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210 ◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  106 
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7.3 Comparison of our calculated phase lag ∆δ = δ
(a)
0 − δ

(b)
0 (solid curve) with the

experimental results [ 38 ] (blue points) versus energy in cm−1. The top label gives
the effective quantum number ν = [2(E5d5/2 −E)]− 1

2 . The dashed curves are δ0 for
a = 6s1/2 (upper) and b = 5d3/2 (lower) channels. The arrows and the diamonds
on the top and bottom give the positions of the two- and one-photon resonances,
and their colors correspond to the colors in Fig.  7.4 . This figure is taken from
Ref.[ 64 ]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  108 

7.4 Partial cross-sections for two- and one-photon ionization, separately. The solid
(dashed) curves give partial cross sections for a = 6s1/2(b = 5d3/2) channel.
Resonance identification and their comparisons with experiment are given in
Table.  7.2 . This figure is taken from Ref.[  64 ]. . . . . . . . . . . . . . . . . . . .  111 

7.5 Time delay analysis for Jπ

f = 1o resonances. The upper figure shows the eigen-
values of the the time-delay matrix and the lower figure shows partial decay
probabilities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  112 

7.6 Time delay analysis for Jπ

f = 2e resonances. The upper figure shows the eigen-
values of the the time-delay matrix and the lower figure shows partial decay
probabilities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  113 

A.1 Threshold energies for (a) 7Li87Rb for M = −2 manifold for arbitrary L and (b)
6Li2 for M = 0,−1,−2 and −3 manifold for L = 0, 1. The dashed curves are the
entrance channels in the experiments we compared with. . . . . . . . . . . . . .  129 

A.2 (a) Threshold energies single 6Li atom. (b) The s-wave scattering length near the
6Li2 resonances for 1+3, 2+3,and 1+2 collision, our calculations (dashed lines)
agree with the calculations from Ref. [  141 ] supplemental material (solid lines). .  130 

A.3 Comparison of theoretical and experimentally determined cross section. Solid
blue(orange) line is s(p) wave 7Li87Rb interspecies cross section calculated by
quantum defect theory(QDT). Red circles represent σcdr determined by experi-
mental measurements. Error bars are statistical. Blue circles are σcdr determined
by Monte Carlo simulation using the theoretical differential cross section. Both
the experimental and theoretical points are placed at the averaged collisional en-
ergy under experimental condition. Inset: Determine σcdr at through matching.
Solid black spots are Monte-Carlo simulated results. The solid blue line is a lin-
ear fit: τ = k/σcdr. The red circle represents experimental result. The blue circle
represents Monte Carlo simulation. Reprint from [  149 ]. . . . . . . . . . . . . .  133 
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ABSTRACT

Based on the multichannel quantum defect method and streamlined R-matrix treatment,

this thesis studies the multi-photon ionization spectrum for atomic helium and barium,

and explores the electronic correlations of these atoms. For the helium atom, the above-

threshold-ionization spectra have been calculated, with two linearly polarized photons, two

oppositely circularly polarized photons, and three linearly polarized photons. The propensity

rules for the single-photon ionization and autoionizing decay have been extended into the

multi-photon region, showing that the excitation rules are not always satisfied for the most

prominent channel. In a separate project, based on the spontaneous two-photon decay of the

helium 1s2s 1Se excited state that has a rather long lifetime, one can create photon pairs that

are entangled in time, frequency, and polarization. Experimental schemes are proposed to

use them as a laser source to ionize another helium. Finally, we considered the one- and two-

photon pathway coherent control of atomic helium and barium near their autoionizing levels.

For the helium atom, we proposed a controlling scheme that can flip 90 % of the photocurrent

by a slight change of laser frequency. For the barium atom, we computed the phase lag

between 6s1/2 and 5d3/2 ionization continua, which agrees with the experimental results that a

previous phenomenological model failed to reproduce. Our treatment also develops formulas

to describe the effects of hyperfine depolarization on multiphoton ionization processes, and

it identifies resonances that had not been observed and classified in previous experiments.
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1. INTRODUCTION

Electron correlations in atoms with two active electrons have been the topic of many the-

oretical studies[  1 ,  2 ,  3 ,  4 ,  5 ,  6 ,  7 ,  8 ,  9 ,  10 ], because the ability to solve a classic quantum

three-body problems where long-range correlations exist between the particles can be the

foundation of solving other strong correlation systems. The properties of correlated elec-

trons in those atoms can be approached by photoionization spectroscopy. However, their

multichannel spectra often exhibit extraordinary complexity which requires a powerful and

practical approach to explain them.

The first calculation of multichannel spectra was conducted within a close-coupling frame-

work by Burke and Smith [ 11 ]. Since that work, two major developments have greatly

enhanced those calculations, one is the multichannel quantum-defect theory (MQDT) de-

veloped by Seaton [  6 ,  7 ], the other is the implementation of the R-matrix approach[ 12 ,  13 ,

 14 ,  15 ,  16 ,  17 ]. In this thesis, we present calculations of atomic spectra based on MQDT

and the R-matrix method, which can reproduce the spectra involved and provide a simple

interpretation of those seemingly irregular resonant spectra and their underlying electron

dynamics.

The dissertation is organized as follows. Chapter 2 reviews the basic theory and methods

we used to solve the Schrodinger equations relevant to the photoionization projects; those

methods include the MQDT and R-matrix method; Chapter 3 introduces the way those

techniques are being applied to calculate the spectroscopy and ionization cross sections for

atomic helium and barium, with more than one open channels involved. Chapters 4-6 focus

on the spectroscopy properties of helium: In Chapter 4 we discuss the electronic correlation

and extend the propensity rule, which guides the single-photon ionization of helium, into

multi-photon regime. Chapter 5 raises a possible source to generate entangled-photon pairs,

based on the spontaneous two-photon decay of an initially-excited helium atom; we demon-

strate applicable experimental set-ups for this proposal. Chapter 6 explores the one- and

two-photon coherent control of helium, to demonstrate interference of optical pathways into

photoelectron angular distributions. In Chapter 7 we study the spectroscopy properties of

barium, aiming to reproduce the phase-lag behavior from one- and two-photon coherent con-
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trol from experiments, which were not correctly predicted by a previous phenomenological

model. Chapter 8 summarizes this dissertation. The appendix includes our calculations on

cold collisions of two alkali-metal atoms, especially, calculations for 7Li87Rb are compared

with a cross-dimensional relaxation experiment and spin relaxation experiment.
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2. PHYSICS BACKGROUND

This chapter will introduce the basic concepts (Sec. 2.1 ) and methods (Sec.  2.2 and  2.3 ) used

in this thesis. Sec.  2.1 introduces the multi-channel picture and Fano-Feshbach resonance.

Then the Sec. 2.2 and Sec.  2.3 demonstrate the methods we used to solve the two-electron

time independent Schrodinger equation, with different methods depending on whether the

outermost electron is outside (Sec. 2.2 ) or inside (Sec.  2.3 ) the reaction zone. We use atomic

units unless otherwise specified (~ = e = me = 1) throughout this thesis.

2.1 Theories

2.1.1 Channels and resonances

In this subsection, we will introduce the basic ideas about atomic spectroscopy. Many

widely-used concepts, such as channels and resonances, come from the scattering theory,

which is the starting point of our discussion. Later we will demonstrate how parallels can be

drawn between the scattering theory and atomic spectroscopy, and how a family of resonances

with similar characteristics can be approached by a multi-channel picture.

A particle being studied by the scattering theory would start and end at positions far

away from all the interactions: V (r) → 0 (r → ∞), whose asymptotic radial wave function

can be parameterized as:


jl(kr) r→∞−−−→ 1

2kr
[ei(kr−(l+1)π/2) + e−i(kr−(l+1)π/2)] no scattering, V (r) ≡ 0

ψl(r; k) r→∞−−−→ 1
2kr

[e−i(kr−lπ/2+δl(k)) − ei(kr−lπ/2+δl(k))]
(2.1)

Here we fixed the angular momentum l (since only an isotropic potential V (r) is considered,

unless otherwise specified). A phase-shift δl(k) could parameterize all the information about

the interaction potential V (r) (For simplicity we assume the background phaseshift δbg =

0). δl(k) gives the difference between a scattering wave function ψl(r; k) and the radial

component of a plane wave ei~k·~r. It defines the scattering matrix Sphys = e2iδl(k), which will

be widely used in our spectroscopy calculations.
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In addition, a bound atom can be described in a scattering picture, only that the energy

of an incident electron is less than the binding potential energy at infinity. The complicated

electron-core interaction can then be represented by the “quantum defect” µl, which modifies

the Rydberg spectrum for alkali atoms as:

En = − 1
2n2 → En = − 1

2(n− µl)2

The quantum defect µl has only weak dependence with energy, and equals to the zero-energy

limit of the scattering phase shift δl(k): δl(k) k→0−−→ πµl (Seaton’s Theorem). This reveals the

fact that, although a small change of energy can be important to the scattering processes,

at a short distance where the kinetic energy of the particle is extremely large, the physics

will be not sensitive to a small change of energy, therefore the system can be described by

such a nearly energy-independent parameter.

For more complicated atoms such as the alkaline earths, the situation becomes even more

complicated and interesting. Besides the Coulomb interaction from the nonhydrogenic ionic

core, a strong correlation 1
|~r1−~r2| couples the two outermost electrons, which endows those

atoms with a much more complicated spectrum: More than one Rydberg series exist and

their energy levels converge to different ionization thresholds, and sometimes they affect each

other[ 1 ]. The asymptotic behavior of a scattered electron in those atoms can be described

by the multichannel quantum defect theory (MQDT), which was generalized by Seaton from

single-channel quantum defect theory[ 7 ].

In this thesis, we study the problems relevant to the single ionization of atoms with two

active electrons, where one of the electrons stays close to the ion core (electron 1), while the

other (electron 2) escapes very far away (the energy range we considered is far below the

double ionization threshold, and in that range only one of the electrons is able to leave the

ionic core). To tackle those doubly-excited states, we divide the system into two parts, a

short-ranged reaction zone (when the outermost electron r2 < R0), and a long-ranged zone

(r2 > R0), by assuming an artificial box with a large radius R0, the electronic correlation is

only regarded inside the box(r2 < R0). Once an electron leaves the reaction zone, it feels an

overall interaction from the other part of the system and behaves just like in the field of an
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alkaline atom. The Hamiltonian of the system is approximated in the outermost region to

be asymptotically separable, as is demonstrated below for the Hamiltonian of helium:

H0(~r1, ~r2) =
∑

i=1,2

(
−

∇2
~ri

2 − 2
ri

)
+ 1

|~r1 − ~r2|
r2>R0−−−→

(
−

∇2
~r1

2 − 2
r1

)
+
(

−
∇2

~r2

2 − 1
r2

)

H0(~r1, ~r2)Ψ(~r1, ~r2) = EΨ(~r1, ~r2) E = Ethresh + ε

(2.2)

Figure 2.1. Schematics of closed and open channels for autoionization (a)
and atomic scattering (b) processes. (a). Autoionization of the helium 2s2p
state. The dashed line gives the total energy for 2s2p bound state , which is
degenerate with the 1sεp scattering states. (b). A particle flies in from a open
channel and transitions to a closed channel in the valence region, forming a
long-lived metastable state. Reprint from [  18 ].

The idea of a “channel” is introduced to describe the asymptotic Hamiltonian by an

independent-electron picture, with the total wave function written as the sum of products of

two separate factors, Ψ(~r1, ~r2)
r2>R0−−−→ ∑

i Φi(~r1,Ω2)ψi(r2)/r2 (the channel function Φi(~r1,Ω2)

describes the motion of electron 1 and the angular motion of electron 2). Within each

channel, electron 1 is simply in a hydrogenic state, while electron 2 can be parameterized by

the quantum defect parameters and standard Coulomb wavefunctions. The total energy can

be separated into Ethresh
i and εi for each channel, which are respectively the energy carried

by Φi(~r1,Ω2) and by ψi(r2). εi can be positive (εi = k2
i
2 ) or negative (εi = − 1

2ν2
i
), depending

on whether that channel is open or closed. For a closed channel (E < Ethresh
i ), there will be
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a full series of Rydberg states converging to the threshold (εi = − 1
2ν2

i
with νi → ∞). For

an open channel (E > Ethresh
i ), ψi(r2) will be modified by a Coulomb phase shift ηi, and a

short-ranged phase shift πτi, whose details can be found in subsection.  2.2.1 .

Fig. 2.1 demonstrates the situation when the total energy E lies between two channel

thresholds. When εi approaches one of the Rydberg series − 1
2ν2

i
, Ψ(~r1, ~r2) will be a super-

position of a bound state and continuum states, which is a so-called autoionization state, a

state where an atom can ionize automatically without the aid of photons. As demonstrated

by Fig. 2.1 (a), the atom was first pumped onto the doubly excited state 2s2p, where both

the electrons stay in the n = 2 shell. The strong repulsion between them would drive one of

the electrons very far away, while the other deexcites into 1s shell. Fig.  2.1 (b) shows a quasi-

bound state in an atom-atom collision (which will be discussed in the Appendix), where an

atom flies in from an open channel to approach the other atom. The correlation between

them will excite their internal degrees of freedom (spin) to a higher level, trapping the two

atoms with each other into a metastable state which has a rather long lifetime [ 19 ]. Both

processes will present a strong feature experimentally, the “Fano-Feshbach resonance”. In

the next subsection, we will introduce Fano’s model for the resonance, and demonstrate how

the autoionizing states and scattering states can interfere with each other and exhibit a dip

or an asymmetrical “Fano lineshape”.

2.1.2 Fano’s model for Fano-Feshbach resonance

Two principal categories of resonances can be observed in experiments: the shape res-

onances and the Fano-Feshbach resonances[  20 ]. Shape resonances can be observed when

the de Broglie wavelength of the particle matches the distance between the two turning

points of the potential barrier, and therefore establish a standing wave pattern and become

a metastable state. Fano-Feshbach resonances, as already demonstrated by Fig.  2.1 , come

from the correlation between the particles, in which a single bound state is embedded in the

continuum and forms a long-lived metastable state.

In this subsection, we will introduce Fano’s theory and demonstrate how a discrete bound

state |φ〉 embedded in the continuum {|ε〉} can cause an asymmetrical Fano-Feshbach line-
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shape[ 21 ]. The idea of discrete-continuum interactions raised by Fano has been widely used

in different fields, such as the “Anderson impurity model” in condensed-matter physics[ 22 ],

and the “unified theory of nuclear reactions” of Feshbach[ 23 ]. Following Fano’s formalism,

we consider the relevant matrix elements between |φ〉 and energy-normalized states {|ε〉},

connected by the autoionization Hamiltonian H whose matrix elements are:

〈ε′|H|ε〉 = εδ(ε− ε′) 〈φ|H|φ〉 = εφ 〈φ|H|ε〉 = Vε (2.3)

The set of |φ〉 and {|ε〉} are complete and orthogonal with each other. The energy eigenstate

|ΨE〉 can therefore be expanded into this complete set as,

|ΨE〉 = a(E)|φ〉 +
∫
dε′bε′(E)|ε′〉 (2.4)

By projecting 〈ε| onto the Schrodinger equation H|ΨE〉 = E|ΨE〉, the coefficient bε(E) can

be expressed as,

bε(E) = Vε

E − ε
a(E) ⇒ bε(E) =

[ P
E − ε

+ πη(E)δ(E − ε)
]
Vεa(E) (2.5)

The right-hand side isolates out the singularity at E = ε by writing it into the principal value

P and a delta function. The real parameter η(E) can be obtained from the self-consistency

requirement. By projecting 〈φ| onto the Schrodinger equation, one can obtain,

εφa(E) +
∫
dε′Vε′bε′(E) = Ea(E) (2.6)

The autoionizing energy eigenstate given by Fano’s model is,

|ΨE〉 = a(E)
[
|φ〉 + πη(E)VE|E〉 +

∫
dε

P
E − ε

Vε|ε〉
]

η(E) = E − εφ − F (E)
π|VE|2

F (E) = P
∫
dε′ |Vε′ |2

E − ε′

(2.7)
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|E〉 is the primitive basis continuum state whose energy lies at the delta function singularity,

δ(E − ε). The coefficient a(E) can be obtained from the energy normalization condition:

〈ΨE′ |ΨE〉 = δ(E ′ − E), as:

|a(E)|2 = 1
π2|VE|2(η(E)2 + 1) = |VE|2

[E − εφ − F (E)]2 + π2|VE|4
(2.8)

The single bound state |φ〉 in Eq.  2.7 is admixed into the continuum as a Lorentzian

which peaks at the resonance energy Eres = εφ +F (E), with full width of the half maximum

(FWHM) Γ = 2π|VE|2. The autoionizing eigenstate |ΨE〉 can be written into the superposi-

tion of two parts, one is the continuum-modified discrete state |Φ〉 = |φ〉 + P
∫
dε Vε

E−ε
|ε〉, the

other is the flat continuum state |E〉, as following:

|ΨE〉 = |Φ〉 1
πV ∗

E

sin ∆(E) − |E〉 cos ∆(E) (2.9)

The phase-shift ∆(E) are defined by: tan ∆(E) = −1/η(E). Now we consider a photoion-

ization process, that an atom transit from initial state |i〉 to a continuous state |E〉. Two

ionization pathways are involved: the direct transition |i〉 → |E〉, and resonance-mediated

transition |i〉 → |Φ〉 → |E〉. The interference between the paths can change the lineshape

of the resonance from a symmetric Lorentzian into the asymmetric Fano lineshape, which

is controlled by a Fano-q parameter, defined by the relative strength of the two pathways.

The transition probability into the autoionizing eigenstate |ΨE〉 can be rearranged into the

transition probability into flat continuum |E〉 multiplying a factor:

|〈ΨE|T |i〉|2 = |〈E|T |i〉|2 (q + ε̃)2

1 + ε̃2 = |〈E|T |i〉|2(cos ∆(E) − q sin ∆(E))2

q = 〈Φ|T |i〉
πV ∗

E〈E|T |i〉
ε̃ = E − Eres

Γ/2 = − cot ∆(E)
(2.10)

From the equation above, q → ∞ indicates a Lorentzian lineshape, when the direct transition

is negligible compares to the resonance-mediated transition. q = 0 indicates a window

resonance that exhibits a dip at E = Eres, because the resonance-mediated transition is

forbidden, and coupling VE would move the population from continuum to the metastable
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bound state. In Chapter 7 we will compare the direct and resonance-mediated transitions,

as a phenomenological model to address the coherent control and phase lag properties in

atomic barium.

2.2 Solving Schrodinger’s equation outside the reaction zone

2.2.1 Quantum defect formalism

Before introducing the multichannel quantum defect theory (MQDT) to study the elec-

tronic correlation, in this subsection, we consider only a single channel and demonstrate

how quantum defect theory works in solving the asymptotic radial wave function for a single

electron in a Coulomb potential with an attractive or repulsive dipole term [ 24 ,  25 ,  26 ]:

−ψ′′(r)
2 +

[
−1
r

+ l(l + 1)
2r2

]
ψ(r) = εψ(r) (2.11)

The wavefuction can be written as ψ(r) = f(r) cos (πµl)−g(r) sin (πµl), where f(r) and g(r)

are real regular and irregular solutions of Eq.  2.11 . When ε ≥ 0, πµl equals to the usual

scattering phase-shift, otherwise, µl parameterizes the bound-state energy εn = − 1
2(n−µl)2 . As

µl → 0, the system turns from a “defective” non-hydrogenic atom into a “perfect” hydrogenic

atom. A proper choice of (f, g) can simplify the MQDT formalism. In principle, any two

regular and irregular linear-independent solutions to Eq. 2.11 should work. However, to avoid

non-physical singularities and non-analytical or rapid energy-dependence that can cause

difficulty in numerical evaluation, the basis function (f, g) is chosen to obey the following[ 7 ]:

1. f → 0 as r → 0

2. When ε ≥ 0, (f, g) are always linear independent to the maximum extent:

f
r→∞−−−→

√
2

πk
sin [kr + ln (kr)/k + η]

g
r→∞−−−→ −

√
2

πk
cos [kr + ln (kr)/k + η]

(2.12)
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3. When ε < 0, (f, g) join smoothly onto ε ≥ 0:

f
r→∞−−−→

√
ν

π
(sin βD−1r−νer/ν − cos βDrνe−r/ν)

g
r→∞−−−→ −

√
ν

π
(cos βD−1r−νer/ν + sin βDrνe−r/ν)

(2.13)

Now we consider the case when there is no dipole interaction, that l is a non-negative

integer. To avoid the energy analytical problems across ε = 0, we consider analytical solu-

tions, whose lowest order in the expansion of ν(or i/k) is normalized to be the 0th order:

f0(r) =


νl+1

(2l+1)!Mν,l+ 1
2
(2r/ν) ε = −1

2ν2 < 0

il+1

kl+1(2l+1)!Mi/k,l+ 1
2
(−2ikr) ε = k2

2 ≥ 0
(2.14)

The analytical solution g0 is a linear combination of Whittaker M and Whittaker W func-

tions, Wrons[f0(r), g0(r)] = f ′
0(r)g0(r) − f0(r)g′

0(r) = 2/π, being maximal linearly indepen-

dent with f0. When ε is far below the threshold, (f0, g0) can be used as an alternative pair

of (f, g). The analytical basis (f0, g0) are connected to (f, g) by r−independent parameters:


f (ν)(r) = A1/2f0(r), g(ν)(r) = A−1/2g0(r) ε = −1

2ν2 < 0

f (k)(r) = B1/2f0(r), g(k)(r) = B−1/2[g0(r) + Gf0(r)] ε = k2

2 ≥ 0
(2.15)

which are:

A = Γ(l + 1 + ν)
ν2l+1Γ(ν − l) (ν > l) B = k2l+1eπ/k

2π
|Γ(l + 1 − i/k)|2 G = 0

η = ln 2
k

− lπ

2 + arg
[
Γ
(
l + 1 − i

k

)]
β = π(ν − l)

(2.16)

The phase shifts η and β are chosen to force the physical solution ψ(r) to satisfy the incoming

wave boundary condition when ε > 0 (see Ref.[  27 ]), satisfies the decaying boundary condition

when ε < 0:

ψ(r) r>R0−−−→ f(r) cos β + g(r) sin β

= ν3/2[ν2Γ(l + 1 + ν)Γ(ν − l)]−1/2Wν,l+ 1
2
(2r/ν) r→∞−−−→ e−r/ν

(2.17)
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When both the dipole and centripetal term exist and result in an overall repulsive po-

tential in Eq.  2.11 , l is still a real number, but not an integer. The QDT parameters (Eq.

 2.16 ) and f0(r) (Eq. 2.14 ) for integer l can be extended into non-integer and non-half-integer

case (we denote them as f0(l, r) and Al etc.). Note that f0(l, r) and f0(−l − 1, r) are two

linear-independent solutions of Eq. 2.11 , and (f, g) can be determined as,


f (ν)(l, r) = A

1/2
l f0(l, r)

g(ν)(l, r) = 1
sin (βl−β−l−1)

[
−A1/2

l f0(l, r) cos (βl − β−l−1) + A
1/2
−l−1f0(−l − 1, r)

]

f (k)(l, r) = B

1/2
l f0(l, r)

g(k)(l, r) = 1
sin (ηl−η−l−1)

[
−B1/2

l f0(l, r) cos (ηl − η−l−1) +B
1/2
−l−1f0(−l − 1, r)

]
(2.18)

When the dipole and centripetal term result in an overall attractive potential, the “angu-

lar momentum” becomes a complex number, l = −1
2 + iα. The maximal linearly independent

analytical basis functions are,

f0(α, r) =


1√
απ
Im[ν 1

2 +iαMν,iα(2r/ν)] r→∞−−−→ J+
f r

νe−r/ν + J−
f r

−νer/ν

1√
απ
Im[(i/k) 1

2 +iαMi/k,iα(−2ikr)] r→∞−−−→ fasy
0 (α, r)

g0(α, r) =


− 1√

απ
Re[ν 1

2 +iαMν,iα(2r/ν)] r→∞−−−→ J+
g r

νe−r/ν + J−
g r

−νer/ν

− 1√
απ
Re[(i/k) 1

2 +iαMi/k,iα(−2ikr)] r→∞−−−→ gasy
0 (α, r)

(2.19)

The negative energy QDT parameter can be obtained from f0(α, r) cos βα +g0(α, r) sin βα →

e−r/ν ,

tan βα =
i
[
ν1/2−iαΓ(1 − 2iα)Γ(1/2 + iα− ν) − ν1/2+iαΓ(1 + 2iα)Γ(1/2 − iα− ν)

]
ν1/2−iαΓ(1 − 2iα)Γ(1/2 + iα− ν) + ν1/2+iαΓ(1 + 2iα)Γ(1/2 − iα− ν)

Aα = 1
(2.20)

26



For positive energy, since fasy
0 (dgasy

0 )(α, r) and gasy
0 (dfasy

0 )(α, r) are oscillatory and pro-

portional to sin(kr + δbg) and cos (kr + δbg), the r−independent QDT parameters can be

obtained by the following formulas (in the following formulas, r → ∞),

Bα = π

2
fasy

0 (α, r)2 + dfasy
0 (α, r)2

k
ηα = tan−1

[
dfasy

0 (α, r)
kfasy

0 (α, r)

]
− (kr + ln kr/k)

Gα = B−1
α tan

{
tan−1

[
dfasy

0 (α, r)
kfasy

0 (α, r)

]
− tan−1

[
dgasy

0 (α, r)
kgasy

0 (α, r)

]} (2.21)

2.2.2 Multi-channel quantum defect theory

In this subsection we continue the discussion on the asymptotic wavefunction Ψ(~r1, ~r2) for

alkaline earth atoms. Although we have neglected the correlation and described the system

asymptotically by a separable Hamiltonian (Eq. 2.2 ), the effect of the correlation persists

in its wavefunction, by the mixing of different channels. The asymptotic wavefunction can

be written as a summation of different channels, Ψ(~r1, ~r2)
r>R0−−−→ A∑

i Φi(~r1,Ω2)ψi(r2)/r2,

each channel describes a different free particle limit of the system with energy Ethresh
i and

εi = E − Ethresh
i . As we have shown in the last subsection, in the single channel picture,

ψ(r) = f(r) cos πµl−g(r) sin πµl, the quantum defect µl determines all the information about

the potential inside the reaction zone V (r < R0). In multi-channel systems where there are

total N channel functions Φi(~r1,Ω2) , for any energy E, the number of degenerate solutions

Ψβ(~r1, ~r2) equals to the number of channel functions:

Ψβ(~r1, ~r2) = A
[
r−1

2

N∑
i=1

Φi(~r1,Ω2)ψiβ(r2)
]

(2.22)

The multi-channel quantum defect theory (MQDT) treats the N ×N fragmented wave-

function matrix ψiβ(r) instead of a single function ψ(r). One can expand ψiβ(r) into the

regular and irregular solution of Eq.  2.11 , (fi, gi) as,

ψiβ(r) = fi(r)Iiβ − gi(r)Jiβ
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This equation can be reformulated into a standard set of linearly independent solutions as[ 1 ,

 28 ],

Mij(r) = [ψ(r)I−1]ij = fi(r)δij − gi(r)Kij Kij =
∑

α

Uiα tan(πµα)U †
αj (2.23)

Matrices I and J are determined by the R- matrix which includes the boundary conditions at

r = R0, R = ψ(R0)
[
ψ′(R0)

]−1
= M(R0) [M ′(R0)]−1. The reaction matrix K captures all the

information about short-range physics and channel coupling, it corresponds to tan(πµl) in

the single-channel QDT. To find out how the K matrix relates to the open channels scattering

phase shift πτi, we separate M in into open (εo > 0) and closed (εc < 0) components as:

M oo M oc

M co M cc

 = f(r) − g(r)

Koo Koc

Kco Kcc

 (2.24)

As discussed in Eq.  2.17 , the physical boundary conditions for the closed channels are

proportional to f(r) + g(r) tan β. We can therefore eliminate all the closed channels and

obtain the physical solution matrix by applying the N × No transformation matrix B =

(Bo, Bc)T ,

Mphys(r) = M(r)B =

 [f
o
(r) − g

o
(r)K̃]Bo

[f
c
(r) + tan β

c
g

c
(r)]Bc

 (2.25)

The B and K̃ are,

Bo = 1oo, Bc = −(Kcc + tan β)−1Kco

K̃ = Koo −Koc(Kcc + tan β)−1Kco

(2.26)

The eigenvalues of K̃ are tan (πτρ) (ρ = 1, ..., No), which are the scattering eigenphase shifts

coming from the reaction zone. When the energy increases across a single isolated resonance,
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the ∑ρ τρ increases by 1. Instead of using the real basis (f, g) to represent Mphys(r), one can

use the incoming and outgoing waves (f+, f−) as radial basis functions:

f+
i (r) = 1√

2
[ifi(r) − gi(r)] → 1√

πki
ri/kiei(kir+ηi) when ε ≥ 0

f−
i (r) = −1√

2
[ifi(r) + gi(r)] → 1√

πki
r−i/kie−i(kir+ηi) when ε ≥ 0

(2.27)

The scattering matrix S is introduced as:

Mij(r) = 1
i
√

2
f+

i (r)δij − 1
i
√

2
f−

i (r)S†
ij S = (1 + iK)(1 − iK)−1 (2.28)

The physical wave functions in open channels can be written in terms of e±ikr as,

Mphys
o (r) = f

o
(r) − g

o
(r)K̃ r→∞−−−→ −i√

2πk
(e−ikr − eikrS†phys)

Sphys = eiη(1 + iK̃)(1 − iK̃)−1eiη = eiη[Soo − Soc(Scc − e−2iβ)−1Sco]eiη
(2.29)

When the number of open channels No = 1, Sphys = e2iδl(k), δl(k) = ηl + πτl, with πτl

being the phase-shift resulting from the short-range potential inside the reaction zone, and

ηl resulting from the long-range Coulomb phase-shift.

2.3 A full correlated-electron calculation

2.3.1 Streamlined R-matrix method

In this section we consider the multi-dimensional configuration space of the wave function

Ψβ(~r1, ~r2) inside the reaction zone r2 ≤ R0. The idea is to use a large number of discretized

basis functions to represent a solution, Ψβ(~r1, ~r2) = ∑
k yk(~r1, ~r2)Ckβ, and based on that

one can treat the time-independent Schrodinger equation with complicated potential and

correlations. The most convenient choice of yk(~r1, ~r2) is the anti-symmetric product of single

electron wavefunctions y(i)
k (~ri) = Ylm(Ωi)uk(ri)/ri, which are the solutions of the ion-core

Hamiltonian with potential Vcore[ 29 ]. The full Hamiltonian for the atoms being considered

29



is given in Eq. 2.30 . Truncation is made on the basis sets by setting constraints on the

maximum number of the nodes in uk(ri), as well as the maximum l for Ylm(Ωi).

H0(~r1, ~r2) =
∑

i=1,2

(
−

∇2
~ri

2 + Vcore(ri)
)

+ 1
|~r1 − ~r2|

= −∇2

2 + U

Vcore(r) =


−2

r
for He++

−1
r

[
2 + (Z − 2)e−αl

1r + αl
2re−αl

3r
]

− αcp

2r4

[
1 − e−(r/rl

c)6
]

for Ba++

(2.30)

The goal of the streamlined R-matrix method is to obtain boundary conditions of the

wave functions at r2 = R0 and r1 = R0 (for simplicity, we only discuss the r2 = R0 boundary),

which are necessary for the MQDT treatment,

Ψβ(~r1, ~r2) = r−1
2

N∑
i=1

Φi(~r1,Ω2)ψiβ(r2) ∂[r2Ψβ(~r1, ~r2)]/∂r2 =
N∑

i=1
Φi(~r1,Ω2)ψ′

iβ(r2) (2.31)

The way to approach this is to consider the eigenvalues of R = ψ(R0)(ψ′(R0))−1, which are

bβ = − 1
Ψβ

∂Ψβ

∂n
. In this variational method, the bβ are obtained from the stationary principle

by varying over Ψβ with fixed total energy E. We start with the Schrodinger equation

(E − H0)Ψβ = 0 (The index β is neglected in the following discussion because we consider

only one bβ value at a time),

E
∫

V
Ψ∗Ψdv =

∫
V

(−1
2Ψ∗∇2Ψ + Ψ∗UΨ)dv (2.32)

According to Green’s theorem,

∫
V

(Ψ∗∇2Ψ + ∇Ψ∗ · ∇Ψ)dv =
∮

Σ
Ψ∗∂Ψ

∂n
da = −b

∮
Σ

Ψ∗Ψda (2.33)

The equation above can be rearranged into a constraint on the boundary condition b,

b
∮

Σ
Ψ∗Ψda = 2

[∫
V

Ψ∗EΨdv −
∫

V
(1
2∇Ψ∗ · ∇Ψ + Ψ∗UΨ)dv

]
(2.34)

30



Our goal is to find the optimal real coefficients ~C in Ψ = ∑
k ykCk. The operators in Eq.  2.34 

can be recast into the matrix elements of {yk}, that Λkj =
∮

Σ ykyjda, Γkj = 2
∫

V ykEyjdv −∫
V (1

2∇yk · ∇yj + ykUyj)dv,

b
∑
kj
CkΛkjCj =

∑
kj
CkΓkjCj

∂b[ ~C]/∂Ck=0−−−−−−−→ Γ~C = bΛ~C (2.35)

The optimal boundary property b should satisfy the stationary principle ∂b[~C]/∂Ck = 0. By

taking derivative of each ~C component, one can obtain a generalized eigenvalue equation of

optimal ~C, which corresponds to the desirable solution Ψ(~r1, ~r2).

To vary {Ψβ} over all possible boundary conditions, not only the basis functions satisfying

yk = 0 at the boundary are concerned, we need to choose at least one radial function

uk(r2) 6= 0 at R2 = R0. By separating the basis functions {yk} into closed ({yc}) and open

type ({yo}) depending whether they are zero or not at r2 = R0, Eq. 2.35 can be rearranged

into,

Γcc Γco

Γoc Γoo


 ~Cc

~Co

 = b

0 0

0 Λoo


 ~Cc

~Co

 (2.36)

The equation above can be reduced into one much smaller in dimension, with only the open

type of basis:

Ω~Co = bΛoo ~Co, Ω = Γoo − Γoc(Γcc)−1Γco (2.37)

The closed-type of coefficients are, ~Cc = −(Γcc)−1Γco ~Co.

If we assumes only one uk(r2) 6= 0 for every combination of Ylm(Ω1(2)) and uk(r1) in

choosing the basis sets, the dimension of Ω equals to N , the number of channel functions

Φ(~r1,Ω2). In addition, the number of different eigenvalues b in Eq. 2.37 is always N , no

matter how many open-type basis functions are utilized (if the dimension of Ω is larger than

N , Eq. 2.37 can be further reduced into an eigenvalue equation of dimension N).

Eventually, the eigenvalues bβ (or the matrix R) lead to the reaction matrix K as follow-

ing:

K =
[
f(R0) − f ′(R0)R

] [
g(R0) − g′(R0)R

]−1
(2.38)
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Applications to helium and barium

In the following chapters, the streamlined R- matrix method is applied to evaluate the

wave functions for atomic helium and barium. Here are the parameters we choose for those

calculations:

To evaluate the wave functions for helium, the single-electron radial functions are con-

structed by B-splines. For final state energy up to N = 2 threshold, the R-matrix box

R0 = 15 a.u., the maximum number of nodes in radial functions is 18 (plus 2 open-typed

radial basis), and the allowed single electron angular momenta are l = 0 − 4. The number of

closed configurations are 855, 1296, and 1656 for the L = 0, L = 1, and L = 2 final states,

with the number of channel functions being 3, 4, and 4, respectively. For final state energy

up to the N = 3 threshold, R0 = 34 a.u., the maximum number of radial nodes equals to

38 (plus 2 open-typed radial basis), and the allowed single electron angular momenta are

l = 0 − 9. The number of closed configurations for L = 0, L = 1, and L = 2 final states are,

3990, 6787 and 9286, respectively; with their number of channels being 6, 9, and 10.

For the barium R- matrix calculation, the final energy is above 6s1/2 and 5d3/2 but below

5d5/2 threshold. The R0 = 60 a.u., the maximum number of radial nodes is 60 (plus 2 open-

typed radial basis), and the allowed single electron angular momenta are l = 0 − 4 (with

j = |l±1/2|). Besides, the lowest number of nodes is restricted to be no greater than 9, while

the highest number of nodes is no greater than 21, or 25 for the intermediate and final states.

These conditions result in 522, 1270, and 1750 closed configurations for intermediate states

with J=0, 1, and 2, respectively; and 1584, 2160, and 2304 closed configurations for final

states with J=1, 2, and 3, respectively. The number of channel functions for even parity

J=0, 1, and 2 are 3, 8, and 11; and for odd parity for J=1, 2, and 3 are 8, 10, and 9.

32



3. APPLICATION TO MULTI-PHOTON IONIZATION

Single-photon absorption has been used since the 1960s to probe doubly-excited states with

extreme electron correlation in the helium atom and many other alkaline earth atoms [ 8 ,

 9 ,  10 ]. In recent decades, increasing interest has derived from studying electron correlation

using other types of excitation, such as non-sequential multiphoton double ionization which

has received extensive attention [ 30 ,  31 ,  32 ]. Additionally, the use of multiple fields to dress

the helium and alkaline earth atom Hamiltonians with infrared (IR) light has demonstrated

remarkable control possibilities, both for autoionization line shapes and temporal pulse phase

control. [  33 ,  34 ,  35 ,  36 ,  37 ,  38 ,  39 ,  40 ,  41 ]

In this chapter, we will demonstrate the multiphoton ionization spectra for helium and

barium, which will be the foundation of the discussions in the following chapters. Multi-

photon ionization can in principle proceed either via sequential steps through one or more

bound intermediate stationary states en route to ionization, or non-sequentially with either

no intermediate stationary states or else through a continuous intermediate state in the

ionization continuum. Our calculations are based on some early studies of doubly excited

alkaline earth atoms and the polar asymmetrical two-electron systems [  42 ,  43 ,  44 ,  45 ,  46 ,  47 ,

 48 ,  49 ]. Some of the theoretical results presented in this chapter are currently being explored

in free electron laser (FEL) experiments.

3.1 Light-atom interaction and Wigner algebra

To realize multi-photon ionization, the laser intensity needs to be strong enough for

the electrons to absorb a bunch of photons simultaneously. However, the intensity of that

multi-photon regime is not as strong as in the tunneling region (below about 1014 W/cm2

at optical frequencies, so the tunneling time of the fragmented electron is much longer than

the optical period). The light-atom interaction can be analyzed via the time-dependent
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perturbation method in the multi-photon region, and the Hamiltonian for a monochromatic

laser interacting with an atom with two active electrons is given below:

H(~r1, ~r2, t) = H0(~r1, ~r2) + V (~r1, t) + V (~r2, t)

V (~r, t) = 1
2E0ε̂ · ~re−iωt (i = 1, 2)

(3.1)

H0(~r1, ~r2) is the non-relativistic Hamiltonian for a bare alkaline-earth atom, which is given

in Eq.  2.30 . V (~rj, t) is the interaction between electron j and the laser field, whose amplitude

is E0, polarizes along ε̂ with angular frequency ω. The electric dipole approximation is applied

(e−i~k·~r ≈ 1), assuming the laser wavelength is much larger than the size of the atom. Since

only absorption processes are considered, the e+iωt term is omitted in Eq.(  3.1 ) under the

usual rotating wave approximation.

The rate and generalized cross section (whose unit is l2qtq−1, sometimes abbreviated in

the text by “cross section”) for q-photon ionization are,

Rtot = 2π

(E0

2

)2q ∑
f

∣∣∣T (q)
f,i

∣∣∣2 δ(Ef − Ei − qω)

σtot = 2π(2παω)q
∑

f

∣∣∣T (q)
f,i

∣∣∣2 (3.2)

α is the fine structure constant, T (q)
f,i is the q-th order photon transition amplitude from

the initial to the final states, whose formula is given based on a q th- order perturbation

treatment:

T
(q)
f,i =

∑
ε1...εq−1

〈f |D|εq−1〉...〈ε2|D|ε1〉〈ε1|D|i〉
[Eεq−1 − Ei − (q − 1)ω]...(Eε1 − Ei − ω) (3.3)

D = ε̂ · (~r1 + ~r2) is the electric dipole operator in the length gauge. The intermediate

energies Eεj include all the eigenvalues of H0 that obey the usual good symmetry and angular

momentum selection rules. All the continuous states are normalized per unit energy. i

and f denote all the quantum numbers for the initial and final states: In L − S coupling

scheme, those include the principal quantum numbers (n1, n2), angular momenta for orbital

[(l1l2)LM ] and spin S = 0 (in the L − S coupling scheme, the electron pair always stays in

a spin-singlet state, so we are not going to discuss it), and parity π = (−1)l1+l2 . For J − J
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coupling scheme, the difference is in the angular momenta, whereas the angular momenta

are {[(s1, l1)j1, (s2, l2)j2]JMJ}. The subscript 1(2) denotes the quantum numbers for the core

(emission) electron. Whether an atom stays in L−S or J−J coupling scheme is determined

by the relative strength of spin-orbital interaction and spin-spinor orbital-orbital interaction.

The former one is proportional to Z4, therefore for heavy atoms with large Z, the spin-orbit

interaction wins that L and S are no longer good quantum numbers. Examples for L − S

and J − J coupling are atomic helium and barium, which will be discussed separately.

The angular distribution of the photoelectron, i.e., the differential generalized q-photon

ionization cross-section, is given by:

dσ

dΩ = 2π(2παω)q
∑
λin

∣∣∣∣∣∣
∑
λco

Yl2m2(k̂)CfT
(q)
f,i

∣∣∣∣∣∣
2

(3.4)

The incoherent sum index λin, coherent sum index λco and Clebsch-Gordan coefficients Cf

for L− S and J − J coupling scheme are,


λin = {n1, l1, all the M} λco = {l2, Lf} L− S coupling

λin = {n1, j1, Jcs, all the M} λco = {j2, Jf} J − J coupling
(3.5)

and

Cf =


〈l1m1, l2m2|Lf ,Mf〉 L− S coupling

〈JcsMJcs , l2m2|Jf ,MJf
〉〈[(j1, s2)Jcs, l2]Jf |[j1, (l2, s2)j2]Jf〉 J − J coupling

(3.6)

For J−J coupling, ~Jcs =~j1+~s2, ~Jf = ~Jcs+~l2. In above equations, whenMf (MJf
) = 0, the

system has azimuthal symmetry, Eq.  3.4 can therefore be arranged into a sum of Legendre

polynomials Pk(cos θ) (θ is the polar angle between the ejected electron direction and the

polarization axis) with real coefficients βk as (β0 ≡ 1 for normalization),

dσ

dΩ = σtot

4π

∑
k

βk(ω)Pk(cosθ) (3.7)
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The maximum order of k in Eq. 3.7 should equal twice the step of ionization 2q if the initial

state is the ground state or in fact any initial state that has a random distribution of magnetic

sublevels. With a fixed number q, all the final states are in the same parity according to

the selection rule, therefore odd orders of βk = 0. The explicit expressions for βk in L − S

coupling are given by,

β
(n1)
k = 1

σ(n1)

∑
l1

∑
l2,l′2,Lf ,L′

f

(−1)l1+l2+l′2+Lf +L′
fT

(q)
f,i T

(q)∗
i,f ′

[l2] [l′2] [Lf ]
[
L′

f

]
[k]2

l2 l′2 k

0 0 0


k Lf L′

f

0 0 0


k Lf L′

f

l1 l′2 l2


(3.8)

Similarly, for J − J coupling, they are given by,

β
(n1)
k = 1

σ(n1)

∑
j1,Jcs

∑
l2,l′2,j2,j′2,Lf ,L′

f

(−1)j1+l2+l′2+Jf +J ′
fT

(q)
f,i T

(q)∗
i,f ′ [l2] [l′2] [j2] [j′2] [Jf ]

[
J ′

f

]
[k]2 [Jcs]2

l2 l′2 k

0 0 0


k Jf J ′

f

0 0 0


 k Jf J ′

f

Jcs l′2 l2


j1 s1 Jcs

l2 Jf j2


j1 s1 Jcs

l′2 J ′
f j′2


(3.9)

with βk = ∑
n1

σ(n1)

σtot
β

(n1)
k .

In above equations, superscripts on β
(n1)
k and σ(n1) are introduced to separately identify

groups of photoelectrons with different energies that are generated at the same total final

state energy. They correspond to angular distribution asymmetry parameters and partial

cross section for electrons with a certain escape kinetic energy in all channels having a given

ionic principal quantum number N = n1. β(n1)
0 ≡ 1. The bracket () represents the Wigner-3J

symbol, while {} represents the Wigner-6J symbol, [L] ≡
√

2L+ 1 The derivation details

largely follow the discussion in Ref. [  41 ,  46 ,  50 ].

The Wigner algebra can also be used to evaluate the dipole matrix elements 〈LM |D|L′M ′〉

in Eq.  3.3 (for J − J coupling replace (L,M) by (J,MJ)), by writing them into “reduced
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matrix elements” which are independent of the polarization of the light, according to the

Wigner-Eckart theorem:

〈LM |D|L′M ′〉 = 〈LM ||D||L′M ′〉(−1)L−M
∑

k

(−1)kε
(1)
−k

 L 1 L′

−M k M ′

 (3.10)

Where ε
(1)
k are the spherical components of the rank-1 polarization tensor, ε(1)

0 = ẑ and

ε
(1)
±1 = ∓1/

√
2(x̂ ± iŷ). One can further decompose the reduced dipole matrix element and

extract all the angular dependence[ 50 ]. The decomposition for L− S coupling gives,

〈Ψ||D||Ψ′〉 = 〈ψ1|r|ψ′
1〉〈ψ2|ψ′

2〉(−1)1+l2+L′ [l1][l′1][L][L′]δl2l′2

l1 1 l′1

0 0 0


 l1 L l2

L′ l′1 1

 (3.11)

and the corresponding expression for J − J coupling is:

〈Ψ||D||Ψ′〉 =〈ψ1|r|ψ′
1〉〈ψ2|ψ′

2〉(−1)J ′+j2+l1+l′1+ 1
2 [l1][l′1][j1][j′1][J ][J ′]δl2l′2

×

l1 1 l′1

0 0 0


j1 J j2
J ′ j′1 1


l1 j1 1

2

j′1 l′1 1


(3.12)

The equations above will of course respect the angular momentum selection rule, namely

that each step of ionization will change the angular momentum by |∆L| = 1, 0 (or |∆J | =

1, 0) with 0 6→ 0, and flip the parity π from even (+1) to odd (-1). The schematic diagram

for L− S and J − J coupled ionization steps can be found in Fig. 3.2 and  3.9 .

3.2 Multi-photon ionization of helium

Based on the formulas introduced in the last section, the present section will quantita-

tively treat the process of double excitation of helium from the ground state (1s2, singlet)

to the lower-lying autoionizing states, where at least one of the electrons is in either the

N = 2 or N = 3 shell (Fig.  3.1 ). This process is very much related to the two-photon dou-

ble ionization[  30 ,  31 ,  32 ], but is experimentally simpler and theoretically less demanding.

The photoelectron angular distribution is computed to elucidate the strengths of interfering
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Figure 3.1. Energy diagram of relevant levels in the two-photon ionization of
helium. The shaded regions show the energy ranges for the final and interme-
diate states. (a) Two identical photons ω1 = ω2. The intermediate energies are
above the N = 1 threshold, and there are no intermediate-state resonances in-
volved, only an open ionization continuum. (b) Trefoil field ω1 = 2ω2. Some of
the intermediate states are above threshold, and two intermediate resonances
1s2p and 1s3p are involved.

Figure 3.2. Schematic diagram of two-photon ionization channels allowed by
electric-dipole selection rules for (a) parallel linearly polarized and (b) two op-
posite circularly polarized fields. 2S+1Lπ are labeled for each step of ionization.
The 1P e state is a parity-unfavored state whose lowest channel becomes open
at the N = 2 hydrogenic threshold.
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pathways associated with direct ionization and with correlated autoionization decay. Based

on a combination of the R-matrix and generalized quantum defect methods, we achieve good

consistency with some previous calculations where our results can be compared with them,

and extend into higher energy ranges not routinely treated.

Especially, for two-photon ionization, two different laser fields will be treated in this

section, which are: (a) The linearly polarized field, with both photons having frequency

ω and polarization direction ε
(1)
0 , and (b) Two oppositely circularly polarized (ε̂1,2 = ε

(1)
±1)

laser sources with frequencies ω1 = 2ω2, which is the so-called “ trefoil field”. The possible

values of the quantum numbers 2S+1Lπ allowed by the selection rules have been given in

Fig.  3.2 , (a) and (b). Note that with circularly polarized photons, a “parity unfavored”
1P e symmetry, for which π(−1)L = −1, can be obtained. The energy diagrams for (a) and

(b) are shown in Fig.  3.1 in eV . In atomic units, the ground state lies at Eg = −2.903

a.u. relative to the double ionization threshold, and the single ionization thresholds shown

in the figure are at EN=n1 = −2/N2 a.u.. The frequency range considered for field (a) is

ω = 1.0−1.35 a.u., making final states that converge to theN = 2 andN = 3 thresholds. The

intermediate state lies in the continuum, making this an above-threshold ionization (ATI)

process with no discrete intermediate-state resonances. For the field (b), the frequency of ω2

is, ω2 = 0.67 − 0.85 a.u., reaching final states across the N = 2 threshold. The intermediate

states can be both bound and continuous. The 1s2p and 1s3p states are included in the

shaded intermediate region, which can cause intermediate resonances. For three-photon

ionization, we consider only the simplest cases, the linearly polarized field with three photons,

for ω = 0.33 − 0.48 and 0.80 − 0.89 a.u., which have already been calculated by previous

groups [ 51 ,  52 ], and here, our results only confirm the validity of our calculations.

The major issue in calculating the multi-photon ionization is the evaluation of Tf,i in

Eq. 6.2 . Especially, for the ATI processes of helium to lower-lying autoionizing states, we will

meet the following obstacles: The first is the treatment of the summation/integration over

intermediate states and the continuum-continuum transition in ATI processes, which will be

discussed in Subsec.  3.2.1 . The other is the MQDT parameters in the Coulomb field with

permanent dipole interaction from the ionic core, which will be discussed in Subsec.  3.2.2 .
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After solving those problems, the calculated spectrum for the laser fields discussed above

will be given in Subsec.  3.2.3 and  3.2.4 .

3.2.1 Above-threshold ionization

When the intermediate energies are larger than the lowest threshold Eε > EN=1, Eq. 3.3 

can be written as a mixture of sum and integration over the discrete and continuous inter-

mediate states |ε〉 as:

Tf,i =
∑∫

dEε
〈f |D|ε〉〈ε|D|i〉
Ei + ω − Eε

(3.13)

The difficulty in evaluating Eq.  3.13 is two-fold: firstly, one needs to calculate 〈f |D|ε〉, which

is an integral with two divergent functions, whose convergence is questionable. The other is

the infinite sum and integration over the intermediate states. These difficulties can be solved,

not by choosing wave functions {|ε〉} and evaluating Eq. 3.13 term by term, but by treating
∑∫

ε
|ε〉〈ε|

Ei+ω−Eε
as a Green’s function which subjects to the out-going wave boundary conditions,

which can be solved by the inhomogeneous R-matrix method [  53 ,  54 ]. The continuum-

continuum transition 〈f |D|ε〉 outside the reaction zone can either be solved asymptotically

by complex coordinate rotation [  55 ] or by an asymptotic expansion method[  54 ]. The details

of these methods can be found in Ref. [  54 ].

Inhomogeneous R-matrix method

To solve Eq.  3.13 , one can replace ∑∫ by an integral over the inhomogeneity multiplied

by the Green’s function, |Λp〉 =
∫
dε|ε〉 〈ε|D|0〉

Ei+ω−Eε
. It can be obtained by solving the equation

(E−H0)ΨΛp = DΨ0, in a similar way as one solves the Schrodinger equation (E−H0)Ψ = 0

by the streamlined R-matrix method ( Sec. 2.3 ).

The physical boundary condition for ΨΛp can be described by the multi-channel picture,

ΨΛp = ∑
i Φi(~r1,Ω2)ψΛp,i(r2), that

ψΛp,i(r) =


fi + igi

r→∞−−−→ eikir open channel

fi + tan βigi
r→∞−−−→ e−r/νi closed channel

(3.14)
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This boundary condition requires the time-dependent intermediate wave function to be a

purely out-going wave packet. Note that this particular inhomogeneous solution ΨΛp can be

generated by adding homogeneous solutions to an arbitrary inhomogeneous solution ΨΛ′
p
, to

impose the desired boundary condition:

ΨΛp(~r1, ~r2) = ΨΛ′
p
(~r1, ~r2) +

∑
j
Aj × Ψj(~r1, ~r2) (3.15)

An arbitrary boundary condition can be chosen for ΨΛ′
p
: bλ = − 1

ΨΛ′
p

∂ΨΛ′
p

∂n
, by adding homo-

geneous solutions Ψj
r2→∞−−−→ ∑

i Φi(~r1,Ω2)Mij(r2) which are non-vanishing at at infinity, we

can obtain ΨΛp having the desirable boundary conditions.

ΨΛ′
p

can be solved by using the R-matrix basis in Sec.  2.3 , ΨΛ′
p

= ~Cλ · ~y, and by applying

the stationary principal ∂bλ[ ~Cλ]/∂Ck
λ = 0 to it (one must choose bλ 6= bβ), the inhomogeneous

equation turns into the following equation:

(Ω − bλΛoo)~Co
λ = 2[~Zo − Γoc(Γcc)−1 ~Zc] Ω = Γoo − Γoc(Γcc)−1Γco (3.16)

The coefficients for the closed-type basis are, ~Cc
λ = −(Γcc)−1(Γco ~Co

λ − 2~Zc). The inhomo-

geneity is ~Z =
∫

V ~yDΨ0dv. Whenever it vanishes, those formulas revert to Eq.  2.37 .

Once ΨΛ′
p

has been solved inside the reaction zone, it can be written into ΨΛ′
p

=∑
i Φi(~r1,Ω2)(fi(r2)λ(f)

i −gi(r2)λ(g)
i ) asymptotically. The homogeneous terms {Aj} in Eq.  3.15 

that matches ΨΛ′
p

onto ΨΛp can therefore be obtained by:

~A =(K + i)−1(~λ(g) + i~λ(f)) − (K +B)−1(B − i)

× 1
2 [~λ(f) + i~λ(g) − i(K − i)(K + i)−1(~λ(g) + i~λ(f))]

(3.17)

where B = diag[(tan β)c, (i)o] and K is the reaction matrix in homogeneous solution M(r)

in Eq. 2.23 .
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Integration of free-free transition

For the radial integral of a free-free transition I =
∫∞

R0
drψa(r)G(r)ψb(r) to converge, the

scattering states ψa(r) and ψb(r), which are solutions of −ψ′′
i (r)/2 = (Ei − Vi(r))ψi(r), need

to satisfy: Ea 6= Eb with |Ea −Eb| = ω. When ω is large enough, the radial integral I can be

evaluated by the asymptotic expansion method [ 54 ], otherwise, it can be evaluated by the

complex coordinate rotation[ 55 ].

The asymptotic expansion is based on the iteration relationshipof the operator ω =

Ea − Eb − Va + Vb:

ωψaψb = −1
2(W [ψa, ψb])′

ωW [ψa, ψb] = 1
2(ψaψb)′′′ + 2[(Ea + Eb − Va − Vb)ψaψb]′ + (Va + Vb)′ψaψb

(3.18)

W [ψa, ψb] = ψ′
aψb − ψaψ

′
b is the Wronskian. By writing I = −1

2
∫∞

R0
drG(r)

ω
(W [ψa, ψb])′, one

can drop the surface terms that are negligibly small at r → ∞ (which requires |la(la + 1) −

lb(lb + 1)| � 2ωR2
0 and 2ω2R3

0 � 1). Since we have R0 ≥ 15 a.u. and ω > 0.67 a.u., the

radial integral I can be evaluated by:

I = R0

2ωW [ψa, ψb]R0 − 1
2ω2 [ψ′

aψ
′
b + ψaψb(Ea + Eb − Va − Vb)]R0

+
(
Va + Vb

4ω3

)′

R0

W [ψa, ψb]R0 +O( 1
ω4 )

(3.19)

The method of complex coordinate rotation transforms the coordinates into a complex

contour ρ(r), that I =
∫∞

R0
dρ(r)ψa(ρ(r))G(ρ(r))ψ2(ρ(r)):

ρ(r) =


r r < R0

R0 + (r −R0)eiφ r ≥ R0

(3.20)
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Under this rotation, the outgoing wave f(r) + ig(r) ≈ eikr → eikρ decays exponentially with

kr sinφ, so we can expand ψa into (f, g) basis, and evaluate fa(ρ) component by (assuming

ψb(r) is a real function),

∫ ∞

R0
dρfa(ρ)G(ρ)ψb(ρ) = Re[eiφ

∫ ∞

R0
dr[fa(ρ(r)) + iga(ρ(r))]G(ρ(r))ψb(ρ(r))] (3.21)

Similarly, the ga(ρ) component is the imaginary part of the same integral. This integral

converges for arbitrary small ω given Ea > Eb, and similar argument can be drawn for

Ea < Eb.

3.2.2 Gailitis-Damburg treatment of electric dipole moment

The MQDT treatment (Sec.  2.2 ) approximates the potential experienced by the outer

electron by the overall Coulomb interaction with the screened ion, which neglects the elec-

tron correlations outside the reaction zone 1
|~r1−~r2| ≈ 1

r2
. This approximation is accurate for

most doubly excited alkaline earth atoms, but not enough for the lower-lying autoionizing

states of helium, whose electron correlation is most prominent. To address its electron cor-

relation at long range outside the R-matrix box, the coupling between the outer electron

and the permanent electric dipole moment of the degenerate excited He+ core is also im-

portant: 1
|~r1−~r2| ≈ 1

r2
+ ~r1·r̂2

r2
2

. Owing to the degeneracy of the excited hydrogenic thresholds

(neglecting fine structure and the Lamb shift), this dipole term can be merged with the outer

electron angular momentum term
~l22
2r2

2
. We denote the composite of the dipole and the orbital

(centripetal) term as the Gailitis-Damburg operator[  56 ], whose matrix elements under the

channel functions Φi(~r1,Ω2) = φi(r1)Yli1,li2,L(Ω1,Ω2) can be written as

Aij = 〈φi(r1)Yli1,li2,L|~l22 + 2r1 cos θ12|φj(r1)Ylj1,lj2,L〉

= l2(l2 + 1)δli2,lj2
δli1,lj1

+ 2〈φi|r1|φj〉〈(li1, li2)L| cos θ12|(lj1, lj2)L〉.
(3.22)

This matrix can be represented in terms of eigenvectors and eigenvalues asAij = ∑
γ Xi,γαγX

T
γ,j,

which allows us to perform a generalized MQDT calculation in the dipole representation with

the new channel index γ. The channel correspondence between the independent electron ba-
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sis {i} = (n1, l1; l2) and the Gailitis-Damburg basis {γ} is controlled by Xi,γ [ 57 ]. The radial

Schrodinger equation for the outer electron in the channel γ is,

(
−1

2
d2

dr2
2

− 1
r2

+ αγ

2r2
2

)
Fγ

f (r2) = εγFγ
f (r2) (3.23)

We can define a real or complex angular momentum l̃γ by rewriting the γ-th eigenvalue

of A as αγ ≡ l̃γ(l̃γ + 1). For the repulsive dipole case where αγ > −1/4, l̃γ is real, while

for the attractive dipole case l̃γ is complex [ 24 ,  25 ,  26 ]. The details for the new reference

wavefunction Fγ
f (r2) and its corresponding long-range QDT parameters have been introduced

in Subsec.  2.2.1 .

Figure 3.3. The comparison of calculations with (solid curve) and without
(dashed curve) the Gailitis-Damburg dipole term for two-photon ionization
cross section up to the N = 2 (a) and N = 3 (b) threshold. With the
Gailitis-Damburg dipole term, the lineshapes change dramatically once the
outer electron is outside the box.

The influences of the permanent dipole moment on the calculated spectra can be vi-

sualized from the two-photon cross-sections plotted up to the He+ N = 2 and N = 3

thresholds in Fig.  3.3 . The horizontal axes are shown on an effective quantum number scale

ν = 1/
√

2(EN − Ef ). At small ν, there are no differences since both electrons are in a

resonance that is deeply bound, their motions are almost restricted to the interior of the

R-matrix box [at R0 = 15(34)a.u. for N = 2(3)] which have been fully described by the

R-matrix calculations. The differences appear only when ν is high enough that the outer
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electron is active outside the box. In this regime, the Gailitis-Damburg-type treatment shifts

the positions of resonances by approximately ∆ν ≈ 0.1.

Besides improving the accuracy of calculations, the Gailitis-Damburg treatment also

introduces a coupled channel representation {γ} which is inherently different from the inde-

pendent electron channel {i}. It connects to the SO(4) group description of doubly excited

states, which will be discussed in the next chapter.

3.2.3 Spectrum for two-photon ionization

This subsection studies two-photon ionization of ground-state helium (1s2, singlet), under

the linearly polarized field (ωj = ω, ε̂j = ε
(1)
0 ) and trefoil field (ω1 = 2ω2, ε̂1,2 = ε

(1)
±1), whose

energy diagrams and quantum numbers 2S+1Lπ have been given and discussed in Fig.  3.1 

and Fig.  3.2 . In this subsection, we only present the calculation results of generalized cross

sections and angular distributions. The content in this subsection have been published in

Ref. [  58 ].

Two-photon Linear-polarized ionization

Our first calculation is for ionization with two linearly polarized photons along a common

z-axis, where the final state energies considered are in the range from -0.9 to -0.223 a.u. The

generalized cross sections for reaching the 1Se and 1De symmetries and the asymmetry

parameters β2, β4 are shown in Fig.  3.4 , and the full set of Rydberg states converging to the

N = 2, 3 thresholds are shown in detail in the lower two panels, displayed versus the effective

quantum number ν = 1/
√

2(EN − Ef ) of the outer electron. The resonances below and above

the N = 2 threshold have opposite Fano lineshape asymmetries: The cross-sections display

Fano lineshapes with negative shape (q) parameters in the middle graph while positive q

values occur in the right graph. Interestingly, it can be seen that the minimum of the cross-

sections near the first few resonances fail to go to zero, as a feature of the above-threshold

ionization. When resonances in that region are reached via single-photon ionization, they

are guaranteed to have an exact zero in an LS-coupling calculation because they decay into

only one channel and at one energy there will be perfect destructive interference.
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Figure 3.4. Partial cross sections (left) and β2,4 parameters (right), as given
in the label. The energy scale in the two highest panel is shown in terms
of single photon energy. The blue points are taken from Boll et al. [ 59 ],
as are the blue dashed curves for β2,4. Their calculation is based on a 2 fs
pulse duration so the narrow resonances are not resolved. The middle and
lowest panels show an expanded version of the partial cross sections and β2,4
parameters near N = 2 and N = 3 threshold, respectively, and are given on an
effective quantum number scale for the outer electron, ν = 1/

√
2(EN=2 − Ef )

and ν = 1/
√

2(EN=3 − Ef ). This figure is taken from Ref.[  58 ].
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In addition, our results (solid lines) are compared with the Boll et al.[ 59 ] calculation that

is based on a fully correlated time-dependent solution (the blue points and dashed lines)

using a 2 fs laser pulse. When above the He+ N = 2 threshold, their calculation gives

the total cross sections and asymmetry parameters while our calculation separates them

into a fast(N = 1) and slow(N = 2) channel. The agreement is quite good at those energy

points irrespective of the narrow resonance structures which are not resolved in their system.

Our calculations are for monochromatic photons and include more energy mesh points, and

hence are not limited in their energy bandwidth. The details of resonance structures near

the N = 2 and N = 3 threshold are given in Fig. 4.5 and  4.8 in the next Chapter.

Table 3.1. The energies(E) and and decay widths(Γ) for the first three
doubly-excited levels lying just below the N = 2 threshold (upper) and N = 3
threshold (lower), determined by previous works(given by the superscripts)
and our calculations. (-x) indicates 10−x. All the unit is in atomic unit(a.u.)

Levels N(K,T )n This work: E(Γ) Previous works: E(Γ)
1Se(1) 2(1, 0)2 -0.7780(4.70(-3)) -0.7779(4.54(-3)) [ 5 ]
1De(1) 2(1, 0)2 -0.7018(2.37(-3)) -0.7004(2.59(-3)) [ 60 ]
1Se(2) 2(−1, 0)2 -0.6222(2.36(-4)) -0.6219(2.16(-4))[ 5 ]
1Se(3) 2(1, 0)3 -0.5902(1.42(-3)) -0.5899(1.35(-3)) [ 5 ]
1De(2) 2(1, 0)3 -0.5691(5.77(-4)) -0.5687(6.17(-4)) [ 60 ]
1De(3) 2(0, 1)3 -0.5563(3.17(-5)) -0.5563(2.12(-5)) [ 60 ]
1Se(1) 3(2, 0)3 -0.3534(3.00(-3)) -0.3535(3.01(-3)) [ 61 ]
1De(1) 3(2, 0)3 -0.3430(4.74(-3)) -0.34314(5.25(-3)) [ 62 ]
1Se(2) 3(0, 0)3 -0.3174(6.32(-3)) -0.31745(6.66(-3)) [ 61 ]
1De(2) 3(0, 2)3 -0.3154(4.07(-3)) -0.3157(4.30(-3)) [ 62 ]
1De(3) 3(0, 0)3 -0.2900(1.41(-3)) -0.2900(1.20(-3)) [ 62 ]
1Se(3) 3(2, 0)4 -0.2809(1.65(-3)) -0.2811(1.502(-3)) [ 61 ]

The resonance peaks in the calculation are associated with quasi-bound autoionizing

final state levels. Our results for the first few autoionizing states are based on an R-matrix

calculation that includes all the electron correlations, and their results are given in Table. 3.1 ,

which are compared with some previous results in the literature [ 5 ,  60 ,  61 ,  62 ], and show

good general agreement.
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Two-photon Trefoil field ionization

The total electric field of two separate lasers ω1 = 2ω2, ε̂1,2 = ε
(1)
±1 traces a trefoil figure

(Fig.  3.5 ). When the laser intensity lies in the tunneling region, it can guide the liberated

electrons away from the parent ion and back again, ensuring that head-on collisions occur

from all sides during the laser cycle, therefore be widely used to generate high-harmonic laser

sources with arbitrary polarization [ 63 ]. Its cross-section for multi-photon ionization is,

σtot = 8π
3α2ω1ω2

∑
f

|Tf,i|2

Tf,i =
∑∫

ε

dEε

(
〈f |D2|ε〉〈ε|D1|i〉
Ei + ω1 − Eε

+ 〈f |D1|ε〉〈ε|D2|i〉
Ei + ω2 − Eε

)
.

(3.24)

Figure 3.5. Combining a right-circularly polarized infrared driver (red ar-
rows) with its left-circularly polarized second harmonic (blue arrows) at equal
intensities yields a trefoil-shaped electric field (purple curve), which can guide
electrons back to their parent ion to generate high harmonics with controllable
polarization. Reprint from [  63 ].

The relative phase and strength of the two laser fields are irrelevant. The results for the

partial cross-sections and asymmetry parameters are shown in Fig.  3.6 . Two intermediate

state resonances are presented in the figures at -0.57 and -0.36 a.u., corresponding to the 1s2p

and 1s3p 1P o intermediate excited states. At these energies, all the final state partial-waves

experience that intermediate state resonance. The other resonances are from either 1Se or
1De final states, and they are in the same position as in Fig.  3.4 , giving the energy levels for

doubly excited states. The parity-unfavored 1P e state in the continuum emerges only when

48



the energy reaches the N = 2 threshold at -0.5 a.u. since its lowest open channel is 2pεp

feature, so below the N = 2 threshold, there are no scattering solutions for this symmetry,

although there are metastable bound states that are perfectly stable and would show up as

Dirac δ functions if we were to include them. The metastable 1P e states below the N = 2

threshold have not been included here although they could be observed experimentally.

Figure 3.6. Partial wave cross sections (upper) and β1,2,3,4 parameters (lower)
for trefoil field ionization around N = 2 threshold. The parity unfavored state
occurs when the energy is aboveN = 2 threshold at -0.5 a.u. The two identified
peaks are from the 1s2p, 1s3p intermediate resonance. This figure is taken from
Ref.[ 58 ].

3.2.4 Spectrum for three-photon ionization

In this section, we briefly discuss the ionizations with three identical linearly polarized

photons, the spectra we calculated are between the N = 2 and N = 1 thresholds and above
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Figure 3.7. Three-photon-ionization cross section of helium with identical
linearly polarized photons for (a) final state between N = 2 and N = 1 thresh-
olds, our calculation(solid lines) are compared with Ref.[ 51 ](dashed lines); and
(b) final state above N = 2 threshold.

Figure 3.8. The quantum defect µ below N = 3 threshold is plotted versus
the effective quantum number ν for 1P o (left) and 1F o (right) wave bound
states. The black crosses are the truncated diagonalization calculation from
[ 52 ]. The grey dashed curve has slope -1 since sin π(µ+ ν) = 0. The resonances
are given in terms of N(K,T )A quantum numbers
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the N = 2 threshold. The final states are in 1P o and 1F o symmetry according to the angular

selection rules. Our results in Fig.  3.7 (a) have been confirmed by the spectrum calculated

by Saenz et al. [  51 ], as given in the dashed line. All the resonances presented come from the

second intermediate states (which is 1Se and 1De symmetry for 1P o state, and 1De symmetry

for 1F o state), especially, the 1sns and 1snd series. The final states lie in a flat continuum

and do not contribute any resonance feature.

In Fig.  3.7 (b) we show the spectrum between N = 3 and N = 2 thresholds , where a

same series of resonances can be observed for both 1P o and 1F o symmetry. They come from

the first intermediate 1P o states, 1snp series starts with n = 3. To demonstrate the doubly-

excited autoionizing levels lying just below N = 3 threshold, we plot the quantum defect

versus the effective quantum number ν = 1/
√

2(EN=3 − Ef ) in Fig. 3.8 from ν = 2 − 13. For
1P o and 1F o symmetry there are total 5 and 6 open channels respectively. Those channels

are labeled in N(K,T )A quantum numbers, which will be discussed in the next chapter. The

black crosses are the calculated results from Ref. [  52 ], Table VII, which is based on the

truncated diagonalization method. Although their method is not the most accurate one for

autoionizing states, they could at least confirm the validity of our calculations.

3.3 Multi-photon ionization of barium

The spectrum of barium has been studied by a series of theoretical and experimental

works[ 37 ,  38 ,  39 ,  40 ,  43 ,  44 ,  48 ], and our goal is to explore the coherent control property and

to explain Yamazaki et al. experiment[ 37 ,  38 ], as we will introduce in detail in Chap. 7. In

this section, we give the results for cross-section and beta parameters, and most importantly,

derive the transition amplitudes Tf,i under the influence of hyperfine depolarization, which

lays the foundation of the coherent-control-discussion in Chapter 7.

Fig.  3.9 (a) gives the relevant energy levels the two- and three-photon ionization of

barium. The ionization steps are as following: We firstly use a pump laser (ωp) to excite the

ground state atom i to the e1 = 6s6p (1P1) state. Next, by the concurrent one- and two-

photon ionization, the atom of the initially excited state reaches the shaded energy region,

which can decay into either the continua associated with the 6s1/2 or the 5d3/2 ionic state.
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An important consequence of the first step sequential excitation is, the atom will stay on the

6s6p(1P1) state (whose lifetime is around 8.4 × 10−9 sec) for a considerable time, which is

sufficient for the nuclear and electron spin precessing with each other, causing a “hyperfine

depolarization effect”, It some times can have a strong impact on ionization spectra and will

be the main topic of this section.

Figure 3.9. (a) The energy level diagram for the barium for ω−2ω interference
scheme. The ground state barium is firstly excited by a linearly-polarized
pump laser (ωp) to e1 = 6s6p (1P1) state, then by the concurrent one- and
two-photon ionization, the atom reaches the shaded energy region, which can
decay into either the continua associated with the 6s1/2 or the 5d3/2 ionic
state. (b) The angular momenta J and parity π allowed by the electron-dipole
selection rule (For the single photon q = 1 pathway, replace Je2 by Jf ). When
the pump and ionization photons are both polarized along z-axis, the red paths
are allowed only when the effect from hyperfine depolarization is included in
the initially excited e1 state. This figure is taken from Ref.[  64 ].

All the photons in the ionization scheme are linearly polarized (ε̂ = ẑ). The quantum

numbers Jπ permitted by the selection rule in each step of excitation are given in Fig.  3.9 (b).

In the case that no hyperfine depolarization is involved, only the black paths are allowed.

However, with nuclear spin ~I and electronic angular momentum ~J precessing along with

each other on the 6s6p(1P1) state, MJe1
is no longer a good quantum number of the system,

that parity unfavored states are introduced into the excitation scheme (the red paths).
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3.3.1 Hyperfine depolarization effects

The hyperfine structure is important in atomic barium because it breaks ordinary elec-

tronic selection rules. Natural barium consists of two isotopes with different nuclear spins:

The I = 0 isotopes constitute 82% while the remaining 18% are I = 3
2 isotopes [  65 ]. The

latter experience hyperfine splittings, and hence one can visualize semiclassically that the

nuclear spin ~I and electronic angular momentum ~J precess about the total angular momen-

tum ~F . Differences between the hyperfine levels EF usually are in the range of hundreds

of MHz to a few GHz. A crucial point is that in the first step of the experiment, where

a high-frequency pump laser ωp is used to excite ground state barium to e1 = 6s6p (1P1),

the resolution of the pump laser is around 1 cm−1 which cannot resolve the hyperfine levels.

Moreover, the excitation step can be viewed as sudden in comparison with the time scale

of hyperfine-induced precession of ~J . Hence“quantum beats” between different (F,MF ) are

expected, with the transition amplitude Tf,i now written as a coherent sum over the indis-

tinguishable pathways: [  66 ].

T
(q,I=0)
f,i =T (q)

f,e1〈Je1MJe1
|ε̂p · ~rp|JiMJi〉

T
(q,hfp)
f,i =T (q)

f,e1

∑
F MF MFi

eiωF Fi t

2I + 1〈Je1MJe1
, IM ′

I |F,MF 〉〈(Je1 , I)F,MF |ε̂p · ~rp|(Ji, I)Fi,MFi〉

〈Fi,MFi |JiMJi , IMI〉

(3.25)

Where T (q,I=0)
f,i is the transition amplitude assuming no hyperfine structures, and T (q,hfp)

f,i

includes the hyperfine structures and quantum beats from the laser-pump step, it depend

on the orientation of ~I. After averaging (summing) over initial states I,MI (final states

I,M ′
I) in Eq.  7.1 , the whole process is azimuthal symmetric. Here we separate the pump

step i → e1 and the ionization steps e1 → f , and we neglect the precession effects during

the very short time of the ionization processes e1 → f . The amplitudes for the individual

ionization steps are,
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T
(q)
f,e1 =


〈[j1, (l2, s2)j2]JfMf |ε̂1 · ~r1|Je1Me1〉 q = 1∑

e2
1

Ee2 −Ee1 −ω
〈[j1, (l2, s2)j2]JfMf |ε̂2 · ~r2|e2〉〈e2|ε̂1 · ~r1|Je1Me1〉 q = 2

The next step is to calculate the differential ionization rate dW
dΩ in Eq.  7.1 and the ionization

cross-sections with T
(q,hfp)
f,i . The total cross-section including both the pump step and the

q-photon ionization step just follow Eq. 3.2 :

σ
(q)
i→f = 2π(2πα)q+1ωqωp

∣∣∣T (q)
f,i

∣∣∣2 (3.26)

The effect of hyperfine depolarization to cross-sections can be parameterized by a factor

g(k)(t), as stated in Ref. [ 46 ,  66 ] for the pump plus one-photon ionization. We generalized

it into a pump plus two-photon ionization case [  67 ,  68 ]. The formula for σ(q=1,2,hfp)
i→f can

be expressed in terms of Wigner 6J , 9J operators, polarization tensors [ε̂ ε̂∗](k)
µ (which is

Ek
µ(ε̂, ε̂∗) in Ref. [  66 ]) and reduced matrix elements as following ([k] ≡

√
2k + 1):

σ
(1,hfp)
i→f =2π(2πα)2ωωp

∣∣∣〈f ||r(1)
1 ||e1〉〈e1||r(1)

p ||i〉
∣∣∣2 ×

∑
k

∑
µ

(−1)µ[ε̂pε̂
∗
p](k)

µ [ε̂1ε̂
∗
1]

(k)
−µg

(k)(t)

× (−1)k

Je1 Je1 k

1 1 Ji


Je1 Je1 k

1 1 Jf


(3.27)

σ
(2,hfp)
i→f =2π(2πα)3ω2ωp

∑
Je2 ,J ′

e2

∣∣∣〈f ||r(1)
2 ||e2〉〈e2||r(1)

1 ||e1〉〈e1||r(1)
p ||i〉

∣∣∣2 ×
∑

k,k′,k′′

∑
µ

(−1)µ

× [ε̂pε̂
∗
p](k)

µ

{
[ε̂1ε̂

∗
1](k

′)[ε̂2ε̂
∗
2](k

′′)
}(k)

−µ
g(k)(t)(−1)k+k′+Ji+Je1 +Je2 +Jf [k′][k′′]

×

Je1 Je1 k

1 1 Ji


Je2 J ′

e2 k′′

1 1 Jf



Je2 1 Je1

J ′
e2 1 Je1

k′′ k′ k



(3.28)
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where k is the rank of tensor (k = 0, 1, 2), and g(k)(t) is,

g(k)(t) =
∑
F,F ′

(2F + 1)(2F ′ + 1)
2I + 1 cos (ωF F ′t)

Je1 Je1 k

F F ′ I


2

g(0)(t) = 1, when I = 0, g(k)(t) = 1. Similarly, in the limit t → 0 when there is no time for

spin procession, g(k)(0) = 1, and σ
(q,hfp)
i→f = σ

(q,I=0)
i→f . In the limit of complete depolarization

t → ∞, which is close to the case we studied, the terms with F 6= F ′ average to 0.

Now we consider the situation where the pump and ionization lasers are linearly polarized

and aligned with ẑ (the Yamazaki et al. experiment). The cross-section calculations for one-

and two-photon ionization (e1 → f) starts from e1 = 6s6p (1P1); fundamentally, hyperfine

depolarization simply mixes different MJe1
sublevels. To an excellent approximation, only

MJe1
= 0 is initially excited since all laser linear polarization axes are parallel to the z-axis.

Then when ~J precesses about ~F , other MJe1
states get populated as time evolves. The

ionization cross-section is determined by,

σ
(q,hfp)
e1→f =

∑
MJe1

σ
(q,I=0)
e1→f

[1
3 +

(2
3 − |MJe1

|
)
g(2)

ave

]

σ
(q,I=0)
e1→f = 2π(2παω)q

∣∣∣T (q)
f,e1

∣∣∣2 , MJe1
= 0,±1

(3.29)

where g(2)
ave = 0.8644, which is obtained by averaging over the isotope nuclear spins and in

the long time limit. Here θp is the polarization angle between the linear-polarized pump and

the ionization laser polarizations[ 66 ], taken to be 0 in our calculations.

3.3.2 Spectrum for multiphoton ionization

With formulas introduced in the last subsection, some calculation results are given in

this subsection to illustrate the spectrum of barium atoms. An example demonstrating how

hyperfine depolarization can lead to resonance states that do not exist for I = 0 isotope

is given in Fig.  3.10 , where a Jπ = 1e intermediate resonance has dramatically altered the

spectrum, which already has been observed in experiments[ 39 ]. Our calculated cross-section
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agrees with the earlier theoretical ones by an overall factor [  39 ], with the solid and dashed

curves are the results with and without the hyperfine depolarization. As we can see, the

strong signature can not be obtained in our calculations if the hyperfine depolarizations

are neglected. Although the hyperfine depolarization inherently changed the analysis of

the ionization process, it doesn’t influence the results distinctively when the energy being

considered is far away from those resonance energies.

Figure 3.10. Two-photon generalized cross sections for 6s1/2 (blue) and 5d3/2
(red). The strong peak around 47549.5 cm−1 in the spectrum is due to the
existence of an intermediate state resonance 5d7s 3D1 state, which has total
angular-momentum J = 1 and therefore exists only when there is depolariza-
tion[ 39 ].

Besides the cross-section, the asymmetric parameters β(6s1/2,5d3/2)
k for separate q = 1, 2

are calculated and shown in Fig.  3.11 , and are compared with experimental results [  37 ].

The solid and dashed curves are the results with and without the hyperfine depolarization.

As we can see, by including the hyperfine depolarization, the difference between calculated

and experimental βk (points) becomes smaller. Although the calculations give different

amplitudes to the experiment, similarities can still be found in their lineshapes. Noted that β6

for a one-photon pathway should be 0 from theoretical considerations, but the experimental

fitting gave a nonzero value. It is interesting to note that the phase lag calculation (see

Fig. 7.3 ), which is derived from the βk=odd,even and will be introduced in Chap.7, is much
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more satisfactory with experiment than Fig.  3.11 , suggesting the phase lag could be more

robust against small errors.

Figure 3.11. The photoelectron angular distribution parameters βk for ion-
ization process with q = 1, 2. Our calculations (solid curves) are compared to
the experimental results (points) from Ref. [ 37 ] Fig. 6 and 7. Calculations
assuming I = 0 is given in dashed lines for reference. The left and right pan-
els gives β parameters for channel 6s1/2 and 5d3/2. This figure is taken from
Ref.[ 64 ].

To conclude, we provide a systematic analysis of the role of hyperfine depolarization

on barium multiphoton ionization, and develop formulas for differential cross-sections and

three-photon ionization cross-sections, which have not been included by previous work; these

discussions will be essential for the coherent control and phase lag studies of barium in Chap.

7.
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4. THE CORRELATION EFFECTS OF ATOMIC HELIUM

In this chapter a new way of characterizing electron correlations in doubly excited states,

the N(K,T )A
n

2S+1Lπ classification scheme, will be introduced, following the discussion of

Herrick, Sinanoglu and Lin[  4 ,  69 ,  70 ]. It has the physical origin from SO(4) group and is

closely associated with the hyperspherical coordinate and Gailitis-Damburg eigenchannels.

Based on the SO(4) correlated classification scheme, we will classify the resonances near

the N = 3 threshold and test the propensity rules that have been confirmed to operate in

the 1P o states reached by the single-photon ionization but have never been discussed in the

multi-photon region. Some of the discussions has been published in Ref.[ 58 ], coauthored

with Chris H. Greene.

4.1 Classification scheme

4.1.1 Group description of electrons in Coulomb potential

The goal of this subsection is to introduce the (K,T )A classification scheme which origins

from the group description of one and two electrons in a Coulomb potential. As is known,

a single electron bounded in Coulomb potential V (r) = −Z/r exhibits an SO(4) symmetry,

which is generated by its angular momentum ~l and the Runge-Lenz vector ~a, whose classical

interpretation is that it points in the direction of the major axis of the elliptical Kepler orbit

with magnitude equals to the orbit’s eccentricity. The quantum analog of the Runge-Lenz

vector is:

~a = 1
(−2H)1/2

[1
2(~p×~l −~l × ~p) − Zr̂

]
(4.1)

~l and ~a generates an SO(4) algebra, with Casimir invariants, C1 = ~l2 + ~a2 = Z2

(−2H)1/2 − 1 =

n2 − 1 and C2 = ~l · ~a = 0. It is the largest invariant group of a hydrogenic Hamiltonian.

However, there is actually a larger group that can generate all the bounded eigenstates of the
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system (therefore not communicative with the Hamiltonian), which is the SO(4, 2) group,

whose communication relation can be expressed by such anti-symmetric matrix[ 71 ]:

Lab = −Lab ↔



0 l3 −l2 ã1 b1 Γ1

... 0 l1 ã2 b2 Γ2

... 0 ã3 b3 Γ3

... 0 T2 T1

... 0 T3

... 0


(4.2)

where ~̃a is the rescaled Runge-Lenz vector: ~̃a = 1
2~rp

2 − ~p(~r · ~p) − 1
2~r, ~b = ~̃a + ~r, ~Γ = r~p,

T1 = 1
2(rp2 − r), T2 = ~r · ~p− i, T3 = 1

2(rp2 + r). The complete set of communication relation

can be expressed as,

[Lab, Lcd] = −i(gacLbd + gbdLac − gbcLad − gadLbc) (4.3)

Figure 4.1. Subtower and complete tower of SO(4, 2) of scaled hydrogenic
state. Reprint from Ref. [  71 ], Fig.1.

where gab = 0 when a 6= b, gaa = −1 when a = 1 − 4, gaa = 1 when a = 5, 6. All the

bounded states |n, l,m〉 can be obtained by applying SO(4, 2) raising/lowering operators to

the ground state,

|n, l,m〉 = (−1)l

2ll!(n− 1)!

(
(2l + 1)(n− l − 1)!(l +m)!

(n+ l)!(l −m)!

) 1
2

(l−)l−m(ã+)l(T+)n−1|1, 0, 0〉 (4.4)
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Which is illustrated in Fig.  4.1 .

Now we consider the group description for doubly excited states in atoms such as H− and

He[ 69 ]. With two-electron moving in a Coulomb field, the electric correlation 1/r12 makes

the Hamiltonian non-separable. Since not a simple group representation has been found,

people have to turn to the approximate description of such a system. One way to approach

the approximate description is to find a SO(4) subgroup of the non-correlated two-electron

system SO(4)1 × SO(4)2, which can diagonalize 1/r12 to the largest extent. It turns out

the best choice is the SO(4) group generate by ~L = ~l1 + ~l2 and ~B = ~a1 − ~a2 [ 72 ]. Given

each ~ai pointing to the major axis of the elliptical orbital of electron i, ~B can be regarded

as a measure of the inter-electron distance. ~L is the total angular momentum. The Casimir

invariants of the SO(4) group can be written as:

~B2 = [(n+K)2 + T 2 − 1 − L(L+ 1)]2 ~B · ~L = T 2(K + n)2 (4.5)

We could therefore determine new quantum numbers from this group, to replace the non-

correlated basis set {N, l1, n, l2} (N = n1, n = n2). The new quantum numbers K and T for

given N and L can be,

T = 0, 1, 2, ...,min(L,N − 1)

K = N − 1 − T,N − 3 − T, ...,−(N − 1 − T )
(4.6)

(K,T ) 2S+1Lπ give the so called “doubly-excited symmetry basis”[ 73 ]. Although they

cannot describe accurately the intershell Coulomb mixings, they preserve at least the dipole

interaction in the asymptotic limit (n → ∞)[ 4 ],

2r1 cos θ12 = 3N
n
~a1 · ~a2 = −3NK + 3N

2n [N2 − 1 − T 2 − 2 −K2 + L(L+ 1) − 2 − l̂21 − l̂22]

n→∞−−−→ −3NK

(4.7)

According to Eq.  4.5 and  4.7 , T has been identified with the pseudoscalar operator (~L · ~r12),

when T = 0, the states have one-electron structure. K measures the number of nodes in
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the body frame associated with θ12, and the maximal positive K corresponds to the most

centripetal term that decreases the long-range potential.

The radial correlation is parameterized by the quantum number A, which is determined

by the following relations,

A =


π(−1)S+T = π(−1)S+N−K+1 K > L−N

0 K ≤ L−N

(4.8)

A = +1(−1) indicates an approximate antinodal (nodal) structure at or near the line r1 = r2,

and A = 0 indicates neither of them [ 10 ]. In the rest part of this chapter, we will classify the

autoionizing resonances based on the N(K,T )A
n

2S+1Lπ quantum numbers. Our calculations

on the helium linearly polarized ionization in the last chapter, which includes the electron

correlation up to the dipole term, will be discussed. The propensity rules, which can be

regarded as a generalization of the angular momentum selection rule, will be explored in the

multi-photon ionization and autoionizing decaying processes.

Figure 4.2. Possible values of K and T labeling resonance channels of H -like
systems for (a) parity favored π = (−1)L and (b) parity unfavored π = (−1)L+1

states. The lines connecting the points represent channels coupling between
~l2

2
. Reprint from Ref. [  4 ], Fig.1, 2.
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4.1.2 Hyperspherical description of electronic correlations

Another way of revealing the physical significance of the electronic correlation is to use

the hyperspherical coordinates [  9 ]. Apart from the three translational-invariant coordinates,

the internal coordinates for two-electron in a nucleus field are given below:

R = (r2
1 + r2

2)1/2 α = tan−1(r2/r1) θ12 = cos−1(r̂1 · r̂2) (4.9)

Where R specifies the overall size of the atom, and the electron correlations is encoded by

the angles, Ω = (α, θ12), with α specify the radial correlation and θ12 specify the angular

correlation[ 10 ,  70 ]. In hyperspherical coordinates, the adiabatic approximation [  10 ,  70 ,  74 ]

of doubly excited state is given by,

Ψ = R−5/2(sinα cosα)−1∑
µ

Φµ(R,Ω)Fµ(R) (4.10)

By treating the hyperspherical radius R parametrically, the channel functions Φµ(R,Ω) are

obtained by solving the equation below, whose eigenvalues Uµ(R) give the diabatic channel

potentials (to preserve the correlation pattern for each channel, diabatic states are preferred

in regions of avoided crossings):

− 1
R2

d2

dα2 +
~l1

2

R2 cos2 α
+

~l2
2

R2 sin2 α
+ 2C

R

Φµ(R,Ω) = Uµ(R)Φµ(R,Ω)

C = − Z

cosα − Z

sinα + 1√
1 − sin 2α cos θ12

(4.11)

The channel index µ can be labeled by quantum number N(K,T )A
n

2S+1Lπ [ 70 ]. The channel

potentials Uµ(R) have visualize different N(K,T )A
n

2S+1Lπ states, as shown in Fig. 4.3 , which

gives the some hyperspherical potentials converging to the He+ N=3 threshold.

These potential curves confirm the following features for N(K,T )A
n [ 70 ]: 1. A = + curves

have smaller centrifugal potential at small R, therefore are more likely to penetrate into

a small R region and are lower in energy. Therefore, the electrons in these channels spend

considerable time near the nucleus where they interact strongly with each other, making their
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autoionization states unstable and decay relatively rapidly; the corresponding resonances

are relatively broader than states in the other nearby channels. 2. at large R, there is no

definite ordering between + and - curves, but A = 0 curves correspond to the higher ones.

In addition, in the asymptotic limit, a larger K value corresponds to a lower potential curve,

and for fixed K, a larger T corresponds to a lower curve, as the long-range potentials are

controlled by the dipole interaction. 3. channels with identical (K,T )A have similar shapes

of potentials, and those curves belonging to higher L lie slightly higher, which come from

contributions of rotational energy. A supermultiplet structure can be observed in the lowest

eigenvalues of each group of (K,T )A (A 6= 0) curves according to Ref. [  70 ].

Figure 4.3. Hyperspherical potential curves for 1Se, 1P o, 1De, and 1F o for
the helium atom that converge to the He+ N=3 threshold. Reduced units with
Z = 1 are used, as defined by Lin, namely the horizontal axis has units of Bohr
radius divided by Z = 2 while the vertical (energy) axis has units of Hartree
multiplied by Z2. Reprinted from Fig.1. of Lin.[  70 ].
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With the aid of Fig.  4.3 , one can ascertain the connection between the N(K,T )A channels

and the Gailitis-Damburg channels γ outside our R-matrix box radius at R0 = 34, where

there are no more crossings among the hyperspherical curves. The correspondence between

the N(K,T )A and γ can be deduced by matching the most centrifugal channel aγ (Eq. 3.23 )

to (K,T ) = (−2, 0)+ for 1Se symmetric or to (K,T ) = (−2, 0)0 for 1P o, 1De, and 1F o

symmetric and so on, as explained by point 2 above. This analysis allows us to classify the

resonances in the N(K,T )A scheme of approximately good quantum numbers and to discuss

the validity of propensity rules for photoexcitation and decay in the next section.

4.2 The study of propensity rules

Figure 4.4. A demonstration on photoionization propensity rule for ∆T = 1
and K = Kmax for π = (−1)L states, the desirable transition from ground
state 1(0, 0)+ are colored in red. Other colors of the lattice indicate different
values for v = 1

2(N − 1 −K − T ).

In an earlier study[  75 ], single-photon-absorption processes up to the He+ N = 7 thresh-

old were measured. A “propensity rule” was observed, indicating that the dominant chan-

nel in the linearly polarized photoexcitation process should satisfy ∆A = 0, ∆T = 1 and

K = Kmax[ 10 ,  75 ]. For example, in the ground state helium 1(0, 0)+ single photoabsorption

process, the N(N−2, 1)+ channels play a major role . Another propensity rule that has been

widely discussed describes the predominant decay channel of resonances. Usually, the vibra-
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tional quantum number v = 1
2(N−1−K−T ) is used when discussing the decaying processes,

v = 0 indicates the electrons have only a zero-point motion in the bending coordinate θ12.

The propensity rule for the dominant decay channel of a resonance is: ∆N = −1,∆A = 0,

∆v = 0 [ 57 ,  76 ]; this rule is has been tested for the lowest (v = 0) and second lowest (v = 1)

channel resonances for helium atoms[ 74 ]. Those phenomenological rules indicate that the

radial correlation will not be changed by the photoionization or decaying process, but the

angular distribution (K,T ) would change in the photoionization or decaying process. Most

of the discussions in this section are adapted from Ref.[ 58 ].

This section discusses the propensity rules for multi-photon excitation of helium and

autoionizing decay. If the propensity rule still holds for two-photon ionization, we would

expect partial cross sections in N(Kmax, 0)+ and N(Kmax, 2)+ channels dominant over the

other channels (actually the only dominant channel should be N(Kmax, 0)+ since T = 2 has

not been included). Our analysis considers ionization by identical photons that reach final

states above the N = 2 threshold, since it is the lowest energy range that allows the electrons

to escape into different channels. To get the maximum resolution of some very narrow

resonances, the energy range analyzed here includes just one cycle of the Rydberg series

converging to the N = 3 threshold, in the range of effective quantum number, ν = 12 − 13.

The time-delay matrix is used to analysis the decay processes and the life time: Qphys =

−iSphys† dSphys

dE
, where Sphys is the physical scattering matrix and id/dE is the quantum time

operator. The largest eigenvalue qmax of the Hermitian Qphys gives the longest scattering

delay in general and peaks whenever there is a resonance with a peak value related to the

resonance decay lifetime. The dominant decay channel of that resonance is given by the

eigenvector corresponding to that qmax.

The two-photon ionization partial cross-sections are shown in Fig.  4.5 . The three open

channels in 1Se symmetry are shown Fig.  4.5 .(a). We can see the N = 2 channels play

a more important role than the N = 1 channel, which agrees with the propensity rule

that the channel with N = Nmax dominant. The selection rules ∆A = 0, ∆T = 1 are

observed here to hold, but the K = Kmax rule is not satisfied. It is hard to call the 2(1, 0)+

channel a “dominant channel” since it is almost the same order of amplitude compared to

2(−1, 0)+ channel and even smaller at some energies. The four open 1De channels are shown
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in Fig.  4.5 (b). Since the 2(1, 0)+ channel is dominant, the propensity rule that for each

absorption process ∆A = 0, ∆T = 1 and K = Kmax are all satisfied. Moreover, the partial

cross-section decreases with the K quantum number for N = 2 channels. This is expected

since the largest K channel has the deepest potential at a small hyperradius R (shown in

Fig.  4.3 ), so both the electrons have the largest overlap with the nucleus and therefore be

the most probable channel to decaying.

Figure 4.5. The two-photon ionization partial cross sections for (a) 1Se sym-
metry and (b) 1De symmetry are shown for each open channel. The effective
quantum number ν is relative to N = 3 He+ threshold. The 1Se excited state
resonances do obey the same photoabsorption propensity rule that was pre-
viously found to hold rather accurately for one-photon absorption processes.
This figure is taken from Ref.[ 58 ].

An interesting feature in both 1Se and 1De lineshapes is the overlap of two different reso-

nances, i.e. the 3(2, 0)+ and 3(−2, 0)+ resonances for 1Se and 3(2, 0)+ and 3(0, 0)+ resonances

for 1De. As from ν > 4 the two resonances are already very close, and at some point they

overlap, as is shown in Fig. 4.9 .

The two-photon analysis above indicates that the one-photon propensity rules are roughly

satisfied except forK = Kmax. However, the dominant channels from three-photon ionization

become even more deviated from the predictions based on the one-photon processes. Fig.  4.6 

gives the partial cross-sections for three-photon ionization, which demonstrates that for both
1P o and 1F o symmetry, it is the lowest open channel 1(0, 0)− that dominates, and this violates
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∆A = 0 and ∆T = 1. The second prominent channel for 1P o symmetry is 2(0, 1)+, which

echos with the one-photon propensity rules that have been tested for the 1P o symmetry.

However, the second prominent channel for 1F o symmetry is 2(1, 0)−, which again doesn’t

obey ∆A = 0 and ∆T = 1. Therefore, the propensity rules for multi-photon ionization are

far much weaker than the one-photon situations.

Figure 4.6. The three-photon ionization partial cross sections for (a) 1P o

symmetry and (b) 1F o symmetry are shown for each open channel. The effec-
tive quantum number ν is relative to N = 3 He+ threshold. The photoabsorp-
tion propensity rules for one-photon absorption processes can not be applied
to those results.This figure is taken from Ref.[ 58 ].

Next, consider the decay process for the autoionization states based on the time-delay

matrix analysis. Only two-photon ionization processes are discussed for the decay rules. For
1Se symmetry, three closed channels contribute three resonances in each cycle of ν. The

resonance channel correspondences are shown in Fig.  4.7 (a). All three resonances are broad

ones since they all have A = +1. Fig.  4.7 (a) plots eigenvalues q of the time-delay matrix

which conveys the positions and the decay lifetimes, and (b) plots the decay probability

into each open channel. Three open channels can serve as decay routes, namely 1(0, 0)+,

2(1, 0)+ and 2(−1, 0)+, where the vibrational quantum number v is used to delineate those

channels. The first thing to note is that the decay probability into the N = 1 channel is

almost negligible, obeying the propensity rule that ∆N = −1. For N{v}A =3 {0}+ and
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3{1}+ resonances, the propensity rule ∆A = 0, ∆v = 0 is satisfied. For the 3{2}+ resonance,

there is no ∆v = 0 continuum, so it decays to the 2{1}+ channel that has the minimum |∆v|.

Figure 4.7. Time delay analysis for 1Se. The left figure shows the eigenvalues
of the time-delay matrix and the right figure shows partial decay probabilities.
The dashed lines give the position for the peaks of qtot, which correspond to
resonances N{v}A from left to right, 3{1}+,3{0}+, and 3{2}+. This figure is
taken from Ref.[ 58 ].

Figure 4.8. Time delay analysis for 1De, as in Fig.  4.7 . The N{v}A

quantum numbers of the resonances are from left to right, 3{0}−,3{1}0,
3{2}0,3{0}+,3{0}+and 3{1}+. This figure is taken from Ref.[  58 ].

For 1De symmetry, there are six closed channels in the range below the N = 3 threshold,

which gives six resonances in each cycle of ν. Their resonance channel correspondence is

given in Fig.  4.8 (a) The resonances with A = + are broad ones and the others are narrow,

as expected from their potential curves. Their decay probabilities into four open channels
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1(0, 0)+,2 (1, 0)+,2 (0, 1)− and 2(−1, 0)+ are shown in Fig.  4.8 (b). The probability of decaying

into the N = 1 channel is again negligible. However, the other propensity rules are not

that obviously satisfied. The propensity rule is observed here to hold only for the most

prominent resonance 3(2, 0)+(3{0}+) and the third prominent resonance 3(0, 0)+. For the

second prominent resonance 3(0, 2)+(3{0}+), its decay probabilities are 0.51 to 2{0}−, 0.31

to 2{1}+ and 0.18 to 2{0}+, not consistent with the expected propensity rule. It is noted

that in this situation both 3(2, 0)+ and 3(0, 2)+ have been denoted as (3{0}+) channel. Their

difference is their T value, and we note that T = 2 resonance decays have apparently not

been discussed in earlier work. The prominent channel for all three narrow resonances is

2{1}+. Those narrow resonances are hardly observed in experiments and are not necessarily

expected to be governed by the propensity rule.

Figure 4.9. The quantum defect µ below N = 3 threshold is plotted versus
the effective quantum number ν for 1Se(left) and 1De(right) wave bound states.
The black crosses are the truncated diagonalization calculation from [ 52 ]. The
grey dashed curve has slope -1 and each bound state must lie on one of them
because of the QDT condition sin π(µ+ ν) = 0. This figure is taken from
Ref.[ 58 ].

To test the validity of our calculations, we plot the quantum defect versus the effective

quantum number for the 1Se and 1De symmetry, from the first bound state above N = 2

threshold up to ν < 13, as shown in Fig.  4.9 . The black crosses are the calculation results

from [  52 ], Table VII, based on the truncated diagonalization method. Some calculations

from more recent papers[  61 ,  62 ] are given and compared in Table  3.1 (which is in Chap.3).
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For the 1De wave, the differences in ν are around 0.01 and the agreement is quite good, but

for the 1Se wave, the differences are slightly larger, especially as ν increases. The grey dashed

lines have slope -1 and connect all the bound states within each ν circle since the bound

state energies satisfy sin π(µ+ ν) = 0. Evidently, the 1Se symmetry has all the resonances

series present above ν ≥ 3, and the 1De wave from ν ≥ 5, since the hyperspherical potentials

for some of the channels are rather high lying and repulsive at small hyperradii. In addition,

there is a cross-over in the 1Se wave 3(2, 0)+ and 3(−2, 0)+ and the 1De wave 3(2, 0)+ and

3(0, 0)+ series, indicating that those resonances are very close to each other and even overlap

when those curves across.

Figure 4.10. The (a) effective quantum numbers and (b) quantum defects
for the doubly-excited levels with same N(K,T )A but different 2S+1Lπ. In each
series of N(K,T )A states (A 6= 0). For each rotor series, the levels with higher
L lie slightly higher.

A similar calculation for 1P o and 1F o symmetry at the same range of ν can be found

in Fig.  3.8 . By grouping the energy levels for each N(K,T )A (A 6= 0) with different 2S+1Lπ,

whose diabatic hyperspherical potential curves are quite similar in shape but different by
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almost an overall rotational energy, a schematic plot of the rotor series is given in Fig. 4.10 ,

as discussed by Ref.[ 70 ].

In summary, we explored the photoabsorption processes near the He+ N = 3 threshold.

For two-photon processes, one still observes propensity ∆A = 0, ∆T = 1 for each step

of excitation, but the rule K = Kmax is not always satisfied. However, the excitation

rules ∆A = 0 and ∆T = 1 are not satisfied for three-photon ionization processes. For

autoionization decay, the propensity rule ∆N = −1,∆A = 0,∆v = 0 is satisfied only for the

most prominent resonances, and for the second prominent resonances in 1De wave. When

T = 2, no clearly dominant decay channel exists.
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5. THE ENTANGLED-PHOTON IONIZATION OF ATOMIC

HELIUM

In this chapter, we will explore the helium atoms/ions as novel resources of generating

entangled photons. Quantum entanglement is a fascinating quantum phenomenon that has

no classical analog, which is at the heart of quantum information science, quantum sensing,

quantum enhanced imaging and spectroscopy and other emerging quantum technologies.

Entanglement of photons has particularly played an important role in many areas of basic

and applied research that leverage the quantum advantage[ 77 ]. For example, entangled

photons have been used in virtual state spectroscopy[ 78 ,  79 ,  80 ] which goes beyond the

time-frequency uncertainty limit[ 81 ,  82 ]; Moreover, a linear (rather than quadratic) scaling

of two-photon absorption rate versus intensity is observed with entangled photons[ 77 ,  79 ,  83 ,

 84 ], which enhances the process at low intensities; Entangled photons as a light source can

collectively excite uncoupled atoms [ 85 ,  86 ], and lead to entanglement-induced two-photon

transparency [ 84 ], which cannot be obtained by a classical laser source.

Typical sources of entangled photons use the process of spontaneous parametric down-

conversion (SPDC) in nonlinear crystals in the visible and infra-red region of the spectrum.

These sources generate energy-time entangled photons with correlation times on the fem-

tosecond time scale which has been only recently directly measured [ 87 ]. SPDC has also

been demonstrated in the hard X-ray regime where the correlation times are expected to

be attoseconds or smaller [  88 ]. Since SPDC is a non-resonant process, the rate of photon

pair creation is low. Some specific technique, such as four-wave mixing techniques involving

specific resonances, can generate entangled photons with a high photon count rate, but these

photons have specific energies with narrow bandwidth.

Here we propose a method to generate entangled photon pairs in the extreme-ultraviolet

(XUV) regime with energy bandwidth large enough to allow correlation times on the attosec-

ond scale, which is based on the spontaneous two-photon emission of the 1s2s 1S0 metastable

state of helium atom, or its isoelectronic ions and the 2s 2S1/2 metastable state of helium

ion[ 89 ,  90 ,  91 ,  92 ,  93 ]. According to the selection rule, those states can only decays by a

two-photon emission process. The emitted photons are energy-time entangled with a cor-
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relation time related to the energy spacing between the 2s and 1s levels which is 20.62 eV

and 40.81 eV for the helium atom and ion respectively. This large energy bandwidth of

the emitted entangled photons corresponds to correlation times in the attosecond domain

thus opening up the possibility of attosecond time scale pump-probe experiments using these

photons. The main part of this chapter has been included in a paper in preparation, which

is in collaboration with Siddhant Pandey, Niranjan Shivaram and Chris H. Greene.

5.1 Gedanken experiment inside a spheroid cavity

In this section, we consider a gedanken experimental set-up in which we have an spheroid

cavity, with two helium atoms placed at its two foci. One of the atoms is in 1s2s (1Se) excited

state, which is used as an emitter (atom 1), another atom is in 1s2 ground state, which is used

as an absorber (atom 2), as shown in Fig.  5.1 . Atom 1 can only decay into the 1s2 state by

a simultaneous emission of two-photon, according to the selection rule. Since the long-lived

meta-stable 1s2s (1Se) state has a lifetime as long as τ = 0.0197 sec [ 94 ], and the energy

gap between 1s2s (1Se) and 1s2 state are as large as 20.62 eV , the two emitted photons

have both a good correlation in frequency, and a narrow window in emission time difference,

according to the energy-time uncertainty, therefore are good sources of entanglement (Fig.

 5.2 ). The bi-photons should also be correlated in angular momentum, according to the

angular momentum conservation rule. However, we do not address that problem, since inside

a spheroid cavity, the entangled photon-pair will be recollected at the absorber with equal-

distance optical path, irrespective of their angular distribution or momenta. In treating

this process, we assume: 1. The cavity is large enough, that no quantization of photon

frequencies or Purcell effect is involved. 2. Both atoms are deeply trapped, that no recoil

effects can be observed. 3. The mirror of the cavity is 100% reflective to all the frequencies,

that no energy loss occurs during reflection of the photons.

5.1.1 Estimations on correlation time and rate

Inside the cavity, there are three stages of photoelectric processes: the population inver-
sion of atom 1, the spontaneous emission of atom 1, and the photoabsorption of atom 2.
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Figure 5.1. A schematic diagram of entangled-photon generation and ab-
sorption in an spheroid cavity. The emission and absorption atoms are placed
in the two foci of the spheroid, the photons are reflected by the boundary of
the cavity, and propagate through equal pathway to reach the absorber. The
shape of the cavity will influence the rate of this process, by a geometry factor
as discussed in Eq. 5.12 .

Figure 5.2. Schematic sketch of the absolute value of a typical two-photon
wave function in frequency domain and time domain. Recopyed from Ref.
[ 79 ].
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In the first stage, we prepare the singlet 1s2s state using four photons with each energy is
~ω0 = 5.155 eV . With a monochromatic incident electric field E0ε̂0 cos (ω0t), the 4-photon
excitation amplitude is,

Cexc(t) =
(eE0

2~

)4 ei(∆eg−4ω0)t − 1
∆eg − 4ω0

D(4)
eg

D(4)
eg =

∑
j1,j2,j3

〈e|ε̂0 · ~r|j3〉〈j3|ε̂0 · ~r|j2〉〈j2|ε̂0 · ~r|j1〉〈j1|ε̂0 · ~r|g〉
(∆j3g − 3ω0)(∆j2g − 2ω0)(∆j1g − ω0)

(5.1)

where |g〉 is the 1s2 ground and the initial state, |e〉 is the 1s2s excited and the final state,

|j1,2,3〉 are the intermediate states. Since

lim
t→∞

ei(∆eg−4ω0)t − 1
∆eg − 4ω0

= −P( 1
∆eg − 4ω0

) + iπδ(∆eg − 4ω0)

The resulting unnormalized state following the excitation, which is also the initial state for

the emission process, is: |γ〉 = iπδ(∆eg − 4ω0)
(

eE0
2~

)4
D(4)

eg |e〉.

The photon-atom interaction for the second and third stage is:

V int(t) = e~r · ~E(t) = e~r ·
∑

s

iε̂s

(
2π~ωs

V

) 1
2

(asei( ~ks·~r−ωst) − a†
se−i( ~ks·~r−ωst)) (5.2)

Where ~r is the space vector of the electron, ~E is the electric field, and V is the quantization

volume, the electric field generated by a single photon is proportional to 1/
√
V . The photon

modes s include the frequency ωs, propagate direction k̂s and polarized direction ε̂s. From

a second-order perturbation analysis, the amplitude of the emission of two photons (|γ〉 ⊗

|vac〉 → |g〉 ⊗ |1s, 1s′〉) is,

C
(s,s′)
emi (t) = −2πe2

V

√
ωsωs′

ei(ωs+ωs′ −∆eg)t − 1
ωs + ωs′ − ∆eg

∑
j

〈g|ε̂s′ · ~r|j〉〈j|ε̂s · ~r|γ〉
~(ωs − ∆ej)

(5.3a)

C
(s,s′)
emi (t) = −2πe2

V

√
ωsωs′

ei(ωs+ωs′ −∆eg)t − 1
ωs + ωs′ − ∆eg

η(ωs′ − ωs)

×
∑

j
〈g|ε̂s′ · ~r|j〉〈j|ε̂s · ~r|γ〉

[
1

~(ωs − ∆ej)
+ 1

~(ωs′ − ∆ej)

] (5.3b)
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|j〉 denotes the intermediate states for the emission process. ∆ej(∆eg) is the energy

difference between the initial and intermediate (final) atomic state. Eq. 5.3 a indicates that

the photon in mode s is firstly emitted, then photon s′ is emitted immediately afterwards.

An equivalent expression with the heavy side function η(x) = 1x>0 is given in Eq.  5.3 b, which

indicates that either photons can be emitted first, but with ωs′ > ωs. From Eq.  5.3 b the

lifetime of He 1s2s (1S0) can be obtained by,

τ1s2s =
 lim

t→∞

∑
s,s′

d

dt
|C(s,s′)

emi (t)|2
−1

(5.4)

which gives τ1s2s = 0.0197 sec, and agrees with the experimental value [ 94 ].

Since no singlet energy level exists between Ei and Ei + ∆eg for atom 2, the absorption

process can only start after both photons have been emitted, with ωs + ωs′ = ∆eg. The

modes of the photons are not detectable inside the cavity, therefore the “entangled photon

state” can be obtained by summing over all the modes (s, s′)[ 95 ]:

|2ph〉 =
∑
s,s′

C
(s,s′)
emi (t → ∞)|1s, 1s′〉 (5.5)

Based on a second-order perturbation calculation, The entangled-photon absorption am-

plitude can be written as,

Cabs(t) = − e2

~2

∫ t

0
dt2

∫ t2

−∞
dt1

∑
m

ei(∆mit1+∆fmt2)

× (〈f | ⊗ 〈vac|)~r · ~E(t2)|m〉〈m|~r · ~E(t1)(|i〉 ⊗ |2ph〉)
(5.6)

|i〉, |m〉 and |f〉 denotes the initial, intermediate, and final states for atom 2. ~E(t1,2) are the

electric fields of the photons that are bounced back by the cavity (whose frequencies stay the

same but propagation and polarization directions have changed), being absorbed at time t1
and t2. The evaluation of Eq.  5.6 depends on the shape of the cavity, and it turns out that

76



the absorption process can be described by a rank-0 tensor, which is discussed in the next

subsection.

Cabs(t) = − e2

~2

∫ t

0
dt2

∫ t2

−∞
dt1〈vac|~E(t2) · ~E(t1)|2ph〉1

3
∑
m

〈f |r|m〉〈m|r|i〉ei(∆mit1+∆fmt2)

= Θe8E4
0

256~4c6D
(4)
eg δ(∆eg − 4ω0)ei(∆f i−∆eg)t − 1

∆f i − ∆eg

∫ ∆eg

0
dωs[ωs(∆eg − ωs)]3

∑
m

〈f |r|m〉〈m|r|i〉
~(ωs − ∆mi)

×
∑

j

(
〈g|r|j〉〈j|r|e〉
~(ωs − ∆ej)

+ 〈g|r|j〉〈j|r|e〉
~(∆jg − ωs)

)

(5.7)

Θ is a geometry factor which is introduced in Eq.  5.12 , whose values are shown in Figure

 5.4 . Especially, for a spherical cavity, Θ = 64π2

27 .

According to the time-energy uncertainty, the emission-time difference of the photon pair

could be estimated by 2π/∆eg ∼ 8.34 a.u. which is 2.02 × 10−16 sec. The time correlation of

the entangled photon pair can be found from 〈vac|E(t2)E(t1)|2ph〉, which is proportional to

the fourier transformation of the spectrum [ 83 ,  84 ,  96 ], as

〈vac|E(t2)E(t1)|2ph〉 ∝ e−i∆egt2
∫ ∆eg

0
dω1eiω1(t2−t1)[ω1(∆eg − ω1)]3

×
∑

j

[
〈g|r|j〉〈j|r|e〉
~(ω1 − ∆ej)

+ 〈g|r|j〉〈j|r|e〉
~(∆jg − ω1)

] (5.8)

The first and second term in the square bracket corresponds to the firstly emitted photon

being absorbed at time t1 and t2, respectively. The right hand side of Eq.  5.8 is plotted

in Fig.  5.3 (a), versus the time difference between two absorption events of the two photons.

The time scale between the two absorption events is around ±4 a.u. which gives a correlation

time[ 81 ] around 1.93 × 10−16 sec.
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Figure 5.3. (a) The photon correlation function 〈vac|E(t2)E(t1)|2ph〉 (up to
a constant factor) as a function of time difference (t2 − t1), which indicates the
correlation time is around 1.93 × 10−16 sec. (b) An attosecond pump-probe
photoionization scheme using entangled bi-photons.

Finally, according to Eq.  5.1 ,  5.3 and  5.6 , the rate for the excitation, emission and ab-

sorption where an entangled photon-pair is transferred coherently, is:

Rtrans = 2πδ(∆f i − ∆eg)| Θe8E4
0

256~6c6D
(4)
eg δ(∆eg − 4ω0)

∫
dωs[ωs(∆eg − ωs)]3

∑
m

〈f |r|m〉〈m|r|i〉
ωs − ∆mi

×
∑

j

(
〈g|r|j〉〈j|r|e〉
ωs − ∆ej

+ 〈g|r|j〉〈j|r|e〉
∆jg − ωs

)
|2

(5.9)

For a spherical cavity, Rtrans = 1.91 × 10−25E8
0 a.u.. The input beam flux is J = cE2

0
8π~ω0

.

It turns out the transition rate is proportional to J4. The entangled-photon absorption

rate is known to be proportional to the beam intensity(when the beam intensity is not very

strong)[ 77 ,  78 ,  84 ], and our result can be regarded as a generalization of this linearity. Since

our excitation process is a four-photon process, we can consider the four-photon flux as a

whole, which is the input of the system, J (4) = J4. Therefore it is an expected outcome that

Rtrans ∝ J (4).
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In Sec.  5.2 we will follow the estimation here and discuss the experimental applicable of

this spontaneous emitted entangled-photon scheme, and propose experimental setups that

can be achieved by our collaborators.

5.1.2 Geometry of the cavity

In this subsection, we will discuss the influence of the cavity geometry to the photoab-

sorption process, and evaluate the geometry factor Θ introduced in Eq.  5.9 . We start with

summing over all the optical modes, to obtain an entangled-photon state:

∑
s,s′

= V 2

(2πc)6

∫
ω2

sω
2
s′dωsdωs′dΩksdΩks′

∑
ε̂s,s′ (⊥k̂s,s′ )

(5.10)

where
∫
dΩks =

∫
sin θsdθsdφs integrates over the emission angle, and ∑

ε̂s,s′ (⊥k̂s,s′ ) sums the

polarization vector basis. In a spherical cavity, the photon propagation vector is usually

chosen to be (the mode index s and s′ for the two photons are neglected when we discuss

only a single photon),

k̂ = (sin θ cosφ, sin θ sinφ, cos θ)

When the photon is bounced back, its propagation vector become k̂′ = −k̂. The polarization

vectors which are perpendicular to ~k can be expanded in into two basis,


ε̂(1) = (− sinφ, cosφ, 0)

ε̂(2) = (− cos θ cosφ,− cos θ sinφ, sin θ)

However, in a spheroid cavity we need to reparametrize everything above. We assume

the spheroid cavity has one major axis length 2a and two minor axes length 2b (a ≥ b),

the two foci are aligned along the major axis of the spheroid (which is ẑ axis), and the

distance between them is 2l (l =
√
a2 − b2). The photon is emitted from one focus, and no
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matter what direction it propagates, it bounces back and passes through the other focus.

The propagation vector before and after the reflection can be parameterized as:

k̂ = 1
L+

(b sin θ̃ cos φ̃, b sin θ̃ sin φ̃, l + a cos θ̃)

k̂′ = 1
L−

(−b sin θ̃ cos φ̃,−b sin θ̃ sin φ̃,−l + a cos θ̃)

where L± =
√
b2 sin2 θ̃ + (l ± a cos θ̃)2. The polarization basis for ~k and ~k′ are,


ε̂(1) = (− sin φ̃, cos φ̃, 0)

ε̂(2) = −1
L+

[(l + a cos θ̃) cos φ̃, (l + a cos θ̃) sin φ̃,−b sin θ̃]


ε̂(1)′ = (− sin φ̃, cos φ̃, 0)

ε̂(2)′ = 1
L−

[(−l + a cos θ̃) cos φ̃, (−l + a cos θ̃) sin φ̃,−b sin θ̃]

ε̂(1) is perpendicular to the incident plane and doesn’t change upon reflection, but ε̂(2) does:

ε̂(2)(′) = k̂(′) × ε̂(1)(′). The angular integral is,

∫
dΩk =

∫
sin θdθdφ

=
∫ [

a

L+
− l(l + a cos θ̃)(a+ l cos θ̃)

L3
+

]
sin θ̃dθ̃dφ̃

(5.11)

We now consider the photon pair in modes s and s′, their propagation directions are

random and independent with each other. However, constrains are set on their polarization

directions. In the spontaneous decay from e = 1s2s (1Se) to g = 1s2 state, only the isotropic

part of the dipole operator can survive:

〈g|ε̂s′ · ~r|j〉〈j|ε̂s · ~r|e〉 = ε̂s · ε̂s′

3 〈g|r|j〉〈j|r|e〉

80



In the absorption process, since the photons are not detectable inside the cavity, all the

angular directions are integrated coherently:

∑
i,j=1,2

∫
dΩksdΩks′

ε̂(i)
s · ε̂(j)

s′

3 (ε̂(i)′
s · ~r1)(ε̂(j)′

s′ · ~r2)

=
∑

i,j=1,2

∑
kµ

(−1)1+k+µ

√
3

[~r1 ~r2](k)
−µ

×
∫
dΩksdΩks′ [ε̂(i)′

s ε̂
(j)′
s′ ](k)

µ [ε̂(i)
s ε̂

(j)
s′ ](0)

0

=
∑

i,j=1,2

∫
dΩksdΩks′

1
9(ε̂(i)

s · ε̂(j)
s′ )(ε̂(i)′

s · ε̂(j)′
s′ )(~r1 · ~r2)

= Θ~r1 · ~r2

(5.12)

Figure 5.4. A plot of geometry parameter Θ versus the aspect ratio a/b in an
log-log scale. When a = b, the cavity is a sphere and the geometry parameter
obtained its maximum Θ = 64π2

27 .

Where [...](k)
µ is an rank-k spherical tensor with component µ(|µ| ≤ k), as a result of

the tensor product of two vectors[ 46 ]. Given the emitted-photon tensor have only rank-0

component, from the orthogonality of spherical tensors, we have k = 0, µ = 0. So only

rank-0 transition is allowed in the absorption process. This conclusion will no longer hold

once the directions of the photons can be detected, i.e., by a recoil effect of the atoms. The

geometry factor Θ is introduced to denote the polarization part of the integration. When
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the cavity is a prefect sphere, Eq. 5.12 gives Θ = 64π2

27 . The change of Θ versus the aspect

ratio of the cavity can be found in Figure  5.4 , from the range of a = b to a = 148b. As the

cavity becomes prolate spheroid shaped, Θ decrease with the aspect ratio a/b, and become

stable at around Θ = 8π2

9 .

5.2 Experimental set-up and outlooks

Figure 5.5. Generation of entangled bi-photons in the XUV via two-photon
decay of the 1s2s 1S0 state excited by: (a) 4-photon excitation using a narrow
band 240 nm laser. (b) Two-step sequential excitation via the 1s2p state using
a high photon flux helium lamp and a 2059 nm coupling laser. (c) The SCRAP
technique using a multiphoton pump pulse and a Stark shifting pulse which
enable rapid adiabatic passage.

After an estimation of the excitation rate for the Gedanken experiment, in this section,

we turn to consider its applicable and possible experimental set-up. The calculations in the

last section assumes a direct multi-photon excitation from ground state 1s2 to singlet state

1s2s. Since the 1s2s metastable state has a narrow linewidth of ∼ 50 Hz, a multi-photon

excitation to this state requires intense lasers with a linewidth smaller than 50 Hz at a

wavelength of ∼ 240 nm. While excitations of multiphoton metastable states with narrow

lindewidth lasers have been previously demonstrated [  97 ], achieving a significant fraction

of metastable atoms with a 240 nm laser is currently challenging. An alternative scheme

using a lambda-type transition between 1s2, 1s2p, and 1s2s states could be used to achieve

significant excitation. The energy levels of the latter two are 21.22 eV and 20.62 eV above

the ground state, respectively. Ideally, by Stimulated Raman Adiabatic Passage (STIRAP)

[ 98 ] one could achieve nearly 100% population inversion onto the 1s2s state. In this system,
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we consider using the Stokes pulse to dress the single-photon transition between 1s2p and

1s2s, while the pump pulse excites the atom from 1s2 to 1s2p state. Since the 1s2s and 1s2p

states are quite close to the N = 2 continuum threshold (24.59 eV above the ground state), to

prevent ionization leakage which will deteriorate the STIRAP process, the pumping process

from 1s2 to 1s2p should be at least a seven-photon excitation, making this STIRAP scheme

not very efficient and applicable [ 99 ,  100 ].

Acccordingly, a two-step sequential excitation appears more promising, to first excite

1s2 → 1s2p and then 1s2p → 1s2s. The oscillator strengths for one-photon excitation

processes are fa→b = 2∆ba|〈b|ε̂0 · ~r|a〉|2, which gives f1s2→1s2p = 0.2826 and f1s2p→1s2s =

−0.3633 for the two steps. The first step can also be achieved by a 5-photon nonsequential

excitation, with each photon 4.24 eV , the generalized cross-section gives,

σ1s2→1s2p = 2π(2πωα)5|D(5)|2 = 5.8519 × 10−4a.u.

Figure 5.6. Proposed experimental scheme to generate XUV entangled pho-
tons as described in  5.5 and measure their correlation time. The emitted
entangled bi-photons are collected within a large solid angle in a direction
orthogonal to the excitation laser propagation direction. The bi-photons are
collimated by a toroidal mirror and then split into two independently time
delayed paths before being focused by a second toroidal mirror at a target gas
jet in a vacuum chamber. Entangled two-photon absorption in helium can be
measured as a function of time delay using photon detectors or by collecting
helium ions after ionization by a high repetition rate femtosecond laser.
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To achieve the described two-step sequential excitation above, a high photon flux helium

lamp source can be used in the first step to excite 1s2p and a 2059 nm laser can transfer

population to the 1s2s state. The ∼ 1 GHz linewidth of the 1s2p state eliminates the need

for a narrow linewidth laser.

Another alternative approach to achieve significant population of the 1s2s singlet metastable

state is to use Stark-chirped rapid adiabatic passage (SCRAP) previously proposed to excite

the 2s metastable state in a hydrogen atom [  101 ]. In this technique, a pump pulse excites

the metastable state via a multiphoton transition in the presence of a Stark pulse that Stark

shifts the 1s2s state (see figure  5.5 (c)). The combined effect of the two pulses results in

a Landau-Zener-type adiabatic passage that can significantly populate the 1s2s state. The

SCRAP technique can also suppress ionization leakage by laser-induced continuum structure

[ 102 ].

The bi-photons from the decay of the 1s2s state are emitted in all directions with an

approximate distribution given by (1 + cos2 θ) [ 93 ], where θ is the relative angle between the

entangled photons. The photons that are emitted in a direction orthogonal to the excitation

laser propagation direction can be collected within a large solid angle and sent along inde-

pendent time-delayed paths towards a pump-probe target. Figure  5.6 shows a schematic of

a proposed experimental setup for generation of these entangled photons and their utiliza-

tion in an attosecond pump-probe experiment. In this scheme, a grazing incidence toroidal

mirror collimates the emitted photons which are then split into two halves using a grazing

incidence split mirror that can introduce a controllable time-delay between the two halves

of the beam. The split beams are then focused using a second toroidal mirror onto the

target gas jet. A pump-probe experiment with attosecond time resolution can be performed

by measuring a photo-ion or photo-electron signal arising from the absorption of entangled

bi-photons by an atom or molecule. Recent work on entangled two-photon absorption sets

upper bounds on the enhancements in two-photon absorption cross section with entangled

photons when no intermediate resonances are involved [  103 ,  104 ]. When intermediate res-

onances are involved, the two-photon absorption rate is significantly enhanced. Further,

measuring a pump-probe photoionization signal as opposed to an absorption signal as in

previous two-photon absorption experiments allows detection of low absorption rates. Such
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entangled photon pump-probe experiments will extend the capabilities of attosecond science

where attosecond pulses are currently used from high-order harmonic generation [  105 ] or free

electron laser [ 106 ] sources.

The entangled photon generation scheme discussed here can be extended to the soft X-

ray (SXR) regime using helium-like ions. Two-photon decay in helium-like ions has been

well studied [ 89 ,  91 ,  93 ]. Similar to the 1s2s 1S0 state of neutral helium atoms, the 1s2s
1S0 states of helium-like ions such as N5+, O6+ and Ne8+, predominantly decay by two-

photon emission with a rate proportional to Z6, where Z is the atomic number. The large

energy difference between such excited states and the ground state of the ions, which can be

in the range of several hundred to thousands of electron-volts, results in entangled photon

correlation times of few attoseconds to zeptoseconds. For example, the 1s2s 1S state of Ne8+

is located ∼ 915 eV above the Ne8+ ground state and this corresponds to an entangled photon

correlation time of ∼ 5 attoseconds. The two-photon decay rate in this case is ∼ 1 × 107

s−1 which is significantly larger than the corresponding rate for neutral helium atoms of

∼ 5 × 101 s−1. Ne8+ has been previously generated using strong femtosecond laser fields

[] as well as using strong femtosecond X-ray pulses from free electron lasers [  107 ] both of

which can potentially also create Ne8+ in the 1s2s 1S0 excited state. We note here that it

has been previously experimentally demonstrated that the bandwidth required to generate

few-attosecond pulses can be obtained from HHG using mid-infrared pulses [  108 ]. Further,

it has been theoretically shown that zeptosecond pulses can be generated from HHG when

suitable filters are used [ 109 ]. However, the shortest measured attosecond pulse is currently

43 attoseconds [  105 ]. Our approach of using entangled photons from two-photon decay of

helium-like ions offers an alternative path for carrying out ultrafast measurements in these

extreme regimes of a few-attoseconds or zeptoseconds.

In conclusion, an unconventional approach is presented here for generating attosecond

entangled bi-photons in the XUV and SXR regimes using two-photon decay in helium atoms

and helium-like ions. Multiple alternative schemes can be used to excite the 1s2s 1S0

metastable state in helium and experimental scheme is suggested to collect and use the

emitted XUV bi-photons in an attosecond pump-probe experiment. Potential extension of

such metastable excitations to helium-like ions is additionally proposed, whereby SXR bi-
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photons can be generated with entanglement times in the few-attosecond range with the

possibility of reaching the zeptosecond regime. This approach can open doors to using XU-

V/SXR entangled photons in quantum imaging and attosecond quantum spectroscopy of

atomic, molecular and solid-state systems.
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6. SINGLE-CHANNEL COHERENT CONTROL OF ATOMIC

HELIUM

Coherent control scenarios have generated extensive attention in condensed matter systems

and atomic and molecular physics. The basic idea is to introduce a difference in two alterna-

tive electric dipole transition amplitudes to manipulate the interference between them and

thereby control an observable outcome. In particular, phase-sensitive coherently controlled

quantum interference enables the observation of novel physics. For example, the two-color

phase-sensitive coherent control can be applied to various scenarios in physical chemistry

and molecular physics in order to control the branching ratio among different reaction prod-

ucts [  110 ,  111 ,  112 ], to rotate the molecular polarization, and to selectively ionize oriented

molecules [ 113 ]. In condensed matter physics it is primarily of interest to control the current

flow direction in a semiconductor [ 114 ,  115 ], and in quantum computation to depress the

linkage error of qubits [  116 ]. This technique is also used in femtosecond and attosecond

experiments [  117 ] and in the strong field regime [  118 ], and to achieve quantum path control

between short and long electron trajectories [ 119 ].

Compared with the extensive experimental literature, there are comparatively few theo-

retical calculations that provide a full treatment of such coherently controlled systems [ 45 ].

Several calculations have been carried out for photoionization of Ne [ 120 ,  121 ], H2 [ 122 ], and

dc-field dressed hydrogen and alkali-metal atoms in a limited energy range [ 123 ,  124 ].

In this and the following chapter, we will study the coherent control of helium and

barium ionization, respectively (Those studies have been published in Ref.[  125 ] and [  64 ]).

The energy level diagrams are given in Fig.  6.1 and  7.1 , the former one is an example of

single-channel coherent control, while the latter one is for multi-channel coherent control. In

both cases, the photoelectron angular distribution (PAD) is computed to analyze the phase

dependence of the directional right-left (or upper-lower) asymmetry parameter, especially as

influenced by Fano-Feshbach resonances, and the role of autoionizing states in affecting the

interference between one- and two-photon ionization pathways. Especially, for the single-

channel coherent control discussed in this chapter, we optimized both the relative phase

and amplitudes of laser fields and proposed a new frequency-sensitive controlling scheme, by
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which a small energy change near resonances can flip the direction of scattering electrons

with high efficiency. An example of the frequency-sensitive coherent control where 90% of

the photoelectrons flip their emission direction is presented. The main part of this chapter

has been included in Ref.[ 125 ], which is coauthored with Chris H. Greene.

6.1 Theoretical description of single channel coherent control

The present study treats the ω − 2ω coherent control of helium ionization, an atom for

which the electron correlations have been extensively calculated and interpreted [  5 ,  62 ,  75 ,

 126 ,  127 ,  128 ]. In contrast to the studies of the coherent control of photoelectron branching

ratios into multiple open channels [  37 ,  39 ,  129 ,  130 ] (which will be discussed in the next

chapter), the present treatment considers ionization into a single open channel that possesses,

however, three contributing partial waves. The bichromatic laser electric field considered in

our treatment is given by ~E(t):

~E(t) = ε̂
(
E2ωe−i(2ωt+Φ2ω) + Eωe−i(ωt+Φω) + c.c.

)
. (6.1)

Here Eω,2ω are the electric field amplitudes for the fundamental and second harmonic. The

two fields have a variable but well-defined phase relation, denoted by Φω,2ω, and both of the

fields are chosen here to be linear-polarized along a common z-axis i.e., ε̂ = ẑ. The frequency

range considered is ω = 1.0 − 1.2 a.u.. The schematic diagram of the ionization process is

shown in Fig.  6.1 . A ground state He atom at Eg = −2.90 a.u. absorbs either one photon

with energy 2ω or two photons with each energy ω, reaching a final state f with energy

from −0.9 to −0.5 a.u. (indicated by the upper shaded region of Fig.  6.1 ). The two-photon

pathway is an above threshold ionization (ATI), with intermediate energies given by the

lower shaded region of Fig.  6.1 . The resonances converging to the N = 2 threshold are of

particular interest. The atomic orbital angular momentum is initially Li = 0, and it changes

after absorption of one electric dipole photon to Lf = 1, or after two-photon absorption to

Lf = 0, 2. The parity π flips between even and odd for each photon absorption step, and

the atomic spin S remains in the singlet state since spin-spin and spin-orbit interactions are

neglected in this study.
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Figure 6.1. Schematic energy level diagram of helium for the relevant tran-
sitions. The He ground state is ionized, with the one and two-photoionization
pathways indicated by arrows. The shaded regions show the energy ranges
considered for the final and intermediate states, both of which are between
the N = 1 and N = 2 thresholds. The dashed lines give the lowest few bound
and autoionizing energy levels[ 5 ] below the N = 1 and N = 2 thresholds,
respectively, with 2S+1Lπ spectroscopic labels from left to right as 1Se,1P o and
1De. The autoionization levels that are relevant to our calculations are those
above the N = 1 thresholds. There are no intermediate-state resonances in-
volved in the frequency range considered, only an open ionization continuum.
This figure is taken from Ref.[ 125 ].

It is well known that the ω−2ω scheme displays no interference effects that can influence

the total yield [  131 ]. This is because the even- and odd-parity final states are in principle

distinguishable, which implies that no interference occurs in any observable that commutes

with the parity operator such as the integrated absorption rate. However, the ω−2ω scheme

influences the angular emission of the photoelectron, since an angular observable represents

an operator that does not commute with parity. This interference has been confirmed by

experiments [ 37 ,  38 ,  39 ,  131 ], which show that tuning the phase difference ∆Φ = 2Φω − Φ2ω

causes a sinusoidal modulation that can be observed in the integrated lower- or upper-

(negative or positive z) dominance in the photoejection directions. The remainder of this

article shows the sinusoidal modulation in the computed photoelectron angular distribution
dW (θ)

dΩ :
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dW (θ)
dΩ =

∣∣∣c0Y00(θ)eiφ0 + c1Y10(θ)ei(φ1+∆Φ) + c2Y20(θ)eiφ2
∣∣∣2 = Wtot

4π

4∑
j=0

βjPj(cos θ) (6.2)

Here θ is the polar angle between the ejected electron and the polarization axis; there is no

φ dependence owing to the azimuthal symmetry. Wtot is the angle-integrated transition rate

and β0 ≡ 1. In the first line of Eq.  6.2 , the differential transition rate dW (θ)
dΩ is given by a

coherent sum of the different angular components, with complex transition amplitude cleiφl

for partial wave l, where cl is real and positive. Since a photoelectron in our calculation can

escape only with He+ in the 1s state, its angular momentum takes the values l = Lf = 0, 1, 2.

The experimentally-controllable optical phase is ∆Φ = 2Φω −Φ2ω, which is distinct from the

intrinsic phases in the amplitudes φl that reflect the atomic physics. Note that the latter are

strongly energy dependent near resonances and thresholds: they include contributions from

the long-range Coulomb potential, the electron correlations, and the intermediate scattering

states.

The second line of Eq.  6.2 rearranges the summed products of spherical harmonics

Yl0(θ) into Legendre polynomials Pj(cos θ) with real coefficients βj. The even (odd) order

Pj(cos θ) gives the symmetric (anti-symmetric) photoelectron distribution along θ = π/2

which produce differences between the lower- and upper halves of the emission sphere, i.e.,

the negative and positive z regions, respectively. In the absence of interference, the odd

orders of Pj(cos θ) would vanish and no asymmetry would be observed between the two

hemispheres. With some specific values of βj, it is possible to guide most electrons to one

side, as we will demonstrate in the latter discussion. A directional asymmetry parameter

αL = WL/(WL +WU) has been measured in some experiments[ 37 ,  38 ,  39 ,  131 ], so we use it

to quantify the ratio between the lower-directed electron current and the total:

WL = 2π

∫
π

π

2

dW (θ)
dΩ sin θdθ = Wtot

2

(
1 − 1

2β1 + 1
8β3

)

WU = 2π

∫ π

2

0

dW (θ)
dΩ sin θdθ = Wtot

2

(
1 + 1

2β1 − 1
8β3

) (6.3)
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For αL = 1 (or 0), all the photoelectrons go to the lower (upper) side, while at αL = 0.5,

there is no preference over either direction; this usually happens at resonances when one of

the definite parity pathways is dominant. βj and the total rate Wtot in terms of the transition

amplitudes cleiφl are given here:

Wtot = c0
2 + c1

2 + c2
2

Wtotβ1 = 2
√

3c0c1 cos [∆Φ − (φ0 − φ1)] + 4
√

3
5c1c2 cos [∆Φ − (φ2 − φ1)]

Wtotβ2 = 2c1
2 + 10

7 c2
2 + 2

√
5c0c2 cos (φ2 − φ0)

Wtotβ3 = 6
√

3
5c1c2 cos [∆Φ − (φ2 − φ1)]

Wtotβ4 = 18
7 c2

2

(6.4)

Therefore the directional asymmetry parameter αL is:

αL = 1
2 −

√
3/2

c02 + c12 + c22

{
c0c1 cos [∆Φ − (φ0 − φ1)] +

√
5

4 c1c2 cos [∆Φ − (φ2 − φ1)]
}

≡ 1
2 + A(χ, ε) cos [∆Φ − ϕ(ε)]

(6.5)

The second equality of Eq.  6.5 recasts the directional asymmetry parameter αL in terms of

an amplitude A(χ, ε) and a phase ϕ(ε), both of which are energy sensitive (ε = Eg +2ω is the

final state energy). The amplitude A also depends on the electric fields Eω,2ω, as a function

of χ = E2
ω/E2ω, while ϕ is independent of the field strengths. 0 ≤ A ≤ 1

2 and 0 ≤ ϕ ≤ 2π.

In order to maximize αL, ϕ should equal the optical phase difference. As we will show,

ϕ is encoded with electron-correlation information as are the phases φi. The influence of

the optical interference phase ∆Φ, the reduced electric field strength χ, and the final state

energy ε to αL will be the topic of next subsection.
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Before the end of this subsection, here we give the formula for the transition amplitudes

cleiφl under perturbation theory [ 46 ,  58 ]:

c0eiφ0 =
√

2π

3 E2
ω〈f0|G(ω,~r′, ~r)~r′ · ~r|i〉

c1eiφ1 =
√

2πE2ω〈f1|rz|i〉

c2eiφ2 =
√

2π

3 E2
ω〈f2|G(ω,~r′, ~r)(3r′

zrz − ~r′ · ~r)|i〉

(6.6)

Here |i〉 and |fl〉 are the energy eigenstates for the unperturbed helium atom. In the for-

mula above, we rearrange the dipole operators: usually for one- and two-photon transitions

we have D(1) = ~r · ε̂ and D(2) = (~r′ · ε̂)(~r · ε̂) (where vector operator ~r = ~r1 + ~r2). In

Eq.  6.6 the single-photon and two-photon electric dipole transition operators are written

as rank-0,-1 and -2 tensors for different l. For the two-photon amplitudes, the Green’s

function is introduced for the intermediate ATI transition and can be written formally as,

G(ω,~r′, ~r) = ∑∫
m

〈~r′|m〉〈m|~r〉
ω+Eg−Em

, Which have been introduced and discussed in Chap.3, Sec. 3.2 ,

Subsec. 3.2.1 . The intermediate energies Em include all the eigenvalues of the unperturbed

helium Hamiltonian that obey the parity and angular momentum selection rules and |m〉

includes both bound and continuum states with different normalizations.

6.2 Results

6.2.1 Phase- and amplitude- sensitive control

In this section, the optical control of αL will be discussed in terms of three parameters:

the relative laser phase ∆Φ, the reduced field strength χ = E2
ω/E2ω, and the final state

energy ε that plays a major role owing to the existence of resonances. The computation

of A(χ, ε) and ϕ(ε) versus energy is the main feature of our work, plus the identification

of regions where very high control is readily achievable. With the knowledge of αL, the

redirection of photoelectron emission can be discussed in a more complete manner, as control

can be optimized by choosing energies that maximize the directional asymmetry. In addition,

photocurrents can be redirected not only through phase control, but also by tuning the

photon frequency with fixed phases and field strengths.
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Figure 6.2. The directional asymmetry αL versus relative phase ∆Φ and the
reduced field strength χ = E2

ω/E2ω at an arbitrary single energy. The former
shows a sinusoidal modulation, while the latter has a single extremum at χ0.

First, consider our results for αmax
L when the reduced field strength χ and optical phase

difference ∆Φ are optimized at each energy. To maximize αL the choice of optical phase is

∆Φ = ϕ(ε), (Fig.  6.3 (b)). The choice of χ is determined by writing the amplitude A in

the form A(χ, ε) ∝ χ/(a(ε) + b(ε)χ2), with a(ε) and b(ε) being determined from Eq.  6.6 .

A single peak of A(χ, ε) exists at χ0(ε). Note that whatever is the value of χ, there is no

influence on the value of ϕ, and therefore the two parameters can be tuned separately and

independently. By selecting a proper χ, we can largely improve the efficiency of coherent

phase control of the directional electron photoemission.

Our calculated αmax
L = 1/2 + A(χ0(ε), ε) is plotted in Fig.  6.3 (a), as the solid curve.

Observe that αmax
L ranges between 0.65 − 1.0 and indicates a quite high-efficiency level of

control. However, at energies near the resonances, which are the regions of our greatest

interest, αmax
L drops down. This is expected since the symmetry of any specific resonance

has a single transition amplitude there that overwhelms the amplitude from other channels,
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Figure 6.3. (a). The solid curve shows the maximized ratio of lower-oriented
electrons αmax

L obtained by optimizing the reduced field strength χ = E2
ω/E2ω

and optical phase ∆Φ at each energy. The dashed curve shows the αL when
χ = 1. The background vertical lines give the position of resonances (with
different symmetries indicated by different line-types); those positions are near
the local minima of the αL-curves. (b). The directional asymmetry phase ϕ as
the solid curve, namely the optical phase corresponding to αmax

L . ϕ experiences
a dramatic change over 2π or ±π across a resonance, which can be traced back
to the dipole transition moment phases φl that are shown as dashed curves.
This figure is taken from Ref.[ 125 ].

and the PAD behaves as if only a single path-way is allowed. This is even more obvious for

αL at χ = 1 a.u. (shown as the thin dashed curve), where αL drops back to 0.5 at almost

every resonance energy. Accordingly, tuning the reduced field strength χ can alleviate but

not eliminate the asymmetry-diminishing tendency at resonance energies.

The directional asymmetry phase ϕ(ε) is presented in Fig.  6.3 (b). When far away from

the resonance, ϕ(ε) experiences a small change over the whole range, fluctuating only over

0.55π − 0.7π. However, across the resonance it changes dramatically over the full possible

range of 2π or ±π. These features of ϕ(ε) would enable frequency-sensitive coherent-control
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to redirect the photocurrent, as is discussed below. The changes of ϕ(ε) show a behavior

similar to that of the dipole transition phases φl (the dashed curves), which are properties

of the final and intermediate scattering states. The wave function of a detected photoelec-

tron satisfies the incoming wave boundary condition [ 27 ]: It approaches the outgoing wave

portions of a plane wave pointing towards the detector at infinity, implying that the scat-

tering wave function can parameterized as, ψf (r) → 1√
2πk

(
eikrri/k − e−2iδle−ikrr−i/k

)
, where

δl = ηl + πτl, with ηl the Coulomb phase parameters: ηl = ln(2k)
k

+ arg[Γ(l+ 1 − i
k
)] − lπ

2 , and

τl incorporate both the quantum defects and the influences from all the closed channels[ 28 ].

For the single-photon transition we have φ1 = δ1. For a two-photon ATI process, there is an

extra phase that comes from G(ω,~r′, ~r). Since the undetected intermediate scattering wave

can be treated as purely outgoing at large distance [  54 ], G(ω,~r′, ~r) can be written into a

principal value part and an “on shell” part as [ 24 ]:

G(ω,~r′, ~r) = G(P)(ω,~r′, ~r) − iπ〈~r′|m(sh)〉〈m(sh)|~r〉 (6.7)

where G(P)(ω,~r′, ~r) is the principal value Green’s function, and the on-shell state 〈~r|m(sh)〉

is 〈~r|m〉 at energy Em = Eg + ω. The complex-valued on-shell contribution introduces an

intermediate phase, which is partly responsible for the nonzero value of the minimum total

cross section for the two-photon ATI process in the Fano lineshape [ 58 ]. In contrast, the

minimum total cross-section is normally expected to be zero for an autoionizing state that

can decay into only one continuum.

6.2.2 Frequency-sensitive control

Based on the discussions of A(χ, ε) and ϕ(ε), we now explore the possibility of redirecting

the photocurrent through frequency control. As demonstrated in Fig.  6.3 , the asymmetric

phase ϕ changes rapidly with energy when across the resonance, therefore with a fixed optical

phase ∆Φ, a small change of ε can flip the escape direction of the photoelectrons between

upper and lower halves of emission sphere. Now we consider the difference of αL at two
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Figure 6.4. The differences in photoelectron directional asymmetry |α(1)
L −

α
(2)
L | are shown for all possible (ε1,ε2) from -0.5 a.u. to -0.9 a.u.. ∆Φ and χ are

chosen to optimize the difference |α(1)
L −α

(2)
L | at each value of the two energies

on the plane. The bright grids indicate places where the energy pairs have a
large angular asymmetry, and they show a close overlap with the “resonance
mesh” of horizontal and vertical stripes. The blue point near the S-wave 2p2

resonance indicates the energies considered in Fig.  6.5 . This figure is taken
from Ref.[ 125 ].

energies ε1 and ε2, using the same optical quantities (∆Φ,χ). This gives an expression for

(α(1)
L − α

(2)
L ), namely

α
(1)
L − α

(2)
L = A1 cos (∆Φ − ϕ1) − A2 cos (∆Φ − ϕ2)

= Re
[
ei∆Φ(A1e−iϕ1 − A2e−iϕ2)

] (6.8)

For this exploration ∆Φ = −arg(A1e−iϕ1 −A2e−iϕ2), and χ is chosen to maximize |A1e−iϕ1 −

A2e−iϕ2| at each pair of energies. Next we scanned through all the (ε1,ε2) from -0.5 a.u. to

-0.9 a.u. to search for candidates that have a large orientation difference. The maximum

|α(1)
L − α

(2)
L | for all the energy points are shown in Fig.  6.4 .

The bright grids represent regions where the angular asymmetry difference |α(1)
L −α

(2)
L | is

large, which generally tends to happen when at least one energy is close to a resonance. When

both ε1,ε2 are far from resonances |α(1)
L −α

(2)
L | is small, which is expected since according to
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Figure 6.5. An example demonstrating how frequency-sensitive control can
almost completely redirect the photoelectrons. The parameters are given in
the figure. At ∆Φ = 0.63π(dashed vertical line) α(1)

L −α
(2)
L is maximized, with

the values marked on the ticks. A polar plot of dW (θ)
dΩ using the parameters

indicated by the dashed lines is given in the right panel. With two very close
frequencies, one that drives most photoelectrons along the polarization axis
+ẑ, while the other opposite to that direction. This figure is taken from
Ref.[ 125 ].

Fig.  6.3 in those regions ϕ1,2 show little difference from each other. The points of greatest

interest are near the intersections of the grids, where |α(1)
L −α(2)

L | rapidly changes, i.e. in those

regions where both energies are on or near resonance. A specific example point has been

selected near the S-wave 2p2 resonance, shown in Fig.  6.4 as a blue point, for the following

analysis.

The blue point is at ε1 = −0.6226 a.u. and ε2 = −0.6213 a.u., which go across the

S-wave 2p2 resonance at -0.6219 a.u. with width Γ = 2.36 × 10−4 a.u.. The corresponding

values of the other key parameters are χ = 0.1017, ∆Φ = 0.63π. Their directional asymmetry

parameters α(1),(2)
L versus ∆Φ are presented in Fig.  6.5 , and they are entirely out of phase from

each other; when ∆Φ = 0.63π, both of the asymmetry parameters reach their corresponding

extrema with values 0.961 and 0.109. The choice of χ maximizes this disparity, and it enables

the one-photon transition(p-wave) to be strong enough to interfere with the strong on-

resonance two-photon transition(s-wave). To examine the physics at those extremum points,

the PAD dW (θ)/dΩ is calculated with the parameters cited above, shown in Fig.  6.5 right
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Figure 6.6. dW
dΩ for six energy points between −0.6224 and −0.6213 a.u.,

which demonstrates how the PAD changes across the S-wave 2p2 resonance at
-0.6219 a.u.. When the energy is closest to the resonance energy, its PAD is
almost symmetric in both directions.

panel. This demonstrates how different the photoejection directions can be at ε1 = −0.6226

a.u.(ω = 31.032 eV ) and ε2 = −0.6213 a.u. (ω = 31.049 eV ). The central energies ε1, ε2

have been convolved over a resolution of ±3.5 × 10−4 a.u.(0.01 eV ), in order to simulate a

realistic experiment with finite resolution.

One realization of the reduced field at χ = E2
ω/E2ω = 0.1017 a.u. is to use lasers with

intensities Iω = 2.0 × 1013 W cm−2(fundamental) and I2ω = 1.10 × 1012 W cm−2(second

harmonic), where Eν =
√

2Iν/ε0c a.u./5.1422 × 109V cm−1. Based on these laser intensities,

we analyze here the reasonableness of a possible implementation of this frequency-sensitive

control scheme. The total rates for asymmetric photoejection in Fig.  6.5 are, Wtot(ε1) =

2.54 × 10−5 a.u. and Wtot(ε2) = 3.08 × 10−5 a.u., but these only include photoelectrons that

escaped after absorbing 2ω of energy. There are extra photoelectrons that escape from the

two-photon pathway intermediate process, i.e. from absorbing a single photon of frequency

ω, which have not been discussed, because they are not being controlled by the optical

interference effect. The ionization rate for the “intermediate state leaked” ω-absorption

process is much stronger, usually by a factor of 100, than the 2ω-absorption process. At

energies ε1 and ε2, their corresponding intermediate ionization rates are around 1.99 × 10−3

98



Figure 6.7. The ionization rate of photoelectron escaping with different
kinetic energies(K.E.), with laser intensities Iω = 2.0 × 1013 W cm−2 and
I2ω = 1.10 × 1012 W cm−2. ∆1s,g = E1s − Eg = 24.58 eV is the energy dif-
ference from the 1s threshold and the ground state. The ionization rate at
ω−∆1s,g is about 100 times larger than the rate for 2ω−∆1s,g, which makes it
challenging to detect the directional asymmetry properties of the faster elec-
trons, although the two different energies are readily discriminated. This figure
is taken from Ref.[ 125 ].

a.u.. Thus to observe the experimental interference control predicted in the present study,

electron energy discrimination is required. The ionization rates Wtot for both the processes

covering final state energy ε from −0.9 to −0.5 a.u. are given in Fig.  6.5 . The dominance

of intermediate ionization is rather typical for most ATI processes, except for a few cases

when the intermediate states hit a near-zero ionization minimum, which are found in some

alkaline earth atoms such as Ca, Sr, and Ba. Searching for proper ionization processes that

can suppress the intermediate leakage can be a goal for our future study. For helium where

the intermediate states lie in a flat continuum for the energy range considered in this study,

the ratio between for 2ω- and ω-absorption is around E2
ω a.u.– very tiny for electric field below

the tunneling region, which implies that the optical control scheme is not highly efficient.

To conclude, the present treatment of energy-dependent coherent control over the direc-

tional asymmetry of helium ionization has identified the optical phase difference ∆Φ and

reduced electric field strength χ that largely enhance the degree of control of the directional

photoejection asymmetry. Our study suggests an alternative way of redirecting the photo-
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electrons by changing the laser frequency but with a fixed relative phase and field strength

ratio, and we presented an example using this frequency-sensitive controlling scheme to redi-

rect photoelectron with final state energies across the S-wave 2p2 resonance. However, due

to the existence of intermediate-state photoionization, the coherent control can only influ-

ence a small fraction of the total electron current which makes any experimental test of our

predictions demanding. Future studies of the alkaline earth atoms that have a continuum

ionization minimum of either the Fano- or Cooper-type might circumvent this issue.
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7. MULTI-CHANNEL COHERENT CONTROL AND PHASE

LAG OF ATOMIC BARIUM

In the last chapter, we discussed the ω − 2ω coherent control of a single channel in atomic

helium. With a controllable optical phase difference ∆ϕ between the two laser electric fields,

the outcome under control shows a sinusoidal modulation of ∆ϕ. i.e. for an observable p,

p = p0 + p1 cos (∆ϕ− δ). In this chapter we consider an especially interesting situation,

when the final state can decay into more than one continuum, and those continua respond

differently to the optical phase difference. The phase lag from two continua i, i′ is defined by

∆δ = δ(i) − δ(i′), which is non-zero for most atoms and molecule. Most of the discussions in

this chapter has been published as Ref.[ 64 ], which is coauthored with Chris H. Greene.

The phase lag associated with coherent control by two-pathway excitation has been widely

studied in both the experimental [  37 ,  38 ,  110 ,  111 ,  112 ,  113 ,  129 ] and theoretical [  122 ,  129 ,

 130 ,  132 ,  133 ,  134 ,  135 ,  136 ] literature. It has been found by many experiments that the

phase lag is almost constant as a function of wavelength for flat continua, but varies rapidly

at a resonance [  129 ,  130 ,  137 ]. The phase lag behavior in the vicinity of resonances has

not only drawn the attention of experimentalists interested in potential applications [ 110 ,

 111 ,  112 ,  113 ], but it has also triggered a series of theoretical investigations aimed at the

extraction of insights into the nature of multichannel systems.

7.1 Background

Previous theoretical efforts to clarify the origin and properties of the phase lag are based

on simplified models of a few discrete states embedded in two continua [  122 ,  129 ,  130 ,

 132 ,  133 ,  134 ,  135 ,  136 ]. However, the first quantitative comparison between that type of

theoretical model and an experimental observation in the final state resonance energy range,

conducted by Yamazaki et. al., was far from satisfactory [ 37 ,  38 ]. This suggests that a toy

model with phenomenological parameters is not adequate to predict the phase lag behavior

in a multichannel, highly-correlated atom such as barium. In this article, we provide an ab

initio calculation for the experiment of Yamazaki et. al., based on a multi-channel quantum
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defect (MQDT) and R-matrix treatment[ 1 ,  7 ,  24 ,  25 ,  26 ], and obtain quantitative agreement

with the experimental observations. The system considered by the experiment and by our

calculation is the ω − 2ω concurrent ionization of atomic barium, with final state energy

above two ionization thresholds, namely 6s1/2 and 5d3/2 (Fig.  7.1 ). The role of resonances

in our calculated phase lag has been analyzed from a multichannel coupling point of view.

Figure 7.1. (a) Energy level diagram for the barium ω − 2ω interference
scheme starts from e1 = 6s6p (1P1) state (for full ionization steps, see Fig.  3.9 ).
The excited atom can decay into either the continua associated with the 6s1/2
or the 5d3/2 ionic state. The relevant threshold energy levels are given in the
figure in atomic unit and cm−1. (b) The angular momenta J and parity π

allowed by the electron-dipole selection rule with all photons polarized along
z-axis, as introduced in Fig. 3.9 . The quantum numbers in green and red give
the final states for the one- and two-photon ionizations.

7.1.1 Theoretical description of multi-channel coherent control

In contrast to the previous experiments that focused on controlling chemical products of

a photprocess[  110 ,  111 ,  112 ,  129 ], the ω − 2ω scheme does not affect the total yield. This

is because the absorption of one- or two-photons produces final states with opposite par-

ities π = {e, o}, whereby the interference terms that mix different parities must have odd
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parity and cannot be observed by measuring the overall ionization rate.[ 45 ,  125 ,  131 ] The

photoelectron angular distribution (PAD), which can be parameterized by symmetric (S)

and anti-symmetric (A) components as S(θ, φ) +A(θ, φ) cos (∆ϕ+ δ0) [ 37 ], is the observable

explored here. The photoelectrons can escape leaving the ion in two different energy eigen-

states a and b (referred to loosely in the following as channels), with principal and angular

quantum numbers (ncLcJc
) of the ionic valence electron. For convenience, we consider one

of the channels with the channel index being omitted, until later in the article where we

explicitly treat the difference between the channels. The differential ionization rate dW
dΩ can

be expressed in terms of spherical harmonics Ylm with complex coefficients feiδ as [ 41 ]:

dW

dΩ = N 2∑
λin

∣∣∣∣∣E2
ω

∑
l=odd

Ylm(θ, φ)fγ,2eiδγ,2 + E2ωei∆ϕ
∑

l=even

Ylm(θ, φ)fγ,1eiδγ,1

∣∣∣∣∣
2

fγ,qeiδγ,q =
∑
λco

〈JcsMJcs , lm|Jf ,MJf
〉〈[(Jc, s)Jcs, l]Jf |[Jc, (l, s)j]Jf〉T (q)

f,i .

(7.1)

The description of atomic barium is focused on its two active electrons, with the inner and

outer electron quantum numbers denoted by (Lc, sc)Jc and (l, s)j. ~Jcs = ~Jc +~s, ~Jf = ~Jcs +~l.

N 2 is a normalization constant. The incoherent sum index λin includes Jcs, the nuclear

spin I, and all the angular momentum projections M . The coherent sum index in Eq.  7.1 

represents λco = {Jf , j}, and another index is defined as γ = {λin, l}. Here T (q)
f,i is the q-

photon transition amplitude from state i to state f , whose formula is given in the Appendix,

Eq.  3.25 . Because different pathways q = 1, 2 produce opposite parities (−1)l, the index

q is omitted below. The two electric field strengths are E2ω,ω for the one- and two-photon

processes, with corresponding optical phase difference ∆ϕ = 2ϕω − ϕ2ω. Because both

the pump and ionization lasers are linearly polarized along ẑ, the system has azimuthal

symmetry. Eq.  7.1 can therefore be arranged into a sum of Legendre polynomials Pk(cos θ)

with real coefficients βk as,

dW

dΩ = Wtot

4π

6∑
k=0

βkPk(cos θ) (7.2)
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Since we have three-photon ionization at most from the ground state, k = 6 is the maxi-

mum order. The even and odd orders of Pk(cos θ) give the symmetric and anti-symmetric

contibutions to the photoelectron angular distributions(PADs).

Wtot = E2
2ω

∑
λin,le

f 2
γe + E4

ω

∑
λin,lo

f 2
γo

Wtotβke = E2
2ω

∑
λin,le,l′e

Θ(le, l′e, ke,m)fγefγ′
ee

i(δγe −δγ′
e
) + E4

ω

∑
λin,lo,l′o

Θ(lo, l′o, ke,m)fγofγ′
o
ei(δγo −δγ′

o
)

Wtotβko = E2ωE2
ω

∑
λin,lo,le

Θ(lo, le, ko,m)fγofγe

[
ei(δγo −δγe −∆ϕ) + e−i(δγo −δγe −∆ϕ)

]
(7.3)

The degree of asymmetry of the PAD along the z-axis is quantified by the directional

asymmetry parameter, defined as αasym = W−z/Wtot, the ratio between the −z directed

photoelectron current and the total [ 37 ,  38 ,  125 ]. It is given by:

αasym = 2π

Wtot

∫
π

π

2

dW (θ)
dΩ sin θdθ = 1

2(1 +
∑

k

ρkβk)

≡ 1
2 + A cos (∆ϕ− δ0)

(7.4)

ρk ≡
∫ 0

−1 Pk(x)dx, which is {−1
2 ,

1
8 ,−

1
16} for k = {1, 3, 5} and is 0 when k is even. The

second line of Eq.  7.4 recasts αasym in terms of an amplitude A and phase δ0. 0 ≤ A ≤ 1
2

and 0 ≤ δ0 ≤ 2π. The electric field strengths for the fields with frequencies Eω,2ω affect the

amplitude A only. The phase δ0 can be expressed in terms of feiδ and angular momentum

coefficients as:

δ0 = −arg

 ∑
λin,lo,le,ko

ρkoΘ(lo, le, ko,m)fγofγeei(δγe −δγo )

 (7.5)

where

Θ(l, l′, k,m) = (2k + 1)
∫
Yl,m(θ, φ)Pk(cos θ)Y ∗

l′,m(θ, φ)dΩ
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Note that the subscript e(o) for l and k denotes even(odd) numbers, and γe(o) = {λin, le(o)}.

δ0 comes from the interference terms between le and lo. The phase lag is defined as ∆δ ≡

δ
(a)
0 − δ

(b)
0 . For the ionization scheme being considered for the Ba atom, the two channels

are a = 6s1/2 and b = 5d3/2. The energetically closed 5d5/2 channel supports autoioniz-

ing states. Angular momenta correspond to those channels are listed in Table. 7.1 . The

energy-dependent calculations carried out here are plotted versus final state energies from

47200 to 47265 cm−1 relative to the ground state, which is roughly one cycle of the 5d5/2

Rydberg series, with the effective principle quantum number of the fragmentation electron

being ν = 1/[2(E5d5/2 − E)] 1
2 = 14.7 − 15.7. Barium photoionization spectra in this energy

range have been previously measured [ 37 ,  38 ,  138 ,  139 ,  140 ] in the laser wavelength range

λω = 684.82 − 686.35 nm.

Table 7.1. Channels relevant to evaluating equations  7.1 - 7.5 , represented by
total angular momentum and parity J π

f and jj - coupled basis ncLcJc(l, j) (the
subscript c denotes ion core). The row “channel a(b)” lists the angular mo-
menta for the fragmentation electron. The row “resonance” gives the angular
momenta of the autoionizing states that converge to the 5d5/2 threshold.

one-photon paths two-photon paths
J π

f 0e 1e 2e 1o 2o 3o

6s1/2ε(l, j) (0, 1/2) (0, 1/2) (2, 3/2) (1, 1/2) (1, 3/2) (3, 5/2)
(channel a) (2, 3/2) (2, 5/2) (1, 3/2) (3, 5/2) (3, 7/2)
5d3/2ε(l, j) (2, 3/2) (0, 1/2) (0, 1/2) (1, 1/2) (1, 1/2) (1, 3/2)
(channel b) (2, 3/2) (2, 3/2) (1, 3/2) (1, 3/2) (3, 5/2)

(2, 5/2) (2, 5/2) (3, 5/2) (3, 5/2) (3, 7/2)
(4, 7/2) (3, 7/2)

5d5/2n(l, j) (2, 5/2) (2, 3/2) (0, 1/2) (1, 3/2) (1, 1/2) (1, 1/2)
(resonances) (2, 5/2) (2, 3/2) (3, 5/2) (1, 3/2) (1, 3/2)

(4, 7/2) (2, 5/2) (3, 7/2) (3, 5/2) (3, 5/2)
(4, 7/2) (3, 7/2) (3, 7/2)
(4, 9/2)

7.1.2 The blow-up of phenomenological model description

Previous theoretical investigations of the phase δ0 were based on the partitioned Lippmann-

Schwinger equation, which separates the transition amplitude feiδ into a direct (fdeiδd) and

a resonance-mediated (f reiδr) component [ 37 ,  129 ,  130 ,  132 ,  133 ]. The first term describes
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the direct ionization from the initial state i directly to the continuum final state ξ, while the

latter describes the pathway to the continuum via an autoionizing state n that couples to ξ

through an electron correlation matrix element Vnξ. These two amplitudes are represented

as:

fdeiδd = Dξi f reiδr =
∑

n

VξnΩni(1 − i/qn)
E − (En − iΓn/2) , (7.6)

where Ωni(1 − i
qn

) = Dni +∑
ξ′
∫
dEξ′

Vnξ′ Dξ′i
En−Eξ′

, qn is the Fano lineshape asymmetry parameter

and Γn is the line width of resonance n. This model attributes the large value of ∆δ and

its strong variation near the resonance to the interference between fdeiδd and f reiδr . When

f reiδr = 0 (far from resonances), δ0(E) is almost constant. When Dξi = 0, qn → ∞ (in

the centre of an isolated symmetric resonance), δ0 are determined by the complex resonance

energy (En − iΓn/2), in situations discussed by those papers where both optical paths lead

to the same final state, ∆δ obtain a local minimum.

Figure 7.2. Recopy of Fig. 11 and 12 in Ref.[ 37 ]. Left panel: Resulting phase
lag between the two photoionization channels calculated using the autoionizing
parameters presented in Ref.[  37 ], Tables I and II. Locations of resonances are
marked with dashed and solid arrows at the top. Right panel: Calculated
phase lag due to the variation of the outgoing electron waves. First row, φ0
variation for the fast-electron channel; second row, φ0 variation for the slow-
electron channel; third row, φ0 variation. The variation of the phase lag was
calculated to be as large as 210 ◦.
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The Yamazaki et al. theory comparison with their experiment used Eq.  7.6 to extract

resonance parameters qn,Γn by fitting to their spectra, and it showed a large discrepancy.

One sees, in Fig.  7.3 for example, where the experimentally observed ∆δ is represented

by the blue points, a huge phase variation of 2π is observed at Jπ

f = 1o resonances, while

Yamazaki et al. predicts a maximum phase lag about π/3 and 7π/6 due to the resonance

effect and the outgoing waves (Fig.  7.2 demonstrate the theoretical results in Ref.[ 37 ]).
Our analysis of the phase lag ∆δ derives from a different picture than the aforementioned

single-resonance model, as ours is based on the multichannel quantum defect (MQDT) [ 7 ,
 24 ,  25 ,  26 ] and the streamlined R-matrix method [  1 ]. The electron correlation is therefore
modeled in a realistic manner, and the resonance structure is described in its full multichannel
complexity. The details of our calculation have been given in Chap. 3. When one of the
electron moves beyond the reaction zone, it experiences an overall Coulomb potential from
the other part of the system. The energy range treated here is E6s1/2 , E5d3/2 < E < E5d5/2 .
Depending on whether the inner electron resides in the 6s1/2, 5d3/2 or 5d5/2 state, it can be
described by Coulomb functions with either incoming-wave boundary conditions appropriate
to a photofragmentation process into the E6s1/2 , E5d3/2 channels [  27 ] or an exponentially
decaying boundary condition (5d5/2 and higher channels) [  28 ]. The asymptotic wave function
of barium can be written in terms of the superposition of those channel states as,

ψi′ →A
∑
i∈o

Φi
ir

1√
2πki

(eikirri/kiδii′ − e−ikirr−i/kiS†phys
ii′ )

+A
∑
i∈c

Φi
r
Wi(r)Zii′

The channel function Φi includes all the other parts of the barium except the radial motion

of the fragmentation electron. i = {ncLcJc
, lj}. i ∈ o or c indicates the quantum numbers of

ion core ncLcJc
= 6s1/2, 5d3/2 or 5d5/2. Sphys is the physical scattering matrix and Zco is the

coefficient of the exponentially decaying (rescaled) Whittaker function Wi(r):

S†phys = e−iηS̃
†e−iη S̃

† = S†
oo − S†

oc(S†
cc − e2iβ)−1S†

co

Zco = eiβ(S†
cc − e2iβ)−1S†

coe−iη
(7.7)
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η is the Coulomb plus centrifugal phase, and is almost constant across this energy range,

and the negative energy phase parameter is β = π(ν − l). Considering the ionization from

an initial state i directly to ψi′ , the components with coefficients S†
oc(S†

cc − e2iβ)−1S†
co and

Zco which represent a pathway through the autoionizing states, correspond to f reiδr ; and

components with coefficients S†
oo, which include the direct transition and transition through

couplings between the continua, correspond to fdeiδd . The eigenvalues of S̃† are e−2iπτρ [ 28 ], as

the energy increases across a single isolated resonance, the sum of eigenphases ∑ρ τρ changes

by 1, which is fundamentally the origin of the variation of the phase lag. The significant

differences between our calculated results and the simplified resonance model implemented in

Ref.[ 37 ] suggests that electron correlation effects, and the rich number of multiple interacting

resonances in barium, plays a crucial role in this energy range of barium.

Figure 7.3. Comparison of our calculated phase lag ∆δ = δ
(a)
0 − δ

(b)
0 (solid

curve) with the experimental results [  38 ] (blue points) versus energy in cm−1.
The top label gives the effective quantum number ν = [2(E5d5/2 −E)]− 1

2 . The
dashed curves are δ0 for a = 6s1/2 (upper) and b = 5d3/2 (lower) channels. The
arrows and the diamonds on the top and bottom give the positions of the two-
and one-photon resonances, and their colors correspond to the colors in Fig.
 7.4 . This figure is taken from Ref.[  64 ].
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7.2 Results

Our computed phase lag and its experimental observations are presented in Fig.  7.3 ,

shown respectively as the solid curve and the points. When ν < 15.1, the two results

agrees well, but a significant energy shift of features of around 1.6 × 10−5 a.u. shows up

when ν > 15.1, which is larger than the difference between the theoretical and experimental

resonance positions listed in Table.  7.2 . The calculated resonance positions are indicated

by the diamonds and the arrows. The ones on the bottom (top) are for one (two)-photon

pathway autoionization, and the color labels the resonance angular momentum Jf . The

dashed curves in Fig.  7.3 give the interference phases δ(a),(b)
0 for each channel; after each

resonance-caused variation, they return to their initial values at δ(a)
0 = π and δ

(b)
0 = 0.38π.

This indicates that the phase change across the resonances either shift by 2Nπ, or else they

shift back and forth by an arbitrary value, returning to their initial value. It is interesting

to note that although our results for the phase lag is derived from the photoelectron angular

distributions βk, the agreement in the phase lag is much better than photoelectron angular

distributions results (see Fig. 3.11 ), which suggests that the phase lag could be more robust

against small calculated phase and amplitude errors.

To analyze the influence of resonances to the phase shifts, Fig.  7.4 presents our calculated

partial cross-sections (Eq.  3.29 ) for one- and two-photon processes separately. Among the

two-photon pathways, the Jf = 1 partial wave dominate over other partial wave by orders

of magnitude. The Jf = 3 resonances, often overlapping with stronger Jf = 1 resonances,

are therefore hard to observe. Since δ0 is obtained by a coherent sum over all the partial

waves (Eq.  7.5 ), those with tiny amplitudes do not play a major role. Consequently, only

the three resonances from Jf = 1 (the red arrows in Fig.  7.3 ) can appreciably influence the

interference phase. Similarly, among the one-photon pathways, it is the resonances from the

prominent Jf = 2 partial wave, and Jf =1, 0 resonances at E = 47238.53 cm−1 and 47257.50

cm−1 whose signals are strong enough to affect δ0.

It is a mysterious that the influence of those resonances to different channels appears quite

differently in Fig.  7.3 : δ
(b)
0 responds sensitively to both one- and two-photon resonances,

while δ(a)
0 responds strongly to the two-photon resonances, but remains almost unaltered by
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one-photon resonances. One plausible explain is, some of the prominent resonances for one-

photon pathway have window-type lineshapes (lower panel solid lines) in 6s1/2 channel, their

transition amplitudes obtain a local minimum and no longer dominant in Eq. 7.5 , therefore

do not affect feiδ strongly. As an attempt to explaining why the one- and two-photon

resonances can influence 6s1/2 and 5d3/2 channels in such a completely difference manner,

we preformed time-delay calculations for Jπ

f = 1o and 2e, the dominant partial waves for

two- and one- photon ionization. As introduced in Sec. 4.2 , the largest eigenvalues (qmax) of

Qphys = −iSphys† dSphys

dE
gives the resonance lifetime, and its corresponding eigenvector gives

the amplitudes of decaying into each open channel.

Figure 7.4. Partial cross-sections for two- and one-photon ionization, sepa-
rately. The solid (dashed) curves give partial cross sections for a = 6s1/2(b =
5d3/2) channel. Resonance identification and their comparisons with experi-
ment are given in Table.  7.2 . This figure is taken from Ref.[  64 ].
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In Fig.  7.5 and  7.6 , we present the eigenvalues q and the decay probability into each open

channel for Jπ

f = 1o and 2e partial waves. For the three Jπ

f = 1o resonances, two of them

mainly decay into 6s1/2 channels, as what we have expected. The rest one resonance decays

into 5d3/2(1, 3/2) channel, but its influence to δ(b)
0 is negligible in Fig.  7.3 . As for the five

Jπ

f = 2e resonances, the dominant channel for two board ones on the right part of Fig.  7.6 

is 5d3/2(2, 5/2). The other board resonance and some of the narrow resonances, however,

decay into the 6s1/2(2, 5/2) channel, which cannot explain the fact that those resonance have

a much larger affect to δ(b)
0 than to δ(a)

0 .

Figure 7.5. Time delay analysis for Jπ

f = 1o resonances. The upper figure
shows the eigenvalues of the the time-delay matrix and the lower figure shows
partial decay probabilities.

To conclude, we provide quantitative agreement between theory and experiment about

phase lag from optical control of photoelectron angular distribution in atomic barium. A

full treatment of nonperturbative electron correlations is crucial to incorporate, in order to

correctly predict the phase lag behavior, which is beyond the description of a toy-model.

Finally, this work provides a detailed study of the barium photoabsorption spectrum be-
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tween the 5d3/2 and 5d5/2 thresholds, it identifies some resonances that are hardly resolved

experimentally, and based on that it enables an attribution of the different influences of those

resonances to the phases.

Figure 7.6. Time delay analysis for Jπ

f = 2e resonances. The upper figure
shows the eigenvalues of the the time-delay matrix and the lower figure shows
partial decay probabilities.
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8. SUMMARY

Multiphoton ionization provides a clear window into the nature of electron correlations in

helium and other alkaline earth atoms. In this thesis, atomic spectra for helium and barium

are calculated and discussed, based on the multichannel quantum defect theory (MQDT) and

the streamlined R-matrix method. For the ionization of helium, we considered the final-state

energy range near the N = 2 and N = 3 ionization thresholds, with two-photon ionizations

proceeding via continuum intermediate states above the lowest threshold, and three-photon

ionization with intermediate resonances. Then our analysis classifies the resonances above

the N = 2 threshold in terms of the SO(4)-group-theory quantum numbers. Their dominant

decay channels are found to obey the previously conjectured propensity rule far more weakly

for these even-parity states than was observed for the 1P o states relevant to single-photon

ionization.

Next, we propose the generation of attosecond entangled bi-photons in the extreme-

ultraviolet regime by two-photon decay of 1s2s 1Se metastable state in helium. This results

in an entangled photon pair with correlation time in the attosecond regime, which is a highly

suitable source for attosecond pump-probe experiments. We calculate the bi-photon gener-

ation rate from a direct four-photon excitation scheme and discuss other feasible schemes to

generate these bi-photons.

Besides, our study develops a two-pathway coherent control of helium photoionization

for energy up to the N = 2 threshold, and three parameters are controlled: the optical

interference phase, the electric field strengths, and the final state energy. A small energy

change near resonance is shown to flip the emission direction of photoelectrons with high

efficiency, through an example where 90% of photoelectrons whose energy is near the 2p2

resonance flip their emission direction.

Finally, we considered the ionization of barium, which is firstly pumped onto 6s6p state

and then be ionized by one or two non-sequential photons, with the final-state energy lying

between 5d3/2 and 5d5/2 ionization thresholds. We discussed the effects of hyperfine depolar-

ization and extended the formulas to describe the processes from two-photon ionization to

three-photon ionization. By treating the phase lag quantitatively in a multichannel coupling
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formulation, we achieve quantitative agreement with the experimental observations, which

haven’t been approached by previous theoretical studies.
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A. COLD COLLISIONS

The atomic cold collision problem is the basis to understanding the quantum behavior of

particles, and is the most simple starting point to investigate universality for more complex

system. In this Appendix, we will demonstrate our work on cold atomic collision, which used

similar concepts and methods as introduced in Chap.2. Our calculations of Fano-Feshbach

resonances and explanations towards the relaxation of 7Li87Rb will be discussed.

A.1 Cold collisions of 7Li-87Rb and 6Li- 6Li

Collisions between two atoms A and B can be modeled by the Hamiltonian:

H(~R, ω) = − ~2

2µ∇2
~R

+ U(R,ω) +Hspin(ω)

U(R,ω) = UX(R)PX(ω) + Ua(R)Pa(ω)

Hspin(ω) = Hhf (ω) +HZ(ω) =
∑

β=A,B

αβ~sβ ·~iβ + (gsβszβ − giβizβ)µBBz

(A.1)

The Hamiltonian is defined in the center of mass reference frame, where ~R is the spatial

distance between the two atoms, and µ = mAmB

mA+mB
is the reduced mass. The Hspin gives the

interaction due to the spin configurations. ω includes all the nuclear and electronic spin

degree of freedom and determines the channels of the collision.

The Born-Oppenheimer potential U(R,ω) is obtained from experimental fittings. PX(Pa)

is the projection operator for electronic spin singlet (triplet) state, with UX(Ua) its corre-

spondence potential curve. At a large distance, both UX(a)(R) converge to the same van der

Waals tail −C6
R6 , and it is Hspin that determines the threshold energy of each channel. ~s and

~i in Eq. A.1 denote the nuclear and electronic spin, α and gs(i) denote the hyperfine constant

and g-factor for ~s(~i), respectively, and µB is the Bohr magneton. No spin-orbit coupling is

involved as both atoms are neutral.
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The eigenstate of the spin manifold in Eq. A.1 is different for short- and long-distance of

R (assuming magnetic field B is large):

|ω〉 =


|(sA, sB)SMS, (iA, iB)I MI〉(M) short range

|(sA, iA)fAmA, (sB, iB)fBmB〉(M) long range
(A.2)

Figure A.1. Threshold energies for (a) 7Li87Rb for M = −2 manifold for
arbitrary L and (b) 6Li2 for M = 0,−1,−2 and −3 manifold for L = 0, 1.
The dashed curves are the entrance channels in the experiments we compared
with.

The division between “short” and “long” range depends on either Hspin(ω) or |UX(R) −

Ua(R)| is negligible compared to the other. The (fβ,mβ) is the total angular momentum

for a single-atom and its projection. The good quantum numbers of this system include the

angular momenta of the atomic pair (L,ML) the momentum M = MS + MI = mA + mB.

For hetero-nucleus 7Li87Rb, the values of L do not influence the size of spin configurations.

We consider the experiment where both atoms in state |fβ,mβ〉 = |1,−1〉 are loaded. This

incident channel is the lowest one among the total 8 channels in the M = −2 subspace,
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with the second-lowest threshold about 0.038K higher, therefore only single-channel elastic

collision is involved. For homo-nucleus collision, the parity of L will influence the symmetry

of the system and therefore affect the configuration space, which can be demonstrated by

the case for two identical fermions 6Li2. The eigen-energies for Hspin(ω) are computed and

given in Fig.  A.1 .

Sometimes the spin-spin interaction and second-order spin-orbital interaction can be

crucial to the system. They add an extra term, Hdd = 2
3λ(R) (3S2

Z − S2) into Hspin, where

λ(R) ∝ − 3α2

4R3 . This term is very weak and decays rapidly as R increases, therefore usually be-

ing neglected, but it couples between partial waves L and L±2, which some times leads into

extra Fano-Feshbach resonances. For the collision of 7Li87Rb, the s−d coupling gives a reso-

nance feature at 535 G, where its conserved quantum number becomes MF = M +ML, and

the spin configuration eigenstates is |SMS, I MI , LML〉(MF ) R→∞−−−→ |fAmA, fBmB, LML〉(MF ).

The lowest channels are two-fold degenerate |fA,mA; fB,mB;L,ML〉 = |1,−1; 1,−1; 0(2), 0〉,

among total 47 channels in the MF = −2 subspace.

Figure A.2. (a) Threshold energies single 6Li atom. (b) The s-wave scattering
length near the 6Li2 resonances for 1+3, 2+3,and 1+2 collision, our calcula-
tions (dashed lines) agree with the calculations from Ref. [  141 ] supplemental
material (solid lines).

Here we give some Fano-Feshbach resonance calculation of hetero-nucleus 7Li87Rb and

homo-nucleus 6Li2, both are carried out by the R matrix method with R0 = 8000 a.u.,
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and basis functions inside the reaction zone are constructed by the finite element method

(FEM)[ 142 ] with more than 600 radial nodes. For 7Li87Rb collisions which have been carried

out by many groups[  143 ,  144 ,  145 ], we used model potentials (UX , Ua) from Maier et al.[  146 ]

and we are able to reproduce the known Feshbach resonances at Bres = 569.63 G, 661.45

G (s-wave), 388.95 G, 445.97 G (p-wave), and 535.12 G (d-wave) at 9µK with M = −2,

being consistent with previous calculations[  146 ,  147 ] at 569.68 G,661.34 G (s), 389.0 G,

446.0 G (p), and 535.09 (d), and experimental resonances at Bexp = 569.49 G, 661.53 G (s),

389.5 G, 447.4 G (p), and 534.97 G (d)[ 148 ]. For 6Li2 calculations the Born-Oppenheimer

potentials (UX , Ua) are from Paul Julienne, we consider s-wave collision between particles

in three different |fA,mA〉 channels: |1〉 = |1/2, 1/2〉,|2〉 = |1/2,−1/2〉,|3〉 = |3/2,−3/2〉.

our calculated Feshbach resonances for 1+3, 2+3,and 1+2 colliding process at 150 nK give,

Bres=690 G (M = −1), 810 G (M = −2), and 832 G (M = 0) respective, which agree

with previous calculation at 689.68 G, 809.76 G, and 832.18 G [  141 ]. The s-wave scattering

length a0 = − limk→0
tan δ(k)

k
is given in Fig. A.2 . For p-wave, there is no relevant two-body

resonances have been found.

A.2 7Li87Rb relaxation experiments

This part demonstrates our works in collaborating with experimentalists, about the cross-

dimensional and the spin relaxation of 7Li-87Rb atoms, which will be introduced by the

following two subsections, respectively. Our works have been published at Ref.[  149 ,  150 ],

which include the contents of this section.

A.2.1 Comparison with cross dimensional relaxation experiments

This section compares our calculated cross-section at collision energies of several 100 µK

with the experimental measured cross-dimenstional relaxation rate[  149 ], where laser-cooled

lithium and rubidium gases were loaded and trapped inside a spherical quadrupole magnetic

trap. It is noted that the initial atomic momentum distribution in the trap is anisotropic from

a mismatch between atoms and the trap and that the kinetic energy Ez along the axial trap

direction is larger than that along with the radial directions Ex(y) Over the timescales of the
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B′ (G/cm) TRb (µK) τ (ex) (s) σ
(ex)
cdr (cm2) τ (th) (s) σ

(th)
cdr (cm2)

328 223(2) 4.4(3) 7.27(56) × 10−12 4.9(1) 6.56(29) × 10−12

249 418.2(2) 28(4) 8.5(1.1) × 10−14 69(1) 3.5(1) × 10−14

170 297.7(1) 37(6) 10.3(1.8) × 10−14 95(2) 4.0(2) × 10−14

Table A.1. Measured cross-dimensional relaxation rates τ (ex) and compar-
isons to theory for several experimental settings. Monte-Carlo simulations for
atoms interacting via s-wave-only collisions with an energy-independent cross
section, under conditions matching the experimental setting, are used to quan-
tify the cross-dimensional relaxation cross sections σ(ex)

cdr , which matches the
experimental relaxation time τ (ex), and σ(th), which matches the theoretically
predicted relaxation time τ (th). This table is from [  149 ].

measurement, the lithium is not fully thermalized in the rubidium bath. The relaxation time

τ (ex) is determined by fitting the radio of kinetic energies Ez/Ex which decays exponentially

to equilibrium, Ez

Ex
= 1+2εexp(−t/τ (ex))

1−εexp(−t/τ (ex)) , where ε quantifies the initial departure from equilibrium.

With the relaxation time τ (ex), one can obtain the cross-dimensional relaxation cross-section

by, τ = α × 32π(Ta+Tb)3

k3Nbσcdrvrel
, where k = µB′/kB and the ensemble-averaged relative velocity

vrel =
√

8kB

π
( Ta

ma
+ Tb

mb
). The derivations and details of these formulae can be found in [ 149 ,

 151 ]. In Table. A.1 we list both experimental measurements and our theory prediction. σ(th)
cdr

is the theoretical cross-section assuming both Li and Rb gases have uniform density and

are in thermal equilibrium at temperatures TLi and TRb. It turns out that the measured

collisional cross-section between 7Li and 87Rb atoms is much larger than the one predicted

by Maier et al.’s potential, within the energy range probed in this experiment.

Table A.2. Candidates with largest and smallest cross section from alternative potentials
χ2

5 Bress Bresp Bresd σT (418, 297µK)
Experiment[ 148 ] − 569.49 G 389.5 G 534.97 G 8.5(1.1)×10−14 cm2

660.53 G 447.4 G 10.3(1.8)×10−14 cm2

Model potential[ 146 ] 11.02 569.68 G 389.00 G 534.98 G 3.51×10−14 cm2

C6 = 2550.04 a.u. 661.30 G 446.03 G 4.82×10−14 cm2

Potential with σlargest 19.31 569.00 G 388.69 G 535.00 G 3.75×10−14 cm2

C6 = 2570.45 a.u. 661.86 G 445.93 G 5.14×10−14 cm2

Potential with σsmallest 14.80 570.01 G 389.21 G 536.08 G 3.26×10−14 cm2

C6 = 2535.55 a.u. 660.33 G 445.96 G 4.49×10−14 cm2
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Figure A.3. Comparison of theoretical and experimentally determined cross
section. Solid blue(orange) line is s(p) wave 7Li87Rb interspecies cross section
calculated by quantum defect theory(QDT). Red circles represent σcdr deter-
mined by experimental measurements. Error bars are statistical. Blue circles
are σcdr determined by Monte Carlo simulation using the theoretical differen-
tial cross section. Both the experimental and theoretical points are placed at
the averaged collisional energy under experimental condition. Inset: Deter-
mine σcdr at through matching. Solid black spots are Monte-Carlo simulated
results. The solid blue line is a linear fit: τ = k/σcdr. The red circle repre-
sents experimental result. The blue circle represents Monte Carlo simulation.
Reprint from [ 149 ].

The following part of this section describes the explorations we have carried out to

modify the theoretical description of two-body Li-Rb scattering in a way that preserves

existing agreement between theory and experimentally measured Fano-Feshbach resonance

properties, while also agreeing with the present experimental results. Since the s-wave cross

section decays rapidly with increasing energy (at zero energy, it gives 1.40 × 10−13cm2, but

at 1.69 mK it goes to zero), it suggests the theoretical result might be rather sensitive

to a small perturb of the potential curve. Therefore we hope slight modifications on the

Born-Oppenheimer potential (UX , Ua) from Maier et al.[ 146 ] could reconcile the difference.

We confirm that our calculation method is valid by using the Maier et al. model potentials

and reproducing the calculated positions of several reported s-, p- and d-wave Fano-Feshbach

resonances in 7Li-87Rb. The agreement between these theoretical predictions and experimen-
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tal findings is quantified by calculating χ2
5 = ∑ (Bcalc−Bexp)2

(δB)2 where the sum is taken over the

five measured Fano-Feshbach resonances, with Bcalc being the theoretically predicted and

Bexp the experimentally measured magnetic field position of the resonance, and δB = 0.5G

being the experimentally reported uncertainty. For the Maier et al. model potential, which

was selected to match all experimental data on the LiRb potential at the time of its publica-

tion (obviously excluding the present measurements), one finds χ2
5 = 11. The cross-sections

predicted by the Maier et al. model potential are significantly smaller than that determined

by measurement, as presented in Fig.  A.3 . Monte Carlo simulations using those results

obtain a cross-dimensional relaxation cross-section (also in Fig. A.3 ) which is even smaller.

We explored the elasticity of the model predictions to variations in several model param-

eters, i.e., we explore to what extent the collision cross-section between 7Li and 87Rb, with

both atoms in the |F = 1;mF = −1〉 hyperfine state, can vary while maintaining agreement

also with the measured Fano-Feshbach resonance positions. For this, we consider the follow-

ing modifications of the two-body potential: a modification of the van der Waals coefficient

C6 that characterizes the long-range interaction, and modifications of the inner part of the

spin-singlet (UX) and triplet (Ua) potentials, i.e. adding the singlet(triplet) potentials a

short-range term c0(1) tan−1 [(R −Rmin)(R −Rmin)/4] before the potentials reach their min-

imum at U(Rmin). After making such modifications, we recompute the predicted positions

of the five Fano-Feshbach resonances and compare them with the Maier et al. measurements

[ 146 ]. The details can be found in Table.  A.2 .

We consider modifications to the Li-Rb molecular potentials that remain somewhat con-

sistent with the measured positions of the Fano-Feshbach resonances, where we qualify a

modification as consistent so long as χ2
5 remains of the same order as its value for the Maier

et al. potential. Specifically, by assessing how the predicted Fano-Feshbach resonance pre-

dictions and also the thermally averaged cross-section vary linearly with the three potential

model modifications, we determine model settings that produce the largest and smallest σT

within the space bounded by χ2
5 < 20(Fig. A.3 shaded area). We compute the full energy-

dependent cross-section for these two model settings. As shown in Fig.  A.3 , constraining the

model to remain consistent with the measured positions of the Fano-Feshbach resonances
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permits only slight modifications, at the level of less than 10%, to the predicted collision

cross-section and, similarly, to the predicted cross-dimensional relaxation rate. These mod-

ifications are insufficient to bridge the difference between the experimental findings and

theoretical predictions. Overall, we conclude that the measured Fano-Feshbach resonance

potentials and the measured cross-dimensional relaxation rate cannot all be made simulta-

neously consistent with present-day models of the Li −Rb molecular potential.

A.2.2 Comparison with spin relaxation experiments

This section compares the calculated cross-section at collision energies around 50 µK

with the experimentally measured spin relaxation rate[  150 ], and the two results achieve

good agreements (Table.  A.3 ). The lithium and rubidium gases are loaded in a magneto-

optical trap and polarized through element-selective optical pumping to initiate the spin

dynamics, then evolved for a variable time of several seconds before the spin composition

of each gas is measured. Since the number of rubidium atoms is 10 times larger than

the number of lithium atoms, the Li-Li spin relaxation collision is negligible compared to

Li-Rb. Besides, since the spin-changing Rb-Rb collisions are anomalously small, the co-

trapped rubidium gas serves as a large magnetization reservoir whose spin distribution is

kept constant during the experiment. As a result, only the change of lithium spin distri-

bution N (Li) =
(
N

(Li)
+1 N

(Li)
0 N

(Li)
−1

)T

as an indicator of spin-dependent Li-Rb evolution is

observed, which can be described through the rate equation,

d

dt
N (Li) = −N (Li)

τ
+RN (Li) (A.3)

where the matrix R can be expressed by the rate for specific spin-changing collision Γα and

the fraction of rubidium atoms in the incident spin state pmf,Rb
as,


−Γsep0 − (Γsm + Γqe)p−1 Γsep+1 + Γsmp0 Γqep+1

Γsep0 + Γsmp−1 −Γse(p+1 + p−1) − 2Γsmp0 Γsep0 + Γsmp+1

Γqep−1 Γsep−1 + Γsmp0 −Γsep0 − (Γsm + Γqe)p+1

 (A.4)
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For the experimental measured F = 1 manifold, there are three possible spin-changing of

|mf,Li,mf,Rb〉 state, which are denoted as α = {se, sm, qe} in the equation, they are the spin

exchange (|0,−1〉 → |−1, 0〉), spin mixing (|−1,+1〉 → |0, 0〉), and quadrupole exchange

(|+1,−1〉 → |−1,+1〉). For a single mf,Rb, Γαp = n(Rb)vσαp, where n(Rb) is the density

of gas Rb atoms, v =
√

8kB

π
( TRb

mRb
+ TLi

mLi
) is the rms incident velocity, and σα is the cross

section. The measured cross-sections σse,sm,qe is therefore obtained by fitting the evolution

of heteronuclear spin populations to Eq. A.3 .

Table A.3. Comparison between experiment and theoretical calculations for
three spin-dependent collision processes at 50µK. This table is from [  150 ].
Cross Section(×10−14 cm2) σse σsm σqe σse/σsm

Experiment 2.4(7) 1.7(6) 0-0.5 1.4(6)
This work 2.2 1.8 0.02 1.2

The theoretical predictions of above processes are roughly described by the Fermi pseu-

dopotential, with the scattering lengths aF,M being obtained by Maier et al.’s potential

curves. Specifically, the cross-section can be obtained by, σα = 4πa2
α with ase = (aF =2,M=1 −

aF =1,M=1)/2, asm = (aF =2,M=0−aF =1,M=0)/3 and aqe = (aF =2,M=0−3aF =1,M=0+2aF =0,M=0)/6,

which give the cross-sections listed in the second row of Table.  A.3 .
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