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ABSTRACT 

Emergency services (ES) pilots operate in a dynamic, high-risk team environment, as a subset of 

general aviation (GA) operations. The time constraints associated with ES operations means that 

ES pilots must make flight decisions quickly and often with limited or incomplete information 

(Worm, 1999). Due to the nature of ES operations, the consequences of an incorrect flight decision 

can be severe, including loss of life. ES operations are often initiated by extreme weather events, 

and ES pilots are frequently required to fly on the boundary between marginal visual flight rules 

(MVFR) weather conditions and instrument meteorological conditions (IMC). Unfortunately, an 

unintended transition into IMC is the leading cause of fatal accidents in GA operations (Ayiei et 

al., 2020). Mission objectives dictate that most ES pilots fly below 1,500’ above ground level 

(AGL) for extended periods of time, and low-altitude flight in hazardous weather can reduce a 

pilot’s outside visual reference, thus leading to spatial disorientation, loss of control, or controlled 

flight into terrain. To mitigate this problem, ES pilots must be able to accurately assess weather 

conditions before and during flight. However, the current method of presenting meteorological 

aerodrome reports (METARs) on weather displays can be misleading to pilots. Weather conditions 

in the areas between weather observation stations can be different than what is reported by the 

METAR observations at those stations. This can cause current or forecasted weather conditions 

between weather stations to be incompletely represented. However, pilots are given no obvious 

indication of how incompletely represented weather conditions can affect weather-related risk. 

This research demonstrates that a Kth Nearest Neighbor (KNN) analysis can be used to identify 

areas where the variability of conditions between weather stations (and thus weather-related risk) 

is incompletely represented by METAR observations. In addition, it is shown that areas where 

there is an increased risk of an unintended transition from MVFR to IMC can be identified among 

areas with incompletely represented conditions and depicted to pilots on aviation weather displays. 

Machine learning tactics are proposed as a way to consider additional inputs in future KNN 

analyses, and several emerging technologies are proposed as mediums to collect additional weather 

observations. The ability for an ES pilot to more accurately assess weather-related risk in MVFR 

conditions using the proposed technologies is evaluated, the benefits to ES pilots and the GA 

community are discussed, and the requirements and limitations of the study are examined.  
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 INTRODUCTION 

Emergency Services (ES) pilots operate in team-based and high-risk settings, as a subset of 

general aviation (GA) operations, to provide emergency services to the public. Successful 

completion of ES mission objectives can mitigate the negative effects of a disaster, help individuals 

and communities in need, and save lives. However, due to the time-sensitive nature of ES 

operations, decisions are often made quickly and on incomplete or delayed information (Worm, 

1999). These decisions include preflight and inflight decisions made by ES pilots. Due to the life-

saving nature associated with the successful completion of objectives, the penalty for an incorrect 

decision during ES operations is high. Furthermore, because ES operations often occur in the 

aftermath of extreme weather events, ES pilots are often presented with meteorological conditions 

that are more hazardous than other GA operations. 

The objective of ES missions can include search and rescue (SAR) of missing persons or 

aircraft, providing natural disaster relief through aerial photography and disaster response (DR), 

air emergency medical services (EMS), and delivering lifesaving and time-sensitive supplies to an 

effected area. To support these mission objectives, it is common for ES pilots to fly below 1,500’ 

AGL for extended periods of time. These low-altitude operations (LAO) present significant 

hazards when flying in marginal weather or near rapidly varying terrain. Sudden changes in 

weather can quickly cause marginal visual flight rules (MVFR) conditions to change into 

instrument meteorological conditions (IMC), and an unintended transition into IMC is the leading 

cause of fatal aviation accidents, including controlled flight into terrain (Ayiei et al., 2020). To 

mitigate this problem, it is critical that ES pilots can accurately assess weather conditions and are 

alerted to areas where there is an increased risk of transitioning into IMC.   

Obtaining weather information using standard meteorological aerodrome report (METAR) 

data or other Aviation Weather Center (AWC) reports can be misleading. To begin, METAR 

observations are only taken at airports containing an automated weather observation station 

(AWOS) or an automated surface observation station (ASOS). Many geographical areas across the 

United States have rapidly varying terrain or have significant distance between weather stations. 

The dataset of weather observation stations in these areas is often geographically sparse and does 

not contain enough datapoints to completely represent weather conditions in topographically 

distinct areas between weather observation stations. This can cause weather conditions between 
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weather stations to be incompletely represented by METAR observations on weather displays. 

Furthermore, METAR data is reported to the AWC at a regular cadence of once per hour. Thus, if 

weather conditions in the vicinity of an airport degrade quicker than weather observations are 

reported, these changes in conditions may not be depicted on a weather display. Essentially, the 

weather conditions reported by a METAR observation at a weather observation station may be 

different than the actual weather conditions in the surrounding area. However, that METAR 

observation may be the nearest available representation of those weather conditions on an aviation 

weather display. Because the METAR observation differs from the weather conditions in the 

vicinity, those weather conditions in the vicinity may not be correctly represented on the weather 

display (this research refers to this as an incomplete representation of those weather conditions in 

the vicinity). As a critical note: This research does not seek to investigate the accuracy of singular 

METAR observation datapoints, but instead investigates how well those METAR observations 

represent weather conditions in the areas between weather stations. To avoid confusion between 

the nomenclature used in this document and in existing aviation literature, the terminology 

incomplete representation will be used to discuss this problem.  

Actual weather conditions between weather stations are never perfectly represented, and 

therefore weather conditions between weather stations are always somewhat incompletely 

represented and uncertain. However, the completeness of weather condition representation is 

further diminished when weather data is old, is generated via a geographically sparse weather 

observation dataset, or when terrain features or weather conditions create significant variability 

between stations (such as a mountain range between two airports both located in shallow valleys). 

If weather conditions are incompletely represented on a weather display, then hazardous weather 

may be present, but not represented on that display. This causes weather conditions, and their 

associated risks, to be uncertain. ES pilots performing weather assessment over areas where 

weather conditions are uncertain or incompletely represented by METAR observations are more 

likely to incorrectly assess weather-related risk. Particularly during LAO and in marginal weather 

conditions, an error in weather assessment can be dangerous and can lead to an unintended 

transition into IMC, controlled flight into terrain, or otherwise flying in weather conditions that 

the pilot would not have knowingly flown into. Furthermore, an ES aircraft accident would 

compromise the original mission objective, potentially making the downed ES aircraft itself the 

subject of an additional search, rescue, and equipment recovery mission. Pilots already have 
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problems with accurately and reliably interpreting presented weather data in the cockpit (Wiggins, 

2014). Not alerting pilots that weather conditions may be incompletely represented, or that 

unrepresented weather conditions may contain severe weather-related risks, can cause weather 

assessment to be more difficult and increases the chances that a decision-error will be made.  

It is critical that ES pilots can accurately assess if weather conditions are suitable for flight; 

Identifying weather-related hazards can reduce the risk of a severe or fatal aviation accident 

occurring and flying when weather is appropriate enables mission success. Currently, weather 

displays do not obviously indicate to pilots where weather conditions may be incompletely 

represented. Hazardous weather conditions, including IMC, may exist near a weather observation 

station but may not be represented by that weather station’s METAR observation. This is 

especially dangerous to ES pilots evaluating if MVFR conditions are suitable for low-altitude flight, 

as an error in weather assessment at low-altitudes is more likely to result in an unintended transition 

into IMC, controlled flight into terrain, and a severe or fatal aviation accident. Furthermore, ES 

operations often take place in remote locations, where the METAR observation dataset does not 

contain enough weather observations to completely represent weather conditions in that area. 

Fortunately, the advancement of several technologies is expanding how, where, and when weather 

observations can be collected. For instance, aircraft with aircraft meteorological data relay 

(AMDAR) capabilities have become increasingly more prevalent in recent years (FAA, 2021). 

Such aircraft have the necessary on-board equipment to provide autonomous reporting of 

atmospheric flight conditions to the National Weather Service (FAA, 2021). In addition, the FAA’s 

Partnership to Enhance General Aviation Safety, Accessibility, and Sustainability (PEGASAS) 

team is currently developing technologies to autonomously transform pilot radio communications 

into pilot weather reports (PIREPs), with the goal of significantly increasing the number of PIREPs 

submitted by 2035 (FAA, 2021). Finally, drone technology is quickly advancing, and it has been 

shown that drones can effectively be used to collect atmospheric weather information (Ciobanu, 

n.d.).  

Giving ES pilots large amounts of raw weather data, however, would be ineffective. ES 

pilots do not have the time nor the mental capacity to perform an in-depth risk assessment 

involving weather observation station data, AMDAR reports, PIREPs, and drone data prior to 

making a flight decision. Existing weather data presentations depict weather data in a relatively 

succinct format. However, weather displays do not indicate how uncertain or incompletely 
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represented weather conditions can influence weather-related risks. Opportunely, previous studies 

have shown that machine learning (ML) can be used to analyze large amounts of weather data 

(McGovern et al., 2017). One study, completed by the PEGASAS team, compared 10-years of 

weather data from 64 FAA-certified weather stations in California to find regions where METAR 

data was more varied between weather stations (Johnson et al., 2021). Because of the extensive 

work required to perform such an analysis, visibility was the only weather parameter used in 

comparing weather station data (Johnson et al., 2021). Though the study did not use ML, it 

provides a methodology upon which ML could be built. It was found that if weather station data 

within a region had greater differences, then weather conditions between weather stations were 

more variable. If an area has large variations in weather conditions, then it is more likely that the 

weather conditions reported by a METAR observation differ from the weather conditions in the 

surrounding area (the weather conditions in the surrounding area are incompletely represented by 

the METAR observation).  

By identifying areas between weather stations where weather conditions may be 

incompletely represented, then with further analysis, areas where unrepresented instrument 

meteorological conditions (IMC) are more likely to exist can be identified. If IMC are physically 

present but are not shown by a nearby METAR on a weather display, then a pilot would have 

higher chance of unintentionally transitioning into IMC if flying through that area: The pilot’s 

evaluation of the weather conditions was based on the METAR, but the METAR did not 

completely represent the weather conditions in the surrounding area and did not show that IMC 

were present. If areas between weather stations where unrepresented IMC may exist were 

identified, then these areas could be depicted to pilots on weather displays, and pilots could be 

warned of areas where there is a higher risk of an MVFR to IMC transition.  

Depicting high-risk MVFR to IMC transition areas on weather displays would be beneficial 

to all pilots in the GA community. A pilot using such displays would have an improved ability to 

identify hazardous weather and make safer and more informed weather-related flight decisions. 

For most of the GA community, the risk of an unintended transition into IMC can be minimized 

by avoiding flight in marginal weather altogether. This is not the case for ES pilots, who frequently 

perform LAO in MVFR conditions, and have great pressure to fly under such circumstances. For 

ES flights with the direct mission objective of saving lives, such as search and rescue, cancelling 

a flight due to weather has severe consequences effecting more than the pilot and aircrew. In such 
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circumstances, identifying that there is an increased risk of transitioning into IMC may not be 

sufficient evidence to cancel a flight. However, if an ES pilot were given a set of local, low-altitude, 

real-time weather observations, in combination with a presentation that depicts areas where the 

risk of an MVFR to IMC transition is high, the pilot could make much more informed flight 

decisions. Successful SAR flying in marginal weather could result in saving lives, but equally as 

important, successfully not flying when conditions are too hazardous could prevent additional 

aviation accidents or casualties.   
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 REVIEW OF LITERATURE 

From 1995 to 2015, weather-related disasters claimed the lives of over 600,000 people, and 

left an additional 4.1 billion individuals injured, homeless, or otherwise in need of emergency 

services (Shaw, 2015). From 2000 to 2013, the Coast Guard alone averaged over 65,000 hours of 

search and rescue services per year, with a total of over 549,000 people assisted and over 68,000 

lives saved (BTS, 2019). This does not include the 33,544 lives saved during Hurricane Katrina 

(BTS, 2019). These various natural disasters caused the loss of $3.24 Billion in property value and 

claimed the lives of 9,900 individuals (BTS, 2019). To mitigate injury and prevent casualties, it is 

critical that ES operations can respond immediately and execute missions quickly. During Coast 

Guard SAR operations from 2000 to 2013, 71% of casualties occurred prior to the Coast Guard 

being notified, and 59% fewer casualties occurred following notification (BTS, 2019). Rapid ES 

disaster response can also mitigate property loss and reduce the effects of a disaster. When the 

150-mile-long River Raisin in Monroe, Michigan flooded, the Civil Air Patrol (CAP) used aerial 

photography to coordinate emergency responses and redirect traffic along auxiliary county roads 

(Solomon, 2009). The effort was largely successful due to the rapidity of the response: The Cessna-

172 conducting the photo reconnaissance took off just 30 minutes after being notified and 

completed all observations within the next hour (Solomon, 2009).  

In the United States, SAR responses are conducted by several teams, including the National 

Guard, Coast Guard, the Civil Air Patrol, the Federal Emergency Management Agency, state or 

local police, firefighters, and by volunteers from several organizations (Rossier, 1998). In general, 

ES pilots are mostly non-military pilots with only private pilot or higher training, and operate as a 

subset of GA (Pokodner et al., 2020).  ES pilots perform various aerial search patterns depending 

on the terrain, mission requirements, and weather of the operational environment (Rossier, 1998). 

There are 857 operations bases around the U.S. that house 1,211 fixed-wing and rotary aircraft 

used for ES operations (Fiorino, 2010). Since 1998, there has been an increase of aviation accidents, 

causing an expansion of ES, including air medical transport (Elias, 2006). These accidents have 

been attributed to operational factors including decision-making in deteriorating weather (Elias, 

2006) and inadvertent flight into IMC (Fiorino, 2010). However, the rise of ES services in response 

to aviation accidents is not without its own risks. 
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From 2001 to 2004, the rate of fatal helicopter air ambulance accidents increased compared 

to the period from 1993 to 2000 (Elias, 2006). Air ambulance services using helicopters and fixed-

wing aircraft have both increased, with 54% of operations being from hospital to hospital, 33% 

being on-scene responses, and the remaining 13% being from transporting organs, medical 

supplies, or specialty medical staff (Fiorino, 2010). Each year, the United States transports 500,000 

ill or injured patients in emergency services aircraft (Fiorino, 2010).  

There is extremely high pressure for ES pilots to fly during an ES operation, including in 

hazardous weather conditions. In EMS aerial operations, the National Transportation and Safety 

Board (NTSB) found that pilots felt pressured to continue or begin flight in marginal weather 

conditions to maintain good relationships with hospital administration (Elias, 2006). In regions 

with several competing air-EMS providers, the external pressure to fly was greater, as pilots did 

not want to diminish the reputation of their air-EMS provider and potentially limit future flight 

opportunities (Elias, 2006). In 1988, the NTSB found that when ES management operates in a 

location distant from pilots, it can cause pilots to overemphasize completing mission objectives 

and can “compromise sound judgement in regard to flight safety” (Elias, 2006, p. 11). It was also 

found that EMS personnel can put pressure on pilots to fly in marginal weather conditions, partially 

due to a “lack of understanding of weather-related considerations, genuine zeal to get a job done, 

or even competition between EMS programs” (Elias, 2006, p. 12). ES helicopter pilots also cited 

that the pressure to speed up operational response time was a significant factor affecting mission 

safety (Elias, 2006). 

Aerial operations, such as SAR, that have the direct mission objective of rescuing or saving 

lives are particularly time-critical (Chenji et al., 2012). Today, most aircraft and rotorcraft have an 

Emergency Locating Transmitter (ELT) on board, which automatically produces a signal on an 

emergency frequency if sensors determine that the aircraft or rotorcraft has been in an accident. 

These emergency radio frequencies are monitored by local ES teams. If an ELT signal is detected, 

the search and rescue process begins immediately (Rossier, 1998). A SAR can also be initiated by 

an unexpected or sudden loss of communication with aircraft from Air Traffic Control (ATC) 

(Rossier, 1998), by an aircraft not closing a flight plan within 30 minutes of their estimated time 

of arrival, or if an aircraft that is expected to be handed off to a flight service station fails to make 

radio or radar contact (FAA, 2021). Unfortunately, in SAR, it can take anywhere from 45 seconds 
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to 2.5 hours for an ELT signal to be triangulated to produce a geographic location (Rossier, 1998). 

Triangulation time increases in locations with dynamic and rapidly varying terrain (CAP, 2004).  

Other SAR operations, such as a search for a missing person on-foot, do not provide an ELT 

to notify ES teams of location. Instead, they must rely on the last known reported location of the 

person. Unfortunately, many people delay reporting a missing person, and the first 48 hours is the 

most critical to safely returning missing individuals ("What to Do if Your Child Goes Missing," 

n.d.). Adverse weather and variable terrain can further inhibit an ES response. Aerial SAR in 

mountainous terrain is often only performed in the daytime to avoid accidental controlled flight 

into terrain (Rossier, 1998). Regardless of the reason for a delay in initiating or continuing SAR, 

ES response teams are often required to make up for lost time from the start of an operation.  

The use of unmanned aircraft systems in ES operations is becoming increasingly more 

popular in SAR, hurricane response, and wildland firefighting (Tabor, 2021). NASA’s Scalable 

Traffic Management for Emergency Response Operations (STEREO) program is working to use 

drones to reduce response times in ES operations (Tabor, 2021). Along with taking aerial 

observations, STEREO proposed the use of drones as a medium to collect and transmit ES aircraft 

position data to improve aircraft and ground team coordination during an ES operation (Shirt et 

al., 2017; Tabor, 2021). This technology was proved as feasible during a U.S. forestry training 

exercise in Phoenix, AZ (Chowdhury et al., 2017; Tabor, 2021). The maturation of ad-hoc Wi-Fi 

network technology has enabled drones to be used in places in which cellular networks are 

otherwise inaccessible (Tabor, 2021). This is of particular benefit to ES operations, which can be 

carried out in remote environments that are sometimes outside of the range of standard network 

coverage. Drones have also been used for earthquake disaster response (DR) in Haiti and the 

Dominican Republic (Cohen, 2014), typhoon DR in Haiyan (Greenwood, 2015), and tsunami DR 

in Fukushima, Japan (Pamintuan-Lamorena, 2014). 

Drone swarms are becoming increasingly more prevalent in non-military applications as 

well (Shirt et al., 2017). Drone swarms can provide wider coverage areas, with higher data 

resolution, and are being proposed to be used for search and rescue (Shirt et al., 2017). One of the 

issues with large drone swarms is that efficiently controlling maneuvers becomes increasingly 

more difficult as the size of the swarm increases (Sunil et al., 2020). Due to the volume of drone-

to-drone and drone-to-base communication, any large drone swarm will require significant data 

transmission to operate (Sunil et al., 2020). Fortunately, the development and expanded use of 5G 
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networks provides the necessary bandwidth to command and control drone swarms (Sunil et al., 

2020). 

2.1 Weather Variables  

ES pilot certification requirements vary based on the organization. For example, in CAP, 

mission pilots are not required to hold an IFR certificate and there is no additional requirement for 

ES pilots to complete formal weather-related training beyond that which is taught in private pilot 

instruction (CAP, 2017). However, air EMS pilots require more than 2,000 hours of experience in 

both IFR and VFR conditions ("What do EMS Pilots Do," n.d.). Regardless, ES pilots operate as 

a subset of GA, and all ES pilots are subject to the same weather-related risks as other GA pilots. 

Even if an ES pilot has their IFR certificate, they are not immune to the dangers of incorrect 

weather assessment or an unintended transition into IMC. Even for an IFR pilot, an unintended 

transition into IMC poses two types of risk. There is an environmental risk associated with now 

flying without a visual reference available; and there is a cognitive risk associated with quickly 

trying to transition from flight under visual flight rules to flight under instrument flight rules.  

During private pilot training, about nine hours are dedicated to weather-related instruction 

(Ahlstrom et al., 2016). Pilots tend to overestimate their knowledge of weather and often lack the 

skills to operate in many weather conditions (Ahlstrom et al., 2016). Decision errors derived from 

in-flight planning or weather are considered pilot error, and contribute to 60-80% of all GA 

accidents (Ayiei et al., 2020). Historically, most aviation weather fatalities occur in the early 

morning and evening. Fatalities also occur more frequently between October and April in North 

America (Fultz & Ashley, 2016). Working around inclement weather, ES pilots can assist with 

hurricane or blizzard victims, disaster relief, and emergency response (Rossier, 1998). However, 

even with today’s technology and available satellite data, weather is still major source of risk due 

to pilot error and aircraft performance in adverse conditions (Fultz & Ashley, 2016). “The most 

common weather citations for aviation accidents are wind, visibility, low ceiling, and high-density 

altitude” (Fultz & Ashley, 2016, p. 292). Figure 1 shows aviation fatalities and percentages for 

fatal accidents from 1982 to 2013 (Fultz & Ashley, 2016). It can be seen that GA has significantly 

more fatalities than commercial, air taxi, and agriculture applications. Since visibility, wind, 

precipitation, and icing are more prominent in causing aviation accidents (Fultz & Ashley, 2016), 

these parameters are expanded on below.  
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Figure 1. U.S. aviation fatalities between 1982 and 2013 from “Fatal weather-related general 
aviation accidents in the United States” by Fultz, 2016 

2.1.1 Visibility and Cloud Coverage  

Visual flight rules (VFR) pilots must use their visual field to navigate and fly aircraft, and 

are required to maintain minimum visibility and cloud clearances during the entire flight (Ahlstrom 

et al., 2016). Alternatively, instrument flight rules (IFR) pilots use their cockpit instruments to 

navigate through weather that does not meet visual criteria, allowing them to fly through clouds, 

fog, or other weather not within the VFR domain. If weather conditions do not meet VFR criteria, 

they are referred to as instrument meteorological conditions (IMC).  

In ES and GA, VFR pilots flying into IMC is the leading cause of accidents. Accidental 

transition into IMC is more prevalent in flights at low altitudes, in unfamiliar regions with rough 

terrain, in inclement weather, and in low visibility conditions (Fiorino, 2010), all of which are ripe 

domains for ES operations. The NTSB reports that two-thirds of accidents that occur in IMC will 

be fatal (Ayiei et al., 2020). From 1990 to 1997, the NTSB observed that of 14,000 accidents, 

fatalities were the highest (11%) in accidents caused by unintentional transition into IMC (Ayiei 

et al., 2020). Past studies have shown that pilots continuing from VFR to IMC had higher 
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confidence and skill ratings, yet made mistakes early in the decision-making process and 

incorrectly judged visibility (Ayiei et al., 2020).  

2.1.2 Wind  

Wind was the most cited weather hazard during weather accidents from 1982 to 2013 at 50% 

(Fultz & Ashley, 2016). While wind was prevalent in these accidents, only 7.8% ended in fatalities 

(Fultz & Ashley, 2016). 40% of non-fatal accidents had crosswinds as a contributing factor of the 

accident and fatal events consisted of gusts at 31%, tailwinds at 26%, and high winds at 22% (Fultz 

& Ashley, 2016).  

2.1.3 Precipitation and Icing  

ES pilots have additional pressure over other GA pilots to operate in conditions that are 

conducive to icing. If an aircraft should face icing conditions, Aviation Safety Magazine 

recommends flying VFR over IFR (Burnside, 2010). Private pilot instruction also recommends 

flying below the clouds if icing is inadvertently encountered. However, reducing altitude may not 

be possible during low-altitude ES operations. This makes ice and precipitation a greater risk factor 

for ES pilots.  

2.1.4 Terrain Variables  

Dramatic changes in terrain can cause weather to have more variability and be more 

unpredictable. Unfortunately, an ES response is more likely to be initiated over such terrain, as a 

dynamic landscape is a contributing factor in aircraft accidents and in people getting lost or 

stranded (Macwan et al., 2011). The combination of variable terrain and reduced visibility can 

delay an ES operation. For example, it is common to wait for improved visibility or until daylight 

to fly ES aerial operations in mountainous terrain (Rossier, 1998). 

Mountains present particularly volatile and unstable air columns called mountain waves. In 

mountain waves, wind passing over a mountain peak can cause significant updrafts and downdrafts, 

as well as high turbulence close to the ground (SSA, n.d.). As shown in Figure 2, areas of 

circulating turbulence cause wind directions near the surface to oscillate between blowing towards 

and away from the mountain. This presents dynamic and powerful wind conditions that have 
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variable behavior on a very small geographic scale. Because of phenomenon like this, states that 

have mountains have a higher accident rate of 15.3 accidents per 100,000 flight hours (Aguiar et 

al., 2017). Flying over mountains or high-elevation terrain makes navigation difficult because of 

rapidly declining visibility, gusty winds, and terrain avoidance (Aguiar et al., 2017). Past studies 

have shown a 68% increase in fatal accidents specifically in the mountainous area of the Colorado 

Rockies, as opposed to the rest of the state (Aguiar et al., 2017). 

 

Figure 2. Mountain wave effects from “Lift Sources” by SSA, n.d. 

2.2 Weather Reports  

ES pilots use the same weather data presentation resources as other GA pilots to make flight 

decisions. The Aviation Weather Center (AWC) is the official medium to present pilot weather 

data. Although there are several additional weather data presentation sources which pilots can 

access, this research focuses only on those sources officially recognized by the AWC. Different 

types of weather measurements, forecasts, and observations exist on the AWC website. Pilots can 

choose to use none, some of, or all of these weather sources to help them make flight decisions. 

The more frequently used measurements, forecasts, and observations are detailed below. 
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2.2.1 Meteorological Terminal Aerodrome Reports  

A meteorological terminal aerodrome report (METAR) is a weather report which measures 

the current atmospheric conditions at an airfield. Data from these observations are uploaded to the 

AWC to be distributed to pilots (Skybrary, 2019a). A METAR typically consists of wind speed in 

knots, wind direction, visibility in statute miles, precipitation, sky cover with cloud-altitude, 

temperature, dewpoint, atmospheric pressure, and other supplemental information (Skybrary, 

2019a). METAR weather stations take atmospheric measurements at a regular cadence of once per 

hour. However, if weather has significantly changed within the hour period, a SPECI METAR can 

be issued to take a measurement outside of the regular cadence (Skybrary, 2019a). However, if 

changing conditions between weather stations do not cause the weather conditions in the vicinity 

of a METAR station to significantly change, a SPECI METAR will not be issued. METARs are 

available to pilots online via AWC and are broadcast over the radio in traditional alphanumeric 

code format, which allows pilots to access METAR data mid-flight without the use of an electronic 

flight bag (EFB).  

METAR data can be classified into four different categories: VFR, MVFR, IFR, and low 

IFR. On a visual depiction map, weather stations reporting VFR, MVFR, IFR, and low IFR are 

depicted as green, blue, red, and purple dots, respectively. Table 1 details how each category is 

determined.  

Table 1. Flight categories and depiction on a visual depiction map 

Category Visibility Cloud Ceiling Depiction on Map 
VFR 5 statute miles or greater 3,000’ AGL or greater Green dot  
MVFR 3 - 5 statute miles 1,000 - 3,000’ AGL Blue dot 
IFR 1 - 3 statute miles 500 - 1,000’ AGL Red dot  
Low IFR Less than 1 statute mile Less than 500’ AGL Purple dot 

 

2.2.2 Terminal Aerodrome Forecasts  

Terminal aerodrome forecasts (TAFs) are presented similar to a METAR, except that 

presented weather data is a forecast instead of a current atmospheric measurement. Forecasts 

include surface wind speed and direction, visibility, cloud coverage, and any expected significant 

changes in weather for a specified date and time (Skybrary, 2019b). Unlike METARs, TAFs are 
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not broadcast over the radio and must be obtained through the AWC or internet enabled EFB 

systems. TAFs are updated every 6 hours, and small changes in weather conditions are often not 

depicted on TAFs.  

2.2.3 Radar 

Radar measures the intensity of nearby convective weather by measuring the movement of 

precipitation and the density of that precipitation in the weather system. Precipitation can include 

rain, hail, snow, and ice (Skybrary, 2016). 

2.2.4 Pilot Reports  

A pilot weather report (PIREP) is a pilot reported measurement of weather phenomenon 

experienced during flight. Pilots can give reports of icing, turbulence, volcanic ash, wind shear, 

other weather phenomenon, or any otherwise important remarks (CFINotebook). Figure 3 displays 

the PIREP metrics reported in PIREPs from 2003 to 2008 (Casner, 2010).  

 

 

Figure 3. Percentage of PIREPs that report each type of field from “Why Don't Pilots Submit 
More Pilot Weather Reports (PIREPs)?” by Casner, 2010 

PIREPs offer aviation meteorologists an opportunity to confirm if weather predictions are 

accurate by giving a “three-dimensional look at the atmosphere” (Johnson & Pokodner, 2020, para. 

5). However, because PIREP data is primarily generated via pilot interpretation, the severity of 
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weather conditions is subject to pilot perception and descriptive report. PIREPs are also the best 

opportunity for pilots to get current weather observations at locations other than airports. From 

2003 to 2008, approximately 4,700,000 PIREPs were submitted in the United States, averaging 

only 1 PIREP per hour, per 42,156 square miles (Casner, 2010). Considering that weather systems 

can have significant geographic variations, both in surface location and in altitude, and significant 

temporal variation within an hour (Casner, 2010), a single PIREP over such a large area does not 

provide sufficient weather information to ES pilots making time-critical, high-risk decisions.  

After surveying 189 pilots, it was found that a lack of familiarity with the PIREP submission 

process played a role in the lack of PIREP submissions  (Casner, 2010). The research also indicated 

that reporting PIREPs in plain language, as opposed to standard PIREP submission format, would 

be beneficial (Casner, 2010). In fact, 44% of PIREPs already use this type of language through the 

remarks section (Casner, 2010). Pilots in the study overwhelmingly agreed that PIREPs are a 

critical resource for weather-based flight planning and in-flight awareness (Casner, 2010). The 

research found that in-cockpit PIREP submission assistance technology would be beneficial in 

encouraging pilots to submit more PIREPs (Casner, 2010).  

2.2.5 Air Mission Meteorological Information & Significant Meteorological Information 

Air mission meteorological information reports (AIRMETs) are issued notifications 

regarding factors that could affect the safety of flights in a particular area. Extreme or hazardous 

weather is not included in AIRMETs but is included in significant meteorological information 

reports (SIGMETs). Notifications can include IFR conditions, turbulence, terrain obscuration, or 

icing levels. AIRMETs come in three types, Sierra (mountain obscuration or cloud ceilings less 

than 1000’ AGL), Tango (moderate turbulence or sustained surface winds of greater than 30 knots), 

and Zulu (moderate icing and freezing levels) (Fritts, 2020). SIGMETs are like AIRMETs, except 

that SIGMETs indicate more hazardous weather. This can include severe icing, severe turbulence, 

dust storms, and volcanic ash (Fritts, 2020). 

2.2.6 Helicopter Emergency Medical Services (HEMS) Tool 

The AWC developed a tool for helicopter emergency medical services (HEMS) pilots which 

estimates areas of VFR, MVFR, IFR, or low IFR conditions based on observed weather data. This 
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tool is useful to ES pilots but can be misleading in its depiction of weather conditions. Areas of 

VFR, MVFR, IFR, and low IFR conditions are estimated using radar data, METARs, and other 

weather reports. As shown in Figure 4, these estimates can be incorrect. In the Figure 4 example, 

low-IFR conditions observed at a weather station are located in areas estimated to be “VFR”. 

Similarly, VFR conditions observed at a weather station are located in areas estimated to be 

“marginal”. The condition estimations in the HEMS tool were never intended to be error-free, but 

the inconsistency in risk presentation from the weather observations can be misleading and can 

cause an error in weather dissemination and evaluation. In fact, one accident report states that an 

incorrect dissemination of the HEMS tool presentation was a contributing factor in a fatal EMS 

helicopter accident (NTSB, 2020). Depicting areas where weather-related risk is increased due to 

incomplete weather condition representation would be a beneficial addition to a weather 

presentation such as this.   

 

 

Figure 4. Errors in condition estimation on the Helicopter Emergency Medical Services (HEMS) 
tool can be misleading to pilots. HEMS graphic generated via AWC 
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2.3 Pilot Variables & Human Factors  

The NTSB examined ES safety issues from 1978 to 1986 and found 59 accidents in which 

improvements needed to be made in weather forecasting, personal training, and operations 

management (NTSB, 2006). When the NTSB recommended 19 safety modifications after 1986, 

the following 15 years from 1990 to 2005 showed that a significant number of accidents continued 

to occur in ES (NTSB, 2006).  

Improving aviation situational awareness is one way that an ES pilot can mitigate accidents 

or problems during operations. There are four pillars to aviation situational awareness including 

position, terrain, traffic, and weather (Spirkovska & Lodha, 2003). Situational awareness for 

weather has attributed to over 30% of accidents and 15% of fatal accidents in GA (Spirkovska & 

Lodha, 2003). This could be due to issues with retaining and absorbing weather information 

needed to make well-informed and safe flight decisions (Spirkovska & Lodha, 2003). Another 

possible cause is difficulty in tracking weather changes during the flight and inability to multitask 

(Spirkovska & Lodha, 2003). Due to lack of experience, ability to correctly interpret weather 

conditions, fatigue, and workload, pilots are sometimes unable to recognize transitions from 

MVFR to IMC (Ayiei et al., 2020). Pilots flying from MVRF into IMC can experience spatial 

disorientation and can lead to flying at altitudes in which the pilot cannot recover from a loss of 

aircraft control (Ayiei et al., 2020). 

In Knecht (2008), pilots were asked open-ended Likert Scale questions about adverse 

weather. The VFR and IFR pilots were asked questions that determined which weather factors 

mentally dominated a four-hour flight (Knecht, 2008). The ranking of preflight factors included 

storms (83%), ice (48%), cloud ceiling (46%), visibility (57%), and wind (52%) (Knecht, 2008). 

In-flight factors were storms (81%), ice (42%), cloud ceiling (41%), and visibility (49%) (Knecht, 

2008). 

ES pilots are often presented with time-critical weather-related decisions (Walmsley & 

Gilbey, 2020). In making such decisions, pilots tend to rely on past information and experiences 

to inform their decision to continue flight or to deviate around adverse or declining weather 

(Walmsley & Gilbey, 2020). This is inherently risky, as a pilot’s use of past information and 

cognitive heuristics can lead to accidents (Walmsley & Gilbey, 2019).   

Weather data can be displayed via an in-cockpit weather display or on an EFB (Ahlstrom, 

2015). On such displays, weather symbology can show different characters and colors for similar 
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weather conditions. Previous studies showed that pilots using graphical precipitation weather 

displays had increased situational awareness when making flight decisions (Ahlstrom, 2015). 

2.4 Machine Learning in Weather Analysis and Prediction  

Machine learning has previously been considered as a method to analyze and predict weather, 

and advances in the field of ML are expanding the potential applications of a ML algorithm (Han 

et al., 2021). There are competing ideas as to which ML model is best suited for weather analysis, 

including artificial neural networks, numerical weather approaches, or direct sensing or hybrid 

approaches (Han et al., 2021). Regardless of the method taken, previous studies have shown that 

ML can be used to predict and analyze weather. For example, one study was successful in 

producing accurate, long-term weather predictions that incorporate seasonal weather trends (Han 

et al., 2021). The Amazon Forecast Index, a historical data-based ML software that predicts 

product demand, offers a weather index option that predicts weather over shipping routes to avoid 

supply chain disruption (Amazon, 2021). Another study was able to accurately predict hail using 

a series of randomly generated decision trees, as shown in Figure 5 (McGovern et al., 2017). This 

hail analysis exemplifies how many weather parameters must be considered to accurately predict 

just one weather variable (hail), and how a deep analysis must be condensed into a format that is 

easily disseminated by pilots. It is just as critical that pilots are informed of what is causing bad 

weather, so that they can be aware of what changes in weather to look for during weather condition 

evaluation.  
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Figure 5. Hail Prediction Model from “Using Artificial Intelligence to Improve Real-Time 
Decision-Making for High-Impact Weather” by McGovern et al., 2017 

2.5 Machine Learning in Piloting and Other Critical Applications  

Several industries, including aviation, are using ML to help people make critical decisions, 

more accurately, and in less time (Briganti & Le Moine, 2020). In the medical industry, advanced 

ML tactics have been employed to detect atrial fibrillation, cardiovascular risk, as well as to help 

diagnose medical conditions within the fields of pulmonary medicine, endocrinology, nephrology, 

gastroenterology, and neurology (Briganti & Le Moine, 2020). ML is also being considered as a 

means to help pilots solve multivariable problems in the air, provide crew with more refined and 

optimized interfaces, and perform flight-assistive functions such as displaying safe flight paths, 

object tracking and recognition, and filtering and displaying only critical information during an 

emergency (Kulida & Lebedev, 2020). One study found that a ML-informed in-cockpit display is 

“very important, especially in landing conditions with poor visibility, as well as in low-altitude 

flight” (Kulida & Lebedev, 2020, pg. 2). The study went on to develop a prototype system that 

produced flight paths which avoided hazardous, mountainous terrain in the area surrounding 

Elizovo airport in Russia (Kulida & Lebedev, 2020). In both the medical and the aviation 

communities, ML is becoming increasingly more trusted to be used for critical task decisions.  

The FAA’s PEGASAS team has already begun to integrate ML to autonomously transform 

informal pilot radio communications into standardized PIREPs (Pokodner et al., 2020). This ML-
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based speech recognition technology was identified by the FAA as a critical technology to improve 

and modernize the PIREP submission process (FAA, 2021). The GA community accounts for a 

majority of weather-related accidents (McGovern et al., 2017; Pokodner et al., 2020), and GA 

pilots struggle with properly interpreting presented weather information and with accurate weather 

assessment. Increasing the number of PIREPs available is one way to mitigate this problem, as the 

additional data provided by PIREPs would help to represent actual weather conditions more 

completely on weather displays.   

To develop the hands-minimized PIREP submission software, the PEGASAS team collected 

252 PIREP recordings from pilot participants (Pokodner et al., 2020). Each participant was given 

several in-flight weather scenarios and could choose whether or not to submit a PIREP for each 

scenario. If the participant chose to submit a PIREP, the PIREP was recorded, the audio was 

transcribed, and the transcribed message was then translated into a standard PIREP format 

(Pokodner et al., 2020). This process is demonstrated in Figure 6. A ML-algorithm was trained 

using this process and was able to autonomously translate voice recordings into standard PIREPs 

with relative accuracy (Pokodner et al., 2020).  

 

Figure 6. Sample of an icing PIREP transcription translated to a PIREP sentence from 
“PEGASAS Project 33 - Augmented Weather Interfaces Project (AWIP)” by Pokodner et 

al., 2020 



 
 

34 

In a separate analysis, the PEGASAS team demonstrated that regions with more variable 

weather conditions can be identified by evaluating differences in METAR data between weather 

stations. The PEGASAS team showed this is feasible by examining 10-years of METAR data at 

5-minute increments from 64 FAA-certified weather stations in California (Johnson et al., 2021). 

To perform the analysis, weather stations were divided into regions and the visibility observations 

reported by weather stations within each region were compared. Regions with greater differences 

in visibility observations had more variation in reported weather conditions, and there was 

therefore greater variability in weather conditions between weather stations (Johnson et al., 2021). 

In the PEGASAS study, weather stations with large differences in weather observation data were 

known as having low correlation.  

The PEGASAS regional weather data correlation analysis successfully demonstrated that 

areas between weather stations where weather conditions have greater variation can be identified 

by comparing METAR data. For simplicity, the analysis used only visibility as an input parameter 

in analyses. Figure 7 shows the monthly correlation parameters for weather stations within the 

California central valley region (Johnson et al., 2021). Although the initial study did not use ML 

software, it demonstrated a methodology upon which ML can be built. It should be noted that 

although METAR data is reported and distributed to pilots hourly via the AWC, METAR 

observations can be taken more frequently. In this case, observations were taken at 5-minute 

increments and were stored outside of the AWC domain to be used in the PEGASAS analysis.  
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Figure 7. California central valley region monthly average correlation values from “PEGASAS 
Project 33 - Augmented Weather Interfaces Project (AWIP)” by Johnson et al., 2021 

  



 
 

36 

 PROBLEM STATEMENT 

3.1 Case Study & Example ES Operation  

In December of 1996, a Learjet with two pilots flew an ILS approach to runway 18 of 

Lebanon Municipal Airport (KLEB), located in Vermont (NTSB, 1996). Weather observations at 

that time reported IFR daytime flight conditions; an overcast cloud layer at 1,200’ AGL, wind at 

5 knots, and 5 statute miles of visibility (NTSB, 1996). Terrain surrounding KLEB is mountainous, 

with several sparsely inhabited forests. After missing an instrument approach for runway 18, the 

pilots received clearance to circle back for another approach on runway 25. Nine minutes later, the 

pilots misidentified their position and started their descent too early, leading the aircraft to descend 

directly into the surrounding mountainous terrain (NTSB, 1996). After several failed attempts to 

contact the aircraft and after losing radar contact, ATC declared an emergency missing aircraft 

(NTSB, 1996; Rossier, 1998). 

Shortly after declaring the emergency, CAP, the National Guard, state police officers, and 

several volunteers were enacted to begin a search and rescue for the missing aircraft (Rossier, 

1998). CAP aircraft were assigned to fly half-mile-wide grid search patterns at 1,000’ AGL, 

National Guard helicopters began flying contour searches at 500’ AGL, and A-10s were used to 

fly search patterns at 2,000’ AGL (Rossier, 1998). Aircraft from six different states participated in 

the search (Rossier, 1998). In the end, after two weeks of searching, the SAR was called off with 

no indication of the Learjet or the two missing pilots (Rossier, 1998). It was not until two years 

later that the aircraft wreckage was found on private property 17 nm away from the airport (NTSB, 

1996). 

The NTSB accident investigation found that factors contributing to the accident included 

becoming lost or disoriented, misjudging navaid signals, prematurely descending, and misreading 

IFR procedures (NTSB, 1996). The low ceilings and IFR conditions contributed to the pilot’s 

spatial disorientation and ultimately led to the accident. These were experienced, commercially 

rated pilots, with over 6,317 hours of total combined flight time (NTSB, 1996). For comparison, 

CAP mission pilots require just 500 hours of pilot in command (PIC) time (CAP, 2017) and EMS 

pilots require 2,000 hours (“What do EMS Pilots Do”). While the pilots of the Learjet had the 

opportunity to postpone the flight due to the inclement weather, the ES aircraft assigned to the 
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SAR did not have such an option. Weather conditions were marginal during the SAR, and flying 

in the marginal weather meant the possibility of rescuing the two pilots before the quickly 

approaching cold weather set in. Due to the nature of the SAR operation, these ES aircraft were 

flying low-altitude flight profiles near terrain with mountain peaks greater than 3,000’ high. During 

the two-week SAR operation, ES pilots had a significant risk of accidental controlled flight into 

terrain. This was exacerbated by deteriorating weather conditions. On several occasions, SAR 

aircraft were grounded due to weather-related concerns (Rossier, 1998). 

Figure 8 shows the Learjet accident location relative to KLEB. The accident location is 

designated by the blue waypoint located at 43.826° N, 72.000° W, and is 17 nm from KLEB. 

Distance rings at 5-nm radial increments were plotted around KLEB and are shown in black. FAA-

certified weather observation stations are shown by a yellow dot. As a note, the ES pilots would 

not have been flying along the blue line shown in Figure 8, as they did not know where the downed 

aircraft was located. Instead, they would have been flying their various search patterns as described 

above. An example of a grid search pattern is shown by an orange line in Figure 8.  

 

Figure 8. Learjet accident location relative to Lebanon Municipal Airport (KLEB). Visual 
depiction map created using ForeFlight 
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The relative direction of the Learjet was known to ATC prior to the aircraft going missing. 

In this case, ATC knew that the Learjet was northeast of the airport and attempting to follow a 

published IFR approach. Therefore, search tactics would have been directed to focus on the 

northeast quadrant of the local airspace. This is shown by the faded grey square in Figure 8. 

Notably, within this 25-nm by 25-nm search area, only two FAA weather observation stations exist; 

an ASOS at KLEB and an AWOS at Plymouth Municipal Airport (1P1).  

The SAR operation to find the Learjet was frequently paused due to weather (Rossier, 1998). 

The small number of weather observation stations in the search area meant that weather conditions 

between weather stations and in the surrounding area may not have been completely represented 

by METAR observations on weather displays. This would have caused weather conditions in the 

area to be uncertain. Even if METAR observations at KLEB and 1P1 were both depicting MVFR 

conditions, pilots would have had little indication if the area near, for example, Bradford (the 

northwest quadrant of the search area) had similar conditions. Moreover, if KLEB was reporting 

MVFR and 1P1 was reporting IFR, the actual weather conditions in the search area would have 

been more uncertain and would be on the boundary between flyable and unflyable. If the degree 

of uncertainty in weather assessment were not so large, and the penalty for an incorrect flight 

decision were not so high for the ES pilots, it is reasonable to assume that the operation would not 

have been paused so frequently by weather-related concerns. 

Incomplete weather condition representation and uncertainty issues identified in the SAR 

near KLEB are not isolated to this operation. ES operations are frequently performed in remote 

areas with few weather observation stations available. Thus, it is common that ES pilots are 

required to assess weather-related risk in areas where conditions may be incompletely represented. 

There are three common issues pertaining to ES pilots assessing weather-related risk during ES 

operations. They are as follows:  

 

i. ES operational areas often do not contain enough weather observation station 

datapoints to depict topographically distinct areas between weather observation 

stations, and METAR observations presented on weather displays can be up to an 

hour old. This can cause weather conditions between weather stations to be uncertain 

or incompletely represented on weather displays.  
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ii. Weather displays do not indicate how incompletely represented weather conditions 

between weather stations can affect weather-related risk. Pilots who are unaware of 

these risks have a diminished ability to identify weather that is unsuitable for flight.   

iii. ES pilots more frequently fly low-altitude flight profiles, near variable terrain, and 

in dynamic weather which fluctuates between MVFR and IFR conditions. An error 

in weather assessment under these circumstances, due to incomplete weather 

information, is more likely to result in an unintended transition into IMC, controlled 

flight into terrain, or even a fatal aviation accident.  

 

Making flight decisions when weather conditions are uncertain can be dangerous, especially 

for pilots performing LAO near dynamic terrain. If the ES pilots from the SAR near KLEB had 

additional low-altitude weather observations from within the search area, weather conditions 

would have been more completely represented, and weather condition uncertainty would have 

been reduced. Furthermore, if the ES pilots’ weather displays depicted and alerted pilots to areas 

where there was a higher risk of a transition into IMC, the pilots could have more correctly 

identified weather-related risk in areas where weather conditions were the most uncertain. A pilot 

who is more capable of identifying risk would be better equipped to decide when marginal weather 

is suitable for flight, and when it is not. This means that additional time could have been spent in 

the air looking for the wreckage and flight in hazardous weather would be avoided. Although the 

Learjet pilots did not survive this accident, there are plenty of other ES operations in which downed 

or missing aircraft yield survivors. When cold or harsh weather is approaching, flying in 

appropriate marginal weather could mean the difference between rescuing an accident survivor 

and delays of weeks or months before finding the remains of an accident victim. 

The decision to fly in marginal weather is more difficult than the decision to fly in very calm 

or very hazardous weather. In marginal weather, small changes in atmospheric conditions can turn 

previously flyable weather into IMC or weather that is unsuitable for flight. These small changes 

in conditions are often not depicted in aviation weather displays, especially when considering that 

data may be geographically sparse or that data may be old, and conditions degraded. This can 

cause instrument conditions to be present, but not represented by nearby METAR observations on 

a weather display; A pilot flying through an area with unrepresented IMC would be more likely to 

get into a weather-related accident. Therefore, if weather conditions in the vicinity of a weather 
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station are incompletely represented on a weather display, then it may not be obvious that IMC 

exists, and it would be difficult to correctly assess the weather-related risks associated with flight 

through that area.   

Because weather condition misrepresentation is partially caused by geographic sparsity in 

the dataset, an idealized solution might include more sensor coverage (more weather observation 

stations) providing weather information to more completely represent weather conditions in the 

areas between weather stations. This would reduce weather condition uncertainty and mitigate the 

chances of an unintended transition into IMC. However, the cost and time associated with 

constructing and maintaining this many weather stations make the idea logistically and financially 

impossible. Furthermore, applying this concept across the area of the United States is even more 

infeasible. But what if areas where there is a high risk of transitioning from MVFR to IMC could 

be depicted on weather displays without using a closely packed array of weather stations? And, 

what if there were a cheaper and more flexible option to gather weather observations? To examine 

these possibilities, the impact of incomplete representation of weather conditions in the areas 

between weather stations can be characterized in greater depth.  

3.2 Incompletely Represented Weather Conditions Between Weather Observation 
Stations  

To estimate weather conditions along a flight path, a pilot must examine weather 

observations at nearby weather stations and geographically interpolate weather conditions between 

those stations. There are several factors that can make this interpolation more difficult, including 

increased distance between weather stations, the rapidity at which conditions are changing, more 

dynamic terrain, and closer proximity to large bodies of water or mountains. Because all weather 

stations have some distance between them, weather conditions between stations are never perfectly 

represented by METAR observations. This causes weather conditions between stations to always 

be somewhat uncertain. However, increased distance between stations, older weather observation 

data, and larger variations in weather conditions near weather stations can each cause METAR 

observations to not completely represent weather conditions in the vicinity of a weather station: If 

weather conditions between weather stations are incompletely represented by METAR 

observations (especially when terrain or other features exist between those stations), then weather 

conditions in the areas between stations are also more uncertain to pilots performing weather 
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assessment. Again, for most GA pilots, weather condition uncertainty can be managed by 

implementing larger safety margins in weather-based flight decisions. This means that a GA pilot 

observing marginal weather over a flight profile can decide not to fly: the risk of a weather-related 

accident outweighs the reward of the GA pilot flying. However, lives are dependent on 

successfully flying ES operations, even in MVFR conditions. For the ES pilot, the risk-reward 

balance in much more in favor of flying. ES operations often occur in remote locations, where 

weather observation stations are sparse. Therefore, ES pilots often cannot see detailed, current 

weather conditions at the site of operations and must be able to geographically interpolate weather 

conditions across a much wider area. This is problematic, as interpolation over a spatial plane is 

difficult, particularly when datapoints are scarce. One study found that “spatial interpolation in 

those parts of a region with few climate data was not accurate and precise when compared to other 

areas with more climate data” (Bhowmik & Costa, 2014, para. 2).  

In Figure 9, a visual depiction map with a flight profile from San Luis County Airport (KSBP) 

to Porterville Municipal Airport (KPTV) demonstrates how dynamic terrain and large distances 

between weather stations can cause actual weather conditions between stations to be uncertain. 

Both airports are located in California. Conditions near the flight path vary greatly, and are being 

reported as VFR, MVFR, and low IFR. There are several factors that indicate that actual weather 

conditions in Figure 9 may be more complex than what is being represented in the Figure. Terrain 

between the two airports is mountainous, with peaks ranging from 3,000’ to 5,000’. There are no 

weather stations directly between the airports, and KSBP is located near the coast. These factors 

indicate that weather conditions between the weather observation stations may be considerably 

different than what is being reported by the METAR observations at those stations. Therefore, 

there is a risk that the weather conditions between observation stations are being incompletely 

represented. This causes pilot assessment of weather conditions along the flight path to be 

uncertain and increases the chances that an error will be made during weather assessment. Consider 

how difficult it would be to geographically interpolate weather conditions across the flight path, 

or in the area contained by the black box, as shown in Figure 9. Are conditions VFR, MVFR, or 

are the IFR and unflyable? Does the low IFR weather reported at Atascadero indicate IFR 

conditions are present on the flight path, or do the VFR conditions observed at Delano indicate 

that conditions are suitable for flight? How will conditions change in the hour it takes to fly the 

route? How do weather conditions at the peak of the mountains differ from those reported on the 
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ground at the airports? Most GA pilots can alleviate weather-related concerns by choosing instead 

to fly on a day where weather conditions are not MVFR and are not on the boundary of being 

unsuitable for flight. Here, uncertain weather conditions have a less impactful influence on risk. 

For example, if each weather station in Figure 9 were reporting VFR, the weather-related “safety 

margin” in the risk assessment would be greater. However, it is critical that ES pilots fly if weather 

conditions are suitable, even in MVFR conditions. ES pilots must be able to accurately assess 

weather-related risk in marginal conditions, including over areas where conditions may be 

incompletely represented and are more uncertain.  

 

 

Figure 9. Terrain and varying METAR observations cause weather conditions to be uncertain 
between KSBP and KPTV. Visual depiction map created using ForeFlight 

Weather conditions change over time and METAR data is uploaded once per hour to the 

AWC. As METAR observations approach being an hour old, it is more likely that actual conditions 

differ from what is being reported on weather displays. Similarly, it is more likely that weather 
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conditions between weather stations are incompletely represented by METARs on weather 

displays as METAR data ages. Performing weather assessment using old data is problematic. It 

has been shown that delayed information flow can negatively influence a decision-maker’s 

performance (Caldwell, 1997). Similar to how greater distances between weather stations can 

cause weather conditions between stations to be uncertain, older data can introduce addition 

uncertainty into a pilot’s assessment of weather conditions. As shown by a long history of research, 

including the Beer Distribution Game (Sterman, 1989), humans are notoriously deficient at 

accounting for information delay in a dynamic decision-making process.  

Weather condition assessment is complicated by how conditions vary in time and space. 

Consider the hail prediction model shown in Figure 5; The single variable of hail has a multitude 

of factors influencing if hail was to be expected or not. Now consider that hail is just one of many 

weather variables that a pilot must consider when making a decision to fly. Each weather variable 

changes with time and varies in severity over geographic space. Furthermore, consider that small 

changes in these variables can turn MVFR conditions into IMC or unflyable conditions. 

Identifying these small changes on a weather display is difficult. If weather stations have large 

distances between them, or if weather observation data is old, the difficulty of identifying these 

changes in weather-related risk is increased. This is problematic for a pilot evaluating risk in 

MVFR conditions. It would be easy to incorrectly assess risk if weather conditions between 

stations are incompletely represented by METAR observations, especially if unrepresented IMC 

exists in the area.  

3.3 Cognitive Bias in ES Pilot Decision-Making 

GA pilots are often deficient in disseminating presented weather data (Beringer & Ball, 2003; 

Wiggins, 2014), and such deficiencies are exacerbated when risk is not obvious due to 

incompletely represented weather conditions. In a weather data presentation simulation, qualified 

pilots showed significant variance when estimating turbulence intensity based on radar displays 

(Wiggins, 2014). Another study found that variations in weather symbology presentation, 

including how METARs, SIGMETs, and lightning strikes were presented within weather displays, 

can affect a pilot’s perception of weather (Ahlstrom, 2015). While clearly and concisely presented 

weather information can better a pilot’s ability to interpret data (McAdaragh, 2002), uncertainties 
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in presented data can cause pilots given the same data to arrive at different conclusions about 

weather conditions (Beringer & Ball, 2003; Wiggins, 2014). 

A variety of theories exist as to why pilots presented with the same data may arrive at 

different conclusions. Event-based anchoring refers to the decision-making process in which 

previous experiences influence a decision-maker’s cognitive bias. This is related to recognition-

primed decision-making, in which a bias is reinforced when that bias leads to a correct decision in 

a previous situation (Patterson et al., 2009). A cognitive bias speeds up the decision-making 

process and can reduce cognitive load. While this is advantageous for efficient decision-making, 

this can also lead to an incorrect, and sometimes fatal, flight decision for pilots.  

Relying on a cognitive bias to correctly disseminate weather data is problematic. Researchers 

found that pilots often place more emphasis on weather data obtained earlier in a flight, and do not 

properly adjust to changing weather conditions (Walmsley & Gilbey, 2016). The researchers 

indicated that pilots who were exposed to an initial good forecast felt confident in continuing a 

simulated flight, whereas pilots exposed to an initial bad forecast tended to divert their flights even 

when it was unnecessary (Walmsley & Gilbey, 2016). A pilot’s cognitive decision bias must 

consider the effects of incomplete weather condition representation, so that risk can be more 

accurately assessed. The most severe weather-related risks are associated with an unintended 

transition into IMC; a pilot who can identify areas where there is a high risk of an IMC transition 

would have developed a cognitive bias that can more accurately consider these risks.  

3.4 Pilot Risk Analysis in ES Operations  

ES pilots experience additional factors that make accurate risk analysis more critical than 

in other GA applications. ES operations are focused on specific, high-risk, and time-sensitive task 

accomplishment. In general, high-risk team performance settings have little availability for error, 

and there is a high penalty for failure to complete objectives (Caldwell, 1997). People’s lives, 

property, and well-being are highly dependent on the successful completion of ES operations. 

Depending on the scale of the response, ES operations may require the coordination of numerous 

aircraft and ground teams, with each team containing multiple individuals and multiple modes of 

communication. As the size and complexity of the response increases, as does the need for 

effective and efficient teamwork, and larger teams can lead to lower cohesion and less response 

flexibility (Salas et al., 2017). ES decisions are often made using incomplete or delayed 
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information (Worm, 1999), and information delay limits an operator’s ability to effectively 

respond to a dynamic and time-critical situation (Caldwell, 2014). Making a decision correctly and 

quickly becomes increasingly more important in multi-agent, dynamic, time-sensitive, team 

settings such as ES operations, as small errors may have serious, unforeseen, and irreversible 

consequences (Worm, 1999).  

Flying low-altitude flight profiles for extended periods of time, near rapidly varying terrain, 

and in marginal weather, presents significant risk and leaves little room for pilot strategic 

replanning in the event of human error or mechanical plane performance issues. Such flight 

profiles leave the pilot, aircrew, and aircraft operating at the boundary of the operational envelope; 

temporally, operationally, and in crew capability. Longer periods of time in the air and less time 

to rest between flights can lead to an increased chance of human error and degraded crew 

performance. These problems are exacerbated by flying in marginal weather, and ES pilot are more 

likely to fly in such conditions.  

ES pilots have a higher overall workload due to having additional tasks and responsibilities. 

While this is necessary for ES task accomplishment, a higher workload can also negatively affect 

overall team performance (Caldwell & Garrett, 2010). In addition, circumstances yielding life or 

death outcomes can evoke decision makers to be more likely to take risks (Wang, 1996), and the 

FAA found that the more important a flight is, the more a pilot is susceptible to compromising 

their personal weather minimums (FAA, n.d.).  

The time-sensitivity of tasks, uncertainty of event information, criticality of mission 

success, and the high-risk team performance setting makes correct pilot decision making more 

critical in ES operations. Yet, the high cognitive workload, increased chances of unfavorable 

weather, high external pressure to fly, and the life-saving potential of ES operations leaves ES 

pilots more likely to fly in hazardous weather. ES pilot decision-making is too critical to be 

complicated by unnecessary risk. While certain risk factors stemming from the operational 

constraints of ES missions cannot be changed, improving weather-related risk assessment would 

better the chances of ES operational mission success.  

3.5 ES Pilot Decision-Making & Signal Detection Theory  

Signal Detection Theory (SDT) is a model that depicts decision making under uncertainty 

(Lerman et al., 2010), and can be used to examine how ES pilots make flight decisions in marginal 
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weather using a weather display that incompletely represents weather conditions. Depicting flight 

decisions using SDT can demonstrate the effect that weather condition uncertainty can have on the 

ES pilot decision-making process. SDT identifies a decision maker’s ability to detect a signal from 

background noise. In this case, the ES pilot is the decision maker and detecting unflyable weather 

is the signal. A decision maker’s level of sensitivity corresponds to how well they can identify that 

a signal is either absent or present: Sensitivity is the ES pilot’s ability to identify when weather is 

not suitable for flight. Figure 10 shows sensitivity (d’) as the distance between the peak of the 

noise curve and the peak of the signal curve. A higher sensitivity is represented by a greater d' 

distance; having a higher sensitivity means there is less of a chance that noise will be misdiagnosed 

as a signal. For an ES pilot, a higher sensitivity means it is easier to make the correct decision to 

fly in marginal weather, as well as not to fly when conditions may be worse than what is 

represented on weather displays by METAR observations. The line of criterion represents the 

boundary that separates the decision-maker’s response that a signal is either present or absent.     

 

 

Figure 10. Signal Detection Theory curves with no bias, adapted from Lerman et al., 2010  
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As shown in Figure 11, decision makers have a bias (ß), which influences whether they are 

more likely to determine that a signal is absent (a conservative bias), or that a signal is present (a 

liberal bias). High external pressure to fly leaves ES pilots with a conservative decision bias, 

meaning that pilots are more likely to determine the unflyable weather signal is absent and that 

weather is suitable for flight. In a completely unbiased decision maker, the line of criterion is 

equidistant from the peak of the signal and noise curves. In a conservatively biased decision maker, 

the line is closer to the peak of the signal curve. The opposite is true for a liberal bias.  

 

 

Figure 11. Signal Detection Theory curves with a conservative bias (left) and liberal bias (right), 
adapted from Lerman et al., 2010  

Bias is influenced by the severity of the consequences for detecting or failing to detect a 

signal, as well as prior experience (Lerman et al., 2010). If failure to detect the signal presents a 

catastrophic consequence, then the decision maker will likely have a liberal bias. A liberally biased 

decision maker would rather determine a signal is present and be incorrect, than to incorrectly 

determine a signal is not present. Without indicating how risk is affected by incompletely 

represented or uncertain weather conditions, an ES pilot’s decision bias is incorrectly calibrated. 

This type of incorrect calibration could produce the following error: a flight decision made using 

a weather display that perfectly (completely) represents conditions between weather stations would 

use the same criteria and bias as a flight decision made using a display where weather conditions 
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between stations are hazardous and incompletely represented. A correct decision in the first 

scenario would be incorrect in the second. 

Sensitivity is affected by factors that “change the amount of ambiguity in the stimulus 

situation” (Lerman et al., 2010, para. 6). Signal sensitivity is more easily visualized from the 

perspective of a pilot evaluating preflight weather conditions. A day with clear skies, 10 statute-

miles of visibility, and no wind would have no “unflyable weather” signal. In essence, the weather 

is very clearly suitable for flight, and the pilot’s decision to fly is not difficult. The same is true for 

a pilot deciding to fly on a day with hurricane-force winds and IFR visibility. Here, it is obvious 

that weather conditions are unsuitable for flight, and the pilot’s decision is equally as easy to make. 

The pilot’s sensitivity to correctly assess the unflyable weather signal in both situations is high. 

The signal gets much more difficult to assess in circumstances where the reported (or observed) 

weather conditions are marginal, but nearby weather conditions are incompletely represented. Here, 

small changes in actual weather conditions can turn safe MVFR weather conditions into conditions 

that are no longer suitable for flight. If weather conditions are incompletely represented on a 

weather display, then these small changes in weather conditions may not be shown, making it 

difficult or impossible for the pilot to identify that weather is now unsuitable for flight. Thus, the 

pilot’s sensitivity to detect or assess the unflyable weather signal is further reduced. 

Excluding ES pilots, the GA community generally flies in weather conditions where the 

unflyable weather signal is easy to assess (VFR conditions). There is no need for a GA pilot to risk 

flying in uncertain weather with so little reward. However, ES pilots are often required to fly in 

weather conditions or circumstances which cause the unflyable weather signal to be difficult to 

detect. This includes flight in marginal weather and in areas where weather conditions between 

weather stations are incompletely represented. Therefore, the ES pilot’s ability to assess weather-

related risk, and to detect unflyable weather, is reduced.  

There are four possible outcomes generated in SDT. The hit and correct rejection outcomes 

represent a correct decision, while the false alarm, also known as a Type I error, and miss or Type 

II error, represent an incorrect decision. Table 2 further details the outcomes of the SDT model 

and describes their relevance towards an ES pilot’s weather-related decision-making. For ES pilots, 

a correct “go” decision (correct rejection) is equally as important as a correct “no-go” decision 

(hit). Similarly, an incorrect “go” decision (miss, Type II error) can be just as harmful as an 

incorrect “no-go” decision (false alarm, Type I error). For the remainder of the GA community, 
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there is little consequence for an incorrect “no-go” decision (Type I error), and little additional 

benefit for a correct “go” decision (correct rejection) in marginal weather.  

Table 2. Signal Detection Theory outcomes for an ES pilot assessing weather for flight 

SDT Outcome Description Relevance Towards ES Pilots 

Decision-Maker: ES pilot 
Signal: Weather conditions that are unsuitable for flight  

Hit There was a signal present, and the 
decision-maker detected the signal. 

Non-flyable weather was detected, 
and the correct “no-go” decision 
was made. 

Correct Rejection 
There was not a signal present, and 
the decision-maker correctly 
identified the absence of a signal. 

The pilot determined the weather 
was flyable and the correct “go” 
decision was made. 

False Alarm 
(Type I Error) 

There was not a signal present, but 
the decision-maker incorrectly 
identified that a signal was present. 

The pilot incorrectly determined the 
weather was not suitable for flight 
and the incorrect “no-go” decision 
was made. 

Miss 
(Type II Error) 

There was a signal present, but the 
decision-maker failed to detect the 
signal. 

The pilot incorrectly determined the 
weather was suitable for flight and 
the incorrect “go” decision was 
made. 

 

A pilot assessing weather-related risk near weather stations reporting MVFR conditions 

must consider that (unreported) conditions in the vicinity may be IMC, but these IMC may not be 

represented on a weather display. A pilot who has successfully flown in marginal weather before 

would have a decision bias calibrated to accept that MVFR reported weather conditions are 

suitable for flight. Current weather displays do not provide pilots with an indication that 

unrepresented weather conditions may contain severe weather-related risks, nor do they indicate 

that weather conditions may be incompletely represented. Thus, if the same pilot were presented 

with another situation containing MVFR reported weather conditions, the weather display may 

look the same, but nearby conditions in the vicinity may be IMC and unflyable. The cognitive 

decision bias derived from the first scenario would provide an incorrect flight decision in the 

second. This would have caused an incorrect “go” decision to be made (Type II Error) and could 
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have resulted in an unintended transition into IMC or an aviation accident. The opposite could also 

be true. A pilot who has correctly decided not to fly given MVFR reported conditions would be 

more biased to reject MVFR conditions as suitable for flight. If MVFR were being reported by a 

METAR and nearby conditions were being represented completely by the METAR observation, 

then conditions in the vicinity would have been MVFR and flyable. Thus, the pilot who rejects 

these conditions as suitable for flight would be making an incorrect “no-go” decision (Type I Error).  

As previously noted, weather conditions in the vicinity of a weather station are more likely 

to be incompletely represented by a METAR observation if conditions in the vicinity are largely 

varied. Figure 12 shows the decision-making process for an ES pilot deciding whether or not to 

fly and demonstrates that, when weather conditions between weather stations have large variations, 

they may be incompletely represented by METAR observations. This can cause an ES pilot to 

decide to takeoff in weather that is unsuitable for flight (Type II Error), or to not fly when they 

could have (Type I Error). 
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Figure 12. ES pilot flight decision diagram and SDT 
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 METHODS  

Incompletely represented weather conditions between weather stations can cause risk 

assessment to be difficult for pilots, leading to Type I and Type II errors. Though weather-related 

risk cannot be removed entirely from ES operations, improving an ES pilot’s ability to identify 

weather-related risk would help ES pilots make safer and, when appropriate, more cautious flight 

decisions. The most severe consequences for an incorrect flight decision occur following an 

unintended transition into IMC, where the likelihood of aircraft accidents is higher. By depicting 

areas between weather stations where there is a high risk of transitioning from MVFR to IMC, 

Type I and Type II errors can be minimized where uncertainty about weather conditions is high.  

To identify areas where there is a higher risk of a transition from MVFR into IMC, a method 

must first be established to identify where weather conditions between weather stations are likely 

to be incompletely represented on weather displays. If hazardous weather, including IMC, exists 

in these areas, then it may not be shown on a weather display, and the risks associated with that 

hazardous weather would not be obvious to a pilot. This research uses a Kth nearest neighbor (KNN) 

analysis, based off the methodology from the PEGASAS regional weather data correlation study, 

to numerically identify areas between weather stations where weather conditions have more 

variation. If weather conditions in the vicinity of a weather station have more variation, then the 

METAR observation at that station is more likely to incompletely represent those nearby weather 

conditions. The KNN analysis was performed on a small test set of 15 METAR observation 

stations in California. The intent of the analysis was to demonstrate the feasibility of the 

methodology using a real weather observation dataset. Once these areas have been identified, 

further evaluation can be used to determine areas where there is a higher risk of transitioning from 

MVFR and into IMC. This process is further detailed later.    

4.1 Identifying Areas Where Weather Conditions are More Likely to be Incompletely 
Represented Using a KNN Analysis  

The PEGASAS regional weather data correlation analysis demonstrated that variable 

weather conditions across a region can be identified by comparing weather station data. In the 

PEGASAS analysis, average monthly weather station variation trends were assessed over regions 

containing several weather observation stations. The KNN analysis used in this research assesses 
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the completeness of weather condition representation between stations by comparing METAR 

observations. Weather condition representation is assessed over smaller geographic areas 

compared to those used in the PEGASAS study. In addition, the KNN analysis evaluates weather 

observations at a single instant in time, instead of evaluating average monthly trends.  

The KNN analysis measures the distance, known as KNN-distance, between a selected point 

and its K nearest neighbors. Weather stations were given an incomplete weather condition 

representation score based on how well reported METAR observations represent nearby weather 

conditions. A higher incomplete weather condition representation score indicates that conditions 

in the area surrounding a weather station are more variable, and therefore the METAR observation 

at that station is more likely to incompletely represent weather conditions in the surrounding area. 

For this analysis, K was chosen to be three, meaning that a weather station’s score was calculated 

by comparing its own observation to those of its three nearest neighbors. The nearest neighbors 

were the three closest weather stations to the station being evaluated, as measured by the KNN-

distance. The KNN-distance is not simply a measure of geographic distance between weather 

stations; in some cases, geographic distance may not recognize differences in climate zones or 

intervening terrain variations between stations. Instead, KNN-distance was a function of similarity 

in a weather station’s observed conditions and relative geographic distance from one station to its 

nearest neighbors. The method to calculate KNN-distance is further detailed below.  

The KNN analysis demonstrates the process to gather, classify, and analyze weather 

observation data to numerically identify areas where weather conditions between stations are more 

likely to be incompletely represented by METAR data. For simplicity, and to more easily visually 

depict how incomplete representation is communicated to pilots, the KNN method considered only 

visual depiction status and geographic distance between weather stations as input parameters. The 

observation stations used in the analysis are shown on a visual depiction map in Figure 13. Each 

weather station was given a weather condition score based on the reported condition on the visual 

depiction map. VFR conditions were given a score of 1, MVFR a score of 2, IFR a score of 3, and 

low IFR a score of 4. As a note, an example flight profile from KBUR to KSBD is later examined 

to identify the applications of these technologies. This shown by the cyan line.  

 



 
 

54 

 

Figure 13. California weather stations used in the KNN analysis. Visual depiction map created 
using ForeFlight 

Next, 15 scatter plots were created, one for each weather station. For each scatter plot, one 

station was chosen to be evaluated to determine if nearby weather conditions had large amounts 

of variation. The station chosen to be evaluated is referred to as the station of evaluation. The 

amount of variation in weather conditions between weather stations was evaluated by comparing 

METAR data and distances between the station of evaluation and its nearest neighbors. The scatter 

plot coordinates were generated as follows: the geographic distance from each point to the station 

of evaluation was represented on the x-axis, and the numerical score representing weather 

condition was on the y-axis. Two of the 15 scatter plots created are shown in Figure 14, one with 

respect to KWHP and one with respect to KEMT. On each plot, the station of evaluation is shown 

as an orange dot.  
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Figure 14. Scatter plot of distances from the station of evaluation (shown by an orange dot) vs. 
weather conditions observed. Distances are relative to KWHP (left) and relative to KEMT (right) 

Using the scatter plots, the KNN analysis was performed to evaluate if weather conditions 

between the station of evaluation and nearby weather stations had large variations. If weather 

conditions surrounding the station of evaluation were largely varied, then it is likely that the 

METAR observation at that station does not completely represent weather conditions in the 

surrounding area. Figure 15 shows how the KNN-distance is calculated using the relative 

geographic distance from the station of evaluation and the weather condition score: Relative 

geographic distance is the x-component of the KNN-distance and the difference (∆) in weather 

station score is the y-component. For the KNN method to more accurately predict where conditions 

between weather stations were more variable, the x-axis and y-axis had to be scaled such that 

KNN-distance was more heavily dependent on the difference in weather condition score than on 

relative geographic distance. To do this, both the x-axis and y-axis were normalized, and an 

empirically derived distance-coefficient (𝛾) was multiplied to the relative geographic distance. 

Equation 1 shows how the KNN-distance was calculated using the distance-coefficient.  

 

 

𝐾𝑁𝑁	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 	/(∆	𝑤𝑒𝑎𝑡ℎ𝑒𝑟	𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛	𝑠𝑐𝑜𝑟𝑒)! + (𝛾 ∗ 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)!											(1) 

							∗ 𝑊𝑒𝑎𝑡ℎ𝑒𝑟	𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛	𝑠𝑐𝑜𝑟𝑒	𝑎𝑛𝑑	𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒	𝑎𝑟𝑒	𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑	𝑖𝑛	𝑡ℎ𝑒	𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 
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Figure 15. Mean KNN-distance depiction relative to KWHP (left) and relative to KEMT (right). 
Distances used in KNN-distance calculations were scaled according to equation 1 

The mean KNN-distance was calculated for each of the 15 weather stations, producing an 

weather condition incompleteness representation score for each. A high score indicates that 

weather conditions in the vicinity of the station of evaluation are more likely to be incompletely 

represented by the station’s METAR observation. The 15 scores were normalized and compared, 

and are shown in Figure 16. In Figure 16, those weather stations whose nearby observations differ 

from their own have a higher score. For example, KEMT has a high weather condition 

incompleteness representation score. This is justified in Figure 13; KEMT is depicting IFR but is 

surrounded by stations depicting VFR and low IFR conditions. KEMT is also more geographically 

distant from its nearest neighbors. Because weather conditions between KEMT and its nearest 

neighbors differ, weather conditions surrounding KEMT likely have more variation, and those 

varied weather conditions are more likely to be incompletely represented by the METAR at KEMT.  

By contrast, KWHP has a low weather condition representation score. Again, this value is 

illustrated in Figure 13, as KWHP and its nearest neighbors are each depicting VFR conditions: 

The weather conditions surrounding KWHP are relatively consistent, and the METAR observation 

at KWHP represents the actual weather conditions in the vicinity with reasonable completeness. It 

should be noted that there are nearby weather stations located south of the region depicted in Figure 

13. If these weather stations were included in the KNN analysis, KAJO would have had closer 

nearest neighbors, and would have had a lower incomplete weather condition representation score. 
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This issue was specific the boundaries of this analysis, and the problem would not persist if the 

analysis were performed on a larger scale.   

 

 

Figure 16. Normalized weather condition incompleteness representation scores  

The KNN analysis numerically identified weather stations whose METAR observations 

were less likely to completely represent weather conditions in the vicinity. This was done using 

two input parameters: visual depiction status and relative distance. This two-dimensional KNN 

analysis was relatively simplistic. However, should machine learning (ML) be used to expedite the 

analysis process, the number of input parameters that could be included in calculations, as well as 

the number of stations and KNN comparisons could be expanded for any given time period. 

Consider how the KNN-distance would be calculated if temperature were also considered. A third 

axis would be added to the scatter plot to represent each weather station’s temperature. Now, the 

KNN-distance would be calculated using three parameters: visual depiction status, relative 

distance, and temperature. Should other observed weather parameters such as wind, precipitation, 

visibility, cloud coverage, cloud types, icing, fog, humidity, and pressure be used as inputs, 
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additional axes would be added for each input. By considering additional components of an 

observation station’s METAR data, the KNN-distance calculation could evaluate weather 

condition variation between stations using a wider variety of parameters. This would allow for a 

more accurate evaluation of weather condition variation between the station of evaluation and its 

neighbors. Therefore, the KNN-score would more accurately reflect how a METAR observation 

represents weather conditions in the vicinity of the station.  

Considering time-dependent inputs in the KNN analysis would better reflect how weather 

condition representation on weather displays can become more incomplete over time. METAR 

stations report conditions hourly, and stations report observations at the same minute of the hour. 

This means that all weather stations would have the same age-of-data value, so a traditional KNN 

approach would not consider this parameter in assessing weather information representation. 

However, an age-of-data coefficient could be used as a situational factor to adjust the final KNN-

distance answer (say, if additional METARs from other sensors are included, or a weather station’s 

METAR reporting is compromised). Data that is older would have a higher age-of-data coefficient, 

resulting in a larger KNN-distance and indicating that weather conditions between stations are 

more likely to be incompletely represented. Results from the PEGASAS weather data correlation 

study showed that certain months have greater weather condition variations within the same 

geographic area than others. A seasonal parameter could be used to reflect these differences. In a 

similar way, a time-of-day parameter could be included if average weather condition variability 

were higher during specific periods of the day (daytime, nighttime, dusk, dawn, etc.).  

The ML algorithm would be trained using a supervised approach, meaning that the algorithm 

would be presented with labeled datasets, which allows the model to learn and become more 

accurate over time (Brown, 2021). These labeled datasets would be presented as a map containing 

weather stations and their respective METAR data. The data can be visualized as a multivariate 

scatter plot, similar to what is shown in Figure 15. Areas where weather condition variation is high 

between stations would be manually labeled, and the ML algorithm would begin identifying 

patterns that can predict these areas in the labeled datasets. As the algorithm is trained, new 

relationships may be identified. Just as the relative distance was given an empirically derived 

distance-coefficient (𝛾) in the two-dimensional KNN approach, each parameter added to the 

multivariate KNN analysis would also be given its own coefficient. The ML algorithm could 

manipulate these coefficients as it identifies that certain parameters are more indicative of 
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incomplete weather condition representation than others. Some parameters may not be used at all, 

due to relative insensitivity of those parameters in determining variations in weather conditions 

due to terrain, climate zone, or other effects. After being sufficiently trained, new datasets could 

be analyzed by the algorithm to test the fidelity of the model and show that the algorithm can 

consistently and accurately identify areas where weather conditions between stations are highly 

variable and are therefore likely to be incompletely represented at a particular time (and thus of 

real-time value to ES pilots). As PIREPs, AMDAR data, and data from weather observations 

drones are collected, these data could also be used as input parameters. 

4.2 Identifying and Depicting Areas with a High Risk of MVFR to IMC Transition  

Further analysis is needed before areas with an increased risk of an MVFR to IMC transition 

can be identified. It is not sufficient to simply note that a METAR observation may incompletely 

represent weather conditions in the vicinity. A pilot may wonder, how close to or how far from the 

weather station are conditions completely represented? The answer to this question would be 

specific to the time, location, local geography, and meteorological dynamics of each weather 

station. Thus, this research does not seek to answer this question specifically. Instead, this research 

identifies regions where weather conditions may be incompletely represented by using weather 

stations as the vertices of polygonal areas. By doing so, each area could be given a regional 

condition representation incompleteness score based on the KNN-distance calculations. This 

process is demonstrated in Figure 17, using triangular sections. The process to calculate each 

section’s score is as follows: Each side of the triangle would be given a station-to-station weather 

condition incompleteness representation score, equivalent to the KNN-distance between the two 

stations. By calculating the mean score of all the sides of the triangle, an weather condition 

incompleteness representation score can be assigned to the entire area. A higher mean score 

indicates that weather conditions in the area are more likely to be incompletely represented by the 

available METAR observations. Notably, this also indicates that a pilot would be less accurately 

certain about weather conditions in the area when assessing safety for flight.  
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Figure 17. Identifying areas where weather conditions are incompletely represented using KNN 
scores. Visual depiction map generated using ForeFlight 

Larger differences in observed weather conditions, greater terrain / climate zone variability, 

and greater geographic distance between stations increases station-to-station scores. For example, 

in Figure 17, the score between KCQT and KBUR is the highest (7.534) because these two stations 

have the highest possible difference in weather conditions (one is VFR and the other is low IFR), 

and because they are also moderately geographically spaced apart. Alternatively, the score 

between KONT and KCNO is the lowest (0.370), because their reported weather conditions are 

the same and they are geographically close to one another.  

A flight through the red-shaded area in Figure 17 would be more likely to encounter 

hazardous weather that is not directly depicted by the METAR observations. Oppositely, a flight 

through the green-shaded area in Figure 17 is likely to encounter weather conditions similar to 

what is depicted by the surrounding METAR stations. This is a critical difference; A pilot could 

underestimate weather-related risk within the red-shaded area if they were too heavily focused on 

the VFR METAR observation at KBUR. However, weather-related risk can be correctly assessed 

using any of the METARs observed at the weather stations forming the green-shaded triangle.  

The final step in this analysis is to identify areas where incompletely represented weather 

conditions could cause an unintended transition into IMC to occur. This can be done by evaluating 
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how weather conditions within a region change from one vertex to another. If the METAR 

observation at one vertex of a triangle is reporting MVFR conditions, and another vertex is 

reporting IFR, it is reasonable to assume that somewhere between the two, a point exists where 

weather conditions transition from MVFR to IMC. This is known as crossing the MVFR to IMC 

boundary. It can also be assumed that this boundary is crossed if one station is reporting VFR, and 

another is reporting low IFR.  

There are two criteria used to identify areas where there is a high risk of MVFR to IMC 

transition: (1) Weather conditions within an area are at risk of being incompletely represented by 

available METAR observations, and (2) weather conditions between two of the vertices of the area 

logically indicate crossing the MVFR to IMC boundary. By identifying that the MVFR to IMC 

boundary is crossed in an area where weather conditions may be incompletely represented, one 

can identify where IMC may exist near a weather station, but may not be represented by that 

weather station’s METAR observation. This is critical: because those IMC are not represented by 

the nearby METAR, a pilot making a decision to fly using that METAR would have a high risk of 

unintentionally transitioning into IMC.  

Figure 18 demonstrates the process to evaluate if areas contain a high risk of an MVFR to 

IMC transition. In Figure 18, the red-shaded triangle has two sides that cross the MVFR to IMC 

boundary. The upper right side of the red-shaded triangle transitions from VFR to IFR conditions, 

while the lower left side transitions from VFR to low IFR conditions. In contrast, the yellow-

shaded triangle does not cross the MVFR to IMC boundary, and the green-shaded triangle does 

not cross the MVFR to IMC boundary, nor are the weather conditions in the area likely to be 

incompletely represented by the available METAR observations.  
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Figure 18. Depicting areas where there is a high risk of transitioning into IMC. Visual depiction 
map created using ForeFlight  

There are three primary reasons why the KNN analysis was chosen as the method to evaluate 

where high-risk MVFR to IMC transition areas exist. First, as shown in Figures 16 and 17, the 

KNN analysis provides a method to quantitatively evaluate weather condition variation within 

regions surrounded by several weather stations, which in turn allows weather condition 

representation to be numerically analyzed. Second, the distance equation can be modified to 

accommodate as many additional parameters as needed. Equation 1 uses a Euclidean distance to 

calculate KNN-distance. If additional parameters were included, the distance could be calculated 

in higher dimensions. Finally, each parameter can be scaled within KNN-distance calculations 

according to how greatly it is associated with weather condition variation (and incomplete 

representation on a weather display). This would be done by using a multiplicative coefficient for 

each parameter in the KNN-distance equation. Equation 1 demonstrates how the multiplicative 

distance-coefficient (𝛾) is used to scale the geographic distance parameter in the KNN-distance 

calculation.  

Once areas are identified where there is a high risk of transitioning from MVFR and into 

IMC, they must be depicted on weather displays in a manner that does not restrict a pilot’s ability 

to interpret other information. ES pilots have a higher task-load than other GA pilots and have 
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reduced mental capacity available for interpretation and decision making regarding weather data 

presentation. It is therefore critical that the presentation of this information is easily disseminated 

and is not cognitively intensive. One study identified several ergonomic principles that graphic 

weather data presentations can use to make comprehension and interpretation easier. These 

principles include making critical information the most apparent, representing data visually, using 

color-coding, reducing visual noise, using redundancy to reinforce critical messages, and keeping 

displays consistent (O'Hare & Stenhouse, 2008). Table 3 lists each of these ergonomic principles 

and identifies how they can be used to depict these areas on a pilot weather display. 

Table 3. Ergonomic principles to consider when depicting areas where there is a high risk of 
transitioning into IMC on pilot weather displays, adapted from O’Hare, 2008 

Ergonomic Principle Use in Depicting Areas Where There is a High Risk of 
Transitioning into IMC 

Make critical information 
the most apparent  

• Areas of with a high risk of MVFR to IMC transition 
would be depicted using bright red shading on weather 
displays. 

• A notification box would also indicate these areas.  
• Text alerts could flash to draw the attention of the pilot.  

Represent data visually, 
use color-coding, and 
reduce visual noise 

• The color of the shading could correspond to the severity 
of the risk. Bright reds would indicate areas with higher 
risk, while yellows could indicate areas with mild risk.  

• Unnecessary data would be hidden so that the display is 
not crowded.  

• Pilots would have the ability to hide shaded areas to 
declutter the map.  

Use redundancy to 
reinforce critical messages 

• Areas with a high risk of MVFR to IMC transition would 
be shaded in bright red on the map.  

• Text warning messages would also be displayed near high-
risk areas to add redundancy.  

Keep displays consistent  • The text color of alerts would keep consistent with other 
aviation presentation systems. Critical information would 
be displayed in red text, non-critical cautionary messages 
would be displayed in yellow text, and other non-critical 
information would be displayed in black text. 

• The “declutter” feature would function like other aviation 
weather displays: pilots could declutter a display in one 
motion (a key stroke, or a turn of a menu dial). This is 
considered a safety feature, so that unnecessary 
information can be hidden in emergency situations.  
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4.3 Verification Methods for the KNN Analysis 

The KNN analysis should be examined to verify that the model can predict with reasonable 

accuracy areas where IMC may exist. Generally speaking, if an area is identified as having a high 

risk of an MVFR to IMC transition, one would expect that IMC would be frequently observed by 

METAR observations in that area (a METAR in that area would be reporting IFR or low IFR 

conditions). Similarly, if another region is identified as not having a high risk of an MVFR to IMC 

transition, one would expect not to see IMC observed in that area (VFR or MVFR conditions 

would be reported).  

The KNN analysis identifies that there is a risk of an IMC transition across a region by 

evaluating where unrepresented IMC may exist. It does not suggest that all areas of that region 

will contain IMC. Therefore, it is possible that a weather station could be reporting MVFR 

conditions yet be located in an area which is identified as a high-risk IMC transition area. However, 

by conducting a statistically significant number of verification tests, one could identify if high-risk 

IMC transition areas frequently contain IMC observations within the region.  

Figure 19 demonstrates the method to conduct such verification tests.  In this method, a KNN 

analysis was performed over two regions. Within each region, one METAR observation datapoint 

was excluded from the dataset. The first region (shown by a red triangle in Figure 19) included 

KBUR, KEMT, and KHHR. The first region excluded the METAR observation at KCQT. The 

second region (shown by a green triangle in Figure 19) included KPOC, KCNO, and KSBD, and 

excluded the METAR observation at KONT. In Figure 19, KCQT (the excluded datapoint in 

region 1) is reporting low IFR conditions and is located within a region identified as having 

unrepresented IMC. The KCQT METAR was not included in the regional KNN calculation, but 

the low-IFR observation supports the claim that unrepresented IMC exists in this region. A similar 

but opposite case is shown in the second region. In Figure 19, KONT (the excluded datapoint in 

region 2) is reporting VFR conditions and is located in a region identified as not having 

unrepresented IMC. The VFR METAR observation at KONT supports the claim that 

unrepresented IMC does not exist in this region.  
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Figure 19. KCQT and KONT are excluded in KNN analysis calculations during verification 
testing. Visual depiction map created using ForeFlight  

There are other weather observation data that could be used in verification analyses. FAA-

certified observation data such as PIREPs or AMDAR reports could be used in place of the 

excluded METAR observation datapoints. Also, weather data gathered through drones or other 

weather observation datasets (such as MesoNet reports) could be used. Both the agriculture 

industry and energy providers have weather observation networks to monitor local weather 

conditions. It is not recommended by the FAA to use non-certified weather observations to make 

tactical piloting decisions, as these observations are not as strictly standardized as those available 

on the AWC. However, these observations could still serve as a useful tool during the KNN model 

verification process.   

4.4 Introducing Additional Weather Observations to the Dataset to Improve Weather 
Condition Representation  

As demonstrated in the KNN analysis, an increased geographical distance or terrain 

variability between weather stations increases the chances that weather conditions are more 

variable between observed conditions at those weather stations. This increases the chances that a 

METAR observation incompletely represents conditions in the surrounding area. By reducing the 
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geographic distance between weather observations, risk of variability regarding weather conditions 

can be more completely represented, and uncertainty about weather conditions can be reduced. 

When provided with additional weather observations, as well as a display that shows regions where 

there is a high risk of transitioning into IMC, an ES pilot performing LAO in marginal weather 

would have an improved ability to assess weather-related risk.  

Three emerging technologies are noted here as mechanisms to provide additional weather 

observations to ES pilots: hands-minimized PIREP submission software, AMDAR reporting 

technology, and weather observation drones. Each of these technologies could be enhanced by the 

promised improvements of a 5G network. However, there are perceived challenges associated with 

the rollout of 5G networks and their interaction with aircraft systems. These challenges must first 

be discussed so that realistic applications of a 5G network can be proposed.  

In 2021, the Federal Communications Commission granted mobile wireless industries the 

authorization to utilize the radio spectrum ranging from 3.7 to 3.98 Gigahertz (Rogers, 2022), 

known as the C-Band (APLA, 2022). By using the C-Band to provide wireless services, companies 

can provide customers with faster wireless internet upload and download speeds, at higher 

resolutions, and with better coverage across more areas of the United States. The mobile wireless 

service network utilizing the C-Band is more commonly referred to as a 5th Generation (5G) 

network.  

Compared to radio spectrum ranges used in previous generations of cellular networks, the 

frequency spectrum of 5G networks is much closer to the frequencies used in aircraft radar 

altimeters (NBAA, 2022). The FAA and others in the aviation industry are concerned that C-Band 

signals used in 5G networks could interfere with radar altimeters used in commercial aircraft, 

causing erroneous altitude readings (APLA, 2022). This is problematic, as data from radar 

altimeters are integrated into the landing capabilities of commercial aircraft (APLA, 2022). The 

overwhelming concern among FAA officials is that 5G networks will cause inaccurate radar 

altimeter readings in a commercial aircraft, interfere with landing equipment or altitude-based 

landing systems operations, and cause an aviation accident.  

The FAA has proactively taken several steps to mitigate signal interference issues caused by 

5G networks. First, the full rollout of 5G networks using the C-Band has been delayed until it can 

be shown that C-Band signals will not interfere with aviation systems (APLA, 2022). Also, 5G 

transmitters within 2 nm of an airport runway will not be turned on for a period of time (APLA, 
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2022). Furthermore, 5G transmitters near over 50 airports will be operating at a reduced power 

until July of 2022 (APLA, 2022).  

Fortunately, there is some evidence supporting that 5G networks and aviation systems can 

exist together without complication. In a statement, the FAA reported that two radar altimeters 

common to a variety of Boeing planes have been approved for use in areas with 5G network 

transmission (Rogers, 2022). In addition, GA aircraft do not have the same complex landing 

systems that large commercial aviation aircraft have. Thus, GA aircraft typically do not require 

radar altimeters to initiate or inform landing systems and landing capabilities in GA aircraft will 

likely not be inhibited by 5G signal interference. Furthermore, ES operations typically occur 

further than 2 nm from airports, beyond the area where 5G transmitters will not be turned on.  

Financial investments for 5G network development and infrastructure have been a 

significant emphasis for the mobile wireless industry. There is a substantial amount of pressure to 

push the FAA to find aviation solutions so that 5G networks can be rolled out in their entirety. 

Because of this, it is reasonable to assume that the FAA will eventually find solutions, 

countermeasures, or mitigations to persisting C-Band signal interference issues. Even if 5G 

networks were to rollout with some of the existing restrictions still imposed, such as 2 nm no-

transmission zones near airports, there would be less of an effect on remote ES operations. This 

research assumes that 5G networks will eventually rollout and be usable to support ES operations. 

Due to the criticality of radar altimeter signal interference issues, this research does not recommend 

any 5G applications that directly require 5G network transmission within 2 nm of an airport.  

The improved capabilities of a 5G network enable certain weather observation reporting 

technologies to be used to an extent beyond that which was previously possible. 5G networks offer 

higher bandwidth and faster data transmission rates. This means that more information can be 

transmitted to, from, and between aircraft and ground-stations. This information can include 

PIREPs and AMDAR reports. The hands-minimized PIREP submission software, developed by 

the PEGASAS team, demonstrated that pilot reporting via radio can be autonomously translated 

into PIREPs using ML techniques. However, analyzing all pilot radio chatter, converting relevant 

weather reporting data into PIREPs, and uploading PIREP data to the weather observation dataset 

would require significant data transmission. The anticipated capabilities of a 5G network would 

allow for a larger amount of communication data to be analyzed, turned into PIREPs, and uploaded 

through network transmission. Similarly, the frequency at which AMDAR data is reported could 
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be increased with improved network bandwidth. Currently, AMDAR data is reported at a 

frequency of every 6 seconds in the first 90 seconds after takeoff, every 20 to 60 seconds during 

decent, and every 3 to 7 minutes during cruising (“Aircraft Meteorological Data Relay”, n.d.). It 

is proposed that a 5G network would be able to support AMDAR reports at consistent intervals of 

6 seconds throughout the flight.  

Introducing both PIREPs and AMDAR data into a weather observation dataset allows for a 

wider variety of meteorological phenomenon to be represented. AMDAR data is gathered via 

atmospheric sensors mounted on an aircraft. Weather data such as temperature, wind, and pressure 

can be reported with relatively high accuracy. Certain weather phenomena can also be more 

specifically reported through PIREPS, because they require additional pilot interpretation to be 

identified. These phenomena can include volcanic ash, wave turbulence, or icing (“Aircraft 

Meteorological Data Relay”, n.d.).  

PIREPs and AMDAR reports both require aircraft to be flying when observations are taken. 

Unfortunately, this means that these types of observations provide little benefit during prefight 

weather assessment. However, a drone outfitted with weather observation capabilities could be 

deployed during preflight assessment to gather additional weather observations. There is 

significantly less financial, operational, and human risk associated with flying drones in marginal 

weather. Unlike other aircraft, no people are harmed if a drone crashes during a preflight 

assessment. Drones can also be flown at very low altitudes, and in areas where low-altitude flight 

is otherwise too hazardous for crewed aircraft. If weather observations are needed with reduced 

geographic separation, or within a region of high terrain variability, a swarm of drones could be 

deployed to gather an array of low-altitude weather observations. Controlling a drone swarm and 

transmitting weather observations would require substantial network bandwidth. A 5G network 

has the capability to handle such transmission rates (Sunil et al., 2020), allowing drone swarms to 

be used to report weather observations.  

 

 

  



 
 

69 

 RECOMMENDATIONS AND ANALYSIS 

Depicting areas on a weather display where a pilot would have a high risk of an MVFR to IMC 

transition would improve an ES pilot’s sensitivity to detect weather-related risk. Providing 

additional weather observations through PIREPs, AMDAR reports, and a swarm of weather 

observation drones would improve weather condition representation between existing weather 

stations, decrease uncertainty about potentially dangerous variability in weather conditions, and 

increase the “unflyable weather” signal strength. The combination of these technologies would 

help ES pilots perform more accurate weather assessment, allowing them to execute ES operations 

more confidently in marginal weather.  

5.1 Primary Technology Application: ES Low-Altitude Operations  

The primary application of the proposed technologies includes any ES mission flying LAO, in 

marginal weather conditions, near variable terrain, and with access to a 5G network. As mentioned, 

this does not include 5G network use within 2 nm of an airport, due to concerns with C-Band signal 

interference issues. To examine how using these technologies would benefit ES pilot decision-

making, a demonstrative SAR operation near Bob Hope Airport (KBUR) in California is proposed, 

and the advantages of using a weather display that depicts areas where there is an increased risk 

of MVFR to IMC transition are detailed. Although this SAR operation is fictitious, it is plausible 

in its nature. Figure 20 shows an event and decision-flow diagram of the SAR operation and 

identifies how decision-making can be improved in the scenario by using these technologies.   
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Figure 20. Event and decision-flow diagram for an example SAR operation 
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make safer flight decisions

Correct decision to continue flight in 
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Without additional information, ES 
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Consider a VFR pilot departing KBUR with the intent of flying to San Bernardino Airport 

(KSBD). As shown by the visual depiction map in Figure 21, KBUR and KSBD are reporting VFR 

conditions at the time of departure. Based on these weather observations, the pilot determines that 

weather conditions are safe for flight. However, weather conditions between the weather 

observation stations are incompletely represented by the METAR observations at KBUR and 

KSBD, and IMC exists between KBUR and KSBD. Shortly after taking off, the VFR pilot 

inadvertently transitions into IMC. Because the pilot does not have IFR training, they have trouble 

keeping the correct heading without a visual reference available. The pilot unintentionally veers 

northward, toward the peak of Mount Bliss (3,678’ mean sea-level). Before the pilot can realize 

their mistake, they lose control and collide into the terrain. After the aircraft fails to arrive at their 

destination within 30 minutes of their ETA, a SAR is initiated to find the missing pilot and crew. 

Figure 21 displays the flight path on a visual depiction map, along with the area where there was 

an increased risk of transitioning from MVFR into IMC.  

 

 
Figure 21. Demonstrative flight profile from KBUR to KSBD, including areas with an increased 

risk of MVFR to IMC transition. Visual depiction map created using ForeFlight 

Unfortunately for the downed pilot, the aircraft did not contain an ELT, but ES operators 

determine that the accident most likely occurred somewhere in the mountains north of KEMT. By 

the time the search is started, METAR observations at KEMT are reporting marginal weather. 

Mountains in the search area present ES pilots with a high risk of accidental controlled flight into 
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terrain. ES pilots deciding to takeoff must weigh the risk of flying in marginal weather near 

hazardous terrain, with the reward of potentially saving the lives of the pilot and crew of the 

downed aircraft. The hazardous terrain and low-altitude search profiles leaves little room for 

corrective action in the event of aircraft mechanical failure or pilot error. Temperatures outside are 

moderate, but incoming precipitation would limit the survivability time of the victims in the 

accident. Thus, the ES pilots have extremely high pressure to fly, and there is a strong conservative 

bias in the pilots’ decision making.  

Because SAR is a highly time-sensitive operation, ES pilots must make a decision to fly now 

or risk compromising the mission. There are no weather observation stations in the search area, 

and recent METAR data is nearing being an hour old. While the few weather data that the ES pilots 

have indicate that the weather is marginal and flyable, any worsening of conditions would call for 

the mission to be grounded until conditions improve.  

Due to the lack of weather observation stations in the search area, uncertainty about actual 

weather conditions within the area of operations is high, and it is difficult for ES pilots to assess 

weather-related risk and make a decision to fly or not. More than just the lives of the accident 

victims are at risk. Should one of the ES aircraft crash during the operation, the marginal weather 

and dangerous terrain would limit a response to recover the downed ES pilots, and the SAR 

response for the original accident victims would be diminished. However, not flying at all means 

that there is zero chance that the accident victims will be rescued. Due to the high variability and 

large distances between METAR observations surrounding the search area, weather conditions 

could be worse than what is presented, or they could be better. Other weather reports such as radar, 

the HEMS tool, and TAFs indicate that conditions are marginal, and don’t provide sufficient 

evidence to definitively prove that weather conditions are either safe or too dangerous for flight.  

To improve their ability to assess weather-related risk, the ES pilots deploy five weather 

observation drones to gather weather observations within the search area. Utilizing the available 

5G network, the drones begin broadcasting their weather observations immediately. The drone and 

METAR data are depicted on a weather presentation, similar to what is shown in Figure 22. As 

noted, by the time the search has started, conditions at KEMT have changed from IFR to MVFR. 

A KNN analysis is performed on the data and a low KNN score indicates that weather conditions 

in the search area are being represented by the observations with relative completeness. The 
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previously uncertain weather conditions within the search area are now known to be marginal with 

reasonably high confidence, and ES pilots can more precisely assess weather-related risk.  

 

 
Figure 22. Drone-based weather observations improve weather condition representation accuracy 

and pilot risk assessment. Visual depiction map created using ForeFlight 

By gathering additional weather observations through the weather drones, the ES pilots are 

confident that weather conditions between observations in the search area are now more 

completely represented on the weather display. The pilots decide that the risks of low-altitude 

flight are acceptable here and the correct “go” decision to takeoff is made. As the ES aircraft enter 

the area of operations, the weather observation drones descend to an altitude of 200’ AGL to avoid 

a mid-air collision with other aircraft. While en-route and while performing searches, AMDAR 

observations are reported every 6 seconds from the aircraft. As the ES pilots communicate with 

one another, weather-related information is converted to standard PIREP format and uploaded to 

the weather observation database. AMDAR data, PIREPs, METAR data, and data from weather 

observations drones would be presented to pilots along with other commonly available AWC 

reports.  
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Assume that the aircraft wreckage is found. However, weather conditions have started to 

decline from MVFR to IFR, and the weather conditions between weather observations are now 

represented less completely. Areas where there is a high risk of an MVFR to IMC transition are 

identified through the KNN analysis and are being depicted through red shading on the pilot 

weather displays, similar to what is shown in Figure 23. After seeing this, the pilots begin 

performing more conservative risk assessments in the higher risk areas. Where a pilot would 

confidently fly in an area where marginal weather was reported before, they may now avoid such 

areas because weather conditions may be worse than they appear on the weather displays: 

“instrument conditions may be present but not depicted”. Pilots assess that weather-related risk is 

high and choose to depart the search area and return to KEMT. Flights en-route to KEMT are 

directed to remain east of the higher risk area. This proves to be a correct decision, as hazardous 

weather is entering the search area from the west.  

 

 
Figure 23. Areas with an increased risk of transition into IMC are identified near the search area 

using METAR and drone data. Visual depiction map created using ForeFlight  

Finally, the ES pilots make a safe landing at KEMT. By using weather observation drones 

during the preflight weather assessment, weather conditions were more completely represented in 
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the search area and ES pilots were able to make the correct decision to fly in marginal weather. 

During the mission, PIREPs and AMDAR data helped the pilots to assess risk during dynamic 

weather conditions. By depicting that there was an increased risk of a transition from MVFR into 

IMC on the weather displays, pilots were alerted to severe weather-related risks that were 

otherwise not obvious. Overall, depicting these high-risk IMC transition areas, but also identifying 

those areas where the risk of an IMC transition was lower, allowed the mission to be successfully 

completed in weather conditions that the pilots would not have otherwise flown in.  

If the ES pilots performing the preflight weather assessment were not aware that incompletely 

represented weather conditions can contain severe or hidden risks, an incorrect flight decision 

could have been made. Consider how the situation would have changed if the initial weather 

conditions were similar to those shown in Figure 23: the western border of the search area has 

instrument conditions and there is an increased risk that flight near that area would result in an 

unintended transition into IMC. If the ES pilots had not deployed the drones to gather additional 

weather observation data, the pilots may have flown directly into dangerous weather conditions. 

Deploying weather observation drones during the preflight weather assessment allows weather 

conditions to be more completely represented on weather displays, which allows more informed 

flight decisions to be made.   

5.2 Application Towards the Broader GA Community 

It is apparent that the application of these technologies is of most benefit to ES pilots flying in 

marginal weather. However, this does not preclude that this technology has applications in the 

greater GA community. Although GA pilots do not have the same pressures to fly in marginal 

weather, those choosing to do so would benefit if they were alerted to areas where a transition into 

IMC is likely to occur. While ES aircraft are prime candidates to be outfitted with AMDAR 

reporting technology, AMDAR reporting is by no means restricted to ES aircraft, and non-ES 

aircraft used in commercial applications already have such technology onboard. It is feasible that 

GA aircraft could also use AMDAR reporting technology during low-altitude flight. Hands-

minimized PIREP submission software would also be a helpful technology to GA pilots, even 

though they do not experience as high of a task-load as ES pilots do.  

It is unlikely that a GA pilot would need weather data at the resolution provided by an array of 

weather observation drones. Furthermore, the cost and logistics of operating a drone swarm 
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frequently would deter its use when not absolutely necessary. However, as demonstrated in Figure 

21, a KNN analysis can still be performed using only METAR data. PIREPs and AMDAR data 

could be included in this analysis as they are made available. A GA pilot using these technologies 

as a decision-support tool, in combination with other AWC reports, would be more likely to avoid 

an unintended transition into IMC.   

As a local technology feasibility exercise, the author considered how this technology could be 

used by the GA community at Purdue University Airport, which has one of the busier Class D 

airspaces in the country. Here, dozens of pilots and instructors are performing takeoffs, landings, 

and flight maneuvers in the vicinity of the airport. Flight maneuvers, takeoffs, and landings are 

considered critical phases of flight, because errors are more likely to have higher consequences. 

Pilots alerted to areas where an MVFR to IMC transition is likely could avoid weather-related 

decision errors during critical phases flight. For example, a pilot alerted to high-risk IMC transition 

areas could better identify hazardous weather when performing power-off stalls, making it less 

likely that unanticipated hazardous weather conditions cause the stall to develop into an 

uncontrolled spin. Similarly, a student-pilot could more easily see that preflight conditions are 

unsuitable for flight and make a correct “no-go” preflight decision. Moreover, a student on their 

first solo cross-country could adjust their route to avoid areas where they are more likely to 

transition into IMC.  

5.3 Technology Requirements  

Controlling a drone swarm over a network requires a strong emphasis on cybersecurity. 

While it is important to protect against malicious intent, it is also important that accidental network 

interference is avoided. Drones would need to have the “intelligence” to descend to and hover at a 

safe altitude in the case of a loss of network coverage; the risk of a collision with a drone due to 

unintended drone behavior must be minimized. The drones must have sufficient battery life to fly 

to the area of operations, report weather observations, and fly back. The size of a drone swarm 

could be adjusted to accommodate location remoteness, search area size, and the area’s potential 

for rapidly changing weather conditions. A larger search area with more rapidly changing 

conditions would prompt a larger drone swarm to be used.  

AMDAR data should have relatively high accuracy to avoid introducing an additional layer 

of uncertainty into the dataset. Like a METAR, an AMDAR report could contain wind information, 



 
 

77 

temperature, dewpoint, and atmospheric pressure. More sophisticated AMDAR equipment could 

also report visibility and precipitation measurements. Although the reporting frequency was 

suggested to be every 6 seconds, being able to manipulate that frequency would provide the 

capability to accommodate varying levels of network availability.  

Speech recognition errors in the hands-minimized PIREP technology must also be 

minimized. It is also important to consider that PIREP data is generated via pilot interpretation and 

is subject to the pilot’s discretion. For example, one pilot may report moderate turbulence, but 

another may report the same conditions to be heavily turbulent. This range of possible actual 

conditions must be considered in weather analysis and weather data presentation.   

The ML algorithm must have a sufficiently large training dataset to accurately calibrate the 

KNN model. Training datasets should target those areas where there has historically been a higher 

concentration of accidents due to incomplete weather condition representation. These areas have 

highly variable terrain and quickly changing local weather conditions. Examples of these areas 

include the LA basin, the Grand Canyon, and coastal regions near the Great Lakes during the 

winter season. Similarly, regions with a geographically sparse array of METAR stations and 

regions with a geographically dense array of METAR stations should be included. The age of the 

METAR data in training datasets should range from recently observed to an hour old. Datasets 

should be taken from various seasons and from different times of the day.    
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 DISCUSSION 

6.1 Technology Application in the Missing Learjet Accident  

Pilots in the SAR response to find the two missing Learjet pilots near KLEB would have been 

able to better assess weather-related risk if they were alerted to areas where there was a high risk 

of an MVFR to IMC transition, or if they were provided with additional weather observations in 

their area of operations. Not unlike the example SAR operation near KBUR, in many ways, the 

KLEB SAR was a worst-case scenario: weather conditions were marginal, terrain surrounding the 

airport was variable and hazardous, and only two weather stations existed in the search area. To 

fly meant that ES pilots had an opportunity to rescue the pilots, but such flights came with 

significant risk. Not to fly, however, meant that the accident victims had no chance to be saved at 

all. There was high pressure and a high reward for the ES pilots to fly the mission, but the operation 

was time-sensitive, high-risk, and a lack of weather observation stations made accurate risk 

assessment difficult.  

Consider how weather assessment in the search response could have benefitted if additional 

weather datapoints were available. Weather observation drones could have been spaced in an array 

within the search area. An example weather data presentation near KLEB using fabricated weather 

observation drone data is shown in Figure 24. Areas where there is a high risk of a transitioning 

from MVFR into IMC are depicted by red shading. Using a presentation such as this, an ES pilot’s 

ability to assess risk and make correct flight decisions would be improved. The added weather 

observations would improve the strength of the “unflyable weather” signal assessment and 

improve a pilot’s sensitivity to identify that unflyable weather. Providing a cautionary message to 

pilots that an area has a higher risk of an MVFR to IMC transition, in addition to depicting the 

information through shading, would adhere to the redundancy principle identified by O’Hare & 

Stenhouse (O'Hare & Stenhouse, 2008). 
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Figure 24. Learjet accident location relative to Lebanon Municipal Airport (KLEB), shown on an 
example weather display with drone data and a depiction where the risk of an MVFR to IMC 

transition is high. Visual depiction map created using ForeFlight 

In the Learjet response, aircraft were flying various search patterns at 500’, 1,000’, and 

2,000’ AGL (Rossier, 1998). Once these aircraft had entered the search area, the swarm of weather 

observation drones could descend to 200’ AGL. If ES aircraft were equipped with AMDAR 

reporting equipment, then weather data observations would be generated at 200’, 500’, 1,000’, and 

2,000’ AGL within the area of operations. Providing pilots with this amount of weather 

observations would help weather conditions to be more completely represented on weather 

displays in both the surface plane and in the vertical column. In areas with mountains, a change in 

altitude from the surface to 2,000’ is not trivial when assessing variations in weather conditions. 

Mountain waves can cause wind directions to oscillate between blowing towards and away from 

the mountain, and on a very small geographic scale. Mountain waves also cause severe low-
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altitude turbulence, updrafts, and downdrafts. Each of these conditions are somewhat 

unpredictable in how close to the ground and how far from the mountain they will occur. Including 

additional weather observations across the spatial and vertical plane would give pilots additional 

insight into these weather phenomena and help them avoid areas of dangerous weather conditions.  

6.2 Locations and Circumstances for Greatest Benefit  

The proposed technology applications are of greatest use in situations where the signal 

sensitivity regarding unflyable weather is low. In terms of atmospheric conditions, this primarily 

refers to marginal weather, and a pilot’s signal detection / discrimination capability is particularly 

reduced in areas where weather stations are few and far between. However, as noted when 

discussing the KNN analysis methodology, weather conditions can cross the MVFR to IMC 

boundary without MVFR conditions being reported in METAR observations. A pilot flying 

between two stations depicting VFR and IFR would also be at risk of unintentionally transitioning 

into IMC. This pilot would have made an incorrect “go” decision (Type II Error). The same is true 

if the weather stations were reporting VFR and low IFR; MVFR is not depicted, but the risk of 

transitioning through MVFR and into IMC is still present.  

Using the proposed technologies where a 5G network is available enables weather observation 

reporting equipment to be used to its fullest potential. Without an available 5G network, AMDAR 

data could not be reported at the desired frequency, the amount of pilot radio chatter analyzed for 

PIREP conversion would be reduced, and drone swarm control would be limited. However, areas 

lacking 5G network coverage could still benefit from partial implementation of the proposed 

technologies, albeit at a reduced operational capacity. AMDAR reports could be generated at the 

current standard rate of every 3 to 7 minutes during flight, hands-minimized PIREP submission 

software could be used to help air traffic controllers submit PIREPs in a more traditional manner, 

and single weather observation drones could be flown, instead of a swarm. 

6.3 Benefits to ES Pilots and the Broader GA Community  

Alerting pilots that they are at risk of flying from MVFR and into IMC would be an effective 

method to improve pilot situational awareness and risk assessment, and would reduce aviation 

accidents caused by an unintended transition into IMC; These types of accidents are the most 
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frequent cause of aviation fatalities. Providing additional weather observations using PIREPs, 

AMDAR data, and drone swarms would allow the risk of dangerously variable weather conditions 

between stations to be more completely represented and would give pilots additional insight into 

weather conditions about which they would have been previously uncertain. Particularly during 

LAO in marginal weather and near rapidly varying terrain, this would improve a pilot’s ability to 

make informed flight decisions and would reduce the chances of spatial disorientation and 

controlled flight into terrain.  

Using weather observation drones provides flexibility in the geographic location and altitude 

where observations can be taken, and the density of the swarm can be changed to accommodate 

varying ES operational area sizes. Similar to how a finite-element analysis performs more detailed 

and higher resolution calculations in areas where stress is highest, drones can be strategically 

placed in areas where dangerous and risky weather conditions are more likely to be incompletely 

represented by weather observation station reports. This allows for a more detailed analysis to be 

performed on an as-needed basis. For example, drones placed on the backside of a mountain ridge 

could observe conditions in an area where mountain waves cause frequent and significant changes 

in weather conditions. The autonomous or semi-autonomous nature of drones also means that 

human lives are not at risk by taking weather observations at low altitudes, over dangerous terrain, 

or in potentially hazardous weather. Drones are becoming more cost-effective, which reduces the 

financial risk associated with the loss of an observation drone.  

It is commonly taught in private pilot instruction to aviate, navigate, and then communicate. 

The order of these operations is critical, as a pilot must maintain safety and control over an aircraft 

before any other task can be performed. This also indicates that communication can only occur 

once safe flight and navigation have been established. PIREP submission is a form of 

communication and submitting PIREPs already has a lesser priority than other required 

communication tasks, such as pilot-to-ATC instruction (in a controlled airspace) or pilot-to-pilot 

traffic pattern calls (in an uncontrolled airspace). It is reasonable to assume that, once all aviation, 

navigation, and required communication tasks have been completed, that a pilot has little 

remaining time or attention to give towards submitting PIREPs. Using hands-minimized 

technology to submit PIREPs is much less time-consuming and cognitively intensive than the 

traditional method of doing so. The ES pilot, whose cognitive budget is already strained by other 

ES-related tasks, would benefit most from using this hands-minimized technology, and using the 
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technology would allow ES pilots to submit more PIREPs while maintaining focus on completing 

mission objectives.  

The KNN analysis demonstrated that areas between weather stations where variability in 

weather conditions is more likely to be incompletely represented by METAR observations can be 

numerically evaluated. Improved awareness of such variability and increased risk of transitioning 

from MVFR into IMC can be of significant value to ES pilots.  Should a ML algorithm be trained 

using a KNN approach, areas of weather condition variability and observation incompleteness 

could be more accurately evaluated using a wider variety of input parameters. Depicting high-risk 

IMC transition areas would assist pilots in evaluating risk in weather assessment. A pilot who is 

alerted to the potential risks present among incompletely represented weather conditions could 

make safer and more informed flight decisions.  

The KNN analysis evaluated weather conditions using a METAR dataset captured at a single 

point in time. This contrasts with the PEGASAS analysis, which examined average monthly trends 

in the data. Both methods provide useful insight. However, the KNN methodology allows a current 

weather display’s data to be evaluated for areas where there is a higher risk of an MVFR to IMC 

transition. This means that a pilot assessing weather conditions could see if their flight path has a 

higher risk of crossing into an area with unrepresented IMC “right now”. 

The risks associated with incompleteness in weather variability representation and pilot 

uncertainty about weather conditions between weather stations are often invisible to pilots. 

Alerting pilots to these risks would help weather condition representation inaccuracies be a more 

informative factor in decision-making. As demonstrated by the flow chart in Figure 12, a decision 

bias that does not consider that weather conditions may be incompletely represented can ultimately 

lead to an incorrect flight decision being made. Alternatively, a decision bias formed by a pilot 

who is accustomed to performing weather assessment using a model that depicts high-risk IMC 

transition areas would be more likely to consider the effects of incompletely represented weather 

conditions between weather stations.  

Overall, the proposed technology applications would help ES pilots avoid an unintended 

transition into IMC and better consider the effects of incompletely represented weather conditions 

in the areas between weather observation stations. This would improve a pilot’s weather-related 

risk sensitivity. In LAO, during marginal weather and near highly variable terrain, where the 

penalty for incorrect flight decision is highest, alerting pilots that there is a risk of transitioning 
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from MVFR into IMC would help ES pilots fly less often in weather conditions that are unsuitable 

for flight, and more confidently fly in marginal weather when appropriate. This would result in 

fewer weather-related aviation accidents occurring, and flying more frequently in appropriate 

marginal weather conditions would increase the chances for ES mission success.  

6.4 Future Work & Limitations  

Several research activities conducted within the PEGASAS center of excellence program have 

the potential for future impacts.  The hands-minimized PIREP submission software prototypes 

developed by PEGASAS team members are still in a preliminary, non-deployable state.  Very 

specifically, PEGASAS is not meant to create or distribute market-ready products.  Therefore, any 

algorithms for analysis of pilot speech for PIREP phrases must be trained and commercially 

verified using a database containing a wide population of people, reporting a range of PIREPs, and 

with different accents and local phraseology included.  

Drone swarm technology has significantly advanced in recent years. However, before drone 

swarms can safely and reliably be used in aviation to this magnitude, additional work must be 

completed. Such work includes improving swarm control and navigation technology, introducing 

reliable failsafe modes and collision avoidance maneuvers, and verifying that drone swarm 

operation and control does not interfere with other aviation operations. The ability to control the 

drone swarm using a 5G network, and over the range and area required for an ES operation, must 

also be verified.  

The input parameters used in the KNN approach consisted of those available from METAR 

data and drone observations. PIREPs and AMDAR reports were proposed as other sources of 

usable inputs. However, if feasible, future analyses could also consider other weather reports such 

as radar, TAFs, SIGMETs, and AIRMETs. Considering parameters available from other weather 

information products could help identify the rapidity at which conditions in an area are changing, 

and therefore report on risks that weather conditions are incompletely represented by METAR 

observations.  

This study made several assumptions that must be discussed to examine the limitations of the 

research. Many of the proposed technologies were based off initial, low-fidelity or fundamental 

technology demonstrations. As noted above, many of these demonstrations require additional 

development or verification to be completed before being applicable to an ES or GA setting. The 
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methodologies to control, coordinate, or utilize a drone swarm is the topic of multiple theses or 

dissertations. The field is deep and complex, and this study assumed that drone swarm control and 

navigation would not be a limiting factor in the technology application. It was also assumed that 

drones could accurately and reliably take weather observations and function at the durations and 

distances seen in ES operations. It was also assumed that hands-minimized PIREP submission 

technology would be sufficiently developed by the time other relevant technologies are ready for 

use. Though several types of ML algorithms exist which could be applied to a KNN weather 

condition representation analysis, this thesis does not propose to assess strengths and weaknesses 

of specific algorithms or parameter assessment functions. No specific type of algorithm was 

identified, but instead general weather-related assessment using ML was shown to be feasible and 

it was assumed that an appropriate method would be chosen at the time that each of the other 

technologies are of a suitable technological readiness.   
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 CONCLUSION 

Weather conditions, and especially their variability, in the areas between weather observation 

stations can be incompletely represented by METAR observations. It is critical that ES pilots can 

assess how incomplete representation of weather conditions can influence weather-related risk. 

This is particularly true for ES pilots performing LAO in marginal weather conditions and near 

highly variable terrain, where the consequences for an incorrect flight decision are severe. The 

current ASOS / AWOS weather observation reporting system does not indicate how incompletely 

represented or uncertain weather conditions can affect risk. By analyzing available METAR 

weather observation data using a KNN analysis, areas where there is a high risk of transitioning 

from MVFR into IMC can be identified. Depicting these areas on aviation weather displays may 

help pilots better assess weather-related risks and would improve safety in pilot decision-making. 

To improve the representation of weather condition variability on weather displays, technological 

capabilities enhanced by 5G networks such as AMDAR reports, PIREPs, and swarm of weather 

observation drones could be used to collect additional weather observation data. When used in 

combination with other standard AWC resources, the additional weather observation data and 

weather displays can be combined to depict areas where there is a high risk of MVFR to IMC 

transition. Information about these increased weather-related risks would be a useful tool to 

support pilot decision making in marginal weather conditions. This would help ES pilots avoid 

errors in weather assessment and decision making, would increase the chances of ES operation 

mission success, and would decrease the likelihood of a weather-related aviation accident. 
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