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ABSTRACT

This research focuses on developing algorithms to automatically classify, detect, simulate

and improve the quality of defective printed images since the human visual system is unreli-

able. With the development of deep learning algorithms, state-of-the-art accuracy could be

achieved for many computer vision tasks. This research applies the deep learning method

to printed image quality assessment. Because most deep learning approaches require a large

amount of data even after data augmentation, we propose to use Generative Adversarial Net-

works for simulation images generation. The simulated images with artifacts could be used

for training classifier, detector and corrector networks for printed image quality. Another

essential preprocessing step for printed image quality assessment is image registration, which

can detect the defect and difference between two input images. This research proposes to use

the deep learning framework for global image registration by parallel computation accelera-

tion. For deformable local registration, we implement the U-Net VoxelMorph-based method

for printed image registration. Then we further propose the recurrent network-based method,

R-RegNet. The experimental results show that the proposed R-RegNet method outperforms

the U-Net VoxelMorph-based method in all three datasets that we considered. Finally, we

propose a photorealistic image dataset simulation method for training deep neural networks.

A new dataset with simulated images, named Extra FAT, is introduced for object detection

and 6D pose estimation.
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1. INTRODUCTION

This research mainly focuses on developing the algorithms to classify, detect, simulate and

improve the quality of printed images with different defects.

In Chapter 2 , we introduce image quality assessment, including defect classification,

grading and detection. The image quality assessment process is costly and time-consuming.

The visual system of human beings is not always reliable in some cases, like the light/dark

band optical illusion. There are some traditional defect classification and detection methods,

but they are not accurate enough. With the development of deep learning algorithms, the

state-of-art of accuracy could be achieved for many computer vision tasks. It is the first

time to implement deep learning-based approaches in printed image defect classification and

detection.

In Chapter 3 , we introduce Generative Adversarial Networks (GANs) for printed image

simulation. Most deep learning approaches require a large amount of data even after de-

ploying traditional data augmentation algorithms. The Generative Adversarial Networks

method is one of the generative models that could generate simulation images after learning

from the samples. The simulated images could be used for training classifier, detector and

corrector networks for printed image quality assessment.

In Chapter 4 , we focus on the printed image registration problem. This research investi-

gates global and local image registration. For global image registration, we propose to use the

deep learning framework PyTorch for the intensity-based image registration algorithm. The

SIMULATED dataset and HPLAB dataset with real printed pairs are collected for image

registration. For local deformable image registration, we implement the U-Net VoxelMorph-

based method for printed images and propose the recurrent network-based method, named

R-RegNet. Experimental results prove the recurrent network-based method R-RegNet out-

performs the U-Net VoxelMorph-based method in terms of mean square error or ground

truth deformation error in all three test datasets that we considered.

In Chapter 5 , a photorealistic image dataset simulation method is proposed for training

deep neural networks. A new dataset with simulated images, named Extra FAT, for object

detection and 6D pose estimation is introduced in this part.
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2. DEEP LEARNING FOR PRINTED DEFECT

CLASSIFICATION AND DETECTION

2.1 Introduction

Printed defects commonly appear on printed images, such as mottle, banding, drips,

drop-density-differences, ghosting, folds, streaks, and smudges. Visual inspection is the

primary approach to evaluating defect conditions. According to [1 ], there are two different

methods for an operator to inspect the defects. First, an operator is fully occupied with

one machine when the prints come off the press. Second, an operator could check a stack of

prints instead. Thus, the operator does not need to wait; but the paper is wasted. However,

human-based defect inspection is limited to qualitative evaluation, and is time-consuming.

Since automated defect detection can address the limitations of human-based inspection,

many researchers and companies have been attracted to developing a computer vision-based

method for defect grading and detection [2 ]–[5 ].

2.1.1 Previous Work on PQ Defect Assessment

Early work on print quality (PQ) defect diagnosis reported a tool for computing the

strengths of various PQ defects from scanned pages, based on procedures recommended

by an ISO standard [6 ]. Tools to enable the customer to troubleshoot his or her print

quality (PQ) issues by visual inspection were also developed. This work consisted of PQ

troubleshooting pages [7 ], web-based troubleshooting tools [8 ], and tools for simulating the

appearance of print quality defects on test pages [9 ]. For banding, in particular, tools were

developed to model the defect and measure its strength via psychophysical experiments

[10 ]–[13 ], as well as to estimate the period of periodic banding defects [14 ]–[16 ]. Some efforts

focused on wavelets as a tool for PQ analysis [17 ]–[19 ]. Later efforts considered the visibility

of PQ defects in the presence of customer content [1 ]–[3 ], [5 ], [20 ]–[25 ] and the identification

of specific defects, such as mottle [26 ]–[31 ], macro-uniformity [32 ], fading [33 ], [34 ], ghosting

[35 ], local nonuniformities [36 ]–[38 ], and streaks [39 ], [40 ]. Other efforts considered a more

comprehensive set of PQ defects [41 ]–[44 ]. More recently, machine learning approaches (linear
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regression and support vector regression) have been deployed to predict the visibility of PQ

defects based on ground truth provided by human observers [32 ], [45 ], including the image

quality ruler method [19 ], [46 ]–[48 ]. The most recent efforts have included the development

of a comprehensive system for assessing a variety of PQ defects in customer content [49 ],

including segmentation of the page into multiple regions of interest, according to the type

of page content [50 ]. During the entire course of this time, several standards have been

developed for assessing PQ [51 ]–[53 ].

In the ISO/IEC 24790 international standard [52 ], which is a revised version of ISO/IEC

13660 [53 ], a method for hardcopy image quality is introduced which uses a single high-pass

filter that integrates many components in an area to a value. This method calculates the

standard deviation of 2mm×2mm cells for an area larger than 20mm×20mm. This method

is helpful for qualitative comparison. In another paper [26 ], the tile method is modified and

expanded to provide more discrete data, including different cell sizes, the average of density,

standard deviation, the average of standard deviation and the standard deviation of standard

deviation, which can be used for quantitative analysis for the mottle defect. Other traditional

methods [26 ], [41 ] use the information of cluster, statistics, and wavelets for the mottle defect

characterization problem. Traditional computer vision methods estimate the mottle defect

by extracting visual features, such as frequency and standard deviation, from the image

and characterize the defect level using a threshold based on experimental results. The main

drawback of those approaches is that they need manually designed features for the printed

defects.

2.1.2 Deep Convolutional Neural Networks

In recent years, the deep Convolutional Neural Network (CNN) has become one of the

most efficient methods to solve many computer vision problems, such as segmentation [54 ],

[55 ], detection [56 ], tracking [57 ], and pose estimation [58 ], [59 ]. With annotated data,

the deep learning based-approach can treat the computer vision problem as a regression

or classification task by extracting features in the CNN layers and joining them in fully

connected layers. In contrast to the aforementioned traditional methods, the deep neural

19



network can be trained in an end-to-end manner based on the dataset without the necessity

to manually design features and thresholds.

In most traditional methods, the mottle defect level depends on the local areas in an

image with uniform color or grayscale. In the deep learning approach, the entire image can

be used as the input to the network. The deep neural networks work on printed images with

different and non-uniform contents. The traditional feature-based methods are limited to a

specific defect. However, deep learning methods can easily be extended to different types of

printed defects by training on different datasets.

This thesis proposes a deep learning-based method for printed mottle defect grading. We

collected the training data scanned from printed pages and trained a ResNet-34 model to

classify various images with different mottle defect levels.

2.2 Defect Image Classification

In this section, we introduce an algorithm to classify the defects of printed images. The

network is trained for a classifier on two classes: Ghost VS Streaks. Ghost defect means the

toner of an image from the printer is much lighter and less detailed than the digital image.

Ghosts are often caused by a fault with the drum or fuser unit of the printer. The toner

particles are not heated enough to produce a good image. According to [60 ], streak is a

defect characterized by elongated blotches of ink in non-image areas, commonly caused by

mechanical problems with the press, such as damaged rollers (in lithography), or by improper

wiping of a gravure cylinder by the doctor blade (due to dried ink fragments attached to it,

or other such problems).

In the dataset, there are 582 training images and 60 test images. For each image, the

resolution is 7146 × 5146, as shown in Figure 2.1 .

We use transfer learning [61 ] based on pre-trained ResNet34 and ResNext50 CNN [62 ]

to solve the defect classification problem. Data augmentation methods including rotating,

flipping, zooming are implemented for the original dataset, as shown in Figure 2.2 . The

Learning rates for different layers are 1e−4, 1e−3 and 1e−2 from lower level to higher level.
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The accuracy for classification in ResNet34 is 60% and ResNext 50 is 65%. Figure 2.3 is the

result of ResNext50 shown as a confusion matrix.

2.3 Defect Level Grading

Mottle is a printed defect caused by low-frequency random non-uniformity. The mottle

defect differs from banding or any other periodic non-uniform defect that could appear at

any gray level or color. Figure 2.4 shows an example where the mottle defect in certain areas

severely degrades the printed image quality. From the perspective of human visual percep-

tion, the spatial frequency, size, contrast, sharpness, illumination, and viewing distance can

affect the perception of the mottle defect. Figure 2.5 provides two visual examples of mottle

defects, which are zoomed-in views from Figure 2.4 .

In this work, we categorize the mottle defect level into four classes based on the defect

degree:

1. Class A means the printed image is visually good. The uniform areas in the printed

image look highly smooth and uniform.

2. Class B means the printed image is visually sufficient. There are some non-uniform

blotches in the printed image.

3. Class C means a lack of printed image quality. There are some large non-uniform

blotches in the image.

4. Class D means the printed image quality is inferior. There are huge non-uniform

blotches.

2.3.1 Dataset

This section presents two new datasets used for mottle defect grading in printed pages.

The first dataset is named the T dataset with 135 images with different levels of the mottle

defect, as shown in Figure 2.6 . In the T dataset, there are 22 images in class A, 63 images in

class B, 45 images in class C, and 5 images in class D. All the images in the T dataset have
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Figure 2.1. Example of a image in the dataset.
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Figure 2.2. Example of data augmentation.

Figure 2.3. Confusion matrix of the ResNext training result.
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Figure 2.4. A printed image with mottle defect.

the same “textile” content. The second dataset is named the M dataset with 145 images

as shown in Figure 2.7 . In the M dataset, there are 87 images in class A, 42 images in

class B, 15 images in class C, and 1 image in class D. The images in the M dataset have

different contents. All images in the two datasets are grayscale and annotated by professional

operators. The classes denote different quality levels ranging from the highest (A) to the

lowest (D).

Data Augmentation and Unbalanced Datasets

The deep learning-based methods require a large amount of training data. To increase

the dataset size in our work, we apply different data augmentation methods such as rotation,

flip, zoom, and shift, as shown in Figure 2.8 . Some commonly used filters, such as the Gabor
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Figure 2.5. Zoomed in views of the mottle defect. The left image has lower
density with uniform content. The right image has higher density with non-
uniform content.

Figure 2.6. Examples from the T dataset which has 135 images with the
same “textile” content.

filter and Gaussian filter that were used for augmentation of the ImageNet Dataset [63 ] are

not used in this work because the filters might change the feature distribution of the mottle

defects.

In both the T dataset and the M dataset, there are fewer samples in the D class, which

corresponds to the poorest printed image quality. An unbalanced dataset like this may cause

poor classification accuracy. Several methods have been developed to increase the number
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Figure 2.7. Examples from the M dataset which has 145 images with different contents.
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Figure 2.8. Examples of data augmentation: a combination of augmentation
methods such as rotation, flip, zoom, and shift are used in the above images.
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of data for the classes with fewer samples. The first method uses a simulation method to

generate synthetic data. It requires an accurate simulation model of the printing process and

the mottle defect generation process, which are not available in our case. The second method

randomly under-samples images from the original dataset. A higher sampling probability is

assigned to the class with fewer samples to achieve balance. Although it is easy to implement,

the under-sampling process eliminates some samples and loses essential information in the

original dataset. The third method randomly over-samples images from the classes with

insufficient samples. The maximum number of duplicates is limited to avoid overfitting in

the training dataset.

In this work, the images in classes with insufficient data are over-sampled; and the

maximum number of duplicates is limited to 15. Then, the data augmentation is implemented

for the training dataset. In the final dataset, the T dataset has 192 images with 44 images in

class A, 63 images in class B, 45 images in class C, and 40 images in class D. The augmented

T dataset is divided into a training set with 154 images and a validation set with 38 images.

The T dataset and the M dataset are merged to generate the combined dataset. After

augmentation, the combined dataset has 410 images with different contents. There are 109

images in class A, 105 in class B, 106 in class C, and 90 in class D. The augmented combined

dataset has 328 images in the training set and 82 images in the validation set. The resolution

of all images is 5100 × 6600 (600 DPI).

2.3.2 Network and Training Process

The ResNet-34 [62 ] network is used as a feature extraction backbone. The ResNet-34

structure has several residual blocks, as shown in Figure 2.9 . The feature extraction network

is followed by fully connected layers.

The regression network and classification network have similar network structures. The

main difference is the last fully connected layer and output of the network. In the regression

network, the last layer has a single output, as shown in Figure 2.10 . The four classes

[A, B, C, D] are mapped to scores [0, 1, 2, 3]. In the classification network, the last fully

connected layer has four outputs, as shown in Figure 2.11 .
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Figure 2.9. Structure of the residual block.

Figure 2.10. Network structure for the mottle defect regression task.

Figure 2.11. Network structure for the mottle defect classification task.
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The final network is trained by transfer learning using ResNet-34 pre-trained on ImageNet

[63 ] connected with fully connected layers. In the first step, the ResNet-34 convolution

layers are frozen. Second, the fully connected layers are trained with a specified learning

rate. Third, the convolution layers are unfrozen and the whole network is retrained with

a lower learning rate. In the training process, the loss function is MSE Loss adding L2

parameter regularization loss for the regression task. The loss function for the classification

task is the cross-entropy loss adding L2 parameter regularization loss. In both regression and

classification tasks, we use dropout [64 ] in the training stage. Dropout is a technique that

randomly removes some nodes in neural networks with a probability p during training. By

doing this, the network is more robust to the change of weighting for some specific nodes and

can avoid overfitting. The probability p is also named dropout rate. In the validation/testing

stage, the dropout and L2 parameter regularization loss is turned off.

To find the best learning rate for training, we first train the stochastic gradient descent

[65 ] with a lower learning rate in each epoch. Then the learning rate is multiplied by a

factor in each mini-batch until a higher learning rate is reached. We record the loss in each

iteration for different learning rates and choose the learning rate with a relatively lower loss.

The triangular learning rate policy [66 ] is used in the training stage. The learning rate

value changes between the minimal and maximal learning rates. The increase of the learning

rate will force the network model to explore a new parameter space when the loss function

decreases slowly or stops decreasing.

2.3.3 Experimental Results

In this work, the deep CNN is trained on two different datasets, including the augmented

T dataset and the augmented combined dataset.

The first experiment is trained on the augmented T dataset. In the first experiments, we

train the dataset using cropped input images and combine the results of the small patches

to generate the final prediction. We treat the defect grading problem as a regression or a

classification problem to explore the effect on the prediction accuracy.
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The second experiment is performed on the augmented T dataset. We train the network

using the 154 images (without cropping) in the training set and validate using 38 images

in the validation set. We also test both regression and classification methods in the second

experiment.

The second experiment is performed on the augmented combined dataset. In the third

experiment, we train both the regression and classification networks using the 328 images

(without cropping) in the training set and validate using 82 images in the validation set.

The combined dataset results in experiment three further prove that the network can be

generalized to mottle defect grading with different contents.

Prediction using Cropped Patches

In the first experiment, the original input image in the T dataset is cropped to 600 × 600

resolution patches without overlap. The whole T dataset is cropped into 11880 patches in

four classes: [A : 22 × 88, B : 63 × 88, C : 45 × 88, D : 5 × 88]. The training set has 9504

images and the validation set has 2376 images, respectively. The error rate on the training

set is 38.55%. The confusion matrix is shown in Figure 2.12 .

In the prediction stage, the original image is cropped to 88 patches as shown in Figure

2.13 . The 88 patches are fed to the convolutional neural network to output a 88 dimension

score vector. The final prediction is generated by averaging or majority voting over the score

vector. On the validation set, the error rate is 33.33% by the average score method and

37.04% by the majority voting method. The result shows that the accuracy of using local

cropped patches is not satisfactory.

Mottle Grading Regression and Classification on T dataset

The second experiment is performed on the augmented T dataset. In the regression task,

the input is resized to 1000 × 1000 resolution and the output is a single score mapped to

four classes [A, B, C, D]. We first use the learning rate finding as shown in Figure 2.14 ,

which suggests a learning rate in the range of 1e-2 to 2e-1. The learning rate finding is to

use a small percent of data for training and get minimum loss with different learning rates.
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Figure 2.12. Confusion matrix for the prediction using cropped patches. The
x-axis is the prediction of the networks and the y-axis is the ground truth of
the data.

Figure 2.13. Defect prediction using cropped patches.
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We then test different learning rates in the range of 1e-2 to 2e-1 in the whole dataset. The

final best learning rate is 2e-2. Then we freeze the convolutional layers, unfreeze the fully

connected layers, and train for 40 epochs. Finally, we unfreeze all layers and train with

a lower learning rate in the range [3e-5, 2e-2] for 5 epochs. The batch size is 16 in the

training process. Figure 2.15 shows the loss in the training and validation sets. The best

root mean squared error (RMSE) for regression is 0.45, as shown in Figure 2.16 . Here the

RMSE is calculated as RMSE =
√

1
n
Σn

i=1

(
yi − ỹi

)2
, where ỹi is the predicted value from the

regression model, yi is the ground truth and n is the total number of tests. The final error

rate is calculated as e
n
, where e is the number of false predictions. We round the predicted

value ỹi to ȳi. When ȳi 6= yi, it is a false prediction. The final error rate is 21.05% in the

first experiment.

Figure 2.14. Finding the learning rate for the regression method on the T Dataset.

The last fully connected layer has four outputs indicating four classes in the classification

task. The loss for the classification task is shown in Figure 2.17 . The confusion matrix is

shown in Figure 2.18 . The error rate is 13.16%, which is better than the regression task in

the T dataset with the “textile” content images.
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Figure 2.15. Loss for regression on the T training and validation sets. The
dropout rate in the training stage is 50%. The loss in the training stage is
calculated by adding MSE loss and the regularization loss of the weights. The
loss in the validation stage is MSE loss only.

Figure 2.16. Root mean squared error for regression on the T dataset.
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Figure 2.17. Loss for classification in the T training and validation sets. The
dropout rate in the training stage is 50%. The loss in the training stage is
calculated by adding cross-entropy loss and the dropout regularization loss of
the weights. The loss in the validation stage is cross-entropy loss only.
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Figure 2.18. Confusion matrix for classification on the T dataset. The x-axis
is the prediction of the network, and the y-axis is the ground truth of the data.
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Mottle Grading Regression and Classification on the Combined Dataset

The second and third experiments are performed on the combined dataset. Mottle grad-

ing regression and classification on the combined dataset have a setting similar to that of the

tasks on the T dataset. The combined dataset is more challenging since it has a large variety

of image contents. In the regression task, Figure 2.19 shows the loss in the training and

validation sets. The best root mean squared error for regression is 0.49, as shown in Figure

2.20 . The final error rate is 21.95%. In the classification task, the loss for classification is

shown in Figure 2.21 . The confusion matrix is shown in Figure 2.22 . The best error rate is

20.73% which is similar to the regression task.

Figure 2.19. Loss for regression in the combined training and validation sets.
The dropout rate in the training stage is 50%. The loss in the training stage
is calculated by adding MSE loss and the regularization loss of the weights.
The loss in the validation stage is MSE loss only.

2.4 Defect Detection for Printed Image

In real applications for printed images with defects, industries are more interested in

detecting the location of the defective part of printed images. For the defects detection task,

37



Figure 2.20. Root mean squared error for regression on the combined dataset.

Figure 2.21. Loss for classification in the combined training and validation
sets. The dropout rate in the training stage is 50%. The loss in the training
stage is calculated by adding cross-entropy loss and the regularization loss of
the weights. The loss in the validation stage is cross-entropy loss only.
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Figure 2.22. Confusion matrix for classification on combined dataset. The
x-axis is the prediction of the network, and the y-axis is the ground truth of
the data.
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preliminary data could consist of one digital and one printed image in a pair or the printed

image only. The printed images may have defects such as banding, bright streak, dark streak,

wrinkle, etc. The defect object detection algorithm should be able to classify the category of

the defect and provide a bounding box or map of the defective area. Although both digital

and printed images could be given as the input of the algorithm, ideally, the goal for the

algorithm is to detect defects with only input from scanned printed images. There are few

works of literature about printed defect detection methods based on deep learning. However,

defect detection algorithms based on CNN are used in other industries like civil engineering.

For example, Naive Bayes data fusion and CNN [67 ] are used in crack detection and Faster

R-CNN is used in damage detection [68 ], [69 ].

In the experiment, we mainly focus on the streak detection problem. The training dataset

consists of 1100 images with streak defects in different locations. The test dataset has 100

images. Each image has bounding boxes to indicate the region of streaks. We implement

a defect detection algorithm using Faster R-CNN [56 ] with a ResNet50 feature extraction

network. As shown in Figure 2.23 , the input image is transferred to features by the feature

extraction network. Then the region proposal network proposes multiple regions of interest

(ROIs). After the ROIs pooling stage, the feature of each ROI is fed into the classifier, which

generates the final bounding box position. The Faster R-CNN network can be trained on

Caffe and Caffe2 frameworks on 1 to 4 Titan Xp GPUs. The batch size per image is 256. For

the input image, the original resolution is 7146 × 5146. As shown in Table 2.1 , the images

are rescaled to various resolution including 500 × 500 and 1000 × 1000. The best Mean

Average Precision (MAP) is 0.23. In this experiment, the MAP is calculated for images with

Intersection over Union (IoU) >= 0.50. The calculation of MAP is explained in the COCO

dataset paper[70 ] in detail.

Figure 2.24 is an example of the result of streak detection on the test dataset. The green

bounding boxes indicate the predicted region of the streak from our detection algorithm.

We also test the trained defect detection model on a different dataset which has the images

printed from total different models of printers. As shown in Figure 2.25 , the yellow-colored

streak is much wider compared to the original dataset, but the network could still detect the

streak. The result shows that the streak detection algorithm works on a different dataset.
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Figure 2.23. Structure of the Faster R-CNN network.

Table 2.1. Specifications of Faster R-CNN defect detection
GPU Resolution Rescale MAP Iteration Time Inference Time

1 2624 × 1946 500 0.167 0.188-0.231s 0.057-0.100s
1 2624 × 1946 1000 0.23 0.225-0.340s 0.090-0.205s
1 7146 × 5146 1000 0.23 1.083-1.181s 0.132-0.230s
4 2624 × 1946 500 0.167 0.181-0.188s 0.047-0.054s
4 2624 × 1946 1000 0.23 0.229-0.236s 0.091-0.098s
4 7146 × 5146 1000 0.23 1.017-1.024s 0.098-0.105s

2.5 Conclusion

In this part, we implement CNN for solving the defect classification problem, printed

mottle defect grading and Faster R-CNN for the defect detection problem. The main con-

tribution of this work is to propose a deep learning-based method instead of traditional

feature-based methods for printed image quality assessment. For printed mottle defect grad-

ing, we propose a new deep learning-based method. Unlike traditional methods such as

feature extraction using ∆E variation, our method utilizes a CNN for the first time to au-

tomatically extract the feature by stochastic gradient descent. Transfer learning and data

augmentation methods are used to train a robust mottle defect grader. The proposed deep

learning mottle characterization method can be used in mottle grading not only for the test

image with the same uniform content as seen in the training set but for printed images with

different contents. The mottle grading method achieves a 13.16% error rate in the T dataset

with the same content and a 20.73% error rate in the combined dataset with different con-

tents. The proposed method can also be generalized to other printed defects, such as streaks
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Figure 2.24. Example of streak detection.
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Figure 2.25. Example of streak detection in another dataset.
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given an annotated streak dataset. The results prove the feasibility of deep learning methods

for defects from different domains.
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3. GENERATIVE ADVERSARIAL NETWORKS FOR

PRINTED IMAGE SIMULATION

3.1 Introduction

3.1.1 Dataset and Data Augmentation

In recent years, CNN has become one of the most efficient methods to solve computer

vision problems such as segmentation, detection, tracking and classification. The previous

chapter proposes deep learning methods for printed image defect classification and detection.

However, deep learning methods based on CNN require a large amount of image data scanned

from the printed images for printed image quality assessment. The accuracy and success of

the deep neural network have been highly attributed to big datasets such as the ImageNet

Dataset [63 ] and the COCO Dataset [70 ]. The quality, quantity and diversity of a dataset

primarily affect the performance and generalization of the trained network.

Figure 3.1. Training a deep neural network requires plenty of data.

Data augmentation is growing increasingly popular in machine learning and deep learning

communities. It refers to techniques for generating samples by transforming training data,

with the target of improving the accuracy and robustness of the networks without actually

collecting data [71 ]. There are some common strategies such as flipping, rotation, cropping,
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filtering and zooming for network training. Figure 3.2 shows examples of traditional data

augmentation.

However, the images can only be slightly changed by those basic data augmentation

methods, as shown in Figure 3.3 . The quantity of data is still limited to a number pro-

portional to the original dataset. In our case of the printed image dataset, we still have to

print and scan images in order to collect data. Those printed images are hard to generate,

as shown in Figure 3.4 . Commonly, the labor required for image printing and scanning is

intensive to generate the dataset. It is of value if we could find the essence of printed images

and reproduce them directly from digital images using a model without the printing and

scanning process.

3.1.2 Generative Model and Generative Adversarial Network

To simulate sample images from digital images requires an image generation model. One

of the classical approaches is the Maximum Likelihood Estimator (MLE) [72 ] which chooses a

pre-defined model and estimates its parameters through maximizing the likelihood of training

data, as shown in Equations (3.1 ) to (3.4 ).

θ∗ = arg max
θ

n∏
i=1

pmodel(x(i); θ) (3.1)

= arg max
θ

log
n∏

i=1
pmodel(x(i); θ) (3.2)

= arg max
θ

n∏
i=1

log pmodel(x(i); θ) (3.3)

θ∗ = arg max
θ

IEx∼pdata
[ log pmodel(x(i); θ)] (3.4)

where θ is the parameters of the pre-defined model, and x(i) is a sample (i) from the

dataset. By estimation algorithms such as the Expectation Maximization (EM) algorithm

[73 ], maximum likelihood estimators could be calculated recursively from incomplete data.
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(a) Original image. (b) Image after vertical flip-
ping.

(c) Image after horizontal flip-
ping.

(d) Image after rotation.

(e) Image after sharpening fil-
ter.

(f) Image after zooming.

Figure 3.2. Sample images of traditional data augmentation.
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(a) Original image. (b) Image changed in bright-
ness and contrast.

Figure 3.3. Some training images can be easily generated.

(a) Original image. (b) Printed image with streak.

Figure 3.4. Some training images are hard to generate.
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However, explicit models like MLE require a well-defined likelihood function such as a

truncated Poisson distribution or Gaussian distribution. It is hard to find unknown data-

generating distribution and perform density estimation. There are other explicit models

used in sample generation such as Variational Auto-Encoders (VAEs) [74 ], PixelRNN [75 ]

and PixelCNN [76 ]. For example, VAEs use the posterior pθ(z|x) to estimate the distribution

between an image distribution p(x) and a latent space z, where θ is the parameter of the

distribution. However, simulated images from VAEs tend to be blurry because the approx-

imation paradigm, which is often an unimodal Gaussian distribution, is oversimplified for

the complex distribution of real images. The results of explicit models have lower quality

compared to the state-of-the-art Generative Adversarial Networks (GANs) [77 ] which are

implicit models.

GANs generate new samples for the model by using a loss function which calls another

discriminator model. There is no need to find an explicit density function and maximize

its likelihood or lower bound. Instead, GANs use the Nash Equilibrium concept from game

theory. In GANs, there are two players: generator (player G) and discriminator (player D).

Instead of using maximum likelihood estimator or optimizing a fixed loss function, GANs

take advantage of the discriminator network to learn a dynamic loss function for the generator

network. Thus, more realistic images could be generated from GANs through its adversarial

process. On the other hand, the dynamic process of GANs is often harder to train with two

sub-networks and sometimes suffers mode collapse.
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Figure 3.5. Generative adversarial networks via Nash Equilibrium.

As shown in Figure 3.5 , random noise is generated as the input to the generator. The

generator is trying to produce fake data as a counterfeiter. Respectively, the discriminator

is trying to detect fake data produced by the generator. The discriminator is a classification

network to distinguish between real and fake data. The competition between the generator

and discriminator drives both networks to improve their accuracy. The training process

stops when generated data are not distinguishable from the real data.

3.2 GANs for Printed Image Simulation

Printed image simulation could be considered as an image-to-image translation problem.

As shown in Figure 3.6 , the original image is a digital image and the output is a simulated

image. The GAN’s model maps the digital image domain to the corresponding printed

image domain. There are some typical applications in image-to-image translation based

on generative models such as realistic samples for artwork [78 ], super-resolution [79 ] and

colorization [80 ].
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Figure 3.6. Image translation by GAN.

Generally, there are two approaches for solving the style translation problems: supervised

learning and unsupervised learning. In the unsupervised learning scenario, a large number

of images in two groups are separated by their style. However, in the training dataset, there

are no pairs of images with a strong connection, as shown in Figure 3.7 . Under certain

architectural constraints between the two groups, the features could be learned by GANs

via unsupervised learning. In another scenario called supervised learning, pairs of images

are available in the training set, as shown in Figure 3.8 . The input of the network has two

related images belonging to two different groups.

3.2.1 Unsupervised Image-to-image Translation GANs

In this subsection, we use UNsupervised Image-to-image Translation networks [81 ] (UNIT)

to solve the printed image simulation problem. Some of the printed images are collected

without their corresponding digital reference images. Thus unsupervised learning is more

applicable for this type of digital to printed image style transformation.
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(a) Original image. (b) Printed images.

Figure 3.7. Two groups of images in unsupervised learning.

(a) Original image. (b) Printed images.

Figure 3.8. A pair of images in supervised learning.
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Network Structure of UNIT GANs

Figure 3.9. UNsupervised Image-to-image Translation networks [81 ].

Figure 3.9 is the structure of UNsupervised Image-to-image Translation networks. As

shown in Figure 3.9 (a), the main assumption of this GANs is for image x1 and image x2 to

be from two different domains χ1 and χ2, and to have a common shared code z in shared

latent space Z. There are two mappings G1 and G2 which are generators from latent code z

to image x1 and x2, respectively. In the opposite direction, there are two encoding functions

E1 and E2 mapping x1 and x2, respectively to z.

In UNIT GANs, {E1, G1} could be interpreted as a Variational Auto-Encoders sub-

network and {E1, G2} as an image-to-image translator sub-network. Respectively, {E2, G2}

could be interpreted as a VAEs sub-network and {E2, G1} as an image-to-image translator

sub-network. D1 and D2 are the adversarial discriminator sub-networks which classify the

images as generated or real images. {G1, D1} and {G2, D2} could be treated as GAN sub-

networks. E1, E2, G1, G2 are represented by four separated CNNs. Under the assumption of

a shared latent space, the weights of last few high-level layers of E1 and E2 share the same

value. Similarly, the weights of G1 and G2 are tied.

After the training process, image-to-image translation from domain χ1 to domain χ2 is

done by an input image x1 going through sub-network E1 and G2 to generate simulated

image x̃1→2
1 . In another direction, image-to-image translation from domain χ2 to domain χ1
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is done by an input image x2 going through sub-network E2 and G1 to generate simulated

image x̃2→1
2 .

Data Preparation and Training

The training set has 26 images in total. It is separated into two sets: the digital images

set and the printed images with defects set. Each set has 13 images.

For printed image simulation, we increase the output resolution for the last layer from

256 to 512. However, the GPU has limited memory for the large GANs model. In order to

fit the input and weights of the model to GPU memory, we modify the last 2 output layers

from 32 to 16.

Learning Result for Group Mapping

In the trial of group mapping simulation, the image becomes lighter after simulation

after 86000 iterations, which resembles some printed images having a lighter color. A pre-

processing step such as registration for data, is not required for the training dataset. How-

ever, the test result is not satisfactory since it is far lighter than the desired ground truth.

The training dataset is too small for training a large UNIT GANs model. Essentially, the

unsupervised image-to-image translation problem is considered more difficult than super-

vised translation. Thus, in the following subsection, we consider the digital to printed image

translation problem as a supervised 1-to-1 image mapping problem.

3.2.2 Supervised Image-to-Image Translation GANs

PIX2PIX GANs

In this section, we propose a deep learning framework based on pix2pix (pixel to pixel

Conditional Adversarial Networks) [82 ] GANs for simulating printed image datasets, which

is used for training printed image quality assessment or defects detection algorithms. In

contrast to unsupervised mapping for image groups, the supervised image-to-image mapping

provides better image quality under strong supervised constraints.
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Most traditional supervised image-to-image translation approaches minimize pixel-wise

Euclidean distance between the output and ground truth images. Some researches [83 ],

[84 ] have addressed the fact that the L2 loss function tends to generate blurry images.

When traditional approaches are trying to minimize the Euclidean distance loss function,

the outputs are averaged to decrease the loss, which is the main reason for blurry outputs.

Under the assumption of GANs, the discriminator tends to classify the blurry images as fake

and forces the generator to reproduce clear images.

(a) Generator and Discriminator.

(b) Discriminator.

Figure 3.10. Pix2pix GAN structure.

In the pix2pix translation, the networks are composed of two sub-networks named gener-

ator and discriminator. The generator is a network randomly generating some images from

the original images under certain constraints, such as the L1 constraint, to create new images

with a different style. The discriminator is another network to distinguish generated images

from real images. A mapping between input and output images could be learned by training

on the aligned image pairs.
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As shown in Figure 3.10a , when training the conditional GANs mapping images from

digital to printed, the discriminator D is trained to classify between fake (simulated by

the generator) and real (scanned printed image) images. The generator G is trained to

confuse the discriminator D. The main difference between pix2pix conditional GANs and

unconditional GANs is the input for generator G and discriminator D. The input is not a

simulated printed image or real scanned printed image, but a 2-tuple consisting of a printed

image and a digital image. As shown in Figure 3.10a , the input to D is a tuple (G(x), x),

where G(x) is the generated printed image (fake) and x the original digital image. As shown

in Figure 3.10b , the input to D is a 2-tuple (y, x), where y is the scanned printed image

(real) and x the original digital image.

Experiment on Digital to Monocolor Printed Images Translation

In this part, we implement image-to-image translation from digital to monocolor printed

image without defects by pix2pix GANs. The original images are with a resolution of

2624×1946. There are 13 pairs of images that are the same as the dataset in Subsection

3.2.1 . In order to increase the number of training images and fit the weights of the model to

the GPU memory, the original images are cropped into images with a resolution of 656×486.

Among the cropped images, 144 images without defects are selected for this part. There are

104 pairs of images as the training set and 40 as the test set. After that, two related images

are combined into an image pair as the input of the pix2pix GANs, as shown in Figure 3.11 .
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Figure 3.11. Data preparation: two cropped images are combined into an
image pair as the input of the pix2pix GANs

After 6000 epochs of training, the testing results, as shown in Figure 3.12 , 3.13 , 3.14 and

3.15 , prove the pix2pix GANs under conditional constraint could be trained for digital to

printed image translation.

Specifically, in Figure 3.12 and 3.13 , the simulated images have small mottles that re-

semble the printed image on the right side of the image. Figure 3.14 is a failure case of

our pix2pix models for printed image simulation, which might be caused by mode collapse

described in [85 ]. The printed image generation GANs model is trained only with a dataset

of 104 pairs of images. Figure 3.15 is another example of simulated images. Although the

simulated image is different from the real printed image on the right side, from Figure 3.15 

we could see the GANs model learns the different possible modes generated in the printing

process.
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Figure 3.12. Example 1 of the test image, the left is the digital image, the
middle is the simulated image, the right one is the real printed image

Figure 3.13. Example 2 of the test image, the left is the digital image, the
middle is the simulated image, the right one is the real printed image
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Figure 3.14. Example 3 of the test image in a failure case, the left is the
digital image, the middle is the simulated image, the right one is the real
printed image

Figure 3.15. Example 4 of the test image, the left is the digital image, the
middle is the simulated image, the right one is the real printed image
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Experiment on Digital to RGB Printed Image Translation

In this part, we implement image translation from digital to printed image (without

defects) for RGB images by pix2pix GANs. The digital to printed image translation aims

to simulate the printing process without printing and scanning the image. A dataset with

96 pairs of images is collected, including realistic images (camera photos), synthetic images

(from computer games simulation), and documents. Those pairs of images are printed and

scanned by an HP MFP586 jet-ink printer, as shown in Figure 3.16 .

(a) Digital. (b) Printed.

Figure 3.16. Digital to printed RGB images dataset.

For the images directly collected from the scanner as shown in Figure 3.16b , they are not

well aligned and have superfluous blank areas. After implementing the image registration

algorithm, the aligned image pairs, as shown in Figure 3.17 , are used for training and testing.

The image registration approaches are introduced in Chapter 4 .
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(a) Digital. (b) Printed.

Figure 3.17. Example of an image pair.

In this work, the pix2pix GANs are trained with 74 pairs of registered digital to printed

RGB images, as shown in Figure 3.18 .

Figure 3.18. Digital to printed RGB images training set with 74 pairs of images.
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The test set consists of 22 pairs of registered digital to printed RGB images, as shown in

Figure 3.19 .

Figure 3.19. Digital to printed RGB images testing set with 22 pairs of images.

In the inference stage, digital images from the testing set are input to the trained genera-

tor network to provide printed image simulations. For the training result after 6000 epochs,

Figure 3.20 and 3.21 are examples of pix2pix GANs simulation for RGB printed image. A

mapping between a digital image and a printed image fits the image-to-image translation

paradigm.
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Figure 3.20. Example 1 of output for test images, the left is the digital image,
the middle is the simulated image, the right one is the real printed image.

Figure 3.21. Example 2 of output for test images, the left is the digital image,
the middle is the simulated image, the right one is the real printed image.

The qualitative results show that color and texture could also be learned in our simula-

tion. As shown in Figure 3.22 and 3.23 , the color has been changed for the simulated printed

image, which resembles the process of printing.
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Figure 3.22. Example 3 of output for test images, the left is the digital image,
the middle is the simulated image, the right one is the real printed image. The
color changes in the simulated image match the real printed image compared
to the original digital image.

Figure 3.23. Example 4 of output for test images, the left is the digital
image, the middle is the simulated image, the right one is the real printed
image. The simulated image is a failure case since it introduces extra artifacts
into the original image.

As shown in Figure 3.24 , the images are zoomed in for the texture change to be observed

in the simulated image compared to the original digital image.
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Figure 3.24. Example 5 of output for test images, the left is the digital
image, the middle is the simulated image, the right one is the real printed
image. The images are zoomed in. Thus, the texture change in the simulated
image is visible compared to the original digital image

3.3 Conclusion

For deep learning-based defect classification and detection algorithms, numerous printed

and scanned images are required. Compared to other methods using actual printed images as

training data, the photorealistic printed images are automatically generated in our proposed

framework. Thus, we can reduce the printing and scanning time and cost in the data

collection stage.

The Generative Adversarial Network is an efficient tool for generating simulation data

for training classification and detection algorithms. Thus, a deep CNN can be trained with a

limited amount of scanned and digital image pairs. The qualitative results show that we can

reduce the effort to print and scan many defective images since the GAN data augmentation

could ideally produce abundant data. The GANs simulation approach leads to a simulated

dataset with more high-quality images.
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4. PRINTED IMAGE REGISTRATION

4.1 Introduction

Image registration is a spatial transformation that maps points from one image to cor-

responding points in another image: matching two images so that corresponding coordinate

points in the two images are for the same physical region of the scene being imaged, as shown

in Figure 4.1 . The image registration problem is also named image fusion, superimposition,

matching, alignment or merge.

Figure 4.1. Example of the image registration process.

In this chapter, we focus on the printed image registration problem. As shown in Figure

4.2 , the input of the registration has two monochrome or colored images in a pair. The

registration algorithm is to align the moving image with the fixed image. The output is the

registered image after spatial deformation, which should match the fixed image. We also

investigate medical 2D images to verify the generalization of our proposed model.

4.1.1 Applications

Image registration is an essential pre-processing step for printed image quality assessment

and defect detection. The profile of printed defects can be extracted from the difference be-

tween the printed and digital images if two images in a pair are accurately aligned. For

example, in [86 ], Xiao proposed a method by matching feature pairs for print quality diag-

nostics, as shown in Figure 4.3 .

66



Figure 4.2. Example of the printed image registration process: the left is the
image pair before registration, the right is the image pair after registration.

Figure 4.3. Example of the printed image registration by the pair matching
method for image quality diagnostics [86 ].
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Besides printed image quality assessment, image registration is widely used in computer

vision, video analysis, medical image processing, material mechanics, and remote sensing.

4.1.2 Problem Formation

Image registration methods can be divided into several categories according to different

attributes. By the nature of their basis, there are feature-based methods and intensity-

based methods. Feature-based methods find correspondence between image features, such

as points, lines and contours, and then match the features. Intensity-based methods compare

intensity patterns in images via similarity metrics, such as RGB values, light intensity values,

or grayscale values.

By the transformation domain, image registration methods can be divided into global and

local methods. Global methods are usually rigid registration. For rigid image registration,

the number of parameters depends on the type of transformation, such as rigid, affine and

projective. Local methods require deformable registration. Deformable registration is a pixel-

wise mapping, which requires more parameters proportional to the input image resolution.

The registration parameters update can be decided by an optimization procedure such

as Gradient Descent, RMSprop, Adam, AdaMax [65 ], etc. The modalities of inputs involved

in registration include mono-modal, multi-modal and modality to model [87 ], [88 ]. The

dimensionality of the input can be classified as 2D-2D, 3D-3D and 2D-3D [89 ].

The input images are in the D-dimensional coordinate space φ. For the printed image

registration problem, we mainly focus on images in 2D space. The registration inputs If ixed

and Imoving are defined as the fixed image and moving image, respectively. If ixed and Imoving

are functions φ −→ Rc, where c is the number of channels. For a monochrome image, c = 1;

for a color image, c = 3. The deformation field is defined as a mapping φ : φ −→ φ between

two image coordinate spaces. The objective of image registration is to predict a deformation

field φ from input If ixed and Imoving. The deformation field φ warps the moving image Imoving

to a warped image Imoved: Imoved = φ ◦ Imoving.

68



4.2 Global Image Registration

In image registration, global rigid image registration and local deformable image regis-

tration are processed independently. Global image registration means using a rigid global

transformation such as similarity, affine or projective transformation to align two images. At

first, the image is globally registered and then locally aligned to get a better visual result.

4.2.1 Feature-based Image Registration

For global image registration, RANSAC [90 ] is a traditional method based on the ex-

tracted image features. As shown in Figure 4.4 , feature-based methods extract features such

as ORB [91 ] and GeoDesc [92 ], and find correspondence between image features by RANSAC

to estimate the global transformation parameters. An extra affine tuning step is used in the

printed image registration pipeline by the least squares method.

Figure 4.4. Image registration pipeline for printed image quality assessment.

Figure 4.5 shows the matching result of a deep learning-based feature extractor. Figure

4.6 shows the registration result by a feature-based registration pipeline.

However, feature-based image registration methods fail in cases such as textureless im-

ages and repeated patterns, as shown in Figure 4.7 . This method requires a robust image

descriptor. However, the printed images often have different text content with repeated

shapes which causes the failure of feature-based methods. Figure 4.8 is an example of fea-

ture matching by the descriptor. The left image is the moving image and the right image

is the fixed image. The top row is the matching result by the SIFT descriptor [93 ]. The

bottom row is the result of the GeoDesc descriptor. The mismatching pairs are dashed line

circles with the same color. Both results show many mismatching pairs, which causes the

failure of printed image registration.
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Figure 4.5. Example of the deep learning-based GeoDesc descriptor image matching .

Figure 4.6. Example of an image registration result by the proposed pipeline.
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Figure 4.7. Failure cases of the feature-based method.
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Figure 4.8. Failure cases of the feature-based method. The circles with the
same color indicate the mismatching pairs.

4.2.2 Intensity-based Image Registration Algorithm using Deep Learning Frame-
work PyTorch

Another class of global image registration methods is the intensity-based method which

compares intensity patterns between images via similarity metrics such as the sum of squared

differences, normalized cross correlation and mutual information. Intensity image registra-

tion iteratively computes the similarity loss and updates the transformation parameters using

an optimizer.

Thanks to the immense growth in the deep learning society in recent years, there are

many open-source deep learning software frameworks such as TensorFlow [94 ], Pytorch [95 ],

[96 ] and Caffe [97 ] which have the advantage of parallelism and auto-gradient computation.

In this work, we propose an intensity-based printed image registration method using the deep

learning framework Pytorch. The backward gradient computation in image registration can
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be achieved by the automatic differentiation module in the framework. The affine transfor-

mation matrix multiplication is similar to the tensor multiplication operator in Pytorch. The

warping of the deformation field can leverage the spatial transformer networks. Moreover,

the grid sampling module can be used for bilinear interpolation. The parallel computation

of the GPU can speed up all of the matrix and vector operations.

As shown in Figure 4.9 , we initialize the transformation parameters P and translate P

to transformation matrix T . Usually, the transformation matrix T is an identity matrix

at first, which means there is no shift for the corresponding pixel coordinates in the early

stage. The transformation matrix T is converted to the deformation field φ, which has the

shift information for each coordinate. The moving image Imoving is then warped by the

deformation field φ and is transformed to moved image Imoved. The similarity loss Lsim is

computed by comparing the difference of fixed image If ixed and moved image Imoved. The

similarity loss Lsim is used to compute the gradient ∂Lsim
∂P

relative to the transformation

parameters. The parameter difference ∆P is computed by combining the gradient ∂Lsim
∂P

with the learning rate λ. The parameters P are then updated by ∆P . The similarity loss

Lsim is converged iteratively by repeating the above process. When Lsim < ε or the iteration

number i exceeds a certain threshold n, we have the transformation parameters P , the fixed

image If ixed and moved image Imoved as the final registration result.
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Figure 4.9. Intensity-based registration (global) using deep learning framework PyTorch.

The Spatial Transformer Network (STN) [98 ] is a network operator used to transform

spatial tensor features to warped features. A deep learning framework such as TensorFlow

or PyTorch uses the differential STN module to map features between two CNN layers and

perform bilinear interpolation at the same time. Figure 4.10 shows the process of computing

a pixel value by bilinear interpolation. The pixel value is defined as as
ij, where i, j are the

indices of the coordinate, s means the layer after registration and s − 1 means the layer

before registration. In STN, s − 1 is the CNN feature layer before STN operator and s is

the feature layer after STN operator. For example, in Figure 4.10 , we want to compute the

pixel value as
11 after registration. The affine transformation matrix T can be represented as

a rotation matrix R =

0.707 −0.707

0.707 0.707

 and shift (translation) vector V =

0.6

−1

. So the

indices of the coordinate in the previous s − 1 layer (before registration) is computed as:

i′

j′

 = R ×

i

j

 + V =

0.707 −0.707

0.707 0.707

 ×

1

1

 +

0.6

−1

 =

 0.6

0.414


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Ideally, the pixel value as−1
0.6,0.414 of the previous s − 1 layer is at coordinate (0.6, 0.414).

However, we cannot directly get the pixel value of the s − 1 layer at the floating point

coordinate indices. So the bilinear interpolation is used for the calculation of the pixel value:

as
11 =as−1

0.6,0.414

=(1 − 0.6) × (1 − 0.414) × as−1
00

=(1 − 0.6) × (1 − 0.586) × as−1
01

=(1 − 0.4) × (1 − 0.414) × as−1
10

=(1 − 0.4) × (1 − 0.586) × as−1
11

Figure 4.10. An example of the calculation of a target pixel value by bilinear
interpolation.

In the experiment, the transformation consists of 4 degrees of freedom, including trans-

lation (∆x, ∆y) and scaling (lx, ly). The optimizer is Adam [99 ] with a learning rate of 0.01.

The Mean Squared Error (MSE) is used as the similarity loss function Lsim. The inputs of
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the registration experiment are shown in Figure 4.11a as the fixed image and Figure 4.11b 

as the moving image.

(a) Fixed image. (b) Moving image.

Figure 4.11. Experiment inputs of the intensity-base global image registration.

The experiment is initialized with the identity transformation, where ∆x = 0, ∆y =

0, lx = 1 and ly = 1. After an iterative intensity-based image registration process, the

experiment result in Figure 4.12 is a merged image, which is a superimposed image of the

fixed image and the moved image after registration. The magenta area in the merged image

is the region with pixel values that differ from those of the fixed image.

Figure 4.12. The merged image is the experimental result of the intensity-
based global image registration.

As shown in Figure 4.13 , The similarity loss Lsim converges after around 180 epochs.
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Figure 4.13. Experimental result: MSE loss plot across epochs.

4.3 Deformable Image Registration

Even with good rigid global image registration, local deformable misalignment still exists

in cases such as printed images and medical images, as shown in Figure 4.14 . In this exam-

ple, the merged image after rigid global registration still shows some local misalignment for

characters and lines. The local misalignment is because most image registration problems

in real applications cannot be simplified to a global registration problem with limited pa-

rameters. For example, a Euclidean transformation has only 3 DOFs (Degrees of Freedom),

an affine transformation has 6 DOFs, and a homography transformation has 8 DOFs. For

each corresponding pixel pair between two images at coordinate (i, j), a local deformable

transformation needs 2 DOFs (∆xi,j, ∆yi,j). For pixel pairs in the entire image, the local

deformable transformation needs 2 × w × h DOFs, where w is the width and h is the height

of the image. Because deformations are similar for most of the neighborhood areas, we need

to find a method to represent the shift for each pixel and keep the local similarity simultane-

ously. In the following subsections, we will introduce the U-Net architecture-based method
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for printed images in Subsection 4.3.1 , and propose a new recurrent network-based method

named R-RegNet in Subsection 4.3.2 . Subsection 4.3.3 introduces the unsupervised loss func-

tion used in the training process. In Subsection 4.3.4 and 4.3.5 , we introduce the datasets

and experimental results comparing different deformable image registration methods.

Figure 4.14. Example of local misalignment after global image registration.

4.3.1 U-Net VoxelMorph-based Method

For local medical deformable image registration, methods such as [100 ] and [101 ] use deep

convolutional neural networks to register two images. The work in [102 ] introduces a network

named Volume Tweening Network (VTN) for unsupervised 3D medical image registration
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problems. A recent work named Recursive Cascaded Networks [103 ] uses two separated

networks, including a rigid transformation network and a deformable transformation network

cascaded together for medical image registration.

Inspired by the above methods, we first propose a deep learning-based method for printed

image registration based on VoxelMorph [101 ] in this subsection. The VoxelMorph method is

a popular CNN network method for medical image registration, but we use it in the problem

of printed image registration for the first time.

As shown in Figure 4.15 , we first initialize the CNN weight parameters randomly by the

Xavier initialization method [104 ]. The fixed image If ixed and the moving image Imoving are

used as the input to the CNN network. The output of the CNN is the deformation field

φ. φ is a matrix with a size of 2 × w × h, where w is the width and h is the height of the

image. Similar to Subsection 4.2.2 , the moving image Imoving is warped by the deformation

field φ and is transformed to the moved image Imoved. The similarity loss Lsim is then

used to compute the gradient ∂Lsim
∂W

relative to the CNN weight parameters W . The weight

parameters W are then updated by ∆W , which combines the learning rate λ and gradient
∂Lsim

∂W
.

Figure 4.16 shows the inference stage of deformable printed image registration. Conse-

quently, the difference in the inference stage is that the parameters of CNN are fixed with the

trained result and the moved image is output only once without the need for similarity loss

computation. The main difference between the inference stage in Figure 4.16 and the train-

ing stage in Figure 4.15 is that there is gradient calculation and parameter backpropagation

update in the training stage.
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Figure 4.15. Deep unsupervised learning for deformable printed image registration.
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Figure 4.16. Inference stage for deep unsupervised learning for deformable
printed image registration.

Figure 4.17 compares the global rigid image registration method and deep local de-

formable image registration method. The left figure is the global rigid registration process

and the right figure is the local deformable image registration network process. As shown in

the highlighted circle in Figure 4.17 , the major difference is the generation of the deformation

field φ. In the rigid registration, one set of parameters P and one transformation matrix

T are used to generate the deformation field after updating iteratively. In the deformable

registration, one deep CNN network (with weight W ) is used to generate the deformation

field.

Figure 4.17. Comparison of global rigid registration and deep deformable registration.
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In [101 ], the VoxelMorph method uses the U-Net [105 ] structure as its backbone network

for 3-D medical image registration. For the 2-D deformable printed image registration prob-

lem in this dissertation, we continue to use the U-Net architecture. Figure 4.18 shows the

U-Net architecture-based method for deformable printed image registration. The input to

the U-Net is a tensor of a digital image (If ixed) and a printed image (Imoving) concatenated

together. The U-Net structure can maintain the same resolution for the output deformation

field φ as the input images. Also, the hierarchical structure of the network is used for dif-

ferent levels of registration: higher-level features are used for overall larger movement of the

images; lower-level features are used for the local smaller misalignment.

Figure 4.18. The U-Net architecture for deep unsupervised learning for de-
formable printed image registration.

Problem of U-Net VoxelMorph-based Method

The U-Net VoxelMorph-based method above can solve many local deformable printed

image registration problems. For example, Figure 4.19 shows a qualitative result for printed

image registration using the U-Net VoxelMorph-base architecture. The left figure shows that
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the top part of the figure, including the straight line and characters, is misaligned, but the

bottom part is well aligned. The right figure after registration has a better merged result.

Figure 4.19. Qualitative result for deformable printed image registration
using the U-Net VoxelMorph-base architecture.

However, there are still problems with the U-Net VoxelMorph-based method. For ex-

ample, Figure 4.20 shows a failure case for deformable printed image registration using the

U-Net VoxelMorph-based method. Some edge areas highlighted in the right figure have a

diffused registration result.

The U-Net VoxelMorph-based method is also tested for medical image registration as

shown in Figure 4.21 . The test images for the experiment are retinal images from the

Fundus Image Registration Dataset (FIRE) [106 ]. In Figure 4.21 , the first image is the fixed

image If ixed before registration. There are key points for verifying the registration result in

the first image. The second one is the moved image Imoved after registration. The third one

is the comparison of prediction and ground truth. A detailed zoomed image of the third

comparison is shown in 4.22 . The fourth image is the deformation field φ. The vector size

and direction in the deformation field represent the shift of each pixel. The colors of vectors

represent different directions.
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Figure 4.20. Failure case for deformable printed image registration using
U-Net architecture.

Figure 4.21. Failure case for deformable medical image registration using
U-Net architecture.
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As shown in Figure 4.22 , the background image is the fixed image If ixed before registra-

tion. The black dots are the key points for result verification. The straight lines represent the

shift vectors of key points. In the figure, white lines are the predicted deformation vectors;

black lines are the ground truth deformation vectors. For the same key point, we hope the

direction and size of the predicted vector are close to the ground truth vector. From this

example, we can see that the U-Net VoxelMorph-based method fails in this case.

Figure 4.22. Zoomed-in image of a failure case for deformable medical image
registration. White lines are the predicted deformation vectors; black lines are
the ground truth vectors.

In summary, there are several problems related to the U-Net VoxelMorph-based method:

• The deformation between two images is limited.
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• The depth of U-Net requires additional architectural search or model fusion.

• The U-Net skip connection makes feature fusion only occur in the same resolution.

• The model takes up a lot of GPU memory for a large image input.

• The method is computationally intensive if using the U-Net VoxelMorph structure

iteratively since weights of the network cannot be reused.

4.3.2 Recurrent Network-based Method (R-RegNet)

Because of the problems of the U-Net VoxelMorph-based method, we propose a Recurrent

Registration Network, named R-RegNet, for printed image registration in this subsection by

leveraging the correlation and recurrent architecture. The R-RegNet has a network structure

similar to RAFT [107 ], but instead of estimating optical flow as in RAFT, the proposed R-

RegNet is used for image registration. Figure 4.23 shows the overall process of the network.

The fixed image If ixed and moving image Imoving are concatenated together as the input to

the feature extraction network. The weights of the feature extraction network for If ixed and

Imoving are shared to save computation time. The network structure of the feature extraction

network is the same as the context extraction network. The feature of the fixed image Ff ixed

and the feature of the moving image Fmoving are used in a correlation operation to generate

4 scale correlation volumes. The correlation volumes and the fixed image content features

Fcontent are then used iteratively as the input to the GRU blocks. The final output of the

GRU blocks is the deformation field φ with the same resolution as the original images If ixed

and Imoving. The weight parameters W are then updated by backpropagation of the final

unsupervised loss function L. Each block mentioned above will be introduced in detail in

the following subsections.

86



Figure 4.23. Proposed recurrent network structure R-RegNet for printed
image registration.

Feature and Content Extraction

The feature extraction and content extraction modules have the same network structure.

The extraction network is a modified residual network [62 ] with 6 residual blocks and 1

additional convolutional input layer and 1 additional output layer, as shown in Figure 4.24 .

If ixed and Imoving are concatenated as the input of the feature extraction network to generate

features with essential information such as edges, motions, contours, key points, etc. The

network will automatically learn the feature in the training stage. Feature extraction can be

considered as a dimension reduction process. The output features have a smaller resolution

compared to original input images, saving computational memory and time. Because If ixed

and Imoving often have similar content, the network weights are shared to reduce backprop-

agation computation further. For the content extraction network, the input is the fixed
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image If ixed instead of If ixed and Imoving together. The content feature Fcontent is used as the

reference feature when generating the deformation field φ.

Figure 4.24. Feature and content extraction network.

Correlation Operation and Correlation Volumes

Correlation is a mathematical operation reflecting the similarity or dependency of two

input features. It is also commonly used in deep neural networks for optical flow. Optical

flow networks, such as Flownet [108 ], Flownet2 [109 ] and RAFT [107 ], usually take two or

more consecutive frames as the inputs and predict the optical flow reflecting the movement

between different video frames. The scheme between optical flow prediction and image

registration is similar. The correlation and iterative prediction concepts can also be used in

image registration.

In the U-Net VoxelMorph-based method, the U-Net skip connection makes features fusion

only occur in the same resolution; and the receptive field of each pixel between two images is

limited. In this work, we use a correlation operation for Ff ixed and Fmoving for different scales

as shown in Figure 4.25 . The left features are Ff ixed and the right are Fmoving. As shown in

Figure 4.25a , Ff ixed and Fmoving have the same resolution. The correlation between features in

position a' and b' is calculated as: corr(a', b') = F (a')F (b'00)+F (a')F (b'01)+F (a')F (b'10)+

F (a')F (b'11). As shown in Figure 4.25b , the correlation between features in position a and b is

calculated as: corr(a, b) = F (a)F (b11)+F (a)F (b12)+F (a)F (b21)+F (a)F (b22). By comparing

Figure 4.25a and Figure 4.25b , we can find that the receptive field of corr(a, b) around b is a
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quarter of corr(a', b'). Different scales of correlation volumes can help generating deformation

fields at different resolution levels. In the experiment, we choose 4 scale correlation volumes.

(a) Ff ixed and Fmoving have the same resolution.

(b) Fmoving has 4 times resolution as Ff ixed.

Figure 4.25. Correlation volumes for different scales. The left features are
Ff ixed and the right are Fmoving.

Recurrent Neural Network (RNN) and Gated Recurrent Unit (GRU)

The Recurrent Neural Network (RNN) [110 ] is a type of deep neural network that reuses

the same inner weight parameters and updates the new input from the previous layer output

iteratively. RNN is commonly used for natural language processing (NLP) [111 ], video
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processing [112 ], speech recognition [113 ] and time series prediction [114 ] tasks. The image

registration task is an iterative process that has similarities with RNN structure tasks. Also,

the image features can be used as the hidden states in the RNN during iterations without

re-calculation for feature extraction, content extraction and correlation volumes. Compared

to the U-Net VoxelMorph-based method, the length of iteration for RNN is flexible. So the

deformation field φ between two input images is not limited.

In this work, we use a specific type of RNN named Gated Recurrent Unit (GRU) [115 ].

It has the property similar to that of long short-term memory (LSTM) [116 ]. Compared

with LSTM, the GRU has no output gate since the output gate is mainly designed for none

or empty signal output in time series tasks. So the GRU will always generate a valid output

for the deformation field φ. Also, the GRU has fewer parameters than LSTM.

As shown in Figure 4.26 , the correlation volumes feature and the content feature is

concatenated to a vector as the input x(t). z(t) is the update gate vector and h∗(t) is the

candidate activation vector. The hidden state h(t) refers to the deformation feature in step

t. The hidden state h(t − 1) of the previous step t − 1 will be used as the input h(t) of step

t.
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Figure 4.26. Gated Recurrent Unit (GRU).

4.3.3 Unsupervised Loss Function

The final unsupervised loss function consists of three parts: similarity loss Lsim, smooth

loss Lsmooth and reconstruction loss Lrecon:

L = Lsim(If ixed, Imoved) + Lsmooth(φ) + Lrecon(φ1, φ2) (4.1)

Similarity Loss

Similarity loss is a function to measure the similarity between the moved image Imoved

and the fixed image If ixed. Imoved is the warped moving image: Imoved = φ ◦ Imoving. So the

similarity loss can be expressed as:

Lsim(If ixed, Imoved) = Lsim(If ixed, φ ◦ Imoving) (4.2)
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For example, Mean Square Error (MSE) or Normalized Cross Correlation (NCC) can be

used for the similarity loss function.

Mean Square Error (MSE) is a function to measure the square error between two features.

MSE(X, Y ) = 1
N

N∑
i=1

(Xi − Yi)2 (4.3)

LMSE(If ixed, Imoved) = MSE(If ixed, Imoved) (4.4)

Normalized Cross Correlation is a normalized loss function to measure the relative dis-

placement of one feature to another feature vector. The NCC is defined as:

NCC(X, Y ) = 1
N − 1

N∑
i=1

(Xi − µX)(Yi − µY )
σXσY

(4.5)

Because higher NCC indicates a better alignment result, the final loss function is the

negative of NCC.

LNCC(If ixed, Imoved) = −NCC(If ixed, Imoved)

For printed image registration problems, the printing and scanning processes cause a

difference in color space between the fixed and moved image. To reduce the impact of the

color difference problem, choosing NCC loss instead of MSE loss is better.

Smooth Loss

Overfitting occurs if the networks learn only to minimize the similarity loss and introduce

a non-smooth deformation field during training. As shown in Figure 4.27 , we hope the

deformation field φ has similar directions and magnitudes in the neighborhood area.
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Figure 4.27. Example of a deformation field φ.

The smooth loss is introduced to force the consistency of the deformation field by mini-

mizing the total absolute difference of the nearby deformation vectors, as shown in Equation

4.6 .

Lsmooth(φ) =
N∑

i=1
∇vi (4.6)

Here, N is the total number of pixels and ∇vi is the difference between the neighborhood

deformation vectors. The neighborhood size depends on the average deformation magnitude

in different use cases. Usually, the neighborhood is a square of 3 × 3 or 9 × 9 for printed

image registration problems.

Reconstruction Loss

For deformable image registration, the deformation field φ should be symmetric when

the order of If ixed and Imoving changed. For example, we define the deformable registration

network as a function F (·, ·). φ1 is the deformation field output from input If ixed and Imoving,

as shown in Equation 4.7 .
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φ1 = F (If ixed, Imoving) (4.7)

Then we change the order of input to the registration networks function F . φ2 is the

output from input Imoving and If ixed, as shown in Equation 4.8 .

φ2 = F (Imoving, If ixed) (4.8)

As shown in Figure 4.28 , the top pipeline has the fixed image as the first input and

the moving image as the second input. The bottom pipeline changes the input order to

moving image and fixed image. The deformation field φ1 is the output of the top pipeline;

the deformation field φ2 is the output of the bottom pipeline. For the image registration

problem, we can add the one-to-one mapping constraint so that φ1 ≈ φ−1
2 , which means the

offset of the deformation field should be opposite.

Figure 4.28. Unsupervised loss function: reconstruction loss.
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The reconstruction loss is proposed in this work to force φ1 −→ φ−1
2 in the network

training process, as shown in Equation 4.9 . The reconstruction loss is used in the training

of the network for the consistency of the registration output.

Lrecon(φ1, φ2) = sim(φ1, φ−1
2 ) = (φ1 − φ−1

2 )2 (4.9)

4.3.4 Data Preparation

SIMULATED Dataset

For the experiment, we simulate a dataset for printed image pairs. The goal for the

simulation is to make changes, such as slight movement, color shift, noise change, etc.,

for the digital image and generate images similar to the printed version. 4030 images are

collected from the Fliker dataset. For each original image, 10 image pairs are simulated.

There are 40300 image pairs in total (32240 for the training set and 8060 for the test set).

The simulation is not based on the physics world for printers and scanners. Instead, data

augmentation methods used for the simulation include cropping, saturation removal, piece-

wise affine transformation, elastic transformation, noise and color shift. Example images in

the SIMULATED dataset are shown in Figure 4.29 .

HPLAB Dataset

In this work, we also collected a real printed and scanned dataset, named HPLAB

DATASET, as shown in Figure 4.30 . The original resolution ranges from 994 × 994 to

2330 × 3179. There are 332 image pairs in total (239 for the training set and 93 for the test

set). Each image pair consists of a fixed (digital) image If ixed and a moving (printed) image

Imoving.

The images are cropped with a stride of 300 pixels. In the training set, there are 20994

images cropped from original data. In the test set, there are 8120 cropped images as shown

in Figure 4.31 .
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Figure 4.29. SIMULATED DATASET: digital and simulated pairs.

Figure 4.30. HPLAB DATASET: digital and printed pairs.
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Figure 4.31. HPLAB DATASET: example of cropped image pairs.

FIRE Dataset

The image registration performance on the HPLab dataset can only be measured by

MSE or other similarity metrics since no landmark ground truth is provided in the dataset.

Another dataset named Fundus Image Registration Dataset (FIRE) [106 ] is used for an

additional experiment with ground truth, as shown in Figure 4.32 . The white dots in the

figure are the key control points for result verification. The FIRE dataset consists of 134

retinal image pairs. The ground truth has control point movement vectors from the fixed

image to the moving image. We resized the original resolution 2912 × 2912 to 512 × 512.

The error is calculated as the mean of the distance between registered and fixed images.
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Figure 4.32. Retinal images example from FIRE DATASET.

4.3.5 Experimental Results

This section introduces experimental results between the U-Net VoxelMorph-based method

and the proposed recurrent network R-RegNet method for the different datasets mentioned

above.

SIMULATED Dataset

Figure 4.33a shows the test result of U-Net VoxelMorph-based method. Figure 4.33b 

shows the test results of proposed recurrent network R-RegNet method.

Figure 4.34 is the detailed difference comparison of the test results of the U-Net VoxelMorph-

based method and the proposed R-RegNet method. As shown in the comparison image, the

difference image of the proposed R-RegNet method is slightly darker compared to the U-Net

VoxelMorph-based method. A lower absolute difference value (or a darker difference image)

means a better registration result.
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(a) Test result of U-Net VoxelMorph-based method.

(b) Test result of the proposed R-RegNet method.
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Figure 4.34. Comparison of the test results of the U-Net VoxelMorph-based
method and the proposed R-RegNet method.

Table 4.1 also shows a lower average RMSE score of all test images for the proposed

recurrent network R-RegNet than the U-Net VoxelMorph-based method. The RMSE is

calculated as RMSE =
√

1
n
Σn

i=1

(
Ii − Ĩi

)2
, similar to Chapter 2 , where Ĩi is the pixel value

of coordinate i after registration, Ii is the pixel value of coordinate i in the Fixed image

and n is the total number of pixels. A lower RMSE score means the value of the same

pixel coordinate is closer between the fixed and the moved image, which also means a better

registration result.

Table 4.1. Comparison of similarity scores of the U-Net VoxelMorph-based
method and the proposed R-RegNet method for SIMULATED dataset

U-Net VoxelMorph-Based Method R-RegNet Method
RMSE score 18.975 18.916

Figure 4.35 is a failure case of the proposed R-RegNet method in the SIMULATED

test Dataset. The left one is the fixed image. The middle one is the moving image before

registration. There is some distortion in the moving image compared to the fixed image. For
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example, the capitalized character “S” on the cloth is distorted in the middle image. The

registration algorithm is expected to correct this kind of distortion. However, on the right

side, the moved image after registration still shows the distortion, which means the proposed

R-RegNet method fails to register two input images.

Figure 4.35. A failure case in the test result of the proposed R-RegNet method.

Figure 4.36 is a detailed comparison of the difference image before and after registration.

As shown in the comparison image, the difference image after registration is still similar to

the image before registration.
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Figure 4.36. A failure case: comparison of the the difference images before
and after the proposed R-RegNet registration.

HPLAB Dataset

Figure 4.37 and Figure 4.38 are two examples that compare the test result of the U-Net

VoxelMorph-based method and the proposed R-RegNet method. Similar to the previous

subsection, a lower absolute difference value (or a darker difference image) means a better

registration result. The comparison images show that the absolute difference images of the

proposed R-RegNet method are better than the U-Net VoxelMorph-based method.
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Figure 4.37. Comparison 1 of test result of the U-Net VoxelMorph-based
method and the proposed R-RegNet method.

Figure 4.38. Comparison 2 of test result of the U-Net VoxelMorph-based
method and the proposed R-RegNet method.
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Table 4.2 is a comparison of RMSE score in HPLAB test dataset. The table also shows

that the proposed R-RegNet method is better than the U-Net VoxelMorph-based method

by RMSE score.

Table 4.2. Comparison of similarity scores of the U-Net VoxelMorph-based
method and the proposed R-RegNet method for HPLAB dataset

U-Net VoxelMorph-Based Method R-RegNet Method

RMSE score 24.123 23.899

In Figure 4.39 , we also show a failure case of the proposed R-RegNet method in the

HPLAB test Dataset. The left one is the fixed image. The middle one is the moving image

before registration. And the right one is the moved image after registration. The post of the

door is curved unnaturally after registration in the moved image.

Figure 4.39. A failure case of the proposed R-RegNet method in the HPLAB
test dataset result.

FIRE Dataset

For FIRE dataset mentioned in Section 4.3.4 , we have 4 experiments for comparison.

The first experiment trains the U-Net VoxelMorph-base network on the FIRE dataset. The

second experiment trains the proposed R-RegNet on the FIRE dataset. The third experiment

uses a pre-trained FlowNet [108 ]. We choose the FlowNetS model used in the original paper,
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which has been pre-trained on the Flying Chairs dataset with 22,872 image frames. The

fourth experiment re-trains the pre-trained FlowNet on the FIRE dataset.

Figure 4.40 and 4.41 are qualitative result of U-Net VoxelMorph-based method, the

proposed R-RegNet method, the pre-trained FlowNet method, and the re-trained FlowNet

method in the FIRE dataset.

In Figure 4.40 , the first row is the U-Net method result and the second row is the proposed

R-RegNet method result. The third row is the pre-trained FlowNet result and the last row is

the re-trained FlowNet result, respectively. The first column is the fixed image If ixed before

registration. The black dots are key control points for verifying the registration result. The

second column is the moved image Imoved after registration. The third column, which is

shown in Figure 4.41 in detail, is the comparison of prediction and ground truth. The fourth

column is the deformation field φ. The vector size and direction in the deformation field

represent the shift of each pixel. The colors of vectors represent different directions.
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Figure 4.40. Comparison of test result of the U-Net VoxelMorph-based
method, the proposed R-RegNet method, the pre-trained FlowNet method,
and the re-trained FlowNet method.

As shown in Figure 4.41 , the background image is the fixed image If ixed before regis-

tration. The black dots are the key control points for result verification. The straight line

represents the shift vector of each key point. In Figure 4.41 , white lines are the predicted

deformation vectors and black lines are the ground truth deformation vectors, respectively.

We hope the direction and size of the predicted vectors are close to the ground truth vectors

for the same key point. The result shows that the proposed R-RegNet method outperforms

106



the other 3 methods. The result also shows that the FlowNet is not working even when

pre-trained with 22,872 images on the other dataset.

Figure 4.41. Detailed comparison of the control points movement. White
lines are the predicted deformation vectors; black lines are the ground truth
vectors.
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In Table 4.3 , the average error between ground truth and predicted deformation on

control points proves the advantage of the proposed R-RegNet method. The average error

is calculated as:

Average Error = 1
n
Σn

i=1
Σk

j=1||φj−φ̃j||
k

where φ̃j is the predicted deformation vector from the registration network, φj is the

ground truth deformation vector, k is the number of key control points, and n is the total

number of tests in the dataset. A lower Average Error score means a better registration

result.

Table 4.3. Comparison of the similarity scores of the U-Net VoxelMorph-
based method, the proposed R-RegNet method, the pre-trained FlowNet
method, and the re-trained FlowNet method

Method Average Error (pixels)

U-Net VoxelMorph 10.050

R-RegNet 7.737

FlowNet (pre-trained) 11.660

FlowNet (re-trained) 8.225

Figure 4.42 shows a failure corner case of the proposed R-RegNet method. As shown in

the figure, the first column is the fixed image If ixed before registration. The second column is

the moved image Imoved after registration. The third column is the comparison of prediction

and ground truth. In the third column, white lines are the predicted deformation vectors;

black lines are the ground truth deformation vectors. The fourth column is the deformation

field φ. From Figure 4.42 , we can find that only 4 out of 10 predicted vectors are close to

the ground truth vectors (difference of direction less than 30 degrees and difference of length

less than 20%).
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Figure 4.42. A failure case of the proposed R-RegNet method in FIRE test dataset.

4.4 Summary of Contributions

In this section, we propose to use the deep learning framework PyTorch for intensity-

based image registration for parallel computation acceleration. We implemented the U-Net

VoxelMorph-based method for deformable printed image registration. Then, we further

propose the R-RegNet method for deformable printed image registration. The proposed

recurrent network-based method R-RegNet uses an integrated framework to solve image

registration for multi scales simultaneously. The proposed R-RegNet uses one weight-sharing

network for feature and content extraction, which reduces the model size. The weight sharing

of GRU could also speed up the iterative training process. We also introduce an unsupervised

loss function including similarity loss Lsim, smooth loss Lsmooth and reconstruction loss Lrecon.

The proposed reconstruction loss is used to constrain the consistency of the registration

output. The reconstruction loss can train the system to generate a more robust network

faster. We create the SIMULATED dataset for experiments, using data augmentation to

simulate printed images. We also create the HPLAB dataset with real digital and printed

pairs for the image registration problem. By comparison, the experimental results show that

the R-RegNet method outperforms other methods in terms of mean square error and average

ground truth deformation error.
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5. PHOTOREALISTIC IMAGES SIMULATION FOR 6D POSE

ESTIMATION

5.1 Introduction

This chapter introduces a new image dataset for object detection and 6D pose estimation,

named Extra FAT. The dataset consists of 825K photorealistic RGB images with annota-

tions of ground-truth location and rotation for both the virtual camera and the objects.

A registered pixel-level object segmentation mask is also provided for object detection and

segmentation tasks. The dataset includes 110 different 3D object models. The object models

were rendered in five scenes with diverse illumination, reflection, and occlusion conditions.

Pose estimation of surrounding objects serves as the basis of various computer vision

applications such as virtual reality (VR), augmented reality (AR), robotic manipulation,

autonomous navigation, and human-machine interaction. For example, a virtual object

should be accurately registered with the real world to insert it in an AR application. To do

so, the geometry, pose and shape of the objects and the surfaces composing a scene need

to be inferred from the image, video or depth information. For tasks such as autonomous

navigation or robot manipulation, the pose of the objects needs to be estimated to move the

robot or vehicle properly. In order to understand the geometry and position of the objects

composing a scene, object detection and pose estimation techniques are required.

Figure 5.1. Each frame in the Extra FAT dataset consists of an image with
640 × 480 resolution, a registered pixel-level object segmentation mask, and
the pose ground truth of the virtual camera and the objects
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Figure 5.2. Examples of objects in different scene types.

Traditionally, such methods have used RGB-D images to infer the pose of the objects.

The main drawback of such an approach is that depth cameras are not widely available (e.g.,

smartphones) and typically have low resolution and low frame rate, making it difficult to

detect tiny, thin, or fast-moving objects. Therefore, RGB-only-based methods are preferred.

Recently, many methods based on deep learning have been presented. These methods use

convolutional neural networks to estimate the 6D pose of objects. Such neural networks

estimate the pose by detecting keypoints [117 ], estimating a 3 dimensional bounding box

[118 ]–[120 ], matching the input image with rendered images [58 ], [59 ], or directly treating

pose estimation as a classification [121 ] or regression [122 ] problem.

With the increasing number of deep learning-based methods for RGB-only pose estima-

tion, there is a need for more training data. Capturing real images is highly time-consuming.

Therefore a faster approach is preferred. In addition, manually annotating the pose of ob-

jects is tedious and inaccurate. While several image synthesis methods have been presented
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Figure 5.3. 3D object models in the YCB dataset.

Figure 5.4. 3D object models in the LINEMOD dataset.

[123 ] to generate new training samples automatically, the resulting images can lack realistic

appearances. An efficient and effective alternative is photorealistic image rendering. Pho-

torealistic rendering allows easy generation of a large number of images containing realistic

lighting, occlusions, and real-world distortions with ground truth labeled automatically.

Many publicly available datasets consist of real-world images for 6D pose estimation. For

example, T-LESS [124 ] is a dataset with 30 industrial objects that lack distinctive texture.

There are 48.9K images in the T-LESS dataset. Many objects in the T-LESS dataset are

symmetric, and their similarity is challenging for pose estimation tasks. The YCB dataset

[125 ] contains 9.24K images of 77 real-life objects for benchmarking in robot grasping and

manipulation tasks. The images in the YCB dataset are captured by the BigBIRD Object

Scanning Rig and the Google scanner. The YCB-Video [122 ] dataset has 134K video frames

for 21 household objects taken from the YCB dataset. The LINEMOD dataset [126 ] is

another widely used public dataset for 6D pose estimation with various toys and household
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objects. The LINEMOD OCCLUSION dataset [127 ], [128 ] is a complementary dataset for

the LINEMOD dataset with 10K images under different lighting and occlusion conditions.

The Rutgers APC [129 ] dataset includes real images of textured products used in the first

Amazon Picking Challenge. The images in the Rutgers APC dataset with different poses

and clutter conditions are mainly used for training algorithms in warehouse objects pick-

and-place. The IC-MI dataset proposed in [130 ] has images for six objects heavily 2D and

3D cluttered with foreground occlusion.

Due to the large variety of datasets and evaluation metrics and the lack of a common

benchmark procedure, the BOP dataset [131 ] was introduced. The BOP dataset has a

thorough survey of 8 different datasets containing images and the evaluation methodolo-

gies. Additionally, the TUD Light and TOYOTA Light datasets are introduced in the BOP

dataset. The TUD Light dataset includes images of three objects without occlusion under

different illuminations. The TOYOTA Light dataset has 21 objects in total. Each object in

TOYOTA Light is put on top of a table with different tablecloths and five different lighting

conditions. The MVTec Industrial 3D Object Detection Dataset (MVTec ITODD) [132 ]

contains 28 industrial objects. The dataset focuses more on practical and challenging tasks

such as industrial bin picking and 3D object inspection. Besides datasets containing real

captured images, some photorealistic rendered datasets, such as Falling Things (FAT) [133 ],

have been made publicly available. The FAT dataset contains synthetic images with the 21

household object models from the YCB dataset.

In this work, we introduce a new dataset named Extra FAT. We follow a similar approach

as in the FAT dataset [133 ], but we include a more significant number of object models and

a larger variety of virtual scenes. This dataset includes rendered images containing many

3D object models from the most commonly used datasets for 6D pose estimation. Table 5.1 

compares our dataset with previously presented datasets 1
 .

For each rendered image in the Extra FAT dataset, the location and rotation for both the

virtual camera and the objects, and a registered pixel-level object segmentation mask with
1↑ The number of objects in the BOP dataset is from the BOP benchmark paper [131 ]. There are more
models provided for the BOP 2019 challenge.
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Figure 5.5. 3D object models in the TYO-L [131 ], TUD-L [131 ], IC-MI [130 ],
RU-APC [129 ], and T-LESS [124 ] datasets.

Table 5.1. Comparison of different 3D datasets: LINEMOD dataset (LM),
YCB dataset (YCB), T-LESS (T-LESS), IC-MI dataset (IC-MI), TOYOTA
Light dataset (TYO-L), Rutgers APC dataset (RU-APC), and TUD Light
dataset (TUD-L)

Dataset # obj # frames Type LM YCB T-LESS IC-MI TYO-L RU-APC TUD-L
LINEMOD [126 ] 15 18K real X
LM OCC [127 ], [128 ] 15 18K real X
YCB-Video [122 ] 21 134K real X
FAT [133 ] 21 60K rendered X
T-LESS [124 ] 30 48.9K real X
IC-MI [130 ] 6 4.2K real X
TYO-L [131 ] 21 55.4K combined X
RU-APC [129 ] 24 10K real X
TUD-L [131 ] 6 62.3K combined X
BOP [131 ] 89 >294K combined X X X X X X
Extra FAT (ours) 110 825K rendered X X X X X X X
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640 × 480 resolution, shown in Figure 5.1 , are provided. Such images and annotations can

be used to train and test methods for object detection, segmentation, and pose estimation.

The images are simulated in five different indoor scenes with various illumination and

occlusion conditions, as shown in Figure 5.2 . The indoor scenes include everyday environ-

ments such as office spaces, living rooms, and kitchens. There are 825K images in total. The

specifications for the Extra FAT dataset are shown in Table 5.3 .

Table 5.2. Feature impact factor and time consumption
Feature Histo-

gram
flatness

Color
variabil-
ity

Text
edge
count

Text
color
variance

Chroma
around
text

Chroma
his-
togram
flatness

White
block
ratio

Color
block
ratio

time(ms) 12.01 12.51 14.97 73.92 36.12 11.45 0.67 0.81
Id 24.61% 13.84% 11.02% 1.9% 10.2% 3.4% 48.43% 13.65%

Table 5.3. Dataset Specification
Extra FAT Dataset

Image Resolution 640 × 480
Field of view 90◦

Number of frames 825K
Number of objects 110
Number of scenes 5

5.2 Dataset

5.2.1 Image Generation

The Extra FAT dataset is generated by rendering 110 3D object models: 21 household

objects taken from the publicly available YCB dataset, 15 objects from the LINEMOD

dataset, 30 objects from the T-LESS dataset, 14 objects from the Amazon Picking Challenge

2015 dataset, 6 objects from the IC-MI dataset, 3 objects from the TUD Light dataset and

21 objects from the TOYOTA Light dataset, as shown in Figure 5.3 , Figure 5.4 and Figure

5.5 .
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As in the FAT dataset, we use the Unreal Engine 4 (UE4) [134 ], a commonly used tool for

game development, to render 3D object models in the virtual game scenery. The open-source

UnrealCV [134 ] plugin serves as a communication tool to generate photorealistic images and

pose ground truth.

In the FAT dataset, objects are placed at random positions from where they fall. In the

Extra FAT dataset, we move the object between pre-defined points (therefore, our objects

are not technically falling but are flying).

We first manually specify some candidate points within the virtual scene. During the

image generation process, pairs of candidate points are selected randomly and the virtual

camera and object trajectories are defined by linear interpolation between the two points,

as shown in Figure 5.6 . While moving the objects between the pair of points, we apply

a uniform random perturbation in the location and rotation of the object and the virtual

camera.

Statistics of the objects in the Extra FAT dataset show that the distributions of the Yaw,

Pitch, and Roll angles are uniform, indicating that the poses of objects in the dataset are

comprehensive and representative for the general pose estimation task.

Figure 5.6. Linear interpolation trajectory from candidate location points.
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In order to avoid placing the object out of the visible range of the camera, we constrain

the relative location and rotation between the camera and objects. As shown in Figure 5.7 ,

the pixel coordinates (px, py) obey the following constraint:

−µx < px < µx

−µy < py < µy

(5.1)

where µx = 200 and µy = 180.

The constraint of the relative object position with respect to the camera (tx, ty, tz) can

be computed from the pixel coordinates:

tx = px
tz

fx

ty = py
tz

fy

(5.2)

where fx, fy are the focal lengths in the x and y direction. The parameter tz is in the range

(θz1, θz2) to make sure that the object is in front of the camera and not too far from it, or

too close to it. We set θz1 = 0.3 and θz2 = 0.8.

In order to avoid having objects highly occluded by a wall or other objects in the scenery,

we add a constraint on the ratio of mask area to image size:

∑
mask 1

w × h
> threshold (5.3)

Images where the segmentation mask area to image size ratio is lower than threshold =

0.05 are discarded.

5.2.2 Training and Testing Setting

We propose three different training/testing split approaches. First, we provide a train-

ing/testing split with about 6,000 frames for training and 1,500 for testing for each object.

Second, the training and testing sets can be divided by scene. Four scenes can be used for
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Figure 5.7. Pixel coordinate constraint.

training and the other one for testing. Finally, we propose using Extra FAT entirely as a

training set and use the BOP [131 ] benchmark as a testing method.

5.3 Conclusion

This chapter presents a new dataset for 6D object pose estimation. By using photore-

alistic rendering, we obtain images with diversity in terms of illumination, reflection, and

occlusion. These images can be used to train convolutional neural networks for object detec-

tion, segmentation, and pose estimation. We hope Extra FAT will help the community to

propose novel algorithms for RGB-only image object segmentation and 6D pose estimation.

We invite other researchers to generate new datasets, including objects from other commonly

used datasets.
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6. SUMMARY

This thesis introduces the algorithms to classify, detect, simulate and improve the quality of

printed images with different defects.

First, we introduce image quality assessment, including defect classification, grading and

detection. We implement a CNN for solving the defect classification problem, printed mottle

defect grading and Faster R-CNN for the defect detection problem. The main contribution

of this work is to propose a deep learning-based method instead of traditional feature-based

methods for printed image quality assessment. For printed mottle defect grading, we propose

a new deep learning-based method. Unlike traditional methods such as feature extraction

using ∆E variation, our method utilizes a CNN for the first time to extract the feature auto-

matically by stochastic gradient descent. Transfer learning and data augmentation methods

are used to train a robust mottle defect grader. The proposed deep learning mottle char-

acterization method can be used in mottle grading not only for the test image with the

same uniform content as seen in the training set, but also for printed images with different

contents. The mottle grading method achieves a 13.16% error rate in the T dataset with

the same content and a 20.73% error rate in the combined dataset with different contents.

The proposed method can also be generalized to other printed defects, such as streaks given

an annotated streak dataset. The results prove the feasibility of deep learning methods for

defects from different domains.

Second, we introduce Generative Adversarial Networks for printed image simulation.

For deep learning-based approaches, a large amount of printed image data are required.

Compared to other methods using real printed images as training data with traditional data

augmentation, in this work, the defect images are automatically generated in our proposed

simulation framework. Thus we can reduce the printing and scanning process in the data

collection stage, which is costly and time-consuming. Generative Adversarial Network is an

efficient tool to generate simulation data for training classification or detection algorithms.

Thus, a deep CNN can be trained with a limited amount of scanned and digital image pairs.

The qualitative results show that the simulated images could be used for training networks

for printed image quality assessment.
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Third, we focus on the printed image registration problem. This research investigates

global and local image registration. For global image registration, we propose to use the deep

learning framework PyTorch for the intensity-based image registration algorithm to reduce

computation time. We create the SIMULATED dataset using data augmentation with elastic

distortion, noise and color shift to simulate printed images. We also collect the HPLAB

dataset with real digital and printed image pairs for image registration. For local deformable

image registration, we implement the U-Net VoxelMorph-based method for printed images.

Then we further propose the recurrent network-based method R-RegNet, which uses the

weight-sharing feature network to extract features and reduces the model size. The weight

sharing of GRU in our proposed recurrent network-based method R-RegNet could also speed

up the iterative training process. We also introduce unsupervised loss function including

similarity loss Lsim, smooth loss Lsmooth and reconstruction loss Lrecon. Experimental results

prove the proposed R-RegNet method outperforms the U-Net VoxelMorph-based method in

terms of mean square error or ground truth deformation error in all 3 test datasets.

Forth, a photorealistic image dataset simulation method is proposed for training deep

neural networks. A new dataset with simulated images for 6D pose estimation, named Extra

FAT, is introduced in this part. By using photorealistic rendering, the dataset has images

with diversity in terms of illumination, reflection, and occlusion. The simulated images can

also be used to train convolutional neural networks for object detection and segmentation.
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