
SOFTWARE-DEFINED BUFFER MANAGEMENT AND
ROBUST CONGESTION CONTROL FOR MODERN

DATACENTER NETWORKS
by

Danushka Menikkumbura

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

Department of Computer Science

West Lafayette, Indiana

May 2022

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Patrick Eugster, Co-Chair

Department of Computer Science

Dr. Sonia Fahmy, Co-Chair

Department of Computer Science

Dr. Muhammad Shahbaz

Department of Computer Science

Dr. Dongyan Xu

Department of Computer Science

Approved by:

Dr. Kihong Park

2

An inspiration to my son to do great things in life, and a tribute to my parents for

everything they have done to make me who I am today

3

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to all those who helped me finish my PhD.

Out of those there are some special individuals whom I would like to mention with a lot of

love and respect.

First and foremost, I would like to express my heartfelt gratitude to two special people

without whom my PhD journey would not have set out. I met Dr. Shahani Markus at a

time I had given up on grad school, and without her motivation and encouragement my PhD

would have been just a dream. I am forever in debt to Prof. Patrick Eugster, not only for

expressing interest to have me as a student, but also, helping me lay a solid foundation to

embark on my PhD journey.

I am profoundly thankful to Prof. Sonia Fahmy and Prof. Patrick Eugster for being the

best PhD advisors one can ever have. Without their guidance, support, and mentorship, I

would not have been able to successfully finish my PhD. I truly appreciate the amount of

freedom they gave me to try new things. They have always been very friendly, supportive,

and compassionate. Their remarkable knowledge and experience in the field helped me horn

my research and literature skills, which will be key pillars of my future career. They have

truly been my parents away from home who have always been there for me to share my ups

and downs.

I very much appreciate Prof. Dongyan Xu and Prof. Muhammad Shahbaz for taking

the time out of their busy schedules to serve on my exam committee and providing me with

some invaluable feedback.

I am immensely grateful to Dr. Srinath Perera and Mr. Suresh Marru for writing me

strong recommendations for grad school. I appreciate their helpful input in the grad school

application process.

I am indebted to everyone at Purdue Computer Science department including the faculty

and staff who assisted me complete my PhD qualifying exams. I would like to convey a special

appreciation to Ms. Monica Shively and Ms. Lacey Siefers for all their support throughout

my PhD.

4

With a heavy heart, I express my heartfelt gratitude to late Dr. Kirill Kogan. He was

a great colleague who was extremely supportive and welcoming. I was fortunate to have a

chance to collaborate with Dr. Kogan. I am thankful to Dr. Gustavo Petri, Dr. Yangtae

Noh, Dr. Sergey Nikolenko, and Dr. Alexander Sirotkin for all their help and support during

our collaboration.

I would like to respectfully express my sincere gratitude to Mr. Tom Edsall for giving

me an opportunity to work with him. I was privileged and honored to be able to collaborate

with Tom. I am thankful to Parvin Taheri and Erico Vanini for all their help and support

while working on the project RoCC.

I am grateful to all the colleagues in my research group for their support, especially

Amit Sheoran and Pavel Chuprikov for their insightful comments and feedback during our

discussions. I am very much thankful to David Gengenbach and Marcel Blöcher for going

out of their way to help me get access to their P4 testbed, without which, I would not have

been able to complete some crucial experiments.

I am forever in debt to Dr. Sundar Iyer, Mr. Harsha Jagannati, and Dr. Ramana

Kompella for helping me have a very productive internship at Cisco Systems. I appreciate

all the fruitful discussions we had on using research skills in the industry. I owe them a special

thank for introducing me to Mr. Tom Edsall, which created a lot of new opportunities for

me.

I cannot thank my parents enough for everything they have done for me from the day I

was born to this date. It brings tear to my eyes when I think of the amount of sacrifices my

parents had to make to raise myself and my two siblings with lots of love and care. I am

thankful to my brother Duleepa and sister Gayani for always being on my side. I would like

to give special thanks to my in-laws for all their support.

Last but not least, I would like to give special thanks to my loving son Dihein and

wife Dinushi for all their support and being my best friends all these years. Especially, I

appreciate their tolerating all the hardships they had to go through while I was doing my

PhD.

5

TABLE OF CONTENTS

LIST OF TABLES . 10

LIST OF FIGURES . 11

ABBREVIATIONS . 14

ABSTRACT . 15

1 INTRODUCTION . 16

1.1 Buffer Management . 16

1.2 Congestion Control . 17

1.3 Head-of-line Block Clearance . 17

1.4 Thesis Statement . 18

1.5 Contributions . 18

2 SOFTWARE-DEFINED BUFFER MANAGEMENT 19

2.1 Introduction . 19

2.2 OpenQueue Design . 20

2.2.1 Overview . 20

2.2.2 Multiple Queues . 21

2.2.3 Priority Queue . 22

2.2.4 Policy Framework . 22

2.3 OpenQueue Language . 24

2.3.1 Rules . 24

2.3.2 Abstract Interfaces . 26

2.4 Using OpenQueue . 31

2.4.1 Example Policy Definitions . 31

2.4.2 Configure a Switching Fabric . 32

2.5 Feasibility of OpenQueue . 33

2.5.1 OpenQueue in the Linux Kernel . 35

6

2.5.2 OpenQueue Code Generation for Linux Kernel 37

2.5.3 Priority Queue and Performance . 39

2.5.4 Evaluation of Operational Complexity in DPDK 40

2.6 Related Work . 41

2.7 Chapter Summary . 43

3 A CONTROL-THEORETIC APPROACH FOR CONGESTION CONTROL IN

DATACENTER NETWORKS . 44

3.1 Introduction . 44

3.2 Solution Requirements . 48

3.3 RoCC Design . 49

3.3.1 Definitions . 50

3.3.2 CP Algorithm . 51

3.3.3 Feedback Message . 53

3.3.4 Flow Table . 54

3.3.5 RP Algorithm . 55

3.3.6 Rate Computation at the Host . 56

3.4 Implementation . 56

3.4.1 Basics . 57

3.4.2 P4 Implementation . 57

3.4.3 FPGA Implementation . 59

3.5 Evaluation . 59

3.5.1 Micro-Benchmarks . 60

3.5.2 Evaluation with DPDK Implementation 65

3.5.3 Evaluation with P4 Implementation 66

3.5.4 Large-Scale Simulations . 67

3.6 Related Work . 72

3.7 Chapter Summary . 73

4 A SOLUTION TO PFC-INDUCED HEAD-OF-THE-LINE BLOCKING IN DAT-

ACENTER NETWORKS . 75

7

4.1 Introduction . 75

4.2 Design Rationale . 77

4.2.1 Design Goals . 78

4.2.2 Dissecting head-of-(the-)line (HoL) Blocking 78

4.2.3 Key Insight . 79

4.3 Escape . 80

4.3.1 Overview . 81

4.3.2 Algorithm . 82

4.3.3 Design Details . 84

4.4 Verification . 85

4.4.1 Properties . 86

4.4.2 HoL Block Clearance [HoL block clearance (clr)] 86

4.4.3 Zero Frame Drop [Zero frame drop (drp)] 87

4.4.4 In Order Frame Delivery [In-order frame delivery (ord)] 88

4.4.5 Termination of Algorithm . 89

4.5 Implementation . 89

4.5.1 Escape Components . 90

4.5.2 FPGA Implementation . 90

4.5.3 DPDK Implementation . 92

4.6 Evaluation . 92

4.6.1 Micro-Benchmarks . 93

4.6.2 DPDK-based Prototype Evaluation 95

4.6.3 Datacenter Simulations . 96

4.6.4 Escape vs. State of the Art . 98

4.6.5 FCT Reduction in Absence of Deadlocks 99

4.7 Related Work . 101

4.8 Chapter Summary . 103

5 CONCLUSIONS AND FUTURE WORK . 104

5.1 OpenQueue Implementation in Hardware . 104

8

5.2 Predictive Congestion Control . 105

5.3 Extensibility of Escape . 106

5.4 Large-scale Evaluation . 106

REFERENCES . 108

9

LIST OF TABLES

3.1 Comparison of selected congestion control solutions (∗solution-specific, CNP: con-
gestion notification packet). 47

3.2 Symbols and definitions (∗in multiples of ∆F , †in multiples of ∆Q, ‡in Mb/s). . . 50

3.3 Flow-level average rate allocation of DCQCN, HPCC, and RoCC with FB_Hadoop
traffic (70% average load). The ideal average rate in this case is ∼ 333 Mb/s. . . 70

4.1 Algorithm symbol definitions. 82

10

LIST OF FIGURES

2.1 OpenQueue Schema . 20

2.2 Operational time complexity: MQ vs. SQ. 21

2.3 Left: single priority queue with buffer of size B = 6; right: multiple separated
queues with three queues (k = 3) of size 2 each. Dashed lines enclose queues. . . 23

2.4 OpenQueue Queue interface . 26

2.5 OpenQueue Buffer interface . 29

2.6 OpenQueue Port interface . 29

2.7 OpenQueue Packet interface . 30

2.8 Example priorities and congestion conditions. 31

2.9 Example scheduling policies. 31

2.10 Multiple separated FIFO queues with a single output port architecture. 32

2.11 Shared buffer architecture. 32

2.12 Buffered-crossbar switch with three hierarchical levels. 33

2.13 OpenQueue configuration for the fabric in Fig. 2.12 34

2.14 OpenQueue priority queues in Linux kernel. 35

2.15 From OpenQueue language to Linux kernel module. 35

2.16 Use of function calls inside the kernel module during packet enqueue and dequeue. 36

2.17 Left: average queue length as a function of number of clients generating UDP
traffic with default MTU size. Right: fraction of default MTU size; blue: FIFO
with prioritization; red: regular FIFO. 36

2.18 Sample policy file. 38

2.19 Average (weighted) throughput (shown on the Y-axis) as a function of input load
in Gbps (X-axis) in Experiment 1 (a-b) and no. of queues in Experiment 2 (c-d). 42

3.1 Relationship of the components (§ 3.3) of RoCC to its requirements (§ 3.2) and
high-level goals (§ 3.1). 45

3.2 Overview of RoCC design at the congestion point (CP). 51

3.3 RoCC switch implementation in P4. 57

3.4 P4 header definition for congestion notification packet (CNP). 59

3.5 Fairness and stability of RoCC as load increases. 61

3.6 Convergence of RoCC. The numbers in red are the flow counts during the intervals. 63

11

3.7 Multi-bottleneck topology. 63

3.8 Comparing RoCC with TIMELY, quantized congestion notification (QCN), datacenter
QCN (DCQCN), and high precision congestion control (HPCC) in terms of fair-
ness, stability, and convergence. 63

3.9 Fairness of DCQCN, HPCC, and RoCC. 65

3.10 Testbed results vs. simulation results. 66

3.11 P4 results vs. simulation results. 67

3.12 Average flow completion time (FCT) of DCQCN, HPCC, and RoCC (70% average
load). 68

3.13 99th percentile FCT of DCQCN, HPCC, and RoCC (70% average load). 68

3.14 Queue size and priority-based flow control (PFC) activation of DCQCN, HPCC,
and RoCC with WebSearch traffic (70% average load). 71

3.15 Average FCT of DCQCN, HPCC, and RoCC with PFC disabled and unlimited
buffer (FB_Hadoop traffic at 70% average load). The numbers in respective
colors show the fold increase in FCT, w.r.t. the case when PFC is enabled with
limited buffer (Fig. 3.13). 72

4.1 Flow control without HoL blocking. 76

4.2 A⃝ the four necessary conditions (blue boxes) and corresponding network re-
quirements (dashed boxes) for HoL blocking that leads to B⃝ routing deadlock
formation when a fifth condition is met. 79

4.3 Frames of a HoL-blocked flow can be pushed out of the queue and allow them
move forward, if the flow is not blocked downstream. 80

4.4 Escape overview: A flow that is HoL-blocked at switch sb, is cleared as frame d
of the flow in queue q2, escapes. 80

4.5 Overview of field-programmable gate array (FPGA) queue implementation: The
bitmap maintains the vector indices of frames, and the shift register is used for
FIFO ordering. 91

4.6 Simple three-node topology forming deadlock s1→s2→s3→s1. 93

4.7 Efficiency of Escape on the three-node topology in Fig. 4.6 94

4.8 Deadlock clearance with Fig. 4.6 topology. 94

4.9 Deadlock clearance in Fig. 4.6 with Escape and HPCC. 95

4.10 Deadlock clearance on the testbed topology. 96

4.11 Three-level fat-tree topology used in the datacenter simulations. 97

4.12 System stability (link utilization) before link failure (HPCC + Escape). 97

12

4.13 System stability after link failure (HPCC + Escape). 98

4.14 Two-level fat-tree topology that forms the deadlock, n1→n5→n2→n4→n1. . . . 99

4.15 99th-percentile FCT in the fat-tree topology in Fig. 4.14 100

4.16 Two-level fat-tree topology with incast congestion on s1→ s5 and little or no
congestion on s1→s4. 100

4.17 FCT of innocent flows with incast congestion. 101

13

ABBREVIATIONS

PFC Priority-based Flow Control

RDMA Remote Direct Memory Access

FCT Flow Completion Time

DPDK Data Plane Development Kit

FPGA Field-Programmable Gate Array

ICMP Internet Control Message Protocol

ECN Explicit Congestion Notification

INT In-band Network Telemetry

ASIC Application-Specific Integrated Circuit

14

ABSTRACT

Modern datacenter network applications continue to demand ultra low latencies and very

high throughputs. At the same time, network infrastructure keeps achieving higher speeds

and larger bandwidths. We still need better network management solutions to keep these

two demand and supply fronts go hand-in-hand. There are key metrics that define network

performance such as flow completion time (the lower the better), throughput (the higher

the better), and end-to-end latency (the lower the better) that are mainly governed by how

effectively network application get their fair share of network resources. We observe that

buffer utilization on network switches gives a very accurate indication of network perfor-

mance. Therefore, network buffer management is important in modern datacenter networks,

and other network management solutions can be efficiently built around buffer utilization.

This dissertation presents three solutions based on buffer use on network switches.

This dissertation consists of three main sections. The first section is on a specification

language for buffer management in modern programmable switches. The second section is

on a congestion control solution for Remote Direct Memory Access (RDMA) networks. The

third section is on a solution to head-of-the-line blocking in modern datacenter networks.

15

1. INTRODUCTION

Modern datacenter applications demand very high throughput and ultra low latency that

require datacenter networks to be very efficient and robust. At the same time network

hardware keeps becoming faster (e.g. line-rate switches and 100Gb/s links) that makes

efficient resource allocation within networks more challenging. Moreover, datacenter traffic

is very bursty by nature and demands efficient buffer management and congestion control

solutions to achieve small flow completion times for short-lived, heavy-tailed mice flows and

persistent throughput for long-running elephant flows. This diversity in flow composition in

datacenter networks also leads to issues like head-of-line blocking caused by buffer overrun

due to congestion that in turn leads to other critical problems like routing deadlocks. The

deadlocks in datacenter networks are catastrophic and can make a whole datacenter unusable.

When that happens, the datacenter needs to be restarted, which is a very costly operation.

The focus of this dissertation is on improving efficiency and robustness of datacenter

networks by finding solutions to the problems mentioned above. We try to address three

problems in particular; (i) Buffer Management, (ii) Congestion Control, and (iii) Head-of-

line Block Clearance. We briefly discuss what each of these problems is and why it is required

to solve these problems in order to improve efficiency and robustness in datacenter networks.

1.1 Buffer Management

In-network buffering is an attribute of any packet-switched routing network. Network

switches and routers use buffers to retain packets when there is congestion. Switch buffer

management and active queue management (AQM) has evolved over time to meet different

challenges including quality of service (QoS) and service-level agreements (SLA). With the

advent of modern programmable line-rate switches, buffer management has become even

more important. One major problem in switch buffer management is that it is very difficult

for network administrators to configure and administer them with the limited set of tools

available. Most of the existing tools are very low-level and error prone, hence lead to miscon-

figuration due to human errors. Modern high-speed switch architectures use match-action

tables to execute rules. A match-action table entry has a condition check and a correspond-

16

ing action that executes a piece of logic if there is a match. To gain high performance and

speed, these condition checks and actions should be simple and efficient. To gain maximum

out of programmable switches, it is very important that buffer management rules are able

to be modified dynamically. Therefore, high-level switch buffer architecture specification

languages that are simple, expressive, efficient, and dynamic are a critical need, hence a

growing area of research.

1.2 Congestion Control

Congestion control is essential in any packet-switched network to make sure proper func-

tionality. Congestion control is required to provide fair share of network bandwidth across

competing data flows and improve efficiency by reducing packets drops, hence retransmis-

sions. With the advent of remote direct memory access (RDMA) networks, congestion

control has become even more important. RDMA uses PFC for link-level flow control to

make the network lossless. PFC can lead to problems like HoL blocking, congestion spread-

ing, and routing deadlocks. Congestion control also plays an important role in datacenter

networks where traffic is heterogeneous and demands a wide variety of quality of service. In

datacenter networks, congestion control solutions are required to meet some important yet

conflicting goals such as fast convergence, high stability, fairness, and minimal operation and

implementation overheads.

1.3 Head-of-line Block Clearance

A routing deadlock occurs in a network when a loop forms in a resource dependency graph,

where switch buffer space is usually the resource. When a node does not have sufficient buffer

space to accept incoming traffic, it notifies the upstream node to temporarily shut the data

flow until enough buffer space becomes available. This handshake between two adjacent

nodes is handled by different protocols. The IEEE 802.3x standard defined Link-level Flow

Control (LFC) for Ethernet networks and IEEE 802.1Qbb extends the same idea as part of

Datacenter Bridging (DCB) standard to support fine-grained flow control based on traffic

classes. Credit-based routing is another technique that uses the same idea where positive

17

credit denotes spare buffer space on a receiving node. When a deadlock occurs in a network

it does not go away automatically and human intervention is required to resolve it. When a

deadlock is formed, it can spread into other parts of the network bringing the whole network

to a standstill. To resolve a deadlock, network nodes that are part of it need to be restarted

and when there are multiple cascading deadlocks, it requires a whole datacenter network to

be restarted and that is a very costly operation. Therefore, deadlock prevention/resolution

in datacenter networks has got attention of the research community.

1.4 Thesis Statement

The thesis of this dissertation: as modern datacenter network infrastructure continues to

advance with programmable hardware and high-speed transports to achieve high-throughput

and low-latency data transmission, there is a need for tools and network services to optimize

network utilization. This includes: (a) a complete buffering architecture specification to

program datacenter network switches more efficiently and effectively, (b) a new congestion

control solution to meet throughput and latency demands while improving fair bandwidth

allocation and network stability, and (c) an efficient solution to PFC-induced head-of-line

(HoL) blocking, which is a critical problem in lossless datacenter networks. HoL-blocking

increases latency and causes congestion spreading, leading to routing deadlocks.

1.5 Contributions

This dissertation make three core contributions.

1. OpenQueue: A comprehensive specification language for defining complete buffering

architectures and policies using simple operators.

2. RoCC: A switch-centric congestion control solution for RDMA networks, which is more

stable, efficient, and fairer than the state of the art.

3. Escape: A solution to PFC-induced HoL blocking in datacenter networks.

18

2. SOFTWARE-DEFINED BUFFER MANAGEMENT

In this chapter, we present OpenQueue, a specification language for defining complete buffer-

ing architectures and policies. Buffering architectures and policies for their efficient manage-

ment are core ingredients of a network architecture. However, despite strong incentives to

experiment with and deploy new policies, opportunities for changing anything beyond minor

elements are limited. We introduce a new specification language, OpenQueue, that allows to

express virtual buffering architectures and management policies representing a wide variety

of economic models. OpenQueue allows users to specify entire buffering architectures and

policies conveniently through several comparators and simple functions. We show examples

of buffer management policies in OpenQueue and empirically demonstrate its impact on

performance in various settings.

2.1 Introduction

Buffering architectures define how input and output ports of a network element are con-

nected [1]. Their design and management directly impact performance and cost of each

network element. Traditional network management only allows to deploy a predefined set

of buffer management policies with parameters that can adapt to specific network condi-

tions. Incorporating new management policies requires complex control/data plane code

and even hardware changes. Objectives beyond fairness [2] and additional traffic proper-

ties [3],[4],[5] lead to new challenges in the implementation and performance of switching

architectures. Unfortunately, current developments in software-defined networking mostly

eschew these challenges and concentrate on flexible and efficient representations of packet

classifiers (e.g., OpenFlow [6]), which do not really capture buffer management. This calls

for novel well-defined abstractions that enable buffer management policies to be deployed

on real network elements at runtime. Design of such abstractions is hard, as they must sat-

isfy possibly conflicting requirements: (1) EXPRESSIVITY: expressible policies should cover

a large majority of existing and future deployment scenarios; (2) SIMPLICITY: policies for

different objectives should be expressible concisely with a limited set of basic primitives and

should not impose hardware choices; (3) PERFORMANCE: implementations of policies should

19

be efficient; (4) DYNAMISM: one should be able to specify new policies at runtime with no

code changes or (re-)deployments.

2.2 OpenQueue Design

2.2.1 Overview

To specify an adequate language for software-defined buffer management, we need to

identify primitive entities, their properties, and a logic to manipulate these primitives. The

choice of primitives dictates SIMPLICITY and EXPRESSIVITY.

Figure 2.1. OpenQueue Schema

 Fig. 2.1 depicts the main elements of OpenQueue schema. OpenQueue has two main

types of object: ports and queues assigned to ports. Each queue has an admission control

policy, deciding which packets are admitted or dropped [7],[8], and a processing policy defining

its HoL packet; each port, a scheduling policy, selecting a queue whose HoL packet will be

processed next [9],[10]. In some cases, (e.g. shared memory switches [11],[12],[13]), several

queues share the same buffer space, and admission control can routinely query the state

of several queues (e.g. the LQD policy under congestion drops packets from the longest

queue [11]). Thus, OpenQueue deals with buffers and admission control policy to resolve

congestion at the buffer level. Management policies for multi-level buffering architectures

20

can be implemented in a centralized or distributed manner, synchronously (e.g. finding a

matching between input and output ports) [14],[15] or asynchronously, like packet scheduling

in a buffered crossbar switch [16],[17],[15]. Specific implementations are beyond the scope of

OpenQueue.

In summary, to define a buffering architecture and its management in OpenQueue, one

needs to create instances of ports, queues, and buffers, and specify relations among them:

admission control, processing, and scheduling policies.

2.2.2 Multiple Queues

A central primitive in our language is the queue. How complex should the queue abstrac-

tion and implementation be to achieve EXPRESSIVITY? In contrast to exploring a universal

scheduling policy [18] that can satisfy multiple objectives instead of having a flexible inter-

face to define new buffer management policies, we argue for separating admission, processing,

and scheduling policies, and supporting multiple (as well as single) queues, through some

novel fundamental results.

Figure 2.2. Operational time complexity: MQ vs. SQ.

 Fig. 2.2 visually represents operational time complexity comparison between MQ and

SQ. In the case of MA, the three incoming packets (in blue) can get inserted in to the

21

buffer without rearranging existing packets, whereas in the case of SQ it requires rearranging

existing packets before inserting the new packets.

2.2.3 Priority Queue

Buffer management policies are generally concerned with boundary conditions (e.g., upon

admission a packet belongs to the lowest priority class can be dropped). Hence, priority queue

arises as a natural choice for implementing actions related to user-defined priorities. The

priority criteria do not change at runtime (e.g., a queue’s ordering cannot change from FIFO

to LIFO). Thus, admission, processing, and scheduling policies in OpenQueue use priority

queue data structures that uses a simple Boolean comparator to define its ordering.

2.2.4 Policy Framework

In this section we try to justify the way policies are structured in OpenQueue. OpenQueue

provides three different points in the buffering architecture to attach policies. This in a way

can be seen as decomposing a flat all-in-on policy into multiple sub policies based on three

different key stages of the life cycle of a packet inside a switch buffer, (i) admission (accept

the packet or not), (ii) processing (if accepted where to place it in the queue/buffer), and

(iii) scheduling (packet is ready to exit or not). This level of policy decomposition improves

EXPRESSIVITY of OpenQueue.

Impact of admission control: The modern network edge is required to perform tasks

with heterogeneous complexity: deep packet inspection, firewalling, and intrusion detection.

Hence, the way packets are processed may significantly affect desired objectives. For example,

increasing per-packet processing time for some flows can trigger congestion even for traffic

with relatively modest burstiness.

Consider throughput maximization in a single queue buffering architecture of size B,

where each unit-sized and unit-valued packet is assigned the number of required processing

cycles, ranging from 1 to k (see Fig. 2.3 (a)). Defining a new admission control policy

in OpenQueue requires only one comparator (admission order upon congestion) and one

congestion condition (when an event of congestion occurs). The processing policy is defined

22

Figure 2.3. Left: single priority queue with buffer of size B = 6; right:
multiple separated queues with three queues (k = 3) of size 2 each. Dashed
lines enclose queues.

by one additional comparator (defining in which order packets are processed). Note that

admission and processing comparators can be different. In this case, advanced processing

and admission orders are not required as only packets with same processing requirements

(remaining processing time) are admitted to the same queue.

Impact of scheduling: A common architecture for packets with heterogeneous processing

requirements is to allocate a separate queue for packets with the same processing requirement;

usually defined using traffic classes in practice, and use a scheduler to pick next packet from

HoL of one of the queues. Common scheduling algorithms include Round-Robin (RR),

Weighted-Round-Robin (WRR), Longest-Queue-First (LQF), Shorted-Queue-First (SQF),

Shorted-Remaining-Processing-Time (SRPT), etc. Fig. 2.3 (b) shows an example of using

SRPT as scheduling policy to maximize throughput. The decision of scheduling next packet

in order to maximize throughput could be non-trivial since it is unclear which characteristic

(i.e., buffer occupancy, required processing, or a combination) is most relevant for throughput

optimization.

23

2.3 OpenQueue Language

2.3.1 Rules

Comparators: The core data structure used in OpenQueue is priority queue. To express

queues with different priorities, while abstracting actual implementations, data structures in

OpenQueue (usually packets) are parameterized by a priority relation that determines their

ordering in a queue. To that end, we introduce the notion of a comparator, a Boolean binary

predicate (over different types). Since comparators are used internally by OpenQueue to

implement the queues, the comparison operation has to be efficiently computable (ideally at

the hardware level). This is especially important when it comes to modern programmable

switches that use high-speed packet processing pipelines based on match-action tables. To

achieve efficient computation with comparators, OpenQueue imposes certain syntactic re-

strictions on their definition. The syntax below captures the main restrictions.

x formal variables

n numeric constants

e ::= n | x.f | e⊕ e arithmetic expressions

b ::= e < e | b ? b predicates

c ::= comp_name(x, x) = b comparator def.

Comparator declarations require providing a name comp_name, and take two arguments.

The type of the arguments varies depending on the priority being defined. For instance for

queues in OpenQueue, which hold packets, a packet comparator has to be defined. The fourth

production of the grammar contains predicates, which are the Boolean expressions b defining

the comparison function. Aside from the standard arithmetic expressions (we generically

denote by ⊕ the standard arithmetic operators), the first-order Boolean operators (denoted

with the symbol ?) and arithmetic relations (denoted with <), we allow the inspection of

the fields of the arguments using the standard dot notation x.f , where f is assumed to be

a field of the parameter x. It is assumed here that field access operations require a small

constant number of memory accesses (generally one). Importantly, no function or procedure

calls are allowed in comparators.

24

Boundary conditions: Data structures manipulated by OpenQueue can behave differently

depending on whether the network entity is operating in normal state, or in congested state.

For example, when a queue or a buffer becomes saturated, the user could specify that certain

packets should be dropped to achieve graceful degradation. We allow the user to specify

conditions under which a data structure should be considered congested. Again, we use a

restricted language to express these boundary conditions. Unlike comparators, the predicates

of boundary conditions are unary since they consider a single entity at any time.

pf ::= weightAdm | weightSched modifiables

ac ::= drop(P) | modify(pf := e) | mark | notify | ac · ac actions

cl ::= (b, ac) | (b, ac) · cl condition cases

cd ::= cond_name(x) = cl declarations

This syntax shares the definitions of predicates and declarations with comparators seen be-

fore. Importantly, boundary conditions can be a sequence of cases (each case separated with

a dot above). This is represented by the cl meta-variable representing a list of pairs, whose

first component contains a predicate and second component defines an action represented by

the meta-variable ac.

1
 For the time being, we focus on the drop(P) action which indicates

that packets have to be dropped from the queue with probability P if the matching predi-

cate evaluates to true. Actions modify(pf := e), mark, and notify will be discussed later.

Moreover, we allow actions to be sequenced, although generally only one action is used in

conditions. Condition cases enable the expression of different response scenarios according

to different types of congestion. For example, under severe congestion a more aggressive

drop policy can be put in place by increasing the probability of dropping a packet. It is best

if the conditions are mutually exclusive; in the current version of OpenQueue only actions

of the first matching condition (in lexicographic order) will be triggered.

In the sequel we present the different entities comprising OpenQueue in detail. For

each entity we provide its properties; some are primitives of the domain (e.g., packet size),
1

 ↑ The syntax presented here is simplified for presentation purposes.

25

and others have to be set by the programmer. For each property we indicate in comments

whether it is r read-only or rw writable, and cons if it’s value is fixed during execution, or

dyn otherwise. For functions we provide the return type (e.g., bool fun), and we denote

comparators indicating their input types (e.g., Packet comp.), and boundary conditions

indicating the actions that they allow (e.g., drop cond).

2.3.2 Abstract Interfaces

1) Queue: Fig. 2.4 shows the declaration of Queue interface. Standard property size is

defined by the user at declaration time, as well as buffer, the buffer that contains the

queue and is shared among several queues in the shared memory case. The currSize

property serves to query current size and changes dynamically as the queue is updated.

Abstractly, a queue contains packets ordered according to user-defined priorities for ad-

mission control and processing.

Queue {
Queue(size) // constructor
size // declared size in bytes [r, cons]
currSize // current queue size [r, dyn]
// admission policy
admPrio(p1, p2) // [bool fun]
congestion() // [{drop,mark,notify,modify} cond]
admState // admission state [rw, dyn]
// processing policy
procPrio(p1, p2) // proc comparat.[Packet comp]
schedState // per-queue sched. state [rw, dyn]
}

Figure 2.4. OpenQueue Queue interface

Admission policy: The first policy concerns the admission of packets into the queue.

admPrio(p1, p2) is a packet comparator used in case of congestion to choose the packets

to be dropped from the queue. As an alternative, instead of defining an admission policy

we could simply drop the least valuable packets according to procPrio priority that we

will describe shortly. However, separate priorities for admission and processing not only

26

give more EXPRESSIVITY but also improve PERFORMANCE . There are several properties

related to the admission policy.

(a) The user-defined congestion() boundary condition that shows when a queue is vir-

tually congested, and defines which/how packets should be dropped (here we only

consider the drop(P) action). The single argument of boundary condition decla-

rations is implicitly instantiated to the queue being defined, hence this is a queue

boundary condition. We notice here that the deterministic drop action corresponds

to an action drop(1) in the syntax presented before. Usually, congestion() is

a set of different buffer occupancy levels and corresponding drop probabilities [7].

In the example below we show a possible congestion policy whereby packets are

dropped with a probability of 0.5 if the current occupation of the queue is greater

than 3/4 of the total size of the queue but lower than 9/10; they are dropped with a

probability of 0.9 if the occupation exceeds 9/10 but is lower than 19/20; and they

are always dropped otherwise.

congestion() =

(currSize >= 0.95 * size, drop(1)).

(currSize >= 0.90 * size, drop(0.9)).

(currSize >= 0.75 * size, drop(0.5))

OpenQueue can push out already admitted packets. To use the same implementation

for push-out and non-push-out cases, an admission control policy could always admit

incoming packets. In case of congestion, admission control randomly drops least

valuable packets until congestion disappears.

(b) The optional function postAdmAct() is a boundary condition like congestion(),

except that it is restricted to mark, notify, and modify(pf := e). These actions are

intended to tell subsequent processing entities that the packet is subject to special

conditions.

27

(c) The function postAdmAct() can be used to implement explicit congestion noti-

fications [19] or backpressure; postAdmAct() can return actions such as mark or

notify. When bandwidth is allocated not only with respect to packet attributes,

queues maintain a weightAdm variable that can be updated dynamically after each

scheduling, and the is what modify(pf := e) is for.

Processing policy: The processing policy defines the priorities of packets in the queue

through procPrio(p1, p2); a packet comparator defined as a function taking two ab-

stract packets and returning true if p1 has a higher processing priority than p2. We are

only concerned with the highest processing priority packet at any point. This priority

defines the most and least valuable packets in the queue. Hence, the only way to ac-

cess packets in the queue ordered by procPrio is through the getHOL() primitive which

returns the HOL (i.e., packet with highest processing priority as defined by procPrio);

e.g. the user can set

procPrio(p1, p2) = (p1.arrival < p2.arrival)

to encode FIFO processing so calls to getHOL() return the longest standing packet.

Scheduling policy: This policy allows to specify static bandwidth allocations among

queues of the same port during scheduling. In this case, the policy is defined in part

in queue declaration, and in part in port declarations. The weightSched variable for

each queue is updated by the postSchedAct() function defined in ports (see below).

2) Buffer: A buffer is an optional entity, declared only when several queues share buffer

space (see Fig. 2.5). It manages a set of queues assigned to it at creation; congestion(),

postAdmAct(), size, and currSize are similar to the respective queue attributes. Under

congestion, an admission control policy on the buffer level finds a queue that requires

to drop a packet and the queue’s admission control policy determines which packet to

drop. To order queues for admission, user specifies the queuePrio comparator. e.g. to

implement LQD, one can use.

queuePrio(q1, q2) = (q1.currSize < q2.currSize)

28

Buffer {
Buffer(size, q1, ..., qk) // constructor
size // declared size in bytes [r, cons]
currSize // current queue size [r, dyn]
currQueue // current queue [rw,dyn]
// admission policy
admPrio(q1, q2) // [bool fun]
congestion() // [{drop,mark,notify,modify} cond]
admState // optional per-buffer state [rw, dyn]
}

Figure 2.5. OpenQueue Buffer interface

3) Port: The interface for ports is presented in Fig. 2.6 . A port manages a set of queues

assigned to it at its declaration. schedPrio(q1,q2) is a user-defined scheduling prop-

erty that defines which HoL packet is scheduled next (this packet is accessed through

getBestQueue()). For example, priority based on packet values with several levels of

strict priorities is defined as

Port {
Port(rate, q1, ..., qk) // constructor
rate // declared rate in % or kbps [r, cons]
// scheduling policy
schedPrio(q1, q2) // [bool fun]
schedState() // scheduling state [rw, dyn]
postSchedAct() // [{mark,notify,modify} cond]
currQueue // current queue [rw, dyn]
}

Figure 2.6. OpenQueue Port interface

schedPrio(q1, q2) = (q1.getHOL().value > q2.getHOL().value)

Finally, postSchedAct() is similar to postAdmAct() and is used to define new ser-

vices/hooks.

4) Packet: The notion of a packet is primitive, meaning that the user cannot modify or

extend packets; packet fields can be used to implement policies. To be independent of

29

traffic types and to have a clear separation from the classification module (that can be

expressed in a different language), every incoming packet is prepended with three manda-

tory parameters, arrival time, size in bytes, and destination queue, and four optional

parameters, intrinsic value (with application-specific meaning), processing requirement

in virtual cycles, slack (maximal offset in time from arrival to transmission), and flow

(a traffic aggregation that the packet belongs to). We assume these properties are set

by an external classification unit (e.g.,OpenFlow [6], if a virtual switch is defined with

the finest possible resolution), except for arrival (set by OpenQueue when a packet is

received) and size.

Packet {
// set by external packet classifier
policyId // used on policy changes [r, cons]
queue // target queue id [r, cons]
value // virtual value [rw, dyn]
processing // no of cycles [r, dyn]
slack // offset in time [r, cons]
flow // flow id [r, cons]
// set on arrival
arrival // arrival time [r, cons]
size // size in bytes [r, cons]
}

Figure 2.7. OpenQueue Packet interface

 Fig. 2.7 depicts the Packet data structure. Intrinsic value and processing requirements

are used to define prioritization levels [20]. slack is a time bound used in management

decisions of latency-sensitive applications; e.g., if buffer occupancy already exceeds the

slack value of an incoming packet, the packet can be dropped during admission even if

there is available buffer space. We posit that all decisions of buffer management policies

(admission, processing, or scheduling) are based only on specified packet parameters and

internal state variables of a buffering architecture (e.g., buffer occupancy).

30

2.4 Using OpenQueue

In this section we demonstrate the use of OpenQueue using selected examples. We try

to show how the schema and language of OpenQueue together help achieve its main goals,

EXPRESSIVITY, SIMPLICITY, and DYNAMISM.

2.4.1 Example Policy Definitions

// priorities for admission and processing
fifo(p1, p2) = (p1.arrival < p2.arrival)
rfifo(p1, p2) = (p1.arrival > p2.arrival)
srpt(p1, p2) = (p1.processing < p2.processing)
rsrpt(p1, p2) = (p1.processing > p2.processing)
// congestion conds. considered.
// trigger when occupancy exceeds size.
tailDrop(q) = q.currSize >= q.size, drop(1)

Figure 2.8. Example priorities and congestion conditions.

// LQF: HOL packet from Longest-Queue-First
lqf(q1, q2) = (q1.currSize > q2.currSize);
// SQF: HOL packet from Shortest -Queue-First
sqf(q1, q2) = (q1.currSize < q2.currSize);
// MAXQF: HOL packet from queue that admits max processing
maxqf(q1, q2) = (q1.schedState > q2.schedState);
// MINQF: HOL packet from queue that admits min processing
minqf(q1, q2) = (q1.schedState < q2.schedState);
// CRR: Round-Robin with per cycle resolution
crr(q1, q2) = (q1.schedState < q2.schedState);

Figure 2.9. Example scheduling policies.

 Fig. 2.8 shows how to express three commonly used priorities and congestion condition

using OpenQueue. Fig. 2.9 shows how to express five commonly used scheduling policies

using OpenQueue.

In Fig. 2.3 (b) we saw an architecture for packets with heterogeneous processing require-

ments in which we allocate a dedicated queue for packets with the same processing require-

ment. The OpenQueue code in Fig. 2.10 creates this buffering architecture, with k separate

31

// create k queues each of size B
q1 = Queue(B); ...; qk = Queue(B);
out = Port(100%, q1, ..., qk);
// fifo admission order
q1.admPrio = rfifo(); ...; qk.admPrio = rfifo();
// fifo processing order
q1.procPrio = fifo(); ...; qk.procPrio = fifo();
// congestion condition
q1.congestion = tailDrop(q1); ...; qk.congestion = tailDrop(qk);

Figure 2.10. Multiple separated FIFO queues with a single output port architecture.

queues of size B. In this case, advanced processing and admission orders are not required as

only packets with same processing requirements are admitted to the same queue. Here, the

decision of which packet to process in order to maximize throughput is non-trivial since it is

unclear which characteristic (i.e., buffer occupancy, required processing, or a combination) is

most relevant for throughput optimization. Fig. 2.9 presents five different scheduling policies

we can use in a case like this.

 Fig. 2.11 shows how to define a shared buffer architecture. Here the size of the buffer is

B and the size of each queue is also B.

// create n queues of size B
q1 = Queue(B); ...; qn = Queue(B);
// create a shared buffer of size B and attach queues to it
b = Buffer(B, q1, ..., qn);
// create an output port per queue
out1 = Port(q1); ...; outn = Port(qn);

Figure 2.11. Shared buffer architecture.

2.4.2 Configure a Switching Fabric

Here, we show a sample multi-level buffering architecture that demonstrates the ap-

plicability of OpenQueue to specify management policies in switching fabrics. Unlike an

input-queued or combined-input-output-queued switch that requires synchronous policies

that usually compute matching between input and output ports, adding an additional buffer-

32

ing level at crosspoints allows to make this buffering architecture asynchronous. Here, we

consider a full-fledged version with three buffering levels, where the first level implements

virtual-output queues (see Fig. 2.12 and Fig. 2.13).

Figure 2.12. Buffered-crossbar switch with three hierarchical levels.

2.5 Feasibility of OpenQueue

A fundamental building block in OpenQueue is the priority queue data structure, where

the order of elements is maintained based on a user-defined priority. An OpenQueue imple-

mentation can keep a single copy of a packet and use packet references to encode priorities

(see Fig. 2.14). Therefore, the performance of OpenQueue on a given platform largely boils

down to the efficiency of underlying priority queue implementation. While priority queue op-

erations take O(log N) time in general, where N is a queue size, there are restricted versions

(e.g., for predefined ranges of priorities) that support most operations in O(1) and can be

efficiently implemented even in hardware [21], [22], further increasing OpenQueue’s appeal.

To guarantee a constant number of insert/remove and lookup operations during admission

33

// create 9 virtual-output queues of size B
voq11 = Queue(B); ...; voq33 = Queue(B);
// attach voqs to input ports
in1 = Port(100%, voq11, voq12, voq13);
in2 = Port(100%, voq21, voq22, voq23);
in3 = Port(100%, voq31, voq32, voq33);
// create 9 crosspoint queues of size B
cq11 = Queue(B); ...; cq33 = Queue(B)
// crosspoints as ports
cp11 = Port(100%, cq11); ...; cp33 = Port(100%, cq33);
// create 3 output queues of size B
oq1 = Queue(B); oq3 = Queue(B);
// attach oqs to output ports
out1 = Port(100%, oq1); ...; out3 = Port(100%, oq3);
// setting queues:
// admission order to fifo
voq11.admPrio = fifo; ...; voq33.admPrio = fifo;
cq11.admPrio = fifo; ...; cq33.admPrio = fifo;
oq1.admPrio = fifo; ...; oq3.admPrio = fifo;
// processing order to fifo
voq11.proPrio = fifo; ...; voq33.proPrio = fifo;
cq11.proPrio = fifo; ...; cq33.proPrio = fifo;
oq1.proPrio = fifo; ...; oq3.proPrio = fifo;
// congestion condition
voq11.congestion = defCongestion(); ...;
cq11.congestion = defCongestion(); ...;
oq1.congestion = defCongestion(); ...;
// LQF: HOL packet from Longest-Queue-First
lqf(q1, q2) = (q1.currSize > q2.currSize);
in1.schedPrio = lqf; in2.schedPrio = lqf;
out1.schedPrio = lqf; out2.schedPrio = lqf;

Figure 2.13. OpenQueue configuration for the fabric in Fig. 2.12

or scheduling of a packet (i.e., to avoid rebuilding the priority queue), OpenQueue’s user-

defined expressions for priorities are immutable. The complexity of OpenQueue is hence

reduced to translating user-defined settings to a target system that implements a virtual

buffering architecture.

34

Figure 2.14. OpenQueue priority queues in Linux kernel.

Figure 2.15. From OpenQueue language to Linux kernel module.

2.5.1 OpenQueue in the Linux Kernel

We have completed a proof-of-concept implementation of OpenQueue [23] in the Traffic

Control (TC) layer of the Linux kernel. To that end, we have extended the tc Linux

command to attach instances of our OpenQueue Queuing Discipline (as a qdisc

2
) to a network

interface. Our qdisc is implemented as a Linux kernel module, which can be loaded into the

kernel dynamically. A OpenQueue kernel module contains C language constructs correspond

to OpenQueue policy elements. OpenQueue module name is given as a parameter to the tc

command. For example, if the OpenQueue implementation has been compiled into a module

named my_openqueue calling the command

tc qdisc add dev eth0 root my_openqueue

2
 ↑ qdisc is a part of Linux Traffic Control (TC) used to shape traffic of a network interface; qdisc uses dequeue

to handle outgoing packets and enqueue to fetch incoming ones.

35

Figure 2.16. Use of function calls inside the kernel module during packet
enqueue and dequeue.

1 2 4 8 16
0

200

400

600

UDP clients w/def. MTU size

Av
g.

qu
eu

e
le

ng
th

(p
kt

s)

1
16

1
8

1
4

1
2

1
Fraction of def. MTU size

Figure 2.17. Left: average queue length as a function of number of clients
generating UDP traffic with default MTU size. Right: fraction of default MTU
size; blue: FIFO with prioritization; red: regular FIFO.

attaches our qdisc to eth0 where the OpenQueue policies defined in the input OpenQueue

file have been compiled into the module my_openqueue.

 Fig. 2.15 illustrates how the loadable OpenQueue policy modules are generated. The

input of our preprocessor is an OpenQueue file containing the desired architecture for the

interface. Then, the preprocessor generates a corresponding C source code for that. Subse-

quently, we compile this file into a loadable kernel module to be loaded when using the tc

36

command dynamically (cf. the insmod command). This strategy allows to load new policies

seamlessly, without disrupting currently executing policies on other interfaces.

The admission policy is evaluated inside the enqueuemethod. If a packet is admitted, the

corresponding processing policy calculates its rank according to processing order. Similarly,

the scheduling policy is evaluated inside the dequeue method to find the index of the queue

that the next HOL packet is taken from. This interaction between the qdisc and predefined

functions is depicted in Fig. 2.16 . As a priority queue data structure we use B-Trees that

keep pointers to packets (Fig. 2.14). The operational cost of packet insertions and deletions

is O(log N), where N is number of admitted packets.

2.5.2 OpenQueue Code Generation for Linux Kernel

Given the abstract nature of OpenQueue syntax and semantic, it is possible to generate

high-level language code for any target runtime environment without hassle. We have a

OpenQueue language parser and code generation toolset for Linux kernel. In our implemen-

tation OpenQueue policies are defined using syntax very similar to what we discussed in

 § 2.4 . A sample policy file is given in Fig. 2.18 . This policy file has three main sections.

The imports section at the top specifies C header files that define function signatures. These

functions include all possible C routines that can be used as function pointers for various

queue/port operations that are defined dynamically. These functions are validated for their

signature as each operation has its own specific format and also mundane sanity checks like

argument types, duplicate function names, missing semicolons, etc. The next section defines

queues and their attributes. The last section defines port and its attributes. These three

sections collectively define a complete OpenQueue policy. Furthermore, queue/port opera-

tion attributes are not limited to precompiled C routines but also support a limited set of

inline functions for improved usability.

The generated code can be compiled into a loadable Linux kernel module that can be

attached to a network interface using Linux tc command. The implemented kernel module

provides useful statistics about the qdisc runtime that can be queried using the tc command

itself. List. 2.1 shows some statistics for the OpenQueue qdisc for the policy given in Fig. 2.18 ;

37

// Define OpenQueue policy for a port
// Import function definitions
import "include/routine/routines.h"

// Create queues
// Size 128
Queue q1 = Queue(128);
// Size 1024
Queue q2 = Queue(1024);

// Attributes of q1
q1.admPrio = my_adm_prio;
q1.congestion = my_congestion_condition;
q1.congAction = drop_tail;
q1.procPrio = my_pro_prio;

// Attributes of q2
// TOS field as admission priority
q2.admPrio = inline{Packet.TOS};
// Queue is congested if its length is 1024
q2.congestion = inline{Queue.length == 1024};
// Drop packets with 95% probability when the queue is congested
q2.congAction = drop_tail(0.95);
q2.procPrio = my_pro_prio;

// Create port
Port myPort = Port(q1, q2);

// Define port attributes
myPort.queueSelect = select_admission_queue;
myPort.schedPrio = my_schd_prio;

Figure 2.18. Sample policy file.

here 200 packets were sent through the qdisc where queue selector was set to pick a queue

at random.

38

danushka@OpenQueue:~/OpenQueue$ tc qdisc show
qdisc openqueue 8002: dev eth0 root refcnt 2
Port: myPort
Queue: q1, Max: 128, Curr: 0, Dropped: 0, Total: 140
Queue: q2, Max: 1024, Curr: 0, Dropped: 0, Total: 60

2.5.3 Priority Queue and Performance

To explore the performance overhead introduced by several priority queues (implemented

as B-trees) in OpenQueue, we used priorities based on arrival time to compare it with the

base-line qdisc implementation that is implemented as a doubly linked list.

In our testbed we use a 3-node line topology to measure the performance overhead of

our packet prioritization logic. The middle node runs Open vSwitch (OVS) with modified

data plane (Linux kernel) and acts as a pass-through switch. We vary the number of parallel

traffic generators on the first node and measure average queue length (i.e., number of packets

in the default queue) on the third receiver node for two qdiscs: base-line FIFO and extended

FIFO with prioritization in OpenQueue, reporting the average value of 50 runs with 95%

confidence interval. Fig. 2.17 (left) shows the average queue lengths for the two qdiscs; in

both cases, average queue length increases with the number of UDP clients. In FIFO with

16 clients, the most congested case, regular FIFO has an average queue length 559.333 vs.

571 packets for FIFO with prioritization, which represents a mere 2% degradation. We also

varied MTU sizes in the same 3-node line topology with 4 parallel UDP generators, which

is enough to observe queue build-ups without dropping packets in the pass-though switch.

We measured average queue lengths of the two qdiscs by varying MTU sizes from 1
16 of

the default MTU size to its default size (1500 bytes). Fig. 2.17 (right) shows that for both

qdiscs the average queue length decreases as MTU size increases; FIFO with prioritization

incurs only 4% overhead: for MTU size of 1500
16 bytes the result is 584.3 vs. 610.7 packets.

This demonstrates that packet prioritization on top of FIFO incurs negligible performance

overhead.

39

2.5.4 Evaluation of Operational Complexity in DPDK

We evaluate the operational complexity of OpenQueue using testbed experiments. We

implement OpenQueue using DPDK [24] where the OpenQueue runtime is single-threaded

and bound to a dedicated CPU core. During execution, the program polls traffic from a

single port assigned to it at initialization. Ingress packets are written to an intermediate ring

buffer based on forwarding decisions. Each port has an associated ring buffer, which acts as a

thread-safe transmission channel between ingress and egress packet pipelines. The egressing

packets are processed according to OpenQueue model where a packet is: (1) admitted based

on the admission policy, (2) placed on a queue based on its processing policy, and (3) finally

transmitted based on the scheduling policy. We use a setup on CloudLab [25] with 2 source

nodes connected to a destination node via a switch node. Each node is a Dell Poweredge

R430 machine with two 2.4 GHz 64-bit 8-Core Xeon E5-2630v3 processors, 8 GT/s, 20 MB

cache, 64 GB 2133 MT/s DDR4 RAM, and 2 Intel X710 10 GbE NICs. The bandwidth of

each interconnection is 10 Gbps. In this setup, the switch node is capable of working as a

10 GbE 3-port switch. We use DPDK version 18.11.2 on Ubuntu 18.04.1 LTS with igb as

kernel driver. We use iperf v. 2.0.13 for our clients and servers. We have UDP clients on the

source nodes sending traffic to servers on the destination node depending on the experiment

as explained below. We set the load offered by each client (using -b command line option)

high enough such that there is congestion, hence queue build up on the switch. On our

switch, we record the number of packet drops and packet transmissions and derive average

throughput attained by clients to assess the operational overheads incurred by OpenQueue.

We use IPv4 Type of Service (ToS) field to mark traffic priority. We use the ToS values 63

and 1 for high-priority and low-priority traffic respectively. The two ToS values represent

two distinct traffic priority levels for evaluation of operational complexity versus optimized

objectives.

Experiment 1: We compare three algorithms: Algorithm A has FIFO admission and

processing priorities and tail drop in case of congestion, Algorithm B also has FIFO admission

and processing but drops low-priority packets on congestion, and Algorithm C has FIFO

admission priority, SRPT processing priority w.r.t. ToS value, and drops low-priority packets

40

on congestion. Algorithm A is a native implementation without any priority queues (PQs),

Algorithm B has one PQ, and (the optimal) Algorithm C has two PQs, for admission and

processing. Results of this experiment are shown in Fig. 2.19 a-b. Algorithm C spends the

most operations to process a packet, Algorithm B is in the middle, and Algorithm A is the

fastest. Thus, Algorithm C can process fewer packets than A and B and as a result, Algorithm

A is best in terms of throughput (Fig. 2.19 a). However, due to the smarter processing that

more advanced algorithms provide the weighted throughput (total transmitted value) of

Algorithms B and C outperforms Algorithm A; in terms of weighted throughput, A < B < C

(Fig. 2.19 b). Here, weighted throughput is based on the traffic priority level (high vs. low)

to show the advantage of specifically designed algorithms despite additional complexity.

Experiment 2: We assess the impact of using multiple queues attached to the same port.

We use k = 2, 4, 8 queues equally sharing a total size of 512 with round-robin schedul-

ing, comparing Algorithms A and C defined above; we measure weighted throughput as k

changes. As a result (Fig. 2.19 c-d), Algorithm A again outperforms Algorithm C in terms of

throughput due to simpler processing but Algorithm C wins very convincingly in weighted

throughput.

2.6 Related Work

Frenetic [26] and Pyretic [27], and Maple [28], among others, focus on service abstractions

based on flexible classifiers, and do not address management of buffering architectures. Other

approaches [29], [30] allow only for a predefined set of parameters for buffer management,

which intrinsically limits expressivity. Another line of research abstracts representations of

the southbound API (e.g., OpenFlow) in the data plane [31]–[33], while languages such as

P4 [31] are very successful in representing packet classifiers, they are less suited to express

buffer management policies. Our work was inspired by [34] that introduces a set of prim-

itives to define admission control policies. Recently, Sivaraman et al. [22], [35] explored

the expression of policies by one priority and one calendar queue, still leaving the language

specification as future work. Mittal et al. describe an attempt to build a universal packet

scheduling scheme [36]. In contrast to these approaches, OpenQueue considers the composi-

41

Figure 2.19. Average (weighted) throughput (shown on the Y-axis) as a
function of input load in Gbps (X-axis) in Experiment 1 (a-b) and no. of
queues in Experiment 2 (c-d).

tion of admission control, processing, and scheduling policies to optimize chosen objectives

on user-defined buffering architectures. We formally show that while a single queue archi-

tecture can express management of multiple queues for every objective, a multiple queue

architecture may be preferrable to improve operational complexity. We formally define the

syntax of OpenQueue. New transports such as [2] require complex code changes on control

and data planes of network elements to provision desired management policies. Once Open-

Queue is supported on the network element, new policies can be added without code changes

at runtime.

42

2.7 Chapter Summary

We propose a concise yet expressive language to define buffer management policies at

runtime; provisioning new buffer management policies does not require control/data-plane

code changes. We believe that OpenQueue can enable and accelerate innovation in the

domain of buffering architectures and management, similar to programming abstractions

that exploit OpenFlow for services with sophisticated classification modules. The conciseness

of OpenQueue and ability to implement priority queue data structures at line-rate, make

OpenQueue attractive for hardware implementations.

43

3. A CONTROL-THEORETIC APPROACH FOR

CONGESTION CONTROL IN DATACENTER NETWORKS

In this chapter, we present RoCC, a robust congestion control approach for datacenter net-

works based on RDMA. RoCC leverages switch queue size as an input to a PI controller,

which computes the fair data rate of flows in the queue. The PI parameters are self-tuning

to guarantee stability, rapid convergence, and fair and near-optimal throughput in a wide

range of congestion scenarios. Our simulation and DPDK implementation results show that

RoCC can achieve up to 7× reduction in PFC frames generated under high load levels,

compared to DCQCN. At the same time, RoCC can achieve up to 8× lower tail latency,

compared to DCQCN and HPCC. We also find that RoCC does not require PFC. The func-

tional components of RoCC can be efficiently implemented in P4 and FPGA-based switch

hardware.

3.1 Introduction

Congestion control in packet-switched networks has a clear goal: reduce FCTs by pro-

viding low latency for small flows (mice) and high throughput for large flows (elephants).

Typical datacenter networks have topologies with fixed distances (in contrast to the In-

ternet) and fixed bisection bandwidth (in contrast to wireless networks), which may make

congestion control there seem simple. It turns out to be quite the opposite, though, as

evidenced by the spectrum of solutions that exploit different congestion signals [37], [38],

leverage latest developments in network hardware [39], and revisit previous work with a new

perspective [40].

Goals and challenges: Datacenter applications have diverse traffic characteristics and

require ultra-low latency and high throughput. Most datacenter network traffic has heavy-

tailed flow size distribution [41]–[45]. At the same time, datacenter network hardware keeps

improving in terms of processing power, speed, and capacity, requiring congestion control

solutions to be more efficient to fully utilize these hardware enhancements.

44

Fairness Rapid+
convergence

Stability+/+
robustness

High+link+
utilization

Reduce+
FCT

Minimize+
PFC+

activation

Avoid
deadlocks

MD Fast+
recoveryPI AutoC

tuning

MultiC
feedback+
handling

 § 3.1

 § 3.2

 § 3.3

Figure 3.1. Relationship of the components (§ 3.3) of RoCC to its require-
ments (§ 3.2) and high-level goals (§ 3.1).

TCP becoming a bottleneck in datacenter networks [37] has made operators switch to

transports based on RDMA; kernel bypass transports such as RDMA over converged Ether-

net v2 (RoCEv2) reduce FCT by orders of magnitude compared to traditional TCP/IP

stacks. RDMA requires losslessness, triggering the need for priority-based flow control

(PFC) [46], which prevents packet drop by using back-pressure (at the traffic class level).

Alas, PFC has been observed to cause problems such as HoL blocking, congestion spread-

ing, and routing deadlocks [37]–[40], [47]. Less aggressive flow control mechanisms [48] have

been proposed to replace PFC. However, we believe that PFC should only be triggered to

prevent buffer overrun, and we show that if congestion control is able to maintain stable

queues on switches, then PFC activation is rare. Datacenter networks have failed to harness

the full potential of RDMA due to inefficient congestion control [39], and the many RDMA

congestion control solutions developed over the recent past, e.g., [37]–[40], are indicators that

congestion control for RDMA is a critical problem.

 Fig. 3.1 summarizes high-level goals of congestion control we aim for and the techni-

cal requirements we pose to achieve these goals (detailed in § 3.2), and foreshadows the

components of our solution and how these fulfill the requirements.

State of the art: Congestion control solutions can be broadly categorized as (a) source-

driven or (b) switch-driven, according to the entity (source or switch) playing the key role.

With solutions of type (a), the source paces packets (rate or window adjustment) of individual

45

flows, based on a congestion signal it receives from the network (switches and/or destination).

With (b), the switch computes the pacing information (usually rate) and sends it to the

source, which handles packet pacing.

 Table 3.1 summarizes the most widely-known datacenter congestion control solutions. A

very popular choice in production datacenter networks is DCQCN [37]. DCQCN is a source-

driven congestion control approach for RoCEv2, which adapts the CP algorithm of QCN,

using the explicit congestion notification (ECN) field in IPv4 headers to notify destinations of

congestion. The destination maintains per-flow state in order to relay congestion information

back to the relevant source. While DCQCN is effective in reducing the number of PFC

frames, its convergence is slow and it can be unstable [49], [50]. TIMELY [38] is another

source-driven solution that uses delay (i.e., round-trip time) as the congestion signal, but

it falls behind DCQCN in terms of stability and fairness [49]. Several enhancements, e.g.,

DCQCN+PI [49], DCQCN+ [50], and patched TIMELY [49], have been proposed, but they

(too) fail to meet important properties such as stability and fairness, which affect FCT.

The recently proposed HPCC [39] is a source-driven, window-based solution leveraging

in-band network telemetry (INT) to gather link load information and adjust source-side

transmission window sizes. HPCC outperforms DCQCN, but fails to meet fairness guar-

antees in scenarios — as we show (item c)) — commonly observed in modern datacenter

networks [37]. HPCC also trades link bandwidth for shallow queues and further loses link

bandwidth by carrying INT information.

Path forward: We posit that source-driven solutions cannot receive congestion signals

(e.g., ECN in DCQCN [37], network delay in [38], and INT in HPCC [39]) quickly enough

and, as a result, different sources make conflicting decisions about the congestion level they

experience in the network. We believe that we need a paradigm shift from host (source-

driven) congestion control to core (switch-driven) congestion control in datacenter networks.

Concerns with switch-driven solutions that the turnaround time of new features in switch

application-specific integrated circuit (ASIC) is high are being overturned by the increasing

adoption of programmable switch ASICs with P4 support [52] by leading switch manufactur-

ers. Similarly, reservations that switch-driven congestion control can hinder line-rate packet

46

Table 3.1. Comparison of selected congestion control solutions (∗solution-
specific, CNP: congestion notification packet).

Solution Switch action Source action Destination
action

DCTCP [43] Mark ECN Adjust congestion window based on
ECN

Echo ECN

QCN [51] Compute and send Fb
∗ to

source
Compute rate based on Fb None

DCQCN [37] Mark ECN Compute rate based on CNP Send CNP
to source

TIMELY [38]None Send RTT probes and compute rate
based on RTT

Echo RTT
probes

HPCC [39] Inject INT Adjust sending window based on
INT

Echo INT

RoCC Compute and send rate to
source

Use minimum rate received from
switch(es)

None

processing are countered by recent work [53]–[55] showing that event processing (beyond

packet arrival and departure events) using P4 does not sacrifice line-rate packet processing.

Contributions: We propose a new switch-driven congestion control solution for RDMA-

based datacenter networks, RoCC (Robust Congestion Control), that: (i) computes a fair

rate using a classic proportional integral (PI) controller [56], (ii) signals that fair rate to

the sources via Internet control message protocol (ICMP), and (iii) auto-tunes the control

parameters to ensure stability and responsiveness. This paper extends our previous work [57]

with emphasis on the hardware feasibility of the solution.

Our contributions can be summarized as follows: 1. After establishing important design

requirements (§ 3.2), we present the design of RoCC (§ 3.3). 2. We evaluate RoCC via

simulations and a DPDK implementation (§ 4.6) and compare it to DCQCN, TIMELY,

and HPCC. Not only does RoCC achieve fairness and queue stability, but, compared to

DCQCN and HPCC, it also reduces FCT for real datacenter workloads. 3. We explore the

implementation feasibility of RoCC (§ 4.5) using P4 and FPGAs, two common technologies

used to implement modern datacenter switching devices.

 § 3.6 summarizes related work, and § 3.7 summarizes the chapter.

47

3.2 Solution Requirements

We design RoCC to satisfy four key requirements for effective congestion control in

RDMA datacenter networks (Fig. 3.1).

Fairness (fair): A set of flows on a congested link must equally share the link bandwidth

if they offer equal loads on the link, or otherwise split the link bandwidth based on max-

min fairness. A flow transmitting at a lower rate than the fair share of the link bandwidth

should not be rate-limited. One could argue that short flows can be prioritized (over long

flows) to minimize their flow completion times (FCTs), but congestion control is primarily

responsible for fair bandwidth allocation across competing flows irrespective of flow size.

We believe that prioritizing short flows over long flows should be done at a different level

(e.g., packet scheduling, load balancing). Fairness has already been identified as an essential

congestion control property by others [39].

Fairness requires handling two special cases. (1) Multiple bottlenecks: Intuitively, a flow

must effectively use the minimum fair rate it can attain through the bottleneck links along

its path. I.e., the effective rate a flow uses should be based on the maximum congestion it

experiences along the bottleneck links it passes through and not their number. (2) Asymmet-

ric network topologies: Datacenter network topologies can be asymmetric in terms of link

bandwidth, switch heterogeneity, or the number of nodes connected to edge switches. Fair

rate that flows attain should be agnostic to these asymmetries. The multi-feedback handler

at the source and the PI controller at the switch in RoCC handle these cases (see § 3.3).

High link utilization (eff): Congestion control should not be performed at the expense of

link under-utilization resulting in low throughput. A flow must always utilize the maximum

possible (fair) rate it can attain — to achieve low FCT — and rapidly reduce the rate when its

traffic contributes to potential queue overshoot to prevent priority-based flow control (PFC).

RoCC has two key components ensuring optimal link utilization: the self-riser at the source

rapidly increases the rate in absence of congestion feedback from the switch, and the PI

controller at the switch guarantees max-min bandwidth allocation for competing flows on a

congested link.

48

Rapid convergence (conv): For low latency and high throughput, it is important to react

quickly to increasing and decreasing congestion levels. Rapid convergence helps maintain

system stability and, as a result, reduces PFC activation. Switch-driven congestion control

has the advantage of being able to disseminate rate updates at the onset of congestion

increase (or decrease) at the switch. The multiplicative decrease (MD) and auto-tuner at the

switch are the two key mechanisms of RoCC that achieve rapid convergence by aggressively,

yet systematically, adjusting the rate.

Stability/robustness (stbl): Congestion control has to be stable regardless of the number

of flows creating congestion. At the same time, the solution needs to be agile when responding

to sudden changes in congestion level. Thus, it must self-tune to achieve its performance

goals across a wide range of congestion scenarios. The PI controller and auto-tuner at the

switch in RoCC work together to achieve this.

These four properties together make a flow attain its fair share along its path and re-

duce FCT. System stability and fast convergence minimize buffer overshoot, reducing PFC

activation (PFC increases FCT and creates routing deadlocks).

In addition, it is important that the solution scales well in a datacenter network with an

unpredictably large number of flows traversing switches. The amount of state information

required to maintain on switches must be limited and the bandwidth demand for feedback

messages negligible.

3.3 RoCC Design

We now discuss the different components of RoCC and how they achieve our requirements

and goals (Fig. 3.1). At a high level, RoCC consists of two major components: (1) fair

rate calculator at the switch, and (2) rate limiter at the source. RoCC carefully adapts

ideas from AFD [58] (proportional integral (PI) controller), QCN [51] (multi-bit feedback),

PIE [59] (control parameter auto-tuning), and TCP (multiplicative decrease). Fig. 3.1 shows

how each component of RoCC contributes to meeting each requirement. Sending a rate

from the switch to the host (backward notification) is motivated by the fact that state-of-

49

the-art solutions suffer from the inherent delay of end-to-end congestion signaling (forward

notification).

3.3.1 Definitions

An egress port with its associated queue is defined as the congestion point (CP). The

entity that handles traffic rate limiting at the source is defined as the reaction point (RP).

Each flow has its own rate limiter (RL) at the RP.

 Table 3.2 defines the symbols used in this section. ∆Q is the chunk size (resolution)

for queue size and related parameters. Similarly, ∆F is the resolution for rate and related

parameters. The purpose of scaling down these parameters is explained in § 3.3.2 . F is the

Table 3.2. Symbols and definitions (∗in multiples of ∆F , †in multiples of ∆Q, ‡in Mb/s).
Symbol Definition
∆Q Queue size resolution in Bytes
∆F Rate resolution in Mb/s
Congestion point (CP)
F Current fair rate∗

Fmin Minimum fair rate∗

Fmax Maximum fair rate∗

Qcur Current queue length†

Qold Qcur at previous fair rate calculation†

Qref Reference queue length†

Qmax Queue length threshold for MD†

Qmid Queue growth threshold for MD†

α, β Current system control (PI) parameters
α̃, β̃ Static values for α and β respectively
Reaction point (RP)
cnp Congestion notification packet (see § 3.3.3)
Rrcvd Received fair rate‡

Rcur Current send rate‡

Rmax Maximum send rate‡

CPrcvd CP that generated Rrcvd
CPcur CP that generated the last accepted Rrcvd
getCP(cnp) Get the origin (IP) of cnp
getRate(cnp) Get the fair rate in cnp

50

current fair rate at the CP. F is bounded by Fmin and Fmax, the minimum and maximum

possible rates at the CP, respectively. Qcur is the size of the queue at the time of calculation

of F , and Qold is the corresponding Qcur for the previous value of F . Qref is a reference queue

size, which is a system parameter. α and β are two system parameters whose purpose is

explained below.

3.3.2 CP Algorithm

The CP periodically calculates the fair rate (fair) and sends it to certain sources using

a special control message. Fig. 3.2 shows that RoCC has three main components at the CP:

(1) the fair rate calculator that periodically reads the current queue size to calculate the fair

rate and passes it on to (2) the feedback message generator that creates the control message

encapsulating the fair rate and sends it to certain sources based on (3) the flow table that

keeps track of the flows needing to receive the feedback.

Fair%Rate%
Calculator

Feedback%
Generator

Queue
Flow(Table

Data(Packets

Feedback

Data(Packets

Queue(Size

Fair(Rate

Flow(Info

Selected(Flows

Figure 3.2. Overview of RoCC design at the CP.

The rate calculation algorithm is shown in Alg. 1 . The queue size and related parameters

are scaled down by ∆Q to reduce the number of bits required for storing Qold. Similarly, fair

rate and related parameters are scaled down by ∆F , to reduce the number of bits required

to represent the fair rate in the control message (see § 3.3.3). Scaling down these parameters

is an implementation detail and does not affect the behavior of the algorithm.

The fair rate calculation consists of two main operations:

I. Multiplicative decrease (MD). If the queue length exceeds Qmax or the queue length

change exceeds Qmid and fair rate is high (i.e., > Fmax
8), the fair rate is set to Fmin or F

2 ,

respectively (Alg. 3 and Alg. 5). Sudden spikes in queue size can be caused by a new

51

bandwidth-hungry stream or a burst of flows in which case a sharp rate cut is needed to

reduce a potential buffer overrun causing PFC activation (conv). This mode of immediate

rate reduction is analogous to the exponential window decrease (i.e., multiplicative decrease)

in TCP congestion control. Unlike traditional MD, RoCC imposes rapid rate reduction at two

different levels (based on queue size and queue growth), further minimizing PFC activation.

Qmax, Qmid, and Qref must be chosen such that Qmax > Qmid > Qref , to prevent system

instability, as discussed below. Our experiments show that Fmax
8 is sufficiently high to trigger

MD. However, this value can be reduced, as the algorithm assures that the rate rapidly

converges to the correct value. Therefore, the parameters used in the MD component are

not reliability-critical.

II. Proportional integral (PI). The controller that calculates the fair rate in RoCC is

based on a classic PI controller as used in AFD [58], PIE [59], and QCN [51]. The fair

rate is calculated based on three quantities derived from queue size: (i) current queue size

(Qcur), which signals presence of congestion, (ii) direction of queue change (Qcur − Qold),

which signals congestion increase/decrease, and (iii) deviation of queue size from Qref , which

signals system instability (Alg. 8). Parameters α and β determine the weight of the last two

factors. The fair rate changes until the queue is stable at Qref . A stable queue indicates

that its input rate matches its output rate, and the fair rate through its port has been

determined. An important advantage of this controller is that it can find the fair rate

without needing to know the output rate of the queue or the number of flows sharing the

queue. The algorithm performs a boundary check on the calculated fair rate to make sure

it stays within a preconfigured upper bound (Alg. 10) and lower bound (Alg. 12). After

calculating the fair rate, Qold is set to Qcur (Alg. 13).

To maintain system stability (stbl) for all values of F while keeping the controller

sufficiently agile with sudden queue changes, we design an auto-tuning mechanism for control

parameters α and β (Alg. 15), based on the simple intuition that small adjustments are

needed to reach a small target fair rate value (i.e., large number of competing flows) and

conversely, larger adjustments are needed to reach a large target fair rate value (i.e., small

number of competing flows) (conv). Thus, the algorithm quantizes the possible fair rate

52

Algorithm 1 Fair rate computation at the CP
1: function Calculate_Fair_Rate(Qcur)
2: if Qcur ≥ Qmax AND F > Fmax

8 then
3: F ← Fmin
4: else if (Qcur −Qold) ≥ Qmid AND F > Fmax

8 then
5: F ← F ÷ 2
6: else
7: α, β ← Auto_Tune()
8: F ← F − α× (Qcur −Qref)− β × (Qcur −Qold)
9: if F > Fmax then

10: F ← Fmax
11: if F < Fmin then
12: F ← Fmin
13: Qold ← Qcur
14: return F

15: function Auto_Tune()
16: level← 2
17: while F < Fmax

level AND level < 64 do
18: level← level × 2
19: ratio← level ÷ 2
20: α← α̃÷ ratio; β ← β̃ ÷ ratio
21: return α, β

range [Fmin, Fmax] into six distinct regions, and maps each region to a different pair of values

for α and β (as discussed in ??).

RoCC uses base-2 numbers in multiplication and division operations, which are efficiently

implemented using bit shift operations.

3.3.3 Feedback Message

The feedback message includes: (1) the fair rate value (in multiples of ∆F) and (2)

information (i.e., the packet headers) required to derive the identifier of the flow to which

the rate applies. Using this information, the RP can correctly match the feedback message

to the relevant RL. We use Internet control message protocol (ICMP) for the congestion

notification packet (CNP) and prioritize CNPs to minimize queuing delay. This prioritization

of feedback messages further reduces reaction delay of RoCC (conv) compared to state-of-

53

the-art solutions that employ end-to-end congestion notification (e.g., explicit congestion

notification (ECN) in datacenter QCN (DCQCN) [37], delay in TIMELY [38], and in-band

network telemetry (INT) in high precision congestion control (HPCC) [39]).

3.3.4 Flow Table

A flow table keeps track of the recipients of the feedback messages. RoCC has the

flexibility of using different flow table implementations, such as:

1. Maintaining a table of the flows currently in the queue: This is our default flow table

implementation and the table size is bounded by the queue size.

2. RoCC has a lower bound for fair rate, hence the number of concurrent flows on a link

has an upper bound (i.e., Fmax / Fmin). This bounds the size of the table, and can be

used in conjunction with a simple age-based flow eviction mechanism.

3. AFD-FT: This is the flow table implementation used in AFD [58], the first AQM mech-

anism that leveraged flow size and flow rate distributions to scale per-flow state.

4. ElephantTrap [60]: This identifies large (elephant) flows that cause persistent congestion

by sampling packets. The probability of a flow being identified as an elephant depends

on the sampling rate. A flow in the table is evicted based on a frequency counter (i.e.,

LFU).

5. BubbleCache [61]: This employs packet sampling to efficiently capture elephant flows at

high speeds.

These different flow table implementations facilitate sending feedback messages to selected

flows (e.g., elephants only) at the cost of lower stability margins. .

Since the PI controller changes the fair rate until the arrival rate matches the drain rate

of the congested queue, the fair rate will stabilize at

F = Cl −BWmice

N
(3.1)

54

where Cl is the bandwidth of the congested link, BWmice is the total bandwidth used by the

flows that do not contribute to congestion (innocent/mice flows), and N is the number of

flows contributing to congestion. Thus it suffices to track the flows that most contribute to

congestion, hence queue buildup.

3.3.5 RP Algorithm

The RP employs an algorithm, triggered by each incoming CNP, to update the sending

rate of the corresponding RL. The RP also uses a fast recovery mechanism to rapidly increase

the sending rate of the RL, in the absence of CNPs, which implies absence of congestion

(eff).

 Alg. 2 shows the RP algorithm, which has two routines:

Process CNP: RoCC uses a simple yet effective approach for handling CNPs from CPs

along a flow’s path. The RP accepts a CNP if (i) it (CPrcvd) was generated by the same CP

that generated the last accepted CNP (CPcur) for the RL or (ii) its fair rate (Rrcvd) is smaller

than the current sending rate Rcur used by the RL (Alg. 4). This ensures that the RL always

uses the fair bandwidth share that the flow can attain at the most congested CP on its path

(fair). Upon accepting a new fair rate, the RL immediately updates its current sending

rate to the new rate (Alg. 5). The algorithm also remembers CPrcvd as most congested CP

on the flow’s path (Alg. 6).

Fast recovery: An RL can stop receiving CNPs when the flow no longer contributes to

any CP on its path. Since the RP may not receive all CNPs destined to it, the RL should

automatically increase its rate Rcur after a certain period of not receiving CNPs (eff).

RoCC exponentially increases its rate based on a timer in this situation (Alg. 8). RoCC

stops fast recovery upon accepting a CNP (Alg. 7). The sending rate is bounded by the

maximum allowed rate Rmax, usually the link bandwidth. If the rate reaches Rmax, the

RL is uninstalled, allowing the flow to transmit as without congestion. This fast recovery

mechanism is simpler than that of DCQCN.

55

Algorithm 2 Rate limiting at the RP
1: procedure Process_CNP(cnp)
2: Rrcvd ← getRate(cnp)×∆F

3: CPrcvd ← getCP(cnp)
4: if Rrcvd ≤ Rcur OR CPrcvd = CPcur then
5: Rcur ← Rrcvd
6: CPcur ← CPrcvd
7: Reset_Timer()

8: procedure Timer_Expired()
9: if Rcur > Rmax then

10: remove this rate limiter if its queue is empty
11: else
12: Rcur ← Rcur × 2
13: Reset_Timer()

3.3.6 Rate Computation at the Host

RoCC does not require that the CP carry out the rate computation. Instead, the CP can

send the values of Qcur, Qref , Qmid, Qmax, F , Fmin, Fmax, α̃, and β̃, to the host and have it

compute the rate. There are two simple approaches for sending these to the host, requiring

modest modifications to the CNP: (1) CP provides all the values, (2) CP only provides Qcur

and F , and the host looks up the remainder of the values, which are specific to a given

F , in a simple registry. This flexibility simplifies the RoCC implementation, especially on

legacy switch ASICs that have limited arithmetic support (e.g., no floating-point operation

support).

3.4 Implementation

The feasibility of RoCC highly depends on its implementability on hardware, especially

on the switch, which is resource-constrained and has strict data-path latency demands.

Therefore, we investigate the feasibility of implementing the CP algorithm at the switch.

We briefly discuss the resource demands for implementing the CP algorithm on a custom

application-specific integrated circuit (ASIC). We study P4, which is an emerging technology

56

Tofino Switch

Pipe-1
Ingress Parser

In
gr

es
s

D
ep

ar
se

r

Eg
re

ss
Pa

rs
er

Eg
re

ss
D

ep
ar

se
r

DPDK Client

Rate
Limiter

Rate
Calculator

Parse
CNP

header

Ingress Ctrl

Direct CNP
to egress

queue

Traffic Manager

Set intrinsic
queue meta
data in CNP

Egress Ctrl

Copy queue
length from meta

data to CNP

Update
flow
table

Mirror CNP to
the sources

Generate CNP Ctrl Plane
Data Plane

Traffic

CNP

Traffic

Figure 3.3. RoCC switch implementation in P4.

for implementing datacenter switches. Additionally, we study field-programmable gate array

(FPGA) to assess the resource and latency demands of RoCC in switch hardware.

3.4.1 Basics

CP: The key components of the CP implementation include: (1) flow table, (2) periodic

calculation of fair rate for egress queues (timer event handling), (3) associating computed

fair rates with corresponding flows (flow table lookup), and (4) generating and transmitting

CNPs to the flow sources.

RP: Host networking stacks support intercepting ICMP (CNP) messages as well as

implementing the RP algorithm (e.g., DPDK, SmartNIC, and Linux raw sockets).

RoCC can be efficiently implemented on ASICs. A custom ASIC implementation of

RoCC is estimated to require approximately 1.1 M gates, 1.9 Mb dual port SRAM, 1.2 Mb

of SRAM, and 0.138 Mb of TCAM (totalling 3.2 Mbits of memory). This constitutes a

negligible 0.7% of chip die area.

3.4.2 P4 Implementation

As data plane programmability becomes widespread, P4 [52] is becoming the de facto

framework for programming switches, and major switch vendors already support P4.

57

 Fig. 3.3 illustrates our RoCC implementation in P4. Our switch component (CP) is

implemented in P4 using Intel Tofino that is based on Tofino native architecture (TNA).

Below, we walk through our switch implementation according to its execution path.

1) CNP generator: is implemented in the control plane. Its task is to send CNP packets

onto the data plane every T seconds. We use the special network interface that Tofino

exposes, to input the control packet to the data plane. Fig. 3.4 defines the P4 header for

CNP. The controller sends a CNP for each port specifying the port identifier as meta

data.

2) Parser: extracts rocc_h header from an incoming CNP. We assume the data plane only

receives CNPs through the control interface.

3) Ingress pipeline: directs CNPs to their respective egress queues by setting ucast_egress_port

of ingress_intrinsic_metadata_for_tm_t to port of rocc. Only CNP has a valid rocc_h

header.

4) Traffic manager: attaches certain intrinsic meta information including egress queue length

(deq_qdepth of egress_intrinsic_metadata_t) to every passing packet. As a result, a

CNP has its egress queue length when it reaches the egress pipeline.

5) Egress pipeline: handles two tasks: (i) maintain a flow table. Our flow table is im-

plemented using a simple Register array in P4. It is similar to the flow table used in

Turboflow [55], which is proven not to hinder line-rate traffic processing in the data plane.

The flow table is updated for each data packet going through the egress pipeline; and

(ii) set queue length and other parameters required for rate computation (see § 3.3.6) on

CNP and “mirror” it to selected sources based on the flow table.

Our client (RP) is implemennted using data plane development kit (DPDK), and per-

forms two main tasks: (I) intercept CNPs to compute fair rate, and (II) rate limit flows based

on the computed rate. Pktgen [62] is an efficient traffic generation tool based on DPDK. We

modify Pktgen to intercept CNP and change its data rate using the computed fair rate.

58

header rocc_h { struct headers {
bit<16> port; /* standard headers */
bit<16> qdepth; ethernet_h ethernet;
bit<8> counter; ipv4_h ipv4;

} icmp_h icmp;
/* RoCC header */
rocc_h rocc;

}

Figure 3.4. P4 header definition for CNP.

3.4.3 FPGA Implementation

We use Xilinx Vitis HLS 2020.2 [63] targeting Xilinx Virtex-7 XC7V2000T FPGA device

to design and perform a high-level synthesis of: (1) the CP algorithm, and (2) a flow table

that supports flow identifier update and lookup, to understand the resource and latency

demands of the two components.

CP algorithm: Based on the Vitis synthesis report, the CP algorithm supports a maxi-

mum clock frequency of 370 MHz, and only requires 1% FF and 2% LUT demonstrating its

feasibility on FPGA.

Flow table: In our implementation, the 5-tuple (flow identifier) of each frame traversing

the egress port is streamed into the table module, which performs table updates in a lazy

fashion. The flow table uses a circular array to store the flow identifiers, and round robin

for retrieving them. Using other mechanisms for retrieving flow identifiers is outside the

scope of this work. We synthesize a flow table of 1024 entries. Based on the Vitis synthesis

report, the flow table supports a maximum clock frequency of 200.56 MHz. Both adding and

retrieving a flow identifier take 5 ns with initiation interval 1. The flow table only requires

4% FF and 4% LUT on FPGA.

We expect our implementations to perform better on ASIC than on FPGA.

3.5 Evaluation

We conduct three types of experiments to evaluate RoCC:

59

1) Micro-benchmarks and comparisons to the state of the art with respect to the four prop-

erties in § 3.2 using simulations.

2) Evaluation with DPDK and P4 to confirm the properties of RoCC on real systems and

validate our simulations.

3) Larger scale evaluation using a simulation setup resembling a real datacenter network

in terms of topology, number of nodes, and traffic patterns, to examine whether RoCC

meets system and user goals (§ 3.2).

For simulations, we use OMNeT++ [64] to implement a prototype of RoCC. In our model,

the fair rate has fixed point precision to mimic hardware implementation. Our datacenter

model has been previously used in the literature [65], with simulation results corresponding

to results obtained by running similar tests on real testbeds. We implement several state-of-

the-art solutions, which do not have publicly available OMNeT++ implementations. We use

their public code repositories for reference, and configure the solutions based on details given

in respective papers. We use traffic workloads derived from publicly available datacenter

traffic traces [43]–[45].

System parameters: All interconnections in our simulations are either 40 Gb/s or 100 Gb/s

links. We chose PFC threshold values 500 KB and 800 KB for 40 Gb/s and 100 Gb/s links,

respectively, based on [66]. NIC (RP) reaction delay for feedback messages is 15 µs. ∆F

is 10 Mb/s and ∆Q is 600 B. T is set to 40 µs. Fmin is 10, irrespective of link bandwidth.

Fmax is 4K and 10K for 40 Gb/s and 100 Gb/s links, respectively. Qref , Qmid, and Qmax are

150 KB, 300 KB, and 360 KB, respectively, for 40 Gb/s links, and 300 KB, 600 KB, and

660 KB, respectively, for 100 Gb/s links. α̃ and β̃ are 0.3 and 1.5, respectively, for 40 Gb/s

links, whereas the values are 0.45 and 2.25, respectively, for 100 Gb/s links. We use the

default flow table implementation (cf. § 3.3.4 (1)).

3.5.1 Micro-Benchmarks

We use a topology with N source nodes connected to a single destination node through a

switch. This setup has a single bottleneck link (from the switch to the destination node) of

60

bandwidth B. Each source node has an remote direct memory access (RDMA) application

generating traffic based on the workloads mentioned earlier. The destination node has an

application receiving traffic from all source nodes. RoCC is enabled on the egress switch

interface towards the destination. Unless otherwise mentioned, we use this setup for all

scenarios in this section.

a) Fairness (fair) and stability (stbl) The offered load at each source node is 90% of the

link bandwidth, causing persistent congestion on the bottleneck link. We observe system

stability and fair bandwidth allocation for N = 2, 10, and 100, and for two different

values of B (40 Gb/s, 100 Gb/s). As Fig. 3.5 shows, the computed fair rate converges

in ∼ 2 ms for all values of N . Note that the fair rate converges faster with larger N ,

and the egress queue at the switch is stable at its reference value regardless of N . The

stability of RoCC is governed by the PI controller, which uses queue size as input, hence

queue stability indicates system stability. Results for B = 100 Gb/s are consistent with

those for B = 40 Gb/s.

150

0 2 5 10 15 20

Q
ue

ue
 S

iz
e

(K
B)

Time (ms)

N = 2
N = 10

N = 100

(a) Queue stability.

0.4
4

20

0 2 5 10 15 20

Ra
te

 (G
b/

s)

Time (ms)

N = 2
N = 10

N = 100

(b) Fair rate.

Figure 3.5. Fairness and stability of RoCC as load increases.

b) Convergence (conv) and high link utilization (eff) We exponentially increase (and

reduce) the link load level by dynamically starting (and stopping) flows to investigate

the system behavior when load fluctuates. We start with 3 flows (i.e., N = 3) and start

new flows every 10 ms such that N doubles every time, until N = 100. After 10 ms,

we begin to stop flows every 10 ms such that N halves every time until N = 3. We

record the fair rate and egress queue size on the switch. As Fig. 3.6 shows, the fair rate

decreases from 13.3 Gb/s to 400 Mb/s as N increases from 3 to 100. Similarly, the fair

61

rate increases from 400 Mb/s back to 13.3 Gb/s as N decreases from 100 to 3 (eff). As

the load fluctuates, the queue size and fair rate always stabilize in less than 2 ms (conv).

When new flows start and create a traffic burst, the queue size suddenly increases causing

the MD of RoCC to kick in and bring the rate down, draining the queue. Similarly, when

flows stop, the traffic reduces, causing the queue to drain. The PI of RoCC ensures that

the queue grows and rapidly stabilizes (conv).

c) Comparison to existing solutions We compare RoCC to the state of the art and state of

the practice in datacenter networks, in terms of the expected congestion control proper-

ties. We include QCN [51], DCQCN [37], DCQCN+PI [49], TIMELY [38], and HPCC [39]

in our comparison. We configure the simulation setup with N = 10 and B = 40 Gb/s.

We record the fair rate, egress queue size, and egress link utilization on the switch.

As Fig. 3.8a shows, the flows experience a significant deviation from the expected average

fair rate of 4 Gb/s with TIMELY. In contrast, each flow attains the expected average fair

rate with RoCC (fair). In this scenario, DCQCN and HPCC are comparable to RoCC

in terms of fairness, but the average per-flow rate attained is lower than the expected

value with HPCC. This is a result of the link bandwidth headroom that HPCC reserves.

In the next section, we further examine the fairness of DCQCN, HPCC, and RoCC.

 Fig. 3.8b and Fig. 3.8c show the queue size and the bottleneck link utilization (eff).

RoCC maintains the queue size at the reference queue size (stbl). DCQCN and TIMELY

fail to maintain a stable queue, fluctuating around ∼ 100 KB and ∼ 200 KB for DCQCN

and TIMELY, respectively. A key observation here is that DCQCN’s stability im-

proves significantly when its ECN marking mechanism is modified to use a feedback

loop based on a PI controller (DCQCN+PI [49]). This observation further justifies the

use of a PI controller in RoCC. DCQCN+PI and TIMELY achieve high link utilization

– DCQCN+PI with a fairly stable queue, and TIMELY with an unstable yet non-empty

queue. HPCC by design underutilizes links to reserve bandwidth headroom, hence our

results in this case are consistent with its expected behavior. The stability of the rate

attained by each flow closely follows that of link utilization.

62

150

 0 20 40 60 80 100

Q
ue

ue
 S

iz
e

(K
B)

Time (ms)
(a) Queue stability.

0.1

0.4
0.8
1.7
3.3
6.7

13.3

 0 20 40 60 80 100

3
6

12
24

48 96 48
24

12
6

3

Ra
te

 (G
b/

s)

Time (ms)

(b) Fair rate.

Figure 3.6. Convergence of RoCC. The numbers in red are the flow counts
during the intervals.

B4B1

A0 B0

B5

S0 S1

D0

D5
A4A1

D1 D4…

…

…

…

…

Figure 3.7. Multi-bottleneck topology.

 0

 10

 20

 30

 40

TIMELY QCN DCQCN HPCC RoCC

Pe
r-f

lo
w

 R
at

e
(G

b/
s)

(a) Fairness.

 150

 0 10 20 30 40

Q
ue

ue
 S

iz
e

(K
B)

Time (ms)

TIMELY
QCN

DCQCN

DCQCN+PI
HPCC
RoCC

(b) Queue stability.

 0

 10

 20

 30

 40

 0 10 20 30 40

Th
ro

ug
hp

ut
 (G

b/
s)

Time (ms)

TIMELY
QCN

DCQCN

DCQCN+PI
HPCC
RoCC

(c) Convergence.

Figure 3.8. Comparing RoCC with TIMELY, QCN, DCQCN, and HPCC in
terms of fairness, stability, and convergence.

d) Multiple bottlenecks A flow in a datacenter network may encounter multiple CPs on its

path. Intuitively, the flow in this case must attain the fair bandwidth corresponding to

the most congested CP on its path (fair). We examine the effectiveness of RoCC and

the state of the art in handling multiple CPs. We use the topology in Fig. 3.7 , which has

6 source nodes (A0...A4, B5) and 5 destination nodes (B0...B4) connected to switches S0

and S1. Each access link is 10 Gb/s and the link between the switches is 40 Gb/s. Ai

63

transmits data flow Di to Bi (i = 1, 2, 3, 4). A0 and B5 transmit data flows D0 and D5,

respectively, to B0. D0 traverses two CPs, S0 and S1. We compare RoCC to DCQCN [37]

and HPCC [39] in terms of flow-level bandwidth allocation. As Fig. 3.9a shows, flows

{D0, D5} and {D1,. . . ,D4} attain their fair bandwidth shares of 5 Gb/s and 8.75 Gb/s,

respectively, with RoCC. In contrast, D0 attains 30% less throughput than expected with

DCQCN and, as a result, the remaining flows utilize more bandwidth than they should.

HPCC exhibits a similar behavior where flow D0 has around 50% less throughput than

expected. We conclude that RoCC is best at handling feedback messages received from

multiple CPs (fair).

e) Asymmetric topology As datacenter equipment is upgraded over time, their topologies

become asymmetrical. We use a network topology with asymmetric links to compare

RoCC to DCQCN [37] and HPCC [39] in terms of flow-level bandwidth allocation. 2

switches (S0 and S1) are connected to a third switch (S2) using 100 Gb/s links. A desti-

nation node (B0) is connected to S2 using a 100 Gb/s link. 5 source nodes (A0. . . A4) are

connected to S0 using a 40 Gb/s links, and 2 source nodes (A5 and A6) are connected

to S1 using 100 Gb/s links. Nodes A0. . . A6 each transmit a data flow (D0. . . D6, re-

spectively), destined to B0. A0. . . A4 and A5. . . A6 should get the same total bandwidth

(40 Gb/s × 5 and 100 Gb/s × 2, respectively) through S0 and S1, respectively. We

run the experiment at 90% load to record average throughput attained by D0. . . D4 and

D5. . . D6.

We make an interesting observation. As the bottleneck link in this topology (S2→ B0) is

shared among the 7 flows, each flow should obtain a fair bandwidth share of 14.29 Gb/s.

 Fig. 3.9b shows that, with RoCC, each flow attains the intended bandwidth. In contrast,

HPCC allocates more bandwidth to the flows originating from nodes connected using

higher bandwidth links and, as a result, D5 and D6 equally share most of the bandwidth

on the bottleneck link and attain ∼ 24.5 Gb/s bandwidth each. The remaining 5 flows

equally share the remaining bandwidth on the bottleneck link causing each to only obtain

∼ 9.40 Gb/s bandwidth. DCQCN is better than HPCC in terms of fairness in this

scenario where each flow attains bandwidth close to the fair share value.

64

5

8.75

D0 D1 ... D4 D5A
vg

. T
hr

ou
gh

pu
t (

G
b/

s)

Flow

DCQCN
HPCC
RoCC

(a) Multi-bottleneck.

9.4
14.3

24.5

D0 ... D4 D5 ... D6
Flow

DCQCN
HPCC
RoCC

(b) Asymmetric topology.

Figure 3.9. Fairness of DCQCN, HPCC, and RoCC.

f) Key takeaways From these experiments, we make the following key observations: (i)

RoCC is fair, efficient, stable, and converges rapidly. It is effective in handling feedback

from multiple CPs and works well with asymmetric network topologies; (ii) RoCC can

outperform the state of the art in terms of fairness, stability, and convergence.

3.5.2 Evaluation with DPDK Implementation

We implement RoCC using the popular DPDK [24] kernel bypass stack to validate our

simulation results. The switch implementation uses three logical cores for handling data

reception, packet switching, and data transmission and congestion control respectively. The

source implementation uses two logical cores, one for data reception and the other for data

transmission and rate limiting. We use the reserved ICMP type 253 for feedback messages.

We deploy our DPDK implementation on a network setup on CloudLab [25] that has 3

source nodes connected to a destination node through a switch using 10 Gb/s links. Each

node in this topology is a Dell Poweredge R430 machine with two 2.4 GHz 64-bit 8-Core

Xeon E5-2630v3 processors, 8 GT/s, 20 MB cache, 64 GB 2133 MT/s DDR4 RAM, and 2

Intel X710 10 Gb/s NICs. With this configuration, our switch is capable of working as a

10 GbE 4-port switch. We use an iPerf [67] UDP client at each source node and three iPerf

UDP servers at the destination, each receiving traffic from one client. We set Qref , Qmid,

and Qmax to 75 KB, 150 KB, and 210 KB, respectively. We set T to 100 µs to match the

propagation delays in this environment. We run two different test scenarios and record fair

65

rate and switch egress queue size. We record the same observations for the corresponding

simulations for comparing with our testbed results.

In the first scenario, we configure each client to generate traffic load equal to the link

bandwidth (10 Gb/s). Fig. 3.11a shows that the queue size stabilizes at 75 KB for both the

testbed (testbed-uni) and simulation (sim-uni). In Fig. 3.11b , the fair rate for the testbed

and simulation both stabilize at 3 Gb/s.

In the second scenario, we configure the sending rate of the 3 clients to 10 Gb/s, 3 Gb/s,

and 1 Gb/s, respectively. Fig. 3.11a shows that Qcur stabilizes at 75 KB for both the testbed

(testbed-mix) and simulation (sim-mix) results. Fig. 3.11b shows that the flows attain the

max-min fair value of 6 Gb/s in both testbed and simulation experiments.

75

 0 20 40 60 80 100

Q
ue

ue
 S

iz
e

(K
B)

Time (ms)

testbed-uni
testbed-mix

sim-uni
sim-mix

(a) Queue stability.

3

6

 0 20 40 60 80 100

Ra
te

 (G
b/

s)

Time (ms)

testbed-uni
testbed-mix

sim-uni
sim-mix

(b) Fair rate.

Figure 3.10. Testbed results vs. simulation results.

3.5.3 Evaluation with P4 Implementation

We deploy our P4 switch implementation on a Wedge 100BF-32X switch that has a

programmable Intel Tofino ASIC. The switch is connected to a node that has a D1517

1.60GHz 8-core CPU and 8G RAM, using Chelsio T62100-SO-CR unified wire ethernet

controllers. We run our traffic generators and receivers on this node. We configure the links

to run at 40 Gb/s. With this configuration, our switch is capable of working as a 40 Gb/s

4-port switch. We setup Pktgen on the host machine to send UDP traffic through 3 ports,

and receive traffic through the fourth. Qref , Qmid, and Qmax are 75 KB, 150 KB, and 210 KB,

respectively. T is 20 µs to match the propagation delays in this environment. ∆Q in Tofino

is 80 bytes. We run two different test scenarios and record fair rate and switch egress queue

66

size. We record the same observations for the corresponding simulations for comparing with

our P4 testbed results (same as in § 3.5.2).

In the first scenario, we configure each sender to transmit data at link speed (40 Gb/s).

 Fig. 3.11a shows that the queue size stabilizes at 75 KB for both the testbed (testbed-uni)

and simulation (sim-uni). In Fig. 3.11b , the fair rate for the testbed and simulation both

stabilize at ∼ 13 Gb/s.

In the second scenario, we configure the sending rate of the 3 clients to 40 Gb/s, 30 Gb/s,

and 10 Gb/s, respectively. Fig. 3.11a shows that Qcur stabilizes at 75 KB for both the testbed

(testbed-mix) and simulation (sim-mix) results. Fig. 3.11b shows that the flows attain the

max-min fair value of 15 Gb/s in both testbed and simulation experiments.

It is important that RoCC be validated under real-life constraints in datacenter networks,

i.e., with a real protocol stack, latency introduced by different layers, and NIC transmission

delays, which can all adversely affect its behavior. From the DPDK-based and P4-based

evaluation, we conclude that RoCC would behave as expected under these constraints, and

the results of the simulations are representative.

75

 0 20 40 60 80 100

Q
ue

ue
 S

iz
e

(K
B

)

Time (ms)

testbed-uni
testbed-mix

sim-uni
sim-mix

(a) Queue stability.

10

13

15

 0 20 40 60 80 100

R
at

e
(G

b/
s)

Time (ms)

testbed-uni
testbed-mix

sim-uni
sim-mix

(b) Fair rate.

Figure 3.11. P4 results vs. simulation results.

3.5.4 Large-Scale Simulations

We use large-scale simulations to evaluate RoCC and compare it with DCQCN [37] and

HPCC [39], in terms of (1) FCT and (2) PFC activation. We use a two-level fat-tree [68]

topology with 3 core switches and 3 edge switches. Each edge switch is connected to each

core switch using 2 100 Gb/s links (i.e., 200 Gb/s effective bandwidth). Each edge switch

67

has 30 nodes connected to it using 40 Gb/s links (i.e., 2:1 oversubscription). We implement

ECMP on the edge switches to equally distribute the load across the links. Each node behind

the first two edge switches transmits traffic to every node behind the third edge switch. As

a result, the maximum incast levels are 150, 300, and 60 on ingress edge switches, core

switches, and egress edge switches, respectively. This setup is sufficiently large to represent

a production datacenter network in terms of bisection bandwidth, incast congestion level,

and number of CPs. We use traffic loads derived from two publicly available datacenter traffic

distributions consisting of throughput-sensitive large flows [43], [44] (WebSearch traffic) and

latency-sensitive small flows [44], [45] (FB_Hadoop traffic). We run our simulations using

50% and 70% average link load levels. Besides FCT and number of PFC activations at CPs,

we record flow-level rate at sources and buffer usage on CPs to rationalize our observations

on FCT and PFC activation. We repeat each experiment 5 times, each on a machine with

a fresh simulation environment setup. The FCTs, PFC counts, and queue sizes we present

are the average values of the 5 sets of results, with 95% confidence intervals.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

10
K

20
K

30
K

50
K

80
K

FC
T

(m
s)

Flow Size (Bytes)

DCQCN
HPCC
RoCC

 0
 50

 100
 150
 200
 250

20
0K

1M 2M 5M 10
M

Flow Size (Bytes)

DCQCN
HPCC
RoCC

(a) WebSearch traffic.

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

75 1K 2.5
K

6.3
K

10
K

FC
T

(m
s)

Flow Size (Bytes)

DCQCN
HPCC
RoCC

 0
 0.5

 1
 1.5

 2
 2.5

 3

16
K

23
K

24
K

25
K

10
0K

Flow Size (Bytes)

DCQCN
HPCC
RoCC

(b) FB_Hadoop traffic.

Figure 3.12. Average FCT of DCQCN, HPCC, and RoCC (70% average load).

 0
 0.75

 1.5
 2.25

 3
 3.75

 4.5

10
K

20
K

30
K

50
K

80
K

FC
T

(m
s)

Flow Size (Bytes)

DCQCN
HPCC
RoCC

 0
 100
 200
 300
 400
 500
 600

20
0K

1M 2M 5M 10
M

Flow Size (Bytes)

DCQCN
HPCC
RoCC

(a) WebSearch traffic.

 0
 0.5

 1
 1.5

 2
 2.5

 3

75 1K 2.5
K

6.3
K

10
K

FC
T

(m
s)

Flow Size (Bytes)

DCQCN
HPCC
RoCC

 0
 2
 4
 6
 8

 10
 12

16
K

23
K

24
K

25
K

10
0K

Flow Size (Bytes)

DCQCN
HPCC
RoCC

(b) FB_Hadoop traffic.

Figure 3.13. 99th percentile FCT of DCQCN, HPCC, and RoCC (70% average load).

FCT: Fig. 3.12 and Fig. 3.13 respectively show the average and 99th percentile FCT of

DCQCN, HPCC, and RoCC for WebSearch traffic and FB_Hadoop traffic at 70% average

68

load. We chose the flow sizes (bins) based on the flow size distributions of WebSearch

traffic and FB_Hadoop traffic. Based on the 99th percentile FCT, RoCC clearly outperforms

DCQCN and HPCC for all the flow sizes. Therefore, the results confirm that RoCC has

lower tail latency than DCQCN and HPCC. Especially, RoCC experiences very low tail

latency even for large flows (i.e., elephants) where HPCC clearly fails. This is the behavior

expected of HPCC [39] as a result of headroom bandwidth it loses and the INT information

it piggybacks on data frames. These two overheads of HPCC reduce effective throughput

for large flows, hence increasing tail latency. HPCC shows a different behavior for large

flows with FB_Hadoop traffic. In this case, the FCT of HPCC increases significantly and,

in particular, the 99th percentile FCT is an order of magnitude higher than that of DCQCN.

RoCC has very low FCTs compared to DCQCN and HPCC resulting in much lower tail

latency than that of DCQCN and HPCC. At 50% load, the results are consistent with those

at 70% load.

To understand the FCTs of the three solutions, we study flow-level rate allocation in

the three solutions. Any given data flow in our setup traverses four links from its source to

destination. The bandwidth of these links are 40 Gb/s, 100 Gb/s, 100 Gb/s, and 40 Gb/s

with maximum concurrent flows of 30, 150, 300, and 60, respectively. Based on these values,

the maximum per-flow bandwidth a flow can attain is ∼ 333 Mb/s (i.e., 100 Gb/s ÷ 300).

We use the flow-level rate values we recorded for FB_Hadoop traffic under 70% load, which

mostly consists of short flows and as a result, the average number of concurrent flows on

each bottleneck link is close to the corresponding numbers we mentioned above, and the

bottleneck link utilization is close to link bandwidth. Table 3.3 shows the average per-flow

rate and their variances for the three solutions. The average rate for RoCC closely matches

the ideal value with low variance. In contrast, the average rate values for DCQCN and

HPCC deviate from the ideal value with very high variance. Based on this analysis, it is

clear that the fairness (fair), stability (stbl), and convergence (conv) of RoCC allow a

flow to constantly attain the optimal bandwidth along its path from source to destination,

resulting in lower tail latency than that of DCQCN and HPCC, regardless of flow size. In

essence, our simulation setup does not prioritize flows, and the fairness of RoCC ensures

69

that flows of the same size exhibit low variance in their FCT (in other words, almost equal

average, 90th percentile, and 99th percentile FCT).

Table 3.3. Flow-level average rate allocation of DCQCN, HPCC, and RoCC
with FB_Hadoop traffic (70% average load). The ideal average rate in this
case is ∼ 333 Mb/s.

Solution Average rate
(Mb/s)

Standard
deviation
(Mb/s)

DCQCN 378.86 2635.63
HPCC 211.02 1459.04
RoCC 335.86 232.52

Shallow vs. stable queues: HPCC is based on the idea that shallow queues reduce con-

gestion signal delay, and hence convergence delay. To examine this, we analyze the average

queue size at different CPs for the three solutions. Fig. 3.14a shows the average queue size

of DCQCN, HPCC, and RoCC at potential CPs: core switches, ingress edge switches, and

egress edge switch, for WebSearch traffic. DCQCN clearly experiences congestion at two

different CPs (core and ingress edge), yielding poor performance. In contrast, HPCC expe-

riences congestion only at a single CP (core) with a very shallow queue (mild congestion).

Similarly to HPCC, RoCC experiences congestion at a single CP (core) with an average

queue size close to its reference (Qref) of 300 KB. Though HPCC maintains a shallow queue

at the CP, it has higher overall FCTs than RoCC. Therefore, we argue that maintaining a

stable queue is more effective than maintaining a shallow queue at the expense of link un-

derutilization. The queue sizes for FB_Hadoop traffic is consistent with those for WebSearch

traffic.

PFC activation: Fig. 3.14b shows the normalized average numbers of PFC activations

at different CPs for DCQCN, HPCC, and RoCC at 70% average load, for WebSearch traffic

(the number of PFC activations is for a segment of experiment duration, and we divide it

into 50 segments). DCQCN suffers from high levels of PFC activation, whereas HPCC and

RoCC do not. This observation agrees with the queue size observation (Fig. 3.14a), where

DCQCN has deep queues, whereas HPCC has shallow queues. In contrast, RoCC maintains

70

300

600

Core Ingress Egress

A
vg

. Q
ue

ue
 S

iz
e

(K
B)

DCQCN
HPCC
RoCC

(a) Average queue size.

1

7

Core Ingress Egress

A
vg

. N
um

. P
FC

 (N
or

m
al

iz
ed

) DCQCN
HPCC
RoCC

(b) PFC activation.

Figure 3.14. Queue size and PFC activation of DCQCN, HPCC, and RoCC
with WebSearch traffic (70% average load).

a stable queue at the CP. The PFC activation for FB_Hadoop traffic is consistent with

that for WebSearch traffic.

Unlimited buffer: We now examine the behavior of DCQCN, HPCC, and RoCC with

unlimited buffers on switches. We use the same network setup as before, with PFC dis-

abled and relatively large amount of buffer space on the switches (i.e., no packet drop) with

FB_Hadoop traffic. We record FCT and average buffer usage at the CPs for the three

solutions. Datacenter networks do not operate under these conditions in practice, but we

investigate the extent of each solution’s buffer demand in order to estimate the amount of

buffer space a switch needs for the solution to function without activating PFC, yet not

dropping packets. We also examine the impact on FCT in this situation. Fig. 3.15 shows

the FCTs of the solutions at 70% load. The FCT of DCQCN increases up to a factor of

∼ 13 and that of HPCC increases up to a factor of ∼ 7. In contrast, the FCTs of RoCC

remains close to the FCTs when PFC is enabled with limited buffer (see Fig. 3.12). The

average buffer usage of RoCC is around the reference value (300 KB), whereas DCQCN and

HPCC on average use ∼ 80× and ∼ 20× more buffer space, respectively, than RoCC does.

This demonstrates RoCC’s ability to operate without PFC.

Key takeaways: From these experiments, we can make the following key observations: (i)

RoCC is more fair (fair) than DCQCN and HPCC. For WebSearch traffic, the tail FCTs

of RoCC are up to ∼ 4× and ∼ 3× lower than those of DCQCN and HPCC, respectively.

For FB_Hadoop traffic, they are up to ∼ 7× and ∼ 8× lower than those of DCQCN and

71

 0
 0.8
 1.6
 2.4
 3.2

 4
 4.8

75 1K 2.5
K

6.3
K

10
K

13
.1

x
6.

6x
0.

9x
12

.9
x

6.
4x

0.
9x

12
.4

x
5.

7x
0.

8x
11

.6
x

4.
6x

0.
6x

11
.0

x
3.

9x
0.

6xFC
T

(m
s)

Flow Size (Bytes)

DCQCN
HPCC
RoCC

 0
 1
 2
 3
 4
 5
 6

16
K

23
K

24
K

25
K

10
0K

10
.5

x
3.

1x
0.

3x
9.

3x
2.

6x
0.

1x
9.

8x
2.

7x
0.

1x
9.

2x
2.

4x
0.

1x
7.

3x
1.

7x
0x

Flow Size (Bytes)

DCQCN
HPCC
RoCC

Figure 3.15. Average FCT of DCQCN, HPCC, and RoCC with PFC disabled
and unlimited buffer (FB_Hadoop traffic at 70% average load). The numbers
in respective colors show the fold increase in FCT, w.r.t. the case when PFC
is enabled with limited buffer (Fig. 3.13).

HPCC, respectively., and (ii) RoCC is more stable (stbl) than DCQCN and HPCC, and as

a result RoCC causes up to ∼ 7× reduction in PFC activation, compared to DCQCN.

3.6 Related Work

Although congestion control research started as far back as the 1980s, several new propos-

als for the Internet (e.g., [69]–[73]) and datacenters (e.g., [37]–[40], [43], [50], [74], [75]) have

emerged over the past few years. Table 3.1 and § 3.1 summarized the most widely-known

datacenter solutions.

With sender-driven congestion control solutions individual senders determine their send-

ing rates or windows based on congestion signals they receive. DCQCN [37] is one such

widely deployed solution. TIMELY [38] is another production-grade solution that uses RTT

as congestion signal. We have shown that they do not meet convergence and fairness goals.

HPCC [39] uses INT supported by modern network switches to gather link load information

and uses it to adjust sending window sizes at sources. HPCC is more stable than other

datacenter solutions, but we saw that it becomes notably unstable at high load levels and is

unfair when multiple bottlenecks exist or the network topology is asymmetric. In addition,

HPCC causes link underutilization due to the bandwidth headroom it retains and the INT

transmission overhead it incurs.

72

Switch-driven solutions have the advantage of precisely measuring congestion, and di-

rectly sending critical congestion control information to sources, using special control mes-

sages that can be prioritized so that sources can quickly react. QCN [51] measures the extent

of congestion at the switch, and conveys this to the source using multiple bits (as opposed to

a single bit in the case of ECN). QCN is limited to layer 2. XCP [76] achieves efficiency (link

utilization) and fair bandwidth allocation on the switch, by making adjustments to window

size information in packet headers. The window adjustments are relayed by the receiver,

causing feedback delay. XCP requires substantial modifications to end systems, switches,

and packet headers. RCP [77] requires the switch to calculate a fair-share rate per link and

have each data packet carry the minimum fair-share rate along its path from the source to

destination and back to the source. As a result, RCP suffers from rate message propagation

delay, just like XCP. TFC [78] uses a token-based bandwidth allocation mechanism at the

switch, based on the number of active flows at each time interval. It is difficult to measure

the quantities TFC uses in its computation, especially with bursty datacenter traffic. Over-

all, existing switch-based solutions do not satisfy the requirements of datacenter networks,

and fail to realize the full potential of operating at the CP where it is possible to compute

and provide the source with the fair rate instead of congestion information. In contrast,

RoCC employs a closed-loop control system at the switch, enabling rapid convergence to the

fair rate. The rate value is conveyed to the source using a special ICMP message that can

be prioritized. RoCC only sends feedback to those flows that cause congestion.

3.7 Chapter Summary

Programmable switch architectures with P4 support becoming more widespread has mo-

tivated us to explore switch-driven congestion control in datacenter networks. We have

proposed RoCC, a new switch-driven congestion control solution for RDMA. RoCC employs

a closed-loop control system that uses the queue size as input to compute a fair rate through

the egress port, maintaining a stable queue. RoCC is fair and efficient, yields low tail latency,

and reduces PFC activation, even when flows traverse multiple bottlenecks or the topology

becomes asymmetric over time due to changes that are inevitable as datacenter networks

73

evolve. RoCC also allows datacenter networks to be run at higher load levels than the state

of the art. Our plans for future work include additional experiments to compare RoCC with

a wider variety of congestion control approaches, with emphasis on QoS, where class-level

fairness is essential.

74

4. A SOLUTION TO PFC-INDUCED HEAD-OF-THE-LINE

BLOCKING IN DATACENTER NETWORKS

In this chapter, we present Escape, a solution to head-of-the-line blocking in datacenter

networks. Head-of-(the-)line (HoL) blocking in datacenter networks increases latency and

causes congestion spreading, leading to routing deadlocks that can render parts or all of a

network unusable. However, to the best of our knowledge, the relationship between HoL

blocking and flow control in datacenter networks has not been investigated.

We dissect the conditions for datacenter HoL blocking to occur, and pinpoint a previously

ignored cause: in-order frame processing. Based on this insight, we propose Escape, a

protocol that allows HoL-blocked data frames to move forward without rerouting until they

reach an unblocked port on their path. Simulations and evaluation with a DPDK-based

prototype demonstrate that by clearing HoL blocking, Escape prevents routing deadlocks

and reduces overall flow completion times. Escape reduces flow completion times of short

flows passing through a single bottleneck by ∼20%. We also show how Escape can be

efficiently implemented in hardware.

4.1 Introduction

Head-of-(the-)line (HoL) blocking degrades network performance. When a frame at the

front of a switch queue (head) stalls due to insufficient space in the downstream queue, it

blocks the upstream traffic (line). The complexity of datacenter network traffic [79], [80]

and its interaction with flow control create a type of HoL blocking, which we refer to as

PFC-induced HoL blocking, where PFC [81] is priority-based flow control (we use “HoL

blocking” to refer to PFC-induced HoL blocking in the remainder of this paper). Switching

fabrics employ frame queuing at the ingress (input-queued), egress (output-queued), or both,

and datacenter switch fabrics commonly use output-queued architectures, hence datacenter

networks mostly suffer from HoL blocking at the egress. HoL blocking increases FCT and

creates routing deadlocks [47], [48], [82]–[85].

75

Cause of datacenter HoL blocking. The coarse-grained XOFF/XON operation of PFC

flow control is the main cause of datacenter HoL blocking. At the same time, this flow control

protocol plays an important role in quickly reacting to potential buffer overrun and reducing

frame losses which increase FCT. Specifically, modern datacenter networks commonly rely

on kernel bypass transports based on RDMA (e.g., RoCEv2 [86]), which are loss-sensitive.

Such transports require PFC to substantially reduce frame loss due to congestion.

Avoiding HoL blocking. It is possible that congestion is localized and traffic experiences

little or no congestion on switches downstream of a congested switch. Therefore, effective

flow control should consider downstream congestion status, not just local congestion status.

 Fig. 4.1a illustrates ideal flow control that only pauses the traffic that creates congestion.

This solution is difficult to realize in practice due to implementation overhead, i.e., limited

resources on switch ASICs for maintaining current congestion information for all data flows.

We observe that we can approximate this solution by pausing all traffic, and then selectively

allowing certain traffic to make progress based on the downstream congestion status. This

solution is depicted in Fig. 4.1b .

si-1

con
ges

ted

si si+1

si+2
pause only

traffic
towards si+2

1

(a) Only pause traffic that creates
congestion (Ideal flow control).

pause all traffic1

resume traffic
towards si+1

2

si-1

con
ges

ted

si si+1

si+2

(b) Pause all traffic (PFC), then
only resume traffic that does not
create congestion (Escape).

Figure 4.1. Flow control without HoL blocking.

State of the art. To the best of our knowledge, no existing work specifically addresses

the relation between flow control and HoL blocking. While a main goal of congestion control

is to eliminate PFC activation, state-of-the-art congestion control solutions [87]–[89] only

reduce activations, primarily due to reaction delays. Routing deadlock solutions [83], [85]

also mitigate HoL blocking to some extent. Such solutions are either proactive or reactive.

Most proactive solutions use deadlock-free routing to eliminate cyclic buffer dependencies,

76

which over-constrains routing since a deadlock will not occur as long as congestion is not

severe enough to trigger PFC. Reactive solutions detect deadlocks and break them, e.g., by

dropping frames or adapting routing. Such solutions are typically inefficient (e.g., requiring

consensus to select a node to react, possibly inducing livelocks). Recent work [48] replaces

the PFC XOFF/XON mode of operation, but introduces overhead. An alternative approach

is to prioritize traffic based on its class [90], [91]. The number of traffic classes is limited,

however, and flow-level HoL blocking is still possible.

Solution overview. When a switch queue experiences HoL blocking on a frame destined to

a PFC-activated egress port, the switch may have ports that are not PFC-activated, hence

open to subsequent frames in the blocked upstream queues. Our solution, Escape, allows

these blocked frames to leave the queues and reach a downstream switch with open egress

ports. Escape uses dedicated queues for escaping frames to facilitate their movement. A key

benefit of Escape is that it only activates when there is HoL blocking, and does not interfere

with network operation under normal conditions (e.g., no frame tagging or control message

passing required in the absence of HoL blocking).

Contributions and roadmap. We summarize work related to HoL blocking (§ 4.7), and

present our design goals and key ideas (§ 4.2). We present Escape, a solution to HoL block-

ing in datacenter networks (§ 4.3). We argue that Escape preserves the properties of HoL

blocking and deadlock clearance, no frame drop, and in-order frame delivery (§ 4.4), and

describe its implementation in FPGA and DPDK (§ 4.5). Simulations and DPDK-based

experiments quantitatively show that Escape clears routing deadlocks, increases link utiliza-

tion (∼90%), and reduces average FCT (§ 4.6). For instance, Escape reduces the average

FCT of “innocent flows" (not contributing to congestion) traversing a single bottleneck by

∼20%.

4.2 Design Rationale

We present the goals and insights that guided our design.

77

4.2.1 Design Goals

To our knowledge, no existing solution (cf. § 4.7) simultaneously meets the following

goals:

1. HoL block clearance (clr): HoL blocking should be cleared by eliminating a necessary

condition (§ 4.2.2).

2. Zero frame drop (drp): While frame dropping is a simple way to clear HoL blocking,

ultra-low latency demands in datacenter networks make it undesirable, since frame drop

implies retransmission and possible livelocks [92]. Dropping frames also defeats the purpose

of using PFC.

3. In-order frame delivery (ord): Rerouting blocked frames has also been proposed.

This can, however, cause out-of-order frame delivery.

4. Efficiency (efc): Normal network operation should not be affected, and the solution

should be efficient.

5. Ease of configuration (cfg): Solutions with complex parameters are difficult to

configure and are less robust.

4.2.2 Dissecting HoL Blocking

The fundamental cause of HoL blocking is resource contention, where buffer space on a

routing node is the resource being exclusively used. Fig. 4.2 A⃝ shows the set of necessary

conditions for HoL blocking, where eliminating any of these clears the blocking. Three of

the conditions are common to any resource contention problem and have been studied in

system deadlocks [93]. 1. Mutual exclusion: No two frames can share the same buffer space.

2. Hold and wait: A frame requires sufficient buffer space on a switch (intra-switch) or on the

downstream switch (inter-switch). 3. No preemption: A frame cannot relinquish its buffer

space for another frame lest it be lost. If a frame moves to another buffer to avoid loss (e.g.,

structured buffers [47]), out-of-order delivery may occur [92]. In-order frame processing, a

specific fourth condition together with the three conditions above, causes HoL blocking.

78

HoL blocking is directional, i.e., the data frame that causes HoL blocking always has a

downstream target queue. When a sequence of HoL blocks satisfies a fifth condition, circular

wait, it forms a routing deadlock (cf. Fig. 4.2 B⃝).

HoL
Blocking

Routing
Deadlock

Hold &
Wait

HoL
Blocking

FIFO processing

Packets need exclusive
buffer space Packet routing

Cyclic buffer
dependency

A

B

No
Preemption

In-order
Processing

Mutual
Exclusion

Circular
Wait

No packet drop or
reprioritization

Figure 4.2. A⃝ the four necessary conditions (blue boxes) and corresponding
network requirements (dashed boxes) for HoL blocking that leads to B⃝ routing
deadlock formation when a fifth condition is met.

4.2.3 Key Insight

Escape is based on the simple idea that HoL blocking can be cleared by allowing blocked

frames to leave the queue and move forward, if they have open (i.e., not PFC-activated)

switch egress ports downstream.

 Fig. 4.3 shows a typical HoL blocking scenario in a datacenter network where h, s, p,

and f denote a network host, switch, port on the switch, and traffic flow, respectively. f1,

flowing from h1 to h3, has a high bandwidth demand and creates persistent congestion along

its path, causing PFC activation. f2, flowing from h2 to h4, has low bandwidth demand and

creates little or no congestion; nevertheless it is HoL blocked at s1. In order to unblock f2,

s1 should be made aware that f2 is not blocked downstream (p3 on s2 is open), hence s1 can

extract the frames of f2 from the blocked queue, and let them escape, clearing HoL blocking.

This highlights two key observations about HoL blocking in datacenter networks that

guide our solution.

79

s4

s1h2

h1

h4

h3

s2 s3p3

f1

f2

PFC PFC

Figure 4.3. Frames of a HoL-blocked flow can be pushed out of the queue
and allow them move forward, if the flow is not blocked downstream.

1. When a switch has one or more PFC-activated ports causing HoL blocking, it can have

other ports that are not PFC-activated, hence open to some of the HoL-blocked traffic

upstream.

2. By propagating upstream the information about the flows that traverse these open ports,

the upstream switches can extract the blocked frames of the flows, and let them flow

downstream, clearing HoL blocking.

4.3 Escape

 Fig. 4.4 depicts how Escape clears HoL blocking. On detecting HoL blocking on switch

sa, Escape 1⃝ sends upstream a token τ carrying the identifier of a blocked flow that traverses

an open port p2 on sa. Upon receiving τ at switch sb, 2⃝ Escape extracts the first (blocked)

frame d of that flow from queue q2, tags the frame, and 3⃝ lets it move forward through

dedicated queues, unblocking the flow.

sasb

Escape

PFC

2
p1

p2

q2

t
1

q1
PFC

PFC

d
3

Figure 4.4. Escape overview: A flow that is HoL-blocked at switch sb, is
cleared as frame d of the flow in queue q2, escapes.

80

4.3.1 Overview

Escape comprises the following components:

1. Token manager performs two key functions: (a) Emit tokens for potential HoL-blocked

flows. A token can unblock one frame of a flow. (b) Intercept tokens received from a

downstream switch to unblock frames matching the flow identifier in the token. If the

token manager cannot find a matching frame, it forwards the token to the immediate

upstream switch on the path of the flow.

2. Token pool is a fixed number of tokens per switch egress port. This number is a param-

eter that is equal to the capacity of q⃗ (see 5 below) of the egress port. Minimum pool

capacity is one. Increasing the token pool capacity increases the number of frames that

can simultaneously escape. [efc]

3. Escape token frame (ETF) is a control frame used by Escape to disseminate tokens.

ETF includes a flow identifier (f id), and the number of switches (hops) it has traversed

from its origin.

4. Escape frame header (hops) flags unblocked frames. Identifying these frames is impor-

tant for (a) reclaiming the token pool entries at the switches, as unblocked frames traverse

them, and (b) queuing them (see § 4.3.3 .2). In RoCEv2, the most common transport

used in datacenter networks, the Escape header fits between the UDP header and Base

Transport Header.

5. Escape queue (q⃗) is a per-port queue dedicated to unblocked frames. Modern switches

have up to 8 queues per port, which may not all be used. [drp] [ord]

6. Port registry tracks if a port currently requested (ingress) or has activated (egress) PFC.

Additionally, it maintains the current token pool size of each egress port.

7. Flow table includes ingress ports of flows traversing an egress port. A flow in this table is

uniquely identified using the flow’s 5-tuple

1
 . Escape uses the flow table to identify flows

1
 ↑ (i) source IP, (ii) destination IP, (iii) source port, (iv) destination port, and (v) protocol.

81

that can be unblocked. The table does not include all flows traversing a port; Escape’s

default flow table (§ 4.5.2) maintains the last N flows that traversed the port where N

is its token pool size.

8. Queue supporting “extraction” enables finding frames matching a given flow identifier,

and extracting them.

Table 4.1. Algorithm symbol definitions.
Symbol Definition
f Active data flow
d Data frame of f
F Currently active data flows on switch
τ Escape token frame (ETF)
pI Ingress port
pE Egress port
T (pE) Current token pool size of pE

P All ports on switch
∆esc Period at which main Escape task should run

4.3.2 Algorithm

 Table 4.1 lists the symbols used in the algorithm. There are three key events, shown

in Alg. 3 , that affect the algorithm: e1, a timer task that triggers frame escape operations

(triggerEscape, line 1); e2, an egress port receiving a token (receive(τ), line 15); e3, an

egress port transmitting a data frame (transmit(d), line 29). The algorithm uses the PFC

meta information in the port registry (§ 4.3.1 .6).

We now explain the algorithm in detail.

Triggering Escape (e1). Routine triggerEscape (line 1) executes on a switch every

∆esc, which is a system parameter. This parameter does not affect the qualitative algo-

rithm properties. It is set to ensure a subsequent HoL clear operation on the same port

is attempted roughly after a message on the immediate upstream switch has escaped, to

minimize unnecessary HoL clear attempts. A good choice for ∆esc is 2 × link delay. Escape

82

Algorithm 3 Escape algorithm
1: task triggerEscape every ∆esc do ▷ event e1
2: P I ← {pI | pI ∈ P ∧ pI is PFC-requested}
3: for each pI ∈ P I do
4: clearHoLBlock(pI)

5: procedure clearHoLBlock(pI)
6: for each f ∈ F do
7: pI ′ ← ingress port of f
8: pE ← egress port of f
9: if pI ′ = pI ∧ pE not PFC-activated ∧ T (pE) ̸= 0 then

10: τ ← create new token
11: τ .f id ← id of f
12: τ .hops ← 1
13: send τ from pI to upstream switch
14: T (pE) ← T (pE) − 1

15: upon receive(τ) on pE do ▷ event e2
16: if T (pE) = 0 then
17: return
18: f ← flow corresponds to τ .f id
19: d ← first frame of f in pE ’s queue
20: if d exists then
21: d.hops ← τ .hops ▷ set Escape header
22: transmit d through pE

23: return
24: pI ← ingress port of f
25: if pI is PFC-requested then
26: τ .hops ← τ .hops + 1
27: forward τ from pI to upstream switch
28: T (pE) ← T (pE) − 1

29: upon transmit(d) on pE do ▷ event e3
30: if d.hops ⩾ 1 then ▷ escaping frame
31: T (pE) ← T (pE) + 1
32: d.hops ← d.hops − 1

finds all the ingress ports that have currently requested PFC (line 2), and attempts to clear

potential HoL blocking caused by each of those ports using the clearHoLBlock(pI) rou-

tine (line 5). The routine traverses the flow table (line 6) and attempts to unblock a flow f ,

if (i) it is potentially blocked at pI , (ii) it is destined to an open egress port pE, and (iii) the

token pool of pE is not exhausted (line 9). To trigger the unblock operation for f , Escape

83

first creates a token τ (line 10), sets its f id to f ’s identifier (line 11), and hops to 1 (line 12).

Escape sends τ through pI (line 13), and decrements pE’s token pool size (line 14).

Receiving token (e2). Routine receive(τ) (line 15) handles the receipt of a token τ at pE.

If the token pool of pE is exhausted, Escape ignores τ (line 16). If not, Escape sequentially

scans pE’s queue to find a data frame belonging to flow f , specified in τ (line 19). If there is

a matching data frame, it is extracted from the queue, flagged as an escaping frame (line 21)

and transmitted on pE, terminating the unblock operation (line 22). If Escape fails to find

a frame of f in the queue, it extends the frame search onto the immediate upstream switch

through f ’s ingress port pI , if it has currently requested PFC (line 25). To extend the

frame search, τ is forwarded through pI (line 27) after incrementing hops of τ (line 26), and

decrementing pE’s token pool size (line 28).

Transmitting data frame (e3). When an escaping frame d (line 30) is transmitted from

an egress port pE, Escape reclaims the corresponding token of pE by incrementing its token

pool size (line 31). Additionally, Escape decrements d.hops (line 32). As d traverses switch

ports that are HoL-blocked, d.hops > 1, and when it reaches the switch from which the

corresponding token originated, d.hops = 1. This is consistent with the fact that the value

of hops of a token at its origin is 1 (line 12). Beyond this point, d.hops = 0, and d is not

considered an escaping frame.

4.3.3 Design Details

1. Token-based buffer allocation [drp]: Escape reserves space in q⃗ (§ 4.3.1 .5) of an egress

port pE for every escaping frame d, using three simple rules: (i) drop a token at pE if

its token pool is exhausted so q⃗ is fully reserved by previous tokens; (ii) decrement the

token pool size of pE, reserving a spot in q⃗, as a token traverses pE so d is guaranteed to

have space in q⃗; (iii) increment the token pool size of pE as d leaves it to reclaim space

in q⃗.

2. Queuing [drp] [ord]: Escaping frames are queued on the switch based on their hops

header (§ 4.3.1 .4). Frame d is classified to use q⃗ of an egress port, if hops of d is not

zero. d uses the dedicated queue (bypassing the blocked queues) on each switch as d

84

reaches the switch from which the token that caused d to escape originated. Escape does

not classify frames, and the rules for classifying escaping frames are added as part of

deploying Escape on a switch.

3. Scheduling [ord]: Frames only escape while regular traffic is paused. Prioritizing es-

caping frames prevents out-of-order delivery in case paused traffic is resumed when an

escaping frame reaches a previously blocked switch.

4. Selecting flows [efc]: Escape’s main goal is to clear HoL blocking with minimal over-

head, hence by default, it sequentially scans the flow table (line 6) for selecting flows.

Escape can use other flow selection schemes (e.g., weight-based) to meet quality of service

demands.

5. Reclaiming unused tokens: The flow table includes active flows and a token is reclaimed

as an escaping frame traverses the egress port (line 28). However, if a flow in the table

has just finished, the tokens generated for that flow may not be reclaimed. These tokens

can be reclaimed using a timer event with a large interval (e.g., maximum delay across

the network) by saving the token pool size in each interval, and incrementing it during

the next interval if it has not changed.

6. Token message overhead [efc]: The token message overhead depends on two factors: (i)

Average convergence time of congestion control – higher convergence times imply higher

token message overhead. (ii) Difference between PFC XOFF and XON thresholds –

when it is large, many frames need to escape until the queue reaches its XON threshold.

Congestion control typically has bounded convergence times and PFC thresholds are set

according to strict guidelines [66], [94] enforcing minimal gaps between the two thresholds.

Thus, tokens incur bounded overhead.

4.4 Verification

In this section, we formalize the properties that ensure Escape’s correctness and argue

that Escape preserves them.

85

4.4.1 Properties

Definition 4.4.1 (HoL block freedom). Network traffic is free from HoL blocking ⇐⇒

the following holds for any two distinct flows fi and fj traversing any node n where at time

t the frames of fi block those of fj in a queue on n: limt→∞ Ci = 0 and limt→∞ Cj > 0 where

Ci and Cj are the throughputs of fi and fj through n, respectively.

Definition 4.4.2 (Losslessness). Frame delivery is lossless ⇐⇒ the following holds for

any set of data frames Dt transmitted by the source and the set of data frames Dr received

by the destination: Dt = Dr.

Definition 4.4.3 (In-order frame delivery). Frame delivery is in-order ⇐⇒ the

following holds for any sequence of data frames Dt transmitted by the source and the sequence

of data frames Dr received by the destination where Dt: Dr ⊑ Dt (Dr is a subsequence of

Dt).

4.4.2 HoL Block Clearance [clr]

Theorem 4.4.1. Escape clears HoL blocking.

Proof. Let f be a data flow traversing a sequence of nodes N = [n1, . . . , nm]. f is HoL-

blocked at time t at node nk ∈ N . According to 4.4.1 , if f unblocks at nk, throughput C

attained by f at nk should be s.t. limt→∞ C > 0. Consider the two key steps in Escape for

unblocking f :

1. Reserve buffer: As Escape on nk selects f as a flow that can unblock (line 9), it emits

tokens for f (line 13). As token τ moves up the path of f and reaches ∀ nu ∈ N where

1 ⩽ u < k, Escape has reserved space for a frame of f , in the dedicated queue on every

node from nu to nk (line 28). Therefore, a frame has an unblocked path from nu to nk.

2. Extract frame: Upon receiving τ , Escape on nu extracts di of f (line 19), and transmits

it (line 22). di is flagged (line 21), enabling it to use the unblocked path to nk.

86

Steps 1 and 2 together guarantee that the blocked frames of f can leave the queues and

move downstream through an unblocked path, and as a result, throughput C attained by f

at nk is s.t. limt→∞ C > 0. Thus Escape clears HoL blocking.

4.4.3 Zero Frame Drop [drp]

Theorem 4.4.2. Escape never causes frame drops.

Proof. Let f be a data flow traversing the sequence of nodes N = [n1, . . . , nm]. f is HoL-

blocked at time t at node nk ∈ N . Let Dt and Dr be the sets of data frames of f transmitted

by the source and received by the destination, respectively. According to 4.4.2 , if there is

no frame drop then Dt = Dr. The only way to violate this condition is that ∃ nu ∈ N

s.t. Dr
u ̸= Dt

u where Dr
u and Dt

u, are the sets of frames received and transmitted by nu,

respectively. Then ∃ d ∈ Dr
u s.t. q⃗u of nu’s egress port that d traverses is full.

Consider the following two cases that collectively cover the transmission of an escaping

frame d of f .

1. Token-based buffer allocation in Escape (§ 4.3.3 .1) ascertains that as token τ that nk

emits traverses the sequence of nodes N ′ = [nk, . . . , nl] ⊑ N (lines 13 and 27), and causes

d on nl to escape, it has reserved space in ∀ q⃗x on node nx ∈ N ′ (lines 14 and 28). I.e.,

τ never reaches nl if ∃ q⃗x of nx ∈ N ′ that Escape fails to reserve space on (lines 9 and

 16). Thus ∄ nx ∈ N ′ s.t. q⃗x is full, as d reaches nx.

2. Beyond nk, d is not treated as an escaping frame (line 30). In the case that nk’s egress

port pE
k (for which τ is generated) gets blocked (i.e., PFC-activated) by the time d reaches

pE
k , nk’s downstream node has sufficient buffer space to absorb d since PFC requires a

sufficiently large headroom buffer.

Based on cases 1 and 2, ∀ d ∈ Dr
u, q⃗u of nu’s egress port that d traverses is not full.

Therefore, ∀ nu ∈ N Dr
u = Dt

u, hence Dt = Dr. Thus Escape never causes frame drops.

87

4.4.4 In Order Frame Delivery [ord]

Theorem 4.4.3. Escape never causes out-of-order frame delivery.

Proof. Let f be a data flow traversing the sequence of nodes N = [n1, . . . , nm], HoL-blocked

only at time t at node nk ∈ N . Let Dt = [d1, . . . , du] be the sequence of data frames of f ,

transmitted by the source, and Dr = [dv, . . . , dw] the sequence of data frames received by

the destination.

Without loss of generality, consider the following scenario. Let dx and dy be two data

frames of f that escape at times tx and ty, respectively, where t < tx < ty, and are flowing

downstream (i.e., in q⃗ or on the wire). Assume f unblocks at time tz (at nk) due to PFC

deactivation where tx < ty < tz. i.e., PFC deactivation occurs while escaping frames are

being transmitted. As a result, there are three distinct frame sequences: D1 = [d1, . . . , dx−1],

D2 = [dx, dy], and D3 = [dy+1, . . . , du] s.t. D1 ⊔D2 ⊔D3 = Dt. Here, D1 is not affected by

HoL block at nk, and undergoes normal frame transmission, hence in-order delivery at the

destination. Therefore, D1 is received by the destination as D′
1 where D′

1 ⊑ D1.

Consider the four cases that can invert frame ordering of D2 and D3:

1. Frame extraction: All frames of f traverse the same sequence of nodes and same pair of

ingress-egress ports within a node (i.e., unique deterministic path). A token in Escape

always traces back this path (lines 7 and 24). A queue is scanned from head to tail when

searching for frames (line 19). Therefore, x < y. In other words, dx is extracted from the

queue, before dy.

2. Queuing and scheduling: Extracted frames awaiting transmission use a dedicated queue

(§ 4.3.3 .2), and as a result, they preserve their ordering (same as in 1) on the wire.

Therefore, dx precedes dy on the wire. ∀di ∈ D2, dj ∈ D3 awaiting transmission at the

same egress port are scheduled for transmission at times ti, tj, respectively, where t <

ti < tj. Therefore, D2 precedes D3 when they are queued and scheduled for transmission.

3. Unblocking an intermediate port: Regular traffic cannot resume (with PFC deactivation)

until after q⃗ (§ 4.3.1 .5) of an egress port is empty (§ 4.3.3 .3). Prioritizing extracted

88

frames over regular frames assures the two types cannot mix, thus preventing frame

order inversion in this case.

4. Blocking the downstream egress port for which a token is generated: If the open egress

port pE
k on nk for which a token was originated activates PFC before an escaping frame

leaves pE
k , from 2 (above), escaping frames use q⃗ (while regular traffic is blocked) and

preserve their ordering.

Based on these four cases, D2 precedes D3 during transmission and they are received by

the destination as D′
2 and D′

3, respectively, where D′
2 ⊑ D2 and D′

3 ⊑ D3. Therefore, the

destination receives D′
1, D′

2, and D′
3 in that order, hence D′

1 ⊔ D′
2 ⊔ D′

3 = Dr ⊑ Dt. Thus

based on 4.4.3 , Escape does not cause out-of-order frame delivery.

4.4.5 Termination of Algorithm

Theorem 4.4.4. Escape HoL unblocking always terminates.

Proof. An Escape HoL unblock operation begins as a token is generated (and transmitted

upstream) by the switch (line 10), and it terminates when the token stops being transmitted.

The following three cases collectively assert that a token always eventually ceases to exist:

1. The token pool of an egress port is exhausted when the token reaches the port, and as a

result, the token is prevented from moving upstream along the path of the flow (line 17).

2. The token causes a frame to escape, and consequently, the token stops being transmitted

(line 23). A token corresponds to one HoL-blocked frame that can escape.

3. The token reaches the source of the flow, and stops being transmitted, as a result of not

finding a matching frame on any of the switches that it traversed.

Therefore, we can ascertain that an Escape HoL unblock operation always terminates.

4.5 Implementation

We first consider Escape’s implementation independently of any platform, then in FPGA [95]

and DPDK [24].

89

4.5.1 Escape Components

Flow table. Each entry in this table has a flow’s (1) identifier (5-tuple), (2) ingress

port, and (3) egress port. Datacenter switches maintain similar flow state information, e.g.,

ETRAP [96], and flowlet table [97]. Shpiner et al. uses a similar flow table [83] that stores

ingress-egress port pairs of flows traversing a switch.

Port registry. A bitmap is sufficient to maintain the ingress port numbers that requested

PFC. Similarly, the egress port numbers that activated PFC can be maintained. Addition-

ally, a vector (index is port number) is sufficient to maintain the current token pool size of

each egress port.

Escape token frame. We propose ETF, a MAC frame with opcode 0x0102 as token frame.

ETF includes the 5-tuple (13 bytes) of a data flow, and the number of hops (2 bytes) the

frame travels from its origin.

Feasibility of extracting frames from queue. Escape requires the ability to “extract”

frames from arbitrary locations in a queue. Push-In-Extract-Out (PIEO) [98] is a queue

primitive that supports dequeuing frames from arbitrary locations in the queue. Feasibility

of PIEO has been verified using a hardware implementation [98].

4.5.2 FPGA Implementation

The feasibility of Escape depends on its implementability in hardware, specifically with

minimal (1) impact on the data path performance (i.e., latency), and (2) on-chip resource

demand. We identify queue supporting “extraction” (§ 4.3.1 .8) and flow table (§ 4.3.1 .7) as

the components required by Escape that can potentially increase data path latency and be

resource-intensive. Therefore, we use Xilinx Vitis HLS 2020.2 [63] targeting Xilinx Virtex-7

XC7V2000T FPGA device to design and perform a high-level synthesis of: (1) a queue that

supports frame extraction, and (2) a flow table that supports flow id update and lookup.

Queue. Our queue implementation uses a block RAM (BRAM) vector to store data

frames. Each element of the vector is 2048 bytes (assuming MTU is 1500). The 5-tuple of

each frame is kept in a registry vector enabling efficient lookup. Additionally, the queue im-

90

plementation uses two key structures: (1) bitmap to maintain the vector (frame and header)

slot availability, and (2) shift register to maintain the FIFO ordering of the frames. Fig. 4.5

depicts the use of the bitmap and shift register in queue operations. This design maintains

frame ordering after dequeue and extract, without copying actual frames and header. As

a consequence, our queue achieves the same initiation interval (II) irrespective of size and

throughput close to line rate. We synthesize a queue that has a capacity of 1024 frames

(i.e.∼1.5 MB). Typically, per-port buffer capacity in modern datacenter switches is smaller

than this value [48], [66]. Based on the Vitis synthesis report, the queue supports a maximum

clock frequency of 226.71 MHz. Enqueue and dequeue, the two operations that affect data

path performance, have a latency of 4.41 ns with initiation interval of 1, with 226.7 Mpps

throughput. Assuming MTU of 1500, this is equivalent to 2.72 Tbps. The extract operation

(required by Escape) has a latency of 13.23 ns with initiation interval 3, with 75.7 Mpps

throughput. The queue only requires 4% FF and 10% LUT demonstrating its feasibility on

FPGA.

3 2 1 0

Bitmap

3 2 1 0

Shift Register

3 2 1 0 3 2 1 d0

3 2 1 0

3 2 1 0 3 1 d2

d3 d2 d1 d0Enqueue

Dequeue

Extract

Figure 4.5. Overview of FPGA queue implementation: The bitmap maintains
the vector indices of frames, and the shift register is used for FIFO ordering.

Flow table. In our implementation, the 5-tuple (flow identifier) of each frame traversing

the egress port is streamed into the table module, which performs table updates in a lazy

fashion. The flow table uses a circular array to store the flow identifiers, and round robin

for retrieving them. Using other mechanisms for retrieving flow identifiers is outside the

scope of this work. We synthesize a flow table of 1024 entries. Based on the Vitis synthesis

report, the flow table supports a maximum clock frequency of 200.56 MHz. Both adding and

91

retrieving a flow identifier take 5 ns with initiation interval 1. The flow table only requires

4% FF and 4% LUT on FPGA.

We expect our implementations to perform better on ASIC than on FPGA.

4.5.3 DPDK Implementation

We have integrated Escape into DPDK [24]. Our implementation uses a run-to-completion

model in which Escape’s runtime is single-threaded and bound to a dedicated CPU core. The

program polls a port assigned to it at initialization to read data frames, makes forwarding

decisions for a received data frame, updates flow table, and adds the frame to its intended

egress ring buffer. It polls its own egress ring buffer to transmit frames. The program uses

function calls to update the flow table, forward frames, and transmit them. The program

has a port table that uses DPDK atomic operations supporting read and write by different

Escape runtime instances, which minimizes performance overhead on the data path. We

implement PFC in the receiver module.

DPDK extension. The default ring buffer in DPDK (struct rte_ring) does not support

random access, needed for frame extraction. We propose and implement API extensions

(cf. [99]) supporting frame extraction. We define the function type, comp_obj that compares

two objects and returns 1 if they are equal; 0 otherwise. In our implementation, we use

a comparator of type comp_obj to verify if a data frame (struct rte_mbuf *) matches a

given flow identifier (char *). The new function rte_ring_sc_jump (25 lines of code) takes a

pointer to a ring buffer, a comparator function (func), and a reference value to use with the

comparator (obj2) as inputs and returns a pointer to the first object matching the comparison

based on func and obj2 (flow identifier in our case). The function removes the pointer from

the ring and updates its internal pointers (i.e., consumer tail and head tail). In the absence

of a match, NULL is returned.

4.6 Evaluation

We evaluate Escape as follows. (A) Micro-benchmarks show that Escape meets its design

goals. (B) Testbed experiments confirm that Escape behavior with our DPDK implementa-

92

tion is in line with our simulations. (C) Comparisons with the state of the art show that

Escape has a lower FCTs as a result of clearing HoL blocking, even in cases when it does not

lead to a deadlock (D). We use OMNeT++ [100] to compare Escape and several state-of-

the-art solutions, which we implement since they do not have publicly available OMNeT++

implementations. We configure the solutions based on details given in the respective pa-

pers [48], [83]. We use traffic workloads derived from two commonly-used traffic traces [44],

[89]. Unless otherwise specified, the average link load is set to 70%. We use output-queued

switches with a byte counter for each ingress port to trigger PFC (qI
i denotes byte counter

of port i). We configure PFC based on [66].

4.6.1 Micro-Benchmarks

Three-node topology. We use the deadlock-prone topology in Fig. 4.6 to show the effec-

tiveness of Escape in clearing routing deadlocks. Switches s1, s2, and s3 are connected in a

ring and end hosts h1, h2, and h3 are connected to the respective switches. All interconnects

use 40 Gbps links. A data sender and receiver on each end host form three loop-free data

flows. All senders start transmitting data simultaneously. We observe qI
1 , qI

2 , and qI
3 on

s1, s2, and s3 receiving traffic through l3, l1, and l2, respectively, over time to determine

deadlock formation (all ports simultaneously XOFF) in the absence of Escape, and deadlock

clearance in its presence (ports fluctuate between XOFF and XON).

f1

f2

f3
l1 l2

l3

h1

h2 h3

s1

s2 s3

qI1

qI2

qI3

Figure 4.6. Simple three-node topology forming deadlock s1→s2→s3→s1.

93

101
102
103
104

 0 100 200 300 400 500Q
ue

ue
 S

iz
e

(K
B)

Time (ms)

qI1 qI2 qI3

(a) Large buffer. Without PFC.

500

 0 100 200 300 400 500
Time (ms)

qI1 qI2 qI3

(b) PFC + Escape.

40

l1 l2 l3

41
6*

40
4*

40
8*

A
vg

. T
hr

ou
gh

pu
t (

G
bp

s)

Link

Big buffer w/o PFC
PFC + Escape

(c) Throughput with Escape.
(∗Number of PFC activations)

Figure 4.7. Efficiency of Escape on the three-node topology in Fig. 4.6 .

Without Escape, qI
1 , qI

2 , and qI
3 do not reach the XON threshold after ∼18 ms (Fig. 4.8a)

due to deadlock formation. With Escape, qI
1 , qI

2 , and qI
3 fluctuate between XOFF and XON

thresholds (Fig. 4.8b), confirming absence of deadlock [clr].

10

500

 0 10 20 30Q
ue

ue
 S

iz
e

(K
B)

Time (ms)

qI1 qI2 qI3

(a) Without Escape.

10

500

 0 10 20 30Q
ue

ue
 S

iz
e

(K
B)

Time (ms)

qI1 qI2 qI3

(b) With Escape.

Figure 4.8. Deadlock clearance with Fig. 4.6 topology.

We compare average link utilization with Escape to ideal link utilization, which can be

attained with unlimited buffer space and thus no PFC activation. We conduct the experiment

for 500 ms, first with PFC disabled and then with PFC and Escape enabled. Fig. 4.7a and

 Fig. 4.7b show the variation of qI
1 , qI

2 , and qI
3 without PFC (ideal) and with PFC and Escape,

respectively. As we use large buffers, the queue size can grow (note the y axis scale) without

activating PFC. In the case of PFC and Escape, the buffer usage does not exceed the PFC

threshold as a result of PFC activation [efc]. As shown in Fig. 4.7c , links l1, l2, and l3

experience several PFC activations with Escape, while links l1, l2, and l3 achieve high link

utilization (91%), close to the ideal value (96%) [efc].

94

Effect of congestion control. We investigate whether the topology in Fig. 4.6 is deadlock-

prone when congestion control is present. We implement and configure the state-of-the-art

HPCC algorithm according to the details given in [89]. We initially use two competing

flows at each source. To study the impact of slow reaction of congestion control to deadlock

formation, we start 14 new data flows from each source node after 50 ms, creating congestion

on the switches. We find that qI
1 , qI

2 , and qI
3 simultaneously reach their XOFF thresholds

almost immediately causing PFC activation and deadlock.

With Escape, there is no deadlock. As seen in Fig. 4.9a , while incast congestion builds

(at 50 ms), qI
1 , qI

2 , and qI
3 fluctuate between their XOFF and XON thresholds as a result

of Escape activation. Meanwhile, congestion control slowly takes over and queues drain,

avoiding deadlock. Fig. 4.9b shows how the throughput attained by three flows f1, f2, and f3

originating at nodes h1, h2, and h3, respectively, varies over time. Before congestion occurs,

each flow attains its fair share link bandwidth of ∼10 Gbps (4 competing flows on each core

link). With congestion, the network becomes unstable; Escape together with congestion

control stabilizes it. Further, flow throughput stabilizes at ∼1.25 Gbps (32 competing flows

on each core link) indicating system convergence with the aid of congestion control.

10

500

 0 20 40 60 80 100Q
ue

ue
 S

iz
e

(K
B)

Time (ms)

qI1 qI2 qI3

(a) Queue size.

1.25

10

 0 20 40 60 80 100Th
ro

ug
hp

ut
 (G

bp
s)

Time (ms)

f1 f2 f3

(b) Throughput convergence.

Figure 4.9. Deadlock clearance in Fig. 4.6 with Escape and HPCC.

4.6.2 DPDK-based Prototype Evaluation

We evaluate Escape on CloudLab [25] using our DPDK-based implementation on the

topology of Fig. 4.6 . Each node is a Dell Poweredge R430 machine with 2 2.4 GHz 64-bit

8-Core Xeon processors, 64 GB DDR4 RAM, and 2 Intel X710 10 GbE NICs. Each node s1,

95

s2, and s3 is capable of working as a 10 GbE 3-port switch. We use DPDK version 18.11.2

on Ubuntu 18.04.1 LTS with igb_uio as kernel driver. We use iperf v. 2.0.13 as traffic

generator. We set PFC XOFF and XON thresholds to 125 KB and 10 KB, respectively.

 Fig. 4.10a shows that, with Escape disabled, qI
1 , qI

2 , and qI
3 do not reach the XON threshold

after ∼24 s as a result of deadlock formation. We can recreate this result and deadlock every

time we run this scenario. In contrast, with Escape enabled, qI
1 , qI

2 , and qI
3 fluctuate between

XOFF and XON thresholds (Fig. 4.10b), implying absence of deadlock.

10

125

 15 20 25 30Q
ue

ue
 S

iz
e

(K
B)

Time (s)

qI1 qI2 qI3

(a) Without Escape.

10

125

 15 20 25 30Q
ue

ue
 S

iz
e

(K
B)

Time (s)

qI1 qI2 qI3

(b) With Escape.

Figure 4.10. Deadlock clearance on the testbed topology.

4.6.3 Datacenter Simulations

We evaluate Escape on a scenario mimicking a modern datacenter topology, load, and

traffic. We use HPCC [89] for congestion control. We use the three-level fat-tree topology

depicted in Fig. 4.11a with 8 edge switches, 8 aggregation switches, and 4 core switches.

It has 8 source nodes (h1, h3, h5, . . . , h15) and 8 destination nodes (h2, h4, h6, . . . , h16)

connected to the edge switches. Each interconnection is a 40 Gbps link. Each source node

starts 10 concurrent data flows. The flows from h1 and h3 are destined to h16 and create incast

congestion on s6. Similarly, the flows from h13 and h15 are destined to h4, creating incast

congestion on s3. The flows from h7 and h11 are destined to h12 and h8, respectively, and

create little or no congestion. Similarly, the flows from h5 and h9 are destined to h10 and h6,

respectively, creating little or no congestion. As the second step of this experiment, we disable

the links s1→s6 and s2→s3, causing the flows destined to h16 and h6 to take “bouncy” paths.

As shown in Fig. 4.11b , the flows from h1 and h3 take the new route s3→s1→s5→s2→s6→h16

96

and the flows from h13 and h15 the route s6→s2→s4→s1→s3→h3. We run the two steps

with Escape disabled and then with it enabled. We record link utilization li at each source

node hi to observe network stability. When Escape is enabled, we additionally record the

size of ingress queue qI
j of node sj on the deadlock-prone path s1→s5→s2→s4→s1.

h1 h3 h4 h7 h8 h11 h12 h13 h15 h16

s2s1

s3 s4 s5 s6

l1 l2 l7 l8l6l4

h2 h5 h6 h9 h10 h14

(a) Before link failure.

h1 h3 h4 h7 h8 h11 h12 h13 h15 h16

s2s1

s3 s4 s5 s6

l1 l2 l7 l8l6l4

h2 h5 h6 h9 h10 h14

(b) After link failure.

Figure 4.11. Three-level fat-tree topology used in the datacenter simulations.

20

40

 0 10 20 30 40 50Th
ro

ug
hp

ut
 (G

bp
s)

Time (ms)

l1
l4

l6
l7

Figure 4.12. System stability (link utilization) before link failure (HPCC + Escape).

 Fig. 4.12 shows the link utilization before link failure. The flows from h1 and h3 go

through s6, equally sharing the bottleneck link bandwidth, and as a result, the utilization

of l1 (and l2) stabilizes at ∼20 Gbps. Further, the throughput attained by each of the 10

competing flows on the link, stabilizes at ∼2 Gbps. Similarly, the flows from h13 and h15 go

through the bottleneck link at s3, and the utilization of l7 (and l8) stabilizes at ∼20 Gbps.

The flows from h7 and h11 do not create congestion, hence l4 and l6 are fully utilized. Without

Escape, switches s1, s2, s4, and s5 instantly run into a deadlock in step two (see Fig. 4.11b),

causing the flows going through these switches to halt. With Escape, the link failure does

not cause a deadlock and each sender attains its fair share link bandwidth of ∼13.3 Gbps,

as Fig. 4.13a shows.

97

To understand the impact of Escape on system stability under normal conditions and

when there is a potential deadlock, we observed ingress queue depths at congestion points

and instantaneous bandwidths attained by the completing senders. Fig. 4.12 shows that

throughput convergence of competing senders (h1, h3 and h13, h15) is as expected in a network

with HPCC. The system converges in ∼5 ms. As a result of the link failure, the nodes on

the deadlock-prone loop become the new congestion hot spots resulting in a different set of

competing senders (h1, h3, h7, and h11, h13, h15). The system converges and each competing

sender attains its fair share in ∼20 ms (Fig. 4.13a). At the same time, the queues drain

(Fig. 4.13b) indicating system stability. We can conclude that Escape clears deadlocks

caused by HoL blocking in practical fat-tree topologies, while preserving network stability.

13.3

40

 0 10 20 30 40 50Th
ro

ug
hp

ut
 (G

bp
s)

Time (ms)

l1
l4

l6
l7

(a) Link utilization.

10

500

 0 10 20 30 40 50Q
ue

ue
 S

iz
e

(K
B)

Time (ms)

qI1
qI2

qI4
qI5

(b) Queue size.

Figure 4.13. System stability after link failure (HPCC + Escape).

4.6.4 Escape vs. State of the Art

We compare Escape with state of the art, in terms of their effectiveness and efficiency as

solutions to routing deadlocks. We carefully select our reference solutions considering three

widely explored deadlock resolution models:

(1) Detect deadlock and drop frames to resolve it: Dropping frames is believed to be a vi-

able reactive solution to deadlock. We use the token-passing technique in Loop Breaker

(LB) [83] to efficiently detect a deadlock.

(2) Detect deadlock and facilitate traffic progress: Deadlock Breaker (DLB) [83] (another

reactive solution) uses token-passing to detect a deadlock, and allocates extra buffer

space along the path of the deadlock to facilitate traffic progress.

98

(3) Replace PFC with rate-based flow control: GFC [48] is a proactive solution that replaces

PFC to prevent routing deadlocks.

We use the topology in Fig. 4.14 with the three reference solutions and Escape to inves-

tigate their: (i) ability to resolve a deadlock [clr], and (ii) tail latencies [efc]. Each source

node, h2, h4, h6, and h8, has 10 traffic generators sending data to destination nodes, h7, h5,

h3, and h1, respectively.

h1 h2 h7 h8h3 h4 h5 h6

n3 n4 n5 n6

n1 n2

f1f2 f3f4

qI2qI1
qI5qI4

l1
l2

l3
l4

Figure 4.14. Two-level fat-tree topology that forms the deadlock, n1→n5→n2→n4→n1.

We observe that LB, DLB, and Escape resolve deadlocks, while GFC prevents them.

However, LB, DLB, and GFC incur higher FCT tail latencies than Escape (Fig. 4.15a and

 Fig. 4.15b). Short flows, which constitute the majority of traffic in datacenters, are more sus-

ceptible to increased tail latency. One critical observation is that dropping frames to resolve

deadlocks (LB) incurs the highest tail latency, which is up to ∼10× that of Escape. Tail

latency of GFC is up to ∼2− 4× that of Escape, which highlights that PFC (XOFF/XON)

with Escape is better than GFC (rate-based). The tail latencies of DLB are at least ∼10%

higher than those of Escape. Of the three reference solutions we use, DLB is more effective

in resolving deadlocks, reinforcing Escape’s premise: to clear blocked traffic, allocate buffers

to facilitate traffic progress. However, DLB is not able to clear a HoL block when it does not

lead to a deadlock.

4.6.5 FCT Reduction in Absence of Deadlocks

We study FCTs using the topology in Fig. 4.16 . Switches s2. . . s5 connected to switch

s1, hosts h1 and h2 to s2, and h3 and h4 to s3 by 100 Gbps links. Hosts h5 and h6 are

99

 0
 1
 2
 3
 4
 5

3K 10
K

32
K

10
0K

31
6K 1M 3M 10

M
32

M

FC
T

(N
or

m
al

iz
ed

)

Flow Size (Bytes)

Escape
Deadlock Breaker

Loop Breaker w/ Drop
GFC

(a) WebSearch traffic.

 0
 2
 4
 6
 8

 10

10
0

31
6 1K 3K 10

K
32

K
10

0K
31

6K 1M 3M 10
M

FC
T

(N
or

m
al

iz
ed

)

Flow Size (Bytes)

Escape
Deadlock Breaker

Loop Breaker w/ Drop
GFC

(b) FB_Hadoop traffic.

Figure 4.15. 99th-percentile FCT in the fat-tree topology in Fig. 4.14 .

connected to s4 and s5, respectively, by 40 Gbps links. Hosts h1 . . . h4 are data sources and

h5, h6 destinations. h1 and h3 transmit flows f1 and f3, respectively to h6, and h2 and h4

flows f2 and f4, respectively, to h5. We set the average load of heavy flows (f1 and f3) to

80% and of innocent (victim) flows [101] (f2 and f4) to 40%.

s2 s3

h6

s5

s1

h5

s4

h4h3h2h1

PFC

f2 f1f4 f3

Figure 4.16. Two-level fat-tree topology with incast congestion on s1→ s5
and little or no congestion on s1→s4.

This scenario is not deadlock-prone, but f2 and f4 can suffer from HoL blocking on s1, as

other flows create congestion. This is a common scenario in datacenter networks [87], [89].

We investigate if Escape reduces the FCTs of f2 and f4 as it clears HoL-blocked frames. We

enable PFC and record average FCT of innocent flows with and without Escape. We repeat

the experiment with GFC (PFC and Escape disabled).

As Fig. 4.17a shows, average FCT for flows smaller than 1 MB in WebSearch traffic is at

least ∼10% higher without Escape, and at least ∼50% higher with GFC. With FB_Hadoop

100

traffic (Fig. 4.17b), all flow sizes experience at least ∼10% higher FCTs without Escape,

and at least ∼30% higher with GFC. Thus, innocent flows obstructed by congestion achieve

reductions in average FCT with Escape. Datacenter network traffic mostly comprises short

flows (⩽10 KB) [79], [80] and based on these results, innocent flows on a single bottleneck

experience ∼20% increase in average FCT without Escape. Replacing PFC and Escape with

GFC increases average FCT by ∼40− 60%.

 1
 1.2
 1.4
 1.6
 1.8

3K 10
K

32
K

10
0K

31
6K 1M 3M 10

M
32

M

FC
T

(N
or

m
al

iz
ed

)

Flow Size (Bytes)

PFC + Escape
PFC
GFC

(a) WebSearch traffic.

 0.9
 1

 1.1
 1.2
 1.3
 1.4
 1.5

10
0

31
6 1K 3K 10

K
32

K
10

0K
31

6K 1M 3M 10
M

FC
T

(N
or

m
al

iz
ed

)

Flow Size (Bytes)

PFC + Escape
PFC
GFC

(b) FB_Hadoop traffic.

Figure 4.17. FCT of innocent flows with incast congestion.

4.7 Related Work

Congestion control ideally suppresses PFC activation and HoL blocking. However, state-

of-the-art datacenter congestion control mechanisms (e.g., DCQCN [87], TIMELY [88],

HPCC [89]) do not completely eliminate PFC due to their long reaction times stemming

from the congestion signal propagation delays (i.e., ECN [87], RTT [88], and INT [89]).

Deadlock solutions address HoL blocking to some extent by facilitating traffic movement.

Deadlock handling can be proactive or reactive. Proactive deadlock solutions mostly employ

adaptive routing [102]–[107] to eliminate cyclic buffer dependencies, which requires signifi-

cant changes to existing routing protocols. GFC [48] modifies PFC XOFF/XON behavior,

but incurs implementation and operational overhead. Preventing buffer overrun due to traffic

bursts (the rationale for PFC XOFF) may not be possible with GFC, and configuring GFC

(e.g., its mapping function) requires considerable effort. Reactive deadlock solutions detect

and resolve deadlocks, but incur significant implementation and performance overhead. A

switch identifies ports prone to deadlock via HoL blocking and uses a probing technique (e.g.,

101

token passing) to ascertain that the switch is indeed on a deadlock. Switches on a dead-

lock then use a distributed algorithm (e.g., consensus-based) to break the deadlock. Loop

Breaker [83] uses a token to chose a master to resolve the deadlock and frame rerouting to

break it, assuming each flow that needs rerouting has an alternative path to its destination.

Even if this assumption holds, rerouting can cause out-of-order frame delivery causing ad-

ditional overhead for frame reordering and/or retransmission. Deadlock Breaker [83] uses

the same deadlock detection technique as Loop Breaker, and facilitates traffic progress using

a token passing mechanism for extra buffer allocation along the deadlock loop. The buffer

allocation management can be complex, especially when a port is on multiple deadlocks

simultaneously. Algorithm termination also introduces complexity. Disha [108] uses a set-

aside buffer to route HoL-blocked frames, but a frame would need exclusive access to this

buffer along the path of the frame when multiple nodes on the deadlock start the recovery

process concurrently.

Flow prioritization mitigates HoL blocking. PFC itself was proposed as a solution to

HoL blocking by operating on 8 distinct priority levels, as opposed to pausing all traffic on a

link (as in PAUSE). By selectively pausing traffic according to class, PFC can mitigate HoL

blocking at the class level but not at the flow level. QJump [90] uses coarse-grained priority

levels to resolve interference for latency-sensitive traffic by prioritizing it over throughput-

sensitive traffic. pFabric [91] prioritizes flows based on remaining flow size, and drops frames

to reduce FCTs of short flows. These approaches cannot prevent flow-level HoL blocking.

Virtual output queue (VOQ) architectures [109] were proposed as a solution to HoL

blocking at ingress ports. However, VOQs do not prevent HoL blocking at egress ports.

Frame detouring is an approach for minimizing loss without using PFC. Detour-induced

buffer sharing (DIBS) [110] randomly detours frames received by a switch to its neighbors

when there is no buffer space to store the frames. DIBS can cause out-of-order frame delivery

and livelocks. It can also increase FCT of small flows, which constitute the majority of flows

in a datacenter network.

102

4.8 Chapter Summary

We propose a new flow control protocol for modern datacenter networks that allows

HoL-blocked frames at congestion points to leave queues and move downstream without

getting rerouted. Escape eliminates routing deadlocks and reduces FCTs, especially for

short flows which constitute the majority of flows in datacenters. We believe that Escape

can be easily extended to propagate useful meta-data to aid other critical network services,

e.g., congestion control and load balancing. The key components required by Escape can be

efficiently implemented in hardware.

103

5. CONCLUSIONS AND FUTURE WORK

With the advent of modern line-rate switch architectures, the need for advanced yet simple

specification languages for defining buffer architectures has become more important than

ever before. In this dissertation, we introduce a new specification language, OpenQueue, that

allows users to specify entire buffering architectures and policies conveniently through several

comparators and simple functions, which makes OpenQueue ideal for modern programmable

line-rate switch architectures that use match-action tables.

We also introduced a new congestion control solution for RDMA networks in this disser-

tation. RoCC can outperform well established similar solutions that are used in production

right now. RoCC guarantees fairness when allocating bandwidth among competing flows. It

is able to maintain stability, converge fast, and attain maximum link utilization. These re-

quirements are of paramount importance in effective congestion control in modern datacenter

networks.

We have also developed a solution for datacenter networks that deals with routing dead-

locks.

5.1 OpenQueue Implementation in Hardware

“Over the next decade, I believe that networks are going to become end-to-end pro-

grammable with programmable pieces at every level” - keynote by Nick McKeown at Netdev

2020

As network programmability becomes widespread, it is becoming customary to have

programmable network components at different levels.

Network programming frameworks such as P4 [111] enables significant amount of pro-

gramming support in the data plane. However, to the best of our knowledge, buffer manage-

ment and packet scheduling still lacks programming support, nevertheless they play a critical

role in network performance. For example, the traffic manager in P4, which handles packet

buffering and scheduling, is not programmable, hence fails to harness the full potential of

P4.

104

We believe OpenQueue is capable of providing comprehensive language support for buffer

management. However, the feasibility of OpenQueue in different hardware platforms has not

been adequately investigated. We plan to implement OpenQueue using hardware technolo-

gies such as FPGA and ASIC. It is important to assess the feasibility of OpenQueue in

terms of hardware resource demand and data plane latency overhead.

5.2 Predictive Congestion Control

Based on our experience on congestion control solutions in datacenter networks, there

are two key challenges they have to deal with.

1. A congestion control solution usually comes with a set of parameters that directly

affects its behavior. Tuning these parameters is challenging as they usually affect some

conflicting goals (e.g. fast convergence vs. high stability). Given that datacenter traffic

is very dynamic, it is difficult to tune a congestion control solution to meet its intended

goals despite it claims to achieve its goals in theory.

2. Most of the existing congestion control solutions (including RoCC) are reactive, hence

they by nature take some time to take measures to mitigate congestion. For example,

DCQCN [37] suffers from excessive reaction delays due to queuing of marked packets,

and both DCQCN [37] and TIMELY [38] can be over corrective when congestion is

not persistent. Reaction delay impacts stability and other important properties of any

reactive congestion control solution.

This is where the concept of Predictive Congestion Control comes into the picture. Predictive

congestion control has been studied to some extent in other network domains [112]–[114] but

to little or no extent in datacenter network domain. We plan to look into two possible

approaches:

1. Use learnability of network traffic patterns to predict network flows and use that knowl-

edge for proactive congestion control.

2. Use switch queue size as an indication of network congestion level. It is possible to

use some technique to estimate queue length for next prediction interval by using

105

queue lengths of past intervals [115] and use that knowledge to do congestion control

proactively.

5.3 Extensibility of Escape

We plan to extend the work on Escape in two directions:

I. Hardware implementation: We have investigated the hardware feasibility of the key

components of Escape. However, in order to assess the hardware feasibility of Escape, it

needs to be fully implemented using a widely used hardware technology such as FPGA or

ASIC. We plan to implement Escape in FPGA.

II. Escape to support other network services: Escape uses “backward” notification to

propagate congestion information upstream. Critical network services such as congestion

control and load balancing rely on network congestion information provided by mechanisms

such as ECN [37] and INT [39]. These mechanism use “forward” notification, hence fail to

convey congestion information to the hosts in a timely manner for quickly mitigating network

congestion. The delay in congestion notification is a critical challenge that congestion control

faces. Therefore, it is interesting to investigate the possibility of integrating Escape control

frame (ECF) with congestion control and load balancing to improve their effectiveness.

5.4 Large-scale Evaluation

Evaluating our solutions in a real-life setting is critical to assess their deployment readi-

ness. So far, we have performed some limited evaluations of RoCC and Escape using public

testbeds and some limited testbed facilities we possess. However, we have identified the

following key evaluation scenarios to further evaluate RoCC and Escape.

I RoCC: Use the P4-based implementation of RoCC in a setup resembling a real datacen-

ter network (e.g., two-level leaf-spine topology) to evaluate RoCC in terms of its high-level

goals: (1) reduce tail latency, and (2) minimize PFC activation.

II Escape: Use the full hardware implementation of Escape (see § 5.3 -I) to evaluate the

FCT of Escape using a testbed that resembles a real datacenter network setup. We plan to

106

use two scenarios here: (1) a deadlock-prone setup, and (2) a setup that is not deadlock-prone

and innocent flows suffer from HoL block.

III RoCC + Escape: It is interesting to investigate the behavior of a real datacenter

network setup when both RoCC and Escape coexist. We plan to use a two-level leaf-spine

topology to observe tail-latency and PFC activations in this scenario, with two widely-used

traffic distributions, WebSearch traffic and FB_Hadoop traffic.

107

REFERENCES

[1] M. Goldwasser, “A survey of buffer management policies for packet switches,” SIGACT
News, vol. 41, no. 1, pp. 100–128, 2010. doi: 10.1145/1753171.1753195 .

[2] M. Alizadeh, S. Yang, M. Sharif, et al., “Pfabric: Minimal near-optimal datacenter
transport,” in ACM Computer Communication Review (CCR), 2013, pp. 435–446.
doi: 10.1145/2534169.2486031 .

[3] K. Kogan, A. López-Ortiz, S. I. Nikolenko, G. Scalosub, and M. Segal, “Balancing
work and size with bounded buffers,” in International Conference on Communication
Systems and Networks (COMSNETS), 2014, pp. 1–8. doi: 10.1109/COMSNETS.
2014.6734878 .

[4] P. Chuprikov, S. I. Nikolenko, and K. Kogan, “Priority queueing with multiple packet
characteristics,” in IEEE International Conference on Computer Communications
(INFOCOM), 2015, pp. 1418–1426. doi: 10.1109/INFOCOM.2015.7218519 .

[5] A. Davydow, P. Chuprikov, S. I. Nikolenko, and K. Kogan, “Throughput optimization
with latency constraints,” in IEEE International Conference on Computer Commu-
nications (INFOCOM), 2017, pp. 1–9. doi: 10.1109/INFOCOM.2017.8057015 .

[6] N. McKeown and et al., OpenFlow switch specification, http://www.openflow.org/
documents/openflow-spec-v1.1.0.pdf , 2011.

[7] S. Floyd and V. Jacobson, “Random early detection gateways for congestion avoid-
ance,” IEEE/ACM Transactions on Networking (ToN), vol. 1, no. 4, pp. 397–413,
1993. doi: 10.1109/90.251892 .

[8] K. M. Nichols and V. Jacobson, “Controlling queue delay,” Communications of the
ACM, vol. 55, no. 7, pp. 42–50, 2012. doi: 10.1145/2209249.2209264 .

[9] A. J. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a fair queueing
algorithm,” in ACM Computer Communication Review (CCR), 1989, pp. 1–12. doi:

 10.1145/75247.75248 .

[10] P. McKenney, “Stochastic fairness queueing,” in IEEE International Conference on
Computer Communications (INFOCOM), 1990, pp. 733–740.

[11] W. Aiello, A. Kesselman, and Y. Mansour, “Competitive buffer management for
shared-memory switches,” ACM Transactions on Algorithms, vol. 5, no. 1, 2008. doi:

 10.1145/1435375.1435378 .

108

https://doi.org/10.1145/1753171.1753195
https://doi.org/10.1145/2534169.2486031
https://doi.org/10.1109/COMSNETS.2014.6734878
https://doi.org/10.1109/COMSNETS.2014.6734878
https://doi.org/10.1109/INFOCOM.2015.7218519
https://doi.org/10.1109/INFOCOM.2017.8057015
http://www.openflow.org/documents/openflow-spec-v1.1.0.pdf
http://www.openflow.org/documents/openflow-spec-v1.1.0.pdf
https://doi.org/10.1109/90.251892
https://doi.org/10.1145/2209249.2209264
https://doi.org/10.1145/75247.75248
https://doi.org/10.1145/1435375.1435378

[12] P. Eugster, A. Kesselman, K. Kogan, S. I. Nikolenko, and A. Sirotkin, “Essential
traffic parameters for shared memory switch performance,” in Structural Information
and Communication Complexity (SIROCCO), 2015, pp. 61–75. doi: 10.1007/978-3-
319-25258-2_5 .

[13] P. T. Eugster, K. Kogan, S. I. Nikolenko, and A. Sirotkin, “Shared memory buffer
management for heterogeneous packet processing,” in IEEE International Conference
on Distributed Computing Systems (ICDCS), 2014, pp. 471–480. doi: 10.1109/ICDCS.
2014.55 .

[14] A. Mekkittikul and N. McKeown, “A practical scheduling algorithm to achieve 100%
throughput in input-queued switches,” in IEEE International Conference on Com-
puter Communications (INFOCOM), 1998, pp. 792–799. doi: 10 .1109/INFCOM.
1998.665102 .

[15] A. Kesselman, K. Kogan, and M. Segal, “Improved competitive performance bounds
for CIOQ switches,” Algorithmica, vol. 63, no. 1-2, pp. 411–424, 2012. doi: 10.1007/
s00453-011-9539-9 .

[16] S. Chuang, S. Iyer, and N. McKeown, “Practical algorithms for performance guaran-
tees in buffered crossbars,” in IEEE International Conference on Computer Commu-
nications (INFOCOM), 2005, pp. 981–991. doi: 10.1109/INFCOM.2005.1498327 .

[17] A. Kesselman, K. Kogan, and M. Segal, “Packet mode and QoS algorithms for buffered
crossbar switches with FIFO queuing,” Distributed Computing, vol. 23, no. 3, pp. 163–
175, 2010. doi: 10.1007/s00446-010-0114-4 .

[18] R. Mittal, R. Agarwal, S. Ratnasamy, and S. Shenker, “Universal packet scheduling,”
in USENIX Conference on Networked Systems Design and Implementation (NSDI),
2016, pp. 501–521.

[19] S. Bauer, R. Beverly, and A. W. Berger, “Measuring the state of ECN readiness in
servers, clients, and routers,” in ACM Internet Measurement Conference (IMC), 2011,
pp. 171–180. doi: 10.1145/2068816.2068833 .

[20] I. Keslassy, K. Kogan, G. Scalosub, and M. Segal, “Providing performance guarantees
in multipass network processors,” IEEE/ACM Transactions on Networking (ToN),
vol. 20, no. 6, pp. 1895–1909, 2012. doi: 10.1109/TNET.2012.2186979 .

[21] A. Ioannou and M. Katevenis, “Pipelined heap (priority queue) management for ad-
vanced scheduling in high-speed networks,” IEEE/ACM Transactions on Networking
(ToN), vol. 15, no. 2, pp. 450–461, 2007. doi: 10.1109/TNET.2007.892882 .

109

https://doi.org/10.1007/978-3-319-25258-2_5
https://doi.org/10.1007/978-3-319-25258-2_5
https://doi.org/10.1109/ICDCS.2014.55
https://doi.org/10.1109/ICDCS.2014.55
https://doi.org/10.1109/INFCOM.1998.665102
https://doi.org/10.1109/INFCOM.1998.665102
https://doi.org/10.1007/s00453-011-9539-9
https://doi.org/10.1007/s00453-011-9539-9
https://doi.org/10.1109/INFCOM.2005.1498327
https://doi.org/10.1007/s00446-010-0114-4
https://doi.org/10.1145/2068816.2068833
https://doi.org/10.1109/TNET.2012.2186979
https://doi.org/10.1109/TNET.2007.892882

[22] A. Sivaraman, S. Subramanian, A. Agrawal, et al., “Towards programmable packet
scheduling,” in ACM Workshop on Hot Topics in Networks (HotNets), 2015, 23:1–
23:7. doi: 10.1145/2834050.2834106 .

[23] Openqueue on github, https://github.com/openqueuenew/icnp .

[24] Intel DPDK, http://dpdk.org/, 2019.

[25] D. Duplyakin, R. Ricci, A. Maricq, et al., “The design and operation of CloudLab,”
in USENIX Annual Technical Conference (ATC), 2019.

[26] N. Foster and et al., “Frenetic: A network programming language,” in ACM SIGPLAN
Notices, 2011, pp. 279–291. doi: 10.1145/2034574.2034812 .

[27] C. Monsanto and et al., “Composing software defined networks,” in USENIX Confer-
ence on Networked Systems Design and Implementation (NSDI), 2013, pp. 1–13.

[28] A. Voellmy and et al., “Maple: Simplifying SDN programming using algorithmic
policies,” in ACM Computer Communication Review (CCR), 2013, pp. 87–98. doi:

 10.1145/2534169.2486030 .

[29] R. Soulé and et al., “Merlin: A language for provisioning network resources,” in Inter-
national Conference on emerging Networking EXperiments and Technologies (CoNEXT),
2014, pp. 213–226. doi: 10.1145/2674005.2674989 .

[30] A. Ferguson and et al., “Participatory networking: An API for application control
of sdns,” in ACM Computer Communication Review (CCR), 2013, pp. 327–338. doi:

 10.1145/2534169.2486003 .

[31] P. Bosshart, D. Daly, G. Gibb, et al., “P4: programming protocol-independent packet
processors,” ACM Computer Communication Review (CCR), vol. 44, no. 3, pp. 87–95,
2014. doi: 10.1145/2656877.2656890 .

[32] H. Song, “Protocol-oblivious forwarding: Unleash the power of SDN through a future-
proof forwarding plane,” in ACM Workshop on Hot Topics in Software Defined Net-
working (HotSDN), 2013, pp. 127–132. doi: 10.1145/2491185.2491190 .

[33] C. Kozanitis and et all., “Leaping multiple headers in a single bound: Wire-speed
parsing using the kangaroo system,” in IEEE International Conference on Computer
Communications (INFOCOM), 2010, pp. 830–838. doi: 10 . 1109/ INFCOM.2010 .
5462139 .

110

https://doi.org/10.1145/2834050.2834106
https://github.com/openqueuenew/icnp
https://doi.org/10.1145/2034574.2034812
https://doi.org/10.1145/2534169.2486030
https://doi.org/10.1145/2674005.2674989
https://doi.org/10.1145/2534169.2486003
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/2491185.2491190
https://doi.org/10.1109/INFCOM.2010.5462139
https://doi.org/10.1109/INFCOM.2010.5462139

[34] A. Sivaraman, K. Winstein, S. Subramanian, and H. Balakrishnan, “No silver bullet:
Extending SDN to the data plane,” in ACM Workshop on Hot Topics in Networks
(HotNets), 2013, 19:1–19:7. doi: 10.1145/2535771.2535796 .

[35] A. Sivaraman, S. Subramanian, A. Agrawal, et al., “Programmable packet scheduling
at line rate,” in ACM Conference on Special Interest Group on Data Communication
(SIGCOMM), 2016, pp. 44–57. doi: 10.1145/2934872.2934899 .

[36] R. Mittal, R. Agarwal, S. Ratnasamy, and S. Shenker, “Universal packet scheduling,”
in USENIX Conference on Networked Systems Design and Implementation (NSDI),
2016, pp. 501–521.

[37] Y. Zhu, H. Eran, D. Firestone, et al., “Congestion control for large-scale rdma de-
ployments,” ACM Conference on Special Interest Group on Data Communication
(SIGCOMM), vol. 45, no. 4, 2015. doi: 10.1145/2829988.2787484 .

[38] R. Mittal, V. T. Lam, N. Dukkipati, et al., “Timely: Rtt-based congestion control for
the datacenter,” ACM Conference on Special Interest Group on Data Communication
(SIGCOMM), vol. 45, no. 4, 2015. doi: 10.1145/2785956.2787510 .

[39] Y. Li, R. Miao, H. H. Liu, et al., “HPCC: High precision congestion control,” in ACM
Conference on Special Interest Group on Data Communication (SIGCOMM), Beijing,
China: ACM, 2019, isbn: 978-1-4503-5956-6. doi: 10.1145/3341302.3342085 .

[40] R. Mittal, A. Shpiner, A. Panda, et al., “Revisiting Network Support for RDMA,” in
ACM Conference on Special Interest Group on Data Communication (SIGCOMM),
vol. 18, 2018. doi: 10.1145/3230543.3230557 .

[41] T. Benson, A. Akella, and D. A. Maltz, “Network Traffic Characteristics of Data
Centers in the Wild,” in Internet Measurement Conference (IMC), 2010. doi: 10 .
1145/1879141.1879175 .

[42] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The Nature of
Datacenter Traffic: Measurements & Analysis,” in Internet Measurement Conference
(IMC), 2009. doi: 10.1145/1644893.1644918 .

[43] M. Alizadeh, A. Greenberg, D. A. Maltz, et al., “Data Center TCP (DCTCP),” in
ACM Conference on Special Interest Group on Data Communication (SIGCOMM),
2010. doi: 10.1145/1851182.1851192 .

[44] B. Montazeri, Y. Li, M. Alizadeh, and J. Ousterhout, “Homa: A receiver-driven low-
latency transport protocol using network priorities,” in ACM Conference on Special
Interest Group on Data Communication (SIGCOMM), 2018. doi: 10.1145/3230543.
3230564 .

111

https://doi.org/10.1145/2535771.2535796
https://doi.org/10.1145/2934872.2934899
https://doi.org/10.1145/2829988.2787484
https://doi.org/10.1145/2785956.2787510
https://doi.org/10.1145/3341302.3342085
https://doi.org/10.1145/3230543.3230557
https://doi.org/10.1145/1879141.1879175
https://doi.org/10.1145/1879141.1879175
https://doi.org/10.1145/1644893.1644918
https://doi.org/10.1145/1851182.1851192
https://doi.org/10.1145/3230543.3230564
https://doi.org/10.1145/3230543.3230564

[45] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the Social Network’s
(Datacenter) Network,” in ACM Conference on Special Interest Group on Data Com-
munication (SIGCOMM), 2015. doi: 10.1145/2785956.2787472 .

[46] I. D. Standard, 802.1Qbb - Priority-based Flow Control, 2008.

[47] S. Hu, Y. Zhu, P. Cheng, et al., “Deadlocks in datacenter networks: Why do they form,
and how to avoid them,” in ACM Workshop on Hot Topics in Networks (HotNets),
2016. doi: 10.1145/3005745.3005760 .

[48] K. Qian, W. Cheng, T. Zhang, and F. Ren, “Gentle flow control: Avoiding deadlock
in lossless networks,” in ACM Conference on Special Interest Group on Data Com-
munication (SIGCOMM), 2019. doi: 10.1145/3341302.3342065 .

[49] Y. Zhu, M. Ghobadi, V. Misra, and J. Padhye, “ECN or Delay: Lessons Learnt from
Analysis of DCQCN and TIMELY,” in International Conference on emerging Net-
working EXperiments and Technologies (CoNEXT), 2016. doi: 10 . 1145/2999572 .
2999593 .

[50] Y. Gao, Y. Yang, T. Chen, J. Zheng, B. Mao, and G. Chen, “Taming Large-scale Incast
Congestion in RDMA over Ethernet Networks,” in IEEE International Conference on
Network Protocols (ICNP), 2018. doi: 10.1109/ICNP.2018.00021 .

[51] M. Alizadeh, B. Atikoglu, A. Kabbani, et al., “Data Center Transport Mechanisms:
Congestion Control Theory and IEEE Standardization,” in Annual Allerton Confer-
ence on Communication, Control, and Computing, 2008.

[52] P. Bosshart, D. Daly, G. Gibb, et al., “P4: Programming protocol-independent packet
processors,” ACM Conference on Special Interest Group on Data Communication
(SIGCOMM), vol. 44, no. 3, 2014. doi: 10.1145/2656877.2656890 .

[53] S. Ibanez, G. Antichi, G. Brebner, and N. McKeown, “Event-driven packet process-
ing,” in ACM Workshop on Hot Topics in Networks (HotNets), ser. HotNets ’19,
Princeton, NJ, USA: Association for Computing Machinery, 2019. doi: 10 . 1145 /
3365609.3365848 .

[54] R. Joshi, B. Leong, and M. C. Chan, “Timertasks: Towards time-driven execution in
programmable dataplanes,” in Proceedings of the ACM SIGCOMM 2019 Conference
Posters and Demos, 2019.

[55] J. Sonchack, A. J. Aviv, E. Keller, and J. M. Smith, “Turboflow: Information rich
flow record generation on commodity switches,” in European Conference on Computer
Systems (EuroSys), 2018. doi: 10.1145/3190508.3190558 .

112

https://doi.org/10.1145/2785956.2787472
https://doi.org/10.1145/3005745.3005760
https://doi.org/10.1145/3341302.3342065
https://doi.org/10.1145/2999572.2999593
https://doi.org/10.1145/2999572.2999593
https://doi.org/10.1109/ICNP.2018.00021
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/3365609.3365848
https://doi.org/10.1145/3365609.3365848
https://doi.org/10.1145/3190508.3190558

[56] G. Franklin, D. Powell, and A. Emami-Naeini, Feedback Control of Dynamic Systems.
1995.

[57] P. Taheri, D. Menikkumbura, E. Vanini, S. Fahmy, P. Eugster, and T. Edsall, “Rocc:
Robust congestion control for rdma,” in Proceedings of the 16th International Con-
ference on emerging Networking EXperiments and Technologies, 2020, pp. 17–30.

[58] R. Pan, L. Breslau, B. Prabhakar, and S. Shenker, “Approximate fairness through dif-
ferential dropping,” ACM Computer Communication Review (CCR), vol. 33, 2 2003.
doi: 10.1145/956981.956985 .

[59] R. Pan, P. Natarajan, C. Piglione, et al., “Pie: A lightweight control scheme to address
the bufferbloat problem,” in IEEE International Conference on High Performance
Switching and Routing (HPSR), IEEE, 2013. doi: 10.1109/HPSR.2013.6602305 .

[60] Y. Lu, M. Wang, B. Prabhakar, and F. Bonomi, “Elephanttrap: A low cost device
for identifying large flows,” in IEEE Symposium on High-Performance Interconnects
(HOTI), 2007. doi: 10.1109/HOTI.2007.13 .

[61] J. Ros-Giralt, A. Commike, S. Maji, and M. Veeraraghavan, “High speed elephant flow
detection under partial information,” in IEEE International Symposium on Networks,
Computers and Communications (ISNCC), IEEE, 2018. doi: 10.1109/ISNCC.2018.
8530979 .

[62] Pktgen, https://pktgen-dpdk.readthedocs.io/en/latest/index.html , 2021.

[63] Xilinx Vitis HLS, https://www.xilinx.com/html_docs/xilinx2020_2/vitis_doc/
vitis_hls_process.html , 2020.

[64] OMNeT++ Discrete Event Simulator, https://omnetpp.org/, 2018.

[65] E. Vanini, R. Pan, M. Alizadeh, P. Taheri, and T. Edsall, “Let it flow: Resilient asym-
metric load balancing with flowlet switching.,” in USENIX Conference on Networked
Systems Design and Implementation (NSDI), 2017.

[66] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz, “Detail: Reducing the flow
completion time tail in datacenter networks,” in ACM Conference on Special Interest
Group on Data Communication (SIGCOMM), 2012. doi: 10.1145/2342356.2342390 .

[67] iPerf, http://iperf.fr/, 2019.

[68] C. E. Leiserson, “Fat-trees: Universal networks for hardware-efficient supercomput-
ing,” IEEE Transactions on Computers, vol. 100, no. 10, 1985.

113

https://doi.org/10.1145/956981.956985
https://doi.org/10.1109/HPSR.2013.6602305
https://doi.org/10.1109/HOTI.2007.13
https://doi.org/10.1109/ISNCC.2018.8530979
https://doi.org/10.1109/ISNCC.2018.8530979
https://pktgen-dpdk.readthedocs.io/en/latest/index.html
https://www.xilinx.com/html_docs/xilinx2020_2/vitis_doc/vitis_hls_process.html
https://www.xilinx.com/html_docs/xilinx2020_2/vitis_doc/vitis_hls_process.html
https://doi.org/10.1145/2342356.2342390

[69] V. Arun and H. Balakrishnan, “Copa: Practical Delay-Based Congestion Control for
the Internet,” in USENIX Conference on Networked Systems Design and Implemen-
tation (NSDI), 2018, isbn: 978-1-931971-43-0. doi: 10.1145/3232755.3232783 .

[70] P. Goyal, M. Alizadeh, and H. Balakrishnan, “Rethinking Congestion Control for
Cellular Networks,” in ACM Workshop on Hot Topics in Networks (HotNets), 2017.
doi: 10.1145/3152434.3152437 .

[71] K. Winstein and H. Balakrishnan, “TCP ex Machina: Computer-Generated Conges-
tion Control,” in ACM Conference on Special Interest Group on Data Communication
(SIGCOMM), 2013, isbn: 9781450320566. doi: 10.1145/2486001.2486020 .

[72] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson, “BBR: Congestion-
Based Congestion Control,” ACM Queue, vol. 14, no. 5, 2016, issn: 1542-7730. doi:

 10.1145/3012426.3022184 .

[73] M. Dong, Q. Li, M. Schapira, D. Zarchy, and P. Brighten Godfrey, “PCC: Re-
architecting Congestion Control for Consistent High Performance,” in USENIX Con-
ference on Networked Systems Design and Implementation (NSDI), 2015. doi: 10.
5555/2789770.2789798 .

[74] M. Alizadeh, A. Kabbani, T. Edsall, and B. Prabhakar, “Less is More: Trading a Little
Bandwidth for Ultra-Low Latency in the Data Center,” in USENIX Conference on
Networked Systems Design and Implementation (NSDI), 2012, isbn: 978-931971-92-8.

[75] S. Huang, D. Dong, and W. Bai, “Congestion Control in High-speed Lossless Data
Center Networks: A Survey,” Future Generation Computer Systems, vol. 89, 2018.
doi: 10.1016/j.future.2018.06.036 .

[76] D. Katabi, M. Handley, and C. Rohrs, “Congestion control for high bandwidth-delay
product networks,” in ACM Conference on Special Interest Group on Data Commu-
nication (SIGCOMM), 2002. doi: 10.1145/633025.633035 .

[77] C.-H. Tai, J. Zhu, and N. Dukkipati, “Making large scale deployment of rcp practical
for real networks,” in IEEE International Conference on Computer Communications
(INFOCOM), IEEE, 2008. doi: 10.1109/INFOCOM.2008.285 .

[78] J. Zhang, F. Ren, R. Shu, and P. Cheng, “Tfc: Token flow control in data center
networks,” in European Conference on Computer Systems (EuroSys), 2016. doi: 10.
1145/2901318.2901336 .

[79] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics of data centers
in the wild,” in ACM Internet Measurement Conference (IMC), 2010, pp. 267–280.
doi: 10.1145/1879141.1879175 .

114

https://doi.org/10.1145/3232755.3232783
https://doi.org/10.1145/3152434.3152437
https://doi.org/10.1145/2486001.2486020
https://doi.org/10.1145/3012426.3022184
https://doi.org/10.5555/2789770.2789798
https://doi.org/10.5555/2789770.2789798
https://doi.org/10.1016/j.future.2018.06.036
https://doi.org/10.1145/633025.633035
https://doi.org/10.1109/INFOCOM.2008.285
https://doi.org/10.1145/2901318.2901336
https://doi.org/10.1145/2901318.2901336
https://doi.org/10.1145/1879141.1879175

[80] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the social network’s
(datacenter) network,” ACM Conference on Special Interest Group on Data Commu-
nication (SIGCOMM), vol. 45, pp. 123–137, 2015. doi: 10.1145/2785956.2787472 .

[81] 802.1Qbb – Priority-based Flow Control, https://1.ieee802.org/dcb/802-1qbb/, 2019.

[82] B. Stephens, A. L. Cox, A. Singla, J. Carter, C. Dixon, and W. Felter, “Practical DCB
for improved data center networks,” in IEEE International Conference on Computer
Communications (INFOCOM), 2014, pp. 1824–1832. doi: 10.1109/INFOCOM.2014.
6848121 .

[83] A. Shpiner, E. Zahavi, V. Zdornov, T. Anker, and M. Kadosh, “Unlocking credit loop
deadlocks,” in ACM Workshop on Hot Topics in Networks (HotNets), 2016, pp. 85–
91. doi: 10.1145/3005745.3005768 .

[84] S. N. Avci, Z. Li, and F. Liu, “Congestion aware priority flow control in data center
networks,” in IFIP Networking, 2016, pp. 126–134. doi: 10.1109/IFIPNetworking.
2016.7497228 .

[85] S. Hu, Y. Zhu, P. Cheng, et al., “Tagger: Practical PFC deadlock prevention in data
center networks,” in International Conference on emerging Networking EXperiments
and Technologies (CoNEXT), 2017, pp. 451–463. doi: 10.1145/3143361.3143382 .

[86] RoCE v2 Considerations, https://community.mellanox.com/s/article/roce-v2-considerations,
2019.

[87] Y. Zhu, H. Eran, D. Firestone, et al., “Congestion control for large-scale RDMA
deployments,” ACM Computer Communication Review (CCR), vol. 45, pp. 523–536,
2015. doi: 10.1145/2829988.2787484 .

[88] R. Mittal, V. T. Lam, N. Dukkipati, et al., “TIMELY: RTT-based congestion control
for the datacenter,” ACM Computer Communication Review (CCR), vol. 45, no. 4,
pp. 537–550, 2015. doi: 10.1145/2829988.2787510 .

[89] Y. Li, R. Miao, H. H. Liu, et al., “HPCC: High precision congestion control,” in ACM
Conference on Special Interest Group on Data Communication (SIGCOMM), 2019,
pp. 44–58. doi: 10.1145/3341302.3342085 .

[90] M. P. Grosvenor, M. Schwarzkopf, I. Gog, et al., “Queues don’t matter when you can
jump them!” In USENIX Conference on Networked Systems Design and Implemen-
tation (NSDI), Oakland, CA, May 2015, pp. 1–14.

115

https://doi.org/10.1145/2785956.2787472
https://doi.org/10.1109/INFOCOM.2014.6848121
https://doi.org/10.1109/INFOCOM.2014.6848121
https://doi.org/10.1145/3005745.3005768
https://doi.org/10.1109/IFIPNetworking.2016.7497228
https://doi.org/10.1109/IFIPNetworking.2016.7497228
https://doi.org/10.1145/3143361.3143382
https://doi.org/10.1145/2829988.2787484
https://doi.org/10.1145/2829988.2787510
https://doi.org/10.1145/3341302.3342085

[91] M. Alizadeh, S. Yang, M. Sharif, et al., “Pfabric: Minimal near-optimal datacenter
transport,” ACM Computer Communication Review (CCR), vol. 43, pp. 435–446,
2013. doi: 10.1145/2534169.2486031 .

[92] M. Karol, S. J. Golestani, and D. Lee, “Prevention of deadlocks and livelocks in loss-
less backpressured packet networks,” IEEE/ACM Transactions on Networking (ToN),
vol. 11, pp. 923–934, 2003. doi: 10.1109/TNET.2003.820434 .

[93] J. Coffman Edward G. and A. Elphick Michael J. nad Shoshani, “System Deadlocks,”
ACM Computing Surveys, vol. 3, no. 2, pp. 67–78, 1971. doi: 10.1145/356586.356588 .

[94] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data center net-
work architecture,” ACM Computer Communication Review (CCR), vol. 38, pp. 63–
74, 2008. doi: 10.1145/1402946.1402967 .

[95] FPGA, https : / / www . xilinx . com / products / silicon - devices / fpga / what - is - an -
fpga.html , 2021.

[96] Intelligent Buffer Management on Cisco Nexus 9000 Series Switches, 2017.

[97] M. Alizadeh, T. Edsall, S. Dharmapurikar, et al., “CONGA: Distributed congestion-
aware load balancing for datacenters,” ACM Conference on Special Interest Group
on Data Communication (SIGCOMM), vol. 44, pp. 503–514, 2014. doi: 10 .1145/
2619239.2626316 .

[98] V. Shrivastav, “Fast, scalable, and programmable packet scheduler in hardware,” in
ACM Conference on Special Interest Group on Data Communication (SIGCOMM),
2019, pp. 367–379. doi: 10.1145/3341302.3342090 .

[99] Escape repository, https://github.com/escape-repo , 2021.

[100] OMNeT++ Discrete Event Simulator, https://omnetpp.org/, 2018.

[101] C. Guo, H. Wu, Z. Deng, et al., “RDMA over commodity ethernet at scale,” in ACM
Conference on Special Interest Group on Data Communication (SIGCOMM), 2016,
pp. 202–215. doi: 10.1145/2934872.2934908 .

[102] W. J. Dally and H. Aoki, “Deadlock-free adaptive routing in multicomputer net-
works using virtual channels,” IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 4, pp. 466–475, 1993. doi: 10.1109/71.219761 .

[103] J. Wu and L. Sheng, “Deadlock-free routing in irregular networks using prefix rout-
ing,” in Proc. of the ISCA 12th International Conference on Parallel and Distributed
Computing Systems, 1999, pp. 424–430.

116

https://doi.org/10.1145/2534169.2486031
https://doi.org/10.1109/TNET.2003.820434
https://doi.org/10.1145/356586.356588
https://doi.org/10.1145/1402946.1402967
https://www.xilinx.com/products/silicon-devices/fpga/what-is-an-fpga.html
https://www.xilinx.com/products/silicon-devices/fpga/what-is-an-fpga.html
https://doi.org/10.1145/2619239.2626316
https://doi.org/10.1145/2619239.2626316
https://doi.org/10.1145/3341302.3342090
https://github.com/escape-repo
https://doi.org/10.1145/2934872.2934908
https://doi.org/10.1109/71.219761

[104] J. C. Sancho, A. Robles, J. Flich, P. Lopez, and J. Duato, “Effective methodology for
deadlock-free minimal routing in InfiniBand networks,” in International Conference
on Parallel Processing (ICPP), 2002, pp. 409–418. doi: 10.1109/ICPP.2002.1040897 .

[105] J. Domke, T. Hoefler, and W. E. Nagel, “Deadlock-free oblivious routing for arbi-
trary topologies,” in IEEE International Parallel & Distributed Processing Symposium
(IPDPS), 2011, pp. 616–627. doi: 10.1109/IPDPS.2011.65 .

[106] J. Duato, “A new theory of deadlock-free adaptive routing in wormhole networks,”
IEEE Transactions on Parallel and Distributed Systems, vol. 4, no. 12, pp. 1320–1331,
1993. doi: 10.1109/71.250114 .

[107] J. Flich, T. Skeie, A. Mejia, et al., “A survey and evaluation of topology-agnostic
deterministic routing algorithms,” IEEE Transactions on Parallel and Distributed
Systems, vol. 23, no. 3, pp. 405–425, 2011. doi: 10.1109/TPDS.2011.190 .

[108] K. Anjan and T. M. Pinkston, “DISHA: A deadlock recovery scheme for fully adaptive
routing,” in International Parallel Processing Symposium (IPPS), 1995. doi: 10.1109/
IPPS.1995.395983 .

[109] Y. Tamir and G. L. Frazier, “High-performance multi-queue buffers for vlsi commu-
nications switches,” ACM SIGARCH Computer Architecture News, vol. 16, no. 2,
pp. 343–354, 1988. doi: 10.1145/633625.52439 .

[110] K. Zarifis, R. Miao, M. Calder, E. Katz-Bassett, M. Yu, and J. Padhye, “Dibs: Just-
in-time congestion mitigation for data centers,” in European Conference on Computer
Systems (EuroSys), 2014, pp. 1–14. doi: 10.1145/2592798.2592806 .

[111] M. Budiu and C. Dodd, “The p416 programming language,” ACM SIGOPS Operating
Systems Review, vol. 51, no. 1, 2017, issn: 0163-5980. doi: 10.1145/3139645.3139648 .

[112] G. Ramamurthy and B. Sengupta, “A predictive hop-by-hop congestion control policy
for high speed networks,” in IEEE International Conference on Computer Commu-
nications (INFOCOM), IEEE, 1993, pp. 1033–1041. doi: 10.1109/INFCOM.1993.
253262 .

[113] S. Jagannathan and J. Talluri, “Predictive congestion control of atm networks: Mul-
tiple sources/single buffer scenario,” Automatica, vol. 38, no. 5, pp. 815–820, 2002.
doi: 10.1016/S0005-1098(01)00259-X .

[114] M. Zawodniok and S. Jagannathan, “Predictive congestion control protocol for wire-
less sensor networks,” IEEE Transactions on Wireless Communications, vol. 6, no. 11,
pp. 3955–3963, 2007. doi: 10.1109/TWC.2007.051035 .

117

https://doi.org/10.1109/ICPP.2002.1040897
https://doi.org/10.1109/IPDPS.2011.65
https://doi.org/10.1109/71.250114
https://doi.org/10.1109/TPDS.2011.190
https://doi.org/10.1109/IPPS.1995.395983
https://doi.org/10.1109/IPPS.1995.395983
https://doi.org/10.1145/633625.52439
https://doi.org/10.1145/2592798.2592806
https://doi.org/10.1145/3139645.3139648
https://doi.org/10.1109/INFCOM.1993.253262
https://doi.org/10.1109/INFCOM.1993.253262
https://doi.org/10.1016/S0005-1098(01)00259-X
https://doi.org/10.1109/TWC.2007.051035

[115] P. G. Kulkarni, S. I. McClean, G. P. Parr, and M. M. Black, “Proactive predictive
queue management for improved qos in ip networks,” in International Conference on
Networking, International Conference on Systems and International Conference on
Mobile Communications and Learning Technologies (ICNICONSMCL), IEEE, 2006,
pp. 7–7. doi: 10.1109/ICNICONSMCL.2006.175 .

118

https://doi.org/10.1109/ICNICONSMCL.2006.175

	TITLE PAGE
	COMMITTEE APPROVAL
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	ABSTRACT
	Introduction
	Buffer Management
	Congestion Control
	Head-of-line Block Clearance
	Thesis Statement
	Contributions

	Software-Defined Buffer Management
	Introduction
	OpenQueue Design
	Overview
	Multiple Queues
	Priority Queue
	Policy Framework

	OpenQueue Language
	Rules
	Abstract Interfaces

	Using OpenQueue
	Example Policy Definitions
	Configure a Switching Fabric

	Feasibility of OpenQueue
	OpenQueue in the Linux Kernel
	OpenQueue Code Generation for Linux Kernel
	Priority Queue and Performance
	Evaluation of Operational Complexity in DPDK

	Related Work
	Chapter Summary

	A Control-Theoretic Approach for Congestion Control in Datacenter Networks
	Introduction
	Solution Requirements
	meRoCC Design
	Definitions
	CP Algorithm
	Feedback Message
	Flow Table
	RP Algorithm
	Rate Computation at the Host

	Implementation
	Basics
	P4 Implementation
	FPGA Implementation

	Evaluation
	Micro-Benchmarks
	Evaluation with DPDK Implementation
	Evaluation with P4 Implementation
	Large-Scale Simulations

	Related Work
	Chapter Summary

	A Solution to PFC-induced Head-of-the-Line Blocking in Datacenter Networks
	Introduction
	Design Rationale
	Design Goals
	Dissecting hol Blocking
	Key Insight

	Escape
	Overview
	Algorithm
	Design Details

	Verification
	Properties
	hol Block Clearance [clr]
	Zero Frame Drop [drp]
	In Order Frame Delivery [ord]
	Termination of Algorithm

	Implementation
	Escape Components
	FPGA Implementation
	DPDK Implementation

	Evaluation
	Micro-Benchmarks
	DPDK-based Prototype Evaluation
	Datacenter Simulations
	Escape vs. State of the Art
	FCT Reduction in Absence of Deadlocks

	Related Work
	Chapter Summary

	Conclusions and Future Work
	OpenQueue Implementation in Hardware
	Predictive Congestion Control
	Extensibility of Escape
	Large-scale Evaluation

	REFERENCES

