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Just as the constant increase of

entropy is the basic law of the

universe, so it is the basic law of life to

be ever more highly structured and to

struggle against entropy.

Václav Havel
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PREFACE

Background: Magnetic resonance imaging technologies have recently achieved high-quality

levels that make comprehensive assessments of individual human brain structure and func-

tions possible. In the mean time, there is an increasing interest in advancing our under-

standing in i) human’s unique ways of thinking, reasoning, problem-solving that make up

individual human brain structure and function and ii) personalized medicine by leverag-

ing whole-brain functional connectivity. The latter is also referred to as clinical utility of

functional connectomes1
 .

Problem statement: Although there is an increasing body of literature on understanding

and quantifying individual level characteristics of human brain function at the whole-brain

(i.e., circuit) level, there is a lack of comprehensive understanding in subject-level properties

at the functional sub-circuit level, which plays a pivotal role in understanding different

phenomenon in human brain function such as consciousness. The goal of this dissertation

is to provide the brain connectomics research community with key properties of human

brain functional sub-circuits in the context of functional individual fingerprints. I believe

that this goal also facilitates the exploration of robust individual-level biomarkers in diverse

applications (both healthy controls and neurological and psychiatric disorders).

Approach: I investigated the individuality property of human brain functional sub-circuits

through two separate aims:

• As the human brain reconfigures itself from a resting condition to a task (or from

one task to another), we assess whether different functional sub-circuits show different

levels of fingerprints. Furthermore, can these differences of functional reconfiguration

across subjects be quantified?

• When applying a fixed template of an a priori set of functional sub-circuits to different

individual functional connectomes, we investigate if there are different levels of fitness
1↑ A functional connectome is a weighted network as originated by a correlation matrix, where nodes are
brain regions and edges are functional couplings between brain region pairs
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when mapping a fixed pre-determined functional sub-circuits across individuals. If

there is, can they be quantified?

Outcomes: By investigating the first aim, I demonstrated that different individuals did, in

fact, have their own signatures in re-configuring their functional sub-circuits as they switch

between tasks (or from a resting condition to a task). Further, the level of configuration

across resting state and tasks can be formally quantified across individuals. Through such

formalism, I showed that the individual level of functional sub-circuit configuration was asso-

ciated with different cognitive measures such as episodic memory, fluid/general intelligence.

By investigating the second aim, I showed that there was, indeed, different levels of fitness

when a pre-determined set of functional sub-circuits is mapped onto different individual

functional connectomes.

Take-home message: Although the concept of identifying an individual through neu-

roimaging modalities is still at its infancy, evidence of unique patterns of thinking, problem-

solving, and task-performing has been provided at the whole-brain level by many brain

connectomics researchers. Nonetheless, whether these unique patterns are propagated to the

functional sub-circuit level is not yet fully understood. This dissertation provides further

understanding of different characteristics of functional sub-circuits and in turn paves the way

to investigate an emerging concept of brain parcellation: individualized parcellation.
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ABSTRACT

It was only in the last decade that Magnetic Resonance Imaging (MRI) technologies have

achieved high-quality levels that enabled comprehensive assessments of individual human

brain structure and functions. One of the most important advancements put forth by Thomas

Yeo and colleagues in 2011 [1 ] was the intrinsic functional connectivity MRI (fcMRI) networks

which are highly reproducible and feature consistently across different individual brains.

This dissertation aims to unravel different characteristics of human brain fcMRI networks,

separately through network morphospace and collectively through stochastic block models.

The quantification of human brain functional (re-)configurations across varying cognitive

demands remains an unresolved topic. Such functional reconfigurations are rather subtle

at the whole-brain level. Hence, we propose a mesoscopic framework focused on functional

networks (FNs) or communities to quantify functional (re-)configurations. To do so, we in-

troduce a 2D network morphospace that relies on two novel mesoscopic metrics, Trapping

Efficiency (TE) and Exit Entropy (EE). We use this framework to quantify the Network

Configural Breadth across different tasks. Network configural breadth is shown to signifi-

cantly predict behavioral measures, such as episodic memory, verbal episodic memory, fluid

intelligence and general intelligence.

To properly estimate and assess whole-brain functional connectomes (FCs) is among one

of the most challenging tasks in computational neuroscience. Among the steps in construct-

ing large-scale brain networks, thresholding of statistically spurious edge(s) in FCs is the

most critical. State-of-the-art thresholding methods are largely ad hoc. Meanwhile, a dom-

inant proportion of the brain connectomics research relies heavily on using a priori set of

highly-reproducible human brain functional sub-circuits (functional networks (FNs)) without

properly considering whether a given FN is information-theoretically relevant with respect

to a given FC. Leveraging recent theoretical developments in Stochastic block model (SBM),

we first formally defined and subsequently quantified the level of information-theoretical

prominence of a priori set of FNs across different subjects and fMRI task conditions for any

given input FC. The main contribution of this work is to provide an automated thresholding

method of individuals’ FCs based on prior knowledge of human brain functional sub-circuitry.
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1. INTRODUCTION

1.1 An a priori set of functional networks and human brain functional finger-
print

1.1.1 An a priori set of functional networks

Definition 1.1.1. An a priori set of Functional networks (FNs) are human brain functional

sub-circuits that feature consistently across individuals at a resting condition.1  In network

science, FNs are closely related to the concept of ground-truth communities of a given complex

network.

The use of Yeo’s “functional atlas” (also known as Yeo’s parcellation or Yeo’s atlas, for

short) quickly became a common practice, in brain connectomics research, as an a priori

identification of functional networks for a given whole-brain functional connectivity profile

(or simply Functional connectome (FC)) estimated from an individual.

Definition 1.1.2. In the field of brain connectomics, the whole-brain large-scale human

brain connectivity profile (or Functional connectome) is estimated using a weighted matrix

that represents the pair-wise functional couplings between brain regions (typically computed

using Pearson’s correlation between Blood Oxygenation Level Dependent (BOLD) time series

of two respective brain regions). A detailed treatment of brain connectomics is provided in

Chapter 2 of this dissertation.

1.1.2 Individual human brain functional fingerprint

Definition 1.1.3. Fingerprint represents unique physical patterns of an individual through

the impression of a fingertip of a human finger.

Definition 1.1.4. In brain connectomics domain, functional fingerprint [2 ] represents

the idea that an individual’s unique cognitive patterns, signatures (e.g., ways of thinking or

performing a task) exist and are deeply embedded in the whole-brain functional connectivity

profile of such individual.
1↑ Hence, FNs are also known as Resting-State Networks (RSNs).
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Figure 1.1. An example of Yeo’s parcellation [1 ] of the human brain as-
sociation cortex into seven distinct functional communities: Visual cortex,
Somatomotor, Dorsal Attention, Ventral Attention, Fronto Partietal, Limbic,
and Default Model network.

Remark 1. Cognitive variability is a group level statement that is a consequence of individ-

uals that have unique cognitive patterns, signatures, i.e. ways of thinking or performing a

task.

Definition 1.1.5. In brain connectomics domain, functional fingerprint identifiability

refers to the quest to quantify and measure unique cognitive patterns (e.g., ways of thinking

or performing a task) by using individual whole-brain functional connectivity. Fingerprint

identifiability relies on the hypothesis that functional fingerprint exists.

Remark 2. In brain connectomics research, functional fingerprint is typically assessed by a

summary statistics such as identifiability rate (ID rate)2
 or intra-class correlation coefficient

(ICC)3
 .

Remark 3. A high level of functional fingerprint, as measured by fingerprint identifiability

statistics, elucidates the idea that functional fingerprint can be measured significantly above

the level expected by chance.
2↑ An identifiability rate is computed using a ratio between correctly identified pairs of functional connec-
tomes of the same individual (typically from two different scans (test and retest)) over the total number of
individuals in the dataset.
3↑ ICC measures the degree to which quantitative measurements within the same groups resembles themselves
when they are classified into different sub-groups.
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For instance, in a cohort of 100 unrelated subjects where each subject is scanned twice,

there is 1% chance to correctly identify an individual. A high level of fingerprint identifiability

typically ranges between 80% and 90% of correctly identified pair of the same individual in

different scans, see [2 ]–[4 ] for further information.

On a large-scale functional connectivity pattern, there is evidence of functional finger-

print:

• across subjects (individual characteristics),

• across tasks (functional reconfigurations),

• across time (temporal fluctuations)

at both whole-brain (macroscopic) and functional edge (”microscopic”) levels [5 ]. The

emergent concept of human brain functional fingerprint has opened many research opportu-

nities to personalized medicine for neurological and psychiatric disorder [6 ].

1.1.3 The introduction of individualized parcellations

A functional atlas such as Yeo’s parcellation [1 ] is derived from a population inference

approach. Specifically, parcellation approaches typically use the entire cohort’s whole-brain

functional connectivity profiles and look for shared properties by using different techniques to

derive a fixed template that maps brain regions of interest to specific functional networks.

Meanwhile, functional fingerprint supports the concept that that both subject- and task-

fingerprint exist at both functional edge (microscopic) and whole-brain (macroscopic)

level [5 ]. A common, fixed atlas to different individuals engaging in the same task (or the

same individual engaging in different tasks) may not optimally assess individual cognitive

signatures as represented by whole-brain functional connectivity. This has motivated Salehi

and colleagues to introduce the concept of ”individualized parcellation” [7 ], [8 ] . Specifically,

the authors argued that since there was evidence of individual functional fingerprint [2 ]

at the whole-brain (macroscopic) large-scale functional connectivity level, one should also

derive different specialized parcellations (specialized atlases) for different circumstances. For

instance, one would derive a specialized parcellation for an individual subject at rest as
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well as when actively engaging in a cognitive demanding task, (or even among different

individuals, doing the same task).

1.2 Research Opportunity

Up to now, the practice of mapping an a priori set of FNs onto different whole-brain

functional connectivity patterns of an individual (or different subjects performing the same

fMRI task, or the same subject performing different tasks) is still much more widely ac-

cepted, compared to the practice of individualized parcellations by Salehi and colleagues [8 ].

Both approaches are well-defined and offer different perspectives in parcellating the human

brain cortex into different functional sub-circuits. Nonetheless, due to the enormous com-

putational requirements for computing individualized, and specialized parcellations [8 ], the

fixed parcellation approach (e.g., Yeo’s atlas) continues to maintain its popularity and wide

acceptance among brain connectomics research community.

Figure 1.2. Identifying a research opportunity by exploring the individual
functional fingerprint characteristics of mesoscopic structures such as FNs in
the human brain.

Ever since the concept of human brain functional fingerprint and corresponding evidence

of functional fingerprint at the whole-brain (macroscopic) [2 ], [5 ] or functional edges/node-
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based (microscopic) [5 ] level were introduced, a gap was present in the brain connectomics

research that required a thorough investigation of diverse characteristics of human brain

fingerprint at the mesoscopic level (e.g. Functional networks).

This knowledge gap has become more critical to address because understanding the func-

tional fingerprint properties of FNs allows researchers to properly4
 address research projects

involving the mapping of a fixed parcellation (e.g., Yeo’s atlas) onto different whole-brain

functional connectivity for different individuals or same individual performing different fMRI

tasks and resting condition.

1.3 Dissertation Philosophical Statement

This dissertation reflects the extent to which an a priori group-level derived set of func-

tional networks exposes individual’s functional fingerprint. Specifically, we explore the po-

tential impacts to individual functional variations by mapping group-level derived mesoscopic

structures onto individual functional connectomes, which were shown to have high level of

functional fingerprint. Individual’s functional network fingerprint should be identifiable and

measurable at the mesoscopic (functional network) level, separately5
 by constructing a low

dimensional phenotypic space and collectively6
 by measuring the level of prominence (of an

a priori set of functional networks) using stochastic block models. This approach provides

further insights into basic functional sub-circuitry behaviors. In this dissertation, the analy-

sis of functional network fingerprint properties addresses on diverse characteristics of human

brain functional sub-circuits in the context of i) network reconfiguration across resting con-

dition and tasks and ii) determining the optimal threshold to an individual’s whole-brain

functional connectome.
4↑ By ”properly”, I refer to the observation that although the mapping of an a priori set of FNs is a very
common practice in brain connectomics research, the community seems to overlook the importance of such
mapping and its potential impacts on whole-brain functional connectivity.
5↑ By ”separately”, each FN fingerprint property is considered by itself.
6↑ By ”collectively”, an a priori set of FNs functional fingerprint is considered together as a pre-established
choice.
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Remark 4. Network reconfiguration involves cognitive changes that take place when one

switches from resting state to performing a task or from one task to another. In brain

connectomics research, these changes are reflected through functional connectivity.

1.4 Broader Impacts

The quest to identify, characterize, and quantify FN (mesoscopic) fingerprint across dif-

ferent conditions and/or subjects contributes to the field of brain connectomics, especially

when

• the practice of mapping a fixed parcellation has deeply embedded in many brain con-

nectomic research studies [9 ]–[14 ], compared to a relatively new emergent concept of

individualized parcellation as proposed by Salehi and colleagues [8 ];

• individualized parcellation [8 ], although promising, poses significant challenge in com-

putational requirement to compute a new, specialized parcellation7
 for each condition.

This is not favorable to investigate large dataset in brain connectomics.

• evidence of human brain functional fingerprint existence at both macroscopic (whole-

brain) and microscopic (functional edge) levels [5 ] has been presented [5 ] but not at

mesoscopic level such as FNs.

Therefore, this dissertation advocates that in order to support the brain connectomics

research community in brain connectomics applications that involve an a priori iden-

tification of FNs, it is vital to investigate the functional fingerprint properties of FNs.

By accomplishing the dissertation intended impacts, I also believe that investigating FN

fingerprint properties would also lay foundation knowledge in creating robust individual-level

biomarkers for functional sub-circuits of the brain that are clinically useful for personalized

medicine and diagnosis related to neurological and psychiatric disorders.
7↑ there is a bigger confound than computational shortcoming: states/conditions of networks depend on lot
of factors (e.g., hungry vs fed, happy vs sad, to name just a few). These effects could significantly modify
specific circuits so condition/state-specific parcellations are necessary.
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1.5 Overview of hypotheses, impacts, technical concepts and experiments

1.5.1 Quantifying individual’s configural breadth using network morphospace

Background: Human functional brain network (re-)configuration had been shown to asso-

ciate with highly individually driven cognitive measures such as general and fluid intelligence

on the whole-brain (macroscopic) level by the early work of Schultz and Cole [15 ].

Hypothesis: Differential (re-)configuration capacity between different FNs (e.g., each FN is

considered separately) is measurable and highly driven by individual functional fingerprint.

Impact: This research endeavor aims to better understand human brain functional sub-

circuit (re-)configurations and in turn provide a more comprehensive picture to brain network

reconfigurations at mesoscopic level.

Technical concept:

• Current literature: To address and quantify the FN fingerprint in the context of brain

network (re-)configuration, dimensionality reduction techniques are typically employed

to collapse the high-dimensional nature of mesoscopic structures in the human brain.

Studies pertaining brain network configurations have mostly leveraged techniques such

as Principal Component Analysis (PCA) and Singular Values Decomposition (SVD)

[16 ]–[19 ]. Nonetheless, PCA-based technique is not appropriate to study brain net-

work reconfiguration properties of mesoscopic structures in human brain functional

connectivity. In FCs, PCA-based technique requires a complete separation of sub-

networks (as represented by blocks of matrix) and hence, as result, interactions among

sub-networks are not considered.

• Contribution: An alternative approach to PCA-based technique is to use phenotypic

space (also known as morphospace). Morphospace is a low dimensional technique that

represents forms, shapes, and structures where each of its dimension is characterized

by a hypothesized phenotype/characteristic. In order to construct a low dimensional
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morphospace, the corresponding phenotypes need to be shown relevant and meaningful

to the system/structure under study. The relevance of this method lies in the fact that

it offers the freedom in designing the morphospace measures (space parameterization)

that are relevant to the system under study (e.g., human brain functional network

configuration properties). Using network morphospace, internal (within itself) and ex-

ternal (between itself and other sub-networks) configuration properties of functional

brain networks can be considered simultaneously. Specifically, meaningful phenotypes

of human brain functional network (re-)configuration need to be defined and subse-

quently quantified. A detailed exploration of FN fingerprint in the context of brain

network (re-)configuration is presented in chapter 3 of this dissertation.

Experiment: The dataset used in this project was the 100 unrelated participants based

on the Human Connectome Project (HCP), Q3 release [20 ]. Further information on this

dataset is described in chapter 3 of this dissertation. First, I quantify two relevant pheno-

types of human brain functional reconfiguration: segregation and integration as stated

in the literature [16 ]–[19 ], [21 ]. We extend these properties to functional network level by

parameterizing a two-dimensional Euclidean space by formally experimenting different de-

signs of Module Trapping Efficiency (TE; to quantify FN segregation property) and Module

Exit Entropy (EE; to quantify FN integration property). Morphospace design quality are

assessed by its philosophical meaning (i.e. does it represent segregation property of FN?),

its mathematical property (i.e. is it bounded? and does it have robust, well-defined nor-

malizer to provide a fair comparisons between different FNs, which have different sizes?).

After parameterizing such space with a specific geometrical design, I tested different designs

to quantify and individual functional network configural breadth, which contains two com-

ponents for each FN: functional reconfiguration, and functional preconfiguration. Different

quantification methods are assessed based on its relevance to the neuroscientific literature.

For instance, functional network reconfiguration needs to represent the coverage of different

fMRI tasks represented in a 2-D morphospace whereas functional network preconfiguration

needs to represent the ”distance” between rest and task-positive state. Finally, based on
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this particular morphospace design, I need to show that network configural breadth has a

high level of individual functional fingerprint. All experiments are tested against some null

models, which typically involves a random shuffle of FN memberships among the brain ROIs.

1.5.2 Thresholding a large-scale whole-brain functional connectome using stochas-
tic block models

Background: One of the critical steps in constructing large-scale brain networks concerns

the thresholding of statistically spurious edge(s) in FCs since state-of-the-art thresholding

methods are largely ad hoc. A dominant proportion of brain connectomic research relies on

mapping a priori set of FNs without properly considering whether it is relevant with respect

to a given FC. The recent advancements in the understanding of individual fingerprint and

personalized neuroscience/medicine, through brain connectomics research, have challenged

the brain connectomics community to investigate the possible impacts of mapping group-level

derived FNs to individual FC with high level of functional fingerprint.

Hypothesis: A level of FN fingerprint across different subjects in resting state condition is

quantifiable8
 , as FNs are mapped on to an individual FC. As an extension to this central

hypothesis, levels of FN fingerprint differ between i) resting condition and fMRI tasks (both

group and individual levels); ii) different scenarios such as different scan duration, brain

parcellations, and fMRI data processing pipeline.

Impact: The hypothesis was investigated in the context of thresholding the statistical

spurious edges in the whole-brain functional connectivity with respect to an a priori set

of FNs. This assessment is a step towards a comprehensive understanding of how a fixed

functional atlas is mapped to an individual functional connectivity profile that are proven to

exert high level of functional fingerprint at both macroscopic (whole-brain) and microscopic

(functional edge) level.
8↑ Note that FNs are also referred to as Resting-state networks (RSNs) because they were derived from
group-level at resting state condition. Hence, one would expect that the level of FN fingerprint is highest at
resting state condition.
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Technical concept:

• Current literature: The FN fingerprint is investigated within the context of thresh-

olding (eliminating) statistically spurious functional edges in a whole-brain large-scale

functional connectivity. This can be viewed as a ”signal-to-noise” (SNR) maximiza-

tion problem where meaningful functional edges are ”signal” and statistically spurious

edges are ”noise.” A complex network (graph) can be defined and interpreted as a

communicating channel [22 ], [23 ].

• Contribution: Hence, the problem of eliminating spurious functional edges with respect

to an a priori set of FNs can be view as the problem of ground-truth community

detectability, for a specific graph/network. The problem of eliminating statistically

spurious edges in whole-brain functional connectivity can be viewed as a denoising

procedure using a fixed ground-truth community as a reference across a threshold

range9
 . In other words, for a thresholded whole-brain functional connectivity, there is a

distinct level of signal-to-noise ratio (i.e. the ratio between meaningful and statistically

spurious functional edges). These signal-to-noise ratios reflect the recoverability of a

given ground-truth community structure. This is why choosing an optimal threshold

for a given functional connectivity can be effectively viewed as the problem of ground-

truth community recoverability for a given network (e.g., higher SNR means there

is higher chance of recovering ground-truth communities in the network). In this

particular case, ”weak” recovery [22 ], [23 ] is argued to be the most relevant recovery

criteria because there is no golden standard in functional network parcellation of human

brain whole-brain functional connectivity [1 ], [24 ]–[26 ]. In chapter 4, a information-

theoretic measure, an extended version of Signal-to-noise ratio as described in [22 ],

[23 ] is proposed to measure FN fingerprint level of prominence and to act as a guiding

measure to eliminate statistical spurious edges in the functional connectome. SNR

is motivated by the theory of weak recovery of ground-truth community for a given

complex network as proposed by [22 ], [23 ].
9↑ In the case of brain connectomics research where functional connectivity is estimated using Pearson’s
correlation, the magnitude of the functional edges are between -1 to 1.

30



Experiment: The dataset used in this project was the 409 unrelated participants based

on HCP Q3 release [20 ]. The goal is to address the collective behavior of an a priori set

of FN fingerprint (and correspondingly, FN fingerprint identifiability) across different indi-

vidual subjects and/or fMRI tasks at different levels of functional brain network granularity

levels.10
 For a given individual whole-brain FC, we extended the SNR measure proposed

in [22 ], [23 ] to the weighted network case to measure the FN level of information-theoretic

prominence (FN functional fingerprint) of such individual. We tested the behavior of SNR

across the thresholding range of [0, 1] for a given whole-brain FC and anticipate that the

SNR profile to behave non-monotonically across threshold values. We also tested SNR be-

havior across different tasks and resting condition, at both cohort and individual levels, for

a fixed Schaefer granularity level. Finally, we verify the relevance of using SNR as a guiding

measure to test the goodness of fit of an a priori set of FNs, across different threshold values,

to the whole-brain FC by implementing different community detection algorithms and com-

pute the adjusted mutual information between inferred (community structures recovered by

community detection algorithms) and ground-truth (e.g., Yeo’s atlas [1 ]) partition.

1.6 Overview of the Dissertation

In chapter 1, the motivation, research opportunity, scope of work and the research ques-

tions are stated. In chapter 2, an overview of brain connectomics, as an emergent research

field is briefly introduced. In chapter 3, brain network configural properties are studied

through the lenses of FNs. In chapter 4, a principled method to threshold whole-brain func-

tional connectivity is proposed using stochastic block models. Finally, chapter 5 introduces

an outlook on the future of brain connectomics research. All relevant mathematical notions

and background are introduced in the Appendix of this dissertation.

10↑ Schaefer’s parcellation [26 ] has different granularity levels with increasing number of brain regions for
the same individual with a fixed fMRI task or resting condition.
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2. BRAIN CONNECTIVITY: AN INTRODUCTION

2.1 Quantum mechanics of Magnetic Resonance Imaging

Preface. Nuclear Magnetic Resonance (NMR) was first introduced by the seminal work

of Purcell [27 ] and Bloch [28 ] in 1946. In 1973, Lautebur [29 ] and Mansfield [30 ] leveraged

NMR principles in describing a technique to determine physical structures. This has marked

the beginning of Magnetic Resonance Imaging (MRI). Since 1973, MRI has been utilized in

diverse contexts, including but not limited to biomedical, and engineering applications.

Quantum Mechanical Description of NMR. The spin angular momentum is ef-

fectively predicted by the quantum mechanical description of atomic nuclei [31 ]. The spin

angular momentum is quantitatively described by the spin quantum number I. The nucleus

must have the spin quantum number, denoted as I, in order to possess the property of mag-

netic resonance. In terms of biomedical and medical applications, the proton is the most

relevant nucleus to study as it is highly abundant in nature.

Quantum mechanics of nuclei spin. Each nucleus has a fixed nuclei spin property

that is either an integer or a half integer. The component to the nuclei spin, denoted as mI ,

is parallel to the z− axis and has 2I + 1 values {I, I − 1, ....,−I + 1,−I}. The magnitude of

the spin angular momentum is given by:

|P| = h̄
√
I(I + 1)

where P is a vector with the z− component, when applied a long the z− axis in a magnetic

field, is

Pz = h̄mI

The nuclei have a magnetic moment µ that is proportional to P:

µ = γP
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A nuclei with a constant proportionality, γ, is defined as the gyromagnetic ratio. In biomed-

ical and medical applications, the proton has a very specific, fixed magnetogyric ratio

γ = 2.675 × 108 rad/s/T .

Property of proton spin. Whenever a single proton spin is measured, it can only be

measured in two orientations: parallel and anti-parallel. The quantum state of a proton can

be compartmentalized into linear combinations of parallel and anti-parallel states. In the

presence of a magnetic field with strength B0, the protons precess at Lamor frequency, which

is determined by the magnetogyric ratio and the strength of field. This is also referred to

as bulk magnetization due to nucleus spins precession. The angular momentum P precesses

about the external field axis (e.g., z− axis with a specific angular frequency called the

Larmor frequency. The static field that is most commonly used in MRI applications causes

a precession corresponding to a specific photon called the radiofrequency (RF) photon.

The parallel and anti-parallel spins of protons. The longitudinal net polarization

is existence of a small proportion excess of protons that are in a lower energy state. When

an RF pulse is applied, this net polarization was tipped sideway (i.e., perpendicular to the

magnetic field vector) or reverse (i.e., 1800 pulse). The protons will become in-phase with

the RF and, as a direct consequence, with each other, as well.

2.2 Functional magnetic resonance imaging

The advent of neuroimaging techniques (modalities) has significant improved our under-

standing of brain functions and structure. Magnetic resonance imaging (MRI) is considered

one of the most important imaging modalities to explore human brain both structurally

and functionally. In this dissertation, the key focus is on functional MRI (fMRI) which has

proven to be leading data source to unravel human brain functions. This chapter aims to

provide an overview of Magnetic Resonance Imaging (MRI), and functional Magnetic Reso-

nance Imaging (fMRI) that are relevant to construct whole-brain functional connectivity. A

more thorough, detailed description of MRI physics can be found in the textbook by Hornak

[32 ] on MRI basics.
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2.2.1 A quick overview on the physics of Magnetic Resonance Imaging

According to Hornak [32 ], MRI is a technology that uses to produce ”high quality images

of the inside of the human body.” As a starting point, MRI technology used tomographic

imaging technique which ”produced an image of the nuclear magnetic resonance signal in a

thin slice through the human body”, according to [32 ].

The MR signal measures the difference between the energy transition of an unpaired

proton in a nucleus (most commonly hydrogen) from a relaxed, low-energy state (as the

subject enters the scanner at static field) to the post-application of the magnetic field (excited

phase). The static magnetic field strength can be controlled and measured in the unit of

Tesla. The magnetic field preferentially aligns proton spins in hydrogen nuclei with the

main pole of the magnet. A radio frequency pulse is introduced to excite the nuclei into

a higher energy state. While returning to the ground state, a proton emits a photon, and

this electromagnetic radiation is subsequently detected. The key data extracted from this

process is the relaxation time, e.g. the two exponential processes describing the elapsed

time between nuclei excitation to relaxation in the direction of a static B0 field (for the

construction of T1 image) and perpendicular field (to construct T2 image). Both times are

measured through coils (sensors) placed insider the scanner.

The key principle of MRI is the resonance equation in which the resonance frequency,

denoted as v, is proportional to the static magnetic field, B0: v ∼ B0. Another important

concept is the gradient magnetic field generates a variation in the magnetic field with respect

to each region of spins are oriented randomly [32 ]. For instance, in the absence of a magnetic

field, hydrogen protons spin randomly. As soon as a magnetic field is introduced (e.g., B0),

proton spin tend to align with it (either parallel or anti-parallel). The net magnetization

vector (NMV), which represents the collective behaviors of hydrogen protons orientations

start to form an angle with B0. Then, a radio frequency pulse is applied to excite the

NMV to flip it towards the transverse plane. When the pulse is turned off, the longitudinal

component (i.e., T1) recovers. The imaging contrasts emerges because different tissues will

have different T1 responses (i.e., recovery times).
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2.2.2 The Blood Oxygen Level Dependent Signal in functional magnetic reso-
nance imaging

The T2-contrast images are of critical importance to fMRI data, e.g. the transverse

relaxation. Ideally, homogeneous magnetic field results in an exponential decay for the

transverse relaxation time. The time constant of such function is called T2. In reality, the

inhomogeneity of magnetic field yields a different rate, denoted as T2*.

The T2* constant has close ties with mechanism measuring the Blood Oxygenation Level

Dependent (BOLD) contrast. Specifically, it is sensitive to relative ratios of oxygenated and

deoxygenated blood supply that depends on local neural activity. Deoxyhemoglobin (dHb) is

para-magnetic and hence, influences both MR signals and T2* constant [34 ]. The neuronal

activity induces into dHb changes that are quantified through hemodynamic response

function that peaks approximately 4-5 seconds later. Different brain regions could bear

different lags in BOLD signals. The hemodynamic response provides a reliable measure of

neural inputs to relevant areas of the brain and their corresponding processes [35 ]. In this

dissertation, whenever fMRI is mentioned and used, it implies the use of the BOLD signal. In

short, BOLD fMRI demonstrates the changes in deoxyhemoglobin concentration induced by

neural activity under either a ”task-induced condition or spontaneous modulation of neural

metabolism” according to [36 ].

2.2.3 Resting-state as a functional magnetic resonance imaging condition

Since the invention of fMRI, it took more than a decade for studies on co-activation of

spontaneous resting-state fMRI time-series to pick up pace with pioneer work by Biswal and

colleagues [37 ]. In essence, they showed that the brain neuronal activities at rest were not

idle, but rather collectively spontaneous and highly correlated among many brain regions

even without the introduction of any task-evoked condition [38 ].

Interestingly, low frequency resting-state fMRI BOLD time-series with frequency from

0.01 ∼ 0.1 Hz are shown to be a robust proxy reflecting spontaneous neural activity at a

whole-brain level. This has allowed a growing proportion of neuroscience literature to study

functional coupling among brain regions using resting-state BOLD signals. In the beginning
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Figure 2.1. The illustration of fMRI BOLD contrast mechanism. In the
presence of a magnetic field, hydrogen atom in water molecule get excited by
a specific characteristic radio frequency (RF). After such excitation, hydrogen
nuclei emit a similar RF until they gradually return to their equilibrium (low
energy) state. BOLD signal contrasts measures changes of blood oxygenation,
in part, resulting from the inhomogeneous magnetic field intensity shift. Panel
(a) shows the synaptic activities neurotransmitter recycling according to some
metabolic demand. Panel (b) shows deoxyhaemoglobin effects on fMRI image
acquisition. Adapted from [33 ].

of resting-state fMRI studies, there had been ongoing debates whether resting-state fMRI

time-series recorded at different brain regions resulted from physiological processes such as

respiratory. Since the early work of Biswal and colleagues, a fast-paced growing body of
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Figure 2.2. A study led by Moussa and colleagues was among one of the
first manuscript identified network modules (brain functional sub-circuitry)
that are highly reproducible across subjects. Specifically, four modules were
identified: visual (yellow), sensory/motor (orange), basal ganglia (red) and
Default Mode Network (blue/green). Figure is adapted from [39 ].

literature emerged supporting the evidence that resting-state fMRI measure spontaneous

neural activities [38 ], [40 ]. PET studies has also confirmed the neural source of LF BOLD

fluctuations. This had laid a foundation for subsequent studies to leverage BOLD fMRI

signals as a robust measure of resting-state functional connectivity, at resting state, among

brain regions from a whole-brain level.

One of the most monumental works on resting-state BOLD fMRI signals was published

in 2011 by Thomas Yeo and colleagues [1 ]. In this manuscript, the authors proposed the

concept of intrinsic functional connectivity MRI networks (fcMRI networks or functional

network (FN) for short). These networks which are brain functional sub-circuits distributed

across the cortex, are introduced explicitly in the later sections.
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2.3 From functional Magnetic Resonance Imaging to Functional Connectome

2.3.1 The functional connectomes at different scales

It is widely accepted that neurons are the basics building blocks of the nervous system per

neuron doctrine by Ramón y Cajal and Golgi [41 ], [42 ] and others. Nonetheless, tracking neu-

ronal behaviors for human brain in the current stage poses tremendous challenge as acquired

data is rather noisy and hence, difficult to process and analyze. As mentioned in the previ-

ous section, the increasingly rich repertoire of literature on resting-state fMRI has provide

solid ground to use BOLD fMRI signals as a robust measure of human brain functions and

structure. Such advancement has opened doors for investigation of functional and structural

connections in the human brain, modeled as networks as a new field of Brain Connectomics

(or equivalently Network Neuroscience). In brain connectomics field, the construction of

functional connectome (a proxy representation of human brain’s neuro-physiological activi-

ties that is approximated using network1
 ) can be divided into three distinct scales:

• Microscale: each neuron is treated as a single node (vertex) in the network;

• Mesoscale: nodes are defined as functionally specialized cell assemblies or neuron pop-

ulations; [43 ];

• Macroscale (large scale): nodes are defined using spatially connected voxels in a fMRI

dataset.

The current state of neuroimaging allows the construction of macroscale functional con-

nectomes with proven usefulness in subsequent analyses and reasonable processing time.

Omitting the details of starting from a microscopic level, this dissertation uses macroscale

whole-brain functional connectivity for all research endeavors. From this point, FC construc-

tion is referred to the large-scale (macroscale) estimation of functional connectivity.
1↑ Note that the term network used in this chapter and beyond is referred to the concept of complex network
introduced in Chapter 1 of this dissertation.
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2.3.2 The estimation of whole-brain large scale brain networks

One of the first tasks in converting neuroimaging fMRI2  data into network scientific data

(for further analysis) involves the definition of nodes. In large-scale whole-brain network,

nodes are referred to as brain regions of interest (ROIs), formed by agglomerating spatially

adjacent voxels. Such process is implemented by co-registering individual brain images

with an anatomically parcellated template image. The BOLD signals of individual voxels

registered in the same brain ROI are averaged to form the nodal BOLD time-series. The

mean of voxels’ BOLD contrasts alleviates the noise, hence, provides a better estimation

of neuro-physiological signals in the brain. The T1-weighted image is typically used to

anatomically register brain ROIs at a voxel level. Early proposals of parcellation schemes

for brain connectivity analysis are made by Desikan with 68 brain regions [44 ] and Destrieux

with 148 ROIs [45 ] implemented in the Freesurfer software. Over the past decades, several

Figure 2.3. Different choice of parcellations leads to different partitions of
corresponding functional networks. Note that the choice of node parcellations
can be independent of functional network (FN) parcellations. For instance, one
can choose Schaefer node parcellation and Yeo’s set of FN. Figure is adapted
from [46 ].

template, parcellating cortical regions of the brain, were proposed such as Glasser (360 nodes)
2↑ Other modalities involves: EEG, MEG, NIRS.
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[20 ], Power (280 nodes) [24 ], Yeo (51 nodes) [1 ], and most recently Schaefer with range from

100 to 1000 nodes [26 ]. It is important to note that the choice of a particular parcellation

is critical to further divisions into brain functional networks (or equivalently communities).

There is recent effort in revisiting parcellation choices in translational research because a

priori brain parcellations to study individual differences relies on certain assumptions such

as similar network properties across subjects, or that particular choice of parcellation does

not impact the analysis results [46 ]. The key advantage of using anatomical parcellation

template is that it supports direct comparisons of results to prior studies, leveraging the

same or similar template.

Once the nodes are selected, the network is fully constructed by formally defined the

so-called functional couplings. There are a few approaches when it comes to quantifying

the coupling level of two brain regions. The most widely used (perhaps the first) measure

of functional connectivity is through Pearson correlation, which estimates the level of syn-

chronization among pairs of time-series data in which high correlation (close to positive

one) indicates in-phase coupling. As much as it is widely used and accepted, the usage of

Pearson correlations are not without its shortcomings. In certain cases, the usage of mutual

information among two brain regions guarantees that the weighted network has no negative

functional edges.

2.4 Fingerprints in functional brain networks

The explosion of publicly available neuroimaging data [47 ]–[49 ] coupled with an increas-

ing evidence of using BOLD fMRI data as a reliable, robust measure of brain activity [50 ]–

[52 ] has allowed brain connectomics researchers to positions themselves to address funda-

mental questions in computational neuroscience using functional and structural connectomes

as a proxy for neuro activity. Among those quests lies a very fascinating question: does neu-

roimaging data contain unique cognitive signatures of individuals, either at resting condition

or during fMRI task performance? In the early work of Schultz and Cole, the authors as-

sociated general intelligence scores using spatial correlation between FC at rest and fMRI

tasks [15 ]. Intelligence along with other cognitive measures such as verbal or episodic mem-
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ory are highly individual-driven. Hence, the work in [15 ] demonstrated high potential of

investigating individual cognitive signatures using whole-brain functional connectivity.

Recently, FCs have been shown to exert robust and reproducible individual fingerprint

[2 ]–[6 ], [53 ]–[58 ]. In 2015, Finn and colleague were among the pioneers to put forth the

concept of ”brain fingerprint” [2 ]. In this seminal work, the authors provided evidence

that one can effectively recognize an individual from others using a measure as defined as

”identifiability rate” (ID rate). Conceptually, ID rate is a very simple, yet effective, measure

that can be computed using Pearson correlation between vectorized FCs of an individual,

obtained from the scanning session (either from different or the same imaging session).

Specifically, the framework started with a sample database of FCs, the authors show that, to

some extent, a target FC can be effectively identified by matching itself with one of the FCs

in the database by using spatial correlation measure. The success rate of identification was

above 90% for resting-state and between 54% to 87% for other conditions such as rest-task

or task-task session comparisons. This early work from Finn and colleagues has opened

up a whole new array of opportunities for brain connectomics researchers. The work was

monumental because it has paved the way to shift the field focus from population level

(group average) inference to individual inference (e.g., examining how individual networks

are functionally and structurally organized in unique ways). This approach lays the solid

foundation to study individual phenotypes in both healthy and disease participants. The

proposed ID rate, nonetheless, does have shortcomings. Firstly, the rate is heavily dependent

on the number of fMRI scans (e.g., the rate drops as the number of scans increase). Secondly,

it is a binary measure (e.g., if subject i test session FCtest
i has a spatial correlation of 0.5 with

one FC in the database and 0.49 with 10 other FCs (in the database), the ID rate will match

the target FC with the FC with highest spatial correlation). In other words, there is no

continuous degree of identification. Such technical shortcoming is sensitive to the quality of

fMRI data input, especially with respect to head motion, scan sites, and others [59 ]. Thirdly,

and most importantly, the initial proposal of Finn and colleague does not suggest a method

to improve the identifiability rate for a given neuroimaging dataset.

To improve identifiability in human functional connectome, the identifiability of func-

tional fingerprint was proposed as a objective function named differential identifiability, Idiff .
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The framework was based on a data dimensional reduction technique described in Amico

et al. [5 ]. Specifically, the framework leverages an optimization approach and is motivated

by the idea that functional connectomes of the same individual should look more similar to

themselves, compared to other individuals’ (others) FCs.

Idiff = Iself − Iothers

The identifiability matrix, denoted as I ∈ R+
n×n, is task-based for which Iij | i, j = [n]

represents the similarity - measured by Pearson Correlation between individual i (Test)

and j (Retest) sessions’ vectorized upper-triangular (functional) connectome matrices (under

original and reconstructed conditions). For rest or any given task, Iii | i ∈ [n] is measured by

2 visits (test and retest) for subject i. Moreover, Iself and Iothers are the average of diagonal

and off-diagonal entries, respectively.

Iself = 〈Iii〉∀i ; Iothers = 〈Iij〉∀i 6= j

The objective function is maximized, discretely, by deleting one principle component (PC) at

a time, starting from the one with least explained variance and, subsequently, reconstruct the

functional connectomes based on the remaining Eigen modes, denoted as PC. The original

FCs estimated from the cohort is named original FC, which corresponds to a original score

of Idiff . The constructed FCs are estimated by removing the PC; for each time a PC is

removed, a new Idiff score is computed. The cohort’s FCs are then reconstructed, namely

FCrecon as follows:

FCk
Recon = µk +

k∑
i=1

wk
i PCi

where wk
i ’s are weights corresponding to PCi’s. In each step, reconstructed FCs are mapped

from connectome space to identifiability score space. Hence, k is found by computing

argmaxk [Idiff ].
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2.5 Resting state functional networks

The human brain is an extremely complex multi-scale system whose interactions among

smallest elements such as neurons give rise to complex behavior (e.g., cognition). Besides

exhibiting the hierarchical structures across different spatial scales (e.g., micro-scale where

each neuron is treated as an individual node), human brain functional organizations, for

a fixed scale, also display ”modular” characteristic. Specifically, the human brain can be

decomposed into independent, yet highly interacting modules (or communities) [60 ].

Figure 2.4. Coarse-grained parcellation of human brain cortex into seven
FNs. These functional circuits are consistently reproduced across resting state
fMRI scans from 1000 participants. Figure is reproduced in courtesy of [1 ].

The modular characteristic of human brain is one of the backbone mechanisms that

allows human brain function to adapt flexibly with diverse cognitive demands. Functional

brain modularity is also an important tool to explain brain complexity (e.g., cognition as an

emergent property of complex systems). The modular characteristics of human brains were
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also noted in a very important work by Bullmore and Sporns [61 ] reporting that the human

brain can be sufficiently characterized into ”modules” whose elements (e.g., nodes/vertices

in network-scientific sense) are contributed by different distributed areas across the cortex.

Yeo and colleagues in 2011 [1 ], see figure 2.4 , put forth a very important concept: intrin-

sic functional connectivity MRI (fcMRI) networks or functional networks (FNs) for short.

These FNs are indeed parallel distributed circuits extracted from noninvasive imaging

techniques such as fMRI. Specifically, Yeo and colleagues noted that: ”An intriguing pos-

sibility is that the majority of the human cerebral cortex involves multiple parallel circuits

that are interdigitated throughout association cortex such that each cortical lobe contains

components of multiple association networks.”

Some of the noted approaches to identifying different FN sets include Power et al. [24 ],

Glasser et al. [62 ], Gordon et al. [25 ], and most recently Schaefer et al [26 ]. The establish-

ments of different atlases are, in part, due to the implementations of different approaches and

techniques. Some of the most common one are meta-analysis of intrinsic functional connec-

tivity patterns [24 ], [63 ], multi-model approach [62 ], functional edge detection approach [25 ].

More exhaustive review can be found in the work by Bryce et al. [46 ]. An important note

is that different parcellations yield different assignments of human brain regions of interest

(ROIs) to one particular (or occasionally multiple) FN(s). For instance, a given brain region

might belong to the default mode network in Glasser’s [62 ] but not in Power’s parcellation

[24 ].

An a priori identification of human brain FNs creates a template to reveal different ex-

ecutive functional organization in cognitive, developmental, healthy or neurodegenerative

disease research [46 ]. After applying a functional atlas (e.g., a guidance to which brain re-

gion(s) belong to which FN(s)), researchers have a baseline reference for the physiological,

functional, individual differences of the same FN across different conditions or different FNs

across the same task. Specifically, the uses of an a priori set of FNs allow examination of

i) the functional differences among individuals under different cognitive conditions [9 ], [10 ];

ii) aging condition [9 ], [11 ], [12 ]; iii) psychopathology or neurological dysfunctions [13 ], [14 ].

A comprehensive review on the practice of a priori set of FN mappings can be found in the

work of Bryce and colleagues [46 ].
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Importantly, as shown in a study by Amico and Goñi [5 ] per figure 2.5 , functional edges as

sorted by Yeo’s FNs also exert different level of fingerprint (task- and subject-). Specifically,

some FN such as the visual cortex contains more functional edges with more task- than

subject- fingerprint; other FN such as the default mode network contains more functional

edges with more subject- than task- fingerprint.

Figure 2.5. Subject Intra-class correlation (ICC) plot highlights functional
edges for which there is more subject variability than task variability, i.e.
functional coupling is more determined by who is the subject than what the
subject is doing. Task ICC Plot highlights functional edges for which there is
more task variability than subject variability.

Although FNs open many promising opportunities to explore diverse brain network func-

tions, they are not unique. In other words, there is no ”golden standards” regarding how

to parcellate the association cortex into distinct parallel circuits. Nonetheless, in this dis-

sertation, Yeo’s association cortex parcellations [1 ] into distributed functional circuits are

reviewed and utilized in the subsequent sections. These circuits are, from this point on,

referred to as Yeo’s functional networks (FNs) or Resting-state-networks (RSNs), see figure

2.4 for further details.

45



3. A MORPHOSPACE FRAMEWORK TO STUDY

FUNCTIONAL BRAIN NETWORK CONFIGURATIONS

3.1 Preliminaries on Network Morphospace

3.1.1 Literature Review

In general, morpho- (in morphology) is the study (-ology) of living (biological) shape

(morph-). The motivation of this field is to disentangle the complex taxonomic relation-

ships between, for instance, species or biological entities, see figure 3.1 as an example of a

phenotypic space.

Figure 3.1. An example on how to construct a three dimensional phenotypic
space, representing three distinct external features of foraminiferal. In such
case, those phenotypes are deviation angle, translation factor, and growth
factor. Reproduced in courtesy of [64 ].
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Figure 3.2. A phenotypic hyperspace is constructed to characterize different
types of complex networks using three parameters: randomness, heterogeneity
and modularity. Figure is adapted from [66 ].

McGhee first proposed the concept of theoretical morphospace in [65 ]. As such, it is

constructed using N-dimensional geometric hyperspaces. An example of such space is given in

the figure 3.2 . In the last two decades, with the unprecedented growth pace of network science

there is an emergent need to study the origins (or subtle similarity/difference in topological

features) of networks (or networked systems). Such interesting interplay ultimately gave rise

to the interdisciplinary field called Network Morphospace. Here, a new term is added, i.e.

-space which can be understood as mathematical space, such as vector space (as introduced

in the Appendix 5.5 ).

Network morphospace can be characterized as a comprehensive/quantitative description

of complex systems, i.e. networked systems, using low (finite) dimensional space. The liter-

ature on network morphospace is active with exciting efforts from multiple disciplines such

as i) language [67 ], ii) efficiency in communication [68 ], origins of hierarchy [69 ] for complex
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Figure 3.3. A morphospace construction to study the hierarchy properties of
different types of networks. Reproduced in courtesy of [69 ].

networks (see figure 3.3 for more details), or ii) configuration property [70 ], consciousness

[71 ], topological motifs [72 ] in brain networks, among many others.

Comprehensively, a principled way of looking how (networked) systems evolve and change

is through phenotypic spaces, also called morphospaces, see [65 ], [68 ], [69 ], [72 ]–[76 ]. The

concept of a morphospace can be used to analyze many other mathematical objects, in-

cluding networks. When applied to networks, quantitative traits of global or local network

topology are conceptualized through the Cartesian coordinates defined in this abstract space.

A brain’s subsystem configuration is topologically represented by a point in this multidimen-

sional space.
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3.1.2 A formalism on network morphospace

Let G ∈ G denotes a network/graph that belongs to the space of graphs/networks;

v ∈ V ⊂ Rn be a point in a multidimensional space (over real field R).

Definition 3.1.1. A network morphospace (denoted as f) is an operator that maps networks

(graphs) into finite dimensional phenotypic space Pd where d << ∞ is the space dimension.

G f−→ Pd

Morphospace Complexity. As carried over by the concept of complexity and (math-

ematical) space, morphospace complexity can be measured by the number of geometric

parameters (morphospace measures) used to efficiently describe the network phenotypes. In

the above definition, the complexity is measured by d. It is important to note that, one

of the advantages of defining theoretical morphospace is the freedom of designing geomet-

ric parameters without considering whether a specific form exists or not. Once mapped on

to the theoretical morphospace, the robust parametric design would yield an area which

non-existent forms occupy.

3.2 Brain Functional Network Configuration and Morphospace

3.2.1 Background and Motivation

A particular challenge in network neuroscience is the derivation of a comprehensive means

to quantify brain network configurations across different mental states and cognitive tasks.

Configurations across a collection of cognitive tasks can be conceptualized at three distinct

levels of granularity. 1) Network configural breadth: the overall extent, across many

different mental states and tasks, to which the brain networks change in configuration. 2)

Task-to-task (transitional) reconfiguration: brain network reconfigurations that occur

when transitioning from one specific cognitive or mental state to a second, different state.

3) Within-task reconfigurations: reconfigurations that occur within one task, such as

shifts from lower to higher cognitive demands, or vice versa. Formal definitions are provided

in later section.
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To properly study functional brain configuration properties, one must first determine at

which scale network configurations can be efficiently identified at both the group level by

task and at the phenotypic level by individual subject. To this end, Cole and colleagues in

[77 ] note that task configurations are rather subtle in both macro- (whole-brain) and micro-

(edge-to-edge) levels, relative to resting configuration. Hence, to efficiently disentangle task

[78 ] and subject fingerprints [2 ], [5 ], [6 ], [53 ], [57 ], [58 ], [79 ]–[81 ] existing in brain network

configurations , one needs to consider mesoscopic scale (i.e. functional networks). It has

been argued that higher level of cognition emerges through interactions of subsystems [82 ].

Specifically, mesoscopic structures exhibit modular characteristics that can adapt to cogni-

tive demands ”without adversely perturbing the remainder of the system” [60 ]. Mesoscopic

structures can be viewed as either (i) brain connectivity patterns related to unique cognitive

modes [83 ], [84 ], or (ii) subsets of brain regions that sustain and/or modulate one particular

function [1 ], [6 ], [8 ], [24 ], [62 ].

Traditionally, a mesoscopic exploration of functional brain networks would either involve

the detection of functional communities [85 ] based on topology [86 ], [87 ] or on the information

flow [88 ], [89 ]. But, both these approaches are limited in evaluating the dynamics of

detected communities across time, tasks, and/or subject. On the other hand, we would like

to have a framework that can capture the behavior of a reference set of FNs with changing

mental states; a framework that can not only characterize the topology of FNs and but also

the flow of information within and between the FNs. Such a formalism can help us define

and quantify different types of configurations that functional brain networks can assume and

re-configurations that they go through when switching between seemingly infinite number of

mental states.

Two primary approaches examine mesoscopic configurations across different cognitive/men-

tal tasks. One approach unravels newly emergent functional modules in each single task

and/or each subject separately. Many interesting concepts rely on this approach, such as in-

dividualized (atlas-free) parcellation [90 ], [91 ] or task-dependent atlases [8 ]. An alternative

is to maintain a set of baseline functional modules and, instead, monitor their properties

across tasks. For a framework to assess network configural breadth, the first approach does

not permit tracking changes between cognitive states that are both subject-comparable and
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task-compatible. Subject-comparable refers to a common brain parcellation across subjects,

whereas task-compatible refers to a common brain parcellation across different tasks. As

stated by Cole et al., the brain’s common intrinsic network is prominently reflected by its

resting state architecture [77 ]. Similarly, Shine and colleagues hypothesize that the human

brain exhibits and maintains a core integrative network that dynamically configures dur-

ing cognitive demands [19 ]. In that context, task configurations in general can be viewed as

topological perturbations departing from the resting state architecture that can be quantified

by comprehensive edge-wise changes in the functional connectomes.

3.2.2 The necessity of a mesoscopic morphospace

Assessing brain network (re-)configuration requires an appropriate identification of a sys-

tem scale in which changes can be efficiently detected among various cognitive tasks/mental

states and/or subjects. At both the functional edge (microscale) and entire whole-brain

functional connectome (macroscale) levels, these changes are rather subtle [18] and hence,

insufficient to detect underlying shifts across tasks and reflect cognitive changes. This leaves

mesoscopic structures (for instance, FNs in the case of brain functional networks) as a suit-

able scale to investigate network configural breadth.

Further, an effective measure of functional network adaptations in response to varied and

changing cognitive demands should, to some degree, reflect cognitive capacity. For example,

greater intelligence has been associated with reduced across-task network configurations,

suggesting a degree of efficiency (smaller changes in FN connectivity across tasks; [15 ]).

Inspired by [15 ], we consider rest a reference with respect to network configural breadth.

As opposed to measuring similarity (reconfiguration efficiency) in a pairwise fashion rest-

to-task reconfigurations [15 ], we expand the concept of reconfiguration by assessing the

differentiating capacity of functional connectivity through sampling the cognitive space [80 ],

[92 ] using multiple fMRI tasks simultaneously and collectively measuring change. Our goal

is to propose a minimal number of measure(s) that can capture functional network task

and subject characteristics that strive beyond similarity measure induced from pair-wise in-

teractions, i.e. Pearson correlations as reconfiguration efficiency measure proposed in [15 ].
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Moreover, this would allow an assessment of complex cognitive changes induced from configu-

ral breadth. Further, large whole-brain (macroscale) configuration changes while performing

tasks or across individuals might not be expected [77 ] and do not provide specificity on the

spatial organization of those changes along the cortex. Here, we track reconfigurations at the

mesoscopic functional networks level, allowing the hypothesis testing that some functional

circuits reconfigure more than others while not focusing on edge-to-edge functional changes

that are subtle among rest and task states.

As we look into how mesoscopic interactions changes with respect to task, at the same

time we have to consider reflecting changes in both internal (within one FN) and external

(between a pair of FNs) changes. Hence, straightforward pair-wise similarity would not

suffice. In other words, these functional circuits cannot be studied in an isolated fashion.

One needs to consider functional network configural breadth with respect to the entire cortex,

e.g. both within- and between- functional networks simultaneously.

Consequently, assessing specific network configural breadth requires a mathematical map-

ping of mesoscopic changes into a well-defined space comprising measures that integrate

interactions among sub-systems (such as functional communities in brain functional net-

works). To accomplish this goal, two relevant theories that can satisfy the aforementioned

requirements, are (i) stochastic processes, [93 ], [94 ], and (ii) information-theory, [95 ]–[97 ].

Stochastic processes provide an appropriate tool to, metaphorically, inject a random particle

that walks among connectome nodes, through their interactions (i.e. functional edges), in

such a way that no particular pairwise or local interaction can fully describe its behavior. In

other words, random walk theory allows us to study configural breadth based on the topolog-

ical changes induced by inter- and intra- communities when a participant performs different

tasks and rest. Information theory provides the quantification of uncertainty in choosing the

preference of communicating channels among functional communities. Specifically, it allows

a fine-grained (edge-wise) approach that is complementary with the stochastic modelling

approach, as seen in [88 ], [89 ], especially in the domain of community structures in complex

networks. In other words, configural breadth is investigated through information-theoretic

changes induced by exiting edges between a given FN with others when a participant is

involved in different tasks and rest.
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3.2.3 Conceptualization of configuration morphospace

Here, we propose such a formalism to quantify network configural breadth using two

distinct assessments (measures/metrics): i) “trapping efficiency” (TE), describing the extent

to which a particular FN (e.g., the frontoparietal network) “traps” an incoming hypothetical

signal, and ii) “exit entropy (EE),” describing the uncertainty as to where (what nodes)

that same signal would exit a given FN to enter another FN. We propose that for a given

FN, the relative combinations of these two measures across a comprehensive range of task

and mental states defines a “mesoscopic morphospace.” This 2-dimensional geometric shape

formed by unique combinations of TE and EE can quantify the extent to which a specific FN

changes in its behavior as a module. In other words, it is degeneration of modular structure

or otherwise, within the repertoire of tasks situated in a “cognitive space.” [80 ], [92 ].

This work aims to formally parametrize subsystem changes that occur across a broad

span of cognitive and mental states. We refer to all those across-task (flexibility) changes

occurring in a functional network as “network configural breadth”. Furthermore, this frame-

work also paves the way to model the nature of transitional FN reconfigurations that occur

either between two different tasks (“task-to-task transitional reconfiguration”) or within-task

according to varying levels of difficulty and demand. The purpose of this work is, hence, to

define and assess theoretical network properties of a priori functional modules as determined

by resting state FNs, leveraging the idea that tasks modify a common intrinsic network to

efficiently meet cognitive demands [77 ]. As noted by several authors [15,16,26], executive

subsystems in the brain are consistently reproducible across many individuals at rest [1 ],

[24 ], [62 ]. We consequently see resting-state functional communities as a common (fixed)

foundation upon which modifications induced by cognitive demands from tasks occur.

To model network configural breadth, one then needs to map FN configurations into a

well-defined mathematical space. On a practical level, the framework needs to estimate

the minimum number of parameters required to characterize network subsystem changes,

which constitute global comprehensive changes (i.e., functional connectome changes due to

different cognitive/mental tasks). A principled way investigating how systems evolve and

change is through phenotypic spaces, also called morphospaces, see [65 ], [68 ], [69 ], [72 ]–[76 ].
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The concept of a morphospace could be used to analyze many other mathematical objects,

including networks. When applied to networks, quantitative traits of global or local network

topology can be conceptualized through the Cartesian coordinates defined in this abstract

space. A brain’s subsystem configuration is topologically represented by a point in this

multidimensional space.

3.3 Scope of the project

The primary aim of this work is to clearly define and quantify different configurations

that FNs can assume, as well as measure their nature of re-configurations switching between

a large number of cognitive states. From a graph-theoretical perspective, FNs and their

corresponding reconfigurations are described by two attributes: topology and communica-

tion. From a system dynamic perspective, FNs can be characterized by segregation and

integration [98 ] properties across which the human brain reconfigures across varied cogni-

tive demands [16 ]–[19 ], [21 ]. To formally capture these diverse characteristics of FNs, we

constructed a mathematically well-defined and well-behaved 2D ”mesoscopic morphospace”

based on two novel measures defined for non-negative, undirected, weighted functional con-

nectomes: Trapping Efficiency (TE) and Exit Entropy (EE). Trapping Efficiency captures

the level of segregation/integration of a functional network embedded within the functional

connectome and quantifies the extent to which a particular FN ”traps” an incoming signal.

Exit Entropy captures the specificity of integration of an FN with the rest of the functional

connectome, and quantifies the uncertainty as to where (in terms of exit nodes) that same

signal would exit the FN. In summary, this mesoscopic morphospace is a representation of

the cognitive space as explored within and between cognitive states, as reflected by brain ac-

tivity in fMRI. Such representation relies on FNs reconfigurations that can be tracked, at an

individual level, and at different granularity levels in network (re-)configurations. All three

induced sub-graphs have the same cardinality (|C| = 8) with different number of exits (con-

nections to G\C). Nonetheless, depending on their topological structures, the corresponding

morphospace measurements (TE and EE) have rather distinct values.
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Figure 3.4. Morphospace Measurements - examples. C represents communities in
network G. v represents nodes and uv represents edges in the network.

By using this 2D TE,EE-based morphospace, we formally study Network Configural

Breadth (Figure 3.4 ), the most global and coarse grain exploration of the cognitive space, and

its subsequent functional configuration components. To that end, we formally define mea-

sures of (1) functional reconfiguration (capacity of an individual to reconfigure across widely

differing cognitive operations) and (2) functional preconfiguration (efficiency of transition

from resting-state to task-positive state [15 ], for potentially any community or FN. We thus

intend the idea of a “mesoscopic morphospace” to capture brain’s subsystem configurations

across multiple cognitive/mental states, which in turn may relate to behavioral measures,

as shown in [15 ], [99 ]. In particular, we aim to determine if FN configural properties, which
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comprises of: (i) “functional preconfiguration” - functional readiness transitioning from rest

to active task engagement and (ii) “functional reconfiguration” - FN transformations across

mental/emotional states, relate to cognitive abilities such as intelligence.

In summary, the purpose of this work is to 1) assess and subsequently quantify functional

network pre- and reconfiguration and 2) test the associations of FN configural breadth with

cognitive ability. We first present the theoretical aspects of this framework and then apply

it to the dataset of one hundred unrelated subjects from the Human Connectome Project

(HCP) [20 ], [100 ].

3.4 Dataset and Data Processing Pipeline

In this section, we provide the details related to the dataset used to analyze the notion

of configural breadth. We also provide information related to the brain atlas.

Brain atlas

The brain atlas used in this work is the based on the cortical parcellation of 360 brain

regions as recently proposed by Glasser et al. [62 ]. Similarly to reference [5 ], [84 ], 14 sub-

cortical regions were added, as provided by the HCP release (filename Atlas_ROI2.nii.gz).

We accomplish this by converting this file from NIFTI to CIFTI format by using the HCP

workbench software http://www.humanconnectome.org/software/connectomeworkbench.html ,

with the command -cifti- create-label. This resulted in a brain atlas of 374 brain regions

(360 cortical + 14 sub-cortical nodes).

Using Human Connectome Project Dataset, we explore the characteristics of functional

networks’ configural breadth by utilizing Resting State Networks (FNs), see [1 ], which in-

cludes seven functional networks (FNs): Visual (VIS), SomatoMotor (SM), Dorsal Attention

(DA), Ventral Attention (VA), Limbic (LIM), Frontoparietal (FP), Default Mode Network

(DMN); Sub-cortical (SUBC) region, as mentioned before, is added into this atlas for com-

pleteness. Thus, the parcellation used in this paper comprises of eight (8) FNs.
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HCP Dataset

The fMRI dataset used in this paper is available in the Human Connectome Project

(HCP) depository (http://www.humanconnectome.org/ ), with Released Q3. The processed

functional connectomes obtained from these data and used for the current study are avail-

able from the corresponding author on reasonable request. Please refer to below detailed

descriptions on the dataset and data processing.

HCP Functional Data

The fMRI data from the 100 unrelated subjects in the HCP Q3 release were employed

in this study [47 ], [48 ]. Per HCP protocol, all subjects gave written informed consent to

the HCP consortium. The two resting-state functional MRI acquisitions (HCP filenames:

rfMRI_REST1 and rfMRI_REST2) were acquired in separate sessions on two different

days, with two acquisition patterns (left to right and right to left) in each day, [20 ], [47 ],

and [48 ] for details. This release includes also data from seven different fMRI tasks: gam-

bling (tfMRI_GAMBLING), relational or reasoning (tfMRI_RELATIONAL), social

(tfMRI_SOCIAL), working memory (tfMRI_WM), motor (tfMRI_MOTOR), lan-

guage (tfMRI_LANGUAGE, including both a story-listening and arithmetic task), and

emotion (tfMRI_EMOTION). Per [20 ], [101 ], three tasks MRIs are obtained: working

memory, motor, and gambling.

The local Institutional Review Board at Washington University in St. Louis approve

all the protocol used during the data acquisition process. Please refer to [20 ], [100 ], [101 ]

for further details on the HCP dataset. All tasks and resting functional MRIs were equally

weighted in importance, i.e. each task is equally weighted.

Constructing functional connectomes

We used the standard HCP functional pre-processing pipeline, which includes artifact

removal, motion correction and registration to standard space, as described in [20 ], [100 ]

for this dataset. For the resting-state fMRI data, we also added the following steps: global
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gray matter signal regression; a bandpass first-order Butterworth filter in both directions;

z-scores of voxel time courses with outlier eliminations beyond the three standard deviations

from first moment [102 ], [103 ]. For task fMRI data, aforementioned steps are applied, with

a relaxation for bandpass filter [0.001 Hz, 0.25 Hz]. Starting from each pairs of nodal time

courses, Pearson correlation coefficient is calculated to fill out the functional connectomes for

all subjects at rest and seven designated tasks. This yields symmetrical connectivity matrix

for all fMRI sections.

Resting State Connectomes: There are two resting scanning sections conducted in two

different days. In each day, individual MRIs are obtained independently in the morning and

afternoon sections. We averaged the resting functional connectome in the first day (which

contains morning/afternoon scans) to obtain the ”Test” connectome. By the same token, we

obtained ”Retest” connectome for the resting condition.

FC’s matrix entries: For all considered fMRI images presented here, we removed negative

correlations as the morphospace axes are built upon stochastic models; hence, numerically

it is not possible to utilize negative entries. The remaining matrix are, then, squared.

Improve Individual fingerprint The framework proposed by Amico et al. [5 ] was used

to maximize individual fingerprints where each subplot represents rest and seven tasks in

HCP dataset. The optimal reconstructed number of orthogonal components is indicated by

a black dot, see figure 3.5 for further details.

3.5 A formalism of brain network configurations

Human behavior arises out of a complex interplay of functional dynamics between dif-

ferent brain networks [60 ]. These interactions are reflected in functional network recon-

figurations as participants perform different tasks or are at rest [77 ], [104 ], [105 ]. One of

the network neuroscience challenges is to develop a comprehensive framework to quantify

the brain network (re-)configurations across different mental states and cognitive tasks. To

that end, configurations across a collection of cognitive tasks can be conceptualized at three

distinct levels of granularity (see figure 3.6 for geometrical demonstration):
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Figure 3.5. Individual fingerprints unveiled through the framework proposed by
Amico et al. [5 ]. In this case, Idiff score is computed for all fRMI task and resting
state. The maximum value of Idiff for each task is denoted by ∗ which is also
indicative of the number of principal components used to reconstruct the FCs.

• Network configural breadth represents, for an FN, a given individual’s repertoire

of cognitive and emotional states through functional configurations while performing

different tasks. In practice, how well the entire “cognitive space” [80 ], [92 ] is sampled

depends on the number and choice of the tasks. This concept is inspired by [15 ].

• Task-to-task transitional reconfiguration represents the specific shift in network

functional configuration when a subject switches between cognitive/mental tasks [78 ],

[99 ]. For instance, task transitions and accompanying reconfigurations will occur when

a subject transitions from quiet reflection to engage in a spatial problem solving task,

or from a lexical retrieval to a decision making paradigm.

• Within-task reconfiguration represents specific network functional configuration

changes that may occur within a single task. This phenomenon has been assessed at
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Figure 3.6. The three types of brain (re-)configurations that can be represented
by a mathematical space characterized by: TE and EE.

the whole-brain level, showing the presence of distinct brain states within a task [16 ],

[17 ], [19 ], [82 ], [106 ].

3.6 The construction of a mesoscopic morphospace to access brain functional
configural breadth

The mesoscopic morphospace proposed here is a two dimensional space built upon Trap-

ping Efficiency and Exit Entropy measures for assessing functional networks or communities

of functional connectomes. In this framework, functional connectomes must be undirected

(symmetrical) weighted graphs, with non-negative functional couplings. This framework

allows for any a-priori partition into functional communities. In this work, we assess the

resting-state functional networks as proposed by [1 ] as the a priori FNs. Also, we use func-

tional connectivity (without incorporating structural connectivity information), which is a

quantification of statistical dependencies between BOLD time-series of brain regions, and it

can be used as a proxy of communication dynamics in the brain [43 ].
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It is important to be aware that any generic network can be fragmented (disconnected).

This is rarely the case for brain functional networks because of how we compute functional

couplings, typically using Pearson Correlation Coefficient. Despite of that, a priori func-

tional community induced from global thresholded adjacency structure is not guaranteed

to be connected. As pointed out in [107 ] among others, a meaningful cluster should, at

minimum, be connected. To respect the global topology of the functional networks G, i.e.

connectedness, we applied a small perturbation to edges with zero weight, i.e.

aij = 0 → aij =| ∀i, j ∈ C

According to [108 ], if one concerns solely the connectedness property, then topological spaces

are similar to graphs. Therefore, the goal is to have the connectedness property carried from

the graph G to all of its induced subgraphs C. To do so, one needs to maintain the topology

defined on G, i.e. the collections of open sets U (which can be thought of as the edge set E

defined on G).

3.6.1 Computing mechanistic components for morphospace measures

A mesoscopic morphospace is constructed to assess functional network behaviors through

two focal lenses: level of segregation/integration (using graph topology), and specificity of

integration (using information theory). We first define all necessary components to compute

TE and EE as follows:

1. The whole-brain FC is graph-theoretically denoted by G(V,E) where V is the set

of vertices (represented by the regions-of-interest (ROIs)) and E is the set of edges

(quantified by functional couplings between pairs of ROIs). The whole-brain FC is

mathematically represented by an adjacency structure denoted as A = [wij] where i, j

are indexed over vertex set V and wij ∈ [0, 1] are functional couplings;

2. Using a pre-defined set of FNs, a functional community (graph-theoretically denoted

as GC(VC, EC) or C for short) is defined to have the corresponding node set VC ⊂ V
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and edge set EC ⊂ E for which the union over all FNs exhaust the vertex and edge set

of G such that:

∪VC = V & ∪ EC = E

3. For a given functional community C ⊂ G, define the set of states (or equivalently,

vertices) S which contains the set of transient states (denoted as Strans = VC), and

absorbing states (denoted as Sabs = {j | wij > 0; j /∈ VC,∀i ∈ VC}) such that

S = Strans ∪ Sabs

4. We mathematically denote a whole brain FC as A = [wij], where i and j are brain

regions (from now on denoted as vertices or states) of the specified parcellation or

atlas. Each matrix A represents a single subject, single session, single task whole-

brain FC. We assess the whole-brain FC with respect to organizations into FNs, here

denoted by C. For a specific A and a specific C, we obtain an induced sub-matrix AC

by extracting the corresponding rows and columns of matrix A using only the vertices

that belong to S, which results in the matrix:

AC ∈ (0, 1)|S|×|S|

We note that the row and column order of the states (or vertices) of AC respects the

order of S = Strans ∪Sabs with transient states followed by absorbing ones which results

in a blockage structure:

AC =


Transient Absorbing

Transient A(Strans, Strans) A(Strans, Sabs)

Absorbing A(Sabs, Strans) A(Sabs, Sabs)


where A(Strans, Strans) means that we extract the sub-matrix of A that corresponds

to states in Strans for the rows (first argument) and Strans for the columns (second

argument);
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5. For any functional network C, using the induced adjacency structure AC in the previous

step, we define each vertex in S to be a state in the stochastic process and construct

the corresponding Terminating Markov Chain by computing:

• the normalization of AC by the nodal connectivity strength:

Q = D−1
C AC ∈ (0, 1)|S|×|S|

where DC is the weighted degree sequence matrix filled with the node strength

(defined by the row (or equivalently, column) sum of AC) in the diagonal entries

and zeros for the off-diagonal elements:

DC = [dij] =


∑j=|VC |

j=1 wij,∀i = j

0, ∀i 6= j

where i, j are indexed over S. Note that the order of rows and columns of Q and

DC also respect the order of S;

• the transition probability matrix of the terminating Markov Chain:

P =


Transient Absorbing

Transient Q(Strans, Strans) Q(Strans, Sabs)

Absorbing 0|Sabs|×|Strans| I|Sabs|


where 0|Sabs|×|Strans| is the matrix of all zeros (size |Sabs| rows by |Strans| columns);

I|Sabs| is identity matrix of size |Sabs|; the index C for Q and P is dropped for

simplicity.

6. Using matrix P, we extract the sub-matrix induced by states in Strans (denoted by

PStrans). Note that PStrans = Q(Strans, Strans) because rows and columns of P respect

the order of S. We then compute the fundamental matrix (denoted as Z) [94 ] which

contains the mean number of steps a specific transient state in Strans is visited, for any
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pair of transient states in Strans, before the random walker is absorbed by one of the

states in Sabs:

Z = (I|Strans| − PStrans)−1 ∈ R
|Strans|×|Strans|
+

7. Compute the mean time to absorption (denoted as τ) which contains the mean number

of steps that the random particle needs to be absorbed by one of the states in Sabs,

given that it starts in some state in Strans:

τ = Z1|Strans| ∈ R
|Strans|×1
+

where 1|Strans| is the all one vector of size |Strans|.

8. Compute the absorption probability matrix (denoted as Ψ), which contains the likeli-

hood of being absorbed by one of the absorbing states, given that the stochastic process

starts in some transient state:

Ψ = Z [PStrans, Sabs] ∈ R
|Strans|×|Sabs|
+

where PStrans, Sabs is the sub-transition probability matrix induced from (row) state

Strans and (column) state Sabs. Hence, PStrans, Sabs = Q(Strans, Sabs).

3.6.2 Module Trapping Efficiency

Module Trapping Efficiency, denoted as TE (unit: steps
weight

), quantifies a module’s capacity

to contain a random particle from leaving its local topology, i.e. C. Specifically, through FN

topology, we want to assess its level of segregation/integration, measured by the L2 norm

of τ (unit: steps), i.e. the mean time to absorption of nodes in C, normalized by its total

exiting strength (unit: weight), measured by

LC =
∑

i∈Strans,j∈Sabs

Aij = A(Strans, Sabs)
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Mathematically, trapping efficiency is quantified as follows:

TE = ||τ ||2
LC

(3.1)

We see that the mean time to absorption vector, τ , is dependent on both density-based

[87 ], [109 ] and flow-based [88 ], [89 ], [107 ] modularity. The mean-time-to-absorption vector

τ for which τi contains the average number of steps a random walker needs to escape the FN

topology, given that it starts from node i.

This means that the numerical values in τ are always greater than or equal to 1. We

chose to use L2 norms because it squares the input values of the vector and thus enhance

our capacity to quantify FN (re-)configuration. On the other hand, the denominator LC is a

simple statistical summary of the module ”leakages” to the rest of the cortex. Since all the

values in LC are between (0, 1), L2 norm would have diminished the differences across FNs.

Hence, we chose L1-norm for the denominator. The role of LC is to account for potential

differences in trapping efficiency due to community size. Numerically, higher TE indicates

that a module is more segregated (or equivalently, less integrated). This is because the FN

topology traps the incoming signal efficiently, relatively to its exiting edges when embedded

in the cortex.

Numerator τ

As claimed in the main text, TE is finitely bounded. There are several ways to observe

this; one approach involves applying hierarchical community detection algorithm [110 ] and

look for the first timeG split into more than one subgraphs. Thus, let i be indices representing

communities belong to the first hierarchical layer, then

M = max
k

[TE(Sk)] | ∀k ∈ [l]

where l represents the number of communities. Such value is well-defined and finite. An
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(a) Edge strength, after post-processing steps,
histogram of all considered FCs.

(b) FC density, defined to be the number
of non-zero functional weighted edges out of(N

2
)

possible edges, histogram of all considered
FCs.

Figure 3.7. Mean Density and majority of edge strength falls in the first bin
[0,0.025] are the two major factors into the maximum value of TE.

alternative way to see the trivial bound of the measures is as follows: Let us consider the

entire network G, we have:

TE(C ≡ G) = ||τ ||2
LC

= ∞
0 = ∞

because there is no exits if the configurations is the entire network; moreover, there is zero

leakages. Hence, any cut into G would have to be strictly less than this upper bound. Note

that ∞
0 is undefined. However, in such case, we define this quantity to be unbounded which

is the notion of infinity.

In the context of the data set at hand, we can, however provide a better bound. We

proceed by obtaining the maximum value of TE when all subjects and all tasks are under

consideration which yields the result (see further evidence on edge strength and FC density

for further details 3.7 ):

max
subjects,tasks

(TE) = 0.5064

One can relate this numerical value with two factors: Functional connectome density and

edge strengths.
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Normalization

Realistically, since larger communities carry more exits which is driven purely from a

topological viewpoint, LC is a logical choice to normalize the magnitude of τ .

Additionally, LC is deemed to perform as ||τ ||2-damping. Notice that there also exists

functional communities with low total exiting strength with large cardinality, theoretically.

In such case, these structures are rewarded from the standpoint of TE as it converges to

TE(C ≡ G).

τ and modularity

In terms of notation, given the sub-system C, we define two vectors:

Rin =
[
kin

1
k1
,
kin

2
k2
, ....

kin
|C|

k|C|

]
Rout =

[
kout

1
k1

,
kout

2
k2

, ....
kout

|C|

k|C|

]

Further, given a community C, there are three possible node types:

1. Node type 1, denoted through set I1, are nodes with all connections belonging to C;

2. Node type 2, denoted through set I2, are nodes with some connections belonging to C

and others belong to G \ C;

3. Node type 3, denoted through set I3, are nodes with all connections belonging to G\C.

We note that:

• If ||Rout||2 = ||R||2 then community C is disconnected i.e. no external connectivities.

This is impossible due to our assumption on connectedness.

• If ||Rin||2 = ||R||2 then C resembles an empty subgraph i.e. no internal connectivities.

This is impossible as we reveal our algorithm in the later section.

• ||Rin||2 and ||Rout||2 is well-defined as there exists no disconnected components in our

working graph.

• τi3 = 1 ∀i3 ∈ I3.
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Theorem 3.6.1. Given a non-empty induced subgraph C ∈ G, 〈Rout, τ〉 is |C|.

Proof. We begin with two vectors in R|C|. The inner product between Rout and τ τ

〈RT
outτ〉 = 1T

|C|I|C| − QCI|C| − QC
−11|C|

= 1T I|C|1

= |C|

where I|C| is the identity matrix of size |C| and 1 is the appropriate sized vector of all

ones.

Note that the aforementioned theorems and remarks hold for both binary, i.e. aij = {0, 1},

and weighted, i.e. wij ∈ [0, 1], graphs. In this section, we use the graph theoretical notation

for binary graph i.e. ki represents the degree of node i although, in general, binary graph

notations can be substituted by weighted graph ones without loss of generosity.

Based on the three types of nodes defined in the problem setting, we obtain the following

remarks:

Remark 5. The norm of Rout:

||Rout||2 =

√√√√√ |C|∑
i

{
kout

i
ki

}2

=

√√√√√|I3| +
|I2|∑

i2=1

{
kout

i2
ki2

}2

=
√

|I3| + ||R1[II]||22 = η2

in which i2 is used to index Nodes Type II in C; ||R1[II]||2 being the norm of external edge

proportion of nodes Type II and |I3| is the cardinality of node type 3 in C.
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Remark 6. Given a community C,the lower bound of ||Rout||2:

η2 = ||Rout||2 ≥ ||Rout + Rin||2 − ||Rin||2

≥ ||R||2 − ||Rin||2

=
√

|C| −

√√√√√ |C|∑
i

{
kin

i
ki

}2

=
√

|C| −

√√√√√|I1| +
|I2|∑

i2=1

{
kin

i2
ki2

}2

=
√

|C| −
√

|I1| + ||Rin[II]||22 = η1 > 0

in which i2 is used to index Node Type II in C; ||R2[II]||2 being the norm of internal edge

proportion of nodes Type II and |I1| is the cardinality of node type 1 in C. The first inequality

is due to Result 1.

We proceed to analytically show that ||τ ||2 intrinsically carries both density-based and

flow-based notion of community in G.

||τ ||22 = 〈τT Rout〉
||Rout||2cos(Rout, τ) (3.2)

=
[

|C|
η1η2

] [
α

cos(Rout, τ)

]
(3.3)

where α = η1
η2

∈ (0, 1]; per Remarks 3 and 4,

η1 =
√

|C| −
√

|I1| + ||Rout[II]||22 (3.4)

and

η2 =
√

|I3| + ||Rin[II]||22 (3.5)

in which ||Rx[y]||22 is the contribution of node type y ∈ {1, 2, 3} to the L2-norm of Rx∀x ∈

{in, out}. Combining equation 3 and 5, τ -induced modularity is scored as follows:
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Hence, given an induced subgraph C in G,

DM(C) = |C|√
(η1η2)

and

SM(C) =
√
α

cos(Rout, τ)

represent density-based and flow-based modularity, respectively, of community C in G. Note

that the dependency of η1, η2, α, cos(•, •) on community C are dropped for notation simplicity.

τ & Density-based Communities

In this section, we show that the fitness score assigned to a community C ∈ G effectively

compliment the notion of dense subgraph in sparse graph, as mentioned in [111 ], among

others. Specifically, per equation (4), density-based τ -induced modularity of C is scored as

follow:

DM(C) = |C|
(η1η2)0.5 ,

It follows that1
 

DM(C) ∝ η−1
1 , DM(C) ∝ η−1

2

Using equation 3.4 and 3.5 and the fact that given any induced subgraph C ∈ G, |C| is fixed,

we obtain:

DM(C) ∝ ||R2[II]||2

DM(C) ∝ |I1|

DM(C) ∝ ||R1[II]||−1
2

DM(C) ∝ |I3|−1

It is trivial that the density-based score is increased with respect to the number of Type

I nodes in C and the internal number of edges contributed by nodes type II. On the other
1↑ Notation a ∝ b is used to denotes ”a is proportional to quantity b”.
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hand, such score is penalized by the number of type III nodes and the external number of

edges contributed by nodes type II. Collectively, τ compliments the traditional definition of

a good community in network, i.e. particularly dense subgraph within sparse graph.

τ & Flow-based Communities

Mathematically, given a community C, the flow − based modular aspect of module C is

scored as follows:

SM(C) =
√
α

cos(Rout, τ)

Since the three vectors, namely Rout, Rin, and τ , contains all non-negative elements, the

angle between any two vectors are upper-bounded by 90o which makes the denominator of

SM(C), cos(Rout, τ), bounded in (0, 1], see figure 3.8 below for further details.

τ

arccos(τ,Rout)

arccos(τ,Rin)

Rin

Rout

Figure 3.8. Schematic presentation of 3 vectors τ , Rout and Rin and their rela-
tionships in space R|C|.

Intuitively, one would expect that the more intra-edges C would ”delay” random walker

first visit absorbing states; and this is generally true; especially when we view this relation-

ships through the lenses of τ - containing the mfpt information, Rout - the ”absorption”

probability vector. It is important to note that ||Rin||2 and ||Rout||2 are competing norms

i.e. max(||Rin||2) = max(||Rout||2) = ||Rin + Rout||2 =
√

|C| where ||Rin||2 =
√

|C| happens

when module C is disconnected, i.e. no external connectivities and ||Rout||2 =
√

|C| takes

place if C has zero internal density. Geometrically, since ||Rout||2 and ||Rin||2 are competing

norms, consequently, arcos(Rout, τ) and arcos(Rin, τ) are competing angles because their

pairwise angle is, at most, 900. For example, if external edge(s) are deleted, while keeping
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all other edges intact, then two things will follow: (1) the norm of τ and Rin increases and

(2) the norm of Rout decreases, see figure 3.8 for further details.

τ and topological sensitivity

In terms of sensitivity (to topological perturbations), since τ = I|C| − QC
−11|C|, it is

trivial to see that τ is unique and specific to QC. In other words, it is intolerant of any

changes to the local adjacency structure (ultimately the graph topology). To illustrate

this point, one can relate a graph with fixed n and m and perturb the current adjacency

structure by randomly removing an edge and subsequently adding another edge, it is very

likely that τ would be altered. For realistic network where topological symmetries are rare,

the L2–norm of τ would definitely depend on the amount of perturbation one makes to the

original graph i.e. the number of edge swaps. In addition, we also provide a toy example of

two induced substructures with, essentially, the same number of internal and external edges

that is completely unrecognizable under Newman-Girvan modularity notion, [87 ] but under

TE, these two configurations are much different, see figure 3.9 for details.

Final Remarks on τ and modularity

We collect key remarks and observations on time-to-absorption τ in this section: (i)

τ access both density − based and flow − based modularity of a given community; (ii)

Community with dense internal edge density might or might not embrace flow− based; (iii)

Communities with the same internal and external edges might or might not have the same

overall scores in terms of module escaping efficiency due to topological sensitivity offered by

τ ; (iv) there exists a trade-off relationship between density-based and flow-based modularity

in which higher score in one aspect does not suggest high score in the other. For instance,

when considering the configuration of clique size n and n exits, if an edge that connects a

nodes with degree n−1 to the sole node with degree 2n−1 is deleted then DM(C) decreases

while SM(C) increases. Internally, both configurations are formed by a clique (of size 8), i.e.

K8. Intuitively, one would expect two graphs with the same number of nodes and edges but

different topological structures, i.e. topological edge arrangement, would have drastically
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Gl Gr

Nodes v ∈ C

Nodes v ∈ G \ C

Notes :

Figure 3.9. Schematic presentation between two binary graphs with the same
number of internal and external edges.

different structural dynamics which is effectively measured through τ .Externally, the left

configuration, denoted as Gl, has evenly-distributed exits while the right one, denoted as Gr,

has congested/bottle necke- exit. Firstly, SM(Gl) = 1 because α = cos(tau,Rout) = 1. On

the other hand, analogously, SM(Gr) =
√

α
cos(τ,Rout) ≈ 1.40. Mathematically, the only non-zero

entry in Rout(Gr) locates in node with bottle-necked exits which diminishes the denominator

of SM(Gr), i.e. cos(Rout, τ) significantly. Hence, having the maximal numerator does not

help the overall SM score for Gl. Another important result is that having the maximal

internal subgraph like the clique structure does not necessarily help the notion of ”trapped”

random walker. As the matter of fact, some times, it carries side-effects. This is where the

measure pushes beyond the ”particular density within sparsity” community notion such as

Newman-Girvan modularity.

3.6.3 Module Exit Entropy

Module Exit Entropy (denoted as EE, and in the range EE ∈ (0, 1] and unitless) assesses

the normalized level of uncertainty in selecting an exiting node in Sabs of a random particle

that starts in C. The exit entropy, denoted as He, measures the level of uncertainty exiting
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node j ∈ Sabs (outside of the module) is preferred. Module exit entropy is mathematically

formalized as:

EE = He

NC
= −∑|Sabs|

i=1 ψi log(ψi)
log(|Sabs|)

(3.6)

where preferential exit probability is the probability vector that contains |Sabs| entries that

represents the likelihood of an exit signal selects a specific exiting state j ∈ Sabs such that∑
j∈Sabs

ψj = 1.

The numerator of EE(C), i.e. −∑|Sabs|
i=1 ψilog(ψi), measures the degree to which channels

of communication between nodes in Strans and Sabs are preferred for a fixed task/subject.

It is noteworthy that EE is not influenced by the (cumulative) magnitudes (of functional

connectivity values) that connect nodes from within the FN to outside (exiting) nodes. It

is only affected by the distribution of such values. In particular, homogeneous distributions

display high entropy levels and uneven distributions favoring certain exiting node(s) display

low entropy. To demonstrate this point, an example is provided in SI under section C.3.

The normalizer, NC = log(|Sabs|), is the maximum entropy obtained from a module in which

all exit nodes have the same absorption rate. Numerically, a high EE would denote the

homogeneous integration within the rest of the system whereas a low EE would indicate a

preferential communication or integration of the module with the rest of the system. In terms

of functional brain networks, module exit entropy facilitates the understanding of collective

behavior from C to other FNs through its outreach channels (edges formed by nodes in C

and exiting nodes in G \ C). This is because entropy measures the level of uncertainty in

communication; hence, lower entropy means higher specificity in communication between

the FN with the rest of the cortex. EE value ranges are bounded between 0 and 1.

Numerator

The numerator of EE(C), i.e. −∑|Strans|
i=1 ψilog(ψi), measures the extent to which spec-

ified channels of communications, under finest scale (i.e. node/edge-level), is established

between nodes in C with nodes that belong to other functional communities in G. Therefore,

−∑|Strans|
i=1 ψilog(ψi) captures the properties of the distribution of wij as a whole, represented

by wij∀i ∈ C, j ∈ J .
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For example, let us say that we have two communities with the same state set Strans =

1, 2, 3 and Sabs = a, b, c, d. In community 1, wij = 0.01,∀i ∈ Strans, j ∈ Sabs; and community

2, wij = 0.9,∀i ∈ Strans, j ∈ Sabs. Once we compute the entropy, for both cases, we see that

they both have no communication preference, hence numerator is one for both cases.

Normalization

This is the coordinate where normalization is possible. Note that since entropy is nor-

malized by its maximum value (i.e. log(|Strans|)), the number of exits |Strans| impacts is,

consequently, neutralized. Thus, one does not need to concern about the cardinality of a

community with respect to its number of exits as, in reality, a typically larger community

usually carries more exits.

3.6.4 TE, EE behavior across thresholds

In this section, we explore some further characterization of these new metrics used in

the morphospace. Specifically, we explore how TE and EE depend on FC density, across

different thresholding values. To do so, we performed the analysis of morphospace measure

TE and EE with different thresholding values 0 to 0.2 at an increment of 0.05. Specifically,

for each subject, each task, each FN, and each threshold value, we compute TE and EE.

We then average across subjects, and tasks to obtain TE and EE for each threshold value.

From figure 3.10 , we observe that the values of TE and EE are stable only for very small

magnitudes of the threshold, up to τ = 0.075. As threshold increases, and more functional

edges with low-to-intermediate values are removed, the TE increases and EE decreases. This

happens because these edges with low-to-intermediate values, are most likely inter-network

connections (i.e. functional edges connecting different FNs) , and their removal makes those

networks more segregated, ultimately producing and impact in both TE and EE measures.
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Figure 3.10. Morphospace Metric values (TE and EE) at different thresholds
of τ for each functional network within the range [0, 0.2].

The definition of the Mesoscopic Morphospace Ω

The two distinct features of each FN in brain graphs are addressed by a point u(C) in

Ω ⊂ (0,M) × [0, 1] ⊂ R2 as follows:

u(C) = (TE(C),EE(C)) ∈ Ω (3.7)

where M < ∞. for a given subject and task, a functional brain network G is obtained with

a pre-defined parcellation that results in l induced subgraph C ⊂ G, we can obtain l points

u(C) corresponding to l FNs in network G.

In general, trapping efficiency, TE(C) is finitely bounded by construction (see more details

in Section D.6 under SI). However, a better bound is possible for the HCP dataset used

for this study. This is due to two driving factors: connectome sparsity and edge weights
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[64 ]. We address the upper bound for TE as: max(TE(C)) = M = 1. In terms of EE(C),

its numerical range EE(C) ∈ (0, 1]. Hence, Ω ⊂ (0, 1) × [0, 1] for this dataset.

3.6.5 Morphospace null Model

Randomization of G(V,E)

Given a weighted network A = [wij], we apply randomized algorithm Xswap , see [112 ]

with number of desired changes that are set to be [2, 23, 25..., 219] (with exponent increment

of 2) and maximum iterations set at 100 times the corresponding changes. This algorithm

preserves network basic topological characteristics such as size, density and degree

sequence. As the desired number of changes increases, the difference between the original

matrix, denoted as Aorig, and the randomized counterpart, denoted as Arand, also increases.

The difference between two graphs can be quantified as follows:

Diss =
∑n

i,j=1 |Arand(ij) − Aorig(ij)|∑n
i,j=1 Arand(ij)

where n is graph’s size and Diss ∈ [0, 1]. It is important to note that the difference between

two graphs saturates after a certain number of changes and each graph topology saturates

at different values (not necessarily 1).

Hence, getting Diss to arbitrarily close to saturation with the smallest number of changes

is genuinely the target for this procedure. In our case, we pick participant 100307 and run the

randomization procedure for all available tasks and rest. We first found that the acceptable

Diss occurs at 215 desired changes at resting state. We note that the Diss saturates at 0.6

because the (sub)graphs we are dealing with are very dense and some links will be repeated in

force, leading to a non-zero overlap between the links of the graphs in the random ensemble

and the original one. We then used the same number of changes for the investigated tasks

in this dataset, see figure 3.11 for further details.
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Figure 3.11. Morphospace Null Model for Subject 100307 across resting state
and 7 other fMRI tasks.

The Null Model

The main drive for studying trajectories, through randomization, is because it could

provide further evidence of the robustness in design of the metrics. Specifically, if done

correctly, measurements should highlight unique characteristics of functional communities

(and not the randomized counterpart). As the randomized graph (with topological preserved

features) get assigned the same partition into functional networks (e.g. Yeo’s parcellation) as

the original one, any destruction of such topology, at global scaleG, would also be carried over

(hence, identified) by the morphospace itself. One common theme emerges is that regardless

of which functional network and task, as the dissimilarity increases with the desired number

of changes, all functional communities are pushed towards to top left corner. This regime

of the morphospace represent random exiting strategy from module C (high value of EE -

high level of uncertainty in communication preference) and high degree of non-assortative

community (low TE - low level of segregation).

In panel A) in the above figure, Participant 100307 with resting state functional con-

nectome is randomized using Xswap procedure. Panel B) represents the application of the

selected number of changes to all other tasks. This is an important results to see that

functional networks’ topology is truly well-defined and highly reproducible across subject
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domain. Note that black square dot denote functional community TE and EE with no

randomization.

3.7 The network configural breadth formalism

Studying the manifold topology defined in this 2D mesoscopic morphospace theoretically

requires an infinite amount of points. In finite domain with discrete sampling of the mor-

phospace, polytope theory, a mathematical branch that studies object geometry, allows us

to create a reasonable scaffold presentation with well-defined properties to formally define

and quantify configural components of the functional networks.

Given a set of points in this space, W =
{
x1,x2, ....x|W |

}
, a convex hull formed by W is

represented by

Conv(W ) =


|W |∑
j=1

αjxj |
|W |∑
j=1

αj = 1, αj ≥ 0


One can compute the notion of volume of the convex hull enclosed by Conv(W ), denoted

as Vol(Conv(W )). Given that the morphospace is 2D, the manifold dimension can be from

0 up to 2.

The functional network configural breadth, for the ith subject, is compartmentalized into

two components:

• FN (task) reconfiguration and

• FN rest-to-[task-positive] preconfiguration.

We then propose a mathematical relation between network configural breadth with FN

reconfiguration and preconfiguration as follows:

Fi = f(RF N
i ,PF N

i ) (3.8)

where Fi represents configural breadth for subject ith. Here, we provide directly the mea-

sures that quantify (functional) reconfiguration and preconfiguration of FNs for ith subject’s

configural breadth, see figure 3.12 for further details. Tasks are assigned the same level of

importance and hence, no task is weighted more than others. Functional Network con-
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Figure 3.12. Geometrically presentation of functional pre- and re-configuration.

figural breadth is geometrically represented using two predefined morphospace measures.

Specifically, for mesoscopic structures such as communities in functional brain networks, the

first measure is Trapping Efficiency (TE) while the second is is Exit Entropy (EE). In this

case, tasks T1 to T5 belong to the convex hull (e.g. Pareto front - further details are dis-

cussed in the first chapter of this dissertation) while T6 and T7 is in the interior enclosed

by the convex hull.

3.7.1 Functional Reconfiguration

Definition 3.7.1. Functional reconfiguration in this work is represented by a 2-dimensional

spatial volume derived from given FN’s EE and TE coordinate values across different cog-

nitive tasks. As such, it represents an example of “cognitive space” [80 ], [92 ] within a func-

tional domain that spans a variety of network states under various task-evoked conditions.

We quantify this as

RF N
i = Vol(Conv(W F N

i )) (3.9)
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where W F N
i represents the set containing all investigated task coordinates of subject i’s FN;

Vol(Conv(W F N
i )) is the convex hull volume induced by points in W F N

i .

For a given subject ith’s FN, note that Conv(W F N
i ) represents the broad span (breadth)

of task configurations for a given functional community. Subsequently, RF N
i represents the

amount of breadth as measured by the volume of Conv(W ). Functional reconfiguration for

a given subject’s FN, denoted as RF N
i , is geometrically depicted in the above figure.

Furthermore, since we can only obtain finite number of tasks (hence, points in this space),

we see that convex hull notion is logical to represent distinct points (FN tasks) that constitute

the Pareto front (hull boundary). To measure the notion of capacity (potential to shift), one

needs to measure the notion of spreading given finite number of points in the hull. If we use

first order measurements such as distance among two points in the hull, we face the following

problems:

• inability to capture the reservoir defined by the interior of the convex hull;

• assumption of linearity between task points

The notion of distance does not cover the space of possibility [64 ] parameterized by TE and

EE. Hence, second order measurement, i.e. volume (or area in this case), is more appealing.

3.7.2 Functional Preconfiguration

Definition 3.7.2. Functional preconfiguration reflects the topologically distributed equipo-

tentiality that is theoretically designed to enable an efficient switch from a resting state

configuration to a task-positive state [15 ], and is quantified as follows

PF N
i = ||RestF N

i − ηW F N
i

||2 (3.10)

where ηW F N
i

is the geometrical centroid of W F N
i ; P measures the distance between rest to

task-general position (represented by ηW F N
i

). It is defined with the selected metric space, in

this case is the 2-norm in Euclidean space.
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Analogously, once the points are well-defined in this space, in order to effectively measure

the notion of functional preconfiguration, we need to highlight the functional readiness, from

a cognition standpoint, to switch between resting configuration to a generic task. Here, we

first provide the formula proposed in main-text for functional preconfiguration:

PF N
i = ||RestF N

i − ηW F N
i

||2

where RestF N
i and ηW F N

i
represent FN coordinate at rest, and geometric centroid considering

all FN tasks.

Firstly, the geometric centroid of all FN task coordinates might or might not be cogni-

tively possible, i.e. there might not be a connectome that result in FN task centroid being

numerically exact. However, that is not the purpose of using this notion. If the goal is to

reflect the degree of functionally readiness between resting and task-engagement, the notion

of distance, in this case, is meaningful. Here, complexity of trajectory between rest and

task-evoked condition is irrelevant to consider.

Note that functional preconfiguration can be viewed as Vol(Conv(W )) where the convex

hull is defined solely by two points: FN’s rest and FN’s geometrical centroid of task convex

hull, i.e. W =
{
RF N

i , ηW F N
i

}
. In such regards, the notion of Vol(Conv(W )) is also suit-

able to describe the configural breadth between rest and task positive location. Functional

preconfiguration is geometrically depicted in the above figure.

3.8 Individual Fingerprints and Behavioral measures

3.8.1 Subject Sensitivity

To quantify subject sensitivity (through network configural breadth), for each subject/scan,

we obtain one measure. We then concatenate the data into a 100 by 2 matrix and run

intra-class correlation (ICC) analysis. To test subject sensitivity result robustness, for each

functional network’s preconfiguration or reconfiguration, we keep one column of ICC input

intact (Test) and shuffle the second column (Retest) and measure ICC for each permutation.

The same procedure is repeated 10,000 times and the 95%-ile is reported in the main text.
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3.8.2 Iterative Multi-Linear Regression Model (MLM) Description

We apply iteratively multi-linear correlation models (MLM) to correlate Fi = f(RF N
i ,PF N

i )

with various behavioral measures, mi. We hypothesize there exists a high level of functional

subject fingerprint. Iteratively, we start by using only 1 predictor (PF P ); in every subse-

quent step, we append one extra predictor to the existing predictor(s). At the end of iterative

process, we consequently obtain 16 MLMs.

In order to pick the best MLM (and their corresponding number of linear descriptors in

the model), we use the model with smallest p-value among all 16 MLMs.

Model Specificity (MS)

Constructing the MLM to infer the intrinsic relationship is a necessary but not sufficient

if the ultimate goal is to discover if there is a truly robust relationship between network

configural breadth and behavioral measures. Such robustness exists, then there has to be a

certain degree of specificity in these models such that only significant correlations are ob-

served when linear predictors are correlated with the true behavioral measures. Specifically,

network configural breadth, as mathematically formulated using linear descriptors, must

show that it is strongly correlated with a designated measures and not anything else, say a

randomized vector.

Model Description

We further test the strength of our hypothesis by splitting available data into two subsets:

test and validation set. Specifically, we first extract the optimal number of predictors by

applying the procedure described in the main article. We then proceed with the model speci-

ficity by creating 2000 simulations; for each simulation - indexed by j = {1, 2, 3..., J = 2000}

- we first find a randomized order of indices from 1 to 100, denoted as ~d, and divide them

into five batches (indexed by i = {1, 2, ..., I = 5}) of 20 subjects. In other words, each batch

of 20 randomly picked subjects, indexed by the set Qi, are used to validate the authenticity

of the coefficients proposed by utilizing the remaining 80 unpicked subjects. We see that

83



we recover the permutation of the randomized order vector as follows: ~d = Q = ∪Qi. It is

important to note that we use this procedure because it minimizes the chance of picking the

same (or highly overlapped) batch of 20 subjects. For each simulation j, in each batch i, the

remaining 80 subjects are then used to acquire multi-linear correlation model’s parameters,

denoted as ~β ∈ R[∗] where [ ∗ ] denotes the optimal MLM driven by procedure described in

previous section. These corresponding coefficients are then used to predict the remaining 20

unused data points, indexed by w ∈ Wi, denoted as ŷ.

ŷw = ~β0 +
[{

PF N
w ,RF N

w

}[∗]
]
~β

where
{
PF N

w ,RF N
w

}[∗]
∈ R+,[∗] is the [ ∗ ]-tupled vector representing functional preconfigura-

tion, reconfiguration, obeying the descending order of concatenated subject sensitivity. Next,

for each batch, we compute the correlation between actual values, yw with predicted ones, ŷw

and record the correlating result, denoted as Ri, ∀i = 1, 2, ..., I = 5. Consequently, at each

simulation, we obtain 5 values of Ri corresponding to 5 batches. Lastly, for each simulation

j, the mean and standard deviation of 5 validation models Ri’s is obtained

Rj =
I∑

i=1
Rij = 〈R:,j〉 & σj =

√∑I
i=1(R:,j −Rj)2

I

Per Central Limit Theorem, the statistic Rj | ∀j = {1, 2, ..., J = 2000} is normally dis-

tributed, i.e. Rj ∼ N(µ0, σ0). This would create an empirically normal distribution Rj ∼

N(µ0, σ0) such that

µ0 =
∑

j
∑

i Rij

I × J
& σ0 =

√∑J
j=1 σ

2
j

J

The null model and paired t-test

Similarly to the MLMs, we want to test the authenticity of selected models by testing

it against artifacts such as random vectors. The same procedure is applied for the random

vector to populate the null model’s empirically normal distribution (its means is notated

as µ1): Rrand
j ∼ N(µ1, σ1). Finally, paired t-tests are applied between the two aforemen-
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tioned distributions, i.e. Rj and Rrand
j , to test the capacity of configural breadth predictors

towards behavioral measures. Interestingly, given the investigated behavioral measures, all

null model empirical distributions have very similar first and second moments, independently

of behavioral measures.

3.9 Results

The mesoscopic morphospace formalized in previous sections is used to assess network

configural breadth in terms of functional preconfiguration and reconfiguration for the one

hundred unrelated subjects of HCP 900 subjects data release [47 ], [48 ]. This dataset in-

cludes (test and retest) sessions for resting state and seven fMRI tasks: gambling (GAM),

relational (REL), social (SOC), working memory (WM), language processing (LANG), emo-

tion (EMOT), and motor (MOT). Whole-brain functional connectomes estimated from this

fMRI dataset include 360 cortical brain regions [62 ] and 14 subcortical regions. The func-

tional communities evaluated in the morphospace include seven cortical resting state FNs

from [1 ]: visual (VIS), somatomotor (SM), dorsal attention (DA), ventral attention (VA),

frontoparietal (FP), limbic (LIM), default mode (DMN) and one comprised of subcortical

regions (SUBC).

3.9.1 Task- and subject-sensitivity

Within- and between-subject task sensitivity

We first evaluate the capacity of module trapping efficiency and exit entropy to differ-

entiate between tasks within subject in below figure. For both test and retest sessions of

each subject, we compute the TE and EE metrics for each FN. We compute these values

for all 8 fMRI conditions. We compute the intraclass correlation coefficient (ICC), with test

and retest (per subject) being the repeated measurements and task being the class variable

(TE (top panels) and EE (bottom panels), respectively, where each ICC is computed using

a 2 (test, retest) by 7(tasks) design, and the ICC reflects task within-subject sensitivity).

For most subjects, ICC values in all FNs are high and positive values. EE displays a higher

within-subject task sensitivity than TE. Specifically, TE in VIS, DA and DMN most distin-
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guished between the cognitive tasks, whereas EE in VA and FP was best at distinguishing

the within-subject task-based configural changes. The ICC values for both coordinates were

the lowest for LIM. In figure 3.13 Panel A is Within-subject task sensitivity of Module trap-

Figure 3.13. Morphospace measures and their task- and subject- sensitivity mea-
sured by intra-class correlation coefficients for each functional network.

ping efficiency (TE) and exit entropy (EE) for each FN per subject . figure 3.13 Panel B is

Between-subject task sensitivity of TE (top) and EE (bottom). Finally, figure 3.13 - Panel

C represents Subject-sensitivity ICC of TE (top) and EE (bottom).

We then evaluate the degree to which morphospace metrics capture cohort-level configural

changes. To test this, for each morphospace metrics (TE or EE), we compute ICC with

each FN where subjects as the repeated measures and task the class variable. We performed

the evaluation separately for test and retest sessions as denoted by gray and dark bars,

respectively. EE captures cohort-level task-based signatures as ICC values are consistently

higher than those of TE. Interestingly, LIM has the lowest cohort-level task-based sensitivity

for both morphospace metrics.

Subject sensitivity across tasks

Here, we compute ICC considering the tasks (fMRI conditions) the repeated measure-

ments and subjects as the class variable. It is note-worthy that TE is superior in uncovering

subject fingerprints, compared to EE, for the majority of FNs. This is complementary to

EE being more task-sensitive.
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TE and EE are disjoint features

Results in these sections suggests that TE and EE have the differentiating capacity

to highlight non-overlapping characteristics of objects under consideration, i.e. task- and

subject- based FNs. First of all, for within-subject task differentiation, FNs with high ICC

values in one measure do not necessarily show a similar tendency in the other. For instance,

VA has the third lowest mean TE value in characterizing within-subject tasks differentiation

but it has the highest mean EE score. Similarly, FP has second lowest average TE score while

third highest EE score indicating that each of the two measure captures unique aspects of a

given FN. Secondly, evidence of disjoint features is shown through the ICC results in cohort-

level task-sensitivity and subject-sensitivity configural changes. Indeed, TE is superior in

detecting subject fingerprints while EE is better in unraveling task fingerprints. The idea is

that, for a given studied object (i.e. task-based FNs), configurations are shown to “stretch”

in exclusive/disjoint directions (subject-sensitive trapping efficiency and task-sensitive exit

entropy).

3.9.2 Quantifying network configural breadth on functional networks

The mesoscopic morphospace allows the quantification of network configural breadth.

For a given functional community, we compute functional reconfiguration (degree of config-

urations across tasks) and preconfiguration (distance from rest to task positive state).

Group-Average Results

The group average behavior of functional communities is shown in figure 3.14 . Functional

reconfiguration of FNs are shown as filled convex hulls whereas preconfiguration of FNs are

shown as dashed lines from rest to the corresponding task hull geometric centroid.

In figure 3.14 , functional reconfiguration and preconfiguration for all FNs are represented

using group average of individual subjects’ coordinates. Task coordinates in this space are

represented by either asterisk (*) or the plus (+) symbol. The asterisk symbol is used for

those tasks that are part of the Pareto front of the convex hull; the plus symbol represents
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Figure 3.14. Visualization of Differential Network Configural breadth among
different fcMRI functional networks distributed across the association cortex.

either the resting state or task that belongs to the interior of the convex hull. Note that x−

and y− axis are purposely not scaled in the same range so that the full range of values for

all tasks, task-centroid, and rest can be more easily visualized.

To facilitate comparing network configural breadth across all functional networks, these

same convex hulls are shown in figure 3.15 panel A with the same x− and y− axis values.

VIS network polytope, representing group-average behavior, is lower in EE relative to other

FNs.

With the exception of VIS and SUBC, all other FNs cluster in a similar, high EE/ low

TE area of the morphospace (see figure 3.15 panel A). It should be noted that different

tasks and subject populations (e.g., older or clinical groups) might cluster FNs differently.
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Figure 3.15. Network Configural Breadth insights are unravelled through meso-
scopic morphospace. The polytope colors are the same as 3.14 .

We also note that the subcortical polytope is relatively high in exit entropy. However, the

subcortical parcellation might not optimally reflect the functional and/or structural makeup

of various subcortical regions (e.g., role of the basal ganglia in the motor system) so these

results should be interpreted cautiously.

One observation drawn from such a presentation is that the morphospace framework

reconfirms, quantitatively, that functional dichotomy of the brain between task-positive and

rest state [113 ]. Specifically, the default mode network acts more as a segregated module

with high level of integration specificity at rest - as seen in the lower right regime with high

TE, low EE values - as opposed to under task-evoked conditions - as seen in the top left

corner with low TE, high EE values (see figure 3.14 Default Mode) [40 ], [113 ].

Another observation is that in terms of segregation level measured by TE, the lower

bound of subcortical convex hull is, approximately, the upper bound of other FNs, with

the exception of the visual network. The above figures also summarize functional reconfig-

uration and preconfiguration respectively, for test and retest fMRI sessions in all subjects

and FNs. Here, the VIS system displays the largest functional reconfiguration, functional

preconfigurations display a more comparable magnitude among all FNs.

Further evidence of disjoint feature is also displayed in the below figures. Maximal

distance is computed using pairwise distances for two given tasks for a specific FN. The

result shows that for a given FN, the two measures complement each other and in many
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cases, stretch the cognitive space in one direction or the other. For instance, in case of

DA and FP, the maximal distance in EE is very high but low for TE whereas in VIS and

SUBC, TE maximal distance is higher than that of EE. Furthermore, only specific tasks (e.g.

Motor and Emotion) that push the cognitive space in particular direction (which is captured

by maximal distance computation). Evidence of disjoint features is also illustrated by the

relative frequency of Motor and Emotion tasks for which TE and EE are complimentary.

Figure 3.14 - panel (A) illustrates network configural breadth for all functional commu-

nities where polytope colors are analogous to the ones scheme shown in previous figure. For

each functional community, the dash line represents the amount of functional preconfigu-

ration whereas the polytope volume represents the amount of functional reconfiguration.

Figure 3.14 -Panel (B) represents maximal distance is computed using the maximum pair-

wise distance between two tasks for a given functional network. Finally, Figure 3.14 -Panel

(C) is the relative frequency with which a task appears in the maximal distance normalized

by 16 (8 FNs and 2 task per FN).

Subject specificity of pre- and reconfiguration of functional networks

The formulation of network configural breadth (in terms of preconfiguration and recon-

figuration) enables us to assess these properties at the subject level.

Figure 3.16 - Panels 1 and 2 show functional reconfiguration and preconfiguration, re-

spectively, from both magnitude and subject-sensitivity viewpoints. For each functional

network, the A Panels of figure 3.16 report subject’s preconfiguration and reconfiguration

values whereas the B Panels quantify subject sensitivity. Reconfiguration and preconfigura-

tion measures are displayed in blue and red, respectively. Panel C of figure 3.16 merges all

16 configural breadth terms in descending order of subject sensitivity.

In the above figure, we use ICC to analyze the ability of morphospace measures (in the

form or reconfiguration (panels 1 of figure 3.16 ) and preconfiguration (panels 2 of figure

3.16 ) to reflect subject identity within each FN. For all FNs from [1 ], the ICCs suggest

that subjects can be differentiated from each other when contrasted against a corresponding

null model. We see that subject sensitivity scores of all eight FNs for both pre- and re-
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Figure 3.16. Network Configural breadth - subject specificity analysis.

configurations are higher than their corresponding null models. Finally, for a fixed FN,

functional preconfigurations dominated the subject sensitivity ranking, as illustrated by panel

C of figure 3.16 . Furthermore, FP, DMN and VA preconfigurations are among the FNs with

highest subject fingerprints in overall subject sensitivity ranking.

3.9.3 Network configural breadth and behavior

Network configural breadth, compartmentalized into FN reconfiguration RF N and pre-

configuration PF N , shows high level of subject sensitivity. This allows us to assume that

Fi is associated with an individual’s behavioral measures (denoted as mi for subject ith).

Several studies reported that FP and DMN networks are associated with memory and in-

telligence [15 ], [114 ], [115 ]. Therefore, we evaluated if the outlined framework reflects four

91



widely studied cognitive/behavioral measures, related to memory and intelligence: episodic

memory, verbal episodic memory (Verb. Epi. Mem.), fluid intelligence gF , and general

intelligence g. While fluid intelligence reflects subject capacity to solve novel problems, gen-

eral intelligence, g, reflects not only fluid intelligence, gF , traits but also crystallized (i.e.

acquired) knowledge ([116 ] and typically denoted as gC). The early notion of general intelli-

gence is conceptualized by Spearman’s positive manifold [117 ] that cannot be fully described

using a single task. Quantification of g can be accomplished using subspace extraction tech-

niques such as explanatory factor analysis ([118 ]) or principal component analysis (PCA

[15 ]). In this work, we quantified g using the PCA approach described in Schultz and Cole

[15 ]. Mathematically, we propose the following composite relationship:

mi = Υ(RF N
i ,PF N

i ) (3.11)

Figure 3.17. Associations between network configural breadth and behavior.

Having established a plausible connection between behavioral measures and PF N , RF N ,

the above equation can be viewed as a multi-linear model (MLM) using FN preconfigura-
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tion and reconfiguration as independent variables (or predictors). The MLM is constructed

iteratively, starting with the descriptor with the highest individual fingerprints in panel C

of figure 3.16 . In each iteration, the subsequently ranked descriptor (according to figure

3.16 - panel C) is appended to the existing ones. The best MLM (denoted with an asterisk

in figure 3.17 ), which determines the number of linear descriptors included the model, is

selected based on the model p-value.

The x-axis represents functional network preconfiguration and reconfiguration terms, i.e.

PF N
i and RF N

i , ordered in decreasing subject fingerprints (as shown in previous figure).

The top panels illustrate iterative multilinear regression model (MLM) while bottom panels

show model specificity (MS) for corresponding behavioral measures. Asterisk represents

the optimal MLM with lowest p-value. The top panels in the above figure show that as

more linear descriptors (FN’s functional pre- and re-configurations) are added to iterative

MLMs, variance associating with behavioral/cognitive performance measures decreases with

linear descriptors that bear less subject sensitivity. This result highlights the importance

of appending linear predictors in descending order with respect to the subject sensitivity.

Specifically, as individual specificity reduces from left to right (see figure 3.16 panel (C)

for further details), the differential correlations, i.e. the difference between two consecutive

correlation values, decreases.

To test the level of specificity in the model, we performed 2000 simulations of k− fold cross

validation where k = 5 between the selected MLM and the corresponding behavioral measure.

Specifically, for each cross validation (per simulation), we obtain a correlation between the

20 left-out values (y) with the predicted values (ŷ). Hence, in each simulation we obtained

five correlation distribution (one of each cognitive measures) and their corresponding mean

values. It can be shown that those means follows a normal distribution. Lastly, to provide

the level of specificity of linear descriptors, we present a corresponding null model where

the same descriptors are evaluated to predict random vectors of appropriate size. To test

our model and its ability to predict the behavioral measures, we rely completely on network

configural breadth predictors ranked in descending order of subject specificity.
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Table 3.1. MLM’s linear constant terms for all statistically significant terms and overall model.
MLM terms, coefficients Constant PF P PDMN PV A PSUBC

β0 β1 β2 β3 β4

Episodic Memory 0.6 2.9 -9.3
Verbal Episodic Memory 0.5 11.8 -1.1 -8.8 -6.1

gF 0.7 5.1 -12
g 0.8 3.9 -5.5 -3.6 -5.7

In the above table, multi-linear regression models with corresponding standardized β

coefficients. Dependent variables for each model are: episodic memory, verbal episodic

memory, fluid intelligence (gF ) and general intelligence (g).

Table 3.2. MLM’s p-value results for all statistically significant terms and overall model.
MLM terms, p-values Constant PF P PDMN PV A PSUBC Entire

p0 p1 p2 p3 p4 Model
Episodic Memory 0 0.57 0.01 0.03

Verbal Episodic Memory 0 0.02 0.77 0.17 0.03 0.04
gF 0 0.3 9 × 10−4 0.004
g 0.03 0.44 0.16 0.57 0.05 0.05

In the above table, multi-linear models with corresponding p-values. Note that we do not

use step-wise linear model which discards descriptors that are not statistically significant.

Column entire model shows the significance of the entire model.

3.10 Discussion

In this work, we fill an existing gap in the field of network neuroscience by proposing a

mathematical framework that captures the extent to which subject-level functional networks,

as estimated by fMRI, reconfigure across diverse mental/emotional states. This proposed

framework can also be potentially useful in application to a clinical population (AD; drug

abuse; ...). We first propose that brain networks can undergo three different types of (re-)con-

figurations: i) Network Configural Breadth, ii) Task-to-Task transitional reconfiguration,

and iii) Within-Task reconfiguration. Unlike other existing frameworks [15 ], [17 ], [19 ], [21 ],

the framework presented here can be applied to all three reconfiguration types. As a first
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step, we focus on assessing the broadest aspect of reconfiguration, i.e. Network Configural

Breadth. We postulate, based on previous literature [77 ], that macro-scale (whole-brain) and

micro-scale (edge-level) reconfigurations of brain networks are subtle, and hence difficult to

disentangle. At the same time, mesoscopic structures in the brain (e.g. functional networks

(FNs)) reconfigure substantially across different mental/emotional states as elicited by differ-

ent tasks [119 ]. The framework presented here constitutes the first attempt to formalize such

(re)configurations of mesoscopic structures of the brain, and quantify the behavior of a refer-

ence set of FNs with changing mental states. We set forth a mathematically well-defined and

well-behaved 2D network morphospace using novel mesoscopic metrics of Trapping Efficiency

(TE) and Exit Entropy (EE). This morphospace not only characterizes the topology of FNs

but also the flow of information within and between FNs. We show that this morphospace

is sensitive to FNs, tasks, subjects, and the levels of cognitive performance. We show that

both of these measures are highly subject-sensitive for some FNs, while preconfiguration is

highly subject-sensitive for all of them. Lastly, we also formalize and quantify the concepts of

functional reconfiguration (the extent to which an FN has the capacity to reconfigure across

different tasks) and functional preconfiguration (amount of transition from resting-state to a

task-positive centroid). We thus construct a formalism that can explore FN changes across

different cognitive states in a comprehensive manner and at different levels of granularity.

Ideally, a morphospace framework [64 ], [65 ], [68 ], [69 ], [72 ]–[76 ] would have a mini-

mal complexity and, in this particular case, capture distinct features of functional network

changes. As discussed in [64 ], metrics parametrizing a given morphospace should be dis-

joint. We see that, for any specific FN, high within-subject task sensitivity of TE does not

necessarily imply a high value in EE and vice versa (e.g. VA and FP in 3.13 ). In addi-

tion, we see that both TE and EE offer their unique insights in capturing non-overlapping

features with TE is more subject-sensitive and EE more task-sensitive at the cohort level.

Our result also highlights the disjoint nature of the two metrics as well, where we compute

maximal distance per FN polytope in the TE and the EE axes separately. Results show

that corresponding TE and EE maximal distances are disjoint and FN dependent. In other

words, for a specific FN, the polytope is “stretched” in a particular task direction, where each

morphospace measurement (TE or EE) unravels distinct properties. In 3.15 , we further see
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that a subset of tasks dominantly contribute to the maximal distance computation, such as

Motion, Language, and Social tasks. Interestingly, we see that Motion and Language tasks

can be considered “orthogonal” tasks with respect to TE and EE.

Interestingly, the limbic network possesses the lowest ability to distinguish between tasks.

This might be because tasks used are far from optimal for assessing the functional fingerprint

property of LIM in configuration scenarios. Further, LIM may act as a relay station, trans-

ferring information across the cortex. Another possibility is that LIM might consider these

tasks irrelevant. Similar behavior has been observed in [120 ] when using Jensen-Shannon

divergence as a distance metric of functional connectivity. In addition, the limbic network

seems to work as a ”relay” in brain communication [104 ]. One potential explanation for this

unique behavior is that the limbic network maintains a minimal cognitive load across various

tasks, most of which comprises relaying information from one part of the brain to the others;

it thus does not reconfigure as much across different mental states.

Brain network configuration is typically studied considering a specific task at multiple

spatial and temporal scales, see [16 ]–[19 ], [21 ], [82 ], [106 ], [119 ]. Previous investigations have

mainly focused on the mechanism of how the brain traverses between high/low cognitive

demands [19 ], [21 ], [73 ], [98 ], [120 ], [121 ], or on periods of integration and segregation at

rest [17 ]–[19 ], [21 ], defined in this paper as within-task reconfigurations. On the other hand,

whole-brain configurations have also been investigated across different tasks (one configura-

tion per task) with respect to rest, which led to the concept of general efficiency [15 ]. This

approach would belong to a wider category that we formally generalize as the Network Con-

figural Breadth. The idea of general efficiency in [15 ] relied on whole-brain FC correlations

between task(s) and rest. While intuitive in quantifying similarity/distance between a single

task and rest, quantification across multiple tasks becomes a challenge. Specifically, note

that in [15 ], general efficiency is quantified using the first eigenmode, which explains most of

the variance, after measuring the correlation between resting FC and three distinct task FCs.

As more and more tasks are included, using the first eigenmode would become less and less

representative of the task-related variations present in the data (in this paper summarized

as the Network Configural Breadth). The proposed network morphospace overcomes these

limitations and can be used to study brain network (re-)configurations across any number
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of tasks. It allows us to study different types of brain network (re-)configurations, as men-

tioned in above, using one comprehensive mathematical framework, which also facilitates

a meaningful comparison between these seemingly disparate kinds of (re-)configurations.

Schultz and Cole proposed that configurations can be compartmentalized into two differen-

tiated concepts: functional reconfiguration and preconfiguration [15 ]. Note that although

the term reconfiguration is also used in [15 ], it is not referring to the action of switching

among multiple mental/emotional states, i.e. as represented by task-to-task transitional re-

configuration or within-task reconfiguration. Rather, it refers to the overall competence in

exploring the total repertoire of task space of each subject given its resting configuration.

That is why when we translate the corresponding idea into the mesoscopic morphospace,

we call it the network configural breadth. We have also incorporated the two concepts of

functional pre- and re-configurations into a well-defined mathematical space, which solves

some of the technical difficulties and generalizes these concepts to mesoscopic structures.

Brain network within-task reconfigurations have been almost exclusively qualitatively

assessed. For instance, [16 ] show that the whole-brain functional connectome traverses seg-

regated and integrated states as it reconfigures while performing a task. They also found

that integrated states are associated with faster, more effective performance. Our formal-

ism of within-task reconfigurations permits assessing such reconfigurations in a quantitative

manner. Potentially, such within-task reconfigurations could also be used to assess cognitive

fatigue, effort or learning across time.

[77 ] have shown that the resting architecture network modifies itself to fit task require-

ments through subtle changes in functional edges. Numerically, small changes constituted

by functional edges between rest and task-based connectivity might not be statistically sig-

nificant when looking at edge level. Moreover, we also observe that while such changes might

be negligible on a whole-brain global scale, they are more evident when looking at subsys-

tems or functional brain networks, as clearly observed in the VIS network, relative to others.

For functional preconfiguration, this effect is observable in all the FNs. In essence, we are

postulating that a mesoscopic explorations of changes in brain network configurations with

changing mental states is more informative than a macroscopic or microscopic exploration.

97



A key feature of this morphospace is that, in order to, to study brain network (re-

)configuration, an FN is not removed from the overall network for exploration. On the

contrary, both metrics that define the morphospace, namely TE and EE, account for a

particular FN’s place embedded within the overall functional brain network, both in terms

of topological structure and flow of information. That is why it is important to begin with

a reference set of FNs (e.g., RSNs), so as to study how these FNs adapt to changing mental

states within the context of the overall network.

Another benefit of a mesoscopic framework is that we can compare individual cognitive

traits in each FN, instead of the whole brain. Specifically, after quantifying reconfiguration

and preconfiguration for all FNs, we determine if these quantities incorporate information

about individual traits. We observe different levels of subject fingerprint in different FNs

for both re- and pre-configuration measures. This subject fingerprint heterogeneity across

different FNs is consistent with previous literature on functional connectome fingerprinting,

[2 ], [5 ]. Interestingly, functional pre-configuration (amount of transition from a resting-state

to a task-positive state) displayed greater subject fingerprint than functional reconfiguration

for all FNs. Based on this observation, we argue that to have better subject differentiability,

we need to design tasks where the subject transitions from a stable resting-state to a task-

positive state and/or vice versa [105 ]. This could be a significant step forward in precision

psychiatry [122 ], where we can identify regional brain dysfunction more precisely as a function

of the type and degree of cognitive or emotional load.

Subject-sensitivity of the proposed network morphospace framework is also supported

by significant associations of the frontoparietal and default mode networks with fluid intelli-

gence. Specifically, as pointed out by [115 ], high fluid intelligence is associated with a greater

frontoparietal network activation, which is also consistent with findings from a three-back

working memory task ([114 ]). In the domain of network configural breadth, we observe a

higher reconfiguration as represented by a positive frontoparietal functional preconfiguration

coefficient (see table 3.1 ).

This work has several limitations. The framework was tested specifically on the Hu-

man Connectome Project dataset and using a single whole-brain parcellation. Alternative

parcellations [26 ], [123 ], additional fMRI tasks to better sample the cognitive space, and
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other datasets might offer further insights about the mesoscopic network morphospace, see

[64 ], [69 ]. In addition, we did not perform a sensitivity analysis on how small fluctuations

in functional connectomes affect mapping into the network morphospace. Due to the na-

ture of module trapping efficiency and exit entropy metrics, negative functional couplings

were not considered and hence, were set to zero. In future work, other combinations of

L1 and L2 norms, or even other norm choices, should be evaluated when defining trapping

efficiency. This would impact not only the magnitude of the morphospace measure but also

the differentiating capacity of configuration across different functional networks.

Future studies should incorporate a sensitivity study of the behavior of this network mor-

phospace with respect to small fluctuations in the input functional connectomes. Further

studies could also incorporate structural connectivity information to inform both TE and

EE measures when assessing the morphospace coordinates of functional reconfiguration. Ad-

ditional exploration of different aspects of this morphospace could provide further insights.

For example, location of the polytopes in the morphospace might improve individual fin-

gerprint. An important aspect of the proposed mesoscopic network morphospace is that it

allows for an exhaustive and continuous exploration of network reconfigurations, including

those that are continuous in time [21 ], [99 ]. For example, if the subject performs several

tasks within the same scanning session, including extended resting-state periods (such as

the fMRI experiment done at [124 ]. This would allow us to fully explore the cognitive space

and gain a valuable insight into how different subjects adapt to different levels of cogni-

tive demands. One can also study the trajectory of changing mental states using dynamic

functional connectivity [78 ], which can easily be mapped to this morphospace for additional

insights. Another potential avenue could be the application of this framework to characterize

and understand different brain disorders.

In summary, this mesoscopic network morphospace is our first attempt to create a mathe-

matically well-defined framework to explore an individual’s cognitive space at different levels

of granularity. It allows us to characterize the structure and dynamics of specific subsystems

in the brain. This type of framework can be extremely helpful in characterizing brain dy-

namics at individual-level, in healthy and clinical population, which in turn would pave the

way for the development of personalized medicine for brain disorders.
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4. A PRINCIPLED METHOD TO THRESHOLD THE

WHOLE-BRAIN FUNCTIONAL CONNECTIVITY BASED ON

STOCHASTIC BLOCK MODELS

4.1 Backgrounds and motivations

Graph-theory has played an increasingly important role in analyzing large-scale brain

networks (e.g. functional connectomes). Nonetheless, to properly addressing any research

questions in brain connectomic area, it is absolutely vital to obtain the most possibly well-

defined representation of functional connectivity. Evidently, having proper brain network

representations plays a critical role in multi modalities of neuroimaging research such as

fMRI [125 ]–[127 ], MEG [128 ] and EEG-based [129 ] connectomes. In functional connectiv-

ity domain, the connectome is constructed by computing a statistical dependency measure

(e.g. Pearson correlation coefficient) for all given pairs of brain’s regions of interest (ROIs)

using the aggregated voxel level blood-oxygen-level-dependent (BOLD) signals. In fact,

functional connectome construction, induced from BOLD signals with activation delays due

to inhibitory-excitatory nature and negative-valued correlations among ROIs, could cause

potentially severe impacts in estimating population-level functional connectome [125 ], func-

tional brain network topological features (e.g nodes’ centrality [130 ], global network measures

[126 ]) and geometry-topology relation [131 ], to name a few. Recent efforts have focused on

improving functional connectome construction, taking into account neural signal activation

delays [126 ] and negative correlations [127 ].

In the domain of network neuroscience, thresholding (or more generally, the process of

eliminating statistically spurious functional edges) in large-scale functional brain networks,

has become such an important step to properly address all subsequent research inquiries

with tremendous applications in not only healthy control studies, but also schizophrenia

[132 ] and unipolar depression & bipolar disorder [133 ]. Thresholding, if not done correctly,

could cause negative impacts in subsequent analyses such as parametric statistical testing

[134 ] and random network characterization [135 ]. Often, thresholding technique is deployed

to preserve certain desired properties of the original weighted network such as proportional
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thresholding (to maintain the absolute number of edges across different subjects and tasks

by Van den Heuvel et al. [135 ]), modular similarity [133 ], percolation (to preserve original

weighted graph’s topological features [136 ]). The process of eliminating spurious edges is typ-

ically accomplished using a wide spectrum of methods such as wavelet-based methods [132 ],

mixture modeling [137 ], topological data analysis through persistent homology [138 ], [139 ],

branch-and-bound based algorithm (to study cognitive activity [129 ]), and orthogonal mini-

mal spanning trees for dynamical functional brain networks [140 ]. Alternatives to threshold-

ing treatment to functional connectomes is also proposed using hierarchical Bayesian mixture

model [141 ].

Human brain functional sub-circuits (e.g. [1 ]) and their modularity characteristics [121 ],

[142 ]–[144 ] are the fundamental building blocks to understand brain complexity [60 ], dif-

ferential configural properties [144 ], modular structures [85 ], [142 ], information processing

[104 ], [120 ], among many others. In fact, human brain modular organizations are of mon-

umental importance to study neuro pathological applications such as aging [145 ], [146 ] and

schizophrenia [147 ], among many others. As noted by several authors, executive subsystems

in the brain are consistently reproducible across many individuals at rest (such as [1 ], [24 ]).

The usage of brain functional sub-circuits, especially at rest (i.e. resting state networks

(RSNs) or, equivalently, functional networks (FNs)) is very common in control studies [148 ]

and pathological conditions [149 ] and predicting individual differences [150 ]. Nonetheless,

to-date, there have been no studies assessing a particular set of a priori FNs with respect

to some functional connectivity representation, i.e. functional connectomes (FCs). In other

words, common practice in FC processing involves some initial representation of functional

connectivity that is thresholded, based on some arbitrary rules or research hypotheses as

mentioned above. After such step, subsequent analyses pre-dominantly involve the mapping

of a priori fixed set of FNs onto constructed FCs, across different subjects and fMRI task

conditions, without examining whether those mappings is information-theoretically relevant

to the constructed FCs.

Besides many decisions that need to be made along the processing of neuroimaging data

to obtain the eventual whole-brain estimates of functional connectivity, e.g. functional con-

nectomes, the choice of brain parcellations, i.e. how to define the notion of node in functional
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brain networks, is undoubtedly one of the most critical steps [8 ], [26 ], [62 ]. This is because

it defines the topology of the input networks that feed into subsequent analyses. Recent

research has shown that different levels of parcellation granularity can impact the discovery

of subject fingerprints [2 ], [3 ]. In an effort to register the unprocessed neuroimaging data

into a sequence of increasing granularity, Schaefer and colleagues has recently published a

scheme of atlases that increase in network sizes. Additionally, Schaefer parcellations with

increasing granularity levels subdivide the highly reproducible set of RSNs proposed by Yeo

et al. [1 ]. In the light of such developments, brain connectivity community can now investi-

gate many interesting characteristics of sequential functional brain networks, coupled with

corresponding a priori set of FNs.

In this work, our aims are two-fold: i) to formalize and subsequently quantify the level

of information prominence of a given fixed set of FNs across different subjects, and tasks;

ii) use the level of prominence as guidance to eliminate spurious functional edges in whole-

brain FCs. To do so, we utilize Schaefer parcellations [26 ] with nine distinct granularity

levels from 100 to 900 nodes, in an increment of 100 nodes. We first present some theoretical

relevance of stochastic block models in exploring our quest in Section 2 of this chapter. We

then proceed to propose the reconstruction pipeline in Section 3. We wrap up with Results

(Section 4) and Discussion (Section 5). Our framework can be generalized to any given pair

of FN partition and parcellations (e.g. [20 ], [123 ]).

Recoverability of ground-truth partition depends on the degree regime of the network

(indicated by the degree scaling factor sn). For instance, weak recovery only requires the

necessary condition for limiting graph (n → ∞) to be in constant degree regime, i.e. O( 1
n
).

On the other hand, exact recovery requires the necessary condition (for limiting graph) to be

asymptotically connected, i.e. in the degree regime of logarithmic O( log(n)
n

). The sufficient

condition for all recovery criteria is stated in the respective theorems with different proposed

measures with sharp phase transitions, see [22 ].If a measure (say for weak or exact recovery)

is below a certain algebraic threshold (stated in the respective theorems), recovery is not

possible although necessary condition is satisfied.

Here, we chose weak-recovery as a guidance for whole-brain functional connectivity esti-

mation because of four reasons:
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1. Although Schaefer parcellations with increasing number of nodes allows us to empiri-

cally project some insights onto its degree regime, a rigorous theoretical argument on

degree regime is not possible for any empirical graph sequence. Hence, exact recovery

of a priori unique ground-truth partition is non-relevant in the case of brain functional

connectomes;

2. Even in the empirical domain, we observe that both group-average and individual FCs

disconnected (e.g. the number of connected components is more than one) after a rel-

atively small threshold value in the interval τ ∈ [0.2, 0.3] (further details is available in

figure 4.3 ). Theoretically, graph sequence is required to be connected, asymptotically,

in order to consider exact recovery. On the other hand, weak-recovery (detection of

mesoscopic structures) offers a more realistic.relaxed criteria in this particular applica-

tion to estimate a whole-brain FC that is most suitable for a priori set of FNs without

evaluating the number of connected components of the thresholded FC.

3. Most (if not all) mesoscopic studies of brain functional sub-circuits such as [151 ], [152 ]

are based on pre-defined hypotheses (e.g. the brain functional sub-circuits involve a

more diverse classes of community than just assortative ones [151 ]). Such assumption

leads to the appropriate usage of different community detection algorithms such as

Weighted Stochastic Block Models (WSBM) in the case of [151 ], [152 ]. As mentioned

above, weak-recovery is equivalent to detection in theoretical SBM literature;

4. No set of functional sub-circuits is universally agreed and uniquely identified as ground-

truth communities. Hence, all proposed brain functional sub-circuit parcellations (e.g.

[1 ]) are relative.

4.2 Data & Atlases

Neuroimaging Data Acquisitions

The fMRI dataset used in this paper is available in the Human Connectome Project

(HCP) depository (http://www.humanconnectome.org/ ), with Released Q3. The processed

functional connectomes obtained from these data and used for the current study are avail-
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able from the corresponding author on reasonable request. Please refer to below detailed

descriptions on the dataset and data processing.

We first describe the acquisitions of unprocessed neuroimaging data from 409 Unrelated

Participants chosen from the list of 1200 participants by Essen et al. [47 ], [48 ] in the Human

Connectome Project (HCP) release. This subset of participants ensures that no two par-

ticipants have any family relations, i.e. sharing a parents or being siblings. This selection

is particularly critical to avoid any confounding effects in our subsequent analyses, such as

group average analysis, due to family structures.

Per HCP protocol, all subjects gave written informed consent to the HCP consortium.

The two resting-state functional MRI acquisitions (HCP filenames: rfMRI_REST1 and

rfMRI_REST2) were acquired in separate sessions on two different days, with two dis-

tinct scanning patterns (left to right and right to left) in each day, [20 ], [47 ], and [48 ]

for details. This release includes also data from seven different fMRI tasks: gambling

(tfMRI_GAMBLING), relational or reasoning (tfMRI_RELATIONAL), social

(tfMRI_SOCIAL), working memory (tfMRI_WM), motor (tfMRI_MOTOR), lan-

guage (tfMRI_LANGUAGE, including both a story-listening and arithmetic task), and

emotion (tfMRI_EMOTION). Per [20 ], [101 ], three tasks MRIs are obtained: working

memory, motor, and gambling. The local Institutional Review Board at Washington Uni-

versity in St. Louis approve all the protocol used during the data acquisition process. Please

refer to [20 ], [100 ], [101 ] for further details on the HCP dataset.

Constructing functional connectomes

We used the standard HCP functional pre-processing pipeline, which includes artifact

removal, motion correction and registration to standard space, as described in [20 ], [100 ]

for this dataset. For the resting-state fMRI data, we also added the following steps: global

gray matter signal regression; a bandpass first-order Butterworth filter in both directions;

z-scores of voxel time courses with outlier eliminations beyond the three standard deviations

from first moment [102 ], [103 ].
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For task fMRI data, aforementioned steps are applied, with a relaxation for bandpass

filter [0.001 Hz, 0.25 Hz]. Starting from each pairs of nodal time courses, Pearson correlation

is used to fill out the functional connectomes for all subjects at rest and seven designated

tasks. This would yield symmetrical connectivity matrix for all fMRI sessions.

Brain Atlases

The brain atlases used in this work is sequential, in the sense that its granularity in-

creases, ranging from 100 nodes to 900 nodes (increment of 100 node each time), registered

on the cortical surface of the brain. This sequential atlases are made possible thanks to

the work of Schaefer and colleagues [26 ]. Similarly to reference [5 ], [84 ], 14 sub-cortical

regions were added, as provided by the HCP release (filename Atlas_ROI2.nii.gz). We

accomplish this by converting this file from NIFTI to CIFTI format by using the HCP work-

bench software [(http://www.humanconnectome.org/software/connectomeworkbench.html ,

with the command -cifti- create-label]. The resultant sizes of ROI-based connectome are,

hence, the number of brain ROIs are 100, 200, ..., 900 nodes for rest and any given fMRI

tasks. Mathematically, we denote the Schaefer parcellations as a sequence of graphs Gnt

where t ∈ [9] and nt = [100, 200, ..., 900].

Moreover, Schaefer parcellation are also coupled nicely with further subdivisions of Yeo’s

functional networks [1 ]. For a fixed Schaefer granularity (indexed nt), we denote the cor-

responding Yeo’s RSNs to be σnt . For a fixed granularity, the Yeo’s FN partition applied

to a Schaefer parcellation has a one-to-one relationship. Specifically, one brain region in a

Schaefer-parcellated functional connectome belongs only to one Yeo’s FN.

4.3 SBM Inference and extended usage

To infer SBM parameters, the basis is to reverse engineer using maximum likelihood

principle. Specifically, since both G and σ (subsequently, the number of communities in an

a priori set of FNs is denoted as k = maxu∈[n] σu) are priors, in expectation, we can infer

SBM(P,W ) using Bayesian approach as follows:

1. P = Ω
n

= [pi] =
[

|Ωi|
n

]
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2. Infer Wbin = Cbin

Cmax

3. Compute Wwei = Cwei

Cmax

4. Q = nW as sn = 1 for weak-recovery

5. Compute PQ (Matrix Multiplication)

where Cbin is a simple edge count of Mτ between/within blocks of communities whereas Cwei

is the sum of weighted edges of FCτ (also between/within communities). Specifically,

Cbin =
∑

u,v∈[n]
1σu=σv

Cwei =
∑

u,v∈[n]
|auv|, σu = σv

and

Cmax = ΩΩT

The inference of matrix P are based on the law of large numbers [22 ]. The inference of Wbin

is a entry-wise divisions between matrix Cbin and Cmax which infers the Bernoulli random

variable parameter p, representing the number of successes running independent Bernoulli

trials of edge existence among all pairs of stochastically equivalent nodes in or between

communities. In the case of Cwei, note that we use the term computing instead of inference

because we have extended the usage of SNR to be mesoscopic prominence measure. We

use the absolute values |auv| to only consider the overall magnitude (and not the sign) of

functional couplings within/between FNs.

Technically, this inference is a less challenging compared to traditional inference problems

where σ is also a latent variable in the model and graph ensemble G is the only observable

ensemble available. Specifically,

(G,n, σ, k) ∼ SBM(P,W )

where G and σ are priors.
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4.4 Whole-brain functional connectivity estimation pipeline

1: procedure reconFC(Γ, n, k, σ, τ , P , W FC,M )
2: for ∀ Schaefer Granularity level and fMRI tasks do
3: → Vetting Step: Step 1 and 2
4: Use all individual FC (FCγ) for a given Schaefer parcellation and fMRI task, compute group-

average FC

FCavg =
∑Γ

γ=1 FCγ

Γ

5: for τ ∈ [0, 1] do

6: Compute Masked, thresholded group-average FC Mt =
{

1, |FCavg| ≥ τ

0 |FCavg| < τ

7: Infer SBM parameters and apply Theorem 1 to compute SNR[Mτ ]
8: end for
9: Determine the weak-recoverability sub-interval (aw, bw) by

aw = argInfτ∈[0,1](SNR[Mτ ] > 1)

bw = argSupτ∈[0,1](SNR[Mτ ] < 1)

10: → Compute Individual FC mesoscopic prominence measure: Step 3 and 4
11: for all γ ∈ [Γ] do
12: for τ ∈ [0, 1] do

13: Compute individual thresholded weighted FC: FCγ,τ =
{

|FCγ |, |FCγ | ≥ τ

0 |FCγ | < τ

14: Compute mesoscopic prominence measure SNR[FCγ,τ ] = λ2
2

λ1
(FCγ,τ )

15: end for
16: end for
17: → Step 5
18: Obtain τopt = argmax(SNR[FCτ ], τ)
19: Check if τopt ∈ (aw, bw)
20: end for
21: end procedure

Figure 4.1. Pseudo-code for reconFC routine using the number of individual
FCs Γ, Schaefer granularity n, number of functional networks k, a priori parti-
tion σ, threshold range τ , community assignment likelihood P and connectivity
pattern matrix W .

The reconFC pipeline, see figure 4.1 , describes the process to compute the optimal thresh-

old for a given fMRI condition, Schaefer granularity, cohort for two particular cases:

• individually driven threshold τ i
opt;

• constant (cohort-driven) threshold τGA
opt .
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The pipeline contains five distinct steps:

Step 1: For each Schaefer granularity level and task, compute the binarized (masked) group-

average FC (denoted as Mτ ) using the entry-average of individual FCs (the number of indi-

vidual FC is denoted as nF C)

Step 2 (Vetting Step):

For each threshold value τ ∈ [0, 1], infer the Stochastic Block Model (SBM) parameters

for the compute Signal-to-noise ratio (SNR) of Mτ :

SNR[MGA
τ ] = λ2

2
λ1

{
[PQ]GA

bin

}

Repeat this computation for all threshold values, apply Theorem 1 to determine the

weak-recoverability sub-interval (aw, bw)[0, 1] for the group-average FC, i.e. Mτ

Step 3: For a given individual FC and threshold value τ , compute the associated thresholded

FC (FC i
τ ) ; compute the Stochastic Block Model (SBM) parameters for FC i

τ . Extend the

usage of SNR as a mesoscopic prominence measure:

SNR[FC i
τ ] = λ2

2
λ1

{
[PQ]iwei

}

Analogously, we can also compute SNR, using group-average FC (FCGA) as follows:

SNR[FCGA
τ ] = λ2

2
λ1

{
[PQ]GA

wei

}

Step 4: Repeat steps 3 for all threshold values τ ∈ [0, 1] for all individual FCs for a given

fixed Schaefer parcellation and fMRI task pair; Step 5:

1.1. Obtain the threshold value that maximizes SNR of the thresholded FC and the corre-

sponding optimally reconstructed whole-brain FC;

τ i
opt = argmax(SNR[FCτ ], τ)
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Note that if group-average FC (FCGA) is use in Step 3 then:

τGA
opt = argmax(SNR[FCGA

τ ], τ)

2. Check if τopt is in the weak-recoverability sub-interval (Step2)

τopt ∈ (aw, bw)

Note that one needs to check the optimal threshold against the weak-recovery sub-interval,

whether it is individualized (τ i
opt) or group-average threshold (τGA

opt ).

In figure 4.2 , a demonstrated computation of SBM inference and extended usage is shown.

Note that the ”for” loop indicated by (∗) is used to find individualized optimal threshold for

each subject, τ i
opt. One can substitute this ”for” loop by finding one unique cohort optimal

threshold, τGA
opt using group-average FC directly, in which case, we do not need such ”for”

loop.

4.5 Granularity Analysis of the Schaefer parcellations in Resting State

4.5.1 Number of connected components

In this section, we investigate the topological features of Schaefer FC graph sequence

across the entire threshold period τ ∈ [0, 1]. Specifically, we look into the number of compo-

nents across threshold range and Schaefer granularity levels.

We use all nine available Schaefer parcellations with n = [100, 200, ..., 900] and their

corresponding mappings of seven Yeo’s RSNs [1 ] for each granularity level. Besides the

individual level FC, group-average FC (denoted as FCgroup) is computed using entry-wise

mean across the individual FCs (denoted as FC):

FCgroup =
∑γ=Γ

γ=1 FCγ

Γ

where Γ denotes the number of participants and γ ∈ [Γ].
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Priors (FC, τ, n, σ) ∼ SBM(p,W )
n=100: no.ofbrainROIs;

k = 7: number of FNs

σ = [k]n = [7]100: a priori set of FNs;

Ω = [|Ωl|]∀l ∈ [7];

Infer matrix Wbin of group-average FC

For Loop ∀ subject i i = 1 ∈ [Γ = 410] (*)

Compute PQτbin Compute PQτwei

W τ=0.3
bins ∈ [0, 1]7×7 =

0.42 · · · 0.18
0.31 · · · 0.21
...

. . . 0.30



PQτ=0.3
bin ∈ R7×7 =


7.1 · · · 3.1

4.4
. . . 2.9

... · · ·
...

4.4 · · · 7.1



Compute weak-recoverability sub-interval
(aw, bw) = (0.05, 0.75)

W τ=0.3
wei ∈ [0, 1]7×7 =


0.48 · · · 0.5
0.46 · · · 0.48
. . . . . . . . .
0.5 · · · 0.51



PQτ=0.3
wei ∈ R7×7 =


8.1 · · · 8.5

6.4
. . . 6.6

... · · ·
...

11.9 · · · 12.3



SNRτ=0.3
i=1 = 0.17

Compute SNR for subject 1 with τ = 0.3

Obtain τ iopt = argmax(SNRτi )

P ∈ [0, 1]7×7 =


0.17 · · · · · · 0

0 0.14 · · · 0
...

. . .
. . .

...
0 0 0 0.24



Cmax ∈ N 7×7
+ =


289 · · · · · · 408
238 196 · · · 336
...

. . .
. . .

...
408 · · · 312 576



Check if τ iopt ∈ (aw, bw)

First For Loop to compute Weak-Recoverability sub-Interval

Second For Loop to compute individual subject’s SNR across threshold values

Third For loop to compute τopt for all subjects, for a given fixed fMRI condition.

FCGA = Γ−1
∑i=Γ
i=1 FCi

Mτ =

{
0(cream), |FCGA| < τ

1(dark − blue), |FCGA| ≥ τ

Mτ=0.3 = FCi=1
τ=0.3 =

FCi=1
τ=0.3 =

{
0, |FCi| < τ

|FCi|, |FCi| ≥ τ

For Loop ∀τ ∈ [0, 1] :

Example: τ = 0.30 Example: i = 1 and τ = 0.30

FC1...
FCΓ

0

0.80

In
di

vi
du

al
In

pu
t

F
C

s

Step 1

Step 2 Step 3

Step 4Step 5

Notes:

0

0.80

FCrecon = FCτ iopt
or FCrecon = FCτGA

opt
if use FCGA.

For a given, fixed fMRI condition (such as Resting)

(*) Note that the thresholding step can also be applied for group-average FC (FCGA).

e.g. |ΩV IS | = 17 for n = 100;

u ∈ [n = 100];

A priori set of Functional Networks

Top View
Side View

Visual Cortex (VIS)
Somatomotor (SM)
Dorsal Attention (DA)
Ventral Attention (VA)

Frontoparietal (FP)
Limbic (LIM)
Default Mode Network (DMN)

For Loop ∀τ ∈ [0, 1] :

Figure 4.2. Example of FC reconstruction routine based on Schaefer granularity
level of 100 nodes and Resting state fMRI with scanning pattern LR.

Specifically, for each Schaefer granularity and threshold combination, we compute the

number of components for each individual and group-average FC.
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Figure 4.3. Panel (A) represents the number of connected components, for each
Schaefer parcellation (from 100 to 900 nodes with an increment of 100 nodes each
time), across the pre-defined thresholding range τ ∈ [0, 1]. Panel (B) represents the
overlap number of components of the group-average FC, for each Schaefer parcella-
tion. Panel (C) is the differential change (in %) between two consecutive number of
component statistics across τ for group-average FCs (top) and mean of individual
subject FCs (bottom).

To study this characteristic, we pick the resting state fMRI data, e.g. rsfMRI. Without

loss of generality, we pick the first resting scan, i.e. REST1, with phase encoding LR.

It is important to note that the connectivity (through computing number of connected

components) of the thresholded FC (where the absolute values of functional edges are set

to zero - only apply step (a) above) is analogous to its binarized thresholded counterpart

(where the surviving functional edges are set to one - applying both step (a) and (b) for any
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given threshold and Schaefer parcellation choice). The number of components is computed

using the python package networkx after converting the FC matrix to a graph object.

First, for all considered Schaefer parcellations, we see that the group-average FC frag-

ments (e.g. splits into more than one connected components) earlier than the individual

subjects’ ones. This is because the normalization of functional edges across cohort domain,

which neutralizes individual differences and zeroes out relatively faster across the thresh-

olding range (Panel A). Moreover, it is also expected that the group-average number of

connected components increases proportionally with the parcellation sizes and that for a

fixed threshold value, the number of connected component statistics of a coarser parcellation

is always smaller than that of a finer one (Panel B).

We also compute the differential change (in percentage) between two consecutive C across

threshold range as follows:

∆Cl(%) = |Cl+1 − Cl|
Cl

∗ 100

where l is indexed over threshold range. Firstly, we see that both group-average (Panel

C-top) and individual level (Panel C-bottom) show an empirical phase transition in the

number of connected components. Such phase transition happens at sub-interval (0.05, 0.30)

and (0.20, 0.45) for group-average and individual level, respectively. Although there is an

numerical overlap between the two phases, group-average transitions earlier than individual

one.

4.5.2 FN-Differential Identifiability

In this section, we investigate the behavior of matrix Wbin of group-average FCs, using

Yeo’s 7 RSNs [1 ]. To make some empirical observations about Schaefer FC sequence degree

regime, we look at the group-average masked FC, MGA, across all nine granularity levels

and threshold interval τ ∈ [0, 1] with an increment of 0.05. The reason we look at only the

masked (binarized) FCs is because

• The Sandon et al. [22 ] theorem on weak-recovery is written for binary graphs. Hence,

the recoverability requirement on degree-regime is only applied to the binary scaffold.
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(a) FN-Differential Identifiability IF Ns
diff

score for Language fMRI task (LR scan-
ning pattern).

(b) FN-Differential Identifiability IF Ns
diff

for resting state (LR scanning pattern).

Figure 4.4. FN-Differential Identifiability Idiff for resting state and one par-
ticular fMRI task across all threshold and Schaefer Granularity Level combi-
nations.

• We see that looking at weighted graphs is not appropriate in this case as the row (or

column) sum of the FC matrix would yield connectivity strength of a node, not degree.

Here, we investigate empirical degree regime of Schaefer graph sequence based on the

behavior of Wbin. For all studied Schaefer granularity level and threshold combinations, to

inferWbin, we simply use the maximum likelihood rule as mentioned in the main text. Recall

that since matrixWbin = [wij] where wij contains the probability that a node u in community

i is connected (e.g. auv = 1) or not-connected (e.g. auv = 0) to another node v in community

j. Its entries are bounded between 0 and 1. Also, recall that in previous section on degree

regime, graph sequence is in constant degree regime if the corresponding matrix W does not

scale with n, e.g. sn = 1.

Here, we look at the behavior of degree regime through a propose measure, called FN-

differential identifiability, inspired by Amico et al. [5 ], as follows:

IF Ns
diff = IF Ns

self − IF Ns
others (4.1)

= 〈Wii〉 − 〈Wij〉 (4.2)
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where i, j ∈ [k] and k = 7 in our study. Moreover, 〈Wii〉 and 〈Wij〉 are average of diagonal

and off-diagonal entries of matrix W , respectively. We formally define 〈Wii〉 and 〈Wii〉 to be

the differential identifiability within (e.g. IF Ns
self ) and between (e.g. IF Ns

others) FNs, see Chapter

2 for further details on identifiability function definition.

4.6 Results

In this section, we investigate the level of information-theoretical prominence of a priori

set of FNs with respect to different FCs (both group-average and individual subject levels)

across thresholding values using weak recovery criteria. We provide further insights on using

SNR as a information-theoretic prominence of a priori set of FNs. The dataset used in this

paper contains the 410 unrelated participants (HCP, Q3 release). This includes test and

retest sessions for resting state and seven fMRI tasks: gambling (GAM), relational (REL),

social (SOC), working memory (WM), language processing (LANG), emotion (EMOT), and

motor (MOT). Whole-brain functional connectomes estimated from this fMRI dataset in-

clude 9 distinct Schaefer granularity levels that parcellate the cortical regions into n = 100 to

n = 900 nodes, with a 100 nodes increment for each parcellation. The functional communities

evaluated in this framework include seven cortical resting state FNs from [1 ]: visual (VIS),

somatomotor (SM), dorsal attention (DA), ventral attention (VA), frontoparietal (FP), lim-

bic (LIM), default mode (DMN). For each Schaefer granularity, there is a corresponding

Yeo’s FN parcellation.

4.6.1 Weak-recoverability sub-interval (aw, bw)

Based on panel (A) of 4.5 , we see that for most Schaefer granularity levels (with the

exception of n = 100), the lower and upper bound of theoretically guaranteed sub-interval

of weak-recovery stay fairly stable: τ = [0.05, 0.8]. The lower bound aw stabilizes faster than

the upper bound bw, across Schaefer parcellations. With the exception of low resolution

parcellation n = 100, the weak-recovery valid range is respectfully stable and parcellation-

independent. This could elucidate that the information-theoretical relevance of a priori set

of FNs is, to some extent, parcellation-free. In other words, for all investigated granularity
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Figure 4.5. Panel (A) is the weak-recoverability sub-interval of τ ∈ (aw, bw)[0, 1]
(Step 2). Panel (B) is the 5- and 95- percentile of individual subjects’ SNR for
four distinct Schaefer parcellations n = 100, 300, 600, 900. Panel (C) is the SNR
null models. Panel (D) is the FC density, on logarithmic scale, across the same 4
granularity levels. Panel (E) is SNR profiles computed on group-average FCs (again,
over the same granularity levels). Finally Panel (F) reports the optimal threshold
τopt computed based on maximum SNR of group-average FCs. Note that in panel
(D) and (E) the weak-recoverability sub-interval using the maximum and minimum
values for upper and lower bound, respectively, across Schaefer parcellations.

levels, the thresholded graphs are in weak-recoverability regime, except for the complete

graph( τ = [0, 0.05]) or empty graph extreme (τ = (0.8, 1]), see figure 4.5 panel D for further

details on FC density. This is rather interesting because at those two extremes, networks

contains either too much noise (complete graphs) or too little signal (empty graph) for any

highly putative partitions to be information-theoretically relevant.
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4.6.2 Resting State: Group-Average versus Individuals

Based on panel (B) and (E) of figure 4.5 , it is evident that all SNR profiles (including

the group average and individual levels) behave non-monotonically across thresholding range.

There exists a threshold value such that SNR is maximized in the investigated range τ ∈ [0, 1].

In addition, all optimal threshold values (for both group-average and individual FCs) are

within the weak-recoverability sub-interval (aw, bw) for all investigated Schaefer granularity

levels. Secondly, we see that both group-average and individual SNR profiles scales with

Figure 4.6. Overlaid SNR profiles between group-average and individual SNR for
n = [100, 300, 600] of scanning pattern LR.

n. This is because the scaling factor sn for the Schaefer FC sequence is not constant. In

other words, as the graph size gets larger, one can expect the community profile matrix PQ,

whose entries [PQ]ij,∀i, j ∈ [k] represents the number of expected ”friends” between FN i

and j (e.g. between DMN and LIM) gets larger numerically.

Third, we see that for a fixed Schaefer granularity level, group-average SNR peaks higher

and earlier (across investigated threshold range) than that of individual subject’s SNR. In-

terestingly, the topological property of connected components for both individual and group-

average FCs, across all Schaefer parcellations, also yield a similar trend. Specifically, individ-

ual FC fragments (the number of connected component is larger than one) earlier, compared

to the corresponding group-average FCs, for a fixed granularity level.
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Topologically and numerically, this can be explained as averaging FC entries across sub-

ject domain damps down the individual fingerprints (which could be presented as high mag-

nitude Pearson correlation values in FCs). This results in a smaller (magnitude-wise) func-

tional connectivity entries in FCs which get eliminated by smaller threshold value τ . On

the other hand, using the same analogy, one can see that it takes higher threshold value

for individual FC entries to be annihilated. Further, the group-average SNR peaks not only

higher but earlier compared to the individual SNR, for a fixed parcellation. Results are

shown in figure 4.6 .

4.6.3 Null models

Null model is assessed by feeding a randomized partition that respects Yeo’s FNs sizes.

The number of simulations is 100 and the scanning session is LR. Results on empirical

distribution of randomized SNR scores are shown in figure 4.7 .

4.6.4 Individualized optimal thresholds

As one can observe from figure 4.8 , individualized optimal thresholds vary across differ-

ent individuals which demonstrates there exists FN functional fingerprint evidence across

subjects exists. In addition, the average of these individualized thresholds, for a given par-

cellation granularity, is roughly equal to the group-average optimal threshold.

4.6.5 Group-average: Resting State vs. fMRI Task Analysis

Next, we investigate the prominence of Yeo’s RSNs with respect to the fMRI conditions

(including 7 tasks and resting state) through SNR properties using group-average FCs, across

all Schaefer granularity levels and thresholds. Using resting state SNR profile as a baseline,

we compare all task responses in two particular scenarios:

• constructing FCs with the maximum number of time-points (tp) available for each

fMRI conditions;
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Figure 4.7. Each subplot represents the SNR profiles corresponding to 100 ran-
domized parcellations for each thresholding value τ ∈ [0, 1] for all nine Schaefer
parcellations.

• constructing resting state FCs using fMRI task scanning length and compute the cor-

responding SNR.

Firstly, for both scenarios, the maximum SNR values for all studied tasks are above

the hard threshold SNR = 1 for weak recoverability. Moreover, the associated τopt falls
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Figure 4.8. Individualized optimal threshold is derived using the SNR
behavior of each individual for 4 distinct Schaefer’s parcellations n =
{100, 300, 600, 900}.

also within (aw, bw). Trivially, resting state SNR dominates all available tasks, and across

all parcellation levels. This is expected because the selected set of FNs are Yeo’s RSNs.

Secondly, we see that Working Memory (WM) task responds fairly consistently across all

granularity levels, for both scenarios. Information-theoretically, EMOT is the closest task

to resting state, with respect to Yeo’s RSNs.

Thirdly, in the maximum tp case, with the exception of n = 100 parcellation, most task

SNR profiles are, at most, approximately half magnitude, compared to resting-state SNR. In

addition, group-average task FCs seems to have an earlier SNR-peak, relatively to resting-

state, for all investigated Schaefer parcellations. Further details are indicated in 4.9 - Panel

A.
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Figure 4.9. fMRI task and rest SNR profiles. Each panel (A,B,C,D) rep-
resent the SNR between rest and fMRI task using i) maximum scanning length
(left plots) and ii) fMRI-task scanning lengths to estimate resting state FCs
(right plots). Results are presented for 4 Schaefer parcellation levels: n =
[100, 300, 600, 900].

In the second scenario (when the minimum number of tp is used across all fMRI condi-

tions), the SNR magnitude gap between resting state and fMRI task get reduced significantly,

although resting-state SNR still dominates fMRI tasks. Further details are indicated in 4.9 -

Panel B. Note that the gray shaded area indicates the 5- and 95- percentile of SNR responses

among all fMRI tasks.
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Figure 4.10. Maximum SNR computed for Resting state of Schaefer Group-
average FC with n = 300 for increasing scanning lengths, starting at 100 to
1000 time-points, increments of 100 each.

4.6.6 The SNR-driven inequality

It is important to check if SNR is robust against randomness (or equivalently, whether it

is a good marker driving the thresholding decision). To do so, we randomly shuffle the Yeo’s

RSNs and essentially recompute SNR response. We repeat the random shuffling procedure

100 times, and record the result for all nine Schaefer parcellations’ group-average FC for

REST1 with scanning pattern LR.

Collectively, the null model SNR profiles are uniformly lower than all subjects, across

the thresholding range, for a fixed Schaefer parcellation granularity. Further, the null model

values do not exceed the hard threshold posed by weak recovery criteria, i.e. SNR = 1. This

observation applies across all investigated Schaefer parcellations, as seen in panel F of figure

4.5 . Another interesting observation is that the SNR gets uniformly smaller as Schaefer

parcellation granularity increases, as seen also in Panel F.

Collectively, given the SNR results obtained at rest and task and null models, we can

empirically form an inequality relation between fMRI resting and task conditions with respect
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to SNR response and the corresponding level of prominence of Yeo’s RSNs across different

fMRI conditions:

0 < SNRnull < SNRtask < SNRrest (4.3)

This general order of SNR response is observed at the threshold τ that maximizes the ob-

jective function SNR, in the weak recovery case. At optimal threshold values, all fMRI task

SNR profiles are in weak recoverability region while still magnitude-wise smaller than SNR

at rest (when comparing maximized SNR values). Together, these inequalities constitute an

empirical lower-bound and upper-bound for SNRtask, at least for all investigated tasks in

our study.

4.6.7 Maximum SNR and threshold relationship

As the granularity of Schaefer parcellation gets finer, the corresponding group-average

SNR profiles gets larger due to natural scaling for the community profile matrix PQ. This

observation applies for the majority of threshold range. Moreover, per figure 4.5 Panel F,

we see that optimal thresholds, e.g. τopt, tend to decrease as the granularity level increases

which suggests that larger Schaefer FCs do not need to be thresholded as much. Another in-

teresting observation is that with the exceptions of n = {100, 200, 900}, all other investigated

granularity levels accept a very stable optimal threshold τGA
opt = 0.25. Being a computation

pipeline that relies on discretized line search on threshold τ (of increments 0.05 for τ = [0, 1]),

yielding this level of consistence of optimal value is unexpected.

4.6.8 Highly putative partition comparisons

The theory of weak recovery and its extended usage proposed here allowed us to argue

the relevance of using SNR as a measure that guides the estimation of functional connectivity

(through thresholding) with respect to a priori set of FNs. In this section, we would like to

compare the practicality of using SNR as a driving measure, compared to other objective-

function community detection methods. To do so, we use Newman’s modularity Q-score [86 ],

[87 ], [153 ]. Essentially, the Q score measures the statistical differences between a network
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and its corresponding null model with some similarity topological property such as degree

sequence. It can be computed as follows:

Q =
∑
u,v

(Auv − αPuv)δ(σu, σv)

where δ(•, •) and α is the Kronecker delta and tuning parameter (which by default is set to

α = 1), respectively. In network neuroscience, the majority of studies examining mesoscopic

Figure 4.11. Panel (A) - left figure represents the modularity score of a thresh-
olded group-average FC across threshold range τ ∈ [0, 0.85]. Panel (A) - right figure
reports the normalized mutual information between the inferred partition (using
Q-score maximization heuristics) and the Yeo’s FN partition. The same order goes
to Panel (B). Panel (B) represents the results for SNR approach. Note that the
full threshold range is not necessary because in the sub-interval τ ∈ [0.9, 1.0], the
thresholded graph is almost (if not) empty graph. The displayed result is for the
group-average FCs, over four Schaefer granularity levels n = [100, 300, 600, 900].
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structures of brain functions heavily leverage the maximization of modularity score (hereby

denoted as Qmax), which unravels predominantly assortative communities (mesoscopic struc-

tures with denser internal edge density than external one). SBM inference method is, in

principle, uncovering a more diverse types of communities, beyond assortative ones such

as dis-assortative or core-periphery, [151 ]. Because of such distinct difference in principle

between the two approaches (e.g. Qmax and WSBM inference), modularity would provide

a good benchmark test for robustness of SNR against a variety of community detection ap-

proaches. Note that for WSBM inference, we assume a Poisson distribution for the weighted

graph [154 ]. Although other model assumptions are possible, our goal in this work is not

about selecting the most fitting model assumption but rather investigating the behavior dif-

ferences in communities detected using two physiologically different approaches. In other

words, we are not looking to see if Q score or SNR picks up the exact threshold where the

inferred partition is information-theoretically agreed with Yeo’s FNs but rather either one

of those two measures captures the threshold interval where the two partitions meet with

relatively competitive degree of agreement. To measure information-theoretic agreement be-

tween inferred and ground-truth partitions, we use adjusted mutual information (AMI) - a

measure that is adjusted for chance.

First, per figure 4.11 right panels, we see that both community detection methods (e.g.

modularity score maximization or Weighted SBM inference) yield a very similar trends.

Specifically, both AMI profiles go up and down crossing the threshold range. Further, AMI

gets smaller as n gets larger which is expected for graphs with increasing number of nodes.

Interestingly, the threshold values that maximizes modularity AMI tends to shift left as n

increases. We see this particular behavior with SNR in earlier result section (Panel F of

figure 4.5 ).

Secondly, modularity score keeps a fairly steady rise in magnitude across threshold range.

Further, it does not appear that Q score is parcellation dependent; this is expected because

the measure is normalized by 2m. Moreover, Q-score peaks and plateaus at very high

threshold range τ ∈ [0.6, 0.8]. In such range, the thresholded FC is highly fragmented, see

figure 4.3 , extremely low edge density, see figure 4.5 . and has no interesting topological

insights remained for further analysis.

124



Lastly, we see that SNR driven curves (with a priori set of FNs) behave very similarly

to AMI profiles of both approaches, e.g. the Newman-Girvan Q maximization heuristic and

the Weighted SBM inference method. On the other hand, Q score keeps rising and plateau

across threshold range which suggest no actual usage of picking a threshold that is useful for

a priori partition such as Yeo’s FNs. Collectively, our results show, once again, that SNR

computation on weighted, thresholded FC provide excellent guidance to reconstruct a graph

with the most information-theoretical relevance to a particular fixed set of FNs.

4.7 Discussion

In recent years, network neuroscience field strives forward with many exciting discoveries

that are becoming more and more relevant to clinical applications and personalized medicine.

In network neuroscience, this urges the need to improve a very important proxy of brain

function: functional connectivity. Having the most proper, state-of-the-art mathematical

representation of distributed brain circuits allows more accurate and confident inferences. In

this work, we put forth a simple framework that allows an improvement of the mathematical

representation of brain functions, given that a priori set of functional networks are to be

utilized subsequently in a research project using FCs. Thresholding, which belongs to post-

FC processing step, is usually overlooked as standard practice involves arbitrary elimination

of statistically spurious edges. This step has become more critical as an increasing body of

clinical research involves FC thresholding in construction pipeline.

First and foremost, there is no constant threshold value that is optimal across different

parcellation granularity levels. This observation is reproducible across all Schaefer parcel-

lation granularity levels. In particular, from coarser to finer grain of Schaefer granularity,

optimal threshold value decreases. This result is partially observable in the behavior of ma-

trix W across all studied Schaefer parcellation. Furthermore, we also see that for a fixed

threshold value, as Schaefer granularity increases, Yeo’s functional networks behaves more in

an assortative manner (denser internal edge density and sparser external one). We see that

through a brighter diagonal and a darker off-diagonal regime of matrix W , across Schaefer

parcellations with fixed threshold value τ . Information-theoretically, it means that larger
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graph (in size) tends to contain more relevant information to unravel the ground-truth par-

tition (in our study, seven Yeo’s RSNs); hence, we do not need to threshold the FCs as deep

at the lower granularity parcellations such as n = 100. This result also suggests that as FC

size is proportional to the level of prominence/fitness of a priori set of FNs. Nonetheless, it

is unknown if this behavior will reach a plateau threshold even if the granularity increases.

Moreover, when using SNR as a goodness of fit measure when fitting an a priori set of

FNs onto FC, there are distinct difference observed between resting state and fMRI task

conditions, except for the low-resolution parcellation of n = 100. There are two ways of

interpreting this result: i) there exists a degeneration in the fitness level of a priori set

of FNs when subjects are at rest, compared to when they are in task-engaged mode; ii)

There is an intrinsic shift of functional networks at the individual level between rest and

task-engaged mode. Furthermore, there is also strong evidence suggesting a wide variance in

individualized thresholds across all Schaefer parcellation granularity levels. In the same vein,

our results also support the concept of individualized parcellation suggested by the work of

Salehi and colleagues [8 ]. Individualized parcellation across subjects and tasks are intuitive

and insightful but computationally demanding. To that end, our work offers a well-defined

tool to examine the level of relevance a particular set of functional networks can be mapped

on to individual FCs at different conditions. In other words, it allows us to, for the first

time, quantify the individual difference (through information-theoretical gap) when the same

atlas is mapped across cohort and/or tasks domain. It also open doors to proposed another

alternative to elaborate further upon this current framework to build a task- or subject-

dependent parcellation, besides the method suggested in [8 ].

In this study, we put forth the extended usage of weak recovery theorem (using the good-

ness measure SNR). Specifically, our results suggest that for the majority of threshold values,

the masked binarized FCs are in the regime of week recovery. Nonetheless, there is still an

open question on whether the sequence of FCs (as parcellated by Schaefer atlas, for a fixed,

given individual and fMRI condition) is in exact recovery regime. Future studies need to

address the information-theoretical gap between weak and exact recoverability requirements

that is reflected by two measure: Signal-to-noise ratio (weak recovery) and Chernoff-Hellinger

distance (exact recovery). Although exact recovery is a stronger requirement, if the Schae-
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fer graph sequence falls within the exact recovery degree regime, the mutual information

between inferred partition (through network inference and objective-based community de-

tection methods) and ground-truth partition (e.g., Yeo’s parcellations) will be theoretically

higher.

Moreover, further studies need to address the voxels’ spatial and temporal resolution

limitations in HCP (and other fMRI) data and the corresponding Schaefer parcellation.

Specifically, in spatial domain, further investigation should be done on the effect of voxel size

when acquiring the fMRI data and its impact in the SNR result when fitting Yeo’s functional

networks. For the HCP data set, the fMRI voxel size is 2 mm isotropic [47 ]. In temporal

domain, further investigation should be done on the effect of TR (time interval between two

consecutive readings of BOLD time-series) when acquiring the fMRI data and its impact in

the SNR result when fitting Yeo’s functional networks. For the HCP data set, the TR is 720

ms [47 ]. One should also explore the potential impacts of SNR in a smaller dataset. Future

studies need to also address the reliability of an a priori set of FNs (e.g., parcellation).

Specifically, an in-depth analysis is needed to understand the difference and stability of an

template-based alignment of FNs versus surface-based Freesurfer parcellation. Furthermore,

one can also consider studying how structural connectivity play a role in shaping FNs. This

study would shed light to a possible structure-function hybrid parcellation.

Our result suggests that we need to pay extra attention when apply a common/fixed

atlas to individual FCs as we know that brain fingerprints [2 ], [5 ] exist. Furthermore, we

show that FC post-processing step of thresholding FC matrices are not only intuitive (e.g.

to arbitrarily eliminate statistically spurious edges) but also necessary if we would like to

use such FCs, coupled with a priori set of FNs, to make quantitative statements in brain

connectomics. Our research indicates a whole new direction of individualized and task-driven

parcellation as a powerful alternative to using fixed parcellations such as Yeo’s atlas [1 ] in

brain connectomics research.
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5. FUTURE OUTLOOK

The recent advent of neuroimaging modalities such as functional Magnetic Resonance Imag-

ing (fMRI) has allowed a revolutionary perspective on investigating the brain as a networked

system, which gave rise to the emerging field of Network Neuroscience. This has uniquely

positioned network scientists to make meaningful contribution to push the frontier of neuro-

science, both theoretically and clinically. The majority of my theoretical and applied research

contributions exploits three distinct avenues: a) low dimensional description of human brain

dynamics, b) towards a well-defined estimation of large scale whole-brain functional connec-

tivity, and c) network anomaly detection in pathophysiological brain dysfunction.

5.1 Low Dimensional Description of human brain’s functional dynamics

Human brain function involves a complex intertwined dynamics between neural elements

of different scales that give rise to cognition. The high-dimensional nature of fMRI data

has challenged researchers in network neuroscience field to unravel brain’s key functional

components using diverse technique of dimensionality reduction approaches. Many interest-

ing insights on brain function dynamics have been unraveled using standard techniques, e.g.

Principal/Independent Component Analysis. While traditional low-dimensionality reduc-

tion techniques show potentials in understanding brain dynamics at the global scales, they

poses simultaneous technical shortcomings in exploring functions at mesoscale, i.e. brain

sub-circuits. In the meantime, it has also been shown that human brain functional reconfig-

urations (switching between tasks and cognitive states) are rather subtle at macroscale, this

has motivated a different low-dimensional description of brain functional dynamics through

its sub-circuits’ interactions. To accomplish this, a network morphospace is constructed

using two key phenotypic characteristics of brain functional reconfigurations: segregation

and integration. To parametrize this two dimensional space, further techniques in stochastic

processes were employed to quantify how information traverses within (segregation) and be-

tween (integration) functional networks. This research projects contributes to the advanced

understanding of brain functional configural properties, both theoretical (through the devel-

opment of phenotypic space) and applied (through the association with individual’s cognitive
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measures such as fluid intelligence and working memory) aspect. Since a morphospace for-

malism was proposed [70 ], it is promising to explore human brain functional reconfiguration

properties at finer scales such as task-to-task and within-task reconfiguration using dynamics

functional connectivity.

5.2 Towards a well-defined estimation and efficient computation of large scale
whole-brain functional connectivity

Well-defined human whole-brain functional connectivity estimation

The interdisciplinary field of network neuroscience has grown at an unprecedented pace in

the last decade with, yet, many unrealized, unexplored opportunities. One of the (if not the)

most critical tasks in this line of research is to properly estimate a so-called functional con-

nectome, e.g. patterns of functional connectivity between brain neural elements, leveraging

fMRI data. Mathematically, a functional connectome (FC) is often represented by a matrix

pertaining pairwise interactions among given pairs of brain region of interest. The estima-

tion of FC is of monumental importance before progressing to other subsequent analyses.

This is also a critical step bridging between clinical data and theoretical studies. The human

brain FC is known to be sparse (many brain regions are not connected, either functionally or

structurally). This has raised the question on how to eliminate statistically spurious edges

in FC in order to better represent the whole-brain functional connectivity pattern. Mean-

while, a dominant proportion of brain connectomic research relies heavily on using a priori

set of highly-reproducible human brain functional sub-circuits (functional networks (FNs))

without properly considering whether it is information-theoretically relevant with respect to

a given FC. Leveraging recent theoretical developments in Stochastic block model (SBM),

we first formally defined and subsequently quantified the level of information-theoretical

prominence of a priori set of FNs across different subjects, fMRI task conditions for any

given input FC. As an extension to the first aim, the main contribution of this work is to

provide an automated thresholding method of FCs based on prior knowledge of human brain

functional sub-circuitry. In this study, FCs are constructed according to the Schaefer Atlas

scheme, which has multiple levels of resolutions. Comprehensively, the initial results paved
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the way to the proper usage of a priori set of FNs across different subjects, fMRI task con-

ditions and, in turns, shed light for further studies in individualized parcellations. In future

development, a well-defined FC does not need to be localized at just the thresholding step

in constructing a whole-brain functional connectivity. Specifically, different combinations in

pre-processing pipeline such as global signal regression, DiCER, head-motion correction etc.

can significantly impact the resulting time-series and FC construction.

Towards efficient computations of whole-brain connectivity estimation

As our field striving towards high-quality big data era, the day of neuron-based connec-

tomic is imminent. With that, a new opportunity in efficient computation emerges. For

instance, how do we construct functional connectomes with billions of nodes, or perform

low-dimensional studies of brain functional reservoir in a reasonable amount of time?

Graph-theoretically, FC is a weighted, complete graph (represented by a 2D matrix) of

order of the number of brain regions as parcellated according to an anatomical atlas. As

pointed out in the proposal “Brain Connectomics: Opportunities for High-Performance Com-

puting”, estimating the whole-brain functional connectome is an expensive computing job,

from computing T1 image to defining brain regions for further statistical processing steps

to correct noise, head motion and other artifacts. Each functional connectome might take

up to the order of hours from start to finish. In the case of the HCP dataset ( 1200 partici-

pants), each subject yields 54 distinct functional connectomes which results in an enormous

processing time, which could occupy a significant amount of computing resource. In order

to have any realistic clinical utility, functional or structural connectome computations ought

to be faster, more efficient and resource-mindful.

Recent developments in randomized numerical linear algebra (RandNLA) have opened

tremendous opportunities to perform many computations for massive matrix or computation-

ally expensive combinatorial problems such as sparse Principle Component Analysis (PCA),

k-means etc. At the heart of RandNLA reside randomized algorithms. By carefully sampling

rows/columns/elements of a matrix, one can construct a new, smaller matrices that are close

to the original matrix (in terms of matrix norms) with proven theoretical guarantees (see

130



Figure 5.1. A computation demonstration of matrix multiplication between
the original matrix (with the matrix transpose) on the left and its correspond-
ing approximated sampled counterparts on the right.

figure 5.1 ). The resulting smaller matrices behave in similar fashion with the original matrix

in terms of singular/eigen values and vectors) due to the matrix norm inequality bounds.

In figure 5.1 , matrix A could be viewed as the matrix containing the aggregated BOLD

signals for brain parcellated regions according to some anatomical atlas. Specifically, matrix

A’s rows represent the brain regions while the columns represent the number of time-points

(processed BOLD time series acquired at a specific time for a specific brain region).

Despite recent advancements in randomized algorithm research, there still exists a rich

repertoire of unexplored opportunities in applying RandNLA to brain imaging, especially

in network neuroscience domain. Specifically, opportunity for efficient computations lies

across different computing steps before and/or after obtaining the human connectome. For

instance, to improve the human brain fingerprints through functional connectome, Amico

and Goñi [5 ] introduced a PCA-based framework applied to the original set of vectorized

individual FCs where each subject’s BOLD signals had been acquired at least twice per

resting state and fMRI tasks. In this particular case, RandNLA could be used in sparse

PCA procedures to speed up computing time.

5.3 Towards geometrically-aware computations of human brain whole-brain func-
tional/structural connectivity

Nodes are the most basic element in complex networks; embedding nodes onto some

geometrical structure is, often, one of the first steps to acquire further knowledge about

how these elements interact [109 ],[155 ],[156 ]. Once these finest-scale elements are mapped
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onto some host space, the notion of dimension (in that space) emerges. In a more general

domain such as data analytic, when data are input as rows (representing distinct elements

in the systems) and columns (representing distinct features of each elements), the notion

of dimension of data-set is implicitly integrated [157 ],[158 ]. Despite the notion of data-set

dimension, the pre-establishment of geometrical structure, such as Euclidean, is explicitly

stated. Many techniques derived in the data analytic domain such has principle component

analysis [157 ],[158 ] maintains a standardized setting of the embedded geometrical structure:

Euclid. However, as we look deeper into this setting, one question arises: can we actually

consider other embedded space and would that alter the course of analysis of the networks

(in network science), or data-set (in data analytic domain)? Such question is addressed in

[159 ]. Yet, before diving into whether hyperbolic geometry is an appropriate framework to

unravel network features, let us briefly provide some basic concepts in hyperbolic geometry.

Figure 5.2. In panel A, Euclid’s fifth postulate of parallelism, in two dimensional
Euclidean space, is depicted pictorially. Specifically, given a point P and a line L
that is not intercept P. There exists one and only one line L that is parallel to L
and intercept P. In panel B, we consider mapping three points A, B and C on to
hyperbolic space in which the triangle ABC is formed by three lines: L1, L2, L3.
Considering line segment AB and point C. Notice how there are more than one
lines, i.e. P1,2,3, that go through point C and parallel to line segment AB. In fact,
there are infinitely many lines that have the same property as P1,2,3 in panel B in
when points are mapped into hyperbolic space. This example shows a fundamental
difference between mapping points (or nodes in networks), into different geometrical
structures. Panel B is re-used with permission from [159 ].

In terms of network science, Krioukov et al., [159 ], challenge the notion of Euclid embed-

ding of nodes by proposing another embedding space, called hyperbolic geometry, in which
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all classical components such as nodes, lines, distance, angles etc. are also well-defined. The

work is motivated by many historical instances where significant findings were unravelled

through the lenses of hyperbolic geometry such as Minkowski space-time relativity as stated

in [159 ]. The below table summarises some of the major highlights of this paper in which

many exciting features of complex networks emerges naturally from hyperbolic geometry.

Table 5.1. In this table, some features of networks embedded onto hyperbolic
space are presented. Second column indicates the highlighted network properties
while third column indicates the hyperbolic geometry of these properties.

Numbers Network Properties Hypberbolic Underpinnings Notes

1
Topological heterogeneity - ex-
pressed by power-law degree dis-
tribution

Geometrical hyperbolicity - ex-
pressed by the notion of hyper-
bolic distance between two nodes
in network.

This is an ’if and only if’ relation,
meaning: heterogeneity of degree
sequence implies geometrical hy-
perbolicity of embedded data, and
vice versa.

2

Network Modelling - generating
networks with pre-determined
features such as power-law expo-
nent and average degree.

Nodes can be embedded in hy-
perbolic space with correspond-
ing parameters (curvature and
radius).

the notion of curvature are also pro-
vided in their previous paper [160 ].

3 Random graph and configuration
models

Relaxing the connection proba-
bility in hyperbolic-based model
to relate such model with statis-
tical mechanics.

Connection links can be viewed un-
der Fermi-Dirac Probability Dis-
tribution; hyperbolic distance can
be interpreted as Fermi-Dirac links
and corresponding parameter β as
inverse temperature.

Hyperbolic geometry provides not only an appropriate space to embed network data but

also an alternative viewpoint of looking at the same object (in this case, network). Recent

movement in such direction has witnessed many extensions of such view into dynamical

setting of scale-free networks [161 ] or clusters [162 ].

In brain connectomics domain, there is an increasing research focus in deriving well-

defined frameworks in recent years, especially in the domain of underlying geometry in

human brain functional networks. Recent studies have shown that whole-brain FCs, which

are semi-positive definite matrices, are subsumed in Riemann’s geometry (as opposed to

Euclid’s).
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Figure 5.3. An example of 2 × 2 semi-positive definite matrices subsume the
underlying Riemann’s geometry represented by a semi-positive definite cones.
In this particular case, the regularization terms τ dictate the size of the cone.
Figure is adapted from [4 ].

5.4 Network anomaly detection in pathophysiological brain dysfunction

One of the biggest challenges in the field of network neuroscience is also about bridg-

ing the gap with a clinical domain. Specifically, can functional and structural connectome

provide helpful insights for neurodegenerative disease such as Alzheimer’s? Specifically, can

we construct a robust statistical technique that can inform clinicians on possible struc-

tural/functional disruptions, using brain connectomics, across a given disease pathology?

In network neuroscience, disease pathology can be thought as network anomaly. For in-

stance, the healthy control FCs will be statistically different than Alzheimer’s FCs, given

some statistics of interest. Statistical process control (SPC) is a classical line of research

developed in industrial engineering discipline for quality control applications. Recent ad-

vancement in SPC research has shown tremendous promise in networked system anomaly

detection (also known as network surveillance).
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Figure 5.4. An example of using SPC to detect anomalous behaviors in
dynamical networks. In a typical control chart design, there are two phases:
characterization (Phase I) and monitoring (Phase II). Panel (A) represents a
particular network behavioral dynamic across time. Panel (B) indicates the
induced statistics of interest representing such behavior (also across time).
Figure is reproduced at the courtesy of [163 ].

Recently, network surveillance tools are in even greater demands due to the emerging

necessity to alert anomalous activities in social network applications, ideally as soon as

they take place, see figure 5.4 . As such, SPC has been shown to be a momentously useful

framework. Nonetheless, the usage of SPC in detecting human brain’s aberrant dynamics

via functional/structural connectomes is completely unexploited thus far. This has opened

tremendous opportunities in constructing a relevant SPC model with capability to detect

early subtle structural/functional disruptions caused by different neurodegenerative diseases.

Hence, building relevant SPC models could potentially aid clinicians in identifying early onset

asymptomatic disruption that might, otherwise, be non-feasible. In the long run, SPC tools

could prove useful in identify subtle Alzheimer’s cognitive impairments which can often show

no observable symptoms until it becomes too advanced.
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5.5 Towards higher-order coordination patterns of human brain functions and
structure

High-order topological invariant structures refer to non-trivial structures capturing inter-

actions beyond pairwise fashion, see figure 5.5 . Traditional methods in network science can

only be used to study network local properties such as node degree, edge weights, or local

motifs. Statistical methods quickly become cumbersome in identifying non-local mesoscopic

structures within the weighted network fabrics. Since such structures cannot be reduced

to known local network properties, they yield the so-called higher order coordination pat-

terns. In this regards, topological data analysis (TDA) has also shown great potentials in

identifying higher order (beyond pairwise interactions) sub-structures, i.e. functional sub-

circuits, that, otherwise, are fully intact in healthy controls. Specifically, leveraging tools in

algebraic topology such as persistent homology computations opens a whole new array of

opportunities to identify potential non-local mesoscopic structures that distinguish between

healthy controls and neurodegenerative groups. These structures could also be extremely

useful bio-markers in tracking neurodegenerative disease pathology.

Figure 5.5. An example of TDA approach to high-dimensional dataset. In
left panel, point-cloud data is sampled from a torus-shaped manifold. In the
middle panel, Rip complex is constructed to create a topological scaffolding
representation of the input data based on a chosen radius. In the right panel,
based on the constructed Rip complex, homological computation is performed
to unravel distinct topological features such as high dimensional holes (cycles).
Figure is adapted from [164 ].
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APPENDIX: BASIC MATHEMATICS NOTIONS

Preface. In this chapter, some of the relevant, fundamental building-blocks, spanning

different fields from theory to applied are introduced. It is worth to note that most (if not

all) of these fields are well-established and that only a small portion of relevant knowledge

to this dissertation is referenced and cited.

.A Linear Algebra

Matrices plays an ubiquitous role in practically all aspects of science, including statistics,

computer science, and applied mathematics. Often, a discrete matrix describes, quantita-

tively, the characteristics of m objects by n features, by an m × n matrix. In this chapter,

this dissertation provides a comprehensive treatment of necessary theory in Linear Algebra

that are relevant to the current and future stage of computational neuroscience. The main

source of reference for fundamental Linear algebra is from the book by Carl Meyer [165 ].

Set theory Basics

Notations

Capital letters such as A,B are used to denote sets, while lowercase letter, i.e. a, b,

are denoted as elements or objects belonging those sets, e.g. a ∈ A. Likewise, we denote

not-belonging notion as b /∈ B. Furthermore, given any set S, its cardinality is denoted as

|S|.

We define set B to be the subset of set A if and only if all elements of B are also elements

of set A, i.e. BA (also known as proper inclusion relation). Otherwise the relaxed inclusion

relation is B ⊂ A.

Two sets can actually be identical, which we denote as A = B. Further, if B ⊂ A and

B is not identical as A then we say that B is the proper subset of set A. There are two

conventions to express a set elements: exhaustive list, e.g. A = {a, b, c} or imposing a rule

for a generic element to belong in a set, e.g. A = {x | x = 2l} where l ∈ N+ (where N+ is

non-negative integers). It is worth noting that a set can be understood as a logic statement.
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For example, A = {x | x = 2l} where l ∈ N+ can be expressed in a logical statement as set

A is a set containing all positive even numbers.

Set Operations

The union of two sets, say A and B, are a set that contains element belonging to either

set A or B:

A ∪B = {x | x ∈ A or x ∈ B}

On the other hand, the intersection of two sets, say A and B, is denoted as A ∩ B. If such

intersection is empty then A ∩B = ∅; in such case, we say that those two sets are disjoint.

The difference of two sets, i.e. A− B, are the set comprising elements that belong to A

and not belong to B. Formally,

A−B = {x | x ∈ A, x /∈ B}

Axiomatic Set Theory

Basic set operations carry over from elementary algebra such as the rule of associative

and distribution. For example, A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C). The most important

rule/axioms on set are De Morgan’s laws which basically boils down to two important rules:

1. The complement of unions is the intersections of complements;

2. The complement of intersection is the union of complements.

Sets/Collections of set

Another important concept in set theory that will be useful for topology construction is

the collection of set notion. Specifically, given any generic set, one can define a set whose

elements are subsets (proper or not) of the original set. Formally, given a set A, all subsets

of A live in a space P . For example, if A = {1, 2, 3} then the following statements follows:

• a ∈ A;
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• {a} ∈ P(A)

Note that a ∈ P(A) is not a correct statement. Note that this allows us to formally define

the notion of arbitrary intersection and union as ∩A∈P(A) and ∪A∈P(A).

Cartesian Products

One of the critical way to form a new set, from old ones, is Cartesian products. It is

an important mechanics, in elementary geometry, to define, for example, points in a k−

dimensional plane.

Given a set A and B, the Cartesian product formed by the two sets are the set of all

ordered pairs in which the first element of the pair is an element belonging to A (likewise,

the second element in the pair is an element belonging to B). Formally,

A×B = {(a, b) | a ∈ A; b ∈ B}

Computational Basics

In this section, we establish some of the key mathematical notations and linear algebraic

theory used throughout this dissertation. Specifically, scalar is italicized, a. A vector is de-

noted as bold letter, a (default form is in column format). A matrix is notated as capitalized

letter, A. If r ∈ [q] where q ∈ N+, it means that r takes on integer values from 1 up to,

including, q. Given any two vectors a,b ∈ Rn, 〈a,b〉 denote inner product.

A generic matrix A over the field F (typically over real numbers F = R), represented

by a continuous interval [x, y], z1 rows and z2 columns is denoted as A ∈ [x, y]z1×z2 . The

notation Ai∗ and A∗j are used to denote the ith row and jth column of matrix A, respectively.

Further, if we want to induce a sub-matrix from the original matrix A based on a specific

collection of rows, denoted as Srows, and columns, denoted as Scolumns, we use the notation:

A(Srows, Scolumns). If both rows and columns are matched (both denoted as Sw), then we

will ease notation by using A(Srows).
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Matrix Inverse. A matrix A ∈ Rn×n is nonsingular (or invertible) if and only if there

exists a matrix A−1 ∈ Rn×n such that

AA−1 = In×n = A−1A

Note that in this case, matrix A is said to have both left and right inverse. Note that this

also implies that all the columns (and all the rows) of A must be linearly independent (full

rank). Equivalently, if there exists a vector x such that Ax = 0n then x = 0.

Inverse and Transpose Operations. Typically, inverse and transpose operator is

interchangeable, i.e. (A−1)T = (AT )−1. Nonetheless, (AB)−1 = B−1A−1.

The building blocks of Spectral Decomposition

Linear Function

Note that although function is defined in the context of linear algebra; in later sections,

an extended (yet, shortened) version of function will also be briefly define. In the context of

linear algebra, a function is simply a mappings between a source space, say V, to a target

space, say U where both of them are vector space (over real field):

V f−→ U

A linear function is sometimes referred to as linear map, linear morphism, vector space

morphism. A linear map has to preserve vector space operations: vector addition and scalar

multiplication. Formally,

f(u + v) = f(u) + f(v)

and

f(cu) = cf(u)

where c is scalar and u,v ∈ im−1(f) and f(u), f(v) ∈ im(f). A map is isomorphic if it is

bijective (onto and one-to-one). A map is endomorphic if V = U. Furthermore, If U = V
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and f is bijection, then f is isomorphic. Often, a linear map is represented by a matrix (in

finite dimension vector spaces). Some of the useful cases are rotation, reflection matrices.

Basis and Linear Independence

Given any vector space with finite dimension n over the field of real numbers, a basis is a

set with minimum number of vectors in Rn, necessary and sufficient, to describe any generic

vector in such space. Formally, given a set of basis vectors B = {b1,b2,b3, ...bm}

∀x ∈ Rm : x =
m∑

i=1
bi

Note that B is not unique. The most desirable basis is a set of linear independent vectors

that are also mutually orthogonal.

Four Fundamental Subspaces

Given any matrix A ∈ Rm×n, the four fundamental subspaces of such matrix are:

1. row space of A, the set of all vectors x such that Ax 6= 0;

2. null space of A, the set of all vectors x such that Ax = 0;

3. column space of A, the set of all vectors y such that AT y 6= 0;

4. Left-null space of A, the set of all vectors y such that AT x = 0;

The dimension of a subspace is the number of linearly independent vectors required to span

that subspace. In other words, let f be a linear map from Rn to Rm, represented by an

m× n matrix A with rank r ≤ min(m,n) then the followings follows:

• r is the dimension of the column space, i.e. the number of linearly independent vectors

in Rm needed to describe the image of the linear operator, i.e. im(f);

• n − r is the dimension of null space (also known as the kernel of the linear operator

ker(f);
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• m − r is the dimension of left-null space (also known as the co-kernel of the linear

operator coker(f);

Theorem .A.1. Let f : V → W be a linear operator, then: Rank(f) + Null(f) = dim(V )

where Rank(f) = dim(im(f)) and Null(f) = dim(ker(f)).

Orthogonality and Orthogonal Matrix

For any generic vectors a,b ∈ Rm, they are said to be orthogonal if and only if

〈a,b〉 = 0m

Definition .A.1. A matrix A is orthogonal if AT = A−1.

It follows that ∀i, j ∈ [n],

AT
i∗A∗j =


1, i 6= j

0, i = j

Note that the same logic applied to the rows of A.

Singular/Eigen Value Decomposition

At the center stage of high-dimensionality data processing techniques are Singular/Eigen

Value decomposition. These techniques supports the unravelling of independent/orthogonal

modes of complex longitudinal data. We first define the Singular Value decomposition as

follows:

Definition .A.2. For each A ∈ Rm×n of rank r, there are orthogonal matrices U ∈ Rm×m

and V ∈ Rn×n and a diagonal matrix Dr×r = diag(σ1, σ2, ..., σr) such that:

A = U

D 0

0 0

VT = UΣVT

with non-increasing order of σi,∀i ∈ [r].
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Figure S1. A geometrical illustration of SVD transformation in 3 dimensional
geometry. Figure is reproduced at the courtesy of Carl Meyer’s textbook on
Linear Algebra [165 ].

In this case, U,V are the column and row space of A, respectively. The rank of the

matrix is the minimum between the dimension of column and row space. By definition,

• the sum between the dimension of row space and null space equals m (total number

of rows in A);

• the sum between the dimension of column space and left-null space equals n (total

number of columns in A);

In a majority of applications, matrices are symmetric which can be written as a product

of two matrices:

A = BBT = UΣVT (UΣVT )T

= UΣVT VΣT UT

= UΣ2UT

= UΛUT
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This is call the eigen decomposition of symmetric matrices (also known as semi-definite

matrices). Because of the square nature of singular values of B, symmetric matrices are

guaranteed to have real, non-negative eigen values. Note that full-rank symmetric matrices

have strictly positive eigen values by construction.

.B Polytope Theory

Polytope theory is a branch of mathematics that studies the geometry of shapes in a

d−dimensional Euclidean space, Rd. Given a set of points W =
{
x1, x2, ....x|W |

}
for which

xj ∈ Rd,∀j ∈ [|W |], a convex hull formed by such set of points are mathematically represented

by

Conv(W ) =


|W |∑
j=1

αjxj |
|W |∑
j=1

αj = 1, αj ≥ 0, ∀j ∈ [|W |]


where d is called the ambient space dimension. Moreover, if |W | ≥ d + 1, we recall that

points in W are in general position if no hyperplane, i.e. flat of dimension d − 1 contains

more than d points, [166 ]. Otherwise, i.e. |W | ≤ d, there exist(s) point(s) that are affinely

dependent on other points in W .

v1
v2
v3
...
v6 v1

v2

v3

v4

v5

v2

v3

v4

v5
(B) (C)

v1

(A)
v6

v6

Figure S2. Convex Hull Demonstrations for a 2-dimensional space over the real field R2.

In the above figure 3 , given that W = {v1, v2, ..., v6}, we demonstrate three possible

scenarios of convex hull formed byW in morphospace Ω. Case (A),(B),(C) correspond to the

polytope dimension of h = 0, 1, 2, respectively. Here we see that {v1, v6} and {v1, v2, v3, v4, v5}

forms the Pareto front in Case (B) Case (C), respectively. In case (C), v6 belongs to the

interior of the hull. Further, in case (B) and (C), we see that the hull vertices, i.e. points
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belong to the Pareto front of the hull, are {v1, v5} for case (B) and {v1, v2, v3, v4, v5} for case

(C). Given the nature of this space, the first two scenarios are statistically rare. In the third

scenario, we see that all 5 points constitute the boundary of conv(W ). Further, we see that

some type A pairs of points, graphically represented by solid lines, are (v1, v5), (v2, v3) while

some type B pairs, represented by dashed lines, are (v2, v4), (v3, v5).

Providing that points in W in Rd, the approximated volume induced by the convex

hull Conv(W ) can be calculated through the formation of Delaunay Triangulation process

[166 ]. The volume of the convex hull is denoted as Vol(Conv(W )). In Rd, the convex hull

dimension can take on the values

1. h = 0 which constitutes a point in Rd, Vol(Conv(W )) = 0

2. h = 1 which constitutes a line segment, Vol(Conv(W )) = sup(d(xi, xj)),∀xi, xj ∈ W

where d(xi, xj) denotes the pre-defined metric distance between two generic points.

3. h = 2 and h ≥ 3 which constitutes the notion of area and volume, respectively.

For h ≥ 2, convex hull volume is calculated using Qhull package implemented in Matlab,

see [167 ]. In general, as pointed out also in [167 ], computing V− or H− polytope metric

volume is NP-hard (see also [168 ], [169 ]) with the availability of efficient approximating

algorithms.

.C Probability theory and stochastic processes

Some remarks on Probability Theory

Let X be a (finite) sample space and x ∈ X be elements in such space. We can X to

be a random variable (truly, it can also be thought as function), if X assign probability

measure in [0, 1] to a specific value x ∈ X . An event defined on X takes on the probabilistic

measures as defined by the fundamental axioms in probability theory. From the sample space

perspective, an event is any possible subset of X . By definition,

P (A = {X }) = 1
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P (A ∪B) = P (A) + P (B) − P (A ∩B)

Also, if the sample space can be partitioned into non-overlap, independent events Ai then

the law of total probability is also obtained as follows:

P (∪iAi) = P ({X}) = 1

Moreover, P (A∩B) = 0 does not guarantee that the two events are mutually exclusive. Two

events are mutually exclusive are such that the existence of one guarantees the non-existent

of the other one. Coincidentally, P (A ∩B) = 0 in this case also.

Joint events and probability. Often, different events governed by different probability

distributions can happen simultaneously. In such case, one can construct the contingency

table which records the likelihood of any particular realized combinations and their corre-

sponding joint probability P (Ai ∩Bj ∩Ck...). For instance, two random variables (represent-

ing two probability distribution) and their interactions can be recorded in a 2-dimensional

contingency table.

Independent events Two events are independent if and only if the probability of know-

ing an event does not increase the odds of the other event to take place:

P (A | B) = P (A)

As a corollary, the joint probability of independent events can be computed as

P (A ∩B) = P (A | B) × P (B) = P (A)P (B)

Bayesian statistics. One of the most significant corollary of conditional probability

between, say 2 events, are the fact that the posterior conditional probability of one event (say

A dependent on B) can be computed using a priori conditional probability (B dependent

on A) as follows:

P (A | B) = P (B | A)P (A)
P (B)
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In most applications of Bayes’ approach, typically one can argue that P (A) and P (B) are

constant (model independent). Hence,

P (A | B) ∼ P (B | A)

This is of monumental importance in network modeling and inference as described in later

sections.

Markov Chains

Assume we have a set of states S = {s1, s2, ..., sr} of r states and that at each step, the

likelihood of moving from one state to another is expressed through the transition probability.

In finite domain, this dynamic can be described in a matrix, called transition probability

matrix P. It is trivial to see that the nth step probability has close-form formula Pn. For

example, a two-step probability of going from state i to state j can be computed as follows:

p
(2)
ij =

∑
k

pikpkj

Some of the key characteristics of this matrix involves the row-sum adds up to 1 (given the

current state of the process, the process can only visit states in S), e.g. ∑j pij = 1.

Absorbing Markov Chain. One of the most important classes of Markov Chain with

many real-world applications are Absorbing/Terminating Markov Chain. In this case, there

are two types of states: transient and absorbing. Absorbing states has self-probability of 1

(guaranteed to revising itself in the next step once the process is currently in such state).

The canonical form of transition probability matrix is given by:

P =

Q R

0 I


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where Q captures transition probability between r1 transient states; I is the identity matrix

of size r2; and R represents the probability going from a transient state to an absorbing

state. By construction,

|S| = r = |Strans| + |Sabs| = r1 + r2

where Strans and Sabs are set containing transient and absorbing states, respectively.

Non-terminating Markov Chain is the opposite of absorbing chain for which no

terminating state exists. In canonical form, P = Q.

Steady state distribution. A natural quantity to consider is in the long-term, what

would be the percentage of time a random particle (walker) is found to be in any state in S.

For non-terminating chain, the matrix rank is always one less than full; hence, there is only

one single eigen pair (value/vector) exists:

πP = π

For terminating chain, on the other hand, the process is guaranteed to be in absorbing states

in the long run.

Time-to-absorption For terminating chain, Q is invertible (its inverse exists) and the

time to absorption can be computed using the row sum of the fundamental matrix Z =∑∞
i=1 Qi = (I − Q)−1 as follows:

τ = Z~1

where ~1 is vector of all ones with the same dimension as the fundamental matrix. Moreover,

N = [Nij] represents the number of times the random walker spend in state j, given that it

starts in state i, for both i, j are transient states.

.D Generative models of Networks

Practically in most (if not all) scientific disciplines in the modern world, some generic form

of system exists. Systems can be thought as a collection of elements and their interactions.

From a mathematical standpoint, in order to gain meaningful insights to those systems, one
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needs to create some scaffolding representation to represent the system elements and their

corresponding interactions.

A graph is denoted as G(V,E) where V and E are sets of vertices and edges in such

network, respectively. G(V,E) can be represented by AG = A(ij) = [wij], in which wij ∈ [0, 1]

represents coupling strength between node i and j. The strength of node i ∈ V (G) is denoted

as ki, typically stored in the diagonal matrix K for K(ii) = ki.

Figure S3. A toy example for a graph with 10 nodes and 13 edges.

Euler is the pioneer in thinking about solving a problem using a set of node and edges

in the famous problem of Königsberg bridges in eighteenth century. In this problem, one is

supposed to find a path that visits all island such that all bridges are only allowed to cross

once, see figure S4 .

Figure S4. The first problem that was approached using graph theory is
the Königsberg bridges. Panel (A) represents the pictorial demonstration of
the bridges connecting neighboring islands; panel (B) shows the corresponding
graph-theoretical representation of the problem.
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The birth of social networks among other networked systems in biology and finances

elucidated the necessity to understand these complex systems’ behaviors. This gave rise to

an research area called network science in which systems are referred to as networks. Network

science can be thought as a derivative field emerging out of graph theory. Both fields bears

obvious similarity and remarkably differences. Specifically, graph-theoretical research focuses

on proving graph properties rigorously while network-science research contributions elucidate

showing network empirical properties, using - for instance - simulations. By construction,

the field of network science is much more interdisciplinary than graph-theory.

Network exists in every corner of lives, as we know it. In fact, network can be found

from the smallest viable biological scale such as protein-protein interaction networks, to the

largest scale such as the interaction of starts in the galaxy. If one can define two things:

what are the elements of the system, and how those elements interact among each other, one

has formalize a network. Here, we list out some of the networks that one typically exposes

to, spanning different disciplines:

• The Web. One can also refer this as the Internet, which is a network in which a

web-page (with html address) is a node and their reference to other web-pages form

an edge between them;

• The Social Networks. The birth of social media has give rise to one of the most

popular network: the social networks. These graphs can simply understood as a web

of users (nodes) and their pairwise connection (whether they are connected as friends).

Those networks can be either binary or weighted depending on the particular usage.

• Human Brain network. Simply put, these networks can be effectively divided into

two types: structural and functional. Structural brain networks elucidates the hard-

wires among all given pairs of brain regions of interest (ROIs). Functional brain net-

works represents ROIs’ functional coupling strength. A more detailed treatment of

functional brain networks is available in the subsequent section of this dissertation.

• Financial network. The emergent of time-series financial instruments such as stock

prices has opened new window of opportunities for financial network modellers to
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investigate this complex dynamics under network perspective. A simple example of

weighted network would be constructing a network of stock picks where edges are

computed by Pearson correlations between two stocks’ time-series over a fixed window

of period.

The aforementioned networks are just some primal examples of networked systems across

multiple disciplines. Networks simply exist across every scale, every discipline as long as its

elements and the corresponding interactions can be quantified.

Figure S5. An example of a network of Santa Fe scientific collaboration net-
work with identified communities from detection algorithm. Figure is adapted
from [170 ].
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Random graphs and random network models

In this section, some common network models that are relevant to this dissertation are

reviewed from the two books: Generating random networks and graphs by Coolen and col-

league [171 ] and ii) Random graphs by Alan Frieze [172 ]. As mentioned in the community

section, network models need to be more versatile to incorporate the wider array of commu-

nity classes to be more applicable.

Why network models? In order to study the collective behavior of the network pop-

ulation that inherits some topological features of the at-hand ensemble, one needs to make

inferences on the latent generative mechanism that such ensemble is created from. This is

called network inference. The opposite direction is defined to be network synthesis. To-

gether, network inference and synthesis is collectively referred to as network modelling. The

field of network modelling is important to many research endeavors because of three reasons:

1. In some particular applications, the limitation of data availability rises the needs of

synthesizing artificial data with desired properties.

2. To test the hypothesis of whether newly acquired data belongs to the current popula-

tion of networks.

3. To construct null models. In many applications, one needs to compare the pre-

hypothesized structured network with some arbitrary structure-less network through

modelling. Perhaps the most used model, at least in comparing to the network at hand

is the structured-less counterpart, is the random graph.

Classical random graph models. The original random graph model is dated back

to the celebratory work by Erdos and Rényi (ER) with the proposal on G(n, p) with edge
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existence of probability p and non-existence of 1−p. Hence, for binary graphs, the probability

that a particular ensemble is observed is:

P (A) =
∏
i<j
pδ(Aij, 1) + (1 − p)δ(Aij, 0)

=
∏
i<j
pAij(1 − p)1−Aij

= p
∑

i<j Aij(1 − p)(
n
2)−
∑

i<j Aij

where δ is the typical Kronecker delta function, assuming all edges sampled independently

from an identical distribution (Binomial in this case). It is trivial to observe that ER random

graph assign equal probability to all ensemble with the same number of existing edges m

whose expectation 〈m〉 = p
(

n
2

)
.

Random graphs with topological constraints. Often, using trivial random models

such as ER graphs does not suffice for practical applications where networks are shown to

have heavy-tail, scale-free distribution. In such case, constructing null models with desirable

topological constraints is necessary. Assume that Ωµ | µ ∈ [k] represents k desired features

with associated measure µ. There are two ways of incorporating topological constraints:

• Hard constraint: all generated ensembles must have the pre-defined features Ωµ;

• Soft constraint: collection of ensembles must have this feature, in expectation. In other

words,

Ωµ(A) =
∑

i
P (Ai)Ωµ(Ai),∀Ai ∈ G

where A is generated ensemble from graph population G and A is the at-hand network.

An example of constraint-based graph generation is the generation of ER random graph

G(n, p) in which:

• Hard constraint synthesis would restrict that all realized ensemble from G(n, p) must

have exactly Ωµ(Ai) = p
(

n
2

)
edges;

• Soft constraint synthesis would relax the above condition to enforce ∑i p(Ai)m(Ai) =

p
(

n
2

)
, where Ωµ(Ai) = m(Ai) is the number of edges in ensemble Ai.
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In the next section, a well-studied network model with community structures is reviewed

independently.

Critical phases in ER Random models. In [173 ], [174 ], among others, it was proved

that the random graph explicitly experience six distinguishable ranges. Namely,

1. Range 1: p = o(1/n) i.e. limn→∞pn = 0 or p does not scale with n. In this range,

it is proven with high probability that all connected component of G is, at most, a

tree. Furthermore, a tree of size k only possible when p = Θ(n− k
k−1 ) i.e. p is bounded

between two constant c1, c2 times n− k
k−1 . Other results related to this range relates

to the number of connected components can be inferred by Poisson distribution with

mean λ = (2c)k−1kk−2

k! .

2. Range 2: p = c
n
for c ∈ [0, 1]. In this range, all connected components are either

trees or uni-cyclic components (a tree with an additional edge). Most of the vertices

in G (n − o(n) are now belongs to an connected component). More importantly, the

”largest” component in G has order

1
α

(log(n) − 5
2 loglog(n)) = O(log(n))

3. Range 3: p = 1+µ
n

This is the most exciting range in ER random graph because of the

so-called double-jump. Specifically, they proved that before this range, as we observed,

most of the connected component has size O(1) where as p = 1
n
+, the size of the largest

component is now O(n). This is the range that I will base most of the analysis and

simulation construction on.

4. Range 4, 5, and 6: These are ranges where other phenomena such as what happens to

other nodes that are not in the giant component or how likely is the graph connected

are rigorously proved. However, we are not going to investigate into these ranges due

to the limitation of project scope.

Relationship between Gn,p and Gn,m. As an realized ensemble G can be either drawn

from Gn,p or its counterpart Gn,m, one can differentiate the philosophical difference between
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two ”methods”. While Gn,p draws the number of edges from the Binomial distribution (µ =

np,σ2 = np(1−p)), Gn,m fixed the number of edges. Hence, drawing a graph in Gn,m uniformly

at random will resulted in a labelled realization G with probability
((n

2)
m

)−1
.

The asymptotic behavior of those two methods are the same as long as, roughly,

(
n

2

)
p = m

Equivalently,

p = 2m
n2

In other words, Gn,m can be thought as the hard-constraint counterpart versus the soft-

constraint one Gn,p.

The random graph evolution. A graph process is defined as follows:

Definition .D.1. A graph process ([175 ], [176 ]) G0 = ([n], |En,p0 | = 0), G1, G2....., G{
N=(n

2)
} =

Kn such that Gt is formed by Gt−1 by adding an edge at random to a pair of vertices.

If one considers Gn,p then p = p(n) = 0 → 1 while, analogously, Gn,m then m = m(n) =

0 →
(

n
2

)
. One nice thing about the graph process is that it only adds 1 edge per step. Hence

the number of edges equals to the number of steps (ticks in Netlogo).

Critical Phase with respect to m:

Putting things together, we would like to understand in what step during the evolution

of graph process does the double jump phenomenon takes place.

m = n2p

2 =
n2 1+µ

n

2 = (1 + µ)n
2 = n

2 (1)

Simulation Description. Since the critical phase transition is, now, known E(di) = 1,

the investigated statistics are b1 ticks before and b2 ticks after the critical phase transition,

given any graph size (n). Note that the critical phase transition is when the average degree

of the ensemble E(di) = 1∀i ∈ [n]. We will set up the experiment as follow:

1. Collect the statistics of the giant component size t1 ticks before the critical phase for

a given graph i.e. given n.
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2. Collect the statistics of the giant component size t2 ticks after the critical phase for

a given ensemble.

In this dissertation, t1 = 5 and t2 = 10 (ticks in Netlogo Software) is chosen to capture

the behavior of the critical phases. It is important to note that the ER graph experience 6

different phase changes but only the change between Range II and Range III are sharp. To

test the phase transition of ER random graphs, two questions need to be addressed:

1. How much does the giant component size grow between t1 and t2 ticks i.e. ’just’ before

and after the double-jump period?

2. Do the giant component needs the entire edge set
(

n
2

)
to acquire all possible nodes?

Or is it way earlier in the process?

Simulation Results. In this section, the results (mostly through frequency of giant

component sizes in a given graph at three different ticks: namely, t1, t2, t3) are presented.

The two graph sizes we will use are n = 200, 400.

•Case G ∼ G(n=200,pt) Out of 100 simulations, the average giant component size difference

(a) Histogram of the random graph with m =
n
2 − 5 to examine the giant component size
before critical phase (5 ticks before). The
histogram has (µ = 25.2, σ2 = 91.36)

(b) Histogram of the random graph with
m = n

2 + 10 to examine the giant compo-
nent size after critical phase (10 ticks after).
The histogram has (µ = 41.32, σ2 = 241.73).

Figure S6. The component size before and after (sharp) phase transition of
G ∼ Gn,pt with size n = 200.

before/after the critical phase is approximately 15 nodes, on average, apart. If we put this
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into perspective, 15 ticks addition to graph G which has at most
(

200
2

)
edges. The expansion

of giant component is very significant.

To examine the behavior of the giant component size ”long” after the critical phase (but

still way far from saturated clique size), we choose w = 40 for n = 200. To be able to

choose the saturation coefficient w, one need to run the simulation a couples of times to

find the spot where almost all nodes belong to the giant component. The number of ticks

Figure S7. The component size after 500 ticks. The giant component size
mean and variance are (199.06, 0.99).

is computed as n(n−1)
80 = 500 ticks; in addition, the giant component size mean and variance

are recorded using the software as follows: (µ, σ2) = (199.06, 0.99), see figure S7 .

•Case G ∼ G(n=400,pt) The next figure represents the size of the giant component where

there are
(

400
2

)
− (400

2 )
40 edges left to be realized from the model. The number of ticks is

computed as n(n−1)
80 = 1000 ticks; moreover, the giant component size mean and variance are

recorded using the software as follows: (µ, σ2) = (397, 3.75), see figure S9 . One can observe

the similar phenomenon where there are still lots of edges left to be added but the size of

the giant component is now practically n = 400.

In both cases (n = 200 and n = 400), simple empirical exploration confirms the giant

component sharp phase transition elegantly. This is one of the (if not the) first phase

transition, discovered and rigorously proven in a random graph models. This discovery of
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(a) Histogram of the random graph with m =
n
2 − 5 to examine the giant component size
before critical phase (5 ticks before). The
histogram has (µ = 40.7, σ2 = 314.77)

(b) Histogram of the random graph with
m = n

2 + 10 to examine the giant compo-
nent size after critical phase (10 ticks after).
The histogram has (µ = 60.5, σ2 = 634.77).

Figure S8. The component size before and after (sharp) phase transition of
G ∼ Gn,pt with size n = 400.

Figure S9. The component size after 1000 ticks. The giant component size
mean and variance are (397, 3.75)

phase transition has also established a standard quest for other random graph models created

after the famous ER model.

Structured graphs and Stochastic Block Models

Inevitably, Stochastic block models (SBMs) is one of the most studied graph model

with hypothesized communities. The model is dated back to sociology in the early work
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of Holland [177 ]. The model also appeared in different discipline with different names such

as heterogeneous random graphs in graph theory. In figure S10 , the plotted ensemble is

Figure S10. An example of a graph with 1000 nodes equality divided into
5 communities with drastic difference in connectivity probability between and
within communities. Figure is adapted from [22 ].

generated from SBM with within-community and between-community probability are 1
50

and 1
1000 , respectively.

Model Description. Some of the key components of basic SBM is defined here. Other

fundamental mathematical notations are referred to Linear Algebra section.

• G = [auv] =


FC, weighted− graphs

M, binarized− graphs

: network/graph (e.g. functional connectomes

(FCs) in the context of this work);

• V (G) = {u}, and E(G) = {uv | u, v ∈ V (G)} be set of vertices and edges, respectively;

• |V (G)| = n and |E(G)| are the size and order of network, respectively;
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• {Gn} ∀n ∈ N is the graph sequence; in empirical domain, the number of graphs in the

sequence is defined as | {Gn} | = N ;

• k: number of communities/clusters;

• σ = [σu] ∈ [k]n is the pre-defined, well-understood community assignment in vector

form of length n. It is the mathematical map σ := {u 7→ i,∀u ∈ [n], i ∈ [k]}. In general,

σ is also referred to as a graph partition;

• Ω = [|Ωi|] is the vector containing cardinality of community where

|Ωi| = | {u | σu = i} |,∀i ∈ [k], u ∈ [n]

• C is the statistical summary of edge properties within and between communities in

matrix form. Mathematically,

C =


Cbin ∈ N k×k

+

Cwei ∈ Rk×k

where Cbin ∈ Nk×k
+ denoted the simple edge count matrix within/between communities

and Cwei denoted the weighted edge sum (also within/between communities);

• Cmax ∈ Nk×k
+ is the maximum number of edges within/between communities;

• p = [pi]: the probability that a node u belongs to community i ∈ [k]; P = diag(p) is a

k × k matrix filled with pi in the diagonal;

• Q = [Qij] ∈ Rk×k is the expected node degree matrix, i.e. the expected number of

connections a node in community i has with community j;

• sn: scalable factor of degree regime in a graph sequence Gn where n ∈ N ;

• W = [wij] is the edge probability between 2 nodes in community i and j, respectively.1  ;
1↑ It is worth-noting that if wij is the same for all i, j ∈ [k], then SBM collapses to classical ER random graph
model
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• PQ = nP
[

W
sn

]
= nPW is the community profile matrix where i column is the expected

number of edges that community i has with all communities. Note that for weak-

recovery (detection), scaling factor sn = 1.

Phase transitions in SBM. Stochastic Block Models (SBM) has recently gaining trac-

tion due to exciting developments in both theoretical and practical perspective. Specifically,

in theoretical domain, phase transitions in detecting communities (or more generally, meso-

scopic structures) were discovered through the measure Signal-to-noise Ratio (SNR) [22 ]. In

brain connectivity domain, SBM has demonstrated its advantages in exploring and uncover

diverse types of brain functional sub-circuits (e.g. dis-assortative or core-periphery) beyond

the traditional assortative mesoscopic structures [151 ], [152 ]. Specifically, Sandon and Abbe,

in [22 ], laid out a comprehensive treatment of mesoscopic recovery criteria for any pair of net-

worked systems and a priori set of communities (or functional networks in brain connectomic

domain) as follows:

1. Weak Recovery (also known as detection):

2. Almost Exact Recovery;

3. Exact Recovery:

Definition .D.2. Weak recovery (of a ground-truth partition) can be rigorously thought as

the existence of an algorithm that infer a partition that agrees with the ground-truth one up

to maxi pi+,∀i ∈ [k]. This level of accuracy is the minimal requirement for most community

detection methods.

Theorem .D.1. (Sandon and Abbe [22 ]) Let (G, σ) ∼ SBMn, p, snQ
n

for p,Q arbitrary and

sn = 1. If SNR > 1, then weak recovery is efficiently solvable; where

SNR = λ2
2
λ1

and λi is the ith eigen value of the community profile matrix PQ.

Weak recovery (of a given ground-truth communities) means that the recovered partition

(from some algorithm) beats the random guess, i.e. maxi pi by a small factor . The criteria
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for weak-recovery is driven by a hard threshold approach presented in the below theorem. As

we can see here, to satisfy weak recovery criteria, we do not need the graph to be connected,

asymptotically. Loosely speaking, we only need the graph sequence to have a large connected

component. In other words, we only need {Gn∈N} to be in the constant degree regime, i.e.

sn = 1. An example of weak recoverability is that suppose we have a network with n nodes

and two ground-truth communities of equal size (i.e. n
2 nodes for each community), if the

graph is in weak recovery regime,we can recover the true community membership of each

node with the probability, somewhat, larger than 50% by a small amount, say 5%. We see

that if an ensemble is generated in constant degree regime, one can arbitrarily assign any

community membership to isolated nodes, i.e. leafs, and hence, exact recovery is not possible

in this regime. Finally, for exact recovery, since W scales with n through the factor sn, the

community profile matrix M is consequently grows with the factor sn, as well.

Definition .D.3. Exact recovery (of a ground-truth partition) can be rigorously thought as

the existence that has the probability of inferring the correct node memberships of On(1) nodes

to be 1 − on(1) as n → ∞.

Theorem .D.2. (Abbe et al. [22 ]) Exact recovery in SBM(n, p, snQ
n

) is solvable and effi-

ciently so if

I+(p,Q) = mini,j∈[k]D+((PQ)i, (PQ)j) > 1

where

D+((PQ)i, (PQ)j) = maxt∈[0,1]
∑

x

(PQ)j(x)ft

[
(PQ)i(x)
(PQ)j(x)

]

and

ft = 1 − t+ ty − yt

Recall that (PQ)i is the ith column of the community profile matrix. Essentially, the

Chernoff-Hellinger distance/divergence (CHD) measure ”how difference” any two column of

such matrix can be distinguished and that if the minimum CHD passes the hard threshold

of 1 then the graph is now in a exact-recoverability regime. In other words, latent node

membership recoverability is almost guaranteed. For example, given an unknown a priori

set of FNs and a given graph sequence {Gnl
} that satisfied the Theorem 2, one can recovery
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such set of FNs almost exactly (say 95%) with some neglect-able errors, i.e. some small

fraction of nodes might be classified incorrectly (say 5%). To be in this regime, the graph

sequence needs to be asymptotically connected, e.g. scaling factor must exists sn > 1.

Graph Sequence and required topological features for recovery

Definition .D.4. A graph sequence is a mathematical series of graph ensembles generated

by some fixed rules. Mathematically, it is denoted by {Gl} where l is the sequence index.

For a example, one can generate an ER random graph sequence, denoted as Gn(n, p)

with fixed p with limiting graph Gn=∞(n, p) (also known as graphon). With respect to the

recent developments in SBM(k, p,W ) theory, it is important to note the theoretical scaling

characteristics of model parameters such as k, p,W and make necessary assumptions, i.e.

which scales with n, which stays constant as graph size grows to ∞. Firstly, it is common

to assume that p, k does not scale with n; hence, the number of communities and their

respective sizes do not grow with n [22 ]. In other words, communities are assumed to have

linear sizes [22 ]. We also see that Q = [Qij] is constant but W scales with n through scaling

factor sn.

Moreover, matrix W has theoretical ties with an important topological characteristic of

a graph sequence, e.g. degree regime in the graph sequence {Gl}. The importance of degree

regime lies on its relations with graph connectivity. Specifically, there are two important

degree regimes that are relevant for graph partition recoverability:

• Constant degree regime: In this regime, connectivity pattern is fixed (independent

of Schaefer granularity levels). Asymptotically, node degrees do not scale with graph

size, i.e. W = O(n−1). In random graph theory, this is the degree where ER graph

is expected to have a giant component. This is the minimum requirement for the

weak-recovery criteria which will be formally defined later.

• Diverging degree regime: In this regime, connectivity pattern varies with graph

sequence sizes. Asymptotically, node degrees do scale with graph size at a scalable

factor sn, i.e. W = O(log(n)n−1). In random graph theory, this degree regime gener-

ates connected ER ensemble, in expectation. This is a minimum requirement for exact

recovery (defined in later section).
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.E Community Detection Methods of Networks

Communities on networks

Originated from sociology context [178 ], communities, also known as meso-scale struc-

tures, typically refers to a proper subset of nodes possessing certain degree of similarity.

Originally, ”similarity” is thought in terms of internal connectivity, e.g. the number of con-

nections that nodes within the same community exerts, with respect to other nodes in other

communities. This leads to the most popular definition of a community is assortative

clusters: the notion of particularly dense subgraphs in sparse graph. The intuition of such

definition emerges from a social context, where group of members exerts higher internal

density relatively to external ones. This definition of assortativity is, later, referred to as

density − based clusters. Philosophically, the concepts of communities can be thought from

a flow − based (also known as pattern-based) perspective where communities are proper

subsets of nodes that sustain underlying internal flow of information within itself. Dif-

ferent measurements were also proposed and analysed (see [107 ], [109 ] for comprehensive

overviews). Beyond density and flow based communities, there are other classes of com-

munities such as dis-assortative or core-periphery. These classes of communities are not

conventional, at least compared to the early notion of sociological communities. As the

field of community detection grows, they are logically, more often, referred to as mesoscopic

structures of networks.

Rather than an exhaustive argument for which particular view one should always adapt,

it is heavily driven by application. For instance, in networks where dynamical interactions

among entities are emphasized in edge weights, flow − based communities tends to rep-

resent meaningful meso-scale structures. The notion of similarity shared by an induced

subnetwork also legitimizes disassortative communities in which external edge connectivities

outweigh internal ones. This allows the foundation to extend the traditional notion of com-

munities above assortativity. Collectively, these are called community classes; there exist

three primary ones: assortative, dis-assortative, and core-periphery. Despite the classical

and intuitive notion of assortative communities, real-world networks are often hypothesized

to possess a diverse classes of meso-scale structures. For instance, in the context of brain
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Figure S11. An example of four main community classes: assortative (a),
dis-assortative (b), core-periphery (c), and mixed (d). Figure is adapted from
[151 ]

functional connectomic, the co-existence of multiple community classes is proven particu-

larly important to explain higher-order cognition in human, see [151 ]. In this and the next

section, approaches to finding communities for a given network are reviewed. There are two

most common approaches:

• objective function;

• statistical inference.

Objective-function approach

Each of the two approaches has its advantages and shortcomings which are to be reviewed

in subsequent sections. For objective based methods, one typically starts with the philosophy
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Table 2. Common Objective-based Community Detection Methods
Category Method Objective Function Underlying Mechanics Notations Refs.

Density-based Modularity Q = 1
2m

∑
i,j(Aij − pij)δci,cj

Quantify the difference
between at-hand graph
and a random counter-
part that preserves the
degree distribution.

• Aij: binary edge (non-)ex-
istence between node i and
j;

• pij is the probabilistic coun-
terpart representing the
likelihood of edge existence
between node pair i and j;

• δci,cj : Kronecker Delta
which equals to 1 if node
i, j are in the same commu-
nity, i.e. ci = cj and 0, oth-
erwise, i.e. ci 6= cj.

[155 ],
[179 ], [153 ],
[86 ], [180 ]
among
many
others.

Flow-
based

info-map L(M) = qH(Q) +∑m
i=1 p

iH(P i)

Total amount of infor-
mation (measured by
entropy) required by
the random walker to
fully exploit meaningful
communities.

q module-switching probability;
H(Q): between-module entropy;
pi within-module probability;
H(P i): within-module entropy

[181 ], [88 ],
[89 ].

Stability r(t) = maxH {min0≤s≤t
∑c

i=1(Rs)ii}

Sustainability of ran-
dom walker to stay in-
side communities after
discrete time step t.

c: number of clusters, given a
partition; H community assign-
ment (0-1 matrix) for nodes in
graph G; Rs is a s−step depen-
dence of transfer probabilities be-
tween clusters.

[182 ], [183 ].

(which class of communities is hypothesized in the given network - this is domain-specific).

The two most common views are

• density-based communities - which are more suitable in undirected networks;

• flow based communities - which are suitable for directed networks.

The below table summarizes some of the most known community detection method(s) for

assortative communities in a given network driven by two aforementioned views. Per figure

S12 , both Q score and informap approaches yields different partitions. However, these parti-

tions are technically assortative with the only difference lies in the philosophical perspective

in which Q-score driven partitions do not consider the underlying flow of information among

the elements of the same communities as infomap.
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Figure S12. An example of different partition results from maximizing modu-
larity score versus infomap. In both cases, infomap rewards communities with
meaningful underlying flow of information whereas modularity rewards simply
on internal vs. external edges. Note that in case B, infomap result shows that
no meaningful mesoscopic structures exists while modularity shows 4 distinct
communities. Figure is reproduced with permission from [88 ].

In this dissertation, the Newman’s Q-score is extensively focused because of its signifi-

cance in pioneering community detection methods. Specifically, for a given partition can be

computed as follows:

Q(σ, α = 1) = Q(σ) =
∑
u,v

(Auv − αPuv)δ(σu, σv)

= 1
2m

∑
uv

{
Auv − dudv

2m

}
δ(σu, σv)
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where 2m and du is graph and node degree, respectively:

∀u ∈ V (G) : du =
∑

v

Auv & 2m =
∑

u

du

and the default scaling factor α = 1; this scaling factor is typically used to scan the hierar-

chical structure of community in a network.

There is more than one way to model the null model Puv. The Newman’s approach is

Puv = dudv

2m
which represents the random graph (no particular community structures) with

the same empirical degree sequence. In theory, one can assume Poisson Distribution for node

degree (like in the WSBM case). In the case of Newman’s Q, this null model is built with

respect to the empirical network degree. Further, tuning parameter is, by default, set at

α = 1 and the delta function is defined as

δ(σu, σv) =


1, σu = σv

0, σu 6= σv

If a priori partition σ is known, then the modularity score can be written as a blockage

format (only survived terms in within communities: ∀u, v ∈ V (G) | σu = σv = i ∈ [k]) as

follows:

Q(σ) = 1
2m

∑
uv

{
Auv − dudv

2m

}
δ(σu, σv)

=
i=k∑
i=1

[∑
u,v∈i Auv

2m −
∑

u,v∈i dudv

(2m)2

]

=
i=k∑
i=1

Cii

2m −
∑

u,v∈i

du

2m
dv

2m


=

k∑
i=1

[
Cii

2m −
[
si

2m

]2
]

=
k∑

i=1
(Pσ(ii) − PQ

null(ii))

185



Because: ∑
u,v∈i

Auv = Cii

and ∑
u,v∈i

dudv =
∑
σu=i

d2
u + 2

∑
u6=v

dudv = (
∑
σu=i

du)2 = (s1)2

where s1 is the total number of half-edges (stubs) that originates from nodes in community

i.

We also look at the null model from another perspective that the event of a stub (half-

edge) exist at node u with probability Pu(stub) = du

2m
, likewise, at node v with Pv(stub) = du

2m
.

These two independent event needs to happen sequentially to form a edge between node u

and v with probability

PQ
null = Puv(edge) = du

2m
dv

2m,∀σu = σv = i ∈ [k]

Note that here, no community indication is available for either node u or v which implies a

null model (i.e. random partition) of σ (ground-truth).

Q-score can be applied to both binarized or weighted graph. In this case, for each

threshold value, Q-score is computed for the weighted group-average FCs across Schaefer

granularity levels. Maximizing modularity has been shown to unravel assortative communi-

ties while SBM has been shown to uncover different types of community, beyond assortative

ones [151 ].

It is worthy to mentioned that the majority of community detection methods using ob-

jective functions revealing different perspectives on assortative communities (not necessarily

different classes of communities such as assortative versus dis-assortative and core-periphery).

Network Inference using Stochastic Block Models

(Binary) SBM

. Since SBM is a generative model, one ought to talk about how to synthesize ensembles

using such models, e.g. network synthesis and how to infer SBM parameters, using the
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observable ensembles, e.g. network inference. We note that in the context of our problem,

we have a slightly different starting point as the partition is not latent but in general,

partitions are often inferred. Networks with existent ground-truth partition are very rare;

furthermore, those ground-truth cannot be defined in an absolute sense. The majority of

SBM is defined as follows:

G ∼ SBM(k, p,W, σ)

In some particular applications, the partition is not latent (i.e. known as a prior). Specifi-

cally,

(G, σ, k) ∼ SBM(p,W )

.

In the case of G ∼ SBM(k, p,W, σ), SBM seeks an partition that divide network G into

k communities. The probability that two nodes are connected to each other is governed by

probability Wσu,σv . To fit SBM onto a network, one needs to estimate W = [wij],∀i, j ∈ [k]

(this means that k is a priori condition for fitting) along with community label σu,∀u ∈ [n].

Assuming that each edge is drawn independently from identical distributions, then, the

probability that a network G = A = [auv] is generated (synthesized) from a priori W and σ

(prior beliefs) is as follows:

P (A | W,σ) =
∏
u>v

W auv
σu,σv

(1 −Wσu,σv)1−auv

for symmetric networks. From the inference standpoint, the Bayesian posterior probability

can be computed as follows:

P (σ | A) =
∑

W P (A | W,σ)P (W,σ)
P (A)

187



where P (W,σ) is Bayesian prior beliefs. If there is only one W (hard constraint, Piexoto)

that is comparable to network A and partition σ then we can drop the summation notion

which results in:

P (σ | A) = P (A | W,σ)P (W,σ)
P (A)

= exp{−ln(P (A | W,σ)) − ln(P (W,σ))}
P (A)

The hard constraint assumption is very standard technique to isolate eventually partition σ

for inference purpose. Note that adjacency structure A is of course ”hard” (there is only one

ensemble A).

Since P (A) is also fixed, maximization of posterior probability P (σ | A) is equivalent to

maximizing

−ln(P (A | W,σ)) − ln(P (W,σ))

which is also understood as minimization of the description length (DL, measured in bits) of

ensemble A using partition σ. Once again, hard constraint assumption yields the description

length ultimately only depends on:

DL = −ln(P (A | W,σ))

In binary SBM case, it follows that:

DL = −ln(
∏
u>v

W auv
σu,σv

(1 −Wσu,σv)1−auv)

= −
∑
u>v

auvln(Wσu,σv) + (1 − auv)ln(1 −Wσu,σv)

Hence, minimization of DL is equivalent to maximizing the log likelihood function.

Weighted SBMs

. The assumption of binary edges could be unfitting to some applications, including

the functional brain networks where there is a need to express different level of functional
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coupling strength numerically. In such case, we need to introduce the structure of covariates

(denoted as x = [xσu,σv ]) to model the weights. In this case, the prior is written as follows:

P (x,A | σ) = P (x | A, σ)P (A, σ)

It follows that the posterior probability becomes:

P (σ | A, x) = P (A | x, σ)P (x, σ)
P (A)

Using similar technique in binary case, one can estimate covariate structure first so that

joint probabilities with x, e.g. P (x, σ) and P (A, x), does not alter the posterior distribution

behavior. Hence, the posterior belief is proportional to the priors which can be written as

follows:

P (σ | A, x) ∼ P (A | x, σ)

Ultimately, the task of finding ”ground-truth” partition σ depends on the likelihood of prior

beliefs. This is equivalent to maximizing P (A | x, σ). The first task is of course to estimate

x as A is already available. We notate the covariate structure x to be more integrated with

probability distribution parameter notations P (X = x). Specifically, we assume that the

realized FC edge weights are drawn from some distributions with specific parameter(s).

Model Selection

There is different approaches to model selection (e.g. which edge weight distribution one

should use, given the empirical data). In the context of this paper, given the empirical dis-

tribution of FC edge weight and the usage of absolute functional connectivity (non-negative

pair-wise edges), we short-list two candidate distribution: exponential (continuous), and

Poisson (discrete counterpart). Each choice has its pros and cons. For instance, choosing ex-

ponential distribution allows us to stick with continuous ensembles of functional edge weights

which is consistent with how FC edges are computed using Pearson correlations. However,

in continuous distribution, the probability of FC edge takes on a particular value is zero by
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definition. Yet, the functional connectome is sparse [151 ], e.g. majority of pairwise interac-

tions between two brain regions is non-existent. Hence, using exponential distribution will

not suffice. A common approach is to use a different distribution such as Binomial to model

edge (non-)existent and connect the two distribution using weighted average (see method

section in [151 ] for further details). This will force modeler to make an precursor assumption

on weight value which is not ideal.

On the other hand, using Poisson distribution (a discrete counterpart of exponential

distribution) offer us a distinct advantage of modeling a non-zero probability of getting zero-

valued functional edges. Recall that the Poisson probability density function is as follows:

f(k, λ) = P (X = k) = λke−λ

k!

Clearly, P (X = 0) = e−λ > 0 which ultimately depends on λ inference based on empirical

observations of functional edges. Nonetheless, the shortcoming of using discrete distribution

is precisely the advantage of using exponential one: being able to model edge in a continuous

manner. To overcome this shortcoming of discrete distribution usage, we convert functional

couplings (computed by Pearson correlations which are nicely bounded between [ − 1, 1]) to

percentage point and rounding to nearest integer. For instance, if a functional edge has value

of auv = 0.588, the weighted graph will take auv = 59. The reason for rounding to nearest

integer is because Poisson distribution takes on non-negative integer values N+. Note that

using Poisson Distribution, no essential topological changes is made to the original FC other

than rounding functional couplings to nearest integer.

In this paper, we use Poisson Distribution for degree sequence as proposed by Karrer

and Newman [154 ]. In the next sections, we review the inference procedure (as proposed in

[154 ]) for both assumptions:

• Non-degree-corrected WSBM;

• Degree-Corrected WSBM.

WSBM Inference Procedure: In this paper, we use method as described in https://

graph-tool.skewed.de/  by Tiago Piexoto. Further treatments on weighted SBM can be found
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at [184 ]. After we review the inference approaches, we compare the philosophical similarity

and difference between WSBM inference and Q score modularity.

Standard (Non degree-corrected) WSBM

The review of non-degree-corrected (NDC) WSBM is provided in a well-cited paper by

Karrer and Newman [154 ], the author assumed such distribution for multi-graph ensembles,

where edges can take on integer values larger than 1. In this case, prior probability can be

written as follows:

P (A | x, σ) =
∏
u<v

(xσu,σv)Auve−xσu,σv

Auv!

×
∏
u

(xσu,σu)Auu/2e−xσu,σu

(Auu/2)!

It is important to note that the expected adjacency structure in this case is

E(ANDC) = Y xY T

where Y ∈ [0, 1]n×k be the node community membership matrix, i.e. yul = 1 if and only if

node u is in community l ∈ [k]. Note that self-loop edge weight cannot be counted twice.

For symmetric networks where Auv = Avu and xij = xji, the above prior probability can be

written as follows:

P (A | x, σ) =
∏

ij x
Cij/2
ij exp(−1

2 |Ωi||Ωj|xij)∏
u<v(Auv!∏u 2Auu/2(Auu/2)!)

where |Ωi| is the cardinality of community i, Cij is the counted number of edges between

community i and j which can be simply computed by:

Cij =
∑
u,v

Auvδσu,iδσv ,j
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where δ is the Kronecker delta function as defined in the main text. Similar to the binary

case, the log-function is then be:

logP (A | x, σ) =
∑

ij
(Cijlog(xij) − |Ωi||Ωj|xij) + Θ(G)

where Θ(G) is the quantity dependent on ensemble G (such as |Ωi| or Auv) which has no

impact onto the logarithmic function behavior (i.e. not impacting the optimal value of this

function). The inference process reduces to maximizing:

L(x, σ) =
∑

ij
(Cijlog(xij) − |Ωi||Ωj|xij)

Note that here, we drop A (ensemble adjacency structure) just to ease notation usage and

emphasize which variable(s) the likelihood function depends on. To do optimize the above

function, one can just use the differential calculus as follows:

dL

dxij
= Lij = d

dxij

[
Cij

xij
− |Ωi||Ωj|

]

Setting the first derivative to zero, e.g. L = 0, we obtain:

x̂ij = Cij

|Ωi||Ωj|

Note that now we have estimate x, i.e. the covariate structure, the likelihood function can

be written as follows:

L(x̂, σ) =
∑

ij
(Cijlog(xij)) − 2m

Dropping constant 2m (ensemble node’s degree sum) and substitute the estimated covariate

x̂, the log-likelihood function can now be written as:

L(σ) =
∑

ij
Cijlog

{
Cij

|Ωi||Ωj|

}
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Using simple algebra, the log-likelihood function can be rewritten to:

L(σ) = 2m
∑

ij

Cij

2m

[
log

{
Cij/2m

|Ωi||Ωj|/n2

}
− log

{
n2

2m

}]

=
∑

ij

Cij

2mlog

{
Cij/2m

|Ωi||Ωj|/n2

}
+ Θ(G)

where, again, Θ is a constant function based on ensemble G.

Let Y and Z be the random variables representing community assignment on one end of

a stub (half-edge). Then we can build a joint probability distribution between Y and Z as

follows:

Pσ = Pσ(Y, Z) = Cij

2m,∀i, j ∈ [k]

On the other hand, the randomized counterpart distribution of these random variables (with

the same a priori partition σ) is

PW SBM
null = |Ωi||Ωj|

n2

In this case, edge formation (from two stubs) are completely at random with probability |Ωi|
n

and |Ωj|
n

for each stub. Comprehensive, the likelihood function becomes:

L(σ) =
∑

ij
Pσ(ij)log

{
Pσ(ij)

PW SBM
null (ij)

}

=
∑

ij
Pσ(ij)

[
log(Pσ(ij)) − log(PW SBM

null (ij))
]

On the other hand, the Kullback-Leibler Divergence between two probability distribu-

tions P (x) and Q(x) is defined to be:

DKL(P || Q) =
∑
x∈X

P (x)log
{
P (x)
Q(x)

}

where x ∈ X is the random variable takes on values in the sample space X . Then the log-

likelihood function above can be thought as an information theoretic measurement between
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the ”ground-truth” probability distribution x(σ) and the corresponding null distribution

x(null). If we only look at what happen within communities, the quality function becomes:

Lwithin(σ) =
∑

i
Pσ(ii)

[
log(Pσ(ii)) − log(PW SBM

null (ii))
]

If we substitute the estimated Pσ and Pnull above to this equation, we obtain:

Lwithin(σ) =
∑

i

Cii

2m

{
log

[
Cii

2m

]
− log

[
|Ωi|2

n2

]}

Of course, we also have the log-function described the differential information description

requirement between communities:

Lbetween(σ) =
∑
i6=j

Cij

2m

{
log

[
Cii

2m

]
− log

[
|Ωi||Ωj|
n2

]}

We will compare the within-community Lwithin with the modularity function Q score in the

subsequent sections.

Degree-corrected WSBM

Fot the degree corrected (DC) WSBM case, a new hyper-parameter is introduced into the

model θr (arbitrary constant terms that are o(xσr,σs), i.e. constant terms that get absorbed

into xij). The prior probability can now be written as follows:

P (A | θ, x, σ) =
∏
u<v

(θuθvxσu,σv)Auvexp(−θuθvxσu,σv)
Auv!

×
∏
u

(θ2
uxσu,σu)Auu/2exp(−θ2

uxσu,σu)
(Auu/2)!

where∑u θuδσu,i = 1 (with δ is the Kronecker delta function as usual). Basically, θu represents

the probability that an half-edge (stub) in community i originated from u itself in which
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σu = i. It is noteworthy that the expected value of adjacency structure in this case is no

longer just xσu,σv but instead:

E(ADC) = [E(auv)] = θuxσu,σvθv

= diag(θ)Y xY Tdiag(θ)

where diag(θ) = diag([θu]) is the diagonal matrix contains the θu weights of node u. The

priors can then be condensed as follows:

P (A | θ, x, σ) =
∏

u θ
du
u

∏
ij x

Cij/2
ij exp(−1

2xij)∏
u<v Auv!∏u 2Auu/2(Auu/2)!

with du being node u degree. The log-likelihood function is then

L = logP (A | θ, x, σ) = 2
∑

u

dulogθu +
∑

ij
{Cijlogxij − xij}

= L1 + L2

where du is node u degree and, again, ignoring constant terms Θ(G) which are terms con-

taining Auv. The goal is to maximize this log-function, compartment-ally, with respect to

the normalization condition∑u θuδσu,i = 1. We look at them separately (again, ignoring con-

stant if any). Maximizing L2 = ∑
ij {Cijlogxij − xij} is straight-forward by taking derivative

with respect to xij. Specifically,

L2 = dL2

dxij
= Cij

xij
− 1 = 0 → x̂ij = Cij
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L1 =
∑

u

dulogθu =
∑

i
duδσu,ilogθu

=
∑

i

 ∑
u|σu=i

dulogθu

 s.t.
∑

u|σu=i
θu = 1

=
∑

i

si
∑

u|σu=i

du

si
logθu

 s.t.
∑

u|σu=i
θu = 1

where si = ∑
u|σu=i du is the number of half-edges in community i. Note that there are |Ωi|

terms of θu for each community. We see that is the entropy of the probability distribution

representing the random variable θ, e.g. the probability that an edge in community i lands

on u for which σu = i,∀i. This entropy is minimized when

θ̂u = du∑
u du

Here, it is important to note that if we choose random uniform distribution for random

variable θ (e.g θ̂u = 1
|Ωi|), we obtain minimized L1 which reduces L.

Difference between Non-degree-corrected and Degree-corrected model

Plugging in the estimated parameters for both cases of WSBM, we obtain:

LNDC =
∑

ij
Cijlog

[
Cij

|Ωi||Ωj|

]

and

LDC =
∑

ij
Cijlog

[
Cij

sisj

]

=
∑

ij

Cij

2mlog

[
Cij/2m

(si/2m)(sj/2m)

]
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which is the Kullback-Leibler divergence between P (x) (same as in the NDC case) and

QDC(x). In other words,

PW SBM
null = sisj

(2m)2

for the DC case. Recall that for the NDC case, the null model is:

PW SBM
null = |Ωi||Ωj|

n2

Thus, the best fit to the NDC WSBM is the partition that most surprises the Erdos-Reyni

random counterpart while for DC WSBM case, it is the group assignment that is most

surprising to the random model with the same empirical degree sequence.

A conceptual comparison between Newman’s modularity and SBM inference
likelihood function

In this section, we compare the NDC, DC WSBM and Q score approach by first revisiting

their formulas:

1. the NDC log-likelihood function (within communities):

Lwithin =
∑

i

Cii

2m

{
log

[
Cii

2m

]
− log

[
|Ωi|2

n2

]}

2. the DC log-likelihood function (within communities):

Lwithin =
k∑

i=1

Cii

2m

{
log(Cii/2m) − log

[
s2

i
(2m)2

]}

3. Q-score modularity function, using community block format:

Q =
k∑

i=1

[
Cii

2m −
[
s1

2m

]2
]

It is very interesting (yet, not surprising) that the two most known method for community

detection is based on a similar principled of comparing a structure-less counterpart (that has
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some similar topological characteristic) with the network at hand (which is hypothesized to

have some latent structure of communities). In both approach, the hypothesized distribution

of random variable Y and Z for within-community is actually the same:

PNDC−W SBM = PDC−W SBM = PQ = Cii

2m

Obviously, there is a difference between the null model choice between Q score and NDC

WSBM approach as the later does not feature the observed network degree sequence while

Newman’s Q method actually does. This shortcoming is resolved with the DC WSBM

approach as mentioned in the previous section. In fact, the DC WSBM and Q score null

model is actually the same. Specifically, for DC WSBM, the null model is

PDC−W SBM
null = s2

i
(2m)2

while for modularity approach, it is also:

PQ
null = s2

i
(2m)2

What, then, is the shortcoming of Q score approach? It does not emphasize what happen

with the ”between” community dynamics. To be clear, one can rewrite Q score so that it

reflects between- community edges as proposed by Fortunato [109 ] as follows:

Q =
k∑

i=1

[
Cii

2m −
[
s1

2m

]2
]

= −1
m

[{
m− 1

2
∑

i
Cii

}
−
{
m−

∑
i

( s
2
i

4m)
}]

= −1
m

[Cut− E(Cut)]

where Cut =
{
m− 1

2
∑

i Cii
}

being the number of inter-community edges and E(Cut) is

its corresponding expected counterpart. Basically, modularity would like to maximize the

within community edges (equivalently, minimize the between community edges). Hence, it

biases towards assortative community assignments.
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On the other hand, the log function of WSBM has also incorporate what happens between

communities through Lbetween. This is why SBM inference method shines over traditional

Q maximization techniques for its ability to uncover a more diverse classes of community

structures beyond assortative one.

An information-theoretical comparison between Newman’s modularity and SBM-
inference partitions

Given the node set of N elements S = {si | i ∈ [N ]}, To quantify the amount of shared

information between two partitions (e.g. σ1 = {σ1
r | r ∈ [R]} and σ2 = {σ2

c | c ∈ [C]}),

a normal approach would be using mutual information score, which can be quantified as

follows:

MI(σ1, σ2) =
r=R∑
r=1

c=C∑
c=1

Pσ1σ2(r, c)log Pσ1σ2(r, c)
Pσ1(r)Pσ2(c)

where R,C is the number of clusters in partition vector σ1 and σ2, respectively; Pσ1σ2 and

Pσ1(i) are the joint and marginal probability distribution, respectively between two discrete

random variables representing two realized partitions. A typical initialization step is to build

a contingency table which indicates the number of common nodes has in common between

cluster σ1
r and σ2

c : 
n11 n12 · · · n1C

. . . · · · . . . · · ·

nR1 nR2 · · · nRC


where nrc represents the number of common entities between cluster σ1

r and σ2
c ; the row

and column marginal sums are denoted as ~a = ar and ~b = bc, respectively. By construction∑
r ar = ∑

c bc = N . The expected mutual information for a random partition with the same

contingency table has closed-form formula as proposed in [185 ] as follows:

E(MI(σ1, σ2)) =
∑

r

∑
c

min(ar,bc)∑
max(1,ar+bc−N)

nrc

N
log

{
N × nrc

arbc

}

× ar!bc!(N − ar)!(N − bc)!
N !nrc!(ar − nrc)!(bc − nrc)!(N − ar − bc + nrc)!
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The entropy associated with the two partitions are:

H(σ1) =
R∑

r=1
Pσ1(r)log(Pσ1(r))

where Pσ1(r) = |σ1
r |

N
is the probability that a element picked randomly from set S belongs to

σ1
r . Analogously,

H(σ2) =
C∑

j=1
Pσ2(j)log(Pσ2(j))

Finally, putting all components together, adjusted (for chance) normalized mutual informa-

tion (AMI) can be computed as follows:

AMI = MI − E(MI)
max(H(σ1), H(σ2)) − E(MI)

Note that there are other ways to average the independent entropy of the two partitions such

as arithmetic. In this paper, we use the maximum between the two entropy quantities.
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ABSTRACT

The quantification of human brain functional (re)configurations across varying cognitive
demands remains an unresolved topic. We propose that such functional configurations may be
categorized into three different types: (a) network configural breadth, (b) task-to task transitional
reconfiguration, and (c) within-task reconfiguration. Such functional reconfigurations are rather
subtle at the whole-brain level. Hence, we propose a mesoscopic framework focused on
functional networks (FNs) or communities to quantify functional (re)configurations. To do so, we
introduce a 2D network morphospace that relies on two novel mesoscopic metrics, trapping
efficiency (TE) and exit entropy (EE), which capture topology and integration of information
within and between a reference set of FNs. We use this framework to quantify the network
configural breadth across different tasks. We show that the metrics defining this morphospace
can differentiate FNs, cognitive tasks, and subjects. We also show that network configural
breadth significantly predicts behavioral measures, such as episodic memory, verbal episodic
memory, fluid intelligence, and general intelligence. In essence, we put forth a framework to
explore the cognitive space in a comprehensive manner, for each individual separately, and at
different levels of granularity. This tool that can also quantify the FN reconfigurations that result
from the brain switching between mental states.

AUTHOR SUMMARY

Understanding and measuring the ways in which human brain connectivity changes to
accommodate a broad range of cognitive and behavioral goals is an important undertaking.
We put forth a mesoscopic framework that captures such changes by tracking the topology
and integration of information within and between functional networks (FNs) of the brain.
Canonically, when FNs are characterized, they are separated from the rest of the brain
network. The two metrics proposed in this work, trapping efficiency and exit entropy, quantify
the topological and information integration characteristics of FNs while they are still
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embedded in the overall brain network. Trapping efficiency measures the module’s ability
to preserve an incoming signal from escaping its local topology, relative to its total exiting
weights. Exit entropy measures the module’s communication preferences with other modules/
networks using information theory. When these two metrics are plotted in a 2D graph as a
function of different brain states (i.e., cognitive/behavioral tasks), the resulting morphospace
characterizes the extent of network reconfiguration between tasks (functional reconfiguration),
and the change whenmoving from rest to an externally engaged “task-positive” state (functional
preconfiguration), to collectively define network configural breadth. We also show that these
metrics are sensitive to subject, task, and functional network identities. Overall, this method is a
promising approach to quantify how human brains adapt to a range of tasks, and potentially
to help improve precision clinical neuroscience.

INTRODUCTION

Human behavior arises out of a complex interplay of functional dynamics between different
brain networks (Bassett & Gazzaniga, 2011). These interactions are reflected in functional net-
work (FN) reconfigurations as subjects perform different tasks or are at rest (Amico, Abbas,
et al., 2019; Amico et al., 2020; Cole, Bassett, Power, Braver, & Petersen, 2014). One of
the network neuroscience challenges is to develop a comprehensive framework to quantify
the brain network (re)configurations across different mental states and cognitive tasks. To that
end, configurations across a collection of cognitive tasks can be conceptualized at three dis-
tinct levels of granularity:

▪ Network configural breadth represents, for an FN, a given individual’s repertoire of cog-
nitive and emotional states through functional configurations while performing different
tasks. In practice, how well the entire “cognitive space” (Varona & Rabinovich, 2016;
Varoquaux et al., 2018) is sampled depends on the number and choice of the tasks.
This concept is inspired by Schultz and Cole (2016).

▪ Task-to-task transitional reconfiguration represents the specific shift in network functional
configuration when a subject switches between cognitive/mental tasks (Douw, Wakeman,
Tanaka, Liu, & Stufflebeam, 2016; Gonzalez-Castillo et al., 2015). For instance, task tran-
sitions and accompanying reconfigurations will occur when a subject transitions from
quiet reflection to engage in a spatial problem-solving task, or from a lexical retrieval to
a decision-making paradigm.

▪ Within-task reconfiguration represents specific network functional configuration changes
that may occur within a single task. This phenomenon has been assessed at the whole-
brain level, showing the presence of distinct brain states within a task (Bassett et al.,
2011; Betzel, Satterthwaite, Gold, & Bassett, 2017; J. M. Shine et al., 2016; J. M. Shine
et al., 2019; J. M. Shine & Poldrack, 2018).

While brain network configural properties are task and subject dependent (Schultz & Cole,
2016), task-induced functional (re)configurations are rather subtle in whole-brain functional
connectomes, even when comparing task with rest (Cole et al., 2014). In addition, mesoscopic
structures (e.g., functional networks of the brain) exhibit modular characteristics that adapt to
cognitive demands without significantly affecting the rest of the system where higher levels of
cognition emerge through the changing interactions of subsystems, instead of pairwise edge-

Network configural breadth:
Represents, for an FN, a given
individual’s repertoire of cognitive
and emotional states through
functional configurations while
performing different tasks. In
practice, how well the entire
“cognitive space” is sampled
depends on the number and nature
of the tasks. The functional network
configural breadth, for a given
subject and a given FN, is
compartmentalized into two
components: (a) FN (task)
reconfiguration and (b) FN rest-
to-[task-positive] preconfiguration.

Task-to-task transitional
reconfiguration:
Represents the specific shift in the
network functional configuration of
an FN when a subject switches
between distinct cognitive/mental
tasks. For instance, task transitions
and accompanying reconfigurations
will occur when a subject transitions
from quiet reflection to engage in a
spatial problem-solving task, or from
a lexical retrieval to a decision-
making paradigm.

Within-task reconfiguration:
Represents specific network
functional configuration changes of
an FN that may occur within a single
task. This phenomenon has been
assessed at the whole-brain level,
showing the presence of distinct
brain states within a task. For
instance, within-task reconfiguration
can be tracked by using dynamic
(sliding-window) functional
connectivity.
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level interactions (Bassett et al., 2011). Hence, a mesoscopic scale (as the one provided by func-
tional networks or communities/modules) may uncover differential patterns of (re)configuration
(Mohr et al., 2016), across functional subcircuits, whichmight otherwise not be detectable at other
scales. Traditionally, a mesoscopic assessment of functional brain networks would involve the
detection of functional communities (Sporns & Betzel, 2016) either based on topology (density-
based; Newman, 2006a, 2006b) or based on the information flow (flow-based; Rosvall, Axelsson,
& Bergstrom, 2009; Rosvall & Bergstrom, 2008). These approaches, however, are not designed to
track the dynamic behavior of a priori set of communities across time, tasks, and/or subjects. The
primary aim of this work is to clearly define and quantify different configurations that FNs can
assume, aswell asmeasure their nature of reconfigurations switching between a seemingly infinite
number of cognitive states. From a graph-theoretical perspective, FNs and their corresponding
reconfigurations are described by two attributes: topology and communication. From a system
dynamic perspective, FNs can be characterized by segregation and integration (Sporns, 2013)
properties across which the human brain reconfigures across varied cognitive demands
(J. Shine et al., 2018; J. M. Shine et al., 2016; J. M. Shine et al., 2019; J. M. Shine & Poldrack,
2018). To formally capture these diverse characteristics of FNs, we constructed a mathematically
well-defined and well-behaved 2D “mesoscopic morphospace” based on two novel measures
defined for nonnegative, undirected, weighted functional connectomes: trapping efficiency (TE)
and exit entropy (EE). Trapping efficiency captures the level of segregation/integration of a func-
tional network embedded in the rest of the functional connectome and quantifies the extent to
which a particular FN “traps” an incoming signal. Exit entropy captures the specificity of integra-
tion of an FNwith the rest of the functional connectome, and quantifies the uncertainty as towhere
(in terms of exit nodes) that same signal would exit the FN. In summary, this mesoscopic morpho-
space is a representation of the cognitive space as exploredwithin and between cognitive states, as
reflected by brain activity in fMRI. Such representation relies on FN reconfigurations that can be
tracked, at an individual level, and at different granularity levels in network (re)configurations.

By using this 2D TE, EE-based morphospace, we formally study network configural breadth
(Figure 1A), the most global and coarse grain exploration of the cognitive space, and its sub-
sequent functional configuration components. To that end, we formally define measures of (a)
functional reconfiguration (capacity of an individual to reconfigure across widely differing
cognitive operations) and (b) functional preconfiguration (efficiency of transition from resting
state to task-positive state (Schultz & Cole, 2016)), for potentially any community or FN. These
measures are quantified for resting-state networks (Yeo et al., 2011) on the 100 unrelated sub-
jects from the Human Connectome Project (HCP) dataset. We then study how such quantifi-
cation is related to measures of cognitive abilities, such as fluid intelligence.

A MESOSCOPIC MORPHOSPACE OF FUNCTIONAL CONFIGURATIONS

The mesoscopic morphospace proposed here is a two-dimensional space built upon trapping
efficiency and exit entropy measures for assessing functional networks or communities of func-
tional connectomes. In this framework, functional connectomesmust be undirected (symmetrical)
weighted graphs, with nonnegative functional couplings. This framework allows for any a priori
partition into functional communities. In this work, we assess the resting-state functional networks
as proposed by Yeo et al. (2011) as the a priori FNs. Also, we use functional connectivity (without
incorporating structural connectivity information), which is a quantification of statistical depen-
dencies between BOLD time series of brain regions, and it can be used as a proxy of communi-
cation dynamics in the brain (Fornito, Zalesky, & Bullmore, 2016). Under this section, further
technical details that are not mentioned in the main text will be directed to different subsections
in the Supporting Information.

Module trapping efficiency (TE):
Quantifies the capacity of an FN to
act as a segregated module and
hence contain (or trap) a signal
within its local topology.

Module exit entropy (EE):
Quantifies the uncertainty of a signal
in taking a specific exiting node
while escaping the local topology of
an FN.

Functional magnetic resonance
imaging (fMRI):
A noninvasive imaging modality that
estimates brain activity by detecting
changes associated with levels of
blood oxygenation. The rationale of
this technique relies on the fact that
there is an association between
blood oxygenation and neuronal
activation.

Functional reconfiguration:
Quantifies the flexibility of an FN as
a subject adapts to different cognitive
tasks (excluding rest). In this work, it
is represented by a two-dimensional
spatial volume derived from a given
FN’s EE and TE coordinate values
across different cognitive tasks.

Resting-state networks:
Spontaneous brain activity is
organized into a robust and
reproducible (across subjects) set of
localized and distributed networks,
denoted resting-state networks
(RSNs). One of the most common
sets of RSNs divides the cortex
into seven RSNs: visual (VIS),
somatomotor (SM), dorsal attention
(DA), ventral attention (VA), limbic
(LIM), frontoparietal (FP), and default
mode network (DMN). RSNs can be
characterized by their functional
connectivity in terms of within-
network cohesion and between-
network integration. RSNs can also
be referred to as functional networks
(FNs).
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Computing Mechanistic Components for Morphospace Measures

Amesoscopicmorphospace is constructed to assess functional network behaviors through two focal
lenses: level of segregation/integration (using graph topology), and specificity of integration (using
information theory). We first define all necessary components to compute TE and EE as follows:

(a) The whole-brain functional connectome (FC) is graph-theoretically denoted by G(V, E ),
where V is the set of vertices (represented by the regions of interest, ROIs) and E is the set
of edges (quantified by functional couplings between pairs of ROIs). The whole-brain FC
is mathematically represented by an adjacency structure denoted as A = [wij], where i, j
are indexed over vertex set V and wij 2 [0, 1] are functional couplings.

(b) Using a predefined set of FNs, a functional community (graph-theoretically denoted as
GC(VC, EC) or for short) is defined to have the corresponding node set VC� V and edge set
EC � E for which the union over all FNs exhaust the vertex and edge set of G such that

[VC ¼ V and [ EC ¼ E:

(c) For a given functional community C � G, define the set of states (or equivalently, ver-
tices) S that contains the set of transient states (denoted as Strans = VC), and absorbing
states (denoted as Sabs = {j | wij > 0; j =2 VC, 8 i 2 VC}) such that

S ¼ Strans [ Sabs:

(d) We mathematically denote a whole-brain FC as A = [wij] (see the Constructing
Functional Connectomes section of the Supporting Information for more details), where

Functional connectome/connectivity
(FC) matrix:
A network representation of the
functional coupling between brain
regions. Such coupling is usually
measured by quantifying the
statistical dependencies between
time series of brain regions (e.g.,
pairwise Pearson’s correlation,
mutual information) as obtained by
functional magnetic resonance
imaging (fMRI).

Figure 1. The three types of brain (re)configurations that can be represented by a mathematical space parameterized by, in this case, two
generic phenotypic measures of functional communities of the brain: (A) network configural breadth, which represents changes across a num-
ber of cognitive demands; (B) task-to-task transitional reconfiguration; and (C) within-task reconfiguration.
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i and j are brain regions (from now on denoted as vertices or states) of the specified
parcellation or atlas. Each matrix A represents a single subject, single session, single task
whole-brain FC. We assess the whole-brain FC with respect to organizations into FNs,
here denoted by C. For a specific A and a specific C, we obtain an induced submatrix AC
by extracting the corresponding rows and columns of matrix A using only the vertices
that belong to S, which results in the following matrix:

AC 2 0; 1ð Þ Sj j� Sj j:

We note that the row and column order of the states (or vertices) of AC respects the order
of S = Strans [ Sabs with transient states followed by absorbing ones, which results in a
blockage structure:

Transient Absorbing

AC ¼ Transient

Absorbing

A Strans; Stransð Þ A Strans; Sabsð Þ
A Sabs; Stransð Þ A Sabs; Sabsð Þ

� �
;

where A(Strans, Strans) means that we extract the submatrix of A that corresponds to states
in Strans for the rows (first argument) and Strans for the columns (second argument).

(e) For any functional network C, using the induced adjacency structure AC in the previous
step, define each vertex in S to be a state in the stochastic process and construct the
corresponding terminating Markov chain by computing the following:

▪ the normalization of AC by the nodal connectivity strength:

Q ¼ D−1
C AC 2 0; 1ð Þ Sj j� Sj j;

where DC is the weighted degree sequence matrix filled with the node strength (defined
by the row [or equivalently, column] sum of AC) in the diagonal entries and zeros for the
off-diagonal elements:

DC ¼ dij
� � ¼ Pj¼ VCj j

j¼1 wij; 8i ¼ j

0; 8i≠j
;

(

where i, j are indexed over S. Note that the order of rows and columns of Q and DC also
respect the order of S.

▪ the transition probability matrix of the terminating Markov chain:

Transient Absorbing

P ¼ Transient

Absorbing

Q Strans; Stransð Þ Q Strans; Sabsð Þ
0 Sabsj j� Stransj j I Sabsj j

 !
;

where 0|Sabs|×|Strans| is the matrix of all zeros (size |Sabs| rows by |Strans| columns); I|Sabs| is
identity matrix of size |Sabs|; the index C for Q and P is dropped for simplicity.

(f) Using matrix P, we extract the submatrix induced by states in Strans (denoted by P|Strans).
Note that P|Strans =Q (Strans, Strans) because rows and columns of P respect the order of S.We
then compute the fundamental matrix (denoted as Z; Kemeny & Snell, 1960), which con-
tains the mean number of steps a specific transient state in Strans is visited, for any pair of
transient states in Strans, before the random walker is absorbed by one of the states in Sabs:

Z ¼ ðIjStrans − PjStransÞ−1 2 R Stransj j� Stransj j
þ :
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(g) Compute the mean time to absorption (denoted as τ), which contains the mean number of
steps that the random particle needs to be absorbed by one of the states in Sabs, given that it
starts in some state in Strans:

τ ¼ Z1 Stransj j 2 R Stransj j�1
þ ;

where 1|Strans| is the all one vector of size |Strans|.
(h) Compute the absorption probability matrix (denoted as Ψ ), which contains the likelihood of

being absorbed by one of the absorbing states, given that the stochastic process starts in
some transient state:

Ψ ¼ Z
h
P
��Strans;Sabsi 2 R Stransj j� Sabsj j

þ ;

where P|Strans,Sabs is the subtransition probability matrix induced from (row) state Strans and
(column) state Sabs. Hence, P|Strans,Sabs = Q(Strans, Sabs).

Module Trapping Efficiency

Module trapping efficiency, denoted as TE (unit: steps
weight ), quantifies amodule’s capacity to contain

a random particle from leaving its local topology, that is, C. Specifically, through FN topology,
we want to assess its level of segregation/integration, measured by the L2 norm of τ (unit: steps),
that is, the mean time to absorption of nodes in C, normalized by its total exiting strength (unit:
weight), measured by

LC ¼
X

i2Strans;j2Sabs
Aij ¼ A Strans; Sabsð Þ:

Mathematically, trapping efficiency is quantified as follows:

TE ¼ τk k2
LC

: (1)

We see that the mean time to absorption vector, τ, is dependent on both density-based
(Fortunato, 2010; Newman, 2006b) and flow-based (Malliaros & Vazirgiannis, 2013;
Rosvall et al., 2009; Rosvall & Bergstrom, 2008) modularity. The mean-time-to-absorption vec-
tor τ for which τi contains the average number of steps a random walker needs to escape the
FN topology, given that it starts from node i. This means that the numerical values in τ are
always greater than or equal to 1. We chose to use L2 norms because it squares the input
values of the vector and thus enhances our capacity to quantify FN (re)configuration. On
the other hand, the denominator LC is a simple statistical summary of the module “leakages”
to the rest of the cortex. Since all the values in LC are between (0, 1), L2 norm would have
diminished the differences across FNs. Hence, we chose L1 norm for the denominator. The role
of LC is to account for potential differences in trapping efficiency due to community size.
Numerically, higher TE indicates that a module is more segregated (or equivalently, less inte-
grated). This is because the FN topology traps the incoming signal efficiently, relative to its
exiting edges when embedded in the cortex. TE value ranges are given in Figure 2.

Module Exit Entropy

Module exit entropy (denoted as EE, and in the range EE 2 (0, 1] and unitless) assesses the
normalized level of uncertainty in selecting an exiting node in Sabs of a random particle that
starts in C. The exit entropy, denoted as He, measures the level of uncertainty exiting node
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j 2 Sabs (outside of the module) is preferred. Module exit entropy is mathematically formal-
ized as

EE ¼ He

NC
¼ −

P Sabsj j
i¼1 ψi log ψið Þ
log Sabsj jð Þ ; (2)

where preferential exit probability is the probability vector that contains |Sabs| entries that repre-
sents the likelihood that exit signal selects a specific exiting state j 2 Sabs such that �j2Sabs ψj = 1.

The numerator of EE(C), that is, −P Sabsj j
i¼1 ψi log(ψi), measures the degree to which channels of

communication between nodes in Strans and Sabs are preferred for a fixed task/subject. It is note-
worthy that EE is not influenced by the (cumulative) magnitudes (of functional connectivity
values) that connect nodes from within the FN to outside (exiting) nodes. It is only affected by
the distribution of such values. In particular, homogeneous distributions display high entropy
levels, and uneven distributions favoring certain exiting node(s) display low entropy. To

Figure 2. Morphospace measurements, examples. All three induced subgraphs have the same cardinality (|C| = 8) with a different number of
exits (connections to G \ C). Nonetheless, depending on their topological structures, the corresponding morphospace measurements (TE and
EE) have rather distinct values.
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demonstrate this point, an example is provided in the Supporting Information under the Module
Exit Entropy section. The normalizer,NC = log(|Sabs|), is the maximum entropy obtained from a
module in which all exit nodes have the same absorption rate. Numerically, a high EE would
denote the homogeneous integration within the rest of the system, whereas a low EE would in-
dicate a preferential communication or integration of the module with the rest of the system. In
terms of functional brain networks, module exit entropy facilitates the understanding of collec-
tive behavior from C to other FNs through its outreach channels (edges formed by nodes in C and
exiting nodes in G \ C. This is because entropy measures the level of uncertainty in communi-
cation; hence, lower entropy means higher specificity in communication between the FN with
the rest of the cortex. EE value ranges are given in Figure 2.

The Definition of the Mesoscopic Morphospace Ω

The two distinct features of each FN in brain graphs are addressed by a point u(C ) inΩ� (0,M ) ×
[0, 1] � R2 as follows:

u Cð Þ ¼ TE Cð Þ;EE Cð Þð Þ 2 Ω; (3)

whereM < ∞. For a given subject and task, a functional brain network G is obtained with a pre-
defined parcellation that results in l induced subgraph C � G. We can then obtain l points u(C)
corresponding to l FNs in network G.

In general, trapping efficiency TE(C ) is finitely bounded by construction (see more details in
the Module Trapping Efficiency section in the Supporting Information). However, a better
bound is possible for the HCP dataset used for this study. This is due to two driving factors:
connectome sparsity and edge weights (Avena-Koenigsberger, Goñi, Solé, & Sporns, 2015).
We address the upper bound for TE as max(TE(C)) = M = 1. In terms of EE(C), its numerical
range EE(C) 2 (0, 1]. Hence, Ω � (0, 1) × [0, 1] for this dataset.

THE NETWORK CONFIGURAL BREADTH FORMALISM

Studying the manifold topology defined in this 2D mesoscopic morphospace theoretically re-
quires an infinite amount of points. In finite domain with discrete sampling of the morpho-
space, polytope theory, a mathematical branch that studies object geometry, allows us to
create a reasonable scaffold presentation with well-defined properties to formally define
and quantify configural components of the functional networks.

Polytope theory is a branch of mathematics that studies the geometry of shapes in a d-
dimensional Euclidean space, Rd. Given a set of points in this space, W = {x1, x2, …, x|W|}, a
convex hull formed by W is represented by

Conv Wð Þ ¼
XWj j

j¼1

αjxjj
XWj j

j¼1

αj ¼ 1;αj ≥ 0

( )
:

One can compute the notion of volume of the convex hull enclosed by Conv(W ), denoted as
Vol(Conv(W )). Given that themorphospace is 2D, themanifold dimension can be from0 up to 2.
In the Supporting Information under the Polytope Theory section, further details on volume
computation are defined.

The functional network configural breadth, for the ith subject, is compartmentalized into
two components:

▪ FN (task) reconfiguration and
▪ FN rest-to-[task-positive] preconfiguration.
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We then propose a mathematical relation between network configural breadth with FN re-
configuration and preconfiguration as follows:

F i ¼ f RFN
i ;PFN

i

� �
; (4)

where F i represents configural breadth for subject ith. Here, we provide directly the measures
that quantify (functional) reconfiguration and preconfiguration of FNs for ith subject’s config-
ural breadth. Tasks are assigned the same level of importance, and hence, no task is weighted
more than others.

Functional Reconfiguration

Definition 1. Functional reconfiguration in this work is represented by a two-dimensional spatial
volume derived from given FN’s EE and TE coordinate values across different cognitive tasks. As
such, it represents an example of “cognitive space” (Varona & Rabinovich, 2016; Varoquaux
et al., 2018) within a functional domain that spans a variety of network states under various
task-evoked conditions. We quantify this as

RFN
i ¼ Vol Conv WFN

i

� �� �
; (5)

where WFN
i represents the set containing all investigated task coordinates of subject i’s FN;

Vol(Conv(WFN
i )) is the convex hull volume induced by points in WFN

i .

For a given subject ith’s FN, note that Conv(WFN
i represents the broad span (breadth) of task

configurations for a given functional community. Subsequently, RFN
i represents the amount of

breadth as measured by the volume of Conv(W ). Functional reconfiguration for a given sub-

ject’s FN, denoted as RFN
i , is geometrically depicted in Figure 3.

Functional Preconfiguration

Definition 2. Functional preconfiguration reflects the topologically distributed equipotentiality
that is theoretically designed to enable an efficient switch from a resting-state configuration to
a task-positive state (Schultz & Cole, 2016), and is quantified as follows:

PFN
i ¼ RestFNi − ηWFN

i

			 			
2
; (6)

where ηWFN
i
is the geometrical centroid ofWFN

i ; PFN
i measures the distance between rest to task

general position (represented by ηWFN
i
). It is defined with the selected metric space, in this case

it is the 2 norm in Euclidean space.

Note that functional preconfiguration can be viewed as Vol(Conv(W )) where the convex
hull is defined solely by two points: FN’s rest and FN’s geometrical centroid of task convex
hull, that is, W = {RFN

i , ηWFN
i
}. In such regards, the notion of Vol(Conv(W )) is also suitable to

describe the configural breadth between rest and task-positive location. Functional preconfi-
guration is geometrically depicted in Figure 3.

RESULTS

The mesoscopic morphospace formalized in the Mesoscopic Morphospace of Functional
Configurations section is used to assess network configural breadth in terms of functional pre-
configuration and reconfiguration for the 100 unrelated subjects of the HCP 900-subject data
release (Van Essen et al., 2013; Van Essen et al., 2012). This dataset includes (test and retest)

Functional preconfiguration:
Reflects, for an FN, the ease of
functional transition from a resting-
state configuration to a task-positive
state. In this work, it is represented
using Euclidean distance between TE
and EE coordinates of resting state
and geometric centroid of the
cognitive tasks.
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sessions for resting state and seven fMRI tasks: gambling (GAM), relational (REL), social (SOC),
working memory (WM), language processing (LANG), emotion (EMOT), and motor (MOT).
Whole-brain functional connectomes estimated from this fMRI dataset include 360 cortical
brain regions (Glasser et al., 2016) and 14 subcortical regions. The functional communities
evaluated in the morphospace include seven cortical resting-state FNs from Yeo et al.
(2011); visual (VIS), somatomotor (SM), dorsal attention (DA), ventral attention (VA), fronto-
parietal (FP), limbic (LIM), default mode (DMN), and one composed of subcortical regions
(SUBC). Additional details about the dataset are available in the Supporting Information,
HCP Dataset and HCP Functional Data sections.

Task and Subject Sensitivity

Within- and between-subject task sensitivity. We first evaluate the capacity of module trapping
efficiency and exit entropy to differentiate between tasks within subject (Figure 4A). For both
test and retest sessions of each subject, we compute the TE and EE metrics for each FN. We
compute these values for all eight fMRI conditions. We compute the intraclass correlation co-
efficient (ICC), with test and retest (per subject) being the repeated measurements and task
being the class variable (TE in Figure 4A, top and EE in Figure 4A, bottom, respectively, where
each ICC is computed using a 2 [test, retest] by 7 [tasks] design, and the ICC reflects task
within-subject sensitivity). For most subjects, ICC values in all FNs are high and positive
values. EE displays a higher within-subject task sensitivity than TE. Specifically, TE in VIS,
DA, and DMN most distinguished between the cognitive tasks, whereas EE in VA and FP
was best at distinguishing the within-subject task-based configural changes. The ICC values
for both coordinates were the lowest for LIM.

We then evaluate the degree to which morphospace metrics capture cohort-level config-
ural changes. To test this, for each morphospace metric (TE or EE), we compute ICC of each FN
with subjects as the repeated measures and task as the class variable (Figure 4B). We per-
formed the evaluation separately for test and retest sessions as denoted by gray and dark bars,
respectively, for TE (Figure 4B, top) and EE (Figure 4B, bottom). EE captures cohort-level task-

Figure 3. Functional network configural breadth is geometrically represented using two predefined morphospace measures. Specifically, for
mesoscopic structures such as communities in functional brain networks, the first measure is trapping efficiency (TE) while the second is exit
entropy (EE). In this case, tasks T1 to T5 belong to the convex hull (e.g., Pareto front; further details are available in the Supporting Information
under the Polytope Theory section), while T6 and T7 are in the interior enclosed by the convex hull.
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based signatures as ICC values are consistently higher than those of TE. Interestingly, LIM has
the lowest cohort-level task-based sensitivity for both morphospace metrics.

Subject sensitivity across tasks. Here, we compute ICC considering the tasks (fMRI conditions)
the repeated measurements and considering subjects the class variable (Figure 4C). It is note-
worthy that TE is superior in uncovering subject fingerprints, compared with EE, for the ma-
jority of FNs. This is complementary to EE being more task-sensitive.

TE and EE are disjoint features. Results in the Task and Subject Sensitivity section suggest that TE
and EE have the differentiating capacity to highlight nonoverlapping characteristics of objects
under consideration, that is, task- and subject-based FNs. First of all, for within-subject task
differentiation (Figure 4A), FNs with high ICC values in one measure do not necessarily show
a similar tendency in the other. For instance, VA has the third lowest mean TE value in char-
acterizing within-subject task differentiation but it has the highest mean EE score. Similarly, FP
has the second lowest average TE score and the third highest EE score, indicating that each of
the two measures captures unique aspects of a given FN. Second, evidence of disjoint features
is shown through the ICC results in cohort-level task-sensitivity (Figure 4B) and subject-
sensitivity (Figure 4C) configural changes. Indeed, TE is superior in detecting subject finger-
prints, while EE is better in unraveling task fingerprints. The idea is that, for a given studied
object (i.e., task-based FNs), configurations are shown to “stretch” in exclusive/disjoint direc-
tions (subject-sensitive trapping efficiency and task-sensitive exit entropy).

Quantifying Network Configural Breadth on Functional Networks

The mesoscopic morphospace allows the quantification of network configural breadth. For a
given functional community, we compute functional reconfiguration (degree of configurations
across tasks) and preconfiguration (distance from rest to task-positive state), using Formulas 5
and 6, respectively.

Group-average results. The group-average behavior of functional communities is shown in
Figure 5. Functional reconfiguration of FNs are shown as filled convex hulls, whereas precon-
figuration of FNs are shown as dashed lines from rest to the corresponding task hull geometric
centroid. To facilitate comparing network configural breadth across all functional networks,

Figure 4. Morphospace measures and their task and subject sensitivity measured by intraclass correlation coefficients for each functional
network. (A) Within-subject task sensitivity of module trapping efficiency (TE) and exit entropy (EE) for each FN per subject. (B)
Between-subject task sensitivity of TE (top) and EE (bottom). (C) Subject-sensitivity ICC of TE (top) and EE (bottom).
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these same convex hulls are shown in Figure 6A with the same x- and y-axis values. VIS net-
work polytope, representing group-average behavior, is lower in EE relative to other FNs.

With the exception of VIS and SUBC, all other FNs cluster in a similar, high EE / low TE area
of the morphospace (Figure 6A). It should be noted that different tasks and subject populations
(e.g., older or clinical groups) might cluster FNs differently. We also note that the subcortical
polytope is relatively high in exit entropy. However, the subcortical parcellation might not
optimally reflect the functional and/or structural makeup of various subcortical regions (e.g.,
role of the basal ganglia in the motor system), so these results should be interpreted cautiously.

One observation drawn from such a presentation is that the morphospace framework re-
confirms, quantitatively, that functional dichotomy of the brain between task-positive and rest

Figure 5. Visualization of network configural breadth. Functional reconfiguration and preconfiguration for all FNs are represented using
group average of individual subjects’ coordinates. Task coordinates in this space are represented by either an asterisk (*) or a plus (+) symbol.
The asterisk symbol is used for those tasks that are part of the Pareto front of the convex hull; the plus symbol represents either the resting state
or task that belongs to the interior of the convex hull. Note that x- and y-axis are purposely not scaled in the same range so that the full range of
values for all tasks, task-centroid, and rest can be more easily visualized.
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state (Fox et al., 2005). Specifically, the default mode network acts more as a segregated mod-
ule with high level of integration specificity at rest - as seen in the lower right regime with high
TE, low EE values - as opposed to under task-evoked conditions - as seen in the top left corner
with low TE, high EE values (Figure 5, default mode; Fox et al., 2005; Greicius, Krasnow, Reiss,
& Menon, 2003).

Another observation is that in terms of segregation level measured by TE, the lower bound of
subcortical convex hull is, approximately, the upper bound of other FNs, with the exception of
the visual network. Figures 7.1A and 7.2A also summarize functional reconfiguration and pre-
configuration, respectively, for test and retest fMRI sessions in all subjects and FNs. Here, the VIS
system displays the largest functional reconfiguration (see Figure 7.1A). From Figure 7.2A, func-
tional preconfigurations display a more comparable magnitude among all FNs.

Further evidence of disjoint feature is also displayed in Figure 6B and 6C. In Figure 6B,
maximal distance is computed using pairwise distances for two given tasks for a specific
FN. The result shows that for a given FN, the two measures complement each other and in
many cases, stretch the cognitive space in one direction or the other. For instance, in the case
of DA and FP, the maximal distance in EE is very high but low for TE, whereas in VIS and
SUBC, TE maximal distance is higher than that of EE. Furthermore, in Figure 6C, only specific
tasks (e.g., motor and emotion) push the cognitive space in a particular direction (which is
captured by maximal distance computation). Evidence of disjoint features is also illustrated
by the relative frequency of motor and emotion tasks for which TE and EE are complementary.

Subject specificity of pre- and reconfiguration of functional networks. The formulation of network
configural breadth (in terms of preconfiguration and reconfiguration) enables us to assess these
properties at the subject level.

In Figure 7.1B and 7.2B, we use ICC to analyze the ability of morphospace measures (in the
form of reconfiguration, panels Figure 7.1, and preconfiguration, panels Figure 7.2) to reflect
subject identity within each FN. For all FNs from Yeo et al. (2011), the ICCs suggest that

Figure 6. Network configural breadth insights on functional networks and tasks. (A) An illustration of network configural breadth for all
functional communities. Polytope colors are analogous to the scheme shown in Figure 5. For each functional community, the dashed line
represents the amount of functional preconfiguration, whereas the polytope volume represents the amount of functional reconfiguration. (B)
Maximal distance is computed using the maximum pairwise distance between two tasks for a given functional network. (C) Relative frequency
with which a task appears in the maximal distance normalized by 16 (8 FNs and 2 tasks per FN).
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subjects can be differentiated from each other when contrasted against a corresponding null
model (for details, see the Supporting Information, Subject Sensitivity section). We see that
subject-sensitivity scores of all eight FNs for both pre- and reconfigurations are higher than
their corresponding null models. Finally, for a fixed FN, functional preconfigurations dominated
the subject sensitivity ranking, as illustrated by Figure 7C. Furthermore, FP, DMN, and VA pre-
configurations are among the FNs with the highest subject fingerprints in overall subject-
sensitivity ranking.

Network Configural Breadth and Behavior

Network configural breadth, compartmentalized into FN reconfiguration RFN and preconfi-
guration PFN, shows a high level of subject sensitivity. This allows us to assume that F i is
associated with an individual’s behavioral measures (denoted as :>i for subject ith). Several

Figure 7. Network configural breadth, subject specificity analysis. Panels 1 and 2 show functional reconfiguration and preconfiguration,
respectively, from both magnitude and subject-sensitivity viewpoints. For each functional network, the (A) panels report subject’s preconfi-
guration and reconfiguration values whereas the (B) panels quantify subject sensitivity. Reconfiguration and preconfiguration measures are
displayed in blue and red, respectively. Panel (C) merges all 16 configural breadth terms in descending order of subject sensitivity.

Network Neuroscience 679

A morphospace framework to assess brain functional networks

D
ow

nloaded from
 http://direct.m

it.edu/netn/article-pdf/5/3/666/1960514/netn_a_00193.pdf by guest on 04 Septem
ber 2021



studies reported that FP and DMN networks are associated with memory and intelligence
(Gray, Chabris, & Braver, 2003; Schultz & Cole, 2016; Tschentscher, Mitchell, & Duncan,
2017). Therefore, we evaluated whether the outlined framework reflects four widely studied
cognitive/behavioral measures, related to memory and intelligence: episodic memory, verbal
episodic memory (verb. epi. mem.), fluid intelligence gF, and general intelligence g. While
fluid intelligence reflects subject capacity to solve novel problems, general intelligence, g, re-
flects not only fluid intelligence, gF, traits but also crystallized (i.e., acquired) knowledge
(Cattell, 1963, and typically denoted as gC ). The early notion of general intelligence is con-
ceptualized by Spearman’s positive manifold (Spearman, 1904) that cannot be fully described
using a single task. Quantification of g can be accomplished using subspace extraction tech-
niques such as explanatory factor analysis (Dubois, Galdi, Paul, & Adolphs, 2018) or principal
component analysis (PCA; Schultz & Cole, 2016). In this work, we quantified g using the PCA
approach described in Schultz and Cole (2016). Mathematically, we propose the following
composite relationship:

:>i ¼ ϒ RFN
i ;PFN

i

� �
: (7)

Having established a plausible connection between behavioral measures and PFN, RFN,
Equation 7 can be viewed as a multilinear model (MLM) using FN preconfiguration and recon-
figuration as independent variables (or predictors). The MLM is constructed iteratively, starting

Figure 8. Associations between network configural breadth and behavior. The x-axis represents functional network preconfiguration and
reconfiguration terms, that is, PFN

i andRFN
i , ordered in decreasing subject fingerprints (as shown in Figure 7C). The top panels illustrate iterative

multilinear regression model (MLM), while the bottom panels show model specificity (MS) for corresponding behavioral measures. Asterisk
represents the optimal MLM with lowest p value. Further details are available in the Supporting Information, Behavioral Measure Analysis
section.
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with the descriptor with the highest individual fingerprints in Figure 7C. In each iteration, the
subsequently ranked descriptor (according to Figure 7C) is appended to the existing ones. The
best MLM (denoted with an asterisk in Figure 8), which determines the number of linear de-
scriptors included the model, is selected based on the model p value.

To test the level of specificity in the model, we performed 2,000 simulations of k-fold cross
validation where k = 5 between the selected MLM and the corresponding behavioral measure.
Specifically, for each cross validation (per simulation), we obtain a correlation between the 20
left-out values (y) with the predicted values (ŷ). Hence, in each simulation we obtained five
correlations and their mean value. It can be shown that those means follow a normal distri-
bution (details shown in the Supporting Information). Lastly, to provide the level of specificity
of linear descriptors, we present a corresponding null model where the same descriptors are
evaluated to predict random vectors of appropriate size. To test our model and its ability to
predict the behavioral measures, we rely completely on network configural breadth predictors
ranked in descending order of subject specificity.

The top panels in Figure 8 show that as more linear descriptors (FN’s functional pre- and
reconfigurations) are added to iterative MLMs, variance associating with behavioral/cognitive
performance measures decreases with linear descriptors that bear less subject sensitivity. This
result highlights the importance of appending linear predictors in descending order with re-
spect to the subject sensitivity. Specifically, as individual specificity reduces from left to right
(Figure 7C), the differential correlations, that is, the difference between two consecutive cor-
relation values, decreases.

DISCUSSION

In this work, we fill an existing gap in the field of network neuroscience by proposing a math-
ematical framework that captures the extent to which subject-level functional networks, as
estimated by fMRI, reconfigure across diverse mental/emotional states. We first propose that
brain networks can undergo three different types of (re)configurations: (a) network configural
breadth, (b) task-to-task transitional reconfiguration, and (c) within-task reconfiguration.
Unlike other existing frameworks (Schultz & Cole, 2016; J. M. Shine et al., 2019; J. M.
Shine & Poldrack, 2018), the framework presented here can be applied to all three reconfig-
uration types. As a first step, we focus on assessing the broadest aspect of reconfiguration, that
is, network configural breadth. We postulate, based on previous literature (Cole et al., 2014),
that macroscale (whole-brain) and microscale (edge-level) reconfigurations of brain networks
are subtle, and hence difficult to disentangle. At the same time, mesoscopic structures in the
brain (e.g., functional networks, FNs) reconfigure substantially across different
mental/emotional states as elicited by different tasks (Mohr et al., 2016). The framework pre-
sented here constitutes the first attempt to formalize such (re)configurations of mesoscopic
structures of the brain, and quantify the behavior of a reference set of FNs with changing men-
tal states. We set forth a mathematically well-defined and well-behaved 2D network morpho-
space using novel mesoscopic metrics of trapping efficiency (TE) and exit entropy (EE). This
morphospace characterizes not only the topology of FNs but also the flow of information with-
in and between FNs. We show that this morphospace is sensitive to FNs, tasks, subjects, and
the levels of cognitive performance. We show that both of these measures are highly subject-
sensitive for some FNs, while preconfiguration is highly subject-sensitive for all of them. Lastly,
we also formalize and quantify the concepts of functional reconfiguration (the extent to which
an FN has the capacity to reconfigure across different tasks) and functional preconfiguration
(amount of transition from resting-state to a task-positive centroid). We thus construct a
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formalism that can explore FN changes across different cognitive states in a comprehensive
manner and at different levels of granularity.

Ideally, a morphospace framework (Avena-Koenigsberger et al., 2015; Avena-Koenigsberger,
Misic, & Sporns, 2018; Corominas-Murtra,Goñi, Solé,&Rodríguez-Caso, 2013;Goñi et al., 2013;
McGhee, 1999; Morgan, Achard, Termenon, Bullmore, & Vértes, 2018; Schuetz, Zamboni,
Zampieri, Heinemann, & Sauer, 2012; Shoval et al., 2012; Thomas, Shearman, & Stewart,
2000) would have a minimal complexity and, in this particular case, capture distinct features of
functional network changes. As discussed in Avena-Koenigsberger et al. (2015), metrics parame-
trizing a given morphospace should be disjoint. We see that, for any specific FN, high within-
subject task sensitivity of TE does not necessarily imply a high value in EE and vice versa (e.g.,
VA and FP in Figure 4A). In addition, we see that both TE and EE offer their unique insights in
capturing nonoverlapping features, with TE being more subject-sensitive and EE more task-
sensitive at the cohort level (Figure 4B, 4C). Figure 6B highlights the disjoint nature of the two
metrics as well, where we compute maximal distance per FN polytope in the TE and the EE axes
separately. Results show that corresponding TE and EEmaximal distances are disjoint and FN de-
pendent. In other words, for a specific FN, the polytope is “stretched” in a particular task direction,
where each morphospace measurement (TE or EE) unravels distinct properties. In Figure 6C, we
further see that a subset of tasks dominantly contribute to themaximal distance computation, such
as motion, language, and social tasks. Interestingly, we see that motion and language tasks can be
considered “orthogonal” tasks with respect to TE and EE.

Interestingly, the limbic network possesses the lowest ability to distinguish between tasks
(Figure 4). Similar behavior has been observed in Amico, Arenas, and Goñi (2019) when using
Jensen-Shannon divergence as a distance metric of functional connectivity. In addition, the
limbic network seems to work as a “relay” in brain communication (Amico, Abbas, et al.,
2019). One potential explanation for this unique behavior is that the limbic network maintains
a minimal cognitive load across various tasks, most of which comprises relaying information
from one part of the brain to the others; it thus does not reconfigure as much across different
mental states.

Brain network configuration is typically studied considering a specific task at multiple spa-
tial and temporal scales (see Bassett et al., 2011; Betzel et al., 2017; Mohr et al., 2016; J. Shine
et al., 2018; J. M. Shine et al., 2016; J. M. Shine et al., 2019; J. M. Shine & Poldrack, 2018).
Previous investigations have mainly focused on the mechanism of how the brain traverses be-
tween high/low cognitive demands (Amico, Arenas, & Goñi, 2019; Avena-Koenigsberger
et al., 2018; Bertolero, Yeo, & D’Esposito, 2015; J. M. Shine et al., 2019; Sporns, 2013), or
on periods of integration and segregation at rest (J. Shine et al., 2018; J. M. Shine et al.,
2019; J. M. Shine & Poldrack, 2018), defined in this paper as within-task reconfigurations.
On the other hand, whole-brain configurations have also been investigated across different
tasks (one configuration per task) with respect to rest, which led to the concept of general ef-
ficiency (Schultz & Cole, 2016). This approach would belong to a wider category that we for-
mally generalize as the network configural breadth. The idea of general efficiency in Schultz
and Cole (2016) relied on whole-brain FC correlations between task(s) and rest. While intuitive
in quantifying similarity/distance between a single task and rest, quantification across multiple
tasks becomes a challenge. Specifically, note that in Schultz and Cole (2016), general efficiency
is quantified using the first eigenmode, which explains most of the variance, after measuring
the correlation between resting FC and three distinct task FCs. As more and more tasks are
included, using the first eigenmode would become less and less representative of the task-
related variations present in the data (in this paper summarized as the network configural
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breadth). The proposed network morphospace overcomes these limitations and can be used to
study brain network (re)configurations across any number of tasks. It allows us to study differ-
ent types of brain network (re)configurations, as mentioned above, using one comprehensive
mathematical framework, which also facilitates a meaningful comparison between these
seemingly disparate kinds of (re)configurations. Schultz and Cole (2016) proposed that config-
urations can be compartmentalized into two differentiated concepts: functional reconfigura-
tion and preconfiguration. Note that although the term reconfiguration is also used in Schultz
and Cole (2016), it is not referring to the action of switching among multiple mental/emotional
states, that is, as represented by task-to-task transitional reconfiguration or within-task recon-
figuration (as shown in Figure 1B and 1C). Rather, it refers to the overall competence in ex-
ploring the total repertoire of task space of each subject given its resting configuration. That is
why when we translate the corresponding idea into the mesoscopic morphospace, we call it
the network configural breadth. We have also incorporated the two concepts of functional pre-
and reconfigurations into a well-defined mathematical space, which solves some of the tech-
nical difficulties (as discussed in the Mesoscopic Morphospace of Functional Configurations
section) and generalizes these concepts to mesoscopic structures.

Brain network within-task reconfigurations have been almost exclusively qualitatively as-
sessed. For instance, J. M. Shine et al. (2016) show that the whole-brain functional connec-
tome traverses segregated and integrated states as it reconfigures while performing a task. They
also found that integrated states are associated with faster, more effective performance. Our
formalism of within-task reconfigurations permits assessing such reconfigurations in a quanti-
tative manner. Potentially, such within-task reconfigurations could also be used to assess cog-
nitive fatigue, effort, or learning across time.

Cole et al. (2014) have shown that the resting architecture network modifies itself to fit task
requirements through subtle changes in functional edges. Numerically, small changes consti-
tuted by functional edges between rest and task-based connectivity might not be statistically
significant when looking at edge level. Moreover, we also observe that while such changes
might be negligible on a whole-brain global scale, they are more evident when looking at
subsystems or functional brain networks, as clearly observed in the VIS network, relative to
others. For functional preconfiguration (Figure 5, Figure 6, Figure 7.2A), this effect is observ-
able in all the FNs. In essence, we are postulating that a mesoscopic exploration of changes in
brain network configurations with changing mental states is more informative than a macro-
scopic or microscopic exploration.

A key feature of this morphospace is that, in order to study brain network (re)configuration,
an FN is not removed from the overall network for exploration. On the contrary, both metrics
that define the morphospace, namely TE and EE, account for a particular FN’s place embedded
within the overall functional brain network, in terms of both topological structure and flow of
information. That is why it is important to begin with a reference set of FNs (e.g., RSNs), so as
to study how these FNs adapt to changing mental states within the context of the overall
network.

Another benefit of amesoscopic framework is that we can compare individual cognitive traits
in each FN, instead of the whole brain (Figure 7.1B, 7.2B). Specifically, after quantifying recon-
figuration and preconfiguration for all FNs, we determine whether these quantities incorporate
information about individual traits (Figure 7C). We observe different levels of subject fingerprint
in different FNs for both re- and preconfiguration measures. This subject fingerprint heterogene-
ity across different FNs is consistent with previous literature on functional connectome finger-
printing (Amico & Goñi, 2018; Finn et al., 2015). Interestingly, functional preconfiguration
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(amount of transition from a resting state to a task-positive state) displayed greater subject finger-
print than functional reconfiguration for all FNs. Based on this observation, we argue that to have
better subject differentiability, we need to design tasks where the subject transitions from a stable
resting state to a task-positive state and/or vice versa (Amico et al., 2020). This could be a sig-
nificant step forward in precision psychiatry (Fraguas, Díaz-Caneja, Pina-Camacho, Janssen, &
Arango, 2016), where we can identify regional brain dysfunction more precisely as a function of
the type and degree of cognitive or emotional load.

Subject sensitivity of the proposed network morphospace framework is also supported by
significant associations of the frontoparietal and default mode networks with fluid intelligence;
see Tables 1 and 2. Specifically, as pointed out by Tschentscher et al. (2017), high fluid intel-
ligence is associated with a greater frontoparietal network activation, which is also consistent
with findings from a three-back working memory task (Gray et al., 2003). In the domain of
network configural breadth, we observe a higher reconfiguration as represented by a positive
frontoparietal functional preconfiguration coefficient (Table 1).

This study has several limitations. The framework was tested specifically on the Human
Connectome Project dataset and using a single whole-brain parcellation. Alternative parcella-
tions (Schaefer et al., 2018; Tian, Margulies, Breakspear, & Zalesky, 2020), additional fMRI
tasks to better sample the cognitive space, and other datasets might offer further insights about
the mesoscopic network morphospace (see Avena-Koenigsberger et al., 2015; Corominas-
Murtra et al., 2013). In addition, we did not perform a sensitivity analysis on how small fluc-
tuations in functional connectomes affect mapping into the network morphospace. Because of
the nature of module trapping efficiency and exit entropy metrics, negative functional cou-
plings were not considered, and hence were set to zero. In future work, other combinations
of L1 and L2 norms, or even other norm choices, should be evaluated when defining trapping

Table 1. Multilinear regression models with corresponding standardized β coefficients.
Dependent variables for each model are episodic memory, verbal episodic memory, fluid
intelligence (gF ), and general intelligence (g).

MLM terms/coefficients
Constant PFP PDMN PVA PSUBC

β0 β1 β2 β3 β4
Episodic memory 0.6 2.9 −9.3

Verbal episodic memory 0.5 11.8 −1.1 −8.8 −6.1

gF 0.7 5.1 −12

g 0.8 3.9 −5.5 −3.6 −5.7

Table 2. Multilinear models with corresponding p values. Note that we do not use stepwise linear model which discards descriptors that are
not statistically significant. Column entire model shows the significance of the entire model.

MLM terms/p values
Constant PFP PDMN PVA PSUBC

Entire modelp0 p1 p2 p3 p4
Episodic memory 0 0.57 0.01 0.03

Verbal episodic memory 0 0.02 0.77 0.17 0.03 0.04

gF 0 0.30 9 × 10−4 0.004

g 0.03 0.44 0.16 0.57 0.05 0.05
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efficiency. This would impact not only the magnitude of the morphospace measure but also
the differentiating capacity of configuration across different functional networks.

Future studies should incorporate a sensitivity study of the behavior of this network mor-
phospace with respect to small fluctuations in the input functional connectomes. Further stud-
ies could also incorporate structural connectivity information to inform both TE and EE
measures when assessing the morphospace coordinates of functional reconfiguration.
Additional exploration of different aspects of this morphospace could provide further insights.
For example, location of the polytopes in the morphospace might improve individual finger-
print. An important aspect of the proposed mesoscopic network morphospace is that it allows
for an exhaustive and continuous exploration of network reconfigurations, including those that
are continuous in time (Douw et al., 2016; J. M. Shine et al., 2019), for example, if the subject
performs several tasks within the same scanning session, including extended resting-state pe-
riods (such as the fMRI experiment done at Barnes, Bullmore, & Suckling, 2009). This would
allow us to fully explore the cognitive space and gain a valuable insight into how different
subjects adapt to different levels of cognitive demands. One can also study the trajectory of
changing mental states using dynamic functional connectivity (Gonzalez-Castillo et al., 2015),
which can easily be mapped to this morphospace for additional insights. Another potential
avenue could be the application of this framework to characterize and understand different
brain disorders.

In summary, this mesoscopic network morphospace is our first attempt to create a mathe-
matically well-defined framework to explore an individual’s cognitive space at different levels
of granularity. It allows us to characterize the structure and dynamics of specific subsystems in
the brain. This type of framework can be extremely helpful in characterizing brain dynamics at
the individual level, in healthy and pathological populations, which in turn would pave the
way for the development of personalized medicine for brain disorders.

METHODOLOGY

We provide detailed information on materials and methods in the Supporting Information. In
short, all necessary mechanics collected from multiple disciplines and general setup for matrix
computations are described in main text under the Mesoscopic Morphospace of Functional
Configurations section and Supporting Information Preliminaries and Data sections. The data-
set consists of high-resolution functional connectivity matrices describing human cerebral cor-
tex and subcortex (see Supporting Information, Data). The construction of morphospace and
the formalized notion of configural breadth are described in the Supporting Information,
Morphospace Analysis section. Multilinear model and model specificity are described in
Supporting Information, Behavioral Measure analysis section.
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