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clustering visualization of the GSE132581 PV-ADSC data, here HS and MD
stand for PV-ADSC of HS and more differentiation, respectively. (B) Distri-
bution of predicted cell-wise flux of glycolytic and TCA cycle modules. Each
row is one cell, where row side color bar represents HS and MD PV-ADSC
by blue and orange, respectively. Each column is one module. The left five
columns (red labeled) are glycolytic modules from glucose to acetyl-CoA, the
CIT column (orange labeled) is the reaction from acetyl-CoA to Citrate, the
LAC column (yellow labeled) is the reaction from pyruvate to lactate, and
the right six columns (green labeled) are TCA cycle modules from citrate to
oxaloacetic acid. (C) The total loss (y-axis) for cases where different pro-
portion (x-axis) of cell samples have randomly shuffled gene expressions of
the pancreatic cancer cell line data. The baseline loss 0.1579 was computed
using the original expression profile of all 166 cells. (D) The sample-wise
and module-wise correlation (y-axis) between the true and predicted module
flux in synthetic data-based method validation with multiple repetitions, here
Cor=0.5775 (p=0.05) and 0.5778 (p=0.05) correspond to the sample-wise and
module-wise correlation, respectively. (E) Total loss (y-axis) computed un-
der 5-/10-fold cross validation (x-axis) vs baseline loss. (F) Convergency of
the total loss and four loss terms during the training of neural networks on
the pancreatic cancer cell line data. (G) Total loss (y-axis) computed from
the robustness test by adding 0%-35 artificial dropouts to the original data
(50.22% zero rate) vs baseline loss. (H) Sample-wise and module-wise correla-
tion (y-axis) of the module flux predicted from the data with 0%-35 additional
artificial dropouts with the module flux predicted from the original data. . .  147 

6.13 Boxplots of the predicted fluxes of Valine -> Succinyl-CoA, Isoleucine ->
Succinyl-CoA, Isoleucine -> Acetly-CoA, Glutathione -> Glycine + Cysteine,
Glutathione -> Glutamate, Glutamate -> Glutamine and predicted changes
in the abundance of Glutathione and Glutamate in the PV-ADSC of high
stemness (HS) and more differentiation (MD). . . . . . . . . . . . . . . . . .  149 

6.14 Convergency of the flux balance loss and non-negative loss during the training
of scFEA on the pancreatic cancer cell line data. The hyperparameters of the
two loss were set differently to form four experiments. The flux balance loss,
non-negative loss and total loss were blue, red and black-dash colored. . . . .  152 
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6.15 Application on two tumor scRNA-seq datasets, ROSMAP, and one breast
cancer spatial transcriptomics dataset. (A) UMAP-based clustering visual-
ization using predicted metabolic fluxes of the GSE72056 melanoma data, the
cell label was provided in original work. (B) UMAP-based clustering visual-
ization using predicted metabolic fluxes of the GSE72056, k-means clustering
was used for cell clustering. (C) UMAP-based clustering visualization using
predicted metabolic fluxes of the GSE103322 head and neck cancer data, the
cell label was provided in original work. (D) UMAP-based clustering visual-
ization using predicted metabolic fluxes of the GSE103322, k-means clustering
was used for cell clustering. (E) Distribution of predicted cell-wise flux of gly-
colytic and TCA cycle modules of GSE72056 melanoma data. Each row is
one cell, where row side color bar represents 8 cell types. Each column is
one module. The left five columns are glycolytic modules from glucose to
acetyl-CoA, the 6th column is the reaction from acetyl-CoA to Citrate, the
7th column is the reaction from pyruvate to lactate, and the right-most six
columns (8-13 columns) are TCA cycle modules from citrate to oxaloacetic
acid. (F) Distribution of predicted cell-wise flux of glycolytic and TCA cycle
modules of GSE103322 head and neck cancer data. Each row is one cell, where
row side color bar represents 9 cell types, respectively. The column is same
as (E). (G) UMAP-based clustering visualization using predicted metabolic
fluxes of the ROSMAP data. k-means clustering was used for cell cluster-
ing. (H) Convergency curve of the total loss and four loss terms during the
training of neural networks on the ROSMAP data. (I) Top accumulated and
depleted metabolites predicted in the AD neuron cells in the ROSMAP data.
The y-axis is metabolism stress level (or level of accumulation and deple-
tion), where a positive value represents accumulation while a negative value
represents depletion. The x-axis are metabolites in a decreasing order of the
accumulation level. (J) scFEA predicted flux rate of lactate product on the
spatial breast cancer data. The color of each point represents the spatial-wise
predicted lactate product rate. The spatial plot is overlaid on the tissue slice
image. (K) scFEA predicted flux rate of TCA cycle (citrate to 2OG) on the
spatial breast cancer data. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  155 
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ABSTRACT

The fast advancing of high-throughput technology has reinforced the biomedical research

ecosystem with highly scaled and commercialized data acquisition standards, which pro-

vide us with unprecedented opportunity to interrogate biology in novel and creative ways.

However, unraveling the high dimensional data in practice is difficult due to the following

challenges: 1) how to handle outlier and data contaminations; 2) how to address the curse

of dimensionality; 3) how to utilize occasionally provided auxiliary information such as an

external phenotype observation or spatial coordinate; 4) how to derive the unknown non-

linear relationship between observed data and underlying mechanisms in complex biological

system such as human metabolic network.

In sight of the above challenges, this thesis majorly focused on two research directions,

for which we have proposed a series of statistical learning and AI-empowered systems bi-

ology models. This thesis separates into two parts. The first part focuses on identifying

latent low dimensional subspace in high dimensional biomedical data. Firstly, we proposed

CAT method which is a robust mixture regression method to detect outliers and estimate

parameter simultaneously. Then, we proposed CSMR method in studying the heterogeneous

relationship between high dimensional genetic features and a phenotype with penalized mix-

ture regression. At last, we proposed SRMR which investigate mixture linear relationship

over spatial domain. The second part focuses on studying the non-linear relationship for hu-

man metabolic flux estimation in complex biological system. We proposed the first method

in this domain that can robustly estimate flux distribution of a metabolic network at the

resolution of individual cells.
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1. INTRODUCTION

Artificial Intelligence (AI) has been facilitating revolutions in various fields such as eco-

nomics, agriculture sciences, engineering, entertainment, and biomedical sciences. It is no

exaggeration to say that human being could not live without AI now. Without exception,

AI has enabled many new capabilities in biomedical sciences. For example, AlphaFold, as

a deep learning based program developed by Google’s DeepMind, got champion twice in

protein structure prediction Olympics [  1 ]. In the light of new technological developments,

the use of AI in biomedical research is paving the road to precision medicine to cure human

disease such as Alzheimer’s disease and cancer [ 2 ].

We now live in the age of “big data”, an era in which we have the capacity to collect

enormous bank of information. On one hand, the huge amount of data sets accumulated

in the past years provide good training and testing resources for AI development. On the

other hand, dramatically increased computational power boosts the development of new AI

frameworks. In biomedical research, it is possible to sequence an entire genome in fraction

of that time - just one day- due to the advent of next generation sequencing (NGS). Based

on the complete genetic picture including gene expression, gene fusions, splicing variants,

mutations/indels, the doctor can make personal plan of precision medicine. treatment plan

for every patient. What’s more, NGS still evolving rapidly and recent advancements such as

single cell RNA sequencing (scRNA-seq) and spatial transcriptomic (ST) have been achieving

significant progress in biomedical research in the last decade [ 3 ].

In this thesis, to solve two major challenges presented in Section  1.2 , we designed sev-

eral systems biology models. This thesis contains two major parts. The first part focuses

on identifying low dimensional latent subspace which represents disease heterogeneity and

disease subtypes. The second part focuses on establishing a systems biology model for hu-

man metabolic flux estimation based on deep learning. In this introduction, we will first

briefly introduce the NGS technologies and the biomedical datasets utilized in this thesis.

We will further present the current challenges and key contributions of this thesis, and then

summarize the relationship between two parts.
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1.1 Next Generation Sequencing Data

A Brief History of NGS

The sequencing field time point could back to 1953 when Watson and Crick discovered

double-helix DNA structure [  4 ]. After that, scientists have devoted a huge amount of effort

to propose the first DNA sequencing method, called Sanger sequencing [ 5 ]. At that time,

scientists could sequence only a few base pairs per year with this fragment-cloning method.

With the unremitting effort of scientists and industrial researchers, Next-generation sequenc-

ing (NGS) merged in late 1970 [ 6 ] and dominated for four decades. NGS represents deep,

high-throughput, in-parallel DNA sequencing technologies. The major difference of NGS

and Sanger sequencing is millions to billions of DNA nucleotide can be sequenced in parallel,

yielding substantially more throughput and minimizing the time and cost [ 7 ].

In the golden age of NGS, there are several milestones we should memory. In 1990, The

Human Genome Project formally began, involving the US, UK, France, Germany, Japan,

China and India [ 8 ]. The estimated finish time is 15 years. In 2000, a complete human

genome was finished by the Human Genome Project, thanks to advances of sequencing

analysis in the genomics field. In 2000, the National Center for Biotechnology Information

(NCBI) created a worldwide resource for gene expression studies, named the Gene Expression

Omnibus (GEO) [  9 ]. In 2003, ENCODE Project targeted to identify all functional elements

in the human genome was released [  10 ]. In 2005, The Cancer Genome Atlas (TCGA) project

begun, which applies high-throughput genome analysis technique to improve the ability to

diagnose, treat, and prevent cancer. It was supervised by the National Cancer Institues’s

Center for Cancer Genomics and National Human Genome Research Institute (NHGRI)

[ 11 ]. In 2010, the National Institutes of Health (NIH) launched the GTEx project in that

the objective is strengthening understanding the role of non-coding variants in tissue-specific

contexts [ 12 ]. In 2019, NIH reported that the prices of sequencing a complete human genome

was 942, beating Moore’s Law prediction [ 13 ] (Figure  1.1 ). Nowadays, “Omics” is a widely

used term for describing high throughput cataloging and/or analysis of cellular molecules

[ 14 ].
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Rapid progress in NGS technology also boost other fields such as bioinformatics and

transcriptome. Gene expression microarrays [ 15 ] dominated genomewide profiling during late

2000 before RNA-seq emerged. Microarrays is a hyridzation-based approach which profiles

predefined transcripts/genes through hybridization. Its principle brings several natural issues

which are not easily to overcome. These include varying background noise, requirements for

high RNA amounts, dependence of annotated probe sets included on the array, and lack of

precise quantification. Conversely, RNA-seq [  16 ] allows comprehensive qualitative and full

sequencing of the whole transcriptome. RNA-seq’s advantages for examining trasncriptome

fine structure such as the detection of novel transcript, allele-specific expression and splice

junctions [  17 ], which makes RNA-seq is a replacement of microarrays in the past long period

of time.

Single cell RNA sequencing (scRNA-seq)

In recent years, single cell RNA sequencing (scRNA-seq) technology has been achieving

significant influence ranging from cancer biology, stem cell biology to immunology [ 18 ]–[ 21 ].

Traditionally, to measure molecular states, bulk RNA-seq methods take average of signal

values from millions of cells in specific tissue. Although these bulk methods enable large

sample number due to low cost of sequencing, they have a low resolution to reveal the inside

of tissue. Thus they overlook the differences in cell population and treat cell homogeneous.

Figure 1.1. Morre’s Law Prediction.
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However, this could misrepresent signals of interest [  22 ], [ 23 ]. To solve this problem, scRNA-

seq technology are developed [  24 ] and provides an opportunity to analysis the composition

of tissues/organs and the diversity of cellular states, as well as to detect rare cell types [ 25 ].

With the clustering of cell types and measurement of gene expression distribution, we now

have the capability to characterize subpopulation structure, understand disease progression

and mechanisms of transcription regulation [ 26 ]–[ 28 ].

Smart-seq2 [  29 ] is the first frequently-used scRNA-seq platform. Smart-seq2 is a plate-

based full-length method which detected more genes in a cell, especially low abundance

transcripts as well as alternatively spliced transcripts [ 30 ]. Until 10X Genomics Chromium

(10X Genomics) emerged and triggered a rapid adoption of this revolutionized technology, it

has been broadly applied in translational or clinical research [  31 ]. 10X Genomics is a droplet-

based scRNA-seq technology, allowing genome-wide expression profiling for thousands of

cells at once. The number of unique molecular identifiers (UMIs) is considered as a direct

presentation of gene expression level. However, droplet-based scRNA-seq technology has

the distinctive feature of data is the increase sparsity, where data has a fraction of observed

“zeros” [ 32 ]. These observed zeros can be due to biological fluctuations in the measured trait

or technical limitation related to challenges in quantifying small numbers of molecules. The

word dropout has been previously used to describe both biological and technical observed

zeros, and thus led to a series of methods called scRNA-seq imputation to mitigate this issue

[ 33 ]–[ 37 ].

ScRNA-seq provides us the capability to depict the heterogeneity of single cell population.

However, scRNA-seq data does not provide insight into upstream regulatory networks or

downstream functional consequences. Recently, integrated single cell multimodal omics is

emerging as a hot topic for providing a comprehensive characterization in different aspect at

different genome level.

Spatial RNA sequencing (spRNA-seq)

One major issue of scRNA-seq is that it loses critical spatial information, which negatively

impacts the understanding of cell functionality and pathological changes [  38 ]. The reason is

the step of isolation of single cells during the necessary tissue dissociation step of scRNA-seq

destroys information on their spatial localization within native tissue and their proximities to
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each other. To circumvent this situation and study gene expression spatially, spRNA-seq was

developed recently [  39 ]. Specially, Nature Methods named spatially resolved transcriptomics

as the method of the Year in 2021 [  40 ]. Currently, 10X Genomics is the most widely used

spatial transcriptomics technology in biomedical research due to its affordable cost and

standard procedure [ 41 ]. Further, spRNA-seq enable the traditional research field of cell-

cell interactions/communications elevated from a simple ligand-receptor level to a higher

resolution level [ 42 ]–[ 45 ].

1.2 Challenges and Objectives

High throughput omics technologies are revolutionizing the fields of biological and biomed-

ical sciences, providing new capabilities to tackle unsolved biological problems. Recently, a

simultaneous profiling of multi-omics data of genome, transcriptome, epigenome, proteome,

and metabolome from same samples through different conditions enable the inferences of

biological functions and relations. Such data enables the study of the mathematical repre-

sentation form of the biological mechanism or phenotypic features in multi-omics data. As

the basic unit in transcriptional regulation, a gene is regulated by a wide range of mecha-

nisms that are used by cells to react to environmental stimuli or phenotypic demands. Thus,

functionally dependent genes are regulated together to meet the functional demand. This

mechanism has been well captured by gene co-expression analysis, by which strong linear

correlations of the expression of functionally dependent genes have been common observed.

Gene co-expression does not only exist in human normal development [  46 ] but also plays

an important role in disease conditions such as cancer [  47 ]. In addition, identifying linear

dependence in the high dimensional biomedical data is crucial for biomarker identification,

biological mechanism discovery, and guiding patient grouping to optimize clinical treatment

[ 48 ]–[ 50 ].

In short, our first part is subspace learning in biomedical data with existing of (1) out-

liers, (2) curse of dimensionality, (3) supervised external variable, (4) extra spatial infor-

mation. Unraveling the high dimensional data into contextual explainable subspaces is an

important problem in multiple fields. In biomedical research, identifying intrinsic subspace
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enable us the capability to explorer the hidden disease subtypes and understand the inherent

heterogeneity of pathogenesis. To enable a comprehensive characterization of the informa-

tion conceived in high dimensional biomedical data in studying disease subtypes, we develop

a series of new algorithms to solve four challenges: 1) eliminating the influence of

outliers and noise; 2) discovering multiple views of the biomedical data. Biological

omics data collect thousands of molecular variables from a set of samples (biospecimens).

One property of biological omics data is that the sample group and the underlying covari-

ance structure could be drastically changed based on different sets of molecular features,

and they tend to be aggregated differently depending on the different views of the molecu-

lar features; 3) detecting the sample subgroups if the optional external variables

provided. Thus, sample group derived by using an unsupervised approach is unnecessar-

ily biologically or clinically meaningful. An interesting problem is raised here, which is

to identify sample subgroups under the guidance of external information to maximize the

contextual meaningfulness; 4) identify subgroups of correlated molecular features

with spatial constraints, to simultaneously handle the spatial nonstationarity,

local homogeneity, and outlier contaminations.

The second part of this theses focus on solving a non-linear system, namely metabolism.

Human metabolism is the process by which cells and organisms obtain nutrients and en-

ergy to perform their functions. Many human diseases, including cancer, diabetes, obe-

sity, and metabolic disorder have been associated with altered metabolism. Understanding

these metabolic alterations at a systems level will help us to design a more efficient ther-

apies and treatments plan [  51 ]. In human metabolism study, Michaelis-Menten kinetics

formula is a core mathematical model [  52 ]. This model named after German biochemist

Leonor Michaelis and Canadian physician Maud Menten [  53 ]. As one of the best-known

models of enzyme kinetics, this model describes the rate of enzymatic reactions, by re-

lating reaction rate of formation of product to the concentration of a substrate. Due to

the non-linear dependence between rate of product formation and substrate concentration,

traditional linear model cannot handle related estimation. However, there is a lack of com-

putational model for human metabolic flux estimation due to several difficulties. Thus, our

second part is that proposing an efficient computational model for human metabolic flux estimation.
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In summary, computational challenges to estimate human metabolic flux arise from

the following aspects: 1) multiple key factors determine cell’s metabolic states,

including exogeneous nutrient availability, leading to the discrepancy of cell type

specific markers and metabolic phenotypes and states; 2) the whole metabolic

network is of high complexity, hence a proper computational reduction and re-

construction of the network is needed to reach a balance between resolution

of metabolic state characterization and computational feasibility; 3) the intri-

cate non-linear dependency between transcriptomic expressions and metabolic

reaction rates calls for a more sophisticated model to fully capitulate the rela-

tionships; and 4) alternative enzymes share such common effect to the metabolic

flux change remains largely unknown.

1.3 Outline

The rest of the thesis is divided into two parts.

The first part includes Chapters  2 ,  3 ,  4 , and  5 , and this part focuses on subspace learning

with mixture model. For this part, first in Chapter  2 a comprehensive literature review on

mixture model is presented, and the preliminaries of mixture model and related derivation

is provided. In addition, the notations and evaluation metrics are discussed.

• In Chapter 3, we describe CAT algorithm which consider simultaneous outlier detection

and robust parameter estimation to minimize the effect of outlier contamination.

• In Chapter 4, we describe CSMR algorithm which using an external variable to deal

with the challenges in studying the heterogeneous relationships between high dimen-

sional genetic features under supervised scheme.

• In Chapter 5, we describe SRMR algorithm which investigate mixture linear relation-

ship over spatial domain.

The second part focuses on human metabolism. This part includes Chapter  6 . In Chapter

6, we describe scFEA method which is the first capability to estimate human metabolic flux

at single cell resolution.
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Finally, in Chapter  7 , the conclusions are presented and several future research directions

are proposed.

1.4 Key Contributions

1.4.1 Subspace Learning

In part I, to identify the latent space in high dimensional biomedical data, we proposed

a set of mixture model based methods to handle three challenges in inferring subspace from

high dimensional biological omics data: (1) sample-wise outliers, (2) integration of external

demographic or phenotypic information of samples, (3) spatial information associated with

each sample.

First, we focus on solving the sample-wise outliers in subspace learning. Noted, parameter

estimation of mixture regression model using the expectation maximization (EM) algorithm

is highly sensitive to outliers. We proposed a fast and efficient robust mixture regression

algorithm, called Component-wise Adaptive Trimming (CAT) method. In this method,

we considered simultaneous outlier detection and robust parameter estimation to minimize

the effect of outlier contamination. Based on the framework of classification expectation

maximization (CEM), we implemented CAT algorithm. Under the framework of CEM, we

derived a novel definition of outliers which has been derived in a natural way. This method

has 3 key contributions:

1) We proposed a novel method which simultaneously identify outliers and estimate

parameters of mixture regression model, in a component-wise and adaptive way.

2) By introducing classification expectation maximization (CEM) framework to Finite

Mixture Gaussian Regression (FMGR), we provided a platform that migrates the robust-

ness issue from mixture regression to (single component) linear regression, for which LTS

estimators have been extensively studied.

3) We provided a natural definition of outlier which transforms the robustness issue from

a mixture model to its K linear regression components, thus the robustness issue could be

much easily handled give the tremendous amount of research conducted for robust linear

regression.
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Then, our interest moves to supervised clustering of high dimensional data because the

availability of external variable as auxiliary information. We proposed a novel supervised

clustering algorithm using penalized mixture regression, called Component-wise Sparse Mix-

ture Regression (CSMR), to deal with the challenges in studying the heterogeneous rela-

tionships between high dimensional genetic features and a phenotype. The algorithm was

adapted from the classification expectation maximization algorithm, which offers a novel

supervised solution to the clustering problem, with substantial improvement on both the

computational efficiency and biological interpretability. This method has 4 key contribu-

tions:

1) Detecting genetic markers associated with phenotype is crucial; however, existing pre-

dictive models have been challenged by disease heterogeneity. While unsupervised learning

can deal with heterogeneity, the defined clusters may not necessarily relate to the phenotype

of interest.

2) We proposed a supervised clustering algorithm based on the regularized mixture re-

gression model, which handles the high dimensional genetic features, and greatly improved

the computational efficiency over others. Specifically, it efficiently performs clustering, fea-

ture selection and hyperparameter tuning in the same process.

3) Evaluation on both simulated datasets and a real-world dataset for 500 cell lines and 24

drugs demonstrated the superior performance of our algorithm over the others. Particularly,

our algorithm is powerful in recapitulating the distinct subgroups hidden in the pool of cell

lines with regards to their comping mechanisms to different drugs.

4) Our algorithm represents a big data analysis tool with the potential to resolve the

complexity of translating the clinical representations of the disease to the real causes under-

pinning it. It has special relevance in the growing field of personalized medicine.

Finally, as emergence of spatial transcriptomic data, we try to extend our novel mixture

model by combining spatial domain. We propose a Spatial Robust Mixture Regression model

(SRMR) to investigate the relationship between a a response variable and a set of explanatory

variables over the spatial domain, assuming that the relationships may exhibit complex

spatially dynamic patterns that cannot be captured by constant regression coefficients. This

method has 3 key contributions:
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(1) We developed the very first computational concept of spatially dependent mixture

regression analysis.

(2) We provided the SRMR model that efficiently solves the spatially dependent mixture

regression problem, which is also empowered by a statistical inference approach to assess

regression significance.

(3) SRMR enables a new type of spatial segmentation analysis to detect overlapped

spatial regions of varied dependencies among subset of features, which have high contextual

meaningfulness.

1.4.2 Computational Modeling of Metabolic Flux

In part II, we developed a novel computational model, namely single-cell Flux Estimation

Analysis (scFEA) to estimate the relative rate of metabolic flux at single cell resolution from

scRNA-seq data. To the best of our knowledge, scFEA is the first capability to predict whole

human metabolic flux at the single cell resolution.

Specifically, scFEA can effectively solve the above challenges with the following compu-

tational innovations: (i) an optimization function derived based upon a probabilistic model

to consider the flux balance constraints among a large number of single cells with varied

metabolic fluxomes, (ii) a metabolic map reduction approach based on network topology

and gene expression status, (iii) a multi-layer neural network model to capture the non-

linear dependency of metabolic flux on the enzymatic gene expressions, and (iv) a novel neu-

ral network architecture and solution to maximize the overall flux balance of intermediate

substrates throughout all cells. In addition, both user friendly python package and online

server are available for either bioinformatics researcher or biology background researcher

without programming experience.
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1.4.3 Biologically Explanation Representational Learning of Biomedical Omics
Data

Subspace learning and human metabolic flux estimation represent two different research

topics and have different problem definitions and application. The major difference appears

in below respects:

1. The two topics have different assumption where subspace learning focuses on lin-

ear latent space identification while human metabolic flux estimation focuses on non-linear

relationship between gene expression and involved metabolic modules.

2. Different data representation form such as low rank decomposition, linear/nonlinear

dependency between certain features may suggests different biological mechanisms. For

subspace learning topic, we proposed several statistical models to identify the latent space in

biomedical data. For human metabolic flux topic, we proposed a machine learning method

to estimate the cell-wise human metabolic flux rate where the genes involved the metabolic

reaction and metabolic activity level have a nonlinear relationship.

3. Although two topics both interested in discovering mechanism of disease, human

metabolic flux estimation could provide us more insight from a metabolism aspect while

subspace learning emphasizes phenotype and gene biomarker.

However, the underlying reasons that drove the formation and design of these two topics

are same, which form the main theme of this thesis. In general, both topics focus on systems

biology models and utilize AI empowered data mining approaches to directly study biological

mechanisms from omics data. For both topics, we have 1) proposed a mathematical model, 2)

given a rational solution for proposed mathematical model, 3) provided biological explanation

or biological discovery based on the identified patterns in biomedical data.

In particular, there is a significant analogy between two topics as we have proposed system

biology models of real biological processes in both topics. Moreover, methods developed in

the two topics focused on providing biologically meaningful explanations to different features

collected in same omics data types. For example, the subspace learning approaches could

take bulk data, single cell transcriptomics data and spatial transcriptomics data as source.

And the metabolic flux estimation also uses single cell transcriptomics data or bulk data.
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With additional spatial transcriptomics data, metabolic flux analysis could provide more un-

derstanding considering cell-cell interaction. In addition, both two topics significantly boost

the development of computational biology, provide a capability to analysis huge accumulated

biomedical data sets. Till 03/2022, our developed R package “RobMixReg” under subspace

learning topic and python package “scFEA” under human metabolic flux estimation topic

have been downloaded around 10,000 times totally. In summary, these two topics contribute

to the community and pave the way for further exploring in human disease.
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2. PRELIMINARIES OF SUBSPACE LEARNING

2.1 Literature Reviews

2.1.1 Robust Mixture Regression

Finite Mixture Gaussian Regression (FMGR) model was first introduced by Goldfeld et

al [  54 ], and has been widely used to explore the latent relationship between a response and

independent variables in many fields [ 55 ]–[ 60 ]. Parameter estimation in FMGR is usually

conducted through maximum likelihood using expectation maximization (EM) algorithm

assuming normally distributed component errors, which is vulnerable to outliers or heavy-

tailed noises. Many algorithms have been developed to estimate the FMGR parameters

robustly [  61 ]. Using the idea of weighted regression, Markatou [  62 ] and Shen et al. [  63 ]

proposed using a weight factor for each data point to robustify the estimation procedure.

By modifying the M-step in the EM algorithm, Bai et al. [ 64 ] replaced the least squares

criterion in M step with a robust bi-square criterion (MIXBI); Bashir and Carter [  65 ]

adopted the idea of the S-estimator to mixture of linear regression; Song et al. [ 66 ] proposed

using Laplace distribution to model the error distribution (MIXL); Yao et al. [  67 ] extended

the idea of mixture of t-distributions proposed by Peel and McLachlan [ 68 ] from clustering to

the regression setting (MIXT). These methods seek for robust parameter estimation in the

presence of outliers, however, the outliers may still corrupt the robust algorithms, and the

identities of the outliers still remain unknown unless further screening steps are taken. The

identities of the outliers are often interesting for two reasons: firstly, removal of the outliers

could reduce their effect on the estimators and improve the estimation accuracy; secondly,

for practical reasons, outlying samples could be caused by measurement errors, or they may

represent a novel mechanism not representative by the majority of the current observations,

both of which are worthy of further investigation.

Currently, to enable outlier detection, usually a hyperparameter regarding the proportion

of outlying samples needs to be specified. Yu et al. [  69 ] proposed a penalized mean-shift

mixture model, RM2, for simultaneous outlier detection and robust parameter estimation.

Neykov et al. [  70 ] proposed the trimmed likelihood estimator (TLE), where given a trim-

ming parameter α, 0 ≤ α ≤ 1, the outliers are defined as the Nα observations with the
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smallest sample likelihood, and they presented a Trimmed Likelihood Estimator (TLE) al-

gorithm based on EM algorithm, and a FAST-TLE algorithm using classification EM algo-

rithm [  71 ]. Similar to fast-TLE, Dogru and Arslan [ 72 ] proposed the adapted complete data

log-likelihood function using the least trimmed squares (LTS) [ 73 ] criterion, where the sum

of log-likelihood for portions of the data points were optimized. Following very similar steps

as TLE algorithm, García-Escudero et al. [  74 ], [  75 ] proposed an algorithm (CWM) with

further control over the scattering parameters, as well as a second trimming strategy on the

explanatory variables. The challenge with the trimming based algorithms are the involve-

ment of hyperparameters, namely, penalty parameter in RM2 and the trimmning parameter

α in the other algorithms, which could heavily impact the performance of these trimming

based algorithms. Yu et al. [  69 ] proposed using BIC procedure for hyperparameter tuning,

however, BIC criterion becomes highly unstable when the total number of parameters, which

equals to the total number of outliers, becomes large. As discussed in a recent review article

[ 61 ], the involved parameters are interrelated with the number of components, where a high

trimming level will lead to the removal of components with fewer observations. In summary,

there is a lack of an algorithm that could adaptively trim the outlying samples to minimize

its impact on the parameter estimation, while avoiding the pre-specification of the level of

trimming.

2.1.2 Supervised High-dimensional Mixture Regression

Unsupervised learning algorithms that are typically employed to deal with heterogene-

ity in subpopulations include finite mixture models by assuming a separate distribution for

each subpopulation [ 58 ], [ 76 ]–[ 78 ], and bi-clustering based discrete algorithms that performs

feature selection and sample clustering simultaneously [  79 ]–[ 81 ]. Based on the resultant ge-

netic subtypes, deeper investigation into the genetic and phenotypic distinctions within each

subtype could be carried out. Although the clustering methods may produce satisfactory

classification of subtypes, many methods do not select genetic markers distinctive for each

subtype, which however is essential in precision medicine. In addition, in the unsupervised

clustering of high dimensional omics data, the high dimensional genetic feature space may
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give rise to many different ways of clustering the samples, which may or may not be biologi-

cally/clinically meaningful [ 82 ]. Usually, the relevance of the subtypes to external biological

or clinical presentations is analyzed in a post hoc fashion. As a result, without any super-

vision, the defined clusters based on a sea of genetic features may not necessarily relate to

the phenotype of interest. Existing supervised clustering methods apply an ad hoc two-stage

approach that consists of feature selection based on association with an external biological

or clinical response variable, and clustering of samples using the selected features. However,

due to the heterogeneity in sample population, the relationship between the external variable

and the individual features could be highly non-linear, and a pre-selection of the features is

not optimal.

As an external biological or clinical response variable available, mixture regression model

intuitively become a feasible solution to identify intrinsic sample subgroups guided by the

external information. While the mixture regression model is capable of handling the het-

erogeneous relationships, it doesn’t work in the case of high dimensional genetic features,

where the total number of parameters to be estimated is far more than the total number of

observations. In addition, with the dense linear coefficients given by the ordinary EM algo-

rithm, it is hard to deduce the disease subtype-specific genetic markers and make meaningful

interpretations.

Penalized mixture regression has been explored in different settings [  83 ]–[ 87 ] to handle

the high dimensional mixture regression problem. The variable selection problem in the

finite mixture of regression model was first studied using regularization methods such as

LASSO [ 88 ] and SCAD [  89 ] in [ 83 ]. They considered the traditional cases when the number

of candidate covariates is much smaller than the sample size, and proposed a modified

expectation–maximization (EM) algorithm to perform both estimation and variable selection

simultaneously. The following methods consider the cases where the number of covariates

may be much larger than the sample size. In [  84 ], the authors proposed a reparameterized

mixture regression model, and showed evidence for the benefit of the reparameterized model

with numerically better behaviors. A block-wise Minorization Maximization (MM) algorithm

was proposed in [  86 ], where at each iteration, the likelihood function is maximized with

respect to a block of variables while the rest of the blocks are held fixed. The work proposed
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by Devijver [  90 ] mainly considers the parameter estimation, after the variables have been

selected by L1-penalized maximum likelihood estimator, as well as model selection among

a set of pre-given ones. The imputation-conditional consistency (ICC) algorithm proposed

by [  87 ] adopted a two-stage approach: variable selection by aggregating the selection results

through multiple Expectation–maximization iterations, and the parameter estimation stage

for which the problem could be cast as a low dimensional one.

While some of the methods may produce consistent estimates of parameters under proper

conditions, they tend to suffer from slow convergence rate in high dimensional setting, es-

pecially with smaller N or larger K, and the number of hyper-parameters for regularization

further drags down the computational efficiency caused by the need of cross validation.

2.1.3 Inference of Spatial Dependency

Many problems in the environmental, economic, and biological sciences involve spatially

collected data, and a main problem of interest is investigation of the relationship between

a response variable and a set of explanatory variables over the spatial domain using regres-

sion modeling. Notably, the relationships between response variables and covariates may

exhibit complex spatially dynamic patterns that cannot be captured by constant regres-

sion coefficients. Instead, such relationships may abruptly change at a certain boundary of

two neighboring spatial clusters, but stay relatively homogeneous within clusters. Detecting

clusters of observations that display similarity in both regression relationships and spatial

proximity allows straightforward interpretations of local associations between response vari-

ables and covariates. For example, the residential real estate pricing could be quite similar

in a local community, but drastically differ for two houses across the street [  91 ]; a major

goal of analyzing functional magnetic resonance imaging (fMRI) data is to detect spatially

distributed and functionally linked regions that continuously share information with each

other in reaction to different stimuli [ 92 ]. For all these real-world application settings, the

collected data may often contain outliers, which may severely corrupt the analysis results

if not properly handled. Overall, the spatial nonstationarity, local homogeneity, and model

robustness are three main challenges in spatial regression modeling.
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In the nonspatial setting, finite mixture regression models have been used in many areas

as an effective exploratory approach to identify heterogeneity in response–predictor rela-

tionships. For an overview, see [  58 ], [  60 ]. To account for outliers or heavy-tailed noises,

many algorithms have been developed to estimate the parameters robustly [  61 ]. To seek

for robust parameter estimation in the presence of outliers, methods have been developed

that replaced the least-square criterion in the M-step of the expectation maximization (EM)

algorithm by more robust criterion [  62 ]–[ 68 ]. To enable simultaneous model estimation and

outlier removal, penalized mean-shift mixture model [  69 ], and the least trimmed likelihood

estimator [ 70 ], [ 72 ], [ 74 ], [ 75 ] were proposed. While these methods could robustly capture the

heterogeneous relationship between response and predictor variables, they are not designed

to model the spatial dependency.

In modeling the spatial dependency, conventional nonstationary spatial regression models

such as geographically weighted regression (GWR) [ 93 ]–[ 95 ] and Bayesian spatially varying

coefficient (SVC) [ 96 ], [ 97 ] models fit as many regression models to the data as there are

observations, at the cost of a large computational burden for large spatial datasets, and

sometimes may lead to overfitting. In addition, interpretation of the GWR and SVC mod-

els require visual inspection of the coefficient maps to pursue local homogeneity, and can

not automatically capture the spatially clustered patterns. In order to automatically detect

spatially homogeneity cluster, a penalized spatial regression model has been proposed [ 98 ],

where a fused-lasso [  99 ] type of penalty has been developed to account for the spatial ho-

mogeneity in the linear regression setting. Nevertheless, the spatial smoothness assumption

in the above spatial regression models could be problematic and violated due to natural

or man-made discontinuities in the spatial domain. In addition, none of these methods is

designed to handle outliers.

Model-based spatial segmentation is another type of methods to deal with spatial data

using spatially constrained Gaussian mixture model [ 100 ], [  101 ]. Spatial segmentation in-

corporates spatial information between neighboring pixels into the Gaussian mixture model

based on Markov random field (MRF), with a goal to cluster all variables (e.g. pixels in

image), where the distance of two instances is dependent on both their feature expressions

and spatial proximity. This comes at a high computational cost. While robust spatial seg-
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mentation algorithms are available [ 100 ], [  101 ], they fail to intentionally model the linear

relationship between the response and predictors, but instead simply treat the response and

predictors as different features.

2.2 Preliminaries for Mixture Regression

2.2.1 Basis

A continuous L-dimensional random variable will be denoted as X = (X1, ..., Xp, ..., XP ),

where Xp corresponds to the pth variable. Lower case letters will be used for a particular

observation (or realization) x = (x1, ..., xp, ..., xP ) of a variable X. Bold face letters, such

as X, will denote a data of N observations of variable X or equivalently, a N × P matrix,

where xip is the value of the ith observation for the pth variable in X.

A probability density function (pdf) p(x) is any function defining the probability density

of a variable X such that p(x) ≥ 0 and
∫ ∞

−∞ p(x) = 1. For a given pdf p(x), the expectation

of X is defined as,

E[X] =
∫ ∞

−∞
xp(x)dx. (2.1)

Suppose we have N observation X1, ..., XN from a Gaussian distribution with unknown

mean µ and known variance σ2. To find the maximum likelihood estimate for µ, we find the

log-likelihood L(µ), take the derivative with respect to µ, set it equal zero, and solve for µ:

L(µ) =
n∏

i=1

1√
2πσ2

exp −(xi − µ)2

2σ2

⇒ L(µ) =
N∑

i=1
[ log( 1√

2πσ2
) − (xi − µ)2

2σ2

⇒ d

dµ
l(µ) =

N∑
i=1

xi − µ

σ2

(2.2)

Setting this equal to zero and solving for µ, we get that µMLE = 1
N

∑N
i=1 xi. Note that

applying the log function to the likelihood helpes us decompose the product and removed

the exponential function so that we could easily sovle for the MLE.
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2.2.2 Finite Mixture Model

Let X = (X1, ..., XP ) be a P -dimensional continuous random variable and x = (x1, ..., xp)

be an observation of X. A probability density function (pdf) of a mixture model is defined

by a convex combination of K components pdfs [ 102 ],

p(x | Θ) =
K∑

k=1
πkpk(x | θk) (2.3)

where pk(x | θk) is the pdf of the kth component, πk are the mixing proportions (or com-

ponent priors) and Θ = (π1, ..., πK , θ1, ..., θK) is the set of parameters. We assume that

πk ≥ 0, for k ∈ {1, ..., K}and

K∑
k=1

πk = 1
(2.4)

By the property of convexity, given that each pk(x | θk) defines a probability density function,

p(x | Θ) will also be a probability density function.

The most straightforward interpretation of mixture models is that the random variable

X is generated from K distinct random processes. Each of these processes is modeled by

the density pk(x | θ), and πk represents the proportion of observations from this particular

process.

2.2.3 Gaussian Mixture Model

A Gaussian mixture model [ 103 ] represents a distribution as

p(x | Θ) =
K∑

k=1
πkN (x | µk, σ2

k) (2.5)

This is easy to deduce Gaussian mixture model by replacing the probability density function

of each component to a Gaussian distribution. In addition, the parameters here contains

mean value µ and variance σ. The mixing parameter πk still following previous rules.
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2.2.4 Gaussian Mixture Regression

Let Y = (y1, ..., yN)T ∈ RN , X = [x1, ..., xN ]T ∈ RN×(P +1) be a finite set of observations,

and X the design matrix, and Y the response vector. Consider an FMGR model parameter-

ized by θ = {(πk, βk, σ2
k)}K

k=1, it is assumed that when (x, y) belongs to the k-th component,

k = 1, ..., K, then y = xT βk + ε, where ε ∼ N (0, σ2
k). Then, the condition density of y given

x is p(y | x, θ) = ∑K
k=1 πkN (y; xT βk, σ2

k), where N (y; µ, σ2) is the normal density function

with mean µ and variance σ2.

It is easy to deduce Gaussian mixture regression from Gaussian mixture model by little

modification [ 104 ]. In detail, a random variable x was replaced by a residual of linear

regression fitting. The previous mean center µ is replaced as zero and the previous variance

still keep the same notation.

2.2.5 MLE of Gaussian Mixture Regression

Based on unknown parameters, so from the first section, our likelihood is:

LX,Y (θ) :=
N∏

i=1

K∑
k=1

πkN (yi; xT
i βk, σ2

k) (2.6)

The maximum likelihood estimate for θ is through maximizing the following log likeli-

hood:

LX,Y (θ) :=
N∑

i=1
log(

K∑
k=1

πkN (yi; xT
i βk, σ2

k)) (2.7)

Taking a look at the expression above, we already see a difference between this scenario and

the simple setup in the Basics section. We see that the summation over the K components

“blocks” our log function from being applied to the normal densities. If we were to follow

the same steps as above and differentiate with respect to µk and set the expression equal to

zero, we would get stuck because we cannot analytically solve for µk.

The trick here we use is to introduce a hidden variable such that its knowledge would

simplify the maximization. This hidden (latent) variable z which would represent which

Gaussian generated our observation x, with some probability. These are variables which are
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never observed, and where we don’t know the correct values in advance. They are roughly

analogous to hidden units,in that the learning algorithm needs to figure out what they should

represent, without a human specifying it by hand. In mixture models, the latent variable

corresponds to the mixture component.

Let z be the membership indicator for observation (x, y), then πk = p(z = k). In machine

learning, the latent variable z is considered as a latent pattern lying under the data, which

the observer is not able to see very directly. The wide application of this circumstance in

machine learning is what makes EM algorithm so important.

2.2.6 EM algorithm

Intuitively, the latent variable zn should help us find the MLEs. We first attempt to

compute the posterior distribution of zn given the observations:

p(zn = k | xn) = p(xn | zn = k)p(zn = k)
p(xn) = πkN (µk, σ2

k)∑K
k=1 πkN (µk, σ2

k)
= p̂nk (2.8)

Then, we can solve for µk to get:

µ̂k =
∑N

n=1 p̂nkxn∑N
n=1 p̂nk

(2.9)

We see that µ̂k is therefore a weighted average of the data with weights p̂nk. Similarly, if we

apply a similar method to finding σ̂2
k and π̂k, we find that:

σ̂2
k =

∑N
n=1 p̂nk(xn − µk)2∑N

n=1 p̂nk

(2.10)

We can derive the prior class probabilities as

π̂k = 1
N

N∑
n=1

p̂nk (2.11)

Again, remember that p̂nk depends on the unknown parameters, so these equations are

not closed-form expression. This looks like a vicious circle. EM algorithm is an alternative

solution which provides a general framework for fitting models on incomplete data.
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The EM algorithm [ 105 ], proceeds as follows:

1. Initialize the parameter and evaluate the log-likelihood with these parameters.

2. E-step: Estimate the posterior class probabilities for each observation p̂nk using the

current values of the µk and σ2
k,

3. M-step: Estimate new parameters θ = {(πk, µk, σ2
k)}K

k=1 with above equations. The

goal is maximizing the log-likelihood for each component separately using the posterior

probabilities as weights max
θk

∑N
n=1 p̂nk log f(yn | xn, θk).

4. Evaluate the log-likelihood with new parameters. If the log-likelihood has converged by

measured with some small ε, stop. Otherwise, go back to step 2.
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3. COMPONENT-WISE ADAPTIVE TRIMMING FOR

ROBUST MIXTURE REGRESSION

This chapter focuses on developing effective and efficient algorithm for robust mixture re-

gression. Robust mixture regression has many important applications including in human

cancer genomics data, where the population often displays strong heterogeneity added by

unwanted technological perturbations. A novel Component-wise Adaptive Trimming (CAT)

method was proposed, which simultaneously detect outliers and estimate parameter of mix-

ture model.

In this chapter, we have three major contributions by using robust mixture regression

model to handle outlier.

1. We proposed a component-wise trimming robust mixture regression model to detect

outliers and estimate parameter of mixture model simultaneously.

2. We had a new definition of outlier under Classification-Expectation-Maximization

(CEM) algorithm.

3. We provided a platform that migrates the robustness issue from mixture regression to

(single component) linear regression, where the latter have been extensively studied.

EM algorithm is the traditional method to solve mixture regression problem in last decade

[ 105 ]. However, EM algorithm is vulnerable to outliers or heavy-tailed noise. In other words,

the convergence and each iteration will be impacted if outliers were added or heavy-tailed

noise was measured in data. Identifying outliers not only could improve the parameter

estimation for the mixture model, but also enable us a way to find novel mechanism. The

reason is that outlying samples may represent a novel or different regression models which

not represented by the current observations. To identify the outlier, several robust mixture

regression models (Section  2.1.1 ) were proposed. But available methods face the challenge

that highly specific mathematical consideration prohibit their application to the biomedical

data with unknown error distribution. In this chapter, we first introduced the CEM algorithm

which is a variant of the EM algorithm in Section  3.2.2 . Under the CEM algorithm, we had

a new definition of outlier. The core idea is only considering an observation as an outlier if it

is an outlier to the component it belongs to. This new definition shifts the robustness issue
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from a mixture model to several independent robust linear regression models. The latter has

been well defined and studied. By updating the clustering membership in each iteration, we

can disentangle a complex problem into several simple problem. Thus, this method not only

solve this specific issue but also provide a platform and framework to solve similar problem.

3.1 Introduction

In biomedical science, the patient population often consists of different molecular sub-

types [ 106 ], and the outlying samples introduced by technological errors makes it more

challenging to tease out the latent relations among the genomic markers using FMGR. To

address the challenges in simultaneous outlier detection and robust parameter estimation in

FMGR, we adopted the idea of Classification-Expectation-Maximization (CEM) algorithm,

where individual observations are assigned to a definite cluster as part of the maximiza-

tion process, different from traditional EM algorithm [  71 ]. Essentially, CEM maximizes the

complete data likelihood, instead of the observed data likelihood as in traditional EM, and

has been shown to outperform traditional EM with faster convergence rate and better or

comparable estimates [  107 ]. Under CEM, each component has its exclusive members, which

makes it possible to apply a trimmed likelihood approach designed for (single component)

linear regression on its member, and hence enables both robust parameter estimation as

well as outlier detection for the component. Our major contribution in this method is, by

introducing CEM to FMGR, we provided a platform that migrates the robustness issue from

mixture regression to (single component) linear regression, for which LTS estimators have

been extensively studied [ 73 ], [  108 ]. Therefore, since LTS-based robust regression has a high

breakdown point, we could avoid the pre-specification of trimming parameter, by simply opt

to maximize the sum of decreasing ranked likelihood of a sufficiently small portion of the

samples within each component, namely, 0.5. In addition, since the task of outlier detec-

tion in the mixture model was converted to that of linear regression in each component, it

is possible to formally define outliers in FMGR. Overall, our algorithm detects outlier in

a data-driven fashion free of hyperparameters, and is hence computationally efficient and

user-friendly.
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The remainder of this chapter is organized as follows. In Section  3.2 , we will intro-

duce the complete data maximum likelihood, and the CEM algorithm, based on which, our

component-wise adaptive trimming method is developed. In Section  3.3 , we show the per-

formance comparison of our method with other six state of the art methods on synthetic

datasets. In Section  3.4 , we will apply all methods to a real world dataset studying the

heterogeneous DNA methylation regulatory effects on gene expression in colon cancer.

3.2 Methods

3.2.1 The Complete Data Maximum Likelihood Estimation

We are given a set of observations (xi, yi)N
i=1 and assignments (zi)N

i=1. Then, the likelihood

that all observations have been drawn according to a FMGR θ and that each observation

(xi, yi) has been generated by the zi-th component, is given by

N∏
i=1

p(yi, zi | xi, θ) =
N∏

i=1
πziN (yi; xT

i β
zi

, σ2
zi

) (3.1)

This is called the complete-data likelihood. Note that the assignments {zi}N
i=1 define a

partition of the N observations, C = ⋃K
k=1 Ck, such that i ∈ Ck iff zi = k. Denote nk as the

total number of elements in Ck, we can then rewrite the Equation  3.1 in its logarithm form

as

Lf
X,Y (θ, C) :=

K∑
k=1

{
∑
i∈Ck

log N (yi; xT
i βk, σ2

k) + log πknk} (3.2)

We introduce the complete data maximum likelihood estimates (CMLE) as follows.

Definition 3.2.1. (Complete-data Maximum Likelihood Estimates, CMLE)

Let X be the design matrix, and Y be the response vector. Given an integer K, find a partition

C = {C1, ..., CK} of the N observations and FMGR parameters θ = {(πk, βk, σk)}K
k=1 that

maximizes Lf
X,Y (θ, C) defined in Equation  3.2 .

Note that, CMLE is not well defined in this form. For example, for an observation (xi, yi),

if βk is chosen such that yi = xT
i βk and we let σk → 0, then f(yi; xi, θ) → ∞, which results

in infinite likelihood. A common practice is to put some mild restrictions on the cluster
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size or the variance parameter, then we can lower bound the variance associated with each

regression line, and the CMLE will be well defined [ 75 ], [ 109 ].

3.2.2 Alternating Optimization Scheme using the CEM algorithm

We introduce the alternating optimization algorithm to solve the CMLE problem [ 109 ].

Clearly, fixing the partition C = {C1, ..., CK}, the optimal mixture parameter is given by

θ = {(πk, βk, σk)}K
k=1 with

πk = nk∑K
l=1 nl

(3.3)

(βk, σ2
k) = OLS(YCk

, XCk,;) (3.4)

Here, OLS(YCk
, XCk,;) means the ordinary least squares solution to regressing Y on X using

only observations from Ck.

Fixing the FMGR parameters θ = {(πk, βk, σk)}K
k=1, the optimal partition is given by

assigning each point to its most likely component, i.e.

i ∈ Ck ⇐⇒ k = argmax
l∈{1,...,K}

p(zi = l | xi, yi, θ) (3.5)

where

p(zi = k | xi, yi, θ) = πkN (yi; xT
i βk, σ2

k)∑K
l=1 πlN (yi; xT

i βl, σ2
l )

(3.6)

which is the posterior probability that (xi, yi) lies on the k-th regression line of the mix-

tures. By repeatedly updating between θ and C, we will show in Theorem  3.2.1 that the

solution converges to a stationary point of the full likelihood function. We call this alter-

nating scheme the CEM algorithm, and Algorithm  1 outlined the major steps including

initialization, estimation, classification and maximization steps.

Theorem 3.2.1. The complete data log likelihood, Lf
X,Y (θ(m), C(m)), is non-decreasing for

any sequence C(m), θ(m) defined as in Algorithm 1, and it converges to a stationary value.

Moreover, if the maximum likelihood estimates of the parameters are well-defined, the se-
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quence of C(m), θ(m) converges to a stationary position.

The CEM algorithm has been popularly used in both the clustering and regression-based

clustering settings. Obviously, it is vulnerable to outliers, and in the next sections, we

introduce our robust procedure on top of the CEM algorithm.

Input: Response vector Y ; independent variables in matrix XN×(P +1); the number
of mixing component, K; size of initialization random sample, n0; the
maximum number of iteration L0

Output: θ = {πk, βk}K
k=1; C = ⋃K

k=1 Ck

for k = 1, ..., K do
Draw a random sample of size n0 from set {1, ..., N}, indexed by Ik

Run ordinary linear regression to get initial regression parameter estimates:
(β(0)

k , σ
(0)
k ) =: OLS(YIk

∼ XIk,:)
end
for m = 0, ..., L0 or until convergence do

E-step: Compute for i = 1, ..., N and k = 1, ..., K, the current posterior
probabilities p

(m)
ik by

p
(m)
ik = p(zi = k | xi, yi, θ(m))

C-step: For k = 1, ..., K, assign C
(m)
k = {i | argmax

l∈{1,...,K}
p

(m)
il = k, i = 1, ..., N}, and

let n
(m)
k be the size of C

(m)
k

M-step: For k = 1, ..., K, the parameters are then updated by
π

(m+1)
k = n

(m)
k∑K

l=1 n
(m)
l

,

(β(m+1)
k , σ

2(m+1)
k ) = OLS(Y

C
(m)
k

, X
C

(m)
k

,:)
end

Algorithm 1: CEM

3.2.3 A new definition of outlier within the CEM framework

In linear regression, outliers are understood as observations that deviate from the model

assumptions, and obviously, samples with lower likelihood are more likely to be outliers.

If the ratio of outliers, α, is known, the outliers are identified as the ratio α of the total

observations with the lowest likelihood.
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Unfortunately, such a definition for outliers becomes less applicable in the case of mixture

regression. Given a robust mixture regression model and a trimming ratio α, if we follow

the same logic as in linear regression, then the dn ∗ αe observations with the smallest overall

likelihood will be detected as outliers, as in [  70 ]. This trimmed likelihood approach implies

that an observation with lower overall likelihood is more likely to be an outlier than an

observation with higher overall likelihood. However, the overall likelihood depends on not

only the likelihood of the observation with respect to each component, but also the propor-

tion of each component, and such a criteria for outlier becomes problematic if the mixing

components are unbalanced. In other words, a low πk will down-weigh the “outlierness”

of an observation from the k-th component. In addition, if we argue that, given a set of

observations, we could always find certain mixture model to well explain it, there is no basis

for us to call any observation an outlier.

The complete data likelihood approach based CEM algorithm disentangles the mixture

distribution into exclusive clusters, within which, the robustness issue could be much easily

handled give the tremendous amount of research conducted for robust linear regression. More

importantly, we could introduce a more natural definition for outliers.

Definition 3.2.2. (Outliers of FMGR)

Given an FMGR model parameterized by θ = {(πk, βk, σk)}K
k=1, under CMLE, an observation

(xi, yi) is considered as an outlier, if i ∈ Ck and | yi − xT
i βk |≥ ηk(σk). In other words, an

observation is considered as an outlier if it is an outlier to the component it belongs to.

Here ηk(·) is a criteria for outlier-ness in linear regression, which usually depends on the

variance level of the component. This new definition transforms the robustness issue from

a mixture model to its K linear regression components, the latter of which has been well

defined and studied. Different from the overall likelihood-based outlier definition adopted

by TLE and CWM, our definition of outlier does not involve the cluster prior, and is hence

more fair to clusters with relatively smaller sizes. In fact, in tables  3.5 -  3.8 , we demonstrated

using simulation data that, under unbalanced cluster sizes, TLE and CWM, which defines

outliers based on the overall likelihood, perform much worse than our proposed method,

which adopted our new definition of outliers.

52



Naturally, to confer a robust parameter estimation for FMGR under CMLE, we could

replace the least square criterion for parameter estimation in the M-step by a robust criterion;

and further to enable simultaneous outlier detection, we could choose to use any trimmed

likelihood approach with high break-down point [ 110 ].

3.2.4 Robust CEM algorithm

Under Definition  3.2.2 , detecting outliers of the FMGR model could be accomplished

through detecting the component-wise outliers. Many robust estimators have been proposed

for linear regression to achieve high breakdown point or high efficiency or both [  111 ], where

the objective of minimizing the sum of the squared residuals has been replaced by more

robust measures. Among them, the Least Median of Squares (LMS) estimates [  73 ], [  108 ]

which minimize the median of squared residuals, Least Trimmed Squares (LTS) estimates

[ 73 ], [  112 ] which minimize the trimmed sum of squared residuals, and S-estimates [  113 ]

which minimize the variance of the residuals, remain to be powerful robust algorithms with a

breakdown point as high as 0.5, the best that can be expected. This means that the resulting

estimators from these algorithms can resist the effect of nearly 50% of contamination in the

data.

To achieve simultaneous outlier detection and robust parameter estimation, instead of

maximizing the component-wise sum of likelihood in CEM, our Component-wise Adaptive

Trimming method, namely CAT, maximizes the component-wise sum of trimmed likelihood,

i.e.,

Lf,trim
X,Y (θ, C) :=

K∑
k=1

hk∑
i=gk

{(lk)i:n + log πk} (3.7)

where lki = log{N (yi; xT
i βk, σ2

k)}, and (lk)r:nk
denotes the r-th largest value of the sequence

of lki, namely, (lk)1:nk
≥ · · · ≥ (lk)nk:nk

. For component-wise LMS estimates, one could

let gk = hk = [nk/2] + 1; for LTS estimate, one could let gk = 1, hk = [nk/2] + 1, which

obtains the highest break-down point of LTS. Our CAT algorithm adopted the latter robust

procedure in order to avoid the selection of a trimming parameter. The high breakdown

point of the LTS algorithm makes it possible to minimize the effect of outliers in parameter
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estimation even if only half of the likelihood were optimized, and we could thus develop a

data-driven algorithm for simultaneous outlier detection and robust parameter estimation in

FMGR.

In general, as outlined in Algorithm  2 , our CAT algorithm implements very similar steps

to the CEM algorithm outlined in Algorithm  1 , except that the OLS estimates in the M-step

is replaced by the LTS estimate. CAT starts by initializing the posterior probability matrix,

W . For k = 1, ..., K, we randomly draw n0 samples to build a robust linear regression model,

and the posterior probability of sample i for component k will be initialized as the density

of sample i fitting the k-th robust regression line. For robust linear regression with trimmed

likelihood approach, we used the “ltsReg” function in the “robustbase” library in R [ 73 ],

[ 114 ]–[ 116 ], where the parameters were estimated to maximize the sum of the likelihood

of the largest half, and outliers were detected as those with relatively large residuals. With

initialized W , CAT then runs a robust CEM algorithm where the OLS estimates in Algorithm

 1 in the M-step was replaced by robust estimates using trimmed likelihood method.

Input: Response vector Y ; independent variables in matrix XN×(P +1); the number
of mixing component, K; size of initialization random sample, n0; the
maximum number of iteration L0

Output: Robust FMGR parameter estimate θ∗ = θ; outlier set U∗ = U
Initialization: Same as Algorithm 1
for m = 0, ..., L0 or until convergence do

E-step: Compute for i = 1, ..., N and k = 1, ..., K, the current posterior
probabilities p

(m)
ik by

p
(m)
ik = p(zi = k | xi, yi, θ(m))

C-step: For k = 1, ..., K, assign C
(m)
k = {i | argmax

l∈{1,...,K}
p

(m)
il = k, i = 1, ..., N}, and

let n
(m)
k be the size of C

(m)
k

M-step: For k = 1, ..., K, run robust linear regression using samples in C
(m)
k ,

i.e., (β(m+1)
k , σ

2(m+1)
k ) = RLM(Y

C
(m)
k

, X
C

(m)
k

,:) ; π
(m+1)
k = n

(m)
k∑K

l=1 n
(m)
l

;and let Uk be
outliers of component k

end
Algorithm 2: CAT: Component-wise Adaptive Trimming

Theorem 3.2.2. The component-wise trimmed complete data log likelihood, Lf,trim
X,Y (θ(m), C(m)),

is non-decreasing for any sequence C(m), θ(m) defined as in Algorithm 2, and it converges to a
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stationary value. Moreover, if the component-wise trimmed maximum likelihood estimates of

the parameters are well-defined, the sequence of C(m), θ(m) converges to a stationary position.

In the M-step, CAT updates the parameter θ using the robust estimates of each com-

ponent. We also propose a fast implementation, fast-CAT, to achieve faster convergence.

As outlined in Algorithm  3 , CAT adopted a model refit step, where an MLE estimate of θ

is obtained using the non-outlying samples only, as an update of the θ at the current step,

instead of the component-wise LTS estimates used in Algorithm  2 . Note that standard re-

gression analysis tools can be applied to recover the observations that should not have been

regarded as outliers. The MLE estimates were conducted using function “flexmix” from the

“flexmix” R package [  117 ]. Similar to other algorithms, in our package implementation, we

used multiple random starts to stabilize the results.

Input: Response vector Y ; independent variables in matrix XN×(P +1); the number
of mixing component, K; size of initialization random sample, n0; the
maximum number of iteration L0

Output: Robust FMGR parameter estimate θ∗ = θ; outlier set U∗ = U
Initialization: Same as Algorithm 1
for m = 0, ..., L0 or until convergence) do

E-step: Same as Algorithm 2
C-step: Same as Algorithm 2
M-step: For k = 1, ..., K, run robust linear regression using samples in C

(m)
k ,

i.e., RLM(Y
C

(m)
k

, X
C

(m)
k

,:); and let Uk be outliers of component k

Refit-step: Let U = ⋃
k Uk; S = {1, ..., N} − U ; let θS be the MLE estimates of

fitting K mixture regression lines using samples in S only, and update the
parameter θ(m+1)) = θS

end
Algorithm 3: fast-CAT: Component-wise Adaptive Trimming

3.3 Experiments by using Simulated Data

3.3.1 Selection of Baseline Methods

We evaluated the performance of CAT, using the fast-CAT implementation in Algorithm

 3 , on synthetic datasets, and compare it with several existing method, including MLE, TLE,
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CWM, MIXBI, MIXL, and MIXT. They stand for the maximum likelihood estimates using

traditional EM algorithm [ 117 ], the two trimmed likelihood approaches [  70 ], [  75 ], the mixture

bisquare [ 64 ], mixture Laplacian[ 66 ], the mixture t [ 67 ] approaches respectively.

Note that for TLE and CWM, the choice of the trimming proportion, α, needs to be pre-

specified, and a large α will result in reduced efficiency, while a small α corrupt the parameter

estimates. We always give the true ratio of outliers to TLE and CWM. In addition, a 5%

increase of the true outlier ratio is also given to CWM, as the authors recommended the

use of a relatively larger trimming ratio than needed [ 74 ] as a preventive procedure. As a

result, we gave true outlier ratio to CWM method and the result is shown as CWM1. In

addition, we also gave a wrong outlier ratio (5% larger than true ratio) to CWM method

and the result is shown as CWM2.

3.3.2 Simulation Settings

We simulated data using two models with different number of covariates P , and number

of components K. To simulate outliers, a mean-shift parameter, γij, is added to the mean

structure for its observations in each mixture component. For each model, we considered

scenarios with different error distributions and different levels of outlier contamination.

Model 1: For each i = 1, ..., N , yi is independently generated with

yi =

 1 − xi1 + xi2 + γi1 + εi1 if zi = 1

1 + 3xi1 + xi2 + γi2 + εi2 if zi = 2

where zi is a component indicator generated from a Bernoulli distribution with P (zi = 1) =

0.43, P (zi = 1) = 0.57; xi1 and xi2 are independently generated from N(0, 1); and the er-

ror terms εi1 and εi2 have the same distribution as ε. We consider the following five scenarios:

Scenario 1: ε ∼ N(0, 1), γi1 = γi2 = 0, standard normal distribution.

Scenario 2: ε ∼ t1, γi1 = γi2 = 0, t-distribution with degree of freedom of 1.

Scenario 3: ε ∼ t3, γi1 = γi2 = 0, t-distribution with degree of freedom of 3.
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Scenario 4: ε ∼ N(0, 1), P (γi1 ∈ (4, 6)) = P (γi2 ∈ (4, 6)) = 0.05, standard normal distribu-

tion with 5% outlier contamination.

Scenario 5: ε ∼ N(0, 1), P (γi1 ∈ (4, 6)) = P (γi2 ∈ (4, 6)) = 0.1, standard normal distribution

with 10% outlier contamination.

Model 2: For each i = 1, ..., N , yi is independently generated with

yi =


1 − xi1 + γi1 + εi1 if zi = 1

1 + 3xi1 + γi2 + εi2 if zi = 2

−1 + 0.1xi1 + γi3 + εi3 if zi = 3

where zi is a component indicator generated from a Multinomial distribution with P (zi =

1) = 0.3, P (zi = 2) = 0.4, P (zi = 3) = 0.3. xi1 is independently generated from N(0, 1); and

the error terms εi1, εi2, εi3 have the same distribution with ε.

Scenario 1: ε ∼ N(0, 1), γi1 = γi2 = γi3 = 0, standard normal distribution.

Scenario 2: ε ∼ t1, γi1 = γi2 = γi3 = 0, t-distribution with degree of freedom of 1.

Scenario 3: ε ∼ t3, γi1 = γi2 = γi3 = 0, t-distribution with degree of freedom of 3.

Scenario 4: ε ∼ N(0, 1), P (γi1 ∈ (4, 6)) = P (γi2 ∈ (4, 6)) = P (γi3 ∈ (4, 6)) = 0.05, standard

normal distribution with 5% outlier contamination.

Scenario 5: ε ∼ N(0, 1), P (γi1 ∈ (4, 6)) = P (γi2 ∈ (4, 6)) = P (γi3 ∈ (4, 6)) = 0.1, standard

normal distribution with 10% outlier contamination.

For scenarios in both models 1 and 2, we simulated data of sample sizes 200 and

400. The bias and mean square error (MSE) of the regression coefficients and mixing pro-

portions are calculated for each competing methods over 100 repetitions, i.e., b̂ias(θ̂) =
1
N

∑N
j=1 θ̂j − θ; M̂SE(θ̂) = 1

N

∑N
j=1

(
θ̂j − θ

)2
. When number of feature for each component

larger than 1, the order of estimated coefficient also matters. This is called the label switch-

ing issue [  118 ]–[ 120 ]. The label switching issue creates some trouble on how to align the

parameters of one component from predicted model to that of the true model. Different
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component orders in the predicted and true model might give totally different results and

there are no widely accepted methods to adjust for that. In our simulation study, we simply

choose to order the components in the estimated parameter matrix by minimizing the Eu-

clidean distance to the true parameter matrix.

3.3.3 Methods Comparisons and Performance Evaluations

Table  3.1 reports the bias (MSE) of parameter estimates for the seven methods under

model 1 with 200 simulated samples. It is a two component model with two independent

variables. Note that in scenarios 1,2,3, there are no added outliers, so the TLE estimates are

the same as MLE estimates. For scenarios 4 and 5, the true outlier proportions were given

to TLE and CWM1, and 5% increase of outlier proportion is given to CWM2. Similarly

for tables  3.2 ,  3.3 and  3.4 . When the component error terms are all normally distributed

without outlier contamination (scenario 1), all methods have comparable performances, ex-

cept that the CWM methods perform much worse. In scenario 2, where the error terms

are t-distributed with degree of freedom of 1 (or Cauchy distribution), CAT resulted in the

most favorable performances, followed by MIXBI and then CWM2. MLE, TLE and CWM1

estimates are severely corrupted, and MIXL and MIXT are also far off from the true values.

For scenario 3, where the error terms are t-distributed with degree of freedom of 3, CAT,

MIXBI and MIXL all worked equally well in parameter estimation. The MLE, TLE, CWM1,

CWM2 and MIXT estimates are slightly off from the true regression coefficients. For sce-

narios 4 and 5, where the error terms are normally distributed, with 5% and 10% outlier

contamination, CAT significantly outperformed all the other methods in terms of all the

parameter estimations. Overall, CAT represents the most competitive one among the seven

methods; TLE is very sensitive to heavy-tailed noise, and its performance is not ideal even

given the true trimming proportion; for CWM, a larger than needed trimming proportion

indeed leads to more accurate estimates.

Table  3.2 reports the bias (MSE) of the seven methods of parameter estimates under

model 1 with 400 simulated samples. It is a two component model with two independent
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variables. When the component error terms are all normally distributed without outlier

contamination (scenario 1), CAT performed comparatively good with all methods, except

that the CWM methods performed much worse. In Scenario 2 and 3, where the error terms

are t-distributed with degrees of freedom of 1 and 3, CAT performed the best among all,

followed by MIXBI and then MIXL, while the rest of the methods seem to be severely

corrupted by the heavy tail noise. Such corruption is much alleviated with the increase

of degree of freedom, as t-distribution with higher degree of freedom is more like normal

distribution. For scenarios 4 and 5, where the error terms are normally distributed, with

5% and 10% outlier contamination, CAT significantly outperformed all the other methods

in terms of parameter estimation. Again, CAT remains the best-performing one among the

six methods.

Table  3.3 reports the bias (MSE) of the seven methods of parameter estimates under

model 2 with 200 simulated samples. It is a three component model with one independent

variable. When the component error terms are all normally distributed without outlier con-

tamination (scenario 1), all six methods have comparable performances. In scenario 2, where

the error terms are t-distributed with degree of freedom of 1 (or Cauchy distribution), CAT

and MIXBI resulted in comparable performances, with CAT being slightly more accurate

and stable. MLE, TLE, CWM1, and MIXL estimates are severely biased, while CWM2

is highly unstable with large variance, and MIXT is also far off from the true values. For

scenario 3, where the error terms are t-distributed with degree of freedom of 3, CAT, MIXBI

and MIXL all worked equally well in parameter estimation. The MLE, TLE, CWM and

MIXT estimates are slightly off from the true regression coefficients. For scenarios 4 and

5, where the error terms are normally distributed, with 5% and 10% outlier contamination,

CAT significantly outperformed all the other methods in terms of parameter estimation. We

show again the more competitive performance of CAT over others.

Table  3.4 reports the bias (MSE) of the six methods of parameter estimates under model

2 with 400 simulated samples. It is a three component model with one independent variable.

When the component error terms are all normally distributed without outlier contamina-

tion (scenario 1), CAT and MIXBI both performed well, followed by MIXL; and they all

outperformed the rest of the algorithms, even including the MLE estimates. We argue that
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even though no outliers or heavy tailed noise is added, there is still likely “outlying” sam-

ples caused purely by chance; robust procedures like CAT and MIXBI work in preventive

fashion to account for these random outliers, and are hence more robust even compared

with the MLE. In scenario 2, where the error terms are t-distributed with degree of freedom

of 1 (or Cauchy distribution), CAT, CWM2, and MIXBI resulted in comparable perfor-

mances, while the rest of the methods did much worse. For scenario 3, where the error

terms are t-distributed with degree of freedom of 3, CAT and MIXBI both worked equally

well in parameter estimation, with CAT slightly better. The MLE, TLE, CWM, MIXL, and

MIXT estimates are slightly off from the true regression coefficients. For scenarios 4 and

5, where the error terms are normally distributed, with 5% and 10% outlier contamination,

CAT significantly outperformed all the other methods in terms of parameter estimation. We

demonstrated here that CAT is a more robust method compared with others.

Overall, CAT demonstrated its advantage over others with its strong capacity of adaptive

trimming and robustness to both outliers and heavy-tailed noises. Of note, MIXBI is a robust

algorithm whose performance is next to CAT, however, it conducts parameter estimations

in presence of outliers, which may tend to bring down the accuracy in parameter estimation.

For CWM, indeed a slightly large trimming ratio may lead to better estimates, but it seems

to over-trim the data with its “second” trimming step, which may be the reason for its low

estimation efficiency. We also show that even when given the right outlier prevalence, TLE

still can’t produce results as robust as CAT, and it did worse when P increases. In the case

of no deliberate outlier contamination (scenario 1), CAT performs better than or comparable

to MLE, which is because CAT can automatically trim off observations that are highly noisy

as a preventive procedure. When the error terms are t-distributed, CAT still remains the

most robust method among all.

We also simulated data scenarios where the clusters are highly unbalanced, and basically,

for K = 2, we simulated data with cluster prior probability P (zi = 1) = 0.38, P (zi = 2) =

0.62; for K = 3, we simulated data with cluster prior probability P (zi = 1) = 0.2, P (zi =

2) = 0.32, P (zi = 3) = 0.48. We repeated the same experiments as shown in tables  3.1 - 3.4 for

the unbalanced cluster priors, and reported the findings in tables  3.5 - 3.8 . Similar to the bal-
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anced cases presented in tables  3.1 - 3.4 , CAT demonstrated the most desirable performances

compared with all other methods.

3.4 Experiments by using Real-world Data

3.4.1 Description of Real-world Data

Colon adenocarcinoma is known as a heterogeneous disease with different molecular sub-

types [ 106 ]. CREB3L1, or cyclic AMP responsive element-binding protein 3-like protein 1,

is an important transcription factor that can suppress cell cycle [  121 ], [ 122 ]. The regulation

of CREB3L1 is largely accomplished through epigenetic mechanisms in cancer and other

disease [ 122 ]. We checked the latent relationship between CREB3L1 and one of its epige-

netic regulators, cg16012690, in colon cancer. We collected the gene expression profile of

CREB3L1 and the methylation profile of cg16012690 on 299 colon adenocarcinoma patients

from the Cancer Genome Atlas (TCGA) cohort [ 123 ].

3.4.2 Results

We fitted the data using CAT, MLE, CWM, TLE, MIXBI, MIXL and MIXT with K = 2,

and the two regression lines are colored in red and shown in the top panel of Figure  3.1 . We

could see that even though the regression lines fitted by the methods are slightly different,

they all seem to fit well the data points. In order to compare the robustness of the six

methods, we added 10 high leverage points at x = 0 (middle panel of Figure  3.1 ), and 10

high leverage points at x = 0.7 (bottom panel of Figure  3.1 ), in both cases of which, y

is a random draw from uniform distribution U(18, 20). We then refitted the contaminated

data using the seven methods for the two scenarios. For CWM and TLE, we give them

both the true outlier proportion (CWM1 and TLE1), as well as 5% increase of the true

outlier proportion (CWM2 and TLE2). In the middle and bottom panels of Figure  3.1 ,

the regression lines fitted using the intact data were shown as red lines, and those refitted

using the contaminated data were shown as dashed blue lines. Clearly, CAT was robust

to the added high leverage outliers in both scenarios, as the lines fitted before and after

contamination overlap. For contaminated data at x = 0 (middle panel), all methods except
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for CAT and MIXT were affected by the outliers as the regression lines after contamination

tend to go through the outliers and were quite different from those before contamination. For

contaminated data at x = 0.7 (bottom panel), all other methods except for CAT, TLE and

MIXBI were severely affected by the outliers, seen from a dramatic deviation of the regression

lines before and after contamination. This shows that CAT achieves better performances

over others in robustly revealing the latent relationship among genomic markers.

3.5 Conclusions

We proposed a novel robust algorithm for solving FMGR using the Classification Ex-

pectation Maximization (CEM) algorithm, based on which, the outliers are more naturally

defined, and robustness issue better and more conveniently handled. Our method, CAT,

enables the automatic detection of outliers and robust estimation of parameters simultane-

ously, which is not capable of by existing methods. The removal of outliers in final parameter

estimation significantly increased the estimation efficiency than other algorithms; and the

adoption of the highly robust least trimmed likelihood estimator within each component

makes it possible to avoid the pre-specification of trimming parameter. Under the CEM

framework, the adaptive trimming of a mixture model boils down into that of simple linear

regression models corresponding to each component. Owing to its high breakdown point

property, we assumed a high portion of outlying samples and the trimmed likelihood ap-

proach is optimized on only half of the samples within each component with the highest

valued likelihood. This is the reason why CAT could be robust to outliers and heavy tailed

noise. In summary, CAT is an robust mixture regression algorithm of high potential and

practical utility in robustly mining the heterogeneous relations among noisy variables in

biomedical data.
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4. SUPERVISED CLUSTERING OF HIGH DIMENSIONAL

DATA USING REGULARIZED MIXTURE MODEL

This chapter focuses on the challenges in studying the heterogeneous relationship between

high-dimensional genetic features and a phenotype. The goal of the proposed method in this

chapter consists of two parts. The first is that identifying the sample level heterogeneity by

using an external supervised variable. The second is that exploring the linear dependency

between identified features within high dimensional features and the external supervised

variable. This linear dependency owns clinical or biological interpretability of clustering.

In this chapter, we have two contributions on supervised clustering of high dimensional

data by the regularized mixture model.

1. We proposed a novel supervised clustering algorithm using penalized mixture regres-

sion model, called Component-wise Sparse Mixture Regression (CSMR) which substantial

improvement on both the computational efficiency and biological interpretability.

2. Our method could perform clustering and regression of the response on the features

at the same time. In addition, we use a penalized term to handle high dimensional features.

In robust mixture regression problem, there are usually enough observation in the col-

lected data. However, it is challenging to analysis biomedical data because there are more

than 20,000 genetic features (e.g. genes) with limited observations. As a result, it is hard

to deduce the disease subtype (e.g. clusters of sample) related genetic features and make

good interpretations. Firstly, we proposed a penalized mixture regression model by adding

a constraint on the coefficient matrix. This constraint forces the sparsity of the coefficient

matrix so that selecting the useful features and removing redundant features. In other words,

this regularized term enables a feature selection step while estimating the parameter of the

mixture model. However, there is a hyper-parameter to balance the two parts in the log

likelihood during the optimization. The choice of component specific penalty parameter is

difficult. Secondly, to handle this issue, our method conducted the tuning process of hyper-

parameter inside each CEM iteration. This makes overall grid-search not that hard anymore.

Then, we also added a model refit step following each CEM step which significantly increase

the numerical stability and the rate of convergence.
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4.1 Introduction

Detection and estimation of the genetic markers associated with phenotypic features is

one of the most important problems in biomedical research. Predictive models have been

extensively used to link genetic markers to a phenotypic trait, however, the unobserved

patient heterogeneity obfuscates the effort to build a unified model that works for all hidden

disease subtypes. It has been well understood that various subtypes exist for many common

diseases, which vary in etiology, pathogenesis, and prognosis [ 106 ], [  124 ], [  125 ]. For example,

the cancer cells are constantly evolving in the tumor microenvironment, and they may acquire

variations on alternative pathways in response to treatment, which explains why certain

patients have better prognoses than others in response to the same treatment [  82 ], [  126 ].

This implies that the same predictive model that links genetic markers to a phenotypic trait

may not be valid for every patient, and further it is unclear to what extent the patients should

be considered together [  127 ]. Therefore, it is judicious to construct a set of heterogeneous

models, each of which corresponds to one subtype.

In order to find sample subgroups guided by an external response variable, which carries

important biological/clinical information, we need to perform clustering of the samples and

regression of the response on the features at the same time. Clearly, our challenges are

distinct in two ways: the variables of interest to each subgroup may be a distinct and sparse

set of the high dimensional genetic features, and the set of patients in each subgroup is not

known a priori. Essentially, we assume that observations belong to unlabeled classes with

class-specific regression models relating their unique and selective genetic markers to the

phenotypic outcome. The ultimate goal is to group the subjects into clusters such that the

observed response variable conditional on the feature variables in the same cluster are more

similar to each other than those from different clusters. In other words, we are detecting

sample clusters such that in the same cluster, the relationship between the features and the

response could be described by one unified model, which differs from another cluster.

The rest of this chapter is organized as follows: in Section  4.2 , we introduce our algorithm,

Component-wise Sparse Mixture Regression (CSMR); in Section  4.3 , we compare CSMR with

five state-of-the-art algorithms on simulation datasets, namely, LASSO, Ridge regression,
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random forest (RF), ICC [ 87 ], and FMRS [ 83 ]; in Section  4.4 , we applied all the algorithms

on 24 drug sensitivity data in CCLE, to screen for genes that underlie the heterogeneous

drug resistance mechanisms.

4.2 Methods

4.2.1 Motivation

We assume that the samples belong to different sub-populations, each of which is defined

by a distinct relationship between the genetic biomarkers and the phenotype of interest,

and the genetic markers are sparse subsets of the high dimensional genetic profiles specific

to each sub-population. Figure  4.2 illustrated an example where the patients fall under

two distinct subgroups: blue for patients acquiring one mechanism to the treatment that

resulted in responsiveness, while pink for patients acquiring another mechanism to the same

drug that resulted in non-responsiveness. The goal of our method is to cluster the samples

(blue and pink) supervised by the patients drug sensitivity measure, and find the defining

genetic features (yellow) associated with each cluster. The identified genetic features could

be further studied to guide targeted therapeutic designs.

4.2.2 The Penalized Likelihood of Mixture Regression

Knowing that βk is sparse means many elements in βk will tend to be close to zero, but

not exactly zero without proper regularization in the model. To simultaneously shrink the

insignificant regression coefficients in βk and estimate θ, we could introduce a penalty term

to equation  2.7 and optimize the following penalized log likelihood function:

max
θ

L(θ) − Pλ(θ) (4.1)

where L(θ) denotes the observed log likelihood, and Pλ(θ) : RP → R is a regularizer of

the regression coefficients, the penalty for each component is dependent on a component

specific hyperparameter λk > 0, k = 1, ..., K. Various types of penalty forms were used in
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Figure 4.1. The motivation of CSMR. Under the same treatment, some
patients acquired one mechanism to deal with the drug, (blue), while others
picked up another (pink), resulting in different prognoses for the same treat-
ment. The motivation of CSMR is to cluster the patients in a supervised
fashion and examine what are the genes (yellow) that are selected in tumor
progression that led to the different drug resistance subtypes of patients, and
their functions (network).
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the mixture regression model, and we could consider the LASSO penalty form as it is convex

and thus advantageous for numerical computation [ 83 ], [ 84 ], [ 87 ], i.e.,

Pλ(θ) = ΣK
k=1λkπ

γ
kΣP

j=1 | βjk | (4.2)

where γ is usually chosen among 0, 0.5, 1 as in [  84 ]. A non-zero γ would involve πk, k =

1, ..., K in the penalty term Pλ(θ), that could largely increase the computational complexity

in the maximization step in using EM algorithm [ 83 ], [ 84 ].

Similar to the case of low dimensional mixture regression, the EM algorithm could be

adopted by maximizing the penalized complete log likelihood function defined as Lpc(θ) =

Lc(θ) − Pλ(θ), as in existing methods. The conditional expectation corresponding to the

penalized likelihood function is given by

Qp(θ; θ(m)) = ΣN
i=1ΣK

k=1p
(m)
ik [ log πk + log N (yi; xT

i βk, σ2
k)] − Pλ(θ) (4.3)

In the E step, the conditional expectation of zik is similar to the low-dimensional case.

However, in the M step, maximizing Qp(θ; θ(m)) with respect to θ, is more complicated than

the low-dimensional case. The involvement of πk, βk in Pλ(θ) makes it impossible to obtain

nice closed form solutions for neither of the two. We next review the use of the CEM al-

gorithm, as we introduced in Section  3.2.2 and described as algorithm  1 , that could largely

increase the computational efficiency.

The biggest advantage of the CEM algorithm is that it disentangles the mixture into

individual non-overlapping components, such that flexible sparsity control could be easily

achievable within each component. Hence for the high dimensional mixture regression prob-

lem, we could simply replace the OLS estimator in the M step of the CEM algorithm by a

sparse estimator, i.e.,

argmax
βk,σ2

k

∑
i∈C(m+1)

k

log N (yi; xT
i βk, σ2

k) − λkπ
γ
kΣP

j=1 | βjk | (4.4)
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This is simply L1 regularized linear regression, for which many efficient algorithms exist

[ 128 ]. Note that when γ 6= 0, the involvement of π
γ
k in the penalty term makes it challenging

for the maximization with regards to both πk and βk. Maximizing the function Qp(θ; θ(m))

with regards to the mixing proportions is much more complex than maximizing its leading

term, i.e., Q(θ; θ(m)), and in our CSMR algorithm, for simplicity, we ignored the penalty

term involving πk’s, i.e., Pλ(θ), when solving for πk, such that it will have a nice closed form

solution. And it has been shown to work well in [  83 ] and our own simulation data. As for

the solution of βk, we show in the next section that under the proposed CEM updates, the

involvement of πk’s only affects the scale of λk’s, which are selected with cross validation

within each iteration, and hence does not impact the estimation of βk.

4.2.3 The CSMR algorithm

Here we proposed the CSMR algorithm to solve the high dimensional mixture regression

problem based on the CEM algorithm. In CSMR, the mixture regression setting could handle

the hidden cluster problem, and the disentangled clusters under CEM could efficiently solve

the feature selection problem in a high dimensional setting. At the E-step, we calculate the

posterior probability pik similar to traditional EM algorithm; at the C-step, we assign each

observation to a cluster that it most likely belongs to, similar to traditional CEM; at the

M-step, for each component, we perform regularized linear regression to obtain a sparse set

of non-zero coefficients.

A big challenge with the penalized mixture regression problem is the choice of component

specific penalty parameters λk. The λk’s are related to the amount of regularization, and

their selection is a critical issue in a penalized likelihood approach. It is usually based on

a trade-off between bias and variance: large values of tuning parameters tend to select a

simple model whose parameter estimates have smaller variance, whereas small values of the

tuning parameters lead to complex models, with smaller bias. Cross-validation over a grid

search is the commonly adopted method to select the optimal combination of λk, but this

becomes increasingly prohibitive with the increase of K, especially when we don’t have a

good knowledge of the theoretical range of the λk.
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Hence, instead of first performing penalized linear regression for given λk and then search-

ing for the optimal combination of λk [ 83 ], we propose to conduct the tuning of λk with cross

validation inside the CEM iterations. Specifically, under the CEM algorithm, all the compo-

nents are disentangled, we could hence perform hyperparameter tuning inside each iteration

within each component. This is to say, at the M-step, we not only estimate the regression

coefficients, but also find the best tuning parameter λk for the component. Hence, at the

end of the algorithm, we avoid the hyperparameter tuning, as they have already been se-

lected within the iteration. We adopted the efficient cross validation algorithm for selecting

the optimal regularization parameter under L1 regularized linear regression [ 128 ]. Since we

no longer need to run the algorithm multiple times on a K-dimensional grid space of the

penalty parameters, we could hence largely reduce the computational cost. We have shown

in simulation studies that penalty parameters selected this way empirically worked very well.

Another adaptation on the traditional CEM algorithm of CSMR is a model refit step

following the CEM steps. To increase the numerical stability and achieve faster convergence,

at the end of each iteration, we refit the mixture regression model using flexible EM algorithm

with only the selected variables of each component. Basically, for each component, the

coefficients of the variables not selected at the M-step will be forced to be zero. This could

be easily achievable by allowing only the selected variables of component k to enter into the

model fitting of the k-th regression parameters.

The CSMR algorithm requires the initialized values θ. Here, we order the features

based on its individual Pearson correlation with the response variable, and then fit a low-

dimensional mixture regression model solved by the traditional EM algorithm using the top

correlated genes. CSMR is implemented in R, and was made available in Github 

1
 .

1
 ↑ https://github.com/zcslab/CSMR
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Input: XN×P , YN×1, K
Output: θ, C = ⋃K

k=1 Ck, {β0k, βk}K
k=1

Initialization: θ(0) = {π0
k, β

(0)
k , σ2(0)

k }K
k=1

for m=0,...,Max Iteration do
E-step: compute the conditional expectation of zik similar to traditional EM
algorithm.

C-step: for k = 1, ..., K, assign C
(m+1)
k as the set of observations that are mostly

likely in component k.
M-step: for k = 1, ..., K, the relative cluster size is updated by π̂

(m+1)
k = n

(m+1)
k

N
,

and the tuning parameter λ
(m+1)
k , and regression parameters (β̂(m+1)

k , σ̂
(m+1)
k )

are selected and estimated using cross validation, such as the cv.glmnet
function in glmnet package.

Model refit: refit the FMGR model by allowing only the selected variables in
each component and to obtain {π

(m+1)
k , β

(m+1)
k , σ

(m+1)
k }K

k=1 given by this flexible
modeling

Stop if converged.
end

Algorithm 4: CSMR
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4.2.4 Selection of Component Number K

The number of clusters K is a sensible parameter because it describes the heterogeneity

of the population. For selection of K, we could use a modified BIC criterior that minimizes

BIC(K) = −2Lpc(θ∗
K) + log(N)dK (4.5)

where θ∗
K represents the parameter estimates for K, and dK = K+(K−1)+ΣK

k=1ΣP
j=11{βjk 6=0}

is the effective number of parameters to be estimated, similar to [  129 ]. Specifically, there

are K standard deviations, σk, associated with the K regression lines; K − 1 component

proportions, πk, since Σkπk = 1; and all the non-zero linear regression coefficients for all the

K components.

In addition to the BIC criteria, we also offer a cross validation algorithm for the selection

of K. Take a 5-fold cross validation as an example. For given K, at each repetition, 80%

samples are used for training to obtain the regularized parameter θ∗
K . Then, for a sample

(xi, yi) drawn from the 20% testing samples, its cluster membership, k0, is first predicted as

k0 = max
k

π
∗
k,KN (yi; xT

i β∗
k,K , σ2∗

k,K) (4.6)

Here, {π∗
k,K , β∗

k,K , σ2∗
k,K}K

k=1 denotes the CSMR estimated parameters when the number of

components is K. After assigning the observation to component k0, we could make prediction

of the response based on linear regression, i.e. ŷi = xT
i β∗

k0,K , as well as the associated residual,

yi − ŷi. Notably, such a prediction of the response is different from simple linear regression,

as the prediction process requires knowing the value of the response, in order to assign it to

the right cluster. After knowing its cluster membership, a prediction of the response could

be made.

A large K will tend to overfit the data with a more complex model of higher variance,

while smaller K might select a simpler model with larger bias. Using the independent testing

data, we could decide how to balance the trade-off between bias and variance. To evaluate

how the estimated model under K explains the testing data, we could calculate the root-

mean-square-error between yi and ŷi, or Pearson correlation between the two. By repeating
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this procedure multiple times, a more robust and stable evaluation of the choice of K should

be derived based on the summarized RMSE or Pearson correlations.

4.3 Experiments by using Simulated Data

4.3.1 Simulation Settings

To simulate N observations with P independent variables, we first simulated the design

matrix X, such that the first column of X is all 1, corresponding to the intercept, i.e., xi1 =

1, i = 1, ..., N ; and for the rest of the P columns, all the elements follow i.i.d standard normal

distribution, i.e., xij ∼ N(0, 1), i = 1, ..., N, j = 2, ..., P +1. The component proportions were

made to be equal, i.e., πk = 1
K

. For component k, a random sample of size M0 were taken

from the set {2, ..., P + 1}, denoted as Jk, to mimic the sparse component specific variables

predictive of the response. And we simulated the component specific coefficients, βjk, to be

a random draw from Unif((−b, −a) ⋃(a, b)), if βjk ∈ Jk; and let βjk = 0, if βjk 6∈ Jk.

The response variable Y was generated by the following two-step process:

1. Draw the component indicator variable zik following the multinomial distribution

Multi(1; π1, ..., πK), in other words, p(zik = 1) = πk.

2. Draw an observation yi according to a normal distribution N(β0k + xT
i βk, σ2

k), if zik = 1.

Here, we fix a = 2, b = 5. We explored the performances of existing methods under 15

different simulation scenarios, for each of which, 100 repetitions were conducted:

Cases 1-3. N = 200, 300, 400, P = 100, K = 2, σ = 1, M0 = 5

Cases 4-6. N = 400, P = 100, K = 2, 3, 4, σ = 1, M0 = 5

Cases 7-9. N = 400, P = 100, K = 2, σ = 0.5, 1, 2, M0 = 5

Cases 10-12. N = 400, P = 100, K = 2, σ = 1, M0 = 5, 8, 20

Cases 13-15. N = 400, K = 2, σ = 1, M0 = 5, P = 100, 500, 2000
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Table 4.1. Baseline methods
Prediction Clustering Variable selection

CSMR × × ×
LASSO × ×
RIDGE ×

RF × ×
FMRS × × ×
ICC × × ×

4.3.2 Selection of Baseline Methods

We compared CSMR with five different methods, including L1 penalized regression, or

LASSO; L2 penalized regression, or Ridge regression (RIDGE); random forest based regres-

sion (RF), sparse mixture regression, FMRS [ 130 ], and the imputation-conditional consis-

tency algorithm, ICC [ 87 ]. They differ in their ability to perform prediction, clustering and

variable selection, as shown in Table  4.1 .

Among them, CSMR, ICC and FMRS are all capable of doing variable selection at

the same time as sample clustering. However, FMRS can only deal with relatively lower

dimensional features, while ICC represents the method that is powerful in dealing with

much higher dimensional features.

4.3.3 Methods Comparisons and Performance Evaluations

We focused on four metrics for method comparisons: 1) the average correlation between

predicted and observed response; 2) the true positive rate (TPR) and 3) true negative rate

(TNR) of variable selection; 4) the rand index of sample clustering (RI). Note that for

observation i, its predicted response is given by ΣK
k=1zik(xT

i βk), where zik is its cluster mem-

bership indicator. The average of the four metrics over 100 simulations in each scenario was

calculated and shown in Table  4.2 . Here, we assume that the true K is known.

In general, CSMR performs the best in terms of the four evaluation metrics in the majority

of the scenarios. For prediction accuracy of the response using correlation, CSMR and ICC

perform comparably well, and CSMR slightly better in most of the cases. This is expected

as LASSO, RIDGE and RF can not deal with the sample heterogeneity, and FMRS does
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Figure 4.2. Time consumption of CSMR, and ICC on simulation data for
K = 2 (left) and K = 4 (right), and N = 400, σ = 1, M0 = 20, P = 100 over
100 repetitions, error bars indicate standard deviations.

not work well when the feature dimension is high. In particular, FMRS failed to converge

for P = 2, 000. For sensitivity and specificity of the variable selection, CSMR performs

significantly better than ICC and FMRS. Selection of the correct variables is very important

as it characterizes the unique features of each component, based on which, we could further

deduce the biological interpretation of each unique component. ICC and FMRS suffer from

very low sensitivity of variable selection in almost all cases, and their specificity metrics are

not desirable either. For clustering, CSMR again has the best or close to the best performance

compared with ICC and FMRS. ICC achieved similar performance with CSMR in some

cases, but it clearly suffers when K or the number of true predictors M0 becomes large. We

also compared the computational efficiency of CSMR and ICC under the parameter setting:

N = 400, P = 100, σ = 1, M0 = 20, K = 2 or 4. Figure  4.2 shows the computational cost and

its standard deviation for two algorithms over 100 repetitions. Clearly, the computational

efficiency of ICC drops significantly when K increases from 2 to 4, while the time consumption

for CSMR stays approximately the same.

Hence from simulation data, we could see that CSMR achieved the most desirable perfor-

mance in terms of prediction accuracy, variable selection and clustering, compared with three
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non-mixture regularized models, and two regularized mixture regression models. While ICC

is competitive in some cases, it severely suffers from poor variable selection, and its compu-

tational cost is too prohibitive compared with CSMR.

In ICC, the clustering membership was treated as missing data in Markov chain. In

each iteration, the ICC method automatically selects a distinct set of variables. In detail,

ICC method treated the clustering membership and parameters need to be estimated as

two sequences of Markov chain. The parameter sequence has a stationary distribution after

iteration converged. In contrast, FMRS does variable selection for fixed hyperparameter

set, and by searching among a grid of the hyperparameter sets, the variables are selected

that corresponds to the hyperparameter set with the best variance-bias trade-off. CSMR

inherited the advantages of both ICC and FMRS in that it conducts variable selection within

each iteration step by automatically tuning the hyperparameters λk, k = 1, ..., K, saving the

computational cost of large scale selection of λk, which increases exponentially with K. In

addition, the highly efficient built-in cross validation step within the CEM iterations could

largely increase the sensitivity and specificity of the variable selection procedure, and the

flexible model refitting step following the CEM steps guarantees that the algorithm could

achieve faster convergence and more stable results.

4.4 Experiments by using Real-world Data

4.4.1 Description of Real-world Data

Over the past three decades, the use of genetic data to inform drug discovery and devel-

opment pipeline has generated huge excitement. Predicting the drug sensitivity becomes an

integral part of the precision health initiative. Although earlier efforts successfully identified

many new drug targets, the overall clinical efficacy of the developed drugs has remained

unimpressive, owing in large part to the population heterogeneity, that is, different patients

may have different disease causing factors, and hence drug targets. Here, we apply CSMR

to study the patient heterogeneity in their response to different drug treatments, and select

the most key genetic features that underlie the heterogeneous disease causes.
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We collected gene expression data of 470 cell lines on 7902 genes, as well as the cell lines’

sensitivity score to all 24 drugs, from the Cancer Cell Line Encyclopedia (CCLE) dataset

[ 131 ]. The sensitivity score, also called the AUCC score, is defined as the area above the fitted

dose response curve, and it has been shown to have better predictive accuracy of sensitivity to

targeted therapeutic strategies than other measures, such as IC50 or EC50 [  132 ]. We applied

all five methods on the dataset, where the drug sensitivity score was treated as the response

variable and the gene expressions as independent variables. Here, FMRS is not applicable as

the feature dimension is too high while the sample size is too small, hence it is omitted from

further analysis. Our goal is to study the biological mechanism of possible heterogeneity in

drug sensitivity, under the hypothesis that cells exhibit subgroup characteristics by selecting

different genes that confer their different levels of drug sensitivity.

4.4.2 Results

We compare the performances of the five methods using cross validation. Basically, for

each drug, we conduct a 5-fold cross validation by holding 80% of the data as training, and

20% as testing data, for each of the 100 repetitions. At each repetition, the 20% testing data

is used to independently evaluate the performance of each method. At the training phase,

we start by fixing the hyper parameters involved in all methods. The penalty parameters

for LASSO and RIDGE were selected by cross validation within the training samples. For

RF, the default parameters were used in the function ’randomForest’ of the package with

the same name. The default parameters were described as follow. The number of trees

to grow is 500. For regression problem, the minimum size of terminal nodes is 5. For

ICC, we used the selected component number as in its original paper [  87 ]. For CSMR,

to select the best K, we performed both cross validation and the traditional BIC criteria,

over a grid of K = 1, 2, 3, 4, 5, 6. However, the traditional BIC criteria is proposed for low

dimensional setting instead of high dimensional setting. Thus, there is a lack of rigorous

theoretical foundation for the validity of the traditional BIC under this high dimensional

setting, and the data driven selection of cross validation seems more reasonable. With the
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hyper parameters fixed, we then conduct parameter estimations for each of the five methods

using the training samples, and concludes the training phase.

At the testing phase, the predicted and true drug sensitivity scores were examined in

terms of their correlation, and residual mean squared error (RMSE). The distributions of

RMSE and correlations over 100 repetitions for all the 24 drugs for all the five methods were

shown in Figure  4.3 and Figure  4.4 , respectively. For 22 drugs, CSMR had the significantly

smaller average RMSE, and was very close to the smallest RMSE for the rest of the two

drugs; and we could make the same conclusions based on the correlation results as well.

This demonstrated the consistent and robust performance of CSMR over the others.

Among the five methods, RF had the poorest performance on the testing data, probably

caused by model overfitting. LASSO and RIDGE worked much better than RF, probably due

to its power in model selection. However, they performed significantly worse than ICC and

CSMR in the majority of the cases, which indicates the existence of population heterogeneity

and necessity of using mixture modeling. The performance of ICC is much worse than CSMR

in most of the cases, which we believe is caused by the under-estimation of the population

heterogeneity by ICC. In other words, the selection of K in ICC is too conservative. In

fact, according to cross validation, the number of distinct clusters given by CSMR for the

drugs is either 3 or 4, while for ICC, the number of distinct clusters are determined to be

less than 3 for half of the drugs. We believe that cross validation is a data driven approach

for selection of K, and should be more reasonable than theoretically derived criteria. In the

case of CCLE data, the samples are different types of cells from very different experimental

and genetic backgrounds, and it is expected that they would pick up different molecular

mechanisms to deal with the attacks of the drugs. Hence, the cluster number given by

CSMR is more realistic than ICC. It is note that for those drugs that CSMR and ICC gave

the same number of distinct clusters, namely Irinotecan, L-685458, Lapatinib, Paclitaxel,

PD-0332991, PHA-665752 and TKI258, CSMR exhibited much smaller RMSE than ICC.

Figure  4.5 demonstrated the Venn diagram of the selected genes for different components

for each drug. It could be seen that for the same drug, different clusters of cells indeed

acquire different coping mechanisms, as seen by the different set of genes selected. This

again confirms the high heterogeneous populations within the CCLE cohort. For each drug,
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Figure 4.3. The distributions of the RMSE over 100 repetitions for the five
methods, for the 24 drugs. The lower the RMSE value, the better the perfor-
mance. ‘C’,‘I’,‘A’,‘G’,‘F’ stand for ‘CSMR’,‘ICC’,‘LASSO’,‘RIDGE’,‘Random
Forest’.
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Figure 4.4. The distributions of the correlation over 100 repeti-
tions for the five methods, for the 24 drugs. The higher the cor-
relation value, the better the performance. ‘C’,‘I’,‘A’,‘G’,‘F’ stand for
‘CSMR’,‘ICC’,‘LASSO’,‘RIDGE’,‘Random Forest’.
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Figure 4.5. The distributions of the correlation over 100 repeti-
tions for the five methods, for the 24 drugs. The higher the cor-
relation value, the better the performance. ‘C’,‘I’,‘A’,‘G’,‘F’ stand for
‘CSMR’,‘ICC’,‘LASSO’,‘RIDGE’,‘Random Forest’.

we pooled all the selected genes together and conducted pathway enrichment analysis against

1,328 pathways collected in [ 133 ]. Again, it could be seen that different responses to different

drugs have been employed.

4.5 Conclusions

With the recent rapid evolution in genomic technologies, we have now entered a new

phase, one in which it is possible to comprehensively characterize the genetic profiles of large

population of subjects. Importantly, the development of sequencing technologies has been

paired with a transition towards integrating genetic data with phenotypic data, such as in
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electronic medical records. Such a synergy has the potential to ultimately facilitate the

generation of a data commons useful for identifying relationships between genetic variations

and their clinical presentations. Unfortunately, existing big data analysis tools for mining

the information rich data commons has not been very impressive with regards to the overall

translational or clinical efficacy, owing in large part to the heterogeneous causes of disease. It

is hence imperative to unveil the relationship between the genetic variations and the clinical

presentations, while taking into account the possible heterogeneity of the study subjects.

In this chapter, we proposed a novel supervised clustering algorithm using penalized

mixture regression model, called CSMR, to deal with the challenges in studying the hetero-

geneous relationships between high dimensional genetic features and a phenotype that serves

as a response variable to guide the clustering. CSMR is capable of simultaneous stratifica-

tion of the sample population and sparse feature-wise characterization of the subgroups. The

algorithm was adapted from the classification expectation maximization algorithm, which

offers a novel supervised solution to the clustering problem, with substantial improvement

on both the computational efficiency and biological interpretability. Experimental evalua-

tion on simulated benchmark datasets with different settings demonstrated that the CSMR

can accurately identify the subspaces on which a subset of features are explanatory to the

response variables and the feature characteristics of the subspaces, and it outperformed the

baseline methods. Application of CSMR on the heterogeneous CCLE dataset demonstrated

the superior performance of CSMR over the others. On the CCLE dataset, CSMR is powerful

in recapitulating the distinct subgroups hidden in the pool of cell lines with regards to their

coping mechanisms to different drugs. CSMR also demonstrated the uniqueness of different

subgroups for the same drug, as seen by the distinctly selected genes for the subgroups.

In summary, CSMR represents a big data analysis tool with the potential to bridge the

gap between advancements in biotechnology and our understanding of the disease, and re-

solve the complexity of translating the clinical representations of the disease to the real causes

underpinning it. We believe that such a tool will bring new understanding to the molecu-

lar basis of a disease, and could be of special relevance in the growing field of personalized

medicine.
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5. SPATIALLY AND ROBUSTLY HYBRID MIXTURE

REGRESSION MODEL FOR INFERENCE OF SPATIAL

DEPENDENCE

This chapter focuses on the challenges in investigating the relationship between response

variable and a set of explanatory variables over the spatial domain. Our assumption is that

the relationships may exhibit complex spatially dynamic patterns that cannot be captured

by constant regression coefficients. We proposed the SRMR method which integrates the

robust finite mixture Gaussian regression model with spatial constraints, to simultaneously

handle the spatial nonstationarity, local homogeneity, and outlier contaminations.

In this chapter, we have three major contributions by considering the spatially and ro-

bustly mixture regression.

1. We developed the very first computational concept of spatially dependent mixture

regression analysis.

2. We provided the SRMR method that efficiently solves the spatially dependent mixture

regression problem, which is also empowered by a statistical inference approach to assess

regression significance.

3. SRMR method enables a new type of spatial segmentation analysis to detect over-

lapped spatial regions of varied dependencies among subset of features, which have high

contextual meaningfulness.

Spatial transcriptomics is a newly emerged data type, in which each sample point has

a measured high dimensional data and spatial coordinates. Revealing linear dependency

that is specific to the samples within a spatial region could provide unseen knowledge in

the system. (i) Shifts of functional dependency of genes through different regions may

directly suggest the phenotypic difference among spatial regions. It could not only reveal

detailed molecular changes but also provide a new perspective in dissecting spatial regions

into functionally similar groups. (ii) On spatial transcriptomics data, this approach could

be directly applied to identify differential ligand-receptor based or non-ligand based cell-cell

and cell-microenvironment interactions, as well as deriving regions that may have specific

phenotypic variations or drug resistance. (iii) We have demonstrated the method could
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be applied to other fields such as economics or geographic data to study regional specific

dependency.

5.1 Introduction

10x Genomics spatial transcriptomics (ST) is a recent commercialized technique to mea-

sure spatial coordinates associated gene expression signal from a biological tissue sample,

which it has a broad utilization in biomedical research. A typical ST data is a matrix con-

sisting of ∼15,000 genes (rows) in ∼4,000 individual spatial spots (columns), and each spot

has a 2D spatial coordinate. The spatial spots are uniformly distributed. A key challenge in

ST data analysis is to infer the spatially dependent and biologically meaningful functional

variations from the high dimensional feature matrix (genes by spatial spots).

Compared with existing spatial regression models, our proposed model assumes the exis-

tence a few distinct regression models that are estimated based on observations that exhibit

similar response–predictor relationships. As such, the proposed model not only accounts

for nonstationarity in the spatial trend, but also clusters observations into a few distinct

and homogenous groups. This provides an advantage on interpretation with a few station-

ary sub-processes identified that capture the predominant relationships between response

and predictor variables. Moreover, the proposed method incorporates robust procedures

to handle contaminations from both regression outliers and spatial outliers. By doing so,

we robustly segment the spatial domain into distinct local regions with similar regression

coefficients, and sporadic locations that are purely outliers.

The remainder of this chapter is organized as follows. In Section  5.2 , we will introduce

the problem and proposed SRMR algorithm. In Section  5.3 , we show the performance

comparison of our method with other state of the art methods on synthetic datasets. In

Section  4.4 , we will apply all methods to two types of real world datasets.
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5.2 Methods

5.2.1 Problem Statement

We denote scalar value, vector, and matrix as lowercase character x, bold lowercase

character x, and uppercase character X, respectively. Let {(x(si), y(si)), i = 1, . . . , n} rep-

resent a set of spatial data that is observed at spatial locations s1, . . . , sn ∈ R2, where the

response variable y(si) is assumed to be spatially correlated, x(si) = (x1(si), . . . , xp(si))T

is the p-dimensional vector of explanatory variables for the observation located at si, and

si = (c1
i , c2

i ) is the 2-dimensional coordinate of the ith location. In this chapter, we only

describe and validate the SRMR model on 2-dimensional spatial data. Noted, the approach

can be directly applied to K-dimensional (K > 2) spatial data.

To capture the spatially dependent structure for the response variable, we write a stan-

dard generalized linear regression model (GLM) for the i-th spatial location as follows,

g(E(y = y(si) | x = x(si))) =
p∑

j=1
xj(si)βji + εi (5.1)

where βji, j = 1, 2, . . . , p, are the regression coefficients for the p predictors, and εi represents

random noise with mean 0 and variance σ2
i , and g(·) is the probability density function. In

this method, we assume linear regression follows same format of probability density func-

tion. The intercept can be accommodated by including 1 as an entry of x(si). Apparently,

unless with sufficient number of repeated measurements for each location, the βji, σi are non-

identifiable. In many cases, there is only a single observation for each spatial location, certain

spatial constraints will be enforced to ensure the identifiablity of the model parameters.

Definition 5.2.1. Spatially Dependent Mixture Regression. Given a dataset consist-

ing of n observations {(x(si), y(si)), i = 1, . . . , n} from spatial locations s1, . . . , sn, the goal

of spatially dependent mixture regression is to identify spatial regions Π1, . . . , ΠK and the

number K, s.t.,

y(si) =
p∑

j=1
xj(si)βk

j + εi, if si ∈ Πk
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, where βk
j , j = 1, ..., p, k = 1, ..., K are regression parameters for the p predictors in the k-th

cluster; εi ∼ N (0, σk), where σk represents the noise level of cluster k.

To account for the presence of outliers, we assume that ΠK are non-overlapping subsets of

the whole set {1, ..., n}, and denote the outlier set as Π0, such that Π0 = {1, ..., n} \ ⋃K
k=1 Πk

Two type of outliers will be considered here:

Type 1 Outliers: y(si) 6= ∑p
j=1 xk(si)βk

j + εk, ∀k = 1, ..., K

Type 2 Outliers: ∃k, y(si) = ∑p
j=1 xk(si)βk

j + εk, si 6∈ Πk

Here the Type 1 Outliers represent the samples do not fit any regression model while the

Type 2 Outliers represent the ones fit a certain model but do not locate nearby the spatial

region.

Noted, pre-assumptions of the spatial regions Π1, . . . , ΠK are needed to enable a valid

solution of the spatially dependent mixture regression problem. Such assumptions include a

connected spatial region, a compact shape, or high enrichment to a certain region. Noted,

as spatially dependent mixture regression assigns each sample into one spatial region Πk, it

directly forms a spatial segmentation method.

5.2.2 Related Works

Spatially smooth regression. Conventional nonstationary spatial regression models

such as geographically weighted regression (GWR) [ 93 ]–[ 95 ] and Bayesian spatially varying

coefficient (SVC) [  96 ], [  97 ] models allow regression coefficients to vary smoothly as a function

of the spatial domain. For GWR, assuming a linear model with y denoting the observed

response vector and X the design matrix, the regression coefficient at the i th location is

estimated from β̂i = (XTW iX)−1XTW iy, where W i is a diagonal weight matrix defined

by a kernel function of distance of all other points to point i. The challenge with GWR and

SVC models is that they fit as many regression models to the data as there are observations,

at the cost of a large computational burden, possible over-fitting and interpretation. A

penalized spatial regression model has been developed to automatically detect clusters [ 98 ]

by incorporating a fused-lasso penalty constructed based on spatial proximity.
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Spatial segmentation. Model-based spatial segmentation aims perform a segmentation

task to all samples (e.g. pixels in image) based on the input features. Model-based spatial

segmentation adopts an energy function U(Π) to integrate the spatial information such as

neighborhoods with a regular clustering analysis of the features. Intrinsically, such methods

leverage spatial and data consistency to segment spatial regions, i.e., only considering the

covariance of independent variables, which cannot solve the spatially dependent regression

problem.

5.2.3 SRMR algorithm and Mathematical Consideration

To solve the problem of spatially dependent mixture regression, computational challenges

arise from three aspects: (1) the mixture regression model and spatial consistency do not form

one unified likelihood function, which prohibits a direct solution by using EM algorithm, (2)

detection spatial regions should depend on both goodness of fitting and spatial consistency,

and (3) there is lack of a validate approach to assess the statistical significance of mixture

regression models.

In sight of the challenge, we developed the spatial robust mixture regression (SRMR)

algorithm to conduct simultaneous outlier detection and spatially dependent mixture regres-

sion estimation. The underlying idea is that by assuming a likelihood function of spatial

regions pspa and introducing a tuning parameter λ ∈ (0, 1) to link pspa with the likelihood

of mixture regression preg, a surrogate likelihood function (1 − λ)preg + λpspa is developed

to enable a modified EM-algorithm (Algorithm  5 ). The inputs of Algorithm  5 include the

response and independent variables, spatial coordinates, and the hyper parameter λ. It con-

ducts a simplified spatially dependent mixture regression fitting by assuming there is only

Type 2 outliers, i.e., the sample fit one mixture model but do not locate in the corresponding

spatial region. Hence, Algorithm  5 fits a conventional mixture regression model and com-

putes the spatial regions that are top enriched by the samples fit each regression component.

In this study, we assume the spatial likelihood follows pspa(zi = k | si, w) ∝ ‖si, w‖2, where zi

represents the class of sample i and ‖si, w‖2 represents the Euclidean distance between the

spatial coordinate of the sample si and the centers of the spatial regions w, i.e., assuming
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the spatial regions form a compact shape. Specifically, a voting step (C-step) is introduced

in Algorithm  5 , which identifies Type 2 outliers by the ones whose most likely regression

component and spatial region are not consistent. Noted, as all the input samples are utilized

in the estimation of the mixture regression model, Algorithm  5 is always convergent.

Based on the Algorithm  5 , we developed the SRMR framework (Algorithm  6 ). In SRMR,

we iteratively conduct the Type 2 outlier only spatially dependent mixture regression by

using the Algorithm  5 and identify Type 1 outliers by running a robust linear regression on

all the samples predicted to each spatial region. The underlying consideration is that only

one regression component is consisted within each identified spatial region, which could be

effectively identified by a conventional robust regression approach (RLM). In SRMS, we

implement the trimmed likelihood estimation based robust mixture regression. The inputs

of SRMR is the same as the input of Algorithm  5 plus the maximal iteration number L0 and

a random seed. The outputs of SRMR include the identified mixture regression models and

outliers. The component of each non-outlier samples can be further assigned by maximal

likelihood. In SRMR, we utilize the same BIC function for conventional robust mixture

regression analysis.

5.2.4 Statistical Inference

Hypothesis testing for spatial regions

We conducted a geometry based approach to estimate the significance to observe a spatial

region of a certain size. Noted, we utilized the compact spatial shape assumption in SRMR,

which could be considered as a round shape. For a round shape with a diameter of r, the

number of the shapes needed to cover a rectangular spatial region can be computed by

0.28m × n/r2, which serves as a weight to correct the p value assessed from each single

component robust regression as detailed following.

Hypothesis testing for robust linear regression

We discuss hypothesis testing of the significance a robust linear regression model pa-

rameterized by θ̂ = {β̂, σ̂, η̂}, which represents the robust regression coefficients estimator,

standard deviation estimator, and the index of the outlying samples respectively. A boot-
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Input: Response vector Y ; independent variables in matrix XN×(P +1); the number
of mixing component K; size of initialization random sample n0;
2-dimentional spatial coordinates SN×2; hyperparameter λ.

Output: Partition C∗ = ⋃K
k=1 Ck; Mixture regression model parameter estimate θ∗;

spatial centriod parameter w∗ ; type 2 outlier set U∗

Initialization: C = {C1, ..., CK}, Ci ⊆ {1, ..., N} based on coordinate S; compute
centroid point w = {w1, ..., wK} with C

for m = 0, ..., L0 or until convergence do
E-step: Compute for i = 1, ..., N and k = 1, ..., K, the hybrid posterior
probabilities p

(m)
ik by

p
(m)
ik = (1 − λ)preg(zi = k | xi, yi, θ(m)) + λpspa(zi = k | Si,:, w(m))

C-step: For i = 1, ..., K, assign C
(m)
k = {i | argmax

l∈{1,...,K}
p

(m)
il = k, i = 1, ..., N}, and

let n
(m)
k be the size of C

(m)
k ,

U
(m)
k = {i | zir 6= zis, zir = argmax

zir∈{1,...,K}
preg, zis = argmax

zis∈{1,...,K}
pspa}

M-step: For k = 1, ..., K, the parameters are then updated by
π

(m+1)
k = n

(m)
k∑K

l=1 n
(m)
l

, (β(m+1)
k , σ

2(m+1)
k ) = OLS(Y

C
(m)
k

, X
C

(m)
k

,:) ,

wk = 1
n

(m)
k

∑
i∈Ck

Si,:

end
Algorithm 5: Hybrid Mixture Regression (HMR)
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Input: Response vector Y ; independent variables in matrix XN×(P +1); the number
of mixing component, K; size of initialization random sample, n0; the
maximum number of iteration L0; the number of random starts J

Output: Partition C∗ = ⋃K
k=1 Ck; robust FMGR parameter estimate θ∗ = θJ0 ;

outlier set U∗ = UJ0

for j = 0, ..., J do
Initialization: U (old) = {1, ..., N}; U (cur) = ∅; L = 0
for k=1,...,K do

Draw a random sample of size n0 from set {1, ..., N}, indexed by Ik

Run robust linear regression: (Mk, βk, σk) =: RLM(yIK
∼ XIk

)
Initialize posterior probability: pik = N (yi − xT

i βk; 0, σ2
k), i = 1, ..., N

end
while U (old) 6= U (cur)&L < L0 do

Let U (old) = U (cur); L = L + 1
for k=1,...,K do

Let Ik be sample indices most likely in cluster k

Let U
(cur)
k be type 1 outliers of YIk

∼ XIk,:, using least trimmed squares
robust regression

end
U (cur)

reg = ⋃
k U

(cur)
k ; S = {1, ..., N} − U (cur)

reg

Update (θ, w) by HMR with the rest of samples in S, let U (cur)
spa be type 2

outliers, and W be the hybrid posterior probability
end
U j = U (cur)

reg + U (cur)
spa , θj = θ, wj = w

Let F j be a length-N binary vector whose i−th entry is 1 only if i ∈ U j

end
Denote J0 as the one such that FJ0 is closet to the mean of {Fj, j = 1, ..., J}

Algorithm 6: Spatial Robust Mixture Regression (SRMR)
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strap procedure is adopted to test the null hypothesis θ = θ̂. We perform the following

steps.

Step 1: Calculating the residuals for all observations, including the outlier samples, under

regression parameter β̂, σ̂, denoted as ε = {ε1, ..., εn}. Let εout be the residuals corresponding

to outlying samples, and ε0 be smallest absolute residual in εout.

Step 2: Generate iid sample ε̃1, . . . , ε̃n from the normal distribution N (0, σ̂), denoted as

ε̃ = (ε̃1, . . . , ε̃n).

Step 3: Calculate the percentage of samples in ε̃ whose absolute values are larger than

ε0, and denote it as p0.

Step 4: Repeat steps 2-3 for B times, and the statistical significance is evaluated as the

average of p0 for the B times.

5.2.5 Algorithm Discussion

Several prominent features make our proposed approach attractive. First instead of using

a robust estimation criterion or complex heavy-tailed distributions to robustify the mixture

regression model, our method is built upon a spatial regression model so as to facilitate

computation and model interpretation. Second we adopt a sparse and scale-dependent mean-

shift parameterization. Each observation is allowed to have potentially different outlying

effects across different regression components, which is very flexible. Compared to existing

spatial regression methods, our approach allows an efficient solution via the accelerated

penalized regression approach, and different information criteria (such as AIC and BIC) can

be used to adaptively determine the proportion of outliers. In the next section, we utilized

extensive simulations to demonstrate the performance of SRMR and its highly robustness

to both gross outliers and high leverage points.

5.3 Experiments by using Simulated Data

5.3.1 Selection of Baseline Methods

We collected in total nine existing methods to represent the current works. In the field

of mixture regression, Pan et al. [  134 ] proposed DC-ADMM which cluster mixture content

100



in a group pursuit way. It has an implementation as “PRclust”  

1
 R package. In the field of

robust mixture regression, we collected two state-of-the-art algorithms, Trimmed Likelihood

Estimation (TLE) and Component-wise adaptive Trimming Likelihood Estimation (CTLE)

from R package “RobMixReg”  

2
 in CRAN [ 135 ]. In the field of spatial smooth regression, we

collected four algorithms, spatially clustered coefficient regression (SCC) 

3
 [ 98 ], Spatialculster

 

4
 [ 136 ], Spdep  

5
 [ 137 ], and ClustGeo  

6
 [ 138 ]. However, only ClustGeo can be executed under

our formulation. In the field of segmentation methods based on Markov Random Field, we

collected two methods FRGMM  

7
 [ 101 ] and mrf2d  

8
 [ 139 ]. However, these two methods aim

to clustering image pixels, which requires natural spatial orders from neighborhood pixels

as input, and hence cannot be applied to solve our problem. Finally, we used four baseline

methods DC-ADMM, TLE, CTLE, and ClustGeo to perform comparison experiments. All

baseline methods used with their default parameters, except nit parameter in TLE and

CTLERob were set as 10. For DC-ADMM, we used stability-prclust function to select the

best parameter, followed by the instruction. For ClustGeo, we used choicealpha function

to select best parameter.

5.3.2 Simulation Settings

To simulate spatially dependent linear relationships, we first generate a univariate in-

dependent variable x from uniform distribution X ∼ U(−2, 2) and dependent variable y

by yi = βkxi + σk, k = 1, ..., K, i = 1, ..., n, where K is number of mixture models and β is

regression coefficient. Spatial coordinate of each sample si was generated from a multivariate

normal distribution N (µ, Σ), where µ determines the center and Σ determines the range and

shape of each spatial region. We use µ1 = [1, 1]T , µ2 = [ − 1, −1]T , Σ = diag(0.1, 0.1) as

the default experimental setting, i.e. K = 2 of two distinct and non-uniformly distributed
1

 ↑ https://github.com/ChongWu-Biostat/prclust
2

 ↑ https://cran.r-project.org/web/packages/RobMixReg/
3

 ↑ https://github.com/furong-tamu/Supplementary-files-for-SCC
4

 ↑ https://github.com/mpadge/spatialcluster
5

 ↑ https://github.com/r-spatial/spdep/
6

 ↑ https://cran.r-project.org/web/packages/ClustGeo/
7

 ↑ https://sites.google.com/site/nguyen1j/home/10-code
8

 ↑ https://freguglia.github.io/mrf2d/
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spatial regions. The two types of outliers wer further simulated. We simulated Type 1 out-

liers by a rejection sampling approach. Specifically, we first samples independent (x, y) from

(U(−2, 2), U(−8, 8)) and only accept the ones whose Euclidean distance to the regression

lines larger than two as Type 1 outliers. To simulate the Type 2 outliers of a certain ratio,

we randomly select the ratio of samples and reverse their spatial coordinate si = (c1
i , c2

i ) by

so
i = (−c1

i , −c2
i ).

We conducted the synthetic data based experiments for three types of method evaluation:

(1) We evaluated the general performance of SRMR and baseline methods in solving

the spatially dependent mixture regression problem by the following experimental setups

(Figure  5.1 A). Each time we perturbed one of the five factors and fixed the others, including

number of mixture regression models K = {2, 3, 4}, total sample size N = {100, 200, 400},

error of linear regression σ = {0.1, 0.2, 0.5}, rate of samples belong to (model1, model2,

outliers)={(0.4, 0.4, 0.2), (0.5, 0.3, 0.2), (0.6, 0.2, 0.2)} (only for K=2), and coefficients of lin-

ear regression model β = {(1.5, 1.0), (1.5, 0.1), (1.5, −1.2)} (only for K=2).

(2) We validated the robustness of SRMR and baseline methods in handling the two

types of outliers, namely Type 1 and 2 outliers by perturbing their ratio from 10% to 20%

(Figure  5.1 B).

(3) We validated the capability of SRMR and baseline methods in detecting different

shapes and distributions of spatial regions. We simulated the spatial coordinates from a

multivariate normal distribution or a multivariate uniform distribution, the former one sim-

ulates a round and dense spatial region while the later one generates uniformly distributed

2D coordinates. The simulated shapes are showcased in Figure  5.1 C. In addition, we also

evaluated if SRMR is sensitive to different relative positions of the spatial regions. We

simulated two types of relative location of spatial regions, namely (i) diagonal distribu-

tion by setting µ1 = [1, 1]T , µ2 = [ − 1, −1]T and (ii) horizontal distribution by setting

µ1 = [0.5, 0]T , µ2 = [ − 0.5, 0]T . To simulate spatial regions of imbalanced densities, we per-

turbed the covariance matrix of the spatial coordinates from diag(0.1, 0.1) to diag(0.5, 0.1).
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Figure 5.1. Experiment Setting. Sub-figures without grid represent linear
relationship and sub-figures with grid represent spatial coordinates. For (b)
and (c), we only show partial plot which control factor is changed instead of
full plot (linear relationship and spatial coordinate) as (a). (a) contains five
different scenarios in terms of mixture regression. (b) contains two scenarios
to deal with Type 1 and Type 2 outliers. (c) contains three scenarios for
detecting different shapes and distributions of spatial regions.
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5.3.3 Evaluation Metrics

We evaluated the performance of SRMR and baseline methods on synthetic datasets,

based on how accurate the methods can identify the simulated mixture regression models

and corresponding spatial regions, and distinguish the two types of outliers. Four evaluation

metrics were utilized in the synthetic data based evaluations:

1) Rand Index (RI): = number of agreeing pairs
number of total pairs computes a similarity measure between two

clusters by considering counting the sample pairs that are assigned in the same or different

clusters in the predicted and true clusters.

2) Adjust Rand Index (ARI): = RI- Expected (RI)
max(RI) - Expected(RI) , which is a corrected-for-chance version

of RI.

3) Accuracy Rate (ACC) for outliear detection. ACC: = detected true outliers
true outliers measures the

accuracy for distinguishing the Type 1 and Type 2 outliers.

4) Error of Predicted Coefficients (PCE): = ∑K
k=1(βk − βp

l(k))2 measures the distance

between the true regression coefficient βk of the regression components k = 1, ..., K and

predicted regression coefficient βp. Here l(k) = argmin
j

(βk − βp
j )2, i.e., βp

l (k) is the predicted

coefficient closest to βk.

5.3.4 Methods Comparisons and Performance Evaluations

We organized the synthetic data experiment results in Table  5.1 into three sections:

mixture regression, robustness and spatial patterns. Overall, SRMR outperforms baseline

methods in all 10 experiment settings under almost all evaluation metrics.

In Table  5.1 , the first section (1st-5th blocks) illustrated the performance of SRMR and

other methods in terms of the accuracies in detecting the heterogeneous linear dependencies

in different scenarios, with regards to sample size, number of components, noise level, cluster

balance and strength of regression coefficients. SRMR could detect the clusters and regression

coefficients for each cluster very accurately, for different sample sizes, components, and it is

robust to the different noise levels, imbalance of cluster sizes and small regression coefficients.

Notably, because it incorporates spatial information, it is able to differentiate two clusters

with very similar regression coefficients but different spatial locations. Since DC-ADMM and
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ClustGeo are designed for clustering, but not regression, the evaluation metrics ACC and

PCE for these two methods are filled with NaN. Although DC-ADMM proposed using a novel

formulation for clustering, it cannot handle outliers or incorporate spatial information. Thus,

the performance of DC-ADMM is the lowest in most of cases. As noise level of regression

line increased, the power of ordinary robust mixture regression methods TLE and CTLE

decreased, leading to lower RI and ARI score. When the clusters become more and more

imbalanced, the RI and ARI scores of all of the baseline methods get much worse. When

two clusters have very similar regression parameters, but are far away in terms of spatial

locations, TLE and CTLE cannot differentiate the two clusters, as they didn’t account for

spatial proximity, causing low RI and ARI score.

The second section (6th-7th blocks) of Table  5.1 illustrated the performance of all meth-

ods in terms of robustness to outlier contamination, including Type 1 outliers and Type 2

outliers. SRMR is highly robust to both regression outliers and spatial outliers, and the

clustering accuracies and parameter estimates are almost unaffected in the presence of out-

liers. This is because SRMR adopted a trimmed likelihood approach, and it is expected

that the outliers will not be taken into model estimations. Since DC-ADMM and ClustGeo

are not designed to handle the neither Type 1 or Type 2 outliers, their performance consis-

tently worse than TLE, CTLE, and SRMR. While TLE and CTLE could handle regression

outliers, they have no control over the spatial proximity, and hence they are very sensitive

Type 2 outliers, i.e., spatial outliers. ACC of TLE and CTLE is around 70% due to spatial

heterogeneity while SRMR has 100% accuracy rate in all scenarios.

The third section (8th-10blocks) in Table  5.1 illustrate the performance of all methods

for different spatial patterns, regarding the shape, center and density of the spatial clus-

ters. SRMR is designed to detect heterogeneious linear dependencies that is robust to both

regression outliers and spatial outliers, and its performance is consistently desirably with re-

gards to different spatial patterns. When the spatial distribution of the clusters are changed

from multivariate normal to multivariate uniform, it means the shape of the clusters are less

sphear, and more diffused. When the center of spatial coordinate changed from diagonal

to horizontal, the boundary of two spatial centers became blurred, meaning there are more

overlap between neighbouring clusters. The performance of TLE, CTLE and ClustGeo got
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worse with more cluster overlaps, while SRMR is robust to this complex situation thanks

to the integration of both regression and spatial similarity. ClustGEO is sensitive to the

imbalanced density of different clusters, while SRMR is unaffected.

In summary, SRMR is the only method that could model the linear dependency between

response and predictors that vary in the spatial domain, and detect clusters of observations

with both similarities in regression parameters and spatial proximity. And it is robust to

both outliers in regression fitting and spatial locations. It has produced highly favorable per-

formance in different simulation settings, with regards to different levels of regression/spatial

noise, outliers, and mixture imbalance.

5.4 Experiments by using Real-world Data

We further validated SRMR on two real-world datasets, namely (1) a geospatial eco-

nomics data collected from 298 cities of China and (2) a spatial transcriptomics data collected

from 3,798 spatial spots on a 2D breast cancer tissue. The synthetic data based experiments

clearly suggested that SRMR is the only method that can effectively solve the spatially de-

pendent mixture regression problem compared to the baseline methods. In the real-world

data based experiments, we mainly focused on illustrating the contextual meaning of the

spatial regions and corresponding regression models identified by SRMR. We also evaluated

the goodness of fitting and significance of the spatially dependent mixture regression models

as well as the running time of the tested methods.

5.4.1 Application on Geospatial Economics Data

We collected 7 economic features, namely total GDP, public income, public spend, edu-

cational spend, technology spend, population, and averaged personal income, and latitude

and longitudes, for 298 cities in China. We evaluated SRMR and baseline methods to this

data set. We utilized each of the eight features as a dependent variable and selected oth-

ers as independent variables When applying SRMR and other regression models, while all

the features were utilized as the input of ClustGeo. Similar to the synthetic data based

experiments, SRMR is the only method can identify spatially dependent mixture regression
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Table 5.1. Synthetic Data Performance
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models. In contrast, TLE, CTLERob, and DC-ADMM only detected spatial independent

regression models, and ClustGeo output a spatial segmentation based on all features.

For a clear visualization and explanation, we illustrated two univariate regressions of

Educational Spend (ES) ∼ GDP and Income ∼ GDP . For both ES and Income,

SRMR identified four spatial regions corresponding to the north-east, middle-east, south-

east and west regions of China (Figure  5.2 a1, Figure  5.2 a2). The spatial regions detected by

SRMR show distinct different dependency of ES and Income with GDP . Specifically, ES

is positively associated with GDP in the middle-east (ES = 0.24 · GDP + 10.9) and north-

east China (ES = 0.4 · GDP + 9.17). The south-east cities have more stable ES, which less

depends on GDP (ES = 0.8 ·GDP +4.19), while a negative association of ES and GDP are

observed in the west cities (ES = −0.39·GDP +17.09). The high dependency in middle-east

and north-east cities and less dependency in south-east cities are consistent to our knowledge,

as the middle-east and north-east China are promoting the education system basis while the

education systems south-east China are relatively stable. We also checked the cities in the

west China that have high GDP but low ES. Such cities include Dongying, Ordos, Karamay,

etc., which are developing more neo energy business rather than education in the recent

years. Similar observations were also made in the Income ∼ GDP model (Figure  5.2 a2).

The SRMR outputs suggested the personal Income in the north-east, south-east and west

cities less depends on GDP while more positive dependency between Income and GDP

was observed in middle-east cities, especially the well developed cities Beijing, Shanghai,

Tianjin, Hangzhou, etc. On the other hand, on both Educational Spend (ES) ∼ GDP

and Income ∼ GDP , TLE and CTLERob failed to identify such spatial dependent and

contextual meaningful patterns while both of them tend to over-fit the mixture of regressions

(Figure  5.2 a3, Figure  5.2 a4). DC-ADMM identified all cities as one class (Figure  5.2 

a5) while ClustGeo identified three distinct non-overlapping spatial regions without offering

explainable regional specific feature dependencies (Figure  5.2 a6).
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5.4.2 Application on Spatial Transcriptomics Data

Here we illustrate that SRMR enables a new type of ST data analysis by simultane-

ously identify spatial regions in which the expression level of genes show different level of

dependency, which directly annotate the biological meaning of each detected region.

We applied SRMR and baseline methods on the v1.1 ST data of breast cancer provided

by 10xgenomics.com, consisting of 13,161 genes and 3,798 spatial spots. We first selected

500 genes that having high expression level and having known tumor micro-environment

related functions. We fit the regression model Gene1 ∼ Gene2 for each pair of the 500 genes

by using SRMR, TLE, CTLERob and DC-ADMM and conducted ClustGeo by using all the

500 genes. Similar to the synthetic and Geospatial data, SRMR is the only method that

detected spatially dependent mixture regression models in the ST data. General spatial

segmentation, such as ClustGeo, identifies spatial regions by using the whole feature matrix

(Figure  5.2 b3), which is consistent to the distribution of the averaged gene expression

signal level (Figure  5.2 b2). On the other hand, we identified more than 500 overlapped

spatial regions by using SRMR, each having varied dependency among certain genes. Figure

 5.2 b4 showcased two distinct spatial regions only identified by SRMR, which have varied

dependency between the CD79A and CD79B genes as shown in Figure  5.2 b5. CD79A/B are

key genes involved in maturation and functional variation of B cells. The varied dependency

of CD79A and CD79B characterizes distinct sub-regions in one breast cancer tissue that

potentially have different immune activities and responses to immuno-therapy.

In summary, compared with baseline methods, SRMR is the only method can effectively

solve the spatially dependent mixture regression problem on the two real-world data. For

the analysis of a single regression model in the real-world data, the running time of SRMR,

TLE and CTLERob are about 15s, 10s and 2s, respectively. The running time of SRMR

is slower, but also comparable to the baseline robust mixture regression approaches. The

running time of DC-ADMM and ClustGeo are about 0.01s.
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5.5 Conclusions

We developed a new statistical model of high dimensional data with matched spatial

information, namely spatially dependent mixture regression. We also developed spatial ro-

bust mixture regression (SRMR) analysis as an effective solution of the problem. SRMR

is empowered by an inference scheme to assess statistical significance of spatial dependent

finite mixture regression models. On both synthetic and real-world data based experiments,

we demonstrated that SRMR is the only capability can solve the spatially dependent mix-

ture regression problem. Particularly, SRMR enables a new type of spatial segmentation

analysis by detecting large sets of spatial regions having varied dependency among certain

features. Compared with conventional spatial segmentation analysis, the regions identified

by SRMR characterize more spatial dependent variations conceived in the data and enable

better contextual explanation. The source codes of SRMR and the analysis of this study are

provided at https://github.com/changwn/SRMR. 

9
 

9
 ↑ https://github.com/changwn/SRMR
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Part II

Deep Learning based Systems Biology

Model for Human Metabolic Flux

Estimation
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6. A DEEP NEURAL NETWORK MODEL TO ESTIMATE

CELL-WISE METABOLIC FLUX USING scRNA-SEQ DATA

This chapter focuses on human metabolic flux estimation with deep learning approach. The

metabolic heterogeneity, and metabolic interplay between cells have been known as sig-

nificant contributors to disease treatment resistance. However, with the lack of a mature

high-throughput single cell metabolomics technology, we are yet to establish systematic un-

derstanding of the intra-tissue metabolic heterogeneity and cooperative mechanisms. To mit-

igate this knowledge gap, we developed a novel computational method, namely scFEA (single

cell Flux Estimation Analysis), to infer cell-wise fluxome from single cell RNA-sequencing

(scRNA-seq) data. scFEA is empowered by a systematically reconstructed human metabolic

map as a factor graph, a novel probabilistic model to leverage the flux balance constraints on

scRNA-seq data. The intricate information cascade from transcriptome to metabolome was

captured using multi-layer neural networks to capitulate the non-linear dependency between

enzymatic gene expressions and reaction rates.

In this chapter, we have three major contributions on estimating human metabolic flux

at single cell level resolution.

1. We proposed a metabolic map reduction approach based on network topology and

gene expression status.

2. We used a multi-layers neural network model to capture the non-linear dependency of

metabolic flux on the enzymatic gene expressions.

3. In our method, we built a novel neural network architecture and solution to maximize

the overall flux balance of intermediate substrates throughout all cells.

Gene expression patterns over the topological structure of biological networks is deter-

ministic of biological functions. Several studies integrated the topology of biological net-

works with gene expression data to model activity of transcriptional regulation or metabolic

networks, such as using the expression levels over pathways to portray metabolic changes.

However, functional activities can vary dramatically from cell to cell due to their high plastic-

ity, while most published work tend to fir one model for predefined cell groups, disregarding

the intrinsic heterogeneity among cells. In this work, we proposed an advanced method
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to provide a reliable estimation of cell-wise functional activity and states from scRNA-seq

data, that could translate single cell transcriptomes to chemical mass carrying fluxomes in

each cell. It is critical to capture metabolic activity level at single cell resolution for study-

ing the heterogeneity of metabolic fluxes. However, the single cell resolution metabolomics

data is still in immature stage, we cannot observe metabolic activity level for cells. For-

tunately, the large availability of scRNA-seq data provides a potential solution of cell-wise

metabolic flux from a different perspective, i.e. utilizing the non-linear dependency between

gene expression and metabolic flux changes to estimate the metabolic activity level. To

handle such non-linear dependency, we proposed a novel graph neural network architecture

by using multi-layer neural network to capture the non-linear dependency for each metabolic

reaction. In addition, this problem can be also regarded as a one-shot learning problem since

the transcriptomes of cells only measure the one moment of cells. Taking traffic flow as an

example, we only have one frame of video of traffic flow and we need to estimate traffic flow

by only using this one frame picture at different locations of highway. This work is a very

first attempt to solve mass carrying flux by using non-real time data, which provided a set of

novel mathematical models and algorithms that can be broadly utilized in other real-world

flow estimation problems, such as estimation and monitor of traffic and currency flow.

6.1 Background

Metabolic dysregulation is a hallmark of many disease types including cancer, diabetes,

cardiovascular disease and Alzheimer’s disease [ 140 ]–[ 146 ]. In cancer, the diseased cells are

well understood to rewire their metabolism and energy production to support rapid prolifer-

ation, sustain viability, and promote acquired drug resistance [ 147 ]–[ 150 ]. Here, the diseased

cells often react differently to the microenvironmental stress. Such heterogeneity often re-

sults in an increased repertoire of possible cellular responses to compromise the efficacy of

drug therapies, leading to the enhanced survival of the entire diseased cell population [ 151 ],

[ 152 ]. The metabolome is an excellent indicator of phenotypic heterogeneity due to its high

dynamics and plasticity [  153 ]. Unfortunately, current high-throughput metabolic profiling

has been largely applied to bulk cell or tissue samples, from which we could only observe an
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averaged metabolic signal over a large number of cells; while single cell metabolomics is still

in its infancy, due to its relatively low throughput and low sensitivity [ 153 ]–[ 159 ]. Overall,

our understanding of metabolic dysregulation of human disease has been immensely limited

by our technology to study the metabolic landscape at single-cell level and in the context of

their tissue microenvironment [ 160 ]–[ 167 ].

Single cell RNA-seq (scRNA-seq) data has been widely utilized to characterize cell type

specific transcriptional states and its underlying phenotypic switches in a complex tissue

[ 168 ]–[ 177 ]. Realizing the strong connections between transcriptomic and metabolomic

profiles [ 169 ], [ 173 ], [ 178 ]–[ 181 ], scRNA-seq data has found its application in portraying

metabolic variations. Using scRNA-Seq data, the existing research studied metabolic changes

of pre-defined cell groups relying on differential expression and enrichment analysis of key

metabolic enzymes and pathways [  168 ], [  170 ]–[ 175 ], [  177 ]. However, for this type of analysis,

the node/edge structures in a metabolic pathway graph, or the mass balance constraints of

metabolic network is not considered. Studies coupling single cell transcriptomics data and the

Flux Balance Analysis (FBA) at steady-state framework have only recently emerged [ 169 ],

[ 176 ]. The FBA describes the potential flux over the topological structure of a metabolic

network, with a set of equations governing the mass balance at steady state. The advantage

of incorporating FBA into the model is two-fold: considering the chemical stoichiometry in

FBA could lead to more accurate estimation of the metabolite abundance; flux estimation

for each individual metabolite can be solved, leading to high-resolution characterization of

the metabolic profiling. Damiani et al developed scFBA that utilizes the cell group specific

gene expression status derived from scRNA-seq data to regularize the network topology for

FBA [  169 ]. Wagner et al proposed a method, namely Compass, which maximizes the co-

herence between scRNA-seq expression profile and predicted flux in solution space of FBA

[ 181 ]. However, as stated in the original works, the stringent flux balance and steady-state

assumption in scFBA and Compass may not be rational for certain disease types with con-

stantly severe “imbalance” of many metabolites, namely cancer. Another limitation of the

FBA-based methods is that the single cells’ gene expression is not used directly to model

metabolic flux. Both scFBA and Compass used single cell gene expression as certain con-

straints to guide the search in the solution space of flux balance condition. In addition, both
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models are intended for modeling the fluxes for cells of pre-defined groups, instead of at a

single cell resolution, and they are restricted to a small portion of the whole metabolic map.

Therefore, it remains an urgent task to design advanced computational tools for reliable

estimation of cell-wise metabolic flux and states by translating single cell transcriptomes to

single cell fluxomes. Such a tool is vital to unravel the principles of how the disease mi-

croenvironment may affect the metabolic phenotypes for the heterogeneous cell types [ 169 ],

[ 170 ].

Computational challenges to estimate cell-wise metabolic flux arise from the following

aspects: (1) multiple key factors determine cells’ metabolic states, including exogeneous

nutrient availability, leading to the discrepancy of cell type specific markers and metabolic

phenotypes and states; (2) the whole metabolic network is of high complexity, hence a proper

computational reduction and reconstruction of the network is needed to reach a balance

between resolution of metabolic state characterization and computational feasibility; (3) the

intricate non-linear dependency between transcriptomic expressions and metabolic reaction

rates calls for a more sophisticated model to fully capitulate the relationships; and (4)

alternative enzymes with similar functions may result in common metabolic phenotypes,

however, exactly which enzymes share such common effect to the metabolic flux change

remains largely unknown.

In this study, we developed a novel computational method, namely single-cell Flux Es-

timation Analysis (scFEA), to estimate the relative rate of metabolic flux at single cell

resolution from scRNA-seq data. Specifically, scFEA can effectively solve the above chal-

lenges with the following computational innovations: (i) an optimization function derived

based upon a probabilistic model to consider the flux balance constraints among a large num-

ber of single cells with varied metabolic fluxomes, (ii) a metabolic map reduction approach

based on network topology and gene expression status, (iii) a multi-layer neural network

model to capture the non-linear dependency of metabolic flux on the enzymatic gene ex-

pressions, and (iv) a novel graph neural network architecture and solution to maximize the

overall flux balance of intermediate substrates throughout all cells. The central hypotheses

of scFEA are (1) the flux variations of a metabolic module can be modeled as a non-linear

function of the transcriptomic-level changes of the catalyzing enzymes; and (2) the total
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flux imbalance of all intermediate substrates should be minimized throughout all single cells.

The cell-wise fluxome estimated by scFEA enables a series of downstream analysis, includ-

ing identification of cell or tissue level metabolic stress, sensitivity evaluation of individual

enzymes to the whole metabolic network, and inference of cell-tissue and cell-cell metabolic

exchanges. To validate scFEA, we generated an scRNA-seq dataset with matched tissue level

metabolomic profiles under different biochemical perturbations. Applications of scFEA on

synthetic datasets, the newly generated dataset with matched scRNA-seq and metabolomic

profiles, and six other independent real-world datasets, validated the prediction accuracy,

robustness, and biological interpretability of scFEA.

6.2 Methods and Materials

6.2.1 Collection of human metabolic map

We consider the human metabolic network as composed of different reaction types in-

cluding metabolism, transport (including uptake and export), and biosynthesis. As detailed

in Results, the reconstructed network consists of 22 super module classes of 169 modules.

All reactions related to metabolism were collected from the Kyoto Encyclopedia of Genes

and Genomes database (KEGG) [ 182 ]. In total, 11 metabolism related super modules were

manually summarized, which is comprised of glycolysis, TCA cycle, pentose phosphate, fatty

acids metabolism and synthesis, metabolism of amino acids namely serine, aspartate, beta-

alanine, glutamate, leucine/valine/isoleucine and urea cycle, propionyl-CoA and spermidine

metabolism [  183 ]. The 11 metabolism super modules contain 1388 reactions, 317 enzymes,

which corresponds to 563 genes.

Transporters enable the trafficking of molecules in and out of cell membranes. We col-

lected the human transporter proteins, their corresponding genes and metabolite substrates

from the Transporter Classification Database [  184 ], [ 185 ]. In total, 80 transporter genes, and

35 related metabolites were collected.

An essential part of metabolic map is the biosynthesis pathways. KEGG database and

literature [  146 ], [  186 ]–[ 192 ] are the main information sources used for building biosynthesis

modules. We collected 69 biosynthesis modules forming 10 super modules, namely biosynthe-
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sis of hyaluronic acid, glycogen, glycosaminoglycan, N-linked glycan, O-linked glycan, sialic

acid, glycan, purine, pyrimidine, and steroid hormones. Overall, the biosynthesis modules

include 459 genes of 269 enzymes catalyzing 869 reactions.

6.2.2 Selecting genes of significant expression

We applied our inhouse method, LTMG, to determine the expression status of each gene

in each single cell. LTMG considers the multi-modality of the expression profile of each gene

throughout all the single cells, by assuming that the gene’s expression follows a mixture of

suppressed state and activated states, as represented by the following likelihood function

[ 78 ].
N∏

j=1
(

S∑
i=1

aipi(xj | ui, σi) + aS + pS+1(xj | uS+1, σS+1)) (6.1)

,where xj, j = 1, ..., N are the expression profile of gene x in N cells, the index 1...S are the S

active expression states and S + 1 is the suppressed expression state, ai is the proportion of

each state with a1 + ...+aS+1 = 1, a1...S > 0 and aS+1 ≥ 0, pi, ui and σi are the pdf, mean and

standard deviation of each expression state. Specifically, LTMG considers the distribution

of ech mixing component, pi, as a left truncated Gaussian distribution, to account for the

noise of drop out events. In this work, LTMG was used to fit to each gene’s expression and a

gene was determined to have significant expression if ∑S
i=1 ai ≥ 0.1, i.e., the gene has active

expression states in at least 10% cells.

6.2.3 Pre-filtering of active modules based on gene expression

Each metabolic module contains an input, an output, and a number of enzymes catalyzing

the reactions. A reaction is considered as disconnected if none of the genes encoding its

catalyzing enzymes is significantly expressed. A metabolic module is considered as blocked

if there is no connected path from the input to the output. Considering the common drop-

out events in scRNA-seq data, especially for the drop-seq data, we adopted a conservative

approach to pre-trim the metabolic modules: essentially, a module will be removed from
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further analysis if none of the genes involved in all reactions of this module has significantly

active expressions.

6.2.4 scFEA model setup and a belief propagation based solution of the flux
model

Model setup We developed a novel optimization strategy to minimize L similar to the

idea of belief propagation [ 193 ]. Specifically, the flux balance of each metabolite

Ck, LK = ∑N
j=1(

∑
m∈F

ck
in

Fluxm,j−
∑

m′∈F
ck
out

Fluxm′,j)2, will be iteratively optimized, by taking

into account all the Hop-2 neighbors in the factor graph (metabolites), denoted as Ne(Ck),

and Hop-4 neighbors (metabolites), i.e., Ne2(Ck) := {Ck′ | Ck′ ∈ Ne(Ne(Ck))\Ck}. Specifi-

cally, for a more efficient optimization, we adopt the idea of belief propagation by minimizing

a reweighted flux imbalance: L∗
K = LK + ∑

C′
k

∈Ne2(Ck) Wk′Lk′ at each iteration, where Wk′ is

a weight value (0, 1] representing the reliability of the current flux balance of Ck′ . We set

Wk′ = exp −
∑

C′
k

∈Ne()Ne(Ck′ )\{Ck′ ,Ck} Lk′

|Ne2(Ck′ )\{Ck′ ,Ck}| as an exponential function of the negative averaged im-

balance level of 2-hop neighbors (metabolite) of Ck′ excluding Ck, with higher Wk′ denoting

lower imbalance level of the metabolites. The intuition is that the more reliable the current

flux is estimated for the modules involving Ck′ , which is reflected by the averaged imbalance

level of its 2-hop neighbors, a higher weight Wk′ should be given to Ck′ . Therefore, that

when minimizing LK , a disruption of the flux balance of Ck′ of higher weight will be more

heavily penalized, and less desirable.

Neural network model setup For each module, a neural network is used to represent the

non-linear dependency between gene expressions and reaction rates. Each neural network

has a1 hidden layers each with a2 hidden nodes, and one output node. In this study, we took

a1 = 3 and a2 = 8. A Hyperbolic Tangent activation function, Tanhshrink(x) = x − tanh x

is used. The number of nodes and the number of hidden layers determines the complexity of

network structure, which impacts the convergence time of optimization. Too simple structure

may not fully capture the non-linear relationship, while too complex structure cause difficulty

to train all parameters and reach convergence. Our organized metabolic modules have an

average gene number of 8, which determine the input nodes of scFEA. Since scFEA has
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169 parallel subnetworks for each metabolic module, we decide that three hidden layers can

leverage the level of non-linearity and overfitting, and ensure a feasible computational cost.

6.2.5 Clustering analysis of cells with distinct metabolic states

scFEA adopts an attributed graph clustering approach to identify the groups of cells

and metabolic modules forming a distinct metabolic state. Two clustering approaches were

provided to the results of scFEA for different purposes, namely clustering of (1) metabolic

modules based on the metabolic map and the predicted flux, and (2) cells sharing a common

state on the overall metabolic map based on the predicted flux.

6.2.6 Analysis of cell group specific metabolic stress and metabolic exchanges
among cell groups

The cell-wise metabolic flux estimated by scFEA enables the analysis of metabolic stress.

For a pre-defined cell group such as cells of the same type, the total imbalance of each

compound will be computed and ranked. One-way t-test was applied to test if the imbalance

is significantly different from 0. The metabolic exchange among different cell groups from one

tissue sample were identified as the metabolites with different signs of metabolic imbalance in

different cell groups, such as accumulation and depletion, or exporting or importing. Tissue

level metabolic stress is computed as the total imbalance throughout multiple cells.

6.2.7 Perturbation analysis

In scFEA, to evaluate the impact of the change in gene expression on the whole metabolic

map, a perturbation analysis is conducted which includes three components: (1) the direct

impact of each gene Gm
i to the flux module m can be directly computed by its derivative

dfm
nn

dGm
i

for all the modules containing Gm
i ; (2) the impact of the flux change of one module A

on a target module B could be estimated as the variations of flux in B calculated under

different values of flux in A, while keeping the other parameters/input fixed, i.e., a Monte-

Carlo based method; (3) the impact of each gene’s expression to the flux of distant modules
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can be evaluated by integrating (1) and (2) using a chain rule, i.e. first computing the flux

change of the modules containing the gene and then evaluating the change of other modules.

6.2.8 Patient-derived cell line models of pancreatic cancer

Pa03C cells were obtained from Dr. Anirban Maitra’s lab at The Johns Hopkins Univer-

sity (Jones et al. 2008). All cells were maintained at 37°C in 5% CO2 and grown in DMEM

(Invitrogen; Carlsbad, CA) with 10% Serum (Hyclone; Logan, UT). Cell line identity was

confirmed by DNA fingerprint analysis (IDEXX BioResearch, Columbia, MO) for species

and baseline short-tandem repeat analysis testing in February 2017. All cell lines were 100%

human, and a nine-marker short tandem repeat analysis is on file. They were also confirmed

to be mycoplasma free.

6.2.9 scRNA-seq experiment

Cells were transfected with either Scrambled (SCR) (5′ CCAUGAGGUCAGCAUGGU-

CUG 3′, 5′ GACCAUGCUGACCUCAUGGAA 3′) or siAPEX1 (5′ GUCUGGUACGACUG-

GAGUACC 3′, 5′ UACUCCAGUCGUACCAGACCU 3′ siRNA). Briefly, 1×105 cells are

plated per well of a 6-well plate and allowed to attach overnight. The next day, Lipofec-

tamine RNAiMAX reagent (Invitrogen, Carlsbad, CA) was used to transfect in the APEX1

and SCR siRNA at 20 nM following the manufacturer’s indicated protocol. Opti-MEM,

siRNA, and Lipofectamine was left on the cells for 16 h and then regular DMEM media with

10% Serum was added.

Three days post-transfection, SCR/siAPEX1 cells were collected and loaded into 96-well

microfluidic C1 Fluidigm array (Fluidigm, South San Francisco, CA, USA). All chambers

were visually assessed and any chamber containing dead or multiple cells was excluded. The

SMARTer system (Clontech, Mountain View, CA) was used to generate cDNA from captured

single cells. The dscDNA quantity and quality was assessed using an Agilent Bioanalyzer

(Agilent Technologies, Santa Clara, CA, USA) with the High Sensitivity DNA Chip. The

Purdue Genomics Facility prepared libraries using a Nextera kit (Illumina, San Diego, CA).
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Unstrained 2x100 bp reads were sequenced using the HiSeq 2500 on rapid run mode in one

lane.

6.2.10 scRNA-seq data processing and analysis

FastQC was applied to evaluate the quality of the single cell RNA sequencing data.

Counts were called for each cell sample by using STAR alignment pipeline against human

GRCh38 reference genome. Cells with less than 250 or more than 10000 non-zero expressed

genes were excluded from the analysis. Cells with more than 15% counts mapped to the mito-

chondrial genome were excluded as low quality cells, resulting 40 APEX1 KD and 48 Control

cells under hypoxia condition and 27 APEX1 KD and 46 Control cells under normoxia con-

dition for further analysis. We utilized our in-house left truncated mixture Gaussian model

to identify differentially expressed genes [  78 ]. Pathway enrichment analysis of the genes in

the identified bi-clusters are computed using hypergeometric test against the 1329 canonical

pathway in MSigDB database [ 133 ], with p<0.001 as a significance cutoff.

6.2.11 Metabolomic profiling and data analysis

To address the function of the mitochondria, S-1 Mitoplates (Biolog, Hayward, CA) Mito-

chondrial Function Assay were performed following the manufacturer’s protocol. The assay

covers 14 metabolites in central metabolic pathways, namely glucose, glucose-1 phosphate,

glucose-6 phosphate, pyruvate, and lactate in the glycolysis pathway, citrate, 2-oxoglutarate,

succinate, fumarate, malate in the TCA cycle, and amino acids glutamate, glutamine, ser-

ine, and ornithine. Specifically, assay mix (60 minutes at 37°C) was added to the plates to

dissolve the substrates. We collected, counted, resuspended PDAC cells in provided buffer

and plated them at 5x104 cells/well after treatment . Readings at 590nm were taken every

5 min for 4 hours at 37°C. Experiments were performed in triplicate with 3 biological repli-

cates for the siAPEX1 and control PDAC cells under the normoxia condition. Raw data

was analyzed using Graphpad Prism 8, and statistical significance was determined using the

2-way ANOVA and p-values <0.05 were considered statistically significant
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6.2.12 qRT-PCR

qRT-PCR was used to measure the mRNA expression levels of the various genes iden-

tified from the scRNA-seq analysis. Following transfection, total RNA was extracted from

cells using the Qiagen RNeasy Mini kit (Qiagen, Valencia, CA) according to the manufac-

turer’s instructions. First-strand cDNA was obtained from RNA using random hexamers

and MultiScribe reverse transcriptase (Applied Biosystems, Foster City, CA). Quantitative

PCR was performed using SYBR Green Real Time PCR master mix (Applied Biosystems,

Foster City, CA) in a CFX96 Real Time detection system (Bio-Rad, Hercules, CA). The

relative quantitative mRNA level was determined using the comparative Ct method using

ribosomal protein L6 (RPL6) as the reference gene. Experiments were performed in triplicate

for each sample. Statistical analysis performed using the 2−ΔΔCT method and analysis of

covariance (ANCOVA) models, as previously published [ 194 ].

6.3 Results

6.3.1 Systems biology considerations, hypotheses, and analysis pipeline of scFEA

The reaction rate of a simple enzyme catalyzed metabolic reaction follows the Michaelis-

Menten kinetic model: V = Kcat
[E][S]

Km+[S] , which is a non-linear function of enzyme concentra-

tion [E], substrate concentration [S], and kinetic parameters Kcat and Km. . On one hand,

the reaction rate is approximately a linear function of the enzyme concentration when the

substrate concentration is much larger than Km, i.e., when [S]
Km+[S] is ∼ 1; on the other hand,

the enzyme concentrations could often serve as a surrogate for the substrate concentration

considering the regulatory effect of substrate availability on the enzyme transcription. Over-

all, we consider the reaction rate to be an (non-)linear function of the enzyme concentration.

Obviously, the flux of a reaction chain is mostly determined by the rate limiting steps, which

depend on the flux distribution, substrate concentration, and kinetic parameters. Hence,

the rate limiting steps are often context specific and unknow because of the dynamics of the

physiological and biochemical conditions of the cells. Based on these considerations, we de-

veloped scFEA, to estimate cell-wise metabolic flux from scRNA-seq data. scFEA consists of
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Figure 6.1. Metabolic reduction and reconstruction. A metabolic map was
reduced and reconstructed into a factor graph based on network topology,
significantly non-zero gene expressions and users’ input.

three major computational components, namely: (1) network reduction and reconstruction,

(2) estimation of cell-wise metabolic flux, and (3) downstream analyses including estimation

of metabolic stress, perturbation of metabolic genes, and clustering of cells with different

metabolic states (Figure  6.3 ). The required input of scFEA is an scRNA-seq dataset, while

optional inputs, including cell group labels or subset of metabolic reactions of interest, can

be specified for additional analysis.

To reduce the complexity of the metabolic map, we reconstructed it into a factor graph

composed by connected metabolic modules as variables and intermediate metabolites as

factors (Figure  6.1 ). Specifically, connected reactions are merged into one module, if changes

in the reaction rates within the module do not affect the rates of the rest of the reactions,

given a fixed flux rate of the module. In other words, the estimated flux of a module stays the

same with or without merging the reactions, under the flux balance condition. This approach

increases the robustness of flux estimation and reduces the computational complexity.

The central computational component of scFEA is a novel graph neural network archi-

tecture, which models cell-wise metabolic flux of each metabolic module using gene expres-

sion levels of the catalyzing enzymes (Figure  6.2 ). We hypothesize that the metabolic flux

throughout all the single cells in a tissue sample should minimize the overall imbalance of
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Figure 6.2. A novel graph neural network architecture based prediction of
cell-wise fluxome. A loss function (L) composed by loss terms of flux balance,
non-negative flux, coherence between predicted flux and gene expression, and
constraint of flux scale, were utilized to estimate cell-wise metabolic flux from
scRNA-seq data.

Figure 6.3. Downstream analysis of scFEA is provided, including inference
of metabolic stress, cell and module clusters of distinct metabolic states, and
the genes of top impact to the whole metabolic flux.
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the in-/out-flux of intermediate substrates. The rationality of this assumption is that cells

within the same tissue exchange metabolites with each other, hence the total flux balance

constraint on all the single cells from one tissue sample is more robust than in individual

cells. In scFEA, we utilize the gene expression variations to reflect the protein level change of

enzymes and transporters. Note that this assumption is supported by many existing studies

that reveal the high explainability of the transcriptome for the proteome [  165 ], [  195 ], [  196 ].

We assume the flux variations of a module generally impacts its neighboring modules, which

can be reflected by aggregating the expression variations of the genes in its neighborhood over

the metabolic network. The non-linear dependency between gene expression and metabolic

flux is modeled as a fully connected neural network of 2-4 layers, which could be considered

as a non-linear approximation of the Michaelis-Menten model. To solve the neural network

parameters, scFEA minimizes a loss function that mimics the overall flux imbalance of all

modules in all cells, with further non-negativity and other prior assumptions on the module

fluxome. The large number of single-cell in an scRNA-seq data grants sufficient statistical

power to detect the flux variations and avoids the overfitting of the neural network training.

It is noteworthy the parameters of the neural network could serve as sensitivity measures of

the metabolic flux balance to the variations of the genes. In other words, genes with higher

impact are likely to be associated with rate limiting reactions under the particular context.

The estimated cell-wise metabolic flux enables the prediction of (i) the metabolites or

pathways with high imbalance in certain cell group, (ii) groups of metabolic modules or

cells with varied metabolic states, and (iii) the metabolic genes whose perturbation highly

impacts the overall metabolic flux (Figure  6.3 ). In this study, we mainly focus on solving

cell-wise metabolic flux and states, and method validations in human cells. A capability for

mouse data analysis is also provided in the software package of “scFEA”.

6.3.2 Metabolic map reduction and reconstruction

The whole metabolic network in human and mouse have been well studied. However,

while databases including the Kyoto Encyclopedia of Genes and Genomes (KEGG) provide

well categorized metabolic pathways and the comprehensive set of metabolic genes [ 182 ], the
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network topological structure needs to be further optimized for fluxome estimation, due to

the following reasons: (1) the flux balance constraints depend on the optimization goal or

computational assumption, such as the balance of carbon, redox or pH, (2) the network com-

plexity needs to be reduced to enable computational feasibility, and (3) a manual correction

and annotation of the directions of reactions and transporters is in need. In addition, cells

of different types or physiological states naturally have varied metabolic states. In scFEA,

we first manually curated and annotated the metabolic map of human and mouse retrieved

from KEGG database. The global metabolic map is further reduced and reconstructed into a

factor graph based on its topological property. scFEA also allows the selection of a connected

sub-network in the global metabolic network for flux estimation.

Collection of human and mouse metabolic map. The metabolic map consists of pathways

and reactions that fall under four major types, namely import, metabolism, biosynthesis,

and export. To ensure a comprehensive coverage of the global metabolic map, we collected

reactions of metabolism and biosynthesis as well as transporters for import and export

from different data sources. Specifically, metabolic reactions were directly retrieved from

KEGG database [  182 ]; the transporters and annotations of import and export reactions

were accessed from the transporter classification database [ 197 ]; biosynthesis reactions were

collected from the biosynthesis pathways encoded in KEGG and curated by using additional

literatures. The final metabolic map covers the metabolism, transport, and biosynthesis

of carbohydrate, amino acids, fatty acids and lipids, glycan, and nucleic acids in human

and mouse, including 862 genes of 390 enzymes, 1880 reactions, 1219 metabolites, and 116

transporter genes of 35 metabolites in human.

6.3.3 Mathematical formulation of metabolic flux estimation in individual cells

For a clear model setup, we first formulate the metabolic network as a directed factor

graph. Here, each metabolic module is represented as a variable, and each compound is

represented as a factor node carrying a loss function that evaluates the level of flux imbalance

among modules, and the direction represent if a metabolite is the input or output of a

metabolic module (Figure  6.4 ). We denote FG(C1×K , RM1×M , E = {EC→R, ER→}) as the
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factor graph, where C1×K = {Ck, k = 1, ..., K} is the set of K compounds, RM1×M =

{Rm, m = 1, ..., M} is the set of M metabolic modules, ER→C and EC→R represent direct

edges from module to compound and from compound to module, respectively. For the k-th

compound Ck, we define the set of reactions producing and consuming Ck as F Ck
in = {Rm |

(Rm → Ck) ∈ ER→C} and Ck as F Ck
out = {Rm | (Ck → Rm) ∈ EC→R}, which is derived from

the stoichiometric matrix of the whole metabolic map. For an scRNA-seq data set with N

cells, we denote Fluxm,j as the flux of the m-th module in the cell j, j = 1, ..., N and let

Fj = {Flux1,j, ..., F luxM,j}. Our computational hypothesis is that the total flux imbalance

of the intermediate metabolites throughout all the collected cells should be minimized, based

on which we developed the likelihood function of the flux of all modules throughout all cells

as:

φ(C, F ) =
N∏

j=1

K∏
k=1

φ(Ck,j | Fj)ϕ(Fj) (6.2)

, where φ(Ck,j | Fj) = φ(Ck,j | F Ck
in , F Ck

out) ∝ e−
λ(

∑
m∈F

Ck
in

F luxm,j−
∑

m∈F
Ck
out

F luxm,j)2

2 and ϕ(Fj)

represents the prior distribution of the fluxome in cell j, and λ is a tuning hyperparameter.

scFEA models the flux of reach reaction, Fluxm,j, as a nonlinear function of the expression

changes of the genes associated with the module. Denote Gm = {Gm
1 , ..., GM

im} as the genes

associated with the reactions in Rm, and Gm = {Gm
1 , ..., GM

im} as their expressions in sample

j, where im stands for the number of genes in Rm. WE model Fluxm,j = fm
nn(Gm

j | θm) as

a multi-layer fully connected nural network with the input Gm
j , where θm denotes the pa-

rameters of the neural network (Figure  6.6 ). It is noteworthy that the cell group and tissue

context specific distribution of the flux ϕ(Fj) and the reaction parameters θm are always

unknown. Apparently, without further constraints, Fluxm,j = 0 is a trivial solution. To

provide a robust and rational solution, we introduced two additional constraints to Fluxm,j

namely (1) the predicted flux, Fluxm,j, should be non-negative; and (2) within a super mod-

ule (Figure  6.5 ), the total predicted flux should be correlated with gene expression variation.

The second assumption assumes that the metabolic flux variation within large metabolic

modules should be coherent to their gene expression change, which is supported by recent

studies [ 169 ], [ 181 ]. This assumption effectively avoids the trivial solution. Hence, instead
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of directly maximize φ(C, F ), we solve the θm and cell-wise flux Fluxm,j by minimizing the

following loss function L:

L =
N∑

j=1

K∑
k=1

(
∑

m∈F
Ck
in

−
∑

m′∈F
Ck
out

)2 + α
N∑

j=1

M∑
m=1

(| Fluxm,j − Fluxm,j)

+β
N∑

j=1
[1− | cor(FluxSM

:,j , GESM
:,j ) | ] + γ

N∑
j=1

(
M∑

m=1
| Fluxm,j | −TAj)2

(6.3)

where α, β, γ are hyperparameters, cor represents Pearson’s correlation coefficients; FluxSM
�

andGESM
� are two NSM × N matrices, here NSM is number of super modules, FluxSM

m,j

represents the sum of the flux of the modules in the super module m, GESM
m,j represents the

sum of expression of the genes in the super module m, in cell j, and TAj is a surrogate for total

metabolic activity level of cell j, which is assigned as the total expression of metabolic genes in

cell j. The first, second, third and fourth terms of L are related to constraints on flux balance,

non-negative flux, the coherence between predicted flux and total gene expression level of

each super-module, and the relative scale of flux, respectively. Here Pearson’s correlation,

which is scale-free, is utilized to model the coherence between gene expression and predicted

flux, as genes may have varied intrinsic expression range. Our empirical and robustness

analyses suggested that α = 1, β = 0, γ = 1 and α = 1, β = 1, γ = 1 result in a good

leverage of the flux balance loss and other constraints for Smart-seq2 and 10x Genomics

data, respectively.

It is noteworthy that the above formulation defines a new graph neural network architec-

ture for flux estimation over a factor graph: on one hand, each variable is defined as a neural

network of biologically meaningful attributes, i.e., the genes participating in each metabolic

module; on the other hand, the information aggregation between adjacent variables is con-

strained by the balance of the in- and out- flux of each intermediate metabolites. Noted, the

number of intermediate constraints (K) and large number of cells (N) of scRNA-seq data

ensures the identifiability of θm for the multi-layer fm
nn at at a certain complexity level.

The challenges to minimize the loss function L include the following: (1) the balance of

one intermediate substrate is influenced by multiple modules, hence updating the module

flux one at a time may not be computationally efficient, and (2) the updating strategy for

130



a large group of fluxes cannot be theoretically derived. The two challenges prohibit a direct

utilization of back propagation or gradient descending methods. We developed an effective

optimization strategy for L by adopting the idea of information transfer in belief propagation,

which has been commonly utilized in analyzing cyclic networks such as Markov random field

[ 198 ]. Specifically, L is minimized by iteratively minimizing the flux imbalance of Ck and

the weighted sum of the flux imbalance of the Hop-2 neighbors of Ck in the factor graph, as

the L∗
k defined below:

L∗
k =

N∑
j=1

(
∑

m∈F
Ck
in

−
∑

m′∈F
Ck
out

)2 +
∑
k′

Wk′

N∑
j=1

(
∑

m∈F
Ck
in

−
∑

m′∈F
Ck
out

)2 (6.4)

where Ck′ are the Hop-2 neighbors of Ck, Wk′ is proportional to the current total imbalance of

all the Hop-2 neighbors of Ck′ , except for Ck itself. Here the Hop-2 neighbors of a compound

(or module) on the factor graph is defined as all other compounds (or modules) having a

connection with the modules (or compounds) who connect to the compound (or module).

Such a regional perturbation strategy over the whole graph can effectively leverage the search

of global minimum and computational feasibility.

The output of scFEA includes fm
nn, θm for each module and predicted cell-wise metabolic

flux Fluxm,j. It is noteworthy the predicted flux Fluxm,j is a relative measure of unfixed

scale. However, Fluxm,j is comparable among cells (Fluxm,:) or metabolic modules (Flux:,j).

6.3.4 Method validation on a scRNA-seq data with perturbed metabolic con-
ditions and matched metabolomics data

To validate the cell-wise flux estimated by scFEA, we generated an scRNA-seq dataset

consisting of 162 patient-derived pancreatic cancer cells (Pa03c cell) under two crossed ex-

perimental conditions: APEX1 knockdown (APEX1 KD) or control, and under hypoxia or

normoxia conditions (see detailed experimental procedure and data processing in Methods).

Metabolomics profiling of 14 metabolites were collected on bulk wildtype Pa03c cells and

APEX1 inhibition cells under the normoxia conditions, each with three replicates. The 14

metabolites include glucose, glucose-1 phosphate, glucose-6 phosphate, pyruvate, and lac-
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Figure 6.4. Factor graph representation of the reconstructed human
metabolic map, in which the modules and metabolites were colored by green
and pick.

132



Figure 6.5. Reduced and reconstructed human metabolic map. (A) Col-
lected human metabolic modules and super module classes. (B) Examples of
how the network motifs in the metabolic map are simplified into metabolic
modules, where the reactions and metabolites are represented by black and
blue rectangles, and modules and metabolites are colored by green and pink.
Chain-like reactions can be directly simplified; a complicate module connected
by multiple branches can be shrunk into one point linked with the multiple
in/out branches; and complicated intersections cannot be simplified.
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Figure 6.6. A toy model of the factor graph of metabolic modules, flux
balance conditions, and the flux model for the module R2 (top-right). In the
factor graph, each C (metabolites) corresponds to one flux balance condition
and serves as a factor, and each R (can be a reaction or a module) is a variable.
For example, C0(R0, R1, R2 | LC0) simplyrepresents that the metabolite C0 is
determined by the flux balance loss of R0, R1, R2, here LC0 is the flux balance
term of C0. Import and export/degradation reactions are considered as habing
no input or output substrates.
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tate in the glycolysis pathway, citrate, 2-oxoglutarate, succinate, fumarate, malate in the

TCA cycle, and amino acids glutamate, glutamine, serine, and ornithine. We utilized the

Smart-seq2-fluidigm protocol for single cell RNA sequencing. It allows for saturated gene de-

tection of each single cell, to enable a more accurate modeling of metabolic flux. APEX1 is a

multifunctional protein that interacts with multiple transcriptional factors (TFs) to regulate

cellular responses to hypoxia and oxidative stress [  199 ]. Our previous studies identified sig-

nificant roles of APEX1 in the regulation of Pa03c cells’ response to metabolic environment

changes [ 78 ], [ 200 ].

To the best of our knowledge, scFEA is the first computational tool to estimate metabolic

flux at single cell level. Without baseline methods for comparisons, we validate scFEA by

examining the consistency between the metabolic flux variation predicted by scFEA and

experimental observations. We identified 126 up- and 443 down- regulated genes in APEX1

KD vs Control under the normoxia condition, and 260 up- and 1496 down- regulated genes

under hypoxia condition. Pathway enrichment analysis showed that the TCA cycle (nor-

moxia: p=0.003, hypoxia: p=1.12e-07) and oxidative phosphorylation (normoxia: p=3.17e-

4, hypoxia: p=1.77e-08) pathways are significantly enriched by down regulated genes, under

both normoxia and hypoxia conditions. This suggests that the knock down of APEX1

may lead to inhibited cellular aerobic respiration. In addition, genes regulated by HIF1A

(hypoxia-inducible factor 1-alpha), including glycolysis and TCA cycle genes, were observed

to be up-regulated in hypoxia conditions compared with normoxia conditions, in the con-

trol Pa03c cells. This is consistent to the common knowledge of hypoxia response. Out

of the 14 metabolites, we have seen increase of abundance in glucose, glucose-1 phosphate,

glucose-6 phosphate, and lactate, and decrease in 2-oxoglutarate, succinate, fumarate, and

malate in APEX1-KD vs control cells under the normoxia condition. In summary, analysis

of the single cell gene expression and bulk cell metabolomic data revealed that knockdown

of APEX1 affects the cells’ glucose metabolism and inhibits the cells’ TCA cycle pathway,

under both normoxia and hypoxia condition. Figure  6.7 illustrates the variation of genes and

metabolites involved in glycolysis, pentose phosphorylation, TCA cycle, glutaminolysis and

aspartate metabolism pathways in APEX1-KD vs control under normoxia condition. We
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conducted a qRT-PCR experiment to confirm the down regulated genes in glycolysis, TCA

cycle and oxidative phosphorylation pathways (Figure  6.8 ).

Consistency between the scFEA predicted flux variation and the metabolomics data.

We applied scFEA to the aforementioned scRNA-seq data of the four conditions, with

hyperparameters α = 1, β = 0, γ = 1. We first focus on the normoxia conditions where

matched single cell expression and metabolomics data are available. scFEA predicted de-

creased metabolic flux for the modules in glycolysis and TCA cycle in APEX1-KD vs control,

i.e., glucose → D-Glucose 1-phosphate (G1P) → alpha-D-Glucose 6-phosphate (G6P) →

glyceraldhyde-3P (G3P) → 3-Phospho-D-glyceroyl phosphate (3PD) → pyruvate → Acetyl-

CoA → citrate → 2-Oxoglutarate (2OG) → succinate-CoA → succinate → fumarate →

malate → oxaloacetate (OAA) and pyruvate → lactate. Particularly, the reactions towards

the downstream of this reaction chain has even lower flux in APEX1-KD vs control (Fig-

ure  6.9 A). We then examined the Pearson’s correlation between the averaged predicted flux

change with the observed metabolomic change of intermediate metabolites in glycolysis and

TCA cycle pathways. In APEX1-KD vs control cells under normoxia condition, we ob-

served a Pearson’s correlation coefficient (PCC) of 0.86 (p=0.006) (Figure  6.9 A), suggesting

the high consistency between predicted flux variation with the observed metabolic changes.

Using metabolomics data, we observed increase of production for glucose, G1P, G3P and lac-

tate, and decrease of production for 2OG, succinate, fumarate, and malate in APEX1-KD vs

control (Figure  6.9 B). By Michaelis Menten model, the substrates of largely varied concen-

tration determine the reaction rate in a non-linear manner (close to linear when the reaction

is less saturated). Hence, variations in the concentration of the metabolites with one dom-

inating out-flux could partially reflect the changes of the out-flux rate. We also correlated

the metabolomic change with the averaged expression change of the enzymes catalyzing the

reactions. However, no significant correlation was observed (PCC=-0.03, p=0.943, Figure

 6.9 B), suggesting that single cell gene expression alone doesn’t produce a good estimate of

single cell metabolomic landscape. In addition, ssGSEA (single sample gene set enrichment

analysis) has been utilized to model cell-wise pathway activity in scRNA-seq data [ 201 ].

Here, we showed that scFEA predicted metabolic flux is much more consistent to the true
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Figure 6.7. Gene expression and metabolomic variations of the glycolysis,
pentose phosphate, TCA cycle, glutamine, and aspartate metabolic pathways
in APEX1-KD vs control under normoxia condition. Genes/metabolites were
shown in rectangular boxes with black/blue borders, up/down regulated genes
were colored in red/green, increased and decreased metabolites were colored
in yellow/blue, respectively. The darker color suggests a higher variation.
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Figure 6.8. qRT-PCR results. Mock and SCR are controls and siRef-1 are
knock down of APEX1.

138



metabolomics changes, as it leveraged the non-linear relationships between gene expression

and enzymatic reaction rate, and the flux balance constraints of the metabolites.

High consistency of the predicted metabolic stress with experimentally

observed metabolomic changes.

scFEA allows us to investigate the cell-wise metabolic stress, which was defined as the

imbalance of the in-/out-fluxes of each intermediate metabolites in each cell. Figure  6.9 C

shows that the G1P, G6P and lactate were accumulating while 2OG, succinate, succinyl-

CoA, and fumarate were depleted in APEX1-KD vs control. A PCC of 0.75 (p=0.004)

was observed between the predicted metabolic stress and the true metabolic change, on 12

metabolites with both measured metabolomic profile and predicted metabolic stress. This

demonstrates the high accuracy of the predicted and observed metabolic stress level. Figure

 6.10 A shows the predicted cell-wise fluxome of the glycolysis and TCA cycle modules for cells

of the four conditions. We observed, in general, higher flux of the glycolytic modules than the

TCA cycle modules, with the largest average flux gap seen on Pyruvate → Acetyl-CoA and

Acetyl-CoA → Citrate. In addition, the flux of the downstream reactions (citrate → 2OG →

succinyl-CoA → succinate) of the TCA cycle is lower than the upstream reactions (succinate

→ fumarate → malate → OAA). A possible explanation for the leaky metabolic flux is

that some of the intermediate substrates flow to other branches, majorly for biosynthesis

of amino acids. Among the four conditions, we identified that the hypoxia control group

has the highest flux rate of glycolysis and TCA cycle modules. Clearly, the inhibition of

APEX1 significantly decreased the metabolism rate of glucose. Seeing the accumulations of

glycolytic substrates and depletions of TCA cycle substrates, we speculate that the knock-

down of APEX1 may directly impact the downstream part of glycolysis, the whole TCA

cycle and further oxidative phosphorylation, leading to accumulation of G1P and G6P as a

result of the blockage. Up regulation of glucose transporters was also observed in APEX1

KD vs control, further suggesting the accumulation of glycolytic substrates.

Perturbation analysis to detect key flux determining genes.

139



Figure 6.9. (A) Predicted flux fold change (left, x-axis: metabolic module, y-
axis: predicted flux change) in control vs APEX1-KD, and correlation between
fold change of predicted flux and observed metabolite change (right, x-axis:
fold change of predicted flux, y-axis: fold change of observed metabolite abun-
dance, each data point is one metabolite, PYR: pyruvate, CIT: citrate, FUM:
fumarate, SUC: succinate, MAL: malate). (B) Observed metabolomic change
(left, x-axis: metabolites, y-axis: abundance difference observed in the tissue
level metabolomics data) in control vs APEX1-KD, and correlation between
log fold change of gene expressions involved in each reaction and observed
metabolomics change (right, x-axis: log fold change of the averaged expres-
sion of the genes involved in each reaction, y-axis: fold change of observed
metabolites abundance observed in the metabolomics data, each data point
is one metabolite). (C) Predicted metabolic stress (left, x-axis: metabolites,
y-axis: predicted abundance difference) in control vs APEX1-KD and correla-
tion between predicted metabolic stress and observed difference in metabolite
abundance (right, x-axis: top scFEA predicted imbalance of the in-/out-flux
of intermediate metabolites, y-axis: difference of observed metabolomic abun-
dance, in control vs APEX1-KD, each data point is one metabolite: LAC:
lactate, SER: serine, GLU: glutamine, ORN: ornithine). In (A-C) all compar-
isons were made by comparing control vs APEX1-KD under normoxia. Noted,
the fold change of metabolomic abundance is used in calculating the correla-
tion in A-B and difference of metabolomic abundance is used in B. The green
and red dash-blocks represents the accumulated (green) and depleted (red)
metabolites in Control vs APEX1-KD.
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We also conducted a perturbation analysis to detect the key genes with high impact

on each metabolic module. The following genes were identified to have the highest impact

on metabolic flux: HK1 and HK2 (Glucose→G6P, EC: 2.7.1.1), ALDOA, PFKL and GPI

(G6P→G3P, EC: 5.3.1.9), GAPDH and PGK1 (G3P→3PD, EC: 1.2.1.12, 2.7.2.3), ENO1,

PGAM1, and PKM (3PD→Pyruvate, EC: 5.4.2.11, 4.2.1.11), PDHA2 (Pyruvate→Acetyl-

Coa, EC: 1.2.4.1), LDHA (Pyruvate→Lactate, EC: 1.1.1.27), ACLY (Acetyl-CoA+OAA→Cit-

rate, EC: 2.3.3.8), IDH2 (Citrate→2OG, EC: 1.1.1.42), DLD and OGDH (2OG→Succinyl-

CoA, EC: 1.2.4.2), SUCLG1 (Succinyl-CoA→Succinate, EC: 6.2.1.4), SDHA (Succinate→Fu-

marate, EC: 1.3.5.1), FH (Fumarate→Malate, EC: 4.2.1.2), MDH1 (Malate→OAA, EC:

1.1.1.37). A qRT-PCR experiment was conducted to confirm the down regulation of the

above key metabolic genes, including HK1, PFKL, ACLY, SDHA, and IDH2. We also

compared the predicted high impact enzymes in the modules containing multiple enzymes

(seven in total) with the rate limiting enzymes reported in Rate-Limiting Enzymes database

(RLEdb) [  202 ]. We observed that six out of the seven predicted high impact enzymes, namely

2.7.1.1, 1.2.1.12, 2.7.2.3, 5.4.2.11, 1.2.4.1, and 1.2.4.2, have been reported in RLEdb, suggest-

ing a significant enrichment (p=0.0005 by Fisher’s exact test) of our predictions to RLEdb.

We further conducted a module level perturbation analysis by increasing or decreasing the

expression of genes in a certain module. Consistent to our experimental observations, a

decrease of expression on genes of the downstream part of glycolysis pathway in the control

cells will lower the flux of the TCA cycle, causing the accumulation of glycolytic intermediate

substrates and depletion of TCA cycle metabolites.

Detecting groups of metabolic modules with similar variations and cells with

distinct metabolic states.

We also applied scFEA to a larger metabolic map, with the 11 metabolic super modules

and transporters. Figure  6.10 B illustrated five distinct groups of metabolic modules derived

using a spectral clustering method purely based on their network topology, namely (1) gly-

colysis, (2) TCA cycle and glutamine metabolism related modules, (3) tyrosine and serine

metabolism, (4) urea cycle related modules, and (5) acetyl-coA related metabolisms such as

fatty acids and propanoyl-CoA metabolisms. To examine the high-level structure based on
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the flow of flux, we conducted a clustering analysis of the metabolic modules by considering

both the network connectivity and flux similarity. The distance between two modules Ri

and Rj is defined as αd(Ri, Rj) + (1 − α)dF (Ri, Rj), where d(Ri, Rj) is the normalized spec-

tral distance based on the metabolic network connectivity, and dF (Ri, Rj) is the normalized

similarity based on the estimated flux of all the normoxia cells. Here α = 0.3 is used in

the analysis. Figure  6.10 C shows the metabolic module clusters by integrating topological

structure and flux similarity. Four distinct clusters were identified, including (1) glycolysis

and fatty acids metabolism of decreased flux and accumulated substrates in APEX1-KD vs

control, (2) TCA cycle and pyruvate metabolism with decreased flux and depleted substrates,

(3) metabolism of amino acids and other metabolites with unchanged flux and metabolites,

and (4) a few other modules of 0 flux rates, respectively. This observation further validated

the rationality of scFEA predicted fluxome.

We also conducted cell clustering based on the estimated single cell flux. Non-surprisingly,

the cell clusters coincide with experimental conditions, forming five group of cells of high,

intermediate, and low metabolic rates, high lactate production and low TCA-cycle rate

(Figure  6.11 ).

6.3.5 Method validation and robustness analysis on synthetic and independent
real-world data sets

Method validation on independent real-world data.

We also validated scFEA on an independent scRNA-seq data of perivascular adipose

tissue derived mesenchymal stem cells (PV-ADSC) (GSE132581) [  203 ] by using hyperpa-

rameters α = 1, β = 0, and γ = 1. To the best of our knowledge, this data set, in addition

to our newly generated data set, are the only two scRNA-seq data with matched tissue

level targeted metabolomics profiling available in the public domain. We first re-conducted

cell clustering analysis and identified two distinct PV-ADSC cell clusters corresponding to

different levels of differentiation, as reported in the original work (Figure  6.12 A). Here, the

clusters were visualized using UMAP [ 204 ]. Due to the small sample size (85 cells), scFEA

was applied to estimate only the fluxome of glycolysis and TCA cycle pathways. We ob-

served an increased flux of glycolytic reactions (p<1.56e-6), lactate production (p=0.002),
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Figure 6.11. tSNE plot of the cell clusters generated based on metabolic flux
of the pancreatic cancer cell line data.
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and the reactions from cis-aconitate to oxaloacetate in TCA cycle (p<0.02) in the more dif-

ferentiated (MD) vs the high stemness (HS) PV-ADSC cells. The reactions from acetyl-CoA

to citrate were not significantly changed (p=0.887) (Figure  6.12 B). This is consistent to the

observations made on the metabolomics data in the original work, i.e., the glycolytic inter-

mediate metabolites, lactate production, and metabolites in the later part of TCA cycle were

elevated in the MD cells, while citrate was not significantly changed. We also analyzed the

metabolic modules of two amino acids super modules with metabolomics profile reported in

the original study, namely valine and isoleucine metabolism and glutamate and glutathione

metabolism (Figure  6.13 ). Elevated valine and isoleucine metabolic flux in MD vs HS cells

has been predicted by scFEA, which is consistent to the original report. scFEA also pre-

dicted an increased flux of the modules from glutathione → glutamate → glutamine → TCA

cycle, this could explain the increased flux rate of TCA cycle but less increase in citrate

production. The original study only reported a depletion of glutathione and glutamate, our

metabolic stress analysis also predicted more decreased glutathione and glutamate in MD vs

HS cells. Our analysis suggested that the elevated glutamate and glutathione metabolism is

to fuel the substrate source for TCA cycle in MD cells, which depleted the concentration of

glutathione and glutamate.

Method validation on randomly shuffled gene expression profile.

In scFEA, we assume that the flux distribution in each single cell should be constrained

by the flux balance condition while the reaction rate of each module could be modeled as a

non-linear function of the gene expressions involved in this module. These two assumptions

suggested that the distribution of the gene expressions involved in the metabolic modules

was constrained by a set of equations governed by the metabolic flux distribution and the

flux balance condition. One existing evidence directly supports our assumptions is that the

expression of closely related metabolic genes tend to be co-up or co-down regulated [ 205 ],

[ 206 ]. To further validate our assumption, we randomly shuffle the expression profile of each

gene in a certain proportion (10%, 20%, 40%, 60% and 80%) of cells in our pancreatic cancer

cell line data, and applied scFEA to each shuffled data. We observed that the minimized total

loss is positively associated with the level of perturbations (Figure  6.12 C) and the original
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Figure 6.12. Methods validations on real-world and synthetic datasets. (A)
UMAP-based clustering visualization of the GSE132581 PV-ADSC data, here
HS and MD stand for PV-ADSC of HS and more differentiation, respectively.
(B) Distribution of predicted cell-wise flux of glycolytic and TCA cycle mod-
ules. Each row is one cell, where row side color bar represents HS and MD
PV-ADSC by blue and orange, respectively. Each column is one module. The
left five columns (red labeled) are glycolytic modules from glucose to acetyl-
CoA, the CIT column (orange labeled) is the reaction from acetyl-CoA to
Citrate, the LAC column (yellow labeled) is the reaction from pyruvate to lac-
tate, and the right six columns (green labeled) are TCA cycle modules from
citrate to oxaloacetic acid. (C) The total loss (y-axis) for cases where different
proportion (x-axis) of cell samples have randomly shuffled gene expressions of
the pancreatic cancer cell line data. The baseline loss 0.1579 was computed
using the original expression profile of all 166 cells. (D) The sample-wise
and module-wise correlation (y-axis) between the true and predicted module
flux in synthetic data-based method validation with multiple repetitions, here
Cor=0.5775 (p=0.05) and 0.5778 (p=0.05) correspond to the sample-wise and
module-wise correlation, respectively. (E) Total loss (y-axis) computed un-
der 5-/10-fold cross validation (x-axis) vs baseline loss. (F) Convergency of
the total loss and four loss terms during the training of neural networks on
the pancreatic cancer cell line data. (G) Total loss (y-axis) computed from
the robustness test by adding 0%-35 artificial dropouts to the original data
(50.22% zero rate) vs baseline loss. (H) Sample-wise and module-wise correla-
tion (y-axis) of the module flux predicted from the data with 0%-35 additional
artificial dropouts with the module flux predicted from the original data.
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Figure 6.13. Boxplots of the predicted fluxes of Valine -> Succinyl-CoA,
Isoleucine -> Succinyl-CoA, Isoleucine -> Acetly-CoA, Glutathione -> Glycine
+ Cysteine, Glutathione -> Glutamate, Glutamate -> Glutamine and pre-
dicted changes in the abundance of Glutathione and Glutamate in the PV-
ADSC of high stemness (HS) and more differentiation (MD).
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scRNA-seq data achieved the smallest total loss, which partially support our underlying

assumption.

Method validation on synthetic data.

We simulated matched metabolic flux and gene expression data on 1,000 single cells.

For the 1,000 cells, we first randomly generated different flux distribution of 169 connected

modules from the solution space satisfying flux balance condition of these modules. The

expression profile of the genes involved in each module was reversely simulated by assum-

ing that its flux follows a fixed non-linear function of the gene expressions. Detailed data

simulation approach was provided in Supplementary Methods. We applied scFEA on the

simulated single cell gene expression profile and compared the fluxome predicted by scFEA

and known fluxome. We observed that scFEA predicted fluxes are highly consistent to the

true flux distribution, on both directions of the cells and metabolic modules (Figure  6.12 D).

Specifically, more than 99.6% single cells achieved at least 0.0620 (p=0.05) sample-wise

correlation and more than 84.79% modules achieved at least 0.1501 (p=0.05) module-wise

correlation. Our analysis demonstrated that under the assumption of scFEA, i.e., if the

flux balance constraint and non-linear dependency between gene expression and metabolic

hold, the formulation and solution strategy of scFEA could accurately estimate the cell-wise

fluxome from single cell gene expression data.

Robustness analysis based on perturbed sample inputs, cross-validation,

and analysis of hyperparameters.

We also tested the robustness of scFEA by 5-/10-fold cross validations on the pancreatic

cancer cell line data. Compared with the baseline total loss achieved by using all cells, the

total loss of the testing data does not change significantly when using different training cells

to train the model (Figure  6.12 E). In training the neural networks, scFEA used Adam as the

optimizer [  207 ], which can adaptively adjust the learning rate. To choose the most suitable

hyperparameters of the four terms in the loss function, we conducted experiments by chang-

ing the relative scale of any two terms and fixing the rest two on the pancreatic cancer cell

line data. We change the relative ratio of two hyperparameters from 10 to 1000. Our experi-
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ments suggested a similar optimal solution can always be achieved under our hyperparameter

perturbation range (Figure  6.14 ). Figure  6.12 F showcases the convergence of the four loss

terms and total loss in the model fitting of the pancreatic cancer cell line data. In addition,

the applications on six real-world data (see further results) and simulated data suggested that

the default hyperparameters always generate results of good convergence of the total loss and

high biological implications. The default hyperparameters of the current version and details

in hyperparameter tunning codes were provided via https://github.com/changwn/scFEA.

Robustness analysis with respect to different level of drop-out

To further examine the method’s robustness, we simulated different levels of additional

dropout events to our pancreatic cancer cell line data. Our data was collected by using the

Smart-seq2-fluidigm protocol, whose original ratio of zero expressions of the metabolic genes

is 50.22%. We simulated additional drop-out rate ranging from 4.34% to 34.78%, to reach a

typical drop-out level of a droplet based scRNA-seq data ( 85%), and applied scFEA on the

tampered data. We observed that the total loss slightly increases from 0.1649 to 0.2722 when

the zero ratio increased from 50% to 85% (Figure  6.12 G). The module-wise and cell-wise

correlation between the flux estimated from the original data and the tampered data are

consistently higher than 0.7437 and 0.8505 (Figure  6.12 H), suggesting the high robustness

of scFEA with respect to different level of drop-out events.

6.3.6 Application of scFEA on scRNA-seq data of tumor and brain microenvi-
ronment revealed distinct metabolic stress, exchange and varied metabolic
states in different types of cells

In this section, we majorly focused on validating the computational concept and ap-

plicability of scFEA on five real-world datasets, including two scRNA-seq data of cancer

microenvironment, one single nuclei RNA-seq data of brain tissue, and one spatial tran-

scriptomics data of breast cancer tissue. The data information is detailed in Supplementary

Methods. All 169 metabolic modules across the whole metabolomic network were utilized in

the analysis. Due to the lack of matched metabolomics information, we focused on demon-
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Figure 6.14. Convergency of the flux balance loss and non-negative loss
during the training of scFEA on the pancreatic cancer cell line data. The
hyperparameters of the two loss were set differently to form four experiments.
The flux balance loss, non-negative loss and total loss were blue, red and
black-dash colored.
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strating the capability of scFEA in inferring metabolic flux, metabolic stress, and subgroups

of cells and metabolic modules having distinct variations, on these data sets.

Application on scRNA-seq data of cancer microenvironment

We applied scFEA on two publicly available scRNA-seq datasets collected from the mi-

croenvironment of melanoma (GSE72056) and head and neck cancer (GSE103322) by using

hyperparameters α = 1, β = 0, and γ = 1. In both data sets, we generated UMP based cell

and cell group visualization by using predicted fluxomes of the 169 modules (Figure  6.15 A-

D). We identified that the metabolic flux distributions are quite homogeneous within cancer

cells, while being distinct from immune and stromal cells in both data sets (Figure  6.15 A,

 6.15 C). Distinct cell clusters of immune and stromal cells corresponding to varied metabolic

fluxomes were also identified (Figure  6.15 B,  6.15 D). A possible explanation is that cancer

cells having a reprogrammed metabolism are more robust to the biochemical variations than

immune and stromal cells in the tumor microenvironment.

We observed that the malignant cells have the highest metabolic rates in most metabolic

reactions comparing to other cell types in both melanoma and head and neck cancer, espe-

cially for the glucose and amino acids metabolic modules (Figure  6.15 E,  6.15 F). On average,

the TCA cycle and lactate production account for 43.4% and 52.5% of the total glycolysis

flux in head and neck cancer, and 65.3% and 46.1% of the total glycolysis flux (with addi-

tional carbon flow from other metabolites such as glutaminolysis) in melanoma, respectively.

In the non-malignant cells, the ratio of lactate production is much lower. Our observation

clearly suggested the existence of Warburg effect and metabolic shift in cancer cells, which

is consistent to our previous findings of high lactate production in melanoma [ 208 ].

We identified that the malignant cells have the highest metabolic stress, which is defined

as the total imbalance of intermediate substrates, followed by fibroblast and endothelial

cells, and then immune cells. Similar to the pancreatic cancer cell line data, we identified

that both cancer and stromal cells in both cancer types tend to have depleted glucose, G1P

and G6P. In addition, cancer cells tend to suffer from a high depletion level of acetyl-coA.

On the other hand, TCA cycle intermediates and amino acids tend to be accumulated in
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cancer cells. These observations are consistent to the findings derived from quantitative

metabolomics data collected on solid cancer [ 178 ].

We noticed that the direction of imbalance for most intermediate metabolites seem to be

the same throughout different cell types, though the imbalance level is much lower in stromal

cells comparing to cancer cells. A possible explanation is that these cells were collected in

a small region of the same microenvironment, and the similar stresses, such as hypoxia and

altered pH level, cause a similar impact on the metabolic landscape of cells of different types.

Application on droplet based snRNA-seq data of Alzheimer’s disease

We also applied scFEA on the ROSMAP snRNA-seq data (single nuclei RNA sequencing)

collected from cells in the central nervous systems of Alzheimer’s disease (AD) patients and

healthy donors [  209 ] by using hyperparameters α = 1, β = 1, and γ = 1. Specifically, the

ROSMAP snRNA-seq data was collected using the 10x Genomics Chromium droplet-based

protocol. Comparing to the Smart-seq based scRNA-seq data, droplet based data often have

lower total expression signals and higher dropout rate. scFEA has been successfully applied

on this data set. Changes of the total loss over the running epochs suggested the total loss

converge to a small value during the training of the scFEA model (Figure  6.15 G). Specifi-

cally, the flux imbalance loss forms the major loss term in the beginning of the training and

quickly converges to a small value, suggesting a solution with good flux balance condition

has been identified in this data set. Based on the scFEA predicted flux, we identified that

metabolic activity is higher in neuron cells than in other brain cell types. Cell clusters of

different metabolic states were computed (Figure  6.15 H), in which a large cluster consisting

of cells with more active metabolism has been identified (green labeled). We further stud-

ied on the metabolic stress of this cell cluster, which is enriched by neuron cells from AD

patients (Figure  6.15 I). We found that glucose, glycolytic and TCA cycle substrates, and

glutathione are among the top accumulated metabolites. Suppressed glycolysis and dysfunc-

tional TCA cycle that may lead to increased glucose and other intermediate metabolites, and

elevated glutathione in response to reactive oxygen species, have been reported in AD [ 210 ]–

[ 212 ]. On the other hand, molecules involve in DNA synthesis and valine/leucine/isoleucine

metabolism are most depleted in the AD neuron cells, which are consistent to the recently
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Figure 6.15. Application on two tumor scRNA-seq datasets, ROSMAP, and
one breast cancer spatial transcriptomics dataset. (A) UMAP-based cluster-
ing visualization using predicted metabolic fluxes of the GSE72056 melanoma
data, the cell label was provided in original work. (B) UMAP-based cluster-
ing visualization using predicted metabolic fluxes of the GSE72056, k-means
clustering was used for cell clustering. (C) UMAP-based clustering visualiza-
tion using predicted metabolic fluxes of the GSE103322 head and neck cancer
data, the cell label was provided in original work. (D) UMAP-based cluster-
ing visualization using predicted metabolic fluxes of the GSE103322, k-means
clustering was used for cell clustering. (E) Distribution of predicted cell-wise
flux of glycolytic and TCA cycle modules of GSE72056 melanoma data. Each
row is one cell, where row side color bar represents 8 cell types. Each column
is one module. The left five columns are glycolytic modules from glucose to
acetyl-CoA, the 6th column is the reaction from acetyl-CoA to Citrate, the
7th column is the reaction from pyruvate to lactate, and the right-most six
columns (8-13 columns) are TCA cycle modules from citrate to oxaloacetic
acid. (F) Distribution of predicted cell-wise flux of glycolytic and TCA cycle
modules of GSE103322 head and neck cancer data. Each row is one cell, where
row side color bar represents 9 cell types, respectively. The column is same
as (E). (G) UMAP-based clustering visualization using predicted metabolic
fluxes of the ROSMAP data. k-means clustering was used for cell clustering.
(H) Convergency curve of the total loss and four loss terms during the training
of neural networks on the ROSMAP data. (I) Top accumulated and depleted
metabolites predicted in the AD neuron cells in the ROSMAP data. The y-
axis is metabolism stress level (or level of accumulation and depletion), where
a positive value represents accumulation while a negative value represents de-
pletion. The x-axis are metabolites in a decreasing order of the accumulation
level. (J) scFEA predicted flux rate of lactate product on the spatial breast
cancer data. The color of each point represents the spatial-wise predicted lac-
tate product rate. The spatial plot is overlaid on the tissue slice image. (K)
scFEA predicted flux rate of TCA cycle (citrate to 2OG) on the spatial breast
cancer data.
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reported observations of suppressed DNA synthesis and valine metabolism in AD [ 213 ],

[ 214 ]. We predicted aspartate and metabolites involved in glycosaminoglycan synthesis are

largely depleted in the AD neuron cells. Previous studies reported the association of these

metabolites to AD [  215 ], [  216 ], however, their abundance change has been less studied. We

anticipate that the cell-wise metabolic stress prediction enabled by scFEA could offer novel

and systematic insight for biomarker prioritization.

6.4 Discussion

Despite the ample knowledge we have gained on metabolic dysregulation for many dis-

ease types, there are still major gaps in our understanding of the integrated behavior and

metabolic heterogeneity of cells in the context of tissue microenvironment. Essentially, the

metabolic behavior can vary dramatically from cell to cell driven by the need to cope with

various dynamic metabolic stress. Large amount of scRNA-seq has proven its potential in

delivering information on a cell functioning state and its underlying phenotypic switches.

Designing advanced computational tools to harness the power of large scale scRNA-seq data

for reliable prediction of cell-wise metabolic flux and states is crucial to bridge the technolog-

ical gap of single cell metabolomics. Knowledge derived therefrom will substantially benefit

our understanding of the metabolic regulation intrinsic to diseased cells, and on microenvi-

ronmental factors imposed upon the diseased cells, and shed light on potential therapeutic

vulnerabilities.

scFEA is developed to predict metabolic flux at single cell resolution from scRNA-seq

data, in order to construct a compendium of metabolic states for different cell types and

tissue contexts, and their relevance to various disease phenotypes. To experimentally validate

scFEA, we generated an scRNA-seq data of a patient derived pancreatic cancer cells under

four conditions of perturbed oxygen level and metabolic regulators, and matched tissue level

metabolomics data and qRT-PCR profiles of key metabolic genes. We validated that the

variations of metabolic flux predicted by scFEA are highly consistent with the observed

metabolomic changes under different conditions. We also applied scFEA on in-drop or

droplet based scRNA-seq data and spatial transcriptomics data. Our analysis suggested
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that scFEA could robustly predict cell and cell group specific metabolic shift for the data

generated from different protocols. Notably, the fluxome estimated by scFEA enables a

series of downstream analysis including identification of cell or tissue level metabolic stress,

sensitivity evaluation of enzymes to the whole metabolic flux, and inference of cell-tissue and

cell-cell metabolic exchanges.

The scFEA model has the following advantages: (1) the model characterizes true biolog-

ical flux by leveraging the metabolic network structure, and it is generally applicable as it

requires only the input of scRNA-seq data; (2) the number of constraints, i.e. the number

of flux balance conditions multiplied by the single cell number, is larger than the number of

parameters, avoiding possible overfitting; and (3) The neural network based flux estimation

can well handle the non-linear dependency between enzymatic gene expression and reaction

rates. Notably, in the network reduction and reconstruction of scFEA, connected reactions

were merged to form one metabolic module. The neural network model allows for a non-

linear dependency between gene expression and module flux. Theoretically, the flux rate

could be determined by an “OR” operation of the high expression of any gene involved in

the module. scFEA utilizes neighboring genes on the metabolic map to infer the metabolic

flux of connected metabolic reactions, which increases robustness to dropout events and pre-

diction accuracy. Our analysis suggested that scFEA is capable of identifying the interactive

effect of multiple rate-limiting-enzymes in one module.

scFEA seeks for a constrained optimization of flux balance, where each flux was modeled

as a non-linear function of the relevant enzymatic gene expression levels. The flux of each

module is constrained by three additional loss terms, namely (1) non-negativity, (2) consis-

tency between predicted metabolic flux and gene expression level, and (3) the cell-wise total

metabolic activity, TAj. Although our current setting has been validated using matched

scRNA-seq and metabolomics data, applications to publicly available cancer data suggested

a similar trend metabolic “imbalance” for both cancer and stromal cells. Our analysis sug-

gested that setting Amj for each super module m in cell j may increase the flexibility of

cell specific metabolic imbalance, but at the price of possible over-fitting. A more sensitive

approach is to train a specific model for each pre-defined cell group. The biological rationale

is that the neural network parameters contain the information of “kinetic parameters” that
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link gene expression with metabolic rate, which may differ among distant cell types, or cells

under different conditions. Hence it is rational to assume cell type specific parameters.

In this study, we did not provide a theoretical proof of the correctness of the scFEA model.

Future efforts on generating high quality validating data or more comprehensive systems

biological derivations could improve the understanding of the dependency between gene

expression and metabolic state in individual cells. Noted, compared with the existing FBA

based solutions, which tend to ignore kinetics and assume stringent flux balance condition,

our new model treating flux balance as a loss function and seeking for modeling the non-linear

dependency between transcriptome and fluxome is more flexible, robust, and scientifically

reasonable. Unlike other FBA based approaches, scFEA does not require a prior knowledge

of the imports and exports of the whole system. The flux distribution, including the in-/out-

fluxes of the system, is estimated by minimizing the loss terms through a large number of

cells. We consider such a consideration is more suitable for cell-wise flux estimation since

the in and out fluxes are always cell and context specific and unknown. Noted, while the flux

balance in scFEA model is robust to the stoichiometric coefficients, the predicted fluxome

are represented by a relative reaction rates scaled by total metabolic activity.

The neural network based optimization framework of scFEA could enable a potential

integration of metabolomics data, kinetic parameters, spatial information, or other prior

knowledge of metabolic imbalance, to better characterize cell and tissue level metabolic

shifts of the target system. One future direction is to utilize metabolomics data, kinetic

parameters or other prior knowledge to better design the first layer of the neural network in

modeling the flux of each module. Spatial information can be utilized to preselect group of

cells for training spatially dependent model. Another future direction is to implement the

current flux estimation analysis in spatial transcriptomics to infer (1) metabolic shifts specific

to spatial patterns and (2) metabolic exchange between adjacent cells. This application to

spatial transcriptomics data will be particularly interesting for cancer studies, to reveal how

the metabolism and macromolecule biosynthesis in stromal cells such as cancer associated

fibroblast, affect the adjacent cancer cells.

Overall, scFEA can efficiently delineate the sophisticated metabolic flux and imbalance

specific to certain cell groups. We anticipate that it has the potential to decipher metabolic
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heterogeneity, and tease out the metabolomic susceptibility to certain drugs, and ultimately

warrant novel mechanistic and therapeutic insights of a diseased biological system at an

unprecedented resolution.
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7. CONCLUSION

7.1 Thesis Summary

The above projects show the major results of my research in the past five years, which

focused on elucidating the heterogeneity of disease and modeling the human metabolic net-

work. Through the thesis, I proposed several computational methods under topic of subspace

learning and one systems biology model under topic of human metabolic flux. These two

parts try to interpret the mechanism of human disease from different aspects.

In part I, we proposed a series of algorithms which formed a systematic way of subspace

learning using mixture model in biomedical data. In Chapter 3, we focus on robust mixture

regression to handle outliers. We proposed CAT method to perform outlier detection and

parameter estimation simultaneously. In Chapter 4, our interest moves to another case

where we have an external biological or clinical response variable to perform clustering of

the samples and regression of the response on the features at the same time. We proposed

CSMR method to resolve the complexity of translating the clinical representations of the

disease to the real causes underpinning it. In Chapter 5, we proposed SRMR method to

investigate the relationship between a response variable and a set of explanatory variables

over the spatial domain. Our method integrated the robust finite mixture Gaussian regression

model with spatial constraints, to simultaneously handle the spatial nonstationarity, local

homogeneity, and outlier contamination.

All models proposed in part I showed promising results in both simulations and experi-

ments on real biomedical data. The proposed algorithms are useful computational tools for

population research and disease studies.

Particularly, we integrated the CAT method and the CSMR method into the R package

“RobMixReg”. Based on our knowledge, this is the first comprehensive solution to mining the

latent relationships in biomedical data, ranging from the regulatory relationships between

different molecular elements, to the relationships between phenotypes and omics features.

To avoid confusion, the CSMR method and the SRMR method also have an independent

GitHub repository respectively. Till 03/2022, our R package “RobMixReg” has been down-

loaded around 9,500 times. We believe that our proposed methods will be a valuable addition
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to the biomedical research community due to the following contribution: 1) for low dimen-

sional predictor, RobMixReg allows for robust parameter estimations, and detection of the

outliers with adaptive trimming; 2) RobMixReg allows for different mixture components to

have flexible forms of predictors, which maximally explores the heterogeneous relationships

among the hidden subgroups; 3) RobMixReg handles the high-dimensional predictors by reg-

ularizing the regression coefficients of each component, with a data-driven level of sparsity;

4) RobMixReg provides the capability for order selection.

In part II, we developed a novel systems biology model to estimate the cell-wise metabolic

reaction rates from scRNA-seq data. In this study, we proposed a novel computational

method scFEA. To the best of our knowledge, scFEA is the first of its kind of to tackle

metabolic heterogeneity using scRNA-seq data. We consider this work with the following

five key novelties:

(I) The first computational method that estimates metabolic flux and states at single

cell level. The proposed method framework consists of five novel capabilities currently un-

available in the public domain: (1) curating more than 171 metabolic modules of import,

metabolism, biosynthesis and exports that cover the whole metabolic map, (2) discovering a

compendium of metabolic states, as well as hidden groups of cells possessing the metabolic

states, (3) detecting the metabolites and reactions most susceptible to metabolic imbalance

in each cell, (4) evaluating the impact of perturbations in enzymes and metabolites to the

whole metabolic map, and (5) inferring cell-cell and cell-tissue metabolic exchanges, and the

biochemical states at single cell and tissue level.

(II) Advanced computational model. We implemented a novel neural network architecture

with the topology structure of metabolic network and the flux balance constraints to effec-

tively capture the non-linear relationships between enzymatic gene expressions and metabolic

reaction rates.

(III) Model performances. To experimentally validate scFEA, we generated an scRNA-

seq data of a patient derived pancreatic cancer cells under four conditions of perturbed

oxygen level and metabolic regulators, and matched tissue level metabolomics data and

qRT-PCR profiles of key metabolic genes. We validated that the variations of metabolic
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flux predicted by scFEA are highly consistent with the observed metabolomic changes under

different conditions.

(IV) Biological insights derived from the application of scFEA. The fluxome predicted

by scFEA in cancer cells suggested the accumulation of glycolytic metabolites and depletion

of TCA cycle metabolites, caused by suppression of the glycolysis pathway and TCA cycle

pathways in both normoxia and hypoxia conditions. Application of scFEA on the data of

cancer microenvironment identified different metabolic activities and imbalances between

cancer and stromal cells.

(V) Data usage and broader applications. The scFEA can be generally applied to scRNA-

seq datasets to estimate cell-wise metabolic flux and build a compendium of well annotated

cell type/ tissue specific metabolic states. The method could be reinforced by seamlessly

integrating additional metabolomics and proteomics data, spatial, kinetic and other prior

information of the reactions. The advanced downstream analysis of cell-wise metabolic stress,

metabolic perturbation, and cell-tissue metabolic communication can assist the utilization

of a wide spectrum of scRNA-seq data generated in large consortia or individual labs.

Over the past four months, we received more than 100 inquiries regarding the utilization

of scFEA, including scientists from top institutions over the world. Further to let more

researcher can use our method, we developed a webserver scFLUX as an online tool and

code free environment for biology background user. We believe this webserver and our scFEA

method provide a novel way to perform metabolic analysis for biomedical community.

7.2 Future Research Directions

In this section, we will discuss some limitation of our current methods and propose several

further work and directions.

7.2.1 Subspace Learning

In part I, we proposed a systematic way to study heterogeneity using mixture model

and three proposed methods have good performance on the designed scenario. However,

three proposed methods still have their own limitation respectively. For CAT method, we
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proposed to detect the outlier and estimate parameters of mixture regression model simul-

taneously. However, CAT was proposed to solve mixture regression problem for two vectors

instead of high dimensional data. For example in our real application of CAT method, we

performed CAT to analysis the relationship between gene expression of CREB3L1 and the

methylation profile of cg16012690. They are two vectors of length 299 which represent 299

colon adenocarcinoma patients. Thus, we cannot adopt CAT method to high dimension case

where the input is one matrix and one vector.

For CSMR method, we can handle the high dimensional data because we induced penal-

ized mixture regression model to solve the feature selection problem and the hidden cluster

problem. However, this CSMR method has two limitations. The first limitation is that

CSMR cannot handle outlier contamination. Although we solve the high dimension issue

comparing with CAT, we loss the capability of robustness in CAT. The second limitation is

that CSMR becomes less stable when total number of parameters need to be estimated in-

creased a lot comparing with number of observations. In other words, it is still very difficult

to estimate all coefficient parameters in each clustering with limited observations. Thus, we

highlighted the sparsity assumption of CSMR as before.

Thus, one possible future direction to solve the above limitations of CAT and CSMR syn-

thetically. We need to propose a regularized mixture regression model for high-dimensional

data which can handle outlier contamination as well.

For SRMR, our method integrates the robust finite mixture Gaussian regression model

with spatial constraints, to simultaneously handle the spatial nonstationarity, local homo-

geneity, and outlier contamination. The first limitation of SRMR is that we only describe the

proposed SRMR model on 2-dimensional spatial data. For example, our current spatial co-

ordination is a 2-dimensional vector including the x-axis and the y-axis coordinates for each

sample. The future research includes extending 2-dimensional spatial data to high dimen-

sional. Although high dimensional spatial data is difficult to visualize than 2-dimensional

or 3-dimensional coordinates, we can still extend the spatial constraint to K dimensional by

proposing a definition of spatial center for high dimensional spatial data. The second limi-

tation of SRMR is that current version SRMR only works for two low dimensional variables.

This issue is similar to CAT, we can only analysis the relationship between two genes or one
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gene and one methylation profile. The second future research direction for SRMR is propos-

ing a novel model to extend same capability to high dimensional data. For example, input

variables could be a matrix instead of vector. This could significantly promote the speed

of mechanism discovery for human disease. With respect to spatial consideration, the third

future research direction for SRMR is adding spatial smooth process or smooth consideration

which can improve the stability of the result. For example, in spatial transcriptomics, we

assume better result if we consider one spatial point and its several neighbors together than

only considering one point itself.

7.2.2 Computational Modeling of Metabolic Flux

In part II, our proposed method scFEA can efficiently delineate the sophisticated metabolic

flux at single cell resolution. However, we did not provide a theoretical proof of the correct-

ness of the scFEA model. Future efforts on generating high quality validating data could

provide us deeper insights on the understanding of the dependency between gene expression

and metabolic state in individual cells.

In addition, current scFEA utilize PyTorch built-in optimization algorithm to seeking

minimal loss. However, this strategy did not consider the topological structure of metabolic

network where metabolic modules are connected with known links. Our future direction is

to propose a new optimization method over the metabolic network which not only consider

computational loss but also consider topology structure of metabolic network.

With the capability of reconstruction of human metabolic network, we can also extend

this framework to other small system such as methionine metabolism. This specific analysis

could improve our understanding of cell proliferation and gene regulation. This methionine

project is our one ongoing project, initial results already show some promising and inter-

esting discovery. Other future direction includes establishing neurotransmitter metabolic

framework. Another ongoing project already built several small metabolic systems includ-

ing acetylcholine, dopamine, histamine, and serotonin. These neurotransmitters play an

important role in neuron cells about how human response to environment in a metabolic

level activity. This neurotransmitter project could help us understanding the mechanism
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of Alzheimer’s disease in human brain where neuron cells and microglia cells dominate the

region.
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