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ABSTRACT

Part I: Micromechanics of dense suspensions

Suspensions of rigid particles in fluid media are ubiquitous in the industry as well as in

biological and natural flows. Fresh concrete, uncured solid rocket fuel, and biomass slurries

are typical industrial applications of such concentrated suspensions, while silt transport in

rivers and blood are examples of naturally occurring suspensions. In these applications,

rheological properties and flow behavior are of interest for high-volume fractions of particles.

The suspending fluid medium is typically Newtonian in these suspensions; still, these suspen-

sions exhibit a plethora of non-Newtonian properties such as yield stresses, rate-dependent

rheology, normal stresses, to name a few. Other than volume fraction, the type of particle

material, presence of fluid-particle or particle-particle interactions such as hydrodynamic,

Brownian, colloidal, frictional, chemical, and/or electrostatic determine the rheological be-

havior of suspension. The average inter-particle gaps between the neighboring particles

decrease significantly as the suspension volume fraction approaches the maximum dry pack-

ing fraction in dense suspensions. As a result, in this regime, the short ranged non-contact

interactions of DLVO (Derjaguin and Landau, Verwey and Overbeek) and non-DLVO origins

are important. In addition, the particles can come into direct contact due to asperities on

their surfaces. The surface asperities are present even in the case of so-called smooth parti-

cles, as particles in real suspensions are not perfectly smooth. Hence, contact forces arising

from the direct touching of the particles become one of the essential factors to determine the

rheology of suspensions.

Part I of this thesis investigates the effects of microscopic inter-particle interactions on

the rheological properties of dense suspensions of non-Brownian particles by employing dis-

crete particle simulations. Hydrodynamic interactions are calculated using the Ball-Melrose

approximation, and the surface roughness is modeled as a hemispherical asperity on the

particle surface. We show that increasing the roughness size results in a rise in the relative

viscosity and the normal stress difference in the suspensions. Furthermore, we observe that

the jamming volume fraction decreases with the particle roughness underlining the pivotal

role in dictating the rheological behavior of dense suspensions of rigid particles. Conse-

17



quently, for suspensions with volume fractions close to jamming, increasing the asperity size

reduces the critical shear rate for shear thickening (ST) transition, resulting in an early on-

set of discontinuous shear thickening (DST, a sudden jump in the suspension viscosity at

the critical shear rate) in terms of volume fraction, and enhances the strength of the ST

effect as it leads to an increase in the viscosity of dense suspensions. These findings are in

excellent agreement with the recent experimental measurements and provide a deeper under-

standing of the experimental findings. Finally, we propose a constitutive model to quantify

the effect of the roughness size on the rheology of dense ST suspensions to span the entire

phase-plane. These equations can predict exact volume fractions and shear stress values

for transitions between three regimes on the shear stress-shear rate flow state diagram for

different roughness values. Thus, the constitutive model and the experimentally validated

numerical framework proposed can guide experiments, where the particle surface roughness

is tuned for manipulating the dense suspension rheology according to different applications.

A typical dense non-Brownian particulate suspension exhibits shear thinning (decreasing

viscosity) at a low shear rate/stress followed by a Newtonian plateau (constant viscosity) at

an intermediate shear rate/stress values which transitions to shear thickening (increasing vis-

cosity) beyond a critical shear rate/stress value and finally, undergoes a second shear-thinning

transition at an extremely high shear rate/stress values. In this part, we unify and quantita-

tively reproduce all the disparate rate-dependent regimes and the corresponding transitions

for a dense non-Brownian suspension with increasing shear rate/stress. We find that com-

petition between inter-particle interactions of hydrodynamic and non-hydrodynamic origins

and the switching in the dominant stress scale with increasing the shear rate/stress lead

to each of the above transitions. The inclusion of traditional hydrodynamic interactions,

attractive/repulsive DLVO (Derjaguin and Landau, Verwey and Overbeek), inter-particle

contact interactions, and constant friction (or other constraint mechanisms) reproduce the

initial thinning as well as the shear thickening transition. However, to quantitatively cap-

ture the intermediate Newtonian plateau and the second shear thinning, an additional non-

hydrodynamic interaction of non-DLVO origin and a decreasing coefficient of friction, respec-

tively, are essential; thus, providing the first explanation for the presence of the intermediate

Newtonian plateau along with reproducing the second shear thinning in a single framework.
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Expressions utilized for various interactions and friction are determined from experimental

measurements, resulting in an excellent quantitative agreement between the simulations and

previous experiments.

Part II: Motion in a stratified fluid

Density and/or viscosity variations due to temperature or salinity variations greatly in-

fluence the flow around and the sedimentation of objects such as rigid/porous particles,

drops/bubbles, and micro/small organisms in the atmosphere, oceans, and lakes. Density

stratification hampers the vertical flow and substantially affects the sedimentation of an

isolated object, the hydrodynamic interactions between a pair, and the collective behavior

of suspensions in various ways depending on the relative magnitude of stratification, inertia

(advection), and viscous (diffusion) effects. This thesis discusses these effects and elicits the

hydrodynamic mechanisms behind some commonly observed fluid-particle transport phe-

nomena in oceans and the atmosphere, like aggregation in horizontal layers. The physical

understanding can help us better model these phenomena and, hence, predict their geophys-

ical, engineering, ecological, and environmental implications. To this end, in this part of the

thesis, using fully resolved simulations, we probe the locomotion of individual organisms and

the pair interactions between them, and the sedimentation of spheroidal shaped particles in

a stratified fluid.

We investigate the self-propulsion of an inertial swimmer in a linear density stratified fluid

using the archetypal squirmer model, which self-propels by generating tangential surface

waves. We quantify swimming speeds for pushers (propelled from the rear) and pullers

(propelled from the front) by direct numerical solution of the Navier-Stokes equations using

the finite volume method for solving the fluid flow and the distributed Lagrange multiplier

(DLM) method for modeling the swimmer. We find that increasing stratification reduces the

swimming speeds of swimmers relative to their speeds in a homogeneous fluid while reducing

their swimming efficiency. The increase in the buoyancy force experienced by these squirmers

due to the trapping of lighter fluid in their respective recirculatory regions as they move in

the heavier fluid is one of the reasons for this reduction. Stratification also stabilizes the

flow around a puller, keeping it axisymmetric even at high inertia, thus leading to otherwise
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absent stability in a homogeneous fluid. On the contrary, a strong stratification leads to

instability in the motion of pushers by making the flow around them unsteady 3D, which

is otherwise steady axisymmetric in a homogeneous fluid. Data for the mixing efficiency

generated by individual squirmers explain the trends observed in the mixing produced by a

swarm of squirmers.

In addition to the motion of individual organisms, their interactions also play a signifi-

cant role in their collective motion and their ecological and environmental impacts. However,

ubiquitous vertical density stratification in these aquatic environments significantly alters the

swimmer interactions compared to in a homogeneous fluid. To this end, we numerically in-

vestigate the interactions between a pair of model swimming organisms in two configurations:

1) approaching each other, & 2) moving side-by-side with finite inertia in a linear density

stratified fluid. Depending on the squirmer inertia and stratification, we observe that the

squirmer interactions can be categorized as i) pullers getting trapped in circular loops, ii)

pullers escaping each other with separating angle decreasing with increasing stratification,

iii) pushers sticking to each other after the collision and deflecting away from the collision

plane, iv) pushers escaping with an angle of separation increasing with stratification. Strat-

ification also increases the contact time for squirmer pairs. The results presented can help

understand the mechanisms behind the accumulation of planktonic organisms in horizontal

layers in a stratified environment like oceans and lakes.

Much work has been done to understand the settling dynamics of spherical particles in

a homogeneous and stratified fluid. However, the effects of shape anisotropy on the settling

dynamics of a particle in a stratified fluid are not completely understood. To this end, we

perform numerical simulations for settling oblate and prolate spheroids in a stratified fluid.

We find that both the oblate and prolate spheroids reorient to the edge-wise and partially

edge-wise orientations, respectively, as they settle in a stratified fluid completely different

from the steady-state broad-side on orientation observed in a homogeneous fluid. We ob-

serve that reorientation instabilities emerge when the velocity magnitude of the spheroids

fall below a particular threshold. We also report the enhancement of the drag on the particle

from stratification. The torque due to buoyancy effects tries to orient the spheroid in an

edge-wise orientation while the hydrodynamic torque tries to orient it to a broad-side on
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orientation. Below the velocity threshold, the buoyancy torque dominates; resulting in the

onset of reorientation instability. Finally, the asymmetry in the distribution of the baro-

clinic vorticity generation term around the spheroids explains the onset of the reorientation

instability. We also show that the insights obtained here are also true in a fluid with higher

Prandtl number Pr = 7.0.
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PART I
MICROMECHANICS OF DENSE SUSPENSIONS: MICROSCOPIC

INTERACTIONS TO MACROSCOPIC RHEOLOGY
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1. INTRODUCTION

1.1 Motivations

Particulate suspensions—the heterogeneous mixture formed by submerging several par-

ticles in a fluid medium—is the focus of this thesis. The particles can be rigid/deformable,

isotropic/anisotropic in shape, mono/bi/poly-dispersed, active/passive and have a variety

of other properties. Similarly, the suspending fluid can be Newtonian, Non-Newtonian, or

viscoelastic. This wide variety of possible particle and fluid properties results in some of the

most interesting and complex flow behaviors for suspensions. Colloids are suspensions of very

small particles (orders of nanometres). At this scale, Brownian motion is dominant making

the particles continuously and randomly bounce around in the fluid. Typically, suspensions

with particle sizes > 100 nm are considered as a different class than colloids and solutions.

This thesis concerns itself with suspensions of such larger particles, i.e., non-colloidal sus-

pensions.

Like other fluids, suspensions are ubiquitous in nature and industrial applications. Mud or

muddy water where soil, clay, or silt particles are suspended in water, sandy water where sand

is suspended in water, and blood are some of the examples of naturally occurring suspensions.

Ceramics, paper pulp, adhesives, paints, highly conducting metal pastes, biomass slurries,

uncured rocket fuels, fresh concrete, chocolate, and pharmaceutical suspensions are well-

known examples of suspensions in industrial applications. Oobleck—which is a concentrated

mixture of corn starch and water—is a popular example of suspension which is used to

demonstrate non-Newtonian behavior of fluids to school kids and non-scientific audience at

large. In these examples, the particle sizes widely vary. They can vary from a few 100 nm

(e.g., in blood or mud) to centimeters (e.g., concrete or rocket fuel). Thus, the flow states

exhibited by suspensions vary from very low-viscosity gas-like behavior to highly viscoelastic

ordered structures. Fig.  1.1 shows a simple visualization of suspensions in terms of particle

size to pure solutions and colloids.

Predicting and understanding the macroscopic behavior of these suspensions by consid-

ering their microscopic properties is a key question of great relevance in both theory and

practice. The macroscopic behaviors include static (equilibrium) as well as dynamic (non-
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Figure 1.1. A schematic showing a) pure solution, particle size < 10−7cm,
e.g., seawater, b) colloid, particle size from 10−7-10−5 cm, e.g., milk, and c) a
suspension, particle size > 10−5 cm, e.g., mud.  Source .

equilibrium) situations. The non-equilibrium problems such as flowing sand, mixing cement

and concrete; and equilibrium problems like diffusion of proteins, and drug delivery are all

studied. For instance, the clusters and chains formation by stones in the concrete aggregate

can cause blockages in pipes. So, understanding the impact of an imposed shear rate on

particle aggregation could help in predicting these blockages a priori so that we could pre-

vent them. Similarly, ability to predict the effective viscosity of this mixture would assist

onsite engineers to optimize the pumping operations, e.g., choosing the most efficient pump

and pumping pressure. Being able to predict and manipulate the suspension micro-structure

would allow us to tune the thermal conductivity of suspension materials like Thermal Inter-

face Materials (TIMs) routinely used in cooling electronics [ 1 ]. In addition, finding ways to

increasing the amount of solid material that can be accommodated in these suspensions is

important in many applications, e.g., in biofuel plants, as it increases the rate of materials

processed, leading to higher biofuel production.
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As a result of this rich and complex behavior exhibited by suspensions, it has been an ac-

tive topic of research from as early as the 20th century. The investigation of the flow behavior

of suspensions fits organically in the field of rheology: the branch of fluid mechanics that

deals with the deformation and flow of fluids, especially the non-Newtonian flow of liquids

and the plastic flow of solids. Understanding the fluid behavior when it is subjected to an

imposed stress—for example, being pumped through a pipe or streaming down a surface—is

crucial to determining its flow. To this end, a wide range of rheological experiments and

tools have been developed to describe the reactions of a fluid to various stresses. To anal-

yse these reactions, however, requires coupling these measurements to theory. The internal

structure of the fluid governs the reaction of the fluid to imposed stress. Thus, rheologists

utilize the theory of the structure to predict the behaviour of classes of fluid. Particles by

their presence, aggregation and dispersion provide a great deal of structure to a suspension

material making it a natural problem for rheologists to investigate.

1.2 Suspension as a single effective fluid

The interactions between particles and their resulting microstructural arrangement gov-

ern the particle dynamics and suspending fluid flow at the microscopic scale. But at the

macroscopic scale, the mixture of the suspending fluid and particles can be seen as a continu-

ous effective fluid. How these microscopic inter-particle interactions govern the macroscopic

bulk rheology of suspensions is precisely the focus of this thesis as depicted by the schematic

in Fig.  1.2 .

The first rheological question asked of suspensions was how the addition of particles

affects the viscosity of a fluid. The viscosity of a fluid, η0, is a measure of its resistance to

deformation or flow. The traditional method to measure fluid viscosity is by measuring the

force it exerts on parallel plates when it is sheared in between them. This gives a measure of

the internal forces in the fluid which is often represented as the stress. In the simplest case,

we may find that there is a linear relationship between the stress, σ, and the strain rate it

is experiencing, γ̇, representing the movement of the fluid,

σ = η0γ̇ (1.1)
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Figure 1.2. Spray dried Trehalose particles used for the preparation of phar-
maceutical suspensions. Scanning electron microscope images are reproduced
from [ 2 ]. The particle surface morphology clearly shows the non-uniformities
on the particle surfaces. The numerical investigations in this thesis [  3 ]–[ 6 ]
which explain the results from recent experiments [ 2 ], [  7 ]–[ 9 ] show that these
non-uniformities affect the suspension flow properties in interesting and non-
intuitive ways. Thus, suspension properties can be manipulated by carefully
designing the particle surface morphology. However, to be able to do that,
we first need to understand the various microscopic inter-particle interactions
that are governed by particle material, shape and surface tribology which is
the focus of this thesis.

The viscosity term, η0 is a constant in this linear relationship, and if this relationship holds,

we say that the fluid is Newtonian. This class of fluids includes simple fluids like water and

air.

Many fluids including suspensions, however, do not behave in this way, and have stresses

which depend on not just the shear rate but the instantaneous shear strain, time, tem-

perature, and/or historical values of these quantities. The addition of particles makes the

fluid inhomogeneous and so unsurprisingly the Newtonian stress–shear rate relation might

no longer be valid. Therefore, we define the effective viscosity of the suspension, η, to be the

viscosity of the Newtonian fluid which gives the same stress at the same shear rate.

The first major theoretical contribution to understanding the rheological behavior of

suspensions came from none other than Albert Einstein in 1906 [  10 ] with a correction in 1911
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[ 11 ]. Einstein related the viscosity of a dilute suspension composed of spherical particles of

equal sizes in a Newtonian medium with a constant viscosity, η0, to the volume fraction, φ,

which is the fraction of particles’ volume to the total volume in the Stokes flow limit:

ηr = 1 + 5
2φ. (1.2)

This the well-known expression proposed by Einstein for the suspension relative viscosity,

ηr (η/η0, ratio of the suspension viscosity to the viscosity of the suspending medium) for

φ < 10% [ 11 ]. The inter-particle interactions can be ignored in the dilute regime and thus,

Einstein calculated this viscosity by considering the effect of immersing a single solid spherical

particle in a linear shear flow.

The physical origin of this increase in viscosity can be understood by looking at the flow

around a freely suspended single particle (no net force or torque acts on it) in a shearing

flow. The ambient shearing flow is composed of a rotational flow component and a straining

flow component (see Fig.  1.3 ). The solid-body rotation of the sphere due to the rotating

component of the shearing flow creates no disturbance. The rigid particle, however, resists

the straining component of the shearing flow producing a disturbance flow. This disturbance

flow consequently leads to an increase in the rate of viscous dissipation and hence, an added

contribution to the bulk stress of the material owing to the presence of the particles called

particle stress. This particle stress can be quantified by using the stresslet induced by an

isolated particle in a simple shear flow [ 12 ]. In simple words, the resistance of the rigid

particle to the straining component of the shearing force causes the rise in the suspension

viscosity.

Many researchers have extended Einstein’s analysis using a variety of methods to include

particle interaction effects and calculate the particle stress contribution to the total bulk

stress to predict the suspension viscosity in a semi-dilute regime (φ < 0.15) [ 13 ]. The

final results is an improvement to Einstein’s formula (eq.  1.2 ) usually done by adding more

polynomial terms in the expression of ηr, such that [ 14 ], [  15 ],

ηr = 1 + 5/2φ+Kφ2 +O(φ3), (1.3)
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Figure 1.3. Decomposition of a sphere in a simple shear flow by combining a
sphere in rotational flow and a sphere in a straining flow.

where K is a constant. In the semi-dilute and concentrated suspensions, the interactions

between particles cannot be neglected. For example, at 10 % volume fraction, the average

inter-particle distance is d/2φ1/3 ≈ d, where d is the particle diameter. Thus, pair hydrody-

namic interactions become significant yielding a viscosity contribution of O(φ2). However,

these hydrodynamic interactions are long-ranged and hence, their calculation difficult [ 12 ].

The disturbance flow created by a point force decays as O(1/r), while by a freely suspended

sphere in a shearing flow decays as O(1/r2) with the radial distance from the center, r. This

leads to an added stress on a nearby sphere which scales as O(1/r3). To calculate this added

stress a special method known as hydrodynamic renormalisation must be employed [ 15 ], [ 16 ]

because a simple integration over the entire domain assuming a uniform pair distribution

function diverges. For a pure straining flow this gives K = 6.95. However, for a simple

shear flow, defining the pair probability is complicated because of the existence of closed

trajectories due to the rotational flow component. Assuming a random microstructure leads

to K ≈ 5 which agrees reasonably with the experimental data in the semi-dilute regime (up

to φ ≈ 0.10 − 0.15) but fails to capture rapid rise in viscosity in the concentrated regime

(φ > 0.2). Thus, the mechanics of suspensions in a dilute and semi-dilute regime, where

theoretical studies are possible, is fairly well understood and well quantified.

Complications arise once we look beyond the dilute regime and consider moderately and

highly concentrated suspensions even for mono-disperse suspensions. This complexity is a

direct result of the non-linear effects coming from the inter-particle interactions such as long-
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Figure 1.4. A schematic summary of rheology of suspensions.

ranged hydrodynamic interactions, short-ranged pair-wise lubrication interactions, and inter-

particle interactions of other origins. The effects of these interactions manifest themselves

in the bulk rheological properties and the microstructure of the suspensions as summarized

in Fig.  1.4 . The simple expression for ηr derived in the dilute/semi-dilute limit is no more

applicable for the concentrated or dense suspensions. The best way to understand the

rheological behavior of concentrated suspensions is by performing experiments and coming

up with constitutive equations that can help to predict the suspension viscosity. This was

the main focus in the field in most of the last century. The efforts were made mainly to

relate the relative viscosity of the suspension to its volume fraction.

Intuitively, one can imagine that the viscosity would approach to a very high value as

the suspension volume fraction gets closer to the maximum volume fraction, φm, beyond

which the suspension stops flowing or jams. The jamming fraction is usually smaller than

the random close packing fraction, φRCP , for dry granular suspensions. This is because of

the governing role of short range non-contact and contact interactions in dense suspensions

as the average inter-particle gap becomes very small as depicted in Fig.  1.4 . Due to this com-

monality among all the suspensions irrespective of particle properties, it has been observed

that, ηr vs φ/φm plots collapse on a single curve for an appropriate value of φm [ 28 ]–[ 31 ] (see

fig.  1.5 ). These experiments were performed in either low-shear or high-shear limits in which
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Figure 1.5. Relative viscosity, ηr vs reduced volume fraction, φ/φm. Experi-
ments: Boyer et al. (2011a) [ 17 ]; Bonnoit et al. (2010) [ 18 ]; Dagois-Bohy et al.
(2015) [ 19 ]; Dbouk, Lobry & Lemaire (2013) [ 20 ]; Ovarlez, Bertrand & Rodts
(2006) [ 21 ]; and Zarraga, Hill & Leighton (2000) [ 22 ]. Numerical simulations:
Sierou & Brady (2002) [ 23 ] and Gallier et al. (2014) [ 24 ] with (µ =0.5) and
without (µ = 0) friction; of Mari et al. (2014) [ 25 ] with (µ = 1) and without
(µ =0) friction, where µ is the friction coefficient between the spheres. Viscos-
ity laws: of Einstein (1906) [ 10 ] of Batchelor & Green (1972) [ 15 ], of Krieger
and Maron–Pierce, and of Eilers (Stickel & Powell 2005 [ 26 ]). Adapted from
[ 27 ] with permission from Cambridge University Press.

the suspension viscosity is independent of the shear rate value. As a result, many satisfactory

models for ηr vs φ/φm exist, among which Krieger-Dougherty (ηr = (1− φ/φm)−[η]φm , where

[η] is a fitting constant) [  32 ] and Maron-Pierce (ηr = (1− φ/φm)−2) [  33 ] are widely used.

However, this is not the entire picture as suspensions exhibit a gamut of other non-Newtonian

behaviors.

Non-Newtonian and shear rate dependent behaviors are commonplace for dense suspen-

sions with φ > 40%. The literature hints that suspensions are generally shear thinning

(i.e., their viscosity decreases with shear rate) with a Newtonian limiting behavior in the

low and high shear rate limits. But this is not at all always true. Many researchers have
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Figure 1.6. Sketch of the pair interactions between spheres under simple
shear. (a) For perfectly smooth spheres, the trajectories exhibit a fore–aft
symmetry. (b) For rough spheres, the trajectories are irreversible and asym-
metric. Adapted from [  27 ].

observed that a high shear rate limit is a Newtonian plateau before the onset of shear thick-

ening (ST) with increasing shear rate [ 34 ], [ 35 ]. Shear thickening signifies an increase in

the suspension viscosity with increasing shear rate. The experimental data suggest that

any kind of suspension can show shear thickening given the right circumstances [ 35 ]. The

divergence of suspensions from Newtonian behavior is not limited just to shear-thinning or

thickening. Yield stress [ 36 ], non-zero normal stress differences [  37 ], particle migration [ 38 ]

and anisotropic microstructure [ 39 ] are some of the well-known non-Newtonian behaviors

reported in the rheology of suspensions.

The loss of isotropy of the suspension microstructure has a direct link with the Non-

Newtonian behavior in suspensions. Some basic physical understanding of the emergence of,

e.g., normal-stress differences can be obtained by looking at the pair interactions between

two spheres in a simple shear flow in Stokes flow limit as depicted in Fig.  1.6 . Two colliding

perfectly smooth spheres exhibit reversible and symmetric trajectories which follows the

basic reversibility of the Stokes flow (see Fig.  1.6 a). This pair interaction creates additional

shear stress, however, it does not lead to normal-stress differences owing to the equal but

opposite effects of the compressive and extensive portions of the flow. But in reality, many

imperfections exist leading to the breaking of reversibility, e.g., contacts between the particles

due to asperities on their surfaces. These contacts make the trajectories irreversible and

asymmetric, resulting in non-isotropic normal stresses (see Fig.  1.6 b) as the effects of the
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compressive and extensive portion of the flow no more cancel each other. However, measuring

and quantifying these effects can be challenging and is elaborated in the following section.

1.3 Rheometry and the need of computer simulations

Measuring the rheological properties of suspensions (even viscosity) may prove to be chal-

lenging as it requires a specific procedure and analysis depending on the suspension. Unin-

tended effects such as the wall-slip effect, sedimentation (if particles have higher density then

the fluid) or creaming (if the particles have a lower density then the fluid), shear-induced par-

ticle migration, and sample ejection at high shear rates can thwart the measurements. Tradi-

tionally, rotational rheometers such as cone-and-plate, parallel plate and Couette rheometers

have been commonly used for bulk viscosity measurements and are presented in Fig.  1.7 .

The less popular inclined-plane rheometer is also used to measure rheological properties of

suspensions as it permits the exploration of a larger φ range. Non-intrusive techniques such

as magnetic resonance imaging (MRI) or ultrasound can be used in conjunction with classical

rheometers to overcome aforementioned unintended effects to perform local measurements.

Compared to macroscopic viscosity measurements, normal-stress differences are more

difficult to measure. Standard rheological tools shown in Fig.  1.7 have been used but also

adapted, e.g., with pressure transducers at the wall [ 20 ], [ 40 ] as shown in Fig.  1.7 e. Alterna-

tive approaches utilizing the surface diflections caused by the anisotropic stress in sheared

suspensions have also been undertaken to infer the normal-stress difference, e.g., in a Weis-

senberg or rotating-rod cell and in a tilted trough (see Fig.  1.7 f-g). Weissenberg geometry

method is well known in polymers as the rod-climbing effect. However, for suspensions of

spheres, a rod-dipping effect is obsrved as the normal stress differences are negative and as

will be discussed in the following chapters of the thesis. The second tilted-trough method

(Fig.  1.7 g) has some significant advantages over conventional rheometers, e.g., reduced con-

finement effects and improved sensitivity [ 41 ]–[ 43 ]. Coupling the non-conventional rheolog-

ical tools (rotating rod and tilted trough) with conventional rheometers yields a complete

measurement of the viscosity and the two normal stress differences, N1 and N2 [ 22 ], [ 43 ]. In

addition, particle pressure is another important rheological property in suspensions. It is an
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Figure 1.7. Rheometry used for measuring the viscosity of suspensions. (a)
Cone-and-plate rotational rheometer. The fluid sample is sheared between the
cone and plate and the viscosity is given by η = 3θT/(2πR3Ω), where T is
the measured torque. Normal force acting on the upper plate yields the first
normal-stress difference, N1. (b) Parallel-plate rotational rheometer. Viscosity
is given by η = 2Th/(πR4Ω). The normal force acting on the upper plate gives
the difference between the first and second normal-stress differences, N1−N2.
(c) Couette rotational rheometer. The fluid sample sheared in the annular gap
and the viscosity is given by η = T (Rc − Rb)/[πLΩ(Rc + Rb)R2

b ]. (d) Inclined
plane rheometer. The fluid flows down an inclined plane, and the viscosity
is given by η = ρgh2sinθ/(2u), where ρ is the fluid density. (e) Parallel-plate
rheometer with differential pressure transducers for measuring the radial profile
of the normal stress along the velocity gradient direction yielding N2 + N1/2
and N1 + N2. (f) Weissenberg, or rotating rod, flow. The anisotropic stress
induce free surface deflection (rod dipping in the case of suspensions) and yield
N2 + N1/2. (g) Tilted-trough flow. N2 induces the free-surface deflection (a
bulge in the middle) which gives a direct measurement of N2. Valid for small
angles and small gaps. Adapted from [ 27 ].

33



analogue to the osmotic pressure exerted by colloidal particles and arises due to the shear

rate induced agitation and collisions between the particles [ 27 ].

Computer simulations have been significantly helpful in overcoming the limitations of

rheology measurements and understanding the fundamental mechanisms behind the different

non-Newtonian behaviors observed for dense suspensions. Before 2000, Stokesian dynamics

[ 44 ] was the predominantly used method for simulations of particulate suspensions. In this

method, linear Stokes flow equations are solved for all the particles simultaneously at discrete

time steps to solve for the hydrodynamic interactions. The result of these calculations

is a system of linear equations for all the particles which can be represented in a matrix

form linearly relating particle velocities and the forces acting on them. If we calculate

velocities from the forces acting on the particles, it is called the resistance formulation and the

inverse problem is called the mobility formulation, and the corresponding matrices in these

formulations are called the resistance matrix and the mobility matrix, respectively. Using

the multi-pole expansion form of the solution to the Stokes equations, one can construct

the resistance matrix as described in [ 45 ] and solve for the particle velocities and stresses.

Other simulations techniques are the dissipative particle dynamics [ 46 ], the lattice Boltzmann

method [ 47 ], the force coupling method [ 48 ] and the fictitious domain method [ 24 ]. The

method of choice for the simulation of dense suspensions near their jamming volume fraction

limit is the one proposed by Ball & Melrose [ 49 ], which is an approximation of the Stokesian

dynamics for the dense suspensions.

The current understanding in the field is that there is no fundamental time scale that

determines the flow behavior of suspensions. But there exists a force/stress scale which

determines the various rate-dependent behaviors shown by dense suspensions [ 50 ], [ 51 ]. So,

in recent years, researchers have devoted significant efforts in understanding the mechanisms

which can introduce a force scale in the problem involving the flow of suspensions. These

forces can arise due to multiple reasons such as the chemical interactions between the particle

and the fluid, the electrostatic interactions between neighboring particles, DLVO (named

after Derjaguin and Landau, Verwey and Overbeek) interactions, Brownian motion, and

friction to name a few. This thesis is concerned with exploring the role of one such inter-
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Figure 1.8. Atomic force microscope (AFM) image of polystyrene particle
surface. Reproduced from Lobry et al. (2019) [  52 ].

particle force interaction known as the contact forces, which arise due to the contact between

the particles due to the presence of irregularities on their surfaces.

Among all the properties of the particles which can give rise to a force, the particle surface

roughness is a peculiar one. This is because, even in the ideal case of smooth spheres, the

spheres are not perfectly smooth and have surface asperities of ≈ O(10−3−10−2) times their

radii [ 53 ]. Fig.  1.8 shows the AFM image of a polystyrene particle which clearly shows the

presence of irregular asperities on the particle surface. So, in the dense suspension limit, the

lubrication film (which theoretically can prevent the contact between the particles) can break

and the particles can directly touch each other owing to the presence of surface roughness.

This leads to contact forces which can be split into two components: 1) the normal forces

acting along the line joining the centers of the particles, and 2) the tangential forces acting

in the tangent plane to the contacting particles. Tangential forces also result in a torque on

the particle and most importantly friction between the particles.

To this end, we numerically investigate the effects of particle roughness in determining

the rheological behavior of dense suspensions. To do that, first, we model the fluid-particle

and particle-particle interactions to be able to accurately perform the simulations. This

involves calculating the hydrodynamic interactions between the particles, modeling the sur-

face asperities, incorporating the contact and other external forces between the particles,

solving for particle velocity, and integrate particle velocities forward in time to calculate the
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suspension micro-structure. We also calculate the bulk stress in the system which is conse-

quently utilized to extract relevant rheological data from the simulations such as, the shear

stress, σ, the relative viscosity of the suspension, ηr, the first N1, and second, N2, normal

stress differences. We elaborate more on the governing equations and the methodology in

the following sections.

1.4 Governing Equations

This section presents the numerical model for simulating the flow of dense suspensions.

Dynamic simulations of suspensions involve modeling the hydrodynamic interactions, contact

forces, other inter-particle interaction forces (if present) and the evolution of microstructure.

Lubrication interactions scale with the inverse of the gap between the neighboring particles

and are theoretically large enough to prevent the inter-particle contacts. But in reality, the

presence of asperities on the surface of the particles promotes an early contact between the

particles. As a result, asperities dictate the surface-to-surface separation which affects the

lubrication stresses and in addition give rise to contact stresses. Hence, accurate modeling

of the contact dynamics is essential in such simulations. The next few sub-sections explain

the approaches utilized to model all these effects properly.

1.4.1 Particle Dynamics

The fluid motion is governed by the Navier-Stokes equations and the particle motions

are governed by the force balance for individual particle according to the Newton’s second

law given as follow:

M
d

dt

U

Ω

 =
∑
α

Fα(U,Ω, r)

Tα(U,Ω, r)

 , (1.4)

where M is the (6N × 6N) mass/moment of inertia matrix for N particles, U and Ω are

velocity and angular velocity vectors of size 3N , respectively. Fα and Tα are various force

and torque vectors of size 3N acting on the particles and r is the 3-D position vector.

In the case of suspension of non-Brownian rough particles, the forces acting on the par-

ticles are hydrodynamic interaction and the inter-particle contact forces between the pair
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of particles in contact due to presence of finite roughness. The above force balance can be

written as,

M
d

dt

U

Ω

 =

FH

TH

+

FC

TC

 , (1.5)

where subscripts H and C denote hydrodynamic and contact forces respectively.

The particle sizes in such suspensions typically range from 10 µm to 100 µm [ 7 ], [ 20 ],

[ 22 ], [ 54 ], [ 55 ]. As a result, the Reynolds number, Re = ρ0a
2γ̇/η ≈ O(10−5 − 10−7), where

ρ0 is the mass density of the particles, a is the particle radius, γ̇ is the shear rate and η is

the viscosity of the carrier fluid, is negligible and the particle inertia can be neglected for

neutrally buoyant particles. Also, the Péclet number, P e = 6πηa3γ̇/kT > O(106) [ 7 ], [ 26 ],

[ 54 ], where kT is the Boltzmann constant times the absolute temperature, means the flow is

in non-Brownian regime. This means the motion of the particles is governed by the balance

between the hydrodynamic and the contact forces alone. Since the focus of this paper is

to study the effect of particle surface roughness on the rheology of suspensions, other inter-

particle interaction forces (e.g., electrostatic repulsive forces due to presence of charge, Van

der Waals forces, etc) are neglected, but they can be included in a straightforward manner

whand is done in chapter  5 . So we can equate the LHS in the above equations to 0 and get,

0 =

FH

TH

+

FC

TC

 . (1.6)

In this work, we study the behavior of suspension in a Newtonian fluid medium with a

constant viscosity η under an imposed shear flow given as:

U∞(r) = Ω∞ × r + E∞ · r, (1.7)

where U∞(r) is the imposed velocity field expressed using the angular velocity vector Ω∞

and the rate-of-strain tensor E∞. For a shear rate γ̇, a simple shear flow can be expressed

with the following non-zero elements, Ω∞3 = −γ̇/2 and E∞12 = E∞21 = γ̇/2.
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In the Stokes flow regime, velocities of the particles have linear dependence on the hy-

drodynamic forces acting on the particles. This linear relation is often represented in the

form of the resistance relations [ 12 ], [  44 ]. So, Eq.  1.6 becomes,

0 = −R ·


U−U∞

Ω−Ω∞

−E∞

+

FC

TC

 . (1.8)

Here R is the grand resistance matrix for all the particles [ 44 ] relating particle velocities to

the forces and torques. The above equation can be solved to calculate the particle velocities

at any time step. The positions of the particles at the next time step t + dt can then be

obtained by time integration of these velocities.

1.4.2 Hydrodynamic interactions

Instead of solving the Stokes equations, which is computationally expensive, we make

use of the Ball-Melrose [ 49 ] approximation to approximate the hydrodynamic interactions in

terms of near field lubrication interactions which are pair-wise additive unlike the many-body

nature of long range hydrodynamic interactions [  44 ]. The lubrication interactions diverge as

the narrow inter-particle gaps between the nearby solid particles reduces. As a result, the

grand resistance matrix R can be represented as a sum of contribution from Stokes drag and

a contribution from the lubrication interactions [ 25 ], [  49 ], [  56 ]:


FH

TH

SH

 = −(Rstokes + Rlub) ·


U−U∞

Ω−Ω∞

−E∞

 , (1.9)

where SH is the hydrodynamic stresslet acting on the particles [ 12 ], [ 13 ] and is required

for calculation of the stress tensor. Rstokes is the diagonal matrix giving Stokes drag forces
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and torques. Rlub is the sparse matrix giving near-field lubrication interactions and can be

calculated as:

Rlub =


RFU RFΩ RFE

RTU RTΩ RTE

RSU RSΩ RSE

 = η


A B̃ G̃

B C H̃

G H M

 . (1.10)

Here A, B, C are second order tensors while G, H are third order tensors and M is a

fourth order tensor which depend on the dimensionless inter-particle gap between ith and jth

particles with radii ai and aj, s(i,j) = 2(d(i,j) − ai − aj − hr)/(ai + aj), the center-to-center

normal vector n(i,j) = d(i,j)/d(i,j) with d(i,j) = (r(j) − r(i)) being the particle center to center

vector and d(i,j) = |d(i,j)| and the particle radius ratio λ = aj/ai. hr is the height of the

asperity on the particle surface (Fig.  1.9 ) and the tilde ˜ on the top are used to denote

transpose.

Figure 1.9. Sketch of roughness model. δ is the hydrodynamic separation
distance and hr is the roughness height.

We follow the approach of Mari et al. [ 25 ] and consider only the squeeze, shear and pump

modes of Ball and Melrose and neglect the twist mode. This is physically consistent as the

modes considered contain 1/s(i,j) and log(1/s(i,j)) as the leading terms which are dominant

in the near-field interactions [ 12 ], [  57 ]. The twist mode is not associated with any of the

diverging terms during the particle-particle contact and hence can be neglected. Further

details for calculating the elements of the lubrication resistance matrix can be found in Mari

et al. [ 25 ].
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Thus, the leading terms are divergent as the particles approach very close to each other

and theoretically should prevent the inter-particle contact. But as mentioned before, this

is not observed in reality and the particles come into contact owing to the presence of

finite roughness on their surfaces [  58 ]. These contacts give rise to contact forces which have

significant impact on the rheology of such suspensions [ 7 ], [ 54 ]. Hence, accurate modeling of

the contact forces is important to obtain the observed behavior for suspensions of rigid rough

particles. the following subsection gives a brief review of the contact model implemented. We

implement different models for the friction between the particles to recover experimentally

observed shear thinning and shear thickening behavior in the intermediate and the dense

volume fraction limits. Hence, the contact model is discussed again in detail in each of the

remaining chapters.

1.4.3 Roughness model and contact forces

In the recent years, researchers have studied the effects of inter-particle contacts on

the rheology of suspensions [ 24 ], [  25 ], [  59 ]. The emphasis is on the accurate modeling of

contact forces which is often times done based on the Discrete Element Modeling approach

widely used in granular mechanics. Recently, Lobry et al. [ 52 ] have utilized the normal

load dependent friction model given by Brizmer et al. [ 60 ] to simulate shear thinning that

is routinely observed in experiments involving shear flow of suspensions. For this study, we

utilize the same elastic-plastic mono-asperity contact model as it is valid for the materials

commonly used in experiments. This contact model has been previously used by Lobry et

al. [ 52 ]. Actual asperities are not hemispherical [ 7 ]; so the modelling is only one possibility.

Aside from the known reduction in friction coefficient by load in elastomers [  61 ] the presence

of fluid will also alter the coefficient of friction between the particles. But we neglect these

effects in the present study for simplicity. We do not include the viscous damping in order

to be consistent with previous studies [ 24 ], [ 52 ], [ 62 ]. A brief explanation for the contact

model is provided below.

Let us consider two spherical particles with radii ai and aj with surface roughness hr =

εra1 (a1 = characteristic particle size) coming into contact as shown in Fig.  1.9 . εr is the

dimensionless roughness. The contact between the particles takes place via the hemispherical
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Figure 1.10. Schematic showing contact dynamics between contacting parti-
cles and corresponding force models used for force and torque calculations

asperity. The contact causes the asperity to deform which in turn gives rise to contact

forces between the touching particles. The asperity deformation can be defined as δ =

(d(i,j) − ai − aj − hr), we say the contact occurs when δ ≤ 0. Furthermore, we split the

contact force (F(i,j)
C ) into two components [ 24 ], [  25 ], [  52 ], i) F(i,j)

C,n which is the normal contact

force acting along the line of centers of the two particles, and ii) F(i,j)
C,t which is the tangential

contact force acting along the tangent plane at the particle contact.

F(i,j)
C = F(i,j)

C,n + F(i,j)
C,t . (1.11)

A schematic of contact forces is presented in fig.  1.10 . Contact forces also induce an additional

contact stresslet for the particle given by the vector product of particle center to center vector

and the contact force as [  25 ]:

S(i,j)
C = d(i,j) ⊗ F(i,j)

C . (1.12)
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1.4.4 Stress and bulk rheology calculations

To calculate the rheological properties we need the bulk stress in the suspension. The

bulk stress in a suspension of rigid particles in a flow with strain rate E∞ is (subtracting

isotropic part of the fluid pressure):

Σ = 2µE∞ + Σp, (1.13)

where Σp is the particle contribution to the bulk stress, and is given by the sum of hydro-

dynamic stress ΣH and the contact stress ΣC as:

Σp = ΣH + ΣC , (1.14)

where ΣH and ΣC can be calculated by taking ensemble average of the hydrodynamic SH
and contact SC stresslets at each time step. We get,

ΣH = 1
V

(∑
i

S(i)
H

)
, (1.15)

ΣC = 1
V

∑
i>j

S(i,j)
C

 . (1.16)

Therefore,

Σ = 2µE∞ + 1
V

∑
i

S(i)
H +

∑
i>j

S(i,j)
C

 , (1.17)

where V is the volume of the domain, L3. Shear stress σ, normal stress differences N1 and

N2, relative viscosity ηr, and normal stress difference (N) can then be defined as σ = Σ12,

N1 = Σ11 − Σ22, N2 = Σ22 − Σ33, ηr = σ/(ηγ̇) and N = N1 −N2. The systematic splitting

of the particle stress in contributions from hydrodynamic and contact stresses allows us

to understand the relative contributions from lubrication and contact interactions to the

rheological properties. E.g., the contribution from the hydrodynamic stress to the relative

viscosity is ηH
r = 1 + ΣH

12/(ηγ̇) and the corresponding contribution from the contact stresses

is ηC
r = ΣC

12/(ηγ̇) and so on.
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1.5 Part I outline

With the fundamental concepts and numerical framework discussed, this section outlines

the structure of part I of the thesis. Here we only provide a big picture view of each of the

following chapters, with motivations behind choosing those problems and detailed analysis

in the respective chapters. The remaining part I is organized as follow:

Chapter  2 is motivated by the experimental results from Tanner & Dai [ 7 ], who, for

the first time, showed that increasing the particle roughness leads to an increase in the

suspension viscosity. This result is significant as earlier theoretical and numerical studies

had predicted that increasing the particle roughness will lead to a decrease in the suspension

viscosity, contrary to the recent experiments. With the numerical framework developed we

show that the suspension relative viscosity and the normal stress difference increase with

the roughness of the particles. These findings show a satisfactory agreement with recent

experiments from Tanner & Dai [ 7 ]. We propose a modified Maron-Pierce law to predict the

relative viscosity with varying volume fractions and roughness. The jamming volume fraction

decreases with the particle roughness owing to the increase in effective particle radii and the

average coefficient of friction with roughness. The jamming fraction is also dependent on the

stress and increases with stress. This directly leads to the increase in the relative viscosity

with roughness in suspensions of rough non-Brownian particles. These findings suggest that

accurate modeling of the contact dynamics and friction is crucial to accurately simulate the

rheological behavior of dense suspensions subjected to shear flow.

Chapter  3 builds on the findings of chapter  2 and investigates the role of particle rough-

ness in governing the shear thickening (ST) behavior typically observed for dense suspensions.

A rise in the suspension viscosity and the reduction in the jamming fraction with roughness

signifies that dense suspensions of rough particles would undergo ST at an earlier shear rate

and a lower volume fraction compared to their smooth counterparts. This has recently been

shown by experiments as well [ 8 ], [ 9 ]. To this end, we numerically investigate the effects of

systematically increasing the particle surface roughness on ST suspensions. We show that

increasing roughness leads to the early onset of shear-thickening, especially discontinuous

shear thickening, in terms of both the critical shear rate and the critical volume fraction. In
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addition, roughness enhances the strength of the ST effect as it leads to an increase in the

viscosity of dense suspensions. We explain these results by investigating the role of rough-

ness in the evolution of contact networks and the jamming fraction. Increasing roughness

leads to denser contact networks with high contact stresses and reduction in the jamming

fraction. Finally, we visualize the effect of roughness on the phase diagram for viscosity in

the shear rate - volume fraction plane. The results presented in this chapter are consistent

with the mentioned experimental studies which indicate that the computational framework

developed can be utilized to predict and tune suspension behavior for specific applications.

Chapter  4 brings the findings from previous chapters together in the form of a constitu-

tive model to quantify the effects of increasing the particle roughness on the ST suspensions.

The constitutive model proposed can be utilized to predict the rheological properties such

as the relative viscosity and the normal stress differences for any roughness value, volume

fraction, and applied shear stress. The results from this chapter can be used to tune the par-

ticle surface roughness for manipulating the dense suspension rheology according to different

applications [ 63 ].

Chapter  5 probes beyond just contact interactions induced by the asperities on the par-

ticle surfaces by incorporating other non-contact interactions between the particles such as

DLVO (Derjaguin and Landau, Verwey and Overbeek) and non-DLVO. Doing so, we unify

and quantitatively reproduce all the disparate rate dependent regimes and the corresponding

transitions observed for a dense non-Brownian suspension with increasing shear rate/stress.

Inclusion of traditional hydrodynamic interactions, attractive/repulsive DLVO interactions,

the inter-particle contact interactions and a constant friction (or other constraint mecha-

nism) reproduce the initial thinning as well as the shear thickening transition. However, to

quantitatively capture the intermediate Newtonian plateau and the second shear thinning,

an additional non-hydrodynamic interaction of non-DLVO origin and a decreasing coefficient

of friction, respectively, are essential; thus, providing the first explanation for the presence

of the intermediate Newtonian plateau along with reproducing the second shear thinning in

a single framework. Expressions utilized for various interactions and friction are determined

from experimental measurements and hence, result in an excellent quantitative agreement

between the simulations and previous experiments.
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Chapter  6 summarize all the above studies in the context of our original goal. Also,

this chapter proposes further investigation ideas that can help to improve our fundamental

understanding of the rheology of dense non-Brownian suspensions.

1.6 Publications and division of work between authors

The main advisor for the project is Prof. Arezoo M. Ardekani (AMA). AMA was respon-

sible for conceptualization, project administration and funding accusation.

1. Chapter  2 : Related publication - More, R. V. and Ardekani, A. M., Effect of rough-

ness on the rheology of concentrated non-Brownian suspensions: A numerical study.

 Journal of Rheology, 64(1), pp.67-80, 2020.  . Author contributions - Rishabh V. More

(RVM) developed the code, and performed simulations. RVM and AMA developed

methodology, analyzed the results and wrote the paper.

2. Chapter  3 : Related publication - More, R. V. and Ardekani, A. M., Roughness induced

shear thickening in frictional non-Brownian suspensions: A numerical study.  Journal

of Rheology, 64(2), pp.283-297, 2020  . Author contributions - RVM developed the code,

and performed simulations. RVM and AMA developed methodology, analyzed the

results and wrote the paper.

3. Chapter  4 : Related publication - More, R. V. and Ardekani, A. M., A constitutive

model for sheared dense suspensions of rough particles.  Journal of Rheology, 64(5),

pp.1108-1120, 2020. Author contributions - RVM developed the code, and performed

simulations. RVM and AMA developed methodology, analyzed the results and wrote

the paper.

4. Chapter  5 : Related publication - More, R. V. and Ardekani, A. M., Unifying disparate

rate-dependent rheological regimes in non-Brownian suspensions.  Physical Review E,

103(6), p.062610, 2021.  Author contributions - RVM developed the code, and performed

simulations. RVM and AMA developed methodology, analyzed the results and wrote

the paper.

45

https://doi.org/10.1122/1.5097794
https://doi.org/10.1122/1.5129094
https://doi.org/10.1122/1.5129094
https://doi.org/10.1122/8.0000039
https://doi.org/10.1122/8.0000039
https://doi.org/10.1103/PhysRevE.103.062610
https://doi.org/10.1103/PhysRevE.103.062610


2. EFFECT OF ROUGHNESS ON THE RHEOLOGY OF

CONCENTRATED NON-BROWNIAN SUSPENSIONS

2.1 Introduction

Suspensions of rigid particles in fluid media are ubiquitous in industry as well as in

biological and natural flows. Fresh concrete and uncured solid rocket fuel are two typical

industrial applications of such concentrated suspensions for which rheological properties and

flow behavior are of interest for high volume fractions (φ) of particles. The suspending fluid

medium is typically Newtonian in these suspensions. Other typical examples are metal pastes

which consists of a functional powder (organic/inorganic) in a fluid which is often composed

of polymeric binder, surfactant and solvent to provide suitable rheological properties [ 64 ]–[ 70 ]

and dispersion state [ 65 ], [ 71 ]–[ 74 ] for processing and quality-control purposes. These metal

pastes have found widespread applications in ceramics [ 75 ], [ 76 ], solid oxide fuel cell [ 77 ], [ 78 ],

and inorganic solar cell [ 79 ], [ 80 ] industries. Many studies have been performed to date to

understand the intricate physics governing suspensions of rigid particles in Newtonian/non-

Newtonian suspending fluids but the understanding is far from complete. This complexity

mainly comes from the wide variety of fluid-particle or particle-particle interactions such as

hydrodynamic, Brownian, colloidal, frictional, collisional, electrostatic [ 81 ]. As a result, even

the most idealized case of smooth perfectly rigid monodisperse spheres is likely to exhibit

strong non-Newtonian effects such as yielding [ 82 ], shear-thinning [ 83 ], shear-thickening [ 25 ],

[ 56 ], [  84 ]–[ 86 ], particle migration [ 38 ] or anisotropic microstructures [ 26 ], [  39 ], [  87 ].

The rheological characteristics of such dense suspensions, like viscosity, normal stress

differences and normal forces depend on solid concentration, friction between the particles

[ 24 ], [  25 ], [  82 ], roughness of particles [ 7 ], [  24 ], [  54 ], [  88 ], particle size distribution [ 89 ], particle

shape [ 90 ]–[ 92 ], chemical composition of the carrier fluid [ 19 ], particle-fluid interactions [ 82 ],

[ 93 ], and many other factors. Researchers have attempted to understand the effects of these

factors on the rheology of suspensions in the last few decades [ 26 ], [ 27 ], [ 85 ], [ 94 ]. However,

compared to other factors affecting the suspension behavior, the effects of particle roughness

on the rheological properties of dense suspensions have not been much explored.
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Recent computational studies have revealed the crucial role played by the inter-particle

friction in governing the suspension behavior in shear flows [  24 ], [  25 ], [ 52 ], [  56 ], [  62 ]. Friction

gives rise to tangential forces in addition to normal forces between the particles. Simulations

for non-Brownian suspensions of rough particles at a fixed volume fraction show an increase

in the relative viscosity with an increase in the coefficient of friction which results due to

increase in contact stresses with friction [ 24 ]. Friction also plays a significant role in giving

rise to continuous and discontinuous shear thickening [ 25 ], [ 56 ], [  95 ], [ 96 ]. A coefficient of

friction that increases with shear stress in the suspensions leads to shear thickening in dense

suspensions (φ > 50%) [  97 ]. On the other hand, a normal load dependent coefficient of

friction which decreases with normal force between the particles [ 60 ] can reproduce shear-

thinning behavior which is often observed in sheared suspensions [ 7 ], [ 54 ]. These studies show

that friction and hence all the parameters influencing friction such as roughness, shear rate,

shear stress, volume fraction play a role in determining the behavior of sheared suspensions.

As a result, much of the focus in recent years in the field has been on understanding these

effects. Among all the parameters mentioned above, roughness is one of the most important

ones. This is because particles are never perfectly smooth. Even the smoothest particles

have a roughness of O(10−3 − 10−2) times their radii [ 7 ], [ 52 ], [ 53 ]. These non-uniformities

on the particle surface lead to early contacts between particles which would otherwise be

prevented due to lubrication interaction in the case of smooth particles.

These intermittent contacts due to the presence of particle surface roughness lead to dy-

namic irreversibilities and chaos in oscillating shear flows [  98 ], [ 99 ] as well as the elimination

of the closed orbit trajectories of the particles found in smooth dilute suspensions [ 100 ],

[ 101 ] (See Fig. 5 in reference [ 27 ]). Roughness and friction between the particles lead to the

breaking of symmetric trajectories present for smooth particles in a shear flow and change

the stresslets of the particles as well [  24 ], [ 102 ]. Surface roughness can therefore significantly

affect the rheology and microstructure of the suspensions as shown by various numerical

studies [  23 ], [  102 ]–[ 105 ].

Theoretical studies regarding the effects of roughness on the rheology of suspensions

in dilute regime concluded that large roughness leads to decrease in relative viscosity and

increase in the magnitude of normal stress differences [ 37 ], [  88 ], [  95 ], [  106 ]. A direct numer-
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ical simulation study using a simple mono-asperity assumption and Hertz contact law for

modeling contact dynamics also shows a similar trend of decrease in viscosity with particle

roughness [ 24 ]. The friction model used in this study was intentionally kept simple to isolate

the effect of friction on the rheology of suspensions. Other computational studies which

don’t explicitly model the roughness but have a repulsive force analogous to the normal

forces induced by roughness also predict a weak decrease in relative viscosity of suspensions

with increasing the range of the repulsive force [ 23 ], [  48 ], [  107 ].

To the best of our knowledge, prior to these theoretical and computational studies, no

experiments were performed to quantify the effects of roughness on the rheology of sus-

pensions. Recently, Moon et al. [ 54 ] and Tanner & Dai [ 7 ] introduced roughness on the

particles by a special grinding process and performed experiments to quantify the effects of

roughness on the rheological properties of suspensions. They found that relative viscosity as

well as the normal force increase with an increase in the particle roughness in suspensions

of non-Brownian rough particles. These findings are strikingly opposite of what had been

computed and predicted by prior analyses [ 37 ], [ 88 ], [ 95 ], [ 106 ] and computations [ 23 ], [ 24 ],

[ 48 ], [ 107 ]. Thus, the role of roughness on the rheology of suspensions is far from being

understood completely.

The aim of this chapter is to study the effect of roughness on the rheological properties

of rough non-Brownian suspensions via numerical simulations. Given the disagreement in

experiments and previous computational and theoretical studies, it is imperative to imple-

ment a contact model which captures the fundamental mechanisms involved in contacts and

inter-particle friction and is applicable to the materials used in the experiments. We use

the normal load dependent coefficient of friction model given by Brizmer et al. [ 60 ] for con-

tact between a sphere and a flat and modified by Lobry et al. [ 52 ] for simulation of dense

suspensions. For modelling the hydrodynamic interactions we use the Ball-Melrose approx-

imation [ 49 ]. The governing equations and the hydrodynamic force calculations remain the

same as explained in chapter  1 –Sec.  1.4 . Hence, we do not discuss these here. We focus on

elaborating the contact model utilized in detail in the following subsections.
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2.1.1 Contact model

In the recent years, researchers have studied the effects of inter-particle contacts on

the rheology of suspensions [ 24 ], [  25 ], [  59 ]. The emphasis is on the accurate modeling of

contact forces which is often times done based on the Discrete Element Modeling approach

widely used in granular mechanics. Recently, Lobry et al. [ 52 ] have utilized the normal

load dependent friction model given by Brizmer et al. [ 60 ] to simulate shear thinning that

is routinely observed in experiments involving shear flow of suspensions. For this study, we

utilize the same elastic-plastic mono-asperity contact model as it is valid for the materials

commonly used in experiments. This contact model has been previously used by Lobry et

al. [ 52 ]. Actual asperities are not hemispherical [ 7 ]; so the modelling is only one possibility.

Aside from the known reduction in friction coefficient by load in elastomers [  61 ] the presence

of fluid will also alter the coefficient of friction between the particles. But we neglect these

effects in the present study for simplicity. We do not include the viscous damping in order

to be consistent with previous studies [ 24 ], [ 52 ], [ 62 ]. A brief explanation for the contact

model is provided below. For a detailed discussion, please refer to Lobry et al. [ 52 ].

hr

aj

ai

δt
n

Figure 2.1. Sketch of roughness model. δ is the hydrodynamic separation
distance and hr is the roughness height.

Let us consider two spherical particles with radii ai and aj with surface roughness hr =

εra1 (a1 = characteristic particle size) coming into contact as shown in Fig.  2.1 . εr is the

dimensionless roughness. The contact between the particles takes place via the hemispherical

asperity. The contact causes the asperity to deform which in turn gives rise to contact

forces between the touching particles. The asperity deformation can be defined as δ =
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(d(i,j) − ai − aj − hr), we say the contact occurs when δ ≤ 0. Furthermore, we split the

contact force (F(i,j)
C ) into two components [ 24 ], [  25 ], [  52 ], i) F(i,j)

C,n which is the normal contact

force acting along the line of centers of the two particles, and ii) F(i,j)
C,t which is the tangential

contact force acting along the tangent plane at the particle contact Fig.  2.2 .

F(i,j)
C = F(i,j)

C,n + F(i,j)
C,t . (2.1)

Contact forces also induce an additional contact stresslet for the particle given by the vector

product of particle center to center vector and the contact force as[  25 ]:

S(i,j)
C = d(i,j) ⊗ F(i,j)

C . (2.2)

Figure 2.2. Schematic showing contact forces and torques acting on the par-
ticles and corresponding models used for their calculations

2.1.1.1 Normal Contact Force

The contact is elastic or plastic depending on the relative magnitude of the overlap with

respect to some critical overlap δc. If |δ| ≤ δc (elastic region) we have,

F(i,j)
C,n = −Lc

(
|δ|
δc

)3/2

n(i,j), (2.3)
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Figure 2.3. Contact model: a) Dimensionless normal contact force as a func-
tion of dimensionless overlap for εr = 5 × 10−3. Eq.  2.3 and  2.6 for |δ| < δc
and δc ≤ |δ| ≤ 0.7hr, respectively. Fn goes to ∞ as |δ| → 0.8hr. b) Friction
coefficient as a function of dimensionless contact normal force (Eq.  2.10 ).

where Lc and δc depend on the particle properties such as poisson’s ratio (ν), Youngs modulus

(E) and yield strength (Y0) of the material. Their expressions are given in Brizmer et al.

[ 60 ] as follow:

Lc = L̄cπ
3Y0

6 C
3
ν

(
hr

2(1− ν2)Y0

E

)2

, (2.4)

δc = δ̄chr

(
πCν

(1− ν2)Y0

E

)
, (2.5)

where Cν = 1.234+1.256ν, L̄c = 8.88ν−10.13(ν2 +0.089) and δ̄c = 6.82−7.83(ν2 +0.0586).

If we have |δ| ≥ δc (plastic region), the normal force is softer and calculated using the

following expression:

F(i,j)
C,n = −Lc

(
|δ|
δc

)3/2
1− exp

 1
1−

(
|δ|
δc

)β

n(i,j), (2.6)

where β = 0.174 + 0.08ν. F(j,i)
C,n is just −F(i,j)

C,n.

In addition, owing to the finite time steps and large magnitude of contact forces at higher

shear rates and/or at higher volume fractions, it is possible that particles may overlap. To

prevent overlaps we need to use very small time steps which is computationally expensive.
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Hence, to avoid this issue, the normal force is multiplied by a function which goes to infinity

as the inter-particle distance falls below a specified threshold. This threshold value can be

chosen arbitrarily and has been shown to have negligible influence on the lubrication and

contact stresses [ 52 ]. To be consistent with the previous studies [  52 ] we choose the threshold

to be δ = 0.8hr. The multiplying function is multiplied if δ ≥ 0.7hr (See Fig.  2.3a ). The

multiplying function used was f(δ) = 3(δ−0.7hr)/(0.8hr−δ).

2.1.1.2 Tangential Contact Force

We model the tangential contact force as a linear spring with Amontons-Coulomb friction

law [ 24 ], [ 108 ], [ 109 ]. The tangential contact force and the resulting contact torque acting

on the particle is then given as:

F(i,j)
C,t = ktξ

(i,j)t(i,j), (2.7)

T(i,j)
C = ain(i,j) × F(i,j)

C,t , (2.8)

and satisfy friction law as |F(i,j)
C,t | ≤ µ|F(i,j)

C,n|. In the above expression for tangential contact

force, kt is the tangential spring stiffness coefficient and can be calculated as [ 52 ], [ 62 ], [ 110 ]:

kt = 2
7
|F(i,j)

C,n|
|δ|

. (2.9)

The tangential spring stretch, ξ(i,j) can be calculated from the normal (U(i,j)
n = n(i,j)n(i,j) ·

(U(j) −U(i))) and tangential (U(i,j)
t = (I − n(i,j)n(i,j)) · [U(j) −U(i) − (aiΩi + ajΩj) × n(i,j)])

relative velocities between the particles i and j by applying the algorithm described in Luding

[ 109 ] and Mari et al. [ 25 ]. t(i,j) is a vector normal to n(i,j) in the tangential direction to the

particles and given as: F(i,j)
C,t /|F

(i,j)
C,t |.

2.1.1.3 Load dependent coefficient of friction

It has been shown recently by Lobry et al. [ 52 ] that a load dependent coefficient of friction

which decreases with increase in normal load between the particles can successfully reproduce

52



the shear thinning behavior observed in many practical suspensions. Taking inspiration from

this study, we use the friction coefficient calculated by Brizmer et al. [ 60 ].

µ = 0.27coth
0.27

(
|F(i,j)

n |
Lc

)0.35 . (2.10)

The above models for the normal contact force and the coefficient of friction is valid for

a range of materials with ν in the range (0.3-0.5). The tangential force model is slightly

different from that of Brizmer et al. [ 60 ]. This is because for convenience of computations a

simple linear spring model is used widely in the literature [ 24 ], [ 25 ], [ 52 ], [ 62 ] (Please refer to

Lobry et al. [ 52 ] for a detailed discussion on validity of this model). Furthermore, the aim of

this study is to understand the effect of roughness on the rheology of suspension whose effect

is captured in the modeling of the normal contact force and by extension the coefficient of

friction. Hence, to develop an understanding of this effect, it is important to start with a

relatively simple model for the tangential force.

2.1.2 Stress and bulk rheology calculations

To calculate the rheological properties we need the bulk stress in the suspension. The

bulk stress in a suspension of rigid particles in a flow with strain rate E∞ is (subtracting

isotropic part of the fluid pressure):

Σ = 2µE∞ + Σp, (2.11)

where Σp is the particle contribution to the bulk stress, and is given by the sum of hydro-

dynamic stress ΣH and the contact stress ΣC as:

Σp = ΣH + ΣC , (2.12)
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where ΣH and ΣC can be calculated by taking ensemble average of the hydrodynamic SH
and contact SC stresslets at each time step. We get,

ΣH = 1
V

(∑
i

S(i)
H

)
, (2.13)

ΣC = 1
V

∑
i>j

S(i,j)
C

 . (2.14)

Therefore,

Σ = 2µE∞ + 1
V

∑
i

S(i)
H +

∑
i>j

S(i,j)
C

 , (2.15)

where V is the volume of the domain, L3. Shear stress σ, normal stress differences N1 and

N2, relative viscosity ηr, and normal stress difference (N) can then be defined as σ = Σ12,

N1 = Σ11 − Σ22, N2 = Σ22 − Σ33, ηr = σ/(ηγ̇) and N = N1 −N2. The systematic splitting

of the particle stress in contributions from hydrodynamic and contact stresses allows us

to understand the relative contributions from lubrication and contact interactions to the

rheological properties. E.g., the contribution from the hydrodynamic stress to the relative

viscosity is ηH
r = 1 + ΣH

12/(ηγ̇) and the corresponding contribution from the contact stresses

is ηC
r = ΣC

12/(ηγ̇) and so on.
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Figure 2.4. Relative viscosity for various volume fractions at σ = 10 (Pa)
from simulations against previous experimental results. The relative viscosity
values are consistent with experiments [ 7 ], [  20 ], [  22 ], [  111 ], [  112 ].
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2.1.3 Simulation conditions

1. Bidisperse suspension We simulate suspensions of sheared bidisperse spheres where

a2/a1 = 1.4. Smaller and larger spheres have the same volume fractions (φ1 = φ2).

The particles are neutrally buoyant. These assumptions are often made in simulation

studies of suspensions of rough particles [  25 ], [ 52 ]. This choice of particle size distribu-

tion is inspired by the fact that there is significant cluster formation/crystallization in

the simulations of monodisperse spheres which can be avoided by the introduction of

slight bidispersity [ 25 ], [ 52 ], [ 56 ], [ 113 ]. Also, this choice of the radius ratio and volume

fractions for the smaller and larger spheres was found to produce results very close to

their monodisperse counterparts [ 55 ], [  89 ] and Fig.  2.4 .

2. Boundary conditions and domain size: We calculate the bulk properties of the sheared

suspensions such as relative viscosity and normal stress differences. We use the Lees-

Edwards periodic boundary conditions [ 114 ], which are widely used in the literature

for simulation of sheared flows and have been observed to produce accurate results for

bulk properties. This choice of boundary condition enables us to simulate the sheared

suspension for a fixed domain volume without loss of generality. For this study, we

simulate shear flow of suspension in a cubic box with sides 15a1, where a1 is the radius

of the smaller particles [ 52 ]. We repeated our simulations for a larger domain with

larger sides viz., 20a1 which has almost twice the number of particles as compared to

the smaller domain. Increasing the domain size reduces the error but the mean values

are still the same (See Table  2.2 in Sec.  2.1.4.1 ). Hence, we perform all the simulations

for a cubic box with sides 15a1. A detailed validation of the model is presented in

Sec.  2.1.4 .

3. Range of parameters investigated: Typically, polystyrene beads are used for studying

the effects of roughness on suspension rheology [ 7 ], [ 52 ], [ 54 ]. The required material

properties and simulation parameters are listed in table  2.1 . The presence of multiple

length scales [ai, aj, hr, δc] introduces multiple time scales and as a result the simulation

time step required for accurate simulations turns out to be very small. Hence, to keep

the time step in a reasonable range (≥ 1 × 10−5/γ̇), we fix δc = 0.05hr following
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Lobry et al. [ 52 ]. We use a time step of 2.5 × 10−5/γ̇ for most of the cases except

for φ = 48% and 50% at γ̇ = 0.1 and 0.3s−1 where ∆t = 1 × 10−5/γ̇. This timestep

was sufficiently small to observe smooth attachment-detachment of the contacts and a

continuous variation in the contact forces. The aim of this study is to understand the

effects of varying particle surface roughness on the rheology of suspension. Hence, we

simulate the shear flow of rough particles for 6 different dimensionless roughness values

εr = hr/a1 viz., (0.005, 0.01, 0.017, 0.025, 0.04, 0.05). The simulations were carried

out for shear rate values γ̇ in the range [0.1 - 10] for volume fractions (0.40, 0.43, 0.45,

0.48, 0.50).

Table 2.1. Simulation parameters
E (Pa) Y0 (Pa) ν φ γ̇(s−1) εr(%)
3× 109 30× 106 0.4 0.40 - 0.50 0.1 - 10 0.5 - 5.0

2.1.4 Validation

2.1.4.1 Domain size independence test

Table  2.2 shows the results for ηr for two different cubic domains with size 15a1 and 20a1.

The values for ηr are in reasonable agreement for both the domain sizes. Hence, we run all

the simulations for the smaller domain, i.e., for a cubic box with sides 15a1.

2.1.4.2 Comparison with Lobry et al. [ 52 ]

Fig.  2.5 shows the comparison of ηr for this study and that of Lobry et al. [ 52 ], which

uses the same contact model. Lobry et al. [ 52 ] present all their results in terms of the

dimensionless reduced shear rate (Γ̇ = 6πηa2
1γ̇/Lc) defined by their eq. (2.12). The focus

of their study was the shear thinning effect which could be reproduced by a normal load

dependent coefficient of friction decreasing with increase in the normal load (which in turn

depends on the shear stress). Our focus is to investigate a possible mechanism to explain the

experimental study by Tanner & Dai [ 7 ], thus, we present our results in terms of dimensional

shear rate and stress. In order to compare these studies, we present our results in terms of
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Table 2.2. Domain independence. ηr for two domain sizes, (15× 15× 15) a1
(D1) & (20× 20× 20) a1 (D2) for εr = 0.005

Reduced shear rate, Γ̇ φ (%) ηr, D1 ηr, D2
0.1 40 9.29 9.65
1.0 40 8.32 8.63
10.0 40 7.64 7.77
0.1 45 18.42 18.9
1.0 45 15.51 15.28
10.0 45 13.23 12.87
0.1 50 43.55 42.72
1.0 50 30.32 29.62
10.0 50 25.73 25.42
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Figure 2.5. Comparison of ηr with Lobry et al. [ 52 ]. The comparison is
satisfactory. The slight difference in the viscosities is due the different model
used for calculating hydrodynamic interactions. Open symbols: simulation
results, closed symbols: results from Lobry et al. [ 52 ].

Table 2.3. Comparison of N1/σ and N2/σ for εr = 0.005 at φ = 40% and
φ = 50% with the results from Lobry et al. [ 52 ]. PS = Present simulations.
φ(%) N1/σ, Lobry et al. [ 52 ] N1/σ, PS N2/σ, Lobry et al. [ 52 ] N2/σ, PS
40 -0.055 -0.043 -0.28 -0.27
50 -0.083 -0.099 -0.37 -0.33

reduced shear rate in this section. Fig.  2.5 compares the relative viscosity of the suspensions

at volume fractions 40 %, 45 % and 50 % with a roughness ratio εr = 0.005 with calculations
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of Lobry et al. [ 52 ] with the same simulation parameters. In addition, table  2.3 compares

the values of dimensionless normal stress differences in the present study with Lobry et al.

[ 52 ]. These results show that data from the present simulations is consistent with that of

Lobry et al. [ 52 ].

2.2 Results and Discussion

This section is devoted to the important results of the simulations. The main focus

of this study is to understand the effects of varying the particle surface roughness on the

rheology of suspensions. The simulations for different parameters were carried out for a total

of 30-50 strain units, i.e., tf inal = (30−50)/γ̇. The first 10 strain units were discarded owing

to the transient behavior of simulations in the initial time. All the rheological properties

presented below are calculated by averaging after 20 % strain units and only the average

values are presented. The standard deviation was less than 10 % in most of the cases except

a few in which maximum standard deviation was around 15 %. It is now quite established

that in non-Brownian suspensions there is no time scale but rather a stress-scale that can

explain either the shear thickening or the shear thinning behavior [  27 ]. Since stress is the

governing parameter, we present the results in terms of shear stress (σ = ηrηγ̇) for better

understanding of the governing mechanism. To calculate relative viscosity at a constant stress

for suspensions with different volume fractions interpolation has been performed whenever

needed.

2.2.1 Effects of roughness on the relative viscosity

Fig.  2.6a shows the effect of increasing roughness from 0.5 % to 5.0 % at different shear

stress values for φ = 50%. From the figure, it is clear that a contact model wherein the

coefficient of friction decreases with normal load can produce the experimentally observed

shear thinning behavior [ 7 ], [  52 ], [  54 ] in the suspensions. The agreement between trends

and behavior of ηr obtained in experiments and the simulations is clear from the figure. For

comparison purposes, we assume the simulation case with the roughness ratio, εr = 1% to

be representative of the suspension of smooth spheres, i.e., no grinding case in Tanner & Dai
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Figure 2.6. Variation of relative viscosity, ηr with a) shear stress (σ) for dif-
ferent particle roughness for φ = 50% (scatter plot shows the data from Tanner
& Dai [ 7 ]) and b) volume fraction at a constant σ = 50 (Pa). Increase in rela-
tive viscosity with roughness for various volume fractions at σ = 50 (Pa). The
solid lines show the Maron-Pierce law (see section III-C) fitting to the data.
The increase in relative viscosity with roughness becomes more prominent at
higher volume fractions owing to the fact that the number of particles in con-
tact at a particular time increases with volume fraction. The contact model
implemented in this study can reproduce the experimentally observed shear
thinning behavior in suspensions as well as predicts that the relative viscosity
will increase with increase in surface roughness of the particles.

[ 7 ]. This is a valid assumption since even the smoothest spheres in reality have roughness of

O(10−3 − 10−2) [  7 ], [  53 ].

There is a clear increase in the relative viscosity of the suspension for all the volume

fractions considered as we increase particle roughness (Fig.  2.6b ). At γ̇ = 1s−1, we observe

about 28 %, 38 % and 55 % increase for suspensions with 40 %, 45 % and 50 % volume

fractions, respectively, for a roughness ratio of 2.5 %. The corresponding increase for a

roughness ratio of 5 % is 50 %, 95 % and 175 % increase for suspensions with 40 %, 45 %

and 50 % volume fractions, respectively. An increase of similar magnitudes in the relative

viscosity with increasing roughness is observed for all the volume fractions and shear rates

simulated in this study. Tanner & Dai [ 7 ] observe 21 % and 78 % increase in the viscosity

for 40 % and 50 % volume fraction suspensions at γ̇ = 1s−1 which is in agreement with what

we observe for a roughness ratio of 2.5 % in our simulations.
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Figure 2.7. a) Variation of ηr for φ = 50 % with roughness for three different
shear stresses, σ = 20, 80 and 240 Pa. b) Variation in contributions from
hydrodynamic (ηrH) and contact (ηrC) interactions to the relative viscosity
(ηr) with roughness for φ = 50% at σ = 20 Pa. The relative contribution
from the contact interactions to the total viscosity increases with increasing
roughness which results in the increase in ηr with roughness.

The differences in relative viscosity between our simulations and the experiments from

Tanner & Dai [ 7 ] can be attributed to some fundamental assumptions used while modelling

the suspensions and contact forces. The main reason for this seems to be the geometry of the

roughness in the experiments and that in the simulations. Tanner & Dai [ 7 ] used grinding for

introducing roughness which may or may not preserve the spherical shape of the particles.

We model the roughness as hemispherical asperities on perfectly spherical surfaces. As a

result, we cannot compare our data quantitatively with the experiments, but the models

that we used accurately capture the trends and behaviors of concentrated rough sheared

suspensions observed in experiments.

Fig.  2.7a shows the increase in relative viscosity for a suspension with 50 % volume

fraction for 3 different shear stresses. It can be concluded from this figure that the relative

increase in the viscosity of suspensions with higher roughness compared to the smoothest

case decreases as we increase the shear stress. This can be understood if we look at the

microscopic balance between the lubrication and contact forces and coefficient of friction

with stress. With increase in shear rate, the shear stress, which is directly proportional to
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Figure 2.8. Variation in the average coefficient of friction for the suspensions
with the dimensionless roughness for φ = 50% with stress for different rough-
ness values. µavg increases with εr and the relative increase in µavg reduces with
increasing σ. This indicated that the variation in µavg becomes less important
at high stress values.

the shear rate, also increases. Increase in shear stress directly increases the magnitude of

normal forces between the particles [  52 ]. But this increase in the normal contact force means

reduction in the coefficient of friction as per Eq.  2.10 (See Fig.  2.8 ). We expect a reduction

in the average coefficient of friction (Fig.  2.8 ) with shear stress with all other parameters

held constant which eventually results in a decrease in the relative viscosity with increasing

shear stress.

This point becomes clear if we look at the variation of average coefficient of friction

with roughness at constant stresses (See Fig.  2.8 ). For higher values of stresses the relative

increase in the average coefficient of friction reduces, i.e., the variation in average coefficient

of friction is less and less important as stress increases and as a result the variation in

viscosity becomes less and less for high shear rates or high shear stresses.

It is also interesting to look at the contributions from hydrodynamic and the contact

stresses to the relative viscosity. Fig.  2.7b shows that hydrodynamic contribution decreases

with increase in εr. This is to be expected as the average inter-particle gap increases with

increase in roughness. The hydrodynamic stresslet depends on the inverse of the inter-

particle gap. Higher inter-particle gap leads to a reduction in hydrodynamic stresslet. But

this reduction in the hydrodynamic stress is overcompensated by the increase in the contact

61



stress which increases by around 200 % from the smoothest to roughest case. The reason

behind such a huge increase is again related to the relative magnitude of the normal contact

forces and the dependence of coefficient of friction on the normal forces. Higher inter-

particle gaps mean reduction in the lubrication forces. As a result, small deformations of

the asperities are enough to balance the lubrication forces as the roughness increases. Lower

deformations mean a lower contact force and according to Eq.  2.10 , a higher coefficient of

friction. Given the steep behavior of coefficient of friction in the lower range of normal force,

we get such a huge increase in the contact contribution to the particle stresses.

To elaborate further on the above point, we need to look at the force scale associated

with the elastic to plastic transition. Here, Lc gives us the force scale for the transition from

the elastic region (where µ is high) to the plastic region (where µ decreases and levels off

in the plastic regime). From eq.  2.4 we can conclude that the force scale for this transition

increases with roughness as Lc ∝ hr
2. So, for a constant stress, as we increase the roughness,

the contacts move towards the elastic region, where we have a relatively large coefficient of

friction (see Fig.  2.3b ). Thus, with increase in roughness, larger and larger stress is needed

for the asperities to yield which results in the increase in viscosity with roughness.

The direct numerical simulation (DNS) study by Gallier et al. [ 24 ] observed a decrease

in the contributions from both hydrodynamic and contact stresses to ηr with increasing

roughness while their relative magnitudes remaining constant (ηH
r ≈ 0.68ηr and ηC

r ≈ 0.32ηr).

In our simulations, we observe that the relative contribution from the contact interactions to

the stress increases with increase in roughness which is mainly responsible for the increase

in ηr with increasing εr. This difference can be attributed to the fact that Gallier et al.

[ 24 ] used Hertz contact model for the normal contact forces in which the normal stiffness

coefficient (kn) was calculated by balancing the hydrodynamic and contact forces instead of

getting it from the particle material properties like ν, E, and Y0. Since they did not consider

any relationship between µ and εr these differences are expected. No such assumptions have

been used in our simulations. kn (which can be considered analogous to Lc/(δc)3/2) in our

simulations remain constant for all γ̇ for a given εr. As a result, we have a competition

between the lubrication and contact interactions and a force scale for which the cntact
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transitions from elastic to plastic regime. Owing to the dominant increase in the contact

stresses we observe the increasing trends in ηr with increasing roughness.

2.2.2 Effects of roughness on normal stress differences

Stress, σ
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Figure 2.9. Variation of dimensionless N1 and N2 with stress for φ = 40% (O
for εr = 0.005 and 4 for εr = 0.05) and φ = 50% (� for εr = 0.005 and ♦ for
εr = 0.05). Hollow symbols are for N1/σ and filled symbols are for N2/σ. This
plot shows that roughness reduces the magnitude of N1/σ while the magnitude
of N2/σ remains almost constant with roughness.

Apart from the relative viscosity, first and second normal stress differences are also im-

portant rheological properties of suspensions and have been a focus of many recent studies

[ 23 ]–[ 25 ], [ 37 ], [ 42 ], [ 89 ], [ 107 ]. In this section we present results for dimensionless N1, N2

and N = N1 −N2.

N2 varies linearly with shear stress in the sense that its magnitude increases with the

shear rate. We obtain negative values of N2 for all the roughness and shear rates (and much

larger than N1, Fig.  2.10a . The values of dimensionless −N2, i.e., −N2/σ lie in the range 0.2 -

0.5 (see Fig.  2.9 and  2.10a ). These magnitudes are consistent with most of the experimental

and computational data available [ 20 ], [ 22 ], [ 24 ], [ 25 ], [ 42 ], [ 43 ], [ 55 ], [ 107 ]. The increase

in N2 with roughness is expected since N2 has origins in the contact interactions [ 24 ]. As

previously explained increase in roughness leads to an increase in the contact stress in the

suspension.
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Figure 2.10. a) Variation of average dimensionless N1 and N2 with εr for dif-
ferent volume fraction values. φ = 40%(4), 45%(�) & 50%(♦). Hollow sym-
bols are for N1/σ and filled symbols are for N2/σ. b) Variation of dimensionless
normal stress difference N/σ = (N1 −N2)/σ with εr for φ = 40%(4), 45%(�)
& 50%(♦). N is directly related to the normal force acting in a parallel plate
rheometer. Thus, increasing roughness increases the normal force on the plate
in a parallel plate rheometer.

Fig.  2.9 gives the variation of magnitude of dimensionless N1 and N2 with stress for 40

% and 50 % suspensions for smoothest (εr = 0.005) and the roughest case (εr = 0.05). We

don’t observe a monotonous behavior in N1 with roughness or stress as we do for N2, but the

magnitude of dimensionless N1 decreases with roughness. This becomes clear if we take an

average over for all the shear rates for a particular roughness. Fig.  2.10a shows the variation

of N1/σ and N2/σ averaged over for all the stresses for a fixed roughness. We observe that the

magnitude of N2/σ remains almost constant for different roughness values since it increases

linearly with σ in our simulations, while the magnitude of N1/σ decreases with roughness.

The observed behavior can be understood by looking at the average coefficient of friction

for different roughness values. It is clear from Fig.  2.8 that the average coefficient of friction

increases with roughness. Increasing coefficient of friction reduces the magnitude of N1/σ

[ 24 ], which is depicted in Fig.  2.10a 

Gallier et al. [ 24 ] is the only computational study which computed the variation of normal

stress differences with roughness that we could find. They obtained almost no variation in

N1/σ and N2/σ with varying roughness from 0.01 % to 1 %. The range of roughness in our
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case is very high as compared to that of Gallier et al. [ 24 ]. Please note here that the contact

dynamics model used by Gallier et al. [ 24 ] is very simple, where the coefficient of friction has

been assumed to have a constant value independent of the roughness and the competition

between the hydrodynamic and contact forces has been eliminated by setting shear stress

dependent values of kn, so these differences are expected.

Finally, we plot the dimensionless normal stress difference which is given by N/σ =

(N1−N2)/σ in Fig.  2.10b . We obtain an increasing trend for N with increase in roughness.

This is in agreement with the experimental results from Tanner & Dai [ 7 ] and Dai et al.

[ 43 ]. N1 −N2 is directly related to the normal force acting on the plate in the parallel plate

rheometer [  7 ], which means the normal force on the plate increases with an increase in the

particle roughness.

2.2.3 Effect of roughness on jamming fraction

Fig.  2.6b shows the behavior of relative viscosity with the volume fraction. It is well

known in the literature of non-Brownian suspensions that the relative viscosity diverges

as the volume fraction approaches to a maximum value beyond which no flow is possible

[ 113 ]. This maximum is known as the jamming fraction which is different from the random

close packing fraction (RCP). The jamming fraction φm depends on many factors like stress,

coefficient of friction, roughness, bidispersity ratio, etc [ 25 ], [ 52 ], [ 83 ], [ 89 ], [ 115 ]. The relative

viscosities for high volume fractions can be described by Maron-Pierce formula given by

Metzner [ 116 ]:

ηr = [1− φ/φm]−2. (2.16)

This formula however cannot capture the shear thinning behavior observed in sheared sus-

pensions if we assume a fixed value for φm. In the experimental study by Tanner & Dai [ 7 ]

the formula does a good job only for smooth spheres at γ̇ = 1s−1 with the assumption that

φm = 0.59. But along with the volume fraction the relative viscosity depends on other fac-

tors mentioned before. We, thus, need to account for them in order to describe the relative
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viscosity. One of the important factors governing the relative viscosity is the coefficient of

friction, µ. Wyart and Cates [  97 ] suggested the following model for frictional suspensions:

ηr = f(φ, µ), (2.17)

where the friction coefficient µ is a function of the shear stress. In this study, the coefficient

of friction is governed by the stress and the roughness. Hence, we cannot disassociate

friction from roughness or stress. Since the original Maron-Pierce formula is a reasonable

approximation to the relative viscosity at high volume fractions, we assume,
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Figure 2.11. Variation of φm: a) Variation in the jamming volume fraction
with shear stress. The maximum packing fraction above which suspension
ceases to flow decreases with increasing roughness and increases with increase
in the shear stress because of the increase in µavg with roughness and decrease
in µavg with stress, respectively. (Legends are the same as Fig.  2.6b ). b)
Variation in the jamming fraction with εr at σ = 50 (Pa). Solid line is the
fitting curve using equation  2.19 . The jamming fraction reduces with roughness
for a given stress owing to the increase in µavg and in effective radius of the
spheres with roughness.

ηr = [1− φ/φm(σ, εr)]−2. (2.18)

We would also like to obtain the effect of varying stress and roughness on the the jamming

fraction. Hence, instead of assuming a constant value for φm, we calculate it by fitting the
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data with the above equations. Solid lines in Fig.  2.6b represent the fitting curves given in

Eq.  2.18 for the simulation data. In addition, the following equations [  52 ], [ 82 ], [ 117 ] have

been used for fitting the φm vs εr. The fitting parameters obtained are presented in Table

 2.4 .

φm(σ, εr) = φ∞m (σ) + [φ0
m(σ)− φ∞m (σ)]

exp(−Xp
φatan(εr))− exp(−πXp

φ/2)
1− exp(−πXp

φ/2) . (2.19)

Fig.  2.11a and  2.11b show that the jamming fraction decreases with increasing the rough-

ness. This is due to the fact that rough spheres behave like spheres with larger radii. Hence,

the effective volume fraction increases by a factor of (1 + εr)3. For φ = 50%, the effective φ

is 57.88 % for εr = 0.05, while the effective φ = 50.75% for εr = 0.005. Thus, the effective

φ for higher roughness values is closer to the maximum packing fraction for smooth spheres

(jamming fraction for smooth spheres ≈ 0.625, see Fig.  2.11b ). Hence, the maximum packing

fraction reduces with roughness and as a result, we see an increase in viscosity at a particular

volume fraction due to the apparent increase in the volume fraction due to roughness.

Table 2.4. Fitting parameters for Eq.  2.19 

σ (Pa) φ0
m φ∞m Xp

φ

5 0.519 0.605 46.163
10 0.521 0.615 43.747
20 0.522 0.622 38.326
30 0.523 0.624 35.554
40 0.527 0.628 37.299
50 0.528 0.633 36.648
100 0.536 0.646 39.349

The reduction in φm with increasing stress has also been observed in experiments [ 83 ],

[ 115 ]. For a real suspension made of particles that have a given roughness, they observed

that, indeed, the jamming fraction depends on the stress. They showed that at low shear

stress values, the suspension does not flow but is able to flow at higher stress values meaning

that φm depends on the shear stress and all the factors determining the shear stress.
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The reduction in φm is also consistent the variation of the average coefficient of friction (

calculated by averaging the coefficient of friction (µavg) between all the contacting particles).

If we look at µavg for a particular shear rate (stress) and volume fraction, we observe that

it increases very rapidly with roughness. It has been shown in previous studies [ 25 ], [ 52 ]

that the jamming fraction reduces with increase in coefficient of friction. Hence, we expect

a reduction in φm with increase in roughness, as the average coefficient of friction tends to

increase with roughness. This idea is indeed reflected in our simulation results as shown in

Fig.  2.8 . Mari et al. [ 25 ] find that for smooth friction-less bimodal suspensions, the jamming

fraction is 0.66 which decreases as we increase the coefficient of friction. A value of around

0.7 for jamming fraction was observed by Lobry et al. [ 52 ] for µ = 0. In the present study,

even in the case of smooth spheres, the coefficient of friction is not zero and has an average

value around 0.3 for the smoothest case (see Fig.  2.8 ). So, we expect a maximum packing

fraction value to be smaller than 0.66. The value we calculate for the smoothest case is ≈

0.62 which is expected since the simulations in this study are not friction-less. This is in

agreement with Lobry et al. [ 52 ] who obtain φm ≈ 0.62 for µ = 0.27.

The contacts between the particles are intermittent but they depend on the shear stress

and the volume fraction. We expect (and observed) more contacts at higher shear stress and

volume fractions. Thus, for a particular roughness value and volume fractions we expect

more number of particles in contact with increase in shear stress. We also observe that

the asperity deformation (δ) reduces with increasing roughness for a fixed stress. For lower

roughness a small stress is required for yielding (i.e., to transition from elastic to plastic

regime) as compared to larger roughness where a larger stress is needed for the asperities

to yield. This means as we increase the roughness particle-particle contacts move more

towards the elastic region for a fixed stress. And since in the elastic region, the coefficient of

friction has a high value we get an increase in the ηr and the reduction in φm with increasing

the roughness. Also, Fig.  2.7a and  2.8 reveal a strong correlation between the coefficient

of friction and the variation of relative viscosity, further corroborating the hypothesis that

friction has a very important role in governing the suspension rheology.
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3. ROUGHNESS INDUCED SHEAR THICKENING IN

NON-BROWNIAN SUSPENSIONS

3.1 Introduction

Suspensions of rigid particles in a variety of fluid media exhibit a rich variety of non-

Newtonian behaviors such as yielding [ 82 ], shear-thinning [ 7 ], [ 52 ], [ 54 ], [ 83 ], [ 118 ], shear-

thickening [ 25 ], [ 50 ], [ 56 ], [  84 ]–[ 86 ], [ 94 ], particle migration [ 38 ], [ 41 ] and anisotropic mi-

crostructures [ 26 ], [ 39 ], [ 87 ]. The viscosity of suspensions at moderately high volume frac-

tions usually decreases with increasing the applied shear rate [ 7 ], [ 52 ], [ 54 ], i.e., they shear

thin. But dense suspensions show the opposite behavior: their viscosity increases with in-

creasing the shear rate (or shear stress) above a critical value [ 8 ], [ 35 ], [ 41 ], [ 119 ]–[ 123 ], this

phenomenon is known as shear thickening (ST). Example of a ST suspension is cornstarch

in water, although not all cornstarch solutions exhibit a shear thickening behavior [ 124 ]. De-

pending on the applied shear rate and the solid loading, ST can occur in two ways: 1) when

the viscosity increases gradually with increasing shear rate (or stress) it is called Continuous

Shear Thickening (CST), or 2) when the viscosity increases abruptly at the critical shear

rate it is termed as Discontinuous Shear Thickening (DST).

Shear thickening, especially DST, has a long and rich history of scientific investigation

with some earlier works dating back to early 20th century [ 125 ]–[ 128 ]. Some earlier expla-

nations for the phenomenon include sudden onset of turbulent flow between the particles

forcing particles to gather in hollow enclosures [ 129 ], order disorder transitions [ 34 ], [  130 ]–

[ 132 ], flow induced particle clustering [ 45 ], [ 133 ]–[ 136 ]. But these explanations fail to predict

the viscosity jump of required magnitude [ 9 ], [  25 ], [  119 ], [  137 ].

The current consensus is that friction between the particles gives rise to DST as it triggers

anisotropic force chain networks and granular-type behavior [ 122 ], [ 138 ]–[ 140 ] which has been

corroborated by theory [ 141 ], simulations [ 25 ], [ 56 ], [ 84 ] and experiments [  9 ], [ 58 ], [ 122 ], [ 142 ],

[ 143 ]. Friction plays a crucial role in governing the behavior of rigid particle suspensions [ 24 ],

[ 51 ], [ 52 ], [ 117 ]. This is because in dense suspensions, the lubrication film keeping particles

apart breaks and owing to the irregularities on the particle surface, the particles come into

contact. Such contacts give rise to tangential forces in addition to the normal repulsive
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forces. This is true even in the most idealized case of smooth sphere suspensions as even the

smooth particles have a roughness of O(10−2−10−3) times the particle radius [ 39 ], [  52 ], [  53 ].

As a result, much of the efforts have been involved in understanding the effect of friction

between the particles on the ST behavior and the understanding of this mechanism has

advanced many folds in the past few years [ 25 ], [ 59 ], [ 86 ], [ 94 ], [ 117 ], [ 144 ], [ 145 ]. The most

notable effects of increasing friction between the particles is the reduction in the jamming

fraction (φm) [ 8 ], [ 25 ], [ 52 ], [  141 ] and increase in the strength of the ST effect [ 9 ], [ 25 ], [ 86 ],

[ 117 ]. However, the effect of particle asperities on ST which are the fundamental reason

for particle contacts and friction has not been explored much and it is only recently that

researchers have started to investigate it.

Early theoretical and computational studies suggested that suspension viscosity should

decrease with roughness owing to the reduction in hydrodynamic stresses. Larger asperities

increase the lubrication gap between the particles and the hydrodynamic stresses are inversely

proportional to the inter-particle gap [ 24 ], [ 37 ], [ 88 ], [ 95 ], [ 106 ]. But contrary to these

predictions, it has been observed in experiments [  7 ], [ 9 ], [ 54 ] and simulations [ 118 ] that

the suspension viscosity increases with increase in roughness size. These studies suggest

that increasing roughness lowers the critical shear rate (for CST and DST both) and the

critical volume fraction (for DST). Recently, Hsu et al. [ 8 ] demonstrated that rough particles

exhibit DST over a wider range of shear rates and solid loadings which are significantly lower

than that of smooth particle colloids. The reason behind this is the interlocking of asperities.

They introduced roughness artificially by electrostatic adsorption of silica nano-particles onto

larger silica particles. In addition, a computational study based on Stokesian Dynamics [ 44 ]

simulations showed that friction increases the magnitude of ST for suspensions of particles

with roughness equal to 1 % of the particle radius [ 59 ]. However, this study focused on only

2-D domains with fixed particle roughness (= 1 % of the particle radius) which corresponds

to smooth suspensions [  39 ], [ 52 ], [ 53 ]. As a result they observed only a mild ST and didn’t

reproduce DST.

The aim of this chapter is to quantify the effect of systematically increasing particle

roughness size on the rheology of ST rigid particle suspensions. This paper proposes a simple

computational framework which successfully reproduces CST as well as DST and predicts
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the anticipation and the rise in the magnitude of ST effect with increasing roughness. To

this extent, we first elaborate the methods and models used to simulate suspensions of rough

particles in a simple shear flow and elements of contact dynamics crucial to reproduce the

experimentally observed ST. Then we present the effects of varying particle roughness on

the rheology of ST suspensions by studying its effects on the friction-less and frictional

jamming fractions, relative viscosity and normal stress differences. We also discuss the

possible mechanisms determining the rheology and finally present a phase diagram in shear

rate - volume fraction plane to visualize the various transitions and states encountered as

we explore a wide range of parameters.

3.2 Methodology

This section describes the models and algorithms used to simulate sheared flow of rough

non-Brownian suspensions. We use the same governing equations and hydrodynamic foce

calculations as explained in chapter  1 –Sec.  1.4 . We elaborate on the contact and friction

models used below.

Figure 3.1. Schematic of the asperity geometry: Asperity is modelled as a
hemisphere on the particle surface (denoted by yellow). δ is the hydrodynamic
separation distance, hr is the asperity size.

We model the contact forces between the particles as it is done in Discrete Element

Method (DEM), a popular method in granular physics [ 146 ], [  147 ]. For two spherical particles

with radii ai and aj with surface roughness hr = εr(ai + aj)/2 (εr is the dimensionless

roughness) coming into contact as shown in Fig.  3.1 , the contact between the particles takes
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Figure 3.2. Schematic showing contact dynamics between contacting particles
and corresponding force models used for force and torque calculations

place via the hemispherical asperity. The contact causes the asperity to deform which in

turn gives rise to contact forces between the touching particles. The asperity deformation

can be defined as δ = (d(i,j) − ai − aj − hr), the contact occurs when δ ≤ 0. Please note that

we do not include viscous damping in order to be consistent with previous studies [ 24 ], [ 52 ],

[ 62 ].

Furthermore, we split the contact force (F(i,j)
C ) into two components [ 24 ], [ 25 ], i) F(i,j)

C,n

which is the normal contact force acting along the line of centers of the two particles, and

ii) F(i,j)
C,t which is the tangential contact force acting along the tangent plane at the particle

contact Fig.  3.2 .

F(i,j)
C = F(i,j)

C,n + F(i,j)
C,t . (3.1)

The normal contact force is modelled using Hertz law,

F(i,j)
C,n = −kn (|δ|)3/2 n(i,j), (3.2)

here the compression of the asperity has been readily accounted for through the asperity

deformation δ. The hydrodynamic force is still calculated for the base particles with the

actual inter-particle gap which is equal to hr − δ [ 24 ], [ 52 ], [ 62 ]. The dissipative nature

of lubrication forces in such conditions will change the rotational dynamics as well, as it

overdamps the motion of particles. Since contact interactions are dominant as compared
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to the lubrication interactions for contacting particles, we expect these effects to not be

significant.

The normal stiffness kn can be evaluated in terms of particle mechanical properties like

Young’s modulus, Poisson’s ratio and Elastic modulus. But, for real materials this value

comes out to be very large which forces the time-step to be very small in order to have

numerical stability. Hence, for numerical tractability, the normal stiffness kn is chosen suffi-

ciently high so as to mimic rigid particles and changing kn does not have a significant impact

on the bulk rheology [ 24 ], [  25 ], [ 62 ], [ 144 ]. Here, we take the dimensionless normal stiffness

kn/(ηγ̇a2hr
−3/2) = 2× 104.

The tangential contact force and the resulting contact torque (T(i,j)
C ) acting on the particle

is then given as:

F(i,j)
C,t = ktξ

(i,j)t(i,j), (3.3)

T(i,j)
C = ain(i,j) × F(i,j)

C,t . (3.4)

In the above expression for tangential contact force, kt is the tangential spring stiffness

coefficient and can be calculated as [ 24 ], [  52 ], [  110 ]:

kt = 2
7
|F(i,j)

C,n|
|δ|

. (3.5)

The tangential spring stretch, ξ(i,j) can be calculated from the normal (U(i,j)
n = n(i,j)n(i,j) ·

(U(j) −U(i))) and tangential (U(i,j)
t = (I − n(i,j)n(i,j)) · [U(j) −U(i) − (aiΩi + ajΩj) × n(i,j)])

relative velocities between the particles i and j by applying the algorithm described in Luding

[ 148 ] and Mari et al. [ 25 ]. t(i,j) is a vector normal to n(i,j) in the tangential direction to the

particles and given as: F(i,j)
C,t /|F

(i,j)
C,t |. Contact forces also induce an additional contact stresslet

for the particle given by the vector product of particle center to center vector and the contact

force as [ 24 ]:

S(i,j)
C = 1

2

(
d(i,j)

2 ⊗ F(i,j)
C + F(i,j)

C ⊗ d(i,j)

2

)
. (3.6)

Since we have a balance between the hydrodynamic and contact forces owing to the

choice of kn as described above, there is no competition between the governing forces which
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is the fundamental mechanism for observing shear rate dependent rheological behavior [ 25 ],

[ 54 ], [  94 ]. Hence, in addition to above contact forces, we introduce an extra force scale

in the friction law itself. This is called Critical Load Model (CLM) [ 25 ]. This force is a

threshold normal force (FCL) below which the particles interact as friction-less hard spheres

and above which friction between the particles is activated. This is a simple model which can

successfully reproduce the continuous and discontinuous shear thickening behavior observed

in suspensions and has been extensively used in the literature [ 25 ], [ 56 ], [ 59 ]. This type of

frictional behavior has also been observed experimentally [ 58 ],

|F(i,j)
C,t | ≤


µ (|FC,n| − FCL) , if |FC,n| ≥ FCL

0, otherwise.
(3.7)

Finally, to calculate the rheological properties, we need the bulk stress in the suspension.

The bulk stress in a suspension of rigid particles in a flow with strain rate E∞ is (after

subtracting isotropic part of the fluid pressure):

Σ = 2µE∞ + Σp, (3.8)

where Σp is the particle contribution to the bulk stress, and is given by the sum of hydro-

dynamic stress ΣH and the contact stress ΣC as:

Σp = ΣH + ΣC , (3.9)

where ΣH and ΣC can be calculated by taking ensemble average of the hydrodynamic (SH)

and contact (SC) stresslets at each time step. We get,

ΣH = 1
V

(∑
i

S(i)
H

)
, (3.10)

ΣC = 1
V

∑
i>j

S(i,j)
C

 . (3.11)
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Therefore,

Σ = 2µE∞ + 1
V

∑
i

S(i)
H +

∑
i>j

S(i,j)
C

 , (3.12)

where V is the volume of the domain which is given by L3 for a cubic domain with sides

equal to L. Shear stress σ, normal stress differences N1 and N2, and relative viscosity ηr

can then be defined as σ = Σ12, N1 = Σ11 − Σ22, N2 = Σ22 − Σ33, and ηr = σ/(ηγ̇). The

systematic splitting of the particle stress in contributions from hydrodynamic and contact

stresses allows us to understand the relative contributions from lubrication and contact

interactions to the rheological properties. The contribution from the hydrodynamic stress to

the relative viscosity is ηH
r = 1 + ΣH

12/(ηγ̇), the corresponding contribution from the contact

stresses is ηC
r = ΣC

12/(ηγ̇) and so on.

3.2.1 Simulation conditions

1. Bidisperse suspension: Cluster formation and/or crystallization present in the simula-

tions of monodisperse suspensions can be avoided by introducing slight bidispersity in

the particle sizes [ 25 ], [ 52 ], [ 56 ]. So, we consider bidisperse spheres with a2/a1 = 1.4

and the same volume fractions for smaller and larger spheres. The particles are neu-

trally buoyant. In addition, this choice of the radius ratio and volume fractions for the

smaller and larger spheres was found to produce results very close to their monodisperse

counterparts [ 52 ], [  55 ], [  149 ].

2. Boundary conditions and domain size: Lees-Edwards periodic boundary conditions

[ 114 ] have been applied to all the sides. These boundary conditions enable us to

simulate the sheared suspension for a fixed domain volume without loss of generality

and produce accurate results for bulk rheological properties like viscosity and normal

stress differences. For this study, we simulate shear flow of suspension in a cubic box

with sides 15a1, where a1 is the radius of the smaller particles [ 52 ]. We repeated the

simulations for a bigger domain with sides 20a1. There is no significant change in the

rheological properties, so we decided to run all the simulations for a domain with sides

15a1.
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3. Shear rate dependence: We have another force scale besides the hydrodynamic one

which is required to yield shear-rate dependence. In CLM the threshold value gives

the force scale FCL. Therefore, the shear rate dependence is given by the ratio, γ̇/γ̇0,

with γ̇0 = FCL/6πηa2.

4. Range of parameters investigated: The simulation parameters are listed in table  3.1 .

The aim of this study is to understand the effects of varying particle surface roughness

on the rheology of suspension. Hence, we simulate the shear flow of rough particles for

7 different dimensionless roughnesses εr = 2hr/(ai + aj) viz., (0.005, 0.01, 0.03, 0.05,

0.075, 0.1, 0.125). The simulations were carried out for dimensionless shear rate values

γ̇/γ̇0 in the range [0.001 - 1.0] for a range of volume fractions in (0.45-0.56).

Table 3.1. Simulation parameters
φ γ̇/γ̇0(s−1) µ εr(%)

0.45 - 0.56 0.001 - 1.0 1 0.5 - 12.5

3.3 Results and discussion

This section presents the results of simulations for the range of parameters investigated.

Since the focus of this study is to investigate the effects of varying particle roughness on

the behavior of shear thickening suspensions, we kept µ a constant with value 1 for all the

simulations except for the zero shear limit cases for which µ = 0. Since zero shear limit

and frictionless particles have the same rheology, we use both interchangeably throughout

the text. The simulations for different parameters were carried out for a total of 50 strain

units, i.e., tf inal = 50/γ̇. Time step was decided by using a hard-sphere algorithm [ 49 ] with

upper bound of 1× 10−4/γ̇. The first 10 strain units were discarded owing to the transient

behavior of simulations in the initial time. All the rheological properties presented below

are calculated by averaging after 10 strain units and only the average values are presented.

Rheological data are plotted versus shear rates and shear stresses which have been non-

dimensionalized by the characteristic shear rate γ̇0 = FCL/6πηa2 and characteristic stress,

σ0 = ηγ̇0, respectively, where η is the viscosity of the suspending fluid.
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3.3.1 Rheology of smooth and rough suspensions

Fig.  3.3a and  3.3b , show the variation of relative viscosity with volume fraction for

different roughness values. We present the results in the zero shear and infinite shear limits

in order to demonstrate the effects of varying roughness in low and high shear rate (stress)

limits. In the low shear rate limit (γ̇ → 0) the interparticle contacts are mostly frictionless

(i.e., |FC,n| < FCL, Lubricated region [  144 ]). So, the zero shear limit is the same as setting

the interparticle friction equal to 0 (hence frictionless). On the other hand, the high shear

rate limit (γ̇ → ∞) shows the rheological behavior typical to a system close to jamming

transition (i.e., |FC,n| ≥ FCL, frictional region [ 144 ]).

We find that for all the cases, relative viscosity diverges as the volume fraction (φ)

approaches a particular value for each roughness. This value of volume fraction is termed

as the jamming volume fraction (φm) above which the suspension is jammed and no flow is

possible. We fit our data to a modified Maron-Pierce law [ 7 ], [  141 ] ηr = C(1 − φ/φm)−2,

with parameters (C, φm) [  25 ].
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Figure 3.3. Relative viscosity variation with roughness in a) zero shear limit
which is equivalent to setting µ = 0 or γ̇ → 0, b) High shear limit (µ = 1 and
γ̇ → ∞). Solid lines represent the modified Maron-Pierce law fit to the data.
Dotted lines show the jamming fraction for each roughness. Jamming fraction
reduces with roughness due to increase in viscosity and the effective radii of
the particles with roughness. φm in the high shear limit is significantly lower
than the one in the zero shear limit.

77



The effect of varying roughness is clear from both the figures. Increasing roughness

increases the viscosity of suspension at a particular volume fraction owing to denser contact

networks (See section  3.3.4 ). For the smoothest case, i.e., εr = 0.005, we find φm ≈ 0.66.

This is in agreement with the previous studies [ 25 ], [ 117 ] which find a similar value for the

jamming fraction in the zero shear limit. For the frictional case, µ = 1 (i.e., high shear

limit), we find that the jamming fraction reduces significantly from that of the friction-less

case. For the smoothest frictional suspensions, we find φm ≈ 0.571 which is close to the value

obtained by Mari et al. [  25 ] for µ = 1. Again, increasing roughness reduces the jamming

fraction and the reduction is even more for the frictional suspensions as compared to their

friction-less counterparts. For the roughest case φm is as low as ≈ 52 %. The reduction in

φm is expected and can be explained by the increase in the effective radii of the particles

with roughness and the increased frequency of particle-particle contacts. As the roughness

increases, the effective radii of the particles, given by, ae = a(1 + εr), increase as well. So the

effective volume fraction, given by, φe = φ(1 + εr)3, also increases with roughness, resulting

in denser contact networks with higher contact stresses (See section  3.3.4 ). This eventually

leads to the increase in the viscosity and the reduction in the jamming fraction.

These observation are consistent with the experimental study by Hsu et al. [ 8 ] and Hsiao

et al. [ 9 ] and a numerical study by More & Ardekani [ 118 ]. These studies observed a decrease

in jamming fraction with increasing roughness (See fig. 2-C in Hsu et al. [ 8 ], fig. 3 in Hsiao

et al. [ 9 ] and fig. 10-b in More & Ardekani [ 118 ]). We observe a similar trend of decrease in

φm with roughness.

3.3.2 Roughness enhances shear thickening

The suspension of frictional particles experiences two limiting rheology states depending

on the shear rates. At small shear rates, the suspension is in a lubricated state where most

of the contacts are frictionless and hence it has a lower viscosity. Large shear rates trigger

the formation of frictional contacts and the suspension is in a high viscosity (stress) state.

At the intermediate shear rates the suspension viscosity is in between these two extremes

and as a result we observe shear thickening [ 25 ], [ 141 ]. For each φ, there is a critical γ̇ above

which the transition from the lubricated to frictional regime starts, this is often termed as
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the critical shear rate, γ̇c. This transition can be smooth and over a range of shear rates,

in which case, it is called continuous shear thickening (CST) or it can be sudden like a step

function at a particular shear rate, in which case it is called discontinuous shear thickening

(DST). DST occurs only above a critical volume fraction φc [ 25 ], [  94 ], [  117 ], [  144 ]. So, we can

predict that there will be shear thickening as we increase the shear rate. In the subsequent

subsections, we describe conditions under which CST and DST occur, present the values of

γ̇c and φc and discuss the role roughness plays in determining the suspension behavior.
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Figure 3.4. Relative viscosity dependence on shear rate for a) smooth suspen-
sions (εr = 0.01) and b) rough suspensions (εr = 0.05). Increasing roughness
increases the strength of shear thickening (given by the slope of ηr vs γ̇/γ̇0
curve in the transition region). Roughness also reduces γ̇c and φc.

Fig.  3.4a and  3.4b show the variation of relative viscosity with dimensionless shear rate

for two different roughness values 1 % and 5 % of the particle radii. For the lower roughness,

we observe only CST for the investigated φ range with the magnitude of CST increasing with

φ. As we increase the roughness of the particles to 5 %, we observe DST for φ > 52%. Thus,

increasing the roughness reduces γ̇c and φc. This has been also observed in experiments [  8 ],

[ 9 ]. For a very high roughness value, i.e., 12.5 %, we see DST for a volume fraction as low

as 49 % (The corresponding plots can be found in Sec.  3.3.6 ). Thus, roughness enhances ST

by increasing the relative viscosity and reducing the jamming fraction.
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Dimensionless shear stress, σ/(ηγ̇0)
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Figure 3.5. Relative viscosity dependence on dimensionless shear stress for
a) smooth suspensions (εr = 0.01) and b) rough suspensions (εr = 0.05). The
transition stress, σST is a constant and is independent of roughness and volume
fraction. Stress follows the same behavior in the shear thickened regime.
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Figure 3.6. Relative viscosity variation with roughness for φ = 50% for a)
different γ̇ and b) different σ. The transition stress, σST is a constant and
is independent of roughness and volume fraction. Stress follows the same
behavior in the shear thickened regime.

Fig.  3.5a and  3.5b show the variation of viscosity with dimensionless stress for εr = 0.01

and εr = 0.05, respectively. These figures show that the transition to shear thickening from

the lubricated state occurs at a constant dimensionless stress, σLST/(ηγ̇0) ≈ 0.3 which is

independent of volume fraction and roughness. Same is true for the transition to the other
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extreme, where viscosity attains a shear rate independent high value plateau, σHST/(ηγ̇0) ≈ 20.

These findings are in agreement with previous study by Mari et al. [ 25 ] and has also been

observed in experiments for smooth spheres [  119 ], [  120 ], [ 137 ], [  150 ]–[ 155 ]. If we balance the

applied stress with the stress scale for ST transition, we get, σ ≈ FCL/A, where A is the area

over which a unit critical load for ST is applied. At the high viscosity transition, almost all

the particles are in frictional contacts, that means, σ = σHST and A = AHST ≈ a2 , leading to

σHST ≈ 6π. On the other hand, at the low viscosity regime (onset of ST), the contact chains

(with frictional contacts) are sparsely observed, meaning A = ALST must be higher than AHST .

Balancing σLST with FCL/A
L
ST we find ALST ≈ (7a)2 [ 25 ].

Fig.  3.6a and  3.6b show the variation of relative viscosity for φ = 50% for different

roughness values. From these plots we can see the effect of increasing roughness on ηr and

ST. ST is continuous at low roughness values, which correspond to smooth particles. This

effect can be quantified by defining the ST index, β, which can be obtained by fitting a

power law to ηr vs σ in the transition region where the rheology is transitioning from low

viscosity values to high viscosity values, i.e., ηr ∝ (σ)(β). Higher the value of β stronger is

the ST effect. For φ = 50%, β increases from 0.27 to 0.98 for εr = 0.005 and εr = 0.075,

which indicates that increasing roughness enhances ST. For a very high roughness values,

i.e., εr ≥ 10%, the suspension undergoes DST, suggesting that φc for such high roughness

values is < 50%. Fig.  3.6b again confirms that the onset of ST and the transition to shear

thickened high viscosity regime is roughness independent and is determined by the stress in

the system, but the magnitude of viscosity increases with roughness. Another interesting

insight can be obtained if we compare Fig.  3.4b and  3.5b with Fig.  3.6a and  3.6b , respectively.

The comparison shows that increasing roughness has a similar effect as increasing the volume

fraction on ST behavior. This can be understood if we look at the effective radius (ae(a, εr) =

a(1 + εr)) and the effective volume fraction (φe(φ, εr) = φ(1 + εr)3) for a given roughness.

Thus, φe(45, 0.05) ≈ φe(50, 0.01) ≈ 52% and φe(56, 0.05) ≈ φe(50, 0.1) ≈ 65% have similar

rheological behavior, CST and DST respectively for the two cases. We also observe that

we can predict onset of DST for a given roughness from its effective volume fraction. For

any roughness and volume fraction, if φe(φ, εr) > 63% then we expect the suspension to

undergo DST. In addition, if 59% ≤ φe ≤ 63%, we get strong CST and for φe < 59% we
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get CST. These values might change if we use a different coefficient of friction. Effective

volume fraction can help us to predict the qualitative rheological behavior of the rough

dense suspensions, but it should be borne in mind that it cannot predict the early onset and

the strength of the ST effect which are solely governed by the asperity size and the volume

fraction. E.g., i) the critical shear rate for the onset of ST, γ̇c/γ̇0, for a 50 % suspension with

roughness 10 % is ≈ 0.02, while for 56 % suspension with 5 % roughness its value is ≈ 0.008

even though they have the same φe, ii) These two suspensions also have a different viscosities

and viscosity jump as they transition from the lubricated to the shear thickened regime is

also roughness size and volume fraction dependent. Even for N1 (  3.3.3 ), the effective volume

fraction can only predict the sign transition of N1, but the relative change in the magnitude

of N1 depends on the roughness size. These results show that increase in the effective is just

one of the effects of increasing roughness and not the only effects as roughness modifies the

interparticle contacts as well as we show in Section  3.3.4 

3.3.3 Normal stress differences

Fig.  3.7 and Fig.  3.8 show the variation of the first normal stress difference, N1 and

the second normal stress difference, N2 for 50 % volume fraction suspensions for different

roughness values. We obtain negative values of N2 for all the cases with magnitude much

larger than that of N1. These findings are consistent with previous studies [ 20 ], [ 24 ], [ 25 ],

[ 51 ], [  52 ], [  156 ].

Fig.  3.7a shows the variation of normalized N1 with dimensionless shear rate. We would

like to mention that there have been contradictory reports on the magnitude and sign of N1

in the literature [ 157 ]–[ 159 ] with accurate measurements becoming possible with advanced

normal stress transducers and controlled stress rheometry only recently [ 156 ]. Prior to the

onset of ST, N1 is close to 0 with a negative sign. During the ST transition, N1 behaves

in two different ways depending on the roughness value. For lower roughness, N1 decreases

across ST (i.e., becomes more negative), while at higher roughness N1 increases across ST.

In both the cases (smooth and rough), we observe that the magnitude of N1 increases across

ST with relative increase becoming larger for higher roughness. This result is consistent

with the study by Mari et al [ 25 ]. who observed two different behaviors for N1 at low and
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Figure 3.7. First normal stress for 50 % suspension for different roughness
values a) variation of normalized N1 with dimensionless shear rate and b)
variation of dimensionless N1 with dimensionless stress. N1 increases with
roughness and becomes positive for higher roughness values.
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Figure 3.8. Second normal stress for 50 % suspension for different roughness
values a) variation of normalized N2 with dimensionless shear rate and b)
variation of dimensionless N2 with dimensionless stress. Behavior of N2 is
reminiscent of stress in the system.

high volume fractions. The behavior at low volume fraction is similar to the behavior we

obtain for low roughness values and the behavior for high volume fractions is same as what

we obtain for high roughness values. This is expected and can be explained by the increase

in the effective volume fraction with increase in the roughness.
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Figure 3.9. Normal stress differences for suspensions with εr = 0.05 for dif-
ferent volume fractions a) variation of normalized N1 with dimensionless shear
rate and b) variation of normalized −N2 with dimensionless shear rate. Be-
havior of N2 is reminiscent of stress in the system.

Fig.  3.7b shows that dimensionless N1 increases with increase in roughness. We obtain

negative values for N1 before the onset of ST for all the cases, which is consistent with the

behavior obtained for N1 in many previous studies [ 8 ], [  9 ], [  25 ], [ 42 ], [  119 ], [ 154 ]. However,

for high roughness values we find that N1 becomes positive after ST has taken place with the

magnitude of N1/σ not exceeding 0.2. Similarly, for a constant roughness we obtain negative

N1 at low volume fractions and a positive N1 at very high volume fractions (see Fig.  3.9 ).

These results are in agreement with experiments [  8 ], [ 9 ], [ 22 ], [ 94 ], [ 107 ], [ 119 ], [ 154 ], [ 160 ]

and computations [ 9 ], [  25 ], [  56 ], [  117 ].

For N2, we obtain behavior and trends consistent with most experimental data available,

i.e., N2 has a negative value and a magnitude much larger than N1. N2 varies linearly with

stress which is clear if we compare Fig.  3.8a and  3.6a . Another interesting behavior of N2 is

that, the dimensionless N2, i.e., N2/σ falls on a single curve for all the volume fractions at a

given roughness, again corroborating the fact that the behavior of N2 is reminiscent of that

of stress [ 25 ]. Fig.  3.8b shows that ST leads to almost doubling the value of dimensionless

N2.
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Figure 3.10. Average fraction of particle pairs in frictional vs stress for differ-
ent volume fractions for all roughness values. 4 = 45%, ♦ = 48%, � = 50%,
5 = 52%, O= 54%.

3.3.4 Contact networks and the role of asperity deformation

It has been shown by Mari et al. [ 25 ] that the ST transition with shear rate (stress)

is mainly due to increasing number of frictional particle-particle contacts with shear rate

(stress). Since we have a stress scale (FCL/a2) in the simulations above which friction

activates, frictional contacts appear more frequently as we increase the imposed stress. The

consequence of this is that, at low shear rates (stress), frictional contacts are seldom and

most of the contacts are lubricated which results in a low viscosity of the suspension. As

we increase shear rate (stress), the contacts yield and more contacts enter in the frictional

regime increasing the viscosity and resulting in ST. The natural question to ask is, how does

roughness affects these contacts? The answer to this question becomes clear if we think

particles with roughness as a bigger particle with the radius equal to the effective radius, ae.

So, as we increase roughness of the particles, the probability of two particles coming into

contact increases at a fixed stress. Hence, the number of particle pairs in frictional contact

naturally increases with increasing roughness which increases the viscosity. As a result, ST

effect improves.

This becomes clear if we plot the fraction of particle-particle pairs in frictional contact

with varying stress. Let f(σ) be the average ratio of number of particle pairs in frictional
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Figure 3.11. Snapshots of contact networks at 4 different times during the
simulations of a 50 % volume fraction suspension with particle roughness 1 %.
We observe CST for these simulation parameters. a) γ̇/γ̇0 = 0.01 (before ST),
b) γ̇/γ̇0 = 0.09 (during CST), c) γ̇/γ̇0 = 1.0 (After ST). i, ii, iii, iv correspond
to different times, 20/γ̇, 30/γ̇, 40/γ̇, 50/γ̇, respectively. Colorbar shows the
magnitude of dimensionless normal force between the contacting particle pairs.
Force has been scaled by the maximum normal force corresponding to flattening
of the asperities, Fmax

C,n = knh
3/2
r . Grey color denotes friction-less contacts.

contacts to the number of particle pairs in contact. Fig.  3.10 shows the fraction of frictional

contacts for different volume fractions and roughness values for varying stress. The data falls

on a single curve for all the roughness and volume fractions [ 25 ], [ 94 ], [ 144 ]. Thus the fraction

of particle contacts is governed by the stress in the system. But since increasing roughness
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Figure 3.12. Snapshots of contact networks at 4 different times during the
simulations of a 50 % volume fraction suspension with particle roughness 10 %.
We observe DST for these simulation parameters. a) γ̇/γ̇0 = 0.01 (before ST),
b) γ̇/γ̇0 = 0.02 (during DST), c) γ̇/γ̇0 = 1.0 (After ST). i, ii, iii, iv correspond
to different times, 20/γ̇, 30/γ̇, 40/γ̇, 50/γ̇, respectively. Colorbar shows the
magnitude of dimensionless normal force between the contacting particle pairs.
Force has been scaled by the maximum normal force corresponding to flattening
of the asperities, Fmax

C,n = knh
3/2
r . Grey color denotes friction-less contacts.

increases the number of particle contacts, number of frictional contacts and contact forces

at a fixed stress thus are higher for rougher suspensions. A look at the evolution of contact

networks makes this point clear.
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Figure 3.13. Average dimensionless normal force magnitude for φ = 50%
for different roughness values. The solid line indicates dimensionless FCL,
the force scale corresponding to the transition from friction-less to frictional
contact. Asperity deformation increases with increasing roughness resulting in
higher contact stresses for rough suspensions. Forces have been scaled by the
maximum normal force corresponding to flattening of the asperities, Fmax

C,n =
knh

3/2
r .

Fig.  3.11 and  3.12 elucidate the governing role played by frictional contact networks in

the suspension behavior. For a low roughness value (Fig.  3.11 ), the contacts are friction-less

and mostly in the lubricated regime at a shear rate before the onset of ST. At this low

viscosity end, force chains appear intermittently in the direction of compression axis. On

the other hand, at the high shear rate, frictional contacts is a norm with almost all the

contacts being in the frictional regime. Between these two extremes, the contact network

transitions from low viscosity to high viscosity state with the fraction of frictional contacts

gradually increasing. However, for a high viscosity value (Fig.  3.12 ), most of the contacts

are friction-less at a shear rate below γ̇c and the contact network transitions abruptly to a

state where all of the contacts are frictional. But, for γ̇ around γ̇c where we get DST, the

suspension switches between a low stress and a high stress state erratically during the time

evolution (depicted by the contact networks show in Fig.  3.12 (b-ii and b-iii) which is termed

as hysteresis [ 25 ] and looks like activated events [ 119 ], [  120 ], [  161 ]–[ 165 ].

For smooth suspensions, as discussed before, the probability of two particles coming into

contact is lower than the case of rough suspensions owing to the lower effective radius. This
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fact also gets reflected in Fig.  3.11 and  3.12 if we look at the density of the particle-particle

contacts. For lower roughness, the contacts are sparse (area covered by the white space is

more) and the lubrication film is intact for many particles which are close to each other but

not contacting. For a larger roughness, the lubrication film breaks for most of the particles

which are close to each other leading to a dense network (area covered by the white space

has decreased) of contacts. Thus, roughness simply increases the number of particle pairs

coming into contact which eventually results in the rise in the viscosity.

(a) (b)

Figure 3.14. Phase diagram for viscosity in the shear rate vs volume fraction
plane for a) low roughness suspensions (εr = 0.05) and b) high roughness
suspensions (εr = 0.1). φεr,Lm = jamming fraction for friction-less case and
φεr,Hm = jamming fraction for frictional case as γ̇ → ∞. The viscosity is color
coded: darker the shade higher is the viscosity value. Sharp transitions in
colors indicate critical parameter values. Please note that in the DST region,
the suspension might switch between the low and high viscosity state during
the time evolution of the simulations for a small range of γ̇ around γ̇c [ 25 ], and
this region is not shown in the phase diagram.

The colorbar on Fig.  3.11 and  3.12 shows the magnitude of the dimensionless normal

contact force for two different roughness values corresponding to smooth and rough case,

respectively. By comparing both the figures we can conclude that the magnitude of contact

forces increases with increase in roughness which results in larger contact stresses. In addi-

tion, we can calculate the value for critical overlap, δc corresponding to the transition from
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frictionless to frictional contact. This can be done by balancing the force scale FCL with the

normal contact force for δ = δc. We get, δc = 0.005(1/γ̇)2/3, which depends on the shear

rate. So, if δ > δc, then friction is activated (This is equivalent to saying |FC,n| > FCL). But

once the deformation larger than δc, increase in the deformation directly leads to increase in

the contact stress which increases the suspension viscosity. We observe that, for the contact

model implemented, asperities with bigger sizes tend to deform more, leading to rise in the

suspension stress and hence, result in the increase in viscosity (see Fig.  3.13 ).

3.3.5 Phase diagram

The results of this study show that as we change the volume fractions and the shear

rates, the materials undergo a range of rheological states depending on the roughness value.

This can be demonstrated with the help of a phase diagram which clearly demarcates the

various states and transitions the suspensions undergo. ST is closely related to the jamming

transition as it is clear from the variation of φm with roughness, which directly influences

the ST behavior for rough suspensions.

Fig.  3.14a and  3.14b show γ̇ − φ phase diagram for viscosity. At low shear rates and

low volume fractions, the suspension is in low viscosity state with contacts mostly in the

lubricated state. This rheology diverges at the friction-less jamming fraction, φεr,Lm . The

friction-less jamming point reduces as we increase roughness, thus, increasing the viscosity

for the same volume fraction as compared to the smooth case and reducing the values of

critical parameters.

The rheology in the upper part of the phase diagram is frictional and is in a high viscosity

state. This is due to the fact that with increase in the shear rate, the stress in the system

increases and activates the frictional contacts. This introduces a limit on the volume fraction

beyond which the suspensions jams and no flow is possible. This volume fraction is the

frictional jamming point, φεr,Hm . φεr,Hm also decreases with roughness which results in the

increases viscosity in the ST state with increasing roughness.

Friction-less and frictional regimes co-exist in the phase diagram with intermediate rheo-

logical properties in between the two diverging states. As a results we observe CST if φ < φc

and DST if φc < φ < φm. Again, we observe that φc decreases with roughness. This is a
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Figure 3.15. Relative viscosity vs dimensionless shear rate for different as-
perity sizes for a) φ = 45%, b) φ = 48%, c) φ = 52%, d) φ = 54%, e) φ = 56%.
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direct consequence of the fact that both friction-less and frictional diverging volume frac-

tions reduce with roughness. We observe that for a volume fraction φεr,Hm < φ < φεr,Lm , the

flowable regions shrinks rapidly as we increase the volume fraction and the suspension jams

even without undergoing DST as φ gets closer to φεr,Lm .

3.3.6 Simulation data for different φ and εr

This section presents the relative viscosity vs shear rate plots (Fig.  3.15 ) for different

volume fraction values and all the roughness sizes considered in the paper. These plots

clearly show that, 1) strength of the ST effect increases as we increase roughness size for a

given volume fraction, and 2) increasing roughness size leads to early onset of ST both in

terms of the critical shear rate (γ̇c) and the critical volume fraction for DST (φc).
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4. A CONSTITUTIVE MODEL FOR SHEARED DENSE

SUSPENSIONS OF ROUGH PARTICLES

4.1 Introduction

Shear thickening (ST) in non-Brownian suspensions has been known for a long time [ 35 ],

[ 121 ], [ 125 ]–[ 128 ], [ 162 ]. Owing to the advent of simulation techniques, ST in particulate sus-

pensions has been a focus of investigation of many scientific efforts in the last few decades.

As a result, a range of explanations can be found in the literature for the ST phenomenon in

dense suspensions. These include formation of hollow enclosures of particles due to sudden

onset of turbulent flow between them [ 129 ], order disorder transitions [  34 ], [ 130 ]–[ 132 ], par-

ticle clustering induced by fluid flow [ 45 ], [ 133 ]–[ 136 ]. These explanations provide us with

insights in the physics of ST in suspension, but they come with their own shortcomings, e.g.,

under-prediction of the viscosity jump magnitude [ 9 ], [  25 ], [  119 ], [  137 ].

Many studies have shown that in dense suspensions, the inter-particle contacts between

the neighbouring particles have a governing role in determining the stress in the sheared

suspensions [ 25 ], [ 51 ], [  62 ], [  84 ], [  85 ], [ 94 ]. This is because contacts not only give rise to

normal forces between the particles, which are essentially a type of repulsive force, but

they also lead to friction and resistance to rolling motion. As a result, friction between the

particles triggers anisotropic force chain networks [ 161 ] and granular-type behavior [ 122 ],

[ 138 ]–[ 140 ] consequently giving rise to ST. This hypothesis has been corroborated by theory

[ 141 ], simulations [ 25 ], [ 56 ], [ 84 ] and experiments [ 9 ], [ 58 ], [ 122 ], [ 142 ], [ 143 ], [ 160 ]. It is

well known that, ST can occur in two ways. When the viscosity increases gradually with

increasing shear rate (or stress) it is called Continuous Shear Thickening (CST). On the

other hand, when the viscosity increases abruptly at the critical shear rate it is termed

as Discontinuous Shear Thickening (DST). Even though, the understanding of ST due to

friction has advanced many folds in the past few years [ 25 ], [ 59 ], [ 86 ], [ 94 ], [ 117 ], [ 144 ], [ 145 ],

the effect of particle asperities on ST has not been explored much and it is only recently that

researchers have started to investigate it [  4 ], [ 166 ], [ 167 ]. Roughness plays a crucial role in

suspension of dense particles as even the smooth particles have nominal surface roughness

≈ O(10−3 − 10−2) times their sizes [  53 ].
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In dense suspensions, increasing the particle roughness size leads to an increase in the

suspension viscosity and an reduction in the jamming fraction (φm), the volume fraction

beyond which the suspension stops flowing [ 3 ], [ 7 ]. This results in an enhanced ST behavior

for dense suspensions of rough particles compared to smooth particles [ 4 ], [ 8 ]. The effect

of roughness is to increase the apparent radii of particles and an increase in the density of

the frictional contact networks leading to reduction in the critical shear rate (γ̇c) for ST

and the critical volume fraction (φc) for the DST transition [  4 ]. Using the Critical Load

Model (CLM) and a hemispherical mono-asperity model, it has been shown that we get

stress/rate value independent but roughness size dependent rheology in the low and high

shear stress/rate limits, respectively [  4 ]. The transition from the lubrication dominated (low

stress) to friction dominated (high stress) contact networks as we increase the shear stress

induces ST behavior in dense suspensions [  25 ], [ 144 ]. The rheological properties in between

these two extremes can be interpolated by using a unique microscopic parameter which gives

the fraction of frictional contacts at a given shear stress in the suspension [ 50 ], [ 117 ], [ 168 ]

(henceforth mentioned as WC model as it was proposed by Wyart-Cates [ 50 ]). An extension

of this model was recently used to come up with a constitutive model which captures the

effect of friction on the rheology of dense ST suspensions [  117 ].

Depending on the volume fraction (φ) and the viscosity jump magnitude, we can observe

three forms of stress curves as a function of shear rate in WC model [ 50 ], [  117 ]. For conditions

under which suspensions undergo CST (φ < φc), the shear stress in the suspension increases

monotonically with the applied shear rate. For the conditions under which DST is observed

(φc < φ < φm) and suspensions have a large enough but finite viscosity contrast, shear

stress vs shear rate curve has a non-monotonic behavior which has an S-shape. Finally, at

very large volume fractions which are higher than the jamming fraction (φ > φm), we get a

backward bending curve in the shear stress vs shear rate plot which means the suspension

can only flow at a small shear stress. Non-monotonic flow curves can only be observed

in shear stress controlled experiments [ 143 ], [ 169 ]–[ 171 ] and simulations [ 117 ]. Increasing

roughness size essentially lowers the values of φc and φm which result in the transitions

between various flow state curves to take place at lower volume fractions than their smooth

suspension counterparts.
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The aim of this work is to quantify the effect of systematically increasing particle rough-

ness size on the rheology and the flow curves of ST rigid particle suspensions by providing a

constitutive equation capturing these effects. We extend the ideas of WC model and propose

a constitutive model which expresses the suspension rheology in terms of the applied shear

stress and the roughness size. To this end, we briefly discuss the governing equations, the

simulation algorithm and the simulation conditions in Sec.  4.2 . Then we elaborate on the

constitutive model equations in Sec.  4.3 . Finally, in Sec.  4.4 we present results obtained

by applying this model to our simulation data which demonstrates the model’s efficacy in

predicting the suspension rheology given data only in the low and high shear limits and the

function quantifying the fraction of frictional contacts at a given shear stress.

4.2 Methodology

This section describes the models and algorithms used to simulate shear flow of rough non-

Brownian suspensions. We have used the same governing equations and numerical framework

to simulate the hydrodynamic interactions as explained in chapter  1 –Sec.  1.4 . The only

difference being we perform stress controlled simulations in this paper as opposed to the

shear rate controlled simulations in the previous chapters. We, therefore, elaborate only on

the contact and friction models used below.

Figure 4.1. Schematic of the asperity geometry: Asperity is modelled as a
hemisphere on the particle surface (denoted by yellow). δ is the hydrodynamic
separation distance, hr is the asperity size. The arrows show the contact forces
and torques acting on ith particle due to contact between ith and jth particles.
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4.2.1 Contact forces

We model the contact forces between the particles as it is done in the Discrete Element

Method (DEM), a popular method in granular physics [ 146 ], [  147 ]. We assume that the

contact between the particles takes place via the hemispherical asperity. The asperity de-

formation after the contact can be defined as δ = (d(i,j) − ai − aj − hr), and we say the

contact occurs when δ ≤ 0. Here the touching spherical particles have radii ai and aj with

surface roughness hr = εr(ai + aj)/2 (εr is the dimensionless roughness) coming into contact

as shown in Fig.  4.1 . We do not include viscous damping in order to be consistent with

previous studies [ 3 ], [  4 ], [  24 ], [  52 ], [  62 ].

We split the contact force (F(i,j)
C ) into two components [ 24 ], [ 25 ], i) F(i,j)

C,n, the normal

contact force, and ii) F(i,j)
C,t which is the tangential contact force (Fig.  4.1 ).

F(i,j)
C = F(i,j)

C,n + F(i,j)
C,t . (4.1)

The normal contact force is modelled using Hertz law,

F(i,j)
C,n = −kn (|δ|)3/2 n(i,j), (4.2)

here the compression of the asperity has been readily accounted for through the asperity

deformation δ.

The normal stiffness kn can be evaluated in terms of particle mechanical properties like

Young’s modulus, Poisson’s ratio and Elastic modulus. But, for real materials this value

comes out to be very large which forces the time-step to be very small in order to have

numerical stability. Hence, for numerical tractability, the normal stiffness kn is chosen suffi-

ciently high so as to mimic rigid particles and changing kn does not have a significant impact

on the bulk rheology [ 4 ], [ 24 ], [ 25 ], [ 62 ], [ 144 ]. Here, we take the dimensionless normal stiff-

ness kn/(σa2hr
−3/2) = 2 × 104 where σ is the imposed shear stress [ 4 ]. The dependence

of the contact stiffness values on the hydrodynamic stress and roughness size is an impor-

tant feature and assumption of many contact force models for non-Brownian suspensions [  4 ],

[ 24 ], [ 25 ], [ 56 ], [ 62 ]. As there is no inherent time-scale in non-Brownian suspensions, it is
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the competition between the various forces/stresses that determines the bulk stress in the

suspensions [ 27 ]. The mentioned feature of the contact model allows us to systematically

vary the relative magnitudes of the competitive forces in the suspension to recover the rate

dependent rheological behavior [ 4 ].

The tangential contact force and the resulting contact torque (T(i,j)
C ) acting on the particle

is then given as:

F(i,j)
C,t = ktξ

(i,j)t(i,j), (4.3)

T(i,j)
C = ain(i,j) × F(i,j)

C,t . (4.4)

In the above expression for tangential contact force, kt is the tangential spring stiffness

coefficient and can be calculated as [ 24 ], [  52 ], [  110 ]:

kt = 2
7
|F(i,j)

C,n|
|δ|

. (4.5)

The tangential spring stretch, ξ(i,j) can be calculated from the normal (U(i,j)
n = n(i,j)n(i,j) ·

(U(j) −U(i))) and tangential (U(i,j)
t = (I − n(i,j)n(i,j)) · [U(j) −U(i) − (aiΩi + ajΩj) × n(i,j)])

relative velocities between the particles i and j by applying the algorithm described in Luding

[ 148 ] and Mari et al. [ 25 ]. t(i,j) is a vector normal to n(i,j) in the tangential direction to the

particles and given as: F(i,j)
C,t /|F

(i,j)
C,t |. Contact forces also induce an additional contact stresslet

for the particle given by the vector product of particle center to center vector and the contact

force as [ 24 ]:

S(i,j)
C = 1

2

(
d(i,j)

2 ⊗ F(i,j)
C + F(i,j)

C ⊗ d(i,j)

2

)
. (4.6)

The focus of this study is to quantify the effect of roughness size on the ST behavior

of dense suspensions. Hence, we only vary the roughness size which is hr. This is like

increasing the sizes of the bumps on the particles surfaces while keeping their mean radii

the same with a uniform distribution of the asperities on the particle surface [ 3 ], [ 4 ], [ 24 ],

[ 52 ], [  62 ], [  172 ]. It has been shown recently that it is not only the frictional contacts,

but resolving for the particle roughness will entirely change the hydrodynamic interactions

between rough particles as well [ 167 ]. As also shown in ref. [ 166 ], these hydrodynamic
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interactions by themselves can recover DST behavior without any frictional contact. Here

for the sake of simplicity we do not include the consequences of having rough particles

on tangentially-translated hydrodynamic interactions due to presence of rough asperities.

However, the resistance to sliding and the rolling motion [  173 ] is included via tangential

spring and consequently, via the contact torques acting on the particles, respectively. The

focus of this study is to propose a constitutive model to account for the effect of roughness

size on the behavior of ST suspensions based on the philosophy of Wyart-Cates [ 50 ]. Hence,

we keep the hydrodynamic interaction calculations simple but focus more on the roughness

size and contact dynamics modelling.

4.2.2 Friction: Critical Load Model

Since we have a balance between the hydrodynamic and contact forces owing to the

choice of kn as described above, there is no competition between the governing forces which

is the fundamental mechanism for observing shear rate dependent rheological behavior [ 25 ],

[ 54 ], [  94 ]. Hence, in addition to above contact forces, we introduce an extra force scale

in the friction law itself. This is called Critical Load Model (CLM) [ 25 ]. This force is a

threshold normal force (FCL) below which the particles interact as friction-less hard spheres

and above which friction between the particles is activated. This is a simple model which can

successfully reproduce the continuous and discontinuous shear thickening behavior observed

in suspensions and has been extensively used in the literature [  4 ], [ 25 ], [ 56 ], [ 59 ]. This type

of frictional behavior has also been observed experimentally [  58 ],

|F(i,j)
C,t | ≤


µ (|FC,n| − FCL) , if |FC,n| ≥ FCL

0, otherwise.
(4.7)

4.2.3 Bulk rheology and shear rate calculation

We perform stress controlled simulations for this study. Thus, for a given imposed shear

stress, σ, we calculate the shear rate, γ̇, which is an unknown a priori. The bulk stress in a
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suspension of rigid particles in a flow with strain rate E∞ is (after subtracting isotropic part

of the fluid pressure):

Σ = 2η
(

1 + 5
2φ
)

E∞ + Σp, (4.8)

where Σp is the particle contribution to the bulk stress, and is given by the sum of hydro-

dynamic stress ΣH and the contact stress ΣC as:

Σp = ΣH + ΣC , (4.9)

where ΣH and ΣC can be calculated by taking ensemble average of the hydrodynamic (SH)

and contact (SC) stresslets at each time step. We get,

ΣH = 1
V

(∑
i

S(i)
H

)
, (4.10)

ΣC = 1
V

(∑
i

S(i,j)
C

)
. (4.11)

Therefore,

Σ = 2η
(

1 + 5
2φ
)

E∞ + 1
V

∑
i

S(i)
H +

∑
i

∑
j

S(i,j)
C

 , (4.12)

where V is the volume of the domain which is given by L3 for a cubic domain with sides

equal to L. Shear stress σ, normal stress differences N1 and N2, and relative viscosity ηr can

then be defined as σ = Σ12, N1 = Σ11 − Σ22, N2 = Σ22 − Σ33, and ηr = σ/(ηγ̇). The shear

stress, σ, is given by,

σ = Σ12 = η
(

1 + 5
2φ
)
γ̇ + γ̇[

(
RSE −RSU ·R−1

FU ·RFE

)
: Ê∞]12 + ΣC

12, (4.13)

where Ê∞ is the shear rate normalized rate-of-strain tensor. The shear rate can then be

calculated as [ 117 ],

γ̇ = σ − ΣC
12

η(1 + 5
2φ) + [

(
RSE −RSU ·R−1

FU ·RFE

)
: Ê∞]12

, (4.14)
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4.2.4 Simulation conditions

1. Bidisperse suspension: We consider bidisperse spheres with a2/a1 = 1.4 with equal

volume fractions for smaller and larger spheres. This is done to avoid any cluster

formation and/or crystallization which is otherwise observed for monodisperse suspen-

sions [ 25 ], [ 52 ], [ 56 ]. In addition, this choice of bidispersity parameters results in a

rheology very close to their monodisperse counterparts [  3 ], [  52 ], [ 55 ], [  149 ]. In experi-

ments, one will need to critically measure and calculate the actual volume fraction of

the particles, using a variety of techniques [ 9 ]. In the present study, we calculate the

volume fraction based on the base particle radii a1 and a2.

2. Boundary conditions and domain size: Lees-Edwards periodic boundary conditions

[ 114 ] have been applied to all the sides. These boundary conditions enable us to

simulate the sheared suspension for a fixed domain volume without loss of generality

and produce accurate results for bulk rheological properties like viscosity and normal

stress differences. For this study, we simulate shear flow of suspension in a cubic box

with sides 15a1, where a1 is the radius of the smaller particles [ 3 ], [  4 ]. We repeated

the simulations for a bigger domain with sides 20a1. There is no significant change in

the rheological properties, so we decided to run all the simulations for a domain with

sides 15a1.

3. Shear stress/rate dependence: We have an additional force scale besides the hydrody-

namic one which is required to yield shear-rate dependence. In CLM the threshold

value gives the force scale FCL. Therefore, the shear rate dependence is given by the

ratio, γ̇/γ̇0, with γ̇0 = FCL/6πηa2 and the shear stress dependence is given by the

dimensionless shear stress, σ̃ = σ/σ0 with σ0 = ηγ̇0

4. Range of parameters investigated: The simulation parameters are listed in table  4.1 .

The aim of this study is to understand the effects of varying particle surface roughness

on the rheology of suspension. Hence, we simulate the shear flow of rough particles

for 5 different dimensionless roughness values, εr = 2hr/(ai + aj) viz., (0.01, 0.03, 0.05,
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Table 4.1. Simulation parameters
φ σ/σ0 µ εr(%)

0.45 - 0.56 0.1 - 100.0 1 1.0 - 10.0

0.075, 0.1). The simulations were carried out for dimensionless shear stress values σ̃ in

the range [0.1 - 100.0] for a range of volume fractions in (0.45-0.56).

4.2.5 Validation of the numerical tool
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Figure 4.2. a) Comparison of high-frequency shear viscosity with previously
published results [  24 ], [ 48 ], [ 49 ], [ 174 ]. b) Comparison of relative viscosity with
a constant coefficient of friction, µ = 0 and 0.5 with experiments [ 20 ], [ 22 ],
[ 112 ], [  175 ]

This section presents the high frequency shear viscosity calculations from the numerical

tool utilized in this study with previously published results. High frequency shear viscosity

means the particles are frozen at their respective positions. So, we calculate the high fre-

quency relative viscosity for 10 different random particle configurations and their average

values are presented in Fig.  4.2a . The slight difference difference with Ball & Melrose (1997)

[ 49 ] is due to neglecting the twist mode in the present work [ 3 ], [  25 ].

Fig.  4.2b compares the relative viscosity at different volume fractions calculated for

smooth suspensions with εr = 0.001 for two different constant coefficient of friction µ = 0
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and µ = 0.5 with previously published experimental data [ 20 ], [ 22 ], [ 112 ], [ 175 ]. We turn off

the CLM model (eq.  4.7 ) and carry out the simulations for constant µ. The agreement is

satisfactory.

4.3 Constitutive model

We observe stress independent but roughness size dependent rheological behavior in the

low/zero (denoted by superscript {}0) and the high/infinite (denoted by superscript {}∞)

shear stress/rate limits. As there are multiple variables that vary in the two extreme stress

limits, we use {} as a generic symbol to indicate the variables. The rheological properties in

the two extreme stress conditions can be expressed in terms of volume fraction (φ), jamming

volume fraction (φ0,∞
m ), fitting constants (α0,∞, β0,∞, χ0,∞) in the two extreme stress limits,

respectively, as:

η0
r (φ, εr) = α0 (εr)

(
φ0
m (εr)− φ

)−2
, (4.15)

η∞r (φ, εr) = α∞ (εr) (φ∞m (εr)− φ)−2 , (4.16)

− N0
2

ηγ̇
(φ, εr) = β0 (εr)φ2

(
φ0
m (εr)− φ

)−2
, (4.17)

− N∞2
ηγ̇

(φ, εr) = β∞ (εr)φ2 (φ∞m (εr)− φ)−2 . (4.18)

N0
1

ηγ̇
(φ, εr) = χ0 (εr)φ2

(
φ0
m (εr)− φ

)−2
, (4.19)

N∞1
ηγ̇

(φ, εr) = χ∞ (εr)φ2 (φ∞m (εr)− φ)−2 . (4.20)

The expressions for volume fraction dependence of viscosity and the normal stress differences,

i.e., (φm (εr)− φ)−2 and φ2 (φm (εr)− φ)−2, respectively, are consistent with correlations pro-

posed for constant volume [ 176 ], [ 177 ] and constant pressure conditions [ 17 ] and have also
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been used in the constitutive modelling of ST suspension based on coefficient of friction [ 117 ].

Here we retain the dependence of φm on the roughness ratio, εr, as the jamming fraction

depends on the roughness ratio along with the imposed stress values. We assume a constant

coefficient of friction for this study with value equal to 1. Hence friction dependence is not

shown in the constitutive equations, but it can be included in a straightforward manner

[ 117 ].

We observe that the fitting constants are roughness size dependent in the zero shear limit

even though the suspension is effectively friction-less in this regime since |FN | << FCL. So,

α0, β0 and χ0 are µ independent but vary with εr. This is to be expected since roughness leads

to an increase in viscosity and a reduction in the jamming fraction of dense non-Brownian

suspensions [  3 ], [ 4 ], [ 7 ]. We need to be more careful with handling N1 as it has been harder

to measure experimentally [ 119 ], [  159 ], [  178 ] and compute numerically [ 24 ], [  25 ], [  52 ]. In

addition, N1 has been known to switch signs from negative to positive as the suspension

shear thickens. This effect is more notable at high volume fractions than at lower volume

fractions [ 4 ], [  25 ], [  117 ].

The rheological properties at a finite stress value 0 < σ̃ <∞ can similarly be expressed

in terms of the volume fraction (φ), jamming volume fraction (φm (σ̃, εr)), fitting constants

(α (σ̃, εr) , β (σ̃, εr) , χ (σ̃, εr)) as:

ηr (φ, σ̃, εr) = α (σ̃, εr) [φm (σ̃, εr)− φ]−2 , (4.21)

− N2

ηγ̇
(φ, σ̃, εr) = β (σ̃, εr)φ2 [φm (σ̃, εr)− φ]−2 . (4.22)

N1

ηγ̇
(φ, σ̃, εr) = χ (σ̃, εr)φ2 [φm (σ̃, εr)− φ]−2 . (4.23)

The jamming fraction and the fitting constants at an intermediate finite σ̃ can be calculated

by interpolating their corresponding values in the low and high stress limits [ 50 ] as follow:

φm (σ̃, εr) = φ0
m (εr) [1− f (σ̃)] + φ∞m (εr) [f (σ̃)] , (4.24)
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α (σ̃, εr) = α0 (εr) [f (σ̃)] + α∞ (εr) [1− f (σ̃)] , (4.25)

β (σ̃, εr) = β0 (εr) [f (σ̃)] + β∞ (εr) [1− f (σ̃)] , (4.26)

χ (σ̃, εr) = χ0 (εr) [f (σ̃)] + χ∞ (εr) [1− f (σ̃)] , (4.27)

here f(σ̃) = exp(−σ̃∗/σ̃) is the average fraction of frictional contacts in the suspension for

a particular σ̃ and which is based on previously published experiments and simulations [ 3 ],

[ 25 ], [ 122 ], [ 160 ], [ 171 ], [ 179 ]. We use σ̃∗ = 4. This particular value of σ̃∗ was obtained

by fitting f(σ̃) = exp(−σ̃∗/σ̃) to the average fraction of frictional contacts vs σ̃ data from

the simulations. In addition, fitting constants, α, β and χ as well as the jamming fraction,

φm in the low and high shear stress limits can be expressed in terms of the dimensionless

roughness, εr and fitting constants {φm, α, β, χ}0
S, {φm, α, β, χ}∞R , and X0,∞

φm,α,β,χ
. We use

subscripts S and R to denote the values of these fitting constants for the smoothest and the

roughest cases. respectively. We use:

{φm}0,∞(εr) = {φm}0,∞
R + [{φm}0,∞

S − {φm}0,∞
R ]exp

(
−{X}0,∞

φm
/εr
)
, (4.28)

{α}0,∞(εr) = {α}0,∞
R + [{α}0,∞

S − {α}0,∞
R ]exp

(
−{X}0,∞

α /εr
)
, (4.29)

{β}0,∞(εr) = {β}0,∞
R + [{β}0,∞

S − {β}0,∞
R ]exp

(
−{X}0,∞

β /εr
)
, (4.30)

{χ}0,∞(εr) = {χ}0,∞
R + [{χ}0,∞

S − {χ}0,∞
R ]exp

(
−{X}0,∞

χ /εr
)
. (4.31)

Here {}0,∞ gives the values of the fitting constants in the zero ({}0) and infinite ({}∞) shear

stress limits, respectively, depending on whether we choose 0 or ∞ as the superscript. The

same superscript must be chosen on the right hand side. This exponential description for

the fitting constants on the dimensionless roughness size, i.e., exp(−{}/εr) is inspired from

the expression used for f(σ̃). This completes the description of the constitutive equations.
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4.4 Results and discussion
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Figure 4.3. Rheological properties of the smoothest (εr = 1%, “Smooth”)
and roughest (εr = 10%, “Rough”) suspensions for different volume fraction
values. Symbols are simulation results. Dashed and solid lines represent fitting
equations in the low (0, equations  4.15 &  4.17 ) and high (∞, equations  4.16 

&  4.18 ) shear rate limits. a) Relative viscosity, b) Second normal stress dif-
ference. Roughness leads to increase in ηr and −N2 in both the low and high
shear rate limits. We postpone results for N1 till Sec.  4.4.3 due to its peculiar
behavior. This roughness dependent rheology will be observed irrespective of
CLM (eq.  4.7 ). We will get either 0 or ∞ rheological measurements depending
on whether we choose µ = 0 or 1, respectively.

This section presents the results of stress controlled shear flow simulations of dense rough

particle ST suspensions for the range of parameters investigated. Since the focus of this study

is to investigate the effects of varying particle roughness on the behavior of ST suspensions,

we kept µ a constant with value 1 for all the case. The simulations for different parameters

were carried out for a total of 100 - 200 strain units, i.e., tf inal = (100− 200)/γ̇. Time step

was decided by using a hard-sphere algorithm [ 49 ] with upper bound of 1×10−4/γ̇. The first

30 % strain units were discarded owing to the transient behavior of rheological properties in

the initial time. All the rheological properties presented in the subsequent subsections are

calculated by averaging after 30 % strain units and only the average values are presented.
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4.4.1 Roughness dependent rheology
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Figure 4.4. Fitting constants for different roughness values. Symbols are
fitting constants obtained from simulations. Dashed and solid lines represent
fitting equations (equations  4.28 ,  4.29 &  4.30 ) in the low (0) and high (∞) shear
rate limits. a) α & β, b) jamming fraction, φm. Roughness leads to decrease in
α and β in both the low and high shear rate limits. Increasing roughness leads
to a reduction in the jamming volume fraction due to the increase in viscosity
and the increase in the effective particle radii [ 4 ]. We postpone results for χ
till Sec.  4.4.3 due to peculiar behavior of N1.

It has been observed in experiments [ 7 ], [ 8 ], [ 54 ] and computations [ 3 ], [ 4 ] that roughness

leads to increase in viscosity of suspension of rough particles due to reduction in the jamming

fraction. In our simulations, the rheology in the low shear limit is friction-less because

all the contacts are non-frictional (|FN | < FCL). But still we observe an increase in ηr

and −N2/ηγ̇ in this limit with roughness. This is to be expected for dense suspensions as

roughness basically leads to early contact and rise in the contact stresses. Fig.  4.3a and  4.3b 

show the relative viscosity and the second normal stress difference against volume fraction

of the suspensions for the smoothest (εr = 1%) and the roughest (εr = 10%) particles

in the low and high shear rate limits along with the modified Maron-Pierce fitting curves

(Eq.  4.15 ,  4.16 ,  4.17 ,  4.18 ). In addition, the reduction in the jamming fraction, φm, with

increasing stress and increasing particle roughness is consistent with experiments [ 9 ], [ 93 ].
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Please note that due to the anomalous behavior of N1, we defer the discussion on N1 to

Sec.  4.4.3 .

Table 4.2. Roughness dependent model constants for ηr, −N2/ηγ̇ and φm.
Brackets ({}) in the column headers stand for the fitting constants α, β and
φm for the respective rows.

{}0
S {}0

R X0
{} {}∞S {}∞R X∞{}

α 0.2123 0.6761 0.0703 0.4006 0.7894 0.0445
β 0.2040 0.5305 0.0626 0.7009 1.157 0.0480
φm 0.5442 0.6508 0.0958 0.4445 0.5594 0.0856

We observe that the fitting constants and the jamming fraction depends only on the

particle roughness in the low and high shear rate limits. As a result they can be expressed

in terms of εr as shown in equations  4.28 ,  4.29 ,  4.30 . Fig.  4.4a and  4.4b show that equa-

tions  4.28 ,  4.29 and  4.30 are a good fit and accurately capture the effect of increasing the

particle roughness on the rheology of dense suspensions with rough particles in the low and

high shear limits. Table  4.2 summarizes the values obtained for the roughness dependent

model constants obtained after a least square fit procedure.

Before presenting the stress dependent rheology, we would like to mention that the rough-

ness size dependence and the stress dependence are not interrelated. We utilize CLM (eq.  4.7 )

to recover the stress dependent rheological behavior while roughness dependence comes from

varying the roughness size hr. In the absence of eq.  4.7 , we only get the roughness size

dependence which is presented in Fig.  4.3 and modeled in eq.  4.28 -  4.31 . We will get either

0 stress limit or ∞ stress limit rheology depending on whether µ = 0 or 1, respectively. But

we will still get the increase in the viscosity with roughness size which is consistent with

previous simulations [  4 ] and experiments [ 7 ].

4.4.2 Stress dependent viscosity

In this section we present the data from the stress controlled simulations for suspensions

with varying particle surface roughness values along with the constitutive equation fitting

curves. Once the rheological properties and the jamming fraction in the low and high shear

stress limits are known, it has been shown that the rheological properties in the intermediate
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Figure 4.5. Relative viscosity as a function of dimensionless shear stress, σ̃:
a) for smooth particle suspension, εr = 0.01. Filled symbols are the simulation
results for stress controlled simulations. Open symbols for φ = 50% are the
simulations results for shear rate controlled simulations with εr = 0.01, b)
for rough particle suspension, εr = 0.075, c) φ = 54%, for different roughness
values. ST transition takes place at a constant σ̃ = 1 [ 4 ]. d) Comparison of the
constitutive model with the experimental data from Guy et al. (2015, 2019)
[ 93 ], [  122 ]. We assume the particles to have a roughness size, εr = 0.5 % and
σ0 = 4 (Pa) for the experimental data. The solid lines represent equation  4.21 

with the values of fitting parameters obtained using the simulation data.

stress values can be interpolated [ 50 ]. This is the basis of proposing the roughness and stress

dependent constitutive equations in Sec.  4.3 .
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Fig.  4.5 shows the relative viscosity dependence on dimensionless shear stress for the

smooth (εr = 1 %) and rough (εr = 7.5 %) particle suspensions for volume fractions inves-

tigated in this study. As we present simulations data only for ε = 1 % and εr = 7.5 % in

the main text, we refer to these cases as “smooth” and “rough” henceforth in the article.

Simulation data and the corresponding constitutive equation fits for the remaining rough-

ness values, viz., εr = 3, 5, and 10 % are provided in the Sec.  4.4.4 . We have shown in

our previous study [ 4 ] that the qualitative behavior of the suspension rheology, i.e., whether

they will undergo CST or DST can be predicted with the help of effective volume fraction

of the suspension given as, φe = φ(1 + εr)3. Effective volume fraction can help us to predict

the qualitative rheological behavior of the rough dense suspensions, but it should be borne

in mind that it cannot predict the early onset and the strength of the ST effect which are

solely governed by the asperity size and the base volume fraction. In addition, the critical

shear rates for the ST transitions are also different even is two suspensions have the same

φe. Increasing the roughness size in the current contact model also leads to distinct changes

in the contact networks as shown in our previous study [ 4 ]. We elaborate more on this in

Sec.  4.4.4 .

The proposed model does an excellent job in predicting ηr in the intermediate σ̃ regime

for both roughness cases. We also present the results for the relative viscosity from shear-rate

controlled simulations for a suspension with 50% volume fraction and εr = 0.01 in Fig.  4.5a 

which are denoted with open symbols. This shows that both the shear rate-controlled and

shear-stress controlled simulations are in agreement. As the plots show, roughness leads to

increase in the strength of CST at low volume fractions and leads to a bigger viscosity jump

for the cases when DST is observed. Fig.  4.5c shows ηr for a fixed volume fraction of 54 %

for various particle roughness values showing the effect of roughness on η and the accuracy

of the constitutive model.

We can use the values of fitting parameters obtained from the simulation data to predict

the relative viscosity of smooth particle suspensions. This has been done in Fig.  4.5d where

we compare the predictions of the model developed with the experimental data from Guy

et al., (2015, 2019) [ 93 ], [  122 ]. The model does a satisfactory job of estimating the relative

viscosity for experimental systems. For this comparison we assume the particles in the
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experiments to have a nominal roughness size, εr = 0.5 %. We also assume σ0 = 4 Pa in

order to non-dimensionalize the experimental stress values. Guy et al., (2015, 2019) [ 93 ],

[ 122 ] find φ0
m ≈ 0.63 and φ∞m ≈ 0.56 for sterically stabilized PMMA suspensions. We predict

φ0
m ≈ 0.64 and φ∞m ≈ 0.56 for εr = 0.5%. Thus the results from the simulations show a

satisfactory agreement with the experimental data.
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Figure 4.6. Dimensionless shear rate vs dimensionless shear stress, σ̃: a)
for smooth particle suspension, εr = 0.01, φc ≈ 54%, b) for rough particle
suspension, εr = 0.075, φc ≈ 50%. Symbols are simulation results. The solid
lines represent the fitting equation, σ̃/ηr(φ, σ̃, εr) with ηr(φ, σ̃, εr) from eq.  4.21 

In addition to the jamming fraction, the critical volume fraction, φc, for the CST to DST

transition, and the critical shear rate, γ̇c, for the onset of ST are two important parameters

which determine the flow state of a suspension. They can be calculated from the relationship

between σ and γ̇. At γ̇c, the viscosity value starts to transition from the lubricated low

magnitude regime to a frictional high magnitude regime. This transition is gradual for

φ < φc as the suspension undergoes CST. But for φ ≥ φc the viscosity abruptly jumps from

the lubricated low value to a frictional high value signifying onset of DST. φc is the lowest

volume fraction at which dγ̇/dσ becomes zero for some σ̃ = σ̄c. This happens for φc ≈ 54% for

a smooth particle suspension and for φc ≈ 50% for a rough particle suspension as can be seen

in Fig.  4.6a and  4.6b , respectively and Fig.  4.8 . From the constitutive equations presented

in Sec.  4.3 , we can quantify φc and σ̄c by calculating the φ and σ/σ0 for each roughness value
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where dγ̇/dσ becomes 0 first (See Fig.  4.6 and  4.8 ). In addition, the critical shear rate for

ST transition decreases with roughness and can be found by γ̇c/γ̇0 = 1/ηr(φ, εr, 1) as the ST

starts at a constant σ̃ = 1 [ 4 ], [ 25 ]. We observe a reduction in both γ̇c and φc with increasing

the roughness size which is well captured by the constitutive equations.

Dimensionless shear rate, γ̇/γ̇0

10−4 10−3 10−2 10−1 100

R
e
la
ti
v
e
v
is
c
o
si
ty

,
η
r

101

102

103
φ = 45 %

φ = 48 %

φ = 50 %

φ = 52 %

φ = 54 %

φ = 56 %

(a)
Dimensionless shear rate, γ̇/γ̇0

10−4 10−3 10−2 10−1 100
R
e
la
ti
v
e
v
is
c
o
si
ty

,
η
r

101

102

103
φ = 45 %

φ = 48 %

φ = 50 %

φ = 52 %

φ = 54 %

φ = 56 %

(b)

Figure 4.7. Relative viscosity vs dimensionless shear rate: a) for a smooth
suspension, εr = 0.01. Open symbols for φ = 50% are the simulations results
for shear rate controlled simulations with εr = 0.01, b) for a rough suspension,
εr = 0.075 %, at different volume fraction values. Filled symbols are the stress
controlled simulation results. Solid lines are the fitting equation (eq.  4.21 ).
Increasing roughness leads to an increase in the CST strength at low volume
fractions which can be clearly seen from the increase in the slope of the fitting
curves in the ST transition regimes. At higher volume fractions, increasing
roughness leads to higher viscosity jump across DST. At φ > φc the suspension
can only flow at small stress values.

Fig.  4.6 also shows the three flow state curves as discussed in Sec.  4.1 . For smooth

suspensions (Fig.  4.6a , εr = 1 %), we observe a monotonic curve for σ(γ̇) for φ < 53 % which

becomes non-monotonic S-shaped for φ > 53 %. Eventually at higher volume fractions,

i.e., φ > 56 % we get the backward bending branch. With an increase in the roughness

size (Fig.  4.6b , εr = 7.5 %), the volume fractions dividing these three regimes are lowered

with values φc = 50 % for the monotonic to non-monotonic transition, and the S-shaped

to backward bending transition takes place for φ ≈ 53 %. Fig.  4.8 demarcates the various

transitions and regions in the flow state diagram (σ(γ̇)) of dense ST suspensions for the
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smooth and the rough case. It clearly shows the effect of increasing roughness is to lower

the transition volume fractions for the monotonic to non-monotonic flow state curves.
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Figure 4.8. σ̃−φ phase space diagram for smooth (εr = 1 %) and rough (εr =
7.5 %) suspensions showing φm(σ̃, εr) and (φc, σ̄c)(εr) curves. Dotted curve
shows the values of σ̃ and φ for which dγ̇/dσ = 0. The big dots on the (φc, σ̄c)
curve give the critical volume fraction for DST. Increasing roughness leads to
decrease in the critical volume fraction for the DST onset. For the regions
on the left to dotted lines suspensions undergo CST while they undergo DST
for the regions between the dotted and solid curves. The dash-dotted lines in
the DST region separate the parameter space for which we get S-shaped curve
and backward bending curve in the σ(γ̇) phase space. The suspension is shear
jammed for the region on the right of the solid curves.

4.4.3 Stress dependent normal stress differences

We present the simulation data for N2 for smooth and rough suspensions in Fig.  4.9 . N2 is

always negative and its magnitude increases with increasing roughness. This is in agreement

with previous studies [ 8 ], [ 9 ], [ 25 ], [ 37 ], [ 42 ], [ 119 ], [ 154 ]. This is to be expected as N2 mimics

the shear stress in the system [ 4 ], [  25 ]. The constitutive equations proposed provide a good
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Figure 4.9. Dimensionless −N2 vs stress: a) for a smooth suspension, εr = 1
%, b) for a rough suspension, εr = 7.5 %, at different volume fraction values.
Symbols are simulation results. Solid lines are the fitting curves as given in
equation  4.22 .

fit to the simulation data and hence can be utilized to predict the behavior of N2 as we

change the particle surface roughness size. The normal stress difference, N = N1 − N2 is

directly related to the normal force acting in a parallel plate rheometer. Since the magnitude

of N1 is low compared to N2, we can say that the normal force is directly proportional to

N2. Thus, increasing roughness increases the normal force on the plate in a parallel plate

rheometer.

Fig.  4.10a shows the effect of roughness on N1 for a fixed volume fraction φ = 50 %. The

behavior of N1 is not as straight-forward as other rheological properties of rough suspensions

[ 42 ], [ 107 ], [ 157 ]–[ 159 ]. N1 has a negative value at low volume fractions and its magnitude

increases as the suspension undergoes shear thickening. But, at high stress values the value

of N1/ηγ̇ becomes less negative. On the other hand, for higher φ, N1 is negative at low stress

values and switches sign and becomes positive if the suspension undergoes DST. As a result,

care must be taken while choosing the sign of fitting constant χ. This switching of the sign

by N1 with roughness has also been observed experimentally for rough colloidal suspensions

[ 9 ]. The results obtained in the present simulations are consistent with these experimental

observations.
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Figure 4.10. a) Dimensionless N1 vs stress for φ = 50 % at various roughness
values. Solid lines are the fitting curves as given in equation  4.23 . b) fitting
constant, χ at different roughness values. Dashed and solid lines represent fit-
ting equations (eq.  4.27 ) in the low (0) and high (∞) shear rate limits. Symbols
are simulations results.

We find that, in the low stress limit, N1 is negative for all the roughness values except for

a very high roughness value, i.e., εr = 10 % for the explored volume fraction range. This is

to be expected as the effective radii of the particles at such a high roughness is large and the

suspension behaves the same way as a highly concentrated suspension of smooth particles

would. N1/ηγ̇ attains a high positive value at higher roughness values and in the high stress

limit. These observations are in agreement with experiments [ 8 ]. These observations are

shown in Fig.  4.10a along with the fitting curves using equation  4.23 .

Table 4.3. Roughness dependent model constants for N1/ηγ̇.
χ0
S χ0

R X0
χ χ∞S χ∞R X∞χ

-0.1609 -0.3268 0.0349 0.8102 -0.1581 0.0683

Fig.  4.10b shows the variation of the fitting constant χ in the constitutive equations for

N1/ηγ̇ with roughness size. The fitting constants in the roughness dependent model for χ

in the low and high shear stress/rate limit, i.e., equation  4.31 , are summarized in table  4.3 .

χ0 is mostly negative for all roughness values except for very high roughness sizes > 10 %.

Similarly, χ∞ is also negative for smaller roughness values εr < 3 %, but switches sign once
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the roughness is high εr > 3 %. Note that, the value of χ in the low and high shear stress

limits increases with roughness as opposed to α and β which decrease with roughness in

these stress limits. This again indicates the peculiar behavior of as compared to ηr and N2.

Thus, the constitutive model presented captures the anomalous behavior N1/ηγ̇ satisfactory

if we choose the sign of fitting constants carefully.

4.4.4 Further analysis of the results and the complete simulation data
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Figure 4.11. Dimensionless average asperity deformation for a) 50 % and b)
52 % at various roughness values.

Here we present a detailed analysis of the results to show that increasing the roughness

is not the same as increasing the volume fraction. The way we have modelled the particle

surface roughness geometry, one can say that the rough particles act as bigger spheres with

radii a(1 + εr). We call this radius the effective radius of the particles, ae. We can calculate

the effective volume fraction of the suspensions bases on ae as φe = φ(1+εr)3. As we increase

the roughness size, the effective radii of the particles increase which leads to early contacts

between the particles. But we assume this to not alter the hydrodynamics interactions which

are calculated for the base particles with radii a.

If increasing the surface roughness has the same effect as that of increasing the volume

fraction of the suspensions, two suspensions with the same effective radii would have the

exact same rheology. But this is not the case. The observed trends are not solely due
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Figure 4.12. Relative viscosity vs dimensionless shear rate for different rough-
ness values: a) εr = 0.03, b) εr = 0.05, c) εr = 0.1. Filled symbols are the stress
controlled simulation results. Solid lines are the fitting equation (eq.  4.21 ).

to the increase in the effective volume fractions, but also have explicit dependence on the

roughness size. We explain why increase in the effective volume fraction is not the only factor

governing the rheology and the model is doing more than that with the following features of

the numerical modelling:

1. Rolling motion:

The contact model implemented makes sure that the rolling motion of the particles is

resolved which eventually influences the rheology i.e., the onset and the strength of the

shear thickening (ST) effect observed. This is achieved by the tangential linear spring

force implementation in the contact dynamics. To calculate the tangential force, we
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Figure 4.13. Flow state diagrams γ̇/γ̇0(σ̃) for different roughness values: a)
εr = 0.03, b) εr = 0.05, c) εr = 0.1. Symbols are simulation results. The
solid lines represent the fitting equation, σ̃/ηr(φ, σ̃, εr) with ηr(φ, σ̃, εr) from
eq.  4.21 .

calculate the tangential spring deformation by integrating the relative rolling velocities

of two particles in contact. Calculating the relative rolling velocities (which we call

relative sliding velocity in the text and its equation is provided in the paragraph right

after equation 10) require us to calculate the angular velocities of the particles at

each time step. Because of this tangential force the particles also experience a torque

(equation 10 in the text) in addition to the contact forces. In addition, Critical Load

Model (CLM) ensures that the contact torque is zero as long as the contact is frictionless

(i.e., |Fn| < FCL, see equation 9 and 12 in the main text) and it increases with the
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Figure 4.14. Dimensionless −N2 vs dimensionless shear stress for different
roughness values: a) εr = 0.03, b) εr = 0.05, c) εr = 0.1. Symbols are simula-
tion results. Solid lines are the fitting curves as given in equation  4.22 .

tangential force as the contact becomes frictional. So, we calculate the rolling motion

(translational as well as angular velocities of the particles and the resistance to rolling

motion) of the particles and its effect is captured in the contact model implemented.

2. Non-linear normal force:

While Mari et al. (2014) use a linear spring for their contact normal force calculation,

we use a more general and experimentally supported Hertz contact law which is not

linear. So, with increasing asperity size, the normal force is not increasing linearly

even though the contact interaction range is increasing linearly. If we had used a linear

spring for the normal contact force, then we would expect, increasing the asperity size
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Figure 4.15. σ̃ − φ phase space diagram for different εr suspensions showing
φm(σ̃, εr) and (φc, σ̄c)(εr) curves. Dotted curve shows the values of σ̃ and φ
for which dγ̇/dσ = 0. The big dots on the (φc, σ̄c) curve give the critical
volume fraction for DST. Increasing roughness leads to decrease in the critical
volume fraction for the DST onset. For the regions on the left to dotted lines
suspensions undergo CST while they undergo DST for the regions between the
dotted and solid curves. The dash-dotted lines in the DST region separate the
parameter space for which we get S-shaped curve (left region) and backward
bending curve (right region) in the σ(γ̇) phase space. The suspension is shear
jammed for the region on the right of the solid curves.

to be the same as increasing the volume fraction, but the Hertz contact law considers

the effect of area of contact which also depends on the asperity size and determines

the normal contact force.

3. Increasing asperity size does more than just extension of the contact distance between

the particles:

CLM introduces a force scale in the simulations which governs the transition from

the lubricated to frictional regime. It is known that the imposed shear stress on the

suspension determines the normal force between the particles. So, if we do a rough
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scaling analysis and balance the critical load (FCL) with the magnitude of the normal

force, we can calculate the dimensional critical deformation (δc = 0.005hr(γ̇0/γ̇)(2/3)) of

the asperities needed for the transition from frictionless to frictional contacts which is

roughness size dependent. Choice of the normal contact stiffness (kn = 2∗104/σh(−3/2)
r )

also introduces the effect of asperity size in the contact model.

Fig.  4.11 shows the average dimensionless asperity deformation (Fn ∝ δ(3/2)) for two

suspensions with volume fractions 50 % and 52 % respectively. The solid line gives

the critical deformation needed for transition from a frictionless to frictional contact.

These plots clearly show that the magnitude of the deformation of the asperities is

dependent on the base volume fraction and the roughness and increases with both

the base volume fraction and the roughness. If we consider 52 % suspension with

dimensionless roughness (εr = 0.03), the effective volume fraction is 57 % and for a 50

% suspension with εr = 0.05, the effective volume fraction is 58 %. If the model was

just calculating viscosities at higher volume fractions, then we should have same plots

for the dimensionless overlaps for the two cases which is not the case. In addition, since

effective volume fraction for 52 % with εr = 0.03 is lower than the effective volume

fraction for the 50 % with εr = 0.05, we would have expected the viscosity for the

later to be higher than the former if increasing the roughness was just resulting in

increased volume fraction. But this is also not the case. While the relative viscosity

for 52 % with εr = 0.03 after ST is around 800, the relative viscosity for 50 % with

εr = 0.05 after ST is around 400 (see Fig.  4.12a and  4.12b ). This clearly shows that

the contact model implemented is achieving more than just calculating the rheology at

higher volume fractions. We have provided all the data at different volume fractions

and roughness values in Sec.  4.4.4 for further comparison.

4. Lubrication interactions: The lubrication interactions between two close particles are

still calculated based on the interparticle gap between the base spheres. This makes

sure that the lubrication interactions are not for the higher effective volume fraction

and are still valid for the actual volume fraction. This is an important detail as they

govern the motion of the particles (both translational and rotational). Doing so, we

120



are dissociating the role of roughness and hydrodynamics as the effect of roughness

comes only via contact interactions. This is off course a simplification but is done in

order to keep the calculations tractable.

These details show that the contact model implemented is nuanced and accurately in-

corporates the basic physics of contact interactions via surface asperities. The choice of the

normal stiffness and friction model gives us the roughness dependent rheology in addition

to the increase in the effective radius with surface roughness which alone cannot explain all

the results presented in the manuscript.

In addition, the critical shear rates for the ST transitions are also different in both these

cases. Increasing the roughness size in the current contact model also leads to distinct

changes in the contact networks as shown in chapter  4 .

Fig.  4.12 ,  4.13 ,  4.14 the simulations data and the constitutive model fits for the remaining

roughness values, i.e., εr = 3 %, 5 % and 10 %. These plots show the effect of increasing the

roughness size on the rheology of rough particle suspensions, 1) magnitude of the ST index

and the viscosity jump across the ST transition increase as we increase roughness size for

a given volume fraction, and 2) increasing roughness size reduces the the critical shear rate

(γ̇c) and the critical volume fraction for DST (φc). These plots demonstrate the accuracy of

the model over a wide range of parameters. The change in the volume fraction ranges for the

transitions between the three regimes in the flow state diagram with increasing roughness

size can be seen in Fig.  4.15 .
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5. UNIFYING DISPARATE RATE DEPENDENT REGIMES IN

NON-BROWNIAN SUSPENSIONS: ONE CURVE TO UNIFY

THEM ALL

5.1 Introduction

Dense suspensions of particles are abundant in nature and industrial applications with

examples ranging from household cornstarch solution to metallic pastes used in solar cells

[ 3 ]. In spite of the Newtonian behavior of the suspending fluid medium, suspensions exhibit

plethora of non-Newtonian behaviors including yield-stress [ 82 ], non-zero normal stress dif-

ferences [  37 ], shear rate dependent rheology [ 34 ], [ 83 ], and particle migration [  38 ] to name

a few [ 26 ]. The general consensus amongst researchers is that there is no time scale but a

stress scale that gives rise to the non-linear rate dependent behavior in dense particulate

suspensions [ 51 ].

Historically, it has been reported that a typical dense (volume fraction, φ ' 0.5) non-

Brownian suspension (particle sizes > O(1µm)) exhibits four distinct rate dependent regimes

in its rheological flow curve. The suspension rheological behavior transitions from one regime

to the other with increasing the imposed shear rate/stress. The suspension exhibits shear

thinning (decreasing viscosity) at low shear rates followed by a Newtonian plateau (almost

constant viscosity) at intermediate shear rates which transitions to shear thickening (ST,

increasing viscosity) beyond a critical shear rate. ST can be gradual (continuous ST) or

sudden (discontinuous ST). Finally, if we further increase the shear rate/stress to extremely

high values, the suspension again undergoes another shear thinning transition [  26 ], [ 34 ], [ 83 ],

[ 131 ], [  180 ]. This is depicted in Fig.  5.1 .

Numerical models and theoretical studies to date are able to quantitatively capture the

shear thinning at low shear rates [ 25 ], [ 82 ], [ 181 ] and the ST transition at intermediate shear

rates [ 25 ], [ 45 ], [ 138 ], [ 166 ], [ 181 ], [ 182 ]. The initial shear thinning at low shear rates arises

from the presence of repulsive double layer barrier (steric interactions) and the Van der

Waals attractive forces (collectively known as DLVO interactions).

ST in suspensions has been known from the early 20th century and has been an active topic

of research since then. As a result, a plethora of explanations for this phenomenon can be
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found in the literature. Some of these explanations include sudden emergence of turbulence

between the particles [ 129 ], order disorder transitions [ 130 ], [ 183 ], hydrodynamics induced

particle clustering [ 45 ], [  133 ], [  134 ], [  136 ]. But none of these explanations can quantitatively

reproduce the viscosity jump observed in ST transitions [ 25 ], [ 119 ], [ 137 ]. For example, purely

hydrodynamic interactions based simulations [ 44 ], [  182 ], [  184 ], [  185 ] give a weak logarithmic

shear thickening (weak CST). Even though this purely hydrodynamics based point of view

is able to describe the rheology of moderately concentrated suspensions (φ < 45%) which

exhibit a weak CST, it cannot predict the strong CST and CST to DST transition routinely

observed in highly concentrated suspensions (φ > 50%) [  25 ], [  122 ], [  136 ], [  155 ], [  157 ], [  160 ].

The recently proposed lubricated to frictional transition of the particle contacts [ 25 ], [  58 ],

[ 173 ] and constraint based mechanisms [ 50 ], [ 181 ] have been proven to be very efficient in

capturing the ST onset, CST to DST transition and the shear jamming in dense suspensions.

Figure 5.1. Schematic showing the typical rheological flow curve for dense
non-Brownian suspensions. This rheological behavior is commonly observed
for non-Brownian suspensions [ 26 ], [  34 ], [  83 ], [  131 ].

Over the years, many explanations have been given for the second shear thinning at ex-

tremely high shear rates. These include an increase in the maximum packing density due

to breakdown of spanning clusters [ 186 ], elastohydrodynamic effects [ 187 ], micro-scale non-

Newtonian shear thinning effects of the interstitial solvent [ 188 ], inhomogeneous microstruc-

ture at high shear rates after the ST transition [ 153 ], surface tension effects and eventual
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sample ejection [ 155 ], adhesion-based constraint relaxation due to stress [ 181 ]. However, none

of these explanations can make quantitative predictions for the second shear thinning regime.

In addition, the reason for the intermediate Newtonian plateau still eludes researchers [ 26 ],

[ 83 ]; limiting the existing numerical and theoretical frameworks from being able to quan-

titatively reproduce the entire unified flow curve. Thus, understanding the origins of the

Newtonian plateau is a crucial piece of the puzzle that allows us to unify all the four rate

dependent regimes and the corresponding transitions from one regime to the other.

To this end, we propose a unifying mechanism which quantitatively reproduces various

regimes and transitions in the rheological flow curve of a dense non-Brownian suspension

of smooth hard spheres. Since we are specifically interested in non-Brownian suspensions,

we assume the Péclet number (Pe) to be >> O(103) which typically corresponds to particle

sizes > O(1 µm). Quantitative agreement between the discrete particle dynamics simula-

tions based on the proposed mechanism and the experimental data bolsters the validity of

the proposed model. Though bits and pieces of this puzzle have been studied in detail in

the contexts of specific suspensions showing specific behaviors, e.g., initial shear thinning

due to the presence of attractive forces [  82 ] and ST due to lubricated to frictional contact

transition [ 25 ], [ 142 ], [ 160 ], an effort to unify all the four disparate regimes has not been

done. Furthermore, as mentioned, there is no explanation for the Newtonian plateau in the

literature and the explanations given for the second shear thinning are not quantitative.

We show that the inclusion of inter-particle interactions of non-DLVO origin is the key to

explain and quantitatively capture the intermediate Newtonian plateau regime. Relaxation

of constraint on the particle motion in the form of decreasing friction accurately predicts

the second shear thinning; thus, unifying all the four disparate regimes observed in the flow

curve of a non-Brownian dense suspension for the first time. Finally, we will also demon-

strate the versatility of the proposed model to reproduce various other rheological flow curves

containing one or more of the above mentioned four regimes.

5.2 Philosophy behind unification

In a Stokes flow regime, i.e., the particle Reynolds number, Re, is negligible, the particle

motion in suspensions is governed by a simple balance between the hydrodynamic (FH)
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and the sum of all other non-hydrodynamic interaction acting on the particle (∑α Fα) [ 44 ].

Each of these interactions lead to corresponding stress scales in the system which scale as

≈ O(|Fα|/6πa2), where a is the particle characteristic length scale. This scaling implicitly

tells us that each interaction is competing with the hydrodynamic interactions which scale as

|FH | ≈ 6πη0a
2γ̇, where γ̇ is the imposed shear rate and η0 is the suspending fluid viscosity.

There is a general consensus that the competition between these stress scales gives rise to

the rate dependent rheological behavior in dense suspensions [ 51 ]. Previous experiments [ 83 ]

and computations [ 82 ] show that the attractive and repulsive forces of DLVO origin gives

rise to the first shear thinning at low shear rates suspensions and hence are the choice of

interactions for capturing the first shear thinning regime. The exact expressions for DLVO

interactions are readily available from theoretical analyses and previous experimental data

[ 83 ], [  189 ].

We hypothesize that the presence of non-DLVO forces, which are non-contact inter-

particle interactions and become dominant when the particles are extremely close but not

touching each other, delay the ST transition to higher shear rates after the initial shear

thinning. This happens because non-DLVO forces introduce an additional stress scale which

needs to be overcome before the activation of the constraint mechanism (explained below)

required for ST transition; and hence, gives rise to the intermediate Newtonian plateau. The

presence of the non-DLVO forces has been confirmed by experimental measurements [ 190 ]

and has been analyzed theoretically as well [ 191 ]–[ 193 ]. The non-DLVO forces can arise due

to the presence of charge layers on the particle surface or due to hydration effects [ 190 ]. As

will be shown from the simulation results, it is the magnitude of the non-DLVO forces which

determines the range of shear rate/stress where the Newtonian plateau is observed. Absence

of non-DLVO interactions lead to disappearance of the intermediate Newtonian plateau. The

quantitative matching with the experimental data can only be obtained by accounting for

the non-DLVO forces, thus, corroborating the validity of this hypothesis.

Any microscopic mechanism that introduces constraints on particle motion can result

in the shear thickening transition, while relaxation of such a constraint can qualitatively

reproduce the shear thinning. Lubrication interactions between individual asperities on par-

ticle surfaces can lead to continuous (CST) as well as discontinuous (DST) shear thickening
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[ 166 ]. Constraint formation and relaxation by stress e.g., adhesion, can qualitatively repro-

duce the shear thickening and shear thinning transitions, respectively [ 181 ]. However, to

obtain a quantitative matching with experiments, we must know the exact expressions from

experimental measurements for these constraint interactions. Hard particle-particle contacts

resulting in friction is a constraining mechanism which has been investigated thoroughly and

hence, exact expressions from experimental measurements are available. So, without the loss

of generality, friction is the choice of constraint mechanism for this study to quantitatively

reproduce the CST, DST and CST to DST transition with increasing φ, and second shear

thinning in the flow curve of a dense non-Brownian suspensions.

It has been shown that a sudden activation of friction between the particles as they

come into dry contacts owing to the irregularities on particle surfaces result in ST transition

(CST and DST depending on the suspensions volume fraction, φ) [ 4 ], [ 25 ]. The same has

also been validated by experiments [ 58 ], [ 84 ]. This is analogous to activating a constraint

on the relative motion between the particles. On the other hand, a coefficient of friction

µ decreasing with the normal load between the particles is analogous to relaxation of the

constraint and hence would result in shear thinning [  3 ], [  52 ]. Constraint mechanisms based

on friction have been proven to be very efficacious in reproducing various shear stress-shear

rate curves that are observed experimentally for dense suspensions, CST to DST transition

beyond a critical volume fraction and most importantly jamming [ 5 ], [ 117 ]. Furthermore,

there are many experimental studies that validate the role of friction [ 52 ], [ 58 ], [ 84 ]. Hence,

friction is the constraining mechanism utilized here. We would like to emphasize that, owing

to the additive nature of the non-hydrodynamic forces, any other constraining mechanism

can be readily used, given expressions for the interactions are known. So, the proposed

unifying mechanism utilizes the well known Stribeck curve for inter-particle friction along

with hydrodynamic, DLVO (attractive, repulsive forces), non-DLVO and contact forces to

unify disparate regimes in the flow curve of non-Brownian dense suspensions.

5.2.1 Stribeck curve for friction

The Stribeck curve for friction has been used widely in the literature to explain the

sliding phenomenon occurring in lubricated contacts [ 194 ]. In a typical Stribeck curve, the

126



Figure 5.2. Schematic showing the coefficient of friction, µ (thin black line),
and the dimensionless normal force magnitude, |Fn| (thick red line), between a
close particle pair as a function of dimensionless inter-particle gap, λ = h/hr.
Boundary, partial elastohydrodynamic (EHL) and full film lubrication regimes
in the Stribeck curve are demarcated based on the value of λ. Similarly, dom-
inant inter-particle interactions in each of these regimes are also shown in red
font. The insets at the top show the various regimes in terms of separation
between two close particles. The arrows in these insets are shown to qualita-
tively indicate the size of the inter-particle gap and the range of the dominant
inter-particle interaction with respect to the roughness and the particle size.

coefficient of friction, µ, is plotted as a function of the Sommerfeld number, S = ηV/W , where

η is the lubricant dynamic viscosity, V is the relative sliding velocity between contacting

surfaces and W is the normal load [ 194 ]. However, for rough surfaces, the surface asperity

height dictates the full-film to boundary lubrication contact transition (see [ 195 ] and the

references therein). Particle surface roughness is one of the important parameters governing

the rheology of dense suspensions as even the most idealized smooth particles have surface

irregularities of O(0.001 − 0.01) times the particle radii [ 52 ]. These surface asperities not

only lead to inter-particle contacts, but also dictate the friction in interesting ways. Hence,

efforts on investigating the influence of particle roughness on dense suspension rheology have

gained much traction in the recent years [ 4 ], [  5 ], [  7 ], [  166 ].
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In the case of particles coming into contact, the average roughness height results in an

additional secondary length scale (along with the primary length scale which is particle size,

a) in the system. While the particle size distribution governs the hydrodynamic interactions,

the secondary length scale introduces geometrical and inter-particle force constraints [ 4 ].

So, we define λ as the dimensionless gap between the particles, i.e., λ = h/hr. Here, h

is the inter-particle gap, and hr is the average roughness height (defined below). High λ

(λ > 2) signifies well separated particles without a dry contact and the friction force is

mostly due to lubrication interactions (full-film contact) [ 194 ]. The effect of increasing the

shear rate/stress in the suspension is to reduce the average inter-particle gap thus bringing

particles close to each other. As particles come closer to each other, λ decreases, and partial-

elastohydrodynamic lubrication (partial-EHL) results in a sudden rise in µ [ 196 ], [ 197 ]. In

this regime (1 < λ < 2), partial dry contact between the particles is expected to occur. In

addition, as the inter-particle gap becomes comparable to mean particle surface roughness

size, repulsive forces of non-DLVO origin (arising due to hydration or stagnant charge layer

on the particle surface) are expected to be present with magnitudes a few orders higher than

the repulsive forces of DLVO origin, viz, arising from the double layer potential [ 198 ]–[ 200 ].

As λ decreases further (λ < 1), the contact enters boundary lubrication, i.e., full dry

contact between the particles. In this regime, the coefficient of friction has a high value if

the contact between the particles is elastic which is true if the asperity deformation is smaller

than a threshold value δc [ 60 ]. If λ decreases even further, the contact enters a plastic regime

which results in a significant reduction in the coefficient of friction. This reduction in the

friction coefficient with plastic deformation of asperities requires tremendous normal load

which happens only at extremely high shear rate/stress values. As a result, we get the

second shear thinning regime. These phenomena are depicted in Fig.  5.2 .

5.2.2 Summary of relevant Interactions

The transitions in the flow curves are governed by the competition between various stress

scales in the system for non-Brownian suspensions. In the present study, we have four such

stress scales that determine the various transitions:
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1. In the regime of attractive and repulsive forces when the particles are not touching and

are separated, i.e., λ > 2 (full film regime in the Stribeck curve). In this regime, the

friction is due to the tangential lubrication forces which is implicit in our hydrodynamic

force modeling. Hence, Coulomb’s friction law is not applicable.

2. The non-DLVO force is a noncontact force, and hence does not lead to constraints on

sliding motion. This force is present only when the particles are not touching but are

very close to each other, i.e., 1 < λ < 2 (EHL regime on the Stribeck curve).

3. The inter-particle contact and a high coefficient of friction when the particles just come

into contact (0.95 < λ ≤ 1) lead to the shear thickening transition.

4. The decrease in the coefficient of friction as the asperities deform more and enter a

plastic region (λ ≤ 0.95) explains the second shear thinning regime. It should be noted

that the second shear thinning was also observed for non-attractive & non-adhesive

particles [ 180 ] which cannot be explained by stress induced relaxation of constraints.

We briefly elaborate on the methods and simulation framework used in this study in the

following section before presenting the main results.

5.3 Simulation methodology

We simulate the shear flow of neutrally buoyant inertia-less bi-spherical particles with

radius ratio 1.4 and equal volume fractions in a cubical domain of size L = 15a. Here a is

the radius of the smaller particle. For this particular particle size distribution, the dry close

packing fraction (φd) is 0.66 [ 5 ]. We use φd to normalize the volume fraction (φ) values in

this study for direct comparison with experiments. Simulation results do not change much

for a bigger domain size L = 20a. The suspending fluid is Newtonian with viscosity, η0. The

imposed shear rate is γ̇ with Lees-Edwards periodic boundary conditions on all the sides.

Also, the Péclet number, Pe > O(103) [ 26 ], [ 34 ], [ 83 ], so, the flow is in the non-Brownian

regime.

We use Ball-Melrose approximation [  49 ] to calculate the hydrodynamic interactions, FH ,

repulsive force of electrostatic origin, FR, Van der Waals attractive force, F A, repulsive forces
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Figure 5.3. a) Relative viscosity as a function of dimensionless shear rate
(γ̇/γ̇0) for two different volume fractions (PS = present simulations) compared
against experiments (EX = Experiments, γ̇0 = 200s−1 for experimental data)
of Chatté et al., (2018) [ 83 ]. The volume fractions are scaled with dry close
packing fraction φd for direct comparison. φd = 0.66 for the simulations. b)
Probability distribution function (PDF, dotted lines) of the average dimen-
sionless inter-particle gap (〈λ〉) with increasing ˆ̇γ = γ̇/γ̇0 (legends) along with
the friction coefficient (solid lines) for log decay friction model. Dotted lines
are spline fits to guide the eye. Dashed lines demarcate the transition between
interaction ranges as explained in fig. 5.2 .

of non-DLVO origin, FND, and contact interactions, F C . The repulsive forces (FR and FND)

act normally towards the particle center. FR decays with inter-particle surface separation

h over a Debye length κ−1 as |FR| = FRexp(−κ(h− 2hr)) for h > 2hr and |FR| = FR

for h ≤ 2hr. The non-DLVO repulsive forces are dominant when the inter-particle gap is

comparable to particle surface roughness size [ 201 ], [ 202 ]. So, we use a non-DLVO repulsive

force for hr ≤ h ≤ 2hr with an exponentially decaying form |FND| = FNDexp(−A(h−hr)/a)

for h ≥ hr [ 190 ] and |FND| = FND for h < hr. We choose A = 1000 for this study. Similarly,

the attractive force of Van der Waals origin also acts normally but in the opposite direction

to the repulsive force and is modelled as |F A| = FA/
(
(h− hr)2 + 0.01

)
. 0.01 is used to

prevent the divergence in FA when h → hr [ 82 ]. We use the DLVO repulsive force as the

characteristic force scale to non-dimensionalize the governing forces. So, the characteristic

stress scale is given by σ0 = FR/6πa2 (and rate scale, γ̇0 = σ0/η0), related to the transition
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Table 5.1. Simulation parameters
φ γ̇/γ̇0 κ−1 FA hr FND
0.52 & 0.57 0.001− 50.0 0.04a 10−3FR 0.01a 10FR

from lubricated contacts (hydrodynamic) where particles are separated to direct contact

between particles.

We model the surface roughness as a hemispherical bump of size, hr, on the base sphere

as shown in Fig.  5.2 . The contact interactions are modeled using the Hertz law for the

normal contact force (|F C
n | = kn(δ/δc)3/2) and a linear spring for the tangential contact force

(F C
t = ktξt), respectively [  3 ]. Here, δ = hr−h is the asperity deformation, δc is the threshold

for elastic to plastic transition and ξt is the tangential spring stretch. The contact activates

only when h ≤ hr. Contact interactions obey the Coulomb’s friction law, |F C
t | ≤ µF C

n . The

details and validation of the algorithm are presented in chapters  2 ,  3 , and chapter  4 . Fig.  5.2 

depicts how |Fn| = |FR|+ |FND| − |FA|+ |FC
n | varies with λ. It is well known that µ is not

constant and depends on the normal load |F C
n | [ 58 ], [ 60 ], [ 83 ]. Since |F C

n | ∝ δ3/2 following

the Hertz law, µ can also be described as a function of the dimensionless inter-particle gap,

λ = h/hr, (since δ = 1 − λhr). We calculate the bulk stress σ in the system by volume

averaging the stresslets due to all the interactions [ 3 ]–[ 5 ]. Rheological properties can be

quantified from the bulk stress, e.g., the relative viscosity of the suspension, ηr = σ12/(η0γ̇),

second normal stress difference, N2 = σ22−σ33.Values of simulation parameters used (unless

mentioned otherwise) are summarized in Table  5.1 .

Friction coefficient. We use the dimensionless gap size dependent ((λ = h/hr)) Stribeck

curve to model µ [ 197 ]. For λ > 1, the reduction in µ with decreasing λ is captured

in lubrication interactions [ 138 ] and hence there is no need to use Coulombs friction law

explicitly. We approximate µ in the partial-EHL regime by a step function [ 138 ] for simplicity.

For λ ≤ 1, asperities come into contact resulting in a sudden rise in µ. µ has a high value if

the contact is elastic, i.e., δ ≤ δc, where δ is the asperity deformation defined as δ = |h− hr|

[ 52 ], [ 60 ]. If the asperities deform further such that, δ > δc, the contacts transition into plastic

regime resulting in a steep decrease in µ. Experimental measurements [  83 ] have shown that

the friction coefficient decreases with the normal load as µ = −a∗ ln(|F C
n |) + b or in terms of
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λ (since |FC
n | ∝ δ3/2 by Hertz law and δ = hr(1− λ)) we can say, µ = −aln((1− λ)) + b for

0 < λ < 1 where a, b, a and b are constants. We choose a = 1/2 and b = −0.2 in this study.

We call this friction model log decay friction. Data for additional friction models along with

results for varying a and b in the log decay model are shown in Sec.  5.5 .

Thus, all the expressions used for various forces have a solid experimental backing. One

way to distinguish them experimentally is to measure them carefully in terms of the inter-

particle gaps as modeled in the paper. We have used the expressions from the experimental

measurements [ 83 ], to make a quantitative comparison with their results. However, the

freedom to choose the values of various input parameters such as the relative magnitudes

of the forces, the Debye length, parameters a and b in the friction law and the roughness

size based on the system enables the model to capture various regimes in the flow diagram.

For the systems which do not show a Newtonian plateau, one only needs to switch off the

non-DLVO forces or make their magnitude 0. This allows us to unify various flow regimes

observed for non-Brownian suspensions as demonstrated in the following sections.

5.4 Results and discussion

We demonstrate the accuracy of the proposed model by direct comparison of the calcu-

lated suspension relative viscosity with experimental values for polyvinyl chloride particles

suspended in a Newtonian fluid medium [ 83 ] in Fig.  5.3a . Chatté et al. (2018) [ 83 ] used a

system that has previously been characterized to take advantage of the data from the litera-

ture. They use a suspension of polyvinyl chloride (PVC) particles suspended in a Newtonian

fluid (1,2-cyclohexane dicarboxylic acid diisononyl ester). The classical studies by Hoffman

[ 34 ], [ 131 ] also used PVC particles. In addition, PVC particles are known to transition from a

lubricated-to-frictional contact regime [ 58 ]. They use two suspension with a lognormal (D1)

and a trimodal with lognormal peaks (D2). The sizes of the particles are chosen in such a

way that the Brownian effects are negligible. Hence, these suspensions are non-Brownian.

It has been shown that a poly-disperse system with a log-normal distribution of the

particle sizes can be quantitatively modeled as a bi-disperse system in a way such that both

of these suspension have similar rheological property values [ 149 ]. Hence, we are particularly

interested in the D1 suspension as we can use a simple bi-disperse system and still reproduce
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Figure 5.4. Scheme of the physics involved in the shear thinning (I − II)
- Newtonian plateau (III) - shear thickening - shear thinning (IV ) regimes
in the rheological behavior of a typical dense non-Brownian suspension. The
insets at the top show the approximate inter-particle gaps in regimes I−IV . In
these insets, the outermost circle represents the range of DLVO forces, the inner
orange circle represents the range in which non-DLVO forces are dominant and
the innermost circle represents the particles. Thus, with increasing shear rate
we observe different regimes depending on which forces are dominant in the
suspension on average as depicted by the overlaps of different force zones in
the insets.

the same rheology as done in the main text. However, because these two systems have

different random packing fractions (φd), in order to compare the viscosities, we need to

normalize the volume fraction values for these systems by φd [ 51 ]. The random packing

fraction for D1 suspension is ≈ 69% while the random packing fraction for the bi-disperse

system used for simulations is ≈ 67%. Hence, a close quantitative agreement between the

experiments and simulations is expected if we accurately model the underlying physics. Also

note that to access such a wide range of shear rate values and the different regimes in the

flow curve of these suspensions, they use a combination of rotational and special capillary

rheometers as simple rotational rheometers cannot access regions of very high normal stress
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Figure 5.5. a) Contributions from hydrodynamic (ηHr ), non-contact (DLVO
and non-DLVO, ηNCr ) and contact (ηCr ) interaction to the total relative viscosity
of the suspension for φ/φd ≈ 0.86. The trends in the respective contribution
follow from Fig.  5.4 . Lines are for guiding the eye. b) The variation in the
order metric Q6 with dimensionless shear rate.

differences [ 155 ], [ 187 ]. These regions correspond to high viscosity values after the shear

thickening transition and the second shear thinning regime.

Fig.  5.3a shows that the proposed model does an excellent job in quantitatively capturing

the rate dependent rheological properties in low, intermediate and high shear rate limits,

respectively. This shows that the hypothesis that accounting for non-DLVO interactions

recovers the initial transition from shear thinning to the intermediate Newtonian regime. A

universal friction law based on the “Stribeck curve” accurately recovers the onset of ST and

then the second shear thinning that is typical to dense non-Brownian suspensions is indeed

true.

We plot the probability distribution (PDF) of the ensemble average of the dimensionless

inter-particle gap 〈λ〉 at different shear rate values corresponding to different regimes in the

rheological state diagram (Fig.  5.3b ) to explain the observed shear rate dependent rheological

behavior. With increasing shear rate values, the peak and mean of the PDF of 〈λ〉 shift to

the left on the Stribeck curve. This determines the various transitions in the rheological state

diagram. At low shear rates, the particles are prevented from coming into direct contacts

due to the combined effect of the repulsive and attractive forces of the DLVO origin. This is
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analogous to having particles with bigger radii. As we increase the shear rate, the particles

are pushed closer resulting in the reduction of this apparent bigger radius. As a result,

the effective volume fraction of the suspension decreases with increasing shear rate in this

regime which results in the observed shear thinning. In the intermediate shear rate regime,

the stress is high enough to overcome the DLVO repulsive barrier between the particles so

that the particles are on average separated by a distance ≈ O(hr). But the stress is not high

enough to overcome the short range non-DLVO repulsion which is an order of magnitude

higher than the DLVO barrier. This leads to the Newtonian plateau in the relative viscosity.

This plateau in the ηr at intermediate γ̇ values is not present if we do not consider short

range repulsive forces of non-DLVO origins [ 82 ] as shown in Sec.  5.5.2 . This indicates the

governing role of non-DLVO forces in dense non-Brownian suspensions.
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Figure 5.6. a) DLVO force (repulsion & attraction) profiles as a function of
dimensionless gap for two different attractive force magnitudes, b) Effect of
varying the attractive force magnitude on the first shear thinning regime.

If we increase the shear rate further, the stress in the suspension becomes high enough so

that the repulsive barrier due to the DLVO and non-DLVO forces breaks and the particles

come into contacts due to the touching of asperities on their surfaces. The contact remains

in the elastic region resulting in a high µ between the particles and constraints relative

sliding between the particles. This leads to a jump in the suspension viscosity. The shear

thickening transition takes place above a critical shear rate value (γ̇c, e.g., γ̇c/γ̇0 for φ/φRCP ≈

0.86 is 0.1). In the shear thickening transition regime, the viscosity increases gradually
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(continuous shear thickening) at lower volume fractions while it undergoes a sudden increase

(discontinuous shear thickening) at higher volume fractions. As we increase the shear rate

further, the asperities are plastically deformed (δ > δc). As a result the coefficient of friction

between the particles decreases significantly which is analogous to relaxation of the constraint

on the relative sliding motion between the particles. This gives rise to the second shear

thinning transition at high shear rates. The consequences of this shift in the PDF of 〈λ〉 to

the left with increasing γ̇ on the transitions in dominant interaction between the particles

and the suspension rheology are depicted pictorially in Fig.  5.4 .

The shift in the PDF of 〈λ〉 manifests itself in determining the relative magnitudes of

different contributions from hydrodynamic (ηHr ), non-contact (ηNCr , DLVO and non-DLVO)

and contact (ηCr ) interaction to the total relative viscosity (ηr) in Fig.  5.5a . As we increase

the shear rate, ηHr increases gradually. At low and intermediate shear rate values, ηCr is 0 as

the repulsive barrier prevents direct contacts. In this regime, ηNCr decreases with increasing

the shear rate which explains the first shear thinning behavior. But beyond γ̇c the particles

come into direct contacts thus resulting in the sudden jump in ηr due to high ηCr . This is also

known as lubricated-frictional transition which has been well studied [ 144 ]. In the high shear

rate regime beyond γ̇c, the contribution from the contact interactions to the bulk suspension

stress is dominant and hence determines the suspension viscosity. Since µ decreases with

increasing the shear rate due to lowering of λ, ηCr and as a consequence ηr decreases with an

increase in the shear rate.

The neutron scattering [ 136 ] and rheo-confocal [ 203 ] measurements for Brownian sus-

pensions (Pe < O(105)) hint towards the role of ordering in the colloids in the initial shear

thinning. Since we use a bidisperse suspension for preventing any clustering and ordering

in the suspension, we expect the particles to remain homogeneously distributed. Still, to

investigate if there is any ordering in the suspensions, we evaluate the ordering metric Q6

[ 204 ] to quantify the ordering in the suspensions. Q6 can be calculated as follow:

Q6 =

√√√√4π

13

m=6∑
m=−6

〈Y6m〉2. (5.1)
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Here Ynm(θ, φ) are the spherical harmonics which depend on the polar (θ) and the azimuthal

(φ) angles which together give us the orientation of the center-to-center vector for the neigh-

bouring particle pairs. 〈Y6m〉 is the average of Y6m(θ, φ) over all the neighbouring particles

in the suspension. Q6 quantifies the ordering in the suspension system. Q6 = 0 indicates

a completely homogeneous or disordered system. The maximum value that Q6 can have is

≈ 0.575. This maximum values is reached for a face-centered cubic structure.

We plot the order metric Q6 in fig. 5.5b . A small value of Q6 signifies absence of ordering

in the suspension, while a large value (> 0.5) indicates a strong ordering. We find that

Q6 values are negligible which tells us the absence of any ordering. However, we observe a

gradual rise and a spike in Q6 for the lower shear rates just before the ST transition (the

end of Newtonian plateau). Q6 drops down significantly once the suspension undergoes ST

transition (γ̇/γ̇0 ≈ 0.1). These calculations insinuate that the ordering in the initial thinning

regime for monodisperese suspensions might be the consequence of DLVO and non-DLVO

forces preventing the particles from coming into hard contacts as the peak in Q6 coincides

with the range of shear rates when DLVO and non-DLVO interactions are dominant.
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Figure 5.7. a) Effect of changing the magnitude of the non-DLVO force. The
Newtonian plateau disappears in the absence of non-DLVO forces. Thus, we
can reproduce thinning-thickening-thinning using the proposed model as well.
This is useful for suspensions which do not have significant Newtonian plateau
e.g., silica particles [ 136 ]. b) The order metric Q6 for two different non-DLVO
force magnitude. The gradual increase in Q6 in the first shear thinning regime
and peak in the Newtonian regime hint towards the link between ordering and
the initial shear thinning - Newtonian plateau [ 136 ].
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5.5 Predicting other flow curves

We have used the expressions for DLVO repulsive force and the coefficient of friction

from the experimental measurements by Chatté et al. (2018) [ 83 ] to make a quantitative

comparison with their results and validate the model. However, the freedom to choose

the values of various input parameters such as the relative magnitudes of the forces, the

Debye length, the friction law, and the roughness size based on the system one is trying to

model enables the model to capture various regimes and transitions in the flow diagram.

Increasing the magnitude of attractive forces or increasing the Debye length with results in

a steeper initial thinning [ 82 ], [  205 ] (Sec.  5.5.1 ). Decreasing (increasing) the magnitude of

non-DLVO forces will result in a narrower (wider) Newtonian plateau (Sec.  5.5.2 ). For the

systems which do not show the second shear thinning, one only needs to make the coefficient

of friction a constant which gives us a constant viscosity in the shear thickened regime

[ 4 ] (Sec.  5.5.3 ). Though simulation results show that only constraining the sliding motion

between the particles gives a satisfactory agreement with experimental data for smooth

particle suspensions [  52 ], our model can also account for roughness effects ((Sec.  5.5.4 )) both

geometrically (by varying the roughness size [  4 ]) and physically (by constraining the rolling

and twisting motion [ 107 ]). Other constraints on the particle motion such as rolling and

twisting friction become important only for rough particles [  173 ]. Incorporating rolling and

twisting friction in the current model is straight-forward but not done as we are dealing with

smooth particle suspensions. This makes the proposed model very general and applicable to

a wide variety of systems.

In this section, we present the simulation results obtained by varying various controlling

parameters in the proposed model. The key parameters in the model are: 1) DLVO repulsive

force scale, FR, 2) DLVO attractive force scale, FA, 3) non-DLVO short range repulsive

force scale, FND and, 4) the exact dependence of the coefficient of friction on the contact

normal load |FN
c | or on the asperity deformation δ. Each of these parameters determine the

suspension behavior and the critical transition shear rates for the four regimes described.
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5.5.1 Magnitude of FA controls the initial shear thinning

We first plot the DLVO force profiles if we increase the magnitude of the attractive forces,

FA in the DLVO interactions. These are presented in Fig.  5.6a . For these simulations, we

keep the other parameters fixed as given in the Table I in the main text. We use the same

friction model as in the main text. We only vary the magnitude of the attractive forces, FA.

Fig.  5.6b shows the effect of changing the magnitude of the attractive forces in the DLVO

interactions. As expected, with increasing the magnitude of the attractive forces, we observe

that the slope of the shear thinning curve at low shear rate values increases [ 82 ]. With the

increase in FA, the λ below which the net DLVO force is repulsive, decreases. Note that,

the critical shear rate for shear thickening transition does not change with changing FA.

This is because, before the lubricated-to-frictional transition can take place, the particles

still need to overcome the non-DLVO repulsive forces. So, in this model, the magnitude

of the non-DLVO forces determines the critical shear rate for the onset of shear thickening

transition. The Newtonian plateau disappears in the absence of non-DLVO forces. Thus,

we can reproduce thinning-thickening-thinning using the proposed model as well. Changing

the magnitude of the non-DLVO forces does not change the viscosity jump magnitude and

the viscosities in the second shear thinning regime. This is because both of these depend on

the friction model used.

5.5.2 FND controls the presence, absence and the range of the intermediate
Newtonian plateau

Fig.  5.7a shows the effect of varying the magnitude of the non-DLVO forces on the flow

curve of dense non-Brownian suspensions. For these simulations, we keep the other param-

eters fixed as given in the Table  5.1 and only change FND. We use the same friction model

as before. We only vary the magnitude of the non-DLVO forces. The range of shear rates

over which Newtonian plateau is observed increases with an increase in the magnitude of the

non-DLVO forces. This is because non-DLVO forces are essentially non-contact forces. So,

as their magnitude increases, the lubricated-to-frictional transition in the particle contacts

is pushed to higher critical shear rates. Changing the magnitude of the non-DLVO forces,
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(a) (b)

Figure 5.8. a) Different friction laws tested for the sensitivity analysis of the
model to µ. −aln((1−λ)+b is the log decay model derived from the experimen-
tal measurements from ref. [ 83 ]. The black solid line (a = 1/2, b = −0.2), red
dashed line (a = 1/4, b = −0.2) and the dotted pink line ((a = 1/2, b = −0.5))
show how µ for log decay model changes with dimensionless inter-particle gap
λ = h/hr = 1 + δ/hr. Dash-dotted blue line shows a hypothetical exponen-
tially decaying µ. Finally, the grey solid line shows the Brizmer [ 60 ] model
for µ which has been previously used in the literature to explain the shear
thinning in dense non-Brownian suspensions [ 52 ]. b) Variation of viscosity for
different friction models. If we use a constant µ instead, we will not observe the
second shear thinning regime. The data shows that the friction model deter-
mines the viscosity jump during the shear thickening transition and the slope
in the second shear thinning regime. The flow curve for suspensions which do
not exhibit the second shear thinning can be obtained by choosing a constant
coefficient of friction.

however, does not change the slope of the second shear thinning curve at high shear rates as

it depends on the friction model. This investigation shows that the presence/absence and the

range of the Newtonian plateau is determined by the presence/absence and the magnitude of

the non-DLVO interactions, respectively. More experiments measuring the non-DLVO forces

between particles made of different materials and their corresponding Newtonian plateau

range can shed more light on the role of the non-DLVO interactions.

The effect of changing the magnitude of non-DLVO interactions on the ordering parameter

Q6 is presented in Fig  5.7 b. As we use a bi-disperse system, we observe only a weak ordering

in the suspensions. Previous studies in the colloidal regime [ 136 ], [ 203 ], have attributed the

shear thinning at low shear rates to the ordering of particles in layers in the colloids. In
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our simulations for non-Brownian systems, there is no evidence of any significant ordering.

Hence, the initial shear thinning regime observed is due to the apparent lowering of the

volume fraction as the inter-particle gaps between the particles reduce as we increase the

shear rate. The particles are pushed closer as the hydrodynamic force dominates over the

non-contact DLVO forces with an increase in the shear rate. We, however, see a gradual rise

in Q6 until it reaches a peak just before the shear thickening transition as shown in Fig.  5.7b .

The peak is sustained over the range for which we observe the Newtonian plateau. This hints

that the ordering and the flattening of the viscosity just before the shear thickening might be

the outcomes of the non-contact interactions between the particles. Experiments can shed

more light on this link.

5.5.3 Governing role of friction in the ST transition and rheology at high shear
rates

The second shear thinning after the shear thickening transition at high shear rates the

result of the decreasing coefficient of friction in the boundary contact regime of the Stribeck

curve. Hence, the viscosity jump across the shear thickening transition and the slope of

the second shear thickening regime is determined by the friction law used in the model.

This is depicted in Fig.  5.8b for friction laws shown in Fig.  5.8a . A higher value of friction

leads to a larger viscosity. Hence, the Brizmer model has a larger viscosity in the second

shear thinning regime than other friction laws. A friction law with less steep decrease with

particle deformation (e.g., Brizmer law) results in a less steep second shear thinning regime.

A constant µ will result in the disappearance of the second shear regime [  4 ] (see Fig.  5.8b ).

There is an ongoing debate in the community regarding the presence of the second shear

thinning regime as it is not observed in all the systems. We would like to point out that

the second shear thinning has been observed to be prominent for high volume fractions and

has been seen to be present at very high shear rates (> (104 − 105)s−1). Hence, to observe

this regime, one would need to be able to shear the suspension at such high shear rates.

Most of the experimental studies on ST suspensions do not explore such a high shear rate

regime as they stop their investigation right after the suspension undergoes ST [ 122 ], [ 136 ],

[ 157 ], [ 159 ], [ 160 ], [ 162 ], [ 187 ], [ 206 ]. But those which do, have reported the second shear
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Figure 5.9. Effect of varying particle surface roughness height, εr on the
suspension viscosity. Increasing surface roughness results in a stronger initial
shear thinning and increases the viscosity during and beyond the ST transition.
Note that the ST transition is governed by the direct contact between the
particles which is due to the breaking of the lubrication film due to the particle
asperities. Here all the other parameters are the same as given in Table  5.1 ,
except εr which is varied. φ = 52%. Increase in the viscosity with roughness in
the thinning regimes is consistent with ref. [  7 ] and the increase in the viscosity
during the ST jump is consistent with ref. [ 8 ]. The viscosities in the Newtonian
plateau are comparable for small change in the roughness values.

thinning at high shear rates in suspensions [ 34 ], [ 83 ], [ 131 ], [ 155 ]. In addition, we expect the

second shear thinning to depend on the particle material as well. Since, the asperities need

be deformed plastically to enter the low coefficient of friction region, the stress (and hence

shear rate) required for the same would depend on particle properties. E.g., since the Young’s

and elastic modulus of Silica particles is larger than PVC particles, a significantly higher

shear stress/rate would be required to deform Silica asperities plastically. Thus, delaying

the onset of second shear thinning to very high γ̇ values. We expect our simulation results

to encourage experimentalists to investigate different suspension systems at very high shear

rate values to shed more light on the link between plastic deformation of particle asperities

and the second shear thinning regime.
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Figure 5.10. a) Evolution of second normal stress difference, N2 with applied
dimensionless shear rate. N2 is always negative. b) N2 scaled by the shear
stress in the suspension. This plot shows that N2 mimics the stress in the
system.

5.5.4 Effect of particle surface roughness

Earlier theoretical and numerical studies had predicted that increasing the particle surface

roughness would lead to a decrease in the suspension viscosity [  24 ]. However, recent exper-

iments show that rough particle suspensions have a higher viscosity compared to smooth

particle suspensions [ 7 ]. We have resolved this discrepancy and showed that the increase

in suspension viscosity with particle surface roughness can be explained by using a normal

load/roughness deformation dependent µ [ 3 ] similar to the one used in this study.

The proposed model in this study is equipped to quantify the effects of varying particle

roughness which is not possible in models which allow particle overlaps. Simulation results

accurately predict a rise in the suspension viscosity with with particle asperity size, εr, as

shown in Fig.  5.9 . The increase in the suspension viscosity with particle roughness manifests

itself in the form of a higher viscosity jump across ST transition, in agreement with previous

experiments [ 8 ] and simulations [ 4 ].
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5.6 Normal stress differences

Fig.  5.10a and  5.10b show the dependence of the second normal stress difference N2 =

σ22 − σ33 and the dimensionless normal stress difference N2/σ12 in the dimensionless shear

rate. We observe N2 to be negative for all the investigated input parameters. We find that

N2 qualitatively mimics the shear stress σ in the suspension. We also find that the first

normal stress difference is small compared to N2 and is dominated by fluctuations. Hence,

it is not presented here.
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6. CONCLUSIONS AND FUTURE WORK

Part I of the thesis has established and quantified the effects of increasing the particle

surface roughness size on the rheological properties of dense suspensions. We have validated

the numerical framework developed against the earlier published data and experiments.

In chapter  2 , the effect of varying particle surface roughness on the rheology of con-

centrated non-Brownian suspensions has been studied numerically. Using an accurate and

realistic contact model is crucial for simulating typical suspension properties like shear thin-

ning and obtaining results close to experiments. The hydrodynamic interactions have been

modeled using the Ball-Melrose approximation [ 49 ]. An elastic-plastic mono-asperity model

with varying coefficient of friction [ 52 ], [ 60 ] has been implemented to model the roughness

and contact dynamics.

We observe that the magnitudes of relative viscosity (ηr) and normal force (N) increase

with increase in roughness. These findings are in agreement with the experiments carried

out by Tanner & Dai [ 7 ]. To the best of our knowledge this is the first numerical study to

capture the observed trend in experiments. All the previous analyses [ 22 ], [ 88 ], [ 95 ], [ 106 ]

and computations [ 23 ], [  24 ], [  48 ], [  107 ] predicted a trend opposite to experiments. In these

studies a simple contact model was used and the reduction in the relative viscosity was

attributed to the fact that average inter-particle distance increases with roughness which

reduces the hydrodynamic contribution to the total stress. We obtain a similar decrease in

the contribution from hydrodynamic stress. However, the increase in contribution from the

contact stress is very large which causes the relative viscosity to increase. In addition, for

a fixed stress, the particle-particle contacts are more likely to be in the elastic region as we

increase the roughness, leading to the increase in viscosity owing to the high value of µ in

elastic region.

A coefficient of friction decreasing with the normal load is essential in simulating shear

thinning behavior as proposed by Moon et al. [ 54 ] and shown by Lobry et al. [ 52 ]. Even

though the coefficient of friction between two contacting particles decreases with the normal

load, the average coefficient of friction for the suspension as a whole increases with increase in

roughness. This results in the increase in the relative viscosity and normal stress difference.
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We obtain negative values for N2 which are much larger than the values of N1 in mag-

nitude. The magnitudes of non-dimensional normal stress differences are in close agreement

with the previous studies. We observe an increase in N2 and normal force N = N1−N2 with

an increase in roughness which is in agreement with the experimental results [ 7 ]. Magnitude

of N1/σ decreases with increasing roughness due to increase in µavg. This is consistent with

Gallier et al. [ 24 ] where they observe a decrease in the magnitude of N1/σ with increasing

coefficient of friction.

We also show that Maron-Pierce law can be used to predict the viscosity for different

volume fractions and shear stress values. We also find the maximum volume fraction (jam-

ming fraction) decreases with increasing roughness. The reduction in jamming fraction with

roughness is due to two reasons: i) The effective radii of rough spheres and consequently

the effective volume fraction are larger than their smooth counterparts, and ii) The average

coefficient for suspensions increases with increase in roughness which also leads to the reduc-

tion in jamming fraction with increase in roughness. The jamming fraction increases with

stress which is consistent with experimental observations.

The results presented in chapter  2 established the crucial role of a realistic and accu-

rate contact model to accurately calculate the rheological properties of dense non-Brownian

rough suspensions. More studies are needed to develop such models. One of the fundamen-

tal mechanisms governing the rheological behavior of sheared suspensions seems to be the

increase in average coefficient of friction with increase in roughness. Since modifying coeffi-

cient of friction is challenging, we can instead modify other properties of particles influencing

friction such as roughness to tune suspension properties according to the need of different

applications.

The finding of chapter  2 insinuate that dense suspensions would undergo a shear thick-

ening transition at a lower critical shear rate with an increase in the roughness size of the

particles. We tested this hypothesis in chapter  3 with the help of the Critical Load Model for

friction. We show that increasing the particle roughness results in an earlier onset of shear

thickening in terms of the critical shear rate and leads to the continuous shear thickening

(CST) to discontinuous shear thickening (DST) transition at a lower critical volume fraction.

The denser contact networks with higher roughness explain these findings.
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The simulations show that roughness reduces the jamming fraction in the low (or equiva-

lently for friction-less particles) and high shear rate limits due to the increase in the effective

radii of particles, which results in denser contact networks as the volume fraction increases.

The direct consequence of this is the increase in the viscosity of the suspension with rough-

ness. This result suggests that, roughness should lead to enhancement in the ST effect, i.e.,

increasing roughness decreases in φc and γ̇c and increases the ST index β.

Simulations for a range of volume fractions with systematically increasing roughness size

indicate that roughness increases the viscosity of suspensions and enhances the magnitude

of ST effect. Specifically, roughness leads to decrease in γ̇c and φc. We also reproduce the

experimentally observed DST, where suspension switches abruptly from a low viscosity state

to a high viscosity state. Increasing roughness leads to DST at lower volume fractions e.g.,

for the smooth case (εr = 0.01), we only observe DST at very high volume fraction φ > 57%.

But, for the roughest case (εr = 0.125), DST occurs for a volume fraction as low as 49 %.

In addition, we can predict the onset of DST for a given roughness from its effective volume

fraction, φe. For any roughness and volume fraction, if φe(φ, εr) > 63% then we expect the

suspension to undergo DST, if 59% ≤ φe ≤ 63%, we get strong CST and for φe < 59% we

get CST. These calculations, however cannot predict the critical shear rate at the onset of

ST and the ST index as they depend on the roughness size.

We find that, N1 increases with increase in roughness and can become positive at higher

roughness values or at very high volume fractions. N1 has a negative value which decreases

after ST transition for low roughness values (e.g. for φ = 50% and εr < 3%), while for

higher roughness values, N1 becomes positive and increases after the ST transition. The

dimensionless N1 has a magnitude lower than 0.2 for all the cases investigated in this study.

We obtain negative values for N2 with a magnitude much larger than N1. This result is

consistent with most of the previous experimental and computational studies. N2 mimics

the stress in the system and increases with increase in roughness. Plotting dimensionless N2

for different dimensionless stress values reveals that N2/σ falls on a single curve independent

of roughness. We observe a two-folds increase in N2/σ during the ST transition.

We visualize the contact network evolution for different roughness values revealing the

governing role played by the frictional contacts in the ST behavior of suspensions. The
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increase in the fraction of frictional particles in the system with stress results directly in ST.

With increasing roughness more particles come into contact which results in denser contact

networks for higher roughness values. This also results in the increase in the viscosity for

a particular volume fraction with roughness which eventually leads to enhancement in the

ST effect with roughness. In addition, we calculate the critical deformation related to the

force scale for the frictional transition. We find that the average deformation across all

the contacting particle pairs increases with asperity size leading to the rise in the contact

stresses.

The results presented in chapter  3 are crucial to predict the onset and the strength of ST

effect with varying roughness values. Though friction is the basic mechanism for observing

ST, tuning friction coefficient in order to manipulate suspension behavior is a tough task.

On the contrary, particle surface roughness can be modified easily to enhance or reduce the

ST effect according to a specific application [ 207 ], [  208 ].

Finally, in chapter  4 we develop a simple constitutive model to quantify the effect of

increasing the surface roughness of particles in a ST dense suspension. The model requires

knowledge of stress independent rheology in the zero and high shear rate limits for a few

roughness values. The rheology between these extremes can then be interpolated using

the equations presented in this chapter. The equations developed provide a simple way to

calculate the critical volume fraction for the DST onset and the critical shear rate for ST

transition.

The proposed constitutive model successfully captures all the rheological properties and

flow behaviors observed for ST rough particle suspensions. It spans the entire flow state di-

agram and shows the transition between monotonic, S-shaped and backward bending curves

in the σ vs γ̇ state diagram. Once the roughness dependence of the rheological properties

in the low and high shear state limits is known, we can use the constitutive equations to

quantify the exact effect of roughness size on the rheology of rough particle suspensions.

E.g., the critical shear rate for the ST transition can be calculated as: γ̇c/γ̇0 = σ̃c/ηr(εr, σ̃c)

(σ̃c = 1 in this study), the critical volume fraction for DST can be found by calculating the

lowest volume fraction for which dγ̇/dσ becomes 0.
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The findings of chapter  4 are useful in quantitatively predicting the behavior of ST sus-

pensions at various particle surface roughness sizes. The insights obtained can potentially be

utilized in manipulating the suspension behavior by changing the particle surface roughness

size along with mechanisms based on hydrodynamic interaction [  166 ], [ 167 ], particle surface

coatings/functionalities [ 209 ] and friction [ 117 ].

Chapter  5 looks beyond the direct contacts and friction by incorporating other pair-

wise non-contact interactions such as DLVO and non-DLVO interactions. This chapter

proposes a universal model which can quantitatively predict all of the four regimes, viz.,

shear thinning, Newtonian plateau, shear thickening, and shear thinning and the transition

from one regime to the other with increasing shear rate or stress typical to the flow behavior

of dense non-Brownian suspensions. Thus, unifying disparate rate-dependent rheological

regimes in the flow curve of a dense non-Brownian suspension of smooth particles. The

unifying mechanism is based on the competition between the inter-particle hydrodynamic

interactions, non-hydrodynamic interactions of DLVO and non-DLVO origins, contact forces

and Stribeck curve for the friction coefficient (a constraint mechanism); each interaction

resulting in a characteristic stress scale in the system. The switching between dominant

stress scales with increasing the shear rate/stress explain the various regimes and transitions

observed in a dense non-Brownian suspension (particle sizes > O(1µm)). Specifically, we

show that accounting for the non-DLVO forces and a coefficient of friction decreasing with

the increasing normal load (asperity deformation) is crucial to quantitatively reproduce the

intermediate Newtonian plateau and the second shear thinning in the same framework.

We validate the proposed hypothesis by performing particle scale dynamic simulations and

compare the results with previous experiments.

The presence of Newtonian plateau which has eluded researchers [ 26 ], [  83 ] is explained

by the inclusion of non-DLVO interactions that are non-contact interactions [ 190 ] & delay

the onset of lubricated to frictional transition (hence ST). Furthermore, we do not find any

significant ordering in the initial shear thinning regime as it was observed in some cases

for mono-disperse suspensions. This begets an interesting question whether the ordering at

low shear rates/stresses for mono-disperse suspensions is an outcome of various non-contact
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interactions rather than being the reason for the initial shear thinning? Further investigations

are needed in this direction.

The results also show that only constraining the sliding motion between the particles is

enough for smooth particle suspensions, unlike rough particles, where constraint on rolling

motion might be crucial [ 173 ]. The ST transition is the result of constraints on the relative

particle motions due to friction while the second shear thinning arises due to the reduction

in coefficient of friction with asperity deformation (or normal load) at a very high shear

rate/stress. Our simulation results show that using experimentally obtained expressions

for the non-hydrodynamic interactions and the constraint mechanism (e.g., coefficient of

friction) is required to obtain a quantitative agreement with the experimental results.

Although we have used specific force profiles from the direct measurements [ 83 ] for DLVO

forces and µ, the model can reproduce the flow curve for any generic system given its repul-

sive, attractive, non-DLVO force profiles and friction law. We demonstrate the versatility

of the proposed model to reproduce a gamut of flow behaviors by varying the relative mag-

nitudes and expressions of various interactions. In addition, the model accurately predicts

a rise in the suspension viscosity with particle surface roughness, in agreement with recent

experiments. These results show that the macroscopic rheological behavior is determined

by the microscopic particle pair interactions. It would also be interesting to investigate

the effects of other collision models. Thus, to gain further insights into the physics behind

the rheological behavior of dense suspensions, accurate measurements of inter-particle inter-

actions (especially non-DLVO interactions) and µ as a function of inter-particle gap while

immersed in the fluid medium are needed.

In the future, it will be interesting also to explore the effects of adding polymers in

the suspending fluid so that that suspending fluid itself is non-Newtonian. This would

have significant and non-intuitive effects on the bulk rheology and can also be used to

manipulate suspension rheology. In addition, we only considered the simple shear flow

of suspensions. Other flows, such as oscillatory shear flow and shear reversal, are also

essential flow conditions under which we want to know the behavior of suspensions. Thus,

investigating the influences of these non-contact forces in different flow conditions on the

rheological properties of dense suspensions is another excellent direction for future studies.
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Since microscopic force magnitudes directly determine the stress scales in suspensions and

the critical values for various transitions, our results hint towards the possibility of deducing

the magnitudes of microscopic forces (difficult to measure) by measuring the bulk rheology

(relatively easier to measure).

151



PART II
MOTION IN A STRATIFIED FLUID: SWIMMERS AND

ANISOTROPIC PARTICLES
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7. INTRODUCTION

7.1 Motivations

Fluid heterogeneity is as pervasive as fluids not only below the surface of the Earth

in magma [ 210 ], on the surface in aquatic bodies [ 211 ] and above the surface in the at-

mosphere [ 212 ] but also beyond it in the cosmos [ 213 ]. Since gravity is omnipresent and,

fluid homogeneity is an exception rather than the rule, the interplay between fluid hetero-

geneity and gravity results in non-intuitive and striking phenomena of importance in many

branches of fluid mechanics. A desire to solve practical problems, for instance, in meteo-

rology, oceanography, and hydraulic engineering, was the impetus behind the progress in

the field of stratified flows in the 20th century. Fluid density and/or viscosity stratifica-

tion are commonly observed fluid heterogeneities. Fluid density stratification is ubiquitous

in the Earth’s atmosphere, oceans, lakes, magmas, and cosmic gas clusters, while viscosity

variations are routinely encountered in nature (e.g., glaciers, magma, blood) and industry

(chemical and food industry). Fluid heterogeneities govern the large-scale motions like at-

mospheric recirculation and ocean currents and significantly influence the localized motion,

transport, and interactions of active or passive objects moving in density and/or viscosity

stratified fluids. The latter is the focus of this part of the thesis.

Understanding the motion of objects in a stratified environment is crucial in several

environmental, geophysical, ecological, and industrial processes. Atmospheric pollutants

like particulate matter, soot, dust, aerosols, pollens, volcanic ash, and weather balloons

reside in the lower atmosphere [ 214 ]. They often come across local temperature gradients,

e.g., atmospheric inversions [ 215 ], which profoundly affect their vertical settling/rising rates,

aggregation, and scattering, which in turn play an important role in cloud formation and air

quality [ 216 ].

Common marine pollutants like microplastics (MPs) [ 217 ] are likely to accumulate in

thin layers in the stratified ocean upper layers. The vertical settling of marine snow particles

carrying organic matter and alive/dead phytoplankton through thermoclines (temperature

variations) and haloclines (salinity variations) in oceans and lakes [  211 ], [  218 ] is responsi-

ble for the transfer of nutrients and organic matter, especially carbon within ocean layers
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[ 219 ]. Large density gradients increase the accumulation of these particles and organisms

[ 220 ] forming thin nutrient-rich layers with thriving ecosystems. Furthermore, harmful algal

blooms are acutely affected by density gradients [ 220 ], they are detrimental for ocean ecol-

ogy [ 221 ], hinder measurements from sea platforms [ 222 ] and lead to bias in observations

of velocity and turbulence by satellites, aircrafts and Lagrangian floats required for weather

forecasting [ 223 ]. Stratification also hampers Diel Vertical Migration (DMV) of zooplankton

[ 224 ].

On a global scale, it is still unclear whether the collective motion of marine organisms

with inertia can lead to significant mixing in the oceans, even though the collective motion

of such organisms has been associated with the local biogenic mixing hot spots [ 225 ], [ 226 ].

Thus, understanding the influence of stratification on particles and swimmers dynamics is

essential to model and predict phenomena such as bio-geochemical fluxes [ 227 ] and biogenic

mixing [ 228 ], retention at pycnoclines, and horizontal layer formation. This would help in

better predictions of these biological phenomena in oceans [ 211 ], [ 218 ]. A summary of the

motion at pycnoclines in oceans is shown in Fig.  7.1 . Particle motion in density-stratified

fluids is also encountered in industrial processes involving mixing different density fluids

[ 229 ], air conditioning and ventilation systems [ 230 ], and chemical plants.

Such practical applications with far-reaching implications motivate theoretical analy-

ses and numerical simulations complementing idealized experimental studies of flows past

spheres, drops/bubbles, and microorganisms. However, these particles and organisms come

in a variety of shapes like disk-like flat or rod-like elongated [ 231 ], pointing towards a need

for better understanding the effect of particle shape anisotropy on their dynamics in hetero-

geneous fluids. The added degree of freedom due to the particle shape anisotropy results in

anisotropic drag [ 232 ], non-intuitive particle settling paths [ 233 ], and orientation instability

[ 231 ], [ 234 ] in a stratified fluids. The consequences of these effects on the hydrodynamic

interactions and sedimentation of non-spherical particle suspensions in a stratified fluid are

yet to be understood.

Much progress has been made in understanding the effects of fluid heterogeneities on the

motion of objects over the past few decades. A thorough discussion on particle scale fluid

flow, fluid entrainment, drift volume, and objects crossing immiscible interfaces can be foubd

154



Figure 7.1. Marine microbial environment see a sea of fluid property varia-
tions. This schematic shows various processes which contribute to creation of
such gradients. Phytoplankton (top), cell lysis events (top right), detritus and
marine snow particles (bottom center), and cocepod excretions (left). Adapted
from Stocker, Science, 2012.

in earlier reviews [ 235 ], [  236 ]. The main focus of this part of the thesis is to debunk the effects

of stratification on the individual, and pair interaction dynamics of swimmers and probe the

influences of particle shape anisotropy on their settling dynamics in a stratified fluid. The

physical insights obtained from these investigations explain the hydrodynamic mechanisms

behind the accumulation and trapping of these objects in stratified environments, mixing,

and the reorientation of anisotropic bodies. The following section presents a brief discus-

sion of governing equations and dimensionless parameters—the subsequent sections delving

deeper into understanding the motion in stratified fluids.
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7.2 Governing Physics and investigation techniques

Particles, bubbles/drops, or swimmers considered in this review are in the order of

µm − mm. Hence, their Reynolds number Re ranges from ≈ O(0 − 103) depending on

the local conditions and their moving speeds. As a result, we can say that their motion pre-

dominantly lies in the “viscous” flow regime, with inertial effects being important in many

cases. Hence, various theoretical, semi-analytical, numerical, and experimental techniques

have been applied to investigate the motion of these objects in stratified fluids. We provide a

summary of these techniques in this section. Before that, it is necessary first to understand

the fundamental equations governing the motion in stratified fluids.

7.2.1 Governing equations

The Navier-Stokes equations, along with the Boussinesq approximation for density and

the continuity equation, are used to resolve the flow field. In addition, the advection-diffusion

equation for density (or equivalently the stratifying agent) is also used to calculate the density

field. The fluid is assumed to be Newtonian and incompressible. These equations are written

as:

∇ · u = 0, (7.1)

ρ0
Du
Dt

= −∇p+ ∇ · [µ(∇u + ∇uT )] + ρg, (7.2)

Dρ

Dt
= ∇ · (κ∇ρ). (7.3)

Here u = (u, v, w) is the velocity field, ρ is the fluid density, p is the pressure, µ is the

fluid dynamic viscosity and g is the acceleration due to gravity which usually points in the

downward direction, i.e., g = −gk̂. In a stratified fluid, the fluid density varies with fluid

depth, z, so, ρ = ρ(z). A stable stratification implies that the density increases with depth,

i.e., ρ(z) is an increasing function of −z. Linear (ρ(z) = ρ0 +ρzz) and hyperbolic tangent are

some of the routinely used expressions for ρ(z) as they are observed for pycnoclines. Here,
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ρz = dρ/dz, the background density gradient. It should be noted that the density field is

determined by the stratifying agent like temperature, salinity or nutrients and solving eq.  7.3 

is the same as solving the advection-diffusion of the stratifying agent. Taking curl of the

Navier-Stokes equations  7.2 results in the vorticity ω = ∇× u advection-diffusion equation

given by,

Dω

Dt
= (ω ·∇)u−∇×

(
µ

ρ0
×∇ω

)
+ ∇p×∇

(
1
ρ

)
+ 2∇×

[
∇µ

ρ0
· (∇u + ∇uT )

]
. (7.4)

The first two terms on the right-hand side give the change of vorticity of a fluid element

brought about by the stretching of vortex lines and the diffusion of vorticity from boundaries,

respectively, similar to a fluid with a constant density. The third term distinguishes a

stratified fluid from a homogeneous one. In a stratified fluid, vorticity is generated whenever

pycnoclines are displaced such that ∇ρ and ∇p are not parallel. In the simplest case,

i.e., hydrostatics, when p depends on gravity alone, this means that the displacements of

isopycnals (equal density surfaces) away from the horizontal produces vorticity.

7.2.2 Important dimensionless parameters and length scales

Given the Boussinesq approximation holds, an inviscid fluid element displaced from its

equilibrium position in a stratified fluid oscillates in simple harmonic motion with frequency,

N =
√
−ρzg/ρ0 (ρz = ∂ρ(z)/∂z < 0 is the background density gradient) called the Brunt-

Väisälä frequency. This also sets a characteristic time scale in the system τ = 2π/N . The

dynamics of objects with a characteristic length scale D and density ρp moving with a char-

acteristic velocity U in a fluid with kinematic viscosity ν in a stratified fluid is governed by a

few important dimensionless parameters. The Reynolds number, Re = UD/ν, measures the

relative importance of inertial to viscous forces. The Richardson number, Ri = N2D3/(νU),

which is the ratio of buoyancy to viscous forces, and the Froude number, Fr = UD/N , gives

the ratio of inertial to buoyancy forces are both used to quantify the strength of stratification.

Finally, the density ratio, ρr = ρp/ρ0 and the Archimedes number, Ar = ρ0gD
3 (ρp − ρ0) /µ2

tell us about the relative importance of gravitational forces compared to the viscous forces.
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In addition, the ratio of momentum diffusivity to the stratifying agent diffusivity is given

by the Prandtl number or the mass transfer analog Schmidt number, Pr or Sc = ν/κ. The

product of Re and Pr gives the Péclet number, P e = RePr = UD/κ which is commonly

used in the low Re studies to quantify the importance of advective transport over diffusive

transport, e.g., if P e� 1 then diffusion dominates and if P e� 1 then advection dominates

the transport of the stratifying agent.

R1: viscous -di�usive
≪ , ≪

At ~ , buoyancy ~ viscous

R2: viscous -advective
≪ ≪

At ~ , buoyancy ~ viscous

R3: inertial -advective
≪ , ≪

At ~ , buoyancy ~ inertial

Figure 7.2. Possible stratification regimes depending on the relative magni-
tudes of the viscous (lν , dotted line), advective (lκ, dashed line) and stratifica-
tion (ls, solid line) length scales for a particle with unit characteristic length at
low Re (lν ∼ 1/Re). The high Re (lν ∼ 1/Re1/2) case is similar except lν � D
where D is the characteristic particle length.

Depending on the relative magnitude of the length scales associated with stratification

ls, viscosity (lν) and stratifying agent diffusivity (lκ), several distinct regimes have been

identified by linearizing the governing equations in terms of disturbance properties and then

using a leading order scaling analysis [  237 ]. Regimes R1 and R2 are viscous regimes meaning

the fluid inertia is unimportant; however, in regime R3, the inertial fluid effects are important.

In addition, the density transport is predominantly diffusive in regime R1, but the density

advection dominates in regimes R2 and R3. Thus, the stratification length scale, ls, can

be interpreted as the distance from the particle such that the viscous and buoyancy forces

balance in regimes R1 and R2 or the inertial and buoyancy forces balance in regime R3. These

are summarized in table  7.1 and plotted in Fig.  7.2 . Each regime has its stratification length
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scale ls, which determines the extent of the effects of density variations due to stratification

on the flow physics.

Table 7.1. Summary table of length scales and stratification regimes
Regime ls (Re� 1) ls (Re� 1)

R1, viscous-diffusive ∼ (Fr/Re)1/2Pr−1/4 ≈ (Fr/Re)1/2Pr−1/4

ls � lν , ls � lκ ≡ (νκ/N2)1/4 ≡ (νκ/N2)1/4

R2, viscous-advective ∼ (Fr2/Re)1/3 ∼ Re−1/2Fr2/(2+β),
lκ � ls � lν ≡ (νU/N2)1/3

β in (0− 1)
R3, inertial-advective ∼ Fr ∼ Re−1/2Fr

ls � lν , ls � lκ ≡ U/N ≡ (νU/N2)1/2

7.2.3 Investigation techniques

For theoretical analysis of the problem of motion in a stratified fluid, the governing

equations are usually written in the frame of reference attached to the moving object and

for the disturbance variables. The coupling between fluid flow and density transport equa-

tions limit theoretical calculations to weak stratification [ 238 ]. Fundamental singularities

in Re = 0 limit, e.g., the point-force (respectively, force-dipole) is a good representation of

a settling particle (respectively, neutrally buoyant organism), can be used to calculate the

fundamental far-field velocity solutions for low Re flows in a stratified fluid, aptly called

“Stratlets” [ 238 ]. However, the perturbations of the disturbance variables in terms of a

small stratification parameter needed to solve the near-field flow are singular, similar to the

perturbation in Re for the homogeneous flow past an infinite circular cylinder [ 239 ]. Hence,

‘singular perturbation’ theory [ 240 ] and a matched-asymptotic expansion [ 241 ] are used to

solve the disturbance flow by matching the inner and outer solutions in the matching zone

(when the distance from the particle r ≈ ls). The density disturbance effects can also be

evaluated by the use of Green’s function, making it a suitable method for obtaining the force

modifications on rigid particle [ 242 ], drops [ 243 ] and porous particles [ 244 ] in the form of a

volume integral over the entire domain. The Lorentz reciprocal theorem can also be used

by intelligently choosing the complementary problem, e.g., torque-free spheroid settling in a
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stratified fluid and the Stokesian rotation of a spheroid in a quiescent ambient [ 245 ]. Though

theoretical methods can provide crucial information such as stratification drag enhancement,

they are limited to isolated objects, negligible Re, and weak stratification situations.

The limitations of the theoretical methods can be overcome by doing numerical simu-

lations. These include Discrete Lagrange multiplier [ 246 ], body-fitted grid [ 247 ], immerse

boundary method [ 231 ], volume of fluid [ 248 ] and front-tracking [ 249 ] all of which either use

finite volume or finite element discretization of the governing equations. These methods have

been useful in studying the combined effects of inertia and stratification on the flow around

the objects, stratification drag enhancement, and the unsteady motion of settling objects in

a stratified fluid.

Finally, in laboratory experiments, the two tank method [  250 ], [ 251 ] is commonly used

for creating a stable linear stratification, while a two-layer stratification can be formed by

slowly feeding the heavier fluid under the lighter fluid [ 252 ]. Then the particles/drops are

carefully released/injected carefully to investigate various phenomena such as their settling

and accumulation in horizontal layers [  236 ]. The objects are towed by connecting them

to motor-driven carriage plates via wires [ 253 ] to study the flow structures of stratified

horizontal and vertical flows over them. The flow can be visualized by Schlieren imaging,

shadowgraph techniques, PIV measurements, or using fluorescent dye [  234 ], [ 250 ], [ 254 ]–

[ 256 ].

7.3 Part II outline

With the fundamental concepts and governing equations discussed, this section outlines

the structure of part II of the thesis. Here we only provide a big picture view of each of the

following chapters, with motivations behind choosing those problems and detailed analysis

in the respective chapters. The remaining part II is organized as follow:

Chapter  8 probes the combined effects of fluid stratification and inertia on the straight

line motion of swimmers parallel to the direction of gravity. We use the popular squirmer

model to mathematically model the swimmers. We elaborate on the reasons behind the re-

duction in the swimming speeds of swimmers in stratified fluids compared to their swimming

speeds in homogeneous fluids at the same Reynolds numbers. Furthermore, we also explain
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the reasons behind the decrease in the swimming efficiencies of swimmers due to stratifica-

tion and what causes the swimmers to have higher mixing efficiencies at higher stratification.

Most importantly, we find that the straight line motion of an inertial pullers becomes stable

(which is otherwise unstable in a homogeneous fluid), while fluid stratification stabilizes the

motion of an inertial pushers (which is otherwise stable in a homogeneous fluid). This chapter

dives deeper in unravelling the physical mechanisms behind these non-intuitive observations

by examining the effects of fluid stratification on the flow field generated by these swimmers

for their locomotion. Chapter  9 goes a step further than chapter  8 and investigated the

hydrodynamic interactions between a pair of squirmers in a stratified fluid. The results for

interactions between a pair of colliding squirmers and squirmers moving side-by-side reveal

several trajectory patterns. We explain the physical mechanisms behind these trajectories

by examining the flow field around interacting squirmers.

Chapter  10 changes the focus from swimmers to rigid particles and investigates the

effects of particle shape anisotropy on their settling dynamics in stratified fluids under the

influence of gravity. Fully resolved simulations using the immersed boundary method show

that fluid stratification suppresses the oscillatory behavior of spheroid observed when they

settle in a homogeneous fluid and also eliminates the oscillatory trajectories. Most impor-

tantly, we find that the spheroids settle in a configuration such that their long edge is vertical

or parallel to the direction of gravity which contradicts the long edge horizontal settling in

a homogeneous fluid. We again examine the flow field and isopycnal deformation around

the spheroids to gain insights into the mechanisms behind this reorientation instability. We

also discuss the conditions for the reorientation onset and quantify the drag acting on the

particles as they settle in a stratified fluid.

Chapter  11 summarizes all the above studies in the context of our original goal. Also,

this chapter proposes further investigation ideas that can help to improve our fundamental

understanding of the motion in a stratified fluid.
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8. MOTION OF AN INERTIAL SQUIRMER IN A DENSITY

STRATIFIED FLUID

8.1 Introduction

Movement driven by pervasive impulses acting across multiple spatial and temporal

scales, is a fundamental characteristic of all the Earth dwelling organisms since they first

learned to move some 565 million years ago [ 257 ]. Depending on their surrounding environ-

ment, locomotive organisms have developed various techniques to roam around like running,

flying, jumping, swimming, rolling, gliding to name a few. This movement plays a crucial

role in driving many of the evolutionary and ecological processes [  258 ]–[ 261 ]. Especially

in aquatic bodies, swimming organisms span across sizes ranging from a few microns to a

several meters and exhibit a rich variety of locomotive organs [ 262 ], [  263 ].

The magnitude of the Reynolds number Re = U0a/ν, which is a dimensionless number

quantifying the relative strength of the inertial and viscous effects provides us an insight

into the underlying flow physics of swimming organisms. Here, U0 is the velocity scale, a is

the length scale and ν is the kinematic viscosity of the fluid. For swimming microorganisms,

the Re ranges from 10−4 for bacteria [ 264 ], 10−3 for Chlamydomonas, 0.01 − 0.1 for Volvox

[ 265 ], 0.1− 1 for freely swimming zooplankton Daphnia magna [ 266 ], 0.2− 2 for Paramecia

depending on swimming or escaping mode [ 267 ], O(10) for Pleurobrachia, and 20 − 150 for

copepods [ 268 ]. So, organisms employ a wide range of swimming mechanisms. At low Re,

they utilize the thrust generated by the locomotive organs like cilia and flagella to oppose the

viscous drag forces [ 269 ]. At high Re, they utilize the lift-forces generated by the flapping

of fins and tails [  262 ].

In many of these swimming microorganisms, the propulsion is produced by a cyclic

distortion of the body shape [ 270 ], e.g., oscillating cilia or flagella [ 262 ], [ 264 ]. The spherical

squirmer model, first introduced by Lighthill [ 271 ] and later modified by Blake [ 272 ] mimics

the self-propulsion produced by the coordinated motion of dense array of cilia on its surface.

These ciliary deformations are axisymmetric resulting in radial (usr) and tangential (usθ)
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velocity components on its surface in a frame of reference translating with the squirmer with

radius a:

usr|r=a =
∞∑
n=0

An(t)Pn(cosθ), (8.1)

usθ|r=a =
∞∑
n=0

−2
n(n+ 1)Bn(t)P 1

n(cosθ), (8.2)

respectively. Here r is the distance from the center of the squirmer, θ is the angle measured

from the direction of the locomotion, An and Bn are the time dependent amplitudes of ciliary

deformations and Pn, P 1
n are the associated Legendre polynomials of degree n. The swimming

speed of a neutrally buoyant squirmer at Re = 0, i.e., in a Stokes flow depends only on the

first mode of each surface velocity component and is given by, U0 = (2B1 − A1) /3. This

swimming speed is independent of fluid viscosity and other swimming modes [ 271 ].

Magar et al. [ 273 ] were the first to utilize the squirmer model in a computational study

to investigate the nutrient uptake by self-propelled organisms. After that, researchers have

investigated the hydrodynamic interactions between two squirmers [ 267 ], rheology of suspen-

sions of squirmers [  274 ], mixing by swimmers [ 275 ] as well as swimming in non-Newtonian

fluids [ 276 ] using the squirmer model. However, all these studies were in the limit of Stokes

flow, i.e., Re = 0.

In the last decade, the focus has shifted on exploring the swimming dynamics of the

squirmer at a finite Re [ 277 ], [ 278 ]. Numerical investigations at a high Re (1-1000) show that

inertia results in significant divergences in the motion of a pusher and a puller. Specifically,

pushers are stable and the flow around them is steady axisymmetric for Re as high as 1000

[ 279 ], [ 280 ]. On the contrary, pullers become unstable and the flow around them becomes

3D at a critical Re which depends on the relative magnitudes of the swimming modes [ 279 ].

The reasons behind these differences are: i) distinct hydrodynamic interactions between

the swimmer bodies and the flow fields created by them, i.e., a pusher will be attracted

towards its original trajectory due to its interaction with the flow field when it is perturbed

sideways from its original straight-line path while the exact opposite of this effect will be

experienced by a puller [ 280 ], and ii) the ineffective advection of the vorticity generated

by the puller as opposed to a strong and efficient advection of the vorticity downstream

by the pusher ([ 279 ]). Fig.  8.1a and  8.1b demonstrate these effects for a pusher and a
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puller moving in a homogeneous fluid, respectively. Furthermore, inertia also affects the

hydrodynamic interactions of squirmers resulting in a variety of dissimilar trajectories for

puller and pusher pairs depending on Re and β. Inertia of the squirmers alters the time

of contact and scattering dynamics of two colliding pushers, and results in hydrodynamic

attraction between a pair of puller swimmers [ 280 ].

Oceans and lakes are abundant with microorganisms and their motion in these aquatic

bodies leads to intense biological activity [ 218 ], [ 281 ], [ 282 ]. This makes studying the motion

of swimmers in oceanic environment an interesting problem. However, the problem becomes

more complex as the upper layer of the ocean, where these swimmers typically roam, observes

a vertical variation in the water density which is ubiquitous in other marine environments

as well [ 211 ], [ 283 ]. This density stratification (pycnoclines) can be due to temperature

(thermoclines) or salinity (haloclines) or both. Even though the stratification length scale is

O(km), the appropriate length scale to dictate the influence of stratification on the swimmers’

motion isO(100µm) [ 284 ]. Marine microplankton Ciliates with sizes ranging from 20−200µm

[ 285 ] are abundant in such a stratified environments along with other meso-, macro- and

mega-planktonic organisms which have Re ranging from O(0.01− 100) [ 268 ], [  286 ].

Density stratification leads to accumulation of microorganisms [ 287 ]–[ 289 ] or marine snow

particles and formation of phytoplankton blooms [  281 ]. The accumulation is significant for

larger size phytoplankton than the smaller ones [ 288 ] implying the role of swimmer inertia is

important for the accumulation. Experimental investigations of the flow fields around inertial

zooplanktonic organisms in a stratified fluid show that the fluid and mass transport due to

the swimming of zooplankton organisms can be comparable to turbulence induced transports

typical to stratified marine environments [  290 ]. The collective vertical migration of swimmers

in a stratified fluid generates aggregation-scale eddies resulting from the coalescence of the

individual organisms’ wakes. These eddies produce an apparent turbulent diffusivity up

to thousand times larger than the diffusivity of the stratifying agent demonstrating their

capability to alter the physical and bio-geo-chemical anatomy of the aquatic environment

[ 226 ], [  291 ], [  292 ].

Looking at the locomotion of individual organisms can provide insights into the collective

hydrodynamic and biological impact of migrating swimmer schools in stratified environments.
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At low Re, stratification affects the vertical migration of small organisms by resulting in a

smaller flow footprint and nutrient consumption as well as higher energy spending [ 293 ].

Stratification lowers the swimming speed and requires swimmers to expend more energy for

swimming in Stokes regime [ 294 ]. Still, we know little about the effect of stratification on

the motion of an individual squirmer at finite Re.

The motion of self-propelling organisms in a stratified fluid is inherently different than

that of a rigid object settling as there is a tangential velocity and an active vorticity gener-

ation on the surface of the swimmers. To this end, we numerically investigate the effect of

density stratification on the motion of an inertial squirmer. First, we elaborate on the gov-

erning equations and the computational methodology used to solve these equations. Then

we present the results on the steady state swimming speed of the squirmers and the effect of

stratification on these speeds for various β and Re. We present the flow field and the evo-

lution of pycnoclines around the squirmer to explain the results on the swimming motion.

Finally, we present the effect of stratification on the mixing efficiency and energy expenditure

of individual swimmers.

8.2 Methodology

This section explains the governing equations and the computational methods imple-

mented to simulate the motion a squirmer through a linearly stratified fluid at finite Re.

We consider a squirmer moving through an incompressible Newtonian viscous fluid. The

fluid is linearly stratified and the density increases in the downward z direction as shown in

Fig.  8.1c .

8.2.1 Governing equations

The fluid flow is governed by the Navier-Stokes equations for an incompressible Newto-

nian fluid and these equations are solved in the entire domain, Ω. We utilise the Boussinesq
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Figure 8.1. a) Vorticity contours and streamlines for a β = −3 pusher at
Re = 5 in a homogeneous fluid, b) vorticity contours and streamlines for a
β = 3 puller at Re = 5 in a homogeneous fluid. The cartoons below (a) and
(b) represent flow around the squirmers. The flow around a β < 0 squirmer
looks like the fluid is being “pushed” by the squirmer, hence the name pusher.
On the other hand, the flow around a β > 0 squirmer looks like the fluid is
being “pulled” away from the squirmer, hence it is called puller. The red arrows
show the hydrodynamic interactions of the laterally perturbed squirmers with
the flow field induced by them. These interactions attract a pusher towards
its original straight trajectory making it stable as opposed to puller which
is knocked away from the original straight trajectory. The vorticity scale is
same for both (a) and (b). The far-field flow decays as ≈ r−3 for inertial
squirmers (see Fig.  8.7 ). Hence the streamlines away from the squirmers are
identical. However, the streamlines are distinct for a puller and a pusher very
close to their bodies. There is a recirculatory bubble in front of the pusher
and behind the puller. c) Problem setup for an inertial squirmer in a linearly
stratified fluid. zi is the vertical position where we initialize the squirmer. The
coordinate system is the same in the subsequent figures wherever relevant.
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approximation for simplifying the Navier-Stokes equations for a fluid flow of a density strat-

ified fluid. So, the governing equations are,

ρ0
Du
Dt = −∇P + µ∇2u + (ρ− ρ̄)g + f , in Ω, (8.3)

∇ · u = 0, in Ω, (8.4)

where t is the time, u is the velocity vector, P is the hydrodynamic pressure, g is the

acceleration due to gravity, µ is the dynamic viscosity of the fluid, ρ0 is the reference fluid

density and ρ̄ is the volumetric average of the density over the entire domain. D()/Dt is

the material derivative. We use the phase indicator function φ to distinguish the inside and

outside of the squirmer. φ is 1 inside the squirmer and 0 outside. So, the density, ρ, can be

written as, ρ = ρf (1− φ) + φρs, where the subscript f stands for fluid and s for squirmer. f

in equation  8.3 is the body force which is required for imposing the rigidity constraint inside

the squirmer and accounts for fluid-solid interactions in the Distributed Lagrange Multiplier

(DLM) method [  295 ]. DLM has been extensively used to investigate the motion of rigid

particles and model swimmers in both homogeneous and stratified fluids [ 280 ], [ 292 ], [ 296 ]–

[ 299 ].

The temporal and spatial evolution of the density is governed by,

Dρ
Dt = κ∇2ρ, in Ω, (8.5)

here κ is the diffusivity of the stratifying agent and ρ is the density field. Prandtl number

Pr = ν/κ, describes the ratio of the momentum diffusivity to the diffusivity of the stratifying

agent. We discretized equations  8.3 - 8.5 on a non-uniform staggered Cartesian fixed grid using

a finite volume method [  300 ]. We used first order Euler method for temporal evolution while

convection and diffusion terms in momentum and density transport equations have been

solved using QUICK (quadratic upstream interpolation for convective kinetics) and central-

difference scheme [ 301 ], respectively. We initialize the squirmer at a vertical location zi on

the center-line of the domain directed in the positive z direction in a domain 9d× 9d× 80d.

The initial density of the fluid varies linearly with depth z as ρf = ρ0 + γ(z), where γ is the
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vertical density gradient. We use periodic boundary conditions for velocity and density in x

and y directions while the boundary conditions for density and velocity on top and bottom

boundaries are ∂ρ
∂z

= γ and ∂u
∂z

= 0, respectively. The stratification strength can be quantified

by the Brunt–Väisälä frequency, N = (γg/ρ0)1/2, the characteristic oscillation frequency of

a fluid parcel displaced vertically from its neutrally buoyant position in a density stratified

fluid.

8.2.2 Swimmer model: reduced squirmer

To model the swimmer, we use the squirmer model [ 271 ], [  272 ] which has been widely

used as a model for swimmers like Volvox in the literature [ 302 ]. Recently, researchers have

studied the effect of finite inertia on the motion of swimmers by extending the squirmer

model to low and intermediate Re number regimes [ 277 ], [  279 ], [ 280 ], [ 292 ], [  303 ], [ 304 ]. The

squirmer self-propels by wavelike motion of its surface.

For this study we consider a reduced order squirmer which has no radial velocity and

only the first two modes of the surface tangential velocity. A reduced order squirmer has

been used extensively in literature to study the mechanisms of locomotion in a variety of

flow conditions [ 302 ]. The reduced order squirmer can be thought of as a squirmer with only

steady tangential motion on its surface (An = 0 and Bn = constant). Further simplification

is obtained by considering only the first two modes in the tangential motion giving,

usr|r=a = 0, (8.6)

usθ(θ) = B1sinθ +B2sinθcosθ, (8.7)

in the frame of reference moving with the squirmer. Here θ is the angle with respect to the

swimming direction, and B1 and B2 are the first two squirming modes. In Stokes flow limit,

the velocity of a squirmer in an infinite domain is U0 = 2B1/3, we use this as the velocity

scale in this study. Furthermore, a reduced order squirmer can be categorised based on the

sign of β = B2/B1 [ 274 ], [  280 ]. A squirmer with β < 0 is called a pusher and a squirmer

with β > 0 is called a puller. See Fig.  8.1a and  8.1b for details.
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To impose the above given tangential velocity (eq.  8.7 ) on the squirmer surface, we set

the following divergence free velocity field inside the squirmer [ 303 ],

uin =
[(
r

a

)m
−
(
r

a

)m+1
](

usθcotθ + dusθ
dθ

)
er +

[
(m+ 3)

(
r

a

)m+1
− (m+ 2)

(
r

a

)m]
usθeθ,

(8.8)

here a is the radius of the squirmer, r is the distance from the squirmer’s center, er and eθ
are the unit vectors in the radial and polar directions, and m is any integer. The simulation

results do not depend on the choice of m. This is because the expression for uin is divergence

free and recovers eq.  8.6 and  8.7 at the squirmer surface locations irrespective the value of

m. The squirmer velocity is calculated by solving the following equations:

U = 1
Mp

∫
Vp

ρs(u− uin)dV, (8.9)

Isω =
∫
Vp

r× ρs(u− uin)dV, (8.10)

where Vp, Mp, and Is are volume, mass and the moment of inertia of the squirmer. U and

ω is the translational and the rotational velocity of the squirmer. Finally, the force f is

calculated by the following iterative formula:

f = f∗ + α
ρφ

∆t(U + ω × r + uin − u), (8.11)

where f∗ is the force calculated in the previous iteration and α is a dimensionless factor chosen

in such a way that iterations for calculating f converge quickly [ 280 ], [  299 ]. The iterations

are performed until the maximum of Euclidean norm of (f−f∗)/f and the normalized residue

(
∫
Vp
|(U + ω × r + uin − u|dV/U0Vp) falls below 10−3.

8.2.3 Simulation conditions

Many organisms utilize techniques like ion exchange [ 305 ], [  306 ], gas vesicles [ 307 ], and/or

carbohydrate ballasting [  308 ] for buoyancy control [ 286 ]. Hence, for this study in order to

isolate the effect of stratification on the motion of a squirmer, we consider the squirmer to

be neutrally buoyant, i.e., there is no net buoyancy force acting on them due to difference
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in the density with the background fluid. This is achieved by setting the squirmer density

equal to the background fluid density at its instantaneous location. As a result, ρs changes

as the squirmers moves. We assume the κ to be the same for the squirmer and the fluid [ 292 ],

[ 309 ]. The squirmer is free to move and rotate and its translational and angular positions

are calculated by integrating the translational and rotational velocities forward in time.

If we do not consider the swimmers to be neutrally buoyant, then they have a different

density compared to the background fluid. This means that, they will have two main con-

tributions which will determine their swimming speeds. 1) their self-propulsion due to the

surface velocity and 2) the settling/rising motion due to the difference in density with the

background fluid.

If the swimmers are close to their neutrally buoyant level in the fluid, i.e., the depth

of the fluid where the fluid density is equal to the squirmer density, then we expect them

to swim till they reach their neutrally buoyant level where they might either oscillate or

stop or get deflected in the horizontal direction depending on their β and the stratification

strength. This kind of mechanism might be leading to the accumulation of phytoplanktons

in the oceans. In all these cases, they get trapped at their neutrally buoyant levels due to the

reduction of their vertical swimming velocity to 0. This is similar to what happens in the case

of a heavy sphere settling [  299 ] or a drop rising [ 310 ] in a stratified fluid. Their settling/rising

velocity gradually decreases and becomes 0 as they reach their neutrally buoyant levels. If

the swimmers are far away from their neutrally buoyant levels, then there will be a huge

difference in the fluid and swimmer density resulting in a strong heavy sphere like settling

motion as the buoyancy force will dominate. But they will not attain a steady state velocity

as it will decrease with time but at a slower rate than the first case. In any of these cases, we

do not expect the squirmers to reach a steady velocity. We discuss more on this in Sec.  8.3.5 .

Hence, we consider the squirmers to be neutrally buoyant so that we can specifically study

the effect of stratification on the swimmer motion.

In many real-life situations, the swimmers move in the vertical direction such that they

are parallel to the direction of the stratification or gravity mainly for grazing or in the search

of the sunlight during their diel cycles [  311 ]–[ 313 ]. In addition, the direction of the motion

considered in this study is one of the common situations for swimmers moving in oceans,
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e.g., bioconvection [ 314 ]. So, we initialize the squirmers with their initial orientations in the

direction of gravity, i.e., downwards. Since the squirmers considered here are neutrally buoy-

ant, they will exhibit the similar dynamics even if they move against the direction of gravity,

i.e., upwards. We also performed a few simulations with the initial squirmer orientation

perpendicular to the direction of gravity, i.e., horizontal. In this case, the squirmers move

with similar speeds and exhibit the similar dynamics as they do in a homogeneous fluid.

More details on the effect of the initial squirmer orientation on their dynamics is presented

in Sec.  8.3.6 .

8.2.4 Validation: Grid and domain independence

(a) Grid independence (b) Domain independence

Figure 8.2. a) Grid independence test for three different grid sizes. The
plot shows z-velocity evolution for a pusher with β = −1 at Re = 25. b)
Domain independence test for two different grid sizes. The plot shows z-velocity
evolution for a pusher with β = −1 at Re = 25 and Fr = 5.

Here we present the grid and domain independence tests of the computer program utilized

for this chapter. Fig.  8.2a shows the effect of three grid sizes with 70 grid points per diameter,

35 grid points per diameter and 25 grid points per diameter on the velocity evolution of a

pusher with β = −1 moving at Re = 25. The change in the swimming speed from 25 grid

points to 35 grid points is 5.2 % which reduces to 1.5 % from 35 grid points to 70 grid points
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per diameter. So we run all the simulations for a grid size with 35 grid points per squirmer

diameter in all the cases.

Fig.  8.2b shows the effect of changing the domain size. We tested two domain sizes

4.5d×4.5d×40d and 9d×9d×80d. The results are the same for both the domain sizes with

less than 0.1 % deviation. Hence we run all the simulations for a domain size 9d× 9d× 80d.

Additional validations can be found in [  299 ] (for dynamics of a spherical object in a

linearly stratified fluid) and [ 280 ] (for dynamics of inertial squirmers in a homogeneous

fluid).

(a) (b)

Figure 8.3. Effect of stratification on the velocity evolution of squirmers
with Re = 25 for a a) pusher, β = -1, b) puller, β = 1. The velocity has
been normalized with the steady state squirmer velocity in Stokes flow, i.e.,
U0 = 2B1/3 and the time has been made dimensionless with the time scale
a/U0. H = homogeneous fluid. The legends are the same for both the plots.
These plots show that increasing the stratification leads to a reduction in the
squirmer swimming speeds.

8.3 Results and discussion

This section presents the results for the motion of a squirmer at finite Re in a linearly

stratified fluid. The velocities are normalized by the velocity scale U0 and the time has been

normalized by the time scale a/U0. The mesh size was chosen such that there are 35 grid

points across the diameter of the squirmer. We performed simulations for Re = ρ0U0a/µ
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ranging from 5 to 100 and for β = ±3,±1. We vary the Froude number, Fr = U0/Na from

10 to 1 and also compare the velocities with the velocity of a squirmer in a homogeneous

fluid. The Brunt–Väisälä frequency, N = (γg/ρ0)1/2, where γ is the density gradient.

The Prandtl number, Pr for salt stratified water is 700 and for temperature stratified

water it is 7. But, we set the Prandtl number Pr to be equal to 0.7. This has been done

mainly to resolve the density boundary layer which scales as O(d/
√
PrRe) where d is the

diameter of the object. This means as long as the velocity boundary layer is resolved, the

density boundary layer is also well resolved. Previous studies on the effect of Pr on the

settling velocity of a rigid sphere have shown that changing the Pr changes the magnitudes

of the flow variables and velocity of the object, but the overall behavior and trends remain

the same [ 299 ]. We also present results for Pr = 7 to show that this is also true for a

squirmer along with grid and domain independence tests in Sec.  8.2.4 .

To explain the results we present the streamlines, vorticity field and the density difference

contours (isopycnals) in the frame of reference of a steadily moving squirmer. We also study

the effect of stratification on the power expenditure and the mixing efficiency by a squirmer.

8.3.1 Stratification slows down the squirmer

Fig.  8.3 shows the time evolution of the swimming speed (U(t) denotes the time dependent

squirmer speed in the vertical or parallel to initial squirmer orientation) of a pusher and a

puller with Re = 25 in homogeneous and stratified fluids. It has been shown that increasing

the inertia leads to an increase in the swimming speed of pushers and a reduction in the

swimming speeds of pullers [  277 ], [ 279 ], [ 280 ] in a homogeneous fluid compared to their

speeds in Stokes flow limits. Thus, the results plotted in Fig.  8.3 for homogeneous fluid are

consistent with the previous studies [ 277 ], [ 279 ], [ 280 ]. We initialize the squirmer with a zero

velocity orientated along the direction of gravity. The velocity reaches a steady state after

the initial transient dynamics. The steady state squirmer velocity can be obtained by taking

a time average once the transients die out. As we increase the stratification strength, i.e.,

reduce the Fr, we observe that the swimming speed of both pusher and puller decreases.

To quantify the effect of stratification on the the swimming speed reduction, we plot the

steady state swimming speed U , scaled by the steady state velocity of the squirmers in a
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Figure 8.4. Effect of stratification on steady state swimming speed U of a a)
pusher, β = −1 (a = b = 4.48), b) puller, β = 1 (a = b = 7.11) for different
Ri. The solid line represents a curve fit with U/UH = a/(Ri + b). The steady
state state swimming speed U has been normalized with squirmer’s steady
state swimming speed in a homogeneous fluid (UH) at the same Re.

homogeneous fluid at the same Re as a function of Richardson number, Ri = Re/Fr2. U is

calculated by taking time-average of the squirmer velocity once it reaches a steady state, i.e.,

from tU0/a = 20− 60. Fig.  8.4 shows the effect of increasing the stratification on the steady

velocity of a pusher and puller for different Re and Ri values. The plots indicate that for

Ri ≈ O(1) the reduction in the swimming speed is about 20 % while for higher Ri ≈ O(10)

the reduction is more than 50 % from their velocities in a homogeneous fluid. These results

are consistent with low but finite Re (= 0.5) squirmer dynamics in a stratified fluid [ 293 ].

Please note that the squirmers reach a steady velocity only if they are stable. It has been

shown that the squirmers remain steady even at high inertia if |β| <= 1 [ 279 ]. However,

for β > 1, the pullers become unstable in a homogeneous fluid for Re ≈ O(10). Hence, we

present results for |β| = 1 in Fig.  8.4 as the squirmers with |β| = 1 are stable at all Re

investigated in this study.

Stratification affects the motion of a pusher more than a puller which is apparent as

reduction in the velocity for a pusher is more for the same Ri. Plotting the data against Ri

reveals that Ri is the fundamental parameter determining the velocity of the squirmer (See

175



Fig.  8.4 ) compared to their swimming velocities for the same Re in a homogeneous fluid. We

fit the data with the following equation:

U

UH
= a

Ri + b
, (8.12)

where a and b are the fitting constants which depend on the value of β. Thus giving us an

O(Ri−1) dependence for the swimming speed of the squirmers.

(a) Re = 50, Fr →∞ (b) Re = 50, Fr = 7 (c) Re = 50, Fr = 5 (d) Re = 50, Fr = 3

Figure 8.5. Normalized density difference ((ρ − ρ0)/(γa)) contours (isopyc-
nals) for a pusher (β = −3) at different Fr. The lines with arrows are the
streamlines in the frame of reference attached to the swimmer. A pusher en-
trains lighter density fluid in the vorticity bubble in its front. This results in a
higher buoyancy force as it moves down in a heavier fluid and hence a reduction
in its swimming speed. Stratification also leads to expansion of this vorticity
bubble which means the vorticity generated at the pusher’s surface cannot
advect to the downstream as easily as it does in a homogeneous fluid. As a
result, a pusher becomes unstable and the flow around it breaks axisymmetry
in strong stratifications. The coordinate system is the same as in Fig.  8.1c 

hence not shown here.

A pusher propels forward by “pushing” the fluid on its sides to in front and behind it

as shown in the cartoon in Fig.  8.1a . In a homogeneous fluid, the pusher (shown by dashed

lines in Fig.  8.1a ) is pushed forward by the flow field generated by itself at an earlier time

(shown by solid lines in Fig.  8.1a ). This results in a rise in the swimming speed of a pusher

as its inertia increases in a homogeneous fluid. However, as the pusher moves in a stratified

fluid, it experiences a higher resistance in maintaining the flow field around it. This is due to
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(a) Re = 50, Fr →∞ (b) Re = 50, Fr = 7 (c) Re = 50, Fr = 5 (d) Re = 50, Fr = 3

Figure 8.6. Normalized density difference ((ρ − ρ0)/(γa)) contours (isopy-
cnals) for a puller (β = 3) at different Fr. The lines with arrows are the
streamlines in the frame of reference attached to the swimmer. A puller en-
trains lighter density fluid in the vorticity bubble in its rear. This results in
a higher buoyancy force as it moves down or in a heavier fluid and hence a
reduction in its swimming speed. A puller also pulls the heavier fluid around
it upwards as it swims. These heavier isopycnals assist the swimming of the
puller as they drag the puller with them while they try to resettle to their
neutrally buoyant positions. Stratification also leads to contraction of this
vorticity bubble size which means the resistance to the vorticity advection to
the downstream decreases as we increase stratification. As a result, a puller
becomes stable and the flow around it remains axisymmetric even at high Re
for a strong stratification. The coordinate system is the same as in Fig.  8.1c 

hence not shown here.

the fact that, it essentially needs to push the packets of fluid around it to regions where the

fluid packets experience higher buoyancy forces. The fluid which the pusher pushes upwards,

i.e., behind it, is heavier than the fluid it is getting pushed into, i.e., fluid at the top and

vice versa for the fluid which the pusher pushes downwards.

The hindrance in maintaining the flow field around the pusher increases with increasing

the stratification. This is because the exigency of the isopycnals to return to their neutrally

buoyant positions as the squirmers deform them, increases with the stratification strength.

The secondary flow generated due to this phenomenon directly opposes the primary flow

generated by the squirmers to propel themselves. As the stratification increases, the isopy-

cnals can return to their neutrally buoyant positions quickly, resulting in smaller isopycnal

deformations and hence, offer higher resistance to the flow generated by the squirmers which
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reduces its swimming speed. This becomes clear by comparing the deformations in the

isopycnals just behind the pusher as we increase the stratification. The hindrance to the

flow field generated by the pusher is higher if the isopycnals undergo little deformations. The

isopycnals with increasing stratification are plotted in Fig.  8.5 . The isopycnals offer higher

resistance to their deformation as the stratification increases which essentially resists the

pushing of the fluid by a pusher. This is expected as the exigency of the deformed isopyc-

nals to return to their neutrally buoyant positions increases with increasing the stratification

strength. This is one of the reasons which leads to the reduction in the swimming speed of

a pusher with increasing stratification as shown in Fig.  8.4a .

As the inertia of the pusher increases in a homogeneous fluid, the recirculatory region

in front of and behind it shrinks leading to efficient downstream advection of the vorticity

generated on its surface. As a result, its swimming speed increases with increasing the inertia

in a homogeneous fluid. However, in a stratified fluid, the size of these recirculatory regions

increases as we increase the stratification (see Fig.  8.6 and  8.11 ). In addition, the pusher

entrains the lighter fluid in this recirculatory bubble in front of it. So, as the pusher moves,

it has to push this blob of the lighter fluid into a heavier fluid in front of it. This results in

a higher buoyancy force opposite to the motion of a pusher reducing its swimming speed.

Increasing the stratification strength increases the size of this blob of the lighter fluid in front

of the pusher owing to the increase in the size of the recirculatory region. This effect can be

seen by comparing the size of the lighter fluid blobs in front of the pushers in Fig.  8.5b ,  8.5c 

and  8.5d or the size of the vorticity bubbles in front of the pushers in Fig.  8.10b ,  8.10c 

and  8.10d .

Unlike the pusher, a puller propels forward by “pulling” the fluid in front and behind its

body to its sides as shown in the cartoon in Fig.  8.1b . In a homogeneous fluid, the puller

(shown by dashed lines in Fig.  8.1b ) is pulled back by the flow field generated by itself at an

earlier time (shown by solid lines in Fig.  8.1b ). In addition, the fluid flow behind the puller

obstructs the downstream advection of the vorticity generated on the pullers surface with

increase in the inertia of the puller. The combined impact of these effects is the reduction

in the puller’s velocity as its inertia increases in a homogeneous fluid. Thus, any hindrance
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to the flow field generate by a puller in front and behind it will result in an inefficient

downstream advection of the vorticity resulting in a slower swimming puller.

Similar to a pusher in a stratified fluid, the density stratification offers a significant

resistance to generate the flow field around a puller as it swims. This is because the puller

has to pull the fluid packets in front and behind it from their neutrally buoyant positions

to a region where the fluid packets experience a buoyancy force. E.g., the fluid which the

puller pulls downwards behind it is lighter than the fluid it is getting pulled into, i.e., the

fluid on the sides of the puller and vice versa for the fluid which the puller pulls upwards.

Again, the hindrance to the flow field generation by a puller can be visualized in terms

of the deformations of the isopycnals around a puller at various stratification strengths.

The isopycnals around a puller with increasing stratification are plotted in Fig.  8.6 . The

deformations in the isopycnals significantly reduce with increasing the stratification strength

which becomes clear by comparing the deformations of the isopycnals in the wake of the

pullers in Fig.  8.6b ,  8.6c and  8.6d .

A puller entrains a lighter fluid in its rear recirculatory region. Thus, a puller has to drag

this lighter blob of fluid with it as it moves into the heavier fluid below it. This results in a

buoyancy force on the puller in the opposite direction to its motion resulting in a reduction

in its swimming speed. But unlike the case of a pusher, the size of this recirculatory region

behind a puller decreases with an increase in the stratification strength. This shrinkage can

be seen by comparing the size of the lighter fluid blobs behind the pullers in Fig.  8.6b ,  8.6c 

and  8.6d or the size of the vorticity bubbles behind the pullers in Fig.  8.11b ,  8.11c and  8.11d .

As a result, the size of the blob of the lighter fluid that a puller has to pull with it also reduces

which is opposite to what happens in the case of a pusher moving in a stratified fluid. This

explains the relatively lower reduction in the swimming speed of a puller than a pusher at

the same Ri.

In addition to the squirmer speed, it is also interesting to look at the far-field velocity

away from the squirmers. The far-field velocity for squirmers in a homogeneous fluid at

Re = 0. i.e., in the absence of inertia decays as |w| ≈ r−2. If the squirmers posses a finite

inertia, then the fluid velocity in the swimming direction of the squirmers decays as |w| ≈ r−3

[ 280 ], [ 315 ]. We observe the same far-field flow structure in the squirmer swimming direction,
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Figure 8.7. Effect of stratification on the far-field flow structure in the swim-
ming direction of the inertial squirmers (Re = 25) with increasing stratification
strength. a) Pusher with β = −1. b) Puller with β = 1. Here r/a = 1 is at
the velocity at the squirmer surface and increasing r/a gives the locations in
front of the squirmers in the downward direction along their axes (shown by
dash-dotted lines in Fig.  8.1 ). H in the legends stands for homogeneous fluid.
The black solid lines are for comparison and show r−3 and r−10 decay. The
velocity has been made dimensionless by the steady state squirmer speeds in
a homogeneous fluid, UH .

i.e, |w| ≈ r−3, for the squirmers moving in a homogeneous fluid with a finite inertia as shown

in Fig.  8.7 . Introducing stratification further hastens this decay with r from the squirmer in

the swimming direction as shown in Fig.  8.7a and  8.7b for pushers and pullers, respectively.

Figure  8.7 shows that the decay exponent of the far-field velocity in the swimming direction

of the squirmers reduces significantly from ≈ −3 in a homogeneous fluid to ≈ −10 in a

strongly stratified fluid with Fr = 1. These results are consistent with previous studies

which show that the effect of stratification is to suppress the vertical motion of the fluid

[ 251 ], [ 284 ], [ 299 ]. The velocity field decays less rapidly for a pusher as compared to a puller

at higher stratification strength owing to the increase in the vorticity bubble ahead of a

pusher which expands as the stratification strength increases.
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8.3.2 Strong stratification stabilizes a puller but destabilizes a pusher at inter-
mediate Re

In a homogeneous fluid, a pusher is stable at high Re in the sense that the flow around

it maintains a steady axisymmetry and it does not become unsteady 3D as opposed to the

flow around a puller which becomes unsteady 3D at Re ≈ O(10) [ 279 ], [  280 ]. This breaking

of the flow axisymmetry eventually makes the puller unstable beyond a critical Re. For the

purpose of this study, we say that a squirmer is unstable once the axisymmetry of the flow

around it breaks and it becomes unsteady.

A look at the flow fields around the squirmers predicts that the hydrodynamic interac-

tions between the velocity fields induced by the inertial squirmers with their bodies is the

reason behind these observations. An inertial puller (pusher) perturbed from its straight line

trajectory is pushed away (pulled towards) the original trajectory due to these hydrodynamic

interactions making it unstable (stable) at high Re ([ 280 ], & Fig.  8.1a ,  8.1b ). To gain further

insight into why this is the case, we need to look at the vorticity field around a puller and

a pusher. Pullers form a recirculatory region just behind them which is shown in Fig.  8.6a 

(streamlines are not shown inside the recirculatory region for the neatness of the plot). As

we increase Re for a puller, the size of this bubble increases. At some critical Re determined

by β, this bubble becomes so large that it hinders the convection of the vorticity produced

on the surface of the squirmer to the downstream leading to instability and breaking the

axisymmetry of the flow around the puller. On the contrary to pullers, pushers have the

recirculatory region in front of them (Fig.  8.5a ) and its size reduces with increasing Re. As a

result, the vorticity produced on pusher’s surface can be easily advected to the downstream

making it eternally stable in a homogeneous fluid ([ 279 ] & Fig.  8.5a ,  8.6a ). We observe the

same behavior for pullers and pushers with high Re in a homogeneous fluid. The puller fails

to attain any steady velocity, becomes unsteady and suddenly follows a 3D motion while a

pusher is always steady in a homogeneous fluid (Fig.  8.9a &  8.9b for Fr →∞).

At intermediate Re, we expect the puller to become stable at high enough stratification

strengths and a pusher to be unstable at strong stratification strengths which is exactly

opposite of what is observed in a homogeneous fluid. For an inertial squirmer in a stratified

fluid, there are two competing effects which influence the stability of the squirmer: i) the
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Figure 8.8. Competition between the inertial and the stratification effects for
a puller (a, b) and a pusher (c, d) in a weak and strong stratification. Curved
arrows with filled heads (blue) denote the velocity fields induced by the squirm-
ers (i.e., inertial effect) and arrows with hollow heads (red) denote the flow field
induced by the exigency of the displaced isopycnals to return to their origi-
nal position (i.e., stratification effect) at an earlier time, i.e., by the squirmer
shown by solid lines. Sizes of the horizontal arrows on the perturbed squirm-
ers show the relative magnitudes of these competing effects on the squirmer
at the present time, i.e., on the squirmer shown by dotted lines. The laterally
perturbed squirmer (denoted by dotted outline) is either attracted towards its
original trajectory (b & c, stable squirmers) or is knocked away from the origi-
nal trajectory (a & d, unstable squirmers) depending on the relative strength of
these competing effects. Vertical arrows show the tendency of the squirmers to
propel forward (blue) and the effect of stratification which hinders the forward
propulsion of the squirmers (red). The vertical arrows are just for showing the
directions of the respective effects and are not scaled. The flow-field descrip-
tion here is approximate and is not up to scale. The coordinate system is the
same as in Fig.  8.1c hence not shown here.

hydrodynamic interactions between the squirmer body and the flow field induced by its

motion (inertial effect), and ii) the secondary flow generated by the exigency of the isopycnals

displaced by the motion of the squirmer to resettle to their original positions (stratification

effect). These two effects are competing because the flow field induced by the squirmers

displaces the density stratified fluid around it in such a way that it has to go against the

squirmer induced primary velocity field to return to its neutrally buoyant position creating

a secondary flow, e.g., a pusher pushes the fluid around it downwards and upwards. The
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isopycnal that is pushed downwards (upwards) is flowing into a heavier (lighter) fluid, so as

it tries to return to its original position, it has to flow opposite to the primary flow induced

by the pusher.

In Fig.  8.8 , we visualize the effects of the primary and the secondary flows on the squirmers

by arrows showing directions of the flows with their sizes indicating the strengths of these

effects. For a puller (pusher) perturbed from its initial straight line trajectory, the inertial

effect tries to push it away (pull it closer) while the stratification effect tries to pull it closer

to (push it away from) the original trajectory. Consequently for a particular Re, at low

enough Fr, the stratification effect wins making the motion of the puller (pusher) stable

(unstable). This is indeed true and can be seen easily in Fig.  8.9a and  8.9b which show that

a puller which is unsteady in weak stratification becomes steady in strong stratifications and

vice versa for a pusher.

tU0/a
0 10 20 30 40 50

{U
(t
),
V
(t
)}
/U

0

-1

-0.5

0

0.5

1

1.5

Fr = ∞, U (t)/U0

Fr = ∞, V (t)/U0

Fr = 10, U (t)/U0

Fr = 5, U (t)/U0

Fr = 3, U (t)/U0

Fr = 2, U (t)/U0

(a) Re = 50, β = 3

tU0/a
0 10 20 30 40 50

{U
(t
),
V
(t
)}
/U

0

-2

-1

0

1

2

Fr = ∞, U (t)/U0

Fr = 10, U (t)/U0

Fr = 5, U (t)/U0

Fr = 3, U (t)/U0

Fr = 2, U (t)/U0

Fr = 1, U (t)/U0

Fr = 1, V (t)/U0

(b) Re = 50, β = −3

Figure 8.9. Effect of stratification on velocity history of squirmers. Swimming
velocity evolution in vertical (U(t)) and horizontal direction (V (t)) for a a)
puller with β = 3 and b) pusher with β = -3. Pullers become unstable and the
flow around them becomes 3D as we increase their inertia in a homogeneous
fluid. Increasing stratification makes the motion of a puller steady and stable.
On the other hand, a pusher is stable and the flow around it is axisymmetric
for Re as high as 1000 in a homogeneous fluid. Pushers are stable at low
stratification strength, but become unstable for a strong stratification or at a
large Ri. The other components of velocity remain 0 hence not shown.
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Stratification affects the stability of squirmers at finite Re in interesting ways compared

to the homogeneous case as discussed earlier. Pullers which are unstable in a homogeneous

fluid at high Re become stable and the flow around them remains axisymmetric for a high

enough stratification. A puller with β = 3 at Re = 50 is unstable in a homogeneous fluid

and for a weak stratification (Fr = 10), but it becomes stable for higher stratifications

(Fr < 8) (See Fig.  8.9a ). The effect of the stratification is to reduce the size of the vorticity

bubble behind the pullers. The exigency of the heavier isopycnals pulled upwards by the

puller to go back to their neutrally buoyant level is the reason behind this reduction in its

size. This reduction in the recirculatory bubble size with increasing stratification is apparent

from Fig.  8.6 and  8.11 . Thus the advection of the vorticity produced at the puller’s surface

improves with increasing stratification which consequently makes the puller stable.

A pusher which is always stable in a homogeneous fluid for Re as high as 1000, however

becomes unstable at very strong stratification (See Fig.  8.9b ) as the flow around it becomes

unsteady 3D. With increasing stratification, there are two mechanisms at play: i) more rapid

restoration of the disturbed isopycnals to their neutrally buoyant level, ii) more entrainment

of lighter fluid in the recirculatory region. For a particular Re, as we increase the strat-

ification, both these effects lead to increase in resistance for the vorticity advection for a

pusher, eventually breaking axisymmetry of the flow around it. This is because, the size of

the recirculatory region in front of a pusher increases as more lighter fluid is trapped (See

Fig.  8.5 ). In addition, the need of the isopycnals to go back to their original level in the

downstream of the pusher results in lateral expansion of the vorticity wake behind it (See

Fig.  8.10 ).

Fig.  8.5 ,  8.6 and Fig.  8.10 ,  8.11 reveal the similarity between the flow fields generated by

the motion of a bubble [ 310 ] and a rigid sphere [ 299 ] in a stratified fluid with the flow fields

around pushers and pullers, respectively. This resemblance in the corresponding flow fields

generated by a pusher and a puller with that of a inviscid spherical bubble and a rigid towed

sphere is also observed in the case of a homogeneous fluid [ 279 ]. A rising bubble and a pusher

have a mobile surface which causes the advection of the vorticity downstream. This avoids

formation of any wake eddy in the downstream flow of a pusher giving it a long trailing

vorticity wake which is similar to that of a rising bubble. On the other hand, the trailing
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(a) Re = 50, Fr →∞ (b) Re = 50, Fr = 7 (c) Re = 50, Fr = 5 (d) Re = 50, Fr = 3

Figure 8.10. Effect of stratification on the vorticity field around a pusher with
β = −3. Colorbar shows the y-vorticity value. Increasing stratification leads to
accumulation of the vorticity in front of a pusher which hinders the advection of
vorticity generated in the front part of a pusher to the downstream. (a) shows
the vorticity advection in a homogeneous fluid and hence isopycnals are not
shown. In (b), (c) and (d) the solid lines denote density differences compared
to the reference density ρ0 and normalized by γa, i.e., ρ−ρ0

γa
. Spacing between

the lines is 1 unit and darker shade of grey denotes higher density value. The
coordinate system is the same as in Fig.  8.1c hence not shown here.

vorticity wake bubble in the case of a puller is similar to the vorticity field behind a settling

rigid sphere in a stratified fluid. This is caused by the reversal of the tangential surface

velocity of the pusher and is akin to the effect caused by the no-slip boundary condition on

the surface of the settling sphere.

Fig.  8.12 summarizes the stable-unstable squirmer motion at all the Re − Fr values

explored in this study. We observe that, if a puller is stable in a homogeneous for a given

Re, it remains stable in a stratified fluid too (pullers with low |β|, e.g., β = 1). However, at

higher β, pullers become unstable in a homogeneous fluid for Re O(10). We observed that,

at high Re, the pullers are unstable in a homogeneous fluid and weak stratifications, but

gradually their motion transitions to a steady state as we increase the stratification. Thus,

if a puller is unstable at a particular Re in a homogeneous fluid, it remains unstable in weak

stratifications for the same Re but becomes stable if stratification is sufficiently strong. But

the critical stratification strength required for a puller to be stable increases with Re. For

the pushers, we observed that, the instability in their motion ensues for Fr / 1 for Re > 5
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(a) Re = 50, Fr →∞ (b) Re = 50, Fr = 7 (c) Re = 50, Fr = 5 (d) Re = 50, Fr = 3

Figure 8.11. Effect of stratification on the vorticity field around a puller with
β = 3. Colorbar shows the y-vorticity value. Increasing stratification leads
to shrinking of the vorticity bubble behind the puller which facilitates the
advection of vorticity to the downstream. (a) shows the vorticity advection
in a homogeneous fluid and hence isopycnals are not shown. For (b), (c) and
(d) the solid lines denote density differences compared to the reference density
ρ0 and normalized by γa, i.e., ρ−ρ0

γa
. Spacing between the lines is 1 unit and

darker shade of grey denotes higher density value. The coordinate system is
the same as in Fig.  8.1c hence not shown here.

explored in this study. Fr gives the relative magnitude of the inertial forces with the effect

of the secondary flow due to the displacement of the isopycnals. So, it is expected that

as Fr / 1, a pusher becomes unstable due to the increase in the relative importance of

the destabilizing effects due to the density stratification. Also, the finite time required for

the onset of instability from the initial time (as can be seen in Fig.  8.9 ) is due to the time

required for the flow solver to reach a solution where initial transients in the velocity field

die down. This is consistent with previous studies in a homogeneous fluid [ 279 ], [ 280 ]. The

onset path/wake instabilities in a settling no-slip sphere also require a finite time which is

expected as it takes some time for the flow field to develop fully [ 316 ].
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Figure 8.12. A polar phase diagram indicating the effect of stratification and
inertia on the stability of the squirmers. Open symbols (4) indicate stable
squirmer motion, while filled symbols (N) indicate unstable squirmer motion.
Each quarter (separated by dash-dotted lines) is for a fixed β value indicated
by legends in the corners. The black dotted lines separate the stable cases from
the unstable ones. Each quarter is for a fixed β squirmer. Each circle (radial
direction) represents a constant Fr value which increases as we go outward.
Innermost circle is the maximum stratification strength while outermost circle
is for a homogeneous fluid. A fixed polar coordinate represents a fixed Re with
values indicated on the outermost circle.

8.3.3 Swimming and Mixing efficiency

For a body moving in a linearly stratified fluid, the energy equation in a quasi steady

state can be written as,

P =
∮
S

(u · σ) · n dS =
∫

Ω−Ωs

2µE : E dΩ−
∫

Ω−Ωs

wρg dΩ, (8.13)
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where σ is the stress tensor, S is the squirmer’s surface, n is the normal unit vector to S,

E is the strain rate tensor, ρ is the perturbation from the initial linear background density

ρf and Ωs is the squirmer domain, i.e., φ = 1. The first term on the right hand side is

the viscous dissipation (Φ) over the entire fluid domain while the second term is the rate

of creation of the gravitational potential energy (∆PE). Together, these two terms give us

the energy expended by the squirmer for its locomotion in a linearly stratified fluid in a

steady state. The energy expended by the squirmer for its steady state motion is dissipated

in the form of mechanical energy in the surrounding fluid and hence can be calculated as in

equation  8.13 .

The swimming efficiency (ηe) of the squirmers is defined as the ratio of the power necessary

to move the spherical squirmer body (P∗ = 6πµU2a(1 + 3/8Re)) at its swimming speed U

to the power expended by the squirmer P [ 277 ]:

ηe = P
∗

P
, (8.14)

Fig.  8.13a shows the swimming efficiency of the squirmers in a stratified fluid at a constant

Re = 25. Earlier studies for the motion of an inertial squirmer in a homogeneous fluid

observed that a pusher is more efficient than puller [ 277 ], [  279 ] which is also true in a

stratified fluid. In addition, increasing the magnitude of |β| results in a reduction in the

swimming efficiency. The viscous dissipation as well as the gravitational potential energy

generation increases with increasing |β| resulting in a lower swimming efficiency. This is

expected as the gradients in the velocity as well as the magnitude of density perturbations

increase with the squirmer |β| value. This observation is consistent with earlier studies in

an inertial regime but in a homogeneous fluid [ 277 ], [  279 ].

A pusher observes a higher reduction in its swimming velocity in a stratified with respect

to its swimming velocity in a homogeneous fluid than a puller for the same Re and Fr as

discussed in Sec.  8.3.1 . Still, a pusher swims faster than a puller for the same Re and Fr

values (see Fig.  8.3 ). This is due to the effective vorticity advection by the flow field around

a pusher as compared to a puller. As can be seen by comparing Fig.  8.10 and  8.11 , pullers

have a long wake behind them which indicates the efficient vorticity advection downstream.
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However, the wake becomes shorter with increasing the stratification for a puller signifying

resistance to the vorticity advection downstream. This is also the reason why a pusher swims

more efficiently that a puller in a stratified fluid for the same Re and Fr values. Furthermore,

with increasing the stratification, the ∆PE increases by 1-2 orders of magnitude while Φ

increases only slightly. Thus, as the stratification increases, more energy is expended by the

squirmer in ∆PE resulting in the lowering of its swimming efficiency with increase in the

stratification strength.

Ri = Re/Fr2
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η
e
=

P∗
/P
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Figure 8.13. a) Effect of stratification on the swimming efficiency of the
squirmers for swimming. Here, P = 6πµU2a (1 + 3/8Re)), which is the power
required to tow the squirmer body in a homogeneous fluid at the same Re
and the velocity U . b) Effect of stratification on the mixing efficiency (Γ) of
squirmers. Re = 25 for both plots. Open symbols: pullers. Filled symbols:
pushers.

The mixing efficiency (Γ), which is the ratio of the potential energy generated to the

total energy expended in producing the mixing, is an important parameter to quantify the

mixing generated by bodies in a stratified fluid. It can be defined as,

− =
−
∫

Ω−Ωs
wρg dΩ∮

Ω−Ωs
(u · σ) · n dS =

−
∫

Ω−Ωs
wρg dΩ∫

Ω−Ωs
2µE : E dΩ−

∫
Ω−Ωs

wρg dΩ . (8.15)

The mixing efficiency induced by organisms has been an active area of study in the recent

years [ 292 ], [  317 ]–[ 321 ]. Thus, looking at the mixing efficiency of an individual swimmer

can help us in understanding the mixing produced by a school of swimmers. Fig.  8.13b 
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gives the mixing efficiency for pushers and pullers at various Ri and shows that increasing

stratification increases the mixing efficiency for both pushers and pullers. A pusher (puller)

with higher magnitude of β has a larger mixing efficiency. This is obvious as a squirmer

with higher |β| has a higher velocity leading to higher vertical mass flux and hence achieves

larger mixing.

The mixing efficiency induced by an individual micron size microorganism in a marine

environment is O(10−8) [ 322 ] which means in absence of swimmer inertia, its motion does

not lead to any significant mixing. Wang & Ardekani (2015) [ 292 ] calculated Γ for a swarm

of squirmers at finite inertia. They observed that Γ increases with Re and the squirmer

concentration. They also observed that, at a lower Ri, a puller exhibits higher Γ while at a

high value ofRi, a pusher has higher Γ. However, it is not clear as to why the mixing efficiency

increases with increasing Ri for the swarm of squirmers. The reason for this becomes clear

if we look at the mixing efficiency generated by individual squirmers in Fig.  8.13b . At low

Ri (< 2), the mixing efficiency is more for a puller compared to a pusher with the same Re

and β. However, at higher Ri (> 2), pusher has a higher Γ than a puller. This trend in Γ

at the individual level of the squirmers is what leads to the same behavior for a swarm of

squirmers.

(a) Fr = 10, β = 3 (b) Fr = 10.β = −3 (c) Fr = 3, β = 3 (d) Fr = 3, β = −3

Figure 8.14. Effect of stratification on the gravitational potential energy
generated by squirmers at low and high stratification strengths normalized by
its maximum value for Re = 25. Potential energy is generated mainly in the
recirculatory regions of pushers and pullers. The coordinate system is the same
as in Fig.  8.1c hence not shown here.
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As mentioned before, we observed that, with increasing the stratification, the ∆PE

increases by 1-2 orders of magnitude while Φ increases only slightly. Also, the calculations

show that Φ >> ∆PE. Thus, we can conclude that, it is the numerator term that governs

the behavior of mixing efficiency generated by a single squirmer moving in a stratified fluid.

Hence, to explain the trends in Γ, we plot the gravitational potential energy generated,

i.e., the numerator term in eq.  8.15 . As can be seen in Fig.  8.14 , most of the gravitational

potential energy is generated in the recirculatory regions of the squirmers. With increasing

the stratification, the amount of ∆PE generated by a puller (can be seen by maximum

∆PE value in the contours) increases significantly but the size of its recirculatory region

also decreases. However, this increase in the amount of ∆PE generated by a puller is

significantly higher (≈ 4 folds) than the shrinking (≈ 2 folds) of its rear recirculatory region

as can be seen in Fig.  8.14a and  8.14c . This results in the higher Γ at higher Ri for a puller.

On the other hand, with increasing the stratification strength, the size of the recirculatory

region as well as the amount of ∆PE generated by a pusher increases as can be seen from

Fig.  8.14b and  8.14d . Thus, the Γ by a pusher also increases with increase in the stratification

strength of the background fluid.

The switching in the relative magnitudes of Γ for a puller and a pusher for Ri > 2 can also

be explained by looking at the ∆PE contours in Fig.  8.14 . At low Ri values, i.e., high Fr

values (Fig.  8.14a and  8.14b ), the puller generates more ∆PE compared to a pusher owing

to the bigger size of its recirculatory region. However, this scenario changes completely

with increasing the stratification strength. At high Ri values, i.e., low Fr values (Fig.  8.14c 

and  8.14d ), the recirculatory region behind a puller shrinks while the recirculatory region in

front of the pusher gets bigger as compared to the lower Ri case. In addition, the amount of

∆PE (can be seen by comparing the maximum ∆PE value in the contours), also increases

significantly for a puller as compared to a pusher at high stratification strengths. This

results in the higher Γ for a pusher than a puller at high Ri values as shown in Fig.  8.13b .

We observed similar trends for other Re values investigated in this study as well.

191



Figure 8.15. Effect of Pr on the velocity evolution of the squirmers. Changing
Pr merely changes the magnitude of the velocity but the overall behavior for
the velocity is the same. This observation is similar to the effect of changing
Pr on a rigid sphere settling in a stratified fluid. This plot shows even at a
higher Pr increasing stratification reduces the swimming speed. -O-: Re = 5,
Fr = 5, β = −3, Pr = 0.7; -5-: Re = 5, Fr = 5, β = −3, Pr = 7;-4-:
Re = 25, Fr = 5, β = −1, Pr = 0.7; -F-: Re = 25, Fr = 5, β = −1,
Pr = 7;-♦-: Re = 25, Fr = 3, β = −1, Pr = 0.7; -�-: Re = 25, Fr = 3,
β = −1, Pr = 7;

8.3.4 Effect of Prandtl number

This study investigated the locomotion of a squirmer in a linearly stratified fluid with

the fluid having a Pr = 0.7. This was done in order to resolve the density boundary layer

without making the simulations computationally too expensive. Here we present results for

Pr = 7 and compare them with the results for Pr = 0.7. It has been shown for the case

of a spherical object settling in a linearly stratified fluid, changing the Pr only changes the

magnitudes of the flow variables with their behavior and trends being similar [ 299 ]. We

expect similar effect of changing Pr on the motion of a squirmer as well.

Fig.  8.15 shows that increasing Pr changes the magnitude of steady state swimming

velocities but the overall behavior of the velocity time history is similar in both cases. The

plot shows that squirmer velocity does not experience a notable change before reaching the

maximum value after which it attains a smaller steady state swimming speed at higher Pr.

These observations are similar to the effect of changing Pr in the case of a sphere settling
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in a linearly stratified fluid [ 299 ]. The effect of stratification on the swimming speed of a

squirmer is similar at higher Pr, i.e., stratification reduces the swimming speed of squirmers.

8.3.5 Locomotion of non-neutrally buoyant squirmers in a stratified fluid and
the validity of Boussinesq approximation
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Figure 8.16. a) Swimming speed evolution of non-neutrally buoyant squirm-
ers with ρs/ρ0 = 1.04 with Re = 15.6 in a homogeneous fluid (H) and a
stratified fluid with Fr = 3. The squirmers were initialized at a distance
40d above their neutrally buoyant positions (i.e., z at which ρ(z) = ρs). b)
Validity of Boussinesq approximation. The plot shows the swimming speed
evolution for a pusher with (♦) and without (dashed line, −−) the Boussinesq
approximation as well as for a puller with (�) and without (solid line, −) the
Boussinesq approximation. Here, |β| = 3, Re = 25 and Fr = 5.

In this section, we present the motion of non-neutrally buoyant squirmers and the validity

of using the Boussinesq approximation in eq.  8.3 . Fig.  8.16a shows the swimming speed

evolution of a pusher and a puller in a homogeneous and a stratified fluid with Fr = 3.

The squirmers are not neutrally buoyant in this plot. They have ρs/ρ0 = 1.04. Please note

that, ρ0 = ρf in a homogeneous fluid. As a result of this, they experience a buoyancy force

in the direction of their motion due to the density difference with the background fluid.

In a homogeneous fluid, this density difference leads to a higher swimming speed of the

squirmers compared to their swimming speeds when ρs/ρ0 = 1. In a stratified fluid, the
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squirmer velocity increases first, reaching a maximum and it decreases gradually after that

to become 0 when the squirmers reach their neutrally buoyant positions.

For the results presented in this paper, we have assumed the Boussinesq approximation

is valid in the Navier-Stokes equations (Eq.  8.3 ). The validity of using the Boussinesq

approximation in the case of a settling no-slip sphere is presented in [ 299 ]. To test this

assumption for squirmers as well, we present the comparison of the velocity evolution for a

pusher and a puller with |β| = 3 and Re = 25 in a stratified fluid with Fr = 5 in Fig.  8.16b .

The plot shows that there is only a small change in the squirmer velocity if we relax the

Boussinesq approximation. The solution with the Boussinesq approximation slightly under-

predicts the swimming velocity for the squirmers. These results show that the Boussinesq

approximation is valid in the present study.

8.3.6 Effect of squirmer orientation

The results presented in the manuscript are for squirmers swimming downwards, i.e.,

parallel to the direction of the gravity and in a heavier fluid. However, in reality they might

swim in various other orientations too. So, in this section, we present swimming speed

evolution for squirmers with Re = 50 in other orientations. The other orientations considered

are: 1) Opposite to the direction of gravity, or vertically upwards, 2) Perpendicular to the

direction of gravity, or horizontal. In both these cases, the qualitative behavior of the

squirmer swimming is similar as shown in Fig.  8.17a and  8.17b .

Fig.  8.17a shows the swimming speed evolution for a puller and a pusher with |β| = 3 and

Re = 25 at two different Fr moving parallel to (downward) and opposite to (upward) the

direction of the gravity. The swimming speed evolution is similar in both cases. The squirmer

swimming speed decreases with increasing the stratification compared to its swimming speed

in a homogeneous fluid even if it is moving opposite to the direction of gravity. We observe

that, the squirmer swimming upward in a stratified fluid has slightly smaller velocity that

the same squirmer swimming downward for the same conditions.

Fig.  8.17b shows the swimming speed evolution for a pusher and a puller with |β| = 3 and

Re = 50 in a homogeneous fluid and a stratified fluid with two different Fr moving in a di-

rection perpendicular to the direction of gravity, i.e., horizontal. Increasing the stratification

194



tU0/a
0 10 20 30 40 50

U
(t
)/
U
0

-1

0

1

2

Fr = 5, down
Fr = 5, up
Fr = 5, down
Fr = 5, up

Fr = 1, down
Fr = 1, up
Fr = 1, down
Fr = 1, up

(a)

tU0/a
0 10 20 30 40 50

U
(t
)/
U
0

-0.5

0

0.5

1

1.5

2

Fr = ∞, β = 3
Fr = 5, β = 3
Fr = 1, β = 3

Fr = ∞, β = −3
Fr = 5, β = −3
Fr = 1, β = −3

(b)

Figure 8.17. a) Swimming speed evolution of squirmers with initial orienta-
tions vertically down (direction of gravity) and up (opposite to the direction
of gravity), respectively. Here, Re = 25 and |β| = 3. Hollow symbols and solid
lines represent pushers while filled symbols and dotted lines represent pullers.
b) Swimming speed evolution of squirmers with initial orientations horizontal
(perpendicular to the direction of gravity). Here, Re = 50 and |β| = 3. In-
creasing the stratification reduces the swimming speed of the squirmers but
this reduction is small compared to the case when they move in the direction
of gravity.

decreases the swimming speed of the squirmers compared to their speeds in a homogeneous

fluid. But this reduction is small compared to the case when they move vertically. In addi-

tion, the stratification does not stabilize a puller even in a strongly stratified fluid at high

Re if it moves in the horizontal direction.
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9. HYDRODYNAMIC INTERACTIONS BETWEEN

SWIMMING MICROORGANISMS IN A LINEARLY DENSITY

STRATIFIED FLUID

9.1 Introduction

The sizes of swimming organisms span a wide range of length scales from micrometers to

a few meters. Thus, depending on their size these organisms employ a variety of swimming

mechanisms that take advantage of the fluid flow around them to propel themselves. In a

fluid with a characteristic density ρ0 and dynamic viscosity µ, the Reynolds number for an

organism of size a and moving with a speed U0, is defined as Re = ρ0U0a/µ, which is the

ratio of inertial to viscous forces. At micro scales, Re ≈ 0 and the microorganisms make use

of the viscous drag exerted by the fluid to move. Larger organisms like fishes and whales

have a finite Re and utilize the lift generated by the accelerating fluid past them to swim.

In the recent years, researchers have devoted significant effort to investigate the collective

dynamics of organisms. Dense suspensions of bacteria on scales much larger than a cell in the

Stokes flow limit exhibit transient, reconstituting, high-speed jets straddled by vortex streets

[ 323 ], self sustained turbulence [ 324 ], extended spatio-temporal coherent dynamics [  325 ], and

superdiffusion in short times [ 326 ]. The collective motion of the bacteria is determined by

short-range pair interactions at high concentrations [ 324 ]. Even at high Re, e.g., schooling

fish, flocking birds and swarming insects, the hydrodynamic interaction between the moving

organisms and their detached vortical structures significantly affect the swimming (flying)

efficiency [ 263 ], [  327 ].

Many studies on the collective behavior of swimmers neglect the near-field hydrodynamic

interactions and only consider the far-field interactions to simulate the dynamics of swimmer

suspensions [ 328 ], [ 329 ]. But, to completely understand the collective behavior of the micro-

swimmers, it is important to investigate the near-field hydrodynamics between a pair of

interacting swimmers. It is well known that, in the dilute limit, micro-swimmers behave as a

force dipole leading to a velocity field decaying as 1/r2, where r is the distance from the micro-

swimmer [  330 ]. Due to the slow decay of the induced velocity field, the pairwise interaction

between two swimmers cannot be neglected even at large separations. Various experimental
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studies have shown the crucial role of hydrodynamic interactions between microorganisms in

determining their dynamics, e.g., dancing Volvox [ 265 ], interacting pair of Paramecia [ 267 ],

the formation of dynamic clusters in suspensions of motile bacteria [  331 ] and hydrodynamic

self-mediation of bacteria into two-dimensional crystals [ 332 ].

Many theoretical and numerical studies have also been conducted to investigate the hy-

drodynamic interactions between two model swimmers. Pullers (pulled from the front) are

attracted towards each other first which leads to near contact and changes in their swim-

ming orientations to finally separate [  333 ], [  334 ]. Two self-propelling bacteria by rotating

helical flagella avoid each other by changing their orientations [ 335 ]. The swimmer-swimmer

interaction is complex and strongly affected by their relative displacement, orientation, ini-

tial configuration and swimming stroke phase. Slight variations in these parameters lead to

different scattering angles, swimming speeds and a range of different interactions, such as

attraction, repulsion, or oscillation [ 336 ]–[ 339 ]. Hydrodynamic interactions between two mi-

croswimmers also lead to the the enhancement of the swimming efficiency by synchronizing

the phase of two adjacent flagella [  340 ]. However, all these studies however were performed

in the Stokes regime assuming Re = 0 without considering the effect of swimmer inertia.

For swimming microorganisms, the Re ranges from 10−4 for bacteria [ 264 ], 10−3 for

Chlamydomonas, 0.01− 0.1 for Volvox [ 265 ], 0.1− 1 for freely swimming zooplankton Daph-

nia magna [ 266 ], 0.2 − 2 for Paramecia depending on swimming or escaping mode [ 267 ],

O(10) for Pleurobrachia, and 20 − 150 for copepods [ 268 ]. Thus, it is crucial to know the

influence of finite inertia on the hydrodynamic interactions of two swimmers. Theoretical

and computational studies on the locomotion of an individual swimmer with finite inertia

[ 277 ], [ 279 ] further indicate that inertia can lead to notable differences in the swimming

dynamics of swimmers. Inertia also affects the hydrodynamic interactions between swimmer

pairs. Puller and pusher pairs either separate away from each other or get trapped near each

other depending on their Re and swimming modes [ 280 ].

Many swimming organisms with low to intermediate Re are abundant in oceans and lakes

and their motion results in intense biological activity in these aquatic bodies. Hence studying

the interactions of organisms is an intriguing problem having wide implications for ocean

ecology [ 227 ]. However, understanding the physics behind these phenomenon is a complex
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undertaking as vertical variations in water density are ubiquitous in aquatic and marine

environments [ 211 ], due to gradients in temperature (thermoclines) or salinity (haloclines).

These density variations with depth can manifest themselves in a gamut of environmental

and oceanographic processes [ 218 ], [ 251 ], [ 292 ], [ 341 ]. Even though the stratification length

scale is O(m), the appropriate length scale to determine whether stratification affects the

motion of the swimmers is O(100) µm [ 284 ]. Marine microplankton with sizes ranging from

20− 200 µm are abundant in such a stratified environments along with other meso-, macro-

and mega-planktonic organisms which have Re ranging from O(0.01 − 100) [ 286 ]. These

observations insinuate the significant role of stratification in governing the locomotion of

individual organisms as well as the interaction between two close organisms in the mentioned

size range.

Much like inertia, stratification also significantly affects the motion of micro-swimmers.

At low Re, the vertical migration of small organisms is hydrodynamically affected due to

the rapid velocity decay as well as a higher energy expenditure in stratified fluids [  293 ],

[ 294 ]. At a finite Re, stratification even leads to striking differences in the swimming speeds

and stability of swimmers as compared to their motion in a homogeneous fluid [ 342 ]. The

collective vertical migration of swimmers in a stratified fluid generates aggregation-scale

eddies which can potentially alter the physical and bio-geo-chemical structure of the water

column [  226 ], [  291 ], [ 292 ]. Stratification also leads to the accumulation of marine organisms

like plankton [  288 ], [ 289 ]. Thus, investigating the combined effect of inertia and stratification

on the interaction between a pair of interacting swimmers is a non-trivial and interesting

problem that we address in this paper.

Looking at the interactions between a pair of organisms is crucial for modeling the col-

lective dynamics of marine organisms, e.g., migrating swimmer schools in stratified envi-

ronments. To this end, we numerically investigate the effect of density stratification on the

interactions between a pair of inertial swimmers. We model the swimmers using the archety-

pal spherical squirmer model which is explained in detail in Sec.  9.2.2 . But first, we present

the governing equations and the computational methodology used to solve these equations

in Sec.  9.2.1 . Then we discuss the findings of the simulations in Sec.  9.3 .
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9.2 Governing equations and computational methodology

We consider a pair of interacting squirmers moving through an incompressible Newtonian

viscous fluid. The governing equations and the numerical procedure implemented to simulate

the motion a pair of interacting squirmers through a linearly stratified fluid at finite Re are

presented in this section. We consider a linearly density stratified fluid such that the density

increases in the downward z direction and the gravity is acting in the downward z direction

as shown in Fig.  9.1 . The following subsections explain the governing equations and the

numerical schemes used to solve them in details.

9.2.1 Flow and density fields

The fluid flow is governed by the Navier-Stokes equations for an incompressible Newtonian

fluid and these equations are solved in the entire domain, Ω. We simplify the Navier-Stokes

equations for a fluid flow of a density stratified fluid using the Boussinesq approximation.

The resulting equations can be written as,

ρ0
Du
Dt = −∇P + µ∇2u + (ρ− ρ̄)g + f , in Ω, (9.1)

∇ · u = 0, in Ω, (9.2)

where t is the time, u is the velocity vector, P is the hydrodynamic pressure, g is the

acceleration due to gravity, µ is the dynamic viscosity of the fluid, ρ0 is the reference fluid

density and ρ̄ is the volumetric average of the density over the entire domain. D(·)/Dt is

the material derivative. ρ is the local density at the grid point. We use the phase indicator

function ψ which is 1 inside the squirmer and 0 outside to mark the squirmer domain. The

subscript f stands for fluid and s for squirmer. f in equation  9.1 is the body force which

accounts for fluid-solid interactions in the Distributed Lagrange Multiplier (DLM) method

[ 295 ]. DLM has been widely used in the literature to simulate the motion of rigid particles

and model swimmers in both homogeneous and stratified fluids [  280 ], [  292 ], [  297 ]–[ 299 ].

The density field evolution is governed by the following advection-diffusion equation,
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Dρ
Dt = κ∇2ρ, in Ω, (9.3)

here κ is the diffusivity of the stratifying agent and ρ is the density field. We define Prandtl

number Pr = ν/κ, which is the ratio of the momentum diffusivity to the diffusivity of the

stratifying agent. We split the density into two parts: i) the initial linear background density

profile, ρ̄(z), and ii) the density perturbation induced by the motion of the squirmers, ρ. So,

ρ = ρ̄(z) + ρ. (9.4)

Here, the initial density of the fluid varies linearly with depth z as ρ̄(z) = ρ0 − γ(z − z0),

where γ is the vertical density gradient and z0 is the location with reference density ρ0. The

stratification strength can be quantified by the Brunt–Väisälä frequency, N = (γg/ρ0)1/2,

the natural frequency of oscillation of a vertically displaced fluid parcel in a stratified fluid.

Substituting eq.  9.4 in eq.  9.3 we obtain the following temporal and spatial evolution equation

for the density perturbation, ρ,

Dρ
Dt = −u · ∇ρ̄(z) + κ∇2ρ, in Ω. (9.5)

We solve the advection-diffusion equation for the density perturbation, ρ and add it to the

initial linear density profile to calculate the density field as shown in eq.  9.4 .

We use a finite volume method [  300 ] to discretize the equations  9.1 - 9.2 and  9.5 on a

non-uniform staggered Cartesian fixed grid. We use a second order quasi Crank-Nicolson

method for temporal evolution. Convection and diffusion terms in the momentum equation

have been solved using a QUICK (quadratic upstream interpolation for convective kinetics)

and central-difference schemes [ 301 ], respectively. Both convection and diffusion terms in the

density perturbation, ρ, equation have been discretized using the central difference scheme

[ 292 ]. The numerical tool utilized for this study is based on the earlier version of PARIS [ 300 ].

We use periodic boundary conditions for velocity components and the density perturbation

in all the three directions.
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9.2.2 Swimmer model

Mathematically modelling the motion of a real micro-organism is an enormously convo-

luted undertaking. This is due to the existence of a wide variety of length scales (roughly

O(1) – O(1000)µm for common marine species), multitudes of swimming, grazing and other

behaviors depending on a range of parameters relating to their environments. In addition,

these organisms exhibit a vast variety of shapes which might even not be the same as indi-

vidual micro-organisms change their shapes to feed, reproduce or protect themselves from

predators or hostile environments. Thus, we need to make several simplifications, even for

the simplest micro-organisms in order to mathematically model and analyse them [ 264 ].

Hence, by necessity, we use a reduced order squirmer model which is primitive. This model,

however simple it may be, still includes important aspects of micro-organism hydrodynamics

such as, it swims and has a finite size so that excluded-volume effects and hydrodynamic

interactions can be analysed non-trivially.

The squirmer model [ 271 ], [ 272 ] has been widely used as a model for swimmers like Volvox

in the literature [ 302 ]. In the earlier studies, researchers utilized the squirmer model to

investigate the motion of self-propelled organisms in a viscosity dominated flow regime, i.e.,

Re → 0. This allowed researchers to investigate various problems in a non-inertial regime,

such as, the nutrient uptake by self-propelled organisms [ 273 ], the hydrodynamic interactions

between two squirmers [ 267 ], rheology of suspensions of squirmers [ 274 ], mixing by swimmers

[ 275 ] as well as swimming in non-Newtonian fluids [  276 ], [ 343 ] using the squirmer model.

Recently, researchers have studied the effect of finite inertia on the motion of swimmers by

extending the squirmer model to low and intermediate Re number regimes [  277 ], [ 279 ], [ 280 ],

[ 292 ], [ 303 ], [ 304 ]. The squirmer model was also used to study the effect of fluid density

stratification on the motion of an individual squirmer [ 293 ], [ 342 ] and the biogenic mixing

induced by a swarm of swimming organisms [  292 ] with low to intermediate Re. Thus, the

squirmer model, owing to its simplicity and germane representation of the flow field generated

by the self-propelling ciliary organisms, opens up a wide range of avenues for studying self-

propulsion in various environmental conditions.
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The squirmer self-propels by wavelike motion of its surface. The spherical squirmer

model, first introduced by Lighthill [ 271 ] and later modified by Blake [ 272 ] mimics the self-

propulsion produced by the coordinated beating of dense array of cilia on its surface. These

axisymmetric ciliary deformations result in the radial (usr) and the tangential (usθ) surface

velocity components in a frame of reference attached to the squirmer with radius a:

usr|r=a =
∞∑
n=0

An(t)Pn(cosθ), (9.6)

usθ|r=a =
∞∑
n=1

−2
n(n+ 1)Bn(t)P 1

n(cosθ), (9.7)

respectively. Here, r is the distance from the center of the squirmer, θ is the angle measured

from the direction of the locomotion, An and Bn are the time dependent amplitudes of ciliary

deformations and Pn, P 1
n are the associated Legendre polynomials of degree n. The swimming

speed of a neutrally buoyant squirmer at Re = 0, i.e., in a Stokes flow depends only on the

first mode of each surface velocity component and is given by, U0 = (2B1 − A1) /3. This

swimming speed is independent of fluid viscosity and other swimming modes [ 271 ].

For this study we consider a reduced order squirmer which has no radial velocity and

only the first two modes of the surface tangential velocity,

usθ(θ) = B1sinθ +B2sinθcosθ, (9.8)

where θ is the angle with respect to the swimming direction, and B1 and B2 are the first

two squirming modes. The ratio, β = B2/B1, determines whether the squirmer is neutral

(β = 0) or a puller (β > 0) or a pusher (β < 0). In the Stokes flow limit, the velocity of a

squirmer in an unbounded domain is U0 = 2B1/3, we use this as the velocity scale in this

study. To impose the above given tangential velocity on the surface of the squirmer, we set

the following divergence free velocity field inside the squirmer [ 303 ],

uin =
[(
r

a

)m
−
(
r

a

)m+1
](

usθcotθ + dusθ
dθ

)
er

+
[
(m+ 3)

(
r

a

)m+1
− (m+ 2)

(
r

a

)m]
usθeθ,

(9.9)
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here a is the radius of the squirmer, r is the distance from the squirmer’s center, er and eθ
are the unit vectors in the radial and polar directions, and m is an arbitrary integer. The

simulation results do not depend on the choice of m. The squirmer velocity is calculated by

solving the following equations:

U = 1
Ms

∫
Vs

ρs(u− uin)dV, (9.10)

Is · ω =
∫
Vs

r× ρs(u− uin)dV, (9.11)

where Vs, Ms, and Is are volume, mass and the moment of inertia of the squirmer. U and

ω are the translational and the rotational velocities of the squirmer. Finally, the force f is

calculated by the following iterative formula:

f = f∗ + α
ρψ

∆t(U + ω × r + uin − u), (9.12)

where f∗ is the force calculated in the previous iteration and α is a dimensionless factor

chosen in such a way that iterations for calculating f converge quickly [ 280 ], [ 299 ]. Many

organisms utilize techniques like gas vesicles [ 307 ], carbohydrate ballasting [  308 ], and ion

replacement [ 305 ], [ 306 ] for buoyancy control. Hence, for this study in order to isolate the

effect of stratification on the motion of a squirmer, we consider the squirmer to be neutrally

buoyant, i.e., the net buoyancy force acting on the squirmers due to differences in their

density and the density of the fluid is zero at any instance of time. This is achieved by

equating the density field inside the squirmer domain to the instantaneous background fluid

density at that location (ρs(x, t) = ρ̄(x)+ρ(x, t), where x is any location inside the squirmer

domain). The same condition for neutral buoyancy was used for investigating the swimming

dynamics of an individual squirmer with finite inertia in a stratified fluid [ 342 ]. In addition,

we assume the κ to be uniform and the same for the squirmer and the background fluid

[ 292 ], [  309 ].
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Figure 9.1. Problem schematic: a) Initial conditions for the pair of squirmers
approaching each other in a linearly stratified fluid. b) Initial conditions for a
pair of squirmers moving side-by-side in a stratified fluid. The cartoons at the
bottom in (b) show the flow fields generated by pullers (β > 0) and pushers
(β < 0) as they move. The arrows in the squirmer bodies show their initial
orientations. Darker shade of grey indicates higher density.

9.2.3 Simulation conditions

We explore the interactions of two squirmers moving towards each other leading to colli-

sion and two squirmers moving in the same direction side by side. We normalize the spatial

parameters with the squirmer radius a, the velocities with U0 and the time with the time

scale a/U0. We denote the dimensionless time with T .
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The first case considered is that of a pair of squirmers approaching each other in opposite

directions so that they collide. In this case, the squirmers are initialized at a center to center

distance ∆z and ∆x in the z and x directions, respectively in the plane y = 0. Their initial

orientations are such that they are moving in opposite directions facing each other. We set

∆z = 8 and ∆x = 1, unless stated otherwise (see Fig.  9.1a ).

In the second case, where the squirmers are moving in the same direction side by side, we

initialize them at the same initial vertical location zi, separated by a center to center distance

∆x in the x direction in the plane y = 0. We set ∆x = 4, unless mentioned otherwise (see

Fig.  9.1b ).

An earlier study in a homogeneous fluid considered only a colliding pair of squirmers in

which the squirmers swim in opposite direction [ 280 ]. We, however, consider colliding as

well as side-by-side configuration which covers squirmers moving opposite to each other as

well as moving in the same direction. Also, the vertical direction is the preferred direction

because in many real-life situations, the swimmers move in the vertical direction such that

they are parallel to the direction of the stratification or gravity mainly for grazing or in the

search of the sunlight during their diel cycles [ 312 ], [  313 ]. In addition, the direction of the

motion considered in this study is one of the common situations for swimmers moving in

oceans, e.g. bioconvection [  314 ]. So, we initialize the squirmers with their initial orientations

parallel to the direction of gravity, i.e. downwards or upwards.

When the squirmers approach very close to each other, the high pressure in the thin

film between the squirmers prevents any non-physical overlaps. However, a very small grid

resolution is needed to resolve the thin liquid film and consequently it is computationally

expensive. A repulsive force is imposed during the collision to prevent the non-physical

overlap [ 280 ], [  295 ],

Fr = Cm
ε

(
D − d− dr

dr

)2

n, (9.13)

where ε = 10−4 is a small positive number, D is the distance between two squirmers, Cm =

MsU
2
0/a is the characteristic force, d = 2a is the minimum possible distance, and dr is the

force range and is set to be twice the smallest grid size ∆. The direction of the repulsive

force n is along the squirmers’ line of centers.
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We carry out simulations for pushers and pullers with β = -5 and 5, respectively. The

Re for the squirmers were varied between 1−50. To study the effects of stratification on the

interaction of two inertial squirmers, we vary the Richardson number, Ri = ρ0a
3N2/µU0,

which quantifies the relative importance of the buoyancy and the viscous forces, between

0− 10. The domain size for this study is 40a× 20a× 40a for colliding squirmers case while

the domain size is 40a×20a×80a for the side-by-side case. The smallest grid size was chosen

such that there are around 35 grid points in one squirmer diameter, i.e., ∆ ≈ d/35. This grid

size was found to be enough to resolve both the velocity and density boundary layers around

the squirmers for the chosen Re range and Pr = 0.7. We present the grid independence tests

in Sec.  9.2.4 .

It should be noted that we use Pr = 0.7 for this study rather than Pr = 7 or Pr =

700 which are the Pr values for a temperature stratified water and a salt stratified water,

respectively. This has been done mainly to save the computational costs incurred by setting

high values of Pr. In a stratified fluid, a density boundary layer is present in addition to the

velocity boundary layer near the squirmer’s surface. The thickness of this density boundary

layer scales as ≈ O(d/
√

RePr). For accurate resolution of the flow within this boundary

layer, it is necessary to have at least a few grid points in it. This imposes limitations on the

maximum mesh size that can be used for the simulations. Owing to large size of the domain,

using such a fine grid becomes computationally expensive. Hence, we use a smaller value

for the Pr which enables us to resolve the fluid flow as well as the density field in both the

boundary layer and the outside. It has been shown in previous studies that, changing the

value of Pr merely changes the magnitudes of the velocities of the objects [  299 ] and squirmers

[ 342 ] moving in a stratified fluid conserving the overall qualitative trends and behaviors. We

discuss more on this in Sec.  9.3.5 .

9.2.4 Validation: Grid and domain independence

We present the grid independence test results in this section. Fig.  9.2 shows the trajec-

tories for a pair of squirmers approaching each other in opposite directions for two different

grid sizes. As can be seen in the figure, changing the grid size from ∆ = d/35 to ∆ = d/50

results in a negligible variation in the trajectories of the colliding squirmers. Here, ∆ is the
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Figure 9.2. Trajectories of a pair of colliding squirmers at two different grid
resolutions. Legends are for (Re, β,∆). Here Ri = 5 for all the cases.

smallest grid size. Hence, to save the computational cost, we carried all the simulations with

∆ = d/35. Further validations for the homogeneous fluid cases can be found in Ref. [ 280 ].

9.3 Results and discussion

This section presents the important results from the simulations. We also present results

on the interactions of pair of inertial squirmers in a homogeneous fluid. The comparison

between the trajectories of the squirmers and their velocities in the two distinct fluids allows

us to investigate the effect of density stratification on the squirmer pair interactions.

9.3.1 Pairwise interactions of pullers in a stratified fluid

9.3.1.1 Pullers approaching each other

Fig.  9.3 shows the trajectories for two pullers approaching each other in opposite direc-

tions, initially oriented parallel to each other for Re = 1, 5, 10 and 50 in a homogeneous

fluid and a stratified fluid with Ri = 1, 5 and 10. In the absence of any density stratification,

the trajectories of the colliding pullers reveal three patterns based on the magnitude of Re.
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(a) Re = 1 (b) Re = 5 (c) Re = 10 (d) Re = 50

Figure 9.3. Trajectories for colliding pullers with β = 5 in a homogeneous
and a stratified fluid with increasing stratification strengths. At low Re (1 and
5), stratification leads to reorientation of the pullers after the collision. For
higher Re values (10 and 50), stratification results in the elimination of the
close loop trajectories observed in a homogeneous fluid after the collision of
two pullers. H in the legends stands for homogeneous fluid or Ri = 0.

At relatively low values of Re, i.e. 1 and 5, the pullers scatter away from each other with

a positive scattering angle, φ, measured with respect to initial squirmer orientation. With

increasing Re, i.e., from Re = 1 to Re = 5, φ increases from ≈ 20◦ to a value just less

than 90◦. As we increase the Re further to a higher value of 10, the pullers do not escape

each other after the collision, but are trapped in clockwise loops with radii ≈ 2a. At an

even higher Re = 50, the pullers are no longer trapped but escape with φ ≈ 0◦ but keep on

rotating in clockwise loops with diminished radii compared to Re = 10 case.

Introducing stratification results in distinct changes in the trajectories of the interacting

pullers depending on their Re and the stratification strength, i.e., Ri. Stratification leads to

reduction in the scattering angle of the squirmers after collision compared to their scattering

angles in a homogeneous fluid as can be seen in Fig.  9.3a , and  9.3b . For Re = 1 (Fig.  9.3a ),

stratification reduces φ from ≈ 45◦ in a homogeneous fluid to 0◦ for a stratified fluid with

Ri = 10. For Re = 5, φ reduces to 0◦ for Ri = 10 from ≈ 90◦ for a homogeneous fluid. Thus,

at low inertia, high enough stratification leads to the reorientation of the pullers to their

original orientation after the collision unlike in a homogeneous fluid.

For higher Re = 10, stratification leads to the elimination of the rotating motion of the

pullers in clockwise loops present in a homogeneous fluid (see Fig.  9.3c ). For Re = 10, pullers

are no more hydrodynamically trapped in the presence of density stratification unlike in the
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Re = 10, Ri = 1
(a) T = 5

Re = 10, Ri = 1
(b) T = 7

Re = 10, Ri = 1
(c) T = 9

Re = 10, Ri = 1
(d) T = 11

Re = 10, Ri = 5

(e) T = 6
Re = 10, Ri = 5

(f) T = 9
Re = 10, Ri = 5

(g) T = 11
Re = 10, Ri = 5

(h) T = 13

Figure 9.4. Vorticity contours and isopycnals during the collision process
of two approaching pullers with Re = 10 at different stratification strengths,
Ri = 1 (a,b,c,d) and 5 (e,f,g,h). These plots show the interaction between the
rear vorticity bubbles and the deformed isopycnals. The need of the displaced
isopycnals to return to their original levels explain the rotational motion of the
pullers after the collision. The isopycnals are the normalized density differences
given by (ρ−ρ0)/γa and each line is 1 unit apart. Darker shade of the line color
indicates a higher density value. Colorbar for the vorticity contours is presented
in the plots. The dashed lines show the trajectory of the pullers. These are
snapshots of the flow-field at different dimensionless times, T = tU0/a, the
value of which is indicated in the caption. Colorbar is only shown in the first
plot of each row for the neatness of the plots. For movies see supplementary.

homogeneous fluid. They scatter away from each other with a positive scattering angle much

like lower Re cases which decreases with an increase in the stratification strength. Again,

high enough stratification strength leads to the reorientation of the pullers to their original

orientation (see Fig.  9.3c ). For Re = 50, only a high stratification results in the elimination

of the clockwise loops in the trajectories of the pullers after the collision. This is clear from

the trajectories of pullers with Re = 50 in a stratified fluid with Ri = 10 (Fig.  9.3d ). The

pullers escape from each other but with a large scattering angle which is greater than 90◦.
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However, a lower stratification (Ri = 1 and 5) leads to the hydrodynamic trapping of the

pullers after the collision in this case which is similar to the Re = 10 case in a homogeneous

fluid.

To explain the reorientation of the pullers after the collision, the elimination of the closed

loop trajectories and the prevention of the hydrodynamic trapping of the pullers we plot the

vorticity contours and isopycnals at different time instances during the collision process of

the pullers for two stratification strengths in Fig.  9.4 . The effect of increasing the inertia (or

Re) of pullers is to increase the size of the vorticity bubble in the rear part of their bodies

[ 279 ]. Introducing stratification reduces the size of these recirculatory regions behind pullers

[ 342 ]. The trapping of the pullers in loops after the collision in a homogeneous fluid can be

explained by the interaction between the bigger recirculatory regions behind the pullers at

higher Re = 10 and 50 [ 280 ]. Since stratification leads to shrinking in the size of these rear

recirculatory regions, the interaction between these rear bubbles is limited at finite Ri values.

This prevents the pullers to attain a constant angular velocity after the collision unlike the

homogeneous case (see Fig.  9.5b ). This damping of the angular velocity of the pullers after

collision essentially allows the pullers to scatter away from each other without being trapped

in counterclockwise loops. This point becomes clear from Fig.  9.4 where we plot the vorticity

contours and isopycnals for Re = 10 in stratified fluids with different stratification strengths,

Ri = 1 and Ri = 5, respectively.

As the pullers move down (up) in a stratified fluid, they trap lighter (heavier) fluid in

their rear recirculatory bubbles which can be seen in terms of deformed isopycnals in Fig.  9.4 .

After the collision, the axisymmetry of the flow and the isopycnal deformations is broken.

The interaction between the rear vorticity bubbles rotates the pullers in clockwise direction

as can be seen in Fig.  9.4b . However, the tendency of the deformed isopycnals behind the

pullers to return to their original positions reduces the effect of this interaction on the puller

orientations (Fig.  9.4f ). The counterclockwise torque due to the flow induced by need of the

deformed isopycnals to return to their original positions determines the rotational motion

of the pullers after the collision and leads to the reorientation of the pullers in the original

orientation. This prevents them from getting trapped into loops. This is clear from the

comparison of the isopycnal deformation in Fig.  9.4c and  9.4g .
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(a) (b)

Figure 9.5. Time evolution of the a) translational velocity and the b) rota-
tional velocity of two approaching pullers during the collision process at dif-
ferent Ri values for a fixed Re = 10. Stratification eliminates the oscillations
in the translational velocity and prevents the pullers from attaining a constant
angular velocity thus eliminating the close loop trajectories as observed in the
case of a homogeneous fluid. Stratification also results in a change in the sign
of the angular velocity which reorients the pullers in their original orientations
after the collision at high enough Ri.

At high Ri, i.e., Ri = 5 as compared to Ri = 1, the isopycnals are less deformed indicating

that the resistance to the displacement of the isopycnals due to the flow induced by the

squirmers is stronger. This prevents the clockwise rotation of the pullers and reorients them.

Thus, the competition between the rear vorticity bubble interactions and the tendency of

deformed isopycnals to return to their original levels determines the rotational motions and

the orientations of the pullers after the collision. Owing to the smaller size of the rear

vorticity bubbles of pullers in a stratified fluid compared to a homogeneous fluid [  342 ], the

effect of the stratification dominates the vorticity bubble interactions between the two pullers

at high Ri values. This prevents the pullers from attaining a constant angular velocity unlike

in a homogeneous fluid, thus, eliminates the closed loops for Re = 10, 50 and results in the

reorientation of the pullers for Re = 1, 5 and 10.

The consequences of the mentioned vorticity and isopycnal interactions on the colliding

pullers can be understood from their translational and angular velocities. Velocity evolution
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for two approaching pullers is plotted in Fig.  9.5 for Re = 10 and various stratification

strengths. Stratification leads to the elimination of the oscillations in the translational

velocities of the pullers after the collision and allows them to attain a steady velocity which

results in their escape from each other (Fig.  9.5a ). In addition, the tendency of the displaced

isopycnals to return to their neutrally buoyant levels prevent the pullers from attaining a

constant angular velocity as can be seen in Fig.  9.5b . This results in the reorientation of the

pullers to their original orientation.

9.3.1.2 Pullers moving side by side

(a) Re = 10 (b) Re = 50

Figure 9.6. Trajectories of a pair of pullers, β = 5, moving side-by-side
initially separated by a distance 4a in x direction at various stratification
strengths. a) Re = 10, b) Re = 50. H in the legends stands for homoge-
neous fluid or Ri = 0.

In addition to squirmers approaching each other in the opposite directions and colliding,

we also investigate the motion of a pair of squirmers moving side by side initially apart by

∆x in the x-direction. Fig.  9.6 shows the trajectories of two pullers moving side by side in

different stratification strengths at Re = 10 and 50. In a homogeneous fluid, pullers moving

side-by-side exhibit completely disparate trajectories at Re = 10 and Re = 50. At Re = 10,

the pullers are initially attracted towards each other and they come close and stick together

while they move downward. They move away from each other but are pulled together after
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a while. They again move down together a little before being repelled away from each other

and finally scatter away in the horizontal direction (see Fig.  9.6a ). While for Re = 50, the

pullers are slightly repelled from each other initially. But they are pulled towards each other

which also leads to a torque on them making them rotate in a loop while they move down

(see Fig.  9.6b ). Thus, in a homogeneous fluid, a pair of pullers moving side-by-side scatter

away from each other at Re = 10 while they are hydrodynamically trapped near each other

in loops for Re = 50.

Introducing stratification increases the attraction between the pullers moving side-by-

side at Re = 10 (see Fig.  9.6a ). At Ri = 5 and 10, this increase in the attraction between

the pullers increases the time that the pullers spend near each other before they collide and

prevents the pullers from separating unlike in a homogeneous fluid. As a result, once the

pullers collide sideways they stick together and move further down.

The significant changes in the trajectories of two pullers moving side-by-side due to

stratification can also be seen at a higher Re (= 50, see Fig.  9.6b ). For Ri = 5, the pullers

are again hydrodynamically trapped near each other in loops but they do not move much

in the downward direction. Increasing the stratification further to Ri = 10, the pullers are

attracted towards each other leading to a sideways collision. However, after this collision,

they are repel away from each other and scatter away in the horizontal direction, similar

to what happens eventually for Re = 10 in a homogeneous fluid. This is expected as

stratification leads to a reduction in the squirmer velocities. This reduces their effective Re

which explains the qualitative similarities between the trajectories in the high Re-high Ri

and the low Re-no stratification case.

9.3.2 Pairwise interactions of pushers in a stratified fluid

9.3.2.1 Pushers approaching each other

Fig.  9.7 shows the trajectories for two pushers approaching each other in opposite direc-

tions, initially oriented parallel to each other for Re = 1, 5, 10 and 50 in a homogeneous

fluid and a stratified fluid with different Ri. In the absence of any density stratification, the

trajectories of the colliding pushers reveal two patterns based on the magnitude of Re. At
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relatively low values of Re, i.e., 1, the pushers come to a complete stop after the collision.

However, this configuration is unstable and the pushers are deflected away from the y = 0

plane resulting in a three-dimensional (3D) motion after the collision [ 280 ]. This behavior

is common for interacting pushers for Re << 1 and is due to the instability in their two-

dimensional (2D) motion once they come close to each other [ 333 ]. As we increase the Re

further, the pushers escape each other after the collision with a scattering angle φ < 90◦. φ

increases with increase in the inertia of the pushers with values ≈ 0◦, ≈ 30◦ and ≈ 90◦ for

Re = 5, 10 and 50, respectively.

(a) Re = 1 (b) Re = 5 (c) Re = 10 (d) Re = 50

Figure 9.7. Trajectories for colliding pushers with β = −5 in a homogeneous
and a stratified fluid with increasing stratification strengths. At low Re = 1, 5
and 10, high enough stratification leads to the stoppage of the pushers as they
collide. This state is not stable and as a results the pushers are deflected away
from the xz plane in the y direction. The pushers stick together as they are
move in the y direction after the deflection indicating that stratification leads
to hydrodynamic trapping of colliding pushers. This deflection away from the
xz plane is shown in the insets in (a), (b) and (c). This instability is gradually
prevented with increasing Re and the pushers no more stop or are deflected at
high Re, i.e., Re = 50. H in the legends stands for homogeneous fluid.

Introducing stratification results in distinct changes in the trajectories of the interacting

squirmers depending on their Re and the stratification strength, i.e., Ri. At low Re, the

effect of introducing stratification on the trajectories of colliding pushers is to trap them

near each other by bringing them to a complete stop. However, these states are not stable

and soon the pushers leave the plane of collision, i.e., xz plane, and are deflected in the y

direction. The pushers stick together as they leave the y = 0 plane and continue to move

together in the y direction as shown in the insets of Fig.  9.7a and  9.7b . The same is true for a

214



high enough stratification at higher Re. The pushers come to a stand-still after collision and

move together in the y plane for Re = 10 at Ri = 10. Introduction of the stratification leads

to the reduction in the translational velocities of the pushers which reduces their effective

inertia resulting in low Re like trajectories even at high Re values.

Ri = 1
(a) T = 4

Ri = 1
(b) T = 5

Ri = 1
(c) T = 6

Ri = 1
(d) T = 7

Ri = 5
(e) T = 4

Ri = 5
(f) T = 6

Ri = 5
(g) T = 7

Ri = 5
(h) T = 9

Figure 9.8. Vorticity contours and isopycnals during the collision process of
two approaching pushers with Re = 10 at different stratification strengths,
Ri = 1 (a,b,c,d) and 5 (e,f,g,h). These plots show the interaction between
the vorticity bubbles and the deformed isopycnals. The need of the displaced
isopycnals to return to their original levels determine the trajectories of the
pushers after the collision. The isopycnals are the normalized density differ-
ences given by (ρ − ρ0)/γa and each line is 1 unit apart. Darker line color
shade indicates a higher density value. Colorbar for the vorticity contours is
presented in the plots. Dashed lines indicate the pusher trajectories. These
are snapshots of the flow-field at different dimensionless times, T = tU0/a, the
value of which is indicated in the caption. Colorbar is only shown in the first
plot of each row for the neatness of the plots. For movies see supplementary.

For intermediate Re = 10 and high Re = 50, the effect of stratification depends on the

magnitude of Ri. The trapping due to the stoppage of the pushers after the collision at low

Re values and the 3D trajectories are progressively prevented at high Re values. This can
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be seen in Fig.  9.7c and  9.7d . At high Re and low Ri, the effect of inertia is significant

compared to the effect of stratification. As a result, the pushers try to move away from each

other similar to what happens in a homogeneous fluid. This can be observed for Re = 10 at

Ri = 1 & 5 and Re = 50 at Ri = 1, 5 & 10 for which pushers are scattered away from each

other with φ ≈ 45◦ and 90◦, respectively.

(a) (b)

Figure 9.9. Time evolution of the a) translational velocity and the b) ro-
tational velocity of two approaching pushers during the collision process at
different Ri values for a fixed Re = 10. Stratification leads to a significant
reduction in the velocities of the pushers after their collision. At a high strat-
ification, the pushers come to almost a stop after collision and eventually are
deflected away from the y = 0 plane which is shown by the time evolution of
the y velocities of the pullers in the insets.

We plot the vorticity contours and the isopycnals in Fig.  9.8 for Re = 10 at two Ri values,

viz., 1 and 5. The interaction of the pushers with the isopycnals reveal the reason behind

the deflection from their trajectories in a homogeneous fluid for high Re values (10 and 50).

Fig.  9.8 shows that as the pushers move forward, they displace the isopycnals behind them

owing to the long vorticity trail behind them. However, as Ri increases these displaced

isopycnals resist the flow induced by the pushers as they try to return to their original levels.

The strength of opposition by the displaced isopycnals to their further deformation increases

with Ri. E.g., for Ri = 1 (Fig.  9.8a -  9.8d ) the isopycnals behind the pushers are deformed

for a longer time while they return to their original levels quickly for Ri = 5 (Fig.  9.8e 
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-  9.8h ). As a result of the interaction between rear vorticity bubbles and the flow due to

the deformed isopycnals in the wake of the pushers, their y angular velocity increases (see

Fig.  9.9b ) and the pushers are deflected to their right.

Fig.  9.9 shows the translational and rotational velocities of the pushers at various strati-

fication strengths for Re = 10. It can be seen from Fig.  9.9a that the translational velocities

of the squirmers decrease with increasing stratification both before and after the collision.

The reason for this decrease is the trapping of lighter (heavier) fluid in the recirculatory

region which in the front region leading to a higher buoyancy force on them as they move in

a heavier (lighter) fluid. For a high enough Ri value (e.g. Ri = 10 at Re = 10) the velocity

reduction is large enough to lead to an instability which deflects them away from the y = 0

plane. For the cases when the collision process does not lead to an instability (e.g., Ri = 1

and 5 at Re = 10), stratification increases the magnitude of the rotational velocity of the

pushers which causes the divergence in their trajectories after the collision compared to their

homogeneous fluid trajectories (see Fig.  9.9b ).

9.3.2.2 Pushers moving side by side

(a) Re = 10 (b) Re = 50

Figure 9.10. Trajectories of a pair of pushers, β = −5, moving side-by-
side initially separated by a distance 4a in x direction at various stratification
strengths. a) Re = 10, b) Re = 50. H in the legends stands for homogeneous
fluid or Ri = 0.
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In contrast to a pair of pullers moving side-by-side, stratification has a limited effect on

the trajectories of a pair of pushers moving side-by-side which is shown in Fig.  9.10 . For

all the Re values explored, i.e., 10 and 50, the pushers are initially attracted towards each

other. But this attraction does not last very long and eventually they deflect away from

each other. The effect of stratification is to lower the z value where the pushers first start to

separate from each other. Here we measure the scattering angle as the angle the final pusher

orientation makes with its initial orientation.

In a homogeneous fluid, the pushers are attracted to each other at Re = 10 and 50. As

they come very close, they stick together and move down before deflecting away. Increasing

the inertia of the pushers leads to an increase in their scattering angle after the deflection

(see Fig.  9.10 ). Increasing the stratification strength hastens the process of repulsion leading

to the pushers are pushed away at lower z distances from their initial positions as compared

to a homogeneous fluid. At a high stratification, the pushers are pushed away from each

other even before they can come very close to each other as they do in a homogeneous fluid.

This is observed from the pusher trajectories at Ri = 10 for both Re values in Fig.  9.10 .

In addition, at Re = 50, increasing the stratification leads to a reduction in the scattering

angles of the pushers. However, at Re = 10, stratification results in a slight increase in the

scattering angles of the pushers. Again, there are qualitative similarities in the trajectories

of the pushers at high Re-high Ri and low Re-no stratification values as we observed in the

case of a pair of pullers which is due to the reduction in the effective Re of the pushers at

high Ri due to the reduction in their swimming speeds.

9.3.3 Contact time

Fig.  9.11 plots the contact time for a pair of squirmers colliding with each other against

Ri for various Re values explored in this study. We define contact time as the time spent

by the squirmers in contact, i.e., when their center-to-center distance is less than d + 2∆

which is also the distance when the repulsive force between the squirmers is active. For the

cases where the squirmers deflect away from the y = 0 plane, we measure contact time just

before the squirmers are deflected. We observe that pushers spend more time in contact as

compared to pullers for the range of parameters explored in this study. The contact time
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Re
Re
Re
Re

Figure 9.11. Contact time, i.e., time spent by the squirmers near (center-to-
center distance ≤ 2.12) each other for colliding squirmer pairs. Hollow symbols
are for pullers and filled symbols are for pushers.

increases slightly with Ri for all the cases except for pushers with Re = 5 & 10. This is

because the pushers are separated from each other at low Ri while they are trapped and

deflect in the third direction at high Ri for Re = 5 & 10.

In many real-life situations, it is beneficial to estimate the contact time of swimmers. For

reproductive purposes, it is beneficial for the swimmers to spend more time on contact while

they want to not be in contact with a predator and escape as soon as possible. The results

thus can be used to predict the encounter time of pusher and puller swimmers to predict

their success in reproduction or feeding or escaping from predators. These results show that

pushers tend to spend more time in contact than pullers which increases with increasing the

stratification. This can enhance their success in reproduction in stratified environments.

9.3.4 Effect of initial lateral spacing

Fig.  9.12 shows the effect of changing ∆x on the trajectories of a pair of colliding squirmers

for Re = 10 and Ri = 5. These results show that changing ∆x for pullers does not change

the trajectories of the pullers significantly as they are qualitatively the same. However, ∆x
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(a) Pullers, β = 5 (b) Pushers, β = −5

Figure 9.12. Trajectories of a pair of colliding a) pullers, β = 5 and b)
pushers, β = −5 For different ∆x. Re = 10 and Ri = 5.

has a significant role in determining the trajectories of colliding pushers. For ∆x = 1 & 2 the

pushers collide and separate from each other, while for a smaller ∆x (=0.25), the pushers

stop after the collision which is similar to what happens for high stratification at larger ∆x.

Thus, decreasing ∆x simply decreases the Ri above which the instability in the colliding

squirmer configuration sets in. Thus, the details of the trajectories are more closely related

to the initial configuration for pushers than pullers.

9.3.5 Effect of Prandtl number

We briefly discuss the effects of varying Pr on the trajectories of colliding pair of pullers

and pushers in this subsection. We assumed Pr = 0.7 for this study in order to resolve

the density boundary layer. But for temperature stratified water Pr = 7 while Pr = 700

for salt stratified water. Resolving the density boundary layer (≈ O(d/
√

RePr)) becomes

computationally expensive with increasing Pr. Hence a small value of Pr was used to save the

computational penalty. Changing Pr of the fluid quantitatively changes the settling velocity

of a rigid sphere [ 299 ] and the swimming velocity of neutrally buoyant squirmers [ 342 ] while

the qualitative trend remains the same in both these cases. Thus, changing Pr will also

change the trajectories of a pair of squirmers interacting in a stratified fluid. In addition,
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Ri=1, Pr=0.7
Ri=1, Pr=7.0
Ri=5, Pr=0.7
Ri=5, Pr=7.0

(a) Pullers, β = 5

Ri=1, Pr=0.7
Ri=1, Pr=7.0
Ri=5, Pr=0.7
Ri=5, Pr=7.0

(b) Pushers, β = −5

Figure 9.13. Trajectories of a pair of pushers, β = −5, moving side-by-
side initially separated by a distance 4a in x direction at various stratification
strengths. a) Re = 10, b) Re = 50. H in the legends stands for homogeneous
fluid or Ri = 0.

the transition from one type of trajectory to the other will happen at different values of Re

and Ri.

We present the trajectories of a pair of pullers and pushers colliding for two different Ri

and Pr in Fig.  9.13 . For a pair of colliding pullers with Re = 10, the pullers swim away from

each other even at Pr = 7, however, their trajectories are different compared to Pr = 0.7

case. On the other hand, for pushers, the trajectories are similar for a lower Ri. But the

swimmers get trapped near each other for Ri = 5 in the case of Pr = 7 unlike the case when

Pr = 0.7. These results show that the details of the trajectories, i.e., Ri for which they

separate, exact trajectories and Ri for which they get trapped near each other and deflect

away from the initial plane, depend on the value of Pr. This is expected as Pr governs the

size of the density boundary layer which has an important role in determining the near field

interactions between swimmers.
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10. ORIENTATION INSTABILITY OF SETTLING

SPHEROIDS IN A LINEARLY DENSITY STRATIFIED FLUID

10.1 Introduction

Particles settling in a fluid medium under the influence of gravity has historically been a

widely investigated research problem [ 344 ]–[ 348 ]. In the past few decades, researchers have

devoted many efforts to understand the effects of fluid density stratification on the settling

dynamics of spherical particles, mainly motivated by geophysical applications [ 261 ], [  299 ],

[ 349 ]. The most notable effect of density stratification on the motion of a spherical particle is

drag enhancement. This observation has been confirmed by experiments [  252 ], [ 350 ], [ 351 ],

theory [  240 ] and computations [ 352 ], [ 353 ]. The immediate effect of this drag enhancement is

to reduce the settling velocity of a sphere falling through a stratified fluid under the influence

of gravity, an effect which should therefore be considered in large-scale transport models of

environmental interest [ 299 ].

Fluid stratification also modifies the flow structures around spherical particles in interest-

ing ways. Depending on the Reynolds number of the moving particle, Rep = UpD/ν, and the

Froude number of the flow, Fr = Up/ND, a variety of jet structures can be observed [ 354 ]

behind a sphere with diameter D moving vertically with a velocity Up in a stratified fluid

with kinetic viscosity ν and Brunt–Väisälä frequency N . The formation of the jet influences

a variety of phenomena in the oceans, such as the vertical movement of zooplankton and

buoys used for ocean observation. Owing to the ubiquity of the density stratification due

to salinity and/or temperature gradients in nature, e.g., in the atmosphere [  216 ], lakes, and

oceans [ 211 ], it is obvious that studying how the density stratification influences the dynam-

ics of settling/moving particles is crucial to understand a plethora of natural phenomenon.

For example, the atmospheric pollutants and pyroclastic particles [ 355 ] have sizes ranging

from a few µm to a few mm with Rep ranging from O(0− 1000).

In oceans, the top layer, O ≈ (1− 1000)m deep, is associated with intense biological and

ecological activities which are strongly influenced by the density stratification. The formation

of algal blooms has been known to be a direct consequence of marine organisms’ interactions

with density stratification [ 211 ]. Stratification significantly alters the stability, interaction,
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and nutrient uptake of organisms [ 284 ], [  293 ], [  356 ], [  357 ]. Stratification impacts carbon

fluxes into the ocean by inhibiting the descent of marine snow particles (aggregates > 0.5mm

in diameter) [ 220 ]. Furthermore, the vertical density stratification promotes accumulation

of marine snow [ 220 ] and of phytoplankton [ 358 ]. The Rep of these marine entities is ≈

O(0 − 100) depending on their sizes [  359 ], [  360 ]. The bio-convection in the oceans is an

important step in the carbon cycle and is responsible for transferring about 300 million

tons of carbon from the atmosphere to the oceans every year [  361 ], [  362 ]. These observations

make it imperative to investigate the role of density stratification on the dynamics of settling

particles. However, the particles/organisms which are influenced by stratification are not

exactly spherical. They come in a variety of shapes [ 363 ]. The most common shapes that can

be imagined are plate-like flat [ 364 ] or rod-like elongated [  365 ]. The extra degree of freedom

introduced by the anisotropy of the particle shape leads to interesting settling dynamics.

Even in a homogeneous fluid, the anisotropy of the settling particle shape leads to more

convoluted phenomena like breaking of the flow axial symmetry, oscillatory settling path,

and wake instability not observed for a spherical particle [ 366 ], [ 367 ]. The influence of the

body degrees of freedom on the wake dynamics along with the vorticity production at the

body surface can explain the wake instabilities and their consequences on the body path

[ 368 ], [ 369 ]. Specifically, for oblate spheroids, four different states for the particle motion

are observed for Galileo number, Ga =
√

(|ρr − 1|gD3)/ν2, between 50 to 250 [ 369 ], [ 370 ] for

aspect ratio, AR = 1/3. Here g is the acceleration due to gravity and D is the diameter of

a sphere with the same volume as the spheroidal particle. The transition between the four

states takes place at Ga ≈ 120, 210, and 240 for ρr = 1.14. On the other hand, the onset of

secondary motions for prolate spheroids occurs at a considerably lower Ga than for an oblate

spheroid. The peculiar feature of settling prolate spheroids is that they attain a terminal

rotational velocity about the axis parallel to the vertical direction in which it is falling freely

for Ga > 70 in the case of aspect ratio, AR = 3. This behavior can be explained by the four

thread-like quasi-axial vortices appearing in the wake of a prolate spheroid [  369 ]. Recently,

[ 371 ] have presented theoretical and experimental evidence of an orientation transition of a

fiber due to a gravitational torque that arises above a critical Reynolds number and showed

the evolution of the oblique orientation toward the broadside orientation as Re increased.

223



Although particle shape anisotropy leads to path and wake instabilities in the settling

motion of particles in a homogeneous fluid, it does not change the steady-state settling

orientations of the particles. The spheroidal particles have been observed to settle such that

their long axis is always perpendicular to the settling direction [ 367 ], [ 369 ], [ 372 ], [ 373 ] for

Rep > 0.1. In addition, the particles reach a constant terminal velocity when falling freely

in a homogeneous fluid. The terminal velocity depends on the Ga and the aspect ratio of

the particles.

The settling dynamics of spherical as well as non-spherical particles is significantly altered

by the presence of fluid density stratification. The first notable departure from the settling

in a homogeneous fluid is the absence of a terminal velocity. This is because stratification

increases the drag experienced by the settling particles which therefore reduces their settling

speeds. In addition, increasing buoyancy leads to the deceleration of the particle as it

approaches the neutrally buoyant position and can cause oscillations in the particle velocity

depending on the strength of stratification [ 299 ].

Recently, researchers have started exploring the effects of stratification on the settling

dynamics of anisotropically shaped particles in a stratified fluid. Most of the investigations

are limited to disks. Experiments of a disk settling encountering a stratified two-layer fluid

show that the disk reorients itself such that the long axis is perpendicular to the vertical

direction while it moves through the transition layer between the two fluids [ 233 ], [ 374 ], [ 375 ].

Further, a disk settling in a linearly stratified fluid has been observed to go through three

regimes as it settles. First, there is a quasi-steady state with the disk long axis perpendicular

to the vertical direction. Then, there is a change in the stability for the disk orientation when

it changes its orientation from long axis normal to the vertical direction (broad-side on) to

long axis parallel to the vertical axis (edge-wise). Finally, the disk settles edge-wise at its

neutrally buoyant position [ 376 ]. As concerns prolate spheroids, we can only mention the

numerical study by [  377 ], on the settling across a density interface. Hence, we are still far

from completely understanding the settling and orientation dynamics of spheroidal shaped

particles in a stratified fluid.

From a computational point of view, tracking an oblate and a prolate spheroid is similar

but computationally, the simulations for prolate spheroids are more expensive. This is also
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true in the current numerical framework which will be discussed in the following sections. The

scarcity of studies with prolate spheroids does not mean a lack of practical applications as

elongated particles in a stratified fluid are routinely encountered in many industries involving

suspensions of particles settling under gravity, pollutant transport in atmosphere or water,

fluidized beds, and settling of marine snow or organisms in upper ocean layers. The most

common shapes that can be imagined are plate-like flat [ 364 ] or rod-like elongated [ 365 ].

To gain some new understanding of the problem, we numerically simulate the free-falling

motion of spheroidal particles, an oblate spheroid with an aspect ratio, AR = 1/3 and a

prolate spheroid with AR = 2, in a linearly stratified fluid for different Ga and Fr values.

The aim of this effort is to investigate the possible mechanism which leads to the orientational

instability of a freely falling spheroidal object in a linearly stratified fluid.

10.2 Governing equations

We present the governing equations and the solution methodology implemented to solve

them in this section. We solve the Navier-Stokes equations and the continuity equation in

terms of the perturbation velocity field and calculate the perturbation flow field u = u−Up,

where u is the fluid velocity field and Up is the instantaneous particle velocity. We assume

the fluid to be Newtonian and incompressible and assume the Boussinesq approximation for

the density to be valid which means we can ignore density differences everywhere except

in the gravitational body force term. These assumptions results in the following equations,

written in the reference frame translating with the particle velocity Up:

ρf

(
∂u
∂t

+ (u−Up) · ∇u
)

= −∇p+ µ∇2u + ρf (g + f) , (10.1)

∇ · u = 0, (10.2)

where ρf is the density field, Up is the instantaneous particle translational velocity, p is the

pressure, µ is the fluid dynamic viscosity, g is the acceleration due to gravity. The additional

term f on the right-hand-side of ( 10.1 ) accounts for the presence of particle, modelled with

the immersed boundary method (IBM). This IBM force is active in the immediate vicinity

of a particle to impose the no-slip and no-penetration boundary conditions indirectly. In
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other words, the force distribution f ensures that the fluid velocity at the surface is equal to

the particle surface velocity (Up + ωp × r ).

The particle motion is solution of the following Newton-Euler Lagrangian equation of

particle motion:

ρpVp
dUp

dt =
∮
∂Vp

τ · n dA, (10.3)

d (Ipωp)
dt =

∮
∂Vp

r× (τ · n) dA, (10.4)

here Up and ωp are the particle translational and angular velocities. ρp, Vp and Ip represent

the particle density, particle volume and the particle moment of inertia matrix. n is the unit

normal vector pointing outwards on the particle surface, while r is the position vector from

the particle’s center. τ = −pI + µ
(
∇u +∇uT

)
is the stress tensor and its integration on

the particle surface accounts for the fluid-particle interaction.

Accounting for the inertia and Buoyancy forces of the fictitious fluid phase inside the

particle volume and using IBM, Eqs.  10.3 and  10.4 are rewritten as below:

ρpVp
dUp

dt ≈ −ρ0

NL∑
l=1

Fl∆Vl + ρ0
d
dt

(∫
Vp

udV
)
−
∫
Vp

ρfgdV + ρpVpg , (10.5)

d (Ipωωωp)
dt ≈ −ρ0

NL∑
l=1

rl × Fl∆Vl + ρ0
d
dt

(∫
Vp

r× udV
)
−
∫
Vp

r× ρfgdV , (10.6)

where the first two terms on the right-hand-side of the equations denote the hydrodynamic

force and torque Fh and Th, respectively. The third term and the fourth term together in

Eq.  10.5 indicate the buoyancy force Fb while the third term in Eq.  10.6 indicate the Tb.

More details on the numerical model can be found in [ 378 ], [  379 ].

The vertical variation in the fluid density can either be due to the vertical variation in the

fluid temperature or salinity or both. For this study we consider the density stratification to

arise from the fluid temperature variation. Thus, the particle sediments in a linearly density

stratified fluid with the initial vertical density stratification given by ρ̄(z) = ρ0 − γz. ρ0 is

the reference density, γ is the vertical density gradient and z is the vertical coordinate. The

fluid density increases linearly in the downward z direction (gravity direction). The density

variation across thermocline occurs due to the vertical variation in the temperature, since
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ρ = ρ0 (1− β (T − T0)), where β is the coefficient of thermal expansion, T is the temperature

field and T0 is the reference temperature corresponding to the reference density, ρ0. Thus,

the initial temperature of the background fluid is given by, T̄ (z) = T0 + (γ/βρ0)z. The

energy equation for an incompressible fluid flow in the frame of reference moving with the

particle can be simplified to,

∂T

∂t
+ (u−Up) · ∇T = ∇ · (α∇T ) . (10.7)

α is the thermal diffusivity. We split the temperature field in the linear component and the

perturbation (T ) as T = T̄ (z) + T . We solve for the temperature perturbation, T , and add

it to the linear component to get the temperature field at any instance of time. Eq. (  10.7 )

can be rewritten in term of the temperature perturbation field, T as follow:

∂T

∂t
+ (u−Up) · ∇(T̄ (z) + T ) = ∇ · (α∇T ) . (10.8)

We set α = 0 for the particle [ 299 ] and α = ν/Pr for the fluid phase. ν is the fluid kinematic

viscosity and Pr is the Prandtl number. This is equivalent to the insulating/impermeable/no-

flux boundary condition on the surface of the particle [ 299 ], [  353 ] which is also true if the

stratifying agent is salt or having an adiabatic particle. We also investigate the effects of

relaxing the no-flux boundary condition on the particle surface by varying α for the particle

by changing the particle heat conductivity, k, in Sec.  10.3.2.4 .

10.2.1 Dimensionless parameters & simulation conditions

Re-writing the equations in the non-dimensional form results in the following equations:

∂u
∂t

+ ((u−Up) · ∇) u = −∇P + 1
Re∇

2u + Ri
ReT + f , (10.9)

∂T

∂t
+ (u−Up) · ∇T + u · êg = 1

ρ∗C∗p
∇ ·

(
k∗

RePr∇T
)
, (10.10)

∇ · u = 0, (10.11)
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where, u, T and P now denote dimensionless perturbations in velocity, temperature and

pressure field. Temperature is normalized with the temperature difference of 1 equivalent

particle diameter in the gravity direction. ρ∗, C∗p and k∗ indicate particle density, heat

capacity and heat conductivity ratio (ρr, Cpr and kr) inside the particles and are equal to 1

in the fluid region. We investigate the sedimentation of spheroidal particles in a quiescent

but linearly density stratified fluid with finite inertia. The details on the numerical algorithm

to solve the governing equations and validations of the numerical tool are provided elsewhere

[ 369 ], [  380 ], [  381 ] and hence not discussed here.

The non-dimensional parameters defining the problem are described below:

1. The Galileo number, Ga = UD/ν, with the reference velocity U defined as U =√
D|ρr − 1|g. D is the length scale corresponding to the particle size, set as the diame-

ter of a sphere with the same volume as that of the spheroidal particle (D = (b2a)(1/3)).

a and b denote the polar and the equatorial radius of the spheroidal particle. Ga quan-

tifies the relative importance of gravitational and viscous forces.

2. The particle Reynolds number, Rep = UpD/ν, which quantifies the relative importance

of the inertial and the viscous forces. Here Up is the instantaneous particle velocity so

this is a non-dimensional measure of the particle settling speed.

3. The Richardson number, Ri = γgD3/(Uρ0ν) = D3N2/(Uν), which quantifies the rel-

ative importance of buoyancy and the viscous time scales. N = (γg/ρ0)1/2 is the

Brunt–Väisälä frequency. It is the natural frequency of oscillation of a vertically dis-

placed fluid parcel in a stratified fluid.

4. The Prandtl number, Pr = Cpµ/k, defined as the ratio of momentum diffusivity to

thermal diffusivity inside the fluid region.

5. The particle density ratio, indicating the ratio between the particle density and the

reference density of the fluid. ρr = ρp/ρ0.
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Figure 10.1. Schematic of the settling spheroidal objects in a linearly density
stratified fluid. a) Oblate spheroid (AR < 1) and b) prolate spheroid (AR >
1). Here a and b are the semi-major and the semi-minor axis. The aspect ratio
AR is given by a/b. For spherical particles AR = 1. The orientation of the
particle is quantified in terms of the polar angle θ and the azimuthal angle φ
for a vector directed along the major axis of the spheroids. The coordinate
system used is shown at the top of the figures.

6. The particle heat conductivity ratio, kr = kp/kf , with subscripts p and f denoting the

particle phase and the fluid phase.

7. The particle heat capacity ratio, Cpr = Cpp/Cpf .

8. the particle aspect ratio, AR = a/b.
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Finally, the characteristic time scale, τ , used to make t dimensionless is chosen to be τ =

D/U . In eq.  10.9 and  10.10 , Re is the Reynolds number which has the same definition as

the Galileo number, Ga. Please note that we use Rep to denote the instantaneous Reynolds

number of the particle which changes with time and particle location. Rep is used later for

drag calculations.

We simulate the sedimenting motion of a spheroidal shaped particle in a linearly density

stratified fluid using a 3D rectangular domain of size 20D× 20D× 80D (10D× 10D× 40D)

for an oblate (prolate) spheroid with grid size equal to D/32 (D/48), resulting in ≈ O(109)

(≈ O(5 × 108)) grid points. We use periodic boundary conditions for the velocity field and

the temperature perturbations on all the sides of the domain. We consider an oblate particle

with aspect ratio, AR = a/b = 1/3 (Fig.  10.1 a) and a prolate particle with AR = a/b = 2

(Fig.  10.1 b). Since we solve the flow field in the frame translating with the particle, the

particle stays at its initial position, i.e., ([10D, 10D, 20D] for an oblate spheroid and [5D,

5D, 10D] for a prolate spheroid). The domain sizes chosen ensure that there is no significant

interaction between the particles and its wake for the entire parameter range explored in this

study as shown in Sec.  10.2.2 .

Depending on the hydrodynamic torque it experiences, the particle can rotate freely. The

orientation of the spheroid is measured in terms of the polar angle θ, which is the angle made

by the major axis of the spheroid with the z−axis as shown in Fig.  10.1 . In the atmosphere,

the typical value of N is 10−2s−1 while in the ocean N is around 10−4−0.3s−1 depending on

the strength of density stratification [ 382 ], [ 383 ]. We perform simulations for Ga = 80−250,

while we vary Ri between 0−10 (or N ≈ 0.04−0.2s−1 ) which are consistent with the typical

value of N mentioned above. Ri = 0 represents a particle settling in a homogeneous fluid

with a constant density. We fix the density ratio, ρr = 1.14 in all the cases. The temperature

inside the particle is set similar to the surrounding fluid initially, resulting in a domain with

zero temperature fluctuations at the start of the simulations.

We use Pr = 0.7 for all the simulation cases in this study except in Sec.  10.3.4 where we

investigate the effect of changing fluid Pr. Pr = 0.7 corresponds to temperature stratified

atmosphere, while Pr = 7 and Pr = 700 correspond to temperature stratified water and

salt stratified water, respectively. In a stratified fluid, a density boundary layer is present
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Table 10.1. Values of relevant parameters investigated in this study
AR Cpr kr ρr Ga Ri Pr

1/3 1 (0, 0.001, 1) 1.14 (80, 170, 210, 250) 0− 10 0.7, 7.0
2 1 (0, 0.001, 1) 1.14 (80, 180) 0− 10 0.7, 7.0

in addition to the velocity boundary layer near the particle surface. The thickness of this

density boundary layer scales as ≈ O(D/
√
RePr). For accurate resolution of the flow within

this boundary layer, it is necessary to have at least a few grid points in it. This imposes

limitations on the maximum mesh size that can be used for the simulations. Owing to large

size of the domain, using such a fine grid becomes computationally expensive. Hence, we use

a smaller value for the Pr which enables us to resolve the fluid flow as well as the density

field in both the boundary layer and the outside. We show in Sec.  10.3.4 (in agreement

with previous studies [ 299 ]) that, changing the value of Pr merely changes the magnitudes

of the velocities of the objects moving in a stratified fluid conserving the overall qualitative

trends and behaviors. Finally, it should be noted that though we use the N and Pr values

corresponding to a temperature stratified atmosphere and water, the density ratio chosen,

i.e., ρr = 1.14 is representative of particles settling in an ocean rather than in a stratified

air. A realistic ρr for atmospheric particles would be ≈ O(103) resulting in large inertial

effects and effectively subverting any governing influence of density stratification. Hence,

the simulations presented here are not intended to mimic any atmospheric phenomenon but

are intended to provide crucial insights in understanding the sedimentation of individual

particles/organisms through oceanic thermoclines. The motivation for the chosen value of

Pr is computational convenience. Table  10.1 summarizes the values of all the relevant

parameters investigated.

10.2.2 Validation: Domain size independence

In the absence of stratification, a domain with a vertical length much larger than Ga is

needed to make sure that the wake does not have a strong effect on the settling of the particle

by interacting with it. However, since fluid stratification suppresses the vertical motion, we
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Figure 10.2. Comparison of velocity vs time for a prolate spheroid withAR =
2 in two different domain sizes at Ga = 180 and Ri = 5. The error in the
velocity using a smaller domain is negligible which means even a smaller domain
gives accurate results but at a lower computational cost.

Table 10.2. Comparison of terminal Reynolds numbers, Ret, with two differ-
ent domain sizes in a homogeneous fluid, i.e., Ri = 0 for an oblate spheroid
with AR = 1/3 at different Ga. The values are in agreement which means
there is no significant interaction between the particle wake and the particle.

Ga Ret (15D × 15D × 125D) Ret (20D × 20D × 80D)
80 55.3 56.1
170 132.1 129.6
210 165.3 166.0
250 198.5 199.8

can use a smaller vertical length for our domain. Here we show that the chosen domain sizes

are big enough to make sure that the particles do not interact with their wakes for the entire

range of parameters explored in this study.

We find an excellent agreement between the terminal Re attained by a settling oblate

spheroid with AR = 1/3 in a homogeneous fluid, i.e., Ri = 0, at different Ga in a bigger

domain (15D×15D×125D) and a smaller domain (20D×20D×80D), used for this study)

as shown in table  10.2 . This proves that there is no significant interaction between the

particle wake and the particle as it settles and the used domain size is enough to resolve the
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particle dynamics. Additionally, Fig.  10.2 shows the velocity vs time evolution for a prolate

spheroid with AR = 2 with Ga = 180 in a stratified fluid with Ri = 5 in a bigger domain

(10D× 10D× 80D) and a smaller domain (10D× 10D× 40D), used for this study). Again,

this shows that there is no significant interaction between the particle and its wake and the

domain size used for this study is enough to ensure accuracy for an affordable computational

cost.

10.3 Results and discussion

The following subsections present the simulation results for settling spheroids in a strat-

ified fluid. We present the settling velocities and orientations of the spheroids for the range

of Ga and Ri investigated. We first present and discuss the results for an oblate spheroid

followed by the results for the prolate spheroid. We compare the data from the stratified

fluid case with the data from the homogeneous fluid case for better understanding the re-

sults. We use “broad-side on” to indicate an orientation of the spheroidal particles such that

their broader side is horizontal, i.e., θ = 0◦ for an oblate spheroid and θ = 90◦ for a prolate

spheroid. On the other hand, “edge-wise” indicates the orientation of the particles in which

their broader side is perpendicular to the horizontal direction, i.e., θ = 90◦ for an oblate

spheroid and θ = 0◦ for a prolate spheroid.

10.3.1 Settling dynamics of an oblate spheroid in a stratified fluid

10.3.1.1 Fluid stratification slows down and reorients a settling oblate spheroid

This subsection presents the simulation results for an oblate spheroid with AR = 1/3

settling in a stratified fluid. The oblate spheroid starts from rest in an initially quiescent

fluid. The spheroid velocity then evolves depending on the hydrodynamic and buoyancy

forces acting on it as the flow evolves. We initialize the orientation of the oblate spheroid

such that θ = 90◦ or in edge-wise orientation. In a homogeneous fluid, the oblate spheroid

accelerates and attains a terminal velocity after the initial transients (which are due to the

oscillations in the spheroid orientation) as shown in Fig.  10.3a . In addition, as the oblate

spheroid accelerates, it topples from its initial edge-wise to a broad-side on orientation.
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However, due to its inertia and periodic shading of hair-pin like vortex structures from

alternate edges [ 369 ], it oscillates around the broad-side on (θ = 0◦) orientation. So, for

Ga = 210, an oblate spheroid settles in an oscillatory orientation about θ = 0◦ as shown in

Fig.  10.3b for Ri = 0. The oscillations are not present at lower Ga (< 120) [ 369 ].
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Figure 10.3. Settling dynamics of an oblate spheroid (AR = 1/3) with Ga =
210 in a homogeneous fluid (Ri = 0) and a stratified fluid with different Ri
values: a) Settling velocity evolution, b) spheroid orientation evolution versus
time. The insets in both the figures show the initial oscillations with decreasing
amplitudes in the velocity and orientation of the spheroid. The oblate spheroid
attains a steady state terminal velocity and oscillates about broad-side on
orientation in a homogeneous fluid after the initial transients. Stratification
leads to a reduction in the spheroid velocity and a continuous deceleration
of the spheroid velocity until it stops. The magnitude of the deceleration
increases with stratification. In addition, the steady state orientation of the
oblate spheroid changes from broad-side on (i.e., θ = 0◦) in a homogeneous
fluid to edge-wise (i.e., θ ≈ 90◦) in a stratified fluid. The transition in the
orientation starts once the magnitude of the dimensionless spheroid velocity
drops below a particular threshold. Here for |Up/U | < 0.15. The onset of
transition in the spheroid orientation is denoted by dotted horizontal line in
(a) and yellow stars in (b).

Introducing density stratification in the fluid significantly changes the settling dynamics

of an oblate spheroid. This is shown in Fig.  10.3 for Ga = 210 and various Ri as well as in

Fig.  10.4 for Ri = 3 and various Ga values. As the oblate spheroid sediments in a stratified

fluid, it moves from a region with lighter fluid into a region with heavier fluid. As a result,

it experiences an increasing buoyancy force which essentially opposes its settling motion.
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Hence, the particle cannot attain a steady state terminal velocity. This phenomenon is

clearly depicted in Fig.  10.3a and  10.4a where the particle velocity decreases continuously

after the initial transients. The suppression of the fluid flow due to the tendency of the

displaced iso-density difference surfaces (isopycnals) to return to their original locations

is another reason for the reduction in the particle velocity (see the detailed discussion in

Sec.  10.3.1.3 and Fig.  10.9 ).

(a) (b)

Figure 10.4. Settling dynamics of an oblate spheroid in a stratified fluid and
Ri = 3 with different Ga values: a) Settling velocity, b) spheroid orientation
evolution versus time. The insets show the initial oscillations with decreasing
amplitude. The oblate spheroid attains a steady state terminal velocity and
orientation (broad-side on, θ = 0◦) in a homogeneous fluid. Stratification leads
to a reduction in the spheroid velocity and a continuous deceleration of the
spheroid velocity until it stops. The magnitude of the deceleration decreases
with increasing the particle inertia. In addition, the steady state orientation of
the oblate spheroid changes from broad-side on (i.e., θ = 0◦) in a homogeneous
fluid to broad-side perpendicular (i.e., θ ≈ 90◦) in a stratified fluid. The
transition in the orientation starts once the magnitude of the dimensionless
spheroid velocity drops below a threshold. Here for |Up/U | < 0.15. The onset
of transition in the spheroid orientation is denoted by the dotted horizontal
line in (a) and the yellow stars in (b).

An increase in the stratification strength of the background fluid increases the magni-

tude of the particle deceleration. This is expected as the magnitude of the buoyancy force

experienced by the particle increases with the fluid stratification. As a result, the particle

stops at earlier times for increasing Ri values as shown in Fig.  10.3a . Another consequence

of this increased opposition to the settling motion is the reduction in its peak velocity when
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increasing the stratification as shown in Fig.  10.3a . In addition, as the Ga of the particle

increases for a fixed Ri, the magnitude of deceleration decreases as shown in Fig.  10.4a . This

is because of the increase in the inertia of the particle with Ga.

(a) (b)

Figure 10.5. Effect of inertia and stratification strength on a) the peak
velocity, (Up(t)/U)peak, of a settling oblate spheroid with AR = 1/3. The
peak velocity attained by the particle decreases stratification and increases
with increase in particle inertia, and b) the time ((t/τ)threshold) at which
|Up(t)/U | < 0.15. The dashed line in (a) is a guide to the eye. The dot-
ted line in (b) is the (t/τ)threshold = A ∗ Ri−1 fit with A = 153.7, 310.5, 384.8
and 455.5 for Ga = 80, 170, 210 and 250, respectively.

A closer comparison between the time histories of the velocity and orientation reveals

that, the onset of reorientation of the oblate spheroid is connected to the reduction of the

settling velocity below a certain threshold. From the simulation data, we observe that,

the reorientation starts once the magnitude of the dimensionless velocity of the particle falls

below ≈ 0.15. This is indicated by a horizontal dashed line in the velocity evolution plots and

a star in the spheroid orientation evolution plots (see Fig.  10.3 and  10.4 ). This observation

is consistent with the experimental and numerical study on the orientation of a settling disk

in a stratified fluid by [ 376 ]. Since stratification leads to a reduction in the particle velocity,

an oblate spheroid eventually settles in an edge-wise orientation. This is because after a
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long enough time, the particle velocity goes below the threshold velocity for the onset of

reorientation in a stratified fluid.

We quantify the effects of fluid density stratification on the peak velocity of the particles

in Fig.  10.5a . We define the peak velocity as the maximum velocity achieved by the particles

as it settles. We observe that the peak velocity decreases monotonically with the fluid

stratification strength and increases with increasing Ga. Also, the relative decrease in the

peak velocity for the lowest to the highest stratification strengths explored reduces with the

Reynolds number. For Ga = 80 it decreases by ≈ 20% while for Ga = 250 it decreases by

≈ 6%. This is due the increase in the strength of the inertial effects as compared to the

stratification effects with increasing Ga at fixed Ri. As concluded from Fig.  10.3a and  10.4a ,

increasing the stratification strength or reducing the inertia of the particle moves the onset

of the reorientation instability to an earlier time. Fig.  10.5b shows the effect of changing

particle Ga and Ri on the time for the onset of reorientation instability. We observe that,

the time ((t/τ)threshold) at which particle velocity falls below the threshold velocity for the

onset of reorientation instability decreases as O(Ri−1).

10.3.1.2 Disappearance of oscillatory paths of settling oblate spheroid

An oblate spheroid settling in a homogeneous fluid exhibits four distinct trajectories

depending on its Ga [ 369 ]. An oblate spheroid with AR = 1/3 falls in a straight line with

an axisymmetric wake for Ga / 120. Increasing Ga further eliminates the axisymmetry

and introduces oscillations in the settling path. The path is fully vertical with periodic

oscillations for Ga / 210. A weakly oblique oscillatory state motion is observed in the range

210 / Ga / 240 whereas for Ga ' 240 the particle path becomes chaotic with patterns

of quasi-periodicity. These four states of motion can be explained by the wake instabilities

behind a settling oblate spheroid [ 369 ] similar to the wake instabilities behind a settling disk

[ 366 ], [  384 ], [  385 ].

Stratification significantly alters the settling paths of an oblate spheroid. In particular, it

completely annihilates the oscillatory trajectories experienced by a settling oblate spheroid

at Ga ' 120 as shown in Fig.  10.6b ,  10.6c , and  10.6d . Comparing the trajectories at

different non-zero Ri for various Ga in Fig.  10.6 shows that an oblate spheroid experiences a
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Figure 10.6. Trajectories of an oblate spheroid with AR = 1/3 in a homoge-
neous and a stratified fluid for different Ga and Ri. a) Ga = 80, b) Ga = 170,
c) Ga = 210, d) Ga = 250, and e) a schematic summarizing the settling ve-
locity, particle trajectory and the orientation in the three zones identified in
the settling motion of an oblate spheroid in a stratified fluid. Left vertical axis
and bottom horizontal axis indicate spheroid position (solid line is the settling
trajectory). Right vertical axis and top horizontal axis are for particle settling
velocity vs time (dashed line is the settling velocity).

qualitatively similar trajectory (after the initial transients which will be absent if we initialize

the oblate spheroid with the broad-side on orientation) irrespective of its Ga and Ri. The

settling path can be divided into three regions.

Initially, as the spheroid accelerates from rest, it sediments approximately in a straight

line until its velocity approaches the threshold for the reorientation onset. We call this region

I. In region II, the oblate spheroid starts reorienting due to the onset of the reorientation

instability. This induces a non-zero horizontal velocity component in the settling of an

oblate spheroid. As a result, the particle moves in the horizontal direction, breaking the

straight line motion and getting deflected in the transverse direction. This region can also
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be identified in the settling velocity of the oblate spheroid. The settling velocity attains a

temporary plateau after it falls below the threshold for reorientation. During this time, the

oblate spheroid experiences reorientation from broad-side on to edge-wise and gets deflected

in the horizontal direction. This horizontal deflection has previously been observed for disks

[ 233 ], [ 374 ], [ 376 ]. This region ends when the reorientation is over and the settling velocity

increases momentarily as can be seen in Fig.  10.3a . Finally, in region III, as the particle

comes close to its neutrally buoyant position, its velocity quickly decelerates and stops which

is indicated by the reversal of the horizontal trajectory at the end of the settling path in

Fig.  10.6 . These settling trajectories and regions are similar to those observed for a disk in a

stratified fluid [ 376 ]. However, we do not observe any change in the orientation of an oblate

spheroid from edge-wise at the end of region III as observed for a disk [ 376 ]. This is most

likely because of the ideal conditions in simulations as opposed to experiments. Fig.  10.6e 

summarizes the three regions of the settling path of an oblate spheroid in a stratified fluid

along with their onset conditions on the settling velocity evolution plot.

10.3.1.3 What causes deceleration and reorientation of an oblate spheroid in a
stratified fluid?

In the case of disk-like bodies settling in a homogeneous fluid, the path instabilities as

described in the last subsection can be explained by the wake instabilities [ 366 ], [ 384 ], [ 385 ].

Therefore, analysing the wake vortices can provide insight into the mechanisms leading to

a particular type of motion in either a homogeneous or a stratified fluid. For an oblate

spheroid settling in a homogeneous fluid, a single toroidal vortex attached to the particle

is initially formed. This is similar to a spherical particle moving with a steady velocity in

a homogeneous fluid. As time passes, instabilities develop and the particle starts rotating

around one of its major axes, normal to the direction of gravity as shown in Fig.  10.3b .

As the angle of the oblate spheroid with respect to the horizontal axis increases, a part of

this toroidal vortex detaches from the particle in a hairpin like structure [ 369 ]. Vortices are

associated with low pressure regions than the ambient. So, as a result of the detachment

of the toroidal vortex, the oblate spheroid experiences a torque due to the formation of this

low pressure region behind it which directly opposes the rotation of the particle in the other
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Figure 10.7. Dimensionless iso-surfaces of Q-criterion equal to 5×10−4 for an
oblate spheroid with AR = 1/3, Ga = 80 and Ri = 5 at equal time intervals
of t/τ = 10.74 starting from t/τ = 18.78. These contours show the evolution
of vortices. The vortical structures identified by the positive Q-criterion are
associated with a lower pressure region behind the particle.

direction. Owing to inertia, the particle then rotates in the other direction. New hairpin

vortices keep detaching from the oblate spheroid alternatively from either sides as it settles,

leading to periodic changes in the orientation and oscillatory paths [ 369 ].

The situation is completely different in the case of an oblate spheroid settling in a strat-

ified fluid. This is due to the fact that stratification suppresses the vertical motion of the

fluid ([  251 ], [ 284 ], [ 299 ] as shown by the isopycnals in Fig.  10.9 ) and prevents the particle

from attaining any steady state speed. As a result, there is no mechanism which can lead to

periodic vortex shedding as described above. Conversely, we observe two toroidal vortices,

one attached to the particle and one detached from the particle, as shown in Fig.  10.7 . Once

the particle velocity falls below the threshold velocity for reorientation, the detached vortex

is asymmetric and does not oscillate from one side to the other unlike the case of an oblate

spheroid sedimenting in a homogeneous fluid. As a result, there is a consistent low pressure

region behind the oblate spheroid which predominantly remains on one side. This results

in a torque on the particle which reorients it until it reaches its neutrally buoyant position.

Eventually, as the oblate stops, the torque acting on it also vanishes and it stops in the

edge-wise orientation.
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Figure 10.8. a) Forces acting on the oblate spheroid with Ga = 80 as it
settles in a stratified fluid with varying Ri shown with different colors. The
total force (solid line) can be split into two components, the hydrodynamic
component (dashed line) and the buoyancy component (dotted line). b) x-
component of the torque acting on the oblate spheroid with Ga = 80 as it
sediments in a stratified fluid with Ri = 5 along with the x-component of
the angular velocity. The net torque (solid line) is split into two components,
the hydrodynamic torque (dotted line) which tries to orient it in a broadside
on orientation (hence stabilizing) and the buoyancy component (dashed-dotted
line) which is destabilizing and tries to reorient it in a edgewise orientation. The
reorientation starts once the magnitude of hydrodynamic torque falls below
the buoyancy torque which happens when the particle velocity falls below the
threshold for reorientation as discussed in Sec.  10.3.1.1 .

To make this point clear, we measure the forces and torques acting on the spheroid. As

shown in the methodology section, the force (torque) acting on the spheroid can be split into

two components (eq.  10.5 and  10.6 ): 1) Fh (Th) , arising from the hydrodynamic stresses

acting on the particle surface, denoted as the hydrodynamic force (hydrodynamic torque),

and 2) Fb (Tb), arising from the buoyancy or the density disturbance at the particle surface,

denoted as the buoyancy force (buoyancy torque). The reason behind the deceleration of the

spheroid and its reorientation becomes clear by looking at the z-component of the forces and

the x-component of the torques acting on the spheroid shown for an oblate spheroid with

AR = 1/3, Ga = 80 and Ri = 5 in Fig.  10.8 .

Initially, the density difference between the particle and the local surrounding fluid results

in a high buoyancy force (high Fb,z) on the spheroid resulting in its acceleration (negative

Fz at the initial t/τ in Fig.  10.8a ). As the spheroid accelerates, the magnitude of the
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Figure 10.9. Evolution of the x-component of the dimensionless baroclinic
vorticity generation term due to the mis-alignment of the density gradient
vector with the direction of gravity, ∇ρf × k̂, in the x = 0 plane for an oblate
spheroid with AR = 1/3, Ga = 80 and Ri = 5. For a major clarity, colorbar
for the baroclinic vorticity generation is shown only in the last panel. The
solid lines indicate dimensionless isopycnals or equal density lines separated by
a value of 0.5. Darker shade of grey indicates a higher density. The panels are
snapshots (row-wise) at specific time intervals with t/τ = 0, 2.69, 8.06, 13.43,
18.8, 24.17, 29.54, 34.91, 40.28, 45.65, 51.02, 56.39, 61.76, 67.13, and 107.4.
The first panel shows the initial configuration and the last shows the settling
configuration after the oblate reorients in the edge-wise orientation.

hydrodynamic drag increases (Fh,z increases) and the buoyancy force decreases in a region

with increasing fluid density. Hence, the spheroid accelerates till the magnitude of the

hydrodynamic drag becomes larger than the buoyancy force (Fh,z > Fb,z) at which point it

attains the maximum velocity. The buoyancy force is unable to overcome this increasing

hydrodynamic drag which leads to the deceleration of the spheroid (Fz > 0 meaning the net

force acting on the spheroid is in the opposite direction to its motion). Eventually, as the
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particle reaches its neutrally buoyant position, it stops as there is no net force acting on it.

In a homogeneous fluid, i.e., Ri = 0, the buoyancy force acting on the particle is constant,

Fb,z = (ρp−ρf )Vpg and the hydrodynamic drag balances the buoyancy force at steady state,

resulting in a constant terminal velocity.

To understand the reason behind the reorientation, we plot the x-component of the

torques acting on the spheroid in Fig.  10.8b . Initially, as the particle accelerates, it topples

from edge-wise orientation to a broad-side orientation because of the increasing magnitude

of the hydrodynamic torque (Th,x) compared to the buoyancy torque (Tb,x). Because of

inertia, Th,x changes sign and and the oblate oscillates about its broad-side on configuration.

This is shown by the oscillating Th,x and ωp,x in Fig.  10.8b at initial times. Meanwhile, the

buoyancy torque (Tb,x) increases gradually and is always > 0, which leads to dampening of

the oscillations of the oblate spheroid about the broad-side on orientation as can be seen

from the diminishing magnitude of the rotational velocity in Fig.  10.8b .

The spheroid keeps oscillating about the broad-side on orientation as long as the inertial

effects (or Th,x) are stronger compared than the buoyancy effects (or Tb,x). However, as the

spheroid decelerates, inertial effects start to weaken. In addition, the isopycnals resist further

deformation as will be explained below. As the spheroid velocity falls below the threshold

for reorientation (Up(t)/U < 0.15), the destabilizing buoyancy torque dominates over the

stabilizing hydrodynamic torque, i.e., Tb,x > |Th,x|. This transition in the dominating torque

is demarcated by a dotted vertical line in Fig.  10.8b which also corresponds to the time

when Up(t)/U < 0.15. As a result, the spheroid stops oscillating about the broad-side on

orientation and starts to reorient to the edge-wise orientation since Tb,x > |Th,x| implies

a net positive torque on the spheroid which results in a net positive rotational velocity

(ωp,x > 0) as shown in Fig.  10.8b . In a homogeneous fluid, the buoyancy/baroclinic torque

is absent. Hence, the inertia and Th acting on the spheroid results in a broad-side on

orientation at steady state. The competition between the stabilizing hydrodynamic torque

and the destabilizing buoyancy torque can be understood by looking at the flow field and

the isopycnals around the spheroid as it sediments, as discussed below.

The equation for the vorticity, ω, can be obtained by taking the curl of the momentum

equation  10.1 .
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ρf
Dω

Dt
= (ω ·∇) u + µ∇2ω − g∇ρf × k̂. (10.12)

The last term on the right hand side of equation  10.12 , i.e., ωg = −g∇ρf× k̂, is the vorticity

generation due to the displacement of isopycnals caused by the settling motion of the particle.

This term is also known as the baroclinic vorticity generation. This contribution arises due

to the mis-alignment of the density gradient with the direction of gravity. This term will be

exactly 0 in a homogeneous fluid. This contribution is thus specific to particles sedimenting

in a stratified fluid as the vorticity around the particle is very different in a homogeneous

and a stratified fluid [  299 ].

We plot the x-component of the baroclinic vorticity generation, ωg, in the yz plane

around a settling oblate spheroid in Fig.  10.9 . This term reveals the reason behind the onset

of instability and the reorientation of an oblate spheroid in a stratified fluid. Initially this

vorticity generation term is symmetric with a thin region of zero ωg separating regions of

positive and negative baroclinic vorticity (blue and red regions in Fig.  10.9 ) exactly along

the center-line of the spheroid. We call this the plume of zero baroclinic vorticity or “the

plume” for simplicity. The plume also acts as the axis of symmetry for ωg. We call the point

at which the plume intersects the particle surface as the origin of the plume. A vertically

straight plume with its origin on one of the center-lines of the oblate signifies a symmetric

ωg around the particle.

As the particle settles and slows down, the oblate spheroid topples from an edge-wise to

broad-side on orientation due to inertial effects. Since the particle is accelerating, the vortic-

ity generation region expands as the isopycnals deform in the long wake behind the particle

till it reaches the peak velocity. After reaching the peak velocity, the particle decelerates

due to increasing buoyancy effects because of the tendency of the displaced isopycnals to

return to their original levels as shown by evolution of isopycnals in Fig.  10.9 . As a result,

the region of vorticity generation shrinks. The origin of the plume shifts along the longer

face of the oblate towards the other end as it oscillates about the broad-side on orientation.

As the inertial effects decrease with the particle deceleration, the oscillations of the

oblate spheroid about the broad-side on orientation are dampened. The isopycnals that
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were deformed earlier (in the wake of the particle) do not completely return to their original

form, thus opposing further deformation as the oblate particles tries to oscillate. Hence, the

oscillations die out. This prevents the origin of the thin plume from shifting completely to

the middle of the spheroid, thus preventing ωg to become symmetric. Since the origin of the

plume is not at the center of the oblate, the generated vorticity field is asymmetric. The origin

of the plume does not cross the center of the spheroid and remains on one side. In addition,

because of the reduced inertia, there is no mechanism to keep the spheroid oscillating about

the horizontal. Thus, the ωg distribution around the oblate remains asymmetric. This results

in the onset of instability in the oblate orientation as the origin of the plume tries to return to

its earlier position on the spheroid, i.e., on the edge. The net torque on the oblate spheroid

slowly reorients it to the edge-wise orientation (Fig.  10.8b ). The same process will occur

irrespective of the initial orientation of the oblate spheroid which will eventually reorient in

the edge-wise orientation.

10.3.1.4 Drag enhancement due to stratification

In the previous section, we discussed the reasons behind the decrease in the settling

velocity of the particle as it settles into a heavier fluid. Here, we quantify the effect of fluid

stratification by calculating the added drag due to stratification as the particle sediments. It

has been shown in previous studies on spheres and disks that the stratification results in a

significant additional drag on the settling particle [  299 ], [ 351 ], [ 376 ]. The aim of this section

is to provide an idea regarding the relative magnitudes of stratification induced drag and

the hydrodynamic drag as particles settle in a stratified fluid. The results obtained here can

be used for modeling the added stratification drag on spheroids in real-life situations such

as suspensions of spheroids in a stratified fluid.

There are three main contributions to the total force acting on the particle as it settles in

a stratified fluid [  299 ]. First, the viscous and pressure forces due to the current motion of the

particle (hydrodynamic drag). Second, the buoyancy force caused by the perturbations in

the temperature field due to the particle motion (stratification drag). Thirdly, the combined

effect from added mass and history forces which have been observed to be negligible with

respect to the first two contributions for a sphere settling in a stratified fluid [ 299 ]. To
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calculate the stratification drag, we assume that the oblate spheroid undergoes a quasi-

steady settling. This means that the buoyancy and the hydrodynamic contributions to the

total force are instantaneously balanced [ 376 ]. Owing to the quasi-steady assumption we

neglect the added mass and the history effects which are anyway smaller than the buoyancy

and the drag force [ 299 ], [  376 ]. The stratified drag coefficient can be defined as [ 351 ]

CS
D = 2 (ρP/ρ(z)− 1) gD

U2
P (z) . (10.13)

Here ρ(z) and UP (z) are the unperturbed background density and the particle velocity at the

instantaneous particle location z. Hence, various dimensionless parameters also vary with z

and can be written as a function of the instantaneous particle location as

ρr(z) = ρP/ρ(z), (10.14)

Rep(z) = |UP (z)|D
ν

, (10.15)

Fr(z) = |UP (z)|
ND

. (10.16)

Here, Fr(z) is the instantaneous Froude number which can also be written as Fr(z) =√
Rep(z)/Ri. Please note that Ri remains constant irrespective of the particle speed and

location.

For spheroids in a homogeneous fluid, we use the following correlation for the drag coef-

ficient (CH
D ) which is valid in the range 1 ≤ Rep ≤ 200 and 0.4 ≤ AR ≤ 4 [  386 ]

CH
D = 24AR0.49

Rep(z)
(
1.05 + 0.152Rep(z)0.687AR0.671

)
. (10.17)

Fig.  10.10 presents the variation in the added drag due to stratification (CS
D − CH

D ) for

different stratification strengths (Fig.  10.10a ) and different Ga (Fig.  10.10b ). As the particle

starts from rest, it accelerates initially and Fr(z) increases. As the particle accelerates, the

stratification drag acting on it decreases and hence CS
D − CH

D decreases. This is expected

as the inertial effects dominate in the initial phase of the settling until the particle attains
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(a) (b)

Figure 10.10. Added drag due to stratification, CS
D − CH

D , for an oblate
spheroid with AR = 1/3 as a function of the instantaneous particle Froude
number, Fr(z), for a) Ga = 210 and different stratification strengths. b)
Added drag for Ri = 3 for different Ga. The arrows show the direction of
increasing time and the filled dots show the simulation start time. The dashed
pink line shows the −4 power line to indicate a Fr(z)−4 scaling of CS

D − CH
D .

a peak velocity. Hence, CS
D − CH

D reaches a minimum when the particle attains its peak

velocity.

Once the particle reaches its peak velocity, it starts to decelerate as the buoyancy and

stratification effects start to dominate over the inertial effects. As a result, the stratification

drag starts to increase again. The difference, CS
D−CH

D scales as Fr(z)−4 as shown in Fig.  10.10 

and increases with increasing Ga (Fig.  10.10b ). These calculations for drag show that the

stratification drag can be 1− 5 orders of magnitude higher than the hydrodynamic drag and

hence it is crucial to include it in calculations for when we have suspensions of particles in

a stratified fluid. The calculations show that the extra contribution to the total drag varies

as Fr−4, a simple expression which can be used for modeling the effect of stratification on

the particle motion in practical applications.

10.3.2 Settling dynamics of a prolate spheroid in a stratified fluid

Similar to the case of an oblate spheroid, we report the simulation results on the settling

dynamics of a prolate spheroid with AR = 2 in a stratified fluid. We present the results for

the settling dynamics in a homogeneous fluid as well for comparison.
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10.3.2.1 Fluid stratification slows down and partially reorients a settling prolate
spheroid

Fig.  10.11 shows the settling velocity of a prolate spheroid with AR = 2 in a homoge-

neous and stratified fluid with different stratification strengths for Ga = 80 and 180. The

prolate spheroid starts from rest in an initially quiescent fluid. It then accelerates to reach

a maximum velocity depending on its Ga and Ri. In a homogeneous fluid, i.e., Ri = 0, the

prolate spheroid reaches a terminal settling velocity as shown in Fig.  10.11a and  10.11b .

The stratification has the same effect on the settling velocity of a prolate spheroid as it

has on an oblate spheroid. In particular, the stratification causes a continuous deceleration of

the settling velocity after the initial transients. In addition, the settling velocity magnitude

reduces with the stratification strength for prolate spheroids with same Ga. The reasons

behind these observations are the same as discussed in Sec.  10.3.1.1 and are discussed briefly

in Sec.  10.3.2.3 and Fig.  10.16 .

To study the effect of stratification on the particle orientation, we initialize the prolate

spheroid in an edge-wise orientation, i.e., θ = 0◦. In a homogeneous fluid, we find that,

it eventually settles down in a broad-side on, i.e., θ = 90◦ orientation, once it attains its

terminal velocity. However, similar to the case of an oblate spheroid, fluid stratification

significantly changes the settling orientation as shown in Fig.  10.11c and  10.11d .

As the prolate spheroid accelerates from rest, it topples from an edge-wise orientation to

a broad-side on orientation. However, this orientation is stable only in a homogeneous fluid.

In a stratified fluid, once the velocity magnitude falls below a particular threshold (we find

that to be ≈ 0.15), the prolate spheroid starts to reorient. But we observe that unlike an

oblate spheroid, it can only reorient partially, i.e., it does not exactly go back to θ = 0◦. The

final settling orientation depends on the stratification strength and the Reynolds number.

This becomes clear when examining the final orientations at Ga = 80 and Ga = 180 for

increasing stratification strengths in Fig.  10.11c and  10.11d . At low Re, i.e., Ga = 80, the

prolate spheroid reorients almost completely at high stratification (Ri = 10) such that θ ≈ 0◦

at the final times. However, for a lower stratification strength, i.e., Ri = 5, it reaches a final

orientation of θ ≈ 30◦. At a higher Ga, i.e., Ga = 180, the final orientation is θ ≈ 22◦ and

θ ≈ 35◦ for Ri = 10 and Ri = 5, respectively. Thus, the final orientation angle increases if we
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Figure 10.11. Time evolution of the settling velocity of a prolate spheroid
with AR = 2 in a homogeneous fluid (Ri = 0) and a stratified fluid with
different Ri: a) Ga = 80, b) Ga = 180. Evolution of the prolate orientation for
AR = 2 in a homogeneous fluid (Ri = 0) and a stratified fluid with different
Ri: c) Ga = 80, d) Ga = 180. The inset in (b) shows the initial oscillations
with decreasing amplitudes in the velocity and orientation of the spheroid.
The prolate spheroid attains a steady state terminal velocity and orientation
(broad-side on) in a homogeneous fluid. Stratification leads to a reduction in
the spheroid velocity and a continuous deceleration of the spheroid velocity
until it stops. The magnitude of the deceleration increases with stratification.
The onset of reorientation given by |Up/U | < 0.15 and is denoted by a dotted
horizontal line in (a,b) and correspondingly by yellow stars in (c,d).

increase Ga at fixed Ri, i.e., final orientation progressively leaves the edge-wise orientation

(θ = 0◦).

Next, we quantify the effects of fluid density stratification on the peak velocity of the pro-

late spheroid (see Fig.  10.12a ). The results are similar to the case of an oblate spheroid. We
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observe that the peak velocity decreases monotonically with the fluid stratification strength

and increases with increasing Ga. Also, the relative decrease in the peak velocity for the

lowest to highest stratification strength explored reduces with Ga. For Ga = 80, it decreases

by ≈ 33% while for Ga = 180 it decreases by ≈ 18%. This is due to the increase of the

inertial effects as compared to the stratification effects with increasing Ga for the same Ri.

As shown in Fig.  10.11a and  10.11b , increasing the stratification strength or reducing the

inertia of the particle results in the earlier onset of the reorientation instability. To con-

clude, we observe that, the time ((t/τ)threshold) at which the particle velocity falls below the

threshold velocity for the onset of reorientation decreases as O(Ri−1), see Fig.  10.12b where

we display the time for the onset of the instability for different particle Reynolds number

and stratifications.

(a) (b)

Figure 10.12. Effect of inertia and stratification strength on a) the peak
velocity, (Up(t)/U)peak, of a settling prolate spheroid with AR = 2. The
peak velocity attained by the particle decreases with increasing stratification
and increases with particle inertia, and b) the time ((t/τ)threshold) at which
|Up(t)/U | < 0.15. The dashed line in (a) is a guide to the eye. The dotted line
in (b) is the (t/τ)threshold = A ∗ Ri−1 fit with A = 97.0 and 218.8 for Ga = 80
and Ga = 180, respectively. The O(Ri−1) fit in (b) is consistent with the case
of an oblate spheroid in Sec.  10.3.1.1 .
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10.3.2.2 Settling trajectory of a prolate spheroid in a stratified fluid

Similarly to the case of an oblate spheroid, stratification suppresses the oscillatory tra-

jectories of a prolate spheroid in a homogeneous fluid at high Ga. The settling trajectories

of a prolate spheroid with AR = 2 in a homogeneous and stratified fluid are displayed in

Fig.  10.13 . In a homogeneous fluid, the particle settles in a straight line at Ga = 80 and in

an oscillatory path at Ga = 180. Since stratification results in a reduction of the settling

velocity, the prolate spheroid stops at an earlier position as we increase the stratification

strength. In addition, the oscillatory path observed for a prolate spheroid with Ga = 180 in

a homogeneous fluid disappears in a stratified fluid.

A prolate spheroid goes through two regimes, unlike the three regimes reported above for

the settling of an oblate. In the first regime, denoted by I, it oscillates about its broad-side

on orientation as it settles. In this regime, the magnitude of the settling velocity is still higher

than the threshold below which the spheroid starts to reorient. However, once the settling

velocity drops below the threshold for the onset of reorientation, the particle starts to rotate

from broad-side on to edge-wise orientation. This is regime II. Unlike an oblate spheroid

which rotates quickly in regime II and settles at a final edge-wise orientation in regime III,

a prolate spheroid reorients slowly in regime II. Furthermore, the prolate spheroid does not

reorient completely, but attains a final oblique orientation with θ between 0◦ and 35◦. The

exact value of the final θ depends on Ga and Ri as explained before. The settling path along

with the settling velocity are sketched in Fig.  10.13c .

10.3.2.3 Why does a prolate spheroid reorients partially and only has two set-
tling paths regimes in a stratified fluid?

As for the case of an oblate spheroid, we analyse the wake vortices to gain insight into

the mechanisms leading to the reorientation of a prolate spheroid. The reasons for the

deceleration and the reorientation of a prolate spheroid in a stratified fluid are similar to

that of an oblate spheroid as will be discussed in this subsection. For a prolate spheroid

settling in a homogeneous fluid, a single vortex attached to the particle is initially observed

as in the case of an oblate spheroid. As we increase Ga, this vortex grows in size. At
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Figure 10.13. Trajectories of a prolate spheroid with AR = 2 in a homoge-
neous and a stratified fluid for different Ga and Ri. a) Ga = 80, b) Ga = 180,
and c) a schematic summarizing the settling velocity, particle trajectory and
the orientation in the two regimes observed in the settling motion. Left ver-
tical axis and bottom horizontal axis indicate the spheroid position (solid line
is the settling trajectory). Right vertical axis and top horizontal axis display
the particle settling velocity vs time (dashed line is the settling velocity).

low Ga this vortical structure is still symmetric, however, it becomes helical resulting in an

instability for a prolate spheroid with AR = 3 for Ga > 70. As a result, a prolate spheroid

with AR = 3 rotates about the vertical axis for Ga > 70 [ 369 ]. This is also clear in Fig.  10.13 

as the prolate spheroid with Ga = 80 settles in a straight line while the prolate spheroid with

Ga = 180 has an oscillatory path. As shown in [  369 ] the vortical structures for a prolate

spheroid in a homogeneous fluid result in a broad-side on orientation.
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The situation is completely different in the case of a prolate spheroid settling in a stratified

fluid. In this configuration, the stratification suppresses the vertical motion of the fluid and

prevents the particle from attaining any steady state speed. In a stratified fluid, initially

there is one vortex attached to the particle as shown in Fig.  10.14 . As time passes, a part

of this vortex detaches and remains predominantly on one side of the prolate spheroid as

also shown in Fig.  10.14 . As a result of this, there is a significant asymmetric low pressure

region behind the prolate spheroid. This results in a torque which reorients the particle

with its major axis aligned with the density gradient until it settles at its neutrally buoyant

position. As discussed above, a prolate settles at an angle between 0◦ and 90◦ depending on

the Reynolds number.

(a) (b) (c) (d) (e)

Figure 10.14. Dimensionless iso-surfaces of Q-criterion equal to 5× 10−4 for
a prolate spheroid with AR = 2, Ga = 80 and Ri = 5 at equal time intervals of
t/τ = 28.65. t/τ = 23.87 for the first panel. The vortical structures identified
by the positive Q-criterion are associated with a lower pressure region behind
the particle.

We present for forces and torques acting on the prolate spheroid in Fig.  10.15 . The

net force and the force components, Fh,z and Fb,z behave similarly to the case of an oblate

spheroid discussed in Sec.  10.3.1.3 . High magnitude of the buoyancy force compared to the

hydrodynamic drag explains the initial acceleration of the prolate. However, the buoyancy

force decreases as the prolate sediments in a region with higher fluid density causing it to

slow down. The gradual increase in the magnitude of the destabilizing buoyancy torque

compared to the stabilizing hydrodynamic torque as the prolate velocity decreases explains
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Figure 10.15. a) Forces acting on the prolate spheroid with Ga = 80 as
it settles in a stratified fluid for different values of Ri shown with different
colors. The total force (solid line) can be split into two components, the hy-
drodynamic component (dashed line) and the buoyancy component (dotted
line). b) x-component of the torque acting on a prolate spheroid with Ga = 80
as it sediments in a stratified fluid with Ri = 5 along with the x-component
of the angular velocity. The net torque (solid line) is split into two compo-
nents, the hydrodynamic torque (dotted line) which tries to orient the prolate
in a broadside on orientation (hence stabilizing) and the buoyancy component
(dashed-dotted line) which is destabilizing and tries to reorient the prolate
edgewise. The reorientation starts once the magnitude of the hydrodynamic
torque falls below the buoyancy torque which happens when the prolate veloc-
ity falls below the threshold for reorientation discussed in section.  10.3.2.1 .

the onset of reorientation to the edgewise orientation below a threshold velocity as shown

in Fig.  10.15b . This is similar to an oblate spheroid as shown in Fig.  10.8b . However, a

difference between the oblate and prolate spheroid case is found: the partial reorientation

and the absence of regime III in the settling of a prolate spheroid.

The secondary motions of the spheroids provide a hint about why the prolate spheroid

does not completely reorient. An oblate spheroid oscillates about the broad-side on orien-

tation while a prolate spheroid does not oscillate about the broad-side on orientation as it

attains terminal velocity in a homogeneous fluid [ 369 ]. Hence, if the inertial effects are strong

enough, they can prevent the prolate spheroid from reorienting completely. This becomes

clear if we compare the evolution of the buoyancy torque on an oblate spheroid and a prolate

spheroid (Fig.  10.8b and  10.15b ). Once the particle velocities fall below the threshold for the
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Figure 10.16. Evolution of the x-component of the dimensionless vorticity
generation term due to the mis-alignment of the density gradient vector with
the direction of gravity, ∇ρf × k̂, in the x = 0 plane for a prolate spheroid
with AR = 2, Ga = 80 and Ri = 5. The solid lines indicate dimensionless
isopycnals or equal density lines separated by a value of 0.5. Darker shade
of grey indicates a higher density. The panels are snapshots (row-wise) at
specific time intervals with t/τ = 0, 4.77, 14.32, 23.87, 33.42, 42.97, 52.52,
62.07, 71.62, 81.17, 90.72, 100.27, 109.82, 119.37, and 219.65. The first panel
shows the initial configuration and the last shows the settling configuration
after the prolate stops.

onset of reorientation, the destabilizing buoyancy torque on an oblate spheroid dominates

for a longer time (4.5 units in dimensionless time which is enough to ensure that the oblate

spheroid reorients completely) as compared to a prolate spheroid (1.75 units in dimensionless

time which is not enough to reorient the spheroid completely) before they balance each other

as the particle velocity approaches 0. Similar observations regarding complete/partial reori-
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entation in the limit Re→ 0 and Ri→ 0 were also made in a recent theoretical study [ 245 ]

which hints at the role of the particle AR in determining the exact degree of reorientation.

To understand the reorientation mechanism, we again examine the x-component of the

vorticity generation (ωg) due to the deformation of the isopycnals (Fig.  10.16 ). The dynamics

are similar to what happens in the case of an oblate spheroid settling in a stratified fluid as

discussed in Sec.  10.3.1.3 . The only difference is that the prolate spheroid reaches its neutrally

buoyant location before it can reorient completely where it stops moving and rotating as seen

in Fig.  10.11c and  10.11d .

10.3.2.4 Stratification drag on a prolate spheroid

Fig.  10.17 shows the added drag due to stratification, CS
D − CH

D on a prolate spheroid

sedimenting in a stratified fluid. The drag due to stratification behaves similarly to the

case of an oblate spheroid discussed in Sec.  10.3.1.4 . The stratification drag on the prolate

particle decreases as it accelerates. CS
D − CH

D is minimum when it attains a peak velocity

and starts to increase again as the buoyancy/stratification effects take over inertial effects

and slow it down. As in the case of an oblate spheroid, CS
D − CH

D scales as ≈ O(Fr(z)−4).

(a) (b)

Figure 10.17. Added drag due to stratification, CS
D − CH

D , for a prolate
spheroid with AR = 2 as a function of the instantaneous particle Froude
number, Fr(z), for a) Ga = 80 and different stratification strengths. b) Added
drag at Ri = 5 for different Ga. The arrows show the direction of increasing
time and the filled dots show the simulation start time. The dashed pink line
shows the −4 power line to indicate a Fr(z)−4 scaling of CS

D − SHD .
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Figure 10.18. Effect of permeability of the particle of the stratifying agent on
a) the settling velocity, Up(t)/U , of a settling oblate spheroid with AR = 1/3,
and b) the orientation, θ, for Ri = 5 & 10. k = 0 inside the particle means the
stratifying agent cannot diffuse into/ out of the spheroid. A non-zero value
for k inside the particle results in increasing the temperature and decreasing
the density of the boundary layer. For a very small kr = 0.001, the spheroid
settling dynamics is similar to kr = 0 case. However, for a high kr = 1, the
spheroid has a completely different settling dynamics. If the stratifying agent
can diffuse inside the spheroid, then, the spheroid attains a terminal velocity
and does not reorient. These results show that spheroids will reorient only in
the case of salt stratified fluid or an adiabatic particle and not in a temperature
stratified fluid with conductive particles.

10.3.3 The effect of heat conductivity ratio κr on the settling spheroid

For this study, we have chosen a no flux boundary condition on the particle surface,

i.e., the stratifying agent cannot diffuse inside the particle (adiabatic/impermeable or no

flux) [ 387 ] and, as a consequence, pycnoclines must be normal to the particle surface. This

is the case if the stratifying agent is salt or the particle is adiabatic. In this section, we

investigate the settling dynamics when the fluid and particle temperature influence each

other by changing the heat conductivity ratio kr. Fig.  10.18 shows the settling dynamics of

particle having a non-zero kr. For a small kr = 0.001, the settling dynamics of an oblate

spheroid is similar to the case kr = 0. The velocity is slightly higher for kr = 0.001. The

particle accelerates initially, attaining a peak velocity after which it decelerates and stops

when it reaches its neutrally buoyant position. Also, as its velocity falls below a threshold, it

reorients to an edge-wise orientation. Since the flux of the stratifying agent into/out of the
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Figure 10.19. Effect of permeability of the particle to the stratifying agent on
a) the settling velocity, Up(t)/U , of a settling prolate spheroid with AR = 2,
and b) the orientation, θ, for Ri = 5 & 10. k = 0 inside the particle means the
stratifying agent cannot diffuse into the spheroid which results in no change in
the density of the surrounding boundary layer. This is true in the case when
the stratifying agent is salt. A non-zero value for k inside the particle results
in diffusing heat to the surrounding fluid and thus decreasing the density of
the boundary layer. For a high kr = 1, the spheroid has a completely different
settling dynamics, with the spheroid attaining a terminal velocity and not
reorienting. These results show that spheroids will reorient only in the case of
salt stratified fluid and not in a temperature stratified fluid with conductive
particles.

particle is much slower than the settling dynamics of such small value of kr, the surrounding

fluid is not subjected to any significant heat exchange-induced density change. As for the

cases studied above, the particle settles in a fluid region with increasing density, its velocity

decreases as the net buoyancy force acting on it increases and the isopycnals resist their

deformation. No-flux boundary condition is typical for objects settling in a temperature or

a salt stratified fluid, e.g., plastics, metals, organisms, etc. [ 240 ], [  299 ], [  353 ], [  376 ].

The settling dynamics changes for a high kr value. A high kr value implies significant

heat exchanges between the two phases and results in a warmer fluid close to the particle

surface. The warmer boundary layer with decreased density accelerates upwards and thus

creates a downforce that prevents particles from deceleration. This scenario might occur in

chemical processes, e.g. liquid fluidized beds, and marine snow settling in a temperature

stratified water. For kr = 1, the settling dynamics during the initial time for an oblate
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spheroid is similar to kr = 0 case, however the particle does not keep decelerating as time

passes in contrast to the case with kr = 0. For a high kr, the particle attains a terminal

velocity much like in the case of an oblate spheroid settling in a homogeneous fluid. The

terminal velocity, however, decreases as we increase the stratification strength as shown in

fig.  10.18a . Furthermore, the oblate spheroid does not reorient to an edge-wise orientation

as its velocity does not fall below the threshold for the onset of reorientation instability, but

settles in a broad-side on orientation as shown in Fig.  10.18b . The same holds for a prolate

spheroid as shown in Fig.  10.19 . As discussed in Sec  10.3.1.3 and  10.3.2.3 , kr = 0 implies

that the isopycnals are orthogonal to the particle surface, which creates a net torque on the

spheroid. For a higher kr value, the pycnoclines are not orthogonal to the particle surface

and hence do not result in a significant destabilizing buoyancy torque, Tb, on the spheroid.

Thus, we conclude that no flux boundary condition is essential to observe the reorientation

of spheroids settling in a stratified fluid.

10.3.4 The effect of Prandtl number, Pr

The fluid Pr is one of the parameters that greatly influences the settling dynamics of

particles in a stratified fluid. Pr = ν/α quantifies the relative magnitude of momentum

diffusivity and the thermal diffusivity. Previous numerical studies investigating the motion of

isolated spheres in a stratified fluid concluded that changing the fluid Pr leads to quantitative

changes in the settling velocity [ 299 ] and radius of downstream jet [ 353 ] but does not lead to

any significant qualitative changes in the general trends and the overall behavior. We find

that similar observations hold true even for spheroid shaped particles settling in a stratified

fluid.

We investigate the effect of increasing the fluid Pr from 0.7 (value corresponding to

a temperature stratified atmosphere) to 7 (value corresponding to a temperature stratified

water) on the settling velocity and the orientation of spheroids in a stratified fluid. Fig.  10.20 

show the settling velocity and orientation variations with time for an oblate (AR = 1/3)

and a prolate (AR = 2) spheroid with fixed Ga = 80, Ri = 5 but for two different Pr = 0.7

& 7.0. The data shows that increasing the fluid Pr to 7.0 only quantitatively changes the
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(a) (b)

(c) (d)

Figure 10.20. Effect of the Prandtl number, Pr, on the settling dynamics of
an oblate (AR = 1/3, (a) & (b)) and a prolate (AR = 2, (c) & (d)) spheroid
with Ga = 80 settling in a stratified fluid with Ri = 5. Here κr = 0. ((a), (c))
Dimensionless settling velocity vs dimensionless time. Fluid Pr quantitatively
changes the settling velocity such that the settling velocity decreases with
increasing Pr. However, the overall trend does not change, i.e., acceleration
initially, attaining peak velocity, deceleration and finally particle stops at its
neutrally buoyant level. Increasing Pr to 7 from 0.7 also increases the threshold
for the onset of reorientation to |Up(t)/U | < 0.195 from |Up(t)/U | < 0.15,
respectively. ((b), (d)) Particle orientation vs dimensionless time. Increasing
the fluid Pr leads to the onset of reorientation instability at an earlier time and
also reduces the time interval in which the reorientation occurs. This shows
that a fluid in which the convection dominates diffusion, the influence of the
fluid stratification on the spheroid settling dynamics is stronger.

particle settling velocity and its orientation with time but does not change the general trends

discussed in Sec.  10.3.1.3 and  10.3.2.3 for Pr = 0.7.
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Figure 10.21. Variation in torque acting on an oblate spheroid with Ga = 80,
Ri = 5 and AR = 1/3 with time for two different Pr values. Increasing the
Pr of the fluid results in a stronger and dominant buoyancy torque, Tb, on
the spheroid for a fixed Ga and Ri which result in an earlier onset of the
reorientation.

We observe that increasing the fluid Pr reduces the settling speed of the spheroids as in

the case of spherical particles [ 299 ]. Also, the spheroids still reorient away for the broad-side

on orientation once their velocity magnitude falls below a particular threshold. Interestingly,

we observe that this threshold increases to |Up(t)/U | < 0.195 for Pr = 7.0 from |Up(t)/U | <

0.15 for Pr = 0.7 (Fig.  10.20a and  10.20c ). Furthermore, increasing Pr leads to a reduction

in the time, (t/τ)threshold, for the onset of the spheroid reorientation and the time required

for its reorientation as shown in Fig.  10.20b and  10.20d . Increasing the value of Pr results in

slower stratifying agent diffusion and hence increases the influence of inertial or convective

effects. As a result, the density boundary layer thickness which scales as δρ ≈ D/
√
RePr

reduces with increasing Pr. The density gradients (∇ρf as introduced in eq.  10.12 ) near the

particle surface scale as ≈ γD/δρ = γ
√
RePr. Thus, with increasing Pr, the magnitude of

the density gradients near the particle surface increases. This results in a stronger buoyancy

torque, Tb, on the spheroid in a fluid with a higher Pr for a fixed Ga and Ri as can be seen
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Figure 10.22. Comparison of velocity vs time for a prolate spheroid with
AR = 2 in two different domain sizes at Ga = 180 and Ri = 5. The error in
the velocity using a smaller domain is negligible which means even a smaller
domain gives accurate results but at a lower computational cost.

in Fig.  10.21 for an oblate spheroid. This increases the velocity threshold and also reduces

(t/τ)threshold for the onset of spheroid reorientation.

The results from this section prove that the basic physics behind the particle deceleration

and reorientation is independent of the fluid Pr since it is rooted in the buoyancy force and

torque as explained in Sec.  10.3.1.3 and  10.3.2.3 . Changing Pr will change the magnitude

of the buoyancy force and torque which results in a different peak velocity of the particles

and a different time for the onset of the reorientation, but the particles still decelerate and

reorient. Hence, the insights obtained from our study are also applicable at higher Pr like

7 for temperature stratified water or Schmidt number of order 700 for salt stratified water.

Our results also show a qualitative agreement with the experiments of disks settling in a

salt-stratified fluid (Schmidt number ≈ 700) [ 376 ] which showed that disks also decelerate

as they settle and reorient which is what we observe as well.

262



11. CONCLUSIONS AND FUTURE WORK

Fluid density stratification hinders vertical motion in a fluid, enhances drag on objects re-

sulting in slower settling speeds, and leads to the levitation/oscillation of objects around

or before their neutrally buoyant locations depending on the flow conditions. Stratifica-

tion has non-intuitive implications on the stability of vertically moving swimmers and the

hydrodynamic interactions between swimmer pairs and was discussed in chapter  8 and  9 ,

respectively.

Chapter  8 presents the findings of a direct numerical simulation study on the locomotion

of a single neutrally buoyant swimmer with finite inertia in a linearly stratified fluid. For

modelling the swimmer locomotion mechanism, we use the reduced squirmer model which

produces propulsion by periodic deformations of an array of cilia present on its surface. The

problem of self-propulsion of such a squirmer with finite inertia in a linearly stratified fluid

is more complex than a squirmer moving in a homogeneous fluid. This complexity gives rise

to interesting phenomena and significantly changes the motion of squirmers as compared to

their movement in a homogeneous fluid.

We use the Richardson number Ri = Re/Fr2 to quantify the stratification strength.

We observe that, irrespective of the value of the swimming mode, β, stratification leads

to reduction in the steady state swimming speed for squirmers. The reason for this is the

trapping of lighter density fluids in the recirculatory regions by the pullers (β > 0) and

the pushers (β < 0). This results in the buoyancy force on the squirmers in the opposite

direction to their swimming motion which reduces their swimming speed. In addition, the

resistance offered by the isopycnals to their deformations to the flow fields generated by the

squirmers increases with increasing the stratification. This also results in the reduction of

the swimming speeds of the squirmers.

Another significant deviation from the homogeneous case is regarding the stability of

the squirmers. The flow around the pullers become unsteady 3D at high Re making them

unstable, while pushers remaining stable for very high Re in a homogeneous fluid. The

reason for this is the increasing size of the recirculatory region in the rear of the pullers

with Re which hinders the vorticity advection to downstream causing the instability, while
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the recirculatory region in front of the pushers shrinks with increasing inertia leading to an

efficient vorticity advection to the downstream making them eternally stable. The effect of

stratification is exactly the opposite from the effect of inertia. Stratification leads to shrinking

of the rear recirculatory bubble for a puller as a puller “pulls” heavier fluid from its sides

upwards. In the exigency by these heavier isopycnals to move to their neutrally buoyant level

lead to shrinking of the vorticity bubble behind the pullers. On the contrary, stratification

leads to the expansion of the front recirculatory bubble of a pusher as it “pushes” lighter

fluid trapped in front of it to heavier fluid. So high enough stratification makes a puller

stable while a very strong stratification breaks the axisymmetry of the flow around a pusher

making it unstable.

The energy calculations for a pusher and a puller show that, a pusher is more efficient

at swimming in a stratified fluid as compared to a puller considering the differences in their

swimming speeds. Again, the efficient advection of the vorticity to the downstream by the

pushers is the reason for this trend. The mixing efficiency of the puller is higher at low Ri

(< 2) while the mixing efficiency of a pusher is higher at high Ri (> 2). The reason for this

is the similar trend in the generation of the gravitational potential energy by pullers and

pushers in the respective Ri regimes.

These results hint towards the fascinating role of density stratification on the locomotion

of the marine organisms like ciliary zooplanktons and provide possible clues for the reasons

behind the preferential accumulation of larger sized planktons at pycnoclines [ 288 ]. The

speed of larger organisms with higher inertia, when encounter a density jump or a strong

stratification during the vertical migratory motion in oceans, significantly reduces and the

energy required for the propulsion also goes up. In addition, the swimmers stray from

their straight vertical trajectory and start swimming in the horizontal direction due to the

onset of instability (e.g., high Re pullers in a weak stratification or a pusher in a very strong

stratification). This might lead to the accumulation of the swimmers at the density interface.

These mechanisms come into picture only at a finite Re. At low Re, the swimmers are always

stable [ 279 ], [ 280 ] and stratification might lead to increase in their speeds, e.g., pullers [  293 ],

thus resulting in negligible accumulation which is true for smaller sized planktons [ 288 ].
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Stratification also increases the mixing efficiency generated by an individual swimmer, an

effect which amplifies when we consider swarms of swimmers [ 226 ], [  292 ].

Even though these organisms dwell in a density stratified environment, most of the ex-

perimental studies on their locomotion have been done in a homogeneous fluid. More ex-

perimental studies are thus needed to investigate the effect of stratification on the motion

and flow fields of individual marine organisms. In addition, real marine organisms have a

wide variety of shapes, create jets as they swim and show a wide variety of other variations.

Studying the effect of these variations on the swimming dynamics of organisms in a stratified

fluid is also an interesting problem to investigate.

Chapter  9 investigates the hydrodynamics interaction between a pair of squirmers with

finite inertia in a stratified fluid with different stratification strengths. We compare the

squirmer trajectories and velocities with their trajectories and velocities in a homogeneous

fluid for the same initial conditions. We present results for two types of initial configura-

tions: 1) squirmers approaching each other in opposite directions, and 2) squirmers moving

side-by-side in the vertical direction. The results presented can potentially be important in

understanding the collective dynamics of microorganisms in oceans and lakes where stratifi-

cation is observed.

For a pair of pullers approaching each other, stratification leads to their reorientation

after the collision contrary to what happens in a homogeneous fluid. The tendency of the

displaced isopycnals behind the pullers results in a torque on the pullers which reorients

the pullers in their initial orientation after the collision. Stratification also leads to the

elimination of the closed loop trajectories observed for colliding pullers at high Re (= 10 and

50) which has been explained using the flow field and the density field around the pullers

during and after the collision.

A pair of pullers moving side-by-side follow complicated and distinct trajectories at dif-

ferent Re and Ri. In a homogeneous fluid, the pullers are repelled away from each other after

initial attraction and a close contact for Re = 10, but they are hydrodynamically trapped

near each other in loops as they move down for Re = 50. Again, high stratification leads

to the elimination of the loops and hydrodynamic trapping deflecting the pullers away from
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each other even at Re = 50 similar to what happens for Re = 10 pullers in a homogeneous

fluid.

A pair of pushers come to a complete stop after the collision at high Ri. However, this

configuration is unstable which results in a 3D motion of the pushers away from the plane

of collision. As the pushers move away from the plane of collision, they stick together. The

3D motion is gradually prevented as we increase Re and a higher Ri is required for the

instability. These results indicate that in a stratified fluid, organisms might get trapped

near each other and move horizontally which can lead to their accumulation in oceans [ 288 ],

[ 289 ].

In a homogeneous fluid, two pushers moving side-by-side are attracted towards each

other, but eventually, they scatter away from each other with a scattering angle increasing

with Re. Stratification hastens the repulsion between the pullers moving side-by-side and

results in a decrease in the scattering angle at high Re.

The results for contact time for the squirmers show that pushers tend to spend more time

in contact with each other than pullers. Furthermore, stratification increases the contact time

for the squirmers. This indicates an enhanced chance for their success in reproduction in

stratified environments. We also present results for variation in the Pr of the fluid and differ-

ent lateral initial separations of the squirmers. But these were limited to a few cases to save

computational expenses. Logical extensions of this work are to study the effects of varying

the fluid Pr, the effects of squirmer swimming mode β, effects of initial squirmer configu-

rations, and the effects of buoyancy by relaxing the quasi-instantaneous neutral buoyancy

condition on the interactions of squirmers in a stratified fluid.

The results of chapter  8 and  9 show that a strong stratification or strong inertia can

destabilize the straight-line trajectory swimmers, while colliding swimmers can get trapped

or deflected in horizontal directions, which increases their contact time and is better for

their reproductive success. Flow induced by the swimmers decays faster in a stratified

fluid, concealing them better from predators. These observations explain the hydrodynamic

mechanisms behind the accumulation of phytoplankton and harmful algal blooms in oceans.

Chapter  10 probes the conditions and mechanisms behind the reorientation instability of

anisotropic particles as they settle in a stratified fluid. A toroidal flow close to the particles
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arises due to the need for the isopycnals to be orthogonal to the rigid particle surface. This

results in the reorientation instability in anisotropic particles owing to the dominance of

stratification torque when the particle velocity falls below a threshold. The shapes considered

are an oblate spheroid with AR = 1/3 and a prolate spheroid with AR = 2. We vary the

Reynolds number Ga from 80−250 and the Richardson number Ri from 0−10 while keeping

the density ratio ρr and Prandtl number Pr constant. The results show that the settling

dynamics of spheroids is significantly different in a stratified fluid than in a homogeneous

fluid.

Initially, the spheroids accelerate from rest and reach a maximum velocity. The peak

velocity attained by the particles increases with their Ga while decreases monotonically when

increasing the stratification. After the settling velocity attain its peak value, stratification

dominates over inertia, because the inertial effects are not enough to sustain the deformation

of the isopycnals once the particle reaches its peak velocity. Hence, due to the tendency of

the isopycnals to return to their original positions, the fluid experiences a resistance to its

motion. This results in an increased drag and hence a deceleration of the particle until it

stops at its neutrally buoyant position. This evolution of the settling velocity is similar to

that of a spherical particle settling in a stratified fluid.

The fluid stratification alters the orientation of the spheroids compared to their orien-

tations in a homogeneous fluid. The fluid stratification leads to reorientation instability as

the particle settling velocity falls below a threshold. For the parameters considered here, the

onset of the reorientation instability occurs at |Up(t)/U | < 0.15. Interestingly, the dimen-

sionless threshold velocity for the onset of reorientation instability is found to be the same

for the oblate and prolate spheroids. This value might be different for different values of the

density ratio and the Prandtl number. As a result of this instability, an oblate spheroid set-

tles with its broader side aligned with the direction of the stratification. On the other hand,

a prolate spheroid reorients partially or fully depending on its Ga and settles such that its

longer edge is at an angle greater than 0◦ and lower than 45◦ with the horizontal direction.

This is completely opposite to what happens in a homogeneous fluid as both an oblate and

a prolate spheroid settle in a broad-side on orientation. Stratification also eliminates the

oscillatory path instability observed for spheroids in a homogeneous fluid. This is due to the
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decreasing magnitude of the inertial effects as the particle decelerates while reaching regions

of higher fluid density.

The asymmetry in the low pressure region behind the spheroids due to an asymmetric

wake results in the onset of the reorientation instability. This asymmetry results from the

asymmetric distribution of the vorticity generation term due to the mis-alignment of the

density gradient vector with the vertical direction (baroclinic vorticity generation). As a

result, the destabilizing buoyancy torque, Tb, becomes dominant over the stabilizing hydro-

dynamic torque Th as the spheroid velocity falls below a threshold value causing the onset of

reorientation instability. We also report that the spheroids will only reorient in the case when

they are impermeable to the stratifying agent (κr << 1) which is true in the case of a salt

stratification or an adiabatic particle. If the stratifying agent can diffuse (κr >> 0) inside

the particle, then the spheroid won’t reorient and the settling dynamics is similar to that in

a homogeneous fluid with stratification causing a reduction in the terminal velocity. We also

find that increasing the fluid Pr from 0.7 (temperature stratified air) to 7.0 (temperature

stratified water) results in a stronger and dominant Tb on the spheroids. As a results for

Pr = 7.0, the onset of reorientation occurs at a higher velocity threshold |Up(t)/U | < 0.195

and at an earlier time compared to case Pr = 0.7. The results presented in this paper are

a first contribution to the field of settling particles in a fluid, in particular for anisotropic

particles and stratified fluids. As extensions of this work, it would be interesting to investi-

gate the behavior of particle suspensions, the effect of the aspect ratios, and also extensively

quantify the effect of Pr as well as other particle shapes on the settling dynamics of particles

in a stratified fluid.

Though much is known about the dynamics of spherical objects, we are just starting to

investigate the dynamics of anisotropic objects in stratified fluids. The effects of stratification

and particle shape anisotropy on the pair interactions and suspension dynamics are still

elusive. In addition, investigating the combined effects of porosity, shape anisotropy, shear,

and background turbulence can help us develop better models for predicting the transport

and accumulation of marine particles in oceans. Limited numerical simulations show that

changing the fluid Pr does not alter the overall qualitative behavior but affects the body

dynamics quantitatively. More investigations on the role of Pr in the motion in stratified
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fluids can help us better understand the differences in the effects of temperature stratification

vs. salinity stratification. Diffusion effects play a governing role in the accumulation and

aggregation of objects in horizontal layers. More investigations are needed to understand the

underlying physics and build force interaction models that could be utilized in the simulations

of suspension dynamics in a stratified environment. Another interesting problem would be

to probe the presence of densitotaxis, i.e., do swimmers have a movement preference when

encountering density gradients due to factors other than nutrients?
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[127] H. Freundlich and H. Röder, “Dilatancy and its relation to thixotropy”, Transactions
of the Faraday Society, vol. 34, pp. 308–316, 1938.

[128] A. Helz, “Viscosity studies of dickite suspensions”, Journal of the American Ceramic
Society, vol. 22, no. 1-12, pp. 289–301, 1939.

[129] E. da C Andrade and J. Fox, “The mechanism of dilatancy”, Proceedings of the
Physical Society. Section B, vol. 62, no. 8, p. 483, 1949.

[130] A. Metzner and M. Whitlock, “Flow behavior of concentrated (dilatant) suspensions”,
Transactions of the Society of Rheology, vol. 2, no. 1, pp. 239–254, 1958.

[131] R. Hoffman, “Discontinuous and dilatant viscosity behavior in concentrated suspen-
sions. ii. theory and experimental tests”, Journal of Colloid and Interface Science,
vol. 46, no. 3, pp. 491–506, 1974.

[132] H. Hoffmann, H. Rehage, G. Platz, W. Schorr, H. Thurn, and W. Ulbricht, “Investi-
gations on a detergent system with rodlike micelles”, Colloid and Polymer Science,
vol. 260, no. 11, pp. 1042–1056, 1982.

[133] N. J. Wagner and J. F. Brady, “Shear thickening in colloidal dispersions”, Physics
Today, vol. 62, no. 10, pp. 27–32, 2009.

[134] J. F. Brady and J. F. Morris, “Microstructure of strongly sheared suspensions and its
impact on rheology and diffusion”, Journal of Fluid Mechanics, vol. 348, pp. 103–139,
1997.

280



[135] S. Jamali, A. Boromand, N. Wagner, and J. Maia, “Microstructure and rheology
of soft to rigid shear-thickening colloidal suspensions”, Journal of Rheology, vol. 59,
no. 6, pp. 1377–1395, 2015.

[136] D. P. Kalman and N. J. Wagner, “Microstructure of shear-thickening concentrated
suspensions determined by flow-usans”, Rheologica acta, vol. 48, no. 8, pp. 897–908,
2009.

[137] E. Brown and H. M. Jaeger, “Shear thickening in concentrated suspensions: Phe-
nomenology, mechanisms and relations to jamming”, Reports on Progress in Physics,
vol. 77, no. 4, p. 046 602, 2014.

[138] N. Fernandez, R. Mani, D. Rinaldi, D. Kadau, M. Mosquet, H. Lombois-Burger, J.
Cayer-Barrioz, H. J. Herrmann, N. D. Spencer, and L. Isa, “Microscopic mechanism
for shear thickening of non-brownian suspensions”, Physical Review Letters, vol. 111,
no. 10, 2013.

[139] C. Heussinger, “Shear thickening in granular suspensions: Interparticle friction and
dynamically correlated clusters”, Physical review E, vol. 88, no. 5, p. 050 201, 2013.

[140] Z. Pan, H. de Cagny, M. Habibi, and D. Bonn, “Normal stresses in shear thickening
granular suspensions”, Soft Matter, vol. 13, no. 20, pp. 3734–3740, 2017.

[141] M. E. Cates and M. Wyart, “Granulation and bistability in non-Brownian suspen-
sions”, Rheologica Acta, vol. 53, no. 10-11, pp. 755–764, Nov. 2014.

[142] N. Y. Lin, B. M. Guy, M. Hermes, C. Ness, J. Sun, W. C. Poon, and I. Cohen,
“Hydrodynamic and contact contributions to continuous shear thickening in colloidal
suspensions”, Physical review letters, vol. 115, no. 22, p. 228 304, 2015.

[143] Z. Pan, H. de Cagny, B. Weber, and D. Bonn, “S-shaped flow curves of shear thicken-
ing suspensions: Direct observation of frictional rheology”, Physical Review E, vol. 92,
no. 3, p. 032 202, 2015.

[144] J. F. Morris, “Lubricated-to-frictional shear thickening scenario in dense suspensions”,
Physical Review Fluids, vol. 3, p. 110 508, 2018.

[145] R. I. Tanner, “Aspects of non-colloidal suspension rheology”, Physics of Fluids, vol. 30,
no. 10, p. 101 301, 2018.
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