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ABSTRACT

This research focuses on developing algorithms to automatically classify, detect, simulate
and improve the quality of defective printed images since the human visual system is unreli-
able. With the development of deep learning algorithms, state-of-the-art accuracy could be
achieved for many computer vision tasks. This research applies the deep learning method
to printed image quality assessment. Because most deep learning approaches require a large
amount of data even after data augmentation, we propose to use Generative Adversarial Net-
works for simulation images generation. The simulated images with artifacts could be used
for training classifier, detector and corrector networks for printed image quality. Another
essential preprocessing step for printed image quality assessment is image registration, which
can detect the defect and difference between two input images. This research proposes to use
the deep learning framework for global image registration by parallel computation accelera-
tion. For deformable local registration, we implement the U-Net VoxelMorph-based method
for printed image registration. Then we further propose the recurrent network-based method,
R-RegNet. The experimental results show that the proposed R-RegNet method outperforms
the U-Net VoxelMorph-based method in all three datasets that we considered. Finally, we
propose a photorealistic image dataset simulation method for training deep neural networks.
A new dataset with simulated images, named Extra FAT, is introduced for object detection

and 6D pose estimation.
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1. INTRODUCTION

This research mainly focuses on developing the algorithms to classify, detect, simulate and
improve the quality of printed images with different defects.

In Chapter 2, we introduce image quality assessment, including defect classification,
grading and detection. The image quality assessment process is costly and time-consuming.
The visual system of human beings is not always reliable in some cases, like the light /dark
band optical illusion. There are some traditional defect classification and detection methods,
but they are not accurate enough. With the development of deep learning algorithms, the
state-of-art of accuracy could be achieved for many computer vision tasks. It is the first
time to implement deep learning-based approaches in printed image defect classification and
detection.

In Chapter 3, we introduce Generative Adversarial Networks (GANs) for printed image
simulation. Most deep learning approaches require a large amount of data even after de-
ploying traditional data augmentation algorithms. The Generative Adversarial Networks
method is one of the generative models that could generate simulation images after learning
from the samples. The simulated images could be used for training classifier, detector and
corrector networks for printed image quality assessment.

In Chapter 4, we focus on the printed image registration problem. This research investi-
gates global and local image registration. For global image registration, we propose to use the
deep learning framework PyTorch for the intensity-based image registration algorithm. The
SIMULATED dataset and HPLAB dataset with real printed pairs are collected for image
registration. For local deformable image registration, we implement the U-Net VoxelMorph-
based method for printed images and propose the recurrent network-based method, named
R-RegNet. Experimental results prove the recurrent network-based method R-RegNet out-
performs the U-Net VoxelMorph-based method in terms of mean square error or ground
truth deformation error in all three test datasets that we considered.

In Chapter 5, a photorealistic image dataset simulation method is proposed for training
deep neural networks. A new dataset with simulated images, named Extra FAT, for object

detection and 6D pose estimation is introduced in this part.
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2. DEEP LEARNING FOR PRINTED DEFECT
CLASSIFICATION AND DETECTION

2.1 Introduction

Printed defects commonly appear on printed images, such as mottle, banding, drips,
drop-density-differences, ghosting, folds, streaks, and smudges. Visual inspection is the
primary approach to evaluating defect conditions. According to [1], there are two different
methods for an operator to inspect the defects. First, an operator is fully occupied with
one machine when the prints come off the press. Second, an operator could check a stack of
prints instead. Thus, the operator does not need to wait; but the paper is wasted. However,
human-based defect inspection is limited to qualitative evaluation, and is time-consuming.
Since automated defect detection can address the limitations of human-based inspection,
many researchers and companies have been attracted to developing a computer vision-based

method for defect grading and detection [2]-[5].

2.1.1 Previous Work on PQ Defect Assessment

Early work on print quality (PQ) defect diagnosis reported a tool for computing the
strengths of various PQ defects from scanned pages, based on procedures recommended
by an ISO standard [6]. Tools to enable the customer to troubleshoot his or her print
quality (PQ) issues by visual inspection were also developed. This work consisted of PQ
troubleshooting pages [7], web-based troubleshooting tools [8], and tools for simulating the
appearance of print quality defects on test pages [9]. For banding, in particular, tools were
developed to model the defect and measure its strength via psychophysical experiments
[10]-[13], as well as to estimate the period of periodic banding defects [14]-[16]. Some efforts
focused on wavelets as a tool for PQ analysis [17]-[19]. Later efforts considered the visibility
of PQ defects in the presence of customer content [1]-[3], [5], [20]-[25] and the identification
of specific defects, such as mottle [26]-[31], macro-uniformity [32], fading [33], [34], ghosting
[35], local nonuniformities [36]-[38], and streaks [39], [40]. Other efforts considered a more

comprehensive set of PQ defects [41]-[44]. More recently, machine learning approaches (linear

18



regression and support vector regression) have been deployed to predict the visibility of PQ
defects based on ground truth provided by human observers [32], [45], including the image
quality ruler method [19], [46]-[48]. The most recent efforts have included the development
of a comprehensive system for assessing a variety of PQ defects in customer content [49],
including segmentation of the page into multiple regions of interest, according to the type
of page content [50]. During the entire course of this time, several standards have been
developed for assessing PQ [51]-[53].

In the ISO/TEC 24790 international standard [52], which is a revised version of ISO/IEC
13660 [53], a method for hardcopy image quality is introduced which uses a single high-pass
filter that integrates many components in an area to a value. This method calculates the
standard deviation of 2mm x 2mm cells for an area larger than 20mm x 20mm. This method
is helpful for qualitative comparison. In another paper [26], the tile method is modified and
expanded to provide more discrete data, including different cell sizes, the average of density,
standard deviation, the average of standard deviation and the standard deviation of standard
deviation, which can be used for quantitative analysis for the mottle defect. Other traditional
methods [26], [41] use the information of cluster, statistics, and wavelets for the mottle defect
characterization problem. Traditional computer vision methods estimate the mottle defect
by extracting visual features, such as frequency and standard deviation, from the image
and characterize the defect level using a threshold based on experimental results. The main
drawback of those approaches is that they need manually designed features for the printed
defects.

2.1.2 Deep Convolutional Neural Networks

In recent years, the deep Convolutional Neural Network (CNN) has become one of the
most efficient methods to solve many computer vision problems, such as segmentation [54],
[55], detection [56], tracking [57], and pose estimation [58], [59]. With annotated data,
the deep learning based-approach can treat the computer vision problem as a regression
or classification task by extracting features in the CNN layers and joining them in fully

connected layers. In contrast to the aforementioned traditional methods, the deep neural
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network can be trained in an end-to-end manner based on the dataset without the necessity
to manually design features and thresholds.

In most traditional methods, the mottle defect level depends on the local areas in an
image with uniform color or grayscale. In the deep learning approach, the entire image can
be used as the input to the network. The deep neural networks work on printed images with
different and non-uniform contents. The traditional feature-based methods are limited to a
specific defect. However, deep learning methods can easily be extended to different types of
printed defects by training on different datasets.

This thesis proposes a deep learning-based method for printed mottle defect grading. We
collected the training data scanned from printed pages and trained a ResNet-34 model to

classify various images with different mottle defect levels.

2.2 Defect Image Classification

In this section, we introduce an algorithm to classify the defects of printed images. The
network is trained for a classifier on two classes: Ghost VS Streaks. Ghost defect means the
toner of an image from the printer is much lighter and less detailed than the digital image.
Ghosts are often caused by a fault with the drum or fuser unit of the printer. The toner
particles are not heated enough to produce a good image. According to [60], streak is a
defect characterized by elongated blotches of ink in non-image areas, commonly caused by
mechanical problems with the press, such as damaged rollers (in lithography), or by improper
wiping of a gravure cylinder by the doctor blade (due to dried ink fragments attached to it,
or other such problems).

In the dataset, there are 582 training images and 60 test images. For each image, the
resolution is 7146 x 5146, as shown in Figure 2.1.

We use transfer learning [61] based on pre-trained ResNet34 and ResNext50 CNN [62]
to solve the defect classification problem. Data augmentation methods including rotating,
flipping, zooming are implemented for the original dataset, as shown in Figure 2.2. The

Learning rates for different layers are le=*, le™® and le=2 from lower level to higher level.

20



The accuracy for classification in ResNet34 is 60% and ResNext 50 is 65%. Figure 2.3 is the

result of ResNext50 shown as a confusion matrix.

2.3 Defect Level Grading

Mottle is a printed defect caused by low-frequency random non-uniformity. The mottle
defect differs from banding or any other periodic non-uniform defect that could appear at
any gray level or color. Figure 2.4 shows an example where the mottle defect in certain areas
severely degrades the printed image quality. From the perspective of human visual percep-
tion, the spatial frequency, size, contrast, sharpness, illumination, and viewing distance can
affect the perception of the mottle defect. Figure 2.5 provides two visual examples of mottle
defects, which are zoomed-in views from Figure 2.4.

In this work, we categorize the mottle defect level into four classes based on the defect

degree:

1. Class A means the printed image is visually good. The uniform areas in the printed

image look highly smooth and uniform.

2. Class B means the printed image is visually sufficient. There are some non-uniform

blotches in the printed image.

3. Class C means a lack of printed image quality. There are some large non-uniform

blotches in the image.

4. Class D means the printed image quality is inferior. There are huge non-uniform

blotches.

2.3.1 Dataset

This section presents two new datasets used for mottle defect grading in printed pages.
The first dataset is named the T dataset with 135 images with different levels of the mottle
defect, as shown in Figure 2.6. In the T dataset, there are 22 images in class A, 63 images in

class B, 45 images in class C, and 5 images in class D. All the images in the T dataset have
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Figure 2.1. Example of a image in the dataset.
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Figure 2.2. Example of data augmentation.

Ground Truth:
Ghost 13
- .

Predicted: Ghost Streak

Figure 2.3. Confusion matrix of the ResNext training result.
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Figure 2.4. A printed image with mottle defect.

the same “textile” content. The second dataset is named the M dataset with 145 images
as shown in Figure 2.7. In the M dataset, there are 87 images in class A, 42 images in
class B, 15 images in class C, and 1 image in class D. The images in the M dataset have
different contents. All images in the two datasets are grayscale and annotated by professional
operators. The classes denote different quality levels ranging from the highest (A) to the
lowest (D).

Data Augmentation and Unbalanced Datasets

The deep learning-based methods require a large amount of training data. To increase
the dataset size in our work, we apply different data augmentation methods such as rotation,

flip, zoom, and shift, as shown in Figure 2.8. Some commonly used filters, such as the Gabor
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Figure 2.5. Zoomed in views of the mottle defect. The left image has lower
density with uniform content. The right image has higher density with non-

uniform content.
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Figure 2.6. Examples from the T dataset which has 135 images with the
same “textile” content.

filter and Gaussian filter that were used for augmentation of the ImageNet Dataset [63] are

not used in this work because the filters might change the feature distribution of the mottle

defects.

In both the T dataset and the M dataset, there are fewer samples in the D class, which

corresponds to the poorest printed image quality. An unbalanced dataset like this may cause

poor classification accuracy. Several methods have been developed to increase the number
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Figure 2.7. Examples from the M dataset which has 145 images with different contents.
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Figure 2.8. Examples of data augmentation: a combination of augmentation
methods such as rotation, flip, zoom, and shift are used in the above images.
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of data for the classes with fewer samples. The first method uses a simulation method to
generate synthetic data. It requires an accurate simulation model of the printing process and
the mottle defect generation process, which are not available in our case. The second method
randomly under-samples images from the original dataset. A higher sampling probability is
assigned to the class with fewer samples to achieve balance. Although it is easy to implement,
the under-sampling process eliminates some samples and loses essential information in the
original dataset. The third method randomly over-samples images from the classes with
insufficient samples. The maximum number of duplicates is limited to avoid overfitting in
the training dataset.

In this work, the images in classes with insufficient data are over-sampled; and the
maximum number of duplicates is limited to 15. Then, the data augmentation is implemented
for the training dataset. In the final dataset, the T dataset has 192 images with 44 images in
class A, 63 images in class B, 45 images in class C, and 40 images in class D. The augmented
T dataset is divided into a training set with 154 images and a validation set with 38 images.
The T dataset and the M dataset are merged to generate the combined dataset. After
augmentation, the combined dataset has 410 images with different contents. There are 109
images in class A, 105 in class B, 106 in class C, and 90 in class D. The augmented combined
dataset has 328 images in the training set and 82 images in the validation set. The resolution

of all images is 5100 x 6600 (600 DPT).

2.3.2 Network and Training Process

The ResNet-34 [62] network is used as a feature extraction backbone. The ResNet-34
structure has several residual blocks, as shown in Figure 2.9. The feature extraction network
is followed by fully connected layers.

The regression network and classification network have similar network structures. The
main difference is the last fully connected layer and output of the network. In the regression
network, the last layer has a single output, as shown in Figure 2.10. The four classes
[A, B,C, D] are mapped to scores [0,1,2,3]. In the classification network, the last fully

connected layer has four outputs, as shown in Figure 2.11.
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Residual Block

Figure 2.9. Structure of the residual block.
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Figure 2.10. Network structure for the mottle defect regression task.

Figure 2.11. Network structure for the mottle defect classification task.

29



The final network is trained by transfer learning using ResNet-34 pre-trained on ImageNet
[63] connected with fully connected layers. In the first step, the ResNet-34 convolution
layers are frozen. Second, the fully connected layers are trained with a specified learning
rate. Third, the convolution layers are unfrozen and the whole network is retrained with
a lower learning rate. In the training process, the loss function is MSE Loss adding L2
parameter regularization loss for the regression task. The loss function for the classification
task is the cross-entropy loss adding L2 parameter regularization loss. In both regression and
classification tasks, we use dropout [64] in the training stage. Dropout is a technique that
randomly removes some nodes in neural networks with a probability p during training. By
doing this, the network is more robust to the change of weighting for some specific nodes and
can avoid overfitting. The probability p is also named dropout rate. In the validation/testing
stage, the dropout and L2 parameter regularization loss is turned off.

To find the best learning rate for training, we first train the stochastic gradient descent
[65] with a lower learning rate in each epoch. Then the learning rate is multiplied by a
factor in each mini-batch until a higher learning rate is reached. We record the loss in each
iteration for different learning rates and choose the learning rate with a relatively lower loss.
The triangular learning rate policy [66] is used in the training stage. The learning rate
value changes between the minimal and maximal learning rates. The increase of the learning
rate will force the network model to explore a new parameter space when the loss function

decreases slowly or stops decreasing.

2.3.3 Experimental Results

In this work, the deep CNN is trained on two different datasets, including the augmented
T dataset and the augmented combined dataset.

The first experiment is trained on the augmented T dataset. In the first experiments, we
train the dataset using cropped input images and combine the results of the small patches
to generate the final prediction. We treat the defect grading problem as a regression or a

classification problem to explore the effect on the prediction accuracy.
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The second experiment is performed on the augmented T dataset. We train the network
using the 154 images (without cropping) in the training set and validate using 38 images
in the validation set. We also test both regression and classification methods in the second
experiment.

The second experiment is performed on the augmented combined dataset. In the third
experiment, we train both the regression and classification networks using the 328 images
(without cropping) in the training set and validate using 82 images in the validation set.
The combined dataset results in experiment three further prove that the network can be

generalized to mottle defect grading with different contents.

Prediction using Cropped Patches

In the first experiment, the original input image in the T dataset is cropped to 600 x 600
resolution patches without overlap. The whole T dataset is cropped into 11880 patches in
four classes: [A : 22 x 88,B : 63 x 83,C : 45 x 88, D : 5 x 88]. The training set has 9504
images and the validation set has 2376 images, respectively. The error rate on the training
set is 38.55%. The confusion matrix is shown in Figure 2.12.

In the prediction stage, the original image is cropped to 88 patches as shown in Figure
2.13. The 88 patches are fed to the convolutional neural network to output a 88 dimension
score vector. The final prediction is generated by averaging or majority voting over the score
vector. On the validation set, the error rate is 33.33% by the average score method and
37.04% by the majority voting method. The result shows that the accuracy of using local

cropped patches is not satisfactory.

Mottle Grading Regression and Classification on T dataset

The second experiment is performed on the augmented T dataset. In the regression task,
the input is resized to 1000 x 1000 resolution and the output is a single score mapped to
four classes [A, B, C, D|. We first use the learning rate finding as shown in Figure 2.14,
which suggests a learning rate in the range of le-2 to 2e-1. The learning rate finding is to

use a small percent of data for training and get minimum loss with different learning rates.
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Figure 2.12. Confusion matrix for the prediction using cropped patches. The
x-axis is the prediction of the networks and the y-axis is the ground truth of
the data.
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Figure 2.13. Defect prediction using cropped patches.
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We then test different learning rates in the range of le-2 to 2e-1 in the whole dataset. The
final best learning rate is 2e-2. Then we freeze the convolutional layers, unfreeze the fully
connected layers, and train for 40 epochs. Finally, we unfreeze all layers and train with
a lower learning rate in the range [3e-5, 2e-2| for 5 epochs. The batch size is 16 in the
training process. Figure 2.15 shows the loss in the training and validation sets. The best

root mean squared error (RMSE) for regression is 0.45, as shown in Figure 2.16. Here the

RMSE is calculated as RMSE = \/ %2?:1 <yi B ﬂi) 2’ where ; is the predicted value from the
regression model, y; is the ground truth and n is the total number of tests. The final error
rate is calculated as 7, where e is the number of false predictions. We round the predicted
value ; to g;. When 3; # v;, it is a false prediction. The final error rate is 21.05% in the

first experiment.

3.4 4

3.2 1

3.0 1

Loss

2.8 -

26 1

le-06 le-05 le-04 1e-03 le-02 le-01
Learning Rate

Figure 2.14. Finding the learning rate for the regression method on the T Dataset.

The last fully connected layer has four outputs indicating four classes in the classification
task. The loss for the classification task is shown in Figure 2.17. The confusion matrix is
shown in Figure 2.18. The error rate is 13.16%, which is better than the regression task in

the T dataset with the “textile” content images.
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Figure 2.15. Loss for regression on the T training and validation sets. The
dropout rate in the training stage is 50%. The loss in the training stage is
calculated by adding MSE loss and the regularization loss of the weights. The
loss in the validation stage is MSE loss only.
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Figure 2.16. Root mean squared error for regression on the T dataset.
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Figure 2.17. Loss for classification in the T training and validation sets. The
dropout rate in the training stage is 50%. The loss in the training stage is
calculated by adding cross-entropy loss and the dropout regularization loss of
the weights. The loss in the validation stage is cross-entropy loss only.
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Figure 2.18. Confusion matrix for classification on the T dataset. The x-axis
is the prediction of the network, and the y-axis is the ground truth of the data.
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Mottle Grading Regression and Classification on the Combined Dataset

The second and third experiments are performed on the combined dataset. Mottle grad-
ing regression and classification on the combined dataset have a setting similar to that of the
tasks on the T dataset. The combined dataset is more challenging since it has a large variety
of image contents. In the regression task, Figure 2.19 shows the loss in the training and
validation sets. The best root mean squared error for regression is 0.49, as shown in Figure
2.20. The final error rate is 21.95%. In the classification task, the loss for classification is
shown in Figure 2.21. The confusion matrix is shown in Figure 2.22. The best error rate is

20.73% which is similar to the regression task.
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Figure 2.19. Loss for regression in the combined training and validation sets.
The dropout rate in the training stage is 50%. The loss in the training stage
is calculated by adding MSE loss and the regularization loss of the weights.
The loss in the validation stage is MSE loss only.

2.4 Defect Detection for Printed Image

In real applications for printed images with defects, industries are more interested in

detecting the location of the defective part of printed images. For the defects detection task,
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Figure 2.20. Root mean squared error for regression on the combined dataset.
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Figure 2.21. Loss for classification in the combined training and validation
sets. The dropout rate in the training stage is 50%. The loss in the training

stage is calculated by adding cross-entropy loss and the regularization loss of
the weights. The loss in the validation stage is cross-entropy loss only.
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Figure 2.22. Confusion matrix for classification on combined dataset. The
x-axis is the prediction of the network, and the y-axis is the ground truth of
the data.
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preliminary data could consist of one digital and one printed image in a pair or the printed
image only. The printed images may have defects such as banding, bright streak, dark streak,
wrinkle, etc. The defect object detection algorithm should be able to classify the category of
the defect and provide a bounding box or map of the defective area. Although both digital
and printed images could be given as the input of the algorithm, ideally, the goal for the
algorithm is to detect defects with only input from scanned printed images. There are few
works of literature about printed defect detection methods based on deep learning. However,
defect detection algorithms based on CNN are used in other industries like civil engineering.
For example, Naive Bayes data fusion and CNN [67] are used in crack detection and Faster
R-CNN is used in damage detection [68], [69].

In the experiment, we mainly focus on the streak detection problem. The training dataset
consists of 1100 images with streak defects in different locations. The test dataset has 100
images. Each image has bounding boxes to indicate the region of streaks. We implement
a defect detection algorithm using Faster R-CNN [56] with a ResNet50 feature extraction
network. As shown in Figure 2.23, the input image is transferred to features by the feature
extraction network. Then the region proposal network proposes multiple regions of interest
(ROIs). After the ROIs pooling stage, the feature of each ROI is fed into the classifier, which
generates the final bounding box position. The Faster R-CNN network can be trained on
Caffe and Caffe2 frameworks on 1 to 4 Titan Xp GPUs. The batch size per image is 256. For
the input image, the original resolution is 7146 x 5146. As shown in Table 2.1, the images
are rescaled to various resolution including 500 x 500 and 1000 x 1000. The best Mean
Average Precision (MAP) is 0.23. In this experiment, the MAP is calculated for images with
Intersection over Union (IoU) >= 0.50. The calculation of MAP is explained in the COCO
dataset paper[70] in detail.

Figure 2.24 is an example of the result of streak detection on the test dataset. The green
bounding boxes indicate the predicted region of the streak from our detection algorithm.
We also test the trained defect detection model on a different dataset which has the images
printed from total different models of printers. As shown in Figure 2.25, the yellow-colored
streak is much wider compared to the original dataset, but the network could still detect the

streak. The result shows that the streak detection algorithm works on a different dataset.
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Figure 2.23. Structure of the Faster R-CNN network.

Table 2.1. Specifications of Faster R-CNN defect detection

GPU Resolution Rescale MAP Iteration Time Inference Time
1 2624 x 1946 500 0.167 0.188-0.231s 0.057-0.100s
1 2624 x 1946 1000 0.23 0.225-0.340s 0.090-0.205s
1 7146 x 5146 1000 0.23 1.083-1.181s 0.132-0.230s
4 2624 x 1946 500 0.167 0.181-0.188s 0.047-0.054s
4 2624 x 1946 1000 0.23 0.229-0.236s 0.091-0.098s
4 7146 x 5146 1000 0.23 1.017-1.024s 0.098-0.105s

2.5 Conclusion

In this part, we implement CNN for solving the defect classification problem, printed
mottle defect grading and Faster R-CNN for the defect detection problem. The main con-
tribution of this work is to propose a deep learning-based method instead of traditional
feature-based methods for printed image quality assessment. For printed mottle defect grad-
ing, we propose a new deep learning-based method. Unlike traditional methods such as
feature extraction using AFE variation, our method utilizes a CNN for the first time to au-
tomatically extract the feature by stochastic gradient descent. Transfer learning and data
augmentation methods are used to train a robust mottle defect grader. The proposed deep
learning mottle characterization method can be used in mottle grading not only for the test
image with the same uniform content as seen in the training set but for printed images with
different contents. The mottle grading method achieves a 13.16% error rate in the T dataset
with the same content and a 20.73% error rate in the combined dataset with different con-

tents. The proposed method can also be generalized to other printed defects, such as streaks
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Figure 2.24. Example of streak detection.
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Figure 2.25. Example of streak detection in another dataset.
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given an annotated streak dataset. The results prove the feasibility of deep learning methods

for defects from different domains.
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3. GENERATIVE ADVERSARIAL NETWORKS FOR
PRINTED IMAGE SIMULATION

3.1 Introduction

3.1.1 Dataset and Data Augmentation

In recent years, CNN has become one of the most efficient methods to solve computer
vision problems such as segmentation, detection, tracking and classification. The previous
chapter proposes deep learning methods for printed image defect classification and detection.
However, deep learning methods based on CNN require a large amount of image data scanned
from the printed images for printed image quality assessment. The accuracy and success of
the deep neural network have been highly attributed to big datasets such as the ImageNet
Dataset [63] and the COCO Dataset [70]. The quality, quantity and diversity of a dataset

primarily affect the performance and generalization of the trained network.

training
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Figure 3.1. Training a deep neural network requires plenty of data.

Data augmentation is growing increasingly popular in machine learning and deep learning
communities. It refers to techniques for generating samples by transforming training data,
with the target of improving the accuracy and robustness of the networks without actually

collecting data [71]. There are some common strategies such as flipping, rotation, cropping,
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filtering and zooming for network training. Figure 3.2 shows examples of traditional data
augmentation.

However, the images can only be slightly changed by those basic data augmentation
methods, as shown in Figure 3.3. The quantity of data is still limited to a number pro-
portional to the original dataset. In our case of the printed image dataset, we still have to
print and scan images in order to collect data. Those printed images are hard to generate,
as shown in Figure 3.4. Commonly, the labor required for image printing and scanning is
intensive to generate the dataset. It is of value if we could find the essence of printed images
and reproduce them directly from digital images using a model without the printing and

scanning process.

3.1.2 Generative Model and Generative Adversarial Network

To simulate sample images from digital images requires an image generation model. One
of the classical approaches is the Maximum Likelihood Estimator (MLE) [72] which chooses a
pre-defined model and estimates its parameters through maximizing the likelihood of training

data, as shown in Equations (3.1) to (3.4).

0" = arg max H pmodel(a:(i); 0) (3.1)

0 i=1
= arg max log H pmodel(x(i); 0) (3.2)

6 i=1

= arg max H log pmodel(x(i); 0) (3.3)

0 i=1
0" = argmax E,,, . [log pmodel(x(i); 0)] (3.4)

0

where 6 is the parameters of the pre-defined model, and ) is a sample (i) from the
dataset. By estimation algorithms such as the Expectation Maximization (EM) algorithm

[73], maximum likelihood estimators could be calculated recursively from incomplete data.
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(b) Image after vertical flip-
ping.

(c) Image after horizontal flip- (d) Image after rotation.
ping.

(e) Image after sharpening fil- (f) Image after zooming.
ter.

Figure 3.2. Sample images of traditional data augmentation.
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(a) Original image. (b) Image changed in bright-
ness and contrast.

Figure 3.3. Some training images can be easily generated.

(a) Original image. (b) Printed image with streak.

Figure 3.4. Some training images are hard to generate.
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However, explicit models like MLE require a well-defined likelihood function such as a
truncated Poisson distribution or Gaussian distribution. It is hard to find unknown data-
generating distribution and perform density estimation. There are other explicit models
used in sample generation such as Variational Auto-Encoders (VAEs) [74], PixelRNN [75]
and PixelCNN [76]. For example, VAEs use the posterior py(z|z) to estimate the distribution
between an image distribution p(x) and a latent space z, where 6 is the parameter of the
distribution. However, simulated images from VAEs tend to be blurry because the approx-
imation paradigm, which is often an unimodal Gaussian distribution, is oversimplified for
the complex distribution of real images. The results of explicit models have lower quality
compared to the state-of-the-art Generative Adversarial Networks (GANs) [77] which are
implicit models.

GANSs generate new samples for the model by using a loss function which calls another
discriminator model. There is no need to find an explicit density function and maximize
its likelihood or lower bound. Instead, GANs use the Nash Equilibrium concept from game
theory. In GANS, there are two players: generator (player G) and discriminator (player D).
Instead of using maximum likelihood estimator or optimizing a fixed loss function, GANs
take advantage of the discriminator network to learn a dynamic loss function for the generator
network. Thus, more realistic images could be generated from GANs through its adversarial
process. On the other hand, the dynamic process of GANs is often harder to train with two

sub-networks and sometimes suffers mode collapse.
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Figure 3.5. Generative adversarial networks via Nash Equilibrium.

As shown in Figure 3.5, random noise is generated as the input to the generator. The
generator is trying to produce fake data as a counterfeiter. Respectively, the discriminator
is trying to detect fake data produced by the generator. The discriminator is a classification
network to distinguish between real and fake data. The competition between the generator
and discriminator drives both networks to improve their accuracy. The training process

stops when generated data are not distinguishable from the real data.

3.2 GANSs for Printed Image Simulation

Printed image simulation could be considered as an image-to-image translation problem.
As shown in Figure 3.6, the original image is a digital image and the output is a simulated
image. The GAN’s model maps the digital image domain to the corresponding printed
image domain. There are some typical applications in image-to-image translation based
on generative models such as realistic samples for artwork [78], super-resolution [79] and

colorization [80].
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/ Pairs of ' / Discrimina
Images tor

Figure 3.6. Image translation by GAN.

Generally, there are two approaches for solving the style translation problems: supervised
learning and unsupervised learning. In the unsupervised learning scenario, a large number
of images in two groups are separated by their style. However, in the training dataset, there
are no pairs of images with a strong connection, as shown in Figure 3.7. Under certain
architectural constraints between the two groups, the features could be learned by GANs
via unsupervised learning. In another scenario called supervised learning, pairs of images
are available in the training set, as shown in Figure 3.8. The input of the network has two

related images belonging to two different groups.

3.2.1 Unsupervised Image-to-image Translation GANs

In this subsection, we use UNsupervised Image-to-image Translation networks [81] (UNIT)
to solve the printed image simulation problem. Some of the printed images are collected
without their corresponding digital reference images. Thus unsupervised learning is more

applicable for this type of digital to printed image style transformation.
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(a) Original image. (b) Printed images.

Figure 3.7. Two groups of images in unsupervised learning.

(a) Original image. (b) Printed images.

Figure 3.8. A pair of images in supervised learning.
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Network Structure of UNIT GANSs
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Figure 3.9. UNsupervised Image-to-image Translation networks [81].

Figure 3.9 is the structure of UNsupervised Image-to-image Translation networks. As
shown in Figure 3.9 (a), the main assumption of this GANs is for image z; and image x5 to
be from two different domains y; and y», and to have a common shared code z in shared
latent space Z. There are two mappings (G; and G5 which are generators from latent code z
to image x; and x, respectively. In the opposite direction, there are two encoding functions
F, and E5 mapping z; and x,, respectively to z.

In UNIT GANs, {Ej, G} could be interpreted as a Variational Auto-Encoders sub-
network and { £}, G»} as an image-to-image translator sub-network. Respectively, { Ey, G2}
could be interpreted as a VAEs sub-network and {E,, G} as an image-to-image translator
sub-network. D; and D, are the adversarial discriminator sub-networks which classify the
images as generated or real images. {G, D1} and {Gs, D5} could be treated as GAN sub-
networks. Fy, Fsy, G1, G5 are represented by four separated CNNs. Under the assumption of
a shared latent space, the weights of last few high-level layers of F; and E5 share the same
value. Similarly, the weights of G; and G are tied.

After the training process, image-to-image translation from domain y; to domain ys is
done by an input image x; going through sub-network E; and G5 to generate simulated

image 7172, In another direction, image-to-image translation from domain y» to domain x;
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is done by an input image x5 going through sub-network Es, and G, to generate simulated

image 751

Data Preparation and Training

The training set has 26 images in total. It is separated into two sets: the digital images
set and the printed images with defects set. Each set has 13 images.

For printed image simulation, we increase the output resolution for the last layer from
256 to 512. However, the GPU has limited memory for the large GANs model. In order to
fit the input and weights of the model to GPU memory, we modify the last 2 output layers
from 32 to 16.

Learning Result for Group Mapping

In the trial of group mapping simulation, the image becomes lighter after simulation
after 86000 iterations, which resembles some printed images having a lighter color. A pre-
processing step such as registration for data, is not required for the training dataset. How-
ever, the test result is not satisfactory since it is far lighter than the desired ground truth.
The training dataset is too small for training a large UNIT GANs model. Essentially, the
unsupervised image-to-image translation problem is considered more difficult than super-
vised translation. Thus, in the following subsection, we consider the digital to printed image

translation problem as a supervised 1-to-1 image mapping problem.

3.2.2 Supervised Image-to-Image Translation GANs

PIX2PIX GANs

In this section, we propose a deep learning framework based on pix2pix (pixel to pixel
Conditional Adversarial Networks) [82] GANs for simulating printed image datasets, which
is used for training printed image quality assessment or defects detection algorithms. In
contrast to unsupervised mapping for image groups, the supervised image-to-image mapping

provides better image quality under strong supervised constraints.

o4



Most traditional supervised image-to-image translation approaches minimize pixel-wise
Euclidean distance between the output and ground truth images. Some researches [83],
[84] have addressed the fact that the L2 loss function tends to generate blurry images.
When traditional approaches are trying to minimize the FEuclidean distance loss function,
the outputs are averaged to decrease the loss, which is the main reason for blurry outputs.
Under the assumption of GANSs, the discriminator tends to classify the blurry images as fake

and forces the generator to reproduce clear images.

Generator

Discriminator

)| ]]
= Fake!
o

(a) Generator and Discriminator.

Ty ywTTY TV

1

Discriminator

7 II Real!

(b) Discriminator.

L I

Figure 3.10. Pix2pix GAN structure.

In the pix2pix translation, the networks are composed of two sub-networks named gener-
ator and discriminator. The generator is a network randomly generating some images from
the original images under certain constraints, such as the L1 constraint, to create new images
with a different style. The discriminator is another network to distinguish generated images

from real images. A mapping between input and output images could be learned by training

on the aligned image pairs.
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As shown in Figure 3.10a, when training the conditional GANs mapping images from
digital to printed, the discriminator D is trained to classify between fake (simulated by
the generator) and real (scanned printed image) images. The generator G is trained to
confuse the discriminator D. The main difference between pix2pix conditional GANs and
unconditional GANs is the input for generator G and discriminator D. The input is not a
simulated printed image or real scanned printed image, but a 2-tuple consisting of a printed
image and a digital image. As shown in Figure 3.10a, the input to D is a tuple (G(z), x),
where G(z) is the generated printed image (fake) and x the original digital image. As shown
in Figure 3.10b, the input to D is a 2-tuple (y,x), where y is the scanned printed image

(real) and x the original digital image.

Experiment on Digital to Monocolor Printed Images Translation

In this part, we implement image-to-image translation from digital to monocolor printed
image without defects by pix2pix GANs. The original images are with a resolution of
2624x1946. There are 13 pairs of images that are the same as the dataset in Subsection
3.2.1. In order to increase the number of training images and fit the weights of the model to
the GPU memory, the original images are cropped into images with a resolution of 656 x486.
Among the cropped images, 144 images without defects are selected for this part. There are
104 pairs of images as the training set and 40 as the test set. After that, two related images

are combined into an image pair as the input of the pix2pix GANs, as shown in Figure 3.11.
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Figure 3.11. Data preparation: two cropped images are combined into an
image pair as the input of the pix2pix GANs

After 6000 epochs of training, the testing results, as shown in Figure 3.12, 3.13, 3.14 and
3.15, prove the pix2pix GANs under conditional constraint could be trained for digital to
printed image translation.

Specifically, in Figure 3.12 and 3.13, the simulated images have small mottles that re-
semble the printed image on the right side of the image. Figure 3.14 is a failure case of
our pix2pix models for printed image simulation, which might be caused by mode collapse
described in [85]. The printed image generation GANs model is trained only with a dataset
of 104 pairs of images. Figure 3.15 is another example of simulated images. Although the
simulated image is different from the real printed image on the right side, from Figure 3.15
we could see the GANs model learns the different possible modes generated in the printing

process.
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20180620_152942_icf_compare_Any_Green_152.PSA.VSLeft 0_3

real A fake B real B

Figure 3.12. Example 1 of the test image, the left is the digital image, the
middle is the simulated image, the right one is the real printed image
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Figure 3.13. Example 2 of the test image, the left is the digital image, the
middle is the simulated image, the right one is the real printed image
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20180620_152942_icf_compare_Any_Green_152.PSA.VSLeft_1_2

real A fake B real B

Figure 3.14. Example 3 of the test image in a failure case, the left is the
digital image, the middle is the simulated image, the right one is the real
printed image

20180620_152942 icf compare_Any_Green_164.PSA.VSLeft 0_1

real A fake B

Figure 3.15. Example 4 of the test image, the left is the digital image, the
middle is the simulated image, the right one is the real printed image
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Experiment on Digital to RGB Printed Image Translation

In this part, we implement image translation from digital to printed image (without
defects) for RGB images by pix2pix GANs. The digital to printed image translation aims
to simulate the printing process without printing and scanning the image. A dataset with
96 pairs of images is collected, including realistic images (camera photos), synthetic images
(from computer games simulation), and documents. Those pairs of images are printed and

scanned by an HP MFP586 jet-ink printer, as shown in Figure 3.16.
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Figure 3.16. Digital to printed RGB images dataset.

For the images directly collected from the scanner as shown in Figure 3.16b, they are not
well aligned and have superfluous blank areas. After implementing the image registration
algorithm, the aligned image pairs, as shown in Figure 3.17, are used for training and testing.

The image registration approaches are introduced in Chapter 4.
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(a) Digital. (b) Printed.

Figure 3.17. Example of an image pair.

In this work, the pix2pix GANSs are trained with 74 pairs of registered digital to printed
RGB images, as shown in Figure 3.18.
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Figure 3.18. Digital to printed RGB images training set with 74 pairs of images.
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The test set consists of 22 pairs of registered digital to printed RGB images, as shown in

Figure 3.19.
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Figure 3.19. Digital to printed RGB images testing set with 22 pairs of images.

In the inference stage, digital images from the testing set are input to the trained genera-
tor network to provide printed image simulations. For the training result after 6000 epochs,
Figure 3.20 and 3.21 are examples of pix2pix GANs simulation for RGB printed image. A
mapping between a digital image and a printed image fits the image-to-image translation

paradigm.
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Figure 3.20. Example 1 of output for test images, the left is the digital image,
the middle is the simulated image, the right one is the real printed image.
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Figure 3.21. Example 2 of output for test images, the left is the digital image,
the middle is the simulated image, the right one is the real printed image.

The qualitative results show that color and texture could also be learned in our simula-

tion. As shown in Figure 3.22 and 3.23, the color has been changed for the simulated printed

image, which resembles the process of printing.
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real A fake B real B

Figure 3.22. Example 3 of output for test images, the left is the digital image,
the middle is the simulated image, the right one is the real printed image. The
color changes in the simulated image match the real printed image compared
to the original digital image.

Figure 3.23. Example 4 of output for test images, the left is the digital
image, the middle is the simulated image, the right one is the real printed
image. The simulated image is a failure case since it introduces extra artifacts
into the original image.

As shown in Figure 3.24, the images are zoomed in for the texture change to be observed

in the simulated image compared to the original digital image.
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Lhguial Image simuslsed Image Scanned Printed Image

Figure 3.24. Example 5 of output for test images, the left is the digital
image, the middle is the simulated image, the right one is the real printed
image. The images are zoomed in. Thus, the texture change in the simulated
image is visible compared to the original digital image

3.3 Conclusion

For deep learning-based defect classification and detection algorithms, numerous printed
and scanned images are required. Compared to other methods using actual printed images as
training data, the photorealistic printed images are automatically generated in our proposed
framework. Thus, we can reduce the printing and scanning time and cost in the data
collection stage.

The Generative Adversarial Network is an efficient tool for generating simulation data
for training classification and detection algorithms. Thus, a deep CNN can be trained with a
limited amount of scanned and digital image pairs. The qualitative results show that we can
reduce the effort to print and scan many defective images since the GAN data augmentation
could ideally produce abundant data. The GANs simulation approach leads to a simulated

dataset with more high-quality images.
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4. PRINTED IMAGE REGISTRATION

4.1 Introduction

Image registration is a spatial transformation that maps points from one image to cor-
responding points in another image: matching two images so that corresponding coordinate
points in the two images are for the same physical region of the scene being imaged, as shown
in Figure 4.1. The image registration problem is also named image fusion, superimposition,

matching, alignment or merge.

Moving Image

Image Pair Registration

Moved (Registered) Image

Fixed Image

Figure 4.1. Example of the image registration process.

In this chapter, we focus on the printed image registration problem. As shown in Figure
4.2, the input of the registration has two monochrome or colored images in a pair. The
registration algorithm is to align the moving image with the fixed image. The output is the
registered image after spatial deformation, which should match the fixed image. We also

investigate medical 2D images to verify the generalization of our proposed model.

4.1.1 Applications

Image registration is an essential pre-processing step for printed image quality assessment
and defect detection. The profile of printed defects can be extracted from the difference be-
tween the printed and digital images if two images in a pair are accurately aligned. For
example, in [86], Xiao proposed a method by matching feature pairs for print quality diag-

nostics, as shown in Figure 4.3.
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Figure 4.2. Example of the printed image registration process: the left is the
image pair before registration, the right is the image pair after registration.

B LEBA %
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Figure 4.3. Example of the printed image registration by the pair matching
method for image quality diagnostics [86].
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Besides printed image quality assessment, image registration is widely used in computer

vision, video analysis, medical image processing, material mechanics, and remote sensing.

4.1.2 Problem Formation

Image registration methods can be divided into several categories according to different
attributes. By the nature of their basis, there are feature-based methods and intensity-
based methods. Feature-based methods find correspondence between image features, such
as points, lines and contours, and then match the features. Intensity-based methods compare
intensity patterns in images via similarity metrics, such as RGB values, light intensity values,
or grayscale values.

By the transformation domain, image registration methods can be divided into global and
local methods. Global methods are usually rigid registration. For rigid image registration,
the number of parameters depends on the type of transformation, such as rigid, affine and
projective. Local methods require deformable registration. Deformable registration is a pixel-
wise mapping, which requires more parameters proportional to the input image resolution.

The registration parameters update can be decided by an optimization procedure such
as Gradient Descent, RMSprop, Adam, AdaMax [65], etc. The modalities of inputs involved
in registration include mono-modal, multi-modal and modality to model [87], [88]. The
dimensionality of the input can be classified as 2D-2D, 3D-3D and 2D-3D [89].

The input images are in the D-dimensional coordinate space ¢. For the printed image
registration problem, we mainly focus on images in 2D space. The registration inputs /fizeq
and Ip,oving are defined as the fixed image and moving image, respectively. fizeq and Loving
are functions ¢ — R¢, where ¢ is the number of channels. For a monochrome image, ¢ = 1;
for a color image, ¢ = 3. The deformation field is defined as a mapping ¢ : ¢ — ¢ between
two image coordinate spaces. The objective of image registration is to predict a deformation
field ¢ from input /figeq and Ipoving. The deformation field ¢ warps the moving image I,,0ving

to a Wa‘rped image Imoved: Imoved = ¢ o [moving-
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4.2 Global Image Registration

In image registration, global rigid image registration and local deformable image regis-
tration are processed independently. Global image registration means using a rigid global
transformation such as similarity, affine or projective transformation to align two images. At

first, the image is globally registered and then locally aligned to get a better visual result.

4.2.1 Feature-based Image Registration

For global image registration, RANSAC [90] is a traditional method based on the ex-
tracted image features. As shown in Figure 4.4, feature-based methods extract features such
as ORB [91] and GeoDesc [92], and find correspondence between image features by RANSAC
to estimate the global transformation parameters. An extra affine tuning step is used in the

printed image registration pipeline by the least squares method.

Network

Figure 4.4. Image registration pipeline for printed image quality assessment.

Figure 4.5 shows the matching result of a deep learning-based feature extractor. Figure
4.6 shows the registration result by a feature-based registration pipeline.

However, feature-based image registration methods fail in cases such as textureless im-
ages and repeated patterns, as shown in Figure 4.7. This method requires a robust image
descriptor. However, the printed images often have different text content with repeated
shapes which causes the failure of feature-based methods. Figure 4.8 is an example of fea-
ture matching by the descriptor. The left image is the moving image and the right image
is the fixed image. The top row is the matching result by the SIFT descriptor [93]. The
bottom row is the result of the GeoDesc descriptor. The mismatching pairs are dashed line
circles with the same color. Both results show many mismatching pairs, which causes the

failure of printed image registration.
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Figure 4.5. Example of the deep learning-based GeoDesc descriptor image matching .

Figure 4.6. Example of an image registration result by the proposed pipeline.
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Figure 4.7. Failure cases of the feature-based method.
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SIFT ‘ —

Figure 4.8. Failure cases of the feature-based method. The circles with the
same color indicate the mismatching pairs.

4.2.2 Intensity-based Image Registration Algorithm using Deep Learning Frame-
work PyTorch

Another class of global image registration methods is the intensity-based method which
compares intensity patterns between images via similarity metrics such as the sum of squared
differences, normalized cross correlation and mutual information. Intensity image registra-
tion iteratively computes the similarity loss and updates the transformation parameters using
an optimizer.

Thanks to the immense growth in the deep learning society in recent years, there are
many open-source deep learning software frameworks such as TensorFlow [94], Pytorch [95],
[96] and Caffe [97] which have the advantage of parallelism and auto-gradient computation.
In this work, we propose an intensity-based printed image registration method using the deep

learning framework Pytorch. The backward gradient computation in image registration can
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be achieved by the automatic differentiation module in the framework. The affine transfor-
mation matrix multiplication is similar to the tensor multiplication operator in Pytorch. The
warping of the deformation field can leverage the spatial transformer networks. Moreover,
the grid sampling module can be used for bilinear interpolation. The parallel computation
of the GPU can speed up all of the matrix and vector operations.

As shown in Figure 4.9, we initialize the transformation parameters P and translate P
to transformation matrix 7. Usually, the transformation matrix 7T is an identity matrix
at first, which means there is no shift for the corresponding pixel coordinates in the early
stage. The transformation matrix 7" is converted to the deformation field ¢, which has the
shift information for each coordinate. The moving image Ioping 1S then warped by the
deformation field ¢ and is transformed to moved image [,,peq- The similarity loss L, is

computed by comparing the difference of fixed image Iizeq and moved image Ir,opeq- The

similarity loss L, is used to compute the gradient 85% relative to the transformation
. . o . . 8Lsim
parameters. The parameter difference AP is computed by combining the gradient 5=

with the learning rate A\. The parameters P are then updated by AP. The similarity loss
L, is converged iteratively by repeating the above process. When Ly, < € or the iteration
number i exceeds a certain threshold n, we have the transformation parameters P, the fixed

image Ifizeq and moved image Ip,opeq @s the final registration result.
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Figure 4.9. Intensity-based registration (global) using deep learning framework PyTorch.

The Spatial Transformer Network (STN) [98] is a network operator used to transform
spatial tensor features to warped features. A deep learning framework such as TensorFlow
or PyTorch uses the differential STN module to map features between two CNN layers and
perform bilinear interpolation at the same time. Figure 4.10 shows the process of computing
a pixel value by bilinear interpolation. The pixel value is defined as afj, where i,j are the
indices of the coordinate, s means the layer after registration and s — 1 means the layer
before registration. In STN, s — 1 is the CNN feature layer before STN operator and s is

the feature layer after STN operator. For example, in Figure 4.10, we want to compute the

pixel value aj, after registration. The affine transformation matrix 7" can be represented as

0.707 —0.707 .
a rotation matrix R = and shift (translation) vector V' = . So the

0.707  0.707 -1

indices of the coordinate in the previous s — 1 layer (before registration) is computed as:

i i 0.707 —0.707 1 0.6 0.6
=R X +V = X + =
i’ j 0.707  0.707 1 —1 0.414
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Ideally, the pixel value a83}0_414 of the previous s — 1 layer is at coordinate (0.6,0.414).
However, we cannot directly get the pixel value of the s — 1 layer at the floating point
coordinate indices. So the bilinear interpolation is used for the calculation of the pixel value:

s _ _s—1
11 =0p.6,0.414

5 5 5
Qpg Qpi doz

0414

0.707
0.707

s S 5
Aio aiz

5 5 S
azp Az1 432

e

+[23]

shift vector

—0.707]
0.707
rotation matrix

Index in previous _
Index in new layer s

layer s-1 (before

registration) (after registration)
0.414 0.586 =i
i —1 > Ao
0.6
o [ aj; = (1 —0.6)x(1 — 0.414)Xaz!
04 0414 0.4 + (1 -0.6)x(1 — 0.586)xag; "
as_lf" : ‘j‘as__l +(1-0.4)x(1 —0.414)xas;*
10 0414 0.586 Ll

+(1 - 0.4)x(1 —0.586)xa3;?!

Figure 4.10. An example of the calculation of a target pixel value by bilinear
interpolation.

In the experiment, the transformation consists of 4 degrees of freedom, including trans-
lation (Az, Ay) and scaling (I, l,). The optimizer is Adam [99] with a learning rate of 0.01.

The Mean Squared Error (MSE) is used as the similarity loss function Lg,. The inputs of
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the registration experiment are shown in Figure 4.11a as the fixed image and Figure 4.11b

as the moving image.

(a) Fixed image. (b) Moving image.

Figure 4.11. Experiment inputs of the intensity-base global image registration.

The experiment is initialized with the identity transformation, where Az = 0, Ay =
0,1, = 1and [, = 1. After an iterative intensity-based image registration process, the
experiment result in Figure 4.12 is a merged image, which is a superimposed image of the
fixed image and the moved image after registration. The magenta area in the merged image

is the region with pixel values that differ from those of the fixed image.

I —
Figure 4.12. The merged image is the experimental result of the intensity-

based global image registration.

As shown in Figure 4.13, The similarity loss L, converges after around 180 epochs.
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Figure 4.13. Experimental result: MSE loss plot across epochs.

4.3 Deformable Image Registration

Even with good rigid global image registration, local deformable misalignment still exists
in cases such as printed images and medical images, as shown in Figure 4.14. In this exam-
ple, the merged image after rigid global registration still shows some local misalignment for
characters and lines. The local misalignment is because most image registration problems
in real applications cannot be simplified to a global registration problem with limited pa-
rameters. For example, a Euclidean transformation has only 3 DOFs (Degrees of Freedom),
an affine transformation has 6 DOFs, and a homography transformation has 8 DOFs. For
each corresponding pixel pair between two images at coordinate (i,j), a local deformable
transformation needs 2 DOFs (Aw;;, Ayi;). For pixel pairs in the entire image, the local
deformable transformation needs 2 x w x h DOFs, where w is the width and h is the height
of the image. Because deformations are similar for most of the neighborhood areas, we need
to find a method to represent the shift for each pixel and keep the local similarity simultane-

ously. In the following subsections, we will introduce the U-Net architecture-based method
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for printed images in Subsection 4.3.1, and propose a new recurrent network-based method
named R-RegNet in Subsection 4.3.2. Subsection 4.3.3 introduces the unsupervised loss func-
tion used in the training process. In Subsection 4.3.4 and 4.3.5, we introduce the datasets

and experimental results comparing different deformable image registration methods.

{8]

imensions of the data Increases (from left to
iterest may grow exponentially. (Left)In this

Figure 4.14. Example of local misalignment after global image registration.

4.3.1 U-Net VoxelMorph-based Method

For local medical deformable image registration, methods such as [100] and [101] use deep
convolutional neural networks to register two images. The work in [102] introduces a network

named Volume Tweening Network (VTN) for unsupervised 3D medical image registration
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problems. A recent work named Recursive Cascaded Networks [103] uses two separated
networks, including a rigid transformation network and a deformable transformation network
cascaded together for medical image registration.

Inspired by the above methods, we first propose a deep learning-based method for printed
image registration based on VoxelMorph [101] in this subsection. The VoxelMorph method is
a popular CNN network method for medical image registration, but we use it in the problem
of printed image registration for the first time.

As shown in Figure 4.15, we first initialize the CNN weight parameters randomly by the
Xavier initialization method [104]. The fixed image Ifizeq and the moving image Ioping are
used as the input to the CNN network. The output of the CNN is the deformation field
¢. ¢ is a matrix with a size of 2 x w x h, where w is the width and h is the height of the
image. Similar to Subsection 4.2.2, the moving image I,oving is warped by the deformation
field ¢ and is transformed to the moved image I,,,peq- The similarity loss L, is then

OLsim
B

used to compute the gradient <5z relative to the CNN weight parameters W. The weight

parameters W are then updated by AW, which combines the learning rate A\ and gradient

8Lsi'rn
ow -

Figure 4.16 shows the inference stage of deformable printed image registration. Conse-
quently, the difference in the inference stage is that the parameters of CNN are fixed with the
trained result and the moved image is output only once without the need for similarity loss
computation. The main difference between the inference stage in Figure 4.16 and the train-
ing stage in Figure 4.15 is that there is gradient calculation and parameter backpropagation

update in the training stage.
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Figure 4.15. Deep unsupervised learning for deformable printed image registration.
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Figure 4.16. Inference stage for deep unsupervised learning for deformable
printed image registration.

Figure 4.17 compares the global rigid image registration method and deep local de-
formable image registration method. The left figure is the global rigid registration process
and the right figure is the local deformable image registration network process. As shown in
the highlighted circle in Figure 4.17, the major difference is the generation of the deformation
field ¢. In the rigid registration, one set of parameters P and one transformation matrix
T are used to generate the deformation field after updating iteratively. In the deformable

registration, one deep CNN network (with weight W) is used to generate the deformation

field.
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Figure 4.17. Comparison of global rigid registration and deep deformable registration.

Fixed Image

Input: Image Pair

81



In [101], the VoxelMorph method uses the U-Net [105] structure as its backbone network
for 3-D medical image registration. For the 2-D deformable printed image registration prob-
lem in this dissertation, we continue to use the U-Net architecture. Figure 4.18 shows the
U-Net architecture-based method for deformable printed image registration. The input to
the U-Net is a tensor of a digital image (Ifizeq) and a printed image (Ioping) concatenated
together. The U-Net structure can maintain the same resolution for the output deformation
field ¢ as the input images. Also, the hierarchical structure of the network is used for dif-
ferent levels of registration: higher-level features are used for overall larger movement of the

images; lower-level features are used for the local smaller misalignment.

I -

P

v |
VINSECURITE

DE

Digital Image (Fixed) AR l_.._...,.:

\ (&
DE LINSECURITE I"H l"H Deformation Field

(deformable / local)

-

U-Net Architecture

Printed Image (Moving)

Figure 4.18. The U-Net architecture for deep unsupervised learning for de-
formable printed image registration.

Problem of U-Net VoxelMorph-based Method

The U-Net VoxelMorph-based method above can solve many local deformable printed
image registration problems. For example, Figure 4.19 shows a qualitative result for printed

image registration using the U-Net VoxelMorph-base architecture. The left figure shows that
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the top part of the figure, including the straight line and characters, is misaligned, but the

bottom part is well aligned. The right figure after registration has a better merged result.
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Figure 4.19. Qualitative result for deformable printed image registration
using the U-Net VoxelMorph-base architecture.

However, there are still problems with the U-Net VoxelMorph-based method. For ex-
ample, Figure 4.20 shows a failure case for deformable printed image registration using the
U-Net VoxelMorph-based method. Some edge areas highlighted in the right figure have a
diffused registration result.

The U-Net VoxelMorph-based method is also tested for medical image registration as
shown in Figure 4.21. The test images for the experiment are retinal images from the
Fundus Image Registration Dataset (FIRE) [106]. In Figure 4.21, the first image is the fixed
image [fize.q before registration. There are key points for verifying the registration result in
the first image. The second one is the moved image I,,,peq after registration. The third one
is the comparison of prediction and ground truth. A detailed zoomed image of the third
comparison is shown in 4.22. The fourth image is the deformation field ¢. The vector size

and direction in the deformation field represent the shift of each pixel. The colors of vectors

represent different directions.
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Figure 4.20. Failure case for deformable printed image registration using
U-Net architecture.

Fixed Image Moved Image Comparison of Deformation field
prediction and
ground truth

Figure 4.21. Failure case for deformable medical image registration using
U-Net architecture.
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As shown in Figure 4.22, the background image is the fixed image Ifizeq before registra-
tion. The black dots are the key points for result verification. The straight lines represent the
shift vectors of key points. In the figure, white lines are the predicted deformation vectors;
black lines are the ground truth deformation vectors. For the same key point, we hope the
direction and size of the predicted vector are close to the ground truth vector. From this

example, we can see that the U-Net VoxelMorph-based method fails in this case.

Figure 4.22. Zoomed-in image of a failure case for deformable medical image
registration. White lines are the predicted deformation vectors; black lines are
the ground truth vectors.

In summary, there are several problems related to the U-Net VoxelMorph-based method:

e The deformation between two images is limited.
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e The depth of U-Net requires additional architectural search or model fusion.
e The U-Net skip connection makes feature fusion only occur in the same resolution.
e The model takes up a lot of GPU memory for a large image input.

e The method is computationally intensive if using the U-Net VoxelMorph structure

iteratively since weights of the network cannot be reused.

4.3.2 Recurrent Network-based Method (R-RegNet)

Because of the problems of the U-Net VoxelMorph-based method, we propose a Recurrent
Registration Network, named R-RegNet, for printed image registration in this subsection by
leveraging the correlation and recurrent architecture. The R-RegNet has a network structure
similar to RAFT [107], but instead of estimating optical flow as in RAFT, the proposed R~
RegNet is used for image registration. Figure 4.23 shows the overall process of the network.
The fixed image Ifizeq and moving image Ioping are concatenated together as the input to
the feature extraction network. The weights of the feature extraction network for Ifi;eq and
I'oving are shared to save computation time. The network structure of the feature extraction
network is the same as the context extraction network. The feature of the fixed image F'fizeq
and the feature of the moving image F},ouing are used in a correlation operation to generate
4 scale correlation volumes. The correlation volumes and the fixed image content features
Fontent are then used iteratively as the input to the GRU blocks. The final output of the
GRU blocks is the deformation field ¢ with the same resolution as the original images I fizeq
and Ioping- The weight parameters W are then updated by backpropagation of the final
unsupervised loss function L. Each block mentioned above will be introduced in detail in

the following subsections.
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Figure 4.23. Proposed recurrent network structure R-RegNet for printed
image registration.

Feature and Content Extraction

The feature extraction and content extraction modules have the same network structure.
The extraction network is a modified residual network [62] with 6 residual blocks and 1
additional convolutional input layer and 1 additional output layer, as shown in Figure 4.24.
I'tizeq and Ip,oping are concatenated as the input of the feature extraction network to generate
features with essential information such as edges, motions, contours, key points, etc. The
network will automatically learn the feature in the training stage. Feature extraction can be
considered as a dimension reduction process. The output features have a smaller resolution
compared to original input images, saving computational memory and time. Because Ifizeq
and I,,0ping Often have similar content, the network weights are shared to reduce backprop-

agation computation further. For the content extraction network, the input is the fixed
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image I fizeq instead of Ifizeq and Ipoping together. The content feature Fppient is used as the

reference feature when generating the deformation field ¢.

Figure 4.24. Feature and content extraction network.

Correlation Operation and Correlation Volumes

Correlation is a mathematical operation reflecting the similarity or dependency of two
input features. It is also commonly used in deep neural networks for optical flow. Optical
flow networks, such as Flownet [108], Flownet2 [109] and RAFT [107], usually take two or
more consecutive frames as the inputs and predict the optical flow reflecting the movement
between different video frames. The scheme between optical flow prediction and image
registration is similar. The correlation and iterative prediction concepts can also be used in
image registration.

In the U-Net VoxelMorph-based method, the U-Net skip connection makes features fusion
only occur in the same resolution; and the receptive field of each pixel between two images is
limited. In this work, we use a correlation operation for Flyizeq and Fioping for different scales
as shown in Figure 4.25. The left features are F'fizeq and the right are Fj,oping. As shown in
Figure 4.25a, Figeq and Fy,00ing have the same resolution. The correlation between features in
position a' and b' is calculated as: corr(a',b') = F(a')F(b'o0) + F(a")F(b'01) + F(a")F(b'10) +
F(a")F(b'11). Asshown in Figure 4.25b, the correlation between features in position a and b is
calculated as: corr(a,b) = F(a)F(b1)+F(a)F(bi2)+F(a)F (by1)+F(a)F (bsg). By comparing
Figure 4.25a and Figure 4.25b, we can find that the receptive field of corr(a,b) around b is a
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quarter of corr(a',b"). Different scales of correlation volumes can help generating deformation

fields at different resolution levels. In the experiment, we choose 4 scale correlation volumes.
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Figure 4.25. Correlation volumes for different scales. The left features are
Ftizeqa and the right are Fioping-
Recurrent Neural Network (RNN) and Gated Recurrent Unit (GRU)

iteratively.

The Recurrent Neural Network (RNN) [110] is a type of deep neural network that reuses
the same inner weight parameters and updates the new input from the previous layer output

RNN is commonly used for natural language processing (NLP) [111], video

89



processing [112], speech recognition [113] and time series prediction [114] tasks. The image
registration task is an iterative process that has similarities with RNN structure tasks. Also,
the image features can be used as the hidden states in the RNN during iterations without
re-calculation for feature extraction, content extraction and correlation volumes. Compared
to the U-Net VoxelMorph-based method, the length of iteration for RNN is flexible. So the
deformation field ¢ between two input images is not limited.

In this work, we use a specific type of RNN named Gated Recurrent Unit (GRU) [115].
It has the property similar to that of long short-term memory (LSTM) [116]. Compared
with LSTM, the GRU has no output gate since the output gate is mainly designed for none
or empty signal output in time series tasks. So the GRU will always generate a valid output
for the deformation field ¢. Also, the GRU has fewer parameters than LSTM.

As shown in Figure 4.26, the correlation volumes feature and the content feature is
concatenated to a vector as the input z(t). z(t) is the update gate vector and h*(t) is the
candidate activation vector. The hidden state h(t) refers to the deformation feature in step
t. The hidden state h(t — 1) of the previous step ¢ — 1 will be used as the input h(t) of step
t.
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Figure 4.26. Gated Recurrent Unit (GRU).

4.3.3 Unsupervised Loss Function

The final unsupervised loss function consists of three parts: similarity loss Lg;,,, smooth

loss Lemeotn, and reconstruction 10ss L econ:

L= Lsim<]fixed7 Imoved) + Lsmooth(¢) + Lrecon(le, ¢2) (41)

Similarity Loss

Similarity loss is a function to measure the similarity between the moved image I,,oveq
and the fixed image [ fizeq- Imoved is the warped moving image: Iopea = @ © Iimoving. S0 the

similarity loss can be expressed as:

Lsim(lfi:cedy Imoved) - Lsim(Ifiweda ¢ o Imoving) (42)
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For example, Mean Square Error (MSE) or Normalized Cross Correlation (NCC) can be
used for the similarity loss function.

Mean Square Error (MSE) is a function to measure the square error between two features.

MSE(X,)Y) = ]1[ ﬁvj(xi —~Y})? (4.3)

i=1

LMSE(]fi:ced7 Imoved) - MSE([fimeda ]moved) (44)

Normalized Cross Correlation is a normalized loss function to measure the relative dis-

placement of one feature to another feature vector. The NCC is defined as:

i (Xi — i) (Yi = o)

i=1 Ox0y

NCC(X,Y) = (4.5)

1
N -1
Because higher NCC indicates a better alignment result, the final loss function is the

negative of NCC.

LNC’C(Ifixeda Imoved) = _NCC(Ifixeda ]moved)

For printed image registration problems, the printing and scanning processes cause a
difference in color space between the fixed and moved image. To reduce the impact of the

color difference problem, choosing NCC loss instead of MSE loss is better.

Smooth Loss

Overfitting occurs if the networks learn only to minimize the similarity loss and introduce
a non-smooth deformation field during training. As shown in Figure 4.27, we hope the

deformation field ¢ has similar directions and magnitudes in the neighborhood area.
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Figure 4.27. Example of a deformation field ¢.

The smooth loss is introduced to force the consistency of the deformation field by mini-

mizing the total absolute difference of the nearby deformation vectors, as shown in Equation

4.6.

N
Lsmooth(¢) = Z V'Ui (46)
i=1

Here, N is the total number of pixels and Vv; is the difference between the neighborhood
deformation vectors. The neighborhood size depends on the average deformation magnitude
in different use cases. Usually, the neighborhood is a square of 3 x 3 or 9 x 9 for printed

image registration problems.

Reconstruction Loss

For deformable image registration, the deformation field ¢ should be symmetric when
the order of Ifizeq and Ipoving changed. For example, we define the deformable registration
network as a function F'(-,-). ¢; is the deformation field output from input Ifizeq and Inoping,

as shown in Equation 4.7.
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¢1 = F(Ifimed; Imoving) (47)

Then we change the order of input to the registration networks function F'. ¢y is the

output from input Leving and figeq, as shown in Equation 4.8.

¢2 = F(Imovinga Ifiaced) (48)

As shown in Figure 4.28, the top pipeline has the fixed image as the first input and
the moving image as the second input. The bottom pipeline changes the input order to
moving image and fixed image. The deformation field ¢; is the output of the top pipeline;
the deformation field ¢, is the output of the bottom pipeline. For the image registration
problem, we can add the one-to-one mapping constraint so that ¢ ~ ¢ ', which means the

offset of the deformation field should be opposite.

Fixed Image

MNetworks

Deformation

Field ¢,

Metworks s L] A Al r
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Figure 4.28. Unsupervised loss function: reconstruction loss.

Fixed Image
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The reconstruction loss is proposed in this work to force ¢; — ¢ ' in the network
training process, as shown in Equation 4.9. The reconstruction loss is used in the training

of the network for the consistency of the registration output.

Lrecon((bl? ¢2) = 5im<¢17 (b;l) = <¢1 - (b;l)Q (49)

4.3.4 Data Preparation

SIMULATED Dataset

For the experiment, we simulate a dataset for printed image pairs. The goal for the
simulation is to make changes, such as slight movement, color shift, noise change, etc.,
for the digital image and generate images similar to the printed version. 4030 images are
collected from the Fliker dataset. For each original image, 10 image pairs are simulated.
There are 40300 image pairs in total (32240 for the training set and 8060 for the test set).
The simulation is not based on the physics world for printers and scanners. Instead, data
augmentation methods used for the simulation include cropping, saturation removal, piece-
wise affine transformation, elastic transformation, noise and color shift. Example images in

the SIMULATED dataset are shown in Figure 4.29.

HPLAB Dataset

In this work, we also collected a real printed and scanned dataset, named HPLAB
DATASET, as shown in Figure 4.30. The original resolution ranges from 994 x 994 to
2330 x 3179. There are 332 image pairs in total (239 for the training set and 93 for the test
set). Each image pair consists of a fixed (digital) image I i,eq and a moving (printed) image
Tonoving-

The images are cropped with a stride of 300 pixels. In the training set, there are 20994
images cropped from original data. In the test set, there are 8120 cropped images as shown

in Figure 4.31.
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Figure 4.30. HPLAB DATASET: digital and printed pairs.
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Figure 4.31. HPLAB DATASET: example of cropped image pairs.

FIRE Dataset

The image registration performance on the HPLab dataset can only be measured by
MSE or other similarity metrics since no landmark ground truth is provided in the dataset.
Another dataset named Fundus Image Registration Dataset (FIRE) [106] is used for an
additional experiment with ground truth, as shown in Figure 4.32. The white dots in the
figure are the key control points for result verification. The FIRE dataset consists of 134
retinal image pairs. The ground truth has control point movement vectors from the fixed
image to the moving image. We resized the original resolution 2912 x 2912 to 512 x 512.

The error is calculated as the mean of the distance between registered and fixed images.
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Figure 4.32. Retinal images example from FIRE DATASET.

4.3.5 Experimental Results

This section introduces experimental results between the U-Net VoxelMorph-based method
and the proposed recurrent network R-RegNet method for the different datasets mentioned

above.

SIMULATED Dataset

Figure 4.33a shows the test result of U-Net VoxelMorph-based method. Figure 4.33b
shows the test results of proposed recurrent network R-RegNet method.

Figure 4.34 is the detailed difference comparison of the test results of the U-Net VoxelMorph-
based method and the proposed R-RegNet method. As shown in the comparison image, the
difference image of the proposed R-RegNet method is slightly darker compared to the U-Net
VoxelMorph-based method. A lower absolute difference value (or a darker difference image)

means a better registration result.
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(b) Test result of the proposed R-RegNet method.
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Figure 4.34. Comparison of the test results of the U-Net VoxelMorph-based
method and the proposed R-RegNet method.

Table 4.1 also shows a lower average RMSE score of all test images for the proposed

recurrent network R-RegNet than the U-Net VoxelMorph-based method. The RMSE is

calculated as RMSE = \/ %Ei”:l ( I — fi)27 similar to Chapter 2, where I; is the pixel value
of coordinate i after registration, I; is the pixel value of coordinate i in the Fixed image
and n is the total number of pixels. A lower RMSE score means the value of the same
pixel coordinate is closer between the fixed and the moved image, which also means a better

registration result.

Table 4.1. Comparison of similarity scores of the U-Net VoxelMorph-based
method and the proposed R-RegNet method for SIMULATED dataset

U-Net VoxelMorph-Based Method | R-RegNet Method
RMSE score 18.975 18.916

Figure 4.35 is a failure case of the proposed R-RegNet method in the SIMULATED
test Dataset. The left one is the fixed image. The middle one is the moving image before

registration. There is some distortion in the moving image compared to the fixed image. For
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example, the capitalized character “S” on the cloth is distorted in the middle image. The
registration algorithm is expected to correct this kind of distortion. However, on the right
side, the moved image after registration still shows the distortion, which means the proposed

R-RegNet method fails to register two input images.

L.

moving moved (registered)

Figure 4.35. A failure case in the test result of the proposed R-RegNet method.
Figure 4.36 is a detailed comparison of the difference image before and after registration.

As shown in the comparison image, the difference image after registration is still similar to

the image before registration.

101



difference (fixed + moving) before registration difference (fixed + moved) after registration

Figure 4.36. A failure case: comparison of the the difference images before
and after the proposed R-RegNet registration.

HPLAB Dataset

Figure 4.37 and Figure 4.38 are two examples that compare the test result of the U-Net
VoxelMorph-based method and the proposed R-RegNet method. Similar to the previous
subsection, a lower absolute difference value (or a darker difference image) means a better
registration result. The comparison images show that the absolute difference images of the

proposed R-RegNet method are better than the U-Net VoxelMorph-based method.
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difference (fixed + moved) difference (fixed + moved)
U-Net VoxelMorph-Based Method Proposed R-RegNet Method

Figure 4.37. Comparison 1 of test result of the U-Net VoxelMorph-based
method and the proposed R-RegNet method.

difference (fixed + moved) difference (fixed + moved)
U-Net VoxelMorph-Based Method Proposed R-RegNet Method

Figure 4.38. Comparison 2 of test result of the U-Net VoxelMorph-based
method and the proposed R-RegNet method.
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Table 4.2 is a comparison of RMSE score in HPLAB test dataset. The table also shows
that the proposed R-RegNet method is better than the U-Net VoxelMorph-based method
by RMSE score.

Table 4.2. Comparison of similarity scores of the U-Net VoxelMorph-based
method and the proposed R-RegNet method for HPLAB dataset

U-Net VoxelMorph-Based Method | R-RegNet Method
RMSE score 24.123 23.899

In Figure 4.39, we also show a failure case of the proposed R-RegNet method in the
HPLAB test Dataset. The left one is the fixed image. The middle one is the moving image

before registration. And the right one is the moved image after registration. The post of the

door is curved unnaturally after registration in the moved image.

fixed moving moved (registered)

Figure 4.39. A failure case of the proposed R-RegNet method in the HPLAB
test dataset result.

FIRE Dataset

For FIRE dataset mentioned in Section 4.3.4, we have 4 experiments for comparison.
The first experiment trains the U-Net VoxelMorph-base network on the FIRE dataset. The
second experiment trains the proposed R-RegNet on the FIRE dataset. The third experiment
uses a pre-trained FlowNet [108]. We choose the FlowNetS model used in the original paper,
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which has been pre-trained on the Flying Chairs dataset with 22,872 image frames. The
fourth experiment re-trains the pre-trained FlowNet on the FIRE dataset.

Figure 4.40 and 4.41 are qualitative result of U-Net VoxelMorph-based method, the
proposed R-RegNet method, the pre-trained FlowNet method, and the re-trained FlowNet
method in the FIRE dataset.

In Figure 4.40, the first row is the U-Net method result and the second row is the proposed
R-RegNet method result. The third row is the pre-trained FlowNet result and the last row is
the re-trained FlowNet result, respectively. The first column is the fixed image Ifizeq before
registration. The black dots are key control points for verifying the registration result. The
second column is the moved image I,,,,cq after registration. The third column, which is
shown in Figure 4.41 in detail, is the comparison of prediction and ground truth. The fourth
column is the deformation field ¢. The vector size and direction in the deformation field

represent the shift of each pixel. The colors of vectors represent different directions.
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U-Net VoxelMarph

R-Reghet

FlowMet
(pre-trained)

FlowMet
(re-trained)

Fixed Image Moved Image Prediction and Defarmation field
ground truth

Figure 4.40. Comparison of test result of the U-Net VoxelMorph-based
method, the proposed R-RegNet method, the pre-trained FlowNet method,
and the re-trained FlowNet method.

As shown in Figure 4.41, the background image is the fixed image Ifizeq before regis-
tration. The black dots are the key control points for result verification. The straight line
represents the shift vector of each key point. In Figure 4.41, white lines are the predicted
deformation vectors and black lines are the ground truth deformation vectors, respectively.
We hope the direction and size of the predicted vectors are close to the ground truth vectors

for the same key point. The result shows that the proposed R-RegNet method outperforms
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the other 3 methods. The result also shows that the FlowNet is not working even when

pre-trained with 22,872 images on the other dataset.

U-MNet VoxelMorph R-RegiMet

FlowMet (pre-trained) FlowMet [re-trained)

Figure 4.41. Detailed comparison of the control points movement. White
lines are the predicted deformation vectors; black lines are the ground truth
vectors.
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In Table 4.3, the average error between ground truth and predicted deformation on
control points proves the advantage of the proposed R-RegNet method. The average error
is calculated as:

Average Error = %E}‘:lw

where q;j is the predicted deformation vector from the registration network, ¢; is the
ground truth deformation vector, k is the number of key control points, and n is the total

number of tests in the dataset. A lower Average Error score means a better registration

result.

Table 4.3. Comparison of the similarity scores of the U-Net VoxelMorph-
based method, the proposed R-RegNet method, the pre-trained FlowNet
method, and the re-trained FlowNet method

Method Average Error (pixels)
U-Net VoxelMorph 10.050
R-RegNet 7.737
FlowNet (pre-trained) 11.660
FlowNet (re-trained) 8.225

Figure 4.42 shows a failure corner case of the proposed R-RegNet method. As shown in
the figure, the first column is the fixed image [ ;4 before registration. The second column is
the moved image I,,,0eq after registration. The third column is the comparison of prediction
and ground truth. In the third column, white lines are the predicted deformation vectors;
black lines are the ground truth deformation vectors. The fourth column is the deformation
field ¢. From Figure 4.42, we can find that only 4 out of 10 predicted vectors are close to
the ground truth vectors (difference of direction less than 30 degrees and difference of length

less than 20%).
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Fixed Image Moved Image Comparison of Deformation field
prediction and
ground truth

Figure 4.42. A failure case of the proposed R-RegNet method in FIRE test dataset.

4.4 Summary of Contributions

In this section, we propose to use the deep learning framework PyTorch for intensity-
based image registration for parallel computation acceleration. We implemented the U-Net
VoxelMorph-based method for deformable printed image registration. Then, we further
propose the R-RegNet method for deformable printed image registration. The proposed
recurrent network-based method R-RegNet uses an integrated framework to solve image
registration for multi scales simultaneously. The proposed R-RegNet uses one weight-sharing
network for feature and content extraction, which reduces the model size. The weight sharing
of GRU could also speed up the iterative training process. We also introduce an unsupervised
loss function including similarity loss L, smooth loss Ly00in and reconstruction 10ss Lyecon -
The proposed reconstruction loss is used to constrain the consistency of the registration
output. The reconstruction loss can train the system to generate a more robust network
faster. We create the SIMULATED dataset for experiments, using data augmentation to
simulate printed images. We also create the HPLAB dataset with real digital and printed
pairs for the image registration problem. By comparison, the experimental results show that
the R-RegNet method outperforms other methods in terms of mean square error and average

ground truth deformation error.
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5. PHOTOREALISTIC IMAGES SIMULATION FOR 6D POSE
ESTIMATION

5.1 Introduction

This chapter introduces a new image dataset for object detection and 6D pose estimation,
named Extra FAT. The dataset consists of 825K photorealistic RGB images with annota-
tions of ground-truth location and rotation for both the virtual camera and the objects.
A registered pixel-level object segmentation mask is also provided for object detection and
segmentation tasks. The dataset includes 110 different 3D object models. The object models
were rendered in five scenes with diverse illumination, reflection, and occlusion conditions.

Pose estimation of surrounding objects serves as the basis of various computer vision
applications such as virtual reality (VR), augmented reality (AR), robotic manipulation,
autonomous navigation, and human-machine interaction. For example, a virtual object
should be accurately registered with the real world to insert it in an AR application. To do
so, the geometry, pose and shape of the objects and the surfaces composing a scene need
to be inferred from the image, video or depth information. For tasks such as autonomous
navigation or robot manipulation, the pose of the objects needs to be estimated to move the
robot or vehicle properly. In order to understand the geometry and position of the objects

composing a scene, object detection and pose estimation techniques are required.

Figure 5.1. Each frame in the Extra FAT dataset consists of an image with
640 x 480 resolution, a registered pixel-level object segmentation mask, and
the pose ground truth of the virtual camera and the objects
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Figure 5.2. Examples of objects in different scene types.

Traditionally, such methods have used RGB-D images to infer the pose of the objects.
The main drawback of such an approach is that depth cameras are not widely available (e.g.,
smartphones) and typically have low resolution and low frame rate, making it difficult to
detect tiny, thin, or fast-moving objects. Therefore, RGB-only-based methods are preferred.
Recently, many methods based on deep learning have been presented. These methods use
convolutional neural networks to estimate the 6D pose of objects. Such neural networks
estimate the pose by detecting keypoints [117], estimating a 3 dimensional bounding box
[118]-[120], matching the input image with rendered images [58], [59], or directly treating
pose estimation as a classification [121] or regression [122] problem.

With the increasing number of deep learning-based methods for RGB-only pose estima-
tion, there is a need for more training data. Capturing real images is highly time-consuming.
Therefore a faster approach is preferred. In addition, manually annotating the pose of ob-

jects is tedious and inaccurate. While several image synthesis methods have been presented
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Figure 5.3. 3D object models in the YCB dataset.

Figure 5.4. 3D object models in the LINEMOD dataset.

[123] to generate new training samples automatically, the resulting images can lack realistic
appearances. An efficient and effective alternative is photorealistic image rendering. Pho-
torealistic rendering allows easy generation of a large number of images containing realistic
lighting, occlusions, and real-world distortions with ground truth labeled automatically.
Many publicly available datasets consist of real-world images for 6D pose estimation. For
example, T-LESS [124] is a dataset with 30 industrial objects that lack distinctive texture.
There are 48.9K images in the T-LESS dataset. Many objects in the T-LESS dataset are
symmetric, and their similarity is challenging for pose estimation tasks. The YCB dataset
[125] contains 9.24K images of 77 real-life objects for benchmarking in robot grasping and
manipulation tasks. The images in the YCB dataset are captured by the BigBIRD Object
Scanning Rig and the Google scanner. The YCB-Video [122] dataset has 134K video frames
for 21 household objects taken from the YCB dataset. The LINEMOD dataset [126] is

another widely used public dataset for 6D pose estimation with various toys and household
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objects. The LINEMOD OCCLUSION dataset [127], [128] is a complementary dataset for
the LINEMOD dataset with 10K images under different lighting and occlusion conditions.
The Rutgers APC [129] dataset includes real images of textured products used in the first
Amazon Picking Challenge. The images in the Rutgers APC dataset with different poses
and clutter conditions are mainly used for training algorithms in warehouse objects pick-
and-place. The IC-MI dataset proposed in [130] has images for six objects heavily 2D and
3D cluttered with foreground occlusion.

Due to the large variety of datasets and evaluation metrics and the lack of a common
benchmark procedure, the BOP dataset [131] was introduced. The BOP dataset has a
thorough survey of 8 different datasets containing images and the evaluation methodolo-
gies. Additionally, the TUD Light and TOYOTA Light datasets are introduced in the BOP
dataset. The TUD Light dataset includes images of three objects without occlusion under
different illuminations. The TOYOTA Light dataset has 21 objects in total. Each object in
TOYOTA Light is put on top of a table with different tablecloths and five different lighting
conditions. The MVTec Industrial 3D Object Detection Dataset (MVTec ITODD) [132]
contains 28 industrial objects. The dataset focuses more on practical and challenging tasks
such as industrial bin picking and 3D object inspection. Besides datasets containing real
captured images, some photorealistic rendered datasets, such as Falling Things (FAT) [133],
have been made publicly available. The FAT dataset contains synthetic images with the 21
household object models from the YCB dataset.

In this work, we introduce a new dataset named Extra FAT. We follow a similar approach
as in the FAT dataset [133], but we include a more significant number of object models and
a larger variety of virtual scenes. This dataset includes rendered images containing many
3D object models from the most commonly used datasets for 6D pose estimation. Table 5.1
compares our dataset with previously presented datasets .

For each rendered image in the Extra FAT dataset, the location and rotation for both the

virtual camera and the objects, and a registered pixel-level object segmentation mask with

14The number of objects in the BOP dataset is from the BOP benchmark paper [131]. There are more
models provided for the BOP 2019 challenge.
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Figure 5.5. 3D object models in the TYO-L [131], TUD-L [131], IC-MI [130],
RU-APC [129], and T-LESS [124] datasets.

Table 5.1. Comparison of different 3D datasets: LINEMOD dataset (LM),
YCB dataset (YCB), T-LESS (T-LESS), IC-MI dataset (IC-MI), TOYOTA
Light dataset (TYO-L), Rutgers APC dataset (RU-APC), and TUD Light
dataset (TUD-L)

Dataset # obj | # frames Type LM | YCB | T-LESS | IC-MI | TYO-L | RU-APC | TUD-L
LINEMOD [120] 15 18K real | v

LM OCC [127], [128] | 15 18K real v

YCB-Video [122] 21 134K real v

FAT [133] 21 60K rendered v

T-LESS [124] 30 | 489K real v

IC-MI [130] 6 4.2K real v

TYO-L [131] 21 55.4K | combined v

RU-APC [129] 24 10K real v

TUD-L [131] 6 62.3K | combined v
BOP [131] 89 >294K | combined | v v v v v v
Extra FAT (ours) 110 825K rendered | Vv v v v v v v
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640 x 480 resolution, shown in Figure 5.1, are provided. Such images and annotations can

be used to train and test methods for object detection, segmentation, and pose estimation.

The images are simulated in five different indoor scenes with various illumination and

occlusion conditions, as shown in Figure 5.2. The indoor scenes include everyday environ-

ments such as office spaces, living rooms, and kitchens. There are 825K images in total. The

specifications for the Extra FAT dataset are shown in Table 5.3.

Table 5.2. Feature impact factor and time consumption

Feature | Histo- Color Text Text Chroma | Chroma | White Color
gram variabil- | edge color around | his- block block
flatness | ity count variance | text togram | ratio ratio

flatness

time(ms) | 12.01 12.51 14.97 73.92 36.12 11.45 0.67 0.81

1, 24.61% | 13.84% | 11.02% | 1.9% 10.2% 3.4% 48.43% | 13.65%

Table 5.3. Dataset Specification
Extra FAT Dataset
Image Resolution | 640 x 480
Field of view 90°
Number of frames 825K
Number of objects 110
Number of scenes 5
5.2 Dataset

5.2.1 Image Generation

The Extra FAT dataset is generated by rendering 110 3D object models: 21 household

objects taken from the publicly available YCB dataset, 15 objects from the LINEMOD

dataset, 30 objects from the T-LESS dataset, 14 objects from the Amazon Picking Challenge

2015 dataset, 6 objects from the IC-MI dataset, 3 objects from the TUD Light dataset and

21 objects from the TOYOTA Light dataset, as shown in Figure 5.3, Figure 5.4 and Figure

5.5.
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As in the FAT dataset, we use the Unreal Engine 4 (UE4) [134], a commonly used tool for
game development, to render 3D object models in the virtual game scenery. The open-source
UnrealCV [134] plugin serves as a communication tool to generate photorealistic images and
pose ground truth.

In the FAT dataset, objects are placed at random positions from where they fall. In the
Extra FAT dataset, we move the object between pre-defined points (therefore, our objects
are not technically falling but are flying).

We first manually specify some candidate points within the virtual scene. During the
image generation process, pairs of candidate points are selected randomly and the virtual
camera and object trajectories are defined by linear interpolation between the two points,
as shown in Figure 5.6. While moving the objects between the pair of points, we apply
a uniform random perturbation in the location and rotation of the object and the virtual
camera.

Statistics of the objects in the Extra FAT dataset show that the distributions of the Yaw,
Pitch, and Roll angles are uniform, indicating that the poses of objects in the dataset are

comprehensive and representative for the general pose estimation task.

Figure 5.6. Linear interpolation trajectory from candidate location points.
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In order to avoid placing the object out of the visible range of the camera, we constrain
the relative location and rotation between the camera and objects. As shown in Figure 5.7,

the pixel coordinates (p,, p,) obey the following constraint:

—Hr < Py < g
(5.1)

—Hy < Py < Hy
where p, = 200 and p,, = 180.
The constraint of the relative object position with respect to the camera (t,,t,,t,) can

be computed from the pixel coordinates:

te =p t—z
Jo (5.2)

by :pyf

y

where f,, f, are the focal lengths in the z and y direction. The parameter ¢, is in the range
(0.1,0.2) to make sure that the object is in front of the camera and not too far from it, or
too close to it. We set #,; = 0.3 and 0., = 0.8.

In order to avoid having objects highly occluded by a wall or other objects in the scenery,

we add a constraint on the ratio of mask area to image size:

Zmask 1

> threshold (5.3)
w X

Images where the segmentation mask area to image size ratio is lower than threshold =

0.05 are discarded.

5.2.2 Training and Testing Setting

We propose three different training/testing split approaches. First, we provide a train-
ing/testing split with about 6,000 frames for training and 1,500 for testing for each object.

Second, the training and testing sets can be divided by scene. Four scenes can be used for
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20

Figure 5.7. Pixel coordinate constraint.

training and the other one for testing. Finally, we propose using Extra FAT entirely as a

training set and use the BOP [131] benchmark as a testing method.

5.3 Conclusion

This chapter presents a new dataset for 6D object pose estimation. By using photore-
alistic rendering, we obtain images with diversity in terms of illumination, reflection, and
occlusion. These images can be used to train convolutional neural networks for object detec-
tion, segmentation, and pose estimation. We hope Extra FAT will help the community to
propose novel algorithms for RGB-only image object segmentation and 6D pose estimation.
We invite other researchers to generate new datasets, including objects from other commonly

used datasets.
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6. SUMMARY

This thesis introduces the algorithms to classify, detect, simulate and improve the quality of
printed images with different defects.

First, we introduce image quality assessment, including defect classification, grading and
detection. We implement a CNN for solving the defect classification problem, printed mottle
defect grading and Faster R-CNN for the defect detection problem. The main contribution
of this work is to propose a deep learning-based method instead of traditional feature-based
methods for printed image quality assessment. For printed mottle defect grading, we propose
a new deep learning-based method. Unlike traditional methods such as feature extraction
using AFE variation, our method utilizes a CNN for the first time to extract the feature auto-
matically by stochastic gradient descent. Transfer learning and data augmentation methods
are used to train a robust mottle defect grader. The proposed deep learning mottle char-
acterization method can be used in mottle grading not only for the test image with the
same uniform content as seen in the training set, but also for printed images with different
contents. The mottle grading method achieves a 13.16% error rate in the T dataset with
the same content and a 20.73% error rate in the combined dataset with different contents.
The proposed method can also be generalized to other printed defects, such as streaks given
an annotated streak dataset. The results prove the feasibility of deep learning methods for
defects from different domains.

Second, we introduce Generative Adversarial Networks for printed image simulation.
For deep learning-based approaches, a large amount of printed image data are required.
Compared to other methods using real printed images as training data with traditional data
augmentation, in this work, the defect images are automatically generated in our proposed
simulation framework. Thus we can reduce the printing and scanning process in the data
collection stage, which is costly and time-consuming. Generative Adversarial Network is an
efficient tool to generate simulation data for training classification or detection algorithms.
Thus, a deep CNN can be trained with a limited amount of scanned and digital image pairs.
The qualitative results show that the simulated images could be used for training networks

for printed image quality assessment.
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Third, we focus on the printed image registration problem. This research investigates
global and local image registration. For global image registration, we propose to use the deep
learning framework PyTorch for the intensity-based image registration algorithm to reduce
computation time. We create the SIMULATED dataset using data augmentation with elastic
distortion, noise and color shift to simulate printed images. We also collect the HPLAB
dataset with real digital and printed image pairs for image registration. For local deformable
image registration, we implement the U-Net VoxelMorph-based method for printed images.
Then we further propose the recurrent network-based method R-RegNet, which uses the
weight-sharing feature network to extract features and reduces the model size. The weight
sharing of GRU in our proposed recurrent network-based method R-RegNet could also speed
up the iterative training process. We also introduce unsupervised loss function including
similarity loss L, smooth 1oss Lo and reconstruction 10ss Lyecon. Experimental results
prove the proposed R-RegNet method outperforms the U-Net VoxelMorph-based method in
terms of mean square error or ground truth deformation error in all 3 test datasets.

Forth, a photorealistic image dataset simulation method is proposed for training deep
neural networks. A new dataset with simulated images for 6D pose estimation, named Extra
FAT, is introduced in this part. By using photorealistic rendering, the dataset has images
with diversity in terms of illumination, reflection, and occlusion. The simulated images can

also be used to train convolutional neural networks for object detection and segmentation.
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