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ABSTRACT

Empowering machines to understand our physical world should go beyond models with only

natural language and models with only vision. Vision and language is a growing field of study

that attempts to bridge the gap between natural language processing and computer vision

communities by enabling models to learn visually grounded language. However, as an increasing

number of pre-trained visual linguistic models focus on the alignment between visual regions and

natural language, it is difficult to claim that these models capture certain properties of objects in

their latent space, such as size. Inspired by recent trends in prompt learning, this study will design

a prompt learning framework for two visual linguistic models, ViLBERT and ViLT, and use

different manually crafted prompt templates to evaluate the consistency of performance of these

models in comparing the size of objects. The results of this study showed that ViLT is more

consistent in prediction accuracy for the given task with six pairs of objects under four prompt

designs. However, the overall prediction accuracy is lower than the expectation on this object size

comparison task; even the better model in this study, ViLT, has only 16 out of 24 cases better than

the proposed random chance baseline. As this study is a preliminary study to explore the potential

of pre-trained visual linguistic models on object size comparison, there are many directions for

future work, such as investigating more models, choosing more object pairs, and trying different

methods for feature engineering and prompt engineering.
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CHAPTER 1. INTRODUCTION

People can easily describe things around us in words. When we see an image, we can

immediately identify the objects in that image, extract the properties of each object, summarize

the relationships between objects, and more importantly, we can use our knowledge of the world

to organize sentences that describe that image. With recent advances in object classification and

detection, machines improved their ability to answer questions such as “what is this object” and

“where is this object”, however, they still do not perform well in answering “why” questions.

Imagine a picture of a person on the street. How can we identify whether the person is

standing, walking, or running? We can observe that since the person is not swinging his or her

arms or moving his or her legs, he or she is likely to be standing on the street. Humans are able to

do this because we have learned this knowledge and created our knowledge base from our

perceptions. Bisk et al. (2020) argued that current research on language comprehension has failed

to link language and the physical world, so they suggested that language understanding involves

perception from other modalities, such as auditory, tactile, and visual. Since language is an

abstract system of word meanings (Saussure, Baskin, Meisel, and Saussy, 2011), and symbols and

images contain concrete information about the physical world, while images contain concrete

information about the physical world, if a visual modality is added to language, can artificial

intelligence (AI) models distill and adapt concepts from images to improve tasks related to

natural language? Visual and linguistic tasks that require the use of Natural Language Processing

(NLP) and Computer Vision (CV) techniques, such as image illustration and visual question

answering, can be a good playground for answering this question.

Image captioning is one of the tasks in the joint field of visual linguistics that focuses on

enabling machines to generate a short description for a given image. The goal of image captioning

is to generate a sentence that is linguistically plausible and semantically consistent with the

content of that image. In recent years, many attempts have been made to solve this task using deep

learning approaches, such as encoder-decoder-based models (Vinyals, Toshev, Bengio, and Erhan,

2015; Ren, He, Girshick, and Sun, 2015), attention-based models (Xu et al., 2015; Anderson et

al., 2018; Huang, Wang, Chen, and Wei, 2019), and, more recently, transformer-based (Li, Zhu,

Liu, and Yang, 2019; He et al., 2021). Although these attempts did show some improvement in

12



the quality of the generated captions, machines cannot yet perform as well as humans due to the

lack of world knowledge (Merrill, Goldberg, Schwartz, and Smith, 2021).

Size is one of the properties of objects that can be easily perceived by humans. Ittelson

(1951) stated that humans can create a solid knowledge base on the physical size of objects in

their lives, and even when they encounter obstacles such as different viewpoints and different

distances, they can still compare the size of objects with each other. In Figure 1.1, there is a

“giant” pigeon standing on a wall which is close to the viewers, while a group of people walking

behind the pigeon looks relatively small - smaller than the pigeon we see as viewers of the image.

As humans, we know that the pigeon cannot be larger than the people because we have naturally

built up a knowledge base about size in our daily lives, but how will the machine perceive this

image?

Figure 1.1. An image of a “ginat” pigeon and “small” persons taken from MSCOCO
X. Chen et al. (2015)

1.1 Significance

Recently, a study conducted by Petroni et al. (2019) suggests that language models such as

BERT can learn concepts from large corpora through the pre-training process, and tested and

verified that pre-trained BERT can be treated as a “knowledge base” for many downstream tasks.
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With the popularity of pre-trained models, there are also many ongoing studies on pre-trained

visual linguistic models. These visual linguistic models can be seen as visually grounded

language models, since they aimed to find alignment between image regions and natural language

by adding the visual modality. With the addition of the visual modality, some concrete world

knowledge may be introduced to the models; however, this requires the NLP and CV

communities to work together to create more efficient methods, algorithms, or architectures for

learning these representations. If it is possible to test and confirm that pre-trained visual linguistic

models can act as knowledge bases, this would be a new route for knowledge representation,

which suggests that machines also need input from different modalities to be able to learn

concrete knowledge or concepts of the world (similar to human perception). Moreover, such

visual linguistic models would be beneficial for other fields, such as robotics, where a robot

should be able to recognize its surroundings and perform the instructions provided by humans.

Generalization, however, can be a critical concern for models that can be applied to different

domains. Thus, this study intends to present a method to evaluate visual linguistic models.

1.2 Scope

In this research study, images with human-annotated English captions and object labels

from the MSCOCO dataset (X. Chen et al., 2015) will be used. To avoid potential bias in our

models, we use zero shot learning for this study, which means that no example is provided to the

pre-trained models to tune their parameters (Liu et al., 2021). For this research study, we will

concentrate specifically on the size information of the objects to limit the scope. In addition, in

this study, only the sizes of six manually selected pairs of objects with noticeable size differences

will be compared using four manually crafted prompts.

1.3 Research Question

This research contributes answers to the following research question:
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• Comparing two visual linguistic models, ViLBERT and ViLT, which visual linguistic model

provides more consistent prediction accuracy when applying different prompt templates for

the object size comparison task?

To better answer the research question, the following three tasks need to be accomplished:

• Design a prompting method for pre-trained visual linguistic models

• Create several prompting templates for object size comparison

• Evaluate the prompting results and find the potential features.

1.4 Assumptions

The assumptions for this study include:

• The selected pre-trained visual linguistic models are assumed to be diverse enough to

generalize over new data or tasks in a zero shot setting.

• The object labels provided by MSCOCO are assumed to be accurate for each image.

• The result for each experiment unit (a combination of pair of objects and prompt designs) is

independent of each other.

1.5 Limitation

The limitation for this study include:

• The use of the MSCOCO dataset.

• The lack of computational resources for more complex experiments.

1.6 Delimitations

The delimitations for this study include:

15



• Models pre-trained on corpora other than English are not studied for this research.

• Only zero shot learning is used as the prompt framework in this research study.

• This research study focuses only on one of the properties of the object, which is size.

• There are many other pre-trained visual linguistic models, but this study only concentrates

on comparing the performance consistency between ViLBERT and ViLT.

• To restrict the number of experiments, this research study only chose six pairs of objects for

size comparison.

• Although there are ways to automatically generate prompt templates and answer spaces,

this research focuses only on manually designed prompt templates and answer spaces.

1.7 Summary

This chapter provided the scope, significance, research question, scope, assumptions,

limitations, and delimitations for the research study. In the next chapter, the background and

related work of this research study will be introduced.
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CHAPTER 2. LITERATURE REVIEW

This chapter provides a review of the literature relevant to tasks that combine vision and

language, especially image captioning, visual linguistic representation, prompt learning,

commonsense reasoning, and size perception.

2.1 Image Captioning

Over the past few years, significant progress has been made in research on the integration

of language and vision. There are already several existing tasks that combine different levels of

language with visual information represented by images or videos. In this section, we will discuss

tasks that combine vision and language, which are the latest trends in image captioning, visual

question answering, and visual language representation.

Image captioning is a task that aims to take an image input and ask a model to generate a

description or caption about that given image. Figure 2.1 presents an example of this image

captioning task. It is a trending research area in artificial intelligence (AI) that unites the fields of

computer vision and natural language processing, and it entails image understanding and

linguistic description of images. For image understanding, it requires the detection and

recognition of objects. Additionally, it requires understanding of the types or locations of the

scene, the attributes of the objects, and their relationships. On the other hand, generating

well-structured sentences requires an understanding of the syntax and semantics of the language.

With the popularity of deep learning, a large number of deep learning-based methods for image

captioning have been developed in recent years.

Figure 2.1. Example of image captioning task, the image is taken from MSCOCO
(X. Chen et al., 2015)

17



2.1.1 Encoder-Decoder Architecture-Based Architectures

Machine translation is a task in NLP that aims to translate messages from the original

language into the target language. Since a sentence can be viewed as a sequence of words

inputted into a deep learning model, machine translation is often considered as a sequence

(original language) to sequence (target language) problem. Sutskever, Vinyals, and Le (2014)

proposes a novel RNN encoder-decoder architecture, where the RNN encoder encodes the text of

the original language into a continuous space representation of the latent space, and then the RNN

decoder decodes the learned representation into the target language. Inspired by the successes of

sequence-to-sequence generation in the field of machine translation, Vinyals et al. (2015)

presented a end-to-end deep learning model, Neural Image Caption Generator (NIC), in 2015 to

apply an encoder-decoder architecture to the task of image captioning. The method was trained

based on maximum likelihood estimation and used a CNN as an encoder to extract image features

from that and an LSTM (Hochreiter and Schmidhuber, 1997) as a decoder to generate captions

for images. Their CNN used batch normalization, which yielded state-of-the-art performance in

object recognition and detection at the time. The LSTM took the last hidden layer of the CNN as

input and generated captions based on the features that had been “seen” by the CNN. From the

results, NIC achieved state-of-the-art performance, but was obviously worse than ground truth.

One of the main drawbacks of this method resides in the interpretability - NIC is capable to

generate these captions based on image features, but it is difficult to explain why NIC extracted

these features.

2.1.2 Attention Based Architectures

After Bahdanau, Cho, and Bengio (2015) proposed a novel architecture known as the

alignment or attention mechanism for neural machine translation, many researchers have tried to

incorporate the attention mechanism into image captioning models. They argued that this could

be beneficial because humans tend to focus on specific regions of an image and then form a good

description of the relationships of objects in those regions. In 2015, Xu et al. (2015) proposed an

attention-based image captioning model. Their approach used Oxford VGGnet (Simonyan and
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Zisserman, 2015) pre-trained on ImageNet (Deng et al., 2009) without fine-tuning as encoder and

LSTM as decoder. In addition to the conventional encoder-decoder architecture, they

implemented a “soft” deterministic attention mechanism and a “hard” stochastic attention

mechanism. With the help of these attention mechanisms, their method reached state-of-the-art

performance on three benchmark datasets. Another major contribution of their work is their

visualization of regions of attention, which brings more interpretability to the model generation

process.

Inspired by the way attention works in the human visual system, Anderson et al. (2018)

defined the “top-down” attention as attention mechanisms driven by non-visual or task-specific

context, such as captions, whereas “bottom-up” attention as purely visual feed-forward attention.

They combined a bottom-up attention model based on Faster R-CNN (Ren et al., 2015) and a

captioning model with a top-down attention LSTM layer followed by another language LSTM

layer. In their approach, a bottom-up mechanism proposes regions of interest with corresponding

feature vectors, and a top-down mechanism aligns the weights of each feature. By leveraging

such architecture, their combined bottom-up and top-down visual attention model achieves

state-of-the-art results in both image captioning and visual question answering in 2018.

2.1.3 Transformer Based Architectures

Since the advent of the transformer, a deep learning architecture based entirely on

attention mechanisms, proposed by Vaswani et al. (2017), there has been increasing interest and

research in this new architecture, as it has achieved many state-of-the-art results in a number of

NLP tasks. A core concept behind the transformer architecture is self-attention. The self-attention

mechanism enables transformer models to align the unlabeled data in the input with each other,

thus making it easier for transformer models to learn long-range dependencies. Other benefits of

self-attention include lower computational complexity per layer compared to recurrent and

convolution, and greater model interpretability (Vaswani et al., 2017). In addition, as the

transformer architecture does not use recurrence or convolution, which naturally contain

information related to the order of the sequence, the authors proposed a novel approach by adding

“positional encoding”, which is generated by a set of sine and cosine functions with different
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frequencies, to the input embeddings. Bidirectional Encoder Representations from Transformers

or BERT (Devlin, Chang, Lee, and Toutanova, 2019) is an application of the transformer

architecture in the field of NLP. BERT is pre-trained on two tasks, namely Masked Language

Model (MLM) and Next Sentence Prediction (NSP), to learn deep language representation from

unlabeled text from both directions (left to right and right to left). Upon the release of BERT, it

archived new state-of-the-art results in 11 NLP tasks, including the GLUE benchmark (MNLI,

QQP, QNLI, SST-2, CoLA, STS-B, MRPC, and RTE) (A. Wang et al., 2018), SQuAD v1.1

(Rajpurkar, Zhang, Lopyrev, and Liang, 2016), SQuAD v2.0 (Rajpurkar, Jia, and Liang, 2018),

and SWAG (Zellers, Bisk, Schwartz, and Choi, 2018), and hence started a new trend of

transformers and BERT-like models in the NLP community.

Since the transformer was originally designed for language-related tasks, many

researchers in fields other than NLP made some effort to mimic the transformer architecture and

apply it to another field of study, such as Computer Vision. Similarly, researchers who work with

image captioning were also interested in such a new architecture. One problem in image

captioning is how to identify the equivalent abstract words for a specific visual signal; this

problem is also known as the semantic gap between vision and language. Inspired by the

transformer architecture, Li et al. (2019) introduced a new type of attention, namely EnTangled

Attention (ETA), which enables the Transformer to unitize semantic and visual information

simultaneously. To better control forward propagation and backpropagation in this multimodal

framework to avoid gradient explosion and vanishing, they also proposed a novel gating

mechanism called Gated Bilateral Controller (GBC). By introducing ETA and GBC to build a

multimodal transformer, their method demonstrated the effectiveness of the task of image

captioning by comparing it with state-of-the-art methods and some strong baselines. Later, He et

al. (2021) argued that many previous attempts to use transformers in image-related tasks did not

modify the inner architecture of the transformer that was originally designed for textual input.

They suggested that the original transformer structure could limit the ability of a model to extract

the full complexity of relations between image regions. Therefore, He et al. (2021) introduced a

new image transformer for image captioning by refining the image encoder. Their refined image

encoder used Faster-RNN to detect resigns in a given image and then pass this information to a

three-stack spatial graph transformer to handle the more complex relations among image regions.

20



As a result of this refinement of the transformer’s inner architecture, their model outperformed the

previous transformer-based model on the imaging captioning task.

2.1.4 Evaluation Metrics

To evaluate the quality of the captioning results, the COCO Image Captioning Challenge

selected five metrics to measure the goodness of generated captions: BLEU (Papineni, Roukos,

Ward, and Zhu, 2001), CIDEr (Vedantam, Zitnick, and Parikh, 2015), METEOR (Denkowski and

Lavie, 2014), ROUGE-L (Lin, 2004), and SPICE (Anderson, Fernando, Johnson, and Gould,

2016).

BLEU score is a popular machine translation metric that analyzes the co-occurrences of

n-grams between the candidate and reference sentences. ROUGE-L is another widely used

machine translation measure that captures sentence-level structure based on the longest common

subsequence, the longest common occurrence in sequence n-grams. METEOR is calculated by

generating an alignment between the words in the candidate and reference sentences, with an aim

of 1:1 correspondence. CIDEr measures consensus in image captions by performing a Term

Frequency Inverse Document Frequency (TF-IDF) weighting for each n-gram. SPICE measures

how effectively image captions recover objects, attributes, and the relations between them, which

is a more reliable metric, but it takes more time to compute.

2.2 Related Vision and Language Tasks

Visual question answering (VQA) has also attracted substantial interest from the research

community, starting with rather limited settings and small datasets. More recently, larger datasets

have been introduced, such as the COCO VQA dataset Antol et al. (2015) which contains more

than 250,000 images, 760,000 questions, and approximately 10 million answers. VQA is forced

to evaluate whether a machine can answer the corresponding question in natural language when

given an image as input, which requires an understanding of vision, language, and common sense

knowledge to answer. Figure 2.2 presents an example of a VQA task. In some ways, VQA can be

a more difficult task than image captioning. As with image captioning, some common approaches
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to this task in the early stages have been to use encoder-decoder architectures, including the use of

CNN and RNN encoders to map input images and questions into a visual linguistic embedding

space, with the output stage of the model taking the form of a classifier over a set of candidate

answers or an RNN decoder.

Figure 2.2. Example of visual question answering task, the image is taken from
MSCOCO (X. Chen et al., 2015)

Visual reasoning, proposed by Suhr et al. (2019), is a task that aims to “study

compositional semantics by grounding words, phrases, and complete sentences on objects, their

properties, and relations in images”. Suhr et al. (2019) noted that existing datasets for vision and

language tasks have restricted expressiveness in terms of language and limited lexical and

semantic diversity. Therefore, they created a new dataset, Natural Language Visual Reasoning for

Real (NLVR2), containing 107,292 captions, each paired with two images. For the format, the

task is like a combination of image captioning and VQA; for each human-written caption, it is

paired with two images, and the model needs to tell whether the captions correctly describe the

two images, and Figure 2.3 demonstrates the setup of this task. To examine whether a model

captures the richness of information in images and text, human-annotated captions are required to

include descriptions of sets, counts, comparisons, and spatial relationships.

2.3 Vision Language Pre-training

Machines have a hard time understanding or decoding natural language in its textual

format; the textual data need to be cast into a machine-understandable representation. Word

embedding is a commonly used method that compresses dense information within
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Figure 2.3. Example of visual reasoning task from NLVR2 dataset (Suhr et al., 2019)

human-readable textual data into a machine-understandable vector format. The idea of

embedding learning in NLP tasks first came from statistical language modeling, where “a

distributed representation” for each word is learned (Bengio, Ducharme, Vincent, and Janvin,

2003). With a large language model, such as BERT, the training process is usually a

time-consuming and computationally expensive task. Therefore, pre-trained models or

pre-trained word embeddings are an essential component for many ongoing NLP practices.

2.3.1 Vision and Language BERT (ViLBERT)

Inspired by a successful story that happened in NLP with a large-scale pre-trained model,

the CV research community was wondering if they could borrow the idea of pre-training and

apply it to CV tasks. As a joint field of NLP and CV, there are also some attempts to generate

vision language pre-training. Lu et al. (2019) proposed a joint model, Vision and Language BERT

(ViLBERT), for learning task-agnostic representations from image and natural language.

ViLBERT is an extension of the original BERT model by processing visual and linguistic features
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in two parallel streams, which is also called dual-stream approach, with newly introduced

co-attentional transformer layers to fuse features from both modalities. The architecture of

ViLBERT is shown in Figure 2.4. They initialized the linguistic processing stream with the

Figure 2.4. ViLBERT Model Architecture (Lu et al., 2019)

BERTBASE model pre-trained on BookCorpus (Zhu et al., 2015) and English Wikipedia; for the

visual processing stream, they used Faster R-CNN (Ren et al., 2015) pre-trained on the Visual

Genome (Krishna et al., 2016) dataset to extract regional features, then trained ViLBERT with

the Conceptual Captions dataset (Sharma, Ding, Goodman, and Soricut, 2018) which contains

around 3.1 million image caption pairs. From the results of their experiment on different visual

linguistic tasks, ViLBERT outperformed the single-stream baseline on all tasks; also, ViLBERT

proved the pretrainability and transferability of visual linguistic representation.

2.3.2 Universal Image Text Representation (UNITER)

Universal Image Text Representation (UNITER) is a large-scale pre-trained visual

linguistic model proposed by Y. Chen et al. (2020). UNITER consists of an image embedder, a

text embedder, and a multilayer transformer, which is shown in Figure 2.5. UNITER is

pre-trained on four different tasks: masked language modeling (MLM) conditioned on the image,

masked region modeling (MRM) conditioned on text, image-text matching (ITM), and

word-region alignment (WRA) over four datasets. Compared to other existing visual linguistic

embedding learning methods, UNITER used a conditional masking approach for MLM and

MRM, which combined the modalities for each task to make it as a single embedding stream.

Furthermore, Y. Chen et al. introduced a new task called word-region alignment (WRA) for the

pre-training process. The aim of WRA is to be a propeller for better cross-modal alignment by
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Figure 2.5. UNITER Model Architecture (Y. Chen et al., 2020)

using optimal transport, which calculates the minimum cost of transporting the contextualized

image embeddings to word embeddings (and vice versa). Compared to ViLBERT, UNITER is

more focused on pre-training tasks and larger training sets.

2.3.3 Vision and Language Transformer (ViLT)

Although ViLBERT and UNITER have achieved several state-of-the-art results in many

visual linguistic tasks, both used regional image feature extractors to extract bounding boxes for

objects in the image to train their image embedder. Due to the complex nature of region features,

ViLBERT and UNITER need more computational power to generate visual embeddings, which

also leads to an increase in inference time. Furthermore, since region features are extracted by

some popular object detection models, such as FRCNN (Ren et al., 2015), the quality of image

embeddings in these models can highly depend on the quality of regional feature extractors,

which can add another layer of uncertainty for inference. To reduce the size of visual linguistic

models and the dependence of image feature extractors, Kim et al. (2021) proposed a novel model

called Vision-and-Lanugage Transformer (ViLT) that does not require convolution or region

surpervision. Inspired by the idea of patch projection embedding introduced by Dosovitskiy et al.

(2021) for Vison Transformer (ViT) on image classification task, Kim et al. use a 32 x 32 patch
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projection as visual embedder and combine it with the word embedding to pass to the transformer

encoder. The detailed architecture of ViLT is demonstrated in Figure 2.6 ViLT was pre-trained on

Figure 2.6. ViLT Model Architecture (Kim et al., 2021)

four datasets: Microsoft COCO (X. Chen et al., 2015), Visual Genome (Krishna et al., 2016),

SBU Captions (Ordonez, Kulkarni, and Berg, 2011) and Google Conceptual Captions (Sharma et

al., 2018), on two tasks, image text matching and masked language modeling. Looking at Table

2.1, as ViLT uses linear patch projection to replace the use of region feature, that significantly

reduced the number of parameters, FLOPs, and time for inference, while their experiments show

that ViLT still preserves comparable accuracy of prediction with such minimal architecture.

Table 2.1. Comparison of visual linguistic models with different visual embedders in
terms of parameter size, FLOPs, and inference latency (Kim et al., 2021)

Visual
Embed Model

#Params
(M)

#FLOPS
(G)

Time
(ms)

Region
ViLBERT 274.3 958.1 ˜900
UNITER 154.7 949.9 ˜900

Linear ViLT 87.4 55.9 ˜15
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2.4 Prompt Learning

Since 2017, “pre-train and fine-tune” is one of the dominant paradigms in the field of NLP.

In this paradigm, a model with a fixed architecture is pre-trained as a language model (LM) with a

large amount of raw textual data to predict the probability of observed textual data. To adapt such

large-scale LMs to different downstream tasks, additional parameters are introduced into the

model, and then these parameters are fine-tuned with task-specific objective functions. However,

starting in 2019, inspired by transfer learning and large-scale pre-trained models such as BERT

and GPT-3, a new paradigm in NLP emerged which is “pre-train, prompt, and predict”. Transfer

learning is a machine learning method that transfers existing “knowledge” learned by a model to a

different but related task. It was first proposed by Bozinovski and Fulgosi (1976), who conducted

initial research on modeling transfer learning for a neural network mathematically. On the other

hand, GPT-3, which was proposed by Brown et al. (2020), is a unidirectional autoregressive

language model with 175 billion parameters, and has achieved competitive performance in many

NLP tasks, such as translation, question answering, common sense reasoning, natural language

inference, etc., without any gradient updates or fine-tuning. One of the intuitions behind GPT-3 is

that humans do not need a large labeled dataset to learn a new task; most of the time, humans are

able to perform a new task with few examples or instructions, which most of the NLP models are

not capable to do that. Furthermore, it is difficult and expensive to collect a large supervised

dataset for each task, and large language models with fine tuning usually resulted in a narrower

training distribution that does not generalize well outside of the distribution (Hendrycks et al.,

2020). GPT-3 researchers evaluated GPT-3 in the following four settings:

• Fine Tuning: Using a task-specific supervised dataset to update the weights of a pre-trained

model.

• Few Shot: Using a few examples (10 to 100) of the task at inference time to demonstrate

the pre-trained model about the task without updating weight.

• One Shot: Similar to few shot learning, but only provides one example to the pre-trained

model to demonstrate the task.
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• Zero Shot: Similar to one shot learning, but does not provide any example to the

pre-trained model, which can be the most challenging setting.

From their experiments, few shot settings achieved the best performance compared to other

settings. Moreover, the more parameters the model contains, the better performance. Petroni et al.

(2019) demonstrated that large-scale language models, such as BERT, contain relational

knowledge that is competitive with traditional NLP methods and that BERT also has a significant

advantage over supervised baselines for question answering in open domains. In addition, certain

types of factual knowledge are learned more practically than others through the pre-training

approach of standard language models. Their study signified the potential for pre-trained

language models to be used as a knowledge base for other downstream tasks, which allows

research on prompt learning of pre-trained language models to explore what these models have

learned during training.

Liu et al. (2021) summarized some key points or design considerations for prompting

methods in their survey paper, which include:

• Pre-train Model Choice: Which pre-trained model should we use for prompting?

• Prompt Engineering: Which is a proper prompt for the selected pre-trained model?

• Answer Engineering: What are the answers to the designed prompt template for a specific

task?

• Expanding the Paradigm: Should we create a new prompting framework to better solve

this task?

• Prompt-based Training Strategies: Should we train parameters for the prompt, the LM,

or both?

The remainder of this section focuses more on prompt engineering and answer engineering to

demonstrate different techniques used for prompt and answer engineering. In addition, some

commonly used terminologies and notations are listed in Table 2.2.
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Table 2.2. Terminology and notation of prompting methods with an example of
sentiment analysis. z∗ represents answers that correspond to the true output y∗ (Liu et

al., 2021)

Name Notation Example Description

Input x I love this movie. One or multiple texts
Output y ++ (very positive) Output label or text

Prompting
Function fprompt(x) [X] Overall, it was a [Z] movie.

A function that converts the input into a
specific form by inserting the input x and
adding a slot [Z] where answer z may
be filled later.

Prompt x′ I love this movie. Overall, it was a [Z] movie.
A text where [X] is instantiated by input
x but answer slot [Z] is not.

Filled Prompt f f ill(x′,z) I love this movie. Overall, it was a bad movie.
A prompt where slot [Z] is filled with
any answer.

Answered
Prompt f f ill(x′,z∗) I love this movie. Overall, it was a good movie.

A prompt where slot [Z] is filled with a
true answer.

Answer z “good”, “fantastic”, “boring” A token, phrase, or sentence that fills [Z]

2.4.1 Prompt Engineering

Prompt engineering or prompt template engineering is a process of creating a prompting

function fprompt(x) that can generate a prompt x′ manually or automatically, hence the prompt can

produce the most effective performance on the downstream task. Based on the position of the

answer slot [Z] in the prompt, there are two main types of prompts: prefix prompt and cloze

prompt.

• Prefix Prompt: This type of prompt is a continuation of a given string prefix; for example,

x′ = “I love this movie. This movie is [Z]”. Intuitively, since the answer slot is at the end of

the string, bidirectional models, such as GPT-3 or tasks related to generation, can be more

conducive to this type of prompt.

• Cloze Prompt: This type of prompt asks the model to fill in the blanks on a given string

input; an example will be like x′ = “I love this movie. This is a [Z] movie”. Generally, the

answer slot should be in the middle of the textual string. Because of that, bidirectional

models, such as BERT, are good at meshing the answer to the answer slot.

Although there is much ongoing research on automated prompt template design, manual template

engineering is still the most natural and intuitive way to create a prompt template. For example,
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the LAMA dataset proposed by Petroni et al. (2019) uses a manually created cloze prompt to

probe factual knowledge in LMs, and GPT-3 uses manually crafted prefix prompts to solve many

different NLP tasks. However, there are drawbacks to this approach. As Liu et al. (2021) pointed

out, creating and experimenting with prompt templates is like an art that requires time and

experience. Furthermore, since the embedding space is a black box for humans, people don’t

know what is in the embedding space, thus even experienced prompt designers may fail to find

the optimal prompts manually.

2.4.2 Answer Engineering

As prompt engineering focuses on designing the input for prompting methods, answer

engineering aims to form an answer space Z and map to the original output Y . Two critical

components of the answer engineering lie in the choice of the answer shape and the design of the

answer space. Based on the number of tokens in one answer, the answer shape could have three

common categories:

• Token: One of the words in the vocabulary of the pre-trained LM. These are usually used in

classification tasks that only need one word to answer.

• Span: A span of few words. These are usually used with cloze prompts.

• Sentence: A sentence or a paragraph. There are commonly used with prefix prompts and

generated related tasks.

The choice of the answer shape is highly dependent on the task that researchers want to perform.

For instance, if the answer of one task needs more than one token to be filled but not necessarily

to be a whole sentence, then a text span should be the right shape for this task. With respect to

answer space design, although there is some automated answer search approach, such as a

discrete answer search and a continuous answer search, which aims to find an answer span that

can optimize the prediction performance, manual answer space design is still considered to be a

good choice due to its intuitive nature. For manual answer space design, there are two strategies:

• Unconstrained Space: In this strategy, the answer space Z is equal to the vocabulary of the

language model or a sequence of tokens.
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• Constrained Space: For many tasks, the answer space is constrained by the setup of the

task. For example, for natural language inference, the answer space for this task should be

(“entailment”, “neutral”, “contradiction”).

2.5 Commonsense Reasoning

In psychology, Smith and Medin (1981) defined a category as a set of objects that people

perceive to have many similar properties and treat equally. However, categories often do not have

clear boundaries due to the fuzzy nature of human minds. Furthermore, if categories are objects

that deal with the real world, then concepts are mental representations of categories that people

form in their minds. For example, different people may have different opinions on whether

tomatoes are fruit or vegetable, but people have their criteria to determine which category

tomatoes should fall into based on the concepts they have in mind. As Smith and Medin (1981)

claimed, “concepts are at the core of intelligent behavior” because with these mental concepts of

object categories, people can process new objects they encounter. In the Computer Vision

community, Krishna et al. (2016) realized that many AI systems perform poorly in tasks such as

image captioning and VQA due to a lack of reasoning about our visual world. Therefore, they

created the Visual Genome dataset to describe the properties of objects with the interactions and

relationships between objects using human annotations. Visual Genome contains more than

100,000 images, each with an average of 21 objects, 18 attributes, and 18 pairwise relationships.

In addition, T. Wang, Huang, Zhang, and Sun (2020) extended the definition of common sense to

emphasize the importance of learning the correlations of objects in images in an unsupervised

manner. From the above definitions and reflections on the term “commonsense” concerning the

field of AI, there is a trend of increasing interest in the capability of models to identify objects and

their properties from large amounts of data.

2.5.1 Size Perception

Size information as one of the properties of an object can be perceived by humans, and

humans have a solid knowledge base on the physical sizes of objects in the real world (Ittelson,
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1951). However, such an easy task can be difficult for most machines to perform. Taylor and

Mazlack (2008) leveraged fuzzy logic to enable the comparison of various types and sizes of

animals in a language-only setting. Taylor and Mazlack created a hierarchy of animals of

different sizes based on the description from a child dictionary, the five adjectives of different

sizes they chose are assigned to five fuzzy sets: VerySmall, Small, MediumSize, Large, and

VeryLarge. Then, a membership function was proposed to compare the size of these animals,

such as small elephants and large mice. However, since the human sensory system not only relays

on one modality and the visual contains more information than abstract textual description,

Bagherinezhad, Hajishirzi, Choi, and Farhadi (2016) introduced a method that used both visual

and textual information from the Web to infer the size of objects. In their paper, they treated size

as a numerical attribute of objects and introduced a size graph to represent the relative size of

objects and their relations. In the size graph, the nodes represent the log-normal distribution of the

sizes of objects and edges represent the frequently co-occurred pairs of objects. The size graph

was trained on the Flickr 100M dataset (Thomee et al., 2016) and textual data that contain the

numerical values of the objects. Compared with two strong vision-only and two language-only

baselines, their automated multimodal approach achieves 83.5% accuracy that outperformed all

baselines. (Bagherinezhad et al., 2016) also believed that exploring attributes such as size from

different modalities can be a foundation for building a common sense knowledge base for the AI

system.

2.6 Summary

This chapter provided a review of the literature relevant to visual linguistic tasks, prompt

learning, and common-sense reasoning, especially using computers for object size comparison.

From the existing literature, there is very little work on prompting pre-trained visual linguistic

models, currently. Furthermore, even though different approaches have been used to extract

“common sense” knowledge from these visual linguistic models, people still do not know how

good these “common sense” knowledge are and how to achieve consistent performance with these

models on different tasks. Lastly, for visual linguistic models, with the additional modality of

vision, size comparisons are easier than those purely based on an abstract language-only
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approach, but little research has been done at this point. The next chapter provides the dataset and

methodology to be used in this research project.
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CHAPTER 3. METHODOLOGY

This chapter describes the dataset, the data preprocessing process, the experiment setup,

and the methodology to evaluate the performance consistency of the two selected visual linguistic

models, ViLBERT and ViLT, when prompted by size information. ViLBERT is one of the pioneer

pre-training models for visual linguistic related tasks, while ViLT is one of the more recent

pre-training models designed to reduce computational complexity by utilizing Vision

Transformer. Both models were chosen in order to compare the old and new models in visual

linguistic related tasks, and because ViLT has fewer parameters, making it easier to implement. A

brief workflow of this study is listed below:

• Create subsets of data from the MSCOCO dataset

• Implememnt pre-trained models

• Create prompt templates

• Extract FRCNN features for images and embeddings for prompts

• Perform the experiments

• Evlauate the inference results

3.1 Dataset

This study uses the MSCOCO 2017 dataset (X. Chen et al., 2015) for evaluation.

MSCOCO contains 118,287 images with 80 different object categories in its training split, and for

each image in this dataset, it has five descriptive captions annotated by crowd-sourcing workers.

Six pairs of objects of distinctly different sizes (Couch & Person, Couch & Cellphone, Person &

Cellphone, Elephant & Person , Person & Bird, Person & Donut) were selected to examine the

prompt performance of the visual linguistic model. The six pairs of objects were chosen because

in each pair there is a significant size difference between the two objects. Moreover, because

“person” is the most frequent label in MSCOCO, the size comparison can be centered on
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“person”, which also allows for a horizontal size comparison (e.g., from “person & cell phone”

and “couch & person” to “couch & cell phone”). Also, the order of the objects in each object pair

constructed in such a way that object A is larger than object B (e.g., in “elephant & person”, an

elephant is larger than a person). In order to make comparisons, both objects in each pair need to

be present in the images. Hence, only a subset of the MSCOCO dataset containing images of each

pair of objects was used for evaluation. The number of images containing both objects for each

object pair is presented in Table 3.1.

Table 3.1. Number of images that contain both objects for each pair of objects

Object Pair Number of Images

Couch & Person 2,236
Couch & Cellphone 284
Person & Cellphone 3,830

Elephant & Person 865
Person & Bird 795

Person & Donut 835

3.2 Methodology

In this study, a prompting framework was designed for two pre-trained visual linguistic

models to compare the sizes of our six object pairs. Because this study intended to check whether

visual linguistic models can be a source of “common-sense knowledge”, the object pairs were

selected in such a way that all have significant size differences, such as a person with a cell phone.

When comparing the size of a person with a cell phone, the (common) cell phone is always

smaller than the person. If the few shot learning setting is used to provide the model with several

examples containing the correct answer, more weight can be added to the correct answer, which

can make the model more prone to choosing the answer from the examples. Therefore, zero shot

learning is used in this study. After getting the prediction results, the results are evaluated and

analyzed to find out which visual linguistic model performs more consistently for each object.
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3.2.1 Pre-trained Model Selections

For this research study, the following two pre-trained visual linguistic models were used,

the details of these two models are described in the literature review section:

• Vision and Language BERT (ViLBERT) (Lu et al., 2019)

– Pre-training Dataset: VQA2 (Goyal, Khot, Summers-Stay, Batra, and Parikh, 2017)

– Image Preprocessor: FRCNN Feature Extractor

– Text Preprocessor: BERT Tokenizer

– Answer Vocabulary Size: 3,129

• Vision and Language Transformer (ViLT) (Kim et al., 2021)

– Pre-training Dataset: VQA2 (Goyal et al., 2017)

– Image Preprocessor: None (Raw Image)

– Text Preprocessor: BERT Tokenizer

– Answer Vocabulary Size: 3,129

MMF (Singh et al., 2020) which is a modular framework for multimodal research, especially

vision and language, developed and maintained by Meta AI Research, and was used in this study

to set up pre-trained ViTBERT and ViLT in preparation for our experiments. MMF integrates

with many useful Python libraries, such as Huggingface, for BERT tokenization, and Detecron2,

for FRCNN feature extraction, and it enables users to create custom datasets or pipelines for their

own tasks.

3.2.2 Prompt & Answer Engineering

For the input of our prompt framework, since this study is intended to test the capability of

the model to align visual and linguistic features and retrieve the correct piece of information from

its embedding space, only one image was used as input for each prompt, thus x = [image]. The

following prompt and answer designs were implemented to test the consistency of the
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performance between ViLBERT and ViLT. Let [X] denotes the input that is an image, and [Z]

denotes the answer, [object A] denotes the name of the first object in the object pair, and [object

B] denotes the name of the second object in the object pair:

1. Prompt Design 1 (p1): [X]. [object A] and [object B], which one is larger? [Z]

Answer Design: [Z] ∈ {object A, object B}

2. Prompt Design 2 (p2): [X]. [object A] and [object B], which one is smaller? [Z]

Answer Design: [Z] ∈ {object A, object B}

3. Prompt Design 3 (p3): [X]. Is the [object A] smaller than [object B]? [Z]

Answer Design: [Z] ∈ {yes, no, maybe}

4. Prompt Design 4 (p4): [X]. Is the [object B] smaller than [object A]? [Z]

Answer Design: [Z] ∈ {yes, no, maybe}

3.2.3 Experiment Design

This experiment contains three factors, the model, the prompt design, and the object pairs.

To check the performance consistency of both models, each model was tested with all four promt

designs for each pair of objects; thus, there were 48 units of experiments to perform. As the

objects in each object pair have distinctly different sizes, it is easy to annotate the ground truth;

for example, a cellphone is smaller than a person. After feeding the image to the prompt

framework and producing the prediction of the answer, the predicted answer should be compared

with the ground truth, and then the result should be recorded for evaluation. The prompt workflow

for a specific prompt design and pair of objects is illustrated in Figure 3.1. In this example, the

input should be an image containing the label of “person” and the “cell phone”, and a prompt.

Depending on the model, the image and prompt will be fed to different image and text processors,

and then the processed image and text should be forwarded to the pre-trained model for inference.

Since both ViLBERT and ViLT are pre-trained on the VQA2 dataset, which has a fixed answer

vocabulary of 3129. So, after obtaining the prediction results, the softmax function was applied to

them to smooth the distribution of the answers and keep only the confidence scores recorded for
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the options in our defined answer space, in this case, “person” and “cell phone”. If the option

“cell phone” has a high confidence level and the ground truth is also “cell phone”, then it

indicates that the model correctly answers the question and the number of correct answers would

increase by one.

Figure 3.1. Example workflow for person and cell phone with the second prompt
design (p2)

3.3 Evaluation

For each combination of different pairs of objects and prompt designs, the accuracy score

was calculated as the percentage of correct answers for each model and the standard deviation of

the accuracy scores within each factor (object pair, prompt design, and model). Since each

prompt design has a fixed answer space, the baseline accuracy of each prompt design can be

calculated as a random chance probability, shown in Table 3.2. Because the answer for each

combination of object pairs and prompt designs only is always the same value, this configuration

can be viewed as a single label classification problem, where the counts of true negative and false
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Table 3.2. Baseline accuracy of each prompt design based on random chance

Prompt Design Accuracy
p1 0.5
p2 0.5
p3 0.33
p4 0.33

negative are zero. Therefore, Equation 3.1 shows that the accuracy score can be equal to the

precision score in this case.

Accuracy =
T P+T N

T P+FP+T N +FN
=

T P+0
T P+FP+0+0

=
T P

T P+FP
= Precision (3.1)

After applying the softmax function to the predicted answers, the smoothed values for the

answers in the answer space were also recorded as the prediction confidence. Comparing the

results of these two models enables further analysis and discussion to answer the research

question of which model is more consistent for this task when using different prompt designs and

pairs of objects, and possibly why this model is better than the other. In addition, a few examples

are selected to investigate on how these two models reacted to these images.
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CHAPTER 4. RESULTS AND DISCUSSIONS

This chapter describes the results of the experiments described in the previous chapter.

The prediction accuracies for the VILBERT model are reported in Table 4.1 and Table 4.2. For a

more intuitive presentation of the results, a heat map of the prediction accuracy was created for

each pair of objects and a prompt design for ViLBERT and ViLT, respectively, in Figure 4.1 and

Figure 4.2. In these heatmaps, the darker the color, the higher the accuracy.

Based on the prediction results of both models, in ViLBERT, there are 12 out of 24 results

above the random chance baseline proposed in Table 3.2. The best results come from “person &

cell phone” with prompt design 1 and “couch & cell phone” with prompt design 3, which have the

accuracy score 1, which means that it correctly answered all questions for these two sets. As the

object pair “person & cell phone” contains 3830 images, which is the largest subset, it is

impressive if the model “understands” the questions to obtain such results, but it is also possible

for the model to simply answer “human” to all the questions without understanding them.

However, the worst result is from the object pair ‘person & cell phone” with prompt design 2.

This prompt asked for “person and cell phone, which is smaller”, and most of the ViLBERT

results said “person”, which is not true. Similarly, for “elephant & person” with prompt design 1,

it asked about “elephant and person, which one is larger”, and ViLBERT continued to respond to

“person”. This result shows that the ViLBERT model was prone to answering “person” for some

pairs of objects that contain “person” as a choice.

Table 4.1. Prediction Accuracies for ViLBERT

p1 p2 p3 p4
couch person 0.1838 0.7822 0.9714 0.1910

person cellphone 1.0000 0.0005 0.6721 0.2914
couch cellphone 0.9049 0.1127 1.0000 0.0493

person donut 0.8814 0.2000 0.7605 0.0395
elephant person 0.0012 0.9977 0.8636 0.3214

person bird 0.5560 0.3308 0.8415 0.0390

For ViLT, it has four more results above the random chance baseline, 16 out of 24,

compared to ViLBERT. Although it does not have a set that has all the answers correctly, the best
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result, which is the object pair “person & donut” with prompt design 2, is approximately 97%

correct. Compared to ViLBERT, ViLT has less extramely low prediction accuracies, and ViLT did

not have a strong preference for certain answers such as “person” or “no”, but ViLT did not

perform well in answering “is the person smaller than the elephant” (object pair “elephant &

person” with prompt design 4).

Table 4.2. Prediction Accuracies for ViLT

p1 p2 p3 p4
couch person 0.8484 0.4763 0.7357 0.1234

person cellphone 0.8050 0.5995 0.6567 0.7679
couch cellphone 0.9261 0.4859 0.5282 0.8803

person donut 0.4743 0.9725 0.8539 0.1808
elephant person 0.9168 0.3457 0.5884 0.0913

person bird 0.5711 0.6113 0.8780 0.2528

Looking at Figure 4.1, it is obvious that the performance of p4 is much lower than other

prompt designs for ViLBERT. For prompt design 1 and 2, the ViLBERT results show an

interesting pattern, which ViLBERT model was more likely to answer “person” as prediction

results. In addition, ViLBERT appears to answer “no” more frequently for yes or no questions.

These observations suggest that ViLBERT might not “understand” the questions with keywords

such as “smaller” and “larger”. As a result, certain answers, such as “person” and “no”, were

always given higher weights than others.

On the contrary, ViLT appears to have a more consistent performance in prediction

accuracy by looking at Figure 4.2, although the performance of prompt design 4 is also lower than

other prompt designs. However, “couch & cell phone” and “person & cell phone” had decent

prediction accuracies with prompt design 4. So, ViLT may also have a tendency to answer “no”

for yes or no questions. Compared to ViLBERT results, ViLT did not have a strong preference to

answer “person” for prompt design 1 and 2, which is a good sign. Looking at the results for

prompt design 2, except “person & donut”, most of the prediction accuracies were close to the

random choice baseline (0.5). Therefore, the performance for ViLT with prompt design 2 was not

that ideal compared with prompt design 1, which has four object pairs that got prediction

accuracy above 0.8.
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Figure 4.1. Heatmap of prediction accuracy for each object pair and prompt design
with ViLBERT

To answer the question of this research as to which visual linguistic model gives more

consistent results when applying different prompt templates for object size comparison tasks, the

consistency of prediction accuracy needs to be compared between these two models. When

comparing Figure 4.1 and Figure 4.2, it appears that the prediction accuracy of ViLT is more

consistent; however, quantitative data are needed to validate this observation. Table 4.3 displays

some basic statistics, mean and standard deviation, for each prompt design, each pair of objects,

and the overall accuracy of model prediction. From this table, the average prediction accuracy of

ViLT (0.61) is higher than that of ViLBERT (0.50), and the standard deviation of the prediction

accuracy of ViLT (0.27) is lower than that of ViLBERT (0.38), which indicates that there is less

variation within the prediction results for ViLT. Furthermore, in terms of the standard deviation of

each prompt design and pair of objects, ViLT has a lower standard deviation, except for prompt

design 3 (p3) and prompt design 4 (p4). Therefore, this should justify that ViLT has a more

consistent prediction accuracy when applying different prompt templates for the object size

comparison task in this experimental setup.

42



Table 4.3. Statistics for each prompt design, each pair of objects, and overall
prediction accuracy.

Factor Level
ViLBERT ViLT

Mean STD Mean STD

Prompt Design

p1 0.5879 0.4160 0.7569 0.1894
p2 0.4040 0.3975 0.5819 0.2144
p3 0.8515 0.1242 0.7068 0.1416
p4 0.1553 0.1308 0.3828 0.3480

Object Pair

couch person 0.5321 0.4055 0.5460 0.3219
person cellphone 0.4910 0.4368 0.7072 0.0956
couch cellphone 0.5167 0.5053 0.7051 0.2301

person donut 0.4704 0.4131 0.6204 0.3620
elephant person 0.5460 0.4663 0.4855 0.3519

person bird 0.4418 0.3403 0.5783 0.2562
Overall 0.4997 0.3830 0.6071 0.2650
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Figure 4.2. Heatmap of prediction accuracy for each object pair and prompt design
with ViLT

4.1 Discussion

Overall, both models performed below expectations. From the results of ViLBERT and

ViLT, it looks like these two models do not understand “larger” and “smaller”, because if they did,

correctly answering prompt design 1 would imply correctly answering prompt design 2.

However, from the previous analysis it indicates that the ViLT model has a more consistent

prediction accuracy based on mean and standard deviation. The two models have different

preferences when dealing with different combinations of prompt designs and pairs of objects;

further analysis will be conducted in this section to explore why such results were obtained.

4.1.1 Stability of Prediction Results

Since these two models were tested with the zero shot learning setting, the parameters of

these models were neither updated nor tuned, so these models should produce the same prediction
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Table 4.4. Stability of Prediction Results

ViLBERT ViLT
acc avg(confidence) sd(confidence) acc avg(confidence) sd(confidence)

1 1.0000 0.9048 0.1029 0.5282 0.7499 0.1390
2 1.0000 0.9048 0.1029 0.5282 0.7499 0.1390
3 1.0000 0.9048 0.1029 0.5282 0.7499 0.1390
4 1.0000 0.9048 0.1029 0.5282 0.7499 0.1390
5 1.0000 0.9048 0.1029 0.5282 0.7499 0.1390
6 1.0000 0.9048 0.1029 0.5282 0.7499 0.1390
7 1.0000 0.9048 0.1029 0.5282 0.7499 0.1390
8 1.0000 0.9048 0.1029 0.5282 0.7499 0.1390
9 1.0000 0.9048 0.1029 0.5282 0.7499 0.1390

10 1.0000 0.9048 0.1029 0.5282 0.7499 0.1390

results as long as we input the same images and prompts. To verify the stability of the prediction

results, we performed 10 inferences on ViLBERT and ViLT for “couch” and “phone” with prompt

design 3, respectively. From the results shown in Table 4.4, the accuracy, mean confidence, and

standard deviation of confidence of each model are the same in these 10 runs.

4.1.2 Analysis of Prompt Designs

During the inference, the confidences of prediction of each choice in the answer space

were also recorded, and Figure 4.3 and Figure 4.4 show the average confidence of prediction for

ViLBERT and ViLT respectively. Overall, it is clear to see that prompt design 1 and prompt

design 2 have very low prediction confidence compared to prompt design 3 and 4 in both

ViLBERT and ViLT, which implies that the names of objects in each answer space did not have a

high ranking in each prediction for these two prompt designs.

Although the average prediction confidence of ViLT shows the same pattern as that of

ViLBERT, the average prediction confidence of prompt design 3 and prompt design 4 of ViLT is

darker in the heatmap than that of ViLBERT, indicating that ViLT has more stable confidence

scores for the predictions of prompt designs 3 and 4. Another interesting observation is that,

although “maybe” was one of the choices in the answer space of prompt design 3 and 4, none of
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Figure 4.3. Heatmap of average confidence of prediction for each object pair and
prompt design with ViLBERT

the models chose “maybe”, the responses for prompt design 3 and 4 were limited to“yes” and

“no”, making “maybe” a choice that was never used.

Since both ViLBERT and ViLT are good at answering yes or no questions, prompt designs

3 and 4 only ask whether an object is smaller than another object. Therefore, two additional

prompt designs were proposed to verify whether the model is still good at answering yes or no

questions when asking whether an object is larger than another object. The following are the

designs of these two new prompts:

• Prompt Design 5 (p5): [X]. Is [object A] larger than [object B]? [Z]

Answer Design: [Z] ∈ {yes, no, maybe}

• Prompt Design 6 (p6): [X]. Is [object B] larger than [object A]? [Z]

Answer Design: [Z] ∈ {yes, no, maybe}

The two newly proposed prompt designs were tested on an object pair that contains the

least number of images, “couch & phone”. As can be seen in Table 4.5, the average prediction
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Figure 4.4. Heatmap of average confidence of prediction for each object pair and
prompt design with ViLT

confidences of prompt 5 and 6 were reasonable for both ViLBERT and ViLT, they were not that

low compared to prompt design 1 and 2. Surprisingly, for ViLBERT results, this model readily

answers “no” with high confidence scores, but ViLT does not have the same pattern. There could

be a number of reasons why the ViLBERT model tends to answer “no”, one of which could be the

way it was pre-trained, and another could be related to the dataset it used during the pre-training

process.

4.1.3 Analysis of Object Pairs

Based on the previous discussion, ViLBERT has difficulty distinguishing the size of

“person & couch” and “person & elephant” while ViLT has struggled to compare the size of

“person & donut”. Since the pre-training dataset VQA2 for ViLBERT and ViLT uses images from

MSCOCO, this section investigates the co-occurrence of object labels to check whether the

co-occurrence of object labels in MSCOCO potentially affects the prediction results. Point-wise
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Table 4.5. Accuracy and Average Confidence of Prediction for Couch and Cell Phone
with Two Additional Prompts

ViLBERT ViLT
Prompt Design Ground Truth Accuracy Confidence Accuracy Confidence

p1 couch 0.9049 0.0000 0.9261 0.0175
p2 cell phone 0.1126 0.0000 0.4859 0.0032
p3 no 1.0000 0.9048 0.5282 0.7499
p4 yes 0.0493 0.5950 0.8803 0.8223
p5 yes 0.0035 0.5312 0.2465 0.7249
p6 no 0.9542 0.8265 0.5739 0.7620
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Table 4.6. Co-occurrence Analysis for Each Pair of Objects

Object Pair # of images pmi npmi
person cellphone 3830 0.5570 0.1125
person couch 2236 -0.1005 -0.0176
cellphone couch 284 0.6611 0.0760
person donut 835 0.0165 0.0023
elephant person 865 -0.4253 -0.0599
person bird 795 -1.1421 -0.1582

Mutual Information (PMI) score is commonly used in information theory to assess the

co-occurrence of labels. In Equation (4.1), the marginal probabilities p(x) and p(y) and the joint

probability p(x,y) are calculated as the proportions of the occurrence of labels x and y in a total of

N images, where nx, ny, and nxy denote the count of labels x, y, and x∩ y. For consistency and

better value comparison, the PMI score is further normalized with self-information h(x,y) that

limits the range of the PMI score to [−1,1]. In Equation 4.2, the self-information h(x,y) for

normalized Point-wise Mutual Information (NPMI) is estimated by −logp(x,y).

pmi(x;y) = log
p(x,y)

p(x)p(y)
= log

nxy

nxny
N (4.1)

npmi(x;y) =
pmi(x,y)
h(x,y)

=
pmi(x,y)

−logp(x,y)
(4.2)

From the table 4.6, we can see that all NPMI scores are close to zero. In general, when

NPMI equals 1, it indicates full co-occurrence; when NPMI equals -1, it indicates non

co-occurrence; and when NPMI equals 0, it indicates random co-occurrence, in other words,

independence. Since the NPMI scores between the labels in all six object pairs are close to 0, it is

difficult to claim that there is complete (close to 1) or no co-occurrence (close to -1) between the

labels, although the NPMI of “person & cell phone” is slightly biased towards 1, while the NPMI

of “person & bird” tends to -1. Thus, even though the two models behave differently on different

object pairs, this observation is not related to object label co-occurrence since the NPMI scores

suggest random co-occurrence.
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4.1.4 Error Analysis

The above discussion is intended mainly as a statistical summary of the results of this

study. To gain an intuitive understanding of the performance of these two models in the inference

phase, six images were selected for detailed analysis.

Example 1 in Figure 4.5 is an image with both labels “elephant” and “person”. From the

size of the bounding boxes, humans can easily tell that these elephants are larger than the people

on the right side of this image, which is in line with our daily experience.

Figure 4.5. Example 1: An image with labels elephant and person taken from
MSCOCO (X. Chen et al., 2015)

From the prediction results in Table 4.7, ViLBERT demonstrated the pattern of preferring

to answer “person” and “no”. For ViLT, it got the answer for prompt design 1 correct; all other

answers were incorrect.

Example 2 in Figure 4.6 is an image with the labels “couch” and “person”. It is easy to tell

that the couch is larger than the person, but the bounding box for “person” only annotated the

head of this person.

50



Table 4.7. Example 1: Prediction results with confidence score

p1 p2 p3 p4

ViLBERT
Prediction person person no no

Confidence 0.000336 0.000387 0.824784 0.697388

ViLT
Prediction elephant elephant yes no

Confidence 0.000828 0.003345 0.746238 0.951973
Ground Truth elephant person no yes

Figure 4.6. Example 2: An image with labels couch and person taken from MSCOCO
(X. Chen et al., 2015)

From the prediction results in Table 4.8, both ViLBERT and ViLT answered “no” to

prompt design 3 and 4, while ViLBERT had a wrong prediction for prompt design 1 and 2, and

ViLT had only incorrectly answered prompt design 2.

Example 3 in Figure 4.7 is an image with the labels “person” and “donut”. In this image,

the person in the background is blurred and only shows part of the body. The holeless donut in the

middle of the frame is clearly smaller than the person.

From the prediction results in Table 4.9, ViLBERT and ViLT had exactly the same results,

but when looking at the confidence score, ViLT was more confident in its answers. Furthermore,
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Table 4.8. Example 2: Prediction results with confidence score

p1 p2 p3 p4

ViLBERT
Prediction person couch no no

Confidence 0.000306 0.000355 0.757186 0.832181

ViLT
Prediction couch couch no no

Confidence 0.006196 0.004457 0.548066 0.82756
Ground Truth couch person no yes

Figure 4.7. Example 3: An image with labels person and donut taken from MSCOCO
(X. Chen et al., 2015)

both models answered “no” for prompt design 4 with high confidence scores where the answer is

supposed to be “yes”.

Table 4.9. Example 3: Prediction results with confidence score

p1 p2 p3 p4

ViLBERT
Prediction person donut no no

Confidence 0.000515 0.000552 0.831509 0.892425

ViLT
Prediction person donut no no

Confidence 0.002434 0.021974 0.915212 0.975688
Ground Truth person donut no yes
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Example 4 in Figure 4.8 is an image with the labels “person” and “donut”. This is an

interesting image which is not about the eatable donut, but rather a donut-shaped sculpture on top

of a donut shop. So obviously the people in this image are smaller than this donut-shaped

sculpture, judging by human common sense. However, the ground truth for this image is that a

donut is still smaller than a person, since only the donut as food is considered in this study. This

has yielded that there are some incorrectly labeled ground truths for this experiment. Therefore,

for future experiments, some human effort is needed to review these images and correct the labels

to create a better dataset. It should be interesting to see how these models responded to this image.

Figure 4.8. Example 4: An image with labels person and donut taken from MSCOCO
(X. Chen et al., 2015)

From the prediction results in Table 4.10, ViLBERT showed the same trend for prompt

design 1 and 2, which answered “person” for these two prompts, but for prompt design 3,

ViLBERT answered “yes” for this image, which is unusual, since ViLBERT preferred to answer

“no” for yes or no questions. However, the ViLT results show that ViLT could be confused by this

image, as it thought that the “donut” is larger than the person with prompt design 1, but then for

prompt design 2, it changed its “mind” and said that the donut is smaller than the person.
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Table 4.10. Example 4: Prediction results with confidence score

p1 p2 p3 p4

ViLBERT
Prediction person person yes no

Confidence 0.000811 0.000685 0.523425 0.848703

ViLT
Prediction donut donut no no

Confidence 0.030005 0.021974 0.985981 0.998932
Ground Truth person donut no yes

Example 5 in Figure 4.9 is an image with the labels “person” and “cell phone”. In this

image, a person is holding a cell phone, or to be more specific, a filp phone, on a boat, and

without any doubt, this cell phone is smaller than the person.

Figure 4.9. Example 5: An image with labels person and cell phone taken from
MSCOCO (X. Chen et al., 2015)

From the prediction results in Table 4.11, again, ViLBERT presents the preference of

answering “person” and “no”. And, for the first time among these examples, ViLT correctly

answered all the prompts.

Example 6 in Figure 4.10 is an image with the labels “person” and “bird”. This image is

related to the example used in Chapter 1, where a bird or pigeon is standing on a wall close to the

camera and two people are walking behind it. Since the camera is capturing the pigeon and the
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Table 4.11. Example 5: Prediction results with confidence score

p1 p2 p3 p4

ViLBERT
Prediction person person no no

Confidence 0.00035 0.00034 0.530715 0.513252

ViLT
Prediction person cell phone no yes

Confidence 0.004093 0.001957 0.971151 0.820965
Ground Truth person cell phone no yes

focus is on the pigeon, the pigeon is larger than the two people in this image from the viewer’s

perspective. Does this mean that the pigeon is actually larger than a normal human being? No.

Judging by human common sense, pigeons are still smaller than people, but the viewing

perspective makes the pigeons in the image appear larger.

Figure 4.10. Example 6: An image with labels person and bird taken from MSCOCO
(X. Chen et al., 2015)

From the prediction results in Table 4.12, ViLBERT answered only “person” and “no”

again, making it difficult to determine why ViLBERT made such a prediction. For ViLT, it only

answered one prompt incorrectly, which is prompt design 2. But, since ViLT does not use region

features or bounding boxes for pre-training, this sole result cannot prove that pre-trained ViLT can

be a potential knowledge base for object size comparison.
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Table 4.12. Example 6: Prediction results with confidence score

p1 p2 p3 p4

ViLBERT
Prediction person person no no

Confidence 0.00674 0.005023 0.51375 0.732445

ViLT
Prediction person person no yes

Confidence 0.010292 0.01347 0.986866 0.7904
Ground Truth person bird no yes

From these six examples, some patterns can be seen, like ViLBERT is prone to answer

“person” and “no”, compared to ViLBERT, ViLT has a somewhat higher correct prediction rate,

but the difference is insignificant, and it is difficult to explain why the models make such

predictions. Therefore, more work should be done in the future to make the inference of these

models more explainable.

4.2 Future Work

Since the goal of this study was simply to answer which model was more consistent in

predicting the dimensions of different pairs of objects and prompt designs, the results showed that

ViLT presented a more consistent prediction accuracy. However, the overall prediction accuracy

of ViLBERT and ViLT was much lower than expected, since the prediction accuracy was lower

than the random chance baseline in many cases. It is difficult to explain why the models get a

certain result; for example, ViLBERT does not judge the size of elephants and people well.

Therefore, there are many future research directions for this study.

4.2.1 Feature Engineering

First, since many visual linguistic models work with different feature extractors to

generate embeddings of images and text, this may be a direction for future research. For example,

ViLBERT uses a region feature extractor, FRCNN. If he is replaced by a different region feature

extractor, this may affect the accuracy of size prediction depending on the quality of feature

extraction. Secondly, we can add new features to the model, such as the area of the bounding
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boxes, so that the model can rely more on the size of the objects in the image to determine which

one is larger and which one is smaller.

4.2.2 Expanding Pairs of Objects

In the present study, only six pairs of objects were selected for the experiments. For future

studies, the range of object pairs could be expanded to examine the accuracy and consistency of

the predictions. However, to do so, a dataset of size prediction tasks is needed for fine-grained

analysis.

4.2.3 Prompt Engineering

As with many criticisms of prompt learning, models can behave very differently with

manually designed prompts, and even human experts have difficulty determining which prompt

design is better. For future research, it could try to propose more prompt designs on size

prediction, or it could try to use some automatic prompt engineering methods.
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CHAPTER 5. CONCLUSION

This study proposed a framework for prompting visual linguistic models, such as

ViLBERT and ViLT, in object size perception. The goal of this study is to identify which visual

linguistic model, ViLBERT or ViLT, is more consistent in prediction accuracy for different

prompt templates and pairs of objects. A simple dataset was created from MSCOCO that contains

six pairs of objects (Couch & Person, Couch & Cellphone, Person & Cellphone, Elephant &

Person , Person & Bird, Person & Donut), and for each pair of objects, four different prompt

templates were applied. Additionally, a random chance baseline was proposed for evaluation

purposes. Using MMF, a modular framework for visual and language research developed and

maintained by Meta Research, the pre-trained ViLBERT and ViLT were configured for the object

size comparison task using zero shot learning, and prediction accuracy and average prediction

confidence were calculated for the results analysis. Since there were six pairs of objects, four

prompt designs, and two models, a total of 48 units of inference were performed.

The results of the experiment indicated that ViLT has slightly higher overall prediction

accuracy and a smaller standard deviation of prediction accuracy, which concluded that ViLT has

a more consistent prediction accuracy for these four prompt templates and six pairs of objects. By

investigating different prompt designs, it was observed that the prediction confidence for prompt

design 1 ([object A] and [object B], which one is larger?) and prompt design 2 ([object A] and

[object B], which one is smaller?) was extremely low, which implied that VilBERT and ViLT

performed poorly under these two prompt designs. Furthermore, even ViLBERT and ViLT had

high prediction confidences under prompt design 4, and most of the prediction accuracy was still

lower than the proposed baseline. For object pairs, the co-occurrence of labels was investigated

using the NPMI. The NPMI scores indicate random co-occurrence, which implies that the

co-occurrence of object labels is close to independent. In addition, ViLBERT was observed to

have a tendency of answering “person” and “no”, and additional information was needed to

explain the predictions from ViLBERT and ViLT.

This study is a preliminary study to explore the possibilities of using pre-trained visual

linguistic models as knowledge bases. However, this study showed that ViLT has more consistent

performance on given tasks; it is insufficient to conclude that pre-trained visual linguistic models
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are able to be used as knowledge base for general tasks, since for the better model ViLT, only 16

out of 24 units of experiment were better than the baseline. There are many future directions for

this research. For example, different image and text features can be explored for feature

engineering to improve prediction accuracy; the other models and different training methods can

be used; more object pairs can be included to test these models; and other prompt engineering

methods can be investigated in the future.
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