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ABSTRACT

Studying the motion of cells and investigating their migration patterns in inertial mi-

crochannels have been of great interest among researchers because of their numerous bio-

logical applications such as sorting, separating, and filtering them. A great drawback in

conventional microfluidics is the inability to focus extremely small biological particles and

pathogens in the order of sub-micron and nanometers due to the requirement of designing

an impractically elongated microchannel, which could be in the order of a few meters in

extreme cases. This restriction is because of the inverse correlation between the cube of the

particle size and the theoretically required channel length. Exploiting an oscillatory flow is

one solution to this issue where the total distance that the particle needs to travel to focus

is virtually extended beyond the physical length of the device. Due to the present symmetry

in such flow, the directions of the lift forces acting on the particle remain the same, making

the particle focusing feasible.

Here, we present results of simulation of such oscillatory flows of a single capsule in

a rectangular microchannel containing a Newtonian fluid. A 3D front-tracking method has

been implemented to numerically study the dynamics of the capsule in the channel of interest.

Several cases have been simulated to quantify the influence of the parameters involved in this

problem such as the channel flow rate, capsule deformability, frequency of oscillation, and the

type of applied mechanism for inducing flow oscillations. In all cases, the capsule blockage

ratio and the initial location are the same, and it is tracked until it reaches its equilibrium

position. The capability to focus the capsule in a short microchannel with oscillatory flow

has been observed for capsule deformabilities and mechanisms to induce the oscillations

used in our study. Nevertheless, there is a limit to the channel flow rate beyond which,

there is no single focal point for the capsule. Another advantage of having an oscillatory

microchannel flow is the ability to control the capsule focal point by changing the oscillation

frequency according to the cases presented in the current study. The capsule focusing point

also depends on its deformability, flow rate, and the form of the imposed periodic pressure

gradient; more deformable capsules with lower maximum velocity focus closer to the channel

center. Also, the difference between the capsule equilibrium point in steady and oscillatory
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flows is affected by the capsule stiffness and the device flow rate. Furthermore, increasing

the oscillation frequency, capsule rigidity, and system flow rate shorten the essential device

length.

Although the oscillation frequency can provide us with new particle equilibrium positions,

especially ones between the channel center and wall that can be very beneficial for separation

purposes, it has the shortcoming of having a zero net throughput. To address this restriction,

a steady component has been added to the formerly defined oscillatory flow to make it

pulsating. Furthermore, this type of flow adds more new equilibrium points because it

behaves similarly to a pure oscillatory flow with an equivalent frequency in that regard.

They also enable the presence of droplets at high Ca or Re that could break up in the

steady or a very low-frequency regime. Therefore, we perform new numerical simulations of

a deformable droplet suspended in steady, oscillatory, and pulsating microchannel flows. We

have observed fluctuations in the trajectory of the drop and have shown that the amplitude

of these oscillations, the average of the oscillatory deformation, and the average migration

velocity decrease by increasing the frequency. The dependence of the drop focal point on

the shape of the velocity profile has been investigated as well. It has been explored that

this equilibrium position moves towards the wall in a plug-like profile, which is the case at

very high frequencies. Moreover, due to the expensive cost of these simulations, a recursive

version of the Multi Fidelity Gaussian processes (MFGP) has been used to replace the

numerous high-fidelity (or fine-grid) simulations that cannot be afforded numerically. The

MFGP algorithm is used to predict the equilibrium distance of the drop from the channel

center for a wide range of the input parameters, namely Ca and frequency, at a constant

Re. It performs exceptionally well by having an average R2 score of 0.986 on 500 random

test sets.

The presence of lift forces is the main factor that defines the dynamics of the drop in

the microchannel. The last part of this work will be dedicated to extracting the active lift

force profiles and identify their relationships with the parameters involved to shed light on

the underlying physics. This will be based on a novel methodology that solely depends on

the drop trajectory. Assuming a constant Re, we then compare steady lift forces at different

Ca numbers and oscillatory ones at the same constant Ca. We will then define analytical

10



equations for the obtained lift profiles using non-linear regression and predict their key

coefficients over a continuous range of inputs using MFGP.
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1. INTRODUCTION

Manipulation of particles suspended in laminar flows in microchannels is commonly used in

a variety of applications in bioparticle separation and filtration systems [  1 ]. Depending on

flow physics, the geometry of channel, and particles characteristics such as shape, size, and

deformability, suspended particles focus in different regions of the channel, which can be

used for sorting, isolating, or separating them for diagnostic and biological purposes [  2 ]–[ 5 ].

Diagnosing circulating tumor cells (CTCs) has always been of great interest, and due to

heterogeneity of them, molecular assays and microfluidic technologies are required for cancer

type-specific isolation [ 6 ]. Similarly, micro-scale vortices and inertial focusing were combined

to extract CTCs from blood samples [ 7 ]. Another important advantage of these systems is

being non-invasive; molecular cytogenetic techniques were used to identify fetal cells from

maternal cells [  8 ].

One of the important shortcomings of current procedures, however, is their low flow

throughput. Therefore, there have been many studies to address this issue in numerous

applications. Di Carlo et al. [ 9 ] used an asymmetrically curved channel to enhance the

volume throughput and filter deformable particles with varying sizes. Spiral microfluidic

devices, having greater throughput compared to that of the existing microfluidic systems,

have been introduced for cell separation and isolation [  10 ], [  11 ]. Removal of leukocytes

(white blood cells) from the whole blood can be done with a continuous flow diffusive filter;

isolation of plasma is also possible with simple modifications to the device [ 12 ]. Gossett

et al. [ 13 ] demonstrated an automated technology to assay cell deformability at very high

throughputs. Ozkumur et al. [ 14 ] have described a technology that can sort rare CTCs from

the whole blood at a very high throughput of 107 cells/s. Repetitive inertial focusing com-

bined with micro-siphoning resulted in a microfluidic bioparticle concentrator [  15 ]. Stacked

and cascaded inertial focusing strategies have been developed to achieve high throughput

and concentrate desired particle size [ 16 ]. Label and sheath-free inertial microfluidics were

exploited for cell differentiation and blood fractionation with a high throughput [  17 ], [  18 ].

In addition to inertial microfluidics, people have utilized electrical characteristics in the

system. For instance, Gascoyne et al. [ 19 ] have used dielectrophoretic field-flow-fractionation
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as a microfluidic approach to malaria detection. Vahey and Voldman [ 20 ] implemented a

continuous-flow and label-free microfluidic filter capable of separating cells based on their

electrical polarizability. Biochemical markers have also been used for cell sorting. Miltenyi

et al. [ 21 ] reported a simple magnetic system as a complement to flow cytometry. A micro-

fabricated membrane was designed to perform in situ cell lysis with a very high efficiency [  22 ].

These methods are, however, costly and complex and hence, less used in clinical applications

compared to label-free approaches.

Although inertial microfluidics has a broad range of applications, most of the common

practices are limited to control particles in the order of few microns in radius or larger (red

blood cells, for instance) [ 23 ]. This restriction is because small particles need to travel a

very long distance to focus since the inertial lift force decreases for smaller particles. The

theoretical length at which point particles travel to focus is inversely proportional to the

cube of their radius. This can be shown by adopting a similar method Di Carlo et al. [ 24 ]

applied to finite particles. Hence for the case of nanoparticles, this traveling distance can

reach up to the order of meters, which makes it practically impossible for design purposes

[ 23 ]. Nevertheless, it is vital to study small bioparticles, such as bacteria and fungi, due to

their effective role in diagnosis. For instance, it is crucial to track microvesicles released by

Glioblastoma tumor cells as they are beneficial in cancer patient care [  25 ], [  26 ]. There are only

a few examples of working with smaller pathogens, such as separating pathogenic bacteria

cells from diluted blood and detecting malaria parasites from blood [  27 ], [  28 ]. Moreover,

a microchannel with multiple branches was shown to enable separation of smaller particles

compared to that obtained with conventional pinched flow fractionation (PFF), but the

size of separated particles is still not as small as desired [  29 ]. Therefore, it is momentous to

develop methods that can be applied to study small bioparticles and pathogens in a practical

manner.

In addition, the dynamics of capsules, droplets, and particles in oscillatory microchan-

nels has become of interest to many researchers recently; A simple equation containing only

the Taylor deformation parameter and viscosity ratio has been proposed to estimate the

threshold frequency for the capsule deformation behavior in an oscillatory shear flow in the

Stokes flow regime [ 30 ]. Bryngelson and Freund [ 31 ] have done a non-modal and time-global
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Floquet stability analysis for a spherical capsule subject to a large-amplitude oscillatory ex-

tensional flow and found that all flow strengths (or a corresponding Weissenberg number)

and oscillation frequencies are asymptotically stable despite experiencing some transient in-

stabilities. The dynamics of formation and stability of particle pairs in an oscillatory flow in

a microchannel has been investigated experimentally, and a linear correlation between the

particle-particle interactions and flow velocity has been determined [  32 ]. Chaudhury et al.

[ 33 ] have observed a complicated trajectory of the droplet in the lateral direction suspended

in an oscillatory flow as opposed to the smooth cross-stream migration under steady flow

conditions. Pawlowska et al. [ 34 ] have reported the use of hydrogel nanofilaments as an ap-

propriate substitute for the long and deformable macromolecules and studied their dynamics

in an oscillatory microchannel flow. They have shown that the final position of these parti-

cles fluctuates around the flow axis [ 35 ]. Sarkar and Schowalter [ 36 ] have investigated the

dynamics of a viscoelastic drop in steady and oscillating extensional flows and have shown

that although their deformation behaviors are naturally dissimilar, their maximum values

are close in the long-time limit. Zhang et al. [ 37 ] have found that the effect of capsule

membrane viscosity is more significant in the oscillatory shear flow compared to that of the

steady one, and the deformation of capsule is influenced by both viscosity and elasticity and

exhibits two modes. Lu et al. [ 38 ] have performed a numerical and experimental study on an

ultrasonic oscillatory airwater two-phase flow in a microchannel. They have observed highly

unsteady behavior as the water and air interact with each other during the vibration cycles,

which is drastically different from the steady flow in such microchannels.

In chapter 2, we implement the idea of oscillatory inertial microfluidics in microchannels,

expressed by Mutlu et al. [ 23 ]. The advantage of this method is that by changing the

direction of the flow at a certain frequency, the virtual length at which the particle can

travel is extended beyond the physical length of the channel. Due to the symmetrical flow

conditions, the directions of forces acting on the particle in the wall-normal direction remain

the same. Therefore, small particles corresponding to small values of particle Reynolds

number (Rep < 0.1) can reach their focal position in a short physical length of the device,

which was otherwise unfeasible. Furthermore, it will be shown that the frequency of flow

oscillation influences the equilibrium position of capsules in the channel. This parameter
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can be used as an extra tool for direct control over the dynamics of capsules. Besides, the

oscillation frequency as the new extra parameter does not have the disadvantage of adversely

affecting the biological properties of cells like most of the active methods [  39 ].

In chapter 3, we investigate different aspects of the droplet migration in oscillatory and

pulsating microchannel flows numerically and compare them with those in the steady ones.

The main challenge of performing this numerical work is using a sufficient grid resolution to

resolve the underlying physics more accurately. Since the background flow is unsteady, the

mesh has to be fine enough to capture the velocity gradients and lift forces acting on the

drop correctly. Consequently, the transient dynamics of the drop and its final equilibrium

position, which is the main goal of the presented study, are all affected by this choice.

Therefore, after carrying out the mesh dependence study, a very fine grid has been selected

to enable getting the realistic results we are interested in. However, running simulations with

these grids can take a few months in some cases. Hence, it is impossible to get all the data in

the wide range of input parameters we are looking for by just running all these simulations.

An alternative approach is to produce some new data using a coarser grid resolution and

implement the Multi Fidelity Gaussian processes (MFGP) algorithm to predict the outputs

of the finer mesh. Perdikaris et al. [ 40 ] have proposed a probabilistic framework and a

recursive version of MFGP. This method has been tested in several benchmark problems

involving both synthetic and real multi-fidelity datasets such as the one employed by Babaee

et al. [ 41 ]. The implementation of the recursive MFGP and the obtained results in this

study are elaborated in the following sections.

The presence of lift forces acting on bioparticles is the chief reason for observing the un-

derlying physical phenomena in microfluidic systems [  24 ], [ 42 ]–[ 45 ]. The importance of these

forces has motivated many researchers to analyze or measure them within the microchannel.

Di Carlo et al. have derived the inertial lift on particles and studied the effects of channel

Reynolds number and particle size on it; they have shown that by increasing Reynolds, the

magnitude of lift coefficient decreases near the wall and increases near the channel center [ 46 ].

Also, the particle equilibrium positions shift toward the center as its size increases and its

rotational motion is not a key component of the inertial lift. Using lift force profiles, Prohm

and Stark have investigated and categorized the particle focusing points and demonstrated
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that the stable fix points lie on either the diagonal or main axes of the channel cross-section

[ 47 ]. Su et al. have proposed a fast numerical algorithm combined with machine learning

techniques to predict the inertial lift distribution acting on solid particles over a wide range of

operating parameters in straight microchannels with three types of geometries by specifying

the cross-sectional shape, Reynolds number, and particle size [  48 ].

Furthermore, there have been attempts to derive analytical relationships for the observed

behaviors. A simple formula using data fitting and least square was obtained to investigate

the relationship between the lift and particle size and Reynolds number; according to the

proposed criterion, particle focusing does not occur for too small particles or too low Reynolds

numbers [  49 ]. Asmolov et al. illustrated that the velocity of finite-size particles near the

channel wall is different from that in the undisturbed flow and then reported a generalized

expression for the lift force at Re ≤ 20 [  50 ]. Another study has proposed a generalized formula

for the inertial lift acting on a sphere that consists of 4 terms: wall-induced lift, shear-

gradient-induced lift, slip-shear lift, and correction of the shear-gradient lift; the authors

have further confirmed that wall and shear-gradient are the main features of the lift [ 51 ].

Moreover, there are examples of works concentrating on the effect of particle shape. For

instance, Zastawny et al. presented the great influence of shape both by changing the

experienced values of forces and torques and modifying the Reynolds at which the transition

to unsteady flow happens [  52 ]. Further extension on previous theories and analytical works

resulted in an analytical expression capturing the weak, inertial lift on an arbitrarily-shaped

particle moving near a wall [ 53 ].

Most of the studies on lift forces in the microchannels have focused on solid particles or

non-deformable objects and have analyzed the effect of parameters such as channel Reynolds,

particle size, etc. Therefore, there are very few examples presenting the whole lift force

profiles acting on deformable particles such as droplets and bubbles and studying the effect

of their corresponding parameters like Capillary number on the force values. For example,

Chen et. al have extensively studied the inertial migration of a deformable droplet in a

rectangular microchannel, but their presented lift force profile only considers one value for

particle Weber number (a measure for particle deformability) [  54 ]. Rivero Rodriguez and

Scheid have divided the underlying physics into different regimes. In the pure inertial regime,
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they have plotted the inertial lift on a rigid bubble at different Reynolds numbers, and in

the pure Capillary regime where the inertial effects are absent, a lift profile is presented for

different Capillary numbers [  55 ]. However, their work lacks a similar profile visualizing the

total lift force in the most general nonlinear inertial-capillary regime.

The obtained lift force profiles are mainly the result of either some experimental mea-

surements [ 46 ], [  56 ], [  57 ] or applying a feedback control in the numerical code to fix the

position of particle [  58 ], capsule [ 59 ], or drop [ 54 ]. Nevertheless, in chapter 4, we present a

method for lift force calculation at different Capillary numbers that solely depends on the

trajectory of the drop. In addition, due to the importance of exploiting oscillatory flows in

microchannels as previously mentioned, we will expand our lift force analysis to include both

steady and oscillatory regimes at various Capillary numbers, where the latter is completely

missing in the literature. We will then try to fit analytical expressions to the obtained lift

profiles for different cases and present a scheme to predict this expression over a continuous

range of input parameters.
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2. INERTIAL MIGRATION OF A DEFORMABLE CAPSULE

IN AN OSCILLATORY FLOW IN A MICROCHANNEL

2.1 Summary

Dynamics of a deformable capsule in an oscillatory flow of a Newtonian fluid in a mi-

crochannel has been studied numerically. The effects of oscillation frequency, capsule de-

formability, and channel flow rate have been explored by simulating the capsule within a

microchannel. In addition, the simulation captures the effect of the type of imposed pres-

sure oscillations on the migration pattern of the capsule. An oscillatory channel flow enables

the focusing of extremely small biological particles by eliminating the need to design imprac-

tically long channels. The presented results show that the equilibrium position of the capsule

changes not only by the addition of an oscillatory component to the pressure gradient, but

it also is influenced by the capsule deformability and channel flow rate. Furthermore, it has

been shown that the amplitude of oscillation of capsules decreases as the channel flow rate

and the rigidity of the capsule increases.

2.2 Methodology

A single deformable capsule has been placed in a laminar flow of an incompressible New-

tonian fluid in a microchannel with a square cross-section. A schematic of the configuration

is illustrated in Fig.  3.1 (a). The density and viscosity of the inner Newtonian fluid inside

the capsule are the same as those of the outer one. The front-tracking method [ 60 ] is used

to track the position of the interface. The front consists of Lagrangian grid points connected

by triangular elements (Fig.  3.1 (b)). In this method, the main governing equations (equa-

tions (  2.1 ) and (  2.2 )) are solved for both fluids inside and outside of the capsule on a fixed

Eulerian grid. The local velocity of the fluid is used to move the Lagrangian points on the

capsule membrane under the assumption of no-slip condition on the capsule membrane. The

governing equations to be solved in the entire computational domain are the following:

∇ · u = 0, (2.1)
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∂(ρu)
∂t

+ ∇ · (ρuu) = −∇P + ∇ · [µ(∇u + ∇uT )] + F, (2.2)

where ρ and µ are the density and viscosity of both fluids respectively, P represents the

pressure, u is the velocity vector, t is the time, and F(x, t) =
∫

∂Bf(xi, t)δ(x-xi)dV , which

is the smoothed representation of the membrane elastic force. This is shown by placing

a Dirac delta function within the integral, where x is an arbitrary location in the whole

computational domain and xi is such position on the capsule membrane. The given delta

function is defined as:

δ(X) = D̃(x)D̃(y)D̃(z), (2.3)

D̃(x) =


1

4∆(1 + cos( π

2∆(x))) |x| ≤ 2∆,

0 otherwise,
(2.4)

where ∆ is the constant Eulerian grid size. The capsule membrane is assumed to be an

infinitely thin sheet of elastic material. Using the Skalak model [ 61 ], we assign the following

strain energy function to the capsule membrane:

W = Es

12 ((ε2
1 + ε2

2 − 2)2 + 2(ε2
1 + ε2

2 − 2) − 2(ε2
1ε

2
2 − 1)) + Ea

12 (ε2
1ε

2
2 − 1)2, (2.5)

Here, ε1 and ε2 are the principal strains, and Es and Ea represent the shear and area dilatation

moduli, respectively. We consider Ea

Es
= 2 according to Kruger et al. [ 62 ]. Bending resistance

has not been taken into account as its effect is negligible compared to that of the shear

modulus [  63 ]. A finite element method [  64 ] is used to calculate the forcing term f . The

membrane surface is discretized with a large number of triangular elements so that they

remain approximately flat in case of undergoing large deformations. The resultant elastic

force (f(xi, t)) acting on the membrane is found using the principle of virtual work. The

validation of this model against previously published results and a more detailed explanation

of this whole methodology can be found in Raffiee et al. [ 65 ].

Two forms of oscillatory pressure gradients have been applied along the channel (x di-

rection) to change the direction of the flow symmetrically: a) A cosine wave with a constant
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amplitude (in the form of P0cos(ωt)) b) A square wave with the same average and ω as that

of the cosine wave; so P0 is different. The periodic boundary condition is applied in the x

direction, and the no-slip condition is applied on the walls in the y and z directions. W , Uc

(maximum velocity of the steady flow), and W
Uc

are used to nondimensionalize all lengths,

velocities, and time, respectively. In other words, x∗ = x
W

, u∗ = u
Uc

, t∗ = t
W
Uc

, P ∗ = P

µ Uc
W

,

T ∗ = T
W
Uc

(where T is the period), and ω∗ = 2π

T ∗ . Two dimensionless parameters describe the

motion of the capsule: (i) Reynolds number, Re = ρUc2W
µ

, expressing the ratio between iner-

tial forces to viscous ones (ii) Laplace number, La = 2aEsρ
µ2 , which denotes the deformability

of the capsule, where low La corresponds to highly deformable capsules, and high La repre-

sents more rigid particles. The blockage ratio of the capsule ( a
W

) is constant and equal to

0.3. The capsule is assumed to have a spherical initial shape and is released at y
W

= 0.55 and
z

W
= 1.07. The initial location of the capsule is arbitrary because it only affects the initial,

transient stage of the capsule migration and does not influence its long-term behavior and

focusing point [  66 ]–[ 69 ]. The axes of symmetry are also avoided for the initial location of the

capsule. The time step of the simulation is restricted by the Courant-Friedrichs-Lewy (CFL)

number, which is set to 0.9. An Eulerian grid of 200×115×115 in the x, y, and z directions,

respectively, and 48672 triangular elements for the discretization of the capsule surface are

used in most of the simulations. For the cases with Re > 10, we use 256×152×152 Eulerian

grid points and 80000 Lagrangian elements.

2.3 Results and discussion

2.3.1 Sinusoidal oscillatory flow

We study the effects of inertia, deformability, and pressure oscillations frequency on the

migration of the capsule by adjusting Re, La, and ω∗. Re ranges between 5 and 37.8, La

ranges between 1 and 500, and ω∗ values are chosen such that for a channel with a square

cross-section of 100µm and water as the working fluid at room temperature, the frequency

values range between 2Hz and 200Hz, which is mostly reported in the literature [  70 ]. For

each case, the capsule is placed at the same initial location in the channel and is tracked

until it reaches its focal position. This equilibrium position is a result of the competition
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(a) (b)

Figure 2.1. (a) Schematic of the problem setup and (b) An example of the
capsule discretization

between the forces acting on the capsule, namely the wall effect and the capsule deformation-

induced lift forces, both acting towards the channel center, and the shear gradient force

acting towards the wall [  71 ], [  72 ]. Magnus and Saffman lift forces are often very small and

negligible compared to the other mentioned components [  72 ]. The role of the boundary wall

is to generally retard the particle motion. When the particle moves parallel to the wall,

it experiences a transverse lift force that repels it away from the wall [  72 ]. The existing

curvature of the parabolic fluid velocity profile makes the magnitude of the relative velocity

of the fluid to that of the particle on the wall side much higher than the channel center side.

This dissymmetry causes a low pressure on the wall side resulting in a shear gradient lift

force that pushes the particle towards the closer wall from the channel center [  72 ]. To the

best of our knowledge, there is no quantitative expression for the shear gradient force in the

literature to date. Following the analytical results of Chan and Leal [ 73 ], the deformability-

induced lift force for droplets or bubbles that have a distance higher than their diameter

from the wall, which is the case in our simulations, is given by [  74 ]:

FL,deformation = −75.4CapµVavga( a

W
)2 d

W
, (2.6)
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Cap = µVavg

γ

a

W
, (2.7)

Where Cap is the particle capillary number, Vavg is the average velocity of the carrier fluid

across the channel, d is the distance of the particle from the channel center, and γ is the

surface tension at the interface. Here, f(λ) in the original equation, (where λ is the viscosity

ratio between the inner and outer fluids), is replaced with its value of −75.4 evaluated at

λ = 1. The negative sign indicates that this force acts towards the center of the channel.

Fig.  2.2 depicts the effect of frequency, capsule deformability, and channel flow rate on

the capsule dynamics. In these sub-figures, d∗ is the dimensionless distance of the capsule

from the channel center. Fig.  2.2 (a) illustrates this distance versus the location of the

capsule along the channel. It shows that the capsule has to travel a very long distance along

the flow direction in the steady flow to reach its equilibrium position. On the other hand,

increasing the frequency lowers the amplitude of capsule motion due to the frequent change

in the flow direction, which means that the capsule travels a shorter distance to focus; this

implies that by increasing the frequency of the pressure gradient wave, the necessary length

of the microfluidic channel can be decreased significantly. However, increasing the frequency

steadily has its own limitations, as it is challenging to create very high frequencies in practice

[ 75 ]. In particular, the case of ω∗ = 0.1 is plotted by dots at equal time intervals. The varying

distance between its consecutive points is due to the sinusoidal pressure gradient.

Fig.  2.2 (b) shows the time evolution of the distance of the capsule from the center of the

channel for several cases. The most important feature of this figure is the change in the focal

point of the capsule due to the change in the frequency of oscillation. This is because the

wall effect and shear gradient induced lift forces directly depend on the flow velocity, which

has a different quantitative profile for different frequency values. This, in turn, changes the

lateral location of the capsule leading to changes in the deformation-induced lift force [  72 ].

Fig.  2.2 (c) shows the equilibrium location of all the cases in this study. At Re = 10

and all the La numbers, there is an intermediate value of frequency at which the capsule

focuses closer to the channel center compared to the steady and other oscillatory cases. This

frequency depends on both the capsule deformability and channel flow rate. Since Vavg is a
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function of time in the oscillatory flows, an appropriate approach to interpret it is to refer

to its average in a portion of the corresponding periodic cycle when the flow is in a single

direction (half a period). For the higher frequency at the same amplitude of the pressure

gradient, the absolute value of the average of Vavg in each half a periodic cycle is lower. This

is confirmed by comparing the corresponding flow rates in the channel. This further implies

that the maximum of Uc in each cycle decreases by increasing the frequency. Therefore, at

higher frequencies, both deformation and shear gradient forces are lower on average; this is

because of equation (  2.6 ) and the resultant lower difference between the relative velocities on

the wall and channel sides, respectively. From Fig.  2.2 (c), we can conclude that by increasing

the frequency to a particular value, the decrease in the shear gradient force is more than

that of the deformation force, making the latter the dominant one. Above this critical

frequency, the decrease in the deformation force is more, which makes the shear gradient lift

the overcoming force. At Re = 25 and Re = 37.8, however, increasing the frequency leads to

a focusing point closer to the center. This means that the average deformation force always

overcomes the average shear gradient lift at higher Reynolds. The wall-induced lift force for

all the studied cases here is negligible as the capsule paths are far from the wall. [ 72 ]

It is also notable from Fig.  2.2 (c) that at the fixed Re = 10, there is an intermediate

value of La number (La = 50 in the figure) for which the differences between the capsule

focal points in the steady and oscillatory flows at the depicted frequencies are higher than

those for the other capsule deformabilities. This is because by changing the frequency, the

capsule generally begins to travel a different trajectory due to the change in the flow motion

pattern and values of the shear gradient lift force. Since the deformation lift force also

depends on the capsule location and shear, its magnitude will also be different by changing

the frequency. This means that the change in the values of both lift forces contributes to

different focal points at different frequencies. However, when La is very high (La = 500

and La = 250 for instance), the capsule cannot deform much resulting in close values of

the deformation-induced force. This behavior can also be observed in equation (  2.6 ) as the

Cap is a small value due to the consequence of the Cap = Rep

La
relationship [  59 ]. Therefore,

the difference between the focal points at different frequencies only comes from different

magnitudes of the shear gradient force. On the other hand, at Re = 10 and La = 10, we
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can observe that for all the studied frequencies, the capsule focuses close to the center. This

is because La is very low for this case, and so the deformation force dominates the shear

gradient force repelling the capsule towards the center regardless of the flow motion pattern.

Thus, the difference between the focal points at different frequencies in this case only comes

from different magnitudes of the deformation force.

Furthermore, increasing Re increases the distance between the focal points of the capsule

in the flows with the frequencies depicted in Fig.  2.2 (c) (including the steady flows) at

the same La. This is due to the higher change in the corresponding shear gradient and

deformation lift forces as a consequence of the higher difference between the absolute values of

the average of Vavg in each half a periodic cycle at different frequencies. This is also confirmed

by comparing the differences among the average of flow rates in the steady and oscillatory

flows by keeping ω∗ and La fixed and changing Re only. Another possible explanation for this

phenomenon could be the effect of the Rep term in the inertial lift force equation reported in

Di Carlo et al. [ 46 ] (FL,inertial = −10RepµVavga d
W

) although the restricted criteria of d
W

< 0.2

for validity of this equation does not apply to all the cases in our work.

Due to the square shape of the channel cross-section, the inherent symmetry is reduced

compared to the Segre and Silberberg effect [ 76 ], which is the appearance of colloidal particles

on the circular annulus. Therefore, there is a set of discrete equilibrium points on the main

axes and diagonal of the cross-section instead [  47 ]. It has been reported in the literature

that larger particles migrate towards the diagonal, where they are further away from the

walls, while smaller particles migrate towards the main axes [ 59 ]. Fig.  2.2 (d) shows the

lateral migration of the capsule on the channel cross-section, where the solid black line is the

diagonal. While most of the cases including all the steady ones focus on the diagonal, there

are a few oscillatory cases that have reached their equilibrium location not exactly on the

diagonal but rather close to it, which is also observed in other works [ 59 ], [  69 ]. As capsules

become stiffer, they tend to focus farther from the channel center [  77 ], [  78 ]. Moreover, it

is apparent from this figure that the y and z positions of the capsule are also oscillatory

in addition to the x position as shown in Fig.  2.2 (a). Therefore, all the equilibrium points

reported in Fig.  2.2 (c) are the average values in each corresponding oscillatory cycle of the

trajectory.
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It is important to note that we have shown that the numerical results are independent of

the distance between 2 consecutive capsules in an infinite domain in the X-direction. This

has been done by comparing the distance of the capsule from the center at Re = 10, La = 50,

and ω∗ = 0.1 for three different distances of 4W , 6W , and 8W between 2 consecutive capsules

in the X-direction. The maximum difference between the capsule distances from the center

for L = 4W and L = 6W is 0.65% or 0.002W , and the one between those of L = 4W and

L = 8W is 0.77% or 0.002W . The results have also been shown to be mesh independent,

by comparing the focal positions for the case of Re = 10, La = 50, and ω∗ = 0.1 with

two different grids of 200 × 114 × 114 and 256 × 152 × 152. The difference between their

focusing distances from the center is 2.66% or 0.0085W . To validate our numerical results,

the focusing distance as a function of La has been compared to those of a previously published

work [ 59 ]. The maximum error observed in the capsule trajectory at different La numbers

is 1.15%. This validation has also been done in a previous work [ 77 ].

The introduced oscillatory flow is not quasi-steady since there is a phase lag between the

imposed pressure gradient and the resultant flow parameters such as the velocity field; this

is illustrated in Fig.  2.3 by plotting the mass flow rate against the pressure gradient forming

a hysteresis loop. Duo to the fluid inertia, there is a delay for the flow in response to the

external oscillatory driving force. This effect is more significant for higher values of frequency

[ 79 ]. As the frequency decreases, the region becomes narrower and eventually approaches a

line (quasi-steady). It can also be concluded that the more the hysteresis is, the lower is the

required device length.

The Taylor deformation parameter of the capsule is defined as:

D = L − B

L + B
(2.8)

where L is the principal major axis, and B is the principal minor axis of an equivalent

ellipsoidal particle. Fig.  3.4 shows the oscillatory deformation of the capsule [  80 ], [  81 ] over

time with a frequency twice the flow oscillation frequency since during each pressure gradient

period, the capsule reaches maximum or minimum deformation twice [ 82 ]. Fig.  2.5 shows

the capsule at these instants of maximum and minimum deformations accompanied by the
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corresponding average flow velocity at the location of the capsule, and Fig.  2.6 shows the

surrounding flow field on the capsule frame of reference at the instant of maximum flow rate

in one cycle near the capsule focal point. The minimum deformation occurs close to the

instant when the flow is changing direction since the shear disappears. These two instants

of time do not coincide exactly due to the present phase lag between the flow and capsule

parameters (pressure gradient and capsule deformation in here) as discussed above. This shift

in time increases by increasing the frequency due to the increase in the present hysteresis

effect, as discussed earlier. Similarly, the maximum deformation occurs close to the instant

of maximum flow rate, when the shear rate is also maximum. Fig.  3.4 also confirms the

directionality of the equilibrium point with respect to the frequency, as discussed previously.

For the shown case in this figure, the average capsule deformation in each cycle reduces by

increasing the frequency due to the reduction in the strength of shear rate [  83 ]. Furthermore,

the average deformation decrease as the capsule approaches the center since the shear rate

approaches zero, and the capsule surface energy gets closer to its minimum desired value.

2.3.2 Necessary length for microchannel

Effect of capsule deformability

Dynamics of capsules with different deformability have been studied in the channel. La

number quantifies the deformability, where a low La denotes a very elastic capsule, whereas

a high La corresponds to a more rigid particle. Fig.  2.7 illustrates the distance of the

capsule focusing position from the channel centerline for various La numbers. Increasing

the La increases the distance, a behavior that is in good agreement with the previously

published work by Raffiee et al. [ 77 ] This is because as the value of La increases, the

deformation-induced lift force, which is always towards the center [  71 ], [ 72 ] to minimize the

surface energy of the capsule, reduces and therefore, the equilibrium position moves farther

from the centerline. Furthermore, a relatively short microchannel can be designed for all

the aforementioned capsules according to Table  2.1 . It can also be seen that increasing La

reduces the amplitude of movement, which is because as La increases, capsules approach

the wall where the velocity of the flow is lower than the centerline. Therefore, capsules
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with higher La have lower average velocity and travel a shorter distance in the channel.

This would be beneficial in particle focusing applications where the focusing length is very

large due to small lift forces, e.g., small particles. It is worth mentioning that since the

migration pattern of the capsule slightly depends on its initial location, a safety factor has

to be considered for designing the microchannel based on the values reported in Table  2.1 .

Table 2.1. Amplitude of capsule movement at various La numbers for ω∗ =
0.1 and Re = 10

La Amplitude of movement at the limit cycle
1 18.67
10 18.65
50 17.59
250 15.89
500 15.45

Effect of channel flow rate

The effect of different flow rates in the channel on the capsule dynamics has been inves-

tigated in this section. Fig.  2.8 illustrates the distance of the capsule focal position from the

channel center as a function of Reynolds number. Increasing the Re increases the distance

from the center, which is in agreement with a previous work [  59 ]. This is because of the

increase in the strength of the shear gradient induced force, acting towards the wall. Table

 2.2 shows a short necessary device length for all amounts of channel flow rates. It can fur-

ther be noted that increasing Re shortens the essential device length, which is because as

Re increases, capsules approach the wall where the velocity of the flow is lower than that of

the center. It is vital to mention that the oscillatory flow does not produce a single focal

point for capsule when Re is very high (Re = 100 for instance) as in these cases, the capsule

oscillates drastically around a particular region rather than a single point due to the consid-

erable variations in the values of both the shear gradient and deformation lift forces. This

may force us to limit the system flow rate to some specific threshold to fulfill the purpose of

interest.
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Table 2.2. Amplitude of capsule movement at various Re numbers for ω∗ =
0.1 and La = 10

Re Amplitude of movement at the limit cycle
5 18.81
10 18.65
25 17.98
37.8 17.17

Square wave oscillatory flow

In practice, it is easier to merely switch the direction of the flow in the channel by

a control valve in the experiment. Thus, the simulations are also done with a pressure

gradient having a square wave function with the same period and same area under the curve

as that of the formerly defined cosine wave. This is to assure that the total amount of the

external force acting on the fluid is the same for both cases. Hence, they both have the same

average acceleration. By plotting the hysteresis loops for both functions, it is found that the

square wave has more hysteresis and requires a shorter device, which obeys the same pattern

mentioned in the discussion of Fig.  2.3 . This result is presented in Table  2.3 .

Table 2.3. Amplitude of capsule movement for two types of oscillation func-
tions at ω∗ = 0.1, Re = 10, and La = 10

Function form Amplitude of movement at the limit cycle
sinusoidal 18.65
square wave 17.97

2.4 Conclusions

We have studied the dynamics of a single deformable capsule in a rectangular microchan-

nel with an oscillatory flow of a Newtonian fluid. We observed that under sinusoidal and

square wave pressure oscillations, the equilibrium position of the capsule changes compared

to a steady flow case. The change is more prominent for higher flow rates by moving the

steady equilibrium location closer to the center of the channel but not exactly at the center.

The amount of change in the equilibrium location is also dependent on the frequency of the

pressure wave with an intermediate value causing higher change. For the same frequency
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and flow rate, the change is maximized at an intermediate capsule deformability. The oscil-

latory flow also enhances the focusing of micron-sized biological pathogens by significantly

decreasing the essential microchannel length, which is not the case for steady flows. This

improvement is present for all types of capsules, flow rates, and any type of function or mech-

anism to produce the oscillatory behavior according to the cases presented in the current

study. The effect of varying La and Re numbers on the capsule dynamics was also studied.

It was observed that higher flow rates and more rigid capsules shorten the required channel

length. We believe that this work is significant because it provides the ability to have more

direct control over the migration of cells inside the microchannels, which could be useful for

cell sorting and separation, filtering bacteria and fungi, etc.
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Figure 2.2. Evolution of the capsule motion for different cases by illustrating
the time dependent progress in its trajectory (a) versus the flow direction for
Re = 10 and La = 10, (b) versus time, (c) the equilibrium position versus the
frequency, and (d) on the channel cross section with the same legend as that
of the (b)
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Figure 2.5. Deformed shape of the capsule at La = 10, Re = 37.8, and
ω∗ = 0.1 in one cycle close to its focal point when flow is (a) from left to
right, (b) changing direction, (c) from right to left, and the corresponding
dimensionless averaged velocity profile along the flow direction when flow is
(d) from left to right (e) changing direction (f) from right to left
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Figure 2.6. Flow field around the capsule on its frame of reference at t∗ =
3269.87 for La = 10, Re = 37.8, and ω∗ = 0.1 on the xy plane
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Figure 2.8. Distance of the capsule focusing position from the center at
various Re numbers for ω∗ = 0.1 and La = 10
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Figure 2.9. Evolution of the capsule motion for two types of oscillatory
functions with ω∗ = 0.1 and their comparison with the steady case at La = 10
and Re = 10
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3. DYNAMICS OF DROPLET MIGRATION IN OSCILLATORY

AND PULSATING MICROCHANNEL FLOWS AND

PREDICTION AND UNCERTAINTY QUANTIFICATION OF

ITS LATERAL EQUILIBRIUM POSITION USING MULTI

FIDELITY GAUSSIAN PROCESSES

3.1 Summary

Dynamics of a droplet in oscillatory and pulsating flows of a Newtonian fluid in a mi-

crochannel has been studied numerically. The effects of oscillation frequency, surface tension,

and channel flow rate have been explored by simulating the drop within a microchannel.

These types of flows introduce new equilibrium positions for the drop compared to steady

flows with similar conditions. The simulation results are very sensitive to the grid resolution

due to the unsteady behavior of the base flow. Therefore, a set of fine grids have been used

in this study to capture the physics of this problem more accurately. However, these fine

grids make the computations significantly expensive. Therefore, a Multi Fidelity Gaussian

processes method with two levels of fidelity has been used to predict the results of the re-

maining fine-grid simulations along with their uncertainties based on their correlations with

those of the coarse-grid cases over a wide range of input parameters.

3.2 Methodology

3.2.1 The fluid dynamics simulations

A single Newtonian droplet has been placed in a laminar flow of an incompressible New-

tonian fluid in a rectangular microchannel with a square cross section. A schematic of the

configuration is illustrated in Fig.  3.1 (a). The density and viscosity ratios (η and λ, respec-

tively) are set to 1 for most of the simulations. The front-tracking method [  60 ], [  84 ]–[ 90 ]

is used to update the interface position. In this method, the main governing equations are

solved in the fixed Eulerian grid, and the obtained information is used to update the prop-
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erties across the droplet surface containing thousands of moving Lagrangian elements. The

governing equations to be solved in the entire computational domain are the following:

∇ · u = 0, (3.1)

∂(ρu)
∂t

+ ∇ · (ρuu) = −∇p + ∇ · τ +
∫∫

γκδ(x − xi)ndA, (3.2)

where ρ is the density of the fluid, p represents the pressure, u is the velocity vector, t is the

time, τ = µ(∇u+∇uT ) is the stress tensor in which µ is the fluid viscosity, κ is the curvature

at the interface, γ is the interfacial tension, δ is the Dirac delta function, x is an arbitrary

location in the whole computational domain, xi is such position on the drop interface, and

n is the unit normal vector to a point on the interface. The given delta function is defined

as:

δ(x) = D̃(x)D̃(y)D̃(z), (3.3)

D̃(x) = 1
4∆(1 + cos( π

2∆(x))), |x| ≤ 2∆, (3.4)

where ∆ is the constant Eulerian grid size.

To generate the oscillatory flow, a cosine wave of pressure gradient with a constant

amplitude (in the form of P0cos(ωt)) is applied along the channel (x direction) to change

the direction of the flow symmetrically. For the pulsating case, this pressure gradient has

the shape of P0(a + bcos(ωt)), where a and b are the weights of the steady and oscillatory

components, respectively, and a + b = 1. The periodic boundary condition is applied in

the x direction, and the no-slip condition is applied on the walls in the y and z directions.

W and U0 (channel centerline velocity corresponding to the steady case) are used as the

characteristic length and velocity, respectively. In other words, x∗ = x
W

, u∗ = u
U0

, t∗ = t
W
U0

,

P ∗ = P

µ
U0
W

, T ∗ = T
W
U0

(where T is the period), and ω∗ = 2π

T ∗ . Three dimensionless parameters

describe and affect the motion of the drop: (i) Reynolds number Re = ρU02W
µ

, expressing

the ratio between inertial forces to viscous ones (ii) Capillary number Ca = µU0
γ

, which

denotes the ratio of viscous stress to the interfacial tension, where high Ca corresponds to
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a highly deformable drop (iii) The dimensionless oscillation frequency (ω∗). The effect of

the frequency can also be embedded in the Womersley number Wo = (ωW 2

ν
) 1

2 , where ν is

the kinematic viscosity of the fluid. This number compares the transient inertial effects to

viscous forces [  70 ]. The blockage ratio of the drop ( a
W

) is constant and equals to 0.3 for

most of the cases studied here. The drop is assumed to have a spherical initial shape and is

released at y
W

= 0.55 and z
W

= 1.07. The initial location of the drop is arbitrary since it does

not alter its equilibrium position [ 33 ], [  91 ]–[ 93 ]. The axes of symmetry have been avoided.

A fine grid of 196 × 114 × 114 (high fidelity level) and a coarse grid of 128 × 76 × 76 (low

fidelity level) in the x, y, and z directions, , and with 29578 and 13038 triangular elements

for the discretization of the droplet (as shown in Fig.  3.1 (b)), respectively, is used for the

simulations having Re = 10. The simulations with higher Re numbers require even a finer

grid resolution (Eulerian grid of 256 × 152 × 152 with 48050 Lagrangian elements). Since

this adds another level of fidelity to the problem, we have omitted the effect of Re in the

second part of the chapter for more simplicity. Therefore, the input parameters that affect

the output of interest, which is the distance of the equilibrium position of the drop from the

channel center, are reduced to the Capillary number (Ca) and frequency (ω∗).

(a) (b)

Figure 3.1. (a) Schematic of the problem setup and (b) An example of the
droplet discretization
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3.2.2 Multi fidelity GP

Gaussian processes (GP) is an example of a continuous stochastic process in which, a

multi-dimensional Gaussian distribution is assigned to the function values at the input points

as the prior knowledge. In other words, the value of the function that we are aiming to predict

follows a Gaussian probability density at each point:

f1:n|x1:n ∼ N (m(x1:n), K(x1:n, x1:n)) , (3.5)

m(x1:n) = (m(x1), . . . , m(xn)) , (3.6)

K(x1:n, x1:n) =


k(x1, x1) . . . k(x1, xn)

... . . . ...

k(xn, x1) . . . k(xn, xn)

 , (3.7)

Where m is the mean vector, and K is the covariance matrix whose elements denote the

correlations between the input points. These correlations are quantified by a covariance

(kernel) function that encodes our prior belief and knowledge about the targeted function

like its continuity, differentiability, etc. The choice of this function is very important for a

good prediction; otherwise, we need to have sufficient amount of data to compensate this lack

of knowledge. One of the most typical examples for this function is the squared exponential

(SE) kernel given below:

k(x, x′) = v exp
{

−1
2

d∑
i=1

(xi − x′
i)2

`2
i

}
, (3.8)

In which, v is known as the signal strength, and `i is the length scale of the i-th input

dimension of the GP. In this study, we also use the SE function as we believe the function

of interest is continuous and infinitely differentiable.

If we have n observations (training set), consisting of x1:n = (x1, . . . , xn) and y1:n =

(y1, . . . , yn), and n∗ test points (x∗
1:n∗) that we would like to predict the function values at
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(f∗
1:n∗), we use the following joint probability, according to the definition of GP, as our prior:

p(f1:n, f∗
1:n∗|x1:n, x∗

1:n∗) = N


 f1:n

f∗
1:n∗


∣∣∣∣∣∣∣
 m(x1:n)

m(x∗
1:n∗)

 ,

 K(x1:n, x1:n) K(x1:n, x∗
1:n∗)

K(x∗
1:n∗ , x1:n) K(x∗

1:n∗ , x∗
1:n∗)


 ,

(3.9)

We then model our likelihood as p(y1:n|f1:n) ∼ N (f1:n, σ2In), which is also a Gaussian dis-

tribution centered at the known function values and has a variance of σ associated with

the measurements noise. Since our data is from simulations, we can assume the observa-

tions are not noisy (σ = 0 and y1:n = f1:n). Thus, after performing the Bayes’ rule, where

D = (x1:n, y1:n) is the observed data, we get the posterior distribution for f∗ as below:

p(f∗
1:n∗|x∗

1:n∗ , D) = N (f∗
1:n∗|mn(x∗

1:n∗), Kn(x∗
1:n∗ , x∗

1:n∗)) , (3.10)

Where the posterior mean function is:

mn(x) = m(x) + k(x, x1:n) (K(x1:n, x1:n))−1 (y1:n − m(x1:n)) , (3.11)

And the posterior covariance function is:

kn(x, x′) = k(x, x′) − k(x, x1:n) (K(x1:n, x1:n))−1 kT (x, x1:n), (3.12)

With k(x, x1:n) = (k(x, x1), . . . , k(x, xn)) being the cross-covariance vector.

Multi-fildelity modeling helps accurately predict the output of interest by combining out-

comes from the low-fidelity models (simulations with a coarse grid resolution in our case) and

fewer data points of the high-fidelity (fine numerical grid) ground truth observations. This

approach eliminates the need to run numerous high-fidelity simulations with an expensive

computational cost and is effective when there is a high correlation between the outputs of

low and high-fidelity models [ 40 ]. The MFGP method introduced by Perdikaris et al. [ 40 ] is

fundamentally very similar to that of the Kennedy and O’Hagan [ 94 ], but it is also capable of

capturing the more complex nonlinear cross-correlations between the data. Assuming that
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we have s fidelity levels (which is 2 in our case), based on this method, the GP has to be

done s times recursively. In other words, the GP is done in its standard, usual way on the

first level, and for the next levels, the outputs of the previous level t − 1 are the inputs for

the level t. This is done in the way described below [  40 ]:

ft(x) = gt(x, f∗t−1(x)), (3.13)

Where f∗t−1(x) is the posterior distribution of the previous level t − 1 evaluated at the x,

being the inputs of the current level t. The unknown function gt follows the description of

GP [  40 ]:

gt ∼ GP(ft|0, kt((x, f∗t−1(x)), (x′, f∗t−1(x′)); θt)), (3.14)

According to Le Gratiet and Garnier [ 95 ], this scheme has the same posterior distribution

predicted by the fully coupled scheme of Kennedy and O’Hagan [ 94 ]. The main requirement

of this procedure is that the training sets need to have a nested structure (i.e. xt ⊆ xt−1)

[ 40 ].

Since the posterior distribution of the previous level (f∗t−1) and the input (x) are from

different spaces, a more structured kernel function, coupling the elements from the same

space together, is the following [  40 ]:

ktg = ktρ(x, x′; θtρ) · ktf
(f∗t−1(x), f∗t−1(x′); θtf

) + ktδ
(x, x′; θtδ

), (3.15)

In which ktρ , ktf
, and ktδ

are kernel functions parameterized by θtρ , θtf
, and θtδ

, respectively.

For our application, we have chosen the SE kernel function:

k(x, x′; θt) = σ2
t exp

{
−1

2

d∑
i=1

Wi,t(xi − x′
i)2
}

, (3.16)

Where σ2
t is the variance, and

{
Wi,t

}d

i=1
are the Automatic Relevance Determination (ARD)

weights associated with the fidelity level t [ 40 ].

As previously discussed, the posterior distribution of the first level is obtained by the

normal GP. Therefore, it is Gaussian. Nevertheless, this is not necessarily the case for
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the next fidelity levels, and we need to propagate the input uncertainty through each step

recursively. Thus, after carrying out the Bayes’ rule, the posterior distribution for the fidelity

level t is given by [ 40 ]:

p(f∗t(x∗)) := p(ft(x∗, f∗t−1(x∗))|f∗t−1, x∗, yt, xt) =
∫

p(ft(x∗, f∗t−1(x∗))|yt, xt, x∗)p(f∗t−1(x∗))dx∗,

(3.17)

We can then sample from this distribution.

3.3 Results and discussion

3.3.1 Oscillatory flow

Dynamics of the droplet in an oscillatory flow in the microchannel has been studied, and

the effects of Re, Ca, and ω∗ have been investigated. Re ranges between 10 and 100, Ca

ranges between 0.09 and 10, and ω∗ values are chosen such that for a channel with a square

cross-section of 100µm and water as the working fluid at room temperature, the frequency

values range between 2Hz and 1600Hz (or a corresponding Wo number between 0.2 and

6.3). Although a maximum frequency of 200Hz is mostly reported in the literature [  70 ],

recent works have claimed of generating frequencies of around 1KHz [ 75 ]. The equilibrium

position of the drop is a result of the competition between the lateral lift forces acting on

it, including the wall effect and the deformation-induced lift forces, both acting towards the

channel center, and the shear gradient force acting towards the wall [ 55 ], [  71 ], [  72 ]. Magnus

and Saffman lift forces are often very small compared to the other mentioned components

and can be neglected [ 42 ], [  45 ], [  72 ]. The boundary wall causes the particle to have rotational

and translational velocities different from those of the adjacent fluid, which is caused by an

uneven distribution of vorticities around the particle [  96 ], [  97 ]. This induces a higher pressure

in the gap between the particle and the wall, which repels the particle away from the wall

[ 72 ]. The existing curvature of the fluid velocity profile makes the magnitude of the velocity

of the fluid on the wall side much higher than the channel center side from the particle frame

of reference. This inequality causes a low pressure on the wall side leading to a shear gradient

lift force that pushes the particle towards the wall [  72 ]. Following the analytical results of
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Chan and Leal [ 73 ], the deformability-induced lift force for droplets or bubbles that have a

distance higher than their diameter from the wall, which is the case in our simulations, is

given by [ 74 ]:

FL,deformation = CapµVavga( a

W
)2 d

W
f(λ), (3.18)

f(λ) = 128π

(λ + 1)3

{
11λ + 10

140 (3λ2 − λ + 8) − 3(19λ + 16)
14(3λ + 2) (2λ2 + λ − 1)

}
, (3.19)

Where Cap = µU0
γ

a
W

is the drop capillary number, Vavg is the average velocity of the carrier

fluid across the channel, d is the distance of the drop from the channel center, and λ is the

viscosity ratio between the inner and outer fluids.

The code has been validated by comparing the drop deformations at Ca = 0.2 and

different Deborah numbers with those of the Aggarwal and Sarkar [ 98 ]. The results are

in good agreement with a maximum error of 0.72%. To validate the inertial effects, the

focal points of the drop at Re = 8.25, Ca = 0.18, a
W

= 0.2 and Re = 21, Ca = 0.14,
a

W
= 0.3 have been compared with those presented by Marson et al. [ 99 ]. Our obtained

focal points lie within their corresponding uncertainty bands. Furthermore, we have shown

that the numerical results are independent of the distance between 2 consecutive drops in an

infinite domain in the flow direction. This has been done by comparing the drop trajectory

at Re = 10, Ca = 1, and ω∗ = 0.1 for three different channel lengths of 4W , 6W , and

8W in our simulation setup. The maximum difference between the drop trajectories for

L = 4W and L = 6W is 0.0003W , and the one between those of L = 4W and L = 8W

is 0.0005W . The results have also been shown to be grid independent, by comparing the

equilibrium positions for the case of Re = 10, Ca = 1, and ω∗ = 0.1 with two different grids

of 196 × 114 × 114 and 256 × 152 × 152. The difference between their focal distances from

the center is 0.0009W .

Figure  3.2 shows the distance of the droplet focal point from the channel center (d∗) at

different values of Wo, Ca, and Re. The drop focal point in the steady flow moves towards

the center by increasing the Ca due to the increase in the deformation force [  91 ], [  92 ], [  100 ]

and shifts towards the wall as Re increases because of the improvement in the strength of

the shear gradient force [  46 ], [ 100 ], [ 101 ]. Since W and ν are constant in this work, ω∗ and
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Wo are directly related to each other. Hence, we can use them interchangeably. The droplet

travels at locations far from the wall; so the wall lift can be neglected in our study [  72 ], [ 96 ].

Both deformation and shear gradient lift forces, as the remaining active forces, depend on

Vavg and d∗ that vary as the simulations proceed. The dependence of deformation force on

these 2 parameters is apparent from equation  3.18 . The parameter d∗ and the flow velocity

at the drop location affect the magnitude of the difference between the velocities on the

wall and center sides from the drop frame of reference. Hence, both d∗ and Vavg determine

the magnitude of the shear gradient force. For non-steady flows, including oscillatory and

pulsating ones, Vavg is time-dependent. The average of this Vavg in each corresponding

periodic cycle decreases as the ω∗ (or Wo) increases. Consequently, the averages of both

forces in one periodic cycle change by changing the Wo value keeping other parameters fixed,

leading to different equilibrium positions as we can see in Fig.  3.2 . A complete explanation

of the relationship between the focal point and parameters like ω∗, Ca, and Re can be found

in our previous work [ 102 ]. According to this figure, the focal point is closest to the channel

center at the highest Wo except for Re = 10 and Ca = 1 and Re = 10 and Ca = 1.67. This

can be explained based on the shape of the flow velocity profile elaborated below.
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0.4
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Re = 10, Ca = 10

Re = 10, Ca = 1.67

Re = 10, Ca = 1
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Re = 10, Ca = 0.09

Re = 37.8, Ca = 1.67

Re = 37.8, Ca = 0.09

Re = 100, Ca = 0.09

Figure 3.2. Distance of the equilibrium position of the droplet from the
channel center as a function of Wo for different cases
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Stokes number in the oscillatory and pulsating flows is defined as St = W
√

ω
ν
. O’Brien

[ 103 ] has solved these types of flows in rectangular channels analytically and quantified the

shape of the velocity profile by calculating the ratio between the velocity at the center and

its average across the cross-section. Based on the values in table 1 of this chapter, the profile

maintains its parabolic shape up to St = 3 for a square channel. Above this approximate

value, the profile starts to become more like a flat, plug-like profile [  103 ]. Figure  3.3 illustrates

the shapes of the dimensionless averaged velocity along the flow direction near the drop focal

points at St = 3 (Wo = 3.15) and St = 6 (Wo = 6.3). These shapes are consistent with

the findings of [ 103 ] and [  104 ]. At Wo = 3.15 (ω∗ = 2) the velocity shape is still parabolic

and is similar to those of the lower Wo values. However, this shape changes to plug like at

Wo = 6.3 (ω∗ = 8). The average of Vavg at this Wo is the lowest because it has the highest

frequency among others. Therefore, the value of deformation force on average is very small

according to equation  3.18 . However, due to the shape of the velocity profile, the relative

flow velocity from the drop frame of reference is very small near the center and very large

near the wall. Thus, there is a strong shear gradient force although the average of Vavg is

small. Consequently, the focal point at Wo = 6.3 does not follow the trend observed for the

lower Wo numbers and is pushed towards the wall.

Furthermore, by taking a closer look at Fig.  3.3 (c), we can see that the velocity has an

opposite sign near the wall. Due to the present hysteresis in this type of flow, there is a lag

in the response of fluid to the change of flow direction [  33 ], [  79 ].

The Taylor deformation parameter of the drop is defined as:

D = L − B

L + B
(3.20)

In which, L is the principal major axis, and B is the principal minor axis of an equivalent

ellipsoidal particle. The parameter D is oscillatory for all the flows in this study except for

the steady one. This parameter is proportional to the shear rate, which depends on the flow

velocity. As a result, the average of D is lower at higher frequencies [  83 ]. This is reflected

in Fig.  3.4 by visualizing the average of D in the corresponding periodic cycle as a function

of time. This trend also implies that the amount of oscillations in the deformation is lower
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Figure 3.3. Normalized flow direction averaged velocity profiles on the xy
and xz planes at Re = 10, Ca = 1.67, and (a) ω∗ = 2 (Wo = 3.15, St = 3), (b)
ω∗ = 8 (Wo = 6.3, St = 6), and (c) their shape comparison on the xy plane
with the same constant z

at higher frequencies since the minimum deformation in each cycle is zero. Moreover, it is

apparent that the case with ω∗ = 8 has a deformation of close to 0, which confirms that it

has a very low Vavg. In fact, the droplet in this case travels about only 0.02W along the flow

direction and remains almost spherical though the Ca = 1 corresponds to a very deformable

drop. Nevertheless, it migrates around 0.08W from the initial location to its focal point.

Previous works have reported that drops in the flow regimes of high Ca are elongated

significantly leading to their break up [  91 ], [  92 ], [  99 ]. This is the reason for the absence of
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any data for Ca = 10 and Re = 10 for steady and lower frequency flows in Fig.  3.2 . The

drop undergoes a very large deformation in these cases, which is not what it experiences at

higher frequencies. A similar argument holds for Re = 37.8 and Ca = 1.67 since the drop is

able to deform more easily at higher Re [ 105 ].
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Figure 3.4. Averaged deformation parameter vs averaged dimensionless time
at Re = 10, Ca = 1, and different frequencies

As it was discussed previously, the velocity in the presented type of flows is oscillatory.

Consequently, all the active forces also experience fluctuations leading to oscillations in the

trajectory of the drop except for the steady flows [  33 ]. This can be seen in Fig.  3.5 where

the whole lateral migration patterns at Re = 10, Ca = 1, and all frequencies, ω∗ = 1,

and ω∗ = 0.01, showing the oscillations in the trajectories are illustrated in figures  3.5 (a),

 3.5 (b), and  3.5 (c), respectively, and the amplitudes of oscillations after focusing (A∗) for

different cases are depicted in Fig.  3.5 (d). In these figures, d∗ is the dimensionless, time-

dependent distance of the drop from the channel center, and the insets of figures  3.5 (b) and

 3.5 (c) show the trajectory at the last 2 periodic cycles. The plots depicted in the latter 2

figures qualitatively agree with those of a previous study and become more like a helical,

spiral pathway as the frequency increases [  33 ]. The minimum velocity in each periodic

cycle is zero, occurring when the flow direction changes. The higher average velocity at

lower frequencies implies a higher maximum velocity in the corresponding cycle. The higher

the difference between the maximum and minimum velocities, the higher is the oscillations
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amplitude in the forces and in the trajectory. Therefore, similar to the aforementioned

discussion of deformation oscillations, the parameter A∗ decreases as ω∗ or Wo increases

(Fig.  3.5 (d)). This is also the case for the oscillations amplitude along the flow direction

(the comparison between figures  3.5 (b) and  3.5 (c)). The existence of these oscillations at all

Wo values is noteworthy [  33 ]. It is vital to mention that all the values reported in Fig.  3.2 

are the averages of d∗ in the last periodic cycle.
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Figure 3.5. (a) Migration patterns at Re = 10, Ca = 1, and various fre-
quencies, (b) Drop trajectory versus the flow direction at Re = 10, Ca = 1,
and ω∗ = 1, and (c) ω∗ = 0.01, and (d) Amplitude of oscillations around the
equilibrium point after focusing for different cases

Focusing time can be considered as an important factor in the design and performance

of the microfluidic system. Nevertheless, it strongly depends on where the particle is ini-

tially released. Therefore, the average migration velocity is a better parameter for a more
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meaningful comparison under different circumstances. The average migration velocity (v∗)

for different cases is shown in Fig.  3.6 . This velocity is computed by calculating the dis-

tance between the initial and equilibrium positions and dividing it by the focusing time.

The corresponding focusing time is determined when the trajectory reaches within 0.015W

of the focal point. This figure expresses that the average migration velocity decreases as

Wo increase. This pattern is also observed in the average velocity along the flow direction.

Besides, the average migration velocity in the steady flows increases by increasing the Ca,

which is in agreement with the findings of Alghalibi et al. [ 106 ].
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Figure 3.6. The average migration velocity vs Wo

Viscosity ratio in the range of 1 ≤ λ < 13.2 has a weak effect on the drop migration [  91 ],

[ 99 ]. The effect of density ratio (η) on the drop focal point is even less [ 101 ]. Therefore, we

have limited our study on the effect of these two parameters on the drop migration only to

one case as shown in Fig.  3.7 . The drop with a λ higher than 1 focuses closer to the wall for

the Ca we are studying here [  91 ], [  99 ], [  101 ]. We can also see that the change in the η and

λ does not change the distance between the focal points in the steady and oscillatory flows

significantly.

3.3.2 Pulsating flow

Changing the steady flow to oscillatory type helps achieve different focal points, which

can have potential applications in cell sorting and separation as a great advantage. However,
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Figure 3.7. The effect of density and viscosity ratios on the distance of the
drop focal point from the channel center at Re = 10 and Ca = 1.67

the oscillatory flow has a zero net flow rate leading to a lower throughput compared to that

of traditional steady flows [ 23 ], which can be counted as a disadvantage considering many

microfluidic applications depending on high-throughput systems. One solution to fix this

issue is to combine both steady and oscillatory parts in the pressure gradient and make

the flow regime to be pulsating [  70 ]. A pulsating flow has the advantages of having a

non-zero net flow rate as well as introducing a new equilibrium point for the drop. The

latter occurs because the drop dynamics in the pulsating flow is very similar to the one in

a pure oscillatory flow with an equivalent frequency between 0 and that of the oscillatory

portion of the pulsating pressure gradient. This claim is valid since the weights of steady

and oscillatory portions add up to 1. We can see this equivalent frequency in Fig.  3.8 (a)

and the inset of Fig.  3.8 (c) where the trajectories in the pulsating flows have frequencies

of almost half of those of the oscillatory ones with the same frequencies. This feature also

enables the existence of cases with high Ca or Re and low ω∗ that are absent in the figures

of the previous section. This is because the equivalent frequency of the pulsating flow makes

the average deformation lower compared to the pure steady flow or oscillatory flow with a

lower frequency. It is crucial to mention that the highest weights for the steady portions

of the pulsating cases depicted in Fig.  3.8 denote flows in which the drop experiences the

highest feasible deformation without breaking up or being significantly elongated. This has

been done to show the highest possible changes in the focal points.
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In addition, the directionality of the focal points and averages of deformation values obey

the expected trend at each combination of Re and Ca in Fig.  3.8 . For instance, the pulsating

flow at Re = 37.8 and Ca = 1.67 has an equivalent frequency less than 0.1. Therefore, we can

see a focal point closer to the channel center and a higher average deformation according to

Fig.  3.8 (a) and Fig.  3.8 (b), respectively. Similarly, we can observe a focal point closer to the

center at Re = 10 and Ca = 10 for the pulsating case with the larger steady portion. This

is because this case has an equivalent frequency between 0.1 and 0.5 and less than the one

with the lower steady portion. Fig.  3.8 (c) reflects this pattern. The deformation behavior

in Fig.  3.8 (d) is also qualitatively similar to that shown in Fig.  3.8 (b). It is also momentous

to pay attention to the 0.012W difference between the focal points of the pulsating cases at

Re = 10 and Ca = 10 although the difference between the weights of their steady portions

is only 0.01.

Tables  3.1 and  3.2 quantify the average migration velocities for the flow regimes discussed

above. The observed trend in these tables is consistent with the information provided in the

discussion of Fig.  3.6 . The pulsating case at Re = 37.8 and Ca = 1.67 has the lowest

equivalent frequency. Hence, it has the highest average migration velocity among others.

Similarly, the v∗ at Re = 10 and Ca = 10 decreases as the equivalent frequency increases.

Table 3.1. Average migration velocities for different flow regimes at Re = 37.8
and Ca = 1.67

Pressure gradient
form

Average
migration velocity

P0(0.93+0.07cos(0.1t)) 0.00191
P0cos(0.1t) 0.00141
P0cos(0.5t) 0.00012

Table 3.2. Average migration velocities for different flow regimes at Re = 10 and Ca = 10
Pressure gradient

form
Average

migration velocity
P0cos(0.1t) 0.000389

P0(0.17+0.83cos(0.5t)) 0.000297
P0(0.07+0.93cos(0.5t)) 0.000213

P0cos(0.5t) 0.000205
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Figure 3.8. Evolution of the oscillatory and pulsating dynamics of the drop
at Re = 37.8 and Ca = 1.67 by illustrating its (a) trajectory, (b) deformation,
and at Re = 10 and Ca = 10 by visualizing the corresponding (c) trajectory,
and (d) deformation

The effect of droplet size on its focal point in the oscillatory and pulsating flows at

Re = 10 and Ca = 10 is summarized in Table  3.3 . We observe that reducing the drop size

pushes its equilibrium location towards the wall [  43 ], [  46 ], [ 49 ], [  91 ], [ 101 ]. Furthermore,

this size reduction appears to enhance the change in the focal point at different values of

equivalent frequency.
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Table 3.3. The effect of drop size on its focal point at Re = 10 and Ca = 10

Pressure gradient form Equilibrium distance from center
a

W = 0.3 a
W = 0.2

P0cos(0.1t) 0.138 0.193
P0(0.17 + 0.83cos(0.5t)) 0.166 0.241

P0cos(0.5t) 0.183 0.266

3.3.3 MFGP

In this section, we evaluate the MFGP performance by having a dataset consisting of 29

low-fidelity and 22 high-fidelity observations. Fig.  3.9 shows all these observations together.

It can be seen that the required nested structure, as mentioned earlier, is satisfied. In other

words, for any data point in the high-fidelity level, there is a corresponding point in the low-

fidelity level. Fig.  3.10 illustrates the predictions on the distance of the drop equilibrium

0 1 2 3 4 5 6

Wo

10
−1

10
0

10
1

Ca

Observations

Low fidelity data

High fidelity data

Figure 3.9. Observations of the high and low fidelity levels

position from the channel center over the range of 0 to 1 for the frequency and 0.09 to

1.67 for the Capillary number. The algorithm is trained over the entire available data.

A few sanity checks have been done to ensure that these results make sense. First, Fig.

 3.10 (a) denotes that at any fixed value of the Capillary number, there is a global optimum
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frequency for which the equilibrium distance from the center (the z axis) is an extremum.

This is also previously observed in the simulations for the input values in the dataset (Fig.

 3.2 ). Secondly, the predictions made by the high-fidelity response are slightly higher than

those of the low-fidelity response, which is also compatible with the simulations outcomes.

Lastly, we know from the underlying physics that in the steady flow (at a frequency of 0), the

distance decreases by increasing the Capillary number [  91 ], [  92 ]. This can be seen in both

contour plots of the mean low and high responses (figures  3.10 (b) and  3.10 (c)) as well as

being confirmed quantitatively in the code. Fig.  3.10 (d) illustrates a relatively low variance

for the high-fidelity response, being our main goal, in the entire domain. The red-colored

region in this plot corresponds to places where the density of data points is less, and hence,

the predicted outputs have more uncertainty.

Since there is no analytical solution to compare the predictions with, we decided to split

the high-fidelity data into training and test sets in this section. This helps us evaluate the

performance of the implemented MFGP. We assign 15 training and 7 test points at the high-

fidelity level randomly. Then, we train the MFGP on the whole low-fidelity data (29 points)

and only the training high-fidelity data, and evaluate the predictive responses on the high-

fidelity test points, since those are our main targets. We do this entire procedure 500 times

to eliminate the dependence of the results on the test points choice. This especially helps

us examine the algorithm performance at the regions with less amount of data. After this

bootstrapping, the average of the mean squared error (MSE) was 0.00015 and the average

of the R2 score was 0.9858. The successful reproduction of these results is also checked. Fig.

 3.11 shows this evaluation at the last (500th) test set. Fig.  3.11 (a) expresses the predictions

of d∗ along with their 95% credible intervals and denotes that the observed data lies within

the corresponding uncertainty bars. In this figure, the x axis label (i) denotes the index of

each test point. Figure  3.11 (b) visualizes the true or known value of d∗ versus its predicted

value at each test point. This figure illustrates the strength of the model as the plotted

points are very close to the line of y = x, which is an indication of the agreement between

predictions and observations. The exact and predicted correlations between the high and low

responses of d∗ are also very close to each other according to Fig.  3.11 (c). All of these are

evidence for the strong and successful performance of the implemented MFGP algorithm.
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Figure 3.10. Prediction of the MFGP algorithm by illustrating the (a) sur-
face plot of the high-fidelity response colored by red and low-fidelity response
colored by green, (b) mean response of the low-fidelity level, (c) mean response
of the high-fidelity level, and (d) variance of the high-fidelity response

3.4 Conclusions

Determination and control of the particle’s equilibrium position in the microchannels are

extremely crucial as it can help in a variety of microfluidics applications. This importance,

as well as the need to overcome the issue of designing impractically long channels to work

with sub-micron particles, led us to do some simulations to capture the dynamics of a single

droplet suspended in an oscillatory flow within the channel. The drawback of the zero net

flow rate and smaller throughputs of the oscillatory flow compared to steady one has been
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Figure 3.11. Evaluation of the MFGP performance on a random test set by
illustrating the (a) observations and predictions with their uncertainties, (b)
predictions versus observations, and (c) exact versus predicted correlations

addressed by combining these two to create a pulsating flow regime. Both oscillatory and

pulsating flows bring new drop equilibrium locations to the system. Pulsating flows also

enable the presence of droplets at high Ca or Re that could break up in the steady or a

very low-frequency oscillatory regime. Moreover, fluctuations in the trajectory of the drop

have been observed. It has been shown that the amplitude of these oscillations, the average

of the oscillatory deformation, and the average migration velocity all decrease by increasing

the frequency. The dependence of the drop focal point on the shape of the velocity profile

has been investigated as well. It has been explored that this equilibrium position moves
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towards the wall in a plug-like profile, which is the case in very high Wo numbers. Due to

the significant cost of these simulations, a recursive version of the Multi Fidelity Gaussian

processes has been used to replace the numerous high-fidelity simulations that cannot be

afforded numerically. The MFGP algorithm is used to predict the equilibrium distance of

the drop from the channel center for a given range of the interplaying input parameters,

namely the Capillary number and frequency, assuming a constant Reynolds number. In

addition, its performance was evaluated by randomly shuffling the high-fidelity data 500

times and assigning 31.8% of it as the test set for an accurate quantitative comparison each

time. The algorithm outputs high statistical scores, which is an indication of its reasonably

accurate performance.
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4. A NUMERICAL LIFT FORCE ANALYSIS ON THE

INERTIAL MIGRATION OF A DEFORMABLE DROPLET IN

STEADY AND OSCILLATORY MICROCHANNEL FLOWS

4.1 Summary

Inertial migration of deformable particles has become appealing in recent years due to its

numerous applications in microfluidics and biomedicine. The physics underlying the motion

of these particles is contingent upon the presence of lift forces in microchannels. Therefore,

in this work, we present a lift force analysis for such migration of a deformable droplet in

steady and oscillatory flow regimes and identify the effects of varying Capillary number and

oscillation frequency on its dynamics. We then propose an expression that mimics the lift

force behavior in oscillatory flows accurately. Finally, we introduce a procedure to derive

and predict a simple expression for the steady and averaged oscillatory lift for any given

combination of Capillary number and oscillation frequency within a continuous range.

4.2 Methodology

A single droplet with density and viscosity ratios of one is placed in a laminar flow

of an incompressible Newtonian fluid in a microchannel as illustrated in Fig.  4.1 . The

drop dynamics is simulated using Front-tracking method [  60 ] as elaborated in detail in our

previous work [  107 ]. The pressure gradient in the x direction has a constant magnitude

of P0 for the steady flow and a varying strength of P0cos(ωt) for the oscillatory flow. The

periodic boundary condition is applied in the x direction, and the no-slip condition is applied

on the walls in the y and z directions. Parameters W and Uc (maximum velocity of the

steady case) are used as the characteristic length and velocity, respectively. In other words,

x∗ = x
W

, u∗ = u
Uc

, t∗ = t
W
Uc

, P ∗ = P

µ Uc
W

, T ∗ = T
W
Uc

(where T is the period), and ω∗ = 2π

T ∗ .

Three dimensionless parameters describe the dynamics of the drop: (i) Reynolds number,

Re = ρUc2W
µ

, where ρ and µ are the density and viscosity, respectively, (ii) Capillary number,

Ca = µUc

γ
, in which γ is the surface tension, and (iii) the dimensionless oscillation frequency

(ω∗). The drop has a constant size of a
W

= 0.3 with a spherical initial shape, and Re = 10
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in our entire study. The numerical grid is generated using 196 × 114 × 114 cells in the x, y,

and z directions, respectively, and with 29578 triangular elements for the discretization of

the drop interface.

Figure 4.1. Schematic of the problem setup

The active dominant forces on the migrating drop in the wall-normal direction are the in-

ertial and deformation-induced lift and lateral drag forces [ 42 ], [  45 ], [  72 ], [  108 ]. The direction

of the inertial lift at drop locations far from the wall is towards it, and the deformation lift

pushes the drop towards the channel center [ 55 ], [  71 ], [  72 ], [  108 ]. The direction of the lateral

drag is the opposite of its migration velocity, assuming that the carrier fluid is stationary in

the wall-normal direction. Therefore, if we assume the positive direction to be the one from

the center to the wall, the force balance on the drop according to Newton’s second law is

the following:

Ftotal = Finertial − Fdeformation − Fdrag, (4.1)
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The drag force is computed based on its definition [ 109 ]:

Fdrag = 1
2CDρvr|vr|Ad, (4.2)

CD = 24
Rerel

(1 + 0.1Re0.75
rel ), (4.3)

Rerel = Re vr

Uc

a

W
, (4.4)

Where CD is the drag coefficient, vr is the relative velocity between the drop and the fluid

(which is essentially its migration velocity), and Ad is the frontal projected area of the

drop. Equation  4.3 is consistent with the findings of [  109 ]–[ 113 ] and those of [  114 ] at a

viscosity ratio of one. Although eq.  4.3 is derived for steady flows, researchers have shown

that the drag coefficient in unsteady flows depends heavily on an unsteady parameter that

includes the density ratio [ 115 ], [  116 ]. Since the density ratio in the present study is one,

the aforementioned unsteady parameter becomes zero, and hence, CD for unsteady flows

(including oscillatory cases) can be approximated as the one for steady flows using this

equation. The parameter Ad is calculated based on the projected area of the drop on a plane

having a normal vector parallel to its migration velocity. Thus, the value of this parameter

varies at different instances. This procedure leads to a more precise computation of the drag

force.

Considering a viscosity ratio of one, the deformation-induced lift for a drop that has a

distance higher than its diameter from the closest wall leads to the following compact form

[ 73 ], [  74 ]:

Fdeformation = 75.4CapµVavga( a

W
)2 d

W
, (4.5)

Where Cap = Ca a
W

is the drop capillary number, Vavg is the average velocity of the carrier

fluid across the channel, and d is the distance of the drop from the channel center. The

linear dependency of this force with respect to the distance d in the specified region is also

confirmed in [  55 ].
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The lift force analysis in this work is solely based on the drop trajectory. Therefore, to

get a lift profile that spans a wide range of d, the drop is released from two different initial

locations:

• y∗ = 0.46 and z∗ = 1 (the upper release)

• y∗ = 0.98 and z∗ = 1 (the lower release)

The upper release is chosen such that the whole range of studied d falls within the validity

domain of the deformation force equation (eq.  4.5 ). This enables us to plug eq.  4.5 into the

force balance equation (eq.  4.1 ) to get the inertial force once the total force is calculated as

elaborated below. We will compare the inertial force at different Ca values for the steady

flows in the results section. The lower release initial location is slightly off from the channel

center since it is also an equilibrium point, and if a drop is placed there, it does not move at

all [ 54 ]. The initial z component for both releases is on the main axis for faster convergence

since the drop eventually focuses on the main axes according to our previous work [  107 ].

These different initial locations do not alter the drop equilibrium position [  33 ], [  91 ]–[ 93 ].

The results of each parameter computation for both releases will be combined to reflect its

overall behavior within the channel cross-section.

The migration velocity and acceleration of the drop is calculated by taking the first and

second temporal derivatives from its trajectory numerically. Since time-step varies through-

out the simulations to keep the CourantFriedrichsLewy number at 0.9, the following equa-

tions are used to obtain the corresponding derivatives [ 117 ]:

vr = ḋi ≈ −hi

(hi−1)(hi + hi−1)
di−1 + hi − hi−1

hihi−1
di + hi−1

(hi)(hi + hi−1)
di+1, (4.6)

dvr

dt
= d̈i ≈

2
[
di+1 + hi

hi−1
di−1 − (1 + hi

hi−1
di)
]

hihi−1(1 + hi
hi−1

)
, (4.7)

In which hi = ti+1 − ti, hi−1 = ti − ti−1, and di and ti denote the distance from center and

time at the current step. Both non-uniform finite difference schemes have a second-order

accuracy.
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Taking the first derivative from the steady flow trajectory at the lowest Ca (Ca = 0.09)

results in a very noisy curve that is impossible to interpret. Therefore, we use an accurate

non-linear regression by minimizing the sum of squared errors to fit the trajectories with

analytical expressions, from which we can take first and second derivatives analytically. The

trajectory from the upper release is very similar to an exponential decay. Therefore, we fit

a curve with the following form to it:

d(t) ≈ cebt + k, (4.8)

Where c, b, and k are all constants that should be determined by curve fitting. The constant

k is essentially the drop equilibrium distance from the center. The trajectory from the lower

release looks like the sigmoid logistic function. Consequently, we use the following equation

as its analytical general form:

d(t) ≈ c

1 + e−b(t−k) + offset, (4.9)

Where again, c, b, k, and offset are the regressor constants. The regression fits to both

trajectories from the upper and lower release have very high R2 scores of 0.99 as plotted in

fig.  4.2 . This figure further confirms that the drop focuses at the same d∗ regardless of its

initial location.

Once the migration acceleration is derived following the aforementioned steps, it will be

multiplied by 4
3πa3ρ, which is the total constant mass of the drop with the initial spherical

shape, to get the total force. By subtracting the calculated drag force from the total force,

the total lift force can be obtained.

4.3 Results and discussion

In this section, we report the results of a single deformable droplet simulations in the

previously introduced microchannel that contains either steady or oscillatory carrier fluid.

As we are interested in studying the effects of oscillation frequency and Capillary number

on the lift force, we fix the Re at a value of 10. Ca ranges between 0.09 and 1.67, and for
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Figure 4.2. Regression fits to both steady trajectories at Ca = 0.09

oscillatory cases, ω∗ values are chosen such that for a channel with a cross-section of 100µm

and water as the working fluid at room temperature, the frequency ranges between 2Hz and

200Hz, which is mostly referred to in the literature [  70 ]. The validation of our numerical

framework, as well as grid and domain independence studies, are discussed in detail in our

previous work [  107 ].

Figure  4.3 illustrates the dimensionless mass flow rate over dimensionless time. It can

be seen that while the steady regime has the largest constant flow rate in a single direction,

the average of oscillatory flow rates in each half of a periodic cycle decreases by increasing

the frequency [ 102 ], [  107 ]. Although the average of a sinusoidal function in half of a period

is constant regardless of its oscillation frequency ( 1
π

ω

∫ π

ω
0 sin(ωt)dt = 2

π
), the lower maximum

absolute value of the flow rate at higher frequencies is the chief reason for the observed

phenomenon.

Figure  4.4 visualizes the dimensionless time-dependent frontal projected area of the

droplet (parameter Ad in equation  4.2 ) as it migrates toward its lateral equilibrium posi-

tion traveling both upper and lower-release trajectories. The first thing we note is that in

the transient stage before focusing, the drop has a higher average projected area while trav-

62



200 400 600

t∗

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

ṁ∗
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Figure 4.3. Flow rate versus time at Ca = 1.67 and Re = 10

eling the upper trajectories (fig.  4.4 (b)) compared to the one in the lower trajectories (fig.

 4.4 (a)) in each of the flow regimes correspondingly. This is because the drop experiences

more shear and deforms easier when traveling the upper trajectories. Moreover, in each

subfigure, the average of A∗ is lower at a higher frequency since the average deformation

parameter decreases by increasing the frequency [  107 ]. It is important to note that the min-

imum projected area of the drop in the steady flow is its initial value when the drop is still

undeformed and has a spherical shape; in the oscillatory cases, this minimum value occurs

when the direction of the flow changes in each periodic cycle. Also, as expected, the drop at

higher Ca deforms more and has a higher projected area. This is why Ca = 1.67 is used for

visualization here among all the other cases in the present study.

Figure  4.5 demonstrates the dimensionless total lift coefficient as a function of the dimen-

sionless distance of the drop from the channel center in the steady flows and at different Ca.

Similar to [  54 ], all of the lift coefficients in this work are obtained by dividing the derived

lift force, according to the introduced methodology in the previous section, by a factor of
π

8ρV 2
avg,s(2a)2, in which Vavg,s is the average of flow velocity across the channel cross-section

in the steady flow. As expected, we observe that each lift curve has a stable equilibrium

point at the corresponding drop focal point. Furthermore, at each Ca, the maximum positive
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Figure 4.4. Transient cross-stream frontal projected area of the drop when it
is released from a (a) lower initial location, and an (b) upper initial location

total lift occurs when the drop migration velocity is also maximum. This maximum value is

the highest at the lowest Ca. In addition, the maximum negative total lift is at the initial

location of the upper trajectory, and its absolute value is the highest for higher Ca except

for Ca = 1.67. This is because as we go further up from the channel center and the drop

focal point, the deformation lift becomes the dominant force. According to equation  4.5 , this

force is larger at higher Ca. Also, the negative lift sign in this region is due to the direc-

tion of the deformation-induced force, which is toward the center. The drop at Ca = 1.67

is released from an initial location closer to the center compared to other cases because it

has the highest deformability among all. When it was released from the same location as

that of the others, it experienced an extremely large deformation that led to its break up.

Therefore, the selected initial point for Ca = 1.67 is the furthest possible one from the center

that results in the largest possible deformation of the drop throughout its upper trajectory

without its break up. Consequently, since the drop in this case starts to travel from a closer

distance from the center, it has a lower maximum negative total lift compared to Ca = 1

and Ca = 0.5 (please refer to eq.  4.5 that shows the dependence of the deformation force on

the drop distance from the center).

Since the principal hypothesis underlying equation  4.5 is that the wall effect is negligible

due to the large distance of the drop from it [  72 ], [  96 ], [  118 ], we can assume that the shear-
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Figure 4.5. Total lift coefficient for the steady flows at different Ca

gradient force is the dominant component of the inertial lift in our study. After subtracting

the calculated deformation lift based on this equation from the obtained total lift (fig.  4.5 ),

we can derive the inertial lift, as shown in fig.  4.6 . We see that the inertial lift coefficient

increases as we increase the Ca number. This could make sense as the more deformed shape

of the drop can help further increase the difference between the relative velocities of the fluid

with respect to the drop on the channel wall and center sides, which is the chief reason for

the shear-gradient force existence [  72 ]. According to eq.  4.5 , the deformation force is a linear

function of the drop distance from the center and is larger for higher values of Ca. Because

of this trivial conclusion, a plot of this force is not depicted here.

Total lift curves acting on the drop in steady and different oscillatory flows at a few Ca

numbers are expressed in fig.  4.7 . In each subfigure, the higher the drop migration velocity,

the larger are both the amplitude of oscillations and the distance between two corresponding

points (e.g. maximum or minimum in the oscillatory cycle) on two consecutive periodic

cycles. Hence, similar to steady regimes, the maximum absolute values of oscillatory lift

coefficients occur when the drop migration velocities are maximum as well. Similarly, the

lift oscillations around the drop focal point and near the lower initial point are lower because

the drop migration velocities are minimum at those locations.
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Figure 4.6. Inertial lift coefficient for the steady flows at different Ca

The moving averages of the total lift coefficients in fig.  4.7 are plotted in fig.  4.8 . The

selected d∗
avg while computing the average of lift in each corresponding oscillatory cycle is

chosen to be the middle value of d∗ in that period. Therefore, since oscillatory cycles with

lower frequencies have longer periods, the averaged lift curves at lower frequencies cover

a shorter length of d∗
avg (a later beginning and a sooner ending). We first note that the

obtained averaged lift curves for the oscillatory flows are not necessarily as smooth as that

of the steady lift at the corresponding Ca. This observation becomes more pronounced as

we increase ω∗ or decrease Ca. Nevertheless, these fluctuations on the curves are negligible

compared to those of the original oscillatory lifts (fig.  4.7 ). Additionally, although the

average of inertial and deformation-induced lift forces decrease separately by increasing ω∗

[ 107 ], the difference between them (fig.  4.8 ) does not follow the same pattern. This confirms

the existence of a drop focal point with an extremum distance from the channel center at an

intermediate frequency, as elaborated in our previous work [ 107 ]. Despite this, the average of

lift is the largest in the steady flow and the smallest in the oscillatory flow with the highest

frequency at each Ca in our study.

By taking another close look at fig.  4.7 , we realize that each of the oscillatory total lift

coefficients can be fitted using an expression that comprises of a base curve, which can be
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best fitted by a 4th order polynomial, combined with the absolute value of some sinusoidal

oscillations. Both the amplitude of oscillations and oscillatory periods can be controlled

by the drop migration velocity and have direct relationship with it. In other words, the

proposed expression can have the following form:

ftot ≈
{

m + nv(t)
∣∣∣∣∣cos

(
c

av(t)d(t) + b

)∣∣∣∣∣
} {

gd4(t) + hd3(t) + kd2(t) + ld(t) + q
}

(4.10)

Where d(t) and v(t) are the time-dependent drop distance from the channel center and its

migration velocity, respectively, and m, n, a, b, c, g, h, k, l, and q are the constants to be

determined while performing the optimization. The constant m is just placed for achieving

higher accuracy for the fits, and it ends up to be almost zero compared to other constants in

the expression. The resultant curves are plotted in fig.  4.9 against their corresponding data

(fig.  4.7 (a)) for Ca = 1.67 and ω∗ = 0.01, ω∗ = 0.1, ω∗ = 0.5, and ω∗ = 1 with R2 scores of

0.99, 0.99, 0.99, and 0.97, respectively. Similar curves having the same proposed expression

with R2 scores of 0.97 or higher and capable of capturing all the infinitesimal details are

obtained for other Ca numbers as well.

To further extend the total lift prediction to more general cases within a continuous range

of Ca and ω∗, we consider the steady and averaged oscillatory lifts (fig.  4.8 ) for regression

with a 4th order polynomial here. In other words, the expression in the first bracket of eq.

 4.10 is replaced with a value of 1. Using the analytical set of equations  4.11 , we can derive

the unknown coefficients a, b, c, g, and h of the polynomial analytically. In these equations,

the subscripts for d and f denote their locations. For instance, the subscript max represents

where the magnitude of total (or averaged) lift is maximum and its first derivative is zero.
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The obtained polynomials with this approach have R2 scores of around 0.9 or higher for the

cases presented in fig.  4.8 .



ad4
f irst + bd3

f irst + cd2
f irst + gdf irst + h = ff irst,

ad4
max + bd3

max + cd2
max + gdmax + h = fmax,

4ad3
max + 3bd2

max + 2cdmax + g = 0,

ad4
eq + bd3

eq + cd2
eq + gdeq + h = 0,

ad4
last + bd3

last + cd2
last + gdlast + h = flast,

(4.11)

Parameters df irst, dmax, deq, dlast, ff irst, fmax, and flast are already available for the cases

in fig.  4.8 to solve the system of equations  4.11 for them. However, we use the multi-

fidelity Gaussian processes (MFGP) method to predict these unknown parameters for any

given double inputs of 0.25 ≤ Ca ≤ 1.67 and 0 ≤ ω∗ ≤ 1. MFGP is a Bayesian stochastic

approach that does a casual inference on a set of high and low-fidelity datasets, and it

is extremely effective if there are strong correlations between them [  40 ]. This method is

described in detail in our previous work, and it is carried out to predict the distance of

the drop equilibrium position from the channel center (deq) with R2 of 0.99 and root mean

squared error (RMSE) of 0.01 in that work [  107 ]. Here, we refer to the data for the cases in

fig.  4.8 except for Ca = 1 as our high-fidelity data. We generate similar data for all the cases

in that figure, but with a grid of 128 × 76 × 76 in the x, y, and z directions, respectively,

and having 13038 triangular elements for the discretization of the drop. We consider this

data as our low-fidelity dataset. Therefore, we have a total of 25 low and 20 high-fidelity

data points, which satisfies the required nested structure to apply MFGP on the data [  40 ].

We randomly allocate 5 data points of the entire high-fidelity dataset as our test set since

the high-fidelity response is our main target. We train the algorithm on the remaining 40

training data points and evaluate its performance on the test set. We repeat this procedure

30 times and compute the average of evaluation metrics so that the selection of test sets does

not significantly affect the overall algorithm performance.

68



Table  4.1 presents the average of R2 and RMSE on our 6 remaining unknown parameters

after completing the aforementioned steps. We can see that the trained algorithm is capable

of predicting the intended parameters with very high accuracies. Especially, the accurate

prediction of fmax and flast is useful for determining the maximum and minimum values of

averaged total lift for any given input in the range, respectively. The slightly less accurate

prediction for dmax (i.e. where the maximum averaged lift occurs) is because of the present

randomness in its values among different cases. This is unlike the consistent pattern that

exists for other parameters for a combination of ω∗ values across different Ca numbers. The

similar lower accurate prediction for dlast is due to the lack of data points between Ca = 1

and Ca = 1.67 since all the cases with Ca ≤ 1 have the same upper release initial location.

However, the R2 score of around 0.8 for this prediction is still high, and it can help us

determine the furthest starting point from the center and the widest traveling region of a

droplet with 1 ≤ Ca ≤ 1.67 in the microchannel so that it undergoes the largest possible

deformation without breaking up.

Table 4.1. MFGP averaged performance metrics on 30 randomly chosen
test sets for the parameters required for the determination of the analytical
averaged total lift polynomial coefficients

Parameter R2 RMSE
dmax 0.79 0.0140
dlast 0.78 0.0213
df irst 0.97 0.0007
flast 0.92 0.0177
fmax 0.99 0.0015
ff irst 0.99 0.0003

4.4 Conclusions

The dynamics of particles and biological cells in microchannels has caught many re-

searchers’ attention because of several biomicrofluidic applications it has. The underlying

physics owes its behavior mainly to the presence of different lift forces in such channels.

Hence, many scientists have dedicated their time to calculate or measure these forces. How-

ever, most of these works have focused on analyzing the lift forces acting on solid and non-
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deformable particles and studied the effects of parameters such as particles’ size, Reynolds

number, etc on them. Consequently, such analysis on deformable droplets or bubbles and

studying the effects of varying parameters like Capillary number is almost missing in the

literature. In this work, we have extended such analysis to the case of a single deformable

droplet in the channel. We have calculated the main components of the lift force based on

a unique methodology that merely depends on the drop trajectory. To do so, first, the drop

migration velocity and its frontal projected area as it travels its lateral trajectory have been

computed to calculate the drag force in the wall-normal direction accurately. After applying

Newton’s second law on the drop, the total lift profile is obtained over a region where the drop

has a distance higher than its diameter from the wall. It has been observed that the total

lift has a higher maximum at a lower Capillary, and its minimum decreases as we increase

the Ca. The inertial and deformation-induced lift forces both increase by increasing the

Ca number. Moreover, since the oscillatory flows within the microchannel were previously

shown to enable working with sub-micron biological particles as well as introducing new focal

points for them, we have also included these flow regimes in our analysis and investigated the

effects of oscillation frequency on the lift in addition to the Capillary number. We have seen

that for all cases, the total lift and for oscillatory ones, the amplitude of oscillations are both

higher when the drop migration velocity is higher. At each Ca, the steady lift and moving

averages of oscillatory ones at different ω∗ have also been compared. It has been shown

that the steady lift has the largest magnitude, and the average of oscillatory one with the

highest frequency in this study has the smallest strength. However, there is not a constant

decreasing pattern in the average of lift by increasing the frequency, which is why the drop

focuses furthest from the channel center at an intermediate ω∗. Additionally, an accurate

mathematical expression has been proposed that captures the detailed total oscillatory lift

curves at various ω∗ with R2 scores of 0.97 or higher. Finally, the multi-fidelity Gaussian

processes has been used to accurately predict the 7 unknown parameters required to define

a simple 4th order polynomial to fit the steady and averaged oscillatory lifts with R2 scores

of about 0.9 or higher for any given Ca and ω∗ within the ranges of 0.25 ≤ Ca ≤ 1.67 and

0 ≤ ω∗ ≤ 1.
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Figure 4.7. Total lift coefficients for steady and oscillatory flows with different
frequencies at (a) Ca = 1.67, (b) Ca = 1, (c) Ca = 0.5, (d) Ca = 0.33, and
(e) Ca = 0.25
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Figure 4.8. Averaged total lift coefficients for steady and oscillatory flows
with different frequencies at (a) Ca = 1.67, (b) Ca = 1, (c) Ca = 0.5, (d)
Ca = 0.33, and (e) Ca = 0.25
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Figure 4.9. The fitted total lift coefficients to the ground-truth data using
the introduced non-linear regression at Ca = 1.67 and (a) ω∗ = 0.01, (b)
ω∗ = 0.1, (c) ω∗ = 0.5, and (d) ω∗ = 1
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5. CONCLUSIONS

We investigated the dynamics of deformable capsules and droplets in steady, oscillatory, and

pulsating microchannel flows of Newtonian fluid and unraveled the effects of deformability,

inertia, size, and oscillation frequency on the particle motion. Our results showed that

the equilibrium positions of capsules and droplets in oscillatory flows are different from

those in steady flows having the same particle deformability and channel flow rate. We

further observed that the pulsating flow adds even more new particle focal points as well

as increases the throughput of oscillatory flows while keeping all other parameters in the

system fixed. This feature of oscillatory and pulsating flows is significant because it enables

a non-invasive control of the motion of the cell within microchannels, which is beneficial

for numerous clinical and biological applications. Moreover, we noted that increasing the

flow rate, oscillation frequency, and capsule stiffness all reduce the required length of the

microchannel. In addition, the amplitude of fluctuations in the lateral trajectory of the

drop, the average of the oscillatory deformation, and the average migration velocity all

decrease by increasing the frequency. We also studied the lift force profiles acting on a drop

having different deformabilities in steady and oscillatory flows with different frequencies.

We used non-linear regression to fit the steady and oscillatory lift profiles and developed a

multi-fidelity Gaussian processes model to predict the main coefficients (including the drop

equilibrium point) to determine fourth-order polynomials to fit the steady and averaged

oscillatory lifts with excellent accuracies. This analysis is done over a wide, continuous range

of input parameters and is crucial for designing microfluidic devices for various practices.

The experimental studies on inertial microfluidic devices used for separating and focus-

ing of cells show that such cells have various inherent characteristics, which is out of our

control. The introduced oscillatory and pulsating flow regimes provide us with an extra

controllable parameter to manipulate the motion of cells non-invasively. As recent progress

in fabrication methods at micro and nano-scale has enabled researchers to develop microflu-

idic devices with complex geometries, it is then advisable to study the dynamics of such

cells inside microchannels with different cross-sections. Furthermore, the rheology analysis

and simulations of a suspension of cells with different properties in oscillatory flows could
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reflect more realistic conditions in microfluidic systems. It is also recommended to perform

a theoretical lift force analysis in oscillatory flows and provide a mathematical foundation,

especially to identify the lift force equations for such flow regimes given any combination of

input parameters, similar to the analysis presented in this work.
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