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ABSTRACT 

Drought is the leading cause of crop loss globally. Breeding for drought tolerance is 

difficult due to the polygenetic nature of the trait and low heritability of yield under drought. Plant 

relative water content is a secondary trait that may advance drought breeding programs.  

The LeafSpec, a newly developed hyperspectral leaf scanner, was used to test the 

hypothesis that distribution of hyperspectral information across the leaf can be used to improve 

prediction of leaf relative water content. Data was collected across two experiments from five 

different maize genotypes representing temperate and tropical hybrids with varying levels of 

drought tolerance and inbreds with varying stomatal densities. The hyperspectral intensity 

averaged across the entire leaf was used to predict relative water content with an R2Prediction of 

0.7989. Model performance was tested using additional predictors that quantify: 

• Spectral information from multiple regions in the leaf (e.g. base, middle, tip).  

• Spectral information from regions segmented by tissue type. 

• The distribution of hyperspectral intensity in a cross section parallel to the midrib or in a 

cross-section perpendicular to the midrib.  

• A contour pattern of hyperspectral intensity from the outside edge of the leaf to the midrib. 

• Texture features extracted from each wavelength. 

The mean spectrum model outperformed previously reported results, potentially due to the 

elimination of sources of noise and higher quality data produced by the LeafSpec. None of the 

models with expanded feature sets outperformed the mean spectrum model at a statistically 

significant level. The hyperspectral signal from the green tissue a third of the way from the base 

of the leaf and half way between the midrib and edge was the most correlated with relative water 

content. Models without midrib and vein tissue signals had increased performance. Distribution of 

the Water Index visually showed improved ability to discriminate leaf RWC as compared to 

individual wavelengths but this did not translate to improved model performance. 

For future work, more data should be collected to improve model robustness and 

hyperspectral imaging should include SWIR wavelengths that have previously been found useful 

for predicting relative water content. Exploring indices composed from current spectral bands may 

lead to improved prediction performance.   
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 INTRODUCTION 

Drought is the leading cause of crop loss globally. Breeding for improved drought tolerance 

is difficult due to the polygenetic nature of the trait and low heritability of yield under drought 

conditions. To address this, breeders have turned to breeding for secondary traits such as leaf 

rolling under water stress or anthesis-silking interval which are more heritable under drought stress.  

Genomic breeding has opened up a new frontier for drought tolerance breeding since 

genomic markers are fully heritable and can be consistently identified regardless of environmental 

conditions. However, identification of relevant markers requires study of large populations and 

phenotyping methods that are scalable, repeatable, and cost effective. For this reason, image based 

techniques have emerged as the phenotyping tool of choice. 

Plant relative water content is a secondary trait that has the potential to be useful in drought 

breeding programs. While previously measured manually, hyperspectral imaging has proven to be 

reasonably effective method for predicting plant relative water content across diverse genetics. 

The state-of-the-art method for predicting plant relative water content from hyperspectral data is 

to collect hyperspectral images, segment out plant pixels, average the hyperspectral intensities 

across all plant pixels, and to use this mean spectrum to build a partial least squares regression 

model. 

Work on classification of leaves based on nitrogen treatment has shown that analyzing the 

distribution of hyperspectral data across the leaf can improve predictive performance over the 

mean hyperspectral data. In this work, we use data from the LeafSpec, a newly developed 

hyperspectral leaf scanner, to test the hypothesis that distribution of hyperspectral information 

across the leaf can be used to improve prediction of leaf relative water content. 
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 LITERATURE REVIEW 

2.1 Maize Water Status and Mechanisms of Drought Adaptation 

2.1.1 Agronomic Impact of Drought 

In the modern era, maize has become the largest grain crop and almost outweighs wheat 

and rice combined in terms of tons produced per year (Agricultural Output - Crop Production - 

OECD Data, 2021). Maize is grown all over the globe and plays a significant role for both 

industrialized food systems and consumption oriented small-holder farmers. 

The effect of drought on maize and the people who grow it has been a major factor for as 

long as maize has been cultivated. As far back as the 12th century, drought induced failures in 

maize crops forced the Anasazi Native Americans to abandon their homeland and search for wetter 

climates (Benson et al., n.d.) As US maize yields have risen, the sensitivity to drought has 

increased because the improved performance requires access to adequate water. Some estimates 

state that drought sensitivity in US corn yields have risen 55% from 1999 to 2018 (Lobell et al., 

2020). Currently, drought is the leading cause of crop losses from natural disaster and the damage 

is only expected to increase with rising global temperatures (FAO, 2018). 

2.1.2 Maize Water Status 

Water status maintenance is critical to healthy development at every maize growth stage. 

The root is the first thing to emerge from a germinating maize seed and immediately grows 

downward in search of water to support shoot growth. Maize leaves are oriented so that rainfall 

is redirected towards the stalk where it flows downwards directly to the root zone. 

On an agronomic scale, growing a maize crop requires a significant quantity of water. In 

central Nebraska, seasonal water use for maize is 22-25 in/yr as compared to 21-23 in/yr for 

soybeans and 19-22/yr in for sorghum (Kranz, 2015). However, when compared based on grain 

produced per use of water consumed, maize is reasonably efficient. In a three year study of rainfed 

crops in Nebraska, maize had a water use efficiency of 5.6 bu/in, sorghum was 6.37 bu/in and 

soybean was 2.43 bu/in (Rees, 2015). Daily water demand is highly variable and is influenced by 

weather conditions. Overall, water demand is low during crop establishment, picks up around V4 
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as the canopy closes, and reaches a maximum just before the reproductive stages of growth with a 

slow tapering during the grain filling stages (Kranz, 2015). 

In well-watered plants, water content is highest in the leaf sheaths, followed by the stem 

and roots, with water content being the lowest in the green leaf tissue (Sun et al., 2015). Along the 

leaf, water content is generally observed to decrease slightly from the base towards the middle 

with a more drastic decline towards the leaf tip (Pick et al., 2011). These studies did not separate 

tissue types when measuring water content, so the observed trend may be due to the declining 

quantities of midrib and xylem tissues closer to the leaf tip. More work is needed to understand if 

there is a water gradient across the leaf in the green leaf tissue.  

Within each plant, transpiration creates a gradient of water potential extending upward 

from the roots to the elongating portion of the leaf. Experiments with V5 maize plants grown in 

controlled environments quantified the water potential profile at -0.07 to -0.01 MPa in the soil, -

0.15 MPa in the mature root tissue, -and -0.13 to -0.17 MPa across the leaf tissue (Tang & Boyer, 

2002). When water in the soil is limited, the water potential in the plant becomes approximately 

ten times greater (-1.5 MPa) and is strongest at the leaf tip. This results in a stronger driving force 

to extract water from dry soil. Some of the water is diverted from the transpiration path by a growth 

induced water potential that extends radially between xylem veins in the elongation portion of the 

leaf. This potential between two veins ranged from -0.44 MPa during the day and fell found to -

0.38MPa during the night. Comparatively, transpiration moves water under a gradient of -0.17 

MPa m-1 and growth creates a gradient of -1000 MPa m-1 between vascular bundles. 

The flow of water in leaves can be analyzed using radioactive isotopes. As water evaporates, 

there is an enrichment of heavy isotopes due to the molecular kinetics of evaporation (Merlivat & 

Coantic, 1975). Several models have been developed to describe this phenomena in leaves. The 

most famous is the Craig-Gordon but this has been improved upon by models such as the one 

developed by Farquar-Gan (Craig & Gordon, 1965; Gan et al., 2003). Studies of 18O enrichment 

in plant leaves show the evaporation leads to isotope enrichment along the transpiration path from 

the base of the leaf to the tip and radially from the midrib to the leaf edge (Gan et al., 2003). This 

enrichment is humidity dependent as it is driven by the evaporation of water along the leaf tissue 

(Gan et al., 2003). The authors used the Faquar-Gan model to quantify flow regimes using the 

Peclet number which is a dimensionless number defined as the rate of advective flow to the rate 

of diffusive flow. In that study, the longitudinal variability in 18O was best modeled by a Peclet 
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number as high as 10^7, indicating a flow dominated by advection rather than diffusion. Peclet 

numbers describing the radial gradient in 18O were on the range of 0-2.5 indicating a diffusive flow. 

2.1.3 Drought Adaptation Mechanisms 

Under a shortage of water, maize plants have several adaptive behaviors to maintain a 

healthy water content in plant tissues for as long as possible. 

Leaf rolling is the most obvious response to water stress. Maize leaves are normally flat 

and elongated to expose the maximum surface area to the sun for photosynthesis. Under water 

stress, maize leaves begin to fold at the midrib and curl along its axis to create a corkscrew shape. 

This is caused by a difference in elastic contraction between the top and bottom surfaces of the 

leaf as moisture content declines (Hay et al., 2000). Rolled leaves have lower rates of transpiration 

and are exposed to less photosynthetic damage from sunlight (O’Toole et al., 1979; Smith et al., 

1997). While leaf rolling may help plants maintain internal hydration, it does not seem to 

contribute to productivity and may be more of a desperate attempt at survival. Genotypes which 

exhibit higher levels of leaf rolling tend to have reduced yield under drought conditions (Allah, 

2009; Effendi et al., 2019). Thus, other mechanisms of maintaining water status are more 

advantageous from an agronomic and breeding perspective. 

Stomata are critical to water stress adaptation. Stomatal opening and closing is a rapid 

response that is able to help plants cope with short-term environmental changes such as daily 

variations in water stress. Short-term opening and closing can be regulated passively by water 

turgidity but is more commonly managed via an active stress response signaled through calcium, 

ABA, or another signal molecule (Le et al., 2011). However, it has been hypothesized that 

oversensitive stomatal response with early closure can lead to reduced adaptation to short term 

dehydration and lower agronomic performance under normal conditions (Benešová et al., 2012). 

Changes in stomatal density are observed under longer periods of drought stress. Studies that 

transgenically altered stomatal density found high correlations between stomatal density and both 

water use efficiency and drought survival (Liu et al., 2015). Under severe drought stress, xylem 

embolism will occur in the midrib, but this is not observed in leaf veins due to stomatal closure 

(Cochard, 2002). Maize plants that have been exposed to a week or more of drought conditions do 

not increase their stomatal density once the water stress has ended while drought hardy plants like 
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sorghum are capable of recovering normal stomatal density even after a fourteen day drought 

(Glover, 1959).  

Roots are the foundation for maintaining plant water status. Under water stress, maize 

plants will stop shoot growth at a deficit of -1.00 MPa but will maintain root growth all the way 

until a deficit of -1.4 MPa is reached (Westgate & Boyer, 1985). An ideotype of “steep, deep, and 

cheap” was proposed as an optimal strategy for accessing deep soil moisture during water limited 

conditions (Lynch, 2013). Often, root density is higher than necessary for optimal for water uptake, 

potentially for increased extraction of nutrients (Robertson et al., 1993). When water becomes 

limiting, plants can reduce rooting density at shallower depths and divert more resources to 

growing towards deeper soil moisture. In a greenhouse drought study, plants with deep, low 

biomass root systems were found to be more efficient in terms of transpiration efficiency (van 

Oosterom et al., 2016). There are many other mechanisms of root adaptation to drought stress. 

Aeration in root cortical aerenchyma have been associated with higher levels of shoot biomass 

under drought stress, deeper rooting patterns, and higher leaf water content (Zhu et al., 2010). The 

authors of the study attribute these correlations to the reduced metabolic cost of soil exploration 

caused by higher air volume in roots. Roots are an under explored aspect of plant biology and more 

work needs to be done to understand the mechanisms of drought adaptation. 

Leaf growth is reduced under water stress. The rate of leaf elongation is consistent for well-

watered plants, but decreases exponentially with the water potential of the soil as stress is applied 

(Acevedo et al., 1971). In well-watered plants, a strong water potential gradient of -1000 MPa m-

1 exists between the vascular bundles of the elongation region causing leaves to expand along the 

midrib and widen axially (Tang & Boyer, 2002). Under water stress, this gradient is eliminated 

and does not return until sufficient soil moisture is present (Tang & Boyer, 2002). Leaf extension 

has been observed to be linearly related to the water potential in the leaf tissue (Acevedo et al., 

1971). Mildly stressed plants resume normal leaf elongation seconds after rewatering, supporting 

the idea that the xylem acts as a hydraulic unit bringing about immediate changes in leaf water 

potential as the soil water potential changes (Acevedo et al., 1971). This adaptation sacrifices new 

growth, but conserves water for already matured leaf tissues. 

Osmotic and metabolic adjustments are made to cope with the altered biochemistry that 

occurs under water limiting conditions. Studies of xylem sap exudates show significant differences 

in signaling hormones and the proteome under drought conditions. (Alvarez et al., 2008). Levels 
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of signaling hormones BAP and ABA were significantly higher 7 to 12 days after the initiation of 

water stress. ABA is a common long-distance stress signal between roots and leaves, so the 

increase was expected. BAP is implicated in delaying leaf senescence and promoting the 

accumulation of proline as an osmotic adjustment (McDavid et al., 1973; Thomas et al., 1992). 

Amino acid levels circulating in xylem sap also tended to increase, notably proline which has been 

implicated as an osmotic adjustment in response to salt stress (Thomas et al., 1992). The 

components for building lignin in cell walls were found to increase, indicating that lignin 

biosynthesis had declined in water stressed plants, possibly as a side effect of reduced growth 

overall. Expression increased for peroxidases responsible for crosslinking cell wall components. 

More crosslinking increases the rigidity of cell walls and could be a mechanism by which plants 

reduce growth and conserve water. The method used to extract xylem sap involved cutting off the 

top portion of the plant which almost certainly affects hormone signaling. All expression levels 

were compared to a set of control plants, but it is possible that there was an interaction effect 

between the water stress treatment and plant wounding that affected relative levels of hormone 

changes. Comparison of protein levels found differential expression in cell wall metabolism such 

as peroxidase, xyloglucan endotransglycosylase, polygalacturonase inhibitor and pectin 

methylesterase, and plant defense mechanisms such as thaumatin-like pathogenesis-related protein, 

zeatin-like protein, cupin family protein, putative germin A, class IV chitinase and b-1,3-glucanase. 

Once the environmental conditions exceed the capacity of the plant’s adaptive defenses, 

water stress develops from the bottom up when there is low soil moisture or damage to the vascular 

system. Sun et al. (2015) characterized the internal redistribution of water within maize plants 

experiencing drought stress. Maize seedlings were grown for two weeks, at which point half of the 

seedlings were no longer watered while the other half continued to receive regular watering. Six 

plants were harvested from each water treatment group and destructively measured at the points 

where the soil moisture in the drying pots reached 75%, 55%, 35%, 25%, 20%, 15%, and 10% of 

the field water capacity. They found that drying first occurred in the green tissue and sheath of 

lower leaves and moved upwards to the next leaf as moisture became more limited. The moisture 

content of the upper leaves was maintained above 75% if the soil moisture was above 15% field 

capacity. Once soil moisture dropped to 15% or below, the upper leaves dried, followed by drying 

of the stem and roots as extreme stress continued. At 20% field capacity, inward shrinkage of cell 

walls was observed along with declining volume of bulliform cells, declining number of 
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chloroplasts, deformation of chloroplasts, and a decline of photosynthesis to almost zero. They 

found that growth could be recovered within hours by plants that had experienced water stress at 

15% field capacity but if water stress of 10% field capacity was experienced, then a week or more 

of recovery time at normal soil moisture was needed for plants to reinitiate growth.  

2.1.4 Measuring Plant Water Content 

To understand the physiology of maize response to water stress, we must know the water 

content profile throughout the plant tissues. Physical measurements of relative water content have 

been the gold standard for assessing the water content of plant tissues. The general protocol is to 

cut a sample of tissue from the plant, record the fresh weight, submerge the tissue in water for 

several hours until turgidity is reached, blot the sample dry, record the turgid weight, dry the 

sample in an oven until equilibrium, and record the dry weight. The RWC value is calculated 

according to the formula below. 

 

Equation 1. Relative Water Content Calculation 

𝑅𝑊𝐶 = (𝐹𝑊 − 𝐷𝑊)/(𝑇𝑊 − 𝐷𝑊) ∗ 100% 

 

This is a widely used technique and significant work has gone into understanding what 

parameters affect measurement quality. As far back as 1962, Barrs and Weatherly conducted an 

assessment of sources of experimental error associated with the relative turgidity method (Barrs & 

Weatherley, 1962). They identified three main sources of error: changes in sample dry weight due 

to continued photosynthesis or respiration, growth of the leaf disk resulting in absorption of water 

beyond full turgidity, and irregularities in water holding capacity due to the cut edges of the disks. 

To prevent the accumulation or loss of dry matter, they suggest maintaining the external lighting 

at the compensation point. In their experiments with castor leaves, they found 500 to 800lux to be 

the appropriate light intensity to balance rates of photosynthesis and respiration. Upon submersion, 

there are clearly two phases of water absorption, the first phase characterized by a rapid uptake 

lasting approximately 4 hours and the second phase characterized by a slower linear increase that 

continues indefinitely. The general consensus is that the first phase of water absorption is due to 

achievement of turgidity and the second phase is caused by continued growth of the leaf disk (Barrs 
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& Weatherley, 1962; Čatský, 1959; Weatherley, 1950). Introduction of metabolic inhibitors or 

elimination of oxygen were effective at eliminating phase two water absorption, but these methods 

are impractical (Barrs & Weatherley, 1962). They recommend ending rehydration after 4hr to 

eliminate the increases caused by phase two absorption. This recommendation has been confirmed 

in a wide range of crops and the 4hr recommendation was specifically verified for maize (Bliss et 

al., 1957; Čatský, 1960; Namken & Lemon, 1960). Barrs and Weatherley (1950) describe a species 

dependent effect of irregularities in water holding capacity due to the cut edge of the sample. In 

our work with maize, we have found this effect to be important. Using a sharp razor blade to cut 

tissues produces samples that absorb water more quickly and absorb a higher total volume of water 

when compared to samples taken with a hole punch. This could be due to damage in vascular 

structure caused by the crushing action of the hole punch. 

Manual measurement of plant water status is the foundation of physiological drought 

research. In the current literature, this method is applied with widely varying submersion times, 

lighting conditions, etc. Researchers to rely on the consistency approach, in that if they treat all of 

their samples consistently then the RWC measurements are still comparable within their 

experiment. However, more consistent, efficient, cost-effective, and scalable methods are needed 

for breeding applications. 

2.2 Breeding for Drought Tolerance 

Improving drought tolerance has been an objective of breeding programs for a very long 

time. While unintentional selection for drought tolerance has probably been occurring since the 

domestication of maize, modern commercial programs began to adopt this as an important 

secondary trait in the 1930s after a series of years with  severe drought (Janick, 2010). Drought 

tolerance has continued to be important as increasing plant densities put more pressure on soil 

moisture resources and drought events increase in severity and frequency (Barbosa et al., 2021; 

Janick, 2010).  

2.2.1 Direct Selection 

The most direct breeding approach is to select for yield under drought stress conditions. 

Recurrent selection of a segregating population under multi-location drought-stress experiments is 
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a natural extension of current breeding programs that focus on improving yield in ideal conditions. 

For this approach to work, the genes for drought tolerance must be present in the narrow pool 

chosen for multi-location trials, they must be heritable, and progress from optimal environments 

must carry over to stressful environments (Maazou et al., 2016).  

All of these assumptions are limited in some way. Drought tolerance genes are less 

abundant in elite germplasm and many efforts have been made to introgress improved alleles via 

wide crosses to non-elite germplasm (Barbosa et al., 2021; Meseka et al., 2013; Moeinizade et al., 

2021). Heritability of yield under drought conditions is low. In a study of 3509 inbred lines across 

a range of moisture environments, yield was found to have a broad sense heritability of 0.6 under 

well watered conditions, but only 0.4 under stressful environments (Bolaños & Edmeades, 1996). 

Another study with testcrosses of 238 recombinant inbreds from a B73xMo17 population 

evaluated in multilocation trials with managed drought and non-drought conditions found that well 

watered yield heritability was 0.60 but only 0.37 in drought conditions (Ziyomo & Bernardo, 2013). 

Performance in optimal conditions is linked to, but does not guarantee performance in water 

limiting environments. If selection under optimal conditions was sufficient, then there would be 

no need to focus on drought trials. Ziyomo found only a 0.60 correlation between yield across 

watering treatments in a controlled breeding program (Ziyomo & Bernardo, 2013). A study of 108 

genotypes grown in six locations with a range of rainfall conditions found that the repeatability of 

the grain yield trials ranged from 39 to 80% (Eze et al., 2020). Water stress was just one of many 

factors that caused the observed genotype by environment interaction, but nevertheless this study 

shows the limited carryover from optimal conditions to a drought environment. 

Due to these limitations, results from directly breeding for yield under drought conditions 

are variable, with some authors reporting 12.6% gain in yield per selection cycle while others 

found very little genetic gain over three generations of selection (Chapman & Edmeades, 1999; 

Magorokosho & Tongoona, 2003) 

2.2.2 Selection for Secondary Traits 

To overcome the inconsistency of selecting for yield under drought, breeders have turned 

to selection for secondary traits that are more heritable under stress and are strongly correlated 

with yield. One of the earliest commercial breeding programs, Pioneer Hibred, has had a long term 

strategy of selecting for secondary traits such as anthesis-silking interval, ears per 100 plants, and 
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delayed senescence to improve the efficiency of their stress breeding (Janick, 2010). Numerous 

studies have found gains in efficiency when selecting for secondary traits in addition to yield under 

drought stress (Bänziger & Lafitte, 1997; Ziyomo & Bernardo, 2013). 

Selection for anthesis-silking interval (ASI) is one of the most successful examples. 

Drought stress during flowering causes a delay in silk growth relative to pollen shed. This can 

result in poor seed set or even total crop loss in extreme cases. Ability to maintain silk growth in 

water limiting conditions directly addresses the pollination challenge and may also generally 

indicate ability to maintain normal plant function under water stress. The previously referenced 

study that quantified the low heritability of yield under drought stress found that ASI maintained 

heritability under stressed conditions and had a 0.9 correlation with drought stressed grain yield 

(Bolaños & Edmeades, 1996). They found that pollination related secondary traits were much more 

correlated with drought yield than water status secondary traits. Magorokosho found ASI to be 

less correlated with drought yields (r = 0.40), but it was still one of the most useful and heritable 

traits in their study (Magorokosho & Tongoona, 2003). Many other studies find ASI to be a reliable 

predictor of drought yield and is often the highest performing secondary trait for selection 

(Bänziger & Lafitte, 1997; Messmer et al., 2009; Ziyomo & Bernardo, 2013). As pollination 

becomes robust to drought stress, the importance of other secondary traits may increase. 

Senescence traits (also called stay green) have been widely correlated with drought yields 

and yields in non-stressed conditions (Bolaños & Edmeades, 1996; Cairns et al., 2012; Ziyomo & 

Bernardo, 2013). Maintaining photosynthetic capacity by delaying senescence under stress 

increases yield because assimilate flux is a major determinant of kernel number and higher 

photosynthetic capacity later in the season increases grain fill (Schussler & Westgate, 1995).  

 Failure to develop an ear is a common drought stress response, so selection for consistency 

of ear setting under stress effectively increases yield stability (Wang et al., 2019). Bolanos found 

that ears per plant had a heritability of 0.77 under drought stress and had a 0.9 correlation with 

drought yield while yield in drought conditions had a heritability of only 0.4 (Bolaños & Edmeades, 

1996).  

 Visual assessment of leaf rolling has been widely applied across breeding programs and 

automated methods have been developed to quantify this trait from drone imagery (Baret et al., 

2018). However, leaf rolling is less correlated with yield under drought than other secondary traits 
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(Bruce et al., 2002). This may be due to the extreme stress required to induce leaf rolling having 

surpassed the relevant levels of water stress for assessing variation in drought yield.  

2.2.3 Genomic Selection 

Genomic selection has distinct advantages for improving drought tolerance. Once 

qualitative trait loci (QTL) are identified, they can reliably be identified in a segregating population 

and are more consistent and much cheaper to measure than yield under stress. Speed of breeding 

is a critical advantage of genomic selection with three selection cycles per year possible in a 

greenhouse or winter nursery setup as compared to the two years needed for a cycle of testcross 

phenotypic selection (Ziyomo & Bernardo, 2013).  

Many QTL have been identified for yield under drought stress and genomic methods of 

breeding are widely applied (Bankole et al., 2017; Bruce et al., 2002; Messmer et al., 2009; Ribaut 

& Ragot, 2007). A comparison of the breeding efficiency for selection on various traits relative to 

selection on drought yield alone (efficiency = 1.00) found that selection on the secondary trait ASI 

had a relative efficiency of 1.04, an index of drought yield and ASI had a relative efficiency of 

1.13 and that genome wide selection for drought tolerance had a relative efficiency of 1.24 

(Ziyomo & Bernardo, 2013). This experiment was conducted with testcrosses of 238 recombinant 

inbreds from a B73xMo17 population evaluated in multilocation trials with managed drought and 

non-drought conditions. 

As the cost of sequencing has declined, breeders are shifting from targeted marker assisted 

selection and moving to more general whole genome selection (Bhat et al., 2016). Genomic 

breeding approaches are better suited to improving drought tolerance than marker assisted 

selection because the broad genome coverage is better able to identify the important components 

of complex quantitative traits. Cerrudo et al found that genomic selection outperforms marker 

assisted selection for grain yield and secondary traits in a study with 169 doubled haploid lines 

derived from the cross between CML495 and LPSC7F64 and 190 testcrosses (tester CML494) 

were evaluated in a total of 11 treatment-by-population combinations under WW and DS 

conditions (Cerrudo et al., 2018). 

Several challenges for genomic breeding include the interaction of QTL with the 

environment, instability in yield QTL, sensitivity to different genetic contexts, and complexity of 

genetic interactions for drought stability (Messmer et al., 2009). The QTL controlling yield are 
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different in well watered vs water stressed environments indicating the continued need for 

selection under both conditions. Additionally, QTL identified in inbreds are not always valuable 

for predicting performance of hybrids and models often require training data from testcross 

populations to be useful (Cerrudo et al., 2018; Zhang et al., 2021). Work to identify QTL for 

salinity tolerance in rice using a fluorescence based imaging phenotype found significant QTL, 

but the QTL were not significant on all days of imaging (Campbell et al., 2015). The authors 

concluded that repeated phenotyping over time would be required to more reliably identify QTL 

for complex traits that would require non-destructive techniques such as imaging. 

Genotypic selection requires a large training population to be genotyped and phenotyped. 

This information is used to build a model that identifies the important genomic components and 

future generations are genotyped to identify recombinant individuals with high genome estimated 

breeding values. Phenotypic verification of the genomic predictions can be carried out in tandem 

with genomic selection or at the end of several cycles. Because of the large training population 

required, the phenotyping methods must be cost effective, scalable, and consistent. Traditional 

phenotypes of yield under drought stress and manually measured secondary traits are not able to 

scale to the size needed for genomic prediction to reach it’s full potential (Bhat et al., 2016). For 

this reason, much work has been put into developing automated phenotyping methods that can be 

deployed at scale.  

2.3 Hyperspectral Phenotyping of Leaf Water Content 

The ability to predict leaf water content at scale would provide breeders with a better tool 

to understand genetic adaptation to drought stress over a much more physiologically relevant range 

than current methods. Non-destructive imaging techniques are emerging as the dominant 

phenotyping method for large breeding programs pursing genomic selection (Bhat et al., 2016). 

These methods are repeatable due to their mechanical nature, high-throughput because each image 

only requires seconds to acquire, and cost effective at scale because the marginal cost of each 

image is almost zero after the initial equipment investment. Additionally, imaging data can be used 

to assess a wide range of traits at once using a single measurement. 
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2.3.1 Early Work: Hyperspectral Indices to Predict Plant Water Content 

Hyperspectral imaging is the most promising method to assess maize water content at scale. 

This method emerged from the NASA Landsat project, which is the “longest continuous space-

based record of Earth’s land in existence” with the first satellite launched in 1972 (Landsat Science 

-, n.d.). The multispectral imagery from this project provided the impetus for developing spectral 

indices to predict plant characteristics, the most famous of which is the Normalized Difference 

Vegetative Index (NDVI) which is used to identify regions with vegetative cover and has since 

been correlated with nitrogen content (Edalat et al., 2019; Rouse et al., 1974). The prediction of 

plant characteristics from leaf reflectance relies on variations in light absorption due to excitation 

of molecular bonds, primarily C-H, N-H, and O-H bonds at wavelengths in the visible (400–700 

nm), near-infrared (NIR; 700–1,100 nm), and short-wave infrared (SWIR; 1,100–2,400 nm) 

regions (Cotrozzi et al., 2020). In 1987, a water prediction index was developed using the Landsat 

imaging wavelengths in the range of 760-900 nm that was not significantly different from whole 

plant nor leaf water content in Agave deserti (Raymond Hunt et al., 1987). Over the subsequent 

decades, this index was refined and validated over a wider range of crops (PEÑUELAS et al., 

1993). In 1996, a Normalized Difference Water Index (NDWI) was proposed that was the 

normalized difference of intensities at 860nm and 1240nm. This work broadened the spectral range 

used for predicting water content into the short-wave infrared region (SWIR). Since its inception, 

the index has been validated in many crops and refined for specific applications (Chai et al., 2021). 

Other indices have been proposed including the Global Vegetation Moisture Index which uses NIR 

and SWIR wavelengths in a mathematical combination distinct from the traditional NDVI form 

(Ceccato et al., 2002). Generally, these indices were applied to satellite imagery to improve 

analysis of land cover and agricultural water usage (Cheng et al., 2008; Sims & Gamon, 2003). 

These efforts utilized small numbers of wavelengths in their final indices due to sensor 

limitations that prevented collection of full spectral data and insufficient computational power and 

methods to process spectral data if it could be obtained. As sensor technology improved, it became 

easier and more cost effective to collect images with full spectrum data. A method of using full 

spectral data for prediction of sample composition emerged from the field of chemometrics and 

began to be used more widely in the early 2000s (Wold et al., 2001). Partial Least Squares (PLS) 

was proposed as a statistical method to take the very large number of correlated predictors, reduce 

it to a set of key components, and use the key components to predict the response variable. This 
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method is similar to Principal Component Analysis (PCA) in that both methods reduce high 

dimensionality data into a set of critical components. However, the method of constructing these 

components is different. PCA maximizes the variance in predictor variables captured in each 

component while PLS maximizes the covariance between predictor and response captured. PLS is 

robust to having highly correlated predictor variables and is a preferred method for using spectral 

data to predict sample properties. Modern machine learning techniques are also capable of 

handling highly correlated predictor data, but are susceptible to overtraining and require very large 

datasets (>10,000 samples) to develop robust models. 

2.3.2 Current Standard: Hyperspectral Data and Partial Least Squares Regression 

As technology advanced, more work started to focus on using spectral data to predict 

relative water content in individual maize plants and leaves. Research done at the University of 

Nebraska Lincoln has been at the forefront of this effort. Early studies conducted in the greenhouse 

sought to correlate leaf hyperspectral reflectance with leaf water content using partial least squares 

regression (Ge et al., 2016). Spectral data from 500 – 1750 nm was collected using a Headwall 

scanner on 40 plants each from B73 and Fast Flowering Mini Maize-A. Scans were averaged 

across all plant pixels to create a representative spectrum used to predict leaf water content through 

PLSR modeling. The authors reported prediction R2 of 0.92 and 0.81 when modeling each 

genotype independently and 0.87 when modeling them both together. They repeated the 

experiment with 60 plants of B73 and were able to achieve a relative water content prediction R2 

of 0.93 (Pandey et al., 2017). This approach was applied to the maize diversity panel consisting of 

282 distinct genotypes in the field under nitrogen sufficient and nitrogen limiting conditions as 

well as the greenhouse under nitrogen limiting conditions (Ge et al., 2019). Leaf 2, 3, and 4 were 

sampled from a representative plant out of each plot. Hyperspectral data was collected at the tip, 

middle, and base of each leaf using a benchtop spectroradiometer with a range of 350-2500nm. 

The nine spectral readings were averaged to create a representative spectrum for the plant and 

compared to the mean leaf water content of the three sampled leaves. Data was divided into a 

training and test set according to a 60%/40% split. When modeled using both partial least squares 

regression and support vector machine regression techniques the prediction R2 was 0.70 (Ge et al., 

2019). The decline in accuracy across experiments indicates the challenge of building models that 

are robust to genotypic variation and noise generated by environmental variation. 
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Since the publication of these studies, others have replicated the results but failed to 

substantially improve the prediction accuracy across diverse genetics. A field study with six 

cultivars was able to predict canopy water content with an R2 of 0.70 using a predetermined 

hyperspectral index (Elsayed & Darwish, 2017). A greenhouse study with several hundred plants 

across multiple experiments was able to achieve plant water content prediction R2 of 0.76 and 

found that PLSR outperformed all other analysis methods (Mertens et al., 2021). A greenhouse 

study with 85 seedling plants used a variety of modeling methods including principal component 

analysis (PCA) and kullback-leibler divergence (KLD) to predict leaf water content from 

hyperspectral data (Gao et al., 2019). The authors were only able to report prediction R2 of 0.123 

for PCA and 0.590 for KLD. When applied in a breeding context, hyperspectral modeling 

techniques were able to discriminate among drought sensitive and tolerant genotypes with a R2 of 

0.65 in the training environment which fell to an R2 of 0.36 when the model was applied to data 

from a different environment (Ryckewaert et al., 2021). A study comparing support vector 

regression (SVR), partial least square regression (PLSR), and deep convolutional neural network 

for regression (CNN-R), and decision fusions of these methods found that all methods produced 

similar results with a prediction R2 of about 0.85 (Zhou et al., 2021). Most of the work using 

advanced machine learning techniques is focused on using RGB imagery to predict different 

classes of water stress due to the massive computational burden of processing hyperspectral 

imagery (Chandel et al., 2020; Zhuang et al., 2017).  

Other sensing technologies have been used to accurately predict leaf water content. Non-

contact resonant ultrasound spectroscopy data paired with convolutional neural network and 

random forest modeling was able to predict leaf water content with R2 of 0.85 and 0.71 respectively 

(Fariñas et al., 2019). Singh et al. used terahertz imaging to map the 3D distribution of water in 

agave leaves (Singh et al., 2020). The disadvantage of these approaches is that they often require 

large, stationary equipment and are only suitable for indoor analysis of potted plants that can be 

moved into the imaging station.  
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2.3.3 Next Steps: Utilization of High Resolution Imagery to Improve Prediction 

The maize leaf is complex, with 

multidimensional gradients of water content, 

gene expression, photosynthesis and tissue 

structure. Spatial patterns of color on leaves have 

been linked to a variety of plant conditions. 

Figure 1 shows several common nutrient 

deficiencies and the color patterns they cause 

(Shandong, n.d.). Pick et al. conducted a systems 

analysis of the maize leaf developmental 

gradients (Pick et al., 2011). They divided leaves 

into ten sections and analyzed each section to 

assess the distribution of metabolic and 

physiological properties finding that moisture 

content decreased linearly from the base of the 

leaf to the tip. Water exists in a gradient across 

the leaf and it is possible that water stress creates 

a unique pattern. 

One of the main limitations of current 

hyperspectral phenotyping of maize water 

content is the loss of distribution information. 

Current approaches average spectral reflectance 

across the entire plant and loose any information that may have been contained in the leaf pattern.  

Work in other crops shows that a distribution of hyperspectral signal exists across plant 

leaves and that this pattern may be useful for predicting leaf water properties. Higa et al. generated 

a PLSR water content prediction model and applied it to the individual pixels of high resolution 

hyperspectral images of golden pothos leaves (Higa et al., 2013). They found a distinct pattern in 

the predicted water content across the leaf with the edges and tip having less predicted moisture 

than the center and base. This result shows that there is variation in the spectral signature across 

the leaf, but conclusions about the actual water distribution can not be made since there was no 

experimental validation of the predicted pattern. They reported a 3% increase in model accuracy 

Figure 1. Symptoms of common nutrient 

deficiencies (Shandong). 
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when utilizing selected regions on the leaf to predict whole leaf water content, but did not test to 

ensure that this difference was statistically significant. Kim et al. used histogram analysis to try 

and differentiate between stressed and unstressed leaves (Kim et al., 2015). Leaf stress levels were 

generated by detaching leaves from a boxwood plant and allowing them to desiccate for various 

lengths of time. Spectral differences were attributed to differences in water content, but could have 

arisen from a wide range of stress responses caused by detachment. Nevertheless, the authors took 

high resolution hyperspectral images of the leaves and generated a histogram based on the pixel 

intensities for each wavelength and a variety of calculated indices. By comparing the 

Bhattacharyya statistics from histograms of two leaves, they were able to differentiate between the 

leaves when the difference in water content was at least 20%. This sensitivity is low, but indicates 

that higher level resolution data can be used to assess leaf characteristics. In their study of salinity 

on lettuce leaves, Lara et al. built a hyperspectral model to classify the effect of salinity treatment 

(Lara et al., 2016). They applied the model to the individual pixels from the leaf hyperspectral 

images and found higher levels of predicted salinity effects at the leaf edges. Texture features from 

RGB imagery were used classify young maize plants among three watering treatments with a 81% 

accuracy (Zhuang et al., 2017). Murphey et al. studied the effect of tissue types on water content 

distribution and hyperspectral prediction accuracy in lettuce leaves (Murphy et al., 2019). They 

measured the water content of whole leaves, green tissue, and stem and build correlations based 

on intensity values of the moisture stress index, normalized difference water index, and selected 

SWIR bands for each tissue type. They found that the relationship between hyperspectral signal 

and water content was highest for the green tissue and that hyperspectral signals from one leaf 

component were much less accurate at predicting water content of a different component. Leaf 

patterns are not used in current maize hyperspectral prediction models partly because previous 

work has not had access to a sensor capable of capturing a high resolution scan of the entire corn 

leaf.  

The recently developed LeafSpec is a sensor with the capability to capture hyperspectral 

data from whole maize leaves with high enough resolution to observe potential patterns related to 

water stress signals (Wang et al., 2020). The LeafSpec is a push broom scanner capable of 

capturing high resolution hyperspectral images from 450 to 950 nm. Imaging noise from ambient 

lighting and leaf angle is reduced because the scanner is clamped around the leaf slid from the base 

to the leaf tip. In an experimental validation reported in the literature, the LeafSpec was used to 
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scan the top collared leaves of 59 hybrid B73xMo17 maize plants at the V7-V8 stage under a 

lattice experimental design with a high/low water treatment and high/low nitrogen treatment 

(Wang et al., 2020). The mean spectral data from each leaf scan was used to predict the relative 

water content of the leaf using PLSR and a prediction R2 of 0.771 was obtained. This result was 

consistent with the results reported in the literature where spectral data was averaged across the 

entire plant. 

The high resolution capabilities of the LeafSpec have been used to improve nitrogen 

phenotyping. Ma et al. analyzed the distribution of NDVI from the base to tip of leaves and found 

that the pattern of NDVI was different for leaves from high and low nitrogen treatments. Using 

this pattern, they were able to develop an algorithm with improved sensitivity for discriminating 

between high and low nitrogen treatments (Ma et al., 2020).We hope to improve the prediction 

accuracy for leaf relative water content with the development of algorithms capable of utilizing 

the distribution of hyperspectral information across the leaf. 

  

Figure 2. Handheld hyperspectral imaging of maize leaves. (a) LeafSpec in use. (b) Mean 

spectrum obtained from a leaf scan. (c) Full resolution NDVI heatmap obtained from a leaf scan. 
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 METHODS 

3.1 Experimental Design 

Two experiments were conducted in the Purdue Lilly Greenhouse (40o25’19.7”N, 

86o55’7.8”W) to generate the data for this research. The temperature in the greenhouse was 

maintained at 23–29 °C with supplemental lighting for 12 h a day. Plants were grown in three liter 

pots filled with a 67% / 33% blend of Sun Gro Horticulture MetroMix 510 and Greens Grade 

Turface Profile. To ensure proper establishment, three seeds were sown per pot and thinned to one 

plant per pot one week after emergence. Two weeks after emergence, plants began to receive 

fertilizer treatments of 0.42g of 6-24-24 per week along with an additional 0.38g per week of 46-

0-0 fertilizer for the high nitrogen treatments. All plants were fully watered until one week before 

the sampling date. During that week, water was restricted to maintain designated soil moisture 

targets as measured with a HydroSense II Handheld Soil Moisture Sensor. 

The first experiment was planted in February, 2021 and consisted of 72 plants grown in a 

fully interleaved design with three genotypes (Hybrids B73 X Mo17, P1105AM, and DTMA-205 

a cross of tropical and temperate germplasm), two nitrogen treatments (50mL solution per week 

of 200 ppm and 25 ppm nitrogen fertilizer), and four watering treatments based on soil moisture 

content (<5% Threshold for leaf rolling, 6-8% Stress observed without leaf rolling, 10-12% No 

stress observed, >30% Fully watered 2hr before sampling). There were three replicates for each 

GxNxW treatment.  

The second experiment was planted in July, 2021 and consisted of 120 plants grown under 

the same experimental design with the addition of two inbred genotypes (Hybrids B73 X Mo17, 

P1105AM, and DTMA-205. Inbreds B73 and B97) The hybrids selected include tropical and 

temperate germplasm with varying levels of drought adaptation. The inbreds include the reference 

genotype B73 and B97, which has an altered stomatal density phenotype. 

3.2 Handheld Hyperspectral Device and Plant Sampling 

For each experiment, plants were grown in three blocks with full within block randomization. 

Experiment one was not randomized until one week before imaging, but experiment two was 
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randomized at the time of sowing. Plants were sampled over three successive days at the V7-V8 

stage, with one experimental block sampled per day. 

For each measurement day, all measurements were conducted within the four hour period 

centered on solar noon. For each plant, the top collared leaf was scanned using the LeafSpec 

developed by the Purdue Phenotyping lab group (Wang et al., 2020). The LeafSpec has a spectral 

range of 450 to 950nm with a spectral resolution of 0.74nm. It is a push broom imager with 224 

pixels per line with the number of samples determined by an encoder wheel that rotates as the leaf 

slides through the device. A typical maize leaf will trigger approximately 500 imaging samples. In 

real time, a sample image is sent to a smartphone application for verification before the data is 

stored and the plant is destructively sampled for relative water content.  

3.3 Measurement of Leaf Relative Water Content 

For each leaf, six tissue samples were collected along the leaf with even spacing from base 

to tip as shown in Figure 3. Leaf with markings showing the location of tissue samples for relative 

water content.. This was done to enable future work on the distribution of water content along the 

leaf.  

 

 

For each sample, two cuts were made perpendicular to the midrib, spaced 1 cm apart. The 

segment of leaf is then ripped away from the plant and weighed to obtain leaf fresh weight (FW). 

Then the sample was immediately hydrated for six hours until it was completely turgid under 

normal room lighting and temperature. Leaf samples were blotted dry on a paper towel then 

Figure 3. Leaf with markings showing the location of tissue samples for relative water content. 
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weighed to obtain the fully turgid weight (TW). Finally, the leaf sample was fully dried with the 

dry oven (140 °C) for at least 36 h to obtain the dry weight (DW). An analytical balance was used 

for weighing to ensure accurate measurements with the leaf segments. To obtain the whole leaf 

RWC needed for this work, the six sample weights were summed into a whole leaf fresh weight, 

turgid weight, and dry weight then RWC was computed according to Equation 1. 

3.4 Image Processing and Segmentation 

After collection, the raw hyperspectral images were calibrated relative to the signal from the 

empty device as a reference according to Equation 2. This normalization helps correct for the non-

uniform lighting generated by the LEDs inside the LeafSpec.  

 

Equation 2. Hyperspectral Normalization 

𝐼𝐶𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑 =  
𝐼𝑅𝑎𝑤

𝐼𝑊ℎ𝑖𝑡𝑒 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
 

After calibration, plant tissue was segmented from background using an intensity threshold 

in the 450nm and 680nm bands, which worked due to the occlusion of blue light by the plant tissue. 

This method was an improvement over the more traditional NDVI threshold segmentation because 

the difference in nitrogen treatments made setting an NDVI threshold ineffective. Segmentation 

results were manually verified and segmentation thresholds tuned until satisfactory quality was 

achieved. Figure 4. Reconstructed RGB image from a hyperspectral leaf scan after calibration and 

segmentation. shows an RGB image of a leaf reconstructed from a hyperspectral scan after 

calibration and segmentation.  

Figure 4. Reconstructed RGB image from a hyperspectral leaf scan after calibration and 

segmentation. 
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Due to the difference in leaf sizes, scan lengths ranged from 300 samples for leaves from 

inbred plants with low nitrogen fertilizer to over 600 samples for hybrid leaves with high nitrogen 

fertilizer. To accommodate this difference, scans were rescaled to a common size of 110 by 220 

pixels using the MATLAB imresize() function. Figure 5. Hyperspectral scan at full resolution (top) 

and after resizing (bottom). shows a hyperspectral leaf scan at full resolution and after resizing. 

Note that the veins and other leaf features are still visible in the resized image. 

 

 

Spectral indices have been commonly used to enhance the performance of prediction 

models relative to predictions from intensities based on individual wavelengths. NDVI was 

calculated according to Equation 3 and a heatmap of NDVI for a high nitrogen and low nitrogen 

leaf is shown in Figure 6. Heatmap of NDVI intensity for a leaf with high nitrogen (left) and low 

nitrogen (right) fertilizer treatment. Color scale is the same for both images. 

Most spectral indices related to water require hyperspectral data from SWIR wavelengths, 

which the LeafSpec does not currently capture. In unpublished work, a member of our lab 

developed a water index (WI) utilizing the wavelengths the LeafSpec can currently capture. This 

Figure 5. Hyperspectral scan at full resolution (top) and after resizing (bottom). 
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index is defined in Equation 4 and a heatmap of intensity values is shown in Figure 7.  Heatmap  

of WI intensity for a leaf with RWC=0.91 (left) and RWC=0.71 (right). Color scale is the same 

for both images 

There is a noticeable difference between the intensity of the high water and low water leaf. 

However, the midrib shows the lowest intensity even though it is the wettest part of the leaf 

indicating that the WI may not be applicable to all tissue types. Both the NDVI and WI images 

were included as additional wavelengths in all analyses.  

 

Equation 3. Formula to calculate NDVI. 

𝑁𝐷𝑉𝐼 =  
𝐼800𝑛𝑚 −  𝐼650𝑛𝑚

𝐼800𝑛𝑚 +  𝐼650𝑛𝑚
 

 

 

 

Equation 4. Formula to calculate the Water Index for LeafSpec. 

𝑊𝐼 =  
(𝐼552𝑛𝑚)2 𝑥 𝐼722𝑛𝑚 +  𝐼722𝑛𝑚

𝐼552𝑛𝑚 𝑥 𝐼680𝑛𝑚
 

Figure 6. Heatmap of NDVI intensity for a leaf with high nitrogen (left) and low nitrogen (right) 

fertilizer treatment. Color scale is the same for both images. 
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3.5 Model Development, Variable Selection, and Accuracy Comparison 

For a given set of features, PLSR modeling was used to predict relative water content of 

the leaves. PLSR was chosen as the modeling method because it was designed to deal with highly 

correlated predictors as was observed in hyperspectral data and it was less susceptible to 

overtraining than other machine learning algorithms (Wold et al., 2001). PLSR models were 

implemented in MATLAB using the Eigenvector Toolbox (Eigenvector, n.d.). The number of 

components for each model was determined using the built-in recommendation, which is based on 

a score calculated from the reduction in RMSECV provided by each component. The PLS model 

generates a Variable Importance in Projection score for each predictor variable, which was used 

to investigate the predictors and conduct variable selection using the algorithm built into the 

toolbox.  

Machine learning methods such as PLSR are susceptible to overtraining, especially when 

the number of predictor features is greater than the number of datapoints. To validate each model 

and assess overtraining, the data was split into a training set (2/3) and test set (1/3). The training 

set was used to calibrate the PLSR model using a 10-fold Venetian blind cross validation procedure. 

The calibrated model was then applied to the test data to generate a set of predicted RWC. The 

plot of the measured RWC vs the predicted RWC was fit with a line to create a R2Prediction. If 

the predicted RWC values perfectly match the measured values then R2Prediction = 1. Figure 8. 

Plot of measured RWC vs predicted RWC. Red line is the least squares best fit. R2Prediction = 

0.691 shows an example plot of measured RWC vs predicted RWC for a PLSR model using the 

Figure 7. Heatmap of WI intensity for a leaf with RWC = 0.91 (left) and RWC = 0.71 (right). 

Color scale is the same for both images. 
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mean spectrum from each leaf as the set of predictor features. If a model was overtrained, it would 

have a high R2Cross Validation but a low R2Prediction.  

To determine if two models differ in their accuracy, they are compared based on their 

R2Prediction values. However, the arbitrary division in the training and test datasets introduces the 

potential for bias, so the modeling exercise was repeated for a chosen number of times with 

randomly selected training and test datasets to produce a sample of R2Prediction values. The two 

samples for each model can be compared using standard hypothesis testing to determine if the 

samples came from populations with different means. For this work, fifteen data splits were tested 

for each model comparison and the R2Prediction samples were compared using the standard t-test 

procedure. 

 

Figure 8. Plot of measured RWC vs predicted RWC. Red line is the least squares best fit. 

R2Prediction = 0.691 
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3.6 Spatial Pattern Feature Development 

To develop features that capture the spatial pattern of water, we first sought to visually 

understand how the spatial pattern of hyperspectral intensity varied across leaves with different 

water contents. Heatmaps of intensity at each wavelength were generated for each leaf and then 

sorted based on the measured RWC from each leaf. The images were visually studied for patterns 

similar to the nutrient stress symptoms shown in Figure 1 and those reported in similar work with 

nitrogen (Ma et al., 2020). While no patterns were immediately obvious from the single 

wavelength images nor the NDVI or WI heatmaps, this helped generate several hypotheses for 

further investigation. For each hypothesis, an algorithm was developed to calculate relevant 

features from the hyperspectral scans, a prediction model was built using the features, and the 

prediction accuracy was compared to the prediction based on the mean spectrum model using the 

hypothesis test defined in the model development section. 

3.6.1 Mean Spectrum 

The state-of-the-art method for predicting leaf RWC from hyperspectral data is to average 

hyperspectral data across all plant pixels, build a PLSR model, and assess model performance 

using a training/test split on the data (Ge et al., 2019). This approach was implemented to validate 

the data collected in this work and to serve as a baseline for comparison. Spectral data was 

preprocessed using a Transmission to Absorbance log(1/T) operation followed by autoscaling. 

Four latent variables were included and model performance was assessed as the mean performance 

across 50 iterations. 

3.6.2 Multiple Locations on the Leaf 

Hypothesis: Utilizing spectral information from multiple regions in the leaf (base, middle, 

tip) will have improved predictive performance relative to the spectral information averaged over 

the entire leaf. 

To better understand which leaf regions were the most correlated with whole leaf RWC, 

predictive PLSR models were built using the spectral information at each pixel location on the 

hyperspectral scan. Since all scans were resized to the same dimensions, each pixel refers to the 

same relative position on the leaf (e.g. When the scans have been resized to 110x200, pixel 55x100 
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represents a sample half way down the midrib and half way in the cross-sectional dimension for 

all leaves.). Five latent variables were included in the models and spectral data was preprocessed 

using a Transmission to Absorbance log(1/T) operation followed by autoscaling. Model 

performance was assessed using the mean performance after five modeling iterations due to 

limitations on computational power and a heatmap was generated using the mean R2Prediction for 

each pixel. This process was repeated using images downscaled by a factor of two until the images 

became a single pixel, which is the same as the mean spectrum. 

To combine spectral information from multiple locations, the spectral data was appended 

and the larger predictor set used in a PLSR model to predict RWC as described previously. Every 

combination of pixels was investigated from leaf scans resized to 7x13 over three modeling 

iterations due to computational limitations. The number of latent variables included in each model 

was six. The R2Prediction performance was compared for each combination relative to the best 

individual pixel and the mean spectrum model. Heatmaps of the best pixel locations were used to 

choose locations for verification with more modeling iterations. 

Due to the large number of combinations, some were expected to outperform the mean 

spectral model simply due to random variability, especially because the number of modeling 

iterations was low to conserve computational resources. Based on the heatmap of successful 

individual pixels and combination pixels, three regions (base, middle, tip) were defined for further 

verification. Models for each region and every combination of the regions were built and compared 

to the performance of the mean spectrum model. 

3.6.3 Tissue Types 

Hypothesis: Utilizing spectral information from regions segmented by tissue type will 

improve prediction relative to the mean spectral signal from that region.  

Midrib and green regions were segmented from the scans using predefined segmentation 

boundaries shown in Figure 9. Hyperspectral data from each region was averaged and used to 

create a PLSR model that was compared against the model for the whole leaf mean spectrum.  
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The effect of different tissue types was investigated further within the green region. Veins 

were segmented from green tissue using the WI heatmap due to enhanced contrast between tissue 

types. The segment was binarized using the MATLAB function imbinarize() with the adaptive 

thresholding set to a sensitivity of 0.65. Holes in the binary image were filled using imfill() to 

obtain the vein mask. The green tissue mask was obtained by eroding the inverse of the vein mask 

with a linear structuring element four pixels in size. Segmentation results were visually inspected 

for every image. Results were usually satisfactory (Figure 22. Segmentation of veins and green 

tissue. A. Representative region of leaf with segmentation masks for veins (blue) and green tissue 

(green). B. Mean spectrum for vein tissue for every leaf. C. Mean spectrum for green tissue for 

every leaf.), but some images were washed out and quality segmentation was not possible.  

3.6.4 Cross Sectional Pattern  

Hypothesis: The distribution of hyperspectral intensity in a cross section parallel to the 

midrib or in a cross section perpendicular to the midrib varies based on water content in a way that 

can be used to predict relative water content. 

Work done to predict nitrogen content from hyperspectral leaf scans demonstrated that 

evaluating the distribution of NDVI values from the base to the tip of the leaf using SVM modeling 

can improve classification between high and low nitrogen treatments relative to the performance 

Figure 9. Segmentation regions for midrib and 

green sections. 
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of mean NDVI (Ma et al., 2020).  For this work, cross sections perpendicular to the midrib were 

constructed by taking a section centered at the middle of the leaf covering 20% of the leaf length. 

The section was averaged along the midrib direction to create a representative perpendicular cross-

section. The cross section parallel to the midrib was constructed by taking a section a quarter of 

the way down the leaf width covering 20% of the leaf width. The section was averaged in the 

direction perpendicular to the midrib to create a representative parallel cross section. The two 

sections are shown in Figure 10. The cross-sections were smoothed with a Gaussian filter with a 

standard deviation of 8 then appended to the mean spectrum. Models were built using PLSR and 

SVM and compared to the performance of the mean spectrum PLSR model. 

 

For every wavelength, the cross sections were plotted and colored based on three RWC 

groups (high, middle, low). These plots were visually inspected to look for differences in pattern 

beyond mean intensity that could be used to predict RWC. The only wavelength with clear 

differences were the WI cross sections perpendicular to the midrib. From the plot of WI cross 

section, several features were calculated: mean WI, max WI, min WI, value of WI at middle of the 

distribution, slope of WI distribution, coefficients of second order polynomial fit to WI 

distribution. These features were appended to the mean spectrum and PLSR model performance 

was compared to using the mean spectrum alone.  

3.6.5 Contours 

Hypothesis: A contour pattern of hyperspectral intensity exists from the outside edge of 

the leaf to the inside that can be used to predict relative water content. 

Figure 10. Regions used to construct vertical and horizontal cross sections. 
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Nutrient stress patterns often create a color gradient from the edge of the leaf inward 

towards the center and a contour map could quantify that gradient in a way that is informative. To 

build the contour map for each leaf, the binary segmentation mask was sequentially eroded using 

MATLAB’s imerode() function with a disk structuring element with a ten pixel diameter. Four 

erosion iterations were conducted to create five contour levels (Figure 11. Contour map from a 

representative leaf.). The contour map was applied to the images at each wavelength and the 

regionprops() function was used to obtain the mean intensity for each contour level. At every 

wavelength, the contour distribution for each leaf was plotted colored based on the leaf RWC. 

These plots were visually inspected for trends that could be used to predict RWC. Additionally, 

for every wavelength contour distribution was appended to the mean spectral data and used to 

build a PLSR model to predict RWC. Performance was compared to a model based on the mean 

spectral data alone to determine if the contour distribution improved prediction quality. 

 

3.6.6 Texture 

Hypothesis: Differences in water content create a difference in visual texture that can be 

used to predict leaf relative water content. 

There are many ways to analyze image texture. Two widely used algorithms, gray-level 

co-occurrence matrix (GLCM) and local binary pattern (LBP), have been implemented in 

MATLAB. GLCM calculates the frequency that pairs of pixels with specific intensities exist in 

specific spatial relationships, organizes the frequencies in a matrix, and extracts four statistics from 

the matrix – contrast which measures local variations in the matrix, correlation which measures 

Figure 11. Contour map from a representative leaf. 



 

 

40 

the probability of occurrence for specific pixel pairs, energy which is the sum of squared elements 

in the matrix, and homogeneity which quantifies the distribution of elements in the matrix (Texture 

Analysis Using the Gray-Level Co-Occurrence Matrix (GLCM) - MATLAB & Simulink, n.d.).  LBP 

applies an operation to every pixel in an image that quantifies the relation to neighboring pixels 

then returns a histogram of the values (Rosebrock, 2015). Both algorithms were applied to the 

middle leaf segment shown in Figure 20.  To determine if the traits improved predictive value, 

they were appended to the mean spectrum data and used to build a PLSR model to predict RWC. 

Performance was compared to a model based on the mean spectral data alone to determine if the 

texture data improved prediction quality.   
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 RESULTS 

4.1 Experimental Verification 

Differing levels of water stress were successfully maintained in the experiment based on 

soil moisture content monitoring. Figure 12 shows the soil moisture content boxplots for each 

water treatment at the time of sampling. A clear gradient of soil moisture was created across the 

treatment groups. The mean for each treatment group falls within the desired range, but the 

quartiles do not. This is acceptable given the limitations of hand watering and variability in daily 

transpiration rates. The purpose of the watering treatments was to create leaves with variation in 

leaf water content. Since the leaf RWC was measured directly, the absolute value of the soil 

moisture content is not essential. 

Figure 12. Water treatment groups and soil moisture content measured at sampling. 
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A plot of leaf RWC and soil moisture content at the time of measurement is shown in 

Figure 13 with a replotting of the data colored by several experimental factors shown in Figure 14. 

Plants in pots with high soil moisture had leaf moisture contents in the range of 90-100%. One 

data point exceeded 100% RWC, but this outlier is due to experimental error. Moisture content of 

the leaves did not drop unless the soil moisture content decreased below 10%, at which point leaf 

RWC decreased rapidly. At soil moisture contents less than 5%, leaf rolling began and plants 

looked severely water stressed. Because of the challenge of maintaining soil moisture in this 

narrow range with hand watering and unpredictable transpiration rates influenced by daily sunlight 

intensity, the data is highly skewed towards plants with unstressed moisture contents. The 

differentiation between nitrogen treatments was significant, with a clear difference in leaf color 

and plant size.  Plants in the low nitrogen treatment group rarely experienced enough water stress 

to exhibit reduced leaf RWC, so they were not included in the rest of analysis. Leaf moisture 

content was evenly distributed across genotype and measurement day. 

Figure 13. Plot of soil volumetric water content vs leaf relative water content at the time of 

measurement. 
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Of the 96 plants that received the high nitrogen fertilizer treatment, ten had scans with poor 

quality leaving a total of 86 samples for model development. 

4.2 Mean Spectrum Model 

The mean spectrum model was able to predict leaf RWC with an R2Prediction of 0.7989 

across diverse genetics and experiments. Model performance metrics after 50 modeling iterations 

are shown in Table 1. Slight overtraining is present as expected, but model performance is robust 

when applied to unseen data in the test set. The VIP score plot is shown in Figure 15. Variable 

Importance in Projection plot for the mean spectrum PLSR model.. The most noticeable peaks are 

Figure 14. Plot of soil volumetric water content vs leaf relative water content at the time of 

measurement. Each sub-plot is colored by the experimental factor in the sub-plot title. 
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in the range of 500-550nm and the red-edge of 650-700nm with several other regions contributing 

to the model. 

 

4.3 Multiple Locations on the Leaf 

Regions on the leaf have higher predictive performance than others. Figure 16. Heatmap of 

R2Prediction at each pixel location for resized leaf scans. shows a heatmap of R2Predicted values 

for models built using the spectrum from individual pixel locations in resized leaf scans. The green 

leaf tissue in the middle of the leaf was most correlated with whole leaf RWC while the midrib 

and leaf tip show less correlation. It is not surprising that the midrib was not as correlated given 

that the physical RWC measurements were made on green tissue samples. Figure 17. Heatmaps of 

R2Prediction at each pixel location over resizing iterations. The plot shows the maximum 

R2Prediction for an individual pixel at each resizing. The mean spectrum model is represented by 

Figure 15. Variable Importance in Projection plot for the mean spectrum PLSR model. 
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resizing eight. shows a plot of the maximum R2Prediction for an individual pixel over several 

resizing iterations. In the high resolution heatmaps, individual pixels beat the performance of the 

mean spectrum model. However, the performance across the entire leaf improves as pixel 

resolution decreases. This could be due to reduction in noise created by leaf texture variation. 

Interestingly, model performance peaked at resizing iteration four (shown in Figure 16. Heatmap 

of R2Prediction at each pixel location for resized leaf scans.) and then converged to the 

performance obtained by the mean spectrum model. This indicates that there may be a balance 

between averaging hyperspectral data to reduce noise and maintaining a high enough resolution to 

stay within the most informative region of the leaf. 

 

 

 

 

 

 

 

 

 

 

Figure 16. Heatmap of R2Prediction at each pixel location for resized leaf scans. 
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Even though the spectral data from tip of the leaf was less correlated with RWC than 

spectral data from the middle of the leaf, it may combine useful information that is able to improve 

prediction when added to the spectral data from another region. Figure 18 shows the plot of 

R2Prediction for every pixel combination relative to the R2Prediction for the best individual pixel 

and whole leaf mean spectrum model. Some combinations did show improved performance, but 

this is expected due to the large number of tests and variance in the data. However, the pairs that 

did have improved performance consistently came from two regions as shown in Figure 19. Pixels 

from best combination are grouped in two regions. A heatmap of each region is shown.. While the 

two regions overlap, one is centered towards the base of the leaf and the other is centered towards 

the middle of the leaf. None of the best combinations included pixels from the leaf tip. 

Figure 17. Heatmaps of R2Prediction at each pixel location over resizing iterations. The plot 

shows the maximum R2Prediction for an individual pixel at each resizing. The mean spectrum 

model is represented by resizing eight. 
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Three regions (base, middle, tip shown in Figure 20) were chosen for further analysis based 

on the heatmaps in Figure 17 and Figure 19. Spectral data was averaged in each region and model 

performance was calculated using the spectral data from each region individually and for every 

combination of regions (shown in Table 1). Model accuracies were compared for a difference 

relative to the mean spectrum model using a t-test on the R2Prediction value from 50 iterations. 

None of the regions nor combinations outperformed the mean spectrum model at a significant level. 

All of the individual regions showed worse performance than the mean spectrum model. Only the 

combination of all three regions was able to outperform the mean spectrum level, but the gain was 

very small and not statistically significant. This indicates that the previously observed pixels and 

combinations that outperformed were the result of statistical noise from testing large numbers of 

samples. 

 

 

Figure 18. Plot of R2Prediction for every pixel combination relative to the R2Prediction for the 

best individual pixel and whole leaf mean spectrum model. 
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Table 1. Model performance for multiple locations on the leaf. The p-value is the result of the t-

test for difference relative to the R2Prediction for the mean spectrum model. 

Model R2Calibration R2Cross Validation R2Prediction p-value 

Mean Spectrum 0.8302 0.7699 0.7989 --- 

Base 0.8040 0.7407 0.7638 0.1051 

Middle 0.7305 0.6176 0.6182 8.50e-14 

Tip 0.7311 0.6188 0.6205 9.41e-13 

Base + Middle 0.8697 0.7993 0.7993 0.0403 

Base + Tip 0.8123 0.7061 0.7115 2.26e-05 

Middle + Tip 0.8343 0.7370 0.7736 0.0789 

Base + Middle + Tip 0.8785 0.7859 0.8053 0.1855 

Figure 19. Pixels from best combination are grouped in two regions. A heatmap of each region is 

shown. 

Figure 20. Regions selected for further analysis (base, middle, tip) superimposed on a 

representative leaf. 
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4.4 Tissue Type 

The midrib and green regions of the leaf have clearly different spectrum (Figure 21).  The 

LeafSpec transmits light from LEDs, through the leaf, to the imaging sensor, so the thicker midrib 

has lower intensity than the green leaf. The spectrum from 700-800nm is distinctly different 

between the tissue types which could be due to the presence of chlorophyll in the green tissue. 

 

 

The highest resolution heatmap in Figure 17 shows a clear pattern of veins and green tissue, 

implying that one of the tissue types is better for predicting RWC.  Figure 22 shows the spectrum 

of vein and green tissue for each leaf after segmentation. While the segmentation results appear to 

be good, there is not a noticeable difference in the spectrum among the tissue types from the same 

region. 

Figure 21.  Mean spectrum for midrib and green region of leaves. 
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The model results for the different tissue types are shown in Table 2.. No model 

outperformed the whole leaf mean spectrum model though the models from the green region 

were not significantly different. This provides further evidence that the whole leaf spectrum 

reduces noise levels and provides more consistent prediction accuracy. Models that included 

midrib spectral data had a decrease in performance indicating that spectral data from the midrib 

over 450-950nm is not as useful for predicting leaf RWC. This is expected given that the 

physical RWC measurements were made from the green tissue.  

  

Figure 22. Segmentation of veins and green tissue. A. Representative region of leaf with 

segmentation masks for veins (blue) and green tissue (green). B. Mean spectrum for vein tissue 

for every leaf. C. Mean spectrum for green tissue for every leaf. 
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Table 2. Model Performance for various tissue types. 

Model R2Calibration R2Cross Validation R2Prediction p-value 

Mean Spectrum 0.8302 0.7699 0.7989 --- 

Midrib 0.7394 0.6226 0.6708 9.92e-12 

Green Region 0.8225 0.7650 0.7854 0.4407 

Midrib + Green Tissue 0.8299 0.7518 0.7635 0.1508 

Veins from Green 

Region 

0.7845 0.6994 0.7404 0.0011 

Green Tissue from 

Green Region 

0.8145 0.7562 0.7563 0.1381 

Veins+Green Tissue  0.8265 0.7397 0.7766 0.0403 

Veins + Green Tissue 

compared to Green 

Region Model 

0.8292 0.7447 0.7726 *0.2253 

 

4.5 Cross Sectional Pattern 

Model performance was not improved by including hyperspectral distribution data in 

addition to the mean spectrum. Figures 23 and 24  show the model performance for a PLSR model 

with distribution data appended at every wavelength. None of the models with higher R2Prediction 

performed at a level that was statistically different than the mean spectrum model. For the 

perpendicular cross sections, models with data from 750nm and above seemed to perform better 

than the models at smaller wavelengths, but the trend was not statistically significant. SVM 

regression had been successfully applied to NDVI distribution data for nitrogen prediction (Ma et 

al., 2020). When applied in this work for prediction of RWC, no SVM model outperformed the 

mean spectrum PLSR model.  
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Figure 24. Model performance for a PLSR model with mean spectral data and the parallel 

distribution data for an individual wavelength. The line is the performance of a model with 

only the mean spectral data. 

Figure 23.  Model performance for a PLSR model with mean spectral data and the perpendicular 

distribution for an individual wavelength. The line is the performance of a model with only the 

mean spectral data. 
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Visual inspection of the cross section plots of individual wavelengths did not show clear 

patterns that could be used to separate leaves based on RWC (Figure 25). However, the cross-

section plot of WI perpendicular to the midrib shown in Error! Reference source not found. had 

clear differences among RWC levels. Individual WI features were able to predict about 30% of 

the variance in water content. Table 3 shows the performance of PLSR model when the calculated 

WI features are appended to the mean spectrum. None of the models outperformed the mean 

spectrum alone.  

 

Table 3. Model performance for WI features. The p-value is the result of the t-test for difference 

relative to the R2Prediction for the mean spectrum model. 

Model R2Calibration R2Cross Validation R2Prediction p-value 

Mean Spectrum (MS) 0.8302 0.7699 0.7989 --- 

MS + WI Max 0.8318 0.7729 0.7921 0.7970 

MS + WI Min 0.8379 0.7801 0.7802 0.9343 

MS + WI Mean 0.8286 0.7658 0.8028 0.8274 

MS + WI Middle 0.8375 0.7762 0.7738 0.8578 

MS + WI Slope 0.8433 0.7854 0.7845 0.8190 

MS + WI Poly Coeff 0.8359 0.7687 0.7871 0.5321 

MS + WI All Traits 0.8460 0.7756 0.7639 0.3608 

 

Figure 25. Vertical Cross Section of Water Index. Each line represents a leaf and has been 

colored based on RWC. Blue is greater than 0.87 RWC, green is less than 0.87 RWC and greater 

than 0.77 RWC, and red is less than 0.77 RWC. 
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4.6 Contours 

Visual inspection of the contour distributions at each wavelength showed differences in mean 

intensity but did not reveal any patterns that could be used to distinguish between leaves based on 

RWC. This can be seen in the contour plot for the WI shown in Figure 26, where each line is from 

a different leaf and is colored based on three RWC classes. The mean value for each leaf is different 

and can be used to identify RWC class, but the shape of the curve is the same across the different 

RWC levels.  

 

 

To verify that the contours did not contain additional predictive value beyond the mean 

intensity, the contour distribution for every wavelength was appended to the mean spectral data 

and used to build a PLSR model to predict RWC. Performance was compared to a model based on 

Figure 26. Contour distribution for water index intensity values. One is the outermost 

contour and five is the innermost contour. Each line represents a leaf and has been 

colored based on RWC. Blue is greater than 0.87 RWC, green is less than 0.87 RWC 

and greater than 0.77 RWC, and red is less than 0.77 RWC. 
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the mean spectral data alone. Figure 27. Model performance for a PLSR model with mean spectral 

data and the contour data for an individual wavelength. The horizontal line is the performance of 

a model with only the mean spectral data.  plots the R2Prediction value for each model at the 

wavelength for the contour distribution.. None of the models with additional contour data differed 

from the mean spectrum model at a statistically significant level. 

 

 

4.7 Texture 

Performance for models based on each GLCM texture trait are shown in Table 4. The 

individual traits show some predictive value, but there is severe overtraining. When combined with 

Figure 27. Model performance for a PLSR model with mean spectral data and the contour data 

for an individual wavelength. The horizontal line is the performance of a model with only the 

mean spectral data.   
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the mean spectrum data, models that include the texture data outperform during calibration but 

suffer performance drops when used to predict the RWC of new samples. This indicates that the 

GLCM texture data is inducing overtraining and does not improve the true predictive capability of 

the RWC model. 

 

Table 4. Model Performance with GLCM Texture Features. 

Model R2Calibration R2Cross Validation R2Prediction p-value 

Mean Spectrum 0.8302 0.7699 0.7989 --- 

Contrast 0.3133 0.1038 0.1147 1.06e-64 

Correlation 0.2391 0.0530 0.0852 5.98e-75 

Energy 0.8625 0.0654 0.1154 1.46e-60 

Homogeneity 0.5828 0.2189 0.3213 6.08e-39 

Mean Spectrum & 

Contrast 

0.8602 0.7183 0.7273 0.0015 

Mean Spectrum & 

Correlation 

0.8729 0.7170 0.7262 0.0011 

Mean Spectrum & 

Energy 

0.9449 0.5642 0.6418 8.16e-11 

Mean Spectrum & 

Homogeneity 

0.8716 0.7081 0.7495 0.0011 

 

The LBP algorithm produces 59 features for each greyscale image segment analyzed using 

the default MATLAB parameters. For every wavelength, the LBP features were appended to the 

mean spectrum and model performance from the combined predictor set was compared to the 

performance of the mean spectrum alone (Figure). None of the models that performed better than 

the mean spectrum model did so at a statistically significant level.
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Figure 28. Model performance for a PLSR model with mean spectral data and the LBP data for 

an individual wavelength. The horizontal line is the performance of a model with only the mean 

spectral data. 
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 DISCUSSION AND CONCLUSIONS 

Prediction of plant relative water content using hyperspectral data has proven to be a robust 

and effective method. In this work, hyperspectral leaf scans were collected using the LeafSpec, a 

recently developed hyperspectral imaging device. Data were collected across two experiments 

from five different maize genotypes representing temperate and tropical hybrids with varying 

levels of drought tolerance and inbreds with varying stomatal densities. The hyperspectral intensity 

averaged across the entire leaf was used to predict relative water content with an R2Prediction of 

0.7989. This result is comparable to previous reports in the literature studying a narrow range of 

genotypes and much better than performance for models applied to the maize diversity panel. The 

improved quality of prediction from LeafSpec data may be due to removal of noise from leaf angle 

and external lighting conditions during imaging. 

Distribution of hyperspectral information has been used to improve classification of leaves 

based on nitrogen treatment relative to classification based on mean hyperspectral data (Ma et al., 

2020). We explored the hypothesis that prediction of leaf relative water content could be improved 

over the mean hyperspectral PLSR models by developing features that quantify: 

• Spectral information from multiple regions in the leaf (e.g. base, middle, tip).  

• Spectral information from regions segmented by tissue type. 

• The distribution of hyperspectral intensity in a cross section parallel to the midrib or in a 

cross-section perpendicular to the midrib.  

• A contour pattern of hyperspectral intensity from the outside edge of the leaf to the midrib. 

• Texture features extracted from each wavelength. 

PLSR predictive performance with the new features was compared to the mean 

hyperspectral model over multiple testing iterations. None of the models with expanded feature 

sets outperformed the mean spectrum model at a statistically significant level. 

In exploring various regions of the leaf, it was found that the hyperspectral signal from the 

green tissue a third of the way from the base of the leaf and half way between the midrib and edge 

was the most correlated with relative water content. This location may be biased by the RWC 

sampling method used during the experiment, but confirms the standard procedure for 

spectrometer sampling (Xiong et al., 2015). 
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Midrib and vein tissue models performed worse at a statistically significant level indicating 

that there may be some value to segmenting them out from the green tissue. However, the green 

tissue model with midrib and vein data removed did not perform better than the mean spectrum 

model at a statistically significant level indicating that the extra segmentation may not be worth 

the effort. Averaging the hyperspectral data across the entire leaf creates a spectrum very similar 

to the spectrum from green leaf tissue alone. Cross-sections of hyperspectral intensity from 

individual wavelengths did not improve model performance and patterns that separate leaves by 

RWC could not be visually discerned. The Water Index cross-section perpendicular to the midrib 

visibly separated leaves by RWC and a set of features were developed to quantify the pattern. 

None of the features improved model performance relative to the mean spectral model. Contour 

patterns did not improve model performance. Visual inspection of the contour plots revealed that 

leaves with different RWC had similarly shaped distributions of hyperspectral intensity that simply 

differed in mean intensity level. Thus, the mean hyperspectral data should contain equivalent 

predictive information as the hyperspectral contours. Models that included the texture features had 

improved calibration performance, but reduced predictive performance. This indicates that the 

addition of texture features induces overtraining and does not improve the model’s ability to 

predict RWC. 

For future work, more data should be collected to improve model robustness. At least 

several thousand datapoints are probably needed to build a robust model. Hyperspectral data 

generates large numbers of predictors which makes machine learning methods susceptible to 

overtraining. Generating leaves with low RWC is a challenge due to the difficulty of properly 

dosing water with unpredictable rates of transpiration. In future work, the experimental design 

should be biased toward lower soil moisture contents to ensure a more even spread of leaf RWC. 

Distribution of hyperspectral data may still hold opportunity for improving RWC 

prediction. Previously reported spectral indices for leaf water content frequently include SWIR 

wavelengths. The current version of the LeafSpec is not capable of capturing SWIR, but a high 

resolution leaf scan in these wavelengths may reveal patterns of water distribution. Additionally, 

exploring more indices composed from current spectral bands may lead to an interesting finding. 

The Water Index was a first step and visually showed improved ability to discriminate leaf RWC 

as compared to individual wavelengths.   
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