
IMPROVING COARSE-GRAINED SCHEMES WITH
APPLICATION TO ORGANIC MIXED CONDUCTORS

by

Aditi Khot

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

Davidson School of Chemical Engineering

West Lafayette, Indiana

May 2022



THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Brett M. Savoie, Chair

Department of Chemical Engineering

Dr. Bryan W. Boudouris

Department of Chemical Engineering

Dr. David S. Corti

Department of Chemical Engineering

Dr. Alejandro H. Strachan

Department of Materials Engineering

Approved by:

Dr. John A. Morgan

2



ACKNOWLEDGMENTS

Graduate school is an important learning experience and I am ever so grateful to have

Prof. Brett Savoie as my advisor, who has been a knowledgeable and kind mentor to me. I am

thankful for his expertise in mesoscale modeling of materials, his knack for finding valuable

meaning in data and beautiful presentation of the data and, importantly, his nice demeanour

and genuine support for his students. I am especially thankful to Prof. Pushpavanam for

encouraging me to pursue research during my undergraduate studies, and recommending me

as a graduate candidate to Purdue University, and to Prof. Ramakrishna for providing me

the opportunity to join the graduate program. I would also like to thank my committee

members Dr. Boudouris, Dr. Corti and Dr. Strachan for their useful feedback on modifying

my approach towards studying mixed conductors after my preliminary presentation. I want

to specially thank Dr. Boudouris for his constant encouragement and expert feedback on

mixed conducting polymers. I am very thankful to Dr. Stephen Shiring for all his help in

getting acquainted with cluster and computational chemistry, his technical contribution to

the study on coarse-grained mapping operators, all his inputs during graduate school and

for navigating the career search post-graduate school.

Of course, none of the work could have been accomplished without funding support. I

want to acknowledge and thank all the funding sources– the Extreme Science and Engi-

neering Discovery Environment (XSEDE) supported by National Science Foundation grant

number ACI-1548562, Donors of the American Chemical Society Petroleum Research Fund,

the Dreyfus Program for Machine Learning in the Chemical Sciences and Engineering and the

National Science Foundation (NSF) Division of Chemical, Bioengineering, Environmental,

and Transport Systems (CBET). I am also thankful to the computing resources at Purdue

University, ITaP Research Computing for providing the resources and help to run the simu-

lations presented in this thesis. I also want to extend my thanks to graduate administrators,

Bev and Robin for making navigating through any formalities during graduate school very

easy.

I would not have been able to attend graduate school and learn all the wonderful things,

if not for the hard work and support of my family, whom I cannot thank enough. I want to

3



especially thank my dearest ajoba (grandfather) and aai (mother) who persevered in difficult

circumstances to provide me all the opportunities and taught me the value of education. I

am also very grateful for the support and warmth of my friends during graduate school,

especially Bhavya and Lakshya for encouraging me whenever I am down and believing the

best in me. I am lucky to have great old friends– Gulve, Suji, and all Robocon folks, Tony,

Abey, Ankit, and Radha, and make some amazing new friends– Shruti, Akriti, Ayse, Pelin,

Pushkar, Cara, and Mike, who have made this time during graduate school and away from

home, easier and happier.

4



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9 

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10 

ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13 

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14 

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15 

1.1 Organic Ion-Electron Conducting Polymers . . . . . . . . . . . . . . . . . . .  15 

1.2 Coarse-grained Molecular-Dynamics . . . . . . . . . . . . . . . . . . . . . . .  17 

1.3 Top-Down Coarse-grained Framework for OMIEC Polymers and OMIEC Side-

chain Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19 

1.4 Bottom-Up Coarse-Graining Framework . . . . . . . . . . . . . . . . . . . .  22 

2 LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26 

2.1 Organic Mixed Ionic-Electronic Conducting Polymers . . . . . . . . . . . . .  26 

2.2 Bottom-Up Coarse-grained Methods . . . . . . . . . . . . . . . . . . . . . .  31 

3 TOP-DOWN COARSE-GRAINED FRAMEWORK FOR CHARACTERIZING MIXED

CONDUCTING POLYMERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36 

3.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  38 

3.1.1 Mixed Conduction Model . . . . . . . . . . . . . . . . . . . . . . . .  38 

3.1.2 Coarse-Grained Molecular Dynamics Model . . . . . . . . . . . . . .  38 

3.1.3 Parameterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  40 

3.1.4 Molecular Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . .  41 

3.1.5 Charge Transfer Rate Parameters . . . . . . . . . . . . . . . . . . . .  42 

3.1.6 KMC Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  44 

3.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  46 

3.2.1 Effect of Hydration Level . . . . . . . . . . . . . . . . . . . . . . . .  46 

3.2.2 Effect of Oxidation Level . . . . . . . . . . . . . . . . . . . . . . . .  53 

5



3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  58 

3.A Derivation of Forces and Torques for Additional Bonded Potentials . . . . .  60 

3.B Polymer End-to-End Autocorrelation Decay . . . . . . . . . . . . . . . . . .  62 

3.C Time-scale of Decay of Various Rate Parameters . . . . . . . . . . . . . . . .  63 

3.D Parameters for Non-bonded and Bonded potentials . . . . . . . . . . . . . .  65 

3.E Parameters for Charge Transport Simulations . . . . . . . . . . . . . . . . .  66 

3.F Persistence Length of Polymer for All Systems . . . . . . . . . . . . . . . . .  66 

3.G Additional Results Referenced in the Main Text . . . . . . . . . . . . . . . .  67 

4 HOW SIDE-CHAIN HYDROPHILICITY MODULATES MORPHOLOGY AND

CHARGE TRANSPORT IN MIXED CONDUCTING POLYMERS . . . . . . . .  69 

4.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  70 

4.1.1 Coarse-grained Model . . . . . . . . . . . . . . . . . . . . . . . . . .  70 

4.1.2 Molecular Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . .  71 

4.1.3 Charge Transport Calculations . . . . . . . . . . . . . . . . . . . . .  72 

4.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  74 

4.2.1 Morphology Characterization . . . . . . . . . . . . . . . . . . . . . .  74 

4.2.2 Charge Transport Characterization . . . . . . . . . . . . . . . . . . .  76 

4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  79 

4.A Parameters for Non-bonded and Bonded potentials . . . . . . . . . . . . . .  82 

4.B Parameters for Charge Transport Simulations . . . . . . . . . . . . . . . . .  82 

4.C Sensitivity Analysis of KMC Simulations . . . . . . . . . . . . . . . . . . . .  84 

4.D Additional Figures Referenced in the Main Text . . . . . . . . . . . . . . . .  84 

5 DO BLOCK PATTERNED SIDE-CHAINS HELP MIXED CONDUCTOR PER-

FORMANCE? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  89 

5.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  90 

5.1.1 Coarse-grained Model . . . . . . . . . . . . . . . . . . . . . . . . . .  90 

5.1.2 Molecular Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . .  92 

5.1.3 Charge Transport Calculations . . . . . . . . . . . . . . . . . . . . .  94 

5.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  95 

6



5.2.1 60 % Polar - 40 % Apolar . . . . . . . . . . . . . . . . . . . . . . . .  95 

Morphology Characterization . . . . . . . . . . . . . . . . . . . . . .  95 

Charge Transport Characterization . . . . . . . . . . . . . . . . . . .  98 

5.2.2 80 % Polar - 20 % Apolar . . . . . . . . . . . . . . . . . . . . . . . .  102 

Morphology Characterization . . . . . . . . . . . . . . . . . . . . . .  102 

Charge Transport Characterization . . . . . . . . . . . . . . . . . . .  104 

5.2.3 50 % Polar - 50 % Apolar . . . . . . . . . . . . . . . . . . . . . . . .  106 

Morphology Characterization . . . . . . . . . . . . . . . . . . . . . .  106 

Charge Transport Characterization . . . . . . . . . . . . . . . . . . .  108 

5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  110 

5.A Parameters for Molecular Dynamics Simulations . . . . . . . . . . . . . . . .  112 

5.B Parameters for Charge Transport Simulations . . . . . . . . . . . . . . . . .  113 

5.C Additional Figures Referenced in the Main Text . . . . . . . . . . . . . . . .  114 

5.C.1 60 % Polar - 40 % Apolar . . . . . . . . . . . . . . . . . . . . . . . .  114 

5.C.2 80 % Polar - 20 % Apolar . . . . . . . . . . . . . . . . . . . . . . . .  116 

5.C.3 50 % Polar - 50 % Apolar . . . . . . . . . . . . . . . . . . . . . . . .  117 

6 EVIDENCE OF INFORMATION LIMITATIONS IN COMMON BOTTOM-UP

COARSE-GRAINING METHODS . . . . . . . . . . . . . . . . . . . . . . . . . .  121 

6.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  122 

6.1.1 Mapping Operator Generation . . . . . . . . . . . . . . . . . . . . . .  122 

6.1.2 Iterative Boltzmann Inversion . . . . . . . . . . . . . . . . . . . . . .  124 

6.1.3 Multiscale Coarse-Graining . . . . . . . . . . . . . . . . . . . . . . .  125 

6.1.4 Property Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . .  126 

6.1.5 Molecular Dynamics Simulations . . . . . . . . . . . . . . . . . . . .  126 

6.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  128 

6.2.1 On-Target Properties . . . . . . . . . . . . . . . . . . . . . . . . . . .  128 

6.2.2 Off-Target Properties . . . . . . . . . . . . . . . . . . . . . . . . . . .  132 

6.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  134 

6.A Simulation Details for Bottom-Up CG-MD Study . . . . . . . . . . . . . . .  136 

7



6.A.1 IBI Procedure for Bonded Potentials . . . . . . . . . . . . . . . . . .  136 

6.A.2 IBI Procedure for Non-bonded Potentials . . . . . . . . . . . . . . . .  136 

6.A.3 MSCG procedure for Non-bonded Potentials . . . . . . . . . . . . . .  137 

6.A.4 Property Calculations . . . . . . . . . . . . . . . . . . . . . . . . . .  138 

6.B Additional Results Referenced for Bottom-Up CG-MD Study . . . . . . . . .  140 

7 TRANSFER LEARNING FROM PHYSICS-INSPIRED MODELS TO MACHINE

LEARNING BASED COARSE-GRAINED POTENTIALS . . . . . . . . . . . . .  143 

7.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  144 

7.1.1 Construction of the Transfer Learning Model . . . . . . . . . . . . .  144 

7.1.2 Iterative Boltzmann Inversion . . . . . . . . . . . . . . . . . . . . . .  146 

7.1.3 DeePCG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  147 

7.1.4 Model System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  148 

7.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  149 

7.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  155 

7.A Molecular Dynamics Simulation Details . . . . . . . . . . . . . . . . . . . . .  156 

7.B IBI Procedure for Bonded Potentials . . . . . . . . . . . . . . . . . . . . . .  157 

7.C IBI Procedure for Non-bonded Potentials . . . . . . . . . . . . . . . . . . . .  159 

7.D Training and testing of Neural Network . . . . . . . . . . . . . . . . . . . . .  161 

7.E Property Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  166 

7.F Molecule Breaking in Butanol R4 and PEG M1 Mapping . . . . . . . . . . .  169 

7.G Additional Results Referenced in Main Text . . . . . . . . . . . . . . . . . .  171 

8 OUTLOOK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  175 

8



LIST OF TABLES

3.1 Summary of transport coefficients at different hydration levels . . . . . . . . . .  52 

3.2 Summary of transport coefficients at different oxidation levels . . . . . . . . . .  58 

3.3 Timescale of end-to-end vector autocorrelation at different hydration levels . . .  63 

3.4 Timescale of end-to-end vector autocorrelation at different oxidation levels . . .  63 

3.5 Parameters used for bonded interactions in the simulations . . . . . . . . . . . .  65 

3.6 Parameters used for non-bonded interactions in the simulations . . . . . . . . .  66 

3.7 Persistence lengths at different hydration levels . . . . . . . . . . . . . . . . . .  66 

3.8 Persistence lengths at different oxidation levels . . . . . . . . . . . . . . . . . . .  67 

4.1 Parameters used for non-bonded interactions in the simulations . . . . . . . . .  82 

4.2 Parameters used for bonded interactions in the simulations . . . . . . . . . . . .  83 

5.1 Parameters used for non-bonded interactions in the simulations . . . . . . . . .  112 

5.2 Parameters used for bonded interactions in the simulations . . . . . . . . . . . .  113 

7.1 Rules used for determining local axes in the DeePCG model . . . . . . . . . . .  164 

7.2 The values of input hyperparameters held constant while optimizing number of
neighbors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  164 

7.3 Final optimized hyperparameters for the ML and TL models . . . . . . . . . . .  166 

9



LIST OF FIGURES

1.1 Schematic for organic mixed ion electron conductor . . . . . . . . . . . . . . . .  16 

1.2 Schematic explaing coarse-graining and the thesis objectives . . . . . . . . . . .  18 

1.3 OMIEC system aspects captured by the CG model . . . . . . . . . . . . . . . .  20 

2.1 Schematic for organic electrochemical transistor . . . . . . . . . . . . . . . . . .  27 

2.2 Processes characteristic to mixed conductors and examples of common mixed
conducting materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29 

2.3 The three components of CG model . . . . . . . . . . . . . . . . . . . . . . . . .  32 

3.1 Overview of the top-down coarse-grained framework . . . . . . . . . . . . . . . .  37 

3.2 Schematic describing the coarse-grained model . . . . . . . . . . . . . . . . . . .  38 

3.3 Illustration of the bonded interactions governing the orientation of backbone beads  40 

3.4 π − π stacking probability across different hydration levels . . . . . . . . . . . .  47 

3.5 Distribution of water clusters across different hydration levels . . . . . . . . . .  49 

3.6 Mean square displacement of charge across different hydration levels . . . . . . .  49 

3.7 Distribution of key quantities affecting charge transport across different hydration
levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  51 

3.8 Ion distrbution and electrostatic energies for different hydration levels . . . . . .  53 

3.9 π − π stacking probability across different oxidation levels . . . . . . . . . . . .  54 

3.10 Distribution of water clusters across different oxidation levels . . . . . . . . . . .  55 

3.11 Mean square displacement of charge across different oxidation levels . . . . . . .  55 

3.12 Distribution of key quantities affecting charge transport across different oxidation
levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  56 

3.13 Ion distrbution and electrostatic energies for different oxidation levels . . . . . .  57 

3.14 End-to-end vector autocorrelation at different hydration levels . . . . . . . . . .  62 

3.15 end-to-end vector autocorrelation at different oxidation levels . . . . . . . . . .  62 

3.16 ACF of bond lengths and dihedrals between neighboring backbone beads . . . .  64 

3.17 ACF of electrostatic energy difference between distinct backbone beads . . . . .  64 

3.18 ACF of electronic coupling between polaron sites . . . . . . . . . . . . . . . . .  64 

3.19 ACF of electrostatic energy difference between polaron sites . . . . . . . . . . .  65 

3.20 Polaron site IDs vs time for 20% and 50% hydration levels . . . . . . . . . . . .  67 

10



3.21 Polaron site IDs vs time for 0.2 and 0.05 oxidation levels . . . . . . . . . . . . .  68 

4.1 Coarse-grained beads for side-chain and the polymers simulated in the study . .  71 

4.2 Percolation of electrolyte across side-chain compositions . . . . . . . . . . . . .  76 

4.3 π − π stacking across side-chain compositions . . . . . . . . . . . . . . . . . . .  77 

4.4 Charge transport analysis across side-chain compositions . . . . . . . . . . . . .  78 

4.5 Perocolation analysis of electronic network across side-chain compositions . . . .  80 

4.6 Single factor sensitivity analysis of the KMC simulations . . . . . . . . . . . . .  85 

4.7 Additional analysis of electrolyte percolation across side-chain compositions . .  86 

4.8 Distributions of the intramolecular couplings . . . . . . . . . . . . . . . . . . . .  87 

4.9 Distributions of the charge transfer rates across side-chain compositions . . . . .  87 

4.10 Distribution of reorganization energy and energy differences between polaron sites
across different side-chain compositions . . . . . . . . . . . . . . . . . . . . . . .  88 

4.11 Ion mobility as a function of side-chain compositions . . . . . . . . . . . . . . .  88 

5.1 Polymers simulated to study the effect of side-chain patterning. . . . . . . . . .  91 

5.2 Snapshots representing polymers for 60% case and characterization of electrolyte
percolation in them . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  96 

5.3 Polymer morphology characterization of all polymers in 60% case . . . . . . . .  98 

5.4 Charge transport characterization of polymers in 60% case . . . . . . . . . . . .  99 

5.5 Analysis of percolative nature of the electrical network across polymers in 60%
case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  101 

5.6 Snapshots representing polymers for 60% case and characterization of electrolyte
percolation in them . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  103 

5.7 Polymer morphology characterization of all polymers in 80% case . . . . . . . .  104 

5.8 Charge transport characterization of polymers in 80% case . . . . . . . . . . . .  105 

5.9 Snapshots representing polymers for 50% case and characterization of electrolyte
percolation in them . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  107 

5.10 Polymer morphology characterization of all polymers in 50% case . . . . . . . .  108 

5.11 Charge transport characterization of polymers in 50% case . . . . . . . . . . . .  109 

5.12 Snapshots illustrating water percolation in polymer networks for 60% cases . . .  114 

5.13 RDF to quantify specific ion percolation in polar and apolar blocks for 60% case  115 

5.14 Distribution of reorganization energy, energy difference between sites and charge
transport rate between them for 60% case . . . . . . . . . . . . . . . . . . . . .  116 

11



5.15 RDF to quantify specific ion percolation in polar and apolar blocks for 80% case  117 

5.16 Mobility and distribution of trap sites for the simulation with maximum mobility
for all polymers in 80% case . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  118 

5.17 Analysis of percolative nature of the electrical network across polymers in 80%
case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  119 

5.18 RDF to quantify specific ion percolation in polar and apolar blocks for 60% case  120 

5.19 Distribution of reorganization energy, energy difference between sites and charge
transport rate between them for 50% case . . . . . . . . . . . . . . . . . . . . .  120 

6.1 Algorithm for mapping operator generation . . . . . . . . . . . . . . . . . . . .  123 

6.2 Resolution 1-5 mappings of pentane, 1-butanol, and 1,3-propanediol . . . . . . .  124 

6.3 Error in forces across all mapping operators . . . . . . . . . . . . . . . . . . . .  128 

6.4 Distribution of force errors for different CG models . . . . . . . . . . . . . . . .  129 

6.5 Error in RDF across all mapping operators . . . . . . . . . . . . . . . . . . . . .  131 

6.6 Comparison of potentials from different methods which reproduce RDF equally
well . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  131 

6.7 Error in self-diffusion coefficient across all mapping operators . . . . . . . . . .  132 

6.8 Error in enthalpy of vaporization across all mapping operators . . . . . . . . . .  134 

6.9 Comparison of different CG potentials which reproduce force equally well . . . .  140 

6.10 Comparison of CG and AA RDFs for the best and worst performance cases . . .  141 

6.11 Error in velocity autocorrelation function across all mappings operators . . . . .  142 

7.1 Schematic explaining the transfer learning approach . . . . . . . . . . . . . . . .  145 

7.2 Illustration of unphysical breaking of bonds in the ML model . . . . . . . . . .  149 

7.3 Error in all properties across all CG models for butanol R3, R5 and PEG M1
mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  151 

7.4 Neighbors used to determine local axes in the DeePCG model for PEG M1 . . .  163 

7.5 Additional explanation for the breaking of bonds in ML model . . . . . . . . . .  170 

7.6 Error in all properties across all models for butanol R4 and PEG M1 mapping .  171 

7.7 Zoomed in error in forces across the five models . . . . . . . . . . . . . . . . . .  172 

7.8 Comparison of RDFs across all models for butanol R3 mapping . . . . . . . . .  173 

7.9 Comparison of RDFs across all models for butanol R5 mapping . . . . . . . . .  173 

7.10 Comparison of RDFs across all models for PEG M1 mapping . . . . . . . . . . .  174 

12



ABBREVIATIONS

OMIEC Organic mixed ionic-electronic conductor

CG Coarse-graining

MD Molecular Dynamics

CG-MD Coarse-grained Molecular Dynamics

AA All atomistic

OECT Organic Electrochemical Transistor

LJ Lennard-Jones

GB Gay-Berne

RDF Radial distribution function

KMC Kinetic Monte Carlo

MSD Mean square displacement

PES Potential energy surface

IBI Iterative Boltzmann Inversion

MSCG Multiscale Coarse-graining

VAC Velocity Autocorrelation

ACF Autocorrelation Function

ML Machine learning

SP Simple physics

TL Transfer learning

13



ABSTRACT

Organic mixed ion-electron conducting (OMIEC) polymers are capable of transporting

both electrons and ions. This unique functionality underpins many emerging applications,

including biosensors, electrochemical transistors, and batteries. The fundamental operating

principles and structure-function relationships of OMIECs are still being investigated. Com-

putational tools such as coarse-grained molecular dynamics (CGMD), which use simpler

representations than in atomistic modeling, are ideal to study OMIECs, as they can ex-

plore the slow dynamics and large length scale features of polymers. Nevertheless, methods

development is still required for CGMD simulations to accurately describe OMIECs.

In this thesis, two CGMD simulation approaches have been adopted. One is a so-called

”top-down” approach to develop a generic model of OMIECs. Top-down models are phe-

nomenological but capable of exploring a broad space of materials variables, including back-

bone anisotropy, persistence length, side-chain density, and hydrophilicity. This newly de-

veloped model was used to interrogate the effect of side-chain polarity and patterning on

OMIEC physics. These studies reproduce experimentally observed polymer swelling while

for the first time clarifying several molecular factors affecting charge transport, including the

role of trap sites, polaron delocalization, electrolyte percolation, and suggesting side-chain

patterning as a potential tool to improve OMIEC performance.

The second strategy pursued in this thesis is bottom-up CGMD modeling of specific

atomistic systems. The bottom-up approach enables CGMD simulations to be quantita-

tively related to specific materials; yet, the sources of error and methods for addressing

them have yet to be systematically established. To address this gap, we have studied the

effect of the CG mapping operator, an important CG variable, on the fidelity of atomistic

and CGMD simulations. A major observation from this study is that prevailing CGMD

methods are underdetermined with respect to atomistic training data. In a separate study,

we have proposed a hybrid machine-learning and physics-based CGMD framework that uti-

lizes information from multiple sources and improves on the accuracy of ML-only bottom-up

CGMD approaches.
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1. INTRODUCTION

Organic conducting polymers have been adopted in many commercial applications and are

a widely studied class of materials due to facile polymer processing, cheaper cost, and high

synthetic tunability of these materials. Organic mixed ion-electron conducting polymers

(OMIEC) are an emerging subclass of organic conducting polymers, which carry these ad-

vantages in addition to the ability to conduct both electrons and ions. In order to expedite

the search of new OMIEC materials, it is crucial that we not only characterize new mixed

conducting materials but also understand the physical phenomena unique to this class of ma-

terials. Computational tools, specifically, coarse-grained (CG) methods are an ideal molec-

ular tool to achieve this goal as they encode the chemical information at molecular scale

and at the same time, offer much needed mesoscale picture of these disordered materials.

To that end, in this thesis, we developed a highly generic framework for a class of mixed

conducting polymers and deployed it to systematically explore the implications of side-chain

design on its physics. The usefulness of coarse-grained methods are not limited to estab-

lishing fundamentals of OMIEC and in future, we envision it as a common high throughput

molecular screening tool. The thesis also includes steps in that regard, where we have bench-

marked and improved upon existing bottom-up coarse-grained methods. Thus, the thesis

can be broadly divided into two sections: (i) development and application of coarse-grained

methods to understand and design OMIEC polymers, and (ii) improving techniques to build

better coarse-grained models itself.

1.1 Organic Ion-Electron Conducting Polymers

OMIECs are a class of organic polymer that exhibit both electronic and ionic transport

[ 126 ] (  1.1 ). OMIECs exhibit electron conduction within the polymeric phase while ionic

conductivity is mediated by a percolating electrolyte phase. Depending on the degree of

mixing and polymer characteristics, these two conduction channels can be strongly coupled,

with ion percolation leading to volumetric doping of the polymer. This mechanism has been

exploited for signal transduction and charge storage, and is the basis for several technolo-

gies, including organic batteries and super capacitors [ 28 ,  157 ,  186 ], organic electrochemical
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Figure 1.1. Schematic for organic mixed ion electron conductor (OMIEC).
The pink film indicates a charge conducting polymer. The polymer film has
certain hydrophilic component (in this case, side-chains) which allow the poly-
mer to interface with electrolyte (the blue background). The electrolyte phase
in turn conducts ions. Hence, the OMIEC system conducts both electrons and
ions.

transistors,[ 137 ] neuro-computing devices [  137 ,  161 ,  167 ] light-emitting electrochemical cells

[ 185 ], chemical sensors [ 170 ], and electrochromic devices[ 171 ]. With the advent of these

exciting applications, there is an urgent need for methods capable of characterizing signal

transduction and transport in these materials.

To date, the design of OMIECs has been achieved using prior knowledge from organic con-

ducting polymers and polyelectrolytes according to the end-use application. Although this

modular approach has been successful in producing materials that exhibit mixed conduction

it neglects the fundamental coupling between ion and electronic transport in OMIECs. This

coupling manifests in several ways. First, ion transport mediates the reversible volumetric

electronic doping that underpins signal transduction in these materials. Second, ion penetra-

tion impacts the morphology of these materials, which in turn impacts electronic mobility.

Third, strong electrostatic interactions potentially exist between ions and charge carriers

that can lead to coupled transport. These three sources of coupling confound purely mod-

ular approaches to OMIEC design, and their molecular details have yet to be significantly

characterized.

Although several aspects of the performance of OMIECs have been improved by engi-

neering side-chains, dopants and solvent conditions, many questions regarding the underlying

16



physics of these systems remain unanswered. Systematic material design of polymers requires

a fundamental understanding of the physics of the polymeric systems, which leads to devel-

opment of design rules and hypothesis-driven studies that further extend our knowledge.

The aim of this thesis is designing mixed conductors in such a systematic fashion and to

achieve this goal we adopt molecular simulation techniques. Molecular tools, particularly

coarse-grained methods can elucidate the complex coupling mechanisms in OMIEC systems,

and guide the development of design rules as they incorporate various design variables at

molecular scale and provide important macroscopic information.

1.2 Coarse-grained Molecular-Dynamics

A prominent challenge in the characterization and design of mixed-conducting polymers

is understanding the slow dynamic processes and nanoscale spatial heterogeneity intrinsic to

these materials. The timescales of segmental motion and carrier transport (ns-ms) represents

a challenge to atomistic simulation methodologies, whereas the short lengthscales (Å-nm)

and disordered morphologies are a challenge to experimental microscopy and spectroscopic

characterizations.

Coarse-grained Molecular-Dynamics (CG-MD) methods alleviate the sampling and timescale

limitations of classical Molecular-Dynamics (MD) methods by reducing the degrees of free-

dom that are explicitly modeled. In CG-MD methods, individual atoms are coarse-grained

into ‘beads’ and similar to MD methods dynamic trajectories of these beads are simulated

to obtain macroscopic properties and improved configurational sampling (Figure  1.2 a).

Thus, CG-MD methods retain essential molecular features but require fewer computa-

tional resources to integrate and exhibit simplified configurational landscapes that facilitate

equilibration and mechanistic interpretation. CG-MD methods have been successfully im-

plemented in the context of organic semiconductors to characterize different structural fea-

tures, free energy changes, and calculate macroscopic transport properties by back-mapping

to atomistic configurations [ 72 ]. Despite these successes, CG-MD approaches have not been

significantly developed for mixed conducting systems, and the only studies published in

literature are limited to PEDOT based materials.[ 103 ,  107 ,  108 ,  109 ,  138 ]
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Figure 1.2. (a) Schematic showing CG model: the pentane molecule is repre-
sented by 2 CG beads instead of 17 atoms and an MD simulation is performed
on this 2-bead CG model. (b) Two approaches to build the coarse-grained
model– top-down (using information from bulk properties) and bottom-up (us-
ing information from atomistic MD simulations). Both the approaches have
been adopted in this work to attain specific objectives as presented.

A crucial step in CG-MD simulations is developing the coarse-grained force-field (FF)

that describes the interactions between chemical moieties. The forcefield is developed by

reproducing information such as experimental macroscopic measurements (eg. density, pres-

sure, free energy) or descriptors obtained from higher resolution atomistic MD simulations.

The former and latter approaches are called top-down and bottom-up, respectively (Figure

 1.2 b). Use of top-down force-fields has been more common due to the availability of ex-

perimental data on bulk properties and easier parameterization. There are already widely

used standard CG top-down force-fields such as Martini[ 99 ,  100 ], SAFT-γ[ 8 ,  113 ], etc. Al-

though there are several schemes to incorporate bottom-up information and software pack-

ages[ 36 ,  79 ,  93 ,  106 ,  141 ,  184 ] to construct bottom-up models, no general method for deriving

these force-fields exists. Top-down methods are more qualitative than quantitative in na-

ture due to the limitations of target experimental information and the phenomenological

relationship to specific atomistic systems. On the contrary, the target information can be

systematically controlled if derived from all atomistic simulations. The top-down approach

is an excellent choice for modeling generic structure-function relationships as the system

variables are changed. However, in order to screen materials in a high-throughput fashion,
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we need force-fields that are chemically specific and developed consistently across the chem-

ical space of interest. Hence, the existing bottom-up schemes must be tested, improved and

eventually automated to obtain a routine molecular modeling tool.

Considering the availability and easier adoption of top-down models and the severe lack

of simulation studies for mixed conductors, we adopted the top-down CG force-field for our

immediate investigation of mixed conductor physics. But simultaneously, we also examined

the existing bottom-up CG schemes and proposed a new approach to advance bottom-

up CG parameterization further. To summarize, there are two overarching objectives of

this thesis (Fig.  1.2 ). First, developing a generic CG framework that enables us to probe

key characteristics and design rules of OMIEC using a top-down CG model. Second, to

benchmark and extend bottom-up CG methods in a systematic fashion.

1.3 Top-Down Coarse-grained Framework for OMIEC Polymers and OMIEC
Side-chain Design

We develop a comprehensive framework for characterizing mixed conducting polymers,

which consists of a generic CG model built using the top-down coarse-graining approach.

Instead of parameterizing CG models of specific mixed-conducting polymers, we build a

general model for the class of conjugated mixed conducting polymers, by varying its po-

tential interactions over a physically-informed parameter space from the coarse-grained and

experimental literature.

The generic CG model is composed of four building blocks: an anisotropic backbone bead,

isotropic side-chain beads, ionic beads and water. The Martini CG model[  101 ], originally

obtained for biomolecules, is the only extensive CG parameterization in literature where the

CG beads were classified according to their polarity and hydrogen bonding nature. These

potential interactions and chemistry based bead classification have been adopted in our

generic CG model to systematically vary the backbone, side-chain and dopant chemistry

(Figure  1.3 a) and various intermolecular interactions (Figure  1.3 b). Moreover, our model

takes into account the anisotropic nature of the backbone bead that allows control over

the torsional variation, pi-pi packing and aggregation of the polymer (Figure  1.3 a). In

addition to the CG model, the framework consists of charge transport calculation scheme
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Figure 1.3. Schematic displaying the crucial aspects of OMIEC system cap-
tured by the top-down CG framework: (a) Major design variables in OMIEC
systems, (b) chemical interactions between polymer (P), dopant (D) and elec-
trolyte (E), and (c) charge transport processes. (d) Various aspects of side-
chain design space, from which the top two, i.e. chemistry and patterning have
been explored in this work.

using kinetic Monte Carlo (KMC) simulations (Figure  1.3 c). The CG model characterizes the

morphological arrangement of the polymer and electrolyte percolation in the polymer bulk;

while the KMC simulations elucidate how the emergent structure affects charge transport. To

validate the model, we performed studies of the effect of hydration and oxidation levels on a

representative mixed conductor. The model recapitulates experimental trends related to the

macroscopic ionic and electronic conductivities, including the non-linear suppression of the

electronic mobility with respect to oxidation level and the direct relationship between ionic

mobility and hydration level, while revealing the complex interplay of polymer morphology,

ionic-electronic coupling, and electrolyte distribution that govern these relationships.

As a demonstration of the model’s ability to elucidate design features, we have also per-

formed study of how side-chain properties affect OMIEC figures-of-merit. Polar side-chains

have been used to transform the traditional organic conducting polymer to a mixed conductor

by facilitating electrolyte percolation through the polymer film.[  50 ,  150 ] Remarkably, side-

chains offer more design knobs than just polarity such as their length, sterics, frequency and

patterning along the backbone (Figure  1.3 d). We perform the first dedicated CG-MD study

of OMIECs where the side-chain polarity and distribution are systematically varied using a
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random copolymer architecture. The simulations recapitulate the non-linear progression of

the morphology from an interfacially gated electrolyte when large fractions of hydrophobic

side-chains are incorporated, to an electrolyte swelled morphology after crossing a threshold

of approximately 40% polar side-chains. Kinetic Monte Carlo simulations were used to char-

acterize the charge transport behaviors in these systems, revealing two interesting maxima

in the mobility at 40% and 100% polar side-chain fractions, respectively. With respect to

maximizing the charge mobility and conductivity, these simulations suggest that a uniform

hydrophilic side-chain distribution is optimal and that there are few advantages to using

mixed side-chains in a random copolymer architecture. The immediate question is if there

is any advantage to adding mixed side-chains if they are placed in ordered blocks along

the backbone. For instance, we have designated polar side-chain blocks to interface with

the elctrolyte while apolar blocks are potentially advantageous for efficient charge transport

through closely packed polymers.

In order to test this hypothesis, we perform a systematic study of polymers with varying

block length of polar and apolar side-chains along the backbone for side-chain compositions

of 50%, 60% and 80% polar side-chains. Through these simulations, we observe that block

patterning of side-chains definitely result in distinct morphologies as the polar and apolar

side-chain blocks tend to stack with side-chain blocks of its own kind. This has desirable

implications, that is, for polymers with larger block length, the swelling improve because we

have dedicated polar blocks to interface in solvent has hypothesized. It also improves the

aggregation and connectivity as blocks of similar nature stack with each other and avoid

any energy penalty associated with interaction of apolar block with polar blocks as well as

electrolyte. An important finding of this study is that the improvement in morphology is

greater when the blocks of polar and apolar side-chains are separated across the backbone

than along the backbone. In the scope of the simulations, we do not see a direct impact

of the improved polymer morphology on the final mobility estimated. In the large block

length configurations, the charge appears to get trapped in the well stacked aggregates

reducing the effective mobility despite the increased connections in this networks. This

undesirable phenomena of charge tapping may not exist in real systems due to trap filling
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and the morphological improvements associated with block patterning in our study offer

encouragement for further experimental work on side-chain patterning.

1.4 Bottom-Up Coarse-Graining Framework

Although we obtain important qualitative insights into mixed conductor physics by a top-

down approach, in the long run, it is crucial to construct a CG force-field in a systematic and

automated fashion to obtain a chemically specific and quantitative analysis across polymers.

Again, to enable quantitative comparison across different polymers, the target data must

be obtained from equally reliable sources. Due to the variability and limited availability

of experimental data, it is desirable to use bottom-up coarse-graining methods which use

atomistic MD simulations for obtaining target data. We further ensure the comparability of

atomistic force-fields, by using TAFFI force-fields which are developed using consistent levels

of quantum-chemistry calculations and retain chemically transferability due to group-theory

methods [ 148 ].

The prevailing bottom-up CG methods have several unresolved issues, including (i) poor

reproduction of system properties compared to atomistic simulations, (ii) poor transferability

of the CG models to other thermodynamic state-points and (iii) poor transferability of the

CG models to other chemical structures with similar constituent atoms. A bottom-up CG

model has three components– a CG mapping operator (i.e., the number of beads, their

topology and their relation with the underlying atomistic representation), the complexity

of the CG potential surface and, the parameterization procedure. Poor performance of

bottom-up CG models can be the result of insufficient complexity of the CG mapping and

its potential surface (i.e., ‘representability limitations’) or the target information used in CG

potential paramterization (i.e., ‘information limitations’).

The CG mapping operators must be sufficiently complex across different polymers to

capture chemically-specific information and exhibit correct physical behavior. Identifying

the most effective CG mapping scheme is not straightforward, and researchers have typi-

cally resorted to heuristic models based on chemical intuition[ 99 ]. To address this, we have

developed an automated framework which generates all possible CG mappings for a given
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molecule, under a few physically motivated constraints. We then performed a systematic

investigation of these errors by generating all possible coarse-grained models of three liquids

(butane, 1-butanol, 1,3-propane diol) using this framework. Further, the performance and

transferability of the CG model depends on the type of target system properties incorpo-

rated in it. Hence, we compare two common bottom-up frameworks– Iterative Boltzmann

Inversion[ 134 ] (IBI) and Multiscale Coarse-graining,[  120 ,  121 ] (MSCG). For off-target prop-

erties, we observe a strong correlation between the accuracy and the resolution of the CG

model that suggests the approximations represented by MSCG and IBI deteriorate with de-

creasing resolution. Conversely, on-target properties exhibit an extremely weak resolution

dependence that suggests a limited role of representability errors in model accuracy. Taken

together, these results suggest that simple CG models are capable of utilizing more infor-

mation than is provided by standard parameterization algorithms, and that model accuracy

can be improved by algorithm development rather than resorting to more complicated CG

models.

Apart from CG mapping operators, the complexity of the potential surface is also essen-

tial in order to capture specific interactions such as many-body forces, anisotropy, etc. As

a physically intuitive guess, the PES is represented in the same fashion as for atomistic sys-

tems, but that may neglect some of the effective interactions originating from coarse-graining

of the system. Machine learning (ML) methods have been used across multiple chemical ap-

plications to perform a variety of complex tasks in a black-box fashion. The ML architecture

provides a complex representationof the PES that potentially eliminates representability

errors. While there are some ML based bottom-up parameterization schemes already in

literature, whether they are truly advantageous over the physics motivated representations

still remains unknown. The physics motivated intuitions are not just reflected in the PES

representation but also its parameterization, as they are often coupled. In our second work,

we compare a widely used physics motivated CG parameterization scheme called IBI with

an ML based CG model called DeePCG. The comparison is again performed across different

mappings of a small molecule (butanol) and a polymer (poly-etheylene glycol). We found

that the ML model outperforms the former physics motivated approach only minimally and

lacks some of the key physics leading to erroneous behavior such as breaking of bonds in
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a nonreactive systems. In addition to this comparison, we proposed a new approach for

obtaining coarse-grained potentials called difference learning (∆-models), which is a transfer

learning strategy for leveraging physics-based models during neural network training. Ba-

sically, in the transfer learning approach we obtain the bulk of PES using a physics based

approach as a good starting point and use the ML model only to capture the missing physics.

The main finding is that the transfer learning model outperform the reference ML-only CG-

MD models in nearly all scenarios. In several cases, the ML-only models also manage to

game the objective function leading to qualitatively incorrect dynamics, which is corrected

by transfer learning. Given their negligible added cost, transfer learning provide essentially

free gains over their ML-only counterparts and warrant further investigation as the search

for robust black-box CG-MD models continues.

The outline of the thesis as follows. The thesis is bifurcated into two parts– the work on

modeling and understanding mixed conducting polymers, and the development of bottom-up

coarse-grained framework. In the second chapter, we provide a detailed review of existing

literature for these two subjects. Through this, we explain the fundamental mechanism of

these polymers and the existing knowledge gap, their applications and corresponding prop-

erties of merit, and how the chemical design search has progressed in that regard. Similarly,

we explain the basics of constructing a coarse-grained model in a bottom-up fashion, high-

lighting the respective work done in each aspect. With this existing understanding of the

mixed conducting polymers, we define the objectives of our generic CG-MD model in the

third chapter and a brief summary of relevant CG-MD top-down models. Then, we discuss

the development of the CG-MD model and several case studies. In the fourth chapter, we

report the first side-chain design study, using the CG-MD model to investigate side-chain

polarity effect on OMIECs. The chapter follows a basic outline of introducing the system,

the methodology, results and discussion. The fifth chapter discusses the effect of block pat-

tering of side-chains along the same lines. In the later half of the thesis, we change gears

and describe the work on developing bottom-up CG force-fields. In the sixth chapter, we

report our study on mapping schemes and popular parameterization schemes. In the sev-

enth chapter, we propose a new transfer learning approach that is a combination of typical
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physics motivated and ML based approaches. Further, we discuss a case-study comparing

the shortcomings and benefits of the three approaches.
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2. LITERATURE REVIEW

In this chapter, we review the existing work on both fronts of organic mixed ionic-electronic

conducting polymers and bottom-up coarse-grained methods. Through the first section,

we reintroduce organic mixed ionic-electronic conducting polymers and their fundamental

characteristics, as well as the existing experimental studies investigating various candidate

mixed conductors. In the second section, we discuss the basics of building a coarse-grained

model, and the respective methods reported in literature to develop coarse-grained models.

2.1 Organic Mixed Ionic-Electronic Conducting Polymers

Organic mixed ionic-electronic conductors (OMIEC) [  126 ] are composed of organic semi-

conducting polymers and an absorbed electrolyte. OMIECs exhibit electron conduction

within the polymeric phase while ionic conductivity is mediated by a percolating electrolyte

phase. Depending on the degree of mixing and polymer characteristics, these two conduction

channels can be strongly coupled, with ion percolation leading to volumetric doping of the

polymer. This mechanism has been exploited for signal transduction and charge storage,

and is the basis for several technologies, including organic batteries and super capacitors

[ 28 ,  157 ,  186 ], organic electrochemical transistors,[  137 ] neuro-computing devices [  137 ,  161 ,

 167 ] light-emitting electrochemical cells [ 185 ], chemical sensors [  170 ], and electrochromic

devices[ 171 ].

Depending on the end-use application, the desired figure-of-merit and the optimal chem-

ical design of these mixed conducting polymers varies.[ 127 ] For instance, consider an organic

electrochemical transistor (OECT, Figure  2.1 ), it is comprised of three terminals– source,

drain and gate akin to a transistor. The drain and source are connected by a conducting

polymer substrate, this substrate is further in contact with an electrolyte solution and the

gate electrode is placed in the electrolyte solution. The voltage at the gate terminal (VGS)

controls the flow of ions from the electrolyte through the susbtrate, effectively controlling

the doping in the polymer substrate and hence, its output current between source and drain.

The performance of an OECT device is governed by transductance which is product of

the capacitance and mobility of the device. In other words, how effectively the polymer is
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(de)doped by the electrolyte (i.e., capacitance) and how well does current transmit through

the polymer film (i.e., mobility).[ 66 ] On the contrary, for devices such as organic batteries,

energy and power stored per unit volume should be higher, while for electrochromic devices

the response time should be faster.

Figure 2.1. Schematic geometry of an organic electrochemical transistor
(OECT). The OECT contains an electrolyte gate placed on top of the organic
semiconductor layer. The dopant migration into the mixed conducting layer is
modulated by the gate voltage and causes penetration of ions into the active
layer polymer, which facilitates mixed charge and ion conduction. Reprinted
(adapted) with permission from [  30 ]. Copyright 2021 American Chemical So-
ciety.

To begin with, the synthesis of materials exhibiting mixed conduction typically has been

achieved by combining known ion-conducting and charge-conducting components into a sin-

gle polymeric material. In this approach, polyelectrolyte species are introduced to facilitate

ion transport, while electronically-active moieties are introduced to facilitate charge trans-

port. Given the potential modularity associated with a number of these design approaches,

most of the chemical groups introduced for electronic and ionic conduction have been bor-

rowed from adjacent fields in organic electronics and have not been designed specifically for

the purpose of mixed ion-electron conduction. Of course, this is a reasonable first approach;

however, it does show the significant opportunities that could be had for polymer chemists
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as most of the groundbreaking work in the filed has relied on well-known, commercially-

sourced materials. For example, the most commonly-used organic mixed conductor, poly(3,4-

ethylenedioxythiophene) doped with poly(styrene sulfonate) (PEDOT:PSS), was originally

developed as an antistatic coating, rather than for mixed conducting applications.[ 59 ,  128 ]

There is no doubt that PEDOT:PSS has served the early stages of this growing community

well; however, it is clear that advanced macromolecular designs will be required in order

to push the bounds of the field, both in terms of fundamental understanding and in terms

of translational devices. This is not unlike other organic electronics applications where a

champion material has helped establish the feasibility of soft materials in applications at the

outset of the field; then, as time progresses, polymer chemists have joined the field in order

to make significant contributions in terms of macromolecular design. For instance, other

variants of dioxythiophene,[ 146 ,  187 ] thiophenes [  42 ,  119 ], and thienothiophenes[  52 ] (groups

that are well-represented in organic semiconducting and conducting materials) are extant in

mixed conductors exhibiting p-type transport, and naphthalene diimide[  51 ] is prevalent in

mixed conductors exhibiting n-type transport (see Fig  2.2 b for specific chemical structures

for oft-used mixed-conducting polymers). The ion-conduction is achieved through ionic moi-

eties like sulfonate ions [  137 ] or highly polar moieties on side-chains such as alcohol [  124 ],

ethylene dioxide [ 42 ,  52 ], sulfate [ 67 ].

While there is no doubt that many of the molecules, borrowed from other polymer science

subfields, have shown impressive performance metrics in end-use applications[  23 ,  58 ,  104 ],

this macromolecular implementation strategy neglects the fundamental ways that the ionic

and electronic component are intrinsically coupled in these materials that must ultimately

be addressed in the design process. In addition to the molecular chemistry, its molecular

weight and macroscale aggregation as well as choice of ions and solvent will further complicate

OMIEC performance. Thus, it is essential to understand how the coupling manifests between

ionic and electronic components and how it is affected by the various chemical entities in

the OMIEC system.

The foremost form of ion-electron coupling is through the alteration of doping of the

electron conducting polymer due to the presence of an ion (Figure  2.2 a left). The effec-

tive modulation of polymer conductivity with various ionic and polymer dopants have been
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Figure 2.2. (a) Schematic diagram of the three central roles in mixed ion-
electron transport processes. These processes are the: (left) doping and de-
doping mechanisms; (center) morphological changes with respect to ion pen-
etration; and (right) ion-coupled electron transport. The blue prisms on the
polymer chain represent crystalline domains of the polymers. (b) Examples
of polymeric materials that are used in mixed conducting applications. These
materials can either be hole-transporting (i.e., p-type) or electron-transporting
(i.e., n-type) polymers. Reprinted (adapted) with permission from [ 30 ]. Copy-
right 2021 American Chemical Society.

successfully achieved in organic electronics literature [ 74 ,  155 ]. The volumetric doping in

OMIEC systems however adds additional challenges. The ions usually percolate the poly-

mer in the ion-conducting domains [ 136 ] through water channels, but the prediction of this

distribution as a function of chemical nature of polymer, ion concetration and solvent prop-

erties is still being studied. Some studies have shown that ions are more populated in the

amorphous regions than crystallite but oxidize the crystallite regions easily due to the longer
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delocalization lengths in the crystallite region.[  35 ,  166 ,  187 ] The extent and rate of doping

of anions is found to be higher for bulkier ions due to smaller hydration shell [  24 ,  42 ,  43 ].

In [  151 ], they discovered that a large fraction of ions which percolate the polymer does not

contribute to the doping change. Also, the relative extent of motion of counter-ion and

dopant ion is dependent on the size and concentration of the ions [ 114 ,  132 ]. The resultant

electronic mobility varies in a non-monotonic fashion with the dopant concentration as the

dopant ions can act as charge traps [ 86 ,  174 ].

Further, the electrolyte percolation is dependent on the polymer morphology as it per-

colates primarily in the side-chains or the amorphous polymer region (Figure  2.2 a cen-

ter).[ 42 ,  150 ] This morphology dependence on the polymer crystallinity adversely affects

the dopant concentration by limiting the electrolyte uptake.[ 38 ,  136 ,  158 ]. Thus, a trade-

off appears between the electronic conductivity and ionic conductivity. However, in [ 42 ],

they discovered that the water percolation impaired the polymer connectivity in crystalline

film leading to lower electronic mobility compared to the amorphous film. Alternatively,

in [ 83 ], they developed an improved procedure for film synthesis which yields both high

ionic and electronic conductivity. The swelling due to water percolation and the recurring

ionic transport, in turn, alter the morphology and hence, electron transport characteristics

[ 156 ,  165 ,  166 ] and leads to poor device stability. In general, the electrolyte percolation

leads to a decrease in π − π stacking of polymer and increase in lamellar packing of the

system.[ 35 ,  42 ,  166 ] The stability has been improved using by bulky hydrophobic side-chain

groups [  183 ] and novel polymer processing techniques [  42 ]. This cause and effect relationship

between ion transport and polymer morphology is another mechanism of ionic coupling.

The third mechanism of ion-electron coupling is the coupled ion-electron transport (Fig-

ure  2.2 a right). This can be mitigated due to separation of ion and electron transporting

domains [ 136 ] and electrostatic screening by solvent. However, the extent of this mitigation

must be quantified as the ion and electron mobilities can be on similar time-scale in some

configurations [  126 ]. The simultaneous charge-ion transport has been primarily studied using

drift-diffusion models which incorporate ionic and electronic coupling through macroscopic

charge balance [  41 ,  163 ,  168 ]. These studies yield useful device level characteristics but do

not reveal the ion-electron coupling mechanisms at molecular level.
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In the scope of this thesis, we try to understand these fundamental mechanisms while

advancing OMIEC design, more specifically for OECT devices, by tuning the chemical de-

sign of polymer side-chain. In the past few years, extensive efforts have been dedicated

to developing OMIECs specifically for organic electrochemical transistors (OECT).[ 137 ] For

this reason, the structure-function relationships that have been observed for side-chain en-

gineering of OMIECs have been studied in the context of OECTs. Several comparative

studies of how side-chain chemistry impacts OECT performance have documented a vari-

ety of behaviors depending on the polymer chemistry, electrolyte, and particular side-chain

substitution. The first studies introduced polar side-chains on n-type and p-type organic

polymers as a way of obtaining volumetric electrolyte percolation.[  50 ,  150 ] In these stud-

ies, they investigated how OECT properties respond to incorporating varying amounts of

polar and apolar side-chains and found that all polar side-chains generally maximize the

transconductance. Further, the side-chain length, branching, frequency, and placement

have also been shown to affect OMIEC figures of merit. These factors have been explored

for specific backbone and electrolyte combinations across many recent experimental stud-

ies,[ 29 ,  35 ,  61 ,  98 ,  111 ,  112 ,  118 ,  122 ,  129 ,  153 ,  162 ,  187 ] and to a lesser extent by simula-

tions.[ 110 ,  145 ] Among the salient trends from these studies, are that branched side-chains

exhibit higher capacitance[  187 ] but lower conductivity[ 129 ], intermediate length side-chains

(~3 glycol units) lead to the highest transconductance[  111 ,  112 ], and tail-to-tail side-chain

linkage shows higher transconductance than head-to-head linkage.[  61 ] An additional strategy

that has recently gained traction is to include an alkyl linker between polar side-chains and

the backbone to limit backbone-electrolyte interactions and improve polymer packing and

conductivity.[ 35 ,  98 ,  118 ,  122 ,  153 ] However, these side-chain design rules are not universal

and strongly depend on the backbone chemistry.[ 29 ,  162 ]

2.2 Bottom-Up Coarse-grained Methods

As discussed before, coarse-grained (CG) models are attractive for studying biological

and soft material processes that occur on time and length scales that are too costly for di-

rect atomistic simulation. By reducing the degrees of freedom that are directly modeled, CG
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equations-of-motion require fewer computational resources to integrate and CG models ex-

hibit simplified configurational phase spaces that are easier to sample and interpret. Despite

these advantages, both fundamental and practical problems are presented by the dimension-

reduction associated with coarse graining. Inherently, coarse-grained models lose information

from high resolution atomistic representation and the quality of the coarse-grained model

can be improved. The architecture of the coarse-grained model boils down to three factors–

the mapping operator, the potential energy surface (PES) and the parameterization scheme

(Figure  2.3 ). The mapping operator defines a mapping between atomistic representation

and coarse-grained representation. The potential energy surface describes the nature of in-

teraction between the CG beads and the parameterization scheme entails what and how

the information from atomistic simulation is used to obtain the PES for the coarse-grained

molecular system.

Mapping Operator

Objective function:

:

Potential Energy Surface

Parameterization Scheme

Figure 2.3. The three components which dictate the CG model performance–
mapping operator, functional form of potential energy surface, and how the
function is parameterized (from top to bottom).
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The mapping operator is generally represented by a matrix that relates the positions

and momenta of the atoms in the atomistic representation to pseudo-particles in the coarse-

grained representation. Since CG models must be rederived for every unique mapping, the

choice of mapping operator is typically fixed by chemical intuition without studying the

impact of this choice. For example, common mapping operators for water combine 1 to 4

molecules into a single bead.[ 60 ,  68 ] Protein CG models sometimes use multiple operators,

one for the backbone (2-4 atoms per bead) and others for specific side-chains (1-2 atoms

per bead).[ 68 ] Most CG models for nucleic acids separately combine each base, sugar, and

phosphate into 1-3 beads [  68 ]. In the MARTINI scheme, 2-4 heavy atoms are beaded together

and matched to one of 18 types classified by charge and polarity.[ 99 ,  100 ,  101 ] Faced with

this diversity of ad hoc mappings, several groups have attempted to develop systematic

mapping procedures that conserve stereochemistry,[ 105 ] topology,[ 178 ], mass distribution[  7 ]

and symmetry.[ 26 ]. There have also been attempts to coarse-grain atoms which are connected

by high frequency motions[ 54 ], or encode the atomistic system to a coarse-grained latent

space using autoencoders[ 177 ] as well as training a neural network on chemically intuitive

mappings annotated by human experts[ 89 ].

The performance of the coarse-grained model may depend on the choice of mapping

operator. An important question is if this quality of a mapping operator can be roughly

described based on its resolution (number of atoms in a bead) and number of beads, or more

specifically on the exact atoms which define a bead, i.e. conservation of specific features such

as symmetry, topology, etc. Hence, we investigated the effect of mapping operator on the

performance of coarse-grained model in our work in a systematic fashion (also discussed in

Chapter 6).[ 82 ] Prior to this work, the studies to understand the effect of mapping operator

were limited[ 26 ,  32 ]. We found in our work that the mapping operator has seemingly less

effect on the performance of coarse-grained models in capturing properties like structural

correlations, forces per bead and system pressure. However, dynamics of the system suffer as

one approaches fewer number of beads, irrespective of the resolution. Other works have also

reported the resolution independence for structural properties and pressure.[  27 ,  34 ] Other

properties such as information, quality of information, certain thermodynamic properties
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and electronic energy have showed poor reproduction with resolution of the coarse-grained

model.[ 32 ,  44 ,  45 ,  73 ]

The potential energy surface and the target information and algorithm used to param-

eterize can often be interrelated for obvious reasons. The potential energy surface function

is borrowed most often from the atomistic MD simulation literature, where the PES is de-

composed into intramolecular (bond, angle and dihedral) and intermolecular interactions.

Common functional forms used for intramolecular interactions are harmonic, cosine, OPLS

style etc. as well as spline interpolated tabulated potentials. The intermolecular interactions

are commonly decomposed further into pairwise repulsive and attractive Van Der Waals con-

tribution and described using functional forms such as Lennard-Jones, Morse, etc. or spline

interpolated potentials. Most of these representation schemes are motivated by physical in-

tuition, but recently, a more blackbox approach of using machine learning (ML) to describe

PES has emerged. The true PES is a many body function and hence, ML based potentials

serve as a better approximation.

The aforementioned physics-based representation for CG models have been parameter-

ized by reproducing various properties from atomistic representation such as, forces between

a pair of beads (Effective force coarse-graining)[ 177 ] or forces averaged over the entire config-

uration in condensed phased (Multiscale coarse-graining)[ 69 ,  70 ], effective potential energy

(Conditional Reversible Work)[ 20 ], or structural correlations (Iterative Boltzmann Inversion,

Inverse Monte Carlo)[  94 ,  134 ]. Other approaches include maximizing the likelihood between

atomistic and CG representation (Relative Entropy)[ 154 ], and incorporating dynamics in-

formation[ 40 ,  40 ,  87 ], or derivative-free optimization using algorithms like Particle Swarm

Optimization [  12 ,  39 ,  180 ]. Some of these parameterization schemes can be used for an ML

based representation as well.

Typically, machine learned potential architecture consists of some physics informed de-

scriptors which are fed to a black-box ML framework to output the forces or potential for a

configuration. The ML models are trained most commonly on the easily differentiable prop-

erty of force. In DeePCG model, Zhang et al used a beadwise local neighborhood descriptor

fed to a deep neural network[ 184 ], CGnet model[  173 ] was composed of handpicked features

fed to an artificial neural network and was later improved by replacing the curated features
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with filter convolutions[ 64 ], Wang et al used autoencoders to encode AA coordinates to CG

coordinates in latent space and backmap them back to AA coordinates, and this latent space

CG representation was fed to a neural network to obtain the potential surface[ 176 ], Scherer

et al proposed a kernel based approach, where instead the two-body and three-body interac-

tions were transformed through a nonlinear kernel before applying simple linear regression

to obtain forces[ 152 ], and John et al implemented features decomposed into monomer-based

terms fed to a Gaussian process regression framework[ 75 ]. In addition to force-matching ap-

proach, some works have attempted sampling the correct conformational distribution or free

energy surface itself, by using a classfier network[ 88 ] and generative adversarial network[ 37 ]

approach.
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3. TOP-DOWN COARSE-GRAINED FRAMEWORK FOR

CHARACTERIZING MIXED CONDUCTING POLYMERS

Reprinted (adapted) with permission from [ 81 ]. Copyright 2021 American
Chemical Society.

As discussed in the previous chapters, the ultimate goal of this work is understanding
the fundamentals of mixed conducting polymers through systematic sweep of the mixed con-
ductor material design space. More specifically, the work is focused on designing conjugated
mixed conducting polymers and characterizing their emergent properties in the context of
OECT devices. In order to achieve this, we need a model which includes the key physi-
cal processes in conjugated polymers, as well as characterizes the fundamental processes in
mixed conducting system. Morphology plays a crucial role in organic polymer performance
and is governed by the π-π interactions characteristic of conjugated polymers, which must
be incorporated. On top of polymer arrangement, for mixed conductors, we need to account
for the co-percolation of electronic and conducting phases electrolyte. These phases are cou-
pled both by their intimate mixing (typically <100 nm) and through significant morphology
changes that accompany the (de)doping processes.[  136 ,  156 ,  165 ,  166 ] The presence of mobile
ions and polarons in the same material substantially alters the description of charge trans-
port relative to typical organic semiconductors and conductors.[ 86 ,  114 ,  132 ,  151 ,  174 ] On the
one hand, potentially strong electrostatic interactions between ions and polarons presents
the possibility of significant charge trapping and ion-coupled electron transport. On the
other hand, depending on the charge densities and characteristics of the electrolyte phase
(e.g., aqueous vs. organic) screening may mitigate trapping.[  136 ] Hence, after obtaining the
structural features, the effective ability of the polymer to transmit charge must be character-
ized, as a function of the obtained polymer arrangement and electrostatic interaction with
ions and solvent. Finally, our objective is modeling a variety of polymers belonging to the
family of conjugated mixed conducting polymers and that capability must be reflected in
the model.

Hence, we have developed a generic coarse-grained molecular dynamics (CG-MD) model
of OMIECs and coupled it with a kinetic Monte Carlo (KMC)[ 117 ] model of charge transport
(Figure  3.1 ). This modeling framework provides a description of both electronic and ionic
transport mechanisms at lengthscales of 10-100 nm, which fills a critical characterization gap
in contemporary experimental approaches. The coarse-grained models accounts for the π-π
stacking and torsional disorder characteristic of conjugated polymers as well as encodes the
hydrogen-bonding nature and polarity of side-chains and solvent. The KMC methodology
that we develop builds on a relatively mature approach to modeling charge transport in
organic semiconductors, but with extensions to account for the distinct ion-electronic cou-
pling mechanisms in OMIECs. These KMC simulations utilize CG-MD configurations with
a mean-field treatment of electrons and an explicit description of the electrolyte and polymer
nuclear degrees of freedom.

CG-MD models have been previously developed to study the morphology of various or-
ganic semiconducting polymers;[  72 ,  135 ] however, CG-MD modeling of OMIECs has been
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Figure 3.1. Overview of the simulation methodology developed in this work.
(Top) Coarse-grained molecular dynamics simulations with anisotropic poly-
mer backbone interactions are used to describe mixed conductor morphology.
(Bottom) Kinetic Monte Carlo simulations based on configurationally aver-
aged rates are used to characterize polaron dynamics. The arrows indicate
different physical processes relevant to mixed conductors, including 1. inter-
chain charge transfer, 2. intrachain charge transfer, 3. π − π aggregation, and
4. ion-polaron coupling.

limited to PEDOT-based materials.[  103 ,  107 ,  108 ,  109 ,  138 ] Although it would be desirable
to develop bottom-up CG models for a broader range of OMIECs, this approach is currently
impeded by the limited availability of atomistic force-fields for this class of materials. In
this respect, the Martini CG force-field is attractive, since it provides access to a library of
CG particle types based on water-oil transfer free-energies. Martini has been adapted for
simulations of organic bulk-heterojunction morphologies,[  3 ,  4 ,  5 ] and simulations of PEDOT-
based OMIECs that recapitulate many structure-function relationships within these materi-
als.[ 103 ,  107 ,  108 ,  109 ,  138 ] Here we adopt Martini to describe the side-chain and electrolyte
components of the OMIEC, but also introduce a biaxial backbone bead modeled with the
Gay-Berne potential to reproduce the anisotropic π − π interactions germane to conjugated
polymers. Coarse-grained Gay-Berne potentials have been previously used to model con-
jugated polymers[  6 ,  135 ], but to the best of our knowledge, this work is the first attempt
at implementing Gay-Berne governed anisotropic beads in combination with the Martini
framework. This phenomenological approach provides a generic CG-MD force-field that can
be tuned to systematically interrogate the various designable OMIEC components, including
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π − π interactions, and their effect on morphology and transport processes. As an initial
benchmark demonstration of this framework, we have investigated effects of oxidation and
hydration levels on the morphology and transport processes of a generic p-type conjugated
homopolymer with glycolated side-chains in the presence of an aqueous electrolyte.

3.1 Methods

3.1.1 Mixed Conduction Model

An overview of the mixed conduction workflow is presented in Figure  3.1 . The details
of each step are described in the subsequent sections but are briefly discussed here to guide
the reader. The first step is the simulation of mixed conductor configurations at the coarse-
grained level for a given polymer and electrolyte. For this purpose, we have developed a
general coarse-grained model that can represent a broad class of OMIEC chemistries (Section

 3.1.2 ). Molecular dynamics is used to characterize the equilibrium behavior of the mixed
conductor and ionic diffusivity at different conditions (Sections  3.1.3 and  3.1.4 ). Based on
these configurations, polaron transport is modeled as hopping between localized sites along
the conjugated polymer backbones. The rates for hopping are determined by semi-classical
Marcus theory in a manner that incorporates the details of charge delocalization, intrachain
vs. interchain hopping, and local electrostatic contributions to the site energies (Section

 3.1.5 ). The resulting set of polaron transport processes forms a master equation that we
evaluate using the Kinetic Monte Carlo algorithm (Section  3.1.6 ). This approach yields
average polaron mobilities, ionic mobilities, and scattering functions that can be compared
with macroscopic measurements, as well as the distribution of transport pathways, their
relative resistance, and microscopic ion-polymer configurations that are currently inaccessible
by experiments.

3.1.2 Coarse-Grained Molecular Dynamics Model

Figure 3.2. Overview of the distinct bead-types used here for coarse-grained
simulations of mixed conductors: (a) Building blocks of the generic CG model.
For polymers with more complex sequence or side-chain structure, multiple
beads might be utilized in each category. (b) The polymer structure used in
the present study.
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The essential features of a mixed conducting, conjugated polymer electrolyte system
consist of four components–conjugated backbone, polar side-chain, ions, and solvent (Figure

 3.2 ). We have developed a flexible top-down framework for modeling each component that
can be used to represent a broad range of chemistries relevant to OMIECs. The general
features of the model are described here, while parameterization details are described in the
following section.

To reproduce the anisotropy of the π-system, the conjugated beads are treated as el-
lipsoids. The Gay-Berne potential[ 14 ] is used to model anisotropic interactions between
ellipsoid particles with radii σu, σv and σw and potential minima εu, εv and εw, in the direc-
tions u, v and w, respectively (Figure  3.2 a). The Gay-Berne potential is derived by treating
these ellipsoids as gaussian volumes, evaluating their overlap integral and mapping the in-
tegral on to a Lennard-Jones type potential with some empirical modifications, resulting in
the expression

U12(ω1, ω2, r12) =
4ε0ε

ν
12(ω1, ω2)ε

′µ
12(ω1, ω2, r̂12)×( σc

r12 − σ12(ω1, ω2, r̂12) + σc

)12

−
(

σc

r12 − σ12(ω1, ω2, r̂12) + σc

)6
,

(3.1)

where the orientation of the particles is given by their Euler angles, ω1 and ω2, and r12 is
the displacement vector between ellipsoids. In Eq.  3.1 , ε12 and ε

′
12 are energy prefactors,

and σ12 is the contact radius. The exponents ν and µ are empirical coefficients and σc is
the minimum contact radius, introduced to control the width of potential well and avoid
unphysical overlaps.

In the current work, the conjugated backbone is modeled by uniaxial ellipsoids with the
major axes (equivalent u, w) in the plane of backbone and the minor axis (v) perpendicular
to the backbone (Figure  3.2 a). The parameters εv and εu,w govern the interaction minima
between conjugated beads along the minor and major axes, respectively. These can be
tuned to interrogate OMIECs with variable π-π interactions. The radius σv controls the
π-π stacking distance and the radii σu,w approximate the conjugated ring radius. The non-
bonded interactions of all other components of the system (i.e., side-chains, solvent, and
ions) are modeled with isotropic Lennard-Jones potentials based on the Martini force-field.
The cross-interactions between the backbone beads and the side-chain, solvent and ions are
also modeled as isotropic.

Three types of bonded potentials are used to control the orientation of the conjugated
backbone beads with respect to their neighbors. The first potential governs the dihedral
rotation about the bond connecting backbone beads (r) with respect to the orientation vec-
tors of each bead (v), as illustrated in Figure  3.3 a.[ 17 ] This dihedral is modeled using the
standard OPLS form and is the analogue of the inter-ring torsions in conjugated systems
that dictate the delocalization of polarons along the backbone.[  56 ] Two additional harmonic
potentials are used to model the bending interaction between bonded backbone beads and
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Figure 3.3. Illustration of the bonded interactions governing the orientation
of backbone beads. (a) Dihedral potential between two backbone beads based
on their orientation vectors (v). (b) Bending potential between the backbone
bead normal and the side-chain bead.

between backbone beads and bonded side-chain beads, respectively. In each case, the po-
tential is based on the angle between the bond vector, r, and the orientation vector, v, of
the backbone bead (Figure  3.3 a-b). The force constant for the backbone-backbone bending
term can be modified to vary the stiffness of the backbone. Likewise, the equilibrium angle
of the backbone-sidechain bending term can be modified to model side-chains bonded to sp3

vs sp2 positions along the backbone. The derivation of the forces and torques associated
with these potentials can be found in the 3.A.

The remaining three components, namely, the polymer side-chain, ions, and solvent are
modeled as isotropic beads using the Martini force-field.[  181 ] The Martini parameters have
been developed to reproduce experimental partition coefficients for biomolecules and organic
molecules using a relatively small number of bead types that typically represent four heavy
atoms. Martini bead classification is based on polarity, making it straightforward to vary the
polarity of side-chains and solvent, which alters the penetration of solvent and ultimately
the transport properties. Each Martini bead is modeled as a Lennard-Jones particle with
harmonic bonded interactions and cosine bending terms, where applicable.

3.1.3 Parameterization

The CG framework described in the previous section is capable of modeling a broad range
of conjugated polymer electrolyte systems through the appropriate choice of Martini bead-
types, and at the same time, captures essential features of π-conjugated polymers including
anisotropic backbone interactions, controllable planarity, and stiffness. As a baseline bench-
mark of how this model performs, we have implemented a parameterization representating
a p-type conjugated homopolymer with polar side-chains in the presence of an aqueous elec-
trolyte (Figure  3.2 b). The Martini force-field parameters were developed to reproduce the
experimental oil-water transfer free energy and density of molecules. As the goal for this
work is to develop a phenomenological framework to model various designable attributes
of OMIECs, the parameters associated with the backbone potentials are treated as tunable
variables. As a case study to illustrate the framework, we have chosen representative values
for these parameters based on existing literature. A single backbone bead type was utilized
with σu,z and σv parameters chosen to yield repulsive core dimensions of 5 Å along the major
axes, which is the average radius of a thiophene ring, and 3 Å along the minor axis of the
ellipsoid to yield a typical π−π stacking distance. To obtain an anisotropy in the binding en-
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ergy of ~5, which is typical of common repeat units,[  65 ] εv was chosen to yield a 1.2 kcal/mol
minimum energy in the π-stacked orientation and εu,w of 0.25 kcal/mol minimum in side-by-
side orientation, similar to coarse-grained Gay-Berne model developed for sexithiophene. [ 6 ]
These non-bonded parameters result in backbone beads with dimensions and interaction en-
ergies comparable to typical aromatic repeat units. For the cross-interactions, the backbone
bead was modeled as a ”C3” Martini bead of intermediate hydrophobicity. An equilibrium
angle of 180◦ and force constant of 7.5 kcal/mol were used for the bending term associated
with bonded backbone beads, which results in a persistence length between 4-60 Å for the
range of hydration and oxidation levels simulated here (Table  3.7 &  3.8 ). The backbone di-
hedral term was chosen to exhibit two minima at 0◦ and 180◦ with an interconversion barrier
of 7.5 kcal/mol, which results in dihedral angle distributions with a standard deviation of
~4.63-5.18◦ in the simulations. Side-chains composed of two Martini beads (~8 heavy atoms
in an atomistic representation) were included on every third backbone bead (Figure  3.2 b).
The side-chain bead of type ”P1” was used to approximate the CG force-fields developed for
conventional OMIEC polyethylene glycol (PEG) side-chains.[ 139 ] An equilibrium angle of
90◦ and force constant of 3.0 kcal/mol were used for the backbone-sidechain bending term.
The equilibrium angle of 90◦ is meant to mimic a side-chain attached to an sp2 backbone
atom. The equilibrium morphologies of this system were interrogated as a function of hydra-
tion level and oxidation level, then subsequently utilized in charge transport studies.[  46 ,  107 ]
These simulations consisted of 100 chains with 20 repeat units. This represents an interme-
diate degree of polymerization compared with published OMIECs ranging from 10[  92 ,  164 ]
to 60[  35 ,  42 ] repeat units. Oxidation levels of 100%, 50%, 20%, 10%, and 5%, were simulated
by equally distributing a positive charge of 1, 0.5, 0.2, 0.1 and 0.05q, respectively, along the
polymer backbone. The decision to equally distribute the charge along the backbone is based
on the assumption that polaron transport is fast relative to polymer dynamics and follows
previous work.[ 107 ] A more sophisticated treatment of the coupling between polaron and
polymer dynamics using fluctuating charge models is a strategy for possibly improving this
description in the future. In each case, counter-ions with a unit negative charge and Martini
type ”Qa” were introduced to maintain charge neutrality. Water is used as the solvent and
represented by the Martini polarizable water model.[  181 ] A list of all Martini bead types
utilized here and their associated parameters are supplied in Table  5.1 .

3.1.4 Molecular Dynamics

LAMMPS was used to perform all molecular dynamics simulations.[ 130 ] All simula-
tions used a 10 fs integration time step, Velocity-Verlet integration, and periodic bound-
ary conditions. Long-range electrostatics were modeled using the particle-particle-particle-
mesh/stagger (PPPM/stagger) algorithm.[ 25 ,  63 ,  115 ] Long-range electrostatics, Lennard-
Jones interactions and Gay-Berne interactions were truncated at 12 Å. All simulations were
initialized from diffuse configurations, using a cubic grid to place molecules in random orien-
tations without overlap. The velocities were initialized from a uniform distribution obtained
with a random seed value and scaled to give the correct kinetic energy. The simulations
were first relaxed in the NVE ensemble with restrained displacements of 0.1 Å per time step
for 10 ps. This was followed by a simulation in the NVT ensemble at 300 K while linearly
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rescaling the simulation box over 2 ns to obtain a condensed system with a density of 1
g/cc. The density was then equilibrated in the NPT ensemble for 100 ns at 300 K and 1
atm. After the NPT simulations, the system was further equilibrated at the average NPT
density in the NVT ensemble at 300 K for 100 ns, followed by a 100 ns production run in the
NPT ensemble at 300 K and 1 atm. These simulation times were chosen to ensure that the
polymers diffused 2-3 times its radius of gyration, on average, during the equilibration and
production periods, respectively (end-to-end vector autocorrelations are also presented in the
3.B). In both NVT and NPT simulations, the Nosé-Hoover thermostat and barostat were
employed using the modified form proposed by Martyna, Tobias, and Klein, as implemented
in LAMMPS [  102 ], with a relaxation time constant of 0.15 ps and 1.5 ps for the thermostat
and barostat, respectively. In all the simulations, the thermodynamic data and coordinates
were sampled at 1 ps. The ASPHERE package in LAMMPS was used for all Gay-Berne force
and torque evaluations and numerical integrations.[ 22 ] The SHAKE algorithm [ 143 ] imple-
mented as a part of the RIGID package in LAMMPS was used to constrain the bonds in the
water molecules. The additional bonded potentials to control the orientation of neighboring
beads were implemented as custom classes in LAMMPS by our group.

All simulations contained 100 polymers, with 20 backbone beads each. Depending on
the backbone bead oxidation level, the number of anionic beads in the simulation box varied
to ensure zero net charge on the system. For the oxidation level studies with backbone
bead charges of 1.0, 0.5, 0.2, 0.1, and 0.05, the total number of anionic beads in the system
were 2000, 1000, 400, 200, and 100, respectively. All the oxidation level studies were carried
out at 50 wt% hydration level with 3400 Martini water molecules (i.e., 13600 actual water
molecules). For the hydration level studies, the backbone bead oxidation level was fixed
at the intermediate value of 0.2 and the simulation box contained 400 anionic beads. The
hydration level studies were carried out at 20, 35, 50, 65, and 80 wt/wt% hydration with
850, 1831, 3400, 6134, and 13600 water molecules.

3.1.5 Charge Transfer Rate Parameters

Charge transport was modeled here on the basis of configurations generated from the
CG-MD trajectories. In our model, each backbone bead is parameterized to represent a
single conjugated unit (i.e., a ring system without internal flexible dihedral degrees of free-
dom), thus sites consisting of one or more contiguous backbone beads constitute the relevant
polaronic basis states for charge transfer. The charge transfer rates between sites were
parameterized using semi-classical Marcus theory,[ 96 ] along similar lines to what has been
described in prior work in the context of conjugated polymers.[ 18 ,  55 ,  131 ,  144 ] The rate for
charge transfer between sites on different chains was modeled in the weak coupling limit as

ωij = 2π

~
J2

ij√
4πλijkBT

exp
{

−(∆Eij − λij)2

4πλijkBT

}
, (3.2)

where Jij is the electronic coupling between the sites, λij is the reorganization energy, ∆Eij is
the energy difference for a charge occupying the site j vs site i, T is the system temperature,
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and kB is the Boltzmann constant. The radial dependence of Jij was modeled as exponentially
decaying with distance as

Jij = Jinterexp {−α(rij − r0)} , (3.3)

where α is the decay factor, r0 is the reference separation for Jinter, and rij is the inter-site
distance.[ 9 ] The inter-site distance was calculated as an average over the nearest-separation
for the beads in each site according to

rij = 1
2

(∑
m∈i minn∈j(rmn)

li
+
∑

n∈j minm∈i(rnm)
lj

)
, (3.4)

where the indices m and n run over the beads in sites i and j, respectively, and li and lj are
the number of beads in each site. This expression captures the correct physical behavior as
two sites slide laterally by one another, with a maximum occurring at perfect registration.
Likewise, as sites move apart along the center of mass displacement vector, the standard
exponential decay of the wavefunction overlap is reproduced.

Eq.  3.2 must be modified for evaluating the charge transfer rates between neighboring
sites on the same chain due to the potentially large coupling between bonded conjugated
rings. Specifically, the electronic coupling between neighboring backbone beads increases
with the alignment in their π-orbitals and can be expressed in terms of cosine function in
the dihedrals between these beads (Jintra cos(φij)).[ 56 ] This coupling leads to a modulation
of the intramolecular hopping barrier due to orbital mixing,[ 142 ] which is approximated as

ωij = ν exp
{

−(∆Eij − λij)2

4πλijkBT
+ |Jintra cos(φij)|

kBT

}
. (3.5)

In this expression, the semi-classical Marcus activation energy is recovered when the back-
bone beads are perpendicular, whereas the barrier can be lowered by up to a factor of Jintra
when they are co-planar. The definition of variables λij and ∆Eij are the same as in Eq.  3.2 ,
and ν is a prefactor associated with the nuclear frequency,[ 15 ] and was set to 1015s−1.[ 142 ]

A basis of hopping sites localized on individual beads neglects potential delocalization
effects and is inappropriate for the evaluation of the Marcus parameters associated with Eqs.

 3.2 - 3.4 . To account for delocalization, rates calculated using Eq.  3.5 in an individual bead
basis were used to partition contiguous beads into sites comprised of one or more backbone
beads. We used the rates, rather than the dihedrals, to demarcate sites because electrostatic
factors (e.g., a nearby ion) can also contribute to site localization. Details of site forma-
tion are covered in the subsequent section, however this detail affects the manner in which
the Marcus parameters, λij and ∆Eij, are evaluated. The reorganization energy, λij is the
energy associated with the rearrangement of the nuclear coordinates due to charge transfer
and consists of internal, λint, and external, λext, contributions. The internal reorganization
energy is associated with the nuclear rearrangement of the sites i and j, given by an average
of individual internal reorganization energies λi and λj, which vary inversely with the size
of the site. The values for internal reorganization energy associated with sites of varying
number of backbone beads were obtained by fitting a quadratic function to the values for
polypyrrole. [  142 ]. Polypyrrole was a adopted as a useful reference from a previous charge
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transport study that exhibits similar trends for reorganization energy and ionization po-
tential to polythiophene.[  182 ] More generally, these are potentially tunable quantities that
could strongly affect structure-function relationships. The external reorganization energy
was approximated using the model introduced by Marcus,[  95 ,  97 ] obtained by treating the
sites as spheres with constant charge density and the solvent as a continuum dielectric,

λext,ij = e2

4πε0
( 1
εopt

− 1
εs

)( 1
2ri

+ 1
2rj

− 1
rij

), (3.6)

where rij, ri, rj, εopt and εs are the distance between the sites, the radii of the sites, the optical
frequency dielectric constant, and the static dielectric constant, respectively. rij is calculated
based on the distance between the center of mass of the sites and the radius of a site is
taken to be an average of the radius along the backbone and perpendicular to the backbone.
For sites that significantly extend along the polymer backbone, the spherical approximation
fails, and the expression can produce negative values which were set to zero in this study.
Thus, the external reorganization energy decreases with increasing site delocalization until
reaching zero. Mixed conducting systems are heterogenous, composed of organics and aque-
ous solvent, and hence, an intermediate dielectric constant of εs = 10 was used. We note
that more sophisticated treatments of the external reorganization energy and local dielectric
are compatible with the current KMC framework,[ 144 ] however we defer treatment of these
to future work.

The site energy difference is given by ∆Eij = Ej − Ei, where the individual site energies
include contributions from the ionization potential and the local electrostatic environment of
each site. The contribution from the ionization potential was modeled as a linear function in
inverse length fitted to the values for polypyrrole. [  142 ] The electrostatic energy contribution
to each super-site was modeled on the basis of the CG-MD configurations as

Eelec,i =
∑
m⊂i

∑
n6⊂i

qmqn

4πεsε0rmn

(3.7)

where m denotes beads within the site and n denotes beads outside the site. In the charged
state, the site has an excess unit charge equally distributed along the polymer (i.e., 1/li for
site length li), while the deficit of unit charge is distributed to all other backbone beads
in the system. These electrostatic energies were evaluated in LAMMPS by rerunning the
CG-MD configurations with each site evaluated in the corresponding oxidation state with
long-range interactions and periodic boundary conditions, including the contributions from
all beads (i.e., ions, solvent and other polymers). The charge transfer parameters used in all
KMC simulations are summarized in 3.E.

3.1.6 KMC Framework

Charge transfer is modeled here from the perspective of a single explicit polaron in
the mean-field of the other polarons that are present on the polymer. This assumption is
reflected in the rate expressions described above, where the electrostatic contributions to the
site energies (∆Eij) are calculated with the residual polymer charge equally distributed to all
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backbone beads. This approximation neglects polaron correlations and potential coulomb
blockade effects that may be relevant at high charge densities, but it is an important reference
for establishing how OMIEC morphology and design features affect charge transport. For a
single explicit polaron capable of occupying a pre-defined set of polaron sites, the evolution
of the charge dynamics is governed by a master equation composed of coupled first-order
differential equations

ṗi =
∑

j
kjipj −

∑
j

kijpi, (3.8)

where pi is the probability of the polaron occupying site i at time t, and kij is the charge
transfer rate between sites as defined in the previous section. Both transient and steady-state
solutions to this master equation can be calculated using the kinetic Monte Carlo (KMC)
algorithm, which consists of simulating an ensemble of Markov chains with transitions based
on Eqs.  3.8 .[ 117 ] This approach is advantageous because it yields both correct steady-state
occupation statistics and trajectories that can be analyzed to characterize details of the
conduction network. For instance, polaron diffusivities are obtained based on the mean-
squared displacement of charges, and graphical analysis can be used to identify resistive
bottlenecks in the transport network. Likewise, the KMC framework can be extended include
the treatment of more than one explicit polaron.

The definitions of available polaron sites, their site energies, and associated rates are
required for the application of KMC. For typical conjugated polymers, polarons are delo-
calized over multiple backbone units, which makes sites composed of one or more backbone
beads in our CG model the relevant basis states for KMC. A typical approach for identifying
these delocalized sites from MD simulations is to break each polymer backbone into segments
based on deviations in the backbone dihedrals that exceed a threshold [  142 ]. However, in
OMIECs polaron-ion electrostatic interactions also contribute to site localization. To ac-
count for this, we use the rates of intramolecular transport, as predicted by Eq.  3.5 for sites
composed of individual backbone beads, as the basis for designating sites. In particular,
the intramolecular rates reflect contributions from both dihedral deviations as well as the
differences in electrostatics along the backbone. After calculating the charge transfer rates
between neighboring beads, the sites are defined based on contiguous groups of backbone
beads with a transfer rate above 1014s−1. These sites are the reference states for Eq.  3.8 and
charge transfer between sites is modeled using Eq.  3.2 with size dependent input parameters
as described in the previous section.

In a KMC framework, sites and transition rates are held fixed while evaluating charge
transport, whereas in the real system, transition rates are a function of time. Rate fluctua-
tions that occur on timescales that are shorter than the characteristic charge transfer rates
within the master equation can be incorporated by averaging the rate calculations over a
commensurate interval of MD configurations. To characterize relevant short-timescale fluc-
tuations, we evaluated the autocorrelation functions of the dihedrals (φij), bonds (rij) and
electrostatic energies (∆Eelec,ij), shown in Figure  3.16 and Figure  3.17 . We observe that all
of these factors decorrelate within 1 ps, and thus use 20 configurations uniformly sampled
across a 2 ps interval to average these fluctuations and their contributions to the charge
transfer rates.
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On timescales longer than the characteristic charge transfer rate, the assumption of a fixed
master equation can also break down due to slow diffusion processes or the periodicity of the
system (e.g., the polaron traverses many box lengths and the system remains unphysically
correlated with the initial state). Webb et al. have recently addressed this issue in the
context of polymer electrolytes by incorporating site refresh events into the KMC Markov
chains [  179 ]. In our system, we introduced site refresh events when the charge travelled
10 times the box length, which is between 380-500 nm in the systems studied here. The
site refresh event consisted of (a) rotating the configuration by a random angle about each
cartesian axis, in a random order, (b) randomly selecting a polaron site from the configuration
as the occupied site, and (c) translating the occupied site to the position of the originally
occupied site. A refresh criteria for addressing polymer diffusion was not used, since we
observed that all of our simulations of dense polymer networks reached the Fickian regime
(for charge transport) well within the diffusion timescale of the polymers and ions. It is
possible that for less viscous systems, a site refresh related to the fastest diffusion timescale
would be required.

For each of the hydration and oxidation conditions that were studied, a total of 60
uncorrelated configurations were characterized by KMC. Specifically, 20 configurations were
sampled every five ns from three independent MD simulations. These configuration counts
exclude the additional 0.1 ps spaced configurations used for averaging charge transfer rates.
For each configuration, 20 KMC charge transport trajectories were simulated for 150 ns.
The mean square displacement (MSD) of the charge was calculated for each configuration
and averaged over all 60 configurations. The self-diffusion coefficient was obtained from the
MSD using the relation,

D = lim
t→∞

1
6

d

dt
〈‖r(t) − r(0)‖2〉, (3.9)

where r(t) is the position vector of the center of mass of the site occupied by the charge
at time t. The angular brackets in Eq.  7.17 indicate an average over all polarons and
time origins. Numerically, Eq.  7.17 was evaluated by identifying the Fickian regime of the
MSD curves (i.e., where the curves exhibited a consistent log(MSD) vs log(t) of one), then
performing a least-squares linear regression to the interval from 10ns-100ns. The mobility
was obtained from the diffusivity using the Einstein relation,

µ = eD

kBT
, (3.10)

where e is the unit electron charge.

3.2 Results and Discussion

3.2.1 Effect of Hydration Level

To establish the structural changes that accompany hydration of our model OMIEC, we
characterized the joint-probability distribution for π − π stacking and radial separation be-
tween the polymer backbones as a function of hydration level while fixing the oxidation level
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Figure 3.4. π − π stacking probability presented as a joint probability dis-
tribution of distance between the backbone beads on the x-axis and π − π

alignment on the y-axis, as a function of hydration level. The yellow dashed
line indicates the peak for lamellar packing. Trajectory snapshots are shown
to the right, where the pink and blue beads are backbone beads and water,
respectively. Other components are omitted for clarity.

at the intermediate value of +0.2e per backbone bead (Figure  3.4 ). In these distributions,
the x and y axes represent the distance between backbone beads on different chains (rij)
and their π − π alignment (sij = vi · vj), respectively, while the color represents their joint
probability distribution given by

g(r, s) = V

4πr2Np

N∑
i=1

N∑
j=1

δ (r − rij) δ (s − sij) , (3.11)
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where Np is the total number of pairs of backbone beads in the system, excluding pairs
within the same molecule. These distributions are averaged over configurations parsed from
multiple independent trajectories after equilibration of the density, potential energy, and
translational diffusion of the chains, and thus reflect an effort to sample authentic equilibrium
configurations within the limits of the MD simulations.

Prominent π − π stacking is apparent at all hydration levels (i.e., sij > 0.9 in all of the
peaks), which is consistent with conjugated polymers in general and the backbone anisotropy
of our model OMIEC. All of the systems also exhibit peaks at multiples of ~4 Å, which is
indicative of aggregates of π − π stacked polymers. In contrast, some lamellar organiza-
tion occurs at low hydration levels (~10 Å) but overall it is weak in comparison with the
nearby higher-order π − π stacking peak at this oxidation level. We also observe an abrupt
transition between the 50% and 65% hydration levels that corresponds to the dissolution
of the polymer aggregates. Specifically, at hydration levels of 65-80%, we do not find any
features at distances greater than 1.5 nm, as the polymers are separated by large clusters
of water, while at hydration levels ≤ 50% dense percolating polymer networks are formed.
We also observe that the π − π alignment increases with increasing hydration level.[ 107 ]
This reflects the configurational freedom of the smaller aggregates to reorganize into highly
aligned structures, whereas packing defects frustrate chain registration at low hydration lev-
els. Interestingly, at the intermediate hydration level of 50%, both percolation and relatively
strong π − π alignment are achieved. This structural analysis suggests a potential trade-off
between chain alignment and the number of conductive pathways as the hydration level is
reduced, wherein highly hydrated morphologies (e.g., ρH2O = 50%) exhibit relatively few
pathways that are highly aligned while less hydrated morphologies exhibit a larger number
of conductive pathways that are on average more disordered.

To clarify the distinct spatial distributions of the electrolyte phase within each system,
we also analyzed the size and distribution of water clusters (Figure  3.5 ). Clusters were
defined using nearest-neighbor hierarchical clustering with a threshold of 5.8 Å, which is 10
% above the Van der Waals equilibrium distance for the Martini water model (i.e., all water
molecules in a cluster are within the threshold of at least one other member of the cluster, and
molecules in distinct clusters are separated by at least the threshold distance). The observed
cluster distributions consist of either small water clusters with very few molecules, or a single
large percolating cluster. Interestingly, no moderately sized clusters are observed, even at
low hydration levels. Rather, for all hydration levels ≥ 35%, the electrolyte phase percolates
throughout the volume of the polymer. This indicates that the electrolyte spontaneously
percolates throughout the polymer phase through channel formation, rather than through
the coalescence of gradually increasing water clusters. In contrast, a recent computational
study of PEDOT:Tos[ 107 ] reports a gradual increase of water cluster size through coalescence
which can be attributed to the tosylate dopants dispersed throughout the system.

To determine the impact of these distinct morphologies on charge transport, KMC sim-
ulations were performed on each system (Figure  3.6 ). For the 65% and 80% hydration level
simulations, sub-diffusive behavior is observed, which is consistent with the dissolution of the
polymers and lack of macroscopic percolation. These cases are excluded from further discus-
sion of charge transport, however we highlight the recent description of scaling laws in this
concentration regime by Sing et al [  13 ]. Additionally, a comparison was performed of KMC
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Figure 3.5. Distribution of water clusters for different hydration levels. The
number of molecules in a cluster normalized the by total number of molecules
is plotted on the x-axis and the number of its occurrences normalized by the
maximum number of possible occurrences is plotted on the y axis.

Figure 3.6. Mean square displacement of charge with intermolecular rates
excluding (solid lines) and including (dashed lines) electrostatic energy com-
ponent at different hydration levels. Standard deviations calculated across the
sampled configurations are shown in the shaded regions.

results with and without electrostatic contributions to the site energy differences to elucidate
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the impact of ion-polaron coupling on the charge transport. In all of the simulations, the
polarons are delocalized along the entire polymer chain based on the intramolecular rates (as
described in Section II.F) and each polymer served as a single site for intermolecular charge
transport. Comparing the polaron mean-squared displacement (MSD) in the two cases (Fig-
ure  3.6 ), illustrates that including ion-polaron electrostatics suppresses charge transport at
all hydration levels. This is intuitive, as all else being equal, electrostatics introduce ener-
getic disorder that reduces charge transport rates. However, the results also reveal that the
ion-polaron electrostatics suppress charge transport more strongly at low hydration levels,
with the consequence that all of the dense systems exhibit comparable polaron mobilities
when electrostatics are included. Comparing the quantitative trends within each series of
simulations reveals several distinct factors that contribute to the observable polaron mobility.

When ion-polaron electrostatics are excluded from the simulations, the polaron diffusivity
monotonically decreases with increasing hydration level. Based on the previous structural
analysis, decreasing hydration leads to relatively decreased π − π alignment, however this is
countervailed by an increase in the number of conductive pathways as the polymer network
densifies. These two factors are reflected in the distributions of charge transfer rates (Figure

 3.7 a) and site connectivity (Figure  3.7 b) within each system. The impact of π − π alignment
is reflected in a peak at high rates within the rate distributions of the 35% and 50% systems,
whereas the impact of density is reflected in an increase in the site connectivity of the 20%
system. Based on the observed trends in polaron mobility (Figure  3.6 ), site connectivity
outweighs the impact of π − π alignment with respect to increasing polaron mobility. As
the connectivity increases, the distinct sites visited both at short (Figure  3.7 c) and long
(Figure  3.7 d) timescales increase, representing relatively reduced trapping and percolative
transport in the highest mobility 20% system. In contrast, at the 50% hydration level, many
trajectories involve only a small fraction of sites which is indicative of poor connectivity
within the transport network despite high charge transfer rates within localized subnetworks
of the morphology.

The forgoing examination of charge transport when polaron-ion electrostatics are ex-
cluded illustrates the complex interplay between morphology and site connectivity that
underpins the ostensibly straightforward trend that increasing hydration reduces polaron
mobility. When ion-polaron electrostatics are included in the KMC simulations, these fac-
tors are also present, but they compete with the site energy disorder associated with the
spatial distribution of the electrolyte. Comparing the rate distributions with and with-
out ion-polaron electrostatics, reveals that electrostatic heterogeneity suppresses the charge
transport rates in all systems and the peaks at high rates observed for the 35% and 50%
hydration levels are greatly reduced (Figure  3.7 a). Including ion-polaron electrostatics also
results in a dramatic reduction in the site connectivity of the 20% hydrated system, such
that all of the dense polymer systems exhibit comparable connectivities (Figure  3.7 b). This
reduction in overall connectivity also leads to a reduction in the fraction of sites that par-
ticipate in charge transport relative to when ion-polaron electrostatics are excluded (Figure

 3.7 c-d). The contraction in the number of sites visited reflects trapping of the polaron to
clusters of sites with similar electrostatic energies (Figure  3.20 ). This is further evidenced by
the occurrence of sub-diffusive behavior in all of the dense networks when ion-polaron elec-
trostatics are included in the simulations (Figure  3.6 ). The consistent picture that emerges
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Figure 3.7. Distribution of (a) intermolecular rates and (b) pathways per
site, (c) distinct sites visited over 500 jumps and (d) distinct sites visited over
last 75ns trajectory, when excluding (solid lines) and including (dashed lines)
electrostatic energy component at different hydration levels. The distribu-
tions (a-b) are normalized by the maximum value across all plots and (c) is
normalized by the maximum value within each plot.

is that ion percolation within the polymer phase results in localization of charge transport
to a subnetwork of sites with similar electrostatic environments. Remarkably, these subnet-
works are similar in all of the dense systems with the net result that the polaron mobility
is relatively constant with respect to hydration level. This effect has also been observed
experimentally in some OMIECs, where the measured hole mobility is insensitive to swelling
caused by varying the anion in the electrolyte [  24 ] and varying the electrolyte concentration
[ 149 ].

To directly interrogate the changes in electrostatics that accompany ion percolation
within the polymer, we also analyzed the distribution of electrostatic energies of the polaron
sites and the ion-polymer backbone RDF at each hydration level (Figure  3.8 ). Comparing
the RDFs, all systems exhibit a prominent nearest-neighbor peak and periodic features with
a spacing of ~4.5 Å, which is consistent with ion intercalation within the polymer aggre-
gates. At high hydration levels (i.e., ρH2O ≥ 65%) a small decrease in the first RDF peak is
accompanied by an increase in the later peaks, which is due to a weak preference for ions to
remain external to the more highly ordered polymer aggregates after dissolution (Figure  3.8 

(c-e)). Although all systems display a similar degree of ion mixing based on the RDFs[ 111 ],
the 20% system exhibits a much broader distribution of electrostatic site energies compared
with the 35% and 50% hydrated systems (Figure  3.8 b). This can be rationalized by the ear-
lier observation that the electrolyte phase fails to fully percolate in the 20% system, which
leads to electrostatic heterogeneity and limited electrostatic screening. The resulting elec-
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trostatic induced site energy disorder suppresses charge transfer rates and is consonant with
the reduced site connectivity of the 20% system when ion-polaron electrostatics are included.

In most mixed conducting applications, the mobility of ions is critical to mediate re-
versible doping of the semiconducting polymer. Moreover, ion diffusion is typically much
slower than electron diffusion[  78 ,  150 ] and is the rate-limiting step in (de)doping. The ionic
mobility was thus characterized in each system to determine the complementary impact on
ion dynamics as the hydration level is varied (Table  3.1 ). It is established that Martini
dynamics are accelerated by approximately a factor of four in comparison with all-atom sim-
ulations [  99 ,  181 ]. Thus, the reported ionic mobilities have been scaled by a factor of 0.25
relative to the raw MD trajectories. The polaron mobility is between one and two orders of
magnitude larger than the ionic mobility for the dense polymer systems (i.e., ρH2O ≤ 50%),
however at higher hydration levels the electronic mobility is limited by the dissolution of
polymer aggregates and the loss of macroscopic percolation pathways. In contrast, the ionic
mobility monotonically increases with respect to hydration level [ 146 ], albeit with distinct be-
haviors above and below the electrolyte percolation threshold. Specifically, for ρH2O ≥ 35%,
the ion diffusivity increases approximately linearly with respect to hydration level, while
the 20% system exhibits an abrupt three-fold reduction in ion mobility. This is consistent
with the loss of electrolyte percolation in the 20% system, resulting in macroscopic ion dif-
fusion being restricted by reorganization of the polymer phase. In comparison, a recent
computational study of PEDOT:TOS[  107 ] reports an exponential increase in ion diffusivity
with hydration level, while a recent experimental study on OMIECs with varying side-chains
report a sub-exponential trend.[  150 ] These results highlight the importance of establishing
co-percolating electronic and ionic phases within the mixed conductor, and suggest that
polymer design strategies focusing on electrolyte management may be critical to striking the
optimal balance. We also note that since comparable electronic mobilities were observed in
all of the dense systems, we do not observe a significant trade-off between ionic mobility and
electronic mobility in this polymer. Specifically, by maintaining hydration levels between
35-50%, through either side-chain or morphology engineering, optimal electronic mobility
and ionic mobility within an order of magnitude of the bulk electrolyte can be achieved.

Table 3.1. Summary of transport coefficients at different hydration levels
with a fixed oxidation level of 0.2 per backbone unit.

ρa
H2O µb

+ µc
+,ES µd

−
20 % 14.30 1.03 0.0081
35 % 6.08 1.33 0.0224
50 % 2.94 0.87 0.041
65 % 0.13 0.07 0.0696
80 % - - 0.1004

a The hydration level in weight percent.
b Polaron mobility with excluded electrostatics, 10−3cm2V−1s−1.
c Polaron mobility with included electrostatics, 10−3cm2V−1s−1.

d Anion mobility, 10−3cm2V−1s−1.
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Figure 3.8. (a) Ion-backbone RDF and (b) histogram of the electrostatic site
energy differences as a function of the hydration level

. Snapshots of the system showing ions (green) and polymer (pink) for hydration levels of
(c) 20 %, (d) 50 % and (e) 80 %. The site-energy distributions are normalized by the

maximum value across all plots.

3.2.2 Effect of Oxidation Level

In this section, we inspect the changes in the structural and transport behaviors of the
model OMIEC upon changing the oxidation level of the polymer, while keeping the hydration
level fixed at 50 %. To help orient the reader, the same analyses are performed as in the
previous section and discussed in the same order.

To characterize the impact of oxidation level on morphology, the joint probability dis-
tribution for π − π stacking and radial separation between the polymer backbones were
analyzed (Figure  3.9 ). No features are observed at very high oxidation levels (≥ +0.5e)
as the polymer completely dissolves due to repulsive inter-chain electrostatics. Irreversible
morphology changes due to OMIEC swelling during constant operation have been reported
experimentally.[ 111 ] At lower oxidation levels (≤ +0.2e), the polymers assemble into well
stacked π − π aggregates with a prominent nearest-neighbor peak and additional peaks at
multiples of ~4 Å. Although all of the dense systems are well-ordered, a small but persistent
increase in π−π alignment is apparent in the first two peaks as the oxidation level decreases.
Additionally, for oxidation levels ≤ +0.2e, a prominent lamellar stacking peak occurs at ~10
Å and larger aggregates are formed[ 107 ], as indicated by the higher probabilities at large
radial separations. These distinct changes in morphology indicate that a combination of
repulsive inter-chain electrostatics and electrolyte percolation affect the inter-chain disorder
and aggregate dimensions as the oxidation level increases. This interplay is also qualitatively
apparent in the swelling behavior of many OMIECs upon doping [ 35 ,  53 ,  123 ].

The change in OMIEC morphology with respect to oxidation is also reflected in the
distribution of the size of water clusters (Figure  3.10 ). At hydration levels of 50%, all of the
systems exhibit a large percolating electrolyte phase; however, the probability of forming a
single large percolating cluster decreases as the oxidation level decreases. This reflects the
limited percolation of electrolyte through the weakly charged aggregates, which results in a
small population of disconnected water clusters. Thus, the solvation and morphology of the
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Figure 3.9. π − π stacking probability presented as a joint probability dis-
tribution of distance between the backbone beads on the x-axis and π − π

alignment on the y-axis, as a function of oxidation level. The yellow dashed
line indicates the peak for lamellar packing. Trajectory snapshots are shown
to the right, where the pink and blue beads are backbone beads and water,
respectively. Other components are omitted for clarity.

polymer system, although generally associated with the side-chain chemistry and processing,
also exhibits a complex dependence on the extent of polymer doping.

To establish how these morphological differences impact polaron transport, KMC simu-
lations were used to characterize the polaron MSD at each oxidation level (Figure  3.11 ). To
decouple the role of electrostatics and morphology, a comparison of the polaron MSD with
and without ion-polymer electrostatics is also presented. In all cases, we observe that the
polaron is delocalized along the entire backbone, and thus polaron transport occurs via hop-

54



Figure 3.10. Distribution of water clusters for different oxidation levels. The
number of molecules in a cluster normalized the by total number of molecules
is plotted on the x-axis and the number of its occurrences normalized by the
maximum number of possible occurrences is plotted on the y axis.

Figure 3.11. Mean square displacement of charge with intermolecular rates
excluding (solid lines) and including (dashed lines) electrostatic energy com-
ponent at different oxidation levels. Standard errors calculated across the
sampled configurations are shown in the shaded regions.
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ping between distinct chains. For oxidation levels q ≥ +0.5e, the polymers are completely
dissolved and are excluded from further discussion. Similar to the simulations that were per-
formed with respect to varying hydration level, the inclusion of ion-polymer electrostatics
suppresses polaron transport in all cases. However, unlike the case of varying hydration level,
a monotonic decrease in polaron mobility with respect to oxidation level is observed both
with and without electrostatics. A comparison of the quantitative details reveals several
distinct mechanisms by which oxidation level modulates the polaron mobility in comparison
with hydration level.

When ion-polaron electrostatics are excluded from the simulations, the polaron diffusivity
monotonically decreases with increasing oxidation level. Based on the previous structural
analysis, decreasing oxidation leads to relatively increased π−π alignment and the formation
of larger lamellar aggregates. These two factors are reflected in the distributions of charge
transfer rates (Figure  3.12 a) and site connectivity (Figure  3.12 b) within each system. All
of the dense systems exhibit a peak at high rates, with an increase in site connectivity
as oxidation is reduced. We note that despite the relative decrease in π − π alignment
of individual backbone beads with oxidation level, the +0.2e system exhibits the largest
unnormalized number of high rate pathways, which suggests that site alignment–versus bead
alignment–is in fact marginally improved at higher oxidation levels. Thus, similar to the
effect of hydration, charge transfer rates are reduced but site connectivity is increased with
reduced oxidation, which leads to the observed increase in polaron mobility. This trend is
also consistent with the observed increase in sites visited at both short and long timescales
(Figure  3.12 c-d) as the oxidation level is reduced.

Figure 3.12. Distribution of (a) intermolecular rates and (b) pathways per
site, (c) distinct sites visited over 500 jumps and (d) distinct sites visited over
last 75ns trajectory, when excluding (solid lines) and including (dashed lines)
electrostatic energy component at different oxidation levels. The distributions
(a-b) are normalized by the maximum value across all plots and (c) is normal-
ized by the maximum value within each plot.
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When ion-polymer electrostatics are included in the KMC simulations, the polaron trans-
port is suppressed in all cases but the behavior of the q = +0.2e system is qualitatively al-
tered. Due to the additional electrostatic site disorder, all of the systems apparently exhibit
a similar suppression of fast charge transport rates (Figure  3.12 a) and a minor decrease in the
mean site connectivity ( Figure  3.12 b). However, comparing the site visitation histograms,
the q = +0.2e system exhibits dramatically increased polaron trapping compared with the
less oxidized systems ( Figure  3.12 c-d). We interpret this result to indicate that although
the mean site connectivity is only marginally reduced in the q = +0.2e system, the path-
ways that are suppressed by the inclusion of electrostatics are inter-aggregate connections.
In contrast, the lower oxidation level systems exhibit similar percolative polaron transport
both with and without the inclusion of ion-polymer electrostatics. It should be noted that
this disparity in transport would be mitigated at lower hydration levels. Thus, the polaron
transport is determined by an interplay of oxidation level and hydration level, which are
experimentally coupled by electrolyte gating, polymer chemistry, and processing conditions.

Figure 3.13. (a) Ion-backbone RDF and (b) histogram of the electrostatic
site energy differences as a function of oxidation level

. Snapshots of the system showing ions (green) and polymer (pink) for oxidation levels of
(c) 0.2, (d) 0.1, and (e) 0.05. The site-energy distributions are normalized by the maximum

value across all plots.

Unlike the hydration level series, we find significant differences in ion percolation in the
polymer phase as oxidation level changes. Comparing the ion-polymer RDFs, ion intercala-
tion within the polymer aggregates decreases with decreasing oxidation level (Figure  3.13 a),
which is consistent with the earlier structural and water cluster analyses. Note that the lower
oxidation levels have fewer total ions in the simulation box; nevertheless, a smaller fraction
of ions intercalate within the polymer phase (Figure  3.13 c-e). The distinct ion distributions
are also evident in the much higher electrostatic heterogeneity observed in the q = +0.2e
system (Figure  3.13 b). Due to a combination of increased ion density and the fact that the
ions intercalate rather than surround the polymer aggregates, high oxidation levels induce
electrostatic disorder that strongly suppresses the polaron mobility (Table  3.2 ). We note
that the electronic conductivity rather than the mobility is often relevant for applications.
For the model OMIEC investigated here, the polaron mobility is reduced approximately
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eight-fold in the the q = +0.2e system compared with the q = +0.1e system, suggesting that
maximum conductivities would actually be obtained by operating at lower oxidation levels
(i.e., q = 0.05 − 0.1e).

Table 3.2. Summary of transport coefficients at different oxidation levels
with a fixed hydration level of 50%.

qa
B µb

+ µc
+,ES µd

−
1.0 - - 0.0013
0.5 - - 0.032
0.2 2.94 0.87 0.041
0.1 11.82 6.53 0.0536
0.05 16.31 10.09 0.0551

a The oxidation level per backbone unit.
b Polaron mobility with excluded electrostatics, 10−3cm2V−1s−1.
c Polaron mobility with included electrostatics, 10−3cm2V−1s−1.

d Anion mobility, 10−3cm2V−1s−1.

Finally, the ionic mobility was characterized in each system to determine the effect on
ion dynamics as the oxidation level is varied (Table  3.2 ). As the oxidation level increases,
the ion mobility monotonically decreases. At the highest oxidation level (q = +1.0e), strong
ion-polymer coupling leads to an acute non-linear suppression of the ion mobility. However,
at the lower oxidation levels that are more representative of experimentally attainable dop-
ing, the ion mobility is only weakly sensitive to the oxidation level and also substantially
lower than the polaron mobility. This weak sensitivity is notable in light of the distinct
morphologies and electrolyte percolation characteristics as oxidation is varied. This reflects
the fact that at the 50% hydration level, the electrolyte still exhibits macroscopic percolation
in all of the investigated systems. At lower hydration levels it is possible that the oxidation
level has a stronger impact on ion mobility.

3.3 Conclusions

Ionic and electronic transport are coupled within OMIECs through a complex interplay
of morphological and electrostatic changes that accompany doping. Although the molecular
details of these features are consequential for rational OMIEC design, they occur on length
and timescales that are difficult to experimentally probe. In this contribution, we have
presented a modeling framework that addresses this characterization gap while retaining
sufficient chemical flexibility and molecular physics to resolve structure-function relation-
ships. Specifically, polymer and electrolyte dynamics are modeled at the coarse-grained level
using the Martini force-field supplemented by an anisotropic Gay-Berne description of the
conjugated OMIEC backbone, while polaron dynamics are modeled as hopping between lo-
calized sites with rates and site energies determined by sampling configurations from the
CG trajectories. In combination, these approaches are capable of simultaneously probing
the molecular details of morphology and macroscopic conduction as a function of polymer
identity, electrolyte concentration, and doping level.

58



As a demonstration of this framework, we have presented a comprehensive character-
ization of ion and polaron transport in a model OMIEC as a function of oxidation and
hydration levels. In each case, qualitative differences in polaron dynamics occurred when
ion-polaron electrostatics were excluded from the model, which reinforces the critical role
of ion-polaron coupling on local transport behaviors. The simulations also recapitulate sev-
eral intuitive trends, including the suppression of polaron transport by electrolyte induced
morphological disorder and the increase in ion mobility with hydration level, while revealing
several mechanisms that can mitigate trade-off between ion transport and polaron trans-
port. For instance, swelling by the electrolyte is accompanied by increased screening and
a decrease in deep electrostatic traps that results in comparable polaron mobilities at low
to moderate hydration levels, which is a trend that has also been empirically observed in
experiments.[ 24 ,  149 ] Additionally, we observed a non-linear suppression of polaron mobil-
ity as a function of oxidation level that indicates an optimum doping level for this system.
This latter result occurs despite the fact that the polaron simulations are performed in a
mean-field approximation of other polarons, and thus exclude polaron-polaron correlations
and Coulomb blockade effects that are likely to further suppress transport at high oxidation
levels.

With respect to the design of OMIECs, this work elucidates several molecular scale
factors that are potentially subject to rational design. The results highlight near-term op-
portunities explored in subsequent chapters such as tuning side-chain hydrophilicity, density,
and sequence to achieve electrolyte percolation without suppressing inter-aggregate polaron
transport, and possibly to tune equilibrium polymer-ion configurations. On the longer term,
engineering polymer aggregate dimensions and connectivity are potentially achievable by
exploring electrolyte additives or tuning polymer-polymer interactions. The presented com-
putational framework is capable of decoupling morphological features of the system such as
π − π overlap and connectivity of the polymer network, and further account for their relative
contribution to charge transport in the system. Although the current work has focused on a
case study of a single model system, the flexibility of the phenomenological framework will
be valuable to elucidate these structure-function relationships.
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APPENDIX

3.A Derivation of Forces and Torques for Additional Bonded Potentials

As described in the main text, our model incorporates three potentials that govern the
interactions between bonded backbone beads, side-chain beads, and their relative orientation
(Figure  3.3 ).

The position vectors and the orientation vectors of bonded backbone beads are given
by x1, x2, and v1, v2, respectively. The displacement vector, unit vector and the distance
between the bonded beads are given by r = x1 − x2, r̂ = r

‖r‖
and r = ‖r‖, respectively. The

dihedral potential (φ) is defined with respect to the displacement vector r and the orientation
axes of the beads v1 and v2 (Figure  3.3 ) and described as,

UB−B,d(φ) = k1(1 + cos(φ)) + k2(1 − cos(2φ)) + k3(1 + cos(3φ)) + k4(1 − cos(4φ)). (3.12)

The expression for dihedral angle, φ, and the derivation of forces and torque associated
with this potential is implemented as in reference [  17 ]. The specific parameters, k, used in
the present work are presented in Table  5.2 with the other force-field terms.

A bending potential to controls the angle between the interbead vector r and the orien-
tation axis of each bead (i.e., v1 or v2 in Figure  3.2 a) as given by

UB−B,a1(θ1) = k(θ1 − θ0)2, (3.13)

and

UB−B,a2(θ2) = k(θ2 − θ0)2, (3.14)

where,

cos(θ1) = v1 · r̂, (3.15)

and

cos(θ2) = −v2 · r̂, (3.16)

and the parameters, k and θ0, for angles involving v1 and v2 are same in this case due to
symmetry. The forces f1 and f2 on beads 1 and 2, respectively, due to the potential UB−B,a1 ,
are given by

f1 = 2k
(θ1 − θ0)
sin θ1r

(v1 − cos θ1r̂), and

f2 = −2k
(θ1 − θ0)
sin θ1r

(v1 − cos θ1r̂). (3.17)
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The torques τ1 and τ2 on beads 1 and 2 respectively due to potential UB−B,a2 , are given by

τ1 = 2k
(θ1 − θ0)

sin θ1
v1 × r̂, and

τ2 = 0. (3.18)

The forces and torques due to the potential UB−B,a1 are similar, and given by

f1 = −2k
(θ2 − θ0)
sin θ2r

(v2 + cos θ2r̂),

f2 = 2k
(θ2 − θ0)
sin θ2r

(v2 + cos θ2r̂),

τ1 = 0, and

τ2 = −2k
(θ2 − θ0)

sin θ2
v2 × r̂. (3.19)

Similarly, harmonic bending potentials are used to control the alignment of bonded side-
chain beads with respect to the backbone (Figure  3.3 b). The positions of the backbone
bead and side-chain bead are given by x1 and x2, respectively, and the orientation of the
backbone bead is given by v. The displacement vector, unit vector and the distance between
the beads are given by r = x1 − x2, r̂ = r

‖r‖
, and r = ‖r‖, respectively. The harmonic

bending potential is defined in terms of the angle between the interbead vector r and the
backbone bead orientation vector v,

UB−S(θ) = k(θ − θ0)2, where
cos(θ) = v · r̂. (3.20)

The forces f1 and f2 on beads 1 and 2 respectively due to this potential, are given by

f1 = 2k
(θ − θ0)
sin θr

(v − cos θr̂), and

f2 = −2k
(θ − θ0)
sin θr

(v − cos θr̂). (3.21)

The torques τ1 and τ2 on beads 1 and 2 respectively, are given by

τ1 = 2k
(θ − θ0)

sin θ
v × r̂, and

τ2 = 0. (3.22)
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3.B Polymer End-to-End Autocorrelation Decay
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Figure 3.14. Autocorrelation function of polymer end-to-end vector across
hydration levels (fixed oxidation at +0.2e per repeat unit) and exponential fits
to the series (dashed lines).
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Figure 3.15. Autocorrelation function of polymer end-to-end vector across
oxidation levels (fixed hydration level of 50%) and exponential fits to the series
(dashed lines).

The autocorrelation of the end-to-end vectors reports on the degree to which the polymers
tumble over the course of the simulation (Figure  3.14 and  3.15 ). The general trend is that
increased electrolyte swelling leads to more rapid decorrelation. In the highly oxidized +1.0e
per repeat unit case, the strong coulombic repulsion between chains limits rearrangement.
The decorrelation timescales from the exponential fits are reported below.
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Table 3.3. Timescale of decay of end-to-end vector autocorrelation at different
hydration levels with a fixed oxidation level of 0.2 per backbone unit.

a The hydration level in weight percent.
b Timescale of decay of end-to-end vector autocorrelation in ns.

ρa
H2O τ b

20 % 840.80
35 % 862.70
50 % 615.99
65 % 324.22
80 % 135.04

Table 3.4. Timescale of decay of end-to-end vector autocorrelation at different
oxidation levels with a fixed hydration level of 50 %.

a The oxidation level per backbone bead.
b Timescale of decay of end-to-end vector autocorrelation in ns.

qa
B τ b

1.0 2780.64
0.5 86.62
0.2 614.99
0.1 842.96
0.05 768.911

3.C Time-scale of Decay of Various Rate Parameters

As described in the main text, the autocorrelation decay timescales of several variables
are used to determine the averaging period for parameters involved in the master equation
as well as the timescale of a configuration refresh to avoid stale rates. The autocorrelation
functions (ACF) for the various quantities described in the main text are shown below. We
find the autocorrelation of bonded modes and electrostatic energies decay very fast due to
the intramolecular fluctuations, and diffusion and fluctuation of ions and water, respectively.
On the contrary, the autocorrelation of the intermolecular coupling decays very slowly as it
depends on the relative positions of the polymers which have much slower dynamics.
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Figure 3.16. ACF of bond lengths and dihedrals between neighboring backbone beads
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Figure 3.17. ACF of electrostatic energy difference between distinct backbone beads.

0 2 4 6 8

t (ns)

0.2

0.4

0.6

0.8

1.0

A
C

F

Figure 3.18. ACF of electronic coupling between polaron sites.

64



0 1 2 3 4 5

t (ps)

0.2

0.4

0.6

0.8

1.0

A
C

F

0 0.5 1
t (ns)

0.2

0.0

0.2

A
C

F

Figure 3.19. ACF of electrostatic energy difference between polaron sites.

3.D Parameters for Non-bonded and Bonded potentials

The backbone bead, side-chain bead, and ion are denoted by B, S and Q respectively.
The beads in water molecules are denoted by their respective MARTINI bead types POL,
WM and WP. The Gay-Berne parameters are in LAMMPS notations, where the axes x, y
and z correspond to u, v and w in the main text, respectively.

Table 3.5. Parameters used for bonded interactions in the simulations. Units
of all parameters are consistent with LAMMPS ‘real’ units (kcal mol−1, Å etc.)
and potential styles. The bonds in water molecules WM-POL and WP-POL
are constrained using the SHAKE algorithm [ 143 ].

Mode Mode Type Parameters
Bond B-B k = 3.0, r0 = 5.0
Bond B-S k = 1.5, r0 = 4.7
Bond S-S k = 1.5, r0 = 4.7
Bond POL-WM(WP) r0 = 1.4
Angle B-B-B k = 7.5, θ0 = 180.0
Angle B-B-S k = 3.0, θ0 = 90.0
Angle B-S-S k = 3.0, θ0 = 180.0
Angle WM-POL-WP k = 0.5019, θ0 = 0.0

Dihedral B-B-B-B k1 = 0.0, k2 = 0.6, k3 = 0.0, k4 = 0.0
Other B-B, a1 ka = 7.5, θ0 = 90.0
Other B-B, a2 ka = 7.5, θ0 = 90.0
Other B-S, a ka = 3.0, θ0 = 90.0
Other B-B, d k1 = 0.0, k2 = 7.5, k3 = 0.0, k4 = 0.0
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Table 3.6. Parameters used for non-bonded interactions in the simulations.
Units of all parameters are consistent with LAMMPS ‘real’ units (kcal mol−1,
Å etc.) and potential styles. The water particles WM and WP do not experi-
ence any Van der Waal interactions.

B S POL Q

B
σx = σz = 5.0, εx =
εz = 0.25, σy = 3.0,
εy = 1.2, σc = 3.0

ε = 0.84, σ = 4.7 ε = 0.61, σ = 4.7 ε = 0.65, σ = 4.7

S ε = 1.08, σ = 4.7 ε = 1.02, σ = 4.7 ε = 1.34, σ = 4.7
POL ε = 0.96, σ = 4.7 ε = 1.19, σ = 4.7

Q ε = 0.84, σ = 4.7

3.E Parameters for Charge Transport Simulations

The following parameters were used for the Marcus expressions discussed in the main
text: Jinter = 0.02 eV, r0 = 3 Å, α = 0.25 Å−1, Jintra = 0.4 eV, εopt = 3, and εs = 10. The
expressions for external reorganization, λ, and oxidation energy, E, as a function of oligimer
length, l, were obtained from fits to reported data for polypyrrole[ 142 ]: λ = 0.0003l2 −
0.0275l + 0.5253 and E = 1.56/l + 4.31, respectively.

3.F Persistence Length of Polymer for All Systems

Table 3.7. Persistence lengths at different hydration levels with a fixed oxi-
dation level of 0.2 per backbone unit.

ρa
H2O lb

p

20 % 17.35
35 % 41.25
50 % 59.78
65 % 60.27
80 % 52.96

a The hydration level in weight percent.
b Persistence length in Å.

The persistence lengths of organic conducting polymers are generally reported for solu-
tions with organic solvent [  85 ], rather than aqueous conditions, making a direct comparison
difficult. However, we find the values reported here show a sensible trend of increasing with
hydration level due to elimination of packing defects and chain extension as the system
swells. For oxidation levels up to +0.2e, we observe an increase in persistence length with
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Table 3.8. Persistence lengths at different oxidation levels with a fixed hy-
dration level of 50 %.

qa
B lb

p

1.0 4.85
0.5 24.43
0.2 59.78
0.1 34.29
0.05 20.18

a The oxidation level per backbone bead.
b Persistence length in Å.

oxidation level due to increased clustering and stiffening of the polymers. The +1.0e and
+0.5e oxidation-level cases exhibit complete dissolution due to Coulombic repulsion, leading
to a lower persistence length.

3.G Additional Results Referenced in the Main Text
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Figure 3.20. Polaron site IDs of first 500 sites visited during a sample KMC
trajectory for (a) hydration level 20% without electrostatic energy component,
(b) hydration level 20% with electrostatic energy component, (c) hydration
level 50% without electrostatic energy component, and (d) hydration level
50% with electrostatic energy component.
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Figure 3.21. Polaron site IDs of first 500 sites visited during a sample KMC
trajectory for (a) oxidation level 0.2 without electrostatic energy component,
(b) oxidation level 0.2 with electrostatic energy component, (c) oxidation level
0.05 without electrostatic energy component, and (d) oxidation level 0.05 with
electrostatic energy component.
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4. HOW SIDE-CHAIN HYDROPHILICITY MODULATES

MORPHOLOGY AND CHARGE TRANSPORT IN MIXED

CONDUCTING POLYMERS

Reprinted (adapted) partially with permission from [ 80 ]. Copyright Wiley
Periodicals, LLC.

As discussed in the previous chapters, the goal of this thesis is to elucidate the structure-
function relationships for side-chain engineering of OMIECs, specifically, for conjugated
mixed conductors, in the context of OECT devices.

In an OECT, the output source-drain current is the current though the polymer film,
which is modulated by changing the doping within the polymer via a gate electrode in the
electrolyte. The magnitude of the current change is related to the transconductance—the
product of capacitance and carrier mobility—of the OMIEC and is thus a key figure-of-
merit.[ 66 ] However, relating transconductance to side-chain identity is complicated by how
doping efficiency (i.e., carriers created in the polymer per electrolyte dopant) and carrier mo-
bility potentially respond to increased electrolyte uptake. For example, increased electrolyte
uptake straightforwardly increases capacitance, while it has an indeterminant effect on dop-
ing efficiency and mobility. Several comparative studies of how side-chain chemistry impacts
OECT performance have documented a variety of behaviors depending on the polymer chem-
istry, electrolyte, and particular side-chain substitution. Two recent studies investigated how
OECT properties respond to incorporating varying amounts of polar and apolar side-chains
on different OMIEC polymer backbones.[  50 ,  150 ] For both p-type and n-type conducting
polymers, these studies observed that all polar side-chains generally maximize the transcon-
ductance. Both studies observed maximum electrolyte uptake for the all polar side-chain
cases, suggesting that the net increase in doping offsets any potentially negative effects on
doping efficiency or mobility.

However, the molecular details of these trends and the degree to which mobility and
doping efficiency might be simultaneously optimized with electrolyte uptake remain unde-
termined. To provide molecular insight into some of these potential trade-offs, we have
performed the first molecular dynamics (MD) study of the effect of systematically varying
the side-chain polarity on the morphology and mixed conduction of a model OMIEC based
on a thiophene backbone with either alkyl or glycolated side-chains. These simulations pro-
vide molecular level details on electrolyte percolation, morphology, and charge transport to
supplement the macroscopic picture that has been previously established in experimental
studies performed in literature. Additionally, this study acts as a validation that our model
correctly captures the effect of side-chain design variables to the extent that experimental
comparisons are possible, and opens the door for future side-chain design studies.
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4.1 Methods

The coarse-grained force-field and kinetic Monte Carlo were modified when necessary as
compared to the original version in Chapter 3. In the following sections, we briefly review
the details and highlight the changes with respect to the originally reported implementation.
In the appendix, all force-field parameters and simulation conditions are reported.

4.1.1 Coarse-grained Model

The OMIEC molecular dynamics model used in this study was composed of an anisotropic
conjugated backbone, and isotropic side-chain, ions, electrolyte solvent, and a processing
solvent. Unless specified otherwise, the isotropic bonded and nonbonded interactions refer
to bead types from Martini version 2.[  100 ,  181 ] To better approximate film processing, all
simulations were first equilibrated in chloroform, modeled by a C4 Martini bead, followed
by equilibration in an aqueous electrolyte modeled using a chloride counter-ion and coarse-
grained water. The polarizable Martini forcefield was used for water[ 181 ] and chloride ions
were represented by Qa bead.

A comparison of polar and apolar side-chains was performed using isotropic Martini based
beads that are representative of alkyl and polyethylene glycol (PEG) chains, respectively,
which are commonly used side-chains in experiments. The alkyl side-chain was modeled
with the SC3 Martini bead that represents a propyl group (Figure  5.1 ) as has previously
been implemented in the Martini model of poly(3-hexyl thiophene) (P3HT).[  5 ] For the PEG
chain, we adopted the parameters from the Martini CG model for polyethelyene glycol[ 57 ],
where an EO bead represents the CH2 − O − CH2 group (Figure  5.1 ). However, the EO
bead was originally parameterized with the water force-field from Martini version 2.2. To
make it compatible with the polarizable water model, we modified the interaction of EO
with the POL water bead by setting ε = 3.325 kJ/mol, to obtain a hydration free energy of
-14.77 kJ/mol, which is comparable to the value of -14.73 kJ/mol obtained by the original
Grunewald model[  57 ]. The bonded parameters for EO were also retained from the Grunewald
model except for the restricted bending potential and instead cosine-squared potential was
used similar to the original Martini model. As the purpose of the restricted-bonding poten-
tial was numerical stability and we are modeling short PEG oligomers as side-chains, this
modification should be inconsequential.

As in the original version, the potential interaction between backbone beads was modeled
using an anisotropic Gay-Berne potential[ 14 ] and the orientation of consecutive backbone
bead was controlled using additional torsional and stretching potentials. The Gay-Berne
potential parameters were selected to be representative of thiophene and follow our previous
report. Simulations of a 3-hexyl-thiophene (3HT) monomer liquid based on this backbone
and two SC3 side-chain beads (i.e., the same Martini model that has previously been used for
P3HT[ 5 ]) resulted in a density of 0.97 g/cc that was in close agreement with the experimental
density of 0.95 g/cc. The backbone bonded potential parameters were modified to obtain
a persistence length of 7.34 repeat units (RU) for P3HT in toluene, comparable to the
experimental persistence length for polythiophene of 6.75-7.43 RU.[ 85 ] As in our previous
work, the backbone bead interacts with other side-chain and solvent beads with an isotropic
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Figure 4.1. The coarse-grained mapping of the apolar (a) and polar (b)
beads used to model the hydrophobic and hydrophilic polymer side-chains,
respectively. (c) The materials simulated here consist of random copolymers
with varying fractions of the two types of side-chain.

potential, but is modeled as a Martini C4 bead here instead of C3 bead from our previous
model. The Martini C4 bead reproduces the hexadecane-water partition free energy of a
thiophene ring as 9.27 kJ/mol in better agreement than C3 with the experimental partition
free energy of 10 kJ/mol[ 1 ].

All simulations consisted of monodisperse solutions containing polymers of 50 backbone
beads. Six polymers were studied (Figure  5.1 (c)) with varying amounts of polar and apolar
side-chains: 0 % polar (100 % apolar), 20 % polar (80 % apolar), 40 % polar (60 % apolar),
60 % polar (40 % apolar), 80 % polar (20 % apolar), and 100 % polar (0 % apolar). Each
side-chain contained 3 CG beads representing roughly 9 heavy atoms. The side-chains were
attached on each backbone bead in a regioregular fashion. The cases with mixed amounts of
polar and apolar side-chains were modeled as random copolymers by stochastically assigning
the identity of each side-chain. The degree of polymerization[ 35 ,  42 ] and side-chain length[ 52 ,

 90 ,  112 ] were selected to be comparable to that of typical experimental OMIECs.

4.1.2 Molecular Dynamics

LAMMPS was used to perform all molecular dynamics simulations.[ 130 ] All simulations
used a 10 fs integration time step, Velocity-Verlet integration, and periodic boundary condi-
tions. Lennard-Jones, electrostatic and Gay-Berne interactions were truncated at 12 Å. The
Lennard-Jones and Coulombic interactions were shifted using the standard GROMACS shift
function over a length of 9-12 Å and 0-12 Å, respectively. Film equilibration occurred over
two distinct simulations. First, polymer film formation was simulated by dissolving the neu-
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tral polymers in chloroform then evaporating the solvent. Subsequently, the polymers were
doped (i.e., charged) and electrolyte was added to the simulation and allowed to equilibrate.

For the polymer film formation simulations, the polymer and chloroform solvent molecules
were initialized from diffuse configurations, using a cubic grid to place molecules in random
orientations without overlap. Each simulation box contained 50 polymers and was initially
surrounded by 50,000 chloroform molecules. The velocities were initialized from a uniform
distribution obtained with a random seed value and scaled to give the correct kinetic energy.
The simulations were first relaxed in the NVE ensemble with restrained displacements of
0.1 Å per time step for 10 ps. This was followed by a simulation in the NVT ensemble at
300 K while linearly rescaling the simulation box over 2 ns to obtain a condensed system
with a density of 1 g/cc. The density was then equilibrated in the NPT ensemble for 100
ns at 300 K and 1 atm. After the NPT simulation, 20 wt% of the chloroform beads were
randomly selected and removed from the system, followed by an equilibration step in the NPT
ensemble for 100 ns at 300 K and 1 atm. This process of chloroform removal followed by NPT
equilibration was performed five times, resulting in 28,750 (80 wt% of solvent), 10,781 (60%),
4,792 (40%), 1,797 (20%), and 0 (0%) chloroform molecules, respectively. This procedure is
intended to qualitatively mimic the solvent processing and evaporation during experimental
film formation (e.g., spin-coating) and has been employed in other coarse-grained simulations
of organic polymers.[ 107 ]

The final polymer film configuration was unwrapped in accordance with the periodic
boundary conditions, the backbone beads were charged and then surrounded by randomly
placed solvent and ion beads on the outside of the polymer film, each within a separate cubic
box of length 6 Å to avoid overlaps. At this stage, 10,781 CG water beads were added, which
correspond to 43124 real water molecules and 60 wt% of solvent. Each backbone unit carried
a charge of +0.2 (i.e., a doping induced charge every five backbone beads), and 500 counter-
ions with a charge of −1.0 were added to achieve charge neutrality. These systems were
relaxed in the NVE ensemble with restrained displacements of 0.1 Å per time step for 10 ps,
followed by an NPT equilibration for 100 ns, and an NPT production run for an additional
100 ns at 300 K and 1 atm. In all of the NVT and NPT simulations, the Nosé-Hoover ther-
mostat and barostat were employed using the modified form proposed by Martyna, Tobias,
and Klein, as implemented in LAMMPS [ 102 ], with a relaxation time constant of 0.15 ps and
1.5 ps for the thermostat and barostat, respectively. In all of the simulations, the thermo-
dynamic data and coordinates were sampled at 1 ps. The ASPHERE package in LAMMPS
was used for all Gay-Berne force, torque evaluations, and numerical integrations.[ 22 ] The
SHAKE algorithm [ 143 ] implemented as a part of the RIGID package in LAMMPS was used
to constrain the bonds in the water molecules. Additional bonded potentials to control the
orientation of neighboring beads were implemented as custom classes in LAMMPS by our
group. OVITO was used for visualizing the final trajectories and generating snapshots of
MD configurations.[ 160 ]

4.1.3 Charge Transport Calculations

Charge transport within the OMIEC polymer network was modeled on the basis of
configurations generated from the CG-MD trajectories. The expressions for charge transport
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rates, the physics behind the rate parameters, the choice of these rate parameters, the kinetic
Monte Carlo procedure and the final calculation of mobility is explained in detail Chapter 3.
In brief, each backbone bead was parameterized to represent a single conjugated unit (i.e., a
ring system without internal flexible dihedral degrees of freedom), thus sites consisting of one
or more contiguous backbone beads constitute the relevant polaronic basis states for charge
transfer. The extent of polaron delocalization (i.e., the number of contiguous beads involved
in a single polaron site) was determined based on a threshold for the charge transfer rate
for contiguous beads (10−14s−1). Contiguous beads with charge transfer rates above this
threshold were combined together to form a delocalized polaron site; contrarily, smaller
polaron sites reflect poor torsional alignment or electrostatic disorder along the polymer
chains. The charge transfer rates between polaron sites were parameterized using semi-
classical Marcus theory[  96 ], whereas the charge transport between contiguous beads was
modeled using a modified Marcus rate in the adiabatic limit.[ 56 ,  142 ] The charge transfer
rate parameters capture the appropriate dependence on the delocalization of electrons along
the backbone, the electronic coupling due to orbital overlap, the reorganization energy in
the presence of solvent, and the energetic disorder due to electrostatic interactions with the
solvent.

The expression used to calculate the intermolecular electronic coupling was updated to
be calculated on the basis of individual pair-wise couplings between beads, instead of an
average inter-site distance over all beads, as was done previously. The new expression for
coupling is

Jij = Jinter
∑

m∈i∪j
exp {−α(rij − rmin,m)} , (4.1)

where α is a decay factor, r0 is the reference separation for Jinter, and rm,min is the minimum
distance of bead m in site i (or j) from beads in the other site j (or i). This expression
resolves coupling at each backbone unit and assigns a nonzero coupling for polymers which
partially overlap, which was not captured by the earlier expression based on the average
intersite distance. The intermolecular coupling value Jinter, the reference separation r0 and
the decay factor α were set to 0.01 eV, 3.5 Å and 0.8 Å−1, respectively to match with the
new coupling expression and commonly reported values in organic electronic literature.[ 9 ]
For the length 50 chain, the values for HOMO energy levels and reorganization energy as
a function of site length were obtained from the length-dependence study by Zade et al.
on polythiophenes.[ 182 ] The intramolecular reference coupling, Jintra, used in the adiabatic
rate expression for charge transfer between contiguous beads was set to a value of 0.31
eV. This parameter raises or lowers the mean intra-chain charge transfer rates and thus
affects the delocalization length of the polaron sites. Here, Jintra was selected to obtain an
average polaron delocalization length of ~13 backbone beads for the 100% polar side-chain
case (Figure  4.4 ). The delocalization lengths ranged from 1-50 (polarons localized to a single
backbone bead vs the entire polymer chain) depending on the side-chain composition, degree
of backbone order and local electrostatic interactions with electrolyte.

A common numerical problem in KMC simulations of processes with kinetics spanning
multiple orders of magnitude, is that it the slow processes are necessarily rarely sampled.
In the current systems, intra-chain charge transfer rates tend to be much larger than inter-
chain rates, with the effect that the charge can spend a large number of KMC steps hopping
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within a small set of spatially localized sites while waiting for a relatively slow interchain hop
to occur. To address this problem, we use the Aggregate Monte Carlo (AMC) procedure
proposed by Brereton et al.[ 19 ] In the AMC procedure, the “trap sites” are aggregated
together based on their connectivity and relatively high rates for transfer, then the charge
transport is simulated similar to KMC as a Markov chain of jumps between these aggregates.
An important distinction is that the transport out of an aggregate is modeled as a Markov
jump process from the trap to any of its neighbors which are treated as absorbing barriers. In
doing this, the long physical time spent in the trap site is correctly accounted for and the exit
probabilities depend on the transport probability to the neighbors as well as the transport
within the trap region. In order to determine the aggregates, we use the decomposition
algorithm described in Brereton et al with the hyperparameters α = 0.2, β = 0.2 and
γ = 0.03.[ 19 ]

The key steps involved in the charge transport characterization are summarized below.
For each configuration sampled at time t obtained from the CG-MD simulation,

1. Calculation of intramolecular rates. The charge transfer rates between contiguous
backbone beads are calculated in preparation for defining polaron sites. These rates
are averaged over 20 configurations over t± 1 ps.

2. Definition of polaronic basis states. The contiguous beads with rates above
1014s−1 are combined into a single site.

3. Calculation of intermolecular rates. The charge transfer rates between polaron
sites are averaged over 20 configurations uniformly sampled from t± 1 ps.

4. Determination of Aggregate States. Polaron sites with fast transfer rates are
aggregated and their exit probabilities are calculated based on the decomposition al-
gorithm.

5. KMC simulations of charge hopping trajectories. For each configuration, 40
trajectories are generated by randomly choosing different starting sites.

The above procedure to estimate MSD is performed for 20 configurations sampled every
5ns and subsequently, the diffusivity and mobility were estimated from the MSD. The MSD
and mobility calculation was performed for 3 independent MD simulations, to obtain the
net average mobility and error reported below. Likewise, distributions of various quantities
such as electronic coupling, energies, site length, etc. were obtained as averages over the 3
independent MD simulations.

4.2 Results and Discussion

4.2.1 Morphology Characterization

The simulated series of OMIECs comprise a case study on the effects of varying the side
chain hydrophilicity and composition on the morphology and transport of random copoly-
mers. We first focus on the distinct morphological features across the series, since it provides
an interpretive basis for the later charge transport results.
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The density of polar side-chains has a predictably large impact on the extent of electrolyte
percolation in each OMIEC. Representative snapshots for each system demonstrate the on-
set of electrolyte percolation around 40-60% of polar side-chain incorporation (Figure  4.2 ).
The trend is notably non-linear, as the morphology qualitatively changes from a relatively
dense organic film with excluded electrolyte to a swelled network around a concentration of
60% polar side-chains. Neglecting other factors, the free energy of water absorption should
be linear in the fraction of polar side-chains, meaning that the likelihood of water percola-
tion would be exponential in the polar fraction. This is consistent with the apparent phase
transition around 60% polar side-chain fraction, and also consistent with experimental obser-
vations of super-linear swelling with respect to the fraction of polar side-chains.[ 50 ,  150 ] For
the simulated electrolyte densities, a bulk electrolyte phase persists until ≥80% hydrophilic
side-chain fractions, at which point the polymers completely swell (Additional details can be
observed in Figure  4.7 ).

The side-chain composition also has several subtle effects on the distribution of electrolyte
within the polymer phase (Figure  4.2 ). First, the much larger probabilities for finding water
and ions near polar side-chains compared with apolar side-chains (Figure  4.2 b) confirms the
intuition that the former drive electrolyte percolation within the OMIEC. We also observe
that the the effective (a)polarity of the side-chains is function of side-chain concentration.
Specifically, as the fraction of polar chains increases, the likelihood of finding water and ions
near the apolar chains also increases. Conversely, as the fraction of apolar chains increases
the likelihood of observing electrolyte near the polar chains decreases. At polar fractions
≤ 40% this is explainable by limited electrolyte percolation, which correspondingly limits
electrolyte association with buried polar chains. However, this trend is also observable in the
percolating morphologies, which we interpret to reflect the effect of neighboring side-chains
on the local hydrophilicity. Specifically, at higher polar side-chain fractions, both polar and
apolar side-chains are more likely to have a polar neighbor that promotes local association
with the electrolyte. The reverse is also true as the fraction of apolar chains increases. It
isn’t obvious whether this effect is immediately useful, but it is a distinct prediction of the
simulations and we would hypothesize that it is more pronounced in random copolymers (as
simulated here), compared with block copolymers.

A key feature of the employed OMIEC model is that it explicitly describes the π-
orientation of the polymer backbone. The π − π organization between chains was character-
ized using the joint-distribution function of backbone bead separation and the dot product
of the π normal vectors, S (Figure  4.3 ). All of the systems exhibit a high degree of π − π

organization (i.e., S > 0.8 in all cases) between neighboring chains; however, in the pro-
gression from low to high polar side-chain fraction, we observe that the π − π organization
decreases for intermediate fractions (≥20%) of polar side-chains. We ascribe this to the
combination of side-chain heterogeneity and partial percolation of the electrolyte, both of
which frustrate chain packing at the intermediate fractions. This trend is also consistent
with the organization at the second and third nearest neighbor chain positions (i.e., ~7 and
11 Å, respectively). Interestingly, the 100% polar case with the greatest degree of electrolyte
swelling shows the highest overall organization. In contrast, the 100% apolar case shows
weaker organization, but we caution that this system forms a thin layer (~5 nm) that is
dominated by the polymer-electrolyte interface and is not representative of a bulk organic
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Figure 4.2. (a) Snapshots showing polymer (pink) and water (blue) for differ-
ent side-chain compositions. All other bead types are omitted for clarity. (b)
Radial distribution functions gx−y for the polar side-chains and water (P-H2O),
polar side-chains and ions (P-Q), apolar side-chains and water (A-H2O), and
apolar side-chains and ions (A-Q).

semiconducting polymer. The one-dimensional radial distribution functions for the back-
bone beads also reveal several subtle features (Figure  4.7 d). For instance there is only weak
lamellar organization as evidenced by a small peak at ~17Åthat is suppressed with increasing
electrolyte percolation.[  42 ] This length is consistent with experimentally reported length of
14-19Å[ 42 ,  90 ,  150 ], roughly two times the side-chain length, and thus also indicates that
limited side-chain interdigitation occurs in these systems.

4.2.2 Charge Transport Characterization

Next, we examined how charge transport within the polymer is affected by the changes
in morphology and electrostatic environment attendant to changing the side-chain compo-
sition. Charge transport was modeling using KMC to generate ensembles of single polaron
hopping trajectories across a range of representative MD configurations for each system. The
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Figure 4.3. π − π stacking probability presented as a joint probability dis-
tribution of distance between the backbone beads on the x-axis and π − π

alignment on the y-axis, as a function of polymer side-chain composition.

mobilities extracted from these simulations reflect the low carrier density limit and do not
capture potential finite-concentration effects (e.g., trap filling). The interpretive advantage
of the low density limit is that the mobility changes solely reflect the changes in morphology
and energy distribution. We note that finite concentration simulations are compatible with
the KMC approach, but consider a comparison in the context of OMIECs to be beyond the
current scope.

The trend in simulated polaron mobilities shows an increase for the cases with electrolyte
percolation (≥40%), and a maximum for the 40% and 100% polar side-chain fractions (Figure

 4.4 ). Nevertheless, these trends are minor in comparison with the similar order of magni-
tude of the mobility in all of the cases. Experimentally, the electronic mobility generally
increases with polar side-chain concentration, but a direct comparison is difficult since the
experimental charge carrier densities generally increase with polar side-chain concentration
rather than remaining fixed as simulated here.[ 50 ,  150 ] Considering that the mobility typi-
cally increases with respect to increasing charge density, the present prediction of relatively
constant mobility in the low carrier density limit as the polar side-chain fraction increases is
broadly consistent with the experimental trend.

We note that the error bars illustrate the variance across the simulated KMC trajectories,
but there is also uncertainty associated with some of the charge transfer parameters used in
the KMC simulations (e.g., the electronic coupling, dielectric, and reorganization energy).
Thus, we performed a sensitivity analysis by conducting the KMC simulations for several
choices of the charge transfer parameters to assess the extent to which the observed trend
survives changes in the model parameters (Figure  4.6 ). This analysis confirms that the
mobilities of the 40% and 100% polarity cases are consistently the highest among the systems,

77



N
tr
a
p
s

N
p
a
th
s

Figure 4.4. (a) charge mobility, (b) polaron delocalization length (number of
backbone beads per polaron site), (c) number of trap sites (Ntraps) normalized
by total number of aggregated sites, (d) log distribution of the intersite charge
transfer rate , (e) the number of pathways per site (Npaths) normalized by the
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the whisker plots indicate the median and mean, respectively.

whereas the mobility difference between these two cases is small and within the uncertainty
of the various parameters.

To understand the relatively constant mobility as the polar side-chain increases, and
secondarily, why the 40% and 100% cases show the highest mobility (~2 times larger that the
others), we parsed the distributions of several key quantities across side-chain compositions
and KMC configurations, including the polaron delocalization length, number of trap sites
(Ntraps), charge transfer rates, pathways per site (Npaths), and electronic couplings (Figure

 4.4 ). The number of trap sites are defined here as polaron sites for which all outgoing charge
transfer rates are < 100ps-1, which is slower than the relaxation time of the local structure at
most operating temperatures. The trap sites are determined after assigning aggregate states
(as described in the methods section), and thus, aggregated sites with exit times > 100ps
are also considered traps. We emphasize that aggregates and trap sites are not synonymous,
since aggregation is only based on whether one or more polaron sites exhibit rapid charge
exchange. We find a pronounced trend in polaron delocalization length and the number of
trap sites (Figure  4.4 b-c). The polaron delocalization length is distinctly smaller for mixed-
chain polymers (i.e, 20-80% polar fraction) and can be attributed to the increased torsional
disorder reducing the electronic coupling along the backbone (Figure  4.8 ). This also follows
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from the frustrated packing discussed in the previous section for the mixed chain polymers.
However, the smaller polarons show more uniformity in rate distributions and fewer trap sites
(Figure  4.4 c) leading to the non-monotonic trend with higher mobility for an intermediate
polarity of 40%.

In contrast, the higher mobility for the 100% polar case is driven by a combination of
higher average charge transfer rates and a better connected charge transfer network. The
100% polarity case shows the highest mean charge transfer rate out of the simulated systems
(Figure 4d). The increased rates are more apparent in the rate distribution (Figure  4.9 ),
where more interchain pathways (1010 − 1013s−1) are seen for the higher polarity cases. This
trend is also consistent with the monotonic increase in intersite couplings with the polar
side-chain fraction (Figure  4.4 f). The second major driver of increased mobility in the 100%
scenario is better connectivity within the charge transfer network. This is quantified in
an average sense by the distribution of the number of charge transfer pathways for each
polaron site within the network (Figure  4.4 c). With respect to this measure, there is a
monotonic increase in the number of pathways (i.e., connections per node using network
terminology) as the polar fraction of side-chains increase. These two factors compete with
an increasing number of traps as the polarity increases (Figure  4.4 c), with the result that
intermediate fractions of polar side-chains exhibit lower mobilities but the homogeneous
100% case consistently shows the highest mobility.

To better quantify the assertion that the charge transport networks are better connected
in the more polar systems, we also performed a percolation analysis for the 40-100% polar
side-chain fractions that showed electrolyte swelling. This analysis follows earlier work where
the number of distinct subnetworks are parsed based on a charge transfer threshold.[ 147 ]
Specifically, polaron sites were aggregated into subnetworks based on their charge transfer
rates, such that each site within a network was connected to at least one other site in that
network by the stated rate threshold. Since the charge transfer rates for these systems are
not symmetric, a site was incorporated in a subnetwork if there existed at least one charge
transfer pathway both to and from the polaron site in the cluster. Interestingly, the 40%
apolar side-chain fraction shows the smallest number of subnetworks at all values of the rate
threshold (Figure  4.5 a), meaning that on average there are more polaron sites in each of
its subnetworks. Nevertheless, the spatial extent of the largest charge transport network
monotonically increases with polar side-chain fraction (Figure  4.5 b), meaning that while the
40 % case has larger networks in terms of the average number of sites per network, they
are relatively collapsed and do not effectively percolate the system volume. In contrast,
the largest network for the 100% polar side-chain system consistently spans >80% of the
system, as measured by its radius of gyration, at all investigated rate thresholds. Thus, the
high mobility of the 100% polar system is driven by a combination of higher average charge
transfer rates and a more percolative charge transfer network topology.

4.3 Conclusions

The results shown here are consistent with prior experimental observations of the effect
of side-chain polarity while providing a detailed picture of the morphology evolution and
charge transport. For the random copolymer topology simulated here, we predict that the
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Figure 4.5. The number of distinct subnetworks of polaron sites (a) and the
radius of gyration of the largest subnetwork (b) calculated as a function of the
side-chain polarity. Subnetworks are defined such that each site is connected
to at least one other site within the subnetwork by a rate above the threshold.
The radius of gyration of the largest subnetwork is normalized by the radius
of gyration the total system (rnet/rsys).

highest charge mobility would be achieved for the polymers with the highest fraction of
polar side-chains. Moreover, since the conductivity is a figure of merit for OMIECs, the
increased doping associated with the higher polar side-chain fraction is an additional advan-
tage. Within the limitations of the simulation conditions, there is no advantage to including
a mixture of polar and apolar side-chains; whereas, there are several disadvantages, including
increased dihedral disorder and reduced interchain charge transfer rates. A key limitation of
these simulations is that the fixed water concentration impedes complete chain dissolution,
which is a real problem in actual devices. Thus, the guidance resulting from the present
simulations are that the polar fraction of side-chains should be increased up to the point
that the film does not dissolve in the electrolyte during operation.

The current study has intentionally excluded from consideration the effect of polar side-
chain fraction on the doping efficiency. Instead, the doping efficiency was held constant
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for all cases. This is an important topic for understanding the upper limits of achievable
transconductance, for optimizing OMIEC morphology, and designing dopants. Indeed, it
is obvious from the current simulations that at high apolar side-chain incorporation that
the doping efficiency would necessarily be lower due to limited electrolyte penetration; how-
ever, for the intermediate-to-high polar side-chain fractions it is unclear how the changes in
polymer-dopant configurations would affect the doping efficiency. This is a phenomenon of
consequence for side-chain engineering that subsequent simulations studies could foreseeably
resolve.

There are also several side-chain engineering strategies that were not assessed in this study
that may have more merit than the mixed random copolymer strategy. For instance, block
copolymers with separate contiguous blocks of polar and apolar side-chains may potentially
provide control over electrolyte percolation without harming the torsional distributions and
polymer connectivity. Likewise, it may be possible to introduce apolar and polar segments
into individual side-chains. Such a strategy is similar to the contemporary apolar linker
concept and side-steps the heterogeneity of random copolymers. The current study is also
limited with respect to the exploring the degree of hydrophilicity of the side-chains. It is
possible that a lower frequency of more hydrophilic side-chains, or alternatively a higher
frequency of less hydrophilic side-chains, might be more optimal than the current best case
scenario. The molecular trade-offs for block vs. random copolymer are investigated in the
next chapter.
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APPENDIX

4.A Parameters for Non-bonded and Bonded potentials

The LJ parameters used in the simulations are listed in Table  5.1 and on the correspond-
ing Martini bead type. The Gay-Berne parameters are specified according to the LAMMPS
notation. The parameters for the Gay-Berne interactions are unchanged from our previous
publication, but the y and z axes parameters have been interchanged to comply with the
original Gay-Berne functional form.[  14 ] Note that this modification only alters the energy
coefficient by a factor of 0.91 and has no significant affect on the physics of the system. The
intramolecular parameters used for the simulations are listed in Table  5.2 .

Table 4.1. Parameters used for non-bonded interactions in the simulations.
Units of all parameters are consistent with LAMMPS ‘real’ units (kcal mol−1,
Å etc.) and potential styles. The bead-type for backbone, polar side-chain,
apolar side-chain, and chloroform are C4, EO, SC3 and C4, respectively. Water
is made of POL, WM, and WP beads, from which the beads WM and WP do
not experience any Van der Waal interactions. The interaction of backbone
bead with other backbone beads is modelled as Gay-Berne potential (and not
C4-C4 interaction) and the parameter values are reported next to ”B-B”.

B-B σx = σy = 5.0, εx = εy = 0.25, σz = 3.0, εz = 1.2, σc = 3.0
C4 EO SC3 POL Qa

C4 ε = 0.84,
σ = 4.7

ε = 0.70,
σ = 4.7

ε = 0.84,
σ = 4.7

ε = 0.61,
σ = 4.7

ε = 0.74,
σ = 4.7

EO ε = 0.61,
σ = 4.3

ε = 0.53,
σ = 4.3

ε = 0.79,
σ = 4.7

ε = 0.84,
σ = 4.7

SC3 ε = 0.63,
σ = 4.3

ε = 0.61,
σ = 4.7

ε = 0.65,
σ = 4.3

POL ε = 0.96,
σ = 4.7

ε = 1.19,
σ = 4.7

Qa ε = 0.84,
σ = 4.7

4.B Parameters for Charge Transport Simulations

The following parameters were used for the Marcus expressions discussed in the main
text: Jinter = 0.01 eV, r0 = 3.5 Å, α = 0.8 Å−1, Jintra = 0.31 eV, εopt = 3, and εs = 10. The
expressions for external reorganization, λ, and oxidation energy, E, as a function of oligomer
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Table 4.2. Parameters used for bonded interactions in the simulations. Units
of all parameters are consistent with LAMMPS ‘real’ units (kcal mol−1, Å etc.)
and potential styles. The bonds in water molecules between the WM-POL and
WP-POL beads are constrained using the SHAKE algorithm [ 143 ].

Bonds Angles
B-B k = 25.0,

r0 = 4.3
B-B-B k = 1.0,

θ0 = 160.0
B-SP(SA) k = 1.5,

r0 = 4.7
B-B-SP(SA) k = 3.0,

θ0 = 90.0
SP-SP k = 8.35,

r0 = 3.22
B-SP(SA)-SP(SA) k = 3.0,

θ0 = 180.0
SA-SA k = 1.5,

r0 = 3.6
SP-SP-SP k = 6.0,

θ0 = 135.0
POL-WM r0 = 1.4 SA-SA-SA k = 3.0,

θ0 = 180.0
POL-WP r0 = 1.4 WM-POL-WP k = 0.5019,

θ0 = 0.0

Dihedrals Other
B-B-B-B k1 = 0.5,

k2 = 0.6,
k3 = 0.0,
k4 = 0.0

B-B, d k1 = 0.0,
k2 = 2.0,
k3 = 0.0,
k4 = 0.0

SP(SA)-B-B-SP(SA) k1 = 3.0,
k2 = 0.0,
k3 = 0.0,
k4 = 0.0

B-B, a1 ka = 7.5,
θ0 = 90.0

B-B, a2 ka = 7.5,
θ0 = 90.0

B-SP(SA), a ka = 3.0,
θ0 = 90.0

length, l, were obtained from fits to reported data for polythiophene.[  182 ] The governing
expression for the external reorganization energy as a function of l is

λ =

−0.0973
√

l + 0.4922, if l ≤ 15
1.9489

l
− 0.0092, otherwise

.

The governing expression for the oxidation energy as a function of l is

E = 4.1336 l−0.75 + 4.67.
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4.C Sensitivity Analysis of KMC Simulations

To assess the impact of the charge transport parameters on the results of the KMC sim-
ulations, the simulations were rerun with single factor sensitivity analysis. Specifically, a
positive and negative deviation from the values used in the main text simulations was per-
formed for each variable, including the intermolecular coupling decay rate (β = 0.6 Å-1 and
1.0 Å-1 are the low and high values, respectively), reference intermolecular coupling strength
(Jinter = 0.005 eV and 0.02 eV), delocalization length dependence of the HOMO energy level
(E+ and E− modeled as 3.1l−0.75 + 4.67 eV and 5.167l−0.75 + 4.67 eV, respectively), and
the dielectric constant (ε = 7.5 and 12.5) while keeping the other parameters at their mean
value (Figure  4.6 ).

For all cases, we observe a mobilities within approximately the same order of magnitude
for all side-chain polarities. When parameters are selected that increase the mean charge
transport rate (e.g., by increasing the reference coupling Jinter, decreasing the coupling de-
cay rate β, or reducing the HOMO energy level decay), we observe the expected increase
in mobility, while still observing a non-monotonic trend in the mobility across side-chain
polarity composition. The mobility at 100% polarity also increases and becomes predom-
inant compared to the other cases as the charge transport rate increases (Figure  4.6 a-b).
This corroborates the previous explanation that the mobility is higher at 100% side-chain
polarity due to the faster charge transport rate. The the length-dependence of the HOMO
energies (Figure  4.6 c) more strongly impacts the 40% case than 100% as the latter has longer
polaron sites for which posses similar HOMO energies across all three HOMO energy curves
tested. Interestingly, we find the mobility to be highest for an intermediate dielectric of
10. Increasing the dielectric constant increases the reorganization energy for charge transfer
while reducing the electrostatically induced energy disorder. We refrain from overinterpret-
ing this result, since the treatment of a spatially constant dielectric is already a strong, albeit
common, approximation. However we note that both beneficial effects could be achieved by
locally reducing the dielectric along the backbone, which is similar to the contemporary
strategy of adding an apolar linking group at the base of the side-chain.

4.D Additional Figures Referenced in the Main Text

In the main text we reported the superlinear swelling of the polymer with respect to the
polar side-chain percentage (Figure  4.2 in the main text). In Figure  4.7 we report several
corroborating datasets that were parsed from the CG-MD trajectories, including the net
volume of the swelled polymer at each side-chain composition (Figure  4.7 a), the water-water
radial distribution function (rdf; Fig  4.7 b), and the polymer backbone-ion rdf (Figure  4.7 c).
The onset of water percolation at 40% polar side-chains followed by superlinear growth is
clearly visible from the polymer volumes. Likewise, electrolyte percolation is accompanied
by a reduction in bulk water concentration, as evidenced by the monotonic decay in the
height of the first peak in the water-water rdf with increasing polar side-chain fraction. The
onset of percolation is even more clearly observed in the monotonic increase in the first peak
of the ion-backbone rdf with polar side-chain fraction, and the large jump between the 20%
and 40% curves. The polymers show very weak lamellar packing for all polar side-chain
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Figure 4.6. Single factor sensitivity analysis of the KMC simulation results
for mobility (cm2/Vs) as a function of different side-chain compositions. The
effect of the intermolecular coupling decay rate (β[ Å-1]; panel a), the reference
intermolecular coupling strength ( Jinter [eV];b), delocalization length depen-
dence of the HOMO energy level (E;c), and the dielectric constant (ε;d) are
shown in the corresponding panels.

fractions (Figure  4.7 d) evidenced by a small peak around 17 Å. This is approximately twice
the side-chain length, meaning there is very little interdigitation of the chains, and this
lamellar packing is further suppressed as electrolyte enters the polymer film.

As reported in the main text, polaron delocalization is significantly affected by the polar
side-chain fraction. This is also reflected in the intramolecular coupling distributions (Figure

 4.8 ), which skew to the lowest values for the 40% case. We ascribe this to the increased
torsional disorder caused by side-chain heterogeneity.

The distribution of rates between polaronic sites are reported below before (Figure  4.9 a)
and after (Figure  4.9 b) incorporating the effect of polaron site aggregates. The higher rates
of > 1013s−1 represent the relatively fast transport between localized polarons along the
same chain and appear similar for all side-chain compositions before including the effect of
aggregates. In contrast, the interchain rates 1012 − 1013s−1 are faster for more polar cases
due to the improved packing. After aggregating sites where most time is spent, the fast and
slow pathways decrease and increase, respectively for the 100% polar case. Note that the
intrachain rates above the polaron threshold of 1014s−1 represent pairs of intrachain sites
where the rate is faster one way than the reverse due to electrostatic disorder.

For completeness, the distributions for the reorganization energy (λ) and site energy
differences (∆E) of charge transfer are also reported in Figure  4.10 . As pointed out in the
main text, the interchain rate increases with polarity due to improved electronic coupling.
The reorganization energy decreases with polarity from 40-100%, due to the increase in
polaron delocalization length with increasing side-chain polarity. This trend also partially

85



0 10 20 30 40
0

1

2

3

4

5

0 20 40 60 80 100
1

2

3

V
o

lu
m

e
 E

-6
 (
Å

3
) 

Polarity % r (Å)

g
W

-W

(a) (b)

0

1

2

0 10 20 30 40

g
B

-Q

r (Å)

(c)

0 10 20 30 40

r (Å)

0

4

8

12

g
B

-B
(d)

0% 20% 40% 60% 80% 100%

Figure 4.7. (a) The approximate volume of the swelled polymer as calculated
from the convex hull of the polymer coordinates parsed from the CG-MD tra-
jectories. (b) The water-water radial distribution function (rdf) as a function
of the polar fraction of side-chains. (c) The backbone-ion rdf as a function
of the polar fraction of side-chains (d) The backbone-backbone rdf, with the
weak lamellar packing around 17 Åindicated by a vertical line.

explains the increase in the mean charge transfer rate with the polar side-chain fraction.
There is not a significant correlation between the energies and the observed mobilities with
the exception that the 100% polar side-chain scenario shows the lowest average site disorder.

Ion mobility (Figure  4.11 ) is another important figure of merit for mixed conductor
systems. Although the ion mobility is easy to parse from the CG-MD simulations, the
interpretation is confounded by the presence of bulk electrolyte in the simulations with
low polar side-chain fractions. Specifically, between 0-60% polar side-chain fractions, bulk
electrolyte is still present in the simulations which results in the highest ion mobilities in
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Figure 4.9. Distributions of the polaronic site charge transfer rates (a) before
and (b) after incorporating the effect of aggregates.

these scenarios. This is caused by the fact that all of the simulations were equilibrated with
sufficient electrolyte to saturate the polymer, leading to bulk electrolyte still existing in the
cases of high apolar side-chain loadings and partial percolation. For this reason we have
included these results for completeness, but have not significantly discussed them in the
main text.
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5. DO BLOCK PATTERNED SIDE-CHAINS HELP MIXED

CONDUCTOR PERFORMANCE?

In the fourth chapter, we saw that there was no advantage of including mixed polar and apo-

lar side-chains and the backbone with all polar side-chains performed the best both in terms

of ion doping and mobility. However, the side-chains were attached in random fashion to

all the polymers tested in the previous chapter, similar to the mixed conductors reported in

experimental literature. Block patterning or block copolymers have showed interesting prop-

erties by obtaining a combination of desired properties using blocks of appropriate chemical

moieties. In the context of mixed conductor, there is often a challenge as to maximizing

the electrolyte percolation, or in other words, doping while maintaining the connections

and aggregation of polymers which allow superb charge conduction. The polar chains have

been used to facilitate the electrolyte percolation in mixed conductor. While the random

copolymer did not show an advantage of adding apolar chains due to frustrated packing,

the immediate question arises if addition of blocks of apolar chains and polar chains may

alleviate this disturbance of polymer aggregation. The polar chain blocks can be dedicated

to interfacing with electrolyte, while the apolar chain blocks lead to closely packed cluster of

polymer with efficient charge transport. Additionally, the polymer stacking and connectivity

can be controlled as the polar blocks would interface with polar blocks over apolar blocks,

and vice versa. We expect the morphology could unfold in two ways– either the larger blocks

of similar side-chains will help larger regions of polymers to aggregate together without any

conflict between chemical affinities of neighbors chains, or instead the larger size of the blocks

can lead to frustrated packing as the polymer tries to avoid the energy penalty for a large

block of apolar chain interfaced in water.

In this chapter, we simulate polymers with varying length of blocks of polymer with polar

and apolar side-chains. We perform this analysis while keeping the overall ratio of polar vs.

apolar side-chains constant for three compositions– 60% polar (40% apolar), 80% polar (20%

apolar), and 50% polar (50% apolar) side-chains. Each OMIEC system was characterized

by parsing structural features such as polymer stacking and connectivity, swelling and ion

percolation, as well as its ability to transport charge.
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5.1 Methods

The coarse-grained force-field, Molecular Dynamics procedure and kinetic Monte Carlo

procedure were exactly same as that used in chapter 4, except 5 independent simulations

were performed for each case instead of 3. In the following sections, we describe the specific

block polymers simulated in this study and very briefly touch upon the methods used.

5.1.1 Coarse-grained Model

In this work, we simulate block patterned polymers with the same proportion of total ap-

olar vs. polar side-chains. Each polymer has a backbone of 50 repeat units, with side-chains

attached on every backbone in a regioregular fashion. Starting from a random copolymer as

simulated in the previous chapter, we increase the block length. We vary the block length for

three ratios of polar to apolar side-chains– 60% polar (40% apolar), 80% polar (20% apolar),

and 50% polar (50% apolar) polymers (Figure  5.1 ). The 60% polar case is simulated as it

has almost equal polar and apolar side-chains, to realize the effect of block-length, and the

random copolymer for this ratio is not one of the high performing models with both poor

swelling and mobility. We also modulate the block length for the 80% polar (20% apolar)

case as it showed swelling sufficient to be characterized as a mixed conductor but not the

highest mobility. For these two compositions, we simulate four polymers each. The first

being a random copolymer, followed by block copolymers of increasing length and a fourth

polymer where all the apolar chains are sandwiched between polar chain blocks. For in-

stance, for the 60% case (Figure  5.1 c), for the 50 repeat unit backbone simulated here, we

have a total of 30 polar and 20 apolar side-chains. The random copolymer is referred as ran-

dom. The block copolymer with smaller blocks is referred as p7a5 and contains consecutive

blocks of 7 polar, 5 apolar, 8 polar, 5 apolar, and again, 7 polar, 5 apolar, 8 polar, 5 apolar

chains. The next block copolymer p15a10 contains larger blocks of 15 polar, 10 apolar, 15

polar and 10 apolar side-chains. The fourth polymer, p15a20p15, contains a block of 20

apolar side-chains sandwiched between two blocks of 15 polar side-chains. We hypothesize

that adding chemically similar (polar) blocks at both the ends will improve polymer con-

nectivity by allowing more connections. We have analogously designed and named polymers
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random, p10a2, p20a5, p20a10p20, for the 80% case (Figure  5.1 d). In addition to these two

ratios, we also simulate the 50% polar (50% apolar) but we do not vary the block length for

this composition and instead the relative placement of the side-chains across the backbone

(Figure  5.1 b). The p1a1 case shown in Figure  5.1 b, has a regioregular polymer with polar

and apolar side-chains on alternate backbone beads, but on the opposite side of backbone,

providing a new mechanism for improving stacking and connectivity.
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Figure 5.1. (a) The coarse-grained mapping of the apolar and polar beads
used to model the hydrophobic and hydrophilic polymer side-chains, respec-
tively. Polymers are simulated in this study with different patterning of polar
and apolar side-chains for (b) 50% polar and 50 % apolar side-chains, (c)
60% polar and 40% apolar side-chains and, (d) 80% polar and 20% apolar
side-chains.

The coarse-grained model and parameters is same as used for the side-chain composition

study in Chapter 4. The backbone bead roughly represents a thiophene ring, and is repre-

sented by a single anisotropic bead. The side-chains are placed on each backbone. The polar

side-chain and apolar side-chains are represented by a polyetheylene glycol (PEG) chain of

roughly 3 repeat units and nonyl chain, respectively. First, the polymer film is formed by

processing it in chloroform solvent, and then the polymer is charged and equilibrated with

an electrolyte solution of water and chloride ion. The backbone-backbone interactions are
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given by Gay-Berne potential parameterized in Chapter 3. Rest of the non-bonded interac-

tions are isotropic and are either adopted from Martini or parameterized in Chapter 3-4 to

reproduce experimental data similar to Martini. For the cross interactions between back-

bones and other beads, backbone bead is treated as Martini bead of type C4. The polar

and apolar side-chains are represented by 3 beads, each of type EO and SC3, respectively.

Each chloroform molecule is represented by a C4 bead, 4 water molecules are represented

by a 3 bead molecule from Martini polarizable water model, and chloride ion is represented

by a Qa bead. Bonded interactions are a combination of Martini force-fields and additional

force-fields to modulate the torsional order along backbone and side-chain regioregularity.

The force-fields used in this study are reported in Section 5.A.

5.1.2 Molecular Dynamics

LAMMPS was used to perform all molecular dynamics simulations.[ 130 ] All simulations

used a 10 fs integration time step, Velocity-Verlet integration, and periodic boundary condi-

tions. Lennard-Jones, electrostatic and Gay-Berne interactions were truncated at 12 Å. The

Lennard-Jones and Coulombic interactions were shifted using the standard GROMACS shift

function over a length of 9-12 Å and 0-12 Å, respectively. Film equilibration occurred over

two distinct simulations. First, polymer film formation was simulated by dissolving the neu-

tral polymers in chloroform then evaporating the solvent. Subsequently, the polymers were

doped (i.e., charged) and electrolyte was added to the simulation and allowed to equilibrate.

For the polymer film formation simulations, the polymer and chloroform solvent molecules

were initialized from diffuse configurations, using a cubic grid to place molecules in random

orientations without overlap. Each simulation box contained 50 polymers and was initially

surrounded by 50,000 chloroform molecules. The velocities were initialized from a uniform

distribution obtained with a random seed value and scaled to give the correct kinetic energy.

The simulations were first relaxed in the NVE ensemble with restrained displacements of

0.1 Å per time step for 10 ps. This was followed by a simulation in the NVT ensemble at

300 K while linearly rescaling the simulation box over 2 ns to obtain a condensed system

with a density of 1 g/cc. The density was then equilibrated in the NPT ensemble for 100
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ns at 300 K and 1 atm. After the NPT simulation, 20 wt% of the chloroform beads were

randomly selected and removed from the system, followed by an equilibration step in the NPT

ensemble for 100 ns at 300 K and 1 atm. This process of chloroform removal followed by NPT

equilibration was performed five times, resulting in 28,750 (80 wt% of solvent), 10,781 (60%),

4,792 (40%), 1,797 (20%), and 0 (0%) chloroform molecules, respectively. This procedure is

intended to qualitatively mimic the solvent processing and evaporation during experimental

film formation (e.g., spin-coating) and has been employed in other coarse-grained simulations

of organic polymers.[ 107 ]

The final polymer film configuration was unwrapped in accordance with the periodic

boundary conditions, the backbone beads were charged and then surrounded by randomly

placed solvent and ion beads on the outside of the polymer film, each within a separate cubic

box of length 6 Å to avoid overlaps. At this stage, 10,781 CG water beads were added, which

correspond to 43124 real water molecules and 60 wt% of solvent. Each backbone unit carried

a charge of +0.2 (i.e., a doping induced charge every five backbone beads), and 500 counter-

ions with a charge of −1.0 were added to achieve charge neutrality. These systems were

relaxed in the NVE ensemble with restrained displacements of 0.1 Å per time step for 10 ps,

followed by an NPT equilibration for 100 ns, and an NPT production run for an additional

100 ns at 300 K and 1 atm. In all of the NVT and NPT simulations, the Nosé-Hoover ther-

mostat and barostat were employed using the modified form proposed by Martyna, Tobias,

and Klein, as implemented in LAMMPS [ 102 ], with a relaxation time constant of 0.15 ps and

1.5 ps for the thermostat and barostat, respectively. In all of the simulations, the thermo-

dynamic data and coordinates were sampled at 1 ps. The ASPHERE package in LAMMPS

was used for all Gay-Berne force, torque evaluations, and numerical integrations.[ 22 ] The

SHAKE algorithm [ 143 ] implemented as a part of the RIGID package in LAMMPS was used

to constrain the bonds in the water molecules. Additional bonded potentials to control the

orientation of neighboring beads were implemented as custom classes in LAMMPS by our

group. OVITO was used for visualizing the final trajectories and generating snapshots of

MD configurations.[ 160 ]

93



5.1.3 Charge Transport Calculations

The charge transport within the OMIEC polymer network is simulated in the configura-

tions obtained from MD simulations using kinetic Monte Carlo (KMC) algorithm. In order

to simulate the trajectory, essentially, we account for three key transport processes. First

and the fastest being delocalization of electrons along the backbone. The intramolecular

charge transport rate is determined between consecutive repeat units along the backbone

using Marcus equation in adiabatic limit. If this intramolecular rate is above a threshold

along consecutive repeat units, the charge can be assumed to be delocalized along this section

of polymer throughout the charge transport simulation. These section of repeat units then

form individual polarons, and the charge can transfer between polarons through hopping

mechanism. The charge hopping is our second transport process of interest, and the rate

of charge transfer between polarons is calculated using Marcus rate equation. Among these

hopping transport pathways, we can have significant timescale separation, where a charge

may remain for a significant time on an individual polaron or subnetworks of polarons, be-

fore escaping to less favorable pathway or until the polymers reorganize themselves. This

separation of timescale is the third transport process of interest. We account for these ag-

gregates and the time the polaron spends in these aggregates. Once all these quantities

are determined, for a given configuration, one can simulate the hopping of charge across

polarons throughout the polymer network. Multiple charge trajectories are simulated for

each MD configuration by choosing the first site at random, to sample all the subnetworks

within the OMIEC polymer network. The mean square displacement (MSD) of the charge is

then calculated using multiple trajectories for multiple MD configurations. From the MSD,

the mobility of the charge is parsed using Einstein equation. This analysis is performed

over five independent simulations and an average charge mobility is obtained. The Marcus

rate equations, their physical interpretation, their specific parameter as well as the sampling

details can be found in Chapter 4.
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5.2 Results and Discussion

In this section, we compare the morphology and charge transport features across various

side-chain block patterning for given polar vs. apolar side-chain compositions. We start the

discussion with the 60% polar (40 % apolar) side-chain composition due to the comparable

number of polar and apolar side-chains, and hence, it can be expected to be strongly af-

fected by patterning. Afterwards, we discuss the 80% case, for which the random copolymer

itself shows significant swelling from Chapter 4 and check if altering block length has any

further consequences on polymer performance. Finally, we discuss the 50% case, for which

a completely different approach for patterning is proposed.

5.2.1 60 % Polar - 40 % Apolar

In this study, we tune the block size of polar and apolar side-chains to control the swelling

of polymer, ion percolation and polymer aggregation, which consequently alter the charge

conducting properties of the polymer network. Hence, first we report the morphological

characterization for the polymers studied.

Morphology Characterization

We hypothesized in Section 1 that the polar (apolar) blocks would preferentially stack

with chemically similar polar (apolar) blocks. In Figure  5.2 a, we report representative snap-

shots of all the polymers, and we find that this is indeed the case. As we move up in the block

length, larger regions corresponding to each side-chain type denoted by the orange and pur-

ple blocks appear. For the random case, very small orange and purple regions distributed all

across the polymer network, indicating polymer blocks containing apolar and polar chains,

respectively. The polymer also appears to form a relatively closed off globule with moderate

swelling (Figure  5.12 ). For p7a5, the size of the two side-chain blocks increases and we find

some region of polymer extending into the solvent. For the case p15a10 and p15a20p15, we

find very large regions of apolar (orange) side-chain attached polymer blocks surrounded by

polar side-chain (purple) regions. For p15a20p15, we observe these polar side-chain attached
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polymer segments extending out from the globule into the solvent. Thus, the polar regions

at the end selectively interface with solvent increasing the area in contact with solvent as

expected.
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Figure 5.2. (a) Snapshots of representative configurations of random, p7a5,
p15a10 and p15a20p15 configurations showing how the polar and apolar blocks
of backbone have come together. Only the backbone bead, polar and apolar
side-chains are shown for clarity, and are indicated by the pink, purple and or-
ange bead, respectively. (b) Characterization of electrolyte percolation: (top,
center) The radial distribution function (RDF) of backbone with ion and water
to quantify the electrolyte percolation in the polymer film. The y-axis gx−y
denotes RDF between moiety x and y and, the backbone bead, ion and water
are denoted by B, Q and W, respectively. (bottom) Volume of the swollen
polymer after electrolyte percolation.

Next, we inspect how this distinct morphologies affect the percolation of water and more

importantly, that of ions. The radial distribution function (RDF) for backbone bead with
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water and ion is reported in Figure  5.2 b. We find that the RDF for backbone and water

increases with block length due to the separate large polar blocks and in agreement with

the extended polymer network discussed above. These changes in percolation are however

minimal and all configurations except the p15a20p15 case show similar swelling (Figure  5.2 b).

The p15a20p15 case shows swollen volume of the swollen film more than the 80% random

configuration (discussed below) and close to the 100% case from previous chapter. The

entire polymer network doesn’t swell similar to the 80-100% cases and hence, the changes in

RDF are quite weak but we see these extended fibers of polar blocks which lead to similar

effective volume. Thus, a definite increase in polymer-electrolyte interaction can be achieved

compared to the random case by adding polar blocks at the end, as they extend into the

solvent from the polymer clusters. However, the block length has an opposite affect on net

ion percolation as seen in the backbone-ion RDF in Figure  5.2 b, which shows a decrease with

increase in block length. To inspect this further, we parse the RDF of backbone bead attached

to apolar and polar side-chains with ion separately (Figure  5.13 ). More ions percolate close

to the backbone bead attached to polar side-chains for polymers with larger block length, i.e.

p15a20p15 and p15a10. This is congruent with higher contact between these polar blocks

and solvent seen in morphologies and backbone-water RDF. On the contrary, more ions

percolate next to the backbone beads attached to the apolar side-chains, smaller the block

length. The presence of polar(apolar) side-chains next to side-chains increases(decreases)

their effective polarity. This was observed in the side-chain composition study in Chapter

4 and can also be observed from polar and apolar side-chain RDF with ion. The polar

and apolar side-chain RDF increases and decreases, respectively for polymers with higher

block length due to higher and lower respective probability of presence of neighboring polar

side-chains (Figure  5.13 ). The increase in percolation in polar regions is limited and cannot

compensate for the reduced percolation in shielded blocks of backbone connected to apolar

side-chains, leading to an overall reduction in ion percolation. The percolation difference is

higher for apolar blocks than polar blocks; for example, the difference between random and

p15a20p15 case is ∼ 1 and ∼ 0.4 for apolar block-ion and polar block-ion RDFs, respectively.

We stress that the difference in both solvent and ion percolation across the polymers is weak

but there is a definite qualitative difference, which may get amplified in a real device.
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Figure 5.3. π − π stacking probability presented as a joint probability dis-
tribution of distance between the backbone beads on the x-axis and π − π

alignment on the y-axis, as a function of polymer side-chain patterning

Finally, we analyze how the polymer π-π stacking and connectivity varies across these

distinct morphologies. In Figure  5.3 , we report the joint probability distribution of distance

between backbone beads on x-axis and the π-π alignment between them, given by dot prod-

uct of the orientation vector of backbone beads, on the y-axis. We see higher π-π alignment

as indicated by the brighter yellow color for S ∼ 1.0 as well as improved connectivity at dis-

tanced of 12 Å for the polymer cases p15a10 and p15a20p15. The larger blocks of polar and

apolar blocks lead to stacking of larger backbone regions which is reflected in the improved

π-π stacking between polymer backbones. These large blocks also allow for more connections

between polymer clusters reflected in the higher structural order seen at farther distances.

The p15a20p15 polymer has polar blocks on both the ends and should result in more con-

nections. It does show extended segments of polymers in solvent (Figure  5.2 a) but this is

not reflected in the polymer connectivity. Also, the differences in the polymer stacking and

aggregation across all polymers are minor, similar to the percolation and swelling trends.

Charge Transport Characterization

In this section, we analyze how these emergent side-chain distribution and effective poly-

mer aggregation alter the charge transport through the polymer network. A trajectory of

polymer jumps is simulated using KMC algorithm for individual MD configurations. We
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explore the hops of a single hole in a network of polarons with fixed charge and limited

dopants sufficient to satisfy the zero net charge constraint in MD simulations. As discussed

in Chapter 4, this is representative of a low carrier density limit, and does not account for

trap filling. However, the analysis provides us useful insights such as trends in electronic

coupling, number of pathways and trap sites with respect to the block size of side-chains.
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Figure 5.4. (a) charge mobility, (b) polaron delocalization length (number of
backbone beads per polaron site), (c) number of trap sites (Ntraps) normalized
by total number of sites, (d) log distribution of the intersite charge transfer
rate , (e) the number of pathways per site (Npaths) normalized by the total
number of sites, and (f) log distribution of the intersite electronic coupling,
across different side-chain patterning. The green and red line in the whisker
plots indicate the median and mean, respectively.

In Figure  5.4 a, we see the averaged mobility across polymer block configurations and

the maximum is observed for p7a5 case while all other cases are comparable. Overall, the

average mobility are on the same order and all the mobility values are within uncertainity.

However, to rationalize the observed trend we parse relevant quantities such as the polaron

delocalization length, number of pathways and trap sites, charge transfer rate and electronic

coupling. We find that the average polaron delocalization length (Figure  5.4 b) is smaller and
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number of trap sites are fewer for the p7a5 case (Figure  5.4 c) which shows the maximum

mobility. A strong correlation between the these three quantities was also observed in our

previous study on side-chain composition. The 40% polar side-chain composition also showed

the smallest average polaron length, the least number of trap sites and one of the highest

mobility. The delocalized polymer segments form highly coupled clusters which can act

as trap sites from which the hole never escapes or spends significant time before escaping.

In the previous work, we observed higher mobility for the 100% polar case as well, due

to a combination of multiple effects such as higher electronic coupling, better connected

network and longer spatial extent of charge jumps. We saw an interplay of two competing

factors for the 100% case– it shows polymer connectivity and delocalization highly conducive

to charge transport but also very well stacked polymer clusters which act as trap sites.

The p15a20p15 case is the analogous to 100% polar case in this study. It has similarly

higher number of pathways (Figure  5.4 e) due to improved connectivity as evident from the

morphological characterizations discussed above. However, the improvement in connectivity

is not prominently high and not reflected in the electronic coupling, and consequently, the

charge transport rate, leading to an overall low mobility. We find the charge transport rate

(Figure  5.4 d) is rather slightly lower for p15a20p15 case and this is again due to the presence

of aggregates. In Figure  5.14 c, we report the charge transport rate before determining the

aggregates and the rates are quite similar across all cases. These charge transport rates

are primarily a reflection of the coupling which remains uniform across the polymers. We

have also reported the free energy differences between polarons and reorganization energy

which both decrease with block length due to increased average delocalization length, but

do not affect the pre-aggregation charge transfer rate (Figure  5.14 ). After accounting for the

extensive time spent in certain aggregates, we find the average charge transfer rate drops for

p15a20p15 as shown in Figure  5.4 d.

We also performed analysis on the quality of percolation in the polymer network by pars-

ing the disconnected subnetworks in the polymer network for varying charge transfer rate

threshold (Figure  5.5 ). The analysis was performed as described in Chapter 4. Higher num-

ber of subnetworks imply a broken polymer network with poor charge transport capability.

We observe lowest number of subnetworks for p7a5 while other cases show uniformly higher
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Figure 5.5. (a)The number of distinct subnetworks of polaron sites and (b)
the radius of gyration of the largest subnetwork calculated as a function of the
side-chain patterning. Subnetworks are defined such that each site is connected
to at least one other site within the subnetwork by a rate above the threshold.
The radius of gyration of the largest subnetwork is normalized by the radius
of gyration the total system (rnet/rsys).

subnetworks across different rate thresholds. This is consistent with the observed trend for

mobility and indicates that the trap sites significantly affect the percolation through the

network. The spatial extent of the largest network is also reported to compare the spatial

span available to the charge. For smaller rate threshold, we find the p15a20p15 case has

the highest spatial extent attendant to its better morphology which drops as we approach

higher threshold at 11 s−1. Thus, while the p15a20p15 case shows longer delocalization

along the polymer and farther connections, the network is not resistant enough as it loses

some connections to the trap sites. In Chapter 4 as well as this study, we found trap sites
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have serious impact on charge transport capability of the polymer but in a real system, this

impact may dampen due to trap-filling which cannot be accounted for by our simulations.

Thus, the p15a20p15 may end up being the case with highest mobility, but it still doesn’t

compare with the completely polar case discussed in Chapter 4 both in terms of mobility

and capacitance.

5.2.2 80 % Polar - 20 % Apolar

In this subsection, we repeat the analysis above over the polymer series for 80% polar

and 20% apolar side-chain compostion.

Morphology Characterization

For the 80% case, the changes in structural arrangement of polymer with respect to

patterning of side-chains are exactly similar to the 60% polar case but much weaker (Figure

 5.6 a), as most of the backbone is covered by polar side-chains. We observe regions of similar

side-chains blocks stacked together and the size of these regions increases with block size. For

the case of p20a5p20, with apolar block sandwiched between polar blocks, we see extending

fibers of polar blocks of polymer from the polymer network, similar to the p15a20p15 case.

Similar to the 60% case, these changes in morphology are reflected weakly in the backbone-

water RDF, and we see a definite rise in the increase in volume of the swollen polymer (Figure

 5.6 b). The volume of the p20a10p20 case is comparable to the 100% case studied in previous

chapter. We also see a non-monotonic trend with respect to the block length, as the p10a2

configuration performs better than p20a5. The percolation of ion also remains largely similar

across all the cases, except for a slight decrease in the immediate neighbors for p20a10p20

(Figure  5.6 b). As in the 60% case, we attribute this to reduced ion percolation near apolar

blocks with minimal changes in both swelling and ion percolation near polar regions (Figure

 5.15 ). The neighboring side-chains locally alter the effective affinity of the polymer with

electrolyte leading to changes in overall polymer morphology and solvent percolation. For

instance, the water is more uniformly distributed across the polymer for a smaller block

length as the apolar chains are more likely surrounded by polar chains. The p10a2 and
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Figure 5.6. (a) Snapshots of representative configurations of random, p10a2,
p20a5 and p20a10p20 configurations showing how the polar and apolar blocks
of backbone have come together. Only the backbone bead, polar and apolar
side-chains are shown for clarity, and are indicated by the pink, purple and or-
ange bead, respectively. (b) Characterization of electrolyte percolation: (top,
center) The radial distribution function (RDF) of backbone with ion and water
to quantify the electrolyte percolation in the polymer film. The y-axis gx−y
denotes RDF between moiety x and y and, the backbone bead, ion and water
are denoted by B, Q and W, respectively. (bottom) Volume of the swollen
polymer after electrolyte percolation.

p20a5 swelling behavior are quite similar and large differences are seen only for p20a10p20

which suggests that beyond a certain number of side-chains (5-10), modulations in effective

hydrophilicity are dampened. Further, the differences in morphology are not reflected in

both π-π stacking and polymer connectivity (Figure  5.7 ). In Figure  5.7 , we see the color

map at higher alignment (S ∼ 0.1) and peak size at distances of 12 Å is similar for all four
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Figure 5.7. π − π stacking probability presented as a joint probability dis-
tribution of distance between the backbone beads on the x-axis and π − π

alignment on the y-axis, as a function of polymer side-chain patterning

cases. Hence, the polymer network and water distribution around it remains largely similar

irrespective of how the side-chains are connected for the net composition of 80% polar case.

Only p20a5p20 case stands out with slightly higher swelling and lower overall ion percolation.

Charge Transport Characterization

In Figure  5.8 a, we report the mobility across the different block copolymers. Surpris-

ingly, the highest mobilty is observed for the random configuration while all other cases are

comparable. Again, the differences in the mobility are minor and within the error across all

cases. On closer investigation, we do not find any strong indicator as to why the random

configuration outperforms even in an average sense. The average number of trap sites ( Fig-

ure  5.8 c) is lowest for the random configuration, but marginally, and the range of number of

trap sites for it is broader than p10a2 and p20a5. The polaron delocalization length (Figure

 5.8 b) is only slightly lower for random case than p10a2, whereas the charge transport rate

(Figure  5.8 d) is similar and the number of pathways (Figure  5.8 e) are slightly lesser than

the p10a2 and p20a5 cases. Really, the p20a10p20 case is the one which stands out through

all these comparisons. It shows the highest delocalization of polaron, most number of path-

ways but also most number of trap sites. However, these differences are not reflected in the

net mobility. One explanation can be that any increase in number of pathways is rendered
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Figure 5.8. (a) charge mobility, (b) polaron delocalization length (number of
backbone beads per polaron site), (c) number of trap sites (Ntraps) normalized
by total number of sites, (d) log distribution of the intersite charge transfer
rate , (e) the number of pathways per site (Npaths) normalized by the total
number of sites, and (f) log distribution of the intersite electronic coupling,
across different side-chain patterning. The green and red line in the whisker
plots indicate the median and mean, respectively.

fruitless due to the presence of trap sites. However, in order to rationalize why the random

configuration has highest mobility, we compare only the cases with highest mobility for all

polymers in Figure  5.16 . This comparison shows a more prominent trend in trap sites with

minimum trap sites for the random configuration, followed by p20a5, p10a2 and p20a10p20

with an identical trend for mobility. Thus, we see, that trap sites again play a huge role in

dictating the overall charge transport and the random case displays lowest of it. However,

in terms of intramolecular charge delocalization and intermolecular polymer connectivity,

the p20a10p20 case stands out due to its extended polymer fibers obtained by large polar

blocks at the end. For the sake of completion, we also report the percolation analysis for

this polymer series (Figure  5.17 ). Neither the number of networks nor the spatial extent

stand out for the random configuration but they do demonstrate the adverse impact of trap
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sites for the p20a10p20 case. It has a broken network as indicated by the most number of

subnetworks and for lower charge rate cut-off, it has the most extended polymer network

but the networks quickly breaks down into these subnetworks.

5.2.3 50 % Polar - 50 % Apolar

Finally, we discuss a new type of side-chain patterning, where the placement of side-

chains across the backbone is controlled instead of along the backbone, for 50% polar and

50% apolar side-chain compostion.

Morphology Characterization

Both random and p1a1 polymer configurations do not show very high swelling which is

the key characteristic of mixed conductors and form a closed off polymer globule (Figure

 5.9 a). However, within the globule we find notable differences in the morphology, where

p1a1 shows distinct polar (purple) and apolar (orange) regions and are highly elongated,

while the polar and apolar regions are mixed and disordered in the random configuration.

These elongated regions in p1a1 have important consequences to the polymer packing, as

they denote well stacked sides of polymers, as marked by the red circles in Figure  5.9 a.

Another difference is the outmost layer of the polymer network is covered with mostly polar

side-chains in the p1a1 case whereas a mixture of chains is seen for random case. The side

of the polymer p1a1 covered with polar side-chains solely interfaces with the solvent while

the apolar regions remain inside and stack with each other.

The morphological reflections further reflect in the percolation of solvent and ion through

the network, the polymer aggregation and connectivity. These polymers are largely phase

separated into a polymer and a solvent phase with limited swelling (Figure  5.9 b). However,

at large distances both solvent and ion percolation is higher for the p1a1 case than the

random configuration (Figure  5.9 b). The primarily hydrophilic outer surface of the p1a1

polymers will attract more water and can conceivably explain the increase in RDF only at

longer distances. This is further corroborated by the lower volume of the swollen film, which

indicate the solvent-polymer interaction is maximized only on the outer surface of polymer
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Figure 5.9. (a) Snapshots of representative configurations of random, and
p1a1 configurations showing how the polar and apolar blocks of backbone
have come together. In the top snapshots, only the backbone bead, polar and
apolar side-chains are shown for clarity, and are indicated by the pink, purple
and orange bead, respectively. In the bottom one, even the backbone beads
are removed and only a portion of polymer network is shown to highlight the
stacking of similar side-chain blocks. These stacks are marked in the snapshots
by red circles. (b) Characterization of electrolyte percolation: (left) The radial
distribution function (RDF) of backbone with ion and water to quantify the
electrolyte percolation in the polymer film. The y-axis gx−y denotes RDF
between moiety x and y and, the backbone bead, ion and water are denoted
by B, Q and W, respectively. (right) Volume of the swollen polymer after
electrolyte percolation.

network wherease the net polymer swelling remains limited. The polar and apolar side-

chain RDF with ions is higher and lower for p1a1, respectively (Figure  5.18 ). The effective

hydrophilicity, as discussed for the 60% and 80% cases, is higher for the apolar side-chains in

random case than p1a1. Even though the polar and apolar side-chains appear on alternate

backbone beads for p1a1, the apolar blocks being on the other side of the polymer, are

shielded from the water. The dominant impact of this kind of patterning is however seen for

the polymer morphology (Figure  5.10 ). We observe a significant rise in the π − π stacking

between the immediate and alternate neighbors around 3.8 Å and 7 Å, respectively. The

connectivity is also improved in p1a1 configuration as seen by a larger peak around 11 Å

than for random case. The overall backbone morphology looks more ordered in the p1a1

than the random case and we also see higher number of individual polymer π-aggregates

(Figure  5.10 ). In the p1a1 case, large sections of polymer are available for favorable packing
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due to homogeneous chemically similar side-chains along these sections. We see huge stacks

of polar and apolar regions, and the stacking between apolar blocks is even more beneficial

to shield them water which is primarily observed in the polar regions.

Charge Transport Characterization

Now, we investigate how the improved stacking and selective percolation of water near

polar side-chain alters the polymer mobility. The average mobility is higher for p1a1 case

than the random case, but within error tolerance (Figure  5.11 a). The higher mobility follows

from the superior connectivity and polymer aggregation mediated by the separate polar and

apolar blocks in the p1a1 polymer. We find higher delocalization length (Figure  5.11 b)

and accordingly, lowered polaron free energy differences and reorganization energy (Figure

 5.19 (a-b)) for p1a1. The improvement in polymer morphology is significant which has raised

the number of charge transport pathways (Figure  5.11 e). and improved electronic coupling

between polaron sites (Figure  5.11 f)., further reflected in the charge transport rates (Figure

 5.19 d shown before determining aggregates). After accounting for the time spent in the
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Figure 5.11. (a) charge mobility, (b) polaron delocalization length (number of
backbone beads per polaron site), (c) number of trap sites (Ntraps) normalized
by total number of sites, (d) log distribution of the intersite charge transfer
rate , (e) the number of pathways per site (Npaths) normalized by the total
number of sites, and (f) log distribution of the intersite electronic coupling,
across different side-chain patterning. The green and red line in the whisker
plots indicate the median and mean, respectively.

aggregates, we see a lower charge transport rate in p1a1 than the random configuration.

The improved π-π stacking in p1a1 polymers leads to aggregates where the charge spends

significant amount of time before escaping by a less favorable pathway. This is also reflected

in the higher number of trap sites (Figure  5.11 c) for this case. A powerful effect of trap

sites has already been discussed for all of the polymers. Well connected polymers such as

p15a20p15 for the 60% case, p20a10p20 for the 80% case and 100% case (from Chapter

4), also showed more number of trap sites due to better packing, resulting in reduction in

mobility. Similar to the 100% case, however, for the p1a1 case, we see a significant rise in

polymer connectivity and stacking to outcompete the effect of trap sites to give an overall

high mobility.
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5.3 Conclusion

In this study, we have extensively characterized the influence of placing side-chains in

block fashion compared to experimentally studied random copolymers on the OMIEC perfor-

mance. We performed this analysis by simulating polymers with varying side-chain pattern

for three compositions of polar vs. apolar side-chains– 60% polar (40% apolar), 80% polar

(20% apolar), and 50% polar (50% apolar) side-chains. The hypothesis behind the study is

having dedicated blocks of polar side-chains for attracting the solvent in the polymer film

and apolar blocks for stacking backbones closely and efficiently. Also, we test whether the

large blocks of chemically similar side-chains promote packing of larger polymer segments,

due to their similar hydrophilicity.

We observe distinct structural distribution across the various block configurations, where

the polar blocks stack mainly with polar blocks than apolar blocks and vice versa for ap-

olar blocks. This is conducive to the polymer packing, as the regions of backbones which

stack together do not have to reorganize to minimize interactions between polar and ap-

olar side-chains. It leads to an increase in polymer delocalization with reduced torsional

disorder, higher π-π stacking, and more connections between polymer clusters across the

network. For the block configurations, which have polar blocks on both ends, we find ex-

tended polymer chains through the solvent leading to increased polymer-solvent interaction.

However, the best block patterning scheme was separating the polar and apolar side-chains

across the polymer than along the polymer. This configuration allows for even larger and

well separated stack of polymers. For the cases with polar blocks at the end (p15a20p15

and p20a10p20) as well as p1, we find an increased fraction of polymer in contact with sol-

vent. Although, the entire polymer is not homogeneously swollen, we see blocks of polar

side-chain attached backbone interfacing with the solvent. These cases show an effective

film volume comparable to the random configurations with higher polar side-chains. The

overall doping, however, reduces for these well arranged configurations, because the solvent

primarily percolates in the polar region while the backbone segments connected to apolar

side-chains do not have enough dopants. We reconfirmed that an effective hydrophilicity

exists for polymer side-chains encoded by the nature of neighboring side-chains. These large
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block length configurations show an increased and decreased hydrophilicity for the polar

and apolar side-chains, respectively while the opposite is true for random configuration. We

also saw that the influence of neighboring chains is rendered ineffective when the number

of neighbors drop, somewhere around 5-10 side-chains. Interestingly, even though for the

p1a1 case, the polar and apolar side-chains are on consecutive backbone beads, they are well

separated and do not influence each others’ polarity unlike random configurations.

We tested how these morphological features translate into the conductive properties

of the polymer network. While the improved stacking and connectivity for higher block

length polymers lead to higher delocalization length, more number of electronic pathways

and improved electronic coupling, it doesn’t translate necessarily to net mobility. The KMC

simulations performed here are representative of a low carrier density limit and the trap sites

seem to have a huge contribution to the reduction of mobility. The most ordered systems

showed most trap sites, due to the presence of well stacked clusters and energetically favorable

sites which can act as huge time sinks for the hole and reduce the effective mobility. The

competition of number of electronic pathways vs. trap sites determined the best performing

case in these simulations. Hence, although well connected, the p15a20p15 case for 60% polar

composition and p20a10p20 case for 80% polar composition performed poorly but the p1a1

case for 50% polar composition outperformed the random case. Considering the limitations

and qualitative nature of the simulations, the mobility trends should be taken with a grain of

salt. The study however does provide with important trends and mechanisms in the context

of block patterning of OMIEC polymers. To summarize, we find an improved structural and

electronic connectivity and swelling with rise in block lengths, especially when both polymer

ends are polar and side-chains blocks are placed across the backbone. In the trap-filling

regime, these polymers may even emerge as winning polymer candidates and we hope the

study inspires further experimental investigation in that regard.
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APPENDIX

5.A Parameters for Molecular Dynamics Simulations

The LJ parameters used in the simulations are listed in Table  5.1 and the corresponding

Martini bead type.

Table 5.1. Parameters used for non-bonded interactions in the simulations.
Units of all parameters are consistent with LAMMPS ‘real’ units (kcal mol−1,
Å etc.) and potential styles. The bead-type for backbone, polar side-chain,
apolar side-chain, and chloroform are C4, EO, SC3 and C4, respectively. Water
is made of POL, WM, and WP beads, from which the beads WM and WP do
not experience any Van der Waal interactions. The interaction of backbone
bead with other backbone beads is modelled as Gay-Berne potential (and not
C4-C4 interaction) and the parameter values are reported next to ”B-B”.

B-B σx = σy = 5.0, εx = εy = 0.25, σz = 3.0, εz = 1.2, σc = 3.0
C4 EO SC3 POL Qa

C4 ε = 0.84,
σ = 4.7

ε = 0.70,
σ = 4.7

ε = 0.84,
σ = 4.7

ε = 0.61,
σ = 4.7

ε = 0.74,
σ = 4.7

EO ε = 0.61,
σ = 4.3

ε = 0.53,
σ = 4.3

ε = 0.79,
σ = 4.7

ε = 0.84,
σ = 4.7

SC3 ε = 0.63,
σ = 4.3

ε = 0.61,
σ = 4.7

ε = 0.65,
σ = 4.3

POL ε = 0.96,
σ = 4.7

ε = 1.19,
σ = 4.7

Qa ε = 0.84,
σ = 4.7

The intramolecular parameters used for the simulations are listed in Table  5.2 .
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Table 5.2. Parameters used for bonded interactions in the simulations. Units
of all parameters are consistent with LAMMPS ‘real’ units (kcal mol−1, Å etc.)
and potential styles. The bonds in water molecules between the WM-POL and
WP-POL beads are constrained using the SHAKE algorithm [ 143 ].

Bonds Angles
B-B k = 25.0,

r0 = 4.3
B-B-B k = 1.0,

θ0 = 160.0
B-SP(SA) k = 1.5,

r0 = 4.7
B-B-SP(SA) k = 3.0,

θ0 = 90.0
SP-SP k = 8.35,

r0 = 3.22
B-SP(SA)-SP(SA) k = 3.0,

θ0 = 180.0
SA-SA k = 1.5,

r0 = 3.6
SP-SP-SP k = 6.0,

θ0 = 135.0
POL-WM r0 = 1.4 SA-SA-SA k = 3.0,

θ0 = 180.0
POL-WP r0 = 1.4 WM-POL-WP k = 0.5019,

θ0 = 0.0

Dihedrals Other
B-B-B-B k1 = 0.5,

k2 = 0.6,
k3 = 0.0,
k4 = 0.0

B-B, d k1 = 0.0,
k2 = 2.0,
k3 = 0.0,
k4 = 0.0

SP(SA)-B-B-SP(SA) k1 = 3.0,
k2 = 0.0,
k3 = 0.0,
k4 = 0.0

B-B, a1 ka = 7.5,
θ0 = 90.0

B-B, a2 ka = 7.5,
θ0 = 90.0

B-SP(SA), a ka = 3.0,
θ0 = 90.0

5.B Parameters for Charge Transport Simulations

The following parameters were used for the Marcus expressions discussed in the main

text: Jinter = 0.01 eV, r0 = 3.5 Å, α = 0.8 Å−1, Jintra = 0.31 eV, εopt = 3, and εs = 10. The

expressions for external reorganization, λ, and oxidation energy, E, as a function of oligomer
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length, l, were obtained from fits to reported data for polythiophene.[  182 ] The governing

expression for the external reorganization energy as a function of l is

λ =


−0.0973

√
l + 0.4922, if l ≤ 15

1.9489
l

− 0.0092, otherwise
.

The governing expression for the oxidation energy as a function of l is

E = 4.1336 l−0.75 + 4.67.

5.C Additional Figures Referenced in the Main Text

5.C.1 60 % Polar - 40 % Apolar

The snapshots of backbone bead and water are shown below (Figure  5.12 ). The polymers

are not very swollen and the network is closed off to the solvent. The highest block length

p15a20p15 case shows the maximum swelling due to the extended polymer blocks with polar

chains.

random p7a5 p15a20p15p15a10

Figure 5.12. Snapshots illustrating water percolation in polymer networks for
all polymers case. Only backbone and water are shown for clarity, represented
by pink and blue backbone, respectively.

The radial distribution function (RDF) for the polar and apolar side-chains with ions

is compared across all block copolymers below (Figure  5.13 ). We find that for larger block

length, the effective polarity of polar side-chains increases and more solvent, and consequently

ions are found near the side-chains as confirmed by the increased RDF. The opposite trend

is observed for apolar side-chains, whose effective polarity drops for larger blocks lengths as
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the apolar side-chains are away from polar side-chains and hence, shielded from electrolyte.

The RDFs of corresponding backbone beads attached to either polar side-chain (BP) or

apolar side-chain (BA) are also given, and they exhibit a similar trend. As discussed in the

main text, the net RDF of all backbone beads with ions shows a drop with block length,

as the increased electrolyte in polar blocks of backbone do not compensate for the missing

electrolyte in apolar blocks.
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Figure 5.13. The radial distribution function (RDF) of backbone and side-
chains with ions to quantify the electrolyte percolation in the polymer film,
parsed separately for polar and apolar blocks. That is, the backbone attached
to polar and apolar chains are treated differently and their individual RDFs
are reported. The y-axis gx−y denotes RDF between moiety x and y and, the
backbone bead attached to polar and apolar side-chains is denoted by BP and
BA, respectively, while polar side-chain, apolar side-chain and ion are denoted
by P, A and Q, respectively.

For completeness, the distributions for the reorganization energy (λ) and site energy

differences (∆E) of charge transfer are reported in Figure  5.14 . As pointed out in the main
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text, the delocalization length increases with block length and it is reflected in the form

of decrease in reorganization energy and site energy differences. Additionally, the charge

transfer rate, before incorporating the time spent in aggregates is reported in Figure  5.14 c.

All polymer block configurations show a similar charge transfer rate.
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Figure 5.14. Distribution of (a) reorganization energy and (b) energy dif-
ferences between polaron sites and (c) inter-site charge transfer rate (before
determining aggregates) across different polymer block lengths. The green and
red lines indicate the median and mean, respectively.

5.C.2 80 % Polar - 20 % Apolar

Similar to the 60% polar case, the RDF of polar and apolar side-chains with ions as well

as RDF of the respective backbone beads attached to polar or apolar side-chains with ions

are reported. For larger block lengths, both side-chain and by consequence, the backbone

attached to it find more neighboring ions. On the contrary, the opposite is true for the apolar

blocks, as witnessed by the reduced A-Q and BA-Q RDF with increasing block length.

The distribution of mobility and number of trap sites in the polymer network are reported

only for the simulations showing maximum mobility for each block copolymer. We find the

mobility trend is inversely correlated with the number of trap sites.

The percolation analysis performed for this series of polymer block configurations. We

find that the case p20a10p20 with largest block size, shows most fragmented network due to

highest trap sites (as discussed in the main text). It shows spatially extended networks at

low rate threshold, in conjunction with highly delocalized sites but the spatial extent drops

with increase in rate threshold as the network is not resistant to the loss of connections.
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Figure 5.15. The radial distribution function (RDF) of backbone and side-
chains with ions to quantify the electrolyte percolation in the polymer film,
parsed separately for polar and apolar blocks. That is, the backbone attached
to polar and apolar chains are treated differently and their individual RDFs
are reported. The y-axis gx−y denotes RDF between moiety x and y and, the
backbone bead attached to polar and apolar side-chains is denoted by BP and
BA, respectively, while polar side-chain, apolar side-chain and ion are denoted
by P, A and Q, respectively.

5.C.3 50 % Polar - 50 % Apolar

The RDF of polar and apolar side-chains with are reported below. For p1a1, the RDF

of polar side-chain and ion is higher while that of apolar side-chain is lower. The blocks

of polar and apolar side-chains remain well separated in p1a1 configuration and electrolyte

selectively percolates in the polar region.

The distributions for the reorganization energy (λ) and site energy differences (∆E) of

charge transfer are reported in Figure  5.19 . As pointed out in the main text, the delocal-

ization length is higher for p1a1 and it is reflected in the form of decrease in reorganization
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Figure 5.16. (a) Mobility and (b) distribution of trap sites are reported only
for one simulation which shows maximum mobility (among the five indepen-
dent simulations), for each block copolymer.

energy and site energy differences. Additionally, the charge transfer rate, before incorporat-

ing the time spent in aggregates is reported in Figure  5.19 (c-d). Considering only the slower

rates corresponding to inter-site hopping (i.e., excluding fast transfers between consecutive

sites), we see faster pathways for p1a1 than random configuration which is in agreement with

higher delocalization and connectivity.
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Figure 5.17. (a)The number of distinct subnetworks of polaron sites and
(b) the radius of gyration of the largest subnetwork calculated as a function
of the side-chain patterning. Subnetworks are defined such that each site is
connected to at least one other site within the subnetwork by a rate above the
threshold. The radius of gyration of the largest subnetwork is normalized by
the radius of gyration the total system (rnet/rsys).
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Figure 5.19. Distribution of (a) reorganization energy and (b) energy differ-
ences between polaron sites, inter-site charge transfer rate (before determining
aggregates) (c) with and (d) without neighboring polaron jumps, across differ-
ent polymer block lengths. The green and red lines indicate the median and
mean, respectively.
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6. EVIDENCE OF INFORMATION LIMITATIONS IN

COMMON BOTTOM-UP COARSE-GRAINING METHODS

Reproduced from [ 82 ], with the permission of AlP Publishing

As discussed in Chapter 2, the CG model constitutes of three components which can
limit the performance of the CG model– the mapping operator, functional form of potential
energy surface (PES) and the target information used to obtain the PES. The former two
components essentially determine the retained degrees of freedom (i.e., the “representability”
problem) while the latter accounts for the information that is incorporated into standard
parameterization algorithms (i.e., the “information” problem). In this work, we try to in-
vestigate the extent of these limitations in most common bottom-up CG methods and find
them to be information limited. The attribution of these errors is important for future
methods development as a representability-limited model can only be improved by increas-
ing the CG degrees of freedom or by using a more complex form of interaction potentials,
whereas an information-limited model can be improved by incorporating more information
into the parameterization algorithm. Although representability limitations and information
limitations are two distinct factors impacting the performance; they have been typically ad-
dressed under the umbrella of representability errors. Previous work has demonstrated that
CG information-loss prohibits perfect thermodynamic state transferability, [  76 ] that exact
preservation of all macroscopic observables is impossible with reduced resolution [  91 ,  159 ],
and that thermodynamic expressions may become invalid in the CG representation [  76 ,  169 ].
Under the dichotomy maintained here, most of these issues pertain to information limitations
rather than representability limitations of CG models.

The practical question regarding these limitations is whether effective CG approximations
are obtainable at different levels of resolution with existing algorithms [  91 ]. For chemical
systems, the answer is assumed to be positive, but relatively little work has been done to
systematically quantify the sources and effects of these CG errors [  33 ,  47 ,  48 ,  76 ,  172 ]. For
instance, CG dimension reduction can (i) increase the required complexity of the CG po-
tentials, (ii) reduce chemical transferability (i.e., accuracy of using the same CG potentials
for different molecules and mixtures with similar underlying atoms) (iii) limit the accuracy
and number of properties that can be simultaneously reproduced, and (iv) limit thermo-
dynamic state transferability. Establishing the extent to which these tradeoffs occur due
to representability-limitations versus information-limitations in practical scenarios is critical
for guiding methods development and applying CG models.

In this chapter, we present the results of a systematic study of the accuracy tradeoffs asso-
ciated with dimension reduction and mapping operator selection in bottom-up CG modeling.
In general, these tradeoffs depend on the intrinsic dimensionality of the specific fine-grained
system being modeled, as well as the choice of evaluated properties. For systems of prac-
tical complexity, such as liquids, mixtures, and soft materials, it is likely not possible to
establish these trade-offs analytically; however, with modern simulation throughput we can
empirically elucidate this tradeoff with systematic studies of mapping-related errors. To this
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end, we have systematically generated all possible coarse-grained models that conserve a
set of chemically-motivated locality and topology relationships for three liquids (pentane, 1-
butanol, 1,3-propanediol). In turn, standard algorithms (iterative Boltzmann inversion with
pressure correction and multiscale coarse-graining) were used to parameterize the models,
and CG predictions for the 54 total models were compared with AA results for on-target
properties (i.e., properties that are directly utilized in the parameterizations) and off-target
properties.

Since on-target properties are directly supplied during parameterization, they exhibit
no information limitations. Hence, the accuracy of on-target properties is diagnostic of
representability limitations in the CG models. Likewise, a weak mapping dependence of
the accuracy of on-target properties also indicates minimal representability limitations with
respect to the mapping operator alone. In contrast, information limitations are evaluated
based on the performance of the CG models in reproducing off-target properties. Since off-
target properties are not included in the parameterization directly, their accuracy is limited
by the amount of indirect information supplied by the on-target AA parameterization data.
We observe poor reproduction of off-target properties and a weak mapping dependence of
on-target properties which leads us to conclude that the current CG models are information
limited. In turn, this raises the possibility that with better parameterization algorithms it
will be possible to develop CG models of comparable complexity to those presented here
that reproduce additional fine-grained properties.

6.1 Methods

In this work, we investigate the performance of 54 different CG models of three liquids–
pentane, 1-butanol, 1,3-propanediol parameterized with the two standard bottom-up CG
parameterization algorithms– Iterative Boltzmann Iversion (IBI) and Multiscale Coarse-
graining (MSCG) in comparison to all atomistic models. In this section, the methods used
to generate mapping operators and parameterize the CG potentials are discussed. The de-
tails of Molecular Dynamics simulations are listed and the procedure for different property
evaluation is described.

6.1.1 Mapping Operator Generation

A resolution-based algorithm was developed for generating the mapping operators in this
study.

Here, resolution (R) is an integer corresponding to the number of non-hydrogen atoms
(”heavy atoms”) to be combined into each CG bead. Mapping proceeds by (i) combining
the indices of all hydrogen atoms with their bonded heavy atoms, (ii) identifying the molec-
ular backbone based on the pair of heavy atoms with the largest graphical separation, then,
starting at one end of the backbone, (iii) combining R consecutive heavy atoms (and their
hydrogens) into each bead, until reaching the end of the backbone or running out of consecu-
tive heavy atoms divisible by R, (iv) separately combining the remaining groups of connected
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Figure 6.1. (a) Illustration of generating the R=3 mappings for pentane. CG
beads comprised of R heavy-atoms are generated from consecutive atoms along
the backbone, starting with the first backbone atom (S). New mappings are
generated by incrementing S until it exceeds n+1, where n (2, for pentane) is
the remainder upon dividing the chain length (5) by R (3). (b) An example of
an excluded mapping since the atoms in orange bead do not form a connected
subgraph. (c) A simple UA mapping obtained from R=1. (d) A single bead
mapping from R=5.

heavy atoms (i.e., groups smaller than R) to complete the mapping, (v) incrementing the
starting atom, and repeating (iii-v) as shown in Figure  6.1 a.

Mappings are generated in this way until n (remainder on dividing backbone length
by resolution R) increments have been performed, in which case no new mappings will
be obtained. The final mapping operators are obtained by converting these index-based
mappings into matrices for calculating the center-of-mass of each group of atoms.

The mapping algorithm is depicted schematically in Figure  6.1 for the case of pentane
and R = 3. The algorithm has the feature that it will not combine heavy atoms into a
bead if they do not form a connected subgraph (Figure  6.1 b); this is consistent with local
realism and also reduces the number of possible mappings. For cases where the number of
heavy atoms in a molecule is not divisible by R, the algorithm will return mappings with
mixed resolution. As described, the algorithm will always place these higher resolution beads
at the edge of the molecular graph. For large macromolecules this is physically desirable,
since it ensures that monomer units are consistently mapped. In this framework, common
”united-atom” CG models are obtained with R = 1 (Figure  6.1 c) and single-bead CG models
correspond to R = 5 for all of the studied liquids (Figure  6.1 d).

In the current study, we parameterized models for pentane, 1-butanol, and 1,3-propanediol
based on all mappings for R = 1 − 5. These molecules were chosen because they have the
same chain length but varying degree of anisotropic behavior depending on the presence of
alcohol groups. For each molecule, there are a total of 9 mappings for the possible resolutions
from 1 to 5. In a few cases, these mappings are symmetry equivalent, but are reported as
independent models as an additional consistency check on our parameterization procedures.
The structure of the mappings is similar across all molecules (Figure  6.2 ), the only difference
is that the end group beads may have a methyl or hydroxyl group depending on the molecule.
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CG beads that consist of the same number, topology, and types of atoms are assigned to be
of the same CG bead type and are described by the same parameters in the models. In all
of the presented figures, the unique bead types for each mapping are indicated by color.
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Pentane 1,3-Propanediol

Figure 6.2. Mapping operators from resolution 1 to 5 obtained using constant
resolution mapping scheme pentane, 1-butanol, and 1,3-propanediol from top
to bottom

Although the molecules in this study are simple enough to enumerate these mappings
by hand, the outlined algorithm is part of a more general procedure that will be described
elsewhere. We note that additional modifications are required for molecular systems that
contain rings and side-chains.

6.1.2 Iterative Boltzmann Inversion

Iterative Boltzmann Inversion (IBI) is an iterative method to generate CG potentials
that reproduce the radial distribution functions (g(r)) of high-resolution, typically atomistic,
models [ 134 ]. The target g(r) is sampled by coarse-graining a previously generated atomistic
trajectory at a fixed thermodynamic state. The initial guess for each pair potential is the
potential of mean force obtained by Boltzmann Inversion,

Uαβ(r) = −kBT ln gαβ(r) (6.1)

gαβ(r) = V

4πr2NαNβ

∑
i∈α

∑
j∈β

δ (r − rij) (6.2)

where, Uαβ(r) is the pair potential between CG particles of type α and type β, T is the
simulation temperature, gαβ(r) is the pair-specific radial distribution function, V/NαNβ cor-
responds to the density of pairs in an ideal gas, δ is the Dirac delta, rij is the distance between
particles i and j, and dividing the summation by 4πr2 normalizes the density of pairs at each
separation r. Pairs separated by less than four bonds are neglected in both the summation
and denominator calculations. This guess potential is simultaneously corrected for both the
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structural property (i.e., g(r)) and simulation pressure using an iterative procedure according
to

U(r)k = U(r)k−1 + 1
n

n∑
i=1

ln g(r)k−1

g(r)AA + ω

n

n∑
i=1

A
(

1 − r

rcut

)
(6.3)

where U(r)k is the potential at the kth iteration, the α and β subscripts are omitted for
clarity, and the r-dependence is discretized using tabluated potentials. The first correc-
tion approaches zero as the radial distribution function obtained from the CG simulations
(g(r)k−1) approaches the target distribution (g(r)AA). The second correction goes to zero
at the potential cutoff (rcut) and is updated proportional to a weight parameter (ω) and A,
which is calculated according to

A = − 3V rcut(P k − P AA)
2πNρ

∫ rcut
0 r3g(r)kdr

. (6.4)

In Eq.  6.4 , P k and P AA correspond to the pressure in the CG simulation and AA simulation
respectively, N is the number of particles in the AA simulation, and ρ is the mass density of
the CG simulation. A approaches zero as the pressure from the CG simulation approaches
the target atomistic pressure [  172 ]. Both correction terms are averaged over n independent
CG simulations performed at each iteration, denoted by the summation over index i in the
Eq.  7.11 .

IBI is similarly implemented for bond, angle, and dihedral potentials. The corresponding
initial guess and update equations are identical to Eqs.  7.10 and Eq.  7.11 , with the pair
radial distribution function (gαβ(r)) being replaced by the distribution function (Pγ(κ)) of
the corresponding interaction type, γ, and omission of the pressure correction term. The
distribution functions for bonds, angles and dihedrals are given by Pb(r) = Hb(r)

4πr2 , Pa(θ) =
Ha(θ)
sin θ

and Pd(φ) = Hd(φ) respectively, where Hγ(κ) is the histogram of the quantity κ
governing the interaction type γ. Additional IBI implementation details, including treatment
of undersampled regions, cutoffs, bin sizes, and convergence behavior are included in the
Appendix 7.A.

6.1.3 Multiscale Coarse-Graining

The Multiscale Coarse-graining (MSCG) framework was developed in [ 120 ], where the
error between the bead forces in the atomistic representation (i.e., calculated by mapping the
atomistic forces) and the coarse-grained representation (i.e., using the CG potentials on the
mapped atomistic configurations) was proposed as a variational functional. It was shown that
minimizing this functional resulted in equivalent phase distributions of the coarse-grained
system when sampled from the atomistic or coarse-grained representations. The system of
equations can be further linearized using spline potentials yielding∑

γi

fγi(κ)∇iκ({rk,t}) = FAA
i,t , (6.5)

125



where fγi(κ)∇iκ({rk,t}) is the force in CG representation on the ith site due to γi type
of interaction (e.g., pair potential, bond potential, etc.) and κ is the value of the variable
associated with that interaction (eg. pair radial distance, bond radius, etc. which is a
function of the position of site i) in snapshot t [ 121 ,  141 ]. Summation over γi gives the net
force on the site i, which is parameterized to equal the force obtained for that site in the
atomistic representation (FAA

i,t ). The function fγi(κ) is the negative of the derivative of the
potential Uγi(κ) with respect to the variable κ and ∇iκ({rk,t}) is the gradient of the variable
κ with respect to the position vector of site i. The potentials Uγi(κ) have the form of spline
polynomials and their coefficients are obtained by solving this linear system of equations.
To alleviate memory constraints, the atomistic trajectory is divided into blocks, the linear
system of equations Eq.  6.5 is solved for each of the blocks, and the final forces are given by
an average over forces obtained in each block.

In this study, MSCG was only used to parameterize non-bonded potentials, whereas
the bonded potentials were obtained in all cases from IBI. So, when we discuss errors in
certain properties for IBI vs MSCG generated potentials, it is should be interpreted as IBI
nonbonded + IBI bonded vs. MSCG nonbonded + IBI bonded. This hybrid method of
using MSCG only for non-bonded potentials and using distributions for obtaining bonded
potentials has been shown to perform better than using MSCG for all potentials [ 140 ]. All
MSCG models were parameterized using the VOTCA package [  141 ]. Additional details of
the specific VOTCA settings used for the MSCG procedure are discussed in the Appendix
7.A.

6.1.4 Property Calculation

Five properties—forces, g(r), self-diffusion coefficient (D), velocity autocorrelation func-
tion (VAC), and enthalpy of vaporization (∆Hv)—were calculated for each CG model and
compared with the corresponding atomistic results. Here, force and g(r) are used as on-target
properties (i.e., properties that are explicitly included in the model parameterizations), while
D, VAC, and ∆Hv are off-target properties (i.e., properties that are not included in the
model parameterizations). The mathematical expressions and numerical details involved in
the computation of these properties and corresponding errors are presented in the Appendix
7.A. In brief, for forces the norm squared error is computed for all beads and averaged over
all beads. For g(r) and VAC, the absolute error at each radial distance and time-difference,
respectively, is computed and averaged. The g(r) error is additionally weighted by the expo-
nential of the atomistic radial distribution function at each radial distance. For D and ∆Hv,
the signed error is reported. In all cases, the errors are normalized with respect to atomistic
representation, to obtain a normalized metric that is comparable across different mappings
and molecules.

6.1.5 Molecular Dynamics Simulations

LAMMPS was used to perform all molecular dynamics simulations [  130 ]. All atomistic
reference simulations used a one fs integration time step, Velocity-Verlet integration, and
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periodic boundary conditions. Long-range electrostatics were modelled using the particle-
particle-particle-mesh (PPPM) algorithm [  21 ] and Lennard-Jones interactions were trun-
cated at 14 Å. All simulations were initialized from diffuse configurations containing at least
2000 atoms, using a cubic grid to place molecules in random orientations without overlap.
The velocities were initialized from a uniform distribution obtained with a random seed value
and scaled to give the correct kinetic energy. The simulations were first relaxed in the NVE
ensemble with restrained atomic displacements of 0.1 Å per time step for 10 ps, followed by
a 1 ns NPT equilibration at 298K and 1 atm. The simulations were extended at 298K and
1 atm for 2 ns in the NPT ensemble to obtain the average density. In the NPT simulations,
the Nosé-Hoover thermostat and barostat were employed using the modified form proposed
by Martyna, Tobias, and Klein, as implemented in LAMMPS [  102 ], with a relaxation time
constant of 0.1 ps and 1 ps for the thermostat and barostat, respectively. From these initial
simulations, five independent NVT simulations were generated with velocities reinitialized as
described above. These simulations were first relaxed in the NVE ensemble with restrained
atomic displacements of 0.1 Å per time step for 10 ps, then the simulation box was rescaled
over 10 ps to obtain the correct average density, followed by a 1 ns NVT equilibration at
298K. The production data was obtained by extending these simulations for 10 ns. The
thermodynamic data and coordinates were sampled at 0.1 ps and 1 ps for simulations in
NPT and NVT ensemble respectively.

The coarse-grained simulations used to evaluate the structural and dynamic properties
of each model were performed in the NVT ensemble. The initial configuration for these
simulations was obtained by starting from a diffuse configuration of 1000 particles and equi-
librating to the known atomistic density by the same NVT equilibration procedure as in
the atomistic simulations. The production data for each property was obtained by then
extending the simulations to appropriate lengths to obtain statistical convergence (See Ap-
pendix 7.A for property specific trajectory lengths). Where independent trajectories were
simulated, the velocities were reinitialized for each simulation, and an equilibration run of
1 ns was performed before starting the production run. All CG simulations used tabulated
potentials and excluded long-range electrostatic interactions. Experimentation with models
that included a long-range electrostatic component seemed to have no effect (not shown).

To provide consistent parameterizations of each liquid, all atomistic force-fields in this
study were derived from quantum chemistry calculations using the topology automated force-
field interactions methodology (TAFFI) [  148 ]. In brief, all force field terms were parame-
terized on the basis of density functional theory (DFT) quantum chemistry calculations,
using the B3LYP-D3/def2-TZVP level of theory computed via the Orca software package
[ 116 ]. The force fields were parameterized using the OPLS force-field functional form [ 77 ],
except that 1-4 pairwise interactions were excluded in the non-bonded interaction computa-
tion. Bond, angle, and dihedral force-field terms were derived from potential energy curves
computed for internal degrees of freedom for each molecule in vacuum, optimizing the other
degrees of freedom as a function of the mode scan. The resulting energy curves were self-
consistently fit to obtain the corresponding force-constant parameters and equilibrium dis-
placement parameters in the force field. Partial charges were obtained from CHELPG calcu-
lations on molecular configurations sampled from the liquid, and Lennard-Jones parameters
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were parameterized on the basis of counterpoise-corrected interaction energies calculated for
molecular pairs sampled from the liquid state.

The atomistic molecular dynamics simulations for pentane, 1-butanol and 1,3-propanediol
contained 143, 134 and 154 molecules (equivalent to at least 2000 atoms) and an average
density of 0.65 g/cc, 0.81 g/cc and 1.04 g/cc was obtained, respectively. Additional de-
tails pertaining to the sampling and details of the property calculations are included in the
Appendix 7.A.

6.2 Results and Discussion

The CG simulation results are presented separately for on-target (i.e., properties that are
explicitly included in the model parameterizations) and off-target (i.e., properties that are
not included in the model parameterizations) properties. Since on-target properties are di-
rectly supplied during parameterization, they exhibit no information limitations. Hence, the
accuracy of on-target properties is diagnostic of representability limitations in the CG models
and their performance is indicative of the representability limitations incurred by the choice
of mapping operator and the isotropic potential interaction. In contrast, information limi-
tations are evaluated based on the performance of the CG models in reproducing off-target
properties. Since off-target properties are not included in the parameterization directly,
their accuracy is limited by the amount of indirect information supplied by the on-target
AA parameterization data and their performance has separate significance with respect to
how the approximations represented by each parameterization algorithm are affected by the
CG dimension reduction. We observe qualitatively different behavior for these two classes
of properties, with implications for the representability and information limitations of CG
models.

6.2.1 On-Target Properties
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Figure 6.3. Normalized average error in squared norm of forces per bead
using IBI, MSCG and BI methods across all mappings for pentane, 1-butanol
and 1,3-propanediol, from left to right. All three algorithms exhibit similar
errors for most mappings. There is a consistent effect of mapping on the error,
but it is small compared with the overall high errors.
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Figure  6.3 presents the results for the average errors in bead forces for each CG model
and the reference atomistic data. These values have been normalized to the average force in
the atomistic representation to provide a measure of the relative error (See Appendix 7.A
for additional details). The bead forces are directly parameterized in the MSCG algorithm
via a least-squares minimization, whereas the forces are only indirectly included in the IBI
algorithm through the potential of mean force.

First, we note that IBI and MSCG exhibit very similar error residuals, despite the fact
that IBI does not utilize the force information directly in the parameterization. Although
the potentials derived from IBI and MSCG show significant differences in all cases (Figure

 6.9 ), comparable force residuals are obtained. Considered together, these observations imply
that the force error optimization surface is non-convex and relatively shallow with a broad
manifold of CG potentials that are capable of approximately minimizing the residual. As a
further illustration of this, even the Boltzmann inverted (BI) potentials, which are distinct
from both IBI and MSCG potentials (Figure  6.9 ), show comparable mean force errors to
MSCG and IBI for lower resolutions.

Figure 6.4. Distribution of normalized errors in squared norm of bead forces
for IBI, MSCG, and null (zero CG potentials) for (a) pentane r1m0 and (b)
pentane r5m0. The vertical dotted lines represent the mean (as reported in
Figure 6.3) for each case. The IBI and MSCG distributions are very similar
to the null model for both of the mappings but with a small improvement in
mean error. This results from lower errors in the extreme values for MSCG
and IBI as shown in the insets. The insets are drawn with log-linear axes to
visualize the tail.

Second, the force errors are remarkably large for all resolutions, models, and algorithms.
We note that the error residuals for MSCG are rarely reported [  84 ,  121 ]. In the current case,
the residual errors across all models vary between 1- 38 kcal2mol−2Å−2, which are smaller or
equivalent χ2 values than those reported in Ref. [  121 ] for methanol and a model ionic liquid
(∼ 21 and 163 kcal2mol−2Å−2 , respectively). For additional clarification, we also present
the distribution of errors in the force magnitude in Figure  6.4 for two illustrative cases.
Comparison with the null (i.e., zeroed out CG potentials) confirms that IBI and MSCG
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are capturing some atomistic force information, but this primarily manifests in minimizing
the extreme values of the training forces, as seen in the inset of Figure  6.4 . In particular,
the null model yields comparable median force errors to either of the CG models, with a
slightly higher mean force error. The relatively small improvement over the null model with
respect to mean force error for IBI and MSCG provides further evidence that the force
minimization exhibits a shallow minimum. One interpretation of these high overall errors is
that the chosen functional form for the CG models, specifically the use of isotropic pair-wise
interactions, leads to representability limitations in all cases. Perhaps most surprising is the
large errors for R=1, which is the mapping that corresponds to typical united-atom force
fields that have been broadly adopted in experimentally parameterized force fields. These
errors suggest that even at the united atom level, reproduction of the atomistic forces is
representation limited. As discussed below, errors in the molecular forces do not necessarily
imply that the CG models do not reproduce other significant properties of the atomistic
models; however, it does bear on the question of whether molecular forces supply sufficient
information in practice to parameterize CG models.

Third, there is a consistent increase in the force error as the model resolution decreases.
However, this trend is negligible in comparison with the high overall errors. This suggests
that all of the models are representability-limited due to the insufficiency of isotropic CG po-
tentials in reproducing the atomistic forces, while the representability limitations associated
with the mapping operator are small. Likewise, there is no effect on the force error upon the
addition of anisotropic moieties (i.e., comparing pentane to 1-butanol to 1,3-propanediol).
For a more expressive basis of force field functions, the mapping effects in each of these cases
could be more significant.

The g(r) errors, averaged across all pair types and radial distances, are shown in Figure
 6.5 for IBI and MSCG. For these data, a probability weighted average has been utilized for
averaging over the radial component to avoid poorly sampled regions from dominating the
average. To better visualize the g(r) mismatch at each radial distance, the g(r) distributions
for IBI and MSCG models are compared with target AA distributions for their respective
minimum and maximum error cases in Figure  6.10 . g(r) is used as the target property to fit
potentials in IBI but are not directly utilized in MSCG.

First, we note the qualitative difference between the IBI and MSCG results. IBI ex-
hibits near perfect reproduction of the g(r) for all molecules and mappings, whereas MSCG
exhibits worse overall reproduction in most cases. Moreover, we observe that the MSCG
models show decreasing performance upon addition of anisotropic moieties (i.e., the er-
rors for 1,3-propanediol and 1-butanol are greater than that of pentane). This comparison
suggests a potential asymmetry in information content supplied by the atomistic g(r) and
forces. We have observed that the IBI algorithm, which utilizes only g(r) information, also
results in force errors that are comparable to MSCG. However, MSCG, which utilizes only
force-information, has much higher g(r) errors than IBI. This asymmetry suggests that the
atomistic g(r) is either more information rich or numerically expedient as a CG parameter-
ization target.

Second, we stress the significance that IBI is capable of accurately reproducing the g(r)
for all mappings and molecules. At face value, this is simply evidence that IBI is doing what
it purports to do. However, the absence of a mapping dependence also indicates that these
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Figure 6.5. Error in g(r) averaged across all pair types and radial distances
obtained using IBI and MSCG methods across all mappings for pentane, 1-
butanol, and 1,3-propanediol, from left to right. Errors for IBI are very low
across all mappings and molecules. MSCG shows higher errors than IBI, es-
pecially for 1-butanol and 1,3-propanediol.

isotropic CG models are not representability limited with respect to reproducing the g(r),
whereas they were representability limited with respect to reproducing the atomic forces.
Thus, representability limitations can strongly depend on the target properties of the CG
model.
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Figure 6.6. Comparison of (a) potentials and (b) corresponding RDFs for
IBI, MSCG, IBI without pressure correction (IBI-NP) and IBI with MSCG
potential (IBI-MSCG) as initial guess for the 1-butanol r5m0. Even though the
potentials are qualitatively different, the simulations result in indistinguishable
RDFs.

Third, we also note that in the cases where IBI and MSCG similarly reproduce the g(r)
(e.g., comparing the g(r) results for the 1-butanol r5m0 mapping), they also exhibit sig-
nificant differences in the associated potentials (Figure  6.6 ). Obtaining similar g(r) from
qualitatively different potentials suggests that the g(r) optimization surface, like the force
optimization surface, is non-convex and relatively shallow. We additionally report the poten-
tials for IBI without pressure correction (IBI-NP) and IBI initialized from MSCG potential
as the initial guess (IBI-MSCG) in Figure  6.6 . These additional models also exhibit differ-
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ent converged potentials and yet reproduce g(r). Several other groups have made a similar
observation, in that although the Henderson theorem [  62 ] formally guarantees the unique-
ness of the potential that produces an g(r) up to a constant, in practice the potential is
underdetermined by the g(r) alone [ 47 ,  49 ,  172 ]. The implication of a non-convex g(r) opti-
mization surface is that isotropic pair-wise potentials are potentially capable of supporting
more physical information.

6.2.2 Off-Target Properties

The self-diffusion coefficient and enthalpy of vaporization were calculated for each CG
model and compared with the atomistic simulations. These serve as off-target properties for
both MSCG and IBI. By reproductng key target properties (i.e., forces and g(r)), MSCG
and IBI potentially transfer physical information for additional system properties to the CG
models. Our goal here is to quantify the extent of this information transfer as the model
resolution decreases and to highlight the implications for the information limitations of the
models.
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Figure 6.7. Normalized error in self-diffusion coefficient using IBI and MSCG
methods across all mappings for pentane, 1-butanol, and 1,3-propanediol, from
left to right. The standard errors are within the size of the markers in all cases.
Both IBI and MSCG have similar errors, and the errors increase with number
of hydroxyl groups. Overall the error is dominated by the number of beads
and increases with a decrease in the number of beads.

The relative error in self-diffusion coefficients, averaged over all trajectories and normal-
ized with respect to the atomistic coefficients, are shown for each mapping and molecule
in Figure  6.7 . It is generally known that CG models parameterized with MSCG and IBI
substantially overestimate diffusivity, and several strategies have been proposed to correct
this [  33 ,  71 ]. Here, we likewise observe a dramatic overestimation of the diffusivity for both
MSCG and IBI. The two algorithms perform similarly in all cases, with a small but consis-
tent trend of higher accuracy for IBI. Izvekov and Voth presented a general argument for
this diffusivity overestimation, whereby the missing degrees of freedom in the CG model
manifest as a stochastic friction in the atomistic model that is missing from CG dynamics
[ 71 ]. Following this argument, it is unsurprising that the diffusivity errors also show a trend
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of increasing error with decreasing resolution. However, several quantitative aspects of this
comparison are relevant to the accuracy of each CG approximation with respect to dimension
reduction.

First, we note that the diffusivity errors show a strong increase with the number of
anisotropic moieties in each molecule (i.e., the errors are ranked as 1,3-propanediol > 1-
butanol > pentane). However, this trend is the reverse of the number of degrees of freedom
that are lost during the CG procedure for each liquid (i.e., for the same mapping, the
lost degrees of freedom are ranked as pentane > 1-butanol > 1,3-propanediol). Thus, the
diffusivity overprediction is a non-trivial function of the chemical nature of the coarse-grained
degrees of freedom, with those associated with more strongly interacting groups having a
disparate impact on the CG dynamics. These results also suggest that there is no generally
applicable rescaling of the CG dynamics based on resolution, since the associated speedup
is a function of the specific degrees of freedom being coarse-grained.

Second, the diffusivity errors correlate more strongly with the number of CG beads in each
model than with the resolution. For a fixed number of beads, a mapping effect is observable
in some cases (e.g., for 1,3-propanediol, r3m0, which retains a high-resolution bead on both
hydroxyl groups, performs better than r2m0 and r2m1, which do not retain a high-resolution
hydroxyl bead), however it is minute in comparison with the effect of changing the number
of beads. This weak mapping dependence provides justification for the ad hoc mappings that
are typical in the CG literature and indicates that the number of beads affects the accuracy
of the CG approximation much more strongly than the specific mapping operator.

The relative error in the VAC, averaged over bead types and times less than 500 fs, and
normalized with respect to the atomistic values, are shown for each mapping and molecule in
Figure  6.11 . Whereas the diffusivity corresponds to the long-timescale integral of the VAC,
a comparison of the VAC errors indicates differences in the time-resolved dynamics between
the CG models and atomistic simulations on the short timescale. The same qualitative
error trends observed for diffusivity are observed for the VAC errors. Increasing errors are
exhibited with respect to increasing number of anisotropic groups in the molecule, and the
correlation between accuracy and number of beads is stronger than the effect of mapping
changes for a fixed number of beads. The overall conclusion is that the short-timescale
fidelity of the CG dynamics follows a similar dependence to the diffusivity.

The relative error in ∆Hv is presented in Figure  6.8 for all molecules and mappings.
The relative error is calculated as the difference between the CG and atomistic enthalpies
of vaporization, normalized by the atomistic value, and averaged over multiple independent
trajectories. We observe that IBI exhibits consistently lower errors compared to MSCG, while
both underestimate ∆Hv. As with diffusivity, several quantitative aspects of this comparison
are relevant to the accuracy of each CG approximation with respect to dimension reduction.

First, we note that IBI consistently shows a lower error for ∆Hv than MSCG that can be
attributed to the additional attractive interactions in IBI CG models resulting from pressure
corrections. This is confirmed by comparison with the ∆Hv errors for IBI without pressure
correction (IBI-NP), which are larger than IBI and, in some cases, MSCG. Thus, IBI with
pressure correction is not only capable of reproducing two on-target properties (the g(r) and
pressure), but also is able to capture additional physical information which is reflected in an
off-target property. This supports the underlying premise of bottom-up coarse-graining (i.e.,
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Figure 6.8. Normalized error in enthalpy of vaporization for IBI, MSCG
and IBI without pressure correction (IBI-NP) methods across all mappings for
pentane, 1-butanol and 1,3-propanediol from left to right. The standard errors
are within the size of the markers in all cases. All three methods underestimate
the error, but IBI with pressure corrections performs the best.

that reproducing a subset of critical atomistic properties will simultaneously reproduce other
off-target properties), but also suggests that the existing algorithm is likely underdetermined
with respect to the target information supplied.

Second, we note that the ∆Hv error generally increases with respect to the number of
anisotropic moieties in each molecule (i.e., the absolute error ranked as 1,3-propanediol > 1-
butanol > pentane). For IBI, this dependence is weak, but can still be seen for intermediate
mappings (e.g., comparing the 2 and 3 bead mappings across the liquids). Whereas for
MSCG, the underestimation increases with the number of anisotropic moieties, while also
exhibiting a stronger resolution dependence.

Finally, we note that the ∆Hv errors correlate more strongly with the number of beads,
rather than the resolution of the model. However, the mapping dependence of errors is
weaker for IBI models compared to the MSCG models, and no consistent trend is observable
for IBI-NP. The ∆Hv error for IBI-NP is inversely correlated with the final pressure for the
CG model (not shown), which explains the lack of mapping dependence and is also consistent
with the interpretation that the pressure information supplied in IBI results in its low ∆Hv

errors. The weak mapping dependence of IBI for enthalpy of vaporization (similar to g(r))
coupled with the correlation between the simulation pressure and ∆Hv error, suggests that
the IBI models are information limited, rather than representability limited.

6.3 Conclusions

We have systematically investigated the effect of dimension-reduction on the ability of
CG models to reproduce the on-target and off-target properties of fine-grained atomistic sys-
tems. The weak dimension-dependence of the on-target property accuracy provides evidence
that these models are information limited, rather than representability limited. We note
that the question of representability limitations for off-target properties cannot be addressed
here, because by virtue of being off-target these properties were not included in the objective
function of the two parameterization algorithms (IBI and MSCG). Presumably at some point

134



simple isotropic pair-potentials will have to make compromises in the number and accuracy
of atomistic properties that they can reproduce. However, until algorithms are developed
that can flexibly incorporate multiple properties into CG parameterization, the general rep-
resentability limitations of isotropic CG models will be left unanswered. In contrast, for
on-target properties, we have observed that the reproduction of atomistic forces is deeply
in the representability limited regime for all of the models that we investigated, while g(r)
reproduction is far from the representability limited regime. The former observation suggests
that the atomistic forces are poorly conditioned in practice for CG model parameterization,
whereas the latter observation suggests that pair-wise potentials are capable of supporting
more physical information than is provided by the g(r) alone.

The results presented here also demonstrate that CG model accuracy for off-target prop-
erties is strongly sensitive to dimension reduction. One interpretation of these results is
that the low-resolution models are representability limited, with the consequence that fewer
properties can be reproduced in the low-resolution limit. As pointed out above, the repre-
sentability limitations of off-target properties cannot be assessed by the current study. An
alternative interpretation that may be useful in guiding further studies is that the IBI and
MSCG approximations become less useful at low-resolutions for reproducing off-target prop-
erties. In this latter interpretation, the low-resolution models are information limited, rather
than representability limited. This latter interpretation is supported by the non-convex opti-
mization surfaces of both g(r) and the atomistic force errors, which admit a potentially large
range of parameterizations. Additionally, for IBI, the capability to reproduce the target g(r)
is nearly unaffected by resolution, and the accuracy is uniformly high in all cases. Thus,
the IBI models are not representability limited for their target property, and can potentially
accommodate more information by including additional atomistic data into the parameter-
ization algorithm. In the case of MSCG, the force errors are uniformly high in all cases,
leading us to conclude that all of the models are representability limited with respect to the
force reproduction, while cautioning that these models do still reproduce off-target prop-
erties to a variable extent. Thus, while the MSCG models are representability limited for
their target property, they too can potentially accommodate more information by including
additional atomistic data into the parameterization algorithm.

While atomistic molecular dynamics yields an abundance of potential information for CG
models to reproduce, existing algorithms utilize only a small fraction of it during parameter-
ization. The results presented here suggest that isotropic pair potentials are likely capable
of supporting additional chemical detail beyond reproducing the atomistic g(r), forces, and
pressure. Moreover, we have observed that what have been previously classified as repre-
sentability limitations are more likely information limitations that could be addressed with
algorithm development and without increasing model complexity.
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APPENDIX

6.A Simulation Details for Bottom-Up CG-MD Study

6.A.1 IBI Procedure for Bonded Potentials

All IBI parameterizations were performed using a custom implementation developed by
our group. The target distribution functions for bonds, angles, and dihedrals were sampled
from a single atomistic trajectory and histogrammed with bin sizes of 0.1 Å, 1◦, and 1◦

respectively. The potentials were extrapolated to a range of 0-10 Å, 0-180◦ and -180-180◦

for bonds, angles and dihedrals respectively. Quadratic extrapolation was utilized to obtain
potential values outside the sampled regions for bonds and angles. Linear extrapolation was
utilized to obtain potential values outside the sampled region for dihedrals.

For each bonded IBI iteration, single-molecule CG simulations with shrink-wrap bound-
ary conditions were performed to sample the intramolecular distributions and avoid con-
founding condensed phase non-bonded interactions. The CG simulations were first relaxed
in the NVE ensemble with restrained atomic displacements of 0.1 Å per time step for 10 ps,
followed by a 0.1 ns NVT equilbriation at 298K. The production data for sampling the in-
tramolecular distributions were obtained by extending this trajectory for 10 ns and sampling
configurations every 0.1 ps. The IBI procedure was run for 60 iterations, and the tabulated
potentials from the iteration with the smallest distribution error (Eq.  7.8 ) was used for the
subsequent non-bonded IBI parameterizations and CG property calculations. The average
distribution error was given by

εIBI,b = 1
Ng

Ng∑
γ

∑
κ ‖P AA

γ (κ) − P CG
γ (κ)‖∑

κ P AA
γ (κ) , (6.6)

where γ are different bonds, angles and dihedrals, κ are the values of these quantities,
Pγ(κ) is the value of distribution function of γ at κ and Ng is the total number of these
interactions.

6.A.2 IBI Procedure for Non-bonded Potentials

All IBI parameterizations were performed using a custom implementation developed by
our group. The target RDFs were sampled from five independent trajectories and his-
togrammed with a bin size of 0.01 Å and a range of 0-10 Å. An exponential function
was used to extrapolate the potential values for the inner region where the RDF was not
sampled. The fitted potentials were further interpolated to a finer grid of 0.001 Å when
utilized in CG simulations.

For the CG sampling necessary to iteratively refine the pair-wise interactions, a system
containing at least 1000 beads was used for all mappings. This system was equilibrated for
1 ns in an NVT ensemble, as discussed in the Molecular Dynamics Simulations section of
the main text, and the last frame was used as an initial configuration for the start of the IBI
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procedure. For subsequent iterations, the last frame from the previous iteration was used as
the initial configuration.

At each iteration of IBI, 5 independent CG trajectories were simulated to obtain average
correction terms in Eq.  7.11 ,

U(r)k = U(r)k−1 + 1
n

n∑
i=1

ln g(r)k−1

g(r)AA + ω

n

n∑
i=1

A
(

1 − r

rcut

)
. (6.7)

For the first 19 iterations of IBI, only the RDF correction was applied ( i.e., ω = 0 in Eq.
 7.11 ). From the 20th iteration onwards, both RDF and pressure corrections were applied
starting with ω = 0.01. After that, the weighing coefficient ω was dynamically changed de-
pending on the pressure error trend over the previous 5 iterations. For the first 20 iterations,
each CG trajectory was of length 0.1 ns and sampled at 0.1 ps. After turning on the pressure
correction, a longer trajectory of 1 ns with sampling of 0.1 ps was used to obtain accurate
pressures.

The IBI procedure ran for a maximum of 80 iterations. The procedure was allowed to
terminate earlier if the pressure error fell below 10 atm. From all iterations, the tabulated
potentials from the iteration with the lowest value of the objective function

εIBI,nb = 1
Np

Np∑
p=1

∑rcut
r=0 ‖gAA

p (r) − gCG
p (r)‖∑rcut

r=0 ‖gAA
p (r) + gCG

p (r)‖ + 0.05 ∗ ‖P AA − P CG‖
P AA (6.8)

were retained and utilized in subsequent production simulations. The first and second terms
on the RHS of  7.12 indicate the normalized error in RDF (gp(r)) and pressure (P ), respec-
tively. The weight of 0.05 was applied to the pressure errors due to their inherently higher
variance than the RDF error.

6.A.3 MSCG procedure for Non-bonded Potentials

All MSCG models were parameterized with the VOTCA package [  141 ]. 10 ns of atom-
istic data with 1 ps sampling was used as training data for each liquid. Only non-bonded
potentials were parameterized with MSCG, while all intramolecular modes were taken from
the corresponding IBI models. This choice was motivated by previous work indicating that
this hybrid approach results in more accurate potentials than models where all terms are
parameterized with MSCG [  140 ]. The forces were fit with a spline grid spacing of 0.1 Å and
a range up to 10 Å. The lower bound of the interval was taken to be the first radial distance
where the RDF exceeds 0.05. The frames per block for each mapping were chosen such that
the number of equations (number of beads × number of frames) were 50 times the total
number of spline functions over all pair-types. The block average of forces was integrated to
obtain the non-bonded MSCG potentials. The final CG potentials were further interpolated
to a spacing of 0.05 Å for use in production simulations. An exponential function was used
to extrapolate the potential as per default VOTCA settings unless it failed to produce a
repulsive core, in which case a quadratic function was used.
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6.A.4 Property Calculations

Since the properties that are evaluated in this work have distinct sampling requirements,
independent trajectories were simulated for each property. The number of trajectories and
sampling details are described below for each property. In all cases, the initial configuration
was obtained from the pre-equilibrated trajectories described in the main text. To obtain
statistically independent trajectories, the velocities were reinitialized in each case, followed
by a 10 ps NVE simulation with constrained atomic displacements of 0.1 Å per time step
and a 1 ns equilibration in the NVT ensemenble. These trajectories were then extended by
variable durations to collect production data, as described below.

The force error per CG bead (εF) was calculated as the square of the magnitude of
the difference in force calculated in the atomistic (FAA

j,t ) and coarse-grained representations
(FCG

j,t ), averaged over all coarse-grained beads (j) and atomistic snapshots (t). The former
quantity was calculated according to

FAA
j =

∑
i∈j

Fi, (6.9)

where the index i runs over the atoms in bead j for a given mapping. The final expression
for the force error,

εF =
∑

j,t

∥∥∥FAA
j,t − FCG

j,t

∥∥∥2

∑
j,t

∥∥∥FAA
j,t

∥∥∥2 , (6.10)

was further normalized with respect to the average force magnitude in the atomistic repre-
sentation to provide a fractional measure of the error.

Only non-bonded forces are used in evaluating Eq.  6.9 , as these form the target property
for the MSCG parameterization. Additionally, poorly sampled short-range interactions are
omitted in the MSCG training by fixing a lower bound of radial distance (as described in the
MSCG section above). The same radial bound is used for error evaluation to avoid the error
being dominated by these points. The numerator in Eq.  6.9 is proportional to the residual
of the MSCG system of linear equations as defined in [ 121 ].

The RDF was calculated for each CG pair according to Eq. 2 in the main text. The error
in the RDF, (εRDF), is calculated as an average over errors for all pair types (p) according
to

εRDF = 1
Np

Np∑
p=1

∑rcut
r=0 exp(g(r)AA

p )‖g(r)AA
p − g(r)CG

p ‖∑rcut
r=0 exp(g(r)AA

p )‖g(r)AA
p ‖

. (6.11)

where g(r)AA
p is the RDF in the atomistic representation, g(r)CG

p is the RDF in the coarse-
grained representation, and the summations run from r = 0 to the radial cutoff for the
pairwise interactions, rcut. To avoid having the poorly sampled regions dominate the error
measure, the difference in RDFs is weighted by exp g(r)AA

p and the error at each r is included
in the summation only if g(r)AA

p > 0.1. In the denominator, the error is normalized by the
average value of atomistic RDFs over radial distances, with the same exponential weighting.

The calculation details for the atomistic systems RDFs, which serve as the target RDF
for the IBI parameterization, are described in the IBI procedure. For calculating the RDF of
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each CG system, an MD simulation was performed in the NVT ensemble for 0.5 ns with 0.1 ps
sampling. The initial configuration for the MD simulation was same as the pre-equilibrated
configuration used for the IBI procedure.

The self-diffusion coefficient was obtained from the mean square displacement of each
molecule using the Einstein relation

D = lim
t→∞

1
6

d

dt
〈‖rm(t) − rm(0)‖2〉, (6.12)

where rm(t) is the position vector of the molecule center of mass at time t. The angular
brackets in Eq.  7.17 indicate an average over all the molecules and time origins. The
fractional error in the diffusion coefficient was calculated according to

εD = 1
Nt

Nt∑
i

DCG − DAA

DAA (6.13)

where Nt is the number of independent trajectories.
Five independent simulations were performed for both atomistic and coarse-grained rep-

resentation to obtain the self-diffusion coefficient. The trajectories were extended to collect
400000 molecular samples at a sampling frequency of 1 ps in NVT ensemble. For each tra-
jectory, the numerical derivative of the first continuous 10 ps interval after 100 ps which
exhibited a linear slope (0.95- 1.05) of log(MSD) versus time were used to obtain the diffu-
sion coefficient. The diffusion coefficient utilized in Eq.  7.18 was obtained as the average
over all five trajectories.

The VAC of each molecule, Cm was calculated as

Cm(t) = 〈vm(0) · vm(t)〉
〈vm(0) · vm(0)〉 , (6.14)

where vm(t) is the velocity vector of the molecule center of mass at time t, t has a range of
0-500 fs, and the angular brackets indicate an average over all molecules and time origins.
The error for a single trajectory is the absolute difference in VAC for the atomistic and
coarse-grained representation averaged over all time differences and is normalized by the
absolute value of atomistic VAC averaged over all time differences. The net error for VAC,
similar to diffusion coefficient, is an average over the error for Nt independent trajectories,
given by

εVAC = 1
Nt

Nt∑
i

∑
t ‖CAA

m,t − CCG
m,t ‖∑

t ‖CAA
m,t‖

. (6.15)

Five independent simulations were performed for both atomistic and coarse-grained repre-
sentations to obtain the VAC. 10 ps of production data was collected from each trajectory at
a sampling frequency of 1 fs in NVT ensemble. The VAC was calculated for time differences
from 0 fs to 500 fs.

The molar enthalpy of vaporization, ∆Hv, is calculated by

∆Hv = Uv + kBT − Uc, (6.16)

139



where Uv and Uc are the mean molar potential energies in the gas phase and condensed
phase, respectively. Uv was calculated by single-molecule MD simulation. The net fractional
error in the enthalpy of vaporization was calculated according to

εH = 1
Nt

Nt∑
i

∆HCG
v − ∆HAA

v

∆HAA
v

(6.17)

where Nt is the number of trajectories.
Five independent simulations were performed in both the gas and condensed phases in

the coarse-grained representation to obtain the potential energies for the ∆Hv calculation.
1 ns of production data was collected from each trajectory at a sampling frequency of 1 ps
in NVT ensemble. An identical procedure was followed to obtain the gas phase atomistic
potential energies for the ∆Hv calculation. For calculating the condensed phase potential
energy in atomistic representation, thermodynamic data from 1 ns of the parameterization
trajectories described in the main text were used.

6.B Additional Results Referenced for Bottom-Up CG-MD Study
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Figure 6.9. IBI, MSCG and BI potentials for pentane, 1-butanol and 1,3-
propanediol for the r5m0 mapping. Even though the potentials for IBI, MSCG
and BI are very different for these mappings, their force errors are very sim-
ilar: 0.956, 0.948 and 0.966 for pentane-IBI, pentane-MSCG and pentane-BI
respectively, 0.973, 0.971 and 0.976 for 1-butanol-IBI, 1-butanol-MSCG and
1-butanol-BI respectively, 0.967, 0.964 and 0.971 for 1,3-propanediol-IBI, 1,3-
propanediol-MSCG and 1,3-propanediol-BI respectively.
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Figure 6.10. RDFs for IBI and MSCG compared with target AA RDFs for
the lowest and highest error cases among all mappings and molecules. For IBI,
the RDF error is lowest and highest for the pentane r1m0 (0.010) and pentane
r5m0 (0.039) mappings, respectively. The IBI RDFs for all pairs for pentane
r1m0 and pentane r5m0 are shown in (a-f) and (g), respectively. For MSCG,
the RDF error is lowest and highest for the 1-butanol r5m0 (0.015) and 1-
butanol r4m0 (0.16) mappings, respectively. The MSCG RDFs for all pairs for
1-butanol r5m0 and 1-butanol r4m0 are shown in (h) and (i-k), respectively.
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mappings for pentane, 1-butanol, and 1,3-propanediol from left to right. Stan-
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to that obtained for diffusion coefficients. Both IBI and MSCG exhibit similar
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7. TRANSFER LEARNING FROM PHYSICS-INSPIRED

MODELS TO MACHINE LEARNING BASED

COARSE-GRAINED POTENTIALS

We investigated if the coarse-grained (CG) model is representability limited or information

limited in Chapter 6, by systematically comparing two common bottom-up parameteriza-

tion schemes across various mapping operators for three molecules. Throughout this previous

study, the potential energy surface (PES) was represented as a combination of spline extrap-

olated bond stretching, angle bending, and pairwise nonbonded interactions. In this chapter,

we investigate the role PES as well as its parameterization scheme plays in the CG model

performance.

More specifically, we propose a new distinction in how the potential energy surface is rep-

resented – physics vs black-box. The former constitutes of a CG representation motivated

by a physical intuition. Examples of physics based representations are decomposition into

stretching, bending and torsional interactions; pair-wise non-bonded decomposition or func-

tional forms of potential interaction such as Lennard-Jones, Morse, etc. The latter black-box

approach on the other hand, constitutes representations which do not have a strong physical

intuition but provide the flexibility to capture more complex interactions, such as many-body

forces. The most obvious example of black-box representations is Machine Learning (ML)

based coarse-grained potentials, but use of tabulated spline based potentials over Lennard-

Jones can also be considered a black-box approach. Even for the ML based potentials,

physics is incorporated in the choice of input features to satisfy physical constraints such

as rotational and translational invariance. Hence, we find a continuum of physics-inspired

choices and black-box schemes across various CG parameterization schemes to represent the

atomistic system in the best possible way. In addition to the representation choice, the pa-

rameterization procedure can also be inspired by physical intuition. For instance, in Iterative

Boltzmann Inversion (IBI), the PES is corrected over discretized radial separation between

beads in order to obtain the correct structural correlation at that radial separation. The

correction scheme is inspired by the fact that in canonical ensemble, independent degrees of

freedom show a Boltzmann distribution.
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A physics based representation offer simpler interpretation, and can be easier to parame-

terize in comparison to a black-box approach (Figure  7.1 ) but loses some information due to

simplified representation. For instance, the pairwise decomposition of non-bonded interac-

tions can be inadequate in reproducing many-body interactions and inherent anisotropy in

the system. In this chapter, we propose a hybrid approach, where the bulk of the potential

interactions are captured by a simple physics based model (SP) and the remainder of inter-

actions are captured by a blackbox machine-learning based model (ML). In doing so, we

retain the physics captured by the SP model, and reduce the work to be done by ML model

while still leveraging its complexity. We call this new model– Transfer Learning (TL) model

as we are transferring the information learnt by the SP model and assisting the training of

ML model (Figure  7.1 ). This approach is applicable for any combination of SP and ML

model, as long as the ML model is trained on forces as a target property and the SP model

preferably uses some property other than forces. In the following sections, we describe the

TL approach by providing the equations to construct the TL model in detail and finally,

compare all three approaches by coarse-graining selected molecules.

7.1 Methods

7.1.1 Construction of the Transfer Learning Model

The true forces FAA on any CG bead in a given configuration which serve as target

are obtained by performing an all atomistic MD simulation and then calculating the net

force on each CG bead (j) as the sum of forces on all the atoms (i ∈ j) constituting it,

FAA,j = ∑
i∈j fAA,j. For a general ML model, the objective function is typically the root mean

square error in the forces averaged over all beads (j) and configurations (t),

L =
√√√√ 1

NjNt

∑
j,t

‖FAA,j,t − FCG,j,t‖ (7.1)

In order to construct the TL force-field, first, we calculate the force FCG
SP on a CG bead as

obtained by the SP model. Due to the simplicity of model (such as pair-wise assumptions),

it does not completely reproduce the target force FAA. Note that a CG model will also lose
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Figure 7.1. (a) Schematic explaining the transfer learning approach proposed
here. The force on a bead is obtained by a sum of force by the simple physics
and a correction term predicted by the blackbox machine learning based model.
The circles in the schematic represent atoms and the pairwise and many-body
forces among the atoms for SP and ML, model respectively. The objective
functions for SP and ML model are also shown. NN and LJ indicate neural
network and Lennard-Jones potential, respectively. (b) Mappings of butanol
of resolution R 2-5 and (c) two 5-bead mappings of PEG with different CG
bead definition, simulated to compare all the models

some information due to the lost degrees of freedom. However, we can correct for the forces

(dFCG
ML) which are lost due to simple architecture through a more complex ML architecture.

Thus, we obtain a more accurate description by using a cheaper yet physics motivated

framework for a good guess and correcting it using machine learning. This approach has

been successfully implemented in electronic level theory, where quantum chemical accuracy

is achieved by correcting semiemperical DFT level prediction using machine learning.[ 16 ,

 31 ,  133 ] We calculate the SP model force error dFAA,j for each CG bead j as dFAA,j
SP =
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FAA,j − FCG,j
SP . Now, we train the ML model to reproduce this error dFAA

SP rather than the

complete force FAA. The new objective function for the ML architecture becomes,

L =
√√√√ 1

NjNt

∑
j,t

‖dFAA,j,t − dFML
CG,j,t‖, (7.2)

instead of Eq.  7.1 . The final force on any CG bead (j) is given by two components, the

bulk of the force FCG,j
SP by the SP model and the correction force dFCG,j

ML by the ML model,

FCG,j = FCG,j
SP + dFCG,j

ML .

In this chapter, for the SP model, we use tabulated potentials for bonds, angles, non-

bonded pairwise interactions which are obtained using Iterative Boltzmann Inversion (IBI)[  134 ]

with and without pressure correction[  172 ], and the DeePCG framework for the ML model[ 184 ].

IBI with and without pressure correction has been extensively used for various applica-

tions[ 2 ,  10 ,  125 ], and incorporates structural information in contrast to force information

and hence, was chosen for SP model; whereas the choice of DeePCG model was purely due

to ease of adoption.

7.1.2 Iterative Boltzmann Inversion

In the IBI process, all potential functions are corrected iteratively using a correction

proportional to the logarithmic error of radial distribution function (RDF) as below,

Uab(r)k = Uab(r)k−1 + αkBT ln gab(r)k−1

gab(r)AA (7.3)

where Uab(r)k and gab(r)k (Eq.  7.9 ) are the potential function and RDF at the kth iteration,

respectively, for the pair of CG beads of type a and b. The gab(r)AA is the target atomistic

RDF for the same pair type, T is the simulation temperature, kB is the Boltzmann constant

and α is a damping coefficient. Through the second term on RHS, the potential is corrected

iteratively so that the CG RDF (g(r)k−1) approaches the target RDF (g(r)AA). Pairs sep-

arated by less than four bonds do not experience nonbonded interactions but rather bond,

angle and torsional interactions, which are also parameterized iteratively using IBI (Section

8.B) to obtain the respective distributions.
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The Boltzmann inverted (Eq.  7.10 ) potential is used as an initial guess for the potential

and hence, crude information about the local structure is incorporated apriori and iteratively

corrected to obtain the accurate pairwise correlations. When pressure correction is included,

an additional attractive potential correction of the form,

βA
(

1 − r

rcut

)
, (7.4)

is included where the coefficient A is a function of the error in pressure as proposed in Wang

et al[  172 ] and β is a damping coefficient. Thus, the converged SP potential reproduces both

pair-wise RDF and net system pressure. The IBI parameterization procedure for bonded

and nonbonded potentials with additional explanatory equations are provided in detail in

Section 8.B-8.C.

7.1.3 DeePCG

In the DeePCG framework, the potential energy is decomposed into energy contribution

of each bead similar to various atomistic ML forcefields.[ 11 ] The per-bead energy is obtained

as an output of a deep neural network (DNN) with an input capturing the local neighborhood

of the bead. More specifically, this descriptor is a vector of interbead radial and angular

information between the bead and its short-distance neighbor and just radial information

between the bead and its long-distance neighbors (Section 8.D). In order to satisfy the

translational and rotational invariance, the interbead distances are expressed in terms of a

local coordinate frame determined for each bead formed by the bead with its two nearest

neighbors (Section 8.D). This descriptor hence sufficiently captures the local neighborhood

of a bead and the DNN calculates the energy of the bead as function of this descriptor.

The DNN is trained to reproduce the forces as sampled in atomistic MD simulation (Eq.

 7.1 ), where the CG forces are obtained by the derivative of the potential energy function.

The transfer-learning model is constructed by first obtaining the IBI potentials, evaluating

IBI force errors per bead for different configurations, and training the DeePCG model for

predicting these force errors (Eq.  7.2 ) instead. All the details of training of the neural
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network for both ML and TL model are explained and the optimized hyperparameters are

reported in Section 8.D.

7.1.4 Model System

In this chapter, we construct and compare a total of five models using IBI (SP), IBI with

pressure correction ( SPPC ), DeePCG (ML), a transfer-learning model which is a combina-

tion of IBI and DeePCG (TL) and another transfer-learning model which is a combination of

IBI with pressure-correction and DeePCG ( TLPC ). In doing so, we provide first demonstra-

tion of using transfer learning model for CG forcefield and test its performance in comparison

with the simple physics model and blackbox model. The performance for on-target prop-

erties of RDF and pressure is compared to test if the transfer learning retains the physics

from the SP model. Another important question is if transferring this information from the

SP model is necessary or the ML model is itself capable of reproducing RDF and pressure.

We also compare the reproduction of forces to test if transfer learning hurts the direct force

reproduction in the ML model. Further, we test if the inclusion of forces, RDF and pres-

sure translates to other off-target properties such as molecular enthalpy of vaporization (Hv)

and self-diffusion coefficient. Additionally, this chapter provides a comparison of traditional

physics based SP model and ML model for various mappings, which has been performed in

only one study for a star polymer[  175 ]. The error for RDF, pressure, Hv and diffusivity are

normalized with respect to the atomistic values, whereas the force error reported is same as

the objective function, i.e., the net RMSE over all configurations and beads. The procedure

for simulations performed to evaluate these errors as well as the error expressions used are

described in Section 8.E.

We perform this comparison for butanol molecule for four mappings from resolution 2-5

(Figure  7.1 b). We chose butanol due to its chemical anisotropy and four mapping operators

which retained the hydroxyl group as a separate CG bead. These mappings support chemical

intuition and displayed slightly reduced force error over other mapping operators, in our

previous study[ 82 ]. Additionally, as coarse-graining is relevant primarily for large molecules,

we also included a polymeric system of 7-mer of poly-ethelyene glycol (PEG) (Figure  7.1 c).
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The PEG polymer was coarse-grained with 4 CH2-O-CH2 beads and 2 end beads of OH-

CH2-O-CH2-CH2, which are chemically distinct groups with typically used 3-5 heavy atoms

per bead. All the MD simulations for the target atomistic system, the IBI training as well

as simulations for performance evaluation of coarse-grained models were performed using

LAMMPS[ 130 ] at 298K and 1 atm pressure and the details of simulation procedure are

reported in Section 8.A.

7.2 Results
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Figure 7.2. (a) A configuration from PEG-M1 MD simulation which shows
the bonded beads drift apart as indicated by the stretched (broken) bonds. (b)
A snapshot of two PEG-M1 molecules which show lower intermolecular sepa-
ration than intramolecular bonded separation between orange and blue beads.
(c) Intermolecular and intramolecular lengthscale separation in molecule on x-
axis vs the rate of bond breaking on y-axis for all mappings. The lengthscale
separation is given by the ratio of minimum spearation at which intermolecu-
lar beads can be found (rinter) and the maximum spearation at which bonded
beads can be found (rintra).
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The final error for five properties– RDF, force, pressure, Hv and diffusivity are reported

in Figure  7.3 . We report the errors only for high and low resolution butanol mappings R3

and R5, respectively and PEG M1 mapping, as we find that these capture the key mapping

dependencies in the CG model performance. The performance for the mappings R2 and R4

and any other minor mapping differences are discussed in 8.G. First thing to note is that the

PEG M1 mapping is denoted by hatched bar to differentiate this mapping which exhibited

unphysical behavior. As the simulation progresses, the intramolecular neighbors of a bead

drift away as indicated by the extended bonds in the PEG-M1 configuration (Figure  7.2 a).

The bead replaces its intramolecular neighbors falsely by other beads forming a ”pseudo”

molecule. Now, the intramolecular constraining forces act between the beads of this pseudo

molecule. Hence, we obtain the correct force distribution and overall structural correla-

tions and will be discussed further below. This unphysical behavior stems from overlap

between two length-scales of the system– intramolecular bond length and distance between

first shell neighbors. If the distance between bead and its intermolecular neighbor is less

than its bonded neighbor, the bead mistakenly applies constraining force on the intermolec-

ular neighbor instead of the bonded neighbor and in the absence of these forces, the real

bonded neighbor keep moving away. A representative snapshot of two PEG M1 molecules is

shown as an example (Figure  7.2 b), where the distance between blue and orange beads in

different molecules (3.67 Å) is less than from their actual bonded neighbors (3.8 and 4.16 Å).

This behavior was also observed for R4 mapping but not for R2 and R3 mappings (Figure

 7.2 c). On y-axis of Figure  7.2 c, the reaction rate normalized over total number of bonds

is reported. The PEG-M1 and R4 mapping show breaking of all bonds, whereas no bonds

are broken for R2 and R3 mappings. The corresponding length-scale separation, i.e. ratio

of minimum separation at which intermolecular beads can be founds (rinter) and maximum

separation at which bonded beads can be found (rintra) is reported on x-axis. For PEG-M1

and R4 mappings, the ratio is less than 1, indicating the possibility of smaller intermolecular

separation than intramolecular seperation. However, for R2 and R3, this ratio is greater

than 1 and hence, the bead does not mistake intermolecular neighbor for bonded neighbors.

The values for reaction rate and (rinter/rintra) are averaged over all bond types. In addition

to the lengthscale ratio, the RDF for intermolecular beads and bonded beads are shown
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in Figure  7.5 to display the lengthscale overlap more clearly. PEG-M1 and R4 are more

representative of commonly used coarse mappings of 3-5 heavy atoms per bead, but these

coarser beads have overlapping intermolecular and intramolecular lengthscales and hence,

exhibit unphysical behavior with the DeePCG framework.

Figure 7.3. Error for RDF, force, pressure, ethalpy of vaporization, and
self-diffusion coefficient (from top to bottom), for mapping butanol R3 (pink),
butanol R5 (blue) and PEG M1 (yellow). The bar for PEG mapping is hatched
to caution the reader that the simulation shows unphysical breaking and for-
mation of bonds. The standard errors are denoted by the thin line passing
through the marker. All errors except that for forces are normalized.

A comparison of RDF of bonded beads vs. intermolecular beads clearly show this overlap

for R4 and PEG M1 mapping, but not for R2 and R3 mapping which do not exhibit this

behavior (Figure  7.5 ). The TL approach proposed here however corrects this issue because

it incorporates direct information about what constitutes a molecule and bending, stretching

and torsional potentials. Thus, transfer learning molecular information improves the pure
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ML model. Next, we discuss the performance of various models for different properties

of interest. It should be noted that, although, the error for various properties is reported

for PEG M1 mapping ML model in Figure  7.3 , we do not include it in our discussion on

comparison of different models as it violates basic physics during the simulation.

The force error appears very similar across all models for all mappings (Figure  7.3 and

 7.6 ). Although, the SP models do not have any direct force information they reproduce force

similarly as TL and ML models. On a closer inspection (Figure  7.7 ), the SP models do have

slightly higher error due to exclusion of many-body effects but compared to the absolute

error we find these differences to be minor. This was reported in our previous work[ 82 ]

as well, where IBI and MSCG produced forces with similar accuracy across all mappings.

Nevertheless, the comparably high force errors in the ML model suggests that the irreducible

error dominates the representability related errors for the forces at these CG resolutions. In

particular, the ML model has sufficient complexity to describe many-body interactions and

anisotropic interactions; nevertheless, this additionally complexity does not result in lower

force errors which is explicable by high irreducible errors. We find that structural information

captures the essential forces equally well as supplying the force information directly. Also, it

is important to note that the force error for the ML model for PEG M1 and R4 mapping is

comparable, even slightly lower than other models. This is a good example of how the ML

model can trick the model with low objective function value but undesired characteristics,

and serves as a warning of implementing ML models carefully.

On the contrary for RDF, we do see some effect of the model depending on the mapping.

For R5 mapping (Figure  7.3 ), although we see a trend, the RDF errors are very small and the

RDF is perfectly reproduced across all models. For R3 mapping (Figure  7.3 ), we see lower

errors for TL models than SP and ML. However, for R2 mapping, we find TL to perform

poorly compared to ML and SP and for R4 mapping, TL and SP models are comparable

(Figure  7.6 ). Thus, we do not see a common winner for butanol mappings but two important

findings come to light. First, ML outperform the SP IBI based models by reproducing

intramolecular structural correlations better. This was seen for R2 and R3 mapping, and

the intramolecular RDFs for R3 mapping are reported in (Figure  7.8 ). Moreover, even

though IBI perfectly reproduces the bond and angle correlations (Figure  7.8 ), it doesn’t
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translate to structural correlations among all pairs in the molecule and explicit many-body

forces through ML like functional form are needed. However, the second finding is IBI-based

SP model always outperform in capturing the intermolecular strutural distributions (Figure

 7.8 ). These strengths of ML and SP model do not always translate into the TL approach.

For instance, for R2 mappings TL model does not reproduce intramolecular distributions

but does very well for R3 mapping. We want to emphasize that these differences are minor.

Most of the errors are associated with hydroxyl beads which may be a much finer coarse-

graining than commonly used CG models. For R5 mapping, which is very representative of

CG models, we find all models reproduce RDF equally well (Figure  7.9 ).

For the more relevant system of PEG M1 mapping, we find that the SP models clearly

outperform the TL models and transfer learning hurts the reproduction of structure (Figure

 7.10 ). One possible reason may be that for the very coarse mapping of PEG M1, with

intramolecular constraints, the variance in forces is high and hence, supplying forces to the

TL model hurts more than helps. Another possible reason is the overlapping length-scales

of bonded and first shell neighboring beads, discussed above in the context of breaking of

molecules. Even for the TL model, the NN may be applying the forces to be applied to

the bonded neighbor instead to the bead’s first shell neighbor. Thus, it is unclear yet if the

poor reproduction of structural features by TL model can be generalized. Also, note that,

similar to the force error, the RDF error, which serves as the testing objective function, is

low for R4 (Figure  7.6 ) and PEG M1 (Figure  7.3 ). Thus, despite the breaking and forming

of molecules through the simulation, these mappings maintain an accurate overall structure.

Coarse-grained models are known to suffer from the problem of high pressure unless

explicitly trained for, which we find in our comparisons as well. The models which account

for pressure correction SPPC and TLPC naturally outperform other models (Figure  7.3 ). The

only exception to this was the TLPC model for PEG M1 mapping. We note that pressure

can be included in any force-matching framework as a constraint as done by Izvekov et al in

the MSCG framework[ 70 ] and can be applied to the DeePCG (ML) model as well. However,

here we show that transfer-learning with pressure corrected IBI is another approach to do

so.
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Now, we look at two off-target properties for which none of the models received any

information– another thermodynamic property of enthalpy of vaporization (Hv) and a dy-

namic property of molecular self-diffusion coefficient (D). In our previous work[ 82 ], we found

that Hv is usually underestimated in CG models due to reduced attraction among beads in

the condensed phase than all atomistic system, leading to a negative errror. Hence, we

saw pressure-corrected potentials, which essentially incorporate additional attractive forces

reproduce Hv, as seen from a comparison of SP vs SPPC (Figure  7.3 and  7.6 ). However, a

greater effect of inclusion of forces is seen for the ML model which shows positive Hv error

mappings R2 and R3. Overall, we find that Hv is better reproduced by ML and pressure-

corrected models TLPC, SPPC than SP, TL. Thus, in the context of Hv, for these mappings,

the ML model does a good job on its own and transfer learning is not needed, but it doesn’t

hurt much either. For the R5 mapping, since the vapor phase energy is zero and the potential

learnt by the neural network has no reference, we find large error and deviation in error for

ML, TL and TLPC models. Whereas, since in the IBI procedure, we use shifted potential,

we find a much better performance. This problem with the neural network based models

can be easily resolved by adding an external reference. Another problem in calculation of Hv

was found for R4 mapping, where it is not possible to simulate a vapor phase system as the

DeePCG framework uses a local frame of reference which requires two neighbors when R4

mapping has only two beads in a molecule. This is not a criticism of DeePCG framework,

which we believe was primarily designed for condensed phase simulations. This is merely to

illustrate that lack of a physical structure may hurt evaluation of certain properties and in

this case, transfer learning also does not help.

Coarse-grained models are known to perform poorly for dynamic properties due to the

loss of degrees of freedom and we see that clearly across all models (Figure  7.3 and  7.6 ). We

find the models with many-body forces (ML, TL and TLPC) show slower dynamics closer

to the atomistic systems for all the mappings. However, the errors for all the models are

still close and we cannot claim that a better reproduction of an averaged quantity such as

diffusivity is sufficient to reproduce dynamics.
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7.3 Conclusions

The expectation behind implementation of transfer learning approach is two-fold. First,

it should be an improvement on the SP model due to its complex architecture which can

potentially capture certain missing features. For butanol R3 mapping, we saw that the

inclusion of many-body forces through machine learning framework improves intramolecular

structural correlation and dynamics. Secondly, it should be an improvement on the ML

model, due to the inclusion of certain physical aspects missing in blackbox approach. In

the mappings studied here, we found the TL models does a very good job in fulfilling this

expectation. For instance, for the butanol R4 and PEG mapping, the TL models preserve

the molecular structure lost in the ML model. The TL model also corrects for pressure for

all mappings and allows for calculation of vapor phase enthalpy for the butanol R4 mapping.

It does not however solve all the problems such as arbitrary enthaly of vaporization values

for one bead mappings such as R5 mapping.

Through these comparisons for different properties across various mappings, we don’t

see a clear winning model for the butanol mappings whereas for PEG M1 mapping, the

SP model shows slightly better performance. However, for both molecules, we find the ML

model exhibits certain issues due to lack of physics in the framework; whereas these issues

are absent in the SP model and resolved for some cases by the TL model. In the context

of the parameterization schemes and mappings studied here, SP model does seem the best

choice followed by TL and then ML model. However, the goal of this chapter is not to

present a new model of IBI + DeePCG, but rather transfer learning as a mechanism to in-

corporate sufficiently complex infrastructure and physics in the CG model. We demonstrate

this through the reproduction of pressure, minor improvements in structural features, and

constraining of beads within a molecule. We hope that this serves as another mechanism

the community uses to build better CG models, using combination of different bottom-up

approaches or even combination of bottom-up and top-down potentials.
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APPENDIX

7.A Molecular Dynamics Simulation Details

LAMMPS was used to perform all molecular dynamics simulations [  130 ]. All atomistic

reference simulations used a one fs integration time step, Velocity-Verlet integration, and

periodic boundary conditions. Long-range electrostatics were modelled using the particle-

particle-particle-mesh (PPPM) algorithm[  21 ] and Lennard-Jones interactions were truncated

at 14 Å. All simulations were initialized from diffuse configurations containing 2010 atoms

and 5200 atoms for butanol and PEG, respectively, using a cubic grid to place molecules in

random orientations without overlap. The velocities were initialized from a uniform distri-

bution obtained with a random seed value and scaled to give the correct kinetic energy. The

simulations were first relaxed in the NVE ensemble with restrained atomic displacements of

0.1 Å per time step for 10 ps, followed by a 1 ns NPT equilibration at 298K and 1 atm. The

simulations were extended at 298K and 1 atm for 2 ns in the NPT ensemble to obtain the

average density. In the NPT simulations, the Nosé-Hoover thermostat and barostat were

employed using the modified form proposed by Martyna, Tobias, and Klein, as implemented

in LAMMPS[  102 ], with a relaxation time constant of 0.1 ps and 1 ps for the thermostat and

barostat, respectively. From these initial simulations, NVT simulations were generated with

velocities reinitialized as described above. These simulations were first relaxed in the NVE

ensemble with restrained atomic displacements of 0.1 Å per time step for 10 ps, then the

simulation box was rescaled over 10 ps to obtain the correct average density, followed by

a 1 ns NVT equilibration at 298K. The production data was obtained by extending these

simulations for 10 ns. The thermodynamic data and coordinates were sampled at 0.1 ps and

1 ps, respectively.

To provide consistent parameterizations of each liquid, all atomistic force-fields in this

study were derived from quantum chemistry calculations using the topology automated force-

field interactions methodology (TAFFI)[ 148 ]. In brief, all force field terms were parameter-

ized on the basis of density functional theory (DFT) quantum chemistry calculations, using

the B3LYP-D3/def2-TZVP level of theory computed via the Orca software package [ 116 ].
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The force fields were parameterized using the OPLS force-field functional form [ 77 ], except

that 1-4 pairwise interactions were excluded in the non-bonded interaction computation.

Bond, angle, and dihedral force-field terms were derived from potential energy curves com-

puted for internal degrees of freedom for each molecule in vacuum, optimizing the other

degrees of freedom as a function of the mode scan. The resulting energy curves were self-

consistently fit to obtain the corresponding force-constant parameters and equilibrium dis-

placement parameters in the force field. Partial charges were obtained from CHELPG calcu-

lations on molecular configurations sampled from the liquid, and Lennard-Jones parameters

were parameterized on the basis of counterpoise-corrected interaction energies calculated for

molecular pairs sampled from the liquid state.

The coarse-grained simulations used in IBI parameterization as well as to evaluate the

thermodynamic and dynamic properties of each model were performed in the NVT ensemble.

The same initial configuration was used for these simulations and was obtained by starting

from a diffuse configuration of at least 1000 particles and equilibrating to the known atomistic

density by the same NVT equilibration procedure as in the atomistic simulations. For

butanol R2, R3, R4, R5 mappings and PEG 1002, 1002, 1000, 1000 and 1002 particles were

simulated, respectively. Tabulated, DeePCG and a combination of tabulated and DeePCG

potentials were used for CG simulations for the SP, ML and TL model, respectively. In our

previous work[ 82 ], we found electrostatic interactions to have no effect on system physics

and hence, were not included in the simulations. The pairwise tabulated interactions were

excluded from 1-4 neighbors within a molecule, which experience tabulated bond, angle,

and dihedral interactions instead. However, since DeePCG interactions are not pairwise, all

particles within the chosen cutoff interact with each other.

7.B IBI Procedure for Bonded Potentials

All IBI parameterizations were performed using a custom implementation developed by

our group. The target distribution functions for bonds, angles, and dihedrals were sampled
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from first 5ns of the atomistic trajectory and histogrammed with bin sizes of 0.1 Å, 1◦, and

1◦ respectively. The distributions are obtained using equations,

Pb(r) = δ (r − rb)
4πr2 , Pa(θ) = δ (θ − θa)

sin θ
, Pd(φ) = δ (φ − φd) , (7.5)

where the subscript ”b”, ”a” and ”d” indicate a specific type of bond, angle and dihedral,

respectively and the value of an instance is given by rb, θa and φd, respectively.

The initial guess potential for the IBI procedure for a intramolecular mode γ is obtained

by a Boltzmann inversion of the corresponding distributions by,

Uγ(κ) = −kBT ln gγ(κ), (7.6)

where kB and T are the Boltzmann constant and the simulation temperature, respectively.

The potentials were extrapolated to a range of 0-20 Å, 0-180◦ and -180-180◦ for bonds,

angles and dihedrals respectively. Quadratic extrapolation was utilized to obtain potential

values outside the sampled regions for bonds and angles. Linear extrapolation was utilized

to obtain potential values outside the sampled region for dihedrals. The guess potential for

were corrected iteratively, according to the Eq.  7.7 ,

Uγ(r)k = Uγ(r)k−1 + αkBT ln Pγ(κ)k−1

Pγ(κ)AA , (7.7)

where Uγ(r)k is the potential of mode γ at kth iteration and P AA
γ is the distribution obtained

from atomistic trajectory.

For butanol R4 mapping, for each bonded IBI iterations, single-molecule CG simulations

with shrink-wrap boundary conditions were performed to sample the intramolecular distri-

butions. Whereas for all other mappings, we performed condensed phase simulations. We

found that for butanol mappings R2 and R3, the potentials parameterized for single-molecule

CG simulations were not able to reproduce the intramolecular distributions in the condensed

phase and the effective potentials had to be parameterized from condensed phase simulations

itself. The initial configuration for the condensed phase simulation was obtained by mapping

a frame from the atomistic trajectory. For both single-molecule and condensed phase, CG
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simulations were first relaxed in the NVE ensemble with restrained atomic displacements of

0.1 Å per time step for 10 ps, followed by a 0.1 ns NVT equilibration at 298K. The production

data for sampling the intramolecular distributions were obtained by extending this trajectory

for 10 ns and 0.5ns for single-molecule and condensed phase simulations, respectively and

sampling configurations every 0.1 ps. The IBI procedure was run for 50 iterations, and the

tabulated potentials from the iteration with the smallest distribution error (Eq.  7.8 ) were

used for the subsequent non-bonded IBI parameterizations and CG property calculations.

The average distribution error was given by

εIBI,b = 1
Ng

Ng∑
γ

∑
κ ‖P AA

γ (κ) − P CG
γ (κ)‖∑

κ P AA
γ (κ) , (7.8)

where γ are different bonds, angles and dihedrals, κ are the values of these quantities, Pγ(κ)

is the value of distribution function of γ at κ and Ng is the total number of these interactions.

7.C IBI Procedure for Non-bonded Potentials

The target RDFs were sampled from first 5ns of the atomistic trajectory and histogrammed

with a bin size of 0.01 Å and a range of 0-10 Å according to the equation,

gab(r) = V

4πr2NaNb

∑
i∈a

∑
j∈b

δ (r − rij) (7.9)

where a and b are the types of the pair of CG particles, V/NaNb corresponds to the density

of pairs in an ideal gas, δ is the Dirac delta, rij is the distance between particles i and j, and

dividing the summation by 4πr2 normalizes the density of pairs at each separation r. Pairs

separated by less than four bonds are neglected in both the summation and denominator

calculations.

The initial guess potential for each pair of CG particle type is the potential of mean force

obtained by Boltzmann Inversion,

Uab(r) = −kBT ln gab(r). (7.10)
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An exponential function was used to extrapolate the potential values for the inner region

where the RDF was not sampled. The fitted potentials were further interpolated to a finer

grid of 0.001 Å when utilized in CG simulations.

For the CG sampling necessary to iteratively refine the pair-wise interactions, a system

containing at least 1000 beads was used for all mappings. This system was equilibrated for

1 ns in an NVT ensemble, as discussed in the Section 8.A, and the last frame was used as an

initial configuration for the start of IBI procedure. For subsequent iterations, the last frame

from the previous iteration was used as the initial configuration.

At each iteration of IBI, the correction term is obtained as in Eq.  7.11 ,

Uab(r)k = Uab(r)k−1 + αkBT ln gab(r)k−1

gab(r)AA + βA
(

1 − r

rcut

)
. (7.11)

For the first 20 iterations of IBI, only the RDF correction was applied ( i.e., β = 0 in Eq.

 7.11 ). The potentials from the iteration with the lowest value of the objective function

εIBI,nb = 1
Np

Np∑
p=1

∑rcut
r=0 ‖gAA

p (r) − gCG
p (r)‖∑rcut

r=0 ‖gAA
p (r) + gCG

p (r)‖ (7.12)

were used to represent the SP model, i.e. the IBI without no pressure correction model.

These potentials were also used for training and additional production simulations for the

TL model, i.e. the transfer learning model based on IBI.

From the 20th iteration onwards, both RDF and pressure corrections were applied starting

with β = 0.01. After that, the weighing coefficient β was dynamically changed depending

on the pressure error trend over the previous 5 iterations. For the first 20 iterations, each

CG trajectory was of length 0.1 ns and sampled at 0.1 ps. After turning on the pressure

correction, a longer trajectory of 1 ns with sampling of 0.1 ps was used to obtain accurate

pressures.
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The IBI procedure ran for a maximum of 80 iterations. The procedure was allowed to

terminate earlier if the pressure error fell below 10 atm. From all iterations, the tabulated

potentials from the iteration with the lowest value of the objective function

εIBI,nb = 1
Np

Np∑
p=1

∑rcut
r=0 ‖gAA

p (r) − gCG
p (r)‖∑rcut

r=0 ‖gAA
p (r) + gCG

p (r)‖ + 0.05 ∗ ‖P AA − P CG‖
P AA (7.13)

were retained and utilized in subsequent production simulations for the model SPPC , i.e.

IBI with pressure correction. These potentials were also used for the training and production

simulations of the TLPC model, i.e. the transfer learning model based on IBI with pressure

correction. The first and second terms on the RHS of Eq.  7.13 indicate the normalized

error in RDF (gp(r)) and pressure (P ), respectively. The weight of 0.05 was applied to the

pressure errors due to their inherently higher variance than the RDF error.

7.D Training and testing of Neural Network

The blackbox (ML) and both transfer learning (TL) models consist of a fully connected

feedforward neural network (NN). The former blackbox DeePCG framework decomposes

the net energy of the configuration as a summation of energy of each bead. The later TL

model instead models the remainder energy not captured in the IBI model. This bead-

wise energy is an output of an NN and its input is the local neighborhood of the bead.

The local neighborhood is captured in the form of a descriptor vector which consists of

interbead distance information between bead and its short-distance (sel_a) and long-distance

(sel_r) neighbors within a cut-off radius of R_c. For the short-distance neighbor j of bead i,

the vector contains both interbead radial and angular information given by 4 components–

1/Rij, xij/R2
ij, yij/R2

ij, zij/R2
ij. The net distance between the two beads is indicatd by R and

x, y and z are the components of the interbead vector. The interbead vector is defined in a

local axes frame of the bead determined by the bead and its two nearest neighbors of given

bead types. Whereas for the long-distance neighbors, only the inverse of net distance 1/Rij

is supplied. The user supplies the above inputs of the cut-off radius R_c, the number of

161



short-distance sel_a and long-distance sel_r neighbors for each bead type, and the beads to

be used for determining the local axes frame for each bead type (axis_rule).

For the butanol and PEG mappings, a cutoff radius of 10 and 12 was used, respectively.

The ”axis_rule”, i.e. the rules used for determining the local axes for each CG representation

are given in Table  7.1 . For each bead type, a total of six values, with three value per axes

must be listed. Of the three values per axes, the first entry describes if both radial and

angular information must be included, and is always set to 0, i.e. both radial and angular

information is included. The second and third entry are used for selecting the beads used for

determining the axes, and indicate the bead type and index of the neighbor (0 meaning first

neighbor and so on), respectively. For butanol mappings R2 and R3, which have 3 beads

per molecule, the two intramolecular neighboring beads were used to determine the local

axes as a natural choice. The type of the first and second neighbor in the local axes frames

are determined based on the distance between the bead and the neighbors. For instance,

for R3 mapping, for bead the CH2-CH2-CH2, although both CH3 and OH are immediate

neighbors, OH is placed as the first neighbor as it is closer than CH3. For R4 mapping, first

neighbor for each type is the intramolecular neighboring bead whereas the type of the second

neighbor was similarly chosen to be the type of closest bead. Hence, OH bead was chosen

as the second neighbor for both OH and CH3-CH2-CH2-CH2 beads. For R5, the choice is

straightforward to be the two nearest neighbors as there is only one type of bead.

For PEG M1 mapping, immediate neighbors were chosen for all bead types with one

exception. For M1 mapping, for CH2-O-CH2 beads, the first and second neighbors in the

axis_rule are chosen to be first and second neighbors of bead type CH2-O-CH2. For the

middle CH2-O-CH2 beads (CH2-O-CH2m), this corresponds to its immediate CH2-O-CH2

neighbors on opposite sides (Figure  7.4 a). But for the CH2-O-CH2 beads closer to the

end group (CH2-O-CH2e), this corresponds to the CH2-O-CH2 neighbors on the same side

(Figure  7.4 b). However, despite this distinction both bead types have similar local axes

frame as the first axis is formed by the bead of interest and its nearest CH2-O-CH2 bead

and the second axis is given by the normal to the plane formed by the three consecutive

CH2-O-CH2 beads. However, to make sure this definition of axis_rule doesn’t affect the

system physics, we also experimented with M2 mapping (Figure  7.4 c) where the middle and
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end CH2-O-CH2 group are treated as different bead types with separate axes rules, but the

overall results obtained were very similar to M1 mapping. The the cutoff radius (R_c) and

axis_rule were held fixed but the number of short-distance and long-distance neighbors were

treated as tunable hyperparameters in the model training. Additional hyperparameters

involve the number of configurations per batch (batch_size), number of batches used in

training (stop_batch), and the neural network structure (n_neuron). The learning rate for

the neural network starts with learning rate (start_lr) and decays exponentially with a rate

of (decay_rate) on the scale of (decay_steps).

HO
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O
O

O

HO
OHO

O
O

O
O

O

Neighbor 1/2 Neighbor 1/2CH2-O-CH2m

HO
OHO

O
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O
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Neighbor 1 Neighbor 2CH2-O-CH2e

(A)

(B)
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Mapping M2

Figure 7.4. The difference in the neighbors used to determine local axes rule
for bead of type CH2-O-CH2 depending on its position along the chain, i.e. if it
is a (a) middle bead (CH2-O-CH2m) vs. (b) closer to chain end (CH2-O-CH2e).
(c) A new mapping which treats (CH2-O-CH2m) and (CH2-O-CH2e) beads as
different bead types.

The ML model is trained for the net force on each bead, while the TL models are trained

for the error in forces on each bead for the potentials parameterized using IBI. For all the

models, a total of 5000 configurations sampled every 1ps from a 5ns production run were

used. In the training process, we start with varying the hyperparameters sel_a and sel_r,

i.e., the number of short-distance and long-distance neighbors as these parameters affect the

physics significantly. For a molecule with N CG beads, we start sel_a from 2N-1, i.e. its

intramolecular neighbors (N-1) and beads in closest neighboring molecule (N), and sel_r

from zero, i.e. only information about short-distance neighbors is supplied. Both sel_a and

sel_r are incremented by total number of beads in the molecule N, i.e. adding a new molecule

as neighbor. For instance for butanol mapping R3, with N=3, we vary sel_a as {5 ,8 ,11 ...}

and sel_r as {0, 3, 6 ...}. While training, we try all combinations of sel_a and sel_r, i.e. {(5,
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Table 7.1. Rules for determining local axes of a given bead type. For each
CG mapping, the second column contains the ”axis_rule” in the format is
as entered in the input json file of the DeePCG module. The corresponding
constituent atoms and the type number for each bead type (as supplied to the
DeePCG module) are given in the third column for reference.

CG mapping axis_rule Bead types
butanol R2 [0, 1, 0, 0, 2, 0, 0, 2,

0, 0, 0, 0, 0, 1, 0, 0,
0, 0]

CH3-CH2: 0, (CH2)2: 1, OH: 2

butanol R3 [0, 1, 0, 0, 2, 0, 0, 2,
0, 0, 0, 0, 0, 1, 0, 0,
0, 0]

CH3: 0, CH3-(CH2)3: 1, OH: 2

butanol R4 [0, 1, 0, 0, 1, 1, 0, 0,
0, 0, 1, 0]

CH3-(CH2)3: 0, OH: 1

butanol R5 [0, 0, 0, 0, 0, 1] CH3-(CH2)3-OH: 0
PEG M1 [0, 1, 0, 0, 1, 1, 0, 1,

0, 0, 1, 1]
OH-CH2-CH2-O-CH2: 0, CH2-O-CH2: 1

0), (5, 3), ... (8, 0), (8, 3), ...}. We start the training with only two values of sel_a and four

values of sel_r, and add more molecules till a local minima is obtained. For mapping PEG

M1, we started with N-1 number of sel_a neighbors. During this optimization for number

of neighbor, other hyperparameters were held fixed to the values reported in Zhang et al or

in the DeePCG tutorial (Table  7.2 ).

Table 7.2. The values of hyperparameter held constant while optimizing
number of neighbors, as entered in the DeePCG input file.

Argument Value
stop_batch 100000
batch_size 4

start_lr 0.0001
decay_steps 5000
decay_rate 0.95
n_neuron [120, 60, 30, 15]

After obtaining the optimal number of neighbors, we experimented further with three hy-

perparameters of the starting learning rate (start_lr), the number of batches used in training

(stop_batch), and the number of layers and nodes in the neural network (n_neuron). The fol-

lowing additional hyperparameters were tested– a lower and higher learning rate (start_lr =
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0.001, 0.00001), additional training data (stop_batch = 500000) and neural networks with

varying number of layers and nodes n_neuron = [60, 30, 15], [120, 60, 30], [240, 120, 60, 30, 15],

[160, 80, 40, 20], [80, 40, 20, 10]).

For each set of hyperparameters, 3 models were trained with different initialization. After

training, a short MD simulation of 0.5 ns was run and the last 0.25ns configurations sampled

at 1ps were used to parse the radial distribution function (RDF) of all pair types in the

system. The RDF was calculated for each CG pair according to the Eq.  7.9 but all pairs

even 1-4 intramolecular neighbors were included contrary to the description in Section 8.C.

The net error in the RDF (εRDF) was averaged over RDF errors for Nt = 3 models as,

εRDF = 1
Nt

Nt∑
i

1
Np

Np∑
p=1

∑rcut
r=0 exp(g(r)AA

i,p )‖g(r)AA
i,p − g(r)CG

i,p ‖∑rcut
r=0 exp(g(r)AA

i,p )‖g(r)AA
i,p ‖

. (7.14)

The RDF error for a model i is calculated as an average over errors for all pair types (p),

given by the difference in the RDF in the atomistic representation ( g(r)AA
i,p ), and the RDF

in the coarse-grained representation (g(r)CG
i,p ), and the summations run from r = 0 to the

radial cutoff for the pairwise interactions, rcut = 10. To avoid having the poorly sampled

regions dominate the error measure, the difference in RDFs is weighted by exp g(r)AA
i,p and

the error at each r is included in the summation only if g(r)AA
i,p > 0.1. In the denominator,

the error is normalized by the average value of atomistic RDFs over radial distances, with

the same exponential weighting.

This RDF error was used as a testing score to select the best set of hyperaparameters

throughout the hyperaparameter optimization process. Generally, for tuning the hyper-

parameters of a force-based ML model, the test loss function is the force error over new

configurations not used in training, which tests the ability of model to capture the potential

energy surface for unseen configurations. Here, instead, we test the ability of the model to

predict structural features which are not directly seen through the training data. In doing

so, we select the hyperparamaters with highest transferability for the purely ML model for

a fairer comparison with the TL models which already have the structural information. The

final hyperparameters for the best model for each mapping are as below,
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Table 7.3. For each CG mapping and for the ML and TL models, the second
column contains the optimized hyperparameters in the format as entered in
the input json file of the DeePCG module.

CG mapping Model Hyperparameters
butanol R2 ML sel_a : 5, sel_r : 6, start_lr : E-4,

stop_batch : 500000, n_neuron : [120, 60, 30, 15]
TL sel_a : 5, sel_r : 3, start_lr : E-3,

stop_batch : 100000, n_neuron : [120, 60, 30, 15]
TLPC sel_a : 5, sel_r : 9, start_lr : E-3,

stop_batch : 100000, n_neuron : [120, 60, 30, 15]
butanol R3 ML sel_a : 5, sel_r : 9, start_lr : E-4,

stop_batch : 100000, n_neuron : [240, 120, 60, 30, 15]
TL sel_a : 5, sel_r : 6, start_lr : E-4,

stop_batch : 100000, n_neuron : [240, 120, 60, 30, 15]
TLPC sel_a : 5, sel_r : 6, start_lr : E-4,

stop_batch : 100000, n_neuron : [240, 120, 60, 30, 15]
butanol R4 ML sel_a : 3, sel_r : 10, start_lr : E-4,

stop_batch : 100000, n_neuron : [240, 120, 60, 30, 15]
TL sel_a : 3, sel_r : 0, start_lr : E-4,

stop_batch : 100000, n_neuron : [60, 30, 15]
TLPC sel_a : 3, sel_r : 0, start_lr : E-4,

stop_batch : 100000, n_neuron : [120, 60, 30, 15]
butanol R5 ML sel_a : 12, sel_r : 16, start_lr : E-4,

stop_batch : 500000, n_neuron : [120, 60, 30, 15]
TL sel_a : 16, sel_r : 4, start_lr : E-4,

stop_batch : 500000, n_neuron : [120, 60, 30, 15]
TLPC sel_a : 8, sel_r : 16, start_lr : E-4,

stop_batch : 100000, n_neuron : [240, 120, 60, 30, 15]
PEG M1 ML sel_a : 11, sel_r : 12, start_lr : E-4,

stop_batch : 100000, n_neuron : [120, 60, 30]
TL sel_a : 5, sel_r : 12, start_lr : E-4,

stop_batch : 100000, n_neuron : [240, 120, 60, 30, 15]
TLPC sel_a : 5, sel_r : 0, start_lr : E-4,

stop_batch : 100000, n_neuron : [240, 120, 60, 30, 15]

7.E Property Calculation

The performance of the different models for various properties namely RDF, pressure,

force, diffusion coefficient and molecular enthalpy of vaporization, was evaluated as discussed

above. In order to parse these properties (except for forces), for all the SP models, 3
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independent MD simulations were performed. For the ML and TL models, 3 independent

simulations were obtained by performing an MD simulation for the three independently

trained models. The initial configuration for the MD simulation was obtained from the

pre-equilibrated trajectories as described in Section 8.A. The velocities were reinitialized

for each independent simulation, followed by a 10 ps NVE simulation with constrained

atomic displacements of 0.1 Å per time step and a 1 ns equilibration in the NVT ensemble.

Finally, production runs of 1 ns in NVT ensemble were performed with coordinate and

thermodynamic data sampled at 1 ps frequency.

The net error in the RDF (Eq.  7.14 ) was calculated as described in Section 8.D but for

a longer production run of 1ns.

The net force error is the root mean square error of the force over Nk configurations and

Nj beads, given by

εF =

√√√√√ 1
Nk

Nk∑
k

1
Nj

Nj∑
j

∥∥∥FCG
k,j − FAA

k,j

∥∥∥2
, (7.15)

where FCG
k,j and FAA

k,j are the forces on bead j in k configuration as given by the coarse-grained

model and atomistic mapping, respectively. This error is calculated over 1000 configurations

obtained from mapping the last 1ns of the atomistic production run.

The pressure was obtained directly from an average over the 1ns of LAMMPS thermo-

dynamic output. The fractional error in pressure was calculated according to

εP = 1
Nt

Nt∑
i

P CG
i − P AA

i
P AA

i
(7.16)

where Nt is the number of independent trajectories.

The self-diffusion coefficient was obtained from the mean square displacement of each

molecule using the Einstein relation

D = lim
t→∞

1
6

d

dt
〈‖rm(t) − rm(0)‖2〉, (7.17)
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where rm(t) is the position vector of the molecule center of mass at time t. The angular

brackets in Eq.  7.17 indicate an average over all the molecules and time origins. The

fractional error in the diffusion coefficient was calculated according to

εD = 1
Nt

Nt∑
i

DCG
i − DAA

i
DAA

i
(7.18)

where Nt is the number of independent trajectories. For each trajectory, the numerical

derivative of the first continuous 10 ps interval after 100 ps which exhibited a linear slope

(0.95- 1.05) of log(MSD) versus time were used to obtain the diffusion coefficient.

The molar enthalpy of vaporization, ∆Hv, is calculated by

∆Hv = Uv + kBT − Uc, (7.19)

where Uv and Uc are the mean molar potential energies in the gas phase and condensed

phase, respectively. Uv was calculated by single-molecule MD simulation. The net fractional

error in the enthalpy of vaporization was calculated according to

εHv = 1
Nt

Nt∑
i

∆Hv
CG
i − ∆Hv

AA
i

∆Hv
AA
i

(7.20)

where Nt is the number of trajectories. Similar to the condensed phase, three independent

gas phase simulations were performed by starting with 10 ps of NVE simulation with dis-

placement constrained to 0.1 , followed by a 1 ns equilibration and finally, a production

run of 1ns. The energy Uv was calculated by averaging the potential energy over the 1 ns

trajectory sampled at every ps.
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7.F Molecule Breaking in Butanol R4 and PEG M1 Mapping

As discussed above, for butanol R4 and PEG M1 Mapping, the atoms in the molecule

drift apart and move closer to new atoms forming a pseudo molecule. Thus, the bonds

between atoms in the originally defined molecule stretch to large lengths as the simulation

progresses (Figure  7.5 (a-b)). However, overall, the structure remains similar as the original

intramolecular neighbors are replaced by new atoms. On closer inspection, we find this

results from overlap in the length-scale of a bond and first shell of intermolecular neighbors

(Figure  7.5 (a-b)). The pair of intermolecular neighbors behave as bonded beads and exhibit

constraining force on each other, while the actual bonded bead drifts apart. The overlap

in length-scale is very apparent in the 0-1 RDF distribution (Figure  7.5 b) for PEG M1

mapping, where the 0-1 bond RDF and 0-1 intermolcular RDF show a large extent of overlap

between 3-5 Å. The maximum separation between bonded beads (rintra = 4.4 Å) is higher

than the minimum separation between intermolecular beads (rinter = 3.2 Å). Smaller yet

evident overlap is observed for 0-1 RDF for butanol R4 mapping and 1-1 RDF for PEG M1

mapping. The bond and intermolecular RDF were calculated using Eq.  7.9 , where only pairs

of beads forming 0-1 bond and pairs of 0-1 beads not in same molecule were counted for

the numerator, respectively; whereas for the all 0-1 RDF all 0-1 pairs were included. The

denominator was same across all three RDFs, i.e. total number of all 0-1 pairs was used,

to provide the same normalization. The other mappings of R2 and R3 do not exhibit this

phenomena due to disparate length-scales of bonded and intermolecular RDF as seen from

0-1 and 1-2 RDFs in Figure  7.5 c for R2 mapping.
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7.G Additional Results Referenced in Main Text

Error for different properties for butanol R2 and R4 mappings discussed above are re-

ported in Figure  7.6 

Figure 7.6. Error for RDF, force, pressure, ethalpy of vaporization, and
self-diffusion coefficient (from top to bottom), for butanol R2 (pink) and R4
mapping(yellow). The bar for R4 mapping is hatched to caution the reader
that the simulation shows unphysical breaking and formation of bonds. The
standard errors are denoted by the thin line passing through the marker. All
errors except that for forces are normalized.

The error in forces is slightly lower in ML and TL models compared to SP models, due

to inclusion of additional many-body interactions, as seen from Figure  7.7 . However, this

reduction in error is insignificant and the error in force is similar across different models

across all mappings as discussed above and reported in Figure  7.6 and Figure  7.3 .

As discussed above, we find two main trends for butanol mappings. Intermolecular

structural distributions are well reproduced by SP models compared to ML models, whereas
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Figure 7.7. Error in forces across different models for all 5 CG mappings
simulated in this work.

intramolecular structural distributions are well reproduced by ML models compared to SP

models. As an example of this, RDFs for all pair types for butanol R3 mappings are reported

below in Figure  7.8 . As seen from RDFs for pairs 0-2, 1-2 and 2-2, the intermolecular struc-

tural distributions are better reproduced by the SP and SPPC models (as well as TL models)

at distance 6-8 , 4-6 and 4-6 , respectively. The intramolecular structural distributions are

however better reproduced by the ML (as well as TL models) for pairs of type 0-2 between

3-5 . SP models fail to reproduce the intramolecular radial features despite reproducing the

bond and angle distributions very well (bottom row of Figure  7.8 ).

However, all the differences are very minute and mostly for RDFs involving OH bead.

OH bead is a very fine mapping than practically used CG models. For the more practical

mapping of R5, we find all models capture the structural distributions perfectly (Figure  7.9 ).

For PEG M1 mapping, the differences between TL and SP models are more significant

than butanol mappings. We find the TL models perform poorly as compared to the SP

models as seen below (Figure  7.10 ).
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8. OUTLOOK

Organic mixed ionic-electronic conductors bring a new wave of applications with their unique

ability to conduct ions and electrons. In the last decade or so, researchers have worked hard

to extend the possible applications of these polymers and in the near future, we can expect

further discoveries both in applications and design of novel mixed conductors. In order to

achieve this goal, we need combined efforts not only in testing new material candidates but in

understanding the coupling between ionic and electronic conducting channels, and complex

interplay between morphology and electrostatic interactions. Simulation tools, specifically,

coarse-grained simulations offer a great advantage as they can characterize the mesoscale

features of these disordered systems inaccessible to experimental techniques while accounting

for chemical features at the molecular scale. The simulation studies have been limited for

this class of polymers and primarily targeted to a few polymer candidates.

To progress the field further, we needed a method which can model the class of mixed

conducting polymers and capture the features unique to them. Hence, through this thesis,

we have made efforts to build such a general framework for the class of conjugated mixed

conducting polymers. The model captures features unique to mixed conductors such as π-π

stacking, torsional disorder in polymers, intramolecular charge delocalization, intermolecular

hopping transport, and electrolyte-polaron electrostatic interactions. The model is also

designed for a family of mixed conductors and can be used to test effect of a wide range of

diverse molecular variables on the OMIEC physics.

Accordingly, we have implemented the model to perform the first ever systematic com-

putational investigation of the effect of side-chain hydrophilicity and block patterning of

side-chains on the OMIEC physics. In the hydrophilic study, the polymer with all hy-

drophilic side-chains showed the highest dopant percolation as well as charge mobility. The

mixed side-chain configurations with both hydrophilic and hydrophobic side-chains showed

frustrated packing due to the competing interest of the two side-chains. We found two factors

essential for good charge conduction– well connected and torsionally aligned polymers, and

absence of trap sites. We also reconfirmed the expected effect of the surrounding dielectric–
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a higher dielectric screens the electrostatic interactions but also increases the reorganization

energy associated with polaron hopping.

In the block-chain patterning study, we discovered advantages to adding separate larger

blocks of hydrophilic and hydrophobic side-chains. The dedicated block of hydrophilic side-

chains interfaces with electrolyte improving the polymer-electrolyte interactions, stacking of

polymer and connections through the polymer network. Although it does not manifest into

significantly high mobility, it does show higher number of electronic pathways per polaron

sites. We also find that the effective polarity of side-chains is a function of its local neigh-

borhood and can alter the swelling and morphology of the polymer network. These findings

suggest some near term strategies which can be tested experimentally to tune the mixed

conductors further.

An obvious future extension of this thesis is continuing the exploration of side-chain de-

sign space such as tuning the hydrophilicity of side-chains, their frequency of occurrence and

their length and sterics. The side-chain patterning study showed that there is an advantage

to dedicated blocks of polar side-chains for interfacing with solvent and maintaining con-

nectivity. This finding suggests a possibility of tuning this compartmentalization further by

adopting side-chains of different degrees of polarity. Can we obtain sufficient electrolyte per-

colation with fewer but extremely hydrophilic side-chains? And further can we place these

hydrophilic chains more sparsely along the backbone to achieve the same swelling without

disturbing the polymer packing due to sterical hindrance between side-chains. Hence, a

dedicated study of side-chains of different polarities placed at varying frequency along the

backbone would be a worthwhile effort.

Experimental works have shown that the presence of optimal length of side-chains exists

for all polar side-chain mixed conductor, but the length can further be tuned for other

interesting side-chain configurations as well. For instance, tuning the length of individual

side-chains composed of both polar and apolar beads would make for an interesting study.

While we have studied the bifurcation of polar and apolar moieties along the backbone, many

experimental studies have shown an advantage to have this bifurcation along the side-chain.

That is, have an alkyl linker between the backbone bead and polar moieties. The polar

moieties at the end of the side-chain facilitate electrolyte percolation but just till a distance
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sufficient to dope the polymer but not disturb the polymer packing. The mechanistic details

of this side-chain design can be investigated through simulations. Further, we can see the

extent to which the electrolyte percolation and packing is tuned by systematically varying the

respective length of each of these blocks along with the degree of their hydrophilicity. Would

we need fewer(shorter) polar moieties if the polar moiety is highly hydrophilic to achieve

the same extent of swelling with better polymer packing? In addition to the side-chains, the

backbone and dopant chemistry can also be explored as well as effect of additives on the

OMIEC physics can be tested. Essentially, we have a model like LEGO blocks, and we can

continue to create new polymer designs with these blocks to conduct innovative hypothesis

driven studies and expand the bounds of OMIEC design.

In terms of methodology, the top-down framework developed in this work can be ap-

plied not just to mixed conductors but also to other fields where conjugated molecules and

polymers may be of interest. In the context of developing the methodology further, the

most crucial improvement would be enabling the use of graphic processing units (GPUs) in

LAMMPS software for this ellipsoid particle systems. The true power of CG models in com-

putational speed-up is not tapped currently and the GPUs can offer over 3 times speed-up

over GPUs. In terms of the analysis itself, this framework can be easily extended to mimic

the movement of solvent in and out of the polymer bulk and employed to test the stability of

various mixed conductors which is a major concern. The simulation procedure proposed in

this study is highly representative of experimental procedure to test this polymers, i.e. first

the polymer film is formed by processing with a solvent, and then the polymer film is charged

and interfaced with an electrolyte. Hence, we can also investigate the effect of processing

solvent and procedure on the polymer arrangement, and resultant electrolyte percolation

and performance as an OMIEC.

The top-down framework not only includes a chemically flexible coarse-grained model but

also a detailed kinetic Monte Carlo framework for charge transport which is a culmination

of organic electronics literature. This framework can be employed for a qualitative study of

other organic electronic materials as well. While we fix the system relevant parameters to

reasonable estimates from literature, the framework can be further enriched by interfacing it

with polymer specific values obtained from systematic electronic level studies. For instance,
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the polaron HOMO energy levels and reorganization energies used in this study are a function

of oligomer length, as described a fundamental study by Zade et al.[ 182 ] Similarly, the HOMO

energies, for example, could be encoded as a function of the side-chain identity to account

for the hole side-chain interactions. Additionally, mixed conductors are a heterogeneous

systems, and the electrostatic interactions play a critical role such as trapping of hole due

to dopants, interactions between polarons, screening of some of these interactions due to the

presence of polar solvent, etc. Right now, we have modeled the surrounding in a mean field

fashion with an intermediate dielectric constant representative of the mixed polar and apolar

phases, but a more rigorous treatment of the dielectric can serve fruitful in future.

While the top-down approach provides qualitative trends characterizing OMIEC sys-

tems, a more quantitative picture can be obtained with coarse-grained modeled developed

in a bottom-up fashion, i.e. by ensuring uniform standards of the target information using

atomistic MD simulations. As it stands, the design of materials is being continuously ex-

pedited by using novel approaches to generate, process and understand massive amounts of

data. In the future, we can hope to see material design in an automated and high-throughput

fashion for various applications. In order to achieve this vision, we must have systematic

computational tools to model and characterize the materials, and bottom-up coarse-grained

methods can serve as an important molecular tool. While there are many approaches to

bottom-up parameterization of CG models and new methods are being proposed in the field,

the community is still trying to quantify and understand the inherent limitations of these

methods and coarse-graining itself.

In that regard, our first study was to systematically investigate the effect of mapping

operator, i.e. the number of coarse-grained beads, and the constituents of these beads. We

also studied this in the context of three molecules with diverse chemistry and two common

CG bottom-up parameterization schemes. We found that the current CG models perform

similarly across all mappings from high to low resolution, in the context of on-target prop-

erties. That is, if given the information in the parameterization procedure, even the least

complex CG representations capture the information very well. On the contrary, for proper-

ties not seen in the parameterization scheme, we see decline in performance with resolution

of the coarse-grained model. Moreover we see that qualitatively different potential functions
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reproduce the on-target properties equally well and hence, there is leeway to incorporate

additional information.

In a subsequent study, we investigated the performance of physics motivated simpler po-

tential energy surfaces (PES) vs. those based on machine learning (ML). In the cases studies,

the increased complexity offered by ML potentials did not result in any major improvements

in the performance of CG model. Rather, we found erroneous behavior exhibited by the ML

model such as breaking of bonds in the system. We proposed a new approach called the

transfer learning approach which potentially rectifies the shortcomings of ML model. We use

the physics based approach for the better chunk of the PES and use ML model only as a ∆-

correction to the PES, i.e. to capture the atomistic interactions (if any) not captured by the

physics based approach. This hybrid approach contains key physics due to the physics based

model avoiding the erroneous behavior by the ML-only model and additionally corrects it

by incorporating the complexity and (minimal) advantages provided by the ML model.

We found in our first study that essentially, the coarse-grained models are information

limited, i.e. the models can capture more information than what is being supplied to these

models while training. Naturally, the extent to which information can be incorporated

without running into representability limitations must be tested. In order to achieve this,

we had adopted the derivative free optimization technique of particle swarm optimization

(PSO) to fit for structural as well as thermodynamic properties, but found that structural

features were a difficult property to be optimized using PSO. But in the light of success of

our transfer learning approach, a new possibility surfaces. We can use Iterative Boltzmann

Inversion (IBI) to obtain the first approximation to the PES as it reproduces the structural

features quite well. And then we can use PSO like optimization scheme to add a correction

potential which reproduces additional thermodynamic properties. An inverse approach of

first obtaining PES which reproduce thermodynamic properties (using PSO or even top-

down approach) and using this PES as an initial guess to IBI instead of the Boltzmann

inverted potential is also worth exploring.

In our second study, we found that transfer learning from the physics based model im-

proves the ML model by accounting for missing physics, but the use of ML model doesn’t

bring significant improvement over the traditional approach. Atomistic forces, which is the
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property corrected using the ML framework, are only minimally improved and slightly better

performance in diffusion coefficient is observed due to inclusion of additional interactions.

The comparable errors in atomistic forces across all models indicate that we might be hitting

the limit of average forces which can be captured and the errors seen are associated with

missing degrees of freedom. First, this claim must be tested by designing a study where

the atomistic configurations are sampled such that true average force is obtained. The as-

sumption is that with enough number of atomistic configurtions used in ML training, we are

obtaining the true average force but whether this is true has not been tested. If we prove that

the coarse-grained models are reproducing the average forces perfectly, the missing forces are

due to inherent loss of degrees of freedom and must be introduced as additional frictional

and random forces. While the framework for doing so exists, based on Mori-Zwanzig, the

final implementation is often simplified with approximations to the memory kernel. One

possible way of accounting for the frictional forces is using probabilistic frameworks such as

Gaussian Process Regression and dropout neural networks.

Overall, the thesis makes contributions to coarse-grained methods development in the

context of both top-down and bottom-up approaches. The top-down model is constructed in

the context of OMIEC and has provided some useful insights on side-chain design. We believe

this model can be employed for similar design studies for advancing the understanding of

OMIEC systems and other conjugated systems. On the bottom-up approach front, the study

performed by us was the first attempt at incorporating transfer learning in the context of

coarse-grained models and we hope that similar schemes are explored in the future to improve

bottom-up coarse-grained schemes.
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