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ABSTRACT 

Proteins are the active biomolecules of the cell.  They perform metabolic action, give the 

cell structure, protect the cell from antigens, give the cell motility, and much more.  The function 

of proteins are intrinsically linked to their structures, so it is therefore necessary to characterize the 

structure of a protein to fully understand its function and operation.  In this research the application 

of computational methods, primarily molecular dynamics, towards protein structure determination, 

refinement, and quality assessment were studied. I applied molecular dynamics techniques to four 

major projects; the determination of relative error of atomic models deposited with electron 

microscopy maps in the EMDB, solving and refining atomics structure models for the PhageG 

major capsid proteins, the elucidation of the structure the protein USP7 and the binding pose of a 

of a candidate therapeutic drug, and the determination of relative stability of candidate protein 

folds to distinguish near native models from not.  Each year an increasing number of protein 

structures have been solved using electron microscopy (EM). The influx of solved structure has 

proven to be a boon to the community, but it is necessary to note that the quality EM maps vary 

substantially. To understand to what extent atomic structure models generated from EM matched 

their respective maps, two computational structure refinement methods were used to examine how 

much structures could be refined. The deviation from the starting structure by refinement, as well 

as the disagreement between refined models produced by the two computational methods, scaled 

inversely with both the global and local map resolutions. The results suggested that the observed 

discrepancy between the deposited maps and refined models is due to the lack of resolvable 

structural data present in EM maps at low to moderate resolutions, and therefore these annotations 

must be used with caution in further applications.  I also successfully implemented molecular 

dynamics as a method for protein structure quality assessment.  Proteins tend towards shapes which 

minimize their energy. Experimentally, the stability of a protein can be measured through several 

techniques, one such technique includes the controlled application of tension to proteins in an 

atomic force microscopy (AFM) framework.  This kind of tension-based approach is of interest as 

it probes the force required to unfold individual domains of a protein rather than a bulk 

characteristic like molting point or activity. It has been shown that key features observed in an 

AFM experiment can be well reproduced with molecular dynamics simulation, which has been 

applied to characterize the mechanisms of unfolding of proteins as well as ligand-protein 
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interactions.  Steered molecular dynamics (SMD) was applied to pull and unfold proteins and 

determine the force required to unfold them. The relative force required to unfold different models 

with the same sequence was used to estimate relative model accuracy.  This follows from the 

hypothesis that the structural stability of a given model’s conformation would positively correlate 

with its accuracy, i.e. how close that model is to its native fold. It was found that near-native 

models could be successfully selected by comparing the forces required to unfold models, 

indicating that high unfolding forces indeed indicated high model stability, which in turn correlated 

with model accuracy. I also applied molecular dynamics-based approaches for refinement of 

protein structures that are determined from cryo-EM density maps.  Computational approaches for 

protein structure refinement are often developed with the design aim of requiring a user input and 

experimental data. I modeled the atomic structure of the major capsid protein gp27 and the 

decoration protein gp26 of PhageG to a 6.1Å resolution electron microscopy map.  PhageG 

modeling was done by mapping the sequences to a presumed homolog (Hk97), arranging the 

subunits into hexamers and trimmers as suggested by mass spectroscopy data, rigid docking to 

respective map segments, refinement against half maps using MDFF across a range of weights, 

and then finally refinement to the whole map using the optimized weight.  I also modeled the 

atomic structure of the protein USP7 to an 8.2 Å resolution map.  USP7 modeling was done by 

combining crystalized domains of the whole structure, rigidly docking the model to the EM map 

by hand, and then refining in a similar manner as PhageG, with the added approach of weight 

scaling to overcome local minima along the relaxation.  The USP7 model was further validated by 

exhibiting a ligand-protein binding pose, determined by glide, which corresponded to enzymatic 

activity mutation assays.  In summary I applied molecular dynamics, in conjunction with other 

computational methods, towards protein structure determination, refinement, and quality 

assessment. 
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 INTRODUCTION 

 The determination of protein structure at an atomic scale remains one of the most 

challenging and important problems in the field of biology.  Determining the accurate position of 

the atoms in a protein, both backbone and side chains, can be critical for the understanding of 

chemical mechanisms, development of drug molecules, the characterization of disease-causing 

mutations, and much more.  The benefits that come from accurate structure determination can have 

different significance depending on the structure in question, be it a spike or capsid component of 

a virus, a protein harmful to human or animal health, or a critical enzyme in a pathway we wish to 

understand or replicate.  In the case of the spike and capsid proteins of disease-causing viruses, the 

structure can give us clues about potential antibody binding epitopes or tell us about the assembly 

of those viruses, both of which can be used to develop vaccines and therapeutic drugs (Haiyan 

Zhao, 2016) (Christian G. Noble, 2012).  For harmful proteins (such as toxins, prions, or 

carcinogenic proteins) structure determination can lead to the discovery of druggable regions 

which can be exploited to denature the harmful protein or cause reduced function (Fuqiang Ban, 

2017).  For enzymes which we wish to understand or replicate, structure determination can lead to 

insights of their function on a chemical level, and even reveal possible ways in which site directed 

mutagenesis can lead to increased function (Baker, 2019). 

A natural method for the determination of atomic structure of proteins is to combine 

computational approaches, which rely on heuristic and theoretical frameworks, with experimental 

data in a complimentary way.  Some experimental methods used to determine the structure of 

proteins include x-ray crystallography (Savino, 2008), Nuclear Magnetic Resonance (NRM) 

(Wüthrich, 1990), Electron Microscopy (EM) (Yip, 2020), and Small Angle X-ray scattering 

(SAXS) (Yang S. , 2014).  High resolution methods like x-ray crystallography and NMR can 

produce highly accurate structures but are limited in the size of structures they can solve (Davis, 

2003), and often present significant difficulties when applied to multi-protein complexes (Wang 

H.‐W. a.‐W., 2017).  EM and SAX, on the other hand, are much more amenable to being used to 

solve large and complex structures, though at a lower resolution on average than the former two 

methods (Wang H.‐W. a.‐W., 2017) (Putnam, 2007).  It should be noted that EM can produce 

resolutions comparable to, or every better than, x-ray cystography (Yip, 2020), but lower 

resolution maps are still common.  According to the statics of the EMDB, as of this writing, of the 
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15113 maps which have been published, 50% have resolutions worse than 5Å, and 31% of all 

maps having a resolution worse than 10Å (Catherine L. Lawson, 2016).  Low resolution data can 

be difficult to annotate by eye, but it can, if approached with care, be addressed computationally. 

There are many computational approaches for predicting the structure of proteins.  

Computational approaches can be broadly placed into four categories, ab initio prediction (Yang 

J. Y., 2015) (Adhikari, Bhattacharya, Cao, & Cheng, 2015) (Carol A. Rohl, 2004), homology 

modeling (Eswar N., 2008) (Torsten Schwede, 2003), and structure refinement (Aleksander 

Kuriata, 2018) (Parimal Kar, 2013) (Luca Monticelli, 2008). After candidates structures have been 

predicted quality assessment (QA) can be applied to select the most promising predicted structures 

(Mereghetti, 2008) (Bhattacharya, 2008) (Benkert, 2008). 

Ab initio methods, such as ROSETTA (Carol A. Rohl, 2004), use only an amino acid 

sequence as an input to determine a possible structure, and are most useful when any other data is 

scares.  Homology modeling methods, such as MODELLER (Eswar N., 2008), use an amino acid 

sequence and an already determined structure with a similar sequence, which is hopefully a 

homolog to the protein whose structure is be solved, to generate a structure.  Homology modeling 

used the assumption that homologs have similar conformations and can therefore be used to 

approximate the unknown’s general fold (Webb & Sali, 2016).  Refinement techniques, such as 

MDFF (Leonardo G. Trabuco E. V., 2009), use a starting structure that is thought to be close to its 

native structure and frequently, though not always, use complimentary experimental data such as 

Electron Microscopy maps.  Finally, quality assessment approaches, such as QMEAN (Benkert, 

2008), use a variety of scoring methods to distinguish high-quality and low-quality structure 

predictions.  These methods can be used to complement one another in a variety of way, for 

example ab initio approaches can produce several candidate structures, QA can then help to 

identify promising candidate structures which can then be passed to structure refinement (Terashi 

G, 2018). 

Below we will discuss some of the experimental techniques which can be integrated with 

computational modeling to produce useable protein structure models.  We will then discuss a 

variety of methods used for flexible modeling and refinement of protein structures, various 

structure predictions methods, and protein structure quality assessment approaches.  We will end 

with a short discussion of two real applications of combining these techniques.  In summary we 

will be discussing protein structure determination from an experimental framework, then a 
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theoretical computational framework, and finish with some real-world examples of integrating the 

two. 

1.1 Experimental Structure Determination 

There are a variety of methods used to experimentally determine the structure of a protein.  

They vary in what structures they work best for, how well they handle complexes, and what kinds 

of resolutions are routinely obtained.  In this section, I will briefly describe some of the most 

popular methods. 

1.1.1 Electron Microscopy 

To understand the fitting of atomic models to electron microscopy maps, we must first 

describe the technique.  Electron Microscopy (EM) has garnered significant interest in the past 

decade.  This method is an imaging technique for the viewing of matter too small for optical 

wavelengths of light to visualize.  As the name suggests, Electron Microscopy utilizes electrons as 

a substitute for light in the viewing of specimens, as electrons can interact with much smaller 

details of matter than optical light.  The use of a beam of electrons for microscopy presents several 

technical changes to the way that a more conventional light microscope is used, but fortunately 

most of these modifications have a direct analog in optical microscopy. 

The Electron Microscope, its components, and their functions 

If an Electron Microscope were to be stripped down to the bare minimum required to 

function, it would consist of four components; an electron source, a limiting aperture, an objective 

lens, and a means to measure the electrons at the sample such as film or a CCD.  This is of course 

too minimal for any practical application but highlights the similarity to a conventional optical 

microscope. 

The electron source provides electrons which are then selected by emission vector to 

comprise the beam which will eventually impinge on the sample for viewing.  Electron sources 

come in a variety of forms, such as tungsten filaments and field electron guns.  This serves the 

same purpose as the light bulb, or candle before it, in optical microscopy which generated an 

abundance of photons for the optical microscope to guide to its target (Cheng, 2018). 
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The limiting aperture blocks electrons that are not traveling in a generally desirable 

direction from passing through the microscope towards the sample and imaging medium (Cheng, 

2018).  This starts the process of controlling the electrons so that they can be focused on to the 

sample of interest.  This functions the same way as an aperture in an optical microscope does, 

limiting the amount of light that is passed to the focusing lens. 

The objective lens in an electron microscope is not made of glass, but rather consists of a 

magnetic field (Cheng, 2018).  The material components of lenses in an electron microscope are 

coils of wire, or electromagnets, which produce very precise magnetic fields when current passes 

through them.  Electrons interact with magnetic fields in a manner predictable using Maxwell’s 

equations, so the production and tuning of magnetic fields allows for the focusing of electrons onto 

a sample of interest. 

After the electrons have been narrowed down by the aperture, focused by the lens, and have 

interacted with the sample, it is time to measure the electrons.  The electrons which pass through 

the sample are detected through their interaction with some material; classically this material was 

film, as the electrons would develop the film where they collided.  While film had several benefits 

over devices like CCDs, the images would then need to be digitized in some way, usually by photo-

scanner, if any further processing were required, however, scanning could result in data loss (Yin, 

2018).  The preferred component in modern EM for this task is a direct electron detector, which 

mitigates some of the issues of using a CCD, while collecting the data in a digitized format for 

further analysis (Benjin, 2020). 

Single Particle Electron Microscopy 

Contemporary Electron Microscopy can be set up in several ways, including Transmission 

Electron Microscopy (TEM), which can be used to study portions of or all of a cell, and Single 

Particle Cryo-EM, which can be used to image, among other things, proteins or viruses (Benjin, 

2020).  Here we will focus on Single Particle Cryo-EM. 

The theoretical framework for Single particle EM was developed in the 1970 

simultaneously by several labs (Frank, 2018) (Dubochet, 1988).  In the early days of the method 

resolutions were low but, since it did not require a crystal, single particle cryo-EM drew much 

attention.  Production EM images were only 2D projections (particles) of biological molecules 

until De Rosier and Klug demonstrated that 2D projections could be used to reconstruct 3D 
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structures in 1968 (DeRosier & Klug, 1968).  The next challenge for electron microscopists to 

overcome was to find a way to keep protein samples hydrated under the high vacuum required by 

the electron beam.  This was solved through the development of a plunge freezing technique by 

Dubochet et al. in the 1980s (Dubochet, 1988) (M. Adrian, 1984).   

Preparation of a protein sample for examination in an electron microscope involves placing 

a drop of solution containing protein onto a thin grid before, in the case of cryo-EM, flash freezing 

(Benjin, 2020).  This leaves many proteins frozen in suspension in a thin film of vitreous ice.  This 

thin film is then placed in an electron microscope for data collection.  The data collected from 

electron microscopes are called micrographs and contain many images of the proteins frozen in 

place.  The individual protein images are referred to as particles and must be selected, or picked, 

for further analysis (Benjin, 2020).  This particle picking can be semi-automated by using software 

such as Eman2 or Relion (Guang Tang, 2007) (Scheres, 2012). 

Particles in micrographs are often of low resolution, low contract, or both (Cheng, 

2018).  The low resolution and contrast of the micrographs greatly limits what kind of analysis 

that can be reliably done with them.  One method for dealing with this is known as single particle 

analysis (Christian Suloway, 2005).  Single particle analysis techniques have been developed to 

overcome the problem of low resolution and contract by combining information from each 

particles in micrograph data (Christian Suloway, 2005).  This can produce a single, representative, 

high resolution 3-dimensional image of the sample protein.  This 3-dimensional image is often 

called a map or EM map.  These maps contain density information about the sample protein, but 

do not contain any explicit atomic or chemical information.  Electron microscopy maps (EM maps) 

are often the end products of single particle electron microscopy, but are often used for further 

downstream analysis of protein structure, and can be annotated with an aligned atomic structure 

(Leonardo G. Trabuco E. V., 2009).  A representative workflow for Single Particle Electron 

Microscopy can be seen in Figure 1.1. 

  



 
 

21 

 

Figure 1.1: Workflow of single-particle cryo-EM.   A sample is purified before placing it on a grid.  
After the sample has ben placed on the grid, and typically dabbed, the sample and grid are plunged 
into a cryogen to freeze the sample as quickly as possible.  The Frozen sample is then loaded into 
an electron microscope where 2D projections are generated and collected.  Within the 2D 
projections, individual molecules can be seen and are selected. These molecular projections, called 
particles, are aligned by orientation and averaged, generating what is known as a class average.  
These class averages are then used to construct a 3D map density, which can subsequently be used 
to generate a 3D atomistic models (Doerr, 2016). 

Electron microscopy can be used on nearly any protein structure but favors larger 

symmetric proteins (Noble & al., 2018).  EM does not always produce resolutions as high as x-ray 

crystallography or NMR, though that is steady changing (Benjin, 2020), but EM can more readily 

determine a large structure or multi-meric complex than x-ray crystallography or NMR.  In this 

way, EM compliments x-ray crystallography and NMR, as EM can be used to determine the 

structure of larger proteins and protein complexes at a moderate to low resolution, while x-ray 

crystallography and NMR can both be used on smaller subunits of a larger complex.  After the 

acquisition of smaller subunit structures at high resolution and the whole complex at moderate to 

low resolution, these two data sets can be combined to generate a high-resolution atomic structure 

of the whole complex that none of the methods alone are conventionally capable of.  The final 

product of single particle electron microscopy before fitting atomic models is an EM-map.  EM-

maps are three-dimensional representations of the sample structure and take the form of a voxel 

grid where each point in the grid is assigned a value based on signal density.  Resolution of EM 

maps vary significantly from, and some examples of the protein GroEL at different resolutions is 

shown in Figure 1.2. 
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Figure 1.2: Cryo-EM maps of GroEL solved at different resolutions. Panels inset with each map’s EMDB 
ID and It reported resolution.  Each map is displayed at the author recommended contour level. 
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1.1.2 X-ray crystallography 

X-ray crystallography has, until relatively recently with the advancement of cryo-EM, been 

the undisputed favored method for protein structure determination (Smyth & Martin, 2000).  The 

aim of x-ray crystallography is to determine the three-dimensional structure of a protein from a 

crystal.  Crystals of this kind are created from highly purified protein at high concentration 

(McPherson & Gavira, 2014).  The crystal is then exposed to a beam of x-rays which diffracts 

based on the molecular and atomic geometry of the crystal. The resulting diffraction pattern can 

then be used to determine the shape of the electron density within the crystal, and an atomic model 

can then be built from there (Smyth & Martin, 2000).  X-ray crystallography often produces high 

resolutions structures, however there are several factors which make it one of the most challenging 

techniques for structure determination.  Some factors which make x-ray crystallography 

challenging are the need for a reliable source of protein at high concentrations, purifications of the 

protein to be crystalized, the crystallization process, and the need to generate multiple crystals if 

there are not already solved sufficiently similar structures which can be used for molecular 

replacement (Evans & McCoy, 2008). 

Sample preparation 

In X-ray crystallography a protein sample must first be purified then crystallized.  

Purification can be performed in several ways, including expressing the protein in a plasmid vector 

with a poly-His-tag and then immobilizing the protein on a model ion or using a poly-his antibody 

(Kim Y, 2011).  Rarely is one purification technique sufficient, but when multiple purifications 

using complimentary selection criteria are used in series, purification can typically be achieved 

(Kim Y, 2011).  After a sufficiently purse sample has been produced, the goal is to crystalize the 

protein by achieving supersaturation. Supersaturation can be achieved through the addition of salts, 

modification of pH, changing the ionic strength of the solution, among other approaches.  

Crystallization is far from a trivial process, and the difficulty of forming a crystal will depend 

greatly on the character of the protein of interest (McPherson & Gavira, 2014). 
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Data collection and interpretation 

 After a crystal has been formed, it is integrated with a beam of x-rays which diffract when 

interacting with the crystals structure, forming a pattern on a detection screen opposite the x-ray 

source from the crystal (Smyth & Martin, 2000).  The best diffraction patters come from powerful 

beamlines like the one found at the Argon National laboratory, but preliminary scattering data can 

be collected on a benchtop device. 

The unique character of a diffraction pattern can be used to determine the overall geometry 

of the electron density in the crystal, referred to as a structure factor, which can in-turn be used to 

determine the atomic coordinates of the crystal (Smyth & Martin, 2000).  An Example diffraction 

pattern and a segment of the resulting solved electron density is shown in figure 1.3. 

 

Figure 1.3: Example x-ray diffraction pattern and refined structure (Audrey L. Lamb, 2015). A) a single 
diffraction image obtained by the authors rotating the crystal through a small angle. Resolution of structural 
data increases from the center of the diffraction pattern outwards radially. B) a region of the solved electron 
density. C) The same density as shown in B with a fitted atomic structure. (Lamb, Kappock, & Silvaggi, 
2015) 

Strengths and weaknesses 

 X-ray crystallography produces high resolution atomic structures, but is costly both in 

material and time, and some structures display a high level of recalcitrance to crystallization (Wang 

H.‐W. a.‐W., 2017) (McPherson & Gavira, 2014).  Aside from its size limitations, x-ray 

crystallography can also fall short of resolving flexible regions of a protein, and can also suffer 

from deformation from the native structure caused by crystal contacts (Kim Y, 2011). 
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1.1.3 NMR 

NMR is a method in which a sample in solution is pulsed by a strong magnetic field causing 

the nuclei of the atoms in the sample to resonate at a characteristic frequency based on their 

chemical environment (Michael R. Gryk, 2010).  From the observed frequencies, the relative 

position of atoms can be determined to a high degree of precision, granting resolutions in the 

angstrom range.  The general workflow of NMR can be seen in Figure 1.4. 

 

Figure 1.4: Workflow of NMR, (creative-biostructure.com, n.d.).  From left to right, protein is purifying as 
in other techniques, sample is suspended in a deuterated solvent, the sample is then subjected to magnetic 
fields, data is acquired, and finally a structure is solved from the collected data. 

NMR has the added benefit of giving some dynamic information about the protein 

conformational ensemble (Ishima & Torchia, 2000), that is the variation in the protein’s native 

conformation at a given temperature.  NMR provides data useful at an atomic scale, but it suffers 

from size limitations of the samples that it can be applied to (Michael R. Gryk, 2010). 

Sample preparation 

Protein samples for NMR are purified and suspended in an aqueous solution, similarly to 

SAXS, before expose to a strong oscillating magnetic field (Gaetano T. Montelione, 2000).  

Protein samples can be deuterated for Amide hydrogen-deuterium exchange for determination of 

regional flexibility and finding binding sites (Gaohua Liu, 2005). 

Data collection and interpretation 

 After a sample has been purified and prepared for NMR, it is loaded into an NMR 

spectrometer (Figure 7) which pulses the sample with a powerful and precise magnetic field.  

Magnetic fields are typically multi-Tesla with a pulse frequency of approximately 600-900 Mhz 
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(Gaetano T. Montelione, 2000).  An example NMR device and a schematic representation can be 

seen in the Figure 1.5. 

 
Figure 1.5: Example NMR hardware. NMR spectrometer (left) (Reish, 2015) with a schematic 
representation (right) (Raja & Barron, 2021). Left, an example NMR device.  Right, a cutaway diagram of 
a typical NMR device, showing the magnetic, probe, and helium and nitrogen jackets. 

The data collected from NMR is the resulting resonant magnetic field from the nuclei of 

the atoms in the protein.  The resonance of these atoms will differ depending on the chemical 

environment of the nuclei and will give characteristic frequency shifts in particular environments.  

These characteristics shifts, such as HN, N, C′, Hα, Cα, Hβ, and Cβ chemical shifts (Michael R. Gryk, 

2010), give restraints for structure determining, limiting the number of possible conformations. 

When there are enough restrains, there remains only one unique possible solution which can satisfy 

all the given restraints.  Example NMR data and a solved structure can be seen in Figure 1.6.  

 

Figure 1.6: Example NMR data (left) and determined structures (right) (Roberts, 2013).  Left, a) 100 MHz 
1H spectrum with peaks corresponding to histidines in pancreatic ribonuclease.  b) 800 MHz 1H-15N 
neteronuclear single quantum coherence spectrum of NADPH cytochrome P450 reductase.  Right, 
Ensembles of structures of metallo-β-lactamase BcII from Bacillus cereus. 
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Strengths and weaknesses 

Because of the resolutions NRM can achieve, and the size regime in which it works best, 

the most sensible method to compare it to is x-ray crystallography. NMR gives high resolution 

structures of multiple conformations of a protein in an aqueous environment, which can potentially 

be more physiologically relevant than a crystal structure.  NMR can even provide us with dynamics 

and binding information.  The biggest weakness of NMR is its upper size limit, relegating the 

method to relatively small molecules (Emwas, 2015). 

1.1.4 SAXS 

SAXS (Small Angle X-ray Scattering) is a method in which an x-ray beam is scattered 

from a material and the density distribution of that material is determined by the resulting 

scattering pattern to within a nanometer scale.  SAXS has the benefit of not requiring a crystal, as 

x-ray crystallography does, but suffers from the lowest resolution on this list.  While SAXS can 

give an overall geometry of the protein, how spherical the structure is or if it has a bend in it, it 

does not give data at an angstrom scale, which is usually necessary for functional studies and drug 

design.  SAXS performed well when being used to study bulk motion and protein behavior in 

solution.  SAXS has been used to notable success in studying flexible systems as well as 

intrinsically disorder proteins (Bernadó, 2012) (Receveur-Brechot & Durand, 2012) (Tainer, 2011) 

as well as ligand binding (Gareth J Williams, 2011) and the effects of temperature on a proteins 

ensemble (Sara Ayuso-Tejedor, 2011). 

Sample preparation 

When preparing a sample for SAXS, it is necessary to purify your protein to a high degree, 

as SAXS will give data regardless of the quality of the sample used.  It is also necessary to use an 

identical buffer as the zero as the buffer in the sample solution.  It insufficient to make a separate 

buffer solution with the same measured components, as even the slightest difference in 

composition between the zero and sample buffers will result in substantial error.  Buffer for zeros 

is routinely extracted from the sample solution through means of diffusion (Pauw, 2013). 

 



 
 

28 

Data collection and interpretation 

 Once the sample and buffer are ready for data collection, an x-ray beam can be shot through 

the sample, and the scattering pattern can be measured.  From the scattering pattern two kinds of 

data are of primary interest, the scattering angle (q) and the x-ray intensity (I).  These data are 

combined into what is known as a Kratky plot, which contains information about the bulk 

properties of a protein’s structure, such as relative flexibility and how globular the protein is.  A 

Kratky schematic is shown in figure 1.7. 

 
Figure 1.7: SAXS data analysis. A) Krotky plot description.  A Krotky plot is a plot of q2I(q) vs q, where q 
is the scattering angle, and I is the x-ray intensity.  Based on the shape of the curve, general characteristics 
of the geometry of the protein can be determined (Small Angle X-ray Scattering/Diffraction, n.d.). 

 After Kratky data has been collected, it is possible to generate a structure with a resolution 

of 1-100 nm.  These structures can take the form of a dummy atom reconstruction like what is 

made by DAMMIF (Svergun, 1999) (Franke & Svergun, 2009), or an electron density model as is 

generated by DENSS (Grant, 2018). 

Strengths and weaknesses 

 SAXS performs well relative to other methods when a protein of interest is highly flexible, 

very large, or difficult to purify; however, the special resolution that SAXS affords us is the most 

limited of the methods described here. 
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1.2 Molecular Dynamics 

Molecular dynamics is at its core the study of the movement of atoms and molecules.  In a 

computational framework this means the simulation of atoms and molecules to determine how 

they interact and where they located relative to one another in an environment.  Here we will 

discuss the basics of Molecular Dynamics and some of its relevant applications for this work. 

1.2.1 Basics of Molecular Dynamics 

Molecular Dynamic simulations can be performed using a variety of software packages.  

The most popular of these software packages are GROMACS (Van Der Spoel, 2005), CHARMM 

(Brooks, 2009), and NAMD (J. C. Phillips, 2002).  These packages allow for simulations to be 

modified and applied in a variety of ways, while leaving the core principles intact.  The basics of 

any MD simulation is as follows; start with a system of atoms with their coordinates and 

characteristics, calculate forces on each atom from their interaction with other atoms, move the 

atoms based on the net force and the mass of each atom over a short time step Δt, update the time 

in the simulation by Δt, and repeat until the desired amount of time has passed in the simulation 

(J. C. Phillips, 2002). 

The set of atoms and their coordinates in a molecular dynamics simulation often comes 

from x-ray crystallography and Nuclear Magnetic Resonance (NRM), in the form of a protein data 

bank (PDB) file (H.M. Berman, 2000).  The way that atoms are characterized and handled varies 

across methods, but the core loop remains the same. 

 
Figure 1.8: Flowchart of Basic Molecular Dynamics. Molecular dynamics simulations start with a set of 
atoms and their coordinates.  From there forces are calculated for every atom in the simulation.  Next every 
atom is moved based on those forces and the time step used in the simulation.  After the atom positions 
have been updated, time is moved forward in the simulation.  Finally, the simulation is looped until the 
desired time has passed in the simulation. 
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From this basic core molecular dynamics can be added to address specific problems and 

needs.  Modifications can be made by, for example, applying additional forces to the simulation 

that are not calculated by default, or by forcing part or all of a protein to move in a specific way. 

1.2.2 Molecular Dynamics with External Forces 

Due to the linear nature of the energy terms in molecular dynamics it is possible to apply 

additional energy terms to a simulation.  The ability to add additional energy terms is something 

we can take advantage of to sample dynamics or conformations of interest to us. 

Here we will discuss two such methods; Molecular Dynamics Flexible Fitting (MDFF) 

(Leonardo G. Trabuco E. V., 2009) and Steered Molecular Dynamics (SMD). 

Molecular Dynamics Flexible Fitting 

Molecular Dynamics Flexible Fitting (MDFF) is a modification made to molecular 

dynamics by Leonardo Trabuco et al. in 2009 which is designed to fit atomic pdb structures to 

electron microscopy maps.  It is desirable to fit atomic pdb models to EM maps because of the 

shortcomings of x-ray crystallography, NMR, and electron microscopy. 

MDFF combines atomic models and EM map densities by converting the map density into 

a sort of mass potential field. This is done through the following functions. 

 𝑈𝑈𝐸𝐸𝐸𝐸(𝑹𝑹) =  �𝑤𝑤𝑗𝑗𝑉𝑉𝐸𝐸𝐸𝐸(𝒓𝒓𝑗𝑗)
𝑗𝑗

 1.1 

 
𝑉𝑉𝐸𝐸𝐸𝐸(𝒓𝒓) = �𝜉𝜉 �1 −  

𝜙𝜙(𝒓𝒓) − 𝜙𝜙𝑡𝑡ℎ𝑟𝑟
𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚 − 𝜙𝜙𝑡𝑡ℎ𝑟𝑟

�      𝑖𝑖𝑖𝑖 𝜙𝜙(𝒓𝒓) ≥ 𝜙𝜙𝑡𝑡ℎ𝑟𝑟

𝜉𝜉                                            𝑖𝑖𝑖𝑖 𝜙𝜙(𝒓𝒓) < 𝜙𝜙𝑡𝑡ℎ𝑟𝑟
 

 

1.2 

Where VEM(r) is the potential for an atom to be in location r, ϕ(r) is the density of the EM 

map at poison r, ϕthr is a threshold density for handling background noise in the map and is set to 

zero by default.  𝜉𝜉  is a scale factor, referred to from here on a the g-scale.  wj is the mass of atom 

j, and UEM(Rkl) is the potential energy of the whole protein in position R.  The UEM(R) term is 

added to the other terms in a standard molecular dynamics simulation of the atomic model that we 

are trying to fit into the EM density (Leonardo G. Trabuco E. V., 2009). MDFF is discussed in 

further detail in chapter 2. 
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Using experimental data to derive an external force in molecular dynamics is a powerful 

way to merge theory with experiment, as it keeps the theoretical modeling grounded while also 

helping to control for overfitting to experimental data. 

Steered Molecular Dynamics 

SMD is a broad class of molecular dynamics in which an external force is applied to some 

or all the atoms in a simulation to drive spatial or dynamic sampling (al, 1999).  A common 

application of SMD is to pull an atom or small molecule through a protein channel (Mu Gao, 2002) 

(Hui Lu, 1998) (Alishahi, 2019).  When pulling an atom or small molecule in this way, often a 

dummy atom with not mass or charge is connected to the atom or small molecule by a spring-like 

bond, and the dummy atom is then moved at a constant velocity through the pore or the protein, 

while the force between the dummy atom and the atom or small molecule of interest is calculated 

and recorded throughout the run.  This gives a general idea of how much force is required to force 

the atom or small molecule through the pore, as well as an idea of where the most resistance is met 

during this translocation.  This information can be used to generate a coordinate restraint for 

umbrella sampling to generate a potential of mean force (PMF), to roughly determine the Gibbs 

free energy of passing the atom or small molecule through the pore (Alishahi, 2019). 

SMD can also be applied to the unfolding of proteins in a manner analogous to atomic 

force microscopy (AFM) (Hughes & Dougan, 2016).  Similarly, to the pore example given above, 

a dummy atom can be connected to one end of a folded protein, but in this case the other end of 

the protein is fixed in place.  The dummy atom can then move away from the fixed end resulting 

in tension in the protein which will eventually cause a rearrangement in the structure.  If pulled for 

long enough the tertiary and secondary structure of the protein will be ripped apart until finally the 

protein is completely linear, assuming no there are no crosslinks in the structure.  The force exerted 

by the dummy atom is collected and by comparing force over time to the change in the protein 

structure the approximate stability of the different structure motifs can be determined. 
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Figure 1.9: Example AFM-type setup for SMD.  Here the N-terminus (red dot) is held fixed, while the C-
terminus (green dot) is connected to a dummy atom which is moved along the vector represented by the 
green arrow. 

1.2.3 Other Methods for Flexible Protein Modeling 

Molecular Dynamics is not the only methodology for modeling protein motion and 

structure refinement.  Other methods implement various heuristics to speed up computation time.  

Such heuristics include reducing the number of atoms in the simulation to simplifying or outright 

replacing the physics forcefield with an alternative approach determining optimal atom position. 

Course Grained methods 

 All the Molecular Dynamics we have discussed so far fall under the category of all-atom 

Molecular Dynamics, where every atom of every molecule in the system is modeled explicitly.  

One of the most notable alternatives to all-atom Molecular Dynamics is course graining.  Coarse 

grain methods differ from all-atom Molecular Dynamics in two key ways; one, the atoms are 

combined in various ways to simplify the model, and two, the forcefields which govern the 

interaction between atoms is often vastly different (Sebastian Kmiecik, 2016).  Coarse Grain 

modeling is a broad subject, but we discuss some examples here. 
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Elastic Network Models 

Elastic Network Models (ENM) are simplified models of proteins used to study slow 

dynamics (Bastolla, 2014).  ENMs are constructed of point particles that are connected by linear 

hooking spring forces.  The original ENM for proteins replaced every atom in the system with a 

particle (Tirion, 1996), but later ENM approaches reduced entire residues or ~10Å radius spheres 

around α-carbons into single particles (Ivet Bahar, 1997) (C. Atilgan, 2010).  The reduction in the 

total number of atoms, in conjunction with the simplification of the forces acting on those atoms, 

trades simulation accuracy for computational speed.  The increase in speed that ENM has relative 

to more conventional all atom MD allows for the convenient study of larger protein complex as 

well as comparative studies of many proteins (Togashi & Flechsig, 2018). 

ENM methods can be divided into two subcategories: Gaussian Network Models (GNM) 

and Anisotropic Network Models (ANM).  GNM and ANM approaches are distinguished from 

one another by a single assumption.  In a GNM, fluctuations around the initial, or reference, 

structure are assumed to be isotropic, that is the magnitude of the fluctuation does not depend on 

the direction of that fluctuation.  This allows the conformation space to simply be an N-

dimensional, where N is the number of particles, array of fluctuation magnitudes.  The simplicity 

of a GNM allows it to be used in normal mode analysis (NMA) to model conformation changes 

(Togashi & Flechsig, 2018).  In an ANM, the direction of displacement from the reference structure 

is considered.  In ANM, the force action of a particle depends on the displacement of that particle, 

as well as the direction of the springs connected to that particle.  ANM is also used in NMA to 

model conformation changes (Doruker, 2000) (A.R. Atilgan, 2001). 

ENMs have been developed to investigate several physiologically relevant systems; 

including investigation of allosteric conformation change of actin when bound to ATP (Markus 

Düttmann, 2012), and modeling the operation cycle of the hepatitis C virus helicase motor (Holger 

Flechsig, 2010). 

ENM Examples 

 CABS (C-alpha, beta, and side chain) (Aleksander Kuriata, 2018), is a coarse-grained 

medium resolution method.  It uses four-beads to represent a residue: the Cα, the Cβ, the center of 

the side chain, and the center of the peptide bond. To speed up calculations, Cα positions are 
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restrained to a cubic lattice of length 0.61Å.  CABS uses a completely statistical (knowledge-based) 

force field derived from analysis structures in the Protein Data Bank (PDB).  Position sampling is 

performed using Monte Carlo methods.  CABS has been used successfully for structure prediction 

(Koliński & Bujnicki, 2005), modeling flexibility (Mateusz Kurcinski T. O., 2019), modeling 

disorder in protein structure (Ciemny MP, 2019), and molecular docking (Mateusz Kurcinski A. 

K., 2014). 

 PRIMO (protein intermediate model) is a higher resolution approach than CABS, in which 

the main chain is represented by three beads per residue, and sidechains are represented by one to 

four beads.  PRIMO uses an adapted physics-based forcefield of the same form as that used for 

conventional all-atom MD.  PRIMO grants a speed up relative to all-atom MD, which allows for 

the modeling of solvent effects, including the dynamics of membrane proteins (Parimal Kar, 2013). 

 Martini uses a one-to-four mapping approach, meaning that four heavy atoms and their 

hydrogens are combined into a single bead.  Coarse grain beads are assigned one of four categories, 

polar, nonpolar, apolar, and charged, and are also assigned hydrogen-bonding capability (‘d’ for 

donor, ‘a’ for acceptor, ‘da’ for both, and ‘0’ for neither) and level of polarity, ranging from 1 for 

low polarity to 5 for high polarity).  Force fields for MARTINI are physics based, using the 

coulombic function electrostatic interactions, and a 12-6 Lennard-Jones potential for nonbonded 

Van der Waals interactions.  Bonded interactions are modeled in a similar way to conventional 

MD using the same form of bond, angle, and dihedral functions. MARTINI was originally used 

with GROMACS, but has been adapted for use in Desmond, GROMOS, and NAMD. 

Because of its simplification of lipid molecules, MARTINI has seen heavy use in the study 

of lipid membrane characterization (Rajagopal & Nangia, 2019) (Zgorski, Pastor, & Lyman, 2019) 

(Zhang, et al., 2019) and membrane proteins (Barton, et al., 2016) (Hedger, Shorthouse, Koldsø, 

& Sansom, 2016).  MARTINI also delivers a noticeable speed up relative to conventional MD, 

which has resulted in its use to characterize protein conformation change (Marrink & Tieleman, 

2013).  

1.2.4 Protein Structure Prediction 

 Protein structure prediction aims to produce a three-dimensional structure of a protein from 

its sequence.  Protein structure prediction can be broadly sorted into three categories: homology 

modeling, threading, and Ab initio modeling. 
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Homology Modeling 

 Homology modeling is a class of approached for protein structure prediction which directly 

takes advantage of previously determined and published protein structures.  Generally, the method 

is to use the sequence of the protein with unknown structure, find a homologous protein which has 

already had its structure solved through experimental means, and then use the solved structure to 

generate a structure for the unknown protein. 

 

Figure 1.10: Generalized Homology Modeling Workflow.  The user starts with a sequence of interest with 
no known structure. A search is performed, usually by means of sequence similarity, to find a homologous 
sequence with a structure that is known.  If a homologous sequence with a known structure is found, it can 
then be used to produce a structure for the starting sequence. 

 Two well-known homology modeling programs are MODELLER and SWISS-MODEL.  

MODELLER is a homology modeling program.  Two things are required by MODELLER; a three-

dimensional PDB file of the solved structures template, and a sequence alignment of the template 

sequence and query sequence, the query sequence being the sequence of the protein whose 

structure is to be determined.  MODELER uses the sequence alignment and fits the query sequence 

to the 3D model while satisfying spatial restraints.  Special restraints are represented as probability 

density functions for Cα-Cα distances, main chain N-O distances, and mainchain-sidechain 

dihedrals.  The probability density function is optimized using a variable target function (Webb & 

Sali, 2016).  SWISS-MODEL is a homology modeling server which implements a pipeline to 

generate its 3d models.  First, a structure template is identified by using BLAST and HHblits, then 

a sequence alignment is made.  From there, a model is build and minimized using SWISS-

MODELs rigid fragment assembly approach. Finally, the model’s quality is assessed using a 
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statistical potential (Waterhouse, et al., 2018) (Bienert, et al., 2017) (Guex, Peitsch, & Schwede, 

2009) (Studer, et al., 2020) (Bertoni, Kiefer, Biasini, Bordoli, & Schwede, (2017). 

Threading and Fold Recognition 

 Threading is another method for protein structure prediction which uses already solved 

protein structures; however, in contrast to conventional Homology modeling, threading uses 

statistical relationships between sequence and structure in the PDB rather than rely on finding a 

homolog.  Threading can allow for the prediction of structures which exist in a homology island, 

that is if no closely related proteins have been solved at the time of predicting the structure.  One 

of the best-known threading methods is RaptorX (Peng & Xu, 2011).  RaptorX utilizes a 

regression-tree-based nonlinear scoring function to determine how similar two protein sequences 

are. This tree uses several rules to determine the probability of a sequence alignment.  These rules 

can relate to mutations scores, solvent accessibility scores, and secondary structure scores.  The 

adaptability of this tree approach allows for different parts of an alignment to be scored by different 

criteria, which helps to overcome the difficulties which arise from have no near homology models 

(Källberg, et al., 2012) (Ma J. , Wang, Zhao, & Xu, 2013) (Ma, Peng, Wang, & Xu, 2012) (Peng 

& Xu, 2011) (Peng & Xu, 2011) (Peng & Xu, 2010).  

Ab initio Modeling 

 Ab initio modeling is the most challenging kind of protein structure prediction.  Ab initio 

modeling aims to predict a three-dimensional protein structure using theoretical principles rather 

than solved structures.  There are several Ab initio modeling techniques, here I will describe four 

prominent methods: I-TASSER, CONFOLD, ROSETTA, and Alpha Fold.  I-TASSER uses 

templates for protein structure and function prediction.  The pipeline for I-TASSER is as follows: 

first predictions of secondary structure are made.  Next, threading by LOMETS is used to produce 

a template.  The template is then broken into fragments, which are then combined with restraints 

from LOMETS to produce many protein structure candidates.  From there the candidates are 

clustered using SPICKER and the cluster centroid is selected.  Finally, a fragment-guided 

molecular dynamics simulation is performed to generate a final structure, and the function of this 

structure is annotated using COACH (Roy, Kucukural, & Zhang, 2010) (Yang, et al., 2015) (Yang 
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& Zhang, I-TASSER server: new development for protein structure and function predictions, 

2015).  CONFOLD is a method for ab initio protein structure modeling which uses predicted 

residue-residue contacts and predicted secondary structures to generate distance, dihedral angle, 

and hydrogen bond restraints. Restraints are then used to build 20 models which are subsequently 

filtered by unsatisfied contacts and beta-sheet quality (Adhikari, Bhattacharya, Cao, & Cheng, 

2015).  ROSETTA is a very large software suite for macromolecular modeling.   Among its 

capabilities is ab initio modeling, which uses a fragment-based assembly approach.  Fragment 

based assembly works on the idea that small protein fragments are restricted to a smaller set of 

conformations than larger fragments, or whole proteins.  In ROSETTA, fragments of 3 and then 9 

residues are used to build fragments-assembly models.  From there energy functions of increasing 

resolution are used until a final structure is produced (Carol A. Rohl, 2004).  Alpha Fold is a deep 

learning approach to protein structure prediction.  Alpha Fold is notable for its exceptional 

performance in the 2020 CASP.  The details of the algorithm have not been released as of this 

writing. 

1.2.5 Quality Assessment 

 Protein structure prediction methods may produce a structure, but that structure should not 

be used carelessly.  It is essential to determine the quality of a predicted structure before using it 

for further applications.  As a single protein may have thousands of proposed candidate models, it 

is desirable to be able to measure the quality of a model quickly and accurately.  This problem has 

led to the development of model quality assessment methods, often abbreviated MQA or QA (we 

will be using QA from here on).   

 QA methods can be categorized in five ways; if they use a single model or use a consensus 

model; if they use full atom, backbone, of Cα representations of the model; if the score if global 

or has local detail; what kind of computational method is used for generating a score; and what 

features are considered. 

Several approaches use only a single input model for quality assessment such as AIDE 

(Mereghetti, 2008), HOMA (Bhattacharya, 2008), ProQ (Wallner & Elofsson, 2007), and SVMod 

(Eramian & al., 2006); other methods use an approach in which several models are compared to 

one another, known as a consensus model approach, such as TASSER-QA (Zhou & Skolnick, 

2008); while other methods use both single model metrics combined with consensus approaches, 
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such as MODCHECK (Sadowski & Jones, 2007), ModFold (McGuffin, 2007), and QMEAN 

(Benkert, 2008). 

Different QA approaches use differing level of structure detail.  Some methods, such as 

AIDE, HOMA, MODCHECK, ProQ, and Qmean consider all of the atoms of a model to determine 

quality, while other methods, including ModFold, consider only the backbone atoms.  Other 

methods use even fewer atoms when determining the quality of a structure, such as TASSER-QA, 

which considers only the α-carbons of a protein model. 

Most scoring methods, including AIDE, HOMA, MODCHECK, ModFold, SVMod, and 

TASSER-QA, give a single score for the entire structure, which is what is most important for 

distinguishing good models from bad.  However, some methods, like ProQ and QMEAN, give 

residue level scores as well, which enables the user to make judgements on different sub-domains 

of a model. 

Finally, many different features of a model can be considered when attempting to 

determine model quality.  These features can be the same sort that MD uses for energy, such as 

bond length which is used by AIDE and HOMA, or more complex characteristics such as 

compactness, which is used by ModFold and ProQ. 

As the popularity of Machine and Deep leaning has increased in recent years, we have also 

seen in increase in the number of QA methods which use these techniques.  One such example is 

DeepQA (Cao, Bhattacharya, Hou, & Cheng, 2016).  DeepQA approached the QA problem from 

a machine learning angle.  DeepQA applies a deep belief network which implements a number of 

features which can be associated with model quality, such as physio-chemical characteristics, 

structure information, and energy.  Deep QA was trained on 3113 native protein structure from the 

PISCES database as well as three models from CASP (CASP8, CASP9, and CASP10) (Cao, 

Bhattacharya, Hou, & Cheng, 2016).  A summary of different QA methods is shown in table 1. 
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Table 1.1: Summary of different approaches and features of some popular Quality Assessment methods.  Table is a recombination of tables found 
in (Kryshtafovych, Fidelis, & Tramontano, 2011) and (Kihara, Chen, & Yang, Quality Assessment of Protein Structure Models, 2009). 

 AIDE HOMA MODCHECK ModFold ProQ QMEAN SVMod 
TASSER-

QA 
Features  

Profile score     X    

Structure similarity of 
fragments from threading hits 

       X 

Structure terms  

Atom clashed, van der Waals X X       

Bond length X X       

Bond angles  X       

Main chain torsion angles X     X X  

Residue/atom-based, contact 
potential 

  X X X X X X 

Solvation potential, burial 
preference of residues/atoms X  X X X X X  

Hydrophobic residue contacts X      X  

Compactness    X X    

Secondary structure content X        

Agreement of predicted 
secondary structure 

X   X X X X  

Ramachandran plot region X        

Methods  
Single Model Vs. Consensus S S S + C S + C S S + C S C 
Full atom/backbone/c-alpha FA/BB FA FA BB FA FA FA CA 

Global Vs. local G G G G GL GL G G 
Computational technique Neural 

network 
combining 
structural 

parameters 

Structure 
Analysis 

Neural network 
combining 

features including 
independent force 

fields 

Neural 
network that 

combines 
multiple 
scores 

Neural 
network based 

on structure 
features 

Multiple 
statistical 
potentials 

SVM 
combining 
multiple 

assessment 
scores 

Structure 
features, 
statistical 
potentials 
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The rest of this thesis is organized as follows: first there will be a discussion of the 

reliability of atomic protein models used to annotate electron microscopy data.  Then, we will 

discuss the application of steered molecular dynamics towards the selection of near native atomic 

models within a diverse candidate model set.  Finally, we will discuss two real applications of 

model fitting to electron microscopy maps. 

1.3 Aims and Objectives 

The overall aim of this PhD work is to characterize the uncertainty of EM derived atomic 

models and develop a potential approach for distinguishing reliable models. 

This can be subdivided into two primary objectives. 

1. Determine the deviation of different modeling methods relative to map resolution: 

1. Root Mean Square Deviation - after refinement of fitted pdb models, calculate the 

RMSD between the initial fitted structure and the different refinement techniques 

to determine relative structure variation. 

2. Cross Correlation - after refinement of fitted pdb models, calculate the cross 

correlation between the different structures to determine relative goodness of fit to 

the experimental data. 

3. Energetics and Scoring Functions - use reciprocal scoring functions to find 

structural improvements or overfitting. 

2. Develop an approach for the detection of high-quality models: 

1. Apply in silico stresses to models of the same protein in different 

conformations.  Use the energetics of these models to filter for quality. 
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 VARIABILITY OF PROTEIN STRUCTURE MODELS 
FROM ELECTRON MICROSCOPY 

Chapter reproduced from a manuscript previously published in the journal Structure in 2017 

2.1 Abstract 

An increasing number of biomolecular structures are solved by electron microscopy (EM). 

However, the quality of structure models determined from EM maps vary substantially. To 

understand to what extent structure models are supported by information embedded in EM maps, 

we used two computational structure refinement methods to examine how much structures can be 

refined using a dataset of 49 maps with accompanying structure models. The extent of structure 

modification as well as the disagreement between refinement models produced by the two 

computational methods scaled inversely with the global and the local map resolutions. A general 

quantitative estimation of deviations of structures for particular map resolutions are provided. Our 

results indicate that the observed discrepancy between the deposited map and the refined models 

is due to the lack of structural information present in EM maps and thus these annotations must be 

used with caution for further applications.  

2.2 Introduction 

Electron microscopy, particularly, cryo-electron microscopy (cryo-EM) is an emerging 

technique in structural biology for determining 3D structures of large biological macromolecules. 

Its notable advantage of solving large macromolecular assemblies is complementary to 

conventional structural biology techniques, such as X-ray crystallography and nuclear magnetic 

resonance, bridging atomic-detailed structures of molecules with a higher level of structure 

information of molecular machinery and interactions in a cell. Recent technical breakthroughs in 

cryo-EM, both in its hardware (Faruqi and Henderson, 2007) and software (Scheres, 2012), have 

enabled determining 3D structures to nearly atomic-level resolutions (Kuhlbrandt, 2014a, 2014b), 

which has further attracted biologists to apply this new technology to their biological systems. 

Cryo-EM, together with other types of EM, has now become a key technique in structural biology. 

The number of structures solved by EM is increasing rapidly, resulting in over 3,600 EM density 
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maps deposited and stored in the EM Data Bank (EMDB) (Velankar et al., 2016), the primary 

repository of EM density maps. 

Although near-atomic resolution structures have been reported frequently in recent years, 

about 90% of released maps are solved at a resolution of 5 A˚ or less (Lawson et al., 2011). 

Typically, a structure model is built partly manually with assistance from some computational 

structure building methods (Esquivel-Rodriguez and Kihara, 2013) and visualization software 

(Pettersen et al., 2004). Homology models are commonly used in this process if a homologous 

protein structure is available as a template for modeling (Yang et al., 2012; Zhu et al., 2010). 

Various types of structure building methods exist, which range from rigid-body docking (structure 

fitting) (Ceulemans and Russell, 2004; Esquivel-Rodriguez and Kihara, 2012; Rossmann, 2000; 

Woetzel et al., 2012), local structure identification (Dror et al., 2007; Jiang et al., 2001), to flexible 

fitting (McGreevy et al., 2014; Wang et al., 2015), to meet the needs of different situations of 

modeling. In the EMDB, even EM maps of a low-resolution are often accompanied with structure 

models. Structure models are fit in EM maps determined at a resolution of as low as 40 A˚ . Even 

among EM maps of 20 A˚ or less, models were built for 6.4% of the maps. Structure models built 

from EM maps were used as the basis of discussion on mechanisms of biological functions of the 

macromolecules, often without careful consideration about the extent to which the modeled 

structure is supported by the EM maps. However, the quality of structure models would vary 

substantially depending on the global and local resolution of EM maps as well as the methods used 

for building structure models. Currently, in the EMDB, the fit of a structure model to an EMDB 

map is validated through visual inspection, and the stereochemistry of a model deposited in the 

PDB is checked in the same way as regular PDB entries; however, standards of validation are still 

yet to be developed (Lawson et al., 2011). The lack of a standardized method for assessing model 

quality brings the reliability of some structure models into question. 

In this work, to investigate to what extent structure models are supported by the electron 

density of the EM maps, we used two structure modeling/refinement methods to determine if 

structure models had an increased fit to their map after refinement. More concretely, for 49 EM 

maps of a wide range of resolutions, we ran two structure fitting/refinement protocols, Molecular 

Dynamics Flexible Fitting (MDFF) (McGreevy et al., 2014, 2016) and Rosetta (Wang et al., 2015), 

starting from the deposited structure models and observed changes of cross-correlation of the 

models to the EM maps and the energy of those structures. These two programs were chosen 
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because they are among the most popular structure modeling and refinement tools used for protein 

structure determination of EM maps. They are capable of refining structures based on sound 

physical principles. The energy of the structures was tracked throughout the refinement to ensure 

that the structure was not undergoing undue stress to over-fitting to the density map. In cases where 

the energy of the structure decreased or stayed the same while the cross-correlation increased, the 

refined structure was considered to be better supported than the original annotation. We observed 

that, for over 60% of the cases tested, structures were further refined from the deposited structures. 

The extent of structure modification scaled inversely with the global and the local resolutions of 

the maps that these structures annotate. That is, the refinement protocols did not move structures 

much if they were derived from high-resolution EM maps, while large movements were observed 

for the models of low-resolution EM maps. More quantitatively, the extent of the structure change 

in terms of the Ca root-mean-square deviation (RMSD) of models after the refinement was roughly 

about 30% or the map resolution. We also observed that the refined models by the two refinement 

protocols do not agree for those with low-resolution maps. The amount of discrepancy of the 

models also inversely correlated with the resolution of their maps. These indicate that the reliability 

of a structure model from an EM map critically depends on the resolution of the map and the 

reliability substantially decreases as the resolution of a map decreases. We conclude therefore that, 

unless the models were derived from high-resolution maps, it is critical that structure models are 

used with caution for further analysis and discussion. It has been discussed that EM maps at lower 

resolutions contain less structure information (Henderson et al., 2012). Different types of 

computational structure modeling methods have been developed to address the different levels of 

structure information contained in maps at various resolutions (Esquivel-Rodriguez and Kihara, 

2013; Villa and Lasker, 2014; Wriggers and Chacon, 2001). In developing a modeling tool, it is 

common to test the tool on maps at different resolutions (Jolley et al., 2008; Singharoy et al., 2016). 

Concerning bias and misinterpretation of densities of EM maps, validation methods have been 

developed for checking each step of the structure modeling process from maps (Falkner and 

Schroder, 2013; Rosenthal and Rubinstein, 2015). Egelman (2008) discussed problems and 

potential errors in structure modeling with EM maps, focusing on cases of high-resolution structure 

fitting to maps. Although the problem of the model reliability from EM maps has been known, 

each of the earlier works addressed this problem on a small number of particular proteins. In 

contrast to the earlier recognition of this problem, the current work shows a comprehensive and 
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general view on the reliability of structure models using a dataset of EM maps determined at a 

wide range of resolutions. Furthermore, the current work provides a general quantitative estimation 

of deviations of structures for particular map resolutions. Given the current situation where an 

increasing number of protein structures are being solved by EM and rapidly accumulated and 

reused, it is crucial that the reliability of structure models in the EMDB is well and widely 

understood.  

2.3 Results 

For a dataset of 49 EMDB entries (Table 1), structure models modified by MDFF or 

Rosetta are examined relative to the deposited structure models in the EMDB along with the EM 

maps, which were the starting structures of the refinement protocols. The 49 maps were selected 

from 688 maps available in the EMDB that were associated with fitted protein structures in the 

PDB. Maps were removed from the initial pool if the fitted structures did not have sufficient 

overlap and cross-correlation. The table lists a dataset of 49 EM maps from EMDB and associated 

protein structure models used in this study. EMDB ID, name of the complex, map resolution, 

molecular mass calculated from the PDB file, PDB ID of the structure model that was fit to the 

map, the author-recommended contour level, and the cross-correlation between the maps and their 

models are provided to the map, which indicated that maps have a large empty region or did not 

contain much structure information and refinement was not expected to work properly. The data 

selection procedure is detailed in the STAR Methods. First we will discuss overall changes of the 

models in terms of the energy of the structure and the cross-correlation to the EM density map. 

Subsequently, the amount of structural deviations is discussed relative to the global and local map 

resolutions. Finally, some illustrative examples are presented. The overall flowchart of the 

analyses performed in this work is illustrated in Figure S1.  
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Table 2.1: The EM map dataset. The table lists a dataset of 49 EM maps from EMDB and associated 
protein structure models used in this study. 

Map 
ID 

Complex Name Resolution 
Mass 

(MDa) 
PDB 
ID 

Contour 
Cross 

Correlation 
1046 GroES-ADP7-GroEL-ATP7 from E.coli 23.5 0.678 1gru 0.029 0.965 
1047 GroEL-ATP from E.coli 14.9 0.621 2c7e 0.084 0.896 
1149 Recombinant protein Acr1 From M.Tuberculosis 16.5 0.109 2byu 0.012 0.8 
1180 GroEL-ATP7-GroES 7.7 0.674 2c7c 0.608 0.842 
1181 GroEL-ADP7-GroES 8.7 0.674 2c7d 1.9 0.849 
1202 GroEL-ADP-gp31 8.2 0.666 2cgt 0.452 0.831 
1494 Saf pilus 17 0.024 3cre 2.95 0.768 
1495 Saf pilus 17 0.024 3crf 1.59 0.915 
1505 DegP dodecamer 28 0.43 2zle 0.013 0.755 
1654 RbcL8-X8 17 0.488 2wvw 3 0.757 
1655 Rubisco assembly intermediate 9 0.488 2wvw 5.6 0.84 
1871 Needle complex from Salmonella typhimurium 8.3 0.189 2y9k 0.06 0.717 
1894 Human alphaB crystallin 9.4 0.387 2ygd 0.004 0.764 
1932 R. sphaeroides CbbX 21 0.153 3zuh 0.005 0.794 
1940 Nicotiana tabacum Rubisco Activase (R294V) 20 0.144 3zw6 0.02 0.721 

1960 Bovine TRiC/CCT in the nucleotide-free (apo) 
state 10.5 0.65 4a0o 1.13 0.845 

1961 bovine TRiC/CCT in the AMP-PNP state 10.7 0.682 4a0v 1.13 0.89 
1962 bovine TRiC/CCT 13.9 0.693 4a0w 1 0.921 
1963 bovine TRiC/CCT in the ADP state 11.3 0.686 4a13 1.08 0.873 
2001 GroEL-ATP14 Rd1-Rd3 8.5 0.618 4aau 0.2 0.7 
2003 GroEL-ATP14 Rd5-Rdopen 8.5 0.618 4ab3 0.2 0.77 
2325 GroEL variant EL43Py capped by GroES 8.9 0.678 3zpz 1.3 0.93 

2327 Non-native RuBisCO substrate protein 
encapsulated in GroEL cavity 15.9 0.678 3zq1 1 0.91 

2365 Bacteriophage MS2 bound to its receptor, the E. 
coli F-pilus 39 1.987 4bp7 1.45 0.815 

2526 MloK1 with cAMP 7 0.118 4chv 2.3 0.964 
2548 Fv antibody domain bound beta-galactosidase 13 0.45 4ckd 0.13 0.946 

2807 rabbit RyR1 in complex with its modulator 
FKBP12 3.8 1.177 3j8h 0.04 0.73 

2856 Dynactin complex from pig brain 4 0.429 5adx 0.088 0.808 

2924 Recombinant human APC/C-Cdh1-Emi1 ternary 
complex 3.6 0.779 4ui9 0.07 0.867 

2984 E. coli beta-galactosidase 2.2 0.371 5a1a 0.05 0.456 
5169 E. coli RNA polymerase 11 0.289 3lu0 11 0.845 

5186 human apoptosome with bound procaspase-9 
CARD 9.5 0.798 3j2t 1.3 0.869 

5258 Lidless D386A Mm-cpn variant 8 0.674 3j02 0.02 0.836 
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Table 2.1 continued 

Map 
ID 

Complex Name Resolution 
Mass 

(MDa) 
PDB 
ID 

Contour 
Cross 

Correlation 
5395 rATcpn-beta in apo state 8.3 0.794 3j1e 5 0.795 
5450 YiiP from Shewanella oneidensis in DOPG lipids 13 0.052 3j 1z 3.33 0.91 
5466 Enterovirus 71 empty capsid 9.2 3.719 3j23 1 0.834 
5607 MecA-ClpC(E280A) 9 0.477 3j3t 1.5 0.866 
5608 MecA-ClpC(E618A) 11 0.477 3j3s 1.5 0.866 
5609 MecA-ClpC (E280A,E618A) with ATP 10 0.477 3j3u 1.5 0.857 
5610 MecA-ClpC(E280A,E618A)with ADP 9.4 0.477 3j3r 1.5 0.878 
5679 Aquaporin-0 bound to Calmodulin 25 0.107 3j41 4.96 0.798 

5776 Rat TRPV1 in complex with DkTx and 
resiniferatoxin 3.8 0.217 3j5q 7 0.678 

5925 MAVS filament 3.64 0.073 3j6j 0.3 0.868 
5995 Escherichia coli beta-galactosidase 3.2 0.371 3j7h 0.0224 0.764 

6272 13-fold average of VP6 trimer from full rotavirus 
reconstruction 2.6 0.108 3j9s 0.0198 0.684 

6337 Vesicular Stomatitis Virus L-Protein 3.8 0.183 5a22 1.2 0.707 

6344 Zebra fish alpha-1 glycine receptor bound with 
strychnine 3.9 0.158 3jad 7 0.693 

6345 Zebra fish alpha-1 glycine receptor bound with 
glycine 3.9 0.158 3jae 6.5 0.7 

6346 Zebra fish alpha-1 glycine receptor bound with 
glycine/ivermectin 3.8 0.16 3jaf 7 0.714 

2.3.1 Changes in Energy and Cross-Correlation 

Figure 1 shows the change observed in the energy and crosscorrelation to their EM maps 

of structure models before and after the refinement protocols. The energy change of a structure, 

namely, the CHARMM potential energy for MDFF and the Rosetta free energy for the Rosetta 

protocol, indicates how well the structure is refined without considering its fit to the EM map. The 

difference of the CHARMM potential energy for MDFF was computed against the initial structure 

at the start of the refinement, i.e., after the initial energy minimization is applied, which removes 

atomic clashes, and the temperature is raised to 300 K. On the other hand, cross-correlation of a 

structure to its EM map indicates how well the electron density of the protein structure model 

agrees with the EM electron density map. If the cross-correlation increases after refinement, it is 

an indication that the refined structure is globally in better agreement with the map data. For MDFF, 

results for refinements for different g-scale values, 0.1, 0.3, 0.5, and 0.7 are shown (Figure 1A). 

The g-scale controls how much the fit to the EM map contributes to the overall potential function 
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used in MDFF (see STAR Methods). Refinements with large g-scale values cause their structure 

to fit more to their map, and the opposite with a small g-scale value. 

 
Figure 2.1: Change in the potential energy and cross-correlation to EM maps of the refined protein 
structure models. The two values were computed after the refinement in comparison with the initial 
structure. dCC, the difference of the cross-correlation; dE, difference of the energy of structure 
models. (a), Results using MDFF with four different g-scale values, 0.1 (filled circles), 0.3 (red 
circles), 0.5 (green triangles), 0.7 (yellow triangles). The energy was evaluated with the 
CHARMM potential energy used in MDFF, excluding the map fitness term. The figure shows 
results for 47 EM maps excluding two virus capsids, EMD-2365 and EMD-5466, which showed 
exceptionally large positive dE (see text). The inset figure includes al 49 maps. (b), results using 
Rosetta. The Rosetta free energy was used. 
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MDFF results (Figure 1A) show that the energy of almost all the models were lowered 

after the refinement. There were two exceptions, both virus capsid structures, EMD-2365 and 

EMD-5466, which showed exceptionally large positive energy after running MDFF (Figure 1A, 

inset). These two EM maps were solved at a relatively low-resolution, 39 and 9.2 A˚ , respectively, 

and the associated crystal structures, which are slightly larger than the EM maps, were fit to the 

maps by rigid-body fitting. Therefore, the structures were compressed by the MDFF runs to better 

fit into the maps, which caused a small positive energy for many atoms in the capsids that 

accumulated into a large positive energy. The results are summarized in Table S1 by classifying 

the cases into four categories, cases where the cross-correlation increased by sacrificing potential 

energy by MDFF (i.e., an increase of cross-correlation, i.e., dCC > 0, with an increase of the energy, 

dE > 0), cases where both energy and cross-correlation became worse (i.e., dE > 0 and dCC < 0), 

cases where an energy decrease was accompanied with an increase of cross-correlation (i.e., dE < 

0 and dCC > 0), and cases where an energy decrease occurred by reducing the global fit to the EM 

map (i.e., dE < 0 and dCC < 0). With regard to cross-correlation, an increase is seen for more than 

60% of the proteins after their refinement for all the g-scale values used. Naturally, in general an 

increase of cross-correlation is observed when a large g-scale value is used. When the g scale was 

set to 0.1, cross-correlation increased for 32 cases, while such cases increased to 42 and 37 for g 

scales of both 0.5 and 0.7. Turning our attention to the change of potential energy of structures, 

lowering of energy (dE < 0) was observed for all but two of the cases, EMD-2365 and EMD-5466. 

Lowering of energy was accompanied by the decrease cross-correlation for 17 cases with a g scale 

of 0.1, which decreased as a larger g scale was used. Finally, both lowering energy (dE < 0) and 

increase of cross-correlation (dCC > 0) was observed for more than 60% of the cases, for 61.2% 

(30/49) with a g scale of 0.1, and the largest at 81.6% (40/49) with a g scale of 0.5. The results are 

essentially the same with the Rosetta refinement protocol; improvement in both Rosetta free 

energy and cross-correlation was observed Figure 1. Change in the Potential Energy and Cross-

Correlation to EM Maps of the Refined Protein Structure Models The two values were computed 

after the refinement in comparison with the initial structure. dCC, the difference of the cross-

correlation; dE, difference of the energy of structure models. (A) Results using MDFF with four 

different g-scale values, 0.1 (filled circles), 0.3 (red circles), 0.5 (green triangles), and 0.7 (yellow 

triangles). The energy was evaluated with the CHARMM potential energy used in MDFF, 

excluding the map fitness term. The figure shows results for 47 EM maps excluding two virus 
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capsids, EMDB: 2365 and EMDB: 5466, which showed exceptionally large positive dE values 

(see text). The inset figure includes all 49 maps. (B) Results using Rosetta. The Rosetta free energy 

was used for 69.4% (34/49) of the cases (Figure 1B). In both Figures 1A and 1B, dCC did not 

show clear correlation to the change of the structure energy, mainly because each data point in the 

plots is from a different protein structure. Models that underwent the MDFF protocol were cross-

evaluated with the Rosetta free energy in Table S2 and vice versa in Table S3. As shown in Table 

S2, for the majority of the cases the MDFF protocol also lowered their Rosetta energy. Similarly, 

for almost all of the cases, the Rosetta protocol also lowered the CHARMM energy (Table S3). 

In addition to the CHARMM potential energy and the Rosetta free energy, we further 

examined structural change by the refinements with the MolProbity Score (MPScore) (Chen et al., 

2010) (Figure 2 and Table 2). MPScore is a structure validation score used to evaluate the quality 

of a protein structure solved by experiments typically before submission to public databases. 

MPScore considers atom clashes, outliers of rotamers, and main-chain dihedral angles, and 

exhibits a high value if a structure has many such unfavorable features. Thus, if the local quality 

of a structure was improved by a refinement protocol, its MPScore decreases. We used MPScore 

as an additional independent structure evaluation, which was not the target of optimization by the 

two refinement methods. When MDFF was used, the MPScore improved (i.e., decreased) for 

almost all the models, except for a couple of cases, regardless of the g-scale value used (Figure 2A 

and Table 2). Of the structures, 61.2% (30/49 with 0.1 g scale) to 81.6% (40/49 with a 0.5 g scale) 

showed improvement in both MPScore and cross-correlation. In the case of Rosetta, an MPScore 

improvement was observed for 36 structures, among which 25 were associated with an increase of 

cross-correlation (Figure 2B). With the Rosetta protocol, more models (13) had a deterioration in 

their MPScores than with MDFF. 
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Figure 2.2: Change in MolProbity score (MPScore) and cross correlation between initial models and final 
refined models. (a), MDFF refinement results; (b), models refined with Rosetta. 
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Table 2.2: Classification of refined structure models using the MolProbity score. 49 structure models are 
classified in terms of the direction of the change in term of MolProbity score and cross-correlation to its 
EM maps. dM, the difference of the MolProbity score of a structure model after the refinement relative to 
the initial structure; dCC, the difference of cross-correlation of a structure model to its EM map after the 
refinement relative to the initial structure. The numbers in the parentheses for MDFF are the g-scale value 
used. 

Method dM>0 & dCC>0 dM>0 & dCC<0 dM<0 & dCC>0 dM<0 & dCC<0 

MDFF 

(0.1) 

2 0 30 17 

MDFF 

(0.3) 

3 1 35 10 

MDFF 

(0.5) 

2 2 40 5 

MDFF 

(0.7) 

0 3 37 9 

Rosetta 13 0 25 11 

 

To summarize this section, the majority of atomic-detailed structures deposited in the 

EMDB can have a better fit to their EM maps, and almost all among such cases also showed better 

structural energy. These results are consistent for three scores/energies: CHARMM, Rosetta 

energy, and MPScore. In particular, it is worth mentioning that the consistent trend was observed 

with an independent scoring function, MPScore. 

2.3.2 Structure change relative to global map resolution 

Next, we examined how much structures were changed by the refinement protocols in 

consideration with their associated EM map resolution. Fig. 3a shows Cα RMSD between 

structures before and after the refinement using MDFF with different g-scale values relative to the 

EM map resolution. Fig 3b shows results when Rosetta was used. In all of the plots, an inverse 

correlation was observed between map resolution and model-refinement RMSD. Structures tend 

to move more by MDFF when a larger g-scale value is used. It is apparent that the extent of the 

structure modification became larger as the map resolution decreases (i.e. larger resolution values 

on the x-axis). Results for MDFF with a g-scale of 0.5 fit to a weighted linear regression of RMSD 

= 0.528 + 0.247*(map resolution) with an r2 of 0.541. Since the distribution shows 
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heteroscedasticity (i.e. a fan-like distribution where the variance of RMSD becomes larger as the 

map resolution values increases), the reciprocal predicted RMSD value was used as weights. 

According to this regression line, estimated structural deviation (RMSD) for a model is about 26–

31% (e.g. for a resolution of 8.0 Å, estimated RMSD is 2.50 Å, which is 31.3% of 8.0 Å) of the 

map’s resolution. For the Rosetta refinement (Fig. 3b), a consistent relationship between the map 

resolution and the extent of model modification was observed. Compared with the MDFF 

refinement, Rosetta tended to make a larger modification than MDFF with a 0.5 g-scale. The 

RMSD relative to the map resolution fits to a weighted regression of −0.046 + 0.343 * (map 

resolution) with r2 of 0.504. The regression line is shown in Fig. 3b. According to this regression, 

the modification (RMSD) by Rosetta is roughly 33% of the map resolution. 
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Figure 2.3: RMSD between the initial fitted protein model and the final structure after refinement against 
the resolution of their respective maps. (a), Results for MDFF with four different g-scale values, 0.1 (filled 
circles), 0.3 (red circles), 0.5 (green triangles), 0.7 (yellow triangles). The line shown is a weighted 
regression line for a g-scale of 0.5: RMSD = 0.528 + 0.247 *(map resolution). The reciprocal predicted 
value was used for weights. r2 is 0.541. (b), results for Rosetta. A weighted regression line using the 
reciprocal predicted value is shown: RMSD = −0.046 + 0.343*(map resolution). r2 is 0.504. To compute 
the regression lines, redundant entries of the same proteins with a similar map resolution and RMSD values 
were excluded. Those excluded were (GroEL: 2c7d, 2cgt, 4aau, 4ab3, 3zpz; α-1 glycine receptor: 3jad, 3jae; 
MacA-ClpC complex: 3j3r, 3j3s, 3j3u; β-galactosidase: 3j7h; TriC: 4a0v). 
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We further compared refined structures by MDFF and Rosetta to determine the discrepancy 

between the end results of these refinement protocols. Figure 4a shows RMSD between the refined 

structures produced by these two protocols. It shows that the discrepancy (i.e. RMSD) scaled 

inversely with map resolution, providing a similar picture as Figure 4. Four different symbols 

indicate comparison against MDFF results with the four different g-scale values. The overall trend 

does not change by using different g-scale values, but when examined closely, the discrepancy of 

MDFF-refined models against Rosetta-refined models are largest when a g-scale of 0.1 was used 

and smallest when 0.7 was used for the g-scale (Fig. 4b, Table S4 in Supplemental Information). 

This is reasonable because a larger g-scale makes the model refinement by MDFF more biased to 

the EM map, and influence of the different potential functions for Rosetta and MDFF is minimized. 

To summarize Figure 3 and Figure 4a, as a map resolution lowers, the two structure refinement 

protocols modify an initial structure with a larger extent, but the deviation of the resulting models 

by the two methods also increases. This result clearly indicates that maps with a low resolution do 

not have sufficient structure information to lead to a single model solution.  
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Figure 2.4: RMSD between the refined models using MDFF and Rosetta. (a), RMSD between Rosetta and 
MDFF refined models relative to the map resolutions. For MDFF, the four different g-scales were used. 
The color code is the same as Figs. 1 and and3.3. (b), RMSD between refined models by Rosetta and refined 
models by MDFF with a g-scale of 0.5 relative to the cases when a g-scale of 0.1 was used for MDFF. 
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2.3.3 Comparison with other crystal structures 

In Figure 5, we compared refined models with other crystal structures of the same protein. 

Two contrasting examples of EM maps and their associated structure models were used. The first 

example shown in Figure 5a and 5b is an EM map of beta-galactosidase, EMD-5955 (PDB ID: 

3j7h) in comparison with five other crystal structures (see the figure caption). This structure was 

solved at a high resolution, 3.2 Å. In this case, the energy difference of the refined model relative 

to the initial structure in terms of the CHARMM (Fig. 5a) and Rosetta (Fig. 5b) (the empty circle) 

energies was in the same range as the other crystal structures. The RMSD of the refined model 

from the initial structure (3j7h) was 0.65 Å for MDFF and 0.53 for Rosetta, slightly smaller than 

the RMSD of other crystal structures to 3j7h, which ranged from 0.69 to 0.75 Å. In the next 

example is a GroE structure, 1gru, associated with an EM map determined at a low resolution, 

23.5 Å (EMD-1046). This structure, 1gru, was a result of a rigid-body fitting of a crystal structure, 

1aon, to the EM map. Since the map was determined at a low resolution, there was relatively more 

room for the refinement protocols to move the structure, which resulted in a larger RMSD of 4.19 

Å for MDFF (Fig. 5c) and 5.04 Å for Rosetta (Fig. 5d) to the initial structure than the other five 

crystal structures, whose RMSD values ranged from 2.68 to 2.79 Å. This is consistent with the 

other EM maps in our analysis (Fig. 3). In terms of energy, the absolute energy values of the 

refined models by MDFF and Rosetta were in the same range as the other crystal structures (Fig. 

5c and 5d). 
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Figure 2.5: Comparison with other crystal structures. For two examples of EM maps with associated PDB 
entry, RMSD and the energy difference with other crystal structures were computed. (a), (b), beta-
galactosidase, EMD-5955 (PDB ID: 3j7h), solved at 3.2 Å. (a) shows the CHARMM energy difference; 
and (b) shows the difference in term of the Rosetta energy with RMSD between 3j7h and five other crystal 
structures of the same protein, 1f4h, 1hn1, 1jz2, 3iaq, and 3t2o (solid circles). The open circle is the refined 
structure by (a) MDFF (g-scale 0.5) and (b) Rosetta, compared with 3j7h. For the CHARMM energy, 
structures were evaluated at the start of the refinement, after the initial energy minimization was applied 
and the temperature is raised to 300K, in the same way as the earlier figures. (c), (d), GroEL, EMD-1046 
(PDB ID: 1gru), solved at 23.5 Å. Crystal structures used were 1aon, 1pcq, 1pf9, 1svt, and 1sx4 (solid 
circles). 

2.3.4 Residue displacement relative to local map resolution 

We have also examined the extent of displacement of each residue by the refinement 

protocols relative to the local map resolution (Fig. 6). Local map resolution was computed using 

the Resmap program (Kucukelbir et al., 2014), which provides a local resolution to each grid point 

in a map. In this analysis, the Cα atom of each residue in the initial structure was assigned to the 

nearest grid point in the EM map, and the displacement of the Cα atom by the refinement protocols 

was recorded. Then, the displacements of Cα atoms for grid positions were averaged over all grid 
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points with the same local resolution in the map. Data for a resolution was discarded if fewer than 

10 Cα atoms belonged to the resolution in the map. 

 

Figure 2.6: Distances of Cα atoms moved by the refinement relative to the local resolution maps. Local 
map resolution was computed with ResMap. For an EM map, the displacements of Cα atoms for grid 
positions with the same local resolution were averaged. Data for a resolution was discarded if less than 10 
Cα atoms belonged to the resolution. (a), Results for MDFF with four different g-scale values, 0.1 (filled 
circles), 0.3 (red circles), 0.5 (green triangles), 0.7 (yellow triangles). The line shown is a weighted 
regression line for a g-scale of 0.5: Cα displacement = 0.124 + 0.446 *(local map resolution). The reciprocal 
predicted value was used for weights. r2 is 0.597. (b), results for Rosetta. A weighted regression line using 
the reciprocal predicted value is shown: RMSD = −0.03 + 0.533*(map resolution). r2 is 0.567. 
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Results in Figure 6 show a similar trend as we observed for the correlation between the 

global RMSD and the overall map resolution in Figure 3. Fig. 6a is for the MDFF protocol with 

the four g-scale values while the Rosetta results are shown in Fig. 6b. The extent of the residue 

displacements inversely correlated with the local map resolution (Fig. 6a and 6b) and a larger 

displacement was observed with a larger g-scale value for MDFF (Fig. 6a). The Cα displacement 

relative to the local map resolution fits to a weighted regression of 0.124 + 0.446 * (local map 

resolution) with r2  of 0.597 for MDFF with a g-scale of 0.5 (Fig. 6a) while the results for Rosetta 

fit to −0.03 + 0.533*(map resolution) with r2  of 0.567 (Fig. 6b). The slopes observed in the 

regression lines for the local resolution were larger than those for the global map resolution in 

Figure 3. Consistent with the global RMSD analysis in Figure 3, Rosetta moved residues in models 

more than MDFF. Following the regression lines, the estimated deviation of a residue in a model 

is roughly 46% and 53% of the map’s local resolution for MDFF with a g-scale of 0.4 and Rosetta, 

respectively. 

2.3.5 Examples of refined models 

We discuss examples of refined structures by MDFF and Rosetta for models constructed 

for maps of four different resolutions. The first example (Fig. 7a) is L-protein of vesicular 

stomatitis virus determined from an EM map of 3.8 Å (EMDB ID: 6337, PDB ID: 5a22) (Liang et 

al., 2015). This model was manually constructed using programs O (Jones et al., 1991) and Coot 

(Emsley et al., 2010) by tracing the main-chain and placing helix segments guided by known 

homologous structures and secondary structure prediction, which is finally followed by loop and 

side-chain refinement. For this model, MDFF with g-scale 0.5 and Rosetta modified the structure 

to the extent of 0.944 Å and 0.762 Å RMSD from the deposited model, respectively. Slight 

deviation at loop regions was observed but no substantial structural changes occurred by the 

refinement.  
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Figure 2.7: Examples of structure refinement. The overlay of selected initial and refined structures produced 
by MDFF (using a g-scale of 0.5) and Rosetta are colored cyan, blue, and red respectively. Density maps 
for these structures are shown as gray wire frames. (a), The 3.8 Å resolution map of L-protein of vesicular 
stomatitis virus (EMDB ID: 6337) and its atomic model (PDB ID: 5a22) (left), as well as the atomic model 
shown without the wire frame map for visual clarity (right). (b), The 10.0 Å resolution map, EMD-5609, 
and its structure model (PDB ID: 3j3u) of MecA-ClpC complex (left). The structures with the A chain 
shown in color, while the rest of the complex is shown in white (center). Selected domains are isolated and 
magnified for visual clarity (right). The residue range of these domains are included as insets near each 
image. (c), The 16.5 Å resolution map (EMDB: 1149) and its structure model (PDB ID: 2byu) of small heat 
shock protein Arc 1 (left). An isolated subunit of the structure magnified for visual clarity (center). A 180-
degree rotated view of the isolated subunit (right). (d), A 25 Å resolution map (EMDB: 5649) and its 
structure model (PDB ID: 3j41) of aquaporin-O/calmodulin complex (left). Map and structure of the core 
region of the complex with lobe domains and front half of core removed for ease of viewing (top center). 
A rotated view of the core domain (top right). Magnification of a single lobe calmodulin domain with core 
domain removed (bottom center) and a rotated view of the calmodulin domain (bottom right). Interaction 
with the calmodulin domain with two helices (chain C, D: 225–241) (shown in yellow, light blue, and pink 
for the original structure model, the model from MDFF, and the Rosetta model, respectively) are 
highlighted in far right. 

In the next example, a structure model of MecA-ClpC complex solved from an EM map 

of 10.0 Å resolution is shown (EMDB ID: 5609; PDB ID: 3j3u) (Liu et al., 2013). The model is 

based on a crystal structure of this complex, where some loops were built using Modeller (Sali and 

Blundell, 1993). The model was subsequently fit to the map with MDFF. By our refinement, 

MDFF with g-scale 0.5 produced a refined model of an RMSD of 2.484 Å from the initial structure, 

similarly Rosetta produced the model that deviated by 2.196 Å RMSD. As shown in Figure 7b, in 

addition to larger deviation of loop regions, modification of helical (e.g. residue 343 to 484) and 

β-sheet regions (e.g. residue 738 to 807) are clearly observed. 
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In the third example, a model of a dodecameric structure of the small heat shock protein 

Arc1 determined with an EM map of a 16.5 Å resolution is shown (EMDB ID: 1149; PDB ID: 

2byu) (Kennaway et al., 2005). The map was solved by negative staining. This model was built by 

rigid body fitting taking symmetry into account. MDFF with g-scale 0.5 and Rosetta moved the 

overall structure by 5.835 Å and 4.349 Å, respectively. As evident from the figure (Fig. 7c), the 

whole subunits shifted relative to the map, indicating that the initial model only contained 

approximate subunit arrangement information of the complex. 

When the map resolution is even lower, as illustrated in the final example, a model for 

aquaporin-O/calmodulin complex (EMDB ID: 5679; PDB ID: 3j41) solved from a 25 Å negative 

stain EM map (Reichow et al., 2013), the refinement caused large domain modification. The 

deposited model was constructed using a crystal structure of the transmembrane domain as a base, 

on which the rest of the structure was added through several steps of manual building of helices 

and loops. The lobe calmodulin domain saw compression of secondary structure elements into the 

density map and the transmembrane domain showed substantial rearrangement of orientation of 

helices even at the core of the complex. In both MDFF and Rosetta refined models, the calmodulin 

domain maintained its interaction with two helices from aquaporin-O as shown in the far right 

panel in Fig. 7d. The RMSD between the refined model and the initial model was 7.197 Å and 

7.625 Å by MDFF and Rosetta, respectively. 

2.4 Discussion 

Here we used two popular EM structure fitting methods, MDFF and Rosetta, to investigate 

how well structure models derived from EM maps are supported by those maps. We refined 

structure models deposited in EMDB further using the two methods independently, and RMSD 

between structures before and after the refinement as well as discrepancy between resulting 

structures by the two methods were examined. It turned out that for both methods more than 60% 

of the cases structures can be refined to have a higher cross-correlation to associated EM maps, 

almost all of which were with a decrease of the energy of the structures. The extent of the observed 

structural change by the structural refinement increased as map’s resolution declined, indeed it 

scaled inversely to map resolutions. According to the weighted regression lines that correlate 

structural change (RMSD) and map resolutions, model structures changed up to an RMSD of 

roughly 30% of the map resolution. A similar trend of structural change was observed relative to 
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local map resolution, too. As the discrepancy of refined models by MDFF and Rosetta also scaled 

inversely to map resolution, it is suggested that the observed structural changes by the 

refinement methods are due to the lack of structural information in EM maps but not because the 

deposited structures missed the optimal solution. 

Recently, the Schulten group has proposed two structure modeling protocols for a high-

resolution EM map using MDFF (Singharoy et al., 2016). The main idea behind the protocols is 

to start running MDFF with a blurred EM map so that the structure can explore a large 

conformation space avoiding local energy minima and then to gradually change the resolution of 

the map higher back to its original (high) resolution. The new procedures were tested on two actual 

high-resolution EM maps determined at 3.2 Å and 3.4 Å, one for beta galactosidase and another 

one for TRPV1 respectively. The new protocols would change the results for high resolution maps 

slightly if used in this study, but the overall trend would not change because the new protocols are 

designed for high resolution maps of higher than 4–5 Å and our dataset contains maps determined 

at a wide range of resolutions. Actually, our results using the standard MDFF and Rosetta on the 

3.2 Å map of beta galactosidase (EMD-5955) are consistent with their results. RMSD values of 

our results were 0.65 Å and 0.53 Å with the standard MDFF and Rosetta, respectively, while the 

two new protocols obtained 0.7 Å and 0.9 Å (Table 1 in their paper). It is also interesting that their 

analysis on the root mean square fluctuation of MDFF-refined models relative to the local 

resolution of a map (Figure 4 in their paper) shows a similar trend to the residue displacement 

relative to the local map resolution, which we showed in Figure 6. 

A structure model is built for an EM map not only from the electron density information 

in the map but also in consideration of other biological information of the proteins, such as known 

structures of homologous proteins and results of biochemical assays. Thus, a deposited structure 

model for an EM map would be the result of best effort in considering various sources of 

information of the protein with the EM maps as a piece of information. Nevertheless, it is advised 

that map resolution be critically considered when one uses EM-derived structures for further 

analysis; be that validation of a structure prediction or refinement methodology, the structure based 

design of a drug-like molecule, or the analysis of the biochemical or energetic character of these 

structures. Considering that an increasing number of structures are solved by EM and that EMDB 

is becoming a valuable source of biomolecular structural analysis, it is important that users of 

structures determined by EM are made well aware of the limitations of structure models. One 
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possible solution would be for the EMDB to include the local resolution information of the map 

in the structure analysis report called Visual Analysis, which is associated with each EM map entry 

in EMDB. It is so important that the local resolution information is linked to the associated PDB 

entry of the map, either in the wwPDB EM Map/Model Validation Report, which is provided for 

each entry in PDB, or even in the PDB file itself in an explicit way, for example, by providing 

resolution information for each atom in a structure model analogous to the B-factor of X-ray 

crystallography. 
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 USING STEERED MOLECULAR DYNAMIC TENSION 
FOR ASSESSING QUALITY OF COMPUTATIONAL PROTEIN 

STRUCTURE MODELS 

Chapter reproduced from a manuscript previously published in the journal Journal of 
Computational Chemistry in 2022 

3.1 Abstract 

The native structures of proteins, except for notable exceptions of intrinsically disordered 

proteins, in general take their most stable conformation in the physiological condition to maintain 

their structural framework so that their biological function can be properly carried out. 

Experimentally, the stability of a protein can be measured by several means, among which the 

pulling experiment using the atomic force microscope (AFM) stands as a unique method. AFM 

directly measures the resistance from unfolding, which can be quantified from the observed force-

extension profile. It has been shown that key features observed in an AFM pulling experiment can 

be well reproduced by computational molecular dynamics simulations. Here, we applied 

computational pulling for estimating the accuracy of computational protein structure models under 

the hypothesis that the structural stability would positively correlated with the accuracy, i.e. the 

closeness to the native, of a model. We used in total 4,929 structure models for 24 target proteins 

from the Critical Assessment of Techniques of Structure Prediction (CASP) and investigated if the 

magnitude of the break force, i.e. the force required to rearrange the model’s structure, from the 

force profile was sufficient information for selecting near-native models. We found that near-native 

models can be successfully selected by examining their break forces suggesting that high break 

force indeed indicates high stability of models. On the other hand, there were also near-native 

models that had relatively low peak forces. The mechanisms of the stability exhibited by the break 

forces were explored and discussed. 

3.2 Introduction 

It is generally understood that the native structure of a protein adopts the most 

thermodynamically stable fold in the protein’s conformation space (Anfinsen, 1973) except for 

some notable examples including of intrinsic disordered proteins and prions (Pan et al., 1993). An 
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implication of this postulation, which is called the thermodynamic hypothesis, is that the 

thermodynamically stable structures of proteins are dictated by the amino acid sequence under 

physiological conditions, leading to the development of methods for protein structure prediction 

from amino acid sequence. In structure prediction, a method often generates tens to thousands of 

possible conformations for a single protein sequence. This required the development of a sub-field 

of structure prediction, which is known as protein quality assessment (QA) (Kihara et al., 2009). 

QA is aimed at predicting the accuracy of computational structure models or rank models in a 

model pool based on their expected accuracy. Strategies of QA include application of statistical 

and physical potential functions (Uziela et al., 2016)(Manavalan & Lee, 2017)(Luthy et al., 1992), 

evaluating consistency to stereochemistry of models to known structures (Kim & Kihara, 

2014)(Laskowski et al., 1993), consistency of models with predicted local structures and 

alignments to known structures (Chen & Kihara, 2014)(Wallner & Elofsson, 2006), consensus 

with alternative models (Cao et al., 2015)(Wang et al., 2011), and machine learning approaches 

that combine various structural features of models (Cao et al., 2017)(Uziela et al., 2017)(Shin et 

al., 2017)(Yang et al., 2010). 

 Here, we evaluated computational protein structure models by directly measuring their 

stability in virtual pulling experiment of protein models. We used Steered Molecular Dynamics 

(SMD), which mimics pulling experiments with Atomic Force Microscopy (AFM). AFM 

conventionally scans a sample by a probe and can measure the force between the probe and the 

sample surface or can be applied to image the sample shape (Hersam & Chung et al., 2010). With 

regard to proteins, AFM has been used to measure the binding force between a protein and a ligand 

(Li et al., 2006), to characterize enzyme activity (Arredondo et al., 2018), to study unfolding 

pathways (Bujalowski & Oberhauser, 2013)(Carrion-Vazquez et al., 1999)(Rounsevell et al., 2004) 

and mechanical stability of proteins(Valbuena et al., 2009). Early applications of SMD used to 

mimic AFM on biological systems were performed by the Schulten group to study the unbinding 

of the avidin-biotin complex (Izrailev et al., 1997) and the unfolding pathway of titin IG 

domains(Lu et al., 1998), which showed good agreement with contemporary experiments using 

AFM (Rief et al., 1997). Recently, simulated AFM was applied to investigate unfolding of the cold 

shock protein B (Csp) (Schonfelder et al., 2016) and the Src SH3 domain (Zhuravlev et al., 2016).  

SMD has also been used to probe mechanical resistance of peptide-receptor interactions29. 
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In this study we hypothesized that, under MD-simulated stress, models with a high 

structural similarity to their native conformation would be more resistant to unfolding than models 

with more inaccurate folds. Using a set of computational models submitted to the Critical 

Assessment of Techniques for protein Structure Prediction (CASP) (Moult et al., 2014)(Moult et 

al., 2016)(Moult et al., 2018), a community-wide experiment of protein structure prediction, we 

investigated if models that are close to the native would be selected by examining the peak of the 

forces measured in the simulated pulling experiment. We found that near-native models can be 

successfully selected by examining the magnitude of their break forces, that is the force required 

to rearrange the structure, suggesting that high break forces indeed indicates high stability of 

models. On the other hand, there were also models that were similarly close to the native yet had 

relatively lower break forces. By comparing these two groups, it was determined that among near-

native models, the force required for structural rearrangement was dependent on three primary 

factors; bonded interactions, electrostatic interactions, and solvent interactions. 

3.3 Materials and Methods 

3.3.1 Data Set 

We used the submitted prediction models for CASP10, 11, and 12, which are available at 

the CASP website (Taylor et al., 2014)(Kinch et al., 2016)(Abriata et al., 2018). The files were 

available to download at https://predictioncenter.org for CASP10 files, and at the corresponding 

locations for targets from CASP 11 and 12. From the CASP data, target sets were selected for use 

if the sets included models with GDT-TS (global distance test total score) (Zemla, 2003) below 

50.0 and above 85.0. GDT-TS computes the average of the percentage of C atoms in a model 

that are modelled within 1.0, 2.0, 4.0, and 8.0 Å and ranges from 0 to 100.  After filtering by GDT-

TS scores, we further removed any target set which were either part of a larger complex or were 

associated with lipid molecules, as the stabilizing effects of either a binding partner or lipid 

environment would not be present in the simulation. Any models with disulfide bonds were 

removed, as the molecular dynamics would not break these disulfide bonds and would rapidly 

become unphysical. We also checked knotted proteins (Sulkowska et al., 2008) by comparing with 

the KnotProt 2.0 database (Dabrowski-Tumanski, et al., 2019) in the intention of removing it from 

the dataset. The only knotted proteins found was T0826 (PDB: 5fgn), a slipknot type knot protein. 
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However, T0826 was not considered for our dataset because the decoy set did not include high 

accurate models. The max GDT_TS of 63.46, which was below our 85.0 cut off. 

Filtering at this point left us with 24 target sets with a total of 4,929 models to test. The 

average number of models for a target was 205.38.  The average minimum, maximum, and average 

GDT_TS of models for a target were, 15.84, 92.17, and 75.48, respectively.  The distribution of 

models across GDT_TS ranges for each target is shown in Table 1. GDT-TS. values of models 

were taken from the tables that associated with the model files from the CASP website. 

Table 3.1: The dataset of protein structure models. 

Target PDB Length Total 100-80 80-60 60-40 40-20 >20 
T0644 4fr9 158 549 156 (28.4) 208 (37.9) 24 (4.4) 118 (21.5) 43 (7.8) 
T0650 5fmz 333 241 103 (42.7) 71 (29.5) 40 (16.6) 17 (7.1) 10 (4.1) 
T0659 4esn 89 253 193 (76.3) 10 (4.0) 6 (2.4) 42 (16.6) 2 (0.8) 
T0689 4fvs 225 240 158 (65.8) 23 (9.6) 1 (0.4) 28 (11.7) 30 (12.5) 
T0700 4hfx 76 585 106 (18.1) 174 (29.7) 288 (49.2) 17 (2.9) 0 (0.0) 
T0709 6mm4 33 552 439 (79.5) 41 (7.4) 64 (11.6) 8 (1.4) 0 (0.0) 
T0711 2m7t 33 565 294 (52.0) 146 (25.8) 79 (14.0) 46 (8.1) 0 (0.0) 
T0712 4gbs 203 248 162 (65.3) 26 (10.5) 16 (6.5) 0 (0.0) 44 (17.7) 
T0714 2lvc 88 271 165 (60.9) 82 (30.3) 18 (6.6) 5 (1.8) 1 (0.4) 
T0716 2ly9 70 276 237 (85.9) 26 (9.4) 13 (4.7) 0 (0.0) 0 (0.0) 
T0731 2lz1 78 259 196 (75.7) 30 (11.6) 19 (7.3) 11 (4.2) 3 (1.2) 
T0738 4is2 239 264 195 (73.9) 48 (18.2) 1 (0.4) 19 (7.2) 1 (0.4) 
T0749 4gl3 429 254 194 (76.4) 8 (3.1) 0 (0.0) 16 (6.3) 36 (14.2) 
T0752 4gb5 148 262 67 (25.6) 163 (62.2) 12 (4.6) 19 (7.3) 1 (0.4) 
T0755 4h1x 248 240 9 (3.8) 9 (3.8) 52 (21.7) 152 (63.3) 18 (7.5) 
T0757 4gak 243 236 31 (13.1) 165 (69.9) 22 (9.3) 10 (4.2) 8 (3.4) 
T0762 4q5t 272 178 121 (68.0) 46 (25.8) 8 (4.5) 1 (0.6) 2 (1.1) 
T0766 4q52 127 181 128 (70.7) 34 (18.8) 16 (8.8) 0 (0.0) 3 (1.7) 
T0768 4oju 163 186 7 (3.8) 56 (30.1) 113 (60.8) 8 (4.3) 2 (1.1) 
T0773 2n2u 66 544 104 (19.1) 197 (36.2) 132 (24.3) 107 (19.7) 4 (0.7) 
T0797 4ojk 32 469 278 (59.3) 133 (28.4) 45 (9.6) 13 (2.8) 0 (0.0) 
T0798 4ojk 189 422 386 (91.5) 9 (2.1) 8 (1.9) 10 (2.4) 9 (2.1) 
T0801 4piw 367 188 129 (68.6) 42 (22.3) 10 (5.3) 5 (2.7) 2 (1.1) 
T0811 - a) 180 183 158 (86.3) 18 (9.8) 0 (0.0) 5 (2.7) 2 (1.1) 
T0815 4u13 106 177 132 (74.6) 42 (23.7) 0 (0.0) 1 (0.6) 2 (1.1) 
T0861 5j5v 324 181 143 (79.0) 15 (8.3) 3 (1.7) 8 (4.4) 12 (6.6) 
T0865 2n64 55 175 11 (6.3) 65 (37.1) 77 (44.0) 21 (12.0) 1 (0.6) 
T0891 4ymp 125 172 124 (72.1) 24 (14.0) 8 (4.7) 4 (2.3) 12 (7.0 
T0903 5a7d 368 182 76 (41.8) 50 (27.5) 17 (9.3) 24 (13.2) 15 (8.2) 

The model sets were taken from CASP 10-12. The number of models was counted for five GDT_TS ranges, 100 to 80, 80-60, 60-
40, 40-20, and less than 20.  The percentage of the total is shown in parentheses. a), The PDB entry ID is not available for this 
target. GDT_TS values of all the models from all the targets were taken from the data file that associated with the model structure 
files downloaded from the CASP website. 
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For each model, we produced two additional variant models with identical backbone 

structure but different sequences. These different sequence models consisted of one in which all 

residues were converted to alanine, and one where the sequence was reversed.  This was done by 

aligning an all alanine and a reversed sequence with the original model’s sequence, and then 

producing a structure using MODELLER (Webb & Sali, 2017). The purpose of these additional 

models was to introduce a sequence variable to the sequence-structure relationship. Converting the 

sequence of each protein to all alanine removed the specific sequence characteristics and unique 

sidechain interactions that contributed to the energetic profile of the fold. Reversing the sequence 

was for the same purpose but retaining the same set of atoms and total mass as the original model. 

3.3.2 Pulling a structure model using Molecular Dynamics 

All molecular dynamics (MD) simulations were carried out using NAMD(Philips et al., 

2005).  The MD protocol consisted of four phases; first, a psf file that contains atom bonds and 

angle information of a target protein structure was generated using VMD’s autopsf function. and 

the models were then solvated with TRIP3P water molecules using the VMD autopsf plug-in, 

solvate(Humphrey et al., 1996). Second, the models were minimized using a step size of 1 femto 

seconds (fs) for 100 pico seconds (ps) to remove atomic clashes. Subsequently, the models were 

equilibrated with the temperature increasing from 10 to 300 Kelvin over 30 ps and then further 

equilibrated for 0.5 nano seconds (ns).  Finally, the structures were simulated under a steered MD 

(SMD) framework for 1 ns. 
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Figure 3.1: Force overtime with snap shots of the structure model T0659TS439_2 through its SMD pulling 
trajectory.  Corresponding conformation of the model at their respective points in the trajectory are shown.  
Large conformational shifts are seen from II to III.  The peak selected here is denoted by a red circle. 

In the production run, an SMD atom with no mass or charge was placed in the simulation 

with a spring with a spring constant of 7 kcal/mol/Å2 connecting the dummy atom with the C-

terminal alpha-carbon. This dummy atom was them moved at a constant velocity of 0.001 Å per 

fs along the vector connecting the N-terminal alpha-carbon and the C-terminal alpha carbon. 
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Meanwhile, the N-terminal alpha-carbon was fixed in place. This caused the dummy atom to pull 

the protein until it unfolded and eventually linearized. By calculating the tension on the simulated 

spring, we determined the force required to pull apart and rearrange domains of the protein 

throughout the simulation. Figure 3.1 shows an example of a force profile of a protein model. 

From the profile, the force required for rearrangement was taken as the first substantial peak in a 

trajectory, highlighted with a red circle in Figure 3.1. Along the trajectory, the structure of the 

model is shown below the profile panel. Stage I shows the started structure before the simulation 

begins. Stage II shows the structure at a high tension just before rearrangement.  At this point, the 

only significant modification to the structure is the terminal coil being pulled tight rather than loose 

as in stage I.  At stage III the structure is relaxed after much of the tension has been relieved.  At 

this point, the two  sheet domains have slid relative to each other and are no longer strongly 

connected.  Stage IV shows a peeled structure where the  sheet region has been split in two and 

pulled to either side of the protein.  Stage V shows a further stretched structures. At stage VI, only 

a couple of secondary structures have remained, which are finally completely stretched at stage 

VII. 

 The peaks were selected by our script, which is made available at 

http://kiharalab.org/SMD/. For automated peak selection, we first smoothed the data using a 

moving average with a window of 10, the equivalent of 1ps.  Using this smoothed data, we then 

detected the force peak F(t) at time t that satisfies the following criteria:  

𝑡𝑡 > 10𝑝𝑝𝑝𝑝 

𝐴𝐴𝐴𝐴𝐴𝐴 

𝐹𝐹(𝑡𝑡) > 𝐹𝐹(𝑡𝑡 − 1𝑝𝑝𝑝𝑝) > 𝐹𝐹(𝑡𝑡 − 2𝑝𝑝𝑝𝑝) > 𝐹𝐹(𝑡𝑡 − 3𝑝𝑝𝑝𝑝) > 𝐹𝐹(𝑡𝑡 − 4𝑝𝑝𝑝𝑝) > 𝐹𝐹(𝑡𝑡 − 5𝑝𝑝𝑝𝑝) 

𝐴𝐴𝐴𝐴𝐴𝐴  

𝐹𝐹(𝑡𝑡) > 𝐹𝐹(𝑡𝑡 + 1𝑝𝑝𝑝𝑝) > 𝐹𝐹(𝑡𝑡 + 2𝑝𝑝𝑝𝑝) > 𝐹𝐹(𝑡𝑡 + 3𝑝𝑝𝑝𝑝) > 𝐹𝐹(𝑡𝑡 + 4𝑝𝑝𝑝𝑝) > 𝐹𝐹(𝑡𝑡 + 5𝑝𝑝𝑝𝑝) 

Thus, the force at that time step was greater than its neighbors of within 5 ps and that appeared 

after 10 ps 

3.3.3 Logistic regression to predict GDT_TS 

We also predicted GDT_TS of models from break forces observed in the native, all-alanine, 

and reversed-sequence models of the same conformations using logistic regression. For prediction 

of models in a target, all the models from other targets were used. Parameters of the regression 
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models and the mean square error of the predictions of the target proteins are provided in 

Supplementary Table 1. 

3.4 Results 

3.4.1 Examples of the break force relative to the quality 

The main idea of this work is to use the break force from steered MD to select high quality 

protein structure models. In Figure 3.2, we show examples of structure models with varying model 

qualities as defined by GDT_TS.  Panel a shows the force profile of four models of T0659, a 89 

residue-long single domain protein of a b-sandwich fold. The highest quality model among them, 

the one with GDT_TS of 94.59, clearly has the highest peak. The other three models, with a 

GDT_TS of 79.73, 62.84, and 28.72, (panel c) have lower break force than the highest quality 

model. The second highest break force was observed for the model with 28.72 GDT_TS. Thus, 

interestingly, the break force does not have a clear overall correlation to GDT_TS of models. 

 
Figure 3.2: Examples of force curves of models with different GDT_TS. (a) Force curves of four 
structure models for T0659: T0659TS222_1, T0659TS035_5, T0659TS114_3, and 
T0659TS179_4, which are with GDT_TS scores of 94.69, 79.73, 62.84, and 28.72, respectively. 
The peak force selected for a force curve is indicated with a black dot. (b) Peak forces of individual 
models of the targetT0659 plotted against starting GDT_TS. (c) the starting models corresponding 
to the curves in the panel (a) with GDT_TS scores inset. 
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Panel b shows break force distribution of all 253 models of this target. It can be seen that 

models have a high break force have high GDT_TS, around 90. Thus, if models are sorted by their 

break force, top ranked models all have a GDT_TS around 90. However, there are high quality 

models with a lower break force, e.g. below 1500 pN, the same level of break force as models of 

30 GDT_TS. Later we will discuss difference of high-quality models with relatively high and low 

break force. 

3.4.2 Predictive Capabilities 

The underlying question of this work was if the physical stress given by pulling the protein 

chain can be used to determine relative model quality of computational models.  To answer the 

question, for each target in the model set (Table 3.2), we selected five models with the highest 

break force values and counted the number of high-quality models with a GDT_TS score of 80 or 

higher among them (Figure 3.3).  Also shown are the results from the same analysis with all 

alanine sequence models and reversed sequence models. We evaluated the model selection 

performance by choosing five models following the CASP structure prediction evaluation, where 

participants are asked to submit five models for a target protein. As reference, selection by break 

force was compared with random selection of five models. The random selection was performed 

1000 times, and the average counts from the1000 selections were reported. 
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Figure 3.3: Performance of model selection with first peak force. For a model pool of a target 
protein, five models with the highest peak forces were selected. (a) For each target, the number of 
high-quality models that have a GDT_TS score of 80 or higher among the top five selections were 
plotted. The results of the selection (black circles connected by bold lines) are compared with 
random selection (crosses connected by thin lines). (b) Comparison of the model selection 
performance for all-alanine models (x-axis) and the native sequence models (y-axis). For both 
cases, the number of high-quality models with a GDT_TS of 80 or higher among the top five 
selections was counted. The area of bubbles is proportional to the number of target sets at the same 
coordinates. (c) Model selection performance comparison for the reversed-sequence models (x-
axis) and the native sequence models (y-axis). (d) Model selection performance comparison for 
the logistic regression (x-axis) and the native sequence models (y-axis). 

 

 Figure 3.3a compares the model selection results using break force values with random 

selection. Out of 24 targets, using break force showed better performance than random for 21 

targets (87.5%). Among the 21 targets, in 19 cases all five selections, thus, 100%, had over 80 

GDT_TS score. In Figure 3.3b and 3.3c, we compared the selection on the native sequence models 

with all-alanine models and reversed sequence-models, respectively. For both cases, the model 



 
 

90 

selection worked better for the native sequence models, indicating that specific amino acid 

interactions local structures in the native sequence models contributed to stabilize the near-native 

structures relative to other models. In Figure 3.3d, we compared the model selection from the 

native sequence models and the logistic regression models, which combines the break force 

measured on the native sequence model, the all-alanine model, and the reversed sequence-model. 

The regression models tied on 16 models and underperformed against the native sequence model 

force selection on the remaining eight. This underperformance by the regression model appears to 

be a result of at least two factors; the high performance of the native alone leaves little room for 

improvement by the regression model in the 80 and over GDT_TS category and also a larger spread 

of highly stable models across lower break-force models in the all-alanine model simulation (data 

not shown). 

Comparison between using all-alanine and reversed-sequence models against random 

selection is provided in Table 3.2. As shown, using these two models worked better than random 

for the majority of the targets. These results imply that near-native conformation have features that 

can increase break force even for all-alanine or reversed sequences.  The most frequently observed 

characteristic of highly stable reverse sequence models and especially all alanine models were the 

presence of a closed-off hydrophobic core. It was observed that native models were often stabilized 

by hydrophobic cores, and even destabilized by initial models that opened such cores to solvent in 

otherwise near-native conformations, so when there was conservation of a hydrophobic core in 

reverse sequence and all alanine models similar stability would be understandable. 

Table 3.2. Comparison of model selection performance with random selection. 

 Better Worse 
Native 21 3 

All-Alanine 16 8 

Reversed-Sequence 15 9 

Logistic Regression 20 4 
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The number of target sets where each model performed better or worse in selecting high quality 

models of 80 or larger GDT_TS among the top five selections are listed. There are 24 targets in 

total. 

 

While most native target sets showed strong enrichment, there were some exceptions. The 

target set T0815, for instance, had two models with a GDT_TS of 80 or above in the top 5 highest 

peak force model selection, while random selection would produce nearly twice that.  However, 

the mean GDT_TS of the top 5 selected for native models was higher than the mean GDT_TS of 

the dataset, 80.236 and 73.792 respectively, showing reasonable selectivity.  Similarly, the mean 

GDT_TS of the other two underperforming targets in terms of top 5 selection with GDT_TS of 80 

or above also had higher mean GDT_TS than the dataset: T0714 has a mean native selected 

GDT_TS of 83.582 against the dataset mean of 71.957, and T0762 having a native selected mean 

GDT_TS of 82.566 against the dataset mean of 72.8544.  Thus, even when native peak force 

elevation did not produce as many models with GDT_TS of 80 or above and random selection, the 

average quality of a model in the top 5 using native peak selection was higher. 

3.4.3 Physical Characteristics 

To determine what caused the variation of peak force values among models with high 

GDT_TS values we explored physical characteristics of these high scoring models. First, we 

noticed that among many target sets there was a noticeable variation in exposed hydrophobic 

surfaces across models with similar GDT_TS.  To quantify this, we calculated the solvent 

accessible surface areas of hydrophobic residues, using the Kyte Doolittle hydrophobicity index 

as reference.  For each model we then multiplied the exposed area of each hydrophobic residue of 

the structure after equilibration by its respective hydrophobicity index value and summed then 

together.  We refer to the resulting value as the initial Hydrophobic Solvent Accessible Surface 

Area (iHSASA).  We compared iHSASA to the break force value of each model with a GDT_TS 

greater than or equal to 80 in each target set.  This showed strong correlation for many of the target 

sets (Figure 3.4). 
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Figure 3.4:  Initial hydrophobic solvent accessible surface area (iHSASA) and break force. Solvent 
accessible hydrophobic resides were calculated from the final frame of the equilibration before the 
pulling production run.  (a) comparison of iHSASA and break force for all 54 models in the T0644 
target set with GDT_TS of 80 or higher. (b) T0644TS079_5, the model with the lowest break force 
in the T0644 target set with a GDT_TS greater than 80.  T0644TS079_5 had a break force peak of 
1205.138 pN, an iHSASA of 8975.3 Å2, and a GDT_TS of 82.62.  The backbone is shown in cyan, 
and a surface representation is shown with hydrophobic surfaces shown in red. (c) T0644TS405_4, 
the model with the highest break force in the T0644 target set with a GDT_TS greater than 80.  
T0644TS405_5 had a break force peak of 2388.648 pN, an iHSASA of 5826.2 Å2, and a GDT_TS 
of 82.45.  structures in (a) and (b) are aligned by all residues excluding those in the terminal helix 
which in a different position in the two models.  In (a) the helix if on the face of the structure while 
in (b) it if folded to the right. 
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Variation in break force was not completely accounted for by variation in iHSASA.  As 

iHSASA accounts for protein-solvent interaction, we turned our attention towards protein-self 

interactions.  To do this, we calculated the change in electrostatic and conformation energies of 

the protein by itself before and after the break force peak.  This was done by selecting the protein 

with the atomselect command in VMD and then used the namdenergy plugin.  To find shifts in 

energy from before and after a trajectory’s break force we used a variable window ranging from 

one to ten picoseconds before and after the time of the peak force.  a Pearson correlation was then 

calculated for each energy term for each window for each target set.  The window that had the 

largest Pearson correlation for any single energy term was kept and used for principal component 

analysis. 

We performed principal component analysis (PCA) using the Pearson correlations for the 

changes in energy for each bonded term and electrostatic energies and the iHSASA Pearson 

correlation for each target set.  PCA appeared to show that there were three categories of 

characteristics that correlated with the variation in break forces within target sets; iHASA as 

described above, self-electric interaction energy, and conformational energy (Figure 3.5) 
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Figure 3.5: Principle component analysis of physiochemical properties of models with GDT_TS 
of 80 or higher. (a) Plot of principle component 1(PC1) against principal component 2(PC2) 
generated from using Pearson correlations of iHSASA and energy components against break force 
peak magnitude. (b) PC1 plotted against PC2 colored according to the Pearson correlation of 
change in conformational energy against the magnitude of the break force peak of each model with 
GDT_TS of 80 or greater. (c) PC1 plotted against PC2 colored according to the Pearson correlation 
of change in electrostatic energy against the magnitude of the break force peaks.  (d) PC1 plotted 
against PC2 colored according to the Pearson correlation of the initial hydrophobic SASA against 
the magnitude of the break force peaks.  Color legend inset on lower right for Pearson values. 

Electric self-interaction energy target sets were observed to have variation of the relative 

proximity of acidic and basic residues, and models with high break force peaks tended to have 

these charged residues pull away from one another at or shortly after the time of the break force 

peak (Figure 3.6). 
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Figure 3.6:  Change in Electrostatic energy relative to break force. 
(a) comparison of Delta Electrostatic energy before and after break force peak time and break force 
peak magnitude for the 8 model in the T0773 target set with GDT_TS of 80 or higher. (b) 
T0773TS457_4, the model with the lowest break force in the T0773 target set with a GDT_TS 
greater than 80.  T0773TS457_4 had a break force peak of 1299.229 pN, a change in energy of 
72.180 kcal/mol, and a GDT_TS of 86.36.  The backbone is shown in cyan, and a surface 
representation is shown with hydrophobic surfaces shown in red. (c) T0773TS479_1, the model 
with the highest break force in the T0773 target set with a GDT_TS greater than 80.  
T0773TS479_1 had a break force peak of 2945.653 pN, a change in energy of 257.710 kcal/mol, 
and a GDT_TS of 80.52.   
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Conformation energy target sets were observed to involve significant rearrangement of 

ordered structures near the time of their respective break force.  In some models with high break 

force peaks this rearrangement was observed to be cause in some cases by strong interactions in 

different regions of the protein model than the portion that was rearranged (Figure 3.7). 

 

Figure 3.7:  Peak Force and Conformation energy. 

(a) Change in conformation energy of each model in the T0798 target set with GDT_TS of 80 or higher 
before and after their respective force peak against the magnitude of the break force peak for each model. 
(b) Structure of T0798TS117_1, break force of 1204.220 pN and GDT_TS of 92.15, after equilibration. 
Residues 1 through 16 are shown in purple. Residues 52 through 56 are shown in blue Residues 66 through 
75 are shown in in red with licorice representations for sidechains. Residues 37 through 39 are shown in 
green with a a licorice representation for sidechains. Hydrogen bonds are shown in pink. The coil from 
residue 61 to 65 is highlighted in yellow. (c) Structure of T0798TS430_1, break force of 3231.310 pN and 
GDT_TS of 91.86, after equilibration.  Color code is the same as in (b). (d) T0798TS117_1 at step 100 after 
significant unfolding. (e) T0798TS430_1 at step 100 after significant unfolding. 
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The most visually striking difference in the trajectories between the strong (T9798TS430_1) 

and weak (T0798TS117_1) is the deformation of the strong model’s beta sheets (residues 52 

through 56), while in the weak model there is a gentle unfolding around a hinge-like coil domain 

(residue 61 to 65).  In the strong model, it was noticed that the helical region 66-75 is closer to the 

loop region 37 to 39 than in the weaker model.  This helix and loop region in the strong model 

appear to interact with 56 atoms within 5Å or each other and 6 hydrogen bond as defined by the 

VMD hbonds plugin using a cutoff of 4Å and 60º.   In contrast, the weak model had 0 atoms within 

5Å and 0 hydrogen bond between the helix and loop.   This higher interaction between the helix 

and loop of the strong model appears to prevent movement of the 61-65 hinge, forcing unfolding 

through a more energetically steep pathway.  In the crystal structures 40jk (reference structure for 

this casp model), 2f9m, and 2f9n this helix and loop region (66-75 and 37-39) are in the binding 

pocket for GTP. 

3.5 Conclusion 

Protein structure prediction remains one of the most challenging problems in modern 

science.  Similarly, protein quality assessment of predicted structures remains an unsolved problem.  

In this work we hypothesized that the stability of predicted structures would correlate with a 

prediction’s accuracy.  We tested this hypothesis by subjecting structure predictions from CASP to 

tensile stress SMD.  Models which required the most force to rearrange tended to have near-native 

conformations, though not all near-native conformations required larger amounts of force to 

rearrange. 

Multiple physical characteristics were observed among models with high quality. First, 

SASA of hydrophobic residues inversely correlated with stability. This stabilizing mechanism 

would come from forcing rearrangement of both protein and water molecules in such a way that 

water would end up in an unfavorable hydrophobic environment.  However, models that already 

had water in these environments, i.e. in contact with hydrophobic patches on the protein, would 

not have this kind of environmental change to go through so would not be so resistant to 

rearrangement. 

Target sets that did not show strong correlation between hydrophobic sasa and break force 

among high GDT_TS models did show a correlation between break force and the change in self-

interacting electrostatic energy or conformation energy before and after the break force. Self-
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interaction electrostatic energy, electrostatic energy of the protein interacting with itself, was 

observed in models where basic and acid sidechains were near one another at the start of the 

production pulling runs and did not pull apart until break force peak occurred, which models with 

similar GDT_TS but lower break forces started with the same sidechains further apart. Large 

changes in conformational energy were observed to occur in models which had some interaction 

short-circuiting the tension and preventing the unfolding of a coil region and forcing the 

rearrangement of a more structured region of the model, as in Figure 3.7. 

We have demonstrated that by stressing models in molecular dynamics simulations, high 

quality models can be detected based on their stability, supporting the initial hypothesis.  In 

addition, we have characterized some of the underlying mechanisms determining the stability of 

these models. 

This work is in revision (Februrary, 2022) in the Journal of Computational Chemistry. 
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 PHAGE G AND USP7: CASE STUDIES IN ATOMIC 
MODEL PRODUCTION AT INTERMEDIATE RESOLUTIONS 

4.1 Abstract 

I applied molecular dynamics-based approaches to the refinement of protein structures that 

were determined from cryo-EM density maps.  I modeled the atomic structure of the major capsid 

protein gp27 and the decoration protein gp26 of PhageG to a 6.1Å resolution electron microscopy 

map.  PhageG modeling was performed by mapping the sequences to a presumed homolog 

structure (Hk97), arranging the subunits into hexamers and trimmers as suggested by mass 

spectroscopy data, rigid docking to respective map segments, refinement against half maps using 

MDFF across a range of weights, and then finally refinement to the whole map using the optimized 

weight.  I also modeled the atomic structure of the protein USP7 to an 8.2 Å resolution map.  USP7 

modeling was done by combining crystalized domains of the whole structure, rigidly docking the 

composite model to the EM map by hand, and then refining in a similar manner as PhageG, with 

the added approach of weight scaling to overcome local minima along the relaxation.  The USP7 

model was further validated by exhibiting a ligand-protein binding pose, determined by glide, 

which corresponded to enzymatic activity mutation assays. 

4.2 Introduction 

In chapter 1, we discussed some of the characteristics of electron microscopy data and the 

importance of atomic modeling.  In chapter 2, we illustrated the variability in atomic models 

deposited with electron microscopy maps.  In chapter 3 we demonstrated a method for selecting 

near native models if many candidate models exist.  In this chapter, we will be discussing two case 

studies involving the fitting of atomic models to two very different electron microscopy maps.  In 

these cases models were initially generated using experimental data such as mass spectrometry, 

enzymatic assays, and other data, and were then refined to their respective maps in a manner that 

reduced overfitting a produced a representative structure.  The models produced were for the 

hexomeric complex of the major capsid protein gp27 and the trimeric complex of the decoration 

protein gp26 of PhageG, and the full structure of the protein Ubiquitin Specific Protease 7 (USP7). 
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4.2.1 Phage G 

The first modelling case study we will discuss is the Phage G capsid.  Phage G is notable 

for its large size of ~180 nm in diameter.  This large size, in conjunction with its T=52 icosahedral 

symmetry and relatively low flexibility make it a promising candidate for electron microscopy 

data acquisition.  Unfortunately, the large size of this structure poses some challenges when 

modeling.  The primary challenge is the low speed of molecular dynamics as the number of atoms 

in a model is very high, and the size of the map file (~22 Gb) preclude the use of GPU acceleration 

on site.  The sheer scale of the atomic model, when all atoms and all subunits are included, requires 

the use of GPU hardware to accelerate the molecular dynamics so that it can complete the modeling 

in an acceptable time frame.  The necessity of GPU usage, however, results in a new limitation, 

and that is available memory.  When these simulations were conducted, the GPUs available to us 

for use had memory on the order of 6 Gb.  Recall that the map file alone, which is necessary for 

refinement, was approximately 22 Gb on its own. The Phage G capsid consists of major capsid 

proteins which form repeating hexamers.  At the corners of these hexamers, where three major 

capsid subunits meet, there are trimeric decoration proteins.  This character repeats around the 

icosahedral capsid of the virus. By taking advantage of repeating structure, we were able to sample 

smaller subsections of the structure and use them in refinement, allowing us to infer the structure 

of the whole capsid from a refined subunit.  We will discuss this process in detail later in this 

chapter. 

4.2.2 Ubiquitin Specific Protease 7 

On the other end of the spectrum from PhageG is Ubiquitin Specific Protease 7 

(USP7).  USP7 is a small protein produced by human cells which breaks down ubiquitin.  USP7 

is associated with several varieties of cancer, though to be cause by higher than acceptable 

activity.  USP7 consists of three major domains; a TRAF-like domain, a catalytic domain which 

binds ubiquitin, and a hubble domain which consists of ubiquitin-like subunits. 

The hubble domain of USP7 was observed to be highly flexible, likely due in part to the 

links between the ubiquitin-like domains, which results in appreciable conformational 

heterogeneity in cryo-EM micrographs.  This heterogeneity either causes blurring in the 

reconstructed 3D map or requires the classification of conformations which results in a reduced 
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data set.  Both of these things can cause a decrease in resolution of the EM model, making imaging 

and modeling of an atomic structure a challenge. 

The flexibility of USP7 is not the only characteristic that makes USP7 a challenging protein 

to image.  One obstacle for cryo-EM when used to image USP7 is that USP7 is asymmetrical, 

meaning that all sides of the molecule must be viewed independently, unlike symmetric 

molecules.  Acquiring enough data for every view can be a problem if the molecule has a biased 

orientation in the thin film. USP7 is a very small protein for use in cryo-EM, having a mass of only 

135 Kd.  The typical lower limit of cryo-EM is approximately 50 KDa, below the mass of USP7, 

but the relatively low mass of USP7 combined with its asymmetry and flexibility all combine to 

make imaging non-trivial. These factors; high flexibility, asymmetry, and low mass, result not just 

in lower resolutions, but variable resolutions across the model.  These aspects of the final map 

must be consistent when fitting an atomic model.  In this chapter, I will discuss a procedure used 

to address these issues and produce a reliable atomic model for use in drug screening. 

4.3 Modeling of Phage G 

Phage G is an unusually large bacteriophage with a capsid around 180nm in 

diameter(Donelli, 1976; Donellie, 1968). This makes phage G’s capsid the largest of all observed 

tailed phages(G. Donelli, 1975). 

Some structural commonalities are shared by all dsDNA, tailed phages. All known phages have 

major capsid proteins with an HK97 fold(Sun & Serwer, 1997).  Many dsDNA, tailed phages 

contain decoration proteins which locate on the external surface of the capsid, and may play a role 

in stabilizing the overall structure(Rader et al., 2005). These decoration proteins frequently adopt 

trimeric oligomerization states(Sae-Ueng et al., 2014; Wang et al., 2018). as in Lambda and 

TW1(Sathaliyawala et al., 2010). The trimeric decoration proteins position themselves at the 3-

fold symmetry axes between three major capsid protein hexamers(Sathaliyawala et al., 2010; 

Wang et al., 2018). 

During the reconstruction a new decoration capsid protein, gp26, was identified, and was 

proposed to be responsible for the stabilization of the gp27 hexamers. The final map produced for 

the Phage G capsid used in the following refinement was at an intermediate resolution of 6.2Å, 

making it too low for automated modeling approaches. 
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Figure 4.1: Phage G major capsid protein hexamer and decoration protein trimer arrangement. A) Phage 
G’s major capsid protein, gp27, and its decoration protein, gp26 arrangement. The structure shows gp27 
hexamers and gp26 trimers positioned at the 3-fold axes around the hexamers. B) An overview of phage 
G’s gp27 homology model. All 3 domains of the structure are consistent with the domains described in 
HK97’s major capsid protein including the A domain, E loop, P domain. C) The phage G decoration, gp26, 
protein oligomerizes into trimers. The first 15 amino acids were omitted in modeling because of their 
flexibility. Arrows indicate the direction the N-terminus extends in the capsid density contacting 
neighboring gp27 subunits. 

4.3.1 Producing an Initial Atomic Model 

The Phage G capsid consists of repeating gp27 hexamers and gp26 trimers organized into 

an icosahedron with T=52 symmetry  (Figure 2A).  A structure model of gp27 (Figure 2B), the 

282 residue long major capsid protein(Sae-Ueng et al., 2014) was produced using modeller with 

HK97’s major capsid protein, gp5 as a structure template(Serwer et al., 2014).  Since all known 

phages have an HK97 fold, this was the natural choice for a template, despite only having a 

sequence identity of 23%. 

Next, the decoration proteins were modeled.  The decoration proteins had been 

experimentally determined to be gp26 were and organized into trimers on the outside of the capsid. 

The trimers were observed to be structurally similar in arrangement to those of phage Lambda and 

TW1’s decoration proteins(Chang et al., 2006; Jiang et al., 2006). Phage G’s gp26 is 55 residues 
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longer than Lambda’s gpD and 17 residue longer than the gp56 of TW1(Guo & Jiang, 

2014).  Because TW1’s gp56 was closer in length to gp26 it was chosen as a template for 

generating a structure model.  

4.3.2 Fitting and Refinement of Phage G Capsid Proteins to Cryo-EM density 

After generating initial atomic models it was time to place the atomic models into the 

reconstructed density of the Phage G capsid.  To do this, the density map was segmented into its 

hexameric and trimeric subunits using segger in chimera.  The initial segmentation had a tendency 

to segment hexameric subunits into more than one fragment, so manual selection and merging was 

required.  Once each hexamer and trimmer was separated, each segment was saved as its own 

map.  The hexameric and the trimeric models of gp27 and gp26, respectively, were rigidly docked 

into the density segments using the collage program in Situs (Thomas et al., 2007). The cross-

correlation coefficients were calculated for each set of docked structures and their respective map 

segments. By using the cross-correlation values as a filter, I was able to efficiently select usable 

docking poses. By combining all the acceptable poses I was able to model the entirety of the phage 

G capsid. However, this model required additional refinement, as rigid docking does not produce 

an ideal fit to the density data. 

To refine the model to the density map I used Molecular Dynamics Flexible Fitting, 

MDFF(Lander et al., 2013).  It was at this point that the hardware limitations of running a model 

at this scale became apparent.  To get around this problem, I took advantage of the capsid’s 

symmetry.  By only using one of the icosahedral faces, or facets, I was able to reduce the number 

of atoms in the model to less than a twentieth of the full capsid, and reduce the size of the map 

needed from 22Gb to nearly 1Gb. 

A possible error one can make when refining an atomic model to a density is to overfit that 

model.  This can occur when using MDFF if the g-scale, map weight, is set too high; however, 

there is not an ideal map weight to use for all refinements.  Typical g-scale weights range from 0.1 

to 0.5.  While applying too large a scale factor can result in overfitting, applying too small of a 

weight does not make full use of the experimental data.  To select an optimal scale factor, fitting 

was performed first on the even half-map.  Weights of 0.1, 0.3, 0.5, and 0.7 were used over a 1 ns 

MDFF refinement, after minimization. The final frame of the refinement trajectory was used to 

calculate a cross-correlation with the odd half-map reconstruction. The scale factor which 
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produced the highest cross-correlation was taken to be the optimal weight.  Using the reciprocal 

half-map for validation in this way minimizes model fitting to noise from sources such as solvent 

or misaligned frames.  This is because the random noise will not be rewarded in the cross-

correlation of the reciprocal map the way it might be using the same map for validation. The weight 

value which resulted in the highest cross-correlation was then found to be 0.5 and was used for the 

final refinement using the full reconstructed density.  The resulting gp27 and gp26 atomic models 

are available in the Protein Data Bank (PDB) under the accession ID 6WKK. 

4.4 Modeling of USP7 

Human ubiquitin-specific protease 7 (USP7) is a particularly potent oncoprotein that has a 

demonstrated role in many cellular functions (Cheng et al., 2015a; Colland et al., 2009; Faesen, 

Dirac, et al., 2011a). USP7 has been described as a contributing factor in the progression of 

numerous diseases including prostate cancer, multiple myeloma, and colon cancer. Due to its 

oncogenic properties USP7 has generated interest as a drug target(Cheng et al., 2015a; Colland et 

al., 2009). A major caveat to the development of cancer therapeutics in the USP family is that 

structure-activity-relationship studies of inhibitor optimization have relied mostly on the 

conserved catalytic domain, rarely accounting for the unique ancillary domains and how they 

regulate the activity of each protease(Cheng et al., 2015a; Faesen, Dirac, et al., 2011a; Pfoh et al., 

2015a; Zhang et al., 2015a). Although this line of inquire has resulted in several therapeutic leads 

as inhibitors of USP7, these inhibitors are generally targeted at the active site, or at an adjacent 

site within the catalytic domain. Consequently, it is anticipated this approach may lead to off-target 

effects in closely related enzymes.  

The ancillary domains surrounding the catalytic domain are thought to provide each USP with 

an individual ubiquitin-cleavage fingerprint, defining substrate specificity and regulation(Cheng 

et al., 2015; Song et al., 2008; van der Horst et al., 2006; Zhang et al., 2015). USP7 is a unique 

member of the USP family due to its 6 ancillary domains, some of which lack significant homology 

with related enzymes(Zhang et al., 2015). The domain architecture includes a catalytic domain 

flanked by a TRAF domain, and five HUBL domains (termed 1-5) that are hypothesized to 

function as a tethered-rheostat activator(Chen et al., 2015). Biochemical and structural studies have 

uncovered a role for the TRAF domain in protein-protein interactions with substrates such as tumor 

suppressor p53, ubiquitin ligase MDM2, and viral DNA-binding protein EBNA1(Chauhan et al., 
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2012; Cummins & Vogelstein, 2004; Pfoh et al., 2015; Saridakis et al., 2005). HUBL1-5 have been 

found to extensively control the activity of USP7, truncations of which result in an 80-fold 

reduction in Km and kcat(Kon et al., 2010; Li et al., 2004). 

Kinetic evaluation of USP7 within the context of the ancillary domains have revealed 

information suggesting a tethered-rheostat mechanism of intramolecular activation(Kon et al., 

2010; Li et al., 2004; Meulmeester et al., 2005). TRAF domain deletion in USP7 results in little 

change to the Km and kcat, suggesting that the sole function of the TRAF domain is to provide 

substrate specificity by recognizing specific peptides(Faesen, Dirac, et al., 2011a; Rougé et al., 

2016). However, truncation of HUBL4-5 reduces catalytic efficiency like a HUBL1-5 truncation, 

suggesting that HUBL1-3 may not be necessary for activation(Faesen, Luna-Vargas, et al., 2011; 

Rougé et al., 2016). 

This difference in catalytic efficiency attributed to the loss of HUBL4-5, remains to be fully 

understood, but thorough biochemical analysis by Faesen et al. defined the requirement of 

HUBL4-5 in USP7 catalysis as the c-terminal 19 residues(Kon et al., 2010). They hypothesized an 

interaction between this c-terminal peptide of HUBL domain 5 (USP71084-1102) and a switching 

loop of the catalytic domain (USP7285-291) was responsible for this activation of USP7(Kon et al., 

2010). Crystallographic structures solved by Rougé et al. built upon this model by revealing a 

density for the C-terminal peptide of HUBL domain 5 bound within the newly defined activation 

cleft of the catalytic domain, resulting in movement of this switching loop and access of the 

catalytic residues (Rougé et al., 2016). This study provided the first structural evidence for in trans 

activation of USP7 by the HUBL5 peptide; however, it is important to note the USP7 construct 

used was an artificial one. HUBL4-5 was tethered directly to the catalytic domain by a flexible 

glycine-serine linker, in lieu of HUBL1-3(Rougé et al., 2016). Kim et al. have recently suggested 

a model of in cis activation by the HUBL1-5 rheostat supported by NMR data, but a structural 

density of this intramolecular binding has yet to be observed(Colland et al., 2009). 

To elicit this degree of activation by the HUBL1-5 rheostat, several groups have described the 

large degree of conformational flexibility that is supposedly maintained by the rheostat(Colland et 

al., 2009). Kim, et al. have determined the importance of the residues in the α-helical linker 

connecting the catalytic domain and HUBL1-3 for rheostat function, indicating amino acids that 

are required for conformational flexibility(Li et al., 2004). Likewise, Pfoh, et al. have described 

the existence of potential hinge regions between HUBL2-3 and HUBL3-4 that are hypothesized to 
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facilitate this movement of the rheostat to potentially support in cis and in trans activation of 

USP7(Cheng et al., 2015).   

HUBL1-3 were originally described to serve primarily as a binding platform for protein-

protein interactions with DNMT1, UHRF1, and ICP0, as well as the USP7 allosteric activator 

guanosine 5’- monophosphate synthase (GMPS) (Cheng et al., 2015a; Faesen, Dirac, et al., 2011a; 

Pfoh et al., 2015a; Zhang et al., 2015a). Although, our kinetic evaluation has uncovered a second 

role for HUBL1-3 as part of the rheostat which regulates the level of activation that HUBL4-5 

impose upon USP7. Our data suggests that this rheostat function is negatively affected – at least 

in part – by the presence of the TRAF domain, likely indicating an interfacial region where an 

interaction may occur. 

4.5 Electron Microscopy Map Generation of USP7 

USP7 was imaged by cryo-TEM using a Volta Phase Plate (VPP) allowing us to visualize 

USP7 particles, resulting in an 8.2 Å electron density from single particle. According to the 

averaging and 3D projections obtained from the density, the HUBL domains appear to occupy a 

range of conformational states suggesting that they remain flexible, moving via the hypothesized 

HUBL2-3 and HUBL3-4 hinges. Next, I use MDFF to flexible dock the atoms from 

crystallographic structures into the low-resolution volume to determine the position of domains 

with a high degree of agreement.  

Comparison of the position of the TRAF domain to the crystallographic structures published 

by Hu, et al. (2006) showed the TRAF domain appears to adopt an alternative conformation, 

supporting the idea that there is a flexible linker between the catalytic domain and TRAF. This 

more packed conformation of TRAF positions the domain near HUBL1-3, creating a potential 

interfacial region in the mono-ubiquitin bound state. 
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Figure 4.2: USP7 displays flexibility under electron microscopy.  Multiple conformations were observed 
among the particles.  Class averages display a 120-degree variation on the hubble domain. 

4.6 Generation and fitting of an atomic model 

To investigate this potential interfacial region I fit an atomic model into this newly 

determined density.  In order to model an atomic structure from a cryo-EM density map I first 

needed to produce a starting structure.  Fortunately, each of the three domains of USP7 had already 

been independently crystalized, so what I combined these structure end-to-end.  The breaks 

between each domain were mid coil, based on the crystal structures, so refinement would be able 

to correct small errors in placement of the domains.  Using the shape of the EM-density as a guide 

fragments were placed by hand relative to one another to resemble the overall conformation of the 

map.  All domains were then combined into a single PDB file, and residues and atoms were then 

renumbered to make a coherent file. 
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Figure 4.3: USP7 images acquired with VPP on Titan Krios at 130,000x nominal mag. (Left) 
Representative image of USP7~Ub-PA on pyrene-graphene oxide (pGO) coated gold grids. Red circles are 
representative particles that would be manually selected for auto-picking templates. Orange scale bar 
represents ~100 nm distance. (Right) 2D power spectrum of the image to the left with CTF estimation done 
by CTFfind4.1 through Relion. This is an image of one of the higher signal power spectra. Use of the VPP 
resulted in most showing an absence of Thon Rings.  

  In the EM-density, the hubble domain was blurry and relatively low resolution due to the 

flexibility of that domain.  However, the catalytic subunit was clear enough to interpret.  Using the 

catalytic domain’s density we were able to place the atomic model into the map. Because of the 

flexibility of the hubble domain, this proved to be close enough to model.  Using MDFF, the 

catalytic domain aligned further with its relevant density, and the flexible hubble domain curled 

into place.  The initial weight used in the docking was 0.1 and was scaled up by 0.1 every 500ps 

until reaching a value of 0.5.  From here the map density term was gradually reduced to 0, reducing 

by 0.1 every 500ps, so that the model could move freely.  This yielded a better cross coorilation 

and conformational energy as shown in Figure 4.3c. 

4.7 Glide Docking to USP7 

Drug docking of the inhibitor shown in figure 4.4 was performed using glide. The inhibitor 

docked into the binding pocket illustrated below with a free energy of -4.1 kcal/mol. This was one 

of several orientations in this pocket that resulted in favorable free energies.  The search window 



 
 

113 

for the drug was expanded to encompass the entire protein, yet the drug appeared to have no 

significant or meaningful interaction elsewhere. The residues highlighted for the interaction below 

correspond to the TRAF domain (N10, T12, V13, M14, R16), the catalytic domain (N351), and 

the HUBL3 domain (R730).  

 

 

Figure 4.4: TRAF-HUBL1-3 interfacial region and corroborated by drug binding. (Left) Cryo-EM-derived 
model of USP7 with drug-binding pocket highlighted by black frame. (Middle) Close-up of binding pocket 
with APII-004 compound modeled in. (Right) Glide docking model of APII-004 with residues Gln10, 
Thr12, Val13, Glu14, Arg15 from the TRAF domain, Gln351 of the catalytic domain, and Arg730 from H3 
domain. 

4.8 Glide docking validated by differential scanning fluorimetry (DSF) 

Both kinetics experiments and the Glide docking results agree with the differential scanning 

fluorimetry (DSF) data for USP7. DSF experiments were performed with 1 mg/mL final 

concentrations of USP7 and saturating concentrations of inhibitor (100 µM) to measure differences 

in the thermal stability of the enzyme with the inhibitor present. The experiment was performed to 

observe differences in thermal stability of each of the enzymes domains – both apo and mono-

ubiquitin-bound forms – to determine which were affected by the presence of the drug. Only when 

the TRAF domain and catalytic domain, HUBL domains 1-3 and catalytic domain, or HUBL 

domains alone were present did the drug bind (Figure 4.5 A & B). The drug had no measurable 

effect on the catalytic domain alone, or the TRAF domain alone. Although there was a weakly 

statistically significant decrease in thermal stability for the TRAF-CD construct (p = 0.046), the 

enzymatic activity of this construct did not appear to be affected by the presence of the inhibitor. 

It is thought that the drug binds the domains to hold the enzyme in an unfavorable conformation 

that drives down the kcat – acting as a noncompetitive inhibitor. 
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According to the results summarized in Figure 4.5 C below, both apo and substrate-bound 

forms of USP7 had significant destabilization affects from the inhibitor. This corroborates the idea 

that the inhibitor works as a mixed, competitive inhibitor. It is thought that all domains must be 

present for the drug to coordinate and have the observed effects on catalysis.  

 

Figure 4.5: DSF results for APII-USP7 pyrazole-derived inhibitors of USP7. (A) Schematic od USP7 
constructs used for the experiment; grey = TRAF domain, pink = catalytic domain, orange = H1, yellow = 
H2, green = H3, blue = H4, purple = H5. (B) Thermal stability changes for the 100 µM inhibitor-treated 
construct vs the untreated construct. The untreated constructs were in buffer-DMSO composition identical 
to the inhibitor-treated samples. (C) Ub-PA conjugated samples. For all experiments: points are mean ± SD; 
n = 3. Statistical significance was calculated with a paired t-test between treated and untreated melting temp: 
*** = <0.001, ** = <0.01, * = <0.05.  

4.9 Conclusion 

 Both PhageG and USP7 presented their own challenges to atomic modeling.  Both maps 

were of resolutions that would be considered low in contemporary computational circles, but such 

resolutions will continue to be present when applying cryo-EM to molecules on the edges of what 

cryo-EM’s capabilities.  Structures at either edge of single particle cryo-EM’s range, or molecules 

that are highly flexible and therefore present significant conformational heterogeneity on a 

micrograph, will continue to be challenging for the foreseeable future.  Meanwhile, the focus of 

theorists has seemed to shift towards the highest resolution maps.  It is therefore important that 

methodologies be developed for addressing these edge cases, and the work described here may be 
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a strong place to start.  Questions remain; what is the minimum amount of additional experimental 

data needed to reliably produce an accurate atomic structure?  Does weight scaling reliably result 

in conformational improvements?  What is the lowest resolution that we can hope to use to reliably 

produce usable structures?  It is my opinion that on these edges are where many of the most 

interesting problems in structural biology can be found. 
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 CONCLUSION 

5.1 Remaining Challenges 

 In the regime is protein modeling, we are far from finished.  Though recent developments 

in machine learning, including the advent of alphafold2, have made considerable gains in the 

prediction of single chain protein structures, the larger challenge of understanding how proteins 

interact to perform their functions and how they combine into large complex machines remains an 

unsolved problem.  With the development of electron microscopy, in parallel with the 

advancement of computational techniques for model generation and quality assessment, we creep 

ever closer towards interrogating the complexities of living things, beyond the single molecule 

view. 

5.2 Future Work 

 There is no shortage of new things to be done.  The investigation of the motion of single 

molecules is becoming more routine, added by the development of accurate structure prediction 

methodologies.  The motion of a single molecule allows us to begin to understand what its function 

might be, and how it carries out that function. 

Another exciting goal for us to reach towards is the understanding of complex molecular 

machines alluded to above.  Many years of research have gone into the field of protein-protein 

interaction, but with increasing computational power available in modern and GPUs, increasingly 

sophisticated machine learning techniques, and modern advancements in experimental techniques 

such as single particle cryo-EM, it has become possible to bring to bear an unprecedented and 

continually increasing level of knowledge and technology to the field. 

In closing, among the greatest challenges for researching working in the theoretical and 

computational realm of this field (or any other field, for that matter) is to reconcile theory with 

experiment.  Theory will always have inaccuracies that are either simplifications there by design, 

or errors resulting from the unknown or poorly understood.  Experiment will always contain 

eccentricities, noise from known and unknown effects, deviation from what a theorist might call 

ideal conditions necessary for the experiment to be possible, as well as various other artifacts in 
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data that may not be common knowledge outside of experimentalist circles.  Understanding the 

limitations of both theory and experiment is necessary to combine the two. 
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