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ABSTRACT

Harnessing the power of data has been a driving force for computing in recently years.

However, the non-vectorized or even non-Euclidean nature of certain data with complex

structures also poses new challenges to the data science community. Topological data analy-

sis (TDA) has proven effective in several scenarios for alleviating the challenges, by providing

techniques that can reveal hidden structures and high-order connectivity for data. A cen-

tral technique in TDA is called persistent homology, which provides intervals tracking the

birth and death of topological features in a growing sequence of topological spaces. In this

dissertation, we study the representative problem for persistent homology, motivated by the

observation that persistent homology does not pinpoint a specific homology class or cycle

born and dying with the persistence intervals. Furthermore, studying the representatives

also leads us to new findings for related problems such as persistence computation.

First, we look into the representative problem for (standard) persistence homology and

term the representatives as persistent cycles. We define persistent cycles as cycles born and

dying with given persistence intervals and connect the definition to interval decomposition

for persistence modules. We also look into the computation of optimal (minimum) persistent

cycles which have guaranteed quality. We prove that it is NP-hard to compute minimum

persistent p-cycles for the two types of intervals in persistent homology in general dimensions

(p > 1). In view of the NP-hardness results, we then identify a special but important class

of inputs called weak (p + 1)-pseudomanifolds whose minimum persistent p-cycles can be

computed in polynomial time. The algorithms are based on a reduction to minimum (s, t)-

cuts on dual graphs.

Second, we propose alternative persistent cycles capturing the dynamic changes of ho-

mological features born and dying with persistence intervals, which the previous persistent

cycles do not reveal. We focus on persistent homology generated by piecewise linear (PL)

functions and base our definition on an extension of persistence called the levelset zigzag

persistence. We define a sequence of cycles called levelset persistent cycles containing a

cycle between each consecutive critical points within the persistence interval. Due to the

NP-harness results proven previously, we propose polynomial-time algorithms computing

12



optimal sequences of levelset persistent p-cycles for weak (p+1)-pseudomanifolds. Our algo-

rithms draw upon the idea of relating optimal cycles to min-cuts in a graph that we exploited

earlier for standard persistent cycles. Note that levelset zigzag poses non-trivial challenges

for the approach because a sequence of optimal cycles instead of a single one needs to be

computed in this case.

Third, we investigate the computation of zigzag persistence on graph inputs, motivated

by the fact that graphs model real-world circumstances in many applications where they

may constantly change to capture dynamic behaviors of phenomena. Zigzag persistence, an

extension of the standard persistence incorporating both insertions and deletions of simplices,

is one appropriate instrument for analyzing such changing graph data. However, unlike

standard persistence which admits nearly linear-time algorithms for graphs, such results for

the zigzag version improving the general O(mω) time complexity are not known, where ω <

2.37286 is the matrix multiplication exponent. We propose algorithms for zigzag persistence

on graphs which run in near-linear time. Specifically, given a filtration of length m on a

graph of size n, the algorithm for 0-dimension runs in O(m log2 n + m logm) time and the

algorithm for 1-dimension runs in O(m log4 n) time. The algorithm for 0-dimension draws

upon another algorithm designed originally for pairing critical points of Morse functions

on 2-manifolds. The correctness proof of the algorithm, which is a major contribution, is

achieved with the help of representatives. The algorithm for 1-dimension pairs a negative

edge with the earliest positive edge so that a representative 1-cycle containing both edges

resides in all intermediate graphs.
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1. INTRODUCTION

Recently, data science has emerged as one of the central topics in computer science, thanks

to algorithms newly discovered and computing powers unleashed by parallel processing. The

critical techniques leading to a booming data-centric era are mostly statistics-based, meaning

that large amount of vectorized, Euclidean training data must be made available in order for

algorithms to discover (or learn) patterns that can be generalized to unseen inputs. However,

this also poses challenges to users of these techniques. First, while in some cases large amount

of data (such as user behavior data collected from the internet) are easily accessible, it is

considerably expensive (if not impossible) to collect datasets suitable for statistical training

for some tasks. Second, some data are not Euclidean in nature, e.g., point clouds, graphs,

or triangular meshes, making them not the ideal input for statistical training algorithms.

Topological data analysis (TDA), as an emerging area, has proven effective in several

scenarios for alleviating challenges described above [ 1 ]. Broadly speaking, TDA aims at pro-

viding methods for revealing structures in data, mostly hidden and in high dimensions, with

the help of algebraic topology [ 2 ]. A central technique in TDA is called persistent homology,

whose advent is resulted from an algorithm proposed by Edelsbrunner et al. [ 3 ]. Since its

advent, persistent homology has been more extensively studied in different fronts, such as its

underlying algebraic structure [ 4 ], [ 5 ], its stability [ 6 ], and generalizations [ 7 ], [ 8 ]. The idea

of persistent homology can be briefly summarized as follows: given a growing sequence of

topological spaces, persistent homology returns a multiscale and stable topological summary

called persistence diagram or barcode, which consists of intervals tracking the birth and death

of topological features in the sequence. Some of its nice properties, such as stability and

ability to capture global structures of data, have made persistent homology successful in

performing various tasks, such as providing topological descriptors for data not easily vec-

torized [ 9 ]–[ 11 ], processing images while preserving global shape [ 12 ], [ 13 ], or regularization

in statistical learning [ 14 ].

In this dissertation, we study a mathematical object inherent in persistent homology,

i.e., its homological representatives. While such representatives were implicitly mentioned in

previous works [ 3 ], [ 15 ], [ 16 ], we place them in the center stage and study the various aspects

14



concerning the representatives and their implications. One reason leading to our study is

that representatives for persistent homology are natural extensions of generators for a fixed

topological space, which is a classical problem in computational topology and is extensively

studied [ 17 ]–[ 19 ]. There are also other significances for studying the representative problem

for persistent homology:

• First and foremost, the representatives provide valuable augmented information in

addition to the persistence barcodes. It is known that persistent homology can track

the birth and death of homology classes in a growing sequence of topological spaces (i.e.,

a filtration). However, persistent homology does not pinpoint a specific homology class

(or a cycle in it) born and died with an interval, which represents the interval. Such a

representative for persistent homology can provide important geometrical information

or visualizations for the topological spaces, which may be critical in certain tasks

(see [  20 ] for a usage of such representatives for image segmentation).

• These representatives may also have important implications for research on other top-

ics in TDA, leading to new findings in the field. For example, Chapter  4 presents

near-linear algorithms for computing zigzag persistence (an extension of the usual per-

sistent homology) on graphs, which improves the previously known time complexity

on graph inputs. Such improvements are made by looking into representatives that

persistence algorithms explicitly or implicitly computes [ 3 ], [ 21 ]. There has also been

a recent work [ 22 ] on updating persistence barcodes for zigzag filtrations over local

changes, which is achieved by a coherent maintenance of representatives. We also

see a potential use of the representative maintenance for computing generalized rank

invariants [ 23 ], [  24 ] for 2-parameter persistence modules, which may help compute

homological structures advocated recently [ 25 ].

Summary of contributions.

Evolving around the theme of representatives for persistent homology, we study the

following problems with various achievements:

15



• In Chapter  2 , we look into the representative problem for (standard) persistence ho-

mology and term the representatives as persistent cycles. We define persistent cycles

as cycles born and dying with given intervals in persistence barcodes, and justify our

definition by showing that persistent cycles generate interval decomposition for persis-

tence modules [ 26 ]. Besides the definition, we also look into the computation of optimal

(minimum) persistent cycles which have guaranteed quality. We first show that it is

NP-hard to compute minimum persistent p-cycles for the two types of intervals (i.e.,

finite and infinite) in persistent homology in general dimensions (p > 1). In view of

the NP-hardness results, we then identify a special but important class of inputs called

weak (p+1)-pseudomanifolds (Definition  2.2.1 ) whose minimum persistent p-cycles can

be computed in polynomial time. For finite intervals from the p-th persistence barcode

of a weak (p + 1)-pseudomanifold, we utilize the fact that persistent cycles of such

intervals are null-homologous and reduce the problem to a minimal cut problem. Since

the same problem for infinite intervals on weak (p + 1)-pseudomanifolds is NP-hard,

we further assume the weak (p + 1)-pseudomanifold to be embedded in Rp+1 so that

the complex has a natural dual graph structure and the problem reduces to a minimal

cut problem.

• One drawback of the standard persistent cycles proposed in Chapter  2 is that only

a single cycle born at the start is used, while homological features may vary contin-

uously inside an interval (see Figure  3.1 for an example). In Chapter  3 , we propose

alternative persistent cycles capturing the dynamic changes of homological features

born and dying with persistence intervals. We focus on a special but important type of

persistent homology – those generated by piecewise linear (PL) functions [ 1 ]. We also

base our definition on an extension of standard persistence called the levelset zigzag

persistence [  27 ], which tracks survival of homological features at and in between the

critical points. Given a persistence interval from levelset zigzag, we define a sequence of

cycles called levelset persistent cycles so that there is a cycle between each consecutive

critical points within the interval. Thus, a sequence of levelset persistent cycles can

capture all variations of homological features in the lifecycle of an interval. Also note
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that levelset persistent cycles are oriented toward richer types of intervals [  27 ] (see also

extended persistence [  28 ]).

Due to the NP-hardness of computing minimum persistent cycles presented in Chap-

ter  2 , we again look into the computation of an optimal sequence of levelset persistent

cycles (one that has the minimum sum of weight) for weak pseudomanifolds. Our

approaches which also utilize minimum cuts differ from approaches presented in Chap-

ter  2 to account for the fact that a sequence of optimal cycles instead of a single one

need to be computed.

• In Chapter  4 , we look into the computation of an extension of standard persistent

homology called zigzag persistence with the help of representatives. Zigzag persistence

empowers TDA to deal with filtrations allowing both insertion and deletion of simplices.

In practice, allowing deletion of simplices does make the topological tool more powerful

(e.g., dynamic networks [ 29 ]). Specifically, we focus on the computation of zigzag per-

sistence on a special but important class of inputs, i.e., graphs, because graphs model

real-world circumstances in many applications where they may constantly change to

capture the dynamic behavior of the phenomena.

Unlike standard persistence which admits nearly linear-time algorithms for graphs, such

results for the zigzag version improving the general O(mω) time complexity [ 30 ] are

not previously known, where ω < 2.37286 is the matrix multiplication exponent [ 31 ].

Our main contributions are algorithms for computing zigzag persistence on graphs

which run in near-linear time. Specifically, given a filtration with m additions and

deletions on a graph with n vertices and edges, our algorithm for 0-dimension runs

in O(m log2 n + m logm) time and our algorithm for 1-dimension runs in O(m log4 n)

time. The algorithm for 0-dimension draws upon another algorithm [ 32 ] designed orig-

inally for pairing critical points of Morse functions on 2-manifolds. Besides making

connections of the two problems, one achievement for our algorithm for 0-dimension is

the correctness proof, which is accomplished with the help of representatives (Defini-

tion  4.3.2 ). The algorithm for 1-dimension finds a pairing of the positive and negative

edges such that representative cycles for all pairs exist. We then utilize a sequence of
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observations to reduce the pairing to finding the maximum weight of edges on a path

in a minimum spanning forest.
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2. OPTIMAL REPRESENTATIVES FOR PERSISTENT

HOMOLOGY

In this chapter, we study the optimal representative problem for persistent homology. We

first propose the definition for the representatives, termed as persistent cycles, and justify

the definition by making a connection to the interval decomposition of persistence modules

(see Section  2.3 ). Based on the definition, we then propose to compute the optimal persistent

cycles, where the optimality means having minimum weight so that the optimal cycles pro-

vide tightest representations. We also study the hardness for computing optimal persistent

cycles by proving that the problem is NP-hard in general dimensions for both the two types

of intervals in persistent homology (see Section  2.4 and  2.5 ). In view of the NP-hardness

results, we then identify an important class of simplicial complexes, which are generaliza-

tions of (p+ 1)-manifolds called weak (p+ 1)-pseudomanifolds (see Definition  2.2.1 ), whose

minimum persistent p-cycles can be computed in polynomial time (see Section  2.6 and  2.7 ).

Table  2.1 summarizes findings in this chapter, where PCYC-FINp denotes the problem

of computing minimum persistent p-cycles for finite intervals given arbitrary simplicial com-

plexes and PCYC-INFp denotes the same problem for infinite intervals. We also let WPCYC-

FINp denote a subproblem 

1
 of PCYC-FINp and let WPCYC-INFp, WEPCYC-INFp denote

two subproblems of PCYC-INFp, with the subproblems requiring additional constraints on

the given simplicial complex as specified in Table  2.1 . Note that the polynomial-time algo-

rithm for PCYC-INF1 was proposed in [ 20 ].

Table 2.1. Summary of findings in Chapter  2 .
Problem Restriction on K d Hardness

PCYC-FINp − ≥ 1 NP-hard
WPCYC-FINp K a weak (p+ 1)-pseudomanifold ≥ 1 Polynomial
PCYC-INFp − = 1 Polynomial
WPCYC-INFp K a weak (p+ 1)-pseudomanifold ≥ 2 NP-hard
WEPCYC-INFp K a weak (p+ 1)-pseudomanifold in Rp+1 ≥ 2 Polynomial

1
 ↑ For two problems P1 and P2, P2 is a subproblem of P1 if any instance of P2 is an instance of P1 and P2

asks for computing the same solutions as P1.
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2.1 Literature review

In the context of computing optimal cycles in computational topology, most works have

been done in the non-persistence setting. These works compute minimum cycles for homology

groups of a given simplicial complex. Only very few works address the problem while taking

into account the persistence. We review some of the relevant works below.

2.1.1 Optimal cycles for homology groups

In terms of computing minimum cycles for homology groups, two problems are of most

interest: the localization problem and the minimum basis problem. The localization problem

asks for computing a minimum cycle in a homology class and the minimum basis problem

asks for computing a set of generating cycles for a homology group whose sum of weights is

minimum. With Z2 coefficients, these two problems are in general hard. Specifically, Cham-

bers et al. [ 17 ] proved that the localization problem over dimension one is NP-hard when

the given simplicial complex is a 2-manifold. Chen and Freedman [ 18 ] proved that the local-

ization problem is NP-hard to approximate with fixed ratio over arbitrary dimension. They

also showed that the minimum basis problem is NP-hard to approximate with fixed ratio

over dimension greater than one. For one-dimensional homology, Dey et al. [ 19 ] proposed

a polynomial time algorithm for the minimum basis problem. Several other works [ 33 ]–[ 36 ]

address variants of the two problems while considering special input classes, alternative cycle

measures, or coefficients for homology other than Z2.

In this work, we use graph cuts and their duality extensively. The duality of cuts on a

planar graph and separating cycles on the dual graph has long been utilized to efficiently

compute maximum flows and minimum cuts on planar graphs, a topic for which Cham-

bers et al. [ 17 ] provide a comprehensive review. In their paper [ 17 ], Chambers et al. discover

the duality between minimum cuts of a surface-embedded graph and minimum homologous

cycles in a dual complex, and then devise O(n log n) algorithms for both problems assuming

the genus of the surface to be fixed. Chen and Freedman [  18 ] proposed an algorithm which

computes a minimum non-bounding p-cycle given a (p+ 1)-complex embedded in Rp+1, uti-

lizing a natural duality of p-cycles in the complex and cuts in the dual graph. The minimum
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non-bounding cycle algorithm can be further extended to solve the localization problem and

the minimum basis problem over dimension p given a (p+ 1)-complex embedded in Rp+1.

2.1.2 Optimal persistent cycles

As pointed out earlier, our main focus is the optimality of representative cycles in the

persistence framework. Some early works ([ 37 ], [ 38 ]) address the representative cycle prob-

lem for persistence by computing minimum cycles at the birth points of intervals without

considering what actually die at the death points. Wu et al. [ 16 ] proposed an algorithm

computing minimum persistent 1-cycles for finite intervals using an annotation technique

and heuristic search. However, the time complexity of the algorithm is exponential in the

worst-case. Obayashi [ 39 ] casts the minimum persistent cycle problem for finite intervals into

an integer program, but the rounded result of the relaxed linear program is not guaranteed

to be optimal.

2.2 Preliminaries

2.2.1 Simplicial complex

A simplicial complex K is a collection of simplices which are abstractly defined as subsets

of a ground set called the vertex set of K. If a simplex σ is in K, then all its subsets called

its faces are also in K. The simplex σ is also referred to as a q-simplex if the cardinality of

the vertex set of σ is q + 1. A q-face of σ is a q-simplex being a face of σ and a q-coface

of σ is a q-simplex having σ as a face. We call a q-simplex of K a boundary q-simplex if it

has less than two (q + 1)-cofaces in K. A simplicial set is a set of simplices and the closure

of a simplicial set Σ is the simplicial complex consisting of all the faces of the simplices in

Σ. A simplicial complex is finite if it contains finitely many simplices. In this chapter, we

only consider finite simplicial complexes. We have the following special type of simplicial

complexes which are useful to the computation in this chapter.

Definition 2.2.1 (Weak pseudomanifold). A simplicial complex K is a weak (p + 1)-

pseudomanifold if each p-simplex is a face of no more than two (p+ 1)-simplices in K.
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If each vertex of a simplicial complex K is a point in a Euclidean space, then each simplex

of K can be interpreted as the convex hull of its vertices. The simplicial complex K is said

to be embedded in the Euclidean space if the interiors of all its simplices are disjoint. The

underlying space of K, denoted by |K|, is the point-wise union of all the simplices of K.

Definition 2.2.2 (Oriented simplex [ 40 ]). A q-simplex with an ordering of its vertices is an

oriented q-simplex. For each q-simplex σ (q > 0), there are exactly two equivalent classes

of vertex orderings, resulting in two oriented q-simplices of σ. We refer to them as the

oppositely oriented q-simplices.

Remark 2.2.1. Any simplex by default is unoriented. We denote an unoriented q-simplex

σ spanned by vertices v0, . . . , vq as σ = {v0, . . . , vq} and an oriented q-simplex σ⃗ as σ⃗ =

[v0, . . . , vq], where v0, . . . , vq specify the ordering of the spanning vertices.

2.2.2 Simplicial homology

We provide a brief overview of simplicial homology used in this chapter. See any standard

book on the topic, e.g., [ 40 ]. Let q ≥ 0, K be a simplicial complex, and G be an abelian

group. The q-th chain group Cq(K;G) is defined to be the abelian group containing all finite

sums of the form ∑
i niσ⃗i, where ni ∈ G and σ⃗i is an oriented q-simplex of K. Each element

in Cq(K;G) is called a q-chain of K. Note that for two oppositely oriented q-simplices σ⃗ and

σ⃗′, we have that nσ⃗ = (−n)σ⃗′ for any n ∈ G. Therefore, Cq(K;G) can be interpreted as a

direct sum of Nq copies of G where Nq is the number of q-simplices of K and each copy of G

corresponds to a q-simplex of K. The q-th boundary operator ∂q : Cq(K;G) → Cq−1(K;G)

is a group homomorphism such that for any oriented q-simplex [v0, . . . , vq]

∂q
(
[v0, . . . , vq]

)
=

q∑
i=0

(−1)i[v0, . . . , v̂i, . . . , vq]

where the notation [v0, . . . , v̂i, . . . , vq] means that v̂i is deleted from the simplex. For brevity,

we often omit the subscript of the boundary operator ∂q and denote it as ∂ when this does

not cause any confusion. The kernel of ∂q is called the q-th cycle group of K and is denoted

as Zq(K;G). The image of ∂q+1 is called the q-th boundary group of K and is denoted as

22



Bq(K;G). A q-chain in Zq(K;G) is called a q-cycle and a q-chain in Bq(K;G) is called a

q-boundary. For a q-chain A, the (q − 1)-chain ∂(A) is also called the boundary of A.

A fundamental fact in homology theory is that ∂q∂q+1 = 0 for any q. This implies that

Bq(K;G) ⊆ Zq(K;G). The q-th homology group of K denoted by Hq(K;G) is defined as the

quotient Zq(K;G)/Bq(K;G). Each coset in Hq(K;G) is called a homology class and a cycle

is said to be homologous to another cycle if they belong to the same homology class. As any

boundary cycle represents the homology class 0 in Hq(K;G), a boundary is also said to be

null-homologous.

The abelian group G in the above definitions is called the coefficient group for the ho-

mology groups. Sometimes, when the coefficient group G is clear, we simply drop it and

denote a chain group as Cq(K). This applies to other groups defined in simplicial homology.

In this chapter, two coefficient groups Z2 and Z are used for simplicial homology. When

not explicitly stated, the coefficients are assumed to be in Z2. With Z2 coefficients, the

orientations of simplices no longer matter and a q-chain can be interpreted as a set of q-

simplices with summation of two q-chains being the symmetric difference. A q-cycle is then

a set of q-simplices where every (q − 1)-face of these simplices adjoins an even number of

q-simplices. Also note that because Z2 is a field, all groups defined in simplicial homology

with Z2 coefficients become vector spaces and homomorphisms between these groups (such

as ∂) become linear maps.

Definition 2.2.3 (q-weighted). A simplicial complex K is q-weighted if each q-simplex σ of

K has a non-negative finite weight w(σ). The weight of a q-chain A of K is then defined as

w(A) = ∑
σ∈Aw(σ).

Definition 2.2.4 (q-connected). Let Σ be a set of simplices, and let σ, σ′ be two q-simplices

of Σ for q ≥ 1. A q-path from σ to σ′ in Σ is a sequence of q-simplices of Σ, τ1, . . . , τℓ, such

that τ1 = σ, τℓ = σ′, and each consecutive τi, τi+1 share a (q − 1)-face in Σ. A maximal set

of q-simplices of Σ, in which each pair is connected by a q-path, constitutes a q-connected

component of Σ. We also say that Σ is q-connected if it has only one q-connected component.

Remark 2.2.2. See Figure  2.3a for an example of 1-connected components and 2-connected

components.
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Definition 2.2.5 (q-connected cycle). A q-cycle ζ (with Z2 coefficients) is q-connected if

the complex derived by taking the closure of the simplicial set ζ is q-connected.

2.2.3 Filtration

A filtration F of a simplicial complex K is a filtered sequence of subcomplexes of K,

F : ∅ = K0 ⊆ K1 ⊆ . . . ⊆ Kn = K,

such that Ki and Ki−1 differ by one simplex denoted by σF
i . We let i be the index of σF

i

in F and denote it as ind(σF
i ) = i. A subcomplex Ki in the filtered sequence of F is also

referred to as a partial complex.

2.2.4 Persistent homology

We will provide a brief description of persistent homology. We recommend the book by

Edelsbrunner and Harer [  1 ] for a detailed explanation of this topic. Note that persistent

homology in this chapter is always assumed to be with Z2 coefficients. The persistence

algorithm starts with a filtration F : ∅ = K0 ⊆ K1 ⊆ . . . ⊆ Kn = K of a simplicial complex

K, and for each simplex σF
i , inspects whether ∂(σF

i ) is a boundary in Ki−1. If ∂(σF
i ) is a

boundary in Ki−1, σF
i is called positive; otherwise, it is called negative. The d-chains (or

d-cycles) in Ki that are not in Ki−1 are said to be born in Ki or created by σF
i . A positive

d-simplex creates some d-cycles and a negative d-simplex makes some (d− 1)-cycles become

boundaries. In the latter case, we also say that the negative d-simplex kills or destroys those

(d − 1)-cycles. What is central to the persistence algorithm is a notion called pairing: A

positive simplex is initially unpaired when introduced; when a negative d-simplex σF
i comes,

the algorithm finds a (d− 1)-cycle created by an unpaired positive (d− 1)-simplex σF
j which

is homologous to ∂(σF
i ) and pair σF

j with σF
i . Alongside the pairing, a finite interval [j, i)

is added to the (d − 1)-th persistence diagram (also called barcode), which is denoted by

Persd−1(F). After all simplices are processed, some positive simplices may still be unpaired.
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For each σF
i of these unpaired simplices, an infinite interval [i,+∞) is added to Persd(F),

where d is the dimension of σF
i .

Note that the pairing in the persistence algorithm for a given filtration is unique. Also

note that in this chapter, we assume a filtration of a complex is given and the persistence

intervals start and end with indices of the paired simplices. However, in real-life applications,

one is often given a function on a simplicial complex. To produce the persistence intervals, a

filtration needs to be derived and the endpoints of the intervals are taken as function values

on the paired simplices. In such cases, we can associate a given interval to its simplex pair,

take the indices of the paired simplices, and get an interval which can serve as an input to

our algorithms.

2.2.5 Persistence module

In this chapter, we adopt the categorical definition of persistence module [ 41 ]. A category

C consists of objects and morphisms from an object to another object. A functor F : C → B

from C to another category B is a mapping such that any object c of C is mapped to an object

F (c) of B and any morphism f : c→ c′ of C is mapped to a morphism F [f ] : F (c)→ F (c′)

of B. We recommend [ 42 ] for detailed definitions of categories and functors. The definition

of persistence module relies on some common categories: The category Z+ (the category

{1, . . . , n} alike) consists of objects from Z+ and a unique morphism from i to j if i ≤ j. We

also denote the morphism from i to j as i ≤ j. The category Simp consists of objects which

are all the simplicial complexes and morphisms which are simplicial maps. The category

Vec consists of objects which are all the vector spaces over Z2 and morphisms which are

linear maps. A persistence module P is then defined as a functor P : Z+ → Vec 

2
 .

A persistence module is usually induced by a filtration F : ∅ = K0 ⊆ K1 ⊆ . . . ⊆

Km = K of a simplicial complex K. We can also interpret a filtration F as a functor

F : Z+ → Simp, where F(i) = Ki for i ≤ m, F(i) = K for i > m, and a morphism

F [i ≤ j] : F(i) → F(j) is the inclusion. Denoting Hq : Simp → Vec as the q-th homology

functor with Z2 coefficients, the q-th persistence module PF
q of F is obtained by composing

2
 ↑ Sometimes we also call a functor P : {1, . . . , n} → Vec as a persistence module.
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the two functors Hq and F , that is, PF
q = HqF . Specifically, PF

q (i) = Hq(Ki) for i ≤ m,

PF
q (i) = Hq(K) for i > m, and the morphism PF

q [i ≤ j] : Hq(Ki)→ Hq(Kj) 

3
 is the linear map

induced by the inclusion.

A special class of persistence modules are the interval modules. Given an interval [b, d) ⊂

Z+, an interval module I [b,d) is defined as: I [b,d)(i) = Z2 for i ∈ [b, d) and I [b,d)(i) = 0

otherwise; I [b,d)[i ≤ j] is the identity map for i, j ∈ [b, d) and I [b,d)[i ≤ j] is the zero map

otherwise. By quiver theory, a q-th persistence module obtained from a finite complex K has

a unique decomposition PF
q ≈

⊕
j∈J I [bj,dj) in terms of interval modules, where J is a finite

index set [ 26 ]. Then, the persistence diagram (or barcode) of PF
q is Pers(PF

q ) = {[bj, dj) | j ∈

J}, which is the set of intervals for the interval modules which PF
q decomposes into. Note

that Pers(PF
q ) is indeed the Persq(F) defined in Section  2.2.4 .

2.2.6 Undirected flow network

An undirected flow network (G, s1, s2) consists of an undirected graph G with vertex set

V (G) and edge set E(G), a capacity function c : E(G) → [0,+∞], and two non-empty

disjoint subsets s1 and s2 of V (G). Vertices in s1 are referred to as sources and vertices in

s2 are referred to as sinks. A cut (S, T ) of (G, s1, s2) consists of two disjoint subsets S and

T of V (G) such that S ∪ T = V (G), s1 ⊆ S, and s2 ⊆ T . The set of edges that connect a

vertex in S and a vertex in T are referred as the edges across the cut (S, T ) and is denoted

as ξ(S, T ). The capacity of a cut (S, T ) is defined as c(S, T ) = ∑
e∈ξ(S,T ) c(e). A minimum

cut of (G, s1, s2) is a cut with the minimum capacity. Note that we allow parallel edges in

G (see Figure  2.3a ) to ease the presentation. These parallel edges can be merged into one

edge during computation.

2.3 Definition of persistent cycles

In this section, we first provide a definition of persistent basis, which is then utilized to

introduce and justify the definition of persistent cycles.

3
 ↑ Kj = K when j > m.
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Definition 2.3.1 (Persistent basis). An indexed set of q-cycles {cj | j ∈ J} is called a

persistent q-basis for a filtration F if PF
q = ⊕

j∈J I [bj,dj) and for each j ∈ J and bj ≤ k < dj,

I [bj,dj)(k) = {0, [cj]}.

Definition 2.3.2 (Persistent cycle). Let F be a filtration. For an interval [b, d) ∈ Persq(F),

a q-cycle c is called a persistent q-cycle for the interval, if one of the following holds:

• d ̸= +∞, c is a cycle in Kb containing σF
b , and c is not a boundary in Kd−1 but becomes

a boundary in Kd;

• d = +∞ and c is a cycle in Kb containing σF
b .

Remark 2.3.1. Note that the definition of persistent cycles for finite intervals is identical

to that of [ 16 ], [  39 ].

The following theorem characterizes each cycle in a persistent basis:

Theorem 2.3.1. An indexed set of q-cycles {cj | j ∈ J} is a persistent q-basis for a filtration

F if and only if PF
q ≈

⊕
j∈J I [bj,dj) and cj is a persistent q-cycle for every interval [bj, dj) ∈

Pers(PF
q ).

Proof. Suppose {cj | j ∈ J} is an indexed set of q-cycles satisfying the above conditions. For

each j ∈ J , we construct an interval module Ij, such that Ij(i) = {0, [cj]} for bj ≤ i < dj and

Ij(i) = 0 otherwise. We claim that PF
q = ⊕

j∈J Ij. We first prove that PF
q (i) = ⊕

j∈J Ij(i)

for each i ∈ Z+, by proving that {[cj] | j ∈ J, i ∈ [bj, dj)} forms a basis of PF
q (i). Using

mathematical induction, since σF
1 is a vertex, this is trivially true. Suppose for i − 1 this

is true. If σF
i is neither positive nor negative, i.e., Hq(Ki−1) ≈ Hq(Ki) by the isomorphism

induced from the inclusion, this is also trivially true for i. If σF
i is positive, suppose the

corresponding interval of σF
i is [bj′ , dj′) (note that bj′ = i and dj′ could possibly be +∞).

Since {[cj] | j ∈ J, i − 1 ∈ [bj, dj)} are still independent in PF
q (i) and [cj′ ] is not in the span

of them, then {[cj] | j ∈ J, i − 1 ∈ [bj, dj)} ∪ [cj′ ] = {[cj] | j ∈ J, i ∈ [bj, dj)} are independent

in PF
q (i). Since the cardinality of {[cj] | j ∈ J, i ∈ [bj, dj)} equals the dimension of PF

q (i), it

must form a basis of PF
q (i). If σF

i is negative, then there must be a [cj′ ] for a j′ ∈ J such that

dj′ = i. For any [c] ∈ PF
q (i) = Hq(Ki), [c] = ∑

j∈J ′ [cj], where J ′ ⊆ {j ∈ J | i − 1 ∈ [bj, dj)}.
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If j′ ∈ J ′, then [c] = ∑
j∈J ′−{j′} [cj], because [cj′ ] = 0 in Hq(Ki). Then {[cj] | j ∈ J, i − 1 ∈

[bj, dj)}−{cj′} = {[cj] | j ∈ J, i ∈ [bj, dj)} spans Hq(Ki). This means that it also forms a basis

of Hq(Ki). It is then obvious that the direct sums of the maps of the interval modules are

actually the maps of PF
q , so {cj | j ∈ J} is a persistent q-basis for F .

Suppose {cj | j ∈ J} is a persistent q-basis for F . For each j ∈ J , cj must not be in Kbj−1,

because otherwise [cj] would be in the image of PF
q [bj − 1 ≤ bj]. It is obvious that cj must

contain σF
j . Note that for each j ∈ J and each i ∈ [bj, dj), PF

q [i ≤ i + 1]([cj]) = I [bj,dj)[i ≤

i + 1]([cj]). Then for each j ∈ J such that dj ̸= +∞, [cj] ̸= 0 in Kdj−1 and [cj] = 0 in Kdj .

Remark 2.3.2. With Definition  2.3.2 and Theorem  2.3.1 , it is true that for a persistent q-

cycle c of an interval [b, d) ∈ Persq(F), we can always form an interval module decomposition

of PF
q , where c is a representative cycle for the interval module of [b, d).

2.3.1 Minimum persistent cycle problems

We can now formally define the minimum persistent cycle problems:

Problem 2.3.1 (PCYC-FINp). Given a finite p-weighted simplicial complex K, a filtration

F : ∅ = K0 ⊆ K1 ⊆ . . . ⊆ Kn = K, and a finite interval [b, d) ∈ Persp(F), this problem

asks for computing a p-cycle with the minimum weight which is born in Kb and becomes a

boundary in Kd.

Problem 2.3.2 (PCYC-INFp). Given a finite p-weighted simplicial complex K, a filtration

F : ∅ = K0 ⊆ K1 ⊆ . . . ⊆ Kn = K, and an infinite interval [b,+∞) ∈ Persp(F), this

problem asks for computing a p-cycle with the minimum weight which is born in Kb.

2.4 NP-hardness for finite intervals

2.4.1 NP-hardness in dimension one

We first prove that the PCYC-FINp problem is NP-hard when p = 1. The proof is done

by showing a special version (see definition below) of PCYC-FIN1 is NP-hard. This special

version reduces to the general version straightforwardly in polynomial time by assigning

every edge a weight of 1.
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Problem 2.4.1 (LST-PERS-CYC). Given a filtration F : ∅ = K0 ⊆ K1 ⊆ . . . ⊆ Km = K,

and a finite interval [b, d) ∈ Pers1(F), this problem asks for finding a 1-cycle with the least

number of edges which is born in Kb and becomes a boundary in Kd.

Theorem 2.4.1. The problem LST-PERS-CYC is NP-hard.

To prove Theorem  2.4.1 , we reduce the NP-hard MAX-2SAT [ 43 ] problem to LST-PERS-

CYC, which is similar as in [ 44 ]. The MAX-2SAT problem is defined as:

Problem 2.4.2 (MAX-2SAT). Given N variables x1, . . . , xN and M clauses c1, . . . , cM , with

the clauses being the disjunction of at most two variables. Find an assignment of Boolean

values to all the variables such that the maximal number of clauses are satisfied.

Proof of Theorem  2.4.1 . We will reduce MAX-2SAT to LST-PERS-CYC. Given an instance

of MAX-2SAT, we first construct a simplicial complex K as in [ 44 ], by forming a triangulated

cylinder Ci for each variable xi and a cycle wj for each clause cj, such that the two ends zi

and z′
i of Ci correspond to xi and ¬xi and are the only two cycles with the least number of

edges of their homology class in Ci. To make the process clearer, our construction of the

cycles zi, z′
i , and wj are a little different from [ 44 ]. Each zi or z′

i has 3M edges and M of them

are bijectively assigned to the M clauses, such that in between each two consecutive edges

assigned to some clauses, there are two edges which are not assigned to any clause. For a

clause cycle wj = (z′
i, zk) (do the similar for other cases), we assign three edges to wj and pick

one edge to be shared with the edges in z′
i and zk assigned to wj. Let z = ∑N

i=1 zi + ∑M
j=1 wj,

then our construction will make it true that, there is an assignment of Boolean values making

k clauses satisfied if and only if there is a cycle in [z] with 3MN + 3M − 2k edges.

Next we are going to construct a filtration F ′ of a complex K ′, where K ⊆ K ′. We

first construct a filtration F of K, with the only restriction: Pick an edge e of a clause

cycle, which is not shared with any end cycle of the variable cylinders, and take e as the last

simplex added to the filtration. To construct F ′ and K ′, we need to find all simple cycles

of z. A simple cycle is defined as a cycle such that, each vertex has degree 2 and there is

only one connected component in the cycle. We can use a DFS-based algorithm to find all

simple cycles for z: Treat z as graph and run DFS on the graph. Find a non-DFS-tree edge
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(v1, v2) of z, then find the lowest common ancestor w of v1 and v2 in the DFS tree. The

paths in the DFS tree from w to v1 and w to v2, plus the edge (v1, v2), form a simple cycle

of z. Delete the simple cycle from the graph and repeat the above process until the graph

becomes empty.

For each simple cycle c of z, we attach a cylinder C to c such that, one end of C is c, the

other end of C is a quadrilateral, and all the other edges of C connect c to the quadrilateral.

An example of such a cylinder connecting a dodecagon and a quadrilateral is illustrated in

Figure  2.1a . After all the cylinders are attached to the simple cycles, we get a simplicial

complex K1. We can append the simplices of K1 ∖ K to F ′, to get a filtration F1 of K1.

Since K1 deformation retracts onto K, all negative triangles of K1 ∖K are paired with an

edge of K1 ∖K. We then construct a simplicial complex whose boundary is the sum of all

the quadrilaterals and an outer cycle c′, as in Figure  2.1b , and attach this simplicial complex

to K1 by gluing the quadrilaterals, to get a simplicial complex K2. To form a filtration F2 of

K2, we first append the red edges in Figure  2.1b to F1, then append all the other simplices

of K2 ∖K1. Finally, we form a cone around c′ to get K ′ and append the missing simplices

to get the filtration F ′.

(a) (b)

Figure 2.1. (a) A cylinder connecting a dodecagon and a quadrilateral. (b) A
simplicial complex whose boundary is the sum of three quadrilaterals (blue)
and an outer cycle (bold). Some polygons in the figure are not triangulated.

Let t be the last triangle in F ′, then it is true that K ′ ∖ t deformation retracts to the

union of K1 and the red edges. This indicates that all negative triangles of K ′ ∖K1, other

than t, are paired with edges of K ′ ∖K1. Let the index of e in F ′ be b and the index of t

in F ′ be d, we claim that [b, d) is an interval of Pers1(F ′). To prove this, first note that z is

born in Kb and becomes a boundary in Kd. By the time t is added, e is unpaired. So by the

persistence algorithm [ 3 ], t must be paired with e.
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Now we have constructed an instance of LST-PERS-CYC, from an instance of MAX-

2SAT: Given the filtration F ′ and the interval [b, d) ∈ Pers1(F ′), find a persistent 1-cycle

with the least number of edges. We then prove that the answer to LST-PERS-CYC is also the

answer to MAX-2SAT. First note that the map H1(Kb)→ H1(Kd−1) is injective. This means

that any persistent 1-cycle for [b, d) must be homologous to z in Kb, as they are homologous

in Kd−1. It follows that computing the minimum persistent 1-cycle of [b, d) is equivalent to

computing the minimum cycle of the homology class [z] in Kb, which is in turn equivalent to

computing the answer for the original MAX-2SAT problem. Then we have had a reduction

from MAX-2SAT to LST-PERS-CYC. Furthermore, the reduction is in polynomial time and

the size of the constructed instance of LST-PERS-CYC is a polynomial function of that of

MAX-2SAT, so LST-PERS-CYC is NP-hard.

2.4.2 Suspension operator

Similar to the work [ 18 ], the NP-hardness proofs for general dimensions accomplish the

reduction with the help of a suspension operator. While Hatcher [ 2 ] defines this operator for

general topological spaces, we need a definition of the operator for simplicial complexes and

observe some of its properties that are useful for the proofs.

Definition 2.4.1 (Suspension [ 45 ]). The suspension SK of a simplicial complex K is defined

as a simplicial complex

SK =
{
{ω1}, {ω2}

}
∪K ∪

( ⋃
σ∈K

{
σ ∪ {ω1}, σ ∪ {ω2}

})

where ω1, ω2 are two extra vertices.

Remark 2.4.1. In the above definition, we denote a simplex by its set of vertices.

In the rest of this subsection, we let K be an arbitrary simplicial complex. Any simplex

of the form σ∪{ωi} in SK is called a suspended simplex. The symbol S is also used to denote

a linear map S : Cq(K) → Cq+1(SK), where Sσ = σ ∪ {ω1} + σ ∪ {ω2} for any q-simplex

σ of K. Note that since S is injective, the map S defines an isomorphism from Cq(K) to
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the image S(Cq(K)). For any chain A ∈ S(Cq(K)), we abuse the notation slightly by letting

S−1A denote the chain in Cq(K) mapped to A under S.

Proposition 2.4.1. For any q ≥ 1, the following diagram commutes:

Cq(K)
S ≈
��

∂ // Cq−1(K)
S≈
��

S(Cq(K)) ∂ // S(Cq−1(K))

Proof. For any q-simplex σ = {v0, . . . , vq} of K, we have

∂(Sσ) = ∂
(
{v0, . . . , vq, ω1}+ {v0, . . . , vq, ω2}

)
=

q∑
i=0
{v0, . . . , v̂i, . . . , vq, ω1}+ {v0, . . . , vq}+

q∑
i=0
{v0, . . . , v̂i, . . . , vq, ω2}+ {v0, . . . , vq}

=
q∑

i=0

(
{v0, . . . , v̂i, . . . , vq, ω1}+ {v0, . . . , v̂i, . . . , vq, ω2}

)

=
q∑

i=0
S

(
{v0, . . . , v̂i, . . . , vq}

)
= S

 q∑
i=0
{v0, . . . , v̂i, . . . , vq}

 = S∂(σ)

In the above equations, the notation v̂i means that vi is deleted from the simplex.

Proposition 2.4.2. For q ≥ 1 and any q-cycle ζ of SK containing only suspended simplices,

one has ζ ∈ S(Cq−1(K)).

Proof. For any suspended q-simplex σ∪{ωi} of ζ, if ωi = ω1, then σ∪{ω2} must also belong

to ζ because no other suspended q-simplices of SK have σ in the boundary. If ωi = ω2, the

same argument follows.

Proposition 2.4.3. If q is the top dimension of K and q ≥ 1, then for any A ∈ Cq+1(SK)

such that ∂(A) contains only suspended simplices, one has A ∈ S(Cq(K)).

Proof. Because q is the top dimension of K, A contains only suspended simplices. For any

σ ∪ {ωi} ∈ A, we have σ ∈ ∂
(
σ ∪ {ωi}

)
. If ωi = ω1, to make σ cancelled in ∂(A), σ ∪ {ω2}

must also belong to A because no other (q + 1)-simplices in SK have σ in the boundary. If

ωi = ω2, the same argument follows.
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2.4.3 NP-hardness in general dimensions

The following proposition helps to prove the NP-hardness in general dimensions:

Proposition 2.4.4. PCYC-FINp−1 reduces to PCYC-FINp for p ≥ 2.

Proof. Given an instance (K,F , [b, d)) of PCYC-FINp−1, where the ith complex of F is

denoted as Ki, we can assume the top dimension of K to be p. The reason is that if it were

not, we can restrict F to the p-skeleton of K without affecting Persp−1(F) and the persistent

(p − 1)-cycles. Then, we let SK be the simplicial complex for the instance of PCYC-FINp

we are going to construct. For any suspended p-simplex σ ∪ {ωi} of SK, let the weight of

σ ∪ {ωi} be half of the weight of σ in K. Furthermore, let the weight of any non-suspended

p-simplex of SK be the sum of all the weights of (p − 1)-simplices in K plus 1. We endow

SK with a filtration SF : ∅ = K̂0 ⊆ K̂1 ⊆ . . . ⊆ K̂3n+2 = SK, where n is the number of

simplices of K. Denoting the ith simplex added in F as σi and the ith simplex added in SF

as σ̂i, we let σ̂1 = {ω1}, σ̂2 = {ω2}, and for any 1 ≤ i ≤ n, σ̂3i = σi, σ̂3i+1 = σi ∪ {ω1},

σ̂3i+2 = σi ∪ {ω2}.

We observe the following facts:

(i). For any i, σ̂3i is positive and pairs with σ̂3i+1 in SF .

(ii). For any i and j, if there is a (p−1)-cycle created by σi which is a boundary in Kj, then

there is a p-cycle created by σ̂3i+2 which is a boundary in K̂3j+2.

(iii). For any i and j, if there is a p-cycle created by σ̂3i+2 which is a boundary in K̂3j+2, then

there is a (p− 1)-cycle created by σi which is a boundary in Kj.

The correctness of (i) is not hard to verify. To verify (ii), we can suspend the (p− 1)-cycle

and use Proposition  2.4.1 to reach the claim. The argument for (iii) is as follows: Consider a

p-cycle ζ̂0 created by σ̂3i+2 which is a boundary in K̂3j+2. For any non-suspended p-simplex σ

of ζ̂0, we add ∂
(
σ ∪{ω1}

)
to the cycle ζ̂0 so that σ is canceled and only suspended simplices

are added. Note that the adding process only adds p-simplices in K̂3i+2 and never cancels

σ̂3i+2. After all non-suspended simplices of ζ̂0 are canceled, we derive a p-cycle ζ̂ which is

created by σ̂3i+2 and contains only suspended simplices. By Proposition  2.4.2 , S−1ζ̂ is well
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defined. Since ζ̂ is homologous to ζ̂0 in K̂3i+2, ζ̂ is also a boundary in K̂3j+2. Let ζ̂ be

the boundary of a (p + 1)-chain Â in K̂3j+2. Because SKj = K̂3j+2, by Proposition  2.4.3 ,

Â ∈ S(Cp(Kj)). Furthermore, by Proposition  2.4.1 , we have S−1ζ̂ = S−1∂(Â) = ∂(S−1Â).

So S−1ζ̂ is a (p− 1)-cycle created by σi which is a boundary in Kj.

From the above facts, it is immediate that σ̂3b+2 is a positive simplex in SF and pairs

with σ̂3δ+2 so that [3b + 2, 3d + 2) is an interval in Persp(SF). It is also true that there

is a bijection from the persistent (p − 1)-cycles of [b, d) to the persistent p-cycles of [3b +

2, 3d + 2) containing only suspended simplices. Furthermore, the bijection preserves the

weights of the cycles. From the weight assigning policy, the minimum persistent p-cycle of

[3b + 2, 3d + 2) must contain only suspended simplices, so this minimum persistent p-cycle

of [3b+ 2, 3d+ 2) induces a minimum persistent (p− 1)-cycle of [b, d). Now we have reduced

PCYC-FINp−1 to PCYC-FINp. Furthermore, the reduction is in polynomial time and the

size of (SK,SF , [3b+ 2, 3d+ 2)) is a polynomial function of the size of (K,F , [b, d)).

Combining Proposition  2.4.4 and the hardness result in Section  2.4.1 , we obtain the

following theorem:

Theorem 2.4.2. PCYC-FINp is NP-hard for p ≥ 1.

2.5 NP-hardness for infinite intervals

In this subsection, we prove that it is NP-hard to approximate WPCYC-INFp with any

fixed ratio. Let PROB be a minimization problem with solutions having positive costs.

Given an instance I of PROB, let C∗ be the cost of the minimum solution of I. For r ≥ 1,

a solution of I with cost C is said to have an approximation ratio r if C/C∗ ≤ r [ 46 ].

We let PROB[r] denote the problem that asks for an approximate solution with ratio r

given an instance of PROB. Moreover, in order to make approximation ratios well-defined

for WPCYC-INFp, we let WPCYC-INF+
p denote a subproblem of WPCYC-INFp where all

p-simplices are positively weighted.

Before proving the hardness result, we first recall the definition of the nearest codeword

problem, which is NP-hard to approximate with any fixed ratio [ 18 ]:
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Problem 2.5.1 (NR-CODE). Given an l × k full-rank matrix A over Z2 for k < l and a

vector y0 ∈ (Z2)l∖ img(A), find a vector in y0 + img(A) with the minimum Hamming weight.

Remark 2.5.1. The Hamming weight of a vector y, denoted as ∥y∥H , is the number of

non-zero components in y.

Theorem 2.5.1. WPCYC-INF +
2 is NP-hard to approximate with any fixed ratio.

Similar to the NP-hardness proof of homology localization in [  18 ], our proof of Theo-

rem  2.5.1 conducts the reduction from the NR-CODE problem. One may think that a direct

reduction from homology localization may be more straightforward. However, such a reduc-

tion is not immediately evident. The two problems appear to be of different nature: While

the homology localization problem asks for a minimum cycle in a given homology class,

WPCYC-INF+
2 asks for a minimum cycle in a complex containing a given simplex without

referring to any particular homology class.

Proof. For any r > 1, we reduce the NP-hard problem NR-CODE[2r] to WPCYC-INF+
2 [r].

Given an instance (A, y0) of NR-CODE[2r], we first compute the (l−k)×l parity check matrix

A⊥ [ 18 ], which is a matrix such that ker(A⊥) = img(A). Similar to the proof of Lemma 4.3.1

in [ 18 ], we then build a “tube complex” T1 with (l−k) 1-cells each of which is a 1-sphere and l

2-cells each of which is a 2-sphere with holes. The 2-cells of T1 are attached to the 1-cells along

the holes such that the boundary matrix ∂2 of this tube complex equals A⊥. The “q-chains”

and “q-cycles” for a tube complex are analogously defined as for a simplicial complex. We

also assign a weight of 1 to each 2-cell of T1. By this construction, there is a straightforward

bijection ϕ : (Z2)l → C2(T1), such that the Hamming weight of a vector equals the weight

of the corresponding 2-chain. Note that Z2(T1) = ker(∂2) = ϕ(ker(A⊥)) = ϕ(img(A)). Let

ỹ0 = ϕ(y0), we then add a 2-cell t̂ whose boundary equals ∂2(ỹ0) to T1 and get a new tube

complex T2. We call the 2-cycles in T2 which are not in T1 as the new 2-cycles in T2. Then

t̂+ ỹ0 is a new 2-cycle in T2 and the set of new 2-cycles in T2 is t̂+ ỹ0 + Z2(T1). We let the

weight of t̂ also be 1. Note that there is a bijection ψ : y0 + img(A)→ t̂+ ỹ0 + Z2(T1), where

ψ(y0 + z) = t̂+ ỹ0 + ϕ(z) for any z ∈ img(A), such that w(ψ(y0 + z)) = ∥y0 + z∥H + w(t̂).

We then construct an instance of WPCYC-INF+
2 [r] by first triangulating T2 to get a

simplicial complex K. We make K 2-weighted such that the sum of the weights of all
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triangles in any 2-cell of T2 equals the weight of the 2-cell. It is not hard to make the

size of K a polynomial function of the number of cells of T2. Let σ be a 2-simplex in the

triangulation of the 2-cell t̂. We build a filtration F of K with σ being the last simplex

added. Let the index of σ in F be b. Then, [b,+∞) is an infinite interval of Pers2(F).

Note that there is a bijection between the new 2-cycles in T2 and the persistent 2-cycles

of [b,+∞), where the weights of the cycles are preserved. Therefore, from the solution of

WPCYC-INF+
2 [r] with the input (K,F , [b,+∞)), we can derive a new 2-cycle t̂ + ỹ0 + ζ of

T2, where ζ ∈ Z2(T1) and t̂+ ỹ0 + ζ is an r-approximation of the minimum new 2-cycle. Let

t̂+ ỹ0 + ζ∗ be a minimum new 2-cycle of T2, we have

w(t̂+ ỹ0 + ζ)
w(t̂+ ỹ0 + ζ∗)

≤ r =⇒ w(t̂) + w(ỹ0 + ζ)
w(t̂) + w(ỹ0 + ζ∗)

≤ r =⇒ w(ỹ0 + ζ) ≤ r − 1 + rw(ỹ0 + ζ∗)

We also have

1 ≤ r

r − 1w(ỹ0 + ζ∗) =⇒ r − 1 ≤ rw(ỹ0 + ζ∗)

Therefore

w(ỹ0 + ζ) ≤ 2rw(ỹ0 + ζ∗) =⇒ ∥y0 + ϕ−1(ζ)∥H ≤ 2r∥y0 + ϕ−1(ζ∗)∥H

Since y0 + ϕ−1(ζ∗) is a minimum solution of (A, y0), then y0 + ϕ−1(ζ) is a 2r-approximation

of the minimum solution of (A, y0). Hence, we have reduced NR-CODE[2r] to WPCYC-

INF+
2 [r]. Furthermore, the reduction is in polynomial time and the sizes of the instances are

related by a polynomial function, so WPCYC-INF+
2 [r] is NP-hard.

Theorem 2.5.2. WPCYC-INF +
p is NP-hard to approximate with any fixed ratio for p ≥ 2.

Proof. For any p ≥ 3 and r ≥ 1, we reduce WPCYC-INF+
p−1[r] to WPCYC-INF+

p [r]. Given

an instance (K,F , [b,+∞)) of WPCYC-INF+
p−1[r], where the ith complex of F is denoted as

Ki, let K ′ = SKp−1
b where Kp−1

b is the (p− 1)-skeleton of Kb. We make K ′ p-weighted such

that any p-simplex σ∪{ωi} of K ′ has half of the weight of σ in K. The complex K ′ is endowed

with a filtration F ′ such that σF
b ∪ {ω2} is the last simplex added to F ′. Let b′ be the index

of σF
b ∪ {ω2} in F ′, then [b′,+∞) ∈ Persp(F ′). It is true that S restricts to a bijection from
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Zp−1(Kb) to Zp(K ′) preserving the weights of the cycles. Furthermore, for any ζ ∈ Zp−1(Kb),

ζ is a persistent (p−1)-cycle of [b,+∞) ∈ Persp−1(F) if and only if Sζ is a persistent p-cycle

of [b′,+∞) ∈ Persp(F ′). Suppose that ζ ′ is a solution for the instance (K ′,F ′, [b′,+∞)) of

WPCYC-INF+
p [r], i.e., ζ ′ is an r-approximation of the minimum solution. Then, S−1ζ ′ is

an r-approximation for the instance (K,F , [b,+∞)) of WPCYC-INF+
p−1[r]. Therefore, the

reduction is done.

2.6 Minimum persistent cycles for finite intervals given weak pseudomanifolds

(a)

σβ

(b)

σδ

(c) (d)

Figure 2.2. An example of the constructions in our algorithm showing the
duality between persistent cycles and cuts having finite capacity for p = 1.
(a) The input weak 2-pseudomanifold K with its dual flow network drawn
in blue, where the central hollow vertex denotes the dummy vertex, the red
vertex denotes the source, and all the orange vertices (including the dummy
one) denote the sinks. All “dangled” graph edges dual to the outer boundary 1-
simplices actually connect to the dummy vertex and these connections are not
drawn. (b) The partial complex Kb in the input filtration F , where the bold
green 1-simplex denotes σF

b which creates the green 1-cycle. (c) The partial
complex Kd in F , where the 2-simplex σF

d creates the pink 2-chain killing the
green 1-cycle. (d) The green persistent 1-cycle of the interval [b, d) is dual to
a cut (S, T ) having finite capacity, where S contains all the vertices inside the
pink 2-chain and T contains all the other vertices. The red graph edges denote
those edges across (S, T ) and their dual 1-chain is the green persistent 1-cycle.

In this section, we present an algorithm which computes minimum persistent p-cycles for

finite intervals given a filtration of a weak (p+ 1)-pseudomanifold when p ≥ 1. The general

process is as follows: Suppose that the input weak (p+ 1)-pseudomanifold is K associated

with a filtration F : K0 ⊆ K1 ⊆ . . . ⊆ Kn and the task is to compute the minimum persistent

cycle of a finite interval [b, d) ∈ Persp(F). We first construct an undirected dual graph G
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for K where vertices of G are dual to (p+ 1)-simplices of K and edges of G are dual to

p-simplices of K. One dummy vertex termed as infinite vertex which does not correspond

to any (p+ 1)-simplices is added to G for graph edges dual to those boundary p-simplices.

We then build an undirected flow network on top of G where the source is the vertex dual

to σF
d and the sink is the infinite vertex along with the set of vertices dual to those (p+ 1)-

simplices which are added to F after σF
d . If a p-simplex is σF

b or added to F before σF
b , we

let the capacity of its dual graph edge be its weight; otherwise, we let the capacity of its dual

graph edge be +∞. Finally, we calculate a minimum cut of this flow network and return

the p-chain dual to the edges across the minimum cut as a minimum persistent cycle of the

interval.

The intuition of the above algorithm is best explained by an example in Figure  2.2 , where

p = 1. The key to the algorithm is the duality between persistent cycles of the input interval

and cuts of the dual flow network having finite capacity. To see this duality, first consider a

persistent p-cycle ζ of the input interval [b, d). There exists a (p+ 1)-chain A in Kd created

by σF
d whose boundary equals ζ, making ζ killed. We can let S be the set of graph vertices

dual to the simplices in A and let T be the set of the remaining graph vertices, then (S, T ) is

a cut. Furthermore, (S, T ) must have finite capacity as the edges across it are exactly dual to

the p-simplices in ζ and the p-simplices in ζ have indices in F less than or equal to b. On the

other hand, let (S, T ) be a cut with finite capacity, then the (p+ 1)-chain whose simplices

are dual to the vertices in S is created by σF
d . Taking the boundary of this (p+ 1)-chain, we

get a p-cycle ζ. Because p-simplices of ζ are exactly dual to the edges across (S, T ) and each

edge across (S, T ) has finite capacity, ζ must reside in Kb. We only need to ensure that ζ

contains σF
b in order to show that ζ is a persistent cycle of [b, d). In Section  2.6.2 , we argue

that ζ actually contains σF
b , so ζ is indeed a persistent cycle. Note that while the above

explanation introduces the general idea, the rigorous statement and proof of the duality are

articulated by Proposition  2.6.2 and  2.6.3 .

We list the pseudocode in Algorithm  2.6.1 and it works as follows: Line  2 and  3 set up

a complex K̃ that the algorithm mainly works on, where K̃ is taken as the closure of the

(p+ 1)-connected component of K containing σF
d . The reason for working on K̃ instead of

the entire complex is explained later in this section. Line  4 constructs the dual graph G from
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Algorithm 2.6.1 Computing minimum persistent p-cycles for finite intervals for weak
(p+ 1)-pseudomanifolds
Input:
K: finite p-weighted weak (p+ 1)-pseudomanifold
p: integer ≥ 1
F : filtration K0 ⊆ K1 ⊆ . . . ⊆ Kn of K
[b, d): finite interval of Persp(F)

Output:
minimum persistent p-cycle for [b, d)

1: procedure MinPersCycFin(K, p,F , [b, d))
▷ set up the complex K̃ being worked on

2: Cp+1 ← (p+ 1)-connected component of K containing σF
d

3: K̃ ← closure of the simplicial set Cp+1

▷ construct dual graph
4: (G, θ)← DualGraphFin(K̃, p)

▷ assign capacity to G
5: for each e ∈ E(G) do
6: if ind(θ−1(e)) ≤ b then
7: c(e)← w(θ−1(e))
8: else
9: c(e)← +∞

▷ set the source
10: s1 ← {θ(σF

d )}
▷ set the sink

11: s2 ← {v ∈ V (G) | v ̸= ϕ, ind(θ−1(v)) > d}
12: if ϕ ∈ V (G) then
13: s2 ← s2 ∪ {ϕ}
14: (S∗, T ∗)← min-cut of (G, s1, s2)
15: return θ−1(ξ(S∗, T ∗))

K̃ and line  5 − 13 builds the flow network on top of G. Note that we denote the infinite vertex

by ϕ. Line  14 computes a minimum cut for the flow network and line  15 returns the p-chain

dual to the edges across the minimum cut. In the pseudocodes of this chapter, to ease the

exposition, we treat a mathematical function as a computer program object. For example,

the function θ returned by DualGraphFin in Algorithm  2.6.1 denotes the bijection between

the simplices of K̃ and their dual vertices or edges (see Section  2.6.1 for details). In practice,

these constructs can be easily implemented in any computer programming language.
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To see the reason why we work on K̃, we first note that the dual graph constructed

directly from K may be disconnected 

4
 . While cuts are still well-defined for a disconnected

flow network, one may prefer a connected one as the minimum cut computation only concerns

the graph component containing the source. By constructing the dual graph from K̃, it can

be ensured that the graph is connected. In order for Algorithm  2.6.1 to work, one has to

further show that the sink is non-empty so that the computed persistent cycle is non-empty.

This is verified in Proposition  2.6.1 . An intuitive reason why the computation from K̃ is

still correct is as follows: Each persistent p-cycle ζ of the given interval corresponds to a

(p+ 1)-chain A which kills ζ, i.e., ∂(A) = ζ. Suppose that A is not entirely contained in K̃.

Notice that A∩K̃ ̸= ∅ and contains at least the killer simplex σF
d . Then ∂(A∩K̃) must be a

persistent cycle of the interval residing in K̃ which has a smaller weight. Hence, a minimum

persistent cycle must reside in K̃. In Section  2.6.2 , we formally verify the construction.

The time complexity of Algorithm  2.6.1 depends on the encoding scheme of the input and

the data structure used for representing a simplicial complex. For encodings of the input,

we assume K and F to be represented by a sequence of all the simplices of K ordered by

their indices in F , where each simplex is denoted by its set of vertices. We also assume

a simple yet reasonable simplicial complex data structure as follows: In each dimension,

simplices are mapped to integral identifiers ranging from 0 to the number of simplices in

that dimension minus 1; each q-simplex has an array (or linked list) storing all the id’s of its

(q + 1)-cofaces; a hash map for each dimension is maintained for the query of the integral

id of each simplex in that dimension based on the spanning vertices of the simplex. We

further assume p to be constant. By the above assumptions, let n be the size (number of

bits) of the encoded input, then there are no more than n elementary O(1) operations in

line  2 and  3 . So, the time complexity of line  2 and  3 is O(n). It is not hard to verify that the

flow network construction also takes O(n) time so the time complexity of Algorithm  2.6.1 

is determined by the minimum cut algorithm. Using the max-flow algorithm by Orlin [  47 ],

the time complexity of Algorithm  2.6.1 becomes O(n2).
4

 ↑ For an example in d = 1, take K as two disconnected triangulated 2-spheres. Its dual graph consists of
two connected components.

40



In the rest of this section, we first explain the bijection θ returned by DualGraphFin,

then prove the correctness of the algorithm.

2.6.1 The bijection θ

The vertex set V (G) of G contains vertices which correspond to the (p+ 1)-simplices of

K̃. The set V (G) may also contain an infinite vertex ϕ if K̃ contains any boundary p-simplex.

We define a bijection

θ : {(p+ 1)-simplices of K̃} → V (G) ∖ {ϕ}

such that for any (p+ 1)-simplex σp+1 of K̃, θ(σp+1) is the vertex that σp+1 is dual to.

Similarly, we define another bijection

θ : {p-simplices of K̃} → E(G)

using the same notation θ.

Note that we can take the image of a subset of the domain under a function. Therefore, if

(S, T ) is a cut for a flow network built on G, then θ−1(ξ(S, T )) denotes the set of p-simplices

dual to the edges across the cut. Also note that since simplicial chains with Z2 coefficients

can be interpreted as sets, θ−1(ξ(S, T )) is also a p-chain.

2.6.2 Algorithm correctness

In this subsection, we prove the correctness of Algorithm  2.6.1 . Some of the symbols we

use refer to Algorithm  2.6.1 .

Proposition 2.6.1. In Algorithm  2.6.1 , the sink s2 is not an empty set.

Proof. For contradiction, suppose that s2 is an empty set. Then, ϕ ̸∈ V (G) and σF
d is

the (p+ 1)-simplex of K̃ with the greatest index in F . Because ϕ ̸∈ V (G), any p-simplex

of K̃ must be a face of two (p+ 1)-simplices of K̃, so the set of (p+ 1)-simplices of K̃

41



forms a (p+ 1)-cycle created by σF
d . Then σF

d must be a positive simplex in F , which is a

contradiction.

The following two propositions specify the duality mentioned at the beginning of this

section:

Proposition 2.6.2. For any cut (S, T ) of (G, s1, s2) with finite capacity, the p-chain ζ =

θ−1(ξ(S, T )) is a persistent p-cycle for [b, d) and w(ζ) = c(S, T ).

Proof. Let A = θ−1(S), we first want to prove ζ = ∂(A), so that ζ is a cycle. Let σp be any

p-simplex of ζ, then θ(σp) connects a vertex u ∈ S and a vertex v ∈ T . If v = ϕ, then σp

cannot be a face of another (p+ 1)-simplex in K other than θ−1(u). So, σp is a face of exactly

one (p+ 1)-simplex of A. If v ̸= ϕ, then σp is also a face of exactly one (p+ 1)-simplex of A.

Therefore, σp ∈ ∂(A). On the other hand, let σp be any p-simplex of ∂(A), then σp is a face

of exactly one (p+ 1)-simplex σp+1
0 of A. If σp is a face of another (p+ 1)-simplex σp+1

1 in

K, then σp+1
1 ∈ K̃ and σp+1

1 ̸∈ A. So, θ(σp) connects the vertex θ(σp+1
0 ) ∈ S and the vertex

θ(σp+1
1 ) ∈ T in the graph G. If σp is a face of exactly one (p+ 1)-simplex in K, θ(σp) must

connect θ(σp+1
0 ) ∈ S and ϕ ∈ T in G. So we have θ(σp) ∈ ξ(S, T ), i.e., σp ∈ θ−1(ξ(S, T )).

We then show that ζ is created by σF
b . By Proposition  2.6.1 , ζ cannot be empty. There-

fore, for contradiction, we can suppose that ζ is created by a p-simplex σp ̸= σF
b . Because

c(S, T ) has finite capacity, we have that ind(σp) < b. We can let ζ ′ be a persistent cycle of

[b, d) and ζ ′ = ∂(A′) where A′ is a (p+ 1)-chain of Kd. Then we have ζ + ζ ′ = ∂(A + A′).

Since A and A′ are both created by σF
d , then A + A′ is created by a (p+ 1)-simplex with

an index less than d in F . So ζ + ζ ′ is a p-cycle created by σF
b which becomes a boundary

before σF
d is added. This means that σF

b is already paired when σF
d is added, contradicting

the fact that σF
b is paired with σF

d . Similarly, we can prove that ζ is not a boundary until

σF
d is added, so ζ is a persistent cycle of [b, d). Since (S, T ) has finite capacity, we must have

c(S, T ) =
∑

e∈θ(ζ)
c(e) =

∑
θ−1(e)∈ζ

w(θ−1(e)) = w(ζ).

Proposition 2.6.3. For any persistent p-cycle ζ for [b, d), there exists a cut (S, T ) of

(G, s1, s2) such that c(S, T ) ≤ w(ζ).
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Proof. Let A be a (p+ 1)-chain in Kd such that ζ = ∂(A). Note that A is created by σF
d and

ζ is the set of p-simplices which are face of exactly one (p+ 1)-simplex of A. Let ζ ′ = ζ ∩ K̃

and A′ = A ∩ K̃, we claim that ζ ′ = ∂(A′). To prove this, first let σp be any p-simplex

of ζ ′, then σp is a face of exactly one (p+ 1)-simplex σp+1 of A. Since σp ∈ K̃, it is also

true that σp+1 ∈ K̃, so σp+1 ∈ A′. Then σp is a face of exactly one (p+ 1)-simplex of A′,

so σp ∈ ∂(A′). On the other hand, let σp be any p-simplex of ∂(A′), then σp is a face of

exactly one (p+ 1)-simplex σp+1
0 of A′. Note that σp+1

0 ∈ A and we then want to prove that

σp is a face of exactly one (p+ 1)-simplex σp+1
0 of A. Suppose that σp is a face of another

(p+ 1)-simplex σp+1
1 of A, then σp+1

1 ∈ K̃ because σp+1
0 ∈ K̃. So we have σp+1

1 ∈ A∩K̃ = A′,

contradicting the fact that σp is a face of exactly one (p+ 1)-simplex of A′. Then we have

σp ∈ ∂(A). Since σp+1
0 ∈ K̃, we have σp ∈ K̃, which means that σp ∈ ζ ′.

Let S = θ(A′) and T = V (G)∖S, then it is true that (S, T ) is a cut of (G, s1, s2) because

A′ is created by σF
d . We claim that θ−1(ξ(S, T )) = ∂(A′). The proof of the equality is similar

to the one in the proof of Proposition  2.6.2 . It follows that ξ(S, T ) = θ(ζ ′). We then have

that

c(S, T ) =
∑

e∈θ(ζ′)
c(e) =

∑
θ−1(e)∈ζ′

w(θ−1(e)) = w(ζ ′)

because each p-simplex of ζ ′ has an index less than or equal to b in F .

Finally, because ζ ′ is a subchain of ζ, we must have c(S, T ) = w(ζ ′) ≤ w(ζ).

Combining the above facts, we can conclude:

Theorem 2.6.1. Algorithm  2.6.1 computes a minimum persistent p-cycle for the given in-

terval [b, d).

Proof. First, the flow network (G, s1, s2) constructed by Algorithm  2.6.1 must be valid by

Proposition  2.6.1 . Next, because the interval [b, d) must have a persistent cycle, by Propo-

sition  2.6.3 , the flow network (G, s1, s2) has a cut with finite capacity. This means that

c(S∗, T ∗) is finite. By Proposition  2.6.2 , the chain ζ∗ = θ−1(ξ(S∗, T ∗)) is a persistent

cycle of [b, d). Assume that ζ∗ is not a minimum persistent cycle of [b, d) and instead

let ζ ′ be a minimum persistent cycle of [b, d). Then there exists a cut (S ′, T ′) such that
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c(S ′, T ′) ≤ w(ζ ′) < w(ζ∗) = c(S∗, T ∗) by Proposition  2.6.2 and  2.6.3 , contradicting the fact

that (S∗, T ∗) is a minimum cut.

2.7 Minimum persistent cycles for infinite intervals given weak pseudomanifolds

In Section  2.5 , we proved that computing minimum persistent p-cycles (p ≥ 2) for infinite

intervals is NP-hard even if we restrict to weak (p+ 1)-pseudomanifolds. However, when the

complex is embedded in Rp+1, the problem becomes polynomially tractable. In this section,

we present an algorithm for this problem in p ≥ 1 

5
 . The algorithm uses a similar duality

described in Section  2.6 . However, a direct use of the approach in Section  2.6 does not

work. For example, in Figure  2.3a , 1-simplices that do not have any 2-cofaces cannot reside

in any 2-connected component of the given complex. Hence, no cut in the flow network

may correspond to a persistent cycle of the infinite interval created by such a 1-simplex.

Furthermore, unlike the finite interval case, we do not have a negative simplex whose dual

can act as a source in the flow network.

(a)

a b

cd

(b)

Figure 2.3. (a) A weak 2-pseudomanifold K̃ embedded in R2 with three voids.
Its dual graph is drawn in blue. The complex has one 1-connected component
and four 2-connected components with the 2-simplices in different 2-connected
components colored differently. (b) An example illustrating the pairing of
boundary p-simplices in the neighborhood of a (p− 1)-simplex for p = 1. The
four boundary 1-simplices produce six oriented boundary 1-simplices and the
paired oriented 1-simplices are colored the same.

Let (K,F , [b,+∞)) be an input to the problem where K is a weak (p+ 1)-pseudomanifold

embedded in Rp+1, F : K0 ⊆ K1 ⊆ . . . ⊆ Kn is a filtration of K, and [b,+∞) is an infinite
5

 ↑ As mentioned earlier, when p = 1, this problem is polynomially tractable for arbitrary complexes.
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interval of Persp(F). By the definition of the problem, the task boils down to computing a

minimum p-cycle containing σF
b in Kb. Note that Kb is also a weak (p+ 1)-pseudomanifold

embedded in Rp+1.

Generically, assume K̃ is an arbitrary weak (p+ 1)-pseudomanifold embedded in Rp+1

and we want to compute a minimum p-cycle containing a p-simplex σ̃ for K̃. By the embed-

ding assumption, the connected components of Rp+1 ∖ |K̃| are well defined and we call them

the voids of Rp+1 ∖ |K̃|. The complex K̃ has a natural (undirected) dual graph structure

as exemplified by Figure  2.3a for p = 1, where the graph vertices are dual to the (p+ 1)-

simplices as well as the voids and the graph edges are dual to the p-simplices. The duality

between cycles and cuts is as follows: Since the ambient space Rp+1 is contractible (homotopy

equivalent to a point), every p-cycle in K̃ is the boundary of a (p+ 1)-dimensional region

obtained by point-wise union of certain (p+ 1)-simplices and/or voids. We can derive a cut 

6
 

of the dual graph by putting all vertices contained in the (p+ 1)-dimensional region into one

vertex set and putting the rest into the other vertex set. On the other hand, for every cut of

the graph, we can take the point-wise union of all the (p+ 1)-simplices and voids dual to the

graph vertices in one set of the cut and derive a (p+ 1)-dimensional region. The boundary

of the derived (p+ 1)-dimensional region is then a p-cycle in K̃. We observe that by making

the source and sink dual to the two (p+ 1)-simplices or voids that σ̃ adjoins, we can build

a flow network where a minimum cut produces a minimum p-cycle in K̃ containing σ̃.

The efficiency of the above algorithm is in part determined by the efficiency of the dual

graph construction. This step requires identifying the voids that the boundary p-simplices are

incident on. A straightforward approach would be to first group the boundary p-simplices

into p-cycles by local geometry, and then build the nesting structure of these p-cycles to

correctly reconstruct the boundaries of the voids. This approach has a quadratic worst-case

complexity. To make the void boundary reconstruction faster, we assume that the simplicial

complex being worked on is p-connected so that building the nesting structure is not needed.

Our reconstruction then runs in almost linear time. To satisfy the p-connected assumption,

we begin our algorithm by taking K̃ as a p-connected subcomplex of Kb containing σF
b and

6
 ↑ The cut here is defined on a graph without sources and sinks, so the cut is simply a partition of the vertex

set into two sets.
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continue only with this K̃. The computed output is still correct because the minimum cycle

in K̃ is again a minimum cycle in Kb as shown in Section  2.7.2 .

Algorithm 2.7.1 Computing minimum persistent p-cycles for infinite intervals for weak
(p+ 1)-pseudomanifolds embedded in Rp+1

Input:
K: finite p-weighted weak (p+ 1)-pseudomanifold embedded in Rp+1

p: integer ≥ 1
F : filtration K0 ⊆ K1 ⊆ . . . ⊆ Kn of K
[b,+∞): infinite interval of Persp(F)

Output:
minimum persistent p-cycle for [b,+∞)

1: procedure MinPersCycInf(K, p,F , [b,+∞))
▷ set up the complex K̃ being worked on

2: K ′
b ← Prune(Kb, p)

3: Cb ← p-connected component of K ′
b containing σF

b

4: Σp+1 ← {σ ∈ K ′
b | σ is a (p+ 1)-simplex and all p-faces of σ are in Cb}

5: K̃ ← (closure of the simplicial set Cb) ∪ Σp+1

▷ construct dual graph
6: (ζ⃗1, . . . , ζ⃗k)← VoidBoundary(K̃, p)
7: (G, θ)← DualGraphInf(K̃, p, ζ⃗1, . . . , ζ⃗k)

▷ assign capacity to G
8: for each e ∈ E(G) do
9: c(e)← w(θ−1(e))

10: (v1, v2)← end vertices of edge θ(σF
b ) in G

▷ set the source
11: s1 ← {v1}

▷ set the sink
12: s2 ← {v2}
13: (S∗, T ∗)← min-cut of (G, s1, s2)
14: return θ−1(ξ(S∗, T ∗))

We list the pseudocode in Algorithm  2.7.1 and it works as follows: Line  2 − 5 set up the

complex K̃ that the algorithm works on. Line  2 prunes Kb to produce a complex K ′
b. Given

(Kb, p), the Prune subroutine iteratively deletes a p-simplex σp of Kb such that there is a

(p − 1)-face of σp having σp as the only p-coface (i.e., σp is a dangled p-simplex), until no

such p-simplex can be found. It is not hard to verify that Prune only deletes p-simplices not

residing in any p-cycles, so a minimum d-cycle containing σF
b is never deleted. We perform
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the pruning because it can reduce the graph size for the minimum cut computation which is

more time consuming. In line  3 − 5 , we take the p-connected component Cb of K ′
b containing

σF
b and add a set Σp+1 of (p+ 1)-simplices to the closure of Cb to form K̃. The set Σp+1

contains all (p+ 1)-simplices of K ′
b whose p-faces reside in Cb. The reason of adding the set

Σp+1 is to reduce the number of voids for the complex K̃ and in turn reduce the running

time of the subsequent void boundary reconstruction. For example, in Figure  2.4b , we could

treat the entire complex as K ′
b, all 1-simplices as Cb, and all 2-simplices as Σp+1. If we do

not add Σp+1 to the closure of Cb, there will be seven more voids corresponding to the seven

2-simplices. Line  6 reconstructs the void boundaries for K̃. Each returned ζ⃗j denotes a set of

p-simplices forming the boundary of a void. As indicated in Section  2.7.1 , the p-simplices in

a void boundary are oriented. Line  7 constructs the dual graph G based on the reconstructed

void boundaries. Similar to Algorithm  2.6.1 , the function θ returned by DualGraphInf

denotes the bijection from p-simplices of K̃ to E(G). Line  8 − 12 build the flow network on

top of G. The capacity of each edge is equal to the weight of its dual p-simplex and the

source and sink are selected as previously described. Line  13 computes a minimum cut for

the flow network and line  14 returns the p-chain dual to the edges across the minimum cut.

We make the same assumptions as in the complexity analysis for Algorithm  2.6.1 . Since

the void boundary reconstruction needs to sort the p-cofaces of certain (p− 1)-simplices, its

worst-case time complexity is O(n log n). Then, all operations other than the minimum cut

computation take O(n log n) time. Therefore, similar to Algorithm  2.6.1 , Algorithm  2.7.1 

achieves a complexity of O(n2) by using Orlin’s max-flow algorithm [ 47 ].

In the rest of this section, we first describe the subroutine VoidBoundary invoked by

Algorithm  2.7.1 and then prove the correctness of the algorithm.

2.7.1 Void boundary reconstruction

As previously stated, the object of the reconstruction is to identify which voids a boundary

p-simplex of K̃ is incident on. The task becomes complicated because a void may have

disconnected boundaries and a p-simplex may bound more than one void. This is exemplified

in Figure  2.4a . To address this issue, we orient the boundary p-simplices and determine the
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(a) (b)

Figure 2.4. Examples showing how the void boundaries are reconstructed
for p = 1. (a) Oriented boundary 1-simplices (drawn as dashed edges) of
a simplicial complex are grouped into six 1-cycles and these six 1-cycles are
further grouped into four void boundaries with each void boundary identically
colored. (b) With the complex being 1-connected, the four grouped 1-cycles
are exactly the boundaries of the four voids.

orientations consistently from the voids they bound. This is possible because an orientation

of a p-simplex in Rp+1 associates exactly one of its two sides to the p-simplex. To reconstruct

the boundaries, we first inspect the neighborhood of each (p− 1)-simplex being a face of a

boundary p-simplex and pair the oriented boundary p-simplices in the neighborhood which

locally bound the same void. Figure  2.3b gives an example of the oriented boundary p-

simplices pairing for p = 1. In Figure  2.3b , there are three local voids each colored differently.

The oriented 1-simplices with the same color bound the same void and are paired.

After pairing the oriented boundary p-simplices, we group them by putting paired ones

into the same group. Each group then forms a p-cycle (with Z coefficients). This is ex-

emplified by Figure  2.4 for p = 1. Note that in general, the above grouping does not fully

reconstruct the void boundaries. This can be seen from Figure  2.4a where the complex has

four voids but the grouping produces six 1-cycles. In order to fully reconstruct the bound-

aries, one has to retrieve the nesting structure of these p-cycles, which may take Ω(n2) time

in the worst-case. However, as we work on a complex K̃ that is p-connected, we cannot

have voids with disconnected boundaries. Therefore, the grouping of oriented p-simplices

can fully recover the void boundaries. Figure  2.4b gives an example for this when p = 1,

where we add two 1-simplices to make the complex 1-connected. The four 1-cycles produced

by the grouping are exactly the boundaries of the four voids.
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In the rest of this subsection, we formalize the above ideas for reconstructing void bound-

aries and provide a proof for the correctness. Throughout this subsection, K̃ and p are as

defined in Algorithm  2.7.1 . We first introduce the definition of the natural orientation of a

q-simplex in Rq. We use its induced orientation to canonically orient the boundary simplices.

Definition 2.7.1 (Natural orientation [ 48 ]). Let q > 1 and σ = {v0, . . . , vq} be a q-simplex in

Rq, an oriented simplex σ⃗ = [v′
0, . . . , v

′
q] of σ is naturally oriented if det(v′

1−v′
0, . . . , v

′
q−v′

0) >

0. For each face σ′ of σ, the natural orientation of σ induces an orientation of σ′ which we

term as the induced orientation.

We now formally define the boundary of a void as follows:

Definition 2.7.2 (Boundary of void). Let K be a simplicial complex embedded in Rq where

q ≥ 2, an oriented (q − 1)-simplex σ⃗q−1 = [v0, . . . , vq−1] of K is said to bound a void V of

Rq ∖ |K| if the following conditions are satisfied:

• The simplex σq−1 = {v0, . . . , vq−1} is contained in the closure of V.

• Let u be an interior point of σq−1 = {v0, . . . , vq−1}, v be a point in V such that the line

segment uv is contained in V and uv is orthogonal to the hyperplane spanned by σq−1.

Furthermore, let σ⃗q be the naturally oriented simplex of {v, v0, . . . , vq−1}. Then, σ⃗q−1

has the induced orientation from σ⃗q.

The boundary of a void V is then defined as the set of oriented (q − 1)-simplices of K

bounding V.

Remark 2.7.1. We can also interpret the boundary of a void as a sum of oriented (q − 1)-

simplices, then the boundary defines a (q − 1)-cycle (with Z coefficients).

We now describe the pairing algorithm of the oriented boundary p-simplices for K̃. From

now on, we denote the set of boundary p-simplices of K̃ as bd(K̃). Let σp−1 be a (p− 1)-

simplex which is a face of a p-simplex in bd(K̃), we first take a 2D plane ∆ which contains

an interior point of σp−1 and is orthogonal to the hyperplane spanned by σp−1. We then take

the intersection of the plane ∆ with each boundary p-simplex in the neighborhood of σp−1 to
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get a set of line segments that we order circularly starting from an arbitrary one. For each

two consecutive line segments in this order which enclose a void, we pick a point p on the

plane ∆ which resides in the void. Suppose that one of the two line segments is derived from

a boundary p-simplex σp0 = {v0, . . . , vp}. We take the (p+ 1)-simplex σp+1 = {p, v0, . . . , vp}

and the induced oriented simplex σ⃗p0 of σp0 derived from the naturally oriented simplex of

σp+1. For the other line segment, we similarly derive an induced oriented simplex σ⃗p1 and

pair the two oriented p-simplices σ⃗p0 and σ⃗p1. Figure  2.3b can be reused to exemplify the

pairing. The union of the shaded regions in the figure is the plane ∆ and a, b, c, and d

are the line segments derived from intersecting the plane with four boundary p-simplices.

Taking the circular order a, b, c, d, we see that the consecutive ones which enclose a void are

(a, b), (c, d), and (d, a). For (a, b), we can pick p as an interior point in the blue region and

the two oriented p-simplices corresponding to a and b can be induced and paired.

In summary, the steps of the VoidBoundary subroutine are the following:

1. For each (p− 1)-simplex σp−1 being a face of a p-simplex in bd(K̃), pair all oriented

boundary p-simplices in the neighborhood.

2. After gathering all the pairing, group the oriented boundary p-simplices by putting all

paired ones into a group.

3. Return (ζ⃗1, . . . , ζ⃗k), each of which is a group of the oriented boundary p-simplices.

The following theorem concludes the correctness of the reconstruction:

Theorem 2.7.1. Any ζ⃗j returned by VoidBoundary is the boundary of a void of Rp+1∖|K̃|.

We first define some symbols used for proving Theorem  2.7.1 . The interior of a set U is

denoted by Int(U). The boundary of a topological ball B is denoted by bd(B). The set of

q-cofaces of a simplex σ in a ∆-complex [ 2 ] K is denoted by cofKq (σ).

The proof of Theorem  2.7.1 is based on the extended Jordan–Brouwer separation theorem

(Theorem  2.7.2 ) by Alexander [ 49 ]. The statement of the theorem depends on the following

definition:

Definition 2.7.3 (Pseudomanifold). A simplicial complex K is a q-pseudomanifold if K is

a pure q-complex and each (q − 1)-simplex is a face of exactly two q-simplices in K.
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Remark 2.7.2. Note that definitions for q-pseudomanifolds, such as in [ 50 ], typically assume

the complex to be q-connected.

Theorem 2.7.2. Let q > 1 and M be a finite (q − 1)-connected (q − 1)-pseudomanifold

embedded in Rq, then Rq ∖ |M| has exactly 2 connected components.

Now we can finish our proof:

Proof of Theorem  2.7.1 . The general idea of the proof is as follows: Using a trick which we

call the “de-contracting”, we first create a ∆-complex K̃ ′ where each oriented simplex of

ζ⃗j uniquely corresponds to an unoriented simplex. Then, using a trick which we call the

“de-pinching”, we show that ζ⃗j is the boundary of a region A. Finally, from the above fact,

we use proof by contradiction to reach the conclusion. Figure  2.5b gives an example of the

“de-contracting” and “de-pinching”.

First, let Σ′ be the set of p-simplices of K̃ whose both oriented simplices are in ζ⃗j. For

a p-simplex σp of Σ′, we can let B′ be a topological (p+ 1)-ball residing in Rp+1 such that

bd(B′) equals two p-simplices with boundaries glued together. We then homeomorphically

map points of Rp+1 ∖ σp to Rp+1 ∖ B′. By taking care of the mapping near the boundary

of B′, we can get a new ambient Rp+1 and a new ∆-complex where all simplices of K̃ are

untouched except that σp now corresponds to the two p-simplices bounding B′. We can also

think of the above process as “de-contracting” the topological p-ball σp into the topological

(p+ 1)-ball B′ so that σp turns into two separate p-simplices with identical (p− 1)-faces (see

Figure  2.5a for an example). After doing the “de-contraction” for all p-simplices in Σ′, we

get a ∆-complex K̃ ′. It is true that an oriented boundary p-simplex in K̃ can be naturally

identified as an oriented boundary p-simplex in K̃ ′. It is also true that the groups of oriented

boundary p-simplices in K̃ are still groups of oriented boundary p-simplices in K̃ ′ under the

natural identification. So we can let ζ⃗j denote the same group of oriented p-simplices in K̃ ′.

The construction guarantees that if ζ⃗j is the boundary of a void of Rp+1 ∖ |K̃ ′|, then ζ⃗j is

also the boundary of a void of Rp+1 ∖ |K̃|. So we only need to show that ζ⃗j is the boundary

of a void of Rp+1 ∖ |K̃ ′| (see Figure  2.5b for an example). From now on, we always treat ζ⃗j

as a set of oriented p-simplices as well as a p-cycle (with Z coefficients) in K̃ ′.
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(a) (b)

Figure 2.5. (a) An example of the “de-contraction” of σp for p = 1, where
a 1-simplex in the left simplicial complex turns into two curved 1-simplices
with identical boundary in the right ∆-complex. The topological 2-ball B′

is the one bounded by the two curved 1-simplices. (b) Left to middle: An
example demonstrating the void boundary correspondence from K̃ to K̃ ′ for
p = 1. After a 1-simplex is de-contracted, the shaded void for K̃ corresponds
to the shaded void for K̃ ′ and their boundaries (dashed line) can be identified.
Middle to right: The “de-pinching” properly separates apart incident edges
(1-simplices) for the two vertices (0-simplices) having more than two 1-cofaces.
The complex Mh (on the right) then becomes a pseudomanifold. Te deform
Mh back toM (in this exampleM = K̃ ′), only points in B (unshaded region)
are contracted.

Since different oriented simplices of ζ⃗j correspond to different unoriented simplices in K̃ ′,

we define a bijection ψ : ζ⃗j → ζ. The bijection ψ maps each oriented simplex of ζ⃗j to its

corresponding unoriented simplex and ζ is the image of this mapping. We then let M be

the closure of the simplicial set ζ. Note that ζ is a p-cycle (with Z2 coefficients) of K̃ ′ and

M is a subcomplex of K̃ ′. Therefore, each (p − 1)-simplex is a face of an even number of

p-simplices inM. We first pick a (p−1)-simplex σp−1 ofM such that
∣∣∣cofM

p (σp−1)
∣∣∣ > 2, then

pick two p-simplices σp0 and σp1 from cofM
p (σp−1) such that ψ−1(σp0) and ψ−1(σp1) are paired

in the void boundary reconstruction for K̃ ′. It is then true that σp0 ∪ σp1 forms a topological

p-ball Bp1 containing σp−1. Forming the topological p-balls for all such pairs of p-simplices

in cofM
p (σp−1), we get a set of p-balls {Bp1, . . . ,Bpκ} for κ =

∣∣∣cofM
p (σp−1)

∣∣∣/2. For each i,

we slightly move Bpi ∖ Int(σp−1) while keeping bd(Bpi ) untouched. We then take the closure

of each Bpi ∖ Int(σp−1) to get a new ∆-complex M1 in which the Bpi ’s have their interiors

disjoint. Note that inM1, σp−1 now corresponds to κ different (p− 1)-simplices sharing the

boundary. We can repeat the above “de-pinching” process for each (p − 1)-simplex having

more than two p-cofaces inM and then get a sequence of ∆-complexes (M0,M1, . . . ,Mh).
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In the sequence, M0 = M and Mi is derived from Mi−1 by doing the “de-pinching” on a

(p − 1)-simplex. It is then true that Mh is a pure p-dimensional p-connected ∆-complex

where each (p−1)-simplex is a face of exactly two p-simplices. Since we can subdivideMh to

make it a simplicial complex, by Theorem  2.7.2 , |Mh| must separate Rp+1 into two connected

components. Note that for each i, we can treat Rp+1 ∖ |Mi| as a subset of Rp+1 ∖ |Mi+1|

because to deformMi+1 back toMi, we only need to contract some points in Rp+1 ∖ |Mi+1|

to points in |Mi+1|. Then the connected components of Rp+1 ∖ |M| are still connected in

Rp+1∖|Mh|. Since all oriented p-simplices of ζ⃗j bound the same void of Rp+1∖|K̃ ′|, we can let

this void be V . The void V is still connected in Rp+1∖|M| because Rp+1∖|K̃ ′| ⊆ Rp+1∖|M|.

Therefore, V is still connected in Rp+1 ∖ |Mh|. We can let A be the connected component

of Rp+1 ∖ |Mh| containing V and let B be the other connected component. The p-simplices

in M and Mh can be identified because going from each Mi to Mi+1 the interior of each

p-simplex is never touched. Therefore, ζ is still a p-cycle (with Z2 coefficients) in Mh. We

then have that the two p-cycles (with Z coefficients) inMh, which are derived from the two

consistent orientations of simplices of ζ, bound A and B. Then, as one of the two p-cycles

(with Z coefficients) derived from ζ, ζ⃗j must be the boundary of A or B in Mh. We have

that ζ⃗j bounds A because B does not contain points from V . A fact about our construction is

that to deform eachMi back intoMi−1, we only need to contract points in B. This implies

that A is still a void of Rp+1 ∖ |M| with boundary ζ⃗j (see Figure  2.5b for an example).

To prove that ζ⃗j is the boundary of a void of Rp+1 ∖ |K̃ ′|, we only need to show that

there are no oriented p-simplices which are in the boundary of V but do not belong to

ζ⃗j. For contradiction, suppose that there is such an oriented p-simplex σ⃗p. Then σ⃗p must

not be oppositely oriented to any oriented simplex of ζ⃗j because otherwise σ⃗p would bound

another connected component of Rp+1 ∖ |M| and thus bound another connected component

of Rp+1 ∖ |K̃ ′|. Let σp be the unoriented p-simplex of σ⃗p, then σp ̸∈ M because otherwise

σ⃗p would be oppositely oriented to an oriented simplex of ζ⃗j. Since σp ̸∈ M, the interior of

σp must reside in Rp+1 ∖ |M|. From now on, we always treat A as a void of Rp+1 ∖ |M|.

Then among all voids of Rp+1 ∖ |M|, the interior of σp resides in A. This is because A is the

void of Rp+1 ∖ |M| containing V . If σp resides in a void other than A, points to either side

of σp cannot be from V . Since K̃ ′ is p-connected, there must be a sequence of p-simplices
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(σp0, . . . , σpl ) of K̃ ′ such that σp0 = σp, σpl ∈M, and σpi , σpi+1 share a (p−1)-face for each i such

that 0 ≤ i < l. Because the interior of σpl is not in A, we can let σpl′ be the first p-simplex in

the sequence whose interior is not in A, then l′ ̸= 0 and the interior of σpl′−1 is in A. Let σp−1
l′−1

be the (p− 1)-face shared by σpl′−1 and σpl′ , we claim that σp−1
l′−1 ∈ M. If σpl′ ∈ M, then it is

obvious that σp−1
l′−1 ∈ M. If σpl′ ̸∈ M, then it is also true that σp−1

l′−1 ∈ M because otherwise

the interiors of σpl′−1 and σpl′ would be connected in Rp+1 ∖ |M|. Around the neighborhood

of σp−1
l′−1 during the void boundary reconstruction for K̃ ′, any two paired oriented simplices

from ζ⃗j enclose a region residing in A. Because of the nature of the pairing, σpl′−1 cannot be

contained in any of the regions enclosed by the paired oriented simplices from ζ⃗j. Since ζ⃗j

is the boundary of the void A of Rp+1 ∖ |M|, all other regions in the neighborhood of σp−1
l′−1

must not be in A. This implies that σpl′−1 is not in A, which is a contradiction.

2.7.2 Algorithm correctness

To prove the correctness of Algorithm  2.7.1 , we need two conclusions about cycles with

Z2 coefficients. Specifically, Proposition  2.7.1 says that an embedded (q − 1)-cycle in Rq

separates the space and hence the two oriented simplices of a (q − 1)-simplex in the cycle

bound different voids. Proposition  2.7.2 says that a q-simplex in a q-cycle belongs to a

q-connected sub-cycle of the q-cycle.

Proposition 2.7.1. Let q ≥ 2, ζ be a (q − 1)-cycle (with Z2 coefficients) of a simplicial

complex embedded in Rq, and Z be the closure of the simplicial set ζ. Then for any (q − 1)-

simplex σ of ζ, the two oriented simplices of σ must bound different voids of Rq ∖ |Z|.

Proof. Consider a closed topological q-ball B such that σ ⊆ B and B ∩ |Z ∖ σ| equals the

boundary of σ. Let B1 and B2 be the two open half balls of B separated by σ. Then it is

true that the two oriented simplices of σ bound different voids of Rq ∖ |Z| if and only if B1

and B2 are not connected in Rq ∖ |Z|. So we only need to show that B1 and B2 are not

connected in Rq∖ |Z|. Consider a filtration of Z where σ is the last simplex added. Because

σ is a positive simplex in the filtration, by adding σ, the dimension of Hq−1 must increase

by 1. By Alexander duality, the dimension of H0 of the complement space also increases by

1. Then B1 and B2 cannot be connected in Rq ∖ |Z|.
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Proposition 2.7.2. Let ζ be a q-cycle (with Z2 coefficients) of a simplicial complex where

q > 0, then for any q-simplex σ of ζ, there must be a q-cycle ζ ′ (with Z2 coefficients)

containing σ such that ζ ′ ⊆ ζ and ζ ′ is q-connected.

Proof. We can construct an undirected graph L for ζ, with vertices of L corresponding to

the q-simplices in ζ. For each (q − 1)-simplex σq−1 which is a face of a q-simplex of ζ, let

N be the set of q-simplices in ζ having σq−1 as a face, then |N | must be even. We can pair

q-simplices of N arbitrarily, and make each pair of q-simplices form an edge in L. Let C be

the connected component of L containing the corresponding vertex of σ and ζ ′ be the q-chain

corresponding to C, then ζ ′ must be a cycle. This is because we can pair the (q − 1)-faces

of all q-simplices in ζ ′ according to the edges in L, so ∂(ζ ′) = 0. Furthermore, ζ ′ contains σ,

ζ ′ ⊆ ζ, and ζ ′ is q-connected.

Throughout the rest of this subsection, some of the symbols we use refer to Algo-

rithm  2.7.1 . We endow the ambient space Rp+1 with a “cellular complex” structure by

treating voids of Rp+1 ∖ |K̃| as (p+ 1)-dimensional “cells”. This cellular complex of Rp+1 is

denoted as Rp+1 and Rp+1 = K̃ ∪{voids of Rp+1 ∖ |K̃|}. For Rp+1, most terminologies from

algebraic topology for simplicial complexes are inherited with the exception that (p+ 1)-

dimensional elements of Rp+1 are called (p+ 1)-cells. Then, we can also let θ denote the

bijection from (p+ 1)-cells of Rp+1 to V (G). To derive ∂(V) for a void V of Rp+1 ∖ |K̃|,

we map oriented p-simplices in the boundary of V (Definition  2.7.2 ) to their corresponding

unoriented p-simplices. Then ∂(V) is defined as the sum (with Z2 coefficients) of these unori-

ented p-simplices. It is not hard to see that ∂(V) is a p-cycle (with Z2 coefficients) because

each void boundary is a p-cycle (with Z coefficients).

Proposition 2.7.3. For any cut (S, T ) of (G, s1, s2), the p-chain ζ = θ−1(ξ(S, T )) is a

persistent p-cycle for [b,+∞) and w(ζ) = c(S, T ).

Proof. We have three things to show: (i) ζ contains σF
b ; (ii) w(ζ) = c(S, T ); (iii) ζ is a

cycle. Claim (i) and (ii) are not hard to verify and we prove claim (iii) by showing that

ζ = ∑
α∈θ−1(S) ∂(α), so that as a sum of cycles, ζ is a cycle. The detail for the equality of

the two chains is omitted as it is similar to the one in the proof of Proposition  2.6.2 .
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Proposition 2.7.4. For any persistent p-cycle ζ for [b,+∞), there exists a cut (S, T ) of

(G, s1, s2) such that c(S, T ) ≤ w(ζ).

Proof. Because of the nature of the pruning, ζ must reside in K ′
b. By Proposition  2.7.2 ,

there must be a p-cycle ζ ′ ⊆ ζ such that ζ ′ is p-connected and contains σF
b . Hence, ζ ′

resides in K̃. Let Z ′ be the closure of the simplicial set ζ ′, we can run the void boundary

reconstruction algorithm of Section  2.7.1 on Z ′ and take a void boundary ζ⃗ containing an

oriented simplex σ⃗F
b of σF

b . We can map each oriented simplex of ζ⃗ to its unoriented simplex

and let ζ0 be the sum of these unoriented simplices, then ζ0 is a p-cycle (with Z2 coefficients)

and ζ0 ⊆ ζ ′. By Proposition  2.7.1 , the oppositely oriented simplex of σ⃗F
b must not be in ζ⃗,

so ζ0 contains σF
b . Let ζ⃗ bound a void V of Rp+1 ∖ |Z ′|, we can let A be the (p+ 1)-chain of

Rp+1 consisting of all the (p+ 1)-cells residing in V and let B be the (p+ 1)-chain consisting

of all the other (p+ 1)-cells, then ∂(A) = ∂(B) = ζ0. Let v1, v2 be the two end vertices of

θ(σF
b ). Because the oppositely oriented simplex of σ⃗F

b does not bound V in Z ′, it must be

true that one of v1, v2 is in θ(A) and the other is in θ(B). We can let (S, T ) = (θ(A), θ(B)) or

(θ(B), θ(A)) based on which set contains the source of the flow network, then (S, T ) is a cut

of the flow network constructed in Algorithm  2.7.1 . Furthermore, we have ζ0 = θ−1(ξ(S, T ))

and c(S, T ) = w(ζ0) ≤ w(ζ).

The following theorem concludes the correctness of Algorithm  2.7.1 :

Theorem 2.7.3. Algorithm  2.7.1 computes a minimum persistent p-cycle for the given in-

terval [b,+∞).

Proof. First, the flow network (G, s1, s2) constructed by Algorithm  2.7.1 is valid. The rea-

son is that, by Proposition  2.7.1 , it cannot happen that the two oriented simplices of σF
b

bound the same void of Rp+1 ∖ |K̃|. So σF
b must correspond to an edge of G. Then by

Proposition  2.7.3 and  2.7.4 , we can reach the conclusion.

56



3. OPTIMAL SEQUENCES OF REPRESENTATIVES FOR

LEVELSET ZIGZAG PERSISTENCE

In Chapter  2 , we propose persistent cycles as concrete representatives for standard (i.e.,

non-zigzag) persistent homology, which also enable one to navigate back to the topological

space from a barcode. We also discuss the computation of optimal persistent cycles, which

are of special interest due to having guaranteed quality. However, one drawback of standard

persistent cycles is that only a single cycle born at the start is used, while homological features

may vary continuously inside an interval. For example, in Figure  3.1 , let the growing space

be the sub-levelset filtration of a function f , in which α1, . . . , α4 are consecutive critical

values and s0, . . . , s3 are regular values in between. If we consider the changes of homology

after each critical point, then a non-trivial 1-cycle z1 is first born in f−1(−∞, α1] and splits

into two in f−1(−∞, s2]. The two separate cycles eventually shrink and die independently,

generating a (standard) persistence interval [α1, α4). Using standard persistent cycles, only

z1 would be picked as a representative for [α1, α4), which fails to depict the subsequent

behaviors.

z1
z2 z2

z3 z3
z4 z4

f−1(−∞, s0] f−1(−∞,α1] f−1(−∞, s1] f−1(−∞,α2]

f−1(−∞, s2] f−1(−∞,α3] f−1(−∞, s3] f−1(−∞,α4]

Figure 3.1. Evolution of a homological feature across different critical points.

In this chapter, we propose alternative persistent cycles capturing the dynamic behavior

shown in Figure  3.1 . We focus on a special but important type of persistent homology –

those generated by piecewise linear (PL) functions [ 1 ]. We also base our definition on an
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extension of standard persistence called the levelset zigzag persistence [ 27 ], which tracks the

survival of homological features at and in between the critical points. Given a persistence

interval from levelset zigzag, we define a sequence of cycles called levelset persistent cycles

so that there is a cycle between each consecutive critical points within the interval. For

example, in Figure  3.1 , [α1, α4) is also a persistence interval (i.e., a closed-open interval)

in the levelset zigzag of f . The cycles z1, z2, z3, z4 forming a sequence of levelset persistent

1-cycles for [α1, α4) capture all the variations across the critical points. Section  3.2 details

the definition.

Levelset zigzag on a PL function relates to the standard sub-levelset version in the follow-

ing way: finite intervals from the standard version on the original function and its negation

produce closed-open and open-closed intervals in levelset zigzag, while levelset zigzag addi-

tionally provides closed-closed and open-open intervals [ 27 ]. Thus, levelset persistent cycles

are oriented toward richer types of intervals (see also extended persistence [  28 ]).

Computationally, optimal cycle problems for homology in both persistence and non-

persistence settings are NP-hard in general (see Chapter  2 ). Other than the optimal homol-

ogy basis algorithms in dimension one [ 19 ], [ 51 ], [ 52 ], to our knowledge, all polynomial-time

algorithms for such problems aim at manifold-like complexes [ 17 ], [ 18 ], [ 33 ], [ 36 ], [ 53 ]. In

particular, the existing algorithms for general dimensions (see Chapter  2 and [  18 ]) exploit

the dual graph structure of given complexes and reduce the optimal cycle problem in codi-

mension one to a minimum cut problem. In this chapter, we find a way of applying this

technique to computing an optimal sequence of levelset persistent cycles – one that has the

minimum sum of weight. Our approach which also works for general dimensions differs from

algorithms proposed in Chapter  2 to account for the fact that a sequence of optimal cycles

instead of a single one need to be computed.

As in Chapter  2 , we also assume the input to be weak (p + 1)-pseudomanifold (Defini-

tion  2.2.1 ). Given an arbitrary PL function on a weak (p + 1)-pseudomanifold (p ≥ 1), we

show that an optimal sequence of levelset persistent p-cycles can be computed in polynomial

time for any type of levelset zigzag interval of dimension p. This is in contrast to the standard

persistence setting described in Chapter  2 , where computing optimal persistent p-cycles for

one type of intervals (the infinite intervals) is NP-hard even for weak (p+1)-pseudomanifolds.
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Note that among the four mentioned types of intervals in levelset zigzag, closed-open and

open-closed intervals are symmetric so that everything concerning open-closed intervals can

be derived directly from the closed-open case. Hence, for these two types of intervals, we

address everything only for the closed-open case.

We propose three algorithms for the three types of intervals by utilizing minimum (s, t)-

cuts on the dual graphs. Specifically, levelset persistent p-cycles for an open-open interval

have direct correspondence to (s, t)-cuts on a dual graph, and so the optimal ones can be

computed directly from the minimum (s, t)-cut. For the remaining cases, the crux is to

deal with monkey saddles and the computation spans two phases. The first phase computes

minimum p-cycles in certain components of the complex; then, using minimum cuts, the

second phase determines the optimal combination of the components by introducing some

augmenting edges.

3.1 Preliminaries

Zigzag modules, barcodes, and filtrations.

A zigzag module [ 7 ] (or module for short) is a sequence of vector spaces

M : V0 ↔ V1 ↔ · · · ↔ Vm

in which each Vi ↔ Vi+1 is a linear map and is either forward, i.e., Vi → Vi+1, or backward,

i.e., Vi ← Vi+1. In this chapter, vector spaces are taken over Z2. A module S : W0 ↔

W1 ↔ · · · ↔ Wm is called a submodule of M if each Wi is a subspace of Vi and each map

Wi ↔ Wi+1 is the restriction of Vi ↔ Vi+1. For an interval [b, d] ⊆ [0,m], S is called an

interval submodule of M over [b, d] if Wi is one-dimensional for i ∈ [b, d] and is trivial for

i ̸∈ [b, d], and Wi ↔ Wi+1 is an isomorphism for i ∈ [b, d−1]. By the Krull-Schmidt principle

and Gabriel’s theorem [ 7 ],M admits an interval decomposition,M = ⊕
k∈Λ I [bk,dk], in which

each I [bk,dk] is an interval submodule of M over [bk, dk]. We call the (multi-)set of intervals

{[bk, dk] | k ∈ Λ} as the zigzag barcode (or barcode for short) ofM, and denote it as Pers(M).

Each interval in a zigzag barcode is called a persistence interval.
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A zigzag filtration (or filtration for short) is a sequence of simplicial complexes or general

topological spaces

X : X0 ↔ X1 ↔ · · · ↔ Xm

in which each Xi ↔ Xi+1 is either a forward inclusion Xi ↪→ Xi+1 or a backward inclusion

Xi ←↩ Xi+1. If not mentioned otherwise, a zigzag filtration is always assumed to be a sequence

of simplicial complexes. Applying the p-th homology functor with Z2 coefficients, the p-th

zigzag module of X is induced:

Hp(X ) : Hp(X0)↔ Hp(X1)↔ · · · ↔ Hp(Xm)

in which each Hp(Xi) ↔ Hp(Xi+1) is the linear map induced by inclusion. The barcode of

Hp(X ) is also called the p-th zigzag barcode of X and is alternatively denoted as Persp(X ),

where each interval in Persp(X ) is called a p-th persistence interval. For an interval [b, d] ∈

Persp(X ), we also conveniently denote the interval as [Xb, Xd] ∈ Persp(X ), i.e., by its starting

and ending spaces. This is specially helpful when a filtration is not naturally indexed by

consecutive integers, as can be seen in Section  3.2 . In this case, an element Xi ∈ [Xb, Xd] is

just a space in X with b ≤ i ≤ d.

A special type of filtration called simplex-wise filtration is frequently used in this chapter,

in which each forward (resp. backward) inclusion is an addition (resp. deletion) of a single

simplex. Any p-th zigzag module induced by a simplex-wise filtration has the property of

being elementary, meaning that all linear maps in the module are of the three forms: (i)

an isomorphism; (ii) an injection with rank 1 cokernel; (iii) a surjection with rank 1 kernel.

This property is useful for the definitions and computations.

Graphs and (s, t)-cuts.

Given a graph G = (V (G), E(G)) and a weight function w : E(G)→ [0,∞], a cut (S, T )

of G consists of two sets such that S ∩ T = ∅ and S ∪ T = V (G). We define E(S, T ) as the

set of all edges of G connecting a vertex in S and a vertex in T , in which each edge is said to

cross the cut. The weight of the cut is defined as w(S, T ) = ∑
e∈E(S,T ) w(e). Let s and t be
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two disjoint non-empty subsets of V (G); the tuple (G, s, t) is called a weighted (s, t)-graph,

where s is the set of sources and t is the set of sinks. An (s, t)-cut (S, T ) of (G, s, t) is a cut

of G such that s⊆ S and t⊆ T . The minimum (s, t)-cut of (G, s, t) is an (s, t)-cut with the

minimum weight.

Dual graphs for manifolds.

A manifold-like complex (e.g., a weak pseudomanifold) often has an undirected dual

graph structure, which is utilized extensively in this chapter. Let the complex be (p + 1)-

dimensional. Then, each (p + 1)-simplex is dual to a vertex and each p-simplex is dual to

an edge in the dual graph. For a p-simplex with two (p+ 1)-cofaces τ1 and τ2, its dual edge

connects the vertex dual to τ1 and the vertex dual to τ2. For a p-simplex of other cases, its

dual edge is problem-specific and is explained in the corresponding paragraphs.

3.2 Problem statement

In this section, we develop the definitions for levelset persistent cycles and the optimal

ones. Levelset persistent cycles are sometimes simply called persistent cycles for brevity, and

this should cause no confusion. We begin the section by defining levelset zigzag persistence

in Section  3.2.1 , where we present an alternative version of the classical one proposed by

Carlsson et al. [ 27 ]. Adopting this alternative version enables us to focus on critical values

(and the changes incurred) in a specific dimension. Section  3.2.1 also defines a simplex-wise

levelset filtration, which provides an elementary view of levelset zigzag and is helpful to our

definition and computation.

Section  3.2.2 details the definition of levelset persistent cycles. The cycles in the middle

of the sequence are the same for all types of intervals, while the cycles for the endpoints

differ according to the types of ends.

Finally, in Section  3.2.3 , we address an issue left over from Section  3.2.1 , which is the

validity of the discrete levelset filtration. The validity is found to be relying on the triangu-

lation representing the underlying shape. We also argue that the triangulation has to be fine
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enough in order to obtain accurate depictions of persistence intervals by levelset persistent

cycles.

3.2.1 p-th levelset zigzag persistence

Throughout the section, let p ≥ 1, K be a finite simplicial complex with underlying space

X = |K|, and f : X → R be a PL function [ 1 ] derived by interpolating values on vertices. We

consider PL functions that are generic, i.e., having distinct values on the vertices. Note that

the function values can be slightly perturbed to satisfy this if they are not initially. An open

interval I ⊆ R is called regular if there exist a topological space Y and a homeomorphism

Φ : Y × I → f−1(I)

such that f ◦Φ is the projection onto I and Φ extends to a continuous function Φ : Y × I →

f−1
(
I

)
with I being the closure of I [ 27 ]. It is known that f is of Morse type [ 27 ], meaning

that each levelset f−1(s) has finitely generated homology, and there are finitely many critical

values

α0 = −∞ < α1 < · · · < αn < αn+1 =∞

such that each interval (αi, αi+1) is regular. Note that critical values of f can only be function

values of K’s vertices.

f−1(si−1) f−1(αi) f−1(si)

Figure 3.2. A critical value αi across which the 2nd homology stays the
same; f is defined on a 3D domain and si−1, si are two regular values with
si−1 < αi < si. The levelset f−1(si−1) is a 2-sphere where two antipodal points
are getting close and eventually pinch in f−1(αi). Crossing the critical value,
f−1(si) becomes a torus.

As mentioned, levelset persistent cycles for a p-th interval should capture the changes of

p-th homology across different critical values. However, some critical values may cause no
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change to the p-th homology. Figure  3.2 illustrates such a critical value for p = 2 around

which only the 1st homology changes and the 2nd homology stays the same. Thus, to capture

the most essential variation, the persistent p-cycles should stay the same across such critical

values. The following definition characterizes those critical values that we are interested in:

Definition 3.2.1 (p-th homologically critical value). A critical value αi ̸= −∞,∞ of f is

called a p-th homologically critical value (or p-th critical value for short) if one of the two

linear maps induced by inclusion is not an isomorphism:


Hp

(
f−1(αi−1, αi)

)
→ Hp

(
f−1(αi−1, αi+1)

)
Hp

(
f−1(αi−1, αi+1)

)
← Hp

(
f−1(αi, αi+1)

)

For convenience, we also let −∞,∞ be p-th critical values. Moreover, a vertex v of K is a

p-th critical vertex if f(v) is a p-th critical value.

Remark 3.2.1. By inspecting the (classical) levelset barcode [ 27 ] of f (also see Section  3.4.1 ),

it can be easily determined whether a critical value is p-th critical.

Throughout this section, we let

αp0 = −∞ < αp1 < · · · < αpm < αpm+1 =∞

denote all the p-th homologically critical values of f , and vp1, . . . , vpm denote the corresponding

p-th critical vertices.

Definition 3.2.2 (p-th levelset zigzag). Denote f−1(αpi , αpj ) as Xp
(i,j) for any i < j. The

continuous version of p-th levelset filtration of f , denoted Lc
p(f), is defined as

Lc
p(f) : Xp

(0,1) ↪→ Xp
(0,2) ←↩ X

p
(1,2) ↪→ Xp

(1,3) ←↩ · · · ↪→ Xp
(m−1,m+1) ←↩ X

p
(m,m+1)

The barcode Persp(Lc
p(f)) is called the p-th levelset barcode of f , in which each interval is

called a p-th levelset persistence interval of f .

Remark 3.2.2. See Figure  3.3 for an example of Lc
1(f) and its 1st levelset barcode.
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α
1

2
α
1

3
α
1

4
α
1

1
X

1
(0,2) X

1
(1,2) X

1
(1,3) X

1
(2,3)

: · · ·

Figure 3.3. A torus with the height function f taken over the horizontal
line. The 1st levelset barcode is

{(
α1

1, α
1
4

)
,
[
α1

2, α
1
3

]}
. We list the first half of

Lc
1(f) but excluding X1

(0,1) = ∅; the remaining half is symmetric. An empty
dot indicates the point is not included in the space.

In Lc
p(f), Xp

(i,i+1) is called a p-th regular subspace, and a homological feature in Hp(Xp
(i,i+1))

is alive in the entire real-value interval
(
αpi , α

p
i+1

)
; Xp

(i−1,i+1) is called a p-th critical subspace,

and a homological feature in Hp(Xp
(i−1,i+1)) is alive at the critical value αpi . Intervals in

Persp(Lc
p(f)) can then be mapped to real-value intervals in which the homological features

persist, and are classified into four types based on the open and closeness of the ends; see

Table  3.1 . From now on, levelset persistence intervals can be of the two forms shown in

Table  3.1 , which we consider as interchangeable. We postpone the justification of Defini-

tion  3.2.2 to Section  3.4 , where we prove that the p-th levelset barcode in Definition  3.2.2 is

equivalent to the classical one defined in [ 27 ].

Table 3.1. Four types of intervals in Persp(Lc
p(f)) and their mapping to real-

value intervals.

closed-open:
[
Xp

(b−1,b+1),X
p
(d−1,d)

]
⇔

[
αpb , α

p
d

)
open-closed:

[
Xp

(b,b+1),X
p
(d−1,d+1)

]
⇔

(
αpb , α

p
d

]
closed-closed:

[
Xp

(b−1,b+1),X
p
(d−1,d+1)

]
⇔

[
αpb , α

p
d

]
open-open:

[
Xp

(b,b+1),X
p
(d−1,d)

]
⇔

(
αpb , α

p
d

)
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Discrete version.

Since the optimal persistent cycles can only be computed on the discrete domain K, we

provide a discrete version of our construction. First, let the subcomplex Kp
(i,j) of K denote

the discrete version of Xp
(i,j):

Kp
(i,j) :=

{
σ ∈ K | ∀ v ∈ σ, f(v) ∈

(
αpi , α

p
j

)}
(3.1)

We also define Kp
[i,j) and Kp

(i,j] similarly, in which f(v) in Equation ( 3.1 ) belongs to
[
αpi , α

p
j

)
and

(
αpi , α

p
j

]
respectively. Then, the discrete version of Lc

p(f), denoted Lp(f), is defined as

Lp(f) : Kp
(0,1) ↪→ Kp

(0,2) ←↩ K
p
(1,2) ↪→ Kp

(1,3) ←↩ · · · ↪→ Kp
(m−1,m+1) ←↩ K

p
(m,m+1)

In Lp(f), Kp
(i,i+1) is called a p-th regular complex and Kp

(i−1,i+1) is called a p-th critical complex.

At this moment, we assume that Xp
(i,j) deformation retracts to Kp

(i,j) whenever i < j, and hence

Lc
p(f) and Lp(f) are equivalent. We discuss this assumption in detail in Section  3.2.3 .

Simplex-wise levelset filtration.

For defining and computing levelset persistent cycles, besides the filtration Lp(f), we also

work on a simplex-wise version expanding Lp(f). We do this to harness the property that a

simplex-wise filtration induces an elementary p-th module, which eliminates ambiguities in

our definitions and computations.

Definition 3.2.3 (Simplex-wise levelset filtration). For the PL function f , the p-th simplex-

wise levelset filtration of f , denoted Fp(f), is derived from Lp(f) by expanding each forward

(resp. backward) inclusion in Lp(f) into a sequence of additions (resp. deletions) of a single

simplex. We also let the additions and deletions follow the order of the function values:

• For the forward inclusion Kp
(i,i+1) ↪→ Kp

(i,i+2) in Lp(f), let u1 = vpi+1, u2, . . . , uk be all

the vertices with function values in
[
αpi+1, α

p
i+2

)
such that f(u1) < f(u2) < · · · < f(uk).

Then, the lower stars [ 1 ] of u1, . . . , uk are added by Fp(f) following the order.
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• Symmetrically, for the backward inclusion Kp
(i,i+2) ←↩ K

p
(i+1,i+2) in Lp(f), let u1, u2, . . . , uk =

vpi+1 be all the vertices with function values in
(
αpi , α

p
i+1

]
such that f(u1) < f(u2) <

· · · < f(uk). Then, the upper stars of u1, . . . , uk are deleted by Fp(f) following the

order.

Note that for each uj ∈ {u1, . . . , uk}, we add (resp. delete) simplices inside the lower (resp.

upper) star of uj in any order maintaining the condition of a filtration.

In this chapter, we always assume a fixed Fp(f) derived from Lp(f). It is always of the

form

Fp(f) : K0 ↔ K1 ↔ · · · ↔ Kr

where each Ki, Ki+1 differ by a simplex denoted σi and each linear map is denoted as

φi : Hp(Ki) ↔ Hp(Ki+1). Note that each complex in Lp(f) equals a Kj in Fp(f), and

specifically, K0 = Kp
(0,1), Kr = Kp

(m,m+1).

Simplex-wise intervals.

The property of zigzag persistence indicates that any interval J in Persp(Lp(f)) can be

considered as produced by an interval J ′ in Persp(Fp(f)), and we call J ′ the simplex-wise

interval of J . The mapping of intervals of Persp(Fp(f)) to those of Persp(Lp(f)) has the

following rule:

For any [Kβ, Kδ] ∈ Persp(Fp(f)), let F [β,δ] : Kβ ↔ Kβ+1 ↔ · · · ↔ Kδ be the part of

Fp(f) between Kβ and Kδ, and let Kp
(b,b′) and Kp

(d,d′) respectively be the first and last complex

from Lp(f) which appear in F [β,δ]. Then, [Kβ, Kδ] produces an interval
[
Kp

(b,b′),K
p
(d,d′)

]
for

Persp(Lp(f)). However, if F [β,δ] contains no complexes from Lp(f), then [Kβ, Kδ] does not

produce any levelset persistence interval; such an interval in Persp(Fp(f)) is called trivial.

As can be seen later, any levelset persistent cycles in this chapter are defined on both a

levelset persistence interval and its simplex-wise interval. We further note that persistent

cycles for trivial intervals in Persp(Fp(f)) are exactly the same as standard persistent cycles,

and we refer to [ 53 ] for their definition and computation.
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3.2.2 Definition of levelset persistent cycles

Consider a levelset persistence interval in Persp(Lp(f)) with endpoints αpb , α
p
d produced

by a simplex-wise interval [Kβ, Kδ] ∈ Persp(Fp(f)). The levelset persistence interval can also

be denoted as
[
Kp

(b′,b+1),K
p
(d−1,d′)

]
, where b′ = b or b− 1, and d′ = d or d+ 1 (see Table  3.1 ).

A sequence of levelset persistent cycles should achieve the following for the goal:

1. Reflect the changes of homological features across all p-th critical values between αpb

and αpd.

2. Capture the critical events at the birth and death points.

For the first requirement, we add to the sequence the following p-cycles:

zi ⊆ Kp
(i,i+1) for each b ≤ i < d

because Kp
(i,i+1) is the complex between αpi and αpi+1. This is the same for all types of intervals.

However, for the second requirement, we have to separately address the differently types of

ends, and there are the following cases:

Open birth: The starting complex of the levelset persistence interval is Kp
(b,b+1). We require

the corresponding p-cycle zb in Kp
(b,b+1) to become a boundary when included back into

Kp
(b−1,b+1), so that it represents a new-born class in Hp(Kp

(b,b+1)). In Fp(f), the inclusion

is further expanded as follows, where the birth happens at Kβ−1 ←↩ Kβ:

Kp
(b−1,b+1) ←↩ · · · ←↩ Kβ−1 ←↩ Kβ ←↩ · · · ←↩ Kp

(b,b+1)

We also consider zb as a p-cycle in Kβ because Kp
(b,b+1) ⊆ Kβ; then, in Fp(f), [zb] ∈

Hp(Kβ) should be the non-zero class in the kernel of φβ−1 : Hp(Kβ−1) ← Hp(Kβ) in

order to the capture the birth event.

Open death: Symmetrically to open birth, the corresponding p-cycle zd−1 in the ending

complex Kp
(d−1,d) should become a boundary (i.e., die) entering into Kp

(d−1,d+1). The
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inclusion is further expanded as follows in the simplex-wise filtration, where the death

happens at Kδ ↪→ Kδ+1:

Kp
(d−1,d) ↪→ · · · ↪→ Kδ ↪→ Kδ+1 ↪→ · · · ↪→ Kp

(d−1,d+1)

To capture the death event, [zd−1] ∈ Hp(Kδ) should be the non-zero class in the kernel

of φδ, where we also consider zd−1 as a p-cycle in Kδ.

Closed birth: The starting complex of the levelset persistence interval is Kp
(b−1,b+1), and the

birth event happens when Kp
(b−1,b) is included into Kp

(b−1,b+1). The inclusion is further

expanded as follows:

Kp
(b−1,b) ↪→ · · · ↪→ Kβ−1 ↪→ Kβ ↪→ · · · ↪→ Kp

(b−1,b+1)

In the simplex-wise filtration, the birth happens at the inclusion Kβ−1 ↪→ Kβ. Since no

zi ⊆ Kp
(i,i+1) for b ≤ i < d can be considered as a p-cycle in Kβ (see Proposition  3.2.1 ),

we add to the sequence a new-born p-cycle zb−1 in Kβ to capture the birth, which is

equivalent to saying that zb−1 contains the simplex σβ−1 (note that σβ−1 is a p-simplex;

see [  27 ]).

Closed death: Symmetrically to closed birth, the death happens when the last complex

Kp
(d−1,d+1) turns into Kp

(d,d+1) because of the deletion, which is at Kδ ←↩ Kδ+1 in Fp(f):

Kp
(d−1,d+1) ←↩ · · · ←↩ Kδ ←↩ Kδ+1 ←↩ · · · ←↩ Kp

(d,d+1)

Since no p-cycles defined above are considered to come from Kδ (Proposition  3.2.1 ), we

add to the sequence a p-cycle zd in Kδ ⊆ Kp
(d−1,d+1) containing σδ, so that it represents

a class disappearing in Kδ+1 (and hence in Kp
(d,d+1)). Note that σδ is a p-simplex [  27 ].

Proposition 3.2.1. If the given levelset persistence interval is closed at birth end, then Kβ ⊆

Kp
(b−1,b] so that each Kp

(i,i+1) for b ≤ i < d is disjoint with Kβ. Similarly, if the persistence

interval is closed at death end, then Kδ ⊆ Kp
[d,d+1) so that each Kp

(i,i+1) for b ≤ i < d is

disjoint with Kδ.
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Remark 3.2.3. Note that the disjointness of these complexes also makes computation of

the optimal persistent cycles feasible; see Section  3.3 .

Proof. See Appendix  A.2.1 .

One final thing left for the definition is to relate two consecutive p-cycles zi, zi+1 in the

sequence. It can be verified that both zi, zi+1 reside in Kp
(i,i+2), and hence we require them

to be homologous in Kp
(i,i+2). In this way, we have

[zi] 7→ [zi] = [zi+1]←[ [zi+1]

under the linear maps

Hp

(
Kp

(i,i+1)

)
→ Hp

(
Kp

(i,i+2)

)
← Hp

(
Kp

(i+1,i+2)

)

so that all p-cycles in the sequence represent corresponding homology classes.

For easy reference, we formally present the definitions individually for the three types of

intervals:

Definition 3.2.4 (Open-open case). For an open-open
(
αpb , α

p
d

)
∈ Persp(Lp(f)) produced by a

simplex-wise interval [Kβ, Kδ], the levelset persistent p-cycles is a sequence zb, zb+1, . . . , zd−1

such that: (i) each zi ⊆ Kp
(i,i+1); (ii) [zb] ∈ Hp(Kβ) is the non-zero class in the kernel of

φβ−1 : Hp(Kβ−1) ← Hp(Kβ); (iii) [zd−1] ∈ Hp(Kδ) is the non-zero class in the kernel of

φδ : Hp(Kδ)→ Hp(Kδ+1); (iv) each consecutive zi, zi+1 are homologous in Kp
(i,i+2).

Definition 3.2.5 (Closed-open case). For a closed-open
[
αpb , α

p
d

)
∈ Persp(Lp(f)) produced by

a simplex-wise interval [Kβ, Kδ], the levelset persistent p-cycles is a sequence zb−1, zb, . . . , zd−1

such that: (i) zb−1 ⊆ Kβ and σβ−1 ∈ zb−1; (ii) zi ⊆ Kp
(i,i+1) for each i ≥ b; (iii) [zd−1] ∈

Hp(Kδ) is the non-zero class in the kernel of φδ : Hp(Kδ)→ Hp(Kδ+1); (iv) each consecutive

zi, zi+1 are homologous in Kp
(i,i+2).

Definition 3.2.6 (Closed-closed case). For a closed-closed
[
αpb , α

p
d

]
∈ Persp(Lp(f) produced

by a simplex-wise interval [Kβ, Kδ], the levelset persistent p-cycles is a sequence zb−1, zb, . . . , zd
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such that: (i) zb−1 ⊆ Kβ and σβ−1 ∈ zb−1; (ii) zd ⊆ Kδ and σδ ∈ zd; (iii) zi ⊆ Kp
(i,i+1) for

each b ≤ i < d; (iv) each consecutive zi, zi+1 are homologous in Kp
(i,i+2).

Figure  3.1 illustrates a sequence of levelset persistent 1-cycles for a closed-open interval,

where z1 captures the birth event (created by the corresponding 1st critical vertex 

1
 ) and z2,

z3, z4 are the ones in the 1st regular complexes. The cycle z4, which becomes a boundary

when the last critical vertex is added, captures the death event. See Figure  3.5 and  3.7 in

Section  3.3 for examples of other types of intervals.

To see that levelset persistent cycles actually “represent” an interval, we show that each

such sequence induces an interval submodule so that all these interval submodules form an

interval decomposition for Hp(Lp(f)) and Hp(Fp(f)). The details are provided in Section  3.5 .

Optimal levelset persistent cycles.

To define optimal cycles, we assign weights to p-cycles of K as follows: let each p-simplex

σ of K have a non-negative finite weight w(σ); then, a p-cycle z of K has the weight

w(z) := ∑
σ∈z w(σ).

Definition 3.2.7. For an interval of Persp(Lp(f)), an optimal sequence of levelset persistent

p-cycles is one with the minimum sum of weight.

3.2.3 Validity of discrete levelset filtrations

α
p

i α
p

i+1 α
p

i
α
p

i+1

Figure 3.4. Finer triangulation makes the discrete levelset filtration equiva-
lent with the continuous one.

One thing left over from Section  3.2.1 is to justify the validity of the discrete version of

p-th levelset filtration. It turns out that the validity depends on the triangulation of K. For
1

 ↑ In the discrete setting, z1 is indeed created by an edge incident to the critical vertex.

70



example, letK be the left complex in Figure  3.4 ; then, Kp
(i,i+1) (the blue part) is not homotopy

equivalent to Xp
(i,i+1) (the part between the dashed lines), and hence Lp(f) is not equivalent

to Lc
p(f). We observe that the non-equivalence is caused by the two central triangles which

contain more than one critical value. A subdivision of the two central triangles on the

right (so that no triangles contain more than one critical value) renders Xp
(i,i+1) deformation

retracting to Kp
(i,i+1). Based on the above observation, we formulate the following property,

which guarantees the equivalence of modules induced by Lp(f) and Lc
p(f):

Definition 3.2.8. The complex K is said to be compatible with the p-th levelsets of the PL

function f if for any simplex σ of K and its convex hull |σ|, function values of points in |σ|

include at most one p-th critical value of f .

Proposition 3.2.2. If K is compatible with the p-th levelsets of f , then Xp
(i,j) deformation

retracts to Kp
(i,j) for any i < j, which implies that Hp(Lp(f)) and Hp(Lc

p(f)) are isomorphic.

Proof. See Appendix  A.2.2 .

In this chapter, we only consider the situation where a complex is compatible with the p-

th levelsets of its PL function. We regard this assumption reasonable because in the discrete

optimization, the quality of computed output depends on the triangulation of underlying

space. When the assumption is violated, it becomes impossible to depict certain changes of

homological features on the discrete domain. Note that a complex can be refined to become

compatible if it is not already.

3.3 Computation

In this section, given a weak (p + 1)-pseudomanifold with p ≥ 1, we present algorithms

that compute an optimal sequence of levelset persistent p-cycles for a p-th interval. Though

the computation for all types of intervals is based on minimum cuts, we address the algo-

rithm for each type separately in each subsection. The reasons are as follows. First, one has

to choose a subcomplex to work on in order to build a dual graph for the minimum cut com-

putation. In the open-open case, the subcomplex is always a (p+1)-pseudomanifold without

boundary (see Section  3.3.1 ) whose dual graph is obvious; in the other cases, however, we
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do not have such convenience and the dual graph construction is more involved. Also, the

closed-open case has to deal with the so-called “monkey saddles” and the solution adopts

a two-phase approach (see Section  3.3.2 ); in the open-open case, however, no such issues

occur and the algorithm is much simpler. We also note that even for standard persistent

cycles which have simpler definitions, the hardness results and the algorithms for the finite

and infinite intervals are still different; see [ 53 ]. With all being said, we observe that the

computation for the closed-closed case does exhibit resemblance to the closed-open case and

is only described briefly; see Section  3.3.3 .

Other than the type of persistence interval, all subsections make the same assumptions

on input as the following:

• p ≥ 1 is the dimension of interest.

• K is a finite weak (p + 1)-pseudomanifold with a finite weight w(σ) ≥ 0 for each

p-simplex σ.

• f : |K| → R is a generic PL function with p-th critical values αp0 = −∞ < αp1 < · · · <

αpm < αpm+1 = ∞ and corresponding p-th critical vertices vp1, . . . , vpm. We also assume

that K is compatible with the p-th levelsets of f .

• Fp(f) : K0 ↔ K1 ↔ · · · ↔ Kr is a fixed simplex-wise levelset filtration. Each Ki,

Ki+1 in Fp(f) differ by a simplex σi, and each linear map in Hp(Fp(f)) is denoted as

φi : Hp(Ki)↔ Hp(Ki+1).

3.3.1 Open-open case

Throughout this subsection, assume that we aim to compute the optimal persistent p-

cycles for an open-open interval
(
αpb , α

p
d

)
from Persp(Lp(f)), which is produced by a simplex-

wise interval [Kβ, Kδ] from Persp(Fp(f)). Figure  3.5 illustrates a sequence of persistent

1-cycles z1, z2, z3 for an open-open interval
(
α1

1, α
1
4

)
.
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As seen from Section  3.2.2 , the following portion of Fp(f) is relevant to the definition

(and hence the computation):

Kp
(b−1,b+1) L99↩ Kβ−1

σβ−1←−−−↩ Kβ L99↩ Kp
(b,b+1) ↪99K · · ·

L99↩ Kp
(d−1,d) ↪99K Kδ

σδ
↪−−→ Kδ+1 ↪99K Kp

(d−1,d+1)

(3.2)

In the above sequence, the non-dashed hooked arrows indicate the addition or deletion of one

simplex, while the dashed arrows indicate the addition or deletion of zero or more simplices.

The simplices σβ−1, σδ are the ones creating and destroying the simplex-wise interval, which

are both (p+ 1)-simplices [ 27 ]. We further restrict the computation to (a (p+ 1)-connected

component of) Kp
(b−1,d+1) considering that each complex in Sequence ( 3.2 ) is a subcomplex

of Kp
(b−1,d+1).

s t s t

A1 A2 A3 A4

z1 z2 z3

Figure 3.5. A sequence of levelset persistent 1-cycles for an open-open interval(
α1

1, α
1
4

)
; the complex (assume the torus to be finely triangulated), the function,

and the 1st critical values are the same as in Figure  3.3 .

We now describe the algorithm. Since the deletion of the (p + 1)-simplex σβ−1 gives

birth to the interval [Kβ, Kδ], σβ−1 must be relevant to our computation. So we let the

complex being worked on, denoted K ′, be the closure of the (p + 1)-connected component

of K containing σβ−1. (Note that the closure of a set of simplices consists of all faces of the

simplices in the set.) Based on the property of open-open intervals, K ′ must be a (p + 1)-

pseudomanifold without boundary (see Proposition  3.3.1 , Claim  3 ). Letting G be the dual
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graph of K ′, we build a weighted (s, t)-graph (G, s, t). To set up the sources and sinks, we

define the set Kp
(i) of simplices as follows:

Kp
(i) := Kp

(i−1,i+1) \
(
Kp

(i−1,i) ∪Kp
(i,i+1)

)

Roughly speaking, Kp
(i) consists of simplices containing the critical value αpi (for example,

the darker triangles in Figure  3.4 belong to Kp
(i)), and note that Kp

(i) may not be a simplicial

complex. Based on the above definition, we alternately put vertices dual to the (p + 1)-

simplices in Kp
(b), . . . ,K

p
(d) into sources and sinks. For our example in Figure  3.5 where K ′ is

the entire torus, the source s contains vertices dual to 2-simplices in K1
(1)∪K1

(3), and the sink

t contains vertices dual to 2-simplices in K1
(2) ∪K1

(4). Note that K1
(1), . . . ,K1

(4) are alternately

shaded with light and dark gray in Figure  3.5 .

The correctness of the above construction is based on the duality of the levelset persistent

p-cycles and (s, t)-cuts on (G, s, t). To see the duality, first consider the sequence of persistent

1-cycles z1, z2, z3 in Figure  3.5 . By Definition  3.2.4 , there exist 2-chains A1 ⊆ K1
(0,2), A2 ⊆

K1
(1,3), A3 ⊆ K1

(2,4), and A4 ⊆ K1
(3,5) as shown in the figure such that z1 = ∂(A1), z1 + z2 =

∂(A2), z2 + z3 = ∂(A3), and z3 = ∂(A4). Let S contain the vertices dual to A1 + A3 and T

contain the vertices dual to A2 +A4. Then, (S, T ) is an (s, t)-cut of (G, s, t). Since edges in

E(S, T ) are dual to 1-simplices in z1 +z2 +z3, we have that w(S, T ) = w(z1)+w(z2)+w(z3).

So we derive a cut (S, T ) dual to the persistent 1-cycles z1, z2, z3. On the other hand, an

(s, t)-cut of (G, s, t) produces a sequence of persistent p-cycles for the given interval. For

example, let (S, T ) be a cut where S contains the graph vertices in A1 +A3 and T contains

the graph vertices in A2 + A4, as in Figure  3.5 . We then take the intersection of the dual

1-simplices of E(S, T ) with K1
(1,2),K1

(2,3),K1
(3,4). The resulting 1-chains z1, z2, z3 is a sequence

of persistent 1-cycles for the interval
(
α1

1, α
1
4

)
. Hence, by the duality, a minimum (s, t)-cut

of (G, s, t) always produces an optimal sequence of levelset persistent p-cycles.

We formally list the pseudocode as follows:

Algorithm 3.3.1. Given the input as specified, the algorithm does the following:
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1. Let K ′ be the closure of the (p + 1)-connected component of K containing σβ−1. Note

that K ′ is a (p+1)-pseudomanifold without boundary (see Proposition  3.3.1 , Claim  3 ).

2. Build a weighted dual graph G of K ′, where V (G) corresponds to (p + 1)-simplices of

K ′ and E(G) corresponds to p-simplices of K ′. Let θ denote both the bijection from

the (p+ 1)-simplices to V (G) and the bijection from the p-simplices to E(G). For each

edge e of G, if θ−1(e) ∈ Kp
(i,i+1) for i s.t. b ≤ i < d, then set w(e), the weight of e, as

w(θ−1(e)); otherwise, set w(e) =∞.

3. For each i s.t. b ≤ i ≤ d, let ∆i denote the set of (p + 1)-simplices in K ′ ∩Kp
(i). Also,

let Le be the set of even integers in [0, d− b] and Lo be the set of odd ones. Then, let

s = θ
( ⋃

i∈Le ∆b+i
)
, t = θ

( ⋃
i∈Lo ∆b+i

)
, and compute the minimum (s, t)-cut (S∗, T ∗) of

(G, s, t).

4. For each i s.t. b ≤ i < d, let z∗
i = Kp

(i,i+1) ∩ θ−1(E(S∗, T ∗)). Return z∗
b , . . . , z

∗
d−1 as an

optimal sequence of levelset persistent p-cycles for the interval
(
αpb , α

p
d

)
.

Justification.

For the correctness of Algorithm  3.3.1 , we first present Proposition  3.3.1 stating several

facts about the algorithm which are used to prove the two propositions (  3.3.2 and  3.3.3 )

on the duality. Then, Proposition  3.3.2 and  3.3.3 lead to Theorem  3.3.1 , which draws the

conclusion.

Proposition 3.3.1. The following hold for Algorithm  3.3.1 :

1. The simplex σδ resides in K ′.

2. Let zb, . . . , zd−1 be any sequence of persistent p-cycles for
(
αpb , α

p
d

)
; then, there exist

(p + 1)-chains Ab ⊆ Kβ−1, Ab+1 ⊆ Kp
(b,b+2), . . . , Ad−1 ⊆ Kp

(d−2,d), Ad ⊆ Kδ+1 such that

σβ−1 ∈ Ab, σδ ∈ Ad, zb = ∂(Ab), zd−1 = ∂(Ad), and zi−1 + zi = ∂(Ai) for each

b < i < d. Furthermore, let z′
i = K ′ ∩ zi, A′

i = K ′ ∩ Ai for each i; then, σβ−1 ∈ A′
b,

σδ ∈ A′
d, z′

b = ∂
(
A′
b

)
, z′

d−1 = ∂
(
A′
d

)
, and z′

i−1 + z′
i = ∂

(
A′

i

)
for each b < i < d. Finally,
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one has that A′
b + · · ·+A′

d equals the set of (p+ 1)-simplices of K ′ and A′
b, . . . , A

′
d are

disjoint.

3. The complex K ′ is a (p+ 1)-connected (p+ 1)-pseudomanifold without boundary, i.e.,

each p-simplex has exactly two (p+ 1)-cofaces in K ′.

Proof. See Appendix  A.2.3 .

Proposition 3.3.2. Let zb, . . . , zd−1 be any sequence of levelset persistent p-cycles for
(
αpb , α

p
d

)
;

then, there exists an (s, t)-cut (S, T ) of (G, s, t) such that w(S, T ) ≤ ∑d−1
i=b w(zi).

Proof. Let A′
b, . . . , A

′
d and z′

b, . . . , z
′
d−1 be as specified in Claim  2 of Proposition  3.3.1 for the

given zb, . . . , zd−1, and let S = θ
( ∑

j∈Le A
′
b+j

)
, T = θ

( ∑
j∈Lo A

′
b+j

)
. We first show that for a

∆i such that i−b is even, ∆i does not intersect ∑
j∈Lo A

′
b+j. For contradiction, suppose instead

that there is a σ in both of them. Then, since ∆i ⊆ Kp
(i) ⊆ Kp

(i−1,i+1) and A′
b+j ⊆ Kp

(b+j−1,b+j+1)

for each j ∈ Lo, σ must be in A′
i−1 ⊆ Kp

(i−2,i) or A′
i+1 ⊆ Kp

(i,i+2) because other chains in

{A′
b+j | j ∈ Lo} do not intersect Kp

(i−1,i+1). So we have that σ is in Kp
(i−2,i) or Kp

(i,i+2). The

fact that σ ∈ ∆i ⊆ Kp
(i−1,i+1) implies that σ is in Kp

(i−1,i) or Kp
(i,i+1), a contradiction to

σ ∈ ∆i ⊆ Kp
(i) = Kp

(i−1,i+1) \
(
Kp

(i−1,i) ∪ Kp
(i,i+1)

)
. So ∆i does not intersect ∑

j∈Lo A
′
b+j. Then,

since ∑d
j=bA

′
j equals the set of (p + 1)-simplices of K ′ by Claim  2 of Proposition  3.3.1 , we

have that ∆i ⊆
∑

j∈Le A
′
b+j, i.e., θ(∆i) ⊆ S. This means that s ⊆ S. Similarly, we have

t ⊆ T . Claim  2 of Proposition  3.3.1 implies that S ∪ T = V (G) and S ∩ T = ∅, and so

(S, T ) is an (s, t)-cut of (G, s, t). The fact that ∑d−1
i=b z

′
i = ∂

( ∑
j∈Le A

′
b+j

)
= ∂

( ∑
j∈Lo A

′
b+j

)
implies that ∑d−1

i=b z
′
i = θ−1(E(S, T )). So we have w(S, T ) = ∑d−1

i=b w(z′
i) ≤

∑d−1
i=b w(zi).

Proposition 3.3.3. For any (s, t)-cut (S, T ) of (G, s, t) with finite weight, let zi = Kp
(i,i+1)∩

θ−1(E(S, T )) for each i s.t. b ≤ i < d. Then, zb, . . . , zd−1 is a sequence of levelset persistent

p-cycles for
(
αpb , α

p
d

)
with ∑d−1

i=b w(zi) = w(S, T ).

Proof. We first prove that, for any i s.t. b < i < d and i− b is even, ∂
(
θ−1(S)∩Kp

(i−1,i+1)

)
=

zi−1 + zi. To prove this, first consider any σ ∈ ∂
(
θ−1(S) ∩ Kp

(i−1,i+1)

)
. We have that σ is

a face of only one (p + 1)-simplex τ1 in θ−1(S) ∩ Kp
(i−1,i+1). Note that τ1 ∈ θ−1(S) ⊆ K ′.

Since K ′ is a (p + 1)-pseudomanifold without boundary (Claim  3 of Proposition  3.3.1 ), σ
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has another (p + 1)-coface τ2 in K ′. Then, it must be true that τ2 ∈ θ−1(T ). To see

this, suppose instead that τ2 ∈ θ−1(S). Note that τ2 ̸∈ Kp
(i−1,i+1) because otherwise τ2

would be in θ−1(S) ∩ Kp
(i−1,i+1), contradicting the fact that σ has only one (p + 1)-coface

in θ−1(S) ∩ Kp
(i−1,i+1). Also note that τ2 is not in Kp

(i−1) or Kp
(i+1) because if τ2 is in one of

them, combining the fact that i − 1 − b and i + 1 − b are odd, we would have that τ2 is

in ∆i−1 or ∆i+1 and thus θ(τ2) ∈ t ⊆ T , which is a contradiction. Since K ′ ⊆ Kp
(b−1,d+1)

and
{
Kp

(b−1,i−1),K
p
(i−1),K

p
(i−1,i+1),K

p
(i+1),K

p
(i+1,d+1)

}
covers Kp

(b−1,d+1), we have that τ2 is in

Kp
(b−1,i−1) or Kp

(i+1,d+1). This implies that σ ⊆ τ2 is in Kp
(b−1,i−1) or Kp

(i+1,d+1), contradicting

that σ ⊆ τ1 ∈ Kp
(i−1,i+1). It is now true that σ ∈ θ−1(E(S, T )) because τ1 ∈ θ−1(S) and

τ2 ∈ θ−1(T ). Since (S, T ) has finite weight, σ must come from a Kp
(j,j+1) for b ≤ j < d and

thus must come from Kp
(i−1,i) or Kp

(i,i+1). Then, σ is in zi−1 or zi. Moreover, since zi−1 and zi

are disjoint, we have σ ∈ zi−1 + zi.

On the other hand, for any σ ∈ zi−1 + zi, first assume that σ ∈ zi−1 = Kp
(i−1,i) ∩

θ−1(E(S, T )). Since σ ∈ θ−1(E(S, T )), σ must be a face of a (p + 1)-simplex τ in θ−1(S)

and another (p + 1)-simplex in θ−1(T ). We then show that τ ∈ Kp
(i−1,i+1). Suppose in-

stead that τ ̸∈ Kp
(i−1,i+1), and let v be the vertex belonging to τ but not σ. We have that

f(v) ̸∈ (αpi−1, α
p
i+1) because if f(v) ∈ (αpi−1, α

p
i+1), the fact that σ ∈ Kp

(i−1,i) would imply that

τ is in Kp
(i−1,i+1). Note that f(v) cannot be greater than or equal to αpi+1 because otherwise

K would not be compatible with the p-th levelsets of f . Therefore, f(v) ≤ αpi−1, and it must

be true that τ ∈ Kp
(i−2,i). This implies that τ ∈ Kp

(i−1). We now have that τ ∈ ∆i−1, where

i − 1 − b is odd. Then, θ(τ) ∈ t ⊆ T , a contradiction to τ ∈ θ−1(S). Combining the fact

that τ ∈ Kp
(i−1,i+1) and τ is the only (p+ 1)-coface of σ in θ−1(S), we have that τ is the only

(p+ 1)-coface of σ in θ−1(S) ∩Kp
(i−1,i+1). If σ ∈ zi, we can have the same result. Therefore,

σ ∈ ∂
(
θ−1(S) ∩Kp

(i−1,i+1)

)
, and we have proved that ∂

(
θ−1(S) ∩Kp

(i−1,i+1)

)
= zi−1 + zi.

Similarly, we can prove that ∂
(
θ−1(T )∩Kp

(i−1,i+1)

)
= zi−1 + zi for i s.t. b < i < d and i− b

is odd, ∂
(
θ−1(S) ∩ Kβ−1) = zb, and ∂

(
θ−1(S) ∩ Kδ+1) = zd−1 or ∂

(
θ−1(T ) ∩ Kδ+1) = zd−1

based on the parity of d− b. Since σβ−1 ∈ Kβ−1 ⊆ Kp
[b,b+1) and σβ−1 ̸∈ Kp

(b,b+1), we have that

σβ−1 ∈ Kp
(b), which means that θ(σβ−1) ∈ s ⊆ S. Therefore, σβ−1 ∈ θ−1(S) ∩ Kβ−1. Since

∂
(
θ−1(S) ∩Kβ−1) = zb, we have that zb ∼ ∂(σβ−1) in Kβ, i.e., [zb] ∈ Hp(Kβ) is the non-zero

class in ker(φβ−1). Analogously, [zd−1] ∈ Hp(Kδ) is the non-zero class in ker(φδ). The above
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facts imply that zb, . . . , zd−1 is a sequence of levelset persistent p-cycles for
(
αpb , α

p
d

)
. The

equality of the weight follows from the disjointness of zb, . . . , zd−1 and the fact that w(S, T )

is finite.

Theorem 3.3.1. Algorithm  3.3.1 computes an optimal sequence of levelset persistent p-cycles

for a given open-open interval.

3.3.2 Closed-open case

Throughout the subsection, assume that we aim to compute the optimal persistent p-

cycles for a closed-open interval
[
αpb , α

p
d

)
from Persp(Lp(f)), which is produced by a simplex-

wise interval [Kβ, Kδ] from Persp(Fp(f)). Figure  3.6a and  3.6b provide examples for p = 1,

where z′
1, z

′
2, z

′
3 and z′′

1 , z
′′
2 , z

′′
3 are two sequences of levelset persistent 1-cycles for the interval[

α1
2, α

1
4

)
.

Similar to the previous case, we have the following portion of Fp(f) relevant to the

definition and computation:

Kp
(b−1,b) ↪99K Kβ−1

σβ−1
↪−−−→ Kβ ↪99K Kp

(b−1,b+1) L99↩ K
p
(b,b+1) ↪99K · · ·

L99↩ Kp
(d−1,d) ↪99K Kδ

σδ
↪−−→ Kδ+1 ↪99K Kp

(d−1,d]

(3.3)

The creator σβ−1 is a p-simplex and the destroyer σδ is a (p+1)-simplex [  27 ]. Note that we end

the sequence with Kp
(d−1,d] instead of Kp

(d−1,d+1) as in the case “open death” in Section  3.2.2 .

This is valid due to the following reasons: (i) Kp
(d−1,d] is derived from Kp

(d−1,d) by adding

the lower star of vpd and hence must appear in Fp(f) based on Definition  3.2.3 ; (ii) Kδ+1 is

a subcomplex of Kp
(d−1,d] and the proof is similar to that of Proposition  3.2.1 . Therefore,

the computation can be restricted to Kp
(b−1,d] because each complex in Sequence ( 3.3 ) is a

subcomplex of Kp
(b−1,d].

Overview.

To give a high-level view of our algorithm, we first use an example to illustrate several

important observations. These observations provide insights into the solution and lead to
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the key issue. We then discuss the key issue in detail. Finally, we describe our solution in

words, and present the formal pseudocode after that.

α
1

1

α
1

2

α
1

3

α
1

4

α
1

5

v
1

1
v
1

2

v
1

3

v
1

4

v
1

5

(a)

C0

C2

C1 v
1

3

v
1

4

z
′′

1

z
′

1

ζ1
2

ζ0
2

ζ0
3z

′

2
= ζ0

2
, z

′

3
= ζ0

3

z
′′

2
= ζ0

2
+ ζ1

2
, z

′′

3
= ζ0

3

Kβ

(b)

φ1

φ0

φ

(c)

Figure 3.6. (a) A complex K with all 1st critical vertices listed, in which
v1

2 is a monkey saddle; the direction of the height function is indicated. (b)
The relevant subcomplex Kp

(b−1,d] = K1
(1,4] with Kβ broken from the remaining

parts for a better illustration. (c) The complex Kβ with boundaries filled by
2-dimensional “cells” drawn as darker regions. The blue edges are augmenting
edges. Note that Kβ also contains boundary 1-simplices around the critical
vertex v1

1, which are not drawn.

Now consider the example in Figure  3.6 , and let z1, z2, z3 be a general sequence of per-

sistent 1-cycles for
[
α1

2, α
1
4

)
. By definition, there exist 2-chains

A2 ⊆ K1
(1,3), A3 ⊆ K1

(2,4), and A4 ⊆ K1
(3,4]

such that

z1 + z2 = ∂(A2), z2 + z3 = ∂(A3), and z3 = ∂(A4)

Letting A = A2 + A3 + A4, we have ∂(A) = z1 ⊆ Kβ. (We still assume that
[
α1

2, α
1
4

)
is

produced by a simplex-wise interval denoted [Kβ, Kδ].) One strategy we adopt is to separate

Kβ from Kp
(b−1,d] and tackle Kβ, Kp

(b−1,d]\Kβ independently. Note that Kp
(b−1,d] = K1

(1,4] in our

example. Then we separate A into the part that is in Kβ and the part that is not. Obviously,

the part of A not in Kβ comes from different 2-connected components of K1
(1,4]\Kβ, which are

C0, C1, and C2 shown in Figure  3.6b . We then observe that any such component intersecting

A must be totally included in A, because a 2-simplex of the component not in A would cause
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∂(A) to contain 1-simplices not in Kβ, contradicting ∂(A) ⊆ Kβ. For the same reason, any

component intersecting A must have its boundary in Kβ. For example, in Figure  3.6b , no

2-simplices in C2 can fall in A, while C1 can either be totally in or disjoint with A. The proof

of Proposition  3.3.7 formally justifies this observation. We also note that there can be only

one 2-connected component of K1
(1,4] \ Kβ (i.e., C0 in Figure  3.6b ) whose boundary resides

in Kβ and contains σβ−1 (see Proposition  3.3.5 ). (While this is not drawn in Figure  3.6 , we

assume that K is triangulated in a way that σβ−1 is shared by the boundaries of C0 and C2.)

A fact about C0 is that it is always included in A (see the proof of Proposition  3.3.7 ). For

the other components with boundaries in Kβ (i.e., C1 in Figure  3.6b ), any subset of them

can contribute to a certain A and take part in forming the persistent cycles. For example, in

Figure  3.6b , only C0 contributes to the persistent 1-cycles z′
1, z

′
2, z

′
3, and both C0, C1 contribute

to z′′
1 , z

′′
2 , z

′′
3 .

The crux of the algorithm, therefore, is to determine a subset of the components along

with C0 contributing to the optimal persistent cycles (a complicated monkey saddle with

multiple forks may result in many such components), because we can compute the opti-

mal persistent cycles under a fixed choice of subset. To see this, suppose that z′′
1 , z

′′
2 , z

′′
3 in

Figure  3.6 are the optimal persistent 1-cycles for
[
α1

2, α
1
4

)
under the choice of the subset{

C0, C1
}
, i.e, z′′

1 , z
′′
2 , z

′′
3 have the minimum sum of weight among all persistent 1-cycles coming

from both C0 and C1. We first observe that z′′
1 must be the minimum 1-cycle homologous to

∂(C0) + ∂(C1) in Kβ. Such a cycle z′′
1 can be computed from a minimum (s, t)-cut on a dual

graph of Kβ. Also, the set of 1-cycles
{
ζ0

2 ⊆ K1
(2,3), ζ

0
3 ⊆ K1

(3,4)

}
must be the one in C0 with

the minimum sum of weight such that

ζ0
2 ∼ ∂(C0) in K1

(1,3), ζ0
2 ∼ ζ0

3 in K1
(2,4), and ζ0

3 null-homologous in K1
(3,4]

Additionally, ζ1
2 ⊆ K1

(2,3) must be the minimum 1-cycle in C1 which is homologous to ∂(C1)

in K1
(1,3) and is null-homologous in K1

(2,3]. (See Step  2 of Algorithm  3.3.2 for a formal de-

scription.) To compute the minimum cycles
{
ζ0

2 , ζ
0
3

}
, ζ1

2 , we utilize an algorithm similar to

Algorithm  3.3.1 .
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Note that a priori optimal selection of the components is not obvious; while introducing

more components increases weights for cycles in the p-th regular complexes (because the

components are disjoint), the cycle in Kβ corresponding to this choice may have a smaller

weight due to belonging to a different homology class (e.g. z′′
1 ∼ ∂(C0) + ∂(C1) may have

much smaller weight than z′
1 ∼ ∂(C0) in Figure  3.6b ).

Our solution is as follows: generically, suppose that C0, . . . , Ck are all the (p+1)-connected

components of Kp
(b−1,d] \ Kβ with boundaries in Kβ, where C0 is the one whose boundary

contains σβ−1. We do the following:

1. For each j ∈ [0, k], compute the minimum (possibly empty) p-cycles
{
ζ j

i | b ≤ i < d
}

in Cj as described in Step  2 of Algorithm  3.3.2 . Note that for C1 in Figure  3.6b , ζ1
3 is

empty, which makes ζ1
2 null-homologous in K1

(2,3].

2. Build a dual graph G for Kβ, where dummy vertices ϕ0, . . . , ϕk correspond to the

boundaries ∂(C0), . . . , ∂(Ck) and a single dummy vertex ϕ corresponds to the remain-

ing boundary portion of Kβ. Roughly speaking, when a dummy vertex ϕj is said to

“correspond to” ∂(Cj), one can imagine that a (p+1)-dimensional “cell” with boundary

∂(Cj) is added to Kβ and ϕj is the vertex dual to this cell. In addition to the regular

dual edges, for each ϕj, we add to G an augmenting edge connecting ϕj to ϕ and let

its weight be ∑d−1
i=b w

(
ζ j

i

)
. See Figure  3.6c for an example of the dummy vertices and

augmenting edges.

3. Compute the minimum (s, t)-cut (S∗, T ∗) of
(
G, ϕ0, ϕ

)
, which produces an optimal

sequence of levelset persistent p-cycles for
[
αpb , α

p
d

)
.

To see the correctness of the algorithm, consider a general (s, t)-cut (S, T ) of
(
G, ϕ0, ϕ

)
.

Whenever a ϕj is in S, it means that the component Cj is chosen to form the persistent cycles.

Also, since the augmenting edge
{
ϕj, ϕ

}
is crossing the cut, its weight records the cost of

introducing Cj in forming the persistent cycles. Let ϕν0 , . . . , ϕνℓ
be all the dummy vertices

in S. We have that the non-augmenting edges in E(S, T ) produce a dual p-cycle zb−1 in Kβ

homologous to ∂(Cν0) + · · ·+ ∂(Cνℓ
). Then, the p-cycle zb−1, along with all

{
ζ
νj
i | b ≤ i < d

}
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from Cν0 , . . . , Cνℓ
, form a sequence of persistent p-cycles for

[
αpb , α

p
d

)
whose sum of weight

equals w(S, T ). Later in the subsection, we formally justify the algorithm.

Pseudocode.

We now provide the full details of our algorithm. For ease of exposition, so far we have

let Kp
(b−1,d] be the complex on which we compute the optimal persistent cycles. However, this

has a flaw, which can be illustrated by the example in Figure  3.6 . Imagine that v1
4 and v1

5 in

the figure are pinched together, so that K is not a 2-manifold anymore (but still a weak 2-

pseudomanifold). The simplex-wise filtration Fp(f) can be constructed in a way that the disc

around v1
4 is formed before the disc around v1

5; such an Fp(f) is essentially the same as the

one before pinching. However, Kp
(b−1,d] = K1

(1,4] now contains both v1
4, v1

5. As a consequence,

Proposition  3.3.5 which is a major observation for our solution does not hold because the

component containing v1
5 (which is C2 in Figure  3.6b with the right hole filled) also has its

boundary containing σβ−1. To solve this, we make an adjustment to work on a complex K̃

instead of Kp
(b−1,d], so that Proposition  3.3.5 is still true; see Step  1 of Algorithm  3.3.2 for

the definition of K̃. It can be easily verified that each complex in Sequence ( 3.3 )
(
possibly

excluding Kp
(d−1,d] which is indeed irrelevant

)
is a subcomplex of K̃.

Our previous exposition also frequently deals with the complex Kβ. However, in the

pseudocode (Algorithm  3.3.2 ), Kβ takes another form: we add to Kβ some missing (p+ 1)-

simplices and denote the new complex as Kβ; see Step  1 of the pseudocode for definition.

Doing this makes our description of the components in Step  2 neater.

Algorithm 3.3.2. Given the input as specified, the algorithm does the following:

1. Set the following:

• K̃ = Kp
(b−1,d) ∪Kδ+1

• Kβ = Kβ ∪
{
(p+ 1)-simplices with all p-faces in Kβ

}
2. Let C0, . . . , Ck be all the (p+ 1)-connected components of K̃ \Kβ such that ∂(Cj) ⊆ Kβ

for each j, where C0 is the unique one whose boundary contains σβ−1. (Note that the

boundary ∂(Cj) here means the boundary of the (p+ 1)-chain Cj.)
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For each Cj, let Mj be the closure of Cj, and among all sets of p-cycles of the form
{
zi ⊆Mj ∩Kp

(i,i+1) | b ≤ i < d
}

such that

• zb ∼ ∂(Cj) in Mj ∩Kp
(b−1,b+1)

• zi−1 ∼ zi in Mj ∩Kp
(i−1,i+1) for each b < i < d

• zd−1 is null-homologous in Mj ∩Kδ+1

compute the set
{
ζ j

i | b ≤ i < d
}

with the minimum sum of weight.

3. Build a weighted dual graph G from Kβ as follows:

Let each (p + 1)-simplex of Kβ correspond to a vertex in G, and add the dummy

vertices ϕ, ϕ0, . . . , ϕk to G. Let θ denote the bijection from the (p + 1)-simplices to

V (G) \
{
ϕ, ϕ0, . . . , ϕk

}
.

Let each p-simplex σ of Kβ correspond to an edge e in G, where the weight of e, w(e),

equals the weight of σ. There are the following cases:

σ has two (p+ 1)-cofaces in Kβ: e is the usual one.

σ has one (p+ 1)-coface τ in Kβ: If σ ∈ ∂(Cj) for a Cj, let e connect θ(τ) and ϕj in G;

otherwise, let e connect θ(τ) and ϕ.

σ has no (p+ 1)-cofaces in Kβ: If σ is in the boundaries of two components Ci and Cj,

let e connect ϕi and ϕj; if σ is in the boundary of only one component Cj, let e

connect ϕj and ϕ; otherwise, let e connect ϕ on both ends.

In addition to the above edges, add the augmenting edges with weights as described. Let

θ also denote the bijection from the p-simplices to the non-augmenting edges and let

E ′(S, T ) denote the set of non-augmenting edges crossing a cut (S, T ).

4. Compute the minimum (s, t)-cut (S∗, T ∗) of
(
G, ϕ0, ϕ

)
. Let ϕµ0 , . . . , ϕµl

be all the

dummy vertices in S∗. Then, set

z∗
b−1 = θ−1(E ′(S∗, T ∗)) and z∗

i = ∑l
j=0 ζ

µj
i for each b ≤ i < d
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Return z∗
b−1, z

∗
b , . . . , z

∗
d−1 as an optimal sequence of levelset persistent p-cycles for

[
αpb , α

p
d

)
.

As mentioned, the minimum cycles in Step  2 can be computed using a similar approach

of Algorithm  3.3.1 , with a difference that Algorithm  3.3.1 works on a complex “closed at

both ends” while Mj is “closed only at the right”. Therefore, we need to add a dummy vertex

to the dual graph for the boundary, which is put into the source. Note that we can build

a single dual graph for all the Mj’s and share the dummy vertex, so that we only need to

invoke one minimum cut computation.

Justification.

We now prove the correctness of Algorithm  3.3.2 . We first present the following propo-

sition stating a basic fact about σβ−1:

Proposition 3.3.4. The p-simplex σβ−1 has no (p+ 1)-cofaces in Kβ.

Proof. Supposing instead that σβ−1 has a (p + 1)-coface τ in Kβ, then ∂(τ) ⊆ Kβ. Since

Kβ ⊆ Kp
(b−1,b], the p-cycle ∂(τ) created by σβ−1 is a boundary in Kp

(b−1,b]. Simulating a run of

Algorithm  A.1.1 (presented in Appendix  A.1 ) with input Fp(f), at the (β − 1)-th iteration,

we can let ∂(τ) be the representative p-cycle at index β for the new interval [β, β]. However,

since ∂(τ) is a boundary in Kp
(b−1,b], the interval starting with β must end with an index less

than δ, which is a contradiction.

Proposition  3.3.5 justifies the operations in Step  2 :

Proposition 3.3.5. Among all the (p + 1)-connected components of K̃ \ Kβ, there is one

and only one component whose boundary resides in Kβ and contains σβ−1.

Proof. See Appendix  A.2.4 .

Finally, Proposition  3.3.6 and  3.3.7 lead to Theorem  3.3.2 , which is the conclusion.

Proposition 3.3.6. For any (s, t)-cut (S, T ) of
(
G, ϕ0, ϕ

)
, let ϕν0 , . . . , ϕνℓ

be all the dummy

vertices in S. Furthermore, let zb−1 = θ−1(E ′(S, T )) and zi = ∑ℓ
j=0 ζ

νj
i for each b ≤ i <

d. Then, zb−1, zb, . . . , zd−1 is a sequence of levelset persistent p-cycles for
[
αpb , α

p
d

)
with∑d−1

i=b−1 w(zi) = w(S, T ).
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Proof. Note that we can also consider (S, T ) as an (s, t)-cut of a graph derived by deleting the

augmenting edges from G where the sources are ϕν0 , . . . , ϕνℓ
and the sinks are all the other

dummy vertices. This implies that zb−1 = θ−1(E ′(S, T )) is homologous to ∂(Cν0 + · · ·+Cνℓ
) in

Kβ. Since ϕ0 is the source of G, ϕ0 must be one of ϕν0 , . . . , ϕνℓ
. Then, by Proposition  3.3.5 ,

∂(Cν0+· · ·+Cνℓ
) contains σβ−1. So zb−1 must also contain σβ−1 because zb−1 ∼ ∂(Cν0+· · ·+Cνℓ

)

in Kβ and σβ−1 has no (p+1)-coface in Kβ (Proposition  3.3.4 ). Furthermore, the properties

of the cycles
{
ζ j

i

}
computed in Step  2 of Algorithm  3.3.2 imply that zb = ζν0

b + · · · + ζνℓ
b is

homologous to ∂(Cν0 + · · ·+ Cνℓ
) in Kp

(b−1,b+1). So zb−1 ∼ zb in Kp
(b−1,b+1).

For zb−1, zb, . . . , zd−1 to be persistent p-cycles for
[
αpb , α

p
d

)
, we need to verify several other

conditions in Definition  3.2.5 , in which only one is non-trivial, i.e., the condition that [zd−1] ∈

Hp(Kδ) is the non-zero class in ker(φδ). To see this, we first note that obviously [zd−1] ∈

ker(φδ). To prove [zd−1] ̸= 0, we use a similar approach in the proof of Proposition  3.3.1 ,

i.e., simulate a run of Algorithm  A.1.1 for computing Persp(Fp(f)) and show that zd−1 ⊆ Kδ

can be the representative cycle at index δ for the interval [β, δ]. The details are omitted.

For the weight, we have

w(S, T ) =
∑

e∈E′(S,T )
w(e) +

ℓ∑
j=0

w
({
ϕνj , ϕ

})
= w(zb−1) +

ℓ∑
j=0

d−1∑
i=b

w
(
ζ
νj
i

)

= w(zb−1) +
d−1∑
i=b

ℓ∑
j=0

w
(
ζ
νj
i

)
=

d−1∑
i=b−1

w(zi)

where
{
ϕνj , ϕ

}
denotes the augmenting edge in G connecting ϕνj and ϕ.

Proposition 3.3.7. Let zb−1, zb, . . . , zd−1 be any sequence of levelset persistent p-cycles for[
αpb , α

p
d

)
; then, there exists an (s, t)-cut (S, T ) of

(
G, ϕ0, ϕ

)
with w(S, T ) ≤ ∑d−1

i=b−1 w(zi).

Proof. By definition, there exist (p + 1)-chains Ab ⊆ Kp
(b−1,b+1), . . . , Ad−1 ⊆ Kp

(d−2,d), Ad ⊆

Kδ+1 such that zb−1+zb = ∂
(
Ab

)
, . . . , zd−2+zd−1 = ∂

(
Ad−1

)
, zd−1 = ∂

(
Ad

)
. Let A = ∑d

i=bAi;

then, ∂(A) = zb−1. Let Cν0 , . . . , Cνℓ
be all the components defined in Step  2 of Algorithm  3.3.2 

which intersect A. We claim that each Cνj ⊆ A. For contradiction, suppose instead that

there is a σ ∈ Cνj not in A. Let σ′ be a simplex in A ∩ Cνj . Since σ, σ′ are both in Cνj , there

must be a (p + 1)-path τ1, . . . , τq from σ to σ′ in K̃ \ Kβ. Note that σ ̸∈ A and σ′ ∈ A,
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and so there is an ι such that τι ̸∈ A and τι+1 ∈ A. Let τ p be a p-face shared by τι and

τι+1 in K̃ \ Kβ; then, τ p ∈ ∂(A) and τ p ̸∈ Kβ. This contradicts ∂(A) = zb−1 ⊆ Kβ. So

Cνj ⊆ A. We also note that Cν0 , . . . , Cνℓ
are all the (p+ 1)-connected components of K̃ \Kβ

intersecting A. The reason is that, if Ĉ is a component intersecting A whose boundary is

not completely in Kβ, then we also have Ĉ ⊆ A and the justification is similar as above.

Let σ be a simplex in ∂
(
Ĉ

)
but not Kβ; then, σ ∈ ∂(A). To see this, suppose instead that

σ ̸∈ ∂(A). Then σ has a (p+ 1)-coface τ1 ∈ Ĉ ⊆ A and a (p+ 1)-coface τ2 ∈ A \ Ĉ. We have

τ2 ∈ Kβ because if not, combining the fact that σ, τ1, τ2 ∈ K̃ \Kβ and τ1 ∈ Ĉ, τ2 would be

in Ĉ. As a face of τ2, σ must also be in Kβ, which is a contradiction. So we have σ ∈ ∂(A).

Note that σ ̸∈ Kβ, which contradicts ∂(A) ⊆ Kβ, and hence such a Ĉ cannot exist. We

then have ∂
(
A \ ⋃ℓ

j=0 Cνj

)
= ∂

(
A + Cν0 + · · · + Cνℓ

)
= zb−1 + ∂

(
Cν0

)
+ · · · + ∂

(
Cνℓ

)
, where

A \ ⋃ℓ
j=0 Cνj ⊆ Kβ. Now ∂

(
Cν0

)
+ · · · + ∂

(
Cνℓ

)
is homologous to zb−1 in Kβ, which means

that it must contain σβ−1 because zb−1 contains σβ−1 and σβ−1 has no (p + 1)-coface in Kβ

(Proposition  3.3.4 ). This implies that
{
Cν0 , . . . , Cνℓ

}
contains C0 by Proposition  3.3.5 . Let

S = θ
(
A \ ⋃ℓ

j=0 Cνj

)
∪

{
ϕν0 , . . . , ϕνℓ

}
and T = V (G) \ S. It can be verified that (S, T ) is an

(s, t)-cut of
(
G, ϕ0, ϕ

)
and zb−1 = θ−1(E ′(S, T )).

We then prove that w(S, T ) ≤ ∑d−1
i=b−1 w(zi). Let Aνj

i = Mνj ∩Ai, zνj
i = Mνj ∩ zi for each i

and j. For any j, we claim the following

∂

 d∑
i=b+1

A
νj
i

 = z
νj
b (3.4)

To prove Equation ( 3.4 ), we first note the following

∂

 d∑
i=b+1

A
νj
i

 = ∂

Mνj ∩
d∑

i=b+1
Ai

, zνj
b = Mνj ∩ zb = Mνj ∩ ∂

 d∑
i=b+1

Ai



So we only need to show that ∂
(
Mνj ∩

∑d
i=b+1 Ai

)
= Mνj ∩ ∂

( ∑d
i=b+1 Ai

)
. Letting B =∑d

i=b+1 Ai, what we need to prove now becomes ∂(Mνj ∩ B) = Mνj ∩ ∂(B). Consider an

arbitrary σ ∈ ∂(Mνj ∩B). We have that σ is a face of only one (p+ 1)-simplex τ ∈Mνj ∩B.

Note that τ ∈ B, and we show that τ is the only (p+ 1)-coface of σ in B. Suppose instead

that σ has another (p+ 1)-coface τ ′ in B. Then, τ ′ ̸∈ Mνj because τ ′ ̸∈ Mνj ∩ B. Note that
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B ⊆ Kp
(b,d], which means that B is disjoint with Kβ ⊆ Kp

(b−1,b]. So τ ′ ∈ B ⊆ K̃ \Kβ. It is

then true that σ ∈ Kβ because if not, i.e., σ ∈ K̃ \Kβ, then τ ′ would reside in Cνj ⊆ Mνj

(following from τ ∈ Cνj). We now have τ ∈ B ⊆ Kp
(b,d] and σ ∈ Kβ ⊆ Kp

(b−1,b], which implies

that σ ∩ τ = ∅, contradicting σ ⊆ τ . Therefore, σ ∈ ∂(B). Since τ ∈Mνj , we have σ ∈Mνj ,

and so σ ∈ Mνj ∩ ∂(B). On the other hand, let σ be any p-simplex in Mνj ∩ ∂(B). Since

σ ∈ ∂(B), σ is a face of only one (p+1)-simplex τ in B. We then prove that τ ∈Mνj . Suppose

instead that τ ̸∈ Mνj . Then, since σ ∈ Mνj , σ must be a face of (p + 1)-simplex τ ′ ∈ Mνj .

It follows that σ ∈ Kβ, because if not, τ and τ ′ would both be in Mνj . We then reach the

contradiction that σ ∩ τ = ∅ because τ ∈ B ⊆ Kp
(b,d] and σ ∈ Kβ ⊆ Kp

(b−1,b]. Therefore, σ is

a face of only one (p+ 1)-simplex τ in Mνj ∩B, which means that σ ∈ ∂(Mνj ∩B).

Note that ∑d
i=bA

νj
i = Mνj ∩ A = Cνj because Cνj ⊆ A. Hence, by Equation ( 3.4 )

z
νj
b = ∂

 d∑
i=b+1

A
νj
i

 = ∂

 d∑
i=b

A
νj
i

 + ∂
(
A
νj
b

)
= ∂

(
Cνj

)
+ ∂

(
A
νj
b

)

Now we have z
νj
b + ∂

(
Cνj

)
= ∂

(
A
νj
b

)
, i.e., zνj

b ∼ ∂
(
Cνj

)
in Mνj ∩ Kp

(b−1,b+1). Similar to

Equation (  3.4 ), for each i s.t. b < i < d, we have ∂
( ∑d

η=i A
νj
η

)
= z

νj
i−1 and ∂

( ∑d
η=i+1 A

νj
η

)
= z

νj
i .

Therefore, ∂
(
A
νj
i

)
= z

νj
i−1 + z

νj
i , i.e., zνj

i−1 ∼ z
νj
i in Mνj ∩ Kp

(i−1,i+1). We also have that

∂
( ∑d

η=dA
νj
η

)
= z

νj
d−1, i.e., zνj

d−1 is null homologous in Mνj ∩Kδ+1. So
{
z
νj
i | b ≤ i < d

}
is a

set of p-cycles satisfying the condition specified in Step  2 of Algorithm  3.3.2 , which means

that ∑d−1
i=b w(ζνj

i ) ≤ ∑d−1
i=b w(zνj

i ).

Finally, we have

w(S, T ) =
∑

e∈E′(S,T )
w(e) +

ℓ∑
j=0

w
({
ϕνj , ϕ

})
= w(zb−1) +

ℓ∑
j=0

d−1∑
i=b

w
(
ζ
νj
i

)

≤ w(zb−1) +
d−1∑
i=b

ℓ∑
j=0

w
(
z
νj
i

)
=

d−1∑
i=b−1

w(zi)

where
{
ϕνj , ϕ

}
denotes the augmenting edge in G connecting ϕνj and ϕ.

Theorem 3.3.2. Algorithm  3.3.2 computes an optimal sequence of level persistent p-cycles

for a given closed-open interval.
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3.3.3 Closed-closed case

In the subsection, we describe the computation of the optimal persistent p-cycles for

a closed-closed interval
[
αpb , α

p
d

]
from Persp(Lp(f)), which is produced by a simplex-wise

interval [Kβ, Kδ] from Persp(Fp(f)). Due to the similarity to the closed-open case, we only

describe the algorithm briefly. Figure  3.7 provides examples for p = 1, in which different

sequences of persistent 1-cycles are formed for the interval
[
α1

3, α
1
5

]
, and two of them are

z1
2 + z3

2 , z
1
3 + z3

3 , z
1
4 + z3

4 , z
1
5 + z3

5 and z0
2 , z

0
3 , z

0
4 + z2

4 , z
0
5 + z2

5 .

Similar to the previous cases, we have the following relevant portion of Fp(f):

Kp
(b−1,b) ↪99K Kβ−1

σβ−1
↪−−−→ Kβ ↪99K Kp

(b−1,b+1) L99↩ K
p
(b,b+1) ↪99K · · ·

L99↩ Kp
(d−1,d) ↪99K K

p
(d−1,d+1) L99↩ Kδ

σδ←−−↩ Kδ+1 L99↩ Kp
(d,d+1)

(3.5)

Note that the creator σβ−1 and the destroyer σδ are both p-simplices [  27 ], and the computa-

tion can be restricted to the subcomplex Kp
(b−1,d+1). Roughly speaking, the algorithm for the

closed-closed case resembles the one for the closed-open case in that it now performs similar

operations on both Kβ and Kδ as Algorithm  3.3.2 does on Kβ. The idea is as follows:

1. First, instead of directly working on Kβ and Kδ, we work on Kβ and Kδ, which include

some missing (p+ 1)-simplices. Formally,

Kβ = Kβ ∪ {(p+ 1)-simplices with all p-faces in Kβ},

and Kδ is defined similarly.

2. Let C0, . . . , Ck be all the (p+ 1)-connected components of Kp
(b−1,d+1) \

(
Kβ ∪Kδ

)
with

boundaries in Kβ ∪ Kδ. Then, only C0, . . . , Ck can be used to form the persistent p-

cycles in the p-th regular complexes. Re-index these components such that C0, . . . , Ch
are all the ones whose boundaries contain both σβ−1 and σδ. We have that h = 0 or

1 (i.e., one or two of them). If h = 0, then C0 must take part in forming a sequence

of persistent cycles for
[
αpb , α

p
d

]
. If h = 1, then either C0 or C1 but not both must take

part in forming persistent cycles for the interval.
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3. Compute minimum p-cycles in the p-th regular complexes similarly as in Step  2 of

Algorithm  3.3.2 . For a Cj, let Mj be its closure. If the boundary of Cj lies completely

in Kβ, the computed p-cycles
{
ζ j

i ⊆ Mj ∩ Kp
(i,i+1) | b ≤ i < d

}
is the set with the

minimum sum of weight satisfying the conditions as in Step  2 of Algorithm  3.3.2 .

If the boundary of Cj lies completely in Kδ, the computed minimum p-cycles satisfy

symmetric conditions. If the boundary of Cj intersects both Kβ and Kδ, the computed

minimum p-cycles satisfy: ζ j
b ∼ ∂(Cj)∩Kβ in Kp

(b−1,b+1), ζ
j
d−1 ∼ ∂(Cj)∩Kδ in Kp

(d−1,d+1),

and the consecutive cycles are homologous.

4. To compute the optimal persistent p-cycles, we build a dual graph for Kβ ∪ Kδ, in

which the boundary of each Cj corresponds to a dummy vertex ϕj, and the remaining

boundary portion corresponds to a dummy vertex ϕ. We also add the augmenting

edges to the dual graph and set their weights similarly to Algorithm  3.3.2 . For each

i s.t. 0 ≤ i ≤ h, we build an (s, t)-graph on the dual graph of Kβ ∪ Kδ with source

being
{
ϕi

}
and sink being

{
ϕ, ϕ0, . . . , ϕh

}
\

{
ϕi

}
. The minimum (s, t)-cut for all the

(s, t)-graphs we build produces an optimal sequence of persistent p-cycles for
[
αpb , α

p
d

]
.

α
1

1
α
1

2
α
1

3 α
1

4
α
1

5 α
1

6
α
1

7
α
1
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(a)
α
1
2 α

1
3 α

1
3 α

1
5 α

1
5 α

1
6

z
3
2

z
2
4

z
3
3 z

3
4 z

3
5

z
2
5

z
1
2 z

1
3 z

1
4 z

1
5

z
0
3 z

0
4

z
0
2 z

0
5

C0

C1

C2

C3

Kβ KδK
1
(2,6) \ (Kβ ∪Kδ)

(b)

Figure 3.7. (a) A complex K with the height function f taken over the
horizontal line and the 1st critical values listed. (b) The relevant subcomplex
Kp

(b−1,d+1) = K1
(2,6) for the interval

[
α1

3, α
1
5

]
, where Kβ and Kδ are broken from

the remaining parts for a better illustration. An empty dot indicates that the
point is not included in the space.
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We can look at Figure  3.7 for intuitions of the above algorithm, where p = 1 and the

interval of interest is
[
α1

3, α
1
5

]
. In Figure  3.7b , there are four 2-connected components of

K1
(2,6) \

(
Kβ ∪Kδ

)
with boundaries in Kβ ∪Kδ, which are C0, C1, C2, and C3. Among them,

C0, C1 are the ones whose boundaries contain both σβ−1 and σδ. The persistent 1-cycles

z1
2 + z3

2 , z
1
3 + z3

3 , z
1
4 + z3

4 , z
1
5 + z3

5 come from the components C1 and C3, in which the starting

one z1
2 +z3

2 is homologous to ∂(C1)∩Kβ+∂(C3)∩Kβ, and the ending one z1
5 +z3

5 is homologous

to ∂(C1) ∩Kδ + ∂(C3) ∩Kδ. Another sequence z0
2 , z

0
3 , z

0
4 + z2

4 , z
0
5 + z2

5 comes from C0 and C2,

in which the starting one z0
2 is homologous to ∂(C0) ∩ Kβ, and the ending one z0

5 + z2
5 is

homologous to ∂(C0) ∩Kδ + ∂(C2). To compute the optimal sequence of persistent 1-cycles,

one first computes the minimum 1-cycles (e.g.,
{
ζ3

3 , ζ
3
4

}
) in each component of C0, . . . , C3.

Then, to determine the optimal combination of the components and the cycles in Kβ and

Kδ, one leverages the dual graph of Kβ ∪Kδ and the augmenting edges.

We finally note that for the degenerate case of b = d, since there are no p-th regular

complexes between Kβ and Kδ, the algorithm needs an adjustment: one simply does not

add augmenting edges at all.

Complexity.

Let n be the number of bits used to encode K. Then, for the three algorithms in this

section, operations other than the minimum cut computation can be done in O(n log n) time.

Using the max-flow algorithm by Orlin [ 47 ], the time complexity of all three algorithms is

O(n2). Note that we assume persistence intervals to be given so that the time used for

computing the levelset zigzag barcode is not included.

3.4 Equivalence of p-th and classical levelset filtrations

In this section, we prove that the p-th levelset filtration defined in Section  3.2.1 and the

classical one defined by Carlsson et al. [ 27 ] produce equivalent p-th persistence intervals.

We first recall the classical definition in Section  3.4.1 and then prove our conclusion in

Section  3.4.2 .
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3.4.1 Classical levelset zigzag

Throughout this section, let K be a finite simplicial complex with underlying space

X = |K| and f : X → R be a generic PL function with critical values α0 = −∞ < α1 <

· · · < αn < αn+1 = ∞. The original construction [  27 ] of levelset zigzag persistence picks

regular values s0, s1, . . . , sn so that each si ∈ (αi, αi+1). Then, the levelset filtration of f ,

denoted Lc(f), is defined as

Lc(f) : f−1(s0) ↪→ f−1[s0, s1]←↩ f−1(s1) ↪→ f−1[s1, s2]←↩ · · · ↪→ f−1[sn−1, sn]←↩ f−1(sn)

(3.6)

In order to align with our constructions in Section  3.2.1 , we adopt an alternative but

equivalent definition of Lc(f) as follows, where we denote f−1(αi, αj) as X(i,j):

Lc(f) : X(0,1) ↪→ X(0,2) ←↩ X(1,2) ↪→ X(1,3) ←↩ · · · ↪→ X(n−1,n+1) ←↩ X(n,n+1) (3.7)

Note that each X(i,i+1) deformation retracts to f−1(si) and each X(i−1,i+1) deformation retracts

to f−1[si−1, si], so that zigzag modules induced by the two filtrations in ( 3.6 ) and ( 3.7 ) are

isomorphic.

The barcode Persp(Lc(f)) is then the classical version of p-th levelset barcode defined

in [  27 ]. Intervals in Persp(Lc(f)) can also be mapped to real-value intervals in which the

homological features persist:

closed-open:
[
X(b−1,b+1),X(d−1,d)

]
⇔ [αb, αd)

open-closed:
[
X(b,b+1),X(d−1,d+1)

]
⇔ (αb, αd]

closed-closed:
[
X(b−1,b+1),X(d−1,d+1)

]
⇔ [αb, αd]

open-open:
[
X(b,b+1),X(d−1,d)

]
⇔ (αb, αd)
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3.4.2 Equivalence

The following theorem is the major conclusion of this section (recall that Lc
p(f) is the

continuous version of p-th levelset filtration of f as in Definition  3.2.2 ):

Theorem 3.4.1. For an arbitrary PL function f as defined above, the real-value intervals

in Persp(Lc(f)) and Persp(Lc
p(f)) are the same.

To prove Theorem  3.4.1 , we first provide the following proposition:

Proposition 3.4.1. Let αℓ ≤ αi < αj ≤ αk be critical values of f . If αh is not a p-

th homologically critical value for each h s.t. ℓ < h ≤ i or j ≤ h < k, then the map

Hp(X(i,j))→ Hp(X(ℓ,k)) induced by inclusion is an isomorphism.

∅ X(i,i+1) X(i+1,i+2) X(i+2,j) X(i+3,i+4) X(i+4,k)

X(i,i+1) X(i,i+2) X(i+1,j) X(i+2,i+4) X(i+3,k)

X(i,i+2) X(i,j) X(i+1,i+4) X(i+2,k)

X(i,j) X(i,i+4) X(i+1,k)

X(i,i+4) X(i,k)

X(i,k)

≈ ≈ ≈ ≈

D2

D 1

Figure 3.8. Mayer-Vietoris pyramid for j = i + 3, k = i + 5.

Proof. We first prove that the inclusion-induced map Hp(X(i,j)) → Hp(X(i,k)) is an isomor-

phism. For this, we build a Mayer-Vietoris pyramid similar to the one in [ 27 ] for proving

the Pyramid Theorem. Moreover, in the pyramid, let D1 be the filtration along the north-

eastbound diagonal and D2 be the filtration along the bottom. An example is shown in

Figure  3.8 for j = i + 3, k = i + 5, where inclusion arrows in D1, D2 are solid and the remain-
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ing arrows are dashed. Since all diamonds in the pyramid are Mayer-Vietoris diamonds [  27 ],

each interval [X(i,i+b),X(i,i+d)] in Persp(D1) corresponds to the following interval in Persp(D2):


[
X(i,i+1),X(i+d−1,i+d)

]
if b = 1[

X(i+b−2,i+b),X(i+d−1,i+d)
]

otherwise

The fact that αh is not a p-th critical value for j ≤ h < k implies that linear maps in Hp(D2)

induced by arrows between X(j−1,j) and X(k−1,k) (i.e., those arrows marked with ‘≈’ in the

example) are isomorphisms. This means that no interval in Persp(D2) starts with X(h−1,h+1)

or ends with X(h−1,h) for j ≤ h < k. So we have that no interval in Persp(D1) starts with

X(i,h+1) or ends with X(i,h) for j ≤ h < k. This in turn means that each Hp(X(i,h)) →

Hp(X(i,h+1)) in Hp(D1) is an isomorphism for j ≤ h < k, which implies that their composition

Hp(X(i,j))→ Hp(X(i,k)) is an isomorphism.

Symmetrically, we have that Hp(X(i,k)) → Hp(X(ℓ,k)) is an isomorphism, which implies

that Hp(X(i,j))→ Hp(X(ℓ,k)) is an isomorphism.

We now prove Theorem  3.4.1 . Let αp0 = −∞ < αp1 < · · · < αpm < αpm+1 = ∞ be

all the p-th homologically critical values of f , and let αpi = αλi for each i. Note that

Xp
(i,j) = X(λi,λj) for i < j. We first show that the two zigzag modules as defined in Figure  3.9 

are isomorphic, where the upper module is Hp(Lc(f)), and the lower module is a version

of Hp(Lc
p(f)) elongated by making several copies of p-th homology groups of the regular

subspaces and connecting them by identity maps. The commutativity of the diagram is

easily seen because all maps are induced by inclusion. The vertical maps are isomorphisms

by Proposition  3.4.1 . Hence, the two modules in Figure  3.9 are isomorphic. This means

that persistence intervals of the two modules bijectively map to each other, and we also

have that their corresponding real-value intervals are the same. For example, an interval

[X(λb−1,λb+1),X(λd−1,λd)] from Hp(Lc(f)) corresponds to an interval [Xp
(b−1,b+1),X

p
(d−1,d)] from

Hp(Lc
p(f)), and they both produce the real-value interval [αλb

, αλd
).
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· · · Hp
(
X(λi−1,λi+1)

)
Hp

(
X(λi,λi+1)

)
Hp

(
X(λi,λi+2)

)
· · · Hp

(
X(λi+1−1,λi+1)

)
· · ·

· · · Hp
(
Xp(i−1,i+1)

)
Hp

(
Xp(i,i+1)

)
Hp

(
Xp(i,i+1)

)
· · · Hp

(
Xp(i,i+1)

)
· · ·

≈ ≈ ≈ ≈
Figure 3.9. Two isomorphic zigzag modules where the upper module is
Hp(Lc(f)) and the lower module is an elongated version of Hp(Lc

p(f)).

3.5 Connection to interval decomposition

In this section, we connect levelset persistent cycles to the interval decomposition of

zigzag modules. Specifically, for a generic PL function f , we show that levelset persistent

p-cycles induce an entire interval decomposition for Hp(Lp(f)) (Theorem  3.5.2 ), and part

of an interval decomposition for Hp(Fp(f)) with the rest being from the trivial intervals

(Theorem  3.5.1 ).

To reach the conclusions, we first define representative cycles for a simplex-wise filtration,

which generate an interval submodule in a straightforward way, i.e., picking a cycle for a

homology class at each position. Note that similar definitions also appear in [ 21 ].

Definition 3.5.1. Let p ≥ 0, X : X0 ↔ · · · ↔ Xℓ be a simplex-wise filtration, and [b, d] be

an interval in Persp(X ). Denote each linear map in Hp(X ) as ψj : Hp(Xj)↔ Hp(Xj+1). The

representative p-cycles for [b, d] is a sequence of p-cycles {zi ⊆ Xi | b ≤ i ≤ d} such that:

1. For b > 0, [zb] is not in img(ψb−1) if Xb−1 ↪→ Xb is forward, or [zb] is the non-zero

class in ker(ψb−1) otherwise.

2. For d < ℓ, [zd] is not in img(ψd) if Xd ←↩ Xd+1 is backward, or [zd] is the non-zero

class in ker(ψd) otherwise.

3. For each i ∈ [b, d− 1], [zi]↔ [zi+1] by ψi, i.e., [zi] 7→ [zi+1] or [zi]←[ [zi+1].

The interval submodule I of Hp(X ) induced by the representative p-cycles is a module such

that I(i) equals the 1-dimensional vector space generated by [zi] for i ∈ [b, d] and equals 0

otherwise, where I(i) is the i-th vector space in I.

The following proposition connects representative cycles to the interval decomposition:
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Proposition 3.5.1. Let p ≥ 0, X : X0 ↔ · · · ↔ Xℓ be a simplex-wise filtration with

Hp(X0) = 0, and Persp(X ) = {[bα, dα] | α ∈ A} be indexed by a set A. One has that Hp(X ) is

equal to a direct sum of interval submodules ⊕
α∈A I [bα,dα] if and only if for each α, I [bα,dα]

is induced by a sequence of representative p-cycles for [bα, dα].

Proof. Suppose that Hp(X ) = ⊕
α∈A I [bα,dα] is an interval decomposition. For each α, define

a sequence of representative p-cycles {zαi | bα ≤ i ≤ dα} for [bα, dα] by letting zαi be an

arbitrary cycle in the non-zero class of the i-th vector space of I [bα,dα]. It can be verified

that {zαi | bα ≤ i ≤ dα} are valid representative p-cycles for [bα, dα] inducing I [bα,dα]. This

finishes the “only if” part of the proof. The “if” part follows directly from the proof of

Proposition  4.3.1 .

Now consider a generic PL function f : |K| → R on a finite simplicial complex K and

a non-trivial interval [Kβ, Kδ] of Persp(Fp(f)) for p ≥ 1. A sequence of levelset persistent

p-cycles {zi} for [Kβ, Kδ] induces a sequence of representative p-cycles {ζj | β ≤ j ≤ δ} for

this interval as follows: for any Kj ∈ [Kβ, Kδ], we can always find a zi satisfying zi ⊆ Kj,

i.e., the complex that zi originally comes from is included in Kj; then, set ζj = zi. It can be

verified that the induced representative p-cycles are valid so that levelset persistent cycles

also induce interval submodules. We then have the following fact:

Theorem 3.5.1. For any non-trivial interval J of Persp(Fp(f)), a sequence of levelset per-

sistent p-cycles for J induces an interval submodule of Hp(Fp(f)) over J . These induced

interval submodules constitute part of an interval decomposition for Hp(Fp(f)), where the

remaining parts are from the trivial intervals.

Proof. This follows from Proposition  3.5.1 . Note that in order to apply Proposition  3.5.1 ,

Hp(Kp
(0,1)) has to be trivial, where Kp

(0,1) is the starting complex of Fp(f). If the minimum

value of f is p-th critical, then Kp
(0,1) = K(0,1) = ∅, and so Hp(Kp

(0,1)) is trivial. Otherwise,

since Hp(Kp
(0,1)) = Hp(K(0,2)) (Proposition  3.4.1 ) and K(0,2) deformation retracts to a point,

we have that Hp(Kp
(0,1)) is trivial.

Similarly as for Hp(Fp(f)), levelset persistent p-cycles can also induce interval submodules

for Hp(Lp(f)), the details of which are omitted. The following fact follows:
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Theorem 3.5.2. Let Persp(Lp(f)) = {Jk | k ∈ Λ} be indexed by a set Λ. For any interval Jk
of Persp(Lp(f)), a sequence of levelset persistent p-cycles for Jk induces an interval submodule

Ik of Hp(Lp(f)) over Jk. Combining all the modules, one derives an interval decomposition

Hp(Lp(f)) = ⊕
k∈Λ Ik.

Proof. This follows from Theorem  3.5.1 . Note that Hp(Lp(f)) can be viewed as being “con-

tracted” from Hp(Fp(f)). While in Theorem  3.5.1 , the induced interval submodules form

only part of the interval decomposition of Hp(Fp(f)), the remaining submodules from the

trivial intervals disappear in the interval decomposition of Hp(Lp(f)).
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4. COMPUTING GRAPH ZIGZAG PERSISTENCE USING

REPRESENTATIVES

In this chapter, we look into the computation of zigzag persistent homology on graph inputs

with the help of representatives. Our research is motivated by the fact that graphs appear in

many applications as abstraction of real-world phenomena, where vertices represent certain

objects and edges represent their relations. Furthermore, rather than being stationary, graph

data obtained in applications usually change with respect to some parameter such as time.

Persistent homology is then a suitable descriptor for the changing graph data because it

quantifies the life span of topological features as the graph changes. However, standard

non-zigzag persistence [ 3 ] only allows addition of vertices and edges during the change,

whereas deletion may also happen in practice. For example, many complex systems such

as social networks, food webs, or disease spreading are modeled by the so-called “dynamic

networks” [ 29 ], [ 54 ], [ 55 ] (see Figure  4.1 for an example), where vertices and edges can appear

and disappear at different time. Therefore, zigzag persistence proposed by Carlsson and de

Silva [ 7 ] is a more natural tool in such scenarios because simplices can be both added and

deleted.

(a) (b) (c) (d)

Figure 4.1. A dynamic network with four prominent clusters each colored
differently. Black edges connect different clusters and forward (resp. backward)
arrows indicate additions (resp. deletions) of vertices and edges. From (a) to
(b), two clusters split; from (b) to (c), two clusters merge; from (c) to (d), one
cluster disappears.

Algorithms for both zigzag and non-zigzag persistence have a general-case time complex-

ity of O(mω) [ 3 ], [ 21 ], [ 27 ], [ 30 ], where m is the length of the input filtration and ω < 2.37286
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is the matrix multiplication exponent [ 31 ]. For the special case of graph filtrations, it is well

known that non-zigzag persistence can be computed in O(mα(m)) time, where α(m) is the

inverse Ackermann’s function that is almost constant for all practical purposes [ 56 ]. How-

ever, analogous faster algorithms for zigzag persistence on graphs are not known. In this

chapter, we present algorithms for zigzag persistence on graphs with near-linear time com-

plexity. In particular, given a zigzag filtration of length m for a graph with n vertices and

edges, our algorithm for 0-dimension runs in O(m log2 n+m logm) time, and our algorithm

for 1-dimension runs in O(m log4 n) time. Observe that the algorithm for 0-dimension works

for arbitrary complexes by restricting to the 1-skeletons.

The difficulty in designing faster zigzag persistence algorithms for the special case of

graphs lies in the deletion of vertices and edges. For example, besides merging into big-

ger ones, connected components can also split into smaller ones because of edge deletion.

Therefore, one cannot simply kill the younger component during merging as in standard

persistence [ 3 ], but rather has to pair the merge and departure events with the split and

entrance events (see Sections  4.3 for details). Similarly, in dimension one, deletion of edges

may kill 1-cycles so that one has to properly pair the creation and destruction of 1-cycles,

instead of simply treating all 1-dimensional intervals as infinite ones.

Our solutions are as follows: in dimension zero, we find that the O(n log n) algorithm

by Agarwal et al. [ 32 ] originally designed for pairing critical points of Morse functions on 2-

manifolds can be utilized in our scenario. We formally prove the correctness of applying the

algorithm with the help of representatives, and use a dynamic connectivity data structure [  57 ]

to achieve the claimed complexity. The algorithm for 1-dimension finds a pairing of the

positive and negative edges such that representative cycles for all pairs exist (see the Pairing

Principle in Section  4.4 ). We further reduce the pairing to finding the max edge-weight of

a path in a minimum spanning forest. Utilizing a data structure for dynamic minimum

spanning forest [ 57 ], we achieve the claimed time complexity.
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4.1 Literature review

The algorithm for computing persistent homology by Edelsbrunner et al. [ 3 ] is a corner-

stone of topological data analysis. Several extensions followed after this initial development.

De Silva et al. [ 58 ] proposed to compute persistent cohomology instead of homology which

gives the same barcode. De Silva et al. [ 15 ] then showed that the persistent cohomology algo-

rithm runs faster in practice than the version that uses homology. The annotation technique

proposed by Dey et al. [ 8 ] implements the cohomology algorithm by maintaining a coho-

mology basis more succinctly and extends to towers connected by simplicial maps. These

algorithms run in O(m3) time.

Carlsson and de Silva [  7 ] introduced zigzag persistence as an extension of the standard

persistence, where they also presented a decomposition algorithm for computing zigzag bar-

codes on the level of vector spaces and linear maps. This algorithm is then adapted to zigzag

filtrations at simplicial level by Carlsson et al. [ 27 ] with a time complexity of O(m3). Both

algorithms [  7 ], [ 27 ] utilize a construct called right filtration and a birth-time vector. Maria

and Oudot [ 21 ] proposed an algorithm for zigzag persistence based on some diamond prin-

ciples where an inverse non-zigzag filtration is always maintained during the process. The

algorithm in [  21 ] is shown to run faster in experiments than the algorithm in [ 27 ] though

the time complexities remain the same. Milosavljević et al. [ 30 ] proposed an algorithm for

zigzag persistence based on matrix multiplication which runs in O(mω) time, giving the best

asymptotic bound for computing zigzag and non-zigzag persistence in general dimensions.

The algorithms reviewed so far are all for general dimensions and many of them are

based on matrix operations. Thus, it is not surprising that the best time bound achieved is

O(mω) given that computing Betti numbers for a simplicial 2-complex of size m is as hard

as computing the rank of a Z2-matrix with m non-zero entries as shown by Edelsbrunner

and Parsa [ 59 ]. To lower the complexity, one strategy (which is adopted in this chapter) is

to consider special cases where matrix operations can be avoided. The work by Dey [  60 ] is

probably most related to ours in that regard, who proposed an O(m logm) algorithm for

non-zigzag persistence induced from height functions on R3-embedded complexes.
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4.2 Preliminaries

We re-use most definitions and conventions presented in Section  3.1 , with some additional

regulations which we detail in this section.

In this chapter, besides what is defined in Section  3.1 , an elementary zigzag module

also starts with the trivial (zero) vector space. We also only consider simplex-wise zigzag

filtrations, which can have the following form:

F : K0
σ0←→ K1

σ1←→ · · · σm−1←−−→ Km

where each σi denotes the simplex added to or deleted from Ki to form Ki+1. For computa-

tional purposes, we sometimes assume that a filtration starts with the empty complex, i.e.,

K0 = ∅ in F . Throughout the chapter, we also assume that each Ki in F is a subcomplex

of a fixed complex K; such a K, when not given, can be constructed by taking the union of

every Ki in F . In this case, we call F a filtration of K.

In this chapter, whenever F is used to denote a filtration, we use φpi to denote a linear

map in the module Hp(F). That is, Hp(F) has the following form:

Hp(F) : Hp(K0)
φp

0←→ Hp(K1)
φp

1←→ · · ·
φp

m−1←−−→ Hp(Km)

Note that Hp(F) is an elementary module if F starts with an empty complex.

4.3 Zero-dimensional zigzag persistence

We present our algorithm for 0-th zigzag persistence 

1
 in this section. The input is as-

sumed to be on graphs but note that our algorithm can be applied to any complex by

restricting to its 1-skeleton. We first define the barcode graph of a zigzag filtration which is

a construct that our algorithm implicitly works on. In a barcode graph, nodes correspond

to connected components of graphs in the filtration and edges encode the mapping between

the components:

1
 ↑ For brevity, henceforth we call p-dimensional zigzag persistence as p-th zigzag persistence.
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G1 G2

2

G3

2

G4

2 3

G5

2 3

G6

2 3

G7

2 3

1 1 1 1 1 1 1 4

G8

2 3

1 4

G9

2 3

1 4

G10

2 3

4

(a) A zigzag filtration of graphs with 0-th barcode {[2, 2], [4, 4], [6, 8], [8, 9], [7, 10], [1, 10]}.

1 2 3 4 5 6 7 8 9Level: 10

(b) The barcode graph for the filtration shown in Figure  4.2a .

T2 1 2 T3 1 2 3

⇒

1 2 3 T5 1 5 T6 1 5 6T1

T9 1 5 9 1 5 9

⇒

1

T10

7 7

1 107

⇒

1 107

2 3 4 2 3 4

2 3 4 2 3 46 8 6 8

52 3 4 6 52 3 4 698 98

(c) Barcode forests constructed in Algorithm  4.3.1 for the barcode graph in Figure  4.2b . For
brevity, some forests are skipped. The horizontally arranged labels indicate the levels.

Figure 4.2. Examples of a zigzag filtration, a barcode graph, and barcode forests.

Definition 4.3.1 (Barcode graph). For a graph G and a zigzag filtration F : G0 ↔ G1 ↔

· · · ↔ Gm of G, the barcode graph GB(F) of F is a graph whose vertices (preferably called

nodes) are associated with a level and whose edges connect nodes only at adjacent levels.

The graph GB(F) is constructively described as follows:

• For each Gi in F and each connected component of Gi, there is a node in GB(F) at

level i corresponding to this component; this node is also called a level-i node.

• For each inclusion Gi ↔ Gi+1 in F , if it is forward, then there is an edge connecting

a level-i node vi to a level-(i + 1) node vi+1 if and only if the component of vi maps to
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the component of vi+1 by the inclusion. Similarly, if the inclusion is backward, then vi

connects to vi+1 by an edge iff the component of vi+1 maps to the component of vi.

For two nodes at different levels in GB(F), the node at the higher (resp. lower) level is said

to be higher (resp. lower) than the other.

Remark 4.3.1. Note that some works [ 54 ], [ 60 ] also have used similar notions of barcode

graphs.

Figure  4.2a and  4.2b give an example of a zigzag filtration and its barcode graph. Note

that a barcode graph is of size O(mn), where m is the length of F and n is the number of

vertices and edges of G. Although we present our algorithm (Algorithm  4.3.1 ) by first build-

ing the barcode graph, the implementation does not do so explicitly, allowing us to achieve

the claimed time complexity; see Section  4.3.1 for the implementation details. Introducing

barcode graphs helps us justify the algorithm, and more importantly, points to the fact that

the algorithm can be applied whenever such a barcode graph can be built.

Algorithm 4.3.1 (Algorithm for 0-th zigzag persistence).

Given a graph G and a zigzag filtration F : ∅ = G0 ↔ G1 ↔ · · · ↔ Gm of G, we first

build the barcode graph GB(F), and then apply the pairing algorithm described in [ 32 ] on

GB(F) to compute Pers(H0(F)). For a better understanding, we rephrase this algorithm

which originally works on Reeb graphs:

The algorithm iterates for i = 0, . . . ,m − 1 and maintains a barcode forest Ti, whose

leaves have a one-to-one correspondence to level-i nodes of GB(F). Like the barcode graph,

each tree node in a barcode forest is associated with a level and each tree edge connects nodes

at adjacent levels. For each tree in a barcode forest, the lowest node is the root. Initially, T0 is

empty; then, the algorithm builds Ti+1 from Ti in the i-th iteration. Intervals for Pers(H0(F))

are produced while updating the barcode forest. (Figure  4.2c illustrates such updates.)

Specifically, the i-th iteration proceeds as follows: first, Ti+1 is formed by copying the

level-(i + 1) nodes of GB(F) and their connections to the level-i nodes, into Ti; the copying

is possible because leaves of Ti and level-i nodes of GB(F) have a one-to-one correspondence;

see transitions from T5 to T6 and from T9 to T10 in Figure  4.2c . We further change Ti+1

under the following events:
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Entrance: One level-(i+1) node in Ti+1, said to be entering, does not connect to any level-i

node.

Split: One level-i node in Ti+1, said to be splitting, connects to two different level-(i + 1)

nodes. For the two events so far, no changes need to be made on Ti+1.

Departure: One level-i node u in Ti+1, said to be departing, does not connect to any level-

(i+1) node. If u has splitting ancestors (i.e., ancestors which are also splitting nodes),

add an interval [j + 1, i] to Pers(H0(F)), where j is the level of the highest splitting

ancestor v of u; otherwise, add an interval [j, i] to Pers(H0(F)), where j is the level of

the root v of u. We then delete the path from v to u in Ti+1.

Merge: Two different level-i nodes u1, u2 in Ti+1 connect to the same level-(i + 1) node.

Tentatively, Ti+1 may now contain a loop and is not a tree. If u1, u2 are in different

trees in Ti, add an interval [j, i] to Pers(H0(F)), where j is the level of the higher root

of u1, u2 in Ti; otherwise, add an interval [j + 1, i] to Pers(H0(F)), where j is the level

of the highest common ancestor of u1, u2 in Ti. We then glue the two paths from u1

and u2 to their level-j ancestors in Ti+1, after which Ti+1 is guaranteed to be a tree.

No-change: If none of the above events happen, no changes are made on Ti+1.

At the end, for each root in Tm at a level j, add an interval [j,m] to Pers(H0(F)), and for

each splitting node in Tm at a level j, add an interval [j + 1,m] to Pers(H0(F)).

Remark 4.3.2. The justification of Algorithm  4.3.1 is given in Section  4.3.2 .

Figure  4.2c gives examples of barcode forests constructed by Algorithm  4.3.1 for the

barcode graph shown in Figure  4.2b , where T1 and T2 introduce entering nodes, T6 introduces

a splitting node, and T10 introduces a departing node. In T10, the departure event happens

and the dotted path is deleted, producing an interval [8, 9]. In T3 and T9, the merge event

happens and the dotted paths are glued together, producing intervals [2, 2] and [6, 8]. Note

that the glued level-i nodes are in different trees in T3 and are in the same tree in T9.
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4.3.1 Implementation

As mentioned, to achieve the claimed time complexity, we do not explicitly build the

barcode graph. Instead, we differentiate the different events as follows: inserting (resp.

deleting) a vertex in F simply corresponds to the entrance (resp. departure) event, whereas

inserting (resp. deleting) an edge corresponds to the merge (resp. split) event only when

connected components in the graph merge (resp. split).

To keep track of the connectivity of vertices, we use a dynamic connectivity data structure

by Holm et al. [ 57 ], which we denote as D. Assuming that m is the length of F and n is the

number of vertices and edges of G, the data structure D supports the following operations:

• Return the identifier 

2
 of the connected component of a vertex v in O(log n) time. We

denote this subroutine as find(v).

• Insert or delete an edge, and possibly update the connectivity information, in O(log2 n)

amortized time.

We also note the following implementation details:

• All vertices of G are added to D initially and are then never deleted. But we make

sure that edges in D always equal edges in Gi as the algorithm proceeds so that D still

records the connectivity of Gi.

• At each iteration i, we update Ti to form Ti+1 according to the changes of the connected

components from Gi to Gi+1. For this, we maintain a key-value map ϕ from connected

components of D to leaves of the barcode forest, and ϕ is initially empty.

• In a barcode forest Ti, since the level of a leaf always equals i, we only record the level

of a non-leaf node. Note that at iteration i, a leaf in Ti may uniquely connect to a

single leaf in Ti+1. In this case, we simply let the leaf in Ti automatically become a leaf

in Ti+1; see Figure  4.3 . The size of a barcode forest is then O(m).

2
 ↑ Since D maintains the connectivity information by dynamically updating the spanning forest for the current

graph, the identifier of a connected component is indeed the identifier of a tree in the spanning forest.
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Figure 4.3. For the example in Figure  4.2 , to form T4, our implementation
only adds a level-4 entering node, whereas the leaf in T3 is not touched. Since
the level of a leaf always equals the index of the barcode forest, the leaf at level
3 in T3 automatically becomes a leaf at level 4 in T4.

Now we can present the full detail of the implementation. Specifically, for each addition

and deletion in F , we do the following in each case:

Adding vertex σi = v: Add an isolated node to the barcode forest and let ϕ(find(v)) equal

this newly added node.

Deleting vertex σi = v: Let ℓ = ϕ(find(v)); then, ℓ is the node in the barcode forest that

is departing. Update the barcode forest as described in Algorithm  4.3.1 .

Adding edge σi = (u, v): Let t1 = find(u), t2 = find(v), ℓ1 = ϕ(t1), and ℓ2 = ϕ(t2). If

t1 = t2, then the no-change event happens; otherwise, the merge event happens. We

then add (u, v) to D. For the no-change event, do nothing after this. For the merge

event, do the following: glue the paths from ℓ1 and ℓ2 to their ancestors as described

in Algorithm  4.3.1 ; attach a new child ℓ to the highest glued node; update ϕ(find(u))

to be ℓ.

Deleting edge σi = (u, v): Let ℓ = ϕ(find(u)), and then delete (u, v) from D. If find(u) =

find(v) after this, then the no-change event happens but we have to update ϕ(find(u))

to be ℓ because the identifiers of the connected components in D may change after

deleting the edge [ 57 ]. Otherwise, the split event happens: we attach two new children

ℓ1, ℓ2 to ℓ in the barcode forest and set ϕ(find(u)) = ℓ1, ϕ(find(v)) = ℓ2.

Mergeable trees.

Following the idea in [ 32 ], the barcode forest can be implemented using the mergeable

trees data structure by Georgiadis et al. [ 61 ]. Since the maximum number of nodes in a
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barcode forest is O(m), the data structure supports the following operations, each of which

takes O(logm) amortized time:

• Return the root of a node.

• Return the nearest common ancestor of two leaves (in the same tree).

• Glue the paths from two leaves (in the same tree) to their nearest common ancestor.

Note that while we delete the path from the departing node to its ancestor in the de-

parture event, deletions are not supported by mergeable trees. However, path deletions are

indeed unnecessary which are only meant for a clear exposition. Hence, during implemen-

tation, we only traverse each ancestor of the departing node until an unpaired 

3
 one is found

without actual deletions. Since each node can only be traversed once, the traversal in the

departure events takes O(m) time in total. See [ 61 , Section 5] for details of implementing

the barcode forest and its operations using mergeable trees.

Complexity.

The time complexity of the algorithm is O(m log2 n+m logm) dominated by the opera-

tions of the dynamic connectivity and the mergeable trees data structures.

4.3.2 Justification

In this subsection, we justify the correctness of Algorithm  4.3.1 . For each entering node

u in a Ti of Algorithm  4.3.1 , there must be a single node in GB(F) at the level of u with the

same property. So we also have entering nodes in GB(F). Splitting and departing nodes in

GB(F) can be similarly defined.

We first prepare some standard notions and facts in zigzag persistence (Definition  4.3.2 

and  4.3.3 , Proposition  4.3.1 ) that help with our proofs. Some notions also appear in previous

works in different forms; see, e.g., [ 21 ].
3

 ↑ An entering or splitting node is initially unpaired when introduced and becomes paired when its level is
used to produce an interval. E.g., the node v becomes paired in the departure event in Algorithm  4.3.1 .
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Definition 4.3.2 (Representatives). Let M : V0
ψ0←→ · · · ψm−1←−−→ Vm be an elementary zigzag

module and [s, t] ⊆ [1,m] be an interval. An indexed set {αi ∈ Vi | i ∈ [s, t]} is called a set

of partial representatives for [s, t] if for every i ∈ [s, t− 1], αi 7→ αi+1 or αi ←[ αi+1 by ψi; it

is called a set of representatives for [s, t] if the following additional conditions are satisfied:

1. If ψs−1 : Vs−1 → Vs is forward with non-trivial cokernel, then αs is not in img(ψs−1); if

ψs−1 : Vs−1 ← Vs is backward with non-trivial kernel, then αs is the non-zero element

in ker(ψs−1).

2. If t < m and ψt : Vt ← Vt+1 is backward with non-trivial cokernel, then αt is not in

img(ψt); if t < m and ψt : Vt → Vt+1 is forward with non-trivial kernel, then αt is the

non-zero element in ker(ψt).

Specifically, when M := Hp(F) for a zigzag filtration F , we use terms p-representatives and

partial p-representatives to emphasize the dimension p.

Remark 4.3.3. Notice the connection of the above definition with Definition  3.5.1 .

Remark 4.3.4. Let F be the filtration given in Figure  4.2a , and let α8, α9 be the sum of

the component containing vertex 1 and the component containing vertex 2 in G8 and G9.

Then, {α8, α9} is a set of 0-representatives for the interval [8, 9] ∈ Pers(H0(F)).

Definition 4.3.3 (Positive/negative indices). Let M : V0
ψ0←→ · · · ψm−1←−−→ Vm be an elemen-

tary zigzag module. The set of positive indices ofM, denoted P(M), and the set of negative

indices of M, denoted N(M), are constructed as follows: for each forward ψi : Vi → Vi+1,

if ψi is an injection with non-trivial cokernel, add i + 1 to P(M); if ψi is a surjection with

non-trivial kernel, add i to N(M). Furthermore, for each backward ψi : Vi ← Vi+1, if ψi is

an injection with non-trivial cokernel, add i to N(M); if ψi is a surjection with non-trivial

kernel, add i + 1 to P(M). Finally, add rank Vm copies of m to N(M).

Remark 4.3.5. For each ψi : Vi ↔ Vi+1 in Definition  4.3.3 , if i + 1 ∈ P(M), then i ̸∈ N(M);

similarly, if i ∈ N(M), then i + 1 ̸∈ P(M). Furthermore, if ψi is an isomorphism, then

i ̸∈ N(M) and i + 1 ̸∈ P(M).
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Note that N(M) in Definition  4.3.3 is in fact a multi-set; calling it a set should not cause

any confusion though. Also note that |P(M)| = |N(M)|, and every index in P(M) (resp.

N(M)) is the start (resp. end) of an interval in Pers(M). This explains why we add rank Vm
copies of m to N(M) because there are always rank Vm number of intervals ending with m

in Pers(M); see the example in Figure  4.2a where rank H0(G10) = 2.

Proposition 4.3.1. Let M be an elementary zigzag module and π : P(M) → N(M) be a

bijection. If every b ∈ P(M) satisfies that b ≤ π(b) and the interval [b, π(b)] has a set of

representatives, then Pers(M) = {[b, π(b)] | b ∈ P(M)}.

Proof. For each b ∈ P(M), let
{
αbj | j ∈ [b, π(b)]

}
be a set of representatives for [b, π(b)].

Then, define I [b,π(b)] as an interval submodule of M over [b, π(b)] such that I [b,π(b)](j) is

generated by αbj if j ∈ [b, π(b)] and is trivial otherwise, where I [b,π(b)](j) denotes the j-th

vector space in I [b,π(b)]. We claim that M = ⊕
b∈P(M) I [b,π(b)], which implies the proposition.

To prove this, suppose that M is of the form

M : V0
ψ0←→ V1

ψ1←→ · · · ψm−1←−−→ Vm

Then, we only need to verify that for every i ∈ [0,m], the set
{
αbi | b ∈ P(M) and [b, π(b)] ∋

i
}

is a basis of Vi. We prove this by induction on i. For i = 0, since V0 = 0,
{
αb0 | b ∈

P(M) and [b, π(b)] ∋ 0
}

= ∅ is obviously a basis. So we can assume that for an i ∈ [0,m−1],{
αbi | b ∈ P(M) and [b, π(b)] ∋ i

}
is a basis of Vi. We have the following cases:

ψi an isomorphism: In this case, i ̸∈ N(M) and i+1 ̸∈ P(M). If ψi : Vi → Vi+1 is forward,

then
{
αbi+1 | b ∈ P(M) and [b, π(b)] ∋ i + 1

}
=

{
ψi(αbi ) | b ∈ P(M) and [b, π(b)] ∋ i

}
.

The elements in
{
αbi+1 | b ∈ P(M) and [b, π(b)] ∋ i + 1

}
must then form a basis of Vi+1

because ψi is an isomorphism. The verification for ψi being backward is similar.

ψi : Vi → Vi+1 forward, coker(ψi) non-trivial: In this case, i ̸∈ N(M) and i + 1 ∈ P(M).

For each b ∈ P(M) such that [b, π(b)] ∋ i, [b, π(b)] ∋ i + 1 and αbi 7→ αbi+1 by ψi.

We then have that elements in
{
αbi+1 = ψi(αbi ) | b ∈ P(M) and [b, π(b)] ∋ i

}
are

linearly independent because ψi is injective. Since αi+1
i+1 ̸∈ img(ψi) by Definition  4.3.2 ,{

αbi+1 | b ∈ P(M) and [b, π(b)] ∋ i + 1
}

=
{
αbi+1 | b ∈ P(M) and [b, π(b)] ∋ i

}
∪

{
αi+1

i+1

}
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must contain linearly independent elements. The fact that the cardinality of the set

equals rank Vi+1 implies that it must form a basis of Vi+1.

ψi : Vi → Vi+1 forward, ker(ψi) non-trivial: In this case, i ∈ N(M) and i + 1 ̸∈ P(M).

Let j = π−1(i). For each b ∈ P(M) such that [b, π(b)] ∋ i and b ̸= j, [b, π(b)] ∋ i + 1

and αbi 7→ αbi+1 by ψi. We then have that
{
αbi+1 | b ∈ P(M) and [b, π(b)] ∋ i + 1

}
={

ψi
(
αbi

)
| b ∈ P(M) and [b, π(b)] ∋ i

}
\

{
ψi

(
αj

i

)}
. Since ψi is surjective, elements

in
{
ψi

(
αbi

)
| b ∈ P(M) and [b, π(b)] ∋ i

}
generate Vi+1, in which ψi

(
αj

i

)
= 0 by

Definition  4.3.2 . It follows that
{
αbi+1 | b ∈ P(M) and [b, π(b)] ∋ i + 1

}
forms a basis

of Vi+1 because it generates Vi+1 and its cardinality equals rank Vi+1.

ψi : Vi ← Vi+1 backward, coker(ψi) non-trivial: In this case, i ∈ N(M) and i+1 ̸∈ P(M).

For each b ∈ P(M) such that [b, π(b)] ∋ i and π(b) ̸= i, [b, π(b)] ∋ i + 1 and αbi ←[ αbi+1

by ψi. We then have that elements in
{
αbi+1 = (ψi)−1(αbi ) | b ∈ P(M), [b, π(b)] ∋

i, and π(b) ̸= i
}

are linearly independent because if they are not, then their images

under ψi are also not, which is a contradiction. Note that
{
αbi+1 | b ∈ P(M), [b, π(b)] ∋

i + 1
}

=
{
αbi+1 | b ∈ P(M), [b, π(b)] ∋ i, and π(b) ̸= i

}
and its cardinality equals

rank Vi+1, so it must form a basis of Vi+1.

ψi : Vi ← Vi+1 backward, ker(ψi) non-trivial: In this case, i ̸∈ N(M) and i + 1 ∈ P(M).

For each b ∈ P(M) such that [b, π(b)] ∋ i, [b, π(b)] ∋ i + 1 and αbi ←[ αbi+1 by ψi.

We then have that elements in
{
αbi+1 ∈ (ψi)−1(αbi ) | b ∈ P(M) and [b, π(b)] ∋ i

}
are

linearly independent because their images under ψi are. We also have that there is

no non-trivial linear combination of
{
αbi+1 | b ∈ P(M) and [b, π(b)] ∋ i

}
falling in

ker(ψi) because otherwise their images under ψi would not be linearly independent.

Since αi+1
i+1 is the non-zero element in ker(ψi) by Definition  4.3.2 , we have that

{
αbi+1 |

b ∈ P(M) and [b, π(b)] ∋ i + 1
}

=
{
αbi+1 | b ∈ P(M) and [b, π(b)] ∋ i

}
∪

{
αi+1

i+1

}
contains linearly independent elements. Then, it must form a basis of Vi+1 because its

cardinality equals rank Vi+1,

Now we present several propositions leading to our conclusion (Theorem  4.3.1 ). Specif-

ically, Proposition  4.3.2 states that a certain path in GB(F) induces a set of partial 0-
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representatives. Proposition  4.3.3 lists some invariants of Algorithm  4.3.1 . Proposition  4.3.2 

and  4.3.3 support the proof of Proposition  4.3.4 , which together with Proposition  4.3.1 im-

plies Theorem  4.3.1 .

From now on, G and F always denote the input to Algorithm  4.3.1 . Since each node in a

barcode graph represents a connected component, we also interpret nodes in a barcode graph

as 0-th homology classes throughout the chapter. Moreover, a path in a barcode graph from

a node v to a node u is said to be within level j and i if for each node on the path, its level

ℓ satisfies j ≤ ℓ ≤ i; we denote such a path as (v ⇝ u)[j,i].

Proposition 4.3.2. Let v be a level-j node and u be a level-i node in GB(F) such that j < i

and there is a path (v ⇝ u)[j,i] in GB(F). Then, there is a set of partial 0-representatives

{αk ∈ H0(Gk) | k ∈ [j, i]} for the interval [j, i] with αj = v and αi = u.

Proof. We can assume that (v ⇝ u)[j,i] is a simple path because if it were not we could always

find one. For each k ∈ [j + 1, i − 1], let w1, . . . , wr be all the level-k nodes on (v ⇝ u)[j,i]

whose adjacent nodes on (v ⇝ u)[j,i] are at different levels. Then, let αk = ∑r
ℓ=1 wℓ. Also, let

αj = v and αi = u. It can be verified that {αk | k ∈ [j, i]} is a set of partial 0-representatives

for [j, i]. See Figure  4.4 for an example of a simple path (ṽ2 ⇝ u2)[10,13] (the dashed one) in

a barcode graph, where the solid nodes contribute to the induced partial 0-representatives

and the hollow nodes are excluded.

For an i with 0 ≤ i ≤ m, we define the prefix F i of F as the filtration F i : G0 ↔ · · · ↔ Gi

and observe that GB(F i) is the subgraph of GB(F) induced by nodes at levels less than or

equal to i. We call level-i nodes of GB(F i) as leaves and do not distinguish leaves in Ti and

GB(F i) because they bijectively map to each other. It should be clear from the context

though which graph or forest a particular leaf is in.

Proposition 4.3.3. For each i = 0, . . . ,m, Algorithm  4.3.1 maintains the following invari-

ants:

1. There is a bijection η from trees in Ti to connected components in GB(F i) containing

leaves such that a leaf u is in a tree Υ of Ti if and only if u is in η(Υ).
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ṽ2

u2

ṽ1
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Figure 4.4. Illustration of invariants of Proposition  4.3.3 . The top part
contains a barcode graph with its filtration given (a, b, c, and d are vertices of
the complex). The bottom contains two barcode forests.

2. For each leaf u in Ti and each ancestor of u at a level j, there is a path (ṽ ⇝ u)[j,i] in

GB(F) where ṽ is a level-j node.

3. For each leaf u in Ti and each splitting ancestor of u at a level j, let ṽ be the unique

level-j splitting node in GB(F). Then, there is a path (ṽ ⇝ u)[j,i] in GB(F).

Remark 4.3.6. See Figure  4.4 for examples of invariant  2 and  3 . In the figure, v1 is a

level-1 non-splitting ancestor of u1 in T7 and ṽ1 is a level-1 node in the barcode graph; v2 is

a level-10 splitting ancestor of u2 in T13 and ṽ2 is the unique level-10 splitting node in the

barcode graph. The paths (ṽ1 ⇝ u1)[1,7] and (ṽ2 ⇝ u2)[10,13] are marked with dashes.

Proof. We only verify invariant  3 as the verification for invariant  2 is similar but easier and

invariant  1 is straightforward. The verification is by induction. When i = 0, invariant  3 

trivially holds. Now suppose that invariant  3 is true for an i ∈ [0,m− 1]. For the no-change,

entrance, and split event in Algorithm  4.3.1 , it is not hard to see that invariant  3 still holds

for i + 1. For the departure event, because we are only deleting a path from Ti to form Ti+1,
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invariant  3 also holds for i + 1. For the merge event, let u be a leaf in Ti+1, v be a splitting

ancestor of u at a level j, and ṽ be the unique splitting node in GB(F) at level j. The node

v may correspond to one or two nodes in Ti, in which only one is splitting, and let v′ be the

splitting one. Note that u’s parent may correspond to one or two nodes in Ti, and we let

W be the set of nodes in Ti that u’s parent corresponds to. If v′ is an ancestor of a node

w ∈ W in Ti, then by the assumption, there must be a path (ṽ ⇝ w)[j,i] in GB(F). From

this path, we can derive a path (ṽ ⇝ u)[j,i+1] in GB(F). If v′ is not an ancestor of any node

of W in Ti, the fact that v is an ancestor of u’s parent in Ti+1 implies that there must be an

ancestor v′′ of a node w ∈ W in Ti which v corresponds to. So we have that v is a gluing of

two nodes from Ti. Note that u’s parent must not be a glued node in Ti+1 because otherwise

v′ would have been an ancestor of a node of W in Ti; see Figure  4.5 where z1 and z2 are

the two level-i nodes glued together. Let x be the highest one among the nodes on the path

from v to u that are glued in iteration i. We have that x must correspond to a node x′ in Ti

which is an ancestor of w. Recall that z1, z2 are the two leaves in Ti which are glued, and let

z3 be the child of the glued node of z1, z2 in Ti+1, as shown in Figure  4.5 . From the figure,

we have that x′ must be splitting because one child of x′ (which is not glued) descends down

to w and the other child of x′ (which is glued) descends down to z1. The fact that v′ is an

ancestor of z2 in Ti implies that there is a path (ṽ ⇝ z2)[j,i] in GB(F). Let x̃ be the unique

splitting node in GB(F) at the same level with x′; then, z1 and w being descendants of x′ in

Ti implies that there are paths (z1 ⇝ x̃)[j,i] and (x̃⇝ w)[j,i] in GB(F). Now we derive a path

(ṽ ⇝ u)[j,i+1] in GB(F) by concatenating the following paths and edges: (ṽ ⇝ z2)[j,i], z2z3,

z3z1, (z1 ⇝ x̃)[j,i], (x̃⇝ w)[j,i], wu.

Proposition 4.3.4. Each interval produced by Algorithm  4.3.1 admits a set of 0-representatives.

Proof. Suppose that an interval is produced by the merge event at iteration i. We have the

following situations:

• If the nodes u1, u2 in this event (see Algorithm  4.3.1 ) are in the same tree in Ti, let v

be the highest common ancestor of u1, u2 and note that v is a splitting node at level

j. Also note that u1, u2 are actually leaves in Ti and hence can also be considered
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Figure 4.5. Illustration of parts of Ti+1 for the proof of Proposition  4.3.3 ,
where the left one is before the path gluing and the right one is after. Note
that the part between level j and i for the left tree actually belongs to Ti. The
paths with dashed marks are the glued ones (before and after), in which v′ and
v′′ are identified as v, and x′ is identified as x with another node.

as level-i nodes in GB(F). Let ṽ be the unique level-j splitting node in GB(F). By

invariant  3 of Proposition  4.3.3 along with Proposition  4.3.2 , there are two sets of

partial 0-representatives {αk | k ∈ [j, i]}, {βk | k ∈ [j, i]} for [j, i] with αj = ṽ, αi = u1,

βj = ṽ, and βi = u2. We claim that {αk +βk | k ∈ [j + 1, i]} is a set of 0-representatives

for the interval [j + 1, i]. To prove this, we first note the following obvious facts:

(i) {αk + βk | k ∈ [j + 1, i]} is a set of partial 0-representatives; (ii) αj+1 + βj+1 ∈

ker(φ0
j ); (iii) αi + βi is the non-zero element in ker(φ0

i ). So we only need to show that

αj+1 + βj+1 ̸= 0. Let v1, v2 be the two level-(j + 1) nodes in GB(F) connecting to

ṽ. Then, αj+1 equals v1 or v2 and the same for βj+1. To see this, we first show that

αj+1 can only contain v1, v2. For contradiction, suppose instead that αj+1 contains a

level-(j + 1) node x with x ̸= v1, x ̸= v2. Let (ṽ ⇝ u1)[j,i] be the simple path that

induces {αk | k ∈ [j, i]} as in Proposition  4.3.2 and its proof. Then, x is on the path

(ṽ ⇝ u1)[j,i] and the two adjacent nodes of x on (ṽ ⇝ u1)[j,i] are at level j and j + 2, in

which we let y be the one at level j. Note that y ̸= ṽ because x is not equal to v1 or

v2. Since (ṽ ⇝ u1)[j,i] is within level j and i, y must be adjacent to another level-(j + 1)

node distinct from x on (ṽ ⇝ u1)[j,i]. Now we have that y is a level-j splitting node

with y ̸= ṽ, contradicting the fact that GB(F) has only one level-j splitting node. The

fact that αj+1 contains v1 or v2 but not both can be similarly verified. To see that
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αj+1 + βj+1 ̸= 0, suppose instead that αj+1 + βj+1 = 0, i.e., αj+1 = βj+1, and without

loss of generality they both equal v1. Note that we can consider Ti as derived by

contracting nodes of GB(F i) at the same level 

4
 . The fact that αj+1 = βj+1 = v1 implies

that u1, u2 are descendants of the same child of v in Ti, contradicting the fact that v

is the highest common ancestor of u1, u2. So we have that αj+1 + βj+1 ̸= 0.

• If u1, u2 are in different trees in Ti, then without loss of generality let u1 be the one

whose root v1 is at the higher level (i.e., level j). As the root of u1, the node v1 must

be an entering node, and the connected component of GB(F i) containing u1 must

have a single level-j node ṽ1. Then, by invariant  2 of Proposition  4.3.3 along with

Proposition  4.3.2 , there are two sets of partial 0-representatives {αk | k ∈ [j, i]}, {βk |

k ∈ [j, i]} for [j, i] with αj = ṽ1, αi = u1, βj = ṽ2, and βi = u2, where ṽ2 is a level-j node.

We claim that {αk +βk | k ∈ [j, i]} is a set of 0-representatives for the interval [j, i] and

the verification is similar to the previous case where u1 and u2 are in the same tree.

For intervals produced by the departure events and at the end of the algorithm, the

existence of 0-representatives can be similarly argued.

Theorem 4.3.1. Algorithm  4.3.1 computes the 0-th zigzag barcode for a given zigzag filtra-

tion.

Proof. First, we have the following facts: every level-j entering node in GB(F) introduces

a j ∈ P(H0(F)) and uniquely corresponds to a level-j root in Ti for some i; every level-j

splitting node in GB(F) introduces a j + 1 ∈ P(H0(F)) and uniquely corresponds to a level-j

splitting node in Ti for some i. Whenever an interval [j, i] is produced in Algorithm  4.3.1 ,

i ∈ N(H0(F)) and the entering or splitting node in Ti introducing j as a positive index

either becomes a regular node (i.e., connecting to a single node on both adjacent levels) or

is deleted in Ti+1. This means that j is never the start of another interval produced. At the

end of Algorithm  4.3.1 , the number of intervals produced which end with m also matches

the rank of H0(Gm). Therefore, intervals produced by the algorithm induce a bijection

π : P(H0(F))→ N(H0(F)). By Proposition  4.3.1 and  4.3.4 , our conclusion follows.
4

 ↑ We should further note that this contraction is not done on the entire GB(F i) but rather on connected
components of GB(F i) containing leaves.
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4.4 One-dimensional zigzag persistence

In this section, we present an efficient algorithm for 1-st zigzag persistence on graphs.

We assume that the input is a graph G with a zigzag filtration

F : ∅ = G0
σ0←→ G1

σ1←→ · · · σm−1←−−→ Gm

of G. We first describe the algorithm without giving the full implementation details. The key

to the algorithm is a pairing principle for the positive and negative indices. We then prove the

correctness of the algorithm. Finally, in Section  4.4.1 , we make several observations which

reduce the index pairing to finding the max edge-weight of a path in a minimum spanning

forest, leading to an efficient implementation.

We notice that the following are true for every inclusion Gi
σi←→ Gi+1 of F (recall that φ1

i

denotes the corresponding linear map in the induced module H1(F)):

• If σi is an edge being added and vertices of σi are connected in Gi, then φ1
i is an

injection with non-trivial cokernel, which provides i + 1 ∈ P(H1(F)).

• If σi is an edge being deleted and vertices of σi are connected in Gi+1, then φ1
i is an

injection with non-trivial cokernel, which provides i ∈ N(H1(F)).

• In all the other cases, φ1
i is an isomorphism and i ̸∈ N(H1(F)), i + 1 ̸∈ P(H1(F)).

As can be seen from Section  4.3 , computing Pers(H1(F)) boils down to finding a pairing

of indices of P(H1(F)) and N(H1(F)). Our algorithm presented in Algorithm  4.4.1 adopts

this structure, where Ui denotes the set of unpaired positive indices at the beginning of each

iteration i.

Note that in Algorithm  4.4.1 , whenever a positive or negative index is produced, σi must

be an edge. One key piece missing from the algorithm is how we choose a positive index to

pair with a negative index:

Pairing Principle for Algorithm  4.4.1 . In each iteration i where Gi
σi←−− Gi+1 provides

i ∈ N(H1(F)), let Ji consist of every j ∈ Ui such that there exists a 1-cycle z containing both
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Algorithm 4.4.1 Computing 1-st zigzag persistence on graphs

U0 := ∅

for i := 0, . . . ,m− 1:

if Gi
σi−−→ Gi+1 provides i + 1 ∈ P(H1(F)):
Ui+1 := Ui ∪ {i + 1}

else if Gi
σi←−− Gi+1 provides i ∈ N(H1(F)):

pair i with a j∗ ∈ Ui based on the Pairing Principle below
output an interval [j∗, i] for Pers(H1(F))
Ui+1 := Ui \ {j∗}

else:
Ui+1 := Ui

for each j ∈ Um:

output an interval [j,m] for Pers(H1(F))

σj−1 and σi with z ⊆ Gk for every k ∈ [j, i]. Then, Ji ̸= ∅ and Algorithm  4.4.1 pairs i with

the smallest index j∗ in Ji.

Remark 4.4.1. See Proposition  4.4.1 for a proof of Ji ̸= ∅ claimed above.

Remark 4.4.2. Algorithms for non-zigzag persistence [ 3 ], [  4 ] always pair a negative index

with the largest (i.e., youngest) positive index satisfying a certain condition, while Algo-

rithm  4.4.1 pairs with the smallest one. This is due to the difference of zigzag and non-

zigzag persistence and our particular condition that 1-cycles can never become boundaries

in graphs. See [ 21 ], [  27 ] for the pairing when assuming general zigzag filtrations.
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Figure 4.6. A zigzag filtration with 1-st barcode {[4, 6], [2, 8], [6, 9], [8, 9]}.
For brevity, the addition of vertices and some edges are skipped.
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Figure  4.6 gives an example of the pairing of the indices and their corresponding edges.

In the figure, when edge d is deleted from G6, there are three unpaired positive edges a, b,

and c, in which b and c admit 1-cycles as required by the Pairing Principle. As the earlier

edge, b is paired with d and an interval [4, 6] is produced. The red cycle in G6 indicates the

1-cycle containing b and d which exists in all the intermediate graphs. Similar situations

happen when e is paired with a in G8, producing the interval [2, 8].

For the correctness of Algorithm  4.4.1 , we first provide Proposition  4.4.1 which justifies

the Pairing Principle and is a major step leading toward our conclusion (Theorem  4.4.1 ):

Proposition 4.4.1. At the beginning of each iteration i in Algorithm  4.4.1 , for every j ∈ Ui,

there exists a 1-cycle zi
j containing σj−1 with zi

j ⊆ Gk for every k ∈ [j, i]. Furthermore, the

set {zi
j | j ∈ Ui} forms a basis of Z1(Gi). If the iteration i produces a negative index i, then

the above statements imply that there is at least one zi
j containing σi. This zi

j satisfies the

condition that zi
j ⊆ Gk for every k ∈ [j, i], σj−1 ∈ zi

j, and σi ∈ zi
j, which implies that Ji ̸= ∅

where Ji is as defined in the Pairing Principle.

Proof. We prove this by induction. At the beginning of iteration 0, sinceG0 = ∅ and U0 = ∅,

the proposition is trivially true. Suppose that the proposition is true at the beginning of

an iteration i. For each j ∈ Ui, let zi
j be the 1-cycle as specified in the proposition. If

Gi
σi←→ Gi+1 produces neither a positive index nor a negative index, then Z1(Gi) = Z1(Gi+1)

and Ui = Ui+1. Let zi+1
j = zi

j for each j; then, {zi+1
j | j ∈ Ui+1} serves as the 1-cycles as

specified in the proposition for iteration i + 1. If Gi
σi−−→ Gi+1 produces a new unpaired

positive index i + 1, let zi+1
i+1 be any 1-cycle in Gi+1 containing σi. Also, for each j ∈ Ui, let

zi+1
j = zi

j. It can be verified that {zi+1
j | j ∈ Ui+1} serves as the 1-cycles as specified in the

proposition for iteration i + 1.

If Gi
σi←−− Gi+1 produces a negative index i, then there must be a 1-cycle in Gi containing

σi. The fact that {zi
j | j ∈ Ui} forms a basis of Z1(Gi) implies that there must be at least one

zi
j containing σi because otherwise no combination of the zi

j’s can equal a cycle containing

σi. Let j be the smallest j ∈ Ui such that zi
j contains σi. We claim that j∗ = j, where j∗

is as defined in the Pairing Principle. For contradiction, suppose instead that j∗ ̸= j. Note

that j ∈ Ji, where Ji is as defined in the Pairing Principle. Since j∗ is the smallest index in
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Ji, we have that j∗ < j. By the Pairing Principle, there exists a 1-cycle ζ containing both

σj∗−1 and σi with ζ ⊆ Gk for every k ∈ [j∗, i]. Since {zi
j | j ∈ Ui} forms a basis of Z1(Gi) and

ζ ⊆ Gi, ζ must equal a sum ∑s
ℓ=1 z

i
λℓ

, where each λℓ ∈ Ui. We rearrange the indices such

that λ1 < λ2 < · · · < λs. We have that λs ≥ j because otherwise each λℓ < j and so its

corresponding zi
λℓ

does not contain σi. This implies that ζ = ∑s
ℓ=1 z

i
λℓ

does not contain σi,

which is a contradiction. For each ℓ such that 1 ≤ ℓ < s, since λℓ ≤ λs − 1 ≤ i, we have

that zi
λℓ
⊆ Gλs−1, which means that σλs−1 ̸∈ zi

λℓ
because σλs−1 ̸∈ Gλs−1. Since σλs−1 ∈ zi

λs
,

it follows that σλs−1 ∈
∑s
ℓ=1 z

i
λℓ

= ζ. This implies that ζ ⊈ Gλs−1 because σλs−1 ̸∈ Gλs−1.

However, we have that j∗ ≤ λs− 1 ≤ i because j∗ < j ≤ λs ≤ i, which means that ζ ⊆ Gλs−1.

So we have reached a contradiction, meaning that j∗ = j. For each j ∈ Ui+1, if zi
j does not

contain σi, let zi+1
j = zi

j ⊆ Gi+1. If zi
j contains σi, let zi+1

j = zi
j + zi

j∗ ⊆ Gi+1. Note that since

j∗ = j, we must have that j∗ < j, which means that zi
j∗ ⊆ Gk for every k ∈ [j, i] ⊆ [j∗, i].

Therefore, zi+1
j = zi

j + zi
j∗ ⊆ Gk for every k ∈ [j, i]. Also since zi

j∗ ⊆ Gj−1, zi
j∗ does not contain

σj−1, which means that zi+1
j contains σj−1. Note that {zi+1

j | j ∈ Ui+1} must still be linearly

independent, so they form a basis of Z1(Gi+1). Now we have that {zi+1
j | j ∈ Ui+1} serves as

the 1-cycles as specified in the proposition for iteration i + 1.

Theorem 4.4.1. Algorithm  4.4.1 computes the 1-st zigzag barcode for a given zigzag filtration

on graphs.

Proof. The claim follows directly from Proposition  4.3.1 . For each interval [j∗, i] produced

from the pairing in Algorithm  4.4.1 , by the Pairing Principle, there exists a 1-cycle z con-

taining both σj∗−1 and σi with z ⊆ Gk for every k ∈ [j∗, i]. The cycle z induces a set of

1-representatives for [j∗, i]. For each interval produced at the end, Proposition  4.4.1 implies

that such an interval admits 1-representatives.

4.4.1 Efficient implementation

For every i and every j ≤ i, define Γi
j as the graph derived from Gj by deleting every

edge σk s.t. j ≤ k < i and Gk
σk←−− Gk+1 is backward. For convenience, we also assume that

Γi
j contains all the vertices of G. We can simplify the Pairing Principle as suggested by the

following proposition:

118



Proposition 4.4.2. In each iteration i of Algorithm  4.4.1 where Gi
σi←−− Gi+1 provides

i ∈ N(H1(F)), the set Ji in the Pairing Principle can be alternatively defined as consisting of

every j ∈ Ui s.t. σi ∈ Γi
j and the vertices of σi are connected in Γi+1

j (σi ̸∈ Γi+1
j by definition).

Proof. We prove an equivalent statement, which is that Ji consists of every j ∈ Ui s.t. there

is a 1-cycle in Γi
j containing σi. Let j be any index in Ui. It is not hard to see that a 1-cycle

is in Gk for every k ∈ [j, i] iff the 1-cycle is in Γi
j. So we only need to prove that there is a

1-cycle in Γi
j containing both σj−1 and σi iff there is a 1-cycle in Γi

j containing σi. The forward

direction is easy. So let z be a 1-cycle in Γi
j containing σi. If z contains σj−1, then the proof

is done. If not, by Proposition  4.4.1 there is a 1-cycle z′ containing σj−1 with z′ ⊆ Gk for

every k ∈ [j, i]. So z′ is a 1-cycle in Γi
j containing σj−1. If z′ contains σi, we again finish our

proof. If not, then z + z′ is a 1-cycle containing both edges.

We then turn graphs in F into weighted ones in the following way: initially, G0 = ∅;

then, whenever an edge σi is added from Gi to Gi+1, the weight w(σi) is set to i. We have

the following fact:

Proposition 4.4.3. For every i and every j ≤ i, the edge set of Γi
j, denoted E(Γi

j), consists

of all edges of Gi whose weights are less than j.

Proof. We can prove this by induction on i. For i = 0, Gi = ∅ and the proposition is trivially

true. Suppose that the proposition is true for i. If Gi and Gi+1 differ by a vertex, then the

proposition is also true for i + 1 because the edges stay the same. If Gi+1 is derived from Gi

by adding an edge σi, by the assumption, E(Γi
j) consists of all edges of Gi whose weights are

less than j for each j ≤ i. Note that E(Γi
j) = E(Γi+1

j ) because Gi
σi−−→ Gi+1 is an addition.

So we have that E(Γi+1
j ) consists of all edges of Gi+1 whose weights are less than j because

w(σi) = i ≥ j. Since E(Γi+1
i+1) = E(Gi+1), the claim is also true for E(Γi+1

i+1). Now consider

the situation that Gi+1 is derived from Gi by deleting an edge σi. Then, σi must be added

to the filtration previously, and let Gk
σk−−→ Gk+1 with k < i and σk = σi be the latest such

addition. Note that w(σi) = k in Gi. For j ≤ k, σi ̸∈ E(Γi
j) because w(σi) = k ≥ j. Since

E(Γi+1
j ) = E(Γi

j) \ {σi}, we have that E(Γi+1
j ) = E(Γi

j). Therefore, E(Γi+1
j ) consists of all

edges of Gi+1 whose weights are less than j because w(σi) ≥ j in Gi. For each j s.t. k < j ≤ i,
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we have σi ∈ E(Γi
j) and E(Γi+1

j ) = E(Γi
j)\{σi}. Since w(σi) < j in Gi, it is true that E(Γi+1

j )

consists of all edges of Gi+1 whose weights are less than j, and the proof is done.

Suppose that in an iteration i of Algorithm  4.4.1 , Gi
σi←−− Gi+1 provides a negative index i.

Let Ui = {j1 < j2 < · · · < jℓ} and the vertices of σi be u, v. Proposition  4.4.3 implies that

Γi+1
j1 ⊆ Γi+1

j2 ⊆ · · · ⊆ Γi+1
jℓ ⊆ Γi+1

i+1 (4.1)

By Proposition  4.4.2 , in order to find the positive index to pair with i, one only needs

to find the smallest j′∗ ∈ Ui s.t. u, v are connected in Γi+1
j′∗ . (Note that for a j ∈ Ui to satisfy

σi ∈ Γi
j, j only needs to be greater than w(σi); such a smallest j is easy to derive.) We further

expand Sequence ( 4.1 ) into the following finer version:

Γi+1
0 ⊆ Γi+1

1 ⊆ · · · ⊆ Γi+1
i ⊆ Γi+1

i+1 (4.2)

where each consecutive Γi+1
k ,Γi+1

k+1 are either the same or differ by only one edge. To get

j′∗, we instead scan Sequence (  4.2 ) and find the smallest k∗ ∈ {0, 1, . . . , i + 1} s.t. u, v are

connected in Γi+1
k∗ . Proposition  4.4.4 characterize such a k∗:

Proposition 4.4.4. For a path in a weighted graph, let the max edge-weight of the path be

the maximum weight of its edges. Then, the integer k∗− 1 equals the max edge-weight of the

unique path connecting u, v in the unique minimum spanning forest of Gi+1.

Proof. We first notice that, since weighted graphs considered in this chapter have distinct

weights, they all have unique minimum spanning forests. Let T be the minimum spanning

forest of Γi+1
i+1; we prove an equivalent statement of the proposition, which is that k∗−1 equals

the max edge-weight of the unique path connecting u, v in T . Since k∗ is the smallest index

s.t. u, v are connected in Γi+1
k∗ , we have that u, v are not connected in Γi+1

k∗−1. This indicates

that Γi+1
k∗ ̸= Γi+1

k∗−1. Assume that Γi+1
k∗ and Γi+1

k∗−1 differ by an edge e; then, w(e) = k∗ − 1.

Let T ′ be the minimum spanning forest of Γi+1
k∗−1. Then, u, v are not connected in T ′ and

e connects the connected components of u, v in T ′. Since spanning forests have a matroid

structure, T ′ ∪ {e} must be a subforest of T (indeed, e would be the edge added to T ′ by
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Kruskal’s algorithm; see, e.g., [ 56 ]). Also, since there is a unique path between two vertices

in a forest, the path from u to v in T ′ ∪ {e} must be the path from u to v in T . This path

has a max edge-weight of k∗ − 1 and the proof is done.

Based on Proposition  4.4.4 , finding k∗ reduces to computing the max edge-weight of the

path connecting u, v in the minimum spanning forest (MSF) of Gi+1. For this, we utilize the

dynamic-MSF data structure proposed by Holm et al. [ 57 ]. Assuming that n is the number of

vertices and edges of G, the dynamic-MSF data structure supports the following operations:

• Return the identifier of a vertex’s connected component in O(log n) time, which can

be used to determine whether two vertices are connected.

• Return the max edge-weight of the path connecting any two vertices in the MSF in

O(log n) time.

• Insert or delete an edge from the current graph (maintained by the data structure) and

possibly update the MSF in O(log4 n) amortized time.

We now present the full details of the algorithm in Algorithm  4.4.2 . We can see that

Algorithm  4.4.2 has time complexity O(m log4 n), where each iteration is dominated by the

update of F.
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Algorithm 4.4.2 Computing 1-st zigzag persistence on graphs: Full details

Maintain a dynamic-MSF data structure F, which consists of all vertices of G and no edges
initially. Also, set U0 = ∅. Then, for each i = 0, . . . ,m − 1, if σi is a vertex, do nothing;
otherwise, do the following:

Case Gi
σi−−→ Gi+1: Check whether vertices of σi are connected in Gi by querying F, and

then add σi to F. If vertices of σi are connected in Gi, then set Ui+1 = Ui ∪ {i + 1};
otherwise, set Ui+1 = Ui.

Case Gi
σi←−− Gi+1: Delete σi from F. If the vertices u, v of σi are found to be not connected

in Gi+1 by querying F, then set Ui+1 = Ui; otherwise, do the following:

• Find the max edge-weight w∗ of the path connecting u, v in the MSF of Gi+1 by
querying F.

• Find the smallest index j∗ of Ui greater than max{w∗, w(σi)}. (Note that we can
store Ui as a red-black tree [ 56 ], so that finding j∗ takes O(log n) time.)

• Output an interval [j∗, i] and set Ui+1 = Ui \ {j∗}.

At the end, for each j ∈ Um, output an interval [j,m].
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5. CONCLUSIONS

In this dissertation, we study several problems concerning representatives for topological

persistence:

• We look into the representative problem for (standard) persistence homology (termed

as persistent cycles) and investigate the NP-hardness of the problem for computing

optimal (minimum) persistent cycles. Beside the NP-hardness results, we also propose

polynomial-time algorithms for computing minimum persistent p-cycles for weak (p+

1)-pseudomanifolds.

• We define alternative persistent cycles (i.e., a sequence) capturing the dynamic changes

of homological features born and dying with persistence intervals, which the standard

persistent cycles do not reveal. In presence of the NP-hardness results proved previ-

ously, we also present polynomial-time algorithms computing optimal sequences of the

persistent cycles for weak pseudomanifolds.

• We provide near-linear algorithms for computing zigzag persistence on graphs, improv-

ing the previously known O(mω) time complexity for graph inputs, where ω < 2.37286

is the matrix multiplication exponent. The design and correctness proofs of the algo-

rithms are accomplished with the help of representatives.

Thinking forward, we identify the following open problems which we believe are worthy

of further exploration:

• In our experiments where we computed optimal persistent cycles for certain data [ 20 ],

some persistent cycles correspond to important features of the data while some do not

have obvious meanings. If there are ways to design filtrations for data such that persis-

tent cycles are related to the important features, then the prospect for the application

of persistent cycles or persistence in general would be more extensive.

• As found in [ 20 ], persistent cycles are not stable in general even when only the weights

of the cycles are considered. It will be helpful to figure out assumptions that are still

relevant in practice, but under which the persistent cycles remain stable.
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• We have presentedO(n2)-time algorithms for computing a minimum persistent cycle for

a given interval. A natural question is whether this time complexity can be improved.

Furthermore, can we devise a better algorithm to compute minimum persistent cycles

for all intervals (i.e., the minimum persistent basis), improving upon the obvious O(n3)-

time algorithm that runs our algorithms on each interval?

• In our algorithm for 0-dimensional zigzag persistence on graphs, we build the barcode

graph and utilize the algorithm in [  32 ] to compute the zigzag barcode, which is also

adopted by [ 60 ]. Is there any other scenario in persistence computation where such a

technique can be applied so that a more efficient algorithm can be derived?

• In our algorithm for 1-dimensional zigzag persistence on graphs, we utilize the dynamic-

MSF data structure [ 57 ] for computing the max edge-weight of the path connecting two

vertices in an MSF. The update of the data structure which takes O(log4 n) amortized

time becomes the bottleneck of the algorithm. However, for the computation, it can be

verified that we only need to know the minimax 

1
 distance of two vertices in a graph.

Is there any faster way to compute the minimax distance in a dynamic graph?

• Another interesting question is whether our algorithms for zigzag persistence on graphs

are more efficient practically when implemented compared to some existing implemen-

tations of zigzag persistence algorithms for general dimension [ 21 ], [  27 ].

1
 ↑ The minimax distance of two vertices in a graph is the minimum of the max edge-weights of all paths

connecting the two vertices.
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A. MISSING CONTENTS FOR CHAPTER  3 

A.1 An abstract algorithm for zigzag persistence

We introduce an abstract algorithm for zigzag persistence that helps us prove some results

in the appendix. Given p ≥ 0 and a simplex-wise filtration X : ∅ = X0 ↔ · · · ↔ Xℓ starting

with an empty complex, the algorithm computes the p-th zigzag persistence intervals and

their representative p-cycles for X . Each linear map in Hp(X ) is denoted as ψi : Hp(Xi) ↔

Hp(Xi+1). Also, for any i s.t. 0 ≤ i ≤ ℓ, X i denotes the filtration X0 ↔ X1 ↔ · · · ↔ Xi,

which is a prefix of X . Inspired by the algorithm by Maria and Oudot [ 21 ], the idea is

to directly compute an interval decomposition by maintaining representative cycles for all

intervals:

Algorithm A.1.1 (Zigzag persistence algorithm). First set Persp(X 0) = ∅. The algorithm

then iterates for i← 0, . . . , ℓ−1. At the beginning of the i-th iteration, the intervals and their

representative cycles for Hp(X i) have already been computed. The aim of the i-th iteration is

to compute these for Hp(X i+1). For describing the i-th iteration, let Persp(X i) = {[bα, dα] |

α ∈ Ai} be indexed by a set Ai, and let {zαk ⊆ Xk | bα ≤ k ≤ dα} be a sequence of

representative p-cycles for each [bα, dα]. For ease of presentation, we also let zαk = 0 for

each α ∈ Ai and each k ∈ [0, i] \ [bα, dα]. We call intervals of Persp(X i) ending with i as

surviving intervals at index i. Each non-surviving interval of Persp(X i) is directly included in

Persp(X i+1) and its representative cycles stay the same. For surviving intervals of Persp(X i),

the i-th iteration proceeds with the following cases:

ψi is an isomorphism: In this case, no intervals are created or cease to persist. For each

surviving interval [bα, dα] in Persp(X i), [bα, dα] = [bα, i] now corresponds to an interval

[bα, i+1] in Persp(X i+1). The representative cycles for [bα, i+1] are set by the following

rule:

Trivial setting rule of representative cycles: For each j with bα ≤ j ≤ i, the representa-

tive cycle for [bα, i+1] at index j stays the same. The representative cycle for [bα, i+1]

at i + 1 is set to a zαi+1 ⊆ Xi+1 such that [zαi ] ↔ [zαi+1] by ψi (i.e., [zαi ] 7→ [zαi+1] or

[zαi ]←[ [zαi+1]).
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ψi is forward with non-trivial cokernel: A new interval [i+1, i+1] is added to Persp(X i+1)

and its representative cycle at i + 1 is set to a p-cycle in Xi+1 containing σi (σi is a

p-simplex). All surviving intervals of Persp(X i) persist to index i + 1 and are auto-

matically added to Persp(X i+1); their representative cycles are set by the trivial setting

rule.

ψi is backward with non-trivial kernel: A new interval [i+1, i+1] is added to Persp(X i+1)

and its representative cycle at i + 1 is set to a p-cycle homologous to ∂(σi) in Xi+1 (σi

is a (p + 1)-simplex). All surviving intervals of Persp(X i) persist to index i + 1 and

their representative cycles are set by the trivial setting rule.

ψi is forward with non-trivial kernel: A surviving interval of Persp(X i) does not persist

to i + 1. Let Bi ⊆ Ai consist of indices of all surviving intervals. We have that

{[zαi ] | α ∈ Bi} forms a basis of Hp(Xi). Suppose that ψi
(
[zα1

i ] + · · ·+ [zαh
i ]

)
= 0, where

α1, . . . , αh ∈ Bi. We can rearrange the indices such that bα1 < bα2 < · · · < bαh
and

α1 < α2 < · · · < αh. Let λ be α1 if ψbα−1 is backward for every α ∈ {α1, . . . , αh}

and otherwise be the largest α ∈ {α1, . . . , αh} such that ψbα−1 is forward. Then, [bλ, i]

forms an interval of Persp(X i+1). For each k ∈ [bλ, i], let z′
k = zα1

k + · · · + zαh
k ; then,

{z′
k | bλ ≤ k ≤ i} is a sequence of representative cycles for [bλ, i]. All the other surviving

intervals of Persp(X i) persist to i+1 and their representative cycles are set by the trivial

setting rule.

ψi is backward with non-trivial cokernel: A surviving interval of Persp(X i) does not

persist to i + 1. Let Bi ⊆ Ai consist of indices of all surviving intervals, and let

zα1
i , . . . , zαh

i be the cycles in {zαi | α ∈ Bi} containing σi (σi is a p-simplex). We can

rearrange the indices such that bα1 < bα2 < · · · < bαh
and α1 < α2 < · · · < αh.

Let λ be α1 if ψbα−1 is forward for every α ∈ {α1, . . . , αh} and otherwise be the

largest α ∈ {α1, . . . , αh} such that ψbα−1 is backward. Then, [bλ, i] forms an inter-

val of Persp(X i+1) and the representative cycles for [bλ, i] stay the same. For each

α ∈ {α1, . . . , αh} \ {λ}, let z′
k = zαk + zλk for each k s.t. bα ≤ k ≤ i, and let z′

i+1 = z′
i;

then, {z′
k | bα ≤ k ≤ i + 1} is a sequence of representative cycles for [bα, i + 1]. For the
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other surviving intervals, the setting of representative cycles follows the trivial setting

rule.

To show that Algorithm  A.1.1 is correct, we prove by induction on each i ∈ [0, ℓ] that

the algorithm computes a valid interval decomposition of Hp(X i). For i = 0, this is trivially

true. Now suppose that this is true for an i ∈ [0, ℓ − 1], i.e., before the i-th iteration, what

the algorithm computes are valid. In the i-th iteration, for the case that ψi is isomorphic,

the case that ψi is forward with non-trivial cokernel, or the case that ψi is backward with

non-trivial kernel, the proof is similar to what is done in the proof of Proposition  3.5.1 and

is omitted.

For the case that ψi is forward with non-trivial kernel, we first verify that {z′
k | bλ ≤

k ≤ i} computed in the i-th iteration is a valid sequence of representative cycles for [bλ, i] ∈

Persp(X i). Condition  2 of Definition  3.5.1 is trivially satisfied. Suppose that ψbλ−1 is forward.

Then, for each α ∈ {α1, . . . , αh} \ {λ} s.t. zαbλ
̸= 0, we must have bα < bλ. Therefore, zαbλ

is

in the image of ψbλ−1. Since zλbλ
is not in the image of ψbλ−1, so is not z′

bλ
= zα1

bλ
+ · · ·+ zαh

bλ
,

and Condition  1 is satisfied. For k ∈ [bλ, i− 1] s.t. k + 1 ̸= bα for any α ∈ {α1, . . . , αh}, we

have that [zαk ] ↔ [zαk+1] by ψk for each α ∈ {α1, . . . , αh}. This implies that [z′
k] ↔ [z′

k+1] by

ψk. For k ∈ [bλ, i − 1] s.t. k + 1 = bβ for a β ∈ {α1, . . . , αh}, we have that ψbβ−1 = ψk is

backward because λ is the the largest α ∈ {α1, . . . , αh} such that ψbα−1 is forward. We then

have 0←[ [zβk+1] by ψk, which implies that [z′
k]←[ [z′

k+1] by ψk. Hence, Condition  3 is verified.

Now suppose that ψbλ−1 is backward. Under this situation, every α ∈ {α1, . . . , αh} has ψbα−1

being backward where bλ is the smallest birth index. In z′
bλ

= zα1
bλ

+ · · ·+ zαh
bλ

, zλbλ
is the only

non-zero cycle. So we have ψbλ−1

(
[z′
bλ

]
)

= ψbλ−1

(
[zλbλ

]
)

= 0, and Condition  1 is satisfied. It

can also be verified that Condition  3 is satisfied. We now have that {z′
k | bλ ≤ k ≤ i} is a

valid sequence of representative cycles for [bλ, i] ∈ Persp(X i) with ψi
(
[z′

i ]
)

= 0. It is then not

hard to verify that the i-th iteration computes a valid interval decomposition for Hp(X i+1).

For the case that ψi is backward with non-trivial cokernel, we first verify that for any

α ∈ {α1, . . . , αh} \ {λ}, the sequence {z′
k | bα ≤ k ≤ i} computed in the i-th iteration

provides valid representative cycles for [bα, i] ∈ Persp(X i). Condition  2 of Definition  3.5.1 

is trivially satisfied. Suppose that ψbλ−1 is backward and bα < bλ. Then, z′
bα

= zαbα
, and
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Condition  1 is satisfied. For k ∈ [bα, i− 1] s.t. k + 1 ̸= bλ, it is obvious that [z′
k]↔ [z′

k+1] by

ψk. Since ψbλ−1 is backward, we have ψbλ−1
(
[zλbλ

]
)

= 0, and so ψbλ−1
(
[z′
bλ

]
)

= [z′
bλ−1]. Hence,

Condition  3 is satisfied. Suppose that ψbλ−1 is backward and bα > bλ. Under this situation,

ψbα−1 must be forward because λ is the largest β ∈ {α1, . . . , αh} such that ψbβ−1 is backward.

We then have that [zαbα
] is outside the image of ψbα−1 and [zλbα

] is in, which implies that [z′
bα

]

is outside the image of ψbα−1. Therefore, Condition  1 is satisfied. It is also not hard to see

that Condition  3 is satisfied. Now suppose that ψbλ−1 is forward. Under this situation, every

β ∈ {α1, . . . , αh} has ψbβ−1 being forward where bλ is the smallest birth index. Therefore,

ψbα−1 is forward and bα > bλ. Condition  1 and  3 can be similarly verified. We now have

that {z′
k | bα ≤ k ≤ i} is a valid sequence of representative cycles for [bα, i] ∈ Persp(X i) with

[z′
i ] ∈ img(ψi). It is then not hard to verify that the i-th iteration computes a valid interval

decomposition for Hp(X i+1).

A.2 Missing proofs

A.2.1 Proof of Proposition  3.2.1 

We only prove that Kβ ⊆ Kp
(b−1,b] because the proof for Kδ ⊆ Kp

[d,d+1) is similar. For

contradiction, assume instead that Kβ ⊈ Kp
(b−1,b]. Note that from Kp

(b−1,b] to Kp
(b−1,b+1), we

are not crossing any p-th critical values, and so the linear map Hp(Kp
(b−1,b])→ Hp(Kp

(b−1,b+1)) is

an isomorphism (see Proposition  3.4.1 ). Since Kp
(b−1,b] appears between Kp

(b−1,b) and Kp
(b−1,b+1)

in Fp(f) (see Definition  3.2.3 ), we have the following subsequence in Fp(f):

Kp
(b−1,b) ↪→ · · · ↪→ Kp

(b−1,b] ↪→ · · · ↪→ Kβ ↪→ · · · ↪→ Kp
(b−1,b+1) ↪→ · · · ↪→ Kδ

The fact that [Kβ, Kδ] forms an interval in Persp(Fp(f)) indicates that a p-th homology class

is born (and persists) when Kp
(b−1,b] is included into Kp

(b−1,b+1), contradicting the fact that

Hp(Kp
(b−1,b])→ Hp(Kp

(b−1,b+1)) is an isomorphism.
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A.2.2 Proof of Proposition  3.2.2 

Let S consist of simplices of K not in Kp
(i,j) whose interiors intersect Xp

(i,j). Then, let σ

be a simplex of S with no proper cofaces in S. We have that there exists a u ∈ σ with

f(u) ∈ (αpi , αpj ) and a w ∈ σ with f(w) ̸∈ (αpi , αpj ). If f(w) ≤ αpi , then all vertices in σ

must have the function values falling in (αpi−1, α
p
i+1) because K is compatible with the p-th

levelsets of f . We then have that |σ| ∩ Xp
(i,j) deformation retracts to bd(|σ|) ∩ Xp

(i,j), where

bd(|σ|) denotes the boundary of the topological disc |σ|. This implies that Xp
(i,j) deformation

retracts to Xp
(i,j) \ Int(σ), where Int(σ) denotes the interior of |σ|. If f(w) ≥ αpj , the result is

similar. After doing the above for the all such σ in S, we have that Xp
(i,j) deformation retracts

to Xp
(i,j) \

⋃
σ∈S Int(σ). Note that Xp

(i,j) \
⋃
σ∈S Int(σ) =

∣∣∣Kp
(i,j)

∣∣∣, and so the proof is done.

A.2.3 Proof of Proposition  3.3.1 

For the proof, we first observe the following fact which follows immediately from Propo-

sition  3.5.1 :

Proposition A.2.1. Let p ≥ 0, X : X0 ↔ · · · ↔ Xℓ be a simplex-wise filtration with

Hp(X0) = 0, [β′, δ′] be an interval in Persp(X ), and ζβ′ , . . . , ζδ′ be a sequence of representative

p-cycles for [β′, δ′]. One has that ζi is not a boundary in Xi for each β′ ≤ i ≤ δ′.

The following fact is also helpful to our proof:

Proposition A.2.2. Let X be a simplicial complex, A be a q-chain of X where q ≥ 1, and

X ′ be the closure of a q-connected component of X; one has that X ′ ∩ ∂(A) = ∂(X ′ ∩ A).

Proof. First, let B be an arbitrary q-chain of X and σq−1 be an arbitrary (q − 1)-simplex

in X. Define cofq(B, σq−1) as the set of q-simplices in B having σq−1 as a face. It can be

verified that cofq(B, σq−1) = cofq(X ′ ∩B, σq−1) if σq−1 ∈ X ′.

To prove the proposition, let σq−1 be an arbitrary (q − 1)-simplex in X ′ ∩ ∂(A). Since

σq−1 ∈ ∂(A), we have that
∣∣∣cofq(A, σq−1)

∣∣∣ is an odd number. Since σq−1 ∈ X ′, the fact in the

previous paragraph implies that
∣∣∣cofq(X ′∩A, σq−1)

∣∣∣ =
∣∣∣cofq(A, σq−1)

∣∣∣ is also an odd number.

Therefore, σq−1 ∈ ∂(X ′ ∩A). On the other hand, let σq−1 be an arbitrary (q− 1)-simplex in
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∂(X ′ ∩A). Then,
∣∣∣cofq(X ′ ∩A, σq−1)

∣∣∣ is an odd number. Since σq−1 is a face of a q-simplex

in X ′, we have that σq−1 ∈ X ′. Therefore,
∣∣∣cofq(A, σq−1)

∣∣∣ =
∣∣∣cofq(X ′ ∩ A, σq−1)

∣∣∣ is an odd

number. So we have that σq−1 ∈ ∂(A) and then σq−1 ∈ X ′ ∩ ∂(A).

Now we prove Proposition  3.3.1 . Let zb, . . . , zd−1 be a sequence of persistent p-cycles for(
αpb , α

p
d

)
as claimed. Note that [∂(σβ−1)] is the non-zero class in ker(φβ−1). Therefore, by

Definition  3.2.4 , ∂(σβ−1) ∼ zb in Kβ. This means that there exists a (p + 1)-chain C ⊆ Kβ

such that zb + ∂(σβ−1) = ∂(C). Let Ab = C + σβ−1; then, zb = ∂(Ab) where Ab is a (p+ 1)-

chain in Kβ−1 containing σβ−1. Similarly, we have that zd−1 = ∂(Ad) for a (p + 1)-chain

Ad ⊆ Kδ+1 containing σδ. By Definition  3.2.4 , there exists a (p+ 1)-chain Ai ⊆ Kp
(i−1,i+1) for

each b < i < d such that zi−1 + zi = ∂(Ai). Thus, Ab, . . . , Ad are the (p+ 1)-chains satisfying

the condition in Claim  2 . Let z′
i = K ′∩zi and A′

i = K ′∩Ai for each i. By Proposition  A.2.2 ,

z′
b = ∂(A′

b). Since A′
b contains σβ−1, it follows that z′

b + ∂(σβ−1) = ∂
(
A′
b \ {σβ−1}

)
, where

A′
b \ {σβ−1} ⊆ Kβ. It is then true that z′

b ∼ ∂(σβ−1) in Kβ. Now we simulate a run of

Algorithm  A.1.1 for computing Persp(Fp(f)). Then, at the (β − 1)-th iteration of the run,

we can let z′
b ⊆ Kβ be the representative cycle at index β for the new interval [β, β].

Let λ be the index of the complex Kp
(b,b+2) in Fp(f), i.e., Kλ = Kp

(b,b+2). In the run of

Algorithm  A.1.1 , the interval starting with β must persist to λ because this interval ends

with δ. At any j-th iteration for β ≤ j ≤ λ− 2, other than the case that φj is backward with

a non-trivial cokernel, the setting of representative cycles for all intervals persisting through

follows the trivial setting rule. For the case that φj is backward with a non-trivial cokernel,

since z′
b ⊆ Kj+1, the setting of the representative cycles for the interval [β, j + 1] must also

follow the trivial setting rule. Hence, at the end of the (λ−2)-th iteration, z′
b ⊆ Kλ−1 can be

the representative cycle at index λ− 1 for the interval [β, λ− 1]. Meanwhile, it is true that

K ′∩ (zb+zb+1) = K ′∩zb+K ′∩zb+1. So z′
b+z′

b+1 = K ′∩∂(Ab+1) = ∂(K ′∩Ab+1) = ∂
(
A′
b+1

)
,

which means that z′
b ∼ z′

b+1 in Kp
(b,b+2) = Kλ. Therefore, [z′

b] 7→ [z′
b+1] by φλ−1, which

means that z′
b+1 ⊆ Kλ can be the representative cycle at index λ for the interval [β, λ].

By repeating the above arguments on each z′
i that follows, we have that z′

d−1 ⊆ Kδ can be

the representative cycle at index δ for the interval [β, δ]. Finally, for contradiction, assume

instead that σδ ̸∈ K ′. This means that σδ ̸∈ A′
d, and hence A′

d ⊆ Kδ. Since z′
d−1 = ∂

(
A′
d

)
,
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we then have that z′
d−1 is a boundary in Kδ. However, by Proposition  A.2.1 , z′

d−1 cannot be

a boundary in Kδ, which is a contradiction. Therefore, Claim  1 is proved. Furthermore, we

have that z′
b, . . . , z

′
d−1 and A′

b, . . . , A
′
d satisfy the condition in Claim  2 .

To prove the last statement of Claim  2 , first note that ∂
( ∑d

i=bA
′
i

)
= 0. Let A′ = ∑d

i=bA
′
i.

Since σβ−1 ∈ Kp
(b−1,b+1) and σβ−1 ̸∈ Kp

(b,b+1), there must be a vertex in σβ−1 with function

value in
(
αpb−1, α

p
b

]
. So σβ−1 ̸∈ Kp

(b,d+1), which means that σβ−1 ̸∈ A′
i for any b < i ≤ d. We

also have that σβ−1 ∈ A′
b, and hence σβ−1 ∈ A′. We then show that A′ equals the set of

(p+1)-simplices of K ′. First note that A′ ⊆ K ′. Then, for contradiction, suppose that there

is a (p+ 1)-simplex σ ∈ K ′ not in A′. Since σ ∈ K ′, there is a (p+ 1)-path τ1, . . . , τℓ from σ

to σβ−1 in K ′. Since σ ̸∈ A′ and σβ−1 ∈ A′, there must be a j such that τj ̸∈ A′ and τj+1 ∈ A′.

Let τj and τj+1 share a p-face τ p; then, τ p ∈ ∂(A′), contradicting the fact that ∂(A′) = 0.

For the disjointness of A′
b, . . . , A

′
d, suppose instead that there is a σ residing in more than

one of A′
b, . . . , A

′
d. Then, σ can only reside in two consecutive chains A′

i and A′
i+1, because

pairs of chains of other kinds are disjoint. This implies that σ ̸∈ A′, contradicting the fact

that A′ contains all (p+ 1)-simplices of K ′. Thus, Claim  2 is proved.

Combining the fact that ∂(A′) = 0, K ′ is a pure weak (p + 1)-pseudomanifold, and

Claim  2 , we can reach Claim  3 .

A.2.4 Proof of Proposition  3.3.5 

We first show that there is at least one such component. Let zb−1, zb, . . . , zd−1 be a

sequence of persistent p-cycles for
[
αpb , α

p
d

)
. Then, by definition, there exist (p + 1)-chains

Ab ⊆ Kp
(b−1,b+1), . . . , Ad−1 ⊆ Kp

(d−2,d), Ad ⊆ Kδ+1 such that zb−1+zb = ∂(Ab), . . . , zd−2+zd−1 =

∂(Ad−1), zd−1 = ∂(Ad). Let A = ∑d
i=bAi; then, ∂(A) = zb−1 ⊆ Kβ. Note that σβ−1 ∈ zb−1

by definition, which implies that σβ−1 is a face of only one (p+ 1)-simplex τ ∈ A. Note that

τ ̸∈ Kβ by Proposition  3.3.4 , which means that τ ∈ K̃ \Kβ. Let C be the (p+ 1)-connected

component of K̃ \Kβ containing τ . We show that C ⊆ A. For contradiction, suppose instead

that there is a τ ′ ∈ C which is not in A. Since τ, τ ′ ∈ C, there is a (p+1)-path τ1, . . . , τℓ from

τ to τ ′ in K̃ \Kβ. Also since τ1 ∈ A and τℓ ̸∈ A, there must be an ι such that τι ∈ A and

τι+1 ̸∈ A. Let τ p be a p-face shared by τι and τι+1 in K̃ \Kβ; then, τ p ∈ ∂(A) and τ p ̸∈ Kβ.
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This contradicts ∂(A) ⊆ Kβ. Since C ⊆ A, we have that τ is the only (p+ 1)-coface of σβ−1

in C, which means that σβ−1 ∈ ∂(C). We then show that ∂(C) ⊆ Kβ. For contradiction,

suppose instead that there is a σ ∈ ∂(C) which is not in Kβ, and let τ ′ be the only (p+ 1)-

coface of σ in C. If σ has only one (p + 1)-coface in K̃, the fact that C ⊆ A implies that τ ′

is the only (p + 1)-coface of σ in A. Hence, σ ∈ ∂(A), contradicting ∂(A) ⊆ Kβ. If σ has

another (p+ 1)-coface τ ′′ in K̃, then τ ′′ must not be in Kβ because the p-face σ of τ ′′ is not

in Kβ. So τ ′′ ∈ K̃ \Kβ. Then, τ ′′ ∈ C because it shares a p-face σ ∈ K̃ \Kβ with τ ′ ∈ C,

contradicting the fact that τ ′ is the only (p+1)-coface of σ in C. Now we have constructed a

(p+ 1)-connected component C of K̃ \Kβ whose boundary resides in Kβ and contains σβ−1.

We then prove that there is only one such component. For contradiction, suppose that

there are two components Cl, Cj among C0, . . . , Ck whose boundaries contain σβ−1. Then, at

least one of Cl, Cj does not contain σδ. Let Cj be the one not containing σδ. Note that the set{
ζ j

i | b ≤ i < d
}

computed in Step  2 of Algorithm  3.3.2 satisfies that ζ j
d−1 is null-homologous

in Mj ∩Kδ+1. The fact that σδ ̸∈Mj implies that ζ j
d−1 is also null-homologous in Kδ. Then,

similar to the proof for Claim  1 of Proposition  3.3.1 , we can derive a representative cycle

ζ j
d−1 for the interval [β, δ] at index δ which is a boundary, and thus a contradiction.
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