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ABSTRACT

Driven by breakthroughs in mobile and IoT devices, on-device computation becomes

promising. Meanwhile, there is a growing concern over its security: it faces many threats

in the wild, while not supervised by security experts; the computation is highly likely to

touch users’ privacy-sensitive information. Towards trustworthy on-device computation, we

present novel system designs focusing on two key applications: stream analytics, and machine

learning training and inference.

First, we introduce Streambox-TZ (SBT), a secure stream analytics engine for ARM-

based edge platforms. SBT contributes a data plane that isolates only analytics’ data and

computation in a trusted execution environment (TEE). By design, SBT achieves a minimal

trusted computing base (TCB) inside TEE, incurring modest security overhead.

Second, we design a minimal GPU software stack (50KB), called GPURip. GPURip

allows developers to record GPU computation ahead of time, which will be replayed later

on client devices. In doing so, GPURip excludes the original GPU stack from run time

eliminating its wide attack surface and exploitable vulnerabilities.

Finally, we propose CoDry, a novel approach for TEE to record GPU computation re-

motely. CoDry provides an online GPU recording in a safe and practical way; it hosts

GPU stacks in the cloud that collaboratively perform a dryrun with client GPU models. To

overcome frequent interactions over a wireless connection, CoDry implements a suite of key

optimizations.
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1. INTRODUCTION

1.1 Motivation

A recent support of powerful processors expedites on-device computation in mobile/edge

environments, which directly processes sensor data on low-end (client) devices not a cloud

server. The key application is mobile/edge intelligence including stream analytics and ma-

chine learning. In such applications, system security including data and computation is

crucial. (1) They are often parts of mission-critical systems [1 ]–[3 ], e.g. aircraft control, elec-

tricity grid and emergency communication systems. Hence, a corrupted computation may

lead to a critical result on the entire system. (2) As being processed, the data potentially

include confidential information [4 ]–[6 ], e.g. proprietary sensor data or video frames.

However, a security issues over on-device computation have been constantly reported [7 ]–

[9 ], raising concerns of end users. Fundamentally, the on-device computation faces following

security threats. (1) Unlike a cloud which is well supervised by security professionals [10 ],

[11 ], a client device is managed by end users who are often non-experts. Hence, the device

may suffer from a weak security configuration, a late security update, or a slow countermea-

sure to a new attacks. (2) The data flows through a set of sophisticated components that

exposes a wide attack surface. For example, the client device should host a complex software

stack for stream analytics or GPU stack for machine learning workloads, where exploitable

vulnerabilities are not uncommon [12 ], [13 ]. (3) With data including privacy-sensitive in-

formation, e.g. user’s health activities, voice records, and photos, a client device is easily

considered as a high-value target to adversaries.

For these reasons, we claim that a new system design is necessary to achieve trustworthy

on-device computation with strong security guarantees. Once attackers compromise devices,

they not only access confidential data but also may fabricate the result, threatening the

integrity of an entire system.
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1.2 Dissertation Statement

This dissertation aims at addressing security concerns over on-device computation. To-

wards trustworthy on-device computation, we draw new system designs taking application-

specific security properties into account. Our first objective is to enable a secure stream

analytics on an edge platform, which safeguards data confidentiality and integrity, supports

verifiable results, and ensures high throughput with low output delay. Our second objective

is to enable a secure GPU acceleration on client devices, eliminating a complex, vulnerable

GPU stack at run time. Our last objective is to provide a cloud service for a secure GPU

acceleration on client devices in safe and practical ways. To achieve the above goals, we

consider the following approaches.

• Analyzing key applications and minimizing corresponding software stacks

• Leveraging a hardware-supported trusted execution environment, e.g. ARM TrustZone

• Involving a trustworthy cloud in the computation.

We demonstrate the efficacy of our approaches with the three main projects.

1.2.1 StreamBox-TZ: Secure Stream Analytics at the Edge with TrustZone

To achieve our first objective, we present StreamBox-TZ, a secure analytics engine at an

edge platform. StreamBox-TZ isolates the data and its computation in a trusted execution

environment (TEE) on the edge, shielding them from the remaining edge software stack

which is deemed untrusted. StreamBox-TZ offers strong data security, verifiable results, and

good performance. It contributes a data plane designed and optimized for a TEE based on

ARM TrustZone. It supports continuous remote attestation for analytics correctness and

result freshness while incurring low overhead. StreamBox-TZ only adds 42.5 KB executable

to the TCB (16% of the entire TCB). On an octa core ARMv8 platform, it delivers the

state-of-the-art performance by processing input events up to 140 MB/sec (12M events/sec)

with sub-second delay. The overhead incurred by StreamBox-TZ’s security mechanism is

less than 25%.
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1.2.2 GPURip: A 50-KB GPU Stack for Client ML

We accomplish our second objective with GPURip, a novel way for deploying GPU-

accelerated computation on mobile and embedded devices. It addresses high complexity of a

modern GPU stack for deployment ease and security. The idea is to record GPU executions

on the full GPU stack ahead of time and replay the executions on new input at run time.

We address key challenges towards making GPURip feasible, sound, and practical to use.

The resultant replayer is a drop-in replacement of the original GPU stack. It is tiny (50

KB of executable), robust (replaying long executions without divergence), portable (running

in a commodity OS, in TEE, and baremetal), and quick to launch (speeding up startup by

up to two orders of magnitude). We show that GPURip works with a variety of integrated

GPU hardware, GPU APIs, ML frameworks, and 33 neural network (NN) implementations

for inference or training.

1.2.3 GPU Acceleration in TrustZone via Safe and Practical Recording

We attain our final objective with CoDry, a holistic design for GPU-accelerated compu-

tation in TrustZone TEE. Without pulling the complex GPU software stack into the TEE,

we follow a simple approach: record the CPU/GPU interactions ahead of time, and replay

the interactions in the TEE at run time. This paper addresses the approach’s key missing

piece – the recording environment, which needs both strong security and access to diverse

mobile GPUs. To this end, we present a novel architecture called CoDry, in which a mo-

bile device (which possesses the GPU hardware) and a trustworthy cloud service (which

runs the GPU software) exercise the GPU hardware/software in a collaborative, distributed

fashion. To overcome numerous network round trips and long delays, CoDry contributes

optimizations specific to mobile GPUs: register access deferral, speculation, and metastate-

only synchronization. With these optimizations, recording a compute workload takes only

tens of seconds, which is up to 95% less than a naive approach; replay incurs 25% lower

delays compared to insecure, native execution.
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1.3 Dissertation Organization

This dissertation is organized as follows. Chapter 2 describes StreamBox-TZ, a secure

stream analytics leveraging ARM TrustZone. Chapter 3 presents GPURip, which squeezes

attack surfaces and removes vulnerabilities from GPU stack by record and replay GPU

computation. Chapter 4 proposes CoDry, a cloud service for collaborative dryrun to record

GPU computation with client TEE. Chapter 5 summarizes the dissertation.
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2. STREAMBOX-TZ: SECURE STREAM ANALYTICS AT

THE EDGE WITH TRUSTZONE

2.1 Introduction

Many key applications of Internet of Things (IoT) process a large influx of sensor1
 data,

i.e. telemetry. Oil producers track tank status, pump pressure, and fluid temperatures to see

if wells work at ideal operating operating points [14 ], [15 ]; an oil rig is reported to produce

1–2TB of data per day [16 ]. Smart grid aggregates power telemetry to detect supply/de-

mand imbalance and power disturbances [17 ]; a power sensor is reported to produce up to

140 million samples per day [18 ], [19 ]. Manufacturers routinely monitor vibration and ultra-

sonic energy of industrial equipment to discover anomalies and do predictive maintenance;

a monitored machine is reported to create PBs of data in a matter of days.

The large telemetry data streams must be processed in time. The high cost and long

delay in transmitting the data necessitate edge processing [20 ], [21 ]: sensors send the data to

nearby gateways dubbed “cloud edge”; the edge runs a pipeline of continuous computations to

cleanse and summarize the telemetry data and reports the results to cloud servers for deeper

analysis. The hardware at the edge is often optimized for cost and efficiency. According to

a 2018 survey [22 ], modern ARM machines are typical choices for edge platforms. Such a

platform often has 2–8 CPU cores and several GB DRAM.

Unfortunately, edge processing exposes the IoT data to significant security threats. i) De-

ployed in the wild, the edge suffers from common IoT weaknesses such as lack of professional

supervision [23 ], [24 ], weak configurations [25 ], [26 ], and delayed security updates [23 ], [27 ].

ii) On the edge, the IoT data flows through a set of sophisticated components that expose a

wide attack surface. These components include a commodity OS (e.g. Linux or Windows), a

set of user libraries, and a runtime framework called stream analytics engine [28 ]–[30 ]. They

reuse much code developed for servers and workstations. It is not uncommon for them to

have exploitable misconfigurations [31 ] and vulnerabilities [32 ]–[34 ] iii) As data aggregated

from various sources, the edge become a high-value target to adversaries. For these reasons,
1↑ Recognizing that IoT data sources range from small sensors to large equipment, we refer to them all as
sensors for brevity.

17



edge is even more vulnerable than sensors, which run much simpler software with narrower

attack surfaces. Once attackers compromise the edge, they can not only obtain confidential

data but also remove or fabricate data transmitted to the cloud, threatening the integrity of

an entire IoT deployment.

Towards secure stream analytics on an edge platform, our goal is to safeguard IoT data

confidentiality and integrity, support verifiable results, and ensure high throughput with low

output delay. Following the principle of least privilege [35 ], we protect the analytics data and

computations in a trusted execution environment (TEE) and limit their interface; we leave

out the remaining edge software stack which we deem untrusted. In doing so, the trusted

computing base (TCB) is reduced to only the protected functionalities, the TEE, and the

hardware. We hence significantly enhance data security.

We face three challenges: i) what functionalities should be secured in TEE and behind

what interfaces? ii) how to execute stream analytics on a TEE’s low TCB and limited

physical memory while still delivering high throughput and low delay? iii) as both trusted

and untrusted edge components participate in stream analytics, how to verify the outcome?

Existing solutions are inadequate: pulling entire stream analytics engines to TEE [36 ]–

[38 ] would result in a large TCB with a wide attack surface; the systems securing distributed

operators [39 ]–[41 ] often lack stream semantics or optimizations for efficient execution in

a single TEE, which are crucial to the edge; only attesting TEE integrity [42 ] or data

lineages [39 ], [40 ], [43 ], [44 ] is insufficient to verify stream analytics. We will show more

evidences in the paper.

Our response is SBT, a secure engine for analytics over telemetry data streams. As shown

in Figure 2.1 , SBT builds on ARM TrustZone [45 ] on an edge platform. SBT contributes

the following notable designs:

(1) Architecting a data plane for protection SBT provides a data plane exposing narrow,

shared-nothing interfaces to untrusted software. SBT’s data plane encloses i) all the analytics

data; ii) a new library of low-level stream algorithms called trusted primitives as the only

allowed computations on the data; iii) key runtime functions, including memory management

and cache-coherent parallel execution of trusted primitives. SBT leaves thread scheduling

and synchronization out of TEE.
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Figure 2.1. An overview of StreamBox-TZ

(2) Optimizing data plane performance within a TEE In contrast to many TEE-oblivious

stream engines that operate numerous small objects, hash tables, and generic memory allo-

cators [46 ]–[48 ], SBT embraces unconventional design decisions for its data plane. i) SBT

implements trusted primitives with array-based algorithms and contributes new optimiza-

tions with handwritten ARMv8 vector instructions. ii) To process high-velocity data in

TEE, SBT introduces a new abstraction called uArrays, which are contiguous, virtually un-

bounded buffers for encapsulating all the analytics data; SBT backs uArrays with on-demand

paging in TEE and manages uArrays using a dedicated allocator. For the compact memory

layout, the allocator leverages hints from untrusted software. iii) SBT takes advantage of

TrustZone’s lesser-explored hardware features: ingesting data straightly through trusted IO

without a detour through the untrusted OS; avoiding relocating streaming data by leveraging

the large virtual address space dedicated to a TEE.

(3) Verifying edge analytics execution SBT provides cloud verifiers to attest analytics cor-

rectness, result freshness, and the untrusted hints received during execution. SBT captures
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coarse-grained dataflows and generates audit records. A cloud verifier replays the audit

records for attestation. To save the edge-cloud uplink bandwidth, SBT compresses the

records with domain-specific encoding.

We implement SBT to offer a generic stream model [49 ] with a broad arsenal of stream

operators. The TCB of SBT contains as little as 267.5 KB of executable code, of which

SBT only constitutes 16%. On an octa core ARMv8 platform, SBT processes up to 12M

events (144 MB) per second at sub-second output delays. Its throughput on this platform is

an order of magnitude higher than an SGX-based secure stream engine running on a small

x86 cluster with richer hardware resources [41 ]. SBT’s security mechanisms incur less than

25% throughput loss with the same output delay; decrypting ingress data, when required,

results in 4%–35% throughput loss with the same output delay. In most benchmarks, SBT

consumes up to 130 MB of physical memory while sustaining high throughput.

The key contributions of SBT are: i) a stream engine architecture with strongly isolated

data and a lean TCB; ii) a data plane built from the ground up with computations and

memory management optimized for a single TrustZone-based TEE; iii) remote attestation

for stream analytics on the edge with domain-specific compression of audit records. To

our knowledge, SBT is the first system designed and optimized for data-intensive, parallel

computations inside ARM TrustZone. Beyond stream analytics, the SBT architecture should

aid in secure other important analytics on the edge, e.g. machine learning inference. The

SBT source can be found at http://github.com/edgeflow-dev.

2.2 Background & Motivation

2.2.1 ARM for Cloud Edge

Recent ARM platforms are typically preferred as hardware for IoT gateways [22 ], because

of competitive performance at low power, which suits edge as well. Most modern ARM cores

are equipped with TrustZone [45 ], a security extension for TEE enforcement. TrustZone

logically partitions a platform’s hardware resources, e.g. DRAM and IO, into a normal

(insecure) and a secure world. CPU cores independently switch between two worlds. A
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(b) A simple analytics pipeline that predicts power grid loads

/* 1. Declare operators */
Ingress in(/* config info */);
Window w(1 _SECOND); GroupBy <house > gb;
Aggregation <house ,win > ag; Egress out;
/* 2. Create a pipeline. Connect operators */
Pipeline p; p.apply(in);
in.connect(w).connect(gb)
.connect(ag).connect(out);
/* 3. Execute the pipeline */
Runner r( /* config */ ); r.run(p);

(c) Simplified pseudo code declaring the above pipeline

Figure 2.2. Example stream data, operators, and a pipeline

TEE atop TrustZone owns dedicated channel called trusted IO, a unique feature that TEE

technologies e.g. Intel SGX [50 ] lack.

2.2.2 Stream Analytics

Stream Model We focus on stream analytics over sensor data. A data stream comprises

of sensor events that carry timestamps defined by event occurrence, as illustrated in Fig-

ure 2.2 (a). Programmers define a pipeline of continuous computations called operators, e.g.

Filter, Count, and GroupBy, that are widely used for telemetry analytics [51 ], [52 ]. As data

arrives at the edge, a stream analytics engine ingests the data at the pipeline ingress, pushes

the data through the pipeline, and externalizes the results at the pipeline egress.

We follow a generic stream model [46 ], [48 ], [53 ]–[55 ]. Operators execute on event-time

scopes called windows. Data sources emit special events called watermarks. A watermark
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ensures that no subsequent events in the stream will have event times earlier the watermark

timestamp. A pipeline’s output delay is defined as the elapsed time starting from the moment

the ingress receives the watermark signaling the completion of the current window to the

moment the egress externalizes the window results [47 ]. A pipeline may maintain its internal

states organized by windows at different operators. See prior work [56 ] for a formal stream

model.

Analytics example: Power load prediction Figure 2.2 (b-c) depicts an example de-

rived from an IoT scenario [52 ]: it forecasts future household power loads based on the

current loads reported by smart power plugs. The example pipeline ingests a stream of

power samples and groups them by 1-second fixed windows and by houses. For each house

in each window, it aggregates all the loads and predicts the next-window load as an expo-

nentially weighted moving average over the recent windows. At the egress, the pipeline emits

a stream of per-house load prediction for each window.

Stream analytics engines Stream pipelines are executed by a runtime framework called

a stream analytics engine [28 ]–[30 ], [47 ], [51 ], [57 ]. A stream analytics engine consists of two

types of function: data functions for data move and computations; control functions for

resource management and computation orchestration, e.g. creating and scheduling tasks.

The boundary between the two is often blurry. To amortize overheads, control functions

often organize data in batches and invoke data functions to operate on the batches.

2.2.3 Security Threats & Design Objectives

The edge faces common security threats in IoT deployment. First, IT expertise is weak.

Edge platforms are likely managed by field experts (such as farmers [27 ], firefighters [24 ],

and petroleum engineers [23 ]) rather than IT experts. Such lack of professional supervision

is known to result in weak configurations [25 ], [26 ]. Second, the infrastructure is weak.

Deployed in the field (e.g. farms [27 ], fireground [24 ], and offshore oil rigs [23 ]), the edge

often experiences slow uplinks to the cloud and hence much delayed software security updates.

For cost saving, edge analytics may need to share OS and hardware with other high-risk,

untrusted software [27 ] such as web browsers.
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Apart from the common threats, conventional edge software stacks entrust IoT data

with commodity operating systems, analytics engines, and language runtimes (e.g. JVM).

However, such components are unable to provide strong security guarantees due to their com-

plexity and wide interfaces. Each of them is likely to contain more than several hundreds of

KSLoC [58 ]. A number of vulnerabilities are constantly reported [32 ], [33 ], [59 ]–[61 ], making

these components untrusted in recent research [62 ]–[65 ]. By exploiting these vulnerabilities,

a local adversary as an edge user program may compromise the kernel through the wide

user/kernel interfaces [66 ], [67 ] or attack an analytics engine through IPC [68 ]; a remote

adversary, through the edge’s network services, may compromise analytics engines [69 ] or

the OS [70 ]. A successful adversary may expose IoT data, corrupt the data, or covertly

manipulate the data. Taking the application in Figure 2.2 (b) as an example, the adversary

gains access to the smart plug readings, which may contain residents’ private information,

and injects fabricated data.

Objectives We aim three objectives for stream analytics over telemetry data on an edge

platform: i) confidentiality and integrity of IoT data, raw or derived; ii) verifiable correctness

and freshness of the analytics results; iii) modest security overhead and good performance.

2.3 Security Approach Overview

2.3.1 Scope

IoT scenarios Our target is an edge platform that collects and analyzes telemetry data.

We recognize the significance of mission-critical IoT with tight control loops, but do not

target it. In our target scenario, there are source sensors, edge platforms, and a cloud server

that we dub “cloud consumer”. All the raw IoT data and analytics results are owned by one

party. The sensors produce trusted events, e.g. by using secure sensing techniques [71 ]–[73 ].

The cloud consumer is trustworthy; it defines analytics pipelines to the edge and consumes

the results from the edge. We consider untrusted source-edge links (e.g. public networks)

which requires data encryption by the source, as well as trusted source-edge links (e.g. direct

IO bus or on-premise local networks), and will evaluate the corresponding designs (§2.9 ).

We assume untrusted edge-cloud links, which require encryption of the uploaded data.
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In-scope Threats We assume malicious adversaries interested in gaining access to IoT

data, tampering with edge processing outcome, or obstructing processing progress. We

consider powerful adversaries who can control the entire OS and all applications on the edge

by exploiting weak weak configuration or vulnerabilities in the edge software.

Out-of-scope Threats We do not protect the confidentiality of stream pipelines, in the

interest of including only low-level compute primitives in a lean TCB. We do not defend the

following attacks.

i) Attacks to non-edge components assumed trusted above, e.g. sensors [74 ].

ii) Exploitation of TEE kernel bugs [75 ]–[77 ].

iii) Side channel attacks: by observing hardware usage outside TEE, adversaries may

learn the properties of protected data, e.g. key skew [78 ]. Note that controlled-channel

attack [79 ] cannot be applied to ARM TrustZone as it has separate page management

within a separate secure OS unlike Intel SGX.

iv) Physical attacks, e.g. sniffing TEE’s DRAM access [80 ], [81 ]. Note that many of these

attacks are mitigated by prior work [40 ], [82 ]–[84 ] orthogonal to SBT.

2.3.2 Approach and Security Benefits

As depicted in Figure 2.3 , SBT protects its data functions in a trusted data plane in

TEE. SBT runs its untrusted control plane in the normal world. The control plane invokes

the data plane via narrow, shared-nothing interfaces. As a result, the engine’s TCB only

contains the TEE (including the data plane) and the hardware.

Streaming data always flows in TEE where the data plane ingests the data through

TrustZone’s trusted IO. After ingestion, the data plane returns opaque references of the data

batches to the control plane. The opaque references are long, random integers. The control

plane then requests computations over the protected data via invoking the data plane with

the opaque references. The data plane keeps track of all active opaque references, validates

incoming opaque references, and only accept those that genuine. At the pipeline egress, the

data plane encrypts, signs, and delivers the result to the cloud.
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Figure 2.3. SBT on an edge platform with ARM TrustZone. Bold arrows
show the protected data path.

The analytics execution is continuously attested. SBT collects comprehensive and de-

terministic dataflows of the stream analytics as well as execution timing; it sends periodic

reports to the cloud server. The cloud server then verifies if all the ingested data correctly

flow through the given pipeline (correctness,) and if the processing incurs low delay (fresh-

ness).

Thwarted attacks SBT defeats the following attacks.

i) Breaking IoT data confidentiality or integrity. Adversaries on the edge cannot

touch, drop, or inject data since raw and derived data enters and leaves the dge TEE via

trusted IOs. When data is sent off the edge over untrusted networks, it is encrypted and

hence protected against network-lever adversaries.

ii) Breaking the data plane integrity. As all opaque references are validated before

in use, any fabricated opaque reference passed to the data plane will be denied. An adversary
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may exploit bugs in the data plane and compromise it through the data plane’s interface.

However, SBT substantially reduces the data plane’s attack surface and potential exploitable

bugs by minimizing the data plane codebase and hardening its interface.

iii) Breaking analytics correctness. A compromised control plane may request com-

putations deviating from pipeline declarations or the stream model. It may, for example,

invoke trusted computations on partial data, incorrect windows, or legitimate but undesir-

able opaque references. SBT defeats these attacks by remote attestation: the cloud verifier

can detect such correctness violation and rejects the edge analytics results since it processes

complete knowledge on ingested data and pipelines.

iv) Attacks on analytics performance or availability. A compromised control

plane may pause or delay invocation of trusted computations, violating the freshness guar-

antee. However, the cloud verifier can detect such attacks by attesting the execution timing

of trusted computation. When the attack is detected, it can choose to prompt further inves-

tigation.

v) Attempting to trigger data race or deadlock. By design, data race and dead-

locks will never occur inside the data plane: the trusted computations do not share state

concurrently and all locking takes place outside of the TEE.

2.4 Design Overview

2.4.1 Challenges

Our approach raises three challenges. i) Architecting the engine with a proper

protection boundary. This is dependent on a key trade-off among TEE functional richness,

overhead of TEE entry/exit, and TCB size. ii) Optimizing data functions within a

TEE. To process high-velocity data in a TEE, simple algorithms and compact memory are

significantly favored. Existing stream engines, on the other hand, often use a large number

of short-lived objects indexed in hash tables or trees [46 ]–[48 ], [51 ], [55 ], e.g. for grouping

events by key. To manage these these objects, they use generic memory allocators [47 ] or

garbage collectors [46 ], [85 ]. Such designs are unsuitable for a TEE’s small TCB and limited

DRAM portion, e.g. typically tens of MB for a TrustZone TEE and up to 128 MB for
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an Intel SGX enclave [86 ]. iii) Verifying stream analytics results. This necessitates

tracking unbounded data flows in stream pipelines, validating that operators respect the

temporal properties, e.g. windows, and minimizing the resultant overhead in execution and

communication.

Why are existing systems inadequate? First, many TEE-based systems [36 ]–[38 ] pull

entire user applications and libraries to the TCB, as illustrated in Figure 2.4 (a). A modern

analytics engine and its libraries, on the other hand, are huge, complex, and potentially vul-

nerable as we discussed in Section 2.2.2 . Second, partitioning applications to fit a TEE, as

shown in Figure 2.4 (b) [87 ]–[89 ], is unsuitable for existing stream engines: partitioning does

not change their hash-based data structures and algorithms, which by design mismatch a

TEE. Similarly, recent secure processing engines disfavor partitioning [90 ], [91 ]. Third, recent

systems deploy TEE to protect data in analytics or network packet processing. As summa-

rized in Table 2.1 , they lack support for stream analytics, key computation optimizations,

or specialized memory allocation, that we will demonstrate as vital to our objective.
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To assert analytics correctness, attesting TEE integrity [42 ], [90 ] is insufficient. VC3 [39 ]

and Opaque [40 ] check the history of compute results, i.e. their data lineage [43 ], [44 ], to

verify correctness of batch analytics. Without tracking data as it is continually ingested and

without a stream model, data lineages cannot assert whether all ingested data processed

correctly according to pipeline declarations, temporal windows, and watermarks, which are

crucial to stream analytics.

2.4.2 StreamBox-TZ in a Nutshell

SBT builds on TrustZone [45 ] because of ARM’s popularity for the edge and trusted IO,

which benefits stream analytics (§2.2 ).

Programmability SBT provides a similar programmability like what commodity engines

like Spark Streaming [46 ] and Flink [92 ] support. Analytics programmers build pipelines

using declarative high-level operators as exemplified in Figure 2.2 (c). These stream operators

are commonly used for analytics over telemetry data [51 ], [52 ]. SBT supports the majority of

the common operators supplied by commodity engines, as summarized in Table 2.2 . These

operators are commonly used for analytics over telemetry data [51 ], [52 ]. SBT also offers

User Defined Functions (UDFs) certified by a trusted party, that is a common requirement

in TEE-based systems [90 ].

SBT architecture SBT’s data plane incarnates as a TrustZone module, as shown in

Figure 2.3 , SBT runs its control plane as a parallel runtime in the normal world. The

control plane invokes the data plane through a narrow interface (details in Section 2.9 ).

The control plane orchestrates the execution of analytics pipelines. It generates abundant

parallelism among and within operators, that is elastically mapped to a poll of threads it

maintains. At a given moment, all threads may work concurrently on one operator as well

as different operators over different data.

Data plane & design choices SBT’s data plane consists of only the trusted primitives

and a runtime for them.

i) Trusted primitives are stateless, single-threaded functions that are oblivious to syn-

chronization. In the data plan, we do not enclose entire stream pipelines, since a pipeline
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Table 2.1. Comparison to existing secure processing systems

System TEE Analytics SG Compute in TEE Memory Attestation
VC3 [39 ] SGX Batch CIVA- Mapper/reducer Heap Data lineage
Opaque [40 ] SGX Batch CIVAO Query plans unreported Data lineage
EnclaveDB [90 ] SGX Batch CI-A- Pre-compiled queries unreported TEE integrity
SafeBricks [91 ] SGX Pkt proc. CI-A- Net func. operators∗ unreported TEE integrity
SecureStream [41 ] SGX Stream CI— Lua programs unreported TEE integrity
StreamBox-TZ TZ Stream CIV– Vectorized primitives∗ uArray Log replay

SG: security guarantees.
C: data confidentiality; I: data integrity; V: verifiability; A: analytics confidentiality; O: obliviousness

* TEE encloses only low-level computations; otherwise TEE encloses whole analytics.

Table 2.2. Selected trusted primitives (23 in total) and operators they con-
stitute. These operators cover most listed in the Spark Streaming documenta-
tion [93 ].

Trusted Primitives Popular Spark Streaming Operators
Sort, Merge, Segment, SumCnt,
TopK, Concat, Join, Count, Sum,
Unique, FileterBand, Median, ...

GroupByKey, Windowing, AvgPerKey, Distinct, SumByKey,
AggregateByKey, SortByKey, TopKPerKey, CountByKey,

CountByWindow, Filter, MedianByKey, TempJoin, Union, ...

must be dynamically scheduled for parallel processing over high-velocity data. We do eschew

wrapping whole declarative operators in the data plane, as one operator instance contains

internal thread-level parallelism and hence requires thread management logic. Our deci-

sion keeps the data plane lean, leaving out all control functions including threading and

scheduling. In contrast, may other engines shown in Table 2.1 pull entire analytics to TEE.

Our choice of exporting low-level primitives entails more TEE switches. Yet, the costs are

smaller on modern ARM [75 ], [94 ] and can be amortized by batching, data batching, as will

be discussed soon.

ii) The data plane incorporates minimum runtime functions: memory management and

paging, which are vital to TEE integrity; cache coherence of parallel primitives, which is

critical to parallelism. The data plane is agnostic to declarative operators and pipelines

being executed.

For attestation, the data plane generates audit records on data ingress/egress, primi-

tive executions, and watermarks. It curtails overhead through data batching and record

compression.
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Coping with secure memory shortage SBT may suffer from out of secure memory

when the compute cost or data ingestion rate is excessive. SBT avoids data loss in such

a situation by adding backpressure to source sensors, slowing down data ingestion. In our

current implementation, SBT activates backpressure when ingestion exceeds a user-defined

threshold; we leave an automatic flow control as our future work, i.e. online threshold tuning

based on available secure memory and backlog.

2.5 Trusted Primitives and Optimizations

Parallel execution inside a TEE SBT utilizes task parallelism keeping a lean TEE

without a threading library. The control plane invokes numerous primitives with worker

threads, which then enter the TEE to execute the primitives in parallel. In TEE, all trusted

primitives share a single cache-coherent memory address space, which makes data sharing

easier and eschews copy costs. This contrasts to existing secure analytics engines that leave

task parallelism untapped in a single TEE [39 ], [41 ].

Array-based algorithms to suit TEE Unlike common stream engines that use hash-

based algorithms to reduce algorithmic complexity, we make a new design choice. We firmly

favor algorithms with straightforward logic and little memory overhead, despite of their

higher algorithmic complexity. Corresponding to contiguous arrays as the universal data

containers in TEE, most primitives employ sequential-access algorithms over contiguous

arrays, e.g, executing Merge-Sort across event arrays and scanning the resultant array to get

the average value per key.

Trusted primitives and vectorization The trusted primitives in SBT are generic.

They constitute most declarative stream operators, often referred to as Select-Projection-

Join-GroupBy (SPJG) families, shown in Table 2.2 . These stream operators are deemed

representative in prior research [95 ].

To speed up the array-based up without causing TCB bloat, our insight is to map their

internal data parallelism to ARM’s vector instructions [96 ]. To our knowledge, the vec-

tor instructions are barely employed to accelerate data analytics within TEEs, in spite of
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their well-known performance gain. Vectorization results in low code complexity since the

performance benefit stems from a CPU feature which is already part of the TCB.

Our optimization focuses on two core primitives, Sort and Merge, as they dominate the

execution of stream analytics in our observation. Inspired by vectorized sort and merge on

x86 [97 ], [98 ], we implement the ones with hand-writing ARMv8 NEON vector instructions

for SBT. Our sort outperforms the ones in the C/C++ standard libraries by more than 2×,

as will be shown in evaluation. This optimization is vital to the engine’s overall performance.

2.6 TEE Memory Management

Facing high-velocity streams in a TEE, SBT’s memory allocator addresses two challenges:

space efficiency: it must construct a compact memory layout and reclaim memory timely

due to limited physical memory; lightweight: the allocator must be simple to suit a low

TCB. The challenges disqualify popular engines organizing events in hash tables (e.g. for

grouping events by key) and depend on generic memory allocators [46 ]–[48 ], [51 ], [55 ]. The

rationales are two: a hash table’s principle that trade space for time mismatches TEE’s

limited memory; generic allocators are typically heavy due to complex optimization, which

adds tens of KSLoC to TCB [99 ], [100 ].

SBT offers a special memory management for stream computations: it provides virtually

unbounded buffers as the universal memory abstraction (§2.6.1 ); it places data by using

(untrusted) consumption hints and large virtual address space (§2.6.2 ).

2.6.1 Unbounded Array

We device contiguous and virtually unbounded arrays called uArrays, the universal data

containers used by computations within TEE. uArrays encapsulate all of the data flowing

among trusted primitives in a pipeline; they also store operator states conventionally kept

in hash tables.

An uArray is an append-only buffer in a contiguous memory region for same-type data

objects. The lifecycle of uArray closely map to the producer/consumer pattern in streaming

computations. One uArray can be in the following three different states. Open: after created,
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an uArray grows dynamically as the producer primitive appends data objects to it. Produced:

when data production is finished, the uArray’s end position is finalized; it becomes read-only

and no more data can be appended. Retired: the uArray is no longer needed and its memory

is subject to reclamation. According to their states, the memory allocator places or reclaims

uArrays, as will be discussed in Section 2.6.2 .

Types uArrays fall into different types depending on their scopes and enclosed data.

A streaming uArray encapsulates data flowing from a producer primitive to a consumer

primitive. A state uArray encapsulates operator state that outlives the lifespans of individual

primitives. A temporary uArray live within a trusted primitive’s scope.

Low abstraction overhead An uArray transparently grows spanning a contiguous vir-

tual memory region. Its growth is backed by the data plane’s on-demand paging which

happens entirely inside TEE. Growing an uArray simply necessitates updating an integer

index for most of the time. Compared to a manual buffer management, this mechanism

allows the compiler to build more compact loops by waiving bounds checking of uArray in

computation code. uArrays always grow in place. This contrasts to typical sequence con-

tainers (such as C++ std::vector and java.util.ArrayList) that grow transparently but

require costly relocation. In Section 2.9 , we will experimentally compare uArray against

std::vector.

2.6.2 Placing uArrays in uGroups

Co-locating uArrays The memory allocator co-locates multiple uArrays as an uGroup

to reclaim them consecutively. Spanning a contiguous virtual memory region, a uGroup

consists of multiple produced or retired uArrays and optionally an open uArray at its end, as

shown in Figure 2.5 . The grouping is purely physical: it is at the discretion of the allocator,

orthogonal to stream computations, and hence transparent to the trusted primitives and the

control plane.

As shown in Figure 2.5 , the allocator reclaims consumed uArrays by always starting from

the beginning of an uGroup. When placing a new uArray, the allocator decides whether to

create a new uGroup for the uArray, or append the uArray to an existing uGroup. In
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openproducedretired

GrowReclaim
Figure 2.5. The uArrays in one uGroup

doing so, the allocator seeks to i) assure that each uGroup holds a sequence of uArrays to

be consumed consecutively in the future; ii) minimize the total number of live uGroups, in

order to compact TEE memory layout and minimizes the cost in tracking uGroups. To this

end, our key is to guide placement with the control plane’s data consumption plan, as will

be presented below.

Consumption hints Upon invoking a trusted primitive T , the control plane may provide

two optional hints concerning the future consumption order for the output of T :

•Consumed-in-parallel (‖k): the control plane will schedule k worker threads to consume a

set of uArrays in parallel.

•Consumed-after (b1⇐b2): the control plane will schedule worker threads for consuming

uArray b2 after uArray b1. The consumed-after relation is transitive. uArrays may form

multiple consumed-after chains.

The control plane may specify these relations between new output uArrays (yet to be

created) and existing uArrays.

Hint-guided placement The hints assist the data plane to generate compact memory

layout and reclaim memory effectively. Upon allocating a uArray, the allocator examines

the existing hints regarding to the uArray.

(⇐) prompts the allocator to place the uArrays on the same consumed-after chain in the

same uGroup. Starting from the new uArray b under question, the allocator tracks back on

its consumed-after chain, and places b after the first uArray that is both in state produced

(i.e. its growth has finished) and is located at the end of an uGroup. If no such uArray is

available on the chain, the allocator creates a new uGroup for b.
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(‖k) prompts the allocator to place uArrays b1..k in separate uGroups, so that delay in

consuming any of the uArrays will not block the allocator from reclaiming the other uArrays.

Our rationale is that despite b1..k are created at the same time, they are often consumed at

different moments in the future: i) since SBT’s control plane threads independently fetch new

uArrays for processing as they become available (§2.4 ), the starting moments for processing

b1..k may vary widely, especially when the engine load is high; ii) even when k worker threads

start processing b1..k simultaneously, straggling workers are not uncommon, due to non-

determinism of a modern multicore’s thread scheduling and memory hierarchy [101 ].

The impacts of misleading hints SBT detects misleading hints in retrospect through

remote attestation (§2.7 ). Since hints only influence TEE memory placement policy on

the edge, misleading hints never cause data loss (§2.4.2 ) or violation of data security and

TEE integrity. However, such hints may result in violation of result freshness slowing down

analytics.

Managing virtual addresses All uGroups grow in place within one virtual address

space. To avoid collision and costly relocation, the allocator places them far apart using the

huge virtual address space dedicated to a TrustZone TEE. The space is 256TB on ARMv8,

10,000× larger than the physical DRAM (a few GBs). As a result, the allocator simply

reserves a virtual address range as large as the entire TEE DRAM for each uGroup We will

validate such choice in Section 2.9 .

2.7 Attestation for Correctness and Freshness

SBT collects evidences for cloud consumers to verify two properties: correctness, i.e. all

ingested data is processed according to the stream pipeline declaration; freshness, i.e. the

pipeline has low output delays.

The above objective has several notable aspects. i) We verify the behaviors of untrusted

control plane, i.e., which primitives it invokes on what data and at what time. We do not

verify trusted primitives, e.g. if a Sort primitive indeed produces ordered data. ii) Verify-

ing data lineages at the pipeline’s intermediate operators or egress [43 ], [44 ] is insufficient

to guarantee correctness, i.e. all data ingested so far is processed according to the stream
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Field Description Length
Ts Data plane timestamp 32 bits
Op Primitive type, including ingress/egress 16 bits
WinNo Monotonic window sequence number 16 bits
Data An uArray ID or a watermark value 32 bits
Hint An optional consumption hint 64 bits
Count Number of data/hint fields that follow 16 bits
In/Egress Op Ts Data

Op Ts Data WinNo Data

Op Ts Cnt Data… Cnt Data… Cnt Hints...

Windowing

Execution

Figure 2.6. Audit records: fields (top) and layout (bottom)

pipeline. iii) The windows of stream computations and watermarks triggering the computa-

tions must be attested, which are keys to stream model (§2.2 ). iv) As the volume of evidences

can be substantial, evidences must be compacted to save uplink bandwidth [27 ], [102 ].

Therefore, SBT provides the following verification mechanism. Agnostic to the pipeline

being executed, the data plane monitors dataflows among primitive instances at the TEE

boundary, and then generates audit records. For low overhead, it eschews building data

lineages on-the-fly unlike much prior work [39 ], [43 ], [103 ]. The data plane compresses audit

records and flushes to the cloud both periodically and upon externalizing any analytics result.

We describe details below.

Audit records As being invoked by the control plane, the data plane generates audit

records. As illustrated in Figure 2.6 , the records track i) ingested and externalized uArrays,

ii) associations between uArrays and windows, and iii) primitive executions (with optional

hints supplied by the control plane) which establish derived-from relations among uArrays.

The records further include ingested watermark values, which are crucial for determining

output delays as will be discussed below. The data plane timestamps all the records. It

generates monotonically increasing identifiers for recorded uArrays. We will evaluate the

overhead of audit records in Section 2.9 .
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ts= 1 INGRESS data=0xF0
ts= 5 WND data_in =0xF0 win_no =0 data_out =0xF1
ts=10 SORT data_in =0xF1 data_out =0xF3
ts=15 INGRESS data=0xF4 (watermark =100)
ts=25 SUM data_in =0xF3 ,0xF4 data_out =0xF5
ts=28 WND data_in =0xF0 win_no =1 data_out =0xF6
ts=30 EGRESS data=0xF5

Figure 2.7. Sample audit records for the pipeline in Figure 2.2 . Format is
simplified. ts means processing timestamp.

Attesting analytics correctness The cloud verifier checks if all ingested uArrays flow

through the expected trusted primitives. Such dataflows are deterministic given the arrivals

of input data (including their windows), the watermarks, and the pipeline declaration. Hence,

the verifier replays all ingestion records on its local copy of the same pipeline. It checks

if all the records resulting from the replay match the ones reported by the edge (except

timestamps). The replay is symbolic without actual computations and hence fast.

Note that the verification works for stateful operators as well. The state of a stream

operator (e.g. temporal join) is only determined by all the inputs the operator has ever

received. Since the cloud can verify that all the ingested uArrays correctly flow through the

expected trusted primitives and thus stream operators, it knows that the operator’s current

state must be correct, and then all results derived from the operator state must be correct.

Attesting result freshness The key for the verifier to calculate the delay of an output

result R is to identify the watermark that triggers the externalization of R, according to the

delay definition in Section 2.2.2 . From the egress record of R, the verifier traces backward

following the derived-from chain(s) until it reaches an execution record indicating that a

watermark W triggers the execution. The verifier looks up the ingress record of W . It

calculates the difference between W ’s ingress time and R’s egress time to be the delay of R.

Example In Figure 2.7 , an uArray with identifier 0xF0 is ingested and segmented into

two uArrays (0xF1 and 0xF2) for window 0 and 1 respectively. Sort consumes uArray 0xF1

and produces uArray 0xF3. A watermark with value 100 arrives and completes window 0.

Triggered by the watermark, SUM consumes uArray 0xF3 of window 0 and produces uArray

0xF5 as the result of window 0.
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The cloud verifier replays the ingress records on its local pipeline copy and learns that

uArray 0xF1 is processed adhering to the pipeline declaration while uArray 0xF2 is yet to be

processed. It will assert analytics incorrectness if 0xF2 remains unprocessed until a future

watermark completes window 1 (not shown). To verify result freshness, the verifier traces

result 0xF5 backward to find its trigger watermark 0xF4 and calculates the output delay to

be 15 (30− 15).

Columnar compression of records The data plane compresses audit records by exploit-

ing locality within one record field and known data distribution in each field. The data plane

produces raw audit records in memory (with the format shown in Figure 2.6 ) and in a row

order, i.e. one record after the other. Before uploading a sequence of records, it separates the

record fields (i.e. columns) and applies different encoding schemes to individual columns:

i) Huffman encoding for primitive types and data counts, the two columns likely contain

skewed values; ii) delta encoding for timestamps, uArray identifiers, and window numbers,

which increment monotonically. Our compression is inspired by columnar databases [104 ].

We will evaluate the efficacy of compression in Section 2.9 .

2.8 Implementation

We build SBT for ARMv8 and atop OP-TEE [105 ] (v2.3). SBT reuses most control

functions of StreamBox [47 ], an open-source research stream engine for x86 servers. Yet,

as StreamBox mismatches a TEE (§2.4.1 ), SBT contributes a new architecture and a new

data plane. SBT communicates with source sensors and cloud consumers over ZeroMQ TCP

transport [106 ] which is known for good performance. The new implementation of SBT

includes 12.4K SLoC.

Input batch size, a key parameter of SBT, trades off between delays in executing individual

primitives, the rate of TEE entry/exit, and attestation cost. We empirically determine it as

100K events and will evaluate its impact (§2.9 ).

Opaque references for uArrays are 64-bit random integers generated by the data plane.

It keeps the mappings from references to uArray addresses in a table, and validates opaque
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references by table lookup. This incurs minor overhead, as live opaque references are often

no more than a few thousands.

2.9 Evaluation

We answer the following questions through evaluation:

• Does SBT result in a small TCB? (§2.9.1 )

• What is SBT’s performance and how is it compared to other engines? What is the

overhead? (§2.9.2 )

• How do our key designs impact performance (§2.9.3 )?

2.9.1 TCB Analysis

TCB size Table 2.4 shows a breakdown of the SBT source code. Despite a sophisticated

control plane, the data plane only adds 5K SLoC to the TCB. SBT’s memory management

is in 740 SLoC, 9× fewer than glibc’s malloc and 20× fewer than jemalloc [100 ]. The size of

data plane is 42.5 KB, a small fraction (16%) of the entire OP-TEE binary.

TCB interface The SBT’s data plane exports only four entry functions: two for data

plane initialization/finalization, one for debugging, and one shared by all 23 trusted prim-

itives. The last function accepts and returns opaque references (§2.4 ). No state is shared

across the protection boundary.

Comparison with alternative TCBs Compared to enclosing whole applications in

TCB [36 ]–[38 ], SBT keeps most of the engine out, shrinking the TCB by at least one order

of magnitude. Compared to directly carving out [87 ], [89 ] the original StreamBox’s data

functions for protection, SBT completely avoids sophisticated data structures (e.g. Atom-

icHashMap [107 ] used by StreamBox) that mismatch TCB. Compared to VC3 [39 ] that

implements Map/Reduce operators in a TCB with ∼9K SLoC, SBT supports much richer

stream operators within a 2× smaller TCB.
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Table 2.3. The test platform used in experiments

SoC HiSilicon Kirin 620, TDP 36W CPU 8x ARM Cortex-A53@1.2 GHz 

Mem 2GB LPDDR3@800 MHz OS Normal: Debian 8 (Linux 4.4) 
Secure: OP-TEE 2.3 

 

Table 2.4. A breakdown of the StreamBox-TZ source, of which 5K SLoC are
in TCB. Binary code sizes shown in parentheses

Data Plane (Trusted) 
Primitives* Mem Mgmt* Misc* Total 

3.7K (32.5 KB) 0.7K (6 KB) 0.6K (4 KB) 5K (42.5 KB) 
	

Control Plane (Untrusted) 
Control  Data types* Operators* Test* Misc* Total 

23K 1.3K 4.1K 1K 1K 31K (348 KB) 
	

Major Libraries (Untrusted) 
glibc 2.19 libstdc++ 3.4.2 libzmq 2.2 boost 1.54 Total 

1135K 110K 13K 37K 1.3M (3.1 MB) 
 

* New implementations of this work. Total = 12.4K SLoC. 

2.9.2 Performance & Overhead

Methodology We evaluate SBT on a HiKey board as summarized in Table 2.3 . We chose

HiKey for its good OP-TEE support [105 ] and that it is among the few boards with TrustZone

programmable by third parties. We built Generator , a program sends data streams over

ZeroMQ TCP transport [106 ] to SBT. We run the cloud consumer on an x86 machine. Data

streams are encrypted with 128-bit AES.

In the face of HiKey’s platform limitations, we set up the engine ingestion as follows.

i) Although Gigabit Ethernet on edge platforms is common [108 ], [109 ], Hikey’s Ethernet

interface (over USB) only has 20MB/sec bandwidth. We have verified that the interface is

saturated by SBT with 4 cores. Hence, we report performance when SBT and Generator

both run on HiKey communicating over ZeroMQ TCP, which still fully exercise the TCP/IP

stack and data copy. ii) Although HiKey’s TEE is capable of directly operating Ethernet

39



Table 2.5. Engine versions for comparison (plots in Figure 2.8 )

Legend & Version Data
Plane

In/Egress
Path

Ingress 
Data

Egress
Data

StreamBox-TZ in TEE Trusted IO* Encrypted Encrypted
SBT ClearIngress in TEE Trusted IO* ClearTxt Encrypted
SBT IOviaOS in TEE via OS Encrypted Encrypted
Insecure♯ out TEE in OS ClearTxt ClearTxt

* Through TrustZone Trusted IO directly to TEE
♯ Equivalent to a StreamBox invoking StreamBox-TZ’s optimized stream compute

interface as trusted IO, our OP-TEE version lacks the needed drivers. Hence, we emulate

SBT’s direct data ingestion to TEE by running the ingestion in a privileged process in

the normal world, and bypassing data copy across the TEE boundary. Our test harness

continuously replays pre-allocated secure memory buffers populated with events.

As summarized in Table 2.5 , we test SBT as well as three modified versions: SBT

ClearIngress ingests data in cleartext; this is allowed if source-edge links are trusted as

defined in our threat model (§2.3 ). SBT IOviaOS does not exploit TrustZone’s trusted

IO: the untrusted OS ingested (encrypted) data and copies the data across TEE boundary

to the data plane. Insecure completely runs in the normal world with ingress and egress

in cleartext, showing native performance. This is basically StreamBox [47 ] with SBT’s

optimized stream computations (§2.5 ). We report the engine performance as its maximum

input throughput when the pipeline output delay (defined in §2.2.2 ) remains under a target

set by us.

Benchmarks We employ six benchmarks of processing sensor data streams from prior

work [47 ], [48 ], [52 ], [110 ], [111 ]. They cover major stream operators and a variety of pipelines.

We use fixed windows, each encompassing 1M events and spanning 1 second of event time.

Each event consists of 3 fields (12 Bytes) unless stated otherwise. (1) Top Values Per Key

(TopK) groups events based on keys and identifies the K largest values in each group in each

window. (2) Counting Unique Taxis (Distinct) identifies unique taxi IDs and counts

them per window. For input events, we use a dataset of taxi trip information containing 11 K

distinct taxi IDs [110 ]. (3) Temporal Join (Join) joins events that have the same keys and
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fall into same windows from two input streams. (4) Windowed Aggregation (WinSum)

aggregates input values within each window. We use the Intel Lab Data labdata_intel

consisting of real sensor values as input. (5) Filtering (Filter) filters out input data, of

which field falls into to a given range in each window. We set 1% selectivity as done in prior

work [111 ]. (6) Power Grid (Power), derived from a public challenge [52 ], finds out houses

with most high-power plugs. Ingesting a stream of per-plug power samples, it calculates the

average power of each plug in a window and the average power over all plugs in all houses

in the window. For each house, it counts the number of plugs that have a higher load than

average. It emits the houses that have most high-power plugs in the window. The event for

this benchmark is composed of 4 fields (16 Bytes).

Benchmark 2, 4, and 6 use real-world datasets; others use synthetic data sets of which

fields are 32-bit random integers. Note that SBT’s GroupBy operator bases on sort and merge

and is insensitive to key skewness [112 ].

End-to-end performance Figure 2.8 shows the throughputs of all benchmarks as a

function of hardware parallelism. SBT can process up to multiple millions of events within

sub-second output delays (labeled atop each plot). For simpler pipelines such as WinSum

and Filter, SBT processes around 12M events/sec (140 MB/sec). This throughput saturates

one GbE link which is common on IoT gateways [109 ]. Overall, SBT can use all 8 cores in

a scalable manner.

SBT’s absolute performance is state of the art. We test three popular, insecure stream

engines: Flink [92 ], designed for distributed environment and known for good single-node

performance [113 ]; Esper [57 ], designed for a single machine; SensorBee [51 ], designed for

sensor data processing on a single device. As shown in Figure 2.9 , on the same hardware

(HiKey) and the same benchmark (WinSum), we have measured that SBT’s throughput is at

least one order of magnitude higher than the others. This is because i) our Insecure baseline

has high performance for its rich task parallelism (inherited from StreamBox [47 ]) and native,

vectorized stream computations (new contributions); ii) SBT only imposes modest security

overhead, as will be shown later.

Comparison to secure stream engines The comparison is challenged by that Trust-

Zone was rarely exploited for protecting data-intensive computations. To our knowledge,
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Figure 2.8. StreamBox-TZ throughput (lines, left/right y-axes) as a function
of CPU cores (x-axis) under given output delays (above each plot). Steady
consumptions of TEE memory as columns with annotated values. See Table 2.5 

for legends and explanations.
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Throughput (MB/s)
(logarithmic)

SensorBee

Flink

Esper

StreamBox-TZ

Figure 2.9. StreamBox-TZ achieves much higher throughput than commodity
insecure engines [51 ], [57 ], [92 ] on HiKey. Benchmark: windowed aggregation;
target output delay: 50ms.

i) no analytics engines use TrustZone for data protection and ii) no systems can partition

an insecure stream engine for TrustZone. Note that popular secure analytics engines, e.g.

VC3 [39 ] and Opaque [40 ], not only require SGX but also target batch processing instead

of stream analytics. To this end, we qualitatively compare SBT with SecureStreams [41 ],

the closest system we are aware of. Designed for an x86 cluster, SecureStreams uses SGX

to protect stream operators and targets strong data security. On a benchmark similar to

WinSum it was reported to achieve 10 MB/sec, one magnitude lower than SBT on WinSum.

Furthermore, SecureStreams achieved such performance on a small x86 cluster which has

much richer resource than HiKey: the former has faster CPUs (8x i7-6700@3.4GHz versus

8x Cortex-A53@1.2GHz), larger DRAM (16 GB versus 2 GB), higher power (130W versus

36W), and higher cost ($600 versus $65).

SBT’s advantage comes from i) data exchange via coherent memory inside one TEE, in-

stead of exchanging encrypted messages among workers; ii) memory management specialized

for streaming, and iii) vectorized computations.

Security overhead We investigate the overhead of the new security mechanism con-

tributed by SBT – its isolated data plane. We assess the overhead as the throughput loss

of SBT ClearIngress as compared to Insecure (i.e. native performance as StreamBox [47 ]

invoking SBT’s stream computations), both paying same costs for data ingress. The target

output delays are the same (labeled atop each plot in Figure 2.8 ). The security overhead
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Figure 2.10. Run time breakdown of operator GroupBy under different input
batch sizes. The control plane runs 8 threads to execute GroupBy in parallel.
Total execution time is normalized to 100%.

is less than 25% in all benchmarks. This is similar to or lower than the reported overhead

(20–70%) in recent TEE systems [36 ], [37 ], [87 ].

Overhead analysis The security overhead mostly comes from world switch, among oper-

ators and inside each operator. To understand the switch cost within an operator, we profile

GroupBy, one of the most costly operators. We test different input batch sizes, which have

a strong impact on TEE entry/exit rates and hence isolation overhead (§2.4 ). Figure 2.10 

shows a run time breakdown. When each input batch contains 128K (close to the value we

set for SBT) or more events, more than 90% of the CPU time is spent on actual computations

in TEE. The CPU usage of TEE memory management is as low as 1–2%. In the extreme

case where each input batch contains as few as 8K events, the overhead of world switch starts

to dominate. Most of the world switch overhead comes from OP-TEE instead of the CPU

hardware (a few thousand cycles per switch), suggesting room for OP-TEE optimization.

Impact of decrypting ingress data Decrypting ingress data is needed if source-edge

links are untrusted (§2.3 ) and source must send encrypted data. It has substantial perfor-

mance impact. By comparing SBT to SBT ClearIngress, turning on/off ingress decryption

leads to 4% – 35% throughput difference when all 8 cores are in use. The performance gap

is more pronounced for simple pipelines, which has higher ingestion throughput leading to

higher decryption cost.
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Figure 2.11. Without consumption hints, the allocator uses more TEE mem-
ory. Since memory usage fluctuates at run time, the error bars show two
standard deviations below and above the average.

TEE memory usage While sustaining high throughput, SBT consumes a moderate

amount of physical memory, ranging from 20 MB to 130 MB as shown in Figure 2.8 . The

memory usage is as low as 1–6% of the total system DRAM. The virtual memory usage

is also low, often 1–5% of the entire virtual address space in OP-TEE. The memory usage

increases with the throughput, since there will be more in-flight data. On the same platform,

Flink’s memory consumption is 3× higher, due to its hash-based data structures and the use

of JVM. This validates our choice of uArrays.

Attestation overhead Attestation incurs minor overhead to both the edge and the cloud.

We measured that SBT produces 300–400 audit records per second across all our benchmarks,

and spends a few hundred cycles on producing each record. Compressing such record streams

on HiKey consumes 0.2% of total CPU time. Our consumer written in Python on a 4-core

i7-4790 machine replays 57K records per second with a single core, suggesting a capability

of attesting near 500 SBT instances simultaneously. We will evaluate the efficacy of record

compression in Section 2.9.3 .

2.9.3 Validation of Key Design Features

Exploitation of trusted IO As shown in Figure 2.8 , a comparison between SBT and

SBT IOviaOS demonstrates the advantage of directly ingesting data into TEE and bypassing
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Figure 2.12. On-demand growth of uArrays vs. std::vector

the OS: SBT outperforms the latter by up to 20% in throughput due to reduction in moving

ingested data.

Trusted primitive vectorization (§2.5 ) Our optimizations with ARM vector instruc-

tions are crucial. To show this, we examine GroupBy, one of the top hotspot operators. When

we replace the vectorized Sort that underpins GroupBy with two popular implementations

(qsort() from the the OP-TEE’s libc and std::sort() from the standard C++ library), we

measured the throughput of GroupBy drops by up to 7× and 2×, respectively. We have

similar observation on other operators.

Efficacy of hint-guided memory placement (§2.6.2 ) We compare to an alternative

design: the modified allocator acts based on the heuristics that all the uArrays produced by

the same primitive belong to the same generation and are likely to be reclaimed altogether.

Accordingly, the modified allocator places these uArrays in the same uGroup. As shown in

Figure 2.11 , in three benchmarks, the modified allocator increases memory usage by up to

35%. This is because, without hints, it cannot place uArrays based on future consumption.

uArray on-demand growth (§2.6.1 ) We compare uArray to std::vector, a widely used

C++ sequence container with on-demand growth. We run a microbenchmark of N-way

merge, an intensive procedure in trusted primitives. It iteratively merges 128 buffers (uAr-

rays or vectors), each containing 512 KB (128K 32-bit random integers) until obtaining a

monolithic buffer; as merge proceeds, buffers grow dynamically. As shown in Figure 2.12 ,
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Figure 2.13. Compression of audit records saves uplink bandwidth substantially.

uArrays is 4× faster than std::vector, because the allocation and paging in TEE that back

uArray growth is much faster than that of a commodity OS.

Compression of audit records (§2.7 ) The compression significantly saves the uplink

bandwidth. We test two benchmarks (WinSum and Power) on two extremes of the spectrum

of computation cost, and test two very different input batch sizes. This is because simpler

computations and smaller batch sizes generate audit records at higher rates. Figure 2.13 

shows that SBT compresses audit records by 5×–6.7×. In an offline test using gzip to

compress the same records, we find our compression ratios are 1.9× higher than gzip. 2–40

KB/sec of uplink bandwidth is saved, which is significant compared to the uploaded analytics

results, which are 144 bytes/sec for WinSum and 400 bytes/sec for Power.

2.10 Related Work

Secure data analytics DARKLY [114 ] protects sensor data by isolating computations in

an OS process, resulting in a large TCB. VC3 [39 ] and SecureStreams [41 ] use SGX to protect

the operators in distributed analytics. They lack optimizations for parallel execution in one

TEE on the edge. To process data confidentiality, STYX [115 ] computes over encrypted

data, a method likely prohibitively expensive to edge platforms. Opaque [40 ] protects data

access patterns of distributed operators, targeting a threat out of our scope.

TCBminimization Minimizing TCB is a proven approach towards a trustworthy system.

Flicker [64 ] directly executes security-sensitive code on baremetal hardware. Trustvisor [63 ]
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shrinks its TCB to a specialized hypervisor. Sharing a similar goal, SBT addresses unique

challenges in supporting data-intensive computation on a minimal TCB.

Trusted Execution Environments Much work isolates security-sensitive software com-

ponents. Terra [116 ] supports isolation with a virtual machine. Many systems used Trust-

Zone and SGX [50 ] for TEE. Some systems enclose in TEE whole applications [9 ], [36 ]–[38 ],

while others partition existing programs for TEE [87 ]–[89 ]. These approaches often result

in larger TCBs and/or higher overhead than SBT and are thus less desirable for SBT. TEE

also sees various novel usage, including protecting mobile app classes [117 ], enforcing secu-

rity policies [118 ], remote attestation of application control flows [119 ], and controlling data

access [120 ]. None addresses data-intensive computation as SBT does.

Edge processing evolves from a vision [20 ], [21 ] to practice [28 ]–[30 ]. Most works focused

on programming paradigms [121 ], developing and deploying application [27 ], [122 ], [123 ],

and resource management [124 ]. Complementary to them, SBT focuses on secure analytics

on the edge.

Stream processing systems, in response to big data challenges, evolve from single-

threaded [125 ]–[129 ] to massive parallel systems [46 ], [53 ]–[55 ], [130 ], [131 ]. The existing

systems focus on challenges, such as fault tolerance [46 ], fast reconfiguration [132 ], high

parallelism [47 ], [48 ], and the use of GPUs [111 ]. Few systems achieve data security and

performance simultaneously as SBT does.

2.11 Conclusions

This paper presents StreamBox-TZ (SBT), a secure stream analytics engine designed and

optimized for a TEE on an edge platform. SBT offers strong data security, verifiable results,

and competitive performance. On an octa core ARM machine, SBT processes up to tens of

millions of events per second; its security mechanisms incur less than 25% overhead.
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3. GPURIP: A 50-KB GPU STACK FOR CLIENT ML

3.1 Introduction

GPU stacks Smartphones or IoT devices commonly use GPUs to accelerate machine

learning (ML). As shown in Figure 3.1 (a), a modern GPU software stack spans ML frame-

works (e.g. Tensorflow [133 ] and ncnn [134 ]), a GPU runtime (e.g. OpenCL or Vulkan

runtimes) that translates APIs to GPU commands and code, and a GPU driver that tunnels

the resultant code and data to GPU. A GPU stack has a large codebase. The runtime for

Arm Mali, reported to be the most pervasive GPUs in the world [135 ], is a 48-MB exe-

cutable; their driver has 45K SLoC [136 ]. The stack often has substantial proprietary code

and undocumented interfaces.

Such a sophisticated GPU stack has created a number of difficulties. (1) Weak secu-

rity [137 ]–[139 ]. In the year of 2020, 46 CVEs on GPU stacks were reported, most of which

are attributed to the stack’s complex internals and interfaces. (2) Difficult deployment. For

instance, ncnn, a popular mobile ML framework, requires the Vulkan API. Yet the Vulkan

runtime for ARM GPUs only exists on Android but not GNU/Linux or Windows [140 ]. Even

on a supported OS, an ML app often only works with specific combinations of runtime/kernel

versions [141 ]–[143 ] (3) Slow startup. Even launching a simple GPU job may take several

seconds because of expensive stack initialization. This paper will show more details.

The complexity of a GPU stack is from its original design goal: to support interactive

apps which generate numerous dynamic GPU jobs. By contrast, ML apps often run a

prescribed set of GPU jobs (albeit on new input data) [144 ]; many ML apps run GPU job

batches without UI; they can multiplex on GPU at long intervals, e.g. seconds. The ML

apps just need to quickly shove computation into GPU. They should not be burdened by a

full-blown GPU stack.

Our approach GPURip is a new way to deploy and execute GPU compute with little

changes to the existing GPU stack. We focus on integrated GPUs on system-on-chips (SoCs).

Figure 3.1 (b) overviews its workflow. At development time, developers run their ML app

and record GPU executions. The recording is feasible: despite much of the GPU stack is

a blackbox, it interacts with the GPU at a narrow interface – registers and memory, which
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Figure 3.1. The overview of GPURip

is managed by an open-source driver. Through lightweight instrumentation, a recorder in

the driver can trace CPU/GPU interactions as a series of register accesses and memory

dumps which enclose proprietary GPU commands and instructions. They are sufficient for

reproducing the GPU computation.

To replay, an ML app invokes the recorded GPU executions on new input data. To

the app, the GPU stack is substituted by a replayer, which is much simpler as it avoids

GPU API translation, code generation, and resource management. It simply accesses GPU

registers and loads memory dumps at the specified time intervals. Throughout the process,

the recorder/replayer remain oblivious to the semantics of most register accesses and memory

dumps.

Benefits GPURip offers the following benefits:

(1) Security First, GPURip better shields the GPU stack. The GPU stack serving ML

apps is detached from target machines and instead resides on developer’s machine. The stack

is therefore no longer exposed to many threats in the wild; it is protected as part of software

supplychain, for which attacks require much higher capabilities and longer commitment [11 ].

Second, as the GPU stack is replaced with a simple replayer, the target machines have fewer

vulnerabilities, e.g. kernel crash due to invalid GPU buffer [12 ]. Third, the replayer serves
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as a strong last line of defense for GPU security: it only has a few K SLoC; it is independent

of a commodity OS; it can be isolated within a TEE. See Section 3.7 for a security analysis.

(2) Ease of ML deployment The replayer runs in various environments: at user or kernel

level of a commodity OS, in a TEE, in a library OS, and even baremetal. Section 3.6 will

present the details. GPURip brings mature GPU compute such as Tensorflow NNs to these

environments without porting full GPU stacks. GPURip is compatible with today’s GPU

ecosystems. It requires no reverse engineering of proprietary GPU runtimes, commands, and

shaders. Agnostic to GPU APIs, GPURip can record and replay diverse ML workloads.

(3) Faster GPU invocation GPURip reduces the GPU stack initialization to baremetal:

register accesses and GPU memory copy. It removes expensive abstractions of multiple

software layers, dynamic CPU/GPU memory management, and just-in-time generation of

GPU commands and code.

Challenges First, we make reproduction of GPU workloads feasible despite the GPU’s

complex interfaces and proprietary internals. We identify and capture key CPU/GPU inter-

actions and memory states; we selectively dump memory regions and discover the input/out-

put addresses operated by GPU commands/shaders.

Second, we ensure GPURip’s replay is correct in the face of nondeterministic CPU/GPU

interactions. A key insight is that replay correctness is equivalent to the GPU finishing

the same sequence of state transitions as recorded. To this end, we prevent many state

divergences by eliminating their sources at the record time; we tolerate non-deterministic

interactions that do not affect the GPU state at the replay time. GPURip’s approach to

nondeterminism sets it apart from prior record-and-replay systems [145 ]–[147 ]: targeting

program debugging, they seek to reproduce the original executions with high fidelity and

preserve all nondeterministic events in replay.

Third, we investigate a variety of practicality issues. We identify the minimum GPU

hardware requirements. We show that GPURip requires low developer efforts, and such

efforts are often amortized over a family of GPUs supported by one driver. We explore

GPURip’s deployment ranging from smartphones to headless IoT devices. We investigate

how to map an ML workload to GPURip recordings and quantify the impact of recording
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granularities. We propose a scheduling mechanism for the replayer to share GPU with

interactive apps.

Results GPURip works on a variety of GPUs (Arm Mali and Broadcom v3d), APIs

(OpenCL, GLES compute, and Vulkan), ML frameworks (ACL [148 ], ncnn [134 ], Tensor-

flow [133 ], and DeepCL [149 ]), and 33 NN implementations. We build replayers for userspace,

kernel, TrustZone, and a baremetal environment. We show that a recording with light patch-

ing can be replayed on different GPU hardware of the same family. Compared to the original

GPU stack, the replayer’s startup delays are lower by up to two orders of magnitude; its

execution delays range from 40% lower to 13% higher.

This paper makes the following contributions:

1. GPURip, as a new way to deploy GPU computation.

2. A recorder that captures the essential GPU memory states and interactions for replay.

3. A safe, robust replayer that verifies recordings for security, supports GPU handoff and

preemption, and detects and recovers from replay failures.

4. Realization of the design in diverse software/hardware environments.

3.2 Motivations

3.2.1 The GPU stack and its problems

CPU/GPU interactions As shown in Figure 3.2 , CPUs request computation on GPUs

by sending jobs to the latter. The GPU runtime directly emits GPU job binaries – GPU

commands, metadata, and shaders – to GPU-visible memory1
 . The runtime communicates

with the driver with ioctl syscalls, e.g. to allocate GPU memory or to start a job.

Why are GPU stacks complex? Several key features of a GPU stack cater to graphics.

1. Just-in-time (JIT) job generation. Graphics apps emit numerous GPU jobs, from upload-

ing textures to rendering fragments. For instance, during a game demo of 50 seconds [150 ],

the v3d GPU executes 32K jobs. A game may rewrite shader sources for jobs [151 ]. Unable

to foresee these jobs, the GPU stack generates their commands and shaders just in time.
1↑ GPU memory for short, with the understanding it is part of shared DRAM
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2. Dynamic resource management. Depending on user interactions, graphics apps generate

GPU jobs with various input sizes, data formats, and buffer lengths. They require dynamic

management of GPU time and memory, which may further entail sophisticated CPU/GPU

coordination [152 ].

3. Fine-grained multiplexing. Concurrent programs may draw on their screen regions. To

support them, the GPU stack interleaves jobs at fine intervals and maintains separation.

Compute for ML shows disparate nature unlike graphics.

Prescribed GPU jobs: One app often runs pre-defined ML algorithms [144 ], requesting a

smaller set of GPU jobs repeatedly executed on different inputs. Popular neural networks

(NN) often have tens of GPU jobs each (§3.7 ). The needed GPU memory and time can be

statically determined.

Coarse-grained multiplexing: On embedded devices, ML may run on GPU for long with-

out sharing (e.g. object detection on a smart camera). On multiprogrammed smartphones,

ML apps may run in background, e.g. photo beautification or model retraining. Such an

app tolerates delays of hundreds of milliseconds or seconds in waiting for a GPU; once on

GPU, it can generate adequate workloads to utilize the GPU.
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Runtime blackboxes Most GPUs have proprietary runtime, job binaries, and shaders.

While GPURip can be more efficient had it known these internals or changed them, doing so

requires deep reverse engineering and makes deployment harder. Hence, we avoid changing

these blackboxes but only tap in the Linux GPU drivers which are required to be open-source.

Design Implication A GPU stack’s dual modality for graphics and compute becomes a

burden. While an ML app still needs the GPU stack for translating higher-level programming

abstractions to GPU hardware operations, the translation can happen ahead of deployment.

At run time, the ML app just needs a simple path to push the resultant operations to GPU.

3.2.2 GPU Trends We Exploit

GPU virtual memory Today, most integrated GPUs run on virtual address spaces. To

configure a GPU’s address space, the GPU stack populates the GPU’s page tables and links

GPU commands and shaders to the virtual addresses.

GPU autonomy To reduce CPU overhead, a GPU job packs in much complexity –

control flows, data dependency, and core schedule. The GPU parses a job’s binary, resolves

dependency, and dispatches compute to shader cores. A job may run as long as a few seconds

without CPU intervention.

Take Mali G71 as an example: a job (called a “job chain”) encloses multiple sub jobs and

the dependencies of sub jobs as a chain. To run AlexNet for inference, the runtime (ACL

v20.05) submits 45 GPU jobs, 5–6 GPU jobs per NN layer; the GPU hardware schedules a

job over 8 shader cores.

Synchronous job submission Asynchronous GPU job submission is crucial to graphics,

for which GPU executes smaller jobs. To hide job management delays, CPU streams jobs to

GPU to keep the latter busy. Yet for compute, a job’s management delay is amortized over

the job’s longer execution. For simplicity, shallow job queues in GPU drivers are common

(max two outstanding jobs in the Mali [153 ] and one in v3d/vc4 [154 ], [155 ]). We confirm

the low overhead of synchronous jobs: with six NN inferences on Mali G71 (see Table 3.5 

for details), we find that enforcing synchronous jobs only adds 4% delays on average (max:

11%, min: 2%).
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3.3 GPURip

3.3.1 Using GPURip

The boundary We record at the lowest software level, i.e. the CPU/GPU boundary. This

makes the replayer small and portable. By contrast, recording at higher levels, e.g. GPU

APIs [156 ] or ML frameworks [157 ], would require the replayer to incorporate extensive

runtime or driver functionalities.

A recording encodes a fixed sequence of GPU jobs, including the CPU/GPU interactions

(in an XML file) and GPU memory dumps (in ELF files) needed to execute these jobs. To

capture a workload in one recording, the workload is required to execute all its jobs regardless

of input, i.e. the workload’s job graph contains no conditional branches that lead to different

types of GPU jobs. The requirement does not preclude conditional branches inside a GPU

job, i.e. among GPU instructions. This is because GPURip dumps a job’s entire binary,

which includes all the branches within, no matter whether they were exercised at the record

time.

The above requirement is met by most, if not all, popular NNs, including all 44 NNs

shipped with ACL, ncnn, and Tensorflow [134 ], [148 ], [158 ]. Note that some NNs (e.g.

55



SqueezeNet and GoogLeNet) use “branches” to refer to routes in their job graphs, which are

in fact executed unconditionally.

As examples, Figure 3.3 shows two common NN workloads.

•NN inference runs a sequence of NN layers {L1...Ln}, each executing a sequence of GPU

jobs unconditionally. To record, developers run the inference once and create recordings

{R1...Rn}, one recording per NN layer. An ML app supplies input and replays {R1...Rn} in

sequence. After the replay, the replayer extracts output from GPU memory to the app.

•NN training runs a sequence of NN layers {L1...Ln} iteratively; after each iteration, it

evaluates a predicate P and terminates if P shows the result has converged. To record,

developers run one iteration and creates a sequence of recordings {R1...Rn}. They do not

handle conditionals. An ML app runs a training iteration by replaying {R1...Rn}. After the

iteration, the app code on CPU evaluates P. Unless P shows convergence, the app replays

{R1...Rn} again on refined input.

The only exception to the above requirements, to our knowledge, is a conditional NN [159 ]

using branches to choose among normal NNs. In this case, developers record branches as

separate recordings; at run time, an ML app evaluates branch conditions on CPU and

conditionally replays recordings. Conditional NNs are rare in practice to our knowledge.

Recording granularity is a tradeoff between composability and efficiency; it does not af-

fect correctness. In the examples above, developers record separate NN layers; alternatively,

they may record a whole NN execution as one recording. While per-layer recordings allow

apps to assemble new NNs programmatically, a monolithic recording improves replay effi-

ciency due to reduction in data move and cross-job optimizations. Section 3.7 will evaluate

these choices.

Developers’ efforts are on three aspects. (1) Instrumenting a GPU driver to build a

recorder. The effort is no more than 1K SLoC per GPU family, as the instrumentation

applies to the family of GPU models supported by the driver. See Section 3.4 for examples.

(2) Recording their ML workloads. The effort is per GPU model. With minor patches,

a recording can further be shared across GPU models of the same family. Section 3.6 
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Figure 3.4. The different ways to deploy a GPURip replayer

describes our experiences. (3) Building a replayer. The effort is a few K SLoC per deployment

environment, e.g. for a TEE.

Deploying the replayer Figure 3.4 shows three scenarios.

•As a replacement for the GPU stack. This applies to headless devices such as robots, where

ML apps share GPU cooperatively. Each ML app run its own replayer instance.

•Co-existing with a GPU stack on the same OS. This applies to smartphones. Interactive

apps run on the GPU stack as usual. When they are not using GPU, the OS runs ML with

replay. Once the interactive apps ask for GPU, the OS preempts GPU from the ongoing

replay with short delays (Section 3.5 ).

•In TEE. This applies to Arm TrustZone [160 ]. On the same device, the GPU stack runs

in the normal world and ML runs atop a replayer in the secure world. A secure monitor at

EL3 switches GPU between the two worlds. A replayer in an SGX enclave is possible, but

would need additional support such as MMIO remoting or SGX’s extension for MMIO [161 ]

because by default enclaves cannot directly access GPU registers.

Section 3.7 presents a security analysis for each scenario.
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Table 3.1. Our GPU model fits popular integrated GPUs. *= To enforce
sync job submission: Mali: reduce the job queue length; TegraX1: inject
synchronization points to a command buffer; Adreno: check submitted job
completion before a new command flush. NC: no changes

Features Interface Knowledge

M
M
IO

V
irt

M
em

Sy
nc
Jo

b*

Jo
bS

ta
rt

Pg
ta
bl
es

R
es
et

IR
Q

Arm Mali [136 ] Y Y [163 ] [153 ] [164 ] [165 ] [166 ]
Bcom v3d [154 ] Y Y NC [167 ] [168 ] [169 ] [170 ]
Bcom vc4 [171 ] Y NC [155 ] N/A [172 ] [173 ]
NV TegraX1 [174 ] Y Y [175 ] [176 ] [177 ] [178 ] [179 ]
Qcom Adreno [180 ] Y Y [181 ] [182 ] [183 ] [184 ] [185 ]

3.3.2 The GPU Model

GPURip builds on a small set of assumptions as summarized in Table 3.1 . As the

“least common denominator“ of modern integrated GPUs, the assumptions constrain GPU

behaviors to be a reproducible subset.

•CPU/GPU interfaces include memory-mapped registers, shared memory, and interrupts.

Some GPUs, e.g. NVIDIA Tegra X1, may invoke DMA to access GPU registers [162 ]. All

these interactions can be captured at the driver level.

•Synchronous job submission. Disabling asynchronous jobs avoids interrupt coalescing and

the resultant replay divergence. The performance loss is modest as described in Section 3.2.2 .

•GPU virtual memory. The replayer can manipulate the GPU page tables and load memory

dumps to physical addresses of its choice. GPURip can work with legacy GPUs running on

physical memory. Yet, the replayer must run on the same physical memory range as the

record time.

Replay correctness The replayer offers the same level of correctness guarantee as the

full GPU stack does: the replayer’s assertion that a recorded workload (a series of GPU jobs)

is completed is as sound as an assertion from the GPU stack. Our rationale is based on the

GPU state.
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A GPU state <P,C,J> is all GPU-visible information affecting the GPU’s execution

outcome: P is the GPU’s current protocol step, e.g. wait for commands; C is the GPU’s

hardware configuration; J is the job binary being executed. We define a replay run as correct

if the GPU at the replay time goes through the same state transitions as the record time.

The full GPU driver, as it runs, continuously assesses if the GPU state deviates from a cor-

rect transition path. The driver’s only observations are state-changing events in CPU/GPU

interactions: the events either changing the GPU state or indicating the GPU state has

changed. State-changing events include: a register write; a register read returning a value

different from the most recent read; a register read with side effect; interrupts.

Based on the rationale, the replayer asserts correctness based on matching state-changing

events. If it observes the same sequence of state-changing events with all event parameters

matched, then to the best knowledge of the GPU driver, the GPU makes the same state

transitions and completes the recorded workload. The replay is correct per our definition.

Suppose a state divergence, such as silent data corruption, is missed by the replayer, it

could have been missed by the full GPU driver as well. If we assume the driver is golden,

i.e. it has made sufficient interactions to assess if GPU state has deviated from the correct

transitions, then such silent divergences should neither occur to the driver nor the replayer.

Nondeterministic CPU/GPU interaction Even to repeat the same workload, the

CPU/GPU interactions are likely to differ, e.g. CPU may observe diverging register values

or receive extra/few interrupts. Hence, a raw trace cannot be replayed verbatim. The major

nondeterminism sources are as follows. (1) Timing. For instance, a GPU job’s delay may

vary; the CPU may poll the same register for different times until its value changes. (2)

GPU concurrency. The order of finishing concurrent jobs and the number of completion

interrupts may vary. (3) Chip-level hardware resources, e.g. changes in a GPU’s clockrate.

Because replay correctness only depends on GPU states, we treat nondeterminism as

follows. (1) Nondeterminism not affecting GPU states. This includes most of timing-related

behaviors. The recorder discovers and summarizes them as replay actions, so that the re-

player can tolerate (§3.4 ). (2) Affecting GPU states; preventable. This includes GPU con-

currency and some configurable chip resources. We eliminate the nondeterminism sources,

e.g. enforcing synchronous job submission as described in the GPU model above. (3) Af-
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fecting GPU states; non-preventable. This mainly includes strong contention and failures in

chip resources, such as power failures. The replayer detects them and attempts re-execution.

3.4 Record

3.4.1 Interface Knowledge and Instrumentation

The knowledge needed by the recorder is in Table 3.1 :

•The registers for starting a GPU job and for resetting GPU.

•The register pointing to the GPU page tables; the GPU page table’s encoding for physical

addresses. This allows to capture and restore the GPU virtual address space.

•The set of registers on which reads or writes do not change GPU state. This is to detect

state-changing events.

•The events that a GPU interrupt handler starts and ends. Knowing them allows the

replayer to enter and leave an interrupt context (via eret) just as the record time.

•(Optional) The events that the GPU hardware becomes busy or idle. The recorder uses

them to remove unwanted delays.

We instrument the driver code: register accessors; register writes starting a GPU job;

accessors of GPU page tables; interrupt handling. Many of these code locations are already

abstracted as macros [186 ] or tracepoints [187 ]. We find manual instrumentation is more

robust than tracing via page faults [188 ].

Developer efforts The efforts to extract interface knowledge and to instrument a driver

are often shared by a family of GPU models supported by the driver. We confirm this

is true for 6 GPU models supported by the Arm Bifrost driver [136 ] and 17 GPU models

supported by the Adreno 6xx driver [180 ]. Although a driver may execute code conditionally

depending on the GPU model in use, the GPU interfaces in a GPU family, i.e. register names

and semantics, are often identical.

60



Table 3.2. Replay actions in a recording

Replay Actions Descriptions 

RegReadOnce(r,val,ignore) Read register @r once. A return value ≠ @val, then replay error. The read value may be ignored, 
in case of registers expected to return non-deterministic values. 

RegReadWait(r,mask,val,timeout) 
Poll register @r until its bits selected by @mask become @val.  
After the maximum wait time @timeout, report a replay error. 

RegWrite(r,mask,val} 
Write @val to register @r. @mask selects the written bits. 
Other bits are unchanged. 

SetGPUPgtable(p) 
Update the base address of GPU page table base to @p. 
To implement, the replayer updates a GPU register. 

MapGPUMem(size,addr) Allocate memory of @size and map to GPU virtual address @addr. 
The replayer loads a GPU page table dump and patch entries for relocation. 

UnMapGPUMem(addr) Unmap the GPU memory at @addr. Free physical memory. 

Upload(d,addr) Upload a memory dump @d to the GPU virtual address @addr, which must be mapped first. 

CopyTo/FromGPU(gaddr,addr) 
Move data between a GPU virtual address @gaddr and a CPU address @addr in the replayer’s 
address space. For injecting input and extracting output. 

WaitIrq(timeout) 
Wait for a GPU interrupt before the next action. Interrupt handling is done by replaying the 
subsequent actions. Report a replay error if timeout.   

3.4.2 Register access

A recording consists of actions listed in Table 3.2 . An action may summarize a sequence

of register accesses showing nondeterminism without affecting GPU state. For instance,

CPU may wait for GPU cache flush by polling a register [189 ], [190 ], where the number of

register reads depends on the nondeterministic flush delay. Such polling is summarized by

RegReadWait().

To do the above, the recorder recognizes nondeterministic register accesses that do not

change GPU state. With the GPU interface knowledge described above, we inspect a driver’s

register accessors and instrument their callsites that match the patterns in Table 3.2 . We

tap in existing macros such as wait_for() [191 ], [192 ] and instrument tens of callsites per

driver.

3.4.3 Dumping proprietary job binaries

The recorder must record for a job’s binary: (1) GPU commands for data copy or for-

mat conversion, often packed as nested arrays; (2) shaders, which include GPU code and
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metadata; (3) GPU page tables. A GPU binary is deeply linked against GPU virtual ad-

dresses: GPU commands contain pointers to each other, to the shader code, and to a job’s

input data; shaders also reference to code and data. Therefore, GPURip dumps all memory

regions that may contain the job binary; to replay, GPURip restores the memory regions at

their respective GPU virtual addresses.

Time the dump A GPU stack emits a job’s binaries and updates GPU page tables

lazily – often not until it is about to submit the job. Accordingly, the recorder dumps

GPU memory right before the driver kicks the GPU for a new job. At this moment, the

runtime must have emitted the job’s binary to the GPU memory; the memory dump must

be consistent: synchronous job submission ensures no other GPU jobs are running at this

time and mutating the memory.

Locating job binaries in GPU memory Memory dumps must include job binaries for

correctness; they should exclude GPU buffers passed among jobs so that loading of memory

dumps does not overwrite these buffers; they should leave out a job’s scratch buffers as many

as possible for space efficiency.

The challenge is that the recorder does not know exactly where GPU binaries are in

memory: the GPU runtime directly emits the binaries to mmap’d GPU memory, bypassing

the GPU driver and our recorder therein. A naive dump capturing all physical memory

assigned to GPU can be as large as GBs. An optimization is to only dump memory mapped

to GPU at the moment of job submission, which reduces a memory dump to MBs. Section 3.6 

presents hardware-specific optimizations to further shrink memory dumps.

3.4.4 Locating input and output for a recording

Record by value vs. by address A recording accepts one or more input buffers. By

default, GPURip records an input buffer by address: the recorder captures the buffer’s GPU

address, allowing new data injected at the address at replay time. Use cases include an

NN’s input buffer. If developers intent to reuse an input buffer’s values for replay, they

may optionally annotate the input as “record by value” in the record harness. GPURip

then captures the buffer values as part of memory dumps. Use cases include a buffer of
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NN parameters. An input recorded by value and by address simultaneously allows optional

value overriding. Annotations only decide apps’ responsibility for providing input data at

the replay time; improper annotations does not break replay correctness.

Discover input/output addresses Recording by value is straightforward: just dump

any memory region that may contain the input. Recording by address is more challenging:

the recorder cannot track to which GPU address the runtime copies input, as the runtime

is a kernel-bypassing blackbox; it does not know from which addresses the GPU code loads

input, because the recorder cannot interpret the GPU code.

To reveal these memory locations, GPURip adopts simple taint tracking. The record

harness injects input magic values – synthetic, high-entropy data – and looks for them in

GPU memory dumps. The rationale is that it is very unlikely that a high-entropy input

(e.g. a 64x64 matrix with random elements) coincides another GPU memory region with

identical values.

We took care of a few caveats. (1) The output often has lower entropy because it is smaller

(e.g. a class label). In case of multiple matches of output magic in memory, GPURip repeats

runs with different input magics to eliminate false matches. (2) The above technique cannot

handle the case when the ML framework runs CPU code to reshape data before/after the

data is moved to/from GPU. Fortunately, we did not see such a behavior in popular ML

frameworks: Tensorflow, ncnn, and ACL. For efficiency, they always invoke GPU, if available,

for data reshaping. While we are aware of rigorous, fine-grained taint tracking tupni, our

simpler technique is sufficient for locating GPU input/output. This saves us from configuring

symbolic execution on a closed-source GPU runtime of tens of MBs, which requires expertise

and non-trivial effort.

3.4.5 Pace replay actions

CPU cannot replay as fast as possible, otherwise GPU may fail to catch up. For example,

CPU needs to delay after resetting the GPU clock/power for them to stabilize [193 ], [194 ]

and delay after requesting GPU to flush cache [195 ].
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Figure 3.5. Intervals between CPU/GPU interactions, accumulated by GPU
job. Intervals among earlier jobs are longer than later ones. Workload: AlexNet
inference. ACL [148 ] on Mali G71. Excluded: GPU busy time; parameters
loading IO

The recorder sets a minimum interval T for each action: if the replayer takes t to execute

the current action, it pauses for at least T − t to before the next action. Setting proper

intervals is non-trivial. When running the GPU stack, CPU paces its interactions with GPU

intentionally (e.g. calling delay()) or unintentionally (e.g. running unrelated apps). The

recorder should not preserve the observed intervals, as doing so will unnecessarily slow down

the replay.

Figure 3.5 shows an example, where most long intervals are unintended delays from CPU:

(1) Resource management, such as initialization of GPU memory management; (2) JIT

generation of GPU commands and shaders; (3) OS asynchrony, such as scheduling delays;

(4) Recording overhead, e.g. dumping GPU memory; (5) Abstraction tax, e.g. frequent

IOCTLs. Doing none of these, the replayer should simply skip the resultant intervals and

fast-forward to the next action.

The challenge is to differentiate unintended delays from intended delays. It is unrealistic

for the recorder to profile the complex, multi-threaded GPU stack. Instead, it follows a

simple heuristics: if the GPU hardware has been idle through one interval, the interval is

safely skippable. The rationale is that an idle GPU can always keep up with CPU’s next

action without pause. With this heuristics, we add tens of lines of code per driver, which

can prove GPU idle for more than half of the observed intervals. Skipping them speeds up

64



the replay significantly, as we will show in Section 3.7 . The recorder simply preserves the

remaining intervals for replay.

3.5 Replay

The replayer provides the following APIs. (1) Init/Cleanup: acquire or release the GPU

with reset. (2) Load: load a recording file, verify its security properties, and allocate the

required GPU memory. (3) Replay: replay the recording with input/output buffers supplied

by the app. The replayer consists of a static verifier; an interpreter that parses/executes a

recording in sequence; a nano GPU driver to be invoked by the interpreter.

3.5.1 Verification of security properties

The replayer statically verifies the following security properties. While a full GPU driver

may implement similar checks, the replayer provides stronger guarantees due to its simplicity

and independence of an OS kernel.

•No illegal GPU register access by CPU. A recording contains GPU register names, which

are resolved by the replayer as addresses based on the CPU memory mapping.

•No illegal memory access by GPU. A recording only specifies sizes and GPU addresses of

memory regions. It is up to the replayer to allocate the underlying physical pages and set

up GPU page tables. The replayer ensures the allocated physical pages contain no sensitive

data. The GPU MMU prevents GPU code from accessing any CPU memory.

•Maximum GPU physical memory usage. The replayer scans a recording for MapGpuMem

entries (Table 3.2 ) to determine the GPU memory usage at any given moment. Based on

the result, apps or the replayer can reject memory-hungry recordings.

The replayer cannot decide semantic correctness which is orthogonal to security. Sec-

tion 3.7.1 will present discussions.
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3.5.2 The nano GPU driver

The nano driver abstracts GPU hardware; it only has of 600 SLoC. Most driver functions

directly map to replay actions: mapping GPU registers to CPU addresses, copying data in

and out of GPU memory, rewriting the GPU page table entries for loading memory dumps,

etc. The driver includes a bare minimum interrupt handler, which simply switches the CPU

to the interrupt context and continues to replay the subsequent actions. The interrupt man-

agement, such as waiting for interrupt, acknowledging an interrupt, and checking interrupt

sources, is done implicitly by replaying the corresponding actions.

3.5.3 GPU handoff and preemption

During replay, the replayer fully owns the GPU and does not share with other apps.

Before and after a replay, it soft-resets the GPU, ensuring the GPU starts from a clean state

without data leaking, e.g. no subsequent apps will see unflushed GPU cache. The replayer

allows the OS to reset and preempt the GPU at any time (e.g. yielding to an interactive

app) without waiting for ongoing GPU jobs to complete. Hence, preemption incurs short

delays. A preemption disrupts the current replay. To mitigate it, we implement optional

checkpointing: periodically making copies of GPU memory and registers. A disrupted replay

resume from the most recent checkpoint. Section 3.7 evaluates preemption and checkpointing

experimentally.

3.5.4 Handling replay failures

Replay failures are GPU state divergences due to non-preventable nondeterminism at

run time. Based on our GPU model (§3.3 ), the replayer will not miss detecting any state

divergences the full GPU stack can detect. When the replayer faces failures, it attempts

to recover through re-execution: resetting the GPU and starting over the whole recording;

if the divergence persists, the replayer injects additional delay to the action intervals that

precede the divergence occurrence.
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Table 3.3. GPURip implementations. * = used in evaluation. See Table 3.5 

for evaluated recordings

GPU HW (Boards) Compatible GPU stacks Recordings  Replayers  

Mali-G71 * 
(Hikey960) 

1. ACL + Open CL * 
2. DeepCL + OpenCL * 
3. ACL + GLES compute  
4. Tensorflow + ACL + OpenCL  
Driver: Arm Mali r23p0-01re10 

Inference: 18 
Training: 1 

1.User* 
2.TEE 

Mali G51 (Odroid N2) 

Mali G31 (Odroid C4) 

Brcm v3d * 
(Raspberry Pi 4) 

1. ncnn + Vulkan * 
2. Py-videocore6  
Driver: drm/v3d in Linux 5.11 

Inference: 15 
Math: 2 

1.Kernel*  
2.Baremetal 

 

Re-execution with delays can overcome transient failures and many timing-related fail-

ures, which are the most common failures based on the driver code comments, documen-

tations, and our own experience. Examples include an underclocked GPU for replay fails

to keep up with the replay actions; high contention on shared memory cause GPU jobs to

timeout.

Re-execution cannot overcome persistent failures, e.g. reoccurring hardware errors. A

full driver is unlikely to overcome such errors either. In this case, the replayer seeks to emits

meaningful errors as the full driver does: it reports the failed action and the associated

source locations in the full driver.

3.6 Implementations and Experiences

As summarized in Table 3.3 , we implement GPURip for Arm Mali (reported to ship

billions of devices [135 ]) and Broadcom v3d (the GPU for RaspberryPi 4). The current

implementations work for a variety of ML workloads (inference, training, and math kernels),

programming abstractions (OpenCL, Vulkan, and GLES compute), and GPU runtimes (the

official ones as well an experimental runtime fully written in Python).
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3.6.1 The recorder for Arm Mali

We implement a recorder for Mali Bifrost family; it records complex and diverse GPU

workloads, including 18 inferences and 1 training, some of which will be evaluated in Sec-

tion 3.7 . Leveraging ArmNN [196 ], our prototype for Mali is compatible with TensorFlow

NN models. We adds around 700 SLoC to Mali’s stock driver, which is 1% of the driver’s

45K SLoC.

Our recorder exploits Mali’s page permission to shrink memory dumps. If a GPU-visible

page is mapped as executable to GPU, the recorder treats the page as part of job chains

and dumps it. If a GPU-visible page is non-executable to GPU and is unmapped from CPU,

the recorder treats the page as part of GPU internal buffers and excludes it from dumping.

This is because GPU-visible pages are mapped to CPU on demand; an unmapped page must

never have been accessed by CPU.

3.6.2 The recorder for Broadcom v3d

Our recorder for v3d adds around 1K SLoC to v3d’s stock driver. To dump GPU memory,

the recorder follows v3d’s registers pointing to shaders and control lists. It handles the cases

where lists/shaders may contain pointers to other lists/shaders of the same or different

memory regions. Unlike Mali, the v3d page tables lack executable bits. Being conservative,

the recorder has to dump more pages than Mali in general. To further exclude unwanted

GPU memory regions from dumping, the recorder exploits as hints the flags of syscalls that

allocate the GPU memory. To reduce the storage overhead, the recorder compresses the

memory dumps with zlib [197 ].

3.6.3 Replayers in various environments

A baremetal implementation As a proof of concept, we built a standalone replayer for

v3d without any OS.

To avoid filesystems, we statically incorporate compressed recordings in the replayer bi-

nary. The whole executable binary (excluding recordings) is around 50 KB. In the executable,
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the replayer itself is about 8 KB. We link zlib [197 ] for recording decompression (about 9

KB) and a baremetal library [198 ] for Rpi4. The library functions include CPU booting,

interrupts, exception, and firmware interfaces (about 15 KB executable); CPU cache, MMU,

and page allocation (4 KB); timers and delays (4 KB); string manipulation and linked lists

(9 KB).

A major challenge is to bring up the GPU power and clocks. Modern GPUs depend on

power/clock domains at the SoC level [199 ]. Linux configures power and clocks by accessing

various registers, sometimes communicating with the SoC firmware [200 ]. The process is

complex, SoC-specific, and often poorly documented. While replayers at the user or the

kernel level reuse the configuration done by the kernel transparently, the baremetal replayer

must configure GPU power and clocks itself. To do so, we instrument the Linux kernel,

extract the register/firmware access, and port it to the replayer.

A user-level implementation We built a replayer for Mali as a daemon with kernel

bypassing [201 ], [202 ]. To support the daemon, the kernel parses the device tree and exposes

to the userspace the GPU registers, memory regions, and interrupts. The replayer maps GPU

registers and memory via mmap(); it directly manipulates GPU page tables via mapped

memory; it receives GPU interrupts by select() on the GPU device file.

A kernel-level implementation We built a replayer for v3d as a kernel module. The

replayer directly invokes many functions of the stock GPU driver, e.g. for handling GPU

interrupts and memory exceptions; it exposes several IOCTL commands for an app to load

a recording and inject/extract input/output. Once turned on, the replayer disables the

execution of the stock driver until replay completion or GPU preemption.

A TrustZone implementation We built a replayer for Mali in the secure world on the

Hikey960 board. We added a small driver (in 100 SLoC) to the TrustZone kernel (OPTEE)

for switching the mappings of GPU register and memory between the normal/secure worlds.

The replayer is a straightforward porting of the user-level replayer. The replayer is in around

1K SLoC, only 0.3% of the whole OPTEE (300K SLoC).
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Table 3.4. Codebase comparisons. Binaries are stripped.

 The original stack Ours 
GPU ML Framework  Runtime  Driver  Rec Replayer 

Mali 
Bifrost 

• ACL: 500 KSLoC, 30MB 
• DeepCL: 18 KSLoC,             

2.1MB 

libmali.so: 
48 MB 45K 

SLoC 
0.7K 
SLoC 

• Usr+kernl: 2.2+0.6 KSLoC 
     25KB+20KB 
• In-TEE: 1K SLoC, 10 KB 

Bcm 
v3d 

• ncnn: 223 KSLoC, 11 
MB 

libvulkan_ 
broadcom.so: 
7 MB 

3K 
SLoC 

1K 
SLoC 

• Kernel only: 1K SLoC;  
107 KB (whole driver) 
• Baremetal: 4K SLoC, 50 KB 

 

  

3.6.4 Reusing recordings across GPU models

It is possible to share recordings across GPUs of the same family: these GPUs are likely

to share job formats, shader instruction sets, and most of register/page table semantics.

We analyze three Mali GPUs: G31 (low end), G52 (mainstream), and G71 (high end). We

manage to patch a recording from G31/G52 and replay it on G71. Our patch adjusts: (1)

Page table format: re-arranging the permission bits in the G31 page table entries, which are

in a different order than G71 due to G31’s LPAE support. (2) MMU configuration: flipping

a bit in the translation configuration register to enable read-allocation caching expected by

G71. (3) Core scheduling hints: changing the value of core affinity register (JS_AFFINITY)

so a job is mapped to G71’s all 8 shader cores. Overall, the patch includes fixes for two

registers per recording and one register per job. Section 3.7.5 reports replay performance of

a patched recording.

3.7 Evaluation

We evaluate GPURip with the following questions.

•Does GPURip make GPU computations more secure?

•Overhead: Do recordings increase app sizes? How does the replay speed compared to that

of the original GPU stack?

•Do our key design choices matter?
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3.7.1 Analysis

Semantic bugs, e.g. emission of wrong GPU commands, may preexist in the GPU stack

for recording. Such bugs may propagate to the target machines, resulting in wrong replay

results. GPURip neither mitigates nor exacerbates these bugs. Fortunately, semantic bugs

are rare in production GPU stacks to our knowledge. GPURip’s recorder and replayer may

introduce semantic bugs. The chance, however, is slim: they are small as a few K SLoC

with simple logic. Our validation experiments in Section 3.7.2 strengthen our confidence.

We next focus on security, a major objective of GPURip.

Threat models Corresponding to three deployment scenarios in Figure 3.4 : (1) a replayer

on a commodity OS (at the user or kernel level) trusts the OS while facing local unprivileged

and remote adversaries; (2) a replayer in TEE trusts the TEE kernel while facing the local

OS adversaries and remote ones; (3) a baremetal replayer only faces remote adversaries.

We assume it is difficult to compromise the recording environment, including OS, GPU

stack, and code signing: doing so often requires long campaigns to infiltrate the developers’

network where risk management is likely rigorous [11 ]. We will nevertheless discuss the

consequences of such attacks.

Security advantages over existing deployment (1) The GPU stack is better shielded

on developers’ machines. (2) On target machines, the GPU stack is replaced by the replayer

with fewer vulnerabilities. Many vulnerabilities of a GPU stack originate in rich features

such as buffer management [12 ], [203 ] and fine-grained sharing [204 ]–[206 ]; they also come

from complex interfaces such as framework APIs [13 ], IOCTLs [207 ], and directly mapped

memory [208 ]. By comparison, the replayer does not have such features. It exposes only four

simple functions. All replay actions have simple, well-defined semantics and are amenable to

checks. (3) While both the replayer and the GPU driver act as the last lines of defense, the

replayer’s defense offers stronger guarantees: its smaller code sizes, as shown in Table 3.4 ,

ease an exhaustive verification; it can be protected in TEE and against the OS.

Thwarted attacks (1) When a replayer completely replaces the GPU stack on an OS,

the whole kernel is free from GPU stack vulnerabilities that cause kernel information dis-

closure [204 ], kernel crash [12 ], and kernel memory corruption [203 ]. (2) When a replayer

71



coexists with the GPU stack on an OS, the app using the replayer is free vulnerabilities

of the GPU runtime which cause unauthorized access to app memory [208 ], arbitrary code

execution in the app [13 ], and app hang [209 ].

Attacks against GPURip (1) Attacks against developers’ machines or recording dis-

tribution. This is difficult as described above. Nevertheless, successful adversaries may

fabricate recordings containing arbitrary actions and memory dumps. A fabricated record-

ing may hang GPU but cannot break security guarantees enforced by the replayer, e.g. no

illegal register access (§3.5.1 ). (2) Attacks against the replayer or its TCB. The chance of

replayer vulnerabilities is slim due to simplicity. Nevertheless, successful adversaries may sub-

vert recording verification. By compromising a user-level replayer or kernel-level/baremetal

replayers, adversaries may gain unrestricted access to the GPU or the whole machine, re-

spectively.

3.7.2 Validation of replay correctness

We add extensive logging to both the original driver code and the replayer: they log

all the GPU registers on each CPU/GPU interaction; they take snapshots of GPU memory

before each job submission and after each interrupt. We then compare these logs across runs

and look for any discrepancies.

We run two inference workloads, MNIST and AlexNet, each for 1,000 times. In each

replay run, we create strong interferences with GPU by co-executing CPU programs that:

(1) generate high memory traffic which contends with GPU register and memory access;

(2) burn CPU cycles to trigger SoC thermal throttling. We also repeat the tests with

GPU running at different clockrates. Each MNIST (AlexNet) run generates a log of 3K

(8K) registers accesses and 46 (120) memory snapshots, respectively. The only detected

discrepancies are the numbers of register polling and GPU job delays, which do not affect

GPU states; all other logs match.

We further verify that the replayer produces correct compute results. We replay all the

workloads in Table 3.5 (a) 1,000 times each. We create random input, inject interference, and
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Table 3.5. NN inference for evaluation. Choices of NNs for Mali vs. v3d are
slightly different because their ML frameworks do not implement exactly the
same set of NNs

Model (#layers) 
GPU Mem  

(MB) 
# 

Jobs 
#  

RegIO 
RecSize (MB) 

Unzip Zipped 

MNIST (4) 4.7 18 2977 2.2 0.1 
AlexNet (8) 683.2 45 8542 3.8 0.2 

MobileNet (28) 44.9 54 12663 2.7 0.1 
SqueezeNet (26) 36.9 71 12129 2.8 0.1 

ResNet12 (12) 261.3 78 15934 3.4 0.1 
VGG16 (16) 1738.3 71 23056 6.4 0.4 

(a) Mali Bifrost 
 

Model (#layers) 
GPU Mem  

(MB) 
# 

Jobs 
#  

RegIO 
RecSize (MB) 

Unzip Zipped 
YOLOv4-tiny (38) 75.7 92 4708 2.0 0.3 

AlexNet (8) 139.2 40 2024 9.5 0.3 
MobileNet (28) 42.3 66 3057 4.7 0.2 

SqueezeNet (26) 26.8 85 4323 18.0 0.5 
ResNet18 (18) 87.0 119 5253 66.0 1.7 

VGG16 (16) 423.5 71 3742 4.4 0.3 
(b) v3d 

   

compare the GPU’s outcome with the reference answers computed by CPU. The replayer

always gives the correct results.

Failure detection & recovery We run a CPU program to artificially inject transient,

non-preventable failures during the replay of AlexNet: (1) offlining GPU cores forcibly and

(2) corrupting GPU page table entries. The replayer successfully detects the failures as

diverging reads of a status register and GPU memory exceptions, because the original

driver checks the register and enables the interrupt. Re-execution resets GPU cores and

re-populates the page table, finishing the execution.
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Figure 3.6. Startup delays prior to NN inference. The replayer (GR) takes
much less time than the original GPU stack (OS).

3.7.3 Memory overheads

Recording sizes A GPU recording is as small as a few hundred KBs when compressed

as shown in Table 3.5 . The size is a small fraction of a smartphone app, which is often tens

of MBs [210 ]. Of a recording, memory dumps are dominant, e.g. on average 72% for Mali.

Some v3d recordings are as large as tens of MBs uncompressed because they contain memory

regions that the recorder cannot safely rule out from dumping. Yet, these memory regions

are likely GPU’s internal buffers; they contain numerous zeros and are highly compressible.

CPU/GPU memory The replayer’s GPU memory consumptions show a negligible dif-

ference compared to that of the original GPU stack, because the replayer maps all the GPU

memory as the latter does. The replayer’s CPU memory consumption ranges from 2 – 10
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Figure 3.7. NN inference delays. The replayer (GR) incurs similar delays as
compared to the original GPU stack (OS).

MB (average 5 MB) when executing NN inference, much lower than the original stack (220

– 310 MB, average 270 MB). This is because the replayer runs a much smaller codebase; by

directly loading GPU memory dumps, it avoids the major memory consumers such as GPU

contexts, NN optimizations, and JIT commands/shader generation.

3.7.4 Replay speed

We study the inference delays on a variety of NNs as listed in Table 3.5 . Compared to

the original GPU stacks, the replayer’s startup delays are significantly lower: by 26% – 98%

(Mali) and lower by 77% – 99% (v3d); the replayer’s execution delays are similar: ranging

from 44% lower to 13% higher (Mali) and from 4% lower to 19% higher (v3d).
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Startup delays We measure the startup delay from the time the testing app initializing

a GPU context until the first GPU job is ready for submission. Figure 3.6 shows the results.

Both the stacks for Mali and v3d take seconds to start up, yet showing different bottlenecks:

Mali is bottlenecked at the runtime (libMali.so) compiling shaders and allocating memory;

v3d is at the framework (ncnn) loading NNs and optimizing pipelines. By contrast, the

replayer spends most time on GPU reset, loading of memory dumps, and reconstructing

page tables.

Our startup comparison should not be interpreted as a quantitative conclusion, though.

We are aware of optimizations to mitigate bottlenecks in GPU startup, e.g. caching compiled

shaders [211 ] or built NN pipelines [212 ]. Compared to these point solutions, GPURip is

systematic and pushes the caching idea to its extreme – caching the whole initialization

outcome at the lowest software layer.

NN inference delays We measured the delay from the moment an app starting an

inference with its ML framework to the moment app getting the outcome. The results are

shown in Figure 3.7 . In general, on benchmarks where the CPU overhead is significant,

the replayer sees lower delay than the full stack, e.g. by 70% on MNIST (Mali). This is

because the replayer minimizes user-level executions, kernel-level memory management, and

user/kernel crossings such as IOCTLs. On larger NNs with long GPU computation, GPURip

sees diminishing advantages and sometimes disadvantages. GPURip’s major overheads are

(1) loading of memory dumps containing unneeded data that GPURip cannot exclude, e.g.

66 MBs for ResNet18 (v3d); (2) short GPU idles from synchronous jobs (0.5% – 3% on Mali);

(3) pause between replay actions.

NN training delays GPURip shows similar advantages. Our benchmark is MNIST with

DeepCL [149 ] atop OpenCL. Each training iteration runs 72 GPU jobs and 5.7K register

accesses. DeepCL already submits jobs synchronously with CLFlush(). As shown in Fig-

ure 3.8 , the replayer incurs 99% less startup delay due to the removal of parameter parsing

and shader compilation. Over 20 iterations, the replayer incurs 40% less delays because it

avoids DeepCL and the OpenCL runtime.
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3.7.5 Validation of Key Designs

Cross-GPU record/replay (§3.6.4 ) Figure 3.9 demonstrates it on different GPUs of

the same family. We have recorded the same workload on Arm Mali G31 (low-end, 1 shader

core) and G52 (mainstream, 2 cores). We attempt to replay the two recordings on Mali G71

(high-end, 8 cores). With patched GPU page tables and MMU register values, the replay

completes with correct results, albeit with 4x – 8x lower performance. Further patching

the core affinity register makes the replay utilize G71’s all 8 shader cores, resulting in full

performance.

Skip intervals in replay (§3.4.5 ) Without the technique, the replayer’s NN inference

will be 1.1x – 4.9x longer, as shown in Figure 3.10 ; startup delays will be up to two orders

of magnitude longer, closer to that of a full stack (not shown in the figure).
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Figure 3.11. NN inference delays (including startup) with various granulari-
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Impact of recording granularity We tested three granularities: one monolithic record-

ing per NN (high efficiency); one recording per NN layer (high composability); per fused

layer with layer fusion done by ACL [148 ] (a middle ground). Figure 3.11 shows that record-

ings of fused layers incur only 15% longer delays on average than a monolithic recording.

The additional delays come from replayer startup (see Figure 3.6 ). We conclude that for

NN inference, recording every fused layer is a useful tradeoff between composability and

efficiency.

Preemption delay for interactiveness (§3.5.3 ) We measure the delay perceived by an

interactive app when it requests to preempt GPU from the replayer. On both tested GPUs,

the delay is below 1 ms, which translates to minor performance degradation, e.g. loss of 1
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FPS for a 60 FPS app. The reason is preemption simplicity: a preemption primarily flushes

GPU cache and GPU TLB followed by a GPU soft reset.

Checkpoint & restore (§3.5.3 ) Our results show that GPU state checkpointing is gener-

ally inferior to re-executing the whole replay. For instance, MobileNet making one checkpoint

every 16 GPU jobs (50–60 jobs in total) slows down the whole NN execution by 8x. The

primary cause is memory dump. MobileNet takes 140 ms to dumps all GPU memory (51

MBs) while re-executing the NN takes only 45 ms.

3.8 Related Work

Record and replay was primarily used for diagnosis and debugging [145 ]–[147 ]. It

has been applied to mobile UI apps [213 ], [214 ], web apps [215 ], virtual machines [216 ],

networks [217 ], and whole systems [218 ]. None of prior work has applied the idea to the

CPU/GPU interactions. Related to GPURip, Replaying syscalls and framework calls have

been popular in reverse engineering GPU runtimes [219 ]–[222 ] and reducing GPU scheduling

overhead [157 ], respectively. Unlike them, GPURip records at the CPU/GPU boundary and

therefore achieves the goal of a lean, trustworthy replayer.

Refactoring GPU stacks To leverage TEE, recent works isolate part of or the whole

GPU stack for security. Sugar [139 ] subsumes a full GPU stack to an app’s address space.

Graviton [223 ] pushes the function of isolation and resource management from OS to a GPU’s

command processor. Telekine [156 ] spans a GPU stack between local and cloud machines at

the API boundary. HIX [161 ] ports the entire GPU stack to a secure enclave and restricts

the IO interconnect. HETEE [224 ] instantiates dedicated hardware controller and fabric to

isolate the use of GPU. While efficacy has been shown, a key drawback is the high engineering

effort (e.g. deep modifications of GPU software/hardware), limited to a special hardware

component (e.g. software-defined PCIe fabric) and/or likely loss of compatibility with stock

GPU stacks. Contrasting to all the above approaches of spatial refactoring, GPURip can be

viewed as temporal refactoring of a GPU stack – between the development time and the run

time.
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GPU virtualization often interposes between GPU stack layers in order to intercept and

forward interactions, e.g. to a hypervisor [225 ] or to a remote server [226 ]. The interposed

interfaces include GPU APIs [226 ], [227 ] and GPU MMIO [225 ], [228 ]. Notably, AvA [227 ]

records and replays API calls during GPU VM migration. GPURip shares the principle of

interposition and gives it a new use – for recording computations ahead of time and later

replaying it on a different machine.

Optimizing ML on GPU Much work has optimized mobile ML, e.g. by exploiting

CPU/GPU heterogeneity ulayer. Notably, recent studies found CPU’s software inefficiency

leaving GPU under-utilized, e.g. suboptimal CLFlush [229 ] or expensive data transforma-

tion [230 ]. While prior solutions fix the causes of inefficiency in the GPU stack [229 ], GPURip

offers blind fixes without knowing the causes: replaying the CPU outcome (e.g. shader code)

and removing GPU idle intervals.

Secure ML Much work has transformed ML workloads rather than the GPU stack; out-

sourcing security-sensitive compute to TEE, they preserve data/model privacy or ensure

compute integrity [4 ], [5 ], [231 ]. They often support CPU-only compute and their work-

load transformation is orthogonal to GPURip. While Slalom [232 ] proposed secure GPU

offloading, it requires GPU stack in TEE and limited to linear operations.

3.9 Concluding Remarks

Applicability to discrete GPUs The idea of GPURip is likely to apply. Our GPU

hardware assumptions (§3.3.2 ) see counterparts on discrete GPUs albeit in different forms,

e.g. registers and memory mapped via PCIe. The new challenges include more complex

CPU/GPU interactions, higher GPU dynamism, and recording cost due to larger memory

dumps.

Summary GPURip pre-records GPU executions for replay on new input data without

a GPU stack. GPURip identifies key GPU/CPU interactions and memory states, works

around proprietary GPU internals, and prevents replay divergence. The resultant replayer

is tiny, portable, and quick to launch.
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4. GPU ACCELERATION IN TRUSTZONE VIA SAFE AND
PRACTICAL RECORDING

4.1 Introduction

GPU in TrustZone Trusted execution environments (TEE) has been a popular facility

for secure GPU computation [161 ], [223 ]. By isolating GPU from the untrusted OS of the

same machine, it ensures the GPU computation’s confidentiality and integrity. This paper

focuses on GPU computation in TrustZone, the TEE on ARM-based personal devices. For

these devices, in-TEE GPU compute is especially useful, as they often run GPU-accelerated

ML on sensitive data, e.g. user’s health activities, speech audio samples, and video frames.

GPU stack mismatches TrustZone Towards isolating the GPU hardware, TrustZone

is already capable [233 ], [234 ], which is contrast to other TEEs such as SGX. The biggest

obstacle is the GPU software stack, which comprises ML frameworks, a userspace runtime,

and a device driver. The stack is large, e.g. the runtime for Mali GPUs is an executable

binary of 48 MB; it has deep dependency on a POSIX OS, e.g. to run JIT compilation; it is

known to contain vulnerabilities [138 ], [205 ], [208 ]. Such a feature-rich stack mismatches the

TEE, which expects minimalist software for strong security [88 ], [89 ], [160 ]. Recognizing the

mismatch, prior works either transform the GPU stack [223 ] or the workloads [232 ], [235 ],

[236 ]. They suffer from drawbacks including high engineering efforts and loss of compatibility,

as will be analyzed in Section 4.2 .

Goal & overall approach Can the TrustZone TEE run GPU-accelerated compute with-

out an overhaul of the GPU stack? To this end, a recent approach called GPURip shows

high promise [237 ]. It executes a GPU-accelerated workload W , e.g. neural network (NN)

inference, in two phases. (1) In the record phase, developers run W on a full GPU stack

and log CPU/GPU interactions as a series of register accesses and memory dumps. (2) In

the replay phase, a target program replays the pre-recorded CPU/GPU interactions on new

input data without needing a GPU stack. GPURip well suites TEE. The record phase can

be done in a safe environment which faces low threats. After record is done once, replay can

happen within the TEE repeatedly. The replayer can be as simple as a few KSLoC, has little

external dependency, and contains no vulnerabilities seen in a GPU stack [205 ], [206 ], [208 ].
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Note that it is crucial to record and replay at CPU/GPU boundary; recording at higher

levels, e.g. ML framework APIs, would bloat the TEE with implementation of these APIs.

Yet, a key, unsolved problem is the recording environment, where the full GPU stack is

exercised and CPU/GPU interactions are logged. The recording environment must simulta-

neously (1) enjoy strong security and (2) access the exact GPU hardware that will be used

for replay. These requirements preclude recording on the OS of the same mobile device, as

TEE does not trust the OS. They also preclude recording on a developer’s machine, because

it can be difficult for developers to predict and possess all GPU hardware models that their

workloads may execute on. Section 4.2 will present details on today’s diverse mobile GPUs.

Key idea We present a novel approach called collaborative dryrun (CoDry), in which

the TEE leverages the cloud for GPU recording. As shown in Figure 4.1 , a cloud service

hosts the GPU software stack without hosting any GPU hardware. To record, the TEE on

a mobile device (referred to as the “client”) requests the cloud to run a workload, e.g. NN

inference. The cloud exercises its GPU stack without executing the actual GPU computation;

it tunnels all the resultant CPU/GPU interactions between the GPU stack and the physical

GPU isolated in the client TEE. The cloud logs all the interactions as a recording for the
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workload. In future execution of the workload on new inputs, the TEE replays the recording

on its physical GPU without invoking the cloud service.

CoDry addresses the needs for a secure, manageable recording environment. First, un-

like mobile devices which face high threats from numerous apps, the cloud service runs on

rigorously managed infrastructures and only exposes a small attack surface – authenticated,

encrypted communication with the client TEE. Importantly, the cloud service never learns

the TEE’s sensitive data, e.g. ML input and model parameters. Second, the cloud service

accesses the exact, diverse GPU hardware (Figure 4.3 ) without the hassle of hosting them.

It is responsible for hosting drivers for the GPU hardware, a task which we will show as

practical.

Challenges and Designs The main challenge arises from spanning CPU/GPU inter-

actions over the connection between the cloud and the client. A GPU workload generates

frequent register accesses (more than 95% are read), accesses to shared memory, and inter-

rupts. If the GPU stack and the GPU hardware were co-located on the same machine, each

interaction event takes no more than microseconds; since we distribute them over wireless

connection, each event will take milliseconds or seconds. Forwarding the interactions naively

results in formidable delays, rendering CoDry unusable.

To overcome the long delays, we exploit two insights. (1) The sequence of GPU register

accesses consists of many recurring segments, corresponding to driver routines repeatedly

invoked in GPU workloads, e.g. for job submission and GPU cache flush. By learning

these segments, the cloud service can predict most register accesses and their outcomes. (2)

Unlike IO-as-a-service [238 ] which must produce correct results, the cloud only has to extract

replayable interactions for later actual executions. With the insights, CoDry automatically

instruments the GPU driver code in the cloud to implement the following mechanisms.

(1) Register access deferral. While each register access was designed to be executed on the

physical GPU synchronously, the cloud service queues and commits multiple accesses to

the client GPU in a batch, coalescing their network round trips. Since register accesses are

interleaved with the driver execution in program order, the cloud service represents the values

of uncommitted register reads as symbols and allows symbolic execution of the driver. After
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the register reads are completed by the client GPU, the cloud replaces symbolic variables

with concrete register values.

(2) Register access speculation. To further mask the network delay of a commit, the cloud

service predicts the outcomes of register reads in the commit. Without waiting for the

commit to finish, the cloud allows the driver to continue execution based on the predicted

read values. The cloud validates the speculation after the client returns the actual register

values. In case of misprediction, both the cloud and the client leverage the GPU replay

technique to rapidly rollback to their most recent valid states.

(3) Metastate-only synchronization. Despite physically distributed memories, the driver in

the cloud and the client GPU must maintain a synchronized memory view. We reduce the

synchronization frequencies by tapping in GPU hardware events; we reduce the synchroniza-

tion traffic by only synchronizing GPU’s metastate – GPU shaders, command lists, and job

descriptions – while omitting workload data, which constitutes the majority of GPU memory.

As a result, we preserve correct CPU/GPU interactions while forgoing the compute result

correctness, a unique opportunity of dryrun.

Results We build CoDry atop Arm platforms and Mali Bifrost, a popular family of mobile

GPUs, and evaluate it on a series of ML workloads. Compared to naive approach, CoDry

lowers the recording delays by two order of magnitude, from several hundred seconds to 10

– 40 seconds; it reduces the client energy consumption by up to 99%. Its replay incurs 25%

lower delays as compared to insecure, native execution of the workloads.

Contributions We present a holistic solution for GPU acceleration within the TrustZone

TEE. We address the key missing piece – a safe, practical recording environment. We make

the following contributions.

•A novel architecture called CoDry, where the cloud and the client TEE collaboratively

exercise the GPU stack for recording CPU/GPU interactions.

•A suite of key I/O optimizations that exploit GPU-specific insights in order to overcome

the long network delays between the cloud and the client.
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•A concrete implementation for practicality: lightweight instrumentation of the GPU driver;

crafting the device tree for VMs to probe GPU without hosting the GPU; a TEE module

managing GPU for record and replay.

4.2 Motivations

4.2.1 Mobile GPUs

This paper focuses on mobile GPUs which share memory with CPU.

GPU stack and execution workflow As shown in Figure 4.4 , a modern GPU stack con-

sists of ML frameworks (e.g. Tensorflow), a userspace runtime for GPU APIs (e.g. OpenCL),

and a GPU driver in the kernel.

When an app executes ML workloads, it invokes GPU APIs, e.g. OpenCL. Accordingly,

the runtime prepares GPU jobs and input data: it emits GPU commands, shaders, and data

to the shared memory which is mapped to the app’s address space. The driver sets up the

GPU’s pagetables, configures GPU hardware, and submits the GPU job. The GPU loads

the job shader code and data from the shared memory, executes the code, and writes back

compute results and job status to the memory. After the job, the GPU raises an interrupt

to the CPU. For throughput, the GPU stack often supports multiple outstanding jobs.

CPU/GPU interactions through three channels:

•Registers, for configuring GPU and controlling jobs.

•Shared memory, to which CPU deposits commands, shaders, and data and retrieves com-

pute results. Modern GPUs have dedicated pagetables, allowing them to access shared

memory using GPU virtual addresses.

•GPU interrupts, which signal GPU job status.

The GPU driver manages these interaction; thus it can interpose and log these interac-

tions.
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4.2.2 Prior Approaches

Our goal is to run GPU compute inside the TrustZone TEE, for which prior approaches

are inadequate.

Porting GPU stack to TEE One approach is to pull the GPU stack to the TEE (“lift

and shift”) [6 ], [161 ]. The biggest problem is the clumsy GPU stack: the stack spans large

codebases (e.g. tens of MB binary code), much of which are proprietary. The stack depends

on POSIX APIs which are unavailable inside TrustZone TEE. For these reasons, it will be a

daunting task to port proprietary runtime binaries and a POSIX emulation layer, let alone

the GPU driver. Partitioning the GPU stack and porting part of it, as suggested by recent

works [156 ], [223 ], also see significant drawbacks: they still require high engineering efforts

and sometimes even hardware modification. The ported GPU code is likely to introduce

vulnerabilities to the TEE [12 ], [13 ], [208 ], bloating the TCB and weakens security.

Outsourcing Another approach is for TEE to invoke an external GPU stack. One choice

is to invoke the GPU stack in the normal-world OS of the same device. Because the OS is

untrusted, the TEE must prevents it from learning ML data/parameters and tampering with

the result. Recent techniques include homomorphic encryption [232 ], [239 ], ML workload

transformation [4 ], [231 ], and result validation [240 ]. They lack GPU acceleration or support

limited GPU operators, often incurring significant efficiency loss.

4.2.3 GPURip in TrustZone

Unlike prior approaches, GPURip provides a new way to execute GPU-accelerated com-

pute [237 ]. (1) In the record phase, app developers run their ML workload once on a trusted

GPU stack; at the driver level, a recorder logs all the CPU/GPU interactions – register

accesses, GPU memory dumps which enclose GPU commands and shaders, and interrupt

events. These interactions constitute a recording for the ML workload. (2) In the replay

phase, a target app in the TEE supplies new input to the recording. The TEE does not need

a GPU stack but only a simple replayer (30 KB) for interpreting and executing the logged

interactions.
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Figure 4.2 exemplifies how GPURip works for NN inference. To record, developers run

the ML inference once and produce a sequence of recordings, one for each NN layer; each

NN layer invokes multiple GPU jobs, e.g. convolution or pooling. To replay, a target ML

app executes the recordings in the layer order. The granularity of recordings is a developers’

choice as the tradeoff between composability and efficiency. Alternatively, developers may

create one monolithic recording for all the NN layers (not shown in the figure).

Why is GPURip practical? (1) An ML workload such as NN often runs pre-defined

GPU jobs. High-level GPU APIs can be translated to GPU primitives ahead of time; at

run time, the workload does not need the stack’s dynamic features, e.g. JIT and fine-

grained sharing. (2) An NN often has a static GPU job graph with no conditional branches

among jobs. A single record run can exercise all the GPU jobs and record them. (3)

Nondeterministic GPU events can be systematically prevented or tolerated, allowing the

replayer to faithfully reproduce the recorded jobs. For instance, the recorder can serialize

GPU job submission and avoid nondeterministic interrupts.

4.2.4 The Problem of Recording Environment

To apply GPURip to TrustZone, a missing component is the recording environment where

the GPU stack is exercised and recordings are produced. Obviously, the environment should

be trustworthy to the TEE. What is more important, the environment must have access

to the GPU hardware that matches the GPU for replay. Recording with the exact GPU
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model is crucial. In our experience, one shall not even record with a different GPU model

from the same GPU family, because replay can be broken by subtle hardware differences:

(1) register values which reflect the GPU’s hardware configuration, e.g. shader core count,

based on which the JIT compiler generate and optimize GPU shaders; (2) encodings of GPU

pagetables; (3) encodings of shared memory, with which GPU communicates its execution

status with CPU.

Can recording be done on developers’ machines? While developers’ machines can be trust-

worthy [10 ], it would be a heavy burden for the developers to foresee all possible client GPUs

and possess the exact GPU models for recording. As shown in Figure 4.3 , mobile GPUs are

highly diverse [242 ]: today’s SoCs see around 80 mobile GPU models in four major families

(Apple, PVR, Mali, and Adreno); no GPU models are dominating the market; new GPU

models are rolled out frequently.

Can recording be done on a “mobile device farm” in the cloud? While such a device farm

relieves developers’ burden, managing a large, diverse collection of mobile devices in the cloud

is tedious if not impractical. Not designed to be hosted, mobile devices do not conform to

the size, power, heat dissipation requirements of data centers. The device farm is not elastic:

a device can serve one client at a time; planning the capacity and device types is difficult.

As new mobile devices emerge every few months, the total cost of ownership is high.
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4.3 CoDry

We advocate for a new recording environment: dryrun the GPU stack in the cloud while

using the physical GPUs on the clients.

4.3.1 The Approach

Figure 4.4 illustrates our approach. (1) Developers write an ML workload as usual, e.g.

MNIST inference atop Tensorflow. They are oblivious to the TEE, the GPU model, and the

cloud service. (2) Before executing the workload for the first time, the client TEE requests

the cloud service to dryrun the workload. As the cloud runs the GPU stack, it forwards

the access to GPU hardware to the client TEE and receives the GPU’s response from the

latter. In the mean time, the cloud records all the CPU/GPU interactions. (3) For actual

executions of the ML workload, the client TEE replays the recorded CPU/GPU interactions

on new input data; it no longer involves the cloud.

Our approach fundamentally differs from remote I/O or I/O-as-a-service [238 ]. Our goal

is neither to execute GPU compute in the cloud [243 ], [244 ] (in fact, the cloud has no physical

GPUs) nor run the GPU stack precisely in the cloud, e.g. for software testing [245 ]. It is to
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extract the software’s stimuli to GPU and the GPU’s response. This allows CoDry to skip

much communications and optimize the cloud execution.

Why using the cloud for recording? The cloud has the following benefits.

1. Rich resources. The cloud can run a GPU stack that is too big to fit in the TEE; it can

also host multiple variants of GPU stack, catering to different APIs and frameworks used by

ML workloads.

2. Secure. The cloud isolates the GPU stack in a safer environment. In contrast to client

mobile devices which often run a myriad of apps and face threats such as clickbait and

malware, the cloud infrastructure has more rigorous security measures [246 ], [247 ]. As the

dryrun service uses dedicated VMs that only serve authenticated TEEs, the attack surface

of the GPU stack is minimized.

3. No sensitive data exposed. A client TEE’s invocation of dryrun service never gives away

its ML model weights or inputs, because recording by design does not need them. For this

reason, the dryrun service does not have to be hosted in a cloud TEE, e.g. SGX. Section 4.7.1 

will present a detailed security analysis.

Can the cloud emulate GPUs? One may wonder if the cloud operates with software-

based GPU emulators [248 ], thereby avoid communicating with client GPUs. Building such

emulators is difficult, as it would require precise emulation of GPU interfaces and behav-

iors. However, modern GPUs are diverse [242 ]; they often have undisclosed behaviors and

interfaces; their hardware quirks are not uncommon.

Will the cloud see GPU driver explosion? The cloud VMs for dryrun need to install

drivers for all GPU models on clients. Fortunately, maintaining the drivers will not add

much burden, as the total number of needed GPU drivers is small. A single GPU driver often

supports many GPU models of the same family [136 ], [249 ]; these GPUs share much driver

code while differing in register definitions, hardware revisions, and erratum. For instance,

Mali Bifrost and Qualcomm Adreno 6xx drivers each support 6 and 7 GPUs [250 ], [251 ]. As

Section 4.6 will show, by crafting the kernel device tree, we can incorporate multiple GPU

drivers in one Linux kernel image to be used by the cloud VMs.
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4.3.2 The CoDry architecture

Figure 4.4 shows the architecture. The cloud service manages multiple VM images, each

installed with a variant of GPU stack. The VM is lean, containing a kernel and the minimal

software required by the GPU stack. Once launched, a VM is dedicated to serving only one

client TEE. All the communication between the cloud VM and the TEE is authenticated

and encrypted.

CoDry’s recorder comprises two shims for the cloud (DriverShim) and for the client TEE

(GPUShim). DriverShim at the bottom of the GPU stack interposes access to the GPU

hardware. It is implemented by automatic instrumenting of the GPU driver, injecting code

to register accessors and interrupts handlers. GPUShim, instantiated as a TEE module,

isolates the GPU during recording and prevents normal-world access.

After a record run, DriverShim processes logged interactions as a recording; it signs and

sends the recording back to the client. To replay, the client TEE loads a recording, verifies

its authenticity, and executes the enclosed interactions. During replay, the TEE isolates the

GPU; before and after the replay, it resets the GPU and cleans up all the hardware state.

4.3.3 Challenge: long network delays

A GPU stack is designed under the assumption that CPU and GPU co-locate on an on-

chip interconnect with sub-microsecond delays. CoDry breaks the assumption by spanning

the interconnect over the Internet with tens of ms or even seconds of delays. As a result,

the GPU driver is blocked frequently. The GPU driver frequently issues register accesses;

each register access stalls the driver for one round trip time (RTT). Taking MNIST inference

as an example, the GPU driver roughly issues 2800 register accesses, taking 117 seconds on

cellular network.

Long RTTs also make memory synchronization slow. CoDry needs to synchronize the

memory views of the driver (cloud) and the GPU (client). When they run on the same

machine, the driver and the GPU exchange extensive information via shared memory: com-

mands, shader code, and input/output data. When the driver and the GPU are distributed,
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maintaining such a shared memory illusion may see prohibitive slowdown. As we will show

in Section 4.5 , classic distributed shared memory (DSM) misses key opportunity in dryrun.

The long recording delay, often hundreds of seconds shown in Section 2.9 , render CoDry

unusable. (1) An ML workload has to wait long before its first execution in TEE. (2) During

a record run, the TEE must exclusively owns the GPU, blocking the normal-world GPU

apps for long and hurting the system interactivity. (3) The cloud cost is increased, because

CoDry keeps the VMs alive for extended time. (4) The GPU stack often throws exceptions,

because the long delays violate many timing assumptions implicitly made by the stack code.

4.4 Hiding Register Access Delays

To overcome the long network delays in CPU/GPU interactions, we retrofit known I/O

optimizations to exploit new opportunities.

4.4.1 Register Access Deferral

Problem By design, a GPU driver weaves GPU register accesses into its instruction

stream; it executes register accesses and CPU instructions synchronously in program order.

For example in Figure 4.5 (a), the driver cannot issue the second register access until the

first access and the CPU instructions preceding the second register access complete. The

synchronous register access leads to numerous network round trips. This is exacerbated

by the fact that GPU register accesses are dominated by reads (more than 95% in our

measurement), which cannot be simply buffered as writes.

Basic idea We coalesce the round trips by making register accesses asynchronous: as

shown in Figure 4.5 (b), DriverShim defers register accesses as the driver executes, until

the driver cannot continue execution without the value from any deferred register read.

DriverShim then synchronously commits all deferred register accesses in a batch to the

client GPU. After the commit, DriverShim stalls the driver execution until the client GPU

returns the register access results.

To implement the mechanism, DriverShim injects the deferral hooks into the driver via

automatic instrumentation. The driver source code remains unmodified.
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Figure 4.5. CoDry’s strategies for hiding long RTTs

Key mechanisms for correctness First, DriverShim keeps the deferral transparent to

the client and its GPU. For correctness, the GPU must execute the same sequence of register

accesses as if there was no deferral. The register accesses must be in their exact program

order, because (1) GPU is stateful and (2) these accesses may have hidden dependencies.

For instance, read from an interrupt register may clear the GPU’s interrupt status, which is

a prerequisite for a subsequent write to a job register. For this reason, DriverShim queues

register accesses in their program order. It instantiates one queue per kernel thread, which

is important to the memory model to be discussed later.

Second, DriverShim tracks data dependencies. This is because (1) the driver code may

consume values from uncommitted register reads; (2) the value of a later register write may

depend on the earlier register reads. Listing 4.1 (a) shows examples: variable qrk_mmu de-

pends on the read from register MMU_CONFIG; the write to MMU_CONFIG on line 7 depends on the

register read on line 3. To this end, for each queued register read, DriverShim creates a sym-

bol for the read value and propagates the symbol in subsequent driver execution. Specifically,

a symbol can be encoded in a later register write to be queued, e.g. reg_write(MMU_CONFIG,

S | 0x10), where S is a symbol. After a commit returns concrete register values, DriverShim
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1 // detect hardware quirks
2 qrk_shader = reg_read(SHADER_CONFIG);
3 qrk_mmu = reg_read(MMU_CONFIG);

4 // configure GPU MMU accordingly
5 if (dev->coherency == COHERENCY_ACE) 
6 qrk_mmu |= MMU_ALLOW_SNOOP_DISPARITY;

7 reg_write(MMU_CONFIG, qrk_mmu);
8 ...
9 // commit

1 // job interrupt handler
2 int done = reg_read(JOB_IRQ_STATUS);
3 if (!done) // commit 1
4 return IRQ_NONE;
5 else {
6 reg_write(JOB_IRQ_CLEAR, done);
7 dev->tiler = reg_read(TILER_PRESENT);
8 dev->shader = reg_read(SHADER_PRESENT);
9 if (dev->tiler) // commit 2
10 reg_write(PWR_ON, dev->tiler);
11 if (dev->shader)
12 reg_write(PWR_ON, dev->shader);
13 }

Deferral 
queue𝓢1=READ(TILER_CONFIG)

𝓢2=READ(MMU_CONFIG)

WRITE(MMU_CONFIG,(𝓢1|0x10))

qrk_shader 𝓢1

qrk_mmu 𝓢1|0X10

Symbolic expressions

Deferral 
queue𝓢1=READ(JOB_IRQ_STATUS)

WRITE(JOB_IRQ_CLEAR,𝓢1)

𝓢2=READ(TILER_PRESENT)

𝓢3=READ(SHADER_PRESENT)

(a) Data dependency

(b) Control dependency (symbolic expressions omitted)

Listing 4.1 Code examples of data and control dependencies. The register
accesses are deferred in the queue; the driver keeps running with symbolic
values until commit.

resolves the symbols and replaces symbolic expressions in the driver state that encode these

symbols.

Third, DriverShim respects control dependencies. The driver control flow may reach a

predicate that depends on an uncommitted register read, as shown in Listing 4.1 (b), line

3. DriverShim resolves such control dependency immediately: it commits all the queued

register accesses including the one pertaining to the predicate.

When to commit? DriverShim commits register accesses when the driver triggers the

following events.

94



•Resolution of control dependency. This happens when the driver execution is about to take

a conditional branch that depends on an uncommitted register read.

•Invocations of kernel APIs, notably scheduling and locking. There are three rationales.

(1) By doing so, DriverShim safely limits the scope of code instrumentation and dependency

tracking to the GPU driver itself; it hence avoids doing so for the whole kernel. (2) Driver-

Shim ensures all register reads are completed before kernel APIs that may externalize the

register values, e.g. printk() of register values. (3) Committing register accesses prior to any

lock operations (lock/unlock) ensures memory consistency, which will be discussed below.

•Driver’s explicit delay, e.g. calling the kernel’s delay family of functions [252 ]. The drivers

often use delays as barriers, assuming register accesses preceding delay() in program order

will take effect after delay(). For example, the driver writes a GPU register to initiate

cache flush and then calls delay(), after which the driver expects that the cache flush is

completed and coherent GPU data already resides in the shared memory. To respect such

design assumptions, DriverShim commits register accesses before explicit delays.

Memory consistency for concurrent threads The GPU driver is multi-threaded by

design. Since DriverShim defers register accesses with per-thread queues, if a driver thread

assigns a symbolic value to a variable X, the actual update to X will not happen until the

thread commits the corresponding register read. What if another thread attempts to read

X before the commit? Will it read the stale value of X?

DriverShim provides a known memory model of release consistency [253 ] to ensure no

other concurrent threads can read X. The memory model is guaranteed by two designs. (1)

Given that the Linux kernel and drivers have been thoroughly scrutinized for data race [254 ],

a thread always updates shared variables (e.g. X) with necessary locks, which prevent

concurrent accesses to the variables. (2) DriverShim always commits register accesses before

the driver invokes unlock APIs, i.e. a thread commits register accesses before releasing any

locks. As such, the thread must have updated the shared variables with concrete values

before any other threads are allowed to access the variables.

Optimizations To further lower overhead, we narrow down the scope of register access

deferral. We exploit an observation: GPU register accesses show high locality in the driver
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code: tens of “hot” driver functions issue more than 90% register accesses. These hot

functions are analogous to compute kernels in HPC applications.

To do so, we obtain the list of hot functions via profiling offline. We run the GPU stack,

trace register accesses, and bin them by driver functions. At record time, DriverShim only

defers register accesses within these functions. When the driver’s control flow leaves one hot

function but not entering another, DriverShim commits queued register accesses. Note that

(1) the choices of hot functions are for optimization and do not affect driver correctness, as

register accesses outside of hot functions are executed synchronously; (2) profiling is done

once per GPU driver, hence incurring low effort.

4.4.2 Speculation

Basic idea Even with deferred register accesses, each commit is still synchronous taking

one RTT (Figure 4.5 (b)). DriverShim further makes some commits asynchronous to hide

their RTTs. The idea is shown in Figure 4.5 (c): rather than waiting for a commit C to

complete, DriverShim predicts the values of all register reads enclosed in C and continues

driver execution with the predicated values; later, when C completes with the actual read

values, DriverShim validates the predicated values: it continues the driver execution if the

all predictions were correct; otherwise, it initiates a recovery process, as will be discussed

below. Misprediction incurs performance penalty but does not violate correctness.

Why are register values predictable? The efficacy of speculation hinges on pre-

dictability of register values. Our observation is that the driver issues recurring segments

of register accesses, to which the GPU responds with identical values most of time. Such

segments recur within a workload (e.g. MNIST inference) and across workloads (e.g. MNIST

and AlexNet inferences).

Why recurring segments? We identify the following common causes. (1) Routine GPU

maintenance. For instance, before and after each GPU job, the driver flushes GPU’s TLB/-

cache. The sequences of register accesses and register values (e.g. the final status of flush

operations) repeat themselves. (2) Repeated GPU state transitions. For instance, each time

an idle GPU wakes up, the driver exercises the GPU’s power state machine, for which the
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driver issues a fixed sequence of register writes (to initiate state changes) and reads (to con-

firm state changes). (3) Repeated hardware discovery. For instance, during its initialization,

the driver probes GPU hardware capabilities by reading tens of registers. The register values

remain the same as the hardware does not change.

When to speculate? Not all register accesses belong to recurring segments. To minimize

misprediction, DriverShim acts conservatively, only making prediction when the history of

commits shows high confidence.

When DriverShim is about to make a commit C, it looks up the commit history at the

same driver source location. It considers the most recent k historical commits that enclose

the same register access sequence as C: if all the k historical commits have returned iden-

tical sequences of register read values, DriverShim uses the values for prediction; otherwise,

DriverShim avoids speculation for C, executing it synchronously instead. k is a configurable

parameter controlling the DriverShim’s confidence that permits prediction. We set k = 3 in

our experiment.

How does driver execute with predicted values? Based on predicted register val-

ues, the GPU driver may mutate its state and take code branches; DriverShim may make a

new commit without waiting for outstanding commits to complete. To ensure correctness,

DriverShim stalls the driver execution until all outstanding commits are completed and the

predictions are validated, when the driver is about to externalize any kernel state, e.g. calling

printk() on a variable. This condition is simple, not differentiating if the externalized state

depends on predicted register values. As a result, checking the condition is trivial: Driver-

Shim just intercepts a dozen of kernel APIs that may externalize kernel state. DriverShim

eschews from fine-grained tracking of data and control dependencies throughout the whole

kernel.

Optimization: Only checking the above condition has a drawback: in the event of mis-

prediction, both the driver and the GPU have to roll back to valid states, because both may

have executed based on mispredicted register values. Listing 4.1 (b) shows an example: if

the read of JOB_IRQ_STATUS (line 9) is found to be mispredicted after the second commit (line

10), the driver already contains incorrect state (in dev) and the GPU has executed incorrect

register accesses (e.g. write to JOB_IRQ_CLEAR).
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To this end, DriverShim can relieve the client GPU from rollback in case of misprediction.

It does so by prevent spilling speculative state to the client. Specifically, DriverShim addi-

tionally stalls the driver before committing register accesses that themselves are speculative,

i.e. having dependencies on predicted values. For example, in Listing 4.1 (b), the second

commit must be stalled if the first is yet to complete, because the second commit consists

of register accesses (JOB_IRQ_CLEAR and TILER/SHADER_PRESENT) that casually depend on the

outcome of the first commit. To track speculative register accesses, DriverShim taints the

predicted register values and follow their data/control dependencies in the driver execution.

In the above example, when the driver takes a conditional branch based on a speculative

value (line 3), DriverShim taints all updated variable and statements on that branch to be

speculative, e.g. dev->tiler. For completeness, the taint tracking applies to any kernel code

invoked by the driver.

How to recover from misprediction? When DriverShim finds an actual register value

different from what was predicated, the GPU stack and/or the GPU should restore to valid

states. We exploit the GPU replay technique [237 ] for both parties to restart and fast-

forward independently. To initiate recovery, DriverShim sends the client the location of the

mispredicted register access in the interaction log. Then both parties restart and replay the

log up to the location. In this process, GPUShim feeds the recorded stimuli (e.g. register

writes) to the physical GPU; DriverShim feeds the recorded GPU response (e.g. register reads

and interrupts) to the GPU stack. Because both parities need no network communication,

the recovery takes only a few seconds, as will be evaluated in Section 4.7.3 .

4.4.3 Offloading polling loops

A GPU driver often invokes polling loops, e.g. to busy wait for register value changes as

shown in Listing 4.2 . Polling loops contribute a large fraction of register accesses; they are

a major source of control dependencies.

Problem Naive execution of a polling loop incurs multiple round trips, rendering the

aforementioned techniques ineffective. (1) Deferring register access does not benefit much,

because each loop iteration generates control dependency and requests a synchronous com-
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1 u32 cmd = PGT_UPDATE;
2 Int max = MAX_LOOP;
3 u32 val = reg_read(MMU_STATUS);

4 while (--max && (val & STATUS_ACTIVE))
5 val =  reg_read(MMU_STATUS);

6 if (max == 0)
7 return -1
8 else reg_write(MMU_CMD, cmd);

Offload in a 
shot

Predicate to 
Predict

Listing 4.2 Code example of a polling loop.

mit. (2) Speculation on a polling loop is difficult: by design above, DriverShim must predict

the iteration count before the terminating condition is met, which often depends on GPU

timing (e.g. a GPU job’s delay) and is nondeterministic in general.

Observations Fortunately, most of polling loops are simple, meeting the following con-

ditions.

•Register accesses in the loop are idempotent: the GPU state is not be affected by re-

execution of the loop body.

•The iteration count has only local impact: the count is a local variable and does not escape

the function enclosing the loop. The count is evaluated with some simple predicates, e.g.

(count<MAX).

•The addresses of kernel variables referenced in a loop are determined prior to the loop, i.e.

the loop itself does not compute these addresses dynamically.

•The loop body does not invoke kernel APIs that have external impact, e.g. locking and

printk().

Simple polling loops allow optimizations as will be discussed below. DriverShim uses

static analysis to find all of them in the GPU driver. Complex polling loops that misfit the

definition above are rare; DriverShim just executes them without optimizations.
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Figure 4.6. Selective memory synchronization of GPU metastate but not program data

Solution DriverShim executes simple polling loops as follows. (1) Offloading. DriverShim

commits a loop in a shot to the client GPU, incurring only one RTT. To do so, DriverShim

offloads a copy of the loop code as well as all variables to be referenced in the loop. GPUShim

runs the loop and returns updated variables. Offloading respects release memory consistency

as described in Section 4.4.1 , because accesses to shared variables inside the loop must be

protected with locks and the loop itself does not unlock. (2) Speculation. DriverShim further

masks the RTT in offloading a loop. Rather than predicting the exact iteration count (e.g.

the final value of max in Listing 4.2 ), DriverShim extracts and predicts the predicate on the

iteration count, e.g. (max?=0), which is more predictable. When the client returns the actual

iteration count, DriverShim evaluates the predicate in order to validate the prediction.

4.5 Memory Synchronization

Problem While the driver (cloud) and the GPU (client) run on their own local memoriess,

we need to synchronize the view of shared memory between them as in Figure 4.6 . Memory

synchronization has been a central issue in distributed execution[244 ], [245 ], [253 ], [255 ]. A

proven approach is relaxed memory consistency: one node pushes its local memory updates

to other nodes only when the latter nodes are about to see the updates. Accordingly,

prior systems choose synchronization points based on program behaviors, e.g. synchronizing
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thread-local memory at the function call boundary [244 ] or synchronizing shared memory of

a data-race free program at the lock/unlock operations [253 ].

Unlike these prior systems, the memory sharing protocol between CPU and GPU is never

explicitly defined. For example, they never use locks. From our observations, we make an

educated guess that CPU and GPU write to disjoint memory regions and order their memory

accesses by some register accesses and some driver-injected delays. However, it would be

error-prone to build CoDry based on such brittle, vague assumptions.

Approach Our idea is to constrain the GPU driver behaviors so that we can make con-

servative assumptions for memory synchronization. To do so, we configure the driver’s job

queue length to be 1, which effectively serializes the driver’s job preparation and the GPU’s

job execution. Such a constraint has been applied in prior work and shows minor overhead,

because individual GPU compute jobs are sizable [237 ]. With the constraint, the driver

prepares GPU jobs (and accesses the shared memory) only when the GPU is idle; the GPU

is executing jobs (and accesses the memory) only when the driver is idle. As a result, we

maintain an invariant:

The driver and the client GPU will never access the shared memory simultaneously.

When to synchronize? The cloud and client synchronize when the GPU is about to

become busy or idle:

•Cloud ⇒ client. Right before the register write that starts a new GPU job, DriverShim

dumps kernel memory that the driver allocates for the GPU and sends it to the client. The

memory dump is consistent: at this moment, the GPU driver has emitted and flushed all

the memory state needed for the new job, and has updated the GPU pagetables for mapping

the memory state.

•Client ⇒ cloud. Right after the client GPU raises an interrupt signaling job completion,

GPUShim forwards the interrupt and uploads its memory dump to the cloud. The memory

dump is also consistent: at this moment the GPU must have written back the job status

and flushed job data from cache to local memory. Specifically, the GPU cache flush action is

either prescribed in the command stream [256 ] or requested at the beginning of the interrupt

handler [257 ].
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To further safeguard the aforementioned invariant, we implement continuous validation.

After DriverShim sends its memory dump to the client, it unmaps the dumped memory

regions from CPU and disables DMA to/from the memory. As such, any spurious access to

the memory region will be trapped to DriverShim as a page fault and reported as an error.

In the same fashion, GPUShim unmaps the shared memory from the GPU ’s pagetable when

the GPU becomes idle; any spurious access from GPU will be trapped and reported.

What to synchronize? As shown in Figure 4.6 , we minimize the amount of memory

transfer with the following insight: for recording, it is sufficient to synchronize only the GPU

metastate in memory, including GPU commands, shader code, and job descriptors. Synchro-

nizing program data, including input/output and intermediate GPU buffers, is unnecessary.

This is effective as program data constitutes most of GPU memory footprint.

How to locate metastate in the shared memory, given that the memory layout is often

proprietary? We implement a combination of techniques. (1) Some GPU page tables have

permission bits which suggest the usage of memory pages. For instance, the Mali GPUs map

metastate as executable because the state contains GPU shader code [258 ]. (2) For GPU

hardware lacking permission bits, CoDry infers the usage of memory regions from IOCTL()

flags used by ML workloads to map these regions. For instance, a region mapped as readonly

cannot hold GPU commands, because the GPU runtime needs the write permission to emit

GPU commands. (3) If the above knowledge is unavailable, the DriverShim simply replaces

an ML workload’s inputs and parameters as zeros. Doing so will result in abundant zeros in

the GPU’s program data, making memory dumps highly compressible.

Atop selective memory synchronization, we apply standard compression techniques. Both

shims use range encoding to compress memory dumps; each shim calculates and transfers

the deltas of memory dumps between consecutive synchronization points.

4.6 Implementations

Platforms We implement the CoDry prototype on the following platforms. The cloud

service runs on Odroid C4, an Arm board with 4 Cortex-A55 cores. The client runs on

Hikey960 which has 4 Cortex-A73 and A53 cores, and a Mali G71 MP8 GPU. Our choice
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of Arm processors for the cloud is for engineering ease rather than a hard requirement; the

cloud service can run on x86 machines with binary translation [245 ].

The cloud service runs Debian 9.4 (Linux v4.14) with a GPU stack composed of a ML

framework (ACL v20.05 [148 ]), a runtime (libmali.so), and a driver (Mali Bifrost r24 [136 ]).

Under the cloud service, KVM-QEMU (v4.2.1) runs as the VM hypervisor. The client runs

Debian 9.13 (Linux v4.19) and OPTEE (v3.12) as its TEE.

DriverShim We build our code instrumentation tool as a Clang plugin. For static analysis

and code manipulation, the plugin traverses the driver’s abstract syntax tree (AST). With

the Clang/LLVM toolchain [259 ], our tool compiles the GPU driver and links it against

DriverShim. By limiting the scope to the hot driver functions in the Mali GPU driver (§4.4.1 ),

our instrumentation tool processes 19 functions in total. The instrumentation itself incurs

negligible overhead. We implement DriverShim as a kernel module (∼1K SLoC) to be

invoked by the instrumented driver code; the module performs dependency tracking, commit

management, and speculation, as described in Section 4.4 and 4.5 .

DriverShim communicates with the client via TCP-based messages in our custom formats.

To avoid potential timeout due to network communications, we add a fixed delay (e.g. 3

seconds) to all the timeout values in the driver. We prepare and install GPU devicetrees

in the cloud VM, so the GPU stack can run transparently even a physical GPU is not

present [245 ]. To support multiple GPU types, we implement a mechanism for the cloud

service to load per-GPU devicetree when a VM boots. As a result, a single VM image can

incorporate multiple GPU drivers, which are dynamically loaded depending on the specific

client GPU model.

GPUShim We build GPUShim as a TEE module. Following the TrustZone convention,

GPUShim communicates with the cloud using the GlobalPlatform APIs implemented by

OPTEE [260 ]. The communication is authenticated and encrypted by SSL 3.0 with the

TEE, before it forwarded through the normal-world OS.

By design, the client’s trusted firmware dynamically switches the GPU between the nor-

mal world and the TEE with a configurable TrustZone address space controller (TZASC) [234 ].

Yet, our client platform (Hikey960) has a proprietary TZASC which lacks public documen-

103



tation [75 ]. We workaround this issue by statically reserving memory regions for GPU and

mapping the memory regions and GPU registers to the TEE.

We modify the secure monitor to route the GPU’s interrupts to the TEE. GPUShim

forwards the interrupts to DriverShim for handling. We avoid interrupt injection to the VM

hypervisor and keep it unmodified.

To bootstrap the GPU, the client TEE may need to access SoC resources not managed

by the GPU driver, e.g. power/clock for GPU. While the TEE may invoke related kernel

functions in the normal-world OS via RPC [245 ], we protect these resources inside the TEE

as did in prior work for stronger security [234 ].

4.7 Evaluation

The evaluation answers the following questions.

•Is CoDry secure against attacks? (§ 4.7.1 )

•What are the delays of CoDry? (§ 4.7.2 )

•Are CoDry’s optimizations significant? (§ 4.7.3 )

•What is the energy implication of CoDry? (§4.7.4 )

4.7.1 Security Analysis

Threat model We trust the cloud service, assuming its GPU stack is being attested [246 ],

[247 ]. We trust the client’s TEE and hardware but not its OS. We consider two types of

adversaries: (1) a local, privileged adversary who controls the client OS; (2) a network-level

adversary who can eavesdrop the cloud/client communications during recording.

Integrity CoDry’s recording integrity is collaboratively ensured by (1) the trusted cloud

service, (2) the client’s TrustZone hardware, and (3) the encrypted cloud/client communi-

cation. In particular, GPUShim locks the GPU MMIO region during recording, preventing

any local adversary from tampering with GPU registers or shared memory. CoDry’s replay

integrity is ensured by the TrustZone hardware. Since the replayer only accepts recordings

signed by the cloud, it exposes no additional attack surface to adversaries.
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Confidentiality CoDry’s recording never leaks program data from TEE, e.g. ML model

parameters or inputs, since recording does not require such data. It however may leak some

information about the ML workload, as the workload code such as GPU shaders moves

through the network. Although the network traffic is encrypted, it may nevertheless leak

workload information, e.g. NN types, via side channels. Such side channels can be mitigated

by orthogonal solutions [40 ], [156 ].

Since replay is within the client TEE and requires no client/cloud communication, its

data confidentiality is given by TrustZone. We notice TrustZone may leak data to local

adversaries via hardware side channels, which can be mitigated by existing solutions [78 ],

[261 ].

Availability Like any cloud-based service, recording availability of CoDry depends on

network conditions and the cloud availability, which are vulnerable to DDoS attacks. Its

replay availability is at the same level of the TrustZone TEE, given the GPU power is

managed by the TEE not the OS [234 ].

4.7.2 Performance

Methodology As shown in Table 4.1 , we test CoDry on inference with 6 popular NNs

running atop ARM Compute Library [148 ]. We measure CoDry’s recording delay under two

network conditions as controlled by NetEm [262 ]: i) WiFi-like (20 ms RTT, 80 Mbps) and ii)

cellular-like (50 ms RTT, 40 Mbps) [263 ]. The hardware platform is described in Section 4.6 .

We study the following versions:

•Naive incurs a round trip per register access and synchronizes entire GPU memory be-

fore/after a GPU job.

•OursM includes selective memory synchronization (§4.5 ).

•OursMD, in addition to OursM, includes register access deferral (§4.4.1 ); it generates per-

commit round trips.

•OursMDS additionally includes speculation (§4.4.2 ). It represents CoDry with all our tech-

niques,
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Figure 4.7. Recording delays of CoDry(OursMDS) are significantly lower than
other versions

Recording delays Figure 4.7 shows the end-to-end recording delays. Naive incurs long

recording delays even on WiFi ranging from 52 seconds (MNIST, a small NN) to 423 seconds

(VGG16, a large NN). Such delays become much higher on the cellular network, range from

116 seconds to 795 seconds. As discussed in Section 4.3.3 , such high delays not only slow

down ML workload launch but also hurts interactivity because the TEE must lock the GPU

during recording. Compared to Naive, OursMDS reduces the delays by up to 95% to 18
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Table 4.1. Statistics of record runs, showing CoDry significantly reduces
network round trips that block the recording and the memory synchronization
traffic

NNs 
(# GPU jobs) 

# Blocking RoundTrip MemSync (MB) 
OursM  OursMD OursMDS Naive OursM 

MNIST (23) 2837 585 65 3.07 0.75 
AlexNet (60) 5008 1392 196 454.91 4.22 

MobileNet (104) 7307 2097 320 37.39 11.79 
SqueezeNet (98) 7373 2049 303 41.26 11.3 
ResNet12 (111) 8326 2352 345 151.16 12.96 

VGG16 (96) 7662 2184 309 1215.23 10.21 
 

Table 4.2. Replay delays of CoDry (OursMDS) are similar to Native, which
executes benchmarks on the GPU stack in the normal world of the same device

 Delay (ms) 

MNIST Alex Mobile Squeeze Res12 VGG16 

Native 15.2 63 60.9 64.3 362.1 372.2 
OursMDS  4.8 54.8 45.2 54.3 373.9 364.8 

 

seconds (WiFi) and 30 seconds (cellular) on average. We deem these delays as acceptable, as

they are comparable to mobile app installation delays reported to be 10 – 50 seconds [264 ].

Replay delays CoDry’s replay incurs minor overhead in workload execution as shown in

Table 4.2 . Compares native executions, CoDry’s replay delays range from 68% lower to 3%

higher (25% lower on average). CoDry performance advantage comes from its removal of the

complex GPU stack. We notice that these results are consistent with the prior work [237 ].

4.7.3 Validation of key designs

Efficacy of deferral As shown in Figure 4.7 (OursM vs. OursMD), register access deferral

reduces the overall delays by 65% (WiFi) and 69% (cellular). Table 4.1 further shows that

the deferral reduces the number of round trips by 73% on average. With deferral, each

commit encapsulates 3.8 register accesses on average.
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Figure 4.8. Breakdown of speculation; the actual number of commits for each
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Efficacy of speculation We run all six benchmarks with retaining register access history

in between, allowing CoDry to reuse history across benchmarks. Figure 4.7 (OursMDS vs.

OursMD) shows that speculation reduces the recording delays by 60% to 74%. Table 4.1 

further shows OursMDS achieves 86 % reduced number of round trips on average. Such

benefit mainly come from coalescing round trips of asynchronous commits.

We further investigate the speculation success rates and find 95% of commits (99% regis-

ter accesses) satisfy the speculation criteria (§4.4.2 ). These commits are generated by GPU

driver routines that roughly fall into four categories. (1) Init: probe hardware configuration

when the driver is loaded. (2) Interrupt: read and clear interrupt status. (3) Power state:

periodic manipulation of GPU power states. (4) Polling: busy wait for GPU to finish TLB

or cache operations. Figure 4.8 shows a breakdown of commits by category. All register

values in these commits are highly predictable.

The commits that fail the criteria are due to reads of nondeterministic register values. For

example, on each job submission, the Mali driver reads and writes a register LATEST_FLUSH_ID

which reflects the GPU cache state and can be nondeterministic.

Misprediction cost For the above reasons, we have not observed misprediction in our

1,000 runs of each workload. To validate that CoDry can handle misprediction, we artificially

inject into record runs wrong register values. In all the cases of injection, CoDry always

detects mismatches between the speculative and the injected register value, initiating rollback
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Figure 4.9. Energy consumption for record and replay

of the software and the hardware states properly. In the worst case (misprediction at the

end of a record run), we measure the delays of rollback is 1 and 3 seconds for MNIST and

VGG16, respectively. The delays are primarily dominated by driver reload and GPU job

recompilation, which overshadow the replay delays on the client GPU hardware.

Selective memory synchronization Figure 4.7 (OursM vs. Naive) shows that the tech-

nique reduces the recording delays by 1 – 57% on average. The reduction is more pronounced

on large NNs such as AlexNet and VGG16 (34 – 57%). Table 4.1 shows the network traffic

for memory synchronization is reduced by 72 – 99%.

Polling offloading (§4.4.3 ) The numbers of polling instances range from 117 (MNIST)

to 492 (VGG16), that generate from 130 to 550 round trips. Offloading polling reduces the

total round trips by 13 – 58, making the cost of polling instance one RTT; This is because

without offloading, a polling loop often takes a few RTTs (the RTT is long as compared to

GPU operations being polled such as cache flush); with offloading and speculation, the RTTs

often become hidden.

4.7.4 Energy consumption

We measure the whole client energy using a digital multimeter which instruments the

power barrel of the client device (Hikey960). The client device has no display. It uses the

on-board WL1835 WiFi module for communication; it does not run any other foreground
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applications. Each workload runs 500 iterations and we report the average energy. Figure 4.9 

shows the results.

Record. The energy consumed by recording is moderate, ranging from 1.8 – 8.2 J, which

is comparable to one by installing a mobile app, e.g. 16 J for Snapchat (80MB) on the same

device. Note that it is one-time consumption per workload. Compared to Naive, CoDry

reduces the system energy consumption by 84 – 99%.

Replay. As a reference, we measure replay energy per benchmark. It ranges from 0.01

– 1.3 J, consistent with the replay delays in Table 4.2 . The replaying energy is comparable

with the native execution on the original GPU stack of the client device (not shown in the

figure).

4.8 Related Work

Remote I/O is adopted for cross-device I/O sharing [255 ], [265 ] and task offloading [156 ],

[243 ]. Unlike CoDry, however, their remoting boundary is at higher-level – device file [255 ],

Android binder IPC [265 ], and runtime API [156 ]. Such clean-cut boundaries ease a course-

grained I/O remoting, e.g. function-level RPC calls. To apply to TEE, however, the client

TEE must keep a part of (e.g. device driver) or the entire I/O stack while bloating TCB.

Similar to CoDry, prior works have explored the lowest software level; For efficient dy-

namic analysis, they forward I/O from VM to mobile system [245 ] or low-level memory access

from emulator to real device [266 ], [267 ]. However, their cross-device interfaces are wired,

faster than what CoDry addresses, (i.e. wireless connection). CoDry has a different goal:

hosting a dryrun service for GPU recording, mitigating communication cost.

Device isolation with TEE Recent works propose TEE-based solutions for GPU iso-

lation by hiding GPU stack in the TEE [6 ], [161 ] or security-critical GPU interfaces in the

GPU hardware [223 ]. They, however, require hardware modification and/or bloat TCB in-

side TEE. Favorable to the insight given by GPURip [237 ], CoDry offers a remote recording

service for clients to reproduce GPU compute without the stack in TEE.

Leveraging TrustZone components, prior works build a trusted path locally, e.g. for

secure device control [234 ] or remotely [8 ], e.g. to securely display confidential text [235 ] and
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image [268 ]. Their techniques are well-suited to CoDry for i) discarding adversarial access

to the GPU while recording and replaying; ii) building secure channel between cloud VM

and client TEE;

Speculative execution is widely explored by prior works; based on caching and prefetch-

ing, they facilitate asynchronous file I/O [269 ]–[271 ] or speed up VM replication [272 ] and

distributed systems [273 ]. Unlike such works, CoDry does not prefetch I/O access ahead

of time; instead, CoDry hide I/O latency by speculatively continue driver’s workflow defer-

ring read values while replacing them as symbolic expression; it then commit when facing

value/control dependencies.

Mobile cloud offloading There has been previous works on cloud offloading [244 ], [253 ],

[274 ], which partitions mobile application into two parts: one for local device and the other

for the cloud. Facilitating application-layer virtual machine or runtime, each part of the

application cooperatively runs from both sides continuously. Unlike them, CoDry does not

require runtime or vm support from the client; the offloading is also temporal for dryrun of

GPU compute to capture the interactions.

GPU record and replay has been explored to dig out GPU command stream seman-

tics [219 ]–[221 ], enhance performance [157 ], migrate runtime calls [222 ], and reproduce com-

putation [237 ]. While they care what to record, CoDry’s focus is how to record; CoDry

addresses costly interaction overhead for remote GPU recording.

Secure client ML Much works has been proposed to protect model and user privacy [5 ],

[275 ] and/or to secure ML confidentiality [4 ], [231 ]. However, they all lack GPU-acceleration

which is crucial for resource-hungry client devices. While recent work [232 ] suggests a ver-

ifiable GPU compute with TEE, the complexity of homomorphic encryption significantly

burdens client devices.

4.9 Conclusions

CoDry provides a cloud service for GPU recording in a secure way; it performs GPU

dryrun interacting with the client GPUs over long wireless communication. Retrofitting
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known I/O optimization techniques, CoDry significantly reduces the time and energy con-

sumed by client to get a GPU recording.
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5. CONCLUSIONS

On-device computation brings in multiple benefits to end users, such as saving computation

and communication cost over a remote server. While deployed in many critical areas, its

key applications are designed without strong security guarantees. In concert with growing

demands towards on-device computation, its security concerns will be more significant.

Aiming at trustworthy on-device computation, this dissertation contributes the following

new system design:

• StreamBox-TZ: Secure Stream Analytics at the Edge with TrustZone With

the goal of secure stream analytics engine at the edge, we present StreamBox-TZ in

Chapter 2 . StreamBox-TZ guarantees data confidentiality and integrity via isolated

data plane designed and optimized for a TEE based on ARM TrustZone; the constant

remote attestation guarantees both analytics correctness and result freshness while

incurring low overhead. StreamBox-TZ keeps a low complexity in TEE while only

adding 42.5 KB executable to the TCB. The security overhead incurred by StreamBox-

TZ is less than 25%.

• GPURip: A 50-KB GPU Stack for Client ML In chapter 3 , we propose a

novel way for secure GPU computation on mobile and embedded devices. Leveraging

record and replay technique, GPURip reproduces GPU computation without support

of original stack. Thereby, it significantly reduces attack surfaces stem from large and

vulnerable GPU stack when run time. We address key challenges towards making

GPURip feasible, sound, and practical to use. The resultant replayer is a drop-in re-

placement of the original GPU stack. It is tiny (50 KB of executable), robust (replaying

long executions without divergence), portable (running in a commodity OS, in TEE,

and baremetal), and quick to launch (speeding up startup by up to two orders of mag-

nitude). Our evaluation demonstrate GPURip works with a variety of integrated GPU

hardware, GPU APIs, ML frameworks, and 33 neural network (NN) implementations

for inference or training.
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• CoDry: GPU Acceleration in TrustZone via Safe and Practical Recording

Finally, Chapter 4 introduces CoDry, a holistic design for GPU-accelerated computa-

tion in TrustZone TEE. CoDry addresses GPURip’s key missing piece – the recording

environment, which needs both strong security and access to diverse mobile GPUs.

In CoDry, a mobile device (which processes the GPU hardware) and a trustworthy

cloud service (which runs the GPU stack) exercise the GPU hardware/software in a

collaborative, distributed fashion. To overcome numerous network round trips and long

delays, CoDry contributes optimizations specific to mobile GPUs: register access de-

ferral, speculation, and metastate-only synchronization. Our evaluation demonstrates

CoDry is practical with fast service time (only tens of seconds).

In conclusion, this dissertation presents new design choices for key applications (stream

analytics and machine learning) in mobile/edge environments. By minimizing software stack

combined with hardware-supported TEE and/or involving trustworthy cloud in the compu-

tation, we achieves the goal of trustworthy on-device computation.
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