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ABSTRACT 

Recent studies have indicated the need for agriculture automation to reduce the excessive use of 

herbicides, its detrimental effects on the environment, and the rise of herbicide-resistant weeds. In 

addition, the predicted increase in population to 9.7 billion by 2050 requires an increase in food 

production that cannot be met without proper weed control. At the current forefront of automation, 

deep learning has achieved high accuracy for weed classification and localization. Limited efforts 

have gone into developing and evaluating the generalizability of deep learning networks (DLN) 

over crop growth stages and weed heights. Further, even less work has been done for optimizing 

these computation-hungry DLN so that they could be deployed on lightweight edge devices for 

potential integration with an Unmanned Aerial System (UAS). Hence, in this research, the 

generalizability and deployment ability of four DLNs were evaluated for two computer vision 

tasks, i.e., object detection and image segmentation. For each task, the best performing network 

was optimized on two edge devices, namely, NVIDIA® Jetson NanoTM and NVIDIA® Xavier 

NXTM. Finally, studies were conducted to determine the edge devices’ frame rate for weed 

identification. For image segmentation, neither DeeplabV3+ nor UNet could generalize accurately 

for early season weed identification. For object detection, the YOLOv4 network trained on the V1 

growth stage of soybean and 7.62 cm average weed height (AWH) of Palmer amaranth generalized 

the best with generalizability mean average precision score of 70.33 %. When optimized using 

tensorRT (floating-point precision of 16) on the edge devices, YOLOv4 resulted in 4.6 fps on 

Jetson Nano and 27.8 fps on Xavier NX, resulting in the highest fps achieved on an edge device 

for weed identification from UAS images. This research has resulted in developing foundational 

data, identifying promising deep learning-based algorithms, and evaluating edge devices that could 

lead to designing a real-time weed identification and UAS-based smart weed management system.  
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 INTRODUCTION 

1.1 Background 

An increase in global population to 9.7 billion by 2050 (United Nations, 2019) would require an 

estimated 25 – 70 % increase in food production to meet the rising demand (Hunter et al., 2017). 

A common consensus among multiple studies has been to increase the crop yields rather than 

acquiring more arable land to simultaneously achieve sustainable agricultural and environmental 

targets (Grassini et al., 2013; Hunter et al., 2017; Jaggard et al., 2010; Silva, 2018). One way to 

increase the crop yields is by controlling one of the dominant causes of yield loss i.e. weeds. In 

US corn belt alone, weeds are reported to be responsible for yield losses amounting to almost 56.6 % 

in corn (Soltani et al., 2016) and 51% in Soybean (Soltani et al., 2017) on farms without any weed 

control strategy. 

 

Conventionally, weed control is accomplished by three methods i.e., manual, mechanical, and 

chemical. Manual weed control is the oldest and considered most effective method (Abbas et al., 

2018). However, it is time consuming and used in locations with abundant and cheap labor 

availability (Young et al., 2014). Mechanical weed control is economical compared to manual 

methods but is effective only for crops sown in straight rows and at wide enough row spacing to 

allow use of tillage implements like weeders, harrows and cultivators (Abbas et al., 2018). 

However, mechanical weed control is not an effective method because of several factors such as 

requiring repeated operations thereby increasing energy demand, inability to remove weeds from 

within crop rows, sometimes partial uprooting of weeds that lead to their regeneration etc. 

Chemical weed control is more efficient and effective compared to manual and mechanical 

methods of weed control.  However, the use of herbicides is highly detrimental to the environment 

and its application under the assumption of uniform weed distribution has led to evolution of 

herbicide resistant weeds (Gaines et al., 2020). An advanced technique of herbicide spraying, 

termed precision spraying has been reported to reduce herbicide requirement by almost 95% (Tona 

et al., 2018). Thus, it has potential to offset disadvantages associated with broadcast applications. 

However, precision spraying still relies on human labor that drives up the cost and reduces 

efficiency of this method. Furthermore, continued shortage of labor, increased labor cost 
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(Fennimore & Cutulle, 2019a), realization to reduce environmental damages (Hunter et al., 2017) 

and an increasing trend for growing food organically (USDA ERS, 2021) has made it imperative 

to utilize advances in robotics, machine vision, artificial intelligence etc. to revolutionize weed 

management by 2050 (Westwood et al., 2018).  

 

On current automation forefront, Robotic Weeders (RW), Artificial Intelligence (AI) (Jha et al., 

2019) and Unnamed Aerial Systems (UAS) are being increasingly researched (Sylvester, 2018a). 

A number of new solutions have been launched such as See & Spray (Blue River Technologies, 

Sunnyvale, CA, USA), Avo (ecoRobotix, Yverdon –les-Bains, Switzerland), Trimble® 

WeedSeeker® (NTech Industries Inc., Ukiah, CA, USA), a normalized difference vegetation index 

(NDVI) based green biomass differentiator for spot spraying (Trimble, n.d.) and Deepfield 

Robotics (Farming revolution GmbH, Ludwigsburg, Germany), an autonomous robot powered 

mechanical weeding service. However, the applicability of current solutions in different crops, 

under varying row spacing and varying soil conditions is still a standing challenge (Fennimore & 

Cutulle, 2019b). A successful automation effort for weed control will be the one that can (i) 

identify weeds under field conditions (ii) determine the best method of elimination, and (iii) actuate 

with most suitable weeding tool whether chemical or mechanical (Young, 2018). 

 

Weed identification under field conditions has been pursued based on either spectral or spatial 

properties of plants. Difference in reflectance spectra of leaves has been used for differentiating 

between weeds and crops (Barrero & Perdomo, 2018a; Y. Huang et al., 2016; Reddy et al., 2014; 

Sanders et al., 2019). Other efforts have used a combination of multi-spectral, infra-red and red-

green-blue (RGB) images for weed identification based on vegetative indices like NDVI, 

normalized green red difference index (NGRDI) and excess green index (ExG) (Barrero & 

Perdomo, 2018a; López-Granados et al., 2016a; Lottes et al., 2017; Sa, Chen, et al., 2018). 

However, spectral properties of plants could vary based on stress, cloud cover, sunlight, shadow 

and dust (Louargant et al., 2018) thus, limiting applicability of spectral based methods alone in 

Midwest USA with variable environmental conditions. To avoid these challenges, other studies 

have tried using the spatial properties of plant leaves such as shape and texture for distinguishing 

between crops and weeds (Bakhshipour & Jafari, 2018b; Hung et al., 2014). Some have also 

utilized geometrical features within an image to identify crop rows and then isolate plants outside 
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them for inter-row weed identification (Al Mansoori et al., 2018; M. Bah et al., 2018; M. D. Bah 

et al., 2017; Lottes et al., 2017). Such techniques can work well with row crops but would fail in 

situations with heavy occlusion due to crop canopy or for the purpose of intra-row detection.  

 

Neither spectral nor spatial properties can solely be used in every situation of weed identification. 

This is especially a problem during early season crop growth as early crops and weeds share similar 

spectral and spatial properties (López-Granados et al., 2016b). Though use of Unmanned Aerial 

Vehicle (UAVs) (also referred to as UAS in this chapter) carrying high resolution cameras could 

help overcome limitation with spatial resolution but high spatial resolution comes at the cost of 

low spectral resolution (Fernández-Quintanilla et al., 2018). Further, accurate identification of 

early season weeds requires achieving a minimum ground sampling distance of 0.6 cm (A. de 

Castro et al., 2018). This requirement restricts the UAV to fly closer to the ground which in-turn 

reduces the amount of land covered on a full battery charge (Torres-Sánchez et al., 2013).  

 

UAVs are increasingly being used for aerial imaging in agriculture. One estimate by the Federal 

Aviation Administration suggested UAV sales increased to approximately 6.4% between 2018 to 

2019 (Federal Aviation Administration, 2020). For a typical farm less than five hectares, it is 

costlier to use satellite images and manned aircrafts for the purpose of precision agriculture 

(Matese et al., 2015; Xiang & Tian, 2011). UAVs on the other hand are small, comparatively 

inexpensive and can capture quality data with high temporal frequency. They can be retrofitted 

with a wide range of sensors like RGB cameras, Thermal Infrared Cameras, Multispectral and 

Hyperspectral cameras depending on the requirements. While they are being increasingly 

researched in the community, they provide their own sets of challenges which are needed to be 

overcome i.e. limited payload capacity, limited flight time and limited real time onboard 

processing (Deng et al., 2020a; Y. He & Weng, 2018).  

 

Multispectral sensors have been used by a number of research groups for weed identification 

(Amziane et al., 2020; Osorio et al., 2020; Pantazi et al., 2017). These sensors have a limited 

number of bands, usually between 3 to 10. This necessitates prior knowledge about selecting bands 

to differentiate reflectance spectra between weeds and crops. And because each field has a unique 

set of weeds and crops, it is not possible to devise a universal multispectral sensor that can be used 
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in all the fields and under all variable environmental conditions. On the other hand, with 

hyperspectral sensors, a wider spectrum with hundreds or thousands of bands is captured at once 

with each band’s width ranging between 5 – 20 nm (Adão et al., 2017). In fact, during the analysis, 

having higher number of spectral bands can prove to be more beneficial for weed identification 

(Farooq et al., 2018). Moreover, hyperspectral sensors can be used to determine the significant 

spectral regions to differentiate between weeds leading to higher confidence in identification (Y. 

Li et al., 2021; Shirzadifar et al., 2020). The spectral regions are only 10-20 nm wide therefore, 

it’s not possible to differentiate between weeds and crops (Scherrer, 2019) or differentiate between 

non-resistant weeds (Shirzadifar et al., 2020) using a multispectral sensor alone due to their wider 

band width. Despite the promise of hyperspectral sensors, they are several times more expensive 

compared to RGB and multispectral sensors (Adão et al., 2017). Another challenge of using 

multispectral or hyperspectral sensors in UAVs, is the need of radiometric calibration. This is a 

tedious task and requires a lot of additional time and expertise to accomplish. An accurate and 

cost-effective solution for performing radiometric calibration of UAS acquired images remains an 

active area of research (Iqbal et al., 2018). Nonetheless, irrespective of the sensor type, the sensor 

data is analyzed using state-of-the-art computer algorithms for identifying weeds.  

 

Conventionally, digital image processing methods were used for this purpose. The digital image 

processing methods involved extracting shape, texture and color features from the images and 

feeding them into a feature classifier for classification (Kounalakis et al., 2016, 2018; Lottes et al., 

2017). Some studies also utilized features like Fourier components, Wavelet features, Scale 

Invariant Feature Transform (SIFT) (Lowe, 2004) and Speeded Up Robust Features (SURF) (Bay 

et al., 2006) for training the classifiers (Suh et al., 2018; Wilf et al., 2016). By using machine 

learning classifiers such as Support Vector Machines (SVM) and Random Forest Approach (RF), 

these studies were able to pave the way for using computer vision for weed identification. However, 

image processing algorithms used for weed identification (Ahmad et al., 2018; López-Granados et 

al., 2016b; Louargant et al., 2018; Sapkota et al., 2020) could not result in achieving accuracy 

levels higher than 95% needed for developing a robust weed sensor (Westwood et al., 2018). 

Above all, for successful classification of weeds with image processing, the features had to be 

manually selected to maximize classification accuracy. This task is not only tedious and time-

consuming but also suffers from the issue that the features set suitable for a differentiating between 
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certain plant set would not be the ideal ones for a different plant set (Cruz et al., 2017). Moreover, 

classification methods are incapable of identifying the presence of multiple weeds in a single 

image. This limits their applicability in field conditions because it is not uncommon to see multiple 

weeds growing in vicinity in the field (Fernández-Quintanilla et al., 2018; A. Wang et al., 2019a).  

 

Recently, with the rise of DLN, the system of manual feature selection is becoming outdated. 

These networks are capable of selecting the best features directly from the input images without 

human intervention. Another benefit from DLN is the ability to transfer learning from a system 

trained in one setting to another setting, thereby reducing efforts required for training another 

system (Espejo-Garcia et al., 2020; Suh et al., 2018). But compared to conventional machine 

learning algorithms like SVM and K-Nearest Neighbor, DLNs take longer time to train. Although, 

at the time of inference, they run significantly faster (Y. Chen et al., 2014).  

 

DLNs can be trained for a wide array of applications. They can not only be used to determine the 

species of a crop/weed in an image (Ahmad et al., 2018) but also for localizing the said crop/weed 

in the image (Buddha et al., 2019; Champ et al., 2020). Such networks which localize and classify 

objects in an image are called Object detection networks. They are capable of localizing multiple 

instances of an object in an image which is particularly important when using UAVs for scouting 

the fields for weeds (Sivakumar et al., 2020a). Most of the object detection networks can be 

classified into two types i.e. two stage detectors and single stage detectors. Two stage detectors 

use a Region Proposal Network (RPN) to first find the regions within an image which could detect 

potential objects followed by second stage which classifies the objects into classes and determines 

the size of bounding box for the classified object. Some examples of two-stage detectors are Mask 

Region based Convolution Neural Networks (Mask RCNN) (K. He et al., 2017) and Faster Region 

based Convolution Neural Networks (Faster RCNN) (Ren et al., 2016). On the other hand, single 

stage detector like Single Shot Detector (SSD) (W. Liu et al., 2016) and You Only Look Once 

(YOLO) (Redmon et al., 2016) directly determines the class and bounding boxes for all the objects 

in the image by using the concept of anchors (Soviany & Ionescu, 2018). Recently, some anchor-

free single stage detectors are also being developed for object detection, like CornerNet (Law & 

Deng, 2019). Single stage detectors are comparatively less accurate compared to the two-stage 

detectors but at the same time are much faster. This has led to the popularity of YOLO networks 
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for object detection. YOLO has been used by multiple studies for object detection in plant images 

(Espinoza et al., 2020; Gao et al., 2020; Yu et al., 2020). Recently, the fourth version of YOLO 

called YOLOv4 was published in April 2020, with accuracies comparable to other state-of-the-art 

object detection network and real-time frame rates of around 65 fps  (Bochkovskiy et al., 2020b). 

YOLOv4 has not been used for weed identification and localization studies to date, therefore, it is 

important to assess its performance vis-a-vis two-stage detectors to make informed decisions.  

 

Some DLNs can also be used for pixel-wise image semantic segmentation. Each pixel of an image 

is assigned a class and a cluster of pixels belonging to same class become an object. The benefit 

of semantic segmentation is that it is one of the most effective technique is tackling the lingering 

problem of overlapping and occlusion in weed identification (A. Wang et al., 2020). Another 

advantage of using image segmentation over object detection is the ability to determine the weed 

density in the field images directly from the output. This is because, in output, every pixel is 

labelled and by simply dividing the count of weed pixels with total pixels in the field, density can 

be estimated (Fawakherji, Potena, et al., 2019). Although, the problem of using segmentation in 

early season crops is the time-consuming process of labelling the images. Especially because the 

size of weed is very small in UAV images and to label them pixel by pixel is difficult (Zou et al., 

2021). In 2020, Khan et al. proposed a new Deep Neural Network for semantic segmentation 

particularly for weed identification (Khan et al., 2020). It was called CED-Net, short for cascaded 

encoder-decoder network. The results showed that it was able to outperform then state of the art 

semantic segmentation algorithm i.e. DeepLabV3 (L. C. Chen et al., 2017) while being three times 

smaller in terms of number of parameters. This meant that such networks could now run faster and 

with higher accuracy on edge devices.  

 

With edge computing, the vision of real-time weed identification can be realized. Edge computers 

are devices which do the computation close to data source rather than on cloud servers (W. Shi et 

al., 2016). This reduces the time delay between data collection and data processing. Granted, cloud 

servers have more resources and are more powerful but the rising challenge is to develop fast and 

accurate deep learning algorithms which do inference in resource limited situations (O’Grady et 

al., 2019). Industries are pushing the limit of hardware for edge computing with big companies 

like Google and NVIDIA releasing new and more powerful hardware every year. They are 
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equipped with specialized integrated circuits, called Tensor Processing Units (TPU) (Jouppi et al., 

2017), which are specifically designed to accelerate the performance of DLNs. Some research 

groups have been successful in integrating such edge devices with commercially available UAVs 

for weed identification (Deng et al., 2020a; Fawakherji, Potena, et al., 2019). Both of these studies 

use NVIDIA TX2 module for weed identification, but they were unable to achieve real-time frame 

rates. In November 2019, NVIDIA announced the smallest and the most powerful AI accelerator, 

Jetson Xavier NX (NVIDIA Newsroom, 2019). This device is about 3.5 times faster and 3.5 times 

lighter than NVIDIA TX2 module. This would open the door to deploy faster DLNs on UAV and 

hence its effectiveness for real-time weed identification needs to be evaluated. 

1.2 Problem Statement 

Weed identification is a challenging task because of the variable conditions the weeds grow in. 

Early season, both crop and weeds have a very similar spatial and spectral characteristics. This 

poses a big challenge for computer vision algorithms to differentiate between the two. The visual 

features are limited largely due to the resolution of imaging sensor. When it comes to aerial 

imaging, there is a scale to balance. On one hand, we can get high resolution images by having 

camera sensors very close to the ground but it would take a lot of time to cover the whole field. 

On the other hand, we can choose to employ aerial systems, like UAS, to cover the whole field 

faster but because the images are captured from a higher elevation, pixel resolution will suffer thus 

reducing the minute details which are necessary to differentiate weeds early in the season. 

 

To add to this complexity, when capturing images, lighting is a key factor in getting accurate colors 

and details. It is not uncommon for clouds to change lighting conditions in a field even on a sunny 

day. This drastically affects the quality of images. Though this effect is more pronounced in RGB 

images than multispectral or hyperspectral images. 

 

Hence there is a need for a robust and generalizable deep learning algorithm, which can effectively 

differentiate between the crop and weed varieties with an accuracy upwards of 95% (Westwood et 

al., 2018) from the images captured by commercially available RGB cameras. Additionally, there 

is a need for the development of algorithms that can run in resource limited edge computers. 
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1.3 Research Objectives 

• Evaluate and fine tune single stage object detection networks and compare their 

performance with two stage object detection networks for classifying and localizing weeds 

in RGB images 

 

• Determine the effect of growth stage on identification and generalization of image 

segmentation deep neural networks for weed identification 

 

• Deploy the best performing network from objective 1 and 2 on memory and energy limited 

minicomputers i.e. Jetson Xavier NX and Jetson Nano and evaluate their performance for 

in-field weed identification 

1.4 Impact Statement 

Assessing performance of Deep Learning algorithms that help identify weeds under field 

conditions will help in developing smart machines for site-specifically treating weeds. Deployment 

of optimized deep learning algorithms on lightweight, low powered, and resource limited 

computing devices such as NVIDIA Nano and Xavier NX will help in developing smart UAS that 

can automate site-spraying operations. This research is aimed at developing foundational data, 

identifying promising deep learning-based algorithms, and evaluating edge devices that could lead 

to designing a real-time weed identification and UAS-based smart weed management system
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 REVIEW OF LITERATURE 

In this chapter, multiple studies are evaluated for site-specific weed management, automation in 

precision weed control, sensors in weed identification, application of deep learning in weed 

identification, operational parameters of weed management, and use of edge computers in 

agriculture. The chapter contains five sections, with each section organized in the form of answers 

to important research questions: 

 

• Section 1: Global yield loss and site-specific weed control 

o Why is early season weed control important? 

o Why is it necessary to reduce herbicide use in fields? 

• Section 2: Sensing techniques for weed identification 

o What types of imaging sensors are being used for weed identification? 

o Why hasn’t image processing been successful in achieving near-human accuracy in 

weed identification? 

• Section 3: Machine Learning/Deep Learning in weed identification 

o What Machine Learning (ML) methods have been used for weed identification? 

o What deep learning networks are being used for weed identification? 

• Section 4: Effect of operational parameters on weed management 

o How does the height of UAS flight affect the accuracy of plant and weed 

identification? 

o Does the growth stage affect the accuracy of a Deep Learning Network (DLN) for 

weed identification? 

• Section 5: Next generation of weed management-edge computers in agriculture 

o How are edge computers proving useful in IoT? 

o How can edge computers be integrated with robots?  

o Why do DLNs have to be optimized for edge devices? 
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2.1 Global yield loss and site-specific weed control 

2.1.1 Why is early season weed control important? 

One of the most significant challenges in site-specific weed management (SSWM) is early-season 

weed detection (A. I. de Castro et al., 2018). Early in the season, weeds are very competitive with 

the crop and fight for nutrients and space to the detriment of crop growth (Tursun et al., 2015).  

Barnyardgrass, a weed responsible for corn yield loss in Greece, reduced the grain yield by 24 to 

34% when emergence happened before the V4 growth stage of corn (Travlos et al., 2011). But, 

following the V4 growth stage, corn had a competitive advantage and outgrew the effect of 

barnyard grass. Only 9% yield loss was reported in corn when the barnyardgrass emergence 

happened after the V4 growth stage. A similar study for corn was conducted in 2003 to assess the 

timing effect of postemergence glyphosate application on weed control in corn. The study was 

conducted in eight states in the northern-central USA. The study concluded that optimal timing for 

initial glyphosate application in glyphosate-resistant corn was when weeds were below 10 cm in 

height, within 23 days of corn planting, and before the V4 growth stage  (Gower et al., 2003).  

 

For soybean, a study was conducted in southern Wisconsin between 2008 and 2009. It was reported 

that controlling weeds before they are 23 cm in height or soybean had reached the V4 stage would 

reduce the yield loss (Fickett et al., 2013). Additionally, the yield would be reduced even further 

if weeds were controlled before 15 cm in height.  Another study looked at the effect of row spacing 

on the critical timing of weed removal (CTWR) in soybean. It was observed that CTWR occurred 

earlier when row spacing was higher. In 76 cm soybean rows, weeds had to be removed on or 

before the V1 soybean growth stage. In 38 cm rows, CTWR coincided with V2 growth stage of 

soybean. Finally, for 19 cm soybean rows, CTWR occurred during the V3 growth stage of soybean. 

In summary, weeds must be targeted between the soybean's V1 – V3 growth stage (Knezevic et 

al., 2003). More studies conducted for soybean have all observed that minimal yield loss would 

occur if weed is controlled between V2-V4 growth stage for soybean or when weed height is below 

10-15 cm (Coulter & Nafziger, 2007; Dalley et al., 2004; Eyherabide & Cendoya, 2002; Soltani et 

al., 2019). Hence, based on all the recommendations, early-season weed detection and removal 

become important to minimize yield loss in soybean.  
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2.1.2 Why is it necessary to reduce herbicide use in fields? 

Chemical control of weeds in fields has been ever prevalent since the introduction of 2,4-D 

(Peterson, 1967). While weed control is important to ensure desired yield during a crop production 

season, chemical weed control poses a serious threat in the future unless done sustainably. The 

threats include an increase in herbicide-resistant weeds and environmental degradation due to the 

overuse of herbicides (Weed Science, 2021). The growth in herbicide-resistant weeds is further 

fueled by the fact that the discovery of new herbicides is limited. Moreover, repeated use of the 

same herbicide lead to development of herbicide-resistant weeds (Westwood et al., 2018). 

 

Residue from broadcast application of herbicide can be washed away by intense rainfall and 

surface waterflow into nearby water bodies which could lead to water pollution (Krutz et al., 2005). 

Additionally, herbicides can kill non-targeted plants even while not impacting the overall yield of 

the crop. A study conducted in France showed that the use of herbicide led to the killing of rare 

plant species while not affecting the wheat yield (Gaba et al., 2016). Herbicides have also been 

shown to negatively affect honeybee colonies (Jumarie et al., 2017). Worst of all, many of the 

chemical herbicides are determinantal to human health (Caiati et al., 2019; Tyohemba et al., 2021). 

Given the serious concerns associated with herbicide use, demand for organic food is growing 

(Shafie & Rennie, 2012). Keeping these factors in mind, new sustainable weed control methods 

have to be developed (Westwood et al., 2018). 

2.2 Sensing techniques for weed identification 

2.2.1 What types of imaging sensors are being used for weed identification? 

Sensor technologies have enabled ground-based weed management with companies like 

WeedSeeker (Trimble Inc., California, USA), enabling precision weed sprayers that have saved 

almost 45-67% herbicide use (Christensen et al., 2003). Advancements in UAS have led to 

increased payload capacity, increased flight duration, and increased stability. This has enabled 

research exploration for faster and more robust weed identification in an agricultural field by 

combining state-of-the-art sensor technology (Sylvester, 2018b). Sensors such as Red, Green, Blue 

(RGB) cameras, multispectral and hyperspectral cameras, and thermal infrared cameras are 

utilized.  
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Out of the four sensors mentioned in the preceding paragraph, RGB is the most commonly used 

for weed identification (Esposito et al., 2021). In comparison, multiple studies have utilized 

multispectral sensors due to the availability of radiometric bands that can specifically target plants 

(Gibson et al., 2004; Louargant et al., 2017; Sa, Popović, et al., 2018; Slaughter et al., 2008). 

However, the pre-requisite of radiometric calibration (Micasense, 2019) and lower resolution than 

RGB sensors (Barrero & Perdomo, 2018b) make them less than ideal for weed identification. 

Similarly, while hyperspectral cameras contain hundreds of bands that can enable even more 

granular separation of vegetation (Che’ya et al., 2021), their much higher cost and heavyweight 

(Taghizadeh et al., 2011) make them difficult to be mounted on a UAS. Thermal cameras can be 

useful for agricultural applications due to their ability to detect plant stress by measuring the 

surface temperature change (Calderón et al., 2013; Gago et al., 2015), however, their limited spatial 

resolution and frequent need for calibration (Messina & Modica, 2020), has not resulted in their 

wide-spread use. 

 

Given the ready availability of RGB sensors, their higher resolution compared to other imaging 

sensors, and their low cost, more efforts have been invested in using the RGB cameras for weed 

identification research.   

2.2.2 Why hasn’t image processing been successful in achieving near-human accuracy in 

weed identification? 

Image processing has proven to be an accurate tool in precise weed identification (Taghadomi-

Saberi et al., 2015). The traditional image processing workflow has four steps: 1) image pre-

processing, 2) vegetation segmentation, 3) feature extraction from vegetation, and 4) feature 

classification.  

Image pre-processing is performed with techniques like normalization (Tang et al., 2018), color 

space transforms (H. D. Cheng et al., 2001), and denoising (H. Liu et al., 2014). Image pre-

processing is meant to transform the input image such that it becomes easier to perform vegetation 

segmentation.  

Vegetation segmentation is performed to isolate the background from vegetation. While there are 

multiple methods for segmentation (Hamuda et al., 2016), studies have reported success with the 

use of thresholding with green indices from RGB images (Guijarro et al., 2011) or by using the 
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NDVI to extract vegetative parts from RGB+NIR images (Potena et al., 2017). Although, a 

precursor to successful vegetation segmentation is accurate sensor calibration. Lighting changes 

very often in the field, especially in the US Midwest (the region of interest for this research), 

making it even more important to do proper sensor calibration (Sujaritha et al., 2017). Without 

good calibration, the potential of image processing would either be lacking, or it would not work 

well in field conditions (Elstone et al., 2020).  

 

The third step of the image processing workflow is feature extraction from segmented vegetation. 

Features are extracted from vegetation so that the features could be used to distinguish between 

crop and weed. Features include visual characteristics like leaf shape (Swain et al., 2011), leaf 

texture (Slaughter, 2014), or spectral characteristics like color (B. Cheng & Matson, 2015). But 

the problem with feature extraction is the overlapping of plants. In field, leaves of various plants 

overlap (Fernández‐Quintanilla et al., 2018). In the case of row crops, if the row widths are small 

or during the late season when the canopy starts to close, the overlap increases even further (H. 

Liu et al., 2014). Additionally, the presence of weeds inside crop rows also induces overlap and 

occlusion. Both overlapping and occlusion affect feature extraction. For example, if the feature to 

be extracted is leaf area, overlapping would lead to calculating the leaf area of multiple leaves 

instead of one. 

 

Subsequently, the final image processing step (i.e., feature classification) depends on the features 

extracted from vegetation. Feature classification utilizes classifiers like SVM (Bakhshipour & 

Jafari, 2018a) and clustering (Behmann et al., 2015) for differentiating between plant and weed 

features. But finding features that enable these classifiers to differentiate well requires feature 

selection by the domain expert (A. Wang et al., 2019b). Moreover, due to weeds and crops' spectral 

and spatial similarity in the early season, an optimal set of features that classifiers can use for 

differentiation is hard to find (LÓPEZ-GRANADOS, 2011; Pérez-Ortiz et al., 2016). Not to 

mention, a set of features that work well for one set of plants might not be useful for distinguishing 

between another set of plants. This would not only prevent having a generalizable system for weed 

identification but also add overhead for curating a separate set of optimal features for different 

field locations (A. Wang et al., 2019b).  
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Overall, traditional image processing workflow will always face issues to achieve near-human 

accuracy in weed identification; hence, deep learning algorithms need to identify weeds as they 

address the limitations of traditional image processing (Olsen et al., 2019). 

2.3 Machine Learning/Deep Learning in weed identification 

2.3.1 What Machine Learning (ML) methods have been used for weed identification? 

ML algorithms are a class of computer algorithms capable of automatically learning a given task 

based on experience and performance feedback (Mitchell, 1997). When programming ML 

algorithms, experience is essentially the data provided for training. At the same time, performance 

feedback measures performance in a task that is used to inform and incentivize ML algorithms to 

learn better. Some of the ML models used for application in weed identification include regression, 

clustering, and DLNs.  

 

Regression is used to predict an output variable based on a set of input variables. Examples of 

regression algorithms include linear and logistic regression (Cox, 1959), ordinary least square 

regression (Craven & Islam, 2011), multivariate adaptive regression splines (Friedman, 2007), and 

cubist regression (Quinlan, 1992). Particularly for weed identification, regression has been used in 

conjunction with feature extractors such that the input for regression becomes the weed features 

while the output becomes the weed class. Conventionally, the input features have been handcrafted 

(Andújar et al., 2012; Hestir et al., 2008; W. Zhang et al., 2018), although, in recent years, features 

have also been extracted automatically based on deep learning (Espejo-Garcia et al., 2020; W. 

Zhang et al., 2018).   

 

Clustering is a technique used to find a natural grouping of data (Tryon, 1957). These grouping of 

data are called clusters. Multiple algorithms of clustering exist like k-means clustering (Lloyd, 

1982), expectation-maximization algorithm (Dempster et al., 1977), and hierarchical clustering 

(Johnson, 1967). For weed identification, clustering has been utilized by creating a multi-

dimensional data space followed by creating clusters of data. Based on the separation of the 

clusters, various weed species have been identified (Meyer et al., 2004; Weis & Gerhards, 2008; 

S. Zhang et al., 2019, 2021). 
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DLNs have been popularized in the recent decade, especially after the success of AlexNet Network 

(Krizhevsky et al., 2017) in the LSVRC-2010 challenge (Russakovsky et al., 2015). Unlike other 

machine learning models like regression and clustering, DLNs do not require manual feature 

extraction prior to weed identification. Instead, the model learns through iterations to identify the 

best features for weed identification and differentiation. The process of learning for DLNs is also 

called training. Learning and training would be used interchangeably in the context of DLNs in 

this thesis. More details on Deep Learning and its applications for weed identification are given in 

section 2.3.2.  

2.3.2 What deep learning networks are being used for weed identification? 

DLNs are a type of Machine learning model which utilizes Artificial Neural Networks (ANN) to 

learn tasks. Most of these models utilize an ANN, which contains multiple convolutional layers 

inside them. Such networks are also called Convolutional Neural Networks (CNNs). Convolution 

is a mathematical operation performed on two functions. In the context of images, the two 

functions are the input image and a filter. Hence, convolution for images is sliding a filter across 

the input image from left to right and top to bottom. The filters extract multiple features from an 

image like the edges, corners, texture, color tonality, etc. Although, compared to traditional image 

processing, the filters do not have to be hand-picked. Instead, the power of deep learning lies in 

the fact that networks govern the best filters during training with the sole objective of improving 

accuracy (Krizhevsky et al., 2012).  

 

Specifically, three different types of DLNs are used for computer vision: Image Classification, 

Object Detection, and Image Segmentation. 

 

Image Classification is the task of classifying the whole image into predefined categories called 

classes. In the context of weed identification, these classes could be of weed subclasses, i.e., 

monocot and dicot, weed family, e.g., Pigweed Family or Umbel Family, and weed name, e.g., 

Palmer amaranth. Moreover, there could be an additional class of a specific crop to differentiate 

between crops and weeds. Multiple research groups have shown the advantage of DLN over 

traditional ML models. When classifying Para grass, Nutsedge, and Parthenium, CNN 

outperformed SVM, one of the most powerful machine learning classifiers. Out of 125 weed 
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images, SVM misclassified 21 images, while CNN only misclassified four images (T. et al., 

2019). For detecting dicot weeds in pasture, CNN proved to be more accurate in weed 

classification with an accuracy of 96.88 % compared to SVM’s accuracy of 89.40 % (W. Zhang 

et al., 2018). In the soybean production system, CNN achieved a weed classification precision 

of 99.1 % compared to SVM’s precision of 97.1 % (dos Santos Ferreira et al., 2017). In this study, 

although the performance of SVM is comparable to CNN, the authors argue that CNN has an 

inherent benefit of automatic feature selection, which eliminates the need for a domain expert 

needed for SVM’s good performance.  

 

Object detection is a computer vision task where the location is also determined in addition to the 

classification of the object determined. Typically, the location of an object in the image is given 

by a bounding box. The bounding box is drawn such that it encapsulates the entirety of the object 

within its bounds. For example, for weed identification, a good bounding box would be one that 

would contain all the leaves of a weed within its bounds. Compared to classification, where the 

entire image is processed for a single image label, object detection treats the image area of interest 

as a potential object.  This enables the identification of multiple objects within an image, each of 

which could be of a different type.  

 

Image segmentation is a computer vision task of designating a class to each pixel of the image. 

For example, given an image, the image segmentation model would aim to identify each pixel of 

the image as either a weed, crop, or soil. Hence, compared to Image classification, image 

segmentation provides richer information. For weed identification, Fully Connected Network 

(FCN) was used to segment the weeds and crops from the background will an F1 score of 92.4 % 

(Lottes et al., 2018). Similarly, VGG-16 based SegNet was used to identify crop (sugarbeet), weed, 

and background (Sa, Popović, et al., 2018). The objective of the study was to create a weed cover 

map from images collected by a UAS. The results looked very promising, with Area under the 

Curve (AUC) scores of 83.9%, 86.3 %, and 78.2 % for background, crop, and weed, respectively.  

Other research groups have also explored the application of deep learning-based image 

segmentation in other crop production systems for weed identification. Modified U-NET image 

segmentation was utilized for carrot fields with weed infestation with an average dice similarity 

coefficient of 83.44 %  (Brilhador et al., 2019). A custom image segmentation network was used 
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for detecting Colchicum Autumnale flowers in grasslands. 88.6 % of the flowers were detected 

successfully using a custom image segmentation network (Petrich et al., 2020). Image 

segmentation was used in the rice production system to determine the weed cover map. The 

accuracy of the network was 91.96%, and it additionally led to herbicide saving varying between 

58.3 % to 70.8 % (H. Huang et al., 2018). The accuracy of weed segmentation in cornfields using 

cNET resulted in an accuracy of 92.08 % (Andrea et al., 2018).  

 

Given the advantage of deep learning networks, such as their ability to process UAS images and 

creation of weed cover map for site-specific weed management (H. Huang et al., 2018; Sa, Popović, 

et al., 2018), its application in soybean production system becomes important to explore.   

2.4 Effect of operational parameters on weed management 

2.4.1 How does the height of UAS flight affect the accuracy of plant and weed 

identification? 

Deep learning networks generally perform better when more distinguishing features can be 

extracted from a given image. Therefore, it is advantageous to capture higher resolution images 

from a UAS for plant and weed identification. The higher resolution of images can be achieved in 

two ways when acquiring them via a camera mounted on a UAS, a) by increasing the resolution 

of the imaging camera, and b) by flying closer to the ground. Increasing the camera resolution is 

not an ideal solution primarily because it would increase the cost of the system. On the other hand, 

flying closer to the ground has multiple disadvantages. These include a large number of images 

captured in low altitude flights to cover a small area, the added time required to process the 

additional images, the effect of wind draft from UAS propeller in capturing blur-free images, and 

risk of the UAS colliding with objects or with the human operator (Hassanein & El-Sheimy, 2018).  

 

Given these challenges, there is a need to identify the optimal UAS flight height and determine the 

effect of flight height on the accuracy of weed identification. A study conducted for the Solanum 

rostratum Dunal plant to evaluate the impact of UAS flight height on segmentation of plants from 

the background concluded that flying higher than 10 m reduced both the precision and recall of 

plant segmentation (Q. Wang et al., 2021). Additionally, out of 2.5m, 5m, 10m, and 15m flights, 
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5m height gave the highest precision and recall score for plant segmentation showing the benefit 

of higher resolution images for deep learning. Another similar study conducted for corn/maize 

looked at the effect of UAS flight height on estimating the plant distance (J. Zhang et al., 2018). It 

was reported that the relative error increased when the flight height increased from 2m to 5m. The 

increase in error was more pronounced when the planting distance was small, i.e., the maize was 

planted closer to each other.  

 

The effect of UAS height on DLN accuracy is not an objective pursued in the current research, yet 

it remains an active area of research.  

2.4.2 Does the growth stage affect the accuracy of a DLN for weed identification? 

The growth stage is an important factor in determining the timing and type of herbicide application 

in the field (Mahmoodi & Rahimi, 2009) and for crop yield prediction (Tahir Ata-Ul-Karim et al., 

2016). Currently, the growth stage is determined primarily by scouting, and the scope for automatic 

growth stage estimation is limited (Rasti et al., 2021). Through studies conducted in determining 

the growth stage of plants and weeds, an inference can be drawn about the success of DLN at 

various stages. 

 

A study conducted on 18 weed species counted leaves to determine the growth stage (Teimouri et 

al., 2018). The best performing DLN was reported to achieve an accuracy of 70%. It was 

additionally observed that it was easier for the network to identify early-season weeds than later-

season weeds. This was a counterintuitive result as typically early season weeds would be more 

challenging to identify due to lack of significant morphological features. In the study, 

counterintuitive results were attributed to the overlapping of weeds, which could have caused the 

DLN system to miscount.   

 

A separate study was conducted for twelve wheat growth stages and eleven barely growth stages. 

While the classification accuracy was not reported for individual growth stages of the crops, the 

overall classification of growth stages was around 90 % (Rasti et al., 2021).  
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For sugar beets, the performance of DLN was compared on early-season and late-season images. 

The late-season images were acquired two weeks following the early-season images. The precision 

increased by 3 % on late-season images (Milioto et al., 2017). A different study tried to determine 

the accuracy of DLN on the four-week advance stage compared to the stage on which it was trained. 

A reduction in accuracy of 37.6 % was reported (Potena et al., 2017).  

 

While there aren’t a lot of studies that evaluate the effect of growth stages on DLN performance, 

there are even fewer which try to determine the generalizability accuracy of DLN across different 

growth stages. Hence both of the areas remain a gap in the literature.  

2.5 Next generation of weed management-edge computers in agriculture 

2.5.1 How are edge computers proving useful in IoT? 

The increase in data generation in the past few years has had a tremendous effect on the growth of 

industries. This has led to the development of countless connected devices and equipment. A 

growing number of IoT devices has been a topic of concern as it has caused an increase in network 

bandwidth required for transferring data and an increase in data storage required for the transmitted 

data. One estimate by Cisco Global Cloud Index (Cisco, 2020) states that amount of data generated 

by any device would reach 847 zettabytes per year compared to only 218 zettabytes in 2016. This 

has shown to be a major bottleneck in the cloud computing paradigm (W. Shi & Dustdar, 2016).  

Cisco Global Cloud Index estimated that by 2021, IoT connections will reach 13.7 billion (Cisco, 

2020). That is almost twice the number of humans in the world currently, and this number will 

only increase in the future. Edge computing is shown to be a potential solution to the problem of 

the bottleneck (W. Shi & Dustdar, 2016). By processing data closer to the site of generation, load 

on the network can be reduced. 

 

 Moreover, processing data at the edge has additional benefits; this includes reduced response time 

(Satyanarayanan et al., 2009), reduced energy consumption by reducing the load on cloud 

computers (Chun et al., 2011), and reduced privacy concerns of data (Cook et al., 2018). In 

agriculture, edge devices are being used for monitoring irrigation systems (Mateos Matilla et al., 
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2021), real-time poultry monitoring (Debauche et al., 2020), automated fleet management (Dautov 

& Song, 2019), and plant disease detection (Ale et al., 2019). 

 

For agricultural applications, it is not uncommon to encounter fields with a spotty data connection, 

therefore, solely relying on cloud computing is questionable (Shepherd et al., 2020). Moreover, 

farmers are hesitant to send their farm data to cloud servers (Gupta et al., 2020). Since edge devices 

solve both these problems, it becomes an ideal option for application with agricultural robots.  

2.5.2 How can edge computers be integrated with robots? 

Given the benefits of edge computers in solving bottlenecks for data processing (outlined in 

Section 2.5.1), their integration with the robotic system is rising. Robotic systems are equipped 

with sensors like RGB cameras, multispectral, hyperspectral, Light Detection and Ranging 

(LiDAR). These sensors help in robot navigation as well as vision-based tasks like object detection. 

In agriculture, vision-based robots are being developed for harvesting (Zhao et al., 2016), corn 

counting (Z. Zhang et al., 2020), weed classification (Jasiński et al., 2018), and crop quality 

monitoring  (Saha et al., 2018).  

 

While deep learning provides promising results in vision-based tasks, its integration with edge 

devices is a challenge, primarily due to the computational requirements of deep learning 

(Thompson et al., 2020). Graphical Processing Units (GPU) are a necessity for efficient deep 

learning training and inference. This is because GPU can perform multiple calculations 

simultaneously owing to the presence of multiple processing units. Each of the processing units is 

called a core. Alternatives to GPUs are neural processing units and tensor processing units, 

although their basic functioning is similar to a GPU.  

 

NVIDIA provides multiple libraries which are targeted toward deep learning applications. 

Examples include Compute Unified Device Architecture (CUDA®) (NVIDIA, 2021c), NVIDIA 

CUDA® Deep Neural Network library (cuDNN) (NVIDIA, 2021d), and TensorRT (NVIDIA, 

2021f). While CUDA and cuDNN are libraries to train deep learning networks, TensorRT is meant 

to infer deep learning networks, especially on NVIDIA GPU. Edge devices need to be equipped 

with GPUs for efficient deep learning inference. NVIDIA has released multiple edge devices 
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which come equipped with GPU. These include Jetson TX2, Jetson Nano, Xavier AGX, and 

Xavier NX (NVIDIA, 2021b).  

 

These edge devices are being integrated with UAS and ground robots for vision applications in 

agriculture. NVIDIA Jetson TX2 has been integrated with UAS for application in Fruit Tree Pests 

Identification (C. J. Chen et al., 2021), weed mapping (Deng et al., 2020b), and spraying 

applications (L. Wang et al., 2019). Additionally, Xavier NX and Jetson Nano have been used for 

real-time apple detection (Mazzia et al., 2020). As highlighted in the studies above, the need for 

real-time deep learning algorithms on agricultural robots (Hu et al., 2021) shows that edge devices 

equipped with GPUs would prove to develop intelligent machines in agriculture. 

2.5.3 Why do DLNs have to be optimized for edge devices? 

For vision-based tasks, deep learning networks have to be optimized to achieve real-time 

performance. The real-time performance of deep learning networks is measured in frames per 

second (Wan & Goudos, 2020). The definition of real-time varies based on the application, but it 

is defined in terms of the camera frame rate for computer vision. A real-time deep learning network 

would be one that could achieve frame rates equal to or greater than the frame rate of the imaging 

camera (J. Chen & Ran, 2019). Typically, this number varies between 30 – 60 frames per second. 

Usually, deep learning networks like Faster R-CNN (Ren et al., 2017) and YOLOv4 (Bochkovskiy 

et al., 2020b) target real-time applications. In fact, YOLOv4 promises a frame rate of 65 fps. But 

such frame rates are only achieved on server-grade GPUs like NVIDIA V100. While deep learning 

networks are designed for application on mobile and edge devices, for example, MobileNet, tiny 

YOLOv4, they lack accuracy compared to deeper networks like YOLOv4.  

 

Edge devices cannot contain server-grade GPUs primarily because of power and weight 

constraints. Moreover, it is not ideal for implementing mobile deep learning networks because of 

their lack of accuracy. Therefore, performing real-time identification on edge devices with large 

deep learning networks is not a trivial task. Fortunately, with the advancement in computer 

technology and the development of new hardware, it is possible to optimize deep learning networks 

such that their computation requirements during inference are reduced. It is important to note that 
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optimizations are only meant to be applied to a deep learning network after it has been trained. 

Optimization does not affect the training time for the networks.  

 

Optimizations can be performed using TensorRT (NVIDIA, 2021f) on a trained deep learning 

network. Several optimizations are performed by TensorRT to reduce inference time, including 

Reduce Mixed Precision, Layer and Tensor Fusion, Kernel Auto Tuning, Dynamic Tensor 

Memory. The details about these optimizations are presented in Section 3.5.1. 

 

Optimized deep learning networks are currently being used for application in autonomous 

navigation in vineyards. One study reported that optimizations increased control frequency from 

21.95 Hz to 47.15 Hz (Aghi et al., 2020). Another study showed that when optimizations were 

applied to the image classification model Resnet50, the frame rate increased from 5.55 to 18.7  

(Olsen et al., 2019). A very recent study used tensorRT optimizations for semantic segmentation 

of weeds from UAS images. They reported an increase in fps from just 14.33 fps to 45.05 fps for 

the MobileNetV2-UNet network (Lan et al., 2021).  

 

These studies indicate that tensorRT can be viably applied for deep learning deployment on edge 

devices like Jetson Nano and Xavier NX. TensorRT is an actively developing library (NVIDIA, 

2021f) and opens up a lot of potential for developing the next generation of agricultural robots. 
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 METHODOLOGY 

3.1 Dataset Preparation  

Correct training data is a critical prerequisite in ensuring that deep learning networks adequately 

identify objects of interest. The training data should be representative of the field conditions to 

avoid poor network performance. For example, if occlusion is prevalent after a particular crop 

growth stage, then training the deep learning network with examples of occlusion will avoid poor 

detection outcomes. Additionally, consistency of training data annotation or data labeling is 

essential to ensure proper training of networks. For instance, if a weed is mismarked as a crop 

during the annotation process, the network would learn to misclassify weed when presented with 

an unseen image.  The following sub-sections describe the data preparation pipeline starting with 

the acquisition of data to the training of deep learning networks.  

3.1.1 Data collection site  

The UAS was used to acquire data from a field (41°06'56.1" N, 86°4120.9" W) located close to 

the city of Winamac in Indiana, USA. The primary crop and the primary weed in the field were 

Soybean and Palmer amaranth (Amaranthus Palmeri), respectively. Soybean was planted on May 

22. The size of the experimental field was 76.2 m x 15.2 m. It helped demarcate experimental field 

boundaries and create an orthomosaic image by placing four Ground control points (GCP) at the 

corners of the field and one GCP at the center of the field (Figure 3.1). An orthomosaic image 

combines multiple orthophotos, i.e., image with geometric distortions removed, free of lens 

distortions, and corrected for topographic relief.  
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3.1.2 Flight details  

Four flights were conducted between June 11-18, 2020, to acquire experimental field images. The 

flights were conducted between 10 AM and 3 PM to stay close to the solar noon. It helped in 

minimizing the impact of shadows on the images and image noise due to limited light.  

 

The flight path was planned using DJITM Ground Station Pro (SZ DJI Technology Co., Ltd., 

Shenzhen, China) application (hereafter referred to as "app") installed on an iPad. The position of 

the four GCPs was given as input to the app in addition to other parameters such as side overlap 

and front overlap. A complete list of input parameters is given in Table 3.1. A total of 10 flight 

lines were created parallel to the longest side of the field. The imagery data was acquired using 

Mavic Pro (SZ DJI Technology Co., Ltd., Shenzhen, China), an UAS from DJI flown at a speed 

of 1 m/s. It took approximately 12 minutes to cover the experimental field.  

Figure 3.1: Soybean field boundaries at Winamac, Indiana - 76.2 x 15.2 m2 
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Table 3.1: Flight parameters for data collection 

Flight Parameter Parameter Value 

Front overlap 80 % 

Side overlap 80 % 

Flight lines 10 

Flight Speed 1 m/s 

Flight Height 5 m 

Total Flight time 12 minutes 

 

3.1.3 Image data  

DJI Mavic Pro (SZ DJI Technology Co., Ltd., Shenzhen, China) was equipped with a RGB 

Complementary Metal Oxide Semiconductor (CMOS) sensor that allowed capturing images at a 

resolution of 4000 x 3000 pixels. The camera was stabilized with an in-built 3-axis gimbal.  

 

The images were collected from June 11 (i.e., 27 days after soybean planting) to June 18 (i.e., 34 

days after planting). A test flight was conducted on June 5 (21 days after planting), though weed 

emergence was limited on that day. The duration of each flight was 12 min and resulted in 152 

full-resolution images. Each full-resolution image was split into a tile size of 250 x 250 pixels 

before using as an input for training deep learning networks. The total number of tiles obtained per 

full-resolution image was 192. After splitting all full-resolution images, a total of 29,184 image 

tiles were obtained per day. Hereafter, the term "image" refers to image tiles discussed in this 

section. Details about image data are summarized in Table 3.2 and details about crop growth stage 

and the average weed height are given in Table 3.3  
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Table 3.2: Image Data Collection details 

 

 

 

 

 

 

 

Table 3.3: Growth stage of soybean and average weed height for Palmer amaranth on data 

collection dates 

Date Soybean Growth Stage Palmer Amaranth 

Average Weed Height 

June 5, 2020 Cotyledon Stage Less than 2.54 cm 

June 11, 2020 Unifoliate Stage 3.81 cm 

June 12, 2020 Unifoliate Stage 3.81 cm 

June 13, 2020 Unifoliate Stage 5.08 cm 

June 14, 2020 V1 stage 6.35 cm 

June 15, 2020 V1 stage 6.35 cm 

June 16, 2020 V1 stage 7.62 cm 

June 17, 2020 V1 stage 7.62 cm 

June 18, 2020 V2 stage 8.89 cm 

3.1.4 Image Data Annotation  

Annotation is the process of categorizing and labeling objects or pixels in an image to train a deep 

learning network. The images were manually annotated for carrying out both object detection and 

image segmentation studies. In object detection studies, a bounding box was used to describe the 

location of the object of interest. Image segmentation, on the other hand, required pixel-level image 

annotation. Pixel-level annotation being a more detailed process, took approximately thrice the 

time compared to bounding box annotation. On average, each day's image took approximately 30 

hours for bounding box annotation and 80 hours for pixel-wise annotation.  

  

Data Collection Dates Test Run 
June 5, 2020 

Data Used for study 
June 11 to June 18, 2020 

Full Resolution Images 
collected each day 

152 

Full Resolution Image 
size 

4000 x 3000 pixels 

Image Tile size  250 x 250 pixels 

Total number of image 
tiles per day 

152 ×
4000×3000

250×250
= 29184  
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Bounding box annotation was manually carried out using YOLO Label Software (Kwon, 2018). 

The software was installed on a laptop with IntelTM Core® i7-7700HQ CPU @ 2.8GHz running 

MicrosoftTM Windows 10 Pro operating system (OS). The software had a point-and-drag interface. 

The interface of the YOLO label is shown in Figure 3.2.  

 

 

Figure 3.2: YOLO Mark software (left), Generated *.txt file for labels (right-top), YOLO 

labeling format (right-bottom) 

 

Two classes on each image that were subjected to annotation were Soybean plants and Palmer 

amaranth weeds. After creating bounding boxes for the two classes of interest, the annotations 

were saved in YOLO format (Figure 3.2). Each line in the annotation represents one bounding box 

(Equation (1)). 

 

 < 𝑐𝑙𝑎𝑠𝑠 𝑖𝑑 > <
𝑋𝑜

𝑋
> <

𝑌𝑜

𝑌
> <

𝑊

𝑋
> <

𝐻

𝑌
> (1) 

 

where,  

     class id = label index of the class (Soybean [0] or Palmer amaranth [1]) 

     Xo = X coordinate of the bounding box’s center (pixels) 

     Yo = Y coordinate of the bounding box’s center (pixels) 

     W = Width of the bounding box (pixels) 

     H = Height of the bounding box (pixels) 

     X = Width of the image (pixels) 

     Y = Height of the image (pixels) 
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Once all objects belonging to two classes of interests were marked in the images, a corresponding 

text file with the same name as the image file but a different extension, i.e., *.txt, was saved for 

storing the annotations. Both the text file and images were used for training the networks used in 

this study.  

 

Pixel-wise annotation was performed for three classes, namely, Soybean, Palmer amaranth, and 

background. The annotation was completed using two different software, each with its advantages 

and disadvantages. The first software used was Label Studio (Tkachenko et al., 2020), an open-

source software. The UI for label studio was accessed using a web browser like Google Chrome 

(Google LLC, California, USA) or Mozilla Firefox (Mozilla Foundation, California, USA). The 

interface of the software was customizable for different needs. For pixel-wise annotation, the 

interface was set to include two primary tools for annotation, the brush tool and the polygon tool 

(Figure 3.4). The brush tool was used to paint over areas of the image by clicking and dragging 

the mouse pointer. The thickness of the brush was adjusted based on the size of the object being 

annotated. For example, a thicker brush size was used around the center of the plant, while a thinner 

brush was used around the edges where precise annotation was required to avoid marking areas 

outside the plant.  The range of brush size varied from 1 to 50. The polygon tool was used to draw 

a multi vertex polygon around the object boundary. All the pixels contained inside the polygon 

Figure 3.3: Representation of YOLO labelling format for Soybean label 
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were assigned the same class. An example of a pixel-wise annotated image for an image tile is 

given in Figure 3.5. 

 

 

Figure 3.4: Label Studio annotation example a) pixels marked with brush tool b) creation of 

outline around the leaf with the polygon tool 

 

 

Figure 3.5: Segmentation Annotation. RED - Palmer Amaranth, BLUE - Soybean, Grey – 

Background 
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The second software used for annotation was Adobe Photoshop (Adobe Inc., San Jose, California, 

US). It is commercial software for image editing developed by Adobe. The advantage of using 

Photoshop was the availability of the Magic Wand tool. It is a selection tool that allows selecting 

pixels based on the tone and color of the selection. The selection began by clicking in the object's 

center (Soybean plant, Palmer amaranth, or background). A selection of pixels was created such 

that all the pixels, similar to the pixels at the location of the mouse click, were part of the selection. 

The similarity of the pixels was based on the tolerance values (Figure 3.6). The tolerance was 

adjusted on a case-by-case basis using values of 5, 10, 15, 20, and 32 to ensure that most object 

pixels were selected and pixels belonging to background or other undesired classes were not a part 

of the selection. Once the single weed or crop pixels were selected with the magic wand tool, a 

paint bucket tool was used to annotate the pixels into respective classes by coloring the pixel with 

predefined class color (Figure 3.6-f). Sometimes, the selection was inaccurate, especially around 

the edges. During such instances, a paintbrush tool, similar to the brush tool used in the label studio, 

had to be used to refine the edges.  
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3.1.5 Data Augmentation 

Data augmentation is a technique used for training deep learning networks to increase/augment the 

existing training dataset. The existing dataset is augmented by applying linear and non-linear 

transformations. Data augmentation has been shown to increase testing accuracy and 

generalizability of the network (i.e., testing accuracy on a different dataset), especially for image 

identification tasks (S. Wu et al., 2020). Some conventional examples of data augmentation include 

brightness change, hue change, rotation, scaling, and vertical and horizontal flips.  

3.2 Object Detection Architectures 

Deep learning networks for object detection were used for detecting multiple instances of crops 

and weeds in each image. These networks belong to two classes of convolutional networks, i.e., 

two-stage detectors and single-stage detectors. As the name suggests, there are two stages of 

Figure 3.6: (a) point of mouse click for the magic wand tool (b-f) extent of selection for different 

tolerance values 
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detection in the former. Stage 1 is called Region Proposal Network (RPN), and Stage 2 is called 

object detection. On the other hand, using anchors, single-stage detectors combine region proposal 

and object detection into a single stage. The two-stage detector of choice for this research was 

Faster R-CNN. In contrast, the single-stage detector of choice was YOLOv4.  

3.2.1 Faster R-CNN 

Faster R-CNN is a part of the "Regions with CNN features" (R-CNN) family of networks (Ren et 

al., 2016). It is one of the most widely used networks among the family of R-CNN networks. It 

finds application in fields of marine exploration (P. Shi et al., 2021), human medicine (Kim & Huh, 

2020), agriculture (Wan & Goudos, 2020) and autonomous vehicles (Yang et al., 2020). Faster R-

CNN is a two-stage network. The architecture consists of 

 

Stage 1: Region Proposal Algorithm  

Stage 2: Object Detection Algorithm 

 

Region proposal algorithm takes the training image as an input and outputs potential regions within 

the image where a crop or a weed could be present. Such proposals are generated by using a CNN 

called RPN. Initially, RPN generates a feature map of the input image. Feature map contains 

distinguishing features of the image, which RPN uses to generate proposed regions. The pruning 

layer processes the regions, eliminating overlapping proposals and prunes the total proposal to a 

set limit. By default, the limit is set to 300. Increasing the total proposed region limit leads to better 

detection chances and an increase in computation cost.  On the other hand, reducing the limit leads 

to reduced computational load but could also cause object detection networks to miss some 

instances of crop and weed in the image. 

 

The proposals are passed on to a second CNN, i.e., Fast-RCNN. Fast-RCNN shares the feature 

map of the input image, which RPN generated.  Sharing the feature map between the two stages 

of the Faster R-CNN enables the network to learn shared features, which increases the overall 

detection accuracy. Moreover, it saves on computation cost as the feature map does not have to be 

separately generated for the two stages. Essentially, Fast-CNN can be thought of as having two 
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sets of input, the first being the shared feature map and the second being the proposals. The output 

of Faster R-CNN is thus the class and location of weed and crop in the input image.  

3.2.2 YOLOv4 

YOLOv4 is the newest successor in the YOLO series of object detection networks (Bochkovskiy 

et al., 2020b). It can deliver frame rates close to 65 frames per second (fps) (on NVIDIA Tesla 

V100) on the MS COCO dataset with 80 classes with an AP50 Score of 67.5%. Two major 

contributions compared to the previous version of YOLO (YOLOv3) are referred to by authors of 

YOLOv4 as Bag-of-Freebies (BoF) and Bag-of-Specials (BoS).  

 

BoF consisted of changes made to training which directly improved the inference accuracy. Since 

these changes were made at the time of training, inference speed was not affected. It includes new 

data augmentation techniques like Cutmix (Yun et al., 2019) and Mosiac (Bochkovskiy et al., 

2020b). BoS consists of changes that increase the inference accuracy at the expense of a slight 

decrease in inference time. YOLOv4 consists of three parts: backbone, neck, and head (Figure 3.7). 

 

 

Figure 3.7: YOLOv4 Architecture [Source:  Bochkovskiy et al. (2020)] 

 

The purpose of the backbone is to extract features from the input image. CSPDarknet53 is used in 

YOLOv4 for the backbone compared to YOLOv3, which had Darknet53 as the backbone. The 

major difference between the two is the inclusion of Cross-Stage Partial Connections (CSP 

connections). CSP connections reduce the computation of the model by dividing the input feature 

of dense into two parts. The first part is sent through the dense and transition layers, while the 
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second part is transmitted to the next stage. Because only a part of the feature map is utilized for 

computation, the memory requirement of the network is also reduced.  

 

The head of the network is responsible for actually predicting the bounding box location and object 

class. Although, before the features from the backbone are passed on to the head, the neck of the 

network enhances them. In YOLOv4, the neck includes Spatial Pyramid Pooling Layer (SPP) (K. 

He et al., 2015) and Path Aggregation network (PAN) (S. Liu et al., 2018). 

 

The complete list of BoF and BoS applied to the network are as follows [Also listed in the original 

publication (Bochkovskiy et al., 2020b)]: 

 

• BoF for backbone includes techniques for Data Augmentation like cutmix and mosaic and 

additional techniques like Class label smoothing and dropblock regularization 

• BoS for the backbone of the network include new activation function, called Mish 

activation and network modifications including multi-input weighted residual connections 

and Cross-stage partial connections 

• For the detector, the BoF includes techniques for data augmentation similar to one used in 

backbone, i.e. mosaic data augmentation. In addition, it includes extensive hyperparameter 

optimization, a new loss function:  CIoU-loss and other techniques like CmBN, DropBlock 

regularization, self-adversarial training, random training shapes, multiple anchors for 

single ground truth, cosine annealing scheduler 

• Finally, the BoS for the detector includes, activation function similar to backbone i.e. Mish 

activation, bounding box suppression with DIoU-NMS and new network blocks like SPP-

block, SAM-block, PAN path-aggregation block. 

3.2.2.1 Data Augmentation in YOLOv4 

The mosaic data augmentation method was developed by Glenn Jocher, Founder and CEO of 

Ultralytics (Los Angeles, CA, USA). In this method, four training images are combined into one 

(Figure 3.8-left). The portion of the four images that make up the final augmented image and the 

ratio of the area occupied in the final augmented image is randomly determined for each new 

augmented image. Because only a part of the original image is visible in the final augmented image, 
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the YOLOv4 network is trained to identify plants in the image based on fewer distinguishing 

features. Additionally, mosaic data augmentation allows the YOLOv4 network to identify plants 

on a different scale. This is because when four images are used to fill up the space of a single 

image, the resulting size of each of the four images is reduced by at least one-fourth. 

 

In Cutmix data augmentation, random patches from one image are pasted over a random area of a 

second image (Figure 3.8-right). The random patches are of variable size. Due to Cutmix 

augmentation, a specific portion of the image is covered/occluded by the patch. Thereby, the 

YOLOv4 network is trained to focus on image areas that would usually be ignored for 

distinguishing between plants. Hence, the localization ability of the network in the presence of 

occlusion goes up with the use of Cutmix Augmentation.   

 

The network parameters for the YOLOv4 network and their significance are given in Table 3.4.  

 

Table 3.4: YOLOv4 training parameters 

Parameter Significance Parameter value 

Network Size Signifies the input size for the network. 512 x 384 

Training 

Iterations 

The total number of training iterations the 

network would be trained for. 

6000 

Batch Size Signifies the number of images that are used for 

each training iteration.  

64 

Subdivisions Signifies the number of sets a batch of images 

would be divided into. It reduces the amount of 

memory required to train the network. 

8 

Learning Rate It is a parameter used to determine the amount of 

change in weights after every iteration. 

0.0013 
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3.2.3 Object detection network training 

One of the objectives of this research was to determine the generalization ability of the networks 

in weed identification. Generalization essentially measures the accuracy of a trained network in 

identifying weeds when presented with a new and unseen dataset. The new dataset must differ 

from the training dataset in certain aspects such as field location, data collection date, and/or type 

of image sensor. In this research, four datasets were used, each differing from the other based on 

the data collection date. Both the object detection networks, i.e., Faster R-CNN and YOLOv4, 

were trained on UAS data. Four dates selected for assessing the generalization ability of the 

networks were 11th, 14th, 16th, and 18th June 2020. The YOLOv4 and Faster R-CNN networks were 

trained on-field images on only one date out of the four and tested on the remaining three dates. 

The generalization accuracy is reported separately for each of the three dates. For example, a 

YOLOv4 network trained on images from June 11 would be tested on images from June 14, June 

16, and June 18, resulting in three separate generalizations accuracies, one for each of the three 

days. The network accuracy for object detection was determined by the Mean Average Precision 

score (mAP). A higher mAP produces better results and hence is favored. Further details about 

evaluation measures, including mAP, are available in Section 3.4. 

Figure 3.8: Mosaic Data Augmentation (left), Cutmix Data Augmentation (right) 
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3.3 Image Segmentation 

Image segmentation is fundamentally different in comparison to Object detection. In image 

segmentation, instead of detecting the presence of plants in the image by drawing a bounding box 

around it, each pixel is assigned an object class. In addition to the two classes used in object 

detection (Soybean and Palmer amaranth), a new class was added in image segmentation. This 

class was called background. Background class included pixels corresponding to the soil, old dead 

remains of plants, and any other plant which was neither a crop or weed of interest. Because each 

image pixel was marked into one of the three classes, the deep learning-based segmentation 

networks took more time to train and produce interferences. For this research, two networks were 

selected, namely UNET and DeeplabV3+, and their performance was compared. 

3.3.1 UNET 

UNET was developed by Olaf Ronneberger for biomedical segmentation applications 

(Ronneberger et al., 2015a). UNET has an encoder-decoder architecture. It comprises two main 

components, which are called paths. The first of the paths is called the contracting path (encoder). 

It contains convolution layers, an activation function (Rectified Linear Unit – ReLU), a pooling 

layer, and finally downsampling layer. The purpose of the contracting path is to capture the context 

of the pixels, i.e., determine the essential features of a plant that can be used to determine its type. 

Although, by repeated downsampling, the location of the plant is lost. 

 

 

Figure 3.9: UNET Architecture (Ronneberger et al., 2015a) 
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The second path is called the expansive path (decoder). It is symmetric to the contracting path in 

terms of the layers. It begins with up-sampling and up-convolution. At this step, the features from 

the corresponding contracting path are concatenated before sending the features onto the following 

convolution layers. The purpose of the expansive path is to localize the pixel precisely. It could be 

thought of as tracking the location of the leaf pixels of a plant as the network up samples the 

original image at each step while borrowing the contextual information from the contraction path. 

Because both the paths are symmetric, the network architecture looks like a U, hence the name 

UNET (Figure 3.9). 

3.3.2 DeeplabV3+ 

DeeplabV3+ was developed by Google and is an improvement over DeeplabV3 (L.-C. Chen et al., 

2018). Similar to UNET, it is an encoder-decoder network. In addition, it comprises Atrous Spatial 

Pyramid Pooling (ASPP) to encode multi-scale context (Figure 3.10). This would be particularly 

useful in weed identification using UAS because the size of the weed changes from image to image 

because of the stage of the weed ( 

 

Table 3.3) and the variation in flight altitude. And because multi-scale information could be 

encoded, detecting smaller weeds in early growth stages could prove helpful. The network 

architecture is shown in  Figure 3.11 . 
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Figure 3.11: DeeplabV3+ Architecture (L. C. Chen et al., 2018) 

3.3.3 Image segmentation network training 

The two image segmentation networks were trained on UAS images starting from June 11 to June 

18.  This led to eight trained networks corresponding to each day. This was done to determine the 

baseline performance of the networks on each day. The models were evaluated on Intersection 

Figure 3.10: Atrous Spatial Pyramid Pooling as used in Deeplab V3+ 
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over Union (IoU) score (Refer to Section 3.4 Evaluation Matrices) for each of the three classes, 

i.e., Soybean, Palmer amaranth, and background. The results were plotted on a line graph with 

training data on the x-axis and the IoU score of Soybean and Palmer amaranth on the y-axis. The 

IoU score for the background was reported separately in a table because it was not a significant 

evaluation matrix for the model. 

 

Additionally, out of eight networks, four were selected for the generalization study. The four 

chosen dates were the same as those chosen for object detection networks, i.e., 11th, 14th, 16th
, and 

18th June 2020. The networks trained on one date were tested against the images from the 

remaining three dates. The results were presented in a table for the IoU score for each of the models. 

The model performance was compared to determine the best image segmentation model for weed 

identification among UNET and DeeplabV3+.  

3.4 Evaluation Matrices  

The performance of the two-image segmentation networks (UNET and DeeplabV3+) was 

evaluated using Intersection over Union (IoU) score. In contrast, the two object detection networks 

(YOLOv4 and Faster R-CNN) was evaluated using mAP. Both IoU and mAP will be defined in 

this section. 

3.4.1 Intersection over Union score (IoU score)  

IoU score is used to quantify the amount of overlap between the prediction and the ground truth. 

IoU can be calculated both for object detection and image segmentation. For simplicity of figures, 

in this section, the IoU score would be explained concerning bounding boxes. Nonetheless, the 

concept would be translated for image segmentation wherein instead of bounding boxes, the 

collection of pixels for different weeds and plants would be used to calculate the intersection and 

union of the area between the ground truth and prediction. 
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IoU simply is the ratio of intersection of the area of overlap and area of the union of the ground 

truth and prediction (Figure 3.12). The higher the match between the ground truth and prediction, 

the higher the IoU score. IoU score is calculated as a percentage. A complete overlap of ground 

truth and prediction is indicated by a score of 100 %, while a wholly separated ground truth and 

prediction would result in an IoU score of 0 %. 

 

Consider an example of a plant that occupies an area of 1 cm2 (Figure 3.13a). In the figure, the 

bounding box for the plant was subdivided into 144 cells. Each cell has a size of 1/12 cm x 1/12 

cm.  If the prediction box (blue in Figure 3.13) completely overlaps the ground truth box (brown 

in Figure 3.13), the IoU score would be: 

 

𝐼𝑜𝑈 =  
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑣𝑒𝑟𝑙𝑎𝑝

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
 ×  100 =

121 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔 𝑐𝑒𝑙𝑙𝑠

121 𝑢𝑛𝑖𝑜𝑛 𝑐𝑒𝑙𝑙𝑠
=  

1

1
× 100 = 100 % 

 

If the prediction box (blue in Figure 3.13) is displaced by 1/12 cm in both x and y-axis, the IoU 

score would be: 

 

𝐼𝑜𝑈 =  
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑣𝑒𝑟𝑙𝑎𝑝

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
 ×  100 =

121 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔 𝑐𝑒𝑙𝑙𝑠

167 𝑢𝑛𝑖𝑜𝑛 𝑐𝑒𝑙𝑙𝑠
=  

0.84

1.16
× 100 = 72.4 % 

Figure 3.12: IoU score calculation 
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3.4.2 Mean Average Precision (mAP score) 

mAP score was used to evaluate the performance of object detection algorithms in this research.  

Whenever an image input is given to a trained object detection network, the output is a list of 

prediction boxes and the corresponding confidence score for each prediction box. The confidence 

score measures how strongly the network determines a prediction box belongs to a particular class 

(weed or plant). The value of confidence varies between 0 % and 100 %.  

The process of mAP calculation begins with looping over prediction boxes for each of the classes 

separately. For each class, an average precision (AP) score is calculated. In the end, the average of 

AP scores for all the classes results in mAP score.  

 

AP is an average of precision values corresponding to 11 recall values [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 

0.6, 0.7, 0.8, 0.9, 1.0] from Precision-Recall Curve (PR Curve).  

 

PR curve is generated by varying the confidence threshold from 0 to 100. When the confidence 

threshold (CT) is varied, it affects the True Positive (TP), False Positive (FP), and False Negative 

(FN) detections, which in turn affects the precision and recall values. This is because CT is used 

as a filter to remove detection boxes with unacceptable confidence values (Confidence score < 

Figure 3.13: IoU score calculation 
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CT). The remaining prediction boxes, called the pruned prediction boxes, are used to calculate TP, 

FP, and FN values.  

 

TP, FP, and FN are calculated based on the IoU score between prediction boxes and ground truth 

boxes. Firstly, several ground-truth boxes with missed predictions are counted towards FN 

detections. In other words, if a plant is present in the image, but the network cannot predict its 

presence, then it is an instance of False-negative detection. Out of all the prediction boxes, any 

prediction box with IoU score higher than a predefined IoU threshold (IT) is counted towards a 

true positive detection. Additionally, any prediction box with IoU scores less than IT is counted 

towards False positive. TP, FP, and FN are diagrammatically represented in Figure 3.14. 

Additionally, the difference between TP and FP can be understood based on a simplistic example 

as given in Figure 3.15.   

Based on the value of TP, FP, and FN, the precision and recall are calculated. Precision is the 

percentage of successful detection of plants out of a total number of positive detection of plants in 

the image. On the other hand, recall is the percentage of positive detections out of the image’s total 

number of ground truth boxes. Equation (2) and Equation (3) show the calculation for Precision 

and Recall, respectively. 

Figure 3.14: True Positive (TP), False Positive (FP), and False Negative 

(FN) calculation based on IoU threshold 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

(2) 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(3) 

 

The complete process of mAP calculation as described in this section is represented with a 

flowchart in Figure 3.16..

Figure 3.15: Illustrative example of True Positive, False Positive, and False 

Negative 
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Figure 3.16: Flowchart depicting the process of mean average precision calculation for Object 

Detection 



 

 

60 

3.5 Network deployment on edge devices 

For deep learning algorithms to be used in fields, they should run on UAS and ground robots. A 

significant barrier to doing so is the large number of computational resources required to run deep 

learning models. Research groups have reported using mini-laptops on ground vehicles (Bhong et 

al., 2020) and tractors (Machleb et al., 2020) for deploying additional computing resources in the 

field. While mini laptops can work on ground vehicles with a bit of relaxed restriction on weight 

and power, they won’t be feasible in the air on a UAS. Hence, lighter-weight edge devices are 

required that use limited power from UAS and also do not add a lot to the payload. 

Because of the limited computational power of edge devices, deep learning models cannot directly 

run on them. Rather the networks have to be optimized such that the computations are reduced 

without a significant reduction in the accuracy of the network. For this research, two devices, i.e., 

NVIDIA® Xavier NX and NVIDIA® Nano (NVIDIA Corporation, Santa Clara, California, USA), 

were used to deploy the best network from the object detection and image segmentation group.  

3.5.1 Network Optimizations - TensorRTTM 

NVIDIA® TensorRTTM is a software development kit used for optimizing the deep learning 

networks for inference (Figure 3.17). It is programmed on Compute Unified Device Architecture 

(CUDA®) and is compatible with a majority of the deep learning frameworks, including the 

popular ones like Tensorflow, Pytorch, and Matlab. The optimizer within TensorRTTM uses 

various strategies to reduce the computational requirements. These strategies are outlined below 

as well as depicted in Figure 3.17. 

 

1. Reduce Mixed Precision – It reduces the precision of weights and biases of a network from 

Floating Point 32 (FP32) to Floating Point 16 (FP16) or Integer 8 (INT8). Because each 

number is represented by fewer bits, the processor's throughput can be increased. 

2. Layer and Tensor Fusion – This combines certain layers which often occur in succession 

into a single layer. This includes layers succession like Convolution- Activation. By 

reducing the number of layers, the overall computation time can be reduced with this 

technique.  
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3. Kernel Auto Tuning – Selects the best algorithm for optimization based on the available 

GPU memory 

4. Dynamic Tensor Memory – Optimizes the size of matrices used during inference for faster 

calculation  

5. Multi-Stream Execution – While not applicable in this study, TensorRT Optimizer is 

capable of handling multiple input streams, i.e., given enough computational resources are 

available on the edge device, videos from multiple cameras can be processed in parallel  

6. Time Fusion – Optimizes recurrent neural networks (RNN), not used in this study  

 

 

Figure 3.17: TensorRTTM Workflow (NVIDIA, 2021f) 

3.5.2 Network Optimizations – tkDNN 

tkDNN is a deep neural network library developed in 2020 (Verucchi et al., 2020). It was primarily 

designed to be used on NVIDIA JetsonTM boards. This library aimed to best utilize the JetsonTM 

boards to achieve the highest performance. NVIDIA CUDA® Deep Neural Network library 

(cuDNN) and tensorRT primitives were used to program tkDNN. 
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3.5.3 Optimization methods for NVIDIA Jetson Nano and NVIDIA Xavier NX 

The optimization was applied for the best performing network based on the IoU score among 

Image segmentation models. For object detection, YOLOv4 was optimized because it is a single-

stage detector that is more suitable for deployment on the edge device. The optimization methods 

are hardware-specific, i.e., a network optimized on Jetson Nano cannot run on Xavier NX. Hence 

the networks were optimized separately on NVIDIA® Xavier NX and NVIDIA® Nano.  

 

Before either of the networks could be optimized, the networks were converted in Open Neural 

Network Exchange (ONNX) format. ONNX is an open standard created by a collaboration of 

technological industries and research groups to facilitate collaboration and interpolation of models 

in machine learning. An ONNX model could be deployed on an edge device for inference. But it 

is important to note that an ONNX model is not optimized and would give no improvement in fps 

compared to an unoptimized network. This is because the ONNX standard was primarily 

developed as a common communication medium so that other deep learning frameworks like 

Tensorflow, PyTorch, or Caffe can be converted between each other.  

 

The performance of the models was compared based on fps. It is the number of static image frames 

that can be processed by the model every second. The higher the fps value, the better the model 

will be for real-time applications.  

3.5.3.1 Object detection optimization process 

In the case of object detection, the YOLOv4 network was optimized. First, the inference speed, 

measured in fps, was calculated for the native YOLOv4 network (unoptimized).  

 

Following this, the network was optimized using tkDNN (Section 3.4.2). The optimization with 

tkDNN was performed with two different floating-point precision, i.e., FP 16 and FP 32. Hence, 

two optimized networks were obtained with tkDNN, each used to evaluate the inference speed.   

 

To optimize the YOLOv4 network with tensorRT (Section 3.4.1), the network was first converted 

to the ONNX model. This was because the native YOLOv4 network cannot be directly converted 
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into tensorRT. Once the ONNX model for YOLOv4 is obtained, the inference speed of the model 

is calculated. Finally, the ONNX model was converted into tensorRT engines with two floating-

point precision: FP 16 and FP 32. The inference speed for both the tensorRT engines was 

calculated and reported (Figure 3.18).   

3.5.3.2 Image Segmentation optimization process 

For image segmentation, a similar object detection strategy was adopted to obtain optimized 

tensorRT engines of DeeplabV3+. tkDNN optimizations were not undertaken for image 

segmentation because tkDNN was primarily designed for the YOLO network.  

 

Hence, initially, the inference speed (fps) of the native DeeplabV3+ network was calculated. Next, 

the native model was converted into the ONNX model. The inference speed of the ONNX network 

was calculated and reported. Finally, the ONNX model was converted to two tensorRT engines at 

different floating-point precision (FP 16 and FP 32). For each of the two engines, the inference 

speed was reported (Figure 3.19). 
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Figure 3.18: YOLOv4 optimization flowchart 
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Figure 3.19: DeeplabV3+ optimization flowchart 
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 RESULTS 

4.1 Results for Object Detection for weed identification  

4.1.1 Faster R-CNN - Two-stage object detection  

The results for establishing testing accuracy of Faster R-CNN for each of the four dates (Figure 

4.1) and the results for setting generalization accuracy of Faster R-CNN over different imaging 

dates (Table 4.2) are discussed in this subsection. 

 

In the original paper, Faster R-CNN resulted in mAP score of 70.4 % on the PASCAL VOC 2012 

image dataset (Ren et al., 2016). In comparison, the testing mAP score for Faster R-CNN for all 

four-dates was higher than 70.4 %. On June 11, the mAP score was 78.3 %, on June 14 and 16, 

mAP score was 79.1 %, and on June 18, the mAP score was 79.5 %. The highest score was obtained 

on 18th June. The bounding boxes of weeds was approximately four times larger on 18th June 

compared to bounding boxes of weeds on 11th June. The larger bounding box is the result of the 

larger size of the weeds and crop (Table 4.1). The average height of weeds on June 18 was 

approximately two times compared to June 11.  

 

Table 4.1: Growth stage of Soybean and average weed height for Palmer amaranth on Data 

Collection dates for Object Detection 

Date Crop Growth Stage 
Average Weed Height 

(AWH) 

June 11, 2020 Unifoliate Stage 3.81 cm 

June 14, 2020 V1 stage 6.35 cm 

June 16, 2020 V1 stage 7.62 cm 

June 18, 2020 V2 stage 8.89 cm 

 

Essentially, a larger bounding box enables the network to extract more features for identifying 

weeds (J. Li et al., 2017; Tong et al., 2020). Additionally, distinguishing weeds from the 

background and other plants in the image, like crops, also becomes easier if more features represent 

weeds. 
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Table 4.2: Generalization mAP score of Faster RCNN networks 

Faster RCNN (mAP %) 

Testing Data Date 

11th June 14th June 16th June 18th June 

Training 

Data 

Date 

11th June - 75.3 75.2 75.2 

14th June 75.4 - 75.3 75.2 

16th June 75.1 75.2 - 75.2 

18th June 75.1 75.3 75.2 - 

 

The first Faster R-CNN network for which the generalization accuracy was accessed was trained 

on data from June 11. It achieved a mean mAP score of 75.23 % with a standard deviation of 0.06 % 

for June 14, 16, and 18. Compared to testing accuracy, the generalization accuracy for the 11th 

June Faster RCNN model was reduced by around 3.1 %. In an ideal case, the generalization 

accuracy should be equal to testing accuracy, although, in practical applications, generalization 

accuracy is seldom equal to testing accuracy. Yet, the target is to reduce the gap between the two 

(Kawaguchi et al., 2017; Neyshabur et al., 2017; L. Wu et al., 2017).  

Figure 4.1: Object Detection testing mAP score for Faster R-CNN 
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The detection results for the June 11 Faster R-CNN network on a single patch of the field with 

Palmer amaranth weed are shown in Figure 4.2. 

 

The second Faster R-CNN network for the generalization experiment was trained on images from 

14th June. It achieved a mean mAP score of 75.3 % with a standard deviation of 0.1 % for June 11, 

16, and 18. Additionally, the difference between testing and generalization mAP score is 

approximately 3.8 %. The detection results for the June 14 Faster R-CNN network on a single 

patch of the field with Palmer amaranth weed are shown in Figure 4.2. 

 

The third Faster R-CNN network was trained on images from June 16. It achieved a mean mAP 

score of 75.17 with a standard deviation of 0.06% for June 11, 14, and 18. Generalization accuracy 

reduced by approximately 3.9 % with June 16 Faster R-CNN network, similar to June 14 Faster 

R-CNN model. The detection results for the June 16 Faster R-CNN network on a single patch of 

the field with Palmer amaranth weed is shown in Figure 4.2. 

The final Faster R-CNN network was trained on images from 18th June. The mean mAP score was 

75.2 %, with a standard deviation of 0.1% for June 11, 14, and 16, respectively. For the final Faster 

R-CNN model, the generalization accuracy was reduced by around 4.3 %. The detection results 

for the June 11 Faster R-CNN network on a single patch of the field with Palmer amaranth weed 

is shown in Figure 4.2. 
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The mean and the standard deviation for the generalization mAP score of the four Faster R-CNN 

models can be seen in Figure 4.3. The four Faster RCNN networks, when compared amongst each 

other, did not show a particular trend for generalization mAP. Although, compared to testing mAP, 

the generalization mAP decreased in each of the four Faster R-CNN models. This could be because 

the Faster R-CNN did not generalize too well on the scale and height of weeds in the image (The 

scale of weeds in the image refers to the ratio of total bounding box pixels for a weed to the total 

number of pixels in the image). Between the test images, the scale of the weeds is very evident 

Figure 4.2: Faster R-CNN generalization detection results for the four networks on the same 

patch of field. The patch contains a single instance of Palmer amaranth. The RED bounding box 

is the ground truth, while the YELLOW bounding box is the prediction. 
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(Figure 4.2). Despite the reduction in generalization mAP score, visually, the detection is only 

slightly displaced from the bounding box.    

 

 

4.1.2 YOLOv4 – Single-stage object detection  

Similar to Faster R- CNN, the detection results of YOLOv4 on weed identification from UAS 

images are presented in this subsection. The results for establishing the testing accuracy of 

YOLOv4 for each of the four dates are given in Figure 4.4. The results for the second test on 

determining the generalization accuracy of YOLOv4 over different imaging dates are given in 

Table 4.3.  

Figure 4.3: Generalization mAP score for Faster RCNN 
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Table 4.3: Generalization mAP score of YOLOv4 networks 

YOLOv4 (mAP %) 

Testing Data Date 

11th June 14th June 16th June 18th June 

Training 

Data 

Date 

11th June - 69.4 69.1 68.3 

14th June 70.5 - 69.4 69.4 

16th June 70.2 70.4 - 70.4 

18th June 69.8 70.5 70.3 - 

 

 

The baseline for the mAP score for YOLOv4 was set based on the mAP score obtained in the 

original paper on the MS COCO dataset. Testing mAP score of 65.7 % was obtained in the original 

YOLOv4 paper (Bochkovskiy et al., 2020a). In the current research, the mAP score is higher than 

the baseline of 65.7 %. YOLOv4 network trained on June 11 resulted in a test mAP score of 70.6 %. 

When trained on images from June 14 June, mAP score of 71.3 % was observed. The test mAP 

score for the YOLOv4 network was reduced to 71.2 % on June 16 but increased to 72.4 % on 

Figure 4.4: Object Detection testing mAP score for YOLOv4 
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image data from June 18. In the case of YOLOv4, the difference in test mAP score between June 

18 and 11 networks is 1.8 %. This would be because bounding boxes of weeds occupy around four 

times more pixels on June 18th June than on June 11th June. The difference in the size of the 

bounding box is primarily due to the difference in the height of weeds and the crop’s growth stage 

(Table 4.1). YOLOv4 gives a higher mAP score of large objects, as it was shown in the original 

paper. For large objects in the MS COCO dataset, the YOLOv4 mAP score was 56.0 %, while the 

mAP score was only 24.3 % for small objects (Bochkovskiy et al., 2020a).   

 

For the generalization experiments, a YOLOv4 network trained on June x, 2020 would be referred 

to as June x YOLOv4 network. The four networks were June 11 YOLOv4 network, 14 June 

YOLOv4 Network, 16 June YOLOv4 Network and 18 June YOLOv4 Network.  

 

June 11 YOLOv4 network achieved a mean generalization mAP for June 14, 16, and 18 of 68.93 % 

with a standard deviation of 0.57 %. The reduction in mAP score from testing accuracy for June 

11 YOLOv4 network was 1.7 %. The detection results for Palmer amaranth on the same patch of 

the field on June 14, 16, and 18 can be seen in Figure 4.5. 

 

The mean generalization mAP for June 14 YOLOv4 network for June 11, 16 and, 18 was 69.77 %, 

with a standard deviation of 0.64 %. For the June 14 model, the mean generalization mAP was 

reduced by 1.5 % compared to the testing mAP score. The detection results for Palmer amaranth 

on the same patch of the field on June 11, 16, 18 can be seen in Figure 4.5. 

 

The third YOLOv4 network, i.e., June 16 June YOLOv4 network was tested on June 11, 14, and 

18 networks. The mean generalization mAP score of 70.33 % was observed with a standard 

deviation of 0.16 %. Compared to testing mAP, the generalization mAP for June 16 YOLOv4 was 

reduced by 0.9 %. The detection results for Palmer amaranth on the same patch of the field on June 

11, 14, 18 can be seen in Figure 4.5. 

 

The fourth and final YOLOv4 network was trained on images from June 18. When the network 

was tested in images from June 11, 14, and 16, a mean generalization mAP of 70.2 % was obtained 

with a standard deviation of 0.36 %. Additionally, the difference between testing and 
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generalization mAP score is approximately 2.2 %. The detection results for Palmer amaranth on 

the same patch of the field on June 11, 14, and 16 can be seen in Figure 4.5. 

 

 

 

The combined mean generalization mAP for the four trained YOLOv4 networks is given in Figure 

4.6. Out of the four YOLOv4 networks, maximum mean generalization mAP score was obtained 

for June 16 YOLOv4 network, and the least standard deviation was also obtained for June 16 

YOLOv4 network. This shows that June 16 YOLOv4 network was the best performing out of the 

Figure 4.5: YOLOv4 generalization detection results for the four networks on the same patch of 

field. The patch contains a single instance of Palmer amaranth. The RED bounding box is the 

ground truth, while the YELLOW bounding box is the prediction. 
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four networks. Additionally, there is an overall increase in mAP scores between June 11 and June 

18 YOLOv4 networks.  

 

 

 

4.1.3 Comparison of Faster RCNN and YOLOv4 for weed identification 

In terms of testing the mAP score, Faster RCNN performed better compared to the YOLOv4 model 

for every crop stage and weed height (Figure 4.7). A higher mAP shows that the two-stage detector 

is better at weed identification compared to single-stage detector. This could be explained by the 

presence of the Region Proposal Network in two-stage detectors. Having a separate region 

proposal and detection network, makes it easier for each of the two stages to optimize in respective 

tasks of region proposal and detection.  

Figure 4.6: Generalization mAP score for YOLOv4 
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Although, the larger network size of Faster RCNN has drawbacks which would prevent it from 

being the network of choice to be deployed on the edge device. First, it takes 50 % more time to 

train Faster RCNN compared to YOLOv4. On Gilbreth Cluster, a single YOLOv4 network took 

around 24 hours to train, while a single Faster RCNN network took 36 hours. Additionally, at the 

time of inference, Faster RCNN took 1.5 times longer than YOLOv4 to detect the objects in an 

image. In most cases, because networks could be trained on powerful servers or cloud computers, 

training time isn’t crucial in determining the application of the network on an edge device. But the 

inference time is a key consideration factor for deploying any deep learning network on an edge 

device. 

 

The generalization mAP score for Faster RCNN was higher than YOLOv4 for all the dates. This 

again could be attributed to two separate stages for region proposal and detection in Faster RCNN. 

Nonetheless, the difference between the generalization mAP score and testing mAP score is 

negligible for YOLOv4. By speculation, YOLOv4 learns the scale of weeds and thus the height of 

the weed in the image far better than Faster RCNN. This is advantageous, especially in UAS 

applications where the scale of weed in the image is directly related to the flight height. And due 

to the good generalizability of YOLOv4 for weed scale, slight changes in the flight height during 

field imaging should not adversely affect the performance of weed identification. 

Figure 4.7: Comparison of testing mAP score of Faster RCNN and 

YOLOv4 
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The detection results for the 16th June YOLOv4 network in some challenging situations promise 

its application for weed identification (Figure 4.8). It detected overlapping Soybean and detected 

both Soybean and Palmer amaranth even in situations when occlusion was occurring due to 

external objects like the electric fence set up around the field. Moreover, the YOLOv4 network 

was able to detect in-row weeds and was even able to generalize over the height of Palmer 

amaranth with minimal standard deviation (Figure 4.6). 

 

4.2 Results for Image Segmentation 

4.2.1 UNET segmentation results 

Summary of results for the two tests a) the testing accuracy of UNET (Figure 4.9) b) the 

generalization accuracy of UNET (Table 4.5).  

 

UNET, when released in 2015 (Ronneberger et al., 2015b), reported mean IoU scores on two 

custom cell datasets which were part of the ISBI cell tracking challenge 2014 and 2015 (Arganda-

Carreras et al., 2015; M et al., 2014). The first dataset was called “PhC-U373” which contained 

images of Glioblastoma-astrocytoma U373 cells on a polyacrylimide substrate recorded by phase-

contrast microscopy. UNET achieved an IoU score of 92.3 % on this dataset. The second dataset 

was called “DIC-HeLa” which contained the image of HeLa cells on a flat glass captured by 

Figure 4.8: YOLOv4 detection results in hard situations. RED bounding box represents Soybean 

while YELLOW bounding box represent Palmer amaranth. 
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differential interference contrast microscopy. UNET achieved an IoU score of 77.56 %. Because 

the dataset used in the current research was significantly different than either of the two cells 

datasets used in the original study, a direct comparison between the IoU scores cannot be drawn. 

The capability of the UNET model can still be inferred for its applicability to the current research 

that resulted in a maximum mean IoU score of 73.5 %.  

 

The mean testing IoU of the eight UNET networks trained on data from June 11 to 18, in order, 

are as follows: 63.4, 65.3, 67.4, 64.8, 70.6, 71.1, 73.5. The mean IoU increases as the days progress 

from 11th June to 18th June. This is primarily because the height of Palmer amaranth and size of 

the Soybean (due to the growth stage of Soybean) increases as the days progressed ( 

 

Table 3.3). When the IoU scores for weeds and crops are analyzed separately, it was observed that 

the mean IoU score for Palmer amaranth ranged between 48-67 % while IoU score for Soybean 

remained consistent, between 78-79 % (Figure 4.9). This showed that UNET had no trouble 

identifying Soybean. But when identifying Palmer amaranth, the effect of imaging date and hence 

the weed height had a major impact on segmentation. 

 

Table 4.4: Growth stage of Soybean and average weed height for Palmer amaranth on Data 

Collection dates for Object Detection 

Date Crop Growth Stage 
Average Weed Height 

(AWH) 

June 11, 2020 Unifoliate Stage 3.81 cm 

June 12, 2020 Unifoliate Stage 3.81 cm 

June 13, 2020 Unifoliate Stage 5.08 cm 

June 14, 2020 V1 stage 6.35 cm 

June 15, 2020 V1 stage 6.35 cm 

June 16, 2020 V1 stage 7.62 cm 

June 1,7 2020 V1 stage 7.62 cm 

June 1,8 2020 V2 stage 8.89 cm 
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Figure 4.9: IoU score for trained UNET models 

 

For the generalization tests, the UNET network trained on image data from June X, 2020 would 

be written as of June X UNET network. The four networks were June 11 UNET network, 14 June 

UNET Network, 16 June UNET Network and 18 June UNET Network. 

The June 11 UNET network resulted in a mean generalization IoU score for Palmer amaranth on 

June 14, 16, and 18 images as 32.4 % with a standard deviation of 0.95 %. Compared to the testing 

IoU score, the generalization IoU score for June 11 UNET network was reduced by 15.7 %.   

 

The generalization IoU score for June 14 UNET network was calculated for June 11, 16 and 18. 

The mean generalization IoU score for Palmer amaranth was obtained as 49.3 %, with a standard 

deviation of 7.02 %. Additionally, the difference between mean generalization IoU and testing IoU 

was observed to be 6.8 %. 

 

For the June 16 UNET network, the mean generalization IoU score for Palmer amaranth was 

47.6 %, with a standard deviation of 11.37 %. Compared to June 14 UNET network, the mean 

generalization IoU score decreased while the standard deviation increased. This indicates that June 
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16 UNET network was not very good for weed height generalization compared to June 14 UNET 

model. Moreover, the generalization IoU score was reduced by 14.9 % compared to the testing 

IoU score. 

 

The last network for which the generalization test was conducted was the June 18 UNET network. 

The mean generalization IoU score was 49.2 %, with a standard deviation of 15.56 %. Compared 

to the testing IoU score, the mean generalization IoU score reduced by 18.7 %. This was the highest 

reduction IoU score among the four generalization networks.  

 

Out of the four generalization networks, the best network for generalizing the segmentation of 

Palmer amaranth was the 14th June UNET network. This was because it had the highest mean 

generalization IoU score (49.3 %) and the least standard deviation (7.02 %). Moreover, the 

difference between the mean generalization IoU score and testing IoU score was minimum for the 

14th June model (6.8 %). Regardless, the generalization performance for UNET wasn’t very 

promising (Table 4.5, Figure 4.10).   

 

 

 

Figure 4.10: UNET's generalization IoU score for Palmer amaranth 
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Table 4.5: UNET results for generalization tests 

UNET (IoU % for Palmer 

Amaranth) 

Testing Data Date 

11th June 14th June 16th June 18th June 

Training 

Data Date 

11th June - 32.4 31.5 33.4 

14th June 43.5 - 57.1 47.3 

16th June 35.6 49.1 - 58.2 

18th June 33.4 49.7 64.5 - 

 

4.2.2 DeeplabV3+ segmentation results 

Similar to UNET, two tests were performed to test a) testing accuracy of DeeplabV3+ (Figure 4.11) 

b) generalization accuracy of DeeplabV3+ (Figure 4.12). 

DepelabV3+ network achieved a baseline IoU score of 89.0 % on PASCAL VOC 2012 dataset 

and 82.1 % on the Cityscapes dataset (L.-C. Chen et al., 2018). Although, the reported IoU score 

was with the Xception-JFT backbone (Chollet, 2017). With the Resnet-101 backbone, the reported 

IoU score was 80.57 % on PASCAL VOC 2012 dataset. In this research, the DeeplabV3+ network 

uses Resnet-50 as the backbone. While a direct comparison was not possible with the results 

reported in the original paper, some other implementations of DeeplabV3+ are available on Github 

(Fang, 2019). With Resnet-50 as the backbone, DeeplabV3+ showed a mean IoU score of 77.2 %. 

In this research, the mean IoU score for testing for the eight trained UNET networks ranged 

between 67 and 79 %.  

 

The mean testing IoU of the eight DeeplabV3+ networks trained on data from June 11 to 18 in 

order is as follows: 67.1, 65.9, 69.8, 70.8, 68.9, 74.7, 77.0, 78.1. An overall trend of increasing 

IoU scores with each passing day was observed. This again would result from the increasing height 

of Palmer amaranth and increasing size of Soybean owing to progressing Soybean growth stage ( 

 



 

 

81 

Table 3.3). As with UNET, when analyzing individual IoU scores for Soybean and Palmer 

amaranth, it was observed that the IoU score for Palmer amaranth was much lower than Soybean. 

In fact, it ranged between 52 – 69 %. On the other hand, the IoU for Soybean remained above 81 % 

for all the dates (Figure 4.11). Hence, it could be concluded that the DeeplabV3+ could easily 

segment Soybean regardless of its growth stage. At the same time, its segmentation capability for 

Palmer amaranth was directly proportional to the height of Palmer amaranth.    

 

 

Figure 4.11: IoU score results for trained DeeplabV3+ 

 

For the generalization tests, the DeeplabV3+ network trained on image data from June X would be 

written as June X DeeplabV3+ network. The four networks were June 11 DeeplabV3+ network, 

14 June DeeplabV3+ Network, 16 June DeeplabV3+ Network and 18 June DeeplabV3+ Network. 

The June 11 DeeplabV3+ network was evaluated on images from June 14, 16, 18. The mean 

generalization IoU score of 35.5 % was observed for Palmer amaranth with a standard deviation 

of 2.42 %. Compared to testing the IoU score for the June 11 network, the mean generalization 

IoU score for the network was reduced by 12.6 %. 
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The mean generalization IoU score for June 14 DeeplabV3+ network was observed to be 52.3 %. 

The network was tested on images from June 11, 16 and 18. Moreover, the standard deviation for 

generalization was 4.40 %. Additionally, the mean generalization IoU score was reduced by 3.8 % 

compared to the testing IoU score for June 14 network.   

 

For June 16 DeeplabV3+ network, the mean generalization IoU score for Palmer amaranth was 

observed to be 51.5 %, with a standard deviation of 5.44 %. The difference between the 

generalization IoU score and testing IoU score for June 16 DeeplabV3+ network was 11.0 %. 

 

The final network for which the generalization test was conducted was the June 18 DeeplabV3+ 

network. The mean generalization IoU score for this network was 50.8 %, with a standard deviation 

of 13.05 %. Compared to the testing IoU score, the mean generalization IoU score reduced by 

17.1 %. This was the highest reduction IoU score among the four generalization networks. It could 

be indicative of the fact that training DeeplabV3+ on images of higher Palmer amaranth would be 

detrimental to the network capability of detecting shorter Palmer amaranth.   

 

Out of the four DeeplabV3+ generalization networks, the network from 14th June performed the 

best. This is indicated by a) highest mean generalization IoU score for Palmer amaranth (52.3), b) 

second least standard deviation in generalization IoU score (4.40 %), and c) least reduction in 

generalization IoU score from the testing IoU score (3.8 %) (Figure 4.12, Table 4.6,  Figure 4.9). 
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Table 4.6: DeepLabV3+ results for generalization tests 

DeepLabV3+ (IoU % for 

Palmer Amaranth)  

Testing Data Date 

11th June 14th June 16th June 18th June 

Training 

Data Date 

11th June - 37.7 32.9 35.8 

14th June 48.9 - 57.3 50.8 

16th June 46.5 54.9 - 59.4 

18th June 38.8 49.0 64.7 - 

Figure 4.12: DeeplabV3+'s generalization IoU score for Palmer amaranth 
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4.2.3 Comparison of UNET and DeeplabV3+ segmentation networks 

The generalization IoU scores for UNET and DeeplabV3+ are tabulate in Table 4.5 and Table 4.6 

respectively. Based on generalization IoU scores alone, DeeplabV3+ was a better segmentation 

network than UNET. This can be attributed to the fact that DeeplabV3+’s decoder refines the 

segmentation along the object's edges. This phenomenon can also be observed by comparing the 

generalization images for UNET (Figure 4.13) and DeeplabV3+ (Figure 4.14). DeeplabV3+ has 

smoother edges that match closely to the ground truth compared to UNET. 

 

Moreover, because we are dealing with shorter weeds in the early season, due to a lack in sensor 

resolution, the edges are not captured well. Hence, the segmentation of Palmer amaranth was poor 

regardless of the segmentation network. The IoU score for the 11th June test image was reduced 

drastically (Figure 4.13 and Figure 4.14-Row 1(Image)). 

 

Although, because of the large size of DeeplabV3+, it took longer to train than the UNET network. 

DeeplabV3+ took around 42 hours to train, while the UNET model took close to 31 hours to train. 

Hence, if training time is a consideration, UNET would be a more suitable network. Additionally, 

DeeplabV3+ took three times more time to process input images during inference due to its larger 

size. 

 

DeeplabV3+ was found more suitable for early season weed segmentation, as seen in the 

generalization results and detection images despite the disadvantage of longer computation time. 

Moreover, on June 14, DeeplabV3+ (i.e., trained on AWH of 6.35 cm) performed the best among 

the eight generalized networks (four UNET networks plus four DeeplabV3+ networks). In 

summary, the results indicated that the best generalizing network for weed segmentation from 

UAS images would be the DeeplabV3+ network trained on images with an AWH of 6.35 cm.
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Figure 4.13: UNET generalization detection results for the four networks on the same patch of 

field. The patch contains a single instance of Palmer amaranth. The RED color in represents 

Palmer amaranth, and the black color represents the background 
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Figure 4.14:  DeeplabV3+ generalization detection results for the four networks on the same 

patch of field. The patch contains a single instance of Palmer Amaranth. The RED color in 

represents Palmer amaranth, and the black color represents the background
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4.3 Results for Network Deployment on Edge devices 

4.3.1 Object detection on Edge devices 

Among the two object detection networks, YOLOv4 was selected for deploying on the edge device. 

Although the performance of Faster R-CNN was higher, the added computational requirements of 

the two stages of the network don’t make faster R-CNN an ideal network for edge devices. 

Additionally, YOLOv4 showed promising results with mAP score higher than 70% with detection 

in challenging situations and better generalization on image scale than Faster R-CNN.  

 

Optimization results for NVIDIA Nano are shown in Figure 4.15. YOLOv4’s native network runs 

on a complied C code. The base fps for the native network is 1.6. When the network was converted 

into the ONNX model, the fps remained the same at 1.6. This was expected because the ONNX 

standard is not an optimized model but acts as a standard exchange format for various deep learning 

networks.  

 

The highest increase in the fps was observed with tensorrt optimizations. With FP32 precision, 2.9 

fps was obtained, while with FP16 precision, 4.6 fps was obtained. 

 

While being a specialized library for YOLOv4, tkDNN did not perform better, if not worse, than 

tensorRT. With FP32 precision, tkDNN optimization resulted in 2.8 fps, about 0.1 fps less than 

tensorRT, while with FP16 precision, tkDNN optimization resulted in 3.9 fps, about 0.7 fps less 

than tensorRT. 

 

From the results, another conclusion can be drawn. By reducing the floating-point precision, the 

inference time can be decreased, thus leading to higher fps. This could be explained as follows: 

MAC operations are the majority of the calculations performed at the time of inference in deep 

learning models. The inference time is considerably reduced because less computation has to be 

performed for Multiply and Accumulate Operation (MAC) with reduced floating-point (H. Zhang 

et al., 2018). For tensorRT and tkDNN optimizations, the highest fps was obtained with the 

Floating-point precision of FP16. A speedup of almost three times was seen in tensorRT 

optimizations with FP16 precision compared to the native network.  
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YOLOv4 was also optimized for NVIDIA Xavier NX (Figure 4.16). Native YOLOv4 network ran 

at 5.2 fps, about three times higher than on NVIDIA Nano. This is because Xavier NX has more 

number of GPU cores as well as more GPU memory, both of which provide more computational 

power to Xavier NX. 

 

ONNX network resulted in similar fps to the native network. 

 

tensorRT network resulted in the highest fps among all the optimizations. With FP16 precision, 

27.8 fps was observed, while with FP 32 precision, 12.1 fps was observed. Comparing the 

performance of tkDNN with tensorRT, fps delivered by tkDNN lacked. With FP 16 precision, 24 

fps were obtained, while with FP 32 precision, 12.1 fps were obtained.  

 

In conclusion, for YOLOv4, the closest to real-time performance was obtained with tensorRT 

optimization with FP16 precision on NVIDIA Xavier NX. 

Figure 4.15: Optimization results for YOLOv4 on NVIDIA Nano. The green bar represents 

the highest FPS 
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4.3.2 Image Segmentation on Edge devices 

DeeplabV3+ was the best performing network for Image segmentation. Hence, it was optimized 

for evaluating its performance on the edge device. 

 

In the case of DeeplabV3+, only tensorRT optimizations were applied. The optimization results 

for NVIDIA Nano are shown in Figure 4.17. The native DeeplabV3+ network resulted in 1.2 fps, 

while similar fps was observed with the ONNX network. The highest fps was seen with tensorRT. 

With FP16 precision, a frame rate of 2.9 was observed, while with FP32 precision, a frame rate of 

2.9 was observed. An increase in frame rate by almost 240% is obtained with tensorRT-FP16 

optimizations. Although this value is less than 30 fps (which is required for real-time performance), 

it is still the highest obtained fps in the research literature for weed identification using Image 

Segmentation with DeeplabV3+. 

Figure 4.16: Optimization results for YOLOv4 on NVIDIA Xavier NX. The green bar 

represents the highest FPS 
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It is evident that DeeplabV3+ was inherently slower than YOLOv4. This was because the Image 

segmentation task provide more granular information for an image compared to object detection. 

This granular information comes at the cost of increased inference time. 

 

 

 

DeeplabV3+ was additionally optimized for NVIDIA Xavier NX (Figure 4.18). The fps for the 

native DeeplabV3+ network was observed to be 4.3 fps. Compared to NVIDIA Nano, the fps 

increased by almost 3.5 times. This was primarily because of the increased computational power 

available in Xavier NX. Additionally, no increase in fps was observed with the ONNX network.  

 

A four-fold increase in fps was observed with tensorRT optimizations for DeeplabV3+. With FP 

16 precision, fps was 13.9 was obtained, while with FP 32 precision, fps of 8.3 was obtained. 

Hence, even for DeeplabV3+, the best optimizations were tensorRT with FP16 precision, and the 

best device was NVIDIA Xavier NX. While the fps was not even half the required real-time fps, 

it is a step in the right direction where more research is needed.   

Figure 4.17: Optimization results for DeeplabV3+ on NVIDIA Nano. The green bar represents 

the highest FPS 
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4.4 Comparison of results with other studies 

The research demonstrated the potential of utilizing object detection and image segmentation for 

early season weed identification in Soybean using a) deep learning, b) in field conditions, c) from 

UAS images, and d) by deploying a trained model on edge devices. While other studies have not 

targeted all aspects included in this research, they have addressed some aspects. Hence, it becomes 

important to compare their performance with this research.  

 

A study conducted for detecting weeds in mid- and late-season UAV imagery resulted in precision 

of 0.65 and recall of 0.68 for Faster R-CNN (Sivakumar et al., 2020b). The study did not target a 

specific weed, but rather multiple species of weeds were present at the test site. These included 

waterhemp (Amaranthus tuberculatus), Palmer amaranthus (Amaranthus palmeri), common 

lambsquarters (Chenopodium album), velvetleaf (Abutilon theophrasti), and foxtail. A direct 

comparison cannot be drawn with this research because the study did not report mAP score 

(primary evaluation matric for object detection (Padilla et al., 2021)). Although, mAP is a 

combination of precision and recall, a general idea could be drawn about the performance. The 

highest mAP obtained with Faster R-CNN in this research was 79.1 %, much higher than the 

individual precision or recall of the study. Moreover, this research targeted early-season weeds 

while the study was conducted for mid- and late-season weeds. 

Figure 4.18: Optimization results for DeeplabV3+ on NVIDIA Xavier NX. The green bar 

represents the highest FPS 
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Another study targeted the detection of bermudagrass turfgrass. Detectnet, an object detection 

network, was used for weed identification (Yu et al., 2019). The study reported an F1 score greater 

than 0.99. While this research doesn’t come close to the performance of the study, it is important 

to note two critical differences between this research and the study to track down the reason for 

the difference in performance. First, in the study, the images were acquired using a handheld 

camera. Thus, the images contained more detailed, distinguishing features than the UAS images 

used in this research. Second, the images were acquired of small patches of the field rather than an 

aerial view of the field. Hence each image contained a targeted instance of weeds rather than 

multiple instances of the weed in a single image. Both of these differences could be the reason for 

improved performance in the study.  

 

A study conducted in canola fields used Segnet and UNET to segment crop, weed, and canola 

(Asad & Bais, 2020). With Segnet, an IoU score of 66.48 % was obtained for weed segmentation, 

while with UNET an IoU score of 66.22 % was obtained. The results in this research are in line 

with the performance of this study wherein DeeplabV3+ provided a maximum IoU score for 

Palmer amaranth of 68.7 %. Although, the study reported results on handheld images while this 

research reports it on UAS images.  

 

Similar mean IoU score of 80% was obtained in the study conducted for segmenting sunflower, 

weed, and background (Fawakherji, Youssef, et al., 2019). In comparison, in this research, a mean 

IoU of 78.15 % was obtained. Another study used a custom segmentation network (CED-Net) for 

weed and crop segmentation (Khan et al., 2020). The custom network’s performance was 

compared against UNET and DeeplabV3. The weed IoU for UNET, DeeplabV3, and CED-Net 

was 66.6 %, 61.4 %, and 70.2 %. These results are comparable to this research wherein 

DeeplabV3+ obtained a maximum IoU score for Palmer amaranth of 68.7 %. Although, merit of 

this research over the two studies (Fawakherji, Youssef, et al., 2019; Khan et al., 2020) is that none 

of them were conducted for UAS images.  

 

None of the studies mentioned so far reported network optimization for real-time deployment on 

edge devices which is an important factor for agricultural robots (Hu et al., 2021). Some studies 

which have targeted real-time deployment have utilized devices like JetsonTX2 (N. Li et al., 2019), 
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Terasic DE1-SoC (Lammie et al., 2019), Jetson AGX Xavier (Lan et al., 2021). When using 

VGG16 with the Resnet10 backbone for weed segmentation, the frame rate of 5.6 fps was obtained 

on Jetson TX2. For segmentation of weeds and crops, fps of 45.05 were reported using 

MobilenetV2-UNet and tensortRT optimization with FP16 precision. This is a higher frame rate 

for segmentation compared to this research. Although, the deep learning network used in the study 

contained a lesser number of layers than DeeplabV3+. More number of layers usually increases 

the computation time for inference due to added MAC operation. Thus, explaining the higher fps 

for the study compared to this research.  

 

Field programmable gated arrays (FPGAs) are specialized hardware programmed for one 

particular task. For example, an FPGA could be explicitly programmed for DeeplabV3+. In 

contrast to a general-purpose computer or edge device, FPGA would be faster because of the 

specialized nature of the hardware, which is optimized for one task alone. The benefit could be 

seen for image classification on the Deepweeds dataset (Olsen et al., 2019). Using an FPGA frame 

rate of 650 fps was obtained (Lammie et al., 2019). While the study was conducted for 

classification, which is computationally less expensive than object detection or image 

segmentation (thus the higher fps), yet the potential of FPGA for object detection and image 

segmentation must be explored as it could be possible to achieve even higher fps than obtained in 

this research. 
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 CONCLUSION 

The challenging task of early-season weed identification was addressed using deep learning 

networks. The generalization ability of four networks, namely, Faster R-CNN, YOLOv4, UNET, 

and DeepLabV3+, were analyzed for Palmer amaranth identification from RGB images captured 

by UAS in two computer vision tasks, i.e., object detection and image segmentation. The soybean 

field images were captured using a 4000x3000 pixels camera mounted on a UAS at a flight height 

of 5 m above ground level.  The images included situations where plants overlapped or were 

occluded by external objects like a fence. Another challenging problem that was analyzed using 

deep learning networks was the presence of in-row weeds where overlapping weeds and crops 

make separating them using computer vision a hard problem. 

 

The results indicate that a ground sampling distance of 0.17 cm/pixel was sufficient to accurately 

locate the weeds and crops in UAS images. Additionally, both Faster R-CNN and YOLOv4 were 

able to identify in-row instances of Palmer amaranth and identify overlapping soybean, even at the 

V2 stage when overlapping between soybean plants was much more than overlapping at the 

unifoliate stage. The highest testing mAP score of 75.1 % was achieved with the Faster R-CNN 

network on June 14, when the soybean was at the V1 growth stage, and Palmer amaranth’s average 

height (AH) was 6.35 cm. Moreover, YOLOv4 was a better network at generalizing for different 

weed heights and soybean growth stages included in the current research. A recommendation 

emerges that the YOLOv4 network trained on images of the V1 soybean growth stage and Palmer 

amaranth’s AH of 7.62 cm generalizes the best. It was able to identify soybean from the Unifoliate 

stage up to the V2 stage and was even able to identify Palmer amaranth with an AH of 3.81 cm.  

 

Image segmentation did not achieve good performance for early-season Palmer amaranth 

identification. The highest generalization IoU score of 52.3 % was achieved with DeeplabV3+ 

trained on images of the V1 growth stage of soybean and 6.35 cm AH of Palmer amaranth. Despite 

poor overall performance in image segmentation, it was observed that compared to UNET, 

DeeplabV3+ was better at segmenting the edges of the weeds. Hence, for future image 

segmentation applications, the DeeplabV3+ algorithm needs further exploration.  
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The results demonstrate the advantage of deploying deep learning networks on edge devices with 

the TensorRT optimization library. On NVIDIA Xavier NX, YOLOv4 ran at a frame rate of almost 

28 fps, just two fps short of real-time. Because Xavier NX weighed a little less than 60 gm and 

required just 15 W of power, it would be a suitable device for mounting on UAS and ground robots.   

In comparison to other studies, this research is unique in a number of ways. Through this research, 

the generalizability accuracy of deep learning networks is determined for the first time for soybean 

crops and Palmer amaranth weed. In addition, the highest fps is reported compared to other studies 

for the task of both object detection and image segmentation with large deep learning networks 

(over 100 layers) on an edge device. For example, when using ERFNet to segment sugarbeet and 

weed, a maximum frame rate of 10 fps was reported on Jetson TX2 (Milioto and Stachniss, 2019). 

In comparison, in this research, a frame rate of 14 fps was reported with DeeplabV3+ despite 

DeeplabV3+ being more computationally expensive than ERFNet (Romera et al., 2018). Similarly, 

another recent study utilized a Coral USB accelerator and Raspberry Pi 4 to detect weeds 

(Czymmek et al., 2021). The study reported an average of 53 fps by using a MobileNetv2-SSD 

object detection network. MobileNetv2-SSD is a shallow network compared to the YOLOv3 

network and results in an accuracy drop of about 7 %, as reported in the study. Hence the faster 

fps came at the expense of accuracy, while in current research, despite using a full YOLOv4 

network, close to 28 fps were obtained. A study targeted towards weed detection for organic 

farming utilized a modified YOLOv3 network (Czymmek et al., 2019). It reported 40 fps on a 

powerful server-grade GPU (NVIDIA Geforce GTX 1080 Ti), which consumed close to 250 W of 

power. In contrast, the current research achieved 28 fps by implementing YOLOv4 on an edge 

device that required only a fraction of the power, an equivalent of 15 W. Not to mention that 

YOLOv4 is a more accurate network compared to YOLOv3 (Bochkovskiy et al., 2020). 

 

While this research exhibits the potential of using deep learning networks on resource-limited edge 

devices for early-season weed identification, more work could be done to further this research and 

address the following shortcomings. 

 

1) The research was not designed to validate the generalizability of the deep learning networks 

for identifying the presence of Palmer amaranth weed while the soybean growth stage 

varied from the cotyledon to the V3-V4. Finding a single deep learning network that could 
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accurately detect weeds from the V1 to V4 stage of soybean would be very useful as 

multiple studies have reported that controlling weeds in soybean before these stages reduce 

the overall impact of weeds on crop yield (Coulter and Nafziger, 2007; Dalley et al., 2004; 

Eyherabide and Cendoya, 2002; Soltani et al., 2019). 

 

2)  The poor generalizability results for image segmentation is a problem that could be 

addressed in the future by exploring other deep learning networks or by developing custom 

segmentation algorithms like CED-NET (Khan et al., 2020). 

 

3) Vegetative indices derived from RGB images could increase the image segmentation 

performance, as demonstrated by another study (Milioto et al., 2018). 

 

4) While the networks were optimized for deploying on the edge device, it was not integrated 

with the UAS or a ground robot. Integration with the robot could potentially reduce the fps 

a little due to the transmission overhead of image from the camera to the edge device. 

Further reduction in fps is possible due to the computational overhead of transmitting the 

output of the edge device to a remote operator or storing the output on a disk. Although, 

the delay due to computational overhead could be reduced by utilizing DeepStream SDK 

(NVIDIA, 2021b).   

 

5) INT 8 optimization has the potential to increase the fps for deep learning networks further. 

However, it requires re-training the network with new quantization nodes within the 

network. The process is called Quantization Aware Training (QAT). NVIDIA has reported 

achieving fps of almost 60 on YOLOv4, although QAT is yet to be explored for weed 

identification purposes (NVIDIA, 2021a).  
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