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ABSTRACT

Composite materials have been successfully applied in various industries, such as aerospace,

automobile, and wind turbines, etc. Although the material properties of composites are de-

sirable, the behaviors of composites are complicated. Many efforts have been made to model

the constitutive behavior and failure of composites, but a complete and validated method-

ology has not been completely achieved yet. Recently, machine learning techniques have

attracted many researchers from the mechanics field, who are seeking to construct surrogate

models with machine learning, such as deep neural networks (DNN), to improve the compu-

tational speed or employ machine learning to discover unknown governing laws to improve

the accuracy. Currently, the majority of studies mainly focus on improving computational

speed. Few works focus on applying machine learning to discover unknown governing laws

from experimental data. In this study, we will demonstrate the implementation of machine

learning to discover unknown governing laws of composites. Additionally, we will also present

an application of machine learning to accelerate the design optimization of a composite rotor

blade.

To enable the machine learning model to discover constitutive laws directly from exper-

imental data, we proposed a framework to couple finite element (FE) with DNN to form

a fully coupled mechanics system FE-DNN. The proposed framework enables data commu-

nication between FE and DNN, which takes advantage of the powerful learning ability of

DNN and the versatile problem-solving ability of FE. To implement the framework to com-

posites, we introduced positive definite deep neural network (PDNN) to the framework to

form FE-PDNN, which solves the convergence robustness issue of learning the constitutive

law of a severely damaged material. In addition, the lamination theory is introduced to the

FE-PDNN mechanics system to enable FE-PDNN to discover the lamina constitutive law

based on the structural level responses.

We also developed a framework that combines sparse regression with compressed sensing,

which leveraging advances in sparsity techniques and machine learning, to discover the failure

criterion of composites from experimental data. One advantage of the proposed approach

is that this framework does not need Bigdata to train the model. This feature satisfies
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the current failure data size constraint. Unlike the traditional curve fitting techniques,

which results in a solution with nonzero coefficients in all the candidate functions. This

framework can identify the most significant features that govern the dataset. Besides, we

have conducted a comparison between sparse regression and DNN to show the superiority

of sparse regression under limited dataset. Additionally, we used an optimization approach

to enforce a constraint to the discovered criterion so that the predicted data to be more

conservative than the experimental data. This modification can yield a conservative failure

criterion to satisfy the design needs.

Finally, we demonstrated employing machine learning to accelerate the planform design

of a composite rotor blade with strength consideration. The composite rotor blade planform

design focuses on optimizing planform parameters to achieve higher performance. However,

the strength of the material is rarely considered in the planform design, as the physic-based

strength analysis is expensive since millions of load cases can be accumulated during the

optimization. Ignoring strength analysis may result in the blade working in an unsafe or low

safety factor region since composite materials are anisotropic and susceptible to failure. To

reduce the computational cost of the blade cross-section strength analysis, we proposed to

construct a surrogate model using the artificial neural network (ANN) for beam level failure

criterion to replace the physics-based strength analysis. The surrogate model is constructed

based on the Timoshenko beam model, where the mapping is between blade loads and the

strength ratios of the cross-section. The results showed that the surrogate model constraint

using machine learning can achieve the same accuracy as the physics-based simulation while

the computing time is significantly reduced.
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1. INTRODUCTION

1.1 Background and Motivation

Composite materials have been widely used in various industries, such as aerospace,

automobile, and wind turbines, etc due to their high strength/stiffness-to-weight ratio, ex-

cellent fatigue life, and great design flexibility. For example, Figure  1.1 shows the Boeing

787 Dreamliner jet. The material content of Boeing 787 is 80% composites by volume [  1 ].

Figure 1.1. Boeing 787 Dreamliner [ 1 ]

A composite material is manufactured from two or more individual materials. The in-

dividual materials are combined to produce a material with improved properties. These

individual materials are usually called constituents of composites. Most composites have

two constituents, one is the matrix and the other is the reinforcement [  2 ], [  3 ]. The matrix

binds the reinforcement and holds the relative positions of the constituents. Besides, when

the reinforcements are broken, the matrix also provides a critical inelastic response so that

the stress concentrations are reduced dramatically, and internal stresses are redistributed

[ 4 ]. The reinforcement receives support from the matrix and provides excellent strength and

stiffness to the composites. Some reinforcing materials, such as graphite fibers, nanotubes,

SiC fibers, and alumina fibers, may also enable composites to have great thermal and elec-

trical conductivity, controlled thermal expansion, and wear resistance in addition to superior

mechanical properties [ 5 ]–[ 7 ].
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Although the material properties of composites are desirable, composites could have the

manufacturing defects and is susceptible to damages [  8 ]. The manufacturing defects include

voids, matrix cracks fiber breakages, delamination, fiber misalignment, residual stresses,

curing and processing tolerances, etc [ 9 ]. Figure  1.2 shows the typical manufacturing defects

in composites. These defects are related to the manufacturing quality controls and can

(a) Voids (b) Matrix cracking

(c) Delamination and debonding (d) Fiber mismatch

Figure 1.2. The typical manufacturing defects of composites [ 10 ], [ 11 ]

be tackled during the design phase using a safety factor, which is a ratio of a structure’s

strength to the actual applied load [ 12 ]. The damages are produced by accidental or in-
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service loads. One of the most dangerous aspects of damage is that a composite structure

may accumulate barely visible damage under in-service loads, which could cause the abrupt

collapse of a structure. To overcome this issue, some composites structure may take a very

conservative design. Usually, some designs only use the elastic region as the design space.

Such a design employs failure criteria to determine the safety of a structure under various

loading conditions. A number of failure criteria have been proposed to predict the failure of

composites. These failure criteria can be classified into microscopic and macroscopic criteria.

The microscopic criteria are based on the analysis of the microstructure of a composite. The

macroscopic criteria use macroscopic variables, such as averaged stresses or strains, to predict

the failure.

In the last couple of decades, many efforts have been made to model the constitutive

behavior of composites, i.e. multiscale modeling has been proposed to compute the effective

constitutive relation, the continuum damage mechanics (CDM) is developed to describe the

damage behavior of composites. The advances of constitutive models enable the design using

a smaller safety factor or expanding the design space to the post-failure region, which ulti-

mately could save materials and reduce the cost of design. Although much progress has been

made, a complete and validated methodology for modeling the behavior of composite has

not been completely achieved yet. This is mainly due to the complex nature of composites,

as the performance of a composite structure is dependent on a range of parameters including

the geometry, material, lay-up, loading conditions, load history, and failure modes [ 13 ].

Recently, the data-driven based machine learning models has been successfully applied

in various engineering fields, such as image processing, language translation, and speech

recognition [ 14 ], [ 15 ]. There are several attractions to applying machine learning to mechan-

ics. Firstly, machine learning models, such as deep neural networks (DNN), can be used to

construct the mapping between the inputs and outputs of the constitutive relation, which

can avoid the computationally expensive iterations and improve the computational speed.

Secondly, DNN enables the constitutive law to be learned directly from experimental mea-

surable data. The constitutive law can be constructed in a form-free manner and avoids the

possible inaccuracies associated with the presumed functions in the constitutive laws [ 16 ].

Thirdly, some machine learning models, such as sparse regression, can be used to discover
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governing equations from data, which has the potential to improve the accuracy of existing

models [ 17 ]. Lastly, machine learning can be used to replace the computationally expensive

processes in an analysis to reduce the computational cost.

Currently, the study of machine learning in mechanics mainly focuses on improving the

computational speed. There is less research focus on employing machine learning to discover

the unknown governing laws. For example, in the constitutive modeling, many researchers

used direct data, such as strain-stress pairs or strain-energy pairs, to train a DNN model as a

surrogate model to reduce the computational cost. The DNN models trained by these studies

are in good agreement with the training data. However, these approaches cannot be used to

discover unknown constitutive laws. As the training data for these approaches are generated

by numerical simulations, which requires a known constitutive law with certain assumptions

[ 18 ]. These DNN can only learn the constitutive laws with predefined assumptions. Another

issue that prevents researchers to apply machine learning to discover governing laws is related

to data size constraint. DNN is powerful to approximate complicated nonlinear functions

and being very efficient after being trained. But the training of DNN requires a huge amount

of data. Unfortunately, the data size of composites mechanical test is still small compared

to Bigdata. This constraint requires researchers to come up with new machine learning

methods to deal with the data size issue.

In this study, we will demonstrate applying machine learning to discover unknown gov-

erning laws of composites. We will design a framework to couple finite element (FE) with

DNN to form FE-DNN to discover constitutive laws based on experimental measurable data.

In addition, to solve the data size constraint, we combined sparse regression with compressed

sensing, which can be viewed as a machine learning technique, to discover failure criteria

of composites from experimental data. Finally, we will show the application of machine

learning to accelerate the analysis of composite structures. For demonstration, an example

of design optimization of a composite rotor blade was presented.
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1.2 Literature Review

1.2.1 Failure criterion of composite materials

A reliable design of a composite structure needs to consider the failure of the composites.

A number of failure criteria have been proposed to predict the failure of composites. These

failure criteria can be classified into microscopic and macroscopic criteria. The microscopic

criteria are based on the analysis of the microstructure of a composite, which requires com-

puting the stresses and failure at the micro-level to predict the macroscopic failure [  19 ], [  20 ].

The macroscopic criteria, which are more popular in engineering practices, assumed that the

failure can be described by the macroscopic variables, such as averaged stresses or strains

[ 21 ].

The macroscopic models can be categorized into three groups. The first group predicts

the failure by directly comparing stresses or strains with the corresponding strength. The

representative failure criteria are maximum stress or strain failure criteria. However, this

approach does not take the interaction between stresses or strains into account, which could

result in an inaccurate prediction of the failure for a certain stress state [ 22 ]. The second

group tries to account for the six stress or strain components in a single function, i.e. Tsai-Hill

criterion and Tsai-Wu criterion [  23 ]. The main criticism is that these approaches combine

distinct failure mechanisms into a single function, which is non-phenomenological for com-

posite materials [  24 ], [  25 ]. The third group tried to take the distinct failure mechanisms

into a failure criterion to form a phenomenological model, which usually separates the fiber

and matrix failure mechanisms and has the potential to yield a more accurate prediction

of composites failure. Various phenomenological models, such as those proposed by Hashin

[ 25 ], [ 26 ], Puck [ 27 ], Cuntze [ 28 ], Pinho [ 29 ], belong to the third group.

Hashin failure criterion is one of the most popular phenomenological models in engineer-

ing practice due to its simplicity of application. It divides failure into four failure modes,

namely, tensile and compressive fiber modes, tensile and compressive matrix modes. Al-

though remarkable success has been achieved using the Hashin failure criterion, it does not

always fit the experimental results very well. For example, the Hashin failure criterion can-

not accurately describe the compressive fiber failure mode of composites. Besides, it should
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be noted that the Hashin failure criterion is constructed in a quadratic form. The linear

terms, some stresses coupling terms, and higher-order terms are neglected for simplicity.

These simplifications are needed when only limited data are available. However, over the

past few decades, quite a few experimental failure data have been collected for several com-

posite materials. For example, the two series of Worldwide Failure Exercises (WWFE) have

accumulated hundreds of failure data points for some composite materials [  30 ]. Although the

data size is still small compared to Bigdata, it would be of interest to leverage the existing

data to improve the prediction of composite failure criteria.

Brunton et al. employed a framework that combined sparse regression (SR) with com-

pressed sensing for discovering the governing equations of several nonlinear dynamical sys-

tems from data [ 17 ]. Rudy further applied sparse regression to discover partial differential

equations from time series measurements in the spatial domain [  31 ]. This approach shows

promising performance in discovering unknown functions with limited data and exhibits

great convergence robustness. However, the approach has not been applied to study the

failure behaviors of composites, especially for the real experiential data yet. This inspired

us to employ a new data-driven approach to discover the failure criteria of composites.

The failure criteria mentioned above are constructed based on a single composite material.

For a composites structure, the multiscale approach is usually taken to analyze the failure

of the structure [  32 ]. In the multiscale analysis, a micromechanics model will calculate the

effective properties. The structure analysis will take the effective properties and calculate

the global response at the upper level. Then, a dehomogenization will compute the local

3D stress fields and analyze the failure at each material point. This procedure is inefficient

as a multiscale failure analysis needs to be performed whenever there is a new load case

[ 33 ]. For a composites rotor blade under various flight conditions, numerous load cases can

be accumulated. Unlike the failure criteria of a single material, the analytical form of the

failure criterion at the structural level is typically not available. This is because a structure

can have various components and complicated geometries. It would be difficult to find an

analytical model to predict the failure indicator.
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1.2.2 Constitutive modeling of composite materials

Generally speaking, there are two approaches to model the constitutive behavior of com-

posite materials. The first approach is to approximate the heterogeneous composites by

an imaginary homogeneous material with effective material properties through multiscale

modeling [  34 ], [  35 ]. Numerous analytical micromechanics models have been proposed for

the composites constitutive modeling. For example, Voigt and Reuss presented the Voigt

and Reuss rules of mixtures, which provide the upper and lower bounds of effective material

stiffness respectively [ 36 ]. Hashin and Shtrikman developed a stricter bounds for the elastic

moduli for various composite materials [  37 ]. Hill presented the self-consistent model, which

predicts the effective properties based on the assumption that a single particle inclusion is

embedded in the effective medium [  38 ]. Further, the Mori-Tanaka method was proposed to

correlate averaged stresses and averaged strains of fiber with the matrix in a composite based

on Eshelby elasticity solution for heterogeneous material [ 39 ]. The self-consistent model and

Mori-Tanaka model are two of the most widely accepted micromechanics models, numerous

analytical models were developed later based on them. In addition to analytical methods, a

number of numerical methods have been developed to provide a more accurate and univer-

sal approach for composites constitutive modeling. For example, the representative volume

element (RVE) method which is based on finite element (FE) analysis [  40 ], [  41 ] are widely

used in multiscale analysis. A RVE is a material volume that can represent the whole ma-

terial and should be chosen so that the effective properties will not depend on the boundary

conditions. The mathematical homogenization theory is another popular micromechanics

method, which works differently than the RVE analysis as it applied the formal asymptotic

method through a two-scale formulation [  42 ], [  43 ]. Besides, the mechanics of the structure

genome (MSG) method, which is formulated based on the principle of minimum information

loss was proposed to unify the analysis of different types of composite material structures

[ 44 ]–[ 46 ]. This method simplifies the multiscale analysis due to the flexibility in applying

boundary conditions and superior computational efficiency.

The other approach is to construct a function to approximate the homogenized material

behavior with several unknown parameters which will be determined from experiments. The
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damage in a composite material causes the degradation of material stiffness. The CDM is

developed to describe damage initiation and evolution [ 47 ]–[ 52 ]. The CDM assumed that the

degradation of stiffness can be considered as the macroscopic representation of the micro-

defects. The material degradation caused by these micro-defects can be represented by a

damage tensor, which is related to different failure mechanisms [  53 ]. Some CDM models were

proposed for fiber-reinforced composites by Talreja [  54 ], Matzenmiller [ 55 ], Maimi [ 56 ], [  57 ],

Lapcyzk [  58 ], and Jiang [  59 ]. Although many efforts have been made, it is still difficult and

expensive to model the damage in composite material. This is mainly due to the complexity

of damage mechanisms of composite materials, as damages in a composite material are

presented in multiple scales, from the fiber level through the lamina level to the structural

level [  60 ]. In addition, it is impossible to produce identical specimens with well-characterized

microstructural features [ 61 ].

The application of deep neural networks (DNN) has attracted great interest in consti-

tutive modeling. One of the attractions of this approach is that it can establish a complex

nonlinear relationship in a formless manner, which avoids the possible errors associated with

the pre-assumed function in the constitutive law [ 16 ]. DNN has the potential to reduce the

computational cost and discover the unknown constitutive law. At present, the research of

DNN in the constitutive modeling mainly focuses on reducing the computational cost [ 62 ]–

[ 69 ]. These studies use direct data, such as strain-stress pairs or strain-energy pairs, to train

surrogate models to replace expensive numerical simulations. However, such a model cannot

be used to discover unknown constitutive laws, since the data is generated by numerical

simulations using assumed constitutive laws.

A few studies have been attempted to use DNN to discover unknown constitutive laws.

These studies used an inverse method to solve for the strain-stress pairs based on struc-

tural level data, such as forces and displacements which can be directly measured from an

experiment. For example, Huang et al. [ 70 ] proposed a method to embed DNN in finite

element (FE) model to enable DNN to learn the constitutive law based on the experimental

measurement. Xu. et al. [  71 ] further introduced positive definite neural networks into the

system and improved the robustness of the method. However, these two methods require

a full-field observation of the forces and displacements while only limited observed data is
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usually available in most experiments. The full field observation requirement prevents the

application of this method to complex problems, such as a three-dimensional (3D) solid

problem. To enable DNN to discover constitutive laws with limited measurements, Jahromi

et al. [ 72 ] presented a brute force approach that is based on a trial and error basis to find

the constitutive law. Flaschel et al. [ 73 ] proposed an unsupervised method to automate the

discovery of hyperelastic constitutive law with displacement and global force data.

1.2.3 Composites rotor blade planform design

A rotorcraft, with the rotor powered by engines throughout the flight, allows it to take off

and land vertically. Over the past few decades, rotorcraft have demonstrated their versatility

in both civilian and military applications [  74 ]. The material and structure of the rotorcraft

have a significant impact on the performance. The composite materials are being used more

and more extensively in helicopter rotor blades due to their superior mechanical properties,

lightweight, and tailorable compared with metals [  75 ]. However, due to the huge design space

of the materials and wide variety of flight conditions at which the main rotor is operated

throughout the flight envelope. It is difficult to design the rotorcraft components with

optimal characteristics [ 76 ].

Many works have been done to integrate a multidisciplinary design framework to opti-

mize the design of rotorcraft to improve performance. For example, Leon et al. [  77 ], [  78 ]

performed a multi-objective aerodynamic optimization for an ERATO rotor with a CON-

MIN/elsA/HOST computational workflow via coupling Dakota optimizer with Nash Game

algorithm. They studied the influence of blade twist, chord, and sweep on the rotor per-

formance in a forward flight. Wang et al. [  79 ], [  80 ] applied the sequential quadratic pro-

gramming optimizer SNOPT and conducted a constrained multi-objective optimization of

the UH-60A main rotor concerning the design of blade twist, airfoil thickness, and camber.

Lim [  81 ] presented a study that fixed the cross-sectional design and conducted parametric

studies of the dynamic performance of rotor blades with several planform parameters .

The rotor blade design rarely considers the strength of the materials [  32 ]. One issue is

that the failure analysis of the rotor blade is usually performed via a multiscale analysis.

22



In this analysis, the blade properties will be computed using a finite element analysis over

the blade section, followed by the global beam analysis to calculate the global response at

the system level to obtain blade loads. Then, the local 3D stress fields will be computed

and failure will be evaluated at each material point [  82 ]. This procedure is inefficient in an

optimization framework, as the failure analysis needs to be performed each time whenever

there is a new structural load. However, the ignoring of strength consideration may result

in the blade working in an unsafe or low safety factor region, as composite materials are

anisotropic and susceptible to failure.

1.3 Objectives and Outline

The design of composites needs to predict the behavior and evaluate the failure under

certain loading conditions. These analyses require failure criterion and constitutive law. The

computational cost of these analyses can be expensive. Machine learning has the potential

to reduce the computational cost and discover the unknown governing law of composites.

To discover constitutive laws of composite materials and structures based on experiment

data, the existing methods need to write a FE code based on an automatic differentiation

package, such as Tensorflow or PyTorch. Due to the limitation of the current automatic

differentiation packages, the FE model assembling and solving process is significantly time-

consuming. Besides, these methods require writing in-house codes to generate FE model

geometry and mesh which makes it hard to apply to complex nonlinear FE problems. An-

other challenge is that the current methods are not stable for severely damaged composite

materials. Because these methods did not apply any constraints to the material stiffness

matrix predicted by DNN. The diagonal elements of the stiffness matrix might become neg-

ative during the training, which will result in non-positive strain energy and thus terminate

the training process. In addition, it is expensive to directly apply these methods to learn

the lamina constitutive law based on the structural response of laminate. As a compos-

ite laminate is typically heterogeneous and manufactured to have multi-directional layups.

Learning the lamina constitutive law of a multi-directional laminate with these methods

requires creating all the layers explicitly in the FE model. The training of such a model is
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similar to perform optimization of a direct numerical simulation. The cost of the training

can be extremely expensive.

To address the above issues, we integrated Abaqus with DNN to enables data commu-

nication between Abaqus and DNN and makes it possible to use partially observed data

to train DNN. This approach leverages the versatile FE analysis ability of Abaqus and the

powerful machine learning using DNN. In addition, to solve the training issue of severely

damaged material, we coupled FE with Cholesky decomposed positive definite deep neural

networks (PDNN) to form FE-PDNN. This modification imposes the positive definite con-

straint to the stiffness matrix predicted by DNN and thus improves the convergence stability

of the training process. To solve the computational cost issue, the lamination theory is in-

troduced to the FE-PDNN mechanics system, which enables FE-PDNN to learn the lamina

constitutive law based on the laminate structural response.

For the failure criterion of composites, it is attractive to apply DNN to discover failure

criterion from data, as DNN is powerful to approximate complicated nonlinear functions and

being very efficient after being trained. However, DNN requires a huge amount of training

data. Unfortunately, the data size of composites failure data is still small compared to

Bigdata. Besides, DNN also requires the data set of failure index under one, which can only

be approximated under certain failure criteria. Therefore, an alternative approach that can

accurately capture the failure criterion without the harsh requirement in the training data

size is greatly valuable. To discover failure criteria of composites from experimental data,

we proposed to combine sparse regression with compressed sensing, which can be viewed as

a machine learning technique to discover failure criterion from data. This framework does

not need Bigdata to train the model, which satisfies the current failure data size constraint.

Besides, unlike traditional curve fitting, which results in a solution with nonzero coefficients

in all the candidate functions, this framework can identify the most important functions of

a failure criterion from the data [ 17 ]

To reduce the cost of the the failure analysis of composite structures, machine learning

technique can be a useful tool to construct the structured level failure criterion to reduce

computational cost. For this procedure, conducting simulation to generate the training data

is one of the most important steps. In this study, we will use VABS [ 83 ] to perform the
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multiscale failure analysis to generate the training database. The process to generate data is

very similar to conduct a regular multiscale failure analysis, except that we will use a high-

dimensional surface sampling technique to generate various combinations of the structural

loads.

In summary, in this study, we proposed to

1. Implement FE-DNN via coupling Pytorch and the commercial FE code Abaqus to

learn nonlinear constitutive law based on limited experimental data

2. Apply positive definite deep neural network (PDNN) to the proposed mechanics system

to form FE-PDNN so that the robustness of the mechanics system can be improved.

3. Couple the classical lamination theory with DNN to learn the constitutive law of lamina

based on laminate surface observations.

4. Combine sparse regression with compressed sensing to discover failure criterion from

experiment data.

5. Construct structure level failure criterion to accelerate the failure analysis of composite

structures.

The remainder of this thesis is organized as follows. Chapter  2 introduces coupling FE

with DNN to discover the constitutive law of composites. In Chapter  3 , we will implement a

framework to combine sparse regression with compressed sensing to discover failure criteria

of composites from experimental data. Next, in Chapter  4 , we will demonstrate the applica-

tion of machine learning model to construct a beam-level failure criterion surrogate model,

which will be integrated with Dakota to achieve rotor blade optimization with strength con-

sideration. Chapter  5 highlights the main outcomes of this thesis and outlines the future

works of this study.
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2. FINITE ELEMENT COUPLED DEEP NEURAL NETWORK

MECHANICS SYSTEM

This chapter presents a finite element (FE) coupled deep neural networks mechanics system

(FE-DNN). The proposed approach enables neural networks to learn the constitutive law

based on the structural level response, such as forces and displacements. To leverage the

versatile modeling capability of commercial FE codes, we integrated the commercial FE

code Abaqus with DNN, which enables data communication between Abaqus and DNN. To

solve the convergence robustness issue of learning the constitutive law of a severely damaged

material, we applied a positive-definite constraint to neural networks to form FE-PDNN. In

addition, the lamination theory is introduced to the FE-PDNN mechanics system to enable

FE-PDNN to discover the lamina constitutive law based on the structural level responses.

2.1 Theory and Fundamentals

2.1.1 Fundamentals of deep neural networks

The basic idea of neural networks is to use multiple neurons to describe a complex system.

An artificial neural networks model is called a deep neural networks (DNN) if the number of

hidden layers is larger than two. As shown in Figure  2.1 , neural networks usually consist of

an input layer, hidden layer(s), and an output layer. The input layer is the first layer of the

neural networks, it accepts the input values and passes them to the next layer. The hidden

layer(s) perform nonlinear transformations of the inputs that entered the networks. The

number and sizes of hidden layer(s) are hyperparameters, which will be determined based on

the complexity of the problem. The output layer is the last layer of the network and gives

the predicted values of the model [ 84 ].

The trainable parameters, weights (wij) and biases (bj), are used to establish the connec-

tions between neurons. The weight decides how much influence the input will have on the

output. The bias, which is an additional input into the next layer, is used to tune the activa-
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Figure 2.1. The structure of artificial neural networks

tion function [ 85 ]. The outputs from preceding neurons (ai) will multiply the corresponding

weights. Summing these values and adding the bias of that neuron gives

zj =
n∑

i=1
aiwij + bj (2.1)

where n is the number of neurons in the previous layer, the zj will be passed onto the

activation function, which is a nonlinear function and results in a scalar value for the neuron.

The scalar will be the input of the following layer. In this work, the choice of the activation

function is the rectified linear unit function (ReLU), which has the form:

g(z) = max(z, 0) (2.2)

ReLU is plotted in Figure  3.10 .

Besides, the loss function is expressed in the mean square error (MSE) form

L = 1
2n

n∑
i=1

(
y(i) − ŷ(i)

)2
(2.3)
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Figure 2.2. The plot of ReLU function

where n is the number of training samples, y(i) is the predicted result by the neural networks

model and ŷ(i) is the exact result of the training samples. To find the minimum of the loss

function, the weights and biases can be updated as

w
′

ij = wij − η
∂L

∂wij

b
′

j = bj − η
∂L

∂bj

(2.4)

where w
′
ij and b

′
j are the corresponding new weights and bias, wij and bj are the old weights

and bias, η is the learning rate which is a hyperparameter that dominates the updated

amount in response for estimated error in each optimization step [ 86 ]. The loss gradient

in Eq. (  2.4 ) can be determined with the backward propagation equations. The backward

propagation equations are [ 85 ]

δL =
(
aL − y

)
� g′

(
zL
)

δl =
((

wl+1
)T

δl+1
)

� g′
(
zl
)

∂L

∂bl
j

= δl
j

∂L

∂wl
jk

= al−1
k δl

j

(2.5)
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where δ is the error of the layer, the superscript L denotes the output layer and l denotes

the hidden layers, g(·) is the activation function. The bold symbols in Eq. (  2.5 ) indicate the

variables in the matrix form. The � represents the element-wise product of two vectors.

2.1.2 Framework of FE-DNN mechanics system

DNN is powerful to learn the intrinsic laws from existing data. However, there are several

issues that limit the application of DNN to learn constitutive law. First, the constitutive

law of a material is typically expressed in terms of stress and strain. But the experiment can

only provide the load-deflection curve. The inhomogeneous stress and strain data are not

directly measurable from experiment, which indicates the direct input and output of DNN

are not available from experiment data. Second, the training of DNN is an unconstrained

optimization process, which causes the issue that the constitutive law learned by DNN

cannot be guaranteed to comply with the physics laws. For example, when applying DNN

to construct the relationship between strain and stress, the learned stress might not follow

the equilibrium equations.

The FE was proposed to couple with DNN to form a mechanics system to solve these

issues. The proposed system can be described using Figure  2.3 . The Is and Os represent

the system input and output. The system input and output can be directly measured from

experiments, such as the displacement and force in a tensile test. The FE in Figure  2.3 refers

to the process of solving the FE model. The Subsystem in the figure can be an analytical

equation, a filter, or can be ignored for some scenarios. The choice of the Subsystem is

problem dependent. The direct input and output of the DNN model are represented by

the ik and ol. The input ik needs to be derived from Subsystem or FE or both FE and

Subsystem. There are two ways to transfer the information from DNN to FE. One method

is to use DNN to predict the material stiffness matrix, the predicted stiffness matrix will be

used to form the global stiffness matrix in FE. The other method is to use DNN to predict

the strain and stress relationship, then the Jacobian of the stress and strain will be computed

via automatic differentiation method and transferred to FE. FE will solve the model and
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output the system output Os which will be used to construct the loss function. The loss

function is the objective function and will be minimized through an optimizer.

Figure 2.3. The framework of the FE-DNN mechanics system

For this mechanics system, the simplest scenario is an uncoupled problem represented

by the solid blue line in the figure. The input data (ik) of the DNN model can be obtained

directly from the system input (Is) through the Subsystem. The outputs of the DNN model

(ol) are sent to FE to compute the system output (Os) . For example, using this approach to

learn the linear elastic constants of general anisotropic materials. If the output of the DNN

is the engineering constants, this system becomes an uncoupled system. This is because the

DNN output is constant for this scenario, as the engineering constants (ol) is independent

of DNN input (ik).

A more complicated and interesting scenario for this system is to deal with a fully coupled

problem. For example, for nonlinear problems, the constitutive law is expressed as the map-

ping between strains (input) and stresses (output) via DNN. The strains have to be derived

using the system input with Subsystem, FE, and DNN, as solving the strains requires using

the constitutive equations that are represented by the DNN model. Thus, the determining

of DNN input also depends on the output of DNN. The DNN model is fully coupled with

the entire mechanics system.

The proposed system has several benefits. Firstly, this system enables DNN to learn a

constitutive law based on limited indirect data, which can be easily measured from experi-

ments. Secondly, the constitutive law is learned in a form-free way that avoids the accuracy

loss caused by the presumed function forms of constitutive laws. Thirdly, since FE is coupled
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to compute the DNN outputs, the learned outputs automatically satisfy equilibrium and the

kinematics equations, which guaranteed that the learned result follows physical laws. Fi-

nally, it is possible to replace the FE a with commercial code, such as Abaqus. This change

avoids rewriting the FE solver based on the automatic differentiation package and facilitates

the creating of the FE model by using powerful commercial codes.

2.1.3 Theory to couple FE with deep neural networks

Given a reference domain Ω ∈ R, with boundary Γu and Γt, and subject to static load.

Assuming negligible body forces, known traction boundary condition, and virtual displace-

ment δuT vanishing on Γu. The virtual work expression of the equation of equilibrium is

given by [ 87 ] ∫
Ω

δεTσdΩ −
∫

Γt

δuTtdΓt = 0 (2.6)

where δεT is the virtual strain, σ is stress, and t is traction. Defining all integrals to be

summed over individual elements, we can approximate the weak form as

∑
e

∫
Ωe

δεTσdΩ −
∑

e

∫
Γe

t

δuTtdΓ = 0 (2.7)

where Ωe and Γe
t represent element domains and parts of boundaries of elements where

tractions are specified, e is the total number of elements. The approximation in Eq. ( 2.7 ) is

associated with the fact that the the sum of element domains Ωe is not always identical to

Ω. With the finite element shape function Na, the displacements can be expressed as

u =
∑

a

Naũa (2.8)

where a is the number of nodes for each element, ũa is the nodal values of the displacement.

The strain can be approximated as

ε = Su =
∑

a

Baũa (2.9)
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where S is a differential operator, Ba is the deformation matrix. With the above approxi-

mations, Eq. (  2.7 ) can be expressed as

∑
e

δũT
a

[∫
Ωe

BT
a σdΩ −

∫
Γe

t

NatdΓ
]

= 0 (2.10)

Next, we need to define the constitutive law in terms of neural networks models to solve

Eq. (  2.10 ). We can express the constitutive model as:

M = NN(ε; θ) (2.11)

where NN represents deep neural networks, ε is the strain, θ represents weights and biases

of neural networks. DNN is trained to build the mapping between strain and the stiffness

matrix M. Clearly, M is a function of ε and θ. The constitutive relation can be expressed

as

σ = M(ε; θ)ε (2.12)

Substituting Eq. (  2.12 ) into Eq. (  2.10 ) yields

∑
e

δũT
a

[∫
Ωe

BT
a M(ε; θ)εdΩ −

∫
Γe

t

NatdΓ
]

= 0 (2.13)

Plugining Eq. (  2.8 ) into Eq. (  2.13 ) results in

∑
e

δũT
a

[∫
Ωe

BT
a M(ε; θ)BaũadΩ −

∫
Γe

t

NatdΓ
]

= 0 (2.14)

After summing the element integrals and noting that δũa is arbitrary, then in each

increment step, Eq.( 2.14 ) can be regarded as a system of linear equation

Ku − f = 0 (2.15)

with
K =

∑
e

∫
Ωe

BT
a M(ε; θ)Ba dΩ and f =

∑
e

∫
Γe

t

NatdΓ (2.16)
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The unknown displacement u can be solved

u = K−1f (2.17)

Then the loss function can be formed as

L (θ) = 1
N

N∑
i

(ui (F i, M(ε; θ)) − ûi)2 (2.18)

where L is the system loss function, ui(·) and ûi are the computed displacements and

observed displacements respectively, N is the total number of measurable datasets, F i is the

external force applied to the FE model at the ith step.

2.1.4 Training scheme of FE-DNN mechanics system

Since the measurable data from experiments are forces and displacements (F i, ûi). Then,

the training of the DNN can be mathematically formulated as a PDE-constrained optimiza-

tion problem:

find θ

minimize L (θ) = 1
N

N∑
i

(ui (F i, M(ε; θ)) − ûi)2

subject to N (θ, ui(θ)) = 0

where N (·) represents the PDE constraint. The data flow of this framework can be summa-

rized in Figure  2.4 .

The optimization of the loss function L is to find a set of weights and biases θ of DNN

that minimizes the loss function and satisfies the PDE constraint. To update weights and

biases of DNN in the system, the backward propagation equations need to be modified. With

the data flow shown in Figure  2.4 , the parameters of the DNN model can be updated as

∂L

∂θ
= 1

N

N∑
i=1

2 (ui − ûi)
(

M∑
m=1

∂ui

∂Mm

∂Mm

∂L(m)
c

∂L(m)
c

∂θ

)
(2.19)
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Figure 2.4. The data flow of the FE-DNN mechanics system

where M is the total number of outputs of DNN that contributed to system output, L(m)
c is

the mth DNN output, and Mm is the mth output of the stiffness matrix. In Eq. (  2.19 ), the

(ui − ûi) can be computed analytically, the ∂ui/∂M involves solving FE model, it can be

computed via automatic differentiation or finite difference, and ∂Mm

∂L
(m)
c

∂L
(m)
c

∂θ
can be handled

by the automatic differentiation package.

For an FE analysis, the computational complexity is O(NW 2), where N is the number of

nodes, W is the bandwidth of a banded stiffness matrix [ 88 ]. Since we need to compute the

gradient with respect to stiffness matrix entries, the computational complexity is O (N2W 2).

For a neural networks model, the backward propagation complexity is estimated as O(ωm),

where ω is the number of weights, m is the number of inputs [ 89 ]. Moreover, for each

time step, the computational complexity of LSTM per weight is O(1). Thus, the overall

complexity per step is O (ωm + N2W 2).

The previous research has shown that the second-order/quasi-second-order optimizer

works better for the FE coupled neural networks problems [  70 ], [  71 ], [  90 ]. Thus, in this

work, the Limited-memory BFGS (L-BFGS) optimizer [ 91 ], which is a quasi-second-order

optimizer, was used to train the FE-DNN model. A brief introduction of L-BFGS optimizer

is presented in Appendix  A.1 .

A two-round training scheme was proposed to train the FE-DNN mechanics system. The

training process is shown in Figure  2.5 . The purpose of the first-round training is to deter-
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mine accurate inputs and outputs from indirect experiment data. The first-round training

will be performed incrementally. The experimental data, i.e. the load and corresponding

displacements, will be divided into n sets, with n as the number of the total training steps

of the first-round. The choice of n needs to consider convergence and performance of the

entire system. As a too small n will make the training inefficient, a too large n may cause

the neural network to lose convergence. At each step, the initialized weights, biases, and

neural network inputs are obtained from the previous step. The load and DNN predicted

constitutive law will be transferred into the FE model. FE solver will solve the FE model

and compute the gradient of the displacement with respect to the constitutive law parame-

ters. Next, the difference between the observed displacements and computed displacements

will be evaluated. If the difference does not reach the termination criterion, the weights

and biases will be updated through an optimizer. Otherwise, the DNN inputs, outputs, and

model parameters will be saved for the second-round training and transferred to the next

step as initial parameters. By repeating the first-round training for all the datasets, the

complete sets of inputs and outputs of DNN can be obtained. After the completion of the

first-round training, the second-round training will be performed to approximate the overall

relationship between the accurate inputs and outputs.
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Figure 2.5. Flowchart of the training of the FE-DNN mechanics system

2.2 Integrate Abaqus with FE-DNN

The commercial FE code Abaqus is integrated with DNN to improve the efficieny of FE-

DNN. This method enables data communication between Abaqus and DNN, which facilitates

the creating of the FE model by using a commercial code and avoids rewriting the FE

code based on the automatic differentiation package. Besides, this integration can couple

with different theories in Abaqus and avoids rewriting these theories based on automatic
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differentiation package. For demonstration, we applied this method to learn linear elastic

constants of constituents of a fiber-reinforced composite.

2.2.1 Implementation of FE-DNN with Abaqus

For a FE code written by an automatic differentiation package, the training only needs

to focus on the forward propagation. The backward propagation can be handled by the

automatic differentiation package. However, for this integration, the computation of back-

ward propagation of DNN and FE has to be done separately. Thus, the training process is

required to be modified.

The modified training process is shown in Figure  2.6 . As shown in the figure, at each

step, the initialized weights, biases, and neural network inputs are obtained from the pre-

vious step. Then, the load and DNN predicted constitutive law will be transferred into the

Abaqus input file. A script is used to change the input file to Abaqus design sensitivity

analysis (DSA) input file. Abaqus will solve the FE model and compute the gradient of

the displacement with respect to the constitutive law parameters via DSA [  92 ]. Next, an

Abaqus python script will be used to read the displacement and gradient with respect to

the constitutive law parameters from Abaqus output file. The displacement and gradient

are used to rebuild the backpropagation equation (Eq.  2.19 ). The difference between the

observed displacements and computed displacements will be evaluated. If the difference does

not reach the termination criterion, the weights and biases will be updated through an op-

timizer. Otherwise, the DNN inputs, outputs, and model parameters will be saved for the

second-round training and transferred to the next step as initial parameters. By repeating

doing that for all the datasets, the complete sets of inputs and outputs of DNN can be

obtained. After the completion of the first-round training, the second-round training will be

performed to approximate the overall relationship between the accurate inputs and outputs.

For the implementation of DNN, we leveraged PyTorch to construct a neural network.

PyTorch is an open-source symbolic tensor manipulation software library developed by Face-

book [  93 ]. PyTorch uses automatic differentiation in its library, which can be used for the
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forward and backward propagation. The PyTorch sequential function was used to build a

multi-layered neural network.

The key to couple Abaqus with DNN is to form Eq. (  2.19 ) correctly. In the Abaqus-

DNN frame, (ui − ûi) can be computed analytically, ∂ui/∂Mm can be evaluated using

the Abaqus design sensitivity analysis capability, and ∂Mm/∂θ can be handled by the

Pytorch. During the training of Abaqus-DNN, an Abaqus python script was written to

access the Abaqus analysis result (odb file). Unfortunately, Abaqus python was compiled

based on python 2, which does not support the PyTorch package. Therefore, we have

to separate the Abaqus python script and neural network optimization script. The data

communication between Abaqus and neural network was achieved by saving the observed

nodes’ displacements, strains, and the corresponding gradients to disk using python NumPy

savez function. Then, the saved file was read in another script, which will normalize the

displacements to the range [0, 1] and follow the explicit backpropagation equation to update

weights and biases.

The training followed the process described in Figure  2.6 . The training would be termi-

nated after the loss reached the accuracy or the training step reached the maximum steps.

The training datasets for both problems were relatively small. Thus, a quad-core computer

was used to do the training. The linear problem was completed within 20 minutes, the

damage problem used 10 hours to complete the training.
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Figure 2.6. Flowchart of the training of the FE-DNN with Abaqus
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2.2.2 Example 1: Learn linear elastic constants of constituents of a fiber-reinforced
composite

Example 1 problem description

A 3D square packed model is used to model the linear elastic behavior of a fiber-reinforced

composite as shown in Figure  2.7 . The model has L × W × H = 1 × 1 × 1 mm and is fixed

on the x = 0 surface. The surface pressures are applied at x = 1 and z = 1 planes with

magnitude p = −10 MPa respectively. This model has two constituents, which are fiber

and matrix. The fiber volume fraction is 0.6. The fiber and matrix are assumed to be

transversely isotropic and isotropic respectively. The engineering constants of these two

materials are listed in Table  2.1 .

Figure 2.7. A squared-packed composites model
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Table 2.1. Fiber and matrix material properties

E1(GPa) E2(GPa) v12 G12(GPa) G23(GPa)
Fiber 276.00 19.50 0.28 70.00 7.62

E(GPa) v

Matrix 4.76 0.36

For a linear elastic material, the constitutive law is

σ = Cε (2.20)

where σ is the stress, ε is the strain, C is the stiffness matrix. Eq. (  2.20 ) can be replaced

by a DNN as shown in Eq. (  2.12 ). For a FE analysis, the Jacobian of σ(ε) is required to

form the global stiffness matrix to solve for the unknown variables. Although DNN can form

an accurate mapping between input and output, it cannot get an accurate gradient of input

to output at the same time. Therefore, instead of using the DNN model to directly learn

the mapping between stresses and strains, the DNN model is used to predict the Jacobian

of σ(ε). The general form of the Jacobian of σ(ε) is

M(ε, θ) = ∂σ

∂ε
=



∂σ11
∂ε11

∂σ11
∂ε22

∂σ11
∂ε33

∂σ11
∂γ23

∂σ11
∂γ13

∂σ11
∂γ12

∂σ22
∂ε22

∂σ22
∂ε33

∂σ22
∂γ23

∂σ22
∂γ13

∂σ22
∂γ12

∂σ33
∂ε33

∂σ33
∂γ23

∂σ33
∂γ13

∂σ33
∂γ12

∂σ23
∂γ23

∂σ23
∂γ13

∂σ23
∂γ12

symmetric ∂σ13
∂γ13

∂σ13
∂γ12

∂σ12
∂γ12


(2.21)

For a linear elastic problem, M can be regarded as the linear elastic stiffness matrix C.

Clearly, C is not a function of ε, as material properties of linear elastic material are constant.

Thus, C(ε, θ) can be reduced to C(θ). This simplification makes the problem become an

uncoupled problem as represented by the solid blue line in Figure  2.3 . Thus, the input of
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DNN can be set as a fixed single value. Besides, since the fiber and matrix are assumed to

be transversely isotropic and isotropic respectively, Eq. (  2.21 ) reduces to

M(θ) = C(θ)

=



C11(θ) C12(θ) C12(θ) 0 0 0

C22(θ) C23(θ) 0 0 0

C22(θ) 0 0 0
C22(θ)−C23(θ)

2 0 0

symmetric C55(θ) 0

C55(θ)



(2.22)

After discretizing the computation domain and assembling the global stiffness matrix,

we can express the unknown displacements as [ 94 ]

vh = K(C)−1F (2.23)

where vh is the unknown displacement, K is the global stiffness matrix, F is the external

force. Eq. ( 2.23 ) shows that the unknown displacement vh is a function of C(θ). Since C

is a function of neural network weights and biases, clearly, K is also a function of neural

network weights and biases. Therefore, the structure of the Abaqus-DNN system can be

described in Figure  2.8 . As shown in the figure, both fiber and matrix neural networks have

one input. As mentioned earlier, the value of the input was set to be one. The fiber neural

network has five outputs which account for the five independent engineering constants of

a transversely isotropic material. The outputs of the matrix neural network are two which

represent the independent engineering constants of an isotropic material.
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Figure 2.8. The structure of FE-DNN for a linear elastic problem

The backward propagation equation can be explicitly expressed as

∂L

∂θ
= 1

N

N∑
i=1

2 (ui − ûi)
(

M∑
i=1

∂ui

∂Mm

∂Mm

∂θ

)

= 2
N

[
(u1 − û1)

(
∂u1

∂y11

∂y11

∂θ

)
+ (u1 − û1)

(
∂u1

∂y12

∂y12

∂θ

)
+ · · · + (u1 − û1)

(
∂u1

∂y22

∂y22

∂θ

)]
+

2
N

[
(u2 − û2)

(
∂u2

∂y11

∂y11

∂θ

)
+ (u2 − û2)

(
∂u2

∂y12

∂y12

∂θ

)
+ · · · + (u2 − û2)

(
∂u2

∂y22

∂y22

∂θ

)]
+

...
2
N

[
(uN − ûN)

(
∂uN

∂y11

∂y11

∂θ

)
+ (uN − ûN)

(
∂uN

∂y12

∂y12

∂θ

)
+ · · · + (uN − ûN)

(
∂uN

∂y22

∂y22

∂θ

)]
(2.24)
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where y1p, p = 1, . . . , 5 and y2q, q = 1, 2 are the outputs of the fiber neural network and

matrix neural network respectively.

This model used 1920 C3D8R elements after a convergence study. After trial-and-error

tests, the structure of the neural network for fiber was identified as [1, 10, 10, 5], which

indicates that the neural network has one input, five outputs, and two hidden layers with each

hidden layer have ten neurons. The activation function was chosen to be the ReLU function.

For the matrix, the neural network was chosen to be [1, 10, 10, 2]. The final step’s load and

the corresponding displacements were selected for training. Therefore, the training can be

completed within one step as shown in Figure  2.6 . The observation nodes used for training

are shown along the red line in Figure  2.9 . Note that the training only used the nodes on

the exterior surface. This indicates that the proposed Abaqus-DNN model can be completed

using only the surface displacements, which are easily measured from an experiment.

Figure 2.9. The observation nodes for training
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Example 1 results and discussion

Figure  2.10 shows that the system loss of training data with respect to the number of

iterations. As can be seen in the figure, the loss decreased fast with the increase of iterations.

The loss function Eq. (  2.18 ) reached an optimal value of 10−14 within 100 iterations.

Figure 2.10. Training loss of the learning linear elastic constants example

An initial guess is needed to start optimization for the L-BFGS optimizer. In principle,

an ideal algorithm is desired to handle any initial guess. However, a reasonable initial guess is

usually needed for an optimization problem, as a bad initial guess might cause the algorithm

to converge slowly or lose convergence. For example, a negative initial guess of Young’s

modulus will cause stiffness matrix not positive-definite. Abaqus will stop running as the

stiffness matrix does not physically make sense. This will cause the algorithm to stop running

and lose convergence. For this problem, the initial guess of the material properties are listed

in Table  2.2 . The initial weights and biases of the neural network model were initialized by

pre-training the model based on the initial guess of the material properties. The Diff1 column

shows the difference between the initial guess and the target of the material properties. As

one can tell, the difference between the initial guess and the target material properties

ranges from −25% to −104%. Noting that the initial guess does not have to be limited

to this range, a larger range can also lead to an accurate learning result. Diff2 represents
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the learned material properties deviate from the target material properties. Although only

several points on the exterior surface were selected for the training, the material properties

of the two constituents can still be learned very accurately.

Table 2.2. Comparison between target, initial, and learned material properties

Target Initial Learned Diff1 Diff2
E1(GPa) 276.00 394.25 276.01 -42.84 % 0.00 %
E2 (GPa) 19.50 0.94 19.50 95.18 % 0.00 %
G12 (GPa) 70.00 50.00 70.00 28.57 % 0.00 %

v12 0.28 0.20 0.28 28.57 % 0.00 %
G23 (GPa) 7.62 0.24 7.62 96.85 % 0.00 %
Em(GPa) 4.76 9.73 4.76 -104.41 % 0.00 %

vm 0.36 0.45 0.36 -25.00 % 0.00 %

2.3 Couple FE with Positive-Definite Deep Neural Networks (FE-PDNN)

In this section, we coupled FE with Cholesky decomposed positive-definite deep neural

networks (PDNN) to form FE-PDNN. This modification imposes the positive-definite con-

straint to the stiffness matrix predicted by DNN and thus improves the convergence stability

of the training process.

2.3.1 Implementation of FE-PDNN

A material stiffness matrix is a symmetric positive-definite real matrix. Then, the

Cholesky decomposition factors a positive-definite matrix M into:

M = LcL
T
c (2.25)

where Lc is a Cholesky factored lower triangular matrix with positive diagonal entries. To

apply the positive-definite constraint to the stiffness matrix, DNN is trained to build the

mapping between strain and the lower triangular matrix Lc

Lc = NN(ε; θ) (2.26)
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where NN represents deep neural networks, ε is the strain, θ represents weights and biases

of neural networks. Lc will multiply its transpose matrix to form the stiffness matrix M.

This type of neural networks is defined as PDNN since the stiffness matrix predicted by M

remains positive-definite. The constitutive relation can be expressed the same as Eq. ( 2.12 ).

The data flow of FE-PDNN can be summarized using Figure  2.11 .

Figure 2.11. Data flow of the FE-PDNN mechanics system

For FE-PDNN, the training flow needs to be modified. The flowchart of the training

of FE-PDNN is shown in Figure  2.12 . The training scheme is very similar to the training

process shown in Figure  2.6 . The difference is that the DNN will be trained to predict

the lower triangular matrix of the stiffness matrix. The predicted lower triangular matrix

will multiply its transpose matrix to form a positive-definite stiffness matrix. The PDNN

predicted constitutive law and load will be transferred into the Abaqus, which solves the

FE model and computes the gradient of the displacement with respect to the constitutive

law parameters via DSA [  92 ]. This change applied a hard constraint to the DNN predicted

result and guaranteed the stiffness matrix predicted by PDNN is positive-definite.
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Figure 2.12. Flowchart of the training of the FE-PDNN mechanics system
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2.3.2 Example 2: Learn the damage constitutive law of a unidirectional fiber-
reinforced composite laminate with FE-PDNN

Example 2 problem description

In this section, a fiber-reinforced laminate example is presented to test the capability

of FE-PDNN on learning damage constitutive law of composite materials. The Abaqus

build-in damage model of fiber-reinforced composites was used to generate observation data.

The layup angles of the laminate are [10]6. It is not necessary to combine the lamination

theory with FE-PDNN for this problem, as this plate is homogeneous through the thickness

and can be regarded as a plane-stress problem. The length and width of the laminate are

L × H = 138 × 25 mm, the ply thickness is 0.28 mm. As shown in Figure  2.13 , the center of

the left surface x = 0 is pinned with ux = uy = 0. The other area along x = 0 is constrained

with ux = 0. A uniform displacement is applied at the right end surface with ux = 0.90 mm.

Figure 2.13. Boundary conditions of the fiber-reinforced composite laminate

The material of the model is assumed to be a fiber-reinforced composite with damage

behavior. The plasticity can be ignored in this analysis, as the damage in a fiber-reinforced

composite usually initiates without large plastic deformation. The material properties are

shown in Table  2.3 . For the damage model implemented by Abaqus, the damage initiation

is determined by the Hashin failure criterion [ 25 ], [ 58 ], and the damage evolution is based

on the fracture energy dissipation during the damage process [ 95 ]. The constitutive law of

the material can be expressed

σ = Cdε (2.27)
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where Cd is the degraded elasticity matrix

Cd = 1
D


(1 − df ) E1 (1 − df ) (1 − dm) ν21E1 0

(1 − df ) (1 − dm) ν12E2 (1 − dm) E2 0

0 0 (1 − ds) GD

 (2.28)

and the corresponding damaged compliance matrix is

H =


1(

1−df

)
E1

−ν21
E2

0

−ν12
E1

1
(1−dm)E2

0

0 0 1
(1−ds)G12

 (2.29)

where D = 1 − (1 − df ) (1 − dm) ν12ν21, df , dm, ds reflect the current state of fiber damage,

matrix damage, and shear damage respectively. The DNN model is used to predict the lower

triangular matrix of the Jacobian of σ(ε). Thus, we have

M(ε, θ) = LcL
T
c =


∂σ11
∂ε11

∂σ11
∂ε22

∂σ11
∂γ12

∂σ11
∂ε22

∂σ22
∂ε22

∂σ22
∂γ12

∂σ11
∂γ12

∂σ22
∂γ12

∂σ12
∂γ12

 (2.30)

For this problem, M(ε, θ) can be regarded as Cd(ε, θ). Since the fiber-reinforced com-

posite is assumed to be transversely isotropic, M(ε, θ) reduces to

M(ε, θ) = Cd(ε, θ) =


C11(ε, θ) C12(ε, θ) 0

C12(ε, θ) C22(ε, θ) 0

0 0 C66(ε, θ)

 (2.31)

It is noted that the simplification in Eq. (  2.31 ) is not a constraint for the FE-PDNN. It

is possible to use a fully populated matrix if the extension and shear coupling does exist in

the material.

In Eq. ( 2.31 ), PDNN is fully coupled with Abaqus as M is a function of ε. The PDNN

inputs need to be derived from the PDNN outputs of the previous iteration. Besides, all
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Table 2.3. Laminate material properties and strength parameters [  96 ]

Material properties
Elastic properties:
E1(MPa) 123, 520
E2(MPa) 6, 516
G12(MPa) 2, 494
ν12 0.32

Tensile strengths:
X(MPa) 1, 429
Y (MPa) 41
Compressive strengths:
X ′(MPa) 530
Y ′(MPa) 145
Shear strengths:
S(MPa) 83.4
T, MPa 83.4

the PDNN outputs will contribute to the displacement. Thus, it is necessary to compute

the displacement gradient of each node with respect to all the outputs during backward

propagation.

The dimensions of the inputs and outputs of PDNN are three and four respectively, since

the in-plane strains and independent elements in the Jacobian are used as input and output.

The FE-PDNN structure for this problem is presented in Figure  2.14 .
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Figure 2.14. The structure of FE-PDNN for a damage problem

The explicit form of the modified backward propagation equation is

∂L

∂θ
= 1

N

N∑
i=1

2 (ui − ûi)
(

M∑
m=1

∂ui

∂Mm

∂Mm
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)

= 2
N

[
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(
∂u1
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+

2
N
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∂uN

∂yM4
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(2.32)

where ypq is the qth neural networks output of the pth element. ∂Mm

∂L
(m)
c

∂L
(m)
c

∂θ
is simplified to

∂Mm

∂θ
since it can be handled by the automatic differentiation package.
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For this problem, the FE model converges with 368 CPS4R elements. Thus, the rest

of the analysis was based on this element size. Besides, this model can also be regarded

as x and y axis-symmetric if the observation reference point is moved to the center of the

model (x = 69, y = 12.5). After modifying the controlled displacement to 0.45 mm (due to

symmetry), a quarter of the model was used for the analysis. After trial-and-error testings,

the DNN structure was identified as [3, 40, 40, 40, 4], which indicates that the neural networks

has three inputs, four outputs, and three hidden layers with each hidden layer having 40

neurons. The training data was split into 31 datasets, which means that the training has

31 steps. The training process followed the flowchart described in Figure  2.12 . For this

study, we selected the ReLU function as the activation function. ReLU activation function

has gained massive popularity since it is computationally less expensive, avoids vanishing

gradient problem, and has simpler mathematical operations. However, ReLU could have the

“Dying ReLU” problem, which could cause gradients to fail to flow during backpropagation,

and the weights are not updated. The “Dying ReLU” problem can be tackled by using

a small learning rate and modifying the initialization of NN. In our implementation, we

pretrained the NN before embedding it into FEM. Besides, we also set the learning rate to

be around 10−4, which is a small learning rate compared to the common learning rate of

10−3.

Example 2 results and discussion

Figure  2.15 shows the plot of the averaged stress versus strain at the right end surface.

The averaged stress is computed by using the force divided by the laminate cross-sectional

area. The averaged strain is obtained using the displacement divided by the length of

the model. As one can tell from the plot, the damage initiated at ε11 = 0.0047. Once

the damage was initiated, the strain-stress relation becomes clearly not linear. Then, the

laminate reached peak stress at ε11 = 0.0058. After the peak stress, the laminate degraded

quickly and failed abruptly. From this plot, one can also observe that FE-PDNN can learn

the damage behavior very well, as the differences between observation and FE-PDNN are

within 1%.
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The learning capability of FE-PDNN can be further confirmed in Figures  2.16 and  2.17 .

Figure  2.16 compares the contour plots of the observed and learned displacements. Step

15 (σave = 160.4 MPa) and 31 (σave = 162.6 MPa) are the damage initiated step and last

steps, respectively. The material is severely damaged at step 31. These plots show that

the observed and learned displacements agree with each other very well. Additionally, The

contour plots at steps 15 and 31 show a great difference near the left end surface. The blue

area at the left bottom end surface of step 31 is smaller than that of step 15, which indicates

there is more deformation in this area at step 31. This change was caused by the damage

of the material. Figure  2.17 shows the comparison of the σ11 at step 15 and 31. Again,

one can conclude that the maximum and minimum stresses agree with each other very well,

the contour shape matches excellently. Noteworthy is that the stress did not participate

in the training of the FE-PDNN. The stresses are inversely determined from the training

process. This demonstrated that FE-PDNN can learn the damage constitutive law of a

severely damaged material.

Figure 2.15. Averaged stress versus strain of the [10]6 laminate
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(a) Observed u1 at step 15 (b) Observed u1 at step 31

(c) Learned u1 at step 15 (d) Learned u1 at step 31

Figure 2.16. Comparison of the contour plots of u1 of the [10]6 laminate

(a) Observed σ11 at step 15 (b) Observed σ11 at step 31

(c) Learned σ11 at step 15 (d) Learned σ11 at step 31

Figure 2.17. Comparison of the contour plots of σ11 of the [10]6 laminate

Additionally, a comparison was done between the learning capability of FE-DNN and FE-

PDNN. Figure  2.18 presents the learning result of FE-DNN, which did not apply positive-

definite constraint to the DNN. Figure  2.18a presents the displacement learned by FE-DNN.

One can tell that FE-DNN failed to learn the displacement at step 31, as the contour shape

of Figure  2.18a is non-smooth and cannot match the observed displacement at Figure  2.16b .

This is because some elements already have severe damage, thus the diagonal terms of the

stiffness matrix degraded significantly. This caused the training convergence issue as some

diagonal terms were shifted to the negative value. As mentioned earlier, a negative diagonal

term of the stiffness matrix causes the strain energy density no longer positive-definite. A
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FE analysis stops running if the negative strain energy density occurs. Figure  2.18b shows

the σ11 learned by FE-DNN. Again, FE-DNN failed to learn the stress at step 31.

(a) FE-DNN learned u1 at step 31 (b) FE-DNN learned σ11 stress at step 31

Figure 2.18. The learning result of FE-DNN for the [10]6 laminate

2.4 Couple the Classical Lamination Theory with FE-PDNN Mechanics System

2.4.1 Lamination theory enhanced FE-PDNN

A composite laminate is formed by stacking multiple layers of fiber-reinforced composites.

The composite layers are usually parallelly stacked together with different in-plane fiber

orientations. For the classical lamination theory, the Kirchhoff assumptions [  97 ] are made to

derive the relationship between displacements and strains. The 3D solid displacements and

2D plate displacements can be related as

u1 (x1, x2, x3) = ū1 (x1, x2) − x3ū3,1

u2 (x1, x2, x3) = ū2 (x1, x2) − x3ū3,2

u3 (x1, x2, x3) = ū3 (x1, x2)

(2.33)

where ui are the 3D solid displacements and ūα are the 2D plate displacements. Under the

infinitesimal deformation assumption, the plate strains are defined as

εαβ (x1, x2) = 1
2 (ūα,β + ūβ,α)

καβ (x1, x2) = −ū3,αβ

(2.34)
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where εαβ are the plate strains, καβ are the curvatures of the reference surface. The lamina-

tion theory uses plate stress resultants defined as

Nαβ = 〈〈σαβ〉〉

Mαβ = 〈〈x3σαβ〉〉
(2.35)

where the double angle brackets represents integration through the thickness 〈〈·〉〉 =
∫ h

2
−h
2

·dx3.

The indices α and β take value 1 or 2.

The constitutive law of a plate can be expressed as

N

M

 =

A B

B D


ε

κ

 (2.36)

with

A = 〈〈Q〉〉, B = 〈〈x3Q〉〉 , D =
〈〈

x2
3Q
〉〉

(2.37)

and

Q = S−1
e =


1

E1
−ν21

E2

η12,1
G12

−ν12
E1

1
E2

η12,2
G12

η1,12
E1

η2,12
E2

1
G12


−1

(2.38)

where A is the extension stiffness matrix, B is the extension-bending coupling stiffness

matrix, and D is the bending stiffness matrix. Se is the plane-stress reduced compliance

matrix, Q is the plane-stress reduced stiffness matrix.

To enable DNN to learn the constitutive law of lamina based on the structural response of

laminate, the FE-PDNN is coupled with the classical lamination theory. To achieve that, the

DNN is trained to map between 3D strains and the Cholesky decomposed lower triangular

matrix (Lc(ε; θ)) of the lamina Q matrix. This mapping is shown below

Lc(ε; θ) = NN(ε; θ) (2.39)
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where NN represents DNN, ε and θ are the strains and DNN parameters respectively. The

lower triangular matrix will multiply its transpose matrix to form a positive-definite stiffness

matrix

M(ε; θ) = Q(ε; θ) = LcL
T
c (2.40)

Eq. (  2.40 ) indicates the plane-stress reduced stiffness matrix is a function of strains and

DNN parameters. The plane-stress reduced stiffness matrix will follow Eq. ( 2.37 ) to form

the plate stiffness matrix. Clearly, the plate stiffness matrix is a function of strains and DNN

parameters. It can be expressed as

A(ε; θ) = 〈〈Q(ε; θ)〉〉 B(ε; θ) = 〈〈x3Q(ε; θ)〉〉 D(ε; θ) =
〈〈

x2
3Q(ε; θ)

〉〉
(2.41)

The data flow of coupling lamination theory with FE-PDNN can be summarized in Figure

 2.19 . The proposed method enables DNN to learn lamina constitutive law based on struc-

tured level response. Besides, the DNN is trained to predict the lower triangular matrix

of the lamina plane-stress reduced stiffness matrix, which guarantees that the plate stiff-

ness matrix is positive-definite. Finally, the proposed approach ensures that the learned

relationship follows the governing systems implemented in the FE code.

Figure 2.19. The data flow of coupling of lamination theory with the FE-
PDNN mechanics system
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2.4.2 Example 3: Learn damage constitutive law of lamina with lamination
theory enhanced FE-PDNN

Example 3 problem description

For this example, the laminate is assumed to have the same geometry and material

properties as the example in Section  2.3.2 . The displacement is set to be 1.3 mm. The

layup angles are [0/45]s. Since the layup angles are not uniform, it would be expensive to

directly apply FE-PDNN to learn the lamina constitutive law of the laminate. Therefore,

the lamination theory enhanced FE-PDNN was applied to learn the constitutive law. This

change needs to modify the FE elements to S4R elements. Again, the DNN model is used to

predict the lower triangular matrix of plane-stress reduced stiffness matrix. Since the lamina

is assumed to be transversely isotropic. We have

M(ε, θ) = LcL
T
c = Q(ε, θ) =


Q11(ε, θ) Q12(ε, θ) 0

Q12(ε, θ) Q22(ε, θ) 0

0 0 Q66(ε, θ)

 (2.42)

The stiffness matrix in Eq. (  2.42 ) is expressed in the material coordinate system. To derive

the plate constitutive stiffness matrix, one needs to transform the stiffness matrix from the

material coordinate system to the laminate coordinate system

Q′(ε, θ) = RσeQ(ε, θ)RT
σe

(2.43)

with

Rσe =


Cos(γ)2 Sin(γ)2 −2 Cos(γ) Sin(γ)

Sin(γ)2 Cos(γ)2 2 Cos(γ) Sin(γ)

Cos(γ) Sin(γ) − Cos(γ) Sin(γ) Cos(γ)2 − Sin(γ)2

 (2.44)
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where γ is the layup angle, Q′ and Q are the in-plane reduced stiffness matrices in the

material and laminate coordinate system, respectively. From Eq. (  2.37 ), we can derive

A(ε, θ) =


A11(ε, θ) A12(ε, θ) A16(ε, θ)

A12(ε, θ) A22(ε, θ) A26(ε, θ)

A16(ε, θ) A26(ε, θ) A66(ε, θ)



D(ε, θ) =


D11(ε, θ) D12(ε, θ) D16(ε, θ)

D12(ε, θ) D22(ε, θ) D26(ε, θ)

D16(ε, θ) D26(ε, θ) D66(ε, θ)



(2.45)

The B matrix vanishes due to the symmetry of the laminate. Although the A and D

matrices are fully populated matrix, they are derived from Q matrix. Thus, the A and D

matrices can be uniquely determined by the four independent variables in the Q matrix. The

plate equilibrium equations are shown in Appendix  A.2 . Thus, the governing equations can

be formulated to solve for the displacement of the laminate [  97 ]. The solved displacement

can be used to form the MSE loss function. The neural network of this problem has the

same structure as the previous example. Thus, the explicit form of the modified backward

propagation equation can also be represented by Eq. ( 2.32 ). The change is that ∂ui

∂Mm
needs

to be computed via the lamination theory. It is noted that although the symbol to express

the gradient is the same, the physical meaning is different, because the governing equations

for the plate model and the solid model are different. The top layer displacement was used

as the observation data to train FE-PDNN.

Example 3 results and discussion

Figure  2.20 plots the averaged stress versus strain at the right end surface. Again, the

averaged stress and strain are computed by the same method as the previous example. The

damage was initiated at step 14 (σave = 344.7 MPa). However, the influence to the curve

was not obvious. Then, at step 18 (σave = 564.1 MPa) the curve starts to change obviously

and quickly loses the stiffness. From Figure  2.20 , one can observe that the FE-PDNN agrees

60



well with the observation data. This indicates that it is possible to couple the lamination

theory with FE-PDNN to learn the lamina constitutive law.

Figure 2.20. The plot of averaged stress versus strain of the [0/45]s laminate

This observation can be confirmed by Figures  2.21 and  2.22 , which plot the displacement

and stress at the top layer of the laminate. Figures  2.21a and  2.21b show the observed

displacement at step 18 (σave = 564.1 MPa) and 30 (σave = 430.0 MPa). As one can tell,

the displacement is not uniform in the laminate. This is because the ply orientations of the

laminate are not uniform. The 45 degree ply generates shear stress in the laminate. Besides,

with the increasing load, the displacement contour shape has been changed. This is due to

the damage in the laminate. Figures  2.21c and  2.21d present the displacement learned by

FE-PDNN, which applied the positive-definite constraint to the stiffness predicted by DNN.

As shown in Figures  2.21c and  2.21d , all the contour plots match the observed plots very

well. The Mises stress result is presented in Figure  2.22 . Figures  2.22a and  2.22b show

the Mises stress of the observation data. In Figure  2.22a , the maximum Mises stress is at

the upper right and bottom left corner. However, the maximum stress in Figure  2.22b has

changed to the bottom right corner. This change was due to the severe damage at the upper
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right corner, as the severely damaged elements take less load under the same displacement.

These results demonstrate that coupling lamination theory with FE-PDNN enables DNN to

learn the lamina constitutive law based on the laminate structural response. Figures  2.22c 

and  2.22d present the stresses learned by FE-PDNN. One can tell that FE-PDNN accurately

predicts the stress. There is a slight difference between observed and learned stress at the

last step. However, the overall contour shape and the maximum stress match each other

very well. Again, a training was done using FE-DNN. The result is presented in Figure

 2.23 . The result shows that FE-DNN failed to learn the constitutive law at step 30, as the

contour plots of displacement and stress cannot match the observed result. The results of

Mises stress have a worse agreement than those of the displacements.

(a) Observed u1 at step 18 (b) Observed u1 at step 30

(c) FE-PDNN learned u1 at step 18 (d) FE-PDNN learned u1 at step 30

Figure 2.21. Comparison of the contour plots of u1 of the [0/45]s laminate

2.4.3 Example 4: Learn lamina damage constitutive law based on a laminate
made of E-glass/MY750 material using experimental data

Example 4 problem description

In this example, we fed the experimental data into the lamination theory enhanced FE-

PDNN to learn lamina constitutive law. The experimental tests were carried out by the

Defence Evaluation and Research Agency (DERA) and collected in the World-Wide Failure
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(a) Observed Mises stress at step 18 (b) Observed Mises stress at step 30

(c) Learned Mises stress at step 18 (d) Learned Mises stress at step 30

Figure 2.22. Comparison of the contour plots of Mises stress of the [0/45]s laminate

(a) FE-DNN learned u1 at step 30 (b) FE-DNN learned Mises stress at step 30

Figure 2.23. The learning result of FE-DNN for the [0/45]s laminate

Exercise I [  98 ]. The laminate coupons were made of E-glass/MY750 lamina with layup angles

[0/90]s. All the plies have an identical thickness of 0.475 mm and the overall thickness of

the laminate is 1.9 mm. The coupons are 25 mm wide, 200 mm long and a gauge length

of 100 mm, which leaves a 50 mm distance at each end for bonding and taps. The width

of the FE model was the same as the specimen, the length was set to be 100 mm. The

boundary conditions are the same as the example in Section  2.3.2 , which is shown in Figure

 2.13 . The lamina properties and strength parameters are listed in Table  2.4 . A total of

five uniaxial tension tests were carried out. The initial failure was recorded at a strain of

εx = 0.375%, which corresponds to 117.5 MPa stress on the coupon. The mean failure strain

in the loading direction was εx = 2.69% with 590 MPa stress. The coupons finally failed by
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fiber fracture. A typical averaged stress-strain curves is shown in Figure  2.24 . The E1 and

ν12 are re-calibrated based on this curve.

Table 2.4. The lamina properties and strength parameters of E-glass/MY750 [  98 ], [ 99 ]

Material properties
Elastic properties:
E1(MPa) 42, 000
E2(MPa) 16, 200
G12(MPa) 5, 830
ν12 0.12

Tensile strengths:
X(MPa) 1, 280
Y (MPa) 40
Compressive strengths:
X ′(MPa) 800
Y ′(MPa) 145
Shear strengths:
S(MPa) 73
T (MPa) 73

From Eq. (  2.37 ), we can calculate the plate stiffness matrix as

A =


55598.80 3714.23 0

3714.23 55598.80 0

0 0 11077.00

 (N/mm)

D =


22286.90 1117.36 0

1117.36 11165.00 0

0 0 3332.33

 (N · mm)

(2.46)

The B matrix vanishes due to the symmetry of the laminate, which imply that the

extension-bending and shear-twist couplings should vanish. Besides, A16 = A26 = D16 =

D26 = 0. This indicates that there are no extension-shear, extension-twist, and bending-

twisting couplings for this laminate. Thus, the strain is uniform in each layer of the laminate
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Figure 2.24. The averaged strain-stress curves for [0/90]s E-glass/MY750
laminate under uniaxial tensile loading with σx : σy = 1 : 0 [ 98 ]

under uniaxial tensile loading. We can take advantage of this fact to just use the averaged

strain-stress data to train FE-PDNN to discover the constitutive law of lamina. The force and

displacement can be reproduced using the stress and strain multiplying the corresponding

area (A = 47.5 mm2) and length (l = 100 mm) of the laminate, respectively.

The FE-PDNN can determine the strain-stress relationship of lamina based on the lam-

inate structural response. But the experimental data of strain and stress in each layer are

not available, as the experiment only provides the averaged strain-stress relation.

To provide a comparison to FE-PDNN learned strain-stress relation, an analytical pro-

gressive failure analysis was performed. The lamina was assumed to fail according to the

plane-stress simplified Tsai-Wu failure criterion

f = F1σ11 + F2σ22 + F11σ
2
11 + F22σ

2
22 + 2F12σ11σ22 + F66σ

2
12 (2.47)
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where

F1 = 1
X

− 1
X ′ , F2 = 1

Y
− 1

Y ′

F11 = 1
XX ′ , F22 = 1

Y Y ′

F66 = 1
S2 , F12 = −1

2
1

XX ′

The accuracy of the analytical failure analysis highly depends on the strength parame-

ters. Besides, the degradation factor, which is used to calculate the residual stiffness after

the initial failure of a material, is commonly used in the damage analysis [  27 ], [ 99 ]. For

this example, the strength parameters are selected following the WWFE I data [  98 ]. The

degradation factor is set to be 0.1, which is calibrated based on the averaged stress-strain

data.

A constitutive model should not only be able to match the existing observations but

also able to make blind predictions. The previous examples have shown the capability of the

FE-PDNN mechanics system to learn unknown constitutive laws based on limited structured

level response. But the blind prediction capability of the mechanics system has not been

demonstrated yet. To test the blind prediction capability, the virtual tests were performed

via analytical failure analysis, which is to imitate the first round training of FE-PDNN to

generate the correct strain-stress data.

The tests assumed that the laminate has the same geometry and boundary conditions as

the example in Section  2.4.2 . Besides, the laminate is made of the E-glass/MY750 material

and fails according to the Tsai-Wu failure criterion. According to Eqs. (  2.43 ) and (  2.44 ),

the change of layup angle can result in extension-shear couplings Q16 and Q26, which can

generate inhomogeneous stress fields in the laminate. The Latin Hypercube technique is used

to sample the layup angles. For demonstration purposes, 40 total layup angles are selected in

the range from 0 to 90 degrees. We avoided the angles of 10, 25, and 45 degrees intentionally,

as the blind prediction was performed based on a [10/25/45]s laminate. The analytical failure

analysis was performed to compute the strain-stress in the material coordinate system at
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various layup angles. For simplicity, we assumed that once a layer failed then the stiffness

matrix of that layer is degraded to be zero. A DNN model would be trained based on these

data and perform the progressive damage blind prediction of the [10/25/45]s laminate.

The averaged strain-stress response and the strength ratio α of each layer were used to

evaluate the performance of the blind prediction. The strength ratio is defined in the form

[ 32 ]

f (σcr) = f(ασ) = 1 (2.48)

where f(·) denotes the failure criterion, σcr is the critical stresses, σ is the current stress

state. For the Tsai-Wu failure criterion, since it contains both linear and quadratic terms of

the stress components, we will have

f (ασ) = α2a + αb = 1 (2.49)

Thus, the strength ratio can be calculated as

α = −b ±
√

b2 + 4a

2a
(2.50)

where
a =F11σ

2
11 + F22σ

2
22 + F66σ

2
12 + 2F12σ11σ22

b =F1σ11 + F2σ22

(2.51)

Eq. ( 2.50 ) has two solutions. The strength ratio will take the smaller positive one of the two

solutions. A material will be safe if α > 1 and will fail if α ≤ 1.

Example 4 results and discussion

Figure  2.25 plots the averaged strain-stress relationship. The plots show FE-PDNN

matches the experimental data very well. Besides, the analytical progressive failure analysis

also shows good agreement with the experimental data. This result is expected, as the

accuracy of the analytical approach mainly depends on the selection of damage parameters.

For this example, the damage parameters are calibrated from experiments data. Figure  2.25 
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also shows that FE-PDNN can predict the global response more accurately comparing with

the analytical failure analysis.

Figure 2.25. Averaged stress versus strain of the [0/90]s laminate

Figure  2.26 presents σ11 versus ε11 at the 0-degree layer. One can tell that the analytical

analysis shows a linear relationship. This is because the 0-degree layer is the last layer that

failed during the loading. The initial failure stress of this layer would be the ultimate stress of

the laminate. Thus, the stress-strain curve of the analytical result at the 0-degree layer shows

a linear relationship. Figure  2.26 also shows that the stress-strain relationships between the

two methods are close, with the maximum difference between the two methods is about 10%.

This result confirmed the feasibility of learning constitutive law with FE-PDNN.

The averaged strain-stress curve of [10/25/45]s laminate is shown in Figure  2.27 . The

result shows that although the strain-stress data of 10, 25, and 45 degrees layers are not

used for training the DNN, DNN still predicted the averaged strain-stress very well, as the

errors between DNN blind prediction and the target solution are within 2%. This indicates

DNN can provide an excellent prediction for the global response of the laminate.
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Figure 2.26. Stress versus strain of the 0-degree layer

Figure  2.28 shows the strength ratio of different layers. From this plot, one can tell that

the 45 degrees layer failed first since the strength ratio of this layer reached to one with

N11 = 252 N/mm, which is the initial failure extension force. Next, the 25-degrees layer

failed with N11 = 313 N/mm. Finally, the 10-degrees layer reached ultimate stress with

N11 = 365 N/mm. This failure sequence is expected, as the change of layup angles from 10

to 45 degrees will increase the extension-shear coupling effect. Considering that the shear

strength parameter is significantly smaller compared to other strength parameters, the ply

that has larger shear stress will fail earlier. From this plot, one can also observe that the

strength ratio predicted by DNN has an excellent match with the analytical result. Since the

strength ratio is calculated based on the stress in each layer, it indicates that DNN predicted

the stress in each layer accurately.
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Figure 2.27. The plot of averaged stress versus strain of the [10/25/45]s laminate

Figure 2.28. The plot of strength ratio of the [10/25/45]s laminate
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3. DISCOVER FAILURE CRITERIA OF COMPOSITES WITH

MACHINE LEARNING

Over the past few years, a few experimental failure data of composites have been collected.

It would be of interest to leverage the existing data to improve the prediction of failure crite-

ria. In this chapter, we developed to implement a framework that combines sparse regression

with compressed sensing to discover failure criteria from data. Following the phenomenolog-

ical failure models, we divided the failure of composites into tensile and compressive fiber

modes, tensile and compressive matrix modes. Besides, we used an optimization approach

to generate a conservative failure criterion and satisfy the engineering design needs. Three

examples were studied with this framework. The first example was presented to demonstrate

the capability of the framework. The data was generated by the Hashin failure criterion and

added various degrees of noise. The proposed framework was implemented to discover the

failure criterion from the noised data. For the second example, the proposed method was

used to discover failure criteria from the experimental data which are collected from the

WWFE I. In the third example, we used an optimization approach to enforce a constraint

so that the predicted results are smaller than the majority of the experimental data. The

results show that the proposed method can discover the failure criterion accurately. In ad-

dition, with the enforced constraint, the proposed method can yield a conservative failure

criterion.

3.1 Theory of Sparse Regression and Compressed Sensing

The regression analysis is a process to estimate the relationship between an outcome

variable and independent variables (also called features) [ 100 ]. The regression of a system

can be expressed as

y = Θ (X) ξ (3.1)

where y ∈ Rm×n is the measurements of the outcome variables, Θ (X) ∈ Rm×p is a matrix

that includes all the candidate functions, which are formed from the linear combination of

the features, ξ ∈ Rp×n is the matrix of coefficients.
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For a system with n features and m states, the features in each state can be expressed

as x = [x1 x2 · · · xn]T ∈ Rn. Then, X can be explicitly expressed as

X =



(x1)T

(x2)T

...

(xm)T


=



x1
1 x1

2 · · · x1
n

x2
1 x2

2 · · · x2
n

... ... . . . ...

xm
1 xm

2 · · · xm
n


(3.2)

where xj
i is the ith feature in jth state. y can be expressed as

y =



(y1)T

(y2)T

...

(ym)T


=



y1
1 y1

2 · · · y1
n

y2
1 y2

2 · · · y2
n

... ... . . . ...

ym
1 ym

2 · · · ym
n


(3.3)

where yj
i is the ith outcome in jth state. Next, we can form Θ (X) which includes the

candidate functions

Θ(X) = [X0 X XP2 XP3 · · · sin(X) cos(X) sin(2X) cos(2X) · · · ] (3.4)

where X0 and X are the zero-order and first-order candidate function matrix respectively.

XPi represents higher-order candidate function matrix. For example, the quadratic nonlin-

earities XP2 is

XP2 =



(x1
1)2 x1

1x
1
2 · · · (x1

2)2 x1
2x

1
3 · · · (x1

n)2

(x2
1)2 x2

1x
2
2 · · · (x2

2)2 x2
2x

2
3 · · · (x2

n)2

... ... . . . ... ... . . . ...

(xm
1 )2 xm

1 xm
2 · · · (xm

2 )2 xm
2 xm

3 · · · (xm
n )2


(3.5)

For many physics systems, only a few terms are important, which makes ξ sparse in the

space of the possible candidate functions. However, a standard regression to solve for ξ will
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yield a nonzero solution for each element. Thus, it is hard to use the standard regression

approach to identify the governing equations.

If ξ is sparse, then one method to identify the important entries in ξ is to add the L1

regularization to the regression to form a Least Absolute Shrinkage and Selection Operator

(LASSO) [ 101 ], [ 102 ]

min
ξ

{(Θ(X)ξ − y)2 + λ ‖ξ‖} (3.6)

where λ is a coefficient that tunes the weights of the candidate functions. LASSO shrinks the

coefficients of the unimportant functions to zero and thus can remove the influence of these

functions completely. The process to find ξ is closely related to compressed sensing, which is

a popular technique in reconstructing high-fidelity signals using limited measurements [ 103 ],

[ 104 ]. Compressed sensing will normalize Θ(X) to ensure the restricted isometry property

which provides a guide for finding the measurement matrix for compressive sensing [ 103 ],

[ 105 ]. For example, if Θ(X) is normalized by dividing elements in each column by the L2

norm of the column

(Θ′)ij = (Θ)ij/L2(j) (3.7)

with

L2(j) =

√√√√ M∑
i=1

[(Θ)ij]2 (3.8)

Then, y can be expressed as

y = Θ′ · ξ′ (3.9)

with

ξ′ = ξ · L2 (3.10)

As a result, ξ is given as

ξ = ξ′/L2 (3.11)
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3.2 Discover Failure Criterion of Composites Using Spare Regression with Com-
pressed Sensing

Generally speaking, if a failure criterion is stress-based, it can be expressed as

f(σ) = 1 (3.12)

where f(·) represents the failure function. The purpose of the failure criterion is to predict

the failure of the material under a certain loading state.

Hashin failure criterion distinguishes the failure modes of the unidirectional lamina into

four failure modes, namely, tensile and compressive fiber failure modes, and tensile and

compressive matrix failure modes. The equations of the four modes under a plane-stress

state are given as follows:

Tensile fiber mode (σ11 ≥ 0)

f =
(

σ11

X

)2
+
(

σ12

S

)2
= 1 (3.13)

Compressive fiber mode (σ11 < 0)

f = | σ11 |
X ′ = 1 (3.14)

Tensile matrix mode (σ22 ≥ 0)

f =
(

σ22

Y

)2
+
(

σ12

S

)2
= 1 (3.15)

Compressive matrix mode (σ22 < 0)

f =
( Y ′

2R

)2

− 1
 σ22

Y ′ +
(

σ22

2R

)2
+
(

σ12

S

)2
= 1 (3.16)

where X and Y are tensile strengths in the principal directions of the material (x1, x2

respectively), X ′ and Y ′ are the compressive strengths, R and S are shear strengths in the

planes of symmetry (x2 − x3, x1 − x2 respectively).
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To implement the sparse regression, we followed the Hashin failure criterion to divide

the failure of composites into tensile and compressive fiber modes, tensile and compressive

matrix modes. For the fiber failure modes, we assumed that the independent features are

σ11 and σ12. While for matrix failure modes, the independent features are σ22 and σ12. It is

needed to point out that the assumption of the independent features is not a constraint for

sparse regression. If the data of other features are available, it is possible to include them in

the analysis. For example, for the compressive fiber failure mode, we use σ11 and σ12 as the

independent features. If the data of the influence from σ22 is available, the sparse regression

can also incorporate σ22 as a feature.

Based on these settings, we can set the features X = [σ11 σ22 σ12], then the collection

of nonlinear functions with the features Θ(X) can be constructed. Since the stresses are

measured at the failure state, we have all the elements in f are equal to one. Thus, we can

set up a sparse regression problem to determine the sparse vectors of coefficients as

f = Θ(X)ξ (3.17)

where ξ is the collection of the sparse vectors of coefficients of different failure modes. Eq.

( 3.17 ) can be illustrated in Figure  3.1 .

The value of an element in ξi indicates whether a corresponding candidate function in

Θ(X) is active or not. Besides, since we assumed that fiber modes and matrix modes are

governing by different features, the values of the element in ξi that are corresponding to the

non-influential candidate functions shall be zero. Thus, Eq. ( 3.17 ) can be further simplified

to the form shown in Figure  3.2 . In Figure  3.2 , the regression of different failure modes

has been separated. fi is the failure index, which equals one at failure state. Θ(X) matrix

has been reduced to only include influential candidate functions. Once ξi is determined, the

governing equation for each failure mode can be constructed as follows

fi = Θi (X) ξi (3.18)

It is noted that summation convention is not applicable to Eq. (  3.18 ).
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Figure 3.1. The schematic of sparse regression to discover failure criterion

3.3 Applications

This section presented three examples based on sparse regression with compressed sens-

ing. The first example used sparse regression to demonstrate its capability to discover the

failure criterion. The Hashin failure criterion was used to generate the test data. Then

various degrees of noise was added to the test data. For the second example, the proposed

method was used to discover the failure criteria from the experimental data from WWFE I.

For the third example, we used an optimization approach to obtain a conservative criterion

which enforced a constraint to the discovered criterion to shift the predicted data to be

smaller than the experimental data.

3.3.1 Example 5: Discover the failure criterion from noisy analytical data

Example 5 problem description

In this example, we used the Hashin failure criterion to generate the data of the failure

envelope. Then, these data are divided into four groups according to their failure modes.

Realistically, the measurements of stresses from experiments contain noise, which could be
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(a) Tensile fiber mode (b) Compressive fiber mode

(c) Tensile matrix mode (d) Compressive matrix mode

Figure 3.2. Sparse regression to solve for active terms of different failure modes
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caused by many factors, such as loading imperfection, geometry differences of specimens,

sensor measurement errors, etc. Thus, we added a certain degree of noise to the data to

mimic the real situation. Then, Eq. (  3.18 ) does not hold exactly, which can be modified to

fi = Θi (X) ξi + ηZ (3.19)

where Z is modeled as a matrix of independent and identically distributed Gaussian entries

with zero mean and noise magnitude η. Next, the noised data will be transferred to sparse

regression to determine the failure criterion governing equations. To solve for the coefficients

vector ξi, one method is to use LASSO Eq. (  3.6 ), which applies L1 regularization that

promotes sparsity and works well with noised data. However, LASSO is computationally

expensive for large data sets. Thus, following Brunton et. al. [ 17 ], we applied the sequential

threshold least-squares method to solve the coefficient vectors. The algorithm of the code

is presented in Appendix  A.3 . It is needed to note that the previous studies to identify

governing equations from data have shown to be quite sensitive to noise [  103 ], [ 106 ]. In

contrast, the algorithm presented in Appendix  A.3 is remarkably robust to noise [ 17 ].

The E-Glass/MY750 composite is selected for demonstration. The strength properties

of this material are listed in Table  3.1 [ 107 ]. Based on these strength parameters and the

Hashin failure criterion, the failure envelope is shown in Figure  3.3 .

Table 3.1. Strength parameters of E-Glass/MY750

X(MPa) X ′(MPa) Y (MPa) Y ′(MPa) S(MPa) R(MPa)
1280 800 40 145 73 50

Example 5 results and discussion

Figure  3.3 shows that the failure envelope of the compressive fiber mode is formed by

two straight lines. This is because the Hashin failure criterion assumed the compressive fiber

mode can be determined by the single value of X ′, which is shown in Eq. (  3.14 ). Since the

envelope of the compressive fiber mode is simple and can be easily identified from sparse
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(a) Fiber failure mode (b) Matrix failure mode

Figure 3.3. Failure envelops of E-glass/MY750 according to Hashin failure criterion

regression, for this example, we will focus on the analysis of other failure modes. Besides,

since the measured stresses from experiments have noise, it indicates that the failure index

may not be one with the measured stresses. Thus, for this demonstration example, we added

zero mean Gaussian noise with variance η to the failure indices to test the robustness of the

method according to Eq. (  3.19 ). Figure  3.4 shows the distribution of the failure indices with

η = 0.02.

As one can tell from tables  3.2 to  3.4 , although the higher-order candidate functions

and stresses coupling candidate functions are selected, the sparse regression and compressed

sensing method identified these candidate functions are inactive, and their coefficients are

zero. This result shows the advantage of the proposed method over the traditional regres-

sion, as the traditional method has difficulty identifying inactive candidate functions, as it

typically results in coefficients for all the candidate functions. Besides, one can also tell

that coefficients of the active candidate functions for tensile fiber and tensile matrix modes

are identified accurately since the differences between the exact values and spare regression

identified values are within 1.05 %. The accuracy can be further confirmed from the plots of
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(a) Tensile fiber mode (b) Tensile matrix mode

(c) Compressive matrix mode

Figure 3.4. Comparison between original failure indices and noised failure
indices with η = 0.02

the failure envelope in Figures  3.5a and  3.5b . Figures  3.5a and  3.5b show that the exact and

identified failure envelopes are very close, with the maximum differences within 1%. For the

compressive matrix failure mode, while the coefficients of the quadratic terms are identified

well, the coefficient of the linear term is identified with 6.67% difference. The reason for the

linear term identification being less accurate is that the linear term of σ22 has less influence
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on the failure index for this material. This can be confirmed from the plot of the failure

envelope in Figure  3.5c , which shows that the exact and identified failure envelopes are very

close with the difference smaller than 1%.

The identified coefficients of the failure criterion is presented in Tables  3.2 ,  3.3 , and  3.4 .

In these tables, the error of nonzero coefficients are computed as

error = | Exact value − Identified value |
Exact value

× 100 (3.20)

Table 3.2. Comparison between exact and identified coefficients of the tensile fiber mode

σ11 σ12 σ2
11 σ2

12 σ11σ12 σ2
11σ12 σ2

12σ11 σ3
11 σ3

12

Exact value 0 0 6.104E-07 1.877E-04 0 0 0 0 0

Identified value 0 0 6.040E-07 1.878E-04 0 0 0 0 0

Error (%) 0 0 1.046 0.522 0 0 0 0 0

Table 3.3. Comparison between exact and identified coefficients of the tensile
matrix mode

σ22 σ12 σ2
22 σ2

12 σ22σ12 σ2
22σ12 σ2

12σ22 σ3
22 σ3

12

Exact value 0 0 6.250 E-04 1.877 E-04 0 0 0 0 0

Identified value 0 0 6.249 E-04 1.870 E-04 0 0 0 0 0

Error (%) 0 0 0.0144 0.367 0 0 0 0 0
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Table 3.4. Comparison between exact and identified coefficients of the com-
pressive matrix mode

σ22 σ12 σ2
22 σ2

12 σ22σ12

Exact value -9.415 E-05 0 4.691E-05 1.877 E-04 0

Identified value -8.787 E-05 0 4.702 E-05 1.872 E-04 0

Error (%) 6.673 0 0.234 0.2675 0

σ2
22σ12 σ2

12σ22 σ3
22 σ3

12

Exact value 0 0 0 0

Identified value 0 0 0 0

Error (%) 0 0 0 0

Figure  3.6 shows the plots of the exact and identified failure envelopes under different

noise degrees of η. As one can tell that sparse regression can accurately identify the failure

envelope with η = 0 − 0.1. Note that η = 0.1 could lead to about 20% maximum differences

comparing to the exact values. The proposed method failed to identify the failure criterion

at η = 0.2, which leads to about 40% differences. It is needed to point out that a filter may

be added to the noised data to facilitate the process of identifying the failure criterion. But,

for this example, we are interested in testing the capability of the proposed method, so the

noised data is fed into sparse regression directly.

Figure  3.7 presents the errors between exact and identified failure criterion. The compar-

ison were conducted by comparing the values of the exact and predicted σ12 under a certain

σ11 or σ22 at failure. In this figure, the plot of the η = 0.2 scenario is omitted, because the

identification of failure criterion failed for this scenario. The errors are computed via Eq.

( 3.20 ) .

The y-axis of Figure  3.7 is on a logarithmic scale. As one can tell from the figure, when

η = 0, the sparse regression can identify the failure envelope almost identical to the exact

envelope since the errors are smaller than 10−11 %. Besides, the figure also shows that with

the increase of noise magnitude η, the error also becomes larger. But sparse regression can
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(a) Tensile fiber mode (b) Tensile matrix mode

(c) Compressive matrix mode

Figure 3.5. Plots of exact and identified failure envelopes

still identify the failure envelope at η = 0.1. Finally, Figure  3.7 also shows that when the

predicted value is close to zero, the error becomes large. This result is expected, as we

expressed the error in percentage. Then if there is a small disturbance at these points, the

error percentage could be large as the exact value is small. It is needed to point out that
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this large error will not influence the accuracy of the identified failure criterion. Because

when one variable is small, the other variable(s) could dominate the failure, which can be

accurately measured.

(a) Tensile fiber mode (b) Tensile matrix mode

(c) Compressive matrix mode

Figure 3.6. Plots of exact and identified failure envelopes with different noise magnitudes
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(a) Tensile fiber mode (b) Tensile matrix mode

(c) Compressive matrix mode

Figure 3.7. Errors between exact and identified failure envelopes with different η

3.3.2 Example 6: Discover failure criterion from experimental data

Example 6 problem description

For the example in section  3.3.1 , we demonstrated discovering failure criteria from ex-

perimental data. As mentioned earlier, we followed the phenomenological failure models

and divided the failure of composites into tensile and compressive fiber modes, tensile and
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compressive matrix modes. The unidirectional composites biaxial failure data were collected

from WWFE I report [  108 ]. Unfortunately, the report did not provide the data of the

fiber failure mode and matrix failure mode of the same material. Thus, we used the data

of T300/BSL914C to identify fiber failure criterion and E-glass/LY556 to identify matrix

failure criteria respectively. Besides, the noise in the experimental data was strong, since

the experiments were conducted by various researchers with various specimens for the same

material. Thus, depending on the noise, a filter [  109 ] was applied to de-noise the data.

The biaxial failure stress envelope for unidirectional T300/BSL914C carbon/epoxy lam-

ina is reported in longitudinal and shear loading (σ1 versus τ12, which are expressed as σ11

and σ12 in this paper). These tests were done by Schelling and Aoki [ 107 ]. The specimens

were manufactured as axially wound tubes with prepreg T300/BSL914C carbon/epoxy. The

tubes were 32 mm in diameter and 1.9 − 2.3 mm thick with fiber volume fraction Vf = 0.56.

The compression and torsion tests were carried out at different laboratories. Figure  3.8a 

plots of the experimental data of stress failure envelope. One interesting observation was

that the shear failure stresses tended to increase when the axial tension stress was applied

and decreased at higher tensile stresses. In addition, there was a wide range of scattering of

the shear strength when σ11 = 0. The report did not explain these different values. Table

 3.5 provided the strength parameters of T300/BSL914C.

Table 3.5. Strength parameters of T300/BSL914C

X(MPa) X ′(MPa) Y (MPa) Y ′(MPa) S(MPa) R(MPa)

1500 900 27 200 80 41

For the E-glass/LY556 material, the biaxial failure stress envelope was provided in trans-

verse and shear loading (σ2 versus τ12, which are expressed as σ22 and σ12 in this paper).

The tests were conducted by Hütter et. al. with circumstantially filament-wound tubes

[ 110 ]. The internal diameter and thickness of the tubes were 60 mm and 2 mm respec-

tively. The fiber volume fraction of the material was Vf = 0.62. The strength parameters

of E-glass/LY556 are listed in Table  3.6 . The results of this series of tests are provided in
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Figure  3.8b . For the failure of this material, the result also showed that the shear stresses

increased with the applying of compressive transverse stresses and then decreased at higher

compressive stresses.

Table 3.6. Strength parameters of E-glass/LY556

Y (MPa) Y ′(MPa) S(MPa) R(MPa)
40 137.4 61.2 39.9

Example 6 results and discussion

Figure  3.9 presents the failure envelope identified from experimental data. In this figure,

the blue dots represent the experiment result. The orange dashed line and red line are the

results of the Hashin failure criterion and sparse regression respectively. Figure  3.9a shows the

identified failure criterion of compressive fiber mode. One can tell that the identified failure

criterion of compressive failure mode improved the prediction comparing to the Hashin failure

criterion. While the Hashin failure criterion predicted the failure envelope as a rectangle,

the sparse regression method identified the failure criterion as a hyperbola, which captured

the trend of experimental data. The active coefficients of the identified failure criterion are

presented in Table  3.7 . These coefficients indicate that σ12 and the coupling between σ22

and σ12 play an active role in the failure of compressive fiber mode. There is no contribution

from σ2
12 in the identified failure criterion.

Figure  3.9b shows the comparison of tensile fiber mode failure envelope between the

Hashin failure criterion and sparse regression result. As one can tell, the sparse regression

result successfully captured the phenomenon that the shear failure stresses tended to increase

when the axial tension stress was applied and decrease at higher tensile stress. While for the

Hashin failure criterion, it failed to account for this phenomenon. The result of the identified

failure criterion is presented in Table  3.8 . It is noted that linear terms related with σ11 and

σ12 play a significant role in tensile fiber mode

For E-glass/LY556 material, the identified failure envelope result is presented in Figures

 3.9c and  3.9d . These figures shows that the results based on the identified failure criterion
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(a) T300/BSL914C

(b) E-Glass/LY556

Figure 3.8. Biaxial failure stress envelope for T300/BSL914C and E-
Glass/LY556 from WWFE I
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match the experiment result well, as the identified failure envelope is located in the middle

of the data and captured the trend of the scattering of the experiment data. In addition,

the results also indicate that while the sparse regression identified failure criterion is more

conservative compared with the Hashin failure criterion for tensile matrix failure mode, it

becomes less conservative at compressive matrix failure mode. But the sparse regression

result fits the experimental data better. The coefficients of the active term for these two

failure modes are summarized in Tables  3.9 and  3.10 .

Table 3.7. Failure criteria coefficients of the compressive fiber mode

σ11 σ12 σ2
11 σ2

12 σ11σ12 σ2
11σ12 σ2

12σ11 σ3
1 σ3

3

Hashin -1.11E-03 0 0 0 0 0 0 0 0

SR -1.19E-03 1.18E-02 0 0 1.26E-05 0 0 0 0

Table 3.8. Failure criteria coefficients of the tensile fiber mode

σ11 σ12 σ2
11 σ2

12 σ11σ12 σ2
11σ12 σ2

12σ11 σ3
1 σ3

3

Hashin 0 0 4.44E-07 1.56E-04 0 0 0 0 0

SR -1.54E-03 1.25E-02 1.35E-06 0 0 0 0 0 0

Table 3.9. Failure criteria coefficients of the compressive matrix mode

σ22 σ12 σ2
22 σ2

12 σ22σ12 σ2
22σ12 σ2

12σ22 σ3
22 σ3

12

Hashin 1.43E-02 0 1.57E − 04 2.67E − 04 0 0 0 0 0

SR 1.68E-02 1.59E-02 2.01E-04 0 0 0 0 0 0
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(a) Compressive fiber mode (b) Tensile fiber mode

(c) Compressive matrix mode (d) Tensile matrix mode

Figure 3.9. Result of identified failure criterion from experimental data

Table 3.10. Failure criteria coefficients of the tensile matrix mode

σ22 σ12 σ2
22 σ2

12 σ22σ12 σ2
22σ12 σ2

12σ22 σ3
22 σ3

12

Hashin 0 0 2.67E-04 6.24E-04 0 0 0 0 0

SR 0 0 7.21E-04 2.83E-04 0 0 0 0 0
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Additionally, we conducted a study to compare the performance of the sparse regression

and DNN under the limited experimental data. For the current dataset, we only have the

stresses at failure. This means the failure indices are one for all the cases. If we feed this

dataset into DNN directly, DNN would try to predict the failure index to be one for every

stress combination. To enable DNN to evaluate the failure state of a stress state, we took

advantage of the concept of strength ratio (α), which is defined as

f (σcr) = f(ασ) = 1 (3.21)

The physical meaning of strength ratio is defined as a factor that, when multiplying with

the current stress state σ gives the failure index of one. Following Tian and Tao, et. al.

[ 82 ], we normalized the stress to unit stress vectors. The strength ratio was calculated by

dividing the original failure stress by the corresponding component in the unit stress vector,

i.e. α = σ11/σn
11, where σ11 and σn

11 are the original and normalized stresses, respectively.

A DNN model with three hidden layers was identified. The structure of the DNN model

is [3, 20, 20, 20, 1]. This structure means the neural network has three inputs (σ11, σ22, σ12),

one output (α), and three hidden layers with each of the hidden layers having 20 neurons.

For the input of DNN, the non-available components are set to zero. To prevent overfitting,

the L2 regularization [ 111 ], which adds the weighted sum of all the neuron’s squared weights

to the total loss, was utilized in the training of the neural network. The activation function

is the rectified linear unit (ReLU) function [ 112 ] and is shown in Figure  3.10 .

Figure 3.10. ReLU activation function
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Figure  3.11 presents the result of the comparison between sparse regression and DNN. The

result shows that DNN could generate a prediction that matches closer to the experimental

data. However, since the dataset is too small, DNN cannot predict the result accurately in

certain regions. For example, for the tensile fiber mode, at σ11 = [0, 200] MPa region, there

is a drastic change in the prediction. This drastic change does not physically make sense and

is caused by insufficient data points in this region. In contrast, sparse regression does not

have this issue and can capture the trend of the experimental data well. This comparison

indicates that sparse regression is superior to DNN under a limited data size.

3.3.3 Example 7: Enforce constraint to yield conservative failure criterion

Example 7 problem description

The previous two examples in this chapter have shown the feasibility to apply sparse

regression with compressed sensing to discover failure criterion. With the sequential thresh-

old least-squares algorithm, the losses between failure criterion predicted data and training

data are minimized. The failure envelope is located in the middle of the data. Neverthe-

less, a conservative design is usually required in engineering design for the safety issue. The

conservative design requires the model predicted data to be smaller than the experimental

data. Inspired by Mattias et. al. [  112 ] and Tao et. al. [  111 ], we can use an optimization

approach to enforce a constraint to the discovered criterion to shift the predicted data to be

smaller than the experimental data. The constraint is expressed as an inequality equation

and shown below

σ(i)
p − σ(i)

exp ≤ 0 (3.22)

where σ(i)
p and σ(i)

exp are the ith failure criterion predicted data and experimental data, respec-

tively. This constraint indicates that the predicted result should be equal to or smaller than

the corresponding experimental data. To ensure the fulfilling of the inequality constraint, we

can apply a penalty function Φ(·). The penalty function was chosen as the ReLU function

[ 112 ], which is shown in Figure  3.10 . This figure indicates that negative errors will be shifted

to be zero.
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(a) compressive fiber mode (b) tensile fiber mode

(c) compressive matrix mode (d) tensile matrix mode

Figure 3.11. Result comparison between sparse regression and DNN

Next, we can can add the penalty function caused constraint loss to the original mean

square error (MSE) loss. Then the total loss becomes:

Lt = β

2n

n∑
i=1

(
σ(i)

p − σ(i)
exp

)2
+ γ

2n

n∑
i=1

Φ
(
σ(i)

p − σ(i)
exp

)2
(3.23)
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where Lt is the total loss function, β and γ are the weights of the original loss and constraint

loss respectively. These two weights are added to tune the influence of original loss and

constraint loss. An optimization algorithm will be employed to minimize the total loss. In

this study, we selected ADAM optimizer [ 113 ] to tune the model. It is important to note

that the inequality constraint in Eq. ( 3.23 ) is applied as a soft constraint, which can lead

the prediction toward yielding σ(i)
p less than σ(i)

exp, but cannot guarantee the prediction will

always satisfy the constraint. However, by tuning the weights of the losses, it is possible to

get a model with all or majority of the the σ(i)
p equal or smaller than the corresponding σexp.

For demonstration, we applied the proposed method to the example in Section  3.3.2 . The

weights of the MSE loss and constraint loss were set to be 1 and 10−4 correspondingly. The

learning rate of the ADAM optimizer was 10−5.

Example 7 results and discussion

The result is shown in Figure  3.12 . In these plots, the blue dots, orange dashed line, and

red line represent the experimental, Hashin failure criterion, and sparse regression result,

respectively. The black line represents the result of sparse regression with constraint. One

can tell that the spares regression with constraint can capture the trend of the experimental

data well. In addition, the prediction made by the sparse regression with constraint is more

conservative, as the majority of the experimental data lie outside of the failure envelope. This

has achieved the goal of yielding a conservative failure criterion that can be directly used in a

design. For this problem, we stopped keeping tuning the weight of the constraint loss to shift

all the experimental data lie in the outside of the failure envelope. The experimental data

has strong noise, because the experiments were conducted by various specimens at different

labs. Besides, keeping tuning the envelope to be smaller than the experimental data will

decrease the accuracy of the prediction significantly. The coefficients of the conservative

failure criterion is shown in Tables  3.11 - 3.14 . The SRc represents the result from the sparse

regression with constraint. One can tell that the optimization did not change the type of

the failure envelope since the features of the model and the order of the coefficients are the

same as the result of the sparse regression. The coefficients are slightly changed to make the
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failure envelope being more conservative. These tables along with Figure  3.12 demonstrate

the feasibility of yielding a conservative failure criterion with sparse regression.

(a) Compressive fiber mode (b) Tensile fiber mode

(c) Compressive matrix mode (d) Tensile matrix mode

Figure 3.12. Result of identified failure criterion with enforced constraint
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Table 3.11. Conservative failure criteria coefficients of compressive fiber mode

σ11 σ12 σ2
11 σ2

12 σ11σ12 σ2
11σ12 σ2

12σ11 σ3
1 σ3

3

Hashin -1.11E-03 0 0 0 0 0 0 0 0
SR -1.19E-03 1.18E-02 0 0 1.26E-05 0 0 0 0
SRc -1.36E-03 1.17E-02 0 0 1.30E-05 0 0 0 0

Table 3.12. Conservative failure criteria coefficients of tensile fiber mode

σ11 σ12 σ2
11 σ2

12 σ11σ12 σ2
11σ12 σ2

12σ11 σ3
1 σ3

3

Hashin 0 0 4.44E-07 1.56E-04 0 0 0 0 0
SR -1.54E-03 1.25E-02 1.35E-06 0 0 0 0 0 0
SRc -1.51E-03 1.27E-02 1.58E-06 0 0 0 0 0 0

Table 3.13. Conservative failure criteria coefficients of compressive matrix mode

σ22 σ12 σ2
22 σ2

12 σ22σ12 σ2
22σ12 σ2

12σ22 σ3
22 σ3

12

Hashin 1.43E-02 0 1.57E − 04 2.67E − 04 0 0 0 0 0
SR 1.68E-02 1.59E-02 2.01E-04 0 0 0 0 0 0
SRc 1.65E-02 1.62E-02 2.00E-04 0 0 0 0 0 0

Table 3.14. Conservative failure criteria coefficients of tensile matrix mode

σ22 σ12 σ2
22 σ2

12 σ22σ12 σ2
22σ12 σ2

12σ22 σ3
22 σ3

12

Hashin 0 0 2.67E-04 6.24E-04 0 0 0 0 0
SR 0 0 7.21E-04 2.83E-04 0 0 0 0 0
SRc 0 0 8.07E-04 2.84E-04 0 0 0 0 0
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4. MACHINE LEARNING ASSISTED COMPOSITE ROTOR

BLADE PLANFORM DESIGN

Composite materials are increasingly used in the design of rotor blades due to their high

stiffness-to-weight ratio and excellent fatigue life. Currently, the composite rotor blade

planform design intensively focuses on optimizing planform parameters to achieve higher

performance. However, the strength of the material is rarely considered in the planform

design. One issue is that the failure analysis of the rotor blade is usually performed by an

expensive multiscale analysis which requires calculating the sectional properties, computing

the rotor blade global response, and reproducing local stress for each layer of the composite

blade. This process is inefficient when applying to an optimization framework, as whenever

there is a new structural load, this analysis procedure needs to be performed again. Unfor-

tunately, millions of load cases can be accumulated during the blade design optimization.

The ignoring of strength analysis may result in the blade working in an unsafe or low safety

factor region, as composite materials are anisotropic and susceptible to various failure mech-

anisms. In this chapter, we propose to optimize the composite rotor blade planform design

with strength consideration. The optimized design can improve the performance of the air-

craft and ensure the structure is within the safety margin. To reduce the computational

cost of the cross-sectional failure analysis, we will use machine learning model to construct

a beam-level failure criterion surrogate model to replace the physics-based cross-sectional

failure analysis. The surrogate model is constructed based on the Timoshenko beam model

via Artificial neural networks (ANN), where the mapping will be between blade loads and

the strength ratios of the cross-section.

4.1 Structure Level Failure Criterion

4.1.1 Tsai-Wu failure criterion and strength ratio

Many failure criteria have been proposed to analyze the failure of composites. Some

commonly used failure criteria are max stress (or strain) failure criterion, max shear stress

(or strain) failure criterion, Tsai‐Hill failure criterion, Hashin failure criterion, and Tsai‐Wu
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failure criterion [10]. In this chapter, the composite materials are assumed to fail according

to the Tsai-Wu failure criterion since it is a simple yet general enough formula that can

account for multiaxial stress interactions and the difference between tensile and compressive

strengths. The Tsai-Wu failure function can be expressed as

f(σ) = F11σ
2
11 + F22σ

2
22 + F33σ

2
33 + F44σ

2
23 + F55σ

2
13 + F66σ

2
12

+ 2F12σ11σ22 + 2F13σ11σ33 + 2F23σ22σ33

+ F1σ11 + F2σ22 + F3σ33

(4.1)

with
F11 = 1

XtXc

, F22 = 1
YtYc

, F33 = 1
ZtZc

,

F44 = 1
R2 , F55 = 1

T 2 , F66 = 1
S2 ,

F12 = 1
2

( 1
ZtZc

− 1
XtXc

− 1
YtYc

)
F13 = 1

2

( 1
YtYc

− 1
XtXc

− 1
ZtZc

)
F23 = 1

2

( 1
XtXc

− 1
YtYc

− 1
ZtZc

)
F1 = 1

Xt

− 1
Xc

, F2 = 1
Yt

− 1
Yc

, F3 = 1
Zt

− 1
Zc

(4.2)

where Xt, Yt, Zt, Xc, Yc, Zc, R, T, S are the strength constants. They can be determined from

experiments. Under a specific failure criterion, a stress state is called a critical stress state

if

f (σcr) = 1 (4.3)

where f (·) represents the failure criterion. The strength ratio under a stress condition is

defined as

f (σcr) = f (ασ) = 1 (4.4)

For the Tsai-Wu failure criterion, since it has both linear and quadratic terms of the

stress components, the strength ratio can be solved as

f(ασ) = α2a + αb = 1 (4.5)
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where
a =F11σ

2
11 + F22σ

2
22 + F33σ

2
33 + F44σ

2
23 + F55σ

2
13 + F66σ

2
12

+ 2F12σ11σ22 + 2F13σ11σ33 + 2F23σ22σ33

b =F1σ11 + F2σ22 + F3σ33

(4.6)

The solution of Eq. (  4.5 ) will be

α = −b ±
√

b2 + 4a

2a
(4.7)

Eq. ( 4.7 ) has two solutions. The strength ratio should take the smaller positive one. Besides,

from the definition of the strength ratio, a material will be safe if α > 1 and fail if 0 < α < 1,

which is different from the commonly defined failure index. The reason we use the strength

ratio is that strength ratio is proportional to the load, while failure index is not necessary

proportional to the load.

4.1.2 Failure criterion of structures

In this study, the Variational Asymptotic Beam Section (VABS) [ 83 ] code is used to

perform the physics based cross-sectional failure analysis. The process of calculating strength

ratio at the beam level is shown in Figure  4.1 . In this analysis, we need to use VABS to

Figure 4.1. The process of calculating structural level strength ratio [ 32 ]
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calculate the effective properties of the cross-section. Then, the beam analysis will take the

effective properties and calculate the rotorcraft response at the global level. From the global

response, we can obtain blade loads P , which is an array containing forces and moments

corresponding to a specific beam model. For example, for a Timoshenko Beam model,

P = (F1, F2, F3, M1, M2, M3) where F1 is the tensile force, F2 and F3 are shear forces, M1 is

the twisting moment, M2 and M3 are bending moments. Next, VABS will be used to compute

the local 3D stress fields, which will be used to solve for the strength ratio according to the

failure criterion at each material point of the cross-section. The minimum strength ratio

among all the material points will be the strength ratio of the cross-section
(
αSG

)
.

To construct a beam level failure criterion is to find a relation

α = α(P ) (4.8)

If the stress analysis is linear elastic, the critical loads of the cross-section can be expressed

as

Pcr = αP (4.9)

where Pcr is the critical load of the cross-section. Pcr is the properties of a blade like

strength parameters to a material. Eq. (  4.8 ) and (  4.9 ) indicate that one can directly get the

strength ratio of the cross-section with the structural loads as inputs. It would be beneficial

to find such a relation, as this relation can avoid the computational expensive multiscale

failure analysis. However, the analytical form of the failure criterion at the structural level

is typically not available, since a structure can have various components and complicated

geometries, it would be difficult to find a analytical model to describe the strength ratio.

Fortunately, surrogate modeling can be a useful tool to construct the beam level failure

criterion to reduce computational cost.

For surrogate modeling, conducting simulation to generate the training data is one of

the most important steps in the modeling process. In this study, we will use VABS to

perform the cross-sectional failure analysis to generate the training database. The process

is shown as Workflow 1 in Figure  4.2 . The process is very similar to conduct a regular
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Figure 4.2. Flowchart of rotor blade planform optimization

cross-sectional failure analysis, except that we will use a high-dimensional surface sampling

technique to generate various combinations of the structural loads. The sampled load cases

will be transferred to VABS. Then, VABS will carry out the failure analysis and compute

the strength ratio at each material point. The minimum values among all the strength ratios

will be the strength ratio of the cross-section (αSG). By repeating doing the analyses for all
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the load cases, we will form a database. The database will be used to form a surrogate model

for the beam level failure criterion. The trained surrogate model will be embedded into the

Workflow 2, which will conduct the comprehensive analysis to compute the performance and

extract the corresponding forces and moments in the rotor blade. The surrogate model will

take the forces and moments to compute the strength ratio of the airfoil.

4.2 Rotor Blade Planform Design Process

4.2.1 Machine learning assisted failure criterion of an UH-60A cross-section

In this study, the Artificial neural network (ANN) is used to construct a surrogate model

for the beam level failure criterion. The reason we selected ANN instead of the Gaussian

process is that ANN is more attractive to deal with big datasets and complicated functions.

In this work, we will construct a surrogate model with the Timoshenko beam model, which

has six load components and could result in a big training data size. The mapping of ANN

will be constructed between sectional loads P and strength ratio of the blade cross-section.

The architecture of a ANN model is shown in Figure  4.3 .

Figure 4.3. The architecture of a structural level failure criterion neural networks model
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A UH-60A composite rotor blade will be used in this study [ 82 ]. The cross-section of

the blade is shown in Figure  4.4 . For the cap, the base layer is aluminum with a thickness

of 0.01 inches. The main material for the cap is AS4 12k/E7K8 of ply thickness 0.0054

inches. For the box spar and overwrap, the base layer is T300 15k/976 with a ply thickness

of 0.0053 inches. The box spar and overwrap main material are T650-35 3k 976 fabric with

a ply thickness of 0.0062 inches. Table  4.1 presents the layup angles and the number of

plies of the composites. The region in the cap is filled with Rohacell 70. The region in the

overwrap is filled with Plascore PN2-3/16OX3.0. The non-structural mass is made of lead.

The properties of these materials are listed in Table  4.2 .

Figure 4.4. The cross-section of an UH-60A composites rotor blade

4.2.2 Planform design with strength considerations

The rotor blade planform optimization will be performed with the DAKOTA optimization

package [  114 ], which is a multilevel parallel object-oriented framework for design optimiza-

tion. The framework is shown in Figure  4.2 . As mentioned earlier, the framework consists

of two interdependent workflows: the surrogate model construction workflow and the ro-
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Table 4.1. The composites design of spar, cap and overwrap

Component Layer Plies Orientation Lamina type
n θ

Spar 1 11 −21 T650-35 3k 976 fabric
2 11 38
3 11 −84
4 11 −29

Cap 1 14 −46 AS4 12k/E7K8

Overwrap 1 5 47 T650-35 3k 976 fabric

tor blade optimization workflow. The surrogate model construction workflow is descried in

Section  4.1.2 . The rotor blade optimization workflow begins according to the user-defined

optimization algorithm selected through Dakota. Then, with the substitution of the plan-

form design parameters, a rotor model will be generated. The Dymore comprehensive code

[ 115 ] will run to compute the performance and extract the corresponding forces and mo-

ments in the rotor blade. VABS or the surrogate model will take the forces and moments

to compute the strength ratio of the cross-section. The performance metrics and strength

ratio of the cross-section will be returned to the Dakota optimizer. The simulation proceeds

according to the chosen optimization method.

4.3 Application

4.3.1 Example 8: Optimize planform of UH60A helicopter with strength con-
sideration for forward flight

Example 8 problem description

For this example, we created a simplified UH60A helicopter model in Dymore, which

serves the purpose to demonstrate the optimization workflow. The model was created to

have four blades with uniform composites blade cross-section. The cross-section is shown

on Figure  4.4 with properties presented in Table  4.3 . The blade was set to have a length of

26.833 ft, rotating at 27.02 rad/s. The airfoil of the blade was set to be SC1095. An airfoil

table, which defines the airfoil lift, drag, and moment coefficients as a function of angle of
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Table 4.2. Material properties of the components of an UH60 blade

Name Quantity Value Thickness

Aluminum 8009 ρ 0.271959 × 10−3(lbf · sec2/in4) -
E 13.1 × 106(psi)
ν 0.330

Lead ρ 1.060957 × 10−3(lbf · sec2/in4) -

T300 15k/976 ρ 0.149716 × 10−3(lbf · sec2/in4) 0.0053 (in)
E1 19.6 × 106(psi)
E2 1.34 × 106(psi)
ν12 0.348
G12 0.910 × 106(psi)

Rohacell 70 ρ 7.040895 × 10−6(lbf · sec2/in4) -
E1, E2, E3 13.1 × 103(psi)
ν12, ν13 0.315
ν23 0.300
G12, G13, G23 4.12 × 103(psi)

Plascore PN2-3/16OX3.0 ρ 4.509066 × 10−6(lbf · sec2/in4) -
E1, E3 1.00 × 103(psi)
E2 20.0 × 103(psi)
ν12, ν23 0.010
ν13 0.300
G12 3.50 × 103(psi)
G13 1.00 × 103(psi)
G23 5.80 × 103(psi)

AS4 12k/E7K8 ρ 0.145973 × 10−3(lbf · sec2/in4) 0.0054 (in)
E1 19.3 × 106(psi)
E2 1.23 × 106(psi)
ν12 0.32
G12 7.31 × 106(psi)

T650-35 3k 976 fabric ρ 0.145973 × 10−3(lbf · sec2/in4) 0.0062 (in)
E1 10.4 × 106(psi)
E2 10.0 × 106(psi)
ν12 0.06
G12 0.8 × 106(psi)

attack and Mach numbers, was provided to compute the airloads. The air properties are

presented in Table  4.4 . In Table  4.4 , the vi represents the flight speed of the helicopter. For

example, v1 = 215.6 ft/s means the helicopter flight forward with a speed 215.6 ft/s. This
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set of flight speed represents the P5231 forward flight condition. The trim of the thrust are

F3(lift) = 20, 467lbs, M1(rolling moment) = 1669.8 lb·ft, M2(pitching moment) = −3058.3

lb·ft.

Table 4.3. Beam properties of UH60A blade [  82 ]

m CGJ CEIf CEIc dSC
2 dCG

2
(lbf · sec2/in2) (106 lbf · in2) (106 lbf · in2) (106 lbf · in2) (in) (in)

0.00092 24.25 22.31 830.9 −5.18 −6.03

Table 4.4. Air properties

ρ ( slug /ft3
)

vsound (ft/s) v1 (ft/s) v2 (ft/s) v3 (ft/s) Lift slop Drag coeff.

0.0023 1121.06 215.6 0.0 −30 5.73 0.010

This example tries to optimize the planform of the blade to minimize the torque in the

rotor and enforce the strength constraint under the same flight condition. For the same flight

condition, a smaller torque in the rotor indicates the helicopter requires less power from the

engine to keep the flight condition. Table  4.5 shows the design variables. As shown in the

table, we selected the dihedral (θd), sweep (θs), and twist (θt) angles of the tip of the blade.

These design variables are visualized in Figure  4.5 . The Genetic algorithm (GA) [  116 ] is used

to carry out the optimization. Three cases were studied in this example. Case 1 optimizes

the planform of the blade to minimize the torque without considering the strength of the

blade. Case 2 and 3 takes αSG as a constraint and use VABS and ANN-based surrogate

model to calculate the αSG respectively. The αSG of the blade should be larger than the

predefined threshold. For this case, we set αthreshold = 1.10.

Example 8 results and discussion

Figure  4.6 shows the validation of beam level failure criterion surrogate model constructed

with ANN. Figure  4.6a shows the comparison between ANN predicted and test strength

ratios. Note that the test data does not participate in the training of the ANN model. For
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Table 4.5. Design variables of the helicopter planform design

Variable Type Description Range

θd continuous Dihedral angle of the tip of the blade [−6◦, 6◦]
θs continuous Sweep angle of the tip of the blade [−6◦, 6◦]
θt continuous Twist angle of the tip of the blade [−10◦, 10◦]

Figure 4.5. Sketch of blade planform design variables

this plot, the horizontal axis and vertical axis represent the predicted data and test data,

respectively. The black line is the reference line, which has a slope of 45 degrees. This

indicates that the closer the data point locates to the reference line, the better the result will

be. As one can tell, ANN can predict the strength ratios very well, as all the data points

are very close to the 45-degree line. This can be confirmed from the histogram shown in

Figure  4.6b . Figure  4.6b shows that over 98% predictions have errors smaller than 2 %.

No prediction has an error larger than 7%. In addition, the coefficient of determination

R2 = 0.998. These statistical metrics indicate that ANN can construct an accurate beam

level failure criterion.

Figure  4.7 shows the comparison of 2D failure envelopes between ANN and VABS results.

These envelopes are the projections of the failure function on the 2D planes. These plots
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(a) Comparison between ANN predicted and VABS calculated strength ratios

(b) Histogram of the ANN prediction

Figure 4.6. Validation of ANN constructed beam level failure criterion surrogate model
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provide another intuitive way of comparing the quality of the surrogate model. For these

envelopes, a load case is safe if it lies on the inside of the failure envelope. Conversely, if a

load case lies on the outside of the failure envelope, this load case is unsafe. Overall, one can

tell that the results from ANN and VABS match each other very well. Figures  4.6 and  4.7 

show confidence on employing the ANN constructed beam level failure criterion surrogate

model.

(a) F1 vs M1 (b) F1 vs M2

(c) F1 vs M3 (d) M1 vs M3

Figure 4.7. Comparison of 2D failure envelopes between ANN and VABS

Figure  4.8 shows the convergence of the optimization. Figures  4.8a and  4.8b present

the torque and strength ratio constraint convergence respectively. As one can tell, all three

scenarios can reach the optimum design, as all of the torques can converge and the strength

ratio constraints could reach the preset threshold. In addition, Figure  4.8 also indicates that

the cases with constraint tend to converge to torques that are larger than the case without

constraint. This result is reasonable, as the strength constraint could limit the decrease of
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the torque for the sake of safety. Table  4.6 presents the comparison of the strength ratios of

all the design scenarios. This table shows that although the optimization without constraint

can lead to smaller torque in the rotor, the strength ratio is 0.92, which is smaller than 1.

It means this design could have structure failure during the forward flight of the helicopter.

For the VABS and ANN surrogate model constraint designs, both strength ratios reached

values that are larger than 1.1. This indicates that the optimization with strength constraint

can yield a safer design.

Figure  4.9 shows the comparison of torques of the optimum designs. Again, we observe

that the optimized designs tend to converge to smaller torques than the base design. This

indicates that the optimized case requires less power to remain in the same flight condition.

Besides, from this plot, we can observe that the VABS and ANN surrogate model-based

optimizations converge to larger torques compared to the design without constraint. This

confirmed our observation from Figure  4.8 .

Figure  4.10 presents the comparison of the trims for different cases. This figure shows

that the optimized and base designs have some differences, especially for the rolling moment.

However, the averages of the trim all reached the target values, with the differences are

smaller than 0.1%. This result indicates that the differences in the trim will not impact the

flight significantly. All these results show that the optimization achieved our objective.

Table  4.6 lists the design variables for the base design and the three optimized designs.

This table shows that θd for the three optimized cases are close to each other. Besides, when

comparing the design with and without constraint, we can tell that the θt will affect the result

greatly, as the case with and without constraints are -6.49 and -9.43 degree, respectively.

Finally, we conducted a comparison of the computational time cost for all these scenarios.

From table  4.6 , we can tell that the cost of the VABS (version 4.0) constraint optimization

is 32.64 hours. The ANN constraint optimization cost is 17.66 hours. But, we also need to

take the cost of generating the database and training into consideration, for this case, the

time costs to generate the database and train the surrogate model are 6.22 hours and 1.51

hours, respectively. So the total time cost of surrogate modeling is 24.39 hours. Thus, we

can tell the cost of VABS 4.0 based optimization is more expensive compared to the ANN

surrogate model constraint optimizations. Additionally, the new version of VABS (version
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(a) Plot of torque

(b) Plot of strength ratio

Figure 4.8. Convergence plots of the blade planform optimization
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Figure 4.9. Comparison of torque for different optimum cases

4.1) added a new capability to analyze multiple load cases parallel, which can reduce the

computational cost of the blade failure analysis significantly. For this example, the cost to

complete the optimization with the VABS 4.1 is 23.16 hours. This cost is about break even

with ANN constraint optimization. However, since the helicopter needs to analyze various

flight conditions, the ANN surrogate model is still useful to save time on the helicopter

design. From these observations, we can conclude that the design with the ANN constraint

failure criterion can reduce the optimization cost and yield a safer blade design.
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Table 4.6. Results for different optimization cases

θd θt θs
Lift

(lbs)
Torque
(lb·ft) SR VABS 4.0

time (hrs)
VABS 4.1
time (hrs)

Base case 2.00 0 0 20426.17 48736.14 1.04 - -
No cstr. 4.72 -9.43 -5.26 20431.48 45128.47 0.92 16.21 -
VABS cstr. 4.72 -6.49 -5.82 20426.59 45587.29 1.13 32.64 23.16
NN cstr. 4.75 -6.49 -5.66 20424.83 45627.87 1.12 17.66 -
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(a) Lifting force

(b) Rolling moment

(c) Pitching Moment

Figure 4.10. Comparison of trim for different optimum cases
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5. CONCLUSION AND FUTURE WORKS

5.1 Conclusion

In this work, we have shown the implementation of machine learning techniques to dis-

cover unknown governing laws of composites. Besides, we also presented an application

of machine learning to reduce the computational time of the failure analysis of composites

structures .

To learn the constitutive law of composites, we presented a FE coupled deep neural

networks mechanics system. This framework makes it possible to use partially experimental

data to learn the constitutive law in a form-free manner, which avoids the accuracy loss

caused by the presumed expressions in the constitutive law. Besides, we applied a positive

definite constraint to form FE-PDNN. This modification solves the convergence robustness

issue of learning the constitutive law of a severely damaged material. In addition, the

lamination theory is introduced to the FE-PDNN mechanics system that enables FE-PDNN

to learn the lamina constitutive law based on the structural response of laminate.

To discover the failure criteria with machine learning and fit the small data size constraint,

we have implemented the sparse regression with compressed sensing to discover failure criteria

of composites. The proposed method does not need Bigdata to train the model and can

identify the most important candidate functions that govern the data. Following the Hashin

failure criterion, we divided the failure of composites into tensile and compressive fiber modes,

tensile and compressive matrix modes. Additionally, we used an optimization approach to

enforce a constraint to the discovered criterion to shift the predicted data to be smaller than

the experimental data. This approach can yield a conservative failure criterion and satisfy

the engineering design needs.

Finally, we demonstrated employing machine learning to reduce the computational time

of the failure analysis of composites structures. We constructed a beam level failure criterion

surrogate model with ANN to replace the physics-based strength analysis. The surrogate

model was constructed based on the Timoshenko beam model. VABS was used to generate

the training data. The trained surrogate model was deployed into the Dakota framework to

accomplish the optimization study. The result showed that while the optimization with the
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surrogate model reduced the computational time significantly, it can also achieve the same

accuracy as the physics-based optimization.

5.2 Future Work

The proposed FE-PDNN framework is remarkably general and can be extended to various

applications. Firstly, it would be of interest to apply experimental data from digital image

correlation (DIC) tests to the FE-PDNN framework. This would enable the simulation with

the real-world data directly. It has the potential to improves both efficiency and accuracy

of a simulation, which promotes simulation one step closer to the digital twin. Moreover,

it is not limited to discover the mechanical behavior of composites, it can also apply to

study the multi-physics effects of materials, such as thermal effect, piezoelectric effect, and

electromagnetic effect, etc.

Secondly, I would like to extend the FE-DNN framework to couple with other models,

i.e. multiscale model, to promote the understanding of complex material behavior. For some

advanced materials, it is difficult to carry out tests to measure the response of the material

directly, i.e. the nonlinear constitutive behavior of the yarns of woven composites. This

poses challenges to determining the properties of a material. FE-DNN is naturally fit to

solve these types of problem since it does not need direct responses. By coupling with other

models, FE-DNN can help to calibrate the classical models or construct the constitutive

model in a form-free manner with neural networks. This work will facilitate the innovation

of the fundamental understanding of advanced materials.

Thirdly, we have employed an optimization approach to design a composites rotor blade.

Further, it would be interesting to implement ML techniques to promote the design of ad-

vanced materials and structures. Specifically, given the specific performance needs of a

material or structure (such as strength and stiffness, fatigue life, etc), the ML algorithm can

immediately come up with the design parameters, i.e. for composites, it output the types

of matrix and fiber, fiber volume fraction, and the microstructure of the material, etc. The

procedure is like the inverse procedure of the blade cross-section design optimization. This

study has the potential to reduce design costs and improve design efficiency significantly. In
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addition, the ML-designed model can be connected to additive manufacturing equipment,

which can print the material or structure directly. This system will avoid computationally

expensive design optimization and labor-intensive prototyping. It will significantly improve

the efficiency of the design and characterization of advanced materials and structures.
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A. SUPPORTING MATERIAL

A.1 Introduction to L-BFGS Optimization Algorithm

Given a convex and twice continuously differentiable loss function f(x), where x is a
d-dimension column vector. To minimize f(x), Newton’s method tries to create a series xk

from the initial guess x0 that converges toward the minimum. Each iteration has the form
[ 91 ]

xk+1 = xk + t = xk − H−1
k ∇f (xk) (A.1)

where Hk is the Hessian matrix. By using second-order Taylor approximation, the second
order of Taylor expansion of f at xk is

f (xk + t) ≈ f (xk) + ∇f (xk) t + 1
2∇2f (xk) t2 (A.2)

The subsequent iterate xk+1 is defined to minimize Eq. (  A.2 ) in t and xk+1 = xk + t. If
the second derivative is positive and Eq. (  A.2 ) is convex on t, one get

0 = d
dt

(
f (xk) + ∇f (xk) t + 1

2∇2f (xk) t2
)

= ∇f (xk) + ∇2f (xk) t (A.3)

Thus, the minimum can be found at

t = − ∇f (xk)
∇2f (xk) = −H−1

k ∇f (xk) (A.4)

Newton’s method converges fast and robust. However, it requires computing the inverse of
the Hessian matrix, which can be too expensive for deep neural networks. In this work, the
Limited-memory BFGS (L-BFGS) optimizer is implemented to train the model. L-BFGS is a
Quasi-Newton method that approximates the inverse Hessian matrix using limited memory.

If one defines
sk = xk+1 − xk

yk = gk+1 − gk

ρk = 1
yT

k sk

(A.5)

where gk=∇f (xk). Then, with L-BFGS method, the inverse Hessian can be approximated
[ 91 ]

H−1
k+1 =

(
I − ρkskyT

k

)
Hk

(
I − ρkyksT

k

)
+ ρksksT

k (A.6)

This method is called as L-BFGS. It shares lots of features with Newton’s method.
But it computes the inverse Hessian with an approximation method, which reduced the
computational cost significantly.
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A.2 Plate Equilibrium Equations

The plate equilibrium equations are

∂N11

∂x1
+ ∂N12

∂x2
+ p1 = 0

∂N21

∂x1
+ ∂N22

∂x2
+ p2 = 0

∂N13

∂x1
+ ∂N23

∂x2
+ p3 = 0

∂M12

∂x1
+ ∂M22

∂x2
− q1 − N23 = 0

∂M11

∂x1
+ ∂M21

∂x2
+ q2 − N13 = 0

∂2M11

∂x2
1

+ ∂2M22

∂x2
2

+ 2 ∂2M12

∂x1∂x2
+ ∂q2

∂x1
− ∂q1

∂x2
+ p3 = 0

where pi and qi are the plate distributed forces and moments over the reference surface.

A.3 Sparse Regression Algorithm

Figure A.1. Sparse regression algorithm in MATLAB [ 17 ]
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