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elements. ..................................................................................................................................... 148 
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Figure 61. Examples of diagonal feature filters that result from each of the connection strategies 
simulated.  These feature filters are shown over time since their temporal dynamics are important 
in my discussion of simulation results. ....................................................................................... 154 

Figure 62. Illustration of the segmentation process for the Trick and Enns simulations.  At 150 
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location every 150 ms, e.g., at 300 ms.  At 200 ms, the second pair of selection signals begin 
(yellow circles), and the final pair of selection signals (green circles) begins at 250 ms.  Each 
pair of selection signals shifts to a new location after a 150 ms selection cycle.  If a target is 
successfully segmented, a selection signal (red circles) at that location is added to the selection 
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Figure 63. V4 output for an input image with each type of line figure and dot figure used in the 
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activity in them, e.g., in grid cell 1,2, the row with the lowest row number with activity is the 
row that contains the top two dots, and the row with the greatest row number with activity is the 
row that contains the bottom two dots. The algorithm then checks whether the distance between 
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deviation. ..................................................................................................................................... 161 
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ABSTRACT 

A fundamental characteristic of human visual perception is the ability to group together 

disparate elements in a scene and treat them as a single unit. The mechanisms by which humans 

create such groupings remain unknown, but grouping seems to play an important role in a wide 

variety of visual phenomena.  I propose a neural model of grouping; through top-down control of 

its circuits, the model implements a grouping strategy that involves both a connection strategy 

(which elements to connect) and a selection strategy (spatiotemporal properties of a selection 

signal that segments target elements to facilitate identification). With computer simulations I 

explain how the circuits work and show how they can account for a wide variety of Gestalt 

principles of perceptual grouping.  Additionally, I extend the model so that it can simulate visual 

search tasks.  I show that when the model uses particular grouping strategies, simulated results 

closely match empirical results from replication experiments of three visual search tasks.  In these 

experiments, perceptual grouping was induced by proximity and shape similarity (Palmer & Beck, 

2007), by the spacing of irrelevant distractors and size similarity (Vickery, 2008), or by the 

proximity of dots and the proximity and shape similarity of line figures (Trick & Enns, 1997).  

Thus, I show that the model accounts for a variety of grouping effects and indicates which grouping 

strategies were likely used to promote performance in three visual search tasks.   
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INTRODUCTION 

Spatially disconnected visual elements can appear to form a perceptual group, and much 

effort over the last century investigated how groups form (Wagemans et al., 2012). For example, 

Köhler (1929) proposed that any observer who “looks passively” at Figure 1 will see two groups 

of patches.  

 

Figure 1. A redrawing of Figure 1 in Köhler (1929, p.154). 

The example was used to argue against the possibility that observers group elements when 

they have previous experience of these elements behaving as a unit, e.g., we perceive a pencil as a 

unit because it behaves as a single unit when we use it. Since an observer looking at the image has 

not seen the left three patches behaving as a unit, Köhler argued that grouping was not learnt from 

experience. As a member of the Gestalt School, Köhler proposed that these groupings can be 

accounted for by some rule, e.g., grouping by proximity, that generalizes to other cases.  

Köhler’s argument includes the following assumption: for a given stimulus, perceptual 

groups are, in some sense, primitives. In other words, it is assumed that there is one way to group 

the six patches, and everyone will perceive them as forming a group of three patches on the left 

and another group of three patches on the right. A similar assumption is relied on for the 

demonstrative examples throughout Wertheimer’s (1923/1950) seminal paper on perceptual 

organization (Wertheimer did identify some possible roles of experience; for discussion see 

Wagemans, 2018), and it continues to be presupposed in modern experimental work on grouping 

(Palmer & Beck, 2007; Trick & Enns, 1997; Vickery, 2008) and in examples of grouping rules 

given in textbooks (e.g., Palmer, 1999).  

However, Köhler’s argument involves a subtle qualification: everyone who looks passively 

at Figure 1 perceives two groups of patches. This statement does not rule out the possibility that 
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perceived groups can be task-dependent, i.e., the way in which an observer groups stimulus 

elements may depend on the particular task at hand. Other Gestalt psychologists were less flexible 

about the role of experience in perceptual grouping, which was vigorously debated (Braly, 1933; 

Gottschaldt, 1926/1950; Koffka, 1935/1963; Moore, 1930; Wertheimer, 1923/1950). For example, 

experiments by Gottschaldt led him to conclude that experience has a negligible effect on 

perceived organization, e.g., seeing a figure repeatedly has little impact on whether an observer 

reports seeing this figure when it is embedded in a larger figure. His conclusion continued to be 

contested through the 1950s (for overviews, see Bevan, 1961; Bevan & Zener, 1952). This issue 

of whether past experience influences perceived groupings continues to be experimentally 

investigated (e.g., Kimchi & Hadad, 2002; Vickery & Jiang, 2009; Zemel et al., 2002; for a review 

see Peterson & Kimchi, 2013).  

The present project explores the implications of rejecting the implicit assumption that for 

a given stimulus there is only one way to group its elements.  If this assumption is rejected, then 

we are in a better position to investigate what grouping strategy(s) observers may use to promote 

performance on a particular task and stimulus set.  However, rejection of this assumption does not 

entail ignoring or reducing the impact of bottom-up information from the stimulus.  Indeed, for a 

given stimulus, an observer may use bottom-up information about, e.g., size, proximity, shape, and 

position, to group its elements in several possible ways.  Moreover, it seems that such groupings 

can be tuned to promote performance for a given task, e.g., if asked to find the pair of nearby 

squares in a row of shapes, an observer may group the items by proximity and shape such as to 

allow for easier selection and segmentation of the target pair.  In effect, bottom-up information in 

conjunction with top-down processes can be used to promote a perceived grouping of particular 

elements in accord with a learned strategy for performing some task efficiently, e.g., finding a 

target among distractors as quickly as possible. 

The properties and mechanisms of the formation of perceptual groups have been rigorously 

investigated (Elder & Goldberg, 2002; Thórisson, 1994; Wagemans et al., 2012), and low-level, 

neuroscience-based algorithms have been proposed (Roelfsema, 2006; Roelfsema & Houtkamp, 

2011; Ward & Chun, 2016).  Although it is clear that the computations to form groups are 

influenced by both bottom-up and top-down information (Vecera & Behrmann, 2001), accounts 

of perceptual grouping tend not to integrate bottom-up and top-down processes in detail. 
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This project aims to address these gaps, i.e., the lack of an account of grouping that both 

integrates bottom-up and top-down information and the lack of an account of grouping strategies 

given particular stimuli and tasks, by: (1) developing a computational model that both integrates 

bottom-up and top-down processes and can run simulations of previous experiments investigating 

grouping, (2) making predictions from the simulated results regarding, e.g., possible grouping 

strategies that would augment or inhibit performance given the task and stimuli, (3) conducting 

experiments on human participants to test these predictions, and, ultimately, (4) offering a 

mechanistic explanation of such phenomena. Specifically, this project aims to study perceptual 

grouping by modelling experiments that use visual search tasks.  

This project focuses on visual search tasks, where an observer must locate a target item in 

a static display, because such tasks have been used to investigate different aspects of perceptual 

grouping (Wagemans et al., 2012).  Additionally, under the approach to grouping explored here, 

i.e., observers use learned grouping strategies that are dependent on the particular task and stimulus 

set, apparently simple tasks and stimulus sets turn out to be more complex than was intended.  For 

example, prima facie one experiment simulated below only varies the proximity of stimulus 

elements along a row.  However, the optimal strategy appears to be more complex than just 

grouping nearby target elements; in view of the model, an optimal grouping strategy seems to 

depend upon proximity, shape, and total width of the row of elements.  In turn, it is necessary to 

conduct experiments that, e.g., control for width of the row of stimulus elements, in order to tease 

apart different features that are, according to the model, likely to play a role in beneficial grouping 

strategies. 

The computational model used and developed in this project is the version of LAMINART 

implemented in Francis et al. (2017).  Francis et al. (2017) showed how a neural circuit for 

grouping and segmentation explains several visual uncrowding effects.  When a target vernier does 

not group with flankers, the circuit can segment out the flankers and, thereby, free the target from 

crowding effects.  However, this model is limited in two ways that prevent it from being applied 

to visual search tasks.  First, whether elements in a scene formed a perceptual group was strictly 

determined by fixed parameter values.  In other words, if two stimulus objects were within a 

particular distance apart and appropriately aligned, they would always group. Otherwise, they 

would not group.  Although this may be sufficient if we accept the assumption that there is only 

one possible perceived grouping of the elements of a given stimulus, it lacks both the flexibility 
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needed if there are alternative groupings and a top-down grouping control process.  Second, the 

model’s segmentation circuit was not designed to simulate the search process involved in visual 

search tasks.  This circuit has a selection signal, which, as explained further below, acts as an 

attentional spotlight that falls on a particular area and selects stimulus elements that fall under it.  

On each trial in the simulations conducted by Francis et al. (2017), each selection signal had a 

fixed location for the duration of the trial.  Although reasonable for vernier judgement tasks, this 

segmentation circuit lacks the dynamic selection process characterizing visual search tasks. 

In order to run simulations of experiments that investigate grouping, this project develops 

modified grouping and selection circuits that address the two limitations of LAMINART 

mentioned above.  In particular, developing LAMINART’s selection process provides a way of 

investigating segmentation strategies used in visual search tasks.  Further, altering LAMINART’s 

grouping and selection circuits to enable different possible groupings of visual elements allows 

the model to simulate experiments that investigate grouping and to make testable predictions about 

grouping strategies given a specific task and stimulus set.  After introducing the model, describing 

modifications made to it, and elaborating on what a task-dependent grouping strategy is, I apply 

the model to three experiments designed to investigate grouping with a visual search task, namely 

Experiment 1 of Palmer and Beck (2007), Experiment 2a of Vickery (2008), and Experiment 2 of 

Trick and Enns (1997).  Since these experiments used small sample sizes, I conducted replication 

experiments of these studies to provide better estimates of performance. Similarities between the 

results of the replication experiments and those of simulations when the model implements 

particular grouping strategies suggest that human observers may be using similar grouping 

strategies to promote performance on the tasks. 
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PREVIOUS WORK: LAMINART 

The LAMINART neural network model (Cao & Grossberg, 2005; Francis et al., 2017; 

Grossberg & Raizada, 2000) consists of bottom-up circuits modelling areas of the human visual 

cortex and novel grouping and segmentation circuits. Input to the model consists of black-and-

white images that could be shown to a participant (e.g., left panel of Figure 2, and top panels of 

Figures 3 and 4). For each pixel in the image, a network of neurons is created with a layered 

structure similar to that found in brain areas V1 and V2 (Figure 2, panel b2). Output of the model 

is presented as an image (Figure 2, panel c), in which the color of each pixel indicates the spike 

counts of orientation-tuned cells in the final layer of V1 or V2 at that location. A bright green pixel 

indicates that the cell sensitive to horizontal edges at that location was firing rapidly, a red pixel 

indicates vertically-tuned cell activity, blue indicates diagonally-tuned cell activity, and black 

indicates that no neurons are firing at that pixel location. 

The version of LAMINART in Francis et al. (2017) featured a grouping circuit and a novel 

top-down segmentation mechanism.  Following Grossberg and Mingolla (1985a, b), grouping 

occurs in the model when illusory contours connect spatially separated elements, e.g., the four 

flankers on either side of the vernier in Figure 3.  The grouping circuit causes illusory contours to 

form between two elements in a stimulus if their edges are of a particular alignment and distance 

apart.  In this context, the term “illusory contours” refers to the boundary signal in V2 that does 

not correspond to bottom-up luminance signals from the stimulus.  In other words, illusory 

contours are contours in a V2 output image that do not reflect contours in the stimulus image.  

These illusory contours are often amodal, meaning that an observer would be aware of them yet 

not explicitly see them as producing a modal experience (e.g., color or brightness). Although 

Grossberg’s illusory contours have been used to (at least partially) explain illusory contours 

exemplified by the Kanizsa triangle, i.e., the well-defined luminance edges connecting the pac-

men that most observers report seeing in this illusion (Grossberg & Mingolla 1985b; Kogo et al., 

2010), Grossberg’s illusory contours refer to a particular pattern of model V2 cell activity and are 

more general than the illusory contours experienced in typical visual illusions, e.g., nearby flankers 

in Figure 3 may be perceived as grouped/connected even where there are no visible lines 

connecting them.  
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Figure 2. Example of the bottom-up circuits created in LAMINART for the input of a white square line figure on a 
black background (panel a). Panels b1 and b2 are visualizations of these circuits sandwiched between the input 

image (bottom) and V1 output image (top). Each pixel in the input and output images is a grid cell. To provide a 
sense of its complexity, panel b1 shows the entire V1 network created for the input image shown in panel a. Panel 

b2 shows only a subset of this network, i.e., the circuits created for three pixels of the input, with the layers labelled. 
Panel c illustrates what the output represents: the spikes of orientation-tuned neurons in layer 2/3 of V1 (The output 
is an 8x8 image because an extra row and column are added in the simulation to avoid edge effects). In panel c, the 

cells elongated along the x-axis (y-axis) are sensitive to horizontal (vertical) edges. Note that this visualization of V1 
is simplified: there are also cells tuned to diagonals at 45° and 135°, making the model have double the number of 

V1 cells that are represented here.  

 

 

 

  

Figure 3. Example of the top-down segmentation process for the stimulus in the top row. The selection signal is 
represented by the translucent white circle in segmentation layer 0. Any boundaries directly under the selection 

signal or connected to boundaries under the selection signal are segmented out of layer 0.  The sum of the activity 
over 50 milliseconds in each layer is represented in each non-stimulus image. 
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The segmentation mechanism uses a selection signal and segmentation layers (Figure 3) to 

perform a kind of figure-ground processing.  

The selection signal is represented by the gray circle in segmentation layer 0.  The 

segmentation mechanism segments V2 output into different layers depending upon the location of 

the selection signal.  In effect, a selection signal acts as an attentional spotlight with location-based 

and object-based features: if an element in the stimulus falls under the selection signal or is 

connected to an element that falls under the selection signal, then over time the element is 

segmented out and put into a different layer, e.g., the left flankers connected by horizontal illusory 

contours in Figure 3. 

Proposed Developments 

Conceptual Shift 

This project further develops the model of Francis et al. (2017).  These model 

developments are outlined in the next subsection.  However, this project involves a conceptual 

shift that includes a change in terminology for clarificatory purposes.  Francis et al. (2017) 

proposed that illusory contours group stimulus elements, and that these groups of elements could 

be segmented out by a selection signal.  So, in their model there are two mechanisms: one that 

creates groups via illusory contours, and the other that allows for the selection and segmentation 

of these groups.   

Rather than assuming that the illusory contour mechanism alone explains grouping, I 

propose that grouping involves both of these mechanisms, namely a connection mechanism that 

can join stimulus elements together via illusory contours, and a selection mechanism that selects 

and segments out stimulus elements.  This proposition is motivated by the possibility of multiple 

stimulus elements not being joined by illusory contours yet being selected and segmented, e.g., 

Figure 4. 
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Figure 4. An example where a selection signal segments multiple unconnected stimulus elements 
and seems to thereby group the two far right lines. 

In this example, two unconnected flankers happen to fall under the selection signal and, 

thus, are segmented out and isolated from the other elements.  With such selection and isolation, 

it seems reasonable to conclude that these two flankers form a group, which suggests that separate 

stimulus elements can be grouped by a segmentation process and that connections between 

stimulus elements are not necessary for groupings of nearby elements.  Thus, the segmentation 

process alone can result in groupings of elements. 

So, for the sake of clarity, I will henceforth refer to illusory contours as ‘V2 connections’ 

or simply as ‘connections’ (depending on the context) and the circuit called ‘the grouping circuit’ 

above as ‘the connection circuit’.  This is because I propose that this circuit is only a part of a 

grouping circuit that includes both the connection circuit and the selection circuit.  In turn, this 

project explores the relations between the connection mechanism (i.e., the grouping mechanism of 

Francis et al., 2017) and the selection mechanism, both of which are subject to top-down control, 

and the roles they play in perceptual grouping.  I contend that, given a particular stimulus set and 

task, an observer uses a grouping strategy, which is constituted by a connection strategy, i.e., a 

particular way of joining stimulus elements by V2 connections, and a selection strategy, which 

involves determining where and when to place selection signals. 

Stimulus
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Overview of Model Development 

In this project I develop the model of Francis et al. (2017) in two fundamental ways.  

First, (1) I introduce a trial-wise dynamic selection process that enables the model to 

impose a real-time search strategy for visual search tasks.  (1) is necessary in order to simulate 

tasks that require scanning a display for a target.  To simulate experiments with vernier 

discrimination tasks, the simulations in Francis et al. (2017) used a single pair of selection signals 

on each trial.  Each selection remained fixed in one position for the entire trial.  They used pilot 

simulations to determine the best pixel coordinates at which to place the center of each selection 

signal, and noise was added to each pair of coordinates.  In contrast, visual search tasks involve a 

more dynamic and strategic selection process.  Thus, modification of the segmentation circuit is 

required. 

Second, (2) I introduce top-down control over parameter values that determine whether 

stimulus elements connect.  The connection circuit introduced in Francis et al. (2017) only allows 

elements that are within a certain distance and alignment to connect, which is too rigid to allow 

for alternative connections of a particular set of elements in a scene.  To motivate the need for this 

kind of circuit, consider the row of squares in Figure 5. 

 

Figure 5. An example to illustrate multiple ways in which the elements of a single image may be 
grouped. 

There are a number of ways that an observer may perceive the squares as forming groups, 

e.g., as three pairs of nearby squares, a group of four squares on the left and a pair on the right; a 

single group of six squares; or, they may be regarded as six individual squares.  A fixed set of 

receptive field parameters in the Francis et al. (2017) connection circuit only allows for one of 

these grouping options.  In turn, the top-down control is necessary to allow the model to flexibly 

capture different ways in which an observer may use, e.g., shape, size and proximity, to group the 

elements of a given stimulus.   

Stimulus

Simulation
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As indicated in the introduction, the approach taken here is to reject the assumption that 

there is only one way in which an observer groups the elements of a given stimulus.  So, to explore 

the implications of rejecting this assumption, the model must be flexible enough to connect 

stimulus elements in a number of different ways.  Additionally, I propose that an observer uses a 

grouping strategy to group stimulus elements to promote performance on a particular task and 

given stimulus set.  For example, consider the row of shapes in Figure 6. 

 

 

Figure 6. An example to motivate the claim that groupings can be task-dependent. 

Suppose the task is to count the number of elements that are in the row.  In this example, 

there are seven shapes.  Some researchers have argued that one way to speed up performance on 

this task is to group nearby elements and add up the elements in each group (Starkey & McCandliss, 

2014; van Oeffelen & Vos, 1982).  Recall that I propose that a grouping strategy consists of a 

connection strategy and a selection strategy.  One connection strategy that would promote 

performance on this task is to connect the three squares on the left and connect the four shapes on 

the right.  These connections will allow the observer to more quickly select and segment out the 

shapes that are to be counted, add up the elements in each group and, thereby, count the shapes 

faster.  If, in contrast, the task is to count the number of squares only, this connection strategy 

would be detrimental to performance since it would cause the distractor circles to be selected along 

with the target squares on the right.  Instead, it seems likely that an observer would adopt a different 

connection strategy, e.g., group by proximity and shape so that only nearby squares are connected.  

In turn, the model must have the flexibility to promote different connections among stimulus 

elements, and the model should incorporate a connection circuit that is subject to top-down control 

in order to simulate the top-down control of observers over which groupings are perceived. 
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MODEL SUMMARY AND BOTTOM-UP CIRCUITS 

Model Summary 

In this project, I developed the LAMINART model such that it can be used to run 

simulations of existent experiments that use visual search tasks to investigate perceptual grouping.  

The main modifications necessary to simulate such experiments are provided in the next two 

chapters.  Additionally, the bottom-up circuits are presented in the next section because they have 

been modified from those presented in Francis et al. (2017) mainly to simplify the network.  But, 

before getting into the details of the model, consider the Circuit Overview in Figure 7 to get a 

sense of the structure and operations of the main components. 

 

Figure 7. A schematic overview of each component of the model. 

Starting at the bottom left and working upwards, LGN input, which represents brightness 

and darkness information from the input stimulus image indexed by each pixel coordinate, is fed 

in through an oriented convolutional filter to V1, which consists of two layers: layer 4 and layer 

2/3.  The activity of V1, layer 2/3, passes to V2, which also consists of two layers.  V1 and V2 

comprise the bottom-up circuit of the model.   

The green Connection Circuit in Figure 7 consists of three modules: Spread Controller, 

Long Controller, and Short Controller.  The latter two modules use activity from V2, layer 4, plus 

an observer-specified input current, to prevent the spread of long or short connections in V2, layer 
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2/3, while the former encourages the spread of these connections for a specified time.  I propose 

that an observer on a given task with a particular set of stimuli can learn to tune the parameters of 

each module, i.e., the onset and duration of the Spread Controller and input current into the Short 

and Long Controllers, such as to group particular stimulus elements via V2 connections in a way 

that allows them to efficiently perform the task.  This ability of an observer to tune these parameters 

is what is labelled as ‘Top-down connection control’ in Figure 7. 

V2, layer 2/3, feeds into the blue Selection Circuit consisting of segmentation layers and 

the Boundary Segmentation Circuit.  This circuit models the ability of an observer to strategically 

search for a target using particular features of the target, e.g., if the target is a diamond and the 

distractors are squares, an observer may use diagonal signals to guide placement of the selection 

signals.  The location of these selection signals is fed into the Boundary Segmentation Circuit.  

The Boundary Segmentation Circuit functions to separate boundary signals in segmentation layer 

0, which is essentially the output from V2, layer 2/3, that either falls under the selection signal or 

is connected to boundaries that fall under the selection signal, into another segmentation layer, as 

exemplified in Figure 3 above.  

Finally, each segmentation layer feeds into a V4 layer.  In each V4 layer, activity represents 

the results of a filling-in process and the resulting segmentation that occurs via surfaces.  Since I 

did not develop these circuits, I do not describe the V4 circuits (for more details, see the surface 

segmentation process explained in Francis et al., 2017).  However, I use the signal in V4 layers to 

determine whether a target has been selected or not using a simple algorithm tailored to the targets 

in each experiment. 

To ensure biological plausibility, I developed and simulated the model within the NEST 

2.14.0 simulator program (Gewaltig & Diesmann, 2007; Peyser et al., 2017), which provides 

models of various neurons and synapses and a framework to simulate networks constructed by 

these elements. All of my simulations used leaky integrate-and-fire neurons with alpha-function 

shaped synaptic currents and static synapses with manually set weights. Inputs to the network were 

provided by simulated direct current within the NEST program. Grossberg and Raizada (2000) 

previously provided links to known neurophysiology for much of the bottom-up circuit, so I do 

not repeat that discussion here. As detailed in the next section, the bottom-up circuit is simpler 

than the version described in Grossberg and Raizada (2000) and Raizada and Grossberg (2001).  

So, many of their links should apply here as well. The proposed top-down control circuits are novel, 
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and I am not aware of neurophysiological investigations that reveal these precise circuits. However, 

there is overwhelming neurophysiological evidence (at least in mice) that top-down control 

influences local circuits for visual perception (Zhang et al., 2014) and modulates figure-ground 

perception (Kirchberger et al., 2021).  

Bottom-Up Circuits 

The V1 and V2 circuits used in this model are simplified versions of the circuits used in 

Francis et al. (2017), which are based on earlier work that modelled the computations performed 

by components of the human visual cortex (Raizada & Grossberg, 2001).  Unlike the circuits of 

Francis et al. (2017), the current circuits lack cells representing layer 6, feedback connections from 

layer 2/3 cells to layer 6 cells, and pooling neurons in V2, layer 2/3.  These pooling neurons have 

been replaced by more synapses between nearby cells and by locally defined weights between each 

V2, layer 2/3 cell and its immediate neighbors, which will be explained in more detail below. 

V2 detects edges and connections, and the output of its bipole cells, i.e., cells at V2, layer 

2/3, represents edges at particular retinotopic locations. To explain how this circuit operates, I first 

present the structure of the circuit created for a single pixel location where competition occurs 

between cells tuned to opposite orientations, which highlights the functions of intra-position 

synapses.  Then, I explain how these cells are connected to cells tuned to the same orientation at 

neighboring V1/V2 circuits, highlighting the functions of inter-position synapses. 

Consider the V1/V2 circuit created for one pixel in a network that only has cells tuned to 

horizontal and vertical edges. This circuit is depicted in Figure 8, left column, where horizontally-

tuned cells are represented by ovals elongated along the x-axis and vertically-tuned cells by ovals 

extended along the y-axis.  This is a dipole circuit (Grossberg, 1980) in which the activity in V2, 

layer 4, is the result of competition between V1 complex cells (i.e., cells in V1, layer 2/3) that are 

tuned to edges of opposite orientations.  So, for example, if the input is a horizontal edge, the 

corresponding horizontally-tuned V1 complex cell will have more activation than the vertically-

tuned V1 complex cell.  In turn, the vertically-tuned V2, layer 4 cell becomes inhibited while the 

horizontally-tuned V2, layer 4, cell will be quite active.   
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Figure 8. A schematization of the circuits representing V1 and V2.  Left column: This illustrates cells and the 
synapses between them that are created for one pixel i in the input image.  Here, there are cells tuned to two 

orientations, with the cells tuned to horizontal contours represented by the ovals elongated along the x-axis, and cells 
sensitive to vertical contours represented by ovals elongated along the y-axis. Right column: This shows the 

synapses that are between horizontally-tuned cells and their immediate neighbors, i.e., the bottom-up circuits created 
for neighboring pixels in the image. Excitatory synapses are represented by arrows, while an inhibitory connection is 

represented by a dashed line with a square head. 

Next, consider the synapses between this circuit and neighboring cells.  Figure 8, right 

column shows connections between this circuit (located at position i) and neighboring circuits 

(located at positions i-1 and i+1) for horizontally-tuned cells.  The inhibitory synapses from the 

neighboring V1 simple cells (i.e., cells in V1, layer 4) to the V1 complex cell corresponding to the 

pixel at location i induces spatial inhibition within orientation.  This functions to clean up edges 

and promote end-cutting.  For example, if there is a rather weak input into the horizontally-tuned 

simple cell at location i but a strong input into the horizontally-tuned simple cell at location i-1 

and/or i+1, they will inhibit the horizontally-tuned cell at i in V1, layer 2/3 and, thus, promote a 

clean edge or gap at location i.  

After the activity of V1 complex cells is pruned, they feed into the V2, layer 4, cells, which 

feed into the V2 bipole cells (i.e., the cells depicted as ovals or circles with white fill in V2, layer 

2/3).  The interneurons (i.e., the cells depicted as gray filled circles in Figure 8) and bipole cells 
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neighboring the V2 bipole cell at position i are connected by synapses.  The interneurons play a 

key role in the model due to their two interrelated functions.  First, the interneurons prevent 

runaway spread.  Figure 9 provides an illustration of this process given a simple stimulus with two 

squares. 

 

Figure 9. A demonstration of how the interneurons prevent runaway spread. The three green 
boxes on each stimulus image corresponds to three pixels, and the circuit diagrams for V2 

horizontally-tuned cells are shown to their right. 

Figure 9 shows V2, layer 4, cell activity (middle row) and bipole cell activity (top row) 

from two simulations with the same stimulus image (bottom row). To simplify the example, the 

simulations were run with only cells sensitive to horizontal and vertical edges.  The left column 

illustrates how the intact bottom-up circuits of the model (i.e., when the model includes 

interneurons) operate, while the right column depicts what happens when the interneurons are 

removed and the model is run with the same stimulus.  V2, layer 4, cell activity is the same, but 

the V2 bipole cell output in the top row is different because, without the interneurons, the activity 

from every cell spreads to neighboring cells tuned to the same orientation via lateral connections 

between them.  The right circuit diagram provides an example of this behavior.  To explain this 

example, I must first present how these circuit diagrams relate to the stimulus image and V2 output.  

Due to the pruning of the V1 complex cells described earlier, there is little horizontal or vertical 

signal for cells corresponding to the corners of the squares.  In turn, there is no signal propagated 

to V2, layer 4, cells at the corners.  The circuit diagrams show the activation of the layer 4 and 

bipole cells in V2 for two pixels of the top edge of the right square plus a cell to the right of the 
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square, indicated by the three green boxes.  In Figure 9, the color of the horizontally-tuned cells 

indicates its activation, where black indicates no activation and bright green indicates that the 

horizontally-tuned cell at that location is firing rapidly.  In the circuit diagram on the right of Figure 

9, although the V2 bipole cell at the corner position has no input from its V2 simple cell, it becomes 

active due to the lateral connection between it and the V2 bipole cell on the right.  The net effect 

of this unchecked V2 bipole cell activity is the extended horizontal activation across each row 

where there is an active horizontally-tuned bipole V2 cell.  To explain how the interneurons 

prevent this runaway spread of activation and to explain the circuit diagram on the left of Figure 

9, it is necessary to explain the second key function of the interneurons. 

Their second function is to form an AND-gate, which is established by how interneurons 

and V2 bipole cells are connected by synapses. This is illustrated by Figure 10. 

 

Figure 10. An example to illustrate the AND-gate function of interneurons.  The input image 
consists of three white squares on a black background.  Each of the squares has a pixel-wide gap 
along the top edge. The three green squares on each white square indicate which pixel locations 

hat the circuits on the right correspond to. 

Figure 10, left column, provides output from the model given a stimulus consisting of three 

squares.  Square a has a gap in the center of its top edge, and the corresponding V2 simple cell 

output image also has a gap, i.e., although the vertically-tuned cells in the gap are firing a bit, there 

is little to no horizontal signal.  However, the corresponding V2 bipole cell output indicates that 

the horizontal cells at the gap location are active.  The left-most circuit diagram provides an 

idealization of how the AND-gate function of the interneurons facilitates this behavior: if both of 
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the neighboring V2 bipole cells are similarly active, then both interneurons will be inhibited and, 

thus, the interneurons do not inhibit the bipole cell at the gap location.  Thus, the gap is bridged 

by horizontal activity in this case. 

Squares b and c provide cases in which the interneuron AND-gate greatly reduces or shuts 

down activity of V2 bipole cells.  Unlike the example in Figure 9 above, the V2 simple cell activity 

in the corners and gaps is not entirely negligible when gaps are added to the squares.  To simplify 

this illustration of the properties of the interneurons, suppose that the corners have weak but non-

negligible horizontal V2 simple cell activity, which is represented in the Figure 10 circuit diagrams 

by the dark green fill, while the gaps have no activity.  The middle circuit diagram illustrates cell 

activity for three pixels at the top of square b: a pixel to the left of the gap, the gap, and the pixel 

corresponding to the top right corner of square b.  The right-most circuit diagram illustrates cell 

activity for three pixels at the top of square c: a pixel to the left of the gap, the gap (which was 

created by removing the pixel at the top right corner of the square), and a pixel to the right of the 

square corresponding to the background.  In both of these cases, one of the neighboring bipole 

cells, i.e., the left V2 horizontally-tuned bipole cell, is much more active than the other.  In turn, 

the interneuron on the left that it feeds into it will be excited and, thus, strongly inhibit the bipole 

cell at the gap.  These examples illustrate that if the V2 bipole cell activity to the left and right of 

the gap are not similar in strength, the interneuron AND-gate will greatly reduce or eliminate the 

activation of the V2 bipole cell corresponding to the position of the gap.   

So, given the bottom-up circuit presented thus far, neighboring cells must both be active 

and have around the same strength of activation for V2 bipole cell activity to spread across 

neighboring cells.  Otherwise, the interneuron AND-gate will prevent the spread of activity to 

neighboring cells that are tuned to the same orientation.  Returning back to Figure 9, the left circuit 

diagram (which is quite similar to square c), it is the AND-gate function of interneurons that 

prevents the runaway spread of V2 bipole cell activity: the strong activation of the left interneuron 

from the left V2 horizontally-tuned bipole cell causes the interneuron to strongly inhibit the V2 

bipole cell at the corner.  In turn, this strong inhibition offsets any activation sent from the left 

bipole cell to the bipole cell at the corner. 

Although somewhat simplified, this circuit functions very similarly to the bottom-up 

circuits of Francis et al. (2017).  However, in the version used here, the dedicated long-range 

pooling cells of the Francis et al. version have been replaced by: locally defined weights, and 
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interneurons and V2 bipole cells that now effectively pool input from neighboring V2 bipole cells 

as a function of a parameter for grouping speed.  For example, when grouping speed is set to 1, 

which is schematically depicted in Figure 11, bipole cells at i-1 and i-2 both have excitatory 

feedforward connections to the left interneuron, inhibitory feedforward connections to the right 

interneuron, and bidirectional excitatory connections to the bipole cell at location i.  

At higher grouping speed values, the number of pooled neighboring neurons is higher, but 

the same basic synapses are used, i.e., bidirectional lateral synapses from the central cell to its 

neighbors (brown arrows, Figure 11), an excitatory synapse from each neighboring bipole cell to 

one of the interneurons (magenta arrows, Figure 11), and an inhibitory synapse from each 

neighboring bipole cell to the other interneuron (blue synapses, Figure 11).  Note, however, that 

this parameter is not considered to be subject to top-down control.  Rather, it is regarded as set by 

the neural architecture and, in each simulation below, its value was fixed. 

 

Figure 11. In the current version of the model, the dedicated pooling cells of the 2017 version 
have been replaced with grouping speed, which involves more synapses between nearby V2 

bipole cells.  Colors are used here to highlight the different synapse types that are added for each 
neighboring cell that is involved, the number of which is a function of grouping speed. 
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TOP-DOWN CIRCUITS I: THE CONNECTION CIRCUIT 

To introduce top-down control of V2 connections into the model, we created a connection 

circuit with three component circuits: Spread Controller, Long Controller, and Short Controller 

(see Figure 12 for an overview, but each component will be presented and explained in detail 

below).  These circuits allow for top-down control of the range of V2 connections by adjusting 

two timing parameters, which allows boundary signals to spread, and two size parameters, which 

prevent the spread of either long or short boundaries.  A version of the Spread Controller Circuit 

was originally implemented by Francis and Bornet (2019). (Although the structure of this version 

is the same in the present model, I modified some weights and filters due to its interaction with the 

other components of the connection circuit.)  I implemented the Long and Short Controller circuits.   

In the next two sections, I present each component of the Connection Circuit in turn. 

Spread Controller Circuit 

Spread is encouraged by the Spread Controller Circuit, shown in green in Figure 13. Top-

down control of the Spread Controller cell consists of tuning two timing parameters: the onset of 

top-down input, and the duration of this input. To introduce this circuit, I initially focus on the 

impact of top-down control duration on connection formation. Onset is here fixed at 0 milliseconds 

(ms), i.e., top-down control begins at the same time as stimulus onset. Later in this section I explain 

how varying the onset can impact connection formation.  

When the Spread Controller cell is excited, it inhibits the interneurons and thereby allows 

for uninhibited spread of activity among bipole cells. When the Spread Controller is no longer 

active the interneurons return to their default function, i.e., they halt the spreading of connections 

and, eventually, eliminate any created connections that have not formed a closed set. 

To understand the dynamics of the circuit, consider its behavior in Figure 14.  
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Figure 12. A schematized depiction of the entire Connection Circuit.  As explained below, though, this is simplified 
for the sake of clarity: the Short Control Accumulator cell pools input from all V2, layer 4, cells tuned to the same 

orientation that are in positions i±5 relative to the position of the simple cell at i. Similarly, the Long Control 
Accumulator cell pools activity from simple cells at positions i±24.  Each arrow from “Top-down connection 

control” represents the value of the connection parameters, i.e., onset and duration of the Spread Controller and a 
constant non-negative current into the Short and Long Controllers.  The remainder of the arrows represent synapses: 
excitatory synapses are represented by arrows with triangular heads, while an inhibitory connection is represented 

by a dashed line with a square head.  Color of synapses and cells indicate that they constitute a particular module of 
the Connection Circuit. 
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Figure 13. Horizontally-tuned V2 cells (ovals) and interneurons (gray circles) with the Spread Controller Circuit 
(green). The Spread Controller Circuit allows for top-down control of the spread of connections between bipole cells 
via the inhibition of the interneurons for a particular period of time. The longer the interneurons are inhibited by the 

Spread Controller cell, the farther the signal from active bipole cells can spread. 
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Figure 14. An illustration of the temporal dynamics of connections for a simulation where the Spread Controller cell 
is excited for a duration of 80 ms with onset at 0 ms. Each image shows the activity of V2 bipole cells for a 50 ms 

interval, e.g., the first image represents activity from the time period 50-100 ms after stimulus onset. 
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Here, the stimulus is the set of squares from Figure 5. Top-down control is imposed for a 

duration of 80 milliseconds (ms) beginning at the appearance of the stimulus. Because it takes time 

for neurons to respond to changes in stimulation (in particular for the interneurons in Figure 13 to 

recover from the inhibition provided by the top-down control), connections are able to spread for 

around 200 ms. With these parameters, the horizontal bipole cells aligned with the top and bottom 

edges of the four leftmost squares connect and so do the two rightmost squares. However, not 

enough time has elapsed for the two groups to connect. Once the effects of top-down control have 

dissipated, the interneurons start to block spreading of signals. This is due to the interneurons 

resuming their AND-gate function described above: asymmetric contours are inhibited, and 

symmetric contours are maintained.  In more detail, wherever there is sufficient imbalance between 

the inputs to the left and right interneurons of a given bipole cell, one of the interneurons will be 

activated and will inhibit its associated bipole cell. In essence, this means that the end of a line of 

connections erodes back to wherever there is bottom-up stimulation (Francis et al., 1994). This 

erosion can be seen in Figure 14 by observing how the green (horizontal) connections on the far 

right shrink back to the edges of the rightmost square. In contrast, connections that link stimulus 

driven edges remain active because each adjacent bipole cell along a connection provides nearly 

equivalent excitation and inhibition to each interneuron, so the interneurons hardly inhibit their 

bipole. For example, the connections between the middle two squares on the left remain active.  

Figure 15 shows equilibrium results, i.e., the contours that are maintained after the system 

settles down, from four simulations, each with a different duration of top-down control excitation 

of the Spread Controller cell.  
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Figure 15. Altering the duration of excitation to the Spread Controller cell produces different connections between 
the detected edges for this stimulus. For each simulation, onset of top-down control excitation is at onset of the 
stimulus, i.e., at 0 ms. Here each image shows bipole cell activity summed over 50 ms at 1700 ms after stimulus 

onset. Each of these simulations was run for 1700 ms (model time) because this was the time at which the simulation 
with the longest Spread Controller duration (220 ms) settled down in to an equilibrium state. 
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For a 0 ms duration, there is no top-down control at all, and no connections form between 

the elements; the only boundaries are those generated by the stimulus edges.  In this case, no 

inhibitory signal is sent to the interneurons, which results in V2, layer 2/3, operating as described 

in the previous section: V2 connections do not spread because they are kept in check by excitatory 

input from neighboring bipole cells to the interneurons. For a positive duration, the connections 

spread unchecked for a period of time before the interneurons resume their AND-gate function.  

The longer this duration, the farther the connections can spread.  For a duration of 15 ms, each 

square connects to its nearest neighbor. For a duration of 80 ms, connections form among the four 

leftmost squares and between the two rightmost squares. For 220 ms, all six squares connect with 

each other. Thus, by altering a single timing parameter, the Spread Controller Circuit in Figure 13 

allows for flexible groupings that emulate how observers can perceive Figure 5 in different ways.  

So far we have seen how stimulus elements can be linked using horizontal connections. 

The Spread Controller Circuit is orientation specific, i.e., it can encourage the spread of active 

bipole cells that are tuned to a specific orientation independently of active bipole cells with 

different preferred orientations. Figure 16 shows the connections resulting in five simulations 

where top-down control duration was varied for horizontal and vertical orientations.  

With different combinations of durations for these orientations, the circuit can promote a 

wide variety of connections.  

Recall that the Spread Controller Circuit is influenced by two top-down control parameters: 

duration and onset.  So far in this discussion, onset has been kept fixed at 0 ms.  Depending on the 

stimulus, varying Spread Controller onset may or may not alter what connection patterns are 

possible.  For some stimuli, shifting the onset of the top-down control excitation to the Spread 

Controller cell can produce the same set of connections provided that the excitation duration is 

also changed. For example, Figure 17 shows that different connections can be formed among pairs 

of horizontal and vertical lines.  
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Figure 16. Demonstration that the spread of V2 connections is orientation specific and, additionally, that each 
orientation has its own duration of top-down control. The images show bipole cell activity summed over 50 ms at 

700 ms after stimulus onset. The top-down control excitation began at stimulus onset, i.e., at 0 ms. 
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Figure 17. An example of how different combinations of onset and duration of the top-down 
control excitation can produce the same patterns of connections. Each image shows bipole 

activity summed over 50 ms from 700-750 ms after stimulus onset. 

The same connections can be produced with an early onset of Spread Control excitation (0 

ms, stimulus onset) or with later onset of Spread Control excitation (25 ms after stimulus onset). 

To produce equivalent connections, the later onset requires a shorter duration of Spread Control 

excitation. This is because it takes time for activity to propagate through the system after the 

stimulus is shown and, in turn, bipole cell activity is relatively weak during the first 50 ms of 

stimulation. Due to this initially weak bipole signal, a longer duration of Spread Control input is 

needed to produce the same connections when control input onset is at 0 ms compared to a 

simulation where input onset occurs after stimulus onset.  

For other stimuli, a different onset will sometimes produce different connection 

possibilities. For example, consider the stimulus consisting of equidistant shapes in Figure 18.  
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Figure 18. An example of how varying the onset of the top-down control duration can produce 
different patterns of connections. The images in row 4 have different connection patterns. Each 

image shows bipole cell activity summed over 700-750 ms after stimulus onset.  

Each column shows the possible connections for a particular Spread Controller onset. 

Compare the images in each row. The connections in all but the fourth row are identical, which is 

similar to the results in Figure 17, where different combinations of onset and duration produce the 

same connections. In row 4 of Figure 18, the left image has connections between the square and 

circle, while the right image does not. Moreover, the left image lacks connections between the H 

and X, while there are such connections in the right image. In fact, there is no duration with onset 

at 0 ms that produces the connections shown in row 4 of the right column, and similarly for an 

onset of 25 ms and the connections in row 4 of the left column. This is due to the boundary signal 

being relatively weak at the beginning of a simulation. The single pixel horizontal edge of the H 

top/bottom is quite weak for a longer period of time than the top/bottom of the circle. Thus, a 

longer top-down control duration is required to connect the (weak) H and X (e.g., Figure 18, 

column 1, row 5), but this long duration also causes the top and bottom of the (strong) circle to 

connect with the squares. In contrast, with a 25 ms onset of the Spread Controller, the horizontal 

top/bottom of the H is strong enough to spread to the X before the top/bottom of the circle spreads 

to the square (because the connections from the circle must travel a longer distance). Thus, with a 
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0 ms onset, the relative strength of the circle signal allows it to overcome the handicap imposed 

by distance since here the H top/bottom is handicapped by being very weak. Similarly, differences 

in the activity of neurons near stimulus onset compared to later in the simulations explain why 

settings with the same top-down control duration but different onset do not produce identical 

connections. For later onsets, even with different durations, the circuits would produce nearly 

identical connection patterns.  

Figure 19 contains parameter maps that demonstrate the abilities and limitations of the 

Spread Controller for the images shown at the top of each map.  

 

Figure 19. Parameter maps describe the possible connection patterns for a small image of squares 
and circles (left) and H’s and X’s (right). A simulation was conducted for each pair of duration 

and onset plotted here, where duration and onset values ranged from 0 to 60 ms in increments of 
1 ms. 

Each parameter map was created by running a simulation for each pair of values in the map. 

For the Figure 19 maps, the values for onsets and durations ranged from 0 to 60 ms in increments 

of 1 ms. Each simulation was run for 750 ms because the system reached an equilibrium state by 

this time. I identified sets of parameter values that produced the same connection pattern and used 

these to produce the parameter maps. Simulations for all parameter maps were run in parallel on 

three systems: a virtual machine running Ubuntu 20.04.2 (24 cores, 60 GB RAM) on XSEDE 

Jetstream (Stewart et al., 2015; Towns et al., 2014), a 2021 M1 Max MacBook Pro (10 cores, 64 

GB RAM), and a 2019 Intel MacBook Pro (8 cores, 32 GB RAM). Checks of the different 

computing systems indicate that they give the same results. All simulations were programmed 
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using Python scripts with the package NEST 2.14.0 (Peyser et al., 2017) for creating the cells and 

synapses and for managing network dynamics. 

Each pixel in a parameter map corresponds to a pair of onset and duration values. The color 

of a pixel indicates the resulting connections produced by these parameter values, and the image 

on/near each colored area shows the resulting bipole activity (700-750 ms after stimulus onset) 

and connection pattern at equilibrium. Consider the parameter map on the left. Consistent with the 

description of the Spread Controller, when Spread Controller duration is small, no elements 

connect with any other element (the black region on the bottom of the parameter map), regardless 

of the Spread Controller onset. When the Spread Controller duration is long (the red and green 

regions), every element connects with its nearest neighbor (in slightly different ways for the red 

and green regions, respectively). The other colored regions indicate parameter pairs that produce 

slightly different connections involving how the elements connect (or not) with each other.  

These Spread Controller parameters play a similar role in the connection patterns for the 

stimulus image on the right of Figure 19. With a short Spread Controller duration, elements do not 

connect with each other (black region on the bottom of the parameter map). With a long Spread 

Controller duration all elements connect with their neighbors (burgundy, dark blue, purple, light 

purple, cyan, and magenta regions) in different ways. A discussed above, delayed onset of the 

Spread Controller signal promotes more connections even for short Spread Controller durations 

(as indicated by the negatively sloped boundary between different colored regions). The other 

colored regions (intermediate Spread Controller durations) indicate connection patterns where 

some elements do not connect with their neighbors. 

At least for these stimuli, a given connection pattern is generally produced by a relatively 

large set of similar Spread Controller parameter values. This property suggests that such 

connections are not “fragile” and that top-down control could reasonably be defined, even with 

some noise, in such a way as to promote a desired set of connections. However, there are a few 

esoteric connection patterns, such as the pattern corresponding to the brown pixels near the lower 

right of the H’s and X’s parameter map, that should be difficult to produce because they depend 

on a precise set of parameters. 

Unsurprisingly, the Spread Controller seems to implement the Gestalt principle of grouping 

by proximity, where “close” elements are defined in various ways by the onset and duration of the 

Spread Controller, e.g., it can form groups based on proximity for the row of squares in Figure 15. 
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However, the variability provided by this circuit is not enough to account for how humans seem 

to group some sets of visual elements. In the example stimulus in Figure 17, manipulation of the 

Spread Controller cannot lead to “grouping by orientation,” where there are connections only 

between lines of the same orientation, with no connections between any horizontal and vertical 

lines. The problem is that horizontal Spread Controller durations that allow connections to form 

between the tops/bottoms of the vertical lines on the left also lead to connections between the upper 

horizontal lines with the top of the rightmost vertical line. The stimulus in Figure 18 provides 

another example of how the Spread Controller Circuit is insufficient to capture some perceived 

groupings, e.g., connect only each pair of same-shaped elements. This ability is oftentimes labeled 

an instance of the Gestalt “similarity principle.” Proximity control afforded by the Spread 

Controller Circuit does not support such an ability for this stimulus because there seems to be no 

top-down Spread Controller onset and duration that leads to connections only between same-

shaped pairs.  

To deal with these kinds of limitations, I speculate that there are two additional circuits: a 

Long Controller and a Short Controller. For particular kinds of elements, they each reduce the 

spread of connections induced by the Spread Controller and, in turn, can be used to control which 

elements connect. I describe both of these connection circuits below and then explain how all three 

circuits work together to support different kinds of connection patterns.  

Long and Short Controllers Overview 

To provide even greater flexibility in the formation and control of connections between 

elements, I introduce two additional circuits that reduce the contribution to connections of bottom-

up edges of specified lengths. Both of these circuits interact with the Spread Controller by exciting 

the interneurons that shut down connection formation. For the Long Controller, such excitation 

prevents boundaries of “sufficiently long” edges from spreading connections while allowing 

boundaries of shorter edges to spread. For the Short Controller, such excitation prevents 

boundaries of “sufficiently short” edges from spreading while allowing boundaries of longer edges 

to spread. In each circuit, the term “sufficiently” is established by the strength of top-down control 

input. Like the Spread Controller, the Long and Short Controllers are both orientation specific.  

Typically, the top-down input for the Long or Short Controller is set to a fixed value for 

the duration of a stimulus, making the Short and Long Controller Circuits active for an entire 
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simulation. However, the impact of these circuits depends on the timing of the Spread Controller, 

because neither the Long nor Short Controller has much influence when the Spread Controller 

fully inhibits the interneurons (then connections spread from edges of all lengths). Thus, the Long 

and Short Controllers typically influence the formation of connections by affecting the 

interneurons before and shortly after onset and after offset of top-down excitation to the Spread 

Controller. If Spread Controller onset occurs with stimulus onset, the Long and Short Controllers 

typically influence connection formation only after Spread Controller offset, which, as is discussed 

in the next two subsections, can alter what set of connections form.  

Long Controller Circuit 

The Long Controller prevents a long edge (consisting of many pixels) in a stimulus from 

generating the outward spread of connections. Figure 20 shows how the Long Controller integrates 

into the connection circuit described in Figure 13.  

The new components are emphasized with thick lines and orange color. A Long Control 

Accumulator at each pixel for each orientation has a large receptive field that gathers inputs from 

many oriented cells along the direction of the preferred orientation. The size of the large receptive 

field only needs to be big enough to cover long enough edges. The simulations shown here 

accumulated inputs from a receptive field of plus/minus 24 pixels around a given bipole cell pixel. 

If the Long Control Accumulator receives sufficient excitatory input, then it activates the bipole 

interneurons, and their activity shuts down the connection spreading process at that pixel. Without 

any top-down control signal, the Long Control Circuit prevents any sufficiently strong boundaries 

from spreading connections.  

Top-down control, i.e., Long Controller input, enables the spread of connections from a 

long edge by exciting the Long Controller Cell, which inhibits the Long Control Accumulator. If 

this inhibition is sufficiently strong, then the Long Control Accumulator does not drive the 

interneurons and connections can spread from a long edge of input signals. For moderate values 

of Long Controller input, connections will spread for short edges but not for long edges. The effect 

of different Long Controller input values can be seen in Figure 21, left column.  
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Figure 20. The components of the Long Controller Circuit for a horizontally-tuned bipole cell at a particular pixel 
location are shown in orange. Although (for the sake of reducing clutter in the image) only two cells (bottom row) to 

the left and right of this bipole cell are shown here, the horizontal Long Control Accumulator cell pools activity 
from 24 horizontally-tuned complex cells to its left and right. 
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Spread Controller
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Long Control Accumulator
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Figure 21. The connections resulting from simulations with different input to the Long Controller cell. The Long 
Controller Circuit is effectively off when the input to the Long Controller is very high, e.g., 1000, and has maximum 

restriction when the input is 0. For each simulation in the left column, Spread Controller onset was at 25 ms after 
stimulus onset and had a duration of 40 ms. For the simulations in the second column, Spread Controller onset was 

at 0 ms and the duration was 66 ms. 

Here, the horizontal Spread Controller onset and duration were 25 ms and 40 ms, 

respectively. The vertical Spread Controller duration was set to 0, so no vertical connections form. 

For high Long Controller input (e.g., 1000), the Long Controller Circuit is effectively off: length 

of the input edges does not impact the formation of connections (the top-down control signal 

completely inhibits the Long Control Accumulator regardless of the number of signals feeding into 

its large receptive field). For the given Spread Controller duration, the very small horizontal edges 

at the top of each vertical line connect with their nearest neighbor. The top of the rightmost vertical 

line also connects with the longer horizontal lines on the far right.  

With a weaker Long Controller input of 1.0, the spread from the long horizontal lines is 

reduced and can no longer reach to the top of the rightmost vertical line. This occurs because the 

long horizontal lines contribute a quite strong signal to the Long Control Accumulator neurons 

through their long range receptive fields. These strong signals can activate the Long Control 

Accumulator and thereby excite the interneurons, which then shut down the formation of 

connections. Thus, long edges do not form connections, but short edges (such as the tops of vertical 

lines) do form connections. For a slightly weaker input of 0.95, the long horizontal lines do not 

connect with each other.  
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With an even weaker value of 0, there is some “bleed” over to the top of the rightmost 

vertical line. The Long Control Accumulator cells for this line register the long horizontal edge to 

its right due to their large receptive fields. Figure 22, which shows V2, layer 4, activity over 50 

ms, helps to visualize the location of these receptive fields for two bipole locations indicated by 

the center orange box of each ‘star’.  For a given horizontally-tuned bipole cell, the pool consists 

of the 24 V2, layer 4 cells to the left and right of it that are horizontally-tuned, e.g., the horizontally-

tuned cells that correspond to the positions of pixels in the horizontal white boxes in Figure 22.  

(On the other hand, if the cell at this location was vertically-tuned, it would pool from vertically-

tuned V2, layer 4 cells above and below this location, e.g., from the vertically-tuned cells that 

correspond to the positions of pixels in the magenta boxes.  Each diagonal Long Control 

Accumulator cell at that location pools V2, layer 4, activity, indicated by the relevant cyan box.)   

 

 

Figure 22. V2, layer 4, output from the grouping by orientation example to illustrate the difference between activity 
pooled by the Long Control Accumulator cell for a cell at the top of a vertical bar that is near the horizontal lines 
(right set of boxes) and that of a cell that is at the top of a vertical bar farther from the horizontal lines (left set of 

boxes). The white pair of boxes on the right overlaps with more active horizontally-tuned V2, layer 4 cells, and the 
Long Control Accumulator cell at the location indicated by the orange pixel at the center of these white boxes has 
stronger input since it pools from this set of cells.  In contrast, the white pair of boxes on the left overlaps with far 

fewer and weaker horizontally-tuned cells.  Since the Long Control Accumulator cell at the location indicated by the 
orange pixel between these white boxes is weakly excited, it does not excite the V2 interneurons as much.  Thus, the 
Long Controller will more strongly excite the interneurons at the position on the right than the position on the left, 
and this prevents V2 connections forming between the far right vertical bars only given a Long Controller input of 

zero. 

Regarding Figure 21 when input to the Long Controller is at 0, although the horizontal 

edges at the top of the vertical bars are quite short, the top edges of the far-right pair of vertical 

bars are near to and aligned with the top left horizontal bar.  In effect, the Long Control 

Accumulator cells at these locations pool this signal along with that from the top left horizontal 

bar, an example of which is indicated in Figure 22 by the green pixels in the right white box.  This 
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causes strong excitatory signals to be sent to the horizontally-tuned interneurons at the tops of the 

far-right pair of vertical lines that, in turn, inhibits their horizontal spread and prevents them from 

connecting.  The ends of all other vertical lines, on the other hand, although also pooled by Long 

Control Accumulator cells, may only slightly excite the interneurons at those locations because 

the horizontal signal that these Long Control Accumulator cells end up pooling is quite weak 

(which is indicated by the green pixels in the left white box); yet this small excitation is not enough 

to prevent these short edges from connecting. In turn, the top edges of the rightmost pair of vertical 

do not generate connection spreading, while the other pairs of vertical lines maintain their 

connections even with a Long Controller input of 0.  

In the simulations discussed thus far, the Spread Controller onset was fixed at 25 ms after 

stimulus onset. However, the Spread Controller onset interacts with the Long Controller to 

determine what connections are possible. For example, when Spread Controller onset is the same 

as stimulus onset, i.e., is at 0 ms, a somewhat different set of connections can be produced as 

shown in the right column of Figure 21. The connections in the top two rows are essentially the 

same (even when having slightly different values for the Long Controller).  

With a Spread Controller onset of 25 ms, the simulations on the left side of Figure 21 show 

that it is possible (with Long Controller input between 0 and 0.95) to connect the vertical lines 

without connecting the long horizontal lines. Such a connection pattern is not possible when the 

Spread Controller has an onset of 0 ms and a duration of 66 ms (simulations on the right side of 

Figure 21). With the earlier appearance of Spread Controller inhibition, the interneurons are almost 

fully inhibited before signals from the Long Controller come in to play. With such strong inhibition, 

both long and short edges contribute to connection formation even when the Long Controller is at 

its maximum with an input of 0 (Figure 21, right column, last row). In contrast by delaying the 

Spread Controller onset by 25 ms and having 0 Long Controller input, long edges tend to generate 

excitation from the Long Control Accumulator to the interneurons just before the Spread 

Controller cell inhibits the interneurons. Thus, for a short time, the long edges cannot contribute 

to the formation of connections. Should the Spread Controller remain active long enough, 

eventually even the long edges would contribute to connection formation. But here, the Spread 

Controller turns off before the interneurons corresponding to long edges would be fully inhibited, 

so the long edges never get a chance to contribute to connection formation.  
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In sum, generally when the Long Controller Circuit is on, the connections that spread from 

long edges do not travel as far as those from shorter edges.  This is due to the way in which the 

Spread Controller Circuit and Long Controller Circuit interact and the design of the Long 

Controller Circuit.  In the Figure 21 example with Spread Controller onset at 0 ms, the Spread 

Controller inhibits the V2 interneurons for all horizontal edges for 40 ms and thereby encourages 

the spread of all horizontal edges, while the Long Controller constantly excites these interneurons 

in proportion to the length of the edge.  In other words, the longer the horizonal edge (or, more 

precisely, the more horizontal signal that the Long Control Accumulator cell pools), the more the 

spreading of horizontal connections is inhibited.  In turn, the Long Controller Circuit allows the 

Connection Circuit more flexibility: an observer can tune this parameter to connect pairs of vertical 

lines and horizontal lines without connections between vertical and horizontal lines and, at least 

for this stimulus, group elements by orientation.   

While the specific connection patterns can vary a lot for different combinations of Spread 

Controller duration and Long Controller input, the parameter maps in Figure 23 demonstrate that 

the circuit behavior follows fairly simple rules that govern the connection patterns.  

 

Figure 23. Parameter maps for the stimulus shown at the top of each plot. To provide a fine-grained picture of 
connections possible with different Long Controller inputs, Spread Controller duration ranged from 0 to 60 ms in 

increments of 1, and Long Controller input ranged from 0 to 3.50 in increments of 0.01. For all simulations here, the 
Spread Controller input was turned on 25 ms after stimulus onset. 

  



 

56 

Longer Spread Controller durations and larger Long Controller input values allow for more 

connections to form between elements (e.g., the red region in the upper right of the parameter map 

on the left side of Figure 23). With some fine tuning of the parameter pair (e.g., the yellow, olive 

green, and magenta regions), it is possible to form connections between squares and between 

circles, but not between a circle and a square. For very specific parameters values (e.g., the orange 

region around input 2.5 and duration 18 ms), it is possible to form connections between a square 

and a circle but not between same-shaped elements. I suspect that such a connection pattern would 

be difficult to maintain due to cortical noise. 

The parameter map for the H’s and X’s image on the right side of Figure 23 shows similar 

relationships between Spread Controller duration and Long Controller input. Most connection 

patterns can be produced by a set of similar parameters, but a few connection patterns are very 

fragile. 

Although it enables a variety of connection patterns, the Long Controller still has some 

limitations. The parameter maps indicate that the Long Controller may be adjusted so as to connect 

all and only same-shaped pairs in the stimulus with squares and circles (the yellow, olive green, 

and magenta areas in the left map of Figure 23), but there is no pair of parameters that form 

connections between the H’s and connections between the X’s, while not connecting the middle 

X and H. Thus, a connection circuit with a Long Controller cannot connect the elements so as to 

facilitate grouping by shape similarity for this stimulus. 

Short Controller Circuit 

The Short Controller Circuit reduces the spread of connections from short edges. Figure 24 

shows how the Short Controller Circuit integrates into the bipole circuit described in Figure 20.  

The new components are drawn with thick red lines. Similar to the Long Controller, the 

Short Controller Circuit operates by exciting the interneurons of the modified bipole circuit to 

prevent connection spreading. This excitation is provided by the Short Control Trigger cell, which 

exists at each pixel location. The trigger cell receives excitation from the complex cell at its pixel 

location (indirectly through an interneuron in order to equate the number of synapses for other 

inputs, which allows the inhibition from the Short Control Accumulator and the excitation from 

the gray interneuron with a red border to reach the Short Control Trigger at roughly the same time). 

The trigger cell also receives inhibition from the Short Control Accumulator. The accumulator 
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gathers excitatory input from nearby pixels that align with the bipole cell’s orientation preference. 

The size of the accumulator receptive field does not matter much; I used 5 pixels on either side of 

the bipole cell in my simulations.  

 

Figure 24. The components of the Short Controller Circuit are shown in red for a horizontally-tuned bipole cell. 
Although, for the sake of simplicity, this schematization indicates that the Short Control Accumulator only pools the 
activity from two complex cells corresponding to locations neighboring that of the bipole cell (and the complex cell 
that feeds into the bipole cell), in the simulations each horizontal Short Control Accumulator cell pools activity from 

the five horizontally-tuned complex cells (bottom row) that are to the left and right of the bipole’s pixel location. 

Let us first consider the circuit’s behavior with no top-down control (input equals zero). 

Suppose the bipole cell of interest is in the middle of a long set of edges that covers the full 

receptive field of the Short Control Accumulator. The Short Control Accumulator will be strongly 

excited and will strongly inhibit the Short Control Trigger. Since the Short Control Trigger only 

receives input from a single complex cell (the cell at the same corresponding pixel location as the 

bipole cell, which is directly below the cell labelled “Bipole Cell” in Figure 24), it is inhibited by 

the Short Control Accumulator, which receives stronger net input. Thus, in this case, the Short 

Control Trigger does not excite the bipole circuit’s interneurons, so connections spread normally 

(depending on whether the Long Controller or the Spread Controller Circuits are excited). Now, 
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suppose the horizontally-tuned bipole cell of interest is nearly isolated (say, it is the top of a thin 

vertical line). Then, the Short Control Accumulator receives little excitation that is nearly 

equivalent to what is received by the Short Control Trigger cell. The synapse strength between the 

complex cell and the Short Control Trigger is fairly weak, so the trigger is inhibited, in net. Thus, 

without any top-down control, i.e., without any input to the Short Controller cell, the Short Control 

Circuit allows spreading of both long and short edges.  

The top-down short control input influences spreading by inhibiting the Short Control 

Accumulator. Figure 25 demonstrates the Short Controller’s effects when this circuit is applied to 

the grouping by orientation example.  

 

Figure 25. Connections formed for different top-down inputs to the Short Controller cell. Each image shows the 
activity of bipole cells for 50 ms of model time after 700 ms of a simulation. For each simulation, the other 

connection parameters were fixed: Spread Controller duration was set to 40 ms (beginning at 25 ms), and the Long 
Controller Circuit was effectively turned off with an input of 1000. 

Horizontal Spread Controller onset and duration are fixed at 25 ms and 40 ms, respectively. 

The delayed onset allows the Short Controller Circuit to influence the interneurons as the Spread 

Controller starts to allow connections to form. As the simulations show, increasing the Short 

Controller input blocks short edges from contributing to connection formation. This control 

happens because the excitatory bottom-up input to the Short Control Accumulator needs to exceed 
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the inhibitory top-down input in order to prevent the Short Control Trigger from halting connection 

spread. As shown in Figure 25, when the top-down Short Controller input is 1.0, the short 

horizontal edges at the end of each vertical line do not generate connections. This occurs because 

such short edges do not provide sufficient excitatory input to the Short Control Accumulator to 

overcome the inhibition from the excited Short Controller cell, so the Short Control Trigger halts 

connection spreading. In essence the magnitude of the top-down Short Controller input determines 

the definition of “short” for a given stimulus. As shown in Figure 25, with a value of 3.5, the 

horizontal lines on the far right are deemed “short” and do not generate connections.  

Together, the Long and Short Controllers can capture some sense of “similarity” between 

elements. Figure 26 shows simulation results for the row of shapes in Figure 18.  

 

Figure 26. The impact of different inputs to the Long Controller (left column) and Short Controller (right column) 
for the stimulus at the top. For each simulation, Spread Controller duration was 30 ms and Spread Controller onset 
was at 25 ms, i.e., Spread Controller parameters at which at least all similarly shaped pairs were connected. For the 

left column, which demonstrates the effect on connections of different Long Controller input values, the Short 
Controller (Long Controller) was turned off for each simulation by having the top-down Short Controller input set at 
0.  To demonstrate the effect of different Short Controller input values, the Long Controller was turned off for each 

simulation in the right column by having the top-down Long Controller input set at 1000. 

For all of these simulations, the Spread Controller onset is 25 ms with a duration of 30 ms. 

As we saw before, these Spread Controller parameters are insufficient, by themselves, to connect 

all and only each same-shaped pair. The simulation results on the left side of Figure 26 vary the 
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input to the Long Controller while keeping the Short Controller input at 0 (so that the Short 

Controller does not influence connection spreading). With large values of Long Controller input, 

all edges (both short and long) can easily spread connections, so elements connect both within and 

between pairs. For smaller Long Controller inputs, long edges are less able to spread connections. 

This impact is most notable for the value 1.0, where the long edges of the squares no longer connect 

but the small horizontal edges at the tops of the X’s are able to connect (but they also connect with 

the nearby H).  

The simulation results on the right side of Figure 26 vary the input to the Short Controller 

while keeping the Long Controller with an input of 1000 (so that the Long Controller does not 

influence connection spreading). For small top-down inputs to the Short Controller, both short and 

long edges can spread connections, so elements connect both within and between pairs. With large 

values of Short Controller input, only long sets of edges can spread connections. This impact is 

especially noticeable for the value 2.5, where the pair of squares and the pair of H’s connect, but 

the pair of circles and the pair of X’s cannot connect. For a large enough input value to the Short 

Controller (for these stimuli a value of 3.5 is sufficient), essentially all edge sets are deemed “short” 

and cannot spread connections.  

The Short Controller interacts with the Spread Controller. Figure 27 plots two parameter 

maps, for different stimuli, that categorize different connection patterns for various combinations 

of Spread Controller duration and Short Controller input.  

For these simulations, the Spread Controller onset was always 25 ms and the Long 

Controller was off. The resulting connections are robust in the sense that each possible pattern of 

connections can be produced by many pairs of duration and Short Controller input values, as 

indicated by the relatively large areas in the Figure 27 parameter maps. 

Although the short and Long Controllers capture some aspects of grouping by shape 

similarity, they are insufficient, on their own, to impose some desired groupings. In particular, if 

an observer wanted only the same-shaped pairs in Figure 26 to connect, they would not be able to 

do so only by manipulating one parameter. The next section shows how combinations of 

parameters allow for complex connection patterns that facilitate a variety of Gestalt groupings.  
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Figure 27. Parameter maps of Short Controller input and Spread Controller duration for the stimulus shown at the 
top of each plot. To provide a fine-grained picture of connections possible with different Long Controller inputs, 

Spread Controller duration ranged from 0 to 60 ms in increments of 1, and Long Controller input ranged from 0 to 
3.50 in increments of 0.01. For all simulations, Spread Controller onset was 25 ms after stimulus onset and, thus, the 
second column of Figure 26 provides some examples of parameter values and resulting connections that are shown 

in these maps. 

Combining Connection Controllers to Promote Gestalt Groupings 

By adjusting the onset and duration of the Spread Controller and the top-down inputs for 

the Long and Short Controllers, an observer can influence what elements in a scene form 

connections, and thereby influence perceived groupings. For example, we already saw in Figure 

21 that a combination of Spread Controller onset and duration and Long Controller input can result 

in connections that can be described as grouping by orientation for this stimulus. With Spread 

Controller onset at 0 ms and a duration of 66 ms, and with Long Controller input of 0.8, only the 

lines of the same orientation are connected together.  

Figure 28 shows a situation where a combination of Spread Controller onset and duration 

and Short Controller input can connect stimulus elements in a way characterized by the Gestalt 

principle of size similarity, i.e., each adjacent same-sized pair is connected but there are no 

connections between the pairs.  
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Figure 28. Model output for two simulations that have a Spread Controller onset of 0 ms and a duration of 55 ms for 
a stimulus that can be grouped by similarity of size. For the model to form connections between all and only same-

sized elements, the Short Controller must be on with an input of around 0.95 in order to prevent the connections that 
result between the pairs of same-sized circles shown in the middle image. 

Here, the stimulus consists of a pair of large squares, a pair of small squares, a pair of large 

circles, and a pair of small circles. For the squares, size grouping is easy to achieve even with no 

Short Controller input because the bipole connections spread only in the direction of the orientation 

preference (e.g., horizontal connections only spread horizontally). Due to their difference in size, 

the tops/bottoms of the small squares do not line up with the tops/bottoms of the large squares, so 

they cannot connect. However, due to the somewhat fuzzy response of an oriented filter to the top 

of a circle, there is some alignment in the horizontal responses to the large and small circles. When 

the Short Controller input equals 0, these weak horizontal signals connect across pairs. Such a 

grouping cannot be controlled simply by lowering the Spread Controller duration (here set to 55 

ms with an onset of 0 ms) because doing so would prevent the formation of connections within the 

same-sized circle pairs.  

Setting the Short Controller input to a value of 0.95 makes the weak/fuzzy horizontal signal 

generated at the top of a circle too weak to promote connections. The input value is chosen so that 

just the weakest parts of the fuzzy response are blocked; the stronger responses along the circle 

edge are “long” relative to the top-down controlled Short Controller input value, and so they form 

connections within each circle pair. As can be seen in Figure 28, with these top-down parameters, 

it is possible to form connections within each pair but not between pairs. It is the combination of 

top-down parameters that supports such groupings.  
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For the stimulus in Figure 18, all three connection circuits are needed to connect elements 

in accord with the Gestalt principle of grouping by shape similarity, i.e., all and only same-shaped 

adjacent pairs are connected. As can be seen in the simulation results in Figure 29, a combination 

of Spread Controller onset and duration and long and Short Controller inputs connects same-

shaped pairs while preventing connections between pairs.  

 

Figure 29. Model output for four simulations with different combinations of connection parameter values. For each 
simulation, Spread Controller duration is 30 ms with an onset of 25 ms. The Long Controller input of 2.0 eliminates 
connections between the square and circle, while the Short Controller input of 0.8 eliminates connections between 
the H and X. By combining these connection parameters, the model can produce connections that effectively group 

the stimulus elements by shape as shown in the bottom image. 

Thus, with the appropriate top-down control parameters, it is possible to group the elements 

in this stimulus by shape similarity.  

Figure 30 demonstrates that different combinations of the top-down parameters for the 

Spread Controller, Long Controller, and Short Controller Circuits can lead to connections that 

largely emulate the Gestalt principles of grouping for a variety of stimuli.  
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Figure 30. Grouping rules that can be accounted for by tuning the top-down control parameters of the connection 
circuits. The first proximity stimulus (row 1) is similar to examples in Köhler (1925). The stimuli with filled shapes 
(rows 2, 6, and 8) and the orientation stimuli (rows 3 and 4) are adapted from examples of “classical principles of 

grouping” listed by Palmer (1999; 2002). The first closure stimulus (row 9) appears in Köhler (1925), and the 
second (row 10) is from Pomerantz and Kubovy (1986). The symmetry stimulus (row 11) is adapted from Palmer 

(1999; 2002). Spread Controller onset was at 0 ms for all stimuli. For the Long Controller input, “off” means that a 
large value (1000) is provided. For the Short Controller input, “off” means that a value of zero was provided. 

Rather than being “principles” in an absolute sense, I propose that such groupings reflect 

task-specific characteristics. For example, the stimulus in row 8 of Figure 30 may be regarded as 

exemplifying grouping by shape similarity (Palmer 1999; 2002). I hypothesize that such a 

statement motivates observers to search for top-down parameters that form connections between 

shape pairs and not form connections between different shapes. The ease with which such 

parameters are identified may be an indication of how well the given stimulus exemplifies the 

principle.  

The parameter maps in Figures 19, 23, and 27, suggest that it should be fairly easy for 

observers to identify parameters that produce desired connection patterns. If current parameter 

values are insufficient to produce a desired connection pattern, the observer can change the values 

with a pretty good understanding of the impact. Indeed, this is precisely what I have done when 

producing the simulations presented in this section. To generate the parameter values in Figure 30, 

I fixed the onset of the Spread Controller to match stimulus onset and then found the shortest 
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Spread Controller duration where all elements of a stimulus that I wanted to connect were 

connected. Then, depending on whether long and/or short edges had undesired connections, I tuned 

the input parameter to the Long and/or Short Controller Circuit(s) to eliminate those connections. 

I speculate that human observers are quite skilled at tuning such parameters and do so more or less 

automatically. 

Although sometimes used as a prescription for how elements in a scene group together, I 

believe the Gestalt principles are better understood as a high-level description of the output of 

simpler underlying mechanisms. (In the final chapter, I elaborate more on the relation between 

Gestalt grouping principles and the model.) With this view in mind, it is worthwhile to explain 

how the connection circuits are able to emulate the principles. In general, there are often several 

ways to form a desired connection pattern.  

Proximity 

The role of proximity on grouping reflects the way connections spread outward from an 

edge and must connect with another edge in order to maintain its representation. For the two 

proximity examples in Figure 30, it is easy to control the extent of spreading with the Spread 

Controller Circuit so that connections form between nearby neighbors and not between farther 

away elements.  

Similarity of Orientation 

Elements of a similar orientation tend to group together. This property reflects that the cells 

in a bipole circuit represent a preferred orientation. The stimulus in row 3 of Figure 30 was 

previously discussed at length. For the stimulus in row 4, Spread Controller duration for each 

orientation was set to 5 ms. The Short Controller is on to prevent short aligned horizontal edges 

from connecting between the top of the upper vertical line segment and top of the diagonal line 

segment.  

Similarity of Size 

For the stimuli in rows 5–6 of Figure 30, connections form only between elements of a 

similar size because only such size matches have edges that are appropriately aligned. The bipole 
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connections cannot form between misaligned edges. With other orientations, it would be 

straightforward to generate other kinds of groupings for the circles in row 6. For example, a small 

circle could connect with a large circle at some orientation tangent, respectively, to each circle 

such that they would be joined by diagonal connections. Nevertheless, it is easy to find top-down 

connection parameters for horizontally-tuned cells that group stimuli in a way that matches the 

similarity of size principle.  

Similarity of Shape 

As discussed above, forming connections to reflect similarity by shape requires careful 

setting of the top-down parameters, at least for some stimuli. Even so, for the stimuli in rows 7–8, 

it is not difficult to find parameters that connect pairs of similar shapes but not different pairs.  

Closure 

In the model, elements can be grouped together if such grouping results in a “closed” set 

of contours. For some stimuli, such as that in row 10, this property is just a variation of the principle 

of proximity. Here, careful tuning of Spread Controller duration allows the ends of the parentheses 

to connect with each other in the traditional way (open on the left, closed on the right) rather than 

with their (slightly farther away) neighbor (e.g., closed on the left and open on the right).  

Tuning of the Spread Controller does not fully account for the groupings in row 9, where 

each bracket has the same edge-to-edge separation with its neighboring brackets. However, the 

presence of a vertical edge on the outside of the bracket slightly alters the response of orientation 

filters at the top and bottom corners of each bracket. In particular, the response of a horizontally-

tuned cell at the corner of a bracket is slightly weaker than the response of a horizontally-tuned 

cell at the end of a horizontal line. This difference in strength means that a connection is more 

readily formed between the inside ends of brackets compared to the outside corners of brackets. 

This difference can be exaggerated with the Long Controller Circuit, and this influence enables an 

observer to tune the Spread Controller duration and Long Controller input to find parameters that 

allow only the relatively stronger signals to connect.  
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Symmetry 

Some experimental work suggests that particular symmetric elements are more likely to 

group together than asymmetric elements (Locher & Wagemans, 1993; Machilsen et al., 2009). 

Row 11 of Figure 30 shows an example stimulus from Palmer (1999; 2002). Here people often 

report that mirror symmetric lines group together into pairs, with the element on the far right not 

being grouped with anything. Symmetry is an inherent part of the bipole circuits (as indicated in 

the AND-gate exposition above). If the left and right sides of input to a horizontally oriented bipole 

cell are not of similar magnitude, the interneurons will inhibit the bipole cell and thereby not form 

a connection. On the other hand, the model operates on local information and so is only indirectly 

influenced by large-scale symmetry.  

For this stimulus, the bipole cell activity in Figure 30 can connect the mirror symmetric 

lines into distinct pairs. These connections are formed by tuning the Spread Controller. The mirror 

symmetric lines have some parts that are closer than any non-symmetric lines. By setting the 

duration of the Spread Controller Circuit, it is possible to form short horizontal connections 

between symmetric neighbors but not between asymmetric neighbors.  

Summary 

In sum, the Connection Circuit provides a model of how an observer can use top-down 

control to group elements of a single stimulus in a multitude of ways via V2 connections.  By 

tuning four connection parameters, two of which are timing parameters that promote the spread of 

V2 connections while the other two reduce this spread from edges that are relatively long or short, 

an observer can group particular stimulus elements. Additionally, as illustrated above, the 

connection parameters can be tuned such that elements of a given stimulus can form connections 

and, thereby, group in accord with a number of different Gestalt grouping principles, which are 

summarized in Figure 30.   

Finally, I should highlight the fact that this demonstration is consistent with my rejection 

of the assumption that there is only one way to group elements of a given stimulus.  Although it is 

important that the model is flexible enough to group the shapes in the table in accord with classic 

Gestalt grouping principles, it is not restricted to producing only these particular groupings via V2 

connections.   
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TOP-DOWN CIRCUITS II: THE SELECTION CIRCUIT 

Before presenting the Selection Circuit, it is useful to first develop the notion of a grouping 

strategy, which I am introducing in this project, and highlight its dependence on a particular task 

and stimulus set. 

Generalizing from Francis et al. (2017), I propose that the overarching goal of an observer 

when performing some visual tasks, e.g., looking for or tracking a target, is to isolate the target in 

a segmentation layer, which allows for easy identification of the target.  Exactly how this isolation 

is accomplished depends on the stimulus details and the task. Thus, an observer must develop a 

strategy that utilizes connection and selection processes in a way to quickly find and identify the 

target stimulus.  

In terms of strategies, the main aim of a grouping strategy is to promote performance on a 

given task and stimulus set.  Recall that I propose that a grouping strategy consists of a connection 

strategy and a selection strategy.  As will become more evident in the simulations of experiments 

that study grouping, the connection strategy one chooses, i.e., how an observer tunes the four top-

down input parameters to the Spread Controller, Long Controller and Short Controller Circuits to 

join the elements of a given stimulus, can depend on the particular task and stimulus set.  For 

example, suppose the task is to find the location of a pair of adjacent I’s in a row of I’s and H’s, 

e.g., Figure 31, first image from the left. 

 

Figure 31. A toy example stimulus, i.e., a row of letters (left image), and task, i.e., identify the 
location of the pair of repeated I’s, to illustrate connection and selection strategies in this chapter.  

The simulation images show three possible ways to connect the elements of this stimulus. 

Suppose that on a given trial, the target pair could appear in any position, e.g., the target 

pair happens to be in the third and fourth positions from the left in the stimulus image in Figure 

31.  Given this stimulus and task, there seems to be only one connection strategy that would 

promote performance, i.e., tune the connection parameters such that only the nearby I’s connect 

(Figure 31, second image).  With a Spread Controller onset of 0 ms, this can be achieved by having 
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a positive Spread Controller duration (30 ms), turning off the Long Controller Circuit, and having 

a Short Controller input of 2.0 (which prevents spreading from the tops of H’s).  By connecting 

the I’s, the observer may more easily select and segment out the target pair of letters.   

In contrast, consider the alternative of connecting no letters (Figure 31, third image).  If no 

letters are connected, then the selection process would have to do all the work in grouping, 

selecting and segmenting out the target pair, e.g., the observer would have to rely upon a selection 

signal that could overlap with both target letters.  However, for this alternative strategy to work, 

the selection signal must be fairly large and/or placed quite precisely so that it overlaps with both 

target letters and no distractors.  Additionally, unless it was known in advance where in the row 

the target pair will be located, it would be difficult for an observer to consistently place the 

selection signal so that it would both group and select the target pair only, on each trial.  So, 

although this alternative is possible, it is not optimal given this task and stimulus set in which the 

target pair could appear at any location in the row.  At the other extreme, an observer may connect 

all letters (Figure 31, fourth image).  However, if all letters are connected, it is very difficult for a 

selection signal to segment out only the target pair since a selection signal segments out any 

boundary signal it falls on and any boundary signal that is connected to the boundary signal it falls 

on.  Thus, it seems that the connection strategy in which only the target pair is connected will best 

promote performance on this task. 

So, suppose the observer chooses to use the connection strategy in which only the target 

pair of letters group via V2 connections.  How might an observer use this connection strategy to 

more easily find the target pair?  I propose that the observer uses the connection strategy in tandem 

with a selection strategy to quickly find target elements. 

In broad terms, the Selection Circuit models the selection and segmentation of stimulus 

elements into different layers with the aim of segmenting target items from distractors efficiently.  

The main components of this circuit, i.e., segmentation layers, selection signals, a reset, and a 

feature filter, will be presented in detail in the next section.  For the present purpose of providing 

an overview of the task-dependent strategies investigated by the model, a selection strategy 

involves a strategy for determining the size, location, number, and timing of selection signals.  The 

model’s Selection Circuit allows for top-down control of these features and, thus, allows us to 

simulate possible selection strategies that an observer may be using given a particular task and 

stimulus set.  For example, in the above toy example task of finding a pair of adjacent I’s that are 
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among H’s in a row, suppose that the observer uses the connection strategy that connects only the 

target pair of I’s.  Given this connection strategy, the target pair will tend to have a substantial 

horizontal signal since the V2 connections between them are horizontal.  In turn, a possible 

selection strategy that would allow the observer to quickly select and segment the target pair is to 

place the selection signal on areas where more horizontal signal is detected and to choose a size 

for the selection signal that, say, will not cover more than two letters in the stimulus.  Thus, an 

observer may use a connection strategy in tandem with a selection strategy to promote performance 

on a given task and stimulus.  So, the next step in model development is to create a Selection 

Circuit subject to top-down control that can generate such selection strategies. 

The Selection Circuit 

The Selection Circuit is presented in somewhat general terms in the sense that, although 

this project focuses on visual search tasks, the circuit’s main components may be used to simulate 

other visual tasks, e.g., multiple object tracking tasks.  The toy example stimulus introduced in 

Figure 31 and a simple visual search task, i.e., find the location of the adjacent repeated I’s, are 

used in this section to demonstrate some of this circuit’s features.  So, although this circuit has the 

potential to simulate a variety of visual tasks, the example used below is a visual search task due 

to the focus of this project.   

The segmentation process in Francis et al. (2017) could perform two sorts of segmentation: 

boundary segmentation and surface segmentation.  The present model only has boundary 

segmentation because surface segmentation is not required in the simulations conducted for this 

project.   

The Selection Circuit as developed in this project (Figure 32) consists of five main 

components: segmentation layers, selection signals, a Boundary Segmentation Circuit, a reset, and 

a feature filter.  Although the first three of these components are largely the same as those used in 

Francis et al. (2017), it is worth explaining how they function since they play a central role in the 

Selection Circuit. 

The structure of the Boundary Segmentation Circuit, which is given in Figure 32, has been 

simplified compared to that of Francis et al. (2017), but its function is generally the same: to shift 

selected boundaries from the base segmentation layer to a different segmentation layer, which was 

described in the second chapter. 
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Figure 32. A schematization of the Selection Circuit.  Again, excitatory synapses are represented by arrows with 
solid shafts, while an inhibitory connection is represented by a dashed line capped with a square.  Arrows with 

dotted shafts represent the flow of information, and the purple arrow to Reset represents a timed, positive current 
input to a reset cell.  The bottom gray interneuron receives constant excitatory input, which can be inhibited when 
there is activity at the corresponding position in V2, layer 2/3.  In turn, the bottom interneuron prevents runaway 

spread of the selection signal. The Boundary Segmentation Circuit box shows the circuit created for the V2 bipole 
cell that corresponds to position i. This circuit involves the boundary segmentation cell (labelled ‘i+1’) for its 

neighboring cell that corresponds to position i+1. 

In the models of both Francis et al. (2017) and this project, the bipole cell activity in V2, 

layer 2/3, feeds directly into one or more segmentation layers.  Selection signals are applied to one 

layer, i.e., segmentation layer 0, which will also be referred to as ‘the base segmentation layer’, 

via the Boundary Segmentation Circuit.  There is one such circuit for each non-base segmentation 

layer.  This circuit, shown in Figure 32, operates as follows.  If there is no selection signal present, 

strong inhibition to each pixel in segmentation layer 1 from the corresponding pixel in the base 

segmentation layer prevents any activity in segmentation layer 1.   

Next, consider a segmentation signal placed in the base segmentation layer.  This is 

achieved by creating a map that has the same dimensions as V2, layer 2/3, with the location of the 

selection signal having a constant non-zero value.  This map will be referred to as a ‘selection 

signal map’.  In Figure 32, this selection signal map is labelled ‘Selection signal location’, and 

Figure 33 provides an example of this map, consisting of a white circle.  (It is shown overlapped 
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with the stimulus image to give a sense of the signal’s location relative to the stimulus elements.)  

If location i in this map has a non-zero value, then the boundary segmentation cell labelled i in 

Figure 32 receives constant excitatory input.  In this case, cell i will eventually inhibit the activity 

of the cell that corresponds to position i in segmentation layer 0, which, in turn, reduces the 

inhibition from this segmentation layer 0 cell to the segmentation layer 1 cell that corresponds to 

position i.  This allows the signal from V2, layer 2/3, at this position to effectively shift from 

segmentation layer 0 to segmentation layer 1.  In effect, a selection signal transfers activity from 

the base layer to layer 1 by sending excitatory signals to all cells in the locations it ‘covers’, which 

is achieved by sending excitatory input to each boundary segmentation cell at those positions.  

Figure 32 shows the components of the Boundary Segmentation Circuit for one such cell labelled 

by its position i.   

 

Figure 33. The activity, feature filters and selection signal map of two successive 50 ms 
timesteps in a simulated trial. 
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Additionally, edges that are not covered by a selection signal but connected to an edge that 

the selection signal covers are also eventually pushed into segmentation layer 1.  To see how the 

selection signal can spread along boundaries that are not ‘covered by a selection signal’, e.g., to 

locations with boundary signal that are adjacent to a location in the selection signal map with a 

non-zero value, suppose there is a horizontal edge at locations i, and i+1.  So, the V2, layer 2/3, 

horizontally-tuned bipole cells are active at the corresponding retinotopic locations.  Further 

suppose that the selection signal covers location i, but not i+1.  The selection signal does not cover 

i+1 and, thus, the boundary segmentation cell labelled i+1 does not receive the same constant 

excitatory input directly from the selection signal map that cell i receives (i.e., there is no excitatory 

input from ‘Selection signal location’ to the boundary segmentation cell labeled i+1 in Figure 32).  

However, the selection signal input to boundary segmentation cell i will spread to boundary 

segmentation cell i+1 via the bidirectional arrows between these neighboring boundary 

segmentation cells to the gray interneuron: over time, activity from a neighboring location, e.g., 

cell i, that is covered by a selection signal can spread to, e.g., cell i+1 via the interneuron.   

To see how this spread of selection signal occurs, refer to Figure 32.  In the example above, 

recall that an edge is detected at positions i and i+1.  So, the bipole cells in V2, layer 2/3, that 

correspond to these locations are active.  In turn, the bipole cell corresponding to position i, will 

inhibit the bottom interneuron, which also receives constant excitatory input by default.  In turn, 

the inhibition of the top interneuron is reduced and, thus, selection signal can spread from boundary 

segmentation cell i to its neighbor, i.e., to boundary segmentation cell i+1.  If this activation is 

strong enough, the boundary segmentation cell i+1 will behave as if there is a selection signal at 

that location.  More specifically, boundary segmentation cell i+1 can: (a) functionally move signal 

at the corresponding location in segmentation layer 0 to segmentation layer 1 by inhibiting activity 

in segmentation layer 0 at a particular location, and (b) cause selection signal to spread to its 

neighboring boundary segmentation cell corresponding to location i+2 via the bidirectional 

synapses and top interneuron.  Thereby, the Boundary Segmentation Circuit allows the activation 

from the selection signal at a particular location to spread from active cells at that location to 

neighboring active cells.  Additionally, due to the architecture of the Selection Circuit, this spread 

of selection signal can result in the selection and segmentation of, e.g., connected lines (Figure 3) 

and entire lines (Figure 4), rather than only the edge(s) that is covered by the selection signal.  
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Thus, the Boundary Segmentation Circuit is designed to promote spread of the activation from a 

localized selection signal along boundaries that are connected to boundaries that the signal covers. 

While only a single selection signal and associated non-base layer are presented in Figure 

32, it is possible to have multiple selection signals and corresponding segmentation layers.  Indeed, 

the simulations in both Francis et al. (2017) and reported below use multiple selection signals.  

Following Francis et al. (2017), the structure shown in Figure 32 is extended as follows to 

implement multiple selection signals.  For each non-base segmentation layer, a separate Boundary 

Segmentation Circuit is created.  And, each additional segmentation layer is inhibited by all 

previous layers, e.g., segmentation layer 2 would be inhibited by both layer 0 and layer 1.  The 

selection signal associated with segmentation layer 2 would pull boundary signals it covers and 

any activity connected to it from layer 0 to layer 2.  (Examples of resulting segmentation layer 

output when the model implements multiple selection signals are provided below in applications 

of the model to various experiments as well as in Francis et al., 2017.) 

Several modifications were required to allow the model to simulate different visual tasks, 

e.g., visual search tasks, in which an observer typically scans a stimulus to find or track a target 

(or targets).  Notably, the circuit has the ability, through top-down control, to make the selection 

signals more dynamic.  In other words, this circuit can model a shift in the observer’s attention 

from one area of a stimulus to another.  It does so by allowing for different selection signal maps 

over time.  For example, in a visual search task where the task is to find a target as quickly and as 

accurately as possible, the selection signal map changes after every 150 ms of model time, which 

shifts the selection signal to a different location every 150 ms.  This time was chosen because it 

seems the shortest period of time that can produce a clear enough signal in model V4 for a target 

identification algorithm to determine whether the segmented boundaries are from a target.  If the 

selection signal is at the position for a shorter time, the V4 signal is often too weak to determine 

whether a target has been detected.  And, since these visual search tasks typically emphasize speed 

and accuracy and measure reaction time, it seems inefficient to choose a longer time before shifting 

a selection signal if the target was not selected.  I refer to an interval in which a selection signal is 

at a particular location as a ‘selection cycle’.  For example, the 150 ms interval used in the 

preceding example is referred to as a ‘150 ms selection cycle’ since the selection signal map is the 

same, i.e., the selection signal remains in the same place, for 150 ms.  
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This shifting selection signal gives rise to two issues.  First, a dynamic selection signal has 

to be moved to other areas of the stimulus.  How is it determined where the selection signal will 

move if it did not isolate the target in a non-base layer?  Second, if a selection signal changes 

location, the boundaries that it selected, which often comprise shapes with closed edges, can cause 

positive feedback loops to occur in the non-base segmentation layer.  In other words, a selected 

object will stay selected and remain in the non-base segmentation layer even if the selection signal 

has moved and no longer covers any part of the object (e.g., the bottom row of Figure 36).  In a 

task where, say, one is to count target items in a stimulus image where there are no distractors, this 

buildup of selected elements may be advantageous: eventually the shifting selection signal could 

segment out all target elements.  However, in a visual search task, for example, where the task is 

to find a target item, such a buildup of stimulus elements could be detrimental to performance.  If, 

say, the initial selection signal overlapped with a distractor but subsequently shifted to the target, 

then the selected distractor would be segmented along with the target and, thus, would prevent the 

observer from easily segmenting the target from the distractor. 

To address these two issues and, in turn, allow the model to simulate a wider variety of 

visual tasks, I have incorporated feature filters and a reset signal into the Selection Circuit.  A third 

factor, namely selection signal size, is also relevant to selection strategy; as will be discussed below, 

larger selection signals allow for faster segmentation yet are more likely to overlap with distractors, 

while smaller selection signals offer more precision yet tend to take more time.  In the model, these 

three components (i.e., choice of feature filter, timing of reset, and choice of selection signal size) 

are subject to top-down control, which allows for more options in choosing a selection strategy 

that is suitable for the visual task at hand.  To again emphasize the flexibility of this circuit 

(although the examples below are visual search tasks since that is the focus of this project), the 

addition of these features allows the Selection Circuit the potential to simulate a number of 

different selection strategies that are likely used in a variety of visual tasks. 

Feature Filters 

To guide the placement of a selection signal during each trial, I implemented an algorithm 

that functions as a feature filter.  Something like a feature filter is an integral part of many theories 

of visual perception (e.g., Itti & Koch, 2001; Wolfe, 1994), where it is used to guide attention and 

can be used to classify scenes or elements.   
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Figure 33 shows how feature filters are integrated within the Boundary Selection Circuit 

and segmentation layers introduced above.   

To better organize my presentation of this circuit, numbered yellow circles are provided in 

Figure 33.  These indicate (somewhat) sequential steps that occur in this process.  This figure has 

two columns labelled ‘Time 1’ and ‘Time 2’, which show model output during two consecutive 

time steps of a simulation using the toy stimulus and implementing the connection strategy where 

only the pair of adjacent I’s connect.  In this section, I go through each step, explaining relevant 

components of the model, and subsequently show how the feature filters can be used to 

strategically place selection signals so as to promote performance on our example task. 

At Time 1 (Figure 33, left column), during Step 1 the activity of V2 bipole cells feeds into 

the Selection Circuit, as described above.  At Step 2 information from the base segmentation layer 

is used to create a probability distribution represented by the red curve in the plot above the circuit 

diagram.  To see how this distribution is generated, consider Figure 34a. 
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Figure 34. Examples of different feature filters given the stimulus image at the top and the 
connection strategy where only adjacent letter I’s connect. 

The image in Figure 34a below the plot shows activity in segmentation layer 0 over 50 ms.  

Here it is quite similar to V2 bipole activity.  Along the x-axis are the x-coordinates of the stimulus.  

In this case the stimulus is 271 pixels wide, and so there are 271 ticks along the x-axis.  The plot 

has two distributions.  The red distribution is created as follows.  The height of each point 

represents the ratio 
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!!
∑!!

 , 

where !! is sum of the activity of horizontally-tuned bipole cells in column c during 50 ms, and 

∑!! is the sum of this activity across all columns, i.e., the sum of horizontal activity across the 

entire image during 50 ms.  For each column in the image, the value of this ratio is plotted above 

the coordinate on the x-axis that corresponds to the column.  Thus, the red curve in Figure 34a 

depicts the ratio of horizontal activity in each column to the horizontal activity in the entire image 

during 50 ms. As is obvious in this plot, the highest peaks are above columns with a lot of 

horizontal signal, i.e., at columns where the letter I’s are located. These peaks are roughly twice 

as high as those over the horizontal H bars because letter I’s have twice much horizontal activity 

at each column, i.e., they have two horizontal bars rather than one.  Since it only uses activity of 

horizontally-tuned V2 cells, I call it a ‘horizontal feature filter’.  Other feature filters are possible.  

For example, Figure 34b shows a vertical feature where the red curve was generated using the 

same calculation described above except activity from vertically-tuned cells, rather than horizontal, 

was used.  Hence, it is a ‘vertical feature filter’.  Here each vertical bar in the output results in a 

very high peak in the red curve.  Figure 34c shows the diagonal feature filter for this image, and 

Figure 34d shows the distribution generated if activity from all cells is used.  Other feature filters 

are possible, e.g., a horizontal-vertical feature filter that uses activity from horizontally-tuned and 

vertically-tuned cells. 

In each plot shown in Figure 34, the blue curve was generated by smoothing the red curve 

using a 1D Gaussian filter.  The blue curve plays a key role in Step 3 shown in Figure 33. An x-

coordinate is produced by generating a random sample from the distribution represented by the 

blue curve (the Python library numpy has a function, random.choice(), that performs this kind of 

sampling).  This x-coordinate is used as the x-coordinate for the center of the selection signal for 

the next 50 millisecond time step.  (In this case where the stimulus elements are along a single row, 

the y-coordinate was fixed to half of the height of the stimulus for simplicity.)  In the example 

depicted in Figure 33, this x-coordinate is indicated by the green rectangle at the bottom of the 

plot.  Here the randomly sampled x-coordinate happened to be at the left target I.  An appropriate 

selection signal map is created, shown under Selection Signal Location in Figure 33 and overlaid 

on the stimulus image to make clearer over what region the selection signal falls.   
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The selection signal map is then input at Step 4 to the Boundary Segmentation Circuit, 

which was described earlier.  The effects of this circuit can be seen at Time 2 (Figure 33, right 

column) at Step 5 where the pair of I’s is starting to become segmented into layer 1.  Further, the 

edges of the target pair have just begun to move to V4 layer 1.  Additionally, to highlight the 

dynamic nature of the model, the probability distributions at Time 2 are shown even though, as 

explained above, the selection signal will stay at the same location until the next selection cycle 

begins at Time 5 (i.e., 150 ms after the first selection cycle, which began at Time 2), the location 

of which will be sampled from the probability distribution at Time 4.  It’s also important to 

highlight the change in the feature filter distribution at Time 2.  Since the distributions are created 

using activity in segmentation layer 0 only, the distribution changes when a selection signal is 

applied to this layer that pulls activity down into a non-base segmentation layer. 

How do these feature filters allow the model to strategically guide the placement of 

selection signals so as to promote performance on a given task?  Consider the example task of 

identifying the location of the adjacent pair of I’s given the toy stimulus.  As discussed above, a 

good connection strategy is to connect only the target pair of I’s.  That way, if one of the I’s is 

selected, then both will be segmented, isolated in a layer and, thus, easier to identify.  If a horizontal 

feature filter is used in conjunction with this connection strategy, then the model will tend to guide 

selection signals to the location of the target pair.  As shown in Figure 34a, the horizontal feature 

filter results in a distribution with a relatively high and wide peak at the location of the target pair.  

Since the connected target pair has a lot of horizontal signal, it is likely that the horizontal feature 

filter will guide the selection signal to this location, i.e., it is more likely that the sampled x-

coordinate will be at its location.  In turn, the use of a horizontal feature filter seems to be a good 

choice for performing this task efficiently; it is more likely that the resulting selection signal will 

fall on this location, which will tend to result in the observer finding the target pair faster.  Thus, 

this horizontal signal filter models how an observer may guide attention to areas with more 

horizontal signal so as to quickly find the target and perform well on this task.  

Of course, since the feature filter uses a random sample to determine selection signal 

location, the observer may not always immediately find the target pair.  For example, consider the 

simulation shown in Figure 35. 
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Figure 35. An example of a horizonal feature filter given the toy example discussed at the beginning of this chapter 
where the connection parameters are tuned such that only the target pair of nearby letter I’s connected.  Left column 
shows the layer 0 activity and resulting feature filter distribution from which the selection signal’s x-coordinate at 

the next time step was sampled.  Right column shows the resulting location of the selection signal at the subsequent 
time step, which is superimposed on the layer 0 activity to show its position relative to layer 0 activity.  The green 

arrow indicates that the sampled x-coordinate is used as the x-coordinate of the selection signal center on the 
subsequent time step.  

At this point in the simulation, a coordinate above a distractor letter I was randomly 

selected from the horizontal feature filter distribution.  This is to be expected since this distribution 

also has relatively high peaks above distractor I’s given this image and connection strategy.  Here 

this resulted in the selection of a distractor, rather than the target pair. Since the model (like human 

observers) does not always immediately select and find the target in a visual search task, it was 

necessary to add a reset signal that allows search to proceed.  

The Reset Signal 

The reset signal, labelled ‘Reset’ in Figure 32, is inhibitory input to the Boundary Selection 

Circuit.  Its function is to provide the observer with the option of periodically, i.e., at the start of 

each selection cycle, resetting each non-base segmentation layer (e.g., Figure 36, top row).   
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Figure 36. Examples of how the selection process operates over time.  In both examples the feature filter uses horizontal signal.  Top row: An example of the 
selection process with the reset of segmentation layer 1, which occurs at the beginning of the 50 millisecond time step indicated by a red box.  Bottom row: An 
example of the selection process without a reset.  Even though the selection signal moves to a different location at 650 milliseconds, the pair of letters selected 

earlier remain in layer 1. 
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Such a reset is needed to ‘clear’ the non-base segmentation layer; since the reset signal 

eliminates the activity of all boundary selection cells, they can no longer inhibit segmentation layer 

0, which, in turn, returns to strongly inhibiting the non-base segmentation layer. Without such a 

reset, items that have been selected and segmented by selection signals in other locations remain 

in non-base segmentation layers (e.g., Figure 36, bottom row). 

For an example of a task in which this reset would be part of a selection strategy that 

promotes performance, consider a visual search task where both speed and accuracy are 

emphasized.  For such a task, it would be beneficial for performance to use the quickest possible 

reset that completely clears the non-base segmentation layers so that no items previously selected 

yet not identified as targets would remain segmented from the base segmentation layer.  For all of 

the visual search tasks simulated in this project, it turned out that a reset of 5 ms at the beginning 

of each 150 ms selection cycle was the shortest amount of time in which the contents of a non-

base segmentation layer could be cleared and a shifted selection signal could segment an element 

to V2 and still produce enough V4 signal for a target identification algorithm to determine whether 

a target was selected.  With this setup only elements covered by (and connected to elements 

covered by) the selection signal during a selection cycle are shifted to a non-base segmentation 

layer; elements that the selection signal segmented during previous selection cycles are cleared 

from the non-base segmentation layer by this periodic reset such that accuracy and speed are both 

maintained and, thus, likely subject to some sort of top-down control. 

Selection Signal Size 

I propose that selection signal size is another top-down controlled component of an 

observer’s task-dependent and stimulus-set-dependent selection strategy.  To see the costs and 

benefits of different selection signal sizes, consider the running toy example of a row of letters in 

which the task is to identify the location of the pair of adjacent letter I’s.  Three simulations were 

run, each of which had a selection signal of a different size centered at the same location, as shown 

in Figure 37.   

  



 

 

 

 

Figure 37. An illustration of how selection signal size impacts the speed of segmentation through a comparison of the segmentation layers of three simulations, 
each of which only differed in the size of selection signal used, which are indicated by the white circles.  Each selection signal was centered at the same location 
(on the left target I).  The smallest selection signal has a diameter that is half the width of a letter.  The medium selection signal diameter is the width of a letter.  
And, the large selection signal diameter is twice the width of a letter.  A comparison of segmentation layer 1 at 500-550 ms for each simulation shows that the 

segmentation process is faster, i.e., there is more boundary signal in layer 1 for the simulation with the large selection signal, than for the other simulations. 
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An advantage of using a smaller selection signal is better precision.  Consider the example 

of finding a pair of nearby letter I’s with the connection strategy of only connecting the target pair 

and a selection strategy that involves a horizontal feature filter.  The smallest selection signal is 

unlikely to overlap with a neighboring distractor.  In turn, it is highly likely that a small selection 

signal that lands on a target letter will segment out the target pair only, which will make it easier 

for the observer to identify the location of target pair.  The largest selection signal, on the other 

hand, has a greater chance of landing on a target letter yet also overlapping with a distractor.  For 

example, the large selection signal in the simulation above is quite close to the distractor even 

though it is centered on a target.  So, if this large selection signal landed slightly off center of this 

letter I and to the left, this selection signal would likely overlap with a distractor.  In such cases, a 

target pair and a distractor would be selected and segmented out, making it difficult to identify the 

location target pair.  So, smaller selection signals are more precise in that it is less likely for them 

to overlap with distractors. 

However, there is also a cost with using small selection signals.  As shown in Figure 37, it 

takes an additional time step, i.e., 50 milliseconds, for the smallest selection signal to segment out 

the target pair from the distractors compared to the medium and large selection signals; at 550-600 

ms, the boundary signal corresponding to the right letter I is not completely in layer 1 for only the 

simulation with the small selection signal.  This is because the small selection signal only covers 

a small portion of the connected target pair and, in turn, it takes more time for the selection signal 

to spread across edges that are connected to edges covered by the small selection signal.  Thus, 

smaller selection signals can be more precisely placed yet can take more time to segment out a 

target, while larger selection signals take less time to segment out a target yet are more likely to 

overlap with a distractor.  In turn, a choice of selection signal size involves something like a speed-

accuracy tradeoff but at the segmentation level: larger selection signals can result in faster 

segmentation yet are more likely to segment a non-target item, while smaller selection signals can 

result in slower segmentation yet are more precise and, thus, more likely to segment only targets. 

Application to Other Stimulus Images 

Thus far we have only considered stimuli in which elements are in a row, but the selection 

process can be generalized to elements in a grid (which is similar to stimuli used in the Trick & 

Enns, 1997, experiment simulated below).  For elements in a row, the feature filter distribution 
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presented above provides a way to determine the x-coordinate of the selection signal’s center.  For 

stimuli that involve elements in a grid, the simplifying assumption that the y-coordinate of the 

selection signal is fixed to, e.g., half the height of the stimulus image, may not provide a reasonable 

selection strategy.  For these cases, the x- and y-coordinates can be randomly sampled from a 2D 

distribution that is smoothed using a gaussian kernel, e.g., Figure 38. 

Similar to the example of the selection process for a row of shapes, for a stimulus in a grid 

a particular pixel location is randomly sampled from these smooth distributions (the sampling 

process was done with the random.choice() function, which was also used for the 1D distribution, 

after I converted the probability assigned to each coordinate into a 1D array).  The x- and y-

coordinates of this pixel location determine the location of the center of the selection signal for the 

next time step. 

Summary 

In sum, according to the model, a selection strategy involves determining placement and 

timing of the selection signal.  Selection signal placement is broken down in the model in terms 

of: choice of a feature filter, which determines where a selection is more likely to be placed, and 

choice of selection signal size, which involves a segmentation speed-precision tradeoff.  Timing 

of the selection signal involves when to start selection signals, the duration of selection cycles, and 

when to use the segmentation reset signal.  Just as for a connection strategy, what selection strategy 

an observer uses depends on the given task and stimulus set.  Further, a selection strategy is chosen 

in conjunction with a connection strategy, e.g., in the above two examples, a horizontal feature 

filter was chosen partly because horizontal connections united target pairs due to the chosen 

connection strategy.  Within the framework of the model, a connection strategy and selection 

strategy, which are chosen in tandem so as to promote performance on a given task and stimulus 

set, comprises a grouping strategy. 

  



 

 

 
 

 
Figure 38. An example of the selection process for a matrix of shapes where a smoothed probability distribution is constructed from V2 signal.  Here the feature 
filter used diagonal signal.  Thereby, areas with diagonal signal are more likely to be the center coordinate of the selection signal.  As in the previous figure, the 

red box indicates a reset of layer 1. 
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This modified Selection Circuit, with top-down controlled feature filters and reset, allows 

the model to implement a wide variety of selection strategies and, thus, gives it the ability to 

simulate many kinds of visual tasks compared to the model of Francis et al. (2017).  For example, 

it is now possible to simulate visual search tasks in which observers likely use a dynamic and 

strategic segmentation process in which each selection signal tends to go to locations where a 

stimulus has particular feature(s).  In the simulations below and, foreseeably, simulations of other 

visual search tasks where one must respond as quickly and accurately as possible, if the target pair 

is not segmented out after a 150 millisecond selection cycle (which was chosen to emphasize speed 

and accuracy), the selection signal shifts to another location and the segmentation process repeats.   
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APPLICATION OF THE MODEL TO THREE EXPERIMENTS THAT USE 
VISUAL SEARCH TASKS TO INVESTIGATE GROUPING 

In the previous two chapters, I presented model modifications in detail. Modifications to 

the Connection Circuit give the model the flexibility to group stimulus elements by V2 connections 

in a variety of ways.  The addition of a dynamic selection circuit that can use features to guide 

selection signals to areas with contours of particular orientations enable the model to simulate 

visual search tasks.  Further, I developed the concept of a grouping strategy in terms of the 

mechanisms of the model, i.e., a grouping strategy is a combination of a connection strategy and 

a selection strategy that promotes performance on a given task.  In the next three chapters, I apply 

the model to three visual search experiments designed to investigate grouping.  For each 

experiment, I conducted a replication experiment and several sets of simulations in which the 

model used particular grouping strategies.  In some cases, I conducted additional experiments to 

test model predictions. 

General Experiment Methodology 

Three experiments designed to investigate grouping with a visual search task were 

replicated, i.e., experiment 1 of Palmer and Beck (2007), experiment 2a of Vickery (2008), and 

experiment 2 of Trick and Enns (1997).  I conducted two additional experiments to test model 

predictions.  Methodological procedures common to all experiments are as follows, and additional 

details are indicated under the Methods section of the relevant experiment. 

Participants 

To identify an appropriate sample size for each experiment that I compared with simulation 

results (i.e., Experiments 1, 5, and 6), I first determined that I generally wanted to measure each 

mean response time with a precision that would have a standard error of 10 milliseconds. Response 

time standard deviations across observers for identification tend to be around 100 milliseconds, so 

I planned for a sample size of around 100 observers because this would give a standard error of 

100/√100 = 10 .  For other experiments, justification for sample size is given below.  All 

participants were naïve undergraduates from Purdue University who took part in exchange for 



 

89 

course credit. All participants provided informed consent in accordance with Purdue’s Institutional 

Review Board. 

Apparatus 

All experiments were conducted online.  I programmed each experiment in custom 

JavaScript and HTML scripts and uploaded them to a local server. Participants used a computer to 

navigate to the webpage and take an experiment, and those who attempted to use a tablet or phone 

were prompted to switch to a laptop or desktop computer.  Participants used keys on their keyboard 

to register responses.  Specific keys used are indicated under the Methods section for each 

experiment below. 

Stimuli 

All stimuli were generated by the JavaScript program.  Since the study was conducted 

online, a participant’s distance from the monitor and the monitor’s size are unknown, and, thus, 

the visual angle subtended by the stimuli is also unknown. To provide some sense of the size of 

stimulus elements, below I provide the degrees of visual angle that stimulus elements would 

subtend for a hypothetical participant who used a laptop on a desk with the monitor 18 inches 

away. The hypothetical participant’s laptop has a 13.3-inch (diagonal) monitor with a width of 

around 11.25 inches and resolution of 2560x1600 (making pixel density 227 pixels per inch). 

Procedure 

In all experiments, participants navigated to a webpage.  After providing consent, 

participants began by reading instructions at the top of a webpage and subsequently scrolled down 

to a black rectangle where the experiment took place.  The instructions encouraged participants to 

enlarge their browser, if needed, so they can view the entire black rectangle.  The rest of the 

procedure varied by the task and is detailed below for each experiment. 

Simulation Methodology 

All simulations were programmed using Python2 scripts and used the package NEST 

2.14.0 (Peyser et al., 2017) for creating the cells and synapses and managing network dynamics.  
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A single cell type (iaf_psc_alpha, which is a leaky integrate-and-fire neuron model with alpha-

function shaped synaptic currents) and synapse type (static_synapse) were used, but synapse 

weights were manually set.  For the simulations conducted, each trial takes approximately 12 – 40 

minutes, depending on the size of the stimulus and on the time at which a trial was terminated due 

to a target or set of targets being found.   

Stimuli for each simulation were made using custom Python3 scripts with standard 

packages (numpy, random).  For the Palmer and Beck and Vickery simulations, the stimuli were 

written to BMP files using the package ImageIO (Klein et al., 2018).  For the Trick and Enns 

simulations, on each trial a stimulus image was generated in the main LAMINART code to better 

match the stimuli used in the experiment, where the location (and added jitter) of each stimulus 

element was randomly generated on each trial.   

To reduce overall runtime, the simulations were run on several systems in parallel: a 2019 

MacBook Pro (8 cores, 32 GB RAM), a 2018 Linux running Ubuntu (6 cores, 16 GB RAM), two 

virtual machines with each running Ubuntu 20.04.2 (44 cores, 120 GB RAM) on XSEDE Jetstream 

(Stewart et al., 2015; Towns et al., 2014), and a local computer cluster that runs Linux with Debian 

(24 nodes with 20 cores and 64 GB RAM per node). Batches of trials for particular simulations 

were run on the cluster (Trick & Enns) and virtual machines (Vickery), which was merely due to 

having access to these systems at the time. Checks of the different computing systems indicate that 

they give the same results. 

Each stimulus was presented until the trial was terminated.  Every 50 ms following onset 

of the selection signals, the program summed the neural action potentials in V4 in the non-base 

segmentation layer(s).  This activity was used to determine whether a target was detected using a 

target identification algorithm, which is described below for each simulated experiment. If a target 

was detected in the Palmer and Beck and Vickery simulations, the trial terminated and the 

simulated time until target detection, which corresponds to reaction time, was recorded.  For each 

target detected in the Trick and Enns simulation, a counter was increased by one.  If this counter 

remained the same after 250 ms, then the trial terminated and the value of the counter, which 

corresponds to the number of targets enumerated, and simulation time, which corresponds to 

reaction time, were recorded.  Otherwise, the simulation continued for another 50 ms increment.  

For the Palmer and Beck and Vickery simulations, a trial terminated when either a target was found 

or a maximum time was reached. 
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The results of model simulations will be qualitatively compared with the empirical results 

for human subjects who performed the same task. Because the model simulations occur over time, 

the model time for each condition can be averaged across simulated trials and can be directly 

compared with the averaged reaction time of human subjects measured in each of the target 

experiments.  Similarly, accuracy can be measured in terms of whether elements segmented out 

from the base segmentation layer are identified as targets or not, or, for the Trick and Enns 

simulation, whether the final value of the counter on each trial matches the number of targets in 

the stimulus. 
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PALMER AND BECK (2007) 

Palmer and Beck (2007) developed a visual search task meant to provide an “objective” 

measure of grouping.  Each stimulus in their experiment 1 consisted of a row of nine shapes. Along 

the row the circles and squares alternated except for one repeated pair, which was the target and 

was either a pair of adjacent circles or a pair of adjacent squares. The task was to press a key 

corresponding to the target pair shape as quickly as possible.  An element of the target pair could 

appear in any position in the row except for the outer two positions. There were nine spacing 

conditions, which are shown in Figure 39 above the dashed line for a square target pair in positions 

5 and 6 (counting from the left).  

The spacing conditions were specifically designed to investigate effects of proximity by 

varying target pair separation (the distance between target pair elements) and nontarget pair 

separation (the distance between a target element and the neighboring nontarget shape).  In each 

condition, spacing between the shapes was varied to form three grouping conditions.  In the neutral 

conditions, each shape was equidistant from its neighbors (conditions numbered 1, 5 and 9, in 

Figure 39).  In within-group conditions, the target pair was relatively close together (conditions 2, 

3 and 6).  In between-group conditions, the target pair was relatively far apart (conditions 4, 7, and 

8).   

For this experiment, Palmer and Beck predicted that proximity should bias the target pair 

in within-group conditions to be perceived as a group.  For between-group conditions, they 

predicted that proximity should bias the target elements to be perceived as part of two different 

groups.  For the neutral conditions, they claimed that proximity should not bias the target pair in 

either direction. Generally, they expected the target pair to be detected more quickly when it is 

perceived as part of the same group.  In turn, they predicted that response times will tend to be 

highest for between-group trials, lowest for within-group trials, and somewhere in between for 

neutral trials. 

Palmer and Beck’s results (Figure 40, top left plot, n = 11, and Figure 41a, left set of bars) 

indicated that performance tends to be best (fastest) for the within-group conditions (white bars, 

i.e., conditions 2, 3, and 6), middling for the neutral conditions (gray bars, i.e., conditions 1, 5, and 

9), and worse for between-group conditions (black bars, i.e., conditions 4, 7, and 8).   

  



 

 

 

 

 

 

 

Figure 39. Screenshots of stimuli from Experiments 1-3.  All spacing conditions are shown with the target pair in positions 5 and 6 
(counting from the left) for ease of comparison.   
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Figure 40. Results by spacing condition. Top row: results from the Palmer and Beck (2007) experiment and Experiment 1 for each spacing condition. No error 
bars are shown for the original data since Palmer and Beck did not provide any measure of variability. Bottom row: results from simulations with three different 

grouping strategies.  Error bars represent one standard error of the mean. Each spacing condition is numbered from 1-9 (see Figure 39), and each spacing 
condition falls under one of three grouping conditions, i.e., neutral, within-group, and between-group, indicated by gray, white, and black bars, respectively.   
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Figure 41. Results by grouping condition.  Plot (a) shows mean response times for grouping conditions for the 
original data (which are an estimate given mean response times for spacing conditions reported by Palmer & Beck, 
2007; means for grouping conditions were not provided) and Experiments 1-3.  Plot (b) shows grouping condition 
mean response times for each simulated grouping strategy.  Error bars represent one standard error of the mean. 

Their prediction that grouped pairs of repeated elements would be discriminated faster than 

ungrouped pairs was supported by these results: the targets in within-group conditions could form 

groups by proximity.  Their prediction about the relative performance on within-group and neutral 

conditions was also supported: performance for neutral conditions was worse than the within-

group conditions.  However, even though their results indicated that the difference in response 

times between the neutral and within-group conditions was statistically significant, they noted that 

the mean response times for these grouping conditions were relatively similar and speculated that 

this similarity was due to the target pair in neutral conditions being perceived as a group due to 

shape similarity. 

Experiment 1: Replication of Palmer and Beck (2007) 

Due to the original experiment’s small sample size, I conducted a replication of experiment 

1 in Palmer and Beck (2007).  Deviations between the original experiment and the replication 

experiment are as follows.  First, the replication, unlike the original lab-based experiment, was 

conducted online.  This format led to the following modifications to the experiment: (a) the 

replication used participants’ keyboards to register responses rather than a button box, (b) the 

replication was self-paced where the participant was prompted to press a key to start each trial 

Performance by Grouping Condition
Simulated Data for Experiment 1Results for Experiments 1-3(a) (b)
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instead of having the next trial start automatically after completion of the previous trial (This was 

done to reduce the risk of participants who become distracted by something in their environment 

from giving incorrect and/or very slow responses for multiple consecutive trials; with self-paced 

trials, participants should still be able to get in to a similar rhythm as for automated paced trials 

without the risk of environmental distractions impeding performance on multiple trials.), and (c) 

the total number of experimental trials was reduced from 576 (in 8 blocks) to 144 (the equivalent 

of 2 blocks) to keep the entire experimental session within a 30 minute time slot with the aim of 

increasing the likelihood that participants complete the experiment and maintain focus throughout.  

Second, rather than providing auditory feedback (a beep) for incorrect responses, I used 

visual feedback (the word ‘Incorrect’).  Third, although the original experiment counterbalanced 

between left and right keys on a button box, I used the T-key and Y-key to register responses and 

did not counterbalance them between participants.  Finally, the original experiment used black line 

figures on a white background, but for the model simulations it was better to use white line figures 

on a black background. So, I used the same coloring for the experiment. 

Method 

Participants. Recall that since my aim is to measure each response time with a precision 

that would have a standard error of 10 milliseconds, I planned for a sample size of 100 observers.  

(This is an estimate based on similar studies; Palmer & Beck, 2007, do not provide the standard 

deviations for their data.)  Due to excess sign-ups for the experiment, a total of 130 observers 

participated in the experiment. Data from 25 participants who had an error rate greater than 10% 

was removed from analysis.  In the original and similar experiments (Beck & Palmer, 2002; Palmer 

& Beck, 2007) subjects with an error rate above 5% were excluded.  In the present replication 

experiment, the data from this subset of subjects (n = 80) largely followed the same pattern of 

results for each spacing condition as those from the set of subjects (n = 105) with an error rate of 

10% or less.  

Apparatus. Participants used the T-key and Y-key on their keyboard to register responses 

for circle and square target pairs, respectively.  The keys were chosen since they are close together 

and relatively centered on most keyboards. 
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Stimuli. Examples of stimuli used in the experiment are provided in Figure 39 above the 

dashed line.  As in the original experiment, there were two possible target shapes (square or circle), 

four possible positions of the target pair (3-4, 4-5, 5-6, 6-7) and 9 spacing conditions (conditions 

numbered 1-9 in Figure 39).  For the hypothetical participant described in the “General Experiment 

Methodology” section above, the diameter of a circle subtended approximately 1.0° of the visual 

angle, a separation of 0.5 entailed that there was a gap between two shapes that was half the width 

of a square (i.e., the gap subtended approximately 0.5°), and the width of the entire row of figures, 

i.e., the distance from the leftmost shape to the rightmost shape, subtended between approximately 

13.0° to 20.8° depending on the spacing condition.  The row was in a black rectangle with a 

constant width and height that subtended approximately 22.2° and 14.8°, respectively.  

Procedure. After reading instructions that explained the task, encouraged them to make 

responses as quickly and as accurately as possible, participants scrolled to the bottom of the 

webpage, where the experiment took place. Figure 42 schematizes what occurred on a trial. A 

participant initiated the first trial by pressing the B-key on their keyboard. 500 milliseconds after 

this key was pressed, the stimulus appeared and was shown until the participant responded. The 

participant was to respond by pressing the T-key if the target pair were circles or the Y-key if the 

target pair were squares.  Since the original experiment used a button box and asked participants 

to place an index finger on each button, this was emulated by instructing participants to rest their 

left finger on the T-key and right finger on the Y-key for the duration of the experiment.  After 

completing 36 practice trials in which all spacing conditions were experienced, the participant 

completed a total of 144 experimental trials.  All conditions were randomly interleaved.  If a 

response was incorrect, too fast (if the response time was less than 100 ms), or too slow (if the 

response time was greater than 3000 ms), participants were given feedback at the end of a trial and 

subsequently were prompted to press the B-key to initiate the next trial.  Otherwise, i.e., if a correct 

response was given and the response time was not too fast or slow, the participant was prompted 

to press the B-key to start the next trial. Incorrect trials and trials with reaction times lower than 

100 ms or greater than 3000 ms were omitted from analysis.   
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Figure 42. The left column shows the time course of a correct trial with a between-group stimulus, and right column 
shows the time course of an incorrect trial with a within-group stimulus.  This trial structure was used for 

Experiments 1-3.  The black rectangle has been cropped to take up less room here. 
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Results and Discussion 

Mean response times for correct trials for each spacing condition are shown in the top right 

plot of Figure 40 and in Table 1.  

Table 1. Experiment 1 Descriptive Statistics and Correlations for Spacing Conditions 

______________________________________________________________________________ 

  Response Time (ms)  

Condition M SD 1 2 3 4 5 6 7 8 
______________________________________________________________________________ 

 1 731.45 113.12  ¾ 

 2 721.17 122.03 .77  ¾ 

 3 741.32 116.90 .75 .75  ¾ 

 4 839.37 132.97 .66 .72 .67  ¾ 

 5 725.58 99.04 .78 .75 .75 .71  ¾ 

 6 734.60 115.02 .80 .78 .72 .69 .75  ¾ 

 7 993.09 178.32 .62 .67 .62 .73 .65 .60  ¾ 

 8 818.35 127.05 .77 .73 .71 .73 .76 .69 .68  ¾ 

 9 777.50 127.60 .78 .71 .68 .75 .76 .76 .68 .74 
______________________________________________________________________________ 

Note. M indicates mean, SD indicates standard deviation, and columns 1-8 indicate correlations 
across spacing conditions. 

The spacing conditions were pooled by grouping condition.  Mean response times for 

correct trials for each grouping condition are shown as the second set of bars in Figure 41a and in 

Table 2.  

Since I am interested in whether there is a significant difference in mean response times 

for grouping conditions, I ran an ANOVA model with three contrasts.  This and all ANOVA 

models below were run in R (version 4.0.2; R Core Team, 2020) using the ez package (Lawrence, 

2016). 
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Table 2. Experiment 1 Descriptive Statistics and Correlations 
for Grouping Conditions 

___________________________________________________ 

  Response Time (ms)  

Condition  M SD Within Neutral 
___________________________________________________ 

Within 732.47 107.96  ¾ 

Neutral 744.67 104.45 .88  ¾ 

Between 882.89 130.82 .82 .84 
___________________________________________________ 

Note. M indicates mean, SD indicates standard deviation, and 
columns labelled “Within” and “Neutral” indicate correlations 
across grouping conditions. 

A repeated measures ANOVA showed grouping condition had a significant effect on 

response time, F(1.73, 179.45) = 328.71, p < .001 (since Mauchly’s test indicated a violation of 

sphericity, ε = .86, Huyn-Feldt corrected results are reported). Planned contrasts indicated that 

response times were significantly higher for the between-group condition compared to the within-

group condition, t(208) = −23.08, p < .001, and for the between-group condition compared to the 

neutral condition, t(208) = −21.21, p < .001. There was no significant difference in response times 

for the neutral condition compared to the within-group condition, t(208) = 1.87, p = .063. 

The pattern of results for the spacing conditions of this experiment largely replicates that 

in Palmer and Beck (2007).  A key similarity is that the mean response times for the between-

group condition are significantly higher than the neutral condition.  A difference is that the 

response times for neural and within-group conditions did not significantly differ.  The low sample 

size of the original experiment and the results of their experiment 3 (in which they used color, 

rather than proximity, to investigate differences in performance by grouping condition), which 

indicated no significant difference between performance on neutral and within-group conditions, 

suggest that this discrepancy could be the result of sampling variations. Additionally, response 

times are compressed for my experiment, which probably reflects differences in equipment and 

context. 
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Model Simulations of Experiment 1 

Simulated Grouping Strategies 

To explore the impact of V2 connections and selection signal size on performance, 

simulations implementing three grouping strategies were conducted.	 Recall that a grouping 

strategy consists of a connection strategy (what elements are connected) and a selection strategy 

(size, location and timing of selection signals).  The simulations differed in their connection 

strategy and selection signal size strategy as indicated in Figure 43b.  These components of the 

grouping strategies and as well as the selection signal timing strategy common all of these grouping 

strategies will be presented in the next two subsections. 

Connection strategies. A connection strategy that would facilitate selection, 

segmentation, and identification of the target pairs would be to connect only the target pairs if 

possible.  Since target pairs are always the same shape and next to each other, this strategy can be 

implemented by, in terms of Gestalt grouping principles, grouping by shape.  In terms of the model, 

an observer can tune the four connection parameters so as to promote connections only between 

nearby same-shaped objects provided that these objects are appropriately aligned and spaced, e.g., 

equidistant from each other and objects of other shapes (which was demonstrated in the grouping 

by shape example in the “Combining Connection Controllers to Promote Gestalt Groupings” 

section above).  With such connection parameter values, i.e., with at least a positive Spread 

Controller duration value, which promotes connection spread, and the Long Controller Circuit on, 

which can be used to connect nearby same-shaped objects only, the model is able to connect only 

target pairs in the neutral (spacing conditions 1, 5, 9) and within-group (spacing conditions 2, 3, 

6) conditions.  Since there is a different minimum inter-shape distance in each of the within-group 

conditions, there were a total of three sets of parameters.  In other words, the further apart the 

target pair is, the longer the Spread Controller needs to be on to allow the connections to spread 

far enough to bridge the space between them.  The set of parameters used for each spacing 

condition is indicated by the Roman numerals next to each image in Figure 43c (see the caption 

for the connection parameter values used in these simulations).   
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Figure 43. (a) All of the stimuli for the Experiment 1 simulations.  (b) A table summarizes the differences in 
grouping strategies, which references (c) and (d).  Box (c) shows two connection strategies, and box (d) indicates 
two selection signal size strategies.  The connection parameter sets numbered by i-iv in box (c) correspond to the 

following values for the horizontal connection circuits: (i) Spread Controller duration 30 ms, Long Controller input 
2.0, Short Controller input 0.8; (ii) Spread Controller duration 60 ms, Long Controller input 1.7, Short Controller 

input 0.8; (iii) Spread Controller duration 95 ms, Long Controller input 1.0, Short Controller input 0.8; (iv) Spread 
Controller duration 0 ms, Long Controller input 1000, Short Controller input 0.8.  Spread Controller onset was fixed 

at 0 ms for all simulations. 
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For the between-group conditions (spacing conditions 4, 7, 8), targets and distractors are 

too close to prevent them from connecting while also connecting target pairs; there is no set of 

connection parameters that connects target pairs only for the between-group conditions.  So, the 

most advantageous connection strategy for the between-group conditions is to have no connections.   

This connection strategy gives rise to two related questions.  First, do we need an additional 

set of connection parameters for the between-group conditions, i.e., a set in which the Connection 

Circuit is turned off so there are no connections?  Second, how might an observer know when to 

apply a particular set of connection parameters?  There are at least three sets of connection 

parameters, but the stimuli are randomized.  So, an observer would not know whether, e.g., a 

stimulus from the neutral condition with a target pair separated by half a square width (i.e., spacing 

condition 1) or by 1.5 square widths (i.e., spacing condition 9) will be presented on the next trial, 

or whether a neutral or between-group stimulus will be presented on the next trial. So, how does 

the observer know which set of connection parameters to use for any given trial? 

To answer the second question for the neutral (spacing conditions 1, 5, 9) and within-group 

(spacing conditions 2, 3, 6) conditions, I propose that an observer applies a particular set of 

connection parameters based on the smallest inter-shape distance between the shapes.  For example, 

if the smallest inter-shape distance in a given stimulus image is half a square width, then the 

observer implements connection parameter set (i) in Figure 43a.  If we apply connection 

parameters (i) to the between-group conditions, e.g., apply connection parameters set (i) if the 

smallest inter-shape distance for any stimulus image is half a square width, it turns out that this set 

of parameters not only connects target pairs in the within-group condition, e.g., condition 2, and 

in the neutral conditions, e.g., condition 1, but also deters connections in the between-group 

conditions, e.g., condition 4 (see Figure 43c under ‘Strategic Connections’ for the connections that 

form when this strategy is used).  So, to answer the first question, only three sets of connection 

parameters are needed to implement this connection strategy.  In turn, one connection strategy that 

an observer might learn to promote performance on this task is to associate the smallest distance 

between elements in a stimulus with the connection parameters that promote V2 connections 

among target pairs if it is possible to connect them.  If it happens to be a between-group stimulus, 

there is no disadvantage in using this strategy: the target pair in these cases will never connect 

together in a way that allows only the target pair to be selected and segmented out. 
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To see how these strategic connections impact performance, simulations were conducted 

with (Grouping Strategies 1 and 2 – see Figure 43b) and without connections (Grouping Strategy 

0).  The V2 bipole activity is shown in Figure 43c under ‘No connections’, which used connection 

parameter set (iv) that effectively turned off the connection circuit.   

Selection strategies. To explore the impact of different selection signal sizes on 

performance, two selection signal size strategies were used.  Grouping Strategies 0 and 1 used the 

Single Size Strategy where a selection signal of a single size was used for all conditions, while 

Grouping Strategy 2 used the Multiple Sizes Strategy.  For each size strategy, Figure 43d shows 

the selection signal maps overlaid on to the stimulus image to provide a sense of size of the 

selection signal relative to stimulus elements.  The size for the Single Size Strategy was chosen to 

be large enough to possibly select and segment out the unconnected target pair in between-group 

conditions and, thereby, promote grouping via selection signals.  Additionally, the selection signal 

was not made so large that it might overlap with a distractor in the spacing conditions where the 

shapes are relatively close and, thus, reduces such interference.  The sizes for the Multiple Sizes 

Strategy were chosen in view of the results of pilot simulations.  As for the Strategic Connections 

Strategy, which involves three sets of connection parameters, a similar question arises for the 

Multiple Sizes Strategy: How does an observer know which selection signal size to use on a given 

trial?  I propose that observers who use the Multiple Sizes Strategy select a particular size by using 

gist information about row width, i.e., the smallest size is used for stimuli with a relatively short 

distance from the extreme elements in the row (spacing conditions 1, 2, 4), the largest size for rows 

with elements that span a relatively long distance (spacing conditions 6, 8, 9), and a medium size 

of rows of intermediate width (spacing conditions 3, 5, 7). 

Apart from this difference in selection signal size, the selection strategy implemented in 

each grouping strategy was the same.  The model used a feature-based strategy for determining 

the position of selection signals.   A horizontal feature filter was used because targets, which tend 

to be united by horizontal connections via the Strategic Connections strategy, often have more 

horizontal signal.  This can be seen by comparing the feature filters produced using bipole cell 

activity with Strategic Connections compared with those from No Connections shown in Figure 

44.    
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Figure 44. Horizontal feature filters for spacing conditions 4, 5, and 6.  Top row provides those 
for Strategic Connections, and bottom row for No Connections. 

With Strategic Connections, there are relatively wide and high peaks in the distribution 

above the target pair due to the horizontal connections between them in the neutral and within-

group conditions.  So, given this connection strategy, this feature filter was chosen since it will 

tend to guide selection signals to the area where a connected target pair is located for the majority 

of spacing conditions.  

There were two selection signals, which is the same number used by Francis et al. (2017) 

in simulations of vernier discrimination tasks.  Unlike the simulations conducted by Francis et al. 

in which location of selection signals were at a fixed location for the duration of a trial, here each 

selection signal shifted every 150 ms to a location sampled from the probability distribution 

created by smoothing the sum of horizontal activity in each column of the V2 output from the 

previous 50 ms. 150 ms was chosen because this is the shortest time possible for V2 to elicit V4 

signals that are strong enough to identify whether the selected element was a target.  The selection 
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signals were temporally staggered, e.g., the first started at 100 ms of simulation time and the second 

started at 150 ms (Figure 45).   

Target identification algorithm. Once an element was selected and segmented into a 

segmentation layer, the associated V4 activity was checked for symmetry: if the segmented 

element was (nearly) symmetrical and of appropriate width, e.g., wider than a single shape, then it 

was identified as a target pair and the trial ended.  If the segmented element did not meet these 

conditions, then the non-base segmentation layer was reset and the trial continued (for examples, 

see Figure 46). 

 

Figure 45.  Illustration of the timing of selection signals used for the simulations of Experiment 1. Two selections 
signals are used but are temporally staggered: the selection signal represented by a yellow circle begins 50 ms after 
the pink selection signal.  After 150 ms at one location, i.e., after a 150 ms selection cycle (which was defined in 

Section 5.1), each selection signal shifts to a different location and its segmentation layer is reset. 
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Figure 46. Examples of V4 activity that are input to the target identification algorithm.  Left column: The target 
identification algorithm identified a target in layer 1 because the V4 activity is generally symmetrical and of suitable 

width.  In turn, the trial ended at 600 ms. Right column: Layer 1 has activity that is of suitable width yet is not 
symmetrical.  Layer 2 has a single object.  Although this activity is symmetrical, it is not of suitable width for a 

target pair.  So, the target identification algorithm did not detect a target in either V4 layer, and the trial continued. 

Simulation Stimuli, Method, and Procedure 

The stimuli for the simulations were the set of stimuli shown in Figure 43a.  These are 

BMP files I created using a custom Python script and were used as input for the model.  I attempted 

to make the proportions of stimulus elements and spacing as close as possible to those used in 

Experiment 1 while also reducing the size of the stimuli to facilitate faster runs of simulations.  

The diameter of a square was 19 pixels, and the distance from the edges of the farthest shapes in 

the row varied from 251 to 403 pixels, depending on the spacing condition.  Target pairs were 

always in the same positions, i.e., in positions 5-6. Palmer and Beck (2007) reported slower 

reaction times for targets in positions 3-4 and 6-7; however, since, among other things, the model 

lacks a retina that might explain better central acuity, the positions of the targets are irrelevant for 

the simulations.   

On each simulated trial, a stimulus was shown to the model until either the target 

identification algorithm indicated that the target pair was detected or a 750 ms maximum time was 

reached.  For each spacing condition, 120 trials were conducted (60 trials with a circle target pair, 

and 60 with a square target pair).  Simulations were run in batches of 10 trials due to a memory 

leak that occurs when using NEST 2.14.0, but such batch runs do not impact model performance.  

Since the order of presenting the conditions is irrelevant for model performance, a single stimulus 

image with a particular spacing condition and specific target pair (e.g., spacing condition 1 with a 

square target pair) was input to the model on each batch. 

Three sets of simulations were conducted, and each set implements one of three grouping 

strategies, which are summarized in Figure 43b.  Grouping Strategy 0 implemented a connection 

strategy where no connections formed and used a fixed selection signal size for all conditions.  

Condition 5, Trial 2
V4 Activity from 300-350 ms

Condition 6, Trial 7
V4 Activity from 550-600 ms

Layer 0

Layer 1

Layer 2
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Grouping Strategy 1 also used a fixed selection signal size but implemented the Strategic 

Connection Strategy shown in the top set of images in Figure 43c.  Like Grouping Strategy 1, 

Grouping Strategy 2 used strategic connections, but it used the Multiple Sizes selection signal 

strategy indicated in the top set of images in Figure 43d.   

Model Results and Discussion 

For each condition, the time it took for the model to find a target or time out on each trial 

was averaged across simulated trials to provide a measure of mean response time that can be 

compared with that of human observers.  Model results for each spacing condition are shown in 

Figure 40, bottom row.  Model results from Grouping Strategies 1 and 2 are well correlated with 

the results from my Experiment 1 (r = .81 and r = .88, respectively) relative to Grouping Strategy 

0 and Experiment 1 (r = .53).   

As shown in Figure 40, bottom row, Grouping Strategy 0 has much higher response times 

overall compared with the other grouping strategies, and performance tends to decrease as distance 

between the target pair increases.  The latter trend is to be expected since, due to the fixed selection 

signal size that can just barely cover two stimulus elements at 1.5 target-pair separation, it is less 

likely that the observer simultaneously selects both unconnected target elements as their separation 

increases.   

Unlike Grouping Strategy 0, Grouping Strategies 1 and 2 result in relatively good 

performance for the within-group and neutral conditions (bottom row of Figure 40, white and gray 

bars, respectively) compared to the between-group conditions (black bars).  The patterns of results 

more closely resemble those of human observers in Experiment 1 (Figure 40, top right plot).  In 

turn, it seems the connection strategy used in these grouping strategies, i.e., connect target pairs 

only (if possible), promotes performance for within-group and neutral conditions. 

Interestingly, the pattern of results for Grouping Strategy 1 reflects Palmer and Beck’s 

prediction that response times should be lowest for within-group conditions (2, 3, 6), middling for 

neutral conditions (1, 6, 9), and highest for between-group conditions (4, 7, 8).  This can be readily 

seen in Figure 41b, middle set of bars, which shows results for each grouping condition.  However, 

the pattern produced for Grouping Strategy 2 more closely resembles the results from Experiment 

1 in that response times for neutral and within-group conditions are similar (compare Figure 41a, 

second set of bars, with Figure 41b, third set of bars).  In turn, out of the grouping strategies 
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simulated, Grouping Strategy 2, which had a strategic connection strategy coupled with a selection 

signal size strategy with multiple sizes, leads to results that best match those of human observers.  

This suggests that for this apparently simple task, participants are using a somewhat complicated 

grouping strategy that combines a connection strategy that involves three sets of connection 

parameters with a selection signal size strategy that involves multiple selection signal sizes. 

Experiment 2: Same Task, Different Stimulus Set 

One of my main claims is that the grouping strategy an observer adopts depends on the 

task and stimulus set.  I investigated this claim by conducting Experiment 2, which is a variation 

of Experiment 1 that has the same task, number of spacing conditions, and number of possible row 

widths, i.e., distance from the leftmost to the rightmost stimulus elements.  However, rather than 

having the majority of stimulus images being spaced such that an observer could group them by 

shape, i.e., 2/3 of the stimulus images were either within-group or neutral in Experiment 1, 

Experiment 2 has 2/3 of its stimulus images from the between-group condition.  According to the 

model, an observer should group stimulus elements such as to promote performance.  In 

Experiment 1 it seems beneficial to connect target pairs (if possible) since this will promote 

performance for 2/3 of the stimuli.  For the other 1/3 of the stimulus images, i.e., for the between-

group condition, this connection strategy was not detrimental to performance since, although target 

pairs were too far to connect, target elements did not connect to distractors.  This connection 

strategy coupled with a horizontal feature filter, led to lower performance in the between-group 

conditions, consistent with the empirical data. 

Since 2/3 of the stimulus images in Experiment 2 are of the between-group condition, the 

model predicts that an observer will likely not use the same grouping strategy; since this strategy 

will only promote performance for 1/3 of the stimuli, it seems likely that an observer would use 

an alternative grouping strategy.  If, as for Experiment 2, the connection strategy causes the 

elements in the between-group conditions to not connect, then a possible selection strategy is to 

attempt to select a single element, perhaps using stimulus element features to guide attention to 

the location of an element, and then use a location-based placement strategy to guide attention to 

the element at the opposite side of the relatively wide gap.  The two selected elements can thereby 

be isolated and compared to see if they are of the same shape.  This should cause faster response 

times for the between-group conditions where the target elements are separated by a relatively 
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wide gap.  (The mechanics of this selection strategy would have to be worked out, but it does not 

prima facie seem to be an unreasonable strategy. Small selection signals would probably work best 

here to avoid also selecting the closest nearby element)   

Assuming No Connections are used, the model predicts an increase in response time for 

the within-group and neutral conditions.  If the aim is to initially select a single item, then having 

no connections would facilitate such selection; however, given the hypothetical selection strategy 

that involves directing attention to the neighboring object across the wider gap, the relatively 

nearby target in within-group conditions would be less likely to be selected and identified.  Thus, 

if No Connections are used, we should see an increase in response times for the within-group and 

neutral conditions. 

Would Strategic Connections promote performance for this stimulus set?  This would 

connect target elements only in the within-group and neutral conditions, and it would result in no 

connections in the between-group conditions.  It’s possible for a step to be incorporated into the 

selection strategy described above: after the first item is selected, the segmented signal is checked 

to see whether a pair of same-shaped items was selected.  If so, then the trial stops since the target 

pair was found.  If not, then a second selection signal is directed to the neighboring element that 

is farther away from the selected element.   So, if Strategic Connections are used, the model 

predicts similar performance on within-group and neutral conditions for this experiment as for 

Experiment 1.  A cost of this connection strategy is that it may be more difficult to select a single 

element at the beginning of a trial with a between-group condition due to the spread of boundary 

signal before the system settles down to equilibrium; a selection signal may overlap with spread 

from a neighboring circle and, thereby, select a nontarget pair, especially when a target element is 

very close to a distractor.  

In sum, the model predicts that between-group response times should be lower in 

Experiment 2 than Experiment 1.  If a connection strategy with no connections is adopted, then 

response times for within-group and neutral conditions should be higher in Experiment 2 than 

Experiment 1.  If a connection strategy in which target pairs only are connected (if possible) is 

adopted, then within-group and neutral response times should be similar across both experiments. 

I generated additional between-group spacing conditions by expanding the set of spacing 

conditions (Figure 39, fourth row of stimuli) used in Experiment 1.  Experiment 2 uses the set of 

spacing conditions numbered 4-12 in Figure 39, which consists of one within-group (spacing 
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condition 6), two neutral (conditions 5 and 9), and six between-group (conditions 4, 7-8, and 10-

12) spacing conditions.   

Method 

Participants. For ease of comparing data from this experiment with that of Experiment 1, 

I aimed to gather data from the same number of participants as in Experiment 1 who had error 

rates no greater than 10% (n = 105).  I ended up with a total of 121 participants, 105 of which had 

an acceptable error rate and were used in the analysis. 

Apparatus, stimuli, and procedure. All aspects were identical to those of Experiment 1 

except the spacing conditions are those numbered 4-12 in Figure 39.  For this set of stimuli, the 

width of the entire row of figures, i.e., the distance from the leftmost shape to the rightmost shape, 

subtended between approximately 15.0° to 22.8°, depending on the spacing condition, for the 

hypothetical participant described in the “General Experiment Methodology” section above.  

Additionally, to accommodate the widest spacing condition, the width of the black rectangle 

(where the experiment took place on the webpage) was increased so that it subtended 

approximately 27.0°.    

Results and Discussion 

Mean response times for correct trials for each spacing condition are shown in Table 3.  

Spacing conditions were also pooled by grouping condition.  Mean response times for 

correct trials for each grouping condition are shown as the third set of bars in Figure 41a and in 

Table 4.  

As in Experiment 1, I ran an ANOVA model with three planned contrasts to compare 

performance by grouping condition.   
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Table 3. Experiment 2 Descriptive Statistics and Correlations for Spacing Conditions 

______________________________________________________________________________ 

  Response Time (ms)  

Condition M SD 4 5 6 7 8 9 10 11 
______________________________________________________________________________ 

 4 803.81 150.40  ¾ 

 5 739.29 137.11 .82  ¾ 

 6 747.83 122.69 .83 .82  ¾ 

 7 922.85 184.58 .86 .82 .80  ¾ 

 8 789.43 145.86 .87 .84 .84 .85  ¾ 

 9 744.36 119.31 .87 .86 .86 .86 .91  ¾ 

 10 991.67 194.15 .78 .73 .71 .83 .78 .78  ¾ 

 11 862.57 167.14 .85 .81 .83 .87 .83 .82 .78  ¾ 

 12 807.29 153.58 .80 .83 .82 .77 .85 .84 .78 .77 
______________________________________________________________________________ 

Note. M indicates mean, SD indicates standard deviation, and columns 4-11 indicate correlations 
across spacing conditions. 

 

Table 4. Experiment 2 Descriptive Statistics and Correlations 
for Grouping Conditions 

___________________________________________________ 

  Response Time (ms)  

Condition  M SD Within Neutral 
___________________________________________________ 

Within 747.83 122.69  ¾ 

Neutral 741.79 123.34 .87  ¾ 

Between 862.05 151.94 .87 .93 
___________________________________________________ 

Note. M indicates mean, SD indicates standard deviation, and 
columns labelled “Within” and “Neutral” indicate correlations 
across grouping conditions. 
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A repeated measures ANOVA showed grouping condition had a significant effect on 

response time, F(1.86, 193.11) = 223.90, p < .001 (since Mauchly’s test indicated a violation of 

sphericity, ε = .86, Huyn-Feldt corrected results are reported). Planned contrasts indicated that 

response times were significantly higher for the between-group condition compared to the within-

group condition, t(208) = −17.84, p < .001, and for the between-group condition compared to the 

neutral condition, t(208) = −18.78, p < .001. There was no significant difference in response times 

for the neutral condition compared to the within-group, t(208) = −0.94, p = .347. 

Regarding the grouping conditions, the results of Experiment 1 are replicated in this 

experiment.  However, because the main purpose of Experiment 2 is to test whether performance 

is dependent on the stimulus set, I compared mean response times for spacing conditions that 

appeared in both Experiment 1 and 2.  These are shown in rows 2 and 3 of Figure 39, and Figure 

47 plots the response times across experiments for these conditions (the number beside each point 

in Figure 47 corresponds to the spacing condition number in Figure 39). 

 

Figure 47. A plot comparing response times for Experiments 1 and 2 for shared spacing 
conditions.  The number labels correspond to the conditions shown in rows 2 and 3 of Figure 39.   
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If a point falls on the dashed diagonal line, then the mean response time was the same for 

both experiments.  If the point is above the dashed line, then the mean response time was lower in 

Experiment 1 than in Experiment 2 for that spacing condition.  If the point is below the line, then 

the mean response time was higher in Experiment 1.  Qualitatively, mean response times for all 

between-group conditions (squares in Figure 47) were faster in Experiment 2, and mean response 

times for all within-group and neutral conditions (diamond and circle points in Figure 47, 

respectively) except condition 9 were slower in Experiment 2.   

To compare the performance of participants in Experiment 1 and Experiment 2, which had 

different stimulus sets, on conditions shared between these experiments (spacing conditions 4-9), 

a mixed ANOVA was run. There was a significant effect of spacing condition, F(3.70, 770.17) = 

313.69, p < .001, and a significant interaction between stimulus set and spacing condition, F(3.70, 

770.17) = 11.64, p = .011 (since Mauchly’s test indicated a violation of sphericity, ε = .74, 

Greenhouse-Geisser corrected results are reported). Stimulus set did not have a significant effect 

on response time, F(1, 280) = 1.89, p = .171.  Planned contrasts indicated that response times were 

significantly lower for between-group spacing conditions (4, 8, 7) for Experiment 2 than in 

Experiment 1, t(208) = −2.28, p = .023.  There was no significant difference in response times for 

the within-group and neutral conditions in Experiment 1 compared with response times for those 

conditions in Experiment 2, t(208) = −0.13, p = .0894. 

The stimulus set of Experiment 2 had a majority of between-group conditions, while that 

of Experiment 1 had a majority of within-group and neutral conditions.  The results of Experiment 

2 are in line with the expected results: performance for between-group conditions is improved for 

this stimulus set compared to that of Experiment 1, which indicates that participants are using an 

alternative selection strategy.  The similar performance for within-group and neutral conditions 

across the experiments indicates that the same connection strategy was used.  Overall, this supports 

my claim that the grouping strategy used is dependent on the stimulus set and chosen to promote 

overall performance. 

Experiment 3: Controlled Row Width to Induce a Simpler Selection Strategy 

In this experiment, I investigate whether controlling for total row width of each stimulus 

image impacts reaction time.  Recall that in view of how well the results of Grouping Strategy 2 

matched those of Experiment 1, it seemed that observers might be using a complicated selection 
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strategy in which the chosen selection signal size depends on the total width, i.e., the distance from 

the leftmost to rightmost shape in a row, of each stimulus image.  Sets of spacing conditions with 

the same row width are easily generated by extending the matrix of spacing conditions used in 

Experiment 1 shown in Figure 39.  Each spacing condition that falls along a diagonal that starts at 

the bottom left and ends to the top right of the matrix, e.g., conditions 3, 5, and 7, have the same 

row width.  The set of spacing conditions for Experiment 3 are shown in Figure 39 below the solid 

line.  If the matrix above the dashed line is extended to have 7 rows and 7 columns (with a 

maximum pair separation of 3.5), then this set of stimuli constitutes the matrix’s counterdiagonal. 

If participants use a selection strategy involving a fixed selection signal size, which was 

implemented in Grouping Strategy 1, then reaction times should be more indicative of the 

connection strategy and feature filter that was used and, thus, would support my claim that 

observers are using a more complicated selection strategy in the original Palmer and Beck 

experiment since total width was not controlled for.  In other words, the results should mirror the 

model results when Grouping Strategy 1 was implemented, which had a fixed selection signal size, 

i.e., times should tend to be lowest for within-group conditions, worst for between-group 

conditions, and somewhere in between for neutral conditions. 

Method 

Participants. I planned to gather data so that I measured mean response time with a 

standard error of around 10 milliseconds. Experiment 1 above found standard deviations across 

participants around 114 milliseconds, so I again planned for approximately 100 participants. I 

ended up with a total of 143 participants.  As in Experiment 1, I used data only from subjects with 

an error rate of 10% or less (n = 102).   

Apparatus, stimuli, and procedure. All aspects were identical to those of Experiment 1 

except the stimulus set is that shown below the solid line in Figure 39.  It consists of a total of 

seven spacing conditions: three within-group (labelled W1, W2, W3, in Figure 39), one neutral 

(N1) and three between-group (B1, B2, B3). For this set of stimuli, the width of the entire row of 

figures was a constant, i.e., the distance from the leftmost shape to the rightmost shape, subtended 

approximately  24.7°. 
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Results and Discussion 

Mean response times for correct trials for each spacing condition are shown in the second 

column of Figure 48 and in Table 5.  

 

Figure 48. Mean response times for each spacing condition in Experiment 3.  Error bars 
represent one standard error of the mean, and bar color indicates which grouping condition the 

spacing condition falls under. 

Spacing conditions were pooled by grouping condition.  Mean response times for correct 

trials for each grouping condition are shown as the fourth set of bars in Figure 41a and in Table 6.  

I again ran an ANOVA model with three planned contrasts to compare performance by 

grouping condition. 

A repeated measures ANOVA showed grouping condition had a significant effect on 

response time, F(1.59, 160.34) = 382.91, p < .001 (since Mauchly’s test indicated a violation of 

sphericity, ε = .86, Huyn-Feldt corrected results are reported). Planned contrasts indicated that 

response times were significantly higher for the between-group condition compared to the within-

group condition, t(202) = −24.73, p < .001, and for the between-group condition compared to the 

neutral condition, t(202) = −23.12, p < .001. There was no significant difference in response times 

for the neutral condition compared to the within-group condition, t(202) = 1.61, p = .109. 
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Table 5. Experiment 3 Descriptive Statistics and Correlations for Spacing Conditions 

______________________________________________________________________________ 

  Response Time (ms)  

Condition  M SD W1 W2 W3 N1 B1 B2 
______________________________________________________________________________ 

 W1 799.41 119.56  ¾ 

 W2 800.55 123.44 .74  ¾ 

 W3 799.89 125.72 .76 .80  ¾ 

 N1 820.90 139.84 .70 .68 .27  ¾ 

 B1 972.24 203.19 .60 .56 .65 .78  ¾ 

 B2 1109.67 225.89 .54 .43 .56 .58 .71  ¾ 

 B3 1285.55 263.49 .55 .40 .51 .51 .53 .68 
______________________________________________________________________________ 

Note. M indicates mean, SD indicates standard deviation, and the other columns indicate 
correlations across spacing conditions. 

 

Table 6. Experiment 3 Descriptive Statistics and Correlations for 
Grouping Conditions 

________________________________________________________ 

  Response Time (ms)  

Condition M SD Within Neutral 
________________________________________________________ 

Within 800.07 112.87  ¾ 

Neutral 820.90 139.84 .76  ¾ 

Between 1119.67 199.78 .66 .70 
________________________________________________________ 
Note. M indicates mean, SD indicates standard deviation, and columns 

labelled “Within” and “Neutral” indicate correlations across grouping 

conditions. 
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Although there is a small difference in response time between within-group and neutral 

conditions of around 20 ms, this difference was not significant.  This is counter to the prediction 

that controlling for row width would control for selection signal size and, thereby, result in the 

lowest mean response time for the within-group condition and a middling mean response time for 

the neutral condition.   

However, this prediction was ill-formed for two reasons.  First, given that I claim that 

grouping strategy is dependent on stimulus set, I should have considered model behavior for this 

particular stimulus set, rather than rely solely on inferences from the Experiment 1 simulations.  In 

future work, I plan to run simulations with the stimulus set used in Experiment 3 to determine what 

grouping strategy(s) optimizes performance for this stimulus set (which may also offer an 

explanation for the pattern of results for the between-group spacing conditions).  Second, when 

making this prediction and designing the experiment, I did not consider that it was the combination 

of selection signal size and crowding that was a main reason for the pattern of results produced 

with Grouping Strategy 1 in the simulation of Experiment 1.  Consider the simulated results in 

Figure 40, bottom row.  Grouping Strategy 1 led to much higher response times for spacing 

condition 1, which was a neutral condition, compared with spacing condition 2, which was a 

within-group condition.  With the target pair being connected in both conditions, this difference in 

response times is primarily due to the within-group target pair being farther from distractors than 

the neutral condition target pair.  In turn, a selection signal that happened to land on the target pair 

in the neutral condition was more likely to overlap with surrounding distractors and, thus, less apt 

to segment and identify the target pair than the within-group condition.  When Grouping Strategy 

2 is used, which has the same small selection signal size, mean response time for spacing condition 

1 is greatly reduced and more similar to that of spacing condition 2 (compare the bars for 

conditions 1 and 2 of Figure 40, bottom middle plot with those of the bottom right plot).  Thus, 

with a medium selection signal size, grouping by selection of targets with neighboring distractors 

was more likely for this neutral condition than for the within-group condition, which led to the 

difference in performance. 

Compared to the Experiment 1 stimuli, the neutral and within-group stimuli of Experiment 

3 had much wider gaps surrounding the target pair for within-group and neutral conditions.  So, 

unless a selection signal with a large size that tended to overlap with neighboring distractors was 

used, response times for the neutral and within-group stimuli should be similar, which is what was 
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observed.  In turn, a selection signal size strategy with a fixed, small size is compatible with the 

Experiment 3 results but not directly supported by them.  
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VICKERY (2008) 

Vickery (2008) used the visual search task developed by Palmer and Beck (2007) to 

investigate induced perceptual grouping, which refers to the influence of perceived grouping of 

some elements on other elements in the scene.  The stimuli for Vickery’s experiment 2a, which 

were reproduced for Experiment 4 and shown at the top of Figure 49, demonstrate this 

phenomenon with proximity.   

Each stimulus consists of a top row of 15 large and small circles that are alternated across 

the row except for the target pair, which is either an adjacent pair of large circles or small circles.  

The task was to press a key as soon as the target pair was found.  In all conditions the center of 

each circle is the same distance from that of its neighbors.  However, Vickery attempted to measure 

the effects of induced grouping by adding a bottom row of crosses that is irrelevant to the task.  

Vickery’s experiment had three grouping conditions: uniform, within-group, and between-group.  

Examples of each spacing condition are shown in the top three images of Figure 49.   

 

Figure 49. Screenshots showing stimuli that exemplify the grouping conditions used in 
Experiments 4 and 5.  For ease of comparison, here the target pair is always shown in positions 4 

and 5, counting from the left. 

Experiment 4
Stimuli 

(with small target pair)

Experiment 5
Stimuli 

(with large target pair)

Within-group

Uniform

Between-group

Within-group

Uniform

Between-group

Grouping
Condition
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Figure 50. Plot (a) provides mean response times for grouping conditions for the original experiment and 
Experiments 4 and 5.  Plot (b) shows the results of simulations running a version of Experiment 5 with the model 

implementing different grouping strategies. Error bars represent one standard error of the mean, and bar color 
indicates the grouping condition. 

In the uniform condition, each cross is directly below the center of a circle and, thus, 

equidistant from neighboring crosses.  In the other conditions, crosses were spaced so as to form 

perceived groups by proximity.  Grouped crosses fall under the target pair in the within-group 

condition, while grouped crosses fall below a target circle and a distractor circle in the between-

group condition.  Since Vickery hypothesized that the grouped pairs of crosses will induce 

perceived grouping of the uniformly spaced circles, i.e., the grouping of the crosses ‘spreads’ to 

the row of equidistant circles, he predicted that the crosses in the within-group condition will tend 

to improve performance compared to that of the between-group condition. 

In line with his prediction that response times should tend to be faster for the within-group 

condition and slowest for the between-group condition due to the grouping of irrelevant crosses, 

Vickery reported that mean reaction time for the between-group condition was significantly longer 

than that of the within-group condition, while the difference between the uniform and within-group 

conditions was not significant (Figure 50a, left set of bars, n = 13).  Thus, he concluded that 

grouping of the irrelevant crosses due to proximity influenced the perception of target items. 

Curiously, Vickery (2008) presents this experiment as a version of the Palmer and Beck 

(2007) experiment; however, he gives no reason for why he increased the number of non-cross 

elements from 9 to 15.  Additionally, Vickery’s experiment also modified how participants 

(a) (b)
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responded.  Participants responded in two stages: first they pressed a button as soon as the target 

pair was found, then a black letter X replaced each circle and the subject clicked on the X’s at the 

locations of the target pair.   

To see whether Vickery’s results replicate and to conduct the experiment so that it is closer 

to Palmer and Beck’s version of the task, I conducted a replication experiment (Experiment 4) 

with 15 shapes per row as well as a version with 9 shapes per row (Experiment 5).  Additionally, 

since simulations were only conducted with 9 shape stimuli (due to the computational resources 

required to simulate the large stimuli with 15 shapes), Experiment 5 provides results for the 

stimulus set that I was able to simulate. 

Experiment 4: Direct Replication of Vickery (2007) 

Experiment 4 is a replication of experiment 2a in Vickery (2008).  However, Experiment 

4 deviates from the original in several ways.  First, Experiment 4 is an online, rather than lab-based, 

experiment.  In turn, unlike the original experiment, this experiment is self-paced with participants 

being prompted to press a key to start each trial. Second, the tasked used in Experiment 4 was kept 

closer to Experiment 1, i.e., rather than the two-stage response described above, participants 

responded by pressing one key if the target was small circles and another key if the target was 

large circles.  Third, the original experiment discarded trials with response times less than 150 ms 

or greater than 5000 ms.  However, in view of pilot results, a 5000 ms cutoff was too short because 

too many trials were excluded and, in turn, a cut off of 8000 ms was used.  Finally, the original 

experiment used black filled figures on a white background, but for the model simulations it was 

better to use white filled figures on a black background. So, I used the same color scheme for the 

experiment. 

Method 

Participants. Recall that my aim is to measure each response time with a precision that 

would have a standard error of around 10 milliseconds.  The findings in Vickery (2007) indicate 

that the standard deviations are around 330 milliseconds.  Provided that Vickery’s standard 

deviations  are  representative,   running 300  participants  seemed  rather  excessive  to  achieve a 
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measure with a standard error of around 10 ms (particularly since I did not plan to simulate this 

version of the experiment), and a standard error of around 30 ms achievable by running 100 

participants seemed reasonable.  So, I planned for a sample size of 100 observers.  Due to excess 

sign-ups for the experiment, I ended up with a total of 162 observers. Because this experiment 

used the same task as Experiment 1, I used the same exclusion criterion and analyzed data only 

from subjects who had an error rate no greater than 10% (n = 105).  

Apparatus. Participants used the T-key and Y-key on their keyboard to register responses 

for large and small target pairs, respectively.  The keys were not counterbalanced and were chosen 

since they are close together and relatively centered on most keyboards. 

Stimuli. Examples of stimuli used in the experiment are shown in the first three rows of 

Figure 49.  There were two target sizes (small or large), 3 grouping conditions (within-group, 

uniform, between-group), and 10 possible positions of the target pair (a target element could 

appear in any location except the two outer positions [1, 2, 14, or 15] in the row).  For the 

hypothetical participant  described in the  “General Experiment Methodology”  section above, the 

diameter of a small circle subtended approximately 0.7° of the visual angle, the diameter of a large 

circle subtended 0.9°, and the width of a cross was the same as the diameter of a small circle.  The 

width of a line composing the cross subtended approximately 0.1°.  The center-to-center distance 

for each adjacent pair of circles and the center-to-center distance of pairs of crosses in the uniform 

condition subtended approximately 1.8°.  In non-uniform conditions, the center-to-center distance 

of relatively close crosses subtended approximately 1.1°, and that of relatively far crosses 

subtended approximately 2.6°.  The vertical distance from the center of a circle to the center of a 

cross in the uniform condition subtended approximately 1.9°.  The row was in a black rectangle 

with a constant width and height that subtended approximately 28.3° and 14.8°, respectively.  

Procedure. The procedure was identical to that of Experiment 1 with the following 

exceptions.  As shown in Figure 42, the screen was blank for 1000 ms, rather than 500 ms, and, of 

course, the subsequent stimulus image was, e.g., one shown in the first three rows of Figure 49.  

The participant was instructed to respond as quickly and as accurately as possible by pressing the 

T-key if the target pair were large circles or the Y-key if the target pair were small circles . After 

completing  24 practice  trials in  which all  spacing conditions  were experienced, the  participant  
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completed a total of 120 experimental trials.  So, there were 40 experimental trials per grouping 

condition, which is the same as the original experiment.  If a response was incorrect, too fast (if 

the response time was less than 100 ms), or too slow (if the response time was greater than 8000 

ms), the participant was given feedback at the end of the trial and were prompted to press the B-

key to initiate the next trial.  Otherwise, if a correct response was given and the response time was 

not too fast or slow, the participant was prompted to start the next trial by pressing the B-key.  

Trials with reaction times lower than 150 ms or greater than 8000 ms were omitted from analysis.  

Incorrect trials were also omitted from analysis. 

Results and Discussion 

Mean response times for correct trials for Experiment 4 are shown as the second set of bars 

in Figure 50a and in Table 7.  

I ran an ANOVA with three planned contrasts to compare performance for grouping 

conditions. 

Table 7. Experiment 4 Descriptive Statistics and Correlations for 
Grouping Conditions 

_________________________________________________________ 

  Response Time (ms)  

Condition M SD Within Uniform 
_________________________________________________________ 

Within 2025.25 441.80 ¾ 

Uniform 2058.57 440.88 .88 ¾ 

Between 2344.08 526.77 .82 .78 
_________________________________________________________ 

Note. M indicates mean, SD indicates standard deviation, and columns 
labelled “Within” and “Uniform” indicate correlations across grouping 
conditions. 

A repeated measures ANOVA showed grouping condition had a significant effect on 

response time, F(1.71, 177.59) = 78.20, p < .001 (since Mauchly’s test indicated a violation of 

sphericity, ε = .85, Huyn-Feldt corrected results are reported). Planned contrasts indicated that 

response times were significantly higher for the between-group condition compared to the within-
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group condition, t(208) = 11.38, p < .001, and for the between-group condition compared to the 

uniform condition, t(208) = 10.19, p < .001. There was no significant difference in response times 

for the uniform condition compared to the within-group condition, t(208) = 1.19, p = .236. 

The results of this experiment largely replicate the pattern of results in Vickery (2008).  

Compared with the results reported by Vickery, response times were longer in Experiment 4, and 

there was a much greater difference between the mean response time for the between-group 

condition and those of the other conditions.  The former difference is likely due to the difference 

in how participants responded: unlike the original experiment where participants pressed a button 

as soon as they found the target pair, this experiment required participants to press a key that 

corresponded to the size of the target pair.  The process of determining which key to press in this 

experiment should take more time and, thus, should lead to higher response times.   

Experiment 5: Nine Elements Per Row 

There are two reasons for conducting Experiment 5.  First, I wanted to see whether a 

version of Experiment 5 with nine shapes per row, which is the same as the number of elements in 

Palmer and Beck’s experiment, also provides evidence of induced grouping. Second, this provides 

experimental results that I can directly compare with model results.  Given the computational 

resources I had at the time of simulating this experiment, I could only run simulations using the 

Vickery stimuli with nine shapes.  

Method 

Participants. I again planned to gather data so that I measured mean response time with a 

standard error of around 10 milliseconds. Experiment 4 above found standard deviations across 

participants to be rather large (approximately 470 ms).  Reasoning that this was due to the row 

being much longer than a version with nine shapes per row, I stipulated that standard deviation for 

Experiment 5 should be closer to Experiment 1 (approximately 114 ms).  So, I again planned for 

approximately 100 participants. I ended up with a total of 143 participants.  As in Experiment 5, I 

used data only from subjects with an error rate of 10% or less (final n = 101). 
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Apparatus, stimuli, and procedure. All aspects were identical to those of Experiment 4 

with the following exceptions.  Rather than having 15 shapes per row, each stimulus had 9 shapes 

per row; examples of stimuli used in the experiment are shown in the bottom three rows of Figure 

49.  There were two target sizes (small or large), 3 grouping conditions (within-group, uniform, 

between-group), and 4 possible positions of the target pair (a target element could appear in any 

location except the two outer positions [1, 2, 8, or 9] in the row).  The size of the black window 

where the experiment took place was the same size as in Experiment 1.  And, as in Experiment 1, 

a response time was considered to be too fast if it was greater than 3000 ms.  Response times less 

than 150 ms or greater than 3000 ms were excluded from analysis. 

Results and Discussion 

Mean response times for correct trials for Experiment 5 are shown in third set of bars in 

Figure 50a and in Table 8.  

Table 8. Experiment 5 Descriptive Statistics and Correlations for 
Grouping Conditions 

_________________________________________________________ 

  Response Time (ms)  

Condition M SD Within Uniform 
_________________________________________________________ 

Within 1016.99 197.45 ¾ 

Uniform 1040.96 189.41 .93 ¾ 

Between 1084.84 206.41 .91 .89 
_________________________________________________________ 

Note. M indicates mean, SD indicates standard deviation, and columns 
labelled “Within” and “Uniform” indicate correlations across grouping 
conditions. 

As for Experiment 4, I ran an ANOVA with three planned contrasts to compare 

performance for grouping conditions. 

A repeated measures ANOVA showed grouping condition had a significant effect on 

response time, F(1.92, 192.25) = 33.63, p < .001 (since Mauchly’s test indicated a violation of 

sphericity, ε = .96, Huyn-Feldt corrected results are reported). All planned contrasts were 
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significant: response times were significantly higher for the between-group condition compared to 

the within-group condition, t(200) = 8.09, p < .001, and compared to the uniform condition, t(200) 

= 5.23, p < .001.  Response times for the uniform condition were also significantly higher than for 

the within-group condition, t(200) = 2.86, p = .005. 

Again, the spacing of irrelevant crosses negatively impacted performance in the between-

group condition.  However, unlike Experiment 4, the crosses in this experiment offered some 

performative advantage for the within-group condition compared to the uniform condition. 

Model Simulations of Experiment 5 

Simulated Grouping Strategies 

Four grouping strategies were implemented by the model, which are summarized in Figure 

51b.  Since a grouping strategy is a combination of a connection strategy and selection strategy, I 

go through these components in the next two subsections.  

Connection strategies. A connection strategy that would allow for easier identification of 

the target pair is to connect only the target pair of circles together.  The target pairs were always 

horizontally aligned, adjacent and of the same size.  An implementation of this connection strategy 

(one that also ignores connections that happen to form among irrelevant crosses) is to have a 

relatively long Spread Controller duration (57 ms) so that even stimuli with a target pair consisting 

of small circles can connect.  However, as in the grouping by size example discussed in the 

“Combining Connection Controllers to Promote Gestalt Groupings” section above, this causes 

connections between different sized circles; this high Spread Controller duration, which is needed 

to connect the distant but adjacent small circles also causes small and large circles to connect.  To 

eliminate these connections, the Small Controller Circuit was on and the Long Controller Circuit 

was off. So, just as in the grouping by size example discussed in the “Combining Connection 

Controllers to Promote Gestalt Groupings” section, the Small Controller Circuit must be on to 

prevent the top and bottom horizontal edges of each small circle from connecting with the large 

circles.  One set of connection  parameters was used to connect the same sized nearby target pairs 
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for all conditions.  The resulting connections for each stimulus are shown in Figure 51c under 

‘Strategic Connections’.  (The set of parameter values used to produce these connections is given 

in the caption of Figure 51). 

 

Figure 51. (a) All stimuli input to the model.  (b) Grouping strategies implemented by the model, which reference 
boxes (c) and (d).  Box (c) shows connections formed by two connection strategies.  For Strategic Connections, one 
set of connection parameters was used for the horizontal connection circuit: Spread Controller duration was 57 ms, 

Long Controller input was 1000, and Short Controller input was 0.8.  For No Connections, the set of connection 
parameters was: 0 ms duration, 1000 Long Controller input, and 0 Short Controller input.  Spread Controller onset 

was fixed at 0 ms for all simulations.  Box (d) shows the selection signal map for three selection signal size 
strategies. The map is overlaid with a stimulus to give a sense of a signal’s size relative to stimulus elements. 

To evaluate the role of connections in performance on this task, simulations were 

conducted with Grouping Strategy 1, which had Strategic Connections, and Grouping Strategy 0, 

which had no connections.   
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Selection strategies and target identification algorithm. For ease of comparing the role of 

connections, Grouping Strategies 0 and 1 had the same selection strategy, which is shown in Figure 

51d under ‘Large’.  This selection signal size was chosen because it was as big as possible without 

risking overlap with an irrelevant cross.  If Grouping Strategy 0 is to succeed, the observer 

implementing this grouping strategy must group target pairs by selection.  So, the signal needs to 

be big enough to possibly cover a target pair consisting of two small circles, but also not so large 

that it selects an irrelevant distractor.   

Two additional grouping strategies (Grouping Strategies 2 and 3) were run in order to see 

whether an observer using a smaller selection signal and connections would perform differently 

than an observer using Grouping Strategy 1 with the large selection signal.  Grouping Strategy 2 

and Grouping Strategy 3 were the same as Grouping Strategy 1 except for the selection signal size 

strategy.  As shown in Figure 51d, Grouping Strategy 2 used the Medium size strategy, and 

Grouping Strategy 3 used the Small size strategy.   

Apart from selection signal size, all other components of the selection strategy were 

identical across all grouping strategies implemented.  The timing and placement strategies and 

target identification algorithm are the same as those for the Palmer and Beck simulation with the 

following exceptions.  Possible locations of each selection signal were restricted to the row of 

circles; a selection signal could not overlap with a cross (Figure 52).   

The feature filter probability distribution was constructed from horizontal activity for the 

entire image, including horizontal signals from crosses (Figure 53).   

This distribution was used to guide selection signals, specifically the x-coordinate of the 

center of a selection signal was randomly sampled from this distribution.  The y-coordinate was 

fixed for all trials so that each selection signal was vertically centered on the row of circles.  So, 

although horizontal signals from crosses influenced selection signal placement across the image, 

crosses could not be selected. 
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Figure 52. Example of the selection strategy used for the Vickery simulations.  The output of each segmentation 
layer from the final 300 milliseconds (simulation time) from a particular trial, with each row showing segmentation 

layer activity during 50 ms.  The y-coordinate of each selection signal was fixed such that it was centered on the row 
of circles yet did not overlap with the crosses.  Shown here is the Large selection signal size strategy. 

tim
e

Segmentation Layer 1 Segmentation Layer 2Segmentation Layer 0
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Figure 53. Examples of the distributions used in each condition of the Vickery simulation for 
both connection strategies implemented by the model. 

Simulation Stimuli, Method, and Procedure 

Stimuli input to the model are shown in Figure 51a and were created using a custom Python 

script and converted to BMP files.  All aspects of the simulation method and procedure are 

identical to those of the simulations for Experiment 1 except, rather than a trial timing out at 750 

ms, the maximum time of a trial was 1000 ms.  In view of the pilot simulation results, the Vickery 

simulations often took longer to find a target than the Palmer and Beck simulations, which seldom 

found a target after 750 ms.  The reason for this difference is discussed below. 

Model Results and Discussion 

Experiment 6 indicated that mean response times for all grouping conditions was 

significantly different with the longest response times for the between-group condition and shortest 
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for the within-group condition (Figure 50a, right set of bars).  This pattern was mirrored 

qualitatively in the results of the simulations with Grouping Strategy 1 (Figure 50b, second set of 

bars).  Grouping Strategies 2 and 3 also produced a similar but compressed pattern of results 

(Figure 50b, third and fourth set of bars).  Grouping Strategies 1, 2, and 3, were well correlated 

with the Experiment 5 data (r ≈ 1.00, r = .99, and r = .98, respectively) compared to Grouping 

Strategy 0 (r = .74).  Of the grouping strategies simulated, Grouping Strategy 0 produced the 

highest response times and, thus, the worst performance (Figure 50b, first set of bars).  

Additionally, unlike Experiment 5, Grouping Strategy 0 had the highest mean response time for 

the uniform condition.  This is because selection signals tended to be located directly on one of the 

circles due to the feature filter (see Figure 53, bottom row).  Since Grouping Strategy 0 had no 

connections, such selection signal placement often resulted in only one circle, rather than the target 

pair, being selected and segmented.  Thus, it seems that connections are required to facilitate 

performance on this task; grouping by selection alone is not sufficient. 

The results of using Grouping Strategies 1, 2, and 3 (Figure 50b) indicate that performance 

is similar for a range of selection signal sizes provided that the target pair is connected.  Thus, it 

seems that human observers are likely using a grouping strategy in which same-sized adjacent 

circles are connected along the target row, rather than the connection strategy implemented in 

Grouping Strategy 0 simulation in which none of the shapes are connected.   

It is informative to compare in more detail the results of Grouping Strategy 1 (large 

selection signals; Figure 50b, second set of bars) with that of Grouping Strategy 3 (small selection 

signals; Figure 50b, fourth set of bars).  Grouping Strategy 1 led to a lower mean response time 

for the within-group condition and a higher mean response time for the between-group condition.  

These differences arise from the selection signal size.  In the within-group condition, the selection 

signal tends to be centered on or between the target pair since there is more horizontal signal in 

that region from the connections between the target pair and from the connected crosses below 

them (see the feature filter in Figure 53, top left plot).  So, for within-group stimuli, a large 

selection signal can quickly segment and isolate the target pair and is unlikely to overlap with 

neighboring distractors.  In contrast, a small selection signal, although also likely to be drawn to 

the location of the target pair, requires more time for it to segment and isolate the target pair.  Due 

to the extra time required, a small selection signal that lands on a target may not have segmented 

enough of the target pair for identification before the next reset occurs.  Thus, as a comparison of 
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the results of Grouping Strategies 1 and 3 demonstrates (Figure 50b), the use of a small signal 

comes at the cost of longer response times for the within-group condition.  However, this small 

size strategy is beneficial for performance on the between-group condition.  Compared with a large 

signal, a small selection signal is unable to overlap with neighboring distractors.  In the between-

group condition, the placement of the crosses results in a higher likelihood that a selection signal 

will be placed towards the gap between a target element and a distractor (see the feature filter in 

Figure 53, top right plot).  So, there is a cost in performance on the between-group condition if 

using large selection signals since the signal is more likely to fall at a location where it overlaps 

with a neighboring distractor, but small selection signals, which can be placed more precisely, 

eliminate this cost and, thus, lead to a lower response time.  The application of the model to this 

task provides a demonstration of the costs and benefits associated with using different selection 

signal sizes, which were identified in the “Selection Signal Size” section above. 

In sum, although a somewhat different pattern of results was produced for each grouping 

condition by Grouping Strategies 1-3, which only differed in their selection signal size strategy, 

the general pattern is similar to that of Experiment 5 and the overall performance was very similar, 

i.e., the mean response time across all grouping conditions for Grouping Strategies 1-3 were 648 

ms, 637 ms, and 648 ms, respectively.   So, the connection strategy implemented by Grouping 

Strategies 1, 2, and 3, allows flexibility with regard to the selection signal size strategy. 

If, as Vickery claims, reaction time in this experiment is a measure of induced grouping, 

then the model can be used to explain this phenomenon.  For this task, stimuli, and simulated 

grouping strategies, induced grouping is caused by the selection signal being guided by horizontal 

contours from the entire scene (see the feature filters in Figure 53).  Although the Connection 

Circuit is tuned to connect the target pairs, this strategy also causes horizontal connections between 

nearby crosses.  The connections between crosses promote performance in the within-group 

condition, but hinder performance in the between-group condition due to how those signals 

influence the horizontal feature filter distribution.  The model also indicates why performance for 

the uniform condition is similar to that of the within-group condition: with this connection strategy, 

all of the crosses form a single group, which neither increases nor reduces the likelihood of a 

selection signal falling on a target.  Instead, the selection signal is guided effectively only by the 

horizontal signal in the row of circles.  So, since there is more horizontal signal near targets in the 

row of circles due to their V2 connections, it is more likely that targets will be segmented out in 



 

134 

the uniform condition than in the between-group condition.  Overall, there is more column-wise 

horizontal signal in both the within-group condition and the uniform condition near the target pair, 

which causes a much higher peak in the smoothed probability distributions for these conditions 

than for the between-group condition (Figure 53, top row).   

In turn, the similar distributions that arise from choosing this grouping strategy are partially 

responsible for similar performance for the within-group and uniform conditions.  Thus, induced 

grouping observed in this experiment is the result of an observer using a particular connection 

strategy and selection strategy with a feature filter that uses horizontal signals.  Since the feature 

filter does not discriminate between horizontal signals from the circles and crosses and because 

the connection strategy used to identify target circle pairs also joins nearby crosses, horizontal 

signals from the edges of crosses and their V2 connections partially guide the selection signal 

toward or away from potential targets.  Thus, the irrelevant horizontal signals from crosses that 

arise from a grouping strategy that generally promotes performance for this task and stimulus set, 

i.e., a grouping strategy that is designed to promote performance for two-thirds of the stimuli, can 

promote or hinder performance in the manner reported by Vickery. 

Finally, comparing the results of the Palmer and Beck simulation with that of the Vickery 

simulation, mean response times tended to be higher for Vickery even though both sets of stimuli 

had nine elements per row.  This mirrors the results from Experiments 1 and 5: mean response 

times for Experiment 5 (the Vickery replication with nine shapes) tended to be higher than for 

Experiment 1 (the Palmer and Beck replication).  The reason for this difference in the simulations 

is as follows. In the Vickery simulations, the Spread Controller duration needed to connect the 

small circle was longer than the durations used for the majority of the Palmer and Beck stimuli.  A 

longer duration causes more spreading, and it takes longer for the system to settle down to 

equilibrium.  This causes there to be: a longer time when the spread from distractor circles may 

attract a selection signal to a non-target location, and a longer time period when selection signals 

that land on a target also happen to cover the retracting spread from a distractor and thereby select 

a distractor along with a target.  Thus, the model indicates that the relatively high response time of 

Experiment 5 compared to Experiment 1 appears to be a result of the connection strategy used to 

promote performance on the stimulus sets. 
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TRICK AND ENNS (1997) 

Trick and Enns (1997) attempt to tease apart two processes involved in grouping discussed 

by Koffka (1935/1963) that they argue have been conflated in recent literature.  These processes 

are element clustering, which determines what elements belong together, and shape formation, 

which determines how grouped elements appear as a whole.  They use enumeration tasks to argue 

that: these two processes are separable, and that clustering is preattentive while perceiving the 

shape of disconnected elements requires attention.  In each trial, 1 to 8 targets are shown. These 

targets are always diamonds, but in one condition they are line figures and in another they are 

comprised of four dots with one dot at each corner of the diamond.  In their experiment 2, there 

could be 0, 4, or 8 distractors, which were square line figures or square dot forms. Figure 54 shows 

the various stimuli used in a replication study, described below.   

The task is to identify the number of diamonds.  Participants were to press a key as soon 

as they have a target count, and then enter the number of targets.  Line figures and dot forms were 

presented in separate blocks. 

Trick and Enns compared the speed of responses when subjects may be able to subitize 

items, i.e., for conditions with 1 to 3 targets, and when subjects must count items, i.e., for 

conditions with 5 to 7 targets.  Since enumeration is sensitive to attentional demands, they reason 

that subjects should be very fast and accurate for a small number of targets via subitizing if the 

targets can be detected preattentively.  In turn, a plot of the mean reaction time against target 

number should have a relatively flat slope for items 1 to 3.  If targets cannot be detected 

preattentively, then these slopes should be similar to those conditions in which counting is required, 

e.g., the slopes for conditions with 5 to 7 items. 

Results from their experiment 2 are shown in the left column of Figure 55. 
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Figure 54. Screenshots of stimuli from Experiment 6 for the three distractor conditions and two 
figure conditions.  Each stimulus shown here has three target diamonds. 
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Figure 55. Top row shows results for the dot figure condition from the original experiment (with a single group of 10 participants seeing each figure condition in 
separate blocks), the replication, and the simulation when the model implements Grouping Strategy 1S.  Bottom row provides results for line figure conditions.  

Distractor condition is indicated by the color, and target condition is indicated by the x-axis.  Bars represent percent incorrect, and points represent mean 
response times, which were calculated from correct trials only.  Following Trick and Enns, error bars indicate standard deviation.  For the simulations, 150 trials 

were simulated for each target-distractor condition. 

Results for Dot Figures

Results for Line Figures137 
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Trick and Enns claim that all distractor conditions for line figures (Figure 55, bottom left 

plot) have a relatively flat slope when there are 1-3 targets, which is indicative that subitizing 

occurred, i.e., a preattentive process that allows for fast, accurate enumeration of a few items.  In 

contrast, for the dot figures (Figure 55, top left plot) only the no distractor condition has a slope 

indicative of subitizing.  From these results, Trick and Enns concluded that there are two separable 

grouping processes.  Since, they claim, the element clustering process is preattentive, it can co-

occur with subitizing, while the shape formation process, which requires attention, cannot.  The 

preattentive element clustering process determines what elements belong together, e.g., that the 

four dots comprising a diamond are grouped together but are not grouped with a dot from a 

neighboring dot figure.  The shape formation process determines how clustered elements appear 

as a whole.  For example, it is needed to distinguish the dot diamonds from the dot squares when 

performing the task.  Trick and Enns reason that since people can subitize in the dot condition 

when there are no distractors, only preattentive element clustering was involved.  When there are 

distractors, shape formation is also needed to distinguish targets from distractors.  Because this 

process requires attention, people can no longer subitize.  So, the dot figure results suggest that 

there are two sorts of grouping processes at play: clustering only for conditions with no distractors, 

and likely both clustering and shape formation are required when there are distractors.   

Experiment 6: Replication of Trick and Enns (1997) 

Before modeling the findings of Trick and Enns (1997), I wanted to be confident in the 

experimental results, especially since the original study used a very small sample (n = 10). 

Experiment 6 is a replication of experiment 2 in Trick and Enns (1997).  This replication deviates 

from the original in the following ways.  First, the replication was an online experiment, which 

involved making the following modifications.  Unlike the first experiment, in which all participants 

saw both figure conditions (dot or line) in different blocks, participants in Experiment 6 were 

randomly assigned to a group that only saw line figures or dot figures.  This was partly due to 

wanting to keep the total session time to less than 30 minutes.  Since the original experiment was 

blocked, this deviation shouldn’t matter for present purposes.  Another modification is that, due to 

the time participants in the dot figure condition tended to take to complete a session, the replication 

experiment had 8 trials per target-distractor condition per participant so that a session could fit 

within 30 minutes, while the original had 10.  And, although the original experiment had 
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participants use the space bar to indicate that they had a count of the targets, I used the Y-key since 

the space bar has other default functions in some browsers, e.g., scrolling. 

Second, feedback was given as the words ‘Correct’ and ‘Incorrect’ on the screen, instead 

of a plus sign and minus sign.  Third, unlike the original experiment that instructed participants to 

use keys 0-8 to make a response in the second phase, Experiment 6 instructed participants to use 

the keys 0-9.  Finally, for reasons related to model input, rather than using black stimuli on a white 

background, the replication stimuli had white figures on a black background. 

Method 

Participants. My general aim is to measure response time with a precision that would have 

a standard error of 10 milliseconds.  I am most concerned with getting a precise measure of 

response times when there are 1 to 3 targets since the response time for these target conditions is 

regarded as being key to determining whether subitizing was involved.  The only measure of 

variability provided by Trick and Enns were error bars in a plot.  So, I used the error bars in the 

third figure of Trick and Enns (1997) to estimate that mean response times for line figure 

conditions with 1 to 3 targets had a standard deviation of around 117 ms (for the zero distractor 

condition only, standard deviation was approximately 76 ms), and those for dot figures was 

approximately 154 ms (for the zero distractor condition only, standard deviation was 

approximately 68 ms).  So, if these estimates are correct, a sample size of 100 participants per 

group should suffice for measuring response times for conditions with 1 to 3 targets with a standard 

error of around 10 ms.  There were a total of 124 participants in the dot group and 128 in the line 

group.  Any participant with an error rate of 100% for at least one target-distractor condition was 

eliminated from analysis, which left n = 119 in the dot group and n = 124 in the line group. 

To get a better measure of variation than my estimate of the length of error bars on 

somewhat distorted plots, I looked for other studies with a similar task and stimulus set.  

Enumeration studies in Trick and Pylyshyn (1993; 1994a,b) do not provide any measures of 

variability to compare these values with, and there are very few comparable enumeration studies 

with distractor conditions.  Nevertheless, for an enumeration task conducted by Nan et al. (2006) 

where participants indicated whether the number of target rectangles, which could be among circle 

distractors, was even or odd, the results indicate that standard deviation was approximately 114 
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ms for stimuli with 1-3 targets, which is in line with the results reported by Trick and Enns (1997) 

and provides some support for the choice of sample size.   

Apparatus. Participants used the Y-key on their keyboard to indicate that they had counted 

the target diamonds, and then used the number keys 0-9 to indicate their count.  Participants were 

instructed to rest an index finger on the Y-key for the duration of the task. 

Stimuli. Example stimuli used in the experiment are shown in Figure 54.  There were two 

figure conditions (line or dot), eight target conditions (each image contained 1-8 diamond targets), 

and 3 distractor conditions (each image had 0, 4, or 8 distractor squares).  The location of each 

element was randomized on each trial as follows.  There were 25 possible locations for a given 

stimulus element as the black rectangle was divided into a 5x5 grid (this is a notational grid used 

in programming the experiment; the black rectangle was not visually divided into a grid).  On a 

given trial, each stimulus element was randomly assigned to the center of one of these grid cells, 

and prior to adding random jitter, the figure’s center was the center of its assigned grid cell.  

Random jitter was added to the x-coordinate and y-coordinate by drawing a sample from a uniform 

distribution over the range +/-0.03°.   This random jitter was sampled independently for the x-

coordinate and y-coordinate of each figure.   

For the hypothetical participant described in the “General Experiment Methodology” 

section, the width of a diamond line figure subtended approximately 1.3° of the visual angle, and 

the width of a square line figure or dot figure (which was a rotated diamond) subtended 

approximately 0.9°.  The width of the diamond dot figure subtended 1.1° (which is slightly less 

than the tip-to-tip width of the diamond line figure since the dots do not have left/right tips; the 

dot figures were designed such that they would fit tightly inside the line figures if they were 

superimposed).  Each dot subtended 0.1°. The black rectangle in which the experiment took place 

had a constant width and height that subtended approximately 15.5° and 12.4°, respectively, and 

each cell of the notational grid was approximately 3.1° wide and 2.5° high.   
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Procedure. Participants were randomly assigned either to the line figure condition or the 

dot figure condition.  After reading instructions that explained the task, participants scrolled to the 

bottom of the webpage, where the experiment took place. Figure 56 schematizes what occurred on 

a trial. A participant initiated a trial by pressing the N-key on their keyboard. A fixation cross 

appeared for 675 milliseconds after this key was pressed.  Next the stimulus array was shown until 

the participant pressed the Y-key as quickly as possible once they had determined the number of 

targets. After this key press, the stimulus was replaced by a prompt to enter the number of targets, 

which participants were encouraged to do as accurately as possible.  Feedback indicating whether 

the number entered was correct or not was shown for 500 ms before the prompt for initiating the 

next trial appeared. 

After completing 24 practice trials in which all distractor and target conditions were 

experienced, the participant completed a total of 192 experimental trials.  The experimental trials 

were presented in two blocks, and an onscreen notification after the practice trials and after block 

1 encouraged participants to take a short break if needed.  All distractor and target conditions were 

randomly interleaved in each block.  If their response when pressing the Y-key was too fast (if the 

response time was less than 100 ms), or too slow (if the response time was greater than 6000 ms), 

participants were given additional feedback, which would appear at the same time as the 

correct/incorrect feedback.  Incorrect trials and trials with reaction times lower than 100 ms or 

greater than 6000 ms were omitted from the analysis of response time.   

Results and Discussion 

Mean response times for correct trials and error rates for Experiment 1 are shown in the 

second column of Figure 55 and in Table 9.  

  



 

142 

 

Figure 56. The time course for a trial of Experiment 6.  For incorrect trials, the green ‘Correct’ 
was replaced with a red ‘Incorrect’. 
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Table 9. Experiment 6 Descriptive Statistics 

_____________________________________________________________________________________________ 

   Dot Figures   Line Figures  

  Response Time (ms) Percent Incorrect Response Time (ms) Percent Incorrect 

 Targets M  SD M SD M  SD M SD 
_____________________________________________________________________________________________ 

 1 920.61 265.54 0.53 2.52 905.70 269.01 1.11 4.22 

 2 920.24 258.17 1.26 4.12 896.21 270.31 0.91 3.26 

 3 1034.26 295.44 1.80 4.43 997.47 365.50 2.55 6.08 

 4 1275.93 374.68 1.91 5.09 1195.27 377.53 1.21 3.71 

 5 1787.34 464.24 3.69 7.71 1662.81 508.96 1.92 5.05 

 6 2161.71 472.63 4.20 8.18 2006.41 533.60 3.83 8.16 

 7 2587.79 522.98 7.68 10.19 2451.33 640.69 6.71 9.83 

 8 2899.73 519.32 7.79 10.92 2692.32 665.49 7.82 11.73 

 

 1 1474.79 373.17 3.57 6.74 1211.75 363.11 2.53 6.19 

 2 1732.32 420.83 2.85 5.99 1395.34 428.26 5.07 9.08 

 3 2052.29 471.09 3.89 7.76 1656.71 505.37 5.65 9.34 

 4 2383.16 520.19 6.09 10.53 1919.16 553.84 6.60 9.70 

 5 2756.13 526.82 7.82 10.95 2271.60 601.22 9.29 12.81 

 6 3070.56 551.67 9.85 11.68 2548.38 675.24 11.66 14.94 

 7 3432.61 557.72 14.03 15.07 2914.21 707.12 15.55 16.63 

 8 3760.21 587.14 18.86 19.02 3150.75 744.41 16.17 19.27 

 

 1 1987.23 455.75 1.91 5.58 1471.50 408.06 2.53 5.77 

 2 2360.73 487.91 3.47 7.44 1709.39 489.05 3.73 7.12 

 3 2668.87 538.81 5.52 9.05 1964.53 561.03 6.77 10.27 

 4 2972.58 577.92 7.62 11.48 2215.78 607.16 6.18 10.53 

 5 3307.12 612.61 9.24 12.95 2542.33 657.47 8.21 11.73 

 6 3632.42 592.53 12.77 14.50 2862.37 695.09 12.82 16.65 

 7 3918.42 643.14 14.66 15.44 3112.79 733.54 14.99 17.46 

 8 4212.07 603.43 19.38 16.63 3392.19 741.47 17.49 18.95 
_____________________________________________________________________________________________ 

Note. M represents mean, SD indicates standard deviation. The top third of the table provides statistics for conditions 
with no distractors and 1-8 targets, and likewise for the middle and bottom thirds.  Correlations are not presented here 
for each target-distractor condition. Correlations for dot figure response times ranged from .45-.90, and for line figures 
correlations ranged from .59-.90 (no including values along the primary diagonal). 
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Apart from comparing the slope of each curve from 1-3 targets with the slope from 5-7 

targets, it is not entirely clear what statistical analyses Trick and Enns performed on their data.  To 

approximate something like their analysis for the reaction times from Experiment 6, I used a 

regression model with a two-way interaction (i.e., number of targets X whether the target number 

is in the range of a subitizable set (1-3 targets) or countable set (5-7 targets)), where reaction time 

was the dependent variable, number of targets was the independent variable, and whether the target 

number is in the subitizable set range was the moderating variable.  This analysis was applied 

separately to each curve, and, following Trick and Enns, reaction times for conditions with 4 or 8 

targets was dropped.  If the interaction is significant, then the slope of the response time curve for 

stimuli with 1-3 targets significantly differs from that with 5-7 targets.  Unlike Trick and Enns, I 

did not aggregate the distractor conditions since I do not have any theoretically based reason to 

believe that each distractor condition should be similar. 

Table 10 provides the slopes of the curves when there are 1-3 targets and 5-7 targets, as 

well as the mean response times and their standard deviations for these conditions. 

For zero distractors, the difference in slopes for the two sets of targets was significant for 

dot figures, t(5516) = 17.96, p < .001, and line figures, t(5768) = 17.97, p < .001. For 4 distractors, 

the difference in slopes was also significant for both dot figures, t(5280) = 2.06, p = .039, and line 

figures, t(5431) = 4.85, p < .001.  For 8 distractors, the difference in slopes was not significant for 

the dot figures, t(5196) = -1.70, p = .089, but it was significant for the line figures, t(5429) = 2.08, 

p = .038.   

The results of the statistical analysis for line figures mirrors that of Trick and Enns who 

found that there was evidence of subitizing in all line conditions.  However, the results for dot 

figures only partially echoes Trick and Enns’ findings since they did not report that there was 

significant difference in slope for the 4 distractor condition. 
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Table 10. Experiment 6 Slopes and Descriptive Statistics by Curve and Target Range 

__________________________________________________________________________ 

  Dot Figures  

 Conditions with 1-3 Targets Conditions with 5-7 Targets 

  Response Time (ms)  Response Time (ms) 

Distractors b M SD b M SD 
 _____________________________            ____________________________ 

 0 58.27 957.46 401.60 398.70 2169.73 782.40 

 4 288.80 1751.84 645.35 336.10 3068.69 800.37 

 8 339.50 2333.89 718.08 296.60 3597.68 851.29 

  Line Figures  

 Conditions with 1-3 Targets Conditions with 5-7 Targets 

  Response Time (ms)  Response Time (ms) 

Distractors b M SD b M SD 
 _____________________________            ____________________________ 

 0 42.28 930.19 406.17 394.10 905.70 269.01 

 4 223.40 1418.08 613.77 338.60 2573.95 876.23 

 8 242.70 1711.52 677.89 295.40 2842.03 903.87 
__________________________________________________________________________ 

Note. b indicates the slope of the curve across conditions with 1-3 targets or 5-7 targets., M 
represents the mean response time for these conditions, and SD indicates standard deviation. 

There is an obvious disconnect between visual inspection of slopes in the plots (Figure 55) 

for Experiment 6, which indicates only a large difference in slope for the zero distractor conditions, 

and this analysis, which indicates that each curve has a significant difference in slope except for 

the dot figure condition with 8 distractors.  Although the zero distractor conditions produced curves 

with a flat slope indicative of subitizing if visually compared to the slopes of the other distractor 

conditions, it is not unsurprising that the statistical analysis did not distinguish these curves from 

the others.  First, given the large sample size, small differences in slope can become significant.  

Second, Balakrishnan and Ashby’s (1991, 1992) work on statistically detecting a difference in 

enumeration task response times indicated that there is no benchmark statistical measure that can 

be used to reliably distinguish response times for conditions with a count that is in the subitizing 
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range from other conditions.  Instead, they suggest that subitizing is, rather than some distinct pre-

attentive process, a phenomenon reflective of the limited capacity of visual attention.  If this is 

true, then the model may be able to provide some account of these results in terms of connections, 

selection and segmentation, and without needing a separate subitizing process.  I will address what 

the results of Experiment 6 mean for Trick and Enns’ claim that there is a separable clustering 

process involved in grouping after presenting the simulations of this experiment. 

Qualitatively, the pattern of results reported by Trick and Enns replicates for dot figures: 

only the curve for the zero distractor condition has a shape indicative of subitizing with a relatively 

flat slope at the beginning (Figure 55, bottom right plot).  The Experiment 6 line figure results 

(Figure 55, bottom middle plot) nearly have the same pattern as the dot figure results (Figure 55, 

top middle plot), but with generally lower mean response times for the 4 and 8 distractor conditions. 

This does not match the line figure results reported by Trick and Enns, which has nearly 

overlapping curves for the non-zero distractor conditions that have a somewhat shallower slope at 

the beginning (Figure 55, bottom left plot). Thus, the results reported by Trick and Enns for 4 and 

8 distractor conditions with line figures do not replicate qualitatively.  Given that an observer will 

have to search through more items in the non-zero distractor conditions to find targets, which will 

take time, the Experiment 6 line figure results for non-zero distractor conditions with a linearly 

increasing slope as target items are added seems more plausible than those reported by Trick and 

Enns. 

Finally, note that Experiment 6 had larger standard deviations than those reported by Trick 

and Enns. Supposing the measure of variability reported in Trick and Enns (1997) is accurate, this 

could be due to differences in equipment used, the possibility that their subjects were not naïve, 

and/or the total number of trials per participant.  Assuming that Trick and Enns’ subjects for their 

experiment 2 did not also participate in their first experiment, which had the same task (it is not 

made clear in Trick & Enns, 1997, whether a single group of 10 participants took both experiments 

or not), they experienced twice as many blocks since they saw both figure conditions, compared 

to participants in Experiment 6.  So, Trick and Enns’ participants may have a lower standard 

deviation from more practice with the task, even though the number of trials per target-distractor 

condition for each figure condition is similar (8 in Experiment 6, and 10 in the original experiment). 
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Model Simulations of Experiment 6 

Simulated Grouping Strategies 

Since stimuli with line figures and dot figures were presented in alternating blocks in the 

original experiment and to two different sets of participants in Experiment 6, it seems reasonable 

to assume that observers were using one grouping strategy for line figures and another grouping 

strategy for dot figures in order to promote performance for each stimulus type.   

For dot figures one grouping strategy was simulated, which is Grouping Strategy 1S 

summarized in Figure 57b.   

For line figures four grouping strategies were simulated as indicated in Figure 58b.   

This difference in the number of explored grouping strategies was because a grouping 

strategy that would promote performance for line figures was not as obvious as for the dot figures.  

In the next two subsections, I present the components of the grouping strategies implemented by 

the model. 

Connection strategies for dot figures. For the dot figures, it seems that it would be 

beneficial to connect at least the dots of the diamond figures.  Such intra-shape connections would 

allow a selection signal to segment all of the dots constituting a diamond dot figure if the selection 

signal covers at least part of the cluster.  This can be accomplished by turning on the Spread 

Controller for diagonally-tuned V2 cells.  However, this also leads to diagonal connections 

between the dots of each square dot figure, which results in an X-shape (Figure 59).   
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Figure 57. Grouping strategies for the dot figure condition.  (a) shows an example stimulus image generated on a 
particular trial and input to the model.  (b) provides a summary of two grouping strategies with reference to boxes 

(c) and (d).  Only Grouping Strategy 1S was simulated for dot figures since pilot simulations indicated that they led 
to similar performance. Box (c) shows two connection strategies.  For the Intra-Target Only strategy, the connection 
parameters for diagonally-tuned cells were: 1.5 ms Spread Controller duration, 50 ms Spread Controller onset, 1.0 
Long Controller input, and 0.0 Short Controller input.  The horizontal and vertical connection circuits were turned 
off.  For the Intra-Target and Intra-Distractor strategy, the parameters for the diagonal connection circuit were the 

same as for the Intra-Target Only strategy.  For the horizontal and vertical connect circuits, the parameters were: 1.0 
ms Spread Controller duration, 50 ms Spread Controller onset, 1000.0 Long Controller input, and 0.0 Short 

Controller input.  Box (d) illustrates the selection signal size strategy by overlaying a selection signal map with the 
stimulus to give some sense of the signal size relative to that of the stimulus elements. 

Example Stimulus (b)(a)
Grouping 
Strategy Connection Strategy Selection Signal 

Size Strategy
1S Intra-Target Only Single

Connection Strategies(c) Selection Signal Size Strategy(d)

2S Intra-Target and 
Intra-Distractor Single

Intra-Target Only

Intra-Target and Intra-Distractor

Size (diameter
in pixels)

23

Small

Single
Use Small for all conditions
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Figure 58. Grouping strategies for the line figure condition. (a) shows an example stimulus image generated on a 
particular trial and input to the model.  (b) provides a summary of two grouping strategies with reference to boxes 

(c) and (d).  Box (c) shows two connection strategies.  For the No Connections strategy, all connection circuits were 
turned off with Spread Controller duration at 0 ms, Long Controller input at 1000.0, and Short Controller input at 

0.0.  For the Inter-Target strategy, the parameters for the diagonal connection circuit were: 50 ms Spread Controller 
duration with onset at 50 ms, 1000.0 Long Controller input, and 0.8 Short Controller input.  For the horizontal and 
vertical connection circuits, the parameters were: 50 ms Spread Controller duration with onset at 50 ms, 0.1 Long 

Controller input, and 0.0 Short Controller input.  Box (d) illustrates the selection signal size strategies by overlaying 
a selection signal map with the stimulus to give some sense of selection signal size relative to the stimulus elements. 

Example Stimulus (b)(a)
Grouping 
Strategy Connection Strategy Selection Signal 

Size Strategy
0S No Connections Single

Connection Strategies(c) Selection Signal Size Strategy(d)

0M No Connections Multiple

No Connections

Inter-Target

SmallSize (diameter
in pixels)

23

1S Inter-Target Single

1M Inter-Target Multiple

Multiple 
Use Large when 1-4 items
Use Small otherwise

Large

55

Single
Use Small for all conditions
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Figure 59. V2 output from a simulation using the stimulus image on the far left in which Spread Controller duration 
was 1.4143 ms, Spread Controller onset was 50 ms, and the Long Controller and Short Controller Circuits were both 

turned off.  In contrast, for a simulation with a slightly shorter Spread Controller duration of 1.4142 ms (not 
pictured), there was no noticeable spread of diagonal signal from 50-100 ms and none of the dots connected. 

This is undesirable because, looking ahead to the feature filter for the selection strategy, a 

connected diamond dot figure and a connected square dot figure would be relatively 

indistinguishable in terms of the amount of boundary signal: they both would have a lot of diagonal 

signal, which would make it difficult to devise a beneficial selection process using the model.  For 

example, a diagonal feature filter would likely make it equiprobable that a selection signal would 

land on a target diamond or distractor square.  Although diagonal connections for the diamond 

dots have to travel a shorter distance than those for square dots, a more precise setting of Spread 

Controller duration does not prevent the square dots from connecting (e.g., the simulation run for 

Figure 59).  This is because of a combination of properties of the stimulus and Spread Controller.  

The diagonal signal of each dot is relatively weak, so a relatively high Spread Controller duration 

(it is high given that the dots are very close) is required to get each dot to spread, e.g., the image 

in Figure 59 under ‘50-100 ms’.  But, once diagonal signal does spread from the dots, the dots of 

each figure will connect since the dots of each figure are extremely close to each other.  In turn, 

even a very low and precisely set Spread Controller duration that causes the diamond dots to 

connect will also cause the square dots to connect.  To prevent the square dots from forming 

diagonal connections, the Long Controller Circuit was turned on.  It was effective since the 

diagonal connections of a square dot figure have to travel a greater distance than the diagonals 

across diamond dot figures.  Additionally, an observer may or may not connect the dot squares via 

horizontal and vertical connections.  In turn, there are two possible connection strategies for dot 
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figures: use intra-shape connections to group diamond dot figures only (e.g., Figure 57c, top 

image), or use intra-shape connections to group both diamond and square dot figures (e.g., Figure 

57c, bottom image).   

The results of pilot simulations indicated that performance is relatively similar for these 

two connection strategies.   Due to the time it takes to run the full simulation (three weeks for 150 

trials per condition) and since the pilot simulations indicate that the two beneficial connection 

strategies (i.e., intra-shape connections of dot diamond figures only, or inter-shape connections of 

the dots for all shapes) will result in very similar performance, I only ran simulations with 

connections among the dots of diamond dot figures (which is part of Grouping Strategy 1S 

summarized in Figure 57b; I did not run a full simulation of Grouping Strategy 2S).   

Connection strategies for line figures. The connection strategy for line figures may 

involve inter-shape connections, i.e., connections between nearby diamonds.  For example, in the 

line figure stimulus in Figure 58a, it seems plausible that an observer might connect the pairs of 

nearby diamonds, counting ‘two’ for the pair, ‘three’ for the triplet and adding the remaining 

diamond to get a total of five.  This phenomenon, i.e., the enhancement of enumeration speed by 

grouping cues, has recently been coined ‘groupitizing’ by Starkey and McCandliss (2014) (see 

also van Oeffelen & Vos, 1982).  In turn, it seems likely that an observer would connect diamond 

figures when possible, i.e., when they are nearby and appropriately aligned, in order to groupitize 

the diamonds and, thus, perform this enumeration task more rapidly. 

So, a possible connection strategy for line figures is that the observer attempts to connect 

only diamonds by promoting the spread of V2 connections from the line diamonds but not the line 

squares (Figure 58c, bottom image).  That way, diamonds that happen to be nearby and aligned 

may connect, which would allow them to be identified more quickly and perhaps counted as a pair 

or triplet.  This connection strategy would likely not be used for the dot figures since, e.g., a dot 

from the corner of a square may connect with a dot from a diamond, which would make it difficult 

to segment out the dot diamond alone.  Thus, it seems plausible that an observer might use a 

connection strategy for the line figures that encourages inter-shape V2 connections to form in order 

to more quickly segment out sets of targets.  If the studies on groupitizing have merit, these 

connections may allow for faster enumeration of diamond line figures.  
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I have identified connection parameters that can facilitate this effect, i.e., the connection 

strategy for line figures is to only connect diamonds across the stimulus image when possible (see 

Figure 58 caption for details).  Spread Controller duration and onset are the same for each 

orientation, but the Short Controller Circuit is set such that it prevents much spread of diagonal 

V2 connections for squares (because diagonal edges are detected only at the corners of squares) 

and the Long Controller prevents the spread of horizontal and vertical V2 connections from the 

long edges of squares. These same parameters allow the V2 connections of a diamond shape to 

spread freely because it has long diagonal edges and short horizontal and vertical edges at its 

corners. Figure 60 illustrates the V2 connections formed by this set of connection parameters for 

a simple stimulus. 

    

Figure 60. V2 activity at the beginning (middle image) and at a later time (right image) in a 
simulated trial with the set of connection parameters used in the Inter-Target connection strategy 

(Figure 58c, bottom image). 

Initially as shown in the middle image of Figure 60, there is great spread of V2 connections 

of all orientations for the diamonds compared with those of the squares.  As developed in the next 

subsection, a beneficial selection strategy involves a diagonal feature filter and, thereby, the 

selection signals are drawn to diagonals.  But, due to the limited number of selection signals at any 

time, an observer would be unable to select all the targets in conditions with a large number of 

targets before the system settles down.  However, some V2 connections may persist over time, as 

exemplified in the right image of Figure 60, that allow the selection process to be more efficient 

for conditions with a large number of targets and, in turn, emulate an observer’s ability to select 

groups of targets in some images.   

The Inter-Target connection strategy may have some empirical support if one considers it 

to underpin groupitizing, which has been the focus of several recent studies (e.g., Anobile et al., 

V2 Activity from 
100-150 ms

V2 Activity from 
950-1000 msStimulus
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2020; Briggs et al., 2021; Maldonado Moscoso et al., 2020; Maldonado Moscoso et al., 2022; Pan 

et al., 2021; Schindler et al., 2020; Wege et al., 2021).  However, the proposition that observers 

promote performance in enumeration tasks via groupitizing is relatively new (standardly being 

traced to Oeffelen & Vos, 1982) and is not widely accepted.  Thus, it is worthwhile to compare 

the performance that results from implementing the Inter-Target connection strategy with the No 

Connections strategy in which the observer does not connect stimulus elements (Figure 58c, top 

image). 

Selection strategies. Small selection signals, which were slightly larger (+6 pixels) than a 

diamond line figure (Figure 57d), were used for the dot figures to avoid selecting a distractor dot 

along with a target. 

For line figures, these small selection signals are also reasonable to use in order to avoid 

selecting a distractor along with a target (the ‘Single’ selection signal size strategy in Figure 58d).  

However, for the line figures, there is an alternative selection signal size strategy given this 

stimulus set, which is called ‘Multiple’ in Figure 58d.  When there are only 1 to 4 elements, there 

are never distractors and, thus, no risk of selecting one.  So, the Multiple selection signal size 

strategy would be to use larger selection signals when there are 1 to 4 elements. I reason that an 

observer could use gist information from the scene to determine which size to use on a given trial.  

For example, on a trial where there is not much detected boundary signal, like the example of a 

trial with three items in Figure 58d, bottom image, an observer could use a larger selection signal 

to possibly select more items at a time since it is likely there will be only target items and, thus, 

no risk of selecting a distractor.  In the example image, this strategy resulted in the selection of 

two targets with a single selection signal and, thus, resulted in a lower response time than if smaller 

selection signals were used.  (The Multiple selection signal size strategy was not explored for dot 

figures since it is unlikely that the observer could quickly use gist information to determine that 

there were fewer than 5 shapes from an image with only dots, e.g., there would probably not be 

enough of a difference in boundary signal between an image with 16 dots compared to an image 

with 20 dots to reliably distinguish between the two conditions.) 

For all simulated grouping strategies, the other components of the selection strategy were 

the same.  A diagonal feature filter was used to guide placement of the selection signals, e.g., the 

first row of Figure 61a, b, and c. 
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Figure 61. Examples of diagonal feature filters that result from each of the connection strategies 
simulated.  These feature filters are shown over time since their temporal dynamics are important 

in my discussion of simulation results. 
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As explained in the “Application to Other Stimulus Images” section above, the 2D diagonal 

feature filters are generated by creating a probability distribution from smoothed diagonal activity 

in segmentation layer 0.  The brighter a pixel in this feature filter, the more likely its coordinate 

will become the center of a selection signal.  A diagonal feature filter should tend to guide selection 

signals to targets because the targets are diamonds, which will either have more diagonal signal (if 

a diamond line figure) than squares or have diagonal connections (if a diamond dot figure).  On 

each time step of a trial beginning at 50 ms, two coordinates were sampled from the feature filter 

distribution.  In an attempt to prevent selection signals from overlapping and thereby maximize 

the efficiency with which the model would find target items, the second coordinate was re-sampled 

up to two more times if the area of the second selection signal would overlap with the area of the 

first selection signal. 

The remaining components of the selection strategy (timing of selection signals and reset 

of segmentation layers) are a bit complicated, partly due to the need to lower computational costs.  

Due to the large size of the stimulus, the model can only have a base segmentation layer and a 

single segmentation layer into which all selected elements are segmented (otherwise, with two 

non-base segmentation layers, it takes around 30 minutes to run 50 milliseconds of a single 

simulated trial).  Even with this modification, it takes approximately 35 minutes (in real time) to 

run one trial.  In view of the results of pilot simulations where I compared the results from using 

different numbers of selection signals, I chose to use a selection strategy with three pairs of 

selection signals staggered such that the first pair started at 150 ms, the second at 200 ms, and the 

third at 250 ms (Figure 62). 

Segmentation layer 1 is reset periodically (every 150 ms beginning at 300 ms when the 

first pair of selection signals shifts) to clear it of distractors and, thus, segment out targets from 

distractors.  Although this version of the model has only one non-base segmentation layer, this 

reset allows it to be more in line with the full version of the model that has a segmentation layer 

associated with each selection signal and, thereby, allows it to isolate target diamonds from 

distractor squares via the segmentation process.  Finally, to keep selected targets in the non-base 

segmentation layer after reset, if a selection signal lands on an element that is identified as a 

diamond, then a selection signal is assigned to that location for the remainder of the trial.  This 

acts as a sort of memory for locations of targets that have been counted in a trial. 

  



 

 

 

 

 

 

 

Figure 62. Illustration of the segmentation process for the Trick and Enns simulations.  At 150 ms, the first pair of selection signals (pink circles) begin at some 
location and shift to a new location every 150 ms, e.g., at 300 ms.  At 200 ms, the second pair of selection signals begin (yellow circles), and the final pair of 

selection signals (green circles) begins at 250 ms.  Each pair of selection signals shifts to a new location after a 150 ms selection cycle.  If a target is successfully 
segmented, a selection signal (red circles) at that location is added to the selection signal map for the rest of the trial. The reset signal occurs at the timestep at 

which the first pair of selection signals shift, e.g., at 300 ms indicated by the box with a red border. 
  

156 



 

157 

Target identification algorithm (counting). Target identification is performed by 

dividing the non-base segmentation layer into a 5x5 notational grid and, in each grid cell, checking 

the distance between the highest and lowest row (and between the cell’s most extreme columns) 

with activity in V4, layer 1.  If these two most extreme rows with activity (and the two most 

extreme columns with activity) is a particular distance apart (i.e., greater than 12 pixels, see Figure 

63), then the cell should contain a diamond.   

After every 50 ms, the V4, layer 1, grid cells are checked for diamonds.  The number of 

grid cells that have a diamond is tallied.  If the same number of targets is found for five consecutive 

50 ms timesteps, then the trial stops and the final count of targets is recorded.  Five time steps, i.e., 

250 ms, was chosen for the stopping rule since it takes some time for the non-base segmentation 

to recover following the reset; this was the shortest time for the vast majority of the targets selected 

by the staggered selection signals to eventually produce enough signal to be detected in V4, layer 

1. 

Simulation Stimuli, Method, and Procedure 

For each figure type and target-distractor condition, 150 trials were run.  Unlike the stimuli 

for the previous simulations, which are the same for each condition and target pair, each stimulus 

for this simulation was created at the start of a trial with each stimulus item placed in a randomly 

selected cell in a 5x5 notational grid and given a random position from the center of its cell, 

mirroring the procedure used to create the stimuli for Experiment 6.  The sizes of the stimulus 

image and elements were proportionally kept as close as possible to those of Experiment 6 while 

reducing overall size as much as possible to shorten run time.  The size of the stimulus image was 

210 pixels wide and 170 pixels high.  Line figure squares were 12 pixels wide made up of lines 1 

pixel wide, and line figure diamonds were 17 pixels wide.  Dots were 2x2 pixels.  Dot squares 

were 12 pixels wide, and dot diamonds were 16 pixels wide.  The jitter distance was sampled from 

a uniform distribution with a range of -4 to +4 pixels, and this value was added to one of the center 

coordinates of a particular grid cell.  As in Experiment 6, for each stimulus element a different 

random sample was generated for its x-coordinate and its y-coordinated. 

  



 

 

 

 

Figure 63. V4 output for an input image with each type of line figure and dot figure used in the simulation.  Green lines indicate how this output is divided into a 
2x2 grid consisting of four cells, where each cell may contain a single figure. Similarly, for the stimuli used for the Experiment 6 simulation, each stimulus was 

divided but into a 5x5 grid.  Measurements in pixels are shown: the width and height of line squares and dot squares (12x12 pixels) are smaller than line 
diamonds (17x17 pixels) and dot diamonds (16x16 pixels).  In each cell, the identification algorithm determines the row numbers in which there was V4 activity.  
To illustrate this, the top right cell (grid cell 1,2) is divided into rows by brown lines.  (In the figure, there are two pixels per row to the make the example visibly 
clearer, but the algorithm divides the V4 output into rows that are each one pixel tall.)  The algorithm finds the most extreme row numbers that have activity in 
them, e.g., in grid cell 1,2, the row with the lowest row number with activity is the row that contains the top two dots, and the row with the greatest row number 

with activity is the row that contains the bottom two dots. The algorithm then checks whether the distance between these two rows is greater than 12 pixels.  This 
process is also applied to columns.  If the distance between the extreme rows with activity is greater than 12 pixels and if the distance between extreme columns 

with activity is greater than 12 pixels, then the grid cell must contain a diamond and the algorithm registers that there is a hit in this grid cell.  Otherwise, as is the 
case in grid cell 1,2, the algorithm determines that the cell does not contain a diamond. 
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For line figures, four grouping strategies were simulated as summarized in Figure 58b.  

These are all possible combinations of the two connection strategies and selection signal size 

strategies discussed above and illustrated in boxes (c) and (d) of Figure 58. 

Due to a memory leak that occurs with NEST 2.14.0 and the large size of the stimuli, 

simulations were conducted in batches of 5 trials.  Additionally, some of pairs of grouping 

strategies for line figures, e.g., 0S (do not connect stimulus elements, and use only the small 

selection signal size) and 0M (do not connect stimulus elements, and use the small selection signal 

size for all conditions except those with 1-4 elements), had the same connection and selection 

strategy for all conditions except for those with 1-4 elements.  Rather than running a full simulation 

for, e.g., Grouping Strategy 0M, I ran only conditions with 1-4 elements.  These results replaced 

those for conditions Groupings Strategy 0S.  So, other than the results for conditions with 1-4 

targets, the plots of results for grouping strategies 0S and 0M are identical (and similarly for 1S 

and 1M).  Not running repeated components of these simulations was done to reduce overall 

simulation time. 

A trial would terminate if either the stopping rule or a maximum time (2000 ms) was 

reached.  As with Experiment 6, only trials with the correct count were used to calculate mean 

response times, and the number of trials with the incorrect count (i.e., trials that (1) terminated due 

to either the stopping rule being satisfied and (2) ended with a target count that was not the same 

as the number of diamonds in the stimulus) per condition was used to calculate percent incorrect. 

Model Results and Discussion 

Simulation results for dot figures when Grouping Strategy S1 was implemented, i.e., 

connect dots of diamonds and use small selection signals for all conditions, are shown in Figure 

55, top right plot.  The simulated results for dot figures match that of Experiment 6 (Figure 55, top 

middle plot) in several key respects.  First, the blue curve has a relatively flat slope for 1-3 targets 

compared with 5-7 targets.  Second, the curves for the 4 and 8 distractor conditions are generally 

linearly increasing.  Third, there is separation between each curve, with a larger separation between 

the curve for conditions with 0 distractors and the curve for conditions with 4 distractors.  However, 

compared to Experiment 6 error rates, model error rates are higher.  This could reflect, e.g., the 

model revisiting locations where a distractor was already detected, unlike a human observer who 

may avoid attending to areas already searched.  
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I also conducted a simulation for dot figures with the same selection signal size strategy 

but no connections between dots; however, this resulted in error rates that were near or at 100% 

for most of the 4 and 8 distractor conditions. I do not present the results here since, for some 

conditions, there were not any correct trials to calculate mean response time from.  However, this 

indicates that connections between the dots of diamond targets are critical to good performance on 

this task. 

For line figures, a total of four grouping strategies were implemented in the model, which 

are summarized in Figure 58b.  Grouping Strategy 1M, which connected nearby diamonds if 

possible and used a large selection signal for conditions with 1-4 items, both had the best 

performance (lowest overall mean response times) and matched the pattern of results for line 

figures from Experiment 6.  The results from this experiment and this simulation are shown side-

by-side in Figure 55, bottom row.  In both the experiment and simulated results, the blue curve has 

a relatively flat slope around 1-3 targets, which increases at 5-7 targets.  Additionally, curves for 

the 4 and 8 distractor conditions are generally linearly increasing. However, simulation error rates 

are a bit higher for conditions with 8 distractors, and there is not as much separation between the 

simulation curves compared to the curves for Experiment 6. 

Results for all four simulated grouping strategies are provided in Figure 64. 

The left column shows results from grouping strategies with no connections, while the right 

column provides results from grouping strategies with connections between nearby targets only 

(i.e., the Inter-Target connection strategy in Figure 58c).  The top row provides plots of model 

results when the Single selection signal size strategy was implemented, while the bottom row 

shows results for the Multiple size strategy.  Since the difference in selection signal strategy only 

applied when there were 4 items (i.e., small selection signals were used for all conditions in the 

Single size strategy, while small selection signals were used in all conditions except when there 

were 1-4 items in the Multiple size strategy), the only difference between the top and bottom plots 

are the data points along the blue curve for 1-4 targets.  In the bottom row, those points were 

calculated from simulations in which the large selection signal size was used (Figure 58d). 

Compare the left plots (results from grouping strategies with No Connections) with the 

right plots (results from grouping strategies with Inter-Target connections) of Figure 64. It is 

obvious that Inter-Target connections led to lower overall response time and lower error rates, 

especially as the number of elements increases. 
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Figure 64. Plots of simulation results for all grouping strategies implemented for the line figure 
condition.  Mean response times shown in each plot were calculated from the reaction times in 

trials in which the correct number of targets was reported. Error bars represent standard 
deviation. 

With No Connections, the selection signal size strategy makes very little difference in the 

results; the data points for 1-4 targets and 0 distractors appear identical in the plots in the left 

column.  With the Inter-Target connection strategy, however, the Multiple selection signal size 

strategy leads to much faster response times for these conditions.  This occurs due to the difference 

in the spread of boundary signal early in the trial.  Return to Figure 61b.  With the Inter-Target 

connection strategy, there is a lot of spread in segmentation layer 0 from diamonds (Figure 61b, 

middle row).  Since diagonal signal is used to generate the feature filter (Figure 61b, top row), the 

spread of boundary signal causes selection signals to be drawn to large areas around targets.  In 

turn, small selection signals are less efficient at finding multiple targets early in a trial with this 

connection strategy, e.g., it is more likely that a selection signal misses a target completely or ends 

up a bit far away from the center of a target and, in turn, there may not be enough time for the 
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selection signal to spread and segment enough boundary signal for the target to be identified before 

the next reset.  For this connection strategy, a large selection signal has two advantages over a 

smaller one.  First, it is more likely that a selected target item will be selected and identified before 

the next reset even if it is placed a bit far from the center of the target.  Second, the spread of 

diagonal signal makes it more likely that a large selection signal will fall on more than one target 

since such spread results in a probability distribution with an enlarged area where a selection signal 

center coordinate can be sampled from.  In contrast, with no connections, there is no spread of 

boundary signal (Figure 61c, middle row).  The feature filter generated from this boundary signal 

(Figure 61c, top row) is quite localized for the duration of a trial.  In turn, a smaller selection signal 

doesn’t incur much of a disadvantage: due to the relatively small regions that selection signals can 

be guided to, it is likely a selection signal will cover a target and segment it sufficiently for 

identification regardless of whether a small or large selection signal is used. 

Why doesn’t this issue for line figures with the Inter-Target connection strategy occur for 

dot figures with the Intra-Target connection strategy?  This is due to the difference in Spread 

Controller duration used to implement these connection strategies.  For connections between the 

dots of a dot figure, the duration was very low (1.5 ms), while it was quite high (50 ms) to connect 

diamond line figures with nearby diamond line figures.  In turn, the spread from dot diamonds is 

just enough to connect the dots of a dot figure and, thus, does not cause much diagonal spread 

beyond the figure.  This can be seen by comparing the feature filters produced by dot figures with 

the Intra-Target connection strategy (Figure 61a) with those produced by line figures with the 

Inter-Target connection strategy (Figure 61b).  The feature filters produced by the diagonal activity 

from dot figures is quite localized throughout a trial, while those for line figures spreads quite far 

beyond the targets.  So, unlike line figures with the Inter-Target connection strategy, the Single 

selection signal size strategy works well for dot figures with the Intra-Target connection strategy. 

In sum, when the model implements Grouping Strategy 1S (Intra-Target connections and 

Single selection signal size strategy), it does a good job of accounting for the dot figure data from 

Experiment 6.  Of the grouping strategies implemented for line figures, Grouping Strategy 1M 

(Inter-Target connections and Multiple selection signal size strategy) generally leads to the best 

performance in terms of lower overall response times compared to Grouping Strategy 1S and has 

a lower error rate than the grouping strategies without connections.  Plus, the results from Grouping 

Strategy 1M best matches the pattern of mean response times from Experiment 6 for line figures 
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in terms of the shape of the curves: the blue curve is relatively flat when there are 1-3 targets, and 

the non-zero distractor curves are generally linearly increasing.  However, error rates are a bit 

higher than those of the experiment, and the curves for each distractor condition produced by the 

simulated results have less separation between them. 

Given that the model can produce similar patterns of results as Experiment 6, the model 

can be used to offer some explanation of performance on this task and stimulus set.  Recall that 

Trick and Enns claim that the dot figure results indicate that there are two separate grouping 

processes: element clustering and shape formation.  They claim that the flat slope of the zero 

distractor condition curve indicates that only the preattentive element clustering process was used.  

If the shape formation process, which requires attention, was used to enumerate the target items, 

then there would be no such flat slope.  Setting aside the claim it is preattentive, element clustering, 

i.e., which elements belong together, could be regarded as the product of grouping the dots by V2 

connections. According to the model, the connections between dots resulting from the Intra-Target 

connection strategy are involved for all conditions.  So, assuming the clustering process is realized 

by connections, element clustering does not explain why the zero distractor condition has a 

relatively flat slope.  Instead, the observer has very fast response times when there are 1-4 items 

because of the ratio of items to selection signals.  One or two pairs of selection signals are usually 

sufficient to segment and identify all targets when there are only 1-4 elements in the image.  In 

turn, model response times are very fast and similar when there are few items, and this results in 

the relatively flat slope at the beginning of the curve for the zero distractor condition.  The model 

lacks a separate subitizing process; it just has cells that detect edges and manipulate connections, 

a selection process, and some algorithms for identifying and counting targets.  Thus, the 

explanation offered by the model for dot figures arguably fleshes out the suggestion by 

Balakrishnan and Ashby (1991, 1992) that the pattern indicative of subitizing reflects the limited 

capacity of visual attention.  According to the model, this pattern is due to the grouping strategy 

adopted for this task and stimulus set; the observer selects targets, which have their elements 

connected but do not connect with other targets, with a limited number of small selection signals 

that are guided by diagonal signals.  On trials with no distractors and few targets, the target 

diamonds can be selected quite quickly.  When there are more targets, it takes longer for the limited 

number of selection signals to segment all the targets.  When there are distractors, some selection 
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signals are drawn to distractor dots and segment them rather than targets, which results in the 

model taking more time to find all the targets. 

A similar explanation of the results for line figures can be offered.  But, before providing 

it, it is informative to examine the notion of groupitizing in terms of the model.  The Inter-Target 

connection strategy may be regarded as an implementation of groupitizing, i.e., the grouping of a 

subset(s) of targets to enhance performance on enumeration tasks.  For this task, the model 

indicates that Inter-Target connections do improve performance (lower error rates and lower 

response times as element number increases) compared to using no connections.  So, the model 

gives some support to claims made by advocates of groupitizing if it involves V2 connections 

between targets.  However, for at least this task and stimulus set, groupitizing can come at a cost 

early in a trial if small selection signals are used due to the spread of boundary signal before the 

system settles down.  For this stimulus set, it was reasonable to use larger selection signals when 

there were few items since there was no risk of selecting a distractor.  This allowed the fast 

selection of targets when there were 1-4 items, and it was the Multiple selection size strategy that 

allowed the model to produce the pattern indicative of groupitizing in the zero distractor condition.  

Thus, again, the curve thought to be characteristic of subitizing is the result of a grouping strategy 

that promotes performance on the task, rather than the product of some dedicated subitizing 

process. 
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GENERAL DISCUSSION AND CONCLUSIONS 

By rejecting the implicit assumption that there is only one way to group the elements of a 

given stimulus, we are better poised to investigate what grouping strategy(s) observers may be 

using to promote performance on a particular task and stimulus set.  The model developed in this 

project was designed with the flexibility to run simulations of visual search tasks using a wide 

variety of grouping strategies.   

Generally, the model demonstrates how bottom-up and top-down mechanisms are 

integrated in both the formation of perceptual groups and the implementation of grouping 

strategies in particular tasks, where a grouping strategy consists of a connection strategy and a 

selection strategy.  Top-down connection control is driven by the observer’s intention to promote 

small or large groups of elements via V2 connections.  Bottom-up information, which can be 

regarded as “gist” information from the image itself, can be used to set connection parameters that 

are appropriate for the scene and can also be part of a strategy defined by the observer.  Top-down 

selection control involves selection signals of a particular size that are guided by a feature filter.  

The selection signal size and type of feature filter are chosen as part of a selection strategy that 

promotes performance on a particular task and stimulus set.  Feature filters can be tuned to contour 

information that is from the image itself and from V2 connections that are the result of the 

combination of top-down and bottom-up processes just described.  In effect, model performance 

indicates that an observer uses a connection strategy in conjunction with a selection strategy that 

promotes performance on a given task and stimulus set.   

Through simulations and experiments, I tested the possibility that observers are able to tune 

the Connection Circuit parameters and choose properties of the selection process for particular 

stimuli and tasks so as to connect, select and segment elements in a way that promotes performance.  

Within an experiment, the parameters can be changed to reflect previous failures to find the target.  

And within a trial, strategic top-down control of the Connection and Selection Circuits corresponds 

to different search strategies that change connections and selection signal properties in order to 

promote target search.  The resulting grouping strategy is tailored to promote performance on a 

given task and stimulus set.   

This research shows that when the model uses particular grouping strategies, simulated 

results generally match human performance in visual search tasks where perceptual grouping is 
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induced by proximity and shape similarity (Palmer & Beck, 2007), by the spacing of irrelevant 

distractors and size similarity (Vickery, 2008), or by the proximity of dots and the proximity and 

shape similarity of line figures (Trick & Enns, 1997).  The explanations offered in each of these 

studies was in terms of Gestalt grouping principles: Palmer and Beck claimed that participants had 

lower response times for within-group and neutral conditions since the target pair was groupable 

by proximity and/or shape similarity, Vickery referred to grouping by size similarity for target 

circles and grouping by proximity of crosses, and Trick and Enns stated that grouping by proximity 

or similarity factors might be involved in element clustering. 

Due to the dominance of Gestalt grouping principles in explanations offered by these 

researchers, it is imperative to consider the question: How do connections in the model relate to 

Gestalt grouping principles? Strictly speaking, the model neither obeys Gestalt grouping principles 

nor directly implements them by, e.g., recognizing that pairs of adjacent objects are of the same 

size or shape. The model does not know what shape or size are. Instead, it can only detect and 

manipulate edges. To produce connections between edges, the connection circuits use information 

about their arrangement, i.e., whether edges are (1) appropriately aligned, (2) an appropriate 

distance apart, (3) of a particular orientation, and (4) of a particular length. To see how the model 

uses these properties to produce groupings, consider some examples in Figure 30. In the grouping 

by proximity examples, some positive Spread Controller durations allow connections to spread 

between edges that are aligned and that are within a particular distance. In the grouping by 

orientation examples, some positive Spread Controller durations allow connections to spread 

between edges that are aligned and are of the same orientation, while the Long/Short Controller 

may also be in play to prevent aligned but relatively long edges, e.g., the horizontal bar in the row 

3 example in Figure 30, or short edges, e.g., the top of the vertical line and the top of the diagonal 

line in the row 4 example, from connecting to other edges. In the grouping by similarity of size 

examples, some positive Spread Controller durations allow connections to spread between edges 

that are aligned, while the Short Controller prevents the shorter edges of the small shapes from 

connecting to the partially aligned edges of large shapes. In the grouping by shape examples, 

Spread Controller duration is again used to promote connections between aligned edges, while the 

Short and Long Controllers may be used to prevent the edges of particular shapes from connecting, 

e.g., the Short Controller prevents the short horizontal edges of the H and X from connecting, 

while the Long Controller prevents the long top edge of a square from connecting with the top 
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edge of a circle. Thus, fundamentally, the model uses information about properties (1)-(4) to 

connect particular elements.  

Although not an instantiation of Gestalt principles, some of these properties are relatable 

to properties identified by the Gestalt grouping principles. Property (2) reflects the distances 

between the elements and, thus, proximity. Property (4) is, arguably, a function of shape for the 

similarity of shape examples set, e.g., the top edge of a square (circle) is the same length as that of 

the other square (circle) in the stimulus yet is much longer (shorter) than the top edge of a circle 

(square). And, size could be regarded as a function of (1) alignment of edges and (4) relative length, 

e.g., the pair of small circles have shorter edges and the tops and bottom edges of this pair are well 

aligned while the large circles have larger edges that are well aligned. However, it seems that 

properties (1), (2), and (3) are involved in all of these examples: creating and manipulating these 

connections require that the edges are appropriately aligned, be within a certain distance apart 

(which can be altered by top-down control depending on the Spread Controller duration and onset), 

and be of a particular orientation (which can be altered by top-down control depending on which 

orientations have a positive Spread Controller duration).  

In sum, at least in view of the examples given above, the model indicates that there are 

several properties of the edges of stimulus elements that allow an observer to group them by 

connections. The elements that reflect expected groupings given classic grouping principles 

connect due to the combination of these edges having particular properties and a set of connection 

parameters that are tuned so as to connect particular edges. Although some of these properties 

relate to Gestalt grouping principles, there is not a clear one-to-one mapping between each property 

and a Gestalt principle. Thus, it seems that Gestalt grouping principles are high level descriptions 

of output (i.e., particular patterns of connected elements) that result from simpler underlying 

mechanisms, which only use information about the arrangement of edges, implemented in the 

model.  

Further, these connections are only part of the account proposed here.  It is not enough to, 

e.g., connect a target pair of elements.  The target also needs to be selected, segmented, and isolated 

from the scene so that it can be easier to identify.  Additionally, the selection process itself can be 

used to group objects, e.g., the grouping by selection of two nearby target diamonds that happened 

to both be selected by a single large selection signal.  In turn, this work supports the claim that 

both connections and selection are components of grouping. 
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The model’s interpretation of the empirical data highlights that perceptual grouping is 

neither a well-defined concept nor a process that has a single mechanism or even a series of 

mechanisms. Rather, I propose that what is referred to as “perceptual grouping” reflects many 

different model behaviors that together achieve a given task. What is described as a type of 

grouping may involve many different mechanisms depending on the task and stimulus set. The 

experiments simulated in this work provide examples of this.  Table 11 summarizes the grouping 

strategy for each simulated experiment that resulted in the best performance on the task.  In the 

table, the experiments are listed in order of increasing complexity of grouping strategy. 
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_________________________________________________________________________________________________________________________________ 

 Connection Strategy Selection Strategy 

Experiment  One Strategy? One Set of Parameters?   One Signal Size? One Placement Strategy? 

5. (Vickery) Yes. (Connect targets by size.) Yes. Yes. Yes. 

6. Dot Figures (Trick & Enns) No. (Connect the dots of each Yes. Yes. Yes. 

 target or each shape.) 

6. Line Figures (Trick & Enns) Yes. (Connect nearby targets Maybe. (May depend on  No. Yes. 

 when possible.) the spread of elements.) 

1. (Palmer & Beck) Yes. (Connect target pairs No. (One for each separation No. (Depends on row width.) Yes. (At least initially.) 

 when possible.) between target pairs.) 
_________________________________________________________________________________________________________________________________ 

 

 

Table 11. Best Performing Grouping Strategy by Experiment 
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Rather than relying on Gestalt grouping principles, the model offers an explanation of 

performance on these tasks in terms of low-level mechanisms such as those involved in the process 

that forms V2 connections and in the selection process.  The complexity of involved mechanisms 

that operate in parallel make it challenging to empirically isolate one mechanism from others, a 

point that has been apparent in the empirical literature for quite some time (Wagemans, 2018). 

However, in the model top-down control of these mechanisms can be directly manipulated, thereby 

allowing for better understanding of how these mechanisms contribute to performing the task at 

hand. 
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