
MULTI-AGENT REINFORCEMENT LEARNING: ANALYSIS
AND APPLICATION

by

Paulo Cesar Heredia

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

School of Aeronautics and Astronautics

West Lafayette, Indiana

May 2022

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Shaoshuai Mou, Chair

School of Aeronautics and Astronautics

Dr. Martin J. Corless

School of Aeronautics and Astronautics

Dr. Dengfeng Sun

School of Aeronautics and Astronautics

Dr. Inseok Hwang

School of Aeronautics and Astronautics

Approved by:

Dr. Gregory A. Blaisdell

2

ACKNOWLEDGMENTS

I would first like to thank my academic advisor Dr. Shaoshuai Mou for the opportunity

and encouragement to pursue a Ph.D., as well as for helping me connect with people that

have also helped me in my research and career development. And I appreciate how he has

challenged me to question myself and be more critical of my work and others work, which is

a valuable skill that will be useful even beyond graduation.

I also would like to thank all my collaborators that have helped me with the research

presented in this thesis, including Dr. Zhuoran Yang, Dr. Kaiqing Zhang, Hasan Ghadialy,

Dr. Eloy Garcia, and Dr. Jemin George, and the members of my committee, Prof. Martin

Corless, Prof. Dengeng Sun, and Prof. Inseok Hwang. I also thank Wanxin Jin, Xuan

Wang, Zihao Liang, Jeffrey Hall, Kevin Shi, Jiazhen Zhou, Ayush Rai, and Wenjian Hao

who have been good friends, colleagues, and classmates throughout my Ph.D. studies. I

would especially like to thank Wanxin Jin and Xuan Wang who have served as important

mentors to guide me in the first couple of years of my Ph.D. and were always willing to

answer my questions and provide help.

I also want to thank my parents, Efrain Heredia and Ana Aguilar, who have given me

love and support throughout my Ph.D. studies and always provided a loving home to go

back to at the end of a challenging semester. The hard work and sacrifices they have made

to provide for my brother and I, has motivated me to keep moving forward in my studies,

with the hope of one day repaying at least a fraction of what they have given me. I also

want to thank my younger brother Cesar Heredia for giving me someone to talk with about

soccer, movies, and video games, for supporting the same teams I do, and for being a good

brother in general.

Finally, I want to thank Krutik Mehta and Kartik Misra for being great roommates and

friends, and for helping make my time at Purdue more fun despite the rigors of coursework

and research.

3

TABLE OF CONTENTS

LIST OF FIGURES . 7

LIST OF SYMBOLS . 9

ABSTRACT . 10

1 INTRODUCTION . 12

1.1 Research Gaps . 13

1.2 Summary of Research Contributions . 16

1.3 Summary of Publications . 19

2 DISTRIBUTED MULTI-AGENT REINFORCEMENT LEARNING BY ACTOR-

CRITIC METHOD . 22

2.1 The Update . 24

2.1.1 Critic Training . 25

2.1.2 Actor Training . 28

2.2 Main Result . 29

2.3 Simulations . 35

2.4 Conclusion . 38

3 DISTRIBUTED OFFLINE REINFORCEMENT LEARNING 39

3.1 Introduction . 39

3.2 Problem Formulation . 41

3.3 Key Idea . 43

3.4 Algorithm and Main Result . 46

3.5 Proof of Main Result . 49

3.6 Simulation Results . 56

3.6.1 Linear System . 56

3.6.2 Nonlinear System . 58

3.7 Conclusion . 60

4

4 DISTRIBUTED REINFORCEMENT LEARNING WITH CROSS MODAL OB-

SERVATIONS . 62

4.1 Introduction . 62

4.2 Problem Formulation . 64

4.3 Preliminaries . 67

4.4 Approach . 68

4.5 Main Result . 71

4.6 Simulation Results . 74

4.7 Conclusion . 76

5 FINITE-SAMPLE ANALYSIS OF DISTRIBUTED Q-LEARNING FOR MULTI-

AGENT NETWORKS . 78

5.1 Preliminaries . 79

5.1.1 Multi-Agent MDP . 79

5.1.2 Linear Function Approximation . 80

5.1.3 A Distributed Q-Learning Algorithm 81

5.2 Finite-Sample Analysis for Q-Learning . 82

5.3 Proof of Main Result . 84

5.4 Conclusion . 88

5.5 Supplementary . 89

5.5.1 Proof of Lemma 1 . 89

5.5.2 Proof of Lemma 2 . 91

6 FINITE-SAMPLE ANALYSIS OF MULTI-AGENT POLICY EVALUATION WITH

KERNELIZED GRADIENT TEMPORAL DIFFERENCE 94

6.1 Preliminaries and the Problem . 95

6.2 Functional Stochastic Quasi-Gradient Method with Consensus 97

6.3 Main Result . 99

6.4 Proof of Main Result . 101

6.5 Conclusion . 105

6.6 Supplementary . 105

5

6.6.1 Proof of Lemma 6.4.2 . 105

6.6.2 Proof of Lemma 6.4.3 . 106

6.6.3 Proof of Lemma 6.4.4 . 108

7 LEARNING-ASSISTED LOAD CONTROL DESIGN FOR TRANSACTIVE EN-

ERGY SYSTEM . 110

7.1 Problem Statement . 112

7.2 Learning-assisted Bidding Strategy . 113

7.2.1 Tabular Q-learning . 115

7.2.2 DQN . 115

7.2.3 DDPG . 116

7.3 Case Studies . 117

7.3.1 Control Performance . 120

7.3.2 Training Performance . 123

7.3.3 Performance in Non-Competitive Market 125

7.4 Conclusion . 129

8 DISTRIBUTED STATE ESTIMATION FOR NONLINEAR SYSTEMS WITH

UNKNOWN PARAMETERS . 132

8.1 Introduction . 132

8.2 Problem Statement . 134

8.3 Approach . 135

8.4 Stability Analysis of Distributed Observer 138

8.5 Proof of Main Result . 141

8.6 Simulations . 146

8.7 Conclusion . 147

9 SUMMARY . 148

9.1 Future Directions . 151

REFERENCES . 154

6

LIST OF FIGURES

2.1 Distributed Multi-Agent Reinforcement Learning 24

2.2 Averaged State-Value Parameter for the Critic 36

2.3 Averaged Action-Value Parameters for the Critic 36

2.4 Averaged Policy Parameters for the Actor . 37

3.1 Network . 56

3.2 Cartpole System . 58

3.3 Comparing proposed distributed algorithm, which uses network of agents, with
the same algorithm using where agents learn independently without sharing any
information. Average of Discounted Rewards is calculated over 100 episodes.
Each episode has random initial conditions. 60

4.1 Example of network of multi-agent systems . 65

4.2 Network of Multi-Agent Systems interaction with plant 65

4.3 Low level picture of Network of Multi-Agent Systems 66

4.4 Example of Bipartite Graph GB for Column Assignment 69

4.5 Squared Error . 75

4.6 Squared Consensus Error . 76

7.1 Agent Feedback . 113

7.2 DQN Algorithm . 116

7.3 DDPG Algorithm . 117

7.4 Price Sensitivity . 118

7.5 Cumulative Reward Over Week. DDPG had a runtime of 2.25 hours and DQN
took 2.64 hours. For Q tab we were not able to measure the runtime but it ran
for around a day . 121

7.6 Cumulative Reward Over Week(Only DQN and DDPG) 122

7.7 Cumulative Rewards for Day 2 . 123

7.8 Indoor Temperature for Day 2 . 124

7.9 Price Bids for Day 2 . 125

7.10 Range of average episode rewards received during training for 10 trials of DQN
and DDPG with different random seeds. Rewards are averaged every 10 episodes.
Shaded region indicates one standard deviation from mean. 126

7

7.11 Range of episode rewards received during training for 10 trials of DQN and DDPG
with different random seeds. Shaded region indicates one standard deviation from
mean. 127

7.12 Averaged Reward for Tabular Q 10x5x19. Rewards averaged every 7 episodes
.Resulting agent used in comparison plots . 128

7.13 Episode Reward for Tabular Q 10x5x19. Resulting agent used in comparison plots 128

7.14 Cumulative Rewards Over Week, w=0.5 . 129

7.15 Cumulative Rewards Over Week, w=0.2 . 130

8.1 Problem Block Diagram . 135

8.2 Sum of Norm Squared State Estimation Error 146

8.3 Sum of Norm Squared Parameter Estimation Error 147

8

LIST OF SYMBOLS

diag{A1, A2, ..., An} denotes the block diagonal matrix made up of matrices A1, A2, ..., An

col{A1, A2, ..., An} denotes column-wise stacking of matrices A1, A2, ..., An

In denotes the n× n identity matrix

1n denotes the all ones vector of dimension n

A> denotes the transpose of matrix A

π(·|·) denotes a probability distribution, which depending on the chapter

might be a probability density function or probability mass function.

This will be specified in each chapter.

y ∼ Y denotes “random variable y is sampled from distribution Y”

9

ABSTRACT

With the increasing availability of data and the rise of networked systems such as au-

tonomous vehicles, drones, and smart girds, the application of data-driven, machine learning

methods with multi-agents systems have become an important topic. In particular, rein-

forcement learning has gained a lot of popularity due to its similarities with optimal control,

with the potential of allowing us to develop optimal control systems using only observed

data and without the need for a model of a system’s state dynamics. In this thesis work, we

explore the application of reinforcement learning with multi-agents systems, which is known

as multi-agent reinforcement learning (MARL). We have developed algorithms that address

some challenges in the cooperative setting of MARL. We have also done work on better un-

derstanding the convergence guarantees of some known multi-agent reinforcement learning

algorithms, which combine reinforcement learning with distributed consensus methods. And,

with the aim of making MARL better suited to real-world problems, we have also developed

algorithms to address some practical challenges with MARL and we have applied MARL on

a real-world problem.

In the first part of this thesis, we focus on developing algorithms to address some open

problems in MARL. One of these challenges is learning with output feedback, which is known

as partial observability in the reinforcement learning literature. One of the main assumptions

of reinforcement learning in the singles agent case is that the agent can fully observe the state

of the plant it is controlling (we note the “plant” is often referred to as the “environment”

in the reinforcement learning literature. We will use these terms interchangeably). In the

single agent case this assumption can be reasonable since it only requires one agent to fully

observe its environment. In the multi-agent setting, however, this assumption would require

all agents to fully observe the state and furthermore since each agent could affect the plant

(or environment) with its actions, the assumption would also require that agent’s know

the actions of other agents. We have also developed algorithms to address practical issues

that may arise when applying reinforcement learning (RL) or MARL on large-scale real-

world systems. One such algorithm is a distributed reinforcement learning algorithm that

allows us to learn in cases where the states and actions are both continuous and of large

10

dimensionality, which is the case for many real-world applications. Without the ability to

handle continuous states and actions, many algorithms require discretization, which with

high dimensional systems can become impractical. We have also developed a distributed

reinforcement learning algorithm that addresses data scalability of RL. By data scalability

we mean how to learn from a very large dataset that cannot be efficiently processed by a

single agent with limited resources.

In the second part of this thesis, we provide a finite-sample analysis of some distributed

reinforcement learning algorithms. By finite-sample analysis, we mean we provide an upper

bound on the squared error of the algorithm for a given iteration of the algorithm. Or

equivalently, since each iteration uses one data sample, we provide an upper bound of the

squared error for a given number of data samples used. This type of analysis had been missing

in the MARL literature, where most works on MARL have only provided asymptotic results

for their proposed algorithms, which only tells us how the algorithmic error behaves as the

number of samples used goes to infinity.

The third part of this thesis focuses on applications with real-world systems. We have

explored a real-world problem, namely transactive energy systems (TES), which can be rep-

resented as a multi-agent system. We have applied various reinforcement learning algorithms

with the aim of learning an optimal control policy for this system. Through simulations, we

have compared the performance of these algorithms and have illustrated the effect of partial

observability (output feedback) when compared to full state feedback.

In the last part we present some other work, specifically we present a distributed observer

that aims to address learning with output feedback by estimating the state. The proposed

algorithm is designed so that we do not require a complete model of state dynamics, and

instead we use a parameterized model where the parameters are estimated along with the

state.

11

1. INTRODUCTION

The field of reinforcement learning (RL) has seen major success recently in areas such as

autonomous driving [1], games [2], [3], and robotics [4], [5]. A major reason for this success

can be attributed to the combination of deep neural networks with reinforcement learning

algorithms. A subset of these algorithms, called model-free algorithms, are of particular

interest since they do not require knowledge of the governing dynamics of the system of

interest. Some of the more popular algorithms of this type include: temporal difference

learning (TD) [6], Q-learning [7], [8], SARSA [9], and asynchronous advantage actor-critic

(A3C) [10].

Reinforcement learning attempts to improve the performance of an agent or system by

assigning greater rewards to actions that lead to better outcomes. The generality of this

method has made it applicable to various fields of study. Some of the benefits of reinforcement

learning are that it does not require knowledge of optimal behavior as in supervised learning,

and that because of their sequential nature they can be used with online-learning algorithms

[11]. Furthermore, because reinforcement learning can be used for sequential decision making

stochastic systems [12], it is highly applicable for developing optimal controllers [13].

The above examples demonstrate the power of reinforcement learning for single agents

and how far it has been developed, but multi-agent reinforcement learning (MARL) poses a

more challenging problem with relatively few results both empirical and theoretical. Some

of the reasons that make MARL more challenging [14] are credit assignment[15]–[21], non-

stationary environments due to actions by other agents [22]–[27], and coordination [16], [18],

[23], [24], [28]. The exact set of issues that would have to be resolved depends on the variation

of MARL problem that is being considered [29].

A simple solution to the multi-agent issues would be to use centralization, where we assign

a central node with gathering all information (state, actions, rewards) from every agent in

the network. The central node would then process all the information and broadcast the

actions assigned to each agent. The problem with this approach is that is not scalable to

large netowrks due to the high communication costs that would be incurred in order to send

information to the central node, which may be spatially very far from many agents [30].

12

Furthermore, the central node would need to have a large computational capacity in order

to process all the information from each agent, and it would be focal point for malicious

attacks[31], [32]. This makes centralized multi-agent reinforcement learning impractical and

maybe even infeasible for very large and spatially distributed networks. This motivates our

work to further the theory of MARL and as well as its applications in real world systems.

1.1 Research Gaps

There has been a lot of work on MARL providing some theoretical results and empirical

success, however there are still many issues and challenges left to be explored. Here we

outline some of those challenges which has motivated the work in this thesis:

1) Most theoretical results assume finite spaces or linear function approximation

The early examples of MARL [17], [23], [24], [27], [30], [33] have assumed finite states

and actions, which allows them to implement a tabular form of reinforcement learn-

ing that does not scale well to infinite states and actions. More recently, some works

have assumed linear functions approximations in order to achieve results in MARL[31],

[34], [35]. It would of great practical use if these results can be extended to reinforce-

ment learning with more general function approximations, such as deep reinforcement

learning or kernelized function approximation. Some works which explore deep neural

networks for function approximation are [36]–[38], however these works either have

only empirical results or are not in a distributed framework. In [32], [39]–[41] they

consider only policy evaluation with some fixed policy, and so these algorithms cannot

be immediately used to develop optimal control policies.

2) Few finite sample results for RL algorithms

In most proofs of convergence for reinforcement, the main result is that the error either

converges to zero asymptotically or that the error asymptotically converges to finite

region around zero (depending on the assumptions). In either case, the result only tells

us information about the error after an infinite amount of steps and infinite samples

of data have been processed. These results do not tell us about the error for a finite

13

amount of samples and steps. Such a finite sample analysis of the error is needed so

that we can know how much data is needed by a particular algorithm in order to reach

a certain level of accuracy. So far these results are relatively few in the literature, and

especially so for the multi-agent setting.

3) Output Feedback(Partial Observability) - Algorithms usually require global state and/or

actions of other agents

An important assumption of most reinforcement algorithms is that the plant(or en-

vironment) dynamics are time-invariant (or stationary in the RL literature) from the

learning agents perspective. For the plant to be time-invariant to the agent, the plant

can not have any time varying components that are not observable to the agent, and

so the agent must know all the necessary information needed to predict the evolu-

tion of the state of the plant. In the context of Markov Decision Processes, which

is the mathematical foundation of reinforcement learning, this means the agent must

observe the state of the plant. This is an issue in MARL where either we may only

have local information on the plant, or even if we can observe the global state of the

plant, if we cannot observe the actions of other agents then they essentially become

unobservable components of the plant. In either case the plant becomes time-variant

(or non-stationary) to the individual agents and so regular reinforcement learning al-

gorithms break down. Most works in MARL which look to address this issue, pose the

problem as a Decentralized Partially Obsevable MDP, but this is still a relatively new

and open problem where most approaches make use of some global information or a

learned model of global information in order to convert the problem from decentralized

learning to centralized learning [29], [42]–[45]. Some papers such as [25], [46], explore

problem of learning coordination with independent learners, but do not consider com-

munication among agents. We also see a similar problem in [47], which is motivated

by target tracking with sensor networks, but this work assumes that agents are in-

dependent of each other’s actions. Another work is [44] which presents an algorithm

for cooperative and competitive scenarios, but requires each agent to learn a decision

making model of other agents.

14

4) Algorithms require global rewards

Just as being able to observe the full state of the plant is important, it is also an im-

portant assumption to all reinforcement learning algorithms that an agent can observe

or compute the reward resulting from its actions. However, in cooperative MARL set-

tings this becomes an issue because though each agent receives an individual reward,

the goal of cooperative MARL problems is to maximize the sum of rewards not just

individual rewards. An easy solution would be for each agent to communicate each

other’s rewards. However, this could lead to privacy issues since the reward could

potentially contain sensitive or confidential information that individual agents would

not want to share [31]. Though there are several works that have explored the case of

private rewards [31], [32], [42], [45], they still require full knowledge of the state. This

motivates the need for more distributed RL algorithms where along with partial state

information, rewards are private to each agent instead of globally known.

5) Evaluation and comparison of RL algorithms on real world problems

There is a need for implementation and comparisons of performance of RL and MARL

algorithms for problems of practical interest. In practice, performance of RL algorithms

is very problem specific so its not clear what algorithm will work best for a particular

problem until it is implemented and tested. There are some works comparing deep

RL algorithms, such as policy gradient algorithms and DQN , but they are studied on

specific use cases [4], [48]–[53] or on either toy examples or games [46], [54]–[56]. In

[57] a very comprehensive comparison of temporal difference algorithms is given but

again they are applied to toy examples such as the cartpole problem or the 20 link

pole balancing problem, which, though of high dimensionality and difficulty, can not

fully capture the nuances and difficulty of a real world problem.

6) Scalability

There are some challenges that make implementing reinforcement learning and MARL

difficult to implement in large-scale real-world problems. One such problem is learning

with large, continuous state and action spaces. As previously discussed, many rein-

15

forcement learning algorithms have been developed under the assumption that states

and actions are discrete [8], [24], [27], which for many real-world systems is not the case.

As such, these algorithms would require the discretization of a continuous state space

or action space, which could become impractical since the size of the discretization

would increase exponentially with the size of state or action vector[58]–[60]. Similarly,

another important practical problem deals with data scalability [61]–[63]. Since rein-

forcement learning is a data driven method, the more complex the system the more

data that will be required to learn a control policy for that system [60], [64], [65]. As

such, since many real-world systems are very complex, we need reinforcement learning

algorithms that scale well with the size of the dataset [66].

1.2 Summary of Research Contributions

Based on the research gaps discussed above, we have made the following contributions

with our research and proposed algorithms:

In Chapter 2 , we address the scalability challenge that results from systems that have

continuous states and actions. As such, we develop a distributed reinforcement learning

algorithm that works with both continuous state and action spaces. Due to the high dimen-

sionality of most practical problems, it is important for reinforcement learning algorithms

to be able to work with continuous state and action spaces. Otherwise, the states and ac-

tion spaces need to discretized which can easily lead to an impractical amount of discretized

states and actions. In the MARL setting, this is even more important because the number

of actions would scale exponentially with the number of agents, therefore even if each agent

only decides between a couple of actions, the total number of actions for the network would

be large for a large network. Usually, continuous spaces are handles by including some form

of function approximation, such as using neural nets or linear function approximation. As

such, we have developed an algorithm that uses function approximation in order to handle

continuous spaces.

In Chapter 3 , we tackle the challenge of data scalability with reinforcement learning.

Specifically, we consider the problem of learning from a large, fixed dataset that is too large

16

to be efficiently processed by a single agent. The issue of data scalability is an important

practical problem since many industries and companies have acquired large datasets over

time but they have limited computational resources at any single location. In order to learn

from all this data in a reasonable amount of time, there a is need for distributed learning

algorithms that can split up the computational load over many locations or nodes. To address

this problem we have developed a distributed reinforcement learning algorithm where such

a large dataset is partitioned and distributed amongst a network of agents. By splitting

up that dataset amongst several agents, our approach is not limited by the computational

resources of a single agent and so our approach can scale well with the size of the dataset.

In chapter 4 we address the challenge of learning from output feedback (or partial ob-

servability in the RL literature). The problem of multi-agent reinforcement learning with

partial observability is a very challenging and open problem. The ability to handle partial

observability addresses both the issue with not knowing what actions other agents make and

also the very realistic case that an agent might not have full information about its plant

(or environment). If some form of centralization is allowed, there are many works that have

leveraged such a centralized structure to allow each agent to learn optimal policies. If cen-

tralization is not allowed, however, the problem is more challenging as each agent can only

use local information. As such, we have developed algorithms that can accomplish learn-

ing in a distributed manner, only leveraging local information and communication between

neighboring agents. In chapter 4 , along with partial observability, another important chal-

lenge that we address is the issue of private rewards. Many works in MARL have assumed

that either all agents receive the same reward or that agents can share the reward with

each other. This would not be the case when the reward function contains sensitive, private

information. Even in cooperative settings, each agent might not be willing to share their

private reward and so it is important to develop algorithms that would not requiring sharing

of rewards. Though there are many works that have similarly addressed this issue, they have

assumed full observability of the state. Thus, we have addressed both reward privacy and

partial observability in our work.

In Chapter 5 , we provide a finite sample analysis of a distributed reinforcement learning

algorithm. Most of the theoretical results in reinforcement learning have provided proofs of

17

asymptotic performance, where a bound on the error is given which the true error approaches

as the number of algorithm updates approaches infinity. This has, off course, been very

important in forming the foundation for reinforcement learning. But until recently, there

have been no results providing a bound on the error for a finite amount of algorithm updates.

Since each update uses at least one data sample, this is sometimes referred to as a finite-

sample analysis. This type of analysis allows us to determine how many data samples are

needed to guarantee a certain level of accuracy. Furthermore, such an analysis is even less

available in the MARL setting, has motivated our work in providing a finite-sample analysis

of reinforcement learning algorithms for the distributed, multi-agent setting.

In Chapter 6 , we provide a finite-sample analysis of a reinforcement learning algorithm

using a more general function approximation. As will be discussed later on, function approx-

imation is necessary when dealing with continuous states and actions. It is also important,

however, that the form of the function approximation is as general as possible so that if

theoretical results are achieved, these results can apply to a larger set of functions. So far

the literature has mostly made use of linear function approximations, which allows for good

theoretical results but does not accept many functions of practical use. Therefore, along with

linear function approximation, will have also studied a more general function approximation

for our theoretical work.

In Chapter 7 , we explore the application of reinforcement learning to a practical system

(transactive energy systems). An important part of research is in demonstrating that es-

tablished or newly developed algorithms can work for practical applications. Though many

works exist applying reinforcement learning, especially deep reinforcment learning, many of

them are applied to games and toy problems, which though are of high complexity do not

offer an immediate practical benefit. There is also work that studies the performance of

reinforcement learning on specific and practical uses cases, but since each particular use case

presents its own challenges when using reinforcement learning, application to new systems

must be studied on a case by case basis. Accordingly, we have studied the performance of

reinforcement learning on transactive energy systems. Transactive energy is a new paradigm

for demand-side control in power grids, where the interaction between power suppliers and

consumers is designed to emulate a market system . A transactive energy system usually con-

18

sists of a group of distributed energy resources such as smart loads, distributed generation,

and even energy storage [67]–[69].

In chapter 8 , we address partial observability by developing a distributed observer based

on the unscented Kalman filter. The motivation is that such a distributed observer will allow

each agent of a multi-agent system to estimate the state, and so the distributed observer

could be combined with a distributed reinforcement learning algorithm without needing

to observe the full state. Crucially, we developed a distributed observer for both state

estimation and parameter estimation. This allows us to relax the assumption of knowledge

of state dynamics, which is usually needed with state estimation, and instead we assume we

have a parametrized model of the state dynamics where the parameters are unknown. As

such, the proposed distributed observer can be combined with a distributed reinforcement

learning algorithm to achieve an optimal control policy without fully observing the state and

without complete knowledge of state dynamics.

1.3 Summary of Publications

The content of Chapter 2 appears in:

• Paulo C. Heredia, Shaoshuai Mou. “Distributed Multi-Agent Reinforcement Learning

by Actor-Critic Method”. IFAC-PapersOnLine, 52/20, pp. 363-368 (2019). © 2019

International Federation fo Automatic Control. Reproduced with permission from

Paulo C. Heredia and Shaoshuai Mou.

The content of Chapter 5 appears in:

• Heredia, Paulo, Hasan Ghadialy, and Shaoshuai Mou. “Finite-Sample Analysis of Dis-

tributed Q-learning for Multi-Agent Networks.” In 2020 American Control Conference

(ACC), pp. 3511-3516. IEEE, 2020. © 2020 IEEE. Reprinted, with permission, from

Paulo Heredia, Hasan Ghadialy, Shaoshuai Mou.

The content of Chapter 6 appears in:

• Paulo Heredia and Shaoshuai Mou. “Finite-sample analysis of multi-agent policy eval-

uation with kernelized gradient temporal difference.” In 2020 59th IEEE Conference on

19

Decision and Control (CDC), pp. 5647-5652. IEEE, 2020. © 2020 IEEE. Reprinted,

with permission, from Paulo Heredia and Shaoshuai Mou.

The content of Chapter 8 appears in:

• Paulo Heredia, Eloy Garcia , Shaoshuai Mou. “Distributed State Estimation for Non-

linear Systems with UnknownParameters.” Submitted to: 2022 American Control Con-

ference (ACC).

20

PART I

Algorithms for MARL

21

2. DISTRIBUTED MULTI-AGENT REINFORCEMENT

LEARNING BY ACTOR-CRITIC METHOD

Introduction

Multi-agent reinforcement learning (MARL) has recently gained a lot research attention

with extensive applications into mobile sensor networks, robotics, UAV swarms, cybersecu-

rity, and so on [70]. Research challenges in MARL mainly come from the fact that each

agent has its own local and private reward, and can only coordinate with nearby agents,

which usually result in conflicts with other agents in credit assignment and coordinating

actions [28]. This has led to a recently booming area of developing distributed algorithms

for MARL, in which there is no centralized coordinator and only local coordination among

nearby neighbors are allowed. Early results in the direction of distributed MARL usually

assume finite states and actions to allow them to implement a tabular form of reinforce-

ment learning [30], [33], which are not applicable to situations requiring infinite states and

actions. Further progress has been achieved in [32], [39]–[41] which only consider evaluation

of fixed policies and cannot be immediately used to develop optimal control policies. Re-

cently researchers have started to develop distributed MARL based on actor-critic methods

in single-agent case in [71], [72]. It has recently been shown that critic training could be

reformulated as a primal-dual optimization problem in single-agent case in [38], with fur-

ther generalization to distributed MARL algorithm in the worst-case by [32], followed by

a finite sample analysis in [73]. Perhaps one of the most significant progress in distributed

MARL based on actor-critic method are algorithms developed in [31], [74], in which each

gent makes its own decision only based on locally observed information and communication

among nearby neighbors, and the network connecting agents are time-varying.

Motivated by [31], [74], we in this work have also developed a distributed algorithm

for MARL, based on actor-critic methods. With this framework each agent is tasked with

training an actor to generate a control input given the state, and a critic to output a scalar

value for the performance of the current policy, given a state and input pair. In addition,

we consider continuous states/actions as in [74] but with a different variation of the actor-

critic algorithm. Different from [31], which considers the expected time-averaged reward and

22

finite spaces for states/actions, we in this work considered the expected sum of discounted

rewards over an infinite time horizon. Under results developed in this work, the policy

evaluation algorithm proposed in [32] was used for action-value functions as well as state-

value functions, which in turn implies that such policy evaluation algorithm can potentially

be used in a distributed actor-critic framework based on [31].

Notation Let ∇a denote the gradient with respect to a parameter a. To indicate the transpose

of a matrix A, we use A>. Furthermore, by {a(t)} we mean a sequence of a(t) and by a ∼ d

we mean “a is sampled from the distribution d”. We also use col{a1, a2, .., an} to denote the

column-wise stacking of a1, .., an.

Problem Formulation

Consider the case in which a network of m autonomous agents operate in an unknown

environment (or plant). Let x(t) ∈ Rn denote the state of the plant at time t. For each control

input ui(t) from agent i to the plant, a local reward ri(x(t), u(t)) is produced, where u(t) =

col{u1(t), u2(t), ..., um(t)} ∈ Rn̄. Here, each ri(·) is the private reward locally accessible to

only agent i, and is not shared with other agents.

Let

R(x(t), u(t)) =
m∑

i=1

1
m
ri(x(t), u(t)) (2.1)

which represents the average reward of all agents in the network. Let π denote a stochastic

control policy such that u ∼ π(x, u) . Let Qπ denote the corresponding objective function,

which is assumed to be a sum of discounted rewards R(x(t), u(t)) when a stochastic control

policy π is applied to the plant. Namely,

Qπ(x(t), u(t)) = E[
∞∑

k=0
γkR(x(k), u(k)) | x(0) = x(t), u(0) = u(t)]

where γ ∈ (0, 1) is a discount factor. The goal of MARL in this paper is to achieve a globally

optimal control policy π∗ to maximize the objective function Qπ.

In a multi-agent network, each agent i usually can only communicate with certain neigh-

boring agents denoted by Ni, which includes agent i. The neighbor relations can be modeled

23

Figure 2.1. Distributed Multi-Agent Reinforcement Learning

by a connected undirected graph G such that there is an edge between i and j if and only if

i and j are neighbors. Suppose each agent i controls πi (an estimate to the optimal control

policy π∗) and Qi (the Qπi corresponding to πi). The problem of interest, as indicated in

Fig. 2.1 , is to develop a distributed algorithm such that each agent achieves an ε approxi-

mation of the optimal policy π∗ (denoted by π∗ ± ε), as well as its corresponding action value

function Qπ∗±ε, using only coordination with its nearby neighbors, namely,

πi → π
∗ ± ε (2.2)

Qi → Qπ∗±ε. (2.3)

Here, π∗ ± ε denotes a policy value in the interval [π∗ − ε, π∗ + ε].

2.1 The Update

In this section we will develop a distributed algorithm for MARL by introducing an actor

and a critic at each agent. That is, each agent is tasked with training an actor to generate

a control input given the state (control policy) and a critic to output a scalar value for the

performance of the current policy given a state and input pair (action-value function). In

the following we will present the updates for both critic training and actor training.

24

2.1.1 Critic Training

We first assume π is fixed, and so the proposed approach is to train each agent’s critic

to converge to Qπ

As is well known, the Bellman equation for reinforcement learning can be described in

terms of Qπ as follows [75]:

Qπ(x(t), u(t)) =R(x(t), u(t)) + γEx|x(t),u(t) [Vπ(x(t+1))] ,

where

Vπ(x(t+ 1)) = Eu(t+1)|π [Qπ(x(t+ 1), u(t+ 1))] (2.4)

is the state-value function at t+ 1. The above Bellman equation can be used to directly

compute the entries in Qπ, which is however not directly applicable to continuous space of

actions and states. To address this, we approximate Qπ as linear combination of given basis

functions [76], that is,

Qw(x, u) = w>φ(x, u), (2.5)

where w ∈ Rq1 is unknown and φ(x, u) ∈ Rq1 is a column vector of basis functions.

Similarly, the control policy π can also be approximated as a parameterized function πθ,

where θ ∈ Rp This can be achieved by defining πθ as a normal distribution with mean and

standard deviation as functions of θ.

Let R, Qw and Vπ denote the vectors from stacking all R in (2.1), Qw in (2.5), and

Vπ in (2.4), respectively, for every (x, u) pair. To ease notation we refer to Eu|π as Eu and

Ex|x(t),u(t) as Ex. Then a nice estimate of Qπ can be achieved by minimizing the following

mean squared projected bellman error(MSPBE) with respect to w [32], namely,

min
w

MSPBE(w) = min
w

1
2‖ΠΦ(Qw − R − γEx [Vπ])‖2

D + ρ‖w‖2, (2.6)

where D = diag[{µπθ
(x)∀x ∈ Rn}] is a diagonal matrix with the stationary distribution of

πθ on the diagonal; ΠΦ = Φ(Φ>DΦ)−1Φ>D is the projection onto the subspace {Φw :

w ∈ Rq1}; Φ is the stacking of φ(x, u) for every (x, u) pair,and ρ is a free parameter for

25

regularization of w. From [32], and assuming A is invertible, we know this can also be

rewritten as

min
w

MSPBE(w) = min
w

1
2‖Φ>D(Qw−R−γEx [Vπ])‖2

(Φ>DΦ)−1 +ρ‖w‖2

= min
w

1
2‖Aw − b‖2

A−1 + ρ‖w‖2,

where

A = E[A(t)],b = E[b(t)]

with

A(t) = φ(x(t), u(t))φ(x(t), u(t))>

b(t) = (R(x(t), u(t)) + γVπ(x(t+ 1)))φ(x(t), u(t))

and ‖v‖M =
√
v>Mv for any vector v. Note that A and b are usually not available in

practice since they are all computed with respect to the stationary distribution of πθ, which

denoted by µπθ
usually requires the knowledge of state dynamics of the plant. Thus instead

of solving (2.7), we will solve its equivalent problem, as shown in [32]:

min
w

1
m

m∑
i=1

MSPBEi(w) (2.7)

where

MSPBEi(w) = 1
2‖Âw − b̂i‖2

Â−1 + ρ‖w‖2, (2.8)

Â = 1
T

∑T
t=1 A(t), b̂i = 1

T

∑T
t=1 bi(t), and

bi(t) = (ri(x(t), u(t)) + γVπ(x(t+ 1)))φ(x(t), u(t)). (2.9)

26

Then the problem of learning a good estimate to Qπ can be achieved by solving the opti-

mization problem in (2.7). Similar to [32], we employ the following update at each agent

i:

wi(t+ 1) =
N∑

j=1
Wi,jwi(t) − α1si(A(t), t)

νi(t+ 1) = νi(t) + α2di(A(t), bi(t), t),

Here, νi is the dual variable of agent i with Metropolis weights Wi,j given by

Wi,j =



1
max{ei,ej} , if j ∈ Ni, j 6= i

1 −∑
k∈Ni,k 6=i Wi,j , if i = j

0, if j 6∈ Ni

,

where ei is the number of neighbors of agent i, which by our definition of Ni includes agent

i. Here, si is a surrogate for the gradient of the objective function in (2.7) with respect to

wi, and likewise di is a surrogate for the gradient of the same objective function with respect

to νi. Through these gradient surrogates, each agent attempts to track the actual gradients

of the objective function by using only local information and the estimates of its neighbors.

As such, the updates of these surrogates use gradients on the locally available function given

by (2.8), plus the local average of previous estimates (in the case of si only). Please refer to

[32] for more details on the definition and updates of these gradient surrogates.

Note that computing bi(t) at each agent i requires Vπ(x) as shown in (2.9), which is related

to Qw(x, u) by (2.4). Since the expectation Eu(t+1)|π in (2.4) cannot be calculated by each

agent i without access to π, we employ a linear function approximation for the state-value

function, namely,

Vυ(x) = υ>η(x), (2.10)

27

where υ ∈ Rq2 and η(x) ∈ Rq2 is a vector of basis functions. Then we need to find proper

parameters υ such that Vυ → Vπ, for which we employ the following updates to improve our

estimates of Vυ:

υi(t+ 1) =
N∑

j=1
Wi,jυi(t) − α3hi(C(t), t)

κi(t+ 1) = κi(t) + α4li(C(t), D(t), fi(t), t).

Here,

C(t) = η(x(t))(η(t) − γη(x(t+ 1)))>

D(t) = η(x(t))η(x(t))>

fi(t) = ri(x(t), u(t))η(x(t)),

and κi is the corresponding dual variable. In addition, we have that hi is the gradient

surrogate with respect to υi and li is the gradient surrogates with respect to κi. The definition

of gradient surrogates is discussed above.

2.1.2 Actor Training

Now based on the convergence of the critic, we train each agent’s actor to converge on

the globally optimal control policy. Similar to [31], we will also utilize the policy gradient

method for the actor training in this section. A policy best for the whole network will be

achieved based on the advantage function

Aπ(t) = Qπ(x(t), u(t)) − Vπ(s),

[71], [72], [75]. Though each agent does not know the exact value to this advantage function,

we allow each agent to use

Ai(t) = Qwi(x(t), u(t)) − Vυi(x(t)),

28

which can be looked at as a local estimate to the global advantage function Aπ(t). Motivated

by this we employ the following updates for actor training:

θi(t+ 1) = Γ(θi(t) + β(t)Ai(t)ψi(x(t), u(t))),

where Γ is a projection operator and we have:

ψi(x(t), u(t)) = ∇θi(πθi(x(t), u(t)))
πθi(x(t), u(t))) ,

which comes from the gradient of log(πθi(x(t), u(t))) with respect to θi.

To summarize, the proposed distributed update at each agent i is given as follows:

Critic Update:

wi(t+ 1) =
N∑

j=1
Wi,jwi(t) − α1si(t) (2.11)

νi(t+ 1) = νi(t) + α2di(t), (2.12)

υi(t+ 1) =
N∑

j=1
Wi,jυi(t) − α3hi(t) (2.13)

κi(t+ 1) = κi(t) + α4li(t). (2.14)

Actor Update:

θi(t+ 1) = Γ(θi(t) + β(t)Ai(t)ψi(x(t), u(t))). (2.15)

2.2 Main Result

We will now go over the main result of our paper where we describe what the proposed

algorithm can achieve under the following assumptions:

(A1)- The function approximation of the policy , i.e πθ, is greater than 0 for any θ. This

is a standard assumption used in [31], [72], [77]

29

(A2)- πθ(x, u) is continuously differentiable in θ, as is assumed in [77]

(A3)-The projection operator Γ, which is used in the proposed update, projects any θi(t)

onto a compact set. Furthermore, we assume that the compact set Θ is large enough to

include a least one local minimum of Vπθ
.

(A4)-The reward function ri(t) is uniformly bounded for each agent and for all time. This

assumption has been made in works such as [31], [74]

(A5)- The step-sizes α1(t),α3(t), β(t) satisfy:

∞∑
t=1

α1(t) → ∞
∞∑

t=1
α3(t) → ∞

∞∑
t=1

β(t) → ∞

β(t) = o(α1(t)) α1(t) = o(α3(t)), as t → ∞,

where f(t) = o(g(t)) means for every constant ε there exists a constant N such that |f(t)| ≤

εg(t), for all t ≥ N . In addition, we assume ∑∞
t (α1(t)2 + α3(t)2 + β(t)2) is bounded.

(A6)- Each data sample is selected at least once every T iterations of parameter updates.

(A7)-The matrices Â and Ĉ are full rank for large T

(A8)- The sequence of states produced by any policy π is a Markov chain that is irre-

ducible and aperiodic.

(A9)- Φ is full rank , q1 ≤ n, and φ(x(t), u(t)) is uniformly bounded for all x, u pairs.

Theorem 2.2.1. We denote wπθ
= wθ and υπθ

= υθ, where wθ and υθ are the target

parameters such that |Qwθ
(x, u) −Qπθ

(x, u)| and |Vυθ
(x) − Vπθ

(x)| are minimized for all (x, u)

and some parametrized policy πθ. Given assumptions (A1)-(A9) we have the following: For

each agent i , given a fixed parametrized policy πθ, wi and υi converge with consensus to

parameters wθ and υθ in a linear rate, such that Qwi → Qwθ
and Vυi → Vυθ

. Furthermore,

given Qwi → Qwθ
and ε > 0, there exists a δ > 0 such that if supθ(t) ‖eθ(t)‖ < δ, then the

proposed actor updates on θi(t) converge almost surely to an ε neighborhood of a local optimum

of Qπθ
. Where the local optimum is defined as a θ such that ∇θQπθ

= 0 and furthermore:

eθ(t) =Ex

[
Eu|x [((Qπθ

(x, u) −Qwθ
(x, u))+ (Vπθ

(x) − Vυθ
(x)))ψi(x, u)]

]
.

30

Remark: We note that eθ(t) expresses the bias due to linear function approximation of Qπθ

and Vπθ
. Therefore, as long as this bias is small enough the proposed algorithm can achieve

convergence to ε neighborhood of the optimal policy, and so we achieve the goal of our paper

described by: πθi → π∗ ± ε and Qwi → Qπ∗±ε .

In order to prove Theorem 2.2.1 , we need the following lemmas, where lemma 1 is used

to prove lemma 2.

Lemma 2.2.2. Given assumption (A5),(A6),(A7), a sufficiently small α3 with α4 = ι1α3

where

ι1 = 8(ρ+ λmax(Ĉ>D̂−1Ĉ))/λmin(D̂),

and a policy πθ, then for each agent i the updates on υi from (2.13) converge to network

consensus on υθ such that Vυi → Vυθ
.

Proof of Lemma 2.2.2 : Using the conditions on α3(t) relative to β(t) from (A5), we apply

the two time-scale stochastic approximation method [78] to hold θ fixed in our analysis on

the convergence of υ. The result then follows from [32], which proves that the updates from

(2.15) converge to network consensus given a fixed policy πθ.

From Lemma 1 we have that υi converges such that Vυ → Vθ and that the network reaches

consensus on υi, furthermore from (A5) we know that υi converges in a faster time-scale than

wi. Therefore, using two-timescale stochastic approximation [78] we have that Vυ = Vθ for

our analysis of updates on wi. By following the same proof in [32], one then has the following

lemma:

Lemma 2.2.3. If assumptions (A5), (A6), and (A7) hold and the primal step size α1 is suf-

ficiently small with α2 = ι2α1 where ι2 = 8(ρ+λmax(Â))/λmin(Â), then for a given policy πθ

the critic algorithm converges to the optimal parameters wθ, ν∗
i , and 1

m

∑m
i=1 ‖wi(t) − w̄(t)‖)

converges to zero, all at a linear rate. More formally we have:

‖w̄(t) − wθ‖2 + 1
ι2m

m∑
i=1

‖νi − ν∗
i ‖2 = O(σt), 1

m

m∑
i=1

‖wi(t) − w̄(t)‖ = O(σt),

where w̄(t) = 1
m

∑m
i=1 wi(t) and 0 < σ < 1.

31

While more details of the proof for lemma 2 are provided in [32] and the full details are

in the supplementary notes they provide, we will give a short outline of their proof.

Sketch of Proof for Lemma 2.2.3 : We now go through an outline of the proof for lemma

2. Overall, the proof focuses on the evolution of the following Lyapunov functions, and on

the conditions that guarantee these functions will converge linearly to zero:

‖v̂(t)‖2 = Θ(‖w̄(t‖ − wθ)2 + 1
κm

m∑
i=1

‖νi − ν∗
i ‖2)

Ec(t) = 1
m

√√√√ m∑
i=1

‖wi(t) − w̄(t)‖2

Eg(t) = 1
m

√√√√ m∑
1

‖si(t) − 1
mT

m∑
i=1

T∑
t=1

∇wJi(w, ν, t)‖2

Where Ji is the conjugate of the objective function in (2.8) for an agent i, Ec is the con-

sensus error of the primal parameter, and Eg is the consensus error of the primal aggregated

gradient.

The proof can then be divided into three parts. In the first part, one iteration of the

critic algorithm is analyzed , and in particular the errors due to imperfect tracking of the

temporal and spatial gradients are considered. The analysis in the first step then leads to

the construction of a Lyapunov vector v̄(t) = [‖v̂(t)‖, Ec(t), Eg(t)]>, which consists of the

Lyapunov functions shown above.

The second part focuses on the evolution of this Lyapunov vector v̄(t) in one iteration

of the algorithm, which is refered to as the coupled system. It is then observed that the

Lyapunov vector contains delayed terms due the incremental updates employed by the al-

gorithm. The convergence of the delayed and coupled systems are studied, and sufficient

conditions for their linear convergence are explored.

The last part of the proof seeks to derive conditions on the step size α1, so that sufficient

conditions for linear convergence are satisfied.

Proof of Theorem 2.2.1 : For convenience we denote Qπθ
= Qθ, wπθ

= wθ, Vπθ
= Vθ,

υπθ
= υθ, ψi(x(t), u(t))as ψi(t), Ex[Eu|x[·]] as E[·], and for simplicity we denote θ(t) = θ.

32

From our problem formulation we have that each agent maintains an estimate of the global

optimal policy πi, however we also have that each agent only executes a control input ui.This

ui is only an element of the global control input estimate uπi sampled from πi. We now define

an effective global policy π such that when u is sampled from π, we get the actual global

control input vector col{u1, u2, ..., um}. In addition we define πθ as the parameterized form

of π, given some parameter vector θ .

Given the above definitions, we begin by writing out the actor update :

θi(t+ 1) = Γ(θi(t) + β(t)Ai(t)ψi(t)).

Now let F(t) = σ(θi(τ), τ ≤ t) be a σ-field (also called σ-algebra). We can then define the

following:

ξ1(t+ 1) = Ai(t)φ(t) − E[Ai(t)ψi(t) | F(t)]

ξ2(t+ 1) = E[(Ai(t) − Aθ(t)ψi(t) | F(t)],

where Aθ(t) = Qwθ
(x(t), u(t)) −Vυθ

(x(t)) is the advantage function after the critic converges

to wθ, υθ for a given πθ, whereas Ai(t) is a current estimate using the critic of agent i. With

this we can rewrite the actor updates as:

θi(t+ 1) = Γ(θi(t) + β(t)E[Aθ(t)ψi(t)]β(t)ξ1(t) + β(t)ξ2(t)).

From lemma 2 we know that the critic converges, and from our time-step assumptions we

know that it converges in a faster time scale than the actor. Therefore, in the actor update

time-scale we have that Ai(t) → Aθ(t), and so ξ2 is in o(1). Furthermore, let M(t) =∑∞
t=1 β(t)ξ1(t), we also note that the sequence {M(t)} is a martingale sequence. We also

know that from assumption the sequences {wi(t)} , {ψi(t)}, and {φ(x(t), u(t))} are bounded,

33

and so {ξ1(t)} must also be bounded. Using our step-size assumption we then have the

following almost surely:

∞∑
t=1

E[‖M(t+1)−M(t)‖2 | F(t)] =
∞∑

t≥1
‖β(t)ξ1(t+1)‖2< ∞.

From the martingale convergence theorem we know that M(t) conveges almost surely, and

so we have :

lim
t→∞

P
(

sup
n≥t

‖
n∑

τ=t

β(τ)ξ1(τ)‖ ≥ ε

)
= 0

for some ε > 0.

We now look at the quantity E[Aθi(t)ψi(t)], which can be rewritten as the following:

E[Aθ(t)ψi(t)] =
∫ ∞

−∞
µθ(x)

∫ ∞

−∞
πθ(x, u)ψi(t)Aθ(t) du dx

=
∫ ∞

−∞
µθ(x)

∫ ∞

−∞
πθ(x, u)ψi(x, u)(w>

θ φ(x, u)−υ>
θ η(x)) du dx.

From the above we can show that E[Aθ(t)ψi(t)] is continuous in θi.It is important to note

that θ is the parameter vector of πθ, which when sampled produces the same ui extracted

from each agents u ∼ πθi . Therefore, as long as the parametrization of π can represent any

viable(stochastic) policies, then θ can be seen as a continuous function of each agent’s θi.This

observation implies that that if a function is continuous in θ, then it is also continuous in θi.

With the above observations of each term in the proposed update equation, the Kushner-

Clark lemma [79] tells us that the update converges almost surely to the set of asymptotically

stable equilibria of the following ODE:

θ̇i(t) = Γ(E[Aθψi(t)]). (2.16)

From [71], [72], [75] we know that in order to update the policy towards the optimal

policy we must compute ∇θVθ(x), which is the policy gradient, usually expressed as ∇J(θ).

In [75], [77] we find that:

∇θVθ(x) = E[(Qθ(x, u) − Vθ(x))ψi(x, u)].

34

We can then rewrite E[Aθψi(t)] similar to [31], [77],in the following way :

E[Aθψi(t)] = ∇θVθ(x) + (E[Aθψi(t)] − E[(Qθ(x, u) − Vθ(x))ψi(t)]).

By rearranging terms and using the linearity of expectation we then get:

E[Aθψi(t)] = ∇θVθ(x) + E[((Qwθ
(x, u) −Qθ(x, u)) + (Vυθ

− Vθ(x)))ψi(t)],

where E[(Qwθ
(x, u) −Qθ(x, u)) + (Vυθ

−Vθ(x))ψi(t)] expresses the bias due to linear function

approximation of Vθ and Qθ. Therefore, if

sup
θ(t)

‖E[((Qwθ
(x, u)−Qθ(x, u)) + (Vυθ

−Vθ(x)))ψi(t)]‖ < δ

for some δ > 0, then (2.16) converges almost surely to an ε neighborhood of ∇θVθ = 0, which

is a local optimum of Vθ and , since Vθ(x) = Eu∼πθ
[Qθ(x, u)], a local optimum of Qθ. [77].

2.3 Simulations

As in in [74], we also consider the following nonlinear system:

x(t+ 1) = ϕ|x(t)| + v>u+ (
√

1 − ϕ2)%(t)

where ϕ = 0.9, %(t) ∼ N (0, 1), and v ∈ Rm is selected randomly from [0, 1]m.We use N (0, 1)

to denote the normal distribution with zero mean and standard deviation of one.

Consider a small network of m = 4 agents. Each agent’s πi is approximated by a normal

distribution N (ζθi(x), σ), where ζθi(x) = θ>
i χ(x) and σ = 0.5. We have that χ(x) ∈ R5 is

a vector of Gaussian radial basis functions(RBF) with means randomly selected from [0, 1]

and a standard deviation of 0.001. Furthermore, each agent observes a reward ri(x, u) =

k0,i +k1,iu
2
i +k2,ix

2, where ui is the scalar control input of agent i. The coefficients k0,i, k1,i, k2,i

are selected randomly from the range [0, 1] for each agent.

In order to approximate the state-value function V (x), we use a scalar basis function η(x)

which we implement as a Gaussian radial basis function with mean selected randomly from

35

Figure 2.2. Averaged State-Value Parameter for the Critic

Figure 2.3. Averaged Action-Value Parameters for the Critic

the interval [−2, 5] and standard deviation of 0.1. For the approximation of the action-value

function Q(x, u) we use the following structure:

Qwi(x, u) = w1,iu
>E(x)u+ u>F (x)w2:q1−1,i + wq1,i

where wi = col{w1,i, w2:q1−1,i, wq1,i} with q1 = 5. The basis functions E(x) and F (x) are also

selected as Gaussian radial basis functions with means randomly selected from [0, 1] and

standard deviation of 0.1 for both. The plots of our simulation results, shown in figures

36

Figure 2.4. Averaged Policy Parameters for the Actor

37

(2.2 , 2.3 , 2.4), show the time evolution of the network average of the parameters of interest,

namely ῡ, w̄, θ̄. Where ῡ = 1
m

∑m
i=1 υi, w̄ = 1

m

∑m
i=1 wi, θ̄ = 1

m

∑m
i=1 θi.We label each x-axis as

“epochs”. We define an “epoch” as the time step t divided by the number of data samples

in memory M , where data samples are the sequences of states and control inputs that have

been observed and recorded. For our simulations we used a memory of M = 1500 data

samples.

From figures (2.2) and (2.3) we can see that the proposed updates on υi and wi both

converge for every agent in the network, and that by design the critic converges much faster

for υi then for wi.

2.4 Conclusion

In this paper we have looked at the problem of distributed multi-agent reinforcement

learning where agents only observe their own local rewards. We have presented an actor-

critic algorithm that allows agents to use information from their neighbors in order to improve

their policies so that the globally averaged reward is maximized. The algorithm has been

analyzed based on the two-timescale method used in stochastic approximation problems,

and conditions for its convergence have been provided.

38

3. DISTRIBUTED OFFLINE REINFORCEMENT LEARNING

3.1 Introduction

Reinforcement learning (RL) has recently achieved success in many applications such as

autonomous driving, robotics, and so on [1], [3], [4], especially when combined with powerful

neural network function approximators. There are, however, still practical challenges when

applying reinforcement learning in the real-world. One of these challenges is that reinforce-

ment learning in the classical setting requires continual interaction with the environment

in order to learn [75]. In practice, this interaction can be costly and/or dangerous since it

might require running experiments with potentially expensive hardware or potentially using

a changing control policy, which changes as part of the learning process, and in doing so

might explore unsafe actions [80]–[82]. Offline reinforcement learning, where we learn from

large, previously collected datasets without further interaction with the environment[80],

[82]–[84], offers an alternative to classical reinforcement learning.

Off-policy reinforcement learning, such as Q-learning [7], can in principle enable an agent

to learn from large, fixed datasets, but in practice offline reinforcement learning comes with

some unique challenges not addressed by off-policy methods [80]. The main challenge is that

learning from a fixed, finite dataset can lead to overfitting to the dataset which can result

in large extrapolation errors [81], [82].

In the offline reinforcement learning literature, this overfitting issue and the resulting

extrapolation errors have been attributed to what is known as distributional shift, which is

the difference in data distributions between the data produced by the behaviour policy (the

policy used to collected the data) and the data that would have been produced by the learned

policy [80], [85]. If distributional shift is not addressed, it has been shown that reinforcement

learning algorithms can result in poorly performing policies due to the mentioned issue of

overfitting [56], [80], [85], [86]. This motivates us to explore offline reinforcement learning

algorithms, so that we could achieve good policies even with fixed, finite datasets.

Recently researchers have also explored RL algorithms for mutli-agent systems due to

their applications in formation control [87], [88], coverage [89], social networks [90] and so

on. These problems are challenging due to the lack of a centralized coordinator in multi-

39

agent systems. Despite these challenges, great progress has been achieved for Multi-Agent

Reinforcement Learning (MARL) in [31], [74], [91]–[93]. In these algorithms, it is assumed

agents operate in the same environment with a shared state representing the environment,

and in a lot of these works the state transition depends on the actions of each agent.

In our work we consider a different perspective, where we consider an agent operating

in some unknown environment, where the agent has collected a large dataset by interacting

with the environment and by choosing actions according to some policy. Given this scenario,

we explore how we can utilize a multi-agent network, where agents can only communicate

with nearby neighbors, to cooperatively learn a better control policy by splitting up the large

dataset amongst the agents. The motivation is that by splitting up the dataset, agents can

more efficiently learn from a very large dataset, given that each agent has limited computa-

tional power, which is a key idea that has been explored in the distributed machine learning

literature [61], [62], [94] and more recently federated learning [95]–[97].

We note that the problem explored in this work is similar to horizontal federated rein-

forcement learning[98] but with the difference that in our case the data is produced from

a single agent and so privacy is not an issue, and unlike in [98], in this work we consider

the challenges that come with offline reinforcement learning. We also note the similarity of

our work with [81], where they also explore offline reinforcement learning in the multi-agent

setting, but in [81] they consider independent agents in the sense that agents are not part of

a communication network and so agents cannot share information. As such, in [81] they have

not explored how agents can improve their policies by sharing information. In addition, in

[81] they propose a model based approach in order for each agent to predict and coordinate

with other agents, while our focus is on a model-free approach where agents leverage com-

munication to cooperatively learn. To our knowledge, there are no works that have explored

cooperative multi-agent offline reinforcement learning where agents are part of a distributed

network and where distributional shift is taken into account.

40

3.2 Problem Formulation

Consider a scenario where a control system with unknown dynamics operates in an en-

vironment. Let xt ∈ X ⊂ Rn denote the state of the system at time t. Let at ∈ A denote

the action of the system at time t, where A is a finite action space. For each xt and at

at time t, let r(xt, at) denote the system’s reward received from the interaction with the

environment, where r : X × A → R, and correspondingly the state changes to be xt+1. Call

{xt, at, xt+1, r(xt, at)} a data point at time t, which describes the interaction between the

system and its operational environment at time t.

Suppose the action at follows a control policy π : A × X → [0, 1], i.e. at ∼ π(·|xt), where

∼ means “sampled from a distribution”. Let π∗ denote the optimal policy which maximizes

long term rewards, i.e.

π
∗ = arg max

π′
E
[∞∑

τ=0
γτr(xτ , aτ)

]
, aτ ∼ π

′(·|xτ).

with γ ∈ (0, 1) is a discount factor. Obviously, learning an optimal policy π∗ is critical to

enable a control system operate in an optimal way in its operational environment. One way

to achieve this is by

π
∗(a|xt) =


1, if a = arg max

u
Qπ∗(xt, u)

0, otherwise.
(3.1)

where Qπ∗ is called an optimal value function

Qπ∗(xt, at) = E
[∞∑

τ=0
γτr(xτ , aτ)

∣∣∣∣∣x0 = xt, a0 = at

]
,

with aτ ∼ π∗(·|xτ). We note that since A is a finite set, then arg max
u

Qπ∗(xt, u) from (3.1)

requires only |A| calls to Qπ∗ . As adopted by the area of reinforcement learning[99], we also

assume that Qπ∗ follows a linear combination of known features, i.e.

Qπ∗(xt, at) = φ(xt, at)>θ∗, (3.2)

41

where θ∗ ∈ Rw is a vector of parameters to be determined and φ(xt, at) ∈ Rw is a pre-

known vector of linearly independent basis functions. Thus learning an optimal policy can

be achieved by estimation of θ∗.

Different from online reinforcement learning, by which we “try-and-correct” estimates of

θ∗ from the real-time interactions between the system and environment, offline reinforcement

learning aims to estimate θ∗ based on a fixed set D(T) consisting of data points for t =

0, 1, 2,, T . Here, T is a finite positive integer which is usually very large. Other than

process the large dataset D(T) in a single processor, we in this paper are interested in

developing a distributed algorithm for offline reinforcement learning in multi-agent systems.

We partition D(T) into a number of m subsets, i.e.

D(T) = D1 ∪ D2 ∪ · · · ∪ Dm

where

Di = {xi,t, ai,t, xi,t+1, r(xi,t, ai,t) : t ∈ Ti},

and Ti ⊂ {0, 1, 2, ..., T} is the set of time indices associated with Di. Suppose we are given

a network of m agents where each agent i knows Di, controls a vector θi,k as an estimate

to θ∗ at iteration k and is able to receive information from its nearby neighbors Ni. The

problem of interest is to develop a rule for each agent i to update θi,k only based on

information from its nearby neighbors j ∈ Ni such that

lim
k→∞

m∑
i=1

‖θi,k − θ∗‖2 ≤ c(T), (3.3)

Remark 3.2.1. As pointed out in [82], the main challenge in offline reinforcement learning

(RL) results from the distributional shift , which is the difference between the actual dataset

and the data set that would have been observed if the system had followed the optimal policy.

More formally, let dπ′(x) denote a probability density function over x ∈ X which describes

the probability of a state given an agent takes actions according to a policy π′. As such, if

π′(a|x) 6= π∗(a|x) for some x ∈ X and a ∈ A, then dπ′(x) − dπ∗(x) 6= 0, where the difference

|dπ′(x) − dπ∗(x)| describes the distributional shift induced by a policy π′. This difference in

42

distributions can result in a tendency to overestimate the predicted reward of (state, action)

pairs that are not in the dataset. This overestimation is caused by the agent never observing

a low or negative reward for these (state, action) pairs since they are not in the dataset.

When this overestimation occurs the resulting policy performs poorly when it encounters these

(state, action) pairs during test time [80], [82]. Thus in offline reinforcement learning one

needs to come up a way to account for distributional shift in order to achieve policies that

perform well in (state, action) pairs that are not in the datasets.

3.3 Key Idea

To achieve a nice estimate to θ∗ in the literature of reinforcement learning (RL) [75], one

usually considers the following temporal difference error

δt(θ) = Qθ(xt, at) − r(xt, at) − γmax
a′

Qθ(xt+1,a
′)

since E[1
2δt(θ∗)2] = 0. By noting that the term max

a′
Qθ(xt+1, a

′) is not differentiable with re-

spect to θ, researchers usually employs δ̂i,t(θ) instead as in [36], by replacing max
a′

Qθ(xt+1, a
′))

with max
a′

Qθi,k(xt+1, a
′)) in δt(θ), where

δ̂i,t(θ) = Qθ(xt, at) − r(xt, at) − γmax
a′

Qθi,k(xt+1, a
′). (3.4)

In order to account for distributional shift in offline RL, one introduces the following term

as in [82]

βE[log(
∑
a∈A

exp(Qθ(xt, a))) −Qθ(xt, at)], (3.5)

with β > 0. This term penalizes overvaluing (state, action) pairs that are not in the training

dataset, in the sense that it penalizes an estimate θ that results in

E[log(
∑
a∈A

exp(Qθ(xt, a)))] > E[Qθ(xt, at)].

43

As such, this term attempts to prevent learning a policy that is biased towards actions that

are not in the dataset [82], since we do not know if these actions actually lead to higher

rewards.

In the literature of multi-agent reinforcement learning (MARL) [100], for a given estimate

θi,k, one also use the following term

αk

2 (θ − θi,k)>E[At](θ − θi,k), (3.6)

with At = φ(xt, at)φ(xt, at)> ∈ Rw×w and tunable parameter αk > 0 to penalize large changes

in the estimate of θ∗. Thus in order for each agent i to achieve a nice estimate to θ∗ given

θi,k, one needs to minimize the following L(θ), which is a sum of terms in (3.4),(3.5) and

(3.6):

Li(θ) = E[12 δ̂i,t(θ)2] + αk

2 (θ − θi,k)>E[At](θ − θi,k)

+ βE[log(
∑
a∈A

exp(Qθ(xt, a))) −Qθ(xt, at)]. (3.7)

This minimization is achieved by setting the gradient equal to zero, which leads to the

following system of equations:

(αk + 1)E[At]θ =E[bt(θi,k)] + βE[ct(θ)] + αkE[At]θi,k, (3.8)

where

bt(θi,k) = φ(xt, at)(r(xt, at) − γφ(xt+1, a)>θi,k),

a = arg max
a′

φ(xt+1, a
′)>θi,k,

ct(θ) =
∑

a∈A exp(Qθ(xt, a))φ(xt, a)∑
a∈A exp(Qθ(xt, a)) − φ(xt, at).

44

In order to achieve further simplification, we use the current estimate θi,k to replace θ in

the nonlinear term ct(θ), i,.e. replace ct(θ) by ct(θi,k) in (3.8), which leads to

(αk + 1)E[At]θ̂ = E[b̄t(θi,k)] + αkE[At]θi,k, (3.9)

where

b̄t(θi,k) = bt(θi,k) + βct(θi,k).

The above system of equations is linear with respect to θ̂, and so we could solve for θ̂ if we

could compute the expectations of At and b̄t, which are however not directly available to

each agent i. We thus need to introduce approximations of At and b̄t based on only Di. For

any dataset D̂ ⊂ Di with d̂ =
∣∣∣D̂∣∣∣ and its corresponding time index set T̂ ⊂ Ti, we let

Ai(D̂) = 1
d̂

∑
t∈T̂

Ai,t, b̄i(D̂, θi,k) = bi(D̂, θi,k) + βci(D̂, θi,k) (3.10)

bi(D̂, θi,k) = 1
d̂

∑
t∈T̂

bi,t(θi,k), ci(D̂, θi,k) = 1
d̂

∑
t∈T̂

ci,t(θi,k), (3.11)

where

Ai,t = φ(xi,t, ai,t)φ(xi,t, ai,t)>

b̄i,t(θi,k) = bi,t(θi,k) + βci,t(θi,k) (3.12)

bi,t(θi,k) = φ(xi,t, ai,t)(r(xi,t, ai,t) − γφ(xi,t+1, u)>θi,k) (3.13)

u = arg max
a′

φ(xi,t+1, a
′)>θi,k

ci,t(θ) =
∑

a∈A exp(Qθ(xi,t, a))φ(xi,t, a)∑
a∈A exp(Qθ(xi,t, a)) − φ(xi,t, ai,t). (3.14)

Then the linear equations in (3.9) with E[At] ≈ Ai(D̂) and E[b̄t(θi,k)] ≈ b̄i(D̂, θi,k) can be

approximated by:

(αk + 1)Ai(D̂)θ̂ = b̄i(D̂, θi,k) + αkAi(D̂)θi,k. (3.15)

45

For the dataset D̂ ⊂ Di, we let ΦD̂ ∈ Rw×d̂ be the constant matrix with columns equal to

φ(xi,t, ai,t), t ∈ T̂ . Recall that φ ∈ Rw is a set of linearly independent basis functions. Thus

Φ is full rank if d̂ ≥ w. It follows that Ai(D̂) = ΦD̂Φ>
D̂ is non-singular.

To sum up, for any dataset D̂ ⊂ Di with d̂ =
∣∣∣D̂∣∣∣ ≥ w and its corresponding time index

set T̂ ⊂ Ti, one has

θ̂ = αk

αk + 1θi,k + 1
αk + 1Ai(D̂)−1b̄i(D̂, θi,k), (3.16)

with Ai(D̂) and b̄i(D̂, θi,k) as defined in (3.10).

3.4 Algorithm and Main Result

In this section we present a distributed algorithm to estimate θ∗ based on (3.16) and the

idea of convex combination.

In order to more efficiently utilize each agent i’s data Di, we create a batch of subsets of Di

denoted as Di,1,Di,2, ...,Di,Ni(T) such that the union of these subsets is Di. Correspondingly

for each Di,q, one defines

Ai(Di,q), b̄i(Di,q, θi,k), q = 1, 2, ..., Ni(T)

which can be computed as in (3.10) before embarking iterations. At the kth iteration, each

agent i first computes

θ̂i,k = αk

αk + 1θi,k + 1
αk + 1Ai(Di,q(k))−1b̄i(Di,q(k), θi,k), (3.17)

with q(k) = k mod Ni(T) is the remainder of k when divided by Ni(T), then each agent i

receives θ̂j,k from all its neighbors j ∈ Ni, and performs the following iterative update

θi,k+1 =
∑
j∈Ni

wijθ̂j,k. (3.18)

46

Here wij denotes non-negative weights such that wij > 0 if and only if j ∈ Ni, and

m∑
j=1

wij = 1,
m∑

i=1
wij = 1.

In the following we present our main result that each θi,k converges close to the optimal

parameter θ∗ by deriving an asymptotic upper bound on the sum of norm squared errors for

each agent. Before proceeding on, we introduce four assumptions:

Assumption 3.4.1. We assume

‖φ(x, a)‖ ≤ 1

for all x ∈ X , a ∈ A.

Since X is a compact set and A is a finite set, there is a scalar φmax such that φmax >

‖φ(x, a)‖ and so we can always normalize φ(x, a) by φ(x,a)
φmax

.

Assumption 3.4.2. Let W be a matrix such that wij is the ij entry of W and let λ0 be the

smallest eigenvalue of W . Let Ãk = diag{(A1(D1,q(k)), . . . , (Am(Dm,q(k))} and let λ1 denote

the smallest eigenvalue of Ãk for all k. We assume that

λ2
0 > λ2

1γ
2.

Note that since γ ∈ (0, 1) is a design parameter, we can choose a γ such that the needed

condition holds.

Assumption 3.4.3. We assume there exists a non-negative scalar p such that

sup
a∈A

|π∗(a|x) − π(a|x)| ≤ p

for all x ∈ X and we assume there exists a positive scalar rmax such that |r(x, a)| ≤ rmax for

all x ∈ X , a ∈ A.

47

Assumption 3.4.4. We assume π(a|x) > 0 for all x ∈ X , a ∈ A and dπ(x) > 0, for all

x ∈ X , where we recall dπ(x) is a probability density over all states given a policy π. This

assumption is satisfied by choosing a policy π such that an agent following π can explore the

entire state space X given enough time.

Theorem 3.4.5. Given assumptions (3.4.1 - 3.4.3), and each agent follows the updates given

by (3.17) and (3.18) with αk = k and β = 2prmax
1−γ

. We have that for all i, θi,k converges to a

neighborhood of θ∗ in the sense that:

lim
k→∞

m∑
i=1

‖θi,k − θ∗‖2 ≤ c(T). (3.19)

where

c(T) = c+ ‖h̄(T)−1f̄(T) − θ̃∗‖2

λ2
0 − λ2

1γ
2 , (3.20)

with c = 8mλ2
1p2r2

max
(λ2

0−λ2
1γ2)(1−γ)2 , θ̃∗ = 1m ⊗ θ∗,

h̄(T) = 1
Ñ(T)

Ñ(T)∑
τ=0

Ãτ , f̄(T) = 1
Ñ(T)

Ñ(T)∑
τ=0

b̂τ (θ̃∗).

Here b̂k(θ̃∗) = col{b1(D1,q(k), θ
∗), . . . , bm(Dm,q(k), θ

∗)}, Ñ(T) denotes the number of distinct

joint batches processed by the proposed algorithm, Ξ(k) = {D1,q(k), . . . ,Dm,q(k)} denotes the

joint batch at iteration k, and Ãk = diag{A1(D1,q(k), . . . , Am(Dm,q(k)}. Moreover,

lim
T →∞

c(T) = c. (3.21)

Remark 3.4.6. From (3.21) and (3.20) we can conclude that as the size of the dataset

approaches infinity (i.e. T → ∞), the asymptotic error upper bound c(T) decreases from

c+ ‖h̄(T)−1f̄(T)−θ̃∗‖2

λ2
0−λ2

1γ2 towards c, where the positive term ‖h̄(T)−1f̄(T)−θ̃∗‖2

λ2
0−λ2

1γ2 goes to zero.

48

3.5 Proof of Main Result

In this section we prove the convergence of our algorithm to a neighborhood of the the

optimal solution θ∗. The main idea of our proof is to use the ODE approximation method

[100], [101], where we will show that the error dynamics for the proposed algorithm follows

an ODE that is globally asymptotically stable. First we present and prove some lemmas

that are used in our proof.

Lemma 3.5.1. Let Z = {Ξ(k) : k = 1 : Ñ} denote the set of all distinct joint batches.

Now let g be a continuous function g : Z → Rp1×p2, for any p1 > 0, p2 > 0, and let

ḡ(T) = 1
Ñ(T)

∑Ñ(T)
τ=1 g(Ξ(τ)). For any such g, we have the following equation:

lim
N→∞

1
N

N∑
k=0

g(Ξ(k)) = ḡ(T).

Proof: We recall that the number of distinct joint batches from each Di is Ñ(T), and so all

these joint batches are processed every Ñ(T) iterations since at each iteration the network

of agents jointly processes one joint batch. As such we have that Ξ(k) = Ξ(k + Ñ). Let

bxc denote the “floor” operator which rounds down x to the nearest integer, we have the

following:

lim
N→∞

1
N

N∑
k=0

g(Ξ(k))

= lim
N→∞

1
N

bN/Ñ(T)c∑
v=0

Ñ(T)∑
τ=1

g(Ξ(τ)) + 1
N

N∑
τ=bN/Ñ(T)c+1

g(Ξ(τ))

= lim
N→∞

1
N

bN/Ñ(T)c∑
v=0

ḡ(T) + 0 = ḡ(T),

where in the last step we make use of the fact that 1
N

∑N
τ=bN/Ñ(T)c+1 g(Ξ(τ)) is the product of

a finite sum and 1
N

, which goes to zero as N → ∞. This concludes our proof.

49

Lemma 3.5.2. For some function V : Z → [1,∞) and s : Z → [0, 1] and constants δ > 0,

b < ∞:

lim
N→∞

1
N

N∑
k=0

V (Ξ(k + 1)) ≤ (1 − δ)V (z) + bs(z),∀ z ∈ Z.

Proof: Since each dataset Di is finite and therefore Z is finite, we can compute Vmax =

max
z

V (z) and Vmin = min
z

V (z). Now let δ = 1
Vmax

, b = V 2
max, and s(z) = Vmax−Vmin+1

Vmax
, we

then have the following:

(1 − δ)V (z) + bs(z)

= (1 − 1
Vmax

)V (z) + V 2
max(

Vmax − Vmin + 1
Vmax

).

Since by definition Vmax ≥ Vmin, we can lower bound the above with (1− 1
Vmax

)V (z)+V 2
max(1

Vmax
),

which then gives us:

(1− 1
Vmax

)V (z) + Vmax ≤ (1 − δ)V (z) + bs(z).

We note that by definition V (z) ≥ 1 which implies Vmax ≥ 1. It then follows that (1 −
1

Vmax
)V (z) ≥ 0, and so we have Vmax ≤ (1 − 1

Vmax
)V (z) + Vmax. This gives us:

Vmax ≤ (1 − δ)V (z) + bs(z). (3.22)

Let V̄ = 1
Ñ(T)

∑Ñ(T)
τ=1 V (Ξ(τ)) , from lemma 3.5.1 we have that limN→∞

1
N

∑N
k=0 V (Ξ(k+1)) =

V̄ . We then have that by definition V̄ ≤ Vmax, and so by using (3.22) we arrive at:

lim
N→∞

1
N

N∑
k=0

V (Ξ(k + 1)) ≤ Vmax ≤ (1 − δ)V (z) + bs(z).

This concludes our proof.

50

Proof of Theorem 1

We first look at each agents individual error ei,k = θi,k − θ∗. We subtract θ∗ from both

sides of (3.18) and unpack using (3.17) in order to get the following equation for the evolution

of ei,k:

ei,k+1 =
∑
j∈Ni

wij(
αk

αk + 1θj,k − θ∗ + 1
αk + 1Aj(Dj,q(k))−1b̄j(Dj,q(k), θj,k))

=
∑
j∈Ni

wij(ej,k − 1
αk + 1(θj,k − Aj(Dj,q(k))−1b̄j(Dj,q(k), θj,k)). (3.23)

Now by subtracting the right side of (3.23) by 1
αk+1(θ∗ − θ∗), we arrive at the following:

ei,k+1 =
∑
j∈Ni

wij(ej,k− 1
αk + 1(ej,k −(Aj(Dj,q(k))−1b̄j(Dj,q(k), θj,k) − θ∗)).

Now that we have an equation for the error dynamics of each agent, we can represent the error

dynamics in compact form by column stacking all of the above equations for i = 1, . . . ,m.

Let

ẽk = col{e1,k, . . . , em,k}, θ̃k = col{θ1,k, . . . , θm,k}

Ãk = diag{(A1(D1,q(k)), . . . , (Am(Dm,q(k))}

b̃k(θ̃k) = col{b̄1(D1,q(k), θ1,k), . . . , b̄m(Dm,q(k), θm,k)},

θ̃∗ = 1m ⊗ θ∗, and let W be a matrix such that wij is the ij entry of W . Let W̃ = (W ⊗ Iw),

the following then expresses the error dynamics for the whole network:

ẽk+1 = W̃ ẽk − 1
αk + 1W̃ (ẽk−(Ã−1

k b̃k(θ̃k) − θ̃∗)).

51

In order to clean up the analysis, we now denote g̃(k) = Ã−1
k b̃k(θ̃k) − θ̃∗), which allows

us to rewrite the above as:

ẽk+1 =W̃ ẽk − 1
αk + 1(W̃ ẽk − W̃ g̃(k)).

We now square both sides of the above equation, which gives us:

‖ẽk+1‖2 =‖W̃ ẽk‖2 − 2
αk + 1(W̃ ẽk)>(W̃ ẽk − W̃ g̃(k)) + 1

(αk + 1)2 ‖W̃ ẽk − W̃ g̃(k)‖2

≤‖W̃ ẽk‖2 − 1
αk + 1(‖W̃ ẽk‖2 − ‖W̃ g̃(k)‖2).

Let λ denote some eigenvalue of W , we recall that W is a doubly stochastic matrix and so

we have that 0 < |λ| ≤ 1 and that λ must be real. Let λ0 denote the smallest eigenvalue of

W in absolute value, since W̃ = W ⊗ Iw and therefore has the same eigenvalues as W , we

can upper bound ‖ẽk+1‖2 with the following:

‖ẽk+1‖2 ≤ ‖ẽk‖2 − 1
αk + 1(λ2

0‖ẽk‖2 − ‖g̃(k)‖2). (3.24)

We now look at the term ‖g̃(k)‖2.

‖g̃(k)‖2 = ‖Ã−1
k b̃k(θ̃k)− θ̃∗‖2

= ‖Ã−1
k b̃k(θ̃k)− Ã−1

k b̃k(θ̃∗) + Ã−1
k b̃k(θ̃∗) − θ̃∗‖2

≤ ‖Ã−1
k (b̃k(θ̃k)− b̃k(θ̃∗))‖2 + ‖Ã−1

k b̃k(θ̃∗) − θ̃∗‖2

Recall that Ai(Di,q(k)) is non singular for all i = 1, . . . ,m, and so there is a λ1 > 0 such that

λ2
1 ≤ ‖Ãk‖2, and so we can simplify the above as:

‖g̃(k)‖2 ≤ λ2
1‖b̃k(θ̃k)− b̃k(θ̃∗)‖2 + ‖Ã−1

k b̃k(θ̃∗) − θ̃∗‖2

52

We now focus on b̃k(θ̃k)− b̃k(θ̃∗) from the above inequality. From assumption (3.4.1) we

have ‖φ(x, a)‖ < 1, and so using equations (3.12)-(3.14), it can be shown that the above

inequality is upper bounded by the following:

‖g̃(k)‖2 ≤ λ2
1γ

2‖θ̃k − θ̃∗‖2 + λ2
1β

2m+ ‖Ã−1
k b̃k(θ̃∗)−θ̃∗‖2

We now look at the ‖Ã−1
k b̃k(θ̃∗)−θ̃∗‖2 term in the above inequality. Using (3.10)-(3.14) and

assumption (3.4.1), we can further simplify the above inequality as:

‖g̃(k)‖2 ≤λ2
1γ

2‖θ̃k − θ̃∗‖2 + 2λ2
1β

2m+‖Ã−1
k b̂k(θ̃∗)−θ̃∗‖2 (3.25)

where b̂k(θ∗) = col{b1(D1,q(k), θ
∗), . . . , bm(Dm,q(k), θ

∗)}.

By combining inequality (3.25) with (3.24) we get the following inequality:

‖ẽk+1‖2 ≤ ‖ẽk‖2 − 1
αk + 1((λ2

0 − λ2
1γ

2)‖ẽk‖2

−2λ2
1β

2m− ‖Ã−1
k b̂k(θ∗) − θ̃∗‖2) (3.26)

We recall Ξ(k) = {D1,q(k), ...,Dm,q(k)}, which denotes the data processed by all agents at

iteration k. We note that Ãk is fully determined by the data in Ξ(k), and so we can define

a function h such that h(Ξ(k)) = Ãk. Similarly, we can define a function f such that

f(Ξ(k)) = b̂k(θ∗). These pairs of functions (h and f) allows us to then simplify (3.26) as:

‖ẽk+1‖2 ≤ ‖ẽk‖2 − 1
αk + 1((λ2

0 − λ2
1γ

2)‖ẽk‖2

−2λ2
1β

2m− ‖h(Ξ(k))−1f(Ξ(k)) − θ̃∗‖2)

We now focus on finding the following limits in order to proceed with using the ODE ap-

proximation method: limN→∞
1
N

∑N
k=0 f(Ξ(k)), limN→∞

1
N

∑N
k=0 h(Ξ(k)).

53

Let f̄(T) = 1
Ñ(T)

∑Ñ(T)
τ=1 f(Ξ(τ)), from lemma 3.5.1 it then follows that

lim
N→∞

1
N

N∑
k=1

f(Ξ(k)) = f̄(T).

Let h̄(T) = 1
Ñ(T)

∑Ñ(T)
τ=1 h(Ξ(τ)), from lemma 3.5.1 we also have that

lim
N→∞

1
N

N∑
k=0

h(Ξ(k)) = h̄(T).

Given αk = k, from the result that the following limit limN→∞
1
N

∑N
k=0 f(Ξ(k)) equals a

constant f̄(T) and limN→∞
1
N

∑N
k=0 h(Ξ(k)) equals a constant h̄(T) , and using the result of

lemma 3.5.2 , it follows from Theorem 3.1 in [101] that the upper bound of ‖ẽk‖2 converges

to the invariant set of the following:

de
dt

= −(λ2
0 − λ2

1γ
2)e + (λ2

0 − λ2
1γ

2)c(T),

where c(T) = 1
(λ2

0−λ2
1γ2)(2λ

2
1β

2m + ‖h̄(T)−1f̄(T) − θ̃∗‖2). By noting that c(T) is a constant

and that from assumption (3.4.2) we have λ2
0 > λ2

1γ
2, it can readily be seen that de

dt
=

−(λ2
0 − λ2

1γ
2)e + c(T) is globally asymptotically stable around c(T), and so we can conclude

that as k → ∞, ‖ẽk‖2 ≤ c(T). We note that ‖ẽk‖2 = ∑m
i=1 ‖ei,k‖2 = ∑m

i=1 ‖θi,k − θ∗‖2, and

so it follows that as k → ∞ :

m∑
i=1

‖θi,k − θ∗‖2 ≤ c(T).

From the above inequality we can conclude that each θi,k converges to a neighborhood of θ∗.

54

Furthermore, we note that as T → ∞ it follows that Ñ(T) → ∞, and so given assumption

 3.4.4 and recalling that X is a compact set, it then follows that in the limit we have the

following:

lim
T →∞

h̄(T) = lim
T →∞

1
Ñ(T)

Ñ(T)∑
τ=1

Ãτ = E[Ãk]

lim
T →∞

f̄(T) = lim
T →∞

1
Ñ(T)

Ñ(T)∑
τ=1

b̂τ (θ∗) = E[b̂k(θ∗)]

We recall Ãk = diag{A1(D1,q(k)), . . . , Am(Dm,q(k))}, and therefore:

E[Ãk] = diag{E[A1(D1,q(k))], . . . ,E[Am(Dm,q(k))]}

= Im ⊗ E[At], (3.27)

where the last step is a consequence of the agents sampling data from the same distribution,

and so the expectation for each agent is identical. Similarly, we have

E[b̂k(θ∗)] = 1m ⊗ (E[bt(θ∗)]). (3.28)

Let At = Im ⊗ At and let bt(θ∗) = 1m ⊗ bt(θ∗). Using equations (3.27) and (3.28) , we

have the following limit for c(T):

lim
T →∞

c(T) = 2λ2
1β

2m+ ‖E[At]−1E[bt(θ∗)] − θ̃∗‖2

λ2
0 − λ2

1γ
2 .

We recall [1
2δt(θ∗)2] = 0, and so it then follows that E[φ(xt, at)δt(θ∗)] = 0 which can be

rewritten as E[Atθ
∗ − bt(θ∗)] = 0 and so it follows that θ∗ = E[At]−1E[bt(θ∗)]. Let c =

8mλ2
1p2r2

max
(λ2

0−λ2
1γ2)(1−γ)2 , using θ∗ = E[At]−1E[bt(θ∗)] and recalling that β = 2prmax

1−γ
we then have the

following:

lim
T →∞

c(T) = c

This concludes our proof.

55

3.6 Simulation Results

1 2 3 4 7

5 6

Figure 3.1. Network

In this section we present some simulation results of applying the proposed algorithm.

First, we apply the algorithm on a linear time-invariant (LTI) system and show that the

algorithm can converge close to the well known LQR solution. Then we apply the algorithm

on the cartpole problem, which has been widely used as a benchmark for reinforcement

learning algorithms and which has nonlinear state dynamics and a nonlinear reward function.

For both cases, we simulate a network of agents that is described by the undirected graph

in Fig. 3.1 . We used lazy Metropolis weights for wij such that:

wij =



1
max{di,dj} , if j ∈ Ni, j 6= i

1 −∑
k∈Ni,k 6=i wik, if i = j

0, if j 6∈ Ni,

where di = |Ni| is the degree of agent i.

3.6.1 Linear System

We first test the proposed algorithm on an LTI system. Though the state dynamics are

simple, by applying the algorithm on a linear system we can compare the final policy to the

LQR solution, which is known to be optimal but requires knowledge of the state dynamics

to compute.

56

We simulated an agent controlling an unstable, controllable LTI system. We used the

following equation to simulate the dynamics of the system:

xt+1 = Axt +Bat,

where:

A =



1 1 3 5

0 0.1 0 1

0 0 2 5

1 0 0 1


, B =



1

1

1

0


,

where at is the control action at time t. The rewards for this scenario are computed

using the following equation: R(xt, at) = −x>
t Qxt − Ra2

t , where Q = I4, R = 1. By using

at = −Kxt + nt, nt ∈ U(0, 0.7) as the control policy for the agent, we created a dataset D,

where K was designed to be an unstable state feedback control gain using pole placement.

The dataset D was then partitioned as D = {D1, . . . ,D7} and distributed amongst a network

of 7 agents. The network of agents can be represented by the undirected graph illustrated

in Fig. 3.1 .

In addition, because of the linearity of the dynamics we can derive a set of basis functions

to represent the state-action value function. This set is the set of all quadratic terms using

state and action variables, or more precisely:

φ(x, a) = col{a2, ax1, ax2, ..., x
2
3, x3x4, x

2
4},

where col{} denotes column-wise stacking.

As such, we apply the proposed algorithm to learn the optimal policy for this LTI using

a network of 7 agents.

57

The results of applying the proposed algorithm is a final estimate of θ∗ for each agent.

Using these estimates of θ∗, we can use the following equation to compute a set of gains for

a state feedback controller:

Kθ = 1
2θ1

[θ2, θ3, θ4, θ5].

The resulting state feedback controller is an approximation of the optimal policy for the

LTI. Using the average of each nodes final θi,k, which we denote θ̄, we arrive at the following

gains:

Kθ̄ = [1.1606, 0.4416, 2.0789, 5.0336].

In comparison, by using knowledge of the A and B matrices we can compute the optimal

gains using the LQR solution:

KLQR = [1.2336, 0.4744, 2.1480, 5.1455].

As we can see, the gains returned by the proposed algorithm are close to the optimal gains,

which shows us that the proposed algorithm is capable of finding the optimal policy using

suboptimal, offline data.

3.6.2 Nonlinear System

Figure 3.2. Cartpole System

58

We now apply the proposed algorithm in the scenario where an agent controls a nonlinear

system, namely the cartpole system. The cartpole problem consist of a pole on top of cart

where the objective is to balance the pole by applying a force on the cart. The state consists

of the the position of the cart xt, the speed of the cart ẋt, the angle of the pole from vertical

θt, and the rate of change of the angle θ̇t. There are two possible actions, which are to apply

a force Ft = {10 N,−10 N} . Each attempt at balancing the pole is referred to as an episode,

where an episode terminates if the pole is more than 12 degrees from vertical or if the cart

moves more than 2.4 m from the center. For each time step the episode does not terminate

the controlling agent is given a reward of +1, and when the episode terminates it is given a

reward of −5.

In order to collect data, we trained a policy using the well known DQN algorithm [3] and

stopped training before the policy could converge on an optimal solution. Using the policy

from DQN, we then simulated various episodes using the same suboptimal policy but with

different initial conditions and recorded the necessary data.

For this system, we approximate the state-action value function using radial basis func-

tions where a radial basis function has the following form: e
‖x−c‖2

r . The parameters c and r

denote the center and radius of the radial basis function, respectively. We used two sets of

250 centers (one for each discrete action). The value for these centers were computed using

K-Means clustering on simulated data. This data was generated by using an exploration

policy, which with probability ε returned the output of a suboptimal policy(trained using

DQN algorithm) and with probability 1 − ε returned a random action. In addition, for each

center we used two different sets of radii, and so in total 2 sets (one for each action) of 500

radial basis functions were used to implement φ.

In Fig. 3.3 we see a comparison of the proposed distributed algorithm, which uses a

network of agents to cooperatively learn better policies, and compare it to the scenario where

a similar algorithm is used but agents do not share any information and so are regarded

as independent. In terms of implementation, the differences between the two compared

algorithms is that for the independent agents case wij = 1 if and only if i = j, otherwise

wij = 0, thereby enforcing the absence of communication amongst agents.

59

Figure 3.3. Comparing proposed distributed algorithm, which uses network
of agents, with the same algorithm using where agents learn independently
without sharing any information. Average of Discounted Rewards is calculated
over 100 episodes. Each episode has random initial conditions.

More specifically, in Fig. 3.3 , we show the average of discounted rewards ∑N
t=1 γ

tr(xt, at)

with γ = 0.99999 achieved by each agent’s learned policy over 100 episodes where N denotes

the duration of an episode, and where each episode has random initial conditions. In order

to account for random initial conditions, we fix the random seed when evaluating all learned

policies. As was expected, the plot shows us that for the same number of iterations, using

the network of agents allow us to reach a higher average reward when compared to using

independent agents that do not share any information. This demonstrates that by sharing

estimates the network of agents can learn better policies than agents that learn independently.

This difference could potentially be larger for cases where the network is larger and/or

the system has a larger state dimension, since this would amplify the advantage of the

network over a single independent agent. Moreover, this simulation result shows the benefit

of extending offline reinforcement learning to a distributed scheme, as we have done in this

work.

3.7 Conclusion

In this paper we have developed a distributed offline reinforcement learning algorithm for

a multi-agent system, where agents can communicate over a distributed network. The dis-

60

tributed offline algorithm combines Q-learning and offline regularization with weighted local

averaging so that agents make use of their neighbor’s estimates to improve their own. In this

way the network of agents can collaborate to improve their estimates while each agent only

needs to process a fraction of the total dataset. We have proven that the proposed algorithm

converges in the sense that the norm squared error summed over all agents is upper bounded

by a constant c(T). From our analysis, we have also shown that c(T) decreases towards a

constant c as T goes to infinity. We have supported this theoretical result with simulations

that demonstrate that the proposed algorithm can be used to learn control policies for a

linear system and a nonlinear system, namely the cartpole system. Some potential future

directions would be to consider the case where the dataset D(T) contains data from different

agents, where these agents observed rewards from different reward functions. Similarly, we

could explore the case where the dataset was collected by different agents using different

policies.

61

4. DISTRIBUTED REINFORCEMENT LEARNING WITH

CROSS MODAL OBSERVATIONS

4.1 Introduction

Recently, multi-agent reinforcement learning (MARL) has gained a lot of popularity

with applications into mobile sensor networks, robotics, UAV swarms, and so on .The main

challenges in MARL arise from the constraint that agents can sometimes only coordinate

with nearby agents and that sometimes agents have different goals and so might observe

different rewards. This gives rise to problems such as credit assignment [102], [103] and

coordinating actions [28], and partial observability of the state [104], [105]. This has led to

the development of distributed algorithms for MARL, in which there is no central node or

coordinator and only communication between nearby neighbors is available. Early results

in the direction of distributed MARL have usually assumed discrete states and actions to

allow them to implement a tabular form of reinforcement learning [30], [33], which are not

applicable to situations requiring continuous states and actions. Further progress has been

achieved in [32], [39]–[41] for reinforcment learning with continuous states. We note that

these works are specifically concerned with the policy evaluation problem of reinforcement

learning, where the goal is to learn a metric (known as the value function) that will allows us

to compute the long-term expected reward of using a given control policy [75]. We similarly

focus on the so called policy evaluation in this work. Policy evaluation is an important

step in reinforcement learning since it can be combined with actor-critic methods to develop

optimal policies [106], [107].

In our work we consider a network of multi-agent systems that share the same environ-

ment but have different and potentially conflicting goals. For example, consider a network

of robotic teams where each team has a separate task, and where the performance of each

task is affected by the actions of other teams as well. We, in addition, consider the case

where each team member can observe a value or metric indicating the team performance but

cannot observe its own individual contribution to the team performance. This constraint

has been explored in the literature as the credit assignment problem [102], [108]–[110] and

is still an open problem. Though the actions of each team could conflict, it is also the case

62

that each team could achieve a better team performance by cooperating with other teams

and so the teams are incentivized to cooperate instead of competing [14], [46]. However,

though the teams are cooperative they do not fully trust each other, and so would not want

to share information about their performance metric with other teams since this information

could be used against them if a team decides to dissent. This motivates the notion of privacy

where sensitive information such as performance values cannot be shared with other teams.

This notion of privacy has been explored in [32], [111]–[113].

In this work we are also interested in exploring scenarios with cross-modal observations.

Cross-modality has recently gained attention in the machine learning literature in the context

of transfer learning, where the goal is to use different types of data to learn the same model

[114]. In this setting, the literature mainly focuses on how to transform different data types

to a common latent space [114]–[116], usually this involves learning functions (different one

for each data type) that maps data to a latent vector. In this work we focus on a different

aspect of cross-modality where the the transformation to a latent space is known but each

agent cannot compute a full latent vector. Moreover, we consider the problem of how to use

observations from different sensors where each individual sensor by itself can not fully capture

the state of the environment, but the combination of the observations from all sensors can

fully observe the state.

This scenerio where the full state of the environment is not observed by any agent has

been explored in the reinforcement learning field as a partially observable markov decision

process(POMDP) problem [117]. As was previously mentioned, this notion of partial observ-

ability has also been studied in the context of MARL, where the state of the environment is

said to be partially observed because agents do not know the actions of other agents[118],

[119]. In these works, each agent is assumed to only know an observation of the environment

instead of the full state [104], [120], and usually based on these observations an estimate

of the state is used to carry out the learning process [121]–[123]. Though we also assume

each agent recieves an observation and not the full state vector, we differ from traditional

POMDP settings in that we further consider that each agent’s observation cannot by itself

be used to calculate a full estimate of the state. As such we explore a different approach

that does not rely on state estimation at the agent level.

63

The problem that we explore in this work can be decomposed into two levels or two layers.

At the high level is the network of multi-agents systems. In this level the problem is driven

by the private rewards observed by each multi-agent system and the goal of cooperation to

learn the value function for the whole network. At the lower level is a particular multi-agent

system. In this level the problem is driven by cross-modal observations where each agent has

different, incomplete observation of the environment’s state and so must cooperate in order

to form a complete observation of the state. We not only need to consider the challenges at

each level but the challenges arising from the interaction between the two layers. As such,

the approach proposed in this work addresses the challenges in both levels and in how the

two interact.

4.2 Problem Formulation

Consider a network of q multi-agent systems controlling a plant with unknown dynamics.

We will refer to each multi-agent system as a team. Each team j will consists of an aggregator

j and mj agents, where ∑m
j=1 mj is the total number of agents. The aggregator is a node

that can communicate with every agent in a team as well as certain other aggregators of

other teams. We have that aggregators can communicate if and only if they are aggregator

neighbors, where aggregator j’s aggregator neighbor is denoted Nj. The aggregator neighbor

relations can be modeled by an undirected graph G such that there is an edge between team

j and j̄ if and only if j and j̄ are aggregator neighbors. The aggregator is specialized for

communication and not computation, therefore we assume it cannot do any computation.

We will label each agent with two indices where the second index indicates team membership,

such that ij is the i’th agent of the j’th team. Within each team, agents in the network can

communicate if and only if they are agent neighbors, where we denote the set of agent ij’s

agent neighbors as Nij. The agent neighbor relations for each team j can be modeled by an

undirected graph Gj such that there is an edge between ij and ī̄j if and only if ij and ī̄j are

neighbors.

Let xt ∈ X denote the state of the environment at time t, where X ⊂ Rn. Let aij(t) ∈ Aij

denote the control action of agent ij at time t, where Aij ⊂ Rpij . Now let aj(t) denote the

64

MAS 1 MAS 2

MAS 3

Aggregator 1

Agents

Figure 4.1. Example of network of multi-agent systems

joint control action of team j such that aj(t) = col{a1j(t), ..., amjj(t)}, and let a(t) denote the

joint control action of the entire network such that at = col{a1(t), .., aq(t)}. At every time

step t, the network interacts with the environment through the joint control action at. As

a result, each agent ij receives a team reward rj(xt, at) which is distinct from the reward of

other teams. An example of this interaction is shown in Fig. 4.2 , where the details of the

Network of Multi-Agent Systems can be seen in Fig. 4.3 .

PlantNetwork of MAS

Figure 4.2. Network of Multi-Agent Systems interaction with plant

In this work we consider the case where each agent ij observes a vector yij(t) ∈ Yij where

Yij ⊆ Rnij , and yij(t) = hij(xt) for some nonlinear function of the state hij : X → Yij. We

note that the observations for each agent may be different which takes into account cross-

modal observations, where each agent could use different sensors to observe the state of the

environment.

65

MAS 1

MAS 2

MAS 3

Figure 4.3. Low level picture of Network of Multi-Agent Systems

In addition, we have that the team reward can not be shared with team members in

other teams. This constraint is motivated by team privacy concerns, where knowledge of

team j’s reward could potentially be used by other teams to gain an advantage over team j.

We now describe how each agent ij computes its action aij(t) at time t. We have that each

agent ij follows a control policy πij(·|·), where πij is a probability density over Aij × Yij such

that aij(t) ∼ πj(·|yjt). Recall yij(t) = hij(xt), let π(·|·) be global policy such that π(at|xt) =∏q
j=1

∏mj
i=1 πij(aij(t)|hij(xt)), which describes how the entire network of teams computes a joint

action, or more formally we have that at ∼ π(a|xt). We note no team or agent knows π since

it describes global behavior resulting from each team following their own policy.

Let R(xt, at) be the average of team rewards , which we define as:

R(xt, at) = 1
q

q∑
j=1

rj(xt, at).

Now let Vπ denote a metric for evaluating the policy π, which is referred to in the literature

[75] as the state-value function. Vπ, which is defined as:

Vπ(xt) = E
[∞∑

τ=0
γτR(xτ , aτ)|x0 = xt

]
, γ ∈ (0, 1)

where γ is a discount factor. In this work we are interested in the policy evaluation

problem of reinforcement learning, which entails learning the value function Vπ. This is an

66

important problem in reinforcement learning because Vπ can be used to improve the control

policy π using actor-critic methods.

We consider the case where Vπ is equal to a linear combination of basis functions, or more

formally suppose there exists a function φ : X → Rw such that we have the following:

Vπ(xt) = φ(xt)>θ.

We have that θ is unknown to all agents, and each agent ij knows φ but without knowledge

of xt can only compute certain entries of φ(xt). Let Wij ⊂ {1, . . . , w}, more formally we

have that each agent ij can compute the v‘th entry of φ(xt) if and only if v ∈ Wij. Fur-

thermore, suppose each team j can compute φ(xt) such that |Wij| ≥ 1,
∣∣∣⋃mj

i=1 Wij

∣∣∣ = w, and∣∣∣⋃q
j=1

⋂mj
i=1 Wij

∣∣∣ = w. As such, each team needs to learn θ in order to compute Vπ(xt)∀xt ∈ X .

Let each agent ij control θij(k) ∈ Rw, and let θj(k) = 1
mj

∑mj
i=1 θij(k). The goal of

the network is for each θij(k) to converge to a constant vector θ∗
ij as k → ∞ such that

‖∑q
j=1 θj(k) − θ‖2 → ε which would allow the network to jointly approximate Vπ.

4.3 Preliminaries

In [124] it is shown that the solution to the fully observable problem of policy evaluation

(θ) is the solution to the following linear equation:

E[At]θ = E[b̄t],

where At = φ(xt)(φ(xt) − γφ(xt+1))> ∈ Rw,w and b̄t = 1
m

∑m
i=1 bit = φ(xt)R(xt, at). With

enough samples, i.e. T is very large, the expectations can be approximated using the empir-

ical mean as in [32], giving us:

E[At] ≈ 1
T

T∑
t=1

At, E[b̄t] ≈ 1
T

T∑
t=1

b̄t,

67

and so the linear equations can be approximated by:

Aθ̂ = b, (4.1)

where A = 1
T

∑T
t=1 At and b = 1

T

∑T
t=1 b̄t. Since each agent ij cannot observe xt but instead

observes yij(t) and only has access to it’s team reward rj, then each agent can only construct

part of A and b. These limitations motivate a distributed approach to solving the system

of linear equations in (4.1).

4.4 Approach

Let Arc denote the entry at row r and column c of A, let φrt denote the r’th entry of

φ(xt), and let brj = 1
T q

∑T
t=1 φrtrj(xt, at). We note that br = ∑q

j=1 brj where br denotes

the entry at row r of b. We also note that the values φr,t,φc,t, and rj are needed in order

to compute Arc and brj. As such, in order for the network to cooperatively solve (4.1) we

require each team j to be assigned a set of column indices Cj, such that for every ij in team

j and every c ∈ Cj we have c ∈ Wij, and such that every column index is assigned to one

team. Furthermore, we require each agent ij is assigned a set of row indices Rij such that

Rij ⊆ Wij,
∣∣∣⋃mj

i=1 Rij

∣∣∣ = w, and
∣∣∣⋂mj

i=1 Rij

∣∣∣ = 0. We will now describe how all columns and

rows will be assigned.

We first describe how each team is assigned columns of A to meet this condition. Let

Hj = ⋂mj
i=1 Wij denote the set of indices indicating which entries of φ(xt) are computable by

all agents in team j. Based on each team’s Hj, all teams must come to an arrangement where

each team j is assigned at least one column c such that c ∈ Hj and such that each column

is assigned to one team. For the case q = w, this assignment process can be formulated

as a maximum matching problem for some bipartite graph GB. Let GB = (U, V,E) where

each team j is a node in U , each column c is a node in V , and where edge (j, c) ∈ E if and

only if c ∈ Hj. An example of such a bipartite graph is illustrated by Fig. 4.4 . As such,

one possible assignment is given by a maximum matching of GB, which can be obtained

efficiently using the Hopcroft-Karp algorithm [125]. For the case w > q, we would need an

iterative procedure. We first input GB to the Hopcroft-Karp algorithm, which gives us a

68

maximum matching M1. M1 is then used to assign columns to teams. Every c that has been

assigned a team in M1 is then removed from GB. This new graph is used as input to the

Hopcroft-Karp algorithm which gives us a new matching M2. This process continues until

all columns have been assigned. We denote Cj the set of column indices assigned to team j,

which results from using the process outlined above. We note that for column assignment,

we assume the assignment process is done by a selected team that knows the Hj of each

team j beforehand. After that chosen team has computed the column assignment, it then

sends the assignment to its neighbors through aggregator communication, and its neighbors

sends the assignment to their neighbors, thereby propagating the assignment throughout the

whole network.

Figure 4.4. Example of Bipartite Graph GB for Column Assignment

Now we describe how each agent ij is assigned a row index r. For every team j, agents

must come to an agreement where each ij is assigned at least one row index r such that

r ∈ Wij and such that each row is assigned to one agent. Similar to the process of assigning

columns, for the case mj = w we can formulate the assignment of rows as a maximum

matching problem for a bipartite graph GBj . For each team j, let GBj = (U, V,E) where each

agent ij is a node in U , each row r is a node in V , and where edge (ij, r) ∈ E if and only if

r ∈ Wij. Again we can use the Hopcroft-Karp algorithm to compute a maximum matching.

For the case w > mj, we again use an iterative application of the Hopcroft-Karp algorithm

(see previous paragraph for more details) where after each iteration the assigned rows are

removed from the graph GBj . We denote the resulting set of row indices assigned to agent ij

as Rij. The row assignment process for team j can be computed by any agent ij. Once the

69

assignment has been computed, agent ij then communicates the assignment to all agents in

team j through the aggreagator j.

Distributed Update

We now present a set of update equations that each agent will follow in order to improve

their estimate of part of θ. The distributed update is based on work on solving a system

of linear equations with scalar states [126]. The update equations will require that we use

networks G and Gj and it introduces additional states xrc(k) ∈ R and zrc(k) ∈ R for all

r ∈ {1, . . . , w} and c ∈ {1, . . . , w}, where each agent will control one or more xrc and zrc.

Let Zj denote the set of all zrc that are updated by the agents of team j, or more formally

we have Zj = {zrc : r ∈ {1, . . . , w}, c ∈ Cj. We suppose each aggregator j can receive

Zj̄(k) for all j̄ ∈ Nj using aggregator communication, and then aggregator j can distribute

{zrv : r ∈ Rij, v ∈ Cj̄} ⊂ Zj̄ to each agent ij. Furthermore, within each team j, agent ij can

recieve {xvc : v ∈ Rīj, c ∈ Cj} for all īj ∈ Nij.

As such, each agent ij computes the following updates for all r ∈ Rij, c ∈ Cj:

ẋrc = − Arc(Arcxrc − 1
|Cj|

brj −
∑

k∈Nj

∑
v∈Ck

(zrc − zrv)) −
∑

kj∈Nij

∑
v∈Rkj

(xrc − xvc) (4.2)

żrc =Arcxrc − 1
|Cj|

brj −
∑

k∈Nj

∑
v∈Ck

(zrc − zrv)). (4.3)

Let θij,c denote the c’th entry of θij. Given initial estimate xrc(0) for all c = 1, ..., w and

r = 1, ..., w, each agent ij has an initial estimate θij(0) with the following form:

θij,c(0) =


1

|Rij|
∑

r∈Rij xrc(0), if c ∈ Cj

0, otherwise.
(4.4)

70

As such, each agent ij updates their θij according to:

θ̇ij,c =


1

|Rij|
∑

r∈Rij ẋrc, if c ∈ Cj

0, otherwise.
(4.5)

4.5 Main Result

Assumption 4.5.1. Let A = ∏q
j=1

∏mj
i=1 Aij. We assume π(a|x) > 0 for all x ∈ X , a ∈ A and

dπ(x) > 0, for all x ∈ X , where we recall dπ(x) is a probability density over all states given

a policy π. This assumption is satisfied if π is such that an agent following π can explore the

entire state space X given enough time, which is a necessary and common assumption in the

RL literature [7], [75].

Theorem 4.5.2. Suppose that assumption (4.5.1) is met, G is connected and Gj is connected

for every team j. Then using the distributed updates in (4.2)-(4.5), for each agent ij, θij

converges exponentially to θ∗
ij, such that as k → ∞:

‖
q∑

j=1
θj(k) − θ‖2 → ε(T),

where ε(T) = ‖A(T)−1b(T) − θ‖2 and

lim
T →∞

ε(T) = 0.

Proof

To prove our main result we will show that (4.2) and (4.3) can be reduced to the updates

in [126].

Let j(c) = {j : c ∈ Cj}. Since each column c is assigned one team j, then |j(c)| = 1

for all c = 1, ..., w. As such, we can define r̂c = 1∣∣Cj(c)
∣∣rj(c) for all c = 1, ..., w. Recall

brj = 1
T q

∑T
t=1 φrtrj(xt, at), using r̂c, we can then define b̂rc = 1

T q

∑T
t=1 φrtr̂c(xt, at) for all

c = 1, ..., w. We now note that for each agent ij, for all c ∈ Cj and all r ∈ Rij we have

71

b̂rc = 1∣∣Cj(c)
∣∣brj(c) = 1

|Cj|brj, since by definition j(c) = j∀c ∈ Cj, and so we can rewrite (4.2) and

(4.3) as:

ẋrc = − Arc(Arcxrc − b̂rc −
∑

k∈Nj

∑
v∈Ck

(zrc − zrv)) −
∑

kj∈Nij

∑
v∈Rkj

(xrc − xvc)

żrc =Arcxrc − b̂rc −
∑

k∈Nj

∑
v∈Ck

(zrc − zrv)).

Now let N R
rc = {rv : v ∈ Ck∀k ∈ Nj} and let N C

rc = {vc : v ∈ Rkj∀kj ∈ Nij}. We can then

rewrite the above two equations as:

ẋrc = − Arc(Arcxrc − b̂rc −
∑

rv∈N R
rc

(zrc − zrv)) −
∑

vc∈N C
rc

(xrc − xvc)

żrc =Arcxrc − b̂rc −
∑

rv∈N R
rc

(zrc − zrv)).

We now show that ∑w
c=1 b̂rc = br through the following:

w∑
c=1

b̂rc =
w∑

c=1

1
|Cj|

brj

=
q∑

j=1

∑
c∈Cj

1
|Cj|

brj

=
q∑

j=1
brj

=br

Since ∑w
c=1 b̂rc = br and by recalling that each Arc is a scalar entry of matrix A, it then

follows that (4.2) and (4.3) are equivalent to equations (5) and (6) in [126].

Given the conditions stated in our theorem are met, it then follows from the proof of

Theorem 1 in [126] that each xrc converges exponentially to a constant vector x∗
rc such that

72

for each r = 1, ..., w, ∑w
c=1(Arcx

∗
rc − b̂rc) = 0 and x∗

1,c = x∗
2,c = ... = x∗

w,c. Since each θij is

updated according to (4.5), it then follows that each θij converges to a θ∗
ij such that:

θ̇∗
ij,c =


1

|Rij|
∑

r∈Rij x
∗
rc, if c ∈ Cj

0, otherwise.

=


x∗

rc, if c ∈ Cj∀r = 1, ..., w

0, otherwise.

As such, we then have that A∑q
j=1

1
mj

∑mj
i=1 θ

∗
ij = b. which implies

q∑
j=1

1
mj

mj∑
i=1

θ∗
ij = θ̂.

Recall θj(k) = 1
mj

∑mj
i=1 θij(k), since each θij → θ∗

ij, then from the above we have:

q∑
j=1

θj(k) → θ̂ (4.6)

We now examine the squared error ‖θj(k) − θ‖2:

‖(
q∑

j=1
θj(k)) − θ‖2 = ‖((

q∑
j=1

θj(k)) − θ̂) + (θ̂ − θ)‖2

= ‖(
q∑

j=1
θj(k)) − θ̂‖2 + 2‖(

q∑
j=1

θj(k)) − θ̂‖‖(θ̂ − θ)‖cos(β) + ‖(θ̂ − θ)‖2

(4.7)

We recall that θ̂ = A−1b and recall that A and b depend on the number of data samples

T , therefore we can express θ̂ as a function of T : θ̂(T). Now let ε(T) = θ̂(T)−θ, by combining

(4.6) and equation (4.7) it then follows that:

‖(
q∑

j=1
θj(k)) − θ‖2 = ε(T).

73

Furthermore, we note that given assumption (4.5.1) and recalling that X is a com-

pact set, it then follows that as T → ∞ we have the following: limT →∞
1
T

∑T
t=1 At =

E[At], limT →∞
1
T

∑T
t=1 bt = E[bt]. As such, recall A = 1

T

∑T
t=1 At and b = 1

T

∑T
t=1 bt and so

it follows that since θ = E[At]−1E[bt] and θ̂ = A−1b we have the following limit:

lim
T →∞

ε(T) = 0

This concludes our proof.

4.6 Simulation Results

In this section we present simulation results for our proposed approach. We have simu-

lated a network consisting of 4 multi-agent teams with 5 agents in each team. The network

controls a system with the following dynamics:

xt+1 = Ãxt + B̃at

yij = hij(xt)

where xt ∈ R3 is the state of the system, yij is a nonlinear observation, and at ∈ R is the

joint control input or action of the network, which follows a stabilizing control policy π. The

goal of the network is to evaluate how this policy maximizes the sum of team rewards, which

are given by:

r1(xt, at) = −x2
1 − 1

4a
2
t , r2(xt, at) = −x2

2 − 1
4a

2
t

r3(xt, at) = −x2
3 − 1

4a
2
t , r4(xt, at) = −x1x2 − 1

4a
2
t .

In order to accomplish this goal, each agent follows the updates given by (4.5) and (4.3),

using the following basis functions:

φ(x) = col{x2
1, x

2
2, x

2
3, x1x2, x2x3, x1x3}, (4.8)

74

We recall Wij is a set of indices such that the v’th entry of φ(xt) is computable by agent ij if

and only if v ∈ Wij. The following equations describes which entries of φ(xt) are computable

by each agent:

W11 = {1},W21 = {1, 2},W31 = {1, 3},W41 = {1, 4},

W51 = {1, 5, 6},W12 = {1, 2},W22 = {2},W32 = {2, 3},

W42 = {2, 4},W52 = {2, 5, 6},W13 = {1, 3, 4},

W23 = {2, 3, 4},W33 = {3, 4},W43 = {3, 4},

W53 = {3, 4, 5, 6},W14 = {1, 5, 6},W24 = {2, 5, 6},

W34 = {3, 5, 6},W44 = {4, 5, 6},W54 = {5, 6}

With the above constraints, we use the method outlined in the Approach section to assign

row indices and column indices to each agents, and then we used updates (4.2 − 4.5) for each

agent. We have presented the results of using the proposed algorithm in Fig. 4.6 and Fig.

 4.5 . In Fig. 4.6 we show the average squared consensus error of the parameter estimates.

This shows us that the consensus error goes to zero as the time step increases, indicating

the network achieves consensus in their parameter estimates. In Fig. 4.5 we see that the

average squared error goes to zeros as the time step increases, this and the fact the network

achieves consensus indicates that each agent converges to the solution θ.

Figure 4.5. Squared Error

75

Figure 4.6. Squared Consensus Error

4.7 Conclusion

In this work we have developed a distributed reinforcement learning algorithm for policy

evaluation with cross-modal observations. Here, by cross-modal observations we mean each

agent observes a different nonlinear observation of the environment. As such, each agent

can only compute part of the vector of basis functions φ given their observation. Based on

which entries of φ each agent can compute, we have proposed an approach by which each

team can be efficiently assigned columns of A and each agent is assigned a row. The main

idea of this approach is to reduce the assignment problem to a maximum matching problem,

which has known and provably efficient algorithms such as the Hopcroft-Karp algorithm.

Given an efficient assignment process, an update for each agent’s estimate was developed

so that each team can converge to part of the θ vector, and such that the network jointly

computes the entire θ vector. The main result in this work is that by following the proposed

distributed algorithm, each agent converges exponentially to a solution such that the network

jointly converges to θ. We have also provided simulations results that demonstrate how the

algorithm can be used for distributed policy evaluation of a control system. Our simulations

show that the average squared error converges exponentially to zero, which supports our

theoretical result. A potential future direction would be to extend the results to include

policy improvement by incorporating actor-critic methods, where the critic training would

be based on the algorithm proposed in this work.

76

PART II

Finite-Sample Analysis

77

5. FINITE-SAMPLE ANALYSIS OF DISTRIBUTED

Q-LEARNING FOR MULTI-AGENT NETWORKS

Introduction

Reinforcement learning (RL) algorithms has recently be used for various applications such

as autonomous driving, robotics, and so on [1], [4]. As a model-free RL algorithm, Q-learning

is able to provide an estimate to the so-called Q function, which is a state-action value

function to assign a scalar value to each state-action pair according to a given reward function

and discount factor [8]. Such Q-functions can be used to achieve optimal control policies

and allows for online implementation [127]. Recently researchers have turned their attention

to develop RL algorithms for mutli-agent systems due to their extensive applications into

formation control [87], [128], coverage [89], social networks [90] and so on. Such development

is challenging due to the lack of a centralized coordinator in multi-agent systems. Challenges

aside, great progress has been achieved for Multi-Agent Reinforcement Learning (MARL)

in [31], [74]. In these algorithms, all agents operate in the same environment with a shared

state representing the environment. The state transition depends on the actions of each

agent and the unknown state dynamics of the environment. Each agent is given a local

reward by the environment depending on the joint action of the agents and the current

state. Due to privacy, agents cannot share their rewards with other agents and can only

communicate with neighbors (nearby agents). The goal of MARL is then to enable each

agent to cooperate with neighbors in order to ensure the entire network of agents develops a

policy that maximizes the global average of local rewards. Along this MARL setting, we in

this paper will investigate distributed algorithms for Q-learning with the aim of providing a

finite-sample analysis, namely, a convergence analysis of the algorithm for any finite number

of iterations.

In the literature of MARL, a distributed gossiping TD(0) algorithm is developed in [41],

followed by formulation of policy evaluation with linear function approximation as a primal-

dual optimization problem[32], as well as for actor-critic algorithms in [129], [130]. Along the

direction of distributed Q-learning in multi-agent systems, there have been various empirical

results [23], [24], [131]–[133] and theoretical results for convergence [27], [134], [135] with

78

finite state and action spaces. Distributed Q-learning with continuous states and actions have

recently been investigated in [25], [46], [136], [137] by incorporating function approximation

with neural networks.

After reviewing the literature we have seen that there are few convergence results for

online Q-learning for continuous state spaces with function approximation, except [138]

which considers fitted Q-iteration-based algorithms. Finite-sample analysis has also been

achieved for distributed TD algorithms in [34] under the assumption of i.i.d samples, and in

[35] with non i.i.d samples. In the context of Q-learning, there are results of finite-sample

analysis for tabular Q-learning in [139], Q-learning with discretized states in [140], Q-learning

for high-dimensional stopping problems in [141], and very recently for Q-learning with linear

function approximation and non i.i.d samples in [142], [143]. This work provides a finite-

sample analysis of a distributed Q-learning algorithm with non i.i.d samples, which to the

best of our knowledge has not been addressed in the literature. The finite-sample analysis

is needed in order to determine the convergence rate in terms of sample complexity [142].

In other words, a finite-sample analysis will allow us to determine how many samples are

needed in order to achieve a given level of accuracy [141].

5.1 Preliminaries

In this section we introduce the multi-agent Markov Decision Process (MDP) of interest

and the method of linear function approximation.

5.1.1 Multi-Agent MDP

Consider the case in which a network of m autonomous agents operate in an unknown

environment (or plant). Let x(t) ∈ X denote the state of the plant at time t which is

observed by each agent, where X is a continuous state space. The state dynamics of the

plant can be described by an irreducible Markov chain {x(t)}, where irreduciblity describes

the property that any state is accessible from any other state. For each joint control action

a(t) from the network to the plant, a local reward ri(x(t), a(t)) is produced, where a(t) ∈ A

79

is observed by each agent and A is a finite action set. Here, each ri(·, ·) is the private reward

locally accessible to only agent i, and is not shared with other agents. Let

R(x(t), a(t)) =
m∑

i=1

1
m
ri(x(t), a(t)), (5.1)

which represents the average reward of all agents in the network. Let π denote a fixed

stochastic control policy that maps a state x ∈ X to a probability distribution π(· | x) over

that action space A, i.e. a ∼ π(· | x). Let Qπ denote the corresponding state-action value

function, which in this work is defined as a sum of discounted rewards R(x(t), a(t)) when a

stochastic control policy π is applied to the plant. Namely,

Qπ(x(t), a(t)) = E
[∞∑

k=0
γkR(x(k), a(k)) | x(0) = x(t), a(0) = a(t)

]

where γ ∈ (0, 1) is a discount factor. Furthermore, in a multi-agent network, each agent

i usually can only communicate with certain neighboring agents denoted by Ni(t), which

includes agent i. The neighbor relations can be modeled by a series of time-varying undirected

graphs G(t) such that there is an edge between i and j if and only if i and j are neighbors at

time t.

The goal of multi-agent Q-learning is to enable each agent to achieve Qπ∗ asymptotically,

where π∗ is the global optimal policy, using only local information.

5.1.2 Linear Function Approximation

Since in practice it is not feasible to compute all values of Qπ∗ we will only consider the

case where Qπ∗(x, a) = φ(x, a)>θ∗, where φ(x, a) ∈ Rp is a feature vector and θ∗ ∈ Rp is the

optimal parameter vector. We note that in general Qπ∗ cannot be exactly expressed using

linear combinations of features, and so the best we can do is to converge to a neighborhood of

Qπ∗ . In addition, we have that θ∗ lies in a finite Euclidean-norm ball with radius R, or more

80

formally ‖θ∗‖ ≤ R. Suppose each agent i controls a θi (an estimate to the optimal parameter

θ∗), and therefore a corresponding estimate of Qπ∗ which we will denote Qθi , where

Qθi(x, a) = φ(x, a)>θi.

The goal of multi-agent Q-learning then becomes enabling θi to converge to θ∗ asymptotically,

where each agent can only share θi with its neighbours.

5.1.3 A Distributed Q-Learning Algorithm

Based on linear approximation, the goal of Q-learning can be achieved by a distributed

update to enable all θi to converge to θ∗. Towards this end, we will investigate a consensus

based distributed Q-learning algorithm, which is based on the distributed TD(0) algorithm

given in [34] and similar to other consensus based distributed optimization algorithms [144],

[145]. Under this algorithm the update for each agent i is given by:

θi(t+ 1) = Π
 ∑

j∈Ni(t)
Wij(t)θj(t) + α(t)gi(θi, t)

 . (5.2)

Here, Ni(t) denotes the set of neighbors of agent i at time t, Wij(t) denotes the (i, j) element

of some doubly stochastic weight matrix W (t), α(t) is the step-size; and Π(·) is a projection

such that

Π(θ) = arg minθ′:‖θ′‖≤R‖θ − θ′‖,

Furthermore,

gi(θi, t) =(ri(x(t), a(t)) + γmax
b∈A

Qθi(x(t+ 1), b) −Qθi(x(t), a(t)))∇θQθi(x(t), a(t))

is the semi-gradient [75] of the objective function J(t, θi(t)), where

J(t, θi(t)) =1
2(ri(x(t), a(t)) + γmax

b∈A
Qθi(x(t+ 1), b) −Qθi(x(t), a(t)))2.

81

5.2 Finite-Sample Analysis for Q-Learning

Asymptotic convergence of online distributed Q-learning algorithms such as (5.2) have not

been well established and even less known is known of the error bounds of these algorithms

for a finite number of iterations. In this section we will provide such a finite-sample analysis

to the distributed Q-learning algorithm (5.2), which will be our main result.

To begin, we rewrite the semi-gradient in (5.2) as

gi(θi, t) = bi(t) + c(θi, t) − A(t)θi(t), (5.3)

where:

A(t) = φ(x(t), a(t))φ(x(t), a(t))>

bi(t) = φ(x(t), a(t))(ri(x(t), a(t)))

c(θi, t) = φ(x(t), a(t))γmax
b∈A

Qθi(x(t+ 1), b).

For any fixed θ ∈ Rp and x ∈ X , we define

a∗(x, θ) = arg max
a∈A

φ(x, a)>θ.

We then define

E[A∗(θ)] = E[φ(x, a∗(x, θ))φ(x, a∗(x, θ))>].

Based on the projection imposed in the update of θ(t) we can bound the gradient according

to

‖gi(θi, t)‖ ≤ G, ∀θi : ‖θi‖ ≤ R,

where G = 2R + rmax[142].

As in [34], [142], we will make the following assumptions:

1. The feature vectors {φ(x(t), a(t))} are linearly independent for t ∈ {1, 2, .., p} where

φ(x, a) ∈ Rp. In addition we assume ‖φ(x, a)‖ ≤ 1, ∀x, a.

82

2. There exists an integer B such that the following graph is connected for all positive

integer l:

(V , E(lB) ∪ E(lB + 1) ∪ ... ∪ E((l + 1)B − 1).

Moreover, there exists a constant β such that Wij(t) ∈ [β, 1) if j ∈ Ni(t), and Wij(t) = 0

if j 6∈ Ni(t).

3. Rewards are uniformly bounded such that ‖ri(x, a)‖ ≤ rmax for all (x, a) pairs.

4. There are constants l > 0 and ρ ∈ (0, 1) such that

sup
x∈X

dT V (P(Xt ∈ · | X0 = x), Pπ) ≤ lρt, ∀t ≥ 0, (5.4)

where dT V (P,Q) = supA|P (A) −Q(A)| denotes the total-variation distance between

probability measures P and Q, and Pπ is the stationary distribution of π.

5. E[A] is positive definite with λ1 < E[A] < λ2. In addition, we assume E[A∗(θ)] < λ3

and λ1 − γ2λ3 ≥ w > 0 for all θ : ‖θ‖ ≤ R.

Then we have the following main result:

Theorem 5.2.1. Given assumptions (1-5) are satisfied and each agent follows the update

described by (5.2) with a diminishing step-size α(t) = 1
w(t+1) , we then have the following

upper bound for the average squared error:

1
m

m∑
i=0

E[‖θi(t+ 1) − θ∗‖2] ≤ 2β1

w2
1

t+ 1 + 2β2

w2
ln(t+ 1)
t+ 1 + 4‖Θ(0)‖2

mη2 δ2t+2

+ 32mG2

w2η2(1 − δ)2

(
δ2dt/2e+2 + 1

(dt/2e + 1)2

)
.

(5.5)

where

η = min{1 − 1/(2m3), sup
t≥0

σ2(W (t))},

σ2(W (t)) denotes the second largest singular value of W (t), δ = η
1
B < 1, and Θ =

col(θ1, ..., θm) is the augmented parameter vector. In addition, dxe denotes the “ceiling”

operator , which rounds up any real number x to the nearest integer , and similarly bxc

83

denotes the “floor” operator, which rounds down to the nearest integer. Furthermore we

have:

β1 =
(
12τ0G

2 ln(τ0)+(9+24τ0)G2
)
, β2 =

(
(8+12τ0)G2

)

where τ0 = min{t ≥ 0 : lρt ≤ α(t)} describes a minimum mixing time relative to our

step-size.

Remark 5.2.2. Below we provide an analysis of the upper bound (5.5). The first term in

(5.5) clearly goes to zero as t → ∞ and the second term also go to zero as t → ∞ due to

the fact that 1
t

decays faster than ln(t) grows (this can be verified using L’Hospital’s rule).

The third and fourth terms decay exponentially to zero since δ < 1 and the last term decays

to zero as 1
t2 . Therefore, since we have shown that each term of (5.5) goes to zero then the

sum must go to zero and so :

1
m

m∑
i=0

E[‖θi(t+ 1) − θ∗‖2] → 0

as t → ∞.

5.3 Proof of Main Result

In this section we will provide a proof for Theorem 1 by looking at the squared error of

the average parameter vector :θ̄(t) = 1
m

∑m
i=1 θi(t). We first introduce some lemmas, whose

proofs will be given in the Supplementary section with the exception of Lemma 3 which is

proved in [34].

Lemma 5.3.1. Given assumptions (1−5) hold and each agent executes the update described

by (5.2), then we have the following upper bound for the squared error of the average parameter

vector:

E[‖θ̄(t+ 1) − θ∗‖2] ≤ E[(1 − α(t)w)‖θ̄(t)−θ∗‖2
2+α(t)2G2+2α(t)Λ(θ̄,Θ, t)]. (5.6)

where Λ(θ̄,Θ, t) = 〈θ̄(t) − θ∗, ḡ(Θ, t) − E[ḡ(Θ, t)]〉 and ḡ(Θ, t) = 1
m

∑m
i=1 gi(θi, t).

84

Lemma 5.3.2. For any τ0 = min{t ≥ 0 : lρt ≤ α(t)} we have the following for t ≤ τ0:

E[Λ(θ̄,Θ, t)] ≤ 6G2
t−1∑
i=0

α(i), (5.7)

and for t > τ0:

E[Λ(θ̄,Θ, t)] ≤ (4 + 6τ0)G2α(t− τ0). (5.8)

Lemma 5.3.3. From Remark 1 in [34]: Given α(t) = 1
w(t+1) we have the following:

m∑
i=1

‖θ̄(k) − θi(k)‖2 ≤
(
δt+1

η
‖Θ(0)‖ + 2mG

wη(1 − δ)

(
δdt/2e+1 + 1

(dt/2e + 1)

))2

. (5.9)

Proof of Theorem 1

Using Lemma 5.3.1 we can express the squared error of the global averaged parameter

vector as the following:

E[‖θ̄(t+ 1) − θ∗‖2] ≤E[(1 − α(t)w)‖θ̄(t) − θ∗‖2
2 + α(t)2G2 + 2α(t)Λ(θ̄,Θ, t)].

Let’s now consider a diminishing step size described by α(t) = 1
w(t+1) . We note that this

relies on w being positive which is a result of assumption (5). Substituting for α(t) into (5.6)

we get:

E[‖θ̄(t+ 1) − θ∗‖2] ≤ E[t

t+ 1‖θ̄(t) − θ∗‖2
2 + 1

w2(t+ 1)2G
2 + 2

w(t+ 1)Λ(θ̄,Θ, t)]. (5.10)

We can apply the above inequality recursively which gives us:

E[‖θ̄(t+ 1) − θ∗‖2] ≤ E[G2

w2(t+ 1)

t∑
k=0

1
k + 1 + 2

w(t+ 1)

t∑
k=0

Λ(θ̄,Θ, t)], (5.11)

85

since ∑t
k=0

1
k+1 is a harmonic series we then have

t∑
k=0

1
k + 1 ≤ 1 + ln(t+ 1). (5.12)

Now let’s look at the Λ term. Using the bounds described by Lemma 5.3.2 we can rewrite

the sum as:

t∑
k=0

E[Λ(θ̄,Θ, k)] =
τ0∑

k=0
E[Λ(θ̄,Θ, k)] +

t∑
k=τ0+1

E[Λ(θ̄,Θ, k)]

≤
τ0∑

k=0

(
6G2

k−1∑
k=0

1
w(k + 1)

)
+

t∑
k=τ0+1

(
(4 + 6τ0)G2 1

w(k − τ0 + 1)

)

≤6G2τ0

w
(ln(τ0) + 1) + (4 + 6τ0)G2

w
(ln(t) + 1). (5.13)

Combining (5.11),(5.12), and (5.13), we get the following:

E[‖θ̄(t+ 1) − θ∗‖2] ≤ G2(ln(t+ 1) + 1)
w2(t+ 1) + 2

w(t+ 1)(6G2τ0

w
(ln(τ0) + 1)

+ (4 + 6τ0)G2

w
(ln(t) + 1)).

Now let’s expand terms and then combine like terms to get:

E[‖θ̄(t+ 1) − θ∗‖2] =
(
12τ0G

2 ln(τ0)+(9 + 24τ0)G2
) 1
w2(t+ 1)

+
(
(8 + 12τ0)G2

) ln(t)
w2(t+ 1) +G2 ln(t+ 1)

w2(t+ 1) .

In order to simplify our expression we upper bound the above using ln(t) < ln(t+ 1), which

gives us:

E[‖θ̄(t+ 1) − θ∗‖2] =
(
12τ0G

2 ln(τ0)+(9 + 24τ0)G2
) 1
w2(t+ 1) +

(
(9 + 12τ0)G2

) ln(t+ 1)
w2(t+ 1) .

86

Now let us define the following constants:

β1 =
(
12τ0G

2 ln(τ0)+(9+24τ0)G2
)
, β2 =

(
(9+12τ0)G2

)
.

We can then simplify our expression to :

E[‖θ̄(t+ 1) − θ∗‖2] ≤ β1

w2(t+ 1) + β2 ln(t+ 1)
w2(t+ 1) (5.14)

We now have a converging upper bound for the squared error of the average parameter

vector, but we still want to provide a converging upper bound for 1
m

∑m
i=0 E[‖θi(t+1)−θ∗‖2],

i.e the average squared error. Fortunately, we can use the Cauchy-Schwarz inequality to

relate the squared error of the average parameter vector and the average squared error with

the following inequality:

E[‖θi(t+ 1) − θ∗‖2] ≤ 2E[‖θ̄(t+ 1) − θ∗‖2] + 2E[‖θi(t+ 1) − θ̄(t+ 1)‖2].

We can sum both sides over all agents and divide by m to get:

1
m

m∑
i=0

E[‖θi(t+1) − θ∗‖2] ≤ 2E[‖θ̄(t+1) − θ∗‖2] + 2
m

m∑
i=0

E[‖θi(t+1) − θ̄(t+1)‖2].

Using Lemma 1 from [34] the above can be rewritten as:

1
m

m∑
i=0

E[‖θi(t+ 1) − θ∗‖2

≤ 2E[‖θ̄(t+ 1) − θ∗‖2] + 2
m

(
δt+1

η
‖Θ(0)‖ + 2mG

η

t∑
k=0

δt−k 1
w(k + 1)

)2

.

(5.15)

87

Using (5.9) from Lemma 5.3.3 we can simplify the second term as:

2
m

(
δt+1

η
‖Θ(0)‖ + 2mG

η

t∑
k=0

δt−k 1
w(k + 1)

)2

≤ 2
m

(
δt+1

η
‖Θ(0)‖ + 2mG

wη(1 − δ)

(
δdt/2e+1+ 1

(dt/2e+1)

))2

.

Then by using the Cauchy-Schwarz inequality we can make the following simplification:

(
δt+1

η
‖Θ(0)‖+ 2mG

η

t∑
k=0

δt−k 1
w(k+1)

)2

≤ 2δ2t+2

η2 ‖Θ(0)‖2+ 8m2G2

w2η2(1 − δ)2

(
2δ2dt/2e+2+ 2

(dt/2e+1)2

)
. (5.16)

And now by plugging in (5.16) and (5.14) into (5.15) we arrive at:

1
m

m∑
i=0

E[‖θi(t+ 1) − θ∗‖2]

≤2β1

w2
1

t+ 1 + 2β2
ln(t+ 1)
w2(t+ 1) + 4‖Θ(0)‖2

mη2 δ2t+2 + 32mG2

w2η2(1 − δ)2

(
δ2dt/2e+2 + 1

(dt/2e + 1)2

)
.

(5.17)

This concludes our proof.

5.4 Conclusion

This paper has studied a distributed version of the Q-learning algorithm, which incor-

porates consensus into its update with the goal that all agents in the multi-agent system

converge to the same optimal policy and action-value function, such that the global aver-

age of rewards is maximized. The main result of this paper is a finite time bound on the

average of all parameter errors for a given diminishing step-size α(t). The result supports

earlier works which have empirically demonstrated convergence of distributed Q-learning

algorithms, and furthermore characterizes the convergence rate of such algorithms without

assuming i.i.d data samples. An interesting direction for this work may be to incorporate

88

policy improvement such as actor-critic algorithms, or to conduct a similar analysis but

without the use of a projection step in the algorithm

1

5.5 Supplementary

5.5.1 Proof of Lemma 1

Using the update of the proposed algorithm described in (5.2), we write the squared error

of the average parameter vector as the following:

E[‖θ̄(t+ 1) − θ∗‖2]

= E[‖Π(θ̄(t) + α(t)ḡ(Θ, t)) − Π(θ∗))‖2]

≤ E[‖θ̄(t) + α(t)ḡ(Θ, t) − θ∗)‖2]

= E[‖θ̄(t)−θ∗‖2+α(t)2‖ḡ(Θ, t)‖2+2α(t)〈θ̄(t)−θ∗, ḡ(Θ, t)〉]

≤ E[‖θ̄(t) − θ∗‖2
2 + α(t)2G2 + 2α(t)〈θ̄(t) − θ∗,E[ḡ(Θ, t)]〉

+ 2α(t)〈θ̄(t) − θ∗, ḡ(Θ, t) − E[ḡ(Θ, t)]〉]
(5.18)

Let us take a closer look at ḡ(Θ, t). Using (5.3) we have :

ḡ(Θ, t) = b̄(t) + c̄(Θ, t) − A(t)θ̄(t). (5.19)

Now let

h(θ, t) = φ(x(t), a(t))
(
γmax

b∈A
Qθ(x(t+ 1), b) − φ(x(t), a(t))>θ(t) +

m∑
i=1

1
m
ri(x(t), a(t))

)

be the semi-gradient computed for a centralized version of our algorithm, where the rewards

of each agent are known to a central agent. Similarly to g(t) we can write

h(θ, t) = b̄(t) + c(θ, t) − A(t)θ(t).
1

 ↑ The authors give their sincere thanks to Zhuoran Yang and Kaiqing Zhang for their valuable advice

89

We note that since the centralized algorithm has access to all rewards, its fixed point will

correspond to our target parameter θ∗. This implies that the expected gradient of a cen-

tralized algorithm will be zero at θ(t) = θ∗. Therefore, by taking the expectation of h(t) at

θ(t) = θ∗ we can write:

E[b̄(t)] = E[A(t)]θ∗ − E[c(θ∗, t)], (5.20)

where we make use of E[A(t)θi(t)] = E[A(t)]θi(t). This can be shown by noting that the

expectation is with respect to the behaviour policy, which in Q-learning is independent of

the learning policy and so is independent of θ.

Then by taking the expectation of (5.19) and then plugging in (5.20) we have:

E[ḡ(Θ, t)] = E[A(t)]θ∗−E[c(θ∗, t)] + E[c̄(t)]−E[A(t)]θ̄(t)

= −E[A(t)](θ̄(t) − θ∗)+E[c̄(Θ, t)] − E[c(θ∗, t)].

Now let’s go back to (5.18) and take a closer look at the third term. We can do the following

decomposition:

2〈θ̄(t) − θ∗,E[ḡ(Θ, t)]〉 = −2〈θ̄(t) − θ∗,E[A(t)](θ̄(t) − θ∗)〉+2〈θ̄(t) − θ∗,E[c̄(t)] − E[c(θ∗, t)]〉.

Now using assumption (5) we can lower bound the first term which then gives us:

2〈θ̄(t) − θ∗,E[ḡ(Θ, t)]〉 ≤ −2λ1‖θ̄(t) − θ∗‖2 + 2〈θ̄(t)−θ∗,E[c̄(t)]−E[c(θ∗, t)]〉. (5.21)

Let’s focus on the second term above. For convenience we denote A(t) = A, x = x(t), x′ =

x(t+ 1), a = a(t), and θ̃ = θ̄(t) − θ∗:

2〈θ̃,E[c̄(t)] − E[c(θ∗, t)]〉 = 2〈θ̃,E[φ(x, a)(max
b∈A

(φ(x′, b)>θ̄) − max
b∈A

(φ(x′, b)>θ∗))]〉

≤ 2γ
√
θ̃>E[A]θ̃

√
max{θ̃>E[A∗(θ)]θ̃, θ̃>E[A∗(θ∗)]θ̃}

≤ 2γ
√
λ1λ3‖θ̄(t) − θ∗‖2. (5.22)

90

Now combining (5.21) and (5.22) we arrive at the following:

2〈θ̄(t) − θ∗,E[ḡ(Θ, t)]〉 = −2(λ1 − γ
√
λ1λ3)‖θ̄(t) − θ∗‖2.

The above can then be upper bounded by:

2〈θ̄(t) − θ∗,E[ḡ(Θ, t)]〉 ≤ −2
√
λ1

λ1 − γ2λ3√
λ1 + γ

√
λ3

‖θ̄(t) − θ∗‖2.

Now using assumption (5) we can simplify and then upper bound the above in the following

way:

2〈θ̄(t)−θ∗,E[ḡ(Θ, t)]〉 ≤ −w‖θ̄(t) − θ∗‖2. (5.23)

Let Λ(θ̄,Θ, t) = 〈θ̄(t) − θ∗, ḡ(Θ, t) − E[ḡ(Θ, t)]〉. We can now plug in (5.23) to get another

upper bound on (5.18):

E[‖θ̄(t+ 1) − θ∗‖2]

≤ E[(1−α(t)w)‖θ̄(t) − θ∗‖2
2+α(t)2G2+2α(t)Λ(θ̄,Θ, t)],

where the last step just combines some terms and makes use of our bound on the gradient.

5.5.2 Proof of Lemma 2

First we need to show that Λ(θ̄,Θ, t) is Lipschitz continuous. We start by considering

the following difference :

∣∣∣Λ(θ̄1,Θ1, t) − Λ(θ̄2,Θ2, t))
∣∣∣

=
∣∣∣〈θ̄1 − θ∗, ḡ(Θ1, t) − E[ḡ(Θ1, t)]〉 − 〈θ̄2 − θ∗, ḡ(Θ2, t) − E[ḡ(Θ2, t)]〉

∣∣∣
≤2R‖ḡ(Θ1, t) − E[ḡ(Θ1, t)] − (ḡ(Θ2, t) − E[ḡ(Θ2, t)])‖ + 2G‖θ̄1 − θ̄2‖ (5.24)

91

The first term in 5.24 can be upperbounded with the following:

‖ḡ(Θ1, t) − E[ḡ(Θ1, t)] − (ḡ(Θ2, t) − E[ḡ(Θ2, t)])‖

≤‖ḡ(Θ1, t) − ḡ(Θ2, t)‖ + ‖E[ḡ(Θ1, t)] − E[ḡ(Θ2, t)]‖.

Now let’s look at the first term on the right hand side where we denote x = x(t) and a = a(t).

We do the following :

‖ḡ(Θ1, t) − ḡ(Θ2, t)‖≤
∣∣∣∣∣ γm

m∑
i=0

(maxb∈Aφ(x′, b)>θi,1 − maxb∈Aφ(x′, b)>θi,2)
∣∣∣∣∣+∣∣∣φ(x, a)>(θ̄1−θ̄2)

∣∣∣
≤ (1 + γ)‖θ̄1 − θ̄2‖.

The last step is done by using the following arguement. Consider the following:

max
b∈A

φ(x′, b)>θi,1−max
b∈A

φ(x′, b)>θi,2 =φ(x′, a1)>θi,1−φ(x′, a2)>θi,2,

which is lower bounded by φ(x′, a2)>(θi,1 − θi,2) and upper bounded by φ(x′, a1)>(θi,1 − θi,2).

We then have:

∣∣∣∣∣ 1
m

m∑
i=0

(maxb∈Aφ(x′, b)>θi,1 − maxb∈Aφ(x′, b)>θi,2)
∣∣∣∣∣

≤ max{
∣∣∣φ(x′, a2)>(θ̄1 − θ̄2)

∣∣∣, ∣∣∣φ(x′, a1)>(θ̄1 − θ̄2)
∣∣∣}

≤ ‖θ̄1 − θ̄2‖.

It then similarly follows that

‖E[ḡ(Θ1, t)] − E[ḡ(Θ2, t)]‖ ≤ (1 + γ)‖θ̄1 − θ̄2‖.

We therefore arrive at the following:

∣∣∣Λ(θ̄1,Θ1, t) − Λ(θ̄2,Θ2, t))
∣∣∣ ≤ 6G‖θ̄1 − θ̄2‖,

92

which demonstrates Lipschitz continuity.

We now look at upper bounding ‖θ̄1 − θ̄2‖ by analyzing the update of θ̄ according to our

algorithm. We have the following:

‖θ̄(t+ 1) − θ̄(t)‖

= ‖ 1
m

m∑
i=1

Π(
∑

j∈Ni(t)
Wijθj(t) + α(t)gi(θi, t)) − Π(θ̄(t))‖

≤ ‖ 1
m

m∑
i=1

(
∑

j∈Ni(t)
Wijθj(t) + α(t)gi(θi, t)) − θ̄(t)‖

= ‖ 1
m

m∑
i=1

(θi(t) + α(t)gi(θi, t)) − θ̄(t)‖

= ‖α(t)ḡ(Θ, t)‖ ≤ Gα(t), (5.25)

where we use the fact that W is doubly stochastic for the second equality. Given assumption

4, our proof then follows the proof of Lemma 15 from [142].

93

6. FINITE-SAMPLE ANALYSIS OF MULTI-AGENT POLICY

EVALUATION WITH KERNELIZED GRADIENT TEMPORAL

DIFFERENCE

Introduction

Due to recent success of applying reinforcement learning into feedback control systems,

autonomous driving and robotics [1], [4], [127], [146], and also extensive application of multi-

agent systems [128], [147]–[149], significant research attention has been given to Multi-Agent

Reinforcement Learning (MARL), which aims to enable agents to cooperate with nearby

neighbors in order to achieve a value function that accurately evaluates the global policy

in terms of the average of local rewards. Although such development is challenging due

to the lack of a centralized coordinator in multi-agent systems, there has been significant

progress in algorithm development for MARL [31], [74], [91]–[93]. In these distributed al-

gorithms, all agents are usually assumed to operate in the same environment with a shared

state representing the environment, and each agent is given a local reward by the environ-

ment depending on the joint action of the agents and the current state. Various algorithms

in the direction of MARL have been developed, such as the distributed TD(0) algorithm

based on gossiping [41], followed by formulation of policy evaluation with linear function

approximation as a primal-dual optimization problem[32]; distributed algorithms for actor-

critic learning in multi-agent systems [150], communication efficient distributed RL [151],

Q-learning algorithms [152], [153], and so on.

With more and more MARL algorithms developed recently, most of them rely on para-

metric models, where the value function is approximated as a linear combination of features

[124], [154]. This motivates this work consideration of non-parametric models by using func-

tions in a Repeated Kernel Hilbert Space(RKHS), which gives the learning a much more

general class of nonlinear functions compared to parametric methods [155]. We also notice

that policy evaluation is at the core of reinforcement learning algorithms, which assigns a

scalar value to each state given a fixed policy and based on a reward function [75]. Once

the policy evaluation is established, one can use the resulted value function to improve the

94

current policy using actor-critic algorithms [72], [77]. However, many reinforcement learning

algorithms based on RKHS have mainly focused on policy searching [156], [157], where the

policy is assumed to lie in an RKHS. That is why this work has investigated the case where

the value function lies in an RKHS. Although in [158], [159], both the value function and pol-

icy are assumed to be in an RKHS, they are not directly applicable to the case of multi-agent

systems. We also notice that existing results in MARL usually establish the asymptotic or

exponential convergence while a finite-sample analysis is not as common. Here, by a finite-

sample analysis is meant a convergence analysis of the algorithm for any finite number of

iterations. Such an analysis is essential to determine the convergence rate in terms of sam-

ple complexity [142], in other words, determine how many samples are needed in order to

achieve a given level of accuracy [141]. Finite-sample analysis to MARL has been limited

to distributed TD algorithms in [34], [35] and Q-learning [139], [140]. In recognition of all

these, this work has provided a finite-sample analysis for distributed algorithms for MARL

where the value function is in an RKHS.

6.1 Preliminaries and the Problem

Consider a network of m autonomous agents that operate in an unknown environment

(or plant). Let xt ∈ X denote the state of the plant at time t which is observed by each

agent, where X is continuous state space and where n = |X |. Suppose dynamics of the plant

state can be described by an irreducible Markov chain {xt}, where irreducibility describes

the property that any state is accessible from any other state. For each joint control action

at from the multi-agent network to the plant, a local reward ri(xt, at) is produced, where

at ∈ A is observed by all agents and A is a continuous action space. Here, each ri(·) is the

private reward locally accessible to only agent i, which is not shared with other agents. Let

R(xt, at) =
m∑

i=1

1
m
ri(xt, at), (6.1)

95

which represents the average reward of all agents in the network. Let π denote a fixed

stationary control policy such that a ∼ π(a | x) . Let Vπ denote the corresponding state-

value function defined as:

Vπ(xt) = E
[∞∑

k=0
γkR(xk, ak) | x0 = xt

]

where γ ∈ (0, 1) is a discount factor.

MARL algorithms are developed for all Vi to converge to Vπ, where Vi denotes agent i’s

estimation to Vπ. Towards this end, one usually introduces the following objective function:

J(V) = 1
m

m∑
i=1

E[li(Vi) + λ

2 ‖Vi‖2
H], (6.2)

where li(Vi, t) = 1
2(ri(xt, at) + γVi(xt+1) − Vi(xt))2, V = col{V1(·), V2(·), ..., Vm(·)} and H is

a repeated kernel Hilbert space (RKHS) as in [160], and E is the set of all agent pairs. It

has been shown in [32], [160], [161] that the MARL problem can be posed as the following

regularized optimization problem:

[Vπ]m = arg minV ∈HmJ(V) s.t. Vi = Vj, (i, j) ∈ E , (6.3)

with [Vπ]m the column-wise stacking of m copies of Vπ.

Note that a repeated kernel Hilbert space is defined by a kernel function κ that has the

following properties for all functions f ∈ H : X → R:

〈f, κ(x, ·)〉H = f(x), H = span{κ(x, ·)}

According to the Representer Theorem [161], [162] one can describe Vπ as a sum of kernel

evaluations only over training data, namely

Vπ(xt) =
N∑

n=1
θ∗

nκ(x′
n, xt), (6.4)

96

where κ(x′(i), xt) ∈ R is a kernel function and θ∗ ∈ RN is the optimal parameter vector, with

θ∗
n denoting the nth element of θ∗ and N denoting the number of data samples observed.

Suppose the proposed objective function satisfies the Representer Theorem. The goal of

MARL then becomes for each agent to find the θ∗.

We now discuss some aspects of the multi-agent network. In such a network, each agent

i usually can only communicate with certain neighboring agents denoted by Ni(t), which

includes agent i. The neighbor relations can be modeled by a series of time-varying undirected

graphs G(t) such that there is an edge between i and j if and only if i and j are neighbors at

time t. Suppose each agent i controls a θi (an estimate to the optimal parameter θ∗), and Vi

which as agent i’s estimate to Vπ∗ is given by

Vi(xt) =
N∑

n=1
θi,nκ(x′

n, xt). (6.5)

In the above we write θi,n to denote the nth element of the vector θi. Then the goal of MARL

under RKHS is for each θi to converge to θ∗, or equivalently for Vi → Vπ, where each agent

can only share θi with its neighbours.

6.2 Functional Stochastic Quasi-Gradient Method with Consensus

We will use a functional stochastic quasi-gradient method with kernel approximation

and consensus. Later on the KOMP algorithm [160] will be introduced for a finite-sum

representation of Vθi . Since the policy evaluation is of our particular interest, we also adopt

the assumption of a fixed global behaviour policy π, namely, local updates to each agent’s

parameter does not affect the global behaviour policy.

Let Vi,t denote agent i’s estimate of Vπ at step t and let xi,t correspond to a dictionary of

stored data samples.The update of each agents value function estimate is the following:

Vi,t+1(·) = PXi,t+1(
∑

j∈Ni(t)
Wij(t)Vj,t(·)−α(t)g(Vi,t, t)), (6.6)

97

where Wij(t) denotes the (i, j) element of some doubly stochastic matrix W (t) at time t with

lazy Metropolis weights [163], PXi(t+1) is a projection defined by,

PXi(t+1)(f ′) = argminf∈HXi(t+1)
‖f − f ′‖2

H,

and HXi,t+1 is a subspace of H defined by HXi,t+1 = span{κ(χ1, ·), ..., κ(χM(t+1)), ·)}, where

M(t + 1) is the number of entries in Xi,t at time t + 1 and χj is the jth entry of Xi,t.

Furthermore, we have:

g(Vi,t, t) = zi,t+1(κ(xt, ·) − γκ(xt+1, ·)) + λVi,t(·) (6.7)

zi,t+1 = (1 − β(t))zi,t + β(t)(δi(t)),

where zi is a running average of the temporal difference observed by agent i, which we denote

δi and define as δi(t) = ri(xt, at)+γVi,t(xt+1)−Vi,t(xt). For notational convenience we do not

write g as an explicit function of zi,t+1, but we will make this explicit for clarity in parts of

our analysis. Then the above updates corresponds to the following updates of our dictionary

and parameters.

Xi,t+1 = [xi,t, xi,t, xi,t+1], (6.8)

θi(t+1)= [(1−α(t)λ)θi(t),−α(t)zi,t+1, α(t)γzi,t+1] (6.9)

where α(t) is the step-size.

In order to fit our data exactly we could keep storing every new data sample to our

dictionary and parameter vector according to (6.8) and (6.9), but this would be impractical

since it would require infinite memory as t → ∞. Therefore, every time a new data sample

is recorded we use a model order regulation algorithm called Kernel Orthogonal Matching

Pursuit(KOMP) [160], [164]. At each step, this algorithm will try to remove entries from

the dictionary such that the Hilbert norm error between the original function approximation

and the reduced order function approximation is minimized. The algorithm continues to

remove entries and recalculates weights until the approximation error becomes greater than

98

a specified error tolerance ε(t). For the sake of brevity we will not go into the full details of

this algorithm but they can be found in [160], [164].

Furthermore, because the KOMP algorithm acts as a projection on our function estimates

then according to [160] we also have that:

‖Vi,t‖H ≤ R, ∀t, i (6.10)

for some constant R

6.3 Main Result

In this section we will present the main result, which provides an upper bound for the

average squared error that is defined for each iteration of the presented algorithm.

Before presenting the main theorem, we give some assumption which have been widely

adopted in existing literature [32], [124], [154], [160], [161].

Assumptions

1. Data samples are i.i.d and drawn from the stationary distribution µπ.

2. The state space X and action space A are compact.

3. The difference of reproducing kernels has finite conditional variance. More formally,

we have the following: E[‖κ(x, ·) − γκ(x, ·)‖2
H | F] ≤ G2, where Ft is the data history

at up until time t.

4. The average temporal difference δ̄ = 1
m

∑m
i=1 δi has finite variance. The average estimate

of the expected temporal difference z̄ = 1
m

∑m
i=1 zi has finite conditional second mo-

ments from zero. In other words, we have:E[(δ̄−E[δ̄])2 | F] ≤ σ2
δ , E[z̄2 | x, π(x)] ≤ σ2

z .

5. The expectation of the temporal difference E[δi], for each agent, is Lipschitz continuous

with respect to the value function V . Formally, for any two distinct δi and δ′
i we have:

|E[δi] − E[δ′
i]| ≤ L‖V − V ′‖H.

99

6. Let V be the node set and let E(t) be the edge set of graph G(t) for all t. There

exists an integer B such that the following graph is connected for all positive integer

l: (V , E(lB) ∪ E(lB + 1) ∪ ...∪ E((l+ 1)B − 1). Moreover, there exists a constant c such

that Wij(t) ∈ [c, 1) if j ∈ Ni(t), and Wij(t) = 0 if j 6∈ Ni(t).

With the above assumptions we then have:

Theorem 6.3.1. Suppose that assumptions (1-6) are satisfied and each agent follows the

update described by (6.6) along with the KOMP algorithm [160], with fixed step-sizes α(t) =

α, β(t) = β and tolerance parameter ε(t) = Cα(t)2, C > 0. Furthermore, suppose that

0 < β < 1, α > 0, and the regularization parameter is λ = α
β
G2 + λ0

α
with 0 < λ0 < 1. Then

we have the following upper bound for the average squared error:

1
m

m∑
i=1

E[‖Vi,t+1 − V ∗‖2] ≤ 2(1 − λ0)tE[‖V0−V ∗‖2
H] + 2ζ2t

mη2 ‖V0‖2
H +D(α, β, λ0),

where η = min{1 − 1
2m3 , supk≥0 σ2(W (k)))}, σ2(W (k))) denotes the second largest singular

value of W (k), ζ = η
1
B , and D(α, β, λ0) is a function of design parameters but constant with

time.

Remark 6.3.2. From the above we can conclude that as t → ∞ the Hilbert norm error
converges to D(α, β, λ0), where

D(α, β, λ0) = O
(

α2

λ0
+ β2

λ0
+ α2

βλ0
+ α4

β3λ0
+ α2λ0

β
+ α4

βλ0
+α2

)
,

and σ = σzG+λR+mCα. From the above we see that if α ≈ β then the above simplifies

to O(α + α
λ0

+ α2

λ0
+ α3

λ0
+ α2), which for a fixed λ0 will go to zero as α goes to zero.

Remark 6.3.3. From the above analysis we see that there are two regimes of interest that

behave differently with respect to the free parameters λ0 and α. In the first regime where

α < 1, the result indicates that α
λ0

dominates the error upper bound and so by making the

term very small we will converge to a very small neighborhood around the optimal value.

However, in this regime λ is dominated by λ0/α, and so we cannot make α
λ0

arbitrarily small

100

since that would result in a very large λ which would bias our results towards the trivial

solution of V = 0. In the regime where α > 1, the error upper bound is dominated by α3

λ0
and

λ is now dominated by the α
β
G2 term. Therefore, an increase in λ0, and thereby a potential

increase in convergence speed, would not significantly increase λ and bias the solution, but it

would increase the error upper bound.

6.4 Proof of Main Result

In this section we will provide a proof for Theorem 1. First we begin by introducing some

lemmas. The proofs of the lemmas 6.4.2 - 6.4.4 are given in the Supplementary section. For

brevity we have left out the proof of lemma 6.4.1 and we refer to [160] for its proof.

Lemma 6.4.1. Suppose each agent follows the KOMP algorithm[160] and the update de-

scribed by (6.6), from [160] we have the following result:

‖g′(Vt, z, t) − g(Vt, z, t)‖H ≤ mε(t)
α(t) .

Lemma 6.4.2. Suppose each agent follows the update described by (6.6) along with the

KOMP algorithm [160] and , we then have the following results:

E[‖g(Vt, t)‖H] ≤ σzG+ λR, E[‖g′(Vt, t)‖H] ≤ σ, (6.11)

where σ = σzG+ λR + mεmax
αmin

, εmax is the maximum value of ε(t), and αmin is the minimum

value of α(t) for all t. Furthermore, we have:

E[V̄t+1 − V̄t‖2
H ≤ 4α(t)2(σ2

zG
2 + λ2R2) + 2ε(t)2. (6.12)

101

Lemma 6.4.3. Given assumptions (1-3) are satisfied and each agent follows the update

described by 6.6 along with the KOMP algorithm [160], and suppose α(t), β(t) > 0, then we

have the following result for the expected error of the average value function estimate V̄t:

E[‖V̄t+1−V ∗‖2
H | Ft]

≤ (1 + α(t)2

β(t) G
2)‖V̄t − V ∗‖2

H − α(t)λ‖V̄t − V ∗‖2
H

+ 2ε(t)‖V̄t−V ∗‖H + α(t)2σ2+β(t)E[((z̄t+1−E[δ̄t])2 | Ft]. (6.13)

Lemma 6.4.4. Given assumptions 4 and 5 are satisfied and 0 < β(t) < 1, we then have

the following upper bound for the expected squared estimation error of the average Bellman

error:

E[(z̄t+1 − E[δ̄t])2 | Ft] ≤ (1−β(t))(z̄t−E[δ̄t−1])2+2β(t)2σ2
δ + 1

β(t)L
2‖V̄t − Vt−1‖2

H. (6.14)

Proof of Theorem 1

In order to prove the main result we will first derive an upper bound for the expected

squared error of the average value function, then we will derive an upper bound for the

expected squared consensus error, and finally we will combine these upper bounds using

Cauchy-Schwartz to arrive at the main result.

We start by analyzing the difference between the expected temporal difference E[δ] and

its estimate z, namely E[(z̄(t+1)−E[δ̄t])2]. With β(t) = β, we now take the total expectation

of both sides of (6.14) from lemma (6.4.4) , and using lemma 6.4.2 we plug in (6.12) into

the last term of (6.14) with constant step size and compression budget such that α(t) = α

and ε(t) = ε. We can then apply the resulting relation recursively from t = 0. Then by

applying the initial conditions z0 = 0 and δ−1 = 0, and noting some terms have constant

upper bounds we arrive at:

E[(z̄t+1−E[δ̄t])2] ≤ (2βσ2
δ + 2L2

β2 (α2(σ2
zG2+λ2R2)+ε2)), (6.15)

102

We now proceed with analyzing the evolution of the Hilbert norm error of the value function

E[‖V̄t+1 −V ∗‖2
H | Ft]. Accordingly, we take the total expectation of both sides of (6.13) from

lemma 6.4.3 ,with α(t) = α, and plug in (6.15). Now by combining terms, using ‖V ‖H < R

to bound the third term of (6.13), and setting ε = Cα2 with C > 0 we then arrive at:

E[‖V̄t+1−V ∗‖2
H] ≤ (1 + α2

β
G2 − αλ)E[‖V̄t−V ∗‖2

H] + A,

where A = 4Cα2R+α2σ2 +2β2σ2
δ + 2L2

β
(α2(σ2

zG
2+λ2R2)+C2α4). With the above inequality

it is clear that the Hilbert norm error will converge if we set λ = α
β
G2 + λ0

α
, with 0 < λ0 < 1.

Setting λ accordingly, we then have:

E[‖V̄t+1−V ∗‖2
H] ≤ (1 − λ0)E[‖V̄t−V ∗‖2

H] + A.

Then applying the above inequality recursively we arrive at:

E[‖V̄t+1−V ∗‖2
H] ≤ (1 − λ0)tE[‖V0−V ∗‖2

H] + A

λ0
. (6.16)

where in the last step we use the fact that ∑t
k=1(1 − λ0)k is a geometric sequence and that

λ0 < 1.

Now that we have an upper bound for the expected squared error of the average value

function, we will now look to derive an upper bound for the expected consensus error.

We define W̃ (t) = W (t) ⊗ In, Ṽ to be the column wise stacking of m copies of V̄ , i.e.

Ṽ = 1m ⊗V̄ , and V to be the column-wise stacking of each agent’s Vi, i.e V = col{V1, ..., Vm}.

Since we construct W (t) to be doubly stochastic, we have the following: W̃ (t)(Vt − Ṽt) =

W̃ (t)(Vt − Ṽt).

Let Q = (Im − 1
m

1m1>
m) ⊗ In. We now analyze the evolution of the consensus error

(Vt+1 − Ṽt+1) :

QVt+1 = (Vt+1 − Ṽt+1) = W̃ (t)QVt − α(t)Qg′(Vt, t).

103

We now apply the above equation recursively from t = 0, and then by taking the Hilbert

norm of both sides and using the triangle inequality we arrive at:

‖QVt+1‖H ≤ ‖
t∏

k=0
W̃ (k)QV0‖H+

t∑
k=0

α(k)‖
t∏

l=k+1
[W̃ (l)]Qg′(Vk, k)‖H. (6.17)

Given assumption 6 is satisfied, from [124], [163] we have that if W (t) is a doubly stochastic

matrix with lazy Metropolis weights then:

‖W (k)W (k + 1)...W (k + B − 1)QX‖ ≤ η‖QX‖,∀X (6.18)

for some matrix or vector X where η = min{1 − 1
2m3 , supk≥0 σ2(W (k)))}, and σ2(W (k)))

denotes the second largest singular value of W (k). Using (6.18) we can then upper bound

the products in (6.17) which then allows us to write:

‖QVt+1‖H ≤ηb(t+1)/Bc‖V0‖H +
t∑

k=0
α(k)ηb(t−k)/Bc‖g′(Vk, k)‖H,

where in the last step we use ‖Q‖ ≤ 1. To facilitate further analysis we let ζ = η
1
B . Then

by using ηb(t+1)/Bc ≤ ηb(t+1)/Bc−1 ≤ ζt+1/η and ‖g′(Vk, k)‖H ≤ σ from lemma 6.4.2 we can

simplify the above inequality. We now set α(k) = α, square both sides, and use the Cauchy-

Schwartz inequality to arrive at:

‖QVt+1‖2
H ≤ 2ζ

2t+2

η2 ‖V0‖2
H + 2σ2α2

η2(1 − ζ)2 . (6.19)

We will now proceed with combining (6.16) with (6.19). First, using the Cauchy-Shwartz

inequality we produce an inequality expressing an upper bound on E[‖Vi,t+1 − V ∗‖2
H]. We

sum both sides of this inequality from i = 1 to m and divide by m:

1
m

m∑
i=1

E[‖Vi,t+1 − V ∗‖2
H] ≤ 2E[‖V̄t+1−V ∗‖2

H]+ 2
m
E[‖QVt‖2

H].

104

Let D(α, β, λo) = 2A
λ0

+ 2σ2α2

mη2(1−ζ)2 , we now upper bound the second term in the above with

(6.19), and we upper bound the first term using our result from (6.16).This completes the

proof.

6.5 Conclusion

This paper has studied a distributed gradient temporal difference algorithm for policy

evaluation using a kerenelized approximation of the value function. The distributed algo-

rithm uses a local weighted average of estimates in order to drive the multi-agent system

towards consensus while also driving each agents estimate towards the actual value function

Vπ. The main result of this paper is that, under certain conditions, if each agent follows

the described algorithm then the expected squared error for each agent is bounded and can

approach zero as the step-size approaches zero. Furthermore, these bounds are provided

for every time step, which completes our goal of conducting a finite-sample analysis. An

interesting future direction of this work would be to incorporate policy improvement such

as in actor-critic methods, which would follow the work in [155].

6.6 Supplementary

6.6.1 Proof of Lemma 6.4.2

First we analyze the unprojected gradient g(Vt, t). From the definition of g(Vt, t) we have

the following:

‖g(Vt, t)‖H = ‖zt+1(κ(xt, ·) − γκ(xt+1, ·)) + λVt(·)‖H

≤ ‖zt+1‖‖(κ(xt, ·)−γκ(xt+1, ·))‖H+λ‖Vt(·)‖H.

Using inequality (6.10) and taking the expectation of both sides we simplify the last term

to λR. Then using the Law of Total Expectation we have:

E[‖g(Vt, t)‖H] ≤ E[‖zt+1‖ | xt, π(xt)]E[‖(κ(xt, ·) − γκ(xt+1, ·))‖H | Ft] + λR.

105

Using the property that E[Y 2] ≥ E[Y]2 and assumptions 3 and 4 , we can upper bound the

above which gives us our first result: E[‖g(Vt, t)‖H] ≤ σzG+ λR.

Now using the result from lemma 6.4.1 and with εmax ≥ ε(t) and αmax ≥ α(t) for all t,

we then arrive at our second result: E[‖g′(Vt, t)‖H] ≤ σzG+ λR + mεmax
αmax

= σ.

With the above results we now focus on the Hilbert norm difference between value func-

tions at one time step and the next. We start by writing out this quantity using (6.6), which

gives us:

‖V̄t+1 − V̄t‖2
H = ‖V̄t + α(t)g′(V̄t, t) − V̄t‖2

H

≤ 2α(t)2‖g(V̄t, t)‖2
H + 2α(t)2‖g′(V̄t, t)−g(V̄t, t)‖2

H,

where the last step makes use of the triangle inequality on the expression ‖(g′(V̄t, t) −

g(V̄t, t)) + g(V̄t, t)‖2
H. We can then use lemma 6.4.1 to upper bound the second term of

the above and then by taking the expectation we arrive at:

E[‖V̄t+1 − V̄t‖2
H] ≤ 2α(t)2E[‖g(V̄t, t)‖2

H + 2ε(t)2.

Now we use (6.11) to get an upper bound on E[‖g(V̄t, t)‖2
H, and then using the Cauchy-

Schwarz inequality we arrive at the final result. This completes the proof of lemma 6.4.2 .

6.6.2 Proof of Lemma 6.4.3

We start by looking at the squared average error:

‖V̄t+1 − V ∗‖2
H = ‖V̄t − α(t)g′(V̄t, t) − V ∗‖2

H.

We expand out the above product and then add and subtract the functional stochastic

gradient g(V̄t, t) giving us:

‖V̄t+1 − V ∗‖2
H =‖V̄t − V ∗‖2

H − 2α(t)〈V̄t−V ∗, g(V̄t, t)〉H

− 2α(t)〈V̄t−V ∗, g′(V̄t, t)−g(V̄t, t)〉H + α(t)2‖g′(V̄t, t)‖2
H.

106

Then using lemma 6.4.1 and the Cauchy-Schwarz inequality we can upper bound the third

term above by 2ε(t)‖V̄t − V ∗‖H. For convenience let E[δ̄t] = E[δ̄t | xt, π(xt]. We now remind

ourselves that that stochastic quasi-gradient g is also a function of z by writing g(V̄t, z̄t+1, t),

and then we add and subtract g(V̄t,E[δ̄t], t), to the above equation which gives us:

‖V̄t+1−V ∗‖2
H ≤‖V̄t−V ∗‖2

H−2α(t)〈V̄t−V ∗, g(V̄t,E[δ̄t], t)〉H

+ 2ε(t)‖V̄t−V ∗‖H + α(t)2‖g′(V̄t, z̄t+1, t)‖2
H

+ 2α〈g(V̄t, z̄t+1, t)−g(V̄t,E[δ̄t, t], V̄t − V ∗〉. (6.20)

Let v(t) = 2α(t)〈(z̄(t+1)−E[δ̄t])(κ(xt, ·)−γκ(xt+1, ·)), V̄t −V ∗〉, and now using the definition

of g we can then simplify the last term of (6.20) to v(t) by canceling out like terms. We then

compute the expectation on both sides of the above inequality, conditional Ft which gives

us:

E[‖V̄t+1 − V ∗‖2
H | Ft] ≤‖V̄t − V ∗‖2

H − 2α(t)〈V̄t−V ∗,E[g(V̄t,E[δ̄t], t) | Ft]〉H

+ 2ε(t)‖V̄t−V ∗‖H + α(t)2σ2 + E[v(t) | Ft]. (6.21)

where because of assumption (1) we have that V̄t is independent on the gradient given Ft.

We have also made use of lemma 6.4.2 to upper bound the second to last term. We now

note that the regularization term (λ/2)‖V ‖2
H in our objective function implies that J(V) is

λ-strongly convex in V ∈ H since the Hessian of J(V) is lower bounded by λ. We can then

substitute the second term in (6.21) with 2α(t)λ‖V̄t − V ∗‖2
H, which give us:

E[‖V̄t+1−V ∗‖2
H | Ft] ≤‖V̄t− V ∗‖2

H − 2α(t)λ‖V̄t − V ∗‖2
H

+ 2ε(t)‖V̄t−V ∗‖H + α(t)2σ2 + E[v(t) | Ft]. (6.22)

107

Let us now momentarily focus on v(t). By using the Cauchy-Schwartz inequality and its

corollary 2ab ≤ ρa2+b2/ρ for ρ, a, b > 0, we can simplify v(t). Then by taking the expectation

of v(t) and using assumption 3 , we arrive at:

E[v(t) | Ft]≤β(t)E[(z̄t+1−E[δ̄t])2 | Ft] + α(t)2

β(t) G
2‖V̄t − V ∗‖2

H.

Finally, we use this upper bound for E[v(t) | Ft] in (6.22). This completes the proof.

6.6.3 Proof of Lemma 6.4.4

For brevity we will only give an outline of the proof. We start by defining a scalar

quantity e(t) as e(t) = (1−β(t))(E[δ̄t]−E[δ̄t−1]). We then analyze the evolution of E[(z̄t+1 −

E[δ̄t] + e(t))2 | Ft]. We use assumption 4 to upper bound terms containing E[(δ̄t−dE[δ̄t])2],

and note that some terms go to zero in expectation. This gives us the following:

E[(z̄t+1 − E[δ̄t] + e(t))2 | Ft] ≤ (1−β(t))2(z̄t−E[δ̄t−1])2+β(t)2σ2
δ . (6.23)

Then we use Lipschitz continuity of E[δi(t)] with respect to V (t) from assumption 5 to derive

the following upper bound on e(t):

|e(t)| = (1−β(t))‖E[δ̄t]−E[δ̄t−1]‖ ≤ (1−β(t))L‖V̄t−Vt−1)‖H. (6.24)

Finally, we use the following result ‖a+ b‖2 ≤ (1 + ρ)‖a‖2 + (1 + 1
ρ
)‖b‖2, which holds for any

ρ > 0, to derive an upper bound for E[(z̄t+1−E[δ̄t])2 | Ft] in terms of E[(z̄t+1−E[δ̄t]+e(t))2 | Ft]

and e(t).

E[(z̄t+1−E[δ̄t])2 | Ft] ≤ (1−β(t))(z̄t−E[δ̄t−1])2 + 2β(t)2σ2
δ + β(t) + 1

β(t) e(t)2.

The final result then follows by replacing E[(z̄t+1 − E[δ̄t] + e(t))2 | Ft] and e(t) with their

upper bounds expressed in (6.23) and (6.24), respectively.

108

PART III

Applications

109

7. LEARNING-ASSISTED LOAD CONTROL DESIGN FOR

TRANSACTIVE ENERGY SYSTEM

Introduction

Transactive energy has emerged as a paradigm for demand-side control in power grids

[67]–[69]. A transactive energy system is usually concerned with the coordination and control

of a group of distributed energy resources such as smart loads, distributed generations, and

even energy storage. It can be modeled by a multi-agent system with three different types

of agents: coordinator, supplier, and customer, where the coordinator represents the market

operator, the supplier is the electricity seller, and the customer is the electricity buyer [165].

The underlying coordination and control have a hierarchical structure which consists of two

decision-making levels including resource level and supervisory level[166].

There are some works that have applied RL aglorithms to transactive energy problems,

such as in [53] where a modified version of DDPG is proposed for strategic bidding in

electricity markets, and in [167] where a DQN is proposed for HVAC control. Similiarly, in

[168] a multi-zone HVAC control problem is tackled using DQN with a heuristic mechanism

for dealing with large action space, while in [169] an actor-attention-critic algorithm is used

for a multi-agent formulation of the multi-zone HVAC control problem. Though these results

are promising and validate the applicability of RL for HVAC control in TES, they do not

compare multiple algorithms against each other. Such a comparison would allow us to see

the benefits and drawbacks of using one algorithm over the other for this particular task.

To our knowledge, there are no works that compare different reinforcement learning ap-

proaches when applied to transactive energy systems. There are works comparing DQN and

DDPG, and other policy gradient algorithms , but they are studied on specific use cases,

such as UAV control, cybersecurity, networking, data mining, robotics, and power grid volt-

age control [4], [48]–[52], which are not in our field of interest, or on either toy examples

or games [46], [54]–[56]. In [57] a comprehensive comparison of temporal difference algo-

rithms is given but they are applied to examples such as the cartpole problem or the 20 link

pole balancing problem, which, though of high dimensionality and difficulty, do not capture

the multi-objective and market-based features that characterize the transactive energy en-

110

vironment. There are some works that have applied RL aglorithms to transactive energy

problems, such as in [53] where a modified version of DDPG is proposed for strategic bidding

in electricity markets, and in [167] where a DQN is proposed for HVAC control. Similiarly, in

[168] a multi-zone HVAC control problem is tackled using DQN with a heuristic mechanism

for dealing with large action space, while in [169] an actor-attention-critic algorithm is used

for a multi-agent formulation of the multi-zone HVAC control problem.

In order for transactive control to be effectively realized there is a need for the coordi-

nator to aggregate the load demand of all the customers. This requires that all consumers

send a representation of their individual demand curves to the coordinator. Besides the issue

of potentially large communication costs from sending demand curves to the coordinator,

there is also the issue that each consumer would need to accurately compute a mathemat-

ical representation of their demand. Consumers would need to accurately model the load

dynamics of their loads, as well as their specific user preferences. This presents a challenge

for practical deployment of transactive load control because individual consumer may not

have an accurate model for its load or its user preference in mathematical form.

Because the issues of unknown user preferences and difficulty in modeling dynamics of

specific loads, there is a need to develop methods that do not require demand curves of

each individual or mathematical models of dynamics. This motivates our exploration of

model-free methods such as reinforcement learning algorithms. Reinforcement learning can

achieve optimal control of systems by learning from observed data that is created from

interacting with the environment, where the environment consists of all components that

are not controllable. An important part of the data is feedback in the form of a rewards,

which determines what type of control inputs or actions are favorable for a given state of the

environment. In our case, the reward function will be influenced by user preferences, and

the influence of user-preference can be abstracted to the value of a single parameter. This is

better than model-based methods where there might be many parameters that the user will

have to determine, making it difficult to design for a wide range of users.

111

7.1 Problem Statement

In this work we consider a transactive energy system that is made up of a network of

residential air conditioners (ACs) at the resource level, and a central coordinator and supplier

at the supervisory level. Since we are interested in large network of small power loads, the

market is close to perfectly competitive, where the market clearing price, as determined by

the coordinator, is independent of any individual resource level decisions. As such, the

resource level individuals are price takers and do not consider decisions of other individuals

in their own decision making. Moreover, we focus on the control decisions of one individual,

which we call the agent, where the control goal of the agent is to minimize the thermal

comfort and energy costs of the agent.

To this end, the agent controls the AC by giving On/Off commands, denoted u(t), at the

beginning of every market period t. The command u(t) is determined as follows: The agent

decides on a price bid λbid, then once the agent receives the market clearing price λclear it

turns on the AC for the whole market period if its price bid is greater than or equal to the

clearing price, otherwise the agent turns the AC off. Or more formally:

u(t) =


On, if λbid(t) ≥ λclear(t)

Off, otherwise

The dynamics of the AC can be described by the following equivalent thermal parame-

ter (ETP) model [170] with both discrete and continuous states,

Ṫa = Hm

Ca

(Tm − Ta) + Ua

Ca

(To − Ta) + Q

Ca

(7.1a)

Ṫm = Hm

Cm

(Ta − Tm) + Q

Cm

(7.1b)

with

Q(t) =

 Qi +Qs +Qh if u(t) = On

Qi +Qs if u(t) = Off,

112

Compare bidding
and clearing
prices

Market

Other participants

Indoor
Temperature
And Outdoor
Temperature

ON/OFF Signal

Market Clearing Price

Bidding information (a pair of numbers)

• Bidding price

• AC ON power

Agent
• Determine the

biding price

Figure 7.1. Agent Feedback

where Ta, is the indoor air temperature, Tm is the inner mass temperature (due to the

building materials and furnishings), Ua is the conductance of the building envelope, To is

the outdoor air temperature, Hm is the conductance between the inner air and inner solid

mass, Ca is the thermal mass of the air, Cm is the thermal mass of the building materials

and furnishings, Q is the total heat flux consisting of the heat gain from the internal load

Qi, the solar heat gain Qs and the heat gain from the heating/cooling system Qh.

With the above structure, the control problem of the agent is to compute λbid at every

market period t.

7.2 Learning-assisted Bidding Strategy

In previous works such as in [165] and the AEP gridSMART project, a bidding strategy

is designed based on models of the building temperature dynamics, such as (7.1), and models

of user preferences. This approach, however, would be difficult to apply to the realistic case

of large networks with heterogeneous consumers, since this would require the impractical

task of developing good models for every consumer, which itself potentially operates various

appliances with complex power dynamics. With this in mind we are motivated to develop

a model-free approach, and so due to its model-free nature and its success in literature we

113

explore reinforcement learning for the purpose of training intelligent consumer agents to

produce optimal bidding strategies.

As such, we consider a learning agent that can only use data about the state s(t) of

its environment at the current time step, i.e. market period, t and a reward signal r(t),

as well as a finite amount of historical data. We define the state s(t) of the environment

as s(t) = [Tin(kt), Tout(t)], where Ta(t) is the indoor temperature and Tout(t) is the outdoor

temperature at t. In accordance with the goals of minimizing thermal discomfort and energy

cost, the reward r(t) is defined as:

r(t) = −wU (∆T (t)) − (1 − w)C(Pavg, t) (7.2)

where C(Pavg, t) is the cost of energy consumption, U(∆T (t)) represents the disutility from

thermal discomfort, ∆T (t) = T̄a(t) − Tdesired, T̄in(t) is the average indoor temperature over

the market period t, Pavg(t) is the average power consumed over the market period t, and w

is a weighting factor.

The goal of the learning agent is to develop an optimal price bidding strategy π(s) : s →

λbid, which outputs a price bid for every state s and maximizes the rewards received, using

only data gathered from its environment. The overall feedback loop of the agent with its

environment (market and building) is shown in 7.1 .

We note that some previous works on developing learning-assisted strategies have used a

tabular RL algorithm [171], which required the discretization of the action and state space.

This discretization can become impractical as the action and state space becomes large,

which would then require an impractical amount of memory in order to save values for each

action. In the RL literature this issue is often referred to as the “curse of dimensionality”.

In light of this issue, along with tabular forms we will also explore deep reinforcement

learning. Deep reinforcement learning makes use of deep neural networks to approximate

key functions such as the policy and/or value functions. The main benefit of this is that

it allows us to use RL methods on continuous state and action spaces without the need for

discretization, thereby addressing the issues with large state and action spaces.

114

We now introduce the reinforcement algorithms of interest, which we will apply to the

problem of learning an optimal price bidding policy.

7.2.1 Tabular Q-learning

The Q-learning algorithm introduced in [7], was developed for environments with discrete

action and state spaces. As such, the Q function in traditional Q-learning is represented as a

data table of values, and so it is sometimes referred to as tabular Q-learning. The Q-learning

algorithm provides a way to update the the entries of this table so that it can better represent

the values for the optimal policy. Once the values converge to the optimal values, the table

can be used to look up what is the best action for a given state. The algorithm is given by

the following equation:

Q(st, at) = Q(st, at) + α(rt+γmax
u

Q(st+1, u) −Q(st, at))

where α ∈ (0, 1) is the learning rate and γ ∈ (0, 1) is a discount factor. Both of these

parameters are user-defined. In order to guarantee convergence of the algorithm, it is nec-

essary that all actions and states are visited infinitely many times. This is accomplished by

using an exploratory policy to collect data, instead of always taking the greedy action. As

with most reinforcement learning algorithms, the need for exploration will also be noted in

the next two algorithms.

7.2.2 DQN

We will look at a deep Q-learning approach, which is called Deep Q-Network (DQN).

With this approach the Q-function, which in traditional Q-learning is represented as a table

of values, will now be represented by a neural network. Once this neural network has been

appropriately trained using simulated data and the DQN algorithm, it can then be used

to construct a policy similar to [171] where the policy outputs a price bid given an indoor

temperature. The main advantage of using the DQN approach is that it does not require

the discretization of the feasible space of indoor temperature values, which allows it to scale

115

Memory
Random Sample

Loss

Gradient
Descent
Update

Neural Network

Environment
Exploration

Policy

Figure 7.2. DQN Algorithm

better. This neural network can be trained to map the state of the system to a vector of

values where each element of the vector corresponds to a discrete action. In this way the

best action can be computed by finding the index of the largest value of the output vector.

The overall algorithm is illustrated in Fig. 7.2 . First the agent observes a data tuple

(st, at, rt, st+1) which is then saved in the agent’s memory, where st,at, and rt refer to the

state, action taken, and reward received at time step t. Then the agent randomly selects a

data tuple and this data tuple is used to calculate the gradient of the DQN loss function.

The loss function is shown in Fig. 7.2 . This gradient is used to update the weights θt

of the neural network Q(s, a; θt) through a method known as ”backpropagation”, which is

essentially a gradient descent update that uses the chain rule to propagate backwards from

the output layer of the neural network. Once the weights have been updated they are used

to update the exploration policy, and then finally the updated exploration policy is used to

determine the next action. This action is applied to the environment which responds with a

new data tuple, thereby continuing the learning cycle.

7.2.3 DDPG

DDPG is a deep learning reinforcement learning algorithm that belongs to the family of

policy gradient algorithms and uses an actor-critic structure. The algorithm is similar to

DQN, in the DDPG algorithm we represent the Q value function as a neural network, which

is referred to as the critic, but DDPG incorporates a second neural network to represent the

116

Memory

Random
Sample

Critic
Loss

Gradient
Descent
Update

Critic Neural
Network

Environment

Actor
Neural Network Actor

Loss
Gradient
Descent
Update

Exploration
Noise

Action
Value

Figure 7.3. DDPG Algorithm

learned policy, referred to as the actor. This addition is needed in order for the algorithm to

be applicable for environments that have continuous action spaces, which is not the case for

DQN. As such, DDPG is a direct extension of DQN from environments with discrete action

spaces to environments with continuous action spaces. We can see the over all structure of

the DDPG algorithm in Fig. 7.3 . From 7.3 , the critic loss for one sample Li is Li = (ri +

γQ(si+1, at+1; θt)−Q(si, ai; θt))2 and the actor loss for one sample Ji is Ji = Q(si, π(si;w); θt).

We note that the loss from one sample does not necessarily determine the update for the actor

and critic. This is because usually a small batch of samples (called minibatch) is randomly

selected from memory to compute multiple losses and multipe gradients of those losses. And

so the resulting update will be in the direction of the average of the these gradients. We note

the exploration noise block in 7.3 , which represents the addition of noise to the calculated

greedy action at+1. This is needed so that the learning agent explores the state space and

action space, otherwise the agent could get stuck on a local optimum that is far from the

global optimum.

7.3 Case Studies

In this section we will explore case studies that evaluate the algorithms of interest in

different contexts. We evaluate them in terms of their control performance and training per-

117

formance, using metrics such as sample complexity, random seed sensitivity, and robustness

to increasingly non-competitive markets given that agents are trained with the assumption

of competitive markets. We first describe details regarding our simulations and learning

implementation.

In order to emulate a nearly competitive environment, we created a simulated TES

environment of 1000 houses where each house has its own user preferences. We confirmed that

1000 houses was enough to approach a competitive market by conducting a price sensitivity

analysis. This involved running simulations where we picked a house and fixed its bidding

price throughout the day, recorded the clearing prices, and repeated with a different bidding

price for the selected house. The results are shown in Fig. 7.4 . They indicate that throughout

most of the day the clearing prices are not affected by the differences in the biding price of

individual house, and that prices are only slightly affected during hours of peak consumption.

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 24:00

Time

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

C
le

a
ri
n
g
 P

ri
c
e

Figure 7.4. Price Sensitivity

For the first two case studies, we trained three agents (one for each algorithm of in-

terest) using a modified version of the simulated TES environment. As part of setting up

this training environment, we first collected the clearing prices created by simulating 1000

118

houses interacting with a central supplier, where each house uses a simple linear model for

determining a bidding priced based on the inside temperature. Since we concluded that 1000

houses approaches a competitive environment, we used these precomputed clearing prices

instead of simulating the market during agent training. This significantly reduced the time

complexity of our simulations and so increased the speed of training. It is important to

note that these clearing prices were not given as inputs to the agent, since that would not

be realistically accessible to an agent. We trained these agents over 250 episodes using our

training environment, where for our problem an episode is defined as one day containing

288 market periods. In addition, each market period contains ten 0.5 minute intervals in

which we simulate the evolution of indoor temperatures given the control input set at the

beginning of the market period.

In order to create an environment that is compatible with the reinforcement learning

algorithms, we also implement a suitable reward function based on equation (7.2). For all

the case studies, the form of the reward function is defined by U(∆T (t)) = a (∆T (t))2, and

C(Pavg(t), t) = λclear(t)Pavg(t)/12. We adopt the disutility function used in a similar work

[172], and a is chosen as 1/240 with unit $/ (◦F)2 to ensure that the disutility term and cost

term are of similar magnitude and the same unit; the cost term has factor 1/12 since 5 min

is 1/12 hour. Thus, our reward function becomes:

r(t) = −wa (∆T (t))2 − (1 − w)λclear(t)Pavg(t)/12.

To compare the different learning algorithms we use w = 0.5 since it balanced disutility

minimization and cost minimization, but for our study of uncompetitive markets we in

addition use w = 0.2 so that we can have a better idea of how the costs affect the performance

of the agent.

We now describe some of the details specific to the implementation of the learning algo-

rithms. The neural network architecture and algorithm hyperparameters for the DDPG and

DQN agents are manually tuned so that they could achieve good training performance. In

order to make the algorithms more comparable, we use a similar neural network architecture

for the critic of DDPG and DQN, and also use a neural network of similar magnitude for

119

the actor of DDPG. In order to describe neural network architecture we use the following

notation: A×B×C. This describes a neural network with one hidden layer, where A is the

number of inputs, B is the number of nodes in the hidden layer, and C is the number of out-

puts. With this notation in mind, we use a 2×150×200×1 neural network for DQN agents

and a 2 × 150 × 200 × 1 neural network for the critic of DDPG agents and 2 × 100 × 200 × 1

neural network for the actor of DDPG agents. In terms of hyper parameters, for DDPG and

DQN agents we use a mini-bath size of 50, target update frequency of 100, discount factor

of 0.99, and learning rate of 0.01 for DQN and DDPG critic but use 1e − 4 for DDPG actor.

We note that we use a slightly modified version of DQN called Double DQN, which improves

that stability of DQN.

In order to use the tabular Q-learning algorithm, we need to decide on a proper range

and discretization for the state space and action space. Since the discretization determines

the size of the Q value table, this is essentially analogous to determining a proper neural

net architecture. As such, tuning the discretization and range is one of the most important

factors to the performance of the algorithm and its sample complexity. After some trial and

error, we fixed the discretization such that the indoor temperatures lied in the range (60,78)

with 10 discrete values , outdoor temperatures lied in (63,92) with 5 discrete values, and

bidding price lied in (0,0.18) with 19 discrete values.

We now present our empirical results from implementing the discussed algorithms. We

first demonstrate the control performance of agents trained by each of the three reinforcement

learning algorithms. Then we compare the performance of the learning algorithms for our

particular environment, using metrics that are widely used in the reinforcement learning

literature to compare algorithms.

7.3.1 Control Performance

In this section we demonstrate how well each agent, which was trained by a different

learning algorithm, performed on the control task of interest. In particular we look at the

rewards received throughout a week of interacting with the simulated TES environment.

Since temperature control is a major part of maximizing rewards, we also demonstrate how

120

well each agent maintains the indoor temperature close to the user defined desired tempera-

ture. We also show the price bids of each agent over a day and compare it to the evolution

of the outside temperature. This allows us to see how price-bidding behaviour is affected by

outside temperature, and demonstrates the differences in bidding behaviour of each agent.

Lastly, we test the DDPG agents on their robustness to non-competitive environments.

0 1 2 3 4 5 6 7

Days

-70

-60

-50

-40

-30

-20

-10

0

C
u

m
u

la
ti
v
e

 R
e

w
a

rd
($

)

DDPG

DQN

Tabular Q

Figure 7.5. Cumulative Reward Over Week. DDPG had a runtime of 2.25
hours and DQN took 2.64 hours. For Q tab we were not able to measure the
runtime but it ran for around a day

In Fig. 7.5 we can see that the DQN and DDPG agents achieve higher rewards over

the entire week than tabular Q-learning. In fact, DDPG and DQN outperform tabular Q-

learning for every day of the week. This is to be expected because the environment’s state

space is continuous, which makes it more suitable for DDPG and DQN.

In addition, by taking a closer look at the DDPG and DQN agents, we can see from Fig.

 7.6 that both agents perform similarly over the entire week. Though by a small margin, we

can also see that the DDPG agent achieves a higher cumulative reward by the end of the

week. We next present results for Day 2 in Fig. 7.7 and Fig. 7.8 . We choose Day 2 since

it has the highest temperatures of the week. In Fig. 7.7 it can be seen that DDPG and

DQN agents perform similarly and they both outperform tabular Q-learning. In Fig. 7.8

we see that DDPG and DQN agents maintain the indoor temperature close to the desired

temperature throughout the day. We also note that for all agents the indoor temperature

121

0 1 2 3 4 5 6 7

Days

-12

-10

-8

-6

-4

-2

0

C
u

m
u

la
ti
v
e

 R
e

w
a

rd
($

)

DDPG

DQN

Figure 7.6. Cumulative Reward Over Week(Only DQN and DDPG)

trajectories oscillate with high frequency since we use on/off control mechanism for our

system. With a different control mechanism that could for example reduce AC power as

needed, we could expect to see smoother trajectories for the indoor temperatures.

In Fig. 7.9 we compare the trajectories of price bids of each agent. One observation we

can make is that the trajectories of all agents oscillate with high frequencies throughout the

day, and that the amplitude of these oscillations grows larger as the outside temperature

increases. As with indoor temperature trajectories, high oscillations can be explained by the

on/off control mechanism of the system. The tendency of the amplitudes to increases with

outside temperatures, on the other hand, is likely due to the correlation between clearing

prices and outside temperatures. We also observe that for all agents, as they increase their

high price bids, they also increase their low price bids. Intuitively, we would expect the

low price bid to always be zero in order to make sure we are below the clearing price. But

since this was not incentivized by the given reward function, none of the agents learned this

behavior. It is also important to note that the action space for DQN is constrained to be in

the range (0, 0.35) in order to stabilize the learning process. The DDPG algorithm showed

stable learning with the full action space (0, 1), and we constrain it to (0, 0.35) so that it

would be a fair comparison with DQN. We further constrain the action space in the range

(0, 0.18) for tabular Q-learning. These ranges were chosen by using our knowledge of the

122

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 24:00

Time

-10

-5

0

C
u

m
u

la
ti
v
e

 R
e

w
a

rd
($

)

Day 2

DDPG

DQN

Tabular Q

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 24:00

Time

-20

-10

0

C
u

m
u

la
ti
v
e

 U
ti
lit

y
($

)

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 24:00

Time

0

2

4

C
u

m
u

la
ti
v
e

 C
o

s
t(

$
)

Figure 7.7. Cumulative Rewards for Day 2

clearing prices, which was found to be closely bounded by (0, 0.18). In practical settings, we

could make use of historical prices to reasonably constrain the action space if clearing prices

are not known beforehand.

7.3.2 Training Performance

In this section we illustrate the performance of each algorithm in terms of their average

reward/episode reward. These metrics are commonly used in empirical studies of reinforce-

ment learning algorithms [54], [173], [174]). In [54] and [175] it is emphasized that in order to

better evaluate learning algorithms it is important to run many training trials with different

random seeds. This would allows us to test the variability of a particular algorithm with

respect to the random seeds.

123

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 24:00

Time

60

65

70

75

80

In
d
o
o
r

T
e
m

p
e
ra

tu
re

Day 2

DDPG

DQN

Tabular Q

Tdesired

Figure 7.8. Indoor Temperature for Day 2

In Fig. 7.10 and Fig. 7.11 we see that the DDPG algorithm has higher variability in

the initial phases of training compared to the DQN algorithm. On the other hand, we also

see that the DQN algorithm experienced occasional drops in performance that persisted

throughout the training process. These drops in performance are not seen as often nor with

the same magnitude in the DDPG training process (except for the first 50 episodes). This

indicates that the DDPG algorithm has better long-term stability than DQN for our use

case. This might be partly due to the fact that exploration can decay to zero with the

DDPG algorithm without triggering divergence during training, while the DQN algorithm

requires a minimum amount of exploration throughout training otherwise the algorithm can

become unstable. This last point is important because, given a fixed set of hyperparameters,

this would also allow DDPG to get closer to the globally optimal policy, whereas DQN will

be occasionally pushed away from the globally optimal policy because of the need for a

minimum amount of exploration.

In Fig. 7.12 and Fig. 7.13 we can see the training performance of the tabular Q-learning

algorithm. We see immediately that the algorithm suffers from high sample complexity,

where over 5000 episodes are needed in order for the algorithm to start converging. This

is the reason why we have decided to plot the Q-learning training progress separate from

124

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 24:00

Time

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

P
ri
c
e
 B

id

60

65

70

75

80

85

90

O
u
ts

id
e
 T

e
m

p
e
ra

tu
re

Day 2

DDPG

DQN

Tabular Q

Figure 7.9. Price Bids for Day 2

DQN and DDPG. In addition, we see that Q-learning converges at episode reward of around

-15, whereas the DDPG and DQN converge closer to -10. Overall, it seems that DQN and

DDPG both perform a lot better than Q-learning for the problem of interest and with a

much better training efficiency, in terms of number of episodes needed to converge.

7.3.3 Performance in Non-Competitive Market

Here we show how DDPG agents perform when the market is non-competitive, i.e. the

clearing price is affected by individual price bids. We only look at DDPG agents because we

can no longer assume a lower upper bound on the actual clearing prices, which greatly in-

creases the discrete action space of DQN agents making them unsuitable for non-competitive

markets. As such, we train two DDPG agents on a competitive environment with full bid-

ding price range (0, 1) instead of the smaller range of (0, 0.35) used for comparisons with

DQN. One agent is trained with weighting factor w = 0.5 and the other is trained with

w = 0.2. We did this in order to test how the value of w can affect performance, particu-

larly since lower values of w will emphasize the cost of bidding and so this should highlight

the affects of a non-competitive market. After training, the agents are then evaluated on a

125

Figure 7.10. Range of average episode rewards received during training for 10
trials of DQN and DDPG with different random seeds. Rewards are averaged
every 10 episodes. Shaded region indicates one standard deviation from mean.

different environment that incorporates a non-competitive market. This simply means that

an extra function was called to compute the clearing price at the beginning of every market

period. As such, this function collects approximations of the agent’s demand curve, which

is constructed from the price bid and power ratings, as well as the demand curves of other

simulated houses. Once these demand curves are all gathered, a suitable clearing price is

calculated based on the feeder capacity limits and base price of the supplier. Using this pric-

ing mechanism, we test the agent for environments containing 1000 houses, 500 houses, 100

houses, and 50 houses. These set of tests will allow us to determine how sensitive the agents

are to increasingly less competitive markets. Reinforcement learning theory tells us this de-

crease in market competition should lead to bad performance since it breaks the underlying

assumption of a stationary and fully observable environment [29].

The results illustrated in Fig. 7.14 indicate that despite the partial observability of the

environment, i.e. lack of knowledge of other houses’ actions, the DDPG agents still perform

well when compared to our baselines. We also note that there is a drop in performance as the

number of houses decreases. The baselines are agents that use a linear piece-wise function as

126

Figure 7.11. Range of episode rewards received during training for 10 trials
of DQN and DDPG with different random seeds. Shaded region indicates one
standard deviation from mean.

a bidding strategy, where the slope of the function is referred to as the ratio and it represents

how sensitive the user is to indoor temperature. A higher ratio means that users are more

sensitive to indoor temperature, and so would bid higher for every degree increase in indoor

temperature. More formally we have that baseline price bid is given by:

λbid =



0, if Tmin > Ta

λavg + k (Ta−Tdesired)λdev
Tmax−Tmin

, if Tmin ≤ Ta ≤ Tmax

1, if Tmax < Ta

where λavg is the average price over the last 24 hours, λdev is the standard deviation of prices

over the last 24 hours, Tmax is the user-defined maximum temperature limit, Tmin is the

user-defined minimum temperature limit, and k is the baseline ratio. The maximum and

minimum temperature limits where held fixed for all baselines.

It can be seen from Fig. 7.15 that the drop in performance is more drastic for the agent

trained with w = 0.2. This is expected because as the number of houses drops each individual

house gains market power and thus can have a greater influence on the clearing price. This in

127

0 5000 10000 15000

Episode

-100

-80

-60

-40

-20

0

A
ve

ra
g
e
 R

e
w

a
rd

($
)

Figure 7.12. Averaged Reward for Tabular Q 10x5x19. Rewards averaged
every 7 episodes .Resulting agent used in comparison plots

0 5000 10000 15000

Episode

-120

-100

-80

-60

-40

-20

0

E
p
is

o
d
e
 R

e
w

a
rd

($
)

Figure 7.13. Episode Reward for Tabular Q 10x5x19. Resulting agent used
in comparison plots

turn leads to less observability from the learning agent’s perspective, since it cannot observe

the price bids of the other houses, and therefore result in increasingly suboptimal price bids.

Overall, these test are promising in that it demonstrates that the learned policies have a

certain level of robustness to the changes in the market environment when utility and cost

are weighed equally. However, when cost is weighted more and the number of houses is low,

we see that the agents’ inability to deal with a non-competitive market makes them worse

than most of the base cases.

128

0 2 4 6

Day

-40

-30

-20

-10

0

C
u

m
u

la
ti
v
e

 R
e

w
a

rd
($

)

Nh: 1000

Agent

Ratio=3

Ratio=6

Ratio=15

0 2 4 6

Day

-40

-30

-20

-10

0

C
u

m
u

la
ti
v
e

 R
e

w
a

rd
($

)

Nh: 500

0 2 4 6

Day

-40

-30

-20

-10

0

C
u

m
u

la
ti
v
e

 R
e

w
a

rd
($

)

Nh: 100

0 2 4 6

Day

-40

-30

-20

-10

0

C
u

m
u

la
ti
v
e

 R
e

w
a

rd
($

)

Nh: 50

Figure 7.14. Cumulative Rewards Over Week, w=0.5

7.4 Conclusion

We explored three popular reinforcement algorithms for the purpose of finding an optimal

bidding strategy for an individual house in transactive energy system. We evaluated these

algorithms on the control performance of their resulting bidding strategies and their training

performance. From our empirical studies we have found that DDPG and DQN far outperform

tabular Q-learning. This was expected since our environment consists of continuous states

and tabular Q-learning is better suited for problems with discrete state spaces. We have

also found that DDPG and DQN perform similar in control performance. They do have

some differences in training performance, where DQN appears to have lower sensitivity to

randomness in picking initial weights and randomness in the particular exploration trajectory

used during training. However, we have also seen that this sensitivity only exists during

initial training of DDPG, and after many episodes of training DDPG shows better stability

129

0 2 4 6

Day

-25

-20

-15

-10

-5

0

C
u

m
u

la
ti
v
e

 R
e

w
a

rd
($

)

Nh: 1000

Agent

Ratio=3

Ratio=6

Ratio=15

0 2 4 6

Day

-25

-20

-15

-10

-5

0

C
u

m
u

la
ti
v
e

 R
e

w
a

rd
($

)

Nh: 500

0 2 4 6

Day

-25

-20

-15

-10

-5

0

C
u

m
u

la
ti
v
e

 R
e

w
a

rd
($

)

Nh: 100

0 2 4 6

Day

-25

-20

-15

-10

-5

0

C
u

m
u

la
ti
v
e

 R
e

w
a

rd
($

)

Nh: 50

Figure 7.15. Cumulative Rewards Over Week, w=0.2

than DQN. In addition, we note that DQN was the limitation that it requires a discrete

action space, while DDPG can work with continous actions. For competitive markets this

can be handled by reducing the action space based on historical data of clearing prices, but

for non-competitive scenarios, we can no longer do this and so DQN would no longer be a

viable option. With that in mind, we have trained an agent using DDPG using a competitive

environment, and have tested it on increasingly non-competive markets. This showed us that

DDPG agents had a degree of robustness to decreases in competition, but it also showed

us that once costs were weighed more than utility, the agent performance suffers a lot in

non-competitive markets. This last case study showed us that a more sophisticated approach

is needed to handle non-competitive markets, which motivates future work and which could

include reformulating the problem as a multi-agent reinforcement learning problem.

130

PART IV

Other Work

131

8. DISTRIBUTED STATE ESTIMATION FOR NONLINEAR

SYSTEMS WITH UNKNOWN PARAMETERS

8.1 Introduction

Due to the increasing use of large networked systems spurred on by improvements in

wireless capabilities, there has been a surge of interest in the problem of estimating the state

of these large systems using sensor networks. Early works in this domain have assumed that

the state of the global system is observable to each sensor [176]–[178]. The assumption that

the state is observable by one sensor has since been relaxed to the assumption that the state

is jointly observable to the network of sensors. This problem has been studied under sensor-

fusion and multi-sensor tracking research [179]–[182], and others have studied the problem

as a resilience problem in the face of communication issues [183], [184].

Decentralized observers have been proposed in [185] in order to overcome the compu-

tational bottlenecks of central processors in sensor fusion algorithms, however this decen-

tralized approach carries great communication costs [186] due to the need for all nodes in

the network to communicate. Distributed observers, on the other hand, can accomplish de-

centralized state estimation with only communication between neighbor nodes. This ability

makes distributed observers a problem of great interest and research. As such, there is a

lot of literature that explores the design of distributed observers, a few of them are [126],

[184], [187], [188]. The above papers all successfully derive methods for designing distributed

observers for LTI systems, where [184] considers discrete-time systems while [187] and [126]

consider continuous-time systems. Though these results are promising, they all only con-

sider linear systems and so cannot be directly applied to many real world systems that have

nonlinear dynamics.

Therefore, we draw our attention to nonlinear state estimators. In [189] a distributed

observer was developed for a network of nonlinear systems, where the system is decomposed

into linear and nonlinear parts. There has also been work on the use of stochastic methods

such as particle filters in [190], which work well with nonlinear systems, however suffer

from large computational costs. This brings us to the very popular unscented Kalman

filters[191], which like particle filters work well with nonlinear systems but have the advantage

132

of being more computationally efficient[190]. There is also work on extended Kalman filters

for nonlinear state estimation [192]–[194], however we will focus on unscented Kalman filter

algorithms because they do not require linearization of the nonlinear system, which can

result in sub-optimal performance for the extended Kalman filter [191]. There are stability

results in [195] for the unscented Kalman filter, which uses a similar strategy as in [196]

and [197] for deriving a bound for the filter’s estimation error. These papers prove that for

stochastic systems the expectation of the unscented Kalman filter estimation squared error

is exponentially bounded, or equivalently they proved the error is bounded in mean square.

Kalman filters have also been extended to distributed state estimation. We see this in

[198] which improves upon [199] by considering missing measurements. Both of the these

papers use a consensus based distributed unscented Kalman filter and assumes complete

knowledge of dynamics. A stability result is achieved in [199] for the distributed unscented

Kalman filter.

The aforementioned nonlinear estimators have the limitation that full knowledge of state

dynamics is required, which in real-world applications might not always be available. Relax-

ing this requirement will motivate our research. Fortunately, though these state estimators

require knowledge of dynamics, they can also be used for parameter estimation of system dy-

namics. In particular there is literature on dual unscented Kalman filters [200], [201] which

uses two unscented Kalman filters to simultaneously estimate model parameters and the

system state. These algorithms would enable state estimation with only partial knowledge

of dynamics in the form of a parametrized function with unknown parameters.

Despite the convergence results on distributed unscented Kalman filters, to our knowledge

there are no analytical results for the convergence of simultaneous parameter-state estimation

using dual estimation methods. We note the difference between dual estimation and joint

estimation, which is discussed in [202]. With joint estimation the parameters are regarded

as another set of state variables and so by representing the dynamics of the states and

parameters in compact form, the problem becomes equivalent to regular state estimation.

Convergence is then guaranteed from earlier results. In contrast, dual estimation treats the

parameter and state estimation as two problems and so a separate Kalman filter is used for

each, and accordingly there are then two sets of update equations. As such, convergence

133

of each Kalman filter in the dual approach cannot be guaranteed separately because they

are coupled through the state dynamics. In this work we focus on dual estimation due to

empirical results in the literature such as [203] and commentary of [202] that indicate that

dual estimation methods are more robust than joint estimation methods. In particular,

according to the simulated experiments conducted in [203], the dual method performs better

than the joint method when there is uncertainty in the noise covariances.

8.2 Problem Statement

Consider a multi-agent network where each agent i calculates the estimates xi(t) and

θi(t) of the central plant’s state x(t) at time step t and parameter vector θ, respectively.

Furthermore, each agent in the network can communicate information with a set of neigh-

boring agents Ni in order to reach consensus on the plant’s actual state and parameters.

This network will be modeled by a connected undirected graph G, where j → i and i → j if

j ∈ Ni, and i ∈ Ni. In addition, N refers to the set of all nodes on the graph. The plant is

a discrete nonlinear system with the following description:

x(t) = f(x(t− 1), u(t− 1), θ). (8.1)

Furthermore, each agent measures an output according to:

yi(t) = Cix(t) + wi(t), (8.2)

where x(t) ∈ Rn is the plant’s state at time step t, u(t) ∈ Rn̂ is an exogenous input at

time step t, yi(t) ∈ Rni is the state measurement output vector, Ci ∈ Rni,n, and θ ∈ Rn̄ is

the parameters vector. In addition, f(·) is a nonlinear function assumed to be continuously

differentiable. wi(t) is measurement noise, which is assumed to be zero-mean white Gaussian

noise. Furthermore, each agent will know the covariance matrix Wi(t) of the noise term.

Let C = col{C1, C2, . . . , Cm} where m is the number of agents, we also have that:

rank(Ci) < n, rank(C) = n. (8.3)

134

This last condition means each agent can not directly solve for the state vector x by itself,

but the network of agents can solve for state vector x by sharing information.

As such, the network of agents will implement a distributed observer in order to reach

consensus on the estimate of the plant’s parameters and state x(t) simultaneously. The

following describes the goals of our network:

xi(t) → x(t) θi(t) → θ.

The following block diagram demonstrates the flow of information in our problem, as

well as the connection between the central plant and our multi-agent network,

Figure 8.1. Problem Block Diagram

8.3 Approach

This paper will look to solve the above problem by combining dual parameter-state

estimation, with a distributed observer for nonlinear systems inspired by the unscented

Kalman filter algorithm. This combination will produce our distributed observer for dual

parameter-state estimation. First we introduce the distributed observer, and then we extend

this to a dual parameter and state estimation scheme by representing the parameters as

another state-space to which the distributed observer can be applied.

135

Distributed Observer

We use a distributed observer with unscented transformations based on the algorithm in

[199]. Each agent will share the information pair (xi(t), P̂i(t)) where P̂i(t) is agent i’s estimate

of the state estimation error covariance matrix. The updates for both these estimates are

given by the following:

xi(t) =x̄i(t) +Ki(t) (yi(t) − ȳi(t))

P̂i(t) =Pi,1 −Ki(t)Pi,2(Ki(t))>,

where

Pi,1 =
2n∑

s=0
qs(χ̄i,s(t) − x̄i(t))(χ̄i,s(t)−x̄i(t))> + U(t−1), Ki(t) = Pi,3(Pi,2)−1,

Pi,2 =
2n∑

s=0
qs (γi,s(t) − yi(t)) (γi,s(t) − ȳi(t))> +Wi(t),

Pi,3 =
2n∑

s=0
qs (χ̄i,s(t) − x̄i(t)) (γi,s(t) − ȳi(t))> ,

x̄i(t) =
2n∑

s=0
qsχ̄i,s(t),

ȳi(t) =
2n∑

s=0
qsγi,s(t)

and where x̄i(t), Pi,1, and Ki(t) are the predicted state, state prediction error covariance

matrix, and the Kalman gain matrix, respectively.

Furthermore, ȳi(t), Pi,2, Pi,3 are the predicted measurement, predicted measurement co-

variance , and state-measurement cross-covariance matrix, respectively. U(t − 1) is a pos-

itive definite matrix that is to be designed to ensure that P̂i(t) is positive definite, how-

ever the bigger the magnitude of U(t − 1) the greater the estimation error. We also have

χ̄i,s(t) = f (χi,s(t− 1), u(t− 1), θi(t− 1)) and γi,s(t) = Ciχ̄i,s(t) for s = 0, . . . , 2n , where

qs = κ
n+κ

for s = 0 and qs = 1
2(n+κ) for s = 1, . . . , 2n, and where κ is a tunable scaling factor.

Let Σ =
√

(n+ κ)∑j∈Ni di,jP̂j(t− 1). The sigma points χi,s are calculated through the

following: χi,0(t− 1) = ∑
j∈Ni di,jxj(t), χi,s(t− 1) = ∑

j∈Ni di,jxj(t) + Σs for s = 1, . . . , n, and

136

χi,s(t − 1) = ∑
j∈Nidi,jxj(t) − Σs−n for s = n + 1, . . . , 2n, where Σs denotes the sth row of Σ

and di,j are Metropolis weights according to the following:

di,j =



1
max{di,dj} , if j ∈ Ni, j 6= i

1 −∑
k∈Ni,k 6=i di,k, if i = j

0, if j 6∈ Ni,

where di is the degree of agent i.

Parameter Estimation

Dual parameter-state estimators, such as dual Kalman filters, can be used to simulta-

neously make better state and parameter estimates without complete knowledge of system

dynamics. This corresponds to describing the system with two state-space representations,

one for the states and one for the parameters. From equations (8.1) and (8.2) we get our

state-space for x, and for our parameters θ we just need 8.2 since θ is time-invariant.

Given this state-space model we can now apply the same algorithm but for parameter

estimation. The main changes in the algorithm are that the state dynamics, previously f(·),

is now just the identity. The rest of the algorithm only changes in that instead of xi(t − 1)

we now use θi(t − 1), and instead of ȳi(t) we use zi(t). As such, each agent will also share

the information pair (θi(t), P̄i(t)) along with (xi(t), P̂i(t)), where P̄i(t) is agent i’s estimate of

the parameter estimation error covariance matrix. The corresponding updates are given by

the following:

θi(t) =θ̄i(t) + K̄i(t) (yi(t) − zi(t))

P̄i(t) =P̄i,1 − K̄i(t)P̄i,2
(
K̄i(t)

)>
,

137

where

P̄i,1 =
2n∑

s=0
qs(Θi,s(t− 1) − θ̄i(t))(Θi,s(t− 1) − θ̄i(t))> +R(t− 1),

K̄i(t) = P̄i,3(P̄i,2)−1,

P̄i,2 =
2n∑

s=0
qs (γi,s(t) − zi(t)) (γi,s(t) − zi(t))> +Wi(t),

P̄i,3 =
2n∑

s=0
qs

(
Θi,s(t− 1) − θ̄i(t)

)
(γi,s(t) − zi(t))> ,

zi(t) =
2n∑

s=0
qsγi,s(t),

θ̄i(t) =
2n∑

s=0
qsΘi,s(t− 1).

Similar to state estimation, we add a positive definite matrix R(t− 1) to be designed so

that in this case P̄i(t) is positive definite. Furthermore we have γi,s(t) = Cif(xi(t− 1), u(t−

1),Θi,s(t− 1)) for s = 0, . . . , 2n̄, where qs = κ̄
n̄+κ̄

for s = 0, and qs = 1
2(n̄+κ̄) for s = 1, . . . , 2n̄,

and where κ̄ is again a tunable scaling factor.

The sigma points Θi,s(t− 1) are calculated through the following:

Θi,0(t− 1) =
∑
j∈Ni

di,jθj(t),

Θi,s(t− 1) =
∑
j∈Ni

di,jθj(t) + Σ̄s for s = 1, . . . , n̄,

Θi,s(t− 1) =
∑
j∈Ni

di,jθj(t) − Σ̄s−n̄ for s = n̄+ 1, . . . , 2n̄,

where Σ̄ =
√

(n+ κ)∑j∈Ni di,jP̂j(t− 1) and Σ̄s denotes the sth row of Σ̄.

8.4 Stability Analysis of Distributed Observer

In this section we will analyze the stability of our distributed observer algorithm. This

analysis is similar to [198] and [199]. First we will follow the method in [196] where x(t) is

expressed as Taylor series expansion, and then consider only the linear term as an approxima-

tion. Unlike in [196], we will perform the Taylor expansion around (x, u, θ) = (0, u(t− 1), 0).

138

Assuming f(0, u(t − 1), 0) = 0, we can therefore express an approximation of x(t) as:

x(t) ≈ Fx(t−1)x(t−1)+Fθ(t−1)θ(t−1), where Fx(t−1) = ∇xf(x′, u′, θ′)|(x′,u′,θ′)=(0,u(t−1),0)

and Fθ(t − 1) = ∇xf(x′, u′, θ′)|(x′,u′,θ′)=(0,u(t−1),0). We can take into account the residual of

our approximation of x(t) by multiplying by an unknown diagonal matrices Ωx(t) and Ωθ(t)

to get the following equality: x(t) = Ωx(t − 1)Fx(t − 1)x(t − 1) + Ωθ(t − 1)Fθ(t − 1). This

strategy is used in [195][197][198], and [196] and is crucial to their analysis and ours as well.

This gives us a linear representation of the nonlinear time-evolution of our state, and since

our parameters and measurement outputs have a linear time-evolution we can now represent

our entire system in a linear fashion.

Similarly, we can define a linearization of our system in terms of our parameters θ by

Taylor expanding f(·) around (x′, u′, θ) = (x(t − 1), u(t − 1), 0). Assuming that f(x(t −

1), u(t − 1), 0) = 0, this results in the following approximation: x(t) ≈ F̄ (t − 1)θ(t − 1).

Again we can take into account the residual of our approximation by introducing an unknown

diagonal matrix β(t), which gives us the following equality: x(t) = β(t− 1)F̄ (t− 1)θ(t− 1)

where F̄ (t− 1) = ∇θf(x′, u′, θ′)|(x′,u′,θ′)=(x(t−1),u(t−1),0). Now in order to analyze the stability

of the algorithm we must take into account the state estimates of each agent, as well as

the parameter estimates of each agent since the two are coupled. We take this coupling

of state and parameter estimates into account by column-wise stacking the parameter and

state estimates into one state vector x̂i(t) = col{xi(t), θi(t)}. We similarly stack the predicted

measurement vectors such that ŷi(t) = col{ȳi(t), zi(t)}. Let Ω(t) = [Ωx(t),Ωθ(t)] and F (t) =

[Fx(t), Fθ(t)], we now modify all other relevant matrices and vectors in similar way.

x̃(t) = col{x(t), θ}, x̂i(t) = col{xi(t), θi(t)},

ỹi(t) = col{yi(t), yi(t)}, ŷi(t) = col{ȳi(t), zi(t)},

w̃i(t) = col{wi(t), wi(t)}, Ω̃(t) = col{Ω(t), [0, In̄]},

F̃ (t) = col{F (t), [0, In̄]}, R̃(t) = diag{U(t), R(t)},

W̃i(t) = diag{Wi(t),Wi(t)}, P̃i,1 = diag{Pi,1, P̄i,1},

P̃i(t) = diag{P̂i(t), P̄i(t)}, K̃i(t) = diag{Ki(t), K̄i(t)},

C̃i(t) = diag{Ci, Ciβi(t− 1)F̄i(t− 1)}.

139

Using this we can express our entire system with the following equations:

x̃(t) = Ω̃(t − 1)F̃ (t − 1)x̃(t − 1) (8.4)

ỹi(t) = C̃i(t)x̃(t) + w̃i(t)

x̂i(t) = Ω̃(t−1)F̃ (t−1)
∑
j∈N

di,jx̂j(t−1) + K̃i(t)(ỹi(t) − ŷi(t)) (8.5)

ŷi(t) = C̃i(t)Ω̃(t − 1)F̃ (t − 1)
∑
j∈N

di,jx̂j(t − 1). (8.6)

Furthermore, we can express our update equations as the following:

P̃i,1 = Γ(t − 1)
∑
j∈N

di,jP̃j(t − 1)Γ(t − 1)> + R̃(t − 1) (8.7)

K̃i(t) = (P̃i,1 − R̃(t − 1))(C̃i(t))>

[C̃i(t)(P̃i,1 − R̃(t − 1))(C̃i(t))> + W̃i(t)]−1 (8.8)

P̃i(t) = P̃i,1 − K̃(t)C̃i(t)(P̃i,1 − R̃(t − 1)), (8.9)

where Γ(t) = Ω̃(t)F̃ (t). We now discuss some assumptions that are used in proving our

theorem.

Assumption 8.4.1. There exists real, non-zero numbers f,Ω, c, f̄ , Ω̄, c̄, and, λc such that

the following bounds are fulfilled for every k ≥ 0 and all i ∈ N :

f 2I ≤ F̃ (t)F̃ (t)> ≤ f̄ 2I, Ω2I ≤ Ω̃i(t)Ω̃i(t)> ≤ Ω̄2I

c2I ≤ C̃i(t)C̃i(t)> ≤ c̄2I, λ2
cI ≤ C̃(t)>C̃(t) ≤ mc̄2I,

where C̃(t) = col{C̃1(t), ..., C̃m(t)}. We note that though C̃i(t) is not full rank, it is reasonable

to assume λc is non-zero because of (8.3).

Assumption 8.4.2. There exists positive real numbers v̄, v, w, w̄, p, p̄ > 0 such that the

following bounds are fulfilled for every k ≥ 0:

rI ≤ R̃(t) ≤ r̄I, wI ≤ W̃i(t) ≤ w̄I, pI ≤ P̃i(t) ≤ p̄I.

140

With the above assumptions we then have our main result:

Theorem 8.4.3. Consider a nonlinear stochastic system given in (8.1) and the proposed

distributed observer algorithm. We define the estimation error of each agent as ei(t) =

x̂i(t) − x̃(t), and the augmented estimation error of the systems as e(t) = col{ei(t), i ∈ N }.

If assumptions 8.4.1 - 8.4.2 hold, then we have the following upper bound for the expectation

of the squared augmented estimation error:

E[‖e(t)‖2] ≤
p−1

p̄−1E[‖e(0)‖2](1 − λ)t + µ

p̄−1

t−1∑
i=1

(1 − λ)i, (8.10)

where µ = k̄2p−1mw̄2, k̄ = Ω̄2f̄2p̄c̄
c2Ω2f2p+w

, λ = Ω2f2pλ2
c

m(c̄2Ω̄2f̄2p̄+w̄) , and 0 < λ < 1.

Remark 8.4.4. We note that as t → ∞, the first term on right side of (8.10) goes to

zero and so the upper bound of the expectation of the squared error converges to µ
p̄−1λ

. By

unpacking µ and λ we find that this value is a function of w̄2 and w̄3.

8.5 Proof of Main Result

In this section we will provide a proof for Theorem 1 by constructing and then analyzing

a candidate Lyapunov function V (e(t)). We first introduce lemmas which will be needed for

the proof:

Lemma 8.5.1. Assume that ξ(t) and V (ξ(t)) are stochastic processes, and that there are

real numbers vmin > 0, vmax > 0 , µ > 0, and 0 < λ ≤ 1 such that ∀t we have

vmin‖ξ(t)‖2 ≤ V (ξ(t)) ≤ vmax‖ξ(t)‖2

E[V (ξ(t))|ξ(t− 1)] − V (ξ(t− 1)) ≤µ− λV (ξ(t− 1)).

Then ξ(t) is bounded in mean square:

E[‖ξ(t)‖2] ≤ vmax

vmin
E[‖ξ0‖2](1 − λ)t + µ

vmin

t−1∑
i=1

(1 − λ)i.

141

Proof: This result is theorem 2 in [204] and is also referenced in [205] as lemma 2.1. For

brevity we refer to their proofs.

Lemma 8.5.2. Given an integer N ≥ 2, N positive definite matrices Mi, and N vectors vi

the following inequality holds

(
N∑

i=1
Mivi

)> (N∑
i=1

Mi

)−1 (N∑
i=1

Mivi

)
≤

N∑
i=1

v>
i Mivi.

Proof: This result is lemma 2 in [206]. For brevity we refer to their proof.

Proof of Theorem 1

Using (8.4) - (8.6),we can express the estimation error as:

ei(t) = x̂i(t) − x̃(t)

= Ξi(t)Γ(t− 1)
∑
j∈N

di,jej(t− 1) + K̃i(t)w̃i(t), (8.11)

where Ξi(t) = (I − K̃i(t)C̃i(t)) and Γ(t) = Ω̃(t)F̃ (t). We choose the following as a candidate

Lyapunov function:

V (e(t)) =
∑
i∈N

(ei(t))>(P̃i(t))−1ei(t), (8.12)

where from assumption 2 we have:

p̄−1‖e(t)‖2 ≤ V (e(t)) ≤ p−1‖e(t)‖2. (8.13)

Now by plugging in (8.11) into (8.12) and taking the expectation conditioned on the previous

time-step, we get:

E[V (e(t))|e(t− 1)] = E
[∑

i∈N
(ei(t))>(P̃i(t))−1ei(t) |e(t− 1)

]
. (8.14)

142

Now we expand (8.14) and by noting that in expectation all the cross terms with our aug-

mented noise vector and augmented state vector x̃(t) go to zero, we get:

E[V (e(t) | e(t− 1))] = Λ1 + Λ2, (8.15)

where:

Λ1 = E

∑
i∈N

(
∑
j∈N

di,jej(t− 1))>Γ(t− 1)>Ξi(t)>(P̃i(t))−1Ξi(t)Γ(t− 1)
∑
j∈N

di,jej(t− 1)
 (8.16)

Λ2 = E
[∑

i∈N
w̃i(t)>K̃(t)>(P̃i(t))−1K̃(t)w̃i(t)

]
. (8.17)

We now have to find an estimate for each term in (8.15). Starting with Λ1, we plug in (8.9)

into (8.16) which gives us:

Λ1 = E

∑
i∈N

(
∑
j∈N

di,jej(t− 1))>Γ(t− 1)>Ξi(t)>

[Ξi(t)(P̃i,1 − R̃(t)) + R̃(t)]−1Ξi(t)Γ(t− 1)
∑
j∈N

di,jej(t−1)
 .

Under assumption 8.4.2 , we know R̃(t) is positive definite so it can be shown the following

is true: (Ξi(t)(P̃i,1 − R̃(t)))−1 > [Ξi(t)(P̃i,1 − R̃(t)) + R̃(t)]−1, and so we have the following

upper bound on Λ1:

Λ1 ≤E

∑
i∈N

(
∑
j∈N

di,jej(t− 1))>Γ(t− 1)>Ξi(t)>

(Ξi(t)(P̃i,1 − R̃(t)))−1Ξi(t)Γ(t− 1)
∑
j∈N

di,jej(t− 1)
 .

Let Ψi(t) = ∑
j∈N Ξi(t)Γ(t− 1)di,jej(t− 1). We plug in (8.7) which gives us:

Λ1 ≤ E[
∑
i∈N

Ψi(t)>[(
∑
j∈N

Ξi(t)Γ(t− 1)di,jP̃j(t− 1)Γ(t− 1)>)]−1Ψi(t)].

143

Now we expand the term Ψi(t) and factor out the following:

P̃j(t− 1)Γ(t− 1)>(P̃j(t− 1)Γ(t− 1)>)−1.

By letting Mij(t) = [Ξi(t)Γ(t − 1)di,jP̃j(t − 1)Γ(t − 1)>] we can then rewrite the above

upperbound as:

Λ1 ≤E

∑
i∈N

∑
j∈N

Mij(t)(P̃j(t− 1)Γ(t− 1)>)−1ej(t− 1)
>

∑
j∈N

Mij(t)
−1∑

j∈N
Mij(t)(P̃j(t−1)Γ(t−1)>)−1ej(t− 1)


 .

We now use lemma 8.5.2 to upper bound the above, then by unpacking Mij, moving the

outer sum and dij inside, and simplifying we arrive at:

Λ1 ≤E[
∑
j∈N

(ej(t− 1))>(Γ(t− 1)P̃j(t− 1))−1 (I −
∑
i∈N

dijK̃i(t)C̃i(t))Γ(t− 1)ej(t− 1))].

(8.18)

Let us focus on (I −∑
i∈N dijK̃i(t)C̃i(t)). We use the expansion

K̃i(t)C̃i(t) = 1
m

∑
i∈N

K̃i(t)C̃i(t) + (K̃i(t)C̃i(t) − 1
m

∑
i∈N

K̃i(t)C̃i(t)),

to get: (I−∑i∈N dijK̃i(t)C̃i(t)) = (I− 1
m

∑
i∈N K̃i(t)C̃i(t)−(∑i∈N (dij − 1

m
)K̃i(t)C̃i(t))). Under

assumptions 1 and 2 it can be shown that K̃i(t)C̃i(t) is positive semi-definite, and then using

the fact that by construction 0 ≤ (dij − 1
m

) ≤ 1, we have: (I − ∑
i∈N dijK̃i(t)C̃i(t)) ≤

(I − 1
m

∑
i∈N K̃i(t)C̃i(t)), then again using the bounds in assumptions 1 and 2, we arrive at

the following:

(I −
∑
i∈N

dijK̃i(t)C̃i(t)) ≤ (1 − λ), (8.19)

144

where λ = Ω2f2pλ2
c

m(c̄2Ω̄2f̄2p̄+w̄) and 0 < λ < 1. Now by using (8.19) in (8.18) and then simplifying

by noting that from assumption 1 Γ(t − 1) is invertible, we arrive at the following upper

bound for (8.18): Λ1 ≤ (1− λ)E[∑j∈N (ej(t − 1))>(P̃j(t − 1))−1ej(t − 1)]. Now using (8.12)

we then get:

Λ1 ≤ (1 − λ)E [V (e(t− 1))] . (8.20)

Proceeding now with Λ2 we can make use of assumptions 1 and 2 and equations (8.8) and

(8.7) to get:

K̃(t)>K̃(t) ≤ k̄2I, (8.21)

where k̄2 = (Ω̄4f̄4p̄2)c̄2

(c2Ω2f2p+w)2 . Under assumptions 1 and 2, using equation (8.17) and inequality

(8.21) we can derive the following upper bound for Λ2:

Λ2 ≤ k̄2p−1mw̄2. (8.22)

Let µ = k̄2p−1mw̄2. Combining (8.14), (8.20), and (8.22) we arrive at:

E[V (e(t)) | e(t− 1)] − V (e(t− 1)) ≤ µ− λV (e(t− 1)). (8.23)

Considering that 0 < λ < 1, we can combine (8.23) with (8.13) and apply Lemma 1 to arrive

at the conclusion that expectation of the squared norm of e(t) is bounded by (8.10).

145

8.6 Simulations

We simulate 10 agents that are in a connected, undirected network, which implement

the proposed distributed observer to track the state of a nonlinear system. The following

describes the nonlinear system:

x(t) =5


θ1cos(x1(t− 1)) + sin(u(t− 1))

θ2cos(x2(t− 1))2 + cos(u(t− 1))

θ3sin(x3(t− 1))2 + u(t− 1)

 .

With agent measurements yi(t) = Cix(t) + wi(t), and input u(t) = sin(t − 1), where Ci are

randomly generated matrices with values in the interval (0, 1) and ni < 3, wi(t) is zero-mean

white Gaussian noise, θ = [0.3, 0.5, .1]>, and x(0) = [1, 1, 1]>. The covariance matrices used

by the algorithm are the following: U(t) = 10−7In, R(t) = 10−7In̄, Wi(t) = 10−2Ini , where

Wi(t) corresponds to the measurement noise and U(t) and R(t) are designed according to

our algorithm and our particular example. We define two functions as metrics for state

and parameter estimation performance(one for each): Vx(t) = 1
2
∑m

i=1 ‖xi(t) − x(t)‖2, Vθ(t) =
1
2
∑m

i=1 ‖θi(t) − θ‖2.

The plots in Fig. 8.2 - 8.3 show the functions Vx(t)and Vθ(t) which we have just defined.

From these plots we can see how the estimation errors(for both parameter and state esti-

mates) for all agents decay over time.

Figure 8.2. Sum of Norm Squared State Estimation Error

146

Figure 8.3. Sum of Norm Squared Parameter Estimation Error

8.7 Conclusion

We have developed a distributed observer algorithm based on unscented Kalman filters

for both parameter and state estimation. Our observer uses the dependence of state dynam-

ics on the parameters in order to compute errors in parameter estimation from only state

measurements. We have proven that this technique results in bounded estimation errors

that converge to a finite value as long as certain conditions are satisfied, and have charac-

terized the evolution of this bound. Furthermore, simulations show that our algorithm can

successfully estimate the state and parameters of non-linear systems. Though the observer

can reliably track the states, we cannot guarantee that the estimation error will converge to

zero, which is as expected with nonlinear, stochastic systems. Despite this limitation, our

analysis also tells us that if the measurement noise is zero, then as t → ∞, zero estimation

error can be guaranteed, which is also as expected.

147

9. SUMMARY

This thesis has explored multi-agent reinforcement learning (MARL). We have developed

distributed algorithms to address some challenges with MARL and have also provided the-

oretical results to better understand some existing algorithms. The contributions made by

this thesis are summarized below:

Contribution 1: Improving scalability of MARL.

We have developed two distributed reinforcement learning algorithms that address some

challenges with scalability in MARL. One of these algorithms is a distributed actor-critic

algorithm that allows agents to learn optimal policies in cases with continuous state and

action spaces. In this proposed algorithm, each agent communicates with neighbors in order

to improve their policies so that the globally averaged reward is maximized, given that

agents only observe their own individual reward. We provided a theoretical result based on

the two-timescale methods, which is used in the field of stochastic approximation. The result

provides the conditions under which each agent can converge close to the optimal control

policy by following the proposed algorithm.

Another algorithm that we have developed to improve scalability is a distributed of-

fline reinforcement learning algorithm. The proposed distributed offline algorithm combines

Q-learning and a method known as offline regularization to improve offline reinforcement

learning, where agents can only learn from a fixed dataset. Moreover, the proposed approach

leverages a multi-agent system to split up the dataset and therfore the computational load

amonsgt the network of agents. As such, the distributed algorithm uses a weighted local av-

eraging step so that agents can make use of their neighbor’s estimates to improve their own.

In this work we have also provided a theoretical result that shows that the norm squared

error (summed over all agents) is upper bounded by a constant and where this constant

converges asymptotically to a smaller constant as the amount of data goes to infinity. Along

with this result of convergence, we have also provided simulation results that have demon-

strated that the proposed algorithm can achieve good performance when applied to both a

linear and nonlinear system. In particular, with the linear systems our results indicate that

the algorithm can converge to the optimal policy.

148

Contribution 2: Learning with cross-modal observations.

We have developed a distributed reinforcement learning algorithm for policy evaluation

with cross-modal observations, where cross-modal observations means each agent observes a

different nonlinear observation of the environment. The concept of cross-modal observations

is motivated by scenario where agents have different sensors. Moreover, by considering cross-

modal observations we address the challenge of output feedback (partial observability) since

each agent cannot observe the full state. With this constraint, each agent can only compute

part of the vector φ, which is needed for the policy evaluation algorithm. In order for the

network to cooperate in the policy evaluation problem, each team needs to be assigned a

column of a matrix A and each agent needs to be assigned a row. For a large number

of rows, columns, and number of agents, this assignment problem can be very difficult to

do efficiently. As such, part of our contribution is that we have reduced this assignment

problem to a maximum matching problem. Through this reduction we can then achieve

an assignment efficiently by using known and provably efficient algorithms for maximum

matching. Along with an efficient assignment approach, our other contribution is that we

have provided a distributed update for each agent, such that the network jointly computes

an approximation to θ given finite amount of data. We have also proved that if each agent

follows the proposed distributed algorithm, the network converges exponentially to the an

approximation θ̂ and that this approximation converges to θ as the amount of data goes to

infinity. Through simulations we have supported the theoretical results by illustrating that

the squared error converges close to zero exponentially.

Contribution 3: Finite-sample analysis of MARL algorithms. We have stud-

ied two MARL algorithms and have provided a finite-sample analysis for both. The first

algorithm we studied is a distributed version of the Q-learning algorithm, which combines

consensus with local updates so that all agents in the multi-agent system can learn the same

optimal policy. Where the optimal policy is optimal in the sense that if each agent follows

it, then global average of individual rewards will be maximized. For a given diminishing

step-size α(t), we have derived a finite-sample bound on the average of each agent’s er-

ror. This result supports earlier works which have provided asymptotic convergence results

for distributed Q-learning algorithms. Moreover, our finite-sample result characterizes the

149

convergence rate of distributed Q-learning without assuming independent and indentically

distributed data samples, which is an important relaxation since in practice this assumption

is not always true. Such a finite-sample analysis of distributed Q-learning had previously

been missing in the MARL literature.

The second algorithm we studied is a distributed gradient temporal difference algorithm

for policy evaluation, where a kernelized approximation of the value function is used. As

in the distributed Q-learning algorithm, this algorithm uses a local weighted average of

estimates to push towards consensus while also adding the local innovation of each agents

estimate of the actual value function Vπ. Under certain described conditions, we have derived

an upper bound for the expected squared error for each agent, and have found that the error

can approach zero as the step-size approaches zero. These bounds are defined for every

time step and so provides a finite-sample bound. Furthermore, by considering a kernelized

approximation of the value function, we have provided a theoretical result for a more general

function approximation than the linear function approximations used in previous results.

Contribution 4: Application to a real-world system.

We have applied three popular reinforcement algorithms for the purpose of finding an op-

timal bidding strategy for an individual house in a transactive energy system. We evaluated

these algorithms on the control performance of their resulting bidding strategies and their

training performance. The three algorithms we have evaluated are Q-learning, DQN, and

DDPG. From our simulations we have seen that DDPG and DQN far outperform tabular

Q-learning, which is as expected since our environment consists of continuous states and tab-

ular Q-learning is better suited for problems with discrete state spaces.This has shown the

importance of algorithms that are designed for continuous states when applying reinforce-

ment learning on real-world problems. From our simulations we have also found that DDPG

and DQN have similar control performance, but with the difference that DDPG shows better

training stability at least for a large number of iterations. Another part of this study was

to explore the effect of partial observability in real-world problem. As such we trained a

DDPG agent with a non-competitive scenario, where the environment is affected by others

agents. Since the DDPG agent does not observe the actions of other agents, this means the

environment is partially observable. This experiment showed us that the DDPG agent has

150

a degree of robustness to partial observability, but it also showed us that for low number of

agents, where each agent affects the environment more, then the DDPG agent’s performance

suffers more due to the partial observability.

Contribution 5: Distributed observer for state estimation with incomplete

model of dynamics.

We have developed a distributed observer algorithm based on the unscented Kalman

filter in order to address the challenge of output feedback (partial observability) in MARL.

The proposed distributed observer is designed for both parameter and state estimation so

that a complete model of state dynamics is not needed. The developed observer leverages

the dependence of predicted state dynamics with unknown parameters in order use state es-

timation to improve parameter estimation. We have derived an upper bound on estimation

errors of the proposed algorithm, and have shown that the upper bound converges to a finite

value given that certain conditions are satisfied. We have also provided simulation results

that show that the proposed algorithm can successfully estimate the state and parameters

of a non-linear system with measurement noise. The developed observer is shown to reliably

track the states, but cannot be guaranteed to perfectly track the state since the system is

stochastic due to the measurement noise. As such, our theoretical result also tells us that

if the measurement noise is zero, then as t → ∞, zero estimation error can be guaranteed.

The development of this distributed observer addresses the challenge of partial observabil-

ity in MARL by providing a way for agents to estimate the full state vector given noisy

measurements and and an incomplete, parameterized model of state dynamics.

9.1 Future Directions

In this section we outline some possible future research directions in the field of MARL,

as well as some possible extensions for the work presented in this thesis.

Topic 1: Resilience for MARL

An interesting topic to pursue in future research is how to improve resilience of MARL. By

resilience we mean the ability of MARL algorithms to maintain some level of performance

even when subjected to some form of attack. The attack of type will determine how to

151

approach the problem of resilience. One such attack type is the corruption of data, where

all agents are still controllable but the data has been maliciously altered. In this case we

could consider how to recover some part of the data or we could consider the possibility that

the data is fully corrupted. In the latter case a more conservative approach would probably

be needed, whereas the former could potentially still guarantee optimality. Another attack

type to explore is the case where some agents are uncontrollable and act maliciously. In this

case the goal would be to isolate or minimize the effect these malicious agents have on the

rest of the network. These are just a few scenarios and questions that could be explored in

this topic.

Topic 2: Analysis of Deep Learning for MARL

In this work we have provided theoretical results of MARL using linear function approx-

imation and kernelized approximations, but these results do not necessarily hold when we

consider function approximation with deep neural networks. Deep neural networks provide a

very powerful tool for approximating functions. In fact, the impressive empirical results from

the combination of deep neural networks with reinforcement learning has popularized rein-

forcement learning, and machine learning in general. However, due to the high complexity

of deep neural networks, it has proven difficult to analyze their behaviour when applied with

learning algorithms, and so there are very few theoretical results for reinforcement learning

with deep neural networks. As such, any theoretical results that could be established for the

combination of reinforcement learning and deep neural networks would be of great value to

the field, and even more so if these results could be extended to the multi-agent setting.

Topic 3: Offline MARL with Partial Observability

In this thesis we have developed distributed algorithms for the offline reinforcement set-

ting and for the partial observability setting. A natural follow up would be to consider the

offline setting where each agent has the limitation of partial observability, where partial ob-

servability could be such that each agent observes some non-linear observation of the state.

This would further improve the applicability of MARL to real-world problems since many

times we do not have the full state of the environment but instead only have sensor mea-

surements. A possible approach for such a setting would be to incorporate distributed state

estimation methods such as the one proposed in chapter 8 , or we could even incorporate

152

deep neural networks so that we could accomplish state estimation without the need for a

parameterized model of state dynamics. Alternatively, if we assume linear function approx-

imation we could use an approach similar to 4 where we make use of this linear structure in

order to develop a distributed update for each agent, where each agent only has access to its

local observations and can only communicate with neighbors.

153

REFERENCES

[1] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “Deepdriving: Learning affordance for di-
rect perception in autonomous driving,” in Proceedings of the IEEE International Conference
on Computer Vision, 2015, pp. 2722–2730.

[2] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. V. D. Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al., “Mastering the game of go
with deep neural networks and tree search,” nature, vol. 529, no. 7587, p. 484, 2016.

[3] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-level control through deep
reinforcement learning,” Nature, vol. 518, no. 7540, p. 529, 2015.

[4] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement learning for robotic
manipulation with asynchronous off-policy updates,” in 2017 IEEE international conference
on robotics and automation (ICRA), IEEE, 2017, pp. 3389–3396.

[5] J. Peters, S. Vijayakumar, and S. Schaal, “Reinforcement learning for humanoid robotics,”
in Proceedings of the third IEEE-RAS international conference on humanoid robots, 2003,
pp. 1–20.

[6] S. R. Sutton, “Learning to predict by the methods of temporal differences,” Machine
learning, vol. 3, no. 1, pp. 9–44, 1988.

[7] C. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no. 3-4, pp. 279–292,
1992.

[8] C. Watkins, “Learning from delayed rewards,” Ph.D. dissertation, King’s College, Cam-
bridge, 1989.

[9] G. A. Rummery and M. Niranjan, On-line Q-learning using connectionist systems. Uni-
versity of Cambridge, Department of Engineering Cambridge, England, 1994, vol. 37.

[10] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,” in International
conference on machine learning, 2016, pp. 1928–1937.

[11] Y. Li, “Deep reinforcement learning: An overview,” arXiv preprint arXiv:1701.07274,
2017.

[12] A. Y. Ng and M. I. Jordan, “Shaping and policy search in reinforcement learning,”
Ph.D. dissertation, University of California, Berkeley Berkeley, 2003.

154

[13] F. L. Lewis, D. Vrabie, and K. G. Vamvoudakis, “Reinforcement learning and feed-
back control: Using natural decision methods to design optimal adaptive controllers,” IEEE
Control Systems Magazine, vol. 32, no. 6, pp. 76–105, 2012.

[14] L. Panait and S. Luke, “Cooperative multi-agent learning: The state of the art,” Au-
tonomous agents and multi-agent systems, vol. 11, no. 3, pp. 387–434, 2005.

[15] T. Balch, “Reward and diversity in multirobot foraging,” 1999.

[16] T. Balch et al., “Learning roles: Behavioral diversity in robot teams,” College of Com-
puting Technical Report GIT-CC-97-12, Georgia Institute of Technology, Atlanta, Georgia,
vol. 73, 1997.

[17] M. J. Mataric, “Learning to behave socially,” in Third international conference on sim-
ulation of adaptive behavior, vol. 617, 1994, pp. 453–462.

[18] Y.-H. Chang, T. Ho, and L. P. Kaelbling, “All learning is local: Multi-agent learning in
global reward games,” in Advances in neural information processing systems, 2004, pp. 807–
814.

[19] S. Ontañón and E. Plaza, “A bartering approach to improve multiagent learning,” in
Proceedings of the first international joint conference on Autonomous agents and multiagent
systems: part 1, ACM, 2002, pp. 386–393.

[20] D. H. Wolpert and K. Tumer, “Optimal payoff functions for members of collectives,” in
Modeling complexity in economic and social systems, World Scientific, 2002, pp. 355–369.

[21] P. Tangamchit, J. M. Dolan, and P. K. Khosla, “The necessity of average rewards in
cooperative multirobot learning,” in Proceedings 2002 IEEE International Conference on
Robotics and Automation (Cat. No. 02CH37292), IEEE, vol. 2, 2002, pp. 1296–1301.

[22] J. M. Vidal and E. H. Durfee, “The moving target function problem in multi-agent learn-
ing,” in Proceedings International Conference on Multi Agent Systems (Cat. No. 98EX160),
IEEE, 1998, pp. 317–324.

[23] C. Claus and C. Boutilier, “The dynamics of reinforcement learning in cooperative
multiagent systems,” AAAI/IAAI, vol. 1998, no. 746-752, p. 2, 1998.

[24] M. Tan, “Multi-agent reinforcement learning: Independent vs. cooperative agents,” in
Proceedings of the tenth international conference on machine learning, 1993, pp. 330–337.

[25] S. Omidshafiei, J. Pazis, C. Amato, J. How, and J. Vian, “Deep decentralized multi-task
multi-agent reinforcement learning under partial observability,” in Proceedings of the 34th
International Conference on Machine Learning-Volume 70, JMLR. org, 2017, pp. 2681–2690.

155

[26] M. Bowling, “Convergence problems of general-sum multiagent reinforcement learning,”
in ICML, 2000, pp. 89–94.

[27] J. Hu and M. Wellman, “Multiagent reinforcement learning: Theoretical framework and
an algorithm.,” in ICML, Citeseer, vol. 98, 1998, pp. 242–250.

[28] P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. Zambaldi, M. Jaderberg, M.
Lanctot, N. Sonnerat, J. Z. Leibo, K. Tuyls, et al., “Value-decomposition networks for coop-
erative multi-agent learning based on team reward,” in Proceedings of the 17th International
Conference on Autonomous Agents and MultiAgent Systems, International Foundation for
Autonomous Agents and Multiagent Systems, 2018, pp. 2085–2087.

[29] L. Busoniu, R. Babuska, and B. De Schutter, “A comprehensive survey of multiagent
reinforcement learning,” IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews), vol. 38, no. 2, pp. 156–172, 2008.

[30] C.-K. Tham and J.-C. Renaud, “Multi-agent systems on sensor networks: A distributed
reinforcement learning approach,” in 2005 International Conference on Intelligent Sensors,
Sensor Networks and Information Processing, IEEE, 2005, pp. 423–429.

[31] K. Zhang, Z. Yang, H. Liu, T. Zhang, and T. Basar, “Fully decentralized multi-agent
reinforcement learning with networked agents,” in International Conference on Machine
Learning, 2018, pp. 5867–5876.

[32] H. Wai, Z. Yang, Z. Wang, and M. Hong, “Multi-agent reinforcement learning via double
averaging primal-dual optimization,” in Advances in Neural Information Processing Systems,
2018, pp. 9649–9660.

[33] J. Schneider, W.-K. Wong, A. Moore, and M. Riedmiller, “Distributed value functions,”
in ICML, 1999, pp. 371–378.

[34] T. T. Doan, S. T. Maguluri, and J. Romberg, “Finite-time analysis of distributed td (0)
with linear function approximation on multi-agent reinforcement learning,” in International
Conference on Machine Learning, 2019, pp. 1626–1635.

[35] T. T. Doan, S. T. Maguluri, and J. Romberg, “Finite-time performance of distributed
temporal difference learning with linear function approximation,” arXiv preprint, Jun. 2019.

[36] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M.
Riedmiller, “Playing atari with deep reinforcement learning,” arXiv preprint arXiv:1312.5602,
2013.

156

[37] A. Nair, P. Srinivasan, S. Blackwell, C. Alcicek, R. Fearon, A. De Maria, V. Panneer-
shelvam, M. Suleyman, C. Beattie, S. Petersen, et al., “Massively parallel methods for deep
reinforcement learning,” arXiv preprint arXiv:1507.04296, 2015.

[38] B. Dai, A. Shaw, L. Li, L. Xiao, N. He, Z. Liu, J. Chen, and L. Song, “Sbeed: Convergent
reinforcement learning with nonlinear function approximation,” in ICML 2018, 2018.

[39] D. Lee, H. Yoon, and N. Hovakimyan, “Primal-dual algorithm for distributed reinforce-
ment learning: Distributed gtd,” in 2018 IEEE Conference on Decision and Control (CDC),
IEEE, 2018, pp. 1967–1972.

[40] S. Kar, J. M. F. Moura, and H. V. Poor, “Qd-learning: A collaborative distributed strat-
egy for multi-agent reinforcement learning through consensus+innovations,” IEEE Transac-
tions on Signal Processing, vol. 61, no. 7, pp. 1848–1862, 2013.

[41] A. Mathkar and V. S. Borkar, “Distributed reinforcement learning via gossip,” IEEE
Transactions on Automatic Control, vol. 62, no. 3, pp. 1465–1470, 2017.

[42] K. Zhang, Z. Yang, and T. Başar, “Multi-agent reinforcement learning: A selective
overview of theories and algorithms,” arXiv preprint arXiv:1911.10635, 2019.

[43] J. Foerster, F. Song, E. Hughes, N. Burch, I. Dunning, S. Whiteson, M. Botvinick,
and M. Bowling, “Bayesian action decoder for deep multi-agent reinforcement learning,” in
International Conference on Machine Learning, 2019, pp. 1942–1951.

[44] R. Lowe, Y. I. Wu, A. Tamar, J. Harb, O. P. Abbeel, and I. Mordatch, “Multi-agent
actor-critic for mixed cooperative-competitive environments,” in Advances in neural infor-
mation processing systems, 2017, pp. 6379–6390.

[45] J. R. Kok and N. Vlassis, “Collaborative multiagent reinforcement learning by payoff
propagation,” Journal of Machine Learning Research, vol. 7, no. Sep, pp. 1789–1828, 2006.

[46] J. Gupta, M. Egorov, and M. Kochenderfer, “Cooperative multi-agent control using deep
reinforcement learning,” in International Conference on Autonomous Agents and Multiagent
Systems, Springer, 2017, pp. 66–83.

[47] C. Zhang and V. R. Lesser, “Coordinated multi-agent reinforcement learning in net-
worked distributed pomdps.,” in AAAI, 2011.

[48] K. Wan, X. Gao, Z. Hu, and G. Wu, “Robust motion control for uav in dynamic uncer-
tain environments using deep reinforcement learning,” Remote sensing, vol. 12, no. 4, p. 640,
2020.

157

[49] M. Lopez-Martin, B. Carro, and A. Sanchez-Esguevillas, “Application of deep rein-
forcement learning to intrusion detection for supervised problems,” Expert Systems with
Applications, vol. 141, p. 112 963, 2020.

[50] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C. Liang, and D. I. Kim,
“Applications of deep reinforcement learning in communications and networking: A survey,”
IEEE Communications Surveys & Tutorials, vol. 21, no. 4, pp. 3133–3174, 2019.

[51] M. Mahmud, M. S. Kaiser, A. Hussain, and S. Vassanelli, “Applications of deep learning
and reinforcement learning to biological data,” IEEE transactions on neural networks and
learning systems, vol. 29, no. 6, pp. 2063–2079, 2018.

[52] J. Duan, D. Shi, R. Diao, H. Li, Z. Wang, B. Zhang, D. Bian, and Z. Yi, “Deep-
reinforcement-learning-based autonomous voltage control for power grid operations,” IEEE
Transactions on Power Systems, vol. 35, no. 1, pp. 814–817, 2019.

[53] Y. Ye, D. Qiu, M. Sun, D. Papadaskalopoulos, and G. Strbac, “Deep reinforcement
learning for strategic bidding in electricity markets,” IEEE Transactions on Smart Grid,
vol. 11, no. 2, pp. 1343–1355, 2019.

[54] A. R. Mahmood, D. Korenkevych, G. Vasan, W. Ma, and J. Bergstra, “Benchmarking
reinforcement learning algorithms on real-world robots,” in Conference on Robot Learning,
2018, pp. 561–591.

[55] F. P. Such, V. Madhavan, R. Liu, R. Wang, P. S. Castro, Y. Li, J. Zhi, L. Schubert,
M. G. Bellemare, J. Clune, et al., “An atari model zoo for analyzing, visualizing, and com-
paring deep reinforcement learning agents,” in Proceedings of the 28th International Joint
Conference on Artificial Intelligence, AAAI Press, 2019, pp. 3260–3267.

[56] S. Fujimoto, D. Meger, and D. Precup, “Off-policy deep reinforcement learning without
exploration,” in International Conference on Machine Learning, 2019, pp. 2052–2062.

[57] C. Dann, G. Neumann, J. Peters, et al., “Policy evaluation with temporal differences: A
survey and comparison,” Journal of Machine Learning Research, vol. 15, pp. 809–883, 2014.

[58] A. Tamar, H. Xu, and S. Mannor, “Scaling up robust mdps by reinforcement learning,”
arXiv preprint arXiv:1306.6189, 2013.

[59] A. G. Barto and S. Mahadevan, “Recent advances in hierarchical reinforcement learn-
ing,” Discrete event dynamic systems, vol. 13, no. 1, pp. 41–77, 2003.

[60] L. Chen, B. Scherrer, and P. L. Bartlett, “Infinite-horizon offline reinforcement learning
with linear function approximation: Curse of dimensionality and algorithm,” arXiv preprint
arXiv:2103.09847, 2021.

158

[61] D. Peteiro-Barral and B. Guijarro-Berdiñas, “A survey of methods for distributed ma-
chine learning,” Progress in Artificial Intelligence, vol. 2, no. 1, pp. 1–11, 2013.

[62] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski, J. Long, E. J.
Shekita, and B.-Y. Su, “Scaling distributed machine learning with the parameter server,”
in 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI 14),
2014, pp. 583–598.

[63] T. Kraska, A. Talwalkar, J. C. Duchi, R. Griffith, M. J. Franklin, and M. I. Jordan,
“Mlbase: A distributed machine-learning system.,” in Cidr, vol. 1, 2013, pp. 2–1.

[64] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine, “D4rl: Datasets for deep data-
driven reinforcement learning,” arXiv preprint arXiv:2004.07219, 2020.

[65] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, “Deep reinforce-
ment learning: A brief survey,” IEEE Signal Processing Magazine, vol. 34, no. 6, pp. 26–38,
2017.

[66] Z. Ning, P. Dong, X. Wang, M. S. Obaidat, X. Hu, L. Guo, Y. Guo, J. Huang, B.
Hu, and Y. Li, “When deep reinforcement learning meets 5g-enabled vehicular networks:
A distributed offloading framework for traffic big data,” IEEE Transactions on Industrial
Informatics, vol. 16, no. 2, pp. 1352–1361, 2019.

[67] P. Huang, J. Kalagnanam, R. Natarajan, D. J. Hammerstrom, R. Melton, M. Sharma,
and R. Ambrosio, “Analytics and transactive control design for the Pacific Northwest Smart
Grid Demonstration project,” in Proc. 2010 First IEEE International Conference on Smart
Grid Communications, Gaithersburg, MD, Oct. 2010, pp. 449–454. doi: 10.1109/SMARTG
RID.2010.5622083 .

[68] S. Chen and C.-C. Liu, “From demand response to transactive energy: State of the art,”
Journal of Modern Power Systems and Clean Energy, vol. 5, no. 1, pp. 10–19, 2017.

[69] F. A. Rahimi and A. Ipakchi, “Transactive energy techniques: Closing the gap between
wholesale and retail markets,” The Electricity Journal, vol. 25, no. 8, pp. 29–35, 2012.

[70] K. Malialis, S. Devlin, and D. Kudenko, “Distributed reinforcement learning for adaptive
and robust network intrusion response,” Connection Science, vol. 27, no. 3, pp. 234–252, 2015.

[71] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy gradient methods
for reinforcement learning with function approximation,” in Advances in neural information
processing systems, 2000, pp. 1057–1063.

[72] V. R. Konda and J. N. Tsitsiklis, “Actor-critic algorithms,” in Advances in neural in-
formation processing systems, 2000, pp. 1008–1014.

159

https://doi.org/10.1109/SMARTGRID.2010.5622083
https://doi.org/10.1109/SMARTGRID.2010.5622083

[73] Z. Yang, K. Zhang, M. Hong, and T. Başar, “A finite sample analysis of the actor-
critic algorithm,” in 2018 IEEE Conference on Decision and Control (CDC), IEEE, 2018,
pp. 2759–2764.

[74] K. Zhang, Z. Yang, and T. Basar, “Networked multi-agent reinforcement learning in
continuous spaces,” in 2018 IEEE Conference on Decision and Control (CDC), IEEE, 2018,
pp. 2771–2776.

[75] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press,
2018.

[76] V. Tadić, “On the convergence of temporal-difference learning with linear function ap-
proximation,” Machine learning, vol. 42, no. 3, pp. 241–267, 2001.

[77] S. Bhatnagar, R. S. Sutton, M. Ghavamzadeh, and M. Lee, “Natural actor–critic algo-
rithms,” Automatica, vol. 45, no. 11, pp. 2471–2482, 2009.

[78] V. Borkar, “Stochastic approximation: A dynamical systems view,” Hindustan Publ.
Co., New Delhi, India and Cambridge Uni. Press, Cambridge, UK, 2008.

[79] H. J. Kushner and D. S. Clark, Stochastic approximation methods for constrained and
unconstrained systems. Springer Science & Business Media, 2012, vol. 26.

[80] S. Levine, A. Kumar, G. Tucker, and J. Fu, “Offline reinforcement learning: Tutorial,
review, and perspectives on open problems,” arXiv preprint arXiv:2005.01643, 2020.

[81] J. Jiang and Z. Lu, “Offline decentralized multi-agent reinforcement learning,” arXiv
preprint arXiv:2108.01832, 2021.

[82] A. Kumar, A. Zhou, G. Tucker, and S. Levine, “Conservative q-learning for offline
reinforcement learning,” arXiv preprint arXiv:2006.04779, 2020.

[83] R. Agarwal, D. Schuurmans, and M. Norouzi, “An optimistic perspective on offline
reinforcement learning,” in International Conference on Machine Learning, PMLR, 2020,
pp. 104–114.

[84] Y. Wu, G. Tucker, and O. Nachum, “Behavior regularized offline reinforcement learn-
ing,” arXiv preprint arXiv:1911.11361, 2019.

[85] J. Fu, A. Kumar, M. Soh, and S. Levine, “Diagnosing bottlenecks in deep q-learning
algorithms,” in International Conference on Machine Learning, PMLR, 2019, pp. 2021–2030.

160

[86] A. Kumar, J. Fu, M. Soh, G. Tucker, and S. Levine, “Stabilizing off-policy q-learning via
bootstrapping error reduction,” Advances in Neural Information Processing Systems, vol. 32,
pp. 11 784–11 794, 2019.

[87] S. Mou, M. Cao, and A. Morse, “Target-point formation control,” Automatica, vol. 61,
pp. 113–118, 2015.

[88] X. Chen, M. A. Belabbas, and T. Basar, “Controlling and stabilizing a rigid formation
using a few agents,” SIAM Journal on Control and Optimization, vol. 57, no. 1, pp. 104–128,
2019.

[89] J. Cortes, S. Martinez, T. Karatas, and F. Bullo, “Coverage control for mobile sensing
networks,” IEEE Transactions on robotics and Automation, vol. 20, no. 2, pp. 243–255, 2004.

[90] D. Xue, S. Hirche, and M. Cao, “Opinion behavior analysis in social networks under the
influence of coopetitive media,” IEEE Transactions on Network Science and Engineering,
2019, DOI: 10.1109/TNSE.2019.2894565.

[91] K. Zhang, Y. Liu, J. Liu, M. Liu, and T. Başar, “Distributed learning of average belief
over networks using sequential observations,” Automatica, vol. 115, p. 108 857, 2020.

[92] G. Qu, A. Wierman, and N. Li, “Scalable reinforcement learning of localized policies for
multi-agent networked systems,” arXiv:1912.02906, 2019.

[93] Y. Li, Y. Tang, R. Zhang, and N. Li, “Distributed reinforcement learning for decentral-
ized linear quadratic control: A derivative-free policy optimization approach,” arXiv:1912.091-
35, 2019.

[94] F. J. Provost and D. N. Hennessy, “Scaling up: Distributed machine learning with
cooperation,” in AAAI/IAAI, Vol. 1, Citeseer, 1996, pp. 74–79.

[95] J. Konečnỳ, H. B. McMahan, D. Ramage, and P. Richtárik, “Federated optimization:
Distributed machine learning for on-device intelligence,” arXiv preprint arXiv:1610.02527,
2016.

[96] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Bacon,
“Federated learning: Strategies for improving communication efficiency,” arXiv preprint
arXiv:1610.05492, 2016.

[97] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji, K. Bonawitz,
Z. Charles, G. Cormode, R. Cummings, et al., “Advances and open problems in federated
learning,” Foundations and Trends® in Machine Learning, vol. 14, no. 1–2, pp. 1–210, 2021.

161

[98] J. Qi, Q. Zhou, L. Lei, and K. Zheng, “Federated reinforcement learning: Techniques,
applications, and open challenges,” arXiv preprint arXiv:2108.11887, 2021.

[99] F. S. Melo, S. P. Meyn, and M. I. Ribeiro, “An analysis of reinforcement learning with
function approximation,” in Proceedings of the 25th international conference on Machine
learning, ACM, 2008, pp. 664–671.

[100] F. Lu, P. G. Mehta, S. P. Meyn, and G. Neu, “Convex q-learning,” in 2021 American
Control Conference (ACC), IEEE, 2021, pp. 4749–4756.

[101] V. Borkar, S. Chen, A. Devraj, I. Kontoyiannis, and S. Meyn, “The ode method for
asymptotic statistics in stochastic approximation and reinforcement learning,” arXiv preprint
arXiv:2110.14427, 2021.

[102] S. D. McDougle, M. J. Boggess, M. J. Crossley, D. Parvin, R. B. Ivry, and J. A. Tay-
lor, “Credit assignment in movement-dependent reinforcement learning,” Proceedings of the
National Academy of Sciences, vol. 113, no. 24, pp. 6797–6802, 2016.

[103] T. Mesnard, T. Weber, F. Viola, S. Thakoor, A. Saade, A. Harutyunyan, W. Dabney,
T. Stepleton, N. Heess, A. Guez, et al., “Counterfactual credit assignment in model-free
reinforcement learning,” arXiv preprint arXiv:2011.09464, 2020.

[104] T. Jaakkola, S. Singh, and M. Jordan, “Reinforcement learning algorithm for partially
observable markov decision problems,” Advances in neural information processing systems,
vol. 7, 1994.

[105] M. T. Spaan, “Partially observable markov decision processes,” in Reinforcement Learn-
ing, Springer, 2012, pp. 387–414.

[106] I. Grondman, L. Busoniu, G. A. Lopes, and R. Babuska, “A survey of actor-critic rein-
forcement learning: Standard and natural policy gradients,” IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews), vol. 42, no. 6, pp. 1291–1307,
2012.

[107] P. C. Heredia and S. Mou, “Distributed multi-agent reinforcement learning by actor-
critic method,” IFAC-PapersOnLine, vol. 52, no. 20, pp. 363–368, 2019.

[108] M. Zhou, Z. Liu, P. Sui, Y. Li, and Y. Y. Chung, “Learning implicit credit assignment for
cooperative multi-agent reinforcement learning,” Advances in Neural Information Processing
Systems, vol. 33, pp. 11 853–11 864, 2020.

[109] Y. Du, L. Han, M. Fang, J. Liu, T. Dai, and D. Tao, “Liir: Learning individual intrinsic
reward in multi-agent reinforcement learning,” Advances in Neural Information Processing
Systems, vol. 32, pp. 4403–4414, 2019.

162

[110] P. Mannion, S. Devlin, J. Duggan, and E. Howley, “Reward shaping for knowledge-based
multi-objective multi-agent reinforcement learning,” The Knowledge Engineering Review,
vol. 33, 2018.

[111] J. Sakuma, S. Kobayashi, and R. N. Wright, “Privacy-preserving reinforcement learn-
ing,” in Proceedings of the 25th international conference on Machine learning, 2008, pp. 864–
871.

[112] G. Vietri, B. Balle, A. Krishnamurthy, and S. Wu, “Private reinforcement learning with
pac and regret guarantees,” in International Conference on Machine Learning, PMLR, 2020,
pp. 9754–9764.

[113] P. Heredia, H. Ghadialy, and S. Mou, “Finite-sample analysis of distributed q-learning
for multi-agent networks,” in 2020 American Control Conference (ACC), IEEE, 2020, pp. 3511–
3516.

[114] A. Rahate, R. Walambe, S. Ramanna, and K. Kotecha, “Multimodal co-learning: Chal-
lenges, applications with datasets, recent advances and future directions,” Information Fu-
sion, vol. 81, pp. 203–239, 2022.

[115] P. P. Liang, P. Wu, L. Ziyin, L.-P. Morency, and R. Salakhutdinov, “Cross-modal gen-
eralization: Learning in low resource modalities via meta-alignment,” in Proceedings of the
29th ACM International Conference on Multimedia, 2021, pp. 2680–2689.

[116] L. Zhen, P. Hu, X. Peng, R. S. M. Goh, and J. T. Zhou, “Deep multimodal transfer
learning for cross-modal retrieval,” IEEE Transactions on Neural Networks and Learning
Systems, 2020.

[117] G. E. Monahan, “State of the art—a survey of partially observable markov decision
processes: Theory, models, and algorithms,” Management science, vol. 28, no. 1, pp. 1–16,
1982.

[118] K. Zhang, Z. Yang, and T. Başar, “Multi-agent reinforcement learning: A selective
overview of theories and algorithms,” Handbook of Reinforcement Learning and Control,
pp. 321–384, 2021.

[119] S. Guicheng and W. Yang, “Review on dec-pomdp model for marl algorithms,” in Smart
Communications, Intelligent Algorithms and Interactive Methods, Springer, 2022, pp. 29–35.

[120] F. L. Lewis and K. G. Vamvoudakis, “Reinforcement learning for partially observable
dynamic processes: Adaptive dynamic programming using measured output data,” IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 41, no. 1, pp. 14–
25, 2010.

163

[121] A. Rodriguez, R. Parr, and D. Koller, “Reinforcement learning using approximate belief
states,” Advances in Neural Information Processing Systems, vol. 12, 1999.

[122] S. Ross, B. Chaib-draa, and J. Pineau, “Bayesian reinforcement learning in continuous
pomdps with application to robot navigation,” in 2008 IEEE International Conference on
Robotics and Automation, IEEE, 2008, pp. 2845–2851.

[123] G. Singh, S. Peri, J. Kim, H. Kim, and S. Ahn, “Structured world belief for reinforce-
ment learning in pomdp,” in International Conference on Machine Learning, PMLR, 2021,
pp. 9744–9755.

[124] T. Doan, S. Maguluri, and J. Romberg, “Finite-time analysis of distributed td (0) with
linear function approximation on multi-agent reinforcement learning,” in International Con-
ference on Machine Learning, 2019, pp. 1626–1635.

[125] J. E. Hopcroft and R. M. Karp, “An n5̂/2 algorithm for maximum matchings in bipartite
graphs,” SIAM Journal on computing, vol. 2, no. 4, pp. 225–231, 1973.

[126] X. Wang, S. Mou, and B. D. Anderson, “A distributed algorithm with scalar states for
solving linear equations,” in 2018 IEEE Conference on Decision and Control (CDC), IEEE,
2018, pp. 2861–2865.

[127] F. L. Lewis and D. Vrabie, “Reinforcement learning and adaptive dynamic programming
for feedback control,” IEEE Circuits and Systems Magazine, pp. 32–50, 2009.

[128] X. Chen, M. A. Belabbas, and T. Basar, “Controlling and stabilizing a rigid formation
using a few agents,” SIAM Journal on Control and Optimization, vol. 57, no. 1, pp. 104–128,
2019.

[129] W. Suttle, Z. Yang, K. Zhang, Z. Wang, T. Basar, and J. Liu, “A multi-agent off-policy
actor-critic algorithm for distributed reinforcement learning,” arXiv preprint arXiv:1903.0637-
2, 2019.

[130] Y. Lin, K. Zhang, Z. Yang, Z. Wang, T. Başar, R. Sandhu, and J. Liu, “A communication-
efficient multi-agent actor-critic algorithm for distributed reinforcement learning,” in 2019
IEEE Conference on Decision and Control (CDC), IEEE, 2019.

[131] M. Littman, “Markov games as a framework for multi-agent reinforcement learning,” in
Machine learning proceedings 1994, Elsevier, 1994, pp. 157–163.

[132] C. Zhang and V. Lesser, “Coordinating multi-agent reinforcement learning with limited
communication,” in Proceedings of the 2013 international conference on Autonomous agents
and multi-agent systems, International Foundation for Autonomous Agents and Multiagent
Systems, 2013, pp. 1101–1108.

164

[133] S. Kapetanakis and D. Kudenko, “Reinforcement learning of coordination in cooperative
multi-agent systems,” AAAI/IAAI, vol. 2002, pp. 326–331, 2002.

[134] M. Lauer and M. Riedmiller, “An algorithm for distributed reinforcement learning in
cooperative multi-agent systems,” in In Proceedings of the Seventeenth International Con-
ference on Machine Learning, Citeseer, 2000.

[135] T. Kemmerich and H. Büning, “A convergent multiagent reinforcement learning ap-
proach for a subclass of cooperative stochastic games,” in International Workshop on Adap-
tive and Learning Agents, Springer, 2011, pp. 37–53.

[136] J. Foerster, N. Nardelli, G. Farquhar, T. Afouras, P. H. Torr, P. Kohli, and S. Whiteson,
“Stabilising experience replay for deep multi-agent reinforcement learning,” in Proceedings
of the 34th International Conference on Machine Learning-Volume 70, JMLR. org, 2017,
pp. 1146–1155.

[137] J. Foerster, I. Assael, N. Freitas, and S. Whiteson, “Learning to communicate with deep
multi-agent reinforcement learning,” in Advances in Neural Information Processing Systems,
2016, pp. 2137–2145.

[138] K. Zhang, Z. Yang, H. Liu, T. Zhang, and T. Başar, “Finite-sample analyses for fully
decentralized multi-agent reinforcement learning,” arXiv preprint arXiv:1812.02783, 2018.

[139] M. J. Kearns and S. P. Singh, “Finite-sample convergence rates for q-learning and
indirect algorithms,” in Advances in neural information processing systems, 1999, pp. 996–
1002.

[140] D. Shah and Q. Xie, “Q-learning with nearest neighbors,” in Advances in Neural Infor-
mation Processing Systems, 2018, pp. 3111–3121.

[141] J. Bhandari, D. Russo, and R. Singal, “A finite time analysis of temporal difference
learning with linear function approximation,” arXiv:1806.02450 [cs, stat], Jun. 2018. arXiv:

 1806.02450 .

[142] S. Zou, T. Xu, and Y. Liang, “Finite-sample analysis for SARSA and q-learning with
linear function approximation,” arXiv:1902.02234 [cs, stat], Feb. 2019. arXiv: 1902.02234 .

[143] Z. Chen, S. Zhang, T. T. Doan, S. T. Maguluri, and J. P. Clarke, “Finite-time analysis of
q-learning with linear function approximation,” arXiv Preprint, May 2019. arXiv: 1905.11425
[cs, math] .

[144] A. Nedic, A. Ozdaglar, and P. Parrilo, “Constrained consensus and optimization in
multi-agent networks,” IEEE Transactions on Automatic Control, vol. 55, no. 4, pp. 922–
938, 2010.

165

https://arxiv.org/abs/1806.02450
https://arxiv.org/abs/1902.02234
https://arxiv.org/abs/1905.11425
https://arxiv.org/abs/1905.11425

[145] X. Wang, J. Zhou, S. Mou, and M. Corless, “A distributed algorithm for least squares
solutions,” IEEE Transactions on Automatic Control, 2019.

[146] D. Lee and J. Hu, “Primal-Dual Q-learning framework for LQR design,” IEEE Trans-
actions on Automatic Control, vol. 64, no. 9, pp. 32–50, 2019.

[147] S. Mou, J. Liu, and A. S. Morse, “A distributed algorithm for solving a linear algebraic
equation,” IEEE Transactions on Automatic Control, vol. 60, no. 11, pp. 2863–2878, 2015.

[148] Z. Sun, S. Mou, B. D. O. Anderson, and A. S. Morse, “Rigid motions of 3-d undirected
formations with mismatch between desired distances,” IEEE Transactions on Automatic
Control, vol. 62, no. 8, pp. 4151–4158, 2017.

[149] C. Yan and H. Fang, “Observer-based leader-follower tracking control for high-order
multi-agent systems with limited measurement information,” Proceedings of the 58th IEEE
Conference on Decision and Control, pp. 3904–3909, 2019.

[150] P. C. Heredia and S. Mou, “Distributed multi-agent reinforcement learning by actor-
critic method,” The 8th IFAC Workshop on Distributed Estimation and Control in Networked
Systems (NECSYS), pp. 363–368, 2019.

[151] T. Chen, K. Zhang, G. B. Giannakis, and T. Başar, “Communication-efficient dis-
tributed reinforcement learning,” arXiv preprint arXiv:1812.03239, 2018.

[152] M. Tavakol, M. N. Ahmadabadi, M. Mirian, and M. Asadpour, “Distributed q-learning
approach for variable attention to multiple critics,” International Conference on Neural
Information Processing, pp. 244–251, 2012.

[153] P. C. Heredia, H. Ghadialy, and S. Mou, “Finite-sample analysis of distributed q-learning
for multi-agent networks,” Proceedings of American Control Conference, pp. 3511–3516, 2020.

[154] R. Srikant and L. Ying, “Finite-time error bounds for linear stochastic approximation
and TD learning,” arXiv:1902.00923 [cs, stat], Feb. 2019. arXiv: 1902.00923 . [Online]. Avail-
able: http://arxiv.org/abs/1902.00923 .

[155] J. A. Bagnell and J. Schneider, “Policy search in kernel hilbert space,” 2003.

[156] S. Paternain, J. Bazerque, A. Small, and A. Ribeiro, “Stochastic policy gradient ascent
in reproducing kernel hilbert spaces,” arXiv preprint arXiv:1807.11274, 2018.

[157] S. Paternain, J. A. Bazerque, A. Small, and A. Ribeiro, “Policy improvement direc-
tions for reinforcement learning in reproducing kernel hilbert spaces,” in 2019 IEEE 58th
Conference on Decision and Control (CDC), IEEE, 2019, pp. 7454–7461.

166

https://arxiv.org/abs/1902.00923
http://arxiv.org/abs/1902.00923

[158] G. Lever and R. Stafford, “Modelling policies in mdps in reproducing kernel hilbert
space,” in Artificial Intelligence and Statistics, 2015, pp. 590–598.

[159] N. A. Vien, P. Englert, and M. Toussaint, “Policy search in reproducing kernel hilbert
space,” in Proceedings of the Twenty-Fifth International Joint Conference on Artificial In-
telligence, AAAI Press, 2016, pp. 2089–2096.

[160] A. Koppel, S. Paternain, C. Richard, and A. Ribeiro, “Decentralized Online Learning
With Kernels,” IEEE Transactions on Signal Processing, vol. 66, no. 12, pp. 3240–3255, Jun.
2018, issn: 1053-587X. doi: 10.1109/TSP.2018.2830299 .

[161] A. Koppel, K. Zhang, H. Zhu, and T. Başar, “Projected stochastic primal-dual method
for constrained online learning with kernels,” IEEE Transactions on Signal Processing,
vol. 67, no. 10, pp. 2528–2542, May 2019, issn: 1053-587X. doi: 10.1109/TSP.2019.2907265 .

[162] B. Schölkopf, R. Herbrich, and A. Smola, “A generalized representer theorem,” in In-
ternational conference on computational learning theory, Springer, 2001, pp. 416–426.

[163] A. Nedić, A. Olshevsky, and M. G. Rabbat, “Network topology and communication-
computation tradeoffs in decentralized optimization,” Proceedings of the IEEE, vol. 106,
no. 5, pp. 953–976, 2018.

[164] V. Popovici, S. Bengio, and J. Thiran, “Kernel matching pursuit for large datasets,”
Pattern Recognition, vol. 38, no. 12, pp. 2385–2390, Dec. 2005, issn: 0031-3203. doi: 10.
1016/j.patcog.2005.01.021 .

[165] J. Lian, H. Ren, Y. Sun, and D. J. Hammerstrom, “Performance evaluation for trans-
active energy systems using double-auction market,” IEEE Transactions on Power Systems,
vol. 34, no. 5, pp. 4128–4137, 2018.

[166] A. K. Bejestani, A. Annaswamy, and T. Samad, “A hierarchical transactive control
architecture for renewables integration in smart grids: Analytical modeling and stability,”
IEEE Transactions on Smart Grid, vol. 5, no. 4, pp. 2054–2065, Jul. 2014, issn: 1949-3053.
doi: 10.1109/TSG.2014.2325575 .

[167] I. Namatēvs, “Deep reinforcement learning on hvac control.,” Information Technology
& Management Science (RTU Publishing House), vol. 21, 2018.

[168] T. Wei, Y. Wang, and Q. Zhu, “Deep reinforcement learning for building hvac control,”
in Proceedings of the 54th Annual Design Automation Conference 2017, 2017, pp. 1–6.

[169] L. Yu, Y. Sun, Z. Xu, C. Shen, D. Yue, T. Jiang, and X. Guan, “Multi-agent deep
reinforcement learning for hvac control in commercial buildings,” IEEE Transactions on
Smart Grid, 2020.

167

https://doi.org/10.1109/TSP.2018.2830299
https://doi.org/10.1109/TSP.2019.2907265
https://doi.org/10.1016/j.patcog.2005.01.021
https://doi.org/10.1016/j.patcog.2005.01.021
https://doi.org/10.1109/TSG.2014.2325575

[170] W. Zhang, J. Lian, C.-Y. Chang, and K. Kalsi, “Aggregated modeling and control of
air conditioning loads for demand response,” IEEE transactions on power systems, vol. 28,
no. 4, pp. 4655–4664, 2013.

[171] Y. Sun, A. Somani, and T. E. Carroll, “Learning based bidding strategy for hvac systems
in double auction retail energy markets,” in 2015 American Control Conference (ACC),
IEEE, 2015, pp. 2912–2917.

[172] B. Liu, A. Murat, and T. McDermott, “Automated control of transactive hvacs in energy
distribution systems,” 2020.

[173] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel, “Benchmarking deep rein-
forcement learning for continuous control,” in International Conference on Machine Learning,
2016, pp. 1329–1338.

[174] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W.
Zaremba, “Openai gym,” arXiv preprint arXiv:1606.01540, 2016.

[175] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger, “Deep rein-
forcement learning that matters,” arXiv preprint arXiv:1709.06560, 2017.

[176] J.-P. Corfmat and A. S. Morse, “Decentralized control of linear multivariable systems,”
Automatica, vol. 12, no. 5, pp. 479–495, 1976.

[177] J. S. Reed and P. A. Ioannou, “Discrete-time decentralized adaptive control,” Automat-
ica, vol. 24, no. 3, pp. 419–421, 1988.

[178] H. Khalil and A. Saberi, “Decentralized stabilization of nonlinear interconnected systems
using high-gain feedback,” IEEE Transactions on Automatic Control, vol. 27, no. 1, pp. 265–
268, 1982.

[179] R. Olfati-Saber and J. S. Shamma, “Consensus filters for sensor networks and distributed
sensor fusion,” in Decision and Control, 2005 and 2005 European Control Conference. CDC-
ECC’05. 44th IEEE Conference on, IEEE, 2005, pp. 6698–6703.

[180] H. P. Moravec, “Sensor fusion in certainty grids for mobile robots,” AI magazine, vol. 9,
no. 2, p. 61, 1988.

[181] D. Reid et al., “An algorithm for tracking multiple targets,” IEEE transactions on
Automatic Control, vol. 24, no. 6, pp. 843–854, 1979.

[182] Y. Bar-Shalom and X.-R. Li, Multitarget-multisensor tracking: principles and techniques.
YBs London, UK: 1995, vol. 19.

168

[183] L. Schenato, B. Sinopoli, M. Franceschetti, K. Poolla, and S. S. Sastry, “Foundations of
control and estimation over lossy networks,” Proceedings of the IEEE, vol. 95, no. 1, pp. 163–
187, 2007.

[184] A. Mitra and S. Sundaram, “Distributed observers for lti systems,” arXiv preprint
arXiv:1608.01429, 2016.

[185] B. Rao, H. F. Durrant-Whyte, and J. Sheen, “A fully decentralized multi-sensor system
for tracking and surveillance,” The International Journal of Robotics Research, vol. 12, no. 1,
pp. 20–44, 1993.

[186] R. Olfati-Saber, “Distributed kalman filtering for sensor networks,” in Decision and
Control, 2007 46th IEEE Conference on, IEEE, 2007, pp. 5492–5498.

[187] W. Han, H. L. Trentelman, Z. Wang, and Y. Shen, “A simple approach to distributed
observer design for linear systems,” arXiv preprint arXiv:1708.01459, 2017.

[188] Y. Hong, G. Chen, and L. Bushnell, “Distributed observers design for leader-following
control of multi-agent networks,” Automatica, vol. 44, no. 3, pp. 846–850, 2008.

[189] A. Chakrabarty, S. Sundaram, M. J. Corless, G. T. Buzzard, S. H. Żak, and A. E.
Rundell, “Distributed unknown input observers for interconnected nonlinear systems,” in
American Control Conference (ACC), 2016, IEEE, 2016, pp. 101–106.

[190] O. Hlinka, F. Hlawatsch, and P. M. Djuric, “Distributed particle filtering in agent net-
works: A survey, classification, and comparison,” IEEE Signal Processing Magazine, vol. 30,
no. 1, pp. 61–81, 2013.

[191] E. A. Wan and R. Van Der Merwe, “The unscented kalman filter for nonlinear estima-
tion,” in Adaptive Systems for Signal Processing, Communications, and Control Symposium
2000. AS-SPCC. The IEEE 2000, Ieee, 2000, pp. 153–158.

[192] T. A. Wenzel, K. Burnham, M. Blundell, and R. Williams, “Dual extended kalman
filter for vehicle state and parameter estimation,” Vehicle System Dynamics, vol. 44, no. 2,
pp. 153–171, 2006.

[193] G. Battistelli and L. Chisci, “Stability of consensus extended kalman filter for distributed
state estimation,” Automatica, vol. 68, pp. 169–178, 2016.

[194] W. Li, Y. Jia, and J. Du, “Distributed extended kalman filter with nonlinear consensus
estimate,” Journal of the Franklin Institute, vol. 354, no. 17, pp. 7983–7995, 2017.

[195] T. Karvonen et al., “Stability of linear and non-linear kalman filters,” 2014.

169

[196] K. Xiong, H. Zhang, and C. Chan, “Performance evaluation of ukf-based nonlinear
filtering,” Automatica, vol. 42, no. 2, pp. 261–270, 2006.

[197] L. Li and Y. Xia, “Stochastic stability of the unscented kalman filter with intermittent
observations,” Automatica, vol. 48, no. 5, pp. 978–981, 2012.

[198] Y. Niu and L. Sheng, “Distributed consensus-based unscented kalman filtering with
missing measurements,” in Control Conference (CCC), 2017 36th Chinese, IEEE, 2017,
pp. 8993–8998.

[199] W. Li, G. Wei, F. Han, and Y. Liu, “Weighted average consensus-based unscented
kalman filtering,” IEEE transactions on cybernetics, vol. 46, no. 2, pp. 558–567, 2016.

[200] S. Haykin, Kalman filtering and neural networks. John Wiley & Sons, 2004, vol. 47.

[201] R. Van Der Merwe and E. A. Wan, “The square-root unscented kalman filter for state
and parameter-estimation,” in Acoustics, Speech, and Signal Processing, 2001. Proceed-
ings.(ICASSP’01). 2001 IEEE International Conference on, IEEE, vol. 6, 2001, pp. 3461–
3464.

[202] E. A. Wan and A. T. Nelson, “Dual extended kalman filter methods,” Kalman filtering
and neural networks, vol. 123, 2001.

[203] A. T. Nelson, “Nonlinear estimation and modeling of noisy time-series by dual kalman
filtering methods,” Doctor of Philosopy, Oregon Graduate Institute of Science and Technol-
ogy, 2000.

[204] T.-J. Tarn and Y. Rasis, “Observers for nonlinear stochastic systems,” IEEE Transac-
tions on Automatic Control, vol. 21, no. 4, pp. 441–448, 1976.

[205] K. Reif, S. Gunther, E. Yaz, and R. Unbehauen, “Stochastic stability of the discrete-time
extended kalman filter,” IEEE Transactions on Automatic control, vol. 44, no. 4, pp. 714–
728, 1999.

[206] G. Battistelli and L. Chisci, “Kullback–leibler average, consensus on probability densi-
ties, and distributed state estimation with guaranteed stability,” Automatica, vol. 50, no. 3,
pp. 707–718, 2014.

170

	TITLE PAGE
	COMMITTEE APPROVAL
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF SYMBOLS
	ABSTRACT
	INTRODUCTION
	Research Gaps
	Summary of Research Contributions
	Summary of Publications

	 DISTRIBUTED MULTI-AGENT REINFORCEMENT LEARNING BY ACTOR-CRITIC METHOD
	The Update
	Critic Training
	Actor Training

	Main Result
	Simulations
	Conclusion

	DISTRIBUTED OFFLINE REINFORCEMENT LEARNING
	Introduction
	Problem Formulation
	Key Idea
	Algorithm and Main Result
	Proof of Main Result
	Simulation Results
	Linear System
	Nonlinear System

	Conclusion

	DISTRIBUTED REINFORCEMENT LEARNING WITH CROSS MODAL OBSERVATIONS
	Introduction
	Problem Formulation
	Preliminaries
	Approach
	Main Result
	Simulation Results
	Conclusion

	FINITE-SAMPLE ANALYSIS OF DISTRIBUTED Q-LEARNING FOR MULTI-AGENT NETWORKS
	Preliminaries
	Multi-Agent MDP
	Linear Function Approximation
	A Distributed Q-Learning Algorithm

	Finite-Sample Analysis for Q-Learning
	Proof of Main Result
	Conclusion
	Supplementary
	Proof of Lemma 1
	Proof of Lemma 2

	FINITE-SAMPLE ANALYSIS OF MULTI-AGENT POLICY EVALUATION WITH KERNELIZED GRADIENT TEMPORAL DIFFERENCE
	Preliminaries and the Problem
	Functional Stochastic Quasi-Gradient Method with Consensus
	Main Result
	Proof of Main Result
	Conclusion
	Supplementary
	Proof of Lemma 6.4.2
	Proof of Lemma 6.4.3
	Proof of Lemma 6.4.4

	LEARNING-ASSISTED LOAD CONTROL DESIGN FOR TRANSACTIVE ENERGY SYSTEM
	Problem Statement
	Learning-assisted Bidding Strategy
	Tabular Q-learning
	DQN
	DDPG

	Case Studies
	Control Performance
	Training Performance
	Performance in Non-Competitive Market

	Conclusion

	DISTRIBUTED STATE ESTIMATION FOR NONLINEAR SYSTEMS WITH UNKNOWN PARAMETERS
	Introduction
	Problem Statement
	Approach
	Stability Analysis of Distributed Observer
	Proof of Main Result
	Simulations
	Conclusion

	SUMMARY
	Future Directions

	REFERENCES

