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ABSTRACT

Applied topology is a rapidly growing discipline aiming at using ideas coming from al-

gebraic topology to solve problems in the real world, including analyzing point cloud data,

shape analysis, etc. Semi-algebraic geometry deals with studying properties of semi-algebraic

sets that are subsets of Rn and defined in terms of polynomial inequalities. Semi-algebraic

sets are ubiquitous in applications in areas such as modeling, motion planning, etc. Devel-

oping efficient algorithms for computing topological invariants of semi-algebraic sets is a rich

and well-developed field. However, applied topology has thrown up new invariants—such

as persistent homology and barcodes—which give us new ways of looking at the topology

of semi-algebraic sets. In this thesis, we investigate the interplay between these two areas.

We aim to develop new efficient algorithms for computing topological invariants of semi-

algebraic sets, such as persistent homology, and to develop new mathematical tools to make

such algorithms possible.
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1. INTRODUCTION

In this thesis we address two main problems:

• First, we explore a weak version of one of the long-lasting problems in algorithmic

semi-algebraic geometry, namely designing an algorithm with a singly exponential com-

plexity for computing semi-algebraic triangulations of a given semi-algebraic set. In

particular, we present a singly exponential complexity simplicial replacement that is

ℓ-equivalent (for any fixed ℓ ě 0) to a given semi-algebraic set. As a result, we obtain a

reduction for the problem of computing the first ℓ homotopy groups of a semi-algebraic

set to the combinatorial problem of computing the first ℓ homotopy groups of a finite

simplicial complex.

• Second, we address a more recent notion from Computational Topology known as per-

sistent homology. We present the first known singly exponential complexity algorithm

to compute the barcodes up to dimension ℓ of the filtration of a given semi-algebraic

set by the sub-level sets of a given polynomial. Our algorithm is a generalization

of the corresponding results for computing the Betti numbers up to dimension ℓ of

semi-algebraic sets where no filtration is present.

1.1 Real Algebraic Geometry

Algebraic Geometry is the study of geometric spaces that arise from solution sets of

systems of polynomials over algebraically closed fields. A simple example is the zero set of

a univariate polynomial of degree d with complex coefficients that always include d roots.

However, if we consider a univariate polynomial of degree d over the real numbers, different

situations concerning the zero set could arise. It is significant to notice that restriction to the

real closed fields could give rise to problems that do not have any counterpart in Algebraic

Geometry over the complex numbers. In practice, we are often interested in solution sets over
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the real numbers; examples of that include the algebra of constrained motion in molecules and

robotic planning. Real Algebraic Geometry is a branch of Algebraic Geometry that focuses

on the solution sets of a finite system of polynomial inequalities over the real numbers, or

broadly a real closed field. In particular, Real Algebraic Geometry addresses algorithmic

and quantitative problems concerning semi-algebraic sets. Let R be a real closed field, a

basic semi-algebraic subset of Rk is defined as

S “ tx P Rk
| Pipxq ą 0 or Pipxq “ 0, Pi P RrX1, . . . Xks, 1 ď i ď nu,

where x “ px1, . . . , xkq. A semi-algebraic set is a finite union of basic semi-algebraic sets.

Due to the fact that first-order theory of real closed fields admits quantifier-elimination,

we often assume S is presented as input to our algorithms in terms of a quantifier-free

formula ϕpX1, . . . , Xkq, that is a formula with atoms of the form P “ 0, P ą 0, P ă 0,

P P DrX1, . . . , Xks, where D is an ordered domain contained in R. This assumption provides

us with a framework to effectively analyze the algorithms. In particular, by complexity of

an algorithm we mean the number of arithmetic operations and comparisons in the domain

D. Therefore, the concept of complexity depends on the choice of the domain D. If we let

D “ R, then we can pick Blum-Shub-Smale machines to describe computations over the real

numbers [ 1 ]. If we let D “ Z, we can use Turing machines to explain the complexity of our

algorithms by obtaining the bit-sizes of the coefficients of the input polynomials [ 2 ].

1.2 Computational Topology

Computational Topology provides mathematical tools from Algebraic Topology to deter-

mine the structure of the topological spaces. Topological properties encode connectivity and

measure the complexity of the space. Homology groups are important topological invariants.

Informally, in lower dimensions they are usually referred to as the connected components, the

holes, and the void spaces, respectively in dimensions 0, 1, and 2; in the higher dimensions,

they are known as p-dimensional holes. The rank of the p-th homology group, HppSq, of a

semi-algebraic set S defined over R, is known as the p-th Betti number, denoted by bppSq.

10



More recently, the emerging field of Topological Data Analysis (TDA) has provided new

notions associated with a sequence of topological spaces, such as persistent homology and

barcode. TDA has shown promising results in data analysis by effectively filtering out

noisy data and capturing the underlying structure of the space (e.g., point cloud data) [ 3 ].

Extracted topological properties can be directly analyzed or used as features for downstream

prediction tasks to classify and distinguish the global differences between spaces.

Persistent homology groups generalize ordinary homology groups of a space X where

no filtration is present. Given a filtration F “ pXtqtPT of the topological space X, such

that for any s ď t ñ Xs Ă Xt, the p-th persistent homology groups of X is defined by

Hs,t
p pFq “ Impis,t

p q, where is,t
p : HppXsq ÝÑ HppXtq is the homomorphism induced by the

inclusion map Xs ãÑ Xt. Persistent homology determines the lifetime of the homology classes

in the filtration. Homology classes that persist for a longer period, through the filtration,

best represent the properties of the underlying structure, and the rest are considered as noise.

This characteristic is the basic principle of the persistent homology frameworks. The output

of a persistent homology computation is usually expressed in the form of barcodes [ 4 ].

1.3 Algorithmic semi-algebraic geometry

One of the main problems in algorithmic semi-algebraic geometry is to design efficient

(singly exponential complexity) algorithms to compute the topological invariants of semi-

algebraic sets [ 5 ]. Given a closed and bounded semi-algebraic set S Ă Rk described by

a quantifier-free formula involving s polynomials of degrees bounded by d, there exists an

algorithm that generates a semi-algebraic triangulation of S. As a result, there exists a finite

simplicial complex which is semi-algebraically homeomorphic to S, and hence has the same

topological properties as S. However, the complexity of the algorithm is doubly exponential

in k, i.e., psdq2Opkq [ 2 , Chapter 5]. Note that if we have the semi-algebraic triangulation of

S, then we can use linear algebra to compute Betti numbers in a polynomial time in the

number of simplices.
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Despite the tremendous effort to improve this upper bound, designing a singly exponen-

tial complexity algorithm to compute a semi-algebraic triangulation of S remains an open

problem.

In this thesis we first improve the current state of the art algorithm for the weak version

of the above problem, then we extend our result and explore a different direction, namely

persistent homology. Below, we briefly present the main contributions and leave the precise

statements of the results for their corresponding chapters.

1.3.1 Simplicial replacement of semi-algebraic sets

A semi-algebraic triangulation of the space encodes more information about the topology

of the space compared to that of homology groups. In particular, a semi-algebraic trian-

gulation determines the homeomorphism invariants, which are not easy to compute. More

precisely, determining whether two simplicial complexes are homeomorphic is an undecidable

problem [ 6 ]. Therefore, we relax the problem and consider a weaker equivalence—namely

homotopies—instead of homeomorphism.

We will call a simplicial replacement of the semi-algebraic set S to be a simplicial complex

K whose geometric realization |K| is homotopy equivalent to S, and more importantly its

complexity is bounded by psdqkOp1q . Based on this notion, we will prove the following theorem,

whose precise statements appear in Chapter  2 .

In the statements below ℓ P Zě0 is a fixed constant.

Theorem (cf. Theorems  2.2.1 and  2.2.11
 below). Given any closed semi-algebraic subset of

S Ă Rk, there exists a simplicial complex K homologically ℓ-equivalent to S whose size is

bounded singly exponentially in k (as a function of the number and degrees of polynomials

appearing in the description of S). If R “ R, then K is ℓ-equivalent to S. Moreover,

there exists an algorithm (Algorithm  3 ) which computes the complex K given S, and whose

complexity is bounded singly exponentially in k.

Previously, Basu et al. [ 7 ], [ 8 ] proposed algorithms to compute the first ℓ Betti num-

bers of the given semi-algebraic set with singly exponential complexity algorithms, psdqkOp1q .

12



However, their algorithms only consider homology groups and disregard information about

homotopy invariants; moreover, they do not produce a simplicial complex.

We also obtain the following corollary that gives an algorithmic reduction of the problem

of computing the first ℓ homotopy groups of a given closed semi-algebraic set to a purely

combinatorial problem.

Corollary (cf. Corollaries  1 and  2 below). Let R “ R, there exists a reduction having

singly exponential complexity, of the problem of computing the first ℓ homotopy groups of

any given closed semi-algebraic subset S Ă Rk, to the problem of computing the first ℓ

homotopy groups of a finite simplicial complex. This implies that there exists an algorithm

with singly exponential complexity which given as input a closed semi-algebraic set S Ă Rk

guaranteed to be simply connected, outputs the description of the first ℓ homotopy groups of

S (in terms of generators and relations).

The algorithmic results mentioned above are consequences of a topological construction

which can be interpreted as a generalization of the classical “nerve lemma” in topology. We

state it here informally.

First, assume that there exists a “black-box” that given as input any closed semi-algebraic

set S Ă Rk, produces as output a cover of S by closed semi-algebraic subsets of S, which are

homologically ℓ-connected.

Theorem (cf. Theorem  2.3.1 below). Given a black-box as above, there exists for every

closed semi-algebraic set S a poset PpSq (see Definition  2.3.3 below) which depends on the

given black-box, of controlled complexity (both in terms of the description of S and the com-

plexity of the black-box), such that the geometric realization of the order-complex of PpSq is

homologically ℓ-equivalent to S.

1.3.2 Persistent homology of semi-algebraic sets

In Chapter  3 , we build on our previous results and initiate the algorithmic problem of

computing persistent homology groups of semi-algebraic sets equipped with a filtration of

the sub-level sets of a polynomial. Previous literature has focused on finite filtrations of

13



topological spaces, however, here we have filtrations of semi-algebraic sets by polynomials

which are continuous functions. Therefore, one intermediate contribution of our work is

that we reformulate the definition of barcode to extend to the continuous filtration, and

then present a reduction from a barcode of a continuous filtration to the barcode of a finite

filtration. This is possible since the topological type of the sub-level sets of a filtration of a

semi-algebraic set by a semi-algebraic function changes at only finitely many values of the

function.

We prove the following theorem stated below informally. The formal statement appears

later in Chapter  3 .

Theorem (cf. Theorem  3.2.1 ). There exists an algorithm (Algorithm  8 ) that takes as input

a description of a closed and bounded semi-algebraic set S Ă Rk, and a polynomial P P

RrX1, . . . , Xks, and outputs the “barcodes” (cf. Definition  3.2.5 below) in dimensions 0 to

ℓ of the filtration of S by the sub-level sets of the polynomial P . The complexity of this

algorithm is bounded singly exponentially in k (as a function of the number and degrees of

polynomials appearing in the description of S).
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2. EFFICIENT SIMPLICIAL REPLACEMENT OF

SEMI-ALGEBRAIC SETS

This chapter is organized as follows. In Section  2.1 , we briefly review the previous works.

In Section  2.2 we give precise statements of the main results summarized above after in-

troducing the necessary definitions regarding the different notions of topological equivalence

that we use. In Section  2.3 we define the key mathematical object (namely, a poset that

we associate to any closed covering of a semi-algebraic set) and prove its main properties

(Theorems  2.3.1 and  2.3.11
 ). In Section  2.4 we describe algorithms for computing efficient

simplicial replacements of semi-algebraic sets thereby proving Theorems  2.2.1 and  2.2.11
 . In

Section  2.5 , we explain the details of our implementation and report some of its results.

Finally, in Section  2.6 we state some open questions and directions for future work in this

area.

2.1 Background

Semi-algebraic subsets of Rk have tame topology. In particular, closed and bounded

semi-algebraic subsets of Rk are semi-algebraically triangulable (see for example [ 2 , Chapter

5]). This means that there exists a finite simplicial complex K, whose geometric realization,

|K|, considered as a subset of RN for some N ą 0, is semi-algebraically homeomorphic to S.

The semi-algebraic homeomorphism |K| Ñ S is called a semi-algebraic triangulation of S.

All topological properties of S are then encoded in the finite data of the simplicial complex

K.

For instance, taking R “ R, the (singular) homology groups, H˚pSq 

1
 , of S are isomorphic

to the simplicial homology groups of the simplicial chain complex C‚pKq of the simplicial

complex K, and the latter is a complex of free Z-modules having finite ranks.
1

 Ò In this chapter, we assume all homology and cohomology groups are with coefficients in Z.
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The problem of designing an efficient algorithm for obtaining semi-algebraic triangu-

lations has attracted a lot of attention over the years. There exists a classical algorithm

which takes as input a quantifier-free formula defining a semi-algebraic set S, and produces

as output a semi-algebraic triangulation of S (see for instance [ 2 , Chapter 5]). However,

this algorithm is based on the technique of cylindrical algebraic decomposition, and hence

the complexity of this algorithm is prohibitively expensive, being doubly exponential in k.

More precisely, given a description by a quantifier-free formula involving s polynomials of

degree at most d, of a closed and bounded semi-algebraic subset of S Ă Rk, there exists

an algorithm computing a semi-algebraic triangulation of h : |K| Ñ S, whose complexity

is bounded by psdq2Opkq . Moreover, the size of the simplicial complex K (measured by the

number of simplices) is also bounded by psdq2Opkq .

2.1.1 Doubly exponential vs singly exponential

One can ask whether the doubly exponential behavior for the semi-algebraic triangulation

problem is intrinsic to the problem. One reason to think that it is not so comes from the fact

that the ranks of the homology groups of S (following the same notation as in the previous

paragraph), and so in particular those of the simplicial complex K, is bounded by pOpsdqqk

(see for instance [ 2 , Chapter 7]), which is singly exponential in k. So it is natural to ask if this

singly exponential upper bound on rankpH˚pSqq is “witnessed” by an efficient semi-algebraic

triangulation of small (i.e. singly exponential) size. This is not known.

In fact, designing an algorithm with a singly exponential complexity for computing a

semi-algebraic triangulation of a given semi-algebraic set has remained a holy grail in the

field of algorithmic real algebraic geometry and little progress has been made over the last

thirty years on this problem (at least for general semi-algebraic sets).

2.1.2 Comparison with prior and related results

As stated previously, there is no algorithm known for computing the Betti numbers of

semi-algebraic sets having singly exponential complexity. However, algorithms with singly

exponential complexity are known for computing certain (small) Betti numbers. The zero-th
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Betti number of a semi-algebraic set is just the number of its semi-algebraically connected

components. Counting the number of semi-algebraically connected components of a given

semi-algebraic set is a well-studied problem and algorithms with singly exponential com-

plexity are known for solving this problem [ 9 ]–[ 11 ]. In [ 7 ] a singly exponential complexity

algorithm is given for computing the first Betti number of semi-algebraic sets, and this was

extended to the first ℓ (for any fixed constant ℓ) Betti numbers in [ 8 ]. These algorithms

do not produce a simplicial complex homotopy equivalent (or ℓ-equivalent) to the given

semi-algebraic set.

In [ 12 ]–[ 14 ], the authors take a different approach. Working over R, and given a well-

conditioned semi-algebraic subset S Ă Rk, they compute a witness complex whose geometric

realization is k-equivalent to S. The size of this witness complex is bounded singly expo-

nentially in k. However, the complexity depends on the condition number of the input (and

so this bound is not uniform), and the algorithm will fail for ill-conditioned input when the

condition number becomes infinite. This is unlike the kind of algorithms we consider here,

which are supposed to work for all inputs and with uniform complexity upper bounds. So

these approaches are not comparable.

While the approaches in [ 7 ], [  8 ] and those in [ 12 ]–[ 14 ] are not comparable, since the

meaning of what constitutes an algorithm and the notion of complexity are different, there

is a common connection between the results of these papers and those in the current chapter

which we elucidate below.

Separation of complexity into algebraic and combinatorial parts  

2
 

In the definition of complexity given earlier we are counting only arithmetic operations

involving elements of the ring generated by the coefficients of the input formulas. Many

algorithms in semi-algebraic geometry have the following feature. After a certain number of

operations involving elements of the coefficient ring D, the problem is reduced to solving a

combinatorial or a linear algebra problem defined over Z.
2

 Ò Note that this notion of separation of complexity into algebraic and combinatorial parts is distinct from
that used in [  2 ], where “combinatorial part” refers to the part depending on the number of polynomials, and
the“algebraic part” refers to the dependence on the degrees of the polynomials.
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A typical example is an algorithm for computing the Betti numbers of a semi-algebraic

set via computing a semi-algebraic triangulation. Once a simplicial complex whose geomet-

ric realization is semi-algebraically homeomorphic to the given semi-algebraic set has been

computed, the problem of computing the Betti numbers of the given semi-algebraic set is

reduced to linear algebra over Z. Usually, this separation of the cost of an algorithm into

a part that involves arithmetic operations over D, and a part that is independent of D, is

not very important since often the complexity of the second part is subsumed by that of

the first part. However, here the fact that we are only counting arithmetic operations in D

is more significant. In one application that we discuss, namely that of computing the ho-

motopy groups of a given semi-algebraic set (see Corollary  1 ), we give a reduction (having

single exponential complexity) to a problem whose definition is independent of D, namely

computing the homotopy groups of a simplicial complex. Note that the problem of deciding

whether the first homotopy group of a simplicial complex is trivial or not is an undecidable

problem (this fact follows from the undecidability of the word problem for groups [  15 ]).

2.2 Precise statements of the main results

In this section we will describe in full detail the main results summarized in the Sec-

tion  1.3.1 . We first introduce certain preliminary definitions and notation.

2.2.1 Definitions of topological equivalence and complexity

We begin with the precise definitions of the two kinds of topological equivalence that

here we are going to use.

Topological equivalences

Definition 2.2.1 (ℓ-equivalences). We say that a map f : X Ñ Y between two topological

spaces is an ℓ-equivalence, if the induced homomorphisms between the homotopy groups f˚ :

πipXq Ñ πipY q are isomorphisms for 0 ď i ď ℓ [ 15 , page 68].
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Remark 1. Note that our definition of ℓ-equivalence deviates a little from the standard one

which requires that homomorphisms between the homotopy groups f˚ : πipXq Ñ πipY q are

isomorphisms for 0 ď i ď ℓ´ 1, and only an epimorphism for i “ ℓ. An ℓ-equivalence in our

sense is an ℓ-equivalence in the traditional sense.

The relation of ℓ-equivalence as defined above is not an equivalence relation since it is

not symmetric. In order to make it symmetric one needs to “formally invert” ℓ-equivalences.

Definition 2.2.2 (ℓ-equivalent and homologically ℓ-equivalent). We will say that X is ℓ-

equivalent to Y (denoted X „ℓ Y ), if and only if there exists spaces, X “ X0, X1, . . . , Xn “ Y

and ℓ-equivalences f1, . . . , fn as shown below:

X1
f1

~~

f2

  

X3
f3

~~

f4

  

¨ ¨ ¨ ¨ ¨ ¨ Xn´1
fn´1

||

fn

""

X0 X2 ¨ ¨ ¨ ¨ ¨ ¨ Xn

.

It is clear that „ℓ is an equivalence relation.

By replacing the homotopy groups, πip¨q with homology groups Hip¨q (resp. cohomology

groups Hi
p¨q with arrows reversed) in Definitions  2.2.1 and  2.2.2 , we get the notion of two

topological spaces X, Y being homologically ℓ-equivalent (denoted X
h
„ℓ Y ) (resp. cohomo-

logically ℓ-equivalent (denoted X ch
„ℓ Y )).

This is a strictly weaker equivalence relation, since there are spaces X for which H1pXq “

0, but π1pXq ‰ 0.

We extend the above definitions to ℓ “ ´1 by using the convention that X „´1 Y (resp.

X
h
„´1 Y , X ch

„´1 Y ), if and only if X, Y are both non-empty or both empty.

Definition 2.2.3 (ℓ-connected and homologically ℓ-connected). We say that a topological

space X is ℓ-connected, for ℓ ě 0, if X is connected and πipXq “ 0 for 0 ă i ď ℓ. We will

say that X is p´1)-connected if X is non-empty. We say that X is homologically ℓ-connected

if X is connected and HipXq “ 0 for 0 ă i ď ℓ.

Definition 2.2.4 (Diagrams of topological spaces). A diagram of topological spaces is a

functor, X : J Ñ Top, from a small category J to Top.
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We extend Definition  2.2.1 to diagrams of topological spaces. We denote by Top the

category of topological spaces.

Definition 2.2.5 (ℓ-equivalence between diagrams of topological spaces). Let J be a small

category, and X, Y : J Ñ Top be two functors. We say a natural transformation f : X Ñ Y

is an ℓ equivalence, if the induced maps,

fpjq˚ : πipXpjqq Ñ πipY pjqq

are isomorphisms for all j P J and 0 ď i ď ℓ.

We will say that a diagram X : J Ñ Top is ℓ-equivalent to the diagram Y : J Ñ Top

(denoted as before by X „ℓ Y ), if and only if there exists diagrams X “ X0, X1, . . . , Xn “

Y : J Ñ Top and ℓ-equivalences f1, . . . , fn as shown below:

X1
f1

~~

f2

  

X3
f3

~~

f4

  

¨ ¨ ¨ ¨ ¨ ¨ Xn´1
fn´1

||

fn

""

X0 X2 ¨ ¨ ¨ ¨ ¨ ¨ Xn

.

It is clear that „ℓ is an equivalence relation.

In the above definition, by replacing the homotopy groups with homology (resp. cohomol-

ogy) groups we obtain the notion of homological (resp. cohomological) ℓ-equivalence between

diagrams, which we will denote as before by h
„ℓ (resp. ch

„ℓ).

One particular diagram will be important in what follows.

Notation 1 (Diagram of various unions of a finite number of subspaces). Let J be a finite

set, A a topological space, and A “ pAjqjPJ a tuple of subspaces of A indexed by J .
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For any subset J 1 Ă J  

3
 , we denote

AJ 1

“
ď

j1PJ 1

Aj1 ,

AJ 1 “
č

j1PJ 1

Aj1 ,

We consider 2J as a category whose objects are elements of 2J , and whose only morphisms

are given by:

2J
pJ 1, J2

q “ H if J 1
Ć J2,

2J
pJ 1, J2

q “ tιJ 1,J2u if J 1
Ă J2.

We denote by SimpJ
pAq : 2J Ñ Top the functor (or the diagram) defined by

SimpJ
pAqpJ 1

q “ AJ 1

, J 1
P 2J ,

and SimpJ
pAqpιJ 1,J2q is the inclusion map AJ 1

ãÑ AJ2.

P-formulas and P-semi-algebraic sets

Notation 2 (Realizations, P-, P-closed semi-algebraic sets). For any finite set of poly-

nomials P Ă RrX1, . . . , Xks, we call any quantifier-free first order formula ϕ with atoms,

P “ 0, P ă 0, P ą 0, P P P, to be a P-formula. Given any semi-algebraic subset Z Ă Rk,

we call the realization of ϕ in Z, namely the semi-algebraic set

Rpϕ, Zq :“ tx P Z | ϕpxqu

a P-semi-algebraic subset of Z.

If Z “ Rk, we often denote the realization of ϕ in Rk by Rpϕq.
3

 Ò In this thesis A Ă B will mean A X B “ A allowing the possibility that A “ B. Also, when we denote
α ă β in a poset we allow the possibility α “ β, reserving α ň β to denote α ă β, α ‰ β.
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If Φ “ pϕjqjPJ is a tuple of formulas indexed by a finite set J , Z Ă Rk a semi-algebraic

subset, we will denote by RpΦ, Zq the tuple pRpϕj, ZqqjPJ , and call it the realization of Φ in

Z. For J Ă J 1, we will denote by Φ|J 1 the tuple pϕjqjPJ 1.

We say that a quantifier-free formula ϕ is closed if it is a formula in disjunctive normal

form with no negations, and with atoms of the form P ě 0, P ď 0 (resp. P ą 0, P ă 0),

where P P DrX1, . . . , Xks. If the set of polynomials appearing in a closed (resp. open)

formula is contained in a finite set P, we will call such a formula a P-closed formula, and

we call the realization, R pϕq, a P-closed semi-algebraic set.

We will also use the following notation.

Notation 3. For n P Z we denote by rns “ t0, . . . , nu. In particular, r´1s “ H.

Finally, we are able to state the main results proved in this chapter.

2.2.2 Efficient simplicial replacements of semi-algebraic sets

Theorem 2.2.1. There exists an algorithm that takes as input

A. a P-closed formula ϕ for some finite set P Ă DrX1, . . . , Xks;

B. ℓ, 0 ď ℓ ď k;

and produces as output a simplicial complex ∆ℓpϕq such that |∆ℓpϕq|
h
„ℓ Rpϕq. The complexity

of the algorithm is bounded by psdqkOpℓq, where s “ cardpPq and d “ maxP PP degpP q.

More generally, there exists an algorithm that takes as input

A. a tuple Φ “ pϕ0, . . . , ϕN q of P-closed formulas for some finite set P Ă DrX1, . . . , Xks;

B. ℓ, 0 ď ℓ ď k;

and produces as output a simplicial complex ∆ℓpΦq, and for each J Ă rN s a subcomplex

∆ℓpΦ|Jq, such that

pJ Ñ |∆ℓpΦ|Jq|qJĂrNs
h
„ℓ SimprNs

pRpΦqq.

The complexity of the algorithm is bounded by pNsdqkOpℓq, where s “ cardpPq and d “

maxP PP degpP q.
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Theorem  2.2.1 is valid over arbitrary real closed fields. In the special case of R “ R, we

have the following stronger version of Theorem  2.2.1 , where we are able to replace homological

ℓ-equivalence by ℓ-equivalence.

Theorem 2.2.11. Let R “ R. There exists an algorithm that takes as input

A. a P-closed formula ϕ for some finite set P Ă DrX1, . . . , Xks;

B. ℓ, 0 ď ℓ ď k;

and produces as output a simplicial complex ∆ℓpϕq such that |∆ℓpϕq| „ℓ Rpϕq. The complexity

of the algorithm is bounded by psdqkOpℓq, where s “ cardpPq and d “ maxP PP degpP q.

More generally, there exists an algorithm that takes as input

A. a tuple Φ “ pϕ0, . . . , ϕN q of P-closed formulas for some finite set P Ă DrX1, . . . , Xks;

B. ℓ, 0 ď ℓ ď k;

and produces as output a simplicial complex ∆ℓpΦq, and for each J Ă rN s a subcomplex

∆ℓpΦ|Jq such that

pJ Ñ |∆ℓpΦ|Jq|qJĂrNs „ℓ SimprNs
pRpΦqq.

The complexity of the algorithm is bounded by pNsdqkOpℓq, where s “ cardpPq and d “

maxP PP degpP q.

Remark 2. One main tool that we use is the Vietoris-Begle theorem (see proofs of Claims

 2.3.1 ,  2.3.2 ). Since, there are many versions of the Vietoris-Begle theorem in the literature

we make precise what we use below.

It follows from [  16 , Main Theorem] that if X Ă Rm, Y Ă Rn are compact semi-algebraic

subsets (and so are locally contractible), and f : X Ñ Y is a semi-algebraic continuous map

such that for every y P Y , f´1pyq is ℓ-connected, then f is an ℓ-equivalence. We will refer

to this version of the Vietoris-Begle theorem as the homotopy version of the Vietoris-Begle

theorem. Since, ℓ-equivalence implies homological ℓ-equivalence (see for example [ 17 , pp.

124, §4.1B]), f is a homological ℓ-equivalence as well.
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Alternatively, if we assume that f´1pyq is only homologically ℓ-connected for each y P Y ,

then we can conclude that f is a homological ℓ-equivalence (see for example, the statement

of the Vietoris-Begle theorem in [  18 ]). This latter theorem is also valid for semi-algebraic

maps between closed and bounded semi-algebraic sets over arbitrary real closed fields, once

we know it for maps between compact semi-algebraic subsets over R. This follows from a

standard argument using the Tarski-Seidenberg transfer principle and the fact that homology

groups of closed bounded semi-algebraic sets can be defined in terms of finite triangulations.

We will refer to this version of the Vietoris-Begle theorem as the homological version of the

Vietoris-Begle theorem.

2.2.3 Application to computing homotopy groups of semi-algebraic sets

One important new contribution of the current work compared to previous algorithms

for computing topological invariants of semi-algebraic sets [  7 ], [ 8 ] is that for any given semi-

algebraic subset S Ă Rk, our algorithms give information on not just the homology groups

but the homotopy groups of S as well.

Computing homotopy groups of semi-algebraic sets is a considerably harder problem than

computing homology groups. There is no algorithm to decide whether the fundamental group

of a finite simplicial complex is trivial [ 15 ]. As such the problem of deciding whether the

fundamental group of any semi-algebraic subset S Ă Rk is trivial or not is an undecidable

problem.

On the other hand algorithms for computing topological invariants of a given semi-

algebraic set S Ă Rk, defined by a P-formula where P Ă DrX1, . . . , Xks, usually involve

two kinds of operations.

(a) Arithmetic operations and comparisons amongst elements of the ring D;

(b) Operations that do not involve elements of D.

In our complexity bounds we only count the first kind of operations (i.e. those which involve

elements of D).
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From this point of view it makes sense to ask for any algorithmic problem involving

formulas defined over D, if there is a reduction to another problem whose input is independent

of D. Theorem  2.2.11
 gives precisely such a reduction for computing the first ℓ homotopy

groups of any given semi-algebraic set defined by a formula involving coefficients from any

fixed subring D Ă R.

Corollary 1. For every fixed ℓ, and an ordered domain D Ă R, there exists a a reduction

of the problem of computing the first ℓ homotopy groups of a semi-algebraic set defined by a

quantifier-free formula with coefficients in D, to that of the problem of computing the first ℓ

homotopy groups of a finite simplicial complex. The complexity of this reduction is bounded

singly exponentially in the size of the input.

While the problem of computing the fundamental group as well as the higher homotopy

groups of a finite simplicial complex is clearly an extremely challenging problem, there has

been recent breakthroughs. If a simplicial complex K is 1-connected then Čadek et al.

[ 19 ] has given an algorithm for computing a description of the homotopy groups πip|K|q,

2 ď i ď ℓ, which has complexity polynomially bounded in the size of the simplicial complex

K for every fixed ℓ. This result coupled with Theorem  2.2.11
 gives the following corollary.

Corollary 2. Let R “ R,D Ă R and ℓ ě 2. There exists an algorithm that takes as input

A. a P-closed formula ϕ for some finite set P Ă DrX1, . . . , Xks;

B. ℓ, 0 ď ℓ ď k;

such that Rpϕq is simply connected, and outputs descriptions of the abelian groups πipRpϕqq,

2 ď i ď ℓ in terms of generators and relations.

The complexity of the algorithm is bounded by psdqkOpℓq, where s “ cardpPq and d “

maxP PP degpP q.

Remark 3. Note that we do not have an effective algorithm for checking the hypothesis that

the given semi-algebraic set is simply connected.
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Covers

A standard method in algebraic topology for computing homology/cohomology of a space

X is by means of an appropriately chosen cover, pVα Ă XqαPI , of X by open or closed subsets.

Suppose that X Ă Rk is a closed or open semi-algebraic set. Let V “ pVα Ă XqαPI be a finite

cover of X by open or closed semi-algebraic subsets, such that for each non-empty subset

J Ă I, the intersection VJ “
Ş

αPJ Vα is either empty or contractible. We will say that such

covers have the Leray property and refer to them as Leray covers. One can then associate to

the cover V , a simplicial complex, N pVq, the nerve of V defined as follows.

The set of p-simplices of N pVq is defined by

N pVqp “ ttα0, . . . , αpu Ă 2I
| Vα0 X ¨ ¨ ¨ X Vαp ‰ Hu.

It follows from a classical result of algebraic topology that the geometric realization |N pVq|

is homotopy equivalent to X, and moreover for each ℓ ě 0, the geometric realization of the

pℓ ` 1q-st skeleton of N pVq,

skℓ`1pN pVqq “ tσ P N pVq | cardpσq ď ℓ ` 2u.

is homologically ℓ-equivalent (resp. ℓ-equivalent) to X (resp. when R “ R).

The algorithms for computing the Betti numbers in [ 12 ]–[ 14 ] proceeds by computing the

k-skeleton of the nerve of a cover having the Leray property whose size is bounded singly

exponentially in k, and computing the simplicial homology groups of this complex. However,

the bound on the size of the cover is not uniform but depends on a real valued parameter

– namely the condition number of the input – and hence the size of the cover can become

infinite. In fact, computing a singly exponential sized cover by semi-algebraic subsets having

the Leray property of an arbitrary semi-algebraic sets is an open problem. If one solves

this problem then one would also solve immediately the problem of designing an algorithm

for computing all the Betti numbers of arbitrary semi-algebraic sets with singly exponential

complexity in full generality.
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The algorithms in [ 7 ], [ 8 ] which are able to compute some of the Betti numbers in di-

mensions ą 0 also depends on the existence of small covers having size bounded singly ex-

ponentially, albeit satisfying a much weaker property than the Leray property. The weaker

property is that only the sets Vα, α P I (i.e. the elements of the cover) are contractible.

No assumption is made on the non-trivial finite intersections amongst the sets of the cover.

Covers satisfying this weaker property can indeed be computed with singly exponential com-

plexity (this is one of the main results of [ 7 ] but see Remark  5 ), and using this fact one is able

to compute the first ℓ Betti numbers of semi-algebraic subsets of Rk for every fixed ℓ with

singly exponential complexity. The algorithms in [  7 ] and [ 8 ] do not construct a simplicial

complex homotopy equivalent or ℓ-equivalent to the given semi-algebraic set S unlike the

algorithm in [ 12 ].

Main technical contribution

The main technical result that underlies the algorithmic result of the current work is the

following. Fix 0 ď ℓ ď k. Suppose for every closed and bounded semi-algebraic set S one

has a covering of S by closed and bounded semi-algebraic subsets which are ℓ-connected (see

Definition  2.2.3 ) and which has singly exponentially bounded complexity (meaning that the

number of sets in the cover, the number of polynomials used in the quantifier-free formulas

defining these sets and their degrees are all bounded singly exponentially in k). Moreover,

since it is clear that contractible covers with singly exponential complexity exists, this is not

a vacuous assumption. Using ℓ-connected covers repeatedly we build a simplicial complex of

size bounded singly exponentially which is ℓ-equivalent to the given semi-algebraic set. The

definition of this simplicial complex is a bit involved (much more involved than the nerve

complex of a Leray cover) and appears in Section  2.3 . Its main properties are encapsulated

in Theorem  2.3.1 .

Two remarks are in order.

Remark 4. 1. Firstly, the Leray property can be weakened to require that for every t-wise

intersection, VJ , cardpJq “ t is either empty or pℓ ´ t ` 1q-connected [ 20 ]. We call this

the ℓ-Leray property. The nerve complex, N pVq is then ℓ-equivalent to X [ 20 ]. However,
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the property that we use is much weaker – namely that only the elements of the cover are

ℓ-connected and we make no assumptions on the connectivity of the intersections of two

or more sets of the cover. This is due to the fact that controlling the connectivity of the

intersections is very difficult and we do not know of any algorithm with singly exponential

complexity for computing covers having the ℓ-Leray property for ℓ ě 1.

2. Secondly, note that to be ℓ-connected is a weaker property than being contractible. Unfor-

tunately, at present we do not know of algorithms for computing ℓ-connected covers, for

ℓ ą 0 that has much better complexity asymptotically than the algorithm in [  7 ] for com-

puting covers by contractible semi-algebraic sets. However, it is still possible that there

could be algorithms with much better complexity for computing ℓ-connected covers (at least

for small ℓ) compared to computing contractible covers.

2.3 Simplicial replacement in an abstract setting

We now arrive at the technical core of this chapter. Given a finite set J , a tuple, Φ “

pϕjqjPJ , of closed formulas with k free variables, and numbers i,m ě 0, we will describe the

construction of a poset, that we denote by Pm,ipΦq. We will assume that the realizations,

Rpϕjq, j P J , of the formulas in the tuple are homologically ℓ-connected semi-algebraic

subsets of Rk for some ℓ ě 0. In case R “ R, substitute “ℓ-connected” for “homologically

ℓ-connected”. The poset Pm,ipΦq will have the property that the geometric realization of

its order complex, ∆pPm,ipΦqq, is homologically pm ´ 1q-equivalent (pm ´ 1q-equivalent if

R “ R) to RpΦqJ . More generally, for each J 1 Ă J , Pm,ipΦ|J 1q can be identified as a subposet

of Pm,ipΦq, and the diagram of inclusions of the corresponding geometric realizations is

homologically pm´1q-equivalent to the diagram SimpJ
pRpΦqq (pm´1q-equivalent if R “ R)

(cf. Theorems  2.3.1 and  2.3.11
 ). The poset Pm,ipΦq will then encode in a finite combinatorial

way information which determines the first m homotopy groups of RpΦqJ 1 for all J 1 Ă J ,

and the morphisms πhpRpΦqJ 1

q Ñ πhpRpΦqJ2

q induced by inclusions, for 0 ď h ď m´ 1 and

J 1 Ă J2 Ă J . (The significance of the subscript i in the notation Pm,ipΦq will become clear

later.)

28



2.3.1 Outline of the main idea

We begin with an outline explaining the main ideas behind the construction. First observe

that if the realizations of the sets in the given tuple, in addition to being ℓ-connected, satisfies

the ℓ-Leray property (i.e. each t-wise intersections amongst them is pℓ ´ t ` 1q-connected),

then it follows from [ 20 ] that the poset of the non-empty intersections (with the poset

relation being canonical inclusions) satisfies the property that the geometric realization of

its order complex (see Definition  2.3.1 ) is ℓ-equivalent to RpΦqJ . The same is true for all the

subposets obtained by restricting the intersections to only amongst those indexed by some

subset J 1 Ă J . However if the ℓ-Leray property fails to hold then the poset of canonical

inclusions may fail to have the desired property.

Consider for example, the tuple

Φ “ pϕ0, ϕ1q,

where

ϕ0 :“ pX2
1 ` X2

2 ´ 1 “ 0q ^ pX2 ě 0q,

ϕ1 :“ pX2
1 ` X2

2 ´ 1 “ 0q ^ pX2 ď 0q.

The realizations Rpϕ0q,Rpϕ1q are the upper and lower semi-circles covering the unit circle

in the plane.

The intersection Rpϕ0q X Rpϕ1q “ Rpϕ0 ^ ϕ1q is the disjoint union of two points. The

Hasse diagram of the poset of canonical inclusions of the sets defined by ϕ0, ϕ1, and ϕ0 ^ ϕ1

is:

ϕ0 ϕ1

ϕ0 ^ ϕ1

cc ;;
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and the order complex of the poset is the simplicial complex shown in Figure  2.1 . The

geometric realization of the order complex is clearly not homotopy equivalent to the

RpΦq
t0,1u

“ Rpϕ0q Y Rpϕ1q

which is equal to the unit circle. This is not surprising since the cover of the circle by the

two closed semi-circle is not a Leray cover (and in fact not ℓ-Leray for any ℓ ě 0).

φ0 φ1φ0 ∧ φ1

Figure 2.1. Order complex for non-Leray cover

One way of repairing this situation is to go one step further and choose a good (in this

case 8-connected) cover for the intersection Rpϕ0q X Rpϕ1q defined by ψ0, ψ1, where

ψ0 :“ pX1 ` 1 “ 0q ^ pX2 “ 0q,

ψ1 :“ pX1 ´ 1 “ 0q ^ pX2 “ 0q.

The Hasse diagram of the poset of canonical inclusions of the sets defined by ϕ0, ϕ1, ψ0,

and ψ1

ϕ0 ϕ1

ψ0

OO >>

ψ1

OO``

and the order complex of the poset is shown in Figure  2.2 . It is easily seen to have the same

homotopy type (homeomorphism type even in this case) to the circle.
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φ0 φ1

ψ0

ψ1

bb

b

b

b

Figure 2.2. Order complex for modified poset

The very simple example given above motivates the definition of the poset Pm,ipΦq in

general. We assume that we have available not just the given tuple of sets, and the non-empty

intersections amongst them, but also that we can cover any given non-empty intersections

that arise in our construction using ℓ-connected closed (resp. open) semi-algebraic sets (we

do not assume that these covers satisfy the stronger ℓ-Leray property). The poset we define

depends on the choice of these covers and not just on the formulas in the tuple Φ (unlike

the standard nerve complex of the tuple RpΦq). The choices that we make are encapsulated

in the functions Ik,i and Ck,i below. In practice, they would correspond to some effective

algorithm for computing well-connected covers of semi-algebraic sets.

Remark 5. There is one technical detail that serves to obscure a little the clarity of the

construction. It arises due to the fact that the only algorithm with single exponential com-

plexity that exists in the literature for computing well connected (8-connected or equivalently

contractible) covers is the one in [  7 ]. However, the algorithm requires that the polynomials

describing the given set S be in strong general position (see Definition  2.4.1 ). In order to

satisfy this requirement one needs to initially perturb the given polynomials and replace the

given set by another one, say S 1, which is infinitesimally larger but has the same homotopy

type as the given set S (see Lemma  2.3.1 ). The algorithm then computes closed formulas

whose realizations cover S 1 and moreover are each semi-algebraically contractible. While

there is a semi-algebraic retraction from S 1 to S, this retraction is not guaranteed to restrict

to the elements of the cover. Our poset construction is designed to be compatible with the

fact that the covers we assume to exist actually are covers of infinitesimally larger sets (i.e.
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that of S 1 instead of S following the notation of the previous sentence). This necessitates the

use of iterated Puiseux extensions in what follows.

Of course, the introduction of infinitesimals could be avoided by choosing sufficiently

small positive elements in the field R itself and thus avoid making extensions. This would be

more difficult to visualize, and so we prefer to use the language of infinitesimal extensions.

In the special case when R “ R, we prefer not to make non-archimedean extensions, since

we discuss homotopy groups, so we take the alternative approach. However, we believe that

the infinitesimal language is conceptually easier to grasp and so we use it in the general case.

Before giving the definition of the poset we first need to introduce some mathematical

preliminaries and notation.

2.3.2 Real closed extensions and Puiseux series

We will need some properties of Puiseux series with coefficients in a real closed field. We

refer the reader to [ 2 ] for further details.

Notation 4. For R a real closed field we denote by R xεy the real closed field of alge-

braic Puiseux series in ε with coefficients in R. We use the notation R xε1, . . . , εmy to de-

note the real closed field R xε1y xε2y ¨ ¨ ¨ xεmy. Note that in the unique ordering of the field

R xε1, . . . , εmy, 0 ă εm ! εm´1 ! ¨ ¨ ¨ ! ε1 ! 1.

If ε̄ denotes the (possibly infinite) sequence pε1, ε2, . . .q we will denote by Rxε̄y the real

closed field
Ť

mě0 Rxε1, . . . , εmy.

Finally, given a finite sequence pε̄1, . . . , ε̄mq we will denote by Rxε̄1, . . . , ε̄my the real closed

field R xε̄1y xε̄2y ¨ ¨ ¨ xε̄my.

Notation 5. For elements x P R xεy which are bounded over R we denote by limε x to be the

image in R under the usual map that sets ε to 0 in the Puiseux series x.

Notation 6. If R1 is a real closed extension of a real closed field R, and S Ă Rk is a semi-

algebraic set defined by a first-order formula with coefficients in R, then we will denote by

extpS,R1q Ă R1k the semi-algebraic subset of R1k defined by the same formula.  

4
 It is well

4
 Ò Not to be confused with the homological functor Extp¨, ¨q which unfortunately also appears in this paper.
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known that extpS,R1q does not depend on the choice of the formula defining S [ 2 , Proposition

2.87].

Notation 7. Suppose R is a real closed field, and let X Ă Rk be a closed and bounded

semi-algebraic subset, and X` Ă Rxεyk be a semi-algebraic subset bounded over R. Let for

t P R, t ą 0, rX`
t Ă Rk denote the semi-algebraic subset obtained by replacing ε in the formula

defining X` by t, and it is clear that for 0 ă t ! 1, rX`
t does not depend on the formula

chosen. We say that X` is monotonically decreasing to X, and denote X` Œ X if the

following conditions are satisfied.

(a) for all 0 ă t ă t1 ! 1, rX`
t Ă rX`

t1 ;

(b)
č

tą0

rX`
t “ X;

or equivalently limε X
` “ X.

More generally, if X Ă Rk be a closed and bounded semi-algebraic subset, and X` Ă

Rxε1, . . . , εmy
k a semi-algebraic subset bounded over R, we will say X` Œ X if and only

if

X`
m`1 “ X`

Œ X`
m, X

`
m Œ X`

m´1, . . . , X
`
2 Œ X`

1 “ X,

where for i “ 1, . . . ,m, X`
i “ limεi

X`
i`1.

Note that if ε̄ “ pε1, ε2, . . .q is an infinite sequence, and X` Ă Rxε̄yk is a semi-algebraic

subset bounded over R, then there exists m ě 1, and semi-algebraic subset X`
m Ă Rxε1, . . . , εmy

k

closed and bounded over R, such that X` “ extpX`
m,Rxε̄yq.

In this case, if X Ă Rk be a closed and bounded semi-algebraic subset, we will say

X` Œ X if and only if

X`
m`1 “ X`

Œ X`
m, X

`
m Œ X`

m´1, . . . , X
`
2 Œ X`

1 “ X,

where for i “ 1, . . . ,m, X`
i “ limεi

X`
i`1.
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Finally, if ε̄1, . . . , ε̄m are sequences (possibly infinite), X Ă Rk be a closed and bounded

semi-algebraic subset, and X` Ă Rxε̄1, . . . , ε̄my
k a semi-algebraic subset bounded over R, we

will say X` Œ X if and only if

X`
m`1 “ X`

Œ X`
m, X

`
m Œ X`

m´1, . . . , X
`
2 Œ X`

1 “ X,

where for i “ 1, . . . ,m, X`
i “ limε̄i

X`
i`1.

The following lemma will be useful later.

Lemma 2.3.1. Let X Ă Rk be a closed and bounded semi-algebraic subset, and X` Ă

Rxε̄1, . . . , ε̄my
k a semi-algebraic subset bounded over R, such that X` Œ X. Then,

extpX,Rxε̄1, . . . , ε̄myq is semi-algebraic deformation retract of X`.

Proof. See proof of Lemma 16.17 in [ 2 ].

Notation 8. For x P Rk and R P R, R ą 0, we will denote by Bkp0, Rq the open Euclidean

ball centered at 0 of radius R. We will denote by Bkp0, Rq the closed Euclidean ball centered

at 0 of radius R. If R1 is a real closed extension of the real closed field R and when the

context is clear, we will continue to denote by Bkp0, Rq the extension extpBkp0, Rq,R1q, and

similarly for Bkp0, Rq. This should not cause any confusion. Similarly, we will denote by

Sk´1
p0, Rq the sphere of dimension k ´ 1 in Rk centered at 0 of radius R.

We refer the reader to [  2 , Chapter 6] for the definitions of homology and cohomology

groups of semi-algebraic sets over arbitrary real closed fields.

2.3.3 Definition of the poset Pm,ipΦq

Simplified view of the definition of the poset Pm,ipΦq

Before giving a precise definition of the poset Pm,ipΦq, we first give a simplified version.

We make the following two simplifications in order to illustrate the key idea.

(a) We ignore the role of the index i in what follows. The necessity of the extra parameter i is

due to the fact that the hypothesis we assume (Hypothesis  1 in the following paragraph)
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is slightly stronger than we are able to assume for designing effective algorithms for

computing the poset (see Remark  5 ). The actual hypothesis that we use is encapsulated

in Property  2 below.

(b) Secondly, in order to keep a geometric view of the construction, we will talk about tuples

S “ pSjqjPJ of semi-algebraic sets, instead of tuples of formulas Φ “ pϕjqjPJ defining

them. As above, in order to give an effective algorithms, and analyzing its complexity,

we need to describe the poset in terms of formulas rather than sets, which we do in the

precise definition that follows this simplified version.

We make the following hypothesis.

Hypothesis 1 (Black-box hypothesis). There exists a black-box (or algorithm) that given a

closed and bounded semi-algebraic set S Ă Rk as input, produces a cover pSαqαPCpSq of S by

closed and bounded ℓ-connected semi-algebraic sets.

Definition 2.3.1 (The order complex of a poset). Let pP,ĺq be a poset. We denote by

∆pPq the simplicial complex whose simplices are chains of P.

Suppose S “ pSjqjPJ is a finite tuple of ℓ-connected closed semi-algebraic subsets of Rk.

Our goal is to define a poset PmpSq such that:

Property 1.

p|∆pPmpSqq|
ch
„m SJ

(see Definition  2.3.1 ). We will say that the poset PmpSq satisfies Property  1 for the pair

pm,Sq.

Remark 6. We use cohomological m-equivalence in Property  1 . In the final construction

we will lose a dimension while passing from cohomological equivalence to (homological or

homotopical) equivalence because of the use of the universal coefficients theorem (see the

proof of Claim  2.3.5 inside the proof of Theorem  2.3.1 ), and we will end up with

p|∆pPmpSqq|„m´1SJ .
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The main idea is to approximate homotopically the diagram of sets

pSIqIĂJ,cardpIqďm`2

(see Notation  1 ), and the inclusion maps

SI 1 ãÑ SI , I Ă I 1,

by a corresponding diagram of (the geometric realizations of the order complexes of) posets

pPm´cardpIq`1,IqIĂJ,cardpIqďm`2

(where the poset Pm´cardpIq`1,I corresponds to SI), and poset inclusions

Pm´cardpI 1q`1,I 1 ãÑ Pm´cardpIq`1,I , I Ă I 1.

The construction is by induction on m (we call this the global induction below).

1. (Base case of the global induction, m “ ´1.) Suppose S “ pSjqjPJ is a finite tuple of

ℓ-connected closed and bounded semi-algebraic subsets of Rk. We define the poset P´1pSq

to be just the index set J , with no non-trivial order relations. It is depicted in Figure  2.3a .

It is clear that P´1pSq satisfies Property  1 for the pair p´1,Sq.

2. (Induction hypothesis of the global induction.) We assume that for eachm1,´1 ď m1 ă m,

and each finite tuple S “ pSjqjPJ of ℓ-connected closed and bounded semi-algebraic subsets

of Rk, we have defined a poset Pm1pSq satisfying Property  1 for the pair pm1,Sq.

3. (Inductive step of the global induction, going from ă m to m.) Using the inductive

hypothesis, we now define a poset PmpSq satisfying Property  1 for the pair pm,Sq, for

any tuple S of ℓ-connected closed and bounded semi-algebraic subsets of Rk.

Fix a finite tuple S “ pSjqjPJ of ℓ-connected closed and bounded semi-algebraic subsets

of Rk. We will define PmpSq below in steps. The poset PmpSq as a set will be a disjoint

union of the index set J , and certain subposets Pm´cardpIq`1,I , where I where I Ă J, 2 ď
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cardpIq ď m` 2. We define the subposets Pm´cardpIq`1,I by downward induction (we call

this the local induction below) on cardpIq, starting from the base case, cardpIq “ m` 2.

(a) (Base case of the local induction, cardpIq “ m ` 2.) We first consider the semi-

algebraic sets SI , cardpIq “ m`2. Associated to each such I, we define a poset, which

we denoted by P´1,I as follows: Using Hypothesis  1 applied to the semi-algebraic set

SI we obtain a cover pSI,αqαPCpSI q of SI by closed and bounded ℓ-connected semi-

algebraic sets. We define

P´1,I “ P´1ppSI,αqαPCpSI qq “ CpSIq

with no non-trivial order relation. It is depicted in Figure  2.3a . It is clear that P´1,I

satisfies Property  1 for the pair p´1, pSI,αqαPCpSI qq.

(b) (Going from m ` 2 to m ` 1.) Next we consider subsets I of cardinality m ` 1. For

each such subset we construct a poset P0,I satisfying two conditions:

i. For each set I 1, with cardpI 1q “ cardpIq ` 1, and I Ă I 1, the poset P´1,I 1 already

defined is isomorphic to a sub-poset of P0,I ;

ii. |∆pP0,Iq| is cohomologically 0-equivalent to SI .

We apply Hypothesis  1 , to the semi-algebraic set SI as input and obtain a cover

pSI,αqαPCpSI q of SI by closed and bounded ℓ-connected semi-algebraic sets. We let

P´1,I “ P´1ppSI,αqαPCpSI qq.

Let JI be the union of the indexing set CpSIq, with the posets P´1,I 1 for each I 1 with

I Ă I 1, cardpI 1q “ cardpIq ` 1. Notice that for each α P JI , there is an ℓ-connected

closed and bounded semi-algebraic set associated to it. Denote this set by Dpαq.

For every pair α, β P JI , we again apply Hypothesis  1 to obtain a cover of DpαqXDpβq

by ℓ-connected closed and bounded semi-algebraic sets, pSI,α,β,γqγPIα,β
where Iα,β “

CpDpαq X Dpβqq. The poset P0,I is defined to be the set JI Y
Ť

α,βPJI
Iα,β, and the

non-trivial order relations are γ ň α, β for each γ P Iα,β. It is depicted in Figure  2.3b .
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(c) (Local induction hypothesis.) We assume that we have already defined the posets

Pm´cardpI 1q`1,I 1 , with cardpI 1q ą cardpIq.

(d) (Inductive step in general for the local induction.) We construct the poset Pm´cardpIq`1,I

as follows. We apply Hypothesis  1 with the semi-algebraic set SI as input and obtain

a cover pSI,αqαPCpSI q of SI by closed and bounded ℓ-connected semi-algebraic sets. Let

JI be the union of the indexing set CpSIq, with the posets Pm´cardpI 1q`1,I 1 for each

I 1 with I Ă I 1, cardpI 1q “ cardpIq ` 1. Notice that for each α P JI , there is an ℓ-

connected closed and bounded semi-algebraic set associated to it. Denote this set by

Dpαq.

We define the poset Pm´cardpIq`1,I using the global induction hypothesis. The global

inductive hypothesis gives us that for any finite tuple of ℓ-connected closed and

bounded semi-algebraic set (in particular, the tuple of sets pDpαqqαPJI
) we have

defined a poset Pm´cardpIq`1ppDpαqqαPJI
q, which satisfies Property  1 for the pair

pm ´ cardpIq ` 1, pDpαqqαPJI
q (since m ´ cardpIq ` 1 ă m).

We define

Pm´cardpIq`1,I “ Pm´cardpIq`1ppDpαqqαPJI
q.

This finishes the local induction and we have defined Pm´cardpIq`1,I , for each I Ă

J, 2 ď cardpIq ď m ` 2.

Finally, we define

PmpSq “ J Y
ď

IĂJ,2ďcardpIqďm`2
Pm´cardpIq`1,I . (2.1)

The partial order in the poset PmpSq is specified as follows. By the local induction, each

of the poset Pm´cardpIq`1,I comes with a partial order. We extend these orders as follows:

(a) For each I Ă I 1 Ă J , with 2 ď cardpIq ď cardpI 1q ď m ` 2, there is a subposet of

Pm´cardpIq`1,I canonically isomorphic to the poset Pm´cardpI 1q`1,I 1 . For each element

α of the former and the corresponding element α1 of the latter we set α1 ň α.

(b) For each j P J , and α P Pm´cardpIq`1,I , j P I, we set the element α ň j.
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This ends the definition of the poset PmpSq completing the global induction. Figure  2.3c 

depicts PmpSq in terms of subposets Pm´cardpIq`1,I . In Claim  2.3.11 we will show that the

height of the poset PmpSq is bounded by 2m ` 2.

Notice that for any chain αk ň αk´1 ň . . . ň α0 of elements in PmpSq, we have a sequence

of inclusion maps of semi-algebraic sets Dpαkq ãÑ Dpαk´1q ãÑ . . . ãÑ Dpα0q. It is depicted

in Figure  2.4 for a hypothetical space with four elements in the initial covering.

The following two examples are illustrative.

Example 1. Let ℓ “ 8,m ě 2, S “ pS1, S2q, where S1, S2 are the closed upper and lower

hemispheres of the unit sphere in R3 (see Figure  2.5a ).

Using ( 2.1 ) we get

PmpSq “ t1, 2u Y Pm´2`1,t1,2u. (2.2)

Let CpSt1,2uq be the cover of St1,2u by two closed semi-circles T3, T4, and let T “ pT3, T4q.

Note that T3 XT4 is a set containing two points W5,W6 (say), and the only possibility for

CpT3 X T4q, is the tuple W “ pW5,W6q. Then,

Pm´1pT q “ t3, 4u Y Pm´2,t3,4u (2.3)

and the subposet Pm´2,t3,4u is isomorphic to the poset

Pm´2pWq “ t5, 6u. (2.4)

Substituting ( 2.4 ) into ( 2.3 ) and ( 2.3 ) into ( 2.2 ) we finally obtain that the Hasse diagram of

the poset PmpSq is

1 2

3

OO 88

4

OOff

5

OO 88

6

OOff

The order complex of this poset is homotopy equivalent (in fact, in this case is homeomorphic)

to the sphere.
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α1 α2 αcard(C(SI))

(a) P´1,I “ P´1ppSI,αqαPCpSI qq: The ele-
ments of the poset, i.e. JI , correspond to
the elements of the cover CpSIq, with no
non-trivial order relation.

α1 α2 αcard(C(SI))

P−1,I1 P−1,In

P−1((SI,α1,αk,γ)γ∈C(D(α1)∩D(αk))) P−1((SI,αk′ ,αt′ ,γ)γ∈C(D(αk′ )∩D(αt′ ))
)

αk αk′ αt αt′

(b) P0,I : At the top level, the elements of P0,I corre-
spond to the cover CpSIq and elements of the posets
P´1,Ii

, where cardpIiq “ cardpIq ` 1 and I Ă Ii.
At the bottom level we have elements of the posets
P´1ppSI,αi,αj ,γqγPCpDpαiqXDpαj qqq—shown as a box—
for every pair αi and αj at the top level. The order
relations are between the pairs and the elements of their
corresponding posets at the bottom level.

1 2 card(J) = n

P−1,I
(m+2)
1

P−1,I
(m+2)
2

P−1,I
(m+2)

( n
m+2)

P
0,I

(m+1)
1

P
0,I

(m+1)
2

P
0,I

(m+1)

( n
m+1)

P
m−1,I

(2)
1

P
m−1,I

(2)
2

P
m−1,I

(2)

(n2)

(c) PmpSq “ J Y
Ť

IĂJ,2ďcardpIqďm`2 Pm´cardpIq`1,I : The top level of the poset corresponds
to the elements of J . Next, we have elements of the posets P

m´1,I
p2q

i

where I
p2q

i Ă J

and cardpI
p2q

i q “ 2—denoted by the superscript (2). Similarly at the lower levels, we
have elements of the posets corresponded to subsets I

pm1
q

i Ă J with cardpI
pm1

q

i q “ m1 and
m1 ď m ` 2. The partial order relations are defined between j P t1, . . . , nu at the top level
and the elements of P

m´1,I
p2q

i

, if j P I
p2q

i . Furthermore, in addition to the order relations

within each poset, if I
pm1

´1q

j Ă I
pm1

q

i then P
m´m1`1,I

pm1q

i

ãÑ P
m´m1`2,I

pm1´1q

j

, hence for each
element α1 of the P

m´m1`1,I
pm1q

i

and the corresponding element α of the P
m´m1`2,I

pm1´1q

j

we set α1 ň α.

Figure 2.3. A simple illustration of the simplified view of the poset.
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1 2 3 4

(1,2) (1,3) (1,4) (2,3)

(1,2,3)(1,2,4) (1,3,2)(1,3,4) (1,4,2)(1,4,3) (2,3,1)(2,3,4)

(2,3,4)(1,3,4)(1,2,4)(1,2,3)

(1,2,3,4)

(2,4) (3,4)

(2,4,1)(2,4,3) (3,4,1)(3,4,2)

Figure 2.4. Poset PmpSq such that |∆pPmpSqq| is m-equivalent to
Ť

jPJ Sj with
m “ 2, J “ t1, 2, 3, 4u.

Example 2. Now let ℓ “ m “ 2, S “ pS1, S2q, where S1, S2 are the closed upper and lower

hemispheres of the unit sphere in Rk, k ą 5. That is S1 (resp. S2) is the intersection of the

unit sphere in Rk, with the set defined by Xk ě 0 (resp. Xk ď 0).

Using ( 2.1 ) we get

PmpSq “ t1, 2u Y Pm´2`1,t1,2u.

Let CpSt1,2uq be the cover of St1,2u by two closed semi-spheres T3, T4, (i.e. T3 (resp. T4)

is the intersection of St1,2u with Xk´1 ě 0 (resp. Xk´1 ď 0), and let T “ pT3, T4q.

Note that W5 “ T3XT4 is a pk´3q-dimensional sphere, and since k ą 5, W5 is 2-connected

and we can take CpW5q “ pW5q.

P1pT q “ t3, 4u Y t5u
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with Hasse diagram

3 4

5

^^ @@

Finally we obtain that the Hasse diagram of the poset P2pSq is

1 2

3

OO 77

4

OOgg

5

^^ @@

The order complex of this poset is contractible and is 2-equivalent (but in this case not

homotopy equivalent) to Sk´1 for k ą 5.

With the definition of the poset PmpSq it is possible to prove the following theorem. We

do not include a proof of this theorem since it is subsumed by Theorem  2.3.11
 .

Theorem. With the same notation as in the Definition of PmpSq defined above:

|∆pPmpSqq|„m´1
ď

jPJ

Sj.

More generally, we have the diagrammatic homological pm ´ 1q-equivalence

pJ 1
ÞÑ |∆pPmpS|J 1q|qJ 1P2J

h
„m´1 SimpJ

pSq,

where S|J 1 “ pSjqjPJ 1.

We now return to the precise definition of the poset Pm,ipΦq that we are going to the

use.

Precise definition of Pm,ipΦq

We begin with a few useful notation that we will use in the construction.
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Notation 9. We will denote by FR,k the set of quantifier-free formulas with coefficients in

R and k variables, whose realizations are closed in Rk.

We also use the following convenient notation.

Notation 10 (The relation Ăďn). For any n P Zě0, and sets A,B, we will write A Ăďn B

to mean A Ă B and 0 ă cardpAq ď n.

We are now in a position to define a poset associated to a given finite tuple of formulas

that will play the key technical role in the rest of the paper.

We first fix the following.

A. Let R “ R0 Ă R1 Ă R2 Ă ¨ ¨ ¨ be a sequence of extensions of real closed fields.

B. We also fix two sequences of functions,

Ii,k : FRi,k Ñ Zě´1,

and

Ci,k : FRi,k Ñ
ď

pě0
pFRi`1,kq

rps,

Remark 7. The definition of the poset Pm,ip¨q given below does not depend on any specific

properties of the functions Ii,kp¨q and Ci,kp¨q. Later we will prove key topological properties

of Pm,ip¨q (see Theorems  2.3.1 and  2.3.11
 below) under certain assumptions on Ii,kp¨q and

Ci,kp¨q (see Properties  2 and  21
 below).

For each i ě 0, and ´1 ď m ď k, a non-empty finite set J , and Φ P pFRi,kqJ , we define a

poset pPm,ipΦq,ăq.

We first need an auxilliary definition which will be used in the definition of the underlying

set, Pm,ipΦq, of the poset pPm,ipΦq,ăq.

Definition 2.3.2. Let J be a non-empty finite set, and Φ P pFRi,kqJ . We first define for each

subset I Ăďm`2 J , a set Jm,i,I,Φ, and an element Φm,i,I,J P pFRi`1,kqJm,i,I,Φ (using downward

induction on cardpIq).
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Base case (cardpIq “ m ` 2): In this case we define,

Jm,i,I,Φ “ tIu ˆ rIi,kp
ľ

jPI

Φpjqqs, (2.5)

and for pI, pq P Jm,i,I,Φ,

Φm,i,I,JppI, pqq “ Ci,kp
ľ

jPI

Φpjqqppq.

Inductive step: Suppose we have defined Jm,i,I 1,Φ and Φm,i,I 1,J for all I 1 with cardpI 1q “

cardpIq ` 1. We define

Jm,i,I,Φ “

˜

tIu ˆ rIi,kp
ľ

jPI

Φpjqs

¸

Y
ď

IĂI 1ĂJ,cardpI 1q“cardpIq`1
Jm,i,I 1,Φ, (2.6)

and

Φm,i,I,Jpαq “ Ci,kp
ľ

jPI

Φpjqqppq, if α “ pI, pq P tIu ˆ rIi,kp
Ź

jPI Φpjqqs,

“ Φm,i,I 1,Jpαq, if α P Jm,i,I 1,Φ for some I 1 Ą I, with

cardpI 1
q “ cardpIq ` 1.

The following properties of Jm,i,I,Φ and Φm,i,I,J are obvious from the above definition.

Using the same notation as in Definition  2.3.2 :

Lemma 2.3.2. (a) cardpJm,i,I,Φq ă 8 for each I Ăďm`2 J ;

(b) For I, I 1 Ă J with cardpI Y I 1q ď m ` 2,

Jm,i,IYI 1,Φ Ă Jm,i,I,Φ X Jm,i,I 1,Φ.

(c) If I 1 Ă I Ăďm`2 J Ă J 1, then Jm,i,I,Φ Ă J 1
m,i,I 1,Φ, and for α P Jm,i,I,Φ, Φm,i,I,Jpαq “

Φm,i,I 1,J 1pαq.

Proof. Follows directly from Definition  2.3.2 .
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We now define the set Pm,ipΦq.

Definition 2.3.3 (The underlying set of the poset pPm,ipΦq,ăq). We define the set Pm,ipΦq

using induction on m.

Base case (m “ ´1): For each finite set J , and Φ P pFRi,kqJ we define

P´1,ipΦq “
ď

jPJ

ttjuu ˆ tHu.

Inductive step: Suppose we have defined the sets pPm1,i1pΦ1q,ăq for all m1 with ´1 ď m1 ă m,

i1 ě 0, for all non-empty finite sets J 1 and all Φ1 P pFRi1 ,kqJ 1.

We complete the inductive step by defining:

Pm,ipΦq “
ď

jPJ

ttjuu ˆ tHu Y
ď

IĂJ,1ăcardpIqďm`2
tIu ˆ Pm´cardpIq`1,i`1pΦm,i,I,Jq. (2.7)

We now specify the partial order on Pm,ipΦq. For this it will be useful to have the

following alternative characterization of the elements of the poset Pm,ipΦq as tuples of sets.

This characterization follows simply by unravelling the inductive definition of the set Pm,ipΦq

given above.

Characterization of the elements of the poset Pm,ipΦq as tuples of sets

The elements of Pm,ipΦq are all finite tuples of sets (of varying lengths)

pI0, . . . , Ir,Hq,

satisfying the following conditions.

1. I0 is a subset of J0 “ J , cardpI0q “ 1 if r “ 0, and 2 ď cardpI0q ď m ` 2 otherwise.
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2. I1 is a subset of J1 “ pJ0qm0,i0,I0,Φ0
(see Eqn. (  2.6 ), Definition  2.3.3 ) with

m0 “ m,

i0 “ i,

Φ0 “ Φ,

and

2 ď cardpI1q ď pm0 ´ cardpI0q ` 1q ` 2.

3. I2 is a subset of J2 “ pJ1qm1,i1,I1,Φ1
, where

m1 “ m0 ´ cardpI0q ` 1,

i1 “ i0 ` 1,

Φ1 “ pΦ0qm0,i0,I0,J0 ,

and

2 ď cardpI2q ď pm1 ´ cardpI1q ` 1q ` 2.

4. Continuing in the above fashion,

Ir´1 Ă Jr´1 “ pJr´2qmr´2,ir´2,Ir´2,Φr´2
, (2.8)

where

mr´2 “ mr´3 ´ cardpIr´3q ` 1,

ir´2 “ ir´3 ` 1,

Φr´2 “ pΦr´3qmr´3,ir´3,Ir´3,Jr´3 ,

and

2 ď cardpIr´1q ď mr´2 ` 2 “ pm ` r ´ 1 ´

r´2
ÿ

j“0
cardpIjqq ` 2. (2.9)
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5. Finally,

Ir Ă Jr “ pJr´1qmr´1,ir´1,Ir´1,Φr´1
,

where

Φr´1 “ pΦr´2qmr´2,ir´2,Ir´2,Jr´2 ,

and

cardpIrq “ 1.

(We show later (see Claim  2.3.8 ) that for tuples pI0, . . . , Ir,Hq satisfying the above condi-

tions, r ď m ` 1.)

Definition 2.3.4 (Partial order on Pm,ipΦq). The partial order ă on Pm,ipΦq is defined as

follows.

For α “ pIα
0 , . . . , I

α
rα
,Hq, β “ pIβ

0 , . . . , I
β
rβ
,Hq P Pm,ipΦq,

β ă α ô prα ď rβq and Iα
j Ă Iβ

j , 0 ď j ď rα. (2.10)

2.3.4 Main properties of the poset Pm,ipΦq

We will now state and prove the important properties of the poset Pm,ipΦq that motivates

its definition.

Lemma 2.3.3. For each J 1 Ă J2 Ă J , and ´1 ď m1 ď m2 ď m, we have a poset inclusion,

Pm1,ipΦ|J 1q ãÑ Pm2,ipΦ|J2q.

Proof. Follows from Definition  2.3.3 and Part ( c ) of Lemma  2.3.2 .

We now state a lemma which will be useful later, that states a key property of the partial

order relation in Pm,ipΦq. Using the same notation as in Definition  2.3.3 :

Lemma 2.3.4. Suppose that I 1 Ă I Ă J .

(a) The poset Pm´cardpIq`1,i`1pΦm,i,I,Jq is a subposet of Pm´cardpI 1q`1,i`1pΦm,i,I 1,Jq.
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(b) For each α, α1 P Pm´cardpIq`1,i`1pΦm,i,I,Jq,

α ăPm´cardpIq`1,i`1pΦm,i,I,J q α
1

ô pI, αq ăPm,ipΦq pI 1, α1
q.

Proof. Part ( a ) follows from the fact that Jm,i,I,Φ Ă Jm,i,I 1,Φ, m´cardpIq`1 ď m´cardpI 1q`1,

and Lemma  2.3.3 .

Part ( b ) follows immediately from the definition of the partial order on Pm,ipΦq (see

Definition  2.3.4 ).

Let R be a real closed field and R P R, R ą 0. We say that the tuple

ppRiqiě0, R, k, pIi,kqiě0, pCi,kqiě0q

satisfies the homological ℓ-connectivity property over R if it satisfies the following conditions.

Property 2. 1. For each i ě 0, Ri “ Rxε̄1, . . . , ε̄iy where for j “ 1, . . . , i, ε̄j denotes the

sequence εj,1, εj,2, . . ..

2. For each ϕ P FRi,k:

(a) If Rpϕ,Bkp0, Rqq is empty then, Ii,kpϕq “ ´1.

(b)
¨

˝

ď

jPrIi,kpϕqs

RpCi,kpϕqpjq, Bkp0, Rqqq

˛

‚Œ

´

Rpϕ,Bkp0, Rqq

¯

(see Notation  7 ). Notice that in the case Rpϕ,Bkp0, Rqq is empty, Ii,kpϕq “ ´1,

hence rIi,kpϕqs “ H, and so
Ť

jPrIi,kpϕqs
RpCi,kpϕqpjq, Bkp0, Rqq is an empty union,

and is thus empty as well.

(c) For j P rIi,kpϕqs, RpCi,kpϕqpjq, Bkp0, Rqqq is homologically ℓ-connected.

Notation 11. Let ϕ be a quantifier-free formula with coefficients in Rrε̄s. Then ϕ is defined

over Rrε̄1
1, ε̄

1
2, . . . , ε̄

1
is where ε̄1

j is a finite sub-sequence of the sequence ε̄j. For t̄ “ pt̄1, . . . , t̄iq,

where for 1 ď j ď i, t̄j is a tuple of elements of R of the same length as ε̄1
j, we will denote

by ϕt̄ the formula defined over R obtained by replacing ε̄1
j by t̄j in the formula ϕ.
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For any finite sequence t̄ “ pt1, . . . , tN q, by the phrase “for all sufficiently small and

positive t̄” we will mean “ for all sufficiently small t1 P Rą0, and having chosen t1, for all

sufficiently small t2 P Rą0, ... ”.

We will say that

ppRiqiě0, R, k, pIi,kqiě0, pCi,kqě0q

satisfies the ℓ-connectivity property over R “ R if it satisfies the following conditions.

Property 21. 1. R0 “ R and for each , i ą 0, Ri “ Rxε̄1, . . . , ε̄iy.

2. For each ϕ P FRi,k:

(a) If Rpϕ,Bkp0, Rqq is empty then, Ii,kpϕq “ ´1.

(b)
¨

˝

ď

jPrIi,kpϕqs

RpCi,kpϕqpjq, Bkp0, Rqqq

˛

‚Œ

´

Rpϕ,Bkp0, Rqq

¯

(c) For j P rIi,kpϕqs, and all sufficiently small and positive t̄,

RpCi,kpϕqpjqt̄, Bkp0, Rqqq

is ℓ-connected.

The following two theorems give the important topological properties of the posets defined

above that will be useful for us.

Theorem 2.3.1. Suppose that the tuple

ppRiqiě0, R, k, pIi,kqiě0, pCi,kqiě0q

satisfies the homological ℓ-connectivity property over R (see Property  2 ). Then, for ´1 ď

m ď ℓ, every finite set J , and Φ P pFk,Ri
qJ , such that for each j P J , RpΦpjq, Bkp0, Rqq is

homologically ℓ-connected,

|∆pPm,ipΦqq|
h
„m´1 RpΦ, Bkp0, Rqq

J . (2.11)
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More generally, we have the diagrammatic homological pm ´ 1q-equivalence

pJ 1
ÞÑ |∆pPm,ipΦ|J 1q|qJ 1P2J

h
„m´1 SimpJ

pRpΦ, Bkp0, Rqqq. (2.12)

In the case R “ R we can derive a stronger conclusion from a stronger assumption.

Theorem 2.3.11. Suppose that

ppRiqiě0, R, k, pIi,kqiě0, pCi,kqiě0q

satisfies the ℓ-connectivity property over R “ R (cf. Property  21
 ).

Then, for ´1 ď m ď ℓ, each finite set J , and Φ P pFR,kqJ , such that for each j P J ,

RpΦpjq, Bkp0, Rqq is ℓ-connected,

|∆pPm,ipΦqq| „m´1 RpΦ, Bkp0, Rqq
J .

More generally, we have the diagrammatic pm ´ 1q-equivalence:

pJ 1
ÞÑ |∆pPm,ipΦ|J 1q|qJ 1P2J „m´1 SimpJ

pRpΦ, Bkp0, Rqqq. (2.13)

Before proving Theorems  2.3.1 and  2.3.11
 we discuss an example.

2.3.5 Example of the sphere S2 in R3

In order to illustrate the main ideas behind the definition of the poset, Pm,ipΦq, defined

above we discuss a very simple example. Starting from a cover of the two dimensional unit

sphere in R3 by two closed hemispheres, we show how we construct the associated poset.

We will assume that there is an algorithm available as a black-box which given any closed

formula ϕ such that Rpϕq is bounded, produces a tuple of quantifier-free closed formulas as

output, such that

(a) the realization of each formula in the tuple is contractible;

50



↪→
↪→

. .

↪→

(a)

6↪→
6↪→

• •
D′

3,0(Φ)((I0, I1, {(I1, 0)}, ∅)) D′
3,0(Φ)((I0, I1, {(I1, 1)}, ∅))

D′
3,0(Φ)((I0, {(I0, 1)}, ∅))

D′
3,0(Φ)((I0, {(I0, 0)}, ∅))

D′
3,0(Φ)(({b}, ∅))

D′
3,0(Φ)(({a}, ∅))

6↪→

(b)

↪→
↪→

• •
D3,0(Φ)((I0, I1, {(I1, 0)}, ∅)) D3,0(Φ)((I0, I1, {(I1, 1)}, ∅))

D3,0(Φ)((I0, {(I0, 1)}, ∅))

D3,0(Φ)((I0, {(I0, 0)}, ∅))

D3,0(Φ)(({b}, ∅))

D3,0(Φ)(({a}, ∅))

↪→

•
••

•

••

• •

••

(c)

Figure 2.5. (a) The ideal situation, (b) D1
m,ipΦqp.q, and (c) Dm,ipΦqp.q

(b) the union of the realizations is a semi-algebraic set infinitesimally larger than Rpϕq, and

such that Rpϕq is a semi-algebraic deformation retract of the union.

Therefore, at each step of our construction the cover by contractible sets that we consider,

is actually a cover of a semi-algebraic set which is infinitesimally larger than that but with

the same homotopy type as the original set. As a result, the inclusion property – namely,

that each element of the cover is included in the set that it is part of a cover of – which is

expected from the elements of a cover will not hold.

We first describe the situation in the case when Part ( b ) above is replaced with:
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(b1) the union of the realizations is equal to Rpϕq.

We call this the ideal situation. Figure  2.5a displays three levels of the construction in the

ideal situation for the sphere. In the first step, we have two closed contractible hemispheres

that cover the whole sphere. The intersection of the two hemispheres is a circle, and the

next level shows the two closed semi-circles as its cover. The bottom level consists of two

points which is the intersection of these semi-circles. Clearly, the inclusion property holds

in this case.

Unfortunately, as mentioned before we cannot assume that we are in the ideal situation.

This is because the only algorithm with a singly exponential complexity that is currently

known for computing covers by contractible sets, satisfies Property ( b ) rather than the

ideal Property (b1). In the non-ideal situation we will obtain in the first step a cover of

an infinitesimally thickened sphere by two thickened hemispheres where the thickening is

in terms of some infinitesimal ε0, 0 ă ε0 ! 1. The intersection of these two thickened

hemispheres is a thickened circle, and which is covered by two thickened semi-circles whose

union is infinitesimally larger than the thickened circle. The new infinitesimal is ε1 and

0 ă ε1 ! ε0 ! 1. Finally, in the next level, the intersection of the two thickened semi-circles

is covered by two thickened points involving a third infinitesimal ε2, such that 0 ă ε2 ! ε1 !

ε0 ! 1.

We associate to each element α P Pm,ipΦq two semi-algebraic setsDm,ipΦqpαq, D1
m,ipΦqpαq.

The association Dm,ipΦqp¨q is functorial in the sense that if α, β P Pm,ipΦq, then α ă β ô

Dm,ipΦqpαq Ă Dm,ipΦqpβq. This functoriality is important since it allows us to define the

homotopy colimit of the functor Dm,ipΦq. The association α ÞÑ D1
m,ipΦqpαq does not have

the functorial property. However, it follows directly from its definition that D1
m,ipΦq is con-

tractible (or ℓ-connected in the more general setting). Finally, we are able to show that

D1
m,ipΦqpαq is homotopy equivalent to Dm,ipΦqpαq for each α P Pm,ipΦq, and thus the functor

Dm,ipΦq has the advantage of being functorial as well as satisfying the connectivity property.

In this example, we display D1
m,ipΦqpαq and Dm,ipΦqpαq for all different α P Pm,ipΦq in

Figures  2.5b and  2.5c .
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For the rest of this example we assume the covers of sphere are in the ideal situation.

This assumption will not change the poset Pm,ipΦq that we construct.

In order to reconcile with the notation used in the definition of the poset Pm,ipΦq, we

will assume that the different covers described above (which are not Leray but 8-connected)

correspond to the values of the maps Ii,3 and Ci,3 evaluated at the corresponding formulas

which we describe more precisely below.

Step 1. Let a, b denote the closed upper and lower hemispheres of the sphere S2
p0, 1q Ă R3,

defined by formulas

ϕa :“ pX2
1 ` X2

2 ` X2
3 ´ 1 “ 0q ^ pX3 ě 0q,

ϕb :“ pX2
1 ` X2

2 ` X2
3 ´ 1 “ 0q ^ pX3 ď 0q.

Let J “ J0 “ ta, bu, and Φ P FJ
R,3 be defined by Φpaq “ ϕa,Φpbq “ ϕb. Moreover,

since cardpJq “ 2,

P3,0pΦq “ tptau, Hq, ptbu, Hqu Y
ď

I0ĂJ,cardpI0q“2
tI0u ˆ P2,1pΦ3,0,I0,J0q.

Following the notation used in Definition  2.3.3 , let I0 “ J0 “ J “ ta, bu.

Step 2. We suppose that I0,3pϕa ^ ϕbq “ 1, and C0,3pϕa ^ ϕbqp0q “ ϕc, C0,3pϕa ^ ϕbqp1q “ ϕd,

where

ϕc :“ pX2
1 ` X2

2 ` X2
3 ´ 1 “ 0q ^ pX3 “ 0q ^ pX2 ě 0q,

ϕd :“ pX2
1 ` X2

2 ` X2
3 ´ 1 “ 0q ^ pX3 “ 0q ^ pX2 ď 0q,

denote the two semi-circles.
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J1 “ J3,0,I0,Φ “ tI0u ˆ r1s “ tpI0, 0q, pI0, 1qu,

Φ1 “ Φ3,0,I0,J0 ,

Φ1ppI0, 0qq “ ϕc,

Φ1ppI0, 1qq “ ϕd.

P2,1pΦ1q “ tptpI0, 0qu, Hq, ptpI0, 1qu, Hqu Y
ď

I1ĂJ1,cardpI1q“2
tI1u ˆ P1,2ppΦ1q2,1,I1,J1q.

Now let I1 “ J1.

Step 3. Suppose that I1,3pϕc ^ ϕdq “ 1, and C1,3pϕc ^ ϕdqp0q “ ϕe,

C1,3pϕc ^ ϕdqp1q “ ϕf , where

ϕe :“ pX2
1 ` X2

2 ` X2
3 ´ 1 “ 0q ^ pX3 “ 0q ^ pX2 “ 0q ^ pX1 ` 1 “ 0q,

ϕf :“ pX2
1 ` X2

2 ` X2
3 ´ 1 “ 0q ^ pX3 “ 0q ^ pX2 “ 0q ^ pX1 ´ 1 “ 0q.

J2 “ pJ1q2,1,I1,Φ1 “ tI1u ˆ r1s “ tpI1, 0q, pI1, 1qu,

Φ2 “ pΦ1q2,1,I1,J1

Φ2ppI1, 0qq “ ϕe,

Φ2ppI1, 1qq “ ϕf .
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P1,2pΦ2q “ tptpI1, 0qu, Hq, ptpI1, 1qu, Hqu Y
ď

I2ĂJ2,cardpI2q“2
tI2u ˆ P0,3ppΦ2q1,2,I2,J2q.

Let I2 “ J2.

Step 4. Since I2,3pϕe ^ ϕf q “ ´1, hence P0,3ppΦ2q1,2,I2,J2q “ H, and from Step  3 

P1,2pΦ2q “ tptpI1, 0qu, Hq, ptpI1, 1qu, Hqu.

Step 5. With these choices of the values of I¨,3 and C¨,3 for the specific formulas described

above, and ℓ “ 8, from Step  2 and Step  4 , the Hasse diagram of the poset P2,1pΦ1q

is as follows.

ptpI0, 0qu,Hq ptpI0, 1qu,Hq

pI1, tpI1, 0qu,Hq

OO 44

pI1, tpI1, 1qu,Hq

OOjj

Step 6. Finally, from Step  1 and Step  5 , the Hasse diagram of the poset P3,0pΦq is shown

below.

ptau,Hq ptbu,Hq

pI0, tpI0, 0qu,Hq

OO 33

pI0, tpI0, 1qu,Hq

OOkk

pI0, I1, tpI1, 0qu,Hq

OO 33

pI0, I1, tpI1, 1qu,Hq

OOkk
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The order complex, ∆pP3,0pΦqq is displayed below and clearly |∆pP3,0pΦqq| is homeomor-

phic to S2
p0, 1q.

({a}, ∅)

({b}, ∅)

(I0, {(I0, 1)}, ∅)(I0, {(I0, 0)}, ∅)

(I0, I1, {(I1, 0)}, ∅)

(I0, I1, {(I1, 1)}, ∅)

Figure 2.6. The order complex, ∆pP3,0pΦqq

2.3.6 Proofs of Theorems  2.3.1 and  2.3.11
 

In this section we prove Theorem  2.3.1 as well as Theorem  2.3.11
 . We first give an outline

of the proof of Theorem  2.3.1 .

Outline of the proof of Theorem  2.3.1 

In order to prove that |∆pPm,ipΦqq| is homologically pm´1q-equivalent to RpΦqJ , we give

two homological pm´ 1q-equivalences. The source of both these maps is a semi-algebraic set

which is defined as the homotopy colimit of a certain functor Dm,i from the poset category

Pm,ipΦq to Top taking its values in semi-algebraic subsets of Rk
i`m`1. The targets are

|∆pPm,ipΦqq| and RpΦqJ . Taken together these two homological pm´ 1q-equivalences imply

that |∆pPm,ipΦqq| and RpΦqJ are homologically pm ´ 1q-equivalent.

In what follows, we first define the functor Dm,i as well as an associated map D1
m,i, also

taking values in semi-algebraic sets, and prove the main properties of these objects that we

are going to need in the proof of Theorem  2.3.1 .
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Definition of Dm,i, D
1
m,i

We now define for each α “ pI0, . . . , Ir,Hq P Pm,ipΦq, a closed semi-algebraic subset

Dm,ipαq Ă Bkp0, Rq Ă Rk
i`m`1, and also a semi-algebraic set D1

m,ipαq Ă Rk
i`r.

We define Dm,i, D
1
m,i by induction on m. For m “ ´1, we define for j P J ,

D´1,ipΦqpptju,Hqq “ D1
´1,ipΦqpptju,Hqq “ RpΦpjq, Bkp0, Rqq Ă Rk

i .

We now define Dm,ipΦq, D1
m,ipΦq : Pm,ipΦq Ñ Top, using the fact that they are already

defined for all ´1 ď m1 ă m. We define:

Dm,ipΦqpptju,Hqq “ extpRpΦpjq, Bkp0, Rqq,Ri`m`1q Y

ď

pI,αqPPm,ipΦq,jPI

extpDm´cardpIq`1,i`1pΦm,i,I,Jqpαq,Ri`m`1q,

Dm,ipΦqppI, αqq “ extpDm´cardpIq`1,i`1pΦm,i,I,Jqpαq,Ri`m`1q,

I Ăďm`2 J, cardpIq ą 1, α P Pm´cardpIq`1,i`1pΦm,i,I,Jq,

D1
m,ipΦqpptju,Hqq “ RpΦpjq, Bkp0, Rqq, (2.14)

and

D1
m,ipΦqppI, αqq “ D1

m´cardpIq`1,i`1pΦm,i,I,Jqpαq,

for I Ăďm`2 J, cardpIq ą 1, α P Pm´cardpIq`1,i`1pΦm,i,I,Jq.

The following lemma is obvious from the definition of Dm,ipαq given above.

Lemma 2.3.5. For each α, β P Pm,ipΦq with α ă β, the morphism Dm,ipΦqpα ă βq :

Dm,ipΦqpαq Ñ Dm,ipΦqpβq is an inclusion. So, Dm,ipΦq is a functor from the poset category

pPm,ipΦq,ăq to Top.
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Remark 8. Unlike Dm,i, D1
m,i is not necessarily a functor.

Lemma 2.3.6. For each α P Pm,ipΦq,

Dm,ipΦqpαq Œ D1
m,ipΦqpαq.

Proof. Let

α “ pIα
0 , . . . , I

α
rα

“ tjαu,Hq

with Iα
h Ă Jα

h , 0 ď h ď rα following the same notation as in Section  2.3.3 (with an added

superscript α).

First observe that

Dm,ipΦqpαq “ extpD1
m,ipΦqpαq,Ri`m`1q Y

ď

βňα

Dm,ipΦqpβq. (2.15)

We now prove that for each α P Pm,ipΦq:

Dm,ipΦqpαq Œ D1
m,ipΦqpαq, (2.16)

and
ď

βňα

Dm,ipΦqpβq Œ
ď

βňα

lim
ε̄i`rα`1

D1
m,ipΦqpβq Ă D1

m,ipΦqpαq. (2.17)

The proof is by induction on the maximum length, lengthpαq, of any chain with α as the

maximal element.

We first note that if R1 “ Rxε̄y, and X Ă Rk is a semi-algebraic subset, then

lim̄
ε

extpX,R1
q “ X.

This follows easily from the definition of extpX,R1q and standard properties of limε̄. In

particular, if X is a closed semi-algebraic set, then

lim̄
ε

extpX,R1
q “ X.
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Base case of the induction, lengthpαq “ 1: It follows from ( 2.15 ) and the fact that that

D1
m,ipΦqpαq is a closed semi-algebraic set, that (  2.16 ) holds if α is a minimal element of the

poset Pm,ipΦq (and so lengthpαq “ 1). In this case ( 2.17 ) is trivially true.

Induction hypothesis: We assume now that ( 2.16 ) and ( 2.17 ) is true for all α P Pm,ipΦq, with

lengthpαq ă t.

Inductive step: Suppose that α P Pm,ipΦq, with lengthpαq “ t. The inductive hypothesis

implies that ( 2.16 ) and ( 2.17 ) both hold with α replaced by α1 for all α1 ň α.

Using the fact that D1
m,ipΦqpαq is closed, it is easy to check that (  2.17 ) implies ( 2.16 ). So

we need to prove only ( 2.17 ). Using the induction hypothesis we have for each β ň α

ď

βňα

Dm,ipΦqpβq Œ
ď

βňα

D1
m,ipΦqpβq. (2.18)

Now observe that for any β P Pm,ipΦq, β ň α if and only if there exist j1
α P Iα

rα´1, j
1
α ‰ jα

and j2
α P pJα

rα
qmα

rα
,iα

rα
,tjα,j1

αu,Φrα
, such that

β ă γpj2
αq “ pIα

0 , . . . , I
α
rα´1, tjα, j

1
αu, tj2

αu,Hq,

where we assume that Iα
´1 “ J .

Using the above observation we have that

ď

βňα

D1
m,ipΦqpβq “

ď

j1
αPIα

rα´1,j1
α‰jα

ď

j2
αPpJα

rα
qmα

rα
,iα

rα
,tjα,j1

αu,Φrα

˜

ď

βăγpj2
αq

D1
m,ipΦqpβq

¸

, (2.19)

where

γpj2
αq “ pIα

0 , . . . , I
α
rα´1, tjα, j

1
αu, tj2

αu,Hq.

Applying hypothesis ( 2.17 ) we have that

˜

ď

βňγpj2
αq

D1
m,ipΦqpβq

¸

Œ lim
ε̄i`r`2

ď

βňγpj2
αq

D1
m,ipΦqpβq Ă D1

m,ipΦqpγpj2
αqq. (2.20)
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Also observe that,

¨

˝

ď

j2
αPJm,i,tjα,j1

αu,Φ

D1
m,ipΦqpγpj2

αqq

˛

‚Œ
`

D1
m,ipΦqpαq X D1

m,ipΦqpα1
q
˘

Ă D1
m,ipΦqpαq, (2.21)

where

α1
“ pIα

0 , . . . , I
α
rα´1, tj

1
αu,Hq.

Finally, ( 2.17 ) now follows from ( 2.18 ), ( 2.19 ), (  2.20 ), and ( 2.21 ).

Lemma 2.3.7.
¨

˝

ď

αPPm,ipΦq

Dm,ipΦqpαq

˛

‚Œ RpΦ, Bkp0, Rqq
J .

In particular, extpRpΦ, Bkp0, RqqJ ,Riq is a semi-algebraic deformation retract of

ď

αPPm,ipΦq

Dm,ipΦqpαq.

Proof. First note that for each j P J , ptju,Hq is a maximal element of the poset Pm,ipΦq.

It now follows from Lemma  2.3.5 that

ď

αPPm,ipΦq

Dm,ipΦqpαq “
ď

jPJ

Dm,ipΦqpptju,Hqq.

The lemma now follows from Lemma  2.3.6 and Eqn.(  2.14 ).

Notation 12. We will denote the deformation retraction

ď

αPPm,ipΦq

Dm,ipΦqpαq Ñ extpRpΦ, Bkp0, Rqq
J ,Riq

in Lemma  2.3.7 by rm,ipΦq.

In the proof of Theorem  2.3.1 we need the notion of the homotopy colimit of a functor

which we define below.
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We fix a real closed field R in the following definition.

Definition 2.3.5 (The topological standard n-simplex). We denote by

|∆n
| “ tpt0, . . . , tnq P Rn`1

ě0 |

n
ÿ

i“0
ti “ 1u

the standard n-simplex defined over R. For 0 ď i ď n, we define the face operators,

di
n : |∆n´1

| Ñ |∆n
|,

by

di
npt0, . . . , tn´1q “ pt0, . . . , ti´1, 0, ti, . . . , tn´1q.

Definition 2.3.6 (Homotopy colimit). Let pP,ăq be a poset category and

D : pP,ăq Ñ Top

a functor taking its values in closed and bounded semi-algebraic subsets of Rk, and such that

the morphisms Dpα ă βq are inclusion maps. The homotopy colimit of D is the quotient

space  

5
 

hocolimpDq “

˜

ž

α0ň¨¨¨ňαp

|∆p
| ˆ Dpα0q

¸

M

„ ,

where the equivalence relation „ is defined as follows.

For a chain σ “ pα0 ň ¨ ¨ ¨ ň αpq, t P |∆p|, and x P Dpα0q, we denote by pt, xqσ, the

image of pt, xq under the canonical inclusion of |∆p| ˆDpα0q (corresponding to the chain σ)

in the disjoint union
š

α0ň¨¨¨ňαp
|∆p| ˆ Dpα0q.

Using the above notation the equivalence relation „ is defined by:

pdi
pptq, xqσ „ pt, xqσ1 , (2.22)

5
 Ò which is a semi-algebraic set defined over R, being a quotient space of a proper semi-algebraic equivalence

relation, (see for example [ 21 , page 166])
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for x P Dpα0q and t P |∆p´1|, where σ “ pα0 ň ¨ ¨ ¨ ň αpq and

σ1
“

$

’

’

’

&

’

’

’

%

pα1 ň ¨ ¨ ¨ ň αpq if i “ 0,

pα0 ň ¨ ¨ ¨αi´1 ň αi`1 ň ¨ ¨ ¨ ň αpq if 0 ă i ă p,

pα0 ň ¨ ¨ ¨ ň αp´1q if i “ p.

We denote by πD
1 : hocolimpDq Ñ |∆pPq|, πD

2 : hocolimpDq Ñ colimpDq the canoni-

cal maps, where |∆pPq| is the geometric realization of the order complex of P (see Defini-

tion  2.3.1 ). More precisely, πD
1 is the map induced from the projection map

ž

α0ň¨¨¨ňαp

|∆p
| ˆ Dpα0q Ñ

ž

α0ň¨¨¨ňαp

|∆p
|

after taking the quotient by „, and πD
2 is the composition of the map induced by the projection

ž

α0ň¨¨¨ňαp

|∆p
| ˆ Dpα0q Ñ

ž

α0ň¨¨¨ňαp

Dpα0q,

and the canonical map to the colimit of the functor D, which in this case is simply the union
Ť

αPP Dpαq.

The following example illustrates the definition given above.

Example 3. Consider the poset P “ ta, b, cu, with three elements with c ň a, c ň b as the

only non-trivial ordering relation (Hasse diagram shown below).

a b

c

@@__
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Let D : P Ñ Top be the functor, with

Dpaq “ RppX2
1 ` X2

2 ´ 4 “ 0q ^ pX2 ě 0qq,

Dpbq “ RppX2
1 ` X2

2 ´ 4 “ 0q ^ pX2 ď 0qq,

Dpcq “ Dpaq X Dpbq

“ tp´2, 0q, p2, 0qu.

The homotopy colimit of the functor D is then the quotient of the disjoint union of the

spaces

∆0
ˆ Dpaq,∆0

ˆ Dpbq,∆0
ˆ Dpcq,

∆1
ˆ Dpcq,∆1

ˆ Dpcq

corresponding to the chains paq, pbq, pcq, pc ň aq, pc ň bq by the equivalence relation defined in

Eqn. ( 2.22 ). The non-trivial identifications induced by the quotienting are given by (following

the notation introduced in Definition  2.3.6 )

pp0, 1q, p´2, 0qqpcňaq „ pp1q, p´2, 0qqpcq,

pp0, 1q, p2, 0qqpcňaq „ pp1q, p2, 0qqpcq,

pp1, 0q, p´2, 0qqpcňaq „ pp1q, p´2, 0qqpaq,

pp1, 0q, p2, 0qqpcňaq „ pp1q, p2, 0qqpaq,

pp0, 1q, p´2, 0qqpcňbq „ pp1q, p´2, 0qqpcq,

pp0, 1q, p2, 0qqpcňbq „ pp1q, p2, 0qqpcq,

pp1, 0q, p´2, 0qqpcňbq „ pp1q, p´2, 0qqpbq,

pp1, 0q, p2, 0qqpcňbq „ pp1q, p2, 0qqpbq.

The quotient space (as a semi-algebraic set) is shown below in Figure  2.7 .
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D(a)

D(b)

D(c)D(c)

Figure 2.7. Homotopy colimit of the functor D in Example  3 .

Proof of Theorem  2.3.1 . The theorem will follow from the following two claims.

Claim 2.3.1. The map π
Dm,ipΦq

1 : hocolimpDm,ipΦqq Ñ |∆pPm,ipΦqq| is a homological ℓ-

equivalence (and so a homological pm ´ 1q-equivalence).

Claim 2.3.2. The map

Fm,ipΦq “ rm,ipΦq ˝ π
Dm,ipΦq

2 : hocolimpDm,ipΦqq Ñ extpRpΦ, Bkp0, Rqq
J ,Riq

is a homological pm ´ 1q-equivalence.

We first deduce the proof of the theorem from these two claims. The homological pm´1q-

equivalence in ( 2.11 ) now follows from Claims  2.3.1 ,  2.3.2 and Lemma  2.3.7 .

The diagrammatic homological pm´ 1q-equivalence in ( 2.12 ) follows from the commuta-

tivity of the following diagrams of maps.

For each pair J 1, J2 Ă J , with J 1 Ă J2 we have the following commutative diagram,

where the vertical arrows are inclusions, and the slanted arrows induce isomorphisms in the

homology groups up to dimension m ´ 1.
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hocolimpDm,ipΦ|J 1qq

π
Dm,ipΦ|

J1 q

1uu
Fm,ipΦ|J1 q **

��

|∆pPm,ipΦ|J 1qq|

��

extpRpΦ, Bkp0, RqqJ 1

,Riq

��

hocolimpDm,ipΦ|J2qq

π
Dm,ipΦ|

J2 q

1uu
Fm,ipΦ|J2 q **

|∆pPm,ipΦ|J2qq| extpRpΦ, Bkp0, RqqJ2

,Riq

.

This implies that we have the following diagram of morphisms where both arrows are

homological pm ´ 1q-equivalences:

pJ 1 ÞÑ hocolimpDm,ipΦ|J 1qqqJ 1P2J

ss **

pJ 1 ÞÑ |∆pPm,ipΦ|J 1qq|qJ 1P2J SimpJ
pRpΦ, Bkp0, Rqqq.

This proves that the diagrams

pJ 1
ÞÑ |∆pPm,ipΦ|J 1qq|qJ 1P2J

and

SimpJ
pRpΦ, Bkp0, Rqqq

are homologically pm ´ 1q-equivalent.

We now proceed to prove Claims  2.3.1 and  2.3.2 .

Proof of Claim  2.3.1 . Let t P |∆pPm,ipΦqq|. Then there exists a unique simplex σ of the

simplicial complex ∆pPm,ipΦqq of the smallest possible dimension such that t P |σ|. Let

α0 ň ¨ ¨ ¨ ň αp be the chain in Pm,ipΦq corresponding to σ. Then,

pπ
Dm,ipΦq

1 q
´1

ptq “ ttu ˆ Dm,ipΦqpα0q.
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It is clear from its definition thatD1
m,ipΦqpαq is homologically ℓ-connected. From Lemma  2.3.6 

it follows that so is Dm,ipΦqpαq. It now follows from the homological version of the Vietoris-

Begle theorem (see Remark  2 ) that πDm,ipΦq

1 is a homological ℓ-equivalence.

Proof of Claim  2.3.2 . The claim will follow from the following claims. Let

x P extpRpΦ, Bkp0, Rqq
J ,Riq.

We will prove that the fiber pFm,ipΦqq´1pxq is homologically pm ´ 1q-connected which will

suffice to prove that Fm,ipΦq is a homological pm´1q-equivalence by the homological version

of Vietoris-Begle theorem (see Remark  2 ).

In order to study the fiber pFm,ipΦqq´1pxq we define for each I Ăďm`2 J the following

posets of Pm,ipΦq.

We define

PIpxq “ tpI, αq P tIu ˆ Pm´cardpIq`1,i`1pΦm,i,I,Jq |

x P lim̄
ε
Dm´cardpIq`1,i`1pΦm,i,I,Jqpαqu Ă Pm,ipΦq,

and

QIpxq “
ď

IĂI 1Ăďm`2J

PI 1pxq.

The motivation behind the definition of the posets PIpxq,QIpxq is as follows. First

observe that

pFm,ipΦqq
´1

pxq “

ˇ

ˇ

ˇ

ˇ

ˇ

ď

jPJ

∆pQtjupxqq

ˇ

ˇ

ˇ

ˇ

ˇ

, (2.23)

and
č

jPI

Qtjupxq “ QIpxq. (2.24)

Our strategy for proving the homological pm´1q-connectedness of pFm,ipΦqq´1pxq is to use

the closed covering provided by ( 2.23 ) and then use the cohomological Mayer-Vietoris spec-

tral sequence to reduce the problem to studying the connectivity of the various |∆pQIpxqq|

using ( 2.24 ). Finally, we prove (see Claim  2.3.5 ) that for each I, |∆pPIpxqq| is homologically
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equivalent to |∆pQIpxqq|. This last fact allows us to use induction on the cardinality of I to

prove the required connectivity statement for the corresponding |∆pQIpxqq|.

We now return to the proof of Claim  2.3.2 . Since, for each I 1, with I Ă I 1 Ăďm`2 J ,

Pm´cardpI 1q`1,i`1pΦm,i,I 1,Jq Ă Pm´cardpIq`1,i`1pΦm,i,I,Jq,

there is an injective map,

PI 1pxq Ñ PIpxq, pI 1, αq ÞÑ pI, αq.

Thus there is a map

θIpxq : QIpxq Ñ PIpxq,

defined by

θIpxqppI 1, αqq “ pI, αq,

for each pI 1, αq P QIpxq, where I Ă I 1 Ăďm`2 J .

It is obvious from the above definition and the definition of the partial order in Pm,ipΦq,

that the map θIpxq is a map of posets (i.e. a map respecting the partial orders of the two

posets).

Claim 2.3.3. The map θIpxq induces a simplicial map ΘIpxq : ∆pQIpxqq Ñ ∆pPIpxqq.

Moreover, the corresponding map |ΘIpxq| : |∆pQIpxqq| Ñ |∆pPIpxqq|, between the geometric

realizations, is a homological equivalence.

Proof. Since the map θipxq is a poset map, it carries a chain of QIpxq to a chain of PIpxq.

This implies that θIpxq induces a simplicial map ΘIpxq : ∆pQIpxqq Ñ ∆pPIpxqq.

We now prove the second half of the claim. We are going to use the poset fiber theorem

proved in [ 22 , Lemma 3.2] (also [  23 , Corollary 3.4]).

For n ě 0, we denote by Bn the complete Boolean lattice on a set with n elements. It

is a well known fact (see for example [  24 ]) that |∆pBnq| is homeomorphic to r0, 1sn, and is

thus contractible.
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Let pI, αq P PIpxq, and I 1 Ăďm`2 J be the unique maximal subset of J such that

pI 1, αq P PI 1pxq (see the schematic diagram in Figure  2.8 which depicts subposet of the poset

shown in Figure  2.4 ).

(1,2)

(1,2,3)(1,2,4)

({1,2,4}, α)({1,2,3}, α)

({1,2,3,4}, α)

({1,2}, α)

Figure 2.8. θIpxq´1ppI, αqq with I “ t1, 2u, and I 1 “ t1, 2, 3, 4u

Then,

θIpxq
´1

ppI, αqq “ tpI2, αq | I Ă I2
Ă I 1

u.

Hence, the poset θIpxq´1ppI, αqq is isomorphic as a poset to BcardpI 1q´cardpIq. Thus,

|∆pθIpxq´1ppI, αqqq| is contractible.

Moreover, for each pI2, αq P θIpxq´1ppI, αqq,

θIpxq
´1

ppI, αqqąpI2,αq “ tpI3, αq | I Ă I3
Ă I2

u,

and hence θIpxq´1ppI, αqqąpI2,αq is isomorphic to BcardpI2q´cardpIq. This proves that

|∆pθIpxq´1ppI, αqqąpI2,αqq| is contractible for each pI2, αq P θIpxq´1ppI, αqq.

It now follows from the poset fiber theorem [ 22 , Lemma 3.2] (also [ 23 , Corollary 3.4]) that

the poset map θIpxq induces a homological equivalence |ΘIpxq| : |∆pQIpxqq| Ñ |∆pPIpxqq|.
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Observe that Claim  2.3.3 implies in particular that if cardpIq “ 1, then |QIpxq| is con-

tractible if non-empty.

Claim 2.3.4. For x P extpRpΦ, Bkp0, RqqJ2

,Riq “ limε̄

Ť

αPPm,ipΦq
Dm,ipΦqpαq,

Hj
ppFm,ipΦqq

´1
pxqq – Z, for j “ 0, (2.25)

“ 0, for 0 ă j ď m.

Proof. The proof is by induction on m starting with the case m “ 0. The case m “ ´1 is

trivial.

Base case (m “ 0). We need to show that for

x P extpRpΦ, Bkp0, Rqq
J ,Riq “ lim̄

ε

ď

αPP0,ipΦq

D0,ipΦqpαq,

pF0,ipΦqq´1pxq is connected.

First note that

F0,ipΦq “ r0,ipΦq ˝ π
D0,ipΦq

2 ,

and r0,ipΦq is a semi-algebraic deformation retraction. Hence, r0,ipΦq´1pxq is closed and

semi-algebraically connected (in fact contractible).

Let Jpxq “ tj P J | D0,ipΦqpptju,HqqXr0,ipΦq´1pxq ‰ Hu. Since, the setsD0,ipΦqpptju,Hqq,

j P Jpxq is a covering of the closed and semi-algebraically connected set r0,ipΦq´1pxq by closed

sets, it follows that the union
ď

jPJpxq

D0,ipΦqpptju,Hqq

is semi-algebraically connected as well. It follows that given any j, j1 P Jpxq, there exists a

sequence j “ j0, j1, . . . , jN “ j1 such that for each h, 0 ď h ď N ´ 1,

D0,ipΦqpptjhu,Hqq X D0,ipΦqpptjh`1u,Hqq X r0,ipΦq
´1

pxq ‰ H.
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So there exists for each h, 0 ď h ď N ´ 1 j2 “ ptjh, jh`1u, pq P J0,i,tjh,jh`1u,Φ such that

RpΦtjh,jh`1uppqq X rm,ipΦq
´1

pxq ‰ H.

So there exists α “ ptj2u,Hq P P´1,i`1pΦtjh,h`1uq, such that

D0,ipΦqpptjh, jh`1u, αqq X r0,ipΦq
´1

pxq ‰ H,

and so

ptjh, jh`1u, αq P pF0,ipΦqq
´1

pxq.

Moreover,

ptjh, jh`1u, αq ň ptjhu,Hq, ptjh`1u,Hq

(using Lemma  2.3.4 ). This implies that ptjhu,Hq, ptjh`1u,Hq, and thus every pair of the form

ptju,Hq, ptj1u,Hq in pF0,ipΦqq´1pxq belongs to the same connected component of pF0,ipΦqq´1pxq.

Since, for every element of the form ptjh, jh`1u, αq P pF0,ipΦqq´1pxq we have

ptjh, jh`1u, αq ň ptjhu,Hq, ptjh`1u,Hq P pF0,ipΦqq
´1

pxq,

ptjh, jh`1u, αq belong to the same connected component of pF0,ipΦqq´1pxq as

ptjhu,Hq, ptjh`1u,Hq

as well. Together, these facts imply that pF0,ipΦqq´1pxq is connected. This proves the claim

in the base case.

Inductive step. Suppose we have proved the theorem for all m1, 0 ď m1 ă m, i ě 0, all finite

J 1, and Φ1 P pFk,Ri
qJ 1 . We now prove it for m, i, J,Φ.

x P extpRpΦ, Bkp0, Rqq
J , Riq “ lim̄

ε

ď

αPPm,ipΦq

Dm,ipΦqpαq,
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Recall from (  2.23 ) that

pFm,ipΦqq
´1

pxq “

ˇ

ˇ

ˇ

ˇ

ˇ

ď

jPJ

∆pQtjupxqq

ˇ

ˇ

ˇ

ˇ

ˇ

.

Let

J 1
“ tj P J | Qtjupxq ‰ Hu.

So

pFm,ipΦqq
´1

pxq “ |
ď

jPJ 1

∆pQtjupxqq|.

It follows from the Mayer-Vietoris exact sequence in cohomology for closed subspaces

(see for example, [ 25 , page 148]) that there exists a spectral sequence

Ep,q
r ñ Hp`q

˜
ˇ

ˇ

ˇ

ˇ

ˇ

ď

jPJ 1

∆pQtjupxqq

ˇ

ˇ

ˇ

ˇ

ˇ

¸

whose E1 term is given by

Ep,q
1 “

à

IĂJ 1,cardpIq“p`1
Hq

˜
ˇ

ˇ

ˇ

ˇ

ˇ

č

jPI

∆pQtjupxqq

ˇ

ˇ

ˇ

ˇ

ˇ

¸

.

Notice that
č

jPI

Qtjupxq “ QIpxq,

and it follows from Claim  2.3.3 that |∆pQIpxqq| is homotopy equivalent to |∆pPIpxqq|.

So we get,

Ep,q
1 “

à

IĂJ 1,cardpIq“p`1
Hq

p|∆pPIpxqq|q.

Now for I, with cardpIq ą 1, we can apply the induction hypothesis to deduce that

Hj
p|∆pPIpxqq|q – Z, for j “ 0,

“ 0, for 0 ă j ď m ´ cardpIq ` 1.
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We can deduce from this that

Ep,0
1 –

à

IĂJ 1,cardpIq“p`1
Z,

Ep,q
1 – 0, for 0 ă q ď m ´ p.

It follows that

E0,0
2 – Z,

Ep,0
2 – 0, p ą 0

Ep,q
2 – 0, for p ě 0, 0 ă q ď m ´ p.

Note that it follows from Claim  2.3.5 and the Mayer-Vietoris spectral sequence argument

used in its proof that ror any

J 1
Ă tj P J | Qtjupxq ‰ Hu,

Hj

˜ˇ

ˇ

ˇ

ˇ

ˇ

ď

jPJ 1

∆pQtjupxqq

ˇ

ˇ

ˇ

ˇ

ˇ

¸

– Z, for j “ 0, (2.26)

“ 0, for 0 ă j ď m.

Claim 2.3.5. For

x P extpRpΦ, Bkp0, Rqq
J ,Riq “ lim̄

ε

ď

αPPm,ipΦq

Dm,ipΦqpαq,

pFm,ipΦqq´1pxq is homologically pm ´ 1q-connected.
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Proof. Let X “ pFm,ipΦqq´1pxq. It follows from [ 26 , Theorem 12, page 248] that there exists

a short exact sequence:

0 Ñ ExtpHq`1
pXq,Zq Ñ HqpXq Ñ HompHq

pXq,Zq Ñ 0.

Thus, for each q ą 0

Hq`1
ppFm,ipΦqq

´1
pxqq “ Hq

ppFm,ipΦqq
´1

pxqq “ 0

implies that HqppFm,ipΦqq´1pxqq “ 0.

The claim now follows from ( 2.25 ).

Claim  2.3.2 now follows from Claim  2.3.5 and the homological version of the Vietoris-

Begle theorem (see Remark  2 ).

This completes the proof of Theorem  2.3.1 .

Proof of Theorem  2.3.11
 . Since the proof closely mirrors that of the proof of Theorem  2.3.1 

we only point out the places where it differs. For each α P Pm,ipΦq, we replace the infinites-

imals ε̄0, . . . , ε̄m, by sequences of appropriately small enough positive elements t̄0, . . . , t̄m of

R, in the formula defining the set Dm,ipΦqpαq, and denote the set defined by the new for-

mula (which are semi-algebraic subset of Rk) by rDm,ipΦqpαq. Similarly, we will denote the

retraction
ď

αPPm,ipΦq

rDm,ipΦqpαq Ñ RpΦ, Bkp0, Rqq
J

by rrm,ipΦq, and the composition

rrm,ipΦq ˝ π
rDm,ipΦq

2 : hocolimp rDm,ipΦqq Ñ RpΦ, Bkp0, Rqq
J

by rFm,ipΦq.

Claims  2.3.1 and  2.3.2 are replaced by:

Claim 2.3.11. The map π
rDm,ipΦq

1 : hocolimp rDm,ipΦqq Ñ |∆pPm,ipΦqq| is an ℓ-equivalence

(and so an pm ´ 1q-equivalence).
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Claim 2.3.21. The map

rFm,ipΦq “ rrm,ipΦq ˝ π
rDm,ipΦq

2 : hocolimp rDm,ipΦqq Ñ RpΦ, Bkp0, Rqq
J

is an pm ´ 1q-equivalence.

The proof of Claim  2.3.11
 is the same as the proof of Claim  2.3.1 replacing homologically ℓ-

connected by just ℓ-connected, and using the homotopy version of the Vietoris-Begle theorem

(see Remark  2 ).

For the proof of Claim  2.3.21
 we need an extra argument to deduce the pm´1q-connectivity

of the fibers of the map rFm,ipΦq from the fact that they are homologically pm´ 1q-connected

which is already proved in Claim  2.3.5 . In order to do this we apply Hurewicz’s isomorphism

theorem which requires simple connectivity of the fibers p rFm,ipΦqq´1pxq, which is the content

of the following claim.

Claim 2.3.6. For x P RpΦ, Bkp0, RqqJ , and m ě 1, p rFm,ipΦqq´1pxq is simply connected. In

other words, p rFm,ipΦqq´1pxq is connected, and

π1pp rFm,ipΦqq
´1

pxqq – 0.

Proof. Let

J 1
“ tj P J | Qtjupxq ‰ Hu.

So

p rFm,ipΦqq
´1

pxq “

ˇ

ˇ

ˇ

ˇ

ˇ

ď

jPJ 1

∆pQtjupxqq

ˇ

ˇ

ˇ

ˇ

ˇ

.

We prove the stronger statement that for all non-empty subsets J2 Ă J 1,

ˇ

ˇ

ˇ

ˇ

ˇ

ď

jPJ2

∆pQtjupxqq

ˇ

ˇ

ˇ

ˇ

ˇ

is simply connected.

We argue using induction on cardpJ2q. If cardpJ2q “ 1, then ∆pQtjupxqq, where J2 “ tju,

is a cone and so |∆pQtjupxqq| is contractible and hence simply connected.
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Suppose, we have already proved that the claim holds for all subsets of J 1 of cardinality

strictly smaller than that of J2. Let j2 P J2. Then, by the induction hypothesis, we have

that
ˇ

ˇ

ˇ

Ť

j1PJ2´tj2u
∆pQtj1upxqq

ˇ

ˇ

ˇ
is simply connected.

We first show that

|∆pQtj2upxqq| X

ˇ

ˇ

ˇ

ˇ

ˇ

ď

j1PJ2´tj2u

∆pQtj1upxqq

ˇ

ˇ

ˇ

ˇ

ˇ

is connected, which is equivalent to proving that

H0
p|∆pQtj2upxqq| X

ď

j1PJ2´tj2u

|∆pQtj1upxqq|q – Z.

The Mayer-Vietoris exact sequence in cohomology gives the following exact sequence:

H0
p

ď

j1PJ2

|∆pQtj1upxqq|q Ñ H0
p|∆pQtj2upxqq|q ‘ H0

p
ď

j1PJ2´tj2u

|∆pQtj1upxqq|q Ñ

H0
p|∆pQtj2upxqq| X

ď

j1PJ2´tj2u

|∆pQtj1upxqq|q Ñ H1
p

ď

j1PJ2

|∆pQtj1upxqq|q.

Applying ( 2.26 ) we have an exact sequence

Z Ñ Z ‘ Z Ñ H0

˜

|∆pQtj2upxqq| X
ď

j1PJ2´tj2u

|∆pQtj1upxqq|

¸

Ñ 0,

where the first map is the diagonal embedding. This implies that

H0

˜

|∆pQtj2upxqq| X
ď

j1PJ2´tj2u

|∆pQtj1upxqq|

¸

– Z.

Finally, using the fact that |∆pQtj2upxqq| is simply connected, it follows from the Seifert-

van Kampen’s theorem [ 26 , page 151] that
ˇ

ˇ

ˇ

Ť

jPJ2 ∆pQtjupxqq

ˇ

ˇ

ˇ
is simply connected.

We also have the obvious analog of Lemma  2.3.7 .
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Lemma 2.3.71. The semi-algebraic set RpΦ, Bkp0, RqqJ is a semi-algebraic deformation re-

tract of
ď

αPPm,ipΦq

rDm,ipΦqpαq,

and hence RpΦ, Bkp0, RqqJ and
Ť

αPPm,ipΦq
rDm,ipΦqpαq are semi-algebraically homotopy equiv-

alent.

Proof. Similar to proof of Lemma  2.3.7 and omitted.

Proof of Claim  2.3.21
 . It follows from Claim  2.3.5 , Claim  2.3.6 , and Hurewicz isomorphism

theorem [ 26 , Theorem 5, page 398], that for

x P RpΦ, Bkp0, Rqq
J

and m ě 1, p rFm,ipΦqq´1pxq is pm´ 1q-connected. Claim  2.3.21
 now follows from the previous

statement and the homotopy version of the Vietoris-Begle theorem (see Remark  2 ).

Finally, Theorem  2.3.11
 follows from Claims  2.3.11

 ,  2.3.21
 and Lemma  2.3.71

 .

2.3.7 Upper bound on the size of the simplicial complex ∆pPm,ipΦqq

We now prove an upper bound on the size of the simplicial complex ∆pPm,ipΦqq assuming

a “singly exponential” upper bound on the function Ii,kp¨q and Ci,kp¨q.

Definition 2.3.7. For any closed formula ϕ with coefficients in a real closed field R, let the

size of ϕ, Comppϕq be the product of the number of polynomials appearing in the formula

ϕ and the maximum amongst the degrees of these polynomials. Similarly, if J is any finite

set, and Φ P pFR,kqJ , we denote by ComppΦq the product of the total number of polynomi-

als appearing in the formulas Φpjq, j P J , and the maximum amongst the degrees of these

polynomials.
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Theorem 2.3.2. Suppose that there exists c ą 0 such that for each ϕ P FRi,k,

Ii,kpϕq ď pComppϕqq
kc

,

max
jPrIi,kpϕqs

ComppCi,kpϕqpjqq ď pComppϕqq
kc

. (2.27)

Let J be a finite set and Φ P pFRi,kq
J . Then the number of simplices in ∆pPm,ipΦqq is

bounded by

pcardpJqDq
kOpmq

,

where

D “ ComppΦq.

Proof. Recall that the elements of Pm,ipΦq are finite tuples

pI0, . . . , Ir,Hq,

where for each, h, 0 ď h ď r, Ih is a subset of a certain set Jh defined in Section  2.3.3 .

We first bound the cardinalities of the various Jh’s occurring in the sequence above.

Claim 2.3.7. For any i1 ě 0, m1 ě ´1, finite set J 1, I 1 Ăm1`2 J
1, and Φ1 P pFRi1 ,kqJ 1,

cardpJ 1
m1,i1,I 1,Φ1q ď pcardpJ 1

qq
m1`1

pComppΦ1
qq

kc

.

Proof of Claim  2.3.7 . Let for each fixed i, k,

F pM 1, N 1,m1, D1
q “ max

J 1,cardpJ 1q“N 1,
I 1Ăm1`2J 1,cardpI 1q“M 1,

Φ1PFRi,k,ComppΦ1q“D1

cardpJ 1
m1,i,I 1,Φ1q.

Using Eqns. ( 2.5 ) and ( 2.6 ) and Eqn. ( 2.27 ), we obtain:

F pm1
` 2, N 1, D1

q ď D1kc

,

F pM 1, N,D1
q ď D1kc

` pN 1
´ M 1

qF pM 1
` 1, N 1, D1

q, for 1 ă M 1
ă m1

` 2.
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It follows that

F pM 1, N 1, D1
q ď D1kc

p1 ` N 1
` N 12

` ¨ ¨ ¨ ` N 1m1`2´M 1

q

ď D1kc

N 1m1`1 for 1 ă M 1
ď m1

` 2.

The claim follows from the above inequality.

Claim 2.3.8. For pI0, . . . , Ir, ϕq P Pm,ipΦq, r ď m ` 1.

Proof of Claim  2.3.8 . The claim follows from the fact that cardpI0q, . . . , cardpIr´1q ě 2, and

hence it follows from Eqn. (  2.9 ) that

2r ď
ÿ

0ďjăr

cardpIjq ď m ` pr ´ 1q ` 2.

It follows that

r ď m ` 1.

Claim 2.3.9. For every tuple pI0, . . . , Ir,Hq P Pm,ipΦq, 0 ď h ď r,

ComppΦhpαqq ď Dkch

, for α P Jh,

cardpJhq ď N pm`1qh

Dpkpm`1qqch

,

where Jh,Φh, 0 ď j ď r are defined in Eqn. ( 2.8 ), and N “ cardpJq.

Proof of Claim  2.3.9 . The claim is obviously true for h “ 0. Also, note that for each h, 0 ď

h ď r,

mh ď m.

The claim now follows by induction on h, using the inductive definitions of Jh,Φh (see

Eqn. (  2.8 )), Eqn. ( 2.27 ), and Claim  2.3.7 .

Claim 2.3.10.

cardpPm,ipΦqq ď pcardpJqDq
kOpmq

.
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Proof of Claim  2.3.10 . In order to bound the cardinality of Pm,ipΦq, we bound the number

of possible choices of I0, . . . , Ir for pI0, . . . , Ir,Hq P Pm,ipΦq.

It follows from Eqn. ( 2.9 ), that for each h, 0 ď h ď r,

cardpIhq ď m ´

h´1
ÿ

t“0
cardpItq ` h ` 2

ď m ´ 2h ` h ` 2 psince cardpItq ě 2, 0 ď t ă rq

ď m ´ h ` 2

ď m ` 2.

Since by Claim  2.3.9 for 0 ď h ď r,

cardpJhq ď N pm`1qh

Dpkpm`1qqch

,

the number of choices for Ih is clearly bounded by

m`2
ÿ

t“2

ˆ

N pm`1qh
Dpkpm`1qqch

h

˙

ď NmOphq

DkOphq

,

noting that m ď k. The above inequality, together with the fact that r ď m ` 1 (by

Claim  2.3.8 ), proves the claim.

Claim 2.3.11. The length of any chain in Pm,ipΦq is bounded by 2m ` 2.

Proof of Claim  2.3.11 . Suppose that α “ pIα
0 , . . . , I

α
rα
,Hq, β “ pIβ

0 , . . . , I
β
rβ
,Hq P Pm,ipΦq,

β ň α and α ‰ β.

It follows from Eqn. ( 2.10 ) that

prα ď rβq and Iα
h Ă Iβ

h , 0 ď h ď rα.
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In particular, this implies that 0 ă
řrα

h“0 cardpIα
h q ă

řrβ

h“0 cardpIβ
h q. Since for any

pI0, . . . , Ir,Hq P Pm,ipΦq, we have that

ÿ

0ďhăr

cardpIhq ď m ` r ` 2,

cardpIrq “ 1,

and

r ď m ` 1,

it follows immediately that the length of a chain in Pm,ipΦq is bounded by 2m ` 2.

The theorem follows from Claims  2.3.8 ,  2.3.9 ,  2.3.10 and  2.3.11 .

2.4 Simplicial replacement: algorithm

We begin with describing some preliminary algorithms that we will need.

2.4.1 Algorithmic Preliminaries

The following algorithm is described in [ 2 ]. We briefly recall the input, output and

complexity. We made a small and harmless modification to the input by requiring that the

closed semi-algebraic of which the covering is being computed is contained in the closed ball

of radius R centered at the origin, rather than in the sphere of radius R. This is done to

avoid complicating notation down the road and is not significant since the algorithm can be

easily modified to accommodate this change without any change in the complexity estimates.
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Algorithm 1 (Covering by Contractible Sets)
Input:

A. a finite set of s polynomials P Ă Drε̄srX1, . . . , Xks in strong k-general position on

Rk, with degpPiq ď d for 1 ď i ď s,

B. a P-closed formula ϕ such that semi-algebraic set Rpϕq Ă Bkp0, Rq, for some R ą 0,

R P R.

Output:

(a) a finite set of polynomials H Ă Drε̄, ζ̄srX1, . . . , Xks, where ζ̄ “ pζ1, . . . , ζ2cardpHqq;

(b) a tuple of H-formulas pθαqαPI such that each Rpθα,Rxε̄, ζ̄y
k
q, α P I is a closed semi-

algebraically contractible set, and

(c)
ď

αPI

Rpθα,Rxε̄, ζ̄y
k
q “ Rpψ,Rxε̄, ζ̄y

k
q.

Complexity: The complexity of the algorithm is bounded by pcardpPqpk`1q2
DkOp1q , where

D “ maxP PP degX̄,ε̄pP q. Moreover,

cardpIq, cardpHq ď pcardpPqDq
kOp1q

,

degȲ pHq, degε̄pHq, degζ̄pHq ď DkOp1q

.

Suppose that ε̄ “ pε1, . . . , εtq, and that each polynomial in P depends on at most

m of the εi’s. Then, each polynomial appearing in H depends on at most mpk ` 1q2 of

εi’s, and on at most one of the ζi’s.

Remark 9. Note that the last claim in the complexity of Algorithm  1 , namely that each

polynomial appearing in any of the formulas θα depends on at most mpk ` 1q2 of εi’s, and

on at most one of the ζi’s, does not appear explicitly in [ 2 ], but is evident on a close ex-

amination of the algorithm. It is also reflected in the fact that the combinatorial part (i.e.

the part depending on cardpPq) of the complexity of Algorithm 16.14 in [ 2 ] is bounded by

cardpPqpk`1q2. This is because the Algorithm 16.14 in [ 2 ] has a “local property”, namely that
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all computations involve at most a small number (in this case pk ` 1q2) polynomials in the

input at a time.

Notation 13. Let P “ tP1, . . . , Psu Ă DrX1, . . . , Xks. For 1 ď i ď s, let

Hi “ 1 `
ÿ

1ďjďk

ijXd1

j .

where d1 is the smallest number strictly bigger than the degree of all the polynomials in P.

For ϕ a P-closed formula, we will denote by ϕ‹pζq the formula obtained from ϕ by replac-

ing any occurrence of Pi ě 0 with Pi ě ´ζHi, and any occurrence of Pi ď 0 with Pi ď ζHi,

for each i, 1 ď i ď s.

Definition 2.4.1. Let P Ă RrX1, . . . , Xks be a finite set. We say that P is in ℓ-general

position, if no more than ℓ polynomials belonging to P have a common zero in Rk.

The set P is in strong ℓ-general position if moreover any ℓ polynomials belonging to P

have at most a finite number of common zeros in Rk.

Lemma 2.4.1. The set

DefpP , ζq “ tPi ˘ ζHi | 1 ď i ď su

is in strong k-general position.

Proof. See proof of Proposition 13.6 in [  2 ].

Lemma 2.4.2. Let R P R, R ą 0. The semi-algebraic set extpRpϕ,Bkp0, Rqq,Rxζyq is

semi-algebraically homotopy equivalent to Rpϕ‹pζq,XBkp0, Rqq.

Proof. Follows from Lemma  2.3.1 .

2.4.2 Algorithm for computing simplicial replacement

We now describe an algorithm that given a tuple of formula Φ and m, i ě 0, computes the

corresponding poset Pm,ipΦq, using Algorithm  1 to compute Ij,kpϕq and Cj,kpϕq for different

j and ϕ which arise in the course of the execution of the algorithm.
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Algorithm 2 (Computing the poset Pm,ipΦqq

Input:

(a) ℓ, 0 ď ℓ ď k, m,´1 ď m ď ℓ, i, 0 ď i ď m ` 2.

(b) A finite set of polynomials P Ă Drε̄0, . . . , ε̄isrX1, . . . , Xks, where D is an ordered

domain contained in a real closed field R.

(c) An element r P D, r ą 0.

(d) For each j, 0 ď j ď N , a P-closed formula ϕj, such that Rpϕj, Bkp0, 1{rqq is homo-

logically ℓ-connected (and ℓ-connected if R “ R).

Output:

The poset Pm,ipΦq (see Definition  2.3.3 ), where Φ is defined by Φpjq “ ϕj, j P rN s, and

the various I¨,kp¨q C¨,kp¨q are obtained by calls to Algorithm  1 .

Procedure:

1: J Ð rN s.

2: if m “ ´1 then

3: Output

P´1,ipΦq “ tptju, ϕq | j P Ju,

and the order relation to be the trivial one – namely for j, j1 P J ,

ptju,Hq ă ptj1
u,Hq ô j “ j1.

4: else

5:

P Ð P Y

#

r2
k

ÿ

i“1
X2

i ´ 1
+

.

6: for j P J do

7:

Φpjq Ð Φpjq ^

˜

r2
k

ÿ

i“0
X2

i ´ 1 ď 0
¸

.

8: end for
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9: for each subset I Ăďm`2 J do

10: Use Definition  2.3.2 to compute Jm,i,I,Φ and Φm,i,I,J , using Algorithm  1 with in-

put DefpP , εq, and the formula
Ź

jPI Φpjq‹pεq, (noting that Rp
Ź

jPI Φpjq‹pεqq is contained

in Bkp0, 2{rq), to compute Ii,kp
Ź

jPI Φpjqq and Ci,kpp
Ź

jPI Φpjqqq. The polynomials ap-

pearing in the formulas in Ci,kpp
Ź

jPI Φpjqqq have coefficients in Drε̄0, . . . , ε̄i, ε̄i`1s, where

ε̄i`1 “ pε, ζ̄q, and ζ̄ is a new tuple of infinitesimals.

11: end for

12: for I Ă J, 1 ă cardpIq ď m ` 2 do

13: Use Algorithm  2 recursively with input ℓ,m ´ cardpIq ` 1, i ` 1,PI ,Φm,i,I,J , r,

where PI Ă Drε̄0, . . . , ε̄i`1s is the set of polynomials occurring in Φm,i,I,J .

14:

Pm,ipΦq Ð tptju, ϕq | j P Ju Y
ď

IĂJ,1ăcardpIqďm`2
tIu ˆ Pm´cardpIq`1,i`1pΦm,i,I,Jq.

15: Define partial order ă on Pm,ipΦq as in Definition  2.3.3 .

16: end for

17: end if

Complexity: The complexity of the algorithm, as well as cardpPm,ipΦqq, are bounded by

pNsdq
kOpmq

,

where s “ cardpPq, and d “ maxP PP degpP q.

Proof of correctness. The algorithm follows Definition  2.3.3 .

Complexity analysis. The bound on cardpPm,ipΦqq is a consequence of Theorem  2.3.2 . The

complexity of the algorithm follows from the complexity of the Algorithm  1 and an argument

as in the proof of Theorem  2.3.2 .

There is one additional point to note that in the recursive calls algorithm the arithmetic

operations take place in a larger ring, namely - Drε̄0, . . . , ε̄m`2s.

It follows from the complexity of Algorithm  1 that the number of different infinitesimals

occurring in each polynomial that is computed in the course of Algorithm  2 is bounded
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by kOpmq, and these infinitesimals occur with degrees bounded by dkOpmq . Hence each arith-

metic operation involving the coefficients with these polynomials costs
´

dkOpmq
¯kOpmq

“ dkOpmq

arithmetic operations in the ring D. This does not affect the asymptotics of the complexity,

where we measure arithmetic operations in the ring D.

Remark 10. Suppose we define (following the same notation as in Properties  2 and  21
 and

Algorithm  2 ) for ϕ P FRi,k,

Ii,kpΦq “ cardpIq ´ 1,

Ci,kpΦq “ pθαqαPI ,

where pθαqαPI is the output of Algorithm  1 with input the set of polynomials appearing in the

definition of ϕ˚pεq, the closed formula ϕ˚pεq, and R set to 1{r (as in Line  10 of Algorithm  2 ).

Then it follows from the correctness of Algorithm  1 , that (denoting by Ri “ Rxε̄0, . . . , ε̄iy

as in Algorithm  2 ) the tuple

ppRiqiě0, 1{r, k, pIi,kqiě0, pCi,kqiě0q

satisfies the homological ℓ-connectivity property over R (resp. ℓ-connectivity property if R “

R) for every ℓ ě 0 (see Property  2 and Property  21
 .
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Algorithm 3 (Simplicial replacement)
Input:

(a) A finite set of polynomials P Ă DrX1, . . . , Xks where D is an ordered domain

contained in a real closed field R.

(b) An integer N ě 0, and for each i P rN s, a P-closed formula ϕi.

(c) ℓ, 0 ď ℓ ď k.

Output:

A simplicial complex ∆ and for each I Ă rN s a subcomplex ∆I Ă ∆ such that there is

a diagrammatic homological ℓ-equivalence

pI ÞÑ ∆IqIĂrNs
h
„ℓ SimprNs

pRpΦqq,

where Φpiq “ ϕi, i P rN s. In case R “ R, then the simplicial complex ∆ and the

subcomplexes ∆I satisfy the stronger property, namely:

pI ÞÑ ∆IqIĂrNs „ℓ SimprNs
pRpΦqq,

where Φpiq “ ϕi, i P rN s.

Procedure:

1: Let 0 ă ε0 ! δ ă 1 be infinitesimals.

2: for 0 ď i ď N do

3: Call Algorithm  1 with input DefpP , ε0q, the formula ϕ‹
i pε0q^4δ2pX2

1 `¨ ¨ ¨`X2
kq´1 ď 0

as input and let Φi “ pϕi,1, . . . , ϕi,Ni
q be the output.

4: Pi Ð the set of polynomials appearing in the formula Φi.

5: end for

6: P 1 Ð
Ť

iPrNs
Pi.

7: for 0 ď i ď n do

8: Ji Ð tpi, jq | 1 ď j ď Niu.

9: end for
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10: J Ð
Ť

iPrNs
Ji.

11: Let Ψ P pFRxδ,ε0y,kqJ be defined by Ψppi, jqq “ ϕi,j.

12: Call Algorithm  2 with input

pℓ ` 1,m ` 1, 0,P 1, J, δ,Ψq,

and let Pm,0pΨq denote the output.

13: Output the simplicial complex ∆pPm,0pΨqq, and for each subset I Ă rN s, the subcomplex

∆pPm,0pΨ|Ť

iPI Ji
qq.

Complexity: The complexity of the algorithm is bounded by psdqkOpℓq , where s “ cardpPq

and d “ maxP PP degpP q.

Proof of correctness. The correctness of the algorithm follows from the correctness of Algo-

rithm  2 , Remark  10 , and Theorems  2.3.1 and  2.3.11
 .

Complexity analysis. The complexity bound follows from the complexity bounds of Algo-

rithms  1 and  2 .

Proofs of Theorems  2.2.1 and  2.2.11
 . Both theorems now follows from the correctness and

the complexity analysis Algorithm  3 .

2.5 Implementation

We implemented the construction corresponding to the simplified view of the poset,

PmpSq, and will report some of its results. Our implementation closely follows the construc-

tion; however, to facilitate implementation and not to work directly with semi-algebraic sets,

we made the following assumptions:

1. The input of the procedure is an index set J corresponding to the elements of a contractible

cover of S, and an integer m.

2. There exists a black-box that takes an index set I (I Ă J), and returns an index set JI

corresponded to the elements of CpSIq.
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One technical detail regarding the implementation (and the output) is the naming con-

vention of the elements of the poset, which is slightly different from what we described in

Definition  2.3.3 . More precisely, in our implementation, the elements of the poset are tuples

of length two (tuples with length ą 2 are divided into two parts using parenthesis, recur-

sively). That is because when the procedure begins with a given index set I, it first uses

the black-box to obtain a set of indices JI corresponding to the elements of CpSIq. Then

the elements of the new cover are labeled by pI, iq for i P JI , and the procedure continues

recursively.

We incorporated SageMath  

6
 Python modules to construct the order complex from the

poset and to compute the Betti numbers. The following simple examples demonstrate the

output of the program.

Example 4. (Sphere with a cover of size two)

In this example, similar to the example given in Section  2.3.5 , we have a two-dimensional

unit sphere in R3 covered by two closed hemispheres labeled by 0 and 1. Below is the output

of the program with input J “ t0, 1u and m “ 3.
1 =================Sphere===================
2 B e t t i numbers : { 0 : 1 , 1 : 0 , 2 : 1}

3 h e i g h t o f t h e p o s e t : 3
4 w i d t h o f t h e p o s e t : 2
5 number o f e l e m e n t s : 6
6 number o f r e l a t i o n s : 12
7 −−−−−−−−−−−−−−−−−−−−−−
8 Elements :
9 ( [ 0 ] , [ ] )

10 ( [ 1 ] , [ ] )
11 ( [ 0 , 1 ] , ( [ ( [ 0 , 1 ] , 0 ) ] , [ ] ) )
12 ( [ 0 , 1 ] , ( [ ( [ 0 , 1 ] , 1 ) ] , [ ] ) )
13 ( [ 0 , 1 ] , ( [ ( [ 0 , 1 ] , 0 ) , ( [ 0 , 1 ] , 1 ) ] , ( [ ( [ ( [ 0 , 1 ] , 0 ) , ( [ 0 , 1 ] , 1 ) ] , 0 ) ] , [ ] ) ) )
14 ( [ 0 , 1 ] , ( [ ( [ 0 , 1 ] , 0 ) , ( [ 0 , 1 ] , 1 ) ] , ( [ ( [ ( [ 0 , 1 ] , 0 ) , ( [ 0 , 1 ] , 1 ) ] , 1 ) ] , [ ] ) ) )
15
16 −−−−−−−−−−−−−−−−−−−−−−
17 Order r e l a t i o n s :
18 ( ’ ( [ 0 , 1 ] , ( [ ( [ 0 , 1 ] , 0 ) ] , [ ] ) ) ’ , ’ ( [ 0 ] , [ ] ) ’ )
19 ( ’ ( [ 0 , 1 ] , ( [ ( [ 0 , 1 ] , 1 ) ] , [ ] ) ) ’ , ’ ( [ 0 ] , [ ] ) ’ )
20 ( ’ ( [ 0 , 1 ] , ( [ ( [ 0 , 1 ] , 0 ) , ( [ 0 , 1 ] , 1 ) ] , ( [ ( [ ( [ 0 , 1 ] , 0 ) , ( [ 0 , 1 ] , 1 ) ] , 0 ) ] , [ ] ) ) ) ’ ,
21 ’ ( [ 0 ] , [ ] ) ’ )
22 ( ’ ( [ 0 , 1 ] , ( [ ( [ 0 , 1 ] , 0 ) , ( [ 0 , 1 ] , 1 ) ] , ( [ ( [ ( [ 0 , 1 ] , 0 ) , ( [ 0 , 1 ] , 1 ) ] , 1 ) ] , [ ] ) ) ) ’ ,
23 ’ ( [ 0 ] , [ ] ) ’ )
24 ( ’ ( [ 0 , 1 ] , ( [ ( [ 0 , 1 ] , 0 ) ] , [ ] ) ) ’ ,
25 ’ ( [ 1 ] , [ ] ) ’ )
26 ( ’ ( [ 0 , 1 ] , ( [ ( [ 0 , 1 ] , 1 ) ] , [ ] ) ) ’ ,
27 ’ ( [ 1 ] , [ ] ) ’ )

6
 Ò  https://github.com/sagemath/sage  
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28 ( ’ ( [ 0 , 1 ] , ( [ ( [ 0 , 1 ] , 0 ) , ( [ 0 , 1 ] , 1 ) ] , ( [ ( [ ( [ 0 , 1 ] , 0 ) , ( [ 0 , 1 ] , 1 ) ] , 0 ) ] , [ ] ) ) ) ’ ,
29 ’ ( [ 1 ] , [ ] ) ’ )
30 ( ’ ( [ 0 , 1 ] , ( [ ( [ 0 , 1 ] , 0 ) , ( [ 0 , 1 ] , 1 ) ] , ( [ ( [ ( [ 0 , 1 ] , 0 ) , ( [ 0 , 1 ] , 1 ) ] , 1 ) ] , [ ] ) ) ) ’ ,
31 ’ ( [ 1 ] , [ ] ) ’ )
32 ( ’ ( [ 0 , 1 ] , ( [ ( [ 0 , 1 ] , 0 ) , ( [ 0 , 1 ] , 1 ) ] , ( [ ( [ ( [ 0 , 1 ] , 0 ) , ( [ 0 , 1 ] , 1 ) ] , 0 ) ] , [ ] ) ) ) ’ ,
33 ’ ( [ 0 , 1 ] , ( [ ( [ 0 , 1 ] , 0 ) ] , [ ] ) ) ’ )
34 ( ’ ( [ 0 , 1 ] , ( [ ( [ 0 , 1 ] , 0 ) , ( [ 0 , 1 ] , 1 ) ] , ( [ ( [ ( [ 0 , 1 ] , 0 ) , ( [ 0 , 1 ] , 1 ) ] , 1 ) ] , [ ] ) ) ) ’ ,
35 ’ ( [ 0 , 1 ] , ( [ ( [ 0 , 1 ] , 0 ) ] , [ ] ) ) ’ )
36 ( ’ ( [ 0 , 1 ] , ( [ ( [ 0 , 1 ] , 0 ) , ( [ 0 , 1 ] , 1 ) ] , ( [ ( [ ( [ 0 , 1 ] , 0 ) , ( [ 0 , 1 ] , 1 ) ] , 0 ) ] , [ ] ) ) ) ’ ,
37 ’ ( [ 0 , 1 ] , ( [ ( [ 0 , 1 ] , 1 ) ] , [ ] ) ) ’ )
38 ( ’ ( [ 0 , 1 ] , ( [ ( [ 0 , 1 ] , 0 ) , ( [ 0 , 1 ] , 1 ) ] , ( [ ( [ ( [ 0 , 1 ] , 0 ) , ( [ 0 , 1 ] , 1 ) ] , 1 ) ] , [ ] ) ) ) ’ ,
39 ’ ( [ 0 , 1 ] , ( [ ( [ 0 , 1 ] , 1 ) ] , [ ] ) ) ’ )

Example 5. (Sphere with a cover of size four)

In this example again, we have a two-dimensional unit sphere in R3, however, covered

by four elements as shown in Figure  2.9 . Below is the output of the program with input

J “ t0, 1, 2, 3u and m “ 3 (order relations are omitted).

0

12

3

Figure 2.9. A contractible cover of Sphere by four elements.

1 =================Sphere===================
2 B e t t i numbers : { 0 : 1 , 1 : 0 , 2 : 1}

3 h e i g h t o f t h e p o s e t : 3
4 w i d t h o f t h e p o s e t : 18
5 number o f e l e m e n t s : 38
6 number o f r e l a t i o n s : 108
7 −−−−−−−−−−−−−−−−−−−−−−
8 Elements :
9 ( [ 0 ] , [ ] )

10 ( [ 1 ] , [ ] )
11 ( [ 2 ] , [ ] )
12 ( [ 3 ] , [ ] )
13 ( [ 0 , 1 , 2 ] , ( [ ( [ 0 , 1 , 2 ] , 0 ) ] , [ ] ) )
14 ( [ 0 , 1 , 2 ] , ( [ ( [ 0 , 1 , 2 ] , 1 ) ] , [ ] ) )
15 ( [ 1 , 2 , 3 ] , ( [ ( [ 1 , 2 , 3 ] , 0 ) ] , [ ] ) )
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16 ( [ 1 , 2 , 3 ] , ( [ ( [ 1 , 2 , 3 ] , 1 ) ] , [ ] ) )
17 ( [ 0 , 1 ] , ( [ ( [ 0 , 1 ] , 0 ) ] , [ ] ) )
18 ( [ 0 , 1 ] , ( [ ( [ 0 , 1 , 2 ] , 0 ) ] , [ ] ) )
19 ( [ 0 , 1 ] , ( [ ( [ 0 , 1 , 2 ] , 1 ) ] , [ ] ) )
20 ( [ 0 , 1 ] , ( [ ( [ 0 , 1 ] , 0 ) , ( [ 0 , 1 , 2 ] , 0 ) ] , ( [ ( [ ( [ 0 , 1 ] , 0 ) , ( [ 0 , 1 , 2 ] , 0 ) ] , 0 ) ] , [ ] ) ) )
21 ( [ 0 , 1 ] , ( [ ( [ 0 , 1 ] , 0 ) , ( [ 0 , 1 , 2 ] , 1 ) ] , ( [ ( [ ( [ 0 , 1 ] , 0 ) , ( [ 0 , 1 , 2 ] , 1 ) ] , 0 ) ] , [ ] ) ) )
22 ( [ 0 , 2 ] , ( [ ( [ 0 , 2 ] , 0 ) ] , [ ] ) )
23 ( [ 0 , 2 ] , ( [ ( [ 0 , 1 , 2 ] , 0 ) ] , [ ] ) )
24 ( [ 0 , 2 ] , ( [ ( [ 0 , 1 , 2 ] , 1 ) ] , [ ] ) )
25 ( [ 0 , 2 ] , ( [ ( [ 0 , 2 ] , 0 ) , ( [ 0 , 1 , 2 ] , 0 ) ] , ( [ ( [ ( [ 0 , 2 ] , 0 ) , ( [ 0 , 1 , 2 ] , 0 ) ] , 0 ) ] , [ ] ) ) )
26 ( [ 0 , 2 ] , ( [ ( [ 0 , 2 ] , 0 ) , ( [ 0 , 1 , 2 ] , 1 ) ] , ( [ ( [ ( [ 0 , 2 ] , 0 ) , ( [ 0 , 1 , 2 ] , 1 ) ] , 0 ) ] , [ ] ) ) )
27 ( [ 1 , 2 ] , ( [ ( [ 1 , 2 ] , 0 ) ] , [ ] ) )
28 ( [ 1 , 2 ] , ( [ ( [ 1 , 2 ] , 1 ) ] , [ ] ) )
29 ( [ 1 , 2 ] , ( [ ( [ 0 , 1 , 2 ] , 0 ) ] , [ ] ) )
30 ( [ 1 , 2 ] , ( [ ( [ 0 , 1 , 2 ] , 1 ) ] , [ ] ) )
31 ( [ 1 , 2 ] , ( [ ( [ 1 , 2 , 3 ] , 0 ) ] , [ ] ) )
32 ( [ 1 , 2 ] , ( [ ( [ 1 , 2 , 3 ] , 1 ) ] , [ ] ) )
33 ( [ 1 , 2 ] , ( [ ( [ 1 , 2 ] , 0 ) , ( [ 0 , 1 , 2 ] , 0 ) ] , ( [ ( [ ( [ 1 , 2 ] , 0 ) , ( [ 0 , 1 , 2 ] , 0 ) ] , 0 ) ] , [ ] ) ) )
34 ( [ 1 , 2 ] , ( [ ( [ 1 , 2 ] , 0 ) , ( [ 1 , 2 , 3 ] , 0 ) ] , ( [ ( [ ( [ 1 , 2 ] , 0 ) , ( [ 1 , 2 , 3 ] , 0 ) ] , 0 ) ] , [ ] ) ) )
35 ( [ 1 , 2 ] , ( [ ( [ 1 , 2 ] , 1 ) , ( [ 0 , 1 , 2 ] , 1 ) ] , ( [ ( [ ( [ 1 , 2 ] , 1 ) , ( [ 0 , 1 , 2 ] , 1 ) ] , 0 ) ] , [ ] ) ) )
36 ( [ 1 , 2 ] , ( [ ( [ 1 , 2 ] , 1 ) , ( [ 1 , 2 , 3 ] , 1 ) ] , ( [ ( [ ( [ 1 , 2 ] , 1 ) , ( [ 1 , 2 , 3 ] , 1 ) ] , 0 ) ] , [ ] ) ) )
37 ( [ 1 , 3 ] , ( [ ( [ 1 , 3 ] , 0 ) ] , [ ] ) )
38 ( [ 1 , 3 ] , ( [ ( [ 1 , 2 , 3 ] , 0 ) ] , [ ] ) )
39 ( [ 1 , 3 ] , ( [ ( [ 1 , 2 , 3 ] , 1 ) ] , [ ] ) )
40 ( [ 1 , 3 ] , ( [ ( [ 1 , 3 ] , 0 ) , ( [ 1 , 2 , 3 ] , 0 ) ] , ( [ ( [ ( [ 1 , 3 ] , 0 ) , ( [ 1 , 2 , 3 ] , 0 ) ] , 0 ) ] , [ ] ) ) )
41 ( [ 1 , 3 ] , ( [ ( [ 1 , 3 ] , 0 ) , ( [ 1 , 2 , 3 ] , 1 ) ] , ( [ ( [ ( [ 1 , 3 ] , 0 ) , ( [ 1 , 2 , 3 ] , 1 ) ] , 0 ) ] , [ ] ) ) )
42 ( [ 2 , 3 ] , ( [ ( [ 2 , 3 ] , 0 ) ] , [ ] ) )
43 ( [ 2 , 3 ] , ( [ ( [ 1 , 2 , 3 ] , 0 ) ] , [ ] ) )
44 ( [ 2 , 3 ] , ( [ ( [ 1 , 2 , 3 ] , 1 ) ] , [ ] ) )
45 ( [ 2 , 3 ] , ( [ ( [ 2 , 3 ] , 0 ) , ( [ 1 , 2 , 3 ] , 0 ) ] , ( [ ( [ ( [ 2 , 3 ] , 0 ) , ( [ 1 , 2 , 3 ] , 0 ) ] , 0 ) ] , [ ] ) ) )
46 ( [ 2 , 3 ] , ( [ ( [ 2 , 3 ] , 0 ) , ( [ 1 , 2 , 3 ] , 1 ) ] , ( [ ( [ ( [ 2 , 3 ] , 0 ) , ( [ 1 , 2 , 3 ] , 1 ) ] , 0 ) ] , [ ] ) ) )

Example 6. (Torus with a cover of size four)

In this example, let S be the two-dimensional torus embedded in R3, covered by four

elements in the following way. A horizontal cut slices torus into two pieces, followed by two

vertical cuts to form four contractible elements of the covering. Below is the output of the

program with input J “ t0, 1, 2, 3u and m “ 2 (elements and the order relations are omitted).
1 =================Torus====================
2 B e t t i numbers : { 0 : 1 , 1 : 2 , 2 : 1 , 3 : 648 , 4 : 0}

3 h e i g h t o f t h e p o s e t : 5
4 w i d t h o f t h e p o s e t : 1520
5 number o f e l e m e n t s : 2808
6 number o f r e l a t i o n s : 17400

Example  6 demonstrates that the singly exponential size of the poset could be formidably

expensive for practical applications.
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2.6 Future work and open problems

We conclude this chapter by stating some open problems and possible future directions

of research in this area.

1. It is an interesting problem to try to make the poset Pm,ipΦq in Theorem  2.3.1 smaller in

size and more efficiently computable. For instance, in Theorem  2.3.2 one should be able

to improve the dependence on cardpJq.

2. There are some recent work in algorithmic semi-algebraic geometry where algorithms have

been developed for computing the first few Betti numbers of semi-algebraic subsets of Rk

having special properties. For example, in [  27 ] the authors give an algorithm to compute

the first ℓ Betti numbers of semi-algebraic subsets of Rk defined by symmetric polynomials

of degrees bounded by some constant d. The complexity of the algorithm is doubly

exponential in both d and ℓ (though polynomial in k for fixed d and ℓ). This algorithm uses

semi-algebraic triangulations which leads to the doubly exponential complexity. It is an

interesting problem to investigate whether by applying the efficient simplicial replacement

of the current work the dependence on d and ℓ can be improved.
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3. PERSISTENT HOMOLOGY OF SEMI-ALGEBRAIC SETS

In this chapter, we consider the problem of computing persistent homology groups of semi-

algebraic sets by a filtration of the sub-level sets of a polynomial. We believe the previous

literature has not addressed this problem. First, in Section  3.1 , we provide an overview of the

main contributions. Then in Section  3.2 , we give the precise statements of the main result

after introducing the necessary definitions. In Section  3.3 , we prove the key proposition

(Proposition  3.3.3 ) which allows us to efficiently reduce the filtration of the sub-level sets

of a polynomial to a finite filtrations. In Section  3.4 , after introducing certain necessary

preliminaries, we describe our algorithm for computing barcodes of semi-algebraic filtrations

and analyze its complexity (thereby proving Theorem  3.2.1 ). Finally, in Section  3.5 we state

some open questions and directions for future work in this area.

3.1 Introduction

Persistent homology groups are associated to a filtration of topological spaces; hence, they

generalize ordinary homology groups where the filtration is trivial (i.e., constant). The cur-

rent state of the problem of computing homology groups of semi-algebraic sets was discussed

thoroughly in the previous chapter (see Section  2.1 ). We begin here with a motivational

example in Topological Data Analysis.

Given a subset X “ txp1q, . . . ,xpnqu of Rk and a distance function (e.g., Euclidean

distance)—X represents as the data points sampled from a sub-manifold M of Rk—the

goal is to infer the topological properties of the underlying structure of X (i.e., space M).

At a high level, a common approach to accomplish this is to construct a filtration of simpli-

cial complexes over X. One of the well-known filtration, is the filtration of Čech complexes

[ 3 ] which can be described as follows.
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Let S Ă Rk`1, be the semi-algebraic set defined by the formula,

ϕpX1, . . . , Xk, T q :“
n

ł

i“1

`

|X ´ xpiq
|
2

´ T ď 0
˘

,

where X “ pX1, . . . , Xkq. We take the polynomial P “ T , to construct the filtration. For

t ě 0, we denote by St the union of closed Euclidean balls, Bkpx, tq, of radius t centered at

the points x. Notice that each St is a semi-algebraic set indexed by t. In particular, S0 “ X.

Also, for 0 ď t ď t1, we have that St Ă St1 . Thus, F “ pStqtě0 is an increasing family

of semi-algebraic sets indexed by t ě 0. This is an example of a semi-algebraic filtration.

The main rationale for considering this filtration is that nerve complex of the family of

convex sets Bkpx, tq, x P X approximates homotopically the underlying manifold M , and

each homology class of M would show up in the homology of St for some values of t. Hence,

different homology groups would appear by varying the parameter t. A diagram known as

barcode is used to illustrate the lifetime of homology classes. In the barcode, each homology

class is represented as a horizontal line segment. The line segments span the period that the

corresponding topological properties exist along the parameter axis (i.e., t). The barcode

of the filtration pStqtě0 is a tool for filtering out spurious homology (noise) from that which

genuinely reflects the topology of M (see [ 3 ], [ 4 ], [ 28 ]). In the semi-algebraic world, they play

a similar role—for example, as a measure of topological similarity of two given semi-algebraic

sets, which is much finer (because of the presence of the continuous parameters) to just the

sequence of Betti numbers.

As stated earlier, the main goal in this chapter is to design an efficient (singly exponential

complexity algorithm) that takes as input a quantifier-free formula describing a closed semi-

algebraic set S Ă Rk as well as a polynomial P P RrX1, . . . , Xks, and outputs the barcodes

up to dimension ℓ for some fixed ℓ ě 0 of the filtration of S by the sub-level sets of the

function P on S, thereby generalizing the algorithm in [ 8 ] for computing the first ℓ Betti

numbers with a similar complexity. There are several intermediate steps needed to achieve

this goal. These intermediate steps have been used recently in other applications (that we

mention in Section  3.1.1 below) and hence could be of independent interest. We outline

them below.
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3.1.1 Main contributions

The main contributions of our work are as follows.

1. We reformulate the definition of barcodes in order to treat continuous as well as finite

filtrations in a uniform manner. This is important in the current application since we

consider filtrations of semi-algebraic sets by polynomial functions which are by nature ex-

amples of continuous filtrations (since they are indexed by R). However, we show that the

barcode of this continuous filtration is equal to another finite one (see Propositions  3.3.1 

and  3.3.3 ). In order for such an equality to make sense it is important that persistent

homology of a filtration should be defined in a uniform way for arbitrary ordered index

set. It is possible to have a completely categorical description of persistent homology

which applies to very general filtration [  29 ]. We avoid categorical language and give an

elementary definition of barcodes directly in terms of sub-quotients of homology groups

(see Definition  3.2.5 ) which we believe could be useful in other applications as well. For

example, the definition given in this chapter is used in a crucial way in [ 30 ] to define

harmonic barcodes (which carry more information than the classical barcodes). In this

application it is very important to identify the persistent homology spaces with certain

subspaces of the chain spaces of the ambient simplicial complex. This is possible using

our definitions.

2. We give a definition of barcodes for semi-algebraic maps which are not necessarily proper

(Definition  3.2.8 ) generalizing the one for proper maps—and we believe that this could

form the basis of generalizing the results of the current papers to arbitrary semi-algebraic

sets and maps.

3. By an application of a standard theorem in real algebraic geometry (Hardt triviality

theorem [ 31 ]) we can deduce that the topological type of the sub-level sets of a filtration

of a semi-algebraic set by a semi-algebraic function changes at only finitely many values

of the function. This implies that the barcode of the original filtration is equal to that

of a finite filtration (after proper definition of barcodes encompassing both the finite

and the continuous case as mentioned earlier). However, an algorithm based on Hardt
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triviality theorem would inevitably lead to a doubly exponential sized filtration—since

the proof of this theorem (see for example proof of [ 2 , Theorem 5.46]) depends on taking

semi-algebraic triangulations for which only a doubly exponential complexity algorithm is

known to exist. A second important contribution of the current work is an algorithm with

singly exponential complexity (see Algorithm  6 below) for reducing a given continuous

filtration of a semi-algebraic set by a polynomial to a filtration of simplicial complexes

indexed by a finite subset of R, such that the barcode of this finite filtration is equal to

that of the continuous filtration in dimensions up to ℓ. The two main ingredients for this

algorithms are:

(a) mathematical techniques introduced in [ 32 ] for bounding the number of homotopy

types of fibers of a semi-algebraic map;

(b) the algorithm for efficiently computing simplicial replacements of semi-algebraic sets—

Theorem  2.2.1 in Chaper  2 .

We note that Algorithm  6 has other applications as well. For example, it plays a key role

in a recent work on computing a homology basis of the first homology group of a given

semi-algebraic set with singly exponential complexity [  33 ].

4. The last (and perhaps the most important) contribution is an algorithm with a singly

exponential complexity that computes the barcodes of a semi-algebraic filtration up to

dimension ℓ for any fixed ℓ ě 0. After having reduced to the case of finite semi-algebraic

filtration using Algorithm  6 , we then compute the barcode of this finite filtration of finite

simplicial complexes (cf. Algorithms  7 and  8 ) using Definition  3.2.5 and standard algo-

rithms from linear algebra.

We remark that it is plausible that after ensuring the finiteness of the filtration, the

last step of computing the barcode could be achieved by an appropriate extension of the

algorithm for computing the first few Betti numbers of semi-algebraic sets described in [ 8 ].

However, this extension would be non-trivial and we prefer to use directly Algorithm  2 

in Chapter  2 for which no extension is needed.
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The importance of the assumption that the input semi-algebraic subset be closed and

bounded is discussed in Section  3.2.2 .

3.2 Precise definitions and statements of the main results

In this section, we define precisely persistent homology and barcodes of filtrations in

Section  3.2.1 . Then in Section  3.2.2 we define semi-algebraic filtrations and state the main

algorithmic result of this section (Theorem  3.2.1 ).

3.2.1 Persistent homology and barcodes

Let T be an ordered set, and F “ pXtqtPT , a tuple of subspaces of X, such that s ď t ñ

Xs Ă Xt. We call F a filtration of the topological space X.

We now recall the definition of the persistent homology groups associated to a filtration

[ 28 ], [ 34 ]. Since we only consider homology groups with rational coefficients, all homology

groups in what follows are finite dimensional Q-vector spaces.

Notation 14. For s, t P T, s ď t, and p ě 0, we let is,t
p : HppXsq ÝÑ HppXtq, denote the

homomorphism induced by the inclusion Xs ãÑ Xt.

Definition 3.2.1. [ 28 ] For each triple pp, s, tq P Zě0 ˆ T ˆ T with s ď t the persistent

homology group, Hs,t
p pFq is defined by

Hs,t
p pFq “ Impis,t

p q.

Note that Hs,t
p pFq Ă HppXtq, and Hs,s

p pFq “ HppXsq.

Notation 15. We denote by bs,t
p pFq “ dimQpHs,t

p pFqq.

Persistent homology measures how long a homology class persists in the filtration, in

other words considering the homology classes as topological features, it gives an insight

about the time (thinking of the indexing set T of the filtration as time) that a topological

feature appears (or is born) and the time it disappears (or dies). This is made precise as

follows.
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Definition 3.2.2. For s ď t P T , and p ě 0,

• we say that a homology class γ P HppXsq is born at time s, if γ R Hs1,s
p pFq, for any

s1 ă s;

• for a class γ P HppXsq born at time s, we say that γ dies at time t,

– if is,t1

p pγq R Hs1,t1

p pFq for all s1, t1 such that s1 ă s ď t1 ă t,

– but is,t
p pγq P Hs2,t

p pFq, for some s2 ă s.

Remark 11. Note that the homology classes that are born at time s, and those that are

born at time s and dies at time t, as defined above are not subspaces of HppXsq. In order to

be able to associate a “multiplicity” to the set of homology classes which are born at time s

and dies at time t we interpret them as classes in certain subquotients of H˚pXsq in what

follows.

First observe that it follows from Definition  3.2.1 that for all s1 ď s ď t and p ě 0,

Hs1,t
p pFq is a subspace of Hs,t

p pFq, and both are subspaces of HppXtq. This is because the

homomorphism is
1,t

p “ is,t
p ˝ is

1,s
p , and so the image of is1,t

p is contained in the image of is,t
p . It

follows that, for s ď t, the union of
Ť

s1ăs Hs1,t
p pFq is an increasing union of subspaces, and

is itself a subspace of HppXtq. In particular, setting t “ s,
Ť

s1ăs Hs1,s
pFq is a subspace of

HppXsq.

With the same notation as above:

Definition 3.2.3 (Subspaces of HppXsq). For s ď t, and p ě 0, we define

M s,t
p pFq “

ď

s1ăs

pis,t
p q

´1
pHs1,t

p pFqq,

N s,t
p pFq “

ď

s1ăsďt1ăt

pis,t1

p q
´1

pHs1,t1

p pFqq,

Remark 12. The “meaning” of these subspaces are as follows.
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(a) For every fixed s P T , M s,t
p pFq is a subspace of HppXsq consisting of homology classes in

HppXsq which are

“born before time s, or born at time s and dies at t or earlier”

(b) Similarly, for every fixed s P T , N s,t
p pFq is a subspace of HppXsq consisting of homology

classes in HppXsq which are

“born before time s, or born at time s and dies strictly earlier than t”

The dimensions of M s,t
p pFq and N s,t

p pFq are given in Eqn. ( 3.10 ) and ( 3.11 ) in Proposi-

tion  3.3.4 below.

We now define certain subquotients of the homology groups of HppXsq, s P T, p ě 0, in

terms of the subspaces defined above in Definition  3.2.3 .

Definition 3.2.4 (Subquotients associated to a filtration). For s ď t, and p ě 0, we define

P s,t
p pFq “ M s,t

p pFq{N s,t
p pFq,

P s,8
p pFq “ HppXsq{

ď

sďt

M s,t
p pFq.

We will call

(a) P s,t
p pFq the space of p-dimensional cycles born at time s and which dies at time t; and

(b) P s,8
p pFq the space of p-dimensional cycles born at time s and which never die.

Remark 13. Notice that M s,t
p pFq Ă M s,t1

p pFq for t ď t1, and hence
Ť

sďt M
s,t
p pFq is a

subspace of HppXsq, and N s,t
p pFq is a subspace of M s,t

p pFq. Therefore, these subquotients are

vector spaces and have well defined dimensions.

Finally, we are able to achieve our goal of defining the multiplicity of a bar as the

dimension of an associated vector space and define the barcode of a filtration.
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Definition 3.2.5 (Persistent multiplicity, barcode). We will denote for s P T, t P T Y t8u,

µs,t
p pFq “ dimP s,t

p pFq, (3.1)

and call µs,t
p pFq the persistent multiplicity of p-dimensional cycles born at time s and dying

at time t if t ‰ 8, or never dying in case t “ 8.

Finally, we will call the set

BppFq “ tps, t, µs,t
p pFqq | µs,t

p pFq ą 0u (3.2)

the p-dimensional barcode associated to the filtration F .

We will call an element b “ ps, t, µs,t
p pFqq P BppFq a bar of F of multiplicity µs,t

p pF).

Remark 14. Note that the notion of persistent multiplicity has been defined previously

in the context of finite filtrations (see [ 35 ]). The definition of µs,t
p pFq given in Eqn. ( 3.1 )

generalizes that given in loc.cit. in the case of finite filtrations, who defined it using Eqn. ( 3.9 )

in Proposition  3.3.4 stated below. Our definition gives a geometric meaning to this number

as a dimension of a certain vector space (a subquotient of HppXsq), and we prove that it

agrees with that given in loc.cit. in Proposition  3.3.4 . Also, it is important to note for what

follows that our definition of a barcode applies uniformly to all filtrations with index coming

from an ordered set, and we make no additional assumption on the indexing set.

Remark 15 (Continuous vs finite filtrations). In most applications the filtration F is as-

sumed to be finite (i.e. the ordered set T is finite). Since we are considering filtration of

semi-algebraic sets by the sub-level sets of a polynomial function, our filtration is indexed

by R and is an example of a continuous (infinite) filtration. Nevertheless, we will reduce to

the finite filtration case by proving that the barcode of the given filtration is equal to that of

a finite filtration. A general theory encompassing both finite and infinite filtrations using a

categorical view-point has been developed (see [  29 ], [ 36 ]). We avoid using the categorical def-

initions and the module-theoretic language used in [ 36 ]. We will prove directly the equality of

the barcodes of the infinite and the corresponding finite filtration(cf. Proposition  3.3.3 ) that is
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important in designing our algorithm, starting from the definition of persistent multiplicities

given above.

We now give a concrete example of a barcode associated to a (infinite) filtration.

Example 7. Let S be the two-dimensional torus (topologically S1
ˆ S1) embedded in R3,

and F be the filtration of the torus by the sub-level sets of the height function (depicted in

Figure  3.1a ). We denote by Sďt the subset of the torus having “height” ď t.

We consider homology in dimensions 0, 1 and 2.

Informally, one observes that a 0-dimensional homology class is born at time t0 which

never dies. There are two 1-dimensional homology classes, the horizontal loop born at time

t2 and the vertical loop born at time t4, which also never die. Lastly, there is a 2-dimensional

homology class born at time t5 which never dies. Since there are no homology classes of the

same dimension being born and dying at the same time, multiplicities in all the cases are 1.

More formally, following Definitions  3.2.3 ,  3.2.4 and  3.2.5 , we obtain:

(Case p = 0) If t0 ď t ă 8 then (using Definition  3.2.3 )

M t0,t
0 pFq “ 0,

and hence (using Definitions  3.2.4 and  3.2.5 )

P t0,t
0 pFq “ 0, and µt0,t

0 pFq “ 0.

On the other hand,

P t0,8
0 pFq “ H0pSďt0q,

implying

µt0,8
0 pFq “ 1.

(Case p = 1) For t2 ď t ă 8,

M t2,t
1 pFq “ 0,
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and hence

P t2,t
1 pFq “ 0, and µt2,t

1 pFq “ 0.

Moreover,

P t2,8
1 pFq “ H1pSďt2q,

and therefore,

µt2,8
1 pFq “ 1.

For t4 ď t ă 8,

M t4,t
1 pFq “ N t4,t

1 pFq “ H1pSăt4q,

and hence

P t4,t
1 pFq “ 0, and µt4,t

1 pFq “ 0.

Moreover,

P t4,8
1 pFq “ H1pSďt4q{H1pSăt4q,

and therefore

µt4,8
1 pFq “ 1.

(Case p = 2) For t5 ď t ă 8,

M t5,t
2 pFq “ 0,

and hence

P t5,t
2 pFq “ 0, and µt5,t

2 pFq “ 0.

Moreover,

P t5,8
2 pFq “ H2pSq,

and therefore

µt5,8
2 pFq “ 1.

Therefore the barcodes are as follows (using Eqn. ( 3.2 )).
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B0pFq “ tpt0, `8, 1qu,

B1pFq “ tpt2, `8, 1q, pt4, `8, 1qu,

B2pFq “ tpt5, `8, 1qu.

Figure  3.1b illustrates the corresponding bars. Notice that even though the filtration F is an

infinite filtration indexed by R, the barcodes, BppFq, are finite.

t1
t2

t3

t4

t5

.t0

T

(a)

B0

B1

B2

t1 t2 t3 t4 t5t0

(b)

Figure 3.1. (a) Torus filtered by the sub-level sets of the height function, (b)
corresponding barcodes for homology classes of dimension 0, 1 and 2.

The main type of filtration that we consider in this work is filtration of semi-algebraic

sets by the sub-level sets of continuous semi-algebraic functions—which we define below.

3.2.2 Semi-algebraic filtrations

We consider the algorithmic problem of computing the dimensions of persistent homology

groups and barcodes of the filtration induced on a given semi-algebraic set by a polynomial

function.
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Definition 3.2.6. Let S Ă Rk be a semi-algebraic set and P : S Ñ R a continuous semi-

algebraic map.

For t P R Y t˘8u, let

SP ďt “ tx P S | P pxq ď tu.

Then, pSP ďtqtPRYt˘8u is a filtration of the semi-algebraic set S indexed by R Y t˘8u, and

we will denote this filtration by FpS, P q.

Notation 16. For p ě 0, we will denote

BppS, P q “ BppFpS, P qq.

Remark 16. In the definition of BppFpS, P qq we need to specify the homology theory we

are using. For a semi-algebraic set X defined over an arbitrary real closed field R we take

homology groups H˚pXq “ H˚pX,Qq as defined in [ 37 , (3.6), page 141]. It agrees with

singular homology in case R “ R.

Remark 17. Note also that the barcode of a polynomial function restricted to a semi-

algebraic set S gives important topological information about the function P on S. It al-

lows one to define a p-dimensional distance between two such polynomial functions restricted

to S, by defining a notion of distance between two barcodes. Various distances have been

proposed but the most commonly used one is the so called “bottle-neck distance” [  35 ]. An

algorithm with singly exponential complexity for computing the barcode of a polynomial also

gives an algorithm with singly exponential complexity for computing such distances as well.

To our knowledge the algorithmic problem of computing barcodes of polynomial functions on

semi-algebraic sets have not been considered prior to our work.

We prove the following theorem.

Theorem 3.2.1. There exists an algorithm that takes as input:

1. a finite set of polynomials, P Ă DrX1, . . . , Xks;

2. a P-closed formula ϕ such that Rpϕq is bounded;
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3. a polynomial P Ă DrX1, . . . , Xks;

4. ℓ ě 0;

and computes BppRpϕq, P q, for 0 ď p ď ℓ. The complexity of the algorithm is bounded

by psdqkOpℓq, where s “ cardpPq, and d is the maximum amongst the degrees of P and the

polynomials in P.

Barcodes of non-proper maps

Notice that in Theorem  3.2.1 we only consider semi-algebraic sets S which are closed and

bounded. In particular, this implies that any continuous semi-algebraic function on S is a

proper map S Ñ R (i.e. the inverse image of a closed and bounded semi-algebraic set is

closed and bounded).

One reason to assume the properness is that for non-proper semi-algebraic maps P : S Ñ

R, the barcode BppS, P q may not reflect the topology of S as illustrated in the following

example.

Example 8. Let S Ă R2 be the (unbounded) semi-algebraic set defined by the formula

ϕ :“ p0 ă X1 ă 1q ^ pX1pX1 ´ 1qX2 ´ 1 “ 0q

(depicted in Figure  3.2 ), and let P “ X1. Consider the semi-algebraic filtration FpS, P q.

Note that P restricted to S is not a proper semi-algebraic map (P´1pr0, 1sq is not bounded).

It is clear that for p ą 0,

BppS, P q “ H.

We claim that even for p “ 0 (contrary to the expectation)

BppS, P q “ H.
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Figure 3.2. S “ tpx1, x2q | 0 ă x1 ă 1, x1px1 ´ 1qx2 ´ 1 “ 0u

To see this observe that for all s ď 0, t ě s, we have that

M s,t
0 pFpS, P qq “

ď

s1ăs

pis,t
p q

´1
pHs1,t

0 pSqq

“ 0,

H0pSP ďsq “ 0,

since SP ďs “ H for s ď 0. This shows that

µs,t
0 pFpS, P qq “ 0, s ď 0, t ě s. (3.3)

For s ą 0, and t ě s, it follows from Definition  3.2.5 that

M s,t
0 pFpS, P qq “ N s,t

0 pFpS, P qq “ H0pSP ďsq,

proving that

µs,t
0 pFpS, P qq “ 0, s ą 0, t ě s. (3.4)

Together Eqns. ( 3.3 ) and ( 3.4 ) imply that

B0pS, P q “ H.
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In order to have a more reasonable definition of barcodes (and allow “bars” which have

open endpoints) we propose the following definition. We use two notions from real algebraic

geometry – that of the real spectrum and the real closed extension of R by the field of

Puiseux series.

Let S Ă Rk be an arbitrary semi-algebraic set and P : S Ñ R a continuous semi-algebraic

function. We define a new filtration rFpS, P q as follows.

The indexing set of the new filtration will the set

rR “ t´8,`8u Y
ď

xPR
tx´, x, x`u,

on which a total order is specified by

´8 ă x´ ă x ă x` ă y´ ă y ă y` ă 8,

for all x ă y in R. (The ordered set rR is the real spectrum of the ring RrXs – see for example

[ 38 , page 134]).

We now define the filtration rFpS, P q.

Definition 3.2.7 (Filtration for semi-algebraic maps not necessarily proper). For t̃ P rR

define

rSt̃ “ extpS,RxεyqP “´1{ε, if t̃ “ ´8,

“ extpS,RxεyqP ďt´ε, if t̃ “ t´, t P R,

“ extpS,RxεyqP ďt, if t̃ “ t P R,

“ extpS,RxεyqP ďt`ε, if t̃ “ t`, t P R,

“ extpS,RxεyqP “1{ε, if t̃ “ `8.

(where Rxεy is the field of algebraic Puisuex series in ε, and extp¨,Rxεyq denotes the extension

of a semi-algebraic subset of Rk to Rxεyk – see Notation  4 and Notation  6 ).
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Definition 3.2.8 (Barcode for filtration induced by a semi-algebraic map not necessarily

proper). For S Ă Rk an arbitrary semi-algebraic set and P : S Ñ R a continuous semi-

algebraic function, we define
rBppS, P q “ Bpp rFpS, P qq.

It is easy now to verify that for the pair S, P in Example  8 

rB0pS, P q “ tp0`,`8, 1qu.

Note that
rBppS, P q Ă rR ˆ rR ˆ Zą0.

Using Hardt triviality theorem, one can deduce that rBppS, P q is a finite set. We will formally

prove this statement later for proper semi-algebraic maps (see Proposition  3.3.1 ).

The barcode for a proper semi-algebraic map takes its value in R ˆ R ˆ Zą0 which is

properly contained in the rR ˆ rR ˆ Zą0. It is not difficult to prove that in case P : S Ñ R is

a proper semi-algebraic map, the new definition of barcode agrees with the previous one.

We record the above mentioned facts in the following proposition for future reference and

omit the proofs. We will not use it in here since we restrict ourselves to the proper case.

Proposition 3.2.1. For any continuous semi-algebraic map P : S Ñ R and for all p ě 0,
rBpS, P q is a finite set. Moreover, if P is a proper semi-algebraic map, then for all p ě 0,

rBppS, P q “ BppS, P q.

Proof. Omitted.

3.3 Continuous to finite filtration

In this section we describe how to efficiently reduce the problem of computing the barcode

of a continuous semi-algebraic filtration to that of a finite filtration of semi-algebraic sets.

The mathematical results are encapsulated in Propositions  3.3.1 and  3.3.3 stated and proved

in Section  3.3.1 . Then in Section  3.3.2 we prove a formula used to compute the barcode of a
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finite filtration (Proposition  3.3.4 ). This formula is not new (see [ 35 , page 152][ 35 ]), however,

it is important to deduce that from our new definition of barcodes.

Recall that we are interested in the persistent homology of filtrations of semi-algebraic

sets by the sub-level sets of a polynomial. Recall also (cf. Definition  3.2.6 ) that for a closed

and bounded semi-algebraic set S Ă Rk, P P RrX1, . . . , Xks, and t P R Y t˘8u, we denote

the filtration

pSP ďt “ tx P S | P pxq ď tuqtPRYt˘8u

by FpS, P q.

Our first observation is that, even though the indexing set R Y t˘8u is infinite, for each

p ě 0, the barcode BppFpS, P qq is a finite set (cf. Example  7 ).

Proposition 3.3.1. For each p ě 0, the cardinality of BppFpS, P qq is finite.

3.3.1 Reduction to the case of a finite filtration

We will now prove a result (cf. Proposition  3.3.3 below) from which Proposition  3.3.1 

will follow. Our strategy is to identify a finite set of values ts0, . . . , sM u Ă R, such that

the semi-algebraic homotopy type of the increasing family SP ďt (as t goes from ´8 to

8), can change only when t crosses one of the si’s. This would imply that the barcode,

BppFpS, P qq, of the infinite filtration FpS, P q, is equal to the barcode of the finite filtration

H Ă SP ďs0 Ă ¨ ¨ ¨ Ă SP ďsM
Ă S (cf. Proposition  3.3.3 below). In addition, we will obtain a

bound on the number M in terms of the number of polynomials appearing in the definition

of S and their degrees, as well as the degree of the polynomial P . The technique used in the

proofs of these results are adaptations of the technique used in the proof of the main result

(Theorem 2.1) in [ 32 ], which gives a singly exponential bound on the number of distinct

homotopy types amongst the fibers of a semi-algebraic map in [ 32 ]. We need a slightly

different statement than that of Theorem 2.1 in [ 32 ]. However, our situation is simpler since

we only need the result for maps to R (rather than to Rn as is the case in [ 32 , Theorem 2.1]).
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Outline of the reduction

Before delving into the detail we first give an outline of the main idea behind the reduction

to the finite filtration case. The key mathematical result that we need is the following. Given

a semi-algebraic subset X Ă Rk`1, obtain a semi-algebraic partition of R Yt˘8u into points

´8 “ s´1 ă s0 ă s1 ă ¨ ¨ ¨ ă sM ă sM`1 “ 8, and open intervals psi, si`1q,´1 ď i ď M ,

such that the homotopy type of Xt “ X X π´1
k`1 stays constant over each open interval

psi, si`1q (here πk`1 denotes the projection on the last coordinate). In our application the

fibers Xt will be a non-decreasing in t (in fact, Xt will be equal to SP ďt) but we do not need

this property to hold for obtaining the partition mentioned above.

The following example is illustrative.

t0 t2 t4t1 t3 t5s0 s1 s2 X1

Figure 3.3. Homotopy types of fibers

Suppose that X Ă R2 is a singular curve shown in blue in Figure  3.3 . We define a semi-

algebraic tubular neighborhood X‹pεq of X using an infinitesimal ε (shown in red), whose

boundary has good algebraic properties – namely, in this case a finite number of critical

values t0 ă t1 ă ¨ ¨ ¨ ă t5 for the projection map onto the chosen coordinate Xk`1 which is

shown as X1 in the figure. The ti’s give a partition of Rxεy rather than that of R, and over

each interval pti, ti`1q the semi-algebraic homeomorphism type of X‹pεq (but not necessarily

the semi-algebraic homotopy type of extpX,Rxεyq) stay constant. Clearly this partition does

not have the homotopy invariance property with respect to the set extpX,Rxεyq. However,
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the intervals pt1, t2q X R “ ps0, s1q and pt3, t4q X R “ ps1, s2q does have the require property

with respect to X, and the points s0, s1, s2 gives us the require partition.

In the general case the definition of the tube X‹pεq is more involved and uses more

than one infinitesimal (cf. Notation  18 ). The set of points corresponding to the ti’s in the

above example is defined precisely in Proposition  3.3.2 where the important property of the

partition of Rxε̄y they induce is also proved. The passage from the ti’s to the si’s and the

important property satisfied by the si’s is described in Lemma  3.3.4 . The finite set of values

ts0, . . . , sM u Ă R is then used to define a finite filtration of the given semi-algebraic set, and

the fact that this finite filtration has the same barcode as the infinite filtration we started

with is proved in Proposition  3.3.3 . Proposition  3.3.3 immediately implies Proposition  3.3.1 .

There are several further technicalities involved in converting the above construction

into an efficient algorithm. These are explained in Section  3.4 . The complexity of the whole

procedure is bounded singly exponentially.

Proof of Proposition  3.3.1 

We begin by fixing some notation.

Notation 17. For Q Ă RrX1, . . . , Xks we will denote by

ZpQ,Rk
q “ tx P Rk

|
ľ

QPQ
Qpxq “ 0u.

For Q P RrX1, . . . , Xks, we will denote by ZpQ,Rkq “ tx P Rk | Qpxq “ 0u.

Definition 3.3.1. Let Q be a finite subset of RrX1, . . . , Xks. A sign condition on Q is an

element of t0, 1,´1uQ. We say that Q realizes the sign condition σ at x P Rk if

ľ

QPQ
signpQpxqq “ σpQq.

The realization of the sign condition σ is

Rpσq “ tx P Rk
|

ľ

QPQ
signpQpxqq “ σpQqu.
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The sign condition σ is realizable if Rpσq is non-empty. We denote by SignpQq the set of

realizable sign conditions of Q.

Let R P R with R ą 0, and let

P “ tP0, P1, . . . , Psu Ă RrX1, . . . , Xks,

with P0 “ X2
1 ` ¨ ¨ ¨ `X2

k ´R. Let P P RrX1, . . . , Xks, and also let ϕ be a closed pP ´ tP0uq-

formula, and rϕ be ϕ ^ pP0 ď 0q ^ pP ´ Y ď 0q, where Y is a new variable. So ϕ is a

pP Y tP ´ Y uq-closed formula. Let Ps`1 “ P ´ Y .

Notation 18. For ε̄ “ pε0, . . . , εs`1q, we denote by ϕ‹pε̄q, the P‹pε̄q-closed formula obtained

by replacing each occurrence of Pi ě 0 in ϕ by Pi ` εi ě 0 (resp. Pi ď 0 in rϕ by Pi ´ εi ď 0)

for 0 ď i ď s ` 1, where

P‹
pε̄q “

ď

0ďiďs`1
tPi ` εi, Pi ´ εiu.

Observe that

S‹
pε̄q :“ Rpϕ‹

pε̄qq Ă Rxε̄yk`1

is a P‹pε̄q-closed semi-algebraic set, and we define Σϕ Ă t´1, 0, 1uP‹pε̄q by

S‹
pε̄q “

ď

σPΣϕ,Rpσq‰H

Rpσq. (3.5)

Lemma 3.3.1. For each Q Ă P‹pε̄q, ZpQ,Rxε̄yk`1
q is either empty or is a non-singular pk`

1´cardpQqq-dimensional real variety such that at every point px1, . . . , xk, yq P ZpQ,Rxε̄yk`1
q,

the pcardpQq ˆ pk ` 1qq-Jacobi matrix,

ˆ

BP

BXi

,
BP

BY

˙

P PQ 1ďiďk

has the maximal rank cardpQq.

Proof. See [  32 ].
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Now let πk`1 : Rxε̄yk`1
Ñ Rxε̄y denote the projection to the last (i.e. the Y ) coordi-

nate, and πr1,ks : Rxε̄yk`1
Ñ Rxε̄yk denote the projection to the first (i.e. pX1, . . . , Xkq) k

coordinates.

For any semi-algebraic subset S Ă Rxε̄yk`1, and T Ă Rxε̄y, we denote by ST “ πr1,kspS X

π´1
k`1pT qq. For t P Rxεy, we will denote by Sďt “ Sp´8,ts, and St “ Sttu.

Notation 19 (Critical points and critical values). For Q Ă P‹pε̄q, we denote by CritpQq

the subset of ZpQ,Rxε̄yk`1
q at which the the Jacobian matrix,

ˆ

BP

BXi

˙

P PQ,1ďiďk

is not of the maximal possible rank. We denote critpQq “ πpCritpQqq.

Lemma 3.3.2. The set
ď

QĂP‹pε̄q

critpQq

is finite.

Proof. Follows from Lemma  3.3.1 and the semi-algebraic Sard’s lemma (see for example [  2 ,

Theorem 5.56]).

Lemma 3.3.3. The partitions

Rk`1
“

ď

σPSignpP‹pε̄qq

Rpσq,

S‹
pε̄q “

ď

σPΣϕ

Rpσq,

are compatible Whitney stratifications of Rk`1 and S‹pε̄q respectively.

Proof. Follows directly from the definition of Whitney stratification (see [ 39 ], [ 40 ]), and

Lemma  3.3.1 .

We are now in a position to prove the key mathematical result that allows us to reduce

the filtration of a semi-algebraic set by the sub-level sets of a polynomial to the case of a

finite filtration.
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Proposition 3.3.2. Suppose

ď

QĂP‹pε̄q

critpQq “ tt0, . . . , tN u,

with t0 ă t1 ă ¨ ¨ ¨ ă tN (cf. Lemma  3.3.2 ). Then for 0 ď i ă N , a, b P R such that

pa, bq Ă pti, ti`1q X R, and for any c P pa, bq, the inclusion

Rpϕp¨, aqq ãÑ Rpϕp¨, cqq

is a semi-algebraic homotopy equivalence.

Proof. The proof is an adaptation of a proof of a similar result in [  32 ] (Lemma 3.8), though

our situation is much simpler. It follows from Lemma  3.3.3 that the semi-algebraic set

zS‹pε̄q :“ S‹
pε̄qzπ´1

k`1ptt0, . . . , tN uq

is a Whitney-stratified set. Moreover, πk`1|
{S‹pε̄q

is a proper stratified submersion. By Thom’s

first isotopy lemma (in the semi-algebraic version, over real closed fields [ 40 ]) the map

πk`1|
{S‹pε̄q

is a locally trivial fibration.

Now let 0 ď i ă N . It follows that for a1, b1 P Rxε̄y with ti ă a1 ď b1 ă ti`1, that there

exists a semi-algebraic homeomorphism

θa1,b1 : S‹
pε̄qra1,b1s Ñ S‹

pε̄qa1 ˆ ra1, b1
s

such that the following diagram commutes.

S‹pε̄qra1,b1s

θa1,b1
//

πk`1

%%

S‹pε̄qa1 ˆ ra1, b1s

πk`1

ww

Rxε̄y

Let

ra1,b1 : S‹
pε̄qb1 ˆ ra1, b1

s Ñ S‹
pε̄qa1 ,
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be the map defined by

ra1,b1px, tq “ πr1,ks ˝ θa1,b1px, tq if t ď P pxq,

“ x, else.

Notice, ra1,b1 is a semi-algebraic continuous map, and moreover for x P S‹pε̄qa1 , ra1,b1px, a1q “

x. Thus, ra1,b1 is a semi-algebraic deformation retraction of S‹pε̄qb1 to S‹pε̄qa1 .

This implies that the inclusion

S‹
pε̄qa1 ãÑ S‹

pε̄qb1 (3.6)

is a semi-algebraic homotopy equivalence.

Now suppose that a, b P R with ti ă a ď b ă ti`1. S‹pε̄qa and S‹pε̄qb are closed and

bounded over R, and that S‹pε̄qa Œ Rpϕp¨, aqq, S‹pε̄qb Œ Rpϕp¨, bqq.

Then, it follows from Lemma  2.3.1 that the inclusions,

extpRpϕp¨, aqq,Rxε̄yq ãÑ S‹
pε̄qa, (3.7)

and

extpRpϕp¨, bqq,Rxε̄yq ãÑ S‹
pε̄qb, (3.8)

are semi-algebraic homotopy equivalences.

Thus, we have the following commutative diagram of inclusions

S‹pε̄qa S‹pε̄qb

extpRpϕp¨, aqq,Rxε̄yq extpRpϕp¨, bqq,Rxε̄yq

in which all arrows other than the bottom inclusion are semi-algebraic homotopy equiv-

alences, and hence so is the bottom arrow. This implies that the inclusion Rpϕp¨, aqq ãÑ

Rpϕp¨, bqq is a semi-algebraic homotopy equivalence by an application of the Tarski-Seidenberg

transfer principle (see for example [  2 , Chapter 2]).
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Now assume that a “ ti. Using Lemma  2.3.1 we have that for all small enough ε ą 0, the

inclusion Rpϕp¨, aqq ãÑ Rpϕp¨, a ` εqq is a semi-algebraic homotopy equivalence. Moreover,

from what has been already shown, the inclusion Rpϕp¨, a ` εqq ãÑ Rpϕp¨, cqq is a semi-

algebraic homotopy equivalence. It now follows that Rpϕp¨, aqq ãÑ Rpϕp¨, cqq is a semi-

algebraic homotopy equivalence. This completes the proof.

Lemma 3.3.4. Let G Ă Rrε̄srT s be a finite set of non-zero polynomials and

tt0, . . . , tN u Ă
ď

GPG
ZpG,Rxε̄yq

with t0 ă ¨ ¨ ¨ ă tN . For G P G, let G “
ř

α mG,αGα, with Gα P RrT s,mG,α P Rrε̄s, and let

MpGq “ tα | mG,α ‰ 0u. Let H “
Ť

GPG,αPMpP q
tGαu, and let

ts0, . . . , sM u “
ď

HPH
ZpH,Rq

with s0 ă s1 ă ¨ ¨ ¨ ă sM . Then, for each i, 0 ď i ă M , there exists j, 0 ď j ă N , such that

psi, si`1q Ă R is contained in ptj, tj`1q X R.

Proof. Notice that it follows from the definition of the set ts0, . . . , sM u that for any i, 0 ď

i ă M , the sign condition (cf. Definition  3.3.1 ) realized by H at t stays fixed for all t P R,

such that t P psi, si`1q.

Since for any t P R, the sign condition realized by H at t determines the sign condition

of G realized at t, it follows that the the sign condition (cf. Definition  3.3.1 ) realized by G

at t also stays fixed for all t P R, such that t P psi, si`1q.

Suppose that t1 P extppsi, si`1q,Rxε̄yq such that Gpt1q “ 0 for some G P G. We claim that

this implies that limε̄ t
1 P tsi, si`1u. Suppose not. Then, limε̄ t

1 P psi, si`1q, which contradicts

the fact that the sign condition (cf. Definition  3.3.1 ) realized by G at t stays fixed for all

t P R, such that t P psi, si`1q, since G is a non-zero polynomial.

The lemma now follows from the hypothesis that tt0, . . . , tN u Ă
Ť

GPG ZpG,Rxε̄yq.

Let S “ RpΦq and P, t0, . . . , tN as in Proposition  3.3.2 , and let G,H, and s0 ă ¨ ¨ ¨ ă sM

as in Lemma  3.3.4 . Let s´1 “ ´8, sM`1 “ 8. Let F denote the finite filtration of semi-
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algebraic sets, indexed by the finite ordered set T “ tsi | ´1 ď i ď M `1u, with the element

of F indexed by si equal to SP ďsi
. We have the following proposition.

Proposition 3.3.3. For each p ě 0,

BppS, P q “ BppFq.

Proof. It follows from Proposition  3.3.2 and Lemma  3.3.4 that for each i,´1 ď i ď M and

s P psi, si`1q, the inclusion SP ďsi
ãÑ SP ďs is a semi-algebraic homotopy equivalence.

The proposition will now follow from the following two claims.

Claim 3.3.1. Suppose that s, t P rs´1, sM`1s, s ď t. Then, µs,t
p pFpS, P qq ‰ 0 ñ s, t P

ts´1, . . . , sM`1u.

Proof. We consider the following two cases.

1. s R ts´1, . . . , sM`1u: Without loss of generality we can assume that s P psi, si`1q for

some i,´1 ď i ď M . Now the inclusion SP ďs1 ãÑ SP ďs, is a semi-algebraic homotopy

equivalence for all s1 P rsi, sq, and hence is1,s
p is an isomorphism for all s1 P rsi, sq.

It follows that for all s1 P rsi, sq,

Hs1,t
p pFpS, P qq “ Impis

1,t
p q “ Impis,t

p ˝ is
1,s

p q “ Impis,t
p q “ Hs,t

p pFpS, P qq,

which implies that

pis,t
p q

´1
pHs1,t

p pFpS, P qqq “ pis,t
p q

´1
pHs,t

p pFpS, P qqq “ HppSP ďsq.

Noting that

ď

s1ăs

pis,t
p q

´1
pHs1,t

p pFpS, P qqq “
ď

s1Prsi,sq

pis,t
p q

´1
pHs1,t

p pFpS, P qqq,

116



it now follows that

M s,t
p pFpS, P qq “

ď

s1ăs

pis,t
p q

´1
pHs1,t

p pFpS, P qqq

“ HppSP ďsq,

N s,t
p pFpS, P qq “

ď

s1ăsďt1ăt

pis,t1

p q
´1

pHs1,t1

p pFpS, P qqq

“
ď

sďt1ăt

pis,t1

p q
´1

pHs,t1

p pFpS, P qqq

“ HppSP ďsq.

We have two sub-cases to consider.

(a) If t ă sM`1:

P s,t
p pFpS, P qq “ M s,t

p pFpS, P qq{N s,t
p pFpS, P qq “ 0.

(b) If t “ sM`1 “ 8:

P s,8
p pFpS, P qq “ HppSP ďsq{

ď

sďt

M s,t
p pFpS, P qq “ 0.

since
ď

sďt

M s,t
p pFpS, P qq “

ď

sďt

HppSP ďsq “ HppSP ďsq.

2. t R ts´1, . . . , sM`1u: Without loss of generality we can assume that t P psi, si`1q for some

i,´1 ď i ď M . The inclusion SP ďt1 ãÑ SP ďt, is a semi-algebraic homotopy equivalence

for all t1 P rsi, tq, and hence it1,t
p is an isomorphism for all t1 P rsi, tq. This implies that for

all t1 P rsi, tq, and s1 ă t1, Impis
1,t1

p q can be identified with Impis
1,t

p q using the isomorphism

it
1,t

p . Furthermore, it is easy to verify that for every fixed s1 ă s and s ď t1 ď t2,

pis,t1

p q
´1

pHs1,t1

p pFpS, P qqq Ă pis,t1

p q
´1

pHs1,t2

p pFpS, P qqq,

117



and hence for each fixed s1 ă s,

ď

sďt1ăt

pis,t1

p q
´1

pHs1,t1

p pFpS, P qqq “
ď

siăt1ăt

pis,t1

p q
´1

pHs1,t1

p pFpS, P qqq.

It follows that for t P psi, si`1q

N s,t
p pFpS, P qq “

ď

s1ăsďt1ăt

pis,t1

p q
´1

pHs1,t1

p pFpS, P qqq

“
ď

s1ăs

pis,t
p q

´1
pHs1,t

p pFpS, P qqq

“ M s,t
p pFpS, P qq.

We have

P s,t
p pFpS, P qq “ M s,t

p pFpS, P qq{N s,t
p pFpS, P qq “ 0.

This completes the proof.

Claim 3.3.2. For each i, j,´1 ď i ď j ď M ` 1, µsi,sj
p pFpS, P qq “ µ

si,sj
p pFq.

Proof. It suffices to prove that

M si,sj
p pFpS, P qq “ M si,sj

p pFq,

N si,sj
p pFpS, P qq “ N si,sj

p pFq.

To prove the first equality we use the fact that s1 P rsi´1, siq, the inclusion SP ďsi´1 ãÑ

SP ďs1 is a semi-algebraic homotopy equivalence.

Hence,

M si,sj
p pFpS, P qq “

ď

s1ăsi

pisi,sj
p q

´1
pHs1,sj

p pFpS, P qqq

“ pisi,sj
p q

´1
pHsi´1,sj

p pFpS, P qqq

“ M si,sj
p pFq.
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Using additionally the fact that t1 P rsj´1, sjq, the inclusion SP ďsj´1 ãÑ SP ďt1 is a semi-

algebraic homotopy equivalence, we have:

N si,sj
p pFpS, P qq “

ď

s1ăsiďt1ăsj

pisi,t
1

p q
´1

pHs1,t1

p pFpS, P qqq

“ pisi,sj´1
p q

´1
pHsi´1,sj´1

p pFpS, P qqq

“ N si,sj
p pFq.

This concludes the proof of Proposition  3.3.3 .

Proof of Proposition  3.3.1 . Follows immediately from Proposition  3.3.3 .

3.3.2 Persistent multiplicities for finite filtration

In this section, we prove a formula for the persistent multiplicities associated to a finite

filtration F , which we later use in Algorithm  7 to obtain the barcodes of a finite filtration.

We deduce the formula from our definition of persistent multiplicity (cf. Eqn. ( 3.1 ) in

Definition  3.2.5 ).  

1
 

Proposition 3.3.4. Let F denote a finite filtration, given by X0 Ă ¨ ¨ ¨ Ă XM “ XM`1 “

¨ ¨ ¨ “ X, such that rank of HppXjq is finite for each p ě 0. Then for 0 ă j ă k,

µj,k
p pFq “

$

’

’

’

&

’

’

’

%

pbj,k´1
p pFq ´ bj,k

p pFqq ´ pbj´1,k´1
p pFq ´ bj´1,k

p pFqq, k ă 8,

bj,k
p pFq ´ bj´1,k

p pFq, k “ 8.

(3.9)

1
 Ò This formula already appears in [  35 , page 152], but what is meant by “independent p-dimensional classes

that are born at Ki, and die entering Kj” loc. cit. is not totally transparent. See also Remark  11 .
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Proof. We first prove the case where k is finite. By Definition  3.2.4 ,

µj,k
p pFq “ dimP j,k

p pFq

“ dimM j,k
p pFq ´ dimN j,k

p pFq.

Since F is finite, we have

M j,k
p pFq “ pij,k

p q
´1

pHj´1,k
p pFqq,

N j,k
p pFq “ pij,k´1

p q
´1

pHj´1,k´1
p pFqq.

Note that pij,k
p q´1pHj´1,k

p pFqq is a subspace of HppXjq, and hence the linear map ij,k :

HppXjq Ñ HppXkq factors through a surjection f : HppXjq Ñ Hj,k
p pFq followed by an in-

jection Hj,k
p pFq ãÑ HppXkq as shown in the following diagram.

HppXjq HppXkq

Hj,k
p pFq

f

ij,k
p

.

Now Hj´1,k
p pFq is a subspace of Hj,k

p pFq, and let

m : Hj,k
p pFq Ñ Hj,k

p pFq{Hj´1,k
p pFq

be the canonical surjection. Let g “ m ˝ f . Since f and m are both surjective, so is g.

HppXjq Hj,k
p pFq Hj,k

p pFq { Hj´1,k
p pFq

f

g “ m˝f

m ,

Now notice that

M j,k
p pFq “ pij,k

p q
´1

pHj´1,k
p pFqq

“ f´1
pHj´1,k

p pFqq

“ kerpgq.
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Since g is surjective,

rankpgq “ dim Hj´1,k
p pFq ´ dim Hj,k

p pFq,

and using the rank-nullity theorem we obtain

dimM j,k
p pFq “ bppXjq ´ pbj,k

p pFq ´ bj´1,k
p pFqq. (3.10)

Using a similar argument we obtain

dimN j,k
p pFq “ bppXjq ´ pbj,k´1

p pFq ´ bj´1,k´1
p pFqq. (3.11)

Finally,

µj,k
p pFq “ dimM j,k

p pFq ´ dimN j,k
p pFq

“ bj´1,k
p pFq ´ bj,k

p pFq ` pbj,k´1
p pFq ´ bj´1,k´1

p pFqq

“ pbj,k´1
p pFq ´ bj,k

p pFqq ´ pbj´1,k´1
p pFq ´ bj´1,k

p pFqq.

If k “ 8, then by Definition  3.2.4 ,

µj,k
p pFq “ dimP j,k

p pFq

“ dim HppKjq ´ dim
ď

jďt

M j,t
p pFq.

Since M s,t
p pFq Ă M s,t1

p pFq for t ď t1, we have

M j,t
p pFq Ă M j,t`1

p pFq Ă ¨ ¨ ¨ Ă M j,M
p pFq “ M j,M`1

p pFq “ ¨ ¨ ¨ “ M j,8
p pFq

8
ď

t

M j,t
p pFq “ M j,M

p pFq
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Therefore,

µj,k
p pFq “ dim HppKjq ´ dimM j,M

p pFq

“ bppXjq ´ pbppXjq ´ pbj,M
p pFq ´ bj´1,M

p pFqqq

“ bj,M
p pFq ´ bj´1,M

p pFq

3.4 Algorithms and proof of Theorem  3.2.1 

In this section we describe our algorithmic results leading to the proof of Theorem  3.2.1 .

We begin by stating some preliminary mathematical results in Section  3.4.1 that we will need

for our algorithms. We describe two technical algorithms that we will need in Section  3.4.2 .

In Section  3.4.3 we describe Algorithm  6 for reducing the given continuous filtration to a

finite one. The proof of correctness of this algorithm relies on Proposition  3.3.3 proved

earlier. Finally, in Section  3.4.3 we describe our algorithm for computing the barcode of

a semi-algebraic filtration (algorithm  8 ), prove its correctness and analyze its complexity,

thereby proving Theorem  3.2.1 .

3.4.1 Preliminaries

Notation 20 (Derivatives). Let P be a univariate polynomial of degree p in RrXs. We will

denote by DerpP q the tuple pP, P 1, . . . , P ppqq of derivatives of P .

The significance of DerpP q is encapsulated in the following lemma which underlies our

representations of elements of R which are algebraic over D (cf. Definition  3.4.1 ).

Proposition 3.4.1 (Thom’s Lemma). Let f P RrXs be a univariate polynomial, and, let σ

be a sign condition on Derpfq Then Rpσq is either empty, a point, or an open interval.

Proof. See [  2 , Proposition 2.27].

Proposition  3.4.1 allows us to specify elements of R which are algebraic over D by means

of a pair pf, σq where f P DrXs and σ P t0, 1,´1uDerpfq.
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Definition 3.4.1. We say that x P R is associated to the pair pf, σq, if σpfq “ 0 and if

Derpfq realizes the sign condition σ at x. We call the pair pf, σq to be a Thom encoding

specifying x.

We will also use the notion of a weak sign condition (cf. Definition  3.3.1 ).

Definition 3.4.2. A weak sign condition is an element of

tt0u, t0, 1u, t0,´1uu.

We say
$

’

’

’

’

’

&

’

’

’

’

’

%

signpxq P t0u if and only if x “ 0,

signpxq P t0, 1u if and only if x ě 0,

signpxq P t0,´1u if and only if x ď 0.

A weak sign condition on Q is an element of tt0u, t0, 1u, t0,´1uuQ. If σ P t0, 1,´1uQ, its

relaxation σ is the weak sign condition on Q defined by σpQq “ σpQq. The realization of the

weak sign condition τ is

Rpτq “ tx P Rk
|

ľ

QPQ
signpQpxqq P τpQqu.

Definition 3.4.3. We say that a set of polynomials F Ă RrXs is closed under differentiation

if 0 R F and if for each f P F then f 1 P F or f 1 “ 0.

Lemma 3.4.1. ([ 2 , Lemma 5.33]) Let F Ă RrXs be a finite set of polynomials closed under

differentiation and let σ be a sign condition on the set F . Then

(a) Rpσq is either empty, a point, or an open interval.

(b) If Rpσq is empty, then Rpσq is either empty or a point.

(c) If Rpσq is a point, then Rpσq is the same point.

(d) If Rpσq is an open interval then Rpσq is the corresponding closed interval.
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Remark 18. In what follows we will allow ourselves to use for P P RrX1, . . . , Xks, signpP q “

0 (resp. signpP q “ 1, signpP q “ ´1) in place of the atoms P “ 0 (resp. P ą 0, P ă 0) in

formulas. Similarly, we might write signpP q P σ̄, where σ̄ is a weak sign condition in place

of the corresponding weak inequality P ě 0 or P ď 0. It should be clear that this abuse of

notation is harmless.

In addition to the mathematical preliminaries described above, we also need two technical

algorithmic results that we describe in the next section

3.4.2 Some preliminary algorithms

For technical reasons that will become clear when we describe Algorithm  6 , we will need

to convert efficiently a given quantifier-free formula defining a closed semi-algebraic set, into

a closed formula defining the same semi-algebraic set. This is a non-trivial problem, since

the standard quantifier-elimination algorithms in algorithmic semi-algebraic geometry does

not guarantee that the output will be a closed formula even if it is known in advance that

the semi-algebraic set that the formula is describing is closed. Luckily we only need to deal

with formulas in one variable, where the problem is somewhat simpler. Note that even in

this case, it is not possible to obtain the description of the given closed semi-algebraic set as

a closed formula by merely weakening the inequalities in the original formula.

For example, consider the formula ϕpXq :“ pX2pX ´ 1q ą 0q ^ ppX ě 2q _ pX ď 0qq.

Then, Rpϕq “ r2,8q is a closed semi-algebraic set, but the formula obtained by weakening

the inequality X2pX ´ 1q ą 0, namely

rϕ :“ pX2
pX ´ 1q ě 0q ^ ppX ě 2q _ pX ď 0qq,

has as its realization the set t0u Y r2,8q which is strictly bigger than Rpϕq.

Nevertheless, using Lemma  3.4.1 we have the following algorithm to achieve the above

mentioned task efficiently.

Proof of correctness. The correctness of the algorithm follows from the correctness of Algo-

rithm 13.1 (Computing realizable sign conditions) in [ 2 ], and Lemma  3.4.1 .
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Algorithm 4 (Make closed)
Input:

A quantifier-free formula θpY q with coefficients in D, in one free variable Y , such that
Rpθq is closed.

Output:
A closed formula ψpY q equivalent to θpY q.

Procedure:
1: Let θpY q “

Ž

1ďiďM

Ź

1ďjďNi
psignpFi,jq “ σi,jq.

2: for each pi, jq such that σi,j ‰ 0 do
3: Call Algorithm 13.1 (Computing realizable sign conditions) in [  2 ] with input DerpFi,jq,

and obtain the set Σi,j of realizable sign conditions of DerpFi,jq.
4: Σ1

i,j Ð tσ P ΣF | σpFi,jq “ σi,ju.
5: Σi,j Ð tσ̄ | σ P Σ1

i,ju.
6: end for
7: return the formula

ψpY q “
ł

1ďiďM

p
ľ

σi,j“0
psignpFi,jq “ 0q ^

ľ

σi,j‰0

ł

σ̄PΣi,j

psignpFi,jq P σ̄q.

Complexity: The complexity of the algorithm is bounded by psdqOp1q where s is the number
of polynomials appearing θ and d a bound on their degrees.

Complexity analysis. The complexity bound follows from the complexity of Algorithm 13.1

(Computing realizable sign conditions) in [  2 ].

We will also need an algorithm that takes as input a finite set of polynomials G in

one variable with coefficients in Drε̄s, and outputs a set of Thom encodings whose set of

associated points ts0, . . . , sM u satisfy the property stated in Lemma  3.3.4 .
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Algorithm 5 (Removal of infinitesimals)
Input:

A finite set G Ă Drε̄srT s such that each P P G depends on at most k ` 1 of the εi’s.

Output:

A finite set of Thom encodings F “ tpfi, σiq | 0 ď i ď Nu, with fi P DrT s with associated

points s0 ă ¨ ¨ ¨ ă sM , such that letting s´1 “ ´8, sM`1 “ 8, for each i, 0 ď i ă M ,

there exists j, 0 ď j ă N , such that psi, si`1q Ă R is contained in ptj, tj`1q X R, where

tt0, . . . , tN u “
Ť

GPG ZpG,Rxε̄yq, with t0 ă ¨ ¨ ¨ ă tN .

Procedure:

1: for G P G do

2: 0 ď i0 ă ¨ ¨ ¨ ă ih ď s ` 1 be such that G P Drεi0 , . . . , εih
srT s.

3: Write G “
ř

α mG,αpεi0 , . . . , εih
qGα, with Gα P DrT s,mG,α P Drεi0 , . . . , εih

s.

4: Let MpGq “ tα | mG,α ‰ 0u.

5: end for

6: Let H “
Ť

GPG,αPMpGq
tGαu.

7: Use Algorithm 10.17 from [ 2 ] with H as input to obtain an ordered list of Thom encodings

F .

8: return F .

Complexity: The complexity of the algorithm is bounded by sDOpkq, where s “ cardpGq

and D is a bound on the degrees of the polynomials in G in ε̄ and in T .

Proof of correctness. The correctness of the algorithm follows from Lemma  3.3.4 and the

correctness of Algorithm 10.17 from [  2 ].

Complexity analysis. The complexity bound follows from the complexity bound of Algorithm

10.17 from [ 2 ].
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3.4.3 Algorithm for reducing to a finite filtration

We are now in a position to describe our algorithm for reducing the problem of computing

the barcode of a filtration of a semi-algebraic set S by the sub-level sets of a polynomial P ,

to the problem of computing the barcode of a finite filtration.

Algorithm  6 computes a finite subset of R, as Thom encodings (cf. Definition  3.4.1 ),

such that it includes the values of P at which the homotopy type of the sub-level sets of S

changes. The algorithm has singly exponentially bounded complexity.

Algorithm 6 (Reducing to a finite filtration)
Input:

(a) ℓ P Zě0.
(b) R P D, R ą 0.
(c) A finite set P “ tP1, . . . , Psu Ă DrX1, . . . , Xks.
(d) A P-closed formula ϕ.
(e) A polynomial P P RrX1, . . . , Xks.

Output:
(a) A finite set of Thom encodings F “ tpfi, σiq | 0 ď i ď Nu, with fi P DrT s

with associated points t0 ă ¨ ¨ ¨ ă tN , such that for t P R, denoting by St “

Rpϕq XBkp0, Rq X tx | P pxq ď tu, for each i, 0 ď i ď N ´ 1, and all t P rti, ti`1q the
inclusion maps Sti

ãÑ St are homological equivalences.
(b) A filtration of finite simplicial complexes

K0 Ă K1 Ă ¨ ¨ ¨ Ă KN

such that SimprNs
pSt0 , . . . , StN

q is homologically ℓ-equivalent to
SimprNs

p|K0|, . . . , |KN |q.
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Procedure:

1: P0 Ð
řk

i“1 X
2
i ´ R.

2: Ps`1 Ð P ´ Y .

3:

P‹
pε̄q Ð

ď

0ďiďs`1
tPi ` εi, Pi ´ εiu.

4: Denote by ϕ‹pε̄q, the P‹pε̄q-closed formula obtained by replacing each occurrence of

Pi ě 0 in ϕ by Pi ` εi ě 0 (resp. Pi ď 0 in ϕ by Pi ´ εi ď 0) for 0 ď i ď s ` 1.

5: for Q Ă P‹pεq, cardpQq ď k do

6:

JacpQq Ð
ÿ

1ďi1ăi2ă¨¨¨ăicardpQ1qďk

det
˜

ˆ

BQ

BXij

˙

QPQ,1ďiďk

¸

7: end for

8: for Q Ă P‹pεq, cardpQq “ k ` 1 do

9:

ΣpQ1
q Ð

ÿ

QPQ
Q2.

10: end for

11:

H Ð tJacpQq | Q Ă P‹
pεq, cardpQq ď ku Y tΣpQq | Q Ă P‹

pεq, cardpQq “ k ` 1u.

12: Call Algorithm 14.1 (Block Elimination) from [  2 ] with the block of variables pX1, . . . , Xkq

and H as input, and obtain G “ BElimXpFq (following the same notation as in [ 2 ,

Algorithm 14.1 (Block Elimination)]).

13: Call Algorithm  5 with G as input and obtain an ordered list of Thom encodings F “

ppf0, σ0q, . . . , pfN , σN qq.
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14: for 0 ď i ď N do

15: Call Algorithm 14.5 (Quantifier Elimination) [ 2 ] with input the formula

rψpY q :“ @ZppfipZq “ 0q ^ psignpDerpfiqqpZq “ σiqq ñ pY ď Zq

to obtain an equivalent quantifier-free formula rψipY q.

16: Call Algorithm  4 with rψipY q as input to obtain a closed formula ψipY q.

17: ϕi Ð rϕ ^ ψipY q.

18: Qi Ð the set of polynomials appearing in ψi.

19: end for

20: Call Algorithm for simplicial replacement with input: the closed formulas ϕ0, . . . , ϕN , R

and ℓ, and output the simplicial complexes Ki, 0 ď i ď N .

Complexity: The complexity of the algorithm is bounded by psdqkOpℓq , where s “ cardpPq,

and d “ maxP PP degpP q.

Proof of correctness. The correctness of the algorithm follows from Proposition  3.3.3 , and

the correctness of the following algorithms: Algorithm 14.1 (Block Elimination) in [ 2 ]),

Algorithm  5 , Algorithm 14.5 (Quantifier Elimination) in [ 2 ], Algorithm  4 , and the Algorithm

for simplicial replacement Theorem  2.2.1 .

Complexity analysis. The complexity bound follows from the complexity bounds of Algo-

rithm 14.1 (Block Elimination) in [ 2 ]), Algorithm  5 , Algorithm 14.5 (Quantifier Elimination)

in [  2 ], Algorithm  4 , and the Algorithm  3 .

3.4.4 Computing barcodes of semi-algebraic filtrations

We can now describe our algorithm for computing the barcode of the filtration of a semi-

algebraic set by the sub-level sets of a polynomial. First we need an algorithm for computing

barcodes of finite filtrations of finite simplicial complexes.
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Algorithm 7 (Barcode of a finite filtration of finite simplicial complexes)
Input:

1. ℓ P Zě0.

2. A finite filtration F , K0 Ă ¨ ¨ ¨ Ă KN of finite simplicial complexes.

Output:

BppFq, 0 ď p ď ℓ.

Procedure:

1: K´1 Ð H.

2: KN`1 Ð KN .

3: for ´1 ď i ď j ď N ` 1 do

4: Use Gaussian elimination to compute the persistent Betti numbers bi,j
p pFq.

5: end for

6: for 0 ď p ď ℓ, 0 ď i ď j ď N ` 1 do

7:

8: if j “ N ` 1 then

µi,j
p Ð bi,j

p pFq ´ bi´1,j
p pFq

9: else

µi,j
p Ð pbi,j´1

p pFq ´ bi,j
p pFqq ´ pbi´1,j´1

p pFq ´ bi´1,j
p pFqq

10: end if

(cf. Eqn. (  3.9 )).

11: end for

12: for 0 ď p ď ℓ do

13: Output

BppFq “ tpi, j, µi,j
p q | 0 ď i ď j ď N,µi,j

p ą 0uY

tpi,8, µi,j
p q | 0 ď i ď j “ N ` 1, µi,j

p ą 0u.

14: end for

Complexity: The complexity of the algorithm is bounded polynomially in N times the

number of simplices appearing in the complex KN .
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Proof of correctness. The correctness of the algorithm follows from Eqn. ( 3.9 ).

Complexity analysis. The complexity of the algorithm follows from the complexity of Gaus-

sian elimination.

Algorithm 8 (Computing persistent homology barcodes of semi-algebraic sets)
Input:

A. A P-closed formula ϕ, with P a finite subset of DrX1, . . . , Xks, such that Rpϕ,Rkq

is bounded.
B. A polynomial P P DrX1, . . . , Xks.
C. ℓ, 0 ď ℓ ď k.

Output:
For each p, 0 ď p ď ℓ, BppS, P q, where S “ Rpϕq.

Procedure:
1: P 1 Ð P Y tεpX2

1 ` ¨ ¨ ¨ ` X2
kq ´ 1u.

2: ϕ1 Ð ϕ ^ ε2pX2
1 ` ¨ ¨ ¨ ` X2

kq ´ 1 ď 0q.
3: R Ð Rxεy, D Ð Drεs.
4: Call Algorithm  6 with input ℓ, 1{ε,P 1, ϕ1, P , to obtain a finite ordered set of Thom

encodings pf0, σ0q, . . . , pfN , σN q, and a finite filtration F “ pK0 Ă ¨ ¨ ¨ Ă KN q, where KN

is a finite simplicial complex.
5: Call Algorithm  7 with input ℓ and the finite filtration F , and output for each p, 0 ď p ď ℓ,

BppFq.
6: for each p, 0 ď p ď ℓ

Output

BppS, P q “
ď

pi,j,µqPBppFq,0ďiďjďN

tppfi, σiq, pfj, σjq, µquY

ď

pi,8,µqPBppFq

tppfi, σiq,8, µqu.

Complexity: The complexity of the algorithm is bounded by psdqkOpℓq , where s “ cardpPq,
and d “ maxQPPYtP u degpQq.

Proof of correctness. The correctness of the algorithm follows from the correctness of Algo-

rithms  6 and  7 .

Complexity analysis. The complexity bound follows from the complexity bounds of Algo-

rithms  6 and  7 .
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Proof of Theorem  3.2.1 . The theorem follows from the correctness and the complexity anal-

ysis of Algorithm  8 .

3.5 Future work and open problems

We conclude this chapter by stating some open problems and possible future directions

of research in this area.

1. It would be very interesting (and challenging) to obtain an algorithm with singly expo-

nential complexity that computes the entire barcode of a semi-algebraic filtration, and

not restricted to dimension up to ℓ. This would imply also an algorithm with singly

exponential complexity for computing all the Betti numbers of a given semi-algebraic set,

which is a challenging problem on its own [ 5 ].

2. Another open problem is to extend Algorithm  8 to the case of non-proper semi-algebraic

maps using the proposed definition of barcodes for non-proper semi-algebraic maps (see

Definition  3.2.8 ).

3. One very active topic in the area of persistent homology is the theory of multi-dimensional

persistent homology [ 36 ]. In our setting this would imply studying the sub-level sets of two

or more real polynomial functions simultaneously. While the so called persistence modules

and associated barcodes can be defined analogously to the one-dimensional situation (see

for example [ 36 ]), an analog of Proposition  3.3.1 is missing. It is thus an open problem to

give an algorithm with singly exponential complexity to compute the barcodes of “higher

dimensional” semi-algebraic filtrations.
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