CATALYTIC VINYLIDENE INSERTION AND TRANSFER REACTIONS

by
Annah E. Kalb

A Dissertation
Submitted to the Faculty of Purdue University
In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

Department of Chemistry
West Lafayette, Indiana
May 2022

THE PURDUE UNIVERSITY GRADUATE SCHOOL STATEMENT OF COMMITTEE APPROVAL

Dr. Christopher Uyeda, Chair
Department of Chemistry
Dr. Mingji Dai
Department of Chemistry
Dr. Suzanne Bart
Department of Chemistry
Dr. Elizabeth Parkinson
Department of Chemistry

Approved by:

Dr. Christine Hrycyna

Ad Majorem Dei Gloriam

TABLE OF CONTENTS

LIST OF TABLES 6
LIST OF FIGURES 7
ABSTRACT 9
CHAPTER 1. DINICKEL CATALYZED VINYLIDENE OLEFIN CYCLIZATION REACTIONS 10
1.1 Abstract 10
1.2 Introduction 10
1.3 Results and Discussion 12
1.3.1 Catalytic Intramolecular Vinylidene Additions to Alkenes 12
1.3.2 Substrate Scope Studies 13
1.3.3 Evidence in Support of a Stepwise Ni_{2} (vinylidene) Addition Mechanism 15
1.4 Electrocatalytic Reductive Cyclizations and the Role of Zn 16
1.5 Stoichiometric Reductive Cyclization Reactions 17
1.6 DFT Calculations 20
1.7 Conclusions 22
1.8 Acknowledgements 23
1.9 References 23
CHAPTER 2. A DINICKEL-CATALYZED THREE-COMPONENT CYCLOADDITION OF VINYLIDENES 27
2.1 Abstract 27
2.2 Introduction 27
2.3 Results and Discussion 29
2.3.1 Reaction Development 29
2.3.2 Substrate Scope 31
2.3.3 Mechanistic Studies 33
2.3.4 DFT Modeling Studies 34
2.4 Conclusions 36
2.5 Acknowledgements 37
2.6 References 37
CHAPTER 3. A DINICKEL CATALYZED CYCLOPROPANATION WITHOUT THEFORMATION OF A METAL CARBENE INTERMEDIATE40
3.1 Introduction 40
3.2 DFT Models for the Ni_{2}-Catalyzed Cyclopropanation 41
APPENDIX A: SUPPORTING INFORMATION FOR CHAPTER 1 44
APPENDIX B: SUPPORTING INFORMATION FOR CHAPTER 2 133
APPENDIX C: SUPPORTING INFORMATION FOR CHAPTER 3 232

LIST OF TABLES

Table 1.1. Effects of Reaction Parameters on the Reductive Vinylidene Cyclization. 13
Table 2.1 Effect of Reaction Parameters .. 30

LIST OF FIGURES

Figure 1.1. (a) Exo and endo cyclization modes of 1,6-enynes. (b) Reductive activation of 1,1dichloroalkenes enable selective vinylidene-alkene cyclization reactions.

Figure 1.2. Substrate scope studies. Isolated yields were determined following purification and were averaged over two runs. Standard reaction conditions: substrate (0.2 mmol), i-PrNDI (4) (5$10 \mathrm{~mol} \%), \mathrm{Ni}(\mathrm{dme}) \mathrm{Cl} 2(10-20 \mathrm{~mol} \%), \mathrm{Zn}\left(3.0\right.$ equiv), NMP (1.6 mL), THF (6.4 mL), rt or $50^{\circ} \mathrm{C}$, 24h. ${ }^{a}$ substrate (0.2 mmol), ${ }^{c-\mathrm{pent}} \mathrm{NDI}(7),(10 \mathrm{~mol} \%), \mathrm{Ni}(\mathrm{dme}) \mathrm{Cl}_{2}(20 \mathrm{~mol} \%), \mathrm{Zn}$ (3.0 equiv), NMP (0.8 mL), THF (7.2 mL), rt, 24h.14

Figure 1.3. Experiments supporting a stepwise vinylidene addition mechanism. 16
Figure 1.4. (a) Controlled potential electrolysis experiments for the catalytic conversion of $\mathbf{1}$ to 2. (b) Experimental setup ($\mathrm{CE}=$ counter electrode; $\mathrm{RE}=$ reference electrode; $\mathrm{WE}=$ working electrode) and a proposed one-electron catalytic cycle. (c) Cyclic voltammetry data for complex 5 in the presence and absence of $\mathbf{1}\left(0.3 \mathrm{M}\left[n-\mathrm{BuN}_{4}\right] \mathrm{PF}_{6}\right.$ in NMP; $100 \mathrm{mV} / \mathrm{s}$ scan rate). All cyclic voltammograms were internally referenced to the $\mathrm{Cp}_{2} \mathrm{Fe} / \mathrm{Cp}_{2} \mathrm{Fe}^{+}$couple. 17

Figure 1.5. Experiments probing the stoichiometric activation of 1,1-dichloroalkene substrates with $\left({ }^{i-\mathrm{Pr}} \mathrm{NDI}\right) \mathrm{Ni}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ complex 6 . (a) Stoichiometric reductive cyclization of $\mathbf{1}$ using complex $\mathbf{6}$. (b) Stoichiometric reaction between complex 6 and substrate 25 to form metallacycle 38. (c) XRD structure of metallacycle 38. Selected bond metrics: Ni1-Ni2: 2.743(1) Å; Ni1-C1: 2.000(6) \AA; Ni1-C3: 1.967(4) Å; Ni2-C1: 1.954(5) Å; Ni2-Cl: 2.243(2) A. (d) Frozen solution EPR spectrum for 38 (105 K; toluene). Simulated parameters: $g=[2.378,2.226,2.093]$. * corresponds to a $S=$ $1 / 2$ impurity. (e) UM06-L spin density plot for 38.

Figure 1.6. Comparison of rates and yields for stoichiometric cyclizations to form $\mathbf{2 6}$ as a function of oxidation state. 19

Figure 1.7. (a) DFT-calculated reaction pathways for the cyclization of $\mathbf{2 5}$ to give complex $\mathbf{3 8}$. Relative Gibbs free energies are shown in $\mathrm{kcal} / \mathrm{mol}$. Isopropyl groups were modeled as methyl groups. (b) 3D representations of key transition-state structures. Spin states are given in parenthesis. Hydrogens are removed for clarity. Distances are reported in \AA.

Figure 1.8. DFT-calculated reaction pathways for conversion of $\mathbf{3 8}$ to $\mathbf{4 4 / 4 6}$ as a function of oxidation state. Relative Gibbs free energies are shown in $\mathrm{kcal} / \mathrm{mol}$.

Figure 2.1. (a) A mechanism of the Pauson-Khand reaction initiated by a dinuclear oxidative coupling of the alkene and the alkyne. (b) A proposed vinylidene [$2+2+1]$-cycloaddition process involving a metallacycle derived from the migratory insertion of a 2π-component into a Ni_{2} (vinylidene). (c) A dinickel-catalyzed [2+2+1]-cycloaddition of two aldehydes and a vinylidene to generate methylenedioxolanes and synthetic applications to the synthesis of α hydroxy ketones.

Figure 2.2. Substrate scope studies. Isolated yields were determined following purification and were averaged over two runs. Standard reaction conditions: dichloroalkene ($0.2 \mathrm{mmol}, 1.0$ equiv), aldehyde (2.0 equiv), (${ }^{i-\mathrm{Pr}} \mathrm{NDI}$) $\mathrm{Ni}_{2} \mathrm{Cl}_{2}$ (6) $(10 \mathrm{~mol} \%), \mathrm{Zn}\left(4.0\right.$ equiv), DMA $(0.2 \mathrm{~mL}), \mathrm{Et}_{2} \mathrm{O}(0.8$

```
\(\mathrm{mL})\), rt, 24 h ; then TFA, \(0{ }^{\circ} \mathrm{C}\) to \(\mathrm{rt}, 2 \mathrm{~h} .{ }^{\mathrm{a}}\) Synthesized using 2-(4-
``` ((trimethylsilyl)oxy)phenyl)acetaldehyde..................................................................................... 32

Figure 2.3 Mechanistic Studies. (a) Competing \(\beta\)-hydride elimination and aldehyde migratory pathways. Concentration dependence of \(\beta\)-hydride elimination vs. aldehyde migratory insertion under (b) catalytic and (c) stoichiometric conditions. (d) Deuterium labelling experiment tracking the hydrogen undergoing \(\beta\)-hydride elimination. (e) Experiment assessing the intermediacy of enone 41 in the cycloaddition. 34

Figure 2.4. DFT modeling studies. All stationary points are fully optimized at the BP86/6-311g(d,p) level of theory and verified by frequency analysis. \(i\) - \(\operatorname{Pr}\) groups on the catalyst were truncated to Me groups. Relative \(\Delta \mathrm{G}\) values at 298 K are shown in \(\mathrm{kcal} / \mathrm{mol}\). The major pathway leading to the \([2+2+1]\)-cycloaddition product is shown in blue. Competing pathways to form the E-isomer of the product and the enone product are shown in green

Figure 3.1. Metal carbenes are key intermediates in several catalytic cyclopropanation reactions using diazoalkanes. Dinickel complexes catalyze regioselective cyclopropanations of 1,3-dienes without generating a \(\mathrm{Ni}_{2}\left(\mu-\mathrm{CR}_{2}\right)\) intermediate.

Figure 3.2. Calculated reaction pathway for the \(\left({ }^{i-\mathrm{Pr}} \mathrm{NDI}\right) \mathrm{Ni}_{2}\) catalyzed cyclopropanation to form \(\mathbf{8}\) (BP86/6-311g(d,p) level of DFT). Relative free energies are shown in \(\mathrm{kcal} / \mathrm{mol}\). Unless otherwise indicated, all structures correspond to \(S=0\) spin states. \(\mathrm{S} 7, \mathrm{~S} 8\), and S 8 ' were modelled as openshell singlets with a C-centered \(\alpha\)-TMS radical and the other unpaired electron delocalized in the NDI \(\pi\)-system. Transition states leading to the alternative regioisomer and diastereomer are shown.

\begin{abstract}
Metal-stabilized carbenes, most commonly formed through the decomposition of diazoacetates, are extensively employed in organic synthesis. However, several classes of carbenes, such as vinylidenes, are challenging to utilize in transition metal catalysis due to the instability of the required diazo precursors. To overcome this challenge, most transition metal-catalyzed vinylidene transfer and insertion methods rely on alkynes as vinylidene precursors. Only catalysts that form stable \(M=C\) multiple bonds and weak \(M(\pi-C \equiv C)\) interactions can promote this alkyne isomerization, and the resultant metal(vinylidene) species is often less reactive compared to free vinylidenes. The discovery of 1,1-dihaloalkenes as precursors to transition metal vinylidene complexes has significantly expanded the scope of vinylidene transfer and insertion reactions. Dinuclear catalysts were found to promote the reductive cyclization of 1,1-dichloroalkenes containing pendant alkenes to form methylenecycloalkenes, and mechanistic studies are consistent with the formation of a \(\mathrm{Ni}_{2}\) (vinylidene) species. Furthermore, these catalysts promote reductive three-component cycloaddition reactions with 1,1-dichloroalkenes and aldehydes to generate methylenedioxolanes, which upon treatment with aqueous acid provides access in one step to new, unsymmetrical aliphathic \(\alpha\)-hydroxy ketones that would be difficult to access with existing methods. Under dilute conditions, an enone byproduct is formed and a DFT model is presented that accounts for concentration-based reaction selectivity.
\end{abstract}

\section*{CHAPTER 1. DINICKEL CATALYZED VINYLIDENE OLEFIN CYCLIZATION REACTIONS}

Reprinted with permission from Steiman, T. J.; Kalb, A. E.; Coombs, J. C.; Kirkland, J. K.; Torres, H. Ess, D. H.; and Uyeda C. ACS Catalysis. 2021, 11, 23, 14408-14416. Copyright 2021 American Chemical Society.

\subsection*{1.1 Abstract}

A dinickel catalyst promotes reductive cyclization reactions of 1,1 -dichloroalkenes containing pendant olefins. The reactions can be conducted with a Zn reductant or electrocatalytically using a carbon working electrode. Mechanistic studies are consistent with the intermediacy of a \(\mathrm{Ni}_{2}\) (vinylidene) species, which adds to the alkene and generates a metallacyclic intermediate. \(\beta\)-Hydride elimination followed by \(\mathrm{C}-\mathrm{H}\) reductive elimination forms the cyclization product. The proposed dinickel metallacycle is structurally characterized and its stoichiometric conversion to product is demonstrated. Spin polarized, unrestricted DFT calculations are used to further examine the cyclization mechanism. These computational models reveal that both nickel centers function cooperatively to mediate the key oxidative addition, migratory insertion, \(\beta\) hydride elimination, and reductive elimination steps.

\subsection*{1.2 Introduction}

Catalytic 1,6-enyne cycloisomerizations are valuable transformations that yield cyclic unsaturated building blocks from acyclic precursors. \({ }^{1}\) A notable feature of these reactions is the diversity of products that can be generated from a single starting material (Figure 1.1a). There are various mechanisms by which transition metal catalysts can engage enyne substrates: oxidative ene-yne coupling to form a metallacycle, attack of an alkene on an electrophilic M(alkyne) species, and addition of a M-H to an alkyne followed by migratory insertion of an alkene. A majority of these processes favor the formation of five-membered ring exocyclization products, with the position of substituents dictated by the specific catalyst/substrate combination being used.

There is a less common type of enyne cycloisomerization that generates endocyclization products. \({ }^{2}\) For example, Wilkinson's catalyst converts 1,6-enynes into conjugated methylenecyclohexenes. \({ }^{3}\) On the basis of isotopic labelling experiments, Lee proposed that the
reaction is initiated by the isomerization of a Rh (alkyne) complex to a Rh (vinylidene). \({ }^{4,5}\) It stands to reason that this pathway is disfavored for most other catalysts, because alkynes are approximately \(43 \mathrm{kcal} / \mathrm{mol}\) more stable than their corresponding vinylidene isomers. \({ }^{6}\) Consequently, only catalysts that form stable \(\mathrm{M}=\mathrm{C}\) multiple bonds and weak \(\mathrm{M}(\pi-\mathrm{C} \equiv \mathrm{C})\) interactions can carry out this step. \({ }^{7}\)

Figure 1.1. (a) Exo and endo cyclization modes of 1,6-enynes. (b) Reductive activation of 1,1dichloroalkenes enable selective vinylidene-alkene cyclization reactions.

If generation of the key \(\mathrm{M}=\mathrm{C}=\mathrm{CR}_{2}\) intermediate did not rely on an isomerization of an alkyne, it may be possible to develop a more general strategy for catalytic vinylidene transfer. In this context, it was striking to us that the hypothetical reaction of 1,1 -dichloroethylene \({ }^{8}\) and Zn to form vinylidene \({ }^{9}\) and \(\mathrm{ZnCl}_{2}\) is near thermoneutral. Thus, reactive \(\mathrm{M}=\mathrm{C}=\mathrm{CR}_{2}\) species should be thermodynamically accessible from these starting materials. Based on this hypothesis, we discovered that dinickel catalysts could successfully promote intermolecular [2 + 1]cycloadditions of vinylidenes generated reductively from various substituted 1,1dichloroalkenes. \({ }^{10}\) Here, we present the intramolecular variant of this process, which generates the
product of a formal vinylidene insertion into a \(\mathrm{C}\left(\mathrm{sp}^{2}\right)-\mathrm{H}\) bond (Figure 1.1b). This approach to vinylidene generation addresses some of the previous limitations of enyne endocycloisomerizations. For example, internal alkenes are tolerated, and five-membered ring formations are demonstrated. A dinickel metallacycle derived from the addition of a vinylidene to an alkene is structurally characterized, and its role in the mechanism of catalysis is discussed. DFT calculations reveal that catalysis occurs through a series of intermediates and transition states where both Ni centers cooperatively direct bonding changes.

\subsection*{1.3 Results and Discussion}

\subsection*{1.3.1 Catalytic Intramolecular Vinylidene Additions to Alkenes}

Following reaction optimization studies, we identified a set of conditions that induces the reductive cyclization of model substrate \(\mathbf{1}\) to form methylenecyclohexene \(\mathbf{2}\) in \(92 \%\) yield (Table 1.1, entry 1). The active \(\left({ }^{i-\mathrm{Pr}} \mathrm{NDI}\right) \mathrm{Ni}_{2} \mathrm{Cl}(3)\) catalyst was generated in situ by stirring \({ }^{i-\mathrm{Pr}} \mathrm{NDI}\) (4) (5 \(\mathrm{mol} \%)\) and \(\mathrm{Ni}(\mathrm{dme}) \mathrm{Cl}_{2}(10 \mathrm{~mol} \%)\) over Zn powder (3.0 equiv) for 20 min prior to the addition of 1. Formation of \(\mathbf{3}\) is indicated by the appearance of a deep violet colored reaction solution. \({ }^{11}\) Premetallated complexes, such as \(\left({ }^{i-\mathrm{Pr}} \mathrm{NDI}\right) \mathrm{Ni}_{2} \mathrm{Cl}_{2}\) (5) and \(\left({ }^{i-\mathrm{Pr}} \mathrm{NDI}\right) \mathrm{Ni}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)\) (6), provided comparable yields of product \(\mathbf{2}, 91 \%\) and \(90 \%\), respectively (entries 4 and 5). The NDI variant containing ortho \(c\)-Pent substituents (7) was equally effective in the reaction (entry 6).

A low initial concentration of substrate 1 was beneficial for yield, presumably due to the suppression of competing bimolecular processes. For example, a two-fold increase in concentration to 0.05 M resulted in an \(11 \%\) decrease in yield (entry 7). In our survey of reductants, Mn provided a similar yield to that obtained with Zn (entry 8).

As a point of comparison, we also tested mononickel catalysts containing various combinations of pyridine and imine donors. In all cases, only trace quantities of \(\mathbf{2}\) were produced (\(<10 \%\) yield, entry 9). Likewise, other \(\mathrm{Ni}(\mathrm{I})\) dimers \(11^{12}\) and \(12^{13}\) also proved to be ineffective as catalysts (entry 10). Collectively, these results suggest that the constrained dinuclear active site of the (NDI)Ni \(i_{2}\) system is a requirement for efficient catalysis.

Table 1.1. Effects of Reaction Parameters on the Reductive Vinylidene Cyclization.

\({ }^{i-\mathrm{Pr}} \mathrm{NDI}(4), \mathrm{Ar}=2,6\)-(i-Pr) \(\mathrm{C}_{6} \mathrm{H}_{3} \quad \quad i-\mathrm{Pr} \operatorname{IP}(8)\) \(\mathrm{Ar}=\begin{gathered}i-\mathrm{Pr} P \mathrm{PDI}(\mathbf{9}) \\ 2,(i-\mathrm{Pr}) \mathrm{C}_{6} \mathrm{H}_{3}\end{gathered}\)

\({ }^{i-\text { Pr }}\) DAD (10)
\(\mathrm{Ar}=2,6-(i-\mathrm{Pr}) \mathrm{C}_{6} \mathrm{H}_{3}\)
\[
\begin{gathered}
{\left[(\mathrm{Pr}) \mathrm{NiCl}_{2}(11)\right.}
\end{gathered}
\]

\(\left[\left(^{\left(i-P_{r}\right.} \mathrm{DAD}\right) \mathrm{Ni}_{2}\right]_{2}(12)\) \(\mathrm{Ar}=2,6-(i-\mathrm{Pr}) \mathrm{C}_{6} \mathrm{H}_{3}\)
\begin{tabular}{|c|c|c|}
\hline entry & deviation from standard conditions \({ }^{\text {a }}\) & \begin{tabular}{l}
yield \\
(2)
\end{tabular} \\
\hline 1 & none & 92\% \\
\hline 2 & no 4 & 0\% \\
\hline 3 & no 4 and no \(\mathrm{Ni}(\mathrm{dme}) \mathrm{Cl}_{2}\) & 0\% \\
\hline 4 & \(\left({ }^{i-\mathrm{Pr}} \mathrm{NDI}\right) \mathrm{Ni}_{2} \mathrm{Cl}_{2}(5)\) instead of 4/ Ni (dme) \(\mathrm{Cl}_{2}\) & 91\% \\
\hline 5 & (i-Pr NDI) \(\mathrm{Ni}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)(6)\) instead of 4/ Ni (dme) \(\mathrm{Cl}_{2}\) & 90\% \\
\hline 6 & \({ }^{c-\text { Pent }}\) NDI (7) instead of 4 & 90\% \\
\hline 7 & 0.05 M instead of 0.025 M & 81\% \\
\hline 8 & Mn instead of Zn & 88\% \\
\hline 9 & Ligands 8-10 (5 mol\%) instead of \(4^{\text {b }}\) & <10\% \\
\hline 10 & 11 or 12 (\(5 \mathrm{~mol} \%\)) instead of \(4 / \mathrm{Ni}(\mathrm{dme}) \mathrm{Cl}_{2}\) & <1\% \\
\hline
\end{tabular}
\({ }^{\text {a }}\) Standard reaction conditions: \(1\left(0.10 \mathrm{mmol}, 1.0\right.\) equiv), \({ }^{i-\mathrm{Pr}} \mathrm{NDI}(5 \mathrm{~mol} \%), \mathrm{Ni}(\mathrm{dme}) \mathrm{Cl}_{2}(10 \mathrm{~mol} \%), \mathrm{Zn}(0.3 \mathrm{mmol}, 3.0\) equiv), NMP (0.8 mL), THF (3.2 mL), 24 h , rt . All yields were determined by 1 H NMR using mesitylene (1.0 equiv) as an internal standard. \({ }^{\mathrm{b}} 5 \mathrm{~mol} \%\) of \(\mathrm{Ni}(\mathrm{dme}) \mathrm{Cl}_{2}\).

\subsection*{1.3.2 Substrate Scope Studies}

With optimized reaction conditions in hand, we next examined how structural changes to the substrate influence the yield of cyclization (Figure 1.2). A variety of synthetic routes were used to prepare the requisite 1,1-dichloroalkene substrates. For example, diastereoselective conjugate
allylation using an oxazolidinone chiral auxiliary yielded \(\mathbf{1 3} .{ }^{14}\) Conversion of \(\mathbf{1 3}\) to aldehyde \(\mathbf{1 4}\) was carried out with DIBAL-H, and one-carbon homologation using \(\mathrm{CCl}_{4}\) (2.0 equiv) and \(\mathrm{Ph}_{3} \mathrm{P}\) (4.0 equiv) yielded 1,1-dichloroalkene 15. The catalytic reductive cyclization was carried out under standard conditions and provided 16 in \(81 \%\) yield.

Figure 1.2. Substrate scope studies. Isolated yields were determined following purification and were averaged over two runs. Standard reaction conditions: substrate (0.2 mmol), i-PrNDI (4) (\(5-10 \mathrm{~mol} \%\)), \(\mathrm{Ni}(\mathrm{dme}) \mathrm{Cl} 2(10-20 \mathrm{~mol} \%), \mathrm{Zn}\) (3.0 equiv), NMP (1.6 mL), THF (6.4 mL), rt or \(50{ }^{\circ} \mathrm{C}, 24 \mathrm{~h} .{ }^{a}\) substrate (0.2 mmol), \({ }^{c-\text {-pent }} \mathrm{NDI}(7),(10 \mathrm{~mol} \%), \mathrm{Ni}(\mathrm{dme}) \mathrm{Cl}_{2}\) (20 mol\%), Zn (3.0 equiv), NMP (0.8 mL), THF (7.2 mL), rt, 24 h .

Variation of the substrate tether length grants access to five-membered ring products, requiring only slight modifications to the reaction conditions: increased catalyst loading (\(10 \mathrm{~mol} \%\)) and heating at \(50^{\circ} \mathrm{C}\). In addition to forming methylenecyclohexenes and methylenecyclopentenes, this method is also amendable to the formation of unsaturated heterocycles (product 18). However,
an attempted cyclization to form a seven-membered ring did not yield any product. Common functional groups are tolerated, including protected alcohols, acetals, and esters. Steric hindrance adjacent to the 1,1 -dichloroalkene is well-tolerated (products 26, 28, and 30). However, substituting the position next to the terminal alkene results in no yield of cyclized product.

Upon further evaluation of the reaction conditions, we found that a limited scope of products containing substituted exocyclic alkenes are accessible when the \(c\)-Pent substituted NDI ligand 7 was used in the place of the \(i\)-Pr ligand 4. For example, ester substituted methylenecyclopentene 32 is formed in \(63 \%\) yield (\(13: 1 \mathrm{Z} / \mathrm{E}\) mixture) from 31-E. On the other hand, a substrate containing a Ph substituent on the alkene proved to be unreactive (see Supporting Information for a summary of the reaction limitations).

\subsection*{1.3.3 Evidence in Support of a Stepwise \(\mathrm{Ni}_{2}\) (vinylidene) Addition Mechanism}

The proposed mechanism for Rh-catalyzed 1,6-enyne cycloisomerization reactions involves an initial \([2+2]\)-cycloaddition of a Rh vinylidene and the pendant alkene. \({ }^{4}\) The metallacyclic intermediate then undergoes \(\beta\)-hydride elimination followed by \(\mathrm{C}-\mathrm{H}\) reductive elimination to form the product. There is evidence to support a similar mechanism for the \(\mathrm{Ni}_{2}\)-catalyzed reductive cyclization, as opposed to a direct \(\mathrm{C}-\mathrm{H}\) insertion mechanism as would be typical for free vinylidene 1,5-insertions into \(\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H}\) bonds (Figure 1.3). \({ }^{15}\)

A substrate containing a methyl substituent on the alkene was prepared and tested in the reductive cyclization. The putative metallacycle that would be generated from this substrate would have two potential pathways for \(\beta\)-hydride elimination. Indeed, \(\mathbf{3 3}\) reacts under standard catalytic conditions to yield a 1:4 mixture of two isomeric products (\(\mathbf{3 4}\) and \(\mathbf{3 5}\)) in a combined yield of \(84 \%\).

Substrates 36-E and 36-Z react in a stereoconvergent fashion to provide the same product with \(Z\) stereochemistry at the exocyclic alkene. One possible explanation for this observation is that the alkene stereochemistry scrambles through a reversible \(\beta\)-hydride elimination/migratory insertion process. This result is inconsistent with a direct \(\mathrm{C}-\mathrm{H}\) insertion mechanism, which would preserve the alkene stereochemistry.

Figure 1.3. Experiments supporting a stepwise vinylidene addition mechanism.

\subsection*{1.4 Electrocatalytic Reductive Cyclizations and the Role of \(\mathbf{Z n}\)}

By cyclic voltammetry (CV), (\(\left.{ }^{(-\mathrm{Pr}} \mathrm{NDI}\right) \mathrm{Ni}_{2} \mathrm{Cl}_{2}(\mathbf{5})\) possesses two reduction waves at -1.14 V and -1.34 V vs. \(\mathrm{Cp}_{2} \mathrm{Fe}^{2} \mathrm{Cp}_{2} \mathrm{Fe}^{+}\)and one return oxidation at -1.05 V (Figure 4 c). We attribute the presence of two reductive events to partial dissociation of chloride in the polar NMP solvent. \({ }^{17}\) When the CV of \(\mathbf{5}\) was obtained in THF, only the more cathodic wave at -1.34 V was observed. \({ }^{17}\) There is a second reversible reduction at \(\mathrm{E}_{1 / 2}=-1.64 \mathrm{~V}\). When \(\left({ }^{i-\mathrm{Pr}^{2}} \mathrm{NDI}\right) \mathrm{Ni}_{2} \mathrm{Cl}_{2}\) complex \(\mathbf{5}\) is stirred over excess Zn powder, it undergoes a one-electron reduction to the violet \(\left({ }^{i-\mathrm{Pr}} \mathrm{NDI}\right) \mathrm{Ni}_{2} \mathrm{Cl}\) complex 3, and no further reduction is observed. This result suggests that the mechanism of catalysis does not require accessing the two-electron reduced state of the \(\mathrm{Ni}_{2}\) complex. When CV experiments were conducted using solutions of complex 5 containing substrate 1 , the reduction events for 5 became irreversible, indicating that activation of the 1,1-dichloroalkene by the reduced catalyst is rapid on the CV timescale.

B

c

Figure 1.4. (a) Controlled potential electrolysis experiments for the catalytic conversion of \(\mathbf{1}\) to 2.
(b) Experimental setup (\(\mathrm{CE}=\) counter electrode; \(\mathrm{RE}=\) reference electrode; \(\mathrm{WE}=\) working electrode) and a proposed one-electron catalytic cycle. (c) Cyclic voltammetry data for complex 5 in the presence and absence of \(\mathbf{1}\left(0.3 \mathrm{M}\left[n-\mathrm{BuN}_{4}\right] \mathrm{PF}_{6}\right.\) in NMP; \(100 \mathrm{mV} / \mathrm{s}\) scan rate). All cyclic voltammograms were internally referenced to the \(\mathrm{Cp}_{2} \mathrm{Fe} / \mathrm{Cp}_{2} \mathrm{Fe}^{+}\)couple.

Based on these data, bulk electrolysis experiments were carried out at constant potential (0.75 V vs. a \(\mathrm{Ag} / \mathrm{Ag}^{+}\)reference electrode; approximately -1.35 V vs. \(\mathrm{Cp}_{2} \mathrm{Fe} / \mathrm{Cp}_{2} \mathrm{Fe}^{+}\)) using substrate 1 in a divided H -cell (Figure 1.4a and 1.4b). In order to ensure high mass transport, a large surface area carbon cloth working electrode was used, and the reaction was stirred vigorously at 900 rpm . After 8 h of electrolysis, an aliquot of the reaction mixture was removed. Analysis by \({ }^{1} \mathrm{H}\) NMR spectroscopy indicated that product 2 was formed in \(94 \%\) yield, and 20.6 C of charge (\(2.27 \mathrm{~F} / \mathrm{mol}\) of product) were passed during the 8 h reaction period, corresponding to a Faradaic efficiency of \(88 \%\).

\subsection*{1.5 Stoichiometric Reductive Cyclization Reactions}

Having established that Zn is only involved in catalyst turnover, we next examined a series of stoichiometric reactions using \(\left({ }^{i-\mathrm{Pr}} \mathrm{NDI}\right) \mathrm{Ni}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)(6)\). A reaction between 6 (1.0 equiv) and substrate 1 was carried out in \(\mathrm{C}_{6} \mathrm{D}_{6}\) and monitored by \({ }^{1} \mathrm{H}\) NMR spectroscopy (Figure 1.5a). Over the course of 24 h , cyclized product 2 was generated (\(90 \%\) yield), concomitant with the formation of (\(\left.{ }^{i-\mathrm{Pr}} \mathrm{NDI}\right) \mathrm{Ni}_{2} \mathrm{Cl}_{2}(\mathbf{5})\). When the same experiment was repeated using substrate \(\mathbf{2 5}\), some amount of (\(\left.{ }^{i-\mathrm{Pr}} \mathrm{NDI}\right) \mathrm{Ni}_{2} \mathrm{Cl}_{2}\) (5) was still generated, but the expected cyclized product 26 could not be detected, and no other diagnostic peaks were observed in the \({ }^{1} \mathrm{H}\) NMR spectrum, even after 24 h
(Figure 1.5b). A frozen-solution EPR spectrum of the product mixture showed a prominent rhombic signal, indicating the presence of an \(S=1 / 2 \mathrm{Ni}_{2}\) complex (Figure 1.5d).

Figure 1.5. Experiments probing the stoichiometric activation of 1,1-dichloroalkene substrates with \(\left({ }^{i-\mathrm{Pr}} \mathrm{NDI}\right) \mathrm{Ni}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)\) complex 6 . (a) Stoichiometric reductive cyclization of \(\mathbf{1}\) using complex 6. (b) Stoichiometric reaction between complex 6 and substrate 25 to form metallacycle 38. (c) XRD structure of metallacycle 38. Selected bond metrics: Ni1-Ni2: 2.743(1) Å; Ni1-C1: 2.000(6) \(\AA\); Ni1-C3: 1.967(4) Å; Ni2-C1: 1.954(5) Å; Ni2-Cl: 2.243(2) Å. (d) Frozen solution EPR spectrum for \(\mathbf{3 8}\) (105 K ; toluene). Simulated parameters: \(g=[2.378,2.226,2.093]\). * corresponds to a \(S=1 / 2\) impurity. (e) UM06-L spin density plot for 38 .

After removing the \(\left({ }^{i-\mathrm{Pr}} \mathrm{NDI}\right) \mathrm{Ni}_{2} \mathrm{Cl}_{2}\) byproduct (5) from this crude mixture, the EPR active complex was successfully isolated, and single crystals were obtained from a pentane/THF solution. XRD analysis revealed that the unknown \(\mathrm{Ni}_{2}\) species (38) is a metallacycle, resulting from the addition of a vinylidene to the pendant alkene (Figure 1.5c). The two Ni atoms, the alkene, and the vinylidene form a five-membered ring, and Nil is engaged in a secondary \(\pi\)-interaction with the C1-C2 double bond. Only one chloride is present in the structure, consistent with \(\mathbf{3 8}\) being in a non-integer spin system. Therefore, the balanced equation for this reaction involves 1.5 equiv of \(\left({ }^{i-\mathrm{Pr}} \mathrm{NDI}\right) \mathrm{Ni}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)(\mathbf{6})\) reacting with 1.0 equiv of substrate \(\mathbf{2 5}\) to form 0.5 equiv of \(\left({ }^{i-\mathrm{Pr}} \mathrm{NDI}\right) \mathrm{Ni}_{2} \mathrm{Cl}_{2}\) (5) and 1.0 equiv of \(\mathbf{3 8}\).

Complex 38 is best described as a mixed valent \(\mathrm{Ni}(\mathrm{II}) / \mathrm{Ni}(\mathrm{I})\) species, with the NDI ligand having a neutral charge. The neutral charge of the ligand is supported by analysis of the ligand \(\mathrm{C}-\) C and \(\mathrm{C}-\mathrm{N}\) bond metrics in the XRD structure. The Ni1-Ni2 distance is \(2.743 \AA\), which is considerably longer than the \(\mathrm{Ni}(\mathrm{I})-\mathrm{Ni}(\mathrm{I})\) single bond in complex 6 , suggesting that there is minimal covalent bonding between the two Ni atoms. The spin density plot shows that the unpaired electron is localized on Ni 2 , which is in a pseudo-tetrahedral geometry (\(\tau_{4}=0.85\)) (Figure 1.5 e). Ni1 is pseudo-square planar \(\left(\tau_{4}=0.14\right)\) and is calculated to be in a low-spin configuration.

Metallacycle 38 is sufficiently stable at room temperature to allow for its isolation. However, upon extended heating at \(50{ }^{\circ} \mathrm{C}\) in NMP/THF, the optimal solvent mixture for the catalytic cyclization, it reacts to form cyclized product \(\mathbf{2 6}\) in \(64 \%\) yield after 9 h (Figure 1.6). Given the relatively slow rate of this stoichiometric process and the modest yield of 26, we wondered whether the catalytic cyclization may require reduction of metallacycle 38. Indeed, metallacycle 38 possesses a reversible one-electron reduction at -1.59 V vs. \(\mathrm{Cp}_{2} \mathrm{Fe} / \mathrm{Cp}_{2} \mathrm{Fe}^{+}\), which would be accessible using Zn (see Supporting Information).

Figure 1.6. Comparison of rates and yields for stoichiometric cyclizations to form \(\mathbf{2 6}\) as a function of oxidation state.

When 38 was stirred over Zn (3.0 equiv) in NMP/THF at \(50^{\circ} \mathrm{C}\), product \(\mathbf{2 6}\) was obtained in \(96 \%\) yield after only 1 h . Given the fast rate of product formation, we were unable to isolate the reduced metallacycle 39 . However, when metallacycle 38 was dissolved in \(\mathrm{C}_{6} \mathrm{D}_{6}\) and reduced over
\(\mathrm{KC}_{8}\) (1.2 equiv), a new set of diamagnetic signals was observed in the \({ }^{1} \mathrm{H}\) NMR spectrum. These signals decay over the course of 3 h at \(50{ }^{\circ} \mathrm{C}\) to provide product 26 in \(58 \%\) yield and the (\({ }^{i-}\) \(\left.{ }^{P r} \mathrm{NDI}\right) \mathrm{Ni}_{2}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)\) complex 6 in \(61 \%\) yield.

\subsection*{1.6 DFT Calculations}

We used unrestricted DFT (UM06-L) \({ }^{18,19,20}\) to calculate the thermodynamics, barriers, and spin crossovers (MECPro program) \({ }^{21}\) of reaction pathways that convert \(\mathbf{4 0}\) to \(\mathbf{3 8}\) and then to \(\mathbf{4 4}\) (Figures 1.7 and 1.8). From previous benchmarking studies of DFT methods, the M06-L functional was identified as producing relative energies of different spin states for (NDI) \(\mathrm{Ni}_{2}\) complexes that matched experimental data. \({ }^{22}\) Five major pathways were explored for the conversion of 40 to 38, each having oxidative addition, migratory insertion, and reduction steps in different orders. Figure 1.7 displays only the lowest energy pathway.

The initial \(\pi\)-complex 40 favors a triplet ground state, but the singlet is only \(3 \mathrm{kcal} / \mathrm{mol}\) higher in energy, suggesting that it may have some multireference character. Oxidative addition of the \(\mathrm{C}-\mathrm{Cl}\) bond (TS40) has a low barrier on both the singlet and triplet surfaces. Both Ni centers are directly involved in the oxidative addition, such that the resulting vinyl and chloride fragments in 41 are situated in bridging positions. Vinyl complex 41 has a quintet ground state, and an energydegenerate spin crossover structure (minimum energy crossing point; MECP) between the triplet and quintet surfaces was identified.

From 41, reduction with Zn coupled to chloride loss is endothermic by \(4 \mathrm{kcal} / \mathrm{mol}\). The thermodynamics of this first reduction was calculated as the conversion of \(\mathrm{Zn}_{2}\) to linear \(\mathrm{Zn}_{2} \mathrm{Cl}\). Later, the second reduction was calculated as the conversion of \(\mathrm{Zn}_{2} \mathrm{Cl}\) to \(\mathrm{ZnCl}_{2}\) and Zn . This reduction step provides a low barrier pathway for activation of the second \(\mathrm{C}-\mathrm{Cl}\) bond through TS41. Similar to TS40, both Ni centers participate in \(\mathrm{C}-\mathrm{Cl}\) oxidative addition. This transition state leads to bridging vinylidene complex 42, which features a secondary interaction between the vinylidene \(\pi\)-bond and one of the Ni centers (Figure 1.7). The isolable complex 38 can be accessed through a low energy migratory insertion pathway with a barrier of \(<2 \mathrm{kcal} / \mathrm{mol}\) on the quartet surface (TS42). In progressing from \(\mathbf{4 2}\) to \(\mathbf{3 8}\), the \(\mathrm{Ni}-\mathrm{Ni}\) distance elongates from 2.60 to \(2.69 \AA\) to accommodate the incoming alkene.

As an alternative mechanism for the formation of 38 , a non-reductive second \(\mathrm{C}-\mathrm{Cl}\) oxidative addition step from 41 was considered but found to be higher in energy. Furthermore, without
formation of vinylidene \(\mathbf{4 2}\), migratory insertion of the pendant alkene into the Ni (vinyl) bond of 41 was calculated to be prohibitive in energy (activation barrier: \(28 \mathrm{kcal} / \mathrm{mol}\)).

B

Figure 1.7. (a) DFT-calculated reaction pathways for the cyclization of \(\mathbf{2 5}\) to give complex \(\mathbf{3 8}\). Relative Gibbs free energies are shown in \(\mathrm{kcal} / \mathrm{mol}\). Isopropyl groups were modeled as methyl groups. (b) 3D representations of key transition-state structures. Spin states are given in parenthesis. Hydrogens are removed for clarity. Distances are reported in \(\AA\).

Finally, we examined pathways for the conversion of metallacycle 38 to the cyclized product. The fact that complex 38 can be isolated indicates that the subsequent \(\beta\)-hydride elimination must have a relatively high barrier (Figure 1.8). Our DFT calculations corroborate this finding, and the calculated barrier for \(\beta\)-hydride elimination is \(29 \mathrm{kcal} / \mathrm{mol}\). Reduction of 38 and loss of chloride lowers the migratory insertion barrier to \(26 \mathrm{kcal} / \mathrm{mol}\), which is also consistent with experimental findings (Figure 1.8). \(\beta\)-Hydride elimination gives hydride 43. Reductive elimination
occurs at a single Ni center and has a barrier of \(3 \mathrm{kcal} / \mathrm{mol}\), yielding the product complex \(\mathbf{4 4}\), where the conjugated diene is \(\eta^{4}\)-coordinated to both Ni centers.

Figure 1.8. DFT-calculated reaction pathways for conversion of \(\mathbf{3 8}\) to \(\mathbf{4 4 / 4 6}\) as a function of oxidation state. Relative Gibbs free energies are shown in \(\mathrm{kcal} / \mathrm{mol}\).

\subsection*{1.7 Conclusions}

In summary, dinickel catalysts promote the reductive cyclization of 1,1-dichloroalkenes containing pendant alkenes through a \(\mathrm{Ni}_{2}\)-bound bridging vinylidene intermediate. Previous approaches to carrying out such cyclizations relied on a metal-induced alkyne-to-vinylidene isomerization. However, there is a limited scope of catalysts that can carry out this step, and endo cycloisomerizations are significantly less common that exo cycloisomerizations that proceed through metal(alkyne) intermediates. This reductive strategy may therefore prove useful in other transformations where alkynes are not viable as metal(vinylidene) precursors.

Mechanistic studies are consistent with a putative \(\mathrm{Ni}_{2}\) (vinylidene) undergoing migratory insertion to generate a metallacyclic intermediate. Product formation would then proceed by \(\beta\) hydride elimination followed by \(\mathrm{C}-\mathrm{H}\) reductive elimination. In the case of a five-membered ringforming reaction, the key metallacyclic intermediate proved to be an isolable complex, and
reduction with Zn resulted in high-yielding conversion to product. DFT models reveal that the canonical organometallic steps-oxidative addition, migratory insertion, \(\beta\)-hydride elimination, and reductive elimination-involve the direct participation of both Ni centers, with the \(\mathrm{Ni}-\mathrm{Ni}\) interaction responding as needed to accommodate various reactive intermediates.

\subsection*{1.8 Acknowledgements}

This research was supported by the NIH (R35 GM124791). C.U. acknowledges support from a Camille Dreyfus Teacher-Scholar award and a Lilly Grantee award. D.H.E. thanks the NSF Chemical Catalysis Program for support (CHE-1764194). Funding for Hector Torres was provided by the NSF Chemistry and Biochemistry REU Site to Prepare Students for Graduate School and an Industrial Career under award CHE-1757627. We thank Dr. Matthias Zeller for assistance with X-ray crystallography. D.H.E. thanks Brigham Young University (BYU) and the Fulton Supercomputing Lab (FSL).

\subsection*{1.9 References}
(1) (a) Ojima, I.; Tzamarioudaki, M.; Li, Z.; Donovan, R. J. "Transition Metal-Catalyzed Carbocyclizations in Organic Synthesis" Chem. Rev. 1996, 96, 635-662; (b) Aubert, C.; Buisine, O.; Malacria, M. "The Behavior of 1,n-Enynes in the Presence of Transition Metals" Chem. Rev. 2002, 102, 813-834; (c) Lloyd-Jones, G. C. "Mechanistic aspects of transition metal catalysed 1,6-diene and 1,6-enyne cycloisomerisation reactions" Org. Biomol. Chem. 2003, 1, 215-236; (d) Echavarren, A. M.; Nevado, C. "Non-stabilized transition metal carbenes as intermediates in intramolecular reactions of alkynes with alkenes" Chem. Soc. Rev. 2004, 33, 431-436; (e) Zhang, L.; Sun, J.; Kozmin, S. A. "Gold and Platinum Catalysis of Enyne Cycloisomerization" Adv. Synth. Catal. 2006, 348, 22712296; (f) Michelet, V.; Toullec, P. Y.; Genêt, J.-P. "Cycloisomerization of 1,n-Enynes: Challenging Metal-Catalyzed Rearrangements and Mechanistic Insights" Angew. Chem., Int. Ed. 2008, 47, 4268-4315.
(2) (a) Nuñez-Zarur, F.; Solans-Monfort, X.; Rodríguez-Santiago, L.; Sodupe, M. "Exo/endo Selectivity of the Ring-Closing Enyne Methathesis Catalyzed by Second Generation RuBased Catalysts. Influence of Reactant Substituents" ACS Catal. 2013, 3, 206-218; (b) Lee, O. S.; Kim, K. H.; Kim, J.; Kwon, K.; Ok, T.; Ihee, H.; Lee, H.-Y.; Sohn, J.-H. "Correlation between Functionality Preference of Ru Carbenes and exo/endo Product Selectivity for Clarifying the Mechanism of Ring-Closing Enyne Metathesis" J. Org. Chem. 2013, 78, 8242-8249.
(3) Grigg, R.; Stevenson, P.; Worakun, T. "Rhodium (I) catalysed regiospecific cyclisation of 1,6enynes to methylenecyclohex-2-enes" Tetrahedron 1988, 44, 4967-4972.
(4) Kim, H.; Lee, C. " Cycloisomerization of Enynes via Rhodium Vinylidene-Mediated Catalysis" J. Am. Chem. Soc. 2005, 127, 10180-10181.
(5) (a) Bruneau, C.; Dixneuf, P. H. "Metal Vinylidenes and Allenylidenes in Catalysis: Applications in Anti-Markovnikov Additions to Terminal Alkynes and Alkene Metathesis" Angew. Chem., Int. Ed. 2006, 45, 2176-2203; (b) Bruneau, C.; Dixneuf, P. Metal vinylidenes and allenylidenes in catalysis: from reactivity to applications in synthesis; John Wiley \& Sons, 2008; (c) Trost, B. M.; McClory, A. "Metal Vinylidenes as Catalytic Species in Organic Reactions" Chem. Asian J. 2008, 3, 164-194; (d) Roh, S. W.; Choi, K.; Lee, C. "Transition Metal Vinylidene- and Allenylidene-Mediated Catalysis in Organic Synthesis" Chem. Rev. 2019, 119, 4293-4356.
(6) Chang, N.-Y.; Shen, M.-Y.; Yu, C.-H. "Extended ab initio studies of the vinylidene-acetylene rearrangement" J. Chem. Phys. 1997, 106, 3237-3242.
(7) Bruce, M. I. "Organometallic chemistry of vinylidene and related unsaturated carbenes" Chem. Rev. 1991, 91, 197-257.
(8) Manion, J. A. "Evaluated Enthalpies of Formation of the Stable Closed Shell C1 and C2 Chlorinated Hydrocarbons" J. Phys. Chem. Ref. Data 2002, 31, 123-172.
(9) Lee, H.; Baraban, J. H.; Field, R. W.; Stanton, J. F. "High-Accuracy Estimates for the Vinylidene-Acetylene Isomerization Energy and the Ground State Rotational Constants of : \(\mathrm{C}=\mathrm{CH}_{2}\) " J. Phys. Chem. A 2013, 117, 11679-11683.
(10) (a) Pal, S.; Zhou, Y.-Y.; Uyeda, C. "Catalytic Reductive Vinylidene Transfer Reactions" J. Am. Chem. Soc. 2017, 139, 11686-11689; (b) Zhou, Y.-Y.; Uyeda, C. "Catalytic reductive [4 + 1]-cycloadditions of vinylidenes and dienes" Science 2019, 363, 857-862.
(11) Zhou, Y.-Y.; Hartline, D. R.; Steiman, T. J.; Fanwick, P. E.; Uyeda, C. "Dinuclear Nickel Complexes in Five States of Oxidation Using a Redox-Active Ligand" Inorg. Chem. 2014, 53, 11770-11777.
(12) Dible, B. R.; Sigman, M. S.; Arif, A. M. "Oxygen-Induced Ligand Dehydrogenation of a Planar Bis- \(\mu\)-Chloronickel(I) Dimer Featuring an NHC Ligand" Inorg. Chem. 2005, 44, 3774-3776.
(13) Dong, Q.; Yang, X.-J.; Gong, S.; Luo, Q.; Li, Q.-S.; Su, J.-H.; Zhao, Y.; Wu, B. "Distinct Stepwise Reduction of a Nickel-Nickel-Bonded Compound Containing an \(\alpha\)-Diimine Ligand: From Perpendicular to Coaxial Structures" Chem. Eur. J. 2013, 19, 15240-15247.
(14) Smith, A. B.; Cantin, L.-D.; Pasternak, A.; Guise-Zawacki, L.; Yao, W.; Charnley, A. K.; Barbosa, J.; Sprengeler, P. A.; Hirschmann, R.; Munshi, S.; Olsen, D. B.; Schleif, W. A.; Kuo, L. C. "Design, Synthesis, and Biological Evaluation of Monopyrrolinone-Based HIV1 Protease Inhibitors" J. Med. Chem. 2003, 46, 1831-1844.
(15) Knorr, R. "Alkylidenecarbenes, Alkylidenecarbenoids, and Competing Species: Which Is Responsible for Vinylic Nucleophilic Substitution, [1 + 2] Cycloadditions, 1,5-CH Insertions, and the Fritsch-Buttenberg-Wiechell Rearrangement?" Chem. Rev. 2004, 104, 3795-3850.
(16) (a) Perkins, R. J.; Pedro, D. J.; Hansen, E. C. "Electrochemical Nickel Catalysis for \(\mathrm{sp}^{2}-\mathrm{sp}^{3}\) Cross-Electrophile Coupling Reactions of Unactivated Alkyl Halides" Org. Lett. 2017, 19, 3755-3758; (b) Perkins, R. J.; Hughes, A. J.; Weix, D. J.; Hansen, E. C. "Metal-ReductantFree Electrochemical Nickel-Catalyzed Couplings of Aryl and Alkyl Bromides in Acetonitrile" Org. Process Res. Dev. 2019, 23, 1746-1751; (c) DeLano, T. J.; Reisman, S. E. "Enantioselective Electroreductive Coupling of Alkenyl and Benzyl Halides via Nickel Catalysis" ACS Catal. 2019, 9, 6751-6754; (d) Jiao, K.-J.; Liu, D.; Ma, H.-X.; Qiu, H.; Fang, P.; Mei, T.-S. "Nickel-Catalyzed Electrochemical Reductive Relay Cross-Coupling of Alkyl Halides to Aryl Halides" Angew. Chem., Int. Ed. 2020, 59, 6520-6524; (e) Truesdell, B. L.; Hamby, T. B.; Sevov, C. S. "General C(sp2)-C(sp3) Cross-Electrophile Coupling Reactions Enabled by Overcharge Protection of Homogeneous Electrocatalysts" J. Am. Chem. Soc. 2020, 142, 5884-5893.
(17) Zhou, Y.-Y.; Uyeda, C. "Reductive Cyclopropanations Catalyzed by Dinuclear Nickel Complexes" Angew. Chem., Int. Ed. 2016, 55, 3171-3175.
(18) Stationary points were optimized in Gaussian 16 using unrestricted M06-L. All singlet structures refer to open-shell singlets that have spin contamination. All structures were verified as minima or transition-state structures using normal-mode vibrational frequency analysis. All Gibbs energies include standard thermochemical enthalpy and entropy corrections at 298 K .
(19) Zhao, Y.; Truhlar, D. G. "The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals" Theo. Chem. Acc. 2008, 120, 215-241.
(20) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Peters-son, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Far-kas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16, revision B.01; Gaussian, Inc., Wallingford CT, 2016.
(21) MECPro Version 1.0.6. Minimum Energy Crossing Program (2020) Justin D. Snyder, LilyAnne Hamill, Kavika E. Faleumu, Allen R. Schultz and Daniel H. Ess.
(22) Kwon, D.-H.; Proctor, M.; Mendoza, S.; Uyeda, C.; Ess, D. H. "Catalytic Dinuclear Nickel Spin Crossover Mechanism and Selectivity for Alkyne Cyclotrimerization" ACS Catal. 2017, 7, 4796-4804.

\section*{CHAPTER 2. A DINICKEL-CATALYZED THREE-COMPONENT CYCLOADDITION OF VINYLIDENES}

\begin{abstract}
A dinickel catalyst promotes the [2+2+1]-cycloaddition of two aldehyde equivalents and a vinylidene. The resulting methylenedioxolane products can be deprotected in one pot under acidic conditions to reveal \(\alpha\)-hydroxy ketones. This method provides convenient access to unsymmetrical alkyl-substituted \(\alpha\)-hydroxy ketones, which are challenging to synthesize selectively using crossbenzoin reactions. Mechanistic studies are consistent with an initial migratory insertion of the aldehyde into a dinickel bridging vinylidene. Insertion of the second aldehyde followed by \(\mathrm{C}-\mathrm{O}\) reductive elimination furnishes the cycloadduct. Under dilute conditions, an enone side product is generated due to a competing \(\beta\)-hydride elimination from the proposed metallacyclic intermediate. A DFT model consistent with the concentration-dependent formation of the methylenedioxolane and enone is presented.
\end{abstract}

\subsection*{2.1 Introduction}
\([2+2+1]\)-Cycloadditions provide some of the most direct routes to five-membered rings and feature in numerous total syntheses of polycyclic natural products. \({ }^{1}\) The Pauson-Khand reaction is the prototypical example in this class of cycloadditions and uses \(\mathrm{Co}_{2}(\mathrm{CO})_{8}\) to mediate the coupling of an alkyne, an alkene, and CO (Figure 2.1a). \({ }^{2}\) In the half century since its discovery, other transition metal catalysts have been found to promote Pauson-Khand reactions, \({ }^{3}\) and variants where the alkene is replaced with a hetero- \(\pi\)-system, such as an imine \({ }^{4}\) or an aldehyde, \({ }^{5}\) have been developed. In most cases, CO is required to serve as the one-atom partner, though in some cases isonitriles can also be used. \({ }^{6}\) Mechanistically, Pauson-Khand reactions are initiated by the oxidative cyclization of the alkene and the alkyne. \({ }^{7} \mathrm{CO}\) is then incorporated by migratory insertion followed by \(\mathrm{C}-\mathrm{C}\) reductive elimination.

It would be synthetically valuable to expand the scope of \([2+2+1]\)-cycloadditions to include more reactive classes of carbenes. \({ }^{8}\) To that end, we became interested in a mechanistic pathway that would effectively reverse the typical sequence of events in the Pauson-Khand reaction. First, a metal carbene \(\left(M=R_{2}\right)\), generated from an appropriate precursor, would react
with a \(2 \pi\)-component to form a four-membered metallacycle. \({ }^{9}\) If reductive elimination were sufficiently slow, then it may be possible to intercept this intermediate with a second \(2 \pi\) component to yield a five-membered cycloadduct. The principal challenge in this scheme is avoiding direct \([2+1]\)-additions of the metal carbene, which would lead to the formation threemembered ring products. Indeed, many of the most common carbene transfer catalysts, such as \(\mathrm{Rh}_{2}\left(\mathrm{CO}_{2} \mathrm{R}\right)_{4}{ }^{10}\) and \(\mathrm{Cu}(\mathrm{I})\) complexes, \({ }^{11}\) carry out cyclopropanation reactions by this concerted pathway, making them unsuitable for the development of three-component cycloadditions.

Dinickel catalysts promote methylenecyclopropanation reactions using vinylidenes derived from 1,1-dichloroalkenes (Figure 2.1b). \({ }^{12}\) Mechanistic studies suggest that, rather than a concerted [2 +1\(]\)-cycloaddition, these reactions proceed in a stepwise manner. The primary evidence came from experiments probing stereospecificity. When a geometrically pure alkene was used, the cyclopropane was formed as a cis/trans mixture. This observation, supported by DFT modelling studies, led us to propose a mechanism in which the alkene first undergoes migratory insertion into a \(\mathrm{Ni}_{2}\) (vinylidene) to form an intermediate with the general structure \(\mathbf{1}\). Then, \(\mathrm{C}-\mathrm{C}\) reductive elimination generates the cyclopropane product. We were recently successful in arresting this process and obtaining direct experimental support for metallacycle \(1 .{ }^{13}\) By using a substrate in which the 1,1 -dichloroalkene is tethered to the alkene, the final \(\mathrm{C}-\mathrm{C}\) reductive elimination is precluded by the high ring-strain of the hypothetical bicyclic methylenecyclopropane product.

Based on this stepwise mechanism, we wondered whether metallacycles such as \(\mathbf{1}\) could be intercepted with a third reaction partner to form rings larger than cyclopropanes. Here, we provide an example of such a transformation in the context of a [\(2+2+1]\)-cycloaddition of two aldehyde equivalents and a vinylidene (Figure 2.1c). Key to the realization of this reaction is the fact that competing [2 + 1]-cycloadditions would produce methylene epoxides, which are sufficiently unstable to disfavor reductive elimination. \({ }^{14}\) The \([2+2+1]\)-cycloaddition products are methylenedioxolanes and can be deprotected under acidic conditions to reveal \(\alpha\)-hydroxy ketones.

Figure 2.1. (a) A mechanism of the Pauson-Khand reaction initiated by a dinuclear oxidative coupling of the alkene and the alkyne. (b) A proposed vinylidene [\(2+2+1]\)-cycloaddition process involving a metallacycle derived from the migratory insertion of a \(2 \pi\)-component into a \(\mathrm{Ni}_{2}\) (vinylidene). (c) A dinickel-catalyzed [2+2+1]-cycloaddition of two aldehydes and a vinylidene to generate methylenedioxolanes and synthetic applications to the synthesis of \(\alpha\) hydroxy ketones.

\subsection*{2.2 Results and Discussion}

\subsection*{2.2.1 Reaction Development}

Reaction optimization studies were carried out using aldehyde 2 (2.0 equiv) and 1,1dichloroalkene 3 (1.0 equiv) as model substrates. Under conditions similar to those previously employed in [2+1]-cycloaddition reactions, dinickel catalyst \(\mathbf{6}\) affords methylenedioxolane \(\mathbf{4}\) in \(89 \%\) yield as an \(8: 1\) mixture of diastereomers and with exclusively \(Z\) stereochemistry at the
exocyclic alkene (Table 2.1, entry 1). Mn provided similar yields to those obtained with Zn (entry 2). Interestingly, the homogeneous reductant \(\mathrm{Cp}_{2} \mathrm{Co}\) also produced \(\mathbf{4}\) but in significantly lower yields (entry 3). The observation that Zn can be replaced with \(\mathrm{Cp}_{2} \mathrm{Co}\) indicates that the reaction does not require the formation of an organozinc intermediate.

Table 2.1 Effect of Reaction Parameters

\begin{tabular}{|c|c|c|c|c|}
\hline entry & deviations from Standard Conditions & \begin{tabular}{l}
yield (\%) \\
(4)
\end{tabular} & \begin{tabular}{l}
anti:syn \\
(4)
\end{tabular} & Z/E (4) \\
\hline 1 & none & 89 & 8:1 & >20:1 \\
\hline 2 & Mn instead of Zn & 81 & 14:1 & >20:1 \\
\hline 3 & \(\mathrm{Cp}_{2} \mathrm{Co}\) instead of Zn & 58 & 1:4 & >20:1 \\
\hline 4 & no \(\mathrm{Et}_{2} \mathrm{O}\) & 47 & 4:1 & >20:1 \\
\hline 5 & \[
\begin{gathered}
i-\mathrm{Pr} \mathrm{NDI}(7)(10 \mathrm{~mol} \%)+\mathrm{Ni}(\mathrm{dme}) \mathrm{Cl}_{2}(20 \mathrm{~mol} \%) \\
\text { instead of } 6
\end{gathered}
\] & 85 & 6:1 & >20:1 \\
\hline 6 & \[
\begin{gathered}
c-\text { Pent } \mathrm{NDI}(\mathbf{8})(10 \mathrm{~mol} \%)+\mathrm{Ni}(\mathrm{dme}) \mathrm{Cl}_{2}(20 \mathrm{~mol} \%) \\
\text { instead of } 6
\end{gathered}
\] & 46 & 3:1 & >20:1 \\
\hline 7 & \[
\begin{gathered}
{ }^{\text {Mes }} \mathrm{NDI}(\mathbf{9})(10 \mathrm{~mol} \%)+\mathrm{Ni}(\mathrm{dme}) \mathrm{Cl}_{2}(20 \mathrm{~mol} \%) \\
\text { instead of } \mathbf{6}
\end{gathered}
\] & \(<5\) & - & - \\
\hline 8 & \[
\begin{gathered}
i-\mathrm{Pr} \mathrm{IP}(\mathbf{1 0})(10 \mathrm{~mol} \%)+\underset{\mathrm{Ni}(\mathrm{dme}) \mathrm{Cl}_{2}(10 \mathrm{~mol} \%) \text { instead }}{\text { of } \mathbf{6}}
\end{gathered}
\] & 0 & - & - \\
\hline 9 & \[
\begin{gathered}
i \text {-PrPDI (11) }(10 \mathrm{~mol} \%)+\underset{\text { of } \mathbf{6}}{\mathrm{Ni}\left(\mathrm{dme}^{2}\right) \mathrm{Cl}_{2}(10 \mathrm{~mol} \%) \text { instead }} . \\
\hline
\end{gathered}
\] & 0 & - & - \\
\hline 10 & \(\mathrm{Ni}(\mathrm{dme}) \mathrm{Cl}_{2}(10 \mathrm{~mol} \%)\) instead of \(\mathbf{6}\) & 0 & - & - \\
\hline
\end{tabular}
\({ }^{\text {a }}\) Standard reaction conditions: \(\mathbf{2}\) (2.0 equiv), \(\mathbf{3}\) (\(0.1 \mathrm{mmol}, 1.0\) equiv), \(\left.{ }^{(i-\mathrm{Pr}} \mathrm{NDI}\right) \mathrm{Ni2Cl}(\mathbf{6})(10 \mathrm{~mol} \%), \mathrm{Zn}(4.0\) equiv), DMA (0.1 mL), \(\mathrm{Et}_{2} \mathrm{O}(0.4 \mathrm{~mL}), 24 \mathrm{~h}, \mathrm{rt}\). All yields and selectivities were determined by \({ }^{1} \mathrm{H}\) NMR integration using mesitylene as an internal standard.

During reaction development, we found that the inclusion of a nonpolar cosolvent such as \(\mathrm{Et}_{2} \mathrm{O}\) was critical for reaction efficiency. With DMA alone, the yield of \(\mathbf{4}\) decreased to \(47 \%\) (entry 4). Both the identity of the reductant and the solvent appeared to have a significant effect on d.r. but did not impact the high \(Z\) selectivity at the exocyclic alkene. Under standard conditions, a premetallated dinickel catalyst was used (6). However, the active catalyst could also be assembled in situ by stirring free \({ }^{i-\mathrm{Pr}} \mathrm{NDI}(7)\) and \(\mathrm{Ni}(\mathrm{dme}) \mathrm{Cl}_{2}\) over Zn , and there was no significant change in reaction outcome (entry 5). Increasing (entry 6) or decreasing (entry 7) the steric profile of the NDI ligand decreased the yield of 4 . Finally, \(\mathrm{Ni}(\mathrm{dme}) \mathrm{Cl}_{2}\) alone or other mononickel catalysts bearing imine and/or pyridine donors analogous to those found in \(\mathbf{6}\) proved to be ineffective in the reaction (entries 8,9 , and 10).

Following the \([2+2+1]\)-cycloaddition, methylenedioxolane \(\mathbf{4}\) was deprotected using TFA to form \(\alpha\)-hydroxy ketone 5 . This two-step sequence can be carried out in a single pot without the need to isolate the intermediate dioxolane (\(62 \%\) yield over the two steps). \(\alpha\)-Hydroxy ketones are found in many biologically active natural products (Figure 2.1c). \({ }^{15}\) The benzoin reaction, which involves the umpolung coupling of two aldehydes via an acyl anion intermediate, is one of the most common \(\mathrm{C}-\mathrm{C}\) coupling strategies used to form \(\alpha\)-hydroxy ketones. In certain cases, it is possible to carry out selective cross-benzoin reactions by exploiting differences in the steric or electronic properties of the two partners. \({ }^{16}\) However, in cases where the two aldehydes are relatively unbiased, catalytic cross-coupling is generally not feasible. In these cases, a pregenerated acyl anion equivalent, such as a dithiane \({ }^{17}\) or a cyanohydrin, \({ }^{18}\) is required. The drawbacks of this approach are the need for additional synthetic steps and the use of a strong base (for example, an organolithium or metal amide) to generate the requisite anion.

\subsection*{2.2.2 Substrate Scope}

To demonstrate the synthetic utility of this \(\alpha\)-hydroxy ketone synthesis, we explored the substrate scope of the one-pot \([2+2+1]\)-cycloaddition and deprotection sequence (Figure 2.2). The reaction proceeds in high yield with a variety of alkyl and aryl substituted 1,1-dichloroalkenes. Aliphatic aldehydes are effective reaction partners, whereas aromatic aldehydes and hindered aliphatic aldehydes containing \(\alpha\)-branching are current limitations of the method. A variety of common functional groups and electron-rich heterocycles are compatible with the reaction conditions. Aryl bromides are tolerated (product 15), demonstrating that 1,1-dichloroalkenes
undergo activation by the dinickel catalyst at faster rates than \(\mathrm{C}(\mathrm{Ar})-\mathrm{Br}\) bonds. Both a dichloroalkene and an aldehyde containing a pendant alkene proved to be efficient coupling partners (products 23 and 36), and no competing cyclopropanation was observed. Other carbonyl functional groups, such as esters (products 24 and 30), ketones (product 34), and carbamates (product 22), are left untouched in the cycloaddition.

1,1-dichloroalkene scope

19, 63\% Yield

23, 87\% Yield

27, 68\% Yield

31, \(52 \%\) Yield

35, \(78 \%\) Yield; d.r. \(=1: 1\)
from citronellal

20, 80\% Yield

24, 71\% Yield

21, \(78 \%\) Yield

25, 80\% Yield

29, 81\% Yield

33, 18\% Yield

37, 73\% Yield
(\(\pm\))-sattabacin

22, 65\% Yield

26, 80\% Yield

30, 54\% Yield

34, 56\% Yield

38, 41\% Yield \({ }^{\text {a }}\) \(\pm\))-4-hydroxysattabacin

Figure 2.2. Substrate scope studies. Isolated yields were determined following purification and were averaged over two runs. Standard reaction conditions: dichloroalkene (\(0.2 \mathrm{mmol}, 1.0\) equiv), aldehyde (2.0 equiv), \(\left({ }^{i-\mathrm{Pr}} \mathrm{NDI}\right) \mathrm{Ni}_{2} \mathrm{Cl}_{2}(6)(10 \mathrm{~mol} \%), \mathrm{Zn}\) (4.0 equiv), DMA (0.2 mL), \(\mathrm{Et}_{2} \mathrm{O}(0.8 \mathrm{~mL}), \mathrm{rt}, 24 \mathrm{~h}\); then TFA, \(0^{\circ} \mathrm{C}\) to \(\mathrm{rt}, 2 \mathrm{~h}\). \({ }^{\text {a }}\) Synthesized using 2-(4-
((trimethylsilyl)oxy)phenyl)acetaldehyde.

As a synthetic application of this method, two acyloin-containing natural products were prepared. \({ }^{19}\) Phenylacetaldehyde is an effective substrate, forming (\(\pm\))-sattabacin (37) in \(73 \%\) yield. Although free phenols are not tolerated, (\(\pm\))-4-hydroxysattabacin (38) could also be synthesized in \(41 \%\) yield by utilizing a TMS protecting group. The TMS group is conveniently removed under the same TFA conditions used to deprotect the dioxolane.

\subsection*{2.2.3 Mechanistic Studies}

There is evidence supporting a metallacyclic intermediate in the \([2+2+1]\)-cycloaddition similar to that proposed in the dinickel-catalyzed vinylidene-alkene cyclization reaction (Figure 2.3a). When the cycloaddition between 1,1-dichloroalkene 39 and aldehyde 40 was carried out at four-fold dilution relative to the standard conditions, the [\(2+2+1]\)-cycloaddition product was formed in a decreased \(61 \%\) yield, and a minor enone byproduct was generated in \(13 \%\) yield (Figure 2.3b). Presumably, enone formation is due to a competing \(\beta\)-hydride elimination from an intermediate of the general structure 1. The same product profile was observed in experiments carried out under single turnover conditions (Figure 2.3c). Reactions between 1,1-dichloroalkene 39, aldehyde 40, and the isolable low-valent form of the catalyst, \(\left({ }^{i-\mathrm{Pr}} \mathrm{NDI}\right) \mathrm{Ni}_{2} \mathrm{Cl}(43)\), were carried out at two different concentrations. The dioxolane was the exclusive product at higher concentrations, whereas the enone was the exclusive product at lower concentrations.

When deuterium-labelled aldehyde \(\mathbf{4 0}-\boldsymbol{d}_{\mathbf{1}}\) was used, the enone product was labelled exclusively at the \(\alpha\)-carbon (\(>99 \%\) deuterium incorporation), confirming the fate of the hydrogen undergoing \(\beta\)-hydride elimination (Figure 2.3d). Finally, when enone 41 was subjected to the standard catalytic conditions with an additional equivalent of aldehyde 40, it was not converted to dioxolane 43, indicating that enone \(\mathbf{4 1}\) is not an intermediate in the \([2+2+1]\)-cycloaddition (Figure 2.3e).

Figure 2.3 Mechanistic Studies. (a) Competing \(\beta\)-hydride elimination and aldehyde migratory pathways. Concentration dependence of \(\beta\)-hydride elimination vs. aldehyde migratory insertion under (b) catalytic and (c) stoichiometric conditions. (d) Deuterium labelling experiment tracking the hydrogen undergoing \(\beta\)-hydride elimination. (e) Experiment assessing the intermediacy of enone 41 in the cycloaddition.

\subsection*{2.2.4 DFT Modeling Studies}

With these mechanistic insights in hand, we carried out a series of DFT calculations to further examine the \([2+2+1]\)-cycloaddition pathway (Figure 2.4). As part of these studies, we sought to calculate the competing \(\beta\)-hydride elimination process and explain the origin of the high \(Z\) selectivity at the exocyclic alkene, which was observed universally across all reaction conditions and substrates that were tested. Stationary points were optimized at the BP86/6-311g(d,p) level of theory, which had previously produced stationary points that corresponded closely to X-ray structures. \({ }^{20}\)

Our model commences with complex \(44(S=1)\), which is the aldehyde adduct of the putative \(\mathrm{Ni}_{2}(\mu\)-vinylidene) intermediate. There are four possible migratory insertion transition states, differing in the orientation of the vinylidene and aldehyde substituents. The most favorable pathway has a barrier of \(12.2 \mathrm{kcal} / \mathrm{mol}\) and generates \(\mathrm{Ni}_{2}\) metallacycle 46a (see Supporting Information for a description of the higher energy pathways). The calculated structure of 46a is analogous to the metallacycle that we experimentally characterized from the intramolecular addition of a vinylidene to an alkene. \({ }^{13}\)

Figure 2.4. DFT modeling studies. All stationary points are fully optimized at the BP86/6\(311 \mathrm{~g}(\mathrm{~d}, \mathrm{p})\) level of theory and verified by frequency analysis. \(i\) - Pr groups on the catalyst were truncated to Me groups. Relative \(\Delta \mathrm{G}\) values at 298 K are shown in \(\mathrm{kcal} /\) mol. The major pathway leading to the \([2+2+1]\)-cycloaddition product is shown in blue. Competing pathways to form the E-isomer of the product and the enone product are shown in green.

Binding of the second aldehyde to form 47 is exothermic by \(7.8 \mathrm{kcal} / \mathrm{mol}\), and the second migratory insertion to form 49 has a low activation barrier of \(1.3 \mathrm{kcal} / \mathrm{mol}\). Metallacycle 49 has a relatively short \(\mathrm{Ni}-\mathrm{Ni}\) distance of \(2.5 \AA\), and NBO analysis suggests that there may be weak \(\mathrm{Ni}-\)

Ni covalent bonding (Wiberg bond index \(=0.05\)). Reductive elimination transition states from metallacycle 49 are prohibitively high in energy. However, dissociation of the ether oxygen and association of the \(\mathrm{C}=\mathrm{C} \pi\)-bond to one of the Ni atoms would form to an isomeric metallacycle (50) that is nearly identical in energy (\(+0.6 \mathrm{kcal} / \mathrm{mol}\)). Metallacycle \(\mathbf{5 0}\) has an elongated \(\mathrm{Ni}-\mathrm{Ni}\) distance of \(2.9 \AA\) but a notably shortened distance between the C and O undergoing reductive elimination (\(2.5 \AA\) vs. \(2.7 \AA\) in 49). Accordingly, C-O reductive elimination from \(\mathbf{5 0}\) has a barrier of only 8.4 \(\mathrm{kcal} / \mathrm{mol}\), and this step yields the product adduct 52. Key to this overall process is the ability of the dinuclear active site to form and break weak \(\mathrm{Ni}-\mathrm{Ni}\) interactions in order to traverse different intermediates in the catalytic cycle.

According to the calculated mechanism, the migratory insertion of the first aldehyde is rate-limiting and irreversible. Thus, the \(E / Z\) selectivity of the reaction should be determined in this step. Consistent with the high \(Z\) selectivity observed experimentally, the migratory insertion transition state that would lead to the \(E\) product is \(2.7 \mathrm{kcal} / \mathrm{mol}\) higher in energy.

To model the enone formation under dilute reaction conditions, we searched for \(\beta\)-hydride elimination transition states from intermediate 46. Isomer 46a cannot undergo \(\beta\)-hydride elimination, because the \(\beta-\mathrm{H}\) is positioned away from Ni. However, isomer 46b, where the Me and H substituents of the aldehyde are swapped, is poised to undergo a nearly barrierless \(\beta\)-hydride elimination. The reason that the enone is only formed as a minor byproduct under dilute conditions may be due to the migratory insertion step forming metallacycle isomer 46b being disfavored by \(1.1 \mathrm{kcal} / \mathrm{mol}\).

\subsection*{2.3 Conclusions}

In summary, a dinickel catalyst promotes [2+2+1]-cycloadditions of two aldehyde equivalents and a vinylidene to form methylenedioxolane products. Unlike the Pauson-Khand reaction, these cycloadditions involve an initial coupling of a vinylidene, which is the C 1 component, and an aldehyde to form a metallacyclic intermediate. By avoiding competing reductive elimination and \(\beta\)-hydride elimination processes, it is possible to intercept this intermediate with a second aldehyde and achieve a net three-component cycloaddition. In principle, this mechanism should be compatible with other classes of \(2 \pi\)-systems, and future studies will focus on expanding the scope of partners that can be used.

\subsection*{2.4 Acknowledgements}

This research was supported by the NIH (R35 GM124791). C.U. acknowledges support from a Camille Dreyfus Teacher-Scholar award and a Lilly Grantee award.

\subsection*{2.5 References}
(1) (a) Chen, S.; Jiang, C.; Zheng, N.; Yang, Z.; Shi, L. "Evolution of Pauson-Khand Reaction: Strategic Applications in Total Syntheses of Architecturally Complex Natural Products (2016-2020)" Catalysts 2020, 10, 1199; (b) Yang, Z. "Navigating the Pauson-Khand Reaction in Total Syntheses of Complex Natural Products" Acc. Chem. Res. 2021, 54, 556568; (c) Heravi, M. M.; Mohammadi, L. "Application of Pauson-Khand reaction in the total synthesis of terpenes" RSC Adv. 2021, 11, 38325-38373.
(2) (a) Pauson, P. L. "The khand reaction : A convenient and general route to a wide range of cyclopentenone derivatives" Tetrahedron 1985, 41, 5855-5860; (b) Brummond, K. M.; Kent, J. L. "Recent Advances in the Pauson-Khand Reaction and Related [2+2+1] Cycloadditions" Tetrahedron 2000, 56, 3263-3283; (c) Schore, N. E. The Pauson-Khand Cycloaddition Reaction for Synthesis of Cyclopentenones. Org. React. 1991, 40, 1-90.
(3) (a) Geis, O.; Schmalz, H.-G. "New Developments in the Pauson-Khand Reaction" Angew. Chem., Int. Ed. 1998, 37, 911-914; (b) Gibson, S. E.; Stevenazzi, A. "The Pauson-Khand Reaction: the Catalytic Age Is Here!" Angew. Chem., Int. Ed. 2003, 42, 1800-1810; (c) Shibata, T. "Recent Advances in the Catalytic Pauson-Khand-Type Reaction" Adv. Synth. Catal. 2006, 348, 2328-2336.
(4) Hoshimoto, Y.; Ohata, T.; Sasaoka, Y.; Ohashi, M.; Ogoshi, S. "Nickel(0)-Catalyzed [2 + \(2+\) 1] Carbonylative Cycloaddition of Imines and Alkynes or Norbornene Leading to \(\gamma\) Lactams" J. Am. Chem. Soc. 2014, 136, 15877-15880.
(5) (a) Kablaoui, N. M.; Hicks, F. A.; Buchwald, S. L. "Diastereoselective Synthesis of \(\gamma\) Butyrolactones from Enones Mediated or Catalyzed by a Titanocene Complex" J. Am. Chem. Soc. 1996, 118, 5818-5819; (b) Chatani, N.; Morimoto, T.; Fukumoto, Y.; Murai, S. " \(\mathrm{Ru}_{3}(\mathrm{CO})_{12}\)-Catalyzed Cyclocarbonylation of Yne-Aldehydes to Bicyclic \(\alpha, \beta\) Unsaturated \(\gamma\)-Butyrolactones" J. Am. Chem. Soc. 1998, 120, 5335-5336; (c) Adrio, J.; Carretero, J. C. "Butenolide Synthesis by Molybdenum-Mediated Hetero-Pauson-Khand Reaction of Alkynyl Aldehydes" J. Am. Chem. Soc. 2007, 129, 778-779.
(6) (a) Berk, S. C.; Grossman, R. B.; Buchwald, S. L. "Titanocene-catalyzed conversion of enynes to bicyclic cyclopentenones" J. Am. Chem. Soc. 1993, 115, 4912-4913; (b) Berk, S. C.; Grossman, R. B.; Buchwald, S. L. "Development of a Titanocene-Catalyzed Enyne Cyclization/Isocyanide Insertion Reaction" J. Am. Chem. Soc. 1994, 116, 8593-8601.
(7) (a) Magnus, P.; Principe, L. M. "Origins of 1,2- and 1,3-stereoselectivity in dicobaltoctacarbonyl alkene-alkyne cyclizations for the synthesis of substituted bicyclo[3.3.0]octenones" Tetrahedron Lett. 1985, 26, 4851-4854; (b) Banide, E. V.; Müller-Bunz, H.; Manning, A. R.; Evans, P.; McGlinchey, M. J. "X-ray Crystal Structure of an Alkene-Pentacarbonyldicobalt-Alkyne Complex: Isolation of a Stable Magnus-Type Pauson-Khand Reaction Intermediate" Angew. Chem., Int. Ed. 2007, 46, 2907-2910; (c) Lesage, D.; Milet, A.; Memboeuf, A.; Blu, J.; Greene, A. E.; Tabet, J.-C.; Gimbert, Y. "The Pauson-Khand Mechanism Revisited: Origin of CO in the Final Product" Angew. Chem., Int. Ed. 2014, 53, 1939-1942; (d) Hartline, D. R.; Zeller, M.; Uyeda, C. "Well-Defined Models for the Elusive Dinuclear Intermediates of the Pauson-Khand Reaction" Angew. Chem., Int. Ed. 2016, 55, 6084-6087.
(8) (a) Sierra, M. A.; Soderberg, B.; Lander, P. A.; Hegedus, L. S. "Formal [2+2+1] and [4 + 1] cycloadditions of electron poor alkenes to pentacarbonyl[(N,Ndimethylamino)methylene]chromium" Organometallics 1993, 12, 3769-3771; (b) Fernández-Rodríguez, M. Á.; García-García, P.; Aguilar, E. "Multi-component reactions involving group 6 Fischer carbene complexes: a source of inspiration for future catalytic transformations" Chem. Commun. 2010, 46, 7670-7687.
(9) (a) Grubbs, R. H.; Miyashita, A. "Carbon-carbon bond cleavage reactions in the decomposition of metallacycles" J. Am. Chem. Soc. 1978, 100, 7418-7420; (b) Waterman, R.; Hillhouse, G. L. "Group Transfer from Nickel Imido, Phosphinidene, and Carbene Complexes to Ethylene with Formation of Aziridine, Phosphirane, and Cyclopropane Products" J. Am. Chem. Soc. 2003, 125, 13350-13351.
(10) Hansen, J.; Autschbach, J.; Davies, H. M. L. "Computational Study on the Selectivity of Donor/Acceptor-Substituted Rhodium Carbenoids" J. Org. Chem. 2009, 74, 6555-6563.
(11) (a) Fraile, J. M.; García, J. I.; Martínez-Merino, V.; Mayoral, J. A.; Salvatella, L. "Theoretical (DFT) Insights into the Mechanism of Copper-Catalyzed Cyclopropanation Reactions. Implications for Enantioselective Catalysis" J. Am. Chem. Soc. 2001, 123, 7616-7625; (b) Rasmussen, T.; Jensen, J. F.; Østergaard, N.; Tanner, D.; Ziegler, T.; Norrby, P.-O. "On the Mechanism of the Copper-Catalyzed Cyclopropanation Reaction" Chem.-Eur. J. 2002, 8, 177-184.
(12) Pal, S.; Zhou, Y.-Y.; Uyeda, C. "Catalytic Reductive Vinylidene Transfer Reactions" J. Am. Chem. Soc. 2017, 139, 11686-11689.
(13) Steiman, T. J.; Kalb, A. E.; Coombs, J. C.; Kirkland, J. K.; Torres, H.; Ess, D. H.; Uyeda, C. "Dinickel-Catalyzed Vinylidene-Alkene Cyclization Reactions" ACS Catal. 2021, 1440814416.
(14) (a) Camp, R. L.; Greene, F. D. "1,3-Di-tert-butylallene oxide. Isolation and isomerization to trans-2,3-di-tert-butylcyclopropanone" J. Am. Chem. Soc. 1968, 90, 7349-7349; (b) Hess, B. A.; Eckart, U.; Fabian, J. "Rearrangements of Allene Oxide, Oxyallyl, and Cyclopropanone" J. Am. Chem. Soc. 1998, 120, 12310-12315.
(15) (a) Lin, Z.; Marett, L.; Hughen, R. W.; Flores, M.; Forteza, I.; Ammon, M. A.; Concepcion, G. P.; Espino, S.; Olivera, B. M.; Rosenberg, G.; Haygood, M. G.; Light, A. R.; Schmidt, E. W. "Neuroactive diol and acyloin metabolites from cone snail-associated bacteria" Bioorg. Med. Chem. Lett. 2013, 23, 4867-4869; (b) Park, J.-S.; Kagaya, N.; Hashimoto, J.; Izumikawa, M.; Yabe, S.; Shin-ya, K.; Nishiyama, M.; Kuzuyama, T. "Identification and Biosynthesis of New Acyloins from the Thermophilic Bacterium Thermosporothrix hazakensis SK20-1T" ChemBioChem 2014, 15, 527-532; (c) Schieferdecker, S.; Shabuer, G.; Letzel, A.-C.; Urbansky, B.; Ishida-Ito, M.; Ishida, K.; Cyrulies, M.; Dahse, H.-M.; Pidot, S.; Hertweck, C. "Biosynthesis of Diverse Antimicrobial and Antiproliferative Acyloins in Anaerobic Bacteria" ACS Chem. Biol. 2019, 14, 1490-1497.
(16) Gaggero, N.; Pandini, S. "Advances in chemoselective intermolecular cross-benzoin-type condensation reactions" Org. Biomol. Chem. 2017, 15, 6867-6887.
(17) Corey, E. J.; Seebach, D. "Carbanions of 1,3-Dithianes. Reagents for C-C Bond Formation by Nucleophilic Displacement and Carbonyl Addition" Angew. Chem., Int. Ed. 1965, 4, 1075-1077.
(18) Albright, J. D. "Reactions of acyl anion equivalents derived from cyanohydrins, protected cyanohydrins and \(\alpha\)-dialkylaminonitriles" Tetrahedron 1983, 39, 3207-3233.
(19) Lampis, G.; Deidda, D.; Maullu, C.; Madeddu, M. A.; Pompei, R.; Delle Monache, F.; Satta, G. "Sattabacins and sattazolins: new biologically active compounds with antiviral properties extracted from a Bacillus sp" J. Antibiot. 1995, 48, 967-972.
(20) Zhou, Y.-Y.; Hartline, D. R.; Steiman, T. J.; Fanwick, P. E.; Uyeda, C. "Dinuclear Nickel Complexes in Five States of Oxidation Using a Redox-Active Ligand" Inorg. Chem. 2014, 53, 11770-11777.

\title{
CHAPTER 3. A DINICKEL CATALYZED CYCLOPROPANATION WITHOUT THE FORMATION OF A METAL CARBENE INTERMEDIATE
}

Reprinted with permission from Maity, A. K.; Kalb, A. E.; Zeller, M.; and Uyeda C. Angewandte Chemie International Edition. 2021, 60, 1897-1902. Copyright 2021 Wiley.

\subsection*{3.1 Introduction}

Most transition metal catalyzed cyclopropanation reactions use diazoalkanes as carbene precursors. \({ }^{[1]}\) Mechanistic proposals for these reactions generally invoke the formation of a metal carbene complex by catalyst-induced \(\mathrm{N}_{2}\) extrusion (Figure 3.1). It should be noted however that for a majority of catalysts, the key \(\mathrm{M}=\mathrm{CR}_{2}\) intermediate cannot be directly observed, let alone structurally characterized. \({ }^{[2]}\) Therefore, alternative cyclopropanation pathways that do not involve \(\mathrm{M}=\mathrm{CR}_{2}\) species warrant consideration. Additionally, identifying such pathways may provide new avenues to develop cyclopropanation reactions with substrate scopes or selectivity properties that are complementary to existing methods.

Catalytic cyclopropanations are mechanistically related to oxygen-atom transfer reactions. For example, the active oxidant in a cytochrome P450 catalyzed oxidation is a ferryl porphyrin radical cation (compound I), generated from the activation of \(\mathrm{O}_{2} \cdot{ }^{[3]}\) Abiological variants of this process have also been developed, often using iodosylarenes or peroxycarboxylic acids as O -atom sources. \({ }^{[4]}\) Collman and Brauman demonstrated that the selectivites observed in (TPP)Mn catalyzed alkane \(\mathrm{C}-\mathrm{H}\) hydroxylations are dependent on the identity of the oxidant. \({ }^{[5]}\) This observation indicates that the O -atom donor is present in the selectivity-determining step, effectively ruling out a common \(\mathrm{M}=\mathrm{O}\) intermediate. In related work, Nam investigated a (TMC)Fe catalyzed epoxidation and observed that chiral peroxycarboxylic acid and iodosylarene reagents can induce high levels of enantioselectivity. \({ }^{[6]}\) Taken together, these and several other studies \({ }^{[7]}\) show that high-valent \(\mathrm{M}=\mathrm{O}\) species may not always be true catalytic intermediates, even in cases where they have been synthesized and characterized. Similar observations have been made for nitrene transfer reactions using organoazides and iminoiodinanes. \({ }^{[8]}\)

Here, we present a diazoalkane-based cyclopropanation reaction that does not involve the formation of a metal-bound carbene intermediate (Figure 1). The reaction being investigated is a
\((\mathrm{NDI}) \mathrm{Ni}_{2}\) catalyzed (NDI \(=\) naphthyridine-diimine) cyclopropanation of 1,3-dienes using \(\left(\mathrm{Me}_{3} \mathrm{Si}\right) \mathrm{CHN}_{2}\). The putative (NDI) \(\mathrm{Ni}_{2}\left(\mathrm{CHSiMe}_{3}\right)\) intermediate in this reaction is an isolable molecule but is unreactive toward 1,3-dienes. On the basis of DFT modeling studies, we instead propose a mechanism in which the \(\mathrm{Ni}_{2}\) (diazoalkane) adduct reacts with the 1,3-diene to generate a metallacycle. Subsequent \(\mathrm{N}_{2}\) elimination and diradical cyclization yields the cyclopropane product.

Figure 3.1. Metal carbenes are key intermediates in several catalytic cyclopropanation reactions using diazoalkanes. Dinickel complexes catalyze regioselective cyclopropanations of 1,3-dienes without generating a \(\mathrm{Ni}_{2}\left(\mu-\mathrm{CR}_{2}\right)\) intermediate.

\subsection*{3.2 DFT Models for the Ni2-Catalyzed Cyclopropanation}

Experimental results performed by Arnab Maity indicate that there is a viable cyclopropanation mechanism that proceeds from the diazoalkane and does not involve the formation of a \(\mathrm{Ni}_{2}\) carbene complex. To identify such a mechanism, DFT calculations were carried out with the constraint that any reasonable model would need to rationalize the unusual regioselectivity observed in the reaction. First, the diazoalkane and diene adducts were calculated at the BP86/6-311G(d,p) level of theory (Figure 6). The optimized structures (S1 and S2) were found to closely reproduce the structures observed experimentally by XRD. Additionally, the calculations accurately determined an \(S=1\) ground state for the diazoalkane complex and an \(S=\) 0 ground state for the diene complex.

A (NDI)Ni \(\mathrm{Ni}_{2}\) complex containing both the diazoalkane and the diene bound to the active site was located (S3). The diazoalkane lies in the (NDI)Ni \(i_{2}\) plane and maintains its \(\mu-\eta^{2}: \eta^{1}\) coordination mode. The diene binds in an \(\eta^{2}\)-fashion through the less hindered double bond. The Ni-Ni distance is significantly elongated to \(3.103 \AA\), suggesting the absence of a direct metal-to-metal covalent
bond. The 1-position of the diene is located in close proximity to the diazoalkane carbon, and a transition state (S4) for the coupling could be successfully optimized with an activation barrier of \(+16.3 \mathrm{kcal} / \mathrm{mol}\). \({ }^{[17]}\) The resulting metallacycle (\(\mathbf{S 5}\)) is nearly isoenergetic with \(\mathbf{S 3}\).

From here, we explored several possible concerted pathways for cyclopropanation where \(\mathrm{C}-\mathrm{C}\) bond-formation occurs in concert with \(\mathrm{N}_{2}\) expulsion. While several such transition states could be located, they were all found to be prohibitively high in energy. Instead, an energetically viable stepwise mechanism was identified. Homolytic cleavage of the \(\mathrm{C}-\mathrm{N}\) bond (S6) has a calculated activation barrier of \(+18.0 \mathrm{kcal} / \mathrm{mol}\). The resulting diradical intermediate (S7) was modeled as an open-shell singlet with a C-centered \(\alpha\)-TMS radical. The other unpaired electron (anti-parallel spin) is delocalized in the \(\pi\)-system of the NDI ligand. The triplet spin state for \(\mathbf{S 7}\) was also considered and found to be \(0.6 \mathrm{kcal} / \mathrm{mol}\) lower in energy. Given this small energy difference, any barrier to spin flipping would likely make the open-shell singlet pathway more favorable. From S7, the final cyclopropane product is generated from a low-barrier attack of the C-centered radical on the Ni-bound allyl ligand (+1.0 kcal/mol).

In the calculated reaction pathway, the initial coupling step (S4) is reversible, and the \(\mathrm{N}_{2}\) expulsion step (S6) is rate-determining and irreversible. Therefore, the regioselectivity of the cyclopropanation is determined by the relative energies of the \(\mathbf{S 6}\) transition states. Gratifyingly, the transition state leading to the alternative regioisomer (\(\mathbf{S 6}^{\prime}\)) is \(5.9 \mathrm{kcal} / \mathrm{mol}\) higher in energy. In S6', the metallacycle is rotated in order to alleviate an unfavorable steric interaction between the benzyl group and an \(i-\operatorname{Pr}\) substituent of the catalyst (Figure 6).

Because \(\mathrm{C}-\mathrm{N}\) bond cleavage in \(\mathbf{S 6}\) forms of a planar radical intermediate, the diastereoselectivity of the cyclopropanation is not determined in this step but rather in the later recombination step \(\mathbf{S 8}\). From \(\mathbf{S 7}\), single bond rotation would allow for the \(\mathrm{C}-\mathrm{C}\) bond formation to occur on either face of the radical. The transition state leading to the alternative diastereomer was calculated to be \(1.1 \mathrm{kcal} / \mathrm{mol}\) higher in energy, which is consistent with the dr determined experimentally for this substrate combination \(\left(6: 1 \mathrm{dr} ; \Delta \Delta \mathrm{G}^{\ddagger}=+1.1 \mathrm{kcal} / \mathrm{mol}\right)\).

Figure 3.2. Calculated reaction pathway for the \(\left({ }^{(i-\mathrm{Pr}} \mathrm{NDI}\right) \mathrm{Ni}_{2}\) catalyzed cyclopropanation to form
\(\mathbf{8}\) (BP86/6-311g(d,p) level of DFT). Relative free energies are shown in \(\mathrm{kcal} / \mathrm{mol}\). Unless otherwise indicated, all structures correspond to \(S=0\) spin states. S7, S8, and S8' were modelled as open-shell singlets with a C-centered \(\alpha\)-TMS radical and the other unpaired electron delocalized in the NDI \(\pi\)-system. Transition states leading to the alternative regioisomer and diastereomer are shown.

\section*{APPENDIX A: SUPPORTING INFORMATION FOR CHAPTER 1}

\section*{. General Information}

General considerations. All manipulations were carried out using standard Schlenk or glovebox techniques under an \(\mathrm{N}_{2}\) atmosphere. Solvents were dried and degassed by passaging through a column of activated alumina and sparging with Ar gas. Deuterated solvents were purchased from Cambridge Isotope Laboratories, Inc. \(\mathrm{C}_{6} \mathrm{D}_{6}\) was degassed using the freeze-pumpthaw method and stored over activated \(3 \AA\) molecular sieves prior to use. All reagents were purchased from commercial vendors and used without further purification unless otherwise noted. Zn powder (325 mesh, \(99.9 \%\)), \(\mathrm{Ni}(\mathrm{dme}) \mathrm{Cl}_{2}\) and \(\mathrm{Ni}(\operatorname{cod})_{2}\) were purchased from Strem Chemicals, stored under inert atmosphere, and used without further purification. Liquid reagents were degassed using the freeze-pump-thaw method and stored over activated \(3 \AA\) molecular sieves prior to use in the glovebox. All catalytic reactions were run in the glovebox unless otherwise noted. The \({ }^{i-\mathrm{Pr}} \mathrm{NDI}\) ligand \({ }^{1}(\mathbf{4}),\left({ }^{i-\mathrm{Pr}} \mathrm{NDI}\right) \mathrm{Ni}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right){ }^{1}(\mathbf{6})\) and \(\left({ }^{i-\mathrm{Pr}} \mathrm{NDI}\right) \mathrm{Ni}_{2} \mathrm{Cl}^{2}(\mathbf{3})\) are prepared according to previously reported procedures.

Physical Methods. \({ }^{1} \mathrm{H}\) NMR, \({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR, COSY NMR and NOESY NMR spectra were collected at room temperature on a Varian Inova300 with a 5 mm 4 -nucleus/BB Z-gradient probe, Varian Mercury 300 with a 5 mm 4 -nucleus/BB probe, Bruker AV400 with a 5 mm BBFO Z-gradient SmartProbe, a Bruker DRX500 with a 5 mm BBFO Z-gradient ATM probe, or AV800 with a QCI cryoprobe. \({ }^{1} \mathrm{H}\) NMR and \({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR spectra were reported in parts per million relative to tetramethylsilane, using the referenced residual solvent resonances as an internal standard (\({ }^{1} \mathrm{H}\) NMR: \(\mathrm{CDCl}_{3}=7.26 \mathrm{ppm}, \mathrm{C}_{6} \mathrm{D}_{6}=7.16 \mathrm{ppm}\) and \({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR: \(\mathrm{CDCl}_{3}=77.16 \mathrm{ppm}\)). High-resolution mass data were obtained using a Thermo Scientific LTQ Orbitrap XL mass spectrometer or a Thermo Electron Corporation MAT 95XP-Trap mass spectrometer. Gas chromotogrpahy data were obtained on a Shimadzu GC-2010 equipped with an Agilent DB-5MS column. X-Band EPR spectra were recorded on a Bruker EMX EPR spectrometer and simulated using the Easyspin program \({ }^{3}\). Cyclic voltammetry (CV) was performed using a Gamry Interface 1000 Potentiostat. CV experiments were run under an \(\mathrm{N}_{2}\) atmosphere in a \(0.3 \mathrm{M} n-\mathrm{Bu}_{4} \mathrm{NPF}_{6}\) electrolyte solution in THF or NMP that was stored over \(3 \AA\) molecular sieves for at least 3 days. A standard three-electrode configuration consisted of a glassy carbon working electrode (3 mm
diameter disk), a platinum counter electrode and silver wire reference electrode. The potentials were internally referenced to the reversible \(\mathrm{Cp}_{2} \mathrm{Fe} / \mathrm{Cp}_{2} \mathrm{Fe}^{+}\)couple.

X-ray crystallography. Single-crystal X-ray diffraction studies were carried out at the Purdue X-ray crystallography facility using a Bruker AXS D8 Quest CMOS diffractometer. Single crystals of were coated with NVH oil and quickly transferred to the goniometer head of a Bruker Quest diffractometer with kappa geometry, an I- \(\mu\)-S microsource X-ray tube, laterally graded multilayer (Goebel) mirror single crystal for monochromatization, a Photon2 CMOS area detector and an Oxford Cryosystems low temperature device. Examination and data collection were performed with \(\mathrm{Cu} \mathrm{K} \alpha\) radiation \((\lambda=1.54178 \AA)\) at 100 K . Data were collected, reflections were indexed and processed, and the files scaled and corrected for absorption using APEX3. \({ }^{4}\) Structure Solution and Refinement. The space groups were assigned and the structures were solved by direct methods using XPREP within the SHELXTL suite of programs \({ }^{5}\) and refined by full matrix least squares against F2 with all reflections using Shelxl2016 using the graphical interface Shelxle. \({ }^{7}\) If not specified otherwise H atoms attached to carbon and nitrogen atoms were positioned geometrically and constrained to ride on their parent atoms, with carbon hydrogen bond distances of \(0.95 \AA\) for and aromatic C-H, 1.00, 0.99 and \(0.98 \AA\) for aliphatic \(\mathrm{C}-\mathrm{H}, \mathrm{CH}_{2}\) and \(\mathrm{CH}_{3}\) moieties, respectively. Methyl H atoms were allowed to rotate but not to tip to best fit the experimental electron density. Uiso(H) values were set to a multiple of \(\mathrm{Ueq}(\mathrm{C})\) with 1.5 for \(\mathrm{CH}_{3}\), and 1.2 for C H units, respectively. Additional data collection and refinement details, including description of disorder and/or twinning (where present) can be found in the CIF file.

\section*{2. Synthesis of \({ }^{c-\text { Pent }}\) NDI ligand (7)}

1,1'-(1,8-naphthyridine-2,7-diyl)bis(\(N\)-(2,4,6-tricyclopentylphenyl)ethan-1-imine) (c-

0.9 mmol , 1.0 equiv) and \(\mathrm{MeOH}(5 \mathrm{~mL}) .2,4,6-\) Tricyclopentylaniline \({ }^{8}(555 \mathrm{mg}, 1.9 \mathrm{mmol}, 2.0\) equiv) and formic acid (\(10 \mu \mathrm{~L}\)) were added. The reaction mixture was refluxed for 24 h under an \(\mathrm{N}_{2}\) atmosphere, causing a yellow precipitate to form. The mixture was cooled in the freezer at \(30^{\circ} \mathrm{C}\) for 1 h then filtered. The precipitate was washed with cold EtOH to give 530 mg (\(76 \%\) yield) of \({ }^{c-\text { Pent }} \mathrm{NDI}(7)\) as a yellow powder.
\({ }^{1} \mathrm{H} \operatorname{NMR}\left(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.70(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.35(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~s}\), 4H), 2.98 (sext, \(J=8.0 \mathrm{~Hz}, 2 \mathrm{H}\)), 2.79 (sext, \(8.0 \mathrm{~Hz}, 4 \mathrm{H}\)), 2.46 (\(\mathrm{s}, 6 \mathrm{H}\)), 2.12 - 2.06 (m, 4H), 2.02 \(1.95(\mathrm{~m}, 4 \mathrm{H}), 1.87-1.78(\mathrm{~m}, 8 \mathrm{H}), 1.77-1.66(\mathrm{~m}, 14 \mathrm{H}), 1.66-1.43(\mathrm{~m}, 24 \mathrm{~h})\).
\({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(201 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.8,159.9,155.1,146.0,141.5,137.3,133.0,124.4\), 122.4, 120.8, 46.2, 40.7, 35.0, 34.0, 25.8, 25.7, 17.8.

HRMS (ESI) m/z: \([\mathrm{M}+\mathrm{H}]\) Calcd for \(\mathrm{C}_{54} \mathrm{H}_{69} \mathrm{~N}_{4} 773.5517\); found 773.5511.

\section*{3. Reaction Optimization Studies}

\begin{tabular}{|l|l|c|}
\hline entry & deviation from standard conditions & yield (2) \\
\hline 1 & none & \(92 \%\) \\
\hline 2 & no 4 & \(0 \%\) \\
\hline 3 & no 4 and no \(\mathrm{Ni}(\mathrm{dme}) \mathrm{Cl}_{2}\) & \(0 \%\) \\
\hline 4 & \(\left({ }^{i-\mathrm{Pr}} \mathrm{NDI}\right) \mathrm{Ni}_{2} \mathrm{Cl}_{2}(\mathbf{5})\) instead of 4/Ni(dme) \(\mathrm{Cl}_{2}\) & \(91 \%\) \\
\hline 5 & \(\left({ }^{i-\mathrm{Pr}} \mathrm{NDI}\right) \mathrm{Ni}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)(\mathbf{6})\) instead of 4/Ni(dme) \(\mathrm{Cl}_{2}\) & \(90 \%\) \\
\hline 6 & \({ }^{c-\text {-Pent }} \mathrm{NDI}(\mathbf{7})\) instead of 4 & \(90 \%\) \\
\hline 7 & 0.05 M instead of 0.025 M & \(81 \%\) \\
\hline 8 & Mn instead of Zn & \(88 \%\) \\
\hline 9 & \(\mathrm{Cr}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)_{2}\) instead of Zn & \(15 \%\) \\
\hline 10 & Ligands \(\mathbf{8}-\mathbf{1 0}(5 \mathrm{~mol} \%)\) instead of 4 & \(<10 \%\) \\
\hline 11 & \(\mathbf{1 1}\) or \(\mathbf{1 2}(5 \mathrm{~mol} \%)\) instead of 4/Ni(dme) \(\mathrm{Cl}_{2}\) & \(<1 \%\) \\
\hline
\end{tabular}

Procedure for entries 1-3 and 6-10: A 2-dram vial equipped with a stir bar was charged with ligand (\(0.005 \mathrm{mmol}, 5 \mathrm{~mol} \%\)), \(\mathrm{Ni}(\mathrm{dme}) \mathrm{Cl}_{2}(2.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)\), reductant (3.0 equiv), and N-methyl-2-pyrrolidone (0.8 mL). The mixture was stirred at 600 rpm for approximately 20 minutes, during which time the solution turned violet in color. The reaction mixture was diluted with THF (3.6 mL), and \(80 \mu \mathrm{~L}\) of a 1.24 M stock solution containing (1,1-dichlorohepta-1,6-dien-3-yl)benzene (1.0 equiv) and mesitylene (1.0 equiv) in THF was added. Stirring was continued at 600 rpm for 24 h at room temperature. After 24 h , the reaction was exposed to air and an aliquot of the reaction solution was filtered through a 5 cm silica plug, eluting with \(\mathrm{CDCl}_{3}\). Yields of \(\mathbf{2}\) were determined by \({ }^{1} \mathrm{H}\) NMR integration against mesitylene.

Procedure for entries 4-6 and 11: A 2-dram vial equipped with a stir bar was charged with catalyst (\(0.005 \mathrm{mmol}, 5 \mathrm{~mol} \%\)), Zn (3.0 equiv) and N -methyl-2-pyrrolidone (0.8 mL). The reaction mixture was diluted with THF (3.6 mL) , and \(80 \mu \mathrm{~L}\) of a 1.24 M stock solution containing (1,1-dichlorohepta-1,6-dien-3-yl)benzene (1.0 equiv) and mesitylene (1.0 equiv) in THF was added. Stirring was continued at 600 rpm for 24 h at room temperature. After 24 h , the reaction was exposed to air and an aliquot of the reaction solution was filtered through a 5 cm silica plug, eluting with \(\mathrm{CDCl}_{3}\). Yields of \(\mathbf{2}\) were determined by \({ }^{1} \mathrm{H}\) NMR integration against mesitylene.

\section*{4. Synthesis of 1,1-Dichloroalkenes}

\section*{General Procedure A: Synthesis of 1,1-Dichloroalkenes from Aldehydes}

A flame-dried flask equipped with a stir bar was charged with \(\mathrm{PPh}_{3}\) (4.0 equiv). The flask was placed under an \(\mathrm{N}_{2}\) atmosphere, and \(\mathrm{MeCN}(0.5 \mathrm{M})\) was added to create a slurry. In a separate flask, the aldehyde (1.0 equiv) and \(\mathrm{CCl}_{4}\) (2.0 equiv) were dissolved in MeCN (2.0 M solution). The aldehyde/ \(\mathrm{CCl}_{4}\) solution was added dropwise to the slurry over 5 min , and the reaction was stirred for 2 h . The reaction mixture was quenched with \(\mathrm{Et}_{2} \mathrm{O}\), washed with \(\mathrm{H}_{2} \mathrm{O}(\mathrm{x} 2)\) then brine. The organic phase was dried over \(\mathrm{Na}_{2} \mathrm{SO}_{4}\), filtered, and concentrated to dryness under vacuum. The crude product was suspended in \(\mathrm{Et}_{2} \mathrm{O}\) and triphenylphosphine was filtered off. The filtrate was concentrated to dryness under vacuum and was purified by flash column chromatography.

Note: reactions larger than 20 mmol were cooled to \(0^{\circ} \mathrm{C}\) and addition of the aldehyde solution was done over 30 min . After the addition, the reaction was stirred at room temperature for 2 h .

\section*{General Procedure B: Swern Oxidation}

A flame-dried flask under an \(\mathrm{N}_{2}\) atmosphere equipped with a stir bar was charged with oxalyl chloride (1.2 equiv) and \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\) ([alcohol \(]=0.1 \mathrm{M}\)). The solution was cooled to \(-78{ }^{\circ} \mathrm{C}\). A 5.0 M solution of DMSO in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\) (2.4 equiv) was added, and the reaction was stirred for 20 min . A 0.5 M solution of the alcohol (1.0 equiv) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\) was added, and the reaction was stirred for 45 min at \(-78{ }^{\circ} \mathrm{C} . \mathrm{Et}_{3} \mathrm{~N}\) (5.0 equiv) was added, and the mixture was stirred at room temperature for 1 h . The reaction was quenched with sat. \(\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})\), and the product was extracted with \(\mathrm{Et}_{2} \mathrm{O}\) (x3). The combined organic phases were washed with water then brine, dried over \(\mathrm{Na}_{2} \mathrm{SO}_{4}\), filtered, and concentrated to dryness under vacuum.

\section*{Step 1: 2-Phenylhex-5-en-1-ol (177037-77-3)}

Under an \(\mathrm{N}_{2}\) atmosphere, a flame-dried flask equipped with a stir bar was charged with styrene oxide (\(4.6 \mathrm{~mL}, 40 \mathrm{mmol}, 1.0\) equiv) and \(\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{~mL})\). The solution was cooled to \(-78^{\circ} \mathrm{C}\), and a freshly prepared 15 M but-3-en-1-ylmagnesium bromide solution (\(6.1 \mathrm{~mL}, 60 \mathrm{mmol}, 1.5\) equiv) in \(\mathrm{Et}_{2} \mathrm{O}\) was slowly added via syringe over 10 min . The reaction mixture was warmed to 0 \({ }^{\circ} \mathrm{C}\) then stirred for 2 h . The reaction was quenched with sat. \(\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})\), and the organic phase was washed with water, dried over \(\mathrm{Na}_{2} \mathrm{SO}_{4}\), and filtered. The filtrate was concentrated to dryness under vacuum, and the crude product was purified by flash column chromatography (\(\mathrm{SiO}_{2}, 10 \%\) to \(20 \%\) EtOAc in hexanes) to provide 3.02 g (\(43 \%\) yield) of product as a colorless oil. \({ }^{1} \mathrm{H}\) NMR data match the previously reported spectrum. \({ }^{9}\)

\section*{Step 2: 2-Phenylhex-5-enal (53847-17-9)}

The reaction was conducted according to General Procedure B with oxalyl chloride (1.8 \(\mathrm{mL}, 20.4 \mathrm{mmol}\), 1.2 equiv) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\) (170 mL), DMSO (\(2.9 \mathrm{~mL}, 41 \mathrm{mmol}\), 2.4 equiv) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\) (8 mL), 2-phenylhex-5-en-1-ol (\(3.03 \mathrm{~g}, 17.0 \mathrm{mmol}, 1.00\) equiv) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(35 \mathrm{~mL}\right.\)), and \(\mathrm{Et}_{3} \mathrm{~N}\) (11.8 \(\mathrm{mL}, 85.0 \mathrm{mmol}, 5.00\) equiv). The product was used without further purification. \({ }^{1} \mathrm{H}\) NMR data match the previously reported spectrum. \({ }^{10}\)

\section*{Step 3: (1,1-dichlorohepta-1,6-dien-3-yl)benzene (1)}

The reaction was conducted according to General Procedure A using \(\mathrm{PPh}_{3}(17.5 \mathrm{~g}, 66.0\) mmol, 4.0 equiv) dissolved in \(\mathrm{MeCN}(35 \mathrm{~mL}), \mathrm{CCl}_{4}\) (\(3.2 \mathrm{~mL}, 33 \mathrm{mmol}, 2.0\) equiv), and 2-phenylhex-5-enal (\(2.91 \mathrm{~g}, 16.7 \mathrm{mmol}, 1.0\) equiv) dissolved in MeCN (8 mL). Addition of the aldehyde was done at \(0{ }^{\circ} \mathrm{C}\) due to the large scale. The product was purified by flash column chromatography (\(\mathrm{SiO}_{2}\), hexanes) to provide 2.27 g (\(57 \%\) yield) of product as a pale yellow oil.
\({ }^{1} \mathrm{H} \operatorname{NMR}\left(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{t}, 8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=\) \(7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.01(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.84-5.77(\mathrm{~m}, 1 \mathrm{H}), 5.05-4.96(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{q}, J=9.6\) \(\mathrm{Hz}, 1 \mathrm{H}), 2.10-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.78(\mathrm{~m}, 2 \mathrm{H})\).
\({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(201 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.3,137.9,133.3,128.9,127.5,127.0,120.6,115.4\), 45.8, 35.0, 31.5.

HRMS (APCI) m/z: [M+H] Calcd for \(\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{Cl}_{2}\) 240.0473; found 240.0480.

\section*{Step 1: 2-Phenylpent-4-en-1-ol (16014-71-4)}

Under an \(\mathrm{N}_{2}\) atmosphere, a flame-dried flask equipped with a stir bar was charged with styrene oxide (\(3.5 \mathrm{~mL}, 31 \mathrm{mmol}, 1.0\) equiv) and \(\mathrm{Et}_{2} \mathrm{O}(250 \mathrm{~mL})\). The solution was cooled to \(-78^{\circ} \mathrm{C}\), and a 1.0 M allylmagnesium bromide solution in \(\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL}, 40 \mathrm{mmol}, 1.3\) equiv) was slowly added via syringe over 10 min . The reaction mixture was warmed to \(0^{\circ} \mathrm{C}\) and stirred for 2 h . The reaction was quenched with sat. \(\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})\). The organic phase was washed with water, dried over \(\mathrm{Na}_{2} \mathrm{SO}_{4}\), and filtered. The filtrate was concentrated to dryness under reduced pressure, and the crude material was purified by flash column chromatography \(\left(\mathrm{SiO}_{2}, 15 \% \mathrm{EtOAc}\right.\) in hexanes) to provide 3.78 g (\(76 \%\) yield) of product as a colorless oil. \({ }^{1} \mathrm{H}\) NMR data matched the previously reported spectrum. \({ }^{11}\)

\section*{Step 2: 2-Phenylpent-4-enal (24401-36-3)}

The reaction was conducted according to General Procedure B with oxalyl chloride (2.8 mL , 32 mmol , 1.2 equiv) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(270 \mathrm{~mL})\), DMSO (\(4.6 \mathrm{~mL}, 64 \mathrm{mmol}\), 2.4 equiv) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\) (13 mL), 2-phenylpent-4-en-ol (\(4.4 \mathrm{~g}, 27 \mathrm{mmol}, 1.0\) equiv) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\) (50 mL), and \(\mathrm{Et}_{3} \mathrm{~N}(19 \mathrm{~mL}\), \(135 \mathrm{mmol}, 5.0\) equiv). The product was used without further purification. \({ }^{1} \mathrm{H}\) NMR data matched the previously reported spectrum. \({ }^{12}\)

\section*{Step 3: (1,1-dichlorohexa-1,5-dien-3-yl)benzene (25)}

The reaction was conducted according to General Procedure A using \(\mathrm{PPh}_{3}(27 \mathrm{~g}, 0.10 \mathrm{~mol}\), 4.0 equiv) dissolved in \(\mathrm{MeCN}(50 \mathrm{~mL}), \mathrm{CCl}_{4}(5.1 \mathrm{~mL}, 53 \mathrm{mmol}, 2.0\) equiv), and 2-phenylpent-4enal (\(4.3 \mathrm{~g}, 26 \mathrm{mmol}, 1.0\) equiv) dissolved in \(\mathrm{MeCN}(13 \mathrm{~mL})\). Addition of the aldehyde was done at \(0{ }^{\circ} \mathrm{C}\) due to the large scale. The product was purified by flash column chromatography \(\left(\mathrm{SiO}_{2}\right.\), hexanes) to provide 2.5 g (\(42 \%\) yield) of product as a yellow oil.
\({ }^{1} \mathrm{H} \operatorname{NMR}\left(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.21(\mathrm{~m}\), \(2 \mathrm{H}), 6.04(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.74-5.68(\mathrm{~m}, 1 \mathrm{H}), 5.08(\mathrm{dq}, J=17.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.05-5.02(\mathrm{~m}\), \(1 \mathrm{H}), 3.78(\mathrm{q}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.57-2.45(\mathrm{~m}, 2 \mathrm{H})\).
\({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(201 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.9,135.3,132.7,128.9,127.5,127.0,120.8,117.3\), 46.1, 40.1.

HRMS (APCI) m/z: [M-H] Calcd for \(\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{Cl}_{2}\) 225.0232; found 225.0230.

\section*{Step 1. (S)-4-benzyl-3-((S)-3-(furan-2-yl)hex-5-enoyl)oxazolidin-2-one (13)}

The reaction was conducted according to a procedure reported by Hoveyda. \({ }^{13}\) Under an \(\mathrm{N}_{2}\) atmosphere a flame dried flask wrapped in aluminum foil and equipped with a stir bar was charged with \(\mathrm{CuBr} \cdot \mathrm{SMe}_{2}(2.3 \mathrm{~g}, 11 \mathrm{mmol}, 1.5\) equiv) and THF (\(28 \mathrm{~mL}, 0.4 \mathrm{M}\)). The solution was cooled to \(-78^{\circ} \mathrm{C}\), and a 1.0 M solution of allylmagnesium bromide (\(20 \mathrm{~mL}, 20 \mathrm{mmol}, 2.7\) equiv) was added dropwise over 30 min . The reaction mixture was stirred at \(-78^{\circ} \mathrm{C}\) for 1.5 h . A 1.0 M solution of (S)-4-benzyl-3-(3-(furan-2-yl)acryloyl)oxazolidin-2-one (\(2.2 \mathrm{~g}, 7.4 \mathrm{mmol}, 1.0\) equiv) in THF was added, and stirring was continued for 2.5 h . The reaction was quenched at \(-78{ }^{\circ} \mathrm{C}\) with sat. \(\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})\), and the product was extracted with EtOAc (x3). The combined organic phases were dried over \(\mathrm{Na}_{2} \mathrm{SO}_{4}\), filtered, and concentrated to dryness under vacuum. The crude material was purified by flash column chromatography \(\left(\mathrm{SiO}_{2}, 10 \%\right.\) to \(20 \% \mathrm{EtOAc}\) in hexanes) to provide 1.0 g (\(40 \%\) yield) of product as a pale yellow solid.
\({ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39-7.17(\mathrm{~m}, 6 \mathrm{H}), 6.28(\mathrm{dd}, J=3.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~d}, J=3.1\) \(\mathrm{Hz}, 1 \mathrm{H}), 5.75\) (ddt, \(J=17.1,10.3,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.15-4.99(\mathrm{~m}, 2 \mathrm{H}), 4.68-4.56(\mathrm{~m}, 1 \mathrm{H}), 4.24-\) \(4.09(\mathrm{~m}, 2 \mathrm{H}), 3.53(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.41-3.28(\mathrm{~m}, 1 \mathrm{H}), 3.33-3.17(\mathrm{~m}, 2 \mathrm{H}), 2.72(\mathrm{dd}, J=\) \(13.3,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{dtd}, J=20.9,14.0,7.0 \mathrm{~Hz}, 2 \mathrm{H})\).

Step 2. (S)-3-(furan-2-yl)hex-5-enal (14)

Under an \(\mathrm{N}_{2}\) atmosphere, a flame dried flask equipped with a stir bar was charged with (\(S\))-4-benzyl-3-((S)-3-(furan-2-yl)hex-5-enoyl)oxazolidin-2-one (\(1.01 \mathrm{~g}, 3.00 \mathrm{mmol}, 1.00\) equiv) and \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})\). The solution was cooled to \(-78^{\circ} \mathrm{C}\), and a 1.0 M solution of DIBAL-H \((6.0 \mathrm{~mL}\), \(6.0 \mathrm{mmol}, 2.0\) equiv) in hexane was added over 20 min . The reaction was stirred at \(-78{ }^{\circ} \mathrm{C}\) for 30 min then quenched at that temperature with sat. sodium potassium tartrate (aq). \(\mathrm{Et}_{2} \mathrm{O}(75 \mathrm{~mL})\) was added, and the mixture was vigorously stirred for 2 h at room temperature. The product was extracted with \(\mathrm{Et}_{2} \mathrm{O}\) (x3), and the combined organic phases were washed with brine, dried over \(\mathrm{Na}_{2} \mathrm{SO}_{4}\), filtered, and concentrated to dryness under vacuum. The crude product was purified by flash column chromatography (\(\mathrm{SiO}_{2}, 5 \% \mathrm{EtOAc}\) in hexanes) to provide 260 mg (\(53 \%\) yield) of product as a colorless oil. \({ }^{1} \mathrm{H}\) NMR data matched the previously reported spectrum. \({ }^{14}\)

Step 3. (S)-2-(1,1-dichlorohepta-1,6-dien-4-yl)furan (15)
The reaction was conducted according to General Procedure A using \(\mathrm{PPh}_{3}(1.7 \mathrm{~g}, 6.3 \mathrm{mmol}, 4.0\) equiv) dissolved in \(\mathrm{MeCN}(2 \mathrm{~mL}), \mathrm{CCl}_{4}(0.31 \mathrm{~mL}, 3.2 \mathrm{mmol}, 2.0\) equiv), and (\(S\))-3-(furan-2-yl)hex-5-enal (\(260 \mathrm{mg}, 1.6 \mathrm{mmol}, 1.0\) equiv) dissolved in \(\mathrm{MeCN}(1 \mathrm{~mL})\). The product was purified by flash column chromatography (\(\mathrm{SiO}_{2}\), hexanes) to provide 282 mg (\(77 \%\) yield) of product as a pale yellow oil.
\({ }^{1} \mathrm{H}\) NMR (\(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 7.33(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{dd}, J=3.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.03\) \((\mathrm{d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.74-5.67(\mathrm{~m}, 1 \mathrm{H}), 5.05(\mathrm{dq}, J=17.1,1 \mathrm{H}), 5.05-\) \(5.00(\mathrm{~m}, 1 \mathrm{H}), 2.92(\mathrm{sext}, J=13.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.56-2.41(\mathrm{~m}, 3 \mathrm{H}), 2.38-2.32(\mathrm{~m}, 1 \mathrm{H})\).
\({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(201 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.9,141.4,135.7,127.6,121.1,117.1,110.1,105.7\), 38.0, 37.8, 33.5.

HRMS (APCI) m/z: [M-H] Calcd for \(\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{O}\) 229.0182; found 229.0186.

Step 1. (S)-4-benzyl-3-((S)-3-(4-methoxyphenyl)hex-5-enoyl)oxazolidin-2-one
Under an \(\mathrm{N}_{2}\) atmosphere, a flame dried flask wrapped with aluminum foil and equipped with a stir bar was charged with \(\mathrm{CuBr} \cdot \mathrm{SMe}_{2}(1.48 \mathrm{~g}, 7.20 \mathrm{mmol}, 1.50\) equiv \()\) and THF (18 mL , 0.4 M). The solution was cooled to \(-78^{\circ} \mathrm{C}\), and a 1.0 M solution of allylmagnesium bromide (12.9 \(\mathrm{mL}, 12.9 \mathrm{mmol}\), 2.7 equiv) was added dropwise over 30 min then stirred at \(-78^{\circ} \mathrm{C}\) for 1.5 h . A 1.0 M solution of (\(S\))-4-benzyl-3-(3-(4-methoxyphenyl)acryloyl)oxazolidin-2-one (\(1.63 \mathrm{~g}, 4.87 \mathrm{mmol}\), 1.00 equiv) in THF was added, and stirring was continued for 2.5 h . The reaction was quenched at \(-78{ }^{\circ} \mathrm{C}\) with sat. \(\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})\), and the product was extracted with \(\mathrm{EtOAc}(\mathrm{x} 3)\). The combined organic phases were dried over \(\mathrm{Na}_{2} \mathrm{SO}_{4}\), filtered, and concentrated to dryness under vacuum. The crude material was purified by flash column chromatography \(\left(\mathrm{SiO}_{2}, 10 \%\right.\) to \(15 \% \mathrm{EtOAc}\) in hexanes) to provide 810 mg (\(44 \%\) yield) of product as a pale yellow solid.
\({ }^{1} \mathrm{H}\) NMR (\(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 7.34-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.14(\mathrm{~m}\), \(4 \mathrm{H}), 6.87-6.81(\mathrm{~m}, 2 \mathrm{H}), 5.70(\mathrm{ddt}, J=17.1,10.2,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{dq}, J=17.1,1.5 \mathrm{~Hz}, 1 \mathrm{H})\), \(5.01-4.96(\mathrm{~m}, 1 \mathrm{H}), 4.51\) (dddd, \(J=10.1,7.8,3.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{dd}, J=9.0,2.5 \mathrm{~Hz}, 1 \mathrm{H})\), 4.01 (ddd, \(J=8.9,7.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{dd}, J=16.0,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.35-3.29(\mathrm{~m}\), \(1 \mathrm{H}), 3.24-3.18(\mathrm{~m}, 2 \mathrm{H}), 2.65(\mathrm{dd}, J=13.5,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.47-2.37(\mathrm{~m}, 2 \mathrm{H})\).
\({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(201 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.0,158.2,153.4,136.2,135.7,135.3,129.4,128.9\), \(128.6,127.3,116.9,113.8,77.2,77.0,76.9,66.1,55.2,53.4,41.3,41.1,40.6,37.8\).

HRMS (APCI) m/z: [M+H] Calcd for \(\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{NO}_{4} 380.1856\); found 380.1854.

Step 2. (S)-3-(4-methoxyphenyl)hex-5-enal
Under an \(\mathrm{N}_{2}\) atmosphere, a flame dried flask equipped with a stir bar was charged with \((S)\) -4-benzyl-3-((S)-3-(4-methoxyphenyl)hex-5-enoyl)oxazolidin-2-one (\(810 \mathrm{mg}, 2.1 \mathrm{mmol}, 1.0\) equiv)
and \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}, 0.1 \mathrm{M})\). The solution was cooled to \(-78^{\circ} \mathrm{C}\), and a 1.0 M solution of DIBAL\(\mathrm{H}(4.3 \mathrm{~mL}, 4.3 \mathrm{mmol}, 2.0\) equiv) in hexane was added over 20 min . The reaction was stirred at \(78{ }^{\circ} \mathrm{C}\) for 30 min then quenched at that temperature with sat. sodium potassium tartrate (aq). \(\mathrm{Et}_{2} \mathrm{O}\) (75 mL) was added, and the solution was vigorously stirred for 2 h at room temperature. The product was extracted with \(\mathrm{Et}_{2} \mathrm{O}(\mathrm{x} 3)\). The combined organic phases were washed with brine, dried over \(\mathrm{Na}_{2} \mathrm{SO}_{4}\), filtered, and concentrated to dryness under vacuum. The crude product was purified by flash chromatography \(\left(\mathrm{SiO}_{2}, 5 \%\right.\) to \(10 \% \mathrm{EtOAc}\) in hexanes) to provide 258 mg (\(60 \%\) yield) of product as a colorless oil. \({ }^{1} \mathrm{H}\) NMR matched the previously reported spectrum. \({ }^{15}\)

\section*{Step 3. (S)-1-(1,1-dichlorohepta-1,6-dien-4-yl)-4-methoxybenzene (23)}

The reaction was conducted according to General Procedure A using \(\mathrm{PPh}_{3}(1.3 \mathrm{~g}, 5.0 \mathrm{mmol}\), 4.0 equiv) dissolved in \(\mathrm{MeCN}(2 \mathrm{~mL}), \mathrm{CCl}_{4}(0.24 \mathrm{~mL}, 2.5 \mathrm{mmol}, 2.0\) equiv), and (\(S\))-3-(4-methoxyphenyl)hex-5-enal (\(258 \mathrm{mg}, 1.3 \mathrm{mmol}, 1.0\) equiv) dissolved in MeCN (1 mL). The product was purified by flash column chromatography \(\left(\mathrm{SiO}_{2}, 5 \% \mathrm{EtOAc}\right.\) in hexanes) to provide 177 mg (\(52 \%\) yield) of product as a colorless oil.
\({ }^{1} \mathrm{H} \operatorname{NMR}\left(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.07(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.70(\mathrm{t}, J\) \(=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.69-5.62(\mathrm{~m}, 1 \mathrm{H}), 5.00(\mathrm{dq}, J=17.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.98-4.95(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}\), \(3 \mathrm{H}), 2.72\) (sext, \(7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.41-2.35(\mathrm{~m}, 3 \mathrm{H})\).
\({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(201 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.3,136.4,135.7,128.6,128.4,120.6,116.7,114.0\), 55.4, 44.1, 40.8, 36.2.

HRMS (ESI) m/z: [M-H] Calcd for \(\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{O}\) 269.0495; found 269.0493.

\section*{\(N\)-allyl- \(N\)-(3,3-dichloroallyl)-4-methylbenzenesulfonamide (17)}

The aldehyde was synthesized according to a previously reported procedure. \({ }^{16}\) The reaction was conducted according to General Procedure A using \(\mathrm{PPh}_{3}(7.3 \mathrm{~g}, 28 \mathrm{mmol}, 4.0\) equiv) dissolved in \(\mathrm{MeCN}(15 \mathrm{~mL}), \mathrm{CCl}_{4}(1.3 \mathrm{~mL}, 14 \mathrm{mmol}, 2.0\) equiv), and \(N\)-allyl-4-methyl- \(N\)-(2oxoethyl)benzenesulfonamide (\(1.8 \mathrm{~g}, 7.0 \mathrm{mmol}, 1.0\) equiv) dissolved in MeCN (3.5 mL). The product was purified by flash column chromatography \(\left(\mathrm{SiO}_{2}, 5 \% \mathrm{EtOAc}\right.\) in hexanes) to provide 1.39 g (\(62 \%\) yield) of product as a colorless oil.
\({ }^{1} \mathrm{H} \operatorname{NMR}\left(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.70(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.80(\mathrm{t}, J\) \(=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.70-5.62(\mathrm{~m}, 1 \mathrm{H}), 5.22-5.17(\mathrm{~m}, 2 \mathrm{H}), 3.89(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~d}, J=6.4\) \(\mathrm{Hz}, 2 \mathrm{H}), 2.44\) (s, 3H).
\({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(201 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.8,136.8,132.5,123.0,127.3,125.4,123.6,119.6\), 50.8, 45.8, 21.7.

HRMS (APCI) m/z: [M+H] Calcd for \(\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{NO}_{2} \mathrm{~S} 320.0273\); found 320.0278.

\section*{Step 1: 3-((tert-butyldimethylsilyl)oxy)hex-5-enal}

The alcohol was synthesized as the racemate according to a previously reported procedure. \({ }^{17}\) The reaction was conducted according to General Procedure B with oxalyl chloride (\(1.1 \mathrm{~mL}, 13 \mathrm{mmol}\), 1.2 equiv) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\) (110 mL), DMSO (\(1.9 \mathrm{~mL}, 27 \mathrm{mmol}\), 2.4 equiv) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\) (5 mL), 3-((tert-butyldimethylsilyl)oxy)hex-5-en-1-ol (\(2.6 \mathrm{~g}, 11 \mathrm{mmol}, 1.0\) equiv) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\) (525 mL), and \(\mathrm{Et}_{3} \mathrm{~N}\) (\(7.7 \mathrm{~mL}, 56 \mathrm{mmol}, 5.0\) equiv). The product was purified by flash column chromatography \(\left(\mathrm{SiO}_{2}, 2 \%\right.\) to \(5 \% \mathrm{EtOAc}\) in hexanes). \({ }^{1} \mathrm{H}\) NMR matched previously reported spectra. \({ }^{18}\)

\section*{Step 2: tert-Butyl((1,1-dichlorohepta-1,6-dien-4-yl)oxy)dimethylsilane (19)}

The reaction was conducted according to General Procedure A using PPh3 (\(2.5 \mathrm{~g}, 9.6 \mathrm{mmol}\), 4.0 equiv) dissolved in \(\mathrm{MeCN}(5 \mathrm{~mL}), \mathrm{CCl}_{4}(0.47 \mathrm{~mL}, 4.8 \mathrm{mmol}, 2.0\) equiv), and \(3-((\) tert-butyldimethylsilyl)oxy)hex-5-enal (\(551 \mathrm{mg}, 2.40 \mathrm{mmol}, 1.00\) equiv) dissolved in \(\mathrm{MeCN}(1.5 \mathrm{~mL}\)). The product was purified by flash column chromatography \(\left(\mathrm{SiO}_{2}\right.\), hexanes) to provide 373 mg (\(52 \%\) yield) as a colorless oil.
\({ }^{1} \mathrm{H}\) NMR \(\left(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.92(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.83-5.75(\mathrm{~m}, 1 \mathrm{H}), 5.11-5.03\) \((\mathrm{m}, 2 \mathrm{H}), 3.80(q u i n t, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.22(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 0.89(\mathrm{~s}\), 9H), 0.06 (\(\mathrm{s}, 6 \mathrm{H}\)).
\({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(201 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 134.6,126.9,121.1,117.6,70.8,42.0,37.2,25.9,18.2\), -4.4, -4.6.

HRMS (APCI) m/z: [M+H] Calcd for \(\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{SiO}_{2}\) 295.1046; found 295.1049.

(4S,5R)-4-allyl-5-(2,2-dichlorovinyl)-2,2-dimethyl-1,3-dioxolane (21)
The aldehyde was synthesized according to a previously reported procedure. \({ }^{19}\) The reaction was conducted according to General Procedure A using \(\mathrm{PPh}_{3}\) (\(19.7 \mathrm{~g}, 75 \mathrm{mmol}, 4.0\) equiv) dissolved in \(\mathrm{MeCN}(38 \mathrm{~mL}), \mathrm{CCl}_{4}\) (\(3.7 \mathrm{~mL}, 36 \mathrm{mmol}\), 2.0 equiv), and (\(4 S, 5 S\))-5-allyl-2,2-dimethyl-1,3-dioxolane-4-carbaldehyde (\(3.23 \mathrm{~g}, 18.7 \mathrm{mmol}, 1.00\) equiv) dissolved in \(\mathrm{MeCN}(10 \mathrm{~mL})\). The product was purified by flash chromatography \(\left(\mathrm{SiO}_{2}, 1.5 \%\right.\) to \(2 \%\) to \(2.5 \% \mathrm{EtOAc}\) in hexanes) to provide 1.9 g (\(43 \%\) yield) of product as a pale yellow oil.
\({ }^{1} \mathrm{H}\) NMR \(\left(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.94(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.83-5.76(\mathrm{~m}, 1 \mathrm{H}), 5.18-5.10\) (m, 2H), 4.87 (dd, \(J=8.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.31-4.26(\mathrm{~m}, 1 \mathrm{H}), 2.36-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.20(\mathrm{~m}\), 1 H), 1.48 (\(\mathrm{s}, 3 \mathrm{H}\)), 1.37 (\(\mathrm{s}, 3 \mathrm{H}\)).
\({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR (201 MHz, \(\left.\mathrm{CDCl}_{3}\right) \delta 133.8,126.9,124.2,117.9,109.2,77.5,76.1,34.6\), 28.3, 25.7.

HRMS (APCI) m/z: [M+H] Calcd for \(\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{O}_{2} 237.0449\); found 237.0452

\section*{Ethyl 2-(2,2-dichlorovinyl)-2-methylpent-4-enoate (27)}

The aldehyde was synthesized from a previously reported procedure. \({ }^{20}\) The reaction was conducted according to General Procedure A using \(\mathrm{PPh}_{3}(4.0 \mathrm{~g}, 15.2 \mathrm{mmol}, 4.0\) equiv) dissolved in \(\mathrm{MeCN}(8 \mathrm{~mL}), \mathrm{CCl}_{4}\) (\(0.74 \mathrm{~mL}, 7.6 \mathrm{mmol}, 2.0\) equiv), and ethyl 2-formyl-2-methylpent-4-enoate (\(646 \mathrm{mg}, 3.8 \mathrm{mmol}, 1.0\) equiv) dissolved in \(\mathrm{MeCN}(2 \mathrm{~mL})\). The product was purified by flash column chromatography \(\left(\mathrm{SiO}_{2} 5 \% \mathrm{EtOAc}\right.\) in hexanes) to provide 470 mg (\(52 \%\) yield) as a colorless oil.
\({ }^{1} \mathrm{H}\) NMR \(\left(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.02(\mathrm{~s}, 1 \mathrm{H}), 5.74-5.66(\mathrm{~m}, 1 \mathrm{H}), 5.14-5.09(\mathrm{~m}, 2 \mathrm{H}), 4.18\) \((\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.54-2.46(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})\).
\({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR (201 MHz, \(\mathrm{CDCl}_{3}\)) \(\delta\) 174.1, 132.8, 132.7, 121.9, 119.4, 61.4, 47.9, 43.4, 21.9, 14.3.

HRMS (APCI) m/z: [M+H] Calcd for \(\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{O}_{2}\) 209.0136; found 209.0143.

\section*{Step 1: 2-cyclohexylpent-4-enal}

2-Cyclohexylpent-4-enoate was synthesized from a previously reported procedure. \({ }^{21}\) Under an \(\mathrm{N}_{2}\) atmosphere, a flame dried flask equipped with a stir bar was charged ethyl 2-cyclohexylpent-4-enoate (\(0.927 \mathrm{~g}, 4.4 \mathrm{mmol}, 1.0\) equiv) and \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(22 \mathrm{~mL}, 0.2 \mathrm{M}\)). The solution was cooled to \(-78^{\circ} \mathrm{C}\), and a 1.0 M solution of DIBAL-H (\(4.9 \mathrm{~mL}, 4.9 \mathrm{mmol}, 1.1\) equiv) in hexane was added slowly. The reaction was stirred for 1 h at \(-78^{\circ} \mathrm{C}\). The solution was quenched with sat. sodium potassium tartrate (aq) at \(-78^{\circ} \mathrm{C}\) and vigorously stirred for 2 h at room temperature. The product was extracted with \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{x} 3)\). The combined organic layers were washed with brine, dried over \(\mathrm{Na}_{2} \mathrm{SO}_{4}\), filtered, and concentrated to dryness under vacuum. The product was purified by flash column chromatography \(\left(\mathrm{SiO}_{2}, 2.5 \% \mathrm{EtOAc}\right.\) in hexanes) to provide 268 mg (\(37 \%\) yield) of product as a clear oil. \({ }^{1} \mathrm{H}\) NMR matched the previously reported spectrum. \({ }^{22}\)

\section*{Step 2. (1,1-dichlorohexa-1,5-dien-3-yl)cyclohexane (29)}

The reaction was conducted according to General Procedure A using \(\mathrm{PPh}_{3}(3.0 \mathrm{~g}, 11 \mathrm{mmol}\), 4.0 equiv) dissolved in \(\mathrm{MeCN}(6 \mathrm{~mL}), \mathrm{CCl}_{4}\) (\(0.56 \mathrm{~mL}, 5.8 \mathrm{mmol}, 2.0\) equiv), and 2-cyclohexylpent-4-enal (490 mg , 2.9 mmol , 1.0 equiv) dissolved in \(\mathrm{MeCN}(1.5 \mathrm{~mL})\). The product was purified by flash column chromatography (\(\mathrm{SiO}_{2}\), hexanes) to provide 405 mg (\(60 \%\) yield) of product as a colorless oil.
\({ }^{1} \mathrm{H}\) NMR (\(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 5.75-5.69(\mathrm{~m}, 1 \mathrm{H}), 5.67(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.05-4.98\) (m, 2H), 2.40 (dddd, \(J=10.4,8.9,6.4,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{dddt}, J=14.4,6.4,4.9,1.4 \mathrm{~Hz}, 1 \mathrm{H})\), \(2.09-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.70(\mathrm{~m}, 3 \mathrm{H}), 1.73-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.34(\mathrm{tdt}, J=\) \(11.7,6.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.27-1.15(\mathrm{~m}, 2 \mathrm{H}), 1.13(\mathrm{qt}, J=12.8,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.04-0.91(\mathrm{~m}, 2 \mathrm{H})\).
\({ }^{13} \mathrm{C}\) NMR (201 MHz, \(\mathrm{CDCl}_{3}\)) \(\delta 136.2,132.9,119.9,116.5,46.0,41.4,36.1,31.2,29.7\), 26.6, 26.6.

HRMS (APCI) m/z: [M-H] Cald for \(\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{Cl}_{2}=231.0702\); found 231.0698.

\section*{Step 1: Methyl-6-oxohex-2-enoate}

Methyl-6-hydroxyhex-2-enoate was synthesized according to a previously known procedure. \({ }^{23}\) The reaction was conducted according to General Procedure B using oxalyl chloride (\(0.71 \mathrm{~mL}, 8.3 \mathrm{mmol}\), 1.2 equiv) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\) (70 mL), DMSO (\(1.18 \mathrm{~mL}, 16.6 \mathrm{mmol}, 2.40\) equiv) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\) (4 mL), methyl-6-hydroxyhex-2-enoate (1.0 g , 6.9 mmol , 1.0 equiv) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\) (14 mL), and \(\mathrm{Et}_{3} \mathrm{~N}\) (\(4.8 \mathrm{~mL}, 35.0 \mathrm{mmol}, 5.00\) equiv). The product was used without any further purification. \({ }^{1} \mathrm{H}\) NMR matched previously reported spectrum. \({ }^{8}\)

\section*{Step 2: Methyl (\(\boldsymbol{E}\))-7,7-dichlorohepta-2,6-dienoate (31)}

The reaction was conducted according General Procedure A using \(\mathrm{PPh}_{3}\) (\(5.9 \mathrm{~g}, 22 \mathrm{mmol}\), 4.0 equiv) dissolved in \(\mathrm{MeCN}(12 \mathrm{~mL}), \mathrm{CCl}_{4}(1.1 \mathrm{~mL}, 11 \mathrm{mmol}, 2.0\) equiv), and methyl-6-oxohex-2-enoate (\(795 \mathrm{mg}, 5.60 \mathrm{mmol}, 1.00\) equiv) dissolved in \(\mathrm{MeCN}(3 \mathrm{~mL})\). The product was purified by flash column chromatography \(\left(\mathrm{SiO}_{2}, 5 \% \mathrm{EtOAc}\right.\) in hexanes) to provide 180 mg (\(15 \%\) yield) of the \(E\) isomer as a colorless oil.
\({ }^{1} \mathrm{H}\) NMR \(\left(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.93(\mathrm{dt}, J=15.6,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.88-5.82(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{~s}\), 2H), \(2.37-2.30(\mathrm{~m}, 3 \mathrm{H})\).
\({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR (201 MHz, \(\left.\mathrm{CDCl}_{3}\right) \delta 166.9,147.2,128.1,122.2,121.5,51.7,30.7,28.2\).
HRMS (APCI) m/z: [M+H] Calcd for \(\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{O}_{2}\) 237.0444; found 237.0446.

\section*{Step 1: 2-(4-methoxyphenyl)hex-4-enal}

Methyl 2-(4-methoxyphenyl)hex-4-enoate was synthesized according to a previously reported procedure. \({ }^{24}\) Under an \(\mathrm{N}_{2}\) atmosphere, a flame dried flask equipped with a stir bar was charged with methyl 2-(4-methoxyphenyl)hex-4-enoate (1.3 g , \(5.5 \mathrm{mmol}, 1.0\) equiv) and \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\) \((28 \mathrm{~mL})\). The solution was cooled to \(-78^{\circ} \mathrm{C}\), and a 1.0 M solution of DIBAL-H (\(6.1 \mathrm{~mL}, 6.1 \mathrm{mmol}\), 1.1 equiv) in hexane was added slowly. The reaction was stirred for 30 min at \(-78^{\circ} \mathrm{C}\). The reaction mixture was quenched with sat. sodium potassium tartrate (aq) at \(-78^{\circ} \mathrm{C}\) and vigorously stirred for 1 h at room temperature. The product was extracted with \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{x} 3)\). The combined organic phases were washed with brine, dried over \(\mathrm{Na}_{2} \mathrm{SO}_{4}\), filtered, and concentrated to dryness under vacuum. The crude product was used without further purification.

Crude \({ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(E\) isomer: \(\delta 9.65(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.08(\mathrm{~m}\), \(2 \mathrm{H}), 6.98-6.86(\mathrm{~m}, 2 \mathrm{H}), 5.77-5.37(\mathrm{~m}, 2 \mathrm{H}), 3.60-3.42(\mathrm{~m}, 2 \mathrm{H}), 2.79(\mathrm{dq}, J=14.6,7.3 \mathrm{~Hz}\), \(1 \mathrm{H}), 1.64(\mathrm{dq}, J=6.3,1.3 \mathrm{~Hz}, 3 \mathrm{H})\).

\section*{Step 2: 1-(1,1-dichlorohepta-1,5-dien-3-yl)-4-methoxybenzene (33)}

The reaction was conducted according to General Procedure A using \(\mathrm{PPh}_{3}\) (5.77 g, 22.0 mmol, 4.00 equiv) dissolved in \(\mathrm{MeCN}(11 \mathrm{~mL}), \mathrm{CCl}_{4}(1.1 \mathrm{~mL}, 11 \mathrm{mmol}, 2.0\) equiv), and 2-(4-
methoxyphenyl)hex-4-enal (\(1.12 \mathrm{~g}, 5.48 \mathrm{mmol}, 1.00\) equiv) dissolved in \(\mathrm{MeCN}(3 \mathrm{~mL})\). The product was purified by flash column chromatography \(\left(\mathrm{SiO}_{2}, 5 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.\) in hexanes) to provide 270 mg (\(18 \%\) yield) of a 4.5:1 E/Z mixture as a colorless oil.
\({ }^{1} \mathrm{H}\) NMR (\(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) E isomer: \(\delta 7.17-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.92-6.79(\mathrm{~m}, 2 \mathrm{H}), 5.98\) (dd, \(J=9.7,0.7 \mathrm{~Hz}, 1 \mathrm{H}\)), \(5.50-5.39(\mathrm{~m}, 1 \mathrm{H}), 5.31(\mathrm{dtd}, J=15.6,7.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~d}, J=\) \(0.8 \mathrm{~Hz}, 3 \mathrm{H}), 3.67\) (ddt, \(J=14.6,9.6,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.31(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.53(\mathrm{~m}, 3 \mathrm{H})\).
\({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.5,134.3,133.3,128.5,127.8,127.8,120.2,114.2\), 55.4, 45.7, 39.0, 18.1.

\section*{Step 1: Methyl-7-oxohept-2-enoate}

Methyl-7-hydroxyhept-2-enoate was synthesized according to a previously reported procedure. \({ }^{25}\) A flask equipped with a stir bar was charged with methyl-7-hydroxyhept-2-enoate (\(867 \mathrm{mg}, 5.48\) mmol, 1.00 equiv) and \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\) (20 mL). Dess-Martin periodinane (\(2.3 \mathrm{~g}, 5.4 \mathrm{mmol}, 1.0\) equiv) and \(\mathrm{NaHCO}_{3}(460 \mathrm{mg}, 5.4 \mathrm{mmol}, 1.0\) equiv) were added, and the reaction was stirred at room temperature for 2 h . The reaction was quenched with a \(20 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{aq})\) and sat. \(\mathrm{NaHCO}_{3}(\mathrm{aq})\), and the product was extracted with \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(x 3)\). The combined organic phases were washed with brine, dried over \(\mathrm{Na}_{2} \mathrm{SO}_{4}\), and concentrated to dryness under vacuum. The crude solid was redissolved in a minimal amount of \(\mathrm{Et}_{2} \mathrm{O}\), filtered through a plug of silica gel, and concentrated to dryness under vacuum. The crude product was used without further purification. \({ }^{1} \mathrm{H}\) NMR data match the previously reported spectrum. \({ }^{26}\)

\section*{Step 2: Methyl (E)-8,8-dichloroocta-2,7-dienoate (36-E)}

The reaction was conducted according to General Procedure A using \(\mathrm{PPh}_{3}(4.7 \mathrm{~g}, 18 \mathrm{mmol}\), 4.0 equiv) dissolved in \(\mathrm{MeCN}(10 \mathrm{~mL}), \mathrm{CCl}_{4}\) (\(0.87 \mathrm{~mL}, 9.0 \mathrm{mmol}, 2.0\) equiv), and methyl (\(E\))-7-oxohept-2-enoate (\(700 \mathrm{mg}, 4.5 \mathrm{mmol}, 1.0\) equiv) dissolved in MeCN (3 mL). The product was purified by flash column chromatography \(\left(\mathrm{SiO}_{2}, 5 \% \mathrm{EtOAc}\right.\) in hexanes) to provide 300 mg (\(30 \%\) yield) of the \(E\) isomer as a colorless oil.
\({ }^{1} \mathrm{H}\) NMR (\(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 6.94(\mathrm{dt}, \mathrm{J}=15.6,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.87-5.81(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{~s}\), 3H), \(2.26-2.17\) (m, 4H), 1.59 (p, J = \(7.5 \mathrm{~Hz}, 2 \mathrm{H}\)).
\({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR (201 MHz, \(\mathrm{CDCl}_{3}\)) \(\delta 167.1,148.4,129.1,121.7,120.9,51.6,31.6,29.1\), 26.7.

HRMS (APCI) m/z: [M+H] Calcd for \(\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{O}_{2} 223.0287\); found 223.0289.

\section*{Methyl (Z)-8,8-dichloroocta-2,7-dienoate (36-Z)}

The reaction was conducted according to General Procedure A using \(\mathrm{PPh}_{3}(5.37 \mathrm{~g}, 20.5\) mmol, 4.00 equiv) dissolved in \(\mathrm{MeCN}(10 \mathrm{~mL}), \mathrm{CCl}_{4}(1.00 \mathrm{~mL}, 10.8 \mathrm{mmol}, 2.10\) equiv), and methyl (\(Z\))-7-oxohept-2-enoate \({ }^{27}\) (\(800 \mathrm{mg}, 5.10 \mathrm{mmol}\), 1.00 equiv) dissolved in \(\mathrm{MeCN}(2.5 \mathrm{~mL}\)). The product was purified by flash chromatography \(\left(\mathrm{SiO}_{2}, 5 \% \mathrm{EtOAc}\right.\) in hexanes) to provide 204 mg (\(18 \%\) yield) of the \(Z\) isomer as a colorless oil.
\({ }^{1} \mathrm{H}\) NMR (\(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 6.23(\mathrm{dt}, \mathrm{J}=11.5,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.83\) (dt, J = 11.4, 1.7 Hz, 1H), \(3.74(\mathrm{~s}, 3 \mathrm{H}), 2.71(\mathrm{qd}, \mathrm{J}=7.5,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.24(\mathrm{q}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H})\), \(1.60(\mathrm{p}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H})\).
\({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR (201 MHz, \(\mathrm{CDCl}_{3}\)) \(\delta 166.7,149.4,129.3,120.4,120.0,77.2,77.0,76.9\), 51.1, 29.2, 28.3, 27.5.

HRMS (ESI) m/z: [M+H] Calcd for \(\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{O}_{2}\) 223.0287; found 223.0290.

\section*{5. Catalytic Reductive Cyclization Reactions with NDI}

General Procedure C: A scintillation vial was charged with i-PrNDI (4) (0.01-0.02 mmol, 5-10 \(\mathrm{mol} \%\)), \(\mathrm{Ni}(\mathrm{dme}) \mathrm{Cl}_{2}\) (\(0.02-0.04 \mathrm{mmol}, 10-20 \mathrm{~mol} \%\)), Zn (\(40 \mathrm{mg}, 0.60 \mathrm{mmol}, 3.0\) equiv), and NMP \((1.6 \mathrm{~mL})\). The solution was stirred at 600 rpm for 20 min , during which time the solution turned violet in color (during metallation of the catalyst, the vial was tilted at a \(45^{\circ}\) angle). The 1,1dichloroalkene substrate (\(0.20 \mathrm{mmol}, 1.0\) equiv) dissolved in THF (6.4 mL) was added to the catalyst mixture. Stirring was continued at 600 rpm for 24 h . The reaction was diluted with \(\mathrm{Et}_{2} \mathrm{O}\) \((2 \mathrm{~mL})\), and the organic phase was washed with water (5 mL) and brine (5 mL). The organic phase was dried over \(\mathrm{Na}_{2} \mathrm{SO}_{4}\), filtered, and concentrated to dryness under vacuum. The products were purified by flash chromatography.

Note: reactions forming 6-membered ring products were run at room temperature, and reactions forming 5-membered ring products were run at \(50^{\circ} \mathrm{C}\).

General Procedure D: A scintillation vial was charged with \({ }^{c-P e n t} \mathrm{NDI}\) (7) (0.01-0.02 mmol, 5-10 \(\mathrm{mol} \%), \mathrm{Ni}(\mathrm{dme}) \mathrm{Cl}_{2}(0.02-0.04 \mathrm{mmol}, 10-20 \mathrm{~mol} \%), \mathrm{Zn}(40 \mathrm{mg}, 0.6 \mathrm{mmol}, 3.0\) equiv), and NMP \((0.8 \mathrm{~mL})\). The solution was stirred at 600 rpm for 20 min , during which time the solution turned violet in color (during metallation of the catalyst, the vial was tilted at a \(45^{\circ}\) angle). The 1,1dichloroalkene substrate (\(0.2 \mathrm{mmol}, 1.0\) equiv) dissolved in THF (7.2 mL) was added to the catalyst mixture. Stirring was continued at a \(45^{\circ}\) angle at 600 rpm for 24 h . The reaction was diluted with \(\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})\), and the organic phase was washed with water (5 mL) and brine (5 mL). The organic phase was dried over \(\mathrm{Na}_{2} \mathrm{SO}_{4}\), filtered, and concentrated to dryness under vacuum. The products were purified by flash chromatography.

\section*{4-methylene-1,2,3,4-tetrahydro-1,1'-biphenyl (2)}

The reaction was conducted according to General Procedure C with \({ }^{i-\mathrm{Pr}} \mathrm{NDI}\) (4) (5.3 mg , \(0.010 \mathrm{mmol}, 5.0 \mathrm{~mol} \%\)), \(\mathrm{Ni}(\mathrm{dme}) \mathrm{Cl}_{2}(4.4 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{Zn}(40 \mathrm{mg}, 0.6 \mathrm{mmol}, 3.0\) equiv), (1,1-dichlorohepta-1,6-dien-3-yl)benzene (1) (\(48 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0\) equiv), THF (6.4 \(\mathrm{mL})\), and NMP (1.6 mL) at room temperature. The product was purified by flash chromatography (\(\mathrm{SiO}_{2}\), pentane) to provide the product as a colorless oil.

Run 1: 26 mg (\(76 \%\) yield) Run 2: 26 mg (\(76 \%\) yield)
\({ }^{1} \mathrm{H}\) NMR (\(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 7.33-7.29\) (m, 2H), \(7.24-7.20(\mathrm{~m}, 3 \mathrm{H}), 6.33\) (dd, \(J=9.9\), \(2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.88-5.85(\mathrm{~m}, 1 \mathrm{H}), 4.88(\mathrm{~s}, 1 \mathrm{H}), 4.84(\mathrm{~s}, 1 \mathrm{H}), 3.54-3.50(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.43(\mathrm{~m}\), \(1 \mathrm{H}), 2.42-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.12-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.65(\mathrm{~m}, 1 \mathrm{H})\).
\({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(201 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.7,142.9,133.2,130.4,128.6,127.9,126.4,111.3\), 42.3, 32.9, 29.5.

HRMS (APCI) m/z: [M+H] Calcd for \(\mathrm{C}_{13} \mathrm{H}_{15}\) 171.1168; found 171.1166.

\section*{(R)-2-(5-methylenecyclohex-3-en-1-yl)furan (16)}

The reaction was conducted according to General Procedure C with \({ }^{i-\mathrm{Pr}} \mathrm{NDI}(4)(5.3 \mathrm{mg}\), \(0.010 \mathrm{mmol}, 5.0 \mathrm{~mol} \%\)), \(\mathrm{Ni}(\mathrm{dme}) \mathrm{Cl}_{2}(4.4 \mathrm{mg}, 0.020 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{Zn}(40 \mathrm{mg}, 0.60 \mathrm{mmol}, 3.0\) equiv), (\(S\))-2-(1,1-dichlorohepta-1,6-dien-4-yl)furan (15) (\(48 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0\) equiv), THF (6.4 \(\mathrm{mL})\), and NMP (1.6 mL) at room temperature. The product was purified by flash chromatography (\(\mathrm{SiO}_{2}\), pentane) to provide the product as a colorless oil.

Run 1: 27 mg (\(84 \%\) yield) Run 2: 25 mg (\(78 \%\) yield)
\({ }^{1} \mathrm{H} \operatorname{NMR}\left(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.20(\mathrm{~m}, 1 \mathrm{H}), 6.31-6.29(\mathrm{~m}, 1 \mathrm{H}), 6.20(\mathrm{~d}, J=11.2\) \(\mathrm{Hz}, 1 \mathrm{H}), 6.04-6.02(\mathrm{~m}, 1 \mathrm{H}), 5.88-5.85(\mathrm{~m}, 1 \mathrm{H}), 4.87(\mathrm{~s}, 1 \mathrm{H}), 4.84(\mathrm{~s}, 1 \mathrm{H}), 3.08-3.01(\mathrm{~m}, 1 \mathrm{H})\), \(2.73(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.52-2.44(\mathrm{~m}, 2 \mathrm{H}), 2.35-2.28(\mathrm{~m}, 1 \mathrm{H})\).
\({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR \(\left(201 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta\) 159.2, 142.3, 141.0, 129.6, 128.7, 111.9, 110.1, 103.7, 35.6, 33.8, 30.4.

HRMS (ESI) m/z: [M+H] Calcd for \(\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}\) 161.0961; found 161.0959.

\section*{3-methylene-1-tosyl-1,2,3,6-tetrahydropyridine (18)}

The reaction was conducted according to General Procedure C with \({ }^{i-\mathrm{Pr}} \mathrm{NDI}(4)(10.6 \mathrm{mg}\), \(0.020 \mathrm{mmol}, 10 \mathrm{~mol} \%\)), \(\mathrm{Ni}(\mathrm{dme}) \mathrm{Cl}_{2}(8.8 \mathrm{mg}, 0.040 \mathrm{mmol}, 20 \mathrm{~mol} \%), \mathrm{Zn}(40 \mathrm{mg}, 0.6 \mathrm{mmol}, 3.0\) equiv), \(N\)-allyl- \(N\)-(3,3-dichloroallyl)-4-methylbenzenesulfonamide (17) (\(64 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0\) equiv), THF (6.4 mL), NMP (1.6 mL) at room temperature. The product was purified by flash chromatography (\(\mathrm{SiO}_{2}, 5 \%\) to \(10 \% \mathrm{Et}_{2} \mathrm{O}\) in pentane) to provide the product as an off-white solid.

Run 1: 24 mg (\(48 \%\) yield) Run 2: 27 mg (\(53 \%\) yield)
Spectra match those previously reported in the literature. \({ }^{27}\)

\section*{tert-Butyldimethyl((5-methylenecyclohex-3-en-1-yl)oxy)silane (20)}

The reaction was conducted according to General Procedure C with \({ }^{i-\mathrm{Pr}} \mathrm{NDI}(4)(5.3 \mathrm{mg}\), \(0.010 \mathrm{mmol}, 5 \mathrm{~mol} \%\)), \(\mathrm{Ni}(\mathrm{dme}) \mathrm{Cl}_{2}(4.4 \mathrm{mg}, 0.020 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{Zn}(40 \mathrm{mg}, 0.6 \mathrm{mmol}, 3.0\) equiv), tert-butyl((1,1-dichlorohepta-1,6-dien-4-yl)oxy)dimethylsilane (21) (59 mg, 0.20 mmol , 1.0 equiv), THF (6.4 mL), and NMP (1.6 mL) at room temperature. The product was purified by flash chromatography \(\left(\mathrm{SiO}_{2}\right.\), pentane) to provide the product as a colorless oil.

Run 1: 37 mg (\(82 \%\) yield). Run 2: 32 mg (\(71 \%\) yield)
\({ }^{1} \mathrm{H}\) NMR (\(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 6.12-6.08(\mathrm{~m}, 1 \mathrm{H}), 5.72-5.68(\mathrm{~m}, 1 \mathrm{H}), 4.85(\mathrm{~s}, 1 \mathrm{H}), 4.78\) \((\mathrm{s}, 1 \mathrm{H}), 3.94-3.88(\mathrm{~m}, 1 \mathrm{H}), 2.52(\mathrm{dd}, \mathrm{J}=14.4,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.36-2.29(\mathrm{~m}, 2 \mathrm{H}), 2.15-2.08(\mathrm{~m}\), \(1 \mathrm{H}), 0.91-0.88(\mathrm{~m}, 9 \mathrm{H}), 0.07\) (dd, J = 5.4, 1.2 Hz, 6H).
\({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR (201 MHz, \(\mathrm{CDCl}_{3}\)) \(\delta 142.9,129.6,127.8,112.0,68.2,40.8,35.5,26.0,18.3\), -4.5.

HRMS (ESI) m/z: [M+H] Calcd for \(\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{OSi} 225.1669\); found 225.1672.

\section*{(3aS,R-2,2-dimethyl-5-methylene-3a,4,5,7a-tetrahydrobenzo[d][1,3]dioxole (22)}

The reaction was conducted according to General Procedure C with \({ }^{i-\mathrm{Pr}} \mathrm{NDI}(4)(5.3 \mathrm{mg}\), \(0.010 \mathrm{mmol}, 5 \mathrm{~mol} \%\)), \(\mathrm{Ni}(\mathrm{dme}) \mathrm{Cl}_{2}(4.4 \mathrm{mg}, 0.020 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{Zn}(40 \mathrm{mg}, 0.60 \mathrm{mmol}, 3.0\) equiv), (4S,5R)-4-allyl-5-(2,2-dichlorovinyl)-2,2-dimethyl-1,3-dioxolane (23) (47 mg, 0.20 mmol , 1.0 equiv), THF (6.4 mL), and NMP (1.6 mL) at room temperature. The product was purified by flash chromatography \(\left(\mathrm{SiO}_{2}, 1 \%\right.\) to \(1.5 \%\) to \(2 \% \mathrm{Et}_{2} \mathrm{O}\) in pentane) to provide the product as a colorless oil.

Run 1: 17 mg (\(52 \%\) yield. Run 2: 19 mg (\(56 \%\) yield)
\({ }^{1} \mathrm{H}\) NMR \(\left(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.25(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~s}\), \(1 \mathrm{H}), 4.98(\mathrm{~s}, 1 \mathrm{H}), 4.54(\mathrm{t}, J=5.6 \mathrm{~Hz} 1 \mathrm{H}), 4.38(\mathrm{q}, J=2.4,1 \mathrm{H}), 2.69(\mathrm{dd}, J=15.7,4.9 \mathrm{~Hz}, 1 \mathrm{H})\), \(2.63-2.58(\mathrm{~m}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H})\).
\({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR (201 MHz, \(\mathrm{CDCl}_{3}\)) \(\delta\) 138.2, 131.2, 126.9, 115.3, 109.3, 73.0, 71.8, 32.6, 28.3, 26.9.

HRMS (ESI) m/z: [M+H] Calcd for \(\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}_{2}\) 167.1067; found 167.1065.

\section*{(R)-4'-methoxy-3-methylene-1,2,3,6-tetrahydro-1,1'-biphenyl (24)}

The reaction was conducted according to General Procedure C with \({ }^{i-\mathrm{Pr}} \mathrm{NDI}\) (4) (5.3 mg, \(0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%\)), \(\mathrm{Ni}(\mathrm{dme}) \mathrm{Cl}_{2}(4.4 \mathrm{mg}, 0.020 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{Zn}(40 \mathrm{mg}, 0.6 \mathrm{mmol}, 3.0\) equiv), (S)-1-(1,1-dichlorohepta-1,6-dien-4-yl)-4-methoxybenzene (19) (\(54 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.00\) equiv), THF (6.4 mL), and NMP (1.6 mL) at room temperature. The product was purified by flash chromatography \(\left(\mathrm{SiO}_{2}, 2.5 \% \mathrm{Et}_{2} \mathrm{O}\right.\) in pentane) to provide the product as a colorless oil.

Run 1: 31 mg (\(77 \%\) yield) Run 2: 30 mg (\(75 \%\) yield)
\({ }^{1} \mathrm{H} \operatorname{NMR}\left(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.17(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.23(\mathrm{~d}\), \(J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{~s}, 1 \mathrm{H}), 4.80(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.91-2.85(\mathrm{~m}\), \(1 \mathrm{H}), 2.60-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.53-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{dt}, J=18.3,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.29-2.22(\mathrm{~m}, 1 \mathrm{H})\).
\({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(201 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.2,143.7,138.4,129.9,129.4,127.9,114.0,111.3\), 55.4, 39.9, 38.5, 33.8.

HRMS (ESI) m/z: [M+H] Calcd for \(\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}\) 201.1274; found 201.1277.

\section*{(4-methylenecyclopent-2-en-1-yl)benzene (26)}

The reaction was conducted according to General Procedure C with \({ }^{i-\mathrm{Pr}} \mathrm{NDI}(4)(10.6 \mathrm{mg}\), \(0.020 \mathrm{mmol}, 10 \mathrm{~mol} \%\)), \(\mathrm{Ni}(\mathrm{dme}) \mathrm{Cl}_{2}(8.8 \mathrm{mg}, 0.040 \mathrm{mmol}, 20 \mathrm{~mol} \%\)), \(\mathrm{Zn}(40 \mathrm{mg}, 0.60 \mathrm{mmol}, 3.0\) equiv), (1,1-dichlorohexa-1,5-dien-3-yl)benzene (25) (\(45 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0\) equiv), THF (6.4 mL), and NMP \((1.6 \mathrm{~mL})\) at \(50^{\circ} \mathrm{C}\). The product was purified by flash chromatography \(\left(\mathrm{SiO}_{2}\right.\), pentane) to provide the product as a colorless oil.

Run 1: 24 mg (\(77 \%\) yield) Run 2: 23 mg (\(74 \%\) yield)
\({ }^{1} \mathrm{H}_{\mathrm{NMR}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.15(\mathrm{~m}, 3 \mathrm{H}), 6.33(\mathrm{dd}, J=5.5\), \(2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.17-6.13(\mathrm{~m}, 1 \mathrm{H}), 4.95(\mathrm{~s}, 1 \mathrm{H}), 4.83(\mathrm{~s}, 1 \mathrm{H}), 4.09-4.00(\mathrm{~m}, 1 \mathrm{H}), 3.08(\mathrm{ddt}, J=\) \(16.8,8.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.52-2.43(\mathrm{~m}, 1 \mathrm{H})\).
\({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.1,145.5,142.4,134.9,128.7,127.3,126.5,103.5\), 50.8, 39.8.

HRMS (APCI) m/z: [M+H] Calcd for \(\mathrm{C}_{12} \mathrm{H}_{13}\) 157.1012; found 157.1010.

\section*{ethyl 1-methyl-4-methylenecyclopent-2-ene-1-carboxylate (28)}

The reaction was conducted according to General Procedure C with \({ }^{i-\mathrm{Pr}} \mathrm{NDI}(4)(10.6 \mathrm{mg}\), \(0.020 \mathrm{mmol}, 10 \mathrm{~mol} \%\)), \(\mathrm{Ni}(\mathrm{dme}) \mathrm{Cl}_{2}(8.8 \mathrm{mg}, 0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%), \mathrm{Zn}(40 \mathrm{mg}, 0.60 \mathrm{mmol}, 3.0\) equiv), ethyl 2-(2,2-dichlorovinyl)-2-methylpent-4-enoate (27) (\(47 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0\) equiv), THF (6.4 mL), and NMP \((1.6 \mathrm{~mL})\) at \(50^{\circ} \mathrm{C}\). The product was purified by flash chromatography \(\left(\mathrm{SiO}_{2}, 2 \% \mathrm{Et}_{2} \mathrm{O}\right.\) in pentane) to provide the product as a colorless oil.

Run 1: 15 mg (\(45 \%\) yield) Run 2: 15 mg (\(45 \%\) yield)
\({ }^{1} \mathrm{H}\) NMR \(\left(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.15(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~s}\), \(1 \mathrm{H}), 4.84(\mathrm{~s}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.13(\mathrm{dt}, J=16.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.36(\mathrm{~m}, 1 \mathrm{H})\), \(1.35(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})\).
\({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR (201 MHz, \(\left.\mathrm{CDCl}_{3}\right) \delta 176.1,152.1,142.3,134.0,104.9,61.0,55.3,41.1\), 25.5, 14.3 .

HRMS (APCI) m/z: [M+H] Calcd for \(\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}_{2}\) 167.1067; found 167.1064.

\section*{(4-methylenecyclopent-2-en-1-yl)cyclohexane (30)}

The reaction was conducted according to General Procedure C with \({ }^{i-\mathrm{Pr}} \mathrm{NDI}(4)(10.6 \mathrm{mg}\), \(0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%\)), \(\mathrm{Ni}(\mathrm{dme}) \mathrm{Cl}_{2}(8.8 \mathrm{mg}, 0.040 \mathrm{mmol}, 20 \mathrm{~mol} \%), \mathrm{Zn}(40 \mathrm{mg}, 0.6 \mathrm{mmol}, 3.0\) equiv), (1,1-dichlorohexa-1,5-dien-3-yl)cyclohexane (29) (\(47 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0\) equiv), THF \((6.4 \mathrm{~mL})\), and NMP \((1.6 \mathrm{~mL})\) at \(50^{\circ} \mathrm{C}\). The product was purified by flash chromatography \(\left(\mathrm{SiO}_{2}\right.\), pentane) to provide the product as a colorless oil.

Run 1: 24 mg (\(75 \%\) yield) Run 2: 24 mg (\(75 \%\) yield)
\({ }^{1} \mathrm{H}\) NMR (\(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 5.75-5.69(\mathrm{~m}, 1 \mathrm{H}), 5.67(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.05-4.98\) \((\mathrm{m}, 2 \mathrm{H}), 2.40\) (dddd, \(J=10.4,8.9,6.4,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.26\) (dddt, \(J=14.4,6.4,4.9,1.4 \mathrm{~Hz}, 1 \mathrm{H})\), \(2.09-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.70(\mathrm{~m}, 3 \mathrm{H}), 1.73-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.34(\mathrm{tdt}, J=\) \(11.7,6.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.27-1.15(\mathrm{~m}, 2 \mathrm{H}), 1.13(\mathrm{qt}, J=12.8,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.04-0.91(\mathrm{~m}, 2 \mathrm{H})\).
\({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(201 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.2,132.9,119.9,116.5,46.0,41.4,36.1,31.2,29.7\), 26.6, 26.6.

HRMS (APCI) m/z: [M+H] Calcd for \(\mathrm{C}_{12} \mathrm{H}_{19}\) 163.1481; found 163.1480.

Methyl (Z)-2-(cyclopent-2-en-1-ylidene)acetate (32)

The reaction was conducted according to procedure D with \({ }^{c-\text { Pent }} \mathrm{NDI}(7)(15.4 \mathrm{mg}, 0.0200\) \(\mathrm{mmol}, 10 \mathrm{~mol} \%\)), \(\mathrm{Ni}(\mathrm{dme}) \mathrm{Cl}_{2}(8.8 \mathrm{mg}, 0.040 \mathrm{mmol}, 20 \mathrm{~mol} \%), \mathrm{Zn}(40 \mathrm{mg}, 0.6 \mathrm{mmol}, 3.0\) equiv), methyl (\(E\))-7,7-dichlorohepta-2,6-dienoate (\(\mathbf{3 1}\)) (\(42 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0\) equiv), THF (7.2 mL), and NMP \((0.8 \mathrm{~mL})\) at room temperature. The product was purified by flash chromatography \(\left(\mathrm{SiO}_{2}, 2 \%\right.\) \(\mathrm{Et}_{2} \mathrm{O}\) in pentane) to provide the product as a colorless oil. The major isomer was assigned by analysis of COSY and NOESY NMR spectra.

Run 1: 18 mg (\(64 \%\) yield); \(14: 1 \mathrm{Z} / \mathrm{E}\) Run 2: 17 mg (\(61 \%\) yield); \(12: 1 \mathrm{Z} / \mathrm{E}\)
\({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) 32-Z \(\delta 7.38(\mathrm{dtd}, J=5.6,2.3,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{dtd}, J=5.6\), \(2.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{tt}, J=2.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.67(\mathrm{dt}, J=7.1,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.54\) (dddd, \(J=6.9,4.3,2.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}\)).
\({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) 32-E \(\delta 6.65-6.59(\mathrm{~m}, 1 \mathrm{H}), 6.30(\mathrm{dt}, J=5.4,2.1 \mathrm{~Hz}, 1 \mathrm{H})\), \(5.77(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.02(\mathrm{dt}, J=7.4,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.72-2.58(\mathrm{~m}, 3 \mathrm{H}), 2.54\) (dddd, \(J=6.9,4.3,2.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}\)).
\({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR (201 MHz, \(\mathrm{CDCl}_{3}\)) 32-Z \(\delta 167.5,166.4,149.1,132.2,106.9,51.0,31.4\), 31.2.

34
35

Major product: 1-methoxy-4-((4S)-4-vinylcyclopent-2-en-1-yl)benzene (35)
Minor Product: 1-(4-ethylidenecyclopent-2-en-1-yl)-4-methoxybenzene (34)
The reaction was conducted according to procedure D with \({ }^{c-P e n t} \mathrm{NDI}(7)(15.4 \mathrm{mg}, 0.020\) \(\mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{Ni}(\mathrm{dme}) \mathrm{Cl}_{2}(8.8 \mathrm{mg}, 0.040 \mathrm{mmol}, 20 \mathrm{~mol} \%), \mathrm{Zn}(40 \mathrm{mg}, 0.6 \mathrm{mmol}, 3.0\) equiv), methyl (\(E\))-7,7-dichlorohepta-2,6-dienoate (\(\mathbf{3 3}\)) (\(42 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0\) equiv), THF (7.2 mL), and NMP (0.8 mL) at room temperature. The product was purified by flash chromatography (\(\mathrm{SiO}_{2}, 2 \%\) \(\mathrm{Et}_{2} \mathrm{O}\) in pentane) to provide products 34 and 35 as a clear oil. Products were identified through analysis of COSY and NOESY NMR spectra.

Run 1: 32 mg (\(81 \%\) combined yield) \(\mathbf{3 5 : 3 4}=3.5: 1\); 35-cis:35-trans \(=1.3: 1 ; \mathbf{3 4 - Z : 3 4 - E}\) \(=3: 1\)

Run 2: 35 mg (\(87 \%\) combined yield) \(\mathbf{3 5 : 3 4}=3.4: 1 ; \mathbf{3 5 - c i s : 3 5 - t r a n s}=1.6: 1 ; \mathbf{3 4 - Z : 3 4 - E}\) \(=5: 1\)
\({ }^{1} \mathrm{H}\) NMR \(\left(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) 35-cis: \(\delta 7.14-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.87-6.81(\mathrm{~m}, 2 \mathrm{H}), 5.86-\) \(5.76(\mathrm{~m}, 2 \mathrm{H}), 5.08-5.03(\mathrm{~m}, 1 \mathrm{H}), 4.97-4.93(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{td}, J=8.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H})\), 3.39 (q, \(J=9.0,8.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.62(\mathrm{dt}, J=13.0,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{dt}, J=13.0,8.4 \mathrm{~Hz}, 2 \mathrm{H})\).
\({ }^{1} \mathrm{H}\) NMR (\(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) 35-trans: \(\delta 7.14-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.87-6.81(\mathrm{~m}, 2 \mathrm{H}), 5.86-\) \(5.76(\mathrm{~m}, 2 \mathrm{H}), 5.08-5.03(\mathrm{~m}, 1 \mathrm{H}), 4.97-4.93(\mathrm{~m}, 1 \mathrm{H}), 3.96-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.52-\) \(3.47(\mathrm{~m}, 1 \mathrm{H}), 2.14(\mathrm{ddd}, J=13.4,8.7,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{ddd}, J=13.1,8.5,5.7 \mathrm{~Hz}, 1 \mathrm{H})\).
\({ }^{1} \mathrm{H}\) NMR (\(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) 34-Z: \(\delta 7.14-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.87-6.79(\mathrm{~m}, 2 \mathrm{H}), 6.54\) (ddd, \(J=5.6,2.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.09-6.06(\mathrm{~m}, 1 \mathrm{H}), 5.23(\mathrm{q}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.96-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.79\) (s, 3H), 3.00 (ddt, \(J=16.2,8.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{ddt}, J=16.2,4.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.76(\mathrm{~d}, J=7.0\) \(\mathrm{Hz}, 3 \mathrm{H})\).
\({ }^{1} \mathrm{H}\) NMR (\(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) 34-E: \(\delta 7.14-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.87-6.79(\mathrm{~m}, 2 \mathrm{H}), 6.24\) (dd, J \(=5.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.97-5.93(\mathrm{~m}, 1 \mathrm{H}), 5.46-5.39(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H})\), 3.00 (ddt, \(J=16.2,8.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})\).
\({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR (\(201 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(34 \boldsymbol{\&}\) 35: \(\delta 158.2,142.5,141.9,140.9,138.3,138.0\), \(135.4,135.3,134.8,134.5,130.0,129.6,128.5,128.4,128.2,114.0,114.0,114.0,113.5,113.2\), \(55.4,50.9,50.0,49.9,49.4,49.1,41.6,40.9,40.3,14.8\).

HRMS (APCI) m/z: [M+H] Calcd for \(\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}\) 201.1274; found 201.1276.

\section*{Methyl (Z)-2-(cyclohex-2-en-1-ylidene)acetate (37)}

The reaction was conducted according to procedure D with \({ }^{c-P e n t} N D I(7)(7.7 \mathrm{mg}, 0.020\) \(\mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{Ni}(\mathrm{dme}) \mathrm{Cl}_{2}(4.4 \mathrm{mg}, 0.020 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{Zn}(40 \mathrm{mg}, 0.6 \mathrm{mmol}, 3.0\) equiv), methyl (\(E\))-8,8-dichloroocta-2,7-dienoate (\(\mathbf{3 6 - E}\)) (\(45 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0\) equiv), THF (7.2 mL), and NMP \((0.8 \mathrm{~mL})\) at room temperature. The product was purified by flash chromatography \(\left(\mathrm{SiO}_{2}\right.\), \(2 \% \mathrm{Et}_{2} \mathrm{O}\) in pentane) to provide the product as a colorless oil.

Run 1: 23 mg (77\% yield) Run 2: 24 mg (\(80 \%\) yield)
\({ }^{1} \mathrm{H}\) NMR \(\left(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47(\mathrm{dtd}, J=10.2,2.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{dtd}, J=10.1,4.1\), \(1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.50-5.47(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.41-2.37(\mathrm{~m}, 2 \mathrm{H}), 2.23\) (tddd, \(J=6.1,4.1,2.2\), \(0.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.81-1.76(\mathrm{~m}, 2 \mathrm{H})\).
\({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR (201 MHz, \(\mathrm{CDCl}_{3}\)) \(\delta 167.1,152.9,138.6,125.3,112.7,51.1,32.7,26.3\), 22.8.

HRMS (APCI) m/z: [M+H] Calcd for \(\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}_{2}\) 153.0910; found 153.0909.

The reaction was conducted with slight modification to procedure D with \({ }^{c-P e n t} \mathrm{NDI}(3.9 \mathrm{mg}\), \(0.010 \mathrm{mmol}, 5 \mathrm{~mol} \%\)), \(\mathrm{Ni}(\mathrm{dme}) \mathrm{Cl}_{2}(2.2 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{Zn}(20 \mathrm{mg}, 0.3 \mathrm{mmol}, 3.0\) equiv), methyl (\(Z\))-8,8-dichloroocta-2,7-dienoate (\(21 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0\) equiv), THF (3.6 mL), and NMP \((0.4 \mathrm{~mL})\). After 24 h , an aliquot of the reaction solution was filtered through a 5 cm silica plug, eluting with \(\mathrm{CDCl}_{3}\) to provide \(37-Z\left(86 \%{ }^{1} \mathrm{H}\right.\) NMR yield by integrating against mesitylene).

\section*{Substrates that were ineffective in the cyclization}

\section*{6. Electrocatalytic Reductive Cyclization Reactions}

\section*{Construction of Electrocatalytic Cell:}

Electrocatalytic reactions were performed in an H-cell purchased from James Glass Inc. The two sides of the cell were divided by a porous glass frit. The cell also contained a luer port which was not used and was sealed with a NMR septum.

Figure S1. H-cell divided by a porous glass frit
Carbon cloth purchased from Fuel Cell Earth was used for the both the cathode and anode. Each side was fitted with a \(9.5 \mathrm{~cm} \times 3.2 \mathrm{~cm}\) carbon cloth electrode, with each end sewn together in a cylindrical shape, using copper wire, to fit the inner diameter of the cell. Silver wire was used as the reference electrode.

The cell was closed using silicon stoppers purchased from Fisher (09-704-1L). Both the copper wire attached to the electrode and silver wire were pushed through the top of the septa. Needles were also added as vents to the septa to equalize pressure when sealing the cell.

\section*{Setting Up Electrocatalytic Reactions:}

General Considerations. Electrocatalytic reactions were set up and run in a glovebox under a \(\mathrm{N}_{2}\) atmosphere. Experiments were carried out using a Gamry Interface 1000 Potentiostat. \(n-\mathrm{Bu}_{4} \mathrm{NPF}_{6}\) was purchased from Fisher and crystallized from hot EtOH prior to use. Electrolyte solutions were prepared and stored over molecular sieves for at least 3 days prior to use.

Procedure for constant potential electrolysis. The working electrode compartment of the H -cell was equipped with a stirbar and charged with \(\left({ }^{i-\mathrm{Pr}} \mathrm{NDI}\right) \mathrm{Ni}_{2} \mathrm{Cl}_{2}(\mathbf{5})(7.2 \mathrm{mg}, 0.010 \mathrm{mmol}, 10\)
\(\mathrm{mol} \%\)), (1,1-dichlorohepta-1,6-dien-3-yl)benzene (1) (\(24 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0\) equiv), and mesitylene (\(14 \mu \mathrm{~L}, 0.10 \mathrm{mmol}, 1.0\) equiv). An electrolyte solution composed of \(0.3 \mathrm{M} n-\mathrm{Bu}_{4} \mathrm{NPF}_{6}\) in NMP (\(6.6 \mathrm{~mL}, 0.15 \mathrm{M}\)) was added to both sides of the H -cell. The reaction was run at a constant potential of \(-0.75 \mathrm{~V}\left(\mathrm{Ag} / \mathrm{Ag}^{+}\right)\), stirring at 900 rpm , until the charge passed reached a plateau (approximately 8 h). An aliquot of the reaction solution was filtered through a 5 cm silica plug, eluting with \(\mathrm{CDCl}_{3}\). The yield of \(\mathbf{2}\) was determined by \({ }^{1} \mathrm{H}\) NMR integration against mesitylene.

Run 1: \(88 \%\) yield. Run 2: \(99 \%\) yield. \(94 \%\) Faradaic efficiency.

Procedure for constant current electrolysis. The working electrode compartment of the H -cell was equipped with a stirbar and charged with \(\left({ }^{i-\mathrm{Pr}} \mathrm{NDI}\right) \mathrm{Ni}_{2} \mathrm{Cl}_{2}(5)(7.2 \mathrm{mg}, 0.010 \mathrm{mmol}, 10\) \(\mathrm{mol} \%\)), (1,1-dichlorohepta-1,6-dien-3-yl)benzene (1) (\(24 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0\) equiv), and mesitylene (\(14 \mu \mathrm{~L}, 0.10 \mathrm{mmol}, 1.0\) equiv). An electrolyte solution composed of \(0.3 \mathrm{M} n-\mathrm{Bu}_{4} \mathrm{NPF}_{6}\) in NMP (\(6.6 \mathrm{~mL}, 0.15 \mathrm{M}\)) was added to both sides of the H -cell. The reaction was run at a constant current of -0.7 mA with stirring at 300 rpm . An aliquot of the reaction solution was filtered through a 5 cm silica plug, eluting with \(\mathrm{CDCl}_{3}\). The yield of 2 was determined by \({ }^{1} \mathrm{H}\) NMR integration against mesitylene.

40 min reaction time: \(20 \%\) conversion of \(\mathbf{1} ; 2 \%\) yield of \(\mathbf{2}\)
5.5 h reaction time: \(73 \%\) conversion of \(\mathbf{1 ;} 41 \%\) yield of \(\mathbf{2}\)

Figure A1.2. Plot of charge passed vs. time for constant potential bulk electrolysis.

Figure A1.3. Plot of voltage vs. time for constant current bulk electrolysis.

Figure A1.4. Cyclic voltammogram of \(\left({ }^{\left({ }^{\mathrm{Pr}}\right.} \mathrm{NDI}^{2}\right) \mathrm{Ni}_{2} \mathrm{Cl}_{2}(5)(1.9 \mathrm{mM})\) in \(0.3 \mathrm{M} n\) - \(\mathrm{Bu}_{4} \mathrm{NPF}_{6}\) in NMP (black dashed line). Cyclic voltammogram of \(\left({ }^{\mathrm{iPr}} \mathrm{NDI}\right) \mathrm{Ni}_{2} \mathrm{Cl}_{2}(\mathbf{5})(1.9 \mathrm{mM}), \mathbf{1}(15 \mathrm{mM})\) in \(0.3 \mathrm{M} n\) \(\mathrm{Bu}_{4} \mathrm{NPF}_{6}\) in NMP (red solid line).

Figure A1.5. Cyclic voltammogram of \(\left({ }^{(\mathrm{Pr}} \mathrm{NDI}\right) \mathrm{Ni}_{2} \mathrm{Cl}_{2}(5)(1.9 \mathrm{mM})\) in \(0.3 \mathrm{M} n-\mathrm{Bu}_{4} \mathrm{NPF}_{6}\) in NMP (black dashed line). Cyclic voltammogram of \(\left({ }^{\mathrm{iPr}} \mathrm{NDI}\right) \mathrm{Ni}_{2} \mathrm{Cl}_{2}(\mathbf{5})(1.9 \mathrm{mM}), \mathbf{1}(15 \mathrm{mM})\) in \(0.3 \mathrm{M} n\) \(\mathrm{Bu}_{4} \mathrm{NPF}_{6}\) in NMP (red solid line).

Figure A1.6. Cyclic voltammogram of \(\left({ }^{\left({ }^{\mathrm{Pr}} \mathrm{NDI}\right.}\right) \mathrm{Ni}_{2} \mathrm{Cl}_{2}(\mathbf{5})(1.9 \mathrm{mM})\) in \(0.3 \mathrm{M} n\) - \(\mathrm{Bu}_{4} \mathrm{NPF}_{6}\) in NMP (black dashed line). Cyclic voltammogram of \(\left({ }^{\mathrm{iPr}} \mathrm{NDI}\right) \mathrm{Ni}_{2} \mathrm{Cl}_{2}(\mathbf{5})(1.9 \mathrm{mM}), \mathrm{ZnCl}_{2}(7.6 \mathrm{mM})\) in 0.3 \(\mathrm{M} n\)-Bu \(\mathrm{NPF}_{6}\) in NMP (red solid line).

\section*{7. Synthesis and Characterization of Organometallic Complex 38}

\section*{Synthesis of Organometallic Complex 38}

A scintillation vial was charged with \(\left({ }^{i-\mathrm{Pr}} \mathrm{NDI}\right) \mathrm{Ni}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)(6)(40 \mathrm{mg}, 0.054 \mathrm{mmol}, 1.0\) equiv), (1,1-dichlorohexa-1,5-dien-3-yl)benzene (26) (\(12 \mathrm{mg}, 0.054 \mathrm{mmol}, 1.0\) equiv), and \(\mathrm{C}_{6} \mathrm{H}_{6}\) \((5 \mathrm{~mL})\). The solution was stirred at room temperature for 2 h then placed in the freezer \(\left(-30^{\circ} \mathrm{C}\right)\). Once frozen, the solid mixture was thawed, and the mixture was filtered through a glass fiber pad to remove insoluble \(\left({ }^{i-\mathrm{Pr}} \mathrm{NDI}\right) \mathrm{Ni}_{2} \mathrm{Cl}_{2}(\mathbf{5})\). The filtrate was concentrated under vacuum. This freeze-thaw-filter process was repeated two more times. The isolated solid was washed with pentane (2 \(\mathrm{mL} x\) 3). The greenish-brown powder was crystallized by diffusion of pentane vapor into a saturated THF solution to yield 9.8 mg (\(22 \%\) yield) of green-brown crystals.
\({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\)) \(\delta 17.07\) (br), 13.37, 10.10, 9.50, 8.06, 7.41, 4.37, 3.57, 1.00, \(0.81,0.03,-7.60\) (br), -13.56 (br), -23.56 (br).

Figure A1.7. Room temperature UV-Vis spectrum of complex 38 in THF (0.075 mM).

Figure A1.8. X-Band EPR spectrum of complex 38 at room temperature in toluene. Simulated parameters \(g=2.228\)

Figure A1.9. X-Band EPR spectrum of complex 38 at 105 K in toluene. Simulated parameters \(\mathrm{g}_{1}\) \(=2.378, \mathrm{~g}_{2}=2.226\) and \(\mathrm{g}_{3}=2.093\).

Figure A1.10. \({ }^{1} \mathrm{H}\) NMR spectrum of complex 38 at room temperature in \(\mathrm{C}_{6} \mathrm{D}_{6}\)

Figure A1.11. Cyclic voltammogram of complex 38 (0.3 M n-Bu \(u_{4} \mathrm{NPF}_{6}\) in THF; glassy carbon working electrode; \(100 \mathrm{mV} / \mathrm{s}\) scan rate). Scans begin at the open circuit potential and proceed in the indicated direction. The cyclic voltammogram is referenced to the \(\mathrm{Cp}_{2} \mathrm{Fe} / \mathrm{Cp}_{2} \mathrm{Fe}^{+}\)couple.

\section*{8. Mechanistic Experiments}

\section*{Attempted Catalytic C-H Insertion with Hex-5-en-1-yn-3-ylbenzene}

A 2 dram vial equipped with a stir bar was charged with \({ }^{i-\mathrm{Pr}} \mathrm{NDI}\) ligand (4) (\(5.3 \mathrm{mg}, 0.010\) \(\mathrm{mmol}, 10 \mathrm{~mol} \%\)), \(\mathrm{Ni}(\mathrm{dme}) \mathrm{Cl}_{2}(4.4 \mathrm{mg}, 0.020 \mathrm{mmol}, 20 \mathrm{~mol} \%), \mathrm{Zn}(20 \mathrm{mg}, 0.3 \mathrm{mmol}, 3\) equiv), and NMP (0.8 mL). The mixture was stirred at room temperature at 600 rpm for approximately 20 minutes until a violet color developed. A solution of hex-5-en-1-yn-3-ylbenzene \({ }^{28}\) (\(16 \mathrm{mg}, 0.1\) mmol, 1.0 equiv) and mesitylene (\(14 \mu \mathrm{~L}, 0.1 \mathrm{mmol}, 1.0\) equiv) in THF (3.2 mL) was added to the catalyst solution. The reaction mixture was stirred at 600 rpm for 24 h at \(50^{\circ} \mathrm{C}\). An aliquot of the reaction solution was filtered through a 5 cm silica plug eluting with \(\mathrm{CDCl}_{3}\). (4-methylenecyclopent-2-en-1-yl)benzene (26) was not observed by \({ }^{1} \mathrm{H}\) NMR.

\section*{Complex 38 as a viable catalyst for vinylidene olefin cyclization}

\(60 \%\) yield

A 2 dram vial equipped with a stir bar was charged with \(38(4.2 \mathrm{mg}, 0.0050 \mathrm{mmol}, 10\) \(\mathrm{mol} \%), \mathrm{Zn}\) (\(10 \mathrm{mg}, 0.15 \mathrm{mmol}, 3.0\) equiv), and NMP (0.4 mL). A solution of (1,1-dichlorohexa-1,5-dien-3-yl)benzene (\(\mathbf{2 5}\)) (\(11 \mathrm{mg}, 0.05 \mathrm{mmol}, 1.0\) equiv) and mesitylene (\(7 \mu \mathrm{~L}, 0.05 \mathrm{mmol}, 1.0\) equiv) in THF (1.6 mL) was added to the catalyst solution. The reaction mixture was stirred at 600 rpm for 24 h at \(50^{\circ} \mathrm{C}\). An aliquot of the reaction solution was filtered through a 5 cm silica plug
eluting with \(\mathrm{CDCl}_{3}\). The yield of product 26 (\(60 \%\) yield) was determined by \({ }^{1} \mathrm{H}\) NMR against mesitylene.

\section*{Stoichiometric Reactions with Complex 38}

A 1.5 dram vial equipped with a stir bar was charged with \(\mathbf{3 8}(3.0 \mathrm{mg}, 0.0036 \mathrm{mmol}, 1\) equiv), Zn (\(0.7 \mathrm{mg}, 0.01 \mathrm{mmol}, 3.0\) equiv), mesitylene (\(1.3 \mathrm{mg}, 0.011 \mathrm{mmol}, 3.0\) equiv), NMP (30 \(\mu \mathrm{L})\), and THF \((110 \mu \mathrm{~L})\). The reaction mixture was heated at \(50^{\circ} \mathrm{C}\), stirring at 600 rpm . The yield of product 26 was determined by GC over the course of 9 h . Within 20 min , the solution color changes from green-brown to purple and remains that color over the 9 h reaction time.
\begin{tabular}{cc}
\hline Time & Yield of 26 \\
\hline 1 h & \(96 \%\) \\
3 h & \(92 \%\) \\
9 h & \(99 \%\) \\
\hline
\end{tabular}

A 1.5 dram vial equipped with a stir bar was charged with \(38(3 \mathrm{mg}, 0.004 \mathrm{mmol}, 1.0\) equiv), mesitylene (\(1.4 \mathrm{mg}, 0.012 \mathrm{mmol}, 3.3\) equiv), NMP (\(30 \mu \mathrm{~L}\)), and THF (\(110 \mu \mathrm{~L}\)). The
solution was heated at \(50^{\circ} \mathrm{C}\), stirring at 600 rpm . The yield of product 26 was determined by GC over the course of 9 h . The solution color remained green-brown over the 9 h reaction time.
\begin{tabular}{cc}
\hline Time & Yield of 26 \\
\hline 1 h & \(22 \%\) \\
3 h & \(24 \%\) \\
9 h & \(64 \%\) \\
\hline
\end{tabular}

\section*{Reduction of Complex 38 with \(\mathrm{KC}_{8}\) and Heating at \(50{ }^{\circ} \mathrm{C}\)}

A J-Young NMR tube was charged with complex \(\mathbf{3 8}\) (\(3.0 \mathrm{mg}, 0.004 \mathrm{mmol}, 1.0\) equiv), \(\mathrm{KC}_{8}\) (\(0.6 \mathrm{mg}, 0.004,1.2\) equiv), mesitylene (\(0.6 \mathrm{mg}, 0.005,1.4\) equiv), and \(\mathrm{C}_{6} \mathrm{D}_{6}(0.6 \mathrm{~mL})\). Within 10 min the solution color changed from green-brown to brown. The solution was left to react at room temperature for 1 h then heated to \(50^{\circ} \mathrm{C}\) for an additional 4 h . Prior to heating, a new diamagnetic complex is present which disappears upon heating to form 26 and \(\left({ }^{i-\mathrm{Pr}} \mathrm{NDI}\right) \mathrm{Ni}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)(6)\). Time points were taken after 1 h of heating and \({ }^{1} \mathrm{H}\) NMR yields are based off of integration against mesitylene.
\begin{tabular}{cccc}
\hline Time & Yield of 26 & Complex 38 & \(\left({ }^{\left({ }^{\boldsymbol{- P r}} \mathbf{N D I}\right) \mathbf{N i}_{2}\left(\mathbf{C}_{6} \mathbf{D}_{6}\right)(6)}\right.\) \\
\hline 1 h & \(30 \%\) & \(22 \%\) & \(36 \%\) \\
3 h & \(58 \%\) & \(3 \%\) & \(61 \%\) \\
4 h & \(59 \%\) & \(<1 \%\) & \(65 \%\) \\
\hline
\end{tabular}

Figure A1.12. \({ }^{1} \mathrm{H}\) NMR of the reduction of 38 with KC 8 after heating at \(50{ }^{\circ} \mathrm{C}\) for 1 h . (room

temperature, \(\mathrm{C}_{6} \mathrm{D}_{6}\))

Figure A1.13. COSY NMR of the reduction of \(\mathbf{3 8}\) with \(\mathrm{KC}_{8}\) after 1 h . (room temperature, \(\mathrm{C}_{6} \mathrm{D}_{6}\))

\section*{Stoichiometric Reactions with 1 and \(\left({ }^{(i-\mathrm{Pr}} \mathrm{NDI}\right) \mathrm{Ni}_{2} \mathrm{Cl}(3)\)}

A J-Young NMR tube was charged with \(\left({ }^{i-\mathrm{Pr}} \mathrm{NDI}\right) \mathrm{Ni}_{2} \mathrm{Cl}(3)(4.1 \mathrm{mg}, 0.0057 \mathrm{mmol}, 2.0\) equiv) and \(\mathrm{C}_{6} \mathrm{D}_{6}(0.6 \mathrm{~mL})\). A 0.17 M stock solution of mesitylene (1.0 equiv) and (\(1,1-\) dichlorohepta-1,6-dien-3-yl)benzene (\(18 \mu \mathrm{~L}, 0.0030 \mathrm{mmol}, 1.0\) equiv) in \(\mathrm{C}_{6} \mathrm{D}_{6}\) was added to the J-Young tube. The reaction was monitored over 24 h at room temperature. \(\left({ }^{i-\mathrm{Pr}} \mathrm{NDI}\right) \mathrm{Ni}_{2} \mathrm{Cl}_{2}(\mathbf{5})\) was filtered off, and the yield of 4-methylene-1,2,3,4-tetrahydro-1,1'-biphenyl (26) (90\% yield) was determined by \({ }^{1} \mathrm{H}\) NMR integration against mesitylene.

\section*{Stoichiometric Reactions with 25 and (\(\left.{ }^{i-\mathrm{Pr}} \mathrm{NDI}\right) \mathrm{Ni}_{2} \mathrm{Cl}\) (3)}

A J-Young NMR tube was charged with \(\left({ }^{i-\mathrm{Pr}} \mathrm{NDI}\right) \mathrm{Ni}_{2} \mathrm{Cl}(\mathbf{3})(4.1 \mathrm{mg}, 0.0057 \mathrm{mmol}, 2.0\) equiv) and \(\mathrm{C}_{6} \mathrm{D}_{6}(0.6 \mathrm{~mL})\). A 0.22 M stock solution of mesitylene (1.0 equiv) and (\(1,1-\) dichlorohexa-1,5-dien-3-yl)benzene (25) (\(14 \mu \mathrm{~L}, 0.0030 \mathrm{mmol}, 1.0\) equiv) in \(\mathrm{C}_{6} \mathrm{D}_{6}\) was added to the J-Young tube. The reaction was heated at \(50{ }^{\circ} \mathrm{C}\) and monitored over 7 d . \(\left({ }^{i-\mathrm{Pr}} \mathrm{NDI}\right) \mathrm{Ni}_{2} \mathrm{Cl}_{2}(\mathbf{5})\) was filtered off, and the yield of 4-methylene-1,2,3,4-tetrahydro-1,1'-biphenyl (26) (52\% yield) was determined by \({ }^{1} \mathrm{H}\) NMR integration against mesitylene.

\section*{Stoichiometric Reactions with 1 and \(\left({ }^{i-\mathrm{Pr}} \mathrm{NDI}^{2}\right) \mathrm{Ni}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)(6)\)}
\(\left.{ }^{(-\mathrm{Pr}} \mathrm{NDI}^{2}\right) \mathrm{Ni}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)(6)\)

A J-Young NMR tube was charged with \(\left({ }^{i-\mathrm{Pr}} \mathrm{NDI}\right) \mathrm{Ni}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)(6)(5.0 \mathrm{mg}, 0.007 \mathrm{mmol}, 1.0\) equiv) and \(\mathrm{C}_{6} \mathrm{D}_{6}(0.6 \mathrm{~mL})\). A 0.17 M stock solution of trimethoxybenzene (1.0 equiv) and (1,1-dichlorohepta-1,6-dien-3-yl)benzene (1) (\(40 \mu \mathrm{~L}, 0.007 \mathrm{mmol}, 1.0\) equiv) in \(\mathrm{C}_{6} \mathrm{D}_{6}\) was added to the J -Young tube. The reaction was monitored over 24 h at room temperature. (\({ }^{i-\mathrm{Pr}} \mathrm{NDI}\)) \(\mathrm{Ni}_{2} \mathrm{Cl}_{2}(\mathbf{5})\) was filtered off, and the yield of 4-methylene-1,2,3,4-tetrahydro-1,1'-biphenyl (2) (\(90 \%\) yield) was determined by \({ }^{1} \mathrm{H}\) NMR integration against trimethoxybenzene.

\section*{9. NMR Spectral Data}

Figure A1.14. \(800 \mathrm{MHz}{ }^{1} \mathrm{H}\) NMR of \({ }^{c-\mathrm{Pent}} \mathrm{NDI}\) (7) in \(\mathrm{CDCl}_{3}\) at room temperature.

Figure A1.15. \(201 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\) of \({ }^{c-\mathrm{Pent}} \mathrm{NDI}(7)\) in \(\mathrm{CDCl}_{3}\) at room temperature.

Figure A1.16. \(800 \mathrm{MHz}{ }^{1} \mathrm{H}\) NMR of (1,1-dichlorohepta-1,6-dien-3-yl)benzene (1) in \(\mathrm{CDCl}_{3}\) at room temperature.

Figure A1.17. \(201 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR of (1,1-dichlorohepta-1,6-dien-3-yl)benzene (1) in \(\mathrm{CDCl}_{3}\) at room temperature.

Figure A1.18. \(800 \mathrm{MHz}{ }^{1} \mathrm{H}\) NMR of 4-methylene-1,2,3,4-tetrahydro-1,1'-biphenyl (2) in \(\mathrm{CDCl}_{3}\) at room temperature.

Figure A1.19. \(201 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR of 4-methylene-1,2,3,4-tetrahydro-1,1'-biphenyl (2) in \(\mathrm{CDCl}_{3}\) at room temperature.

Figure A1.20. \(300 \mathrm{MHz}{ }^{1} \mathrm{H}\) NMR of (S)-4-benzyl-3-((S)-3-(furan-2-yl)hex-5-enoyl)oxazolidin-2one (13) in \(\mathrm{CDCl}_{3}\) at room temperature.

Figure A1.21. \(800 \mathrm{MHz}{ }^{1} \mathrm{H}\) NMR of (S)-2-(1,1-dichlorohepta-1,6-dien-4-yl)furan (15) in \(\mathrm{CDCl}_{3}\) at room temperature.

Figure A1.22. \(201 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR of (S)-2-(1,1-dichlorohepta-1,6-dien-4-yl)furan (15) in \(\mathrm{CDCl}_{3}\) at room temperature.

Figure A1.23. \(800 \mathrm{MHz}{ }^{1} \mathrm{H}\) NMR of (\(R\))-2-(5-methylenecyclohex-3-en-1-yl)furan (16) in \(\mathrm{CDCl}_{3}\) at room temperature.

Figure A1.24. \(201 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR of \((R)\)-2-(5-methylenecyclohex-3-en-1-yl)furan (16) in \(\mathrm{CDCl}_{3}\) at room temperature.

Figure A1.25. \(800 \mathrm{MHz}{ }^{1} \mathrm{H}\) NMR of \(N\)-allyl- \(N\)-(3,3-dichloroallyl)-4-methylbenzenesulfonamide (17) in \(\mathrm{CDCl}_{3}\) at room temperature.

Figure A1.26. \(201 \mathrm{MHz} \quad{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR} \quad\) of \(\quad N\)-allyl- \(N\)-(3,3-dichloroallyl)-4methylbenzenesulfonamide (17) in \(\mathrm{CDCl}_{3}\) at room temperature

Figure A1.27. \(800 \mathrm{MHz} \quad{ }^{1} \mathrm{H} \quad \mathrm{NMR}\) of tert-butyl((1,1-dichlorohepta-1,6-dien-4yl)oxy)dimethylsilane (19) in \(\mathrm{CDCl}_{3}\) at room temperature.

Figure A1.28. \(201 \mathrm{MHz} \quad{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}\) of tert-butyl((1,1-dichlorohepta-1,6-dien-4yl)oxy)dimethylsilane (19) in \(\mathrm{CDCl}_{3}\) at room temperature.

Figure A1.29. \(800 \mathrm{MHz}{ }^{1} \mathrm{H}\) NMR of tert-butyldimethyl((5-methylenecyclohex-3-en-1yl)oxy)silane (20) in \(\mathrm{CDCl}_{3}\) at room temperature.

Figure A1.30. \(201 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR of tert-butyldimethyl(\((5\)-methylenecyclohex-3-en-1yl)oxy)silane (20) in \(\mathrm{CDCl}_{3}\) at room temperature.

Figure A1.31. \(800 \mathrm{MHz}{ }^{1} \mathrm{H}\) NMR of (4S,5R)-4-allyl-5-(2,2-dichlorovinyl)-2,2-dimethyl-1,3dioxolane (21) in \(\mathrm{CDCl}_{3}\) at room temperature.

Figure A1.32. \(201 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR of (4S,5R)-4-allyl-5-(2,2-dichlorovinyl)-2,2-dimethyl-1,3-dioxolane (21) in \(\mathrm{CDCl}_{3}\) at room temperature.

Figure A1.33. \(800 \mathrm{MHz}{ }^{1} \mathrm{H}\) NMR of (3aS,7aR)-2,2-dimethyl-5-methylene-3a, 4,5,7atetrahydrobenzo \([d][1,3]\) dioxole (22) in \(\mathrm{CDCl}_{3}\) at room temperature.

Figure A1.34. \(201 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR of (3aS,7aR)-2,2-dimethyl-5-methylene-3a, 4,5,7atetrahydrobenzo \([d][1,3]\) dioxole (22) in \(\mathrm{CDCl}_{3}\) at room temperature.

Figure A1.35. \(800 \mathrm{MHz} \quad{ }^{1} \mathrm{H}\) NMR of (S)-4-benzyl-3-((S)-3-(4-methoxyphenyl)hex-5-enoyl)oxazolidin-2-one in \(\mathrm{CDCl}_{3}\) at room temperature.

Figure A1.36. \(201 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR of (S)-4-benzyl-3-((S)-3-(4-methoxyphenyl)hex-5-enoyl)oxazolidin-2-one in \(\mathrm{CDCl}_{3}\) at room temperature.

Figure A1.37. \(800 \mathrm{MHz}{ }^{1} \mathrm{H}\) NMR of (S)-1-(1,1-dichlorohepta-1,6-dien-4-yl)-4-methoxybenzene (23) in \(\mathrm{CDCl}_{3}\) at room temperature.

Figure A1.38. \(201 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}\) of (S)-1-(1,1-dichlorohepta-1,6-dien-4-yl)-4methoxybenzene (23) in \(\mathrm{CDCl}_{3}\) at room temperature.

Figure A1.39. \(800 \mathrm{MHz}{ }^{1} \mathrm{H}\) NMR of (\(R\))-4'-methoxy-3-methylene-1,2,3,6-tetrahydro-1,1'biphenyl (24) in \(\mathrm{CDCl}_{3}\) at room temperature.

Figure A1.40. \(201 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR of \((R)\)-4'-methoxy-3-methylene-1,2,3,6-tetrahydro-1, \(1^{\prime}\) biphenyl (24) in \(\mathrm{CDCl}_{3}\) at room temperature.

Figure A1.41. \(800 \mathrm{MHz}{ }^{1} \mathrm{H}\) NMR of (1,1-dichlorohexa-1,5-dien-3-yl)benzene (25) in \(\mathrm{CDCl}_{3}\) at room temperature.

Figure A1.42. \(201 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR of (1,1-dichlorohexa-1,5-dien-3-yl)benzene (25) in \(\mathrm{CDCl}_{3}\) at room temperature.

Figure A1.43. \(800 \mathrm{MHz}{ }^{1} \mathrm{H}\) NMR of (4-methylenecyclopent-2-en-1-yl)benzene (26) in \(\mathrm{CDCl}_{3}\) at room temperature.

Figure A1.44. \(101 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR of (4-methylenecyclopent-2-en-1-yl)benzene (26) in \(\mathrm{CDCl}_{3}\) at room temperature

Figure A1.45. \(800 \mathrm{MHz}{ }^{1} \mathrm{H}\) NMR of Ethyl 2-(2,2-dichlorovinyl)-2-methylpent-4-enoate (27) in \(\mathrm{CDCl}_{3}\) at room temperature.

Figure A1.46. \(201 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR of Ethyl 2-(2,2-dichlorovinyl)-2-methylpent-4-enoate (27) in \(\mathrm{CDCl}_{3}\) at room temperature.

Figure A1.47. \(800 \mathrm{MHz}{ }^{1} \mathrm{H}\) NMR of ethyl 1-methyl-4-methylenecyclopent-2-ene-1-carboxylate (28) in \(\mathrm{CDCl}_{3}\) at room temperature.

Figure A1.48. \(201 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR of ethyl 1-methyl-4-methylenecyclopent-2-ene-1carboxylate (28) in \(\mathrm{CDCl}_{3}\) at room temperature.

Figure A1.49. \(800 \mathrm{MHz}^{1} \mathrm{H}\) NMR of (1,1-dichlorohexa-1,5-dien-3-yl)cyclohexane (29) in \(\mathrm{CDCl}_{3}\) at room temperature.

Figure A1.50. \(201 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR of (1,1-dichlorohexa-1,5-dien-3-yl)cyclohexane (29) in \(\mathrm{CDCl}_{3}\) at room temperature.

Figure A1.51. \(800 \mathrm{MHz}{ }^{1} \mathrm{H}\) NMR of (4-methylenecyclopent-2-en-1-yl)cyclohexane (30) in \(\mathrm{CDCl}_{3}\) at room temperature.

Figure A1.52. \(201 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR of (4-methylenecyclopent-2-en-1-yl)cyclohexane (30) in \(\mathrm{CDCl}_{3}\) at room temperature.

Figure A1.53. \(800 \mathrm{MHz}{ }^{1} \mathrm{H}\) NMR of methyl (\(E\))-7,7-dichlorohepta-2,6-dienoate (31) in \(\mathrm{CDCl}_{3}\) at room temperature.

Figure A1.54. \(201 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR of methyl (E)-7,7-dichlorohepta-2,6-dienoate (31) in \(\mathrm{CDCl}_{3}\) at room temperature.

Figure A1.55. \(400 \mathrm{MHz}{ }^{1} \mathrm{H}\) NMR of methyl (Z)-2-(cyclopent-2-en-1-ylidene)acetate (32) in \(\mathrm{CDCl}_{3}\) at room temperature.

Figure A1.56. \(101 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR of methyl (Z)-2-(cyclopent-2-en-1-ylidene)acetate (32) in \(\mathrm{CDCl}_{3}\) at room temperature.

Figure A1.57. COSY NMR of \(\mathbf{3 2}\) in \(\mathrm{CDCl}_{3}\) at room temperature.

Figure A1.58. NOESY NMR of \(\mathbf{3 2}\) in \(\mathrm{CDCl}_{3}\) at room temperature.

Figure A1.59. \(500 \mathrm{MHz}{ }^{1} \mathrm{H}\) NMR of 1-(1,1-dichlorohepta-1,5-dien-3-yl)-4-methoxybenzene (33) in \(\mathrm{CDCl}_{3}\) at room temperature.

Figure A1.60. \(126 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR of methyl 1-(1,1-dichlorohepta-1,5-dien-3-yl)-4methoxybenzene (33) in \(\mathrm{CDCl}_{3}\) at room temperature.

Figure A1.61. \(800 \mathrm{MHz}{ }^{1} \mathrm{H} \mathrm{NMR}\) of \(\mathbf{3 4}\) and \(\mathbf{3 5}\) in \(\mathrm{CDCl}_{3}\) at room temperature.

Figure A1.62. \(126 \mathrm{MHz}{ }^{1} \mathrm{H}\left\{{ }^{13} \mathrm{C}\right\} \mathrm{NMR}\) of \(\mathbf{3 4}\) and \(\mathbf{3 5}\) in \(\mathrm{CDCl}_{3}\) at room temperature.

Figure A1.63. 800 MHz COSY NMR of \(\mathbf{3 4}\) and \(\mathbf{3 5}\) in \(\mathrm{CDCl}_{3}\) at room temperature.

Figure A1.64. 800 MHz NOESY NMR of \(\mathbf{3 4}\) and \(\mathbf{3 5}\) in \(\mathrm{CDCl}_{3}\) at room temperature.

Figure A1.65. \(800 \mathrm{MHz}{ }^{1} \mathrm{H}\) NMR of methyl \((E)\)-8,8-dichloroocta-2,7-dienoate (36-E) in \(\mathrm{CDCl}_{3}\) at room temperature.

Figure A1.66. \(201 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR of methyl (E)-7,7-dichlorohepta-2,6-dienoate (36-E) in \(\mathrm{CDCl}_{3}\) at room temperature.

Figure A1.67. \(800 \mathrm{MHz}{ }^{1} \mathrm{H}\) NMR of methyl (Z)-8,8-dichloroocta-2,7-dienoate (36-Z) in \(\mathrm{CDCl}_{3}\) at room temperature.

Figure A1.68. \(201 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR of methyl (Z)-7,7-dichlorohepta-2,6-dienoate \((\mathbf{3 6 - Z})\) in \(\mathrm{CDCl}_{3}\) at room temperature.

Figure A1.69. \(800 \mathrm{MHz}{ }^{1} \mathrm{H}\) NMR of methyl (Z)-2-(cyclohex-2-en-1-ylidene)acetate (37-Z) in \(\mathrm{CDCl}_{3}\) at room temperature.

Figure A1.70. \(201 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR of methyl (Z)-2-(cyclohex-2-en-1-ylidene)acetate (37-Z) in \(\mathrm{CDCl}_{3}\) at room temperature.

Figure A1.71. 800 MHz NOESY of \(\mathbf{3 7 - Z}\) in \(\mathrm{CDCl}_{3}\) at room temperature.

\section*{10. X-Ray Diffraction Data}

\begin{tabular}{|c|c|}
\hline & Complex 38 \\
\hline \multicolumn{2}{|l|}{Crystal data} \\
\hline Chemical formula & \(\mathrm{C}_{48} \mathrm{H}_{56} \mathrm{ClN}_{4} \mathrm{Ni}_{2} \cdot 2\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right)\) \\
\hline \(M_{\mathrm{r}}\) & 986.04 \\
\hline Crystal system, space group & Triclinic, \(P^{-} 1\) \\
\hline Temperature (K) & 150 \\
\hline \(a, b, c\) (\(\AA\)) & 11.7896 (7), 14.2794 (10), 15.3833 (10) \\
\hline \(\alpha, \beta, \gamma\left({ }^{\circ}\right)\) & 85.562 (5), 79.370 (3), 81.396 (4) \\
\hline \(V\left(\AA^{3}\right)\) & 2513.4 (3) \\
\hline Z & 2 \\
\hline Radiation type & \(\mathrm{Cu} K \alpha\) \\
\hline \(\mu\left(\mathrm{mm}^{-1}\right)\) & 1.76 \\
\hline Crystal
\((\mathrm{mm})\)\(\quad\) size & \(0.10 \times 0.04 \times 0.03\) \\
\hline & \\
\hline \multicolumn{2}{|l|}{Data collection} \\
\hline Diffractometer & Bruker AXS D8 Quest CMOS diffractometer \\
\hline Absorption correction & Multi-scan SADABS 2016/2: Krause, L., Herbst-Irmer, R., Sheldrick G.M. \& Stalke D., J. Appl. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline & Cryst. \(48(2015) 3-10\) \\
\hline\(T_{\min ,}, T_{\max }\) & \(0.633,0.754\) \\
\hline \begin{tabular}{l}
No. of measured, \\
independent and \\
observed \([I>2 \sigma\) \\
\((I)]\) reflections
\end{tabular} & \(22220,9724,5798\) \\
\hline\(R_{\text {int }}\) & 0.089 \\
\hline\((\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)\) & 0.625 \\
\hline \multicolumn{2}{|l|}{} \\
\hline Refinement \\
\hline \begin{tabular}{l}
\(R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]\), \\
\(w R\left(F^{2}\right), S\)
\end{tabular} & \(0.079,0.235,0.98\) \\
\hline No. of reflections & 9724 \\
\hline \begin{tabular}{l}
No. \\
parameters
\end{tabular}\(\quad\) of & 643 \\
\hline \begin{tabular}{l}
No. of restraints
\end{tabular} & 250 \\
\hline \begin{tabular}{l}
H -atom \\
treatment
\end{tabular} & H -atom parameters constrained \\
\hline \begin{tabular}{l}
\(\Delta \rho_{\text {max }}, \quad \Delta \rho_{\text {min }}(\mathrm{e}\)
\end{tabular} & \(1.83,-0.75\) \\
\hline\(\left.\AA^{-3}\right)\)
\end{tabular}

Computer programs: Apex3 v2016.9-0 (Bruker, 2016), SAINT V8.37A (Bruker, 2016), SHELXS97 (Sheldrick, 2008), SHELXL2016/6 (Sheldrick, 2015, 2016), SHELXLE Rev714 (Hübschle et al., 2011).

\section*{11. DFT Calculations}

All structures were optimized using the unrestricted M06-L functional (UM06-L) \({ }^{29}\) using the LANL2DZ basis set (and its associated electron core potential) \({ }^{30,31}\) for the two nickel atoms and the \(6-31 G(d, p)\) Pople basis set \({ }^{32}\) for all other atoms using the Gaussian 16 software package. \({ }^{33}\) Final Gibbs free energies are reported by using the SCF energy from single point calculations using the UM06-L/def2-TZVP \({ }^{34,35}\) functional/basis set combination for each atom and applying the thermal corrections from the UM06-L/6-31G(d,p)/LANL2DZ[Ni] calculations at 298 K .

The reduction steps were performed using the following methodology: the first reduction step involved the conversion of dimeric \(\mathrm{Zn}_{2}\) to \(\mathrm{Zn}_{2} \mathrm{Cl}\). The second reduction step involved the \(\mathrm{Zn}_{2} \mathrm{Cl}\) from the previous reduction step forming \(\mathrm{ZnCl}_{2}\) and atomic zinc.

\section*{Note about spin states:}

The M06-L functional is generally accurate for relative spin states of first-row transition metal complexes. In prior work this functional accurately captured the correct ground spin state of the (NDI)Ni \(\mathrm{N}_{2}\) (benzene) complex and related structures (ACS Catal. 2017, 7, 4796). For this vinylidene-olefin cyclization reaction there are many DFT optimized structures with spin state energies within only a few \(\mathrm{kcal} / \mathrm{mol}\). These structures should be interpreted as close-lying spin states rather than a prediction of a specific ground spin state. These close lying spin states also suggest multireference character. As examples, for structure \(\mathbf{4 0}\) the singlet state is only \(3 \mathrm{kcal} / \mathrm{mol}\) higher than the triplet state and for structure \(\mathbf{3 8}\) the doublet and quartet states are nearly identical in energy. Despite the very good prediction of ground spin states in our previous work, M06-L predicts a slightly lower energy triplet than singlet for structure 39, which is generated after reduction of \(\mathbf{3 8}\) and the \({ }^{1} \mathrm{H}\) NMR spectrum of \(\mathbf{3 9}\) suggests that this complex is diamagnetic. All DFT methods (used with unrestricted orbitals) show a lower energy triplet energy than singlet energy for 39. Functionals tested include: B3LYP*, BLYP, BP86, OPBE, PBE, TPSS, TPSSh, MN15-L, and \(\omega\) B97X-D. The triplet energy was lower than the singlet for the complete ligand with iPr groups rather than Me groups as well as gas and solution phases.

Table A1.1. Structure energies, relative to Int40 triplet ground state, for the cyclization of a vinylidene-olefin (\(\mathrm{kcal} / \mathrm{mol}\)). Absolute energies in parentheses (Hartree). Relative SCF energies (\(\Delta \mathrm{E}_{\text {SCF }}\)), ZPE-corrected (\(\Delta \mathrm{E}_{\text {ZPE }}\)), enthalpy \((\Delta \mathrm{H})\), Gibbs free energy \((\Delta \mathrm{G})\) at UM06-L/631G(d,p)/LANL2DZ[Ni].
\begin{tabular}{|c|c|c|c|c|}
\hline Structure & \(\Delta\) EscF \(^{\text {a }}\) & \(\Delta\) Ezpe \(^{\text {en }}\) & \(\Delta \mathrm{H}\) & \(\Delta \mathrm{G}\) \\
\hline \multicolumn{5}{|l|}{UM06-L/6-31G(d,p)[LANL2DZ(Ni)]} \\
\hline Int38 (S=1/2) & \[
\begin{gathered}
-56.2 \\
(-2566.285322)
\end{gathered}
\] & \[
\begin{gathered}
-55.5 \\
(-2565.583709)
\end{gathered}
\] & \[
\begin{gathered}
-56.4 \\
(-2565.537312)
\end{gathered}
\] & \[
\begin{gathered}
-51.8 \\
(-2565.664616)
\end{gathered}
\] \\
\hline Int38 (S=3/2) & \[
\begin{gathered}
-52.5 \\
(-2566.279466)
\end{gathered}
\] & \[
\begin{gathered}
-51.6 \\
(-2565.577647)
\end{gathered}
\] & \[
\begin{gathered}
-52.7 \\
(-2565.531378)
\end{gathered}
\] & \[
\begin{gathered}
-48.5 \\
(-2565.659353)
\end{gathered}
\] \\
\hline Int39 (S=0) & \[
\begin{gathered}
-55.5 \\
(-2106.037157)
\end{gathered}
\] & \[
\begin{gathered}
-55.8 \\
(-2105.33772)
\end{gathered}
\] & \[
\begin{gathered}
-56.0 \\
(-2105.293084)
\end{gathered}
\] & \[
\begin{gathered}
-60.3 \\
(-2105.415939)
\end{gathered}
\] \\
\hline Int39 (S=1) & \[
\begin{gathered}
-57.9 \\
(-2106.041042)
\end{gathered}
\] & \[
\begin{gathered}
-58.1 \\
(-2105.341427)
\end{gathered}
\] & \[
\begin{gathered}
-58.4 \\
(-2105.296835)
\end{gathered}
\] & \[
\begin{gathered}
-63.4 \\
(-2105.420827)
\end{gathered}
\] \\
\hline Int39 (S=2) & \[
\begin{gathered}
-47.0 \\
(-2106.023555)
\end{gathered}
\] & \[
\begin{gathered}
-47.7 \\
(-2105.324874)
\end{gathered}
\] & \[
\begin{gathered}
-47.9 \\
(-2105.280111)
\end{gathered}
\] & \[
\begin{gathered}
-52.9 \\
(-2105.404033)
\end{gathered}
\] \\
\hline Int40 (S=0) & \[
\begin{gathered}
1.8 \\
(-3026.421758)
\end{gathered}
\] & \[
\begin{gathered}
1.6 \\
(-3025.720318)
\end{gathered}
\] & \[
\begin{gathered}
1.7 \\
(-3025.671761)
\end{gathered}
\] & \[
\begin{gathered}
2.1 \\
(-3025.801082)
\end{gathered}
\] \\
\hline Int40 (S=1) & \[
\begin{gathered}
0.0 \\
(-3026.424647)
\end{gathered}
\] & \[
\begin{gathered}
0.0 \\
(-3025.722933)
\end{gathered}
\] & \[
\begin{gathered}
0.0 \\
(-3025.674452)
\end{gathered}
\] & \[
\begin{gathered}
0.0 \\
(-3025.804485)
\end{gathered}
\] \\
\hline Int41 (S=0) & \[
\begin{gathered}
-21.2 \\
(-3026.458422)
\end{gathered}
\] & \[
\begin{gathered}
-20.0 \\
(-3025.754852)
\end{gathered}
\] & \[
\begin{gathered}
-20.0 \\
(-3025.706347)
\end{gathered}
\] & \[
\begin{gathered}
-20.5 \\
(-3025.837232)
\end{gathered}
\] \\
\hline Int41 (S=1) & \[
\begin{gathered}
-25.2 \\
(-3026.464748)
\end{gathered}
\] & \[
\begin{gathered}
-25.0 \\
(-3025.762852)
\end{gathered}
\] & \[
\begin{gathered}
-24.6 \\
(-3025.713617)
\end{gathered}
\] & \[
\begin{gathered}
-27.3 \\
(-3025.847976)
\end{gathered}
\] \\
\hline Int41 (S=2) & \[
\begin{gathered}
-27.4 \\
(-3026.468323)
\end{gathered}
\] & \[
\begin{gathered}
-27.9 \\
(-3025.767417)
\end{gathered}
\] & \[
\begin{gathered}
-27.0 \\
(-3025.717508)
\end{gathered}
\] & \[
\begin{gathered}
-32.3 \\
(-3025.855881)
\end{gathered}
\] \\
\hline Int42 (S=1/2) & \[
\begin{gathered}
-27.5 \\
(-2566.239596)
\end{gathered}
\] & \[
\begin{gathered}
-28.6 \\
(-2565.540848)
\end{gathered}
\] & \[
\begin{gathered}
-28.4 \\
(-2565.492687)
\end{gathered}
\] & \[
\begin{gathered}
-26.4 \\
(-2565.624095)
\end{gathered}
\] \\
\hline Int42 (S=3/2) & \[
\begin{gathered}
-26.6 \\
(-2566.238233)
\end{gathered}
\] & \[
\begin{gathered}
-27.9 \\
(-2565.53976)
\end{gathered}
\] & \[
\begin{gathered}
-27.7 \\
(-2565.491439)
\end{gathered}
\] & \[
\begin{gathered}
-26.6 \\
(-2565.624357)
\end{gathered}
\] \\
\hline Int43 (S=0) & \[
\begin{gathered}
-55.8 \\
(-2106.037612)
\end{gathered}
\] & \[
\begin{gathered}
-58.2 \\
(-2105.341599)
\end{gathered}
\] & \[
\begin{gathered}
-58.6 \\
(-2105.297207)
\end{gathered}
\] & \[
\begin{gathered}
-61.4 \\
(-2105.417591)
\end{gathered}
\] \\
\hline Int43 (S=1) & \[
\begin{gathered}
-57.5 \\
(-2106.040289)
\end{gathered}
\] & \[
\begin{gathered}
-59.7 \\
(-2105.343996)
\end{gathered}
\] & \[
\begin{gathered}
-60.2 \\
(-2105.299663)
\end{gathered}
\] & \[
\begin{gathered}
-63.3 \\
(-2105.420675)
\end{gathered}
\] \\
\hline Int44 (S=0) & \[
\begin{gathered}
-82.3 \\
(-2106.07986)
\end{gathered}
\] & \[
\begin{gathered}
-81.5 \\
(-2105.378702)
\end{gathered}
\] & \[
\begin{gathered}
-82.2 \\
(-2105.334697)
\end{gathered}
\] & \[
\begin{gathered}
-85.1 \\
(-2105.455487)
\end{gathered}
\] \\
\hline Int44 (S=1) & \[
\begin{gathered}
-83.4 \\
(-2106.081649)
\end{gathered}
\] & \[
\begin{gathered}
-83.1 \\
(-2105.381331)
\end{gathered}
\] & \[
\begin{gathered}
-83.7 \\
(-2105.33713)
\end{gathered}
\] & \[
\begin{gathered}
-86.8 \\
(-2105.458118)
\end{gathered}
\] \\
\hline Int44 (S=2) & \[
\begin{gathered}
-62.4 \\
(-2106.048098)
\end{gathered}
\] & \[
\begin{gathered}
-63.3 \\
(-2105.349674)
\end{gathered}
\] & \[
\begin{gathered}
-63.3 \\
(-2105.304606)
\end{gathered}
\] & \[
\begin{gathered}
-69.4 \\
(-2105.430325)
\end{gathered}
\] \\
\hline Int45 (S=1/2) & \[
\begin{gathered}
-41.9 \\
(-2566.262563)
\end{gathered}
\] & \[
\begin{gathered}
-43.3 \\
(-2565.564285)
\end{gathered}
\] & \[
\begin{gathered}
-44.2 \\
(-2565.517759)
\end{gathered}
\] & \[
\begin{gathered}
-39.1 \\
(-2565.644347)
\end{gathered}
\] \\
\hline Int45 (S=3/2) & \[
\begin{gathered}
-41.7 \\
(-2566.262338)
\end{gathered}
\] & \[
\begin{gathered}
-43.4 \\
(-2565.564562)
\end{gathered}
\] & \[
\begin{gathered}
-44.1 \\
(-2565.517709)
\end{gathered}
\] & \[
\begin{gathered}
-40.6 \\
(-2565.646693)
\end{gathered}
\] \\
\hline Int46 (S=1/2) & \[
\begin{gathered}
-81.1 \\
(-2566.325014)
\end{gathered}
\] & \[
\begin{gathered}
-80.0 \\
(-2565.622844)
\end{gathered}
\] & \[
\begin{gathered}
-81.1 \\
(-2565.576655)
\end{gathered}
\] & \[
\begin{gathered}
-75.6 \\
(-2565.702461)
\end{gathered}
\] \\
\hline Int46 (S=3/2) & \[
\begin{gathered}
-81.4 \\
(-2566.32556)
\end{gathered}
\] & \[
\begin{gathered}
-80.9 \\
(-2565.624241)
\end{gathered}
\] & \[
\begin{gathered}
-81.8 \\
(-2565.577634)
\end{gathered}
\] & \[
\begin{gathered}
-77.1 \\
(-2565.704854)
\end{gathered}
\] \\
\hline TS38 (S=1/2) & \[
\begin{gathered}
-23.3 \\
(-2566.232981)
\end{gathered}
\] & \[
\begin{gathered}
-25.3 \\
(-2565.535606)
\end{gathered}
\] & \[
\begin{gathered}
-26.5 \\
(-2565.489655)
\end{gathered}
\] & \[
\begin{gathered}
-21.6 \\
(-2565.61648)
\end{gathered}
\] \\
\hline TS38 (S=3/2) & \[
\begin{gathered}
-22.6 \\
(-2566.23182)
\end{gathered}
\] & \[
\begin{gathered}
-24.9 \\
(-2565.535011)
\end{gathered}
\] & \[
\begin{gathered}
-26.3 \\
(-2565.489209)
\end{gathered}
\] & \[
\begin{gathered}
-20.6 \\
(-2565.614876)
\end{gathered}
\] \\
\hline TS39 (S=0) & \[
\begin{gathered}
-27.8 \\
(-2105.993054)
\end{gathered}
\] & \[
\begin{gathered}
-31.0 \\
(-2105.298195)
\end{gathered}
\] & \[
\begin{gathered}
-31.5 \\
(-2105.254031)
\end{gathered}
\] & \[
\begin{gathered}
-34.8 \\
(-2105.375187)
\end{gathered}
\] \\
\hline TS39 (S=1) & \[
\begin{gathered}
-24.2 \\
(-2105.98731)
\end{gathered}
\] & \[
\begin{gathered}
-28.1 \\
(-2105.293591)
\end{gathered}
\] & \[
\begin{gathered}
-28.4 \\
(-2105.249053)
\end{gathered}
\] & \[
\begin{gathered}
-33.5 \\
(-2105.373124)
\end{gathered}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline TS40 (S=0) & \[
\begin{gathered}
7.0 \\
(-3026.413561)
\end{gathered}
\] & \[
\begin{gathered}
6.5 \\
(-3025.712654)
\end{gathered}
\] & \[
\begin{gathered}
6.5 \\
(-3025.664072)
\end{gathered}
\] & \[
\begin{gathered}
6.2 \\
(-3025.794566)
\end{gathered}
\] \\
\hline TS40 (S=1) & 5.5 & 5.2 & 5.2 & 4.4 \\
\hline 1S40 (S=1) & (-3026.415918) & (-3025.714655) & (-3025.666222) & (-3025.797484) \\
\hline TS41 (S=1/2) & \[
\begin{gathered}
-15.0 \\
(-2566.219667)
\end{gathered}
\] & \[
\begin{gathered}
-16.7 \\
(-2565.521934)
\end{gathered}
\] & \[
\begin{gathered}
-16.8 \\
(-2565.474195)
\end{gathered}
\] & \[
\begin{gathered}
-14.5 \\
(-2565.605114)
\end{gathered}
\] \\
\hline TS41 (S=3/2) & \[
\begin{gathered}
-17.1 \\
(-2566.223147)
\end{gathered}
\] & \[
\begin{gathered}
-18.4 \\
(-2565.524703)
\end{gathered}
\] & \[
\begin{gathered}
-18.7 \\
(-2565.477216)
\end{gathered}
\] & \[
\begin{gathered}
-16.0 \\
(-2565.607549)
\end{gathered}
\] \\
\hline TS42 (S=1/2) & \[
\begin{gathered}
-23.8 \\
(-2566.233689)
\end{gathered}
\] & \[
\begin{gathered}
-25.4 \\
(-2565.535758)
\end{gathered}
\] & \[
\begin{gathered}
-26.0 \\
(-2565.488855)
\end{gathered}
\] & \[
\begin{gathered}
-21.2 \\
(-2565.615836)
\end{gathered}
\] \\
\hline TS42 (S=3/2) & \[
\begin{gathered}
-31.9 \\
(-2566.246686)
\end{gathered}
\] & \[
\begin{gathered}
-32.4 \\
(-2565.54701)
\end{gathered}
\] & \[
\begin{gathered}
-33.5 \\
(-2565.500668)
\end{gathered}
\] & \[
\begin{gathered}
-28.0 \\
(-2565.626584)
\end{gathered}
\] \\
\hline TS43 (S=0) & \[
\begin{gathered}
-50.6 \\
(-2106.029304)
\end{gathered}
\] & \[
\begin{gathered}
-54.3 \\
(-2105.335315)
\end{gathered}
\] & \[
\begin{gathered}
-54.4 \\
(-2105.290519)
\end{gathered}
\] & \[
\begin{gathered}
-59.5 \\
(-2105.414623)
\end{gathered}
\] \\
\hline TS43 (S=1) & \[
\begin{gathered}
-52.3 \\
(-2106.032113)
\end{gathered}
\] & \[
\begin{gathered}
-55.3 \\
(-2105.337002)
\end{gathered}
\] & \[
\begin{gathered}
-55.8 \\
(-2105.292634)
\end{gathered}
\] & \[
\begin{gathered}
-59.8 \\
(-2105.415071)
\end{gathered}
\] \\
\hline TS43 (S=2) & \[
\begin{gathered}
-25.5 \\
(-2105.989312)
\end{gathered}
\] & \[
\begin{gathered}
-29.9 \\
(-2105.296419)
\end{gathered}
\] & \[
\begin{gathered}
-30.0 \\
(-2105.251566)
\end{gathered}
\] & \[
\begin{gathered}
-35.2 \\
(-2105.375833)
\end{gathered}
\] \\
\hline TS45 (S=1/2) & \[
\begin{gathered}
-41.5 \\
(-2566.261941)
\end{gathered}
\] & \[
\begin{gathered}
-44.2 \\
(-2565.565834)
\end{gathered}
\] & \[
\begin{gathered}
-45.1 \\
(-2565.519171)
\end{gathered}
\] & \[
\begin{gathered}
-40.7 \\
(-2565.646892)
\end{gathered}
\] \\
\hline TS45 (S=3/2) & \[
\begin{gathered}
-40.8 \\
(-2566.260841)
\end{gathered}
\] & \[
\begin{gathered}
-43.6 \\
(-2565.564822)
\end{gathered}
\] & \[
\begin{gathered}
-44.4 \\
(-2565.518116)
\end{gathered}
\] & \[
\begin{gathered}
-40.8 \\
(-2565.646969)
\end{gathered}
\] \\
\hline MECP-Int41 (S=1/2) & \[
\begin{gathered}
-26.2 \\
(-3026.466476) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
-26.9 \\
(-3025.76584) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
-26.9 \\
(-3025.716609) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
-29.5 \\
(-3025.851471) \\
\hline
\end{gathered}
\] \\
\hline
\end{tabular}

Table A1.2. Structure energies, relative to \(\operatorname{Int} 40\) triplet ground state, for the cyclization of a vinylidene-olefin (\(\mathrm{kcal} / \mathrm{mol}\)). Absolute energies in parentheses (Hartree). Relative SCF energies (\(\triangle \mathrm{E}_{\text {SCF }}\)), at UM06-L/def2-TZVP.

\begin{tabular}{|c|c|}
\hline Int43 (S=1) & \[
\begin{gathered}
-60.7 \\
(-4784.487362)
\end{gathered}
\] \\
\hline Int44 (S=0) & \[
\begin{gathered}
-83.6 \\
(-4784.523866)
\end{gathered}
\] \\
\hline Int44 (S=1) & \[
\begin{gathered}
-83.3 \\
(-4784.523364)
\end{gathered}
\] \\
\hline Int44 (S=2) & \[
\begin{gathered}
-64.6 \\
(-4784.49352)
\end{gathered}
\] \\
\hline Int45 (S=1/2) & \[
\begin{gathered}
-42.4 \\
(-5244.739887)
\end{gathered}
\] \\
\hline Int45 (S=3/2) & \[
\begin{gathered}
-43.6 \\
(-5244.741742)
\end{gathered}
\] \\
\hline Int46 (S=1/2) & \[
\begin{gathered}
-77.8 \\
(-5244.796331)
\end{gathered}
\] \\
\hline Int46 (S=3/2) & \[
\begin{gathered}
-78.4 \\
(-5244.79726)
\end{gathered}
\] \\
\hline TS38 (S=1/2) & \[
\begin{gathered}
-25.3 \\
(-5244.71254)
\end{gathered}
\] \\
\hline TS38 (S=3/2) & \[
\begin{gathered}
-25.2 \\
(-5244.712406)
\end{gathered}
\] \\
\hline TS39 (S=0) & \[
\begin{gathered}
-16.4 \\
(-4784.416706)
\end{gathered}
\] \\
\hline TS39 (S=1) & \[
\begin{gathered}
-19.9 \\
(-4784.422346)
\end{gathered}
\] \\
\hline TS40 (S=0) & \[
\begin{gathered}
+6.7 \\
(-5704.920321)
\end{gathered}
\] \\
\hline TS40 (S=1) & \[
\begin{gathered}
+4.8 \\
(-5704.923458)
\end{gathered}
\] \\
\hline TS41 (S=1/2) & \[
\begin{gathered}
-14.8 \\
(-5244.69589)
\end{gathered}
\] \\
\hline TS41 (S=3/2) & \[
\begin{gathered}
-17.4 \\
(-5244.700008)
\end{gathered}
\] \\
\hline TS42 (S=1/2) & \[
\begin{gathered}
-24.0 \\
(-5244.71047)
\end{gathered}
\] \\
\hline TS42 (S=3/2) & \[
\begin{gathered}
-32.2 \\
(-5244.723561)
\end{gathered}
\] \\
\hline TS43 (S=0) & \[
\begin{gathered}
-53.3 \\
(-4784.475554)
\end{gathered}
\] \\
\hline TS43 (S=1) & \[
\begin{gathered}
-55.4 \\
(-4784.478932)
\end{gathered}
\] \\
\hline TS43 (S=2) & \[
\begin{gathered}
-30.8 \\
(-4784.439761)
\end{gathered}
\] \\
\hline TS45 (S=1/2) & \[
\begin{gathered}
-41.4 \\
(-5244.738288)
\end{gathered}
\] \\
\hline TS45 (S=3/2) & \[
\begin{gathered}
-41.6 \\
(-5244.738654)
\end{gathered}
\] \\
\hline MECP-Int41 (S=1/2) & \[
\begin{gathered}
-27.9 \\
(-5704.975532)
\end{gathered}
\] \\
\hline
\end{tabular}

Table A1.3. Structure energies for the cyclization of a vinylidene-olefin (\(\mathrm{kcal} / \mathrm{mol}\)). Absolute energies in parentheses (Hartree). Relative SCF energies (\(\triangle \mathrm{ESCF}_{\text {S }}\)), ZPE-corrected (\(\triangle \mathrm{E}_{\text {ZPE }}\)), enthalpy \((\Delta \mathrm{H})\), Gibbs free energy \((\Delta \mathrm{G})\) at UM06-L/6-31G(d,p)/LANL2DZ[Ni].
\begin{tabular}{|c|c|c|c|c|}
\hline Structure & \(\Delta \mathrm{ESCF}^{\text {che }}\) & \(\Delta \mathrm{E}_{\text {ZPE }}\) & \(\Delta \mathrm{H}\) & \(\Delta \mathrm{G}\) \\
\hline \multicolumn{5}{|l|}{UM06-L/6-31G(d,p)[LANL2DZ(Ni)]} \\
\hline Zn & -65.11021637 & -65.110216 & -65.107856 & -65.126094 \\
\hline \(\mathbf{Z n C l}\) & -525.3213191 & -525.34502 & -2239.580273 & -2239.604 \\
\hline \(\mathbf{Z n}_{2}\) & -130.2187784 & -130.218693 & -130.214527 & -130.24461 \\
\hline \(\mathbf{Z n}_{2} \mathbf{C l}\) & -590.4475945 & -590.446285 & -590.441624 & -590.46707 \\
\hline \(\mathbf{Z n C l} 2\) & -985.5844767 & -985.582574 & -985.577358 & -985.60321 \\
\hline
\end{tabular}

\section*{References}
\({ }^{1}\) Zhou, Y-Y.; Hartline, D.R.; Steiman, T. J.; Fanwick, P. E.; Uyeda, C. Dinuclear Nickel Complexes in Five States of oxidation Using a Redox-Active Ligand Inorg. Chem. 2014, 53, 11770-11777.
\({ }^{2}\) Zhou, Y-Y.; Uyeda, C. Reductive Cyclopropanations Catalyzed by Dinuclear Nickel Complexes Angew. Chem. Int. Ed. 2016, 55, 3171-3175.
\({ }^{3}\) Stoll, S.; Schweiger, A. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J. Magn. Reson. 2006, 178, 42-55.
\({ }^{4}\) Bruker (2016). Apex3 v2016.9-0, Saint V8.34A, SAINT V8.37A, Bruker AXS Inc.: Madison (WI), USA, 2013/2014.
\({ }^{5}\) a) SHELXTL suite of programs, Version 6.14, 2000-2003, Bruker Advanced X-ray Solutions, Bruker AXS Inc., Madison, Wisconsin: USA) b) Sheldrick GM. A short history of SHELX. Acta Crystallogr A. 2008, 64(1), 112-122.
\({ }^{6}\) Sheldrick G. M. University of Göttingen, Germany, 2018. b) Sheldrick GM. Crystal structure refinement with SHELXL. Acta Crystallogr Sect C Struct Chem. 2015, 71(1), 3-8.
\({ }^{7}\) Hübschle, C. B.; Sheldrick, G. M.; Dittrich, B. ShelXle: a Qt graphical user interface for SHELXL. J. Appl. Crystallogr. 2011, 44(6), 1281-1284.
\({ }^{8}\) Schmidt, V. A.; Hoyt, J. M.; Margulieux, G. W.; Chirik, P. J. Cobalt-Catalyzed [\(2 \pi+2 \pi\)] Cycloadditions of Alkenes: Scope, Mechanism, and Elucidation of Electronic Structure of Catalytic Intermediates. J. Am. Chem. Soc. 2015, 137, 7903-7914.
\({ }^{9}\) Hennessy E. T.; Betley, T. A. Complex N-Heterocycle Synthesis via Iron-Catalyzed, Direct CH Bond Amination Science, 2013, 340, 591-595.
\({ }^{10}\) Schmidt, Y.; Lam, J.K.; Pham, H. V.; Houk, K. N.; Vanderwal, C. D. Studies on the Himbert Intramolecular Arene/Allene Diels-Alder Cycloaddition. Mechanistic Studies and Expansion of Scope to All-Carbon Tethers J. Am. Chem. Soc, 2013, 135, 7339-7348.
\({ }^{11}\) Chen. Y. L.; Hoppe, D. 1-(N,N-Diisopropylcarbamoyloxy)-1-tosyl-1-alkenes-a \({ }^{2} d^{1}\) Synthons via Tandem Umpolung J. Org. Chem. 2009, 74, 4188-4194.
\({ }^{12}\) Zhao, X.; Liu, D.; Guo, H.; Liu, Y.; Zhang W. C-N Bond Cleavage of Allylic Amines via Hydrogen Bond Activation with Alcohol Solvents in Pd-Catalyzed Allylic Alkylation of Carbonyl Compounds J. Am. Chem. Soc. 2011, 133, 19354-19357.
\({ }^{13}\) Hoveyda A.; Zoute, L.; Lenoir, F. Novel compounds, method for use them and pharmaceutical composition containing them. WO2011151436A2, 2011.
\({ }^{14}\) Allin, S. M.; Horro-Pita, C.; Essat, M.; Aspinall, I.; \& Shah, P. Utilizing the Asymmetric Amino-Cope Rearrangement as a Novel Approach to Enantiomerically Enriched 3Substituted Aldehydes. Synth. Comm, 2010, 40, 2696-2711.
\({ }^{15}\) Kawajiri, T.; Ohta, R.; Fujioka, H.; Sajiki, H.; \& Sawama, Y. Aromatic aldehyde-selective aldol addition with aldehyde-derived silyl enol ethers. Chem. Comm., 2018, 54, 374-377
\({ }^{16}\) Clavette, C.; Vincent Rocan, J.-F.; \& Beauchemin, A. M. Diversity-Oriented Synthesis of Hydrazine-Derived Compounds from Amino Isocyanates Generated In Situ. Angew. Chem. Int. Ed., 2013, 52, 12705-12708.
\({ }^{17}\) Smith, A. B.; Minbiole, K. P.; Verhoest, P. R.; Schelhaas, M. Total Synthesis of (+)Phorboxazole A Exploiting the Petasis-Ferrier Rearrangement. J. Am. Chem. Soc., 2001, 123, 10942-10953.
\({ }^{18}\) Li, J.; Ahmed, T. S.; Xu, C.; Stoltz, B. M.; Grubbs, R. H. Concise Synthesis of \(\Delta^{12}-\) Prostaglandin J Natural Products via Stereoretentive Metathesis. J. Am. Chem. Soc. 2019, 141(1), 154-158.
\({ }^{19}\) Moretti, J. D.; Wang, X.; Curran, D. P. Minimal Fluorous Tagging Strategy that Enables the Synthesis of the Complete Stereoisomer Library of SCH725674 Macrolactones. J. Am. Chem. Soc. 2012, 134(18), 7963-7970.
\({ }^{20}\) Xing, X.; O’Connor, N. R.; Stoltz, B. M. Palladium(II)-Catalyzed Allylic C-H Oxidation of Hindered Substrates Featuring Tunable Selectivity Over Extent of Oxidation Angew. Chem. Int. Ed., 2015, 54, 11186-11190
\({ }^{21}\) Yip, S. Y. Y.; Aïssa, C. Isomerization of Olefins Triggered by Rhodium-Catalyzed C-H Bond Activation: Control of Endocyclic \(\beta\)-Hydrogen Elimination., Angew. Chem. Int. Ed. 2015, 54, 6870-6873.
\({ }^{22}\) Peng, B.; Geerdink, D.; Maulide, N. Electrophilic Rearrangements of Chiral Amides: A Traceless Asymmetric \(\alpha\)-Allylation J. Am. Chem. Soc., 2013, 135, 14968-14971.
\({ }^{23}\) Watanabe, K.; Suzuki, Y.; Aoki, K.; Sakakura, A.; Suenaga, K.; Kigoshi, H. Formal Synthesis of Optically Active Ingenol via Ring-Closing Olefin Metathesis. J. Org. Chem., 2004, 69, 7802-7808.
\({ }^{24}\) Bloome, K. S.; Alexanian, E. J. Palladium-Catalyzed Carbonylative Heck-Type Reactions of Alkyl Iodides. J. Am. Chem. Soc., 2010, 132, 12823-12825.
\({ }^{25}\) Petrignet, J.; Boudhar, A.; Blond, G.; Suffert, J. Angew. Chem., Int. Ed. 2011, 50, 3285-3289.
\({ }^{26}\) Kumpulainen, E. T. T.; Koskinen, A. M. P.; Rissanen, K. Total Synthesis of Amaminol A: Establishment of the Absolute Stereochemistry. Org. Let., 2007, 9, 5043-5045.
\({ }^{27}\) Kim, H.; Lee, C. Cycloisomerization of Enynes via Rhodium Vinylidene-Mediated Catalysis, J. Am. Chem. Soc. 2005, 127, 10180-10181.
\({ }^{28}\) Bohan, P. T.; Toste, F. D. Well-Defined Chiral Gold(III) Complex Catalyzed Direct Enantioconvergent Kinetic Resolution of 1,5-Enynes. J. Am. Chem. Soc., 2017, 139, 11016-11019.
\({ }^{29}\) Zhao, Y.; Truhlar, D. G. A New Local Density Functional for Main-Group Thermochemistry, Transition Metal Bonding, Thermochemical Kinetics, and Noncovalent Interactions. J. Chem. Phys. 2006, 125 (19), 194101.
\({ }^{30}\) Hay, P. J.; Wadt, W. R. Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for the Transition Metal Atoms Sc to Hg. J. Chem. Phys. 1985, 82 (1), 270283.
\({ }^{31}\) Wadt, W. R.; Hay, P. J. Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for Main Group Elements Na to Bi. J. Chem. Phys. 1985, 82 (1), 284-298..
\({ }^{32}\) Dunning, T. H.; Hay, P. J. Gaussian Basis Sets for Molecular Calculations. In Methods of Electronic Structure Theory; Springer US, 1977; pp 1-27.
\({ }^{33}\) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16, Revision, C.01. 2016.
\({ }^{34}\) Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005, 7 (18), 3297.
\({ }^{35}\) Weigend, F. Accurate Coulomb-Fitting Basis Sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8 (9), 1057-1065.

\section*{APPENDIX B: SUPPORTING INFORMATION FOR CHAPTER 2}

\section*{1. General Information}

General considerations. All manipulations were carried out using standard Schlenk or glovebox techniques under an atmosphere of \(\mathrm{N}_{2}\). Solvents were dried and degassed by passage through a column of activated alumina and sparging with Ar gas. Deuterated solvents were purchased from Cambridge Isotope Laboratories, Inc. \(\mathrm{C}_{6} \mathrm{D}_{6}\) was degassed using the freeze-pump-thaw method and stored over activated \(3 \AA\) molecular sieves prior to use in the glovebox. \(\mathrm{CDCl}_{3}\) was stored over activated \(3 \AA\) molecular sieves prior to use. Zn powder (325 mesh, \(99.9 \%\)), \(\mathrm{Ni}(\mathrm{dme}) \mathrm{Cl}_{2}\) and \(\mathrm{Ni}(C O D)_{2}\) were purchased from Strem Chemicals, stored under inert atmosphere and used without further purification. Dimethylacetamide (DMA) was stored over 3 Å molecular sieves prior to use. Commercial aldehydes were distilled prior to use. All aldehydes were stored without molecular sieves in the glovebox freezer \(\left(-30^{\circ} \mathrm{C}\right)\). All catalytic reactions were run in the glovebox unless otherwise noted. The \({ }^{i-\mathrm{Pr}} \mathrm{NDI}\) ligand (7), \({ }^{c}\)-Pent \(\mathrm{NDI}(\mathbf{8}),{ }^{2}\) Mes \(\mathrm{NDI}(\mathbf{9}),{ }^{3}\left({ }^{i-\mathrm{Pr}} \mathrm{NDI}\right) \mathrm{Ni}_{2} \mathrm{Cl}_{2}(\mathbf{6})^{4}\) and (\({ }^{i-}\) \(\left.{ }^{\text {Pr }} \mathrm{NDI}\right) \mathrm{Ni}_{2} \mathrm{Cl}(\mathbf{4 3})^{3}\) were prepared according to previously reported procedures. All other reagents and starting materials were purchased from commercial vendors and used without further purification unless otherwise noted.

Physical methods. \({ }^{1} \mathrm{H}\) NMR, \({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR, \({ }^{19} \mathrm{~F}\) NMR, COSY NMR and NOESY NMR spectra were collected at room temperature on a Varian Inova300 with a 5 mm 4 -nucleus/BB Z-gradient probe, Varian Mercury 300 with a 5 mm 4 -nucleus/BB probe, Bruker AV400 with a 5 mm BBFO Z-gradient SmartProbe, a Bruker DRX500 with a 5 mm BBFO Z-gradient ATM probe, or AV800 with a QCI cryoprobe. \({ }^{1} \mathrm{H}\) NMR and \({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR spectra were reported in parts per million relative to tetramethylsilane, using the referenced residual solvent resonances as an internal standard (\({ }^{1} \mathrm{H}\) NMR: \(\mathrm{CDCl}_{3}=7.26 \mathrm{ppm}, \mathrm{C}_{6} \mathrm{D}_{6}=7.16 \mathrm{ppm}\) and \({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR: \(\mathrm{CDCl}_{3}=77.16 \mathrm{ppm}\)). High-resolution mass data were obtained using a Thermo Scientific LTQ Orbitrap XL mass spectrometer or a Thermo Electron Corporation MAT 95XP-Trap mass spectrometer. IR data were obtained on a Thermo Nicolet Nexus FT-IR spectrometer with an MCT* detector and a KBr beam splitter with a range of \(800-4500 \mathrm{~cm}^{-1}\).

Computational Methods. DFT calculations were performed with the Gaussian 16 software package. All geometries were fully optimized at the \(\operatorname{BP} 86 / 6-311 \mathrm{G}(\mathrm{d}, \mathrm{p})\) level of DFT. All stationary points were verified by frequency analysis.

\section*{2. Reaction Optimization Studies}

Table A2.1: Effect of Reaction Parameters
\begin{tabular}{|c|c|c|c|c|}
\hline entry & Deviations from Standard Conditions & \begin{tabular}{l}
yield (\%) \\
(4)
\end{tabular} & anti:syn (4) & Z/E (4) \\
\hline 1 & none & 89 & 8:1 & >20:1 \\
\hline 2 & Mn instead of Zn & 81 & 14:1 & >20:1 \\
\hline 3 & \(\mathrm{Cp}_{2} \mathrm{Co}\) instead of Zn & 58 & 1:4 & >20:1 \\
\hline 4 & no \(\mathrm{Et}_{2} \mathrm{O}\) & 47 & 4:1 & >20:1 \\
\hline 5 & \[
\begin{aligned}
& i-\mathrm{Pr} \mathrm{NDI}(7)(10 \mathrm{~mol} \%)+\mathrm{Ni}(\mathrm{dme}) \mathrm{Cl}_{2}(20 \mathrm{~mol} \%) \text { instead } \\
& \text { of } \mathbf{6}
\end{aligned}
\] & 85 & 6:1 & >20:1 \\
\hline 6 & \[
{ }^{c-\text { Pent }} \mathrm{NDI}(8)(10 \mathrm{~mol} \%)+\mathrm{Ni}(\mathrm{dme}) \mathrm{Cl}_{2}(20 \mathrm{~mol} \%)
\]
\[
\text { instead of } 6
\] & 46 & 3:1 & >20:1 \\
\hline 7 & \[
\begin{aligned}
& \text { Mes } \mathrm{NDI}(\mathbf{9})(10 \mathrm{~mol} \%)+\mathrm{Ni}(\mathrm{dme}) \mathrm{Cl}_{2}(20 \mathrm{~mol} \%) \text { instead } \\
& \text { of } 6
\end{aligned}
\] & <5 & - & - \\
\hline 8 & \({ }^{i-\mathrm{Pr} I \mathrm{IP}}\) (10) (10 mol\%) + \(\mathrm{Ni}(\mathrm{dme}) \mathrm{Cl}_{2}(10 \mathrm{~mol} \%)\) instead of 6 & o & - & - \\
\hline 9 & \(i\) i-PrPDI (11) (10 mol\%) + Ni(dme) \(\mathrm{Cl}_{2}(10 \mathrm{~mol} \%)\) instead of 6 & o & - & - \\
\hline 10 & \(\mathrm{Ni}(\mathrm{dme}) \mathrm{Cl}_{2}(1 \mathrm{omol} \%)\) instead of 6 & o & - & - \\
\hline
\end{tabular}

General procedure for entries 1-4. In an \(\mathrm{N}_{2}\)-filled glovebox, a 2-dram vial was charged with a magnetic stir bar, \(\left({ }^{i-\mathrm{Pr}} \mathrm{NDI}\right) \mathrm{Ni}_{2} \mathrm{Cl}_{2}(7.2 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%)\) and reductant (0.4 mmol , 4.0 equiv). A stock solution of 1,1-dichloro-3-methylbut-1-ene (32363-91-0) (\(0.1 \mathrm{mmol}, 1.0\) equiv), 5-phenylpentanal (36884-28-3) (\(0.2 \mathrm{mmol}, 2.0\) equiv), mesitylene (\(0.1 \mathrm{mmol}, 1.0\) equiv) and DMA \((0.1 \mathrm{~mL})\) was added to the catalyst. \(\mathrm{Et}_{2} \mathrm{O}\) or DMA (entry 5) (0.4 mL) was added, the vial was sealed, and the reaction mixture was stirred (600 rpm) at room temperature. After 24 h , the reaction vial was removed from the glovebox and exposed to air. An aliquot was filtered through a pad of silica (approx. 1 cm) with \(\mathrm{C}_{6} \mathrm{D}_{6}\) and analyzed by \({ }^{1} \mathrm{H}\) NMR spectroscopy. The yield of the product was determined by \({ }^{1} \mathrm{H}\) NMR integration against mesitylene.

General procedure for entries 5-10. In an \(\mathrm{N}_{2}\)-filled glovebox, a 2-dram vial was charged with a magnetic stir bar, ligand (\(0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%\)), \(\mathrm{Ni}(\mathrm{dme}) \mathrm{Cl}_{2}\) (2.2 mg or \(4.4 \mathrm{mg}, 0.020\) mmol or \(0.020 \mathrm{mmol}, 10\) or \(20 \mathrm{~mol} \%\)) and Zn powder (\(26.2 \mathrm{mg}, 0.4 \mathrm{mmol}, 4.0\) equiv). A stock solution of 1,1-dichloro-3-methylbut-1-ene (32363-91-0) (\(0.1 \mathrm{mmol}, 1.0\) equiv), 5-phenylpentanal (36884-28-3) (\(0.2 \mathrm{mmol}, 2.0\) equiv), mesitylene (\(0.1 \mathrm{mmol}, 1.0\) equiv) and DMA (0.1 mL) was added to the catalyst. \(\mathrm{Et}_{2} \mathrm{O}(0.4 \mathrm{~mL})\) was added, the vial was sealed, and the reaction mixture was stirred (600 rpm) at room temperature. After 24 h , the reaction vial was removed from the glovebox and exposed to air. An aliquot was filtered through a pad of silica (approx. 1 cm) with \(\mathrm{C}_{6} \mathrm{D}_{6}\) and analyzed by \({ }^{1} \mathrm{H}\) NMR spectroscopy. The yield of the product was determined by \({ }^{1} \mathrm{H}\) NMR integration against mesitylene.

Isolation and Stereochemical Analysis of 4. In an \(\mathrm{N}_{2}\)-filled glovebox, a 2-dram vial was charged with a magnetic stir bar, \(\left({ }^{i-\mathrm{Pr}} \mathrm{NDI}\right) \mathrm{Ni}_{2} \mathrm{Cl}_{2}(14.4 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%)\), and Zn powder (\(52.3 \mathrm{mg}, 0.8 \mathrm{mmol}, 4.0\) equiv). DMA (0.2 mL) was added. A solution of 1,1 -dichloro-3-methylbut-1-ene (32363-91-0) (\(0.3 \mathrm{mmol}, 1.5\) equiv), 5-phenylpentanal (36884-28-3) (0.4 mmol , 2.0 equiv) and \(\mathrm{Et}_{2} \mathrm{O}(0.8 \mathrm{~mL})\) was added. The vial was sealed, and the reaction mixture was stirred
(600 rpm) at room temperature. After 24 h , the reaction vial was opened to air and concentrated under a stream of \(\mathrm{N}_{2}\). The remaining residue was loaded directly onto \(\mathrm{SiO}_{2}\) column for purification. Bond connectivity and stereochemistry were determined through analysis of COSY and NOESY NMR.

Purification: \(\mathrm{SiO}_{2}\) column; \(1 \% \mathrm{Et}_{2} \mathrm{O}\) in pentane
\(\mathrm{TLC}: \mathrm{R}_{f}=0.17\left(1 \% \mathrm{Et}_{2} \mathrm{O}\right.\) in pentane)
\({ }^{1} \mathrm{H}\) NMR \(\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.16(\mathrm{~m}, 6 \mathrm{H}), 4-\) anti - \(5.30(\mathrm{t}\), \(J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4-\mathrm{syn}-5.15(\mathrm{t}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.494-\boldsymbol{a n t i}-(\mathrm{ddd}, J=8.3,4.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4-\) \(\boldsymbol{s y n} \boldsymbol{n} 4.41-4.34(\mathrm{~m}, 1 \mathrm{H}), \mathbf{4}-\boldsymbol{a n t i}-4.02(\mathrm{dd}, J=8.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), \mathbf{4}-\boldsymbol{s y n} \boldsymbol{n}-3.98(\mathrm{dd}, J=8.7,1.7\) \(\mathrm{Hz}, 1 \mathrm{H}), 2.72-2.61(\mathrm{~m}, 5 \mathrm{H}), 1.81-1.41(\mathrm{~m}, 12 \mathrm{H}), 1.03-0.97(\mathrm{~m}, 6 \mathrm{H})\).
\({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR \(\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.7,142.7,128.5,128.4,125.8,104.9,102.7,77.3\), \(36.0,34.3,31.4,25.4,25.2,23.7,23.5,23.4\).

Table A2.2: Effect of Solvent
\begin{tabular}{|l|l|l|l|l|}
\hline entry & Solvent & yield (\%) (42) & d.r. (anti:syn) & Z/E \\
\hline 1 & \(\mathrm{Et}_{2} \mathrm{O} /\) DMA (4:1) & 94 & \(5: 1\) & \(>99: 1\) \\
\hline 2 & \(\mathrm{C}_{6} \mathrm{H}_{6} /\) DMA (4:1) & 74 & \(5: 1\) & \(>99: 1\) \\
\hline 3 & THF/DMA (4:1) & 84 & \(5: 1\) & \(>99: 1\) \\
\hline 4 & MeCN/DMA (4:1) & n.d. & -- & -- \\
\hline 5 & NMP & 56 & \(1: 3\) & \(>99: 1\) \\
\hline 6 & DMA & 43 & \(1: 1\) & \(>99: 1\) \\
\hline 7 & \(\mathrm{Et}_{2} \mathrm{O} /\) DMA (2:3) & 60 & \(3: 1\) & \(>99: 1\) \\
\hline
\end{tabular}

Effect of Solvent. In an \(\mathrm{N}_{2}\)-filled glovebox, a 2-dram vial was charged with a magnetic stir bar, \({ }^{i-\mathrm{Pr}} \mathrm{NDI}(9)(5.3 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{Ni}(\mathrm{dme}) \mathrm{Cl}_{2}(4.4 \mathrm{mg}, 0.020 \mathrm{mmol}, 20 \mathrm{~mol} \%)\), and Zn (\(39 \mathrm{mg}, 0.6 \mathrm{mmol}, 6.0\) equiv). A stock solution of dichloroalkene \(\mathbf{3 9}^{5}\) (\(0.1 \mathrm{mmol}, 1.0\) equiv),
aldehyde 40 (104-53-0) (\(0.2 \mathrm{mmol}, 2.0\) equiv), mesitylene (\(0.1 \mathrm{mmol}, 1.0\) equiv) and DMA (0.1 mL) was added to the same vial. Additional solvent was added (total of 0.5 mL including DMA stock solution), the vial was sealed, and the reaction mixture was stirred (600 rpm) at room temperature. After 24 h , the reaction vial was removed from the glovebox and exposed to air. An aliquot was filtered through a pad of silica (approx. 1 cm) with \(\mathrm{CDCl}_{3}\) and analyzed by \({ }^{1} \mathrm{H}\) NMR spectroscopy. The yield and d.r. of the product was determined by \({ }^{1} \mathrm{H}\) NMR integration against mesitylene.

Table A2.3: Effect of Additives
\begin{tabular}{|l|l|l|l|l|}
\hline entry & additive & yield (\%) (42) & d.r. (anti:syn) & Z/E \\
\hline 1 & none & 85 & \(6: 1\) & \(>99: 1\) \\
\hline 2 & \(n \mathrm{Bu} 4 \mathrm{I}\) & 70 & \(1: 1\) & \(>99: 1\) \\
\hline 3 & \(n \mathrm{Bu} 4 \mathrm{Br}\) & 95 & \(1: 3\) & \(>99: 1\) \\
\hline 4 & \(n \mathrm{Bu} 4 \mathrm{Cl}\) & 8 & -- & \(>99: 1\) \\
\hline 5 & LiBr & 33 & \(1: 4\) & \(>99: 1\) \\
\hline 6 & LiCl & 48 & \(1: 3\) & \(>99: 1\) \\
\hline 7 & NaBr & 99 & \(6: 1\) & \(>99: 1\) \\
\hline 8 & NaCl & 72 & \(9: 1\) & \(>99: 1\) \\
\hline 9 & KBr & 100 & \(6: 1\) & \(>99: 1\) \\
\hline
\end{tabular}

Effect of Additives. In an \(\mathrm{N}_{2}\)-filled glovebox, a 2-dram vial was charged with a magnetic stir bar, \({ }^{i-\mathrm{Pr}} \mathrm{NDI}(9)(5.3 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{Ni}(\mathrm{dme}) \mathrm{Cl}_{2}(4.4 \mathrm{mg}, 0.020 \mathrm{mmol}, 20 \mathrm{~mol} \%)\), additive (\(0.3 \mathrm{mmol}, 3.0\) equiv) and \(\mathrm{Mn}(33 \mathrm{mg}, 0.6 \mathrm{mmol}, 6.0\) equiv). A stock solution of dichloroalkene \(39^{5}\) (\(0.1 \mathrm{mmol}, 1.0\) equiv), aldehyde 40 (104-53-0) (\(0.2 \mathrm{mmol}, 2.0\) equiv), mesitylene (\(0.1 \mathrm{mmol}, 1.0\) equiv) and \(\mathrm{DMA}(0.1 \mathrm{~mL})\) was added to the same vial. \(\mathrm{Et}_{2} \mathrm{O}\) was added
\((0.4 \mathrm{~mL})\), the vial was sealed, and the reaction mixture was stirred (600 rpm) at room temperature. After 24 h , the reaction vial was removed from the glovebox and exposed to air. An aliquot was filtered through a pad of silica (approx. 1 cm) with \(\mathrm{CDCl}_{3}\) and analyzed by \({ }^{1} \mathrm{H}\) NMR spectroscopy. The yield and d.r. of the product was determined by \({ }^{1} \mathrm{H}\) NMR integration against mesitylene.

\section*{4. Synthesis and Characterization of Novel Dichloroalkenes and Aldehydes}

\section*{General Procedure A. Synthesis of 1,1-Dichloroalkenes from Aldehydes}

A flame-dried flask, equipped with a stir bar, was charged with \(\mathrm{PPh}_{3}\) (4.0 equiv). The flask was placed under an \(\mathrm{N}_{2}\) atmosphere, and \(\mathrm{MeCN}(0.5 \mathrm{M})\) was added to create a slurry. In a separate flask was added aldehyde (1.0 equiv) and \(\mathrm{CCl}_{4}\) (2.0 equiv). The aldehyde/ \(\mathrm{CCl}_{4}\) solution was added dropwise to the slurry over 5 min and the reaction was stirred for 2 h . Upon completion, the solution was diluted with \(\mathrm{Et}_{2} \mathrm{O}\), washed with \(\mathrm{H}_{2} \mathrm{O}\) (x2) then brine. The organic layer was dried with \(\mathrm{Na}_{2} \mathrm{SO}_{4}\) and concentrated to dryness. Triphenylphosphine oxide was filtered off and washed with \(\mathrm{Et}_{2} \mathrm{O}\). The crude material was purified by flash chromatography.

Note: reactions larger than 20 mmol were cooled to \(0^{\circ} \mathrm{C}\), and addition of the aldehyde solution was done over 30 min .

(((6,6-dichlorohex-5-en-1-yl)oxy)methyl)benzene (S1). The reaction was conducted with 5-(benzyloxy)pentanal \({ }^{6}\) (\(1.24 \mathrm{~g}, 6.4 \mathrm{mmol}\)), \(\mathrm{CCl}_{4}(1.24 \mathrm{~mL}, 12.8 \mathrm{mmol})\), and \(\mathrm{PPh}_{3}(6.7 \mathrm{~g}\), 25.6 mmol) in \(\mathrm{MeCN}(13 \mathrm{~mL})\) without modification from general procedure A to provide \(\mathbf{S 1}\) as a clear, colorless oil.

Purification: \(\mathrm{SiO}_{2}\) column; \(5 \% \mathrm{EtOAc} / \mathrm{Hexanes}\)
557 mg , 33\% Yield.
\({ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39-7.25(\mathrm{~m}, 5 \mathrm{H}), 5.86(\mathrm{td}, J=7.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~s}\), \(2 \mathrm{H}), 3.49(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.20(\mathrm{q}, ~ J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.70-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.48(\mathrm{~m}, 2 \mathrm{H})\).
\({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR (126 MHz, \(\mathrm{CDCl}_{3}\)) \(\delta 138.7,129.9,128.5,127.8,127.7,120.2,73.1,70.0\), 29.5, 29.3, 25.0.

HRMS (APCI) \([\mathrm{M}+\mathrm{H}]\) calc. for \(\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{O}: \mathrm{m} / \mathrm{z}=259.0651\), found: \(\mathrm{m} / \mathrm{z}=259.0645\)

ethyl 4-(2,2-dichlorovinyl)piperidine-1-carboxylate (S2). The reaction was conducted with ethyl 4-formylpiperidine-1-carboxylate \({ }^{7}\) (\(99658-58-9\)) (\(5.09 \mathrm{~g}, 27.5 \mathrm{mmol}\)), \(\mathrm{CCl}_{4}\) (5.3 mL , \(55.0 \mathrm{mmol})\), and \(\mathrm{PPh}_{3}(29.1 \mathrm{~g}, 110.0 \mathrm{mmol})\) in \(\mathrm{MeCN}(13 \mathrm{~mL})\) without modification from general procedure A to provide \(\mathbf{S} 2\) as a clear, colorless oil that solidified upon standing.

Purification: \(\mathrm{SiO}_{2}\) column; \(10 \%\) EtOAc in Hexanes
\(3.578 \mathrm{~g}, 14 \%\) Yield
\({ }^{1} \mathrm{H}\) NMR (\(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 5.69(\mathrm{dd}, J=9.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.18-4.05(\mathrm{~m}, 4 \mathrm{H}), 2.82(\mathrm{t}\), \(J=12.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.60-2.48(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.27(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{td}, J=7.1\), \(1.3 \mathrm{~Hz}, 3 \mathrm{H})\).
\({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR (126 MHz, \(\left.\mathrm{CDCl}_{3}\right) \delta 155.6,133.0,120.4,61.5,43.5,37.4,30.6,14.8\).
HRMS (APCI) \([\mathrm{M}+\mathrm{H}]\) calc. for \(\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{NO}_{2}: \mathrm{m} / \mathrm{z}=252.0553\), found: \(\mathrm{m} / \mathrm{z}=252.0555\)

1-(2,2-dichlorovinyl)-3-(trifluoromethyl)benzene (S3). The reaction was conducted with 3-(trifluoromethyl)benzaldehyde (454-89-7) (\(1.00 \mathrm{~g}, 5.74 \mathrm{mmol}\)), \(\mathrm{CCl}_{4}(1.11 \mathrm{~mL}, 11.5 \mathrm{mmol})\), and \(\mathrm{PPh}_{3}(6.02 \mathrm{~g}, 23.0 \mathrm{mmol})\) in \(\mathrm{MeCN}(12 \mathrm{~mL})\) without modification from general procedure A to provide \(\mathbf{S 3}\) as a clear, colorless oil.

Purification: \(\mathrm{SiO}_{2}\) column; \(100 \%\) Hexanes
390 mg, 28\% Yield
\({ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{dd}, J=8.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=7.8\) \(\mathrm{Hz}, 1 \mathrm{H}), 7.50(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H})\).
\({ }^{19}\) F NMR (\(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta\)-64.39.
\({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR \(\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 134.3,131.9,131.2\left(\mathrm{q},{ }^{2} \mathrm{~J}_{\mathrm{CF}}=32.4 \mathrm{~Hz}\right), 129.2,127.4\), \(125.6\left(\mathrm{q},{ }^{3} J_{\mathrm{CF}}=4.0 \mathrm{~Hz}\right), 125.2\left(\mathrm{q},{ }^{3} J_{\mathrm{CF}}=3.7 \mathrm{~Hz}\right), 124.0\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=272.4 \mathrm{~Hz}\right), 123.3\).

HRMS (APCI) [M-] calc. for \(\mathrm{C}_{9} \mathrm{H}_{5} \mathrm{Cl}_{2} \mathrm{~F}_{3}: \mathrm{m} / \mathrm{z}=239.9715\), found: \(\mathrm{m} / \mathrm{z}=239.9710\)

5-(furan-2-yl)-5-oxopentanal (S4). 1-(furan-2-yl)-5-hydroxypentan-1-one \({ }^{8}\) (1.40 g, 8.30 mmol, 1 equiv) was dissolved in dry \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(14 \mathrm{~mL}, 0.6 \mathrm{M})\), in a flame-dried round bottom flask containing a stir bar. PCC (\(2.35 \mathrm{~g}, 10.9 \mathrm{mmol}, 1.3\) equiv) and celite (800 mg) were added to the round bottom flask containing the alcohol. The reaction was stirred at rt under \(\mathrm{N}_{2}\) for 2 h . \(\mathrm{Et}_{2} \mathrm{O}\) (15 mL) was added to the reaction mixture, and the mixture was filtered through celite. The filtrate was evaporated under reduced pressure. The crude product was purified using column chromatography to provide \(\mathbf{S 4}\) as an off-white solid. (Note: the aldehyde decomposes rapidly under air at ambient conditions. Once purified, the aldehyde was stored in a glovebox freezer.)

Purification: \(\mathrm{SiO}_{2}, 20 \%\) EtOAc in pentane
\(118 \mathrm{mg}, 8.5 \%\) Yield.
MP: \(43-45{ }^{\circ} \mathrm{C}\)
\({ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.78(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{dd}, J=1.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=3.6\) \(\mathrm{Hz}, 1 \mathrm{H}), 6.52(\mathrm{dd}, J=3.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.56(\mathrm{td}, J=7.1,1.3 \mathrm{~Hz}, 2 \mathrm{H})\), \(2.04(\mathrm{p}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})\).
\({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR (126 MHz, \(\left.\mathrm{CDCl}_{3}\right) \delta 201.9,188.6,152.7,146.5,117.2,112.4,43.1,37.2\), 16.6.

HRMS (APCI) \([\mathrm{M}+\mathrm{H}]\) calc. for \(\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{O}_{3}: \mathrm{m} / \mathrm{z}=167.0708\), found: \(\mathrm{m} / \mathrm{z}=167.0702\)

\section*{4. One Pot [2+2+1]-Cycloadditions/Deprotection and Characterization}

General Procedure B (reactions with alkyl-substituted dichloroalkenes). In an \(\mathrm{N}_{2}-\) filled glovebox, a 2-dram vial was charged with a magnetic stir bar, \(\left({ }^{i-\mathrm{Pr}} \mathrm{NDI}\right) \mathrm{Ni}_{2} \mathrm{Cl}_{2}(6)(14.4 \mathrm{mg}\), \(0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%\)), and Zn powder (\(52.3 \mathrm{mg}, 0.8 \mathrm{mmol}, 4.0\) equiv). DMA (\(0.2 \mathrm{~mL}, 2.0 \mathrm{M}\)) was added. Immediately following DMA addition, a solution of 1,1 -dichloroalkene (\(0.2 \mathrm{mmol}, 1.0\) equiv), aldehyde (\(0.4 \mathrm{mmol}, 2.0\) equiv) and \(\mathrm{Et}_{2} \mathrm{O}(0.8 \mathrm{~mL}, 0.25 \mathrm{M})\) was added. The vial was sealed with a Teflon cap, and the reaction mixture was stirred (600 rpm) at room temperature. After 24 \(h\), the reaction vial was removed from the glovebox and opened to air.

The vial was placed in an ice bath, and a \(33 \mathrm{vol} \%\) solution of trifluoroacetic acid (\(156 \mu \mathrm{~L}\), \(2.0 \mathrm{mmol}, 10\) equiv) in water was added slowly to the reaction mixture. The reaction was warmed to room temperature and stirred for 2 h . The aqueous layer was removed, and the organic layer was diluted with \(\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})\). The organic layer was washed with sat. \(\mathrm{NaHCO}_{3}(2 \mathrm{x} 4 \mathrm{~mL})\), washed with brine (\(1 \times 4 \mathrm{~mL}\)), dried over \(\mathrm{Na}_{2} \mathrm{SO}_{4}\), and concentrated to dryness. The crude product was redissolved in a minimal amount of \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\) and loaded onto a \(\mathrm{SiO}_{2}\) column for purification.

General Procedure C (reactions with aryl-substituted dichloroalkenes). In an \(\mathrm{N}_{2}\)-filled glovebox, a 2-dram vial was charged with a magnetic stir bar, \(\left({ }^{i \mathrm{Pr}} \mathrm{NDI}\right) \mathrm{Ni}_{2} \mathrm{Cl}_{2}(\mathbf{6})(14.4 \mathrm{mg}, 0.02\) \(\mathrm{mmol}, 10 \mathrm{~mol} \%\)), and Zn powder (\(52.3 \mathrm{mg}, 0.8 \mathrm{mmol}, 4.0\) equiv). DMA (\(0.2 \mathrm{~mL}, 2.0 \mathrm{M}\)) was added. Immediately following DMA addition, a solution of 1,1 -dichloroalkene (\(0.2 \mathrm{mmol}, 1.0\) equiv), aldehyde (\(0.4 \mathrm{mmol}, 2.0\) equiv) and \(\mathrm{Et}_{2} \mathrm{O}(0.8 \mathrm{~mL}, 0.25 \mathrm{M})\) was added. The vial was sealed with a Teflon cap, and the reaction mixture was stirred (600 rpm) at room temperature. After 24 h , the reaction vial was removed from the glovebox and opened to air.

The vial was placed in an ice bath and trifluoroacetic acid (\(780 \mu \mathrm{~L}, 10.0 \mathrm{mmol}, 50\) equiv) was added slowly to the reaction mixture. The reaction was warmed to room temperature and stirred for 2 h . The reaction was diluted with \(\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})\) and washed with \(\mathrm{H}_{2} \mathrm{O}(1 \times 4 \mathrm{~mL})\). The organic layer was washed with sat. \(\mathrm{NaHCO}_{3}(2 \times 4 \mathrm{~mL})\), washed with brine (\(1 \times 4 \mathrm{~mL}\)), dried over \(\mathrm{Na}_{2} \mathrm{SO}_{4}\), and concentrated to dryness. The crude product was redissolved in a minimal amount of \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\) and loaded onto a \(\mathrm{SiO}_{2}\) column for purification.

5-hydroxy-2-methyl-9-phenylnonan-4-one (5). The reaction was conducted with 1,1-dichloro-3-methylbut-1-ene (32363-91-0) (\(27.8 \mathrm{mg}, 0.2 \mathrm{mmol}\)) and 5-phenylpentanal (36884-283) \((65.0 \mathrm{mg}, 0.4 \mathrm{mmol})\) without modification from general procedure \(B\) to provide 5 as a light yellow oil.

Purification: \(\mathrm{SiO}_{2}\) column; \(15 \% \mathrm{Et}_{2} \mathrm{O}\) in pentane
\(30.9 \mathrm{mg}, 62 \%\) Yield.
TLC: \(\mathrm{R}_{f}=0.12\) (\(15 \% \mathrm{Et}_{2} \mathrm{O}\) in pentane)
\({ }^{1} \mathrm{H}\) NMR (\(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 7.31-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.15(\mathrm{~m}, 3 \mathrm{H}), 4.12(\mathrm{dt}, J=7.9\), \(4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.19(\mathrm{dp}\), \(J=13.5,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{ddt}, J=11.2,8.1,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.76-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.46(\mathrm{~m}\), \(2 \mathrm{H}), 1.49-1.37(\mathrm{~m}, 1 \mathrm{H}), 0.92(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H})\).
\({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR (126 MHz, \(\left.\mathrm{CDCl}_{3}\right) \delta 212.1,142.5,128.5,128.5,125.9,76.7,46.9,35.9\), 33.6, 31.4, 24.7, 24.7, 22.7, 22.7.

HRMS (APCI) [M-H] calc. for \(\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}_{2}: \mathrm{m} / \mathrm{z}=247.1698\), found: \(\mathrm{m} / \mathrm{z}=247.17053\)

3-hydroxy-1,5-diphenylpentan-2-one (12). The reaction was conducted with (2,2dichlorovinyl)benzene \({ }^{9}\) (698-88-4) (\(34.6 \mathrm{mg}, 0.200 \mathrm{mmol}\)) and hydrocinnamaldehyde (104-53-0) \((53.7 \mathrm{mg}, 0.4 \mathrm{mmol})\) without modification from general procedure C to provide \(\mathbf{1 2}\) as a light yellow oil.

Run 1: \(33.7 \mathrm{mg}, 66 \%\) Yield. Run 2: \(28.9 \mathrm{mg}, 57 \%\) Yield
Purification: \(\mathrm{SiO}_{2}\) column; \(20 \% \mathrm{Et}_{2} \mathrm{O}\) in pentane
\(\mathrm{TLC}: \mathrm{R}_{f}=0.12\left(25 \% \mathrm{Et}_{2} \mathrm{O}\right.\) in pentane)
\({ }^{1} \mathrm{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.25-7.12(\mathrm{~m}, 5 \mathrm{H}), 4.28(\mathrm{ddd}, \mathrm{J}=8.3\), \(5.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 2 \mathrm{H}), 3.42(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.86-2.64(\mathrm{~m}, 2 \mathrm{H}), 2.19\) (dddd, \(J=13.8\), \(9.6,7.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}\)), 1.87 (dddd, \(J=13.6,9.4,8.1,5.2 \mathrm{~Hz}, 1 \mathrm{H}\)).
\({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 209.7,141.2,133.0,129.5,129.0,128.8,128.7,127.5\), 126.3, 75.4, 45.0, 35.6, 31.2.

HRMS (APCI) [M-H] calc. for \(\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}_{2}: \mathrm{m} / \mathrm{z}=253.1223\), found: \(\mathrm{m} / \mathrm{z}=253.1226\)

3-hydroxy-1-(4-(methylthio)phenyl)-5-phenylpentan-2-one (13). The reaction was conducted with (4-(2,2-dichlorovinyl)phenyl)(methyl)sulfane \({ }^{3}\) (\(43.8 \mathrm{mg}, 0.2 \mathrm{mmol}\)) and hydrocinnamaldehyde (104-53-0) (\(53.7 \mathrm{mg}, 0.4 \mathrm{mmol}\)) without modification from general procedure C to provide \(\mathbf{1 3}\) as a light yellow oil.

Run 1: \(40.1 \mathrm{mg}, 67 \%\) Yield. Run 2: \(32.4 \mathrm{mg}, 54 \%\) Yield
Purification: \(\mathrm{SiO}_{2}\) column; \(30 \% \mathrm{Et}_{2} \mathrm{O}\) in pentane
TLC: \(\mathrm{R}_{f}=0.15\) (\(40 \% \mathrm{Et}_{2} \mathrm{O}\) in pentane)
\({ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.15(\mathrm{~m}, 5 \mathrm{H}), 7.06(\mathrm{~d}, J=\) \(8.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.26(\mathrm{dd}, J=8.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.40(\mathrm{~s}, 1 \mathrm{H}), 2.83-2.62(\mathrm{~m}\), 2 H), 2.47 (s, 1H), 2.18 (dddd, \(J=13.4,10.1,7.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}\)), 1.86 (dtd, \(J=13.8,8.7,5.1 \mathrm{~Hz}, 1 \mathrm{H})\).
\({ }^{13} \mathrm{C}\) NMR (\(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 209.7,141.1,137.8,130.0,129.7,128.8,128.7,127.1\), 126.3, 75.4, 44.4, 35.5, 31.2, 16.0.

HRMS (APCI) [M-H] calc. for \(\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{~S}: \mathrm{m} / \mathrm{z}=299.1100\), found: \(\mathrm{m} / \mathrm{z}=299.1101\)

3-hydroxy-1-(4-methoxyphenyl)-5-phenylpentan-2-one (14). The reaction was conducted with 1-(2,2-dichlorovinyl)-4-methoxybenzene \({ }^{9}\) (\(40.4 \mathrm{mg}, 0.2 \mathrm{mmol}\)) and
hydrocinnamaldehyde (104-53-0) (\(53.7 \mathrm{mg}, 0.4 \mathrm{mmol}\)) without modification from general procedure C to provide 14 as a light yellow oil.

Run 1: \(46.0 \mathrm{mg}, 81 \%\) Yield. Run 2: \(51.5 \mathrm{mg}, 94 \%\)
Purification: \(\mathrm{SiO}_{2}\) column; \(35 \% \mathrm{Et}_{2} \mathrm{O}\) in pentane
TLC: \(\mathrm{R}_{f}=0.19\left(40 \% \mathrm{Et}_{2} \mathrm{O}\right.\) in pentane)
\({ }^{1} \mathrm{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.14(\mathrm{~m}, 6 \mathrm{H}), 7.06(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, \mathrm{~J}=\) \(8.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.26(\mathrm{dd}, \mathrm{J}=8.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 2 \mathrm{H}), 2.83-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.18\) (dddd, \(\mathrm{J}=13.4,9.6,7.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.93-1.79(\mathrm{~m}, 1 \mathrm{H})\).
\({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 210.1,159.0,141.2,130.6,128.8,128.7,126.3,125.0\), 114.4, 75.2, 55.4, 44.2, 35.6, 31.2.

HRMS (APCI) [M-H] calc. for \(\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{3}: \mathrm{m} / \mathrm{z}=283.1329\), found: \(\mathrm{m} / \mathrm{z}=283.1330\)

1-(4-bromophenyl)-3-hydroxy-5-phenylpentan-2-one (15). The reaction was conducted with 1-bromo-4-(2,2-dichlorovinyl)benzene \({ }^{9}(50.4 \mathrm{mg}, 0.2 \mathrm{mmol})\) and hydrocinnamaldehyde (104-53-0) (\(53.7 \mathrm{mg}, 0.4 \mathrm{mmol}\)) without modification from general procedure C to provide \(\mathbf{1 5}\) as a light yellow oil.

Run 1: 36.3 mg , \(54 \%\) Yield. Run 2: 37.7 mg , \(57 \%\) Yield.
Purification: \(\mathrm{SiO}_{2}\) column; \(25 \% \mathrm{Et}_{2} \mathrm{O}\) in pentane
TLC: \(\mathrm{R}_{f}=0.08\left(25 \% \mathrm{Et}_{2} \mathrm{O}\right.\) in pentane)
\({ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.14\) \((\mathrm{m}, 3 \mathrm{H}), 7.01(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.25(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 2 \mathrm{H}), 3.39(\mathrm{~s}, 1 \mathrm{H}), 2.86-2.66\) (m, 2H), 2.18 (dddd, \(J=13.9,9.2,7.3,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-1.80(\mathrm{~m}, 1 \mathrm{H})\).
\({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 209.2,141.0,132.0,131.9,131.3,128.8,128.7,126.4\), 121.6, 75.5, 44.2, 35.5, 31.2.

HRMS (APCI) [M-H] calc. for \(\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{BrO}_{2}: \mathrm{m} / \mathrm{z}=331.0328\), found: \(\mathrm{m} / \mathrm{z}=331.0329\)

\section*{3-hydroxy-5-phenyl-1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-}
\(\mathbf{y l})\) phenyl)pentan-2-one (16). The reaction was conducted with 2-(4-(2,2-dichlorovinyl)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane \({ }^{3}\) (\(59.8 \mathrm{mg}, 0.2 \mathrm{mmol}\)) and hydrocinnamaldehyde (104-\(53-0)(53.7 \mathrm{mg}, 0.4 \mathrm{mmol})\) without modification from general procedure C to provide 16 as a light yellow oil.

Run 1: 36.0 mg , \(47 \%\) Yield. Run 2: \(31.5 \mathrm{mg}, 41 \%\) Yield.
Purification: \(\mathrm{SiO}_{2}\) column: \(25-30 \% \mathrm{Et}_{2} \mathrm{O}\) in pentane
TLC: \(\mathrm{R}_{f}=0.10\left(25 \% \mathrm{Et}_{2} \mathrm{O}\right.\) in pentane)
\({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 7.79-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.11(\mathrm{~m}\), \(5 \mathrm{H}), 4.25(\mathrm{ddd}, J=8.3,4.9,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 2 \mathrm{H}), 3.40(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.83-2.63(\mathrm{~m}\), 2H), 2.17 (dddd, \(J=13.9,9.6,7.2,3.5 \mathrm{~Hz}, 1 \mathrm{H}\)), \(1.93-1.78\) (m, 1H), 1.34 (s, 12H).
\({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 209.5,141.1,136.1,135.4,128.9,128.8,128.7,126.3\), 84.0, 75.4, 45.3, 35.5, 31.2, 25.0.

HRMS (APCI) \([\mathrm{M}+\mathrm{H}]\) calc. for \(\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~B}^{10} \mathrm{O}_{4}: \mathrm{m} / \mathrm{z}=380.2268\), found: \(\mathrm{m} / \mathrm{z}=280.2259\)

3-hydroxy-5-phenyl-1-(3-(trifluoromethyl)phenyl)pentan-2-one (17). The reaction was conducted with 1-(2,2-dichlorovinyl)-3-(trifluoromethyl)benzene \(\mathbf{S 3}\) (\(48.2 \mathrm{mg}, 0.2 \mathrm{mmol}\)) and hydrocinnamaldehyde (104-53-0) (\(53.7 \mathrm{mg}, 0.4 \mathrm{mmol}\)) without modification from general procedure C to provide 17 as a light yellow oil.

Run 1: 29.3 mg, 45\% Yield. Run 2: 29.3 mg, 45\% Yield
Purification: \(\mathrm{SiO}_{2}\) column; \(25 \% \mathrm{Et}_{2} \mathrm{O}\) in pentane
\(\mathrm{TLC}: \mathrm{R}_{f}=0.09\left(25 \% \mathrm{Et}_{2} \mathrm{O}\right.\) in pentane \()\)
\({ }^{1} \mathrm{H} \operatorname{NMR}\left(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.54(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=7.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40\) \((\mathrm{s}, 1 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.18(\mathrm{~m}, 3 \mathrm{H}), 4.28(\mathrm{ddd}, J=8.3,5.0,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 2 \mathrm{H})\), \(3.36(\mathrm{dd}, J=5.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.84-2.78(\mathrm{~m}, 1 \mathrm{H}), 2.78-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.21(\mathrm{dddt}, J=13.9,9.0\), \(7.1,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.91\) (dtd, \(J=14.0,8.6,5.3 \mathrm{~Hz}, 1 \mathrm{H})\).
\({ }^{19} \mathrm{~F}\) NMR (\(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta\)-64.17.
\({ }^{13} \mathrm{C}\) NMR (\(201 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 208.9,140.9,133.9,133.0,131.2\left(\mathrm{q},{ }^{2} J_{\mathrm{CF}}=32.2 \mathrm{~Hz}\right), 129.3\), \(128.8,128.8,126.5,126.4\left(\mathrm{q},{ }^{3} J_{\mathrm{CF}}=3.7 \mathrm{~Hz}\right), 124.4\left(\mathrm{q},{ }^{3} J_{\mathrm{CF}}=3.8 \mathrm{~Hz}\right), 124.1\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=272.4 \mathrm{~Hz}\right)\), 75.7, 44.4, 35.5, 31.2.

HRMS (ESI) \([\mathrm{M}+\mathrm{Na}]\) calc. for \(\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{O}_{2} \mathrm{Na}: \mathrm{m} / \mathrm{z}=345.1073\), found: \(\mathrm{m} / \mathrm{z}=345.1077\)

1-(2-chlorophenyl)-3-hydroxy-5-phenylpentan-2-one (18). The reaction was conducted with 1-chloro-2-(2,2-dichlorovinyl)benzen \({ }^{3}(41.5 \mathrm{mg}, 0.2 \mathrm{mmol})\) and hydrocinnamaldehyde (104-\(53-0)(53.7 \mathrm{mg}, 0.4 \mathrm{mmol})\) without modification from general procedure C to provide 18 as an offwhite solid.

Run 1: 33.7 mg , \(58 \%\) Yield. Run 2: \(31.4 \mathrm{mg}, 54 \%\) Yield
Purification: \(\mathrm{SiO}_{2}\) column; \(25 \% \mathrm{Et}_{2} \mathrm{O}\) in pentane
TLC: \(\mathrm{R}_{f}=0.10\left(25 \% \mathrm{Et}_{2} \mathrm{O}\right.\) in pentane)
MP: 55-57 \({ }^{\circ} \mathrm{C}\)
\({ }^{1} \mathrm{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.07(\mathrm{~m}\), \(6 \mathrm{H}), 4.33\) (ddd, \(J=8.4,5.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.99-3.80(\mathrm{~m}, 2 \mathrm{H}), 3.40(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.89-2.69\) (m, 2H), 2.25 (dddd, \(J=13.9,9.1,7.7,3.5 \mathrm{~Hz}, 1 \mathrm{H}\)), 1.93 (dtd, \(J=14.3,8.4,6.1 \mathrm{~Hz}, 1 \mathrm{H}\)).
\({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR \(\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 208.6,141.2,134.4,131.9,131.7,129.7,129.1,128.8\), 128.7, 127.2, 126.3, 75.7, 42.9, 35.7, 31.3.

HRMS (APCI) [M-H] calc. for \(\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{ClO}_{2}: \mathrm{m} / \mathrm{z}=287.0833\), found: \(\mathrm{m} / \mathrm{z}=287.0838\)

1-(3,4-dimethoxyphenyl)-3-hydroxy-5-phenylpentan-2-one (19). The reaction was conducted with 4-(2,2-dichlorovinyl)-1,2-dimethoxybenzene \({ }^{3}\) (60561-55-9) (\(46.6 \mathrm{mg}, 0.2 \mathrm{mmol}\)) and hydrocinnamaldehyde (104-53-0) (\(53.7 \mathrm{mg}, 0.4 \mathrm{mmol}\)) without modification from general procedure C to provide 19 as a light-yellow oil.

Run 1: \(38.8 \mathrm{mg}, 62 \%\) Yield. Run 2: \(39.7 \mathrm{mg}, 63 \%\) Yield
Purification: \(\mathrm{SiO}_{2}\) column; \(45 \% \mathrm{Et}_{2} \mathrm{O}\) in pentane
TLC: \(\mathrm{R}_{f}=0.12\) in \(45 \% \mathrm{Et}_{2} \mathrm{O}\) in pentane
\({ }^{1} \mathrm{H}\) NMR (\(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 7.29(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.15\) \((\mathrm{m}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.71-6.64(\mathrm{~m}, 2 \mathrm{H}), 4.27(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.84\) \((\mathrm{s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 2 \mathrm{H}), 3.40(\mathrm{~s}, 1 \mathrm{H}), 2.83-2.74(\mathrm{~m}, 1 \mathrm{H}), 2.74-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.18\) (dddd, \(J=13.4\), \(10.4,7.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.91-1.80(\mathrm{~m}, 1 \mathrm{H})\).
\({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 210.1,149.2,148.5,141.1,128.7,128.7,126.3,125.4\), 121.7, 112.5, 111.5, 75.2, 56.0, 44.6, 35.6, 31.2.

HRMS (APCI) [M-H] calc. for \(\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{4}: \mathrm{m} / \mathrm{z}=313.1434\), found: \(\mathrm{m} / \mathrm{z}=313.1430\)

3-hydroxy-1,7-diphenylheptan-4-one (20). The reaction was conducted with (4,4-dichlorobut-3-en-1-yl)benzene \({ }^{9}(40.2 \mathrm{mg}, 0.2 \mathrm{mmol})\) and hydrocinnamaldehyde (104-53-0) (53.7 \(\mathrm{mg}, 0.4 \mathrm{mmol}\)) without modification from general procedure B to provide 20 as a light-yellow oil.

Run 1: 45.6 mg , \(81 \%\) Yield. Run 2: 44.6 mg , \(79 \%\) Yield.
Purification: \(\mathrm{SiO}_{2}\) column; \(20 \% \mathrm{Et}_{2} \mathrm{O}\) in pentane
TLC: \(\mathrm{R}_{f}=0.15\left(25 \% \mathrm{Et}_{2} \mathrm{O}\right.\) in pentane)
\({ }^{1} \mathrm{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.12(\mathrm{~m}, 6 \mathrm{H}), 4.12(\mathrm{~d}, J=8.1\) \(\mathrm{Hz}, 1 \mathrm{H}), 3.54(\mathrm{~s}, 1 \mathrm{H}), 2.83-2.65(\mathrm{~m}, 2 \mathrm{H}), 2.62(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.52-2.32(\mathrm{~m}, 2 \mathrm{H}), 2.09\) (dddd, \(J=13.8,9.7,7.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.02-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.77(\mathrm{dddd}, J=13.7,9.4,8.4,5.2 \mathrm{~Hz}\), \(1 \mathrm{H})\).
\({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 212.0,141.2,128.7,128.7,128.6,128.6,126.3,75.8\), 37.0, 35.7, 35.1, 31.3, 25.1.

HRMS (APCI) \([\mathrm{M}+\mathrm{H}]\) calc. for \(\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{2}: \mathrm{m} / \mathrm{z}=283.1693\), found: \(\mathrm{m} / \mathrm{z}=283.1686\)

3-hydroxy-5-phenyl-1-(tetrahydro-2H-pyran-4-yl)pentan-2-one (21). The reaction was conducted with 4-(2,2-dichlorovinyl)tetrahydro-2H-pyran \({ }^{5}\) (\(36.2 \mathrm{mg}, 0.2 \mathrm{mmol}\)) and hydrocinnamaldehyde (104-53-0) (\(53.7 \mathrm{mg}, 0.4 \mathrm{mmol}\)) without modification from general procedure B to provide 21 as a light yellow oil.

Run 1: \(45.6 \mathrm{mg}, 87 \%\) Yield; Run 2: \(36.1 \mathrm{mg}, 69 \%\) Yield
Purification: \(\mathrm{SiO}_{2}\) column; \(50 \% \mathrm{Et}_{2} \mathrm{O}\) in pentane
TLC: \(\mathrm{R}_{f}=0.11\left(50 \% \mathrm{Et}_{2} \mathrm{O}\right.\) in pentane)
\({ }^{1} \mathrm{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.17(\mathrm{~m}, 3 \mathrm{H}), 4.11(\mathrm{ddd}, J=8.3\), \(4.8,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.97-3.88(\mathrm{~m}, 2 \mathrm{H}), 3.51(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{td}, J=11.8,2.2 \mathrm{~Hz}, 2 \mathrm{H})\), \(2.86-2.66(\mathrm{~m}, 2 \mathrm{H}), 2.43-2.27(\mathrm{~m}, 2 \mathrm{H}), 2.19-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.79(\mathrm{dtd}, J=14.1,8.8,5.4 \mathrm{~Hz}\), \(1 \mathrm{H}), 1.62-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.19(\mathrm{~m}, 2 \mathrm{H})\).
\({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR (101 MHz, \(\mathrm{CDCl}_{3}\)) \(\delta 211.2,141.2,128.7,128.7,126.4,76.2,67.8,44.9\), 35.7, 33.0, 32.9, 31.4, 30.9.

HRMS (APCI) [M+Na] calc. for \(\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Na}: \mathrm{m} / \mathrm{z}=285.1461\), found: \(\mathrm{m} / \mathrm{z}=285.1464\)

ethyl 4-(3-hydroxy-2-oxo-5-phenylpentyl)piperidine-1-carboxylate (22). The reaction was conducted with ethyl 4-(2,2-dichlorovinyl)piperidine-1-carboxylatediene \(\mathbf{S} 2\) (\(50.4 \mathrm{mg}, 0.2\) \(\mathrm{mmol})\) and hydrocinnamaldehyde (104-53-0) \((53.7 \mathrm{mg}, 0.4 \mathrm{mmol})\) without modification from general procedure B to provide 22 as a light yellow oil.

Run 1: 38.3 mg , \(57 \%\) Yield. Run 2: 48.7 mg , \(73 \%\) Yield
Purification: \(\mathrm{SiO}_{2}\) column; \(10 \% \mathrm{Et}_{2} \mathrm{O}\) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\)
TLC: \(\mathrm{R}_{f}=0.18\left(10 \% \mathrm{Et}_{2} \mathrm{O}\right.\) in \(\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\)
\({ }^{1} \mathrm{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.14(\mathrm{~m}, 3 \mathrm{H}), 4.11(\mathrm{q}, J=6.8\) \(\mathrm{Hz}, 5 \mathrm{H}), 3.49(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.85-2.68(\mathrm{~m}, 4 \mathrm{H}), 2.42-2.25(\mathrm{~m}, 2 \mathrm{H}), 2.17-1.95(\mathrm{~m}, 2 \mathrm{H})\), \(1.77(\mathrm{dtd}, J=14.1,8.8,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.69-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.24(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.18-1.00(\mathrm{~m}\), \(2 \mathrm{H})\).
\({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR (101 MHz, \(\left.\mathrm{CDCl}_{3}\right) \delta 211.2,155.6,141.1,128.7,128.7,126.4,76.1,61.4\), 44.5, 43.9, 35.7, 32.1, 31.9, 31.8, 31.3, 14.8.

HRMS (APCI) \([\mathrm{M}+\mathrm{H}]\) calc. for \(\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NO}_{4}: \mathrm{m} / \mathrm{z}=334.2013\), found: \(\mathrm{m} / \mathrm{z}=334.2011\)

(Z)-3-hydroxy-1-phenyldodec-9-en-4-one (23). The reaction was conducted with (Z)-1,1-dichloronona-1,6-diene \({ }^{3}\) (\(38.6 \mathrm{mg}, 0.2 \mathrm{mmol}\)) hydrocinnamaldehyde (104-53-0) (\(53.7 \mathrm{mg}, 0.4\) mmol) without modification from general procedure B to provide \(\mathbf{2 3}\) as a light yellow oil.

Run 1: 49.1 mg , \(89 \%\) Yield. Run 2: \(45.9 \mathrm{mg}, 84 \%\) Yield.
Purification: \(\mathrm{SiO}_{2}\) column; \(15 \% \mathrm{Et}_{2} \mathrm{O}\) in pentane
TLC: \(\mathrm{R}_{f}=0.21\left(25 \% \mathrm{Et}_{2} \mathrm{O}\right.\) in pentane)
\({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 7.36-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.16(\mathrm{~m}, 3 \mathrm{H}), 5.43-5.33(\mathrm{~m}\), \(1 \mathrm{H}), 5.33-5.22(\mathrm{~m}, 1 \mathrm{H}), 4.15(\mathrm{dt}, \mathrm{J}=8.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{~d}, \mathrm{~J}=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.85-2.67(\mathrm{~m}\), 2 H), \(2.51-2.33\) (m, 2H), \(2.21-2.07(\mathrm{~m}, 1 \mathrm{H}), 2.07-1.93\) (m, 4H), 1.80 (dddd, J = 13.8, 9.3, 8.4, \(5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{dt}, \mathrm{J}=15.3,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.39-1.23(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H})\).
\({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 212.3,141.3,132.4,128.7,128.7,128.5,126.3,75.8\), \(37.9,35.8,31.3,29.4,26.9,23.3,20.7,14.5\).

HRMS (APCI) \([\mathrm{M}+\mathrm{H}]\) calc. for \(\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{O}_{2}: \mathrm{m} / \mathrm{z}=275.2006\), found: \(\mathrm{m} / \mathrm{z}=275.2009\)

methyl 6-hydroxy-5-oxo-8-phenyloctanoate (24). The reaction was conducted with methyl 5,5-dichloropent-4-enoate \({ }^{10}(36.6 \mathrm{mg}, 0.2 \mathrm{mmol})\) and hydrocinnamaldehyde (104-53-0) \((53.7 \mathrm{mg}, 0.4 \mathrm{mmol})\) without modification from general procedure \(B\) to provide 24 as a light yellow oil.

Run 1: 36.9 mg , \(70 \%\) Yield. Run 2: \(37.7 \mathrm{mg}, 71 \%\) Yield.
Purification: \(\mathrm{SiO}_{2}\) column; \(40 \% \mathrm{Et}_{2} \mathrm{O}\) in pentane
TLC: \(\mathrm{R}_{f}=0.11\) (\(40 \% \mathrm{Et}_{2} \mathrm{O}\) in pentane)
\({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 7.34-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.17(\mathrm{~m}, 3 \mathrm{H}), 4.15(\mathrm{dd}, J=8.4\), \(3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 2.85-2.67(\mathrm{~m}, 2 \mathrm{H}), 2.61-2.38(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.13\) \((\mathrm{m}, 1 \mathrm{H}), 1.92(\mathrm{p}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.81(\mathrm{~m}, 1 \mathrm{H})\).
\({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR \(\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 211.5,173.4,141.2,128.8,128.7,126.3,75.8,51.8\), 36.8, 35.7, 33.0, 31.3, 18.8.

HRMS (APCI) \([\mathrm{M}+\mathrm{H}]\) calc. for \(\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{4}: \mathrm{m} / \mathrm{z}=265.1434\), found: \(\mathrm{m} / \mathrm{z}=265.1440\)

3-hydroxy-6-methyl-1-phenylheptan-4-one (25). The reaction was conducted with 1,1-dichloro-3-methylbut-1-ene (32363-91-0) (\(27.8 \mathrm{mg}, 0.2 \mathrm{mmol}\)) and hydrocinnamaldehyde (104-\(53-0)(53.7 \mathrm{mg}, 0.4 \mathrm{mmol})\) without modification from general procedure B to provide \(\mathbf{2 5}\) as a light yellow oil.

Run 1: 36.1 mg , \(82 \%\) Yield. Run 2: 34.4 mg , \(78 \%\) Yield
Purification: \(\mathrm{SiO}_{2}\) column; \(20 \% \mathrm{Et}_{2} \mathrm{O}\) in pentane
TLC: \(\mathrm{R}_{f}=0.27\left(25 \% \mathrm{Et}_{2} \mathrm{O}\right.\) in pentane)
\({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 7.35-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.15(\mathrm{~m}, 3 \mathrm{H}), 4.12(\mathrm{ddd}, J=8.3\), \(4.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.86-2.66(\mathrm{~m}, 2 \mathrm{H}), 2.34-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.06\) (m, 2H), 1.78 (dddd, \(J=13.8,9.4,8.4,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.92(\mathrm{dd}, J=6.6,4.4 \mathrm{~Hz}, 6 \mathrm{H})\).
\({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR (\(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 211.9,141.3,128.7,128.6,126.3,76.1,46.9,35.7\), 31.4, 24.6, 22.8, 22.6.

HRMS (APCI) [M+Na] calc. for \(\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{Na}: \mathrm{m} / \mathrm{z}=243.1353\), found: \(\mathrm{m} / \mathrm{z}=243.1357\)

\section*{9-(benzyloxy)-3-hydroxy-1-phenylnonan-4-one (26).}

The reaction was conducted with (((6,6-dichlorohex-5-en-1-yl)oxy)methyl)benzene S1 (\(51.8 \mathrm{mg}, 0.2 \mathrm{mmol}\)) and hydrocinnamaldehyde (104-53-0) (\(53.7 \mathrm{mg}, 0.4 \mathrm{mmol}\)) without modification from general procedure B to provide 26 as a light yellow oil.

Run 1: \(51.5 \mathrm{mg}, 76 \%\) Yield. Run 2: \(56.2 \mathrm{mg}, 83 \%\) Yield.
Purification: \(\mathrm{SiO}_{2}\) column; \(30 \% \mathrm{Et}_{2} \mathrm{O}\) in pentane
TLC: \(\mathrm{R}_{f}=0.22\left(40 \% \mathrm{Et}_{2} \mathrm{O}\right.\) in pentane)
\({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 7.38-7.26(\mathrm{~m}, 7 \mathrm{H}), 7.24-7.16(\mathrm{~m}, 3 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 4.14\) (dd, \(J=8.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.85-2.67(\mathrm{~m}, 2 \mathrm{H}), 2.52-2.33(\mathrm{~m}, 2 \mathrm{H}), 2.19\) - \(2.06(\mathrm{~m}, 1 \mathrm{H}), 1.79\) (dddd, \(J=13.8,9.3,8.4,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.67-1.55(\mathrm{~m}, 4 \mathrm{H}), 1.47-1.30(\mathrm{~m}\), \(2 \mathrm{H})\).
\({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 212.2,141.3,138.7,128.7,128.7,128 ., 127.8,127.7\), \(126.3,75.8,73.1,70.1,37.9,35.7,31.3,29.6,26.0,23.5\).

HRMS (APCI) \([\mathrm{M}+\mathrm{H}]\) calc. for \(\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{O}_{3}: \mathrm{m} / \mathrm{z}=341.2111\), found: \(\mathrm{m} / \mathrm{z}=341.2116\)

1-(1-benzyl-1H-indol-2-yl)-3-hydroxy-6-methylheptan-4-one (27). The reaction was conducted with 1,1-dichloro-3-methylbut-1-ene (32363-91-0) (\(27.8 \mathrm{mg}, 0.2 \mathrm{mmol}\)) and 3-(1-benzyl-1H-indol-2-yl)propanal \({ }^{11}(105.3 \mathrm{mg}, 0.4 \mathrm{mmol})\) without modification from general procedure B to provide 27 as a cream colored solid.

Run 1: \(46.2 \mathrm{mg}, 66 \%\) Yield. Run 2: \(50.4 \mathrm{mg}, 70 \%\) Yield
Purification: \(\mathrm{SiO}_{2}\) column; \(20 \% \mathrm{Et}_{2} \mathrm{O}\) in pentane
\(\mathrm{TLC}: \mathrm{R}_{f}=0.10\left(25 \% \mathrm{Et}_{2} \mathrm{O}\right.\) in pentane \()\)
MP: \(44-47{ }^{\circ} \mathrm{C}\)
\({ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.63(\mathrm{dt}, J=7.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.07(\mathrm{~m}, 8 \mathrm{H}), 6.95(\mathrm{~s}\), \(1 \mathrm{H}), 5.28(\mathrm{~s}, 2 \mathrm{H}), 4.21-4.12(\mathrm{~m}, 1 \mathrm{H}), 3.61(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.02-2.85(\mathrm{~m}, 2 \mathrm{H}), 2.30-2.07\) (\(\mathrm{m}, 4 \mathrm{H}\)), \(1.86(\mathrm{dtd}, J=14.0,8.4,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.88(\mathrm{dd}, J=6.6,1.8 \mathrm{~Hz}, 6 \mathrm{H})\).
\({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 212.7,137.8,136.9,128.9,128.2,127.7,126.9,126.1\), \(122.0,120.2,119.2,114.5,109.9,76.3,50.0,46.8,34.5,24.7,22.8,22.6,20.8\).

HRMS (APCI) \([\mathrm{M}+\mathrm{H}]\) calc. for \(\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{2}: \mathrm{m} / \mathrm{z}=350.2115\), found: \(\mathrm{m} / \mathrm{z}=350.2110\)

3-hydroxy-6-methyl-1-(5-methylfuran-2-yl)heptan-4-one (28). The reaction was conducted with 1,1-dichloro-3-methylbut-1-ene (32363-91-0) (\(27.8 \mathrm{mg}, 0.2 \mathrm{mmol}\)) and ethyl 3-(5-methylfuran-2-yl)propanal (34756-16-6) (\(55.3 \mathrm{mg}, 0.4 \mathrm{mmol}\)) without modification from general procedure B to provide 28 as a light yellow oil.

Run 1: \(33.9 \mathrm{mg}, 76 \%\) Yield. Run 2: \(30.7 \mathrm{mg}, 68 \%\) Yield.
Purification: \(\mathrm{SiO}_{2}\) column; \(10 \% \mathrm{Et}_{2} \mathrm{O}\) in pentane
TLC: \(\mathrm{R}_{f}=0.18\) (\(15 \% \mathrm{Et}_{2} \mathrm{O}\) in pentane)
\({ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.91-5.81(\mathrm{~m}, 2 \mathrm{H}), 4.12(\mathrm{ddd}, J=8.3,4.5,3.4 \mathrm{~Hz}, 1 \mathrm{H})\), \(3.56(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.82-2.64(\mathrm{~m}, 2 \mathrm{H}), 2.35-2.29(\mathrm{~m}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.24-2.11(\mathrm{~m}\), \(2 \mathrm{H}), 1.76\) (dtd, \(J=14.0,8.5,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.92(\mathrm{dd}, J=6.6,3.9 \mathrm{~Hz}, 6 \mathrm{H})\).
\({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR (\(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 211.8,153.0,150.8,106.5,106.1,76.0,46.8,32.4\), 24.7, 23.8, 22.8, 22.7, 13.7.

HRMS (APCI) \([\mathrm{M}+\mathrm{H}]\) calc. for \(\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{O}_{3}: \mathrm{m} / \mathrm{z}=225.1485\), found: \(\mathrm{m} / \mathrm{z}=225.1483\)

3-hydroxy-6-methyl-1-(thiophen-2-yl)heptan-4-one (29). The reaction was conducted with 1,1-dichloro-3-methylbut-1-ene (32363-91-0) (\(27.8 \mathrm{mg}, 0.2 \mathrm{mmol}\)) and 3-(thiophen-2-
yl)propanal \({ }^{12}(26359-21-7)(50.5 \mathrm{mg}, 0.4 \mathrm{mmol})\) without modification from general procedure \(B\) to provide 29 as a light yellow oil.
Run 1: \(36.8 \mathrm{mg}, 81 \%\) Yield. Run 2: \(36.0 \mathrm{mg}, 80 \%\) Yield.
Purification: \(\mathrm{SiO}_{2}\) column; \(10 \% \mathrm{Et}_{2} \mathrm{O}\) in pentane
TLC: \(\mathrm{R}_{f}=0.18\left(15 \% \mathrm{Et}_{2} \mathrm{O}\right.\) in pentane)
\({ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.15(\mathrm{dd}, J=5.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{dd}, J=5.1,3.4 \mathrm{~Hz}\), \(1 \mathrm{H}), 6.83(\mathrm{dq}, J=3.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{ddd}, J=8.5,4.8,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H})\), \(3.11-2.86(\mathrm{~m}, 2 \mathrm{H}), 2.36-2.29(\mathrm{~m}, 2 \mathrm{H}), 2.28-2.12(\mathrm{~m}, 2 \mathrm{H}), 1.81(\mathrm{dtd}, J=13.8,8.9,5.0 \mathrm{~Hz}\), \(1 \mathrm{H}), 0.92\) (dd, \(J=6.6,4.3 \mathrm{~Hz}, 6 \mathrm{H})\).
\({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR (\(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 211.8,143.9,127.1,125.1,123.6,75.8,46.9,35.9\), 25.6, 24.7, 22.8, 22.7.

HRMS (APCI) \([\mathrm{M}+\mathrm{H}]\) calc. for \(\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{~S}: \mathrm{m} / \mathrm{z}=227.1100\), found: \(\mathrm{m} / \mathrm{z}=227.1103\)

ethyl 6-hydroxy-9-methyl-7-oxodecanoate (30). The reaction was conducted with 1,1-dichloro-3-methylbut-1-ene (32363-91-0) (\(27.8 \mathrm{mg}, 0.2 \mathrm{mmol}\)) and ethyl 6-oxohexanoate \({ }^{13}\) (63.3 \(\mathrm{mg}, 0.4 \mathrm{mmol}\)) without modification from general procedure B to provide \(\mathbf{3 0}\) as a light yellow oil.

Run 1: \(31.4 \mathrm{mg}, 64 \%\) Yield. Run 2: \(21.2 \mathrm{mg}, 43 \%\) Yield.
Purification: \(\mathrm{SiO}_{2}\) column; \(30 \% \mathrm{Et}_{2} \mathrm{O}\) in pentane
\({ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.23-4.10(\mathrm{~m}, 3 \mathrm{H}), 3.55(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.45-2.33\) \((\mathrm{m}, 4 \mathrm{H}), 2.26(\mathrm{dp}, J=13.5,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.96-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.48(\mathrm{~m}\), \(2 \mathrm{H}), 1.50-1.37(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{dd}, J=6.6,4.1 \mathrm{~Hz}, 6 \mathrm{H})\).
\({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR (101 MHz, \(\mathrm{CDCl}_{3}\)) \(\delta 212.0,173.6,76.6,60.4,46.9,34.2,33.4,24.8,24.7\), 24.6, 22.7, 22.7, 14.4.

HRMS (APCI) \([\mathrm{M}+\mathrm{H}]\) calc. for \(\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{O}_{4}: \mathrm{m} / \mathrm{z}=245.17526\), found: \(\mathrm{m} / \mathrm{z}=245.17353\)

9-((tert-butyldiphenylsilyl)oxy)-5-hydroxy-2-methylnonan-4-one (31). The reaction was conducted with 1,1-dichloro-3-methylbut-1-ene (32363-91-0) (\(27.8 \mathrm{mg}, 0.2 \mathrm{mmol}\)) and 5-((tert-butyldiphenylsilyl)oxy)pentanal \({ }^{14}(136.2 \mathrm{mg}, 0.4 \mathrm{mmol})\) without modification from general procedure \(B\) to provide \(\mathbf{3 1}\) as a light yellow oil.

Run 1: \(53.2 \mathrm{mg}, 62 \%\) Yield. Run 2: \(34.7 \mathrm{mg}, 41 \%\) Yield.
Purification: \(15 \% \mathrm{Et}_{2} \mathrm{O}\) in pentane
TLC: \(\mathrm{R}_{f}=0.17\) (\(15 \% \mathrm{Et}_{2} \mathrm{O}\) in pentane)
\({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 7.70-7.62(\mathrm{~m}, 4 \mathrm{H}), 7.47-7.33(\mathrm{~m}, 6 \mathrm{H}), 4.15-4.06(\mathrm{~m}\), \(1 \mathrm{H}), 3.66(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.49(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.20(\mathrm{ddd}, J=12.9\), \(7.3,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.34(\mathrm{~m}, 5 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}), 0.93(\mathrm{dd}, J=6.6,1.9 \mathrm{~Hz}\), \(6 \mathrm{H})\).
\({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 212.1,135.7,134.1,129.7,127.8,63.7,46.9,33.5\), 32.4, 27.0, 24.7, 22.8, 22.7, 21.4, 19.4.

HRMS (APCI) \([\mathrm{M}+\mathrm{H}]\) calc. for \(\mathrm{C}_{26} \mathrm{H}_{39} \mathrm{O}_{3}\) Si: \(\mathrm{m} / \mathrm{z}=427.2663\), found: \(\mathrm{m} / \mathrm{z}=427.2666\)

1-(furan-2-yl)-5-hydroxy-8-methylnonane-1,6-dione (32). The reaction was conducted with 1,1-dichloro-3-methylbut-1-ene (32363-91-0) (\(27.8 \mathrm{mg}, 0.2 \mathrm{mmol}\)) and 5-(furan-2-yl)-5oxopentanal (S4) \((66.5 \mathrm{mg}, 0.4 \mathrm{mmol})\) without modification from general procedure B to provide 32 as a light yellow oil.

Run 1: \(25.2 \mathrm{mg}, 50 \%\) Yield. Run 2: \(25.6 \mathrm{mg}, 51 \%\) Yield
Purification: \(\mathrm{SiO}_{2}\) column; \(5 \% \mathrm{Et}_{2} \mathrm{O}\) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\)
TLC: \(\mathrm{R}_{f}=0.19\left(5 \% \mathrm{Et}_{2} \mathrm{O}\right.\) in \(\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\)
\({ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.57(\mathrm{dd}, J=1.7,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{dd}, J=3.6,0.8 \mathrm{~Hz}\), \(1 \mathrm{H}), 6.53(\mathrm{dd}, J=3.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{ddd}, J=8.1,4.9,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H})\), 2.89 (td, \(J=6.9,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.45-2.29(\mathrm{~m}, 2 \mathrm{H}), 2.20(\mathrm{dp}, J=13.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.98-1.72\) (m, \(3 \mathrm{H}), 1.66-1.50(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{dd}, J=6.6,4.7 \mathrm{~Hz}, 6 \mathrm{H})\).
\({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR (101 MHz, \(\left.\mathrm{CDCl}_{3}\right) \delta\) 212.0, 189.2, 146.5, 117.1, 112.4, 76.6, 46.9, 37.8, 32.9, 24.7, 22.8, 22.7, 19.6.

HRMS (APCI) [\(\mathrm{M}+\mathrm{Na}\)] calc. for \(\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{Na}: \mathrm{m} / \mathrm{z}=275.1254\), found: \(\mathrm{m} / \mathrm{z}=275.1255\)

3-hydroxy-6-methyl-1-(methylthio)heptan-4-one (33). The reaction was conducted with 1,1-dichloro-3-methylbut-1-ene (32363-91-0) (27.8 mg, 0.2 mmol\()\) and 3(methylthio)propionaldehyde (3268-49-3) (\(41.7 \mathrm{mg}, 0.4 \mathrm{mmol}\)) without modification from general procedure B to provide \(\mathbf{3 3}\) as a light yellow oil.

Run 1: \(8.1 \mathrm{mg}, 23 \%\) Yield. Run 2: \(5.0 \mathrm{mg}, 13 \%\) Yield.
Purification: \(\mathrm{SiO}_{2}\) column; \(20 \% \mathrm{Et}_{2} \mathrm{O}\) in pentane
TLC: \(\mathrm{Rf}=0.18\left(25 \% \mathrm{Et}_{2} \mathrm{O}\right.\) in pentane \()\)
\({ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.25(\mathrm{ddd}, J=8.4,4.9,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~d}, J=4.9 \mathrm{~Hz}\), \(1 \mathrm{H}), 2.75-2.53(\mathrm{~m}, 2 \mathrm{H}), 2.37(\mathrm{dd}, \mathrm{J}=7.0,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.29-2.14(\mathrm{~m}, 1 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 2.14-\) \(2.02(\mathrm{~m}, 1 \mathrm{H}), 1.74(\mathrm{dtd}, \mathrm{J}=13.8,8.3,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.94(\mathrm{dd}, J=6.7,2.8 \mathrm{~Hz}, 6 \mathrm{H})\).
\({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 211.6,75.7,47.0,33.4,30.2,24.8,22.8,22.7,15.9\).
HRMS (APCI) \([\mathrm{M}+\mathrm{H}]\) calc. for \(\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{~S}: \mathrm{m} / \mathrm{z}=191.1100\), found: \(\mathrm{m} / \mathrm{z}=191.1102\)

5-hydroxy-2-methyltridecane-4,9-dione (34). The reaction was conducted with 1,1-dichloro-3-methylbut-1-ene (32363-91-0) (\(27.8 \mathrm{mg}, 0.2 \mathrm{mmol}\)) and 5-oxononanal \({ }^{15}\) (\(62.5 \mathrm{mg}, 0.4\) mmol) without modification from general procedure B to provide 34 as a light yellow oil.

Run 1: \(22.8 \mathrm{mg}, 47 \%\) Yield. Run 2: \(31.4 \mathrm{mg}, 65 \%\) Yield.
Purification: \(\mathrm{SiO}_{2}\) column; \(25 \% \mathrm{Et}_{2} \mathrm{O}\) in pentane
\(\mathrm{TLC}: \mathrm{R}_{f}=0.07\left(25 \% \mathrm{Et}_{2} \mathrm{O}\right.\) in pentane \()\)
\({ }^{1} \mathrm{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.09(\mathrm{dt}, J=7.8,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.50\) - \(2.32(\mathrm{~m}, 6 \mathrm{H}), 2.18(\mathrm{dp}, J=13.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.93-1.42(\mathrm{~m}, 6 \mathrm{H}), 1.35-1.21(\mathrm{~m}, 2 \mathrm{H}), 0.96-\) 0.82 (\(\mathrm{m}, 9 \mathrm{H}\)).
\({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 211.9,211.1,76.6,46.8,42.7,42.1,32.9,26.1,24.6\), 22.7, 22.6, 22.5, 19.2, 14.0.

HRMS (APCI) [M-H] calc. for \(\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{O}_{3}: \mathrm{m} / \mathrm{z}=241.1798\), found: \(\mathrm{m} / \mathrm{z}=241.1801\)

(7S)-5-hydroxy-7,11-dimethyl-1-phenyldodec-10-en-4-one (35). The reaction was conducted with (4,4-dichlorobut-3-en-1-yl)benzene (\(40.2 \mathrm{mg}, 0.2 \mathrm{mmol}\)) and (\(S\))-citronellal (5949-\(05-3)(61.7 \mathrm{mg}, 0.4 \mathrm{mmol})\) without modification from general procedure B to provide \(\mathbf{3 5}\) as a light yellow oil.

Run 1: 47.6 mg , \(79 \%\) Yield. Run 2: 45.7 mg , \(76 \%\) Yield. 1:1 d.r.
Purification: \(\mathrm{SiO}_{2}\) column; \(10 \% \mathrm{Et}_{2} \mathrm{O}\) in pentane
TLC: \(\mathrm{R}_{f}=0.21\left(15 \% \mathrm{Et}_{2} \mathrm{O}\right.\) in pentane)
\({ }^{1} \mathrm{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.13(\mathrm{~m}, 3 \mathrm{H}), 5.10(\mathrm{dtp}, J=9.9\), \(7.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.20-4.11(\mathrm{~m}, 1 \mathrm{H}), 3.37(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{td}, J=7.6,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.58\) - \(2.34(\mathrm{~m}, 2 \mathrm{H}), 2.05-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.56(\mathrm{~m}, 7 \mathrm{H}), 1.58-1.47(\mathrm{~m}\), \(1 \mathrm{H}), 1.51-1.37(\mathrm{~m}, 1 \mathrm{H}), 1.41-1.27(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{ddd}, J=7.9,4.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.26-1.06(\mathrm{~m}\), \(1 \mathrm{H}), 0.95(\mathrm{dd}, J=15.1,6.7 \mathrm{~Hz}, 3 \mathrm{H})\).
\({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 212.7,141.3,131.5,128.6,128.6,126.2,124.7,124.6\), \(75.3,74.9,41.5,41.3,38.1,37.1,37.0,35.8,35.1,29.5,29.2,25.9,25.6,25.4,25.2,20.5,18.7\), 17.8.

HRMS (APCI) \([\mathrm{M}+\mathrm{H}]\) calc. for \(\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{O}_{2}: \mathrm{m} / \mathrm{z}=303.2319\), found: \(\mathrm{m} / \mathrm{z}=303.2321\)

(Z)-5-hydroxy-2-methyldocos-13-en-4-one (36). The reaction was conducted with 1,1-dichloro-3-methylbut-1-ene (32363-91-0) (\(27.8 \mathrm{mg}, 0.2 \mathrm{mmol}\)) and olealdehyde \({ }^{16}(106.6 \mathrm{mg}, 0.4\) mmol) without modification from general procedure B to provide 36 as a light yellow oil.

Run 1: \(35.1 \mathrm{mg}, 50 \%\) Yield. Run 2: 35.0 mg , \(50 \%\) Yield
Purification: 5\% \(\mathrm{Et}_{2} \mathrm{O}\) in pentane
\(\mathrm{TLC}: \mathrm{R}_{f}=0.08\left(5 \% \mathrm{Et}_{2} \mathrm{O}\right.\) in pentane)
\({ }^{1} \mathrm{H}\) NMR \(\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.40-5.29(\mathrm{~m}, 2 \mathrm{H}), 4.15-4.09(\mathrm{~m}, 1 \mathrm{H}), 3.48(\mathrm{~d}, J=5.0\) \(\mathrm{Hz}, 1 \mathrm{H}), 2.38-2.32(\mathrm{~m}, 2 \mathrm{H}), 2.21(\mathrm{dp}, J=13.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.09-1.97(\mathrm{~m}, 4 \mathrm{H}), 1.86-1.76\) (m, \(1 \mathrm{H}), 1.53-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.37-1.32(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.24(\mathrm{~m}, 22 \mathrm{H}), 0.94(\mathrm{dd}, J=6.6,4.6 \mathrm{~Hz}\), \(6 \mathrm{H}), 0.88(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})\).
\({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR \(\left(126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 211.5,130.3,130.2,76.8,46.5,34.1,32.3,30.3,30.2\), 30.0, 29.9, 29.9, 29.8, 29.8, 29.7, 27.7, 27.7, 25.4, 24.5, 23.1, 22.6, 22.5, 14.4.

HRMS (APCI) [M-H] calc. for \(\mathrm{C}_{23} \mathrm{H}_{43} \mathrm{O}_{2}: \mathrm{m} / \mathrm{z}=351.3263\); found: \(\mathrm{m} / \mathrm{z}=351.3276\)

2-hydroxy-5-methyl-1-phenylhexan-3-one (37). The reaction was conducted with 1,1-dichloro-3-methylbut-1-ene (32363-91-0) (\(27.8 \mathrm{mg}, 0.2 \mathrm{mmol}\)) and 2-phenylacetaldehyde (122-78-1) (\(48.0 \mathrm{mg}, 0.4 \mathrm{mmol}\)) without modification from general procedure B to provide 37 as a light yellow oil.

Run 1: \(30.2 \mathrm{mg}, 73 \%\) Yield. Run 2: 30.3 mg , \(73 \%\) Yield.
Purification: \(\mathrm{SiO}_{2}\) column; \(10 \% \mathrm{Et}_{2} \mathrm{O}\) in pentane
TLC: \(\mathrm{R}_{f}=0.15\) (\(15 \% \mathrm{Et}_{2} \mathrm{O}\) in pentane)
\({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 7.36-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.20(\mathrm{~m}, 3 \mathrm{H}), 4.37(\mathrm{dt}, J=7.5\), \(4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{dd}, J=14.1,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{dd}, J=14.1,7.6 \mathrm{~Hz}\), \(1 \mathrm{H}), 2.37(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.18(\mathrm{dp}, J=13.5,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.93(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H})\).
\({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 211.3,136.8,129.4,128.7,127.0,77.6,47.6,40.2\), 29.8, 24.7, 22.8, 22.7.

HRMS (APCI) \([\mathrm{M}+\mathrm{H}]\) calc. for \(\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{O}_{2}: \mathrm{m} / \mathrm{z}=207.1380\), found: \(\mathrm{m} / \mathrm{z}=207.1378\)

\section*{2-hydroxy-1-(4-hydroxyphenyl)-5-methylhexan-3-one [(\(\pm\)) 4-hydroxysattabacin] (38).}

The reaction was conducted with 1,1-dichloro-3-methylbut-1-ene (32363-91-0) (\(27.8 \mathrm{mg}, 0.2\) mmol) and 2-(4-((trimethylsilyl)oxy)phenyl)acetaldehyde \({ }^{17}\) (\(83.3 \mathrm{mg}, 0.4 \mathrm{mmol}\)) without modification from general procedure B to provide \(\mathbf{3 8}\) as a light yellow oil.

Run 1: \(17.8 \mathrm{mg}, 40 \%\) Yield. Run 2: \(18.6 \mathrm{mg}, 42 \%\) Yield
Purification: \(40 \% \mathrm{Et}_{2} \mathrm{O}\) in pentane
TLC: \(\mathrm{R}_{f}=0.13\left(40 \% \mathrm{Et}_{2} \mathrm{O}\right.\) in pentane)
\({ }^{1} \mathrm{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.09(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.75(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.92(\mathrm{~s}\), \(1 \mathrm{H}), 4.34(\mathrm{dt}, J=7.3,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{dd}, J=14.3,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.76\) (dd, \(J=14.3,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.27-2.09(\mathrm{~m}, 1 \mathrm{H}), 0.92(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 5 \mathrm{H})\).
\({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 211.5,154.7,130.6,128.7,115.6,77.7,47.6,39.3\), 24.8, 22.8, 22.7.

HRMS (APCI) \([\mathrm{M}+\mathrm{H}]\) calc. for \(\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{O}_{3}=223\). 1329; found \(\mathrm{m} / \mathrm{z}=223.1335\)

\section*{5. Mechanistic Studies}

39

(2 equiv)
40
\(\mathrm{Et}_{2} \mathrm{O} / \mathrm{DMA}\) [0.05 M]

41
13\% yield, >20:1 E/Z

61\% yield, 2:1 dr, >20:1 Z/E

Catalytic C(sp \(\left.{ }^{2}\right)-H\) bond insertion vs. \([2+2+1]\)-cycloaddition under dilute conditions. In an \(\mathrm{N}_{2}\)-filled glovebox, a 2-dram vial was charged with a magnetic stir bar, (\({ }^{i-\mathrm{Pr}} \mathrm{NDI}\)) \(\mathrm{Ni}_{2} \mathrm{Cl}_{2}\) (6) (7.2 \(\mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%\)), and Zn powder (\(26.1 \mathrm{mg}, 0.4 \mathrm{mmol}, 4.0\) equiv). DMA (0.4 mL) was added. A stock solution of 1,1 -dichloroalkene \(\mathbf{3 9}^{5}(9.0 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0\) equiv \()\), aldehyde 40 (104-53-0) (\(13.4 \mathrm{mg}, 0.2 \mathrm{mmol}, 2.0\) equiv), mesitylene (\(12 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0\) equiv), and \(\mathrm{Et}_{2} \mathrm{O}\) \((0.4 \mathrm{~mL})\) was added. The reaction was diluted with additional \(\mathrm{Et}_{2} \mathrm{O}(1.2 \mathrm{~mL})\). The vial was sealed,
and the reaction mixture was stirred (600 rpm) at room temperature for 24 h . The reaction was removed from the glovebox and exposed to air. An aliquot was removed, filtered through a small pad of silica (approx. 1 cm) eluting with \(\mathrm{CDCl}_{3}\), and analyzed by \({ }^{1} \mathrm{H}\) NMR spectroscopy. The product yields were determined by \({ }^{1} \mathrm{H}\) NMR integration against mesitylene. The products were isolated via column chromatography (10 to \(25 \% \mathrm{Et}_{2} \mathrm{O}\) in pentane). COSY and NOESY were used to determine stereochemistry of \(\mathbf{4 2}\).

\section*{(E)-5-phenyl-1-(tetrahydro-2H-pyran-4-yl)pent-1-en-3-one (41).}

13 \% NMR Yield
TLC: \(\mathrm{R}_{f}=0.19\) (\(20 \%\) EtOAc in hexanes)
\({ }^{1} \mathrm{H}\) NMR (\(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 7.33-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.16(\mathrm{~m}, 4 \mathrm{H}), 6.72(\mathrm{dd}, J=16.0\), \(6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{dd}, J=16.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{ddd}, J=11.6,4.6,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.43(\mathrm{td}, J=\) \(11.8,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.02-2.79(\mathrm{~m}, 4 \mathrm{H}), 2.44-2.28(\mathrm{~m}, 1 \mathrm{H}), 1.65(\mathrm{ddd}, J=13.2,4.1,2.1 \mathrm{~Hz}, 2 \mathrm{H})\), 1.56 - 1.39 (m, 2H).
\({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 199.8,150.2,141.4,128.6,128.6,128.5,126.3,67.5\), 42.0, 38.0, 31.5, 30.2.

HRMS (APCI) [M-H] calc. for \(\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}_{2}=243.1385\). found \(\mathrm{m} / \mathrm{z}=243.1395\)

\section*{(Z)-4-((2,5-diphenethyl-1,3-dioxolan-4-ylidene)methyl)tetrahydro-2H-pyran (42).}

61\% NMR Yield; 2:1 d.r.; >20:1 Z/E
TLC: \(\mathrm{R}_{f}=0.62\) (\(20 \%\) EtOAc in hexanes)
\({ }^{1} \mathrm{H}\) NMR \(\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.17(\mathrm{~m}, 10 \mathrm{H}), \mathbf{4 2}\)-anti\(-5.39(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), \mathbf{4 2 -}\) \(\boldsymbol{s y n}-5.21(\mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 42\)-anti -4.56 (ddd, \(J=8.5,4.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 42\)-syn -4.43 (dt, \(J\) \(=8.1,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{dd}, J=8.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 42-\) syn \(-4.03(\mathrm{dd}, J=8.5,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 42\)-anti - 3.93 (ddd, \(J=11.6,4.3,2.3 \mathrm{~Hz}, 2 \mathrm{H}\)), \(3.46(\mathrm{tt}, J=11.6,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.88-2.68(\mathrm{~m}, 4 \mathrm{H}), 2.64-\) \(2.53(\mathrm{~m}, 1 \mathrm{H}), 42-\) syn-2.15-2.08(m,1H), 2.08-1.99(m,2H), \(1.97-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.57\) (m, 2H), \(1.48-1.35\) (m, 2H).
\({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR (\(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 151.7,141.6,141.4,128.6,128.6,128.6,126.1,104.6\), 99.6, 76.7, 68.0, 36.2, 36.0, 33.5, 33.2, 32.1, 31.7, 29.9.

Catalytic \(\mathbf{C}\left(\right.\) sp \(\left.^{2}\right)-\mathbf{H}\) bond insertion vs. \([2+2+1]\)-cycloaddition under concentrated conditions. In an \(\mathrm{N}_{2}\)-filled glovebox, a 2-dram vial was charged with a magnetic stir bar, (\({ }^{i-}\) \(\left.{ }^{\mathrm{Pr}} \mathrm{NDI}\right) \mathrm{Ni}_{2} \mathrm{Cl}_{2}(6)(7.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)\), and Zn powder (\(26.1 \mathrm{mg}, 0.4 \mathrm{mmol}, 4.0\) equiv). DMA (0.1 mL) was added. A stock solution of 1,1 -dichloroalkene \(39(18.1 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0\) equiv), aldehyde 40 (\(13.4 \mathrm{mg}, 0.2 \mathrm{mmol}, 2.0\) equiv), mesitylene (\(12 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0\) equiv) and \(\mathrm{Et}_{2} \mathrm{O}(0.4 \mathrm{~mL})\) was added. The vial was sealed, and the reaction mixture was stirred (600 rpm) at room temperature for 24 h . The reaction was removed from the glovebox and exposed to air. An aliquot was removed, filtered through a small pad of silica (approx. 1 cm) eluting with \(\mathrm{CDCl}_{3}\), and analyzed by \({ }^{1} \mathrm{H}\) NMR spectroscopy. The product yields were determined by \({ }^{1} \mathrm{H}\) NMR integration against mesitylene.

30: 81\% Yield; 2:1 d.r.; >20:1 Z/E
31: \(0 \%\) Yield

39
\(+\)

40

41
\(0 \%\) yield

59\% yield, 3:1 dr, >20:1 Z/E

Stoichiometric [2+2+1]-cycloaddition using an isolable low-valent (NDI)Ni2Cl complex with concentrated conditions. In an \(\mathrm{N}_{2}\) filled glovebox, a 2-dram vial was charged with a magnetic stir bar and \(\left({ }^{i-\mathrm{Pr}} \mathrm{NDI}\right) \mathrm{Ni}_{2} \mathrm{Cl}(\mathbf{4 3})(15.0 \mathrm{mg}, 22.0 \mu \mathrm{~mol}, 2.00\) equiv). DMA (\(40 \mu \mathrm{~L}\)) was added to the vial, forming a dark purple solution. A solution of 1,1-dichloroalkene 39 (\(2.0 \mathrm{mg}, 11\) \(\mu \mathrm{mol}, 1.0\) equiv), hydrocinnamaldehyde (40) (\(3.0 \mathrm{mg}, 11 \mu \mathrm{~mol}\), 2.0 equiv), and mesitylene (2.6 \(\mathrm{mg}, 22 \mu \mathrm{~mol}, 2.0\) equiv \()\) in \(\mathrm{Et}_{2} \mathrm{O}(160 \mu \mathrm{~L})\) was added to the purple solution. The reaction was stirred (600 rpm) at room temperature for 1.5 h . The reaction was removed from the glovebox and exposed to air. An aliquot was removed, filtered through a small pad of silica (approx. 1 cm)
eluting with \(\mathrm{CDCl}_{3}\), and analyzed by \({ }^{1} \mathrm{H}\) NMR spectroscopy. The yield of dioxolane was determined by \({ }^{1} \mathrm{H}\) NMR integration against mesitylene.

41: \(0 \%\) Yield.
42: 59\% Yield. 3:1 d.r. (anti:syn). >20:1 Z/E

Stoichiometric [2+2+1]-cycloaddition using an isolable low-valent (NDI)Ni2 Cl complex with dilute conditions. In an \(\mathrm{N}_{2}\) filled glovebox, a 2-dram vial was charged with a magnetic stir bar and \(\left({ }^{i-\mathrm{Pr}} \mathrm{NDI}\right) \mathrm{Ni}_{2} \mathrm{Cl}(\mathbf{4 3})(22.7 \mathrm{mg}, 33.1 \mu \mathrm{~mol}, 2.00\) equiv). DMA \((700 \mu \mathrm{~L})\) was added to the vial, forming a dark purple solution. A 0.5 M stock solution (\(32 \mu \mathrm{~L}\)) of 1,1-dichloroalkene 39 (2.9 \(\mathrm{mg}, 17 \mu \mathrm{~mol}, 1.0\) equiv), hydrocinnamaldehyde (40) (\(4.6 \mathrm{mg}, 34 \mu \mathrm{~mol}, 2.0\) equiv), and trimethoxybenzene (\(5.7 \mathrm{mg}, 34 \mu \mathrm{~mol}, 2.0\) equiv) in \(\mathrm{Et}_{2} \mathrm{O}\) was added to the purple solution. An addition portion of \(\mathrm{Et}_{2} \mathrm{O}(2.8 \mathrm{~mL})\) was added. The reaction was stirred (600 rpm) at room temperature for 24 h . The reaction was removed from the glovebox and exposed to air. An aliquot was removed, filtered through a small pad of silica (approx. 1 cm) eluting with \(\mathrm{CDCl}_{3}\), and analyzed by \({ }^{1} \mathrm{H}\) NMR spectroscopy. The yield of \(\mathbf{4 1}\) and 42 were determined by \({ }^{1} \mathrm{H}\) NMR integration against trimethoxybenzene.

41: \(18 \%\) Yield. >20:1 E/Z
42: \(0 \%\) Yield.

Stoichiometric bond insertion reaction with deuterium labeled substrate. In an \(\mathrm{N}_{2}\) filled glovebox, a 2-dram vial was charged with a magnetic stir bar and \(\left({ }^{i-\mathrm{Pr}} \mathrm{NDI}\right) \mathrm{Ni}_{2} \mathrm{Cl}(43)(22.7 \mathrm{mg}\),
\(33.1 \mu \mathrm{~mol}, 2.00\) equiv). DMA (\(700 \mu \mathrm{~L}\)) was added to the vial, forming a dark purple solution. A 0.5 M stock solution (\(32 \mu \mathrm{~L}\)) of 1,1-dichloroalkene 39 (\(2.9 \mathrm{mg}, 17 \mu \mathrm{~mol}, 1.0\) equiv), aldehyde 40\(\boldsymbol{d}^{18}\left(4.6 \mathrm{mg}, 34 \mu \mathrm{~mol}, 2.0\right.\) equiv), and trimethoxybenzene (\(5.7 \mathrm{mg}, 34 \mu \mathrm{~mol}, 2.0\) equiv) in \(\mathrm{Et}_{2} \mathrm{O}\) was added to the purple solution. An additional portion of \(\mathrm{Et}_{2} \mathrm{O}(2.8 \mathrm{~mL})\) was added. The reaction was stirred (600 rpm) at room temperature for 24 h . The reaction was removed from the glovebox and exposed to air. An aliquot was removed, filtered through a small pad of silica (approx. 1 cm) eluting with \(\mathrm{CDCl}_{3}\), and analyzed by \({ }^{1} \mathrm{H}\) NMR spectroscopy. The yield and deuterium incorporation of 41-d were determined from \({ }^{1} \mathrm{H}\) NMR integration against trimethoxybenzene.

41-d: \(16 \%\) Yield. \(>20: 1 \mathrm{E} / \mathrm{Z}\)

Resubjection of enone to catalytic conditions. In an \(\mathrm{N}_{2}\)-filled glovebox, a 2-dram vial was charged with a magnetic stir bar, (\(\left.{ }^{(-\mathrm{Pr}} \mathrm{NDI}\right) \mathrm{Ni}_{2} \mathrm{Cl}_{2}(3.4 \mathrm{mg}, 4.8 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%)\), and Zn powder (\(12.4 \mathrm{mg}, 190 \mu \mathrm{~mol}, 4.00\) equiv). DMA \((50 \mu \mathrm{~L})\) was added. A solution of \((E)\)-5-phenyl-1-(tetrahydro-2H-pyran-4-yl)pent-1-en-3-one (\(11.6 \mathrm{mg}, \quad 47.5 \mu \mathrm{~mol}, 1.00\) equiv), hydrocinnamaldehyde (\(6.37 \mathrm{mg}, 47.5 \mu \mathrm{~mol}, 1.00\) equiv), mesitylene (\(5.7 \mathrm{mg}, 47.5 \mu \mathrm{~mol}, 1.00\) equiv), and \(\mathrm{Et}_{2} \mathrm{O}(190 \mu \mathrm{~L})\) was added. The vial was sealed, and the reaction mixture was stirred (600 rpm) at room temperature for 24 h . The reaction was removed from the glovebox and exposed to air. An aliquot was removed, filtered through a small pad of silica (approx. 1 cm) eluting with \(\mathrm{CDCl}_{3}\), and analyzed by \({ }^{1} \mathrm{H}\) NMR spectroscopy. Conversion of 41 was determined by \({ }^{1} \mathrm{H}\) NMR integration against mesitylene.

\section*{6. NMR Spectral Data}

Figure A2.1. \({ }^{1} \mathrm{H}\) NMR spectrum for \(\mathbf{S 1}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.\), room temperature).

Figure A2.2. \({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR spectrum for \(\mathbf{S 1}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.\), room temperature).

Figure A2.3. \({ }^{1} \mathrm{H}\) NMR spectrum for \(\mathbf{S 2}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.\), room temperature).

Figure A2.4. \({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR spectrum for \(\mathbf{S 2}\) (\(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\), room temperature).

Figure A2.5. \({ }^{1} \mathrm{H}\) NMR spectrum for \(\mathbf{S 3}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.\), room temperature).

Figure A2.6. \({ }^{19} \mathrm{~F}\) NMR spectrum for \(\mathbf{S 3}\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.\), room temperature).

Figure A2.7. \({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR spectrum for \(\mathbf{S 3}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.\), room temperature).

Figure A2.8. Expansion of \({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR spectrum for \(\mathbf{S 3}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.\), room temperature).

Figure A2.9. \({ }^{1} \mathrm{H}\) NMR spectrum for \(\mathbf{S 4}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.\), room temperature).

Figure A2.10. \({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR spectrum for \(\mathbf{S 4}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.\), room temperature).

Figure A2.11. \({ }^{1} \mathrm{H}\) NMR spectrum for \(\mathbf{4}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.\), room temperature).

Figure A2.12. \({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR spectrum for \(\mathbf{4}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.\), room temperature).

Figure A2.13. COSY NMR spectrum for \(\mathbf{4}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.\), room temperature).

Figure A2.14. NOESY NMR spectrum for \(\mathbf{4}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.\), room temperature).

Figure A2.15. \({ }^{1} \mathrm{H}\) NMR spectrum for \(5\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.\), room temperature).

Figure A2.16. \({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR spectrum for 5 (\(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\), room temperature).

Figure A2.17. \({ }^{1} \mathrm{H}\) NMR spectrum for \(\mathbf{1 2}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.\), room temperature).

Figure A2.18. \({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR spectrum for \(\mathbf{1 2}\) (\(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\), room temperature).

Figure A2.19. \({ }^{1} \mathrm{H}\) NMR spectrum for \(13\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.\), room temperature).

Figure A2.20. \({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR spectrum for \(\mathbf{1 3}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.\), room temperature).

Figure A2.21. \({ }^{1} \mathrm{H}\) NMR spectrum for \(\mathbf{1 4}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.\), room temperature).

Figure A2.22. \({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR spectrum for \(\mathbf{1 4}\) (101 \(\mathrm{MHz}, \mathrm{CDCl}_{3}\), room temperature).

Figure A2.23. \({ }^{1} \mathrm{H}\) NMR spectrum for \(\mathbf{1 5}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.\), room temperature).

Figure A2.24. \({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR spectrum for \(\mathbf{1 5}\) (\(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\), room temperature).

Figure A2.25. \({ }^{1} \mathrm{H}\) NMR spectrum for \(16\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.\), room temperature).

Figure A2.26. \({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR spectrum for \(\mathbf{1 6}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.\), room temperature).

Figure A2.27. \({ }^{1} \mathrm{H}\) NMR spectrum for \(17\left(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.\), room temperature).

Figure A2.28. \({ }^{19} \mathrm{~F}\) NMR spectrum for \(17\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.\), room temperature).

Figure A2.29. \({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR spectrum for \(\mathbf{1 7}\) (\(201 \mathrm{MHz}, \mathrm{CDCl}_{3}\), room temperature).

Figure A2.30. \({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR spectrum for \(\mathbf{1 7}\) (\(201 \mathrm{MHz}, \mathrm{CDCl}_{3}\), room temperature).

Figure A2.31. \({ }^{1} \mathrm{H}\) NMR spectrum for \(\mathbf{1 8}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.\), room temperature).

Figure A2.32. \({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR spectrum for \(\mathbf{1 8}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.\), room temperature).

Figure A2.33. \({ }^{1} \mathrm{H}\) NMR spectrum for \(19\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.\), room temperature).

Figure A2.34. \({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR spectrum for \(\mathbf{1 9}\) (\(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\), room temperature).

Figure A2.35. \({ }^{1} \mathrm{H}\) NMR spectrum for \(20\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.\), room temperature).

Figure A2.36. \({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR spectrum for \(\mathbf{2 0}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.\), room temperature).

Figure A2.37. \({ }^{1} \mathrm{H}\) NMR spectrum for \(21\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.\), room temperature).

Figure A2.38. \({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR spectrum for 21 (\(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\), room temperature).

Figure A2.39. \({ }^{1} \mathrm{H}\) NMR spectrum for \(22\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.\), room temperature).

Figure A2.40. \({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR spectrum for 22 (\(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\), room temperature).

Figure A2.41. \({ }^{1} \mathrm{H}\) NMR spectrum for \(\mathbf{2 3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.\), room temperature).

Figure A2.42. \({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR spectrum for 23 (\(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\), room temperature).

Figure A2.43. \({ }^{1} \mathrm{H}\) NMR spectrum for \(24\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.\), room temperature).

Figure A2.44. \({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR spectrum for 24 (\(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\), room temperature).

Figure A2.45. \({ }^{1} \mathrm{H}\) NMR spectrum for \(25\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.\), room temperature).

Figure A2.46. \({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR spectrum for \(\mathbf{2 5}\) (\(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\), room temperature).

Figure A2.47. \({ }^{1} \mathrm{H}\) NMR spectrum for \(26\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.\), room temperature).

Figure A2.48. \({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR spectrum for 26 (\(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\), room temperature).

Figure A2.49. \({ }^{1} \mathrm{H}\) NMR spectrum for \(27\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.\), room temperature).

Figure A2.50. \({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR spectrum for 27 (\(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\), room temperature).

Figure A2.51. \({ }^{1} \mathrm{H}\) NMR spectrum for \(28\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.\), room temperature).

Figure A2.52. \({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR spectrum for \(\mathbf{2 8}\) (\(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\), room temperature).

Figure A2.53. \({ }^{1} \mathrm{H}\) NMR spectrum for \(29\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.\), room temperature).

Figure A2.54. \({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR spectrum for 29 (\(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\), room temperature).

Figure A2.55. \({ }^{1} \mathrm{H}\) NMR spectrum for \(30\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.\), room temperature).

Figure A2.56. \({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR spectrum for \(\mathbf{3 0}\) (\(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\), room temperature).

Figure A2.57. \({ }^{1} \mathrm{H}\) NMR spectrum for \(\mathbf{3 1}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.\), room temperature).

Figure A2.58. \({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR spectrum for \(\mathbf{3 1}\) (\(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\), room temperature).

Figure A2.59. \({ }^{1} \mathrm{H}\) NMR spectrum for \(32\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.\), room temperature).

Figure A2.60. \({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR spectrum for \(\mathbf{3 2}\) (\(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\), room temperature).

Figure A2.61. \({ }^{1} \mathrm{H}\) NMR spectrum for \(\mathbf{3 3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.\), room temperature).

Figure A2.62. \({ }^{1} \mathrm{H}\) NMR spectrum for 33 (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\), room temperature).

Figure 63. \({ }^{1} \mathrm{H}\) NMR A2.pectrum for \(34\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.\), room temperature).

Figure S64. \({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR A2.pectrum for \(\mathbf{3 4}\) (\(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\), room temperature).

Figure A2.65. \({ }^{1} \mathrm{H}\) NMR spectrum for \(35\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.\), room temperature).

Figure A2.66. \({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR spectrum for \(\mathbf{3 5}\) (\(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\), room temperature).

Figure A2.67. \({ }^{1} \mathrm{H}\) NMR spectrum for \(\mathbf{3 6}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.\), room temperature).

Figure A2.68. \({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR spectrum for \(36\left(126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right.\), room temperature).

Figure A2.69. \({ }^{1} \mathrm{H}\) NMR spectrum for \(37\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.\), room temperature).

Figure A2.70. \({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR spectrum for \(\mathbf{3 7}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.\), room temperature)

Figure A2.71. \({ }^{1} \mathrm{H}\) NMR spectrum for \(\mathbf{3 8}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.\), room temperature).

Figure A2.72. \({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR spectrum for \(\mathbf{3 8}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.\), room temperature)

Figure A2.73. \({ }^{1} \mathrm{H}\) NMR spectrum for \(41\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.\), room temperature).

Figure A2.74. \({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR spectrum for \(41\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.\), room temperature).

Figure A2.75. \({ }^{1} \mathrm{H}\) NMR spectrum for \(\mathbf{4 2}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.\), room temperature).

Figure A2.76. \({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR spectrum for \(\mathbf{4 2}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.\), room temperature)

Figure A2.77. COSY NMR spectrum for \(\mathbf{4 2}\) (\(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\), room temperature)

Figure A2.78. NOESY NMR spectrum for \(\mathbf{4 2}\) (\(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\), room temperature)

MAJOR
(Z)-anti

MINOR
(Z)-syn

\section*{6. FT-IR Data}

Figure A2.79. FT-IR spectrum for \(\mathbf{S 1}\).

Figure A2.80. FT-IR spectrum for \(\mathbf{S 2}\).

Figure A2.81. FT-IR spectrum for \(\mathbf{S 3}\).

Figure A2.82. FT-IR spectrum for \(\mathbf{S 4}\).

Figure A2.83. FT-IR spectrum for 4.

Figure A2.84. FT-IR spectrum for 5 .

Figure A2.85. FT-IR spectrum for \(\mathbf{1 2}\).

Figure A2.86. FT-IR spectrum for 13 .

Figure A2.87. FT-IR spectrum for 14.

Figure A2.88. FT-IR spectrum for \(\mathbf{1 5 .}\)

Figure A2.89. FT-IR spectrum for 16.

Figure A2.90. FT-IR spectrum for 17.

Figure A2.91. FT-IR spectrum for 18.

Figure A2.92. FT-IR spectrum for 19.

Figure A2.93. FT-IR spectrum for 20.

Figure A2.94. FT-IR spectrum for 21.

Figure A2.95. FT-IR spectrum for 22.

Figure A2.96. FT-IR spectrum for 23.

Figure A2.97. FT-IR spectrum for 24.

Figure A2.98. FT-IR spectrum for 25.

Figure A2.99. FT-IR spectrum for 26.

Figure A2.100. FT-IR spectrum for 27.

Figure A2.101. FT-IR spectrum for 28.

Figure A2.102. FT-IR spectrum for 29.

Figure A2.103. FT-IR spectrum for \(\mathbf{3 0}\).

Figure A2.104. FT-IR spectrum for 31.

Figure A2.105. FT-IR spectrum for 33.

Figure A2.106. FT-IR spectrum for 34.

Figure A2.107. FT-IR spectrum for 35.

Figure A2.108. FT-IR spectrum for \(\mathbf{3 6}\).

Figure A2.109. FT-IR spectrum for 37.

Figure A2.110. FT-IR spectrum for 38.

Figure A2.111. FT-IR spectrum for 41.

Figure A2.112. FT-IR spectrum for 42.

\section*{6. DFT Calculations}

Computational Methods. Geometry optimizations were performed with Gaussian16/A. 03 software package \({ }^{19}\) using the BP86 functional and the \(6-311 G(d, p)\) basis set. Stationary points were confirmed by frequency analysis. Geometries are reported as Cartesian coordinates. All energies are reported in \(\mathrm{kcal} / \mathrm{mol}\) and are the sum of electronic energies and thermal enthalpy corrections at 298 K . All energy values are normalized to the energy of bound aldehyde complex 44a in the triplet spin state.

Reaction Mechanism. The first intermediate modeled in the reaction mechanism is aldehyde complex (44). Initial \(\mathrm{C}-\mathrm{C}\) bond formation occurs through migratory insertion (45), forming a metallacycle (46). At this point, there are two pathways to form the dioxolane and enone products.

A second aldehyde can bind to the metallacycle to form another bound aldehyde complex (47). Migratory insertion occurs (48); subsequently, a larger metallacycle (49) is formed. Upon rearrangement of the metallacycle \((\mathbf{5 0})\), the final \(\mathrm{C}-\mathrm{O}\) bond is formed upon reductive elimination (51), forming a bound dioxolane complex (52).

Alternatively, the other isomer of 46 can undergo \(\beta\)-hydride elimination (53), forming nickel-hydride complex (54). Upon reductive elimination (55), the bound product is formed (56).

\section*{Dioxolane Formation}

Enone Formation

Metallacycle (46b)

\(\beta\)-H Elimination

Ni-H Complex (54)

Reductive Reductive
Elimination TS (55)

Bound Product
Complex (56)

Figure A2.113. Optimized structures of intermediates and transition states.

Figure A2.114. An overview of the proposed catalytic cycle.
[2+2+1] Reaction Selectivity: E/Z Selectivity Determining Step. There are two possible orientations of the vinylidene, as well as two orientations of each aldehyde, leading to eight total pathways to four possible products. The first step of the reaction is selectivitydetermining and irreversible. Therefore, only the first migratory insertion transition state was calculated for the \((E)\)-anti and \((E)\)-syn products, which are not experimentally observed.

Figure A2.115. Energy diagram for E/Z Selectivity Determining Step
Anti:Syn Selectivity. Due to the dependence of the anti/syn selectivity on reductant and solvent, we did not attempt to explain the experimentally observed diasteroselectivity computationally. By varying the orientation of each aldehyde, there are four potential pathways, with two pathways leading to the \((Z)\)-anti and the other two leading to the \((Z)\)-syn products. Only the lowest energy pathway leading to the \((Z)\)-anti and \((Z)\)-syn dioxolane are presented here.

Figure A2.116. Metallacycles leading to (\(Z\))-dioxolanes.

Catalyst Oxidation State. The first step of the reaction can occur with either one or no chlorines bound to the catalyst. However, complex 49 is not viable without reduction of a chlorine from the catalyst. Previous studies have demonstrated the competency of zinc to reduce metalacyclic intermediates such as 46. Therefore, reduction could potentially happen before or after formation of metallacycle 46.

Calculated Reaction Coordinate Diagrams. The reaction coordinate diagrams are shown below. All energies are normalized to the energy of the triplet \((Z)\) bound aldehyde complex (44a). There are four possible reaction coordinate diagrams leading to the \(Z\) isomers of the dioxolane that are shown below.

Figure A2.116. Energy diagram for the lowest energy formation of (\(Z\))-anti dioxolane.
(Z)-Syn Dioxolane

Figure A2.117. Energy diagram for the lowest energy formation of (\(Z\))-syn dioxolane.

Figure A2.118. Energy diagram for \((E)\)-enone

Table A2.4: Structure energies, relative to the triplet bound aldehyde complex 44a (\(\mathrm{kcal} / \mathrm{mol}\)). Absolute energies in parentheses (Hartree).
\begin{tabular}{|c|c|c|c|}
\hline Structure
BP86/6-311g(d,p) & EE + Thermal Free Enthalpy Correction & Charge & Number of Imaginary Frequencies \\
\hline 44a (S=0) & \[
\begin{gathered}
14.9 \\
(-4821.444971)
\end{gathered}
\] & 0 & 0 \\
\hline 44a (S=1) & \[
\begin{gathered}
0 \\
(-4821.468764)
\end{gathered}
\] & 0 & 0 \\
\hline 44b (S=1) & \[
\begin{gathered}
1.4 \\
(-4821.466552)
\end{gathered}
\] & 0 & 0 \\
\hline 45a (S=0) & \[
\begin{gathered}
16.3 \\
(-4821.442772)
\end{gathered}
\] & 0 & 1 \\
\hline 45a (S=1) & \[
\begin{gathered}
12.2 \\
(-4821.44927)
\end{gathered}
\] & 0 & 1 \\
\hline 45b (S=0) & \[
\begin{gathered}
17.9 \\
(-4821.440309)
\end{gathered}
\] & 0 & 1 \\
\hline 45b (S=1) & \[
\begin{gathered}
14.1 \\
(-4821.446342)
\end{gathered}
\] & 0 & 1 \\
\hline 45c (S=0) & \[
\begin{gathered}
15.6 \\
(-4821.443918)
\end{gathered}
\] & 0 & 1 \\
\hline 45c (S=1) & \[
\begin{gathered}
13.3 \\
(-4821.447559)
\end{gathered}
\] & 0 & 1 \\
\hline 45d (S=0) & \[
\begin{gathered}
19.7 \\
(-4821.437405)
\end{gathered}
\] & 0 & 1 \\
\hline 45d (S=1) & \[
\begin{gathered}
16.8 \\
(-4821.441977)
\end{gathered}
\] & 0 & 1 \\
\hline 46a (S=0) & \[
\begin{gathered}
-7.4 \\
(-4821.480528)
\end{gathered}
\] & 0 & 0 \\
\hline 46a (S=1) & \[
\begin{gathered}
-11.8 \\
(-4821.487497)
\end{gathered}
\] & 0 & 0 \\
\hline 46b (S=0) & \[
\begin{gathered}
-6.5 \\
(-4821.479102)
\end{gathered}
\] & 0 & 0 \\
\hline 46b (S=1) & \[
\begin{gathered}
-10.5 \\
(-4821.485537)
\end{gathered}
\] & 0 & 0 \\
\hline 47a (S=1) & \[
\begin{gathered}
-19.6 \\
(-4975.315169)
\end{gathered}
\] & 0 & 0 \\
\hline 47b (S=1) & \[
\begin{gathered}
-23.0 \\
(-4975.320494)
\end{gathered}
\] & 0 & 0 \\
\hline 48a (S=1) & \[
\begin{gathered}
-18.3 \\
(-4975.312953)
\end{gathered}
\] & 0 & 1 \\
\hline 48b (S=1 & \[
\begin{gathered}
-22.7 \\
(-4975.31999)
\end{gathered}
\] & 0 & 1 \\
\hline 49a (S=0) & \[
\begin{gathered}
-29.3 \\
(-4975.330531)
\end{gathered}
\] & 0 & 0 \\
\hline 49a (S=1) & \[
\begin{gathered}
-27.0 \\
(-4975.326864)
\end{gathered}
\] & 0 & 0 \\
\hline 49b (S=0) & \[
\begin{gathered}
-29.0 \\
(-4975.330068)
\end{gathered}
\] & 0 & 0 \\
\hline 49b (S=1) & \[
\begin{gathered}
-26.2 \\
(-4975.325652)
\end{gathered}
\] & 0 & 0 \\
\hline 50a (S=0) & \[
\begin{gathered}
-28.7 \\
(-4975.329674)
\end{gathered}
\] & 0 & 0 \\
\hline 50a (S=1) & -27.8 & 0 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & (-4975.328095) & & \\
\hline 50b (S=0) & \[
\begin{gathered}
-25.6 \\
(-4975.324695)
\end{gathered}
\] & 0 & 0 \\
\hline 50b (S=1) & \[
\begin{gathered}
-21.1 \\
(-4975.31742)
\end{gathered}
\] & 0 & 0 \\
\hline 51a (S=0) & \[
\begin{gathered}
-20.3 \\
(-4975.316201)
\end{gathered}
\] & 0 & 1 \\
\hline 51a (S=1) & \[
\begin{gathered}
-16.5 \\
(-4975.310239)
\end{gathered}
\] & 0 & 1 \\
\hline 51b (S=0) & \[
\begin{gathered}
-22.6 \\
(-4975.319868)
\end{gathered}
\] & 0 & 1 \\
\hline 51b (S=1) & \[
\begin{gathered}
-17.5 \\
(-4975.31174)
\end{gathered}
\] & 0 & 1 \\
\hline 52a (S=0) & \[
\begin{gathered}
-22.1 \\
(-4975.319053)
\end{gathered}
\] & 0 & 0 \\
\hline 52a (S=1) & \[
\begin{gathered}
-20.2 \\
(-4975.315986)
\end{gathered}
\] & 0 & 0 \\
\hline 52b (S=0) & \[
\begin{gathered}
-26.5 \\
(-4975.325701)
\end{gathered}
\] & 0 & 0 \\
\hline 52b (S=1) & \[
\begin{gathered}
-22.7 \\
(-4975.32012)
\end{gathered}
\] & 0 & 0 \\
\hline 53 (S=0) & \[
\begin{gathered}
-6.0 \\
(-4821.478355)
\end{gathered}
\] & 0 & 1 \\
\hline 53 (S=1) & \[
\begin{gathered}
-9.9 \\
(-4821.484467)
\end{gathered}
\] & 0 & 1 \\
\hline 54 (S=0) & \[
\begin{gathered}
-30.5 \\
(-4821.517384)
\end{gathered}
\] & 0 & 0 \\
\hline 54 (S=1) & \[
\begin{gathered}
-19.1 \\
(-4821.499236)
\end{gathered}
\] & 0 & 0 \\
\hline 55 (S=0) & \[
\begin{gathered}
-31.2 \\
(-4821.518471)
\end{gathered}
\] & 0 & 1 \\
\hline 55 (S=1) & \[
\begin{gathered}
-15.0 \\
(-4821.492645)
\end{gathered}
\] & 0 & 1 \\
\hline 56 (S=0) & \[
\begin{gathered}
-31.7 \\
(-4821.519305)
\end{gathered}
\] & 0 & 0 \\
\hline 56 (S=1) & \[
\begin{gathered}
-44.8 \\
(-4821.540165)
\end{gathered}
\] & 0 & 0 \\
\hline
\end{tabular}

\section*{9. References}
\({ }^{1}\) Zhou, Y.Y.; Hartline, D. R.; Steiman, T. J.; Fanwick, P. E., and Uyeda. C. "Dinuclear Nickel Complexes in Five States of Oxidation Using a Redox-Active Ligand" Inor. Chem., 2014, 53 (21), 11770-11777
\({ }^{2}\) Steiman, T. J.; Kalb, A. E.; Coombs, J. C.; Kirkland, J. K.; Torres, H.; Ess, D. H.; Uyeda, C. "Dinickel-Catalyzed Vinylidene-Alkene Cyclization Reactions" ACS Catal., 2021, 1440814416.
\({ }^{3}\) Zhou, Y.-Y., and Uyeda, C. "Catalytic Reductive [4+1-Cycloadditions of Vinylidenes and Dienes." Science, 2019, 363(6429), 857-862.
\({ }^{4}\) Zhou, Y.-Y.; Uyeda, C. "Reductive Cyclopropanations Catalyzed by Dinuclear Nickel Complexes." Angew. Chem., Int. Ed., 2016, 128 (9), 3223-3227.
\({ }^{5}\) Pal, S., Zhou, Y.-Y., and Uyeda C. "Catalytic Reductive Vinylidene Transfer Reactions" J. Am. Chem. Soc., 2017139 (34), 11686-11689.
\({ }^{6}\) Spallarossa, M., Wang, Q. Riva, R., and Zhu, J. "Synthesis of Vinyl Isocyanides and Development of a Convertible Isonitrile" Org. Lett., 201618 (7), 1622-1625
\({ }^{7}\) Makings, L. R.; Garcia-Guzman Blanco, M.; Hurley, D. J.; Drutu, I.; Raffai, G.; Bergeron, D. M.; Nakatani, A.; Termin, A. P.; Silina, A. "Preparation of benzo-fused spiropiperidine compounds as modulators of muscarinic receptors" WO 2007076070, 2007
\({ }^{8}\) Murphy S. K., and Dong V. M. "Enantioselective Ketone Hydroacylation Using Noyori's Transfer Hydrogenation Catalyst" J. Am. Chem. Soc., 2013, 135(15), 5553-5556
\({ }^{9}\) Tu, Y.; Zeng, X.; Wang, H.; Zhao, J. "A Robust One-Step Approach to Enamides" Org. Lett., 2018, 20(1), 280-283.
\({ }^{10}\) Taylor, W. G. "Synthesis of 5,5-Dichloro-4-pentenoic Acid by the Wittig Reaction with Bromotrichloromethane and Triphenylphosphine" J. Org. Chem., 1981, 46, 4292-4294.
\({ }^{11}\) Friden-Saxin, M,; Pemberton, N.; Andersson, K. S.; Dyrager, C.; Friberg, A.; Grotli, M.; Luthman, K. "Synthesis of 2-Alkyl-Substituted Chromone Derivatives Using Microwave Irradiation" J. Org. Chem., 2009, 74(7), 2755-2759.
\({ }^{12}\) Jui, N. T.; Lee, Esther C. Y.; MacMillan, D. W. C. "Enantioselective Organo-SOMO Cascade Cycloadditions: A Rapid Approach to Molecular Complexity from Simple Aldehydes and Olefins" J. Am. Chem. Soc., 2010, 132(29), 10015-10017.
\({ }^{13}\) a) Alcohol synthesis: Vulovic, B.; Trmcic, M.; Matovic, R.; Saicic, R. N. "Cyclization Reactions of Oxyallyl Cation. A Method for Cyclopentane Ring Formation" Org. Lett. 2019, 21, (23), 9618-9621. b) Aldehyde synthesis: Dachavaram, S. S.; Kalyankar, K. B.; Das, S. "First stereoselective total synthesis of Neocosmosin A: a facile approach" Tet. Lett. 2014, 55(41), 5629-5631.
\({ }^{14}\) Fraser, A. L.; Menzies, S. K.; King, E. F. B.; Tulloch, L. B.; Gould, E. R.; Zacharova, M. K.; Smith, T. K.; Florence, G. J. "Design and Synthesis of Broad Spectrum Trypanosomatid Selective Inhibitors" ACS Infect. Dis., 2018, 4(4), 560-567.
\({ }^{15}\) Takeoka, G. R.; Buttery, R. G.; and Perrino, C. T. Jr. "Synthesis and Occurrence of Oxoaldehydes in Used Fying Oils" J. Agric. Food Chem., 1995, 43(1), 22-26.
\({ }^{16}\) Matuszewska, I., Leniewski, A., Roszkowski P., Czarnocki, Z. "Synthesis of a Novel Class of Fatty Acids-Derived Isoquinolines" Chem. Phys. Lipids, 2005, 135, 131-145.
\({ }^{17}\) Buhler, H.; Effenberger, F.; Forster, S.; Roos, J.; Wajant, H. "Enzyme-catalyzed reactions, part 47. Substrate specificity of mutants of the hydroxynitrile lyase from Manihot esculenta" ChemBioChem 2003, 4, (2-3), 211-216
\({ }^{18}\) Davies, A. T.; Taylor, J. E.; Douglas, J. Collett, C. J.; Morrill, L. C.; Fallan, C.; Slawin, A. M. C.; Churchill, C. and Smith, A. D. "Stereospecific Asymmetric N-Heterocyclic Carbene (NHC)-Catalyzed Redox Synthesis of Trifluoromethyl Dihydropyranones and Mechanistic Insights" J. Org. Chem. 2013, 78, 18, 9243-9257.
\({ }^{19}\) Gaussian 16, Revision A.03, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2016.

\section*{APPENDIX C: SUPPORTING INFORMATION FOR CHAPTER 3}

Computational Methods. Geometry optimizations were performed using the Gaussian16 software package. \({ }^{[1]}\) All geometries were fully optimized at the BP86/6-311G(d,p) level of DFT. Stationary points were verified by frequency analysis.

\section*{19}

Charge: 0
Multiplicity: 3
Imaginary Frequencies: 0
Sum of Electronic and Thermal Free Energies: -5082.144455
\begin{tabular}{lrrr}
N & 3.06587400 & 0.59489600 & -0.00354400 \\
N & 1.14413500 & 2.15012000 & -0.35736500 \\
N & -1.14392900 & 2.15020600 & -0.35694700 \\
N & -3.06566600 & 0.59501300 & -0.00291900 \\
C & 4.90507700 & 2.27522200 & -0.23878700 \\
H & 5.49371700 & 1.69823300 & 0.48990000 \\
H & 5.02022900 & 3.34486500 & -0.01488300 \\
H & 5.35077100 & 2.08900400 & -1.23225000 \\
C & 3.46022400 & 1.85960300 & -0.21127800 \\
C & 2.37265800 & 2.78446700 & -0.40484000 \\
C & 2.43930300 & 4.17759700 & -0.59262400 \\
H & 3.41052000 & 4.67318000 & -0.65361100 \\
C & 1.26860500 & 4.92983500 & -0.69784300 \\
H & 1.31895700 & 6.01264500 & -0.83749400 \\
C & 0.00013100 & 4.29572000 & -0.61539200 \\
C & 0.00012100 & 2.86488100 & -0.44356700 \\
C & -1.26832800 & 4.92993600 & -0.69721100 \\
H & -1.31865700 & 6.01276000 & -0.83676100 \\
C & -2.43904500 & 4.17777800 & -0.59155000 \\
H & -3.41025100 & 4.67343900 & -0.65204400
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline C & -2.37240700 & 2.78463000 & \(-0.40393600\) \\
\hline C & -3.45998900 & 1.85975600 & -0.21037000 \\
\hline C & -4.90482300 & 2.27544800 & \(-0.23786600\) \\
\hline H & -5.49368500 & 1.69784500 & 0.49014500 \\
\hline H & -5.35024700 & 2.09016700 & -1.23162900 \\
\hline H & -5.01997000 & 3.34489900 & -0.01304100 \\
\hline C & 4.01469500 & -0.43044100 & 0.29385100 \\
\hline C & 4.29883900 & -0.71216000 & 1.66024800 \\
\hline C & 5.16736100 & -1.77586300 & 1.94816000 \\
\hline H & 5.39868800 & -2.01438600 & 2.98880900 \\
\hline C & 5.75093500 & \(-2.53356100\) & 0.92642900 \\
\hline H & 6.41915800 & -3.36261500 & 1.17401800 \\
\hline C & 5.48765100 & -2.22053300 & -0.40876500 \\
\hline H & 5.96069800 & -2.80634700 & -1.20186400 \\
\hline C & 4.63071800 & -1.16105200 & -0.75398700 \\
\hline C & 3.65563400 & 0.12206100 & 2.77017600 \\
\hline H & 3.60001000 & 1.16202500 & 2.40196300 \\
\hline C & 4.46637300 & 0.14478300 & 4.07847200 \\
\hline H & 4.01947200 & 0.86476200 & 4.78281400 \\
\hline H & 5.51372300 & 0.44112200 & 3.90656900 \\
\hline H & 4.46811000 & -0.83801200 & 4.57876100 \\
\hline C & 2.20369400 & \(-0.33214000\) & 3.03869400 \\
\hline H & 2.18109200 & -1.36746900 & 3.41681600 \\
\hline H & 1.60000200 & -0.28712600 & 2.11399600 \\
\hline H & 1.72292100 & 0.31997600 & 3.78639100 \\
\hline C & 4.34623800 & -0.84383800 & -2.22123600 \\
\hline H & 3.84646100 & 0.13814500 & -2.25576100 \\
\hline C & 5.63072200 & -0.74454400 & -3.06901500 \\
\hline H & 6.14363200 & -1.71700800 & -3.15096300 \\
\hline H & 6.34657300 & -0.02480800 & -2.63998500 \\
\hline H & 5.38647700 & -0.41668300 & -4.09280300 \\
\hline C & 3.35966400 & -1.86912600 & -2.81856700 \\
\hline H & 3.78749000 & -2.88563000 & -2.80265500 \\
\hline H & 3.11589400 & -1.61520200 & -3.86364600 \\
\hline H & 2.42262200 & -1.87760000 & -2.24101800 \\
\hline C & -4.01460300 & -0.43045900 & 0.29369300 \\
\hline C & -4.29925600 & -0.71284500 & 1.65985700 \\
\hline C & -5.16802000 & \(-1.77656400\) & 1.94692100 \\
\hline H & -5.39976000 & -2.01557900 & 2.98736800 \\
\hline C & -5.75133000 & \(-2.53368700\) & 0.92460200 \\
\hline H & -6.41975600 & -3.36276600 & 1.17156000 \\
\hline C & -5.48748600 & -2.22006600 & -0.41033000 \\
\hline H & -5.96027600 & -2.80544500 & -1.20390500 \\
\hline C & -4.63028100 & -1.16051900 & -0.75471900 \\
\hline C & -3.65623700 & 0.12064600 & 2.77043700 \\
\hline H & -3.60009700 & 1.16076400 & 2.40275000 \\
\hline
\end{tabular}
\begin{tabular}{lrrr}
C & -4.46750100 & 0.14302500 & 4.07840900 \\
H & -4.46983300 & -0.84001200 & 4.57821200 \\
H & -5.51466400 & 0.43984600 & 3.90619400 \\
H & -4.02063000 & 0.86248200 & 4.78330400 \\
C & -2.20457600 & -0.33424300 & 3.03925800 \\
H & -2.18252100 & -1.36964700 & 3.41722400 \\
H & -1.72365400 & 0.31752900 & 3.78715100 \\
H & -1.60067200 & -0.28937500 & 2.11469300 \\
C & -4.34529600 & -0.84266800 & -2.22173000 \\
H & -3.84456500 & 0.13884700 & -2.25560200 \\
C & -3.35970200 & -1.86852900 & -2.81971100 \\
H & -2.42258500 & -1.87817200 & -2.24231200 \\
H & -3.11586400 & -1.61424500 & -3.86468700 \\
H & -3.78842500 & -2.88466400 & -2.80432200 \\
C & -5.62964700 & -0.74161700 & -3.06953300 \\
H & -6.14344700 & -1.71356200 & -3.15210900 \\
H & -5.38504700 & -0.41332700 & -4.09309900 \\
H & -6.34485900 & -0.02150300 & -2.64007600 \\
Ni & 1.18534900 & 0.24893800 & -0.26183000 \\
Ni & -1.18514400 & 0.24903600 & -0.26129400 \\
C & -0.00015200 & -1.00224800 & -1.01064900 \\
H & -0.00043100 & -0.95085500 & -2.11948400 \\
Si & -0.00015500 & -2.81735700 & -0.47993600 \\
C & -1.52283100 & -3.29390600 & 0.55176400 \\
H & -1.53507300 & -2.77026900 & 1.52037200 \\
H & -1.5045990 & -4.37819800 & 0.75885000 \\
H & -2.46892800 & -3.06444300 & 0.03758200 \\
C & 0.00086800 & -3.93004700 & -2.02677900 \\
H & 0.89127200 & -3.75764600 & -2.65245900 \\
H & -0.88885900 & -3.75780600 & -2.65347900 \\
H & 0.00078100 & -4.99287700 & -1.72947500 \\
C & 1.52156500 & -3.29320200 & 0.55347900 \\
H & 1.50369300 & -4.37751400 & 0.76050200 \\
H & 1.53240500 & -2.76960300 & 1.52212700 \\
H & 2.46813000 & -3.06321900 & 0.04037100
\end{tabular}

S1
Charge: 0
Multiplicity: 3

\section*{Imaginary Frequencies: 0}

Sum of Electronic and Thermal Free Energies: -5191.685509
\begin{tabular}{lrrr}
C & -5.08653700 & 2.47001700 & 0.14392500 \\
H & -5.82637000 & 1.65929000 & 0.16962400 \\
H & -5.36395200 & 3.16247700 & -0.66758100 \\
H & -5.15764900 & 3.03056100 & 1.09215400 \\
N & -3.40342200 & 0.61736700 & -0.05250700 \\
Ni & -1.58985900 & 0.22263300 & -0.25432200 \\
C & -3.69879000 & 1.91804300 & -0.04807000 \\
N & -1.33069100 & 2.10613100 & -0.27738000 \\
Ni & 1.55410600 & 0.22563100 & -0.25950400 \\
N & 1.04572000 & 2.16474000 & -0.28721200 \\
C & -2.54772600 & 2.77890700 & -0.19480900 \\
N & 3.28754100 & 0.85328300 & -0.07662900 \\
C & -2.63227900 & 4.18138200 & -0.23916200 \\
H & -3.60699200 & 4.66826800 & -0.18174900 \\
C & -1.47039700 & 4.92401400 & -0.35630400 \\
H & -1.50028600 & 6.01574800 & -0.40394100 \\
C & -0.21296200 & 4.27174400 & -0.38948100 \\
C & -0.15934400 & 2.82286100 & -0.32360000 \\
C & 1.00159600 & 5.00040100 & -0.46710600 \\
H & 0.96347200 & 6.09042800 & -0.53911800 \\
C & 2.20577800 & 4.32669600 & -0.42429800 \\
H & 3.15021100 & 4.87155300 & -0.46602000 \\
C & 2.21896200 & 2.92155100 & -0.31132300 \\
C & 3.44404000 & 2.18131100 & -0.16942100 \\
C & 4.78846000 & 2.86196700 & -0.12151600 \\
H & 4.85720500 & 3.57497000 & 0.71759800 \\
H & 4.98069500 & 3.42898700 & -1.04842200 \\
H & 5.59123200 & 2.12159600 & -0.00537400 \\
C & -4.40503500 & -0.39472200 & 0.10257800 \\
C & -4.72313100 & -0.83248500 & 1.41556000
\end{tabular}
\begin{tabular}{lrrr}
C & -5.68686800 & -1.84274800 & 1.57336500 \\
H & -5.93858200 & -2.18726000 & 2.58061200 \\
C & -6.32346700 & -2.41246500 & 0.46971200 \\
H & -7.07373600 & -3.19551400 & 0.60754200 \\
C & -5.98209700 & -1.98409000 & -0.81616800 \\
H & -6.46721500 & -2.44056800 & -1.68466300 \\
C & -5.02301500 & -0.97913900 & -1.03812400 \\
C & -4.00885600 & -0.26864100 & 2.64343000 \\
H & -3.34056800 & 0.53602200 & 2.29893400 \\
C & -3.11947200 & -1.34605900 & 3.30232500 \\
H & -3.72380700 & -2.18899500 & 3.67760500 \\
H & -2.56541200 & -0.92099200 & 4.15572300 \\
H & -2.38767900 & -1.74603100 & 2.58329300 \\
C & -4.99358300 & 0.34056400 & 3.66339600 \\
H & -5.66803300 & -0.42486200 & 4.08230400 \\
H & -5.62003100 & 1.12136500 & 3.20360300 \\
H & -4.44392300 & 0.79435400 & 4.50454800 \\
C & -4.70665900 & -0.61688700 & -2.49473300 \\
H & -5.29941800 & -1.33492700 & -3.09099900 \\
C & -5.18742500 & 0.78945800 & -2.91512200 \\
H & -6.23512500 & 0.96351900 & -2.62211000 \\
H & -5.12017700 & 0.89415600 & -4.01091800 \\
H & -4.56323700 & 1.57942200 & -2.47117700 \\
C & -3.23112300 & -0.83492200 & -2.88545000 \\
H & -2.56562300 & -0.11638000 & -2.37748100 \\
H & -3.10619100 & -0.70225500 & -3.97308200 \\
H & -2.89123500 & -1.84706900 & -2.61857700 \\
C & 4.38798700 & -0.01779400 & 0.20861200 \\
C & 4.78677000 & -0.20898000 & 1.56155800 \\
C & 5.82052100 & -1.12378000 & 1.81843000 \\
H & 6.14614900 & -1.29069900 & 2.84755100 \\
C & 6.44999400 & -1.82052900 & 0.78130500 \\
H & 7.25394000 & -2.52640800 & 1.00664600 \\
C & 6.05678200 & -1.60631700 & -0.54201200 \\
H & 6.56300500 & -2.14467000 & -1.34726200 \\
C & 5.02784200 & -0.70292400 & -0.85655400 \\
C & 4.08175200 & 0.54034000 & 2.69483500 \\
H & 3.89301700 & 1.56852400 & 2.33819400 \\
C & 4.91774800 & 0.65364500 & 3.98181400 \\
H & 4.40505200 & 1.31097000 & 4.70224700 \\
H & 5.91724900 & 1.07523000 & 3.78746200 \\
H & 5.04910700 & -0.32456300 & 4.47393400 \\
H & 2.70120800 & -0.08679200 & 2.99388800 \\
H & 2.80979700 & -1.12735500 & 3.34061900 \\
H & 2.17116700 & -0.08558500 & 2.084679000 \\
H & 0.48706400 & 3.77181200 \\
H & -1070
\end{tabular}
\begin{tabular}{lrrr}
C & 4.56680200 & -0.49859800 & -2.29820100 \\
H & 4.10669200 & 0.50239600 & -2.35417200 \\
C & 5.71137100 & -0.54308300 & -3.32718900 \\
H & 6.51883600 & 0.16014100 & -3.06754900 \\
H & 5.33043200 & -0.27290800 & -4.32542100 \\
H & 6.15262000 & -1.55007000 & -3.41143700 \\
C & 3.46391800 & -1.52243200 & -2.64538400 \\
H & 3.85434300 & -2.55243400 & -2.60074800 \\
H & 3.05990200 & -1.34452300 & -3.65559400 \\
H & 2.63083400 & -1.43869400 & -1.92663000 \\
N & -0.02167200 & -0.63296300 & -0.51424300 \\
N & -0.9400900 & -1.49161000 & -0.23568000 \\
C & -1.04572700 & -2.80329200 & -0.09837500 \\
H & -2.07201000 & -3.12737500 & 0.10507500 \\
C & -0.14810700 & -5.63216100 & 0.57119200 \\
H & 0.64889100 & -6.39089300 & 0.50136700 \\
H & -1.04448800 & -6.04582900 & 0.08017100 \\
H & -0.38406500 & -5.48785900 & 1.63780400 \\
C & 1.89184700 & -3.26368700 & 0.64453500 \\
H & 1.98953500 & -2.19563400 & 0.37745500 \\
H & 1.76941700 & -3.31260400 & 1.73822800 \\
H & 2.83694300 & -3.76303700 & 0.37944300 \\
C & 0.80565200 & -4.32719000 & -2.06772200 \\
H & 1.66438000 & -5.01278900 & -2.16701800 \\
H & -0.05220400 & -4.77822100 & -2.59241600 \\
H & 1.05991700 & -3.38828300 & -2.58395900 \\
Si & 0.39231000 & -4.00720500 & -0.24301000
\end{tabular}

S1
Charge: 0
Multiplicity: 1
Imaginary Frequencies: 0
Sum of Electronic and Thermal Free Energies: -5191.682578
\(\begin{array}{lllll}\text { C } & -5.08653700 & 2.47001700 & 0.14392500\end{array}\)
\begin{tabular}{|c|c|c|c|}
\hline H & -5.82637000 & 1.65929000 & 0.16962400 \\
\hline H & -5.36395200 & 3.16247700 & -0.66758100 \\
\hline H & -5.15764900 & 3.03056100 & 1.09215400 \\
\hline N & -3.40342200 & 0.61736700 & -0.05250700 \\
\hline Ni & -1.58985900 & 0.22263300 & -0.25432200 \\
\hline C & -3.69879000 & 1.91804300 & \(-0.04807000\) \\
\hline N & -1.33069100 & 2.10613100 & -0.27738000 \\
\hline Ni & 1.55410600 & 0.22563100 & -0.25950400 \\
\hline N & 1.04572000 & 2.16474000 & -0.28721200 \\
\hline C & -2.54772600 & 2.77890700 & -0.19480900 \\
\hline N & 3.28754100 & 0.85328300 & -0.07662900 \\
\hline C & -2.63227900 & 4.18138200 & -0.23916200 \\
\hline H & -3.60699200 & 4.66826800 & -0.18174900 \\
\hline C & -1.47039700 & 4.92401400 & \(-0.35630400\) \\
\hline H & -1.50028600 & 6.01574800 & -0.40394100 \\
\hline C & -0.21296200 & 4.27174400 & -0.38948100 \\
\hline C & -0.15934400 & 2.82286100 & -0.32360000 \\
\hline C & 1.00159600 & 5.00040100 & -0.46710600 \\
\hline H & 0.96347200 & 6.09042800 & -0.53911800 \\
\hline C & 2.20577800 & 4.32669600 & -0.42429800 \\
\hline H & 3.15021100 & 4.87155300 & -0.46602000 \\
\hline C & 2.21896200 & 2.92155100 & -0.31132300 \\
\hline C & 3.44404000 & 2.18131100 & -0.16942100 \\
\hline C & 4.78846000 & 2.86196700 & -0.12151600 \\
\hline H & 4.85720500 & 3.57497000 & 0.71759800 \\
\hline H & 4.98069500 & 3.42898700 & -1.04842200 \\
\hline H & 5.59123200 & 2.12159600 & -0.00537400 \\
\hline C & -4.40503500 & -0.39472200 & 0.10257800 \\
\hline C & -4.72313100 & -0.83248500 & 1.41556000 \\
\hline C & -5.68686800 & -1.84274800 & 1.57336500 \\
\hline H & -5.93858200 & -2.18726000 & 2.58061200 \\
\hline C & -6.32346700 & -2.41246500 & 0.46971200 \\
\hline H & -7.07373600 & -3.19551400 & 0.60754200 \\
\hline C & -5.98209700 & -1.98409000 & -0.81616800 \\
\hline H & -6.46721500 & -2.44056800 & -1.68466300 \\
\hline C & -5.02301500 & -0.97913900 & -1.03812400 \\
\hline C & -4.00885600 & -0.26864100 & 2.64343000 \\
\hline H & -3.34056800 & 0.53602200 & 2.29893400 \\
\hline C & -3.11947200 & -1.34605900 & 3.30232500 \\
\hline H & -3.72380700 & -2.18899500 & 3.67760500 \\
\hline H & -2.56541200 & -0.92099200 & 4.15572300 \\
\hline H & -2.38767900 & -1.74603100 & 2.58329300 \\
\hline C & -4.99358300 & 0.34056400 & 3.66339600 \\
\hline H & -5.66803300 & -0.42486200 & 4.08230400 \\
\hline H & -5.62003100 & 1.12136500 & 3.20360300 \\
\hline H & -4.44392300 & 0.79435400 & 4.50454800 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline C & -4.70665900 & -0.61688700 & -2.49473300 \\
\hline H & -5.29941800 & -1.33492700 & -3.09099900 \\
\hline C & -5.18742500 & 0.78945800 & -2.91512200 \\
\hline H & -6.23512500 & 0.96351900 & -2.62211000 \\
\hline H & -5.12017700 & 0.89415600 & -4.01091800 \\
\hline H & -4.56323700 & 1.57942200 & -2.47117700 \\
\hline C & -3.23112300 & \(-0.83492200\) & -2.88545000 \\
\hline H & -2.56562300 & -0.11638000 & \(-2.37748100\) \\
\hline H & -3.10619100 & -0.70225500 & -3.97308200 \\
\hline H & -2.89123500 & -1.84706900 & -2.61857700 \\
\hline C & 4.38798700 & -0.01779400 & 0.20861200 \\
\hline C & 4.78677000 & -0.20898000 & 1.56155800 \\
\hline C & 5.82052100 & -1.12378000 & 1.81843000 \\
\hline H & 6.14614900 & -1.29069900 & 2.84755100 \\
\hline C & 6.44999400 & -1.82052900 & 0.78130500 \\
\hline H & 7.25394000 & -2.52640800 & 1.00664600 \\
\hline C & 6.05678200 & -1.60631700 & -0.54201200 \\
\hline H & 6.56300500 & -2.14467000 & -1.34726200 \\
\hline C & 5.02784200 & -0.70292400 & -0.85655400 \\
\hline C & 4.08175200 & 0.54034000 & 2.69483500 \\
\hline H & 3.89301700 & 1.56852400 & 2.33819400 \\
\hline C & 4.91774800 & 0.65364500 & 3.98181400 \\
\hline H & 4.40505200 & 1.31097000 & 4.70224700 \\
\hline H & 5.91724900 & 1.07523000 & 3.78746200 \\
\hline H & 5.04910700 & -0.32456300 & 4.47393400 \\
\hline C & 2.70120800 & -0.08679200 & 2.99388800 \\
\hline H & 2.80979700 & -1.12735500 & 3.34061900 \\
\hline H & 2.07239600 & -0.08558500 & 2.08467900 \\
\hline H & 2.17116700 & 0.48706400 & 3.77181200 \\
\hline C & 4.56680200 & -0.49859800 & -2.29820100 \\
\hline H & 4.10669200 & 0.50239600 & -2.35417200 \\
\hline C & 5.71137100 & -0.54308300 & -3.32718900 \\
\hline H & 6.51883600 & 0.16014100 & -3.06754900 \\
\hline H & 5.33043200 & -0.27290800 & -4.32542100 \\
\hline H & 6.15262000 & -1.55007000 & -3.41143700 \\
\hline C & 3.46391800 & -1.52243200 & -2.64538400 \\
\hline H & 3.85434300 & -2.55243400 & -2.60074800 \\
\hline H & 3.05990200 & -1.34452300 & -3.65559400 \\
\hline H & 2.63083400 & -1.43869400 & -1.92663000 \\
\hline N & -0.02167200 & -0.63296300 & \(-0.51424300\) \\
\hline N & -0.94009000 & -1.49161000 & -0.23568000 \\
\hline C & -1.04572700 & \(-2.80329200\) & -0.09837500 \\
\hline H & -2.07201000 & -3.12737500 & 0.10507500 \\
\hline C & -0.14810700 & -5.63216100 & 0.57119200 \\
\hline H & 0.64889100 & -6.39089300 & 0.50136700 \\
\hline H & -1.04448800 & -6.04582900 & 0.08017100 \\
\hline
\end{tabular}
\begin{tabular}{lrrc}
H & -0.38406500 & -5.48785900 & 1.63780400 \\
C & 1.89184700 & -3.26368700 & 0.64453500 \\
H & 1.98953500 & -2.19563400 & 0.37745500 \\
H & 1.76941700 & -3.31260400 & 1.73822800 \\
H & 2.83694300 & -3.76303700 & 0.37944300 \\
C & 0.80565200 & -4.32719000 & -2.06772200 \\
H & 1.66438000 & -5.01278900 & -2.16701800 \\
H & -0.05220400 & -4.77822100 & -2.59241600 \\
H & 1.05991700 & -3.38828300 & -2.58395900 \\
Si & 0.39231000 & -4.00720500 & -0.24301000
\end{tabular}

S2
Charge: 0
Multiplicity: 1
Imaginary Frequencies: 0
Sum of Electronic and Thermal Free Energies: -5060.551983
\begin{tabular}{lrrr}
Ni & -1.31620500 & -0.07404900 & 0.15472600 \\
Ni & 1.26629300 & -0.09843800 & 0.15205100 \\
N & 3.11776300 & -0.68307800 & 0.28726500 \\
N & 1.16208600 & -0.77348600 & 1.91213100 \\
N & -1.11667700 & -1.04479200 & 1.77820600 \\
N & -3.05537200 & -0.93655900 & 0.11598400 \\
C & 4.90941300 & -1.26107100 & 1.95804500 \\
H & 5.61775400 & -0.76387300 & 1.28276200 \\
H & 5.12951600 & -2.34298100 & 1.91454800 \\
H & 5.10503400 & -0.92249300 & 2.98619700 \\
C & 3.48386800 & -0.98656600 & 1.55047600 \\
C & 2.39314000 & -1.15350800 & 2.45549500 \\
C & 2.45770600 & -1.76756600 & 3.71611900 \\
H & 3.43176000 & -1.99553300 & 4.15427200 \\
C & 1.28864500 & -2.14220700 & 4.37455100 \\
H & 1.33060700 & -2.65524800 & 5.33844200
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline C & 0.03374500 & -1.95565700 & 3.73879000 \\
\hline C & 0.02148600 & -1.25676200 & 2.47333600 \\
\hline C & -1.20624000 & -2.44046600 & 4.22391000 \\
\hline H & -1.23804700 & -2.97092700 & 5.17894600 \\
\hline C & -2.35525300 & -2.30250500 & 3.44928200 \\
\hline H & -3.30394000 & -2.71566300 & 3.79743600 \\
\hline C & -2.29850400 & -1.63936100 & 2.21247400 \\
\hline C & -3.37687300 & -1.54039600 & 1.26898700 \\
\hline C & -4.71850900 & -2.16739200 & 1.55141300 \\
\hline H & -5.29065800 & -1.59196000 & 2.29853800 \\
\hline H & -4.59018100 & -3.18577500 & 1.95067000 \\
\hline H & -5.32245000 & -2.23023500 & 0.63654200 \\
\hline C & 4.12090600 & -0.59765100 & -0.73220600 \\
\hline C & 4.79295000 & 0.62144300 & -1.01491700 \\
\hline C & 5.73969000 & 0.63521000 & \(-2.05637600\) \\
\hline H & 6.26790000 & 1.56564600 & -2.28384900 \\
\hline C & 6.02099500 & -0.51160100 & -2.79925200 \\
\hline H & 6.76065000 & -0.47811700 & -3.60368600 \\
\hline C & 5.35335600 & -1.70671500 & \(-2.50858600\) \\
\hline H & 5.58359800 & -2.60232500 & -3.09040400 \\
\hline C & 4.39976000 & -1.77706800 & -1.48203400 \\
\hline C & 4.53760900 & 1.90125100 & \(-0.21743800\) \\
\hline H & 3.67246200 & 1.71276600 & 0.43970300 \\
\hline C & 4.19167100 & 3.09803400 & -1.13043600 \\
\hline H & 3.90615400 & 3.97314300 & -0.52429900 \\
\hline H & 3.35755600 & 2.86768700 & -1.81041900 \\
\hline H & 5.05497600 & 3.39405400 & -1.74945700 \\
\hline C & 5.74091200 & 2.26105200 & 0.68404800 \\
\hline H & 5.52621000 & 3.17231000 & 1.26662700 \\
\hline H & 6.64293300 & 2.45245200 & 0.07890100 \\
\hline H & 5.97845600 & 1.45480800 & 1.39446200 \\
\hline C & 3.64784400 & -3.07624600 & -1.18735800 \\
\hline H & 3.47175400 & -3.11245800 & -0.09849600 \\
\hline C & 4.42367800 & -4.34905200 & -1.57087800 \\
\hline H & 5.43358400 & -4.36182400 & -1.13009300 \\
\hline H & 4.52788800 & -4.45605600 & -2.66361900 \\
\hline H & 3.88309300 & -5.23903900 & -1.21027000 \\
\hline C & 2.25746100 & -3.05681500 & -1.86166500 \\
\hline H & 1.67957000 & -2.18329000 & -1.51995400 \\
\hline H & 1.68855300 & -3.96711000 & -1.60955600 \\
\hline H & 2.35584600 & -3.00095700 & -2.95866400 \\
\hline C & -4.00683800 & -0.78309900 & -0.94099900 \\
\hline C & -5.13018800 & 0.08414400 & -0.84036700 \\
\hline C & -5.98571800 & 0.19371000 & -1.95256100 \\
\hline H & -6.85270400 & 0.85804900 & -1.89165100 \\
\hline C & -5.75311200 & -0.51893900 & -3.12913800 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline H & -6.43703400 & -0.41987200 & -3.97632600 \\
\hline C & -4.63133600 & -1.34951800 & -3.22344200 \\
\hline H & -4.44260700 & -1.89314200 & -4.15236700 \\
\hline C & -3.74100400 & -1.49005900 & -2.14960900 \\
\hline C & -5.42754100 & 0.93409000 & 0.39820300 \\
\hline H & -4.68087400 & 0.68643300 & 1.16996600 \\
\hline C & -6.83178900 & 0.64702100 & 0.97777400 \\
\hline H & -6.97985000 & 1.20124300 & 1.91943100 \\
\hline H & -6.98543000 & -0.42310700 & 1.18152900 \\
\hline H & -7.62195900 & 0.96780700 & 0.27893600 \\
\hline C & -5.29569500 & 2.44463500 & 0.09673600 \\
\hline H & -6.02996000 & 2.76311600 & -0.66157200 \\
\hline H & -4.29491300 & 2.70228800 & -0.28070800 \\
\hline H & -5.47670600 & 3.03661500 & 1.00926000 \\
\hline C & -2.51421300 & -2.39233900 & -2.24814900 \\
\hline H & -1.75093600 & -1.94094100 & -1.58453500 \\
\hline C & -2.81700400 & -3.80433900 & -1.69846700 \\
\hline H & -3.16766200 & -3.76264900 & -0.65602300 \\
\hline H & -1.91266300 & -4.43472900 & -1.72585000 \\
\hline H & -3.59757800 & -4.29834300 & -2.30174300 \\
\hline C & -1.92073000 & -2.47676900 & -3.66526800 \\
\hline H & -2.58082800 & -3.02401300 & -4.35947400 \\
\hline H & -0.96091200 & -3.01711100 & -3.63838100 \\
\hline H & -1.73723800 & -1.47674000 & -4.08920400 \\
\hline C & 1.27122100 & 0.60515100 & -1.68586800 \\
\hline H & 2.25850100 & 0.69359200 & -2.14570300 \\
\hline H & 0.53555200 & 0.05174600 & -2.28087600 \\
\hline C & 0.84260300 & 1.58496300 & -0.76310500 \\
\hline H & 1.54198800 & 2.35718300 & -0.42106400 \\
\hline C & -0.54472100 & 1.69634400 & -0.29353300 \\
\hline C & -1.62403800 & 1.31238600 & -1.15560400 \\
\hline H & -1.41309300 & 1.03474600 & -2.19472900 \\
\hline H & -2.60522700 & 1.77403500 & -1.00813900 \\
\hline C & -0.77329000 & 2.68311400 & 0.84643200 \\
\hline H & -0.18164800 & 2.36034900 & 1.71995400 \\
\hline H & -1.83194100 & 2.63106700 & 1.15804800 \\
\hline C & -0.42522100 & 4.13042800 & 0.51648700 \\
\hline C & 0.18505700 & 4.94979700 & 1.48355600 \\
\hline C & -0.72521100 & 4.68977300 & -0.73953900 \\
\hline C & 0.47461600 & 6.29372000 & 1.21292400 \\
\hline H & 0.43197200 & 4.52592800 & 2.46238000 \\
\hline C & -0.43567500 & 6.03209300 & -1.01405800 \\
\hline H & -1.18554200 & 4.06261100 & -1.50784100 \\
\hline C & 0.16372400 & 6.84071300 & -0.03871300 \\
\hline H & 0.94789800 & 6.91291400 & 1.98020500 \\
\hline H & -0.67701500 & 6.44834800 & -1.99620500 \\
\hline
\end{tabular}

H

\section*{S2}

Charge: 0
Multiplicity: 3
Imaginary Frequencies: 0
Sum of Electronic and Thermal Free Energies: -5060.541842
\begin{tabular}{|c|c|c|c|}
\hline Ni & -1.43834700 & \(-0.08607300\) & 0.12986400 \\
\hline Ni & 1.13894300 & -0.38115000 & -0.00007700 \\
\hline N & 3.11493400 & -0.77413800 & 0.26740500 \\
\hline N & 1.01580600 & \(-1.45608800\) & 1.57472300 \\
\hline N & -1.28316900 & -1.40254000 & 1.51581400 \\
\hline N & -3.26188300 & -0.71694200 & 0.06918300 \\
\hline C & 4.75195100 & \(-1.94613900\) & 1.77859200 \\
\hline H & 5.51192300 & -1.59855100 & 1.06658600 \\
\hline H & 4.81122200 & -3.04621900 & 1.83735200 \\
\hline H & 5.01044400 & -1.55490400 & 2.77732700 \\
\hline C & 3.37462200 & -1.48775300 & 1.36497900 \\
\hline C & 2.21646500 & -1.83816800 & 2.14797500 \\
\hline C & 2.23571600 & \(-2.56298000\) & 3.35900100 \\
\hline H & 3.19150700 & -2.81295200 & 3.82362100 \\
\hline C & 1.04391300 & \(-2.96732500\) & 3.94549300 \\
\hline H & 1.04646400 & -3.55000000 & 4.87045000 \\
\hline C & -0.19780600 & -2.64980900 & 3.32682800 \\
\hline C & -0.15718100 & -1.82096700 & 2.15047800 \\
\hline C & -1.46752900 & -3.10275300 & 3.76684300 \\
\hline H & -1.53388800 & -3.74406600 & 4.64949600 \\
\hline C & -2.60688600 & -2.76185800 & 3.04647100 \\
\hline H & -3.58490200 & -3.14003900 & 3.34950400 \\
\hline C & -2.50383500 & -1.91946800 & 1.92100500 \\
\hline C & -3.60336500 & -1.53361700 & 1.06977900 \\
\hline C & -4.98894700 & -2.08120500 & 1.29173400 \\
\hline H & -5.45706800 & \(-1.64693100\) & 2.19200200 \\
\hline H & -4.95655700 & -3.17315000 & 1.43599600 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline H & -5.63820900 & -1.86445800 & 0.43317700 \\
\hline C & 4.13642500 & -0.51586200 & -0.69578800 \\
\hline C & 4.72854300 & 0.77413900 & -0.76127500 \\
\hline C & 5.65619800 & 1.03466500 & -1.78504200 \\
\hline H & 6.12001100 & 2.02253300 & -1.84678500 \\
\hline C & 5.99661600 & 0.05667200 & -2.72072900 \\
\hline H & 6.71486600 & 0.28034800 & -3.51404500 \\
\hline C & 5.42266300 & -1.21631300 & -2.63327000 \\
\hline H & 5.71025800 & -1.98014200 & -3.35913400 \\
\hline C & 4.49654900 & -1.53608900 & -1.62784000 \\
\hline C & 4.42235600 & 1.83930300 & 0.29065700 \\
\hline H & 3.45401300 & 1.57114400 & 0.74734900 \\
\hline C & 4.30069900 & 3.25999900 & -0.29560000 \\
\hline H & 3.91579800 & 3.95565500 & 0.46658500 \\
\hline H & 3.61385400 & 3.29239500 & -1.15573900 \\
\hline H & 5.27725400 & 3.64700400 & -0.63205500 \\
\hline C & 5.48115100 & 1.81941600 & 1.41788300 \\
\hline H & 5.23598300 & 2.56476700 & 2.19289300 \\
\hline H & 6.48037400 & 2.06053900 & 1.01740400 \\
\hline H & 5.54228900 & 0.83270300 & 1.90143200 \\
\hline C & 3.88453600 & -2.93806800 & -1.53836600 \\
\hline H & 3.82973100 & -3.20172000 & -0.46759400 \\
\hline C & 4.72521000 & -4.03078500 & \(-2.22309100\) \\
\hline H & 5.77063200 & -4.02650100 & \(-1.87452400\) \\
\hline H & 4.73034300 & -3.91858100 & -3.32023000 \\
\hline H & 4.29646400 & -5.02161400 & -2.00258400 \\
\hline C & 2.43467300 & -2.95288700 & -2.06823700 \\
\hline H & 1.82573700 & -2.21462200 & \(-1.51976700\) \\
\hline H & 1.97907700 & -3.94803600 & -1.93507500 \\
\hline H & 2.40524700 & -2.69692000 & -3.14039200 \\
\hline C & -4.21676800 & -0.28505300 & -0.90502700 \\
\hline C & -5.22514200 & 0.66824600 & \(-0.59950300\) \\
\hline C & -6.09731300 & 1.06286100 & -1.63103600 \\
\hline H & -6.87913600 & 1.79653600 & -1.41345600 \\
\hline C & -5.98545200 & 0.54574700 & -2.92232200 \\
\hline H & -6.67923000 & 0.86527300 & -3.70448600 \\
\hline C & -4.97093800 & -0.37257300 & -3.21380200 \\
\hline H & -4.87528900 & -0.76304400 & -4.23006800 \\
\hline C & -4.07037300 & -0.79588900 & -2.22587700 \\
\hline C & -5.37256600 & 1.31122400 & 0.78146200 \\
\hline H & -4.62558400 & 0.85378200 & 1.45030200 \\
\hline C & -6.77284900 & 1.07120000 & 1.38980200 \\
\hline H & -6.82203500 & 1.47563900 & 2.41443400 \\
\hline H & -7.02732900 & 0.00142000 & 1.43122300 \\
\hline H & -7.55469400 & 1.57534100 & 0.79790600 \\
\hline C & -5.07899600 & 2.82786000 & 0.73214000 \\
\hline
\end{tabular}
\begin{tabular}{lrrr}
& & & \\
H & -5.80839100 & 3.35308100 & 0.09350100 \\
H & -4.07549700 & 3.03444800 & 0.33114900 \\
H & -5.13984800 & 3.26585700 & 1.74230400 \\
C & -2.96267600 & -1.79952000 & -2.53494100 \\
C & -2.15257600 & -1.59327700 & -1.80807600 \\
H & -3.43896400 & -3.24811700 & -2.28621200 \\
H & -3.79414900 & -3.38265100 & -1.25297200 \\
H & -4.2683500 & -3.96293100 & -2.45701900 \\
C & -2.37717300 & -3.50889900 & -2.96662600 \\
H & -3.09950200 & -1.95038000 & -3.95077200 \\
H & -1.49617200 & -2.30703900 & -4.73027800 \\
H & -2.06305600 & -0.61890500 & -4.15590200 \\
C & 1.06202400 & 0.30439900 & -1.93431200 \\
H & 1.97549500 & 0.22919200 & -2.52886700 \\
H & 0.16603400 & -0.13902000 & -2.38144100 \\
C & 0.96532900 & 1.31001400 & -0.96350100 \\
H & 1.82871500 & 1.95538300 & -0.76706500 \\
C & -0.26848500 & 1.56017000 & -0.18973700 \\
C & -1.54280700 & 1.54168300 & -0.86238000 \\
H & -1.56073700 & 1.40812700 & -1.95169000 \\
H & -2.34472600 & 2.18253400 & -0.47725300 \\
C & -0.11295200 & 2.42360300 & 1.06149600 \\
H & 0.58595700 & 1.94006000 & 1.76571900 \\
H & -1.08583800 & 2.45299400 & 1.58580600 \\
C & 0.34669000 & 3.85811000 & 0.81987100 \\
C & 1.05006000 & 4.54333600 & 1.82893400 \\
C & 0.05833300 & 4.54486500 & -0.37305900 \\
C & 1.44446200 & 5.87628100 & 1.65938800 \\
H & 1.28692300 & 4.02136500 & 2.76205100 \\
C & 0.45528100 & 5.87742700 & -0.54819800 \\
H & -0.47859000 & 4.02682700 & -1.17186700 \\
C & 1.14787800 & 6.55001600 & 0.46665700 \\
H & 1.98816600 & 6.38845200 & 2.45835100 \\
H & 0.22246500 & 6.39211900 & -1.48470500 \\
H & 1.45742200 & 7.58935900 & 0.32867500 \\
& & &
\end{tabular}

\section*{S3}

Charge: 0
Multiplicity: 1
Imaginary Frequencies: 0
Sum of Electronic and Thermal Free Energies: -5617.988529
\begin{tabular}{lrrc}
& & & \\
Ni & -1.77699700 & 0.04897900 & 0.41358600 \\
Ni & 1.29577800 & 0.38263700 & 0.13427400 \\
N & -3.52137300 & -0.65967100 & 0.54269900 \\
N & -1.29882000 & -1.26761200 & 1.67178400 \\
N & 1.03256600 & -0.82015700 & 1.75464600 \\
N & 3.13188200 & 0.47902800 & 0.81396200 \\
C & -4.95396700 & -2.27757100 & 1.82867400 \\
H & -5.11819500 & -2.25115100 & 2.91796500 \\
H & -4.97513600 & -3.33728300 & 1.52138300 \\
H & -5.79505100 & -1.76538000 & 1.34313100 \\
C & -3.64543100 & -1.62796500 & 1.45809600 \\
C & -2.41445300 & -1.98220900 & 2.11479400 \\
C & -2.32637200 & -2.91175400 & 3.16040300 \\
H & -3.21388700 & -3.46510200 & 3.47204900 \\
C & -1.11307800 & -3.09671000 & 3.80341800 \\
H & -1.02101600 & -3.78722600 & 4.64565800 \\
C & 0.03013600 & -2.37388800 & 3.38477900 \\
C & -0.07297100 & -1.46382700 & 2.25562900 \\
C & 1.28002000 & -2.51045200 & 4.03643900 \\
H & 1.36118200 & -3.17135000 & 4.90318900 \\
C & 2.36799300 & -1.80016400 & 3.57060300 \\
H & 3.33517600 & -1.88796800 & 4.06681400 \\
C & 2.24299100 & -0.97754200 & 2.43343100 \\
C & 3.37419300 & -0.28500700 & 1.88607500 \\
C & 4.73698200 & -0.41167000 & 2.53056700 \\
H & 5.44776700 & 0.29482600 & 2.08396300 \\
H & 5.14769600 & -1.42852000 & 2.41490500
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline H & 4.68341600 & -0.20136900 & 3.61094300 \\
\hline C & -4.66526000 & -0.07586000 & -0.09350400 \\
\hline C & -5.27757200 & -0.68806600 & -1.21669000 \\
\hline C & -6.40893500 & -0.06837500 & -1.77805500 \\
\hline H & -6.89663600 & -0.53176100 & -2.64067600 \\
\hline C & -6.91875600 & 1.12376700 & -1.26100100 \\
\hline H & -7.80264600 & 1.58445900 & -1.71021900 \\
\hline C & -6.28217100 & 1.73466000 & -0.17574300 \\
\hline H & -6.67250900 & 2.67802200 & 0.21509100 \\
\hline C & -5.15135800 & 1.15837000 & 0.42300900 \\
\hline C & 4.21047100 & 1.20165100 & 0.19921700 \\
\hline C & 4.28515500 & 2.60603000 & 0.43768800 \\
\hline C & 5.32037000 & 3.33490800 & -0.16790600 \\
\hline H & 5.39343300 & 4.41001500 & 0.01042700 \\
\hline C & 6.25696600 & 2.71540100 & -1.00128300 \\
\hline H & 7.05250700 & 3.30325000 & -1.46697100 \\
\hline C & 6.16330100 & 1.34508700 & \(-1.24016000\) \\
\hline H & 6.89194300 & 0.86334200 & -1.89851300 \\
\hline C & 5.15378600 & 0.56081800 & -0.65140100 \\
\hline C & 1.45479000 & -0.62805700 & -1.59068800 \\
\hline H & 2.33672200 & -1.25787400 & -1.42740900 \\
\hline C & 0.27259600 & -1.38501100 & -2.03838800 \\
\hline C & 0.05533000 & -2.74471600 & \(-1.38745200\) \\
\hline H & -0.08617300 & -2.59706800 & -0.30457300 \\
\hline H & -0.88265400 & -3.17906200 & -1.77502800 \\
\hline C & 3.27867800 & 3.29770600 & 1.35668100 \\
\hline H & 2.31884400 & 2.76567100 & 1.22562600 \\
\hline C & 5.12343800 & -0.93707900 & -0.96081500 \\
\hline H & 4.26824100 & -1.37840300 & -0.42333900 \\
\hline C & -4.72831700 & -1.96478000 & -1.85091400 \\
\hline H & -3.80842500 & -2.23453900 & -1.30635900 \\
\hline C & -4.46279100 & 1.82741900 & 1.61062500 \\
\hline H & -3.43138500 & 1.42999000 & 1.63368000 \\
\hline C & 1.64787100 & 0.76889300 & -1.76791100 \\
\hline H & 0.85240900 & 1.35276300 & -2.23852900 \\
\hline H & 2.65784700 & 1.16854400 & -1.90079800 \\
\hline C & 4.92440300 & -1.20499000 & -2.47029900 \\
\hline H & 5.79450800 & -0.85552800 & -3.05107300 \\
\hline H & 4.80699500 & -2.28516800 & -2.65465800 \\
\hline H & 4.03235400 & -0.69405200 & -2.86122700 \\
\hline C & 6.40441900 & -1.65247400 & -0.47295100 \\
\hline H & 7.29062400 & -1.29682700 & -1.02454700 \\
\hline H & 6.59044700 & -1.48333100 & 0.59818500 \\
\hline H & 6.32109500 & -2.73875400 & -0.64028100 \\
\hline C & 3.05403500 & 4.78159400 & 1.01442600 \\
\hline H & 2.21896100 & 5.18058600 & 1.61124600 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline H & 3.94033200 & 5.39554400 & 1.24821700 \\
\hline H & 2.80981600 & 4.92504500 & -0.04951800 \\
\hline C & 3.68228200 & 3.16180600 & 2.84313200 \\
\hline H & 3.76000200 & 2.10921600 & 3.15014400 \\
\hline H & 4.65641400 & 3.64610900 & 3.02684000 \\
\hline H & 2.93254500 & 3.64577400 & 3.49095900 \\
\hline C & -4.34462500 & -1.72594500 & -3.32771600 \\
\hline H & -3.86743600 & -2.62435500 & -3.75373100 \\
\hline H & -5.23277600 & -1.50057400 & -3.94115900 \\
\hline H & -3.64542000 & -0.88201700 & \(-3.42521300\) \\
\hline C & -5.71854300 & -3.14502300 & -1.74094100 \\
\hline H & -5.99659400 & -3.35099800 & -0.69633000 \\
\hline H & -6.64724400 & -2.93554400 & -2.29778200 \\
\hline H & -5.27560400 & -4.06217300 & -2.16344400 \\
\hline C & -4.36532500 & 3.35736900 & 1.47050800 \\
\hline H & -3.74667700 & 3.76949300 & 2.28403900 \\
\hline H & -3.90165200 & 3.64015600 & 0.51289900 \\
\hline H & -5.35314800 & 3.84436500 & 1.53290800 \\
\hline C & -5.14291300 & 1.44430000 & 2.94315100 \\
\hline H & -6.18529800 & 1.80529600 & 2.96821100 \\
\hline H & -5.16061500 & 0.35359600 & 3.08963400 \\
\hline H & -4.60537500 & 1.89160400 & 3.79571100 \\
\hline C & 1.19351400 & -3.72987300 & -1.61425200 \\
\hline C & 1.88017500 & -4.30566300 & -0.53108000 \\
\hline C & 1.56896500 & -4.10223900 & -2.91927500 \\
\hline C & 2.90868200 & -5.23533200 & \(-0.74235100\) \\
\hline H & 1.60133700 & -4.02267800 & 0.48834900 \\
\hline C & 2.59423800 & -5.03020200 & -3.13447200 \\
\hline H & 1.05193900 & -3.65053800 & -3.77144000 \\
\hline C & 3.26825500 & -5.60215600 & \(-2.04515800\) \\
\hline H & 3.42770600 & -5.67463800 & 0.11418300 \\
\hline H & 2.86853100 & -5.31016500 & -4.15549400 \\
\hline H & 4.06749600 & -6.32915400 & -2.21252100 \\
\hline C & -0.55999200 & -0.94254800 & -3.00787500 \\
\hline H & -1.41990400 & -1.53672900 & -3.32461200 \\
\hline H & -0.39989400 & 0.01199400 & -3.51343000 \\
\hline N & -1.35515000 & 1.46595900 & -0.64655400 \\
\hline C & -1.65960100 & 2.46171600 & \(-1.45824200\) \\
\hline H & -2.66059300 & 2.33690900 & -1.89141100 \\
\hline N & -0.37551700 & 1.14715700 & 0.15976100 \\
\hline Si & -0.81393900 & 4.14293600 & -1.65215300 \\
\hline C & -2.04947700 & 5.18039400 & -2.64996800 \\
\hline H & -3.03207100 & 5.23056800 & -2.15346200 \\
\hline H & -1.68297900 & 6.21308200 & \(-2.77154500\) \\
\hline H & -2.20254500 & 4.76120600 & -3.65818800 \\
\hline C & 0.84201200 & 4.13234700 & \(-2.57298200\) \\
\hline
\end{tabular}
\begin{tabular}{lrrr}
H & 1.16982900 & 5.17214000 & -2.74496300 \\
H & 1.63116900 & 3.62086500 & -2.00219400 \\
H & 0.76100500 & 3.64128900 & -3.55589900 \\
C & -0.57923900 & 4.87540800 & 0.07926100 \\
H & -0.01373000 & 4.17859800 & 0.71775900 \\
H & -0.02984600 & 5.83036200 & 0.03981900 \\
H & -1.55240100 & 5.05835400 & 0.56180900
\end{tabular}

S3'
Charge: 0
Multiplicity: 1
Imaginary Frequencies: 0
Sum of Electronic and Thermal Free Energies: -5617.981705
\begin{tabular}{crcc}
Ni & 1.81061200 & -0.01785400 & 0.40730100 \\
Ni & -1.27004600 & -0.11098200 & 0.16801100 \\
N & 3.59362200 & 0.54880600 & 0.66610400 \\
N & 1.41539400 & 1.05538900 & 1.91845600 \\
N & -0.91328600 & 0.64663000 & 2.01774300 \\
N & -2.98792100 & -0.60599300 & 1.00217800 \\
C & 5.11987300 & 1.81577700 & 2.21170700 \\
H & 5.26493100 & 1.59404800 & 3.28124200 \\
H & 5.22185100 & 2.90771300 & 2.08764500 \\
H & 5.92925100 & 1.33318100 & 1.64813500 \\
C & 3.77431600 & 1.33450600 & 1.73306000 \\
C & 2.56131500 & 1.65307900 & 2.44237500 \\
C & 2.52057700 & 2.43903600 & 3.60444900 \\
H & 3.43357200 & 2.91153300 & 3.97102700 \\
C & 1.32384400 & 2.58550500 & 4.28813000 \\
H & 1.27113900 & 3.16283800 & 5.21479800 \\
C & 0.15190900 & 1.95626500 & 3.80313800 \\
C & 0.21068500 & 1.20801700 & 2.55993200
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline C & -1.08313200 & 2.01971400 & 4.49582500 \\
\hline H & -1.13979600 & 2.57672100 & 5.43466200 \\
\hline C & -2.18354100 & 1.35528100 & 3.99003700 \\
\hline H & -3.13336700 & 1.37343000 & 4.52647400 \\
\hline C & -2.09055600 & 0.67190100 & 2.75963000 \\
\hline C & -3.20226400 & -0.05304500 & 2.20022600 \\
\hline C & -4.49421200 & -0.20314300 & 2.96999200 \\
\hline H & -5.10716100 & -1.00572800 & 2.53859700 \\
\hline H & -5.08849900 & 0.72676400 & 2.94246900 \\
\hline H & -4.30938200 & -0.44462700 & 4.02799800 \\
\hline C & 4.69928200 & -0.00515600 & -0.05866000 \\
\hline C & 5.38721300 & 0.74465800 & -1.04689000 \\
\hline C & 6.47404100 & 0.13920100 & -1.70387400 \\
\hline H & 7.01890200 & 0.70664400 & \(-2.46402300\) \\
\hline C & 6.86822000 & -1.16724400 & -1.40991500 \\
\hline H & 7.71999000 & -1.61464400 & -1.92914200 \\
\hline C & 6.15617100 & -1.90648600 & -0.45983000 \\
\hline H & 6.45470100 & -2.93601800 & -0.24498900 \\
\hline C & 5.06493100 & -1.35118200 & 0.22550100 \\
\hline C & -3.91460800 & -1.55526500 & 0.45160600 \\
\hline C & -3.57535200 & -2.93521200 & 0.60302500 \\
\hline C & -4.40937800 & -3.90085200 & 0.02081700 \\
\hline H & -4.15831800 & -4.95878300 & 0.13096100 \\
\hline C & -5.55172500 & -3.53792400 & -0.69975100 \\
\hline H & -6.18227200 & -4.30533500 & -1.15663800 \\
\hline C & -5.88551400 & -2.18959200 & -0.82078900 \\
\hline H & -6.79046900 & -1.90823700 & -1.36737100 \\
\hline C & -5.09619500 & -1.17740900 & -0.24279000 \\
\hline C & -1.30821100 & 1.48412200 & \(-1.05567700\) \\
\hline C & 0.02984500 & 2.07348300 & -1.25195000 \\
\hline C & -2.36369800 & -3.35702900 & 1.43473700 \\
\hline H & -1.64378000 & \(-2.52214200\) & 1.40042000 \\
\hline C & -5.57499300 & 0.27038400 & -0.35845200 \\
\hline H & -4.84257400 & 0.90704000 & 0.16444700 \\
\hline C & 4.96245200 & 2.15706300 & -1.44603100 \\
\hline H & 4.06636100 & 2.41248300 & -0.85663900 \\
\hline C & 4.29392400 & -2.16344800 & 1.26374600 \\
\hline H & 3.31147200 & -1.66873700 & 1.37660700 \\
\hline C & -1.70702500 & 0.27812600 & -1.70704300 \\
\hline H & -1.00716800 & -0.20015200 & -2.39829300 \\
\hline H & -2.76510300 & 0.09785500 & -1.92061700 \\
\hline C & -5.66204200 & 0.74803900 & \(-1.82426300\) \\
\hline H & -6.41354900 & 0.16742500 & -2.38454000 \\
\hline H & -5.95521300 & 1.80942300 & -1.86938300 \\
\hline H & -4.70109000 & 0.64132000 & -2.34902100 \\
\hline C & -6.94380300 & 0.47235600 & 0.33299100 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline H & -7.73478600 & -0.09707100 & -0.18237200 \\
\hline H & -6.92786300 & 0.14256600 & 1.38257100 \\
\hline H & -7.23173200 & 1.53654600 & 0.31115900 \\
\hline C & -1.65126400 & -4.61183700 & 0.89808100 \\
\hline H & -0.71081200 & -4.77060800 & 1.44991200 \\
\hline H & -2.26088500 & -5.52233900 & 1.02696700 \\
\hline H & -1.40724500 & -4.51379400 & -0.17013400 \\
\hline C & -2.76067000 & -3.56971400 & 2.91443200 \\
\hline H & -3.20911200 & -2.66507200 & 3.35104000 \\
\hline H & -3.49328800 & -4.38957300 & 3.00769200 \\
\hline H & -1.87526600 & -3.83182000 & 3.51742900 \\
\hline C & 4.57272800 & 2.21300800 & -2.93996100 \\
\hline H & 4.18641600 & 3.21190900 & -3.20287300 \\
\hline H & 5.44267100 & 2.01284800 & -3.58724800 \\
\hline H & 3.79816600 & 1.46875000 & -3.17889400 \\
\hline C & 6.05439200 & 3.20585900 & -1.14052100 \\
\hline H & 6.34209900 & 3.20074800 & -0.07833400 \\
\hline H & 6.96466600 & 3.01450900 & -1.73306000 \\
\hline H & 5.69876300 & 4.21848400 & -1.39330100 \\
\hline C & 4.02814800 & -3.61327000 & 0.81970500 \\
\hline H & 3.37100200 & -4.11460900 & 1.54867600 \\
\hline H & 3.53184400 & -3.64446800 & -0.16224000 \\
\hline H & 4.95650900 & -4.20557000 & 0.75609000 \\
\hline C & 4.99805300 & -2.12807800 & 2.63741600 \\
\hline H & 5.99328900 & -2.60111300 & 2.58004200 \\
\hline H & 5.13660900 & -1.09577800 & 2.99422600 \\
\hline H & 4.40473300 & -2.67071800 & 3.39200900 \\
\hline C & 0.81033200 & 1.92879900 & -2.34025800 \\
\hline H & 1.78091900 & 2.42289400 & -2.40676900 \\
\hline H & 0.50097700 & 1.32520700 & -3.19725000 \\
\hline N & 1.31027100 & -1.09115600 & -0.97963400 \\
\hline C & 1.55043900 & -1.77001700 & -2.08526700 \\
\hline H & 2.57108200 & -1.59252900 & \(-2.45152100\) \\
\hline N & 0.35487800 & -0.95761100 & -0.10341900 \\
\hline Si & 0.55740000 & -3.12664000 & \(-2.95167300\) \\
\hline C & 1.05064500 & -3.04108200 & -4.78179100 \\
\hline H & 2.14183800 & -3.13274500 & -4.91018900 \\
\hline H & 0.57961800 & -3.86002900 & -5.35070500 \\
\hline H & 0.73677500 & -2.08923100 & -5.23966100 \\
\hline C & -1.31540800 & -2.96371300 & -2.76323800 \\
\hline H & -1.80487500 & -3.92271800 & -3.00141500 \\
\hline H & -1.60241700 & -2.67714200 & -1.73987600 \\
\hline H & -1.72555600 & -2.20313600 & -3.44559400 \\
\hline C & 1.12818900 & -4.80062700 & -2.25515300 \\
\hline H & 0.90078800 & \(-4.88835500\) & -1.18122700 \\
\hline H & 0.62282500 & -5.63067700 & \(-2.77815300\) \\
\hline
\end{tabular}
\begin{tabular}{lrrr}
H & 2.21465600 & -4.93510700 & -2.38173300 \\
H & 0.37072400 & 2.73722600 & -0.44720700 \\
C & -2.34333500 & 2.47181300 & -0.52021500 \\
H & -3.28811000 & 1.93283200 & -0.34285600 \\
H & -2.01788700 & 2.84999400 & 0.46444700 \\
C & -2.61738400 & 3.66673000 & -1.42853600 \\
C & -2.73872200 & 3.51927000 & -2.82240500 \\
C & -2.78534000 & 4.95006700 & -0.87852000 \\
C & -3.03295100 & 4.61822700 & -3.63836500 \\
H & -2.59055000 & 2.53298900 & -3.27039100 \\
C & -3.08065900 & 6.05295900 & -1.69079100 \\
H & -2.68308900 & 5.08488200 & 0.20328600 \\
C & -3.20723600 & 5.89030800 & -3.07603400 \\
H & -3.12188300 & 4.48180800 & -4.71986600 \\
H & -3.20616600 & 7.04172600 & -1.24050300 \\
H & -3.43386500 & 6.74883000 & -3.71383200
\end{tabular}

S4
Charge: 0
Multiplicity: 1

\section*{Imaginary Frequencies: 1}

Sum of Electronic and Thermal Free Energies: -5617.962574
\begin{tabular}{lrrr}
Ni & 1.72980100 & -0.07599800 & 0.62416700 \\
Ni & -1.45409000 & -0.29335800 & 0.22274300 \\
N & 3.52259800 & 0.46290300 & 0.82287900 \\
N & 1.30767500 & 1.28576600 & 1.83547500 \\
N & -1.07114100 & 1.10297600 & 1.71817600 \\
N & -3.26658000 & -0.16730300 & 0.90012300 \\
C & 5.03769400 & 1.96226400 & 2.15143600 \\
H & 5.10847100 & 2.05980900 & 3.24575700 \\
H & 5.23295700 & 2.95931300 & 1.71940500 \\
H & 5.83807400 & 1.28968300 & 1.81326800 \\
C & 3.68788000 & 1.43470500 & 1.73622400 \\
C & 2.46992400 & 1.92606100 & 2.30303600
\end{tabular}
\begin{tabular}{lrrr}
C & 2.40356500 & 2.94513900 & 3.25904700 \\
H & 3.31895500 & 3.42658700 & 3.60793200 \\
C & 1.16698200 & 3.32666900 & 3.75242900 \\
H & 1.08070100 & 4.10168600 & 4.51836000 \\
C & -0.01745200 & 2.71535100 & 3.27257400 \\
C & 0.06511100 & 1.67233400 & 2.25397900 \\
C & -1.28573200 & 3.09168500 & 3.76874400 \\
H & -1.35161700 & 3.87013900 & 4.53299900 \\
C & -2.41121600 & 2.44254000 & 3.30202000 \\
H & -3.39470100 & 2.69912700 & 3.69656800 \\
C & -2.30285600 & 1.45945900 & 2.30381700 \\
C & -3.46275200 & 0.77603700 & 1.83784600 \\
C & -4.82503400 & 1.07458100 & 2.42804000 \\
H & -5.56664300 & 0.33765400 & 2.09621700 \\
H & -5.18517300 & 2.07478600 & 2.13399300 \\
H & -4.79382800 & 1.04780500 & 3.52854000 \\
C & 4.62127200 & -0.21208200 & 0.20872300 \\
C & 5.34265700 & 0.38202300 & -0.86015300 \\
C & 6.40253500 & -0.34222900 & -1.43555500 \\
H & 6.96808600 & 0.10429600 & -2.25887600 \\
C & 6.74514700 & -1.61676400 & -0.98031200 \\
H & 7.57642100 & -2.15938400 & -1.43855200 \\
C & 6.01191300 & -2.20061300 & 0.05848600 \\
H & 6.27671700 & -3.20295400 & 0.40529700 \\
C & 4.94433400 & -1.52195600 & 0.66548800 \\
C & -4.38224000 & -0.95374000 & 0.45226800 \\
C & -4.48539000 & -2.28739400 & 0.94366800 \\
C & -5.55788500 & -3.08252700 & 0.51082900 \\
H & -5.65194200 & -4.10500000 & 0.88467500 \\
C & -6.50614100 & -2.59330400 & -0.39346800 \\
H & -7.33300500 & -3.22952800 & -0.72064400 \\
C & -6.38678500 & -1.29142400 & -0.88009400 \\
H & -7.12593000 & -0.91419600 & -1.59297400 \\
C & -5.33580100 & -0.44771600 & -0.47416500 \\
C & -1.52936900 & 0.33112700 & -1.75440400 \\
H & -2.20490300 & 1.18788900 & -1.64576500 \\
C & -0.24909200 & 0.59150200 & -2.34679300 \\
C & 0.41974800 & 1.93740000 & -2.08960800 \\
H & 0.74772300 & 1.97852300 & -1.03551000 \\
H & 1.33172100 & 2.00820200 & -2.70577600 \\
C & -3.46453400 & -2.82626700 & 1.94449100 \\
H & -2.51388300 & -2.30469900 & 1.73199800 \\
H & -5.26488000 & 0.96841400 & -1.05084900 \\
H & -4.39152200 & 1.47059100 & -0.60318500 \\
H & 4.15639400 & 1.75030100 & -1.42962300 \\
H & 2.15957100 & -0.81043900 \\
H & -2700
\end{tabular}
\begin{tabular}{lrrr}
C & 4.15299200 & -2.15215600 & 1.80881900 \\
H & 3.16149300 & -1.66170400 & 1.80021700 \\
C & -2.03130800 & -0.98797600 & -1.53399100 \\
H & -1.43556200 & -1.83207000 & -1.88512900 \\
H & -3.10591400 & -1.17693500 & -1.53136900 \\
C & -5.06972200 & 0.95627500 & -2.58433100 \\
H & -5.93494700 & 0.49512500 & -3.08947800 \\
H & -4.96806800 & 1.98576700 & -2.96480900 \\
H & -4.16984900 & 0.39649200 & -2.87770000 \\
C & -6.52149200 & 1.79710900 & -0.69756100 \\
H & -7.42021400 & 1.37901700 & -1.18091800 \\
H & -6.70842900 & 1.82301900 & 0.38612000 \\
H & -6.40672200 & 2.83498200 & -1.05110100 \\
C & -3.21802200 & -4.34067000 & 1.81720300 \\
H & -2.36099700 & -4.63418200 & 2.44434200 \\
H & -4.08616200 & -4.92949400 & 2.15911700 \\
H & -2.99501400 & -4.63340300 & 0.77971100 \\
C & -3.86376200 & -2.47375300 & 3.39572400 \\
H & -3.95668500 & -1.38724700 & 3.53726300 \\
H & -4.82978300 & -2.93814300 & 3.65751800 \\
H & -3.10358000 & -2.84156400 & 4.10483300 \\
C & 4.43065600 & 1.61427800 & -2.87059300 \\
H & 4.10945000 & 2.59449000 & -3.26054000 \\
H & 5.20288500 & 1.21689100 & -3.55035500 \\
H & 3.56818500 & 0.93040200 & -2.90495200 \\
C & 6.14962200 & 2.74623800 & -1.38806100 \\
H & 6.55190800 & 2.85724500 & -0.36933900 \\
H & 6.97707700 & 2.41751500 & -2.03875500 \\
H & 5.82673800 & 3.74029500 & -1.73905500 \\
C & 3.92578500 & -3.66418100 & 1.63754300 \\
H & 3.24069100 & -4.03244300 & 2.41830100 \\
H & 3.47977100 & -3.89366800 & 0.65718000 \\
H & 4.86254100 & -4.23950500 & 1.72903300 \\
C & 4.80832200 & -1.84908500 & 3.17403700 \\
H & 5.81498100 & -2.29710400 & 3.23292300 \\
H & 4.90946200 & -0.76583900 & 3.34007200 \\
H & 4.2079200 & -2.26172600 & 3.99662600 \\
C & -0.47377700 & 3.13443000 & -2.37571500 \\
C & -0.98081800 & 3.92379600 & -1.32904100 \\
C & -0.81449800 & 3.47351000 & -3.69905300 \\
C & -1.80345500 & 5.02788400 & -1.59591900 \\
H & -0.72626600 & 3.66783000 & -0.29638500 \\
H & -1.63238700 & 4.57639700 & -3.96931300 \\
\hline-0.43316200 & 2.86243800 & -4.52322600 \\
H & -2.13030000 & 5.35868500 & -2.91664200 \\
H & 5.63500 & 5.63119400 & -0.76799700 \\
\hline
\end{tabular}
\begin{tabular}{lrrr}
H & -1.88061000 & 4.82930500 & -5.00396500 \\
H & -2.76739000 & 6.22192800 & -3.12699000 \\
C & 0.42171300 & -0.42229300 & -3.06226400 \\
H & 1.31841300 & -0.12795700 & -3.61748900 \\
H & -0.19947000 & -1.16009400 & -3.57274600 \\
N & 1.22026000 & -1.31732300 & -0.58524000 \\
C & 1.32400200 & -1.84560900 & -1.84495400 \\
H & 2.37527900 & -1.75748300 & -2.16112200 \\
N & 0.23913600 & -0.99174600 & 0.17715100 \\
Si & 0.67764700 & -3.62595000 & -2.21031800 \\
C & 2.23474500 & -4.64963700 & -2.56615400 \\
H & 2.93880300 & -4.62450300 & -1.71927200 \\
H & 1.97252400 & -5.70397100 & -2.75623300 \\
H & 2.76793200 & -4.27406100 & -3.45529900 \\
C & -0.43006200 & -3.74195200 & -3.74745800 \\
H & -0.64874000 & -4.80626600 & -3.94028300 \\
H & -1.39576900 & -3.22472700 & -3.63827200 \\
H & 0.07203800 & -3.34499500 & -4.64487600 \\
C & -0.20986500 & -4.29391000 & -0.68378200 \\
H & -1.00069500 & -3.61163300 & -0.33764200 \\
H & -0.66632100 & -5.27388000 & -0.90009000 \\
H & 0.49774500 & -4.42463100 & 0.15018400
\end{tabular}

S4'
Charge: 0
Multiplicity: 1
Imaginary Frequencies: 1
Sum of Electronic and Thermal Free Energies: -5617.958250
\begin{tabular}{lrrc}
Ni & 1.87644300 & -0.26591600 & 0.51022500 \\
Ni & -1.30286500 & -0.23845200 & 0.20540700 \\
N & 3.67739400 & 0.15709800 & 0.86702400 \\
N & 1.51236800 & 0.41282100 & 2.22181900 \\
N & -0.85696900 & 0.20776500 & 2.17510600 \\
N & -3.02934900 & -0.70111800 & 0.96425300
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline C & 5.25467300 & 0.92870300 & 2.66342600 \\
\hline H & 5.37558600 & 0.50237600 & 3.67147700 \\
\hline H & 5.43199200 & 2.01545000 & 2.74257500 \\
\hline H & 6.03709500 & 0.50927600 & 2.01607900 \\
\hline C & 3.88676300 & 0.62651300 & 2.10647600 \\
\hline C & 2.69243400 & 0.79925200 & 2.87849000 \\
\hline C & 2.67387500 & 1.29276100 & 4.18847200 \\
\hline H & 3.60771500 & 1.58715600 & 4.67089800 \\
\hline C & 1.46589900 & 1.39154400 & 4.86008900 \\
\hline H & 1.42265100 & 1.74667300 & 5.89294900 \\
\hline C & 0.26105200 & 1.01606400 & 4.21820000 \\
\hline C & 0.29660900 & 0.53252300 & 2.84320700 \\
\hline C & -0.98535900 & 1.08673200 & 4.88397600 \\
\hline H & -1.02041500 & 1.45605500 & 5.91209500 \\
\hline C & -2.12585600 & 0.65191700 & 4.23743100 \\
\hline H & -3.08887300 & 0.66979900 & 4.74924700 \\
\hline C & -2.05621400 & 0.20134300 & 2.90649500 \\
\hline C & -3.21030800 & -0.31152800 & 2.23660100 \\
\hline C & -4.53114200 & \(-0.45612200\) & 2.95858100 \\
\hline H & -5.20128200 & \(-1.12744700\) & 2.40590000 \\
\hline H & -5.04004400 & 0.51740000 & 3.06699900 \\
\hline H & -4.39582900 & -0.87088800 & 3.96893000 \\
\hline C & 4.73768900 & -0.10307200 & -0.05211900 \\
\hline C & 5.41732400 & 0.95841300 & -0.70775600 \\
\hline C & 6.42591500 & 0.63312000 & -1.63268300 \\
\hline H & 6.95598100 & 1.43919700 & -2.14850600 \\
\hline C & 6.76264300 & -0.69377700 & -1.90757300 \\
\hline H & 7.55404100 & -0.92230300 & -2.62650500 \\
\hline C & 6.07654600 & -1.72960100 & -1.26431800 \\
\hline H & 6.33905400 & -2.76715000 & -1.48677100 \\
\hline C & 5.05893600 & -1.46090100 & -0.33673600 \\
\hline C & -4.01012100 & -1.51661300 & 0.30063500 \\
\hline C & -3.77148300 & -2.92578400 & 0.31101500 \\
\hline C & -4.67718400 & -3.76944300 & -0.34927500 \\
\hline H & -4.50177000 & -4.84814600 & -0.34661000 \\
\hline C & -5.79735500 & -3.25788900 & -1.01136200 \\
\hline H & -6.48849500 & -3.93091900 & -1.52600800 \\
\hline C & -6.02946400 & -1.88320500 & -1.00430000 \\
\hline H & -6.91420600 & -1.48690700 & \(-1.51100500\) \\
\hline C & -5.16075400 & -0.98877300 & -0.35000100 \\
\hline C & -1.29975300 & 1.46323500 & -0.97737100 \\
\hline C & 0.02766300 & 1.79574700 & -1.42647900 \\
\hline C & -2.58148400 & -3.51469900 & 1.07001200 \\
\hline H & -1.80334800 & -2.73269700 & 1.10020100 \\
\hline C & -5.53078500 & 0.49704100 & -0.34180100 \\
\hline H & -4.70965700 & 1.04278400 & 0.15218600 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline C & 5.04508100 & 2.42447100 & -0.48561000 \\
\hline H & 4.33080800 & 2.46790100 & 0.35158800 \\
\hline C & 4.32388400 & -2.58831500 & 0.38324200 \\
\hline H & 3.33914300 & \(-2.17515900\) & 0.67368600 \\
\hline C & -1.99848500 & 0.34051000 & -1.53415400 \\
\hline H & -1.55320400 & -0.18314600 & -2.38366400 \\
\hline H & -3.08904600 & 0.33027800 & \(-1.52751400\) \\
\hline C & -5.70538100 & 1.07605700 & -1.76451700 \\
\hline H & -6.57688200 & 0.62753200 & -2.26963600 \\
\hline H & -5.87119300 & 2.16429400 & -1.71689400 \\
\hline H & -4.82549800 & 0.89584200 & -2.39976200 \\
\hline C & -6.82570900 & 0.75632600 & 0.46443000 \\
\hline H & -7.68914300 & 0.26852800 & -0.01772600 \\
\hline H & -6.75932400 & 0.37345200 & 1.49262300 \\
\hline H & -7.03690900 & 1.83747200 & 0.51349300 \\
\hline C & -1.97768500 & -4.76282300 & 0.39979600 \\
\hline H & -1.03554200 & -5.03574700 & 0.90214400 \\
\hline H & -2.64840700 & -5.63574900 & 0.47414500 \\
\hline H & -1.75890100 & -4.58901200 & -0.66408200 \\
\hline C & -2.96506400 & -3.84064400 & 2.53239200 \\
\hline H & -3.32526500 & -2.95069500 & 3.06834400 \\
\hline H & -3.76106900 & -4.60418000 & 2.56476200 \\
\hline H & -2.09214000 & -4.23265800 & 3.08040200 \\
\hline C & 4.32452300 & 2.99745500 & -1.72602800 \\
\hline H & 4.01350700 & 4.04080300 & \(-1.55124900\) \\
\hline H & 4.98237000 & 2.98188900 & -2.61104600 \\
\hline H & 3.42519600 & 2.40800800 & -1.96192300 \\
\hline C & 6.26346100 & 3.29595300 & -0.11384900 \\
\hline H & 6.79563700 & 2.89697500 & 0.76376300 \\
\hline H & 6.98718600 & 3.35619300 & -0.94350800 \\
\hline H & 5.94265500 & 4.32491900 & 0.11814100 \\
\hline C & 4.06895400 & -3.82042800 & -0.50186100 \\
\hline H & 3.42391600 & \(-4.53855100\) & 0.02980100 \\
\hline H & 3.56572900 & -3.54135900 & -1.44069500 \\
\hline H & 5.00230500 & -4.34961400 & -0.75843100 \\
\hline C & 5.05877500 & -2.98697400 & 1.68182700 \\
\hline H & 6.06080600 & -3.39039600 & 1.45672000 \\
\hline H & 5.18445100 & \(-2.12365100\) & 2.35315200 \\
\hline H & 4.49253000 & -3.76017600 & 2.22737000 \\
\hline C & 0.58894200 & 1.32015500 & -2.62284900 \\
\hline H & 1.51840900 & 1.79122400 & \(-2.95505700\) \\
\hline H & -0.09913200 & 1.07137600 & -3.43330900 \\
\hline N & 1.31019300 & -0.81823900 & -1.12371200 \\
\hline C & 1.34102700 & -0.60138600 & -2.47509300 \\
\hline N & 0.36418600 & -0.89551900 & -0.26371700 \\
\hline H & 0.62678400 & 2.44680100 & -0.78070500 \\
\hline
\end{tabular}
\begin{tabular}{lrrr}
C & -2.02137000 & 2.51441700 & -0.13874700 \\
H & -2.94717400 & 2.07886600 & 0.27479400 \\
H & -1.39788600 & 2.76864800 & 0.73518700 \\
C & -2.36517300 & 3.80295900 & -0.88115300 \\
C & -2.39234700 & 5.02487200 & -0.18422100 \\
C & -2.69464900 & 3.80929900 & -2.24826800 \\
C & -2.74833700 & 6.21669700 & -0.82804900 \\
H & -2.12882900 & 5.03989700 & 0.87837500 \\
C & -3.05062200 & 4.99907600 & -2.89648100 \\
H & -2.66533100 & 2.87234700 & -2.81059800 \\
C & -3.08047000 & 6.20811500 & -2.18908400 \\
H & -2.75976900 & 7.15504000 & -0.26641500 \\
H & -3.30194200 & 4.98182300 & -3.96076700 \\
H & -3.35487400 & 7.13716200 & -2.69570500 \\
H & 2.38576400 & -0.42196700 & -2.77215600 \\
Si & 0.48240400 & -1.81969100 & -3.69575800 \\
C & 1.89589100 & -2.74457700 & -4.56031500 \\
H & 1.49755300 & -3.48598400 & -5.27329300 \\
H & 2.54454800 & -2.05453400 & -5.12493000 \\
H & 2.52883600 & -3.28132000 & -3.83567600 \\
C & -0.60083600 & -3.03545700 & -2.74359900 \\
H & 0.02463500 & -3.69718600 & -2.12392500 \\
H & -1.30507700 & -2.52206600 & -2.07178300 \\
H & -1.18008900 & -3.66493800 & -3.43917500 \\
C & -0.51477900 & -0.92706400 & -5.04186400 \\
H & 0.09363000 & -0.18014500 & -5.57759900 \\
H & -0.84994000 & -1.67070300 & -5.78488800 \\
H & -1.41496100 & -0.42290100 & -4.65665400
\end{tabular}

S5
Charge: 0
Multiplicity: 1
Imaginary Frequencies: 0
Sum of Electronic and Thermal Free Energies: -5617.986184
\begin{tabular}{lrrr}
Ni & -1.57113900 & -0.38255800 & -0.46683900 \\
Ni & 1.67273400 & -0.36882100 & -0.10807700 \\
N & -3.39152600 & -0.47073000 & -1.01803000 \\
N & -1.15361700 & -1.05882600 & -2.15211400 \\
N & 1.19560500 & -1.37780900 & -1.83305700 \\
N & 3.40321300 & -1.06999600 & -0.40819100 \\
C & -4.83634000 & -0.72766100 & -3.04959500 \\
H & -4.92064800 & -1.55101000 & -3.77368200 \\
H & -4.96035800 & 0.21704500 & -3.60871900 \\
H & -5.67239900 & -0.80331700 & -2.34087800 \\
C & -3.51317700 & -0.75204800 & -2.32561900 \\
C & -2.28734100 & -1.07609700 & -2.98687400 \\
C & -2.20637000 & -1.48179900 & -4.32177100 \\
H & -3.09152900 & -1.44850900 & -4.95886400 \\
C & -0.99811700 & -1.95714100 & -4.80867300 \\
H & -0.91116500 & -2.33110000 & -5.83202200 \\
C & 0.13858300 & -2.00934700 & -3.96965400 \\
C & 0.07163300 & -1.46297000 & -2.61566600 \\
C & 1.34562600 & -2.60406800 & -4.40930000 \\
H & 1.38799400 & -3.04795800 & -5.40702600 \\
C & 2.43681300 & -2.62343000 & -3.56556000 \\
H & 3.37108500 & -3.08674000 & -3.88537900 \\
C & 2.37210700 & -1.99086400 & -2.31192700 \\
C & 3.52720700 & -1.85788100 & -1.50125100 \\
C & 4.82027500 & -2.56082600 & -1.84985300 \\
H & 5.47389900 & -2.63859600 & -0.97124100 \\
H & 5.38265100 & -2.02094600 & -2.63137300 \\
H & 4.62910400 & -3.57776700 & -2.22304500 \\
C & -4.54219100 & -0.34654900 & -0.17984700 \\
C & -5.22558000 & 0.89304500 & -0.06380300 \\
C & -6.34387000 & 0.96206400 & 0.78471800 \\
H & -6.88182700 & 1.90803900 & 0.8874300 \\
C & -6.79213600 & -0.15997000 & 1.48728300 \\
H & -7.66984200 & -0.08645100 & 2.13507800 \\
C & -6.11544600 & -1.37650400 & 1.35851000 \\
H & -6.47226400 & -2.25030200 & 1.90990800 \\
C & -4.98433500 & -1.49593500 & 0.53342500 \\
C & 4.53849600 & -0.91040600 & 0.45582700 \\
C & 4.56292500 & -1.63148000 & 1.68217200 \\
C & 5.67273200 & -1.47888500 & 2.52855300 \\
H & 5.71202500 & -2.03380900 & 3.46931200 \\
C & 6.72830800 & -0.62492000 & 2.19335600 \\
H & 7.58345200 & -0.51878000 & 2.86647400 \\
C & 6.67856900 & 0.10008700 & 1.00188300 \\
\hline 7.49812300 & 0.78028900 & 0.75190400 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline C & 5.59405200 & -0.02179900 & 0.11431900 \\
\hline C & 1.66214700 & 2.24999000 & 0.95991300 \\
\hline H & 2.03184600 & 2.86021700 & 0.12733300 \\
\hline C & 0.61875600 & 2.73114600 & 1.67869600 \\
\hline C & -0.07270800 & 4.05687000 & 1.40147300 \\
\hline H & -1.15968800 & 3.87094300 & 1.29024500 \\
\hline H & 0.01845700 & 4.69955300 & 2.29970800 \\
\hline C & 3.41356600 & -2.56786100 & 2.05116100 \\
\hline H & 2.51419400 & -2.16357500 & 1.54825500 \\
\hline C & 5.57550000 & 0.82199500 & -1.16214800 \\
\hline H & 4.68884200 & 0.52574500 & -1.74506900 \\
\hline C & -4.73612800 & 2.13145000 & -0.81279300 \\
\hline H & -4.17223200 & 1.78110500 & -1.69290600 \\
\hline C & -4.25861500 & -2.83261700 & 0.37707700 \\
\hline H & -3.22223400 & -2.58956000 & 0.08080200 \\
\hline C & 2.34380000 & 0.96100000 & 1.17073000 \\
\hline H & 2.23262400 & 0.53871100 & 2.18237600 \\
\hline H & 3.41161500 & 1.05280200 & 0.94217000 \\
\hline C & 5.43765700 & 2.32763100 & -0.84037400 \\
\hline H & 6.30194600 & 2.68928600 & -0.25834200 \\
\hline H & 5.38710800 & 2.91680900 & -1.77098700 \\
\hline H & 4.52897400 & 2.53823600 & -0.25697100 \\
\hline C & 6.82698400 & 0.58499300 & -2.03637500 \\
\hline H & 7.74036800 & 0.94689900 & -1.53529700 \\
\hline H & 6.97431600 & -0.48201300 & -2.26329700 \\
\hline H & 6.73626200 & 1.12937500 & -2.99081100 \\
\hline C & 3.13678200 & -2.62285600 & 3.56469300 \\
\hline H & 2.22093900 & -3.20353000 & 3.76058400 \\
\hline H & 3.95376700 & -3.11796300 & 4.11631400 \\
\hline H & 3.00443200 & -1.61574100 & 3.99164600 \\
\hline C & 3.64617100 & -3.99133000 & 1.49685400 \\
\hline H & 3.75577300 & -3.98441300 & 0.40240200 \\
\hline H & 4.55831800 & \(-4.43592500\) & 1.93031500 \\
\hline H & 2.79467800 & -4.64684600 & 1.74501400 \\
\hline C & -3.74397200 & 2.92573600 & 0.06443900 \\
\hline H & -3.35706700 & 3.80611500 & -0.47494800 \\
\hline H & -4.23240400 & 3.27634300 & 0.98937200 \\
\hline H & -2.88936900 & 2.28768100 & 0.33947600 \\
\hline C & -5.87374300 & 3.03811400 & -1.31930300 \\
\hline H & -6.60902600 & 2.47311000 & -1.91410000 \\
\hline H & -6.41292000 & 3.52725400 & -0.49116300 \\
\hline H & -5.46256000 & 3.83931600 & \(-1.95453600\) \\
\hline C & -4.20515800 & -3.65986200 & 1.67541300 \\
\hline H & -3.55575500 & -4.53872500 & 1.53279400 \\
\hline H & -3.80670300 & -3.07557800 & 2.51853200 \\
\hline H & -5.20067800 & -4.03694600 & 1.96446600 \\
\hline
\end{tabular}
\begin{tabular}{lrrc}
& & & \\
C & -4.87754300 & -3.67771000 & -0.75955700 \\
H & -5.93062700 & -3.91926800 & -0.53578000 \\
H & -4.84680800 & -3.14883300 & -1.72297900 \\
H & -4.32677600 & -4.62547100 & -0.87873300 \\
C & 0.41793800 & 4.82176100 & 0.18993000 \\
C & 0.01450100 & 4.44708800 & -1.10600400 \\
C & 1.29436500 & 5.91182200 & 0.32801700 \\
C & 0.46787400 & 5.14748600 & -2.23013600 \\
H & -0.65466600 & 3.59024300 & -1.23021000 \\
C & 1.75035400 & 6.61668400 & -0.79446700 \\
H & 1.62107500 & 6.21212000 & 1.32861900 \\
C & 1.33695900 & 6.23709900 & -2.07755300 \\
H & 0.14226200 & 4.84175800 & -3.22818500 \\
H & 2.42859900 & 7.46467100 & -0.66540800 \\
H & 1.68955100 & 6.78647000 & -2.95447100 \\
C & 0.05243400 & 1.90788900 & 2.81366300 \\
H & -0.35249400 & 2.56580300 & 3.60419200 \\
H & 0.85972200 & 1.32440800 & 3.28192200 \\
N & -0.97515100 & 0.32855400 & 1.08668500 \\
C & -1.11150900 & 0.96716100 & 2.39931100 \\
H & -2.03928200 & 1.55707200 & 2.29692300 \\
N & -0.00188700 & -0.08917200 & 0.40109500 \\
Si & -1.53454700 & -0.39571500 & 3.74953800 \\
C & -3.41143900 & -0.43596500 & 3.95407700 \\
H & -3.93270300 & -0.60781700 & 2.99917000 \\
H & -3.71597300 & -1.23224700 & 4.65375400 \\
H & -3.77716500 & 0.52015000 & 4.36471300 \\
C & -0.75128400 & 0.09653200 & 5.40484700 \\
H & -1.03729700 & -0.64271900 & 6.17234500 \\
H & 0.34866300 & 0.12026100 & 5.36199700 \\
H & -1.10039300 & 1.08247600 & 5.75150200 \\
C & -0.83663200 & -2.05266700 & 3.17657100 \\
H & 0.24595900 & -1.98044300 & 2.98570600 \\
H & -0.99448000 & -2.82691300 & 3.94545900 \\
H & -1.31363500 & -2.39318700 & 2.24473300 \\
& & &
\end{tabular}

\section*{S5'}

Charge: 0
Multiplicity: 1
Imaginary Frequencies: 0
Sum of Electronic and Thermal Free Energies: -5617.987562
\begin{tabular}{lrrl}
Ni & -1.54840800 & -0.50066200 & -0.36578300 \\
Ni & 1.69237800 & -0.38482800 & -0.07299900 \\
N & -3.37086200 & -0.74121600 & -0.85685800 \\
N & -1.14510200 & -1.70962200 & -1.72058800 \\
N & 1.18962800 & -1.96819100 & -1.26985500 \\
N & 3.42792600 & -1.14068700 & -0.13025500 \\
C & -4.82032700 & -1.66419900 & -2.68522900 \\
H & -5.21342400 & -2.68125900 & -2.51504500 \\
H & -4.71280400 & -1.53171900 & -3.77285100 \\
H & -5.57310500 & -0.95224200 & -2.32009400 \\
C & -3.50023200 & -1.45055100 & -1.98818600 \\
C & -2.28489800 & -2.02843000 & -2.47776200 \\
C & -2.23193100 & -2.94504600 & -3.53070500 \\
H & -3.12491700 & -3.14983500 & -4.12377200 \\
C & -1.04789100 & -3.63148300 & -3.76304700 \\
H & -0.98560000 & -4.39920700 & -4.53855000 \\
C & 0.09029300 & -3.38488800 & -2.96170200 \\
C & 0.05683800 & -2.32550200 & -1.95614500 \\
C & 1.26740600 & -4.16181600 & -3.09667600 \\
H & 1.28123800 & -4.98715300 & -3.81285900 \\
C & 2.36757800 & -3.86518800 & -2.31922600 \\
H & 3.28075100 & -4.45516400 & -2.41012900 \\
C & 2.34279300 & -2.75907900 & -1.45101600 \\
C & 3.51652400 & -2.32059800 & -0.79003700 \\
C & 4.78594400 & -3.14286600 & -0.82126800 \\
H & 5.49437000 & -2.80323100 & -0.05494100 \\
H & 5.29563600 & -3.07548000 & -1.79751500 \\
H & 4.56880500 & -4.20633200 & -0.63742900 \\
C & -4.50644600 & -0.27885300 & -0.12931500 \\
C & -4.77386700 & 1.11851200 & -0.07532800
\end{tabular}
\begin{tabular}{lrrr}
C & -5.87248300 & 1.56418100 & 0.67584000 \\
H & -6.09212400 & 2.63372200 & 0.72107000 \\
C & -6.69539000 & 0.66446400 & 1.36129000 \\
H & -7.54805800 & 1.03051300 & 1.93946400 \\
C & -6.41830100 & -0.70317500 & 1.30857600 \\
H & -7.05732100 & -1.40098300 & 1.85715400 \\
C & -5.33149400 & -1.20495200 & 0.57071500 \\
C & 4.59476000 & -0.63043700 & 0.53184100 \\
C & 4.67789300 & -0.73948300 & 1.94885700 \\
C & 5.81799600 & -0.23821200 & 2.59697300 \\
H & 5.90028500 & -0.32404900 & 3.68336100 \\
C & 6.85094100 & 0.37269900 & 1.87947700 \\
H & 7.73022700 & 0.75808600 & 2.40281000 \\
C & 6.74883800 & 0.49471900 & 0.49337000 \\
H & 7.55412600 & 0.98271900 & -0.06363400 \\
C & 5.63190400 & 0.00318700 & -0.20664500 \\
C & 1.56712900 & 2.54253200 & 0.24453900 \\
C & 0.61914300 & 3.03623700 & 1.07493500 \\
C & 3.56449000 & -1.42140500 & 2.74239600 \\
H & 2.63777900 & -1.28598800 & 2.15281500 \\
C & 5.57534300 & 0.17824800 & -1.72593500 \\
H & 4.64655000 & -0.29500200 & -2.08265700 \\
C & -3.89965900 & 2.09576000 & -0.85625800 \\
H & -2.88578100 & 1.65610500 & -0.87626100 \\
C & -5.03679300 & -2.70688100 & 0.59575600 \\
H & -4.28485700 & -2.91941300 & -0.17942700 \\
C & 2.38952400 & 1.34485400 & 0.56040200 \\
H & 2.57719300 & 1.22401700 & 1.63891000 \\
H & 3.35936400 & 1.41476100 & 0.04758900 \\
C & 5.52180200 & 1.67017200 & -2.12306300 \\
H & 6.43693200 & 2.19929800 & -1.80867100 \\
H & 5.43170100 & 1.77509400 & -3.21701400 \\
H & 4.66367300 & 2.18036400 & -1.66145300 \\
C & 6.76873200 & -0.50294300 & -2.43347800 \\
H & 7.71959100 & -0.00705100 & -2.17584600 \\
H & 6.86291600 & -1.56341800 & -2.15595500 \\
H & 6.65024600 & -0.44391800 & -3.52806000 \\
C & 3.34499300 & -0.80209200 & 4.13518400 \\
H & 2.45064000 & -1.23927700 & 4.60822300 \\
H & 4.19232700 & -0.99900300 & 4.81333900 \\
H & 3.20649200 & 0.28970100 & 4.07882500 \\
H & 3.8122200 & -2.94172600 & 2.86386100 \\
H & 3.88291800 & -3.41769300 & 1.87482300 \\
H & 4.75009900 & -3.14305900 & 3.40907400 \\
H & -3858300 & -3.42617100 & 3.41221100 \\
H & 3.49071200 & -0.21420200 \\
\hline
\end{tabular}
\begin{tabular}{lrrr}
H & -3.02306100 & 4.08396400 & -0.72366100 \\
H & -4.74582000 & 4.05095200 & -0.29404400 \\
H & -3.53272800 & 3.43188100 & 0.85362300 \\
C & -4.37624600 & 2.21459700 & -2.32169200 \\
H & -4.36900200 & 1.23863000 & -2.82953600 \\
H & -5.40275700 & 2.61641000 & -2.36617800 \\
H & -3.71825400 & 2.89468900 & -2.88751800 \\
C & -4.41320000 & -3.12564600 & 1.94576300 \\
H & -4.17805400 & -4.20306000 & 1.94578800 \\
H & -3.47999500 & -2.57454500 & 2.13806600 \\
H & -5.10432200 & -2.92681200 & 2.78186000 \\
C & -6.28348600 & -3.56204200 & 0.28546500 \\
H & -7.04338200 & -3.48007900 & 1.08019100 \\
H & -6.75863500 & -3.26043000 & -0.66136400 \\
H & -6.00610200 & -4.62602000 & 0.20671900 \\
C & 0.21223300 & 2.34456400 & 2.34691900 \\
H & -0.06229000 & 3.07730000 & 3.12567200 \\
H & 1.04462000 & 1.74774600 & 2.75293700 \\
N & -0.93568200 & 0.59859500 & 0.93431500 \\
C & -1.02496000 & 1.43951800 & 2.12922600 \\
N & 0.02942900 & 0.02223600 & 0.36383400 \\
H & 0.05114600 & 3.92637300 & 0.78585000 \\
C & 1.88957800 & 3.20475800 & -1.09423700 \\
H & 1.83617600 & 2.42193600 & -1.87383400 \\
H & 2.94986500 & 3.52063500 & -1.06737800 \\
C & 1.03455100 & 4.38261800 & -1.50585500 \\
C & -0.08544800 & 4.20690500 & -2.33876600 \\
C & 1.34298300 & 5.68470700 & -1.06936400 \\
C & -0.87188400 & 5.29931000 & -2.72877600 \\
H & -0.33503700 & 3.20126200 & -2.69106400 \\
C & 0.55690700 & 6.77923600 & -1.45181900 \\
H & 2.21321200 & 5.83868900 & -0.42363800 \\
C & -0.55389200 & 6.59007600 & -2.28492100 \\
H & -1.72924900 & 5.14388400 & -3.38957600 \\
H & 0.81685100 & 7.78329900 & -1.10516500 \\
H & -1.16379800 & 7.44377000 & -2.59202200 \\
H & -1.91320900 & 2.06945900 & 1.94237700 \\
Hi & -1.49594100 & 0.31305400 & 3.66266800 \\
C & -0.86932700 & 1.15374900 & 5.24209200 \\
H & 0.22682100 & 1.25709800 & 5.25467500 \\
H & -1.30846900 & 2.15583200 & 5.37497700 \\
H & -1.15749700 & 0.54911100 & 6.11876100 \\
H & -0.67624900 & -1.37553700 & 3.45238300 \\
H & 0.41342000 & -1.88365100 & 2.53807100 \\
H & -1.28302300 & 3.38143900 \\
H & -2.02653700 & 4.31216700 \\
H & & & \\
H & -90000
\end{tabular}
\begin{tabular}{lccc}
C & -3.37756000 & 0.18288000 & 3.73268500 \\
H & -3.80844800 & -0.14533600 & 2.77403200 \\
H & -3.69472100 & -0.53412900 & 4.50795700 \\
H & -3.82671900 & 1.15914100 & 3.97934500
\end{tabular}

S6
Charge: 0
Multiplicity: 1 (open shell)
Imaginary Frequencies: 1
Sum of Electronic and Thermal Free Energies: -5617.957388
\begin{tabular}{lrrr}
Ni & 1.64679000 & 0.38598700 & -0.47683300 \\
Ni & -1.57044400 & 0.42478700 & 0.03131600 \\
N & 3.42947100 & 0.49445200 & -1.14029900 \\
N & 1.11560000 & 0.79256300 & -2.25171900 \\
N & -1.22661200 & 1.04534200 & -1.89870200 \\
N & -3.30220900 & 1.12799800 & -0.27229200 \\
C & 4.77189200 & 0.81341600 & -3.23727000 \\
H & 4.77758800 & 1.76898000 & -3.78679100 \\
H & 4.89316200 & 0.00879000 & -3.98247500 \\
H & 5.64200000 & 0.79360700 & -2.56844100 \\
C & 3.49043500 & 0.64765300 & -2.46060300 \\
C & 2.20411700 & 0.71955900 & -3.11885300 \\
C & 2.06205000 & 0.80083900 & -4.51001700 \\
H & 2.93846400 & 0.71876700 & -5.15487300 \\
C & 0.80072300 & 1.01033600 & -5.04514500 \\
H & 0.65258500 & 1.10511100 & -6.12390600 \\
C & -0.31721100 & 1.14063800 & -4.18886500 \\
C & -0.15008400 & 0.97511800 & -2.75223400 \\
C & -1.60303900 & 1.44693200 & -4.70177500 \\
H & -1.73454800 & 1.56112200 & -5.78065400 \\
C & -2.65301600 & 1.62085100 & -3.82517200 \\
H & -3.64505100 & 1.88582100 & -4.19349100 \\
C & -2.45927500 & 1.41244200 & -2.44618600 \\
C & -3.53997800 & 1.56027700 & -1.51824300
\end{tabular}
\begin{tabular}{lrrr}
C & -4.83674600 & 2.21065000 & -1.93825600 \\
H & -5.43609800 & 2.48947800 & -1.06239900 \\
H & -5.44626900 & 1.52869700 & -2.55649200 \\
H & -4.65000600 & 3.11751000 & -2.53350800 \\
C & 4.60962200 & 0.56428700 & -0.33305100 \\
C & 5.47737800 & -0.55860500 & -0.23299900 \\
C & 6.61473300 & -0.44101600 & 0.58133800 \\
H & 7.29951800 & -1.28743800 & 0.67092200 \\
C & 6.89460100 & 0.74068500 & 1.27701900 \\
H & 7.78905200 & 0.80851900 & 1.90184600 \\
C & 6.02523900 & 1.82796800 & 1.17463300 \\
H & 6.24499900 & 2.74921100 & 1.72203400 \\
C & 4.87233200 & 1.76463200 & 0.37371200 \\
C & -4.25970600 & 1.40973600 & 0.76487900 \\
C & -3.98738200 & 2.50145400 & 1.63313200 \\
C & -4.91009800 & 2.79150200 & 2.65054500 \\
H & -4.72089600 & 3.63548200 & 3.31970500 \\
C & -6.06326300 & 2.02026600 & 2.82469200 \\
H & -6.76998600 & 2.26119000 & 3.62336700 \\
C & -6.30182900 & 0.93376900 & 1.98116500 \\
H & -7.19646700 & 0.32262100 & 2.13181700 \\
C & -5.41365500 & 0.60215000 & 0.94149900 \\
C & -1.89643000 & -1.98035800 & 1.08602800 \\
H & -2.51505900 & -2.28161900 & 0.23093300 \\
C & -0.99674300 & -2.88751100 & 1.54375200 \\
C & -0.75937700 & -4.24039200 & 0.89083200 \\
H & 0.33164100 & -4.34985700 & 0.72325800 \\
H & -1.01430200 & -5.03620000 & 1.61912500 \\
C & -2.73548800 & 3.35875500 & 1.45384200 \\
H & -2.06067900 & 2.80296500 & 0.77871400 \\
C & -5.70713000 & -0.61735400 & 0.06611700 \\
H & -4.90259000 & -0.69193100 & -0.68375700 \\
C & 5.14335500 & -1.86738800 & -0.95027200 \\
H & 4.68673900 & -1.60875900 & -1.92080400 \\
C & 3.93524100 & 2.96685500 & 0.27190700 \\
H & 3.07007300 & 2.65427700 & -0.33707500 \\
C & -2.10387800 & -0.61321000 & 1.59529300 \\
H & -1.49369600 & -0.35354800 & 2.47145800 \\
H & -3.15753800 & -0.37255200 & 1.78564300 \\
C & -5.69522800 & -1.92266600 & 0.89349900 \\
H & -6.49748000 & -1.91977300 & 1.65037000 \\
H & -5.85537300 & -2.79307600 & 0.23629500 \\
H & -4.73725500 & -2.06377500 & 1.41528400 \\
H & -7.05122700 & -0.48218800 & -0.68431400 \\
H & -0.46829700 & 0.01974500 \\
H & 0.44151200 & -1.28072600 \\
H & -3900
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline H & -7.19831600 & -1.33751200 & -1.36423000 \\
\hline C & -1.97856300 & 3.58455600 & 2.77673700 \\
\hline H & -1.03740800 & 4.12567000 & 2.58652700 \\
\hline H & -2.56499600 & 4.18625300 & 3.49120200 \\
\hline H & -1.72883900 & 2.62858700 & 3.26194100 \\
\hline C & -3.07554800 & 4.70289200 & 0.77357500 \\
\hline H & -3.56622400 & 4.54885600 & -0.20032900 \\
\hline H & -3.75592800 & 5.30311300 & 1.40151800 \\
\hline H & -2.16015400 & 5.29346700 & 0.60273900 \\
\hline C & 4.07809500 & -2.65202000 & -0.15199500 \\
\hline H & 3.74750000 & -3.54424800 & -0.70924600 \\
\hline H & 4.48717700 & -2.98195100 & 0.81731000 \\
\hline H & 3.19954000 & -2.01773000 & 0.04481400 \\
\hline C & 6.36661800 & -2.75240100 & -1.24708400 \\
\hline H & 7.15013100 & -2.20052400 & -1.79097600 \\
\hline H & 6.81400700 & -3.15860300 & -0.32471700 \\
\hline H & 6.06462700 & -3.61343200 & -1.86486600 \\
\hline C & 3.39034900 & 3.38906300 & 1.65149500 \\
\hline H & 2.68792000 & 4.23198200 & 1.54333200 \\
\hline H & 2.85387100 & 2.55774000 & 2.13392300 \\
\hline H & 4.19855500 & 3.71193900 & 2.32863400 \\
\hline C & 4.61370800 & 4.15204000 & -0.44760200 \\
\hline H & 5.48210900 & 4.52205600 & 0.12322400 \\
\hline H & 4.97094400 & 3.86349300 & -1.44888500 \\
\hline H & 3.90638000 & 4.98964600 & -0.56558700 \\
\hline C & -1.48352000 & -4.50033700 & -0.41279900 \\
\hline C & -1.02669900 & -3.92563200 & -1.61444100 \\
\hline C & -2.62874500 & -5.31432300 & -0.45521300 \\
\hline C & -1.69222900 & -4.16249200 & -2.82279700 \\
\hline H & -0.14403100 & -3.27909600 & -1.59610600 \\
\hline C & -3.29803100 & \(-5.55575000\) & -1.66329700 \\
\hline H & -2.99729000 & -5.76711200 & 0.47066000 \\
\hline C & -2.83062700 & -4.98086100 & -2.85162400 \\
\hline H & -1.32079600 & -3.70778000 & -3.74515600 \\
\hline H & -4.18337500 & -6.19759800 & -1.67556800 \\
\hline H & -3.34850300 & -5.16997900 & -3.79572400 \\
\hline C & -0.15288700 & -2.62363500 & 2.78010600 \\
\hline H & 0.02397300 & -3.59769700 & 3.29399900 \\
\hline H & -0.73082000 & -2.02300800 & 3.50384300 \\
\hline N & 1.05412800 & -0.12909600 & 1.24175900 \\
\hline C & 1.19388400 & -1.99510200 & 2.53418300 \\
\hline H & 1.77114800 & -2.43266900 & 1.71047000 \\
\hline N & 0.13795300 & 0.14973700 & 0.48524000 \\
\hline Si & 2.12092000 & -1.13939400 & 3.92980800 \\
\hline C & 3.79175000 & -0.51961600 & 3.30956700 \\
\hline H & 3.67577200 & 0.05689800 & 2.37918000 \\
\hline
\end{tabular}
\begin{tabular}{cccc}
H & 4.28133000 & 0.12812500 & 4.05507000 \\
H & 4.47684500 & -1.35598600 & 3.09701000 \\
C & 2.39371300 & -2.39159700 & 5.34270900 \\
H & 2.93194100 & -1.91693100 & 6.18111900 \\
H & 1.43799300 & -2.77493400 & 5.73668500 \\
H & 2.99104400 & -3.25541700 & 5.00783900 \\
C & 1.07919400 & 0.29246500 & 4.60956400 \\
H & 0.10298100 & -0.05418300 & 4.98696400 \\
H & 1.59782100 & 0.79161600 & 5.44512800 \\
H & 0.89317400 & 1.03899300 & 3.82210600
\end{tabular}

S6'
Charge: 0
Multiplicity: 1 (open shell)
Imaginary Frequencies: 1
Sum of Electronic and Thermal Free Energies: -5617.948025
\begin{tabular}{lrrr}
Ni & -1.62220300 & -0.44931900 & -0.51229400 \\
Ni & 1.61066500 & -0.44442500 & -0.21010500 \\
N & -3.46859600 & -0.76533300 & -0.84248300 \\
N & -1.31699900 & -2.01885900 & -1.49875000 \\
N & 1.00964700 & -2.25541500 & -1.05675700 \\
N & 3.30997100 & -1.34393000 & -0.08053100 \\
C & -4.99818800 & -2.00738200 & -2.40428500 \\
H & -5.34857200 & -3.01580400 & -2.12609700 \\
H & -4.93961300 & -1.97406100 & -3.50457700 \\
H & -5.75666000 & -1.28413000 & -2.07663600 \\
C & -3.65712500 & -1.68853000 & -1.79414500 \\
C & -2.46372500 & -2.38499200 & -2.20151700 \\
C & -2.45362400 & -3.42976300 & -3.14105000 \\
H & -3.35836500 & -3.66949300 & -3.70219600 \\
C & -1.29665900 & -4.16864600 & -3.30841400 \\
H & -1.26225700 & -5.01741800 & -3.99619400 \\
C & -0.13309400 & -3.84773100 & -2.56220000 \\
C & -0.13656800 & -2.67890300 & -1.69721300
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline C & 1.03119800 & -4.64618200 & -2.62998800 \\
\hline H & 1.03247500 & -5.54262800 & -3.25512900 \\
\hline C & 2.14369400 & -4.27448100 & -1.90021800 \\
\hline H & 3.05009400 & -4.87945100 & \(-1.92850100\) \\
\hline C & 2.12879400 & -3.07484400 & \(-1.16325300\) \\
\hline C & 3.33097200 & -2.60006400 & -0.53089500 \\
\hline C & 4.53489700 & -3.50628600 & -0.41349900 \\
\hline H & 5.29208700 & -3.07578100 & 0.25253500 \\
\hline H & 5.00782100 & -3.67131500 & -1.39644900 \\
\hline H & 4.24380400 & -4.49349200 & -0.02182600 \\
\hline C & -4.57580100 & -0.18480200 & -0.15133900 \\
\hline C & -4.83394300 & 1.20480500 & -0.31484000 \\
\hline C & -5.90057300 & 1.77650700 & 0.39537200 \\
\hline H & -6.11303400 & 2.84164600 & 0.27535300 \\
\hline C & -6.69423100 & 1.00943700 & 1.25366000 \\
\hline H & -7.51930500 & 1.47329600 & 1.80073400 \\
\hline C & -6.42061100 & -0.35001700 & 1.41733100 \\
\hline H & -7.03299300 & -0.94090100 & 2.10431800 \\
\hline C & -5.37113600 & -0.97815900 & 0.72454900 \\
\hline C & 4.50884300 & -0.81898300 & 0.52308600 \\
\hline C & 4.60312100 & -0.78360400 & 1.94041400 \\
\hline C & 5.77781200 & -0.27531700 & 2.51849200 \\
\hline H & 5.87117600 & -0.24851300 & 3.60692100 \\
\hline C & 6.82733800 & 0.20233600 & 1.72844100 \\
\hline H & 7.73306900 & 0.59520000 & 2.19802500 \\
\hline C & 6.70813300 & 0.18596700 & 0.33811500 \\
\hline H & 7.52587800 & 0.57361200 & -0.27631800 \\
\hline C & 5.55673400 & -0.31737700 & -0.29372500 \\
\hline C & 1.76513600 & 2.57576300 & 0.04023000 \\
\hline C & 0.99813500 & 3.19249100 & 0.96860300 \\
\hline C & 3.46963800 & -1.31526400 & 2.81677100 \\
\hline H & 2.54572000 & -1.24806400 & 2.21299300 \\
\hline C & 5.47986100 & -0.30211000 & \(-1.82232700\) \\
\hline H & 4.49955500 & -0.71272000 & -2.11352700 \\
\hline C & -3.98788700 & 2.03528700 & \(-1.27381400\) \\
\hline H & -2.99868900 & 1.54657400 & -1.31051000 \\
\hline C & -5.08361400 & -2.45799000 & 0.99087300 \\
\hline H & -4.34641100 & \(-2.80337900\) & 0.25000300 \\
\hline C & 2.44560900 & 1.27775000 & 0.26102100 \\
\hline H & 2.73227000 & 1.12937300 & 1.31433600 \\
\hline H & 3.35549600 & 1.22643100 & -0.35679900 \\
\hline C & 5.56792200 & 1.13399200 & -2.38466500 \\
\hline H & 6.54298100 & 1.59500300 & -2.15554100 \\
\hline H & 5.45107600 & 1.12479100 & -3.48085200 \\
\hline H & 4.78371100 & 1.78151600 & -1.96475900 \\
\hline C & 6.57917100 & -1.17987200 & -2.46291700 \\
\hline
\end{tabular}
\begin{tabular}{lrrr}
H & 7.58226000 & -0.77036700 & -2.25737200 \\
H & 6.55914700 & -2.21164500 & -2.08110600 \\
H & 6.45246100 & -1.21685500 & -3.55746300 \\
C & 3.25949400 & -0.48649500 & 4.09830200 \\
H & 2.34591500 & -0.81846800 & 4.61689500 \\
H & 4.09501000 & -0.60641500 & 4.80802900 \\
H & 3.15688500 & 0.58751200 & 3.87649900 \\
C & 3.68032700 & -2.80406800 & 3.17318100 \\
H & 3.74750200 & -3.43260500 & 2.27301600 \\
H & 4.60961200 & -2.93929500 & 3.75212900 \\
H & 2.84053000 & -3.17705300 & 3.78235700 \\
C & -3.77311700 & 3.48409700 & -0.80366900 \\
H & -3.03031500 & 3.98336500 & -1.44531200 \\
H & -4.70105400 & 4.07910500 & -0.85290600 \\
H & -3.39686500 & 3.51841400 & 0.23000800 \\
C & -4.57896200 & 2.00293200 & -2.70120900 \\
H & -4.67008800 & 0.97220100 & -3.07766100 \\
H & -5.58263800 & 2.46083100 & -2.72035900 \\
H & -3.93560300 & 2.56240700 & -3.40082400 \\
C & -4.44076500 & -2.65448600 & 2.38168900 \\
H & -4.21229200 & -3.71964800 & 2.55421100 \\
H & -3.50333500 & -2.08552800 & 2.46783800 \\
H & -5.11851400 & -2.31651100 & 3.18318800 \\
C & -6.34182700 & -3.34023500 & 0.84439200 \\
H & -7.08767100 & -3.11736200 & 1.62513600 \\
H & -6.83039300 & -3.19659300 & -0.13224200 \\
H & -6.07454600 & -4.40538200 & 0.94166500 \\
C & 0.63268900 & 2.60274600 & 2.30771900 \\
H & 0.70897500 & 3.39286800 & 3.08801900 \\
H & 1.35128900 & 1.82062800 & 2.60514400 \\
N & -0.85218200 & 1.08355800 & 0.29885800 \\
C & -0.77871000 & 2.05780800 & 2.33407500 \\
N & -0.03724300 & 0.25572500 & -0.07737600 \\
H & 0.53269200 & 4.15292000 & 0.72207700 \\
C & 1.97535300 & 3.17109100 & -1.35259900 \\
H & 1.59109800 & 2.43732700 & -2.08701900 \\
H & 3.06473100 & 3.22998900 & -1.54001400 \\
C & 1.35922400 & 4.52520100 & -1.62611300 \\
C & 0.12022100 & 4.64059800 & -2.28113700 \\
C & 2.01702900 & 5.70598800 & -1.23261100 \\
H & -0.44472000 & 5.89660500 & -2.54078400 \\
H & -0.40259100 & 3.73133300 & -2.59280700 \\
H & 1.45555600 & 6.96352200 & -1.48649200 \\
H & 2.98176700 & 5.63359800 & -0.72077200 \\
H & 7.06323300 & -2.14343700 \\
H & 5.96450100 & -3.05940200 \\
H & & & \\
H & -143200
\end{tabular}
\begin{tabular}{lrrr}
H & 1.98506000 & 7.86850600 & -1.17558300 \\
H & -0.21616100 & 8.04406800 & -2.34757600 \\
H & -1.53188600 & 2.75342100 & 1.94374100 \\
Si & -1.37364400 & 0.76146200 & 3.55564500 \\
C & -0.69796400 & 1.17388900 & 5.29051300 \\
H & 0.40360900 & 1.20796700 & 5.30210200 \\
H & -1.06815100 & 2.15176400 & 5.63922900 \\
H & -1.01717400 & 0.41217800 & 6.02251600 \\
C & -0.74514500 & -0.97088800 & 3.09283300 \\
H & -1.10312900 & -1.28204400 & 2.09737500 \\
H & 0.35644700 & -0.99563500 & 3.05972600 \\
H & -1.07593200 & -1.72022100 & 3.83140000 \\
C & -3.26397800 & 0.80428800 & 3.61572600 \\
H & -3.71386300 & 0.61416500 & 2.62859500 \\
H & -3.65947200 & 0.05102800 & 4.31679800 \\
H & -3.61579900 & 1.79222700 & 3.95663000
\end{tabular}

S7
Charge: 0
Multiplicity: 1 (open shell)
Imaginary Frequencies: 0
Sum of Electronic and Thermal Free Energies: -5617.969537
\begin{tabular}{crcc}
Ni & 1.53226700 & -1.20096500 & -0.00528800 \\
Ni & -1.59265700 & -0.51617600 & -0.35320400 \\
N & 3.27617800 & -1.81134300 & 0.40627300 \\
N & 0.93673000 & -2.49698500 & 1.22310800 \\
N & -1.40137000 & -2.17103000 & 0.92171500 \\
N & -3.42919200 & -1.01312000 & -0.34681200 \\
C & 4.56050700 & -3.46979100 & 1.78237700 \\
H & 4.48736600 & -4.55972300 & 1.63418500 \\
H & 4.74210000 & -3.29673700 & 2.85686300 \\
H & 5.43267900 & -3.10200900 & 1.22611300 \\
C & 3.30445200 & -2.78101100 & 1.31564600
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline C & 1.99801400 & -3.16814000 & 1.81630500 \\
\hline C & 1.80467800 & -4.13848700 & 2.81043400 \\
\hline H & 2.66316800 & -4.63977700 & 3.26061300 \\
\hline C & 0.51282800 & -4.44235600 & 3.20894900 \\
\hline H & 0.32173400 & -5.18971900 & 3.98322000 \\
\hline C & -0.58958300 & -3.79652600 & 2.59699400 \\
\hline C & -0.35647800 & -2.79638500 & 1.56901800 \\
\hline C & -1.92289900 & -4.11456000 & 2.95391300 \\
\hline H & -2.10692100 & -4.84635400 & 3.74449000 \\
\hline C & -2.96169700 & -3.51503300 & 2.27166500 \\
\hline H & -3.99614600 & -3.76177100 & 2.51334200 \\
\hline C & -2.69030800 & -2.57142000 & 1.26129700 \\
\hline C & -3.76192100 & -2.00383000 & 0.48069900 \\
\hline C & -5.15418100 & -2.58269800 & 0.56804900 \\
\hline H & -5.79919200 & -2.17585900 & -0.21989100 \\
\hline H & -5.61969800 & -2.34902100 & 1.54095800 \\
\hline H & -5.13264300 & -3.67929900 & 0.46935500 \\
\hline C & 4.46572100 & -1.28695900 & -0.18927900 \\
\hline C & 5.30793200 & -0.40930900 & 0.54911900 \\
\hline C & 6.45286700 & 0.09550900 & -0.08794200 \\
\hline H & 7.11538000 & 0.77085700 & 0.45838400 \\
\hline C & 6.76448700 & -0.24853500 & -1.40801400 \\
\hline H & 7.66627000 & 0.15106900 & -1.87938900 \\
\hline C & 5.91216300 & -1.09202700 & -2.12332800 \\
\hline H & 6.14989700 & -1.34772500 & -3.15999000 \\
\hline C & 4.75109000 & -1.62179100 & \(-1.53622900\) \\
\hline C & -4.38953500 & -0.56102500 & -1.32238600 \\
\hline C & -4.27754200 & -1.07794600 & -2.64078800 \\
\hline C & -5.21236700 & -0.65992200 & -3.60129700 \\
\hline H & -5.14786900 & -1.05786300 & -4.61796000 \\
\hline C & -6.21988800 & 0.25504400 & -3.28212700 \\
\hline H & -6.94008200 & 0.56704400 & -4.04318300 \\
\hline C & -6.29216400 & 0.78059500 & -1.99070800 \\
\hline H & -7.06854300 & 1.51270700 & -1.75081400 \\
\hline C & -5.38300700 & 0.39492600 & \(-0.98858100\) \\
\hline C & -1.59901400 & 2.18920300 & -0.05040400 \\
\hline H & -2.21712200 & 2.06103900 & 0.84777500 \\
\hline C & -0.69040900 & 3.19829000 & -0.00738200 \\
\hline C & -0.49980700 & 4.07786300 & 1.22449200 \\
\hline H & 0.58502500 & 4.09577600 & 1.44992500 \\
\hline H & -0.74850200 & 5.12244800 & 0.95155000 \\
\hline C & -3.17989400 & -2.07306800 & -3.01583200 \\
\hline H & -2.47313100 & -2.11206800 & -2.16841200 \\
\hline C & -5.47993800 & 1.03123100 & 0.39843600 \\
\hline H & -4.65907600 & 0.62391000 & 1.01140600 \\
\hline C & 4.91933100 & 0.05195200 & 1.95407700 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline H & 4.39079400 & -0.77880400 & 2.45045100 \\
\hline C & 3.81621400 & -2.51568800 & -2.34715200 \\
\hline H & 2.95495400 & -2.75517300 & -1.70123000 \\
\hline C & -1.87947400 & 1.24524700 & -1.15260700 \\
\hline H & -1.23384800 & 1.37623600 & \(-2.03312900\) \\
\hline H & -2.93449100 & 1.26163700 & -1.46098400 \\
\hline C & -5.29319600 & 2.56340100 & 0.32788400 \\
\hline H & -6.11378200 & 3.03857200 & -0.23541600 \\
\hline H & -5.28691100 & 2.99358000 & 1.34245300 \\
\hline H & -4.34464900 & 2.83355400 & -0.15918200 \\
\hline C & -6.81471400 & 0.69374900 & 1.10021200 \\
\hline H & -7.66996100 & 1.12107100 & 0.55044000 \\
\hline H & -6.97867400 & -0.39178500 & 1.17767600 \\
\hline H & -6.82924900 & 1.11536200 & 2.11868400 \\
\hline C & -2.38171900 & -1.61818500 & -4.25409000 \\
\hline H & -1.55106000 & -2.31632500 & -4.44780100 \\
\hline H & -3.00956100 & -1.59061200 & -5.16024600 \\
\hline H & -1.95458800 & -0.61466400 & -4.10548200 \\
\hline C & -3.75410100 & -3.49236400 & -3.21570000 \\
\hline H & -4.28387700 & -3.84392200 & -2.31622100 \\
\hline H & -4.46877200 & -3.51670000 & -4.05584000 \\
\hline H & -2.94630300 & -4.20945000 & -3.43693900 \\
\hline C & 3.91800500 & 1.22629500 & 1.85496400 \\
\hline H & 3.54413800 & 1.51007300 & 2.85280500 \\
\hline H & 4.40119600 & 2.10812800 & 1.40358400 \\
\hline H & 3.05622500 & 0.95436400 & 1.22509500 \\
\hline C & 6.11623600 & 0.42450500 & 2.84733400 \\
\hline H & 6.85855800 & -0.38840600 & 2.89691700 \\
\hline H & 6.62940200 & 1.33268900 & 2.49055000 \\
\hline H & 5.76881000 & 0.63316100 & 3.87210300 \\
\hline C & 3.26722900 & -1.77524100 & -3.58441600 \\
\hline H & 2.55615700 & -2.41684800 & \(-4.13113200\) \\
\hline H & 2.74250700 & \(-0.85445900\) & -3.28718700 \\
\hline H & 4.07507800 & -1.50066700 & -4.28315200 \\
\hline C & 4.49404300 & -3.84526600 & -2.73976500 \\
\hline H & 5.36212000 & -3.67353000 & -3.39828400 \\
\hline H & 4.85125800 & -4.39248900 & \(-1.85272100\) \\
\hline H & 3.78658300 & -4.49563700 & -3.28060500 \\
\hline C & -1.26176500 & 3.69082400 & 2.47223700 \\
\hline C & -0.85069300 & 2.59167500 & 3.25204900 \\
\hline C & -2.38982400 & 4.41814100 & 2.89146400 \\
\hline C & -1.54357800 & 2.23386600 & 4.41429500 \\
\hline H & 0.02091800 & 2.01062600 & 2.93616900 \\
\hline C & -3.08612400 & 4.06528700 & 4.05626800 \\
\hline H & -2.72219000 & 5.27608400 & 2.29857600 \\
\hline C & -2.66473200 & 2.97110600 & 4.82212500 \\
\hline
\end{tabular}
\begin{tabular}{lccc}
H & -1.20544200 & 1.37904600 & 5.00662400 \\
H & -3.95579100 & 4.65058400 & 4.36809500 \\
H & -3.20300200 & 2.69619100 & 5.73318900 \\
C & 0.17247600 & 3.61700800 & -1.19101800 \\
H & -0.17263600 & 4.61541300 & -1.52983600 \\
H & -0.02748300 & 2.92751100 & -2.03484200 \\
N & 1.11399400 & 0.21232100 & -1.19492800 \\
C & 1.65649100 & 3.63510200 & -0.93380100 \\
H & 2.05038800 & 2.70369900 & -0.50496700 \\
N & 0.15641600 & -0.28530100 & -0.65004900 \\
Si & 2.83450000 & 4.95863400 & -1.52453200 \\
C & 4.52789100 & 4.71951000 & -0.70392600 \\
H & 4.93847000 & 3.72137400 & -0.92749400 \\
H & 5.25253500 & 5.46832400 & -1.06495700 \\
H & 4.45981300 & 4.81984200 & 0.39156800 \\
C & 2.15595800 & 6.68421900 & -1.09864900 \\
H & 2.82845000 & 7.47177100 & -1.47860300 \\
H & 1.16367800 & 6.85356100 & -1.54844700 \\
H & 2.05839700 & 6.82051900 & -0.00949200 \\
C & 3.04511500 & 4.86158700 & -3.41580800 \\
H & 2.08001800 & 4.99153200 & -3.93238600 \\
H & 3.72929200 & 5.64836000 & -3.77724000 \\
H & 3.45740400 & 3.88555800 & -3.71810000
\end{tabular}

S7
Charge: 0
Multiplicity: 3
Imaginary Frequencies: 0
Sum of Electronic and Thermal Free Energies: -5617.970576
\begin{tabular}{cccc}
Ni & 1.53235200 & -1.20075800 & -0.00560700 \\
Ni & -1.59253800 & -0.51579400 & -0.35350000 \\
N & 3.27623400 & -1.81098600 & 0.40641400 \\
N & 0.93675100 & -2.49590100 & 1.22374300
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline N & -1.40133000 & -2.16986600 & 0.92227400 \\
\hline N & -3.42891900 & -1.01298700 & -0.34743200 \\
\hline C & 4.56043600 & -3.46863400 & 1.78360200 \\
\hline H & 4.48707600 & -4.55867100 & 1.63631100 \\
\hline H & 4.74218700 & -3.29474000 & 2.85792800 \\
\hline H & 5.43261300 & -3.10145800 & 1.22694600 \\
\hline C & 3.30445200 & -2.77999500 & 1.31647100 \\
\hline C & 1.99798400 & -3.16663900 & 1.81746700 \\
\hline C & 1.80460700 & -4.13635700 & 2.81219500 \\
\hline H & 2.66307500 & -4.63730700 & 3.26279000 \\
\hline C & 0.51271500 & -4.44016300 & 3.21064000 \\
\hline H & 0.32157100 & -5.18719400 & 3.98522100 \\
\hline C & -0.58965100 & -3.79479300 & 2.59815000 \\
\hline C & -0.35648500 & -2.79507600 & 1.56977700 \\
\hline C & -1.92300900 & -4.11291400 & 2.95488600 \\
\hline H & -2.10709000 & -4.84440200 & 3.74573200 \\
\hline C & -2.96173500 & -3.51388500 & 2.27212500 \\
\hline H & -3.99619500 & -3.76078100 & 2.51359800 \\
\hline C & -2.69029900 & \(-2.57045500\) & 1.26157500 \\
\hline C & -3.76182500 & -2.00314100 & 0.48073100 \\
\hline C & -5.15419600 & -2.58169300 & 0.56841600 \\
\hline H & -5.79901600 & -2.17543200 & -0.21998400 \\
\hline H & -5.61984600 & -2.34710100 & 1.54104100 \\
\hline H & -5.13284000 & -3.67837900 & 0.47063900 \\
\hline C & 4.46581600 & -1.28729700 & -0.18969600 \\
\hline C & 5.30826500 & -0.40921300 & 0.54790300 \\
\hline C & 6.45322900 & 0.09487500 & -0.08969100 \\
\hline H & 7.11592700 & 0.77053800 & 0.45601800 \\
\hline C & 6.76466100 & -0.25032200 & -1.40950400 \\
\hline H & 7.66647100 & 0.14872300 & -1.88129900 \\
\hline C & 5.91211700 & -1.09426000 & \(-2.12403400\) \\
\hline H & 6.14971300 & -1.35087400 & -3.16050200 \\
\hline C & 4.75099000 & -1.62330100 & \(-1.53639700\) \\
\hline C & -4.38926000 & -0.56100200 & -1.32303300 \\
\hline C & -4.27727800 & -1.07821400 & -2.64132800 \\
\hline C & -5.21205800 & -0.66035400 & -3.60195000 \\
\hline H & -5.14756100 & -1.05853000 & -4.61852100 \\
\hline C & -6.21953500 & 0.25474300 & -3.28301200 \\
\hline H & -6.93968600 & 0.56662000 & -4.04415900 \\
\hline C & -6.29183700 & 0.78055100 & -1.99170300 \\
\hline H & -7.06820400 & 1.51273100 & -1.75197900 \\
\hline C & -5.38274500 & 0.39503600 & -0.98945400 \\
\hline C & -1.59866800 & 2.18861600 & -0.05055600 \\
\hline H & -2.21657300 & 2.05978800 & 0.84768100 \\
\hline C & -0.69018600 & 3.19785600 & -0.00706100 \\
\hline C & -0.49918300 & 4.07632300 & 1.22559600 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline H & 0.58556800 & 4.09361800 & 1.45125200 \\
\hline H & -0.74748600 & 5.12121800 & 0.95348600 \\
\hline C & -3.17972000 & -2.07353200 & -3.01611000 \\
\hline H & -2.47292000 & -2.11226200 & -2.16871700 \\
\hline C & -5.47981300 & 1.03161800 & 0.39743200 \\
\hline H & -4.65918300 & 0.62423300 & 1.01066800 \\
\hline C & 4.91993300 & 0.05319300 & 1.95256800 \\
\hline H & 4.39174500 & -0.77726000 & 2.44982000 \\
\hline C & 3.81586000 & -2.51767700 & -2.34649500 \\
\hline H & 2.95462400 & -2.75650000 & -1.70029400 \\
\hline C & -1.87927000 & 1.24544100 & \(-1.15333400\) \\
\hline H & -1.23340700 & 1.37643000 & -2.03365700 \\
\hline H & -2.93425800 & 1.26196500 & -1.46178400 \\
\hline C & -5.29272100 & 2.56374000 & 0.32662700 \\
\hline H & -6.11305900 & 3.03895300 & -0.23700000 \\
\hline H & -5.28662800 & 2.99411800 & 1.34111400 \\
\hline H & -4.34399000 & 2.83361000 & -0.16022900 \\
\hline C & -6.81482000 & 0.69461000 & 1.09899200 \\
\hline H & -7.66984400 & 1.12213300 & 0.54903100 \\
\hline H & -6.97912500 & -0.39086500 & 1.17653800 \\
\hline H & -6.82941200 & 1.11633700 & 2.11741500 \\
\hline C & -2.38161500 & -1.61914900 & -4.25459200 \\
\hline H & -1.55100200 & -2.31739900 & -4.44810100 \\
\hline H & -3.00951300 & \(-1.59188000\) & -5.16072000 \\
\hline H & -1.95442000 & -0.61559600 & -4.10638700 \\
\hline C & -3.75405900 & -3.49285600 & -3.21541100 \\
\hline H & -4.28376400 & -3.84404100 & \(-2.31574300\) \\
\hline H & -4.46882100 & -3.51744200 & -4.05546600 \\
\hline H & -2.94633900 & -4.21008300 & -3.43647400 \\
\hline C & 3.91828400 & 1.22718500 & 1.85271500 \\
\hline H & 3.54465800 & 1.51176500 & 2.85041800 \\
\hline H & 4.40110400 & 2.10873100 & 1.40038300 \\
\hline H & 3.05637200 & 0.95447100 & 1.22336800 \\
\hline C & 6.11698700 & 0.42680900 & 2.84518400 \\
\hline H & 6.85954600 & -0.38585600 & 2.89523100 \\
\hline H & 6.62979600 & 1.33484300 & 2.48750700 \\
\hline H & 5.76978500 & 0.63621500 & 3.86987500 \\
\hline C & 3.26687800 & -1.77809700 & -3.58428900 \\
\hline H & 2.55559900 & -2.41999200 & -4.13039700 \\
\hline H & 2.74239700 & -0.85695400 & -3.28775100 \\
\hline H & 4.07471400 & -1.50427700 & -4.28333900 \\
\hline C & 4.49336900 & -3.84769100 & -2.73815800 \\
\hline H & 5.36139300 & -3.67665000 & -3.39692600 \\
\hline H & 4.85058700 & -4.39430000 & -1.85073700 \\
\hline H & 3.78570700 & -4.49833600 & -3.27840400 \\
\hline C & -1.26143900 & 3.68857300 & 2.47295400 \\
\hline
\end{tabular}
\begin{tabular}{lrrr}
C & -0.85074000 & 2.58880900 & 3.25210000 \\
C & -2.38941400 & 4.41585000 & 2.89246900 \\
C & -1.54390200 & 2.23038200 & 4.41399000 \\
H & 0.02078600 & 2.00775900 & 2.93598800 \\
C & -3.08598000 & 4.06238400 & 4.05693100 \\
H & -2.72149800 & 5.27425100 & 2.30008700 \\
C & -2.66495500 & 2.96760400 & 4.82213100 \\
H & -1.20606100 & 1.37508500 & 5.00579800 \\
H & -3.95556700 & 4.64766800 & 4.36900700 \\
H & -3.20343500 & 2.69220500 & 5.73292500 \\
C & 0.17181700 & 3.61764900 & -1.19093000 \\
H & -0.17339500 & 4.61647200 & -1.52840300 \\
H & -0.02905800 & 2.92912700 & -2.03534200 \\
N & 1.11421600 & 0.21169700 & -1.19622800 \\
C & 1.65593500 & 3.63516500 & -0.93459500 \\
H & 2.05000200 & 2.70310300 & -0.50735600 \\
N & 0.15658800 & -0.28548900 & -0.65105300 \\
Si & 2.83364300 & 4.95990200 & -1.52323300 \\
C & 4.52740300 & 4.71951900 & -0.70374600 \\
H & 4.93796000 & 3.72179400 & -0.92917400 \\
H & 5.25181500 & 5.46899300 & -1.06388300 \\
H & 4.45985200 & 4.81802600 & 0.39194300 \\
C & 2.15518200 & 6.68470100 & -1.09405100 \\
H & 2.82760200 & 7.47292700 & -1.47273200 \\
H & 1.16279800 & 6.85490000 & -1.54329600 \\
H & 2.05790000 & 6.81901900 & -0.00462100 \\
C & 3.04371100 & 4.86620600 & -3.41474400 \\
H & 2.07851100 & 4.99703300 & -3.93090400 \\
H & 3.72780500 & 5.65362000 & -3.77493900 \\
H & 3.45597200 & 3.89072200 & -3.71883600
\end{tabular}

S8
Charge: 0
Multiplicity: 1 (open shell)

\section*{Imaginary Frequencies: 1}

Sum of Electronic and Thermal Free Energies: -5617.968009
\begin{tabular}{crrc}
& & & \\
Ni & 2.05877000 & -0.78582500 & -0.02977400 \\
Ni & -1.12751800 & -0.80245400 & -0.39052800 \\
N & 3.85543900 & -0.72170700 & 0.56520500 \\
N & 1.63502500 & -1.28193100 & 1.74330100 \\
N & -0.70009800 & -1.62629800 & 1.44500100 \\
N & -2.79448000 & -1.72219100 & -0.15700100 \\
C & 5.33422800 & -1.06143200 & 2.56299800 \\
H & 5.45119100 & -2.01914900 & 3.09524800 \\
H & 5.43501800 & -0.25564900 & 3.31044800 \\
H & 6.15771800 & -0.96114100 & 1.84371000 \\
C & 4.00403700 & -0.99580700 & 1.85859100 \\
C & 2.76435300 & -1.28248700 & 2.55607400 \\
C & 2.69678400 & -1.59345800 & 3.92164500 \\
H & 3.59896000 & -1.56157000 & 4.53497500 \\
C & 1.47763300 & -1.96224600 & 4.47014300 \\
H & 1.39385800 & -2.23760800 & 5.52455800 \\
C & 0.32160100 & -2.02083400 & 3.65464300 \\
C & 0.41202800 & -1.62751800 & 2.25907400 \\
C & -0.92423200 & -2.47308200 & 4.15896500 \\
H & -1.00266500 & -2.76230900 & 5.21004000 \\
C & -2.00106400 & -2.57931200 & 3.30147300 \\
H & -2.95719100 & -2.96471000 & 3.65828900 \\
C & -1.87987100 & -2.16047500 & 1.96159200 \\
C & -2.97690800 & -2.28694700 & 1.03739800 \\
C & -4.20543200 & -3.08463700 & 1.40318500 \\
H & -4.80817200 & -3.29809100 & 0.51116600 \\
H & -4.84356600 & -2.53540400 & 2.11674200 \\
H & -3.93056000 & -4.04168400 & 1.87287900 \\
C & 4.96348600 & -0.45684400 & -0.29759000 \\
C & 5.66280500 & 0.77792000 & -0.22724400 \\
C & 6.73011400 & 0.98621500 & -1.11740100 \\
H & 7.27546700 & 1.93347700 & -1.08327600 \\
C & 7.10561700 & 0.01302500 & -2.04711900 \\
H & 7.94575300 & 0.19392600 & -2.72275300 \\
C & 6.38797300 & -1.18405000 & -2.12079300 \\
H & 6.67012300 & -1.93768200 & -2.86171600 \\
C & 5.30690800 & -1.43920200 & -1.26316600 \\
C & -3.72191200 & -1.95915600 & -1.22941100 \\
C & -3.32252700 & -2.88391500 & -2.23522400 \\
C & -4.19829700 & -3.12865500 & -3.30379500 \\
H & -3.90909200 & -3.84616400 & -4.07678800 \\
C & -5.42886300 & -2.47185800 & -3.39924600 \\
H & -6.09652100 & -2.67369600 & -4.24110800 \\
& & &
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline C & -5.79530200 & \(-1.54944100\) & -2.41831800 \\
\hline H & -6.75260700 & \(-1.02716600\) & -2.50319100 \\
\hline C & -4.96119200 & -1.27134300 & \(-1.31916300\) \\
\hline C & -1.86807300 & 1.28372900 & -0.50185500 \\
\hline H & -2.77798300 & 1.17441000 & 0.09760200 \\
\hline C & -0.95709100 & 2.23999000 & -0.06633600 \\
\hline C & -1.05672900 & 2.86586200 & 1.31569400 \\
\hline H & -0.30843800 & 2.36207400 & 1.96063600 \\
\hline H & -0.72738600 & 3.91641900 & 1.24918000 \\
\hline C & -1.98677600 & -3.62109700 & -2.15350300 \\
\hline H & -1.39785000 & -3.13431000 & -1.35759700 \\
\hline C & -5.41381700 & -0.23215200 & -0.29248800 \\
\hline H & -4.64094500 & -0.16873400 & 0.49133300 \\
\hline C & 5.21623600 & 1.90628800 & 0.70197300 \\
\hline H & 4.52407000 & 1.48122700 & 1.44613400 \\
\hline C & 4.51220100 & -2.73661400 & -1.38705200 \\
\hline H & 3.65838300 & -2.65773800 & -0.69187200 \\
\hline C & -1.76424200 & 0.48004500 & -1.70731600 \\
\hline H & -1.00406900 & 0.76047600 & -2.44389300 \\
\hline H & -2.69837000 & 0.13544800 & -2.16317400 \\
\hline C & -5.54939700 & 1.16896900 & -0.93057300 \\
\hline H & -6.34647400 & 1.18082000 & -1.69275200 \\
\hline H & -5.80272400 & 1.91550300 & -0.16063800 \\
\hline H & -4.61440500 & 1.48621200 & -1.41554700 \\
\hline C & -6.74393900 & -0.62888300 & 0.38713700 \\
\hline H & -7.57290200 & -0.64338200 & -0.33987100 \\
\hline H & -6.69007400 & -1.62639100 & 0.84900000 \\
\hline H & -7.00252500 & 0.09981400 & 1.17256600 \\
\hline C & -1.17268800 & -3.50376300 & -3.45686900 \\
\hline H & -0.18842000 & -3.98366400 & -3.33298900 \\
\hline H & -1.67722900 & -3.99610100 & -4.30497600 \\
\hline H & -1.00241800 & -2.44983000 & -3.72447500 \\
\hline C & -2.19083800 & -5.09829200 & -1.75291100 \\
\hline H & -2.73001100 & -5.18555600 & -0.79623600 \\
\hline H & -2.77357600 & -5.64077700 & -2.51676300 \\
\hline H & -1.21875900 & -5.60701600 & -1.64314800 \\
\hline C & 4.42121500 & 2.96111800 & -0.10135300 \\
\hline H & 4.04129700 & 3.75430700 & 0.56448200 \\
\hline H & 5.05876000 & 3.43395000 & -0.86680000 \\
\hline H & 3.56564600 & 2.49719100 & -0.61610100 \\
\hline C & 6.38208900 & 2.55901600 & 1.47142700 \\
\hline H & 6.96456500 & 1.81307200 & 2.03523900 \\
\hline H & 7.07629100 & 3.08346200 & 0.79450400 \\
\hline H & 5.99782800 & 3.30522400 & 2.18621900 \\
\hline C & 3.92957000 & -2.90902800 & -2.80433900 \\
\hline H & 3.31649400 & -3.82413300 & -2.85699800 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline H & 3.29209000 & -2.05164900 & -3.06932300 \\
\hline H & 4.72390800 & -2.99585100 & -3.56433900 \\
\hline C & 5.35127600 & -3.96092300 & -0.96578400 \\
\hline H & 6.22224900 & -4.09576800 & -1.62927600 \\
\hline H & 5.72907800 & -3.85438700 & 0.06367400 \\
\hline H & 4.74587100 & -4.88138500 & -1.01386100 \\
\hline C & -2.40860900 & 2.81067600 & 1.99913400 \\
\hline C & -2.68192100 & 1.85810300 & 2.99652000 \\
\hline C & -3.41963200 & 3.72732500 & 1.65367500 \\
\hline C & -3.92797800 & 1.82584900 & 3.63891600 \\
\hline H & -1.90725100 & 1.13745900 & 3.27552200 \\
\hline C & -4.66377400 & 3.70133300 & 2.29467400 \\
\hline H & -3.22288300 & 4.46807500 & 0.87273100 \\
\hline C & -4.92208800 & 2.74954400 & 3.29218100 \\
\hline H & -4.11766400 & 1.08219700 & 4.41775600 \\
\hline H & -5.43194800 & 4.43005200 & 2.02119400 \\
\hline H & -5.89061900 & 2.73300000 & 3.79904300 \\
\hline C & 0.18106400 & 2.73417200 & -0.93524700 \\
\hline H & 0.60264100 & 1.94151500 & -1.57823000 \\
\hline H & 1.00293600 & 3.12953300 & \(-0.31538900\) \\
\hline N & 1.44680600 & -0.27690800 & -1.74817800 \\
\hline C & -0.52752200 & 3.81142300 & -1.71578200 \\
\hline N & 0.57434000 & -0.65245500 & -0.99699100 \\
\hline H & -1.26263300 & 3.41536000 & -2.42877400 \\
\hline Si & -0.23465300 & 5.65484800 & -1.69386300 \\
\hline C & -1.77590900 & 6.54022800 & \(-2.35938800\) \\
\hline H & -2.03478700 & 6.17828600 & -3.36820100 \\
\hline H & -2.65081100 & 6.37262300 & -1.71072400 \\
\hline H & -1.61106700 & 7.62835300 & -2.42922500 \\
\hline C & 1.24037300 & 6.07321300 & -2.82654800 \\
\hline H & 2.16228100 & 5.57791500 & -2.48145200 \\
\hline H & 1.05262200 & 5.74396700 & -3.86116500 \\
\hline H & 1.42536700 & 7.16120300 & -2.84373900 \\
\hline C & 0.17793500 & 6.30621100 & 0.04475200 \\
\hline H & -0.67832200 & 6.22370100 & 0.73345800 \\
\hline H & 1.02938900 & 5.76969000 & 0.49488100 \\
\hline H & 0.45650500 & 7.37227500 & -0.00996600 \\
\hline
\end{tabular}

S8 \({ }^{\prime}\)
Charge: 0
Multiplicity: 1 (open shell)
Imaginary Frequencies: 1
Sum of Electronic and Thermal Free Energies: -5617.966173
\begin{tabular}{lrrr}
Ni & 1.96224200 & -0.78392600 & -0.02907900 \\
Ni & -1.18543900 & -0.50532600 & -0.29551800 \\
N & 3.73999800 & -0.61162500 & 0.62211200 \\
N & 1.47381100 & -0.96320300 & 1.80473300 \\
N & -0.85077100 & -1.32325500 & 1.49871500 \\
N & -2.86695600 & -1.49140600 & -0.16782700 \\
C & 5.15277600 & -0.67067300 & 2.69583800 \\
H & 5.25331600 & -1.55728900 & 3.34253500 \\
H & 5.23072200 & 0.21896000 & 3.34405500 \\
H & 5.99870400 & -0.65670100 & 1.99609100 \\
C & 3.84467200 & -0.69602300 & 1.94757500 \\
C & 2.58715400 & -0.89695300 & 2.63975900 \\
C & 2.48614100 & -1.11743300 & 4.02156100 \\
H & 3.36871500 & -1.01680500 & 4.65584400 \\
C & 1.26956300 & -1.51196900 & 4.56145500 \\
H & 1.17292900 & -1.73750500 & 5.62648500 \\
C & 0.14049200 & -1.67162500 & 3.72102200 \\
C & 0.25410000 & -1.30927000 & 2.32015000 \\
C & -1.09240300 & -2.19217400 & 4.19132100 \\
H & -1.18532900 & -2.47942600 & 5.24176800 \\
C & -2.13751900 & -2.37368800 & 3.30253100 \\
H & -3.07275000 & -2.82894600 & 3.63194500 \\
C & -2.01263800 & -1.93458700 & 1.97056800 \\
C & -3.07583500 & -2.07750100 & 1.01061300 \\
C & -4.29971200 & -2.90109200 & 1.33216400 \\
H & -4.89076700 & -3.08727000 & 0.42621100 \\
H & -4.95027600 & -2.38820600 & 2.06091800 \\
H & -4.01696500 & -3.87228800 & 1.76778900 \\
C & 4.87638400 & -0.48082900 & -0.23410900 \\
C & 5.60702600 & 0.73581600 & -0.31066200
\end{tabular}
\begin{tabular}{lrrr}
C & 6.69926800 & 0.79934100 & -1.19341700 \\
H & 7.26736500 & 1.73090900 & -1.27000600 \\
C & 7.07094600 & -0.29566800 & -1.97667000 \\
H & 7.93047600 & -0.22490000 & -2.64843700 \\
C & 6.32420100 & -1.47573700 & -1.90971500 \\
H & 6.60423900 & -2.32728300 & -2.53631700 \\
C & 5.21809300 & -1.59012100 & -1.05475900 \\
C & -3.79518900 & -1.65717600 & -1.24885500 \\
C & -3.42996800 & -2.55179600 & -2.29393900 \\
C & -4.30582700 & -2.70619700 & -3.37934900 \\
H & -4.04156700 & -3.40007800 & -4.18234900 \\
C & -5.50530600 & -1.99182300 & -3.45287400 \\
H & -6.17356200 & -2.12401900 & -4.30794100 \\
C & -5.84072900 & -1.10285200 & -2.43029600 \\
H & -6.77506600 & -0.53771800 & -2.49524400 \\
C & -5.00497500 & -0.91323100 & -1.31423500 \\
C & -1.79934900 & 1.43528500 & -0.43555200 \\
H & -2.76488300 & 1.51010600 & 0.07216200 \\
C & -0.65660300 & 1.86102600 & 0.26430300 \\
C & -0.73392900 & 2.20707600 & 1.74803400 \\
H & -0.29888700 & 1.36346100 & 2.31405100 \\
H & -0.06427500 & 3.06350700 & 1.93958100 \\
C & -2.13409400 & -3.35818700 & -2.23338100 \\
H & -1.54088300 & -2.95544100 & -1.39739800 \\
C & -5.42474900 & 0.08970100 & -0.23839100 \\
H & -4.64483200 & 0.09963100 & 0.54073100 \\
C & 5.18741800 & 1.99026100 & 0.45586900 \\
H & 4.40867500 & 1.70226500 & 1.18018700 \\
C & 4.40205300 & -2.87954600 & -1.01235400 \\
H & 3.49349500 & -2.66004500 & -0.42302100 \\
C & -1.7245900 & 0.75680400 & -1.70069600 \\
H & -0.88779800 & 0.95369400 & -2.37638300 \\
H & -2.66069300 & 0.50510000 & -2.20718400 \\
C & -5.53586700 & 1.52187000 & -0.80875300 \\
H & -6.34857100 & 1.59120000 & -1.55097000 \\
H & -5.75270300 & 2.23990500 & -0.00132900 \\
H & -4.60544800 & 1.83758700 & -1.30414800 \\
C & -6.75839400 & -0.30852100 & 0.43378500 \\
H & -7.59140000 & -0.27614100 & -0.28804500 \\
H & -6.72130900 & -1.32579400 & 0.85187500 \\
H & -6.99815100 & 0.39066700 & 1.25153200 \\
H & -1.28470300 & -3.19820700 & -3.50983200 \\
H & -0.33374500 & -3.74438800 & -3.40270900 \\
H & -1.79921000 & -3.59634100 & -4.40046500 \\
H & -2.14088200 & -3.69543300 \\
H & -4.84667000 & -1.93753100 \\
\hline
\end{tabular}
\begin{tabular}{lrrr}
H & -2.99033800 & -4.96963800 & -1.00211100 \\
H & -3.00884500 & -5.30790600 & -2.74958500 \\
H & -1.47876500 & -5.41012900 & -1.83946300 \\
C & 4.55424100 & 3.01843000 & -0.50895000 \\
H & 4.19043500 & 3.90098100 & 0.04312600 \\
H & 5.29011200 & 3.36269200 & -1.25469800 \\
H & 3.70420900 & 2.57943100 & -1.05297600 \\
C & 6.34890700 & 2.62649400 & 1.24782900 \\
H & 6.81506700 & 1.90527400 & 1.93745800 \\
H & 7.13806700 & 3.00423200 & 0.57699700 \\
H & 5.98560200 & 3.48209700 & 1.84082000 \\
C & 3.93720200 & -3.31754300 & -2.41466500 \\
H & 3.30199600 & -4.21594100 & -2.34098800 \\
H & 3.35015900 & -2.52096200 & -2.89655400 \\
H & 4.78745200 & -3.56670400 & -3.07126700 \\
C & 5.16898000 & -4.00783300 & -0.29122000 \\
H & 6.09153100 & -4.27164300 & -0.83585200 \\
H & 5.45747700 & -3.70954300 & 0.72934800 \\
H & 4.54736900 & -4.91590500 & -0.21854300 \\
C & -2.10777800 & 2.52495000 & 2.30628000 \\
C & -2.77917500 & 1.61955600 & 3.14615500 \\
C & -2.73136700 & 3.75167700 & 2.00704300 \\
C & -4.03909100 & 1.93146800 & 3.67772900 \\
H & -2.30611300 & 0.66387600 & 3.39071200 \\
C & -3.98781700 & 4.06695500 & 2.53648100 \\
H & -2.22078100 & 4.46294200 & 1.35048200 \\
C & -4.64698800 & 3.15629900 & 3.37567800 \\
H & -4.54178400 & 1.21763600 & 4.33613100 \\
H & -4.45247400 & 5.02796100 & 2.29922200 \\
H & -5.62579900 & 3.40408600 & 3.79487900 \\
C & 0.63591800 & 2.27347900 & -0.42301500 \\
H & 0.78774400 & 1.73948300 & -1.37063100 \\
H & 1.49838000 & 2.03165900 & 0.22634900 \\
N & 1.40062300 & -0.64585100 & -1.84038100 \\
C & 0.47289800 & 3.75498500 & -0.64783900 \\
N & 0.49963400 & -0.83699100 & -1.06176600 \\
H & 0.56322900 & 4.37768300 & 0.25346800 \\
Si & 0.05039200 & 4.60908100 & -2.25794700 \\
H & -1.82885300 & 4.78391100 & -2.50575800 \\
H & -2.05024600 & 5.29260200 & -3.45974600 \\
H & -2.31935200 & 3.79790900 & -2.52218300 \\
H & -2.28616400 & 5.37279600 & -1.69428400 \\
H & 0.77007400 & 3.64344100 & -3.72368200 \\
H & 0.34716300 & 2.62852900 & -3.79883500 \\
H & 1.86423000 & 3.16188400 & -4.67170600 \\
H & 3.54269400 & -3.64260100 \\
H & & & \\
\hline
\end{tabular}
\begin{tabular}{llll}
C & 0.80730000 & 6.35086600 & -2.19732000 \\
H & 0.56232000 & 6.91799600 & -3.11094700 \\
H & 0.42236900 & 6.92420300 & -1.33756000 \\
H & 1.90481300 & 6.30980300 & -2.10951700
\end{tabular}

S9
Charge: 0
Multiplicity: 1
Imaginary Frequencies: 0
Sum of Electronic and Thermal Free Energies: -5617.997323
\begin{tabular}{crrc}
Ni & 1.83038900 & -0.95522900 & -0.07034800 \\
Ni & -1.35351700 & -0.79817000 & -0.37912600 \\
N & 3.65586600 & -0.83754000 & 0.44905400 \\
N & 1.45218000 & -0.91512100 & 1.78472000 \\
N & -0.92224000 & -1.05695900 & 1.63503800 \\
N & -3.07172100 & -1.46604400 & 0.16127500 \\
C & 5.18504200 & -0.86801700 & 2.43586400 \\
H & 5.22806400 & -1.69044300 & 3.16807200 \\
H & 5.39423000 & 0.06801900 & 2.98187100 \\
H & 5.98322600 & -1.01622100 & 1.69684500 \\
C & 3.83897700 & -0.81941400 & 1.76232300 \\
C & 2.60873600 & -0.80317600 & 2.54164500 \\
C & 2.58402200 & -0.75704700 & 3.94238900 \\
H & 3.51300300 & -0.65026800 & 4.50473700 \\
C & 1.36658500 & -0.88981200 & 4.59411600 \\
H & 1.31132100 & -0.90873000 & 5.68570800 \\
C & 0.17575800 & -1.04342400 & 3.84874300 \\
C & 0.22483400 & -0.99692200 & 2.39855900 \\
C & -1.07508900 & -1.26022100 & 4.48469100 \\
H & -1.12469000 & -1.28589200 & 5.57609400 \\
C & -2.19019200 & -1.46637600 & 3.70834900
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline H & -3.15430100 & -1.67647900 & 4.17264400 \\
\hline C & -2.10909900 & -1.36916700 & 2.29898000 \\
\hline C & -3.26623600 & \(-1.58760000\) & 1.48274000 \\
\hline C & -4.57746400 & -2.02199700 & 2.09639500 \\
\hline H & -5.28680300 & -2.32687600 & 1.31657800 \\
\hline H & -5.04532800 & -1.21541400 & 2.68574400 \\
\hline H & -4.42950400 & -2.88063000 & 2.77103600 \\
\hline C & 4.74536700 & -0.92411900 & -0.47493900 \\
\hline C & 5.58060900 & 0.19665300 & -0.72620800 \\
\hline C & 6.62025700 & 0.05097200 & -1.66113900 \\
\hline H & 7.26959200 & 0.90565600 & -1.87144000 \\
\hline C & 6.83758600 & -1.15589500 & -2.32966800 \\
\hline H & 7.65846300 & -1.24775600 & -3.04568100 \\
\hline C & 5.98623600 & -2.23890200 & -2.09151800 \\
\hline H & 6.14537800 & -3.17806500 & -2.62879100 \\
\hline C & 4.92675100 & -2.14587200 & -1.17658200 \\
\hline C & -4.13619000 & -1.75423400 & -0.75799900 \\
\hline C & -4.03245900 & -2.96051500 & -1.50710900 \\
\hline C & -5.03529500 & -3.26000900 & -2.44223300 \\
\hline H & -4.96833800 & -4.18904500 & -3.01584200 \\
\hline C & -6.11126600 & -2.39445000 & -2.65646800 \\
\hline H & -6.88023900 & -2.64227000 & -3.39300800 \\
\hline C & -6.19367700 & -1.20726200 & -1.92693100 \\
\hline H & -7.03263600 & -0.52758400 & -2.10232200 \\
\hline C & -5.22429000 & -0.86119800 & -0.96763100 \\
\hline C & -1.64745900 & 1.11106700 & -1.00271100 \\
\hline H & -2.49486500 & 1.42690400 & -0.38123300 \\
\hline C & -0.50992000 & 2.09151700 & -0.98930900 \\
\hline C & 0.08937800 & 2.36282300 & 0.39039600 \\
\hline H & 0.53954200 & 1.41392700 & 0.73594400 \\
\hline H & 0.93229800 & 3.06759300 & 0.27874800 \\
\hline C & -2.86980800 & -3.93193700 & -1.30922700 \\
\hline H & -2.18956900 & -3.47982100 & -0.57043900 \\
\hline C & -5.37907300 & 0.46211200 & \(-0.21410600\) \\
\hline H & -4.53649900 & 0.55349900 & 0.49106300 \\
\hline C & 5.32657000 & 1.56323700 & -0.08997600 \\
\hline H & 4.55735500 & 1.43959800 & 0.68891600 \\
\hline C & 3.99568600 & -3.33356100 & -0.94573200 \\
\hline H & 3.14882000 & -2.96101400 & -0.34070000 \\
\hline C & -1.91185100 & 0.16839400 & -2.02583300 \\
\hline H & -1.19802300 & 0.03700700 & \(-2.84421900\) \\
\hline H & -2.94050300 & -0.11562300 & -2.26411400 \\
\hline C & -5.32316200 & 1.67313300 & -1.17322300 \\
\hline H & -6.16881900 & 1.65713300 & \(-1.88078800\) \\
\hline H & -5.38192200 & 2.61513800 & -0.60342600 \\
\hline H & -4.39296300 & 1.68492800 & -1.75981900 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline C & -6.69026700 & 0.51028300 & 0.60384600 \\
\hline H & -7.57126900 & 0.49693500 & -0.05913300 \\
\hline H & -6.77985600 & -0.34291500 & 1.29239800 \\
\hline H & -6.73629600 & 1.43711100 & 1.19905800 \\
\hline C & -2.06634200 & -4.12893700 & -2.61135100 \\
\hline H & -1.21181600 & -4.80291300 & -2.43591100 \\
\hline H & -2.68521100 & -4.57207300 & -3.40945700 \\
\hline H & -1.67004300 & -3.16983900 & -2.97813700 \\
\hline C & -3.35322700 & \(-5.28313300\) & -0.73988300 \\
\hline H & -3.89753900 & -5.14831100 & 0.20837400 \\
\hline H & -4.02867200 & -5.79880400 & \(-1.44325300\) \\
\hline H & -2.49557700 & -5.94941600 & \(-0.54921700\) \\
\hline C & 4.75325400 & 2.54014800 & \(-1.14146200\) \\
\hline H & 4.50769500 & 3.51074400 & -0.67887900 \\
\hline H & 5.48097800 & 2.72320500 & -1.94940400 \\
\hline H & 3.84005200 & 2.13041600 & -1.60000400 \\
\hline C & 6.58318300 & 2.15649000 & 0.58069600 \\
\hline H & 7.00760000 & 1.46979800 & 1.32994300 \\
\hline H & 7.37266600 & 2.37290700 & -0.15772500 \\
\hline H & 6.33719300 & 3.10506200 & 1.08589500 \\
\hline C & 3.40424600 & -3.87093800 & -2.26319600 \\
\hline H & 2.69621100 & -4.69011800 & \(-2.05503500\) \\
\hline H & 2.86132700 & -3.07669900 & -2.79772900 \\
\hline H & 4.18460300 & -4.26946300 & \(-2.93270100\) \\
\hline C & 4.69494100 & -4.44903700 & -0.14074500 \\
\hline H & 5.55205400 & -4.86275000 & -0.69872500 \\
\hline H & 5.07429400 & -4.07355000 & 0.82311000 \\
\hline H & 3.99510300 & -5.27562500 & 0.06655900 \\
\hline C & -0.83291400 & 2.89165200 & 1.47813600 \\
\hline C & -0.48983800 & 2.68875400 & 2.82916200 \\
\hline C & -2.00265400 & 3.62151700 & 1.19818300 \\
\hline C & -1.27686100 & 3.20654500 & 3.86411200 \\
\hline H & 0.40956100 & 2.11317000 & 3.06913200 \\
\hline C & -2.79754800 & 4.13814500 & 2.23199200 \\
\hline H & -2.29539000 & 3.78446900 & 0.15865100 \\
\hline C & -2.43686400 & 3.93627200 & 3.56966400 \\
\hline H & -0.98653500 & 3.03456800 & 4.90429600 \\
\hline H & -3.70244400 & 4.70216000 & 1.98817700 \\
\hline H & -3.05535700 & 4.33980200 & 4.37580600 \\
\hline C & 0.44366900 & 2.14200500 & -2.15826100 \\
\hline H & 0.36176600 & 1.40041800 & -2.95380700 \\
\hline H & 1.47794700 & 2.41135300 & -1.92451800 \\
\hline N & 1.21079100 & -0.96421000 & -1.83581900 \\
\hline C & -0.61628000 & 3.23307700 & -2.04914200 \\
\hline N & 0.32023900 & -1.11411100 & -1.02706200 \\
\hline H & -1.46049200 & 3.05264900 & -2.73040600 \\
\hline
\end{tabular}
\begin{tabular}{lrrr}
Si & -0.19080100 & 5.07808100 & -2.00107300 \\
C & -1.75403600 & 6.11414300 & -1.70242500 \\
H & -2.56477200 & 5.82622100 & -2.39216300 \\
H & -2.12939900 & 6.00594400 & -0.67271200 \\
H & -1.54406100 & 7.18433500 & -1.86775900 \\
C & 0.48070400 & 5.50271200 & -3.72712300 \\
H & 1.39438500 & 4.92922000 & -3.95296000 \\
H & -0.25853200 & 5.27130900 & -4.51175100 \\
H & 0.72691000 & 6.57501000 & -3.80594600 \\
C & 1.11737100 & 5.54882300 & -0.71019800 \\
H & 0.75119900 & 5.40915900 & 0.31914700 \\
H & 2.04820500 & 4.97081000 & -0.82932500 \\
H & 1.37779300 & 6.61456600 & -0.82815000
\end{tabular}

\section*{Reference}
\({ }^{1}\) Gaussian 16, Revision A.03, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2016.```

