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ABSTRACT

With the increasing availability of data and the rise of networked systems such as au-
tonomous vehicles, drones, and smart girds, the application of data-driven, machine learning
methods with multi-agents systems have become an important topic. In particular, rein-
forcement learning has gained a lot of popularity due to its similarities with optimal control,
with the potential of allowing us to develop optimal control systems using only observed
data and without the need for a model of a system’s state dynamics. In this thesis work, we
explore the application of reinforcement learning with multi-agents systems, which is known
as multi-agent reinforcement learning (MARL). We have developed algorithms that address
some challenges in the cooperative setting of MARL. We have also done work on better un-
derstanding the convergence guarantees of some known multi-agent reinforcement learning
algorithms, which combine reinforcement learning with distributed consensus methods. And,
with the aim of making MARL better suited to real-world problems, we have also developed
algorithms to address some practical challenges with MARL and we have applied MARL on
a real-world problem.

In the first part of this thesis, we focus on developing algorithms to address some open
problems in MARL. One of these challenges is learning with output feedback, which is known
as partial observability in the reinforcement learning literature. One of the main assumptions
of reinforcement learning in the singles agent case is that the agent can fully observe the state
of the plant it is controlling (we note the “plant” is often referred to as the “environment”
in the reinforcement learning literature. We will use these terms interchangeably). In the
single agent case this assumption can be reasonable since it only requires one agent to fully
observe its environment. In the multi-agent setting, however, this assumption would require
all agents to fully observe the state and furthermore since each agent could affect the plant
(or environment) with its actions, the assumption would also require that agent’s know
the actions of other agents. We have also developed algorithms to address practical issues
that may arise when applying reinforcement learning (RL) or MARL on large-scale real-
world systems. One such algorithm is a distributed reinforcement learning algorithm that

allows us to learn in cases where the states and actions are both continuous and of large
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dimensionality, which is the case for many real-world applications. Without the ability to
handle continuous states and actions, many algorithms require discretization, which with
high dimensional systems can become impractical. We have also developed a distributed
reinforcement learning algorithm that addresses data scalability of RL. By data scalability
we mean how to learn from a very large dataset that cannot be efficiently processed by a
single agent with limited resources.

In the second part of this thesis, we provide a finite-sample analysis of some distributed
reinforcement learning algorithms. By finite-sample analysis, we mean we provide an upper
bound on the squared error of the algorithm for a given iteration of the algorithm. Or
equivalently, since each iteration uses one data sample, we provide an upper bound of the
squared error for a given number of data samples used. This type of analysis had been missing
in the MARL literature, where most works on MARL have only provided asymptotic results
for their proposed algorithms, which only tells us how the algorithmic error behaves as the
number of samples used goes to infinity.

The third part of this thesis focuses on applications with real-world systems. We have
explored a real-world problem, namely transactive energy systems (TES), which can be rep-
resented as a multi-agent system. We have applied various reinforcement learning algorithms
with the aim of learning an optimal control policy for this system. Through simulations, we
have compared the performance of these algorithms and have illustrated the effect of partial
observability (output feedback) when compared to full state feedback.

In the last part we present some other work, specifically we present a distributed observer
that aims to address learning with output feedback by estimating the state. The proposed
algorithm is designed so that we do not require a complete model of state dynamics, and
instead we use a parameterized model where the parameters are estimated along with the

state.
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1. INTRODUCTION

The field of reinforcement learning (RL) has seen major success recently in areas such as
autonomous driving [1], games [2], [3], and robotics [4], [5]. A major reason for this success
can be attributed to the combination of deep neural networks with reinforcement learning
algorithms. A subset of these algorithms, called model-free algorithms, are of particular
interest since they do not require knowledge of the governing dynamics of the system of
interest. Some of the more popular algorithms of this type include: temporal difference
learning (TD) [6], Q-learning [7], [8], SARSA [9], and asynchronous advantage actor-critic
(A3C) [10].

Reinforcement learning attempts to improve the performance of an agent or system by
assigning greater rewards to actions that lead to better outcomes. The generality of this
method has made it applicable to various fields of study. Some of the benefits of reinforcement
learning are that it does not require knowledge of optimal behavior as in supervised learning,
and that because of their sequential nature they can be used with online-learning algorithms
[11]. Furthermore, because reinforcement learning can be used for sequential decision making
stochastic systems [12], it is highly applicable for developing optimal controllers [13].

The above examples demonstrate the power of reinforcement learning for single agents
and how far it has been developed, but multi-agent reinforcement learning (MARL) poses a
more challenging problem with relatively few results both empirical and theoretical. Some
of the reasons that make MARL more challenging [14] are credit assignment[15]-[21], non-
stationary environments due to actions by other agents [22]-[27], and coordination [16], [18],
(23], [24], [28]. The exact set of issues that would have to be resolved depends on the variation
of MARL problem that is being considered [29].

A simple solution to the multi-agent issues would be to use centralization, where we assign
a central node with gathering all information (state, actions, rewards) from every agent in
the network. The central node would then process all the information and broadcast the
actions assigned to each agent. The problem with this approach is that is not scalable to
large netowrks due to the high communication costs that would be incurred in order to send

information to the central node, which may be spatially very far from many agents [30].
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Furthermore, the central node would need to have a large computational capacity in order

to process all the information from each agent, and it would be focal point for malicious

attacks[31], [32]. This makes centralized multi-agent reinforcement learning impractical and

maybe even infeasible for very large and spatially distributed networks. This motivates our

work to further the theory of MARL and as well as its applications in real world systems.

1.1 Research Gaps

There has been a lot of work on MARL providing some theoretical results and empirical

success, however there are still many issues and challenges left to be explored. Here we

outline some of those challenges which has motivated the work in this thesis:

1)

Most theoretical results assume finite spaces or linear function approximation

The early examples of MARL [17], [23], [24], [27], [30], [33] have assumed finite states
and actions, which allows them to implement a tabular form of reinforcement learn-
ing that does not scale well to infinite states and actions. More recently, some works
have assumed linear functions approximations in order to achieve results in MARL[31],
[34], [35]. It would of great practical use if these results can be extended to reinforce-
ment learning with more general function approximations, such as deep reinforcement
learning or kernelized function approximation. Some works which explore deep neural
networks for function approximation are [36]-[38], however these works either have
only empirical results or are not in a distributed framework. In [32], [39]-[41] they
consider only policy evaluation with some fixed policy, and so these algorithms cannot

be immediately used to develop optimal control policies.

Few finite sample results for RL algorithms

In most proofs of convergence for reinforcement, the main result is that the error either
converges to zero asymptotically or that the error asymptotically converges to finite
region around zero (depending on the assumptions). In either case, the result only tells
us information about the error after an infinite amount of steps and infinite samples

of data have been processed. These results do not tell us about the error for a finite
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amount of samples and steps. Such a finite sample analysis of the error is needed so
that we can know how much data is needed by a particular algorithm in order to reach
a certain level of accuracy. So far these results are relatively few in the literature, and

especially so for the multi-agent setting.

Output Feedback(Partial Observability) - Algorithms usually require global state and/or

actions of other agents

An important assumption of most reinforcement algorithms is that the plant(or en-
vironment) dynamics are time-invariant (or stationary in the RL literature) from the
learning agents perspective. For the plant to be time-invariant to the agent, the plant
can not have any time varying components that are not observable to the agent, and
so the agent must know all the necessary information needed to predict the evolu-
tion of the state of the plant. In the context of Markov Decision Processes, which
is the mathematical foundation of reinforcement learning, this means the agent must
observe the state of the plant. This is an issue in MARL where either we may only
have local information on the plant, or even if we can observe the global state of the
plant, if we cannot observe the actions of other agents then they essentially become
unobservable components of the plant. In either case the plant becomes time-variant
(or non-stationary) to the individual agents and so regular reinforcement learning al-
gorithms break down. Most works in MARL which look to address this issue, pose the
problem as a Decentralized Partially Obsevable MDP, but this is still a relatively new
and open problem where most approaches make use of some global information or a
learned model of global information in order to convert the problem from decentralized
learning to centralized learning [29], [42]-[45]. Some papers such as [25], [46], explore
problem of learning coordination with independent learners, but do not consider com-
munication among agents. We also see a similar problem in [47], which is motivated
by target tracking with sensor networks, but this work assumes that agents are in-
dependent of each other’s actions. Another work is [44] which presents an algorithm
for cooperative and competitive scenarios, but requires each agent to learn a decision

making model of other agents.
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4)

Algorithms require global rewards

Just as being able to observe the full state of the plant is important, it is also an im-
portant assumption to all reinforcement learning algorithms that an agent can observe
or compute the reward resulting from its actions. However, in cooperative MARL set-
tings this becomes an issue because though each agent receives an individual reward,
the goal of cooperative MARL problems is to maximize the sum of rewards not just
individual rewards. An easy solution would be for each agent to communicate each
other’s rewards. However, this could lead to privacy issues since the reward could
potentially contain sensitive or confidential information that individual agents would
not want to share [31]. Though there are several works that have explored the case of
private rewards [31], [32], [42], [45], they still require full knowledge of the state. This
motivates the need for more distributed RL algorithms where along with partial state

information, rewards are private to each agent instead of globally known.

FEvaluation and comparison of RL algorithms on real world problems

There is a need for implementation and comparisons of performance of RL and MARL
algorithms for problems of practical interest. In practice, performance of RL algorithms
is very problem specific so its not clear what algorithm will work best for a particular
problem until it is implemented and tested. There are some works comparing deep
RL algorithms, such as policy gradient algorithms and DQN , but they are studied on
specific use cases [4], [48]-[53] or on either toy examples or games [46], [54]-[56]. In
[57] a very comprehensive comparison of temporal difference algorithms is given but
again they are applied to toy examples such as the cartpole problem or the 20 link
pole balancing problem, which, though of high dimensionality and difficulty, can not

fully capture the nuances and difficulty of a real world problem.

Scalability

There are some challenges that make implementing reinforcement learning and MARL
difficult to implement in large-scale real-world problems. One such problem is learning

with large, continuous state and action spaces. As previously discussed, many rein-
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forcement learning algorithms have been developed under the assumption that states
and actions are discrete [8], [24], [27], which for many real-world systems is not the case.
As such, these algorithms would require the discretization of a continuous state space
or action space, which could become impractical since the size of the discretization
would increase exponentially with the size of state or action vector[58]—[60]. Similarly,
another important practical problem deals with data scalability [61]-[63]. Since rein-
forcement learning is a data driven method, the more complex the system the more
data that will be required to learn a control policy for that system [60], [64], [65]. As
such, since many real-world systems are very complex, we need reinforcement learning

algorithms that scale well with the size of the dataset [66].

1.2 Summary of Research Contributions

Based on the research gaps discussed above, we have made the following contributions
with our research and proposed algorithms:

In Chapter 2, we address the scalability challenge that results from systems that have
continuous states and actions. As such, we develop a distributed reinforcement learning
algorithm that works with both continuous state and action spaces. Due to the high dimen-
sionality of most practical problems, it is important for reinforcement learning algorithms
to be able to work with continuous state and action spaces. Otherwise, the states and ac-
tion spaces need to discretized which can easily lead to an impractical amount of discretized
states and actions. In the MARL setting, this is even more important because the number
of actions would scale exponentially with the number of agents, therefore even if each agent
only decides between a couple of actions, the total number of actions for the network would
be large for a large network. Usually, continuous spaces are handles by including some form
of function approximation, such as using neural nets or linear function approximation. As
such, we have developed an algorithm that uses function approximation in order to handle
continuous spaces.

In Chapter 3, we tackle the challenge of data scalability with reinforcement learning.

Specifically, we consider the problem of learning from a large, fixed dataset that is too large

16



to be efficiently processed by a single agent. The issue of data scalability is an important
practical problem since many industries and companies have acquired large datasets over
time but they have limited computational resources at any single location. In order to learn
from all this data in a reasonable amount of time, there a is need for distributed learning
algorithms that can split up the computational load over many locations or nodes. To address
this problem we have developed a distributed reinforcement learning algorithm where such
a large dataset is partitioned and distributed amongst a network of agents. By splitting
up that dataset amongst several agents, our approach is not limited by the computational
resources of a single agent and so our approach can scale well with the size of the dataset.

In chapter 4 we address the challenge of learning from output feedback ( or partial ob-
servability in the RL literature). The problem of multi-agent reinforcement learning with
partial observability is a very challenging and open problem. The ability to handle partial
observability addresses both the issue with not knowing what actions other agents make and
also the very realistic case that an agent might not have full information about its plant
(or environment). If some form of centralization is allowed, there are many works that have
leveraged such a centralized structure to allow each agent to learn optimal policies. If cen-
tralization is not allowed, however, the problem is more challenging as each agent can only
use local information. As such, we have developed algorithms that can accomplish learn-
ing in a distributed manner, only leveraging local information and communication between
neighboring agents. In chapter 4, along with partial observability, another important chal-
lenge that we address is the issue of private rewards. Many works in MARL have assumed
that either all agents receive the same reward or that agents can share the reward with
each other. This would not be the case when the reward function contains sensitive, private
information. Even in cooperative settings, each agent might not be willing to share their
private reward and so it is important to develop algorithms that would not requiring sharing
of rewards. Though there are many works that have similarly addressed this issue, they have
assumed full observability of the state. Thus, we have addressed both reward privacy and
partial observability in our work.

In Chapter b, we provide a finite sample analysis of a distributed reinforcement learning

algorithm. Most of the theoretical results in reinforcement learning have provided proofs of
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asymptotic performance, where a bound on the error is given which the true error approaches
as the number of algorithm updates approaches infinity. This has, off course, been very
important in forming the foundation for reinforcement learning. But until recently, there
have been no results providing a bound on the error for a finite amount of algorithm updates.
Since each update uses at least one data sample, this is sometimes referred to as a finite-
sample analysis. This type of analysis allows us to determine how many data samples are
needed to guarantee a certain level of accuracy. Furthermore, such an analysis is even less
available in the MARL setting, has motivated our work in providing a finite-sample analysis
of reinforcement learning algorithms for the distributed, multi-agent setting.

In Chapter 6, we provide a finite-sample analysis of a reinforcement learning algorithm
using a more general function approximation. As will be discussed later on, function approx-
imation is necessary when dealing with continuous states and actions. It is also important,
however, that the form of the function approximation is as general as possible so that if
theoretical results are achieved, these results can apply to a larger set of functions. So far
the literature has mostly made use of linear function approximations, which allows for good
theoretical results but does not accept many functions of practical use. Therefore, along with
linear function approximation, will have also studied a more general function approximation
for our theoretical work.

In Chapter 7, we explore the application of reinforcement learning to a practical system
(transactive energy systems). An important part of research is in demonstrating that es-
tablished or newly developed algorithms can work for practical applications. Though many
works exist applying reinforcement learning, especially deep reinforcment learning, many of
them are applied to games and toy problems, which though are of high complexity do not
offer an immediate practical benefit. There is also work that studies the performance of
reinforcement learning on specific and practical uses cases, but since each particular use case
presents its own challenges when using reinforcement learning, application to new systems
must be studied on a case by case basis. Accordingly, we have studied the performance of
reinforcement learning on transactive energy systems. Transactive energy is a new paradigm
for demand-side control in power grids, where the interaction between power suppliers and

consumers is designed to emulate a market system . A transactive energy system usually con-
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sists of a group of distributed energy resources such as smart loads, distributed generation,
and even energy storage [67]—[69].

In chapter 8, we address partial observability by developing a distributed observer based
on the unscented Kalman filter. The motivation is that such a distributed observer will allow
each agent of a multi-agent system to estimate the state, and so the distributed observer
could be combined with a distributed reinforcement learning algorithm without needing
to observe the full state. Crucially, we developed a distributed observer for both state
estimation and parameter estimation. This allows us to relax the assumption of knowledge
of state dynamics, which is usually needed with state estimation, and instead we assume we
have a parametrized model of the state dynamics where the parameters are unknown. As
such, the proposed distributed observer can be combined with a distributed reinforcement
learning algorithm to achieve an optimal control policy without fully observing the state and

without complete knowledge of state dynamics.

1.3 Summary of Publications

The content of Chapter 2 appears in:

o Paulo C. Heredia, Shaoshuai Mou. “Distributed Multi-Agent Reinforcement Learning
by Actor-Critic Method”. IFAC-PapersOnLine, 52/20, pp. 363-368 (2019). © 2019
International Federation fo Automatic Control. Reproduced with permission from

Paulo C. Heredia and Shaoshuai Mou.

The content of Chapter 5 appears in:

o Heredia, Paulo, Hasan Ghadialy, and Shaoshuai Mou. “Finite-Sample Analysis of Dis-
tributed Q-learning for Multi-Agent Networks.” In 2020 American Control Conference
(ACC), pp. 3511-3516. IEEE, 2020. © 2020 IEEE. Reprinted, with permission, from
Paulo Heredia, Hasan Ghadialy, Shaoshuai Mou.
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2. DISTRIBUTED MULTI-AGENT REINFORCEMENT
LEARNING BY ACTOR-CRITIC METHOD

Introduction

Multi-agent reinforcement learning (MARL) has recently gained a lot research attention
with extensive applications into mobile sensor networks, robotics, UAV swarms, cybersecu-
rity, and so on [70]. Research challenges in MARL mainly come from the fact that each
agent has its own local and private reward, and can only coordinate with nearby agents,
which usually result in conflicts with other agents in credit assignment and coordinating
actions [28]. This has led to a recently booming area of developing distributed algorithms
for MARL, in which there is no centralized coordinator and only local coordination among
nearby neighbors are allowed. Early results in the direction of distributed MARL usually
assume finite states and actions to allow them to implement a tabular form of reinforce-
ment learning [30], [33], which are not applicable to situations requiring infinite states and
actions. Further progress has been achieved in [32], [39]-[41] which only consider evaluation
of fixed policies and cannot be immediately used to develop optimal control policies. Re-
cently researchers have started to develop distributed MARL based on actor-critic methods
in single-agent case in [71], [72]. It has recently been shown that critic training could be
reformulated as a primal-dual optimization problem in single-agent case in [38], with fur-
ther generalization to distributed MARL algorithm in the worst-case by [32], followed by
a finite sample analysis in [73]. Perhaps one of the most significant progress in distributed
MARL based on actor-critic method are algorithms developed in [31], [74], in which each
gent makes its own decision only based on locally observed information and communication
among nearby neighbors, and the network connecting agents are time-varying.

Motivated by [31], [74], we in this work have also developed a distributed algorithm
for MARL, based on actor-critic methods. With this framework each agent is tasked with
training an actor to generate a control input given the state, and a critic to output a scalar
value for the performance of the current policy, given a state and input pair. In addition,
we consider continuous states/actions as in [74] but with a different variation of the actor-

critic algorithm. Different from [31], which considers the expected time-averaged reward and

22



finite spaces for states/actions, we in this work considered the expected sum of discounted
rewards over an infinite time horizon. Under results developed in this work, the policy
evaluation algorithm proposed in [32] was used for action-value functions as well as state-
value functions, which in turn implies that such policy evaluation algorithm can potentially
be used in a distributed actor-critic framework based on [31].

Notation Let V, denote the gradient with respect to a parameter a. To indicate the transpose
of a matrix A, we use A'. Furthermore, by {a(t)} we mean a sequence of a(t) and by a ~ d
we mean “a is sampled from the distribution d”. We also use col{a, as, .., a,} to denote the

column-wise stacking of aq, .., a,.

Problem Formulation

Consider the case in which a network of m autonomous agents operate in an unknown
environment (or plant). Let z(t) € R™ denote the state of the plant at time ¢. For each control
input u;(t) from agent i to the plant, a local reward r;(z(t),u(t)) is produced, where u(t) =
col{uy (t),us(t),...,um(t)} € R™. Here, each ri(-) is the private reward locally accessible to
only agent i, and is not shared with other agents.

Let

Rle0),u(1) = 3= na(t).u(t) 21)

which represents the average reward of all agents in the network. Let ® denote a stochastic
control policy such that u ~ n(z,u) . Let Qr denote the corresponding objective function,
which is assumed to be a sum of discounted rewards R(x(t),u(t)) when a stochastic control

policy m is applied to the plant. Namely,

Qn(z(t), u(t)) = E[ i_o: Y R(x(k), u(k)) | 2(0) = x(t), u(0) = u(t)]

where v € (0, 1) is a discount factor. The goal of MARL in this paper is to achieve a globally
optimal control policy T* to maximize the objective function Q.
In a multi-agent network, each agent i usually can only communicate with certain neigh-

boring agents denoted by N, which includes agent i. The neighbor relations can be modeled
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Qr

Figure 2.1. Distributed Multi-Agent Reinforcement Learning

by a connected undirected graph G such that there is an edge between i and j if and only if
i and j are neighbors. Suppose each agent i controls 7; (an estimate to the optimal control
policy ©*) and @; (the Qy, corresponding to m;). The problem of interest, as indicated in
Fig. 2.1, is to develop a distributed algorithm such that each agent achieves an e approxi-
mation of the optimal policy * (denoted by m* £ ¢€), as well as its corresponding action value

function Qr«4., using only coordination with its nearby neighbors, namely,

T T Ee (2.2)

Qi = Qute. (2.3)

Here, m* + ¢ denotes a policy value in the interval [* — e, T* + €.

2.1 The Update

In this section we will develop a distributed algorithm for MARL by introducing an actor
and a critic at each agent. That is, each agent is tasked with training an actor to generate
a control input given the state (control policy) and a critic to output a scalar value for the
performance of the current policy given a state and input pair (action-value function). In

the following we will present the updates for both critic training and actor training.
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2.1.1 Critic Training

We first assume 7 is fixed, and so the proposed approach is to train each agent’s critic
to converge to (g
As is well known, the Bellman equation for reinforcement learning can be described in

terms of Qr as follows [75]:

Qr(x(t),u(t)) =R(x(t), u(t)) + YEafa(n)ur) [Va(z(t+1))],

where

Va(z(t+ 1)) = Eyrym [Qn(z(t + 1), u(t + 1))] (2.4)

is the state-value function at ¢ + 1. The above Bellman equation can be used to directly
compute the entries in ), which is however not directly applicable to continuous space of
actions and states. To address this, we approximate () as linear combination of given basis

functions [76], that is,
Qw(xa U) - ngb(xv u)? (25)

where w € R? is unknown and ¢(x,u) € R? is a column vector of basis functions.
Similarly, the control policy  can also be approximated as a parameterized function my,
where 6 € RP This can be achieved by defining 1y as a normal distribution with mean and
standard deviation as functions of 6.
Let R, Q and V; denote the vectors from stacking all R in (2.1), @, in (2.5), and
Vz in (2.4), respectively, for every (z,u) pair. To ease notation we refer to E as E, and
Euj2(t),ut) as E;. Then a nice estimate of () can be achieved by minimizing the following

mean squared projected bellman error(MSPBE) with respect to w [32], namely,
. 1
min MSPBE(w) = min | [TLa(Qu ~ R ~ 7E, [VA)[[3 + u® 26)

where D = diag[{ i, (x)V2x € R"}] is a diagonal matrix with the stationary distribution of
Ty on the diagonal; Il = ®(®'DP)"'® "D is the projection onto the subspace {Pw :

w € R1Y}; ® is the stacking of ¢(x,u) for every (x,u) pair,and p is a free parameter for

25



regularization of w. From [32], and assuming A is invertible, we know this can also be

rewritten as

. o1
min MSPBE(w) =min - | @ D(Qu—R—1E: [Va]) )+ + o]

1
=min ||Aw = b3 + plewl,

where

A =E[A()], b = E[b()]

with

At) = p(a(t), u(t)e(a(t), u(t)"
b(t) = (R(x(t), u(t)) +yValx(t + 1)) o(2(t), u(t))

and ||v||yy = Vv Mo for any vector v. Note that A and b are usually not available in

practice since they are all computed with respect to the stationary distribution of my, which

denoted by pg, usually requires the knowledge of state dynamics of the plant. Thus instead

of solving (2.7), we will solve its equivalent problem, as shown in [32]:

1 m
min — Y MSPBE;(w)
wom

i=1

where

1 - ~
MSPBE;(w) = 5 [|Aw = bil[3 - + pllwll”,

A=1¥T At), b= 27 bi(t), and
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Then the problem of learning a good estimate to () can be achieved by solving the opti-
mization problem in (2.7). Similar to [32], we employ the following update at each agent
i
N
wl(t + 1) = Z I/Vi,jwi(t) — alsi(A(t),t)
=1

I/i(t —+ 1) = Vi(t) -+ Oégdi<A(t), bl(t), t),
Here, 1; is the dual variable of agent i with Metropolis weights W, ; given by

er if jeM,j#i

Wig=191- DkeNikpi Wi, iHi=]

0, if j €N,

where e; is the number of neighbors of agent i, which by our definition of N; includes agent
i. Here, s; is a surrogate for the gradient of the objective function in (2.7) with respect to
w;, and likewise d; is a surrogate for the gradient of the same objective function with respect
to 1. Through these gradient surrogates, each agent attempts to track the actual gradients
of the objective function by using only local information and the estimates of its neighbors.
As such, the updates of these surrogates use gradients on the locally available function given
by (2.8), plus the local average of previous estimates (in the case of s; only). Please refer to
[32] for more details on the definition and updates of these gradient surrogates.

Note that computing b;(t) at each agent i requires Vy(z) as shown in (2.9), which is related
to Qu(x,u) by (2.4). Since the expectation E, 1)z in (2.4) cannot be calculated by each
agent 1 without access to m, we employ a linear function approximation for the state-value

function, namely,

Vy(z) = v'n(x), (2.10)
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where v € R% and n(x) € R% is a vector of basis functions. Then we need to find proper
parameters v such that V,, — V;, for which we employ the following updates to improve our

estimates of V,:

ui(t+1) = i Wijui(t) — ashi(C(t), 1)

Ri(t +1) = wi(t) + auali(C(t), D(1), fi(t), 1)

Here,

and k; is the corresponding dual variable. In addition, we have that h; is the gradient
surrogate with respect to v; and [; is the gradient surrogates with respect to ;. The definition

of gradient surrogates is discussed above.

2.1.2 Actor Training

Now based on the convergence of the critic, we train each agent’s actor to converge on
the globally optimal control policy. Similar to [31], we will also utilize the policy gradient
method for the actor training in this section. A policy best for the whole network will be

achieved based on the advantage function

Ax(t) = Qr(x(t), u(t)) — Vals),

[71], [72], [75]. Though each agent does not know the exact value to this advantage function,

we allow each agent to use

Ai(t) = Quy(x(t), u(t)) = Vi (2(1)),
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which can be looked at as a local estimate to the global advantage function Ax(¢).

by this we employ the following updates for actor training:

0i(t + 1) = T(0:(t) + B()Ai(t)u(2(t), u(t))),

where I is a projection operator and we have:

which comes from the gradient of log(my, (x(t),u(t))) with respect to 6;.

Motivated

To summarize, the proposed distributed update at each agent i is given as follows:

Critic Update:

wi(t+ 1) E:I/Vljw1 — aysi(t)

vi(t 4+ 1) = 1v5(t) + asdi(t),

t -+ 1 ZI/VIJUl aghi(t)

ri(t+1) = ki(t) + aqli(¢).
Actor Update:
Bt +1) = (1) + B A(s(w(t), u(t))).

2.2 Main Result

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

We will now go over the main result of our paper where we describe what the proposed

algorithm can achieve under the following assumptions:

(A1)- The function approximation of the policy , i.e Ty, is greater than 0 for any 6. This

is a standard assumption used in [31], [72], [77]
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(A2)- my(x,u) is continuously differentiable in 6, as is assumed in [77]

(A3)-The projection operator I', which is used in the proposed update, projects any 6;(¢)
onto a compact set. Furthermore, we assume that the compact set © is large enough to
include a least one local minimum of Vg, .

(A4)-The reward function r;(t) is uniformly bounded for each agent and for all time. This
assumption has been made in works such as [31], [74]

(A5)- The step-sizes a;(t),a3(t), 5(t) satisty:

ial(t)—)oo iag(t)—)oo iﬁ(t)%oo

B(t) = olaa(t))  aut) = ofas(t)), as t — oo,

where f(t) = o(g(t)) means for every constant € there exists a constant N such that |f(¢)| <
eg(t), for all t > N. In addition, we assume >5°(ay(#)? + as(t)? + B(t)?) is bounded.

(A6)- Each data sample is selected at least once every T iterations of parameter updates.

(A7)-The matrices A and C' are full rank for large T

(A8)- The sequence of states produced by any policy w is a Markov chain that is irre-
ducible and aperiodic.

(A9)- @ is full rank , ¢; < n, and ¢(x(t), u(t)) is uniformly bounded for all z,u pairs.

Theorem 2.2.1. We denote wy, = wy and vz, = vy, where wy and vy are the target
parameters such that |Qu, (x,u) — Qr, (x,w)| and |V, (z) — Vz,(x)| are minimized for all (x, u)
and some parametrized policy mg. Given assumptions (A1)-(A9) we have the following: For
each agent i , given a fived parametrized policy Ty, w; and v; converge with consensus to
parameters wy and vy in a linear rate, such that Q., — Qu, and V,, — V,,. Furthermore,
given Qu, — Qu, and € > 0, there exists a 6 > 0 such that if supy |lea)l| < 0, then the
proposed actor updates on 6;(t) converge almost surely to an € neighborhood of a local optimum

of Qr,. Where the local optimum is defined as a 0 such that VoQr, = 0 and furthermore:

eo) =Eu [Bupo [((Qn,y (2,10) = Quy (2, w)+ (Vi () = Vi (@) )i (ar, w)]|
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Remark: We note that ey expresses the bias due to linear function approximation of Qy,
and Vz,. Therefore, as long as this bias is small enough the proposed algorithm can achieve
convergence to € neighborhood of the optimal policy, and so we achieve the goal of our paper
described by: mp, — T £ € and Q. = Qneie -

In order to prove Theorem 2.2.1, we need the following lemmas, where lemma 1 is used

to prove lemma 2.

Lemma 2.2.2. Given assumption (A5),(A6),(A7), a sufficiently small ag with oy = 1103
where

11 = 8(p + Anaz (CTDTLC)) /Ain (D),

and a policy Ty, then for each agent i the updates on v; from (2.18) converge to network

consensus on vg such that V,, — V.

Proof of Lemma 2.2.2: Using the conditions on a3(t) relative to 4(t) from (A5), we apply
the two time-scale stochastic approximation method [78] to hold 6 fixed in our analysis on
the convergence of v. The result then follows from [32], which proves that the updates from
(2.15) converge to network consensus given a fixed policy my. B

From Lemma 1 we have that v; converges such that V,, — Vj and that the network reaches
consensus on v, furthermore from (A5) we know that v; converges in a faster time-scale than
w;. Therefore, using two-timescale stochastic approximation [78] we have that V,, = Vj for
our analysis of updates on w;. By following the same proof in [32], one then has the following

lemma:

Lemma 2.2.3. If assumptions (A5), (A6), and (A7) hold and the primal step size ay is suf-

ficiently small with oy = 1a0q where 1o = 8(p+ )\ma:p(A>>/)\min<A—); then for a given policy Ty

*

the critic algorithm converges to the optimal parameters wg, v, and = 7, ||lwi(t) — w(t)]])

converges to zero, all at a linear rate. More formally we have:

_ 1 & . 1 & _
[w(t) — w|* + — Sl = vi]? = 0(0"), = [lwi(t) — w(t)|| = O(a"),
2 15 mi3

1 xm

where w(t) = — 3" wi(t) and 0 < o < 1.
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While more details of the proof for lemma 2 are provided in [32] and the full details are
in the supplementary notes they provide, we will give a short outline of their proof.
Sketch of Proof for Lemma 2.2.3: We now go through an outline of the proof for lemma
2. Overall, the proof focuses on the evolution of the following Lyapunov functions, and on

the conditions that guarantee these functions will converge linearly to zero:

1 m
BOI” = Ol (t] = wo)* +— > [lvs —{|)

i=1

1
Bt = 1\ 2 () w0
1 m m T
E,(t) = — ||si(t) — Vudi(w, v, t)]]?
g m 21: mTZ;t;

Where J; is the conjugate of the objective function in (2.8) for an agent i, F. is the con-
sensus error of the primal parameter, and Ej; is the consensus error of the primal aggregated
gradient.

The proof can then be divided into three parts. In the first part, one iteration of the
critic algorithm is analyzed , and in particular the errors due to imperfect tracking of the
temporal and spatial gradients are considered. The analysis in the first step then leads to
the construction of a Lyapunov vector o(t) = [||0(¢)]], E.(t), E4(¢)]", which consists of the
Lyapunov functions shown above.

The second part focuses on the evolution of this Lyapunov vector v(t) in one iteration
of the algorithm, which is refered to as the coupled system. It is then observed that the
Lyapunov vector contains delayed terms due the incremental updates employed by the al-
gorithm. The convergence of the delayed and coupled systems are studied, and sufficient
conditions for their linear convergence are explored.

The last part of the proof seeks to derive conditions on the step size oy, so that sufficient
conditions for linear convergence are satisfied. B
Proof of Theorem 2.2.1: For convenience we denote Qr, = Qp, wr, = wy, Vo, = Vp,

Un, = Vg, Vi(x(t),u(t))as ¢i(t), Ex[Eyq|-]] as E[ -], and for simplicity we denote 0(t) = 6.
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From our problem formulation we have that each agent maintains an estimate of the global
optimal policy m;, however we also have that each agent only executes a control input wu;.This
u; is only an element of the global control input estimate uy, sampled from 7;. We now define
an effective global policy 1 such that when u is sampled from 7, we get the actual global
control input vector col{uy, us, ..., uy, }. In addition we define my as the parameterized form
of m, given some parameter vector 6 .

Given the above definitions, we begin by writing out the actor update :

0i(t +1) = T(6:(1) + (1) Ai() (1))

Now let F(t) = o(6i(7), 7 < t) be a o-field (also called o-algebra). We can then define the

following:

&t +1) = Ai(t)o(t) — E[Ai(t)es(t) | F(1)]
&t +1) = E[(Ait) — Ae(t)yu(t) | F(1)],

where Ag(t) = Qu, (x(t), u(t)) — V4, (2(t)) is the advantage function after the critic converges
to we, vy for a given Ty, whereas A;(t) is a current estimate using the critic of agent i. With

this we can rewrite the actor updates as:

0i(t + 1) = T(6:(t) + BOE[A ()i (D]B(1)E: (1) + B(8)E:(1))-

From lemma 2 we know that the critic converges, and from our time-step assumptions we
know that it converges in a faster time scale than the actor. Therefore, in the actor update
time-scale we have that A;(t) — Ay(t), and so & is in o(1). Furthermore, let M(t) =
S, B(t)€r(t), we also note that the sequence {M(t)} is a martingale sequence. We also
know that from assumption the sequences {w;(t)} , {1;(t)}, and {¢(x(t),u(t))} are bounded,
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and so {&;(f)} must also be bounded. Using our step-size assumption we then have the

following almost surely:

SE[M(t+1)—M(t)|* | F(t) ZHB (H)& (t+1)]* < oo
t=1

t>1

From the martingale convergence theorem we know that M (t) conveges almost surely, and

so we have :

hmIP’(supHZﬁ 7))l >6> =0

for some € > 0.

We now look at the quantity E[Ay, (t);(t)], which can be rewritten as the following:

B[4 (0] = [ polw) [ Rollw, w)ia() Aot) duda

= [ o) [ ol s, ) 6 ) () s

From the above we can show that E[Ag(t);(t)] is continuous in 6;.It is important to note
that 6 is the parameter vector of my, which when sampled produces the same u; extracted
from each agents u ~ my.. Therefore, as long as the parametrization of T can represent any
viable(stochastic) policies, then 6 can be seen as a continuous function of each agent’s 6;. This
observation implies that that if a function is continuous in 6, then it is also continuous in 6;.

With the above observations of each term in the proposed update equation, the Kushner-
Clark lemma [79] tells us that the update converges almost surely to the set of asymptotically
stable equilibria of the following ODE:

0i(t) = T(E[Agi(2)]). (2.16)

From [71], [72], [75] we know that in order to update the policy towards the optimal
policy we must compute VyVy(x), which is the policy gradient, usually expressed as V.J(6).
In [75], [77] we find that:

VoVo(r) = E[(Qo(z,u) — Vo(x))di(z, u)].
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We can then rewrite E[Agt);(t)] similar to [31], [77],in the following way :

E[Agyi(1)] = VoVi(x) + (E[Agthi(1)] — E[(Qo (2, u) — V()i (1)]).

By rearranging terms and using the linearity of expectation we then get:

E[Agii(1)] = VoVi() + E[((Quy (7, 1) — Qo(x, u)) + Vo, — Va(x)))¢i(1)],

where E[(Qu, (z,u) — Qo(z,u)) + (Vi,, — Vo(x))1i(t)] expresses the bias due to linear function

approximation of Vp and Q9. Therefore, if

sup [|E[((Quy (7, u) = Qo (2, u)) + (Vo = Va(2))) (1] < 6

o(t)

for some ¢ > 0, then (2.16) converges almost surely to an e neighborhood of V4V = 0, which

is a local optimum of Vj and , since Vy(x) = Eyn, [Qo(2, )], a local optimum of Q. [77]. W

2.3 Simulations

As in in [74], we also consider the following nonlinear system:

w(t+1) = olz(t)| + v u+ (1 —¢?)o(t)

where ¢ = 0.9, o(t) ~ N(0,1), and v € R™ is selected randomly from [0, 1]™.We use N (0, 1)
to denote the normal distribution with zero mean and standard deviation of one.

Consider a small network of m = 4 agents. Each agent’s m; is approximated by a normal
distribution N(¢p, (z),0), where (g (7) = 6 x(z) and ¢ = 0.5. We have that x(z) € R® is
a vector of Gaussian radial basis functions(RBF) with means randomly selected from [0, 1]
and a standard deviation of 0.001. Furthermore, each agent observes a reward ri(xz,u) =
ko,i+k1,iu?+k27im2, where u; is the scalar control input of agent i. The coefficients ko ;, k1 ;, k2,
are selected randomly from the range [0, 1] for each agent.

In order to approximate the state-value function V' (z), we use a scalar basis function 7(z)

which we implement as a Gaussian radial basis function with mean selected randomly from
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Figure 2.3. Averaged Action-Value Parameters for the Critic

the interval [ — 2, 5] and standard deviation of 0.1. For the approximation of the action-value

function Q(x,u) we use the following structure:
Qui(,u) = wiju' B(z)u+u' F(2) w1, + Wy,

where w; = col{wy i, Wa.q, 14, Wy, 1} With ¢; = 5. The basis functions E(x) and F(x) are also
selected as Gaussian radial basis functions with means randomly selected from [0, 1] and

standard deviation of 0.1 for both. The plots of our simulation results, shown in figures
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(2.2,2.3,2.4), show the time evolution of the network average of the parameters of interest,
namely 0,0, 0. Where 0 = % St v, W= % ST w0 = % i, 0;.We label each x-axis as
“epochs”. We define an “epoch” as the time step t divided by the number of data samples
in memory M, where data samples are the sequences of states and control inputs that have
been observed and recorded. For our simulations we used a memory of M = 1500 data
samples.

From figures (2.2) and (2.3) we can see that the proposed updates on v; and w; both
converge for every agent in the network, and that by design the critic converges much faster

for v; then for wj.

2.4 Conclusion

In this paper we have looked at the problem of distributed multi-agent reinforcement
learning where agents only observe their own local rewards. We have presented an actor-
critic algorithm that allows agents to use information from their neighbors in order to improve
their policies so that the globally averaged reward is maximized. The algorithm has been
analyzed based on the two-timescale method used in stochastic approximation problems,

and conditions for its convergence have been provided.
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3. DISTRIBUTED OFFLINE REINFORCEMENT LEARNING

3.1 Introduction

Reinforcement learning (RL) has recently achieved success in many applications such as
autonomous driving, robotics, and so on [1], [3], [4], especially when combined with powerful
neural network function approximators. There are, however, still practical challenges when
applying reinforcement learning in the real-world. One of these challenges is that reinforce-
ment learning in the classical setting requires continual interaction with the environment
in order to learn [75]. In practice, this interaction can be costly and/or dangerous since it
might require running experiments with potentially expensive hardware or potentially using
a changing control policy, which changes as part of the learning process, and in doing so
might explore unsafe actions [80]-[82]. Offline reinforcement learning, where we learn from
large, previously collected datasets without further interaction with the environment[80],
[82]-[84], offers an alternative to classical reinforcement learning.

Off-policy reinforcement learning, such as Q-learning [7], can in principle enable an agent
to learn from large, fixed datasets, but in practice offline reinforcement learning comes with
some unique challenges not addressed by off-policy methods [80]. The main challenge is that
learning from a fixed, finite dataset can lead to overfitting to the dataset which can result
in large extrapolation errors [81], [82].

In the offline reinforcement learning literature, this overfitting issue and the resulting
extrapolation errors have been attributed to what is known as distributional shift, which is
the difference in data distributions between the data produced by the behaviour policy (the
policy used to collected the data) and the data that would have been produced by the learned
policy [80], [85]. If distributional shift is not addressed, it has been shown that reinforcement
learning algorithms can result in poorly performing policies due to the mentioned issue of
overfitting [56], [80], [85], [86]. This motivates us to explore offline reinforcement learning
algorithms, so that we could achieve good policies even with fixed, finite datasets.

Recently researchers have also explored RL algorithms for mutli-agent systems due to
their applications in formation control [87], [88], coverage [89], social networks [90] and so

on. These problems are challenging due to the lack of a centralized coordinator in multi-
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agent systems. Despite these challenges, great progress has been achieved for Multi-Agent
Reinforcement Learning (MARL) in [31], [74], [91]-[93]. In these algorithms, it is assumed
agents operate in the same environment with a shared state representing the environment,
and in a lot of these works the state transition depends on the actions of each agent.

In our work we consider a different perspective, where we consider an agent operating
in some unknown environment, where the agent has collected a large dataset by interacting
with the environment and by choosing actions according to some policy. Given this scenario,
we explore how we can utilize a multi-agent network, where agents can only communicate
with nearby neighbors, to cooperatively learn a better control policy by splitting up the large
dataset amongst the agents. The motivation is that by splitting up the dataset, agents can
more efficiently learn from a very large dataset, given that each agent has limited computa-
tional power, which is a key idea that has been explored in the distributed machine learning
literature [61], [62], [94] and more recently federated learning [95]-[97].

We note that the problem explored in this work is similar to horizontal federated rein-
forcement learning[98] but with the difference that in our case the data is produced from
a single agent and so privacy is not an issue, and unlike in [98], in this work we consider
the challenges that come with offline reinforcement learning. We also note the similarity of
our work with [81], where they also explore offline reinforcement learning in the multi-agent
setting, but in [81] they consider independent agents in the sense that agents are not part of
a communication network and so agents cannot share information. As such, in [81] they have
not explored how agents can improve their policies by sharing information. In addition, in
[81] they propose a model based approach in order for each agent to predict and coordinate
with other agents, while our focus is on a model-free approach where agents leverage com-
munication to cooperatively learn. To our knowledge, there are no works that have explored
cooperative multi-agent offline reinforcement learning where agents are part of a distributed

network and where distributional shift is taken into account.
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3.2 Problem Formulation

Consider a scenario where a control system with unknown dynamics operates in an en-
vironment. Let z; € X C R"™ denote the state of the system at time t. Let a; € A denote
the action of the system at time ¢, where A is a finite action space. For each z; and a;
at time ¢, let r(z;, a;,) denote the system’s reward received from the interaction with the
environment, where r : X x A — R, and correspondingly the state changes to be x;,;. Call
{4, ap, w1, 7(x,a4) } & data point at time ¢, which describes the interaction between the
system and its operational environment at time ¢.

Suppose the action a; follows a control policy m: A x X — [0, 1], i.e. a; ~ =(-|x;), where
~ means “sampled from a distribution”. Let ©* denote the optimal policy which maximizes

long term rewards, i.e.

" = argmax E [Z VTT(ZBT,&T)] , Ay ~ T (|2,
7'5, =0

with v € (0,1) is a discount factor. Obviously, learning an optimal policy ©* is critical to
enable a control system operate in an optimal way in its operational environment. One way

to achieve this is by

1, if a = arg max Qp (x4, u)
T (alzy) = u (3.1)
0, otherwise.

where Q-+ is called an optimal value function

QTC* (xt7 at) = E lZVTr(xTa aT)
7=0

To = Tt, a0 = at‘| )

with a, ~ m*(-|z,). We note that since A is a finite set, then arg max Qg (¢, u) from (3.1)
requires only | A| calls to Qn+. As adopted by the area of reinforcement learning[99], we also

assume that Q- follows a linear combination of known features, i.e.
Q- (4, a1) = ¢(4, Gt)Te*y (3.2)

41



where 0* € R" is a vector of parameters to be determined and ¢(x;,a;) € R is a pre-
known vector of linearly independent basis functions. Thus learning an optimal policy can
be achieved by estimation of 6*.

Different from online reinforcement learning, by which we “try-and-correct” estimates of
0* from the real-time interactions between the system and environment, offline reinforcement
learning aims to estimate 6* based on a fixed set D(T') consisting of data points for ¢ =
0,1,2,....,T. Here, T is a finite positive integer which is usually very large. Other than
process the large dataset D(T) in a single processor, we in this paper are interested in
developing a distributed algorithm for offline reinforcement learning in multi-agent systems.

We partition D(T') into a number of m subsets, i.e.
D(T) =D, UD,U---UD,,

where

D; = {iCi,t, Qi t, xi,t+17r(xi,t7 ai,t) t e T},

and 7; C {0,1,2,...,T} is the set of time indices associated with D;. Suppose we are given
a network of m agents where each agent i knows D;, controls a vector ¢;; as an estimate
to #* at iteration k and is able to receive information from its nearby neighbors Nj. The
problem of interest is to develop a rule for each agent i to update 6;; only based on

information from its nearby neighbors j € N such that
Jim 3 61— 0|7 < (7). (33)

Remark 3.2.1. As pointed out in [82], the main challenge in offline reinforcement learning
(RL) results from the distributional shift , which is the difference between the actual dataset
and the data set that would have been observed if the system had followed the optimal policy.
More formally, let dy(x) denote a probability density function over x € X which describes
the probability of a state given an agent takes actions according to a policy w. As such, if
T (a|z) # n*(a|x) for some x € X and a € A, then dy(x) — dp-(x) # 0, where the difference
|dw (z) — dn= ()| describes the distributional shift induced by a policy ™. This difference in
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distributions can result in a tendency to overestimate the predicted reward of (state, action)
pairs that are not in the dataset. This overestimation is caused by the agent never observing
a low or negative reward for these (state, action) pairs since they are not in the dataset.
When this overestimation occurs the resulting policy performs poorly when it encounters these
(state, action) pairs during test time [80], [82]. Thus in offline reinforcement learning one
needs to come up a way to account for distributional shift in order to achieve policies that

perform well in (state, action) pairs that are not in the datasets.

3.3 Key Idea

To achieve a nice estimate to #* in the literature of reinforcement learning (RL) [75], one

usually considers the following temporal difference error

01(0) = Qo(wy, ar) — (x4, ar) — max Qo(141,0")

since E[50;(6%)?] = 0. By noting that the term max Qp(z:41,a’) is not differentiable with re-
spect to 6, researchers usually employs ;,(6) instead as in [36], by replacing max Qp(T¢41,a’))

with max Qg, , (v¢11,a’)) in 6,(¢), where
014(0) = Qo(ws, ar) — (e, ay) — Ymax Qo,, (T41,0). (3.4)

In order to account for distributional shift in offline RL, one introduces the following term
as in [82]

BE[log( D exp(Qo (w1, a))) — Qolxr, ar)], (3:5)

acA
with 5 > 0. This term penalizes overvaluing (state, action) pairs that are not in the training

dataset, in the sense that it penalizes an estimate 6 that results in

Eflog(_ exp(Qo(x1, a)))] > E[Qo(xt, ar)].

acA
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As such, this term attempts to prevent learning a policy that is biased towards actions that
are not in the dataset [82], since we do not know if these actions actually lead to higher
rewards.

In the literature of multi-agent reinforcement learning (MARL) [100], for a given estimate

0; 1, one also use the following term
o
7’“(9 —0:) "E[A] (6 — 0.1, (3.6)

with A; = ¢(z¢, a;)o(zy,a;) T € RY** and tunable parameter a;, > 0 to penalize large changes
in the estimate of #*. Thus in order for each agent i to achieve a nice estimate to 6* given
6; 1, one needs to minimize the following L(#), which is a sum of terms in (3.4),(3.5) and

(3.6):

Li(6) = E[;&,t(eﬁ + 250 - ) TE[A)(0 — 61)
+ BE[log( Y exp(Qo(x¢, a))) — Qo(xy, ar)]. (3.7)

acA

This minimization is achieved by setting the gradient equal to zero, which leads to the

following system of equations:
(ag + 1E[A]0 =E[b:(6;1)] + BE[c(0)] + arE[A+]6ik, (3.8)

where

bu(B) = O(s, @) (r(ws, @) = 10(wi41,a) T0i),
a = argmax ¢(x, 1, a/)TQi,k,

Daea exp(Qo(7, a))P(x, a)

a(f) = Yaeaexp(Qo(y, a))

- (b(xt? at)-
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In order to achieve further simplification, we use the current estimate 6; ;, to replace 6 in

the nonlinear term (), i,.e. replace ¢;(6) by ¢;(6ix) in (3.8), which leads to

A

(o + DE[A]O = E[b:(6:1)] + arE[A]0: 1, (3.9)

where

bi(0i) = bi(Oik) + Ber(bi)-

The above system of equations is linear with respect to é, and so we could solve for 0 if we
could compute the expectations of A, and b, which are however not directly available to

each agent i. We thus need to introduce approximations of A; and b, based on only D;. For

any dataset D C D; with d = |D| and its corresponding time index set T C T;, we let
1 _
=5 A, (D, 05) = bi(D, 0ix) + Bei(D, 6:1) (3.10)
d T
b D‘glk Zblt 1k C1D01k cht 1k7 (311>

tET tET

where

Ai,t = ¢($i,t7 ai,t)¢(xi,ta @i,t)T

bl (‘9116) - blt( ) ﬂclt( ) (312)
bit(0ir) = O(wig, aie)(r(Tis, air) — YO(Tiry1, U)Tei,k) (3.13)
U = argimax ¢<5Ui,t+1> GI)TQi,k

2 acA eXP(Qe (xi,t; a))¢(xi,t7 a)
Yaca exp(Qo(ziy, a))

Ci,t(9> = — ¢($i7t, ai,t). (314)

Then the linear equations in (3.9) with E[A,] ~ A;(D) and E[b,(6;1)] ~ bi(D,6;1) can be
approximated by:

~ —

(a + 1)A;(D)0 = bs(D, 0;) + arAi(D)b; 1. (3.15)
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For the dataset D C D;, we let 5 € R¥*d he the constant matrix with columns equal to
O(Tit, aiz),t € 7. Recall that ¢ € R is a set of linearly independent basis functions. Thus
@ is full rank if d > w. It follows that A;(D) = PP is non-singular.

To sum up, for any dataset D C D; with d = ‘ZA?) > w and its corresponding time index
set 7 C T, one has

(6773 1 AV_1T A
91 Ai D bi D, 91 y 3.16
St o AD) H(D.6) (3.16)

with A;(D) and b;(D, 6;) as defined in (3.10).

é\:

3.4 Algorithm and Main Result

In this section we present a distributed algorithm to estimate 8* based on (3.16) and the
idea of convex combination.

In order to more efficiently utilize each agent i’s data D;, we create a batch of subsets of D;
denoted as D1, D2, ..., D ny(r) such that the union of these subsets is D;. Correspondingly

for each D, ,, one defines

i,qy

Ai(Di,q)a bi(Di,qa‘gi,k)7 q=1,2, ---,Ni(T)

which can be computed as in (3.10) before embarking iterations. At the kth iteration, each

agent i first computes

A ak

1 —
91 = 91 7/11 Di _1bi Di ,91 5 317
LRl LU (Dig(ky)™ 0i(Digry, Oi) (3.17)

Oék—{—l

with ¢(k) = £ mod N;(T) is the remainder of k& when divided by N;(7T), then each agent i

receives éj,k from all its neighbors j € A, and performs the following iterative update

Oiks1 = > wijéj,k- (3.18)
JeEM:
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Here wj; denotes non-negative weights such that wy; > 0 if and only if j € A, and
m m
Z’U)ijzl, Zwijzl.
j=1 i=1

In the following we present our main result that each 6;; converges close to the optimal
parameter 6* by deriving an asymptotic upper bound on the sum of norm squared errors for

each agent. Before proceeding on, we introduce four assumptions:

Assumption 3.4.1. We assume

[p(z,a)l] <1

forall x € X,a € A.

Since X is a compact set and A is a finite set, there is a scalar ¢, such that ¢pac >

|¢(z, a)|| and so we can always normalize ¢(z,a) by 2=

¢max

Assumption 3.4.2. Let W be a matriz such that w;; is the ij entry of W and let Ay be the
smallest eigenvalue of W. Let Ay, = diag{(A1(D1g)), -, (Am(Dimgy)} and let Ny denote

the smallest eigenvalue of Ay, for all k. We assume that

A s A2,

Note that since v € (0,1) is a design parameter, we can choose a 7 such that the needed

condition holds.

Assumption 3.4.3. We assume there exists a non-negative scalar p such that
sup|n*(alz) — w(alz)| < p
acA

for all x € X and we assume there exists a positive scalar ry,q, such that |r(z,a)| < rmpee for

allv € X, a € A.
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Assumption 3.4.4. We assume w(a|lz) > 0 for all x € X,a € A and d(x) > 0, for all
x € X, where we recall dg(x) is a probability density over all states given a policy ®. This
assumption is satisfied by choosing a policy ™ such that an agent following T can explore the

entire state space X given enough time.

Theorem 3.4.5. Given assumptions (3.4.1-3.4.3), and each agent follows the updates given
by (8.17) and (3.18) with oy, = k and B = 2= We have that for all i, 0 converges to a

I—y
neighborhood of 0* in the sense that:
. - P12
Jim 36— 0| < (7). (3.19)
where
Ih(T)"' F(T) — 67|
oT)=c+ N a2 , (3.20)
y Bm)‘z 2r'12naz ~>(< *
thhC:()‘%_)ﬁW) 0 :1m®9 ,
_ 1 N 1 N£> 3
hT) = < Ar, J(T) = = b-(0%)
N(T) 7=0 N(T) 7=0

Here by(6%) = col{b1(D1g(hy, ), - -+ s b (Dogr), )}, N(T) denotes the number of distinct
joint batches processed by the proposed algorithm, Z(k) = {D1 qk),-- - Dmq)} denotes the
joint batch at iteration k, and A;, = diag{ A1 (D1 gk), - - - » Am (D)} Moreover,

lim ¢(T') = c. (3.21)

T—o00

Remark 3.4.6. From (5.21) and (3.20) we can conclude that as the size of the dataset

approaches infinity (i.e. T — 00), the asymptotic error upper bound c(T) decreases from

c+ [R(T) =2 F(T)—6*|2 |R(T) =1 F(T)— ||
AG—ATY? X222

towards ¢, where the positive term goes to zero.
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3.5 Proof of Main Result

In this section we prove the convergence of our algorithm to a neighborhood of the the
optimal solution #*. The main idea of our proof is to use the ODE approximation method
[100], [101], where we will show that the error dynamics for the proposed algorithm follows
an ODE that is globally asymptotically stable. First we present and prove some lemmas

that are used in our proof.

Lemma 3.5.1. Let Z = {Z(k) : k = 1 : N} denote the set of all distinct joint batches.
Now let g be a continuous function g : Z2 — RPVP2_ for any py > 0,ps > 0, and let
g(T) = ﬁ Zi(? g(Z(7)). For any such g, we have the following equation:

N

lim — 3" g(Z(k)) = §(T).

Proof: We recall that the number of distinct joint batches from each D; is N(T), and so all
these joint batches are processed every N(T) iterations since at each iteration the network
of agents jointly processes one joint batch. As such we have that Z(k) = =Z(k + N). Let

|| denote the “floor” operator which rounds down x to the nearest integer, we have the

following:
o1&
A g::og(:(/f))
| LN/N(T)) S () Y
= Jim E_% E_:l IEM +5 X 9ED)
v= T= T=|N/N(T)]+1
G )
= lim = UEZ% 9(T) +0=g(T),
where in the last step we make use of the fact that Zf’VZLN/N(T)J+1 g(Z(7)) is the product of

a finite sum and %, which goes to zero as N — oo. This concludes our proof.
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Lemma 3.5.2. For some function V : Z — [1,00) and s : Z — [0, 1] and constants 6 > 0,

b < oo:

lim ]17 g:V(E(k +1)) < (1—=90)V(z) +bs(z),¥ z € Z.

N—o0 =0

Proof: Since each dataset D; is finite and therefore Z is finite, we can compute Vi, =

max V(z) and Vi = min V(2). Now let § = ﬁ, b=V2_, and s(z) = W, we
then have the following:
(1—-0)V(2) + bs(z)
1 Vinaz — Vinin + 1
—(1— 2 mazx min '
(1= V() + V(e 2t
Since by definition Viyey > Viin, we can lower bound the above with (1— Viaz)V(z)—l—Vﬁm(Vim),
which then gives us:
1
(1—V W(2) + Ve < (1 = 0)V(2) + bs(z).
We note that by definition V(z) > 1 which implies Ve > 1. It then follows that (1 —
7o)V(2) 20, and so we have Vige < (1 = 57—=)V(2) + Vipas.  This gives us:
Vinae < (1 = 0)V(2) + bs(2). (3.22)

LetV = ﬁ fo:@ V(2(7)) , from lemma 3.5.1 we have that limy_,oc & Yhio V(E(k+1)) =

V. We then have that by definition V < Vi, and so by using (3.22) we arrive at:
1 N
lim N S VEM(+1L) < Vi < (1= 6)V(2) + bs(2).

N—oo =0

This concludes our proof.
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Proof of Theorem 1

We first look at each agents individual error e;; = 6; — 6*. We subtract 6* from both
sides of (3.18) and unpack using (3.17) in order to get the following equation for the evolution

of €i k-

(677 " 1 1T
et = 3 wi( =0k = 0"+ —— Ai(Dygt) b (Dygiry, b))
JEN; k k
1 s
=Y wijleje — —— 0k — A{(Djq0) " bi(Diqeiy: bik)- (3.23)
JEN; ap +1

Now by subtracting the right side of (3.23) by ﬁ(@* — 6%), we arrive at the following:

]. —17 *
eiht1 = Y wilejr— (&5 — (Aj(Djq)) " b5(Dyqiy: b)) — 7))

Now that we have an equation for the error dynamics of each agent, we can represent the error
dynamics in compact form by column stacking all of the above equations for i = 1,... ,m.

Let

& = col{er k.. emut, 0, = col{b1k, ..., Omr}
Ak = diag{(A1 (Dl,q(k))7 Sy (Am(Dm,q(k))}

bi(0x) = col{b, (D1,g)s 01k)5 - - b (D) s Omoe) 1

0* = 1,, ® 0%, and let W be a matrix such that wy is the ij entry of W. Let W = (W @ I,,),

the following then expresses the error dynamics for the whole network:

B = Wéy, — W (& — (A7 b (0;) — 6%)).

o+ 1
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In order to clean up the analysis, we now denote §(k) = A 1b,(0;) — 6*), which allows

us to rewrite the above as:

(Wer — Wq(k)).

i1 =WEy, — o

We now square both sides of the above equation, which gives us:

SIWer — Wa(k)||?

- 2 = = s
~ 2 _ ~ |12 = & )T e — g(k VINEEEEY)
sl =NWeell® — = (Weo)T (Wee — Wk)) + =3

1
Oék+1

<||Weg|* (IWeel® = [Wa(k)]?).

Let A\ denote some eigenvalue of W, we recall that W is a doubly stochastic matrix and so
we have that 0 < |A| < 1 and that A must be real. Let Ay denote the smallest eigenvalue of
W in absolute value, since W = W & I,, and therefore has the same eigenvalues as W, we

can upper bound ||éx1]||* with the following:

1
Oék+1

841 l* < flexl® — ASleell® = llg(k)I1%). (3.24)

We now look at the term [|g(k)|*.

1G(R)I1? = 1A} 0i(0r) — 6|
= | A bk (0k) — A bk (07) + Ak (67) — 0717
< AL (0k(Or) = b (7)) |> + || A 10w (67) — 67|
Recall that A;(D; 4x)) is non singular for alli =1,...,m, and so there is a A; > 0 such that

A2 < || Ax||?, and so we can simplify the above as:

(k) I1* < AENBr(Or) — b (617 + | Ay 0w (67) — 67
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We now focus on by(f),) — b(6*) from the above inequality. From assumption (3.4.1) we
have [|¢(z,a)|| < 1, and so using equations (3.12)-(3.14), it can be shown that the above

inequality is upper bounded by the following:
1G> < X392 016 — 6°17 + AT8%m + || Ay 1o (67) 677

We now look at the || Ay *bx(6*)—6*||? term in the above inequality. Using (3.10)-(3.14) and

assumption (3.4.1), we can further simplify the above inequality as:

IG(R)IP < NEA216 — 671° + 20352 m+[| A D (67) — 67| (3.25)

where by, (6%) = col{b1(Dy 41, 0), - - b (Dngiiy, 0%) }-
By combining inequality (3.25) with (3.24) we get the following inequality:

1
Oék+1

—2028%m, — || A; by (07) — 67|?) (3.26)

&k ll* < flExll* - ((A§ = Aty llex

We recall =(k) = {D14k),---» Dmq) }, which denotes the data processed by all agents at
iteration k. We note that Ay, is fully determined by the data in Z(k), and so we can define
a function h such that h(Z(k)) = A,. Similarly, we can define a function f such that
F(Z(k)) = br(0%). These pairs of functions (h and f) allows us to then simplify (3.26) as:

1 )
P (A5 = Aty llex

—2N28%m — |(E(k) " F(E(R) — 6°]7)

[&kall* < NlEll* -

We now focus on finding the following limits in order to proceed with using the ODE ap-

proximation method: limy_oo + Y plo f(E(K)), imy_e0 % Sng R(E(K)).

23



Let f(T) = % PR f(E(7)), from lemma 3.5.1 it then follows that

N—>ooN

lm ~ S (E() = J(1)

Let h(T) = ﬁ fo:@ h(Z(7)), from lemma 3.5.1 we also have that

N—oo

R ;
lim N};}h(:(k})) = h(T).

Given oy = k, from the result that the following limit limn_ . % SN o F(E(K)) equals a
constant f(7T) and limy_,o + 7o h(Z(k)) equals a constant h(T') , and using the result of
lemma 3.5.2, it follows from Theorem 3.1 in [101] that the upper bound of ||é;]|? converges

to the invariant set of the following:

de
T (8= NP)e + (4 — Xy?)e(T),
where ¢(T) = o (2X23%m + ||R(T)~ ' f(T) — 6*||?). By noting that ¢(T) is a constant

(AZ-A1?)

and that from assumption (3.4.2) we have AJ > M9?% it can readily be seen that % =
—(A2 = A2y?)e + ¢(T) is globally asymptotically stable around ¢(T), and so we can conclude
that as k — oo, ||&|* < ¢(T). We note that ||&> = X%, leixl|* = S |16k — 6%]]*, and

so it follows that as k& — oo :

> 15 — |1 < ().

i=1

From the above inequality we can conclude that each 6; ; converges to a neighborhood of 6*.
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Furthermore, we note that as T — oo it follows that N (T') — o0, and so given assumption

3.4.4 and recalling that X is a compact set, it then follows that in the limit we have the

following:
~ 1 N _
lim A(T) = lim — A, =E[Af]
T—oc0 T—oo N T) -
o ‘ 1 N@ R
Tlglgo F(T) = Tlglgoﬁ 2 b (67) = E[b(67)]

We recall A, = diag{A1(D14x)), - - - Am(Dmg)) }, and therefore:

E[A] = diag{E[A1(Dryw)], - - - E[Am(Drnga)]}
= I, ® E[A}], (3.27)

where the last step is a consequence of the agents sampling data from the same distribution,

and so the expectation for each agent is identical. Similarly, we have
E[bx(6°)) = 1, ® (E[be(67)]). (3.28)

Let Ay = I, ® A; and let by(0*) = 1,, ® b,(6*). Using equations (3.27) and (3.28) , we
have the following limit for ¢(7'):

. 2X13°m + | E[A4]'E[by(67)] — 0|
fm oT) = N — Xy '

We recall [£6,(6%)?] = 0, and so it then follows that E[¢(z,a;)d;(6*)] = 0 which can be

rewritten as E[A;0* — b,(6*)] = 0 and so it follows that 6* = E[A]'E[b(0*)]. Let ¢ =
mA2p3r2,, . * - * i Tmax

Mﬁ, using 0* = E[A;]'E[b;(0*)] and recalling that 3 = % we then have the

following;:

lim ¢(T)=c

T—o0

This concludes our proof.
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3.6 Simulation Results

D@ 6 @ G

)

Figure 3.1. Network

In this section we present some simulation results of applying the proposed algorithm.
First, we apply the algorithm on a linear time-invariant (LTT) system and show that the
algorithm can converge close to the well known LQR solution. Then we apply the algorithm
on the cartpole problem, which has been widely used as a benchmark for reinforcement
learning algorithms and which has nonlinear state dynamics and a nonlinear reward function.
For both cases, we simulate a network of agents that is described by the undirected graph

in Fig. 3.1. We used lazy Metropolis weights for w;; such that:

1 or - . .
max{did;} ifjeMN,j#i
Wij = 41 = Y pen ki Wik, if1=]

0, if j € M,

where d; = | V| is the degree of agent i.

3.6.1 Linear System

We first test the proposed algorithm on an LTI system. Though the state dynamics are
simple, by applying the algorithm on a linear system we can compare the final policy to the
LQR solution, which is known to be optimal but requires knowledge of the state dynamics

to compute.
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We simulated an agent controlling an unstable, controllable LTI system. We used the

following equation to simulate the dynamics of the system:

Ty = Axy + Bay,

where:

1 1 35 1
001 0 1 1

A= , B=||,
00 25 1
1 0 0 1 0]

where a; is the control action at time ¢. The rewards for this scenario are computed
using the following equation: R(x;,a;) = —x) Qx; — Ra?, where Q = I, R = 1. By using
a; = —Kxy +ng, ny € U(0,0.7) as the control policy for the agent, we created a dataset D,
where K was designed to be an unstable state feedback control gain using pole placement.
The dataset D was then partitioned as D = {Dy, ..., D7} and distributed amongst a network
of 7 agents. The network of agents can be represented by the undirected graph illustrated
in Fig. 3.1.

In addition, because of the linearity of the dynamics we can derive a set of basis functions
to represent the state-action value function. This set is the set of all quadratic terms using

state and action variables, or more precisely:
2 2 2
é(x,a) = col{a®, axy, axs, ..., x5, 3Ty, T},

where col{} denotes column-wise stacking.
As such, we apply the proposed algorithm to learn the optimal policy for this LTI using

a network of 7 agents.
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The results of applying the proposed algorithm is a final estimate of 6* for each agent.
Using these estimates of 8, we can use the following equation to compute a set of gains for

a state feedback controller:

1
Ky = 2701[92793,94,95]-

The resulting state feedback controller is an approximation of the optimal policy for the
LTI. Using the average of each nodes final 6; ;,, which we denote 6, we arrive at the following

gains:
K; = [1.1606, 0.4416, 2.0789, 5.0336].

In comparison, by using knowledge of the A and B matrices we can compute the optimal

gains using the LQR solution:
Kiqr = [1.2336,0.4744, 2.1480, 5.1455].

As we can see, the gains returned by the proposed algorithm are close to the optimal gains,
which shows us that the proposed algorithm is capable of finding the optimal policy using

suboptimal, offline data.

3.6.2 Nonlinear System

t

Figure 3.2. Cartpole System
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We now apply the proposed algorithm in the scenario where an agent controls a nonlinear
system, namely the cartpole system. The cartpole problem consist of a pole on top of cart
where the objective is to balance the pole by applying a force on the cart. The state consists
of the the position of the cart x;, the speed of the cart &;, the angle of the pole from vertical
0;, and the rate of change of the angle 0,. There are two possible actions, which are to apply
a force F; = {10 N, —10 N} . Each attempt at balancing the pole is referred to as an episode,
where an episode terminates if the pole is more than 12 degrees from vertical or if the cart
moves more than 2.4 m from the center. For each time step the episode does not terminate
the controlling agent is given a reward of +1, and when the episode terminates it is given a
reward of —5.

In order to collect data, we trained a policy using the well known DQN algorithm [3] and
stopped training before the policy could converge on an optimal solution. Using the policy
from DQN, we then simulated various episodes using the same suboptimal policy but with
different initial conditions and recorded the necessary data.

For this system, we approximate the state-action value function using radial basis func-

llz—c|?

tions where a radial basis function has the following form: e+ . The parameters ¢ and r

denote the center and radius of the radial basis function, respectively. We used two sets of
250 centers (one for each discrete action). The value for these centers were computed using
K-Means clustering on simulated data. This data was generated by using an exploration
policy, which with probability e returned the output of a suboptimal policy(trained using
DQN algorithm) and with probability 1 — € returned a random action. In addition, for each
center we used two different sets of radii, and so in total 2 sets (one for each action) of 500
radial basis functions were used to implement ¢.

In Fig. 3.3 we see a comparison of the proposed distributed algorithm, which uses a
network of agents to cooperatively learn better policies, and compare it to the scenario where
a similar algorithm is used but agents do not share any information and so are regarded
as independent. In terms of implementation, the differences between the two compared
algorithms is that for the independent agents case wy; = 1 if and only if i = j, otherwise

wi; = 0, thereby enforcing the absence of communication amongst agents.
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Figure 3.3. Comparing proposed distributed algorithm, which uses network
of agents, with the same algorithm using where agents learn independently
without sharing any information. Average of Discounted Rewards is calculated
over 100 episodes. Each episode has random initial conditions.

More specifically, in Fig. 3.3, we show the average of discounted rewards >~ | v'r (2, a;)
with v = 0.99999 achieved by each agent’s learned policy over 100 episodes where N denotes
the duration of an episode, and where each episode has random initial conditions. In order
to account for random initial conditions, we fix the random seed when evaluating all learned
policies. As was expected, the plot shows us that for the same number of iterations, using
the network of agents allow us to reach a higher average reward when compared to using
independent agents that do not share any information. This demonstrates that by sharing
estimates the network of agents can learn better policies than agents that learn independently.
This difference could potentially be larger for cases where the network is larger and/or
the system has a larger state dimension, since this would amplify the advantage of the
network over a single independent agent. Moreover, this simulation result shows the benefit
of extending offline reinforcement learning to a distributed scheme, as we have done in this

work.

3.7 Conclusion

In this paper we have developed a distributed offline reinforcement learning algorithm for

a multi-agent system, where agents can communicate over a distributed network. The dis-
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tributed offline algorithm combines Q-learning and offline regularization with weighted local
averaging so that agents make use of their neighbor’s estimates to improve their own. In this
way the network of agents can collaborate to improve their estimates while each agent only
needs to process a fraction of the total dataset. We have proven that the proposed algorithm
converges in the sense that the norm squared error summed over all agents is upper bounded
by a constant ¢(7"). From our analysis, we have also shown that ¢(7") decreases towards a
constant ¢ as T' goes to infinity. We have supported this theoretical result with simulations
that demonstrate that the proposed algorithm can be used to learn control policies for a
linear system and a nonlinear system, namely the cartpole system. Some potential future
directions would be to consider the case where the dataset D(T') contains data from different
agents, where these agents observed rewards from different reward functions. Similarly, we
could explore the case where the dataset was collected by different agents using different

policies.
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4. DISTRIBUTED REINFORCEMENT LEARNING WITH
CROSS MODAL OBSERVATIONS

4.1 Introduction

Recently, multi-agent reinforcement learning (MARL) has gained a lot of popularity
with applications into mobile sensor networks, robotics, UAV swarms, and so on .The main
challenges in MARL arise from the constraint that agents can sometimes only coordinate
with nearby agents and that sometimes agents have different goals and so might observe
different rewards. This gives rise to problems such as credit assignment [102], [103] and
coordinating actions [28], and partial observability of the state [104], [105]. This has led to
the development of distributed algorithms for MARL, in which there is no central node or
coordinator and only communication between nearby neighbors is available. Early results
in the direction of distributed MARL have usually assumed discrete states and actions to
allow them to implement a tabular form of reinforcement learning [30], [33], which are not
applicable to situations requiring continuous states and actions. Further progress has been
achieved in [32], [39]-[41] for reinforcment learning with continuous states. We note that
these works are specifically concerned with the policy evaluation problem of reinforcement
learning, where the goal is to learn a metric (known as the value function) that will allows us
to compute the long-term expected reward of using a given control policy [75]. We similarly
focus on the so called policy evaluation in this work. Policy evaluation is an important
step in reinforcement learning since it can be combined with actor-critic methods to develop
optimal policies [106], [107].

In our work we consider a network of multi-agent systems that share the same environ-
ment but have different and potentially conflicting goals. For example, consider a network
of robotic teams where each team has a separate task, and where the performance of each
task is affected by the actions of other teams as well. We, in addition, consider the case
where each team member can observe a value or metric indicating the team performance but
cannot observe its own individual contribution to the team performance. This constraint
has been explored in the literature as the credit assignment problem [102], [108]-[110] and

is still an open problem. Though the actions of each team could conflict, it is also the case
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that each team could achieve a better team performance by cooperating with other teams
and so the teams are incentivized to cooperate instead of competing [14], [46]. However,
though the teams are cooperative they do not fully trust each other, and so would not want
to share information about their performance metric with other teams since this information
could be used against them if a team decides to dissent. This motivates the notion of privacy
where sensitive information such as performance values cannot be shared with other teams.
This notion of privacy has been explored in [32], [111]-[113].

In this work we are also interested in exploring scenarios with cross-modal observations.
Cross-modality has recently gained attention in the machine learning literature in the context
of transfer learning, where the goal is to use different types of data to learn the same model
[114]. In this setting, the literature mainly focuses on how to transform different data types
to a common latent space [114]-[116], usually this involves learning functions (different one
for each data type) that maps data to a latent vector. In this work we focus on a different
aspect of cross-modality where the the transformation to a latent space is known but each
agent cannot compute a full latent vector. Moreover, we consider the problem of how to use
observations from different sensors where each individual sensor by itself can not fully capture
the state of the environment, but the combination of the observations from all sensors can
fully observe the state.

This scenerio where the full state of the environment is not observed by any agent has
been explored in the reinforcement learning field as a partially observable markov decision
process(POMDP) problem [117]. As was previously mentioned, this notion of partial observ-
ability has also been studied in the context of MARL, where the state of the environment is
said to be partially observed because agents do not know the actions of other agents[118],
[119]. In these works, each agent is assumed to only know an observation of the environment
instead of the full state [104], [120], and usually based on these observations an estimate
of the state is used to carry out the learning process [121]-[123]. Though we also assume
each agent recieves an observation and not the full state vector, we differ from traditional
POMDP settings in that we further consider that each agent’s observation cannot by itself
be used to calculate a full estimate of the state. As such we explore a different approach

that does not rely on state estimation at the agent level.
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The problem that we explore in this work can be decomposed into two levels or two layers.
At the high level is the network of multi-agents systems. In this level the problem is driven
by the private rewards observed by each multi-agent system and the goal of cooperation to
learn the value function for the whole network. At the lower level is a particular multi-agent
system. In this level the problem is driven by cross-modal observations where each agent has
different, incomplete observation of the environment’s state and so must cooperate in order
to form a complete observation of the state. We not only need to consider the challenges at
each level but the challenges arising from the interaction between the two layers. As such,
the approach proposed in this work addresses the challenges in both levels and in how the

two interact.

4.2 Problem Formulation

Consider a network of ¢ multi-agent systems controlling a plant with unknown dynamics.
We will refer to each multi-agent system as a team. Each team j will consists of an aggregator
j and m; agents, where 32", m; is the total number of agents. The aggregator is a node
that can communicate with every agent in a team as well as certain other aggregators of
other teams. We have that aggregators can communicate if and only if they are aggregator
neighbors, where aggregator j’s aggregator neighbor is denoted Aj. The aggregator neighbor
relations can be modeled by an undirected graph G such that there is an edge between team
j and j if and only if j and j are aggregator neighbors. The aggregator is specialized for
communication and not computation, therefore we assume it cannot do any computation.
We will label each agent with two indices where the second index indicates team membership,
such that ij is the i'th agent of the j’th team. Within each team, agents in the network can
communicate if and only if they are agent neighbors, where we denote the set of agent ij’s
agent neighbors as Nj;. The agent neighbor relations for each team j can be modeled by an
undirected graph G; such that there is an edge between ij and ij if and only if ij and ij are
neighbors.

Let z; € X denote the state of the environment at time ¢, where X C R™. Let a;;(t) € A;;

denote the control action of agent ij at time ¢, where A; C RP3. Now let a;(¢) denote the
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Aggregator 1

Figure 4.1. Example of network of multi-agent systems

joint control action of team j such that a;(t) = col{ay;(t), ..., am;(t)}, and let a(t) denote the
joint control action of the entire network such that a; = col{a;(?),..,a,(t)}. At every time
step t, the network interacts with the environment through the joint control action a;. As
a result, each agent ij receives a team reward 7j(z:, a;) which is distinct from the reward of
other teams. An example of this interaction is shown in Fig. 4.2, where the details of the

Network of Multi-Agent Systems can be seen in Fig. 4.3.

1 ($t> Clt), 7‘2(3315, at), 3 ($t7 Clt), Tt+4+1
ay

Figure 4.2. Network of Multi-Agent Systems interaction with plant

In this work we consider the case where each agent ij observes a vector y;;(t) € )}; where
Yy € R™i, and y;;(t) = hyj(x,) for some nonlinear function of the state hy : X — ). We
note that the observations for each agent may be different which takes into account cross-
modal observations, where each agent could use different sensors to observe the state of the

environment.
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Figure 4.3. Low level picture of Network of Multi-Agent Systems

In addition, we have that the team reward can not be shared with team members in
other teams. This constraint is motivated by team privacy concerns, where knowledge of
team j’s reward could potentially be used by other teams to gain an advantage over team j.
We now describe how each agent ij computes its action a;;(t) at time ¢. We have that each
agent ij follows a control policy m;(+|-), where m; is a probability density over Aj; x )} such
that a;;(t) ~ m;(-|y;). Recall y;;(t) = hyj(x¢), let m(+|-) be global policy such that m(a;|z;) =

T 7 (as(2) | s (24) ), which describes how the entire network of teams computes a joint
action, or more formally we have that a; ~ m(a|z;). We note no team or agent knows 7 since
it describes global behavior resulting from each team following their own policy.

Let R(x,a:) be the average of team rewards , which we define as:

—_

q
R(x,a¢) = *ZTJ Ty, ay).
=1

=

Now let V; denote a metric for evaluating the policy &, which is referred to in the literature

[75] as the state-value function. Vg, which is defined as:

27 (X7, ar)|zo =2¢|, 7€ (0,1)

where 7 is a discount factor. In this work we are interested in the policy evaluation

problem of reinforcement learning, which entails learning the value function V3. This is an

66



important problem in reinforcement learning because V; can be used to improve the control
policy © using actor-critic methods.
We consider the case where V} is equal to a linear combination of basis functions, or more

formally suppose there exists a function ¢ : X — R" such that we have the following:

We have that 0 is unknown to all agents, and each agent ij knows ¢ but without knowledge
of x; can only compute certain entries of ¢(z;). Let Wy C {1,...,w}, more formally we
have that each agent ij can compute the v‘th entry of ¢(z;) if and only if v € W;. Fur-
thermore, suppose each team j can compute ¢(z;) such that [Wy| > 1, U™, Wy| = w, and
‘UEI=1 ﬂ?ljl Wij

Let each agent ij control 6;(k) € R™, and let 6;(k) = mijz?jl ;;(k). The goal of

= w. As such, each team needs to learn 6 in order to compute Vy(z;)Vx, € X.

*

the network is for each 6;(k) to converge to a constant vector 5 as k — oo such that

| 2%, 6;(k) — 0]|*> — € which would allow the network to jointly approximate V;.

4.3 Preliminaries

In [124] it is shown that the solution to the fully observable problem of policy evaluation

(0) is the solution to the following linear equation:
E{At]e - E[Bt],

where 4; = ¢(z:)(d(2:) — Y9(2441))" € R and b = L7 by = () R(we, ;). With
enough samples, i.e. T is very large, the expectations can be approximated using the empir-

ical mean as in [32], giving us:

— T —_
]E[At] ~ 72At’ ]E[bt] ~ th,
T
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and so the linear equations can be approximated by:
A=, (4.1)

where A = %Zthl A; and b = %Zle b;. Since each agent ij cannot observe x, but instead
observes y;;(t) and only has access to it’s team reward r;, then each agent can only construct
part of A and b. These limitations motivate a distributed approach to solving the system

of linear equations in (4.1).

4.4 Approach

Let A,. denote the entry at row r and column ¢ of A, let ¢,; denote the r’th entry of
é(xy), and let b,y = T%}Z;‘F:l Grery (4, 0). We note that b, = 3, b,y where b, denotes
the entry at row r of b. We also note that the values ¢,;,¢.+, and r; are needed in order
to compute A,. and b,;. As such, in order for the network to cooperatively solve (4.1) we
require each team j to be assigned a set of column indices Cj, such that for every ij in team
j and every ¢ € C; we have ¢ € W;, and such that every column index is assigned to one
team. Furthermore, we require each agent ij is assigned a set of row indices R;; such that

Ri; € Wy, |U Ryj| = w, and ‘ﬂi@l Ri| = 0. We will now describe how all columns and

rows will be assigned.

We first describe how each team is assigned columns of A to meet this condition. Let
H; = N, Wy denote the set of indices indicating which entries of ¢(z;) are computable by
all agents in team j. Based on each team’s H;, all teams must come to an arrangement where
each team j is assigned at least one column c such that ¢ € H; and such that each column
is assigned to one team. For the case ¢ = w, this assignment process can be formulated
as a maximum matching problem for some bipartite graph Gg. Let Gg = (U, V, E) where
each team j is a node in U, each column ¢ is a node in V', and where edge (j,c) € E if and
only if ¢ € H;. An example of such a bipartite graph is illustrated by Fig. 4.4. As such,
one possible assignment is given by a maximum matching of Gpg, which can be obtained
efficiently using the Hopcroft-Karp algorithm [125]. For the case w > ¢, we would need an
iterative procedure. We first input Gpg to the Hopcroft-Karp algorithm, which gives us a
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maximum matching M;. M is then used to assign columns to teams. Every c that has been
assigned a team in M, is then removed from Gpg. This new graph is used as input to the
Hopcroft-Karp algorithm which gives us a new matching Ms. This process continues until
all columns have been assigned. We denote C; the set of column indices assigned to team j,
which results from using the process outlined above. We note that for column assignment,
we assume the assignment process is done by a selected team that knows the H; of each
team j beforehand. After that chosen team has computed the column assignment, it then
sends the assignment to its neighbors through aggregator communication, and its neighbors
sends the assignment to their neighbors, thereby propagating the assignment throughout the

whole network.

Hi={1,2} Ho={3,4} Hs3={1,3}

SIONON©

Column

o

Figure 4.4. Example of Bipartite Graph Gp for Column Assignment

Now we describe how each agent ij is assigned a row index r. For every team j, agents
must come to an agreement where each ij is assigned at least one row index r such that
r € W and such that each row is assigned to one agent. Similar to the process of assigning
columns, for the case m; = w we can formulate the assignment of rows as a maximum
matching problem for a bipartite graph Gp,. For each team j, let Gp, = (U, V, E) where each
agent ij is a node in U, each row r is a node in V', and where edge (ij,r) € E if and only if
r € Wi. Again we can use the Hopcroft-Karp algorithm to compute a maximum matching.
For the case w > m;, we again use an iterative application of the Hopcroft-Karp algorithm
(see previous paragraph for more details) where after each iteration the assigned rows are
removed from the graph Gp,. We denote the resulting set of row indices assigned to agent ij

as Ri. The row assignment process for team j can be computed by any agent ij. Once the
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assignment has been computed, agent ij then communicates the assignment to all agents in

team j through the aggreagator j.

Distributed Update

We now present a set of update equations that each agent will follow in order to improve
their estimate of part of . The distributed update is based on work on solving a system
of linear equations with scalar states [126]. The update equations will require that we use
networks G and G; and it introduces additional states z,.(k) € R and z..(k) € R for all
re{l,...,w}and ¢ € {1,...,w}, where each agent will control one or more x,. and z,..
Let Z; denote the set of all z,. that are updated by the agents of team j, or more formally
we have Z; = {z. : v € {1,...,w},c € C;. We suppose each aggregator j can receive
Z;(k) for all j € N, using aggregator communication, and then aggregator j can distribute
{2ro 1 7 € Ry, v € G} C Zj to each agent ij. Furthermore, within each team j, agent ij can
recieve {7, : v € Ry, ¢ € Cj} for all ij € Nj.

As such, each agent ij computes the following updates for all » € Rj;, ¢ € Ci:

x‘rc = Arc(Arcxrc - |Clj|brj - Z Z (Zrc - er)) - Z Z (xrc - xvc) (42)

keNj veCy, EjeEN;; vER;
. 1
Zre :ATCITC - ?brj - Z Z (ZT‘C - ZTU))' (43)
| j‘ keN; veCy,

Let ;. denote the c’th entry of ;. Given initial estimate x,.(0) for all ¢ = 1,...,w and

r=1,...,w, each agent ij has an initial estimate 6;;(0) with the following form:

1 .
=i E reR: .’,UTC(O), if ¢ € C;
Ry| =r€Rs; j
6i5.c(0) = IR (4.4)

0, otherwise.
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As such, each agent ij updates their 6;; according to:

1 . .
. m ZT‘ERij xTC? lf c E CJ
eij,c =

0, otherwise.

4.5 Main Result

Assumption 4.5.1. Let A = [[{_, [T} Ayj. We assume m(alz) > 0 for allz € X,a € A and
dr(z) > 0, for all x € X, where we recall dy(x) is a probability density over all states given
a policy ®. This assumption is satisfied if T is such that an agent following ™ can explore the

entire state space X given enough time, which is a necessary and common assumption in the

RL literature [7], [75].

Theorem 4.5.2. Suppose that assumption (4.5.1) is met, G is connected and G; is connected
for every team j. Then using the distributed updates in (4.2)-(4.5), for each agent ij, 6;

converges exponentially to 05, such that as k — oo:

H iexk) O > (T,
where ¢(T) = ||A(T)"'b(T) — 0||* and

lim €(T") = 0.

T—oo

Proof

To prove our main result we will show that (4.2) and (4.3) can be reduced to the updates

in [126].

Let j(c) = {j : ¢ € C;}. Since each column c is assigned one team j, then |j(c)| = 1

for all ¢ = 1,...,w. As such, we can define 7, = cl Ti) for all ¢ = 1,...,w. Recall
i)

b, = TithT:l oreri(xy, ap), using 7., we can then define b,. = TithTZI Orie(xy, ap) for all

¢ =1,...,w. We now note that for each agent ij, for all ¢ € C; and all » € R;; we have
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bye = cl by = ﬁbHv since by definition j(c) = jVc € C;, and so we can rewrite (4.2) and
i) j

(4.3) as:

A

re = = Are(Arelre = bre = D Y (zre = 200)) = D D (Tre — Tue)

keNj veCy, EjEN;; vER;
Zre :Arcmrc - Brc - Z Z (ZTC - ZT’U))‘
keNj veCy,

Now let NB = {rv:v € CVk € N;} and let NS = {vc: v € Ry;Vkj € Njj}. We can then

rewrite the above two equations as:

A

jfrc = - Arc(Arcxrc - brc - Z (Zrc - Z’I"U)) - Z (xrc - xvc)
’V"UENT}?:/ vcENTC;
21"0 :Arcxrc - l;rc - Z (Z'rc - Z'rv>>‘

rveN

We now show that >, BTC = b, through the following:

Z Brc = Z Lbrj
c=1 c=1 ’CJ’
N
j=1 ce¢; ’Cj’ "

-
I
—

I
.MQ
SU‘

I
=3
S

Since > l;Tc = b, and by recalling that each A,. is a scalar entry of matrix A, it then
follows that (4.2) and (4.3) are equivalent to equations (5) and (6) in [126].
Given the conditions stated in our theorem are met, it then follows from the proof of

Theorem 1 in [126] that each x,. converges exponentially to a constant vector x*, such that
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— w ES 7 _ * . * o o * . .
for each r = 1,...,w, ., (Ayet). — bye) = 0 and 27, = 23, = ... = x}, .. Since each 0y is

updated according to (4.5), it then follows that each ; converges to a ¢} such that:

1 * :
TRy] reRy Trer 1 € € G
ij,c —
0, otherwise.

it c € CVr = )

TC’

0, otherwise.

As such, we then have that A Y7L, m% >y 05 = b. which implies

zqzl
=1 M

Ze*_e
1

i=

Recall 0;(k) = -1 521", 055(k), since each 65 — 6

- %, then from the above we have:

ij 0;(k) — 0 (4.6)

We now examine the squared error ||6;(k) — 6]|*:
q 5 q 5
1> 03(R)) = B1I° = 1((D_ 6;(%) +(0-9)]
j=1 j=1

q q R
1 6(k)) = 011 + 2113 6;(k)) — 0111 (0 = 0)l[cos(8) + [[(0 — O)|?
=1

J:

—

(4.7)

We recall that § = A~'b and recall that A and b depend on the number of data samples
T, therefore we can express 0 as a function of T: §(T). Now let e(T) = 6(T)—86, by combining
(4.6) and equation (4.7) it then follows that:

1032 65(k)) — 0] = ().

=1
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Furthermore, we note that given assumption (4.5.1) and recalling that X is a com-
pact set, it then follows that as T' — oo we have the following: limT_m%ZtT:l A =
E[A;], limp_ o % Zthl by = E[b;]. As such, recall A = %Zthl A; and b = %ZL b; and so
it follows that since 6 = E[A,] 'E[b] and § = A~'b we have the following limit:

lim €(T) =0

T—o00

This concludes our proof.

4.6 Simulation Results

In this section we present simulation results for our proposed approach. We have simu-
lated a network consisting of 4 multi-agent teams with 5 agents in each team. The network

controls a system with the following dynamics:

Ti41 = Az, + Bay

Yy = hyj(t)

where z, € R? is the state of the system, 15 is a nonlinear observation, and a; € R is the
joint control input or action of the network, which follows a stabilizing control policy ®. The
goal of the network is to evaluate how this policy maximizes the sum of team rewards, which

are given by:

1 1
ri(ze, a) = i — Za?a ro(y, ar) = =13 — Zag

1 1
ry(2e,a,) = —3 — Za?’ T4, ap) = —1179 — Z&?.

In order to accomplish this goal, each agent follows the updates given by (4.5) and (4.3),

using the following basis functions:

P(z) = col{x%, x%, 9537 T1T2, Tols, T1X3}, (4.8)
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We recall W is a set of indices such that the v'th entry of ¢(x,) is computable by agent ij if
and only if v € Wj;. The following equations describes which entries of ¢(z;) are computable

by each agent:

Win = {1}, Way = {1,2}, Wy = {1,3}, Wi = {1, 4},
Ws1 = {1,5,6}, Wio = {1,2}, Way = {2}, Wy, = {2,3},
Wia = {2,4}, Wsa = {2,5,6}, Wis = {1, 3,4},

Was = {2,3,4}, Was = {3,4}, W3 = {3,4},

Wis = {3,4,5,6}, Wiy = {1,5,6}, Wy = {2,5,6},

Wiy = {3,5,6}, Wi = {4,5,6}, Wss = {5,6}

With the above constraints, we use the method outlined in the Approach section to assign
row indices and column indices to each agents, and then we used updates (4.2 —4.5) for each
agent. We have presented the results of using the proposed algorithm in Fig.4.6 and Fig.
4.5. In Fig. 4.6 we show the average squared consensus error of the parameter estimates.
This shows us that the consensus error goes to zero as the time step increases, indicating
the network achieves consensus in their parameter estimates. In Fig. 4.5 we see that the
average squared error goes to zeros as the time step increases, this and the fact the network

achieves consensus indicates that each agent converges to the solution 6.
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Figure 4.5. Squared Error
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Figure 4.6. Squared Consensus Error

4.7 Conclusion

In this work we have developed a distributed reinforcement learning algorithm for policy
evaluation with cross-modal observations. Here, by cross-modal observations we mean each
agent observes a different nonlinear observation of the environment. As such, each agent
can only compute part of the vector of basis functions ¢ given their observation. Based on
which entries of ¢ each agent can compute, we have proposed an approach by which each
team can be efficiently assigned columns of A and each agent is assigned a row. The main
idea of this approach is to reduce the assignment problem to a maximum matching problem,
which has known and provably efficient algorithms such as the Hopcroft-Karp algorithm.
Given an efficient assignment process, an update for each agent’s estimate was developed
so that each team can converge to part of the 6 vector, and such that the network jointly
computes the entire 6 vector. The main result in this work is that by following the proposed
distributed algorithm, each agent converges exponentially to a solution such that the network
jointly converges to 6. We have also provided simulations results that demonstrate how the
algorithm can be used for distributed policy evaluation of a control system. Our simulations
show that the average squared error converges exponentially to zero, which supports our
theoretical result. A potential future direction would be to extend the results to include
policy improvement by incorporating actor-critic methods, where the critic training would

be based on the algorithm proposed in this work.
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PART 11

Finite-Sample Analysis

7



5. FINITE-SAMPLE ANALYSIS OF DISTRIBUTED
Q-LEARNING FOR MULTI-AGENT NETWORKS

Introduction

Reinforcement learning (RL) algorithms has recently be used for various applications such
as autonomous driving, robotics, and so on [1], [4]. As a model-free RL algorithm, Q-learning
is able to provide an estimate to the so-called @) function, which is a state-action value
function to assign a scalar value to each state-action pair according to a given reward function
and discount factor [8]. Such Q-functions can be used to achieve optimal control policies
and allows for online implementation [127]. Recently researchers have turned their attention
to develop RL algorithms for mutli-agent systems due to their extensive applications into
formation control [87], [128], coverage [89], social networks [90] and so on. Such development
is challenging due to the lack of a centralized coordinator in multi-agent systems. Challenges
aside, great progress has been achieved for Multi-Agent Reinforcement Learning (MARL)
in [31], [74]. In these algorithms, all agents operate in the same environment with a shared
state representing the environment. The state transition depends on the actions of each
agent and the unknown state dynamics of the environment. Each agent is given a local
reward by the environment depending on the joint action of the agents and the current
state. Due to privacy, agents cannot share their rewards with other agents and can only
communicate with neighbors (nearby agents). The goal of MARL is then to enable each
agent to cooperate with neighbors in order to ensure the entire network of agents develops a
policy that maximizes the global average of local rewards. Along this MARL setting, we in
this paper will investigate distributed algorithms for Q-learning with the aim of providing a
finite-sample analysis, namely, a convergence analysis of the algorithm for any finite number
of iterations.

In the literature of MARL, a distributed gossiping TD(0) algorithm is developed in [41],
followed by formulation of policy evaluation with linear function approximation as a primal-
dual optimization problem[32], as well as for actor-critic algorithms in [129], [130]. Along the
direction of distributed Q-learning in multi-agent systems, there have been various empirical

results [23], [24], [131]-[133] and theoretical results for convergence [27], [134], [135] with
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finite state and action spaces. Distributed Q-learning with continuous states and actions have
recently been investigated in [25], [46], [136], [137] by incorporating function approximation
with neural networks.

After reviewing the literature we have seen that there are few convergence results for
online Q-learning for continuous state spaces with function approximation, except [138]
which considers fitted Q-iteration-based algorithms. Finite-sample analysis has also been
achieved for distributed TD algorithms in [34] under the assumption of i.i.d samples, and in
[35] with non i.i.d samples. In the context of Q-learning, there are results of finite-sample
analysis for tabular Q-learning in [139], Q-learning with discretized states in [140], Q-learning
for high-dimensional stopping problems in [141], and very recently for Q-learning with linear
function approximation and non i.i.d samples in [142], [143]. This work provides a finite-
sample analysis of a distributed Q-learning algorithm with non i.i.d samples, which to the
best of our knowledge has not been addressed in the literature. The finite-sample analysis
is needed in order to determine the convergence rate in terms of sample complexity [142].
In other words, a finite-sample analysis will allow us to determine how many samples are

needed in order to achieve a given level of accuracy [141].

5.1 Preliminaries

In this section we introduce the multi-agent Markov Decision Process (MDP) of interest

and the method of linear function approximation.

5.1.1 Multi-Agent MDP

Consider the case in which a network of m autonomous agents operate in an unknown
environment (or plant). Let x(t) € X denote the state of the plant at time ¢ which is
observed by each agent, where X is a continuous state space. The state dynamics of the
plant can be described by an irreducible Markov chain {x(t)}, where irreduciblity describes
the property that any state is accessible from any other state. For each joint control action

a(t) from the network to the plant, a local reward r;(x(t), a(t)) is produced, where a(t) € A
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is observed by each agent and A is a finite action set. Here, each r;(-, ) is the private reward

locally accessible to only agent i, and is not shared with other agents. Let

R(x(t),a(t)) = 3 —ri(z(t), a(t), (5.1)

which represents the average reward of all agents in the network. Let m denote a fixed
stochastic control policy that maps a state z € X' to a probability distribution =t(- | z) over
that action space A, i.e. a ~ @(- | ). Let Qr denote the corresponding state-action value
function, which in this work is defined as a sum of discounted rewards R(z(t),a(t)) when a

stochastic control policy T is applied to the plant. Namely,
Qx(z(t),a(t)) =E | Y 7" R(z(k),a(k)) | 2(0) = z(t),a(0) = a(?)
k=0

where v € (0,1) is a discount factor. Furthermore, in a multi-agent network, each agent
i usually can only communicate with certain neighboring agents denoted by Nj(t), which
includes agent i. The neighbor relations can be modeled by a series of time-varying undirected
graphs G(t) such that there is an edge between i and j if and only if i and j are neighbors at
time ¢.

The goal of multi-agent Q-learning is to enable each agent to achieve @+ asymptotically,

where * is the global optimal policy, using only local information.

5.1.2 Linear Function Approximation

Since in practice it is not feasible to compute all values of Qn+ we will only consider the
case where Q-+ (,a) = ¢(z,a)T0*, where ¢(z,a) € RP is a feature vector and 6* € RP is the
optimal parameter vector. We note that in general ()~ cannot be exactly expressed using
linear combinations of features, and so the best we can do is to converge to a neighborhood of

Qr+. In addition, we have that 6* lies in a finite Euclidean-norm ball with radius R, or more
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formally [|0*|| < R. Suppose each agent i controls a 6; (an estimate to the optimal parameter

0*), and therefore a corresponding estimate of Qr+ which we will denote @y,, where
Qo (7, a) = ¢(z,a)" 6.

The goal of multi-agent Q-learning then becomes enabling 6; to converge to #* asymptotically,

where each agent can only share #; with its neighbours.

5.1.3 A Distributed Q-Learning Algorithm

Based on linear approximation, the goal of Q-learning can be achieved by a distributed
update to enable all ; to converge to 6*. Towards this end, we will investigate a consensus
based distributed Q-learning algorithm, which is based on the distributed TD(0) algorithm
given in [34] and similar to other consensus based distributed optimization algorithms [144],

[145]. Under this algorithm the update for each agent i is given by:

Oi(t+1) =11 ( > Wi(0)6i(t) + a(t)gi(é’i,t)) : (5.2)

JENi(t)

Here, N;(t) denotes the set of neighbors of agent i at time ¢, Wj;(t) denotes the (i,j) element
of some doubly stochastic weight matrix W (t), a(t) is the step-size; and II(+) is a projection

such that
I1(0) = arg ming., g <pll0 — ',
Furthermore,
9105, t) =(ri( (1), a(t)) + v max Qo (z(t + 1), 0) — Qa,(2(2), a(t))) VoQo, (2(1). alt))
is the semi-gradient [75] of the objective function J(t, 6;(t)), where

J(t,6(1)) :;(ri(;,;(t), a(t)) +ymax Qy, (¢(t + 1),b) — Qa,(x(1), a(t)))*.
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5.2 Finite-Sample Analysis for Q-Learning

Asymptotic convergence of online distributed Q-learning algorithms such as (5.2) have not
been well established and even less known is known of the error bounds of these algorithms
for a finite number of iterations. In this section we will provide such a finite-sample analysis
to the distributed Q-learning algorithm (5.2), which will be our main result.

To begin, we rewrite the semi-gradient in (5.2) as

Gi(0;,t) = bi(t) + c(6;,t) — A(t)6;(t), (5.3)

where:

C(@i, t)

(@ (t), a(t))y max Q,((t + 1), ).
For any fixed § € RP and x € X', we define
* _ T
a*(x,0) = arg max o(z,a)' 0.

We then define
E[A*(0)] = Elp(z, a*(x,0))p(x, a*(x,0))"].

Based on the projection imposed in the update of 6(¢) we can bound the gradient according

to

lgs (05, Il < G, VO; - [|6:]] < R,

where G = 2R + 7pax[142].

As in [34], [142], we will make the following assumptions:

1. The feature vectors {¢(x(t),a(t))} are linearly independent for ¢t € {1,2,..,p} where

¢(x,a) € RP. In addition we assume ||¢(z,a)|| <1, Vz,a.
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2. There exists an integer B such that the following graph is connected for all positive
integer [:

WV, EIB)UEIB+1)U...UE((l+1)B—1).
Moreover, there exists a constant § such that Wi;(t) € [5,1) if j € Ni(t), and Wy;(t) =0
if j & Ni(t).
3. Rewards are uniformly bounded such that ||ri(z, a)|| < rmax for all (z,a) pairs.

4. There are constants [ > 0 and p € (0,1) such that

supdry (P(X; € - | Xo =), Br) < lp', Vt >0, (5.4)

zeX

where dpy (P, Q) = supy|P(A) — Q(A)| denotes the total-variation distance between

probability measures P and ), and Py is the stationary distribution of &.

5. E[A] is positive definite with A\; < E[A] < A2. In addition, we assume E[A*(6)] < A3
and \; —y*A3 > w >0 for all 6 : ||0] < R.

Then we have the following main result:

Theorem 5.2.1. Given assumptions (1-5) are satisfied and each agent follows the update

described by (5.2) with a diminishing step-size a(t) = m, we then have the following

upper bound for the average squared error:

1 260 1 2BWn(t+1) 4/6(0)|
— SN E[6(t+1) - 07} < L — + 2 §*+?
m; Hot+ 1) = < T e vt T

(5.5)

_32mG (o, 1
w?n?(1 —9)? (Tt/2]+1)?

where

n = min{l — 1/(2m?),sup oo (W (1))},

t>0

oo(W(t)) denotes the second largest singular value of W(t), § = n& < 1, and © =
col(01,...,0,,) is the augmented parameter vector. In addition, [x] denotes the “ceiling”

operator , which rounds up any real number x to the nearest integer , and similarly |z|
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denotes the “floor” operator, which rounds down to the mearest integer. Furthermore we

have:

By = (127’0G2 1n(70)+(9+247'0)G2) , By = ((8+1270)G2>
where 1o = min{t > 0 : lp* < a(t)} describes a minimum mizing time relative to our
step-size.

Remark 5.2.2. Below we provide an analysis of the upper bound (5.5). The first term in
(5.5) clearly goes to zero as t — oo and the second term also go to zero as t — oo due to
the fact that % decays faster than In(t) grows (this can be verified using L’Hospital’s rule).

The third and fourth terms decay exponentially to zero since 6 < 1 and the last term decays

1

. Therefore, since we have shown that each term of (5.5) goes to zero then the

to zero as

sum must go to zero and so :

m

LS B[+ 1) — 0] = 0

i=0

ast — 00.

5.3 Proof of Main Result

In this section we will provide a proof for Theorem 1 by looking at the squared error of

the average parameter vector :0(t) = L3 6i(t). We first introduce some lemmas, whose

proofs will be given in the Supplementary section with the exception of Lemma 3 which is

proved in [34].

Lemma 5.3.1. Given assumptions (1—>5) hold and each agent executes the update described
by (5.2), then we have the following upper bound for the squared error of the average parameter

vector:
E[[|6(t + 1) — 0°[|°] < E[(1 — a(t)w)[|(t) —6*|3+a(t)*G?+2a(t)A(, ©,1)]. (56)

where A(év @7t> = <§(t) - 9*,9(@,75) - E[§<@vt)]> and g(@, t) = % Zgl gi(ei,t)'
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Lemma 5.3.2. For any 1o = min{t > 0 : Ip" < a(t)} we have the following for t < 7y:

E[A(,0,1)] < 6G> § afi), (5.7)
and fort > Ty:
E[A(,0,1)] < (4 + 679)G*a(t — 7). (5.8)

Lemma 5.3.3. From Remark 1 in [34]: Given a(t) = we have the following:

_1
w(t+1)

2 o ot 2mG t/2]+1 1 i
31009 - o017 < (o)) + 2 (s ) e

Proof of Theorem 1

Using Lemma 5.3.1 we can express the squared error of the global averaged parameter

vector as the following;:

E[|0(t + 1) — 0*]|?] <E[(1 — a(t)w)||0(t) — 6*||2 + a(t)>G? + 2a(t)A(0, O, 1)].

Let’s now consider a diminishing step size described by «a(t) = We note that this

w(t+1

relies on w being positive which is a result of assumption (5). Substituting for a(t) into (5.6)

we get:

1 ) 2 _
w?(t + 1)2G T 1)A(9’ ©,1).  (5.10)

n * t n *
E[flo(t +1) — 7% < El—llo®) -0 [

We can apply the above inequality recursively which gives us:

w(t2—|—1 > A(6,0,1), (5.11)

)iz

G
2 it

B{I0(-+1) = 0] S Bl gemy S
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since 35 _, k%rl is a harmonic series we then have

t
1
—— <1+In(t+1). 12
S g Sl (512)

Now let’s look at the A term. Using the bounds described by Lemma 5.3.2 we can rewrite

the sum as:

t

th A(0,0, k)] Z]E (0,0,k)] ZE[A(@‘,@,k)]

S;( G2Z ) kz+1<4+6TOGw(k_1TO+1)>
§6G;To(ln( )+1)+(4+if))a2<1n<t)+1). (5.13)

Combining (5.11),(5.12), and (5.13), we get the following:

- wior _ GH(In(t+1)+1) 2 6G?To
L BHORIC 1),

w

Now let’s expand terms and then combine like terms to get:

B[I6(t +1) = 6°["] = (1270@2 In(7)+(9 + 24TQ)G2) 1112(7514'1)
2y In(?) ,In(t+1)
+ ((8+12m)G?) ey

In order to simplify our expression we upper bound the above using In(¢) < (n(t + 1), which

gives us:

1

[0t + 1)~ 0" = (12767 In(ro) (0 + 24m)G2) o l(fil)

+((9+ 127)G?) g

—_
N
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Now let us define the following constants:
B1= (127G In(70) +(9+247)G?) , Bo=((9+1275)G?) .

We can then simplify our expression to :

B BoIn(t +1)
w2 (t+1) w(t+1)

E[lo(t+1) — 6|’ < (5.14)

We now have a converging upper bound for the squared error of the average parameter
vector, but we still want to provide a converging upper bound for - > [ E[||6;(¢ + 1) — 6*||?],
i.e the average squared error. Fortunately, we can use the Cauchy-Schwarz inequality to
relate the squared error of the average parameter vector and the average squared error with

the following inequality:
E[l6:(t +1) — 0"[°] < 2E[J|6(¢ + 1) — 0[] + 2E[[16:(¢ + 1) — (¢ + 1)[|].
We can sum both sides over all agents and divide by m to get:
;iEHI@i(tH) — 07|1°] < 2E[||6(t+1) — 6*[|*] + Ti iE[H@i(tH) —0(t+1)[°].
Using Lemma 1 from [34] the above can be rewritten as:

1 .
S E[I6+ 1) — 0P
i=0

_ 2 [§tt! 2mG ¢ 2

(5.15)
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Using (5.9) from Lemma 5.3.3 we can simplify the second term as:

ottt 2mG <

m<||@ 72 o k:+1)>2

t+1 2
2 (5o g 2 (s

< = -
Tun(1=9)

m

)

Then by using the Cauchy-Schwarz inequality we can make the following simplification:

t+1 9 t 2
(5”@ ‘ﬁgzyk )
242 2
And now by plugging in (5.16) and (5.14) into (5.15) we arrive at:
LB+ 1) - o
2521“_11 + 23, ((7;‘:_11)) " 4\|i(7§)2)\\252t+2 i w2§22(7?(i25)2 (52(t/21+2 n (H/le—i_ 1)2>

(5.17)

This concludes our proof.

5.4 Conclusion

This paper has studied a distributed version of the Q-learning algorithm, which incor-
porates consensus into its update with the goal that all agents in the multi-agent system
converge to the same optimal policy and action-value function, such that the global aver-
age of rewards is maximized. The main result of this paper is a finite time bound on the
average of all parameter errors for a given diminishing step-size a(t). The result supports
earlier works which have empirically demonstrated convergence of distributed Q-learning
algorithms, and furthermore characterizes the convergence rate of such algorithms without

assuming i.i.d data samples. An interesting direction for this work may be to incorporate
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policy improvement such as actor-critic algorithms, or to conduct a similar analysis but

without the use of a projection step in the algorithm *

5.5 Supplementary

5.5.1 Proof of Lemma 1

Using the update of the proposed algorithm described in (5.2), we write the squared error

of the average parameter vector as the following:

E[l6(t +1) — 67|]

= E[|[TI(6(t) + a(t)g(O,t)) — T1(6%))||?]

< E[l6(t) + a(t)g(e,t) — )]

= E[[0(t) = 0" *+a(t)*[19(0, t)|I*+2a(t)(6(t) — 6", 5(O, 1))]
< E[l0(t) — 07[13 + a(t)*G* + 2a(t)(0(t) — 0", E[3(6, 1)])

i (5.18)
+2a()(0(t) — 07, 9(6, 1) — E[g(O, 1)])]
Let us take a closer look at g(O,t). Using (5.3) we have :
G(O,t) = b(t) +¢c(0,t) — A()0(t). (5.19)

Now let

H(6.) = 9(a(t), a(1)) (7 max Qulr(t-+1),0) — 6(e (1), a(1))TO() + 3

be the semi-gradient computed for a centralized version of our algorithm, where the rewards

of each agent are known to a central agent. Similarly to g(¢) we can write

h(6,t) = b(t) + c(0,t) — A()0(t).

1The authors give their sincere thanks to Zhuoran Yang and Kaiqing Zhang for their valuable advice

89



We note that since the centralized algorithm has access to all rewards, its fixed point will
correspond to our target parameter 6*. This implies that the expected gradient of a cen-
tralized algorithm will be zero at 6(t) = 0*. Therefore, by taking the expectation of h(t) at

0(t) = 6* we can write:
E[b(t)] = E[A(t)]0" — E[c(0%,t)], (5.20)

where we make use of E[A(t)0;(t)] = E[A(¢)]0;(t). This can be shown by noting that the
expectation is with respect to the behaviour policy, which in Q-learning is independent of
the learning policy and so is independent of 6.

Then by taking the expectation of (5.19) and then plugging in (5.20) we have:

E[3(0,t)] = E[A(t)]0" ~Elc(6", 1)] + Elc(t)] —E[A®)]0(t)

= —E[A®)](0(t) — 6*)+E[e(0,t)] — Ele(67,1)].

Now let’s go back to (5.18) and take a closer look at the third term. We can do the following

decomposition:
2(0(t) — 0", E[g(0,1)]) = —2(0(t) — 0", E[A@®)](0(t) — 0"))+2(0(t) — 0", E[c(t)] — E[c(6",1)]).
Now using assumption (5) we can lower bound the first term which then gives us:

20(t) — 0", B[5(0,1)]) < 2\ |0(t) — 0| + 2(0(t)— 0", E[e(t)| —E[c(6", 1)]).  (5.21)

Let’s focus on the second term above. For convenience we denote A(t) = A,z = x(t),2’ =

z(t +1),a = a(t), and § = (t) — 6*:

2(0, Ele(t)] — E[e(6", 1)]) = 2(0, E[6(x, a) (max(¢(x",b) ') — max(¢(a',b)"60"))])

< 29\/0TE[A]6y/max{0TE[A*(0))0, TE[A*(6%)]6}
< 29/ A s]0(2) — 07| (5.22)
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Now combining (5.21) and (5.22) we arrive at the following:
2(0(t) — 0", E[g(0,1)]) = —2(A1 — 1/ M Xa) [0(8) — 07

The above can then be upper bounded by:

2(0(t) — 6" Elg(©.1)]) < —NYIMW |

Now using assumption (5) we can simplify and then upper bound the above in the following

way:
2(0(t) 0", E[g(8,)]) < —wl]|0(t) — "||*. (5.23)

Let A(6,0,t) = (0(t) — 0%, 5(0,t) — E[g(©,1)]). We can now plug in (5.23) to get another
upper bound on (5.18):

E[0(t+1) — 0|

< E[(1-a(t)w)]|0(t) — 0*|[3+a(t)*G*+2a(t)A(4, ©, )],
where the last step just combines some terms and makes use of our bound on the gradient.

5.5.2 Proof of Lemma 2

First we need to show that A(é, ©,t) is Lipschitz continuous. We start by considering

the following difference :

[A(61,01,) — A(62,05,1))]
=|{01 = 07, 9(61,) — E[§(01,1)]) - (B — 0",(62,1) — E[g(©2,1)])|

<2R||§(01,t) —E[3(01,1)] — (§(O2, 1) — E[§(O2, )])[| + 2G|61 — 62| (5.24)
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The first term in 5.24 can be upperbounded with the following:

19(01,1) = E[g(O1,1)] — (3(O2, 1) — E[g(O2, )]
<[9(©1,1) = 9(O2, )| + [[E[g(O1, )] — E[g(O2, 1)]]-

Now let’s look at the first term on the right hand side where we denote = z(t) and a = a(t).

We do the following :

m

||§(@17 t) - §(92, t)H < % Z(maXbEA(b(‘rlu b)T91,1 - maXbeA¢($/a b)T‘gi,Q)

i=0

+|e(z,a)" (61 —62)

< (1+7)161 — o]
The last step is done by using the following arguement. Consider the following:
Tlfleéi{i o(; b)Ten —Igleéﬁi ¢(; b)TgiQ = ¢($f&1)T9;1 — (] a2)T9L2a

which is lower bounded by ¢ (2, as)" (61 — 6;2) and upper bounded by ¢(z',a;)" (61 — ;).
We then have:

]' - / /

‘m Z(maXbeA¢($ >b)T91,1 — maxpe AP (w 7b)T91,2)

i=0

< max{‘qﬁ(w', az) " (6, — 0,)

(', a) (6 — 6,)|}
< 161 — 6s]].

It then similarly follows that
IE[g(01,)] — E[g(O2, )]l < (1+)[161 — O]
We therefore arrive at the following:

‘A(§17@17t> - A(§27 @27t>>‘ S 6GHéI - é2||7
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which demonstrates Lipschitz continuity.
We now look at upper bounding ||#; — 6,|| by analyzing the update of @ according to our
algorithm. We have the following:

1ot +1) = 0(1)]

= H*ZH > Wyl(t) + at)g:(6:, 1) — IL(O())

M=l jeni()

<H*Z > With(t) + a(t)gi(6:, 1)) — 0(t)]]

i= 136/\/ Q)

= H* Z( i(t) + a(t)gi(6:, ) — 0(t)]]

i=1

= [la(®)3(©, 1) < Ga(?), (5.25)

where we use the fact that W is doubly stochastic for the second equality. Given assumption

4, our proof then follows the proof of Lemma 15 from [142].
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6. FINITE-SAMPLE ANALYSIS OF MULTI-AGENT POLICY
EVALUATION WITH KERNELIZED GRADIENT TEMPORAL
DIFFERENCE

Introduction

Due to recent success of applying reinforcement learning into feedback control systems,
autonomous driving and robotics [1], [4], [127], [146], and also extensive application of multi-
agent systems [128], [147]-[149], significant research attention has been given to Multi-Agent
Reinforcement Learning (MARL), which aims to enable agents to cooperate with nearby
neighbors in order to achieve a value function that accurately evaluates the global policy
in terms of the average of local rewards. Although such development is challenging due
to the lack of a centralized coordinator in multi-agent systems, there has been significant
progress in algorithm development for MARL [31], [74], [91]-][93]. In these distributed al-
gorithms, all agents are usually assumed to operate in the same environment with a shared
state representing the environment, and each agent is given a local reward by the environ-
ment depending on the joint action of the agents and the current state. Various algorithms
in the direction of MARL have been developed, such as the distributed TD(0) algorithm
based on gossiping [41], followed by formulation of policy evaluation with linear function
approximation as a primal-dual optimization problem[32]; distributed algorithms for actor-
critic learning in multi-agent systems [150], communication efficient distributed RL [151],
Q-learning algorithms [152], [153], and so on.

With more and more MARL algorithms developed recently, most of them rely on para-
metric models, where the value function is approximated as a linear combination of features
[124], [154]. This motivates this work consideration of non-parametric models by using func-
tions in a Repeated Kernel Hilbert Space(RKHS), which gives the learning a much more
general class of nonlinear functions compared to parametric methods [155]. We also notice
that policy evaluation is at the core of reinforcement learning algorithms, which assigns a
scalar value to each state given a fixed policy and based on a reward function [75]. Once

the policy evaluation is established, one can use the resulted value function to improve the
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current policy using actor-critic algorithms [72], [77]. However, many reinforcement learning
algorithms based on RKHS have mainly focused on policy searching [156], [157], where the
policy is assumed to lie in an RKHS. That is why this work has investigated the case where
the value function lies in an RKHS. Although in [158], [159], both the value function and pol-
icy are assumed to be in an RKHS, they are not directly applicable to the case of multi-agent
systems. We also notice that existing results in MARL usually establish the asymptotic or
exponential convergence while a finite-sample analysis is not as common. Here, by a finite-
sample analysis is meant a convergence analysis of the algorithm for any finite number of
iterations. Such an analysis is essential to determine the convergence rate in terms of sam-
ple complexity [142], in other words, determine how many samples are needed in order to
achieve a given level of accuracy [141]. Finite-sample analysis to MARL has been limited
to distributed TD algorithms in [34], [35] and Q-learning [139], [140]. In recognition of all
these, this work has provided a finite-sample analysis for distributed algorithms for MARL

where the value function is in an RKHS.

6.1 Preliminaries and the Problem

Consider a network of m autonomous agents that operate in an unknown environment
(or plant). Let z; € X denote the state of the plant at time ¢ which is observed by each
agent, where X’ is continuous state space and where n = |X|. Suppose dynamics of the plant
state can be described by an irreducible Markov chain {z;}, where irreducibility describes
the property that any state is accessible from any other state. For each joint control action
a; from the multi-agent network to the plant, a local reward r;(x;, a;) is produced, where
a; € A is observed by all agents and A is a continuous action space. Here, each r() is the
private reward locally accessible to only agent i, which is not shared with other agents. Let
|

—r

Rz, ar) =)

= ™M

i(e, ar), (6.1)
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which represents the average reward of all agents in the network. Let m denote a fixed
stationary control policy such that a ~ m(a | x) . Let V; denote the corresponding state-

value function defined as:
Va(ze) = E | Y V*R(zy, ar) | 2o = 24
k=0

where v € (0,1) is a discount factor.
MARL algorithms are developed for all V; to converge to V;, where V; denotes agent i’s
estimation to V3. Towards this end, one usually introduces the following objective function:
V)= = S B0 + S IR, (62)

)

where [;(Vi, t) = %(ri(xt,at) + YVi(wes1) — Vi(my))?, V = col{V4(+), Va(+), ..., Viu(-)} and H is
a repeated kernel Hilbert space (RKHS) as in [160], and £ is the set of all agent pairs. It
has been shown in [32], [160], [161] that the MARL problem can be posed as the following

regularized optimization problem:
[Valm = arg miny cm JJ(V)  st. Vi=V,, (1,)) € €, (6.3)

with [Vz], the column-wise stacking of m copies of V4.
Note that a repeated kernel Hilbert space is defined by a kernel function s that has the

following properties for all functions f € H: X — R:

<fa /i(:L‘, )>’H = f(x)v H= span{ﬁ(x, )}

According to the Representer Theorem [161], [162] one can describe V; as a sum of kernel

evaluations only over training data, namely

Va(ae) = Zl 0,5 (w0, 71), (6.4)



where k(2/(i), z;) € R is a kernel function and 6* € R” is the optimal parameter vector, with
07 denoting the n'" element of #* and N denoting the number of data samples observed.
Suppose the proposed objective function satisfies the Representer Theorem. The goal of
MARL then becomes for each agent to find the 6*.

We now discuss some aspects of the multi-agent network. In such a network, each agent
i usually can only communicate with certain neighboring agents denoted by Nj(t), which
includes agent i. The neighbor relations can be modeled by a series of time-varying undirected
graphs G(t) such that there is an edge between i and j if and only if i and j are neighbors at
time ¢. Suppose each agent i controls a ¢; (an estimate to the optimal parameter 6*), and V;

which as agent i’s estimate to V« is given by

2

Z inki(), (6.5)

In the above we write 6, ,, to denote the n'™ element of the vector 6;. Then the goal of MARL
under RKHS is for each 6; to converge to 6*, or equivalently for V; — V;, where each agent

can only share #; with its neighbours.

6.2 Functional Stochastic Quasi-Gradient Method with Consensus

We will use a functional stochastic quasi-gradient method with kernel approximation
and consensus. Later on the KOMP algorithm [160] will be introduced for a finite-sum
representation of Vj,. Since the policy evaluation is of our particular interest, we also adopt
the assumption of a fixed global behaviour policy &, namely, local updates to each agent’s
parameter does not affect the global behaviour policy.

Let Vi denote agent i’s estimate of V; at step ¢ and let z;, correspond to a dictionary of

stored data samples.The update of each agents value function estimate is the following:

Vien () = Pxi,m.(%:(?/u (OVie () —alt)g(Vir, 1)), (6.6)
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where Wj;(t) denotes the (i, j) element of some doubly stochastic matrix W (¢) at time ¢ with
lazy Metropolis weights [163], Px,41) is a projection defined by,

PXi(t+1)(f/) = argminfeHXNH) 1f — f,”?-L?

and Hx
M(t + 1) is the number of entries in X;; at time ¢t + 1 and x; is the jth entry of Xj,.

is a subspace of H defined by Hx,,,, = span{x(x1,-), .., K(Xar@+1)), ")}, where

it+1
Furthermore, we have:

9(Vint) = zigpa (K(2e, ) — vE(Tee1, 7)) + AVi(0) (6.7)
Zigpr = (1= B(t))zie + B(t)(6:(t)),

where z; is a running average of the temporal difference observed by agent i, which we denote
d; and define as 6;(t) = ri(x¢, ar) +yVie(x141) — Vie(ay). For notational convenience we do not
write g as an explicit function of 2,41, but we will make this explicit for clarity in parts of
our analysis. Then the above updates corresponds to the following updates of our dictionary

and parameters.

Xi,t+1 = [331,167 Tits xi,t+1]a (6-8)

Oi(t+D)=[1—a(t)N)bi(t), —a(t)zit41, (t)V2it41] (6.9)

where «a(t) is the step-size.

In order to fit our data exactly we could keep storing every new data sample to our
dictionary and parameter vector according to (6.8) and (6.9), but this would be impractical
since it would require infinite memory as t — oco. Therefore, every time a new data sample
is recorded we use a model order regulation algorithm called Kernel Orthogonal Matching
Pursuit(KOMP) [160], [164]. At each step, this algorithm will try to remove entries from
the dictionary such that the Hilbert norm error between the original function approximation
and the reduced order function approximation is minimized. The algorithm continues to

remove entries and recalculates weights until the approximation error becomes greater than
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a specified error tolerance €(t). For the sake of brevity we will not go into the full details of
this algorithm but they can be found in [160], [164].
Furthermore, because the KOMP algorithm acts as a projection on our function estimates

then according to [160] we also have that:
[Viellae < R, Wt (6.10)
for some constant R

6.3 Main Result

In this section we will present the main result, which provides an upper bound for the
average squared error that is defined for each iteration of the presented algorithm.
Before presenting the main theorem, we give some assumption which have been widely

adopted in existing literature [32], [124], [L54], [160], [161].

Assumptions

1. Data samples are i.i.d and drawn from the stationary distribution p.
2. The state space X and action space A are compact.

3. The difference of reproducing kernels has finite conditional variance. More formally,
we have the following: E[||r(z, ) — vk(z,-)||3 | F] < G?, where F, is the data history

at up until time .

>, 0; has finite variance. The average estimate

4. The average temporal difference § = %

of the expected temporal difference zZ = - 3", 2 has finite conditional second mo-

ments from zero. In other words, we have:E[(§ —E[6])? | F] < 02, E[2? | z,n(x)] < o2

z

5. The expectation of the temporal difference E[0;], for each agent, is Lipschitz continuous
with respect to the value function V. Formally, for any two distinct §; and ! we have:

[E[6:] — E[6]] < LIV = V|5
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6. Let V be the node set and let £(¢) be the edge set of graph G(t) for all t. There
exists an integer B such that the following graph is connected for all positive integer
I: (V,EUIB)UE(IB+1)U...UE((I+1)B—1). Moreover, there exists a constant ¢ such
that Wi(t) € [¢,1) if j € Ni(t), and Wy;(t) = 0 if j & Ni(2).

With the above assumptions we then have:

Theorem 6.3.1. Suppose that assumptions (1-6) are satisfied and each agent follows the
update described by (6.6) along with the KOMP algorithm [160], with fized step-sizes a(t) =
a,B(t) = B and tolerance parameter €(t) = Ca(t)?,C > 0. Furthermore, suppose that
0< B <1, a>0, and the regularization parameter is A\ = %Cﬂ + % with 0 < \g < 1. Then

we have the following upper bound for the average squared error:

1 2 2t
S ElViesr = VIl < 201 = ) EVG=V 3]+~ Vol + Dfa 5, Ao,
i=1

where n = min{1l — 55, sup,-o 02(W(k)))}, 02(W(k))) denotes the second largest singular
value of W(k), ¢ = ns, and D(a, 8, X\o) is a function of design parameters but constant with

time.

Remark 6.3.2. From the above we can conclude that as t — oo the Hilbert norm error

converges to D(a, 3, \g), where

D(a7IB7AO) :O<

A s R
Ao Ao B BB B B ’

and o = 0,G+ AR+mCa. From the above we see that if a = [ then the above simplifies

to O(a + /\% + ‘j\“—z + ‘j\“—z + a?), which for a fived \g will go to zero as a goes to zero.

Remark 6.3.3. From the above analysis we see that there are two regimes of interest that
behave differently with respect to the free parameters Ao and «. In the first regime where
a < 1, the result indicates that /\% dominates the error upper bound and so by making the
term wvery small we will converge to a very small neighborhood around the optimal value.

However, in this regime X is dominated by Ao/, and so we cannot make /\% arbitrarily small
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since that would result in a very large X which would bias our results towards the trivial
solution of V= 0. In the regime where o > 1, the error upper bound is dominated by ‘f\‘—j and
A is now dominated by the %GQ term. Therefore, an increase in Ay, and thereby a potential
increase in convergence speed, would not significantly increase A and bias the solution, but it

would increase the error upper bound.

6.4 Proof of Main Result

In this section we will provide a proof for Theorem 1. First we begin by introducing some
lemmas. The proofs of the lemmas 6.4.2 - 6.4.4 are given in the Supplementary section. For

brevity we have left out the proof of lemma 6.4.1 and we refer to [160] for its proof.

Lemma 6.4.1. Suppose each agent follows the KOMP algorithm[160] and the update de-
scribed by (6.6), from [160] we have the following result:

me(t)

a(t)

19" (Vi z,t) — g(Vi, 2, 0) || <

Lemma 6.4.2. Suppose each agent follows the update described by (6.6) along with the
KOMP algorithm [160] and , we then have the following results:

Elllg(Ve, O)lla] < 0:G + AR, E[lg'(Vi,t)[[n] < o, (6.11)

where 0 = 0,G 4+ AR + emex ¢ is the mazimum value of €(t), and ooy, is the minimum
main

value of a(t) for all t. Furthermore, we have:

E[Vis1 — Vill3, < 4a(t)*(02G? + N2 R?) + 2¢(t)%. (6.12)
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Lemma 6.4.3. Given assumptions (1-3) are satisfied and each agent follows the update
described by 6.6 along with the KOMP algorithm [160], and suppose a(t), B(t) > 0, then we

have the following result for the expected error of the average value function estimate V;:

E[|[Vier=V*|I3 | 7]

a(t)Q 2\ (117 |2 ¥ 12
< (1 GG = VI = eIV~ VI
+ 26(t)]\17t—V*|]H + Oc(t)202+ﬁ(t)E[((2t+1—]E[&])Q | Fil. (6.13)

Lemma 6.4.4. Given assumptions 4 and 5 are satisfied and 0 < (t) < 1, we then have
the following upper bound for the expected squared estimation error of the average Bellman

error:

E[(Zie1 — E[3])? | Fi) < (1—B(t)(2—El5,1])* +28()%03 + Bﬁwﬁnvt “ Vil (6.14)

Proof of Theorem 1

In order to prove the main result we will first derive an upper bound for the expected
squared error of the average value function, then we will derive an upper bound for the
expected squared consensus error, and finally we will combine these upper bounds using
Cauchy-Schwartz to arrive at the main result.

We start by analyzing the difference between the expected temporal difference E[d] and
its estimate z, namely E[(Z(t+1) —E[5,])?]. With 3(t) = 3, we now take the total expectation
of both sides of (6.14) from lemma (6.4.4) , and using lemma 6.4.2 we plug in (6.12) into
the last term of (6.14) with constant step size and compression budget such that a(t) = «
and €(t) = e. We can then apply the resulting relation recursively from ¢ = 0. Then by
applying the initial conditions zg = 0 and é_; = 0, and noting some terms have constant

upper bounds we arrive at:

E[(Z1+1—E[6])%] < (2ﬁ0§+2§(a2(0§G2+A232)+62)), (6.15)
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We now proceed with analyzing the evolution of the Hilbert norm error of the value function

E[||Vie1 — V*||3, | Fi]. Accordingly, we take the total expectation of both sides of (6.13) from
lemma 6.4.3,with a(t) = «, and plug in (6.15). Now by combining terms, using ||V||x < R
to bound the third term of (6.13), and setting ¢ = C'a® with C' > 0 we then arrive at:

2
— a —
E[[Vier—V*l7] < 1+ FGQ — aME[|V,=V*[3,] + 4,

where A = 4Ca?R+a?0? +25%02 + %(oﬂ (02G*+ N2 R?) + C?a*). With the above inequality
it is clear that the Hilbert norm error will converge if we set A = %GQ + %07 with 0 < A < 1.

Setting A accordingly, we then have:
E[|[Vir = V* 3] < (1= )E[[Vi=V*[13,] + A.

Then applying the above inequality recursively we arrive at:

[/ * * A
E[[|[Vigr = V5] < (1= 20) E[[[Vo—=V"[13] + N (6.16)

where in the last step we use the fact that >t _ (1 — \g)* is a geometric sequence and that
Ao < 1.

Now that we have an upper bound for the expected squared error of the average value
function, we will now look to derive an upper bound for the expected consensus error.

We define W (t) = W(t) ® I, V to be the column wise stacking of m copies of V| i.e.
V =1,,®V, and V to be the column-wise stacking of each agent’s Vi, i.e V = col{ V1, ..., Vj,, }.
Since we construct W (t) to be doubly stochastic, we have the following: W (t)(V; — V;) =
W (t)(V; — Vi).

Let Q@ = (I, — %1m1;) ® I,. We now analyze the evolution of the consensus error

(Vt—i—l - ‘Zﬁ—i—l) :

QVipr = (Vigr — Vit) = W(HQV: — () Qg (Vi t).
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We now apply the above equation recursively from ¢ = 0, and then by taking the Hilbert

norm of both sides and using the triangle inequality we arrive at:

1QVig |l < ||H W (k QV()HHJFZ Bl H DIQG (Vie, k) || (6.17)

k=0 k=0 I=k+1

Given assumption 6 is satisfied, from [124], [163] we have that if W (¢) is a doubly stochastic

matrix with lazy Metropolis weights then:
IW(E)W(k+1)..W(k+B-1)QX| <n]|QX],vX (6.18)

for some matrix or vector X where n = min{l — 55, sup,>q02(W(k)))}, and oo(W(k)))
denotes the second largest singular value of W (k). Using (6.18) we can then upper bound
the products in (6.17) which then allows us to write:

t
1QVesllae <0V ENVo I3y + 3 a(k)n O B lg/ (Vi k) 1,
k=0
where in the last step we use [|Q| < 1. To facilitate further analysis we let ¢ = n5. Then
by using nlt+V/Bl < plE+D/BI=1 < 41 /p and ||¢'(Vi, k)|l < o from lemma 6.4.2 we can
simplify the above inequality. We now set a(k) = «, square both sides, and use the Cauchy-

Schwartz inequality to arrive at:

C2t+2

20202
1QVisallF, < 22— =

IVoll3, + PO—02

(6.19)

We will now proceed with combining (6.16) with (6.19). First, using the Cauchy-Shwartz
inequality we produce an inequality expressing an upper bound on E[||Vi,41 — V*||3,]. We

sum both sides of this inequality from i = 1 to m and divide by m:

1 . _ . 2
— > EllVunn = V7l < 2B[1Vea =V I3+ —E[IQVi 13-
i=1
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Let D(a, B, A,) = % + %, we now upper bound the second term in the above with
(6.19), and we upper bound the first term using our result from (6.16).This completes the

proof.

6.5 Conclusion

This paper has studied a distributed gradient temporal difference algorithm for policy
evaluation using a kerenelized approximation of the value function. The distributed algo-
rithm uses a local weighted average of estimates in order to drive the multi-agent system
towards consensus while also driving each agents estimate towards the actual value function
Vz. The main result of this paper is that, under certain conditions, if each agent follows
the described algorithm then the expected squared error for each agent is bounded and can
approach zero as the step-size approaches zero. Furthermore, these bounds are provided
for every time step, which completes our goal of conducting a finite-sample analysis. An
interesting future direction of this work would be to incorporate policy improvement such

as in actor-critic methods, which would follow the work in [155].

6.6 Supplementary

6.6.1 Proof of Lemma 6.4.2

First we analyze the unprojected gradient g(V},t). From the definition of g(V;,t) we have
the following:

lg(Ve, )llae = Nzt (e, -) — (@4, ) + AViC) I

< Mzl (B (e, ) =y, Dl +AViC) e

Using inequality (6.10) and taking the expectation of both sides we simplify the last term
to AR. Then using the Law of Total Expectation we have:

Elllg(Ve, ) ln] < Elllzeaall | 2o, () JE[[[ (6(24, -) — vh(zesn, )l | Fil + AR.
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Using the property that E[Y?] > E[Y]? and assumptions 3 and 4, we can upper bound the
above which gives us our first result: E[||g(V;, t)||n] < 0.G + AR.

Now using the result from lemma 6.4.1 and with €., > €(t) and amax > a(t) for all ¢,
we then arrive at our second result: E[l|¢'(V,)[l] < 0.G + AR + 7= = 0.

With the above results we now focus on the Hilbert norm difference between value func-
tions at one time step and the next. We start by writing out this quantity using (6.6), which

gives us:

[Visr = Vill3, = IV + a(t)g (Vi t) = Vi3,

< 20(t)?[lg(Ve, 13 + 20(8)*[lg' (Ve ) =g (Ve O3

where the last step makes use of the triangle inequality on the expression ||(¢/(V,t) —
g(Vi, 1)) + g(Vi,1)||3,. We can then use lemma 6.4.1 to upper bound the second term of

the above and then by taking the expectation we arrive at:
E[[|Vi+1 = Vill3] < 2()*E[llg(Vi, )13 + 2e(1)*.

Now we use (6.11) to get an upper bound on E[||g(V;, t)||2,, and then using the Cauchy-

Schwarz inequality we arrive at the final result. This completes the proof of lemma 6.4.2.

6.6.2 Proof of Lemma 6.4.3

We start by looking at the squared average error:
Vier = VI3, = IV = a(t)g' (Vi t) = V|13,

We expand out the above product and then add and subtract the functional stochastic

gradient ¢(V;,t) giving us:

Vs = VIR, =lVe = VI3, — 2a(6)(Vi= V", g(Vi, 1))

= 2a(t)(Ve= V", g (Ve ) = g(Ve, ) + a(®)?llg' (Ve ) 13-
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Then using lemma 6.4.1 and the Cauchy-Schwarz inequality we can upper bound the third
term above by 2¢(t)||V; — V*||. For convenience let E[6,] = E[6; |z, ©(2;]. We now remind
ourselves that that stochastic quasi-gradient g is also a function of z by writing ¢(V;, Zp1, 1),

and then we add and subtract g(V;, E[6,], 1), to the above equation which gives us:

Verr =V I3 SIVe= V5 =20 (Vi= V", g(Vi, EL6¢], )
+26()|[Vi= V" [l + a(t)?llg' (Vi Ze1, ) I3,

+2a<g(‘2§;Et-i-l;t)_g(‘_/taE[St?t]?‘_/t_V*> (620)

Let v(t) = 2a(t){(2(t +1)—E[6,)) (k(2, -) =7k (2141, ), Vi — V*), and now using the definition
of g we can then simplify the last term of (6.20) to v(¢) by canceling out like terms. We then
compute the expectation on both sides of the above inequality, conditional F; which gives

us:

El[Verr = VI3, | Fol IV = V713, = 20(6) (Vi =V, Elg(Ve, E[0d], 1) | Fil)a

+ 2 () |Vi= V|| + ()20 + E[u(t) | F). (6.21)

where because of assumption (1) we have that V; is independent on the gradient given JF;.
We have also made use of lemma 6.4.2 to upper bound the second to last term. We now
note that the regularization term (A/2)[|V||3, in our objective function implies that J(V') is
A-strongly convex in V' € H since the Hessian of J(V') is lower bounded by A\. We can then
substitute the second term in (6.21) with 2a(t)A||V; — V*||2,, which give us:

El|Verr =V I3 | Fo) <IVe= VI3, = 200V = V73,

+ 26(t)|Vi= V|3 + a(t)?0® + E[o(t) | F. (6.22)
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Let us now momentarily focus on v(t). By using the Cauchy-Schwartz inequality and its
corollary 2ab < pa®+b*/p for p,a,b > 0, we can simplify v(¢). Then by taking the expectation

of v(t) and using assumption 3, we arrive at:

a(t)’

B[u(t) | )< ARG ~B[3)) | 7l + o)

GV — VI3,

Finally, we use this upper bound for E[v(t) | F;] in (6.22). This completes the proof.

6.6.3 Proof of Lemma 6.4.4

For brevity we will only give an outline of the proof. We start by defining a scalar
quantity e(t) as e(t) = (1— 3(t))(E[0,] —E[6;—1]). We then analyze the evolution of E[(Z, —
E[6,] + e(t))? | F]. We use assumption 4 to upper bound terms containing E[(5; —dE[5,])?],

and note that some terms go to zero in expectation. This gives us the following:
El(Zi1 — B3] + o(t)? | Fil < 1—B0)G—EB ) +8(t)7%%  (6.23)

Then we use Lipschitz continuity of E[0;(¢)] with respect to V'(¢) from assumption 5 to derive
the following upper bound on e(t):

le(t)] = (1=BEDIED] —E[0s-1] [l < (1=B() LIV = Vi) |- (6.24)

Finally, we use the following result |la+b[|? < (14 p)||a|*+ (1 + %)HbHQ, which holds for any
p > 0, to derive an upper bound for E[(Z,1—E[6])? | F1] in terms of E[(Z,.1—E[6,]+e(t))? | Fi]
and e(t).

E[(Z41—E[6])* | o] < (1=-B(t) (2= E[6i-1])* + 28(8)05 +

The final result then follows by replacing E[(Z;11 — E[6,] + e(¢))? | F] and e(t) with their

upper bounds expressed in (6.23) and (6.24), respectively.
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PART III

Applications
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7. LEARNING-ASSISTED LOAD CONTROL DESIGN FOR
TRANSACTIVE ENERGY SYSTEM

Introduction

Transactive energy has emerged as a paradigm for demand-side control in power grids
[67]-[69]. A transactive energy system is usually concerned with the coordination and control
of a group of distributed energy resources such as smart loads, distributed generations, and
even energy storage. It can be modeled by a multi-agent system with three different types
of agents: coordinator, supplier, and customer, where the coordinator represents the market
operator, the supplier is the electricity seller, and the customer is the electricity buyer [165].
The underlying coordination and control have a hierarchical structure which consists of two
decision-making levels including resource level and supervisory level[166].

There are some works that have applied RL aglorithms to transactive energy problems,
such as in [53] where a modified version of DDPG is proposed for strategic bidding in
electricity markets, and in [167] where a DQN is proposed for HVAC control. Similiarly, in
[168] a multi-zone HVAC control problem is tackled using DQN with a heuristic mechanism
for dealing with large action space, while in [169] an actor-attention-critic algorithm is used
for a multi-agent formulation of the multi-zone HVAC control problem. Though these results
are promising and validate the applicability of RL for HVAC control in TES, they do not
compare multiple algorithms against each other. Such a comparison would allow us to see
the benefits and drawbacks of using one algorithm over the other for this particular task.

To our knowledge, there are no works that compare different reinforcement learning ap-
proaches when applied to transactive energy systems. There are works comparing DQN and
DDPG, and other policy gradient algorithms , but they are studied on specific use cases,
such as UAV control, cybersecurity, networking, data mining, robotics, and power grid volt-
age control [4], [48]-[52], which are not in our field of interest, or on either toy examples
or games [46], [54]-[56]. In [57] a comprehensive comparison of temporal difference algo-
rithms is given but they are applied to examples such as the cartpole problem or the 20 link
pole balancing problem, which, though of high dimensionality and difficulty, do not capture

the multi-objective and market-based features that characterize the transactive energy en-
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vironment. There are some works that have applied RL aglorithms to transactive energy
problems; such as in [53] where a modified version of DDPG is proposed for strategic bidding
in electricity markets, and in [167] where a DQN is proposed for HVAC control. Similiarly, in
[168] a multi-zone HVAC control problem is tackled using DQN with a heuristic mechanism
for dealing with large action space, while in [169] an actor-attention-critic algorithm is used
for a multi-agent formulation of the multi-zone HVAC control problem.

In order for transactive control to be effectively realized there is a need for the coordi-
nator to aggregate the load demand of all the customers. This requires that all consumers
send a representation of their individual demand curves to the coordinator. Besides the issue
of potentially large communication costs from sending demand curves to the coordinator,
there is also the issue that each consumer would need to accurately compute a mathemat-
ical representation of their demand. Consumers would need to accurately model the load
dynamics of their loads, as well as their specific user preferences. This presents a challenge
for practical deployment of transactive load control because individual consumer may not
have an accurate model for its load or its user preference in mathematical form.

Because the issues of unknown user preferences and difficulty in modeling dynamics of
specific loads, there is a need to develop methods that do not require demand curves of
each individual or mathematical models of dynamics. This motivates our exploration of
model-free methods such as reinforcement learning algorithms. Reinforcement learning can
achieve optimal control of systems by learning from observed data that is created from
interacting with the environment, where the environment consists of all components that
are not controllable. An important part of the data is feedback in the form of a rewards,
which determines what type of control inputs or actions are favorable for a given state of the
environment. In our case, the reward function will be influenced by user preferences, and
the influence of user-preference can be abstracted to the value of a single parameter. This is
better than model-based methods where there might be many parameters that the user will

have to determine, making it difficult to design for a wide range of users.
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7.1 Problem Statement

In this work we consider a transactive energy system that is made up of a network of
residential air conditioners (ACs) at the resource level, and a central coordinator and supplier
at the supervisory level. Since we are interested in large network of small power loads, the
market is close to perfectly competitive, where the market clearing price, as determined by
the coordinator, is independent of any individual resource level decisions. As such, the
resource level individuals are price takers and do not consider decisions of other individuals
in their own decision making. Moreover, we focus on the control decisions of one individual,
which we call the agent, where the control goal of the agent is to minimize the thermal
comfort and energy costs of the agent.

To this end, the agent controls the AC by giving On/Off commands, denoted u(t), at the
beginning of every market period t. The command u(t) is determined as follows: The agent
decides on a price bid A,iq, then once the agent receives the market clearing price Acjear it
turns on the AC for the whole market period if its price bid is greater than or equal to the

clearing price, otherwise the agent turns the AC off. Or more formally:

OH, if Abid(t) 2 Aclear(t)
u(t) =

Off, otherwise

The dynamics of the AC can be described by the following equivalent thermal parame-
ter (ETP) model [170] with both discrete and continuous states,

3

U Q

T, = T, —T,) + —2 (T, —T,) + = 1
a Ca ( m a)+Ca( o a)+Ca (7 a)
. H, 0
L SRy L W 2 1b
m=g (Ta=Tn)+ & (7.1b)

with
Qi+ Qs + Qn if u(t) = On
0+ Q. if () = Off,
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Figure 7.1. Agent Feedback

where T,, is the indoor air temperature, T,, is the inner mass temperature (due to the
building materials and furnishings), U, is the conductance of the building envelope, T, is
the outdoor air temperature, H,, is the conductance between the inner air and inner solid
mass, C, is the thermal mass of the air, C,, is the thermal mass of the building materials
and furnishings, @) is the total heat flux consisting of the heat gain from the internal load
@, the solar heat gain Q5 and the heat gain from the heating/cooling system .

With the above structure, the control problem of the agent is to compute A,iq at every

market period .

7.2 Learning-assisted Bidding Strategy

In previous works such as in [165] and the AEP gridSMART project, a bidding strategy
is designed based on models of the building temperature dynamics, such as (7.1), and models
of user preferences. This approach, however, would be difficult to apply to the realistic case
of large networks with heterogeneous consumers, since this would require the impractical
task of developing good models for every consumer, which itself potentially operates various
appliances with complex power dynamics. With this in mind we are motivated to develop

a model-free approach, and so due to its model-free nature and its success in literature we
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explore reinforcement learning for the purpose of training intelligent consumer agents to
produce optimal bidding strategies.

As such, we consider a learning agent that can only use data about the state s(t) of
its environment at the current time step, i.e. market period, ¢ and a reward signal r(t),
as well as a finite amount of historical data. We define the state s(t) of the environment
as s(t) = [Tin(kt), Tout(t)], where T,(t) is the indoor temperature and Ty, (t) is the outdoor
temperature at ¢t. In accordance with the goals of minimizing thermal discomfort and energy

cost, the reward r(t) is defined as:
r(t) = —wU (AT(t)) — (1 — w)C(Pavg, t) (7.2)

where C'(P,y,,t) is the cost of energy consumption, U(AT(t)) represents the disutility from
thermal discomfort, AT (t) = Ty (t) — Tiesirea, Tin(t) is the average indoor temperature over
the market period ¢, P,y (t) is the average power consumed over the market period ¢, and w
is a weighting factor.

The goal of the learning agent is to develop an optimal price bidding strategy m(s) : s —
Abid, Which outputs a price bid for every state s and maximizes the rewards received, using
only data gathered from its envir