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ABSTRACT

Recent innovations in combinatorial dynamical systems permit them to be studied with

algorithmic methods. One such method from topological data analysis, called persistent

homology, allows one to summarize the changing homology of a sequence of simplicial com-

plexes. This dissertation explicates three methods for capturing and summarizing changes in

combinatorial dynamical systems through the lens of persistent homology. The first places

the Conley index in the persistent homology setting. This permits one to capture the per-

sistence of salient features of a combinatorial dynamical system. The second shows how

to capture changes in combinatorial dynamical systems at different resolutions by comput-

ing the persistence of the Conley-Morse graph. Finally, the third places Conley’s notion of

continuation in the combinatorial setting and permits the tracking of isolated invariant sets

across a sequence of combinatorial dynamical systems.
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1. INTRODUCTION

One of the main achievements of topological data analysis is persistent homology, briefly

persistence, which is a technique that permits one to summarize the changing homology of

a finite sequence of simplicial complexes [ 1 ]–[ 4 ]. In particular, persistence is celebrated for

assigning a homology to point clouds via the so-called Vietoris-Rips complex [  5 ]. The output

of persistence is a persistence diagram [ 1 ] or a barcode [ 2 ], both of which give one a visual

description of changing homology. These objects have been vectorized [  6 ], [  7 ] and have found

applications in a variety of areas [  8 ]–[ 12 ].

Despite its wide applicability, there has been little work done to apply persistence to

vector valued data. In this dissertation, we consider precisely this problem. As a motivating

example, consider the λ-parameterized differential equation in Equation  1.1 .

x′ = −y + x(λ− x2 − y2)

y′ = x + y(λ− x2 − y2)
(1.1)

The equation behaves very differently depending on the value of λ. Suppose that we are only

interested in the behavior of the differential equation in the region {(x, y) ∈ R2 | − 4 ≤ x ≤

4 ∧ −4 ≤ y ≤ 4}. Equivalently, we are interested in the behavior of the differential equation

in the 8 by 8 square in R2 that is centered on the origin and with sides parallel to the axes.

As one varies the value of λ, we get the behavior depicted in Figure  1.1 . When λ < 0, we

have an attracting fixed point. At λ = 0, we have a bifurcation point, and the attracting

fixed point splits into an attracting periodic orbit and a repelling fixed point. After λ = 16,

the periodic orbit partially leaves our region of interest, and all that we are left with is a

repelling fixed point. Intuitively, features of this dynamical system persist as we vary λ.

Initially, we have an attracting fixed point, and when λ > 0, the “attractingness” from the

fixed point is preserved in the periodic orbit. Once the periodic orbit is no longer entirely

within our region of interest, a repelling fixed point “persists” as λ→∞. We aim to capture

these and related phenomena using persistence.

To capture these phenomena, we will utilize combinatorial dynamical systems that are

generated by multivector fields [ 13 ], [ 14 ]. These dynamical systems are defined on finite
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Figure 1.1. The behavior of the differential equation in Equation  1.1 . From
left-to-right, top-to-bottom, the depicted behavior is of the case when λ = −10,
0, 1, 3, 6, 10, 15, 20, 25.
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topological spaces, and they are rooted in earlier work by R. Forman [ 15 ], [ 16 ]. Developing

the theory of combinatorial dynamical systems is an area of active research, and there have

been several recent studies on the topic [ 13 ], [ 14 ], [ 17 ]–[ 22 ]. Some studies have placed classical

notions, such as Morse decompositions and the Conley index, in the combinatorial setting,

while others have proven connections between the classical and combinatorial settings.

This dissertation proposes three ways to capture changes in combinatorial dynamical

systems. In Chapter  4 , we show how to compute the persistence of the Conley index across

a sequence of combinatorial dynamical systems. Chapter  5 shows how to compute the

persistence of the Conley-Morse graph, which captures information at a finer resolution than

the Conley index does alone. Finally, Chapter  6 places the classical notion of continuation

in the combinatorial framework, and shows how to use continuation and persistence to track

isolated invariant sets. The work in Chapters  4 ,  5 , and  6 first appeared in [  18 ]–[ 20 ], and

passages from [ 18 ]–[ 20 ] are quoted in this dissertation verbatim.

Before we show how to use persistence to capture changes in combinatorial dynamical

systems, we first briefly review persistent homology in Chapter  2 and formally introduce

combinatorial dynamical systems in Chapter  3 . Several passages from these chapters are

also drawn verbatim from [ 18 ]–[ 20 ].
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2. PERSISTENT HOMOLOGY

We begin by reviewing persistent homology [ 1 ]–[ 4 ] or briefly, persistence, which is a tool

that captures the changing homology over an indexed sequence of simplicial complexes.

Throughout this dissertation, we will assume that the reader is familiar with homology. The

unfamiliar reader is encouraged to consult [ 23 ], [  24 ]. Unless otherwise specified, all references

to homology in this dissertation refer to simplicial homology with coefficients drawn from a

finite field.

A typical setting in persistence is where one has a simplicial complex K and a function

f : K → R that respects the face relation. That is, if σ is a face of τ , then f(σ) ≤ f(τ).

In such a setting, the sublevel sets with respect to f are subcomplexes. Let Ki := {σ ∈

K | f(σ) ≤ i}. It is easy to see that if i ≤ j, then Ki ⊆ Kj. Hence, the function f admits a

filtration F : Ka1 ⊆ Ka2 ⊆ . . . ⊆ Kan , where ai is the ith element of f(K) in sorted order.

We always assume that K is finite, so all filtrations are finite. The reader will note that if we

are given a filtration K1 ⊆ K2 ⊆ . . . ⊆ Kn = K, then one can obtain a function f : K → R

where f(σ) = min{i | σ ∈ Ki}. As each Ki is assumed to be a subcomplex of K, it follows

immediately that f respects the face relation. Hence, a function f that respects the face

relation induces a filtration, and a filtration induces a function f .

Corresponding to each filtration is a unique barcode, which captures how the homology

changes across the complexes in F . We include an example of a filtration and its associated

barcodes in Figure  2.1 . We refer the reader to [ 3 ], [ 4 ] for a comprehensive, modern treatment

on persistence, barcodes, and algorithms for computing them.

A natural generalization of persistence is zigzag persistence, which arises from zigzag

filtrations. These filtrations allow inclusions in both directions. Forward and backward

inclusions in a zigzag filtration

Ka1 ⊇ Ka2 ⊆ Ka3 ⊇ Ka4 ⊇ . . . ⊆ Kan

correspond to insertion and deletions of simplices, respectively. Similar to standard filtra-

tions, each zigzag filtration provides a unique barcode that captures the changing homology
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⊆ ⊆

Dimension: 0
Dimension: 0
Dimension: 1

Figure 2.1. An example filtration and its associated barcode. Two 0-
dimensional bars, in white, capture two connected components as they persist
through the filtration. The 1-dimensional bar, in grey, captures the presence
of the 1-dimensional cycle.
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of the filtration. We include an example in Figure  2.2 . The interested reader is encouraged

to consult [ 4 ], [ 25 ] for additional information on zigzag persistence. It is known that the

barcode corresponding to a zigzag filtration can be computed in O(M(n) + n2 log2(n))-time,

where M(n) is the complexity of matrix multiplication and n is the number of simplices

that are inserted and deleted in the zigzag filtration [ 26 ]. In the special case of standard (or

unidirectional persistence), there exists an O(M(n)) algorithm to compute the barcode by

using a result in [  27 ].

⊆ ⊇

Dimension: 0
Dimension: 1

Dimension: 1

Figure 2.2. An example zigzag filtration and its associated barcode. The
0-dimensional bar, in white, captures the single connected component that
persists through the entire filtration. Similarly, two 1-dimensional bars, in
gray, capture the lifetime of the two 1-dimensional cycles, which are both
present in the middle complex.
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3. COMBINATORIAL DYNAMICAL SYSTEMS

The origins of combinatorial dynamical systems lie with R. Forman, who in two seminal

papers [ 15 ], [ 16 ], introduced the notion of a combinatorial vector field and a corresponding

dynamical system. Initially, in [  15 ], Forman introduced discrete gradient vector fields on cell

complexes and proved various analogs of theorems from classical Morse theory. However,

gradient vector fields are very restrictive and only admit simple dynamics. Roughly speaking,

under a discrete gradient vector field, all cells are either critical (corresponding to the classical

notion of a critical point) or lie on a path between two critical cells (reminiscent of the

concept of an integral line). To address this, Forman subsequently introduced combinatorial

dynamical systems and considered non-gradient dynamics in [ 16 ].

Despite permitting non-gradient behavior, non-gradient combinatorial vector fields still

admit fairly restrictive dynamics. Vectors are only permitted to consist of two simplices (σ, τ)

where dim(τ) = dim(σ) + 1. In addition, each simplex is allowed to be part of at most one

vector. Hence, one can view a combinatorial vector field V as a partition of a cell complex

C into singletons and doubletons. Singletons are those cells that are not part of a vector

and therefore correspond to critical points, while doubletons are those cells that are part of

a vector. How flow is defined on these vector fields means that one can only move between

cells of alternating dimensions. Hence, if considering a simplicial complex that consists of

vertices, edges, and triangles, one can only move from a triangle to an edge and then back

to a triangle - it is not permitted to move from a triangle to a vertex or vice-versa.

M. Mrozek relaxed this requirement when he introduced multivector fields in [  13 ]. Mul-

tivector fields permit vectors that are much more complicated than those of Forman and

therefore allow much more complicated dynamics. As an example, one can model a monkey

saddle with a single multivector, whereas this phenomenon cannot be modeled with combina-

torial vector fields. Mrozek’s original formulation was subsequently generalized in [ 14 ], when

the authors relaxed a requirement that multivectors contain a unique maximal element.
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3.1 Multivector Fields and Combinatorial Dynamics

We now move to formally define multivector fields and combinatorial dynamical systems.

In their full generality, one can define a multivector field and a corresponding combinatorial

dynamical system on a finite set X with a partial order ≤. However, because we aim to use

persistent homology to capture changes in combinatorial dynamical systems, we restrict our

attention to finite simplicial complexes. Hence, we let K denote a finite (abstract) simplicial

complex, and let ≤ denote the face relation on K. Namely, for σ, τ ∈ K, we let σ ≤ τ if

and only if σ ⊆ τ . The face relation ≤ lends itself to a notion of convexity: a set A ⊆ K

is convex if every trio of simplices σ, τ ∈ A, ρ ∈ K where σ ≤ ρ ≤ τ has the property that

ρ ∈ A. We define multivectors and multivector fields in terms of convex sets.

Definition 3.1 (Multivector, Multivector Field). A multivector V is a convex subset of K.

A multivector field over K is a partition of K into multivectors.

We typically denote individual multivectors with the roman V and we denote multivector

fields with the script V . Let V denote a multivector, and let σ ∈ V denote a simplex such

that for all τ ∈ V , either τ ≤ σ or τ and σ are uncomparable under ≤. We call such a σ a

maximal simplex in V . Typically, we depict a multivector V by drawing a vector from each

nonmaximal simplex in V to each maximal simplex in V . Hence, one can determine if σ and

τ are in the same multivector by checking if there is a vector from σ to τ , τ to σ, or if there

are two vectors from each of σ and τ to some other simplex ρ. If a multivector consists of

exactly one simplex, then we mark that simplex with a circle. We include an example of

multivector fields in Figure  3.1 .

The reader will note that convexity on its own is a fairly loose condition. Namely,

disconnected sets may be convex, and convex sets may have multiple maximal simplices.

All of the multivectors in Figure  3.1 are connected and have a unique maximal simplex.

Disconnected multivectors typically do not occur in practice, while multivectors with multiple

maximal simplices may occasionally occur in computer-generated examples. In the interest of

simplicity, we usually only depict examples that are connected and contain a unique maximal

simplex. However, none of the results in this dissertation require such an assumption.
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Figure 3.1. Three multivector fields. Multivectors are drawn by including
a vector from each nonmaximal simplex in the multivector to each maximal
simplex. In these three cases, each multivector has a unique maximal simplex.
Multivectors that consist of a single simplex are marked with a circle.
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Thus far, we have defined multivector fields. However, multivector fields are not dy-

namical systems on their own. Hence, we move to introduce an element of dynamism that

first appeared in [ 13 ]. Our dynamics generator will require the notion of the closure of

a set of simplices. For a simplex σ ∈ K, we define the closure of σ, denoted cl(σ), as

cl(σ) := {τ ∈ K | τ ≤ σ}. This idea extends to the closure of a set of simplices, where for

a set A ⊆ K, the set cl(A) := ⋃
σ∈A cl(σ). We say that A ⊆ K is closed if cl(A) = A. The

reader familiar with the Alexandrov topology [ 28 , Section 1.1] will immediately notice that

this notation and terminology is aligned with the topology induced on K by the relation ≤.

For σ ∈ K, we denote the multivector containing σ as [σ]. If the multivector field V is not

clear from context, we will use the notation [σ]V . Note that a multivector field is a partition

of a simplicial complex, so [σ]V is unique. We now use a multivector field V on K to define

a multivalued map FV : K ⊸ K. In particular, we let FV(σ) := cl(σ) ∪ [σ]V . Such a

multivalued map induces a notion of flow on K. In the interest of brevity, for a, b ∈ Z, we

set Z[a,b] := [a, b] ∩ Z and define Z(a,b], Z[a,b), Z(a,b) as expected.

Definition 3.2 (Path, Solution). A path from σ to σ′ under the multivector field V is a

function ρ : Z[a,b] → K, where ρ(a) = σ, ρ(b) = σ′, and for all i ∈ Z(a,b], we have that

ρ(i) ∈ FV(ρ(i− 1)). Similarly, a solution to a multivector field over K is a map ρ : Z→ K

where ρ(i) ∈ FV(ρ(i− 1)).

Informally, a path is a finite sequence of simplices σ0, σ1, . . . , σn where FV permits one

to “move” from σi to σi+1. A solution is a bi-infinite sequence of such simplices. We include

three examples of solutions in Figure  3.2 . An unfortunate consequence of this definition is

that every simplex σ admits a solution ρ : Z → K where ρ(i) = σ for all i ∈ Z. This

does not match the intuition from differential equations: solutions that stay at one point

correspond exactly to critical points. Hence, so as to faithfully replicate this behavior, we

need a notion of a “critical” multivector [ 13 ], [  14 ].

To define critical multivectors, we define the mouth of a set as mo(A) := cl(A) \ A. The

multivector V is critical if the relative homology Hp(cl(V ), mo(V )) ̸= 0 in some dimension p.

Otherwise, V is regular. Note that Hp (cl(V ), mo(V )) is well defined because for all S ⊆ K,

mo(S) ⊆ cl(S) ⊆ K. Intuitively, a multivector V is regular if cl(V ) can be collapsed onto
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Figure 3.2. Three examples of solutions, marked in yellow, over the same
multivector field. The set on the left is the image of a solution under the given
multivector field because one can spend infinitely long in the periodic orbit
in both the positive and negative directions. For the set in the middle, one
spends infinitely long in the triangle that is marked with a circle, then follows
a path to the periodic orbit, and spends infinitely long in the periodic orbit in
the positive direction. The set on the right is the image of a solution because
one can spend infinitely long in the triangle in both the negative and positive
directions.
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mo(V ) via elementary collapses. We include examples of critical and regular multivectors

in Figure  3.3 . In Figure  3.3 , the top three multivectors are critical, while the bottom three

multivectors are regular. For a multivector V that is depicted in Figure  3.3 , the set of

simplices that are yellow or red is exactly equal to cl(V ), while the set of simplices that

are in red is equal to mo(V ). Hence, if V1 is the multivector depicted in the top-left, it is

easy to verify that H2(cl(V1), mo(V1);Z2) = Z2, and therefore, the multivector is critical. If

the multivector in the top-middle is V2, then H1(cl(V2), mo(V2);Z2) = Z2 ̸= 0, and if V3 is

the multivector in the top-right, then H0(cl(V3), mo(V3);Z2) = Z2 ̸= 0. Hence, all of the

multivectors on the top row of Figure  3.3 are critical. Similarly, if V denotes a multivector

on the bottom row, then H(cl(V ), mo(V )) = 0.

The authors in [ 14 ] used critical multivectors to define a special type of solution.

Figure 3.3. Six multivectors, depicted in black, all of which contain a tri-
angle. The three multivectors on the top row are critical, whereas the three
multivectors on the bottom row are regular.

Definition 3.3 (Essential Solution). A solution ρ : Z→ K is an essential solution of the

multivector field V on K if for each i ∈ Z where [ρ(i)]V is regular, there exists an i−, i+ ∈ Z

where i− < i < i+ and [ρ(i−)]V ̸= [ρ(i)]V ̸= [ρ(i+)]V .

Fundamentally, essential solutions are solutions where you are only permitted to stay

within a single multivector V for infinitely long (in the positive or negative directions) if V

is critical. In Figure  3.2 , the leftmost solution is essential, because one does not stay in any

given multivector for infinitely long. The solution in the middle is also essential, because
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while one stays in the yellow triangle for infinitely long in the negative direction, the yellow

triangle is the only simplex in a critical multivector. However, the solution on the right is

not essential, because one is staying in a regular vector for infinitely long in the positive and

negative directions.

For a set A ⊆ K, let eSol(A) denote the set of essential solutions ρ such that ρ(Z) ⊆ A.

We define the invariant part of A as Inv(A) = {σ ∈ A | ∃ρ ∈ eSol(A), ρ(0) = σ}. If the

multivector field is not clear from context, we use the notation InvV(A).

Definition 3.4 (Invariant Set). A set A is invariant or an invariant set with respect to the

multivector field V if InvV(A) = A.

Informally, an invariant set is a union of solutions to a multivector field. We include

examples of invariant sets in Figure  3.4 .

Figure 3.4. Three examples of an invariant set, marked in yellow. The
invariant set on the left is given by the union of the images of two solutions:
one which remains at the central triangle for infinitely long in the negative and
positive directions, and one that stays in the periodic orbit for infinitely long
in the negative and positive directions. In contrast, the invariant set in the
middle is given by the union of many solutions. In particular, it is given by
the union of all solutions that spend infinitely long in the central triangle in
the negative direction, then follow a path to the periodic orbit, and then spend
infinitely long in the periodic orbit in the positive direction. The invariant set
on the right corresponds to exactly one of these solutions.

Solutions and invariant sets are defined in accordance with their corresponding concepts

in the classical setting. For more information on these classical counterparts, see [ 29 ]. In

general, we will focus our attention on particular types of invariant sets. The first relevant

condition is V-compatibility.
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Definition 3.5 (V-compatibility). An invariant set S under the multivector field V on K is

V-compatible if each multivector V ∈ V where V ∩ S ̸= ∅ has the property that V ⊆ S.

Intuitively, an invariant set S is V-compatible if S can be written as a union of multivec-

tors. In Figure  3.4 , the left two invariant sets are V-compatible. The invariant set on the

right is not V-compatible, because the entire multivector that contains the thickened edge

is not included in the invariant set.

As in the classical setting, we have a notion of isolation for combinatorial invariant sets.

Definition 3.6 (Isolated Invariant Set, Isolating Neighborhood). A V-compatible invariant

set S ⊆ N , N closed, is isolated by N if all paths ρ : Z[a,b] → N for which ρ(a), ρ(b) ∈ S

satisfy ρ(Z[a,b]) ⊆ S. The closed set N is said to be an isolating neighborhood for S. If there

exists an isolating neighborhood for S, then S is an isolated invariant set.

Intuitively, S is an isolated invariant set if there exists some closed set N ⊇ S such that

it is not possible to leave and reenter S while staying within N . Hence, an invariant set may

be isolated by some closed sets N , but not others. We elaborate on this in Figure  3.5 .

Figure 3.5. Three invariant sets on the same multivector field, marked in
yellow. The invariant set on the left is isolated by the entire rectangle. The
invariant set in the middle is isolated by its closure, but not by the rectangle.
This is because there is a path, marked in red, that starts in the invariant set,
leaves the invariant set, and then re-enters the invariant set, all while staying
within the rectangle. The invariant set on the right is isolated by neither its
closure nor the rectangle, because there is a path from a yellow triangle, to the
red edge, to a yellow vertex.

The astute reader will note that as cl(S) is contained in all closed sets N ⊇ S, it follows

trivially that a V-compatible invariant set is isolated if and only if it is isolated by cl(S).
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3.2 Conley Indices

The Conley index of an isolated invariant set is a topological invariant used to characterize

features of dynamical systems [ 30 ], [  31 ]. In both the classical and the combinatorial settings,

the Conley index is determined by index pairs.

Definition 3.7. Let S be an isolated invariant set. The pair of closed sets (P, E) subject to

E ⊆ P ⊆ K is an index pair for S if all of the following hold:

1. FV(E) ∩ P ⊆ E

2. FV(P \ E) ⊆ P

3. S = Inv(P \ E)

In addition, an index pair is said to be a saturated index pair if S = P \E. In Figure  3.6 ,

on the left, the gold, critical triangle σ is an isolated invariant set. The reader can easily

verify that (cl(σ), mo(σ)) is an index pair for σ. In fact, this technique is a canonical way

of picking an index pair for an isolated invariant set. This is formalized in the following

proposition.

Proposition 3.8. [ 14 , Proposition 4.3] Let S be an isolated invariant set. Then (cl(S), mo(S))

is a saturated index pair for S.

However, there are several other natural ways to find index pairs. Figure  3.6 , on the

right, depicts another index pair for the same gold triangle σ. By letting P := cl(σ)∪SP and

E := mo(σ)∪SE, where SP and SE are the set of simplices reachable from paths originating

in cl(S), mo(S) respectively, we obtain a much larger index pair. In Figure  3.6 , P is the set

of red simplices and yellow simplices, while E is the set of all red simplices.

In principle, the Conley index must be independent of the choice of index pair. Fortu-

nately, it is also known that the relative homology given by an index pair for an isolated

invariant set S is independent of the choice of index pair.

Theorem 3.9. [ 14 , Theorem 4.15] Let (P1, E1) and (P2, E2) be index pairs for the isolated

invariant set S. Then Hp(P1, E1) ∼= Hp(P2, E2) for all p.
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The Conley Index of an isolated invariant set S in dimension p is then given by the

relative homology group Hp(P, E) for any index pair of S denoted (P, E).

Figure 3.6. Two index pairs for the yellow triangle, denoted σ. The left is
given by (cl(σ), mo(σ)) where mo(σ) is in red and cl(σ) \mo(σ) is exactly the
gold triangle. The second index pair is (pf(cl(σ)), pf(mo(σ))), where pf(mo(σ))
consists of red simplices while pf(cl(σ)) consists of all red and yellow simplices.
Note that the second index pair is also an index pair in N , where N is taken
to be the entire rectangle.

3.3 Morse Decompositions and the Conley-Morse Graph

This paper heavily uses Morse decompositions of isolated invariant sets. For an essential

solution ρ : Z → K, we use the notation α(ρ) := ⋂∞
i=1 ρ(−∞,−i] and ω(ρ) = ⋂∞

i=1 ρ[i,∞).

Because we take K to be finite, α(ρ) ̸= ∅ and ω(ρ) ̸= ∅. Intuitively, α(ρ) and ω(ρ) capture

the behavior at the beginning and end of an essential solution.

Definition 3.10 (Morse Decomposition). Let S denote an isolated invariant set in N and

(P,≤) a finite poset. The collection M = {Mp | p ∈ P} is called a Morse decomposition of

S if both of the following conditions are satisfied:

1. M is a family of mutually disjoint, isolated invariant subsets of S, and

2. For every essential solution ρ : Z→ S either im(ρ) ⊆Mr for an r ∈ P or there exist

p, q ∈ P such that q > p, α(ρ) ⊆Mq, and ω(ρ) ⊆Mp.

An element of a Morse decomposition is called a Morse set. For Morse sets Mp, Mq ∈M,

we often abuse notation and write Mp ≤ Mq if p ≤ q. If the only Morse decomposition for

an isolated invariant set S is M = {S}, then S is minimal.
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We frequently discuss connections between Morse sets. Fix a Morse decomposition M

of an isolated invariant set S. A connection is a path ρ : Z[0,n] → S where ρ(0) ∈ M1 ∈

M and ρ(n) ∈ M2 ∈ M and ρ(i) ̸∈ ⋃
M∈M M for all i ∈ Z[1,n−1]. In this dissertation,

we will frequently use a particular type of Morse decomposition called a minimal Morse

decomposition. A Morse decompositionM is minimal if each M ∈M is minimal. In Figure

 3.7 , on the left, the entire rectangle is an invariant set S. Each Morse set in the minimal

Morse decomposition for S is depicted in a different color. Fortunately, there is a simple

characterization of minimal isolated invariant sets.

Proposition 3.11. [ 14 , Proposition 6.7] Let V denote a multivector field over K, and let S

denote an isolated invariant set under V. The set S is minimal if and only if for all σ, τ ∈ S,

there exists a path ρ : [0, n]→ S where ρ(0) = σ and ρ(n) = τ .

Hence, when viewing a combinatorial dynamical system as a directed graph G where each

simplex σ corresponds to a vertex v(σ), the minimal Morse decomposition of an isolated

invariant set S is given by finding the strongly connected components of the subgraph of G

that corresponds to S [ 14 ]. A Morse decomposition and the Conley index provide different

information about an isolated invariant set. These two descriptors are often combined into

the Conley-Morse graph, which captures the structure of a Morse decomposition and contains

information about the Conley indices of the Morse sets in the decomposition.

Definition 3.12 (Conley-Morse graph). Let M denote a Morse decomposition, and let G

denote the directed graph such that there is a bijection f : M → V (G), and there exists

a connection from M ∈ M to M ′ ∈ M if and only if there there exists a directed edge

from f(M) to f(M ′). The Conley-Morse graph for M is the graph G where each vertex

f(M) = v ∈ V (G) is annotated with the Poincaré polynomial ∑m
i=0 βit

i where m is the

largest integer for which the m-dimensional Conley index is nontrivial and βi is the rank of

the i-dimensional Conley index of M .

For convenience, we use M to refer both to a Morse set and to its corresponding vertex

in the Conley-Morse graph. We include an example of a Morse decomposition and the

associated Conley-Morse graph in Figure  3.7 .
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Figure 3.7. On the left, we show a multivector field and the minimal Morse
decomposition for the maximal invariant set in N , where N is the entire rect-
angle. The maximal invariant set in N is also the entire rectangle because
every colored simplex is critical and every white or black simplex is on a path
from the golden critical triangle to the blue periodic attractor or from the gray
critical triangle to the blue periodic attractor. Each of the six Morse sets in the
minimal Morse decomposition is represented by a vertex in the Conley-Morse
graph (right) with a matching color. Each vertex is annotated with a Poincaré
polynomial that summarizes the Conley indices of the Morse set.
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4. PERSISTENCE OF THE CONLEY INDEX

In the introduction, we explained that this dissertation aims to use persistent homology to

capture changes in combinatorial dynamical systems. Now that we have introduced com-

binatorial dynamical systems and the Conley index, we move to establish the foundations

of Conley index persistence. The results in this chapter are from [ 18 ], [  19 ], and we quote

passages from these papers verbatim.

Given a sequence of multivector fields V1,V2, . . . ,Vn on a simplicial complex K, one may

want to quantify the changing behavior of the vector fields. One such approach is to compute

a sequence of isolated invariant sets S1, S2, . . . , Sn under each multivector field, and then to

compute an index pair for each isolated invariant set. By Proposition  3.8 , a canonical way to

do this is to take the closure and mouth of each isolated invariant set to obtain a sequence of

index pairs (cl(S1), mo(S1)), (cl(S2), mo(S2)), . . . , (cl(Sn), mo(Sn)). A first idea is to take the

element-wise intersection of consecutive index pairs, which results in the zigzag filtration:

(cl(S1), mo(S1)) ⊇ (cl(S1) ∩ cl(S2), mo(S1) ∩mo(S2)) ⊆ (cl(S2), mo(S2)) · · · (cl(Sn), mo(Sn))

Taking the relative homology groups of the pairs in the zigzag sequence, we obtain a zigzag

persistence module. We can extract a barcode corresponding to a decomposition of this

module:

Hp(cl(S1), mo(S1)) Hp(cl(S1) ∩ cl(S2), mo(S1) ∩mo(S2)) Hp(cl(S2), mo(S2)) · · · Hp(cl(Sn), mo(Sn)).

However, the chance that this approach works in practice is low. In general, two isolated

invariant sets S1, S2 need not overlap, and hence their corresponding index pairs need not in-

tersect. For example, consider the invariant sets, marked with yellow triangles, in Figure  4.1 .

By taking the closure and the mouth of the invariant sets, one obtains the index pairs in the

figure, where the closure is given by the simplices that are red and yellow and the mouth is

given by the simplices that are red. The pairwise intersection of these index pairs is empty,

so nothing can persist. This is problematic in computing the persistence, because intuitively

there should be an H2 generator that persists through the multivector fields. Furthermore,
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Figure 4.1. Two invariant sets, marked in gold, under two similar but not
identical multivector fields. Each invariant set is exactly a gold triangle and
corresponds to a repelling fixed point in the classical setting. We can obtain
an index pair for each invariant set by taking the closure and the mouth of
each invariant set. The simplices in the closure are those simplices that are
gold or red and the simplices in the mouth are red.
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the intersection of two index pairs, even under the same multivector field, need not be an

index pair. We include an example in Figure  4.2 .

Dimension: 2 Dimension: 2
Dimension: 1
Dimension: 1

Figure 4.2. All three images depict the same multivector field, which includes
a yellow repelling fixed point (triangle, marked with a black circle). (left) and
(right) depict two different index pairs, (Pl, El) and (Pr, Er), for the repelling
fixed point: Pl and Pr consist of yellow and red simplices and El and Er consist
of red simplices. The intersection (Pl ∩ Pr, El ∩ Er) is depicted in the middle.
Check that this pair is not an index pair because if e denotes a yellow edge,
then FV(e) ̸⊆ Pl ∩ Pr. Beneath, we depict the barcode that is associated with
the zigzag filtration (Pl, El) ⊇ (Pl ∩ Pr, El ∩ Er) ⊆ (Pr, Er). Because (Pl, El)
and (Pr, Er) are both index pairs for the same repelling fixed point, we would
expect the barcode to be full. However, as (Pl ∩ Pr, El ∩ Er) is not an index
pair for the repelling fixed point, its relative homology can change drastically.

To address these problems, we consider a special type of index pair called an index pair

in N .

Definition 4.1. Let S be an invariant set isolated by N under V. The pair of closed sets

(P, E) satisfying E ⊆ P ⊆ N is an index pair for S in N if all of the following conditions

are met:

1. FV(P ) ∩N ⊆ P

2. FV(E) ∩N ⊆ E

3. FV(P \ E) ⊆ N , and

4. S = Inv(P \ E).
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As is expected, such index pairs in N are index pairs. The index pair on the right of

Figure  3.6 is an index pair in N where N is the entire rectangle.

Theorem 4.2. Let (P, E) be an index pair in N for S. The pair (P, E) is an index pair for

S in the sense of Definition  3.7 .

Proof. Note that by condition three of Definition  4.1 , if σ ∈ P \ E, then FV(σ) ⊆ N .

Condition one of Definition  4.1 implies that FV(σ)∩N = FV(σ) ⊆ P , which is condition two

of Definition  3.7 . Likewise, by condition two of Definition  4.1 , if σ ∈ E, then FV(σ)∩N ⊆ E.

Note that P ⊆ N , so it follows that FV(σ) ∩ P ⊆ FV(σ) ∩ N ⊆ E, which is condition one

of Definition  3.7 . Finally, condition four of Definition  4.1 directly implies condition three of

Definition  3.7 .

An additional advantage to considering index pairs in N is that the intersection of index

pairs in N is an index pair in N . We get the next two results which involve the notion of

a new multivector field obtained by intersection. Given two multivector fields V1, V2, we

define V1∩V2 := {V1 ∩ V2 | V1 ∈ V1, V2 ∈ V2}.

Theorem 4.3. Let (P1, E1), (P2, E2) be index pairs in N for S1, S2 under V1,V2. The set

Inv((P1 ∩ P2) \ (E1 ∩ E2)) is isolated by N under V1∩V2.

Proof. To contradict, we assume that there exists a path ρ : Z[a,b] → N under V1∩V2 where

ρ(a), ρ(b) ∈ Inv((P1 ∩ P2) \ (E1 ∩ E2)) and there exists some i ∈ (a, b) ∩ Z where ρ(i) ̸∈

Inv((P1 ∩P2) \ (E1 ∩E2)). Note that by the the definition of an index pair, FV(P )∩N ⊆ P .

Hence, it follows by an easy induction argument that since FV1∩V2(σ) ⊆ FV1(σ), FV2(σ), we

have that ρ(Z[a,b]) ⊆ P1, P2. This directly implies that ρ(Z[a,b]) ⊆ P1 ∩ P2. In addition, it

is easy to see that ρ can be extended to an essential solution in P1 ∩ P2, which we denote

ρ′ : Z → N , by some simple surgery on essential solutions. This is because there must be

essential solutions ρ1, ρ2 : Z→ (P1 ∩ P2) \ (E1 ∩ E2) where ρ1(a) = ρ(a) and ρ2(b) = ρ(b),

as ρ(a) and ρ(b) are both in essential solutions. Hence, ρ′(x) = ρ1(x) if x ≤ a, ρ′(x) = ρ(x)

if a ≤ x ≤ b, and ρ′(x) = ρ2(x) if b ≤ x. Since ρ′ is an essential solution, we have that

ρ(Z[a,b]) ⊆ Inv(P1 ∩ P2), but also that ρ(Z[a,b]) ̸⊆ Inv((P1 ∩ P2) \ (E1 ∩ E2)). Therefore,
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we must have that ρ(i) ∈ E1 ∩ E2. But by the same reasoning as before, it follows that

ρ(Z[i,b]) ⊆ E1 ∩ E2. Hence, b ̸∈ (P1 ∩ P2) \ (E1 ∩ E2), a contradiction.

Theorem 4.4. Let (P1, E1) and (P2, E2) be index pairs in N under V1,V2. The tuple (P1 ∩

P2, E1 ∩ E2) is an index pair for Inv((P1 ∩ P2) \ (E1 ∩ E2)) in N under V1∩V2.

Proof. We proceed by using the conditions in Definition  4.1 to show that (P1 ∩ P2, E1 ∩E2)

is an index pair in N . Note that FV1∩V2(P1 ∩ P2) ∩ N ⊆ FV1(P1) ∩ FV2(P2) ∩ N , which

is immediate by the definition of F and considering V1∩V2. Note that since (P1, E1) and

(P2, E2) are index pairs in N , we know from Definition  4.1 that FV1(P1) ∩ N ⊆ P1 and

FV2(P2)∩N ⊆ P2. Therefore FV1∩V2(P1 ∩P2)∩N ⊆ P1 ∩P2. This implies the first condition

in Definition  4.1 . This argument also implies the second condition by replacing P with E.

Now, we aim to show that (P1 ∩ P2, E1 ∩ E2) satisfies condition three in Definition

 4.1 . Consider σ ∈ (P1 ∩ P2) \ (E1 ∩ E2). Without loss of generality, we assume σ ̸∈ E1.

Therefore, σ ∈ P1 \E1, so FV1(σ) ⊆ N by the definition of an index pair in N . Hence, since

FV1∩V2(σ) ⊆ FV1(σ), condition three is satisfied.

Finally, note that Inv((P1∩P2)\(E1∩E2)) is obviously equal to Inv((P1∩P2)\(E1∩E2)),

so condition four holds as well.

Hence, if (Pi, Ei) are index pairs in N , these theorems gives a meaningful notion of

persistence of Conley index through the decomposition of the following zigzag persistence

module:

Hp(P1, E1) Hp(P1 ∩ P2, E1 ∩ E2) Hp(P2, E2) · · · Hp(Pn, En). (4.1)

Because of the previous two theorems, when one decomposes the above zigzag module, one is

actually capturing a changing Conley index. This contrasts the case where one only considers

index pairs of the form (cl(Si), mo(Si)), because (cl(Si) ∩ cl(Si+1), mo(Si) ∩ mo(Si+1)) need

not be an index pair for any invariant set.

As has been established, the pair (cl(S), mo(S)) is an index pair, but it need not be an

index pair in N . We introduce a canonical approach to transform (cl(S), mo(S)) to an index

pair in N by using the push forward.
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Definition 4.5. The push forward pf(S) of a set S in N , N closed, is the set of all simplices

in S together with those σ ∈ N such that there exists a path ρ : Z[a,b] → N where ρ(a) ∈ S

and ρ(b) = σ.

If N or V are not clear from context, we use the notation pf(S, N), pfV(S), or pfV(S, N).

The next series of results imply that an index pair in N can be obtained by taking the push

forward of (cl(S), mo(S)).

Proposition 4.6. If S ⊆ K is an isolated invariant set with isolating neighborhood N under

V, then pf(mo(S)) ∩ cl(S) = mo(S).

Proof. Note that by definition, mo(S) ⊆ cl(S) and mo(S) ⊆ pf(mo(S)), so it follows that

mo(S) ⊆ cl(S) ∩ pf(mo(S)). Hence, it is sufficient to show that cl(S) ∩ pf(mo(S)) ⊆ mo(S).

Aiming for a contradiction, assume there exists a σ ∈ cl(S) ∩ pf(mo(S)) where σ ̸∈ mo(S).

This directly implies that σ ∈ cl(S) \mo(S). But by Proposition  3.8 , cl(S) \mo(S) = S, so

σ ∈ S. But since σ ∈ pf(mo(S)), there exists a path ρ : Z[a,b] → N where ρ(a) ∈ mo(S)

and ρ(b) = σ. Because ρ(a) ∈ mo(S), there exists a σ′ ∈ S such that ρ(a) ≤ σ′. This implies

that there exists a path ρ′ : Z[a−1,b] → N where ρ(a− 1) = σ′ and ρ(b) = σ, but ρ(a) ̸∈ S.

Hence, S is not isolated by N , a contradiction.

Proposition 4.7. If S ⊆ K is an isolated invariant set with isolating neighborhood N under

V, then pf(mo(S)) ∪ cl(S) = pf(cl(S)).

Proof. Note that since pf(mo(S)) ⊆ pf(cl(S)) and cl(S) ⊆ pf(cl(S)), it follows immediately

that pf(mo(S))∪cl(S) ⊆ pf(cl(S)). Hence, it is sufficient to show that pf(cl(S)) ⊆ pf(mo(S))∪

cl(S). Aiming for a contradiction, we assume there exists a σ ∈ pf(cl(S)) such that σ ̸∈

pf(mo(S)) ∪ cl(S). Note that since σ ̸∈ pf(mo(S)), it follows that there must exist a path

ρ : Z[a,b] → N where ρ(i) ̸∈ mo(S) for all i. Else, ρ(b) = σ would be in pf(mo(S)), a

contradiction. Hence, there must exist a ρ(i) ∈ cl(S)\mo(S) = S such that ρ(i+1) ∈ FV(ρ(i))

and ρ(i + 1) ̸∈ cl(S). Note that ρ(i + 1) cannot be a face of ρ(i), else ρ(i + 1) ∈ cl(S).

Hence, [ρ(i + 1)] = [ρ(i)], which means one can construct a path ρ′ : Z[0,2] → N where

ρ′(0) = ρ′(2) = ρ(i) and ρ(1) = ρ(i + 1). But this is a path with endpoints in S which is not

contained in S, which contradicts S being isolated by N .

37



Proposition 4.8. If S ⊆ K is an isolated invariant set with isolating neighborhood N , then

pf(cl(S)) \ pf(mo(S)) = cl(S) \mo(S) = S.

Proof. First, we note that by Proposition  4.7 , we have that pf(mo(S)) ∪ cl(S) = pf(cl(S)).

From Proposition  4.6 we have that pf(mo(S))∩ cl(S) = mo(S), which together with the fact

that cl(S) ⊆ mo(S) implies that pf(mo(S)) ∪ (cl(S) \ mo(S)) = pf(cl(S)). Since pf(mo(S))

and cl(S) \mo(S) are disjoint, it follows that that cl(S) \mo(S) = pf(cl(S)) \ pf(mo(S)). By

Proposition  3.8 , (cl(S), mo(S)) is a saturated index pair for S, so it follows that pf(cl(S)) \

pf(mo(S)) = cl(S) \mo(S) = S.

From these propositions, we get the following.

Theorem 4.9. If S is an isolated invariant set then (pf(cl(S)), pf(mo(S))) is an index pair

in N for S.

Proof. First, we note that since the index pair (cl(S), mo(S)) is saturated, it follows that

S = Inv(cl(S) \ mo(S)) = cl(S) \ mo(S). But since by Proposition  4.8 cl(S) \ mo(S) =

pf(cl(S)) \ pf(mo(S)), it follows that S = pf(cl(S)) \ pf(mo(S)) = Inv(pf(cl(S)) \ pf(mo(S))),

which satisfies condition four of being an index pair in N .

We show that FV(pf(cl(S))) ∩ N ⊆ pf(cl(S)). Let x ∈ pf(cl(S)), and assume that y ∈

FV(x) ∩N . There must be a path ρ : Z[a,b] → N where ρ(a) ∈ cl(S) and ρ(b) = x, by the

definition of the push forward. Thus, we can construct an analogous path ρ′ : Z[a,b+1] → N

where ρ′(i) = ρ(i) for i ∈ Z[a,b] and ρ′(b+1) = y. Hence, y ∈ pf(cl(S)) by definition. Identical

reasoning can be used to show that FV(pf(mo(S)))∩N ⊆ pf(mo(S)), so (pf(cl(S)), pf(mo(S)))

also meets the first two conditions required to be an index pair.

Finally, we show that FV(pf(cl(S)) \ pf(mo(S))) ⊆ N . By Proposition  4.8 , this is equiv-

alent to showing that FV(cl(S) \ mo(S)) ⊆ N . Since (cl(S), mo(S)) is an index pair for S,

it follows that FV(cl(S) \ mo(S)) ⊆ cl(S). Note that since N ⊇ S is closed, it follows that

cl(S) ⊆ N . Hence, FV(pf(cl(S)) \ pf(mo(S))) ⊆ N , and all conditions for an index pair in N

are met.

An example of an index pair induced by the push forward can be seen in Figure  4.3 .

Hence, instead of considering a zigzag filtration given by a sequence of index pairs (cl(S1), mo(S1)),
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Figure 4.3. All three images depict an index pair for the yellow triangle
marked with a black circle. P is given by the red and yellow simplices, while E
is given by the red simplices. If N is taken to be the entire rectangle, then the
index pairs on the left and the right are not index pairs in N , but the index
pair on the right is.
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(cl(S2), mo(S2)), . . . , (cl(Sn), mo(Sn)), a canonical choice is to instead consider the zigzag

filtration given by the the sequence of index pairs

(pf(cl(S1)), pf(mo(S1))), (pf(cl(S2)), pf(mo(S2))), . . . , (pf(cl(Sn)), pf(mo(Sn))).

Choosing Si is highly application specific, so in our implementation we choose Si :=

InvVi(N). This decision together with the previous theorems gives Algorithm  1 for com-

puting the persistence of the Conley Index. Note that in the case where InvVi(N) is not

Vi-compatible, then Si is actually V-compatible with respect to the multivector field {V ∩

N | V ∈ Vi} ∪ {V ∩ N | V ∈ Vi}. This adjustment is handled implicitly in the algorithm.

The complexity of finding Si and (Pi, Ei) is linear in |N |, so the overall complexity of the

scheme is O(n|N |+M(m)+m2 log2(m)), where m is the number of simplices that are added

and deleted in the filtration.

Input: Sequence of multivector fields V1,V2, . . . ,Vn, closed set N ⊆ K.
Output: Barcodes corresponding to persistence of Conley Index
i← 1
while i <= n do

Si ← InvVi(N)
(Pi, Ei)← (pf (cl (Si) , N) , pf (mo (Si) , N))
i← i + 1

end
return zigzagPers ((P1, E1) ⊇ (P1 ∩ P2, E1 ∩ E2) ⊆ (P2, E2) ⊇ . . . ⊆ (Pn, En))

Algorithm 1: Scheme for computing the persistence of the Conley Index, fixed N

Index pairs and barcodes computed by Algorithm  1 can be seen in Figure  4.4 .

4.1 Noise-Resilient Index Pairs

Earlier in this chapter, we showed that if one is given two isolated invariant sets S1 and

S2 under V1 and V2, where both are isolated by some N , one can obtain the index pairs

(pf(cl(S1)), pf(mo(S1)) and (pf(cl(S2)), pf(mo(S2)) and intersect them using Theorem  4.4 to

compute the persistence of the Conley index. However, this approach works best when the

isolated invariant sets are very close to each other. In the presence of noise, these index pairs
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Dimension: 0
Dimension: 2

Figure 4.4. Examples of index pairs computed by using the push forward on
multivector fields induced by a differential equation. A sequence of multivec-
tor fields was generated from a λ-parametrized differential equation undergoing
supercritical Hopf bifurcation [ 32 , Section 11.2]. The consecutive images (from
left to right) present a selection from this sequence: the case when λ < 0 and
there is only an attracting fixed point inside N ; the case when λ > 0 is small
and N contains a repelling fixed point, a small attracting periodic trajectory
and all connecting trajectories; the case when λ > 0 is large and the periodic
trajectory is no longer contained in N . In all three images, N is given by the
rectangle, E is given by the simplices in red, and P \E is given by the simplices
in yellow. Note that in the leftmost image, the only invariant set is a triangle
which represents an attracting fixed point. For this invariant set, the only
relative homology group which is nontrivial is H0(P, E), which has a single ho-
mology generator. In the middle image, the invariant sets represent a repelling
fixed point, a periodic attractor, and heteroclinic orbits which connect the re-
pelling fixed point with the periodic attractor. Note that the relative homology
has not changed from the leftmost case, so the only nontrivial homology group
is H0(P, E). In the rightmost image, the periodic attractor is no longer entirely
contained within N , so the only invariant set corresponds to a repelling fixed
point. Here, the only nontrivial homology group is H2(P, E), which has one
generator, so the Conley index has changed. Algorithm  1 captures this change.
The persistence barcode output by Algorithm  1 is below index pairs, where a
H0 generator (white bar) lasts until the periodic trajectory leaves N , at which
point it is replaced by an H2 generator (dark gray bar).
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can perform quite poorly, for multiple reasons. We consider a couple of these reasons in turn

and devise methods to combat noise.

4.1.1 Shrinking E

The previous strategy given for producing index pairs in N produces saturated in-

dex pairs. Equivalently, the cardinality of P \ E is minimized. This is problematic in

the presence of noise, where if V2 is a slight perturbation of V1 we frequently have that

InvV1(N) ̸= InvV2(N). This gives a perturbation in our generated index pairs and in partic-

ular a perturbation in P \E. As the Conley Index is obtained by taking relative homology,

taking the intersection of index pairs (P1, E2) and (P2, E2) where Pi \ Ei = InvVi(N) can

result in a “breaking” of bars in the barcode. An example can be seen in Figure  4.5 , where

because of noise, the two P \ E do not overlap, and hence a 2-dimensional homology class

which intuitively should persist throughout the interval does not. In Figure  4.5 , the Conley

indices of the invariant sets consisting of the singleton critical triangles in V1 and V2 (the

left and right multivector fields) have rank 1 in dimension 2 because the homology group

H2 of P (which is all colored simplices) relative to E (which is all red simplices) has rank

1. However, the generators for H2(P1, E1) and H2(P2, E2) are both in the intersection field

V1∩V2. Hence, rather than one generator persisting through all three multivector fields, we

get two bars that overlap at the intersection field. The difficulty is rooted in the fact that

the sets W1 = P1 \E1, W2 = P2 \E2, and W12 = (P1∩P2)\ (E1∩E2) do not have a common

intersection.

To address this problem, we propose an algorithm to expand the size of P \ E. It is

important to note that a balance is needed to ensure a large E as well as a large P \ E. If

E1 and E2 are too small, then it is easy to see that E1 and E2 may not intersect as expected

even though consecutive vector fields are very similar. The following proposition is very

useful for computing a balanced index pair.

Proposition 4.10. Let (P, E) be an index pair for S in N under V. If V ⊆ E is a regular

multivector where E ′ := E \ V is closed, then (P, E ′) is an index pair for S in N .
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Dimension: 2
Dimension: 2

Figure 4.5. Infeasibilty of the index pair (pf(cl(S)), pf(mo(S))): The sets
E = pf(mo(S)) are colored pink in all three images, while the invariant sets
which equal P \E are golden in all three images. (left) V1 : P1\E1 consists of a
single golden triangle; (right) V2: P2 \E2 consists of the single golden triangle;
(middle) (P1 ∩ P2) \ (E1 ∩ E2) consists of two golden triangles (excluding the
edge between them) in the intersection field V1∩V2. The barcode for index pairs
is depicted by two dark gray bars, each of which represents a 2-dimensional
homology generator. Ideally, these would be a single bar.
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Proof. Note that since P does not change, it is immediate the P satisfies FV(P ) ∩ N ⊆ P ,

and the first condition of an index pair in N is met.

We show that FV(E ′) ∩ N ⊆ E. For a contradiction, we assume that there exists an

x ∈ E ′ such that there is a y ∈ FV(x)∩N , y ̸∈ E ′. Note that if y ≤ x, then by definition y is

in the closure of x. Since E is closed and x ∈ E, it follows that y ∈ E. But since y ̸∈ E ′, it

follows that y ∈ V . But this is a contradiction since by assumption, E \ V is closed. Hence,

by definition of FV , since y ̸∈ cl(x), y and x must be in the same multivector. Note that

in such a case y ̸∈ V , as if it were, x would not be in E ′ since x and y are in the same

multivector. This implies that FV(E) ∩ N ̸⊂ E, as y ∈ FV(x) and y ̸∈ E, a contradiction.

Thus, we conclude that FV(E ′) ∩N ⊆ E.

Now, we show that FV(P \E ′) ⊆ N . Assume there exists an x ∈ P satisfying FV(x)\N ̸=

∅. Then since (P, E) is an index pair in N , it follows that x ∈ E. To contradict, we assume

x ̸∈ E ′. Hence, x ∈ V . We let y ∈ FV(x) \ N . By definition of FV , either y ∈ cl(x) or y

and x are in the same multivector. In the later case, y ∈ N as it was assumed that V ⊆ E,

a contradiction. Hence, y ≤ x. But this implies that y ∈ cl(x) ⊆ E ⊆ N , a contradiction.

Ergo, x ∈ E ′, and FV(P \ E ′) ⊆ N .

Finally, we show that Inv(P \ E ′) = Inv(P \ E). Trivially, Inv(P \ E) ⊆ Inv(P \ E ′),

so it is sufficient to show that Inv(P \ E ′) ⊆ Inv(P \ E). For a contradiction, assume that

there exists an x ∈ Inv(P \ E ′), x ̸∈ Inv(P \ E). Thus, there exists an essential solution

ρ : Z → P \ E ′ where for some k, y := ρ(k) ∈ V . Since V is regular, we assume without

loss of generality that z := ρ(k + 1) ̸∈ V . Hence, z ∈ cl(y). In addition, since z ∈ cl(V ),

we have that z ∈ cl(E) = E. Therefore, z ∈ E \ V = E ′. But ρ is a solution in P \ E ′, a

contradiction.

Figure  4.6 illustrates how enlarging P \E by removing regular vectors as Proposition  4.10 

suggests can help mitigate the effects of noise on computing Conley index persistence. Con-

trast this example with the example in Figure  4.5 . Denoting Wi = Pi \ Ei for i = 1, 2 and

W12 = (P1∩P2)\ (E1∩E2) in both figures, we see that W1∩W12∩W2 is empty in Figure  4.5 

while in Figure  4.6 it consists of three critical simplices each marked with a circle. Hence,

in Figure  4.6 a single generator persists throughout the interval, unlike in Figure  4.5 .
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Dimension: 2

Figure 4.6. Enlarging P \ E which is gold in all three pictures while E is
colored pink. (left) V1; (right) V2; (middle) V1∩V2. Note that there is one bar
in the barcode, in contrast with Figure  4.5 
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Computation

We give a method for computing a noise-resilient index pair by using these techniques.

Note that by Theorem  4.9 , we have that (pf(cl(S)), pf(mo(S))) is an index pair for invariant

set S in N . Hence, we adopt the strategy of taking P = pf(cl(S)) and E = pf(mo(S)), and

we aim to find some collection R ⊆ E so that (P, E \R) remains an index pair in N . Finding

an appropriate R is a difficult balancing act: one wants to find an R so that P \ (E \ R)

is sufficiently large, so as to capture perturbations in the isolated invariant set as described

in the previous section, but not so large that E is small and perturbations in E are not

captured. If R is chosen to be as large as possible, then a small shift in E may results in

(E \ R) ∩ (E ′ \ R′) having a different topology than E or E ′ leading to a “breaking” of

barcodes analogous to the case described.

Before we give an algorithm for outputting such an R, we first define a δ-collar.

Definition 4.11. We define the δ-collar of an invariant set S ⊆ K recursively:

1. The 0-collar of S is cl(S).

2. For δ > 0, the δ-collar of S is the set of simplices σ in the (δ − 1)-collar of S together

with those simplices τ where τ is a face of some σ with a face τ ′ in the (δ − 1)-collar

of S.

For an isolated invariant set S, we will let Cδ(S) denote the δ-collar of S. Together with

Proposition  4.10 , δ-collars give a natural algorithm for finding an R to enlarge P \ E.

In particular, we use Algorithm  2 for this purpose.

Theorem 4.12. Let R be the output of Algorithm  2 applied to index pair (P, E) in N for

isolated invariant set S. The pair (P, E \R) is an index pair for S in N .

Proof. To contradict, we assume that the R output by Algorithm  2 results in (P, E \ R) is

not an index pair. We note by inspection of the algorithm that multivectors are removed

sequentially, so there exists some first V such that (P, E \ RV ) is an index pair for S in N

but (P, E \ (RV ∪ V )) is not an index pair for S in N , where RV denotes the R variable in

Algorithm  2 before V is added to it. By inspection of the algorithm, we observe that since
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Input: Isolated invariant set S with respect to V contained in some closed set N ,
Index pair (P, E) in N with respect to V , δ ∈ Z

Output: List of simplices R such that (P, E \R) is an index pair for S in N .
R← new set()
vecSet← {[σ] ∈ V | [σ] ⊆ E ∩ Cδ(S) ∧ [σ] ∩ ∂(E) ̸= ∅ ∧ [σ] ∩ ∂(P ) = ∅}
vec← new queue()
appendAll(vec, vecSet)
while size(vec) > 0 do

[σ]← pop(vec)
if isClosed((E \R) \ [σ]) and [σ] ⊆ E \R and isRegular ([σ]) then

R← R ∪ [σ]
mouthV ecs← {[τ ] | τ ∈ mo ([σ]) ∧ dim(τ) = dim(σ)− 1 ∧ [τ ] ⊆ Cδ(S)}
appendAll(vec, mouthV ecs)

end
end
return R

Algorithm 2: findR(S, P, E,V , δ)
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V was added to RV , it must be that V is a regular vector, and E \ (R ∪ V ) is closed, and

V ⊆ E \RV . Proposition  4.10 directly implies that (P, (E \R) \ V ) is an index pair, which

is a contradicton. Hence, there can exist no such V , so it follows that (P, E \R) must be an

index pair for S in N .

Hence, Algorithm  2 provides a means by which the user may enlarge P \ E. If the

dimension of K is fixed, then we can determine if (E \R)\ [σ] is closed in O(|E|) time. Each

τ can be considered at most |E| times when considering adding [τ ] to the queue. Hence,

the total complexity is O(|E|3), assuming we have pre-computed which multivectors are in

Cδ(S) (requiring O(|E|) preprocessing) and which multivectors are regular (which can be

done in matrix multiplication time in the size of the multivector). This bound, however, is

very pessimistic, as each simplex is not the face of |E| other simplices in E.

As this algorithm is parameterized, a robust choice of δ may be application-specific. We

also include some demonstrations of the effectiveness of using this technique. A real instance

of the difficulty can be seen in Figure  4.7 , while the application of Algorithm  2 with δ = 5

to solve the problem is found in Figure  4.9 .

Dimension: 2
Dimension: 2

Figure 4.7. Index pairs on two slightly perturbed multivector fields (left,
right) and their intersection (middle). The isolating neighborhood N is is the
portion of the rectangle where the multivectors are drawn, E is in red, and
P \ E is in yellow. Note that we have the same difficulty as in Figure  4.5 ,
where there are two homology generators in the intersection multivector field,
so we get a broken bar code.
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Figure 4.8. A zoomed in version of Figure  4.7 .

Dimension: 2

Figure 4.9. The same index pairs as in Figure  4.7 with the same color scheme,
but after applying Algorithm  2 to reduce the size of E. This forces a 2-
dimensional homology generator to persist across both multivector fields (left,
right) and their intersection (middle).
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4.1.2 Enlarging P

In the previous subsection, we addressed noise in persistence that is caused because E

is too large. In this section, we consider noise that occurs because P is too small. This

typically occurs when the relevant isolated invariant sets are attractors. Consider Figure

 4.10 . In the first and third images, we find an index pair for the isolated invariant sets M1,

M2 by using this technique. The simplices in yellow and blue are the simplices in N , and

the simplices in blue are in P . In these two cases, E = ∅. Intuitively, we expect that a

1-dimensional homology class would persist from the left to the right. However, this is not

the case. The middle image shows the index pair (cl(M1) ∩ cl(M2), mo(M1) ∩ mo(M2)) in

blue, and H1(cl(M1) ∩ cl(M2), mo(M1) ∩ mo(M2)) = 0. Thus, a one-dimensional homology

class does not persist from the first to third image. We devise a new method to compute

index pairs that permits us to circumvent this issue. For a set of multivectors A, we let

⟨A⟩ := ∪A∈AA.

Proposition 4.1.1. Let (P, E) denote an index pair in N under V, and let A denote a set

of multivectors such that ⟨A⟩ ⊆ N , ⟨A⟩ ∩ E = ∅ and mo(⟨A⟩) ⊆ P . The pair (P ∪ ⟨A⟩, E)

is an index pair in N under V.

Proof. It is immediate that Inv((P ∪ ⟨A⟩) \E) = Inv((P ∪ ⟨A⟩) \E). In addition, note that

E has not changed, so FV(E) ∩ N ⊆ E by hypothesis. Hence, it is sufficient to show that

FV(P ∪ ⟨A⟩) ∩N ⊆ P ∪ ⟨A⟩ and FV(P ∪ ⟨A⟩) \ E ⊆ N .

First, we consider FV(⟨A⟩). The set ⟨A⟩ is a union of multivectors, so by definition,

FV(⟨A⟩) = ⟨A⟩ ∪ cl(⟨A⟩). By definition, cl(⟨A⟩) = ⟨A⟩ ∪ mo(A). Thus, it follows that

FV(⟨A⟩) = ⟨A⟩ ∪ mo(⟨A⟩). By assumption, mo(⟨A⟩) ⊆ P , so it follows that FV(⟨A⟩) ⊆

⟨A⟩ ∪ P ⊆ N .

Now, we show that FV(P ∪ ⟨A⟩) ∩N ⊆ P ∪ ⟨A⟩. By the definition of F , it follows that

FV(P ∪ ⟨A⟩) = FV(P ) ∪ FV(⟨A⟩). The pair (P, E) is an index pair in N , so it follows that

FV(P ) ∩ N ⊆ P . We have already shown that FV(⟨A⟩) ⊆ P ∪ ⟨A⟩ ⊆ N , so it follows that

FV(P ∪ ⟨A⟩) ∩N ⊆ P ∪ ⟨A⟩.

Now, we move to showing that FV((P ∪ ⟨A⟩) \ E) ⊆ N . By assumption, ⟨A⟩ ∩ E = ∅.

Thus, (P ∪ ⟨A⟩) \ E = (P \ E) ∪ ⟨A⟩. Hence, FV((P ∪ ⟨A⟩) \ E) = FV(P \ E) ∪ FV(⟨A⟩).
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Dimension: 0
Dimension: 1 Dimension: 1

Dimension: 0

Dimension: 0

Figure 4.10. In all three images, the isolating neighborhood N is given by
the blue and the yellow simplices, while an isolated invariant set in N is given
by the yellow simplices. In addition, in the left and the right images, we
can obtain an index pair in N by taking the yellow simplices to be P and
letting E := ∅. If (P1, E1) denotes the index pair on the left and (P2, E2)
denotes the index pair in N on the right, then the index pair in the center
is given by (P1 ∩ P2, E1 ∩ E2). The yellow simplices in the middle are those
simplices in P1 ∩ P2. Intuitively, one would expect a 0-dimensional bar and
a 1-dimensional bar to persist through all three images. However, when one
takes the intersection of the two index pairs, one no longer has an annulus, so
the 1-dimensional bar does not persist through all three images. Instead, we
obtain several short, 0-dimensional bars. We show the barcode beneath the
images, while excluding several of the short 0-dimensional bars.
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The pair (P, E) is an index pair in N , so FV(P \ E) ⊆ N . We have already shown that

FV(⟨A⟩) ⊆ N , so it follows that FV((P ∪ ⟨A⟩) \ E) ⊆ N .

Hence, we conclude that (P ∪ ⟨A⟩, E) is an index pair for Inv((P ∪ ⟨A⟩) \ E) in N .

However, Proposition  4.1.1 does not imply that Inv(P \ E) = Inv((P ∪ ⟨A) \ E). We

strengthen Proposition  4.1.1 to account for this.

Proposition 4.13. Let N denote a closed set, and letM denote the minimal Morse decom-

position for Inv(N). Furthermore, let (P, E) denote an index pair in N for an isolated in-

variant set S in N . If A is a set of multivectors where ⟨A⟩ ⊆ N , ⟨A⟩∩E = ∅, mo(⟨A⟩) ⊆ P ,

and ⟨A⟩ ∩M = ∅ for M ∈M where M ̸⊆ S, then (P ∪ ⟨A⟩, E) is an index pair in N for S.

Proof. By Proposition  4.1.1 , (P ∪ ⟨A⟩, E) is an index pair for Inv((P ∪ ⟨A⟩) \ E), so it is

sufficient to show that Inv((P ∪ ⟨A⟩) \E) = S. Trivially, S ⊆ Inv((P ∪ ⟨A⟩) \E). Hence, we

aim to show the reverse inclusion. To contradict, assume that σ ∈ Inv((P ∪ ⟨A⟩) \ E) \ S.

Then there exists some essential solution ρ : Z → (P ∪ ⟨A⟩) \ E where ρ(0) = σ. In

addition, there must exist M1, M2 ∈M such that α(ρ) ⊆M1 and ω(ρ) ⊆M2.

We have that im(ρ) ⊆ (P ∪ ⟨A⟩) \ E, so M1 ∩ (P ∪ ⟨A⟩) \ E ̸= ∅, and similarly for M2.

We claim that M1, M2 ⊆ (P ∪ ⟨A⟩) \E. If there were a η ∈M1 but η ̸∈ (P ∪ ⟨A⟩) \E, then

since there is a τ ∈M1∩ (P ∪⟨A) \E, Proposition  3.11 implies there exists a path from η to

τ and there exists a path from τ to η. But by the definition of an index pair in N , it follows

that η ∈ E. Since there is a path from η to τ , but τ ∈ (P ∪ ⟨A⟩) \ E, this contradicts the

requirement that FV(E)∩N ⊆ E. Hence, no such η can exist, and M1, M2 ⊆ (P ∪ ⟨A⟩) \E.

By assumption, ⟨A⟩ ∩M1 = ∅ if M1 ̸⊆ S (and similarly for M2), so M1 ∩ (⟨A⟩ \ P ) = ∅

(and similarly for M2). Thus, M1, M2 ⊆ P \ E. But S = Inv(P \ E), so M1, M2 ⊆ S. But

this implies there is a path from S to σ and a path from σ to S, which implies that S is not

isolated by N , a contradiction.

Proposition  4.13 provides a natural avenue for finding index pairs that are suitable for

computing the persistence of the Conley-Morse graph. If we are given an index pair (P, E) in

N for a Morse set M , we can incrementally add multivectors to P that satisfy the conditions
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of Proposition  4.13 , up to a specified distance away from the original P . We give an example

of this in Figure  4.11 .

Dimension: 0
Dimension: 1

Figure 4.11. When one uses Proposition  4.13 to thicken the index pairs in
Figure  4.10 , a 1-dimensional homology class persists through all three images,
which matches the intuition.

4.2 A Simple Tracking Algorithm

In this chapter, we established the persistence of the Conley index of invariant sets in

consecutive multivector fields which are isolated by a single isolating neighborhood and we

showed how to intelligently choose index pairs. In this section, we develop an algorithm to

“track” an invariant set over a sequence of isolating neighborhoods. A classic example is a

hurricane, where if one were to sample wind velocity at times t0, t1, . . . , tn, there may be no

fixed N which captures the eye of the hurricane at all ti without also capturing additional,

undesired invariant sets at some tj.

4.2.1 Changing the Isolating Neighborhood

Thus far, we have defined a notion of persistence of the Conley Index for some fixed

isolating neighborhood N and simplicial complex K. This setting is very inflexible —one

may want to incorporate domain knowledge to change N to capture changing features of

a sequence of sampled dynamics. We now extend our previous results to a setting where

N need not be fixed. Throughout this section, we consider multivector fields V1,V2, . . . ,Vn

with corresponding isolated invariant sets S1, S2, . . . , Sn. In addition, we assume that there
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exist isolating neighborhoods N1, N2, . . . , Nn−1 where Ni isolates both Si and Si+1. We will

also require that if 1 < i < n, the invariant set Si is isolated by Ni∪Ni+1. Note that for each

i where 1 < i < n, there exist two index pairs for Si: one index pair (P (i−1)
i , E

(i−1)
i ) in Ni−1

and another index pair (P (i)
i , E

(i)
i ) in Ni. In the case of i = 1, there is only one index pair

(P (1)
1 , E

(1)
1 ) for Si. Likewise, in the case of i = n, there is a single index pair (P (n−1)

n , E(n−1)
n ).

By applying the techniques of Section  5.1 , we obtain a sequence of persistence modules:

Hp

(
P

(1)
1 , E

(1)
1

)
Hp

(
P

(1)
1 ∩ P

(1)
2 , E

(1)
1 ∩ E

(1)
2

)
Hp

(
P

(1)
2 , E

(1)
2

)

Hp

(
P

(2)
2 , E

(2)
2

)
Hp

(
P

(2)
2 ∩ P

(2)
3 , E

(2)
2 ∩ E

(2)
3

)
Hp

(
P

(2)
3 , E

(2)
3

)

Hp

(
P

(3)
3 , E

(3)
3

)
Hp

(
P

(3)
3 ∩ P

(3)
4 , E

(3)
3 ∩ E

(3)
4

)
Hp

(
P

(3)
4 , E

(3)
4

)

...

Hp

(
P

(n−1)
n−1 , E

(n−1)
n−1

)
Hp

(
P

(n−1)
n−1 ∩ P (n−1)

n , E
(n−1)
n−1 ∩ E(n−1)

n

)
Hp

(
P (n−1)

n , E(n−1)
n

)
.

(4.2)

In the remainder of this subsection, we develop the theory necessary to combine these mod-

ules into a single module. Without any loss of generality, we will combine the first modules

into a single module, which will imply a method to combine all of the modules into one.

First, we note that by Theorem  3.9 , we have that Hp(P (1)
2 , E

(1)
2 ) ∼= Hp(P (2)

2 , E
(2)
2 ). To

combine the persistence modules

Hp(P (1)
1 , E

(1)
1 ) Hp(P (1)

1 ∩ P
(1)
2 , E

(1)
1 ∩ E

(1)
2 ) Hp(P (1)

2 , E
(1)
2 )

Hp(P (2)
2 , E

(2)
2 ) Hp(P (2)

2 ∩ P
(2)
3 , E

(2)
2 ∩ E

(2)
3 ) Hp(P (2)

3 , E
(2)
3 ).

(4.3)

into a single module, it is either necessary to explicitly find a simplicial map which induces an

isomorphism ϕ : Hp(P (1)
2 , E

(1)
2 )→ Hp(P (2)

2 , E
(2)
2 ), or to construct some other index pair for

S2 denoted (P, E) such that P
(1)
2 , P

(2)
2 ⊂ P and E

(1)
2 , E

(2)
2 ⊂ E. This would allow substituting

both occurrences of (P (1)
2 , E

(1)
2 ) or (P (2)

2 , E
(2)
2 ) for (P, E), and allow the combining of all the

modules in Equation  4.2 into a single module. Since constructing the isomorphism given by
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Theorem  3.9 is fairly complicated, we opt for the second approach. First, we define a special

type of index pair that is sufficient for our approach.

Definition 4.14 (Strong Index Pair). Let (P, E) be an index pair for S under V. The index

pair (P, E) is a strong index pair for S if for each τ ∈ E, there exists a σ ∈ S such that

there is a path ρ : Z[a,b] → P where ρ(a) = σ and ρ(b) = τ .

Intuitively, a strong index pair (P, E) for S is an index pair for S where each simplex

τ ∈ E is reachable from a path originating in S. Strong index pairs have the following useful

property.

Theorem 4.15. Let S denote an invariant set isolated by N , N ′, and N ∪N ′ under V. If

(P, E) and (P ′, E ′) are strong index pairs for S in N , N ′ under V, then the pair

(pfN∪N ′ (P ∪ P ′) , pfN∪N ′ (E ∪ E ′))

is a strong index pair for S in N ∪N ′ under V.

Proof. We proceed by showing that the pair meets the requirements to be a strong index pair

in N ∪N ′. First, note that for all σ ∈ pf(P ∪P ′), if τ ∈ FV(σ)∩ (N ∪N ′), then it follows by

the definition of the push forward that τ ∈ pf(P ∪P ′). Hence, FV (pf (P ∪ P ′))∩ (N ∪N ′) ⊂

pf (P ∪ P ′). Analogous reasoning shows that FV (pf (E ∪ E ′)) ∩ (N ∪N ′) ⊂ pf (E ∪ E ′).

Hence, we proceed to show that FV (pf (P ∪ P ′) \ pf (E ∪ E ′)) ⊂ N ∪N ′. To contradict,

assume that there exists a σ ∈ pf (P ∪ P ′) \ pf (E ∪ E ′) so that there is a τ ∈ FV (σ) where

τ ̸∈ N ∪ N ′. Since σ ∈ pf (P ∪ P ′), there must exist a x ∈ P ∪ P ′ such that there is a

path ρ : Z[a,b] → N ∪ N ′ where ρ(a) = x and ρ(b) = σ. Without loss of generality, we

assume that x ∈ P . Note that if σ ∈ P , then σ ∈ P \ E by our assumption and hence

FV(σ) ⊆ N ⊆ N ∪ N ′ contradicting our assumption that FV(σ) ∋ τ ̸∈ (N ∪ N ′). Hence,

σ ̸∈ P . Note that since (P, E) is an index pair, we have that FV (P \ E) ⊂ P . Hence, there

must be some i such that ρ(i) ∈ E. Hence, σ ∈ pf(E ∪ E ′), a contradiction. Thus, no such

σ can exist.

Now, we show that S = Inv (pf (P ∪ P ′) \ pf (E ∪ E ′)). Note that since S is isolated

by N ∪ N ′ and every σ ∈ E ∪ E ′ is reachable by a path originating at τ ∈ S, it follows
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that pf (E ∪ E ′) ∩ S = ∅, else S is not isolated by N ∪ N ′. Hence, this implies that S ⊂

Inv (pf (P ∪ P ′) \ pf (E ∪ E ′)).

To show that Inv (pf (P ∪ P ′) \ pf (E ∪ E ′)) ⊂ S, we first note that if x ∈ pf (P ∪ P ′) and

x ̸∈ P ∪ P ′, then it follows that x ∈ pf(E ∪E ′). This is because if there exists a σ ∈ P such

that there is a path ρ : Z[a,b] → N ∪N ′ which satisfies ρ(a) = σ and ρ(b) = x, there must be

some ρ(i) ∈ E. If there is no such ρ(i), then this contradicts requirement 2 of Definition  3.7 ,

which states that FV (P \ E) ⊂ P . Hence, by the definition of the push forward, it follows

that x ∈ pf (E ∪ E ′). Thus, it follows that pf (P ∪ P ′) \ pf (E ∪ E ′) ⊂ (P ∪ P ′) \ (E ∪ E ′).

Thus, every essential solution in pf (P ∪ P ′) \ pf (E ∪ E ′) is also an essential solution in

(P ∪ P )\(E ∪ E ′). It remains to be shown that every essential solution in (P ∪ P ′)\(E ∪ E ′)

is also an essential solution in P \ E.

For a contradiction, assume that there exists an essential solution ρ : Z → (P ∪ P ′) \

(E ∪ E ′) such that there exists an i where ρ(i) ̸∈ P \ E. Note that since ρ(i) ∈ (P ∪ P ′) \

(E ∪ E ′), it follows that ρ(i) ̸∈ E. Together, these two facts imply that ρ(i) ̸∈ P . Hence, it

follows that ρ(i) ∈ P ′ \E ′. We claim in particular that for all j ∈ Z, ρ(j) ∈ P ′ \E ′. Note that

if there exists a j < i such that ρ(j) ̸∈ P ′\E ′, then it follows that ρ(j) ∈ P \E. Since (P, E) is

an index pair, we have that FV (P \ E) ⊆ P . Thus, there must exist some k where j < k < i

where ρ(k) ∈ E, but this contradicts that ρ (Z) ⊆ (P ∪ P ′) \ (E ∪ E ′). Hence, no such j

exists. Analogous reasoning shows that there is no j > i where ρ(j) ̸∈ P ′ \E ′. It follows that

ρ(Z) ⊆ Inv (P ′ \ E ′). But this implies that ρ (Z) ⊆ S. Note that (P, E) and (P ′, E ′) are both

index pairs for S, so it follows that ρ (Z) ⊆ P \E, P ′ \E ′. This contradicts our assumption

that ρ(i) ̸∈ P \E. Thus, there is no such ρ. Hence, we have that Inv ((P ∪ P ′) \ (E ∪ E ′)) ⊆

Inv (P \ E) , Inv (P ′ \ E ′) = S, which implies that Inv (pf (P ∪ P ′) \ pf (E ∪ E ′)) ⊆ S.

To see that (pf (P ∪ P ′) , pf (E ∪ E ′)) is a strong index pair, note that there must exist

a path from S to every σ ∈ E ∪ E ′, and since pf (E ∪ E ′) is the set of simplices σ for which

there exists a path from E ∪ E ′ to σ, it follows easily from path surgery that there exists a

path from S to σ. Hence, (pf (P ∪ P ′) , pf (E ∪ E ′)) is a strong index pair for S in N .
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Crucially, this theorem gives a persistence module

Hp(P (1)
2 , E

(1)
2 ) Hp

(
pf

(
P

(1)
2 ∪ P

(2)
2

)
, pf

(
E

(1)
2 ∪ E

(2)
2

))
Hp(P (2)

2 , E
(2)
2 ) (4.4)

where the arrows are given by the inclusion. Note that since these are all index pairs for the

same S, it follows that we have Hp

(
P

(1)
2 , E

(1)
2

) ∼= Hp

(
pf

(
P

(1)
2 ∪ P

(2)
2

)
, pf

(
E

(1)
2 ∪ E

(2)
2

)) ∼=
Hp

(
P

(2)
2 , E

(2)
2

)
. Hence, we will substitute Hp

(
pf

(
P

(1)
2 ∪ P

(2)
2

)
, pf

(
E

(1)
2 ∪ E

(2)
2

))
into the per-

sistence module. By using the modules in Equation  4.2 , we get a new sequnece of persistence

modules

Hp

(
P

(1)
1 , E

(1)
1

)
Hp

(
P

(1)
1 ∩ P

(1)
2 , E

(1)
1 ∩ E

(1)
2

)
Hp

(
pf

(
P

(1)
2 ∪ P

(2)
2

)
, pf

(
E

(1)
2 ∪ E

(2)
2

))

Hp

(
pf

(
P

(1)
2 ∪ P

(2)
2

)
, pf

(
E

(1)
2 ∪ E

(2)
2

))
Hp

(
P

(2)
2 ∩ P

(2)
3 , E

(2)
2 ∩ E

(2)
3

)
Hp

(
pf

(
P

(2)
3 ∪ P

(3)
3

)
, pf

(
E

(2)
3 ∪ E

(3)
3

))

Hp

(
pf

(
P

(2)
3 ∪ P

(3)
3

)
, pf

(
E

(2)
3 ∪ E

(3)
3

))
Hp

(
P

(3)
3 ∩ P

(3)
4 , E

(3)
3 ∩ E

(3)
4

)
Hp

(
pf

(
P

(3)
4 ∪ P

(4)
4

)
, pf

(
E

(3)
4 ∪ E

(4)
4

))

...

Hp

(
pf

(
P

(n−2)
n−1 ∪ P

(n−1)
n−1

)
, pf

(
E

(n−2)
n−1 ∪ E

(n−1)
n−1

))
Hp

(
P

(n−1)
n−1 ∩ P (n−1)

n , E
(n−1)
n−1 ∩ E(n−1)

n

)
Hp

(
P (n−1)

n , E(n−1)
n

)
.

(4.5)

which can immediately be combined into a single persistence module.

This approach is not without its disadvantages, however. Namely, if (P, E) and (P ′, E ′)

are index pairs for S in N and N ′, it requires that (P, E) and (P ′, E ′) are strong index pairs

and that S is isolated by N ∪N ′. Fortunately, the push forward approach to computing an

index pair in N gives a strong index pair.

Theorem 4.16. Let S be an isolated invariant set where N is an isolating neighborhood for

S. The pair (pf (cl (S)) , pf (mo (S))) is a strong index pair in N for S.

Proof. We note that by Theorem  4.15 , the pair (pf (cl (S)) , pf (mo (S))) is an index pair for

S in N . Hence, it is sufficient to show that the index pair is strong. Note that by definition,

for all σ ∈ mo(S), there exists a τ ∈ S such that σ is a face of τ . Hence, σ ∈ FV(τ). Note

that pf(mo(S)) is precisely the set of simplices σ′ for which there exists a path originating

in mo(S) and terminating at σ′, so it is immediate that there is a path originating in S and

terminating at σ. Hence, the pair (pf (cl (S)) , pf (mo (S))) is a strong index pair.

57



Our enlarging scheme given in Algorithm  2 does not affect the strongness of an index

pair.

Theorem 4.17. Let R be the output of applying Algorithm  2 to the strong index pair (P, E)

in N for S with some parameter δ. The pair (P, E \R) is a strong index pair for S in N .

Proof. Theorem  4.12 gives that (P, E \R) is an index pair for S in N , so it is sufficient to

show that such an index pair is strong. Note that P does not change, but the strongness

of index pairs only requires paths to be in P . Since all paths in (P, E) are also paths in

(P, E \R), it follows that (P, E \R) is a strong index pair in N .

These theorems give us a canonical scheme for choosing invariant sets from a sequence

of multivector fields and then computing the barcode of the persistence module given in

Equation (  4.5 ). We give our exact scheme in Algorithm  3 . Note that we assume that when

we let Si ← InvVi(Ni−1), we are assuming that Si is Vi-compatible. If it is not, we can always

intersect each multivector in Vi with N , but this will be handled implicitly by the algorithm.

The astute reader will notice an important detail about Algorithm  3 . Namely, the find

function is parameterized by a nonnegative integer δ, and the function has not yet been

defined. In particular, said function must output a closed Ni ⊇ Si such that Si is isolated by

Ni−1∪Ni. An obvious choice is to let Ni := Ni−1, but such an approach does not allow one to

capture essential solutions that “move” outisde of Ni−1 = Ni as the multivector fields change.

We give a nontrivial find function in the next subsection that can be used to capture such

changes in an essential solution.

4.2.2 Finding Isolating Neighborhoods

Given an invariant set S isolated by N with respect to V , we now propose a method to

find a closed, nontrivial N ′ ⊆ K such that N ∪ N ′ isolates S. Our method relies heavily

on the concept of δ-collar introduced in Section  5.1 . In fact, we will let N ′ = Cδ(S) \ R

such that N ∪N ′ isolates S. Hence, it is sufficient to devise an algorithm to find Cδ(S) \R.

Before we give and prove the correctness of the algorithm, we briefly introduce the notion

of the push backward of some set S in N , denoted pbN(S). We let pbN(S) = {x ∈ N | ∃ ρ :
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Input: Sequence of multivector fields V1,V2, . . . ,Vn, closed set N0 ⊂ K, δ ∈ Z.
Output: Barcodes corresponding to persistence of Conley Index
i← 1
while i <= n do

Si ← InvVi(Ni−1)(
P ′

i,1, E ′
i,1

)
←

(
pfNi−1 (cl (Si)) , pfNi−1 (mo (Si))

)
Ri,1 ← findR(Si, P ′

i,1, E ′
i,1,V , δ)(

P
(1)
i , E

(1)
i

)
←

(
P ′

i,1, E ′
i,1 \Ri,1

)
Ni ← find(Si, Ni−1,V , δ)(
P ′

i,2, E ′
i,2

)
←

(
pfNi (cl (Si)) , pfNi (mo (Si))

)
Ri,2 ← findR(Si, P ′

i,2, E ′
i,2,V , δ)(

P
(2)
i , E

(2)
i

)
←

(
P ′

i,2, E ′
i,2 \Ri,2

)
if i = 1 then

(Pi, Ei)←
(
P

(2)
i , E

(2)
i

)
else if i = n then

(Pi, Ei)←
(
P

(1)
i , E

(1)
i

)
else

(Pi, Ei)←
(
pfNi−1∪Ni

(
P

(1)
i ∪ P

(2)
i

)
, pfNi−1∪Ni

(
E

(1)
i ∪ E

(2)
i

))
end
i← i + 1

end
return
zigzagPers

(
(P1, E1) ⊇

(
P

(2)
1 ∩ P

(1)
2 , E

(2)
1 ∩ E

(1)
2

)
⊆ (P2, E2) ⊇ . . . ⊆ (Pn, En)

)
Algorithm 3: Scheme for computing the persistence of the Conley Index, variable N
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Z[a,b] → N, ρ(a) = x, ρ(b) ∈ S}. Essentially, the push backward of S in N is the set of

simplices σ ∈ N for which there exists a path in N from σ to S.

Input: Invariant set S isolated by N under V , δ ∈ Z
Output: Closed set N ′ ⊇ S such that N ∪N ′ isolates S under V
V ← new stack()
R← new set()
pb← pbN(S)
foreach σ ∈ Cδ(S) ∪N do

setUnvisited(σ)
end
foreach σ ∈ S do

adj← cl(σ) ∪ [v]V
foreach τ ∈ adj do

if τ ̸∈ S and τ ∈ Cδ(S) ∪N then
push(V, τ)

end
end

end
while size(V ) > 0 do

v ← pop(V )
if !hasBeenVisited(v) then

setVisited(v)
if (cl (v) ∪ [v]V) ∩ pb ̸= ∅ then

add(R, v)
cf ← cofaces(v)
addAll(R, cf)

else
foreach σ ∈ (cl (v) ∪ [σ]V) ∩ (Cδ(S) ∪N) do

push(V, σ)
end

end
end

end
return Cδ(S) \R

Algorithm 4: find(S, N,V , δ)

We now prove that N ∪ (Cδ(S)) \R isolates S. Note that since S ⊆ Cδ(S) \R, this also

implies that Cδ(S) \R isolates S.
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Theorem 4.18. Let S denote an invariant set isolated by N ⊆ K under V. If Cδ(S) \R is

the output of Algorithm  4 on inputs S, N,V , δ, then the closed set N ∪ (Cδ(S) \R) isolates

S.

Proof. For a contradiction, assume that there exists a path ρ : Z[a,b] → N ∪ (Cδ(S) \R) so

that ρ(a), ρ(b) ∈ S where there is an i satisfying a < i < b with ρ(i) ̸∈ S. Note that since N

isolates S, if N ∪ Cδ(S) \ R does not isolate S, then there must exist a first k ∈ Z[a,b] such

that ρ(k) ∈ Cδ(S) \N and FV(ρ(k)) ∩ pbN(S) ̸= ∅. If this were not the case, then N would

not isolate S. Without loss of generality, we assume that for all a < j < k, we have that

ρ(j) ̸∈ S. Note that for all j ∈ Z[a+1,k−1], when ρ(j) is removed from the stack V , if ρ(j + 1)

has not been visited, then ρ(j + 1) is added to the stack. Hence, this implies that if any ρ(j)

is visited, then ρ(k) will be added to R. If this were not the case, there would exist some

ρ(j) such that when ρ(j) was removed from the stack, ρ(j + 1) was not visited and was not

added to the stack. This implies that FV(ρ(j)) ∩ pbN(S) ̸= ∅, which contradicts ρ(k) being

the first such simplex in the path.

Hence, since ρ(a + 1) is added to the stack, it follows that ρ(k) is added to R, which

implies that ρ
(
Z[a,b]

)
̸⊂ N ∪ (Cδ(S) \R). Note too that N ∪ Cδ(S) \ R must be closed, as

if there is a σ ∈ N such that ρ(k) ≤ σ, then ρ(k) ∈ N because N is closed, a contradiction.

But when ρ(k) is removed from Cδ(S), any of its cofaces which are in Cδ(S) are also removed.

Hence, N is closed, Cδ(S) \R is closed, so their union must be closed.

Hence, we use Algorithm  4 as the find function in our scheme given in Algorithm  3 . We

give an example of our implementation of Algorithm  3 using the find function in Figure

 4.12 .
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Figure 4.12. Three different index pairs generated from our scheme in Al-
gorithm  3 . The isolating neighborhood is in blue, E is in red, and P \ E is
in yellow. Note how the isolating neighborhood changes by defining a collar
around the invariant sets (which are exactly equal to P \E). Between the left
and middle multivector fields, the periodic attractor partially leaves K, so the
maximal invariant set in N is reduced to just a triangle. Hence, the size of N
drastically shrinks between the middle and right multivector fields.
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5. PERSISTENCE OF CONLEY-MORSE GRAPHS

The previous chapter considered the problem of computing the persistence of the Conley

index across a changing sequence of multivector fields. In [ 33 ], the authors use zigzag per-

sistence [ 25 ] to capture the changing structure of Morse sets in a Morse decomposition.

Unfortunately, the information given by only considering Morse sets or only considering the

Conley index is incomplete. Given an isolated invariant set S, there may be multiple Morse

sets within S, each of which is associated with a Conley index. This information is cap-

tured in a Conley-Morse graph, which includes a vertex for each Morse set for a given Morse

decomposition and the Conley index of the given Morse set. The Conley-Morse graph is a

much more precise summary of the behavior of a combinatorial dynamical system than the

Morse sets or Conley index alone. In this chapter, we use persistence to capture the changing

Conley-Morse graph of a sequence of multivector fields with a specified Morse decomposi-

tion. Our method tracks changes in combinatorial dynamical systems at a much finer level

of detail than the methods in [ 33 ] and the previous chapter. Figure  5.1 is an example of a

changing sequence of multivector fields, and Figure  5.3 shows the changing Conley-Morse

graphs that correspond to these dynamical systems. Figure  5.2 depicts how the approach

in the previous chapter captures the changing behavior of combinatorial dynamical systems.

In contrast, Figure  5.5 depicts part of the approach in this chapter, which summarizes the

changing Conley index across a select set of sequences of Morse sets, shown in Figure  5.4 .

By inspecting the barcodes in Figure  5.2 and  5.5 , it is easy to see that this chapter presents

a much more detailed representation of the changing behavior of combinatorial dynamical

systems than the approach in the previous chapter.

This chapter is based on [ 19 ], and it quotes passages of [ 19 ] verbatim.

5.1 Conley-Morse Filtrations

We now move to develop a method to compute a set of filtrations for a sequence of

Conley-Morse graphs. These filtrations need to capture key features of the sequence: how the

structure of the Conley-Morse graphs changes throughout the sequence, and how the Conley

index changes at individual vertices; see Figures  5.3 ,  5.4 , and  5.5 . Formally, we assume
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Figure 5.1. Three multivector fields. On the left, a yellow repelling fixed
point is surrounded by a blue periodic attractor. In the middle, the repelling
fixed point has split into a yellow periodic repeller and a blue attracting fixed
point. On the right, the periodic repeller has collided with the periodic attrac-
tor to form a red semistable limit cycle (a semistable limit cycle is a limit cycle
that is stable on one side and unstable on the other). In this example, all three
multivector fields are significantly different from one another. In computing
persistence, we will generally assume that there are several intermediate mul-
tivector fields, representing a gradual transition between the multivector fields
shown here.

Dimension: 0

Figure 5.2. This figure illustrates the approach from [ 18 ], applied to cap-
turing the changing structure of the multivector fields in Figure  5.1 . The
approach in [ 18 ] requires selecting a single isolated invariant set for each mul-
tivector field, with the canonical choice being the maximal isolated invariant
set. In each multivector field, the maximal isolated invariant set is an attrac-
tor, highlighted in blue. Despite each multivector field giving rise to different
dynamical systems, the maximal isolated invariant set is the same in each
multivector field. Hence, computing the persistence using techniques from [ 18 ]
gives a single, 0-dimensional bar, which we depict at the bottom in white.
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Figure 5.3. The Conley-Morse graph (Definition  3.12 ) for the Morse decom-
positions (Definition  3.10 ) in Figure  5.1 , where the top vertices represent the
fixed points. The colors of the vertices match the colors of the Morse sets with
which they are drawn in Figure  5.1 . Each label captures information about
the Conley indices of the Morse sets.

Figure 5.4. We extract a set of zigzag filtrations to capture the changing
Conley indices in a sequence of Conley-Morse graphs. In this case, we extract
three particular zigzag filtrations, which correspond to the sequences of Morse
sets boxed in rectangles.
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Dimension: 0
Dimension: 1

Dimension: 2
Dimension: 1

Dimension: 2
Dimension: 0

Figure 5.5. Illustrating our approach for computing the changing structure
of the multivector fields in Figure  5.1 . By extracting a specific set of zigzag
filtrations (Section  5.1 ), we can compute a set of barcodes which represent the
changing Conley indices of the Morse sets (Section  5.3 ). Each row represents
an extracted filtration, and the barcode for the filtration is depicted below
it. White bars are 0-dimensional, light gray bars are 1-dimensional, and dark
gray bars are 2-dimensional. In addition, we extract barcodes representing the
changing structure of the Conley-Morse graph (not pictured). We collate all
of these bars into a single barcode by removing redundancy in Section  5.3 .
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that we are given a sequence of Conley-Morse graphs {Gi}n
i=1. Each Conley-Morse graph

corresponds to a Morse decomposition {Mi}n
i=1 of an isolated invariant set {Si}n

i=1 under a

multivector field {Vi}n
i=1. We assume that each Si is in some fixed isolating neighborhood

N . We also assume that for each Mj ∈ Mi, we have an associated index pair (Pj, Ej).

This may seem particularly daunting, in that our approach requires a specified isolated

invariant set and Morse decomposition for every multivector field. If a practitioner does

not have a particular isolated invariant set or Morse decomposition in mind, a canonical

choice is always to take the maximal invariant set Si in N under Vi and to take the minimal

Morse decomposition of Si. The minimal Morse decomposition can be easily computed

by converting a multivector field into a directed graph and computing maximal strongly

connected components. For more details, see [ 14 ]. In addition, we require that each Morse

set M is associated with a particular index pair (P, E) in N . A canonical choice of an index

pair is to use Theorem  4.9 and let P := pf(cl(M)) and E := pf(mo(M)), but this is in general

not resilient to noise.

In this section, we extract Conley index zigzag filtrations from a sequence of Conley-Morse

graphs G1, G2, . . . , Gm, corresponding to Morse decompositionsM1,M2, . . . ,Mm. That is,

we extract filtrations which represent the changing Conley index at the vertices of the Conley-

Morse graph. We call these Conley-Morse filtrations, and we postpone discussion of graph

filtrations, which capture the changing structure of the Conley-Morse graph itself, to the next

section. A first approach to extracting Conley-Morse filtrations is to consider all possible

zigzag filtrations via vertex sequences (three such sequences are shown in Figure  5.4 ). Each

vertex corresponds to an index pair, so for each sequence of vertices taken from consecutive

Conley-Morse graphs, we can use Theorem  4.4 to get a relative zigzag filtration. If |Gi| = n

for all i, then there are Θ(nm) possible zigzag filtrations. This is clearly intractable for mid-to-

large values of m and n. We aim to reduce the number of filtrations while still capturing the

changing Conley index. Our key observation is that if (P1, E1) and (P2, E2) are index pairs,

then clearly a homology class persists from (P1, E1) to (P2, E2) only if (P1\E1)∩(P2\E2) ̸= ∅,

because an empty intersection leaves no room for the class to be present in both spaces under

inclusions.
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Consider a sequence of index pairs in N , denoted {(Pi, Ei)}b
i=a, where each (Pi, Ei) is

an index pair for a Morse set Mi ∈ Mi. Such a sequence is feasible if for all a ≤ i < b,

(Pi \ Ei) ∩ (Pi+1 \ Ei+1) ̸= ∅. A feasible sequence of index pairs is a maximal sequence

if there does not exist a (Pa−1, Ea−1) such that (Pa−1 \ Ea−1) ∩ (Pa \ Ea) ̸= ∅, and there

does not exist a (Pb+1, Eb+1) such that (Pb \ Eb) ∩ (Pb+1 \ Eb+1) ̸= ∅. Hence, each feasible

sequence is contained in a maximal sequence. Each maximal sequence gives a relative zigzag

filtration by intersecting consecutive index pairs (recall Theorem  4.4 ). We call a relative

zigzag filtration that is given by a maximal sequence a Conley-Morse filtration, and we use

the set of Conley-Morse filtrations to compute the changing Conley indices at the vertices

of a sequence of Conley-Morse graphs.

Algorithm  5 is our formal approach for computing the set of Conley-Morse filtrations.

For completeness, we prove that it successfully computes the set of Conley-Morse filtrations.

Proposition 5.1. Given a sequence of Conley-Morse graphs {Gi}n
i=1 corresponding to a

sequence of Morse decompositions {Mi}n
i=1 of isolated invariant sets in N , where each Mi ∈

Mi is associated with a unique index pair (P, E), Algorithm  5 outputs all Conley-Morse

filtrations.

Proof. Note that Algorithm  5 attempts to find all Conley-Morse filtrations by first finding

all maximal sequences. Hence, it is sufficient to show that it correctly finds all maximal

sequences, because it is trivial to convert these into Conley-Morse filtrations. Note that

Algorithm  5 constructs sequences by incrementally adding index pairs to already-started

sequences. By inspection, we note that the algorithm only constructs a new sequence with

the index pair (P, E) from a Morse set in the Conley-Morse graph Gi if there does not exist an

index pair (P ′, E ′) for a Morse set in the Conley-Morse graph Gi−1 where (P ′\E ′)∩(P \E) ̸=

∅. Similarly, the algorithm only ceases to consider a sequence ending with the index pair

(P, E) for a Morse set in the Conley-Morse graph Gi if there does not exist an index pair

(P ′, E ′) for a Morse set in the Conley-Morse graph Gi+1 where (P \ E) ∩ (P ′ \ E ′) ̸= ∅. In

addition, note that the algorithm only appends the index pair (P, E) to a sequence ending in

(P ′, E ′) if (P \E)∩ (P ′ \E ′) ̸= ∅. Hence, each sequence that is constructed by the algorithm

is a maximal sequence.
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Input: Sequence of Conley-Morse graphs Gi corresponding to Morse
decompositions Mi for isolated invariant sets in N . Each Mi ∈Mi is
associated with a unique index pair (P, E).

Output: Set of all Conley-Morse filtrations for {Gi}n
i=1

alive seqs← new set()
all seqs← new set()
for i ∈ {1, . . . , n} do

to remove← new set()
still alive← new set()
for seq ∈ alive seqs do

(P ′, E ′)← LastIndexPair(seq)
for M ∈Mi do

(P, E)← IndexPair(M)
if (P \ E) ∩ (P ′ \ E ′) ̸= ∅ then

new seq ← copy(seq)
append(new seq, (P, E))
add(still alive, new seq)
IsInSequence(M)← True
add(to remove, seq)

end
end

end
dead seqs← alive seqs \ to remove
alive seqs← still alive
all seqs← all seqs ∪ dead seqs
for M ∈Mi do

if IsInSequence(M) = False then
seq ← new Sequence()
append(seq, IndexPair(M))
add(alive seqs, seq)

end
end

end
all seqs← all seqs ∪ alive seqs
f iltrations← ConvertToFiltrations(all seqs)
return f iltrations

Algorithm 5: FindConleyMorseFiltrations({Gi}n
i=1, {Mi}n

i=1)
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It remains to be shown that the algorithm constructs all possible maximal sequences.

Assume there existed some maximal sequence {(Pi, Ei)}b
i=a that was not included in all seqs

before they are converted to filtrations. In such a case, there must exist some (Pk, Ek) which

was not appended to the sequence {(Pi, Ei)}k−1
i=a . But by inspection, we see that (Pk, Ek) is

appended to all such sequences so long as (Pk \Ek)∩ (Pk−1 \Ek−1) ̸= ∅. Hence, this cannot

be the case, which implies that {(Pi, Ei)}b
i=a is included in all seqs.

The set of Conley-Morse filtrations and the associated barcodes for the Morse decompo-

sitions in Figure  5.1 are shown in Figure  5.5 .

5.2 Graph Filtrations

Now, we show how to find a zigzag filtration that corresponds to the changing structure

of the Conley-Morse graph called a graph filtration. We begin by reviewing some properties

of multivector fields. A multivector field V2 is inscribed in V1, denoted V2 ⊑ V1, if for each

multivector V1 ∈ V1, there exists a multivector V2 ∈ V2 where V1 ⊆ V2.

Proposition 5.2 (See e.g. [ 13 ], [ 33 ]). Let V1 and V2 denote multivector fields over K, and

let V2 ⊑ V1. Then for all σ ∈ K, FV2(σ) ⊆ FV1(σ).

Proposition  5.3 follows directly from Proposition  5.2 .

Proposition 5.3. Let V1 and V2 denote multivector fields over K, and let V2 ⊑ V1. If there

exists a path ρ in K under V2 from σ0 to σn, then ρ is a path under V1.

From these two results, we deduce an important property of Morse sets.

Proposition 5.4. Let M1 denote an isolated invariant set in N under V1 and M2 denote a

minimal Morse set in N under V2, where V2 ⊑ V1. If M1 ∩M2 ̸= ∅, then M2 ⊆M1.

Proof. Consider σ ∈ M1 ∩M2, and τ ∈ M2. By Proposition  3.11 , there exists a path p in

N under V2 from σ to τ and a path q in N under V2 from τ to σ. By concatenating the

paths, we get a new path r in N under V2 that starts and ends at σ ∈ M1. By Proposition

 5.3 , r is a path under V2. But, M1 is isolated by N , so im(r) ⊆ M1. Hence, τ ∈ M1, so

M2 ⊆M1.
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Proposition  5.4 is the starting point for constructing a zigzag filtration. For tractability,

we focus on two Conley-Morse graphs G1 and G2, which correspond to Morse decompositions

M1 and M2 for the isolated invariant sets S1 and S2 in N under V1 and V2. It is natural

to consider the Conley-Morse graph corresponding to the minimal Morse decomposition of

Inv(N) under V1 ∩V2. We call this graph G1,2. There is a partial function ι1 : V (G1,2) →

V (G1), where ι1(M1,2) = M1 if M1,2 ⊆ M1 (here, we use M1 and M1,2 to denote both

a Morse set and its corresponding vertex in the Conley-Morse graph). There is a similar

partial function ι2 : V (G1,2) → V (G2). Note that ι1 and ι2 are not edge preserving. If

there exists a directed edge from vertex M1,2 ∈ G1,2 to vertex M ′
1,2 ∈ G1,2, then there is a

connection from M1,2 to M ′
1,2. By Proposition  5.3 , there must exist a path from ι1(M1,2) to

ι1(M ′
1,2) (likewise for ι2(M1,2) to ι2(M ′

1,2)). But this path may intersect some other invariant

set M1 ∈ M1, so there could exist an edge from M1,2 to M ′
1,2, but no edge from ι1(M1,2) to

ι1(M ′
1,2). This phenomenon occurs in Figure  5.6 . Hence, we need a slightly modified notion

of a Conley-Morse graph under V1 ∩V2.

Figure 5.6. If the multivector field on the left is V1 and the one on the right is
V2, then the multivector field in the middle is V1 ∩V2. The maximal invariant
set is the entire rectangle in all three multivector fields, and the Morse sets
in the minimal Morse decomposition for this isolated invariant set are colored.
In the middle, the Morse sets in gray, green, magenta, and pink are spurious
because they are not contained in a Morse set on the right. Also in the middle,
there is a connection from the golden triangle to the magenta vertex. But
on the left, the connection passes through the turquoise triangle. Hence, the
golden triangle-to-magenta vertex connection is not relevant.

Definition 5.5 (Relevant and Spurious). Let M1,M2 denote Morse decompositions of iso-

lated invariant sets S1,S2 in N under V1,V2, and letM1,2 denote the minimal Morse decom-

position of S1,2 = Inv(N) under V1 ∩V2. A Morse set M1,2 ∈M1,2 is relevant if there exists

an M1 ∈M1 and an M2 ∈M2 where M1,2 ⊆M1 ∩M2. If not, then M1,2 is spurious.
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Definition 5.6 (Relevant Connection). LetM1,M2 denote Morse decompositions of isolated

invariant sets S1,S2 in N under V1,V2, and letM1,2 denote the minimal Morse decomposition

of Inv(N) under V1 ∩V2. Also, let ρ : Z∩ [a, b]→ N denote a connection from M1,2 ∈M1,2

to M ′
1,2 ∈ M1,2 under V1,2 where M1,2 and M ′

1,2 are relevant Morse sets. If ρ satisfies both

of the following:

1. If i ∈ Z ∩ [a, b] satisfies ρ(i) ∈M1 ∈M1, then M1 = ι1(M1,2) or M1 = ι1(M ′
1,2).

2. If i ∈ Z ∩ [a, b] satisfies ρ(i) ∈M2 ∈M2, then M2 = ι2(M1,2) or M2 = ι2(M ′
1,2).

then ρ is a relevant connection.

We use the notions of relevant Morse sets to define the relevant Conley-Morse graph.

Definition 5.7 (Relevant Conley-Morse Graph). LetM1,M2 denote Morse decompositions

of isolated invariant sets S1,S2 in N under V1,V2, and let M1,2 denote the minimal Morse

decomposition of S1,2 = Inv(N) under V1 ∩V2. The relevant Conley-Morse graph is the graph

G1,2 given by including a vertex in V (G1,2) for each relevant Morse set inM1,2, and including

a directed edge from the vertex corresponding to M1,2 to the vertex corresponding to M ′
1,2 if

there is a relevant connection from M1,2 to M ′
1,2.

An example of these concepts can be seen in Figure  5.7 . The top three graphs in Figure

 5.7 are the Conley-Morse graphs, omitting the Pointcaré polynomials, for the minimal Morse

decompositions in Figure  5.6 . If the top left and top right Conley-Morse graphs are Conley-

Morse graphs under V1 and V2, then the top center Conley-Morse graph is a Conley-Morse

graph under V1 ∩V2. The bottom left graph and bottom right graphs are the same as the

top left and top right graphs, but the bottom center graph is the relevant Conley-Morse

graph that is extracted from the top center graph. Each colored vertex represents the Morse

set of the same color in Figure  5.6 . Red arrows between the top center and top left or top

right graphs indicate that a Morse set represented by a vertex in the top center graph is

contained in a Morse set represented by a vertex in the top left or top right graphs. Hence,

a vertex in the top center Conley-Morse graph is only relevant if there is a red arrow from

it to a vertex in the top left and top right graphs. Relevant connections in the top center
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graph are shown in blue. There is a connection from the golden triangle to the blue periodic

attractor by heading directly south in all three multivector fields in Figure  5.6 . Hence, this

is a relevant connection, and the edge from the golden vertex to the blue vertex is included

in the relevant Conley-Morse graph in the bottom center. There is a path from the golden

triangle to the magenta vertex in both the left and the center vector fields in Figure  5.6 ,

but in the left multivector field, the path first passes through the turquoise Morse set. So

while the path exists in both the left and middle multivector fields, it is not direct in the

left multivector field, so it is not a relevant connection. Similarly, while a connection from

the gray Morse set to the green Morse set exists in both the left and center multivector

fields, neither the gray nor the green Morse sets are contained in a Morse set in the right

multivector field, so this is not a relevant connection. Green edges represent paths that are

in both the top center and top left graphs, but there is not a corresponding path in the top

right graph.

For the remainder of the paper, whenever we refer to a graph Gi,i+1 for some i, we are

referring to the relevant Conley-Morse graph under Vi ∩Vi+1. Note that we compute relevant

Conley-Morse graphs by taking subgraphs of a Conley-Morse graph. Hence, ι1 and ι2 restrict

to functions ι1 : G1,2 → G1 and ι2 : G1,2 → G2 (they are no longer partial).

Proposition 5.8. Let G1 and G2 denote the Conley-Morse graphs for Morse decompositions

of the isolated invariant sets S1,S2 in N under V1,V2, and let G1,2 denote the relevant Conley-

Morse graph for the minimal Morse decomposition of the maximal invariant set in N under

V1 ∩V2. If there is a directed edge from M1,2 to M ′
1,2 in G1,2, then either ιk(M1,2) = ιk(M ′

1,2)

or there exists a directed edge from ιk(M1,2) to ιk(M ′
1,2) for k ∈ {1, 2}.

Proof. If there exists a directed edge from M1,2 to M ′
1,2, then there exists a relevant connec-

tion from M1,2 to M ′
1,2 under V1 ∩V2. We denote this connections as ρ : [0, n] ∩ Z → N .

By Proposition  5.3 , ρ must also be a path under V1 and V2. By the definition of rele-

vant connection, if ρ(i) ∈ M ∈ M1, then ι1(M1,2) = M or ι1(M ′
1,2) = M . Hence, either

ι1(M1,2) = ι1(M ′
1,2), or as ρ is a direct connection from ι1(M1,2) to ι1(M ′

1,2), there exists a

directed edge from the former to the later. The same argument holds for ι2.
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Figure 5.7. On the top row, we depict the Conley-Morse graphs (absent
the Pointcaré polynomials) for the Morse decompositions in Figure  5.6 . The
bottom row depicts the Conley-Morse graphs for the left and right Morse de-
compositions in Figure  5.6 , but it instead includes the relevant Conley-Morse
graph in the center.
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Now, we have two Conley-Morse graphs G1,G2 for isolated invariant sets in N under

V1,V2 and the relevant Conley-Morse graph G1,2 for the maximal invariant set in N under

V1 ∩V2. We are interested in how the structure of these graphs “persist.” To do this, we

will treat the graphs as simplicial complexes by ignoring the orientation on edges. The maps

ι1,ι2 induce simplicial maps on these complexes.

Proposition 5.9. Let f1 : G1,2 → G1 and f2 : G1,2 → G2 denote the maps induced by ι1,

ι2 where f1({u, v}) = {ι1(u), ι1(v)} and f2({u, v}) = {ι2(u), ι2(v)}. The maps f1 and f2 are

simplicial maps.

Proof. The maps f1 and f2 bring vertices to vertices, so it is sufficient to show that the image

of an edge is either an edge or a vertex. If σ ∈ G1,2 is an edge, then it corresponds to an

edge e = (u, v) ∈ G1,2. Such edges correspond to relevant paths from the vertex u to the

vertex v. Thus, either ι1(u) = ι1(v), which implies that f1({u, v}) = ι1(u), or ι1(u) ̸= ι1(v),

which implies that there is a connection from ι1(u) to ι1(v). Hence, there exists an edge

{ι1(u), ι1(v)} ∈ G1. Thus, f1 is both a map and a simplicial map. The argument for f2

follows analogously.

Given a sequence of n Conley-Morse graphs and n− 1 relevant Conley-Morse graphs, we

can use Proposition  5.9 to obtain a sequence of complexes connected by simplicial maps. We

show this sequence in Equation  5.1 :

G1 ← G1,2 → G2 ← G2,3 → · · · ← Gn−1,n → Gn. (5.1)

Hence, we have a zigzag filtration that captures the changing structure of a sequence of

Conley-Morse graphs. We can compute the barcode for zigzag filtrations where the maps

are simplicial by using an algorithm in [ 34 ].

5.3 Barcodes for Conley-Morse Graphs

In Section  5.1 we showed how to find Conley-Morse filtrations, which represent the chang-

ing Conley indices at the vertices of a Conley-Morse graph. Similarly, in Section  5.2 , we

showed how to extract a graph filtration, which represents the changing graph structure
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of the Conley-Morse graph. By taking all barcodes for these filtrations together, we can

straightforwardly obtain a “barcode” for a sequence of Conley-Morse graphs. However, the

barcode obtained from Conely-Morse filtrations may contain a significant amount of re-

dundancy. Recall that we compute the changing Conley index by considering all possible

Conley-Morse filtrations given by maximal sequences {(Pi, Ei)}k
i=j where (Pi, Ei) is an index

pair in N for a Morse set in the ith Conley-Morse graph and (Pi \Ei)∩ (Pi+1 \Ei+1) ̸= ∅. As

a result of this construction, a subfiltration given by the sequence {(Pi, Ei)}k
i=j may occur in

several filtrations.

Duplication of subfiltrations can lead to a duplication of bars. In Figure  5.8 , consider the

middle and bottom filtrations. The middle filtration shows a repelling fixed point turning

into a periodic repeller which in turn merges with a periodic attractor to become a semistable

limit cycle. In the bottom filtration, a repelling fixed point becomes an attracting fixed point.

The 2-dimensional barcode for the middle filtration is given by a single bar, which represents

the 2-dimensional homology generator for the repelling fixed point and the periodic repeller.

In contrast, the 2-dimensional bar code for the bottom filtration represents only the lifetime

of the repelling fixed point. This is redundant: the 2-dimensional bar for the middle filtration

already captures the homology generator for the repelling fixed point in the bottom filtration.

One bar is a subset of the other, and they capture the same generator.

In devising a barcode that captures a changing Conley-Morse graph, it is best that

we eliminate these redundant bars. In this section, we use the notation Ia,b to denote

an interval I such that cl(I) = [a, b]. That is, Ia,b can denote any of [a, b], [a, b), (a, b],

or (a, b). We also consider subfiltrations. If F denotes the zigzag filtration (P1, E1) ⊇

(P1 ∩P2, E1 ∩E2) ⊆ (P2, E2) ⊇ . . ., then we use the notation Fa,b to denote the subfiltration

(Pa, Ea) ⊇ (Pa ∩ Pa+1, Ea ∩ Ea+1) ⊆ (Pa+1, Ea+1) ⊇ . . . ⊆ (Pb, Eb).

Definition 5.10 (Redundant). Let Z denote the set of all maximal relative zigzag filtrations

for a sequence of Conley-Morse graphs, and let Ia,b denote a k-dimensional bar extracted from

F ∈ Z. If there exists a filtration G ∈ Z where Ga,b = Fa,b, then the bar Ia,b is redundant.

Proposition 5.11. Let Z denote the set of maximal relative zigzag filtrations for a sequence

of Conley-Morse graphs. If Ia,b is a redundant k-dimensional bar in the barcode for F ∈ Z,
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Dimension: 0
Dimension: 1

Dimension: 1
Dimension: 2

Dimension: 2
Dimension: 0

Figure 5.8. All three maximal sequences extracted from the changing Conley-
Morse graph for the Morse decompositions in Figure  5.1 . The isolating neigh-
borhood is given by yellow, red, and blue simplices, while if (P, E) is an index
pair, the simplices in P \ E are in yellow and the simplices in E are in red.
The top three images show a periodic attractor that becomes a semistable limit
cycle. The middle three images show a repelling fixed point that becomes a
periodic repeller and then becomes a semistable limit cycle, and the bottom
three images show a repelling fixed point that transitions into an attracting
fixed point. Beneath each maximal sequence, we include the barcode from the
zigzag filtration that we get by applying Theorem  4.4 to the maximal sequence
to obtain a Conley-Morse filtration. White bars are 0-dimensional, light gray
bars are 1-dimensional, and dark gray bars are 2-dimensional.
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Dimension: 0

Dimension: 0
Dimension: 0

Dimension: 1
Dimension: 1

Dimension: 2

Figure 5.9. The barcode corresponding to the sequence of combinatorial
dynamical systems in Figure  5.1 . The white bar above the dotted line is 0-
dimensional, and it represents the connected component in the Conley-Morse
graph. The bars below the dotted line are obtained by extracting the barcodes
from the Conley-Morse filtrations in Figure  5.8 and removing redundant bars.
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then there exists a filtration G ∈ Z such that the k-dimensional barcode for G contains a bar

Ic,d where Ia,b ⊆ Ic,d.

Proof. By restricting the k-dimensional barcode for G and F to the interval [a, b], we get

two sets of bars for the zigzag filtration Fa,b = Ga,b. The barcode for Fa,b = Ga,b is unique

(see [  25 ]). Hence, there must be a bar Ic,d in the barcode for G where Ic,d ∩ [a, b] = Ia,b.

If Z is the set of zigzag filtrations for the Conley-Morse graph, and B denotes the set of

bars extracted from filtrations in Z, then redundancy gives a partial order on B. In particular,

Ia,b ≤ Ic,d if Ia,b ⊆ Ic,d. Together with the bars extracted from the graph structure filtration

in Section  5.2 , the set of maximal bars under ≤ are taken to be the barcode for the changing

Conley-Morse graph.

Input: List of filtrations F1, . . . ,Fn, and the corresponding set of k-dimensional
barcodes B(F1), . . . ,B(Fn)

Output: Set of bars B
B ← new set()
for i ∈ 1, . . . , n do
F ← Fi
for Ia,b ∈ B(Fi) do

redundant← False
for j ∈ 1 . . . n do

if j ̸= i then
G ← Gj
if !forbidden(Ga,b) and Fa,b = Ga,b then

redundant← True
forbidden(Fa,b)← True

end
end

end
if redundant = False then

add(B, Ia,b)
else
B(Fi)← B(Fi) \ {Ia,b}

end
end

end
return B

Algorithm 6: EliminateRedundancies({Fi}n
i=1, {B(Fi)}n

i=1)
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Proposition 5.12. Algorithm  6 outputs the set of maximal bars.

Proof. Consider the set of maximal bars, denoted BM . We consider two cases. In the first,

the maximal bar Ba,b corresponds to a zigzag subfiltration in exactly one zigzag filtration F .

In such a case, there is no other filtration G where Fa,b = Ga,b, so when considering Ba,b the

redundant flag will not be True and hence Ba,b will be added to B. Now, assume that the

maximal bar Ba,b corresponds to the same subfiltration in Fi1 , . . . , Fik , where i1 ≤ . . . ≤ ik.

For each filtration Fij , ij < ik, we claim that Ba,b will be considered redundant. Clearly

this is the case, because Ba,b corresponds to a subfiltration Fik,a,b, and as Fik has not been

processed at the time that Fij is processed for ij < ik, it follows that when each is processed

and Ba,b is considered, the redundant flag will be set to True and Ba,b will not be added to B.

However, when Fik is considered, all of the previous Fij,a,b will have been marked forbidden,

and Ba,b will be added to to B. Thus, Ba,b will be added exactly once.

Hence, all maximal bars are included in B. Note that every non-maximal bar Ba,b will

be marked redundant, because if Ba,b is non-maximal then it corresponds to some filtration

F and there must exist some maximal bar B′
c,d corresponding to the filtration G where

Ga,b = Fa,b. Since B′
c,d is maximal, we have already established that at least one copy of it

will not be marked redundant, so Fa,b can be compared against Ga,b. Hence, Ba,b will be

marked redundant.
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6. TRACKING ISOLATED INVARIANT SETS WITH

CONTINUATION

In the previous two chapters, we have seen how one can use persistence to summarize how

salient features of combinatorial dynamical systems change across multivector fields. We

have also introduced an elementary tracking algorithm that automatically selects a new

isolated invariant set from a seed invariant set. However, this algorithm is quite primitive.

The selected isolated invariant set is only guaranteed to share an isolating neighborhood

with the initial isolated invariant set. The Conley index could vary wildly. In this section,

we introduce a more sophisticated tracking protocol to capture changes to a seed isolated

invariant set.

To do this, we place the notion of the continuation of an isolated invariant set in the

combinatorial setting. In the classical setting, Conley showed that the Conley index of an

isolated invariant set can not change under arbitrarily small perturbations [ 30 ]. Intuitively,

this means that an attractor cannot change into a repeller under an arbitrarily small per-

turbation, and vice-versa. This permits one to track an isolated invariant set through the

space of dynamical systems. Ultimately, the Conley index can change, which is typically at a

bifurcation point. Once the bifurcation has occurred, it may be possible to continue tracking

an isolated invariant set, possibly with a different Conley index than before the bifurcation

point. In this chapter, we introduce the notion of small changes to a multivector field, and

we show how to track an isolated invariant set. When a bifurcation occurs in a combinatorial

dynamical system, we show how to continue tracking with continuation. This gives us two

“pieces” of continuation, and we can connect these by using persistence approaches from the

prior two chapters. This enables us to view which Conley index generators persist through

the bifurcation. Results in this section are from [  20 ], and passages are quoted verbatim.

6.1 Tracking Isolated Invariant Sets

In this section, we introduce the protocol for tracking an isolated invariant set across

multivector fields. Results in the continuous theory imply that under a sufficiently small
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perturbation, some homological features of an isolated invariant set do not change. Hence,

we require a notion of a small perturbation of a multivector field. In particular, let V and V ′

denote two multivector fields on K. If each multivector V ′ ∈ V ′ is contained in a multivector

V ∈ V , |V \ V ′| = 1, and |V ′ \ V| = 2, then V ′ is an atomic refinement of V . It is so-called

because V ′ is obtained by “splitting” exactly one multivector in V into two multivectors,

while all the other multivectors remain the same. Symmetrically, we say that V is an atomic

coarsening of V ′. More broadly, it is said that V and V ′ are atomic rearrangements of

each other. In Figures  6.1 ,  6.2 ,  6.3 ,  6.4 , and  6.5 , the two multivector fields are atomic

rearrangements of each other. In these figures, we draw the multivectors that are splitting

or merging in red.

Given an isolated invariant set S under V , and an atomic rearrangement of V denoted V ′,

we aim to find an isolated invariant set S ′ that is a minimal perturbation of S. We accomplish

this through two mechanisms: continuation and persistence. When we use continuation, or

when we attempt to continue, we check if there exists an S ′ under V ′ that is in some sense

the same as S. If there is at least one such S ′, then we choose a canonical one. This is

explained in Section  6.2 . If there is no S ′ to which we can continue, then we use persistence.

In particular, we choose a canonical isolated invariant set S ′ under V ′, and while S does not

continue to S ′, we can use zigzag persistence to observe which features of S are absorbed

by S ′. We elaborate on this scheme in Section  6.3 . To choose S ′, we require the following

results.

Proposition 6.1. [ 35 , Corollary 4.1.22] Let A be a convex and V-compatible set. Then

InvV(A) is an isolated invariant set.

Proposition 6.2. [ 35 , Proposition 4.1.21] An invariant set S is isolated if and only if it is

convex and V-compatible.

The set S is an isolated invariant set by assumption, so Proposition  6.2 implies that

S is convex and V-compatible. Thus, if S is also V ′-compatible, a natural choice is then

to use Proposition  6.1 and take S ′ := InvV ′(S). However, if S is not V ′-compatible, then

the situation is more complicated. The set S is not V ′-compatible precisely when V ′ is an

atomic coarsening of V , and the unique multivector V ∈ V ′ \ V , occasionally called the
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merged multivector, has the properties that V ∩ S ̸= ∅ and V ̸⊆ S. In such a case, we use

the notation ⟨S ∪ V ⟩V ′ to denote the intersection of all V ′-compatible and convex sets that

contain S ∪ V . The simplicial complex K is V ′-compatible and convex, so ⟨S ∪ V ⟩V ′ always

exists and S ⊊ ⟨S ∪ V ⟩V ′ . We observe that ⟨S ∪ V ⟩V ′ is V ′-compatible and convex, and

thus it is the minimal convex and V ′-compatible set that contains S. In such a case, we use

Proposition  6.1 and take S ′ := InvV ′(⟨S ∪ V ⟩V ′ ). These principles are enumerated in the

following Tracking Protocol.

Tracking Protocol

Given a nonempty isolated invariant set S under V , and an atomic rearrangement of V de-

noted V ′, use the following rules to find an isolated invariant set S ′ under V ′ that corresponds

to S.

1. Attempt to track via continuation:

(a) If V ′ is an atomic refinement of V , then take S ′ := InvV ′(S).

(b) If V ′ is an atomic coarsening of V , and the unique merged multivector V has the

property that V ⊆ S, then take S ′ := InvV ′(S).

(c) If V ′ is an atomic coarsening of V , and the unique merged multivector V has the

property that V ∩ S = ∅, then take S ′ := InvV ′(S) = S.

(d) If V ′ is an atomic coarsening of V and the unique merged multivector V satisfies

the formulae V ∩S ̸= ∅ and V ̸⊆ S, then consider A = ⟨S ∪V ⟩V ′ . If InvV(A) = S,

then take S ′ := InvV ′(A).

(e) Else, it is impossible to track via continuation.

2. If it is impossible to track via continuation, then attempt to track via persistence:

(f) If A := ⟨S ∪ V ⟩V , then take S ′ := InvV ′(A). If S and S ′ are isolated by a common

isolating neighborhood, then use the technique in Equation  6.3 to find a zigzag

filtration connecting them.
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(g) Otherwise, there is no natural choice of S ′. See Section  6.3.3 for a possible strategy.

We include an example of Step  1a in Figure  6.1 , Step  1b in Figure  6.2 , Step  1c in Figure

 6.3 , Step  1d in Figure  6.4 , and Step  2f in Figure  6.5 . Each figure depicts a multivector

field and a seed isolated invariant set on the left, and an atomic rearrangement and the

resulting isolated invariant set on the right. By iteratively applying this protocol (until

S ′ = ∅, in which case we are done), we can track how an isolated invariant set changes across

several atomic rearrangements. See Figure  6.6 and the associated barcode in Figure  6.7 . The

following proposition shows that any two multivector fields V1 and V2 can be related by a

sequence of atomic rearrangements, and hence the Tracking Protocol can be used to track

how an isolated invariant set changes across an arbitrary sequence of multivector fields.

Proposition 6.3. For each pair of multivector fields V and V ′ over K, there exists a sequence

V = V1, V2, . . . , Vn = V ′ where each each Vi is an atomic rearrangement of Vi−1 for i > 1.

Proof. Let W denote the multivector field over K where each simplex σ ∈ K is contained

in its own multivector. That is, W := {{σ} | σ ∈ K}. We will show that there exists

a sequence V = V1,V2, . . . ,Vn = W and a sequence V ′ = V ′
1,V ′

2, . . . ,V ′
m = W where each

Vi+1 (or V ′
i+1) is an atomic refinement of Vi (or V ′

i ). This immediately gives a sequence

V = V1,V2, . . . ,Vn = W = V ′
m, . . . ,V ′

1 = V ′. Note that because the reverse of an atomic

refinement is an atomic coarsening, this sequence of multivectors is a sequence of n − 1

consecutive atomic refinements followed by m− 1 atomic coarsenings.

Hence, all that is necessary is to find a sequence V = V1,V2, . . . ,Vn = W and V ′ =

V ′
1,V ′

2, . . . ,V ′
m = W . Without loss of generality, we consider the former. Consider an ar-

bitrary multivector V ∈ V where |V | > 1 (if there is no such V , then V = W and we are

done). Take a maximal element σ ∈ V (with respect to ≤), and let V1 := (V \{V })∪{{σ}}∪

{V \{σ}}. Effectively, we have partitioned the multivector V into one multivector that only

contains σ and the remainder of the multivector. If we iteratively repeat this process, then

we must arrive atW in a finite number of steps, because each step creates a new multivector

consisting of a single simplex, and multivectors are never merged. Furthermore, note that

each time we split a multivector constitutes an atomic refinement. Hence, by iterating this

84



process, we obtain a sequence V = V1,V2, . . . ,Vn =W where each multivector field is related

to its predecessor by atomic refinement. Thus, we can combine these sequences as previously

described, and we are done.

Figure 6.1. Applying Step  1a to an invariant set (yellow, left) to get a new
one (yellow, right).

Figure 6.2. Applying Step  1b to an invariant set (yellow, left) to get a new
one (yellow, right).

6.2 Tracking via Continuation

Now, we introduce continuation in the combinatorial setting, and we justify the canonicity

of the choices made in Step  1 of the Tracking Protocol. In addition, we show that if Step  1 

is used to obtain S ′ from S, then S and S ′ are related by continuation. We will require the

following two results.

Proposition 6.4. [ 14 , Proposition 5.6] Let (P, E) be an index pair under V. Then P \E is

convex and V-compatible.
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Figure 6.3. Applying Step  1c to an invariant set (yellow, left) to get a new
one (yellow, right). The merged vector is outside of the invariant set on the
left, so the invariant sets are the same.

Figure 6.4. Applying Step  1d to an invariant set (yellow, left) to get a new
one (yellow, right).

Dimension: 0
Dimension: 1

Figure 6.5. Applying Step  2f to an invariant set (yellow, left) to get a new
one (yellow, right). The associated persistence barcode is depicted below the
figures.
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(a) Initial multivector field (b) Atomic coarsening of  6.6a (c) Atomic refinement of  6.6b 

(d) Atomic refinement of  6.6c (e) Atomic coarsening of  6.6d (f) Atomic coarsening of  6.6e 

(g) Atomic refinement of  6.6f (h) Atomic coarsening of  6.6g (i) Atomic refinement of  6.6h 

Figure 6.6. Subfigure  6.6a contains an initial multivector field and a seed
isolated invariant set, which is a yellow edge. Each subsequent subfigure con-
tains a multivector field that is an atomic refinement or atomic coarsening of
the previous. The isolated invariant set that we get by iteratively applying the
Tracking Protocol is depicted in yellow. Splitting and merging multivectors
are in blue.

Dimension: 1
Dimension: 1

Figure 6.7. The barcode associated with the tracked invariant sets in Figure
 6.6 . Starting with subfigure  6.6h , we see the birth of a new 1-dimensional
homology generator.
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Proposition 6.5. If A is convex and V-compatible, then (cl(A), mo(A)) is an index pair for

InvV(A).

Proof. By Proposition  6.1 the set S = InvV(A) is an isolated invariant set. Since cl(A) \

mo(A) = A, we immediately get condition 3 from Definition  3.7 .

Since A is V-compatible we get FV(A) = cl A, and thus, condition 2.

To see condition 1, consider x ∈ FV(mo(A)). By the definition of FV , there exists a

σ ∈ mo(A) such that either x ∈ [σ]V or x ∈ cl(σ). In the first case x ̸∈ A, because A is

V-compatible and a ̸∈ A. Therefore [a]V ∩ cl(A) ⊆ cl(A) \ A = mo(A). If x ∈ cl(a) then

x ∈ mo(A), because mo(A) is closed. Hence, it follows that FV(mo(A))∩ cl(A) ⊆ mo(A).

6.2.1 Combinatorial Continuation and the Tracking Protocol

We now move to placing continuation in the combinatorial setting and explaining Step

 1 of the Tracking Protocol. In essence, a continuation captures the presence of the “same”

isolated invariant set across multiple multivector fields. We then show that Step  1 of the

Tracking Protocol does use continuation to track an isolated invariant set.

Definition 6.6. Let S1, S2, . . . , Sn denote a sequence of isolated invariant sets under the

multivector fields V1, V2, . . . , Vn, where each Vi is defined on a fixed simplicial complex K.

We say that isolated invariant set S1 continues to isolated invariant set Sn whenever there

exists a sequence of index pairs (P1, E1), (P2, E2), . . . , (Pn−1, En−1) where (Pi, Ei) is an index

pair for both Si and Si+1. Such a sequence is a sequence of connecting index pairs.

Each index pair (Pi, Ei) in a connecting sequence of index pairs is an index pair for a

pair of consecutive isolated invariant sets Si and Si+1 (see Figures  6.8 and  6.9 ). Hence, the

isolated invariant sets in the continuation all have the same Conley index. In this sense, we

are capturing the “same” isolated invariant set. In Step  1 of the Tracking Protocol, we first

attempt to track the isolated invariant set S via continuation. That is, if we use Step  1 , then

we choose S ′ such that S and S ′ have a common index pair, say (P, E). It so happens that

(P, E) is easy to find algorithmically. We begin with the refinement case, or Step  1a .
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Figure 6.8. An index pair, where P is in yellow and E is empty, for the
isolated invariant sets in Figure  6.4 . There is a common index pair for both
isolated invariant sets, so they form a continuation.

Figure 6.9. An index pair, where P is given by the yellow and red simplices
and E is given by the red simplices, for the isolated invariant sets in Figure

 6.2 . Thus, they form a continuation.
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Theorem 6.7. Let V and V ′ denote multivector fields where V ′ is an atomic refinement of

V. Let A be a V-compatible and convex set. The pair (cl(A), mo(A)) is an index pair for

both InvV(A) under V and InvV ′(A) under V ′.

Proof. By Proposition  6.5 , if A is convex and V-compatible, then (cl(A), mo(A)) is an index

pair for InvV(A). By assumption, A is V-compatible, so (cl(A), mo(A)) is an index pair for

InvV(A). Hence, if we can show that A is V ′-compatible, then it will immediately follow by

Proposition  6.5 that (cl(A), mo(A)) is an index pair for InvV ′(A). Because A is V-compatible,

it follows that there exists a set of multivectors R ⊆ V where A = ∪V ∈RV . Recall that as V ′

is an atomic refinement of V , there is exactly one multivector W ∈ V \ V ′. If W ̸∈ R, then

we are done, and A is necessarily V ′-compatible, as each multivector in R is a multivector

in V ′. If W ∈ R, then we observe that there exist two multivectors W1, W2 ∈ V ′ \ V where

W = W1 ∪W2. In such a case, it follows easily that if R′ = (R \ {W}) ∪ {W1, W2}, then

each multivector in R′ is a multivector in V ′ and A = ∪V ∈R′V . Hence, A is V ′-compatible,

and (cl(A), mo(A)) is an index pair for InvV ′(A).

In Step  1a of the Tracking Protocol, where V ′ is an atomic refinement of V , we choose

S ′ := InvV ′(S). By Proposition  6.2 , it follows that S is V-compatible. By identical reasoning

to that presented in the proof of Theorem  6.7 , it follows that S is also V ′-compatible. Hence,

Theorem  6.7 implies that (cl(S), mo(S)) is an index pair for both S = InvV(S) and S ′ =

InvV ′(S). Thus, S and S ′ share an index pair.

The case of an atomic coarsening, corresponding to Steps  1b ,  1c , and  1d of the Tracking

Protocol, is more complicated. Recall that if V ′ is an atomic coarsening of V , then the unique

multivector V ∈ V ′ \ V is called the merged multivector.

Theorem 6.8. Let V and V ′ denote multivector fields where V ′ is an atomic coarsening of

V. Let A be a convex and V-compatible set, and let V ∈ V ′ be the unique merged multivector.

If V ⊆ A or V ∩A = ∅, then (cl(A), mo(A)) is an index pair for both InvV(A) and InvV ′(A).

Proof. If V ∩A = ∅, then A is both V-compatible and V ′-compatible. Thus, Proposition  6.5 

implies that (cl(A), mo(A)) is an index pair for both S = InvV(A) and S ′ = InvV ′(A).
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If V ⊆ A, then by the same reasoning as in the proof of Theorem  6.7 , it follows that A

is both V-compatible and V ′-compatible. Thus, Proposition  6.5 implies that (cl(A), mo(A))

is an index pair for both InvV(A) and InvV(A).

By Proposition  6.2 , S is convex and V-compatible. Theorem  6.8 implies that if V ⊆ S

or V ∩ S = ∅, then (cl(S), mo(S)) is an index pair for both InvV(S) = S and InvV ′(S) = S ′.

In Steps  1b and  1c of the Tracking Protocol, S ′ is chosen as InvV ′(S). Hence, the index pair

(cl(S), mo(S)) is an index pair for both S and S ′.

A more complicated case is Step  1d , where V ∩ S ̸= ∅ and V ̸⊆ S. Recall that A :=

⟨S ∪ V ⟩V ′ denotes the intersection of all convex and V ′-compatible sets that contain S ∪ V ,

and in particular, A is convex and V ′-compatible. In Step  1d of the Tracking Protocol, we

first check if S = InvV(A). By Proposition  6.5 , if S = Inv(A), then (cl(A), mo(A)) is an

index pair for S. The set ⟨S ∪ V ⟩V ′ is necessarily V-compatible, because it is V ′-compatible

by construction and it contains the unique merged multivector. Hence, Proposition  6.1 

implies that S ′ := InvV ′(A) is an isolated invariant set. Thus, Proposition  6.5 implies that

(cl(A), mo(A)) is also an index pair for S ′. Hence, if Step  1d gives S ′, there is an index pair

for S and S ′.

In Step  1e of the Tracking Protocol, we claim that if S ̸= InvV(A), then it is not possible

to continue. Equivalently, there is no S ′ that shares an index pair with S.

Theorem 6.9. Let S denote an isolated invariant set under V and let V ′ denote an atomic

coarsening of V where the unique merged multivector V ∈ V ′ \ V satisfies the formulae

V ∩S ̸= ∅ and V ̸⊆ S. Furthermore, let A := ⟨S ∪V ⟩V ′. If S ̸= InvV(A), then there does not

exist an isolated invariant set S ′ under V ′ for which there is an index pair (P, E) satisfying

InvV(P \ E) = S and InvV ′(P \ E) = S ′.

Proof. Suppose that S ̸= InvV(A) and there exists an index pair, (P, E), for both S under V

and some S ′ under V ′. By Proposition  6.4 , the set P \E must be convex and V ′-compatible.

Since S ⊆ P \E and A is the smallest convex and V ′-compatible set containing S, it follows

that A ⊆ P \ E. Hence, InvV(A) ⊆ InvV(P \ E). By assumption, S ⊊ InvV(A). Thus,

S ⊊ InvV(P \ E). This implies that (P, E) is not an index pair for S, a contradiction.
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6.2.2 Characterizing Tracked Isolated Invariant Sets

Step  1 of the Tracking Protocol provides an avenue for tracking an isolated invariant set

across a sequence of atomic rearrangements. In this subsection, we justify the canonicity of

the selected isolated invariant set in Step  1 of the Tracking Protocol. First, we observe that

we always have an inclusion. Theorem  6.12 follows directly from the next two results

Proposition 6.10. Let S be an isolated invariant set under V, and let S ′ denote an isolated

invariant set under V ′ that is obtained by applying the Tracking Protocol. If S ′ is obtained

via Steps  1a ,  1b , or  1c , then S ′ ⊆ S.

Proof. In Steps  1a ,  1b , and  1c , S ′ is obtained by taking S ′ := InvV ′(S). By definition,

InvV ′(S) ⊆ S, so S ′ ⊆ S.

Proposition 6.11. Let S be an isolated invariant set under V, and let S ′ denote an isolated

invariant set under V ′ that is obtained via applying the Tracking Protocol. If S ′ is obtained

via Step  1d then S ⊆ S ′ or S ′ ⊆ S.

Proof. First, we claim that if S ̸⊆ S ′, and if V is the unique merged multivector V ∈ V ′ \ V ,

then V ∩ S ′ = ∅.

If S ̸⊆ S ′, then there exists a σ ∈ S \S ′. Because σ ∈ S, there exists an essential solution

ρ : Z → A under V where ρ(0) = σ. It is easy to check that because V ′ is an atomic

coarsening of V , we have that for every τ ∈ K, FV(τ) ⊆ FV ′(τ). Hence, ρ must be a solution

under V ′. But, since σ ∈ S \ S ′, it follows that ρ is not an essential solution.

Without loss of generality, we assume that there exists a j > 0 such that for all i1, i2 ≥ j,

we have that [ρ(i1)]V ′ = [ρ(i2)]V ′ . Because ρ is an essential solution under V , and |V ′ \V| = 1,

it follows that [ρ(i1)]V ′ = [ρ(i2)]V ′ = V . Hence, V must not be critical, as if it were, then ρ

would be an essential solution under V ′.

Now, aiming for a contradiction, assume there exists a τ ∈ V ∩ S ′. Then there exists an

essential solution ρ′ : Z→ A under V ′ where ρ′(j + 1) = τ . Thus, because ρ(j) ∈ V , we can

obtain a new solution r : Z → S ′ where r(i) = ρ(i) if i ≤ j and r(i) = ρ′(i) if i > j. We

have shown that ρ(j) ∈ V , and by assumption, τ = ρ′(j + 1) has the property that τ ∈ V .

Hence, because ρ is a solution and ρ′ is an essential solution, we have the property that for
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all k, there exists an i > k where [r(i)]V ′ ̸= [r(k)]V ′ . We can use the same construction to

guarantee that there exists an i < k where [r(i)]V ′ ̸= [r(k)]V ′ . Hence, r is an essential solution

under V ′, where r(0) = σ. But this implies that σ ∈ S ′, a contradiction. Hence, there can

exist no such τ , so V ∩ S ′ = ∅.

Thus, we have the property that V ∩S ′ = ∅. Let ρ : Z→ S ′ denote an essential solution

under V ′. Observe that for each i, [ρ(i)]V ′ = [ρ(i)]V . Ergo, ρ is also an essential solution

under V . Hence, S ′ ⊆ S.

.

Theorem 6.12. If S ′ is obtained by applying Step  1 of the Tracking Protocol to S, then we

have S ⊆ S ′ or S ′ ⊆ S.

Furthermore, isolated invariant sets chosen by Step  1 minimize the perturbation to S in

terms of the number of inclusions.

Proposition 6.13. Let S be an isolated invariant set under V, and let S ′ be an isolated

invariant set under V ′ that is obtained by applying Step  1 of the Tracking Protocol to S.

If S ′′ is any isolated invariant set under V ′ that shares a common index pair with S, then

S ′ ⊆ S ′′. Moreover, if S ′′ ⊆ S, then S ′ = S ′′.

Proof. Let (P, E) be a common index pair for S under V and S ′′ under V ′. Consider Steps

 1a ,  1b , and  1c where S ′ = InvV ′(S). By definition, S ⊆ P \ E, and it follows that S ′ =

InvV ′ S ⊆ InvV ′(P \ E) = S ′′. Moreover, if S ′′ ⊆ S, we get that S ′′ = InvV ′ S ′′ ⊆ InvV ′ S = S ′.

Thus, S ′ = S ′′.

To prove the property for Step  1d , notice that by Proposition  6.4 , and the fact that

A := ⟨S∪V ⟩V ′ is the minimal convex and V ′-compatible set containing S, we get A ⊆ P \E.

Therefore S ′ = InvV ′(A) ⊆ InvV ′(P \ E) = S ′′. Similarly, if S ′′ ⊆ S ⊆ A, then we get

S ′′ = InvV ′ S ′′ ⊆ InvV ′ A = S ′. Thus, S ′ = S ′′.

6.3 Tracking via Persistence

In the previous section, we explicated Step  1 of the protocol, which uses continuation

to track an isolated invariant set across a changing multivector field. In this section, we
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first place continuation in the persistence framework by showing how to translate the idea of

combinatorial continuation into a zigzag filtration [ 4 ], [ 25 ] that does not introduce spurious

information. Then, we use the persistence view of continuation to justify Step  2f of the

Tracking Protocol, which permits us to capture changes in an isolated invariant set when no

continuation is possible. In particular, it permits us to track an isolated invariant set even in

the presence of a bifurcation that changes the Conley index. If the isolated invariant set that

we are tracking collides, or merges, with another isolated invariant set, then we follow the

newly formed isolated invariant set, and persistence captures which aspects of our original

isolated invariant set persist into the new one. Conversely, if an isolated invariant set splits,

we track the smallest isolated invariant set that contains all of the child invariant sets.

6.3.1 From continuation to filtration

Now, we show that a continuation of an isolated invariant set S1 to Sn+1 can be expressed

in terms of persistence. Namely, a corresponding sequence of connecting index pairs (P1, E1),

(P2, E2), . . . , (Pn, En) can be turned into a zigzag filtration, that is a sequence of pairs

{(Ai, Bi)}m
i=1 such that either (Ai, Bi) ⊆ (Ai+1, Bi+1) or (Ai+1, Bi+1) ⊆ (Ai, Bi). Ideally, each

(Ai, Bi) would be an index pair for some Sj from the initial continuation so as to not introduce

spurious invariant sets or Conley indices. A connecting index pair (Pi, Ei) is an index pair

for both Si under Vi and for Si+1 under Vi+1. Thus, (Pi, Ei) and (Pi+1, Ei+1) are both index

pairs for Si+1 under Vi+1. We will construct auxiliary index pairs for Si+1 and then relate

(Pi, Ei) and (Pi+1, Ei+1) with a zigzag filtration using these auxiliary pairs. If we can connect

all adjacent pairs (Pi, Ei) and (Pi+1, Ei+1) with a zigzag filtration, then we can concatenate

all of these zigzag filtrations and transform a sequence of connecting index pairs into a larger

zigzag filtration. The following results are important for achieving this.

Proposition 6.14. [ 14 , Proposition 5.2] Let (P, E) denote an index pair for S. The set P

is an isolating neighborhood for S.

Proposition 6.15. Let (P, E) denote an index pair for S under V. The pair (P, E) is an

index pair for S in P under V.
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Proof. First, we observe that S = InvV(P \ E) because (P, E) is an index pair. In addition,

FV(P )∩N = FV(P )∩P ⊆ P by definition. Since (P, E) is an index pair, it has the property

that FV(P \E) ⊆ P . In the case of index pairs in N , we require that FV(P \E) ⊆ N = P , so

this case is immediately satisfied. Finally, because (P, E) is an index pair, FV(E) ∩ P ⊆ E.

Thus, FV(E) ∩N = FV(E) ∩ P ⊆ E.

Theorem 6.16. Let (P1, E1) and (P2, E2) denote index pairs for S in N under V. The pair

(P1 ∩ P2, E1 ∩ E2) is an index pair for S in N under V.

Proof. By Theorem  4.4 , the pair (P1 ∩ P2, E1 ∩ E2) is an index pair in N under V . Hence,

it is sufficient to show that InvV((P1 ∩P2) \ (E1 ∩E2)) = S. Furthermore, S = InvV(P1 \E1)

and S = InvV(P2 \ E2). Hence, S ⊆ P1 \ E1 and S ⊆ P2 \ E2. Ergo, S ⊆ P1 ∩ P2. In

addition, S ∩ E1 = ∅ and S ∩ E2 = ∅. Hence, S ∩ (E1 ∩ E2) = ∅, so it follows that

S ⊆ (P1 ∩ P2) \ (E1 ∩ E2). Thus, S ⊆ InvV((P1 ∩ P2) \ (E1 ∩ E2)). Ergo, it remains to be

shown that InvV((P1 ∩ P2) \ (E1 ∩ E2)) ⊆ S.

Aiming for a contradiction, assume that there exists an σ ∈ InvV((P1∩P2)\(E1∩E2))\S.

Equivalently, there exists an essential solution ρ : Z→ (P1∩P2)\(E1∩E2) where ρ(0) = σ.

Because ρ(Z) ⊆ P1∩P2, but ρ(Z) ̸⊆ Inv(P1\E1), there must exist an i1 ∈ Z where ρ(i1) ∈ E1.

Similarly, there must exist an i2 ∈ Z where ρ(i2) ∈ E2.

We claim that for all i ≥ i1, ρ(i) ∈ E1. To contradict, assume that this is not the case.

Then there must exist some first j > i where ρ(j) ̸∈ E1. However, ρ(j−1) ∈ E1. By definition

of an index pair in N , if x ∈ E1 and y ∈ FV(x) ∩N , then y ∈ E1. Hence, since ρ(j) ̸∈ E1, it

follows that ρ(j) ̸∈ N . But by assumption, ρ(j) ∈ P1 ∩ P2 ⊆ N . Therefore, there is no such

j, so for all i > i1, we have that i ∈ E1. The same argument implies that for all i ≥ i2, we

have that ρ(i) ∈ E2.

Thus, it follows that for all i ≥ max{i1, i2}, ρ(i) ∈ E1 ∩ E2. Ergo, ρ(Z) ̸⊆ (P1 ∩ P2) \

(E1 ∩ E2), a contradiction. Hence, no such ρ can exist, which implies that no such σ can

exist. Thus, S = InvV((P1 ∩ P2) \ (E1 ∩ E2)).

Now, we move to using these results to translate a sequence of connecting index pairs

{(Pi, Ei)}n
i=1 into a zigzag filtration. For 1 < i ≤ n, (Pi−1, Ei−1) and (Pi, Ei) are both index

pairs for Si. By Proposition  3.8 , the pair (cl(Si), mo(Si)) is an index pair for Si. Hence, a
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natural approach is to find a zigzag filtration that connects (Pi, Ei) with (cl(Si), mo(Si)) and

a zigzag filtration that connects (Pi−1, Ei−1) with (cl(Si), mo(Si)). If we can find such zigzag

filtrations for all Si, then we can concatenate all of them and obtain a zigzag filtration that

connects (P1, E1) with (Pn, En). We depict the resulting zigzag filtration in Equation  6.1 .

(P1, E1) ⊇ . . . ⊇ (cl(S2), mo(S2)) ⊆ . . . ⊆ (P2, E2) ⊇ . . . ⊇ (cl(S3), mo(S3)) ⊆ . . . (Pn, En)

(6.1)

We connect (cl(Si), mo(Si)) with (Pi, Ei), and (Pi−1, Ei−1) connects with (cl(Si), mo(Si))

symmetrically. By Proposition  6.14 , Pi is an isolating neighborhood for Si. Thus, by Theorem

 4.9 , (pfVi(cl(Si), Pi), pfVi(mo(Si), Pi)) is an index pair for Si in Pi. Proposition  6.15 implies

that (Pi, Ei) is an index pair for Si in Pi. By Theorem  6.16 , (Pi ∩ pfVi(cl(Si), Pi), Ei ∩

pfVi(mo(Si), Pi)) is an index pair for Si in Pi. Hence, we get the following zigzag filtration:

(cl(Si), mo(Si)) ⊆ (pfVi(cl(Si), Pi), pfVi(mo(Si), Pi)) ⊇

(Pi ∩ pfVi(cl(Si), Pi), Ei ∩ pfVi(mo(Si), Pi)) ⊆ (Pi, Ei) (6.2)

Every pair in Equation  6.2 is an index pair for Si under Vi. Thus, we do not introduce any

spurious invariant sets. We can concatenate these filtrations to get Equation  6.1 .

We now analyze the barcode obtained for  6.1 . Our main result is Theorem  6.19 , and it

follows immediately from the next two results.

Lemma 6.17. [ 14 , Lemma 5.10] Let (P, E) ⊆ (P ′, E ′) be index pairs for isolated invariant

set S under V such that either P = P ′ or E = E ′. Then the inclusion i : (P, E) ↪→ (P ′, E ′)

induces an isomorphism in homology.

Theorem 6.18. [ 20 , Theorem 26] If (P, E) and (P ′, E ′) are index pairs for S where (P ′, E ′) ⊆

(P, E), then the inclusion induces an isomorphism in the Conley indices.

Theorem 6.19. For every k ≥ 0, the k-dimensional barcode of a connecting sequence of

index pairs {(Pi, Ei)}n
i=1 has m bars [1, n] if dim Hk(P1, E1) = m.
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6.3.2 Tracking beyond continuation

In the previous subsection, we showed how to convert a connecting sequence of index

pairs into a zigzag filtration. Furthermore, we observed that it produces “full” barcodes -

they have one bar for each basis element of the Conley index that persists for the length of

the filtration. This change of perspective allows us to generalize our protocol to handle cases

when it is impossible to continue.

In particular, we consider Step  2f of the protocol. Let S denote an isolated invariant

set under V , and V ′ is an atomic coarsening of V where the merged multivector V has the

property that V ∩ S ̸= ∅ and V ̸⊆ S. In such a case, we consider A := ⟨S ∪ V ⟩V ′ and take

S ′ = InvV ′(A). Theorem  6.9 implies that if S ̸= InvV(A), then it is impossible to continue.

However, it may be possible to compute persistence in a way that resembles continuation.

Let B := cl(S)∪cl(S ′). Trivially, B is closed. If B is an isolating neighborhood for both S and

S ′, then we say that S and S ′ are adjacent. By Theorem  4.9 , (pfV(cl(S), B), pfV(mo(S), B))

is an index pair for S in B. Similarly, (pfV ′(cl(S ′), B), pfV ′(mo(S ′), B)) is an index pair for

S ′ in B. Thus, we can use Theorem  4.4 to obtain the following zigzag filtration.

(cl(S), mo(S)) ⊆ (pfV(cl(S), B), pfV(mo(S), B))

⊇ (pfV(cl(S), B) ∩ pfV ′(cl(S ′), B), pfV(mo(S), B) ∩ pfV ′(mo(S ′), B)) ⊆

(pfV ′(cl(S ′), B), pfV ′(mo(S ′), B)) ⊇ (cl(S ′), mo(S ′)) (6.3)

Suppose that we are iteratively applying Step  1 of the Tracking Protocol, finding a

sequence of isolated invariant sets where adjacent ones share an index pair, and we terminate

with an isolated invariant set S and an index pair (P, E). We can connect (P, E) with

(cl(S), mo(S)) with techniques from the previous section. That is, if (P, E) ̸= (cl(S), mo(S)),

then we can find a filtration that connects them:

(P, E) ⊇ (P ∩ pfV(cl(S), P ), E ∩ pfV(mo(S), P )) ⊆

(pfV(cl(S), P ), pfV(mo(S), P ) ⊇ (cl(S), mo(S1)) (6.4)
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We can then concatenate this filtration with the zigzag filtration in Equation  6.3 . This

effectively completes the Tracking Protocol: when continuation, represented as Step  1 , is

impossible, we can attempt to apply Step  2f and persistence to continue to track.

In Step  2f , we choose to take S ′ = InvV ′(A). In practice, there may be many isolated

invariant sets under V ′ that are adjacent to S. However, our choice of S ′ is canonical.

Proposition 6.20. Let S ′ denote an isolated invariant set under V ′ that is obtained from

applying Step  2f of the Tracking Protocol to the isolated invariant set S under V. If S ′′ is an

isolated invariant set under V ′ where S ⊆ S ′′, then S ′ ⊆ S ′′.

Proof. By Proposition  6.1 , the set S ′′ is convex and V ′-compatible. Since A is the minimal

convex and V ′-compatible set containing S, it follows that S ⊆ A ⊆ S ′′. By definition,

S ′ = InvV ′(A), so S ′ ⊆ A ⊆ S ′′.

6.3.3 Strategy for Step  2g of the Tracking Protocol

We briefly consider Step  2g of Tracking Protocol, which is the case when it is impossible

to continue from S to some S ′, and B = cl(S)∪cl(S ′) does not isolate both S and S ′. In such

a case, we do not have two index pairs in the same isolating neighborhood, so we cannot

use Theorem  4.9 to obtain index pairs in a common N . Thus, we cannot use Theorem  4.4 ,

which permits us to intersect index pairs and guarantee that the resulting pair is an index

pair under a known multivector field. Recall that A = ⟨S ∪V ⟩V ′ . A natural choice is to take

S ′ = InvV ′(A), and consider the zigzag filtration

(cl(S), mo(S)) ⊇ (cl(S) ∩ cl(S ′), mo(S) ∩mo(S ′)) ⊆ (cl(S ′), mo(S ′)). (6.5)

It is easy to construct examples where (cl(S) ∩ cl(S ′), mo(S) ∩ mo(S ′)) is not an index pair

under any natural choice of multivector field (see Figure  4.2 ). However, this approach may

work well in practice. We leave a thorough examination to future work.
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7. CONCLUSION

In this dissertation, we have introduced three different approaches for tracking changes in

combinatorial dynamical systems. The first, explicated in Chapter  4 , is to choose an isolating

neighborhood and an isolated invariant set under each multivector field and to compute the

persistence barcode by intersecting index pairs for these isolated invariant sets. Such a

scheme is simple and powerful, but it can only capture the persistence of the Conley index

at a single resolution. This omits information about the Morse sets within a given isolated

invariant set. To address this concern, we introduced the persistence of Conley-Morse graphs

in Chapter  5 . This scheme allows us to obtain a barcode that represents the changing Conley

index at all of the Morse sets in a Morse decomposition, while also capturing information that

represents the changing structure of the Conley-Morse graph. Finally, we placed Conley’s

notion of continuation in the combinatorial setting, and we showed how to combine it with

Conley index persistence to track changes in a combinatorial dynamical system.

There are several possible directions for future work. In Chapter  4 , we showed that if

(P1, E1) is an index pair in N under V1 and (P2, E2) is an index pair in N under V2, then

(P1 ∩ P2, E1 ∩ E2) is an index pair in N under V1 ∩V2. However, we know a priori that

(P1, E1) is an index pair for some isolated invariant set S1 and (P2, E2) is an index pair for

S2. We have shown that (P1 ∩ P2, E1 ∩ E2) is an index pair for Inv((P1 ∩ P2) \ (E1 ∩ E2)),

but we do not know if there are any conditions under which this invariant set is somehow

related to S1 or S2. Further study is needed.

In Chapter  5 , we encountered a scenario where some bars in our barcode were redundant.

That is, they represented the same feature multiple times. We were able to remove them by

checking if they corresponded to the same part of a zigzag filtration, but it would be good

to find a more systematic way to do this.

Finally, in Chapter  6 , we encountered Step  2g , where it is not possible to track our

isolated invariant set while computing persistence in a controlled way. This is related to the

problem that we first confronted in Chapter  4 , when we noticed that the intersection of two

arbitrary index pairs need not be an index pair under a natural choice of multivector field.

We solved this problem by taking the intersection of index pairs in N . Perhaps there are
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conditions where we can intersect index pairs and obtain an index pair, which would permit

us to track the isolated invariant set in a controlled way. More investigation is needed.

100



REFERENCES

[1] H. Edelsbrunner, D. Letscher, and A. Zomorodian, “Topological persistence and sim-
plification,” Discrete Comput. Geom., vol. 28, no. 4, pp. 511–533, Nov. 2002. doi:  10.1007/
s00454-002-2885-2 .

[2] G. Carlsson, “Topology and data,” Bull. Amer. Math. Soc. (N.S.), vol. 46, no. 2, pp. 255–
308, Apr. 2009.

[3] H. Edelsbrunner and J. Harer, Computational Topology: An Introduction. American
Mathematical Society, Jan. 2010.

[4] T. K. Dey and Y. Wang, Computational Topology for Data Analysis. Cambridge Uni-
versity Press, 2022,  https ://www.cs .purdue .edu/homes/tamaldey/book/CTDAbook/
CTDAbook.pdf  .
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