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ABSTRACT

This thesis presents work and simulations containing the use of Artificial Intelligence for

real-time perception and real-time anomaly detection using the computer and sensors on-

board an Unmanned Aerial Vehicle. One goal of this research is to develop a highly accurate,

high-performance computer vision system that can then be used as a framework for object

detection, obstacle avoidance, motion estimation, 3D reconstruction, and vision-based GPS

denied path planning. The method developed and presented in this paper integrates software

and hardware techniques to reach optimal performance for real-time operations.

This thesis also presents a solution to real-time anomaly detection using neural networks

to further the safety and reliability of operations for the UAV. Real-time telemetry data from

different sensors are used to predict failures before they occur. Both these systems together

form the framework behind the Intelligent UAV platform, which can be rapidly adopted for

different varieties of use cases because of its modular nature and on-board suite of sensors.
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1. INTRODUCTION

Since the dawn of the field of robotics, robots have drastically altered several industries by

automating complex tasks and creating new avenues to perform functions that might not

be as efficient if performed by human beings or might involve putting a human being at

considerable risk. During the Industrial Revolution in the early 1960s, industrial robots first

came to the automotive industry to negate human risk by performing dangerous tasks [ 1 ].

The main research focus from the 1960s to the 1990s included advancements in mechanical

parts, such as actuators and sensors and their calibration. As the use case for robotic

manipulation evolved from just the automotive industry to other industries such as food,

pharmacy, and logistics, there was a greater need for robots to be more modular and to

accommodate different variations in size and function. Robots needed to self-adapt to fit

this new environment, and this led to the advance of intelligent robotic systems that had

their own problem-solving capabilities.

The early 2000s focused more on the use of sensors to make these robots adapt to their

environment by making them ”smart”, that is, by equipping them with sufficient intelli-

gence and problem-solving skills in the presence of uncertainty. This led to the application

of the field of Artificial Intelligence (AI) to the field of robotics [ 2 ], which opened the way

to use cases that were unimaginable when the field was first established. Instead of robots

just being used to manipulate objects, new use cases to automate tasks were available to

every industry. As sensors got cheaper and robots got more mobile along with an increase

in computing power, autonomous robots were birthed that could carry their own intelli-

gent decision-making processes to do tasks better than human beings. These robots range

from food delivery robots such as Starships to complex humanoid robots such as Boston

Dynamics’s Atlas.

Despite the difference in complexity of these robots, they have several common features

such as their ability to perceive their environment and make complex decisions based on the

information available in the environment. Perception can be used for locomotion, obstacle

avoidance, and finding/determining objects to manipulate. The more unstructured an en-

vironment is, the more dependent the robot is on its onboard sensors [ 3 ]. While there are
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(a) Starship Food Delivery Robot
(b) Boston Dynamics Atlas Humanoid
Robot

Figure 1.1. Modern Intelligent Robots

many ways to perceive the environment through different sensors, modern robots rely on

either stereo vision cameras or LiDAR (Light Detection and Ranging). The implementation

of both these systems is very different depending on the mode of locomotion for the robot.

Stereo cameras do not have the accuracy of LiDAR but are lightweight and inexpensive

whereas LiDAR is very accurate but also very heavy and expensive. Aerial robots do not

have the same luxury as ground based platforms to carry heavy systems as these systems

significantly affect the operating time of the platform and rely more on stereo camera based

computer vision to perceive the environment [  4 ]. To overcome the drawback as compared

to LiDAR systems, computer vision fuses software techniques with the output from cameras

to regain accuracy and compete with LiDAR systems and also offers extended capabilities

such as scene reconstruction, object detection, pose estimation, and 3D scene modeling [ 5 ].

As these robots autonomously perform more tasks in unstructured environments with

significant human presence, their risk of malfunctioning and causing harm to their environ-

ment also increases [  6 ]. Modern robots are equipped to deal with a wide array of failures

and encompass several redundancies to reduce the risk of harming others present in their
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environment if a failure were to occur. These systems however focus on reducing risk if the

failure has already occurred instead of being able to predict a failure and stopping the system

before the failure even occurs. Deep Learning techniques can be used to flag anomalies in

the robot systems sensors and alert operators of impending system failure much before the

failure even occurs. This significantly reduces the risk of operating such autonomous systems

in heavily human-populated environments as the system is stopped before the failure can

occur. This process is termed Anomaly Detection and is a new and upcoming addition to

modern robotic systems to increase system safety and reliability.

1.1 Motivation

An Unmanned Aerial Vehicle or UAV is defined as an aircraft without any human pilot,

crew, or passengers on board. UAVs were initially used for military purposes only due

to their multi-role capabilities and their role in providing a huge boost to the operational

efficiency of military agencies [  7 ]. But due to the advancements in UAV technologies seen in

the military sector, such as increasing the autonomy of such vehicles, their use case in the

commercial, industrial and academic sectors has also boomed in the last decade as they open

a new avenue to autonomous robots, the sky. Given that the primary use case for robots

was to increase efficiency and perform tasks deemed dangerous for human beings - small,

maneuverable robots that could entirely skip navigating rough terrain by flying, opened up

the doors to novel applications that were not accessible to terrestrial, ground based robots.

From search and rescue UAVs [  8 ] to autonomous warehouse inventory management UAVs [  9 ]

to precision agriculture UAVs [ 10 ] to even UAVs that can sanitize hazardous environments

[ 11 ]. Their use cases and possibilities to integrate into different industries are endless due to

their extended capabilities and aerial operations.

The biggest hurdle faced by UAVs in recent years has been weight limitation. UAVs fall

under the same laws of physics as other aerospace vehicles and have an inverse relation-

ship between vehicle weight and vehicle power. To increase the flight-time of UAVs, bigger

batteries are required which significantly increases the weight and lowers flight performance

[ 12 ]. Autonomous UAVs add another hurdle to this problem by having a weight and size
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restriction on the processing power they carry on board. This has caused each industry to

carefully determine their particular use case for the UAV and optimize these parameters to

fit their use case. The most general solution involves moving the processing off-board to

a ground control station but this solution adds another problem of requiring a permanent

link to this off-board computer to function. Current computers have not been economically

miniaturized enough to provide a UAV with as much processing power as a desktop com-

puter and so UAVs are limited to smaller Single Board Computers and Embedded Systems

for their operations. While these SBCs and ESs improve their performance every year to

allow UAVs to run more complex algorithms on board, software complexity increases ex-

ponentially compared to the performance of these SBCs and ESs [ 13 ] [ 14 ]. Hence, there is

a need to create a modular platform which can be reequipped efficiently depending on the

use case and has enough processing power to carry out complex missions requiring extensive

computational capacity at an economical price.

The first capability that needs to be explored in building such a system is the problem of

perception. To minimize the costs, size, and weight of the UAV, a stereo RGB-Depth camera

is used instead of a LiDAR system and this also enables further computer vision applications

on the UAV. A real-time object detection algorithm needs to be running on-board to further

enable vision-based path planning, localization in unfamiliar environments, dynamic obstacle

avoidance and 3D scene reconstruction. Real-time object detection algorithms are known for

being computationally intensive [  15 ] so a system that was computationally and financially

economical, lightweight and accurate needed to be developed.

The next problem to solve was that of safety and reliability. Despite the extensive array of

use cases for UAVs, if they are not safe to implement in human populated environments then

the industry will never be able to adopt such aerial robots. A real-time anomaly detection

algorithm also needs to be running on-board that can warn the operator of impending system

failures before they occur so that safety contingencies can be executed before system failure.

These algorithms are also extremely computationally heavy and require immense amounts of

training data before accurate results. Therefore a system needed to be developed that could

learn from real-time system utilization while not requiring extensive computational power

to operate.
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This thesis introduces a fully modular UAV platform that can be used for different use

cases, that features real-time object detection and real-time anomaly detection running on

a SBC (Raspberry Pi 4b). First, this paper compares the performance of state-of-the-art

object detection algorithms running on the SBC with a custom object detection system

that has up to a 7 times increase in performance. Next, this paper analyzes three different

flight plans run through the anomaly detection algorithm and compares the performance of

three different neural networks that were selected to run on-board the Intelligent UAV. The

Intelligent UAV can be seen in Figure  1.2 .

Figure 1.2. The Intelligent UAV Platform

The computational power and sensor set included on-board the UAV can also allow it to

act as a leader in a leader-follower multi-robot drone swarm [ 16 ]. Cheaper and lighter UAVs

can be paired with it for distributed task allocation to carry such swarm missions [  17 ]. It

can also be paired with Unmanned Ground Vehicles (UGVs) in a heterogeneous team for

collaborative cooperation missions [  18 ]. This platform opens the door for further research in

different varieties of UAV use cases by establishing perception and system safety.
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1.2 Literature Review

Several UAV platforms have been built to further research and develop use cases on such

as a research platform for search and rescue UAVs [  19 ], a UAV platform for Air Transporta-

tion Systems [  20 ] and a robust UAV system for operations in constrained environments [  21 ].

But these systems are highly specialized in their use case and can not be deployed outside

of the use cases mentioned in these papers. These UAV platforms are also dated and would

not be able to run custom neural networks for computer vision applications. As computer

vision and AI techniques further develop every day, UAVs can be made smarter and faster

and there is a need for a modular system where components can be swapped with minimal

disruption to keep up with new technologies.

The Intelligent UAV platform fills in this gap with its fully modular approach so that

parts can be changed according to the mission requirements or updated if new technologies

can further its capabilities. The Single Board Computer paired with edge AI can handle

seemingly daunting tasks such as running complex neural networks on-board and eliminates

the need to exchange information with a ground station. Using real-time object detection,

the Intelligent UAV can also operate safely and reliably in GPS denied environments which

is an up and coming research area for autonomous UAVs [ 22 ].

1.2.1 Real-Time Object Detection on UAVs

Real-time object detection on UAVs has been a very popular research topic in the past

decade. Modern object detection networks were based on AlexNet [  23 ] which was a Convo-

lutional Neural Network for image classification and further models for image classification

were developed such as VGG [ 24 ], ResNet [ 25 ] and Inception [ 26 ]. Modern object detec-

tion algorithms use these networks as backbones and speed up classification through various

techniques such as Feature Pyramid Networks [  27 ]. A few of the most prevalent state-of-

the-art object detection networks are the newer generations of the YOLO Network[ 28 ] and

MobileNetSSD Network[ 29 ].

The only problem with deploying these networks on UAVs is that they are very compu-

tationally intensive and need discrete graphics cards to get higher frame rates in real-time
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operations. Several research papers introduce new algorithms that have great accuracy but

can rarely run on even the most powerful embedded systems with discrete graphics. DAGN

which is a real time UAV remote Sensing Image Vehicle Detection Framework requires a

GeForce GTX 1080Ti Graphics Processing Unit to be able to achieve real-time object detec-

tion [ 30 ]. Other solutions encompass lowering the resolution [ 31 ] and training a very small

model so as to conserve computational resources [  32 ] or running it on a very specialized SBC

that is optimized for only object detection [ 33 ].

The Intelligent UAV uses a general purpose, commodity on-board SBC that does not

have discrete graphics to speed up neural network inference and relies on economical infer-

ence accelerating hardware and software techniques to achieve a higher performance than

expensive SBCs with discrete graphics. The Intelligent UAV is also able to achieve the same

performance as most modern-day desktop computers at real-time object detection using its

custom computer vision system at High Definition (HD) video resolution.

1.2.2 Real-Time Anomaly Detection on UAVs

With the recent advancement in Deep Learning and Artificial Intelligence, anomaly de-

tection of UAV sensor data has been a very relevant research area. Several researchers have

focused on receiving a telemetry stream from a live vehicle and then performing anomaly

detection on the live stream through the ground control station [ 34 ]. Other anomaly detec-

tion algorithms use Recursive Least Squares to detect changes in telemetry data and report

big changes as anomalies [ 35 ]. This can lead to a very large number of false positives as if a

pilot takes control then deviations between the autopilot system and the pilot taking control

can be viewed as an anomaly. Some methods also focus on uploading live flight data to the

internet where anomaly detection is performed in the cloud [  36 ]. More accurate methods

rely on downloading the data to a desktop computer and then performing anomaly detection

after the end of the flight [ 37 ].

Only a limited set of publications feature real-time anomaly detection that is performed

on-board a UAV without using computational resources from the ground station. One such

work attaches external sensors to calculate the variations in motor temperature data while
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the UAV is in flight to determine anomalies [  38 ]. Methods that only measure changes in the

motor such as RPM and temperature or methods that rely solely on the amount of current

flowing through the circuit do not account for the most common type of failure in UAVs

which is sensor failure.

The Intelligent UAV is able to use data from a variety of sensors controlled by its flight

computer or autopilot system and runs a deep learning algorithm on these sensor values to

capture their inherent hidden features. It is then able to label anomalies according to the

error in reconstruction of the input data by the neural network and exponentially reduces

the amount of false positive anomalies to maximize flight time. It is able to perform anomaly

detection during real time flight operations using just the on-board computer while reporting

anomalies back to the ground station.

1.3 Contributions

The main contributions of this work are:

• A computer vision system that can run on embedded systems without discrete graph-

ics to perform real time object detection and offers faster training and deployment

than conventional methods using Edge Artificial Intelligence. This system can be im-

plemented on-board any UAV platform and training results from a custom developed

UAV platform are shown.

• An unsupervised anomaly detection system using neural networks that can also run on

any UAV platform’s companion computer and can predict major sensor failures before

they occur in flight to increase system safety and reliability. The anomaly detection

system can also perform real-time operations while the UAV platform is in flight.
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2. OBJECT DETECTION

2.1 Introduction

In this chapter, the key ideas and the model used to classify objects for object detection

used on-board the Intelligent UAV are discussed. Real world video results and gazebo image

results are presented to showcase the accuracy and speed of the model.

2.1.1 Introduction to Object Detection

Object detection can be defined as determining where objects are located in a given

image (object localization) and determining which category an object belongs to (object

classification). Object detection models can be further divided into three distinct stages:

informative region selection, feature extraction and image classification [ 39 ].

Since objects can appear in many different locations in an image and an image can

have different sizes or aspect ratios, object detection algorithms scan the whole picture by

dividing it into different grids and scanning the grids through a multi-scale sliding window.

Optimizing this first stage can lead to less computational load per frame or image in an

object detection algorithm.

The second stage consists of obtaining distinct visual features in the current grid that

can be used in the image classification process to match the object in the current grid with

objects that the model was trained to detect. This process can be carried out through Scale-

invariant keypoint feature transforms [  40 ], Histograms of Oriented Gradients (HOG) [  41 ]

and Haar-like features [ 42 ].

The final step in this process, involves distinguishing the current object in the sliding

window among all the salient features of the objects the model was trained to detect. The

current state of the art methods rely on Deep Neural Networks (DNNs) with Convolutional

Neural Networks (CNNs) being the most applicable to real-time object detection [ 43 ].
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2.1.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) comprise of neurons that receive an image as an

input, which is converted to a two dimensional or three dimensional matrix based on the

height and length of the image, which the neurons then use to try to classify images into

different classes and presents probabilities of that image belonging to each class. LeNet was

the first CNN [  44 ] in 1998 which was followed by AlexNet, ZF-net, GoogLeNet and VGGNet

which kept lowering the base error rate of image classification [  45 ]. ResNet, one of the more

recent CNNs, has even managed to beat the human eye’s perception capabilities with an

error rate of 3.6% as when compared to the human eye’s error rate of 5.1% [ 46 ].

Layers of Convolutional Neural Networks

Figure  2.1 shows the framework of a typical set of network layers in a Convolutional

Neural Network.

Figure 2.1. Typical Layers in a CNN. Adopted from [ 47 ].

• Input Layer

The input layer comprises of an image that is converted to a two dimensional or a

three dimensional matrix. The matrix is mathematically represented as l × w for a

two dimensional matrix and as l × w × d for a three dimensional matrix where l, w,

and d are the length, width and pixel color of the image respectively. The pixel color

comprises of the intensity and contrast of a particular pixel on the screen and is usually

represented by a number which results from the combination of the RGB - Red, Green,

Blue color values.

• Convolution Layer

The convolution layer is responsible for generating new images which accentuate the
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Figure 2.2. Example working of a simple convolution layer

unique features of the original image [ 48 ]. These new images are called feature maps.

Mathematically, the convolution layer can be denoted as:

(f ∗ g)(t) =
∫ ∞

−∞
f(τ)g(t − τ)dτ (2.1)

An easier way to understand this formula can be seen in Figure  2.2 where a 4x4 input

image matrix is being convoluted by taking its matrix dot product with 2x2 identity

matrix. The 4x4 input image is denoted by f(t) and the 2x2 identity matrix, also called

a kernel, is denoted by g(t). The colored 2x2 matrices within the 4x4 matrix, represent

the sliding kernel that is used to calculate the feature map. Important parameters to

consider in this layer are the size of this sliding kernel, the number of cells it moves

per operation or stride of the sliding kernel and the padding of the kernel. Padding is

the process in which an outer layer of values is added to increase the size of the image

matrix without influencing the dot product so that the original edge values of the image

are calculated in more than one sliding kernel which gives a better approximation of

the convolution.

• Pooling Layer

The pooling layer is used to reduce the size of the image by combining neighboring

pixels of a certain area of the image into a single representative value [  48 ]. This process

is used to down-sample the data and extract essential features from the original image

while leaving out unessential features that would not help the model. Pooling can be
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considered a static convolution layer where the kernel is fixed into certain grids and

the convolution areas do not intersect. The two most popular types of pooling can be

seen in Figure  2.3 which are mean and max pooling. 4 grids of size 2x2 are constructed

into the overall 4x4 input image and for the mean pooling, the mean of the smaller 2x2

grids are extracted whereas for the max pooling, the maximum value from the smaller

2x2 grids are extracted.

Figure 2.3. Example output of mean and max pooling

• Fully Connected Layer

A fully connected layer is the standard Artificial Neural Network (ANN) model where

multiple neurons are arranged in different layers which are in turn separated by a layer

containing a matrix of weights. The incoming matrix of values from the Pooling layer

is converted into a single vector of values, this process is called flattening, before it

is passed through the neurons and their respective weights. After this, a non-linear

transformation is applied to the product of the neurons and their weights through a
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non-linear activation function f . The mathematical formula behind this calculation

can be given as:

yi(x) = f(
n∑

i=1
wixi + b0) (2.2)

where f is the non linear activation function, n is the number of inputs from the

incoming layer, w is the weight connected to the neuron, x is the value of the neuron,

b0 is the bias and yi is the output value which is passed onto the next layer.

Activation functions are used to decide whether a neuron in the current run should

be activated or not. The most common example of a non-linear activation function

is ReLU (Rectified Linear Unit) which is given by a simple formula R(x) =max(0, x)

where an output of 0 indicated that the neuron was not activated and any other output

is passed into the next layer [  49 ]. While the first layer in the fully connected layer can

have any number of neurons, the last layer in the fully connected layer normally has

the same number of neurons as the number of classes that the model was trained to

detect.

• Softmax

The softmax layer is present at the end of the fully connected layer and outputs the

probability values of objects matching the classes that the model was trained to detect.

The class with the highest probability value is deemed to be the detected object and

the sum of all the detected classes probabilities equals 1.

• Output

The final output of a CNN is the class of the object that is detected in the image and

the whole object detection process can be visualized in Figure  2.4 .

• Loss Function

The loss function in a neural network quantifies the difference between the expected

outcome and the outcome produced by the machine learning model [ 50 ]. In multi-

object detection problems, the most commonly used loss type is Categorical Cross
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Figure 2.4. Example run of a CNN

Entropy(CCE). The mathematical formula for Categorical Cross Entropy loss is given

below:

CCE = − 1
N

N∑
n=0

J∑
j=0

yj ∗ log(ŷj) + (1 − yj) ∗ log(1 − ŷj) (2.3)

where yj is the original value, ŷj is the predicted output, J is the number of classes to

predict and N is the number of observations.

2.2 Problem Formulation

Object detection algorithms can be classified into one of two types, one-stage object

detection models and two-stage object detection models. A one-stage object detection model

is able to detect and predict objects with high speed which makes it the default model for

real-time use cases while the two-stage object detection model uses a preliminary stage to

highlight regions of importance in an image and then tries to detect objects within those

regions, giving it high accuracy but very low speed, making it ideal for static use cases.

While several different object detection algorithms exist, only a handful of algorithms are

capable of running on embedded systems and out of these few, almost all of them require a

discrete GPU of some sort to be able to achieve real-time object detection. For the Intelligent

UAV, a one-stage object detection model was required to enable real-time object detection

for vision-based navigation along with the added constraint of not having a discrete GPU

on-board to simulate an embedded system.
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2.2.1 Hardware Setup and Constraints

The Intelligent UAV’s object detection setup encompasses an Intel D435 RGB-D (Red,

Green, Blue-Depth) camera, a Raspberry Pi 4b SBC (Single Board Computer) and an Intel

Neural Compute Stick 2. All three of these devices can be seen in Figure  2.5 

Figure 2.5. (a) Intel Neural Compute Stick 2, (b) Intel D435 RGB-D Camera,
(c) Raspberry Pi 4b .

RGB-D Camera

The Intel RealSense D435 is an active stereo depth camera that pairs the Semi Global

Matching (SGM) algorithm with an infrared (IR) projector to calculate depth using its Intel

RealSense Vision Processor D4 [  51 ]. The D435 can get up to 90 frames per second (FPS) at

1280x720p with its depth sensors and 30 frames per second at 1920x1080p with its rolling

shutter RGB sensor [  52 ]. It also only weighs 72 grams at a form factor of 9 centimeters

length and 2.5 centimeters height and depth which is much smaller than its popularly used

counterpart the Microsoft Kinect v2. It has a less than 2 percent error rate at detecting
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depth at 2 meters and its root mean square error can be calculated using the following

formula:

e = d2 × s

f × b
(2.4)

f = 0.5 × px

tan(Vh

2 )
(2.5)

where f is the focal length, s is the sub-pixel error, b is the baseline, d is the distance in

millimeters, Vh is the horizontal field of view and px is the resolution in pixels of X.

The Intel RealSense D435 RGB-D camera was chosen due to its small form factor, af-

fordable price, light weight and high performance as compared to all other RGB-D cameras

available in the market. The small factor and lightweight characteristics played the biggest

part in selecting a camera due to the inverse relationship between payload weight and battery

life on a UAV.

Companion Computer

The Raspberry Pi 4b is a Single Board Computer that acts as an Embedded System (ES)

aboard the Intelligent UAV. It weighs just 46 grams at a form factor of 8.8 centimeters length,

5.8 centimeters width and 1.95 centimeters height while running a Quad core Cortex-A72

(ARM v8) 64 bit SoC (System on Chip) at a base clock of 1.5 GigaHertz (GHz) and 8GB

LPDDR4-3200 SDRAM [  53 ]. It can display video at 60 frames per second at 1920x1080p

which made it an ideal pairing with the Intel RealSense D435 camera. The Raspberry Pi

4b also only requires a 5 Volt, 3 Ampere connection to function which reduces the drain

on the battery while it functions. Its lightweight, small form factor, low energy cost and

performance made it an ideal candidate for the Intelligent UAV when compared to other

Single Board Computers in the market.

Hardware Inference Accelerator

The Intel Neural Compute Stick 2 is a USB 3.0 plug and play device for deep learning

inference at the edge with its Intel Movidus Myriad X Vision Processing Unit with 4GB RAM
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and a processor base clock of 700 MegaHertz (MHz). It is a dedicated hardware accelerator

for deep neural network inferences and uses the OpenVino toolkit to optimize performance

and boost neural network performance by up to 8 times [  54 ]. The Intel Movidius Myriad X

Vision Processing Unit (VPU) network architecture is given by Figure  2.6 and shows where

it connects to existing models to boost performance. It was primarily designed to increase

frames per second (FPS) of Convolutional Neural Network (CNN) Algorithms running on

systems without a Graphics Processing Unit (GPU) which makes it a viable candidate for

the Intelligent UAV.

Figure 2.6. The Vision Processing Unit Architecture of the Intel Movidius
Myriad X VPU. Adopted from [ 54 ] .

2.2.2 You Only Look Once (YOLO)

You Only Look Once or YOLO is a state-of-the-art, real-time, one-stage object detection

algorithm created by Ultralytics [  55 ] and its latest iteration YOLOv5 is based on the works

of Joseph Redmon’s YOLOv1-YOLOv3 [  28 ][ 56 ][ 57 ] and Alexey Bochkovskiy’s YOLOv4 [  58 ].

The network architecture of YOLOv5 is shown in Figure  2.7 . YOLOv5 comprises of three dif-

ferent stages, it combines Cross Stage Partial Network (CSPNet) [  59 ] into Darknet, creating

CSPDarknet as its backbone[  60 ]. CSPDarknet ensures good inference speed and accuracy

while reducing model size by solving repeated gradient information problems in large-scale

backbones and integrating the gradient changes into the outputted feature map. The neck

of YOLOv5 is based on PANet [  61 ] which uses a Feature Pyramid Network (FPN) which
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in turn boosts information flow through lower level features in the network. PANet passes

detected features in the lower levels directly into the following layer to achieve this boost

in performance. The head of YOLOv5 generates 3 different sizes of feature maps which

enables multi-scale predictions across objects of different sizes, namely (18x18, 36x36 and

72x72 pixels), which in turn improves object detection performance in the network.

Figure 2.7. The Network Architecture of YOLOv5. Adopted from [  60 ]
.

2.2.3 Mobilenet-SSD

Mobilenet-SSDv2 is another real-time, state-of-the-art, one stage object detection algo-

rithm created by Yu-Chen Chiu et al., based on the popular backbone of Mobilenet-v2 with

a Singe Shot Detection (SSD) head as the last layer in the network. Mobilenet-SSDv2 was

designed to be as lightweight as possible with little computational load to run on embedded
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autonomous systems which made it a viable choice for the Intelligent UAV. The network ar-

chitecture of Mobilenet-SSDv2 can be split into two different modules, Mobilenet-v2 and the

Feature Pyramid Network (FPN). Mobilenet-v2 features a standard convolution layer and

17 inverse residual modules, with each inverse residual module comprising of a 1x1 convo-

lutional layer, a 3x3 depth-wise separable 1x1 convolutional layer, batch normalization and

ReLU6 activation functions [  29 ]. The inverse residual modules solve the gradient vanishing

problem faced by other models and are able to correctly transfer the gradient information

from feature maps into deeper network layers during the backpropagation process. In the

FPN module, multi-scale feature maps obtained from the Mobilenet-v2 backbone are fused

by unifying the number of channels in each feature map and by resizing feature maps of

different scales to improve performance.

Figure 2.8. The Network Architecture of Mobilenet-SSDv2. Adopted from [  29 ]
.

2.3 Method

Mobilenet-SSDv2 and YOLOv5 were both trained to compare their performance on-

board the Intelligent UAV. Training images were taken through a simulated environment in

ROS Gazebo [  62 ] and both algorithms were trained through Google Colaboratory [ 63 ]. Both

algorithms were also exported to OpenVINO format to compare their base performance on

the Raspberry Pi 4b with an accelerated version using the Intel Neural Compute Stick 2.
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2.3.1 Gathering Training Data

A ROS Gazebo environment was created with several different types of desks, chairs and

school bags to simulate common objects in a classroom. A UAV with an Intel RealSense

D435 camera plugin was created in the environment and flown manually to capture images

of the objects from different angles that the UAV might encounter. Figure  2.9 shows the

different object’s images taken from this setup to train the network.

Figure 2.9. Simulated Environmental Classes in Gazebo.
(a,b,d,e) Desk, (c) Chair, (f) Bag, (g) UAV with D435 Camera Plugin

Table  2.1 shows the number of images taken from the UAV through the simulated en-

vironment for each class type before they were augmented and fed into both Convolutional

Neural Network models. Each of these images was then uploaded to the Computer Vision

Annotation Tool (CVAT) [  64 ] for labeling. The process of labeling involves drawing a rect-

angular box around the object that the CNN model is supposed to detect and manually

classifying it into the category of object that you want the CNN to predict. This method

is performed on all images that will be fed into the network to provide ground truth to the

model. An example of this process being performed on one frame taken from the simulation

can be observed in Figure  2.10 . This is a very popular approach and is termed ”Supervised
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Learning” as the model is given some ground truth and labels to know how well it is learning

the different classes it is being trained to detect.

Table 2.1. Number of Training Images for Each Class
Object Name Number of Images

Desk 157
Chair 86
Bag 18

Total 261

Figure 2.10. Labeling a Desk Using CVAT

Data Augmentation

Most object detection models need at least 150-500 images of each class to see exponential

improvement in model accuracy for image classification [  65 ]. The video feed from a UAV is

also prone to swaying because of aerodynamic effects such as wind, lack of focus, intermittent

pixelating and viewing objects from different angles while in operation. To account for these

effects, data augmentation was performed on all the original images captured through the

simulation. Data Augmentation refers to the process of applying transformations, filters,

resizing and physical augmentation to the original images fed into the model to reduce over-
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fitting during the learning process. This not only improves the model’s performance in

real-world scenarios but also improves performance in scenes that the model was not trained

on [ 66 ].

To ensure that both object detection models received the same images to train on, image

augmentation was performed using a flow-based visual programming language, Roboflow

[ 67 ], which also divided the image data into training, validation and testing data sets. The

image augmentations performed for this section and their description are presented below.

An example of augmented images that were fed to the CNN models can be seen in Figure

 2.11 .

• Flipping: Images were flipped along their horizontal and vertical axis.

• Rotation: Images were rotated on an axis between -21°and 21°. Rotation above

±21°leads to errors in the data labels.

• Translation: Images were morphed to move the objects into different corners of the

frame to avoid positional bias.

• Resizing: Typical object detection algorithms favor the input data to be of size

640x640 pixels. Images were resized from 1920x1080 pixels to 640x640 pixels.

• Noise Injection: A matrix of random values drawn from a Gaussian Distribution is

superimposed onto the original image to imitate static noise.

Roboflow was used to divide the entire dataset into three different parts, training, vali-

dation and testing after image augmentation was applied. The training dataset contains the

images that the object detection models are trained on. The validation dataset is used to

compare how well the trained dataset is able to detect images after each epoch, or run of

the dataset. We can judge the performance of the dataset by looking at the mAP (mean

Average Precision), IoU (Intersection over Union) and loss. The testing dataset is the final

dataset on which the trained object detection algorithm is run on to present results.
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Figure 2.11. Augmented Images

2.3.2 Training the Model

The YOLOv5 model was trained on Google colab using PyTorch [  68 ] whereas the Mobilenet-

SSDv2 was trained on Google colab using TensorFlow Hub [  69 ]. While both models were

trained on different machine learning frameworks, they were executed on the same instance

of Google colab using an Nvidia GeForce Titan X 12GB GPU, 16GB RAM and an Intel i9

processor.

Both models were trained using transfer learning based on their pre-trained weights of

the 2017 Microsoft Common Objects in Context (COCO) dataset. The Microsoft COCO

dataset is a vast dataset that contains 91 different classifications of objects along with their

images and image labels that a four year old human being could potentially identify [ 70 ].

CNN models evaluate their performance based on runs of this dataset and their pre-trained

weights files are readily available with the source code of the models. Transfer Learning is

the process in which a pre-trained network’s weights are frozen during training while the last

few CNN layers are allowed to learn the new images through training. The first few layers of

the CNN are already trained to extract important features from the image and remain the

same in the new training network as well but the last few layers that are used to classify the

images are re-trained to detect the inputted training objects. This allows for faster training

of the network and increased performance due to the vast amount of data it is trained on.
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Using hyper-parameter tuning and after several test-runs of the models, it was determined

that the learning rate of both networks should be set at α = 0.0001. This is the rate at

which the last few layers of the CNN are trained. The number of epochs for MobilenetSSD-

v2 was set to 300 and for YOLOv5 was set to 250. One epoch is defined as one whole run

of the whole dataset. These numbers were chosen after fine-tuning each network to avoid

overfitting of the data. The batch size for both models was set to 30. The batch size is

defined as the total number of training images present in a single batch sent into an epoch.

Table  2.2 shows the training time to train both the algorithms on the same system using the

same number of images.

Table 2.2. Comparison of Training Time
Object Detection Model Number of Epochs Batch Size Time Taken to Run

MobilenetSSD-v2 300 30 157.81 Minutes
YOLOv5 250 30 42.34 Minutes

Precision in this section can be defined as the percentage of correct predictions or how

accurate the model’s predictions are. Recall is defined as how well the model finds the right

objects. Their mathematical formulae are given below:

Precision = True Positive
True Positive + False Positive

(2.6)

Recall = True Positive
True Positive + False Negative

(2.7)

IoU (Intersection over Union) measures the overlap between the ground truth bounding

boxes and the bounding boxes determined by the model over the total area of both bounding

boxes. This is an important characteristic that helps determine if the object predicted by

the model is true positive or false positive. An IoU threshold of 0.5 and above is considered

a true positive in most cases. The mathematical formula for IoU is given below:

IoU = Area of Overlap
Area of Union

(2.8)
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The mAP or mean Average Precision is defined as the average of the area under the

Precision-Recall curve. The mathematical formula for Average Precision and mean Average

Precision are given below:

AP =
∫ 1

0
p(r)dr (2.9)

mAP = 1
n

k=n∑
k=1

APk (2.10)

where p(r) is the precision-recall curve, n is the number of classes and APk is the AP of

class k.

Figure  2.12 compares the mean Average Precision (mAP) of both the trained YOLOv5

and MobilenetSSD-v2 models at 0.5 IoU over each epoch for the YOLOv5 model and over

each step for the MobilenetSSD-v2 model. A step is defined as one run over one batch size

of training data. The YOLOv5 algorithm reached a maximum mAP of 0.985 at 0.5 IoU

whereas the MobilenetSSD-v2 reached a maximum mAP of 0.792 at 0.5 IoU.

Figure 2.12. mAP Comparison of YOLOv5 and MobilenetSSD-v2 at 0.5 IoU

Figure  2.13 compares the mean Average Precision (mAP) of both models with an incre-

mental increase of 0.05 IoU from 0.5 IoU to 0.95 IoU. The YOLOv5 algorithm reached a
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maximum of 0.679 while the MobilenetSSD-v2 reached a maximum of 0.438. These graphs

show the average confidence level of true positive matches for the dataset when evaluated.

Figure 2.13. mAP Comparison of YOLOv5 and MobilenetSSD-v2 at 0.5:0.05:0.95 IoU

Figure  2.14 compares the total precision of both models over their total training duration.

The YOLOv5 algorithm reached a maximum of 0.998 while the MobilenetSSD-v2 algorithm

reached a maximum of 0.619. These graphs compare the number of objects correctly detected

over the number of total objects detected over time.

Figure 2.14. Precision Comparison of YOLOv5 and MobilenetSSD-v2

Figure  2.15 compares the total recall of both models over their total training duration.

The YOLOv5 algorithm reached a maximum of 0.965 while the MobilenetSSD-v2 algorithm
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reached a maximum of 0.631. These graphs compare the number of objects correctly detected

over the number of actual objects over time.

Figure 2.15. Recall Comparison of YOLOv5 and MobilenetSSD-v2

The faint lines in the background of the model comparison figures shown above are the

true values before smoothening was performed on the graphs to make them more linear

for plotting. The smoothening coefficient was set to γ = 0.6. The results, as shown in

Table  2.3 , clearly prove that the YOLOv5 algorithm not only beats the comparatively older

MobilenetSSD-v2 algorithm in training time but also performs 30-35% better with a reduced

dataset of images for object detection.

Table 2.3. Comparison of Training Results
Object Detection Model mAP at 0.5 IoU mAP at 0.5:0.95 IoU Precision Recall

MobilenetSSD-v2 0.792 0.438 0.619 0.631
YOLOv5 0.985 0.679 0.998 0.965

2.4 Main Results

This section compares the performance of both algorithms in their gazebo model test

phase and their respective FPS on the Intelligent UAV’s companion computer and hardware

inference accelerator setup.
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2.4.1 Gazebo Images Test Run

The MobilenetSSD-v2 and YOLOv5 models that were trained with custom weights de-

scribed in the section above were run with the same set of testing images and their results

can be seen in Figure  2.16 and Figure  2.17 respectively.

Figure 2.16. MobilenetSSD-v2 Model Deployed on Gazebo Images

Figure 2.17. YOLOv5 Model Deployed on Gazebo Images

Table  2.4 provides complete details on both the model’s performances on the three test

images. Through the test results it was found that the YOLOv5 model classified all objects

perfectly (38 objects detected out of 38 objects present) in all test images without any

false positives or false negatives while the MobilenetSSD-v2 model classified 34 objects out
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of the total 38 objects present in the test images with 4 false negative detections. Thus

the YOLOv5 algorithm achieved a 100% accuracy in our test while the MobilenetSSD-v2

algorithm achieved a 89.47% accuracy.

Table 2.4. Comparison of Gazebo Testing Results
Model Image Object Found Total Max Confidence Min Confidence

MobilenetSSD-v2

(a)
Desk 6 6 99% 68%

YOLOv5 6 6 97% 91%
MobilenetSSD-v2 Chair 3 4 100% 88%

YOLOv5 4 4 92% 89%
MobilenetSSD-v2

(b)

Desk 5 6 95% 66%
YOLOv5 6 6 96% 91%

MobilenetSSD-v2 Chair 3 4 90% 70%
YOLOv5 4 4 93% 90%

MobilenetSSD-v2 Bag 1 2 90% 90%
YOLOv5 2 2 92% 91%

MobilenetSSD-v2

(c)
Desk 6 6 100% 85%

YOLOv5 6 6 95% 92%
MobilenetSSD-v2 Chair 4 4 85% 52%

YOLOv5 4 4 93% 91%

In the custom object detection test, the YOLOv5 algorithm outperformed the MobilenetSSD-

v2 algorithm. Object detection is an important feature in the Intelligent UAV as it allows

the UAV to perform visual object detection based mission planning and execution while also

actively avoiding obstacles through active obstacle avoidance running through the cameras.

If the number of epochs, the batch size and the number of training images were increased

on MobilenetSSD-v2 then it could perform better than these initial results but this would

also significantly increase the computation load to run the algorithm on the Companion

Computer and increase the training time to several hours.

2.4.2 Intelligent UAV Test Run

The Intelligent UAV uses both MobilenetSSD-v2 and YOLOv5 algorithms as a backbone

for object detection but requires conversion of the trained weights file into OpenVINO format

so that the hardware inference accelerator can boost performance of both models. For this

test, both the models were downloaded pre-trained on the Microsoft COCO dataset and
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no custom training of the network was performed. The initial weights for the YOLOv5

algorithm are in .pt format which is only understood by YOLOv5 but after conversion to

OpenVINO format the weights file is distributed into 3 file types, a .bin file, a .mapping file

and a .xml file. The same applied to the MobilenetSSD-v2 model as well which is initially

in .pb format and it is then converted into 3 file types, a .bin file, a .mapping file and a .xml

file.

Table  2.5 shows the tested average FPS (Frames Per Second) of both algorithms deployed

on the Intelligent UAV on a Raspberry Pi 4b conducting real time object detection through

the Intel RealSense D435 RGB-D camera with and without hardware inference acceleration

through the Intel Neural Compute Stick 2. It is very clear that the Intel NCS2 helps boost

the performance of both models during real time inference. A resolution of 1280x720p was

considered the bare minimum to ensure that the depth stream from the RGB-D camera

was at the same resolution as the incoming color stream from the same camera. The base

FPS at 720p resolution without hardware acceleration was 1.9 FPS for the MobilenetSSD-v2

model and 4.3 FPS for the YOLOv5 model whereas with hardware acceleration the FPS

was significantly increased to 14.6 FPS for MobilenetSSD-v2 and 32.7 FPS for YOLOv5.

For a resolution of 1080p, the base FPS without hardware acceleration was 0.7 and 1.6 for

MobilenetSSD-v2 and YOLOv5 respectively whereas with hardware acceleration the FPS

was increased again to 4.2 and 10.88 for MobilenetSSD-v2 and YOLOv5 respectively. At

720p the NCS2 was able to boost the performance of both models by about 7.64 times

whereas at 1080p the NCS2 was able to boost the performance of both models by about 6.4

times. A screenshot of the real-time object detection test with the MobilenetSSD-v2 model

at a resolution of 1280x720p can be seen in Figure  2.18 .

Table 2.5. Comparison of Object Detection Results on the Intelligent UAV Setup
Object Detection Model Resolution Base FPS Accelerated FPS

MobilenetSSD-v2 1280x720p 1.9 14.6
YOLOv5 1280x720p 4.3 32.7

MobilenetSSD-v2 1920x1080p 0.7 4.2
YOLOv5 1920x1080p 1.6 10.88
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Figure 2.18. Screenshot of Real-Time Object Detection using MobilenetSSD-
v2 at 720p Resolution

In conclusion, the YOLOv5 algorithm has the shortest training time and achieves a

significant mAP value of classes in the 0.5 IoU region with very high overall precision while

also being significantly less taxing on computational power while being deployed for real-time

object detection. If the YOLOv5 algorithm is paired with an embedded system without a

discrete graphics card, with passive cooling and with a hardware inference accelerator then

it can reach close to real time object detection FPS reached by the most powerful mobile

processors available in the market.
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3. ANOMALY DETECTION

3.1 Introduction

In this chapter, the key ideas and the models used to classify anomalies in sensor data sent

to the control system used on-board the Intelligent UAV are discussed. Real world sensor

values and simulated HITL (Hardware In The Loop) sensor values are used to demonstrate

the system’s capability to predict a failure based on anomalous sensor values to increase the

overall safety of the system.

3.1.1 Introduction to Anomaly Detection

Anomaly detection can be defined as the process of detecting data instances that sig-

nificantly deviate from the majority of data instances [ 71 ] and can thus be dubbed outliers

or anomalies. One of the biggest criteria for human-robot interaction is safety and early

detection of faults in a robot is critical to ensure its reliability and safety in its environment.

These faults can present themselves as hardware or software related flaws or glitches so it is

of utmost importance to be able to spot these flaws before they can escalate into the cause

of a major accident. There are several ways to detect these faults such as redundant hard-

ware to compare the same sensor values but these systems increase system cost and weight

[ 72 ], by setting threshold values on sensor data that the system can not exceed but this can

limit system performance [ 73 ] and by modeling the system in its environment [  74 ] but these

systems can not account for unknown failure [ 75 ] or operation in an environment not seen

by the system before [ 76 ].

Anomaly detection approaches can be divided into three different methods, model based

anomaly detection, knowledge based anomaly detection and data driven anomaly detection

or more commonly known as deep learning based anomaly detection. Model based anomaly

detection algorithms are very accurate but require a very good reconstruction of the system

to achieve this accuracy which decreases exponentially as the complexity of the system in-

creases. Knowledge based anomaly detection algorithms diagnose symptoms in the faulty

sensor values to compute anomalies and can only deal with anomalies that have been prede-
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fined. This work focuses on deep learning based anomaly detection which relies on statistical

information to detect outliers and then labels them as faults [ 77 ]. The conceptual framework

of the working behind such deep-learning based anomaly detection models can be seen in

Figure  3.1 . The first step of this process as shown in Figure  3.1 (a), involves using machine

learning to extract the most important features from a high-dimensional dataset. The next

step as shown in Figure  3.1 (b) involves teaching the model what normal sensor values look

like and the final step as shown in Figure  3.1 (c) separates small anomalies that could be

false positives and detects the highest scoring anomalies as trained in the previous steps.

Figure 3.1. Conceptual Frameworks for Deep Learning Anomaly Detection
Approaches. Adopted from [  71 ]

The next two sections describe Deep Learning models that were chosen to detect anoma-

lies on-board the Intelligent UAV to create a safer system for human-robot interaction and

to increase monitoring and reliability of the system without affecting system performance or

capabilities.

3.1.2 Long Short-Term Memory (LSTM) Model

LSTM Models differ from traditional neural networks as they incorporate feedback in

their learning compared to most other neural networks that are only feedforward as seen

in the previous chapter. This enables LSTM models to overcome long-term dependency
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problems faced by other Recurrent Neural Networks (RNNs) due to the vanishing gradient

problem [  78 ]. When a large network with multiple layers is used, the network’s weights are

assigned from the last layer to the first layer by taking the derivative and multiplying this

derivative with the layer’s number. This causes the gradient to decrease exponentially at the

initial layers of the model which are usually the core layers for feature detection [ 79 ]. LSTM

networks solve this issue by being comprised of several non-linear layers such as a cell state,

an input gate, an output gate and a forget gate.

Figure 3.2. Conceptual Framework for LSTM Networks

Figure  3.2 shows the basic working of a LSTM network. The most important feature in

an LSTM model is given by the top horizontal line where Ct−1 is being brought to Ct [ 79 ].

This is the cell state of the LSTM and is where the main information of the network flows

through like a conveyor belt. The three vertical lines below this horizontal line comprise of

three gates (each one being its own neural network) that control the ability to add or modify

the information contained in the cell state.

• Forget Gate

The forget gate consists of the lines beginning from ht−1 and xt that then pass through

47



σ or the sigmoid activation function and get multiplied into the cell state. The sig-

moid activation function is responsible for normalizing the values that pass through it

between 0 and 1. This gate decides what information from the feedback loop should

be added to the cell state where a value closer to 0 ignores the incoming information

and a value closer to 1 adds the information to the cell state. Mathematically this gate

can be represented as:

ft = σ(Wf · [ht−1, xt] + bf ) (3.1)

where ft is the forget gate, σ is the sigmoid activation function, Wf is the weight of

that layer, ht−1 is the previous hidden state, xt is the current input and bf is the bias

of that layer.

• Input Gate

The input gate consists of two parts, an input gate layer signified by the second σ

function and a candidate value layer that generates new candidate values that can be

added into the cell state through the tanh layer. The tanh layer functions similarly

to the sigmoid activation function and normalizes values going through it between -1

and 1. These two functions work in conjunction through the pointwise multiplication

block with the tanh function regulating the values that are going to be added into

the network and the sigmoid functions choosing which values to keep from the tanh

function before they are all added to the cell state. Mathematically this gate can be

represented as:

it = σ(Wi · [ht−1, xt] + bi) (3.2)

C̃t = tanh(Wc · [ht−1, xt] + bc) (3.3)

where it given by Equation  3.3 is the forget gate equation seen above in Equation  3.1 

and C̃t is the new candidate value layer that uses a tanh function instead of the sigmoid

function with the same inputs.

• Cell State Update

The next step in the process is updating the cell state. The old cell state undergoes
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pointwise multiplication with the forget gate so that only the important values from

the previous cell state are passed onto the process. The output of the input gate then

undergoes pointwise addition to add new values that the neural network found relevant

to the cell state. Mathematically this update process can be represented by:

Ct = ft ∗ Ct−1 + it ∗ C̃t (3.4)

where Ct is the new cell state, ft is the output of the forget gate, Ct−1 is the old cell

state, it is the input gate layer and C̃t are the new candidate values.

• Output Gate

The last step in the process is the output gate. The output gate is primarily responsible

for updating the next hidden state ht. The hidden state carries information regarding

the previous inputs and is used for predictions alongside xt at the start of the process

at the forget gate [ 80 ]. The xt and ht−1 inputs from the left side are inputted to a

sigmoid function while the new cell state is passed into a tanh function. The output

of both these functions is multiplied to determine the next hidden state. This process

is repeated across every LSTM layer. This process can be represented mathematically

by:

ot = σ(Wo · [ht−1, xt] + bo) (3.5)

ht = tanh(Ct) ∗ ot (3.6)

where Equation  3.6 is the output of the sigmoid activation function and ht is the next

hidden state found by multiplying the new cell state, Ct by the output of the sigmoid

function, ot.

3.1.3 Autoencoder Model

An autoencoder is an unsupervised artificial neural network that accepts input data,

efficiently compresses this data by encoding it and then learns how to reconstruct the data
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or decode the compressed data to a representation that is as close to the original input data

as possible [ 81 ]. It is very commonly used to filter noise or disturbances from the original

data by learning a lower-dimensional representation for a higher-dimensional data set and

reconstructing it through correlation in the training process [  82 ]. An autoencoder usually

consists of 3 main layers, an input layer, one or multiple hidden layers and an output layer. It

also consists of 4 pain parts, en encoder, a bottleneck, a decoder and an activation function.

The layers and conceptual framework of a simple autoencoder can be seen in Figure  3.3 .

Figure 3.3. Conceptual Framework for Autoencoder Neural Network. Adopted from [  83 ].

• Input Layer

The input layer comprises of an N -dimensional vector that represents the input data

with a time series representation of sensor values [  83 ]. Time-series data is a sequence of

data that is indexed at the time the measurement was recorded over successive intervals

from the same source [ 84 ][ 85 ]. The input layer can be mathematically represented as:

x = (x1, x2, . . . , xN) (3.7)
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• Output Layer

The output layer comprises of the same N -dimensional vector that represents the

input data but with reconstructed data values. Unlike other neural networks where

the output is a different variable, it is denoted as a modified version of the input [ 83 ].

The output layer is mathematically represented as:

x̂ = (x̂1, x̂2, . . . , x̂N) (3.8)

• Hidden Layers

The hidden layers are present between the input and output layers and work to extract

pertinent information about the relationship between values to encode the input. the

hidden layer can be mathematically represented as:

h = f(W ∗ x + b) (3.9)

where h is the hidden layer output, f is an activation function that represents the

neural network layer, W is a weight matrix, x is the input vector and b is the bias

vector.

• Encoder

The encoder comprises of a set of convolutional blocks and pooling modules that com-

press the input data into a lower dimensional version before feeding it into the bottle-

neck [ 82 ].

• Bottleneck

The bottleneck captures all the pertinent information from the input data and restricts

the flow of trivial data from the encoder [ 82 ]. This block also helps reduce overfitting

and over learning of the input data by the neural network.

• Decoder

The decoder comprises of a set of upsampling and convolutional blocks [  82 ] that recre-
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ate the downsampled input data into the same dimensions as the input of the encoder

block.

• Activation Functions

Each neuron in the hidden layer represents an operation with an activation function as

denoted by f in Equation  3.9 . The three most commonly used activation functions are

Rectified Linear Units (ReLU), tanh and sigmoid activation functions. Figure  3.4 shows

the graphical representation of all three of the commonly used activation functions in

autoencoders. The ReLU function returns a value between 0 and the maximum value

of the input value, the Sigmoid function returns a value between (0, 1) and the Tanh

function returns a value between [ − 1, 1] Their mathematical representation is also

given below:

ReLU(z) = max(0, z) (3.10)

Sigmoid(z) = 1
1 + e−z

(3.11)

Tanh(z) = ez − e−z

ez + e−z
(3.12)

Figure 3.4. Graphical Working of Activation Functions. Adopted from [  86 ]
.
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3.2 Problem Formulation

Anomaly detection neural networks work to recreate the most salient features of the

input data and are only trained with normal input data that does not have any faults or

failures. This enables them to reconstruct normal data values that are within the range of

the input data’s normal functioning data values even when there is a failure in the dataset.

The deviation of the input data’s normal functioning data values and the predicted values

outputted by the autoencoder can be used as an anomaly score to detect failures in the

original dataset. This deviation is also termed reconstruction error [ 87 ]. For the Intelligent

UAV, anomaly detection was run on-board the flight computer to monitor data from various

sensors such as motor RPM (Revolutions Per Minute), motor temperature, battery voltage

and current, altitude, thrust, roll angular rate and pitch angular rate to try to predict failure

before it occurred and flag anomalies in the flight log. The case for network intrusions aboard

the Raspberry Pi 4b was not considered for this section due to limitations on the computing

power on-board the Intelligent UAV.

3.2.1 Hardware Setup and Constraints

The Intelligent UAV’s electronic system encompasses a Pixhawk 4 Mini Flight Controller,

4x BR2212 980 kV Brushless Electric Motors, 4x 2-4S 20 Amp Electronic Speed Controllers

and a 5000 mAh 60C Lithium Polymer Battery. These devices are pictured in Figure  3.5 .

Flight Controller

The Pixhawk 4 Mini is an open-source autopilot/avionics flight system that provides a

feature-rich, low-cost autopilot for academic, hobby and developer communities. It supports

multiple flight software stacks like PX4 [ 88 ] and ArduPilot [  89 ]. The Intelligent UAV uses

the PX4 flight stack due to its BSD license as compared to the ArduPilot flight stack’s GPL

license. Technical specification for the Pixhawk 4 Mini can be viewed in Table  3.1 .

The Pixhawk 4 Mini interfaces with the companion computer (Raspberry Pi 4b) on-board

the Intelligent UAV through a UART port that provides it with power and data transfer
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Figure 3.5. Electronic Systems used for Anomaly Detection on the Intelligent UAV.
.

Table 3.1. Pixhawk 4 Mini Technical Specifications. Adopted from [  90 ].
Manufacturer Holybro and Auterion

Model Pixhawk 4 Mini
FMU Processor STM32F765 (32 Bit Arm Cortex-M7, 216 MHz, 512KB RAM)

Sensors Accelerometer, Gyroscope, Barometer, Magnetometer
Power Input 4.75-5.5VDC

Interfaces 8 PWM Servo outputs
2 I2C Ports

Micro USB Port
3 general purpose serial ports

3 SPI buses
1 CANBus
SD Card

capabilities. The control and output of the entire system is viewed through a GUI called

QGroundControl [  91 ]. QGroundControl also provides a live telemetry monitoring stream

from the Pixhawk 4 Mini that is fed into the Raspberry Pi 4b for anomaly detection. The
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telemetry data that is fed into the anomaly detection algorithm includes the following time-

series data:

• Altitude Estimate: The height above the ground the vehicle is believed to be at.

• Roll Angle: The angle made through rotations on the longitudinal axis. Denoted by

φ in the body frame and x in the inertial frame in Figure  3.6 .

• Pitch Angle: The angle made through rotations on the lateral axis. Denoted by θ in

the body frame and y in the inertial frame in Figure  3.6 .

• Yaw Angle: The angle made through rotations on the vertical axis. Denoted by Ψ in

the body frame and z in the inertial frame in Figure  3.6 .

• Roll Angular Rate: The measure of roll rotation rate with relative to resting roll angle.

• Pitch Angular Rate: The measure of pitch rotation rate with relative to resting pitch

angle.

• Yaw Angular Rate: The measure of yaw rotation rate with relative to resting yaw

angle.

• Velocity: Measure of speed of the object relative to the ground.

• Acceleration: Measure of rate of change of velocity.

• Power: A matrix containing Battery Voltage and Battery Current.

• Thrust: The amount of power supplied to the motors for flight. This is limited to a

scale of 0 to 1 which corresponds to no power and full power respectively.

3.2.2 Predicting Anomalies

The first step in predicting anomalous behavior through Neural Networks is by training

the network with healthy sensor data values. The network will learn to reproduce these

healthy values and will learn the correlations and interactions between the inputted variables.
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Figure 3.6. Quadrotor Free-Body Representation of Roll, Pitch and Yaw
Angles. Adopted from [  92 ].

The network then produces output values that match the healthy input values and if there

is an anomaly then the network produced output value and the anomalous data point will

have an abnormal reconstruction error. This reconstruction error can be used to predict

anomalies in the sensor data. The reconstruction error can be calculated in multiple ways,

some of the ways used by this work are given below:

• Mean Squared Error: The mean squared error (MSE) is the average of the squared

difference between the original data values and the predicted data values calculated by

the neural network and it measures the variance of the residuals of the data. It can be

mathematically denoted by:

MSE = 1
N

N∑
i=1

(yi − ŷ)2 (3.13)

where N is the number of data points, yi is the original data value and ŷ is the predicted

data value.
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• Mean Absolute Error: The mean absolute error (MAE) is the average of the abso-

lute difference between the original data values and the predicted data values calculated

by the neural network and it measures the average of the residuals of the data. It can

be mathematically denoted by:

MAE = 1
N

N∑
i=1

| yi − ŷ | (3.14)

where N is the number of data points, yi is the original data value and ŷ is the predicted

data value.

• Root Mean Squared Error: The Root Mean Squared Error is the square root of

the Mean Squared Error and measures the standard deviation of the residuals of the

data. It can be mathematically denoted by:

RMSE =
√

MSE =

√√√√ 1
N

N∑
i=1

(yi − ŷ)2 (3.15)

where N is the number of data points, yi is the original data value and ŷ is the predicted

data value.

After determining the reconstruction error, a threshold value can be set to encompass

values of data that are healthy which correspond to values under the threshold value and

values of data that are anomalies or values that are above the threshold. There are again

multiple routes to determining this threshold value depending on the input data and the

neural network’s performance. In this work, the two ways to monitor anomalies depend on

whether the training data contains on healthy sensor values or if it also contains anomalous

sensor values.

• Healthy Sensor Training Values: When the training data only comprises of healthy

sensor values and the neural network has converged to minimize training losses, the

threshold can be calculated as the maximum value of the Mean Absolute Error or

Mean Squared Error times half the standard deviation of the Mean Absolute Error or

Mean Squared Error. This technique ensures that the maximum reconstruction error is
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contained within the bounds of half a standard deviation of reconstruction loss above

the maximum reconstruction loss and the minimum reconstruction error. Any value

above this threshold value can be deemed anomalous.

ThresholdHealthy-MAE = MAX(MAE) + 1
2STD(MAE) (3.16)

ThresholdHealthy-MSE = MAX(MSE) + 1
2STD(MSE) (3.17)

• Mixed Sensor Training Values: When the training data comprises of both healthy

and anomalous values or if the training data doesn’t have a common or discernible

trend then the threshold value can be calculated as the sum of the mean of the Mean

Absolute Error or Mean Squared Error and n times the standard deviation of the

Mean Absolute Error or Mean Squared Error. The n term depends on the dataset’s

reconstruction loss and can be manually fitted to ensure that only healthy sensor data

is within the reconstruction bounds. For a dataset that has a marginal increase in

anomalous data compared to healthy data, the n term is contained between (0, 10] and

for datasets that have exponential increase in anomalous data compared to healthy

data, the n term is contained between (0, 1]. It is highly advised to train the network

only on healthy sensor training values to automatically optimize reconstruction losses

and set an appropriate threshold.

ThresholdMixed-MAE = MAX(MAE) + (n ∗ STD(MAE)) (3.18)

ThresholdMixed-MSE = MAX(MSE) + (n ∗ STD(MSE)) (3.19)

3.3 Method

An Autoencoder model, a LSTM model and an Autoencoder-LSTM model were trained

to compare their performance on-board the Intelligent UAV. Pixhawk 4 Mini training data

was collected through several ROS Gazebo [  62 ] Hardware-In-The-Loop simulations and real

world training logs were downloaded from PX4 Autopilot’s Flight Log Review repository

[ 93 ] which contains publicly available data of Pixhawk flight logs of UAVs. Flights logs that
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contained anomalies were simulated through ROS Gazebo with a PX4 HITL [  94 ] simulation

that was induced with various failures in flight.

3.3.1 Gathering Training Data

This section describes the process through which training data was acquired through the

SITL Simulation and the PX4 Autopilot’s Flight Log Review repository.

QGroundControl Parameters

A Pixhawk 4 Mini ROS Gazebo simulation was created to gather flight log data for

anomaly detection. QGroundControl was used as a Graphical User Interface (GUI) to create

flight mission plans that the simulated UAV would follow and a PX4 command shell was

called to inject failures in flight at a desired time. More details on how to setup a PX4 SITL

simulation using ROS Gazebo can be found in [ 94 ].

Before planning missions on QGroundControl, two important parameters need to be

changed within QGroundControl for data logging and failure injection:

• Enabling Telemetry Logs from Vehicle: Under Application Settings, in the

Telemetry Logs from Vehicle Section, Save Log after each flight and Save CSV log

of telemetry data needs to be enabled.

• Enabling Failure Injection: Under Vehicle Setup, in the Parameters section,

SYS_FAILURE_EN needs to be enabled to inject failures using the PX4 command

shell.

QGroundControl Mission Planning

To further challenge the Anomaly Detection Neural Network and to test performance

close to real world conditions, two different types of missions were setup. The first mission

plan followed a simple circle with an entry and exit close to the takeoff and landing posi-

tion. The altitude for the UAV was set to 20 meters with random 5 meter increments and

decrements while flying in the circle. This mission plan was created as it followed an easy

59



to determine pattern which would help the Neural Network learn the flight characteristics of

the UAV and recreate data with comparatively less reconstruction error. The flight plan can

be seen in Figure  3.7 . Failures in this flight plan were added to the accelerometer, gyroscope

and magnetometer in Waypoint 22 as seen in Figure  3.7 . The failures included publishing

the same values for all three sensors at random intervals and then publishing seemingly

uninitialized sensor values of the UAV which were still within the threshold of operation.

Figure 3.7. Circular Mission Plan on QGroundControl

The second mission plan followed a random zig-zag flight path with changes in altitude,

speed and big yaw adjustments along with flying in straight lines in between the zig-zag

pattern as seen in Figure  3.8 . This mission plan would test the Neural Network as there was

no repeating pattern in the flight plan. Each zig-zag maneuver was performed at different

velocities and included a random yaw adjustment. This would cause a much higher recon-

struction error when the Neural Network tried to recreate the sensor values as compared

to the circular flight plan and would test if the Neural Network would falsely identify these

changes as anomalies. Failures in this flight plan were added to the accelerometer, gyroscope

and magnetometer in Waypoint 20 as seen in Figure  3.8 .The failures included publishing
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the same values for all three sensors at random intervals and then publishing seemingly

uninitialized sensor values of the UAV which were still within the threshold of operation.

Figure 3.8. Zig-Zag Mission Plan on QGroundControl

Failures were only added to an assortment of sensors on board the UAV such as the Ac-

celerometer, Barometer and Gyroscope as failures that were induced in the motor and other

critical flight systems would cause the UAV to crash immediately and only create a single,

easy to identify anomaly for the Neural Network. Figure  3.9 shows the PX4 command shell

where the failures were injected during a simulation in the last couple waypoints before the

vehicle landed. Simulating sensor failures in flight surprisingly did not create major devia-

tions from the flight mission plan and could only be noticed through thorough examination

of the flight telemetry data. The Anomaly Detection Neural Network was only run on data

that included sensor values as these were the only values affected by the failure injection.

PX4 Autopilot Public Flight Logs

The flight telemetry data captured in the previous section contained data for autonomous

flights only. A use case for manual human-controlled flight and a flight in real-world test
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Figure 3.9. PX4 Command Shell Showing Failure Injection in Flight

conditions was also sought to test the performance of the Anomaly Detection Neural Net-

work. This was considered a bonus objective rather than a mission critical objective as the

Intelligent UAV would only fly autonomously. The flight log data was gathered from [ 95 ]

and can be viewed through Figure  3.10 .

The flight log data contains telemetry data from a Generic Quadrotor that was controlled

by a human pilot through the Pixhawk 4 Mini Flight Computer. It was a 14 minute and

41 second flight on a relatively new Quadrotor build as it had only flown for 3 hours 1

minute and 23 seconds in total throughout its life. The pilot described the winds as calm

and claimed that the crash was caused only due to pilot error. The flight’s GPS logs show a

octagonal shaped flight path and the crash occurs towards the end of the flight at around 13

minutes of flight time. The sensor data from this flight will be described in the next section

through the training process of the Neural Network.

Conversion of Flight Telemetry Data Log

QGroundControl outputs the flight telemetry data log as a file with extension .ulog which

can only be opened and analyzed through QGroundControl but the PX4 Autopilot GitHub
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Figure 3.10. Real-World PX4 Autopilot Flight Repository Flight Log.
Adopted from [ 95 ].

repository [ 96 ] offers a python script that can convert the .ulog file to a CSV file that can

be inputted to the Anomaly Detection Neural Network. Flight logs scripts were downloaded

through QGroundControl using the inbuilt Analyze Flight Tool and were converted to files
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with extension .csv using the ulog2csv.py script. This command outputs multiple data files

that offer detailed telemetry data collected through the sensors on board the UAV but the

only files of relevance to the Anomaly Detection Neural Network are the combined sensor

data files that contain sensor data collected throughout the flight.

3.3.2 Training the Model

This section provides an analysis of the initial sensor data that was fed into the different

Neural Network models, summaries and architectures of the different NN models and training

results of the different NN models on the different types of telemetry data described above.

Figure 3.11. Accelerometer and Gyroscope Data for Circular Pattern Flight
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Combined Sensor Data

Figure  3.11 contains the whole simulated circular flight’s telemetry sensor data which

included the injected anomalies for the flight. While looking at the Accelerometer vs Time

graph, it is not inherently clear as to which sequence of points are anomalies and which

sequence of points are normal operation. The circular flight path begins at about 40 seconds

into the flight and the format for the time column is given as hh − mm − ss where hh is the

hours in flight time, mm is the minutes in flight time and ss are the seconds in flight time.

The circular flight plan ends at about 3 minutes and 10 seconds into the flight and anomalies

were inserted just before the circular flight plan ended. While looking at the Gyroscope vs

Time graph, several sequences of gyroscope data don’t follow a particular pattern but only

data after 3 minutes included the anomaly. The initial flight data from the start of the graphs

to 30 seconds had variations as compared to the seemingly similar data up to 3 minutes due

to the UAV configuring it’s path to begin the circular flight plan.

Figure  3.12 contains the whole simulated zig-zag flight’s telemetry sensor data which

included the injected anomalies for the flight. While looking at the Accelerometer vs Time

graph, it is again not inherently clear as to which sequence of points are anomalies and which

sequence of points are normal operation. The zig-zag flight path begins at about 30 seconds

into the flight and the format for the time column is given as hh − mm − ss where hh is

the hours in flight time, mm is the minutes in flight time and ss are the seconds in flight

time. The zig-zag flight plan ends at about 2 minutes and 45 seconds into the flight and

anomalies were inserted at around 2 minutes and 38 seconds in the flight. While looking at

the Gyroscope vs Time graph, several sequences of gyroscope data don’t follow a particular

pattern but only data after 2 minutes and 38 seconds included the anomaly. The initial flight

data from the start of the graphs to 30 seconds only had variations due to the UAV taking

off and trying to reach the safe mission altitude of 20 meters above ground level. Flight data

till just up to 2 minutes included the zig-zag maneuvers and then until 2 minutes and 12

seconds, the UAV realigned itself for the next set of zig-zag maneuvers.

Figure  3.13 contains the whole real world test flight’s telemetry sensor data which in-

cluded the pilot error crash for the flight. While looking at the Accelerometer vs Time
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Figure 3.12. Accelerometer and Gyroscope Data for Zig-Zag Pattern Flight

graph, it is again not inherently clear as to which sequence of points are anomalies and

which sequence of points are normal operation. The pilot of the UAV starts performing

major maneuvers only 8 and a half minutes into the flight. Up till that point the pilot is

only raising the altitude of the UAV to get to a safe mission height of 68 meters. As the pilot

described that the crash only occurred towards the end of the flight it is easy to say that

the last couple datapoints are the anomalies that occurred moments before the crash, but

there are several major spikes in accelerometer data throughout its operation which could

have been precursors to the crash. The format for the time column is given as ddhh − mm

where dd is the date of the flight, hh is the hours of the flight and mm are the minutes into

the flight. While looking at the Gyroscope vs Time graph, it is again easy to say that the

incident at around 14 minutes into the flight was the crash but the gyroscope data for the
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points between 13 and 14 minutes show a very different pattern as compared to the while

flight. This will be another factor that the Anomaly Detection Neural Network will have to

compensate for.

Figure 3.13. Accelerometer and Gyroscope Data for Real-World Test Flight

Healthy Sensor Data

The initial input data as described above was converted to data that had been Fast

Fourier Transformed (FFT) in order to better extract the characteristics of the time series

to be predicted. Figure  3.14 shows the same input data as before but it is much easier

to discern differences between this data after performing Fast Fourier Transform on it [ 97 ].

Healthy sensor data contained the data before anomalies were added to the flight. The model
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was only trained on healthy sensor data so that the resulting reconstruction of the inputted

data in the Neural Network models contained as low of a reconstruction error as possible.

This would help the Neural Network models classify anomalies in flight as compared to a

model that was trained on healthy and unhealthy sensor data.

(a) Training Data for Circular Pattern Flight (b) Training Data for Zig-Zag Pattern Flight

Figure 3.14. Healthy Accelerometer and Gyroscope Training Data

Mixed Sensor Data

Figure  3.15 shows the last part of the input data with Fast Fourier Transform applied on

it and it is again much easier to discern the differences between the previous section’s normal

input data and the FFT input data. Mixed sensor data contained some flight data before any

anomalies occurred in flight and the data after anomalies were applied in flight all the way

until the UAV landed and data logging was stopped. Towards the end of the graphs, a huge

spike in accelerometer and gyroscope readings is apparent as the error between both sensors

is magnified due to the UAV maneuvering back into position to start the landing process.
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The subtle differences in between the different types of zig-zag and circular maneuvers in

flight are also clearly discernible through these graphs.

(a) Testing Data for Circular Pattern Flight (b) Testing Data for Zig-Zag Pattern Flight

Figure 3.15. Mixed Accelerometer and Gyroscope Testing Data

LSTM Model

The LSTM Model was kept very simple so as to not drain the computational resources

of the companion computer on-board the Intelligent UAV and was limited to a single LSTM

layer. It used the Adam Optimizer which is an algorithm for first-order gradient-based

optimization of stochastic objective functions based on estimates of lower-order moments

[ 98 ] and calculated loss according to Mean Absolute Error. The number of neurons in the

hidden LSTM layer was calculated using this formula:

Nh = 2
3 ∗ (Ni + No) (3.20)

where Nh is the number of neurons in the hidden layer, Ni is the number of input neurons and

No is the number of output neurons. This formula follows all the rule of thumbs to determine
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the correct number of neurons in hidden layers [  99 ]. The overall model architecture along

with the number of parameters can be seen in Figure  3.16 and a detailed model description

can be viewed in Table  3.2 .

Figure 3.16. LSTM Model Architecture for Anomaly Detection Neural Network

Table 3.2. LSTM Model Architecture
Model Name LSTM

Number of Layers 3
Activation Function ReLU

Layer 1 LSTM Layer with 8 Neurons
Optimizer Adam

Training Loss Mean Absolute Error
Epochs 15

Batch Size 75

(a) Circular Flight (b) Zig-Zag Flight

Figure 3.17. LSTM Training Results for Different Flights

Figure  3.17 shows the training results of the three different flights for the LSTM Model.

All three flights reached their optimum minimum loss over 15 epochs and training was
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stopped after this to avoid overfitting of the training data. The model architecture was not

changed despite the different flight data and was able to adapt to new flight data without

impairing performance.

Autoencoder Model

The Autoencoder Model was also kept very simple so as to not drain the computational

resources of the companion computer on-board the Intelligent UAV. It contained 4 hidden

layers, with 16 neurons in the first Dense layer, 4 neurons in the second Dense layer to

compress the salient data features, 4 neurons in the third Dense layer and 16 neurons in the

fourth Dense layer to reproduce the reconstructed input. It used the Adam Optimizer which

is an algorithm for first-order gradient-based optimization of stochastic objective functions

based on estimates of lower-order moments [  98 ] and calculated loss according to Mean Abso-

lute Error. The number of neurons in the hidden dense layers was set after hyper-parameter

tuning of the model.

The overall model architecture along with the number of parameters can be seen in Figure

 3.18 and a detailed model description can be viewed in Table  3.3 .

Figure 3.18. Autoencoder Model Architecture for Anomaly Detection Neural Network

Figure  3.19 shows the training results of the three different flights for the Autoencoder

Model. All three flights reached their optimum minimum loss over 15 epochs and training

was stopped after this to avoid overfitting of the training data. The model architecture was
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Table 3.3. Autoencoder Model Architecture
Model Name Autoencoder

Number of Layers 6
Activation Function ReLU

Layer 1 Dense Layer with 16 Neurons
Layer 2 Dense Layer with 4 Neurons
Layer 3 Dense Layer with 4 Neurons
Layer 4 Dense Layer with 16 Neurons

Optimizer Adam
Training Loss Mean Absolute Error

Epochs 15
Batch Size 75

(a) Circular Flight (b) Zig-Zag Flight

Figure 3.19. LSTM Training Results for Different Flights

not changed despite the different flight data and was able to adapt to new flight data without

impairing performance.

Autoencoder-LSTM Model

The Autoencoder-LSTM Model was also kept very simple so as to not drain the compu-

tational resources of the companion computer on-board the Intelligent UAV. It contained 4

hidden layers and 1 repeat vector, with 16 neurons in the first LSTM layer, 4 neurons in the

second LSTM layer to compress the salient data features, 4 neurons in the third LSTM layer

and 16 neurons in the fourth LSTM layer to reproduce the reconstructed input. It used

the Adam Optimizer which is an algorithm for first-order gradient-based optimization of

stochastic objective functions based on estimates of lower-order moments [  98 ] and calculated
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loss according to Mean Absolute Error. The number of neurons in the hidden LSTM layers

was set after hyper-parameter tuning of the model.

The overall model architecture along with the number of parameters can be seen in Figure

 3.20 and a detailed model description can be viewed in Table  3.4 .

Figure 3.20. Autoencoder Model Architecture for Anomaly Detection Neural Network

Table 3.4. Autoencoder-LSTM Model Architecture
Model Name Autoencoder-LSTM

Number of Layers 7
Activation Function ReLU

Layer 1 LSTM Layer with 16 Neurons
Layer 2 LSTM Layer with 4 Neurons
Layer 3 Repeat Vector
Layer 4 LSTM Layer with 4 Neurons
Layer 5 LSTM Layer with 16 Neurons

Optimizer Adam
Training Loss Mean Absolute Error

Epochs 15
Batch Size 75

Figure  3.21 shows the training results of the three different flights for the Autoencoder-

LSTM Model. All three flights reached their optimum minimum loss over 15 epochs and

training was stopped after this to avoid overfitting of the training data. The model archi-
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(a) Circular Flight (b) Zig-Zag Flight

Figure 3.21. Autoencoder-LSTM Training Results for Different Flights

tecture was not changed despite the different flight data and was able to adapt to new flight

data without impairing performance.

3.4 Main Results

This section compares the reconstruction performance of all three Neural Network mod-

els in all three different test cases. It also compares the error threshold that each of the

Neural Network models set for their respective reconstruction data along with details of

their Anomaly Detection performance on-board The Intelligent UAV.

3.4.1 Reconstruction Performance

After the model is trained, the distribution of the calculated loss can be found to de-

termine model feasibility and this loss is used to determine a threshold value for the entire

model. The Mean Absolute Error between the model’s prediction and the ground truth data

is first calculated for the training dataset, which is the same data the model was trained to

predict, to determine how accurate the model is.

Algorithm  1 shows how this process was carried out in the Anomaly Detection Neu-

ral Network to yield the distribution of the calculated loss in the training set. The same

algorithm was also called on the testing set after an appropriate threshold was set.

Figure  3.22 showcases the associated distribution of the calculated losses across the dif-

ferent training sets for the LSTM model. The maximum loss density for the circular flight,
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Algorithm 1: Reconstruction Loss Algorithm Pseudocode
1 Predict training data using the trained model
2 Reshape predictions into time series data
3 Line up predictions time series index with the training data index
4 Calculate the mean of the absolute difference between Predicted Data and Actual

Data
5 Set this value as the threshold value

(a) Circular Flight (b) Zig-Zag Flight

(c) Real-World Flight

Figure 3.22. LSTM Reconstruction Losses for Different Flights

as seen in Figure  3.22a , under the LSTM Anomaly Detection Neural Network (ADNN) was

concentrated in the beginning of the dataset at MAE = 0.0153 and indicates a very good

learning of the base model.

The maximum loss density for the zig-zag pattern flight, as seen in Figure  3.22b , under the

LSTM Anomaly Detection Neural Network (ADNN) was also concentrated in the beginning

of the dataset at MAE = 0.0161 and indicates a very good learning of the base model.
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The maximum loss density for the real world test flight, as seen in Figure  3.22c , under the

LSTM Anomaly Detection Neural Network (ADNN) was also concentrated in the beginning

of the dataset at MAE = 0.0097 and indicates a very good learning of the base model.

(a) Circular Flight (b) Zig-Zag Flight

(c) Real-World Flight

Figure 3.23. Autoencoder Reconstruction Losses for Different Flights

Figure  3.23 showcases the associated distribution of the calculated losses across the dif-

ferent training sets for the Autoencoder model. The maximum loss density for the circular

flight, as seen in Figure  3.23a , under the Autoencoder Anomaly Detection Neural Network

(ADNN), was more spread out as compared to the LSTM network but is still heavily right

skewed, indicating much smaller reconstruction losses.

The maximum loss density for the zig-zag pattern flight, as seen in Figure  3.23b , under

the Autoencoder ADNN, shows a similar trend to the circular flight. It was more spread out

as compared to the LSTM network but is still heavily right skewed, indicating much smaller

reconstruction losses.
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The maximum loss density for the real world test flight, as seen in Figure  3.23c , under

the Autoencoder ADNN, shows a similar trend as the above two flights. It was less spread

out as the previous two flights loss distribution but was more concentrated than the LSTM

network.

(a) Circular Flight (b) Zig-Zag Flight

(c) Real-World Flight

Figure 3.24. Autoencoder-LSTM Reconstruction Losses for Different Flights

Figure  3.24 showcases the associated distribution of the calculated losses across the dif-

ferent training sets for the Autoencoder-LSTM model. The maximum loss density for the

circular flight, as seen in Figure  3.24a , under the Autoencoder-LSTM ADNN, was spread

out the most with more reconstruction errors spanning more than MAE > 0.1 but it was

still heavily skewed right with most of the concentration of loss at the start of the x-axis.

The maximum loss density for the zig-zag pattern flight, as seen in Figure  3.24b , under

the Autoencoder-LSTM ADNN, was spread out more than the previous two neural net-

work models and showed the least right skewed graph as compared to the previous models

performance on the same flight data. The reconstruction loss maxed out at MAE = 0.26.
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The maximum loss density for the real world test flight, as seen in Figure  3.24c , under the

Autoencoder-LSTM ADNN, contained the highest reconstruction losses of any of the neural

network models as the right skew was concentrated between MAE 0 to 0.1. The maximum

reconstruction loss also reached till MAE = 0.39.

While having a large reconstruction loss might show that the model is not learning the

data well, it was preferred compared to having a model that can recreate the data perfectly as

this would lead to a very sensitive anomaly detection neural network that can only recognize

the training data perfectly. A good anomaly detection neural network needs some kind of

reconstruction loss to establish a baseline in the quality of data.

3.4.2 Error Threshold

Once the distribution of the loss function was plotted, the anomaly threshold could be

set to be inclusive of the noise or disturbance in the reconstructed data values. This would

ensure that the Anomaly Detection Neural Network did not catch any false positives in

the dataset and would only report an anomaly once there was reconstruction loss that was

deemed beyond the threshold for reconstruction loss of a particular model.

The threshold was dynamically calculated for each neural network and for each input

data set to ensure that only true positive anomalies were detected in the dataset. Figure

 3.25 shows the threshold value being applied across the predicted value for the circular flight

path for all three types of Neural Networks.

Table  3.5 shows the error threshold values for all of the datasets. Any reconstruction

error value above these determined thresholds would be marked as an anomaly by the neural

networks. The error threshold can also be taken as a single parameter to compare model

performance of the Neural Network learning the training dataset. The values clearly indicate

that the LSTM Neural Network seemed to have the lowest error threshold and hence learned

the training dataset the best. The next best neural network was the Autoencoder Neural

Network which had 6 times higher reconstruction error as compared to the LSTM model.

The Autoencoder-LSTM came in last with a 7 times higher reconstruction error as compared

to the LSTM model. These values indicate that the LSTM model will be the most sensitive to
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(a) LSTM Model (b) Autoencoder Model

(c) Autoencoder-LSTM Model

Figure 3.25. Threshold Values Applied on Predicted Values for the Different
Neural Network Models on the Circular Pattern Flight

anomalies while avoiding false positives as compared to the Autoencoder and Autoencoder-

LSTM Network.

Table 3.5. Error Threshold for Neural Networks Across All Datasets
Model Name Flight Plan Name Error Threshold

LSTM
Circle 0.03879

Zig-Zag 0.05199
Real-World 0.04622

Autoencoder
Circle 0.26072

Zig-Zag 0.2753
Real-World 0.36107

Autoencoder-LSTM
Circle 0.23073

Zig-Zag 0.31385
Real-World 0.42431
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3.4.3 Anomaly Detection Performance

All three models correctly identified the anomalies present in all three datasets. The

major difference can only be observed when the test cases are changed. When a repeating

pattern is used to train the model to detect anomalies, then the anomaly detector is able

to predict when the anomalies begin down to the millisecond when the sensors start to

send degraded values to the flight computer. For the test case that had changing actions at

every turn, the anomaly detector was able to flag when the sensors started sending anomalous

values to the flight computer but then considered all the next few values as normal operation.

This is due to the fact that the healthy data was random and led to a much higher threshold

than a case with a predictable path. The anomaly detector detected another set of anomalies

when the values spiked in this degraded sensor data setting off two alarms in the same test

case. For the last test case, the data suggests that the crash in the flight was purely caused

by pilot error as suggested by the pilot as there were no discernible signs of faulty sensor

measurement before the crash occurred.

Figure  3.26 shows the performance of the three different kinds of Anomaly Detection

Neural Networks on the circular flight pattern. These graphs plot the log of the Mean

Absolute Error against the flight time. The Autoencoder (Figure  3.26b ) and Autoencoder-

LSTM (Figure  3.26c ) models seem to reconstruct the data similarly whereas the LSTM

(Figure  3.26a ) model takes a different approach. The LSTM model has the least amount of

reconstruction error and is able to correctly recreate the first anomaly in the circular flight

path test data that occurs 3 minutes and 8 seconds into the flight and appears as the first

red spike. The LSTM model tries to recreate the next few sensor values after this reading

but has a much higher error in doing so and continues regarding every value after this as

an anomalous sensor value. The LSTM model is then able to correctly predict the landing

sequence which is signified as the large red spike towards the end of the graph. The sensor

values stayed degraded till after landing in this test case and the model accurately predicted

the whole test case. The Autoencoder and Autoencoder-LSTM showcase this phenomenon

as well but detect the anomaly a whole 2 seconds after it had been spotted in the LSTM

model at 3 minutes and 10 seconds. The graphs for both these models follow a similar
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(a) LSTM Model (b) Autoencoder Model

(c) Autoencoder-LSTM Model

Figure 3.26. Anomaly Detection on the Circular Pattern Flight

pattern and are less precise than the graphs reconstructed by the LSTM model due to their

high training loss and higher reconstruction error threshold.

Figure  3.27 shows the performance of the three different kinds of Anomaly Detection

Neural Networks on the zig-zag flight pattern. These graphs plot the log of the Mean

Absolute Error against the flight time. The Autoencoder (Figure  3.27b ), Autoencoder-

LSTM (Figure  3.27c ) and the LSTM (Figure  3.27a ) model seem to reconstruct the data

similarly as compared to the previous test case. Although the Autoencoder-LSTM model

is not able to achieve a MAE of 10−3 as compared to the LSTM and Autoencoder models.

The LSTM model again has the least amount of reconstruction error and is able to correctly

recreate the first anomaly in the zig-zag flight path test data that occurs 3 minutes into the

flight and appears as a small red spike. The LSTM model tries to recreate the next few

sensor values after this reading but has a much higher error in doing so as compared to the

values ranging from 1 minute to 3 minutes into the flight. Despite this, the next few values
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(a) LSTM Model (b) Autoencoder Model

(c) Autoencoder-LSTM Model

Figure 3.27. Anomaly Detection on the Zig-Zag Pattern Flight

are regarded as normal operation due to the nature of the mixed data fed into the model

which caused higher reconstruction errors leading to these values not being detected. The

LSTM model is then able to correctly predict the landing sequence. As the UAV begins the

land, the sensor data then displays a huge anomaly which the model correctly identifies and

flags as an anomaly. The Autoencoder and Autoencoder-LSTM showcase this phenomenon

as well as their reconstruction error keeps rising higher and higher after the 3 minutes mark

but they are able to attribute the spike to the landing sequence as well so the previous spike

was not identified as an anomaly. When the biggest spike shows up towards the end of the

flight, both models identify the same anomaly as the LSTM model. Due to the random flight

characteristics of this dataset, the model was not able to correctly recreate the healthy data

which led to it setting a higher threshold and missing an anomaly in the middle between the

first anomaly and the landing sequence.
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(a) LSTM Model (b) Autoencoder Model

(c) Autoencoder-LSTM Model

Figure 3.28. Anomaly Detection on the Real World Flight

Figure  3.28 shows the performance of the three different kinds of Anomaly Detection

Neural Networks on the real-world test flight. These graphs plot the log of the Mean Absolute

Error against the flight time. The Autoencoder (Figure  3.28b ), Autoencoder-LSTM (Figure

 3.28c ) and the LSTM (Figure  3.28a ) model seem to reconstruct the data similarly just like

the previous test case. Although the Autoencoder and the Autoencoder-LSTM models are

not able to achieve a MAE below of 10−3 as compared to the LSTM model. The LSTM

model again has the least amount of reconstruction error and is able to correctly recreate

the whole flight despite it being controlled by a human pilot. The LSTM model correctly

identifies when the crash takes place at around 13 mins and 50 seconds into the flight. The

Autoencoder and Autoencoder-LSTM models follow a similar trend and are able to discern

when the crash takes place as well due to the huge reconstruction error spike at that moment.

Through this test case, the human operator’s cause for the crash which was listed as pilot
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error can be confirmed as none of the sensors seemed to have any anomalies except till the

moment of the crash.

In conclusion, the LSTM Anomaly Detection Neural Network, despite being the most

simple amongst the three neural networks with only a single hidden layer, seems to perform

the best and has the least reconstruction error making it more prone to detect small anomalies

in flight as compared to the Autoencoder or the Autoencoder-LSTM network. It was able

to detect anomalies in the circular flight pattern, the zig-zag flight pattern and the human

piloted real world test flight that ended with a crash. Due to its lower threshold, the LSTM

model’s sensitivity has the highest chance to pick up and report an anomaly to the user

before a major failure.
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4. SUMMARY

4.1 Conclusion

The problem addressed by this study was one of creating a modular and robust UAV

platform that could be adapted for multiple use cases and could be used as a leader UAV

in a multi-robot swarm due to its computational power and suite of sensors. The main

hurdles to enable further research on this platform were to solve real-time perception to

enable computer vision applications on-board the UAV such as object detection, motion

estimation, obstacle avoidance and 3D scene reconstruction and to increase system safety

and reliability through anomaly detection to predict system failure before it can occur.

Perception was enabled on the UAV through a Convolutional Neural Network running

on the companion computer using the RGB-D camera to capture its surroundings. The

performance of two different types of state-of-art object detection algorithms, YOLOv5 and

Mobilenet-SSDv2, meant to run on Embedded Systems were compared along with their

deployment using a hardware inference accelerator to increase frames per second of real time

object detection. Both Neural Network models were also trained on a limited custom image

dataset to judge their training performance and time taken to train. Data augmentation was

applied to this dataset during training to further improve the performance of both of the

models. The mAP, precision and recall were compared to further determine which algorithm

performed better on the Intelligent UAV. Real-time video from the UAV system was also used

to compare their maximum frames per second at HD resolutions including their performance

increase gained by using a hardware inference accelerator. The higher the frames per second,

the faster the UAV system can travel. The YOLOv5 algorithm was determined to give the

highest precision with the least amount of training time along with the highest frames per

second for real time object detection.

Next, anomaly detection on-board the Intelligent UAV was introduced through three

different types of neural network models, LSTM, Autoencoder and Autoencoder-LSTM.

The Intelligent UAV’s external flight sensors and flight computer that would be sending the

live telemetry data to the on-board computer were discussed along with a brief overview of

the contents of the telemetry data. The three different types of reconstruction error losses,
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MAE, MSE and RMSE were discussed along with methods to set a threshold for the neural

network’s output of the reconstructed data. Three different mission plans, one that followed

an established pattern, one with a random pattern and one human controlled flight were

established and used as a training dataset for each of the neural network algorithms. It was

determined that the neural network would be very good at learning a fixed pattern so the

latter two flight plans were used to check how consistent the neural network was at predicting

anomalies even if there was no established pattern. Sensor failure was deemed as the only

reasonable failure to inject into the anomaly detection system as major component failure

would lead to an instantaneous crash. Input data with and without Fast Fourier Transform

performed on it was compared to establish the improvement of model performance due to

this step. The models architecture was shown to reestablish the simplicity of the models

to ensure that they did not consume a lot of computational power. Reconstruction losses

and error thresholds were compared for all three different networks on all three flights to

judge the internal networks reconstruction errors. The LSTM model seemed to have the

best performance despite being the simplest of all three networks. All the networks were

able to detect the anomalies that occurred during the flight and even plotted the exact time

the anomaly was injected into the flight.

With the establishment of these systems running in real-time using an embedded system

without discrete graphics and without computational help from a ground control station, it

can be concluded that this platform is ready for further development of new use-cases some

of which are mentioned in the next section.

4.2 Future Work

Future work for the Intelligent UAV can be:

• To create a vision-based, GPS-denied trajectory generation and path planning algo-

rithm that would allow the UAV to autonomously carry out flight plans. Using the

object detection on board, contextual AI could also be added to the path planning

algorithm so that the user only needs to tell the UAV what object it needs to look for

86



and what to do with it for the UAV to plan an entire mission by itself in an unknown

environment.

• Train more models to reinforce the learning of the anomaly detection algorithm on-

board the Intelligent UAV so that a better model representing healthy sensor data is

generated. This will enable the UAV to flag anomalies that were too small to catch by

the current model.

• Simultaneous Localization and Mapping (SLAM) could be paired with the RGB-D

camera on the Intelligent UAV to create 3 dimensional depth maps or 3D reconstruction

of the environment.

• A use case with multiple other UAVs for distributed tasks in drone swarms. The

Intelligent UAV could act as a leader UAV in the swarm and distribute tasks by

providing other UAVs with trajectory information.

• A use case with a heterogeneous team of robots such as UGVs and UAVs to develop

inter-robot collaboration. The UGV could act as a ground transport vehicle when the

UAV is not in use and the UAV could provide data on the terrain ahead of the current

path of the UGV.
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