid semi-axis lengths as a string of three

numbers with dashes, such that an oblate spheroid with (a = 4, b = 4, c = 1) would be

4-4-1.

Table 4.1. Shorthand for the discretization types.
cd piecewise-constant density
ld piecewise-linear density
le linear elements (flat triangles)
qe quadratic elements (curved triangles)
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4.3.4 Determining error of discretized double layer operator

Global error – rigid body motion

One way we can test the accuracy of a discretization is to compute the rigid body motions

of an ellipsoid in a specified external flow field and compare them with analytical solutions.

The errors in this problem are global because rigid body motion is determined from averaging

a computed velocity over an entire surface rather than knowing the solution at any given

point. It is known that the boundary-element method produces satisfactory global error

values with a relatively small number of elements [ 43 ]. To simulate the mobility problem,

we use the completed double layer (CDL) method described in [ 43 ], [  46 ] that removes the

six λ = −1 eigenvalues corresponding to rigid body motion from the double layer operator.

We are operating over a force- and torque-free particle, therefore the completed double layer

operator is:

Kc = 1
4π

∫ P V

D
qj(x)Tjik(x,x0)nk(x) dS(x) + Vi + ϵijkΩjXk. (4.22)

where V and Ω are the translational and rotational velocities respectively, formulated as

functions of the double layer density (q) as:

V = − 4π

SD

∫
D
q dS (4.23)

Ω = −4π
3∑

m=1

1
Am

ω(m)
(
ω(m) ·

∫
D
X × q dS

)
. (4.24)

In the above formulas, SD is the surface area and X are the particle-centered coordinates.

The terms Am and ω(m) are the eigenvalues and normalized eigenvectors of the surface-based

moment of inertia tensor Imom =
∫

D(XkXkδij − XiXj)dS.

The completed double layer operator is discretized to a 3N × 3N matrix K̂c over the N

nodes on the ellipsoid, and then used in the following expression to solve for the double-layer

density q̂ at each node:

(Î + K̂c) · q̂ = û∞ (4.25)
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In the above formula, Î is the 3N × 3N identity tensor and û∞ is the external flow vector

evaluated at the nodes on the ellipsoid. We only test simple shear flow with the CDL method

in this study. Once we determine the double layer density (q̂) at each node, we integrate

over the surface using  Eq. (4.23) and  Eq. (4.24) to produce the translational and rotational

velocities. The l2 norms are then compared to those of the analytical solutions as follows.

EV = ||V anal − V num||
||V anal||

EΩ = ||Ωanal − Ωnum||
||Ωanal||

(4.26)

where EV and EΩ are the translational or rotational velocity errors, with {V anal, Ωanal}

being the analytical particle velocities, and {V num, Ωnum} the numerical approximations.

Local nodal error – double layer operator

We will characterize the local errors in the discretized double layer operator K̂ by deter-

mining how closely it obeys known eigenvector/eigenvalue relationships at each nodal point

in various flows. In this procedure, we take a known eigenvector ψ for the ellipsoidal particle

and normalize it by its inner product based norm

ψ̃ = ψ

< ψ,ψ >1/2 < ψ,ψ >= 1
SD

∫
D
ψ ·ψ dS, (4.27)

Once we complete this procedure, we will compute the normalized eigenvector at the N node

positions on the ellipsoid surface to create a 3N × 1 vector of values ψ̂. We then matrix

multiply the discretized double-layer matrix (K̂) with (ψ̂) and check the resultant output

against the expected solution (λψ̂) at the nodal values x̂. This yields a 3N × 1 vector of

errors at each nodal point.

ϵ̂ = K̂ · ψ̂ − λψ̂ (4.28)

Because we are using a known eigenfunction of the double-layer operator, a perfect dis-

cretization of the operator should yield zero for the above expression.
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We define the local error at a particular node to be

ϵ(i) = ||ϵ̂(i)||, (4.29)

where ·(i) means the i’th node. Later in this paper, we will plot the distribution of these

errors over the ellipsoidal surface for various types of flows. We will also use the arithmetic

mean and maximum of the local errors to get an idea of the distribution of local errors:

ϵmean =
∑

i ϵ(i)

N
(4.30)

ϵmax = max(ϵ(i)) (4.31)

4.4 Results

4.4.1 Numerical error sources

There are several issues that limit the numerical accuracy of the boundary-element

method (BEM) to consider in this study. Firstly, there are the effects of discretizing the

system geometry that directly alters the geometric properties of the surface (e.g., surface

area, curvature, etc.). The parameterization of the double layer density also needs to be

considered (e.g., piecewise constant, piecewise linear, etc.). Other sources of error include

the approximation error from evaluating the integrals, singular integral handling, and linear

system solution procedure. Our implementation uses six point Gaussian quadrature to evalu-

ate the integrals and handles the singular integrals using the singularity subtraction method,

therefore errors from those sources should only make minor contributions. When testing the

local errors, the analytical eigenfunctions are directly tested against the discretized double

layer matrix, bypassing any numerical solution of the linear system. Therefore, this paper

focuses on the errors from discretizing the geometry and double layer density, and finding

how the parameterization and the meshing procedures can affect accuracy.
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4.4.2 Mobility solution errors

Global rotational velocity error

We start our analysis by considering the error in computing the rotational velocity of a

4-1-1 prolate spheroid in a simple shear flow. The errors are plotted against the number of

nodes for a given parameterization in  Fig. 4.4  and the same errors are tabulated in  Table 4.2 .

We plotted the errors against the number of nodes N because this is proportional to the

number of unknowns for a given parameterization. We note that for the same mesh, the

problem size is different for different parameterizations of the double layer density. For the

piecewise-linear double layer density, the number of nodes is equal to the number of vertices

on the mesh (N = Nele/2 + 2). For the the piecewise-constant double layer density, the

number of nodes is equal to the number of elements (N = Nele). We note that one could

examine errors against the number of elements, which would compare the parameterizations

for a given mesh rather than for similar problem sizes.

From  Fig. 4.4 , we observe that the error in the rotational velocity converges at power-law

rate with the number of nodes N , with an exponent −2 for the piecewise-linear density

and −1 for the piecewise-constant density. Such power-law behavior is expected for these

methods (called h-type in the literature) as the element spacing is reduced [ 148 ]. For the

piecewise-constant density (cd-le and cd-qe), improving the geometry interpolation function

from linear to quadratic improves the accuracy so that the quadratic mesh produces less

than 1% error with 320 elements while the linear mesh is still at 1.21%. This effect is also

seen for the piecewise-linear density (ld-le and ld-qe), leading to 1.211% error for ld-qe over

the 80 element mesh. From a prior study by Chan, et al. [ 137 ], we know that increasing the

geometry interpolation order can greatly improve the calculation accuracy of global error

metrics.

On comparing the two density parameterization methods, the higher convergence rate

for the piecewise-linear density is expected, as the higher order interpolation functions used

should lead to more accurate results. Interestingly, we find that for a small number of

elements the linear density, linear element (ld-le) parameterization performs worse than

either the constant density, linear element (cd-le) or constant density, quadratic element (cd-
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qe) parameterizations. For example, the ld-le parameterization produces a large rotational

velocity error of ≈ 35% with the 80 element mesh while the other parameterizations all have

less than 5% error for the same mesh. Comparing the ld-le parameterization with 92 nodes

to the similar 80 node cd-le parameterization, we see that the ld-le parameterization still has

a higher relative error of 5.347% compared to the 4.790%.

We note that the error in the ld-qe parameterization behaves non-monotonically, as the

error oscillates with number of nodes after reaching ≈ 0.05% error. Our implementation

likely has a source of error that becomes dominant after a certain level of mesh refinement

and is not affected by increasing the number of elements further.

Figure 4.4. Relative error in computing the rotational velocity of a 4-1-1
prolate spheroid in shear flow v∞

1 = y, v∞
2 = v∞

3 = 0.

4.4.3 Local errors for linear and quadratic eigenfunctions

Although global errors in translational and rotational velocity are generally small with

the BEM method, we will show that this is not the case for local errors. This section will
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Table 4.2. Relative error in rotational velocity solution (global error) for a
4-1-1 prolate spheroid in a simple shear flow.

number of cd-le ld-le cd-qe ld-qe
elements nodes error nodes error nodes error nodes error
80 80 4.790% 42 35.350% 80 3.232% 42 1.211%
180 180 2.052% 92 5.347% 180 1.457% 92 0.008%
320 320 1.210% 162 2.132% 320 0.676% 162 0.063%
500 500 0.699% 252 0.745% 500 0.443% 252 0.051%
720 720 0.466% 362 0.371% 720 0.290% 362 0.004%
980 980 0.328% 492 0.200% 980 0.205% 492 0.013%
1280 1280 0.245% 642 0.121% 1280 0.152% 642 0.023%
1620 1620 0.183% 812 0.078% 1620 0.117% 812 0.026%
2000 2000 0.151% 1002 0.053% 2000 0.092% 1002 0.026%

examine the five rate-of-strain (ROS) and the three quadratic flow eigenfunctions discussed

in sections 2.1-2.2, and quantify the local errors created by numerically discretizing the

double layer operator. We will show data over a limited subset of flow types and ellipsoid

shapes to illustrate the main trends discussed in this study. Further results are included in

the supplementary data of this manuscript.

Prolate spheroids

For prolate spheroidal shapes, we will show results for the E(12), E(23), E(−), and Q(3)

flows. We note that the flow pairs E(12) and E(31) are equivalent due to particle symmetry,

as well as flow pairs E(23) and E(+). The flow E(−) corresponds to uniaxial extension and

Q(3) is shown in  Fig. 4.2  .

4-1-1 ellipsoid:

From the mean local error data shown in  Fig. 4.5  , we observe that the convergence rate

for all of the parameterizations approximately changes with mesh spacing as h−1. For both

the piecewise-constant (cd) and piecewise-linear (ld) density parameterizations, we see the

mean and maximum local errors either stay the same or get significantly better when going

from linear (le) to quadratic (qe) geometry interpolation (i.e., from flat triangles to curved
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(a) (b) (c) (d)

Figure 4.6. [ (a) cd-le, (b) ld-le, (c) cd-qe, (d) ld-qe ] Local errors for a 4-1-1
spheroid in an E(12) flow with an 180 element mesh. We examine different
interpolation orders of the geometry (le = linear elements, qe = quadratic
elements) and of double layer density (cd = piecewise-constant density, ld =
piecewise-linear density). The local errors are represented by colors that scale
linearly from 0 (blue) to 0.11 (red).

triangles). This result is expected, as the quadratic geometry interpolation should approx-

imate the spheroid shape more accurately. On the other hand, subfigures  Fig. 4.5  (a), (b),

and (d) show an interesting result – the linear density, linear element (ld-le) parameteriza-

tion performs either similarly or significantly worse than the constant density, linear element

(cd-le) parameterization. For example, the ld-le parameterization for the E(12) flow has sig-

nificantly higher maximum local errors than the cd-le parameterization. We similarly observe

no benefit from the ld-le parameterization in comparison to the cd-le parameterization for

the E(23) and Q(3) flows.

One would intuitively expect a piecewise-linear density to perform better than a piecewise-

constant density because of the higher order interpolation functions, but the results above

suggest otherwise. To understand the origin of these observations in more detail,  Fig. 4.6 

shows the local errors for an 180 element mesh in a E(12) flow. We observe that ld-le param-

eterization exhibits large local errors near the poles of the particle, whereas the errors for the

cd-le case are not as large. The reason for this is that the ld-le parameterization places nodes

at the vertices of the mesh, and hence has nodes lying exactly at the particle’s poles that

are not well-resolved geometrically. The cd-le parameterization however places nodes at the

mesh triangle centroids, and hence avoids having nodes exactly at the poles. On the other

hand, the linear density parameterizations do perform significantly better than the constant
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density ones in the E(−) flow. Referring back to  Fig. 4.1  , we observe that the E(−) flow has

low magnitude velocities near the poles of the particle. Therefore for the E(−) flow, the ld-le

parameterization will not be as affected by the poor node placement at the particle poles;

so we recover the expected behavior of the linear order interpolation performing better than

constant order. We note that for higher order geometric interpolation (i.e., ld-qe), the high

local errors at the poles are no longer present as the curved triangles can now accurately

capture the geometry there.

10-1-1 ellipsoid:

Increasing the aspect ratio of the prolate spheroid to 10, we find that the error trends

for the parameterizations change significantly ( Fig. 4.7 ). Firstly for the E(12) and Q(3) flow

types, quadratic geometry (qe) interpolation (i.e., curved triangles) does not appreciably

benefit the mean local error for either the piecewise-constant (cd) or piecewise-linear (ld)

density parameterizations. There are even cases where the linear density, quadratic ele-

ment (ld-qe) parameterization performs worse than the linear density, linear element (ld-le)

parameterization (E(23) and E(−)). Secondly, the piecewise-linear density (ld) parameteri-

zations consistently perform better than the piecewise-constant density (cd) ones for mean

local error.

 Fig. 4.8 shows the distributions of local errors on these high aspect ratio particles. We

see that the mesh consists of highly elongated elements that can provide a sparse discretiza-

tion of the densities or a poor geometric representation of the surface. Examining the local

error distributions, we find that there are large local errors both at the poles and among

the most stretched elements that are along the equator. We observe that the high aspect

ratio prolate geometry allows flat linear triangles to serve as mesh elements that mostly ap-

proximate the surface well, so the linear geometry interpolation (i.e., flat triangles) performs

similarly or better than the quadratic interpolation (i.e., curved triangles). This effect is

shown in  Fig. 4.8 , where little difference is seen in the local error distributions between the

linear (le) and the quadratic (qe) element parameterizations. As for why the piecewise-linear

densities (ld) perform better than the piecewise-constant densities (cd), the error distribu-
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(a) (b) (c) (d)

Figure 4.8. [ (a) cd-le, (b) ld-le, (c) cd-qe, (d) ld-qe ] Local errors for a 10-1-1
spheroid in an E(12) flow with an 180 element mesh. We examine different
interpolation orders of the geometry (le = linear elements, qe = quadratic
elements) and of double layer density (cd = piecewise-constant density, ld =
piecewise-linear density). The local errors values are represented by a linear
color scale from 0 (blue) to 0.12 (red).

tions show that the piecewise-constant density parameterizations can have large local errors

over highly elongated elements. The ld-le parameterization still has large local errors at

the particle poles, but this effect is now balanced against the elongated element errors for

piecewise-constant densities. Therefore improved accuracy is expected with the higher order

interpolation functions.

Oblate spheroids

For the oblate spheroidal shapes, we will show results for the E(12), E(23), E(+), and Q(2)

flows. Note that the flows E(23) and E(31) are equivalent due to particle symmetry, as well

as are E(12) and E(−). The flow E(+) corresponds to uniaxial extension and Q(2) is chosen

to be consistent with the choice of Q(3) for the prolate spheroid.

4-4-1 ellipsoid:

Like the results observed for the 4-1-1 prolate spheroid case, the 4-4-1 oblate spheroid

also generally sees improvement in the mean local error with quadratic geometry (qe) inter-

polation over the linear geometry (le) interpolation (i.e., curved triangles compared to flat

triangles) ( Fig. 4.9 ). We also observe that the linear density, linear element (ld-le) parame-

terization performs worse than the constant density, linear element (cd-le) parameterization
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(a) (b) (c) (d)

Figure 4.10. [ (a) cd-le, (b) ld-le, (c) cd-qe, (d) ld-qe ] Local error heatmaps
for the 4-4-1 oblate spheroid with 180 elements in the E(23) flow. We exam-
ine different interpolation orders of the geometry (le = linear elements, qe =
quadratic elements) and of double layer density (cd = piecewise-constant den-
sity, ld = piecewise-linear density). The colors scale linearly with local error
from 0 to 0.15; errors larger than or equal to 0.15 are shown as dark red.

for the E(23) and Q(2) flows. As shown in  Fig. 4.10 , the entire rim region of the disc-like

shape has high curvature and is subsequently poorly discretized by the linear elements. The

ld-le parameterization has regions of high error at different parts of the rim region depending

on the flow type.

10-10-1 ellipsoid:

Moving to the aspect ratio 10 oblate spheroid shape (10-10-1), we find that the quadratic

geometry (qe) interpolation does not benefit the accuracy of the simulations significantly

( Fig. 4.11 ). The oblate geometry is mostly flat, as seen in  Fig. 4.12 , so the same geometry

considerations as in the 10-1-1 ellipsoid case apply: the flat linear elements already represent

the surface well. The quadratic elements can perform worse than the linear elements for the

maximum local error at points near the rim of the oblate shape. Additionally, the piecewise-

linear (ld) density parameterization performs significantly better than the piecewise-constant

(cd) density parameterization for this shape due to the reasons discussed previously. The

geometry closely resembles a flat disc for this particle shape, so it is expected that the

piecewise-linear density interpolations lead to better accuracy.
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(a) (b) (c) (d)

Figure 4.12. [ (a) cd-le, (b) ld-le, (c) cd-qe, (d) ld-qe ] Local error heatmaps
for the 10-10-1 oblate spheroid with 180 elements in the E(+) flow. We exam-
ine different interpolation orders of the geometry (le = linear elements, qe =
quadratic elements) and of double layer density (cd = piecewise-constant den-
sity, ld = piecewise-linear density). The colors scale linearly with local error
from 0 to 0.05; errors larger than or equal to 0.05 are shown as dark red.

4.5 Discussion

From the analysis presented here, we have figured out several interesting effects that dis-

cretization can have in a BEM implementation. For the ellipsoid shapes considered in this

study, many of the local errors arise at the poles of prolate particles and at the rim region of

oblate particles. To reduce these local errors, one can locally refine the mesh or use higher

order geometry interpolation in the regions. Additionally there is error introduced for mesh

elements that are highly elongated, which we observe is particularly pronounced for high

aspect ratio particles with piecewise-constant density parameterizations. For the different

parameterizations tested, we firstly found that local errors converge at a similar rate of ap-

proximately O(N−1) by the number of nodes N . Increasing the geometry interpolation order

from linear (le) to quadratic (qe) improves the simulation accuracy if the quadratic elements

can better represent the desired surface. If the surface is already quite flat to begin with, the

addition of quadratic elements will either not improve the local errors significantly or possi-

bly can lead even to worse performance for certain flow types. On the other hand, changing

the parameterization of the double layer density from piecewise-constant (cd) to piecewise-

linear (ld) has less intuitive results and can sometimes lead to worse accuracy. For certain

flow and shape combinations, the piecewise-linear density parameterization produced worse
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errors at points where the mesh vertices poorly discretized the target surface shape, such as

at the poles of the prolate spheroid as well as at the rim of the oblate spheroid. In these

cases, the piecewise-constant density parameterization avoided the large errors because the

nodes are located at the centroids of the mesh triangle rather than at the vertices. For other

cases, like that of the 10-10-1 oblate spheroid or 10-1-1 prolate spheroid, the piecewise-linear

densities performed better than the piecewise-constant densities, due to the fact that the

errors at the poles or rim of the particle for the piecewise-linear densities were compensated

by more accurate results in the highly elongated elements near the particle equator. In all,

this study suggests that local errors converge with mesh refinement, while improving the

interpolation orders for the geometry and double layer density does not necessarily reduce

errors, as improvement in error depends on the specific mesh geometry and flow type.

4.6 Conclusions

In this study we examined how the discretization of a surface affects the accuracy of the

boundary-element method (BEM) for curved 3D geometries. We discretized the Stokes flow

double-layer operator over an ellipsoid, and compared the eigenvalues and eigenfunctions of

this discretized operator to analytical solutions for different linear and quadratic flow fields.

This process allowed us to quantify local errors in the boundary-element method for a wide

range of particle aspect ratios, for different meshing representations of the geometry, and

interpolations of the double layer density.

The simplistic mesh generation used in this study highlights several discretization pit-

falls. Our findings support the notion that additional mesh refinement is generally needed

in areas where the surface geometry changes rapidly and also when the elements are highly

elongated. We generally find that the local errors are improved ion increasing the geometric

interpolation order from linear to quadratic (i.e.,from flat to curved triangles), unless the

local system geometry is already well described by the linear elements. Therefore for lower

aspect ratio spheroids, one sees quadratic elements perform better than linear elements. As

the aspect ratio becomes larger, however, the elements become highly stretched and flattened,

which reduces the advantages of quadratic elements. The effects of the double layer density
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parameterization can have widely different trends depending on the system geometry and

flow type. At lower particle aspect ratios, we find cases where piecewise-constant densities

can outperform piecewise-linear densities when errors from poor mesh discretization domi-

nate. In other cases, the expected result that the piecewise-linear densities outperformed the

piecewise-constant densities was observed. To choose the correct parameterization for the

double layer densities, one will have to test a specific use case and determine the minimum

interpolation order needed for that system.
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5. CONCLUSIONS

5.1 Concluding remarks

In this thesis we have studied the dynamics of vesicles in more complex flows and exam-

ined how discretization affects the accuracy of the boundary element method. We started

with looking at the shape stability of osmotically deflated vesicles in extensional flows with

a vorticity component. In the study, we examined vesicles of viscosity ratio 0.01 to 5.0 and

reduced volume from 0.6 to 0.70; finding that the critical capillary number can be inferred

from the purely extensional flow results for up to moderate amounts of vorticity in the flow.

As the flow type becomes close to a shear flow, a shape deviation appears that decreases the

tension along the vesicle leading to a higher critical capillary number. This study informs

future experimental studies that can have breakup of cell-like particles and provides insight

into why the shape of vesicles does not become unstable in purely shear flows.

We also presented a project that considers the dynamics of quasispherical vesicles in large

amplitude oscillatory extension. The microfluidic experiments and numerical simulations

show there to be three dynamical regimes resulting from a competition between the flow

frequency and the flow strength. We find that the vesicle can deform asymmetrically within

a strain rate cycle even at steady state, resulting in interesting effects on the bulk suspension

rheology. From a bigger picture perspective, this fundamental study is a first step into the

transient dynamics of cell-like particles in time-dependent flows.

Finally we examined how discretization affects the numerics of the simulation method

used throughout the previous projects. Using the analytical solutions for the double layer

operator of an ellipsoid in linear and quadratic flows, we find several non-intuitive discretiza-

tion errors. For example, depending on the aspect ratio of the particle and the meshing

method, increasing the interpolation order of the double layer density from piecewise con-

stant to piecewise linear can produce worse local errors. Factors such as the meshing near

high curvature regions, the number of highly stretched elements, and the flatness of the parti-

cle geometry lead to the observed results. Overall, this study reinforces the need for rigorous

error testing of numerical simulations using the boundary element method and highlights

some non-intuitive error sources.

119



5.2 Directions for future research

5.2.1 Vesicle dynamics in oscillatory shear

A straightforward addition to the literature would be a study on vesicle dynamics in oscil-

latory shear. As mentioned in the previous chapters, vesicles undergo interesting rotational

dynamics in steady shear flow, so an oscillatory shear study could examine how those dynam-

ics might affect the rheology of a cell-like suspension. We expect that the vesicle dynamics in

oscillatory shear will have even more interesting dynamics than those observed in extensional

flows. Of particular interest would be how the tank-treading/tumbling/vacillating-breathing

dynamics are affected the oscillatory flow frequency. With completed studies on vesicle

dynamics in oscillatory shear and extension, we will have a much deeper picture into the

nonlinear rheology of cell-like dispersions. For the simulations, one would need to add an

oscillatory shear external flow and a base shear rate. All other formulation and numerics

would be the same as those shown in the previous chapters.

5.2.2 Multicomponent vesicle dynamics

The vesicle research presented in this thesis has examined the dynamics of single com-

ponent lipid membranes in mixed flows and oscillatory extension. While single component

lipid membranes are commonly created experimentally, in biological contexts vesicles often

have multiple membrane components consisting of different lipid species, cholesterol, and

possibly proteins. As a step in improving our understanding of these complex membranes,

we can examine vesicles with multiple lipid phases. These multicomponent lipid membranes

will experience phase separation, which plays a key role in biological processes such as vesi-

cle budding, fusion in cells, or the formation of lipid rafts [ 53 ], [ 149 ]–[ 151 ]. A common

ternary mixture used to for synthetic multicomponent vesicles is unsaturated DOPC lipid

(1,2-dioleoyl-sn-glycero-3-phosphocholine), saturated DPPC lipid (dipalmitoylphosphatidyl-

choline), and cholesterol [ 152 ]. Previous literature on multicomponent vesicles have examined

their equilibrium configurations [ 152 ]–[ 154 ], with some three-dimensional numerical work on

their dynamics in steady shear flow [ 155 ]. There is a gap in the literature on how non-
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equilibrium conditions in physiological flows or microfluidic processing affect the dynamics

of these vesicles. How the flow affects the thermodynamics and the kinetics of the domain

formation is also not well understood.

We have started designing numerical simulations and constructing microfluidic experi-

ments to examine the dynamics of multicomponent vesicles in flow. Here we briefly describe

the additions to the original boundary element vesicle model presented to handle the multi-

component case. A more complete description of the formulation can be found in [  156 ]. To

model a multicomponent vesicle, one must have dynamical equations that solve for the vesi-

cle shape as well as the membrane concentration field. Two new energy terms are added to

the membrane free energy functional, the phase-field energy and Gaussian curvature energy.

The phase-field energy is a free energy contribution in terms of the membrane concentra-

tion field that takes into account the energy between the phases and the line tension. The

Gaussian curvature can now have a non-zero energy contribution if the phases have differ-

ent Gaussian curvatures. Solving the system will require solving original BEM equations

for the velocity field over the vesicle surface, along with a convection-diffusion equation for

the membrane components. Note that the membrane components move along gradients of

chemical potentials from the membrane free energy. This project will provide the first set of

quantitative studies on the dynamics of multicomponent vesicles in microfluidic automated

flow control and direct boundary element simulations.
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