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ABSTRACT

Urban models are of growing importance today for urban and environmental planning,

geographic information systems, urban simulations, and as content for entertainment applica-

tions. Various methods have addressed aerial or ground scale image-based and sensor-based

reconstruction. However, few, if any, approaches have automatically produced urban models

from satellite images due to difficulties of data noise, data sparsity, and data uncertainty.

Our key observations are that many structures in urban areas exhibit regular properties,

and a second or more satellite views for urban structures are usually available. Hence, we

can overcome the aforementioned issues obtained from satellite imagery by synthesizing the

underlying structure layout. In addition, recent advances in deep learning allow the devel-

opment of novel algorithms that was not possible several years ago. We leverage relevant

deep learning techniques for classifying/predicting urban structure parameters and model-

ing urban areas that address the problem of satellite data quality and uncertainty. In this

dissertation, we present a machine learning-based procedural generation framework to au-

tomatically and quickly reconstruct urban areas by using regularities of urban structures

(e.g., cities, buildings, facades, roofs, etc.) from satellite imagery, which can be applied

to not only multiple resolutions ranging from low resolution (e.g., 3 meters) to high reso-

lutions (e.g., WV3 0.3 meter) of satellite images but also the different scales (e.g., cities,

blocks, parcels, buildings, facades) of urban environments. Our method is fully automatic

and generates procedural structures in urban areas given satellite imagery. Experimental

results show that our method outperforms previous state-of-the-art methods quantitatively

and qualitatively for multiple datasets. Furthermore, by applying our framework to multiple

urban structures, we demonstrate our approach can be generalized to various pattern types.

We also have preliminary results applying this for flooding, archaeological sites, and more.
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1. INTRODUCTION

Urban modeling are of growing importance today for urban planning, environmental science,

geographic information systems, autonomous driving, animation and games, and urban sus-

tainability. The blueprints and infrastructure of a city are under pressing needs to be designed

for a strong rate of urbanization (e.g., two-thirds of the world’s population will live in cities

by 2050) and to survive crisis such as a pandemics, extreme weather, and natural disasters.

An urban model typically consists of a network of road geometry defining a set of city blocks,

buildings, and additional details such as water bodies. However, creating models of realistic

urban spaces is time consuming and labor-intensive. The increasing demand for high-quality

and large-scale urban models capturing both detailed form and function has made manual

urban content creation no longer a feasible option. Research in computer graphics and com-

puter vision has responded to this need using urban (inverse) procedural modeling to quickly

and (semi-)automatically synthesize parameterized virtual models of urban areas.

1.1 Procedural Modeling (PM)

Procedural Modeling generates 3D models by using a set of rules, atomic elements, and

parameter values. An example are L-systems that have been successfully applied to vege-

tation [ 1 ], noise-based methods used for textures and clouds [ 2 ], and procedural models in

virtual worlds [ 3 ]. Urban procedural modeling can be dated back to the seminal work of

Parish and Muller [ 4 ]. While this paper focused on whole city models, later works have

focused on particular elements such as roads [ 5 ], [ 6 ], parcel modeling [ 7 ], buildings [ 8 ], [ 9 ],

facades [  10 ]–[ 13 ], and layouts [ 14 ]. Cities are living structures and the complicated re-

lationship of their habitants has been captured by various works including Gwenola and

Donikan [ 15 ] who studied animation in cities and various works that attempted to simulate

temporal changes of city geometry from underlying behavioral models [ 16 ]–[ 19 ]. We refer

the reader to surveys of urban procedural modeling (e.g., [ 20 ] and [ 21 ]). In general, proce-

dural programs generate high-quality and human-editable urban geometry when executed,

but they require manual labor to design the procedural models.
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1.2 Inverse Procedural Modeling (IPM)

Since it is difficult to define and cumbersome to write detailed procedural models of

large areas, many works have focused on automatic creation of procedural models, or inverse

procedural modeling, often starting from one or more 2D images or 3D objects. Inverse

Procedural Modeling attempts to find procedural representations of input models and it has

been applied in various fields, such as vegetation [ 22 ], 2D road geometry [ 23 ], 2D vector

structures [ 24 ], tree creation [ 25 ], [ 26 ], and 3D unstructured data [ 27 ]. One family of in-

verse procedural modeling approaches takes advantage of stochastic optimizations such as

Metropolis optimization of L-system usage [ 28 ] and Markov Chain Monte Carlo optimiza-

tion to find urban structures with desired properties [  29 ]. Recently, Demir et al. [ 30 ], [ 31 ]

used similarities in architecturals models to inversely generate procedural models. Nishida et

al. [ 32 ], [ 33 ] used deep learning to automatically infer urban procedural models correspond-

ing to user sketches. Kelly et al. [  34 ] described a method to fuse street-level imagery, GIS

footprints, and a coarse 3D mesh to produce 3D urban building mass and facade models.

We highlight that the work of [ 23 ] analyzes the distribution of road intersections and road

geometry to create a procedural road geometry that is statistically-similar to the source data.

However, there is no treatment of parcels or buildings in their work.

1.3 Deep Learning

Recent advances in deep learning have also opened new opportunities for solving the

problems of urban procedural modeling in particular.

Semantic segmentation is a classic topic in machine learning and computer vision. In

recent years, with the amazing success of deep learning, many state-of-the-art segmentation

networks [ 35 ]–[ 43 ] can be applied to urban structures. Specifically, a series of DeepLab [  37 ],

[ 39 ], [ 42 ] works maintains high-resolution by replacing strided convolution with atrous con-

volution. Encoder-decoder frameworks, like U-Net [ 36 ], infer high-resolution feature maps by

joining the top-down and bottom-up pathways with lateral connections. GAN based frame-

works, like Pix2Pix [ 40 ], consider segmentation as an image-to-image translation problem.

However, those approaches most often focus on the general network structure and learning
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methodology, and include many more content pixels than boundary pixels. This imbalance

causes them to produce inaccurate structure edges and cannot ensure structural regularities

and completeness (of man-made urban structures).

Another explosion of applications in deep learning is deep generative models [ 44 ]–[ 51 ]

which can be applied to 3D modeling. Given enough training data, theoretically they can

learn to generate plausible urban structures with broad variability. In particular, Kelly et

al. [ 45 ] introduce a pipeline to automatically and realistically decorate building mass models

by adding semantically consistent geometric details and textures. House-GAN [ 50 ] employs

a generative adversarial network for floor-plan generation, while requiring room adjacency

relations as input. Subsequently, Roof-GAN [ 51 ] presents a novel generative adversarial

network that generates structured geometry of residential roof structures as a set of roof

primitives and their relationships. However, these approaches are aiming to generate plau-

sible urban structures with broad variability, and not focusing on accurate reconstruction.

Their outputs often yield unrealistic outcomes and representations that are challenging to

further edit, especially when considering intricate structural details and structural regular-

ities of urban spaces. Besides, the aforementioned methods typically depend on a set of

well-annotated datasets to train deep neural models.

1.4 Satellite Imagery

Urban procedural modeling has benefited from recent advances in computer graphics

and deep learning. In particular, large-scale urban modeling is important for a variety of

applications in urban content creation and in urban planning. Satellite imagery shows a lot

of benefits because of its large coverage. We list several commonly used and publicly released

satellite datasets across different regions in the world and at different spatial resolutions (30

cm and 50 cm) below.

SpaceNet: This dataset [ 52 ] contains building footprints in four cities (Las Vegas, Paris,

Shanghai, and Khartoum) across the world. It contains the original panchromatic band, the

1.24m resolution 8-band multi-spectral 11-bit geotiff, and a 30cm resolution Pan-Sharpened

3-band and 8-band 16-bit geotiff. The labeled dataset consists of 24,586 tiles of size 200 m
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× 200 m with a spatial resolution of 30 cm containing 302,701 building footprints across all

areas, and are both urban and suburban in nature. Each tile comes with an 650 x 650 pixel

RGB satellite image, a high-resolution panchromatic image, a low-resolution multi-spectral

image, and ground truth building footprint annotation.

CrowdAI : The CrowdAI dataset was derived from the SpaceNet dataset. It provides a

good dataset for comparing learning approaches on remote sensing data. Instead of consid-

ering all the channels in the multiband imagery from the SpaceNet dataset, it only focus on

the RGB channels. The decision to exclude information from non-RGB channels helps create

an alternate version of the SpaceNet dataset, which makes the problem easy and accessible

to researchers in Deep Learning, who may or may not be very familiar with the tools used by

the Remote Sensing community to manipulate the multiband imagery, and are usually more

familiar with simple RGB images which are extensively utilized in Deep Learning research.

Moreover, when considering only the RGB channels, the problem becomes a direct parallel

of very popular instance segmentation tasks commonly studied in Deep Learning research.

The CrowdAI dataset[ 53 ] contains 340,000 total tiles with 300 by 300 pixel RGB images at

a 30 cm spatial resolution. Building footprint annotations are also provided.

Urban3D: Urban3D dataset contains 236 tiles of 2048 x 2048 pixel images and annotations

with a spatial resolution of 50 cm. Each RGB tile in this dataset is accompanied by its Depth

Surface Model and Digital Terrain Model (DSM and DTM), which provides high-resolution

building height information.

1.5 Thesis Statement

Various methods have addressed aerial or ground scale image-based and sensor-based

reconstruction. However, few, if any, approaches have automatically produced procedural

urban models from satellite images. While the allure of modeling only from satellite images is

clear, unfortunately structures obtained from the satellite images are often in low-resolution,

noisy and heavily occluded, thus getting a clean and complete view of urban structures is

difficult.
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Despite having the highest-resolution commercially available satellite imagery (e.g., World-

View3), the main structure of a building occupies on average 90x90 pixels on the ground

plane and on average the best observation of a facade is 20 pixels tall for a slant view of build-

ing objects. Although resolutions of satellite images from WorldView3 are relatively high,

they are not free most of time, and users have to purchase from companies. Low-resolution

satellite images (e.g., 1-3 meters per pixel) are more accessible to users but offers limited

details. To illustrate the difference between various resolutions of satellite image data, look

at these two satellite images of Venice in Figure  1.1 . The left one is a 50cm high-resolution

image from Pleiades satellite (Airbus); it allows to clearly see the buildings, small boats,

narrow streets, and unfortunately, you have to pay for it. On the right is a 10m per pixel

medium-resolution image from Sentinel-2 that provides a much coarser view, but – just like

any open source satellite data – it’s available free of charge.

(a) (b)

Figure 1.1. Two Satellite Images of Venice. (a) A 50cm high-resolution image
from Pleiades satellite (Airbus). (b) A 10m per pixel medium-resolution image
from Sentinel-2.

Aside from the relatively low resolution of satellite imagery, there are several other as-

pects that differentiate satellite-based multi-view stereo reconstruction from ground/aerial

multi-view stereo reconstruction [ 54 ], [ 55 ]. First, satellites use scan-line sensors producing

images with a different projection model than standard frame cameras. Usually a rational

polynomial coefficient (RPC) model is used. Such RPCs are hard to calibrate, require iter-

ative processes, need many ground control points, and performing 3D to 2D as well as 2D

to 3D mapping is difficult [ 56 ]. Second, the image quality can vary a lot due to a number
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of factors, including the viewing angles of satellite sensors are greatly limited by the orbit

(i.e., not very off-nadir), images of an area might be days/weeks/months apart yielding dif-

ferent illumination and potentially physical changes, and radiometric quality is lower despite

attempts of atmospheric corrections (see Figure  1.2 ).

Figure 1.2. Satellite Image and Facade Closeups. Example satellite image
and views of some typical facades.

Moreover, while there might be 1-20 satellite images observing portions of buildings,

there is usually not a high quality satellite observation of every facade on a building due to

shadows, foliage/occlusions, and limited resolution. Thus simply applying satellite images to

building faces via projective texture mapping is inadequate. Further, such texture mapping

depends on very accurate image-to-image registration, geometric modeling, and complete

coverage of all building facades.

Procedural modeling methods exploit man-made patterns and their regularity (in our

case of urban structures: walls are straight and parallel, corners have predetermined angles,

etc.) in order to succinctly express the possible shapes. By having the ability to quickly and

automatically model real world urban areas, and to easily edit them, procedural modeling

enables many what-if scenario tools as well as flexible content creation.

To summarize, the thesis statement is:
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In this dissertation, we present a machine learning-based procedural generation framework

to automatically and quickly reconstruct urban areas by using regularities of urban structures

(e.g., cities, buildings, facades, roofs, etc.) from satellite imagery, which can be applied to

not only multiple resolutions ranging from low resolution (e.g., 3 meters) to high resolutions

(e.g., WV3 0.3 meter) of satellite images but also the different scales (e.g., cities, blocks,

parcels, buildings, facades) of urban environments.

1.6 Dissertation Organization

The remainder of this dissertation is organized as follows. Chapter 2 discusses our proce-

dural reconstruction framework. Chapter 3 discusses the extension to the framework for gen-

erating procedural city-scale models. Chapter 4 discusses our system for modeling building-

scale from satellite imagery. Chapter 5 talks about facade-scale reconstruction following our

pipeline. Moreover, in Chapter 6, we show other applications of our system. Chapter 7

demonstrates results of different-scale modelings based on our framework, and shows evalu-

ations quantitatively and qualitatively. Lastly, Chapter 8 provides conclusions and presents

some ideas for future work.
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2. URBAN PROCEDURAL RECONSTRUCTION

In the previous chapter, we first introduce urban procedural reconstruction and its related

research areas in general. Then we highlight the benefits of satellite imagery in urban

reconstruction and its challenges. Finally, we conclude with the thesis statement. In the

following, we discuss details about critical observations and propose our framework for urban

procedural reconstruction based on satellite imagery.

2.1 Structural Regularities

Figure 2.1. Observation. Man-made buildings exhibiting regular properties.

The first key observation is that (man-made structures) buildings exhibit “regular” prop-

erties (Figure  2.1 ) such as a division into one or more floors, parallel walls, walls meeting at

one of a set of predetermined angles (e.g., 90 or 135 degrees), co-planarity between wall seg-

ments of different building stories and between adjacent/nonadjacent wall segments within

the same floor, symmetrical arrangements, straight or curved walls, and other features. In
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addition, urban facades typically exhibit a regular, grid-like facade structure. The bottom

examples in Figure  2.1 show street-view facades images with windows, doors, and balconies

that should be rectangular, horizontally and vertically aligned, spaced equally or with a clear

pattern, and/or groups of similar size. Further, the regularities are also present in satellite

facade images.

Secondly, while a single image does not contain significant z-values (i.e., 3D) information,

we can exploit that the shape/type space of possible man-made structures in typical urban

settings is constrained. For instance in building/roof example, we identify that the space of

potential urban structure shapes can be explicitly enumerated, enabling > 90% coverage as

observed in our preliminary experiments (see Chapter  4 ).

Motivations

Fig. 1:Observations and Motivations. (a) A ECP façade 

image and its segmentation (b) Multi-views of partially 

occluded street-view images. (c) Satellite facades with 

occlusions and shadows. (d) Multi-views of satellite façade 

images.  

(a) (b) (c) (d)

Figure 2.2. Additional Views. (a) Multi-views of partially occluded Google
Street View images. (b) Satellite facades with occlusions/shadows. (c-d)
Multi-views of satellite facade images.

Additionally, street-view and satellite-view images often have only partial observations

of buildings/facades, and furthermore satellite images suffer more due to limitations in res-

olution, noise, complex camera models, limited viewing angles, and occlusions. Fortunately,

a second or more views for both street-level and satellite are usually available as seen in

Figure  2.2 . Therefore, fusing or combining all views can be helpful when completing the

whole urban structure coverage.

For low-resolution satellite images, the key inspiration is while satellite images cover a

large space, they do not contain significant geometric detail of individual buildings. Never-

theless, we can observe statistical features of a city (e.g., mean and distribution of parcels

and buildings both in terms of location and in terms of size). These features translate to a
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distinct appearance of the city at a large scale (e.g., city-specific combinations of locations

of high-rise buildings and of smaller buildings shown in Figure  2.3 ). Moreover, the nearby

urban structures most likely have the same constructions/shapes/patterns (e.g., low-rise sub-

urb houses in one neighborhood usually have the same shapes, high-rise buildings are usually

located in downtown areas, etc.).

Figure 2.3. Building Distribution. Buildings in the urban area exhibit differ-
ent statistical features.

Hence, together with the aforementioned observations of man-made structures, we can

robustly infer urban geometrical details from satellite images, despite noise and occlusions.

With the help of a deep learning framework, we demonstrate creating accurate procedural

models of urban structures exceeding the ability of prior methods.

2.2 Framework Overview

We employ observations via a deep learning-based inverse procedural modeling approach

to determine procedural parameters for a number of urban structure grammars in the pres-

ence of satellite data. This methodology significantly improves the resilience to occlud-

ed/noisy images and produces more accurate/regularized urban layouts as compared to al-

26



ternative direct segmentation-based methods. Since satellite images have a very limited

off-nadir view (e.g., at most 20 to 40 degrees), and building surface coverage is limited (e.g.,

the orbital path of the satellite is not able to capture all building sides), often only frag-

ments of a building are seen. Furthermore, urban structures that are observed may only be

seen at very oblique angles, resulting in low resolution and stretched images. Nonetheless,

a procedural approach has the ability to recreate the observed portion as well as create a

plausible synthesized reconstruction of the occluded/not-sampled fragments. The result is

plausible, regularized and complete urban structures.

Framework

Inverse 

Procedural Modeling

Urban

Regularities

Urban

Synthetic Dataset

Procedural 

Model Optimization

Figure 2.4. Framework.

To be specific, our framework has four main components: 1) find procedural gram-

mars/representations for structures in urban areas based on urban regularities and obser-

vations, 2) create a synthetic dataset based on the grammars, 3) build customized urban

inverse procedural modeling methods and train neural network models with synthetic data,

4) apply an optional procedural model optimization that leverage the partial knowledge of

structures to improve results. We apply our system (see  2.4 ) to wide applications (e.g., city

automatic reconstruction, urban building synthesis, roof synthesis, building façade synthesis,

etc..) and demonstrate the ease of adoption of the architecture. Further, we compare our

approach to several state-of-the-art methods and our approach consistently creates better

results. In summary, our main contributions are as follows:

• we propose a framework to generate regularized urban structures in a parameterized

procedural representation from satellite imagery, and

• we create synthetic training datasets which incorporates versatile regularities of urban

structures and supports more general shapes/types, and

27



• we train our deep learning models with self-supervision to avoid time-consuming and

expensive data annotations, and

• we perform comprehensive experiments demonstrating usage of our approach for dif-

ferent scales of urban structures and generalizations to other applications.
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3. CITY SCALE

A portion of this chapter was previously published by ACM Transactions on Spatial Algo-
rithms and Systems [ 57 ], https://doi.org/10.1145/3423422.

Low resolution satellite image data is more common and accessible to users. However, it

suffers more noises and higher LOD (level of detail) reconstruction is not feasible. Neverthe-

less, we can observe statistical features of a city (see Chapter  2 ). Regarding this problem,

we propose a method that is fully automatic and produces a 3D approximation of an urban

city area given satellite imagery and other global-scale data including road network, popula-

tion, and coarse elevation data. By analyzing the values and the distribution of urban data,

i.e., distances between parcels, buildings, setbacks, population, and elevation, we construct

a procedural approximation of a city at a large-scale. Our approach has three main com-

ponents: 1) procedural model generation to create parcel and building geometries, 2) parcel

area estimation that trains a set of neural networks to provide initial parcel sizes for a seg-

mented satellite image of a city block, and 3) an optional procedural model optimization

that can use partial knowledge of overall average building footprint area and building counts

to improve results. Rather than limiting ourselves to a satellite-based photogrammetric re-

construction using the few pixels capturing the details of each building’s walls and roof, our

components infer a procedural model containing plausible details that are not present in the

source imagery and yielding altogether a complete parameterized model. Our approach is

the first to perform such an automatic inverse modeling from only satellite and global scale

data in just a few minutes. Further, our methodology is a starting point for modeling urban

areas worldwide for urban design in city planning and simulation and for content generation

in entertainment applications.

The output of our method is a large spatial procedural city model consisting of 3D

buildings distributed over the target area and registered in place with the road network.

We demonstrate our approach on various cities with widely different structure, in particular

Chicago, Dublin, Hong Kong, Jacksonville, New Orleans, Paris, San Francisco, and Toulouse,

automatically yielding procedural models with up to 91, 000 buildings, and spanning up to

150 km2. We performed both quantitative and qualitative comparisons. Overall, our results
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include 3D urban procedural models at multiple scales having less than one percent error

in the best case. Our quantitative evaluation shows that we obtain, as compared to ground

truth, a statistically-similar city in terms of the mean building count and building area and

their distribution. In addition, we show how well our method compensates for segmentation

inaccuracies and occlusions yielding a better city model than directly using the segmentation

data for constructing building models. Moreover, our optional optimization component

further improves parcels, building outlines, and building geometries in the urban area (e.g.,

from 2.3× to 30× improvement). By means of a user study, we show a qualitative similarity

as well as comparisons between our 3D output of different areas to the corresponding areas

in Google Earth. In addition, we show preliminary results of using our approach for urban

planning and modeling and for content generation.

3.1 Related Work

Urban Reconstruction focuses on creating big urban spatial datasets from ground

level, aerial, and satellite sensors. Most 3D urban reconstruction efforts use ground-level or

aerial data. The survey by Musialski et al. [  58 ] provides a comprehensive summary. Schoeps

et al. [  59 ] provide a recent benchmark of multi-view stereo results in general. Vanegas

et al. [ 60 ] automatically created L-systems that reconstruct the building envelopes of 3D

Manhattan buildings observed in a pair of aerial images. Shan et al. [ 61 ] produce urban

reconstructions using aerial and ground-level images. Hou et al. [ 62 ] exploit planarity to

obtain multi-view depth maps. Duan and Lafarge [ 63 ] focus on stereo reconstruction from

calibrated wide-baseline satellite images. They obtained 2.5D reconstructions for building

tops that can be observed and corresponded in both images. This is particularly challenging

for smaller buildings and residential areas. Also, occlusion (e.g., by vegetation or neighboring

buildings) might severely hinder reconstruction ability.

Another group of methods exploit LIDAR data as well as aerial imagery. For example,

Yi et al. [  64 ] and Poullis and You [ 65 ] produce models from LIDAR data. Bonczak et al. [ 66 ]

uses both LIDAR and city administrative data to obtain an urban model. Park et al. [ 67 ]

and Zhang et al. [ 68 ] propose learning-based point-cloud classification approaches including
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the estimation of building height and mass. Zhou and Neumann [ 69 ] model rooftops and

building walls using both LIDAR and aerial imagery. Some researches focus on tool building,

such as Verdie et al. [ 70 ] that present methods to generate various level-of-details starting

with a mesh or output of an urban reconstruction method. Another example is Agarwal et

al. [ 71 ] that provides tools to improve efficiency and accuracy of interpolating LIDAR data.

However, these methods require hard to obtain per-city LIDAR datasets and further, even if

obtained, might lack information about significant parts of the city due to occlusion or lack

of sampling.

In contrast to aerial or ground-level data, satellite provides much more coverage but with

many other challenges. While great progress has been made, as seen in the work of Facciolo

et al. [ 72 ] who won the 2016 IARPA Multiview Stereo 3D Mapping Challenge to produce 3D

models from satellite imagery or Rupnik et al. [ 73 ] which improves upon the Facciolo et al

work, there is a significant gap even with the latest satellite resolutions – moreover, because

of distance and occlusion usually only the roof of urban structures is generally observed.

Even once a model is produced significant challenges exist with regards to organizing the

information for rendering. For example, Robles-Ortega et al. [ 74 ] focus on occlusion-culling in

order to provide fast rendering for web-services of large urban models. Ole Vollmer et al. [ 75 ]

present aggregation techniques to support on-demand level-of-detail generation. While these

works produce impressive results they do not center on the creation of the urban model itself.

Except for the urban reconstruction techniques, our work is also closely related to (in-

verse) procedural modeling and deep learning and we refer you to Chapter  1 for details.

3.2 Pipeline Overview

Data Sources

Our approach takes as input various geospatial products, summarized in Table  3.1 . First,

our method uses geo-registered segmented and labeled satellite images. In general, we assume

the labels of building and non-building. If possible we can use road labels as well in the

satellite images. At the global-scale, building layout information or city-level GIS data is

not available (i.e., it is available for certain large cities but not for all). Many satellite
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Figure 3.1. Pipeline. Our approach consists of a procedural model generation
component, a parcel area estimation component that is setup during offline
processing, and an optional procedural model optimization component. The
block extractor receives as input the segmented and labeled satellite image
(S&L), while the Building Generator receives the parcel output as well as
information about the block’s estimated elevation and population.

image segmentation methods exist, such as [ 76 ]–[ 79 ] as well as commercial solutions such

as eCognition [  80 ]. These methods can, with a varying degree of accuracy, recognize and

extract features from satellite images of anywhere in the world. However, these approaches

do not produce 3D urban geometry, but rather produce a best-guess classification for each

pixel in the image. For our method, we assume as input satellite images that have been

segmented and labeled using an approach similar to the ones mentioned above. Second, we

also use Open Street Maps (OSM) [  81 ] to obtain roads, unless segmentation provides road

labels. Third, our method also uses publicly-available geo-registered global height data [ 82 ]

and, fourth, our system exploits publicly-available global population data [ 83 ], which we

already have for the globe. These datasets are very coarse: for example, the height data is

a sample every 30 meters with a vertical accuracy of about 5 meters.

Processing

During automated processing, our approach (Figure  3.1 ) automatically produces a 3D

urban procedural model. As a preprocess, the parcel area estimation component uses an
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Table 3.1. Summary of Data Sources.
Data Name Data Source Resolution Scale
Road Vector Open Street Maps [ 81 ] – Most cities
Elevation Data JAXA [  82 ] 30 meters Global
Population Data LandScan [ 83 ] 1 km Global
Satellite Data – 1 m Some cities

analysis of the relationship between parcel sizes and building sizes in two large cities to

train a classification network and a set of parcel area estimation networks that will be used

for all our test cities. These deep neural networks are trained to take in a segmented and

labeled satellite image of a city block and produce an estimated parcel area which will be

used to help with building creation. We highlight that parcel boundaries are not directly

visible in a satellite image. Hence, the use of this trained network, instead of directly using

the segmented images, is to obtain the average parcel area despite the presence of noise,

classification errors, and occlusion in the segmented imagery.

At runtime, the procedural generation component produces a model of the parcels and

buildings for each city block. Individual city blocks are extracted from the segmented and

labeled imagery. Then, by using estimated parcel sizes (by the aforementioned parcel estima-

tion component) and the geo-registered global elevation and population datasets, building

generation computes for each parcel the building type, building height, and setback values,

and subsequently the 3D building geometry. Ultimately, a model of the entire urban area is

produced and desired urban morphology values can be calculated.

As a third (optional) step at runtime, the procedural optimization component improves

the similarity between the synthetic city and the target city in the satellite images. This

component iteratively compares synthetically generated average building footprint areas with

the actual average building footprint areas for at least a fraction of the city. The optimizer

alters a set of calibration parameters until convergence. Our experiments show that by

knowing the average building footprint area of at least a small random fraction of the urban

region (e.g., 5%) the synthetic model is on average 4x more similar to the actual city in
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terms of building area and building counts, resulting in a better 3D urban procedural model

output.

Variables

Our subsequently defined approach makes use of the following variables (Table  3.2 ).

Table 3.2. Variables and their meanings.
variable meaning
B a segmented and labeled satellite image
bi a city block image of B
A the parcel area estimator
ai the average parcel area size for each parcel of a block bi estimated by A
S a synthetic image
si a synthetic block image of S
PG the parcel generator
pij a synthetic parcel j in a block si
qij the number of parcels produced for si
BG the building generator
tij the building type of pij
hij the building height of pij
St,ij the triple of setback ranges corresponding to of tij
mij the building geometry model of pij

3.3 Parcel Area Estimation

The goal of this component is to set up parcel area estimation function A which estimates

the average parcel area size for each parcel implied by a segmented and labeled satellite image

of a city block (Figure  3.2 ). There is currently no existing global parcel data-set or a standard

means of obtaining parcel information for all urban areas. Further, while parcel data for well-

known mega-cities may be available through public city sources, even then it may not match

the existing building layout. We therefore use this parcel area estimation component to

approximate the parcel layout of a block, without relying on obtaining parcel data from the

city. However, using satellite image segmentation and labeling into building, non-building,

and road is a challenging task. Even the best methods result in some amount of mis-
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Figure 3.2. Parcel Area Estimation. During preprocessing, synthetic parcel
training dataset is created and used to train a parcel classification neural net-
work (NN) and several parcel area estimation neural networks. At runtime,
the parcel area estimation function A receives city block satellite images bi and
estimates the average parcel area ai.

classification and occlusion. Also, frequently portions of segmented parcels and buildings are

covered by vegetation or occluded by other structures. Moreover, the parcel boundaries are

not actually visible nor labeled. Regardless, we seek to produce a procedural approximation

of an urban area that has similar parcels and buildings. To accomplish A, we use deep

neural networks that infer the parcel area based on the size and distribution of (noisy)

labeled building pixels.

3.3.1 Canonical Representation

We use a canonical representation of city blocks which facilities data creation and training

because the neural network will classify and estimate parameters for a fixed-resolution labeled

input image. Since city blocks in the satellite-image can be of many different shapes and

sizes, we compute a tightly fitted oriented bounding box (OBB) for each city block. Then, we

scale and rotate the longest axis of the OBB to fit within a predetermined image resolution

(e.g., that used for our neural-network based classification and parameter estimation) that

allows arbitrarily shaped city blocks to be processed. After parcel area classification and

estimation have been done, the synthetically-created parcel is unrotated and unscaled.
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Further, we make two simplifying assumptions about parcels: i) we assume the parcels

within a single city block are of about the same area; and ii) we assume each parcel in the

city block has zero or one building with an outline receded from the parcel boundary by

three potentially different setback values: front, rear, and side. An analysis of Chicago and

San Francisco tells us the single building per parcel assumption is true for 90.65% and 93%,

or 91.8% of the parcels on average. The front setback is used when the edge of the canonical

parcel touches a road. The rear setback is opposite to the front setback and a side setback

is used otherwise.

3.3.2 Synthetic Data Creation

We use our canonical representation and an analysis of two real-world cities (i.e., Chicago

and San Francisco) to determine the typical parcel size range and relationship of parcel and

building sizes in order to generate synthetic training data. Parcel and building outline data

is obtained from OSM and we compute histograms of city parcel areas and of front, side, and

rear setback values. For each of the setback types, we compute the average value relative to

parcel area. While optimized building setback ranges are used during model generation and

optimization, training data is created using the aforementioned fixed relative setback values.

To create the block images d for training, we randomly sample parcel area sizes within the

observed parcel size range and use the fixed triple of setback values to generate synthetic

images.

3.3.3 Training

We seek to obtain a robust parcel area estimator such that area(d) = A(d). Parcel areas

vary significantly which makes it challenging for a single neural network to predict the parcel

areas for any city block image. Instead, we perform a non-uniform quantization of the range

of parcel sizes. We sort the analyzed parcel areas by size, divide the entire parcel area range

into multiple bins, and train one network per bin. To define the bins, we find bin boundaries

so that each bin has about the same number of parcels in the analysis cities. However, having

multiple bins requires both a classifier neural network (to determine to which bin does a city
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block belong) and a parameter estimation neural network (to determine the actual parcel

areas). Based on our experiments, the accuracy resulting from using a different number of

bins varies notably and we choose the best one (i.e., three bins) for all results.

We use convolutional neural networks (CNN) as the frameworks for our classifier and

parcel area estimators. For the classifier CNN model, without loss of generality, we use

the BVLC AlexNet architecture [ 84 ] except for changing the number of outputs of last

fully-connected layer to be the number of our estimation neural networks and initialize the

network with a pre-trained network. We fine-tune the network using 60, 000 training images

to achieve high accuracy after 10, 000 iterations and mostly converging after 2, 000 iterations.

For each parcel area estimation CNN, we use a modified AlexNet architecture in order to

fit our regression problem and use 120, 000 images for training. We modified the number

of outputs in the last fully-connected layer of AlexNet, and also change the loss function to

an Euclidean loss function. Training occurs over 100,000 iterations and is mostly converged

after 40, 000. We found this architecture to yield overall an average error of only 24 m2 in

estimating parcel areas (parcel areas range from about 20 to 20, 000m2). Note that the same

trained set of networks is used for all cities.

3.4 Procedural Model Generation

Given a target area, this component successively generates a model of the parcels and

buildings for each city block. Once all blocks are processed, a full 3D urban procedural

model is output. The urban procedural model is rendered in several layers. First, our

method partitions a segmented and labeled satellite image B of an urban area into a set of

city block images bi. Given B as input, this decomposition is achieved by converting the also

geo-registered OSM road vectors into a graph G and then searching for all simple loops in

G. Dead-end roads are ignored in our current implementation. Each detected loop geometry

gi segments a city block satellite image bi out of B and is assumed to have a set of parcels,

each with egress (i.e., an urban modeling and planning term that implies the parcel has

street access by at least one parcel edge touching a surrounding road). We also render as a
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ground-plane the original (unsegmented) satellite image that contains the ground cover such

as water bodies, grass, and dirt.

Then, we use parameterized rules to subdivide city blocks into one of two parcel styles.

After, we use parameterized rules to create buildings. Moreover, we can optionally render

additional hypothetical details such as window frames, trees, lamp posts, and grass.
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Figure 3.3. Parcel Generation. Our method takes as input a city block
satellite image bi as well as the estimated parcel area ai in said image and
generates a parcel subdivision in one of two styles. Then, the parcels pij are
output to form the synthetic blocks si.

3.4.1 Parcel Generation

For a synthetic city block image si, our procedural parcel generator PG generates parcels

pij (i.e., synthetic parcel j in city block i). The set of si’s form a synthetic image S. Given

an extracted city block satellite image bi, we estimate the average parcel area size ai (e.g.,

in square meters) for each parcel in this block by using our neural network parcel area

estimator A (i.e., ai = A(bi)). Afterwards, we use a recursive subdivision algorithm to

generate synthetic parcels (Figure  3.3 ). Our parcel generation method is inspired by [ 7 ]

who proposed a generalized block subdivision method, following urban design guidelines,

able to reproduce the parcel shapes and city blocks observed in many cities. Based on that

work, we support two parcel subdivision types. Type 1 subdivision produces parcels whose

front-side is along a street and rear-side is adjacent to another parcel of the same type, and

type 2 subdivision creates city blocks that can have interior empty space (parcels with no

buildings).
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The parcel generator PG subdivides the block geometry gi by recursively splitting a tightly

fit oriented bounding box (OBB) of the current block partition until we obtain parcels no

larger than ai. If the generator enforces all parcels to have egress, it results in the first

of the aforementioned subdivision types. Otherwise, this approach produces the second of

the aforementioned types which has parcels in the interior of the city block. But, in all

cases buildings are only placed in parcels having egress. Each recursive iteration uses either

the longest or the shortest axis of the OBB to split the surrounding block geometry (e.g,

initially gi).

Altogether our procedural parcel generator performs the task

si = {pi1, pi2, ...piqi} = PG (gi, A(bi)) ,

where qi is the number of parcels produced for si.

Figure: Given a parcel and a building type, the 
Building Generator creates building geometry by 
selecting setback values (SBFront, SBRear, and SBSide) 
within a range of values determined by building type. 

In caption: s^f_i E [ S^f_{min,i}, S^f_{max,i}]. 
Etc.
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Figure 3.4. Building Generation. Our approach receives a target parcel pij,
computes the building type tij and building height hij from global elevation and
population data, uses setbacks to define the building outline, and generates a
building geometry mij. The setbacks SF

i , SS
i , SR

i are sampled from per-building-
type setback ranges.

3.4.2 Building Generation

Our building generator BG defines one or none 3D building geometries for each parcel pij

inside a synthetic city block si. To create building geometry model mij, the generator uses

both global-scale population and global-scale elevation data to compute the building type

39



within each parcel. It also uses a per-building-type triple of typical setback ranges (front,

rear, and side setback ranges) (Figure  3.4 ). Then, the elevation data, building type, and

setback ranges are used to create an appropriately sized procedural building model.

To estimate building height hij for parcel pij, our technique uses the elevation data E

that represents the sum of terrain height and man-made structures. To compute elevation

eij for building height estimation, we let eij = E(pij) − Emin where the first term is the

global elevation data for the given parcel and Emin is the minimum elevation within the

vicinity of the urban area (the terrain height). Next, eij is rescaled to the range [0, Hmax].

The value Hmax is, by default, the maximum building height of a typical city, or is a single

number provided as input for a target urban area. Thus, the final building height estimation

is hij = (E(pij) − Emin)Hmax, which provides a good estimation when there are no significant

terrain elevation changes throughout the input area.

Our method uses six procedural building types based on the Local Climate Zones (LCZ)

classification by [ 85 ]. LCZ defines a culturally independent global-scale classification for

urban areas. LCZ is being increasingly adopted because it captures the urban fabric in

a much more precise way than prior land-use/land-cover classifications. In particular, it

defines all urban areas to belong to one of ten possible zones (in total, LCZ defines 17 types

including non-urban areas). The zones vary by the density of buildings as well as their

heights. We use population data to estimate the density of a parcel. Thus, our six types

are all combinations of low/mid/high rise with dense/sparse: 1) Low Rise Sparse, 2) Low

Rise Dense, 3) Mid Rise Sparse, 4) Mid Rise Dense, 5) High Rise Sparse, and 6) High Rise

Dense. Further, we define a typical front, rear, and side setback range for each building type;

[SF
min,k, SF

max,k], [SR
min,k, SR

max,k], [SS
min,k, SS

max,k] for k ∈ [1, 6].

To determine the building type tij for a parcel, we split the building height range into

three percentiles corresponding to: Low Rise, Mid Rise, and High Rise Buildings. Using

the population data of a parcel P (pij), we further split each percentile into two percentiles

to define sparse vs. dense areas. The result is the classification scheme for the listed six

building types.
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Finally, we compute an appropriate building geometry model mij based on the building’s

height and the setbacks associated with the building’s type. Succinctly, our procedural

building generator performs the task

mij = BG(pij, hij, tij, St,ij),

where St,ij is the triple of setback ranges corresponding to each of the defined building types

tij.

3.5 Procedural Model Optimization

The optional optimization component improves the similarity between a synthetic city

and the target city in the satellite images. The component iteratively compares synthetically

generated average building footprint areas with the actual average building footprint areas

for at least a fraction of the city. The optimizer alters a set of calibration parameters until

convergence.

3.5.1 Calibration Parameters

We improve similarity between the synthetic and the actual city by altering the parcel

area ranges used during parcel area estimation and the per-building-type setback ranges.

Parcel area estimation partitions the possible parcel areas into multiple bins; then, parcel

area estimation returns a number between zero and one which is mapped to the parcel

bin range (e.g., [20, 300] square meters for the first bin). If the number of buildings in si

is different from that in bi, then the city block deviates from the current assumed ratio

between parcel size and building size. One way to improve is to generate smaller/larger

parcels and thus alter the number of buildings. We accomplish this by shifting the bin

boundary between adjacent parcel area bins. For example, given three parcel area bins we

can shift the boundary between the first two and also the last two parcel bins. In general,

for Z parcel area bins, this implies Z − 1 calibrated boundaries; αu for u ∈ [1, Z − 1]. To
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alter the size of the buildings, we scale the setback ranges of all types by β so as to be larger

or smaller in order to change building outlines and subsequently the 3D building geometry.

In addition, the parameters can be defined at a global scale (e.g., one set for the entire

city) or at various local scales (e.g., different sets for different parts of the city). The former

provides an intuitive global optimization while the latter enables improved local adaptability

at the cost of more optimization parameters. To this end, we compute a quadtree subdivision

of the urban area. The root node represents the top-level aggregation of the urban area and

subsequent quad tree levels are progressively tighter aggregations. This flexibility enables us

to tradeoff between global adaptation and more costly local adaptation. As is expected, our

system performs better at larger levels of aggregation than at smaller ones – more details in

the results section.

Hence altogether, the calibration parameters are the set

cmn = {α1, α2, ...αZ−1, β},

where m represents the level in the octree (with c0 being the set for the root node) and

n = {1, 2, 3, 4} is the quadtree node child index. A global optimization optimizes the

set c0. A local adaptation at the first level of a quadtree subdivision of the urban area

optimizes c11, c12, c13, and c14, and so forth.

3.5.2 Optimization Loop

To perform an optimization, we select the urban area and the quadtree level at which

to perform aggregation to compute calibration parameters. Then, we assume to have the

overall average building footprint area and estimated building count for each of the quadtree

areas (i.e., two scalar values for global optimization, eight scalars for optimizing at the first

quadtree subdivision level). Our optimization engine uses Powell’s method to minimize a
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weighted sum of the similarity between number of buildings and building outline area. In

particular,

en = |count(sij) − count(bij)|
count(bij)

ea = |area(sij) − area(bij)|
area(bij)

(3.1)

where wn is the weight for the number of buildings error en and wa is the weight for the

building area error ea. The functions count() and area() compute the count and area of

buildings, respectively, in the provided city block.

Thus, our overall optimization task is

argmincmn (wnen + waea) , (3.2)

for a desired quadtree aggregation level m (and for all valid values for n). Note that each

time calibration parameters are changed, the synthetic city block si must be recomputed (i.e.,

starting with bj and the current calibration parameters cmn, new parcels pij and buildings mij

are computed). The optimized parameters are then used during parcel area estimation of

the entire urban area. The improvements yielded by this component are shown in the results

section.

We rigorously evaluate our outputs and compare to state-of-the-art methods. Please see

the evaluations in Section  7.1 .
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4. BUILDING SCALE

In previous chapter, we work with low-resolution satellite image data (1 meter ∼ 3 meters)

and city-scale procedural reconstruction. In the subsequent chapters, we focus on higher

resolution satellite imagery (e.g., 0.3 meter) and generate LOD 2 and LOD 3 building models.

Automatic creation of lightweight 3D building models from satellite image data enables

large and widespread 3D interactive urban rendering. Towards this goal, we present an

inverse procedural modeling method to automatically create building envelopes from satellite

imagery. In the following sections, we first introduce a method to take multiple views of

satellite images as input to produce a crisp procedural building model. Further, we present

our system to generate procedural buildings/roofs with only a single satellite image as input.

4.1 Multi-view Satellite Images As Inputs

A portion of this section was previously published by Symposium on Interactive 3D
Graphics and Games [ 86 ], https://doi.org/10.1145/3384382.3384526.

Point 
Cloud

Layering & 
Polyline Creation Regularization Building

Model

Dial “Detailed to Crisp”

Figure 4.1. Pipeline. The pipeline of our geometry synthesis method.

Our key observation is that buildings exhibit regular properties (see Section  2.1 for more

details). Hence, we can overcome the low-resolution, noisy, and partial building data ob-

tained from satellite by using a two stage inverse procedural modeling technique (Figure  4.1 ).

During a first stage, 2.5D point-clouds obtained from multi-view stereo satellite reconstruc-

tion are used to create a tree of layers and a set of line segments for each layer. During a

second stage, a set of regularity constraints are pursued to arrive at parameter values produc-

ing a watertight and crisp procedural building model. Further, our methodology significantly
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improves the resilience to partial/noisy data and produces crisper and more accurate models

as compared to alternative satellite-based methods. Some examples are shown in Figure  4.2 .

syn. buildingpoints proj. tex-map

Google Earth
a)

b)

c)

d)

satellite

Figure 4.2. Examples of 3D Building Models. a-d) Our method automati-
cally creates lightweight procedural buildings from satellite-based point clouds
despite noise, occlusions, and incomplete coverage.

4.1.1 Related Work

In recent years, many researchers have been focused on building reconstruction from point

clouds. [ 58 ] and [ 87 ] provide reviews of urban modeling and reconstruction. In addition, with

the rapid development of deep learning, many works are using deep networks to help recon-

struct and render buildings from points clouds. While numerous papers address building

modeling from ground/aerial/LIDAR data, very few works address full building modeling

from satellite data. Nonetheless, we discuss and compare to some ground/aerial methods

that start with a point cloud as does our method. Those works could be roughly divided into

4 classes: Planar Primitive Fitting, Volumetric Primitive Fitting, Semantic Reconstruction

and Deep Learning approaches (discussed in Chapter  1 ).

Planar Primitive Fitting. These approaches usually start with extraction/detection of

planar primitives (e.g., planes), and then generate the final model with a set of primitives or

further optimize them so as to create compact and visually appealing 3D models. Currently,

two common methods of plane detection in point clouds are Region Growing (RG) [ 88 ], [ 89 ]

and Random Sample Consensus (RANSAC) [  90 ]. Chen and Chen [  91 ] describe a pipeline
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to reconstruct the geometry of buildings by detecting planar surfaces with a RG algorithm,

and then a graph is created to represent the relationship between those planes. Finally

a complete polyhedron is obtained after computing the plane connections. [ 92 ] extracts a

large number of planes using the Efficient RANSAC algorithm [ 93 ] and then intersects those

planes to form a set of axis-aligned candidate boxes. The final result is the subset of the

boxes that have good data support and are smooth. Later, [  94 ] generalized the same idea to

reconstruct general piecewise planar objects. Their method seeks an optimal combination of

the intersected planes under manifold and watertightness constraints.

Other primitive extraction methods have also been proposed. [  34 ] yield impressive models

but their work assumes availability of 2D building footprints, polygonal meshes, and both

aerial and street-level imagery. [ 95 ] also produce clean buildings but their LIDAR-based

approach does not work well with satellite based point clouds.

Though some of these works produce crisp building models suitable for interactive ren-

dering their approaches do not work well for the relatively noisy and low-resolution satellite

data (see later comparisons in the Results section), and also they may encounter computa-

tion bottlenecks for large complex buildings and urban scenes (e.g., we used [ 94 ] on a similar

size urban environment as ours and encountered very long processing times). Solutions for

such large models results in a huge number of candidate primitives and the computation

may not be affordable. In contrast, our approach benefits from a simple layering strategy

and we avoid the difficulty and inefficiency of finding the plane/surface primitives. Instead,

we look for simpler line segments or curved primitives in 2D layer images. In our pipeline,

we also make use of high-level architectural regularization terms to improve the quality of

our models.

Volumetric Primitive Fitting. These approaches use a customized 3D model library

which includes cube, sphere, cylinder, and other basic solids. The 3D building reconstruction

is done by directly fitting the primitives. [  96 ] presented an interactive tool called Smart-

Boxes to reconstruct building structures directly from point clouds using cuboid primitives.

This method achieves appealing results with significant user interaction. [ 97 ] proposed a

reconstruction method for indoor environments based on constructive solid geometry (CSG).

They first split the 3D space into a set of horizontal slices, each of which shares the same
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horizontal structure, and each horizontal slice is used to find 2D rectangular primitives. In

the end, they extend the 2D primitives into 3D models. Usually these methods suffer from

the limitation of using a fixed primitive library and when it comes to the noisy, incomplete

satellite point cloud, it’s also difficult to guarantee the accuracy of reconstruction.

Semantic Reconstruction. These methods start with segmenting the point cloud into

meaningful labels (e.g., ground, building, roof, facade, etc..). and then applying the afore-

mentioned primitive fitting methods in order to perform the reconstruction. [ 98 ] segment

point clouds into meaningful structures, such as the ground, facades, roofs and roof super-

structures, and then use polygon sweeping to fit predefined templates for buildings, They

produce compelling results but only have a fixed set of template buildings. To obtain a

level-of-detail representation of urban scenes, [ 99 ] extract a large set of plane candidates

after classifying the point clouds, and then a surface model is extracted from a set of 3D

arrangements based on a min-cut formulation. [ 100 ] apply a semantic segmentation and ex-

tract roof points from the point cloud. Then they iteratively apply RANSAC [ 90 ] to detect

one or more core roof shapes. These roof shapes are then extended to the ground plane.

The work does not include any architecturally inspired decimation or simplification to yield

crisp and lightweight building models (note: in results we show a visual comparison).

4.1.2 Geometry Synthesis

Our approach is based on a regularity assumption exploited via an energy-based opti-

mization. The optimization seeks to alter an initial polygonal model so as to produce an

output that most likely resembles the underlying structure even if partial/noisy data is given.

We describe our key observation, the architectural priors, layering, and regularization.

Architectural Priors: Given a hypothetical function A maximized when the provided

model is equal to ground truth, we can state our geometry synthesis goal as maximizing

A. Instead of arbitrarily changing a building’s vertices, edges, and polygons we change

them in a structured way via procedural parameters. In particular, we define B(Pi) to

be a parameterized procedural generation function where the parameter values Pi define

a building that uses a set of architectural properties to varying amounts. Thus, our goal
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a)

d)

b) c)

1st layer

3rd layer

2nd layer

Figure 4.3. Architectural Priors. Geometry synthesis enforces some/all of a)
parallel walls, b) symmetry (about an axis), c) predetermined corner angles,
and d) inter- and intra-layer alignment.

is to maximize A(B(Pi)). This approach improves the resilience to noisy/partial data and

produces crisp complete models.

Our approach includes the following extensible set of architectural properties (Figure  4.3 ):

• Symmetry: buildings might exhibit symmetry.

• Parallelism: walls might be parallel to each other.

• Predetermined Corners: corners of a building often form known angles (e.g., 90 or 135

degrees).

• Alignment: often walls between adjacent floors, or nearby same-floor segments, are

aligned to each other.

However, in practice even if the listed properties are present we rarely have the ground

truth data for defining the function A. Our conjecture is that the parameter set that maxi-

mizes A can also be found by maximizing

48



αR(B(Pi)) + (1 − α)S(B(Pi)), (4.1)

where R quantifies the regularization of a generated procedural model (i.e., how well the

set of architectural priors are enforced) and S measures the similarity of the produced model

to a mesh constructed with the incoming point cloud. Intuitively, this expression implies

that by balancing regularity with similarity, we can find an optimal combination in the sense

of maximizing the similarity to ground truth. [  101 ] arrived at a similar conclusion. Hence,

we can use expression  4.1 as a proxy to maximizing A.

In order to calibrate the level of regularization, we use a small set of example buildings

to calibrate constant and varying procedural parameters. In particular, given a small sample

of known building structures, we perform the following minimization:

minPc∥(αR(B(Pk)) + (1 − α)S(B(Pk))) − A(B(Pk))∥, (4.2)

where k = [1, K] for K known buildings, Pk = {Pc, Pd(Ik)}, Pd(Ik) are parameters

computed from satellite image set Ik for building k, and Pc are constant for all buildings in

this geographic region (or everywhere). Thus, once we have Pc, at runtime we can produce

crisp procedural models from the satellite images despite incompleteness and noise, and

without needing a priori known models.

Layering and Polyline Creation: The first phase of geometry synthesis is dividing

the point data into a tree of horizontal layers. We observe that (i) buildings may consist

of segments of different vertical heights and (ii) some non-adjacent segments of the building

might be of the same height. To perform the layering, we place all points into a grid with

voxel size equal to the satellite image pixel size of 0.3m. Then, we use a relative layering

threshold to determine when the intersection-of-union (IOU) between the current layer and

next horizontal single-cell voxel slice is big enough to begin a next layer. See Figure  4.4 for

one example.

Our layering scheme produces a tree of layers, as opposed to a linear array of layers,

because of the aforementioned second observation: a building might have non-adjacent seg-

49



Figure 4.4. Layering. We show the input point cloud as a tree of layers. To
the left is the point cloud and to the right is the tree of decomposed layers.

ments of the same height. When creating a new layer, we solve an approximate connected

component problem to determine if the new layer has multiple disjoint components (e.g., a

lower part of a building then becoming two separate towers in the upper part).

1

a)

b)

Figure 4.5. RANSAC. Layer examples of using a RANSAC-based method to
detect line segments. a) Layer inputs, b) Line segments.
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a) b) c) d)

Figure 4.6. Heuristics. Heuristics for Connecting Line Segments to Define
Each Layer. a) Almost collinear and close enough, b) Almost collinear, c) Some
supporting points near the intersection, and d) No supporting points near the
intersection.

We choose a representative slice for each layer and compute a single closed polyline

per layer. Since a layer might consist of multiple horizontal one-cell slices through the

grid, we must obtain a consensus of the layer geometry. We attempted several consensus

estimation schemes and found the best one to be choosing the slice that is most similar

to all other slices in the layer. Then, we use a RANSAC-based method to determine line

segments with significant support (i.e., line segments that pass through, or nearly through,

a sufficient number of points). The line segment determination algorithm makes use of a

support threshold parameter and a closeness threshold parameter. See Figure  4.5 for some

examples. To form the closed polyline, our method uses several heuristics. Figure  4.6 

describes visually some of the heuristics. For example, almost collinear and close-by line

segments are replaced with a best fitted single line segment and almost coincident line

segment start-end points are snapped together. Other scenarios (e.g., b, c and d of Figure  4.6 )

are shown as well, collectively using various parameter values which we have determined

empirically.

Regularization: In this second phase, we iteratively alter the regularization parameters

(e.g., thresholds, weights, α) so as reduce the difference between the values produced by the

similarity and regularization metrics and the desired values as per equation  4.2 (Figure  4.7 ).

This iteration continues under user control or under an external optimization loop. The

resulting set of regularization parameters are later used to produce building models. The
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Detailed Crisp

Figure 4.7. Regularization. We alter regularization parameters until produc-
ing an output of desired detail/crispness.

parameters can be used globally or new values can be computed for each region. In our case,

we compute them once and use in all areas.

The similarity and regularization metrics are calculated via a set of functions computed

using each layer’s poly-lines. The similarity metric computes the IOU between the current

poly-line and the original poly-line of a layer. The regularization metric makes use of several

sub-metrics explained in the following paragraphs.

• Symmetry Metric. This function seeks an axis of reflective symmetry for the provided

poly-line. For a proposed axis, the subset of the poly-line on one side of the axis

is reflected over the axis. Then, if the reflected poly-line and existing poly-line are

very similar (e.g., determined via IOU), it indicates a strong reflective symmetry. Our

approach performs a gradient descent to compute the rotation angle and 2D intercept

point that most reduces the aforementioned error sum. We prime the optimization by

first evaluating the cost function with a sampling of axis rotations (e.g., one every 10

degrees) and assume all axis pass through the midpoint of the poly-line.

• Corner Metric. This function is evaluated for wall-to-wall corner angles of 90, 135, or

180 degrees. Given two adjacent wall segments that exceed a length threshold (e.g.,
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1 meter), we determine the typical corner angle to which they are most similar. If

the actual angle is within a threshold of the typical corner angle (e.g., 10 degrees), we

compute an error metric proportional to the angular difference (else zero).

• Parallel Wall Metric. This function computes the angular difference between each wall

segment and the most parallel other wall segment in the layer. If the angular difference

is smaller than a threshold (e.g,. 3 degrees), the error is the angular difference (else

zero).

• Alignment Metric. This function has both an inter- and intra-layer component. The

inter-layer component seeks for a poly-line segment of the layer above it and also

a segment beneath it that are closest in both orientation and distance. The intra-

layer component seeks for each segment in the poly-line another segment closest in

orientation and distance (but not adjacent). If the paired segments from the intra-

or inter-layer components are similar enough, they are considered candidates to be

aligned. The error value is a weighted sum of the orientation difference and distance

value.

• Curved Wall Metric. This function seeks to find a sequence of polyline segments that

approximately form a circular arc of least a pre-specified minimal angular span. If

found, the sequence is considered a candidate to become a (circular) curved wall.

The aforementioned calibration process is performed via an additional loop placed over

both the layering and regularization phases. The calibration process first decomposes a set of

known models into a tree of layers. Then, a simple minimization is computed to reduce the

average difference between the computed layers and the known-model layers, thus yielding

best values for all the parameters described in the aforementioned layering and regularization

phases. We perform this calibration once using five buildings that were manually modeled

in one test area. We iteratively alter the parameters and confirm a reasonable convergence

by visual inspection. Please find the evaluations in Section  7.2.1 .
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4.2 A Single Satellite Image As Input

A version of this section is pending publication in Computer Graphics Forum (Euro-
graphics 2022).

Urban procedural modeling has benefited from recent advances in deep learning and

computer graphics. However, few, if any, approaches have automatically produced procedural

building roof models from a single overhead satellite image. Large-scale roof modeling is

important for a variety of applications in urban content creation and in urban planning

(e.g., solar panel planning, heating/cooling/rainfall modeling). While the allure of modeling

only from satellite images is clear, unfortunately structures obtained from the satellite images

are often in low-resolution, noisy and heavily occluded, thus getting a clean and complete

view of urban structures is difficult.

In this section, we present a framework that exploits the inherent structure present

in man-made buildings and roofs by explicitly identifying the compact space of potential

building shapes and roof structures. Then, we utilize this relatively compact space with

a two-component solution combining procedural modeling and deep learning. Specifically,

we use a building decomposition component to separate the building into roof parts and

predict regularized building footprints in a procedural format, and use a roof ridge detec-

tion component to refine the individual roof parts by estimating the procedural roof ridge

parameters. Our framework yields both improved results over prior methods and produces

discrete vector-based procedural structures, all from a single satellite image without the need

of high-resolution aerial images, LiDAR or point-cloud data. In our comparisons to multiple

techniques used well-established datasets, our method is consistently better than prior work

both quantitatively and qualitatively.

4.2.1 Related Work

Our work builds on procedural and inverse procedural modeling, deep generative model-

ing (see related work in Chapter  1 ), and building footprint extraction and roof reconstruction

in order to automatically produce procedural roofs from a single satellite image.

54



Building Footprint Extraction. Many state-of-the-art deep segmentation networks

(e.g., [ 35 ]–[ 39 ], [ 41 ]–[ 43 ]) can be applied to building footprint extraction. Specifically, Fully

Convolutional Networks (FCNs) [ 35 ] introduce deconvolution via upsampling operations and

provide an alternative to fully connected layers in classification models. U-Net [ 36 ] infers

high-resolution feature maps by joining the top-down and bottom-up pathways with lateral

connections. DeepLab [  37 ], [  39 ], [ 42 ] maintains high-resolution by replacing strided convolu-

tion with atrous convolution. However, these approaches include many more content pixels

than boundary pixels. This imbalance causes them to produce inaccurate building/roof

edges.

To solve this challenge, polygon-based building boundary delineation work has been pro-

posed. These methods focus mainly on active contours and on edge (point) assembling. In

[ 102 ], [ 103 ], they present frameworks which utilize the strengths of both CNNs and active con-

tour models [ 104 ] to produce an end-to-end polygon-based output model. Although the ac-

tive contour approaches improve mask coverage compared to the aforementioned CNN-based

semantic segmentation, blob-like contours that do not match building boundaries are pro-

duced. In [ 105 ]–[ 107 ], these approaches start with detecting/extracting building primitives

(e.g., corners, edges or regions) using CNNs and then employ other techniques (e.g., RNNs,

integer programming or Graph Neural Networks) to assemble them leading to polygon-based

building outputs. However, the usability of these methods is limited because they cannot

predict complex shapes because of deficiencies in primitive feature extraction and detection

modules. Moreover, the RNN and GNN modules are computationally expensive and [ 106 ],

[ 107 ] require extra building corner and edge annotations. Recently, Li et al. [ 108 ] design an

algorithm pipeline ASIP to improve the work of [  105 ] by extracting and vectorizing objects

in images with polygons – we compare to this method, amongst others, in our results section.

Building and Roof Reconstruction. Building and roof reconstruction is an active

research area. However, it usually requires multiple data sources (e.g., LiDAR, DSM, DTM,

point clouds, etc.) and few works focus on reconstruction from a single satellite image. Arefi

and Reinartz [ 109 ] directly detect roof ridges utilizing high resolution DSMs and orthorec-

tified satellite images. Zheng and Zheng [ 110 ] propose a hybrid approach, combining the

data- and model-driven approaches to generate LoD2 building models by using LiDAR, 2D

55



building footprints and high resolution orthophoto images. Li et al. [ 111 ] present a novel

approach to segment the roof planes from airborne LiDAR point clouds using hierarchical

clustering and boundary relabeling. Ywata et al. [ 112 ] introduce a method to extract build-

ing roof boundaries in object space by integrating a high-resolution aerial images stereo pair

and three-dimensional roof models reconstructed from LiDAR data. In [ 113 ], [ 114 ], they

work on a deep learning-based approach to detect and reconstruct roof parts of buildings

from a single image. However, they require high resolution aerial images and annotate the

dataset for roof ridges and building boundaries. In [  115 ], [ 116 ], they present deep learning

based approaches for automatic 3D building reconstruction. However, they need elevation

data (e.g., DSM) for training and their results are not regularized. None of the mentioned

approaches automatically reconstruct roofs using only a single satellite image as input.

Figure 4.8. Pipeline. Our approach consists of a building decomposition com-
ponent and a roof ridge detection component. A single satellite image gets seg-
mented by a building instance segmentation model (e.g., Mask R-CNN [ 117 ]).
And our components directly work on the initial segmentation image and gen-
erate procedural urban output.

Our approach is summarized in Figure  4.8 . As a preprocessing step, individual building

images {b1, ...bi, ...} and corresponding segmentations {s1, ...si, ...} are extracted from the

input satellite image B and the segmentation image S (e.g., si is cropped from S based on a

loose oriented bounding box of the building instance). These are then given to the building

decomposition D and roof ridge detection R components to yield the procedural output

P . To assist with terminology, we provide a table summarizing the subsequent variables

(Table  4.1 ).

In later sections, we first give a general overview of the potential building shapes and roofs

space, and then describe the building decomposition component including the processing
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Table 4.1. Variables and their meanings.
variable meaning
B an input satellite image of an urban area
bi a building image of B
S the segmented image of B
si the segmentation of bi
mi the edge map of bi
D building decomposition component
tD
i the building shape family of bi

cD
i the building configuration of bi

rij the jth rectangle in cD
i

R roof ridge detection component
eij the edge map of rij
tR
ij the roof shape family of rij

cR
ij the ridge configuration of rij

details, synthetic data creation and training of neural models. Then, we present the roof ridge

detection component in a similar manner. Note: Having building decomposition component

and roof ridge detection component separate can significantly reduce the required training

data (i.e., if not, each building part must support diverse roof types with different roof ridge

configurations) and makes training more efficient.

4.2.2 Potential Building Shapes and Roofs (PBSR)

The PBSR is an approximation to represent all possible building and roof structure

combinations. For this purpose, we propose a graph representation: each node stands for a

singular roof and each edge signifies the connection of adjacent roof parts.

Building Shape Families

Considering the number of nodes (or roof parts see Figure  4.9 ) and the different connec-

tion scenarios of roof parts, the number of possible building shape families is:

∑
i

Fi and Fi =
∑

j
Tij (4.3)
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where Fi is the ith building shape family defined according to the number of nodes. Tij is the

jth topology of Fi, and Tij is defined by the connections within Fi. For example, the building

shape families of F1, F2, F3 and F4 in Figure  4.10 consist of one, two, three and four roof

parts respectively. By means of graph isomorphism and the assumption of the graph being

connected, F1 and F2 can only have one topology, F3 can have two topologies, and F4 can

have up to four topologies. Intuitively, the building shape ”L” and ”T” belong to T21. T32

includes ”U” and ”Z” building shapes (see Figure  4.9 ). A closed four-side building shape is

in T43. However, T31, T41, T42 and T44 are possible shapes but not common in the real world.

In summary, we can theoretically grow the space of possible building shape families to larger

values for i and account for any actual building. However, as discussed later, by limiting the

possible set of building shape families, and their configurations, to a rather compact number,

we can practically capture most buildings in our datasets. For example, considering i up to

4 results in 8 possible parameterized building shape families.

Figure 4.9. Roof parts. We show roof parts of certain building shapes (I, L,
T , U , and Z). For each, i) one or more roof parts in different colors. ii) the
corresponding building image.

Roof Families

As for roof families, we consider two edge types appearing in typical roofs: external edges

(e.g., eaves) and internal edges (e.g., ridges and hips). We assume the perimeter of a single

roof part are the external edges and the internal ridges follow the main direction of the roof
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Figure 4.10. Potential building shape families. We show building shape
families of F1, F2, F3 and F4. See main text for more details.

(e.g., parallel or perpendicular to eaves). Hips are the internal edges that connect ridges to

corners. In our current implementation, we support flat, gable, hip, pyramid and half-hip

roof families (see Figure  4.11 ) which includes most common types according to [  118 ]–[ 120 ].

Figure 4.11. Potential Roof Families. We show our supported roof families.

4.2.3 Building Decomposition Component

In this part, we describe the processing details of our building decomposition component

D, and also how we create a synthetic dataset and train the classifier. As shown in Fig-

ure  4.12 , the component D consists of three parts: the previous described PBSR, a building

shape family classifier, and a building family configuration recognizer.
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Figure 4.12. Building decomposition component.

Classifier

Taking the segmentation image si as input, the CNN-based classifier predicts the building

shape family tD
i . The classifier network is a ResNet [ 121 ] with a modification of the last

fully-connected layer to having the number of supported building shape families. We train

the classifier with 185,700 synthetic images and achieve 96.5% classification accuracy when

testing on segmentation images si.

Configuration Recognizer

Next, we need to recognize the precise configuration of the determined building shape

family. This enables producing a specific parameterized procedural output for the building

footprint and subsequently for estimating roof parameters.

The configurations are determined by the arrangements of parameter values of roof parts.

The parameters for each single roof part (or node) is r = {x, y, w, h} (assuming it’s a

rectangular roof) where (x, y) is its top-left corner and (w, h) is its size. Thus, for all

building shape families, the total number of possible configurations is

∑
i

∑
j

∑
k

Cijk and Cijk = {rijk1, rijk2, ..., rijkn} (4.4)

where Cijk is the kth configuration of Tij and contains n(n ≥ 1) roof parts. However, this

exhaustive list has redundancies that we seek to omit to achieve better performance (e.g.,

faster search). We ignore configurations that are affine transformations of other configura-
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tions (e.g., translation, flip, mirror, etc.). Further, we split the image into grids (setting grid

size to 2 pixels) and iterate parameters in the grid space. Additionally, according to our

preeliminary analysis of our used portion of SpaceNet [ 52 ], roughly 90% of building shapes

are covered by I, L, T , U , and Z (see Figure  4.9 ) . Hence, we only consider the families

T11, T21, T32 and T43. In summary, we support 4520 configurations in total.

To search for the configuration of the current building shape family tD
i , we apply the

following strategies. Since the configurations only consists of canonical instances without

those generated by transformations, we apply a series of image processing methods to si; e.g.,

cropping the si, resizing the si to size (120, 120), centering the si with 4 pixels margin, and

then applying transformations including flipping si horizontally or vertically, and rotating

si (e.g., 90, 180, 270 degrees) before searching for the configuration. Eventually, we find

the best match cD
i = {ri1, ..., rij, ...riqi} using intersection-of-union (IOU) (the best IOU of

transformed si and the generated footprint image based on a configuration). The matched

cD
i will be passed to the roof ridge detection component for subsequent processing.

Synthetic Data Creation and Training

While assuming building image inputs (e.g., bi) is an option, it requires to manually

annotate a large set of real-world training images for both building footprints and roof

ridges. Instead, we leverage synthetic dataset to avoid labor-intensive annotations and thus

can do self-supervised training more easily.

Regarding the creation of a synthetic dataset, we consider building structure regularities.

Buildings exhibit properties such as straight walls, parallel walls, walls meeting at one of a

set of predetermined angles (e.g., 90 or 135 degrees), symmetrical arrangements, and other

features. For the sake of simplicity, we focus on straight walls, parallel walls and right angle

regularities meaning a rectangle represents each single roof part. Our synthetic dataset

consists of all the configurations of building shape families discussed previously. Additional

types can be added to our dataset easily.

Moreover, in order to handle noisy and irregular building footprint segmentation, aside

from typical data augmentation techniques (e.g., flip, translation, rotation, etc.), we add
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noise to our clean/regularized synthetic images (see Figure  4.13 (a)). We apply random

occlusion or bumps (e.g., different shapes and sizes) around the footprint boundaries. Based

on preliminary experiments, we furthermore include different levels of transformations (e.g.,

low-noisy, medium-noisy and high-noisy: see Figure  4.13 ii) from left to right) when training

the classifier.

Figure 4.13. Data Transformation. We show (a) building footprints, and
(b) roofs. For each, i) clean and regularized synthetic images. ii) Images after
corresponding transformations.

4.2.4 Roof Ridge Detection Component

In the following, we provide details about estimating procedural roof parameters, cre-

ating synthetic roof dataset, and training the roof family classifier. The component R (see

Figure  4.14 ) also has three parts: the previously used PBSR, a roof type classifier, and a

roof ridge configuration recognizer.

Figure 4.14. Roof ridge detection component.
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Classifier

Given a building image bi, we first apply histogram equalization to adjust color contrast,

and then make use of an edge detector ([ 122 ] as default) to generate an initial edge map mi.

mi is subsequently cropped into an edge set {ei1, ...eij, ...eiqi} following the aforementioned

configuration cD
i of bi. For any eij, the classifier predicts the roof family type for the cor-

responding roof part (or node). The classifier network is a ResNet [ 121 ] with modification

of the last fully-connected layer to the number of supported roof family types. We train

the classifier with 119,500 synthetic images and achieve 95.6% classification accuracy when

testing on edge maps eij.

Figure 4.15. Roof Processing Step. We show an example to illustrate how
our recognize roof ridges and refine roof parts.

Configuration Recognizer

Given an edge set {ei1, ...eij, ...eiqi} of bi, the goal is to detect and estimate the roof

structures for the whole building. For example, if qi = 1, bi consists of a single roof. We

recognize the roof family type and find the best matched configuration cR
i1 by maximizing

supporting points in ei1 and the candidate ridge coverage. The supporting points are those

edge points of ei1 whose distance to the candidate ridge line is smaller than a threshold value

(e.g., setting to 5% of the length of the candidate). If qi ≥ 2, we need to refine the sizes of

roof parts (see roof part ri1 in Figure  4.15 ). We start with recognizing the roof family type for

each eij. Based on the result, we decide the main roof part (ei2 in Figure  4.15 ). Afterwards,
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we focus on iteratively refining the rest of the roof parts. We start with decreasing the overlap

area by half each time (binary search by following the direction perpendicular to the main

roof). For each iteration, we predict the roof family type and and find the corresponding

best matched configuration until we find the best matching (e.g., setting candidate ridge

coverage to 90% and maximizing the number of supporting points). In the end, it leads

to the final roof set c̃D i = {r̃i1, ..r̃ij, ...r̃iqi} with their corresponding ridge configuration set

{c̃Ri1, ..c̃Rij, ...c̃Riqi}.

Finally, we collect the roof set and roof ridge configurations of each bi, and combine them

into procedural output for B.

Synthetic Data Creation and Training

We generate synthetic roof images to support the roof family types. For the purpose

of representing noisy and irregular edge maps eij, aside from typical data augmentation

techniques, we further transform the synthetic roof images by adding random noisy curve

lines and randomly removing small parts of the edges (see Figure  4.13 (b)). During training,

similarly we apply different levels of transformations.

We quantitatively and qualitatively evaluate our outputs and compare to state-of-the-art

methods. Please see the evaluations in Section  7.2.2 .
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5. FACADE SCALE

A portion of this chapter was previously published by Springer International Publishing
[ 123 ].

Automatic satellite-based reconstruction enables large and widespread creation of urban

areas. However, satellite imagery is often noisy and incomplete, and is not suitable for

reconstructing detailed building facades. In this chapter, we present a machine learning-

based inverse procedural modeling method to automatically create synthetic facades from

satellite imagery. Our key observation is that building facades exhibit regular, grid-like

structures. Hence, we can overcome the low-resolution, noisy, and partial building data

obtained from satellite imagery by synthesizing the underlying facade layout.

Our approach takes as input 3D building models obtained from point-clouds (e.g., [  98 ]), as

well as satellite image fragments projected onto the faces of the building models. The image

fragments are used together with trained deep networks to find a representative sample of a

facade with minimal noise, and infer its style and procedural parameters. The parameters

are then used to complete the rest of the facade, and potentially other non-observed facades

of a building. In the end, our approach produces complete facade layouts applied to building

models. Figure  5.1 shows example results of our approach. Since we have a procedural

output (instead of an image), we can zoom-in to any part of the facade and still have a crisp

result, as observed in the close-up views.

Our results yield improvements over other methods applied to the same data. Over

our six test areas, each spanning 1-2 km2, our method is consistently better than the prior

work we compare to quantitatively and qualitatively, and the average accuracy of several

performance metrics is 85.4% despite significant occlusions, noise, and strong blurriness.

Further, our deep networks are trained on a new dataset of rectified satellite facade views

with ground truth segmentation that we also offer as a contribution. As far as we know, our

work is the first pipeline to handle façade reconstruction based on satellite imagery despite

the occlusions and resolution limitations of such imagery.
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Figure 5.1. Examples of facade synthesis and completion. Our method auto-
matically creates procedural facades from satellite-based images despite noise,
occlusions, and incomplete coverage.

5.1 Related Work

Almost all facade reconstruction methods use ground or aerial imagery, typically recti-

fied and rectangular. Many approaches have been followed (e.g., using dynamic program-

ming [ 124 ], using lattices [ 125 ], using matrix approximations [  126 ], and inferring grammars

from pre-labelled segments [ 101 ], [ 127 ], [ 128 ]). However, these methods do not perform well

for our very under-sampled facades. For example, see our comparisons in the results section.

More recently, deep learning based facade parsing has obtained excellent results for

ground-level imagery. For example, Liu et al. [ 129 ] and Fathalla et al. [  130 ] perform facade

segmentation but assume high-resolution frontal views. Nishida et al. [ 33 ] further assumes

hand-specified building silhouettes and their facade stage depends on having clear bound-

aries between floors and between columns. Further, none of these account for the significant

occlusions in satellite-based facades. Kelly et al. [ 45 ] could automatically and realistically

decorate buildings by synthesizing geometric details/textures. However, their work requires

style references (e.g., façade and roof textures, window layouts) and such references from

satellite would be very low-resolution and heavily occluded. Kozinski et al. [ 101 ] (and par-

tially Mathias et al. [ 131 ]) include provisions for occlusions but depend on many assumed

structural priors for numerous object classes and SIFT feature vectors. On average the fa-

cades we encounter are only 20x90 pixels in size (often significantly worse) and thus make it

prohibitive to determine such detailed structure. Image-to-image translation, such as Isola
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et al. [ 40 ] and Zhu et al. [ 132 ], has been proposed but does not support all of regularity,

occlusions, and satellite data. From the semantic segmentation point of view, facade parsing

could also be considered as a segmentation task. Many papers (e.g. DeepLabv3+ [ 42 ], Enc-

Net [  41 ], etc.) have shown great success with segmentation, but none of them use satellite

facade data. Thus we trained those neural networks from scratch using our created satellite

facade dataset (see Results section) and observe that these state-of-the-art segmentation

neural networks also suffer from the low-quality of satellite facade data and cannot generate

crisp facades.

Filling-in missing pixels of an image, often referred as image in-painting or completion,

is an important task in computer vision. Deep learning and GAN-based approaches (e.g.,

DeepFill [ 133 ], PICNet [  134 ]) have achieved promising results in this task. However, image

in-painting is ill-suited for resolving shadows and occlusions in satellite facade images. First,

detection of these areas is a very challenging problem, especially for satellite data. Second,

even assuming these areas could be detected automatically, image in-painting approaches

cannot infer correctly due to the low quality of satellite facade data. We also show in the

Results section comparisons to these approaches.

5.2 Facade Synthesis

As mentioned in Section  1.4 , while there might be multiple satellite images observing the

same building, there is usually not a high quality satellite observation of every facade on a

building due to shadows, foliage/occlusions, and limited resolution. Directly projecting the

satellite images to the buildings is inadequate. Further, such texture mapping depends on

very accurate image-to-image registration, geometric modeling, and complete coverage of all

building facades. Our approach attempts to overcome these issues by synthesizing procedural

facades using a selected subset of the available satellite imagery, and then applying these

facades across the entire building. This approach has the following advantages:

• Crisp Results. The produced facade details will be crisp and visible at any resolution.
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• Exploits Best Observations. Without relying on accurate RPCs and image registration,

we choose the best, potentially fragmented, observations of each building and use it to

obtain facade details.

• Completes Missing Fragments. Even if a facade/fragment is missing, we can fill-in

the facade with details from a partial observation (or in worst case with details from

neighboring facades).

Figure 5.2. Pipeline. The pipeline of our multi-stage approach for facade
completion and synthesis.

We provide an overview of the proposed procedural facade approach in Figure  5.2 and

in the following we describe the pipeline starting with our selection method, followed by

our deep-learning based facade style classification and parameter estimation, and finally our

facade and building completion.

5.2.1 Selection

In a first stage, we choose the satellite image that has low grazing angle and does not

have much dark pixels as the best view of the facade, and the resultingimage is used as

input to the rest of the pipeline. In many cases, even the best observation of a facade is not

useful due to noise, shadows, trees, and occlusions. Thus we employ a deep-learning based

rejection model to prevent further processing of any such facades. Rejected facades will not

undergo classification or parameter estimation, but can still receive synthetic facade layouts

as part of the completion phase (Section  5.2.3 ).
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Rejection Model

Accept

Reject

Figure: The first row shows facades that our selection 
model will accept. The second row shows facades that 
our selection model will reject.

Figure 5.3. Accept or Reject. The first row shows facades that our rejection
model will accept. The second row shows facades that will be rejected.

Our rejection network is based on a pre-trained ResNet [ 121 ] model, in which we modify

the last fully connected layer to two classes: one for ”good” facades to be accepted and the

other for ”bad” facades to be rejected. We used 120 examples of ”good” facades from our

facade data set and 120 examples of ”bad” facades, resulting in 1920 training images in total

after applying data augmentation such as flip, rotation, random crop and intensity variations.

The model performs with 92% accuracy when tested on 200 test images. Figure  5.3 shows

some examples of accepted and rejected facades.

5.2.2 Classification and Parameter Estimation

In a second stage, our approach estimates the style and parameters of an equivalent pro-

cedural facade representation. Our method extracts a ”chip” from the selected facade image

because i) satellite-based images often suffer from occlusions and thus assuming a full facade

view would be prohibitive, and ii) otherwise the parameter space would be unnecessarily

large as the number of floors/windows may vary significantly yet the spacing between floors

and windows is regular. The procedural representation for the entire facade is obtained from

the chip and then used during the next stage to complete each facade.

Chip Extraction. To choose the best chip to extract, we divide the original facade

image into a set of N tiles each of size 6x6 meters. Each chip is formed by selecting a tile as

the center and then varying the chip size to 6, 12, or 18 meters and varying the aspect ratio

(e.g., 1:1, 1:2, or 2:1). In total, 9N different candidate chips are produced for each facade.

Please see Figure  5.4 for a visual depiction. We evaluate each chip by passing it through our

rejection network and evaluating its rejection score. The chip with the lowest rejection score
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Chip Extraction

Figure: Multi-scale façade maps for chip extraction. a) 

Original facade. b) Multi-scale chip scheme. c)Apply b) 

to a). d) The best chip

c) d)

a) b)

…

Figure 5.4. Chip Extraction. a) Original facade. b) Division of a) into tiles
and demonstration of how chips are formed. c) Apply b) to a). d) The best
chip.

is considered to be the cleanest chip found for the facade, and is selected to represent this

facade further in the pipeline.

Segmentation. During segmentation, we only label each pixel as belonging to window/-

door or non-window/non-door since other facade classes are usually not visible in satellite

imagery. During development, we experimented with several state-of-the-art deep-network

based semantic segmentation models (e.g., DeepLabv3+ [ 42 ], EncNet [ 41 ], and Pix2Pix [ 40 ]).

Please see Segmentation models in the Results section for quantitative and qualitative com-

parisons among these architectures. We found that the architecture of Pix2Pix [ 40 ] performs

among the best ones, and in particular we specify the generator architecture to consist of

ResNet blocks, the discriminator architecture to be 34x34 PatchGAN, and the input image

size to be 96x96. We train the segmentation network from scratch using our own manually

created satellite facade dataset. Specifically, we train with 120 facade images (960 after

applying the aforementioned data augmentation) along with ground truth from our dataset.

After segmentation, we have binary segmented chip facades with two labels: one repre-

senting windows and doors (black), and one representing the building wall (white). Using

a binary representation eases the burden for deep-network based recognition and parameter

estimation. In addition, we apply some image processing techniques to further refine the

segmented image. First we perform a small amount of dilation (e.g. rectangular dilation

with a kernel size of 3 pixels) to reduce some of the noisy black window/door pixels. Next,

70



since some facades are not perfectly rectified (due to errors in image registration and/or

geometry), we perform a global image rotation computed automatically to force rows of win-

dows/doors to be horizontal. Further, each window/door is replaced by a filled-in version of

its rectangular bounding box. The end result is a binary image with rectangular windows

and doors representing the facade, and serves as the input to our recognition and estimation

networks.

Grammar Classification and Estimation. We represent a synthetic facade by one

of six possible grammars each with a number of parameters, defined in a systematic fashion.

While a single grammar with many parameters might be able to express more facades we

found its generality to result in overall lower quality given the low-resolution nature of our

facade imagery. For our grammar classification, a facade may contain doors and windows,

or only windows. Further, the windows can be arranged as a grid of disjoint windows, as

columns of vertically abutting windows, or as rows of horizontally abutting windows (see

Figure  1.2 and Figure  5.5 ). Since window shapes are hard to differentiate with satellite data,

we treat all windows as rectangles.

c c

Supplemental Figure 2: Grammars. Our grammars of (1-3) three styles of
only windows and (4-6) three styles with doors at the base. “f” stands for the
number of floors. “c” is the number of column boundaries. “d” is the number
of doors. “h” is the relative height and “w” is the relative width. Please check
the close-ups for the window/door grids in different grammars.
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Figure 5.5. Grammars. Our grammars of (1-3) three styles of only windows
and (4-6) three styles with doors at the base. “f” stands for the number of
floors. “c” is the number of column boundaries. “d” is the number of doors.
“h” is the relative height and “w” is the relative width. Please see the close-ups
for additional parameters in the different grammars.

Which grammar a facade belongs to, along with the parameters for said grammar, is

determined with a set of deep networks based on ResNet [ 121 ]. There is a classification

network, which determines the grammar, followed by six parameter estimation networks,

for determining the parameters specific to each grammar. The classification network is a
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ResNet [  121 ] with modification of the last fully-connected layer to the number of grammars.

The final output layer of this network yields confidence values for each of the aforementioned

grammars. After classifying a facade via this network, the segmented facade chip is then

sent through the parameter estimation network that corresponds to the highest confidence

value in the classification output.

To robustly find the procedural parameters for the classified grammar, we use a separate

deep network for each individual grammar, all of which are also based on ResNet [ 121 ]. They

differ only in the last fully-connected layer, where we modify the number of parameters to

match that of the grammar. We also use mean squared error as the loss function for our

estimation networks. The predicted parameters (e.g., window rows, columns, relative size,

etc.) altogether yield a synthetic facade that is similar to the input image.

To train the estimation networks by systematically iterating over possible facade pa-

rameter configurations, we synthesized 200,000, 20,000, 20,000, 400,000, 50,000, and 50,000

facades from grammars 1 to 6 in Figure  5.5 , respectively, based on the different number of

parameters for each. We also perform data augmentation accounting for noise and errors in

the segmentation (i.e., up to 10% noise such as perturbation of boundaries in windows/doors)

and randomly remove up to 10% of windows/doors. To train the classification network, we

collected 108,000 images in total from the aforementioned training images, distributed evenly

among all six grammars.

Optimization. After recognition and parameter estimation, we perform a coarse-to-fine

refinement for each chip. Segmentation suffers from noise, shadows, trees, and occlusions.

Fortunately, our parameter estimation network is able to recover a procedural facade that
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fills-in occluded content though there might be an overall translation or scale error. Thus,

we define an objective function, using F1 score [ 135 ], as:

Accuracy = TP + TN

ALL

Precision = TP

TP + FP

Recall = TP

TP + FN

F1 = 2 ∗ Precision ∗ Recall

Precision + Recall

P ∗ = argmax
P

F1

(5.1)

with true positives TP , false positives FP , true negatives TN , and false negatives FN for

windows/doors and non-windows/non-doors.

In the above, P stands for the grammar parameters in Figure  5.5 , P ∗ is the optimal

parameter set.

Our optimizer tries to maximize this function using Monte Carlo stochastic optimization

(e.g. altering P such as the number of floors, windows and window size) so as to create a

synthetic facade that improves the F1 score with respect to the segmentation result. Please

see Optimization in Results section for details and comparisons.

5.2.3 Completion

In a third and final stage, our method applies the estimated procedural parameters to all

facades and generates windows and doors with the estimated sizes and spacing. Although the

prior step determined parameters for rectangular chips, the actual facades on the buildings

are not limited to rectangles but instead may have irregular shapes. To this end, we logically

divide a building facade into a set of horizontally-adjacent rectangular sections. Since doors

only appear at the bottom of a facade, we partition each rectangular section, that touches

ground level, into two subsections: a door subsection extending from the bottom of the

facade up to the door height, and a window subsection covering the remainder. Doors are

placed horizontally-centered in the door subsections and sized according to the estimated
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parameters. The window subsections are then further subdivided into window cells, also

sized and spaced according to the estimated parameters, with one window placed into each

cell. The tallest window subsections determine vertical window placement such that building

floors are level across all sections.

Since each chip’s parameters are estimated independently, neighboring facades will in

general have different door/window sizes and spacing, and potentially different grammars.

To remedy this issue, we first group facades together based on similar heights. All facades

within each group are then forced to use the grammar of the highest scoring facade in the

group, scored according to the grammar classification confidence value from the previous

stage, with parameter values averaged over matching grammars in the group.

The resulting facades have windows and doors, which are colored according to the average

window/door color as determined by the segmentation. Similarly, the facade wall is colored

according to the average non-window color.

For evaluation details, we refer you to Section  7.3 .
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6. OTHER APPLICATIONS

We have discussed the applications of our framework to reconstruct different scales of urban

structures (e.g., cities, buildings and facades). Theoretically, our framework can be gener-

alized to other urban structures and applications. In the following sections, we present two

different applications: (1) enhancing segmentations of urban structures, and (2) footprint

completion of archaeological sites.

6.1 Enhancing Urban Segmentation

A version of this section is pending publication in Computer Vision and Image Under-
standing, 2022.

Image segmentation is a fundamental task that has benefited from recent advances in

machine learning. One type of segmentation, of particular interest to computer vision, is that

of urban segmentation. Although recent solutions have leveraged on deep neural networks,

approaches usually do not consider regularities appearing in facade structures (e.g., windows

are often in groups of similar alignment, size, or spacing patterns) as well as additional urban

structures such as building footprints and roofs. Moreover, both satellite and street-view

images are often noisy and occluded, thus getting the complete structure segmentation from

a partial observation is difficult. Our key observations are that facades and other urban

structures exhibit regular structures, and additional views are often available. In this paper,

we present a novel framework (RFCNet) that consists of three modules to achieve multiple

goals. Specifically, we propose Regularization to improve the regularities given an initial

segmentation, Fusion that fuses multiple views of the segmentation, and Completion that

can infer the complete structure if necessary. Experimental results show that our method

outperforms previous state-of-the-art methods quantitatively and qualitatively for multiple

facade datasets. Furthermore, by applying our framework to other urban structures (e.g.,

building footprints and roofs), we demonstrate our approach can be generalized to various

pattern types.
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Figure: Overview of our pipeline. (a-c) Multi-view façade segmented images. (d-e) Intermediate fused façade images. (f) Final synthetic output of our RFCNet.

(a)

(b)

(c)

(d)

(e) (f)

Regularization

Module

Completion

Module

Figure 6.1. RFCNet. Two scenarios are shown. For single image facade
segmentation (dashed box), it will be processed by Regularization and Com-
pletion. For multi-view facade segmentation, Fusion will combine the pairwise
latent vector of inputs. (a-c) Multi-view facade segmented images. (d-e) In-
termediate fused facade images. (f) Final synthetic output of RFCNet.

In this following, we describe our characterization of pattern regularity and generation of

pattern styles for training, present the overall architecture of our RFCNet, and then detail

each module of our architecture. Finally, we describe RFCnet implementation.

6.1.1 Related Work

Our work builds on procedural and inverse procedural modeling (see Chapter  1 ), facade

segmentation, image fusion and image completion.

Image Fusion. It merges information from multiple images of the same scene taken from

various sensors at different positions and/or different times, hopefully collecting complemen-

tary information. However, most recent approaches (e.g., [ 136 ]–[ 141 ]) focus on multi-modal

fusion (i.e., combining information from different domains). In our case, we are focusing on

fusing same-domain images from different viewpoints. Our fusion is more similar to [  142 ]

which aggregates multiple volumetric latent representations of the same object, and then ap-

plies a simple channel-wise averaging operation to obtain a fused representation. A problem

with their basic averaging strategy is that feature maps are fused together without measur-

ing the usefulness of each feature vector; hence, useless and useful features might be mixed

together.
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Image Completion. Filling-in missing pixels of an image, often referred to as im-

age completion or image in-painting, is an important task. Deep learning and GAN-based

approaches (e.g., [  133 ], [ 134 ], [ 143 ]–[ 145 ]) have achieved promising results in this task. Com-

pared to real-image completion, segmented-image completion is more challenging due to the

lack of color and contextual information. We show comparisons to these approaches in the

result section.

6.1.2 Pattern Regularity and Styles

In the following, we describe our assumptions about the pattern structural regularity and

styles. We focus on the case of facades to illustrate the details of our method; details for

other patterns are defined in an analogous way.

Structural Regularity. We characterize the structural regularity of facades by the

arrangement of their features. Windows and doors are the predominant features visible in

both street-level and satellite-based facade segmentation. Nonetheless, we also support addi-

tional labels for street-level observations (e.g., balconies). The placement of windows/doors

can be described by their alignment (A), size (S) and spacing (P ) as shown in Figure  6.2 .

Without loss of generality, a window bi is defined by rectangle {xi, yi, wi, hi} where (xi, yi)

is its top-left corner and (wi, hi) is its size (S). A group of windows is left aligned (Al)

when the x coordinates of the top-left corners are equal. Right (Ar), top (At) and bottom

(Ab) alignments are defined similarly. The horizontal spacing (Ph) between two horizontally

adjacent windows (bj, bk) is defined by xk − (xj + wj) (assuming bk is at the right of bj). Thus

a group of windows has the same horizontal spacing when the computed horizontal spacing

among those windows is equal. The vertical spacing (Pv) is defined analogously.

Style Generation. Within a facade there can be one or more groups of windows/doors

exhibiting different combinations of the aforementioned structural characteristics Al/Ar/At/Ab,

S, and Ph/Pv. A particular combination of characteristics defines a facade style. For exam-

ple, the facade style (a) in Figure  6.3 is based on the combination of constraints: Al and Ar

for each column of windows, At and Ab for each floor, windows of same size S, and same Ph

and Pv spacing. (b) in the same figure differs from (a) by having more than one group of
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Horizonal spacing

Window Size

Vertical spacing

Left/Right Alignment

Top/Bottom Alignment

(a) (b) (c)

Figure 6.2. Illustration of Structural Regularity. (a) Left, right, top and
bottom alignments are in different colors. (b) Different window sizes are in
different colors. (c) Horizontal and vertical spacing are in different colors.

windows of the same S. The facade style (c) differs from (a) by having 2 groups of Ph in the

facade.

(a) (b) (c) (d)

Figure 6.3. Example Facade Styles. (a-d) show progressively more general
facade styles, with (d) being supported by our approach.

In the specific case of facade segmentation, prior work assumes specific structural con-

straints. For instance, our previous facade work addresses facade segmentation and comple-

tion but only for facades of style (a). [ 33 ] defines a specific set of 16 synthetic facade styles,

similar to styles (a-c). For each proposed facade style, they generated enough synthetic

training images to train a set of deep networks. For published facade datasets like CMP

[ 146 ] or ECP [ 147 ], the supported facades are limited to the styles observed in the cities

where the facades were collected. Further, they assume facades are captured at sufficiently

high resolution and completeness to observe the supported stylistic details. Training based

on those datasets will fail when handling other facade styles or satellite facade images.

Unlike the aforementioned methods, our approach is based on a much more general set

of assumptions. For facades, our approach works as long as the facade satisfies the near
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minimal constraints of basic alignment (i.e., Al and Ar for groups of columns of windows, At

and Ab for groups of floors as seen in real facade images, and groups with same size S and

groups with similar spacing Ph and/or Pv. During training, we will generate a very large

number of training examples that essentially will include all the prior sets of specific styles as

well as other more general facade styles like (d) of Figure  6.3 . To show the facade generality

of our set of assumptions, we test several models against the styles in Figure  6.3 .

6.1.3 Architecture

Our RFCNet, as illustrated in Figure  6.1 , contains three sequential modules: Regulariza-

tion module (R), Fusion module (F), and Completion module (C). RFCNet takes as input a

segmentation from one or more viewpoints. For a single viewpoint, the input segmentation

passes through Regularization and Completion. For the multi-view scenario, inputs will be

successively combined by Fusion in pairs. In both cases, the output is a well-regularized, crisp

and complete synthetic structure. Moreover, the whole network is trained in an end-to-end

manner.

Regularization. The design of our Regularization module is mainly based on a Convo-

lutional Autoencoder Jonathan. Our Regularization consists of two main blocks as shown

at the left of Figure  6.4 : an encoder part ER and a decoder part DR. To be specific, ER takes

the raw (un-regularized) segmentation IR ∈ RH×W ×C as input, and first passes through a

spatial transform network (STN) [  148 ] which predicts a global affine transformation T to

align the facade IR to IR
t = T (IR). IR

t will be downsampled by a series of 2D convolutions

layers into a lower dimensional latent representation ZR ∈ RH′×W ′×C′ that contains the in-

formative content of the facade. DR is trained to up-sample and reconstruct a regularized

and synthetic output ĨR ∈ RH×W ×C from ZR. Each layer is either a convolutional layer (by

default) or a residual block [ 121 ]. We also add an attention module CBAM [ 149 ] to bias

allocation of the most informative feature expressions and simultaneously suppress the less

useful ones.

Fusion. In order to fuse multiple facade segmentations {..., IR
j , IR

k , ...}, our Fusion mod-

ule takes a pair of encoded latent representations (ZR
j , ZR

k ) ∈ RH′×W ′×C′ from ER as inputs
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Figure 6.4. Modules. Structural details of Regularization, Completion and
Fusion modules.

each time and generates an accumulated representation ZF
jk. Then ZF

jk passes through DR

for subsequent processing. The Fusion module is shown at the right of Figure  6.4 . Our

Fusion naturally extends to an arbitrary number of inputs in this way (e.g., an example of

3 inputs shown in Figure  6.1 ). Unlike the work [ 142 ] using basic averaging-based fusion (or,

max, min, or addition), our proposed Fusion not only incorporates all those basic fusion

strategies, but also learns the weights of how to fuse. In the beginning, (ZR
j , ZR

k ) are scaled

by their confidence values (or score) (wF
j , wF

k ), and then they are concatenated together to

form a deeper representation ZF
c = concat(wF

j × ZR
j , wF

k × ZR
k ) and ZF

c ∈ RH′×W ′×2C′ . The

confidence value corresponds to the quality of the input facade (e.g., the user may provide

one of 1.0, 0.75 or 0.5 that correspond to high, medium and low quality images respectively).

This confidence value especially helps when we use satellite based segmentation. Next, the

concatenated representation ZF
c is compressed by passing through a 1×1 convolutional layer

to reduce the depth of channels to the original size C ′. An attention module CBAM is also

added to measure the usefulness of each feature vector, and filter out less important features.
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Completion. Our Completion module takes the partially viewed and well-regularized

segmentation IC ∈ RH×W ×C as input, and then generates a well-regularized and complete

synthetic output ĨC ∈ RH×W ×C as shown in the middle of Figure  6.4 . The Completion

architecture is similar to Regularization but with several notable differences. STN is not

necessary since the input has been aligned during Regularization. Since completion is more

about propagating feature information globally, the bottleneck latent representation is fully

connected to the previous layer. Skip connections [ 36 ] are added between the layer in the

encoder and the corresponding layer in the decoder.

We rigorously and qualitatively evaluate our outputs and compare to state-of-the-art

methods across multiple datasets. Please see the evaluations in Section  7.4.1 .

6.2 Building Contour Completion

A version of this section is pending publication in Computer Graphics International,
2022.

Image/sketch completion is a core task that addresses the problem of completing the

missing regions of an image/sketch with realistic and semantically consistent content. We

address one type of completion which is producing a tentative completion of an aerial view of

the remnants of a building structure. The inference process may start with as little as 10% of

the structure and thus is fundamentally pluralistic (e.g., multiple completions are possible).

We present a novel pluralistic building contour completion framework. A feature suggestion

component uses an entropy-based model to request information from the user for the next

most informative location in the image. Then, an image completion component trained using

self-supervision and procedurally-generated content produces a partial or full completion. In

our synthetic and real-world experiments for archaeological sites in Turkey, with up to only

4 iterations, we complete building footprints having only 10-15% of the ancient structure

initially visible. We also compare to various state-of-the-art methods and show our superior

quantitative/qualitative performance. While we show results for archaeology, we anticipate

our method can be used for restoring highly incomplete historical sketches and for modern

day urban reconstruction despite occlusions.
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Figure 6.5. Pipeline. Iterates over a Feature Suggestion Component and a
Completion Component.

6.2.1 Related Work

Sketch and contour completion works attempt to complete images containing lines/con-

tours (e.g., black ink on a white background). The presence of structured content lacking

color and texture introduces additional challenges. SketchGAN [  150 ] uses a cascade Encode-

Decoder network to complete the input sketch iteratively, and employs an auxiliary sketch

recognition task to recognize the completed sketch. However, its incomplete input sketch is

already 60% ∼ 90% complete, there are no large missing parts, and the sketch is most likely

targeted to only one complete result. Ghosh et al. [ 151 ] propose interactive GAN-based

sketch-to-image translation to generate full images given only sparse user strokes. However,

it requires the user to choose the target object type. More recently, SketchBERT [ 152 ] and

SketchHealer [ 153 ] perform the task by considering that a sketch is stored as a sequence of

data points (e.g., vector format), rather than a photo-realistic image of pixels. ShadowDraw

[ 154 ] is an earlier work that does not perform sketch completion per-se but rather simulta-

neously shows various potential more complete drawings to assist in drawing. The system

is trained with many sketch-line drawings from a given set of categories. In general, these

methods do not control pluralistic completions nor start with only a 10% complete sketch.

Nonetheless, in our results section we compare to sketch completion.

We describe the main components of our approach. First, we describe our initial dataset

(and motivating archaeological region), and our procedural generation method to generate
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data for our self-supervised network training. Second, we describe our entropy-based feature

suggestion component. Third, we describe our image completion component.

6.2.2 Procedural Data Generation

Our initial dataset is based on Bogsak Island in southern coastal Turkey which is an area

of heavy archaeological investigation containing stone structures from the fourth to ninth

century AD. It provides a prime location for us to explore building contour completion.

Numerous similar other sites exist in the general region of Cilicia as well as other locations

across the globe. Our investigator team includes archaeologists who have studied the site

during the last decade [REF-omitted-for-anonymous-submission]. They are extremely ex-

cited about being able to ”complete” the many partially preserved buildings in this site and

then expand to other sites in order to better understand the past settlements. This dataset

consists of aerial imagery spanning approximately 70,000 square meters at 5 cm per pixel. In

these images, we detect the building walls using the state-of-the-art edge detection network

DexiNed [  155 ].

To enable our guided pluralistic building contour completion approach, we generate a

large synthetic dataset of building contours spanning the observed style of the building

structures in the general region. After inspecting the subset of buildings already studied

in Bogsak (approximately 70 buildings), we classify them into three types of buildings:

single, split, and T-shape. In our current system, we focus on building walls and leave the

treatment of windows and door details for future work. The already studied buildings include

archaeologist-inferred completions. As in urban procedural modeling, we define each style

procedurally yielding random building variations (see Figure  6.6 ). Starting with the complete

and synthetic building contour images, we then progressively mask-out (randomly picking

either corners or wall edges) portions of each building producing 7 levels of incompleteness,

with level 7 being the most incomplete (e.g., only 6% ∼ 13% of the structure remains)

(Figure  6.7 ).
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Synthetic dataset

(a)

(b)

(c)

Figure 6.6. Synthetic Dataset. We show (a) single room, (b) split room, and
(c) T room footprints used for training.

Layers v3

(a)

(b)

(c)

Complete Level 1 
(84%~89%)

Level 3 
(57%~63%)

Level 5 
(29%~38%)

Level 7 
(6%~13%)

Figure 6.7. Incompleteness Levels. We show different levels of incompleteness
for (a) single rooms, (b) split rooms, and (c) T rooms. Note: Percentage
represents completion level.
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6.2.3 Feature Suggestion Component

Given an incomplete building footprint (Figure  6.8 a), our feature suggestion component

iteratively provides the next best location where it would be most beneficial to have addi-

tional data. The additional data is an user-provided indication of the existence, or agreement,

of there being more underlying structure: the user can ”uncover” near said location ”in the

field” or sketch a small fragment of the believed building structure at, or near, the provided

location.

To determine the location (x0, y0) that maximizes the information gain towards comple-

tion, we use a weighted information entropy model. Let the incomplete building footprint

image be I0 and the ground-truth complete image be IC . For any (x, y) in the 2D image

grid, I0(x, y) = 1 if there is a building structure at (x, y); otherwise, I0(x, y) = 0 – this is

directly the output of edge detection. Next, consider the space of all complete buildings

B. Given a complete footprint Ii ∈ B, Ii is said to be consistent with I0 if Ii(x, y) = 1 for

all (x, y) such that I0(x, y) = 1. However, there are an infinite number of Ii ∈ B that are

consistent with I0, such as different building types, poses, and scales, and any of them can

be a reasonable completion of I0, thus IC is not unique and instead there are a plurality of

possible completions. We represent such uncertainty with information entropy given by

H(X) =
∑

i
p(Ii) log p(Ii) (6.1)

and is depicted in Figure  6.8 (c). During each iteration of the feature suggestion component,

we provide information at a position (bx, by) and the information gain G of such input is

the difference between the original entropy and the conditional entropy after revealing such

information

G = H(X) − H(X | (bx, by)) (6.2)

H(X | (x, y)) = P (I(x, y) = 1)H(Ii | I(x, y) = 1)

+ P (I(x, y) = 0)H(Ii | I(x, y) = 0) (6.3)
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Intuitively, the goal of the feature suggestion component is to identify the next 2D location

(bx, by) that maximizes the information gain so as to more quickly arrive at a complete

footprint. The plurality of completions is addressed by the progressive identification of

each (bx, by) which gradually steers the completion process until only a single completion is

possible, at which point the iterative suggestions are no longer needed.

A practical computational approach to the above is to use a large sample NS of the

possible complete footprints of different building types, poses, and scales, as described in

Section  6.2.2 . Given an incomplete footprint I0, we measure the likelihood of a complete

footprint Ii being a possible completion of I0 using a masked L2 distance measure given by

d(I0, Ii) =
∑
(x,y)

∥I0(x, y) − Ii(x, y)∥2
2 · I0(x, y) (6.4)

Hence, complete footprints with a smaller masked L2 distance are more likely to be a

possible completion of I0. By averaging the top NF footprints we obtain P0 (see Figure  6.8 

(b)), where P0(x, y) approximates the probability of IC(x, y) = 1. Therefore, at each iteration

we search the 2D image and suggest the location (bx, by) that maximizes the information gain

for the subsequent completion component. Experimentally, we found that using NS = 3000

random footprint samples and NF = 50 top footprints yields a good trade-off between

performance and accuracy, and is what we use for our reported results. Practically, we also

estimate a distance field (see Figure  6.8 (d)) to avoid proposing feature locations near known

structures in Figure  6.8 (a).

Figure 6.8. Feature Suggestion Component. (a) Incomplete footprint. (b)
Average of the matched footprints. (c) Heatmap showing the uncertainty. (d)
Distance field. (e) Proposed feature. (f) (Partially) completed footprint after
one iteration.
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6.2.4 Completion Component

Our completion component progressively produces an improved or completed building

contour using the incomplete building image I0 and a feature image F0 having feature infor-

mation at/near the location (bx, by) provided by the feature suggestion component. However

unlike typical completion tasks, the needed completion level of our footprint images ranges

from a small missing portion to missing most of the footprint (e.g., 94% missing in layer

7). To accommodate this level of missing data, the design of our completion component

considered the following three aspects.

Priors

i)

ii)

(a) (b) (c) (d)
(b)(a) (c) (d)

i)

ii)

Figure 6.9. Feature Suggestions. We show (a) complete footprints, (b) in-
complete footprints, (c) single feature images, and (d) multiple-feature images.
For each, i) dot-style features and ii) line-style features are shown.

Single vs. Multiple Features. There are two fundamental methods for providing

features (see Figure  7.30 ). A single-feature method accepts a building footprint image and

only one feature in the feature image (e.g., Figure  6.9 (c)). This method is simpler in terms

of training cases. But, completion error is accumulated throughout the feature suggestion

iterations. A multiple-feature method can avoid error accumulation by always using the

original incomplete image I0 and adding up all previously proposed features Fi = ∑i−1
j=0 Fj
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(e.g., Figure  6.9 (d)). However, it is much more difficult to train because of the exponential

increase in number of training cases.

Feature Styles. We experimented with the performance of several feature styles and

converged to two styles: dot-style and line-style (as shown in Figure  6.9 i) and ii)). Dot-style

features represent corners in the footprint, and the presence of a dot in the feature image

implies a missing building corner in the incomplete image at the given location (bx, by).

Line-style features are more informative because they illustrate both corner features and

wall-edge features. The presence of small line segments in the feature image implies the

presence of missing walls or corners (e.g., small L shape is for a corner, and short straight

line segments are for missing walls.). We also experimented, for example, with using ”thick

lines” to represent walls (where the thickness of the line corresponds to observed thickness

of the wall). We found this style to under-perform line-style so we did not pursue it any

further.

Completion Level. Another design aspect is how much to complete, during training, a

footprint given a feature image. Recall that an incomplete building fragment might support

a plurality of completions. The goal is to find the balance between too aggressive completion

causing ambiguity/noise/deterministic completion and too conservative completion resulting

in many iterations. We performed several experiments using 25%, 50% and 100% completion

to determine the best level (see Figure  7.31 ).

After experimenting with the aforementioned design considerations, we found multiple

feature, line-type style, 50% completion to yield the best performance. Further, combining

line-type features with multiple-features is actually equivalent to a single-feature style but

at a higher-level of completion – in other words, we are seemingly doing multiple feature

completion by thinking of it as a single feature completion using slightly more complete

building footprints. Thus, the training time is very tractable. This configuration is extremely

practical for our archaeology-setup because archaeologists can readily complete building

footprints with only a few iterations of additional work. In general, we found by using our test

data that 50% completion generates the best balance between number of suggestion iterations

and image completion. In the results section, we showcase the effect of the aforementioned
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design aspects. Additionally, We have comprehensive evaluates on our outputs and compare

to state-of-the-art methods. Please see the evaluations in Section  7.4.2 .
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7. EXPERIMENTS AND RESULTS

In the following sections, we conduct experiments and demonstrate results for aforementioned

applications of our framework. We quantitatively and qualitatively evaluate our approach

on different scales of urban structures. Further, we compare our approach to several state-

of-the-art methods and our approach consistently creates better results.

7.1 City Scale

Our system is implemented in C++ while using several open source libraries including

Boost, CGAL, Qt, OpenCV, and OpenGL. The majority of our results are generated on a

desktop computer with Intel i7-8700 clocked at 3.20 Ghz, 32 GB of DDR4 RAM, and NVIDIA

GeForce 1080. Our neural network training is performed on a Intel 2.4GHz XEON computer

with several NVIDIA GTX TITAN XP boards each with 12GB of DDR4 RAM.

The overall performance time is divided into generation, offline training, and optimiza-

tion time. For all our tests, procedural model generation takes about 1.5 to 2 minutes to

automatically generate a 3D urban model from the satellite imagery spanning approximately

64 km2. The training time for our parcel area estimation networks is about 3-5 hours for

the classifier network and 12-15 hours for each parcel area bin network. The training only

needs to be done once for all cities. Our optional procedural model optimization takes 1-2

hours to do a global optimization for 64 km2 and 5-12 minutes to do one local optimization

covering 4 km2.

Our test cities include Chicago, Dublin, Hong Kong, Jacksonville, New Orleans, Paris,

San Francisco, and Toulouse. For each, we pick a representative 8x8 km2 area. The number

of buildings in each urban area varies from 10,415 buildings in Jacksonville dataset to 91,000

buildings in Dublin dataset. We obtain the height of the tallest building in each from the

city website, and the value for Hmax in the cities in the order listed is {442, 67, 484, 189,

212, 231, 326, 67} meters, respectively.
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Satellite Image

Elevation Data Population DataOSM Road

Synthetic Model 
Top View

3D Proc. Model – Bird’s Eye View

S&L Satellite Image

Figure 7.1. Visual Pipeline. Our method uses a satellite image and its seg-
mented version, together with OSM, elevation and population data, to create
a 3D procedural model.

7.1.1 Visual Results

Figures  7.1 ,  A.1 and  A.2 qualitatively show our results. First, Figure  7.1 starts with

a satellite image, its segmented and labeled version, and OSM road vectors, and then our

method identifies each city block. Procedural model generation starts with the initial parcel

area estimate provided by the neural networks and iteratively optimizes the solution by using

global elevation, global population data, and a feedback loop. The final procedural model is

output and can be visually compared to Google Earth.

Second, for our multiple test cities Figures  A.1 and  A.2 compares various views of our

3D urban model to corresponding views obtained from Google Earth. Notice the qualitative

similarity. In addition, our accompanying video shows several virtual flyovers above the

synthetic city models.

7.1.2 Numerical Results

Figures  7.2 and  7.3 , and  7.4 show numerically the improvement with various forms of our

model optimization. Figure  7.2 shows our cities during optimization at the global aggregation

level (i.e., optimizing calibration parameters co). The vertical axis is the average of relative
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Figure 7.4. Local Optimization. Using a subset of our cities, we show how
a local optimization (e.g., calibration parameters c2k) further reduces our er-
ror function. a-left) Depicts the building error difference as a heatmap over
the urban area (Chicago) using global optimization. a-right) Depicts the cor-
responding building error differences but using local optimization. b) A bar
graph comparing building errors resulting from global vs. local optimization
for a subset of cities.

building-area difference and relative building-count difference over the entire region (called

average building error). The error reduction is also summarized in Table  7.1 .
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Table 7.1. Global Optimization. Initial vs Optimized Average Building Error.
City Initial Avg Error Optimized Avg Error

(25 iterations)
Chicago 13.1 1.8
San Francisco 34.3 8.0
New Orleans 13.5 0.3
Jacksonville 41.9 12.1
Dublin 36.9 1.2
Hong Kong 32.9 13.61
Paris 26.7 4.9
Toulouse 10.9 4.6
AVERAGE 26.3 5.8

If the overall average building footprint area and building count is not available for the

entire region, then it is sufficient to have the area/count for a small fraction of the targeted

area. For example, Figure  7.3 explores the benefit of knowing the overall footprint area

(and estimated count) of different percentages of the urban area; often just a few percent

(e.g., 5-10%) is enough to obtain considerable benefit from this optimization component and

almost identical to knowing the overall averages.

Figure  7.4 shows the error resulting from a local optimization (i.e., two levels down in

the quadtree, so the 16 c2 calibration parameters are computed). The color-coded heatmap

on the left side of Figure  7.4 a shows the average building error for each of the 16 tiles

over Chicago resulting from using a global optimization. The heatmap on the right side of

Figure  7.4 a) shows the corresponding building errors but after using a local optimization.

In this case, the local optimization achieves a significant reduction overall with the total

average error (i.e., the average of all 16 tiles) going from 20.12% to 9.75%. However, some

tiles did in fact have an increase in error due to the local optimization converging to a wrong

local minimum. In Figure  7.4 b), we see the total average error using locally optimized

versus a globally optimized calibration parameters for several of our test cities. While local

optimization requires some more calibration data, it allows our model to be more similar to

the actual city layout not only from a distance, but also from a closer perspective.

93



7.1.3 Statistical Comparisons

We compare the statistical distribution of generated building area and a spatially-varying

mean of generated building count and building area to ground truth. Figure  7.5 and Ta-

ble  7.2 compare distributions of building area using Kolmogorov-Smirnov Testing. Table  7.3 

performs a t-test to show similarity of values over space.

Chicago Building Area 
Distribution (CDF)

Jacksonville Building Area 
Distribution (CDF)

New Orleans Building Area 
Distribution (CDF)

San Francisco Building Area 
Distribution (CDF)

Dublin Building Area Distribution 
(CDF)

Hong Kong Building Area 
Distribution (CDF)

Paris Building Area Distribution 
(CDF)

Toulouse Building Area Distribution 
(CDF)
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Figure 7.5. Cumulative Distribution Function (CDF) Comparison. Observe
the similarity between the CDF for the synthetic models and for the ground
truth of our cities.

Figure  7.5 depicts the cumulative distribution functions (CDFs) for the synthetic models

and for the ground truth of our cities – notice their similarity. The CDFs are computed from

a histogram of the building areas. The number of histogram bins affects the granularity

with which buildings of different sizes are considered equal. Thus, we seek to have CDFs

considered similar yet produced from using as many bins as possible.

Table  7.2 quantitatively measures distribution similarity. For example, at significance

level α = 0.05 (5%) the table indicates the two distributions are from the same underlying

distribution. This means that it is extremely likely the distributions are similar if we use a

building area granularity of 14 to 26m2 for building areas ranging up to 2500m2.

Table  7.3 shows that for an adhoc subset of our urban regions the number of buildings

and their sizes is not statistically different than ground truth at least when using the same
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Table 7.2. Building Area Distribution Similarity Test. It shows that with
significance level α = 0.05 the distributions are similar if we use a building area
granularity of at least 14 to 26m2. At significance level α = 0.01 the granularity
reduces to 10 to 22m2. Dim is the square root of area and represents the one-
dimensional granularity.

α = 0.05 α = 0.01
City Area [m2] Dim [m] Area [m2] Dim [m]
Chicago 14.2 3.8 11.1 3.3
Jacksonville 14.3 3.8 10.2 3.2
New Orleans 31.1 5.6 22.4 4.7
San Francisco 26.6 5.2 17.5 4.2
Dublin 26.3 4.1 19.1 4.3
Hong Kong 19.5 4.4 15.3 4.0
Paris 19.3 4.4 14.2 3.76
Toulouse 21.4 4.6 15.2 3.9
AVERAGE 21.6 4.5 15.6 3.9

Table 7.3. Building Number and Area Similarity Test. We show that with
significance level α = 0.01 the number of buildings and building area errors
over different regions of our cities are not statistically different than ground
truth. Note: only San Francisco building area does not pass the test at this
significance level.

City Num P-Value Area P-Value
Chicago 0.85 0.06
Jacksonville 0.78 0.03
New Orleans 0.90 0.01
San Francisco 0.05 0.007
Dublin 0.76 N/A
Hong Kong 0.10 N/A
Paris 0.06 N/A
Toulouse 0.19 N/A
AVERAGE 0.46 N/A

16 tiles as for local optimization. For each tile, we compute the mean number-of-buildings

error and mean building-area error. Then, we use all 16 values in a t-test to determine if

the mean of all errors is statistically different than zero with a significance level of α = 0.01.

The test indicates that the mean of all errors is not statistically different for the cities except

for San Francisco building-area error (which would satisfy the test if we used a significance
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level of α = 0.005 for example). In general, this test implies that the number of buildings

and building areas over different regions of the city average out to be quite similar to ground

truth.

7.1.4 Segmentation Comparison

We compare the results of our approach to directly extruding the segmented and labelled

satellite image provided as input. One option is to rely on a satellite image segmentation

that is very accurate and includes in-filling for occlusions. However, one of the benefits

of our approach is the lack of this reliance. Table  7.4 compares our method (using global

optimization for several iterations) to directly extruding the segmented satellite image (using

the same initial elevation information we also take as input). This comparison shows how

our method is able to better match ground truth. Table  7.4 shows the direct usage of

segmentation results in building errors of >100% and 51% in Chicago and Toulouse, for

example. In sharp contrast, our method has building errors of only 8.6% and 6.8% in the

same respective cities. We also show corresponding qualitative comparisons for Chicago in

Figure  7.6 .

Table 7.4. Segmentation Comparison. We compare solutions for Chicago and
Toulouse between directly using the segmented satellite image and our method.
Our method shows considerably lower errors (8.6% and 6.8%).

Chicago Count Area Count Err Area Err Error
Truth 49461 452.8 – – –
Segm. 10387 1667.8 79% 268% 174%
Ours 41765 460.2 16% 2% 8.6%

Toulouse Count Area Count Err Area Err Error
Truth 26045 315.8 – – –
Segm. 12392 469.1 52% 49% 51%
Ours 22954 320.9 12% 2% 6.8%

7.1.5 User Studies

We also performed two user studies by using Amazon Mechanical Turk (AMT) to quali-

tatively evaluate our method. The user studies compare our method (using satellite imagery)

to Google Earth (using their publicly available system that combines satellite imagery, aerial

imagery, and semi-automatic reconstruction – which we effectively regard as ground truth).
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Supplemental Figure 6:
Segmentation Comparison Images
We compare the results of our approach to directly extruding the segmented and labelled satellite image 
provided as input. a) Segmentation and labeling result of using eCognition. b) Ground truth segmentaion and 
labeling. c) Our produced procedural model with labeling.

Figure 7.6. Segmentation Comparison Images. We compare the results of
our approach to directly extruding the segmented and labelled satellite image
provided as input. a) Segmentation and labeling result of using eCognition. b)
Ground truth segmentaion and labeling. c) Our produced procedural model
with labeling.

We also introduce a third method in each study serving a baseline and/or AMT user confi-

dence estimator.

In the first study, we evaluate the realism of three methods at progressively farther

viewing distances. We individually displayed images of portions of three cities (Chicago,

Dublin, and New Orleans) from close to far viewing distances at oblique angles. We asked

each of 320 AMT users a total of 36 questions. For each question, we displayed an image for

five seconds and then the user was asked to provide a Yes/No answer to whether the image

portrays a realistic urban area.

For each city, we generated images from 12 viewing distances spanning approximately 1-8

kilometers at about a 45o downward looking viewing direction. At each distance, we created

an image for each of three approaches: using Google Earth, using our method, and using

a synthetic rendering with the same road structure and background texture as our method

but with random building areas and heights. Since the building parcels (and footprints) are

not known, the third method in this study generates effectively random buildings. At close

range this produces a city model that is obviously not-realistic and thus we use this fact to

compute a confidence factor per AMT user. Although, we used AMT filters to only request

work from high-quality users, we still need to disregard senseless responses. This same third
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method is also used to judge at which distance does it no longer matter what building sizes

are used (and thus any method works fine). Further, to overcome potential bias introduced

from the difference in rendering color styles from these these approaches, we used a global

color remapping tool to make the color schemes similar.

Google Earth Synthetic Random

D
istance 1km

D
istance 3km

Figure 7.7. Realism User Study. First row is viewing from 1km distance.
Second row is a distance 3km where our Synthetic image and Google Earth
are considered almost equally realistic but the synthetic image with random
building heights and areas is still notably less realistic.

Figures  7.7 and  7.8 show a summary of user study results. In Figure  7.8 , the vertical

axis shows the number of users that responded ”yes” to the realistic image question. We use

the responses of the realism question for the first 3 closest images of the random synthetic

rendering to obtain a confidence value for each user (e.g., if the user rates the first few closest

random synthetic rendering images as realistic, which they are very obviously not, then we

give the worker a low confidence value). The horizontal axis is the eye viewing distance as

reported by Google Earth; see Figure  7.7 for representative images at the different distances.

Overall, from close-up users prefer Google Earth but from about 2.8 kilometers users almost

equally rate Google Earth and our synthetic rendering. When observed from sufficiently far

away, all three image types are rated approximately equally.

In a second user study, we evaluate the preference of the results from three methods. In

particular, we compare Google Earth, our method, and an extrusion of the buildings using
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Figure 7.8. Realism User Study Responses. Based on worker responses ob-
serving images of Chicago, Dublin and New Orleans in random order, we show
how realistic the different images are considered at increasingly farther dis-
tances.

Figure 7.9. Preference User Study Images. We show two views of Google
Earth images, extruded building-segmentation images and our synthetic im-
ages.

segmented satellite images (e.g., segmented with eCognition and using the same building

height information as our method). The study also used Mechanical Turk and it involved

100 users who were each asked to provide a preference for 12 pairwise image comparisons.

We choose the same two close-up views as in Figure  7.6 , created 6 image pair from those
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two views, and 12 questions in total were created. Each image pair was shown and the users

were asked which do they perceive as more realistic depiction of the urban area. The image

pairs were shown in random order and in random left-right placement.

Figure  7.9 shows images from this user study and detailed responses of the user study are

in Table  7.5 . In summary, 84.3% of responses prefer either Google Earth or our method, over

the extruded segmentation-based buildings. Further, a t-test reveals that at a significance

level of α = 0.05, there is no statistical difference between the preference of Google Earth or

our method over the extruded segmentation-based method (e.g., p-value = 0.064).

Table 7.5. Preference User Study Responses. We show responses to all 12
questions of our user study. In each, it is a pairwise comparison among Google
Earth, our synthetic method, and extruded segmentation-based buildings.

Question Google Earth Ours Segmentation
Q1 59 42 –
Q2 85 – 16
Q3 – 66 35
Q4 54 47 –
Q5 89 – 12
Q6 – 75 26
Q7 57 44 –
Q8 81 – 20
Q9 – 65 36
Q10 60 41 –
Q11 85 – 16
Q12 – 72 29
Total(#) 570 452 190
Total(%) 47% 37.3% 15.7%

7.1.6 Application Examples

As applications, we show three tentative uses. Figure  7.10 demonstrates how a model of

Chicago produced by our system can be edited to produce a different but detailed model of

the same area. In this case, the user only need ”paint” a new building height and popula-

tion dataset layer; then our model is regenerated in 2 minutes. Table  7.6 demonstrates an

example computation of urban morphology values useful for urban planning/urban climate
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Original Chicago Chicago after editing

Figure 7.10. Urban content
generation. This figure shows
how we can quickly generate and
edit plausible city-scale models
based on real-world cities.

Figure 7.11. Sky-View Fac-
tors. We show for Hong Kong
(top) and Toulouse (bottom)
the similarity of our automati-
cally computed sky-view factor
to that obtained by the lengthy
semi-automatic method of using
[ 156 ] and Google Earth Street
View images.

Table 7.6. Urban Morphology Distribution Test. Our ks-test shows that our
two urban morphology values pass the test at significance levels α=0.05 and
0.01. For area weighted building height Ah the test passes with a granularity of
at most 6.8m for α=0.05 and 4.1m for α=0.01. Similarly, for building surface
to plan area ratio Ar, the test passes with a granularity of at most 0.18 for
α=0.05 and 0.04 for α=0.01.

α = 0.05 α = 0.01
Parameter Dim Dim
Ah 6.8 4.12
Ar 0.18 0.04

studies. An urban planning collaborator from Hong Kong provided us with ground truth

area weighted building height (i.e., building height times its area) and building surface to

plan area ratio (e.g., building surface area to parcel area). Our collaborator then used our

synthetic model to compute the corresponding values. Using a similar ks-test as with results,
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we show that our computed urban morphology values yield a distribution of values that is

statistically similar to ground truth at either α=0.05 and 0.01.

Figure  7.11 shows the sky-view factor computed for Hong Kong and Toulouse. The sky-

view factor is the percentage of sky visible from, in this case, the roads (i.e., it factors in

occlusions produced by the buildings) – it is an indicator often used in urban planning. The

figure shows the similarity of our automatically computed result to the typical lengthy semi-

automated solution, such as the method of using [ 156 ]. This method uses up to several million

ground level images, from Google Earth Street View, to compute many sky-view factors per

city. Our results show qualitative similarity and further analysis and improvements for sky-

view computation are left as future work.

7.2 Building Scale

In the following sections, we conduct experiments and demonstrate results for both afore-

mentioned methods.

7.2.1 Multi-view Satellite Images

Our method is implemented using OpenCV, OpenGL, and QtUrban, and it runs on

an Intel i7 workstation with a NVIDIA GTX 1080. We have applied our method to two

test areas in the United States captured by WorldView3 satellite images: a portion of (A1)

Jacksonville, Florida (1.9 km2) and (A2) UC San Diego, California (1 km2). Collectively,

the areas have a few hundred buildings and medium to tall buildings have from 20 to a

few hundred windows/doors each. The 2.5D point cloud dataset we use was produced by

an implementation based on [ 157 ], [ 158 ]. Our entire method runs automatically yielding 14

buildings per minute.

Regularization

Figure  7.12 shows examples of the progression of models through our pipeline including

applying regularization. As you can see, the corner regularization will make the corner

angles into typical angles (e.g., 90), the parallel regularization will make the almost parallel
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wall segments parallel, the symmetry regularization will make the model hold the symmetry

property, and the alignment regularization will remove misalignment between layers. In

our experiments, we found the symmetry and curved-wall regularization to occur the least

amongst these 5 metrics.

1 1

2

2

2

2

3 3

a) b) c)

2 2

4 4

Figure 7.12. Metrics. We show examples of the metrics used in our regular-
ization. a) Incoming satellite-based point cloud, b) the output models before
regularization, and c) the output models after applying specific regularization
terms. ”1” is corresponding to the corner regularization. ”2” is corresponding
to the alignment regularization. ”3” is corresponding to the symmetry regu-
larization. ”4” is corresponding to the parallel regularization.

Geometry Synthesis

Table  7.7 reports statistics about the synthesized building geometries. Table  7.8 contains

the globally averaged accuracy of our produced buildings in terms of 2D and 3D completeness

and correctness using an implementation of the testing method of [ 159 ]. Our models are

compared against a manually-refined high-resolution aerial LIDAR capture of the test area.

The overall accuracy is above 90%. Further, we compare our approach to a similar set of

103



prior methods as in the recent paper by [  160 ]. In particular, we show in Figure  7.13 a visual

comparison between Poisson surface reconstruction, dual contouring [ 95 ], Polyfit [  94 ] and our

method. We also compare to a surface simplification method QSlim [ 161 ] to demonstrate that

general polygonal simplification does not maintain the expected geometric and architectural

properties. Overall, our approach produces the best crisp and regularized models.

Table 7.7. Building Complexity. Average number of vertices, edges, and faces
in buildings by our method.

Zone #Vertices #Edges #Faces
A1 164.6 67.2 183
A2 224.24 90.93 248.5

Table 7.8. Geometric Accuracy. Accuracies for our areas in terms of the metric by [ 159 ].

Zone 2D 2D 3D 3D
Correctness Completeness Correctness Completeness

A1 0.93 0.90 0.92 0.92
A2 0.95 0.80 0.92 0.83

[ 100 ] focused on building reconstruction from satellite-based point clouds (in fact, also

Worldview 3 based). They developed neural networks to do semantic segmentation and then

to find roof points. They extract roof shape primitives by applying RANSAC [  90 ]. The final

results are refined by the boundary and the continuity of the model. Nonetheless, as you can

see in Figure  7.14 (copied with permission from their paper), our work essentially extends

such an approach to further produce crisp and lightweight building models. Although these

are not the same urban areas in the figure, the quality of our solution is notably cleaner

and crisper. In addition, [ 100 ] report geometric accuracy for several areas also using [ 159 ].

Their average values for the same terms as in Table  7.8 are 0.905, 0.73, 0.895, 0.75. As seen,

our approach is consistently more accurate by 7% on average which visually amounts to a

significant spread.

Finally, we show in Figure  B.1 many close-ups of reconstructed buildings from both areas,

textured with projected satellite images.
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Figure: Comparison with four state-of-the-art methods 

on a building dataset. (a) Input point clouds. (b) The 

results of Poisson surface reconstruction algorithm. (c) 

The results of the 2.5D Dual Contouring approach. (d) 

The results pf applying the quadratic simplification to 

(b). (e) The results of PolyFit. (f) Our results.

(a) (b) (c) (d) (e) (f)

Figure 7.13. Geometry Comparison. a) Incoming satellite-based point cloud,
b) Poisson surface reconstruction, c) 2.5D dual contouring, d) QSlim [ 161 ] of
b), e) PolyFit, and f) Our method.

7.2.2 A Single Satellite Image

Our method is implemented in Python and we train our neural network models using

PyTorch. The weights of our classifiers are trained by the SGD optimizer where initial

learning rate is set to 1e-3. Our typical input image sizes are (H, W, C) = (128, 128, 1). It

runs on an Intel i9 workstation with NVIDIA RTX 2080 8GB cards. We quantitatively and

qualitatively evaluate our approach on multiple satellite datasets.

Evaluation Metrics

We rigorously evaluate our outputs from both building decomposition component and

roof ridge detection component. In particular, we evaluate both pixel-wise correctness and

structure regularization for building footprint. For roof ridges, we assess the performance in

terms of a hit ratio, completeness, and correctness metric.

Building Footprint
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Fig. 1 ©Matthew Leotta et al.

Figure 7.14. Comparison. The top row is a result image cropped from [  100 ].
The bottom row is generated by our system.

For pixel-wise correctness evaluation, we use the following statistical measures: Accuracy,

Precision, Recall and F1 (see  5.1 ).

For building footprint regularization evaluation, we follow the observation that building

walls are typically parallel or meet at corners of predetermined angles (90, 45 or 135 degrees).

Hence, for the polygonal outline of a building footprint, we compute the interior angles in

degrees (within [0, 180]) for each vertex. Then, we cluster corners of similar angles into a

group gi and all groups form part of the set G. The regularization error of Er is defined as:

Er =
∑
gi

stdvar(gi)
scale(gi)

+ wr∥G∥, (7.1)
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where stdvar(gi) measures the standard deviation of angles in gi, scale(gi) is used to approx-

imately normalize the error – we set scale(gi) to 5 in our experiments. ∥G∥ is the number of

corner groups. We add ∥G∥ to encourage fewer and thus larger groups. wr is a weight that

balances the two aforementioned terms – we set wr = 0.1 in our tests. It’s easy to recognize

that a rectangular building footprint whose walls are parallel and corners are all 90 degrees

has Er = 0.1 since the stdvar(gi) = 0 and ∥G∥ = 1.

Roof Ridges

With regard to roof ridge evaluation, we adapt and modify the relevant definitions of

correctness and completeness from [ 162 ]. Correctness represents the percentage of the pre-

dicted roof ridge which lies within a rectangular buffer around the ground truth ridge. We

set the buffer width to be 0.1 times the length of ground truth roof ridge (which results in

a width of typically 2-4 pixels). Using a similar strategy, completeness is the percentage of

the ground truth which lies within the buffer around the predicted ridge. Hence, we define

correctness and completeness for roof ridges as follows:

Correctness = length of matched prediction
length of prediction , (7.2)

Completeness = length of matched ground truth
length of ground truth , (7.3)

In order to be consistent with footprint evaluation, we also evaluate ridges per entire

building. Since a single building commonly contains more than one roof ridge, we apply

weights to balance the importance of the multiple ridges based on their length. For easy il-

lustration, we assume the building has a set of ridge lines {l1, ..., li, ....} and the corresponding

weight set is {w1, ..., wi, ....}. We define:

wi =


∥li∥∑
j ∥lj∥

if ith ridge is found (predicted)

0 otherwise
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where ∥li∥ is the length of the ridge li. ”Found” means that both correctness and completeness

of the ridge are bigger than a threshold (setting to 0.3 in our experiments). Hence, the

correctness and completeness per building is

Correctness per building =
∑

i
wi ∗ correctness(li)

Completeness per building =
∑

i
wi ∗ completeness(li)

(7.4)

Additionally, we define another term to represent how many of the ridges have been ”hit”

(or found) by our method. This term also considers the relative importance of each ridge,

and thus is computed as a percentage by summing the aforementioned weights of the (found)

ridges:

Hit Ratio =
∑

i
∥wi∥, (7.5)

Building Footprint Comparison

Although our approach aims to generate procedural roofs, regularized and parameterized

procedural building footprint are produced by our building decomposition component as an

intermediate output. We compare this intermediate result to the outputs of other methods.

We selected tiles at random but that are at least almost orthorectified. To be specific, we

test on 7 random tiles of SpaceNet (which corresponds to 180 buildings), 10 random tiles

of CrowdAI (resulting in another 65 buildings), and 1 random tile of Urban3D (producing

another 415 buildings). We compare our generated building footprints to the initial segmen-

tations of each dataset and a state-of-the-art building footprint delineation method ASIP

[ 108 ]. The initial segmentation for each of the datasets is in the first row in each group of

Table  7.9 . For ASIP, we set β = 10−3 and λ = 10−5 as recommended by their paper and

apply their tool to generate results in a polygon format.

As shown in Table  7.9 , our method is slightly less in accuracy and precision, but always

achieves better recall (meaning our results are more complete) and F1 score performance

(Note: only F1 of CrowdAI is not the best) for all three datasets compared to the best model
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Table 7.9. Quantitative Comparison. We compare our building footprints
with the initial footprint segmentations and the ASIP method [ 108 ] for
SpaceNet, CrowdAI and Urban3D datasets. For footprint correctness, higher is
better. For regularization error, lower is better. Note: our Er of our approach
is 0.1.

Dataset Method Footprint Correctness
ErAcc. Pre. Rec. F1

SpaceNet
Mask R-CNN 89.5% 95.1% 86.9% 90.4% —

ASIP 89.0% 94.6% 86.4% 90.0% 1.79
Ours 89.0% 94.0% 88.6% 90.8% 0.1

CrowdAI
Mask R-CNN 94.4% 92.3% 89.8% 90.8% —

ASIP 93.9% 92.0% 88.7% 90.0% 1.52
Ours 93.1% 88.9% 91.9% 90.2% 0.1

Urban3D
DeepLabv3+ 86.4% 81.0% 85.3% 81.6% —

ASIP 85.8% 80.3% 84.2% 80.7% 1.60
Ours 85.5% 79.4% 88.1% 81.8% 0.1

in terms of footprint correctness (e.g., for SpaceNet, our accuracy and precision is 0.5% and

1.1% lower, but our recall and F1 score is improved by 1.6% and 0.4%). Regarding

regularization error Er defined in Equation  7.1 , we compare to the polygonal output of the

ASIP method. For the initial segmentation (e.g., Mask R-CNN or DeepLabv3+) and the

corresponding ground truth, the polygonal representations don’t exist and simply computing

the Er term would provide a very large error for those methods. Nevertheless, it is obvious

to recognize that there is no regularization for the segmentation (Figure  7.15 (c)), and the

ground truth (Figure  7.15 (b)) is regularized and its Er is close to 0.1. As clearly observed,

our results significantly improve building footprint regularization (e.g., for SpaceNet, the

regularization error is reduced by 94.4%). Further, as illustrated in Figure  7.15 , the outputs

of our method are visually appealing as well.

Roof Ridge Comparison

We compare our procedural roofs to three methods which approximately perform the

same task as us – these are the most similar works we could find that operate on a single

image, though two of these use aerial images at 6 times higher resolution. Since annotations
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Figure 7.15. Qualitative Comparison. (a) Real images. (b) Ground truth
footprints. (c) Initial building footprint segmentations. (d) ASIP results. (e)
Our results.

of roof ridges for our test datasets are not available, we manually create them by using an

image annotator tool VIA [ 163 ]. We randomly chose 83, 21 and 26 buildings from SpaceNet,

CrowdAI, and Urban3D, respectively, and annotated the roof ridges. We compare our pre-

dicted roof ridges to the state-of-the-art method Conv-MPN which predicts building edges

[ 107 ] (we only evaluate the roof ridges in Conv-MPN for fairness). As shown in Table  7.10 ,

our method consistently achieves better performance compared to Conv-MPN (e.g., hit ratio

improved by 31.8%, correctness improved by 27.7%, and completeness improved by 45.4%

for SpaceNet). Yet more, as demonstrated in Figure  7.16 , our results are qualitatively prefer-

able.

In addition, we compare to the methods in [ 113 ], [ 114 ]. These approaches reconstruct

roofs from a single aerial image at a 5 cm spatial resolution using the Potsdam dataset

provided by [ 164 ]. We compare to these methods by first down-sampling the aerial image to
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Table 7.10. Quantitative Comparison. We compare our predicted ridges with
Conv-MPN method [  107 ] for our SpaceNet, CrowdAI and Urban3D datasets.
For all three metrics terms, higher is better. Note: since Conv-MPN is not
trained on Urban3D originally, we only show our performance for this dataset.

Dataset Method Hit Ratio Correctness Completeness

SpaceNet Conv-MPN 63.2% 58.7% 44.8%
Ours 95.0% 86.4% 90.2%

CrowdAI Conv-MPN 63.4% 61.6% 58.6%
Ours 96.3% 90.9% 92.9%

Urban3D Ours 87.9% 73.5% 81.0%

30 cm resolution (– the resolution of our tested satellite images –) and then apply our method.

In addition, we also manually annotate roof ridges. In terms of hit ratio, correctness, and

completeness, we obtain 97.9%, 92.9% and 96.8% respectively.

However, [  113 ], [ 114 ] use a different correctness and completeness term to evaluate their

roof ridge and other urban structures. For [ 113 ], it outputs 43.4% completeness and 4%

correctness for just roof ridges (their completeness and correctness is higher when you also

consider the building footprint pixels). In [ 114 ], they improved results to 57.7% completeness

and 81.3% correctness for roof ridges (using the same metrics as [ 113 ]). At satellite-level

resolutions, the correctness and completeness term they provide does not seem suitable.

Nonetheless, we did compute the values using their method and obtained 35.5% completeness

and 34.3% correctness at 30 cms per pixel, as opposed to their values at 5 cms per pixel.

While our terms are lower than [ 114 ], our method operates at 6 times lower resolution because

we used satellite images.

More Results

We show our procedural urban generations for three large areas in Figure  C.1 . Moreover,

since we have a procedural output (instead of an image), we can zoom-in to any part of the

area and still have a high-quality result.
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Figure 7.16. Qualitative Comparison. (a) Real images. (b) Ground truth
ridge annotations. (c) Conv-MPN results. (d) Ours results. Note: The red
lines in (c) are considered as roof ridges.

7.3 Facade Scale

Our method is implemented using OpenCV, OpenGL, and PyTorch, and it runs on an

Intel i7 workstation with NVIDIA GTX 1080 cards. We have applied our method to six

test areas in the United States captured by WorldView3 satellite images: a portion of (A1)

Jacksonville, Florida (2.0 km2), (A2) UC San Diego, California (1 km2), (A3) San Fernando,

California (1 km2), (A4) Omaha, Nebraska (2.2 km2), (A5) San Diego, California (1.2 km2)

and (A6) USC, California (2 km2). Collectively, the areas have a few hundred buildings
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and medium to tall buildings and have from 20 to a few hundred windows/doors each. Our

method runs automatically yielding facades for 14 buildings per minute. The training time

for our classification network is about 12 hours, and the training time for our estimation

networks from grammars 1) to 6) is about 20 hours, 3 hours, 3 hours, 36 hours, 8 hours, and

8 hours, respectively.

7.3.1 Dataset

In order to train our neural network models, evaluate our method, and compare with other

methods, we present a dataset of real satellite facades, which includes about 400 rectified

images of facades from the aforementioned six areas, which have been manually annotated

with two different labels: one for windows/doors and the other for the walls. Because of the

low-quality of these facades, even humans can’t precisely do the segmentation. Thus, mis-

segmentation and misalignment always exist. Further, we carefully refine the annotations

for 61 facade images and use those facades as a test data set for evaluating models/methods.

7.3.2 Pipeline Steps

We show example pipeline steps in Figure  7.17 which includes chip extraction results,

segmentation results, image processing results and our final facade completion results.

Table 7.11. Segmentation Quantitative Comparison. Pixel Accuracy, preci-
sion, recall and F1 metrics evaluated on 61 facades for models from b) to g).
Those terms are defined in Optimization Section.

Model Accuracy Precision Recall F1
b) 0.843665 0.756 0.747 0.742
c) 0.8482 0.795 0.712 0.742
d) 0.866343 0.836 0.741 0.771
e) 0.846425 0.802 0.696 0.732
f) 0.849911 0.776 0.725 0.740
g) 0.870966 0.864 0.709 0.766
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Façade synthesis

a)

b)

c)

d)

e)

Figure: a) Selected facade. b) Façade chip. c)Apply 
segmentation model b). d) Apply dilation, rotation and 
replace windows/doors with filled-in rectangular 
bounding box and feed to our Neural Networks. e) 
Façade synthesis.

Figure 7.17. Pipeline Steps. a) Selected facade images. b) Facade chips. c)
Results of using our segmentation model b). d) Images after applying dilation,
rotation and replacement of windows/doors with filled-in rectangular bounding
boxes and then being fed to our neural networks. e) Synthesized facades.

7.3.3 Segmentation models

We test satellite facade segmentation on three state-of-the-art neural network architec-

tures: Pix2Pix [ 40 ], Deep Labv3+ [ 42 ] and EncNet [  41 ]. We train these architectures from

scratch using our data set and also customize the hyper-parameters to fit our segmenta-

tion problem. For Pix2Pix we also try different generator and discriminator architectures

which could support different sizes of input images. Please see Table  7.11 for quantitative

comparisons. Based on this comparison, we perceive Pix2Pix 96 to work best and it is the

segmentation model we use in our approach.

Table 7.12. Optimization Quantitative Comparison. Pixel accuracy, preci-
sion, recall, F1 and blob accuracy evaluated on 61 facades for models c) and
d) in Figure  7.18 .

Method Accuracy Precision Recall F1 Blob
c) 0.725 0.556 0.673 0.597 0.810
d) 0.880 0.818 0.834 0.815 0.923

114



Opt

Figure: Comparison with four state-of-the-art 
methods on a façade parsing. a) Input satellite 
facades. b) Manually created ground truth. c) The 
results of applying segmentation to a). d) The results 
of applying segmentation to image inpainting. (e) Our 
results without optimization (f) Our results with 
optimization

a)

b)

c)

d)

pAccuracy precision recall blob average
c) 0.618463 0.479696 0.472092 0.9364 0.626666
d) 0.808786 0.715268 0.82633 0.9393 0.822421

Table: Pixel Accuracy, precision, recall metrics and 
blob accuracy evaluated on 10 facades for models from 
c) to d)

Figure 7.18. Optimization Qualitative Results. a) Original facades. b) Manu-
ally created ground truth. c) Our results without optimization. d) Our results
with optimization.

7.3.4 Optimization

We evaluate 61 facade images using both our method without optimization and our

method with optimization. Thus we show that we improve pixel accuracy, precision, recall,

F1 and blob accuracy by perturbing grammar parameters. The blob accuracy is the window

count accuracy defined as:

Blob = 1 − |Our W indow Count − Ground Truth W indow Count|
Ground Truth W indow Count

, (7.6)

Please see Figure  7.18 and Table  7.12 for qualitative and quantitative comparisons. In

summary, with optimization our metrics improve from 0.69 to 0.85, an improvement of 16%

on average.

Table 7.13. Facade Quantitative Comparison. We evaluate Mean Absolute
Error (MAE) and Mean Relative Error (MRE) of the number of floors and the
number of windows per floor on 61 facades for c) and d) in Figure  7.19 .

MAE MRE
Method #floors #windows #floors #windows

c) 0.770 0.770 15.8% 12.1%
d) 0.246 0.164 4.2% 3.9%
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a)

b)

c)

d)

Figure 7.19. Facade Subdivision Comparison. We provide a) satellite-based
facades to b) an image-based approach, c) Nishida et al. [ 33 ], and d) Ours.

7.3.5 Comparisons

We compare our approach to several state-of-the-art methods. First, in Figure  7.19 we

show a visual comparison between the facade subdivision of b) an image-gradient-based

approach (e.g., [  10 ]), c) Nishida et al. [  33 ] (retrained using the same training set as our

approach), and d) our method. We highlight that Nishida et al. [ 33 ] (and also Teboul et

al. [ 147 ]) essentially make use during their processing pipeline of an image-gradient based

method similar to [ 10 ] (thus we include the image-gradient comparison). We also include

facade quantitative comparisons in Table  7.13 .

Second, we test two state-of-the-art neural network architectures for image inpainting/-

completion: DeepFill [ 133 ] and PICNet [ 134 ]. With DeepFill determining which part to

”fill” is an unaddressed challenge and thus for this comparison we manually select occluded,

shadowed and/or tree-covered areas. In PICNet, we use the random rectangular mask gen-

eration method they provide (e.g., select a sufficient number of rectangles within the image

to most likely performed all necessary in-filling). Please see Figure  7.20 for visual results.
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Image InPainting

Figure: a) Original facades. b)Random rectangular 
mask. c) Results. 

a)

c)

b)

PICNet DeepFill

Figure 7.20. Image In-painting. a) Original facades. b) Rectangular areas
to be filled-in. c) Results after inpainting.

While the methods are able to place content in the occluded areas, there are still significant

artifacts which will hinder subsequent facade process.

To evaluate the facade processing ability directly using the segmentation model and im-

age in-painting model, we evaluate performance using our 61 test images qualitatively and

quantitatively. To be specific, for the segmentation model, we choose the aforementioned

Pix2Pix 96 and apply it to the facade images directly. Then, we dilate each window/door

to occupy a rectangular bounding box. For the image in-painting model, we choose Deep-

Fill [ 133 ] and complete the facade images with manually selected masks. Then we apply the

segmentation model to the completed facade images and we also use a version of the win-

dows/doors dilated to rectangles. The quantitative metrics include pixel accuracy, precision,

recall, and blob accuracy. In Figure  7.21 and Table  7.14 , we show details of comparing our

method to the segmentation model and the image in-painting model.

Table 7.14. Quantitative comparison. Pixel accuracy, precision, recall, F1
and blob accuracy evaluated for models from c) to e) in Figure  7.21 . We
evaluated c) and e) on 61 facades in the left table. However the right table
shows applying d) to 22 facades (22 out of 61 facades are occluded and suitable
for image in-painting.) and we manually set the mask as best as possible.

Method Accuracy Precision Recall F1 Blob
c) 0.835 0.695 0.868 0.758 0.891
e) 0.880 0.818 0.834 0.815 0.923

Method Accuracy Precision Recall F1 Blob
c) 0.802 0.705 0.797 0.728 0.840
d) 0.806 0.803 0.612 0.677 0.875
e) 0.843 0.768 0.828 0.783 0.918
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Façade comparisons

Figure: Comparison with four state-of-the-art 
methods on a façade parsing. a) Input satellite 
facades. b) Manually created ground truth. c) The 
results of applying segmentation to a). d) The results 
of applying segmentation to image inpainting. (e) Our 
results without optimization (f) Our results with 
optimization

a)

c)

b)

d)

e)

pAccuracy precision recall blob average
c) 0.789774 0.697368 0.72465 0.8395 0.762818
d) 0.765504 0.661836 0.751147 0.8369 0.75384
e) 0.618463 0.479696 0.472092 0.9364 0.626666
f) 0.808786 0.715268 0.82633 0.9393 0.822421

Table: Pixel Accuracy, precision, recall metrics and 
blob accuracy evaluated on 10 facades for models from 
c) to f)

https://www.cs.purdue.edu/homes/zhan2597/metrics/index.html

Figure 7.21. Facade Comparisons. Comparison to SOTA methods on facade
parsing. a) Input satellite facades. b) Manually created ground truth. c) The
results of applying Pix2Pix 96 to a). d) The results of applying Pix2Pix 96 to
image completed by DeepFill [ 133 ]. e) Ours.

7.3.6 Examples

Finally, we show in Figure  7.22 many close-ups of reconstructed buildings as well as an

overall view of one area (A1). Views of our additional areas (A2) and more buildings are in

Figure  D.1 .

7.4 Other Applications

In the following sections, we conduct experiments and demonstrate results for other

applications.
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Figure 7.22. Examples. We show a view of a reconstructed area A1 within
Google Earth and close-ups of our buildings.

7.4.1 Enhancing Urban Segmentation

We quantitatively and qualitatively evaluate our approach on building facades, for which

we have ample ground truth. We also show preliminary qualitative results for building

footprints and roofs.

Facade Evaluation Metrics

We rigorously evaluate our RFCNet in the case of facade segmentation. In particular, we

evaluate two ways: facade correctness and facade regularization. Facade correctness focuses

on the pixel accuracy, precision, and recall (completion) of the facade. Facade regularization

measures the regularities of the facade.

Correctness. For facade correctness evaluation, we use statistical measures: Accuracy,

Precision and Recall (see definitions in  5.1 ).

Regularization. Three metric error terms are defined to measure the regularization of a

facade layout: alignment (Ea), size (Es) and spacing (Ep). The errors measure the deviation

from having groups of perfect alignment, groups of equal size, and groups of equal spacing.

We adapt and modify the relevant definitions of [ 165 ].

• Group: We use a threshold t to split the window elements into a set of groups

G = {..., gi, ...} for the regularization error terms. A candidate group gi = (Ei, Vi)
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contains a set of window elements Ei that share the regularization term, and a set of

values Vi (e.g., it is a set of x coordinate of left-corner from Ei for left alignment) that

will be used to compute the corresponding regularization error.

• Alignment Error: Ea is defined as:

Ea =
∑
Ai

(
∑
gj

stdvar(gj)
scale(gj)

+ wa∥G∥), (7.7)

where Ai stands for one alignment type among top, bottom, left and right alignments.

gj is a candidate group of Ai. stdvar(gi) measures the standard deviation of Vi in gi.

scale(gi) is used to scale the error. For left and right alignment, it is equal to the

minimal width of window elements Ei in gi. For top and bottom alignment, it is equal

to the minimal height of Ei. ∥G∥ is the number of candidate groups of Ai. We add

∥G∥ to encourage fewer and larger groups. wa is a weight that balances the two terms

(e.g., wa = 0.01).

• Size Error: Es is defined as:

Es =
∑
gj

stdvar(gj)
scale(gj)

+ ws∥G∥, (7.8)

where gj is a candidate group that has the same window size. stdvar(gi) measures the

standard deviation of Vi in gi. scale(gi) is equal to minimal height or width of Ei in

gi. ∥G∥ is the number of groups. ws is a weight that balances the two terms (e.g.,

ws = 0.01).

• Spacing Error: Ep is defined as:

Ep =
∑
Pi

(
∑
gj

stdvar(gj)
scale(gj)

+ wp∥G∥), (7.9)

where Pi stands for horizontal or vertical spacing. gj is a candidate group of Pi.

stdvar(gi) measures the standard deviation of Vi in gi. scale(gi) is equal to mini-

mal spacing of Vi in gi. ∥G∥ is the number of candidate groups of Pi. wp is a weight

that balances the two terms (i.e., we usually set wp = 0.01).
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Facade Comparison

We evaluate RFCNet on the aforementioned ECP, WVS and GSV datasets with our

defined evaluation metrics. To verify effectiveness of our method on enhancing initial seg-

mentation, we compared our method to three segmentation models, state-of-the-art image

completion models, and IPM methods both qualitatively and quantitatively. The compar-

ison exhibits our approach shows a significant improvement. In the following sections, we

only show comparison with one initial segmentation model.

Regularization. We apply our Regularization to initial segmentations for each of our

three datasets and in all cases achieve better performance. The initial segmentation for each

of the datasets is the first row in each group of Table  7.15 (e.g., for WVS, we improve the

accuracy of the initial segmentation of Pix2Pix by 6.2% and reduce alignment error Ea by

60.8%). In addition, we retrain models in IPM methods using corresponding datasets for

fair comparison. It shows our method improves facade correctness compared to them (e.g.,

accuracy is improved by 30.2% for ECP, 30.1% for GSV, and 4% for WVS). Moreover, as

shown in Figure  7.23 , our module generates visually pleasant facade structures.

Table 7.15. Regularization Quantitative Comparison. We compare our Regu-
larization (R) with the initial facade segmentation and IPM methods for ECP,
WVS and GSV datasets. For facade correctness, higher is better. For facade
regularization error, lower is better. Note: IPM methods generate regular-
ized outputs, so regularization error is close to 0 but correctness is lower than
others.

Dataset Method Facade Correctness Facade Regulariz. Error
Acc. Pre. Rec. Ea Es Ep

ECP
DeepLabv3+ 96.4% 84.7% 94.6% 1.01 0.05 0.18
Nishida et al. 69.0% 50.8% 53.3% — — —

R 99.2% 95.3% 99.4% 0.32 0.04 0.12

WVS
Pix2Pix 87.2% 70.1% 91.9% 0.74 0.12 0.27

Zhang et al. 89.4% 80.5% 84.6% — — —
R 93.4% 81.6% 96.8% 0.29 0.08 0.16

GSV
U-Net 90.5% 75.0% 90.0% 0.76 0.05 0.22

Nishida et al. 68.0% 50.2% 51.6% — — —
R 98.1% 92.8% 99.5% 0.25 0.04 0.13
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(a) (b) (c) (d)

Fig. 7: Regularization Qualitative Comparison. (a) 

Façade images are from ECP, Satellite, Street-view

respectively. (b) Ground Truth. (c) Segmentation. (d) 

Our Regularization.

(f)

Figure 7.23. Regularization Qualitative Comparison. (a) Facade images from
ECP, WVS and GSV respectively. (b) Ground Truth. (c) Initial Segmentation.
(d) IPM results. (f) Our Regularization.

Regularization and Completion. For incomplete or partially occluded facade seg-

mentation, as shown in Table  7.16 , our Regularization and Completion (R & C) not only

significantly improves the facade correctness and regularization metrics (e.g., for WVS, we

improve the accuracy of the initial segmentation of Pix2Pix by 8.4% and reduce alignment

error Ea by 72.4%), but also achieves better performance compared to the initial segmenta-

tion augmented by the image in-painting method DeepFill [ 133 ] (e.g., accuracy improved by

5.4% and alignment error Ea reduced by 74.7% for WVS). For a fair comparison, we refine

DeepFill using our facade synthetic dataset. In addition, our method improves IPM meth-

ods with respect to facade correctness (e.g., accuracy improved by 29.5% for ECP, 26.5%

for GSV, and 3.1% for WVS). Further, our R & C outperforms the single Regularization

module in terms of accuracy and recall. As illustrated in Figure  7.24 , the outputs of our

Regularization and Completion are visually appealing as well.
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Table 7.16. Regularization and Completion Quantitative Comparison. After
applying Regularization and Completion (R & C) to the initial segmentation,
we compare our results to the segmentation, segmentation after completion
using DeepFill, IPM methods and our Regularization (R). Note: Pix2Pix →
DeepFill means DeepFill takes the initial segmentation of Pix2Pix as inputs.

Dataset Method Facade Correctness Facade Regulariz. Error
Acc. Pre. Rec. Ea Es Ep

ECP

DeepLabv3+ 91.0% 74.0% 74.8% 0.77 0.05 0.18
DeepLabv3+ → DeepFill 93.2% 73.5% 95.8% 0.80 0.04 0.21

Nishida et al. 67.4% 50.4% 54.4% — — —
R 95.3% 92.8% 78.4% 0.27 0.03 0.12

R & C 96.9% 84.6% 99.7% 0.24 0.03 0.15

WVS

Pix2Pix 84.8% 77.2% 65.9% 0.87 0.07 0.32
Pix2Pix → DeepFill 87.8% 75.5% 84.1% 0.95 0.07 0.33

Zhang et al. 90.1% 82.3% 87.7% — — —
R 89.9% 88.3% 74.3% 0.21 0.05 0.14

R & C 93.2% 83.2% 94.7% 0.24 0.05 0.19

GSV

U-Net 82.7% 74.7% 55.3% 0.71 0.06 0.14
U-Net → DeepFill 87.3% 75.5% 77.5% 0.89 0.07 0.26

Nishida et al. 67.1% 50.1% 51.3% — — —
R 88.5% 91.6% 65.4% 0.20 0.04 0.07

R & C 93.6% 83.8% 93.4% 0.26 0.06 0.12

RFCNet. For partially-occluded facade segmentation with additional views, as shown in

Table  7.17 , our RFCNet achieves better facade results when evaluated for facade correctness

and regularization as compared to the segmentation of the first view (e.g., for WVS, improves

the segmentation accuracy by 9.1% and reduces alignment error Ea by 60.8%) and the

segmentation completed using DeepFill (e.g., for WVS, improves accuracy by 4.4% and

reduces Ea by 70.1%). Moreover, our RFCNet obtains better performance compared with

only applying our Regularization and Completion to the first view. In addition, our method

improves facade correctness compared to IPM methods (e.g., accuracy improved by 28.4%

for GSV and 5.6% for WVS). What’s more, our RFCNet improves accuracy and recall

compared to both R & C and R. As demonstrated in Figure  7.25 , our RFCNet results are

qualitatively preferable.
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Dataset Method 𝑨𝒄𝒄. (%) Pre. (%) Rec. (%) 𝐸𝑎 𝐸𝑠𝑠 𝐸𝑠𝑝

ECP

Seg. 89.73% 90.58% 72.82% 0.800 0.050 0.165

DeepFill 94.91% 90.24% 92.64% 0.838 0.052 0.229

Our R+C 97.88% 93.19% 99.28% 0.279 0.040 0.137

Satellite

Seg. 84.83% 77.16% 65.89% 0.868 0.067 0.315

DeepFill 87.80% 75.54% 84.10% 0.945 0.070 0.328

Our R+C 93.20% 83.16% 94.69% 0.240 0.054 0.191

Street

View

Seg. 87.50% 89.72% 67.93% 0.587 0.077 0.245

DeepFill 92.63% 90.07% 85.83% 0.655 0.073 0.276

Our R+C 98.68% 98.15% 97.55% 0.202 0.063 0.118

(a) (b) (c) (d)

Fig. 8: Regularization and Completion Qualitative 

Comparison. (a) Façade images are from ECP, Satellite, 

Street-view respectively. (b) Ground Truth. (c) Segmentation. 

(d) Segmentation completed by DeepFill. (e) Our 

Regularization and Completion.

Tab. 5: Regularization and Completion Quantitive Comparison. 

(g)(e) (f)

Figure 7.24. Regularization and Completion Qualitative Comparison. (a)
Occluded facade images from ECP, WVS and GSV respectively. (b) Ground
Truth. (c) Initial Segmentation. (d) Segmentation completed by DeepFill. (e)
IPM results. (f) Our Regularization. (g) Our Regularization and Completion.
Note: We manually mask ECP facade images shown in red box.

Table 7.17. RFCNet Quantitative Comparison. We compare the initial fa-
cade segmentation, the segmentation completed by DeepFill, IPM methods,
and the outputs after applying our Regularization (R) and our R & C to the
segmentation for the first view in WVS and GSV. Further, we evaluate the
output after fusing additional views by applying our whole RFCNet.

Dataset Method Facade Correctness Facade Regulariz. Error
Acc. Pre. Rec. Ea Es Ep

WVS

Pix2Pix 85.9% 86.1% 65.8% 0.51 0.09 0.27
Pix2Pix → DeepFill 90.6% 85.1% 85.2% 0.67 0.13 0.43

Zhang et al. 89.4% 80.7% 86.2% — — —
R 90.1% 94.7% 72.8% 0.19 0.06 0.14

R & C 93.5% 85.5% 95.1% 0.20 0.10 0.15
RFC 95.0% 88.7% 96.0% 0.20 0.09 0.15

GSV

U-Net 83.6% 80.0% 53.8% 0.71 0.07 0.15
U-Net → DeepFill 87.2% 79.2% 71.1% 0.89 0.11 0.19

Nishida et al. 66.9% 50.3% 50.7% — — —
R 89.7% 94.0% 67.6% 0.20 0.06 0.11

R & C 91.6% 82.2% 88.1% 0.28 0.06 0.14
RFC 95.3% 86.4% 95.2% 0.15 0.06 0.09
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RFCnet vs Seg/Inpainting/RC

Fig. 9: RFCNet Qualitative Comparison. (a) First view of façade images 

from Satellite and Street-view. (b) Additional view. (c) Ground Truth. (d) 

Segmentation. (e) Segmentation completed by DeepFill. (f) Our 

Regularization and Completion. (g) Our RFCNet.

(a) (b) (c) (d) (e) (f) (h)(g) (i)

Figure 7.25. RFCNet Qualitative Comparison. (a) First view of facade im-
ages from WVS and GSV. (b) Additional views. (c) Ground Truth. (d) Seg-
mentation of the first view. (e) Segmentation completed by DeepFill. (f) IPM
results. (g) Our Regularization. (h) Our R & C. (i) Our entire RFCNet.

7.4.2 Building Contour Completion

Iterative Completion. In order to demonstrate the progression of completion, Fig-

ure  7.27 expands upon one of the footprints shown in Figure  7.26 (e.g., the middle footprint

at layer 5). We show the footprint’s completion behavior in incompleteness layer 1, 3, 5, and

7. As can be seen, as the incompleteness layer increases so does the number of iterations,

requiring up to 3 iterations for convergence. The figure also shows, for comparison, the

result of iterative naive image completion of the same footprint (e.g., call image completion

recursively several times). Our approach produces the most complete footprints especially

in the upper layers.

Archaeological Site. In Figure  7.28 we use our approach to complete several real-world

sites. We show the aerial images, initial edges, our completion result, and the ground truth

completion published by expert archaeologists.

Comparisons. Furthermore, we choose examples from Figure  7.26 and compare our

method (GPBC) to four recent methods Pix2Pix [ 40 ], GLCIC [  166 ], PIC [  134 ], and Sketch-

BERT [ 152 ] (we retrain all four models using our dataset for fairness). The implementation
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Figure 7.26. Qualitative Analysis. We show the visual results of our approach
for different levels of initial incompleteness and for different building types.

of SketchBERT provided by the authors does not allow us to explicitly provide the incom-

plete input, but we can make the level of incompletion consistent with ours. As shown in

Figure  7.29 , our method consistently achieves better performance both qualitatively and

quantitatively. Specifically, our results are more complete and clean than others (especially

in L5 and L7). We improve the L2 pixel-wise errors significantly. The shown Layer 5 out-

put from our method is improved by 4.8x (i.e., 4.8 times lower error), 1.8x, 2.8x, and 3.8x

respectively as compared to Pix2Pix, GLCIC, PIC, and SketchBERT. Further, our layer 7

output is better by 2.1x, 1.7x, 2.2x, and 2.5x as compared to the same set of methods. For
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Figure 7.27. Iterative Completion. Step-by-step results of our proposed
model and naive image completion on a split-room building.

instance, SketchBERT performs reasonably with single room cases, but is much worse for

split or T-room cases.

Design Analysis. Our approach is the result of a variety of early experiments which

ultimately led to the proposed design.

• We explored the single feature vs multiple feature methods (see Figure  7.30 ). Repetitive

applications of single feature based completion tended to propagate errors to the final

answer and thus multiple features seems to work best.
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Figure 7.28. Real-world Sites.
We use our method to complete
images from actual archaeologi-
cal sites on Bogsak Island.

Figure 7.29. Comparisons.
Our model GPBC outperforms
previous state-of-the-art meth-
ods both visually and numeri-
cally.

• We experimented training with different levels of completion (see Figure  7.31 ). Having

a 25% completion provided little new content and having 100% completion lead to

improper contours, thus leaving 50% as a good compromise.

• We also investigated training with different amounts of positional perturbations of

the features (e.g., during training, perturb the feature locations but keep the same

output). Generally, we found training with such perturbations benefited lower-levels

of incompleteness but had little, or worse, effect on high-levels of incompleteness, so

we did not train with perturbations.

• For the dot-style features, we tested several dot sizes and Gaussian falloff rates, but

the performance of these options was similar.
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(a) (b) (c)

Figure 7.30. Single vs. Mul-
tiple Features. We show (a)
incomplete footprints, (b) com-
pletion results by SF method,
(c) completion results by MF
method.

(a) (b) (c) (d)

Figure 7.31. Different Com-
pletion Levels. We show (a) in-
complete footprints, (b-d) com-
pletion results generated by the
completion model trained under
25%, 50% and 100% completion
levels, respectively.
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8. CONCLUSIONS AND FUTURE WORK

8.1 Summary

We have shown our framework can be applied to automatically and procedurally recon-

struct both different scales of urban structures and work for multiple resolutions of satellite

images. Our work is exploring and exploiting the regularities of urban structures to conquer

the difficulties of data noise, data sparsity and data uncertainty of satellite images. Our

outputs are regularized, crisp, complete and parameterized models. Our procedural outputs

for the urban environments have been used in many applications: improving flooding [  167 ],

helping archaeologist to quickly recover the structures of sites  6.2 , providing researchers in

urban planning and environmental science to quickly conduct experiments [ 168 ]–[ 171 ], etc.

8.2 Limitations

Although we support a very wide range of styles for urban structures, there are always

exceptions. However, our approach has some limitations. First, our modeling process did not

support non-rectangular shapes. Second, for urban structures whose styles are outside our

defined grammars, we could give our best guess (see Figure  8.1 and Figure  8.2 ). Third, We

do not support non-rectified satellite images (see Figure  8.2 iii)). In theory, our framework

can handle these failure scenarios by adding more urban structure types to our synthetic

training datasets. This is discussed in future work.

8.3 Future work

Our work has several avenues of future work discussed as short-term goals and long-term

goals.

Short-Term Future Research

We would like to support more types/shapes of urban structures (e.g., non-right-angle

buildings, not orthorectified satellite image, mansard roof type, circular or oval windows,

etc.). In theory, our framework can handle these scenarios by adding more urban structure
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(a) (b) (c)

Fig.: Failure cases. (a) Façade images. (b) Ground 

Truth. (c) Our Regularization.

(a) (b)

Figure 8.1. Failure Examples.
(a) Facade images. (b) Initial
segmentation. (c) Our results.

Figure 8.2. Failure Examples.
(a) Real images. (b) Ground
truth footprints. (c) Initial foot-
print segmentations. (d) Ours
results.

types to our synthetic training datasets. Additionally, We can explore more comprehensive

representations (patterns) for those aforementioned non-regular shapes. Further, we can also

output additional confidence values (e.g., how confident or possible our generated models

are correct) to our reconstructed urban models.

We would like to capture finer details (e.g., dormers, chimneys, etc.) of urban areas. For

now, our framework output city models, building models, and facade models. However, more

details can be reconstructed. For this purpose, we can take advantages of deep learning or

even 3D information (e.g., DSM, DTM, LiDAR, etc.) to detect and extract more features.

We would like to extend the evaluations of our framework. Currently, our framework is

mostly compared to state-of-the-art theoretical papers. Since our framework has been or

(can be easily) extended to real life applications, we should consider the evaluations in those

applications and show how efficient our approaches are and how much effort we could save

for other researchers.

Long-Term Future Research

As stated by Warren Weaver in his 1948 historical address, the problems modern science

faces going forward are those of large organized complexity – the problems of interest in
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cities, humans, and the environment are not random but rather the consequence of a very

complex set of interactions. Understanding and improving these problems is the objective

of modern science. Towards that, I will pursue expanding our framework to consider the

dimensions of efficiency, large-scale, and data heterogeneity.

Efficient AI: Recent advances in Artificial Intelligence (AI), particularly in deep learn-

ing, have provided significant improvements in the ability to understand visual content.

However, mainstream computer vision/graphics research has given little consideration to

speed or computation time, data acquisition, and even less to constraints such as computa-

tion power, GPU memory and model size. Nevertheless, addressing all of these metrics is

critical if advances in computer vision are going to be widely applied to embedded systems

(e.g., mobile, AR/VR devices, autonomous driving). Specific topics include: learning from

limited data (zero-shot, one-shot, few-shot learning), learning from imperfect data, learning

from synthetic data, self-supervised (or unsupervised) deep learning, efficient architecture

search algorithm, representation learning, neural network compression (sparsification, bina-

rization, pruning), etc.

Large-Scale AI: Research in this area for me is motivated by incorporating and en-

hancing AI techniques in the realm of climate change (environmental science) to push the

academic and scientific frontier, and is also driven by the urgent need for a fast-reacting and

holistic system to simulate and predict climate change on a large-scale. Although a consid-

erable number of isolated Climate System features have been analyzed with AI techniques

(e.g., local climatic impacts prediction), more generic application to understand better the

full climate system has not occurred. This demands innovation and collaboration among

the computer vision, AI disciplines (e.g., machine learning, deep learning), and the remote

sensing community to boost automated interpretation of Earth Observation (EO) big data.

It implies the need for applications in the following research topics: multiple inference tasks,

data fusion (multi-resolution, multi-temporal, and multi-modality fusion), large-scale surveil-

lance, 3D urban modelling and reconstruction, navigation systems, natural hazard forecast

and response, climate change monitoring, etc.

AI Cities: Cities contain heterogeneous sets of data that can be integrated with AI

techniques as a strategic approach to sustainability. The post-pandemic era has brought a
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new global trend of “greenhouse gas pollution reduction” and this concept adds new dimen-

sions to urbanization which requires quickly upgrading existing cities. Transportation as

one of the largest segments in the city can benefit from actionable insights derived from the

mission. Among traffic, signaling systems, transportation systems, infrastructure, and tran-

sit, the opportunity for insights from these sensors to make transportation systems smarter

is immense. Unfortunately, there are several reasons why these potential benefits have not

yet materialized. Poor data quality, broad data heterogeneity, lacking of data labels, and

missing high-quality models that can convert the data into actionable insights are some of

the biggest impediments to unlocking the value of the data. AI cities intend to bridge the

gap between real world city-scale problems and the cutting edge research and development

in intelligent techniques. The AI cities will specifically focus on a broad diverse set of prob-

lems such as anomaly detection (detecting anomalies such as lane violation, wrong-direction

driving, etc.), traffic congestion (smart parking systems, city road layout modeling), urban

flooding and efficient urban mobility & public transport.
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A. 3D CITY MODELS

(a) Chicago - Synthetic (b) Chicago - Aerial

(c) New Orleans - Synthetic (d) New Orleans - Aerial

(e) San Francisco - Synthetic (f) San Francisco - Aerial

Figure A.1. Example Models. We show several 3D urban procedural models
and similar views using Google Earth output. We used a global color remap-
ping tool to make the color schemes similar.
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(a) Dublin - Synthetic (b) Dublin - Aerial

(c) Toulouse - Synthetic (d) Toulouse - Aerial

(e) Hong Kong - Synthetic (f) Hong Kong - Aerial

Figure A.2. Additional Example Models. Similar to previous figure, We show
several 3D urban procedural models and similar views using Google Earth
output.
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B. 3D BUILDING MODELS

Figure B.1. Examples. We show close-ups of our buildings using projective
texture mapping.
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C. ROOF MODELS

Figure C.1. More examples. (a) Input urban areas from SpaceNet, CrowdAI
and Urban3D respectively. (b) The inital segmentation of (a). (c) Our decom-
posed roof parts and predicted ridges. (d) Our procedural outputs on top of
real image (a).
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D. FACADE MODELSResults

Figure D.1. Examples. We show a view of a reconstructed area A2 within
Google Earth and close-ups of our buildings.
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