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ABSTRACT

This dissertation includes my research works during Ph.D. career about three different

kinds of random walks in (dynamical) random environments. It includes my two published

papers “Functional weak limit of random walks in cooling random environments” [  1 ] which

has been published in electronic communications in probability in 2020, and “Variable speed

symmetric random walk driven by the simple symmetric exclusion process” [  2 ] which is

the joint work with Peterson and Menezes and has been published in electronic journals

of probability in 2021. This dissertation also includes my two other projects, one is the

joint work with Janjigian and Emrah about moderate deviation and exit time estimates

in integrable directed polymer models. The other one is the joint work with Peterson and

Conrado that extends the weak limit of random walks in cooling randon environments with

underlying environment is in the transient case with parameter κ ∈ (0, 1) or κ = 2. Previous

results show the weak limit in the cases where the environment is recurrent or transient but

with κ > 2 or κ ∈ (1, 2).
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1. INTRODUCTION

Research on random walks in disordered environments has attracted a lot of attention by

mathematicians and physicists over the last few decades. The model of random walks in

random environments (RWRE) was first studied by Solomon in [  3 ]. In this model the spatial

disorder in the environment is random 

1
 , but fixed for all time by the walk. Much of the sub-

sequent interest in this model was driven by the fact that RWREs could exhibit a surprisingly

rich array of asymptotic behaviors such as transience with asymptotically zero speed [  3 ], and

limiting distributions which are non-Gaussian and have non-diffusive scaling [  4 ]–[ 6 ]. These

interesting phenomena can be understood as occurring because of the “trapping” effects of

the environment. See [  7 ] for an overview of basic results in RWRE.

More recently, there has been interest in a generalization of RWRE called random walks

in dynamic random environments (RWDRE) in which the disorder of the environment is

random in both space and time. One can see that RWDRE interpolates between simple

random walk (SRW) and RWRE: If the dynamics are ”frozen”, i.e. the environment is

not changing after initial set-up, then this is simply a RWRE. On the other hand, if the

environment is space-time i.i.d. then it is easy to see that the distribution of the RWDRE

(under the annealed measure) is the same as that of a SRW. For RWDRE models which are

between these two extremes there is an interplay between the trapping effects introduced

by the randomness of the environment and the rate at which the time dynamics of the

environment causes these traps to disappear. One might expect therefore that environments

with “fast” mixing time dynamics should have similar characteristics as a SRW (e.g. path

convergence to Brownian motion) while “slow” mixing time dynamics might retain some of

the strange behaviors of RWRE (e.g., non-Gaussian limiting distributions or transience with

sublinear speed).

Many of the results thus far in RWDRE have focused on dynamic environments which

are in some sense fast mixing, see [ 8 ]–[ 10 ]. For example, the environment may be assumed

to be a Markov chain with uniformly mixing time dynamics or which satifies a Poincaré
1

 ↑ A common assumption is that the randomness in the environment is i.i.d., though there also results where
weaker assumptions are used instead.
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inequality. A variety of approaches have been used in these papers, but in all cases one can

obtain convergence to Brownian motion after centering and diffusive scaling.

Environments which are more slowly mixing present different problems as the trapping

effects of the environment may possibly be stronger. Examples of environments like conser-

vative particle systems have poor mixing rates [  11 ], [  12 ]. A particularly interesting example

is the case where the dynamic environment is given by a simple symmetric exclusion process.

Avena and Thomann [  13 ] have made conjectures based on simulations that this model can

exhibit many of the same strange behaviors as that of RWRE (e.g., transience with zero

speed and non-diffusive scaling). However, the results for this model have been limited to

some cases where the parameters of the model are near their extremes and in these cases once

again the distribution of the walk converges under diffusive scaling to a Brownian motion.

Conjecture 3.5 in [  13 ] shows the cases when the parameters are not near extreme, which can

allow the walk to have either super or sub diffusive scaling. But no math proof work is done

in those cases so far. Other examples of slow mixing environments for which the RWDRE

has been shown to converge to Brownian motion are [ 14 ]–[ 16 ].

All the above results for RWDRE have shown limiting behavior which is like that of a

SRW. Recently, however, Avena and den Hollander have introduced a new model of RWDRE,

random walks in cooling random environment(RWCRE), in which the dynamics can be slow

enough that the model retains some of the strange behavior of RWRE [  17 ]. In this model

the environment is totally refreshed at some points called resampling times. Results for this

model have included a strong law of large numbers, a quenched large deviation principles,

sufficient conditions for recurrence/transience, and limiting distributions [  17 ]–[ 19 ]. Most

relevant to the results of the present thesis, for certain cases of RWCRE they prove that the

limiting distributions are Gaussian but with non-diffusive scalings that interpolate between

the (log n)2 scaling of recurrent RWRE and the diffusive
√
n scaling of SRW [  17 ], [  19 ]. One

of the main goal of Section 2 is to determine the appropriate limiting distributions for the

path of the walk in these cases.

More recent works about RWCRE in [ 20 ] shows the weak limit of the walk when the

underlying random environment is such that the RWRE on it is transient. In this case a key

parameter κ which characterizes the distribution of the environment will make different weak

9



limits of the walk. In the previous paper [ 19 ], the case where κ > 2 is studied, whose weak

limit is always a mixture of independent Guassian random variable. While [  20 ] discusses

the case when κ ∈ (1, 2), depending on different cooling maps, the weak limit can vary

from stable to normal distribution or the mixture of those two kinds. One of the main

goals in Section 2 is to extend the previous result and study the cases where κ ∈ (0, 1) and

κ = 2. In brief, when κ ∈ (0, 1) the weak limit is a mixture of independent Mittag-Leffler’s

distribution and normal distribution due to the L2 convergence property of RWRE under

the corresponding environment condition. When κ = 2, the weak limit is Gaussian under

slow and fast cooling regimes, but the variance of the walk may not converge to the one of

its limit distribution if the cooling is as slow as polynomial increasing, which reveals that in

this case the L2 convergence of RWRE fails.

In Section 3, we prove a quenched functional central limit theorem for a one-dimensional

random walk driven by a simple symmetric exclusion process. The model belongs to the class

of random walks in dynamical random environments. Recent works have studied examples

where the environment is an interacting particle system, including independent random walks

[ 12 ], the contact process [ 10 ] and the simple symmetric exclusion process (SSEP).

To define a random walk driven by the SSEP, one fixes parameters p1, p0, ρ ∈ [0, 1],

λ0, λ1 > 0 and makes the random walk jump from x ∈ Z to x+1 at time t at rate λ1p1ηt(x)+

λ0p0(1− ηt(x)), where ηt(x) is the state of the exclusion process (either 0 or 1) at site x and

time t, started from equilibrium at density ρ. The rate for a jump from x to x − 1 is

λ1(1 − p1)ηt(x) + λ0(1 − p0)(1 − ηt(x)). Several cases were studied. The results in [  16 ] and

[ 15 ] that we are about to cite were proven for a discrete-time random walk, but we believe

that the continuous-time results we state are true as well. In [  16 ], laws of large numbers

and Gaussian fluctuations are proven for λ0 = λ1 sufficiently large or sufficiently small and

appropriate assumptions on p0 and p1. When λ0 = λ1, [ 21 ] proves that the limiting speed, if

any, is strictly between λ0(2p0− 1) and λ1(2p1− 1). In [  15 ] it is proven that, for λ0 = λ1 = 1

the law of large numbers holds for all ρ, with only two possible exceptions, and when the

speed is not zero a Gaussian central limit theorem holds. Moreover, when p0 = 1 − p1

(as in [  22 ] and [  16 ]) and ρ = 1/2 it was shown in [  15 ] that the speed is zero, but it is an

interesting open problem to determine the scale of the fluctuations in this case and there
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are several competing conjectures: in [  23 ] it is conjectured that under the scaling t3/4 the

limiting process is a fractional Brownian motion with Hurst index H = 3/4; in [  24 ], it is

conjectured (for a related continuous model) that the fluctuations are either of order t1/2

(for a fast particle) or t2/3 (for a slow particle); on the other hand in [ 25 ] and [  26 ], it is

conjectured that for either fast or slow particle dynamics the fluctuations are always of order

t1/2 for time t sufficiently large.

Here we allow λ0 6= λ1 but assume p0 = p1 = 1
2 . In this setting, the random walk is a

time-change of a simple symmetric random walk. The law of large numbers is immediate,

and the problem is to prove convergence to Brownian motion and compute the variance of

this limiting Brownian motion at time t. We perform this computation when the environ-

ment starts in equilibrium at density ρ ∈ [0, 1]. With those assumptions, our model falls into

the class of balanced dynamic random environments. For this class of models an invariance

principle was proved in [  27 ]. In this thesis we give an entirely different proof of the invariance

principle for this particular model. Since random walks in balanced environments are mar-

tingales, the key to proving an invariance principle is in proving that the quadratic variation

grows linearly. In all previous proofs of invariance principles for random walks in (static

or dynamic) environments this was accomplished by proving the existence of an invariant

measure for the environment viewed from the particle that was absolutely continuous with

respect to the initial measure on environments (see e.g., [  27 ]–[ 30 ]). In this thesis, however,

we are able to prove the linear growth of the quadratic variation without any reference to

the existence of invariant measures for the environment viewed from the particle. Not only

does this give a simpler proof of the invariance principle for this particular model, but it also

enables us to compute explicitly the scaling constant in the invariance principle and allows

us to obtain quantitative estimates on the rate of convergence for the quadratic variation,

see ( 3.64 ).

Since the underlying dynamic environment in our model has only two types of sites (par-

ticles/holes), the key to analyzing the growth rate of the quadratic variation is to compute

the asymptotic fraction of time, limt→∞ t−1 ∫ t
0 ηXs(s) ds. We accomplish this by provid-

ing an explicit function ϕ and explicit constants a and b such that Lϕ ≈ aξ0 + b, where

ξx(t) := ηt(x+Xt) and L denotes the generator of the process (ξ(t))t≥0, the environment as

11



seen by the walk. This technique of estimating additive functionals
∫ t

0 g(ξ(s)) ds by solving

the equation g(ξ) ≈ a + bu(ξ) was introduced in [  31 ]. In the context of random walks in

random environments, it has been used in [ 32 ], [ 33 ], and [ 34 ], among other works.

In Section 4, we discuss random polymer models which can also be viewed as a random

walk in random environments. The directed polymer in a random environment represents

a polymer (a long chain of molecules) by a random path that interacts with a random en-

vironment. This model was introduced in statistical physics literature by Huse and Henley

[ 35 ]. Imbrie and Spencer [  36 ] formulated this model as a random walk in a random envi-

ronment. The random environment ω = (ω(s, u) : s ∈ N, u ∈ Zd) puts a real-valued weight

ω(s, u) at space time point (u, s) ∈ Zd × N. The random path (also can be viewed as a

random walk) Xn with length n is given a weight by summing up all the vertex weights on

it: Hn(Xn) = ∑n
k=1 ω(Xk, k). The quenched polymer distribution on paths, in environment

ω and an inverse temperature β, is the probability measure defined by

Qω
n(dXn) = 1

Zω
n

exp{βHn(Xn)}, (1.1)

where the normalizing factor (partition function) Zω
n = ∑

|Xn|=n exp{βHn(Xn)}. The sum is

taken over all directed simple paths of length n.

In recent decades, the importance of those models has become more popular due to the

belief that it belongs to Kardar-Parisi-Zhang (KPZ) universality class. The KPZ class is

characterized by two parameters, the fluctuation exponent 1/3 and the wandering exponent

2/3 and certain specified limit distributions on these characteristic scales. See for references

[ 37 ]–[ 40 ]. Tail estimates in models of surface growth in the KPZ class at the characteristic

scales and just past them, in the moderate deviation regime, have played a particularly im-

portant role in mathematical work seeking to make physically motivated heuristic arguments

about random growth models mathematically rigorous. For example, Emrah, Janjigian, and

Seppäläinen [  41 ] studied the right tail moderate deviation in the exponential last passage

percolation which belongs to corner growth model that is also believed to be a member of

the KPZ class.
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We study four kinds of 1+1 dimensional directed polymer models. The log-gamma model

was introduced in [  42 ]. The strict weak model was introduced in two independent papers,

[ 43 ], [  44 ], with a slightly different path geometry. The beta polymer was originally introduced

in [ 45 ] and defines a random walk in a random environment. The inverse-beta polymer was

originally introduced in [ 46 ]. In [  47 ], Chaumont and Noack define an integrability property

called Burke property that shared by log-gamma, strict-weak, beta, and inverse-beta models.

Meanwhile, those four models are the only models that possess this property. This property

implies a preservation in distribution of ratios of partition functions, as well as allows some

exact computations of interest, such as free energy (the log of partition function).

Our main goal is to find the upper and lower bound of the moderate deviation of the free

energy under the KPZ fluctuation exponent 1/3. The result shows that the upper bound of

the right tail moderate deviation of the free energy has the exponential leading order term

−4/3s3/2 in the bulk model and −2/3s3/2 in the multi-parameter model. This result (in the

bulk model) coincides with the leading order of the right tail of the weak limit of the rescaled

free energy which is called Tracy-Widom GUE distribution. For the lower bound estimate

of the moderate deviation, we also believe that the leading order term is the same as the one

of the upper bound. The key step to this conclusion, is to generate a lower bound of the log

moment generating function at moment λ of the normalized free energy with exponential

leading order term λ3/12, which is exactly the Legendre transform of 4/3s3/2.

As a key step to the proof of the lower bound of the moment generation function of the

free energy, which is also one of our interests, we discover the tail estimate of the annealed

exit time of the polymer. The exit time Exit(m,n) of a polymer from (0, 0) to (m,n) on

a random environment is defined as the time it exits the boundary. So the quenched tail

probability P ω(Exit(m,n) > k) will decay to zero as k ≥ m ∨ n. We generate an upper

bound of the annealed probability of the exit time that is more than s(m + n)2/3, that is,

E[P ω(Exit(m,n) > k)] where k = s(m+n)2/3. The result shows that the upper bound decays

faster that exp{−cs3}, which means it is unlikely for the polymer to leave the boundary later

than (m+ n)2/3 steps. 2/3 also reveals that the model we study belongs to KPZ class.

13



2. WEAK LIMITS OF RANDOM WALKS IN COOLING

RANDOM ENVIRONMENT

2.1 Random walks in cooling random environment

We will use the same notations as in Avena and den Hollander [  17 ]. Let N0 = N ∪ {0}.

The classical one-dimensional random walk in random environment (RWRE) is defined as

follows. Let ω = {ω(x) : x ∈ Z} be an i.i.d. sequence with probability distribution

µ = αZ (2.1)

for some probability distribution α on (0,1). We also assume that α is uniformly elliptic, i.e.

there exists c > 0, such that

P (ω(0) ∈ (c, 1− c)) = 1. (2.2)

Remark 2.1.1. The uniform ellipticity is not necessarily required for all the results of RWRE

throughout this chapter. But for different results, they require some specific assumptions of α.

For example, proposition  2.2.1 requires E[ log ρ(0)] is well defined, proposition  2.3.1 requires

E[ρ(0)κ log ρ(0)] < ∞. For simplicity, a uniform ellipticity assumption will satisfy all the

extra assumptions of those results. Thus we assume it at the beginning of the introduction

of RWRE.

The random walk in the spatial environment ω is the Markov process Z = (Zn)n∈N0

starting at Z0 = 0 with transition probabilities

P ω(Zn+1 = x+ e|Zn = x) =


ω(x), if e = 1,

1− ω(x), if e = −1,
n ∈ N0. (2.3)

The properties of Z are well understood, both under the quenched law P ω(·) and the annealed

law

Pµ(·) =
∫

(0,1)Z
P ω(·)µ(dω). (2.4)
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The random walk in cooling random environment (RWCRE) is a model where ω is

updated along a growing sequence of determined times. Let τ : N0 → N0 be a strictly

increasing map such that τ(0) = 0 and τ(k) ≥ k for k ∈ N. Define a sequence of random

environments Ω = (ωn)n∈N0 as follows: At each time τ(k), k ∈ N0, the environment ωτ(k) is

freshly resampled from µ = αZ and does not change during the time interval [τ(k), τ(k+1)).

That is, ωn = ωτ(k) where k is such that τ(k) ≤ n < τ(k + 1). The random walk in the

space-time environment Ω is the Markov process X = (Xn)n∈N0 starting at X0 = 0 with

transition probabilities

PΩ,τ (Xn+1 = x+ e|Xn = x) =


ωn(x), if e = 1,

1− ωn(x), if e = −1,
n ∈ N0. (2.5)

We call X the random walk in cooling random environment with resampling rule α and

cooling rule τ . The distribution PΩ,τ of the random walk for a given space time environment

is called the quenched law. The annealed law of the walk {Xn}n≥0 is obtained by averaging

the quenched with respect to the distribution Q = Qα,τ on Ω.

Pτ (·) =
∫

((0,1)Z)N0
PΩ,τ (·)Q(dω), (2.6)

2.2 Random walks in cooling random environment: Sinai’s regime

2.2.1 Slow and fast cooling: Gaussian fluctuations for recurrent RWRE

In Solomon’s seminal paper [  3 ], he showed that the recurrence/transience of a RWRE is

determined by the sign of Eα[ log ρ(0)], where

ρ(0) = 1− ω(0)
ω(0) (2.7)

and Eα[·] denotes expectations with respect to the measure α. In particular, if Eα[ log ρ(0)] =

0 then the RWRE is recurrent. Subsequently, the scaling limit in the recurrent case was iden-

tified by Sinai [  6 ] and the explicit form of the limiting distribution by Kesten [  5 ]. Moreover,
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it was shown by Avena and den Hollander [ 17 ] that the convergence also holds in Lp.The

next proposition summarises their results.

Proposition 2.2.1. [[ 6 ][ 5 ][ 17 ], Scaling limit RWRE: recurrent case] Let α be any

probability distribution on (0,1) satisfying E(log ρ(0)) = 0 and σ2
µ = E[ log2 ρ(0)] ∈ (0,∞).

Then, under the annealed law Pµ, the sequence of random variables

Zn

σ2
µ log2 n

, n ∈ N, (2.8)

converges in distribution and in Lp to a random variable V on R that is independent of α.

The law of V has a density p(x), x ∈ R, with respect to the Lebesgue measure that is given

by

p(x) = 2
π

∑
k∈N0

(−1)k
2k + 1 exp

[
−(2k + 1)2π2

8 |x|
]
, x ∈ R. (2.9)

In their initial paper on RWCRE Avena and den Hollander introduced several kinds of

cooling regimes that are interesting to research. For RWCRE in this thesis, following their

works, we focus on two kinds of growth regimes for τ(k). Let Tk = τ(k)− τ(k − 1),

(R1) Slow cooling: Tk ∼ βBkβ−1, for some B ∈ (0,∞) and β ∈ (1,∞).

(R2) Fast cooling: log Tk ∼ Ck, for some C ∈ (0,∞).

When the distribution α is as in Proposition  2.2.1 , Avena and den Hollander [  17 ] proved

a limiting distribution for the walk under both the fast and slow cooling regimes. Later in

[ 19 ] they strengthened this to Lp convergence. The following proposition summaries their

results. Note that here and throughout the remainder of this chapter we will use N (µ, σ2)

to denote a Gaussian random variable with mean µ and variance σ2.

Proposition 2.2.2. [[ 19 ], Slow and fast cooling: Gaussian fluctuations for recur-

rent RWRE] Let α be as in Proposition  2.2.1 . In regime (R1) and (R2), under the annealed

law P,
Xn − E(Xn)√

χn(τ)
→Lp N (0, 1), (2.10)

16



where

χn(τ) =


(σ2

µσV )2(β−1
β

)4( n
B

)
1
β log4 n, in regime (R1),

(σ2
µσV )2( 1

5C5 ) log5 n, in regime (R2),
(2.11)

with σ2
µ the variance of the random variable log ρ(0) and σ2

V the variance of the random

variable with density ( 2.9 ). Moreover, in (R2) the centering part can be removed. That is,

Xn√
χn(τ)

→Lp N (0, 1). (2.12)

Remark 2.2.1. In the most recent work [ 19 ], the authors have studied more general cooling

regimes and have found their limiting behavior. In fact, despite the sequence being always

tight, depending on the relative variance weight, the centered walk may not always converge.

In short, relative variance weight describes how significant the variance of the walk in a single

cooling interval over the variance of Xn. The results (Theorem 1.9 and Corollary 1.10 in

[ 19 ]) showed that for general cooling sequences there might be no limiting distribution for

Xn/
√
Var(Xn), but that one can identify a class of limiting distributions along subsequences

which are mixtures of Kesten’s distribution and standard Gaussian. See Examples 5 and 6

in [ 19 ] for more details.

2.2.2 Functional weak limit under the slow and fast Cooling

In this section we will introduce our main results of the weak limit of (X̃k/
√
χn(τ), k =

1, 2, ..., n) where X̃k = Xk(ω)−E(Xk) is the centered walk 

1
 of Xk under both polynomial and

exponential cooling. Since the walk (X̃k, k = 1, 2, ..., n) is a discrete time random walk and

we are considering the scaled (under both time and space parameters) weak limit of it, it is

reasonable to make this discrete-time-walk a continuous random walk Xn
t within the time

interval t ∈ [0, 1]. The simplest way to solve this is to make the process piecewise linear. To

this end, define

Xn
t (ω) = 1√

χn(τ)
X̃btnc(ω) + (tn− btnc) 1√

χn(τ)
(X̃btn+1c(ω)− X̃btnc(ω)). (2.13)

1All the ~ signs in this thesis mean the centered random variable under the annealed measure.
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Obviously Xn
t is a random function in C[0, 1], the space of continuous functions on [0, 1],

equipped with the uniform topology. The main results are stated as follows.

Theorem 2.2.2. [Slow cooling: Functional weak limit for recurrent RWRE] Let α

be as in Proposition  2.2.1 . In regime (R1), Xn
t given in ( 2.13 ). Under the annealed law P,

(Xn
t , t ∈ [0, 1]) ⇒n (Bt1/β , t ∈ [0, 1]), in regime(R1), (2.14)

where (Bt, t ∈ [0, 1]) is a standard Brownian motion. The limit in the right hand side means

a time-scaled Brownian motion. The convergence in law holds in the uniform topology on

C[0, 1].

In the exponential cooling case, the result is slightly different. The functional weak limit

of Xn
t is a random constant function and the law of the random constant is a standard

Gaussian distribution.

Theorem 2.2.3. [Fast cooling: Functional weak limit for recurrent RWRE] Let α

be as in Proposition  2.2.1 . In regime (R2), Xn
t given in ( 2.13 ). Under the annealed law P,

for any a ∈ (0, 1],

(Xn
t , t ∈ [a, 1]) ⇒n (Nt, t ∈ [a, 1]), in regime(R2), (2.15)

where Nt = N for all t ∈ [a, 1] and N ∼ N (0, 1). The convergence in law holds in the

uniform topology on C[a, 1].

Remark 2.2.4. In Theorem  2.2.3 the convergence holds in space C[a, 1] for any a ∈ (0, 1].

In fact, if we want to extend the convergence to then entire time interval [0, 1] then neither

continuous function space C[0, 1] nor the Càdlàg function space D[0, 1] (with the Skorohod

topology) will be sufficient since the sequence is not tight in either space. Moreover, one can

guess the limiting process on [0, 1] should be 0 when t = 0 and Nt for t ∈ (0, 1], which is not

a Càdlàg function. So if we want to extend the convergence to a function space on [0, 1] then

a wider space would be required, e.g. Lp[0, 1], together with a corresponding topology where

the weak convergence holds.
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Remark 2.2.5. A heuristic thinking of the result in Theorem  2.2.3 is by the fact the expo-

nential increment is faster than any polynomial increment. If we let β go to infinity, then

the weak limit in Theorem  2.2.2 will become 0 at time 0 and B1 for t ∈ (0, 1]. This also

explains the guess in the above remark.

2.3 Random walks in cooling random environment: transient RWRE

In this section we will turn to take a look at RWCRE where α is transient. In this case,

the weak limit results have been shown in [  19 ] where κ > 2 and in [  20 ] where κ ∈ (1, 2).

We will resume their work by discovering the weak limits for κ ∈ (0, 1) and κ = 2. Briefly

speaking, under the case with κ ∈ (0, 1), a stronger Lp norm convergence holds for RWRE.

While with κ = 2, the L2 convergence fails and we will discuss more about the tail estimates

of RWRE. And then we turn to find the weak limit of the corresponding RWCRE under

both slow and fast cooling.

2.3.1 Transient RWRE with κ ∈ (0, 1)

Consider Zn as the random walk in random environment where the underlying environ-

ment has distribution µ = αN such that Eα[ log ρ(0)] < 0 and κ ∈ (0, 1) where Eα[ρ(0)κ] = 1.

Classic RWRE shows that with some moment assumptions of α, under the annealed law P,

Zn/n
κ converges weakly to a random variable whose Laplace transform is the Mittag-Leffler

function (See [ 48 ] for more information about the Mittag-Leffler function). That is,

Proposition 2.3.1. [[ 4 ], Weak limit of transient RWRE: κ ∈ (0, 1)] Let α be transient

with κ ∈ (0, 1). Assume further that the support of the distribution of log ρ(0) is non-lattice

and suppose that E[ρ(0)κ log ρ(0)] <∞. Then under the annealed measure P, there exists a

constant b = b(α) > 0 such that

lim
n→∞

P
(
Zn
nκ
≤ x

)
= [1− Lκ,b(x−1/κ)]1x≥0, x ∈ R (2.16)

19



where Lκ,b is the κ-stable distribution with scaling parameter b, centered at zero and totally

skewed to the right. It’s characteristic function is

L̂κ,b(u) = exp
[
−b|u|κ

(
1− i u

|u|
tan(κπ

2 )
)]
. (2.17)

In order to find the weak limit of RWCRE along arbitrary cooling maps, based on the

proof of Theorem 1.9 in [  19 ], it is enough to prove the Lp norm convergence of Zn/nκ. The

theorem below shows this result.

Theorem 2.3.1 (Lp Norm Convergence κ ∈ (0, 1)). Let α be as in Proposition  2.3.1 .

Assume further that there exists ε0 > 0 such that E[ρ(0)−ε0 ] <∞. Denote M the weak limit

of Zn/nκ. Under the annealed measure P, the convergence holds in the sense of Lp norm for

∀p > 0. i.e.

lim
n→∞

E
∣∣∣∣Znnκ

∣∣∣∣p = E[M]p. (2.18)

Moreover, when p = 1, the convergence also holds for the expectation of Zn/nκ. Thus

Var(Zn/nκ)→ V ar(M).

Remark 2.3.2. The extra assumption in Theorem  2.3.1 comes from [ 49 ].

Remark 2.3.3. Once the convergence of variance is obtained, one can use coupling to define

identically distributed copies of centered Zn/n
κ and M to make the convergence (of the

centered copy) holds in L2. Then apply Chaper 3.1 in [  19 ] to get the same mixed fluctuation

result.

2.3.2 Transient RWRE with κ = 2

When κ = 2, it is known that the walk is ballistic with velocity v and there exists b > 0

such that (Zn − nv)/(b
√
n log n) converges weakly to Φ, a standard Gaussian. The main

result in this section shows that the L2 norm convergence holds but not to the variance

of the limiting distribution, which means convergence in L2 fails. For p < 2, Lp norm

convergence holds as well as its limit is also the Lp norm of the standard Gaussian.
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Theorem 2.3.4 (Lp Norm Convergence κ = 2). Let α be transient with κ = 2. Under

the annealed measure P, there exists σ2 > 0 that only depends on α, such that

lim
n→∞

E
[
Zn − vn√
n log n

]2

= b2 + σ2. (2.19)

For 0 < p < 2,

lim
n→∞

E
∣∣∣∣Zn − vn√
n log n

∣∣∣∣p = bpE|Φ|p. (2.20)

When p = 1, the expectation of (Zn − vn)/
√
n log n converges to zero.

2.3.3 Slow and fast cooling: Gaussian fluctuations for transient RWRE with
κ = 2

Let Xn be the random walk in cooling random environment and τk be the cooling se-

quence. Under slow (polynomial) and fast (exponential) cooling, we are able to generate the

weak limit result of the walk along the cooling sequence. Let Tk = τk − τk−1 be the waiting

time. In polynomial cooling regime, we assume Tk ∼ βkβ−1 where β > 1. In such case, the

parameter β will affect the variance of the weak limit which is always a Gaussian.

Theorem 2.3.5 (Slow cooling: transient when κ = 2). Let α be transient with κ = 2,

and the cooling regime Tk ∼ βkβ−1. Under the annealed measure P,

Xτn − EXτn

σ1

√
nβ log n

⇒ Φ (2.21)

where

σ2
1 = β(β − 1)

[
b2 + σ2

(
1

β − 1 ∧ 1
)]

. (2.22)

In exponential cooling, log Tk ∼ Ck for some constant C > 0. We further assume that

Tk ∼ eCKto make the scaling parameter below an explicit one. In this case, the theorem

below shows that the weak limit of the walk along the cooling sequence converges to a

standard normal distribution, and the scaling parameter is exactly b
√∑n

k=1 Tk log Tk.
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Theorem 2.3.6 (Fast cooling: transient when κ = 2). Let α be transient with κ = 2,

and the cooling regime Tk ∼ eCK. Under the annealed measure P,

Xτn − EXτn

b
√∑n

k=1 Tk log Tk
⇒ Φ. (2.23)

Or equivanlently
Xτn − EXτn

σ2
√
CneCn

⇒ Φ (2.24)

where σ2
2 = b2 eC

eC−1 .

2.4 Proofs

We begin by noting the following useful decomposition property of RWCRE. Let

k(n) = max{k ∈ N : τ(k) ≤ n} (2.25)

be the number of resamplings of the environment prior to time n. It’s easy to see k(n) ∼

(n/B)1/β in (R1) and k(n) ∼ (1/C) log n in (R2). Furthermore, Xn has a decomposition

that will be very useful in the following proof of the theorems,

Xn =
k(n)∑
j=1

Yj + Ȳn, (2.26)

where Yj = Xτ(j) − Xτ(j−1), j = 1, 2, .., k(n), Ȳn = Xn − Xτ(k(n)). A simple fact is that all

terms in (  2.26 ) are independent under the annealed measure. Moreover, under the annealed

measure, Yj has the same distribution as ZTj for j ≥ 1, and Ȳn has the same distribution as

Zn−τ(k(n)) for n ≥ 1, where {Zn}n≥0 is a RWRE. Since we will deal with the remainder part

Ȳn throughout the proof, we will use the notation T̄n = n−τ(k(n)) and T̄ cn = τ(k(n)+1)−n.

2.4.1 Slow cooling: Functional weak limit for recurrent RWRE

Proof of Theorem  2.2.2 . We start by finding the weak limit of the finite dimensional random

vector (Xn
t1 , X

n
t2 , ..., X

n
tk

). To start with, we will prove the weak convergence under the case
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k = 2, i.e. the weak limit of (Xn
t , X

n
s ) for 0 ≤ t < s ≤ 1. By [ 17 ], X̃btnc/

√
χbtnc(τ) ⇒n

N (0, 1). Obviously lim χbtnc(τ)
χn(τ) = t1/β, so X̃btnc/

√
χn(τ)⇒n N (0, t1/β). If ψn,t is the rightmost

term in (  2.13 ), then ψn,t ⇒n 0 by the fact that all the numerators are bounded but χn(τ)

goes to infinity. We have

(Xn
t , X

n
s −Xn

t ) = 1√
χn(τ)

(X̃btnc(ω), X̃bsnc(ω)− X̃btnc(ω)) + (ψn,t, ψn,s − ψn,t). (2.27)

To find the weak limit of (X̃bsnc− X̃btnc)/
√
χn(τ), we will follow the approach of [  17 ] in using

the following Lyapunov condition.

Lemma 2.4.1. (Lyapunov condition, Petrov [ 50 ])

Let U = (Uk)k∈N be a sequence of independent random variables (at least one of which has a

non-degenerate distribution). Let mk = E(Uk) and σ2
k = V ar(Uk). Define

χn =
n∑
k=1

σ2
k. (2.28)

Then the Lyapunov condition

lim
n→∞

1
χ
p/2
n

n∑
k=1

E(|Uk −mk|p) = 0, (2.29)

for some p > 2 implies that

1
χn

n∑
k=1

(Uk −mk)⇒n N (0, 1). (2.30)

.

Recall Xn has the decomposition

Xn =
k(n)∑
j=1

Yj + Ȳn. (2.31)
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Define the variance of Xbsnc−Xbtnc (which is also the variance of X̃bsnc− X̃btnc) for any s < t

and n large enough

χt,sn (τ) =
k(bsnc)∑

j=k(btnc)+2
Var(Yj) + Var(Ȳbsnc) + Var(Ȳ c

btnc) (2.32)

where Ȳ c
n = Xτ(k(n)+1) − Xn. Recall that Ỹj = Yj − E(Yj), ˜̄Yn = Ȳn − E(Ȳn), and ˜̄Y c

n =

Ȳ c
n − E(Ȳ c

n ). For p > 2, let

χt,sn (τ ; p) =
k(bsnc)∑

j=k(btnc)+2
E
(
|Ỹj|p

)
+ E

(
| ˜̄Ybsnc|p

)
+ E

(
| ˜̄Y c

btnc|p
)
. (2.33)

Since Yj has the same distribution as ZTj , then by Proposition 4 in [  17 ] the following two

asymptotic estimates hold as j→∞.

Var(Yj) ∼ (σ2
µσV )2 log4 Tj, E

(
|Ỹj|p

)
= O(log2p Tj), p > 2. (2.34)

Applying these to ( 2.32 ) and ( 2.33 ) we obtain

k(bsnc)∑
j=k(btnc)+2

Var(Yj) ∼ (σ2
µσV )2

k(bsnc)∑
j=k(btnc)+2

log4 Tj,

k(bsnc)∑
j=k(btnc)+2

E
(
|Ỹj|p

)
= O

 k(bsnc)∑
j=k(btnc)+2

log2p Tj

 .
(2.35)
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Moreover, using that ∑k
j=1 log2p j ∼

∫ k
1 log2p xdx ∼ k log2p k for all p ≥ 2 and that k(n) ∼

(n/B)1/β, we have

(σ2
µσV )2

k(bsnc)∑
j=k(btnc)+2

log4 Tj ∼ (σ2
µσV )2(β − 1)4

[
(sn
B

)1/β log4
(

(sn
B

)1/β
)
− (tn

B
)1/β log4

(
(tn
B

)1/β
)]

∼ (σ2
µσV )2(β − 1)4( n

B
)1/β( 1

β
)4(s1/β − t1/β) log4 n

= χn(τ)
(
s

1
β − t

1
β

)
,

and
k(bsnc)∑

j=k(btnc)+2
log2p Tj ∼ (σ2

µσV )2(β − 1)2p( n
B

)1/β( 1
β

)2p(s1/β − t1/β) log2p n

= χ
p
2
n (τ)

(
s

1
β − t

1
β

) ( n
B

) 2−p
βp

, p > 2.

(2.36)

Since Ȳn has the same distribution as ZT̄n
, we can again use Proposition 4 in [  17 ] to obtain

that there exists C(2) > 0, C(p) > 0, such that

Var
(
Ȳn
)
≤ C(2) log4 T̄n, E

(
| ˜̄Yn|p

)
≤ C(p) log2p T̄n. (2.37)

These upper bounds will be used to control Var(Ȳ c
n ) and E

(
|Ȳ c
n − E(Ȳ c

n )|p
)
. For n large

enough,

Var(Ȳ c
n ) = Var(Yk(n)+1 − Ȳn) ≤ 2Var(Yk(n)+1) + 2Var(Ȳn) ≤ 4

[
(σ2

µσV )2 + C(2)
]

log4 Tk(n)+1,

E
(
| ˜̄Y c
n |p
)

= E
(
|Ỹk(n)+1 − ˜̄Yn|p

)
≤ 2p−1

[
E
(
|Ỹk(n)+1|p

)
+ E

(
| ˜̄Yn|p

)]
= O(log2p Tk(n)+1).

(2.38)

From ( 2.37 ) and ( 2.38 ),

Var(Ȳbsnc) + Var(Ȳ c
btnc) ≤ C(2) log4 T̄bsnc + 4

[
(σ2

µσV )2 + C(2)
]

log4 Tk(btnc)+1 = O(log4 n),

E
(
| ˜̄Ybsnc|p

)
+ E

(
| ˜̄Y c

btnc|p
)
≤ C(p) log2p T̄bsnc +O(log2p Tk(btnc)+1) = O(log2p n).

(2.39)
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By ( 2.36 ) and ( 2.39 ), we can therefore give the asymptotic of χt,sn (τ) and χt,sn (τ ; p),

χt,sn (τ) ∼ χn(τ)
(
s

1
β − t

1
β

)
,

χt,sn (τ ; p) = O

(
χ

p
2
n (τ)

(
s

1
β − t

1
β

) ( n
B

) 2−p
βp

)
, p > 2.

(2.40)

From these asymptotics it is easy to check that the Lyapunov condition holds, and thus

X̃bsnc − X̃btnc√
χn(τ)

⇒n N (0, s1/β − t1/β). (2.41)

In order to prove the vector (Xn
t , X

n
s − Xn

t ) converges to a 2-d Gaussian vector with inde-

pendent components, it suffices to show that any linear combination of Xn
t and Xn

s − Xn
t

converges to the corresponding linear combination of the components of the limiting Gaus-

sian vector. To this end, the proof is quite similar to what we did above: Decompose

λXbtnc + µ(Xbsnc −Xbtnc) into independent sums and check the Lyapunov condition (  2.29 ).

Notice that

λXbtnc + µ(Xbsnc −Xbtnc) = λ
k(btnc)∑

j=1

(
Xτ(j) −Xτ(j−1)

)
+ λ

(
Xbtnc −Xk(btnc)

)

+ µ
(
Xk(btnc)+1 −Xbtnc

)
+ µ

k(bsnc)∑
j=k(btnc)+2

(
Xτ(j) −Xτ(j−1)

)
+ µ

(
Xbsnc −Xk(bsnc)

)

= λ
k(btnc)∑

j=1
Yj +

(
λȲbtnc + µȲ c

btnc

)
+ µ

k(bsnc)∑
j=k(btnc)+2

Yj + µȲbsnc.

(2.42)

The key point to the proof is the expressions of the variance of λXbtnc + µ(Xbsnc −Xbtnc)

Var
(
λXbtnc + µ(Xbsnc −Xbtnc)

)
= λ2

k(btnc)∑
j=1

Var(Yj) + µ2
k(bsnc)∑

j=k(btnc)+2
Var(Yj)

+µ2Var(Ȳbsnc) + Var
(
λȲbtnc + µȲ c

btnc

)
,

(2.43)
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and the sum of centered p-th moments of the independent components in the above decom-

position,

λp
k(btnc)∑

j=1
E
(
|Ỹj|p

)
+ µp

k(bsnc)∑
j=k(btnc)+2

E
(
|Ỹj|p

)
+ µpE

(
| ˜̄Ybsnc|p

)
+ E

(
|λ ˜̄Ybtnc + µ ˜̄Y c

btnc|p
)
. (2.44)

The last term in each expression above cannot be separated into two parts because those

two random variables are not independent under the annealed measure. But still, we can

estimate the last term by the fact that V ar(X + Y ) ≤ 2(V ar(X) + V ar(Y )) (and similarly,

E(|X + Y |p) ≤ 2p−1(E|X|p + E|Y |p) for the p-th moment) for any two random variables

X and Y . Thus, with the same approach, the last two terms in ( 2.43 ) and (  2.44 ) will be

dominated by the first two sums. Moreover, the asymptotics of the first two sums in ( 2.43 )

and ( 2.44 ) can be obtained using the same methods as in the first part of the proof above.

The result is for any λ > 0, µ > 0, λXn
t +µ(Xn

s −Xn
t ) converges weakly to N (0, λ2t1/β +

µ2(s1/β − t1/β)). This also reveals the independence of the coordinates of the limit random

vector, i.e.

(Xn
t , X

n
s −Xn

t )⇒n (N1, N2), (2.45)

where (N1, N2) is a Gaussian vector with mean (0, 0) and variance (t1/β, s1/β − t1/β), also N1

and N2 are independent.

It is natural to extend the weak convergence of 2-dimension vector into finite dimension

vector (Xn
t1 , X

n
t2 , ..., X

n
tk

), 0 ≤ t1 < t2 < ... < tk ≤ 1 i.e.

(Xn
t1 , X

n
t2 , ..., X

n
tk

)⇒n (B
t
1/β
1
, B

t
1/β
2
, ..., B

t
1/β
k

), (2.46)

where (Bt, t ∈ [0, 1]) is a standard Brownian motion. The proof of this statement follows

the same steps as what we did in dimension 2: Decompose ∑k
i=1 λi(Xbtinc − Xbti−1nc) into

independent sums where t0 = 0. Then take the variance and the the sum of centered
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p−th moment of the independent components of the decomposition to check the Lyapunov

condition ( 2.29 ). The decomposition is

k∑
i=1

λi(Xbtinc −Xbti−1nc) = λ1

k(bt1nc)∑
j=1

Yj +
k∑

i=2
λi

k(btinc)∑
j=k(bti−1n+2c)

Yj

+
[
k−1∑
i=1

(λiȲbtinc + λi+1Ȳ
c

btinc) + λkȲbtknc

]
.

(2.47)

So the variance and the sum of centered p−th moment of the independent components above

are

λ2
1

k(bt1nc)∑
j=1

Var(Yj) +
k∑

i=2
λ2

i

k(btinc)∑
j=k(bti−1n+2c)

Var(Yj)

+
[
k−1∑
i=1

Var
(
λiȲbtinc + λi+1Ȳ

c
btinc

)
+ λ2

kVar(Ȳbtknc)
] (2.48)

and

λp1

k(bt1nc)∑
j=1

E(|Ỹj|p) +
k∑

i=2
λpi

k(btinc)∑
j=k(bti−1n+2c)

E(|Ỹj|p)

+
[
k−1∑
i=1

E
(
|λi

˜̄Ybtinc + λi+1
˜̄Y c

btinc|p
)

+ λpkE(| ˜̄Ybtknc|p)
]
.

(2.49)

All the terms in the big brackets are dominated by sums to the left of the brackets. To check

the Lyapunov condition holds in this case is nothing new but repeat our works ( 2.35 ) and

( 2.36 ). The details are tedious and we omit them here.

To complete the proof of the theorem under the slow cooling case, the tightness of the

sequence Xn is needed. To this end, by Theorems 7.3 and 7.4 in [  51 ] it is enough to show that

for any ε > 0, η > 0, ∃δ > 0 and a sequence of numbers {ti}, where 0 = t0 < t1 < ... < tv = 1,

s.t.

min
1<i<v

(ti − ti−1) ≥ δ, (2.50)
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and ∃n0 > 0, for all n > n0,

v∑
i=1

P[ sup
ti−1≤s≤ti

|Xn
s −Xn

ti−1
| ≥ ε] < η. (2.51)

Since (Xn
t , t ∈ [0, 1]) is the continuous process of (X̃btnc/

√
χn(τ), t ∈ [0, 1]), the biggest

difference in the continuous process within a given interval is, up to an error smaller than

2/
√
χn(τ), bounded by the biggest difference in the discrete time process. Hence we can check

the condition (  2.51 ) by replacing Xn
s , s ∈ [ti−1, ti] and Xn

ti−1
by X̃m/

√
χn(τ), m ∈ [ti−1n, tin]

and X̃bti−1nc/
√
χn(τ) separately.

Let m be |X̃m− X̃bti−1nc| = sups∈[ti−1n,tin] |X̃s− X̃bti−1nc|, i.e. the exact value of s to make

the biggest difference happens. If there are more than one candidates, choose one arbitrarily.

We have the following decomposition,

X̃m − X̃bti−1nc =
τ(k(m))∑

j=τ(k(bti−1nc)+1)
Ỹj + ˜̄Ym − ˜̄Ybti−1nc, (2.52)

or just ˜̄Ym − ˜̄Ybti−1nc if k(bti−1nc) = k(m).

Let’s deal with the decomposition above in two parts:

• Given q = bβc+ 1 > 1, define the martingale {Ml} as M0 = 0,

Ml =
τ(k(bti−1nc)+l)∑

j=τ(k(bti−1nc)+1)
Ỹj, l ≥ 1. (2.53)

Since the function x2q is convex, {M2q
l } is a submartingale. By Doob’s Maximal

Inequality [ 52 ], for integer L > 0,

P

 sup
l∈[0,L]

|Ml|√
χn(τ)

≥ ε

2

 ≤ E[M2q
L ]

( ε2)2qχqn(τ) . (2.54)

To estimate the order of E[M2q
L ], notice that if we expand all the terms in M2q

L , it is a

sum that several terms in it have zero mean. So by counting the number of non-zero

terms in E[M2q
L ] will give us the order of it. In fact, any term that has non-zero mean
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cannot have a factor Ỹj of order only one, i.e. either it is not divided by Ỹj or it is

divided by Ỹ 2
j . Thus, a rough upper bound of the number of the non-zero terms in

E[M2q
L ] is ∑q

i=1

(
L
i

)
i2q. Since q is fixed, for L large enough, ∑q

i=1

(
L
i

)
i2q ≤ q

(
L
q

)
q2q.

For any nonzero term in the expansion of E[M2q
L ], by (  2.34 ), it is bounded from above

by C0 log4q n for some C0 > 0 since we are dealing with the case within the interval

[0, n]. So

E[M2q
L ] ≤ C0q

(
L

q

)
q2q log4q n ≤ C0q

2q+1Lq log4q n. (2.55)

Now back to the first part in ( 2.52 ),

P

 |∑τ(k(m))
j=τ(k(bti−1nc)+1) Ỹj|√

χn(τ)
≥ ε

2

 ≤ P

 sup
l∈[0,k(btinc)−k(bti−1nc)]

|Ml|√
χn(τ)

≥ ε

2

 . (2.56)

Combining with (  2.54 ) and (  2.55 ) and recalling (k(btinc)−k(bti−1nc)) ∼ (n/B)1/β(t1/βi −

t
1/β
i−1), we obtain that there exists C∗ > 0, depending only on ε, such that

P

 |∑τ(k(m))
j=τ(k(bti−1nc)+1) Ỹj|√

χn(τ)
≥ ε

2

 ≤ C∗(t
1
β

i − t
1
β

i−1)q. (2.57)

• To deal with ˜̄Ym, notice that | ˜̄Ym| is bounded by the maximum of |Ȳn − E(Ȳn)| where

n ∈ [τ(k(m)), τ(k(m) + 1)]. Define Ỹ ∗
j = maxn∈[τ(j−1),τ(j)] |Ȳn − E(Ȳn)|, then | ˜̄Ym| ≤

Ỹ ∗
k(m)+1, where k(m) can be from k(bti−1nc) to k(btinc). Hence,

P

 | ˜̄Ym|√
χn(τ)

≥ ε

4

 ≤P
 sup

j∈[k(bti−1nc)+1,k(btinc)+1]

Ỹ ∗
j√

χn(τ)
≥ ε

4


≤

k(btinc)+1∑
j=k(bti−1nc)+1

P

 Ỹ ∗
j√

χn(τ)
≥ ε

4

 .
(2.58)

Let Y ∗
j = maxn∈[τ(j−1),τ(j)] |Ȳn|, we have

Ỹ ∗
j = max

n∈[τ(j−1),τ(j)]
|Ȳn − E(Ȳn)| ≤ max

n∈[τ(j−1),τ(j)]
|Ȳn|+ max

n∈[τ(j−1),τ(j)]
E|Ȳn| ≤ Y ∗

j + EY ∗
j .

(2.59)
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Moreover, by the same proof of the Proposition 4 in [  17 ] (both Zn > a and Z∗
n > a

mean T (a) < n), for all p > 0,

sup
1≤j≤k(n)+1

E
(

Y ∗
j

log2 n

)p
≤ sup

1≤j≤k(n)+1
E
(

Y ∗
j

log2 Tj

)p
<∞. (2.60)

From ( 2.59 ), Chebyshev’s Inequality, and (  2.60 ), there exists C ′ > 0 depending only

on ε such that

P

 Ỹ ∗
j√

χn(τ)
≥ ε

4

 ≤ P

Y ∗
j + EY ∗

j√
χn(τ)

≥ ε

4

 ≤ E
(
Y ∗

j + EY ∗
j

)4

(
ε
4

)4
χ2
n(τ)

≤ C ′n− 2
β . (2.61)

Now the upper bound of ( 2.58 ) is clear,

P

 | ˜̄Ym|√
χn(τ)

≥ ε

4

 ≤ k(btinc)+1∑
j=k(bti−1nc)+1

C ′n− 2
β = C ′ (k(btinc)− k(bti−1nc))n− 2

β . (2.62)

The right hand side goes to zero as n goes to infinity since k(n) ∼ (n/B)1/β.

Back to the tightness condition ( 2.51 ), for any given ε > 0, η > 0, let δ = 1/K, and

ti = i/K, i = 0, 1, ..., K, the positive integer K to be determined. By (  2.37 ), (  2.52 ), (  2.57 ),

and ( 2.62 ), there exists c > 0 such that

K∑
i=1

P

sups∈[ti−1n,tin] |X̃s − X̃bti−1nc|√
χn(τ)

≥ ε

 =
K∑

i=1
P

 |X̃m − X̃bti−1nc|√
χn(τ)

≥ ε


≤

K∑
i=1

P
 |∑τ(k(m))

j=τ(k(bti−1nc)+1) Ỹj|√
χn(τ)

≥ ε

2

+ P

 | ˜̄Ym|√
χn(τ)

≥ ε

4

+ P

 | ˜̄Ybti−1nc|√
χn(τ)

≥ ε

4


≤

K∑
i=1

[
C∗(t

1
β

i − t
1
β

i−1)q + C ′ (k(btinc)− k(bti−1nc))n− 2
β + 16Var(Ȳbti−1nc)

ε2χn(τ)

]

≤C∗K sup
1≤i≤K

( i
K

) 1
β

−
( i− 1
K

) 1
β

q + cKn− 1
β

=C∗K1− q
β + cKn− 1

β .

(2.63)
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Since q > β, by first choosing K large and then choosing n large enough the above bound is

less than η. Hence the tightness condition holds, and (  2.14 ) is proved.

2.4.2 Fast cooling: Functional weak limit for recurrent RWRE

Proof of Theorem  2.2.3 . We do the proof in the same way as above. First we identify the

limits of the finite dimensional distributions and then we prove tightness of the process

(Xn
t , t ∈ [a, 1]). In this case, however, the computation of the limiting finite dimensional

distributions is slightly easier. We show that in this case the variance χt,sn (τ) is of smaller

order than χn(τ) and thus, (X̃bsnc − X̃btnc)/
√
χn(τ)⇒ 0.

Given 0 < a ≤ t ≤ s ≤ 1, recall the variance of X̃bsnc − X̃btnc is

χt,sn (τ) =
k(bsnc)∑

j=k(btnc)+2
Var(Yj) + Var(Ȳbsnc) + Var(Ȳ c

btnc). (2.64)

Again by ( 2.34 ), since t > 0, for n large enough,

Var(Yj) ≤ 2(σ2
µσV )2 log4 Tj ≤ 2(σ2

µσV )2 log4 n (2.65)

holds for j ∈ [k(btnc) + 2, k(bsnc)]. Using the upper bound in (  2.39 ) we obtain

Var(Ȳbsnc) + Var(Ȳ c
btnc) ≤ C(2) log4 T̄bsnc + 4

[
(σ2

µσV )2 + C(2)
]

log4 Tk(btnc)+1 = O(log4 n).

(2.66)

In the fast cooling case, since k(n) ∼ (1/C) log n, the number of terms in the sum of (  2.64 )

is (1/C)[ log sn+ o(log sn)− log tn− o(log tn)] = (1/C)[ log s/t+ o(log n)]. Thus,

χt,sn (τ) ≤ 2(σ2
µσV )2

[ 1
C

log
(
s

t

)
+ o(log n)

]
log4 n+O(log4 n). (2.67)

Since χn(τ) is of order log5 n, it is obvious (X̃bsnc − X̃btnc)/
√
χn(τ) ⇒n 0. Moreover, notice

that χbtnc(τ) ∼ χn(τ) for any t ∈ [a, 1], and so X̃btnc/
√
χn(τ)⇒n N , where N is the standard

Gaussian random variable. Hence (Xn
t , X

n
s −Xn

t ) ⇒n (N, 0), or equivalently (Xn
t , X

n
s ) ⇒n
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(N,N). This argument easily extends to the weak convergence of finite dimension vectors

(Xn
t1 , X

n
t2 , ..., X

n
tk

), i.e.

(Xn
t1 , X

n
t2 , ..., X

n
tk

)⇒n (N,N, ..., N), (2.68)

where ti ∈ [a, 1], i = 1, 2, ..., k, N ∼ N (0, 1).

To check the tightness condition, it is enough to show that for any ε > 0,

lim sup
n→∞

P
(

sup
a≤s≤t≤1

|Xn
s −Xn

t | ≥ ε

)
= 0, (2.69)

which is equivalent to

lim sup
n→∞

P

 sup
banc≤k≤l≤n

|X̃k − X̃l|√
χn(τ)

≥ ε

 = 0. (2.70)

Since supbanc≤k≤l≤n |X̃k − X̃1| ≤ 2 supbanc≤s≤n |X̃s − X̃banc|, we can deal with |X̃s − X̃banc| in

the following proof. Let m be |X̃m − X̃banc| = supbanc≤s≤n |X̃s − X̃banc|. the decomposition

of it is

X̃m − X̃banc =
τ(k(m))∑

j=τ(k(banc)+1)
Ỹj + ˜̄Ym − ˜̄Ybanc, (2.71)

or just ˜̄Ym − ˜̄Ybanc if k(banc) = k(m). Similar to what we did in the proof of slow cooling,

P

 |∑τ(k(m))
j=τ(k(banc)+1) Ỹj|√

χn(τ)
≥ ε

2

 ≤ P

 sup
l∈[0,k(n)−k(banc)]

|Ml|√
χn(τ)

≥ ε

2

 . (2.72)

Combining (  2.54 ) and (  2.55 ) under the case q = 1, recall that k(n)−k(banc) ∼ −(1/C) log a,

there exists C2 > 0, depending only on ε,

P

 |∑τ(k(m))
j=τ(k(banc)+1) Ỹj|√

χn(τ)
≥ ε

2

 ≤ C2

log n. (2.73)

For ˜̄Ym, following all the steps from ( 2.58 ) to (  2.62 ), there exists C ′′ > 0, depending only on

ε,

P

 | ˜̄Ym|√
χn(τ)

≥ ε

4

 ≤ C ′′

log2 n
(k(n)− k(banc)) , (2.74)
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and obviously the right hand side goes to zero as n goes to infinity. By (  2.37 ), (  2.73 ) and

( 2.74 ),

P

 sup
banc≤s≤n

|X̃s − X̃banc|√
χn(τ)

≥ ε

 = P

 |X̃m − X̃banc|√
χn(τ)

≥ ε


≤P

 |∑τ(k(m))
j=τ(k(banc)+1) Ỹj|√

χn(τ)
≥ ε

2

+ P

 | ˜̄Ym|√
χn(τ)

≥ ε

4

+ P

 | ˜̄Ybanc|√
χn(τ)

≥ ε

4


≤ C2

log n + C ′′

log2 n
(k(n)− k(banc)) + 16Var(Ȳbanc)

ε2χn(τ)

=O( 1
log n).

(2.75)

The tightness condition holds. Hence (  2.15 ) is proved.

2.4.3 Lp norm convergence for transient RWRE with κ ∈ (0, 1)

Proof of theorem  2.3.1 . Fix M > 1, write

E|Zn|p = EZp
n+ + EZp

n− =
∫ np

0
P(Zp

n ≥ x)dx+
∫ np

0
P(Zp

n ≤ −x)dx

=
∫ Mnpκ

0
P(Zn ≥ x1/p)dx+

∫ np

Mnpκ
P(Zn ≥ x1/p)dx+

∫ npκ

0
P(Zn ≤ −x1/p)dx

+
∫ np

npκ
P(Zn ≤ −x1/p)dx = npκ

∫ M

0
P
(
Zn
nκ
≥ y1/p

)
dy + I + II + III.

(2.76)

Our next step is to bound I, II, III from above. Start with II,

II = npκ
∫ 1

0
P
(
Zn
nκ
≤ −y1/p

)
dy. (2.77)

The probability inside the integral converges to 0 for any y > 0 since M is always non-

negative. Thus the integral converges to zero since it is an integral over finite range(y ∈

(0, 1)). And one can conclude easily II/npκ → 0.

Use the backtracking theorem (Theorem 1.4 in [  49 ]) on III, we have for n > N(α, κ)

where N(α, κ) > 0 only depends on α (since α determines κ),

III ≤
∫ np

npκ
P(Zn ≤ −nκ)dx ≤ npe−nκ/2

. (2.78)
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The right hand side converges to zero and thus III is done.

We use regeneration time method to estimate I. The regeneration time is defined as

follows, let R0 = 0, for Rk where k > 0,

Rk := inf{n > Rk−1 : max
l<n

Zl < Zn ≤ min
m≥n

Zm}. (2.79)

Decompose part I by regeneration times,

I ≤
∫ np

Mnpκ

[
P(ZR1 ≥ anκ) + P(ZRm − ZR1 ≥ x1/p − anκ) + P(Rm < n)

]
dx (2.80)

where a < M1/p and m to be determined later. For the regeneration time {Rk}k≥1, we know

that(see Appendix B in [ 20 ] for more detail) {Rk−Rk−1}k>1 is a non-negative i.i.d sequence

with polynomial right tail with parameter κ. Moreover, {ZRk
− ZRk−1}k>1 is another non-

negative i.i.d. sequence with exponential right tail thus LDP holds. ZR1 also has exponential

tail but has another distribution. Now we use those properties to identify what value a and m

should satisfy in order to get our desired upper bound. Notice that Rk−Rk−1 is non-negative,

P(Rm < n) ≤ P(Rm −R1 < n) ≤ P(R2 −R1 < n)m−1 = [1− P(R2 −R1 ≥ n)]m−1

≤
[
1− Cn−κ

]m−1
≤ exp {−C(m− 1)

nκ
}

(2.81)

for some C = C(α) > 0. Meanwhile, by Large deviation principle upper bound, for a < M1/p,

P(ZRm − ZR1 ≥ x1/p − anκ) ≤ exp
{
−(m− 1)I

(
x1/p − anκ

m− 1

)}
(2.82)

where I(·) is the rate function of ZR2−ZR1 . As long as we pick m−1 = x1/p/(2E[ZR2−ZR1 ])

and a = M1/p/3, then for x ≥Mnpκ,

I

(
x1/p − anκ

m− 1

)
≥ I

(4
3E[ZR2 − ZR1 ]

)
> 0. (2.83)
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Now back to (  2.80 ), P(ZR1 ≥ anκ) ≤ exp {−cnκ} for some c > 0 and after integration it

will still converge to 0. P(ZRm −ZR1 ≥ x1/p− anκ) ≤ exp {−c0x
1/p} ≤ exp {−c0M

1/pnκ} for

some other c0 > 0 and hence after the integration it converges to 0 as well. P(Rm < n) ≤

exp {− c1x1/p

nκ } where c1 = C/(2E[ZR2 − ZR1 ]) > 0 and thus

∫ np

Mnpκ
P(Rm < n)dx ≤ npκ

∫ ∞

M
exp {−c1y

1/p}dy (2.84)

where the last integral converges to 0 as M goes to infinity since exp {−c1y
1/p} is integrable

on (0,∞).

From decomposition ( 2.76 ) and the upper bound estimates of I, II, III, we have

lim sup
n→∞

∣∣∣∣E[|Zn|p]
npκ

−
∫ M

0
P
(
Zn
nκ
≥ y1/p

)
dy
∣∣∣∣ ≤ ∫ ∞

M
exp {−c1y

1/p}dy (2.85)

for any M > 1. By bounded convergence theorem,

lim
n→∞

∫ M

0
P
(
Zn
nκ
≥ y1/p

)
dy =

∫ M

0
P
(
M ≥ y1/p

)
dy. (2.86)

In the end, let M go to infinity and we will get the convergence of the Lp norm. When p = 1,

the convergence also holds for the expectation since EZn− = II + III = o(nκ).

2.4.4 Lp norm convergence for transient RWRE with κ = 2

Proof of Theorem  2.3.4 . We will find the left and right tail estimates of Zn−vn. For the right

tail upper bound, we use the regeneration time decomposition. Fix M > 1, let M
√
n log n <

x < (1− v)n, a = x/2 and m− 1 = (vn+ x/4)/(E(ZR2 − ZR1)),

P(Zn − vn ≥ x) ≤ P(ZR1 ≥ a) + P(ZRm − ZR1 ≥ vn+ x− a) + P(Rm −R1 < n). (2.87)

The first part inside the integral decays exponentially as a goes to infinity. For the second

part, by the choice of a and m,

P(ZRm − ZR1 ≥ vn+ x− a) = P(Z̃Rm − Z̃R1 ≥
x

4 ) (2.88)
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where Z̃Rk
= ZRk

−EZRk
means the centered random variable. Since Z̃R2−Z̃R1 has exponen-

tial right tail, one can conclude by taking the Taylor expansion of Λ(t) = logE[ exp{t(Z̃R2 −

Z̃R1)}] for some small positive t, log of the moment generation function of Z̃R2 − Z̃R1 , up to

the second order to see that as t→ 0,

E[et(Z̃R2 −Z̃R1 )] = eΛ(t) = e
ct2
2 +o(t2) (2.89)

where c = E(Z̃R2 − Z̃R1)2. Thus, by applying Theorem 15 in chapter III of [ 50 ], there exist

c0 > 0, δ > 0 that only depend on α such that P(Z̃Rm − Z̃R1 ≥ x
4 ) ≤ exp {−c0x

2/(m− 1)}

for x ≤ δ(m − 1). Since m − 1 � n, it’s fine if we replace m − 1 by n, the inequality still

holds for some other c0 and δ.

For the last part in ( 2.87 ), notice that P(Rm − R1 < n) = P(R̃m − R̃1 < −x/4v). In

order to bound this left tail, we need an upper bound for E(exp {−λ(R̃m − R̃1)}) which is

included in the next lemma.

Lemma 2.4.2. Assume ξ1 has mean zero, is bounded below by −L for some L > 0, and has

right tail decay P (ξ1 > x) = O(x−2). Then, there exists a constant C > 0 that depends on

the distribution of ξ1 such that

E[e−λξ1 ] ≤ eCλ2| log λ| (2.90)

for all λ ∈ (0, 1/e).
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Proof. Define ξ̂1 = ξ1 + L so that ξ̂1 is non-negative and E[ξ̂1] = L. Let K > 0 such that

P (ξ̂1 > x) ≤ Kx−2.

e−λLE[e−λξ1 ] = E[e−λξ̂1 ] =
∫ ∞

0
λe−λyP (ξ̂1 < y)dy = 1−

∫ ∞

0
λe−λyP (ξ̂1 ≥ y)dy

≤1−
∫ ∞

0
λ(1−min{λy, 1})P (ξ̂1 ≥ y)dy = 1− λL+ λ2

∫ λ−1

0
yP (ξ̂1 ≥ y)dy + λ

∫ ∞

λ−1
P (ξ̂1 ≥ y)dy

=1− λL+ λ2
∫ 1

0
yP (ξ̂1 ≥ y)dy + λ2

∫ λ−1

1
yP (ξ̂1 ≥ y)dy + λ

∫ ∞

λ−1
P (ξ̂1 ≥ y)dy

≤1− λL+ λ2
∫ 1

0
ydy +Kλ2

∫ λ−1

1
y−1dy +Kλ2

∫ ∞

λ−1
y−2dy

=1− λL+ 1
2λ

2 +Kλ2| log λ|+Kλ2 ≤ exp {−λL+ (2K + 1
2)λ2| log λ|}.

(2.91)

The last inequality holds since | log λ| > 1 and 1 + x ≤ ex for x ∈ R.

We use Chebyshev inequality to estimate P(R̃m− R̃1 < −x/4v). The parameter λ < 1/e

will be determined later. By the above lemma, recall that P(R2 −R1 > x) ∼ Cx−2,

P(R̃m − R̃1 < −x/4v) ≤ exp {−λx4v }E[e−λ(m−1)(R̃2−R̃1)]

≤ exp {−λx4v + C(m− 1)λ2| log λ|}.
(2.92)

Let λ| log λ| = x/(8Cv(m− 1)). Since the function λ| log λ| is increasing for λ ∈ (0, 1/e) and

reaches maximum 1/e when λ = 1/e, in order to let such λ exist, we need x/(8Cv(m−1)) <

1/e. Recall the choice of m and m − 1 � n, this can be satisfied if we choose δ1 > 0 small

enough(only depends α) and let x ≤ δ1n. Moreover, With this extra restriction of x and the

choice of λ, | log λ| < 2| log [8Cv(m− 1)/x]| by the monotonicity of λ| log λ|. Thus,

P(R̃m − R̃1 < −x/4v) ≤ exp { −x2

64Cv2(m− 1)| log λ|} ≤ exp { −C1x
2

(m− 1)| log C2(m−1)
x
|
} (2.93)

holds for C1, C2 > 0. Since m � n, we get P(R̃m − R̃1 < −x/4v) ≤ exp {−c1x
2/(n log n)}

for x ≤ δ1n and for some other constant c1 > 0.

The following lemma concludes the above results and solves the right tail truncated Lp

norm of Zn − vn.

38



Lemma 2.4.3 (Right tail estimates). Let α be transient with κ = 2. Under the annealed

measure P, fix M > 0, there exists δ2 > 0, c > 0, as well as c0 > 0 and c1 > 0 mentioned

above, such that for all x ∈ (M
√
n log n, δ2n),

P(Zn − vn ≥ x) ≤ e−cx + e−c0
x2
n + e−c1

x2
n log n . (2.94)

By taking M →∞, the convergence holds for the right tail truncated Lp norm for p ∈ (0, 2],

lim
M→∞

lim sup
n→∞

1
(n log n)p/2E

[
|Zn − vn|p1{Zn−vn≥M

√
n logn}

]
= 0. (2.95)

Proof. Let constant δ2 = min{δ, δ1} > 0, ( 2.94 ) is immediately obtained by the arguments

above. Write

E
[
(Zn − vn)p1{Zn−vn≥M

√
n logn}

]
=
∫ δ2n

M
√
n logn

pxp−1P(Zn − vn ≥ x)dx

+
∫ (1−v)n

δ2n
pxp−1P(Zn − vn ≥ x)dx.

(2.96)

Inside the last integral when x > δ2n, using LDP upper bound by [  53 ], P(Zn − vn ≥ x) ≤

P(Zn − vn ≥ δ2n) which decays exponentially in n. Thus after taking the integral it will

converge to zero as well. For x ∈ (M
√
n log n, δ2n), by ( 2.94 ),

∫ δ2n

M
√
n logn

pxp−1P(Zn − vn ≥ x)dx ≤
∫ δ2n

M
√
n logn

pxp−1e−cxdx+
∫ δ2n

M
√
n logn

pxp−1e−c0
x2
n dx

+
∫ δ2n

M
√
n logn

pxp−1e−c1
x2

n log ndx

≤o(1) + np/2
∫ ∞

M
√

logn
pyp−1e−c0y2

dy

+ (n log n)p/2
∫ ∞

M
pyp−1e−c1y2

dy

=o(1) + o(np/2) + (n log n)p/2
∫ ∞

M
pyp−1e−c1y2

dy.

(2.97)

So lim supn→∞
1

(n logn)p/2E
[
|Zn − vn|p1{Zn−vn≥M

√
n logn}

]
≤
∫∞
M pyp−1e−c1y2

dy, and lettingM →

∞ finishes the proof.
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For the left tail estimates of Zn − vn, we already know some results like general left tail

estimates(first inequality of Lemma 4.3 in [ 20 ]) and precise left tail estimates(Theorem 1.2

in [ 54 ]) which are listed below.

Proposition 2.4.1 (General left tail estimates). Let α be transient with κ = 2. Under

the annealed measure P, there exists constant C > 0, for large n enough,

P(Zn − vn ≤ −t
√
n) ≤ Ct−2 (2.98)

for t ≤ v
√
n/2.

Proposition 2.4.2 (Precise left tail estimates). Let α be transient with κ = 2. Under

the annealed measure P, there exists constant K0(α) > 0,

lim
n→∞

sup
t∈Γn

∣∣∣∣P(Zn − vn ≤ −t)
(nv − t)t−2 −K0

∣∣∣∣ = 0 (2.99)

where Γn = (
√
n log3 n, nv −

√
n log3 n).

We will use those tail estimates to show the convergence of the left tail truncated Lp

norm, which is the next lemma.

Lemma 2.4.4. Let α be transient with κ = 2. Under the annealed measure P, there exists

σ2 > 0 such that for any M > 0,

lim
n→∞

1
n log nE

[
(Zn − vn)21{Zn−vn≤−M

√
n logn}

]
= σ2. (2.100)

For p ∈ (0, 2),

lim
n→∞

1
(n log n)p/2E

[
|Zn − vn|p1{Zn−vn≤−M

√
n logn}

]
= 0. (2.101)

Remark 2.4.5. Unlike the right tail truncated L2 norm, the left tail away from the stan-

dard M
√
n log n window contributes to a non zero variance. This is due to the heavy left

tail(polynomial decay as x−2) of Zn − vn.
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Proof. Fix δ > 0, write

E
[
|Zn − vn|p1{Zn−vn≤−M

√
n logn}

]
=
∫ (1+v)n

M
√
n logn

pxp−1P(Zn − vn ≤ −x)dx

=
∫ √

n log3 n

M
√
n logn

+
∫ nv−

√
n log3 n

√
n log3 n

+
∫ (v+δ)n

nv−
√
n log3 n

+
∫ (v+1)n

(v+δ)n
.

(2.102)

Use proposition  2.4.1 in the first integral, there exists constant C > 0, such that

∫ √
n log3 n

M
√
n logn

pxp−1P(Zn − vn ≤ −x)dx = pnp/2
∫ log3 n

M
√

logn
tp−1P(Zn − vn ≤ −t

√
n)dx

≤ pnp/2
∫ log3 n

M
√

logn
tp−1Ct−2dt ≤ O(np/2 log log n).

(2.103)

The last inequality means that the order of the left hand side is n log log n when p = 2. If

p < 2, the order is np/2.

Use large deviation upper bound to the last integral in (  2.102 ) which can imply that it

converges to zero exponentially fast. For the third integral, apply proposition  2.4.2 but only

on nv −
√
n log3 n, since this is the furthest value of x that we can apply such estimate.

For the second integral in ( 2.102 ), apply proposition  2.4.2 as well. That is, there exists

K0 = K0(α) > 0 such that for n large enough,

∫ (v+δ)n

nv−
√
n log3 n

pxp−1P(Zn − vn ≤ −x)dx ≤
∫ (v+δ)n

nv−
√
n log3 n

pxp−1P(Zn ≤
√
n log3 n)dx

≤ 2K0
√
n log3 n

(v + δ)pnp

(nv −
√
n log3 n)2 = o(np−1).

(2.104)

And for any ε > 0,

∣∣∣∣ ∫ nv−
√
n log3 n

√
n log3 n

pxp−1P(Zn − vn ≤ −x)dx−
∫ nv−

√
n log3 n

√
n log3 n

pxp−1K0(nv − x)x−2dx
∣∣∣∣

≤
∫ nv−

√
n log3 n

√
n log3 n

pxp−1
∣∣∣∣P(Zn − vn ≤ −x)−K0(nv − x)x−2

∣∣∣∣dx
≤
∫ nv−

√
n log3 n

√
n log3 n

pxp−1ε(nv − x)x−2dx ≤ εO((n log n)p/2)

(2.105)
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holds for n large enough since the precise left tail estimates holds uniformly on (
√
n log3 n, nv−

√
n log3 n) and since

n
∫ nv−

√
n log3 n

√
n log3 n

xp−3dx = O(n log n)1{p=2} +O(np/2 log3(p−2) n)1{p∈(0,2)}. (2.106)

Finally, if p < 2, by the above equation,

lim
n→∞

1
(n log n)p/2

∫ nv−
√
n log3 n

√
n log3 n

pxp−1K0(nv − x)x−2dx ≤ lim
n→∞

C log3(p−2) n

logp/2 n
= 0. (2.107)

If p = 2, define σ2 > 0 as

σ2 := lim
n→∞

1
n log n

∫ nv−
√
n log3 n

√
n log3 n

2xK0(nv − x)x−2dx = vK0 (2.108)

and finish the proof.

Finally, by combining the truncated Lp norm estimates ( 2.95 ), (  2.100 ), and ( 2.101 ),

together with the same proof techniques where κ ∈ (0, 1) by letting M go to infinity, the

proof is done.

2.4.5 Further discussion on the tail estimates with κ = 2

Before we move on to solve the weak limit of RWCRE, we need extend our tail estimates

to the centered walk Zn − EZn. For the right tail estimates, simply define m = (EZn +

x/4)/(E[ZR2 − ZR1 ]) instead of (vn + x/4)/(E[ZR2 − ZR1 ]). Since EZn − nv = o(
√
n log n),

this new m � n as well. Thus, we can conclude the same version of the right tail bound

lemma, that is,

Lemma 2.4.6 (Centered right tail estimates). Let α be transient with κ = 2. Under

the annealed measure P, fix M > 0, there exists δ2 > 0, c > 0, as well as c0 > 0 and c1 > 0

mentioned above, such that for all x ∈ (M
√
n log n, δ2n),

P(Zn − EZn ≥ x) ≤ e−cx + e−c0
x2
n +−c1

x2
n log n . (2.109)
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By taking M →∞, the convergence holds for the right tail truncated Lp norm for p ∈ (0, 2],

lim
M→∞

lim sup
n→∞

1
(n log n)p/2E

[
|Zn − EZn|p1{Zn−EZn≥M

√
n logn}

]
= 0. (2.110)

For the general and precise left tail estimates, we also have the same version of proposi-

tions but since EZn − vn = o(
√
n log n), the range of t needs to be shortened.

Proposition 2.4.3 (Centered general left tail estimates). Let α be transient with κ = 2.

Under the annealed measure P, there exists constant C > 0, such that for any fixed M > 1

and for large n enough,

P(Zn − EZn ≤ −t
√
n) ≤ Ct−2 (2.111)

for t ∈ (M
√

log n, v
√
n/2−M

√
log n).

Proposition 2.4.4 (Centered precise left tail estimates). Let α be transient with κ = 2.

Under the annealed measure P, there exists constant K0(α) > 0,

lim
n→∞

sup
t∈Γn

∣∣∣∣P(Zn − EZn ≤ −t)
(nv − t)t−2 −K0

∣∣∣∣ = 0 (2.112)

where Γn = (
√
n log4 n, nv −

√
n log4 n).

Remark 2.4.7. The constants K0 in precise and centered precise left tail estimates are the

same.

From the above two centered left tail estimates, we also have the centered left tail trun-

cated Lp norm lemma.

Lemma 2.4.8. Let α be transient with κ = 2. Under the annealed measure P, there exists

σ2 > 0 such that for any M > 0,

lim
n→∞

1
n log nE

[
(Zn − EZn)21{Zn−EZn≤−M

√
n logn}

]
= σ2. (2.113)

For p ∈ (0, 2),

lim
n→∞

1
(n log n)p/2E

[
|Zn − EZn|p1{Zn−EZn≤−M

√
n logn}

]
= 0. (2.114)
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2.4.6 Slow cooling: Transient RWRE with κ = 2

Proof of Theorem  2.3.5 . Recall the notation X̃ = X −EX. Decompose the cooling random

walk X̃τn into independent sums ∑n
k=1 Z̃Tk

and then truncate each term by Ak = {|Z̃Tk
| ≤√

T
β/(β−1)
k }. That is,

X̃τn =
n∑
k=1

(Z̃Tk
1Ak

+ Z̃Tk
1Ac

k
) =

n∑
k=1

[
Z̃Tk

1Ak
− EZ̃Tk

1Ak

]
+

n∑
k=1

[
Z̃Tk

1Ac
k
− EZ̃Tk

1Ac
k

]
. (2.115)

Check the Lindeberg condition of ∑n
k=1

[
Z̃Tk

1Ak
− EZ̃Tk

1Ak

]
/
√
nβ log n in order to apply

Lindeberg-Feller CLT. The Lindeberg condition

lim
n→∞

1
nβ log n

n∑
k=1

E
[
Z̃Tk

1Ak
− EZ̃Tk

1Ak

]2
1{

|·|≥ε
√
nβ logn

} = 0 (2.116)

holds for all ε > 0 since | · | is of order at most
√
kβ for large k. Thus the indicator becomes

zero for all large enough k and k ≤ n which means the sum of the truncated variance is

bounded.

To find the limit of the variance of the truncated sum

1
nβ log n

[
n∑
k=1

E[Z̃2
Tk

1Ak
]−

n∑
k=1

(
EZ̃Tk

1Ak

)2
]
, (2.117)

first notice that

|EZ̃Tk
1Ak
| = |EZ̃Tk

1Ac
k
| ≤ E|Z̃Tk

|1Ac
k

= o(
√
Tk log Tk). (2.118)

Since M2Tk log Tk << T
β/(β−1)
k for any M > 0 and Tk large enough, by ( 2.110 ) and ( 2.114 ),

the last inequality holds. Therefore, by the choice of Tk and the fact that ∑n
k=1 Tk log Tk in

unbounded,

1
nβ log n

[
n∑
k=1

(
EZ̃Tk

1Ak

)2
]

= 1
nβ log no(

n∑
k=1

Tk log Tk) = o(nβ log n)
nβ log n = o(1). (2.119)
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It remains to find the limit of the truncated L2 norm EZ̃2
Tk

1Ak
. Fix M > 1, decompose

the truncated L2 norm into

EZ̃2
Tk

1Ak
= EZ̃2

Tk

(
1{|Z̃Tk

|≤M
√
Tk log Tk} + 1Ak∩{Z̃Tk

<−M
√
Tk log Tk} + 1Ak∩{Z̃Tk

>M
√
Tk log Tk}

)
.

(2.120)

By (  2.110 ) the last truncated L2 norm is oM(1)Tk log Tk, where oM(1) means it converges to

zero as M →∞.

The middle indicator can be decomposed more precisely as Bk = {−
√
T
β/(β−1)
k ≤ Z̃Tk

<

−
√
Tk log4 Tk} and Ck,M = {−

√
Tk log4 Tk ≤ Z̃Tk

< −M
√
Tk log Tk}. By (  2.111 ), EZ̃2

Tk
1Ck,M

=

o(Tk log Tk). By the similar argument in (  2.105 ), if β > 2,
√
T
β/(β−1)
k << Tk. Apply (  2.112 ),

∣∣∣∣EZ̃2
Tk

1Bk
−
∫ √T

β/(β−1)
k

√
Tk log4 Tk

2tK0(vTk − t)t−2dt
∣∣∣∣ ≤ ∫

√
T

β/(β−1)
k

√
Tk log4 Tk

2t
∣∣∣∣P[Z̃Tk

≤ −t]−K0(vTk − t)t−2
∣∣∣∣dt

= o(Tk log Tk).
(2.121)

And with simple computation of the integral,

lim
k→∞

1
Tk log Tk

∫ √T
β/(β−1)
k

√
Tk log4 Tk

2tK0(vTk − t)t−2dt = vK0

β − 1 . (2.122)

If β ≤ 2,
√
T
β/(β−1)
k > vTk −

√
Tk log4 Tk, then by the same argument in ( 2.102 ) (last two

integrals), EZ̃2
Tk

1Bk∩{Z̃Tk
≤−(vTk−

√
Tk log4 Tk)} = o(Tk log Tk) which means in this case the non

trivial truncated L2 norm within set Bk is dominant by {−(vTk −
√
Tk log4 Tk) ≤ Z̃Tk

<

−
√
Tk log4 Tk} and its limit we already know is vK0.

Hence,

lim
M→∞

lim sup
k→∞

1
Tk log Tk

∣∣∣∣EZ̃2
Tk

1Ak
− vK0Tk log Tk(

1
β − 1 ∧ 1)− EZ̃2

Tk
1{|Z̃Tk

|≤M
√
Tk log Tk}

∣∣∣∣ = 0.

(2.123)

Together with

lim
k→∞

1
b2Tk log Tk

∣∣∣∣EZ̃2
Tk

1{|Z̃Tk
|≤Mb

√
Tk log Tk} − E[Φ21|Φ|≤M ]

∣∣∣∣ = 0 (2.124)
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for any fixed M , we have

lim
k→∞

EZ̃2
Tk

1Ak

Tk log Tk
= b2 + vK0(

1
β − 1 ∧ 1), (2.125)

and therefore

lim
n→∞

1∑n
k=1 Tk log Tk

n∑
k=1

E[Z̃2
Tk

1Ak
] = b2 + vK0(

1
β − 1 ∧ 1). (2.126)

While Tk ∼ βkβ−1, we have ∑n
k=1 Tk log Tk ∼ β(β − 1)nβ log n. By (  2.126 ) and ( 2.119 ),

lim
n→∞

1
nβ log n

[
n∑
k=1

E[Z̃2
Tk

1Ak
]−

n∑
k=1

(
EZ̃Tk

1Ak

)2
]

= β(β − 1)
[
b2 + vK0(

1
β − 1 ∧ 1)

]
. (2.127)

Finally, as long as we show that for any ε > 0,

lim
n→∞

P

 1√
nβ log n

∣∣∣∣ n∑
k=1

(
Z̃Tk

1Ac
k
− EZ̃Tk

1Ac
k

) ∣∣∣∣ ≥ ε

 = 0 (2.128)

which implies the remainder part in (  2.115 ) converges to zero, the proof will be done. To

this end, apply L1 norm Chebyshev inequality to ( 2.128 ),

P

 1√
nβ log n

∣∣∣∣ n∑
k=1

(
Z̃Tk

1Ac
k
− EZ̃Tk

1Ac
k

) ∣∣∣∣ ≥ ε

 ≤ E
∣∣∣∣∑n

k=1

(
Z̃Tk

1Ac
k
− EZ̃Tk

1Ac
k

) ∣∣∣∣
ε
√
nβ log n

≤

∑n
k=1 E

∣∣∣∣Z̃Tk
1Ac

k
− EZ̃Tk

1Ac
k

∣∣∣∣
ε
√
nβ log n

≤
2∑n

k=1 E|Z̃Tk
|1Ac

k

ε
√
nβ log n

.

(2.129)

Instead of using the previous estimation E|Z̃Tk
|1Ac

k
= o(
√
Tk log Tk), we need a sharper bound

here. If β < 2, Ack = φ and the proof goes trivially. If β ≥ 2, by the centered right tail
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estimates and the proof of (  2.95 ), we can easily get rid of the L1 norm truncated to the right

of δ2Tk. And for the rest of the right tail, using (  2.109 ),

∫ δ2Tk√
T

β/(β−1)
k

P(Z̃Tk
≥ x)dx ≤

∫ δ2Tk√
T

β/(β−1)
k

e−cxdx+
∫ δ2Tk√

T
β/(β−1)
k

e−c0
x2
Tk dx+

∫ δ2Tk√
T

β/(β−1)
k

e−c1
x2

Tk log Tk dx

= o(1) +
√
Tk

∫ ∞√
T

1/(β−1)
k

e−c0y2
dy +

√
Tk log Tk

∫ ∞√
T

1/(β−1)
k

/ log Tk

e−c1y2
dy

= o(1)
(2.130)

because every term decays stretched exponentially fast.

For the bound of the left tail truncated L1 norm, we only consider the nontrivial case

when β ≥ 2. By the centered precise left tail estimates and the proof of (  2.101 ), the truncated

L1 norm on (−(1 + v)Tk,−(vTk −
√
Tk log4 Tk)) is o(1). For the rest of the left tail, for k

large enough, recall Tk ∼ βkβ−1,

∫ vTk−
√
Tk log4 Tk√

T
β/(β−1)
k

P(Z̃Tk
≤ −t)dt ≤

∫ vTk−
√
Tk log4 Tk√

T
β/(β−1)
k

2K0(vTk−t)t−2dt ≤ 2vK0Tk√
T
β/(β−1)
k

= O(k(β−2)/2).

(2.131)

Collect the above bounds of the L1 norm on each truncated pieces, we have E|Z̃Tk
|1Ac

k
=

O(k(β−2)/2). With this sharpened bound, back to ( 2.129 ), the last line is O(1/
√

log n) which

indeed decreases to zero. The weak convergence of the remainder term thus holds.

2.4.7 Fast cooling: Transient RWRE with κ = 2

Proof of Theorem  2.3.6 . We will decompose the cooling random walk X̃τn one more time.

As a sum of independent RWRE, X̃τn will not have a truncated decomposition this time,

but will be decomposed into the first n−M terms and the last M term, which means

X̃τn =
n−M∑
k=1

Z̃Tk
+

n∑
k=n−M−1

Z̃Tk
(2.132)
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for some fixed M > 0. We want to show that the dominant part of Xτn is the last M terms

of the sum for large M . To start with, we first show that for any ε > 0,

lim
M→∞

lim sup
n→∞

P

∣∣∣∣
∑n−M
k=1 Z̃Tk√∑n
k=1 Tk log Tk

∣∣∣∣ ≥ ε

 = 0. (2.133)

To see this, by Chebyshev inequality,

P

∣∣∣∣
∑n−M
k=1 Z̃Tk√∑n
k=1 Tk log Tk

∣∣∣∣ ≥ ε

 ≤ ∑n−M
k=1 E[Z̃2

Tk
]

ε2∑n
k=1 Tk log Tk

. (2.134)

We know that E[Z̃2
Tk

] ∼ (b2 + σ2)Tk log Tk from previous proofs. Therefore, fix M and let

n → ∞, the numerator above is O(∑n−M
k=1 Tk log Tk). Recall that Tk ∼ eCk in exponential

cooling, we have ∑n
k=1 Tk log Tk ∼ eC

eC−1CneCn. Hence, the RHS of (  2.134 ) is bounded from

above by O(e−CM) which converges to zero as long as n→∞ first and then M →∞.

To find the weak limit of the dominant part of the decomposition, notice that

∑n
k=n−M+1 Z̃Tk

b
√∑n

k=1 Tk log Tk
=

n∑
k=n−M+1

Z̃Tk

b
√
Tk log Tk

√
Tk log Tk∑n
k=1 Tk log Tk

(2.135)

holds for fixed M . As n → ∞, for each k ∈ (n −M,n], Z̃Tk
/b(
√
Tk log Tk) converges to a

standard Gaussian. Moreover, by the independence of the segments Z̃Tk
in RWCRE, since

the sum only takes M terms, the weak limit of the sum is another Gaussian with variance

b2 lim
n→∞

∑n
k=n−M+1 Tk log Tk∑n

k=1 Tk log Tk
= b2(1− e−CM) (2.136)

for Tk ∼ eCk.

Finally, combine ( 2.134 ) and ( 2.136 ), by Theorem 3.2 in [ 55 ], we finish the proof.

48



3. VARIABLE SPEED SYMMETRIC RANDOM WALK

DRIVEN BY SYMMETRIC EXCLUSION

3.1 Model and statement of the theorem

Let ρ, λ ∈ [0, 1] and T > 0 be fixed throughout this section. Denote by µ = ⊗
x∈Z Ber(ρ)

the probability measure on {0, 1}Z under which the random variables {ηx}x∈Z are i.i.d. of

mean ρ. We consider a nearest-neighbour random walk on Z, driven by the simple symmetric

exclusion process (SSEP) with initial distribution µ. Define the joint law of the random walk

and the SSEP by the Markov generator

Ljointf(η, x) =
∑
y∈Z

[
f
(
ηy,y+1, x

)
− f (η, x)

]
+ [(1− λ)ηx + (1− ηx)] [f(η, x+ 1) + f(η, x− 1)− 2f(η, x)]

(3.1)

acting on local functions f : Z × {0, 1}Z → R (a function f : {0, 1}Z → R is called local if

f(η) is a function of finitely many of the variables {ηx}x∈Z). The random walk jumps from

a particle at rate 1− λ and from a hole at rate 1 to one of its neighbors.

For k ∈ Z and η ∈ {0, 1}Z, let θkη denote the element of {0, 1}Z defined by (θkη)x = ηx+k.

We use this to define the environment process viewed from the walk ξ(t) = θXtη(t). This is

a Markov process, and its generator L acts on local functions as follows:

Lf(ξ) = Lssepf(ξ) + [(1− λ)ξ0 + (1− ξ0)] [f(θ1ξ) + f(θ−1ξ)− 2f(ξ)] , (3.2)

where

Lssepf(ξ) :=
∑
y∈Z

[
f
(
ξy,y+1

)
− f (ξ)

]
(3.3)

is the generator of the SSEP with rate 1.

Define the quenched probability P η(·) on Z × [0,∞) as the probability measure of the

random walk on underlying environment η = {ηt, t ≥ 0}. By (  3.1 ), we have for t, h ≥ 0,

P η (Xt+h −Xt = ±1|Xt) = h [(1− λ)ηXt(t) + (1− ηXt(t))] + o(h). (3.4)
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Define the annealed measure P(·) on the same space as

P(·) =
∫
Pη(·) dQµ(η) (3.5)

where Qµ is the distribution of SSEP {η(t)}t≥0 with the initial distribution η(0) ∼ µ,

Our main theorem gives a quenched invariance principle of the walk with explicit scaling

parameter(the variance).

Theorem 3.1.1. Let (Xt, η(t))t≥0 be the Markov process generated by Ljoint, started from

X0 = 0 and η(0) ∼ µ. Then, for Qµ− almost every η, under the quenched measure P η, the

sequence of processes (
Xnt

σ(ρ)
√
n

: t ∈ [0, T ]
)
n∈N

(3.6)

converges in distribution, with respect to the J1 Skorohod topology, to a standard Brownian

motion, where

σ2(ρ) = 2− 4λρ
2− λ(1− ρ) . (3.7)

This theorem will follow from the next one, which gives the asymptotic fraction of time

that the walk spent on top of particles.

Theorem 3.1.2. Keep the assumptions of Theorem  3.1.1 . Let ξ(t) = θXtη(t). Then, for

Qµ−almost every η, under the quenched measure P η,

lim
t→∞

1
t

∫ t

0
(2− λξ0(s))(ξ0(s)− ρ) ds = 0 in probability. (3.8)

Or equivalently,

lim
t→∞

1
t

∫ t

0
ξ0(s) ds = 2ρ

2− λ+ λρ
in probability. (3.9)

Theorem  3.1.2 shows the convergence under the quenched measure, which automatically

implies the same convergence result under the annealed measure. Moreover, the rate of

convergence under the annealed measure has an upper bound estimation, which is also a key

tool to prove Theorem  3.1.2 . This rate of convergence result is shown as follows.
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Theorem 3.1.3. Keep the assumptions of Theorem  3.1.1 . Let ξ(t) = θXtη(t). For any

ε > 0, there exist T = T (ε) > 0 and C = C(ε) > 0, such that for any t > T ,

P
[1
t

∣∣∣∣ ∫ t

0
(2− λξ0(s))(ξ0(s)− ρ) ds

∣∣∣∣ ≥ ε
]
≤ Ct−

1
15 . (3.10)

3.2 Proofs

The key observation is that Xt is a mean-zero martingale with respect to the filtration

generated by (Xt, η(t))t≥0. Its predictable quadratic variation is given by the formula

〈X〉t =
∫ t

0
2− 2λξ0(s) ds. (3.11)

More explicitly, we have

Eη
[
X2
t − 〈X〉t |(Xr, η(r)), r ≤ s

]
= X2

s − 〈X〉s , P η − a.s. (3.12)

for any t ≥ s ≥ 0 and all η.

We claim that if limt→∞ t−1 〈X〉t → a in probability, for some positive a > 0, then the

sequence
(
Xnt√
n

: t ∈ [0, T ]
)
n∈N

converges in distribution to a Brownian motion of variance a,

with respect to the J1 Skorohod topology on the space D([0, T ];R). This follows from the

Martingale Functional Central Limit Theorem, [  56 ] Theorem 7.1.4. Therefore we only need

to prove that limt→∞ t−1 ∫ t
0 ξ0(s) ds exists in probability. This follows from Theorem  3.1.2 ,

since if ( 3.8 ) holds, then

lim
t→∞

1
t

∫ t

0
(2− λ+ λρ) ξ0(s) ds = 2ρ in probability, (3.13)

whence limt→∞ t−1 ∫ t
0 ξ0(s) ds = 2ρ

2−λ+λρ .

Although in Theorem  3.1.2 the convergence holds quenched, we will prove the convergence

in the annealed measure first. Our proof will yield a estimate on the rate of convergence

that is strong enough that allows us to deduce the quenched convergence from it.
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Before we start our proofs, we remind the readers that there are some technical lemmas

that will be used throughout the proofs. Those lemmas are introduced in section 4 as well

as their proofs. But we will use them in section 3 without mentioning too much in order to

make the proof less tedious.

3.2.1 Proof of the asymptotic limit of ξ(t) under the annealed measure

Our goal is to prove the following theorem.

Theorem 3.2.1. Under the assumptions of Theorem  3.1.1 , under the annealed measure P,

lim
t→∞

1
t

∫ t

0
(2− λξ0(s))(ξ0(s)− ρ) ds = 0 in probability. (3.14)

Given x ∈ Z and ` ∈ N, denote

−→
ξ `
x := ξx+1 + · · ·+ ξx+`

`
,
←−
ξ `
x := ξx−1 + · · ·+ ξx−`

`
. (3.15)

For any choice of positive integers ` and n one can write

1
t

∫ t

0
(2− λξ0(s))(2ξ0(s)− 2ρ) ds (3.16)

=1
t

∫ t

0
(2− λξ0(s))(2ξ0(s)− ξn(s)− ξ−n(s)) ds (3.17)

+1
t

∫ t

0
(2− λξ0(s))(ξn(s)−−→ξ `

n(s) + ξ−n(s)−←−ξ `
−n(s)) ds (3.18)

+1
t

∫ t

0
(2− λξ0(s))(

−→
ξ `
n(s) +←−ξ `

n(s)− 2ρ) ds (3.19)

We are going to choose n and ` depending on t in such a way that all three integrals on the

right-hand side converge to 0 in probability, as t→∞. It turns out one can choose

n = btαc for some α ∈ (1
2 ,

2
3), 1� `� t

n
. (3.20)
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Proposition 3.2.1. Under the assumption of Theorem  3.1.1 , assume ( 3.20 ). Under the

annealed measure

lim
t→∞

1
t

∫ t

0
(2− λξ0(s))(2ξ0(s)− ξn(s)− ξ−n(s))ds = 0 (3.21)

in probability.

The proof strategy is to show that the integrand is in the range of the generator and use

this to rewrite the integral as the sum of a martingale and a vanishing term. The martingale

is then shown to vanish too, by means of an explicit bound on its quadratic variation.

Thus we seek a function ψn,` such that Lψn,`(ξ) = (2 − λξ0)(2ξ0 − ξn − ξ−n). We start

the search by computing

Lξx = [ξx+1 + ξx−1 − 2ξx] [ξ0(1− λ) + (1− ξ0)] + (ξx+1 − ξx) + (ξx−1 − ξx)

= (2− λξ0)(ξx+1 + ξx−1 − 2ξx).
(3.22)

Let k > 0. Sum from x = −k + 1 to x = k − 1 to get

L

 k−1∑
x=−k+1

ξx

 = (2− λξ0) (ξk − ξk−1 + ξ−k − ξ−k+1) . (3.23)

Sum from k = 1 to k = n to get

L

 n∑
k=1

k−1∑
x=−k+1

ξx

 = (2− λξ0) (−2ξ0 + ξn + ξ−n) . (3.24)

Define

ψn,`(ξ) := −
n∑
k=1

k−1∑
x=−k+1

(ξx − ρ), (3.25)

the following process is a mean zero martingale with respect to the filtration generated by

ξ(s)s≥0:

Ms(ψn,`) := ψn,`(ξ(s))− ψn,`(ξ(0))−
∫ s

0
(2− λξ0(r))(2ξ0(r)− ξn(r)− ξ−n(r)) dr. (3.26)
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We need separate arguments to control the terms ψn,`(ξ(t))−ψn,`(ξ(0))
t

and 1
t
Mt(ψn,`).

Lemma 3.2.2. Under the assumptions of Theorem  3.1.1 , assume ( 3.20 ). With ψn,` given

by ( 3.25 ),

lim
t→∞

1
t
E|ψn,`(ξ(t))| = 0.

Proof. Rewrite ψn,`(ξ) = n(ξ0 − ρ) +∑n
k=1(n− k)(ξk + ξ−k − 2ρ). It suffices to prove

lim
t→∞

1
t
E
∣∣∣∣ n∑
k=1

(n− k)(ξk(t)− ρ)
∣∣∣∣ = 0. (3.27)

Notice that the trivial pointwise bound is of order n2, which is much bigger than t. The idea

is that when k is large the variables ξk(t)− ρ are approximately independent and have mean

zero. Recall that ξx(t) = ηx+Xt(t), where η(t) is a stationary SSEP and Xt is the random

walk. Then

E
∣∣∣∣ n∑
k=1

(n− k)(ξk(t)− ρ)
∣∣∣∣ ≤ n2P (|Xt| > n) + E

∣∣∣∣ sup
|j|≤n

n∑
k=1

(n− k) (ηk+j(t)− ρ)
∣∣∣∣. (3.28)

By Lemma  3.3.3 , the first term is of order t3n−4. It then follows from our assumption ( 3.20 )

that limt→∞ t−1n2P (|Xt| > n) = 0, as we need.

To bound the second term, write

1
t
E
∣∣∣∣ sup

|j|≤n

n∑
k=1

(n− k) (ηk+j(t)− ρ)
∣∣∣∣

=
∫ ∞

0
P
(∣∣∣∣ sup

|j|≤n

n∑
k=1

(n− k) (ηk+j(t)− ρ)
∣∣∣∣ > βt

)
dβ

≤δ +
∑

|j|≤n

∫ ∞

δ
P
(∣∣∣∣ n∑

k=1
(n− k) (ηk+j(t)− ρ)

∣∣∣∣ > βt

)
dβ

≤δ + 2
∑

|j|≤n

∫ ∞

δ
exp

(
− t

2

n3
β2

2

)
dβ

≤δ + 12n
5
2

t
· exp

(
− t

2

n3
δ2

2

)

=δ + 12 t 5α
2 −1 · exp

(
−δ

2t2−3α

2

)
.

(3.29)
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The fourth line is by Lemma  3.3.1 , the fifth line is by lemma  3.75 , and the last line is by

( 3.20 ).

Now choose δ = t−( 2
3 −α), we get an upper bound of E

∣∣∣∣∑n
k=1(n− k)(ξk(t)− ρ)

∣∣∣∣ as

1
t
E
∣∣∣∣ n∑
k=1

(n− k)(ξk(t)− ρ)
∣∣∣∣ ≤ c0

(
t2−4α + tα− 2

3
)

(3.30)

for some constant c0 > 0 and t large enough. Let t → ∞, the right hand side converges to

zero, this finishes the proof of ( 3.27 ).

The next lemma controls 1
t
Mt(ψn,`).

Lemma 3.2.3. Under the assumptions of Theorem  3.1.1 , assume ( 3.20 ). With ψn,` given

by ( 3.25 ) and Mt(ψn,`) given by ( 3.26 ),

lim
t→∞

t−2E
[
M2

t (ψn,`)
]

= 0. (3.31)

Proof. There is an explicit formula for the predictable quadratic variation of Mt(ψn,`):

〈M·(ψn,`)〉t =
∫ t

0

∑
x∈Z

[
ψn,`

(
ξx,x+1(s)

)
− ψn,` (ξ(s))

]2
ds (3.32)

+
∫ t

0
(1− λξ0(s)) [ψn,` (θ1ξ(s))− ψn,` (ξ(s))]2 ds (3.33)

+
∫ t

0
(1− λξ0(s)) [ψn,` (θ−1ξ(s))− ψn,` (ξ(s))]2 ds. (3.34)

Our goal is to prove limt→∞ t−2E 〈M·(ψn,`)〉t = 0. To bound the first term, notice that

[ψn,` (ξx,x+1)− ψn,` (ξ)]2 = 0 if |x| > n and no greater than 1 if |x| ≤ n, so the integrand is

much smaller than 2tn. The second term demands more work while the third term has the

similar proof as the second one. To start, we compute

−ψn,`(θ1ξ) + ψn,`(ξ) =
n∑
k=1

ξk −
0∑

k=−n+1
ξk. (3.35)
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It is enough to prove

lim
t→∞

sup
s≤t

t−1E


 n∑
k=1

ξk(s)−
0∑

k=−n+1
ξk(s)

2
 = 0. (3.36)

The expectation above is small by the same reason that (  3.27 ) is small: the random variables

ξk(s), for large k, are approximately independent of mean ρ. We follow the same method of

proof.

t−1E


 n∑
k=1

ξk(s)−
0∑

k=−n+1
ξk(s)

2


≤ n2

t
P (|Xs| > n) + t−1E

sup
|j|≤n

 n∑
k=1

ηk+j(s)−
0∑

k=−n+1
ηk+j(s)

2


(3.37)

By Lemma  3.3.3 , the first term is of order t2

n4 , so it vanishes as t→∞. The second term is

bounded, for any δ > 0, by

δ +
∑

|j|≤n

∫ ∞

δ
P


 n∑
k=1

ηk+j(s)−
0∑

k=−n+1
ηk+j(s)

2

≥ βt

 dβ

≤ δ + 2
∑

|j|≤n

∫ ∞

δ
exp

(
− βt

10n

)
dβ

≤ δ + 60n2

t
exp

(
− δt

10n

)

= δ + 60t2α−1 exp
(
−δt

1−α

10

)
.

(3.38)

The second line is by Lemma  3.3.1 . Choose δ = t−
1−α

2 , we then get an upper bound

t−1E


 n∑
k=1

ξk(s)−
0∑

k=−n+1
ξk(s)

2
 ≤ c1

(
t2

n4 + t
α−1

2

)
(3.39)

for some constant c1 > 0 and t large enough.

Collect all the above upper bounds we have

1
t2
E
[
M2

t (ψn,`)
]
≤ 2n

t
+ c1

(
t2

n4 + t
α−1

2

)
= 2tα−1 + c1(t2−4α + t

α−1
2 ). (3.40)
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By the assumption  3.20 , the upper bound vanishes as t→∞.

Proof of Proposition  3.2.1 . By Chebyshev inequality, for any ε > 0, notice that ξ(0) = η(0),

there exists some constant c2 > 0 such that

P
[∣∣∣∣ψn,`(ξ(0))

t

∣∣∣∣ ≥ ε

]
≤

E
[
ψ2
n,`(ξ(0))

]
ε2t2

=
E
[
(∑n

k=1(n− k)(ηk(0)− ρ))2
]

ε2t2
≤ c2

ε2 t
2α−2. (3.41)

The last inequality uses the fact that {ηk(0) − ρ}k∈Z is an i.i.d mean zero sequence. The

cross terms above will vanish after taking the expectation.

Use this upper bound, together with ( 3.26 ), ( 3.30 ), and ( 3.40 ) for any ε > 0,

P
[1
t

∣∣∣∣ ∫ t

0
(2− λξ0(s))(2ξ0(s)− ξn(s)− ξ−n(s)) ds

∣∣∣∣ ≥ ε
]
≤ C0(ε)tγ1 (3.42)

where constant C0(ε) > 0 and

γ1 = max
{

2α− 2, α− 1, α− 1
2 , 2− 4α, α− 2

3

}
< 0 (3.43)

due to assumption ( 3.20 ). Hence Proposition  3.2.1 is proved.

The next proposition shows the limit of the second part of the decomposition ( 3.16 ).

Proposition 3.2.2. Under the assumption of Theorem  3.1.1 , assume ( 3.20 ). Under the

annealed measure,

lim
t→∞

1
t

∫ t

0
(2− λξ0(s))(ξn(s)−−→ξ `

n(s) + ξ−n(s)−←−ξ `
−n(s)) ds = 0 (3.44)

in probability.

Proof. We show that the integrand is in the range of the generator and split the integral

into a martingale term plus a vanishing term. Notice that

ξx −
−→
ξ `
x =

`−1∑
j=0

`− j
`

(ξx+j − ξx+j+1) (3.45)
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and

ξx −
←−
ξ `
x =

`−1∑
j=0

`− j
`

(ξx−j − ξx−j−1). (3.46)

From ( 3.23 ), we get

(2− λξ0)
(
ξn −

−→
ξ `
n + ξ−n −

←−
ξ `

−n

)
= −Lϕn,`(ξ), (3.47)

where

ϕn,`(ξ) :=
`−1∑
j=0

`− j
`

n+j∑
x=−n−j

ξx. (3.48)

The process

Ms(ϕn,`) := ϕn,`(ξ(s))− ϕn,`(ξ(0))−
∫ s

0
Lϕn,`(ξ(r)) dr (3.49)

is a martingale with respect to the filtration generated by (ξ(s))s≥0. To prove (  3.44 ), we

show that |ϕn,`| � t and 〈M·(ϕn,`)〉t � t2. For the first term,

|ϕn,`(ξ)| ≤
`−1∑
j=0

`− j
`

(2n+ 2j + 1) ≤ C
(
`n+ `2

)
(3.50)

for some C > 0, so it follows from ( 3.20 ) that limt→∞ t−1|ϕn,`(ξ)| = 0 for any ξ ∈ {0, 1}Z.

It remains to prove that t−1Mt(ϕn,`) → 0 in probability. We prove this by controlling

the second moment of Mt(ϕn,`) through its predictable quadratic variation

〈M·(ϕn,`)〉t =
∫ t

0

∑
x∈Z

[
ϕn,`

(
ξx,x+1(s)

)
− ϕn,` (ξ) (s)

]2
ds+

+
∫ t

0
(1− λξ0(s)) [ϕn,` (θ1ξ(s))− ϕn,` (ξ(s))]2 ds

+
∫ t

0
(1− λξ0(s)) [ϕn,` (θ−1ξ(s))− ϕn,` (ξ(s))]2 ds.

(3.51)

We claim that,

lim
t→∞

t−2 〈M·(ϕn,`)〉t = 0. (3.52)
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Let ak := ∑`−1
j=k

`−j
`

. Then

ϕn,`(ξ) = a0

n∑
j=−n

ξj +
`−1∑
k=1

ak (ξn+k + ξ−n−k) . (3.53)

It’s easy to see that

[
ϕn,`

(
ξx,x+1

)
− ϕn,` (ξ)

]2
≤

`−1∑
k=0

1|x|=n+k(ak − ak+1)2 ≤ ` (3.54)

and

[ϕn,` (θ1ξ)− ϕn,` (ξ)]2 ≤ (2a0)2 ≤ C`2 (3.55)

for some C > 0 independent of ` and n.

These bounds imply

〈M·(ϕn,`)〉t ≤ 3
(
tl + Ct`2

)
. (3.56)

Hence, by ( 3.49 ), ( 3.50 ), ( 3.56 ), for any ε > 0,

P
[1
t

∣∣∣∣ ∫ t

0
(2− λξ0(s))(ξn(s)−−→ξ `

n(s) + ξ−n(s)−←−ξ `
−n(s)) ds

∣∣∣∣ ≥ ε
]
≤ C1(ε)

l + ln+ l2

t
(3.57)

for some C1(ε) > 0. By (  3.20 ) the right hand side of ( 3.57 ) indeed converges to zero.

Remark 3.2.4. Proposition  3.2.2 gives the convergence under the annealed measure. But

one can see from the key upper bounds ( 3.50 ) and ( 3.56 ) are deterministic. This implies that

the convergence holds not only in the annealed sense, but also in the quenched sense, i.e.

under P η for all η ∈ [0, 1]N × R+.

Proposition 3.2.3. Under the assupmtion of Theorem  3.1.1 , assume ( 3.20 ). Under the

annealed measure
1
t

∫ t

0
(2− λξ0(s))(

−→
ξ `
n(s)− ρ) ds→ 0 (3.58)

in probability as t→∞. The same holds if
−→
ξ `
n is replaced by

←−
ξ `

−n.

Proof. Define, for m > 0, the event

Am :=
{

max
s≤t
|Xs| < m

}
. (3.59)
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Then
E
[(1
t

∫ t

0
(2− λξ0(s))(

−→
ξ `
n(s)− ρ) ds

)2]

≤ 4P(Acm) + 1
t

∫ t

0
E
[
1Am(2− λξ0(s))2(−→ξ `

n(s)− ρ)2
]

ds
(3.60)

We will prove that, for t 1
2 � m � n, the upper bound in the last equation vanishes

as t → ∞. To bound the second term, we apply the Lateral Decoupling Lemma ([  15 ],

Proposition 4.1). To do so, we need the random variable inside the expectation to be a

function of the exclusion process only. Thus we rewrite the expectation as

E
[
1Am(2− λξ0(s))2(−→ξ `

n(s)− ρ)2
]

=
∑

|k|<m
E
[
(2− ληk(s))2E (1Am,Xs=k|Ft) (−→η `

n+k(s)− ρ)2
]
,

(3.61)

where Ft is the filtration generated by (ηs)s∈[0,t]. If m � n and (  3.20 ) holds, we can apply

Proposition  3.3.1 with H = t, f1(η) = (2−ληk(s))2 1
2E (1Am,Xs=k|Ft) and f2(η) = (−→η `

n+k(s)−

ρ)2 for all |k| < m. Note that the support of f1 is contained in [−m,m]× [0, t] ⊂ [m−t,m]×

[0, t], and the support of f2 is contained in [n+k, n+k+ `]× [0, t] ⊂ [n+k, n+k+ t]× [0, t],

and by ( 3.20 ) and the assumption that t1/2 � m � n the horizontal separation of these

boxes is n+k−m� tα
′ for any α′ ∈ (1

2 , α). Therefore, applying Proposition ( 3.3.1 ) it holds

that

E
[
1Am(2− λξ0(s))2(−→ξ `

n(s)− ρ)2
]

=
∑

|k|<m
E
[
(2− ληk(s))2E (1Am,Xs=k|Ft) (−→η `

n+k(s)− ρ)2
]

≤ 4m · exp
(
−t2α′−1

)
+

∑
|k|<m

E
[
1Am,Xs=k(2− ληk(s))2

]
E
[
(−→η `

n+k(s)− ρ)2
]

≤ 4m · exp
(
−t2α′−1

)
+ 4
`
.

(3.62)

Using this bound in ( 3.61 ), together with Lemma ( 3.3.3 ), we get

E
[(1
t

∫ t

0
(2− λξ0(s))(

−→
ξ `
n(s)− ρ) ds

)2]
≤ 4m · exp

(
−t2α′−1

)
+ 4
`

+ c3t
3

m6 (3.63)
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for some c3 > 0 and t large enough. If t 1
2 � m� n and (  3.20 ) holds then the upper bound

vanishes as t→∞. By Chebyshev inequality, this finishes the proof.

One can get Theorem  3.2.1 immediately from propositions  3.2.1 ,  3.2.2 , and  3.2.3 .

3.2.2 Proof of the asymptotic limit of ξ(t) under the quenched measure

First recall ( 3.42 ), (  3.57 ) and ( 3.63 ). By choosing adequate α, ` and m, one can get an

explicit upper bound on the rate of convergence in ( 3.8 ).

Proof of Theorem  3.1.3 . Let α = 0.6, ` = t0.2 and m = t0.55. Then,for any ε > 0 and for

large enough t, one can check

P
[1
t

∣∣∣∣ ∫ t

0
(2− λξ0(s))(ξ0(s)− ρ) ds

∣∣∣∣ ≥ ε
]
≤ C(ε)t− 1

15 (3.64)

for some C(ε) > 0.

The next lemma shows how to get the convergence in probability under the quenched

measure Qµ − a.s. from the annealed measure.

Lemma 3.2.5. Under the assumptions of Theorem  3.1.1 , let Yt =
∫ t

0(2−λξ0(s))(ξ0(s)−ρ) ds

for t > 0 and Qµ defined in section 2. Then for any ε, δ > 0, there exists tη(ε, δ) > 0 such

that

Qµ [{P η (|Yt| ≥ εt) < δ} for ∀t > tη(ε, δ)] = 1. (3.65)

Proof. Define a sequence {tk}k≥1 as tk = k16. By (  3.64 ), we have for k large enough,

P [|Ytk | ≥ εtk] ≤ C(ε)k− 16
15 . (3.66)

By Chebyshev inequality,

Qµ [P η [|Ytk | ≥ εtk] ≥ δ] ≤ 1
δ
P [|Ytk | ≥ εtk] ≤

C(ε)
δ

k− 16
15 . (3.67)
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the upper bound is summable for k. Thus by Borel-Cantelli lemma,

Qµ [{P η [|Ytk | ≥ εtk] ≥ δ} i.o.] = 0. (3.68)

For any t ≥ 1, it must lie in the interval [tk, tk+1) for some k. Notice that Yt has bounded

increments, which means |Ys − Yr| ≤ 2|s− r| for any s, r > 0. This gives the upper bound

|Yt|
t
≤ |Ytk |+ 2(tk+1 − tk)

tk
. (3.69)

Let kε > 0 satisfy 2(tkε+1− tkε)t−1
kε
< ε, for any k > kε and t ∈ [tk, tk+1), {|Yt|/t ≥ 2ε} implies

{|Ytk |/tk ≥ ε}. Define Aε,δ that Acε,δ = {{P η [|Ytk | ≥ εtk] ≥ δ} i.o.}. Choose any η ∈ Aε,δ,

there exists kη(ε, δ) such that for all k > kη(ε, δ)

P η [|Ytk | ≥ εtk] < δ. (3.70)

Pick tη(2ε, δ) = tkε ∨ tkη(ε,δ) then by the above argument we have for all t ∈ [tk, tk+1), k ≥

kε ∨ kη(ε, δ),

P η [|Yt| ≥ 2εt] ≤ P η [|Ytk | ≥ εtk] < δ (3.71)

which finishes the proof since Pµ (Aε,δ) = 1.

In the last part of this section we prove Theorem  3.1.2 .

Proof of Theorem  3.1.2 . From Lemma  3.2.5 , we just need one more step to reach our final

goal. To see this, for any ε > 0, let

Aε =
∞⋂
n=1

Aε, 1
n
. (3.72)

We have Pµ (Aε) = 1 since it is a intersection of countably many sets while each has proba-

bility 1. Choose any η ∈ Aε, for any n ≥ 1,

P η [|Yt| ≥ εt] < 1
n

(3.73)
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holds for all t > tη(ε, 1
n
). Thus t−1|Yt| converge to zero in probability under P η.

3.3 Technical lemmas

Lemma 3.3.1 ([ 57 ], Theorem 2.8). Let ζ1, ζ2, . . . be i.i.d. random variables with |ζ1| ≤ 1

and Eζ1 = 0. Then, for any λ > 0,

E

∣∣∣∣∑
j≤n

bjζj

∣∣∣∣ > λ

 ≤ 2 · exp
(
− λ2

2∑j≤n b
2
j

)
. (3.74)

Lemma 3.3.2. For any δ > 0,

∫
δ
exp

(
− x2

2σ2

)
dx ≤

√
2πσ2 · exp

(
− δ2

2σ2

)
. (3.75)

Proof. For any λ > 0,

∫
δ
exp

(
− x2

2σ2

)
dx ≤ e−λδ

∫ ∞

δ
exp

(
λx− x2

2σ2

)
dx

≤ exp
(
−λδ + λ2σ2

2

)∫ ∞

−∞
exp

(
−(x− λσ2)2

2σ2

)
dx

=
√

2πσ2 exp
(
−λδ + λ2σ2

2

)
.

(3.76)

Choosing λ = δ/σ2 gives the desired bound.

Lemma 3.3.3. For any positive γ and t,

P
(

sup
s≤t
|Xs| ≥ γ

)
= O

(
t3

γ6

)
. (3.77)

Proof. The first observation is that X is a martingale, so Doob’s Lp−inequality gives

P
(

sup
s≤t
|Xs| ≥ γ

)
≤
(6

5

)6 E (X6
t )

γ6 . (3.78)

To bound the sixth moment, we compare our random walk with a simple symmetric

walk: let Y1, . . . , Yn be i.i.d. random variables with P (Y1 = ±1) = 1/2 and let Jt denote
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the number of times that X jumps during the time interval [0, t]. Then Xt = ∑Jt
k=1 Yk in

distribution, whence

E
(
X6
t

)
= E

∑
i≤Jt

Y 6
i + 15

∑
i<j≤Jt

Y 2
i Y

4
j + 90

∑
i<j<k≤Jt

Y 2
i Y

2
j Y

2
k


≤ E

(
Jt + 15J2

t + 90J3
t

)
.

(3.79)

Since Jt is stochastically dominated by a mean t Poisson random variable, the last expecta-

tion is bounded by a multiple of t3.

The next lemma comes from [  15 ]. To get the version stated below, one only needs to

change the last line of the original proof, using ( 3.75 ).

Proposition 3.3.1 (Lateral Decoupling, [  15 ] Proposition 4.1). Let f1, f2 : {0, 1}Z × R+ →

[0, 1] be measurable functions and H, y, α > 0. Let B1 = [ − H, 0] × [0, H] ⊂ R2 and

B2 = [y, y + H] × [0, H] ⊂ R2. Assume f1 is supported on B1, that is, if the trajectories

η, η′ : Z× R+ → {0, 1} satisfy ηx(s) = η′
x(s) for all (x, s) ∈ B1 then f1(η) = f1(η′). Assume

f2 is supported on B2. Finally, denote by Pρ the law of SSEP started from equilibrium at

density ρ ∈ (0, 1), that is, started from the product measure ⊗x∈ZBer(ρ). Let Eρ be the

expectation with respect to Pρ.

Then y ≥ Hα implies

Eρ [f1f2] ≤ Eρ [f1]Eρ [f2] + C e−H2α−1 (3.80)

for some C > 0.
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4. MODERATE DEVIATION AND EXIT POINT ESTIMATES

FOR SOLVABLE DIRECTED POLYMER MODELS

4.1 Model settings and basic properties

Consider 1+1 dimensional polymer models which can be embedded into N2 lattice. We

will denote vectors and collections of vectors with bold letters and numbers with non-bold

letters. The standard coordinate basis of R2 is denoted by e1 = (1, 0) and e2 = (0, 1). The

origin is denoted by 0 = (0, 0). The site (1, 1) = e1 + e2 is denoted by 1. Given x ∈ Z2,

we denote the quadrant rooted at x via Z2
≥x = {y ∈ Z2 : y · e1 ≥ x · e1,y · e2 ≥ x · e2}.

We associate to each pair of nearest-neighbor edges of the form (x− ei,x), where x ∈ Z2
>0,

a weight Wx−ei,x = W i
x. To each edge of the form (x − e1,x) where x ∈ Z>0 × {0}, we

assign weights Ix−e1,x = Ix; to each edge of the form (x − e2,x), where x ∈ {0} × Z>0, we

assign weights Jx−e2,x = Jx. In each of the models we consider, the collections of weights

{(W 1
x ,W

2
x ), Iy, Jz : x ∈ Z2

>0,y ∈ Z>0 × {0}, z ∈ {0} × Z>0} will be mutually independent.

We initially consider four families of weights, which are indexed by parameters µ, ν > 0

and z, w ∈ J , where J is a model-dependent collection of parameters. One of these families,

the Beta polymer is split into two cases. The four models are as follows, the definition of

gamma and beta distributions are introduced in the appendix.

1. Log Gamma In the multi-parameter log Gamma model, abbreviated LG, the distri-

butions of the weights are given for z, w ∈ J = (0, µ) by

(W 1,W 2) ∼ (X,X), X ∼ InvGa(µ, ν), I ∼ InvGa(µ− w, ν), J ∼ InvGa(z, µ).

2. Inverse Beta In the multi-parameter Inverse Beta model, abbreviated IB, the distri-

butions of the weights are given for z, w ∈ (0, µ) = J by

(W 1,W 2) ∼ (X,X − 1), X ∼ InvBe(µ, ν), I ∼ InvBe(µ− w, ν), J ∼ Be(z, µ+ ν − z)− 1.
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3. Gamma Also called strict-weak model. In the multi-parameter Gamma model, ab-

breviated G, the distributions of the weights are given for z, w ∈ J = (0,∞) by

(W 1,W 2) ∼ (X, 1), X ∼ Ga(µ, ν), I ∼ Ga(µ+ w, ν), J ∼ InvBe(z, µ).

4. Beta We consider two families of multi-parameter Beta models, parametrized by z, w ∈

(0,∞) = J :

(a) In the first family of multi-parameter Beta models, which we abbreviate by BI,

(W 1,W 2) ∼ (X, 1−X), X ∼ Be(µ, ν), I ∼ Be(µ+ w, ν), J ∼ InvBe(z, µ).

(b) In the second family of multi-parameter Beta models, which we abbreviate by

BII,

(W 1,W 2) ∼ (X, 1−X), X ∼ Be(µ, ν), I ∼ InvBe(z, ν), J ∼ Be(ν + w, µ).

When z = w in the previous settings, we call the model increment-stationary instead of multi-

parameter because of the stationary increment property of the partition function which will

be introduced below. We will, at times, study the model in which the boundary weights are

replaced by the X variables instead of the I and J variables. This model is known as the

bulk model.

The directed polymer is an up-right path on Z2 usually starts from 0. The weight of a

directed polymer is the product of all edge weights that it contains. The partition function

Zw,z
(a,b)(m,n) is the sum of weights of all admissible directed polymers from (a, b) to (m,n).

Write Zw,z(m,n) if the staring point is 0 and write Zw
(a,b)(m,n) if w = z. In the bulk model,

Z(a,b)(m,n) without superscript parameters is the partition function. The free energy is then

defined as the log of the partition function. Denote the increment of the partition function

to be

Ĩx = Zw,z(x)
Zw,z(x− e1) , J̃x = Zw,z(x)

Zw,z(x− e2) . (4.1)
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Note that when x is on x-axis, Ĩx = Ix and when x is on y-axis, J̃x = Jx. By the definition

of the partition function, we have iterate relations of the increments as follows,

Ĩx = W 1
x +W 2

x
Ĩx−e2

J̃x−e1

, J̃x = W 1
x
J̃x−e1

Ĩx−e2

+W 2
x . (4.2)

From [ 47 ] and the similar argument (corner flipping method) of Theorem 3.1 in [ 58 ], we

know the following stationary-increment property holds for all the four models mentioned

above.

Proposition 4.1.1 ([ 47 ]). Given the above four models, when the parameters satisfy w = z,

we have that

(Ĩx, J̃x) d= (Ĩx−e2 , J̃x−e1) (4.3)

for x ∈ Z2
>0. And alongside any down-right path Y, all the increment functions on edge

segments of the path are mutually independent.

With the above proposition in hand, we are able to conclude the law of large numbers

result of the free energy in increment-stationary models as well as the log of the moment

generation function at certain degree of the free energy in multi-parameter models. We omit

the proof here since it’s pure computing. The law of large number results are discovered by

different people in different independent papers.

Proposition 4.1.2 (LLN of the free energy). Fix a direction (s, t) where s, t ≥ 0 and

s+ t > 0. The following limit holds for z ∈ J ,

lim
N→∞

logZz(Ns,Nt)
N

= γz(s, t) a.s.. (4.4)

The explicit formulas for the shape function γz(s, t) = sE[ log I] + tE[ log J ] in four models

where z ∈ J and s, t > 0 are listed below, where Ψ0 = Γ′/Γ is the digamma function.

• Log-gamma model: γz(s, t) = s [log ν −Ψ0(µ− z)] + t [log ν −Ψ0(z)].

• Strict-weak model: γz(s, t) = s [Ψ0(µ+ z)− log ν] + t [Ψ0(µ+ z)−Ψ0(z)].
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• Beta model: γz(s, t) = s[Ψ0(µ+ z)−Ψ0(µ+ ν + z)] + t[Ψ0(µ+ z)−Ψ0(z)] in BI

or γz(s, t) = s[Ψ0(ν + z)−Ψ0(z)] + t[Ψ0(ν + z)−Ψ0(µ+ ν + z)] in BII.

• Inverse-beta model: γz(s, t) = s[Ψ0(µ+ ν − z)−Ψ0(µ− z)] + t[Ψ0(µ+ ν − z)−Ψ0(z)].

Define Lw,z(m,n) = logE
[
(Zw,z(m,n))z−w

]
in all models but BII. In BII, Lw,z(m,n) =

logE
[
(Zw,z(m,n))w−z

]
. By Proposition  4.1.1 and a change of measure argument, the explicit

formulas for Lw,z(m,n) are shown below.

• Log-gamma model: Lw,z(m,n) = m log Γ(µ−z)
Γ(µ−w)ν

z−w + n log Γ(w)
Γ(z) ν

z−w.

• Strict-weak model: Lw,z(m,n) = m log Γ(µ+z)
Γ(µ+w)ν

w−z + n log Γ(µ+z)Γ(w)
Γ(µ+w)Γ(z) .

• Beta model: Lw,z(m,n) = m log Γ(µ+z)Γ(µ+ν+w)
Γ(µ+w)Γ(µ+ν+z) + n log Γ(µ+z)Γ(w)

Γ(µ+w)Γ(z) in BI

or Lw,z(m,n) = m log Γ(ν+w)Γ(z)
Γ(ν+z)Γ(w) + n log Γ(ν+w)Γ(µ+ν+z)

Γ(ν+z)Γ(µ+ν+w) in BII.

• Inverse-beta model: Lw,z(m,n) = m log Γ(µ+ν−w)Γ(µ−z)
Γ(µ+ν−z)Γ(µ−w) + n log Γ(µ+ν−w)Γ(w)

Γ(µ+ν−z)Γ(z) .

By another simple computation, one can find the relation between the shape function γz(s, t)

and the l.m.g.f. Lw,z(m,n).

∫ z

w
γt(m,n)dt = Lw,z(m,n) (4.5)

in all but BII. In BII, ∫ w

z
γt(m,n)dt = Lw,z(m,n). (4.6)

Given the above key integrable equation, it is necessary to discover more properties of the

shape function in all four models. Since those properties are as important as our main

moderate deviation theorems, the next section shows the discussion of the shape function,

and the deviation estimates will come after it.

All edge weights for different parameters w, z on the same single edge discussed in this

chapter are assumed to be coupled together using the natural monotone coupling of random

variable, which we call the inverse-CDF coupling. In this coupling, first generate a uniform

random variable U on (0, 1), one realizes a real random variable X as X = GX(U), GX(u) =

inf{x : FX(x) ≥ u}, and FX(·) is the cumulative distribution function of X. When the
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joint distribution of the random variables matters, we will elaborate on the coupling. In

this way, in any of the four models, by the lemma of the Radon-Nykodym derivative of the

Gamma and Beta distributions that is shown below, for the partition function of different

parameters, Z(m,n) ≤ Zw,z(m,n) holds for all w, z ∈ J and (m,n) in the first quadrant.

Moreover, for w < z, we can also get Zw,z(m,n) < Zw(m,n) and Zw,z(m,n) < Zz(m,n) in

all models but BII. While in BII, the inequality goes the opposite direction.

Lemma 4.1.1. Fix w ∈ R and z > 0. The following hold:

1. If 0 ≤ x < y, X1 ∼ Ga(x, z), and X2 ∼ Ga(y, z), then P (X1 ≥ w) ≤ P (X2 ≥ w).

Therefore, if Y1 ∼ InvGa(x, z) and Y2 ∼ InvGa(y, z), then P (Y1 ≥ w) ≥ P (Y2 ≥ w).

2. If 0 ≤ x < y, X1 ∼ Be(x, z), and X2 ∼ Be(y, z), then P (X1 ≥ w) ≤ P (X2 ≥ w).

Therefore, if Y1 ∼ InvBe(x, z) and Y2 ∼ InvBe(y, z), then P (Y1 ≥ w) ≥ P (Y2 ≥ w).

3. If 0 < x < y < z, X1 ∼ Be(x, z − x), and X2 ∼ Be(y, z − y), then P (X1 ≥ w) ≤

P (X2 ≥ w). Therefore, if Y1 ∼ InvBe(x, z − x) and Y2 ∼ InvBe(y, z − y), then

P (Y1 ≥ w) ≥ P (Y2 ≥ w).

Proof. A sufficient condition for the claimed stochastic dominance is that the listed distribu-

tions are likelihood ratio ordered, meaning in this case that the associated Radon-Nikodym

derivative is monotone where it is non-zero. See, for example, [  59 , Theorem 1.C.1]. Mono-

tonicity follows from the computation below,

dGa(y, z)
dGa(x, z)(t) = zy−xΓ(x)

Γ(y) t
y−x1(0,∞)(t),

dBe(y, z)
dBe(x, z) = β(x, z)

β(y, z) t
y−x1(0,1)(t), and

dBe(y, z − y)
dBe(x, z − x) = β(x, z − x)

β(y, z − y)

(
t

1− t

)y−x
1(0,1)(t)

are increasing functions of t where they are nonzero. The secondary claims in each part of

the statement follow from the primary claims and can also be proven directly with the same

argument.
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4.2 Properties of the shape function

In all but Beta models, the shape function γz(s, t) has a unique minimum γ(s, t) :=

γθ(s, t) = infz∈J γ
z(s, t) for all (s, t) in the first quadrant, where θ(s, t) is where shape

function reaches its minimum. In BI and BII, this unique minimum exists for (s, t) in part

of the first quadrant. We also want our local minimum point away from the boundary, thus

we define Sδ = {(x, y) : x > 0, y > 0, x/y > δ, y/x > δ} and assume s, t ∈ Sδ. The lemmas

are shown below.

Lemma 4.2.1 (log-gamma). Let δ > 0,

1. There exists ε = ε(δ) > 0 such that for all (x, y) ∈ Sδ, there exists a unique θ(x, y) ∈

(ε, µ− ε).

2. c(x + y) ≤ d2

dt2
[γt(x, y)]

∣∣∣
t=ξ

= −xΨ2(µ − ξ) − yΨ2(ξ) ≤ C(x + y) for ξ ∈ (ε, µ − ε),

(x, y) ∈ Sδ, and some positive constants c, C which only depend on δ.

3. d3

dt3
[γt(x, y)]

∣∣∣
t=ξ

= xΨ3(µ − ξ) − yΨ3(ξ) ≤ C1(x + y) for ξ ∈ (ε, µ − ε) and constant

C1 = C1(δ) > 0.

Lemma 4.2.2 (strict-weak). Let δ > 0,

1. There exist 0 < ε = ε(δ) < E = E(δ) < ∞ such that for all (x, y) ∈ Sδ, there exists a

unique θ(x, y) ∈ (ε, E).

2. c(x + y) ≤ d2

dt2
[γt(x, y)]

∣∣∣
t=θ(x,y)

= xΨ2(µ + θ) + y [Ψ2(µ+ θ)−Ψ2(θ)] ≤ C(x + y) for

(x, y) ∈ Sδ, for some positive constants c, C which only depend on δ.

3. d3

dt3
[γt(x, y)]

∣∣∣
t=ξ

= xΨ3(µ + ξ) + y [Ψ3(µ+ ξ)−Ψ3(ξ)] ≤ C1(x + y) for ξ ∈ (ε,∞) and

constant C1 = C1(δ) > 0.

Lemma 4.2.3 (inverse beta). Let δ > 0,

1. There exists ε = ε(δ) > 0 such that for all (x, y) ∈ Sδ, there exists a unique θ(x, y) ∈

(ε, µ− ε).
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2. c(x+y) ≤ d2

dt2
[γt(x, y)]

∣∣∣
t=θ(x,y)

= x [Ψ2(µ+ ν − θ)−Ψ2(µ− θ)]+y [Ψ2(µ+ ν − θ)−Ψ2(θ)] ≤

C(x+ y) for (x, y) ∈ Sδ, and some positive constants c, C which only depend on δ.

3. d3

dt3
[γt(x, y)]

∣∣∣
t=ξ

= x [Ψ3(µ− ξ)−Ψ3(µ+ ν − ξ)]−y [Ψ3(ξ) + Ψ3(µ+ ν − ξ)] ≤ C1(x+

y) for ξ ∈ (ε, µ− ε) and constant C1 = C1(δ) > 0.

Define ξ∗ = (ξ∗
1 , ξ

∗
2) = ( µ

µ+ν ,
ν

µ+ν ), and B+
δ (ξ∗) = {(x, y), x

x+y ≥ ξ∗
1 + δ}, B−

δ (ξ∗) =

{(x, y), x
x+y ≤ ξ∗

1 − δ}. For BI and BII models,

Lemma 4.2.4 (beta). Let δ > 0,

1. There exist 0 < ε = ε(δ) < E = E(δ) <∞, such that a unique θ(x, y) ∈ (ε, E) exists, if

(x, y) ∈ Sδ ∩Bδ(ξ∗)+ in BI or (x, y) ∈ Sδ ∩Bδ(ξ∗)− in BII.

2. c(x+ y) ≤ d2

dt2
[γt(x, y)]

∣∣∣
t=θ(x,y)

≤ C(x+ y) for some positive constants c, C which only

depend on δ, if (x, y) ∈ Sδ ∩ Bδ(ξ∗)+ in SI Beta I or (x, y) ∈ Sδ ∩ Bδ(ξ∗)− in SI Beta

II.

3. d3

dt3
[γt(x, y)]

∣∣∣
t=ξ
≤ C1(x+ y) for ξ ∈ (ε,∞) and constant C1 = C1(δ) > 0.

Although there are differences between those lemmas, the major properties that we care

about are the same: Unique minimum and bounded third moment derivative away from the

boundary, bounded (from above and below) second moment derivative at the minimum.

Define Lλ(m,n) = infw,z∈J ,z−w=λ L
w,z(m,n) and Is(m,n) = supλ≥0{λs− Lλ(m,n)}. By

the exponential Markov inequality and the pathwise inequality Z(m,n) ≤ Zw,z(m,n),

logP (logZ(m,n) ≥ s) ≤ −λs+ Lλ(m,n). (4.7)

This inequality holds for all λ ≥ 0, so

logP (logZ(m,n) ≥ s) ≤ −Is(m,n). (4.8)

Is(m,n) also has a geometric meaning. Notice that Is(m,n) = supλ≥0{λs − Lλ(m,n)} =

supλ∈J {λs − Lλ(m,n)} = supw,z∈J ,z−w=λ{(z − w)s − Lw,z(m,n)} = supw,z∈J {(z − w)s −
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∫ z
w γ

t(m,n)dt}. Therefore Is(m,n) is the area bounded by y = s and y = γt(m,n) as a

function of t.

Since we always consider t away from the boundary, let Jε be (ε, µ − ε) in LG and IB,

(ε,∞) in gamma and beta models. In the next lemma we give the lower bound estimation

of Is(m,n) by using Taylor expansion centered at θ up to the 2nd order of γt(m,n).

Lemma 4.2.5. Let δ > 0 and ε = ε(δ) > 0, C1 = C1(δ) shown in the above lemmas. For

(m,n) ∈ Sδ ∩Z2
>0 (in BI and BII (m,n) should also be in their corresponding area) we have

∣∣∣γt(m,n)−M − σ3(t− θ)2
∣∣∣ ≤ C1(m+ n)|t− θ|3 (4.9)

for t ∈ Jε and

Is(m,n) ≥ sup
w,z∈Jε,w≤θ≤z

{
(s−M) (z − w)− σ3

3
[
(z − θ)3 − (w − θ)3

]
− C1(m+ n)

[
(z − θ)4 + (w − θ)4

]}
,

(4.10)

where M = γ(m,n) and 2σ3 = d2

dt2
[γt(m,n)]

∣∣∣
t=θ(m,n)

.

Proof. The Taylor expansion centered at θ up to the 2nd order of γt(m,n) is

γt(m,n) = M + σ3(t− θ)2 + 1
6
d3

dt3

[
γt(m,n)

]∣∣∣∣∣
t=ξ

(t− θ)3 (4.11)

for some ξ lies in between t and θ. By assumption both t and θ are in the interval Jε, so

does ξ. Together with the above lemmas, ( 4.9 ) holds. (  4.10 ) can be checked by integrating

γt(m,n) from w to z which are both in Jε.

Before we show the main theorems, let’s define the quenched exit time of the random

polymer. Define the probability measure Qw,z(·) on the set of path ∏
(0,0),(m,n) as, for x· =

{x0, x1, ..., x(m+n)} ∈
∏

(0,0),(m,n) where x0 = (0, 0) and xm+n = (m,n),

Qw,z ({x·}) =
∏m+n

i=1 ω(xi−1,xi)

Zw,z
(0,0)(m,n) . (4.12)
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ωei is the weight of the edge ei. Then we are able to define the distribution of the quenched

exit time from the boundary Exit = Exit(m,n) which takes value in Z through

Qw,z(Exit ≥ k) =

[∏k
i=1 I(i,0)

]
Zw

(k,0)(m,n)
Zw,z

(0,0)(m,n) (4.13)

and

Qw,z(Exit ≤ −k) =

[∏k
k=1 J(0,j)

]
Zz

(0,k)(m,n)
Zw,z

(0,0)(m,n) . (4.14)

i.e. the exit time takes integer values. With the (m,n) dependence suppressed, the event

{Exit = k} consists of admissible paths from (0, 0) to (m,n) which exit the horizontal

boundary at (k, 0). Similarly, the event {Exit = −k} consists of those paths which exit the

vertical boundary at (0, k).

4.3 Moderate deviation and exit time estimates

Our main result relies on a log moment generating function identity, which is an analogue

of an identity originally developed in the zero temperature setting by Rains [  60 , Corollaries

3.3-3.4] using integrable probability. Our methods extend the arguments of [  41 ] to the setting

of solvable polymer models. This section marks the first time that identities of this type.

Our first result gives the upper bound of the right tail deviations of the free energy in bulk

models. The proof is very short so we present it right after the statement of the theorem.

Theorem 4.3.1. Fix δ > 0. There exist constant c = c(δ), C = C(δ) > 0 so that, in the

models other than the Beta model, for all (m,n) ∈ Sδ and all s ∈ [0, c(m+ n)2/3],

logP (logZ(m,n) ≥ γ(m,n) + σs) ≤ −4
3s

3
2 + Cs2(m+ n)− 1

3 . (4.15)

In BI, the same holds for (m,n) ∈ Sδ ∩ Z2
>0 ∩ Bδ(ξ∗)+, in BII, the same holds for (m,n) ∈

Sδ ∩ Z2
>0 ∩Bδ(ξ∗)−.
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Proof. Consider Iγ(m,n)+σs(m,n) and take w = θ −
√
s/σ, z = θ +

√
s/σ. We can find c > 0

such that as long as s ≤ c(m+n)2/3, θ±
√
s/σ ∈ Jε since σ is of order (m+n)1/3. Therefore

by ( 4.10 ),

Iγ(m,n)+σs(m,n) ≥ 4s3/2

3 − 2C1(m+ n)s2

σ4 . (4.16)

Recall σ is of order (m + n)1/3 again, there exists C > 0, such that 2C1(m + n)/σ4 ≤

C/(m+ n)1/3. By (  4.8 ), the theorem is proved.

Next theorem shows the upper bound of the right tail of the free energy logZw,z(m,n)

in multi-parameter models. w, z are required to be close to the local minimum θ in the

theorem.

Theorem 4.3.2. Fix δ > 0, K ≥ 0, p > 0, and s0 > 0. There exists constants C0 = C0(δ),

c0 = c0(δ), and N0 = N0(δ,K, p, s0) such that, with t = min{s, c(m+ n)2/3},

logP [logZw,z(m,n) ≥ γ(m,n) + σs+ log 2] ≤ −2t3/2

3 −(s−t)
√
t+log 2+ C0Kt

(m+ n)p+ C0t
2

(m+ n)1/3

(4.17)

whenever (m,n) ∈ Sδ ∩ Z2
≥N0 (also in Bδ(ξ∗)+ in BI and Bδ(ξ∗)− in BII), c ∈ [s0(m +

n)−2/3, c0], s ∈ R≥s0, and w, z ∈ J with

max {|w − θ(m,n)|, |z − θ(m,n)|} ≤ K(m+ n)−1/3−p. (4.18)

For the quenched exit time bound, we focus on estimating the decay of the annealed exit

time event |Exit| > s(m + n)2/3, that is, the annealed probability of the random polymer

that exit the boundary later than s(m+ n)2/3 steps.

Theorem 4.3.3. For δ > 0, K ≥ 0 there exist finite constants c = c(δ) > 0, N0 =

N0(δ,K) > 0, s0 = s0(δ,K) > 0, and e0 = e0(δ,K) > 0 such that

E
[
Qw,z(|Exit| > s(m+ n) 2

3 )
]
≤ exp{−cs3} (4.19)

for (m,n) ∈ Sδ∩Z2
≥N0 (also in Bδ(ξ∗)+ in BI and Bδ(ξ∗)− in BII), s ≥ s0, and w, z ∈ (0,∞)

such that max{|w − θ(m,n)|, |z − θ(m,n)|} ≤ K(m+ n)−1/3 and |w − z| ≤ e0(m+ n)−1/3.
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The last theorem gives the lower bound of l.m.g.f. of the free energy logZ(m,n) in bulk

models. This is the key step to figure out the lower bound of the moderate deviation of the

right tail of the free energy.

Theorem 4.3.4. Fix δ > 0, there exist positive constants C0 = C0(δ), c0 = c0(δ), N0 =

N0(δ), K0 = K0(δ), such that

logE
[
(Z(m,n))λ

]
≥ Lλ(m,n)−K0λ

9
4 (m+ n) 3

4 max{1, λ(m+ n) 1
4} (4.20)

or equivalently,

logE
[
(Z(m,n))λ

]
≥ λγ(m,n) + λ3σ3

12 −K0λ
9
4 (m+ n) 3

4 max{1, λ(m+ n) 1
4} (4.21)

whenever (m,n) ∈ Sδ ∩ Z2
≥N0 (also in Bδ(ξ∗)+ in BI and Bδ(ξ∗)− in BII), and λ ∈ [C0(m+

n)−1/3, c0].

4.4 Proofs

4.4.1 Proof of properties of the shape function

Proof of Lemma  4.2.1 . Recall γt(x, y) = s [log ν −Ψ0(µ− t)] + t [log ν −Ψ0(t)], in order to

find the critical point, take derivative of t on both sides, we have θ solves the equation

sΨ1(µ− θ) = tΨ1(θ) (4.22)

where Ψ1(x) is trigamma function such that Ψ1 = Ψ′
0. Moreover, Ψ1 is a positive decreasing

function with limit 0 for x → ∞ and limit ∞ for x → 0. Therefore, for f(x) = Ψ1(µ −

x)/Ψ1(x), it is increasing and f(0) = 0, f(µ) =∞ (in the limit sense). So when (x, y) ∈ Sδ,

there always exists a unique θ such that the equation holds. And it is indeed a global

minimum point by the monotonicity of f(x). The second and third statements in Lemma

 4.2.1 is simply by the fact that both Ψ2(x) and Ψ3(x) are bounded (from above and away

from zero from below) when x ∈ (ε, µ− ε).
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Proof of Lemma  4.2.2 . The upper bounds for both part 2 and 3 are obvious since if (x, y) ∈

Sδ, then by part 1, θ ∈ (ε, E) which is also the range of ξ. This will give the upper bound

estimation since the absolute value of Ψ2 and Ψ3 are all decreasing to zero.

In order to prove part 1, since θ(x, y) satisfies

x

y
= Ψ1(θ)

Ψ1(θ + µ) − 1, (4.23)

it is enough to show that the function gµ(z) = Ψ1(z)
Ψ1(z+µ) for z ∈ (0,∞) is a C∞ decreasing

function and

lim
z→0+

gµ(z) =∞, lim
z→∞

gµ(z) = 1. (4.24)

Notice that Ψ3(z)Ψ1(z) > Ψ2
2(z) by the integral representation of poly gamma functions and

C-S inequality(the equation can not be satisfied), we have

d

dz
gµ(z) = Ψ1(z)

Ψ1(z + µ)

[
Ψ2(z)
Ψ1(z)

− Ψ2(z + µ)
Ψ1(z + µ)

]
< 0 (4.25)

for all z ∈ (0,∞). Moreover, since limz→0+ Ψ1(z) = ∞, limz→0+ gµ(z) = ∞ can be get

immediately. In order to check the second half of (  4.24 ), for poly gamma functions, we know

that

Ψ1(z) = Ψ1(z + 1) + 1
z2 . (4.26)

Hence, Ψ1(z) = Ψ1(z + dµe) + ∑z+dµe−1
i=z

1
i2 ≤ Ψ1(z + dµe) + dµe

z2 . Use this upper bound,

together with the fact that z2Ψ1(z) grows linearly as z →∞, we have

1 ≤ gµ(z) = Ψ1(z)
Ψ1(z + µ) ≤

Ψ1z

Ψ1(z + dµe) ≤ 1 + dµe
z2Ψ1(z)− dµe

→ 1 (4.27)

as z →∞, which finishes the proof of part 1 of the lemma.

To get the lower bound estimation in part 2, assume y = 1. Since θ(x, 1) solves

xΨ1(θ + µ) + Ψ1(θ + µ)−Ψ1(θ) = 0, (4.28)
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take derivative over θ on both side, we have(treat x as a function of θ)

dx

dθ
= (x+ 1)Ψ2(θ + µ)−Ψ2(θ)

−Ψ1(θ + µ) =

[
M θ(x, 1)

]′′

−Ψ1(θ + µ) . (4.29)

Meanwhile, recall the definition of g we have gµ(z) = x + 1 when y = 1, so d
dθ
gµ(θ) = dx

dθ
.

Since (x, y) ∈ Sδ, θ ∈ (ε, E) by part 1, there exists c0 = c0(δ) > 0 such that

[
M θ(x, 1)

]′′

−Ψ1(θ + µ) = d

dθ
gµ(θ) ≤ −c0 < 0. (4.30)

In the end,
[
M θ(x, 1)

]′′

≥ c0Ψ1(θ + µ) ≥ c0Ψ1(E + µ) ≥ c0Ψ1(E+µ)
(E+1) (x + 1) > 0 for x ∈ (ε, E)

and y=1. The general case can be proved by scaling (x, y).

Proof of Lemma  4.2.3 . Once again, the upper bound in part 2 and part 3 is simple by the

same reason in the proof of Lemma  4.2.2 . To see part 1 is true, define

gµ,ν(z) = Ψ1(z) + Ψ1(µ+ ν − z)
Ψ1(µ− z)−Ψ1(µ+ ν − z) . (4.31)

It is easy to see limz→0+ gµ,ν(z) = +∞ and limz→µ− gµ,ν(z) = 0. We need to check this

function is strictly decreasing for z ∈ (0, µ). Take the derivative of gmu,ν over z, after a

couple of steps of simplification, we have

[Ψ1(µ− z)−Ψ1(µ+ ν − z)]2 d

dz
gµ,ν(z) = Ψ2(z) [Ψ1(µ− z)−Ψ1(µ+ ν − z)]

+ Ψ1(z) [Ψ2(µ− z)−Ψ2(µ+ ν − z)] + 1
Ψ1(µ− z)Ψ1(µ+ ν − z)

[
Ψ2(µ− z)
Ψ1(µ− z)

− Ψ2(µ+ ν − z)
Ψ1(µ+ ν − z)

]
.

(4.32)

For all three terms on the right hand side in the above equation, it’s easy to see they are all

negative valued, thus the derivative is negative for all z ∈ (0, µ).

The proof of the lower bound in part 2 is similar to the proof of Lemma  4.2.2 , thus we

omit here.
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Proof of Lemma  4.2.4 . The proof of the upper bound in part 2 and part 3 is again obvious

since both θ and ξ are in (ε,∞) and make the coefficients of x and y have finite upper

bounds. To see part 1 is true, since θ(x, y) solves the equation

x

x+ y
= Ψ1(θ)−Ψ1(µ+ θ)

Ψ1(θ)−Ψ1(µ+ ν + θ) (4.33)

in SI Beta I model or

x

x+ y
= Ψ1(µ+ ν + θ)−Ψ1(ν + θ)

Ψ1(µ+ ν + θ)−Ψ1(θ)
= 1− Ψ1(θ)−Ψ1(ν + θ)

Ψ1(θ)−Ψ1(µ+ ν + θ) (4.34)

in SI Beta II model. Define the function

g(z) = Ψ1(z)−Ψ1(µ+ z)
Ψ1(z)−Ψ1(µ+ ν + z) (4.35)

which is a decreasing function for z in (0,∞). Moreover, limz→0 g(z) = 1 and limz→∞ g(z) =

ξ∗
1 . g(z) is decreasing can be seen by taking the derivative and using the convexity of the poly

gamma functions. The limit of g at zero is obvious. The limit of g at infinity is ξ∗
1 = µ/(µ+ν)

can be seen by taking the Taylor expansion

Ψ1(µ+ z) = Ψ1(z) + µΨ2(z) + o(Ψ2(z))

Ψ1(µ+ ν + z) = Ψ1(z) + (µ+ ν)Ψ2(z) + o(Ψ2(z))
. (4.36)

Hence, notice that Ψ2(z)→ 0 when z →∞, we have

lim
z→∞

g(z) = lim
z→∞

µ+ o(1)
µ+ ν + o(1) = µ

µ+ ν
= ξ∗

1 (4.37)

finish proving our statements. The lower bound in part 2 has the similar proof as the one of

Lemma  4.2.2 . The only thing that needs to be clarified is both Ψ1(µ + θ) − Ψ1(µ + ν + θ)

and Ψ1(ν + θ)−Ψ1(µ+ ν + θ) are positive and has a lower bound since θ ∈ (ε, E).
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4.4.2 Proof of Theorem  4.3.2 

We will prove the theorem only in the log gamma model case. Since what matters the

proof is the properties of the shape function that we present before and will be given later

that all four models except BII share. For BII, it can be viewed as a coordinate-flipping model

of BI, thus it can be modeled as we replace the x, y coordinates in BI, the corresponding

proof also can be obtained in the same way.

Define

Lλ,w,hor(x, y) = inf
u,v∈(w,µ),v−u=λ

logE
[
(Zu,v(x, y))λ

]
, (4.38)

Lλ,z,ver(x, y) = inf
u,v∈(0,z),v−u=λ

logE
[
(Zu,v(x, y))λ

]
, (4.39)

Lλ,w,z(x, y) = Lλ,w,hor(x, y) ∨ Lλ,z,ver(x, y). (4.40)

For λ ∈ [0, µ) write ζ−
λ (x, y) and ζ+

λ (x, y) in (0, µ) satisfying

ζ+
λ − ζ−

λ = λ, γζ
−
λ (x, y) = γζ

+
λ (x, y). (4.41)

Those definitions are well-defined since the shape function is continuous and decreasing up

to θ and then increasing all the way after θ. These notations characterise when the infimum

is obtained in ( 4.38 ), see the lemma below.

Lemma 4.4.1. Let x, y ∈ R>0 and λ ∈ [0, µ), w ∈ [0, µ) and z ∈ (0, µ],

1. Lλ,w,hor(x, y) = logE
[(
Zζ−

λ
,ζ+

λ (x, y)
)λ]

if w ≤ ζ−
λ and

Lλ,w,hor(x, y) = logE
[(
Zw,w+λ(x, y)

)λ]
if ζ−

λ < w < µ − λ, otherwise Lλ,w,hor(x, y) =

+∞.

2. Lλ,z,ver(x, y) = logE
[(
Zζ−

λ
,ζ+

λ (x, y)
)λ]

if z ≥ ζ+
λ and

Lλ,z,ver(x, y) = logE
[(
Zz−λ,z(x, y)

)λ]
if λ < z < ζ+

λ , otherwise Lλ,z,ver(x, y) = +∞.

Proof. To see the first argument is true, recall that

Lu,u+λ(m,n) =
∫ u+λ

u
γt(m,n)dt, (4.42)
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the derivative of Lu,u+λ(m,n) over u is just γu+λ(m,n)− γu(m,n). To find the minimum of

Lu,u+λ(m,n) for u ∈ (w, µ), simply solve γu+λ(m,n)− γu(m,n) = 0. The unique solution to

this equation is u = ζ−
λ . If w ≤ ζ−

λ , then u = ζ−
λ is admissible. To see it is the minimum

point, notice that γu+λ(m,n) − γu(m,n) is negative for u < ζ−
λ and positive for u > ζ−

λ . If

ζ−
λ < w < µ−λ, then the global minimum cannot be obtained and the conditional minimum

is obtained when u = w since the derivative of Lu,u+λ(m,n), γu+λ(m,n)−γu(m,n) is positive

for u > ζ−
λ . The second argument is proved in the same way.

Next lemma show the upper bound of l.m.g.f. of the free energy starts from (0, 1) or

(1, 0). Since only w matters the free energy if the polymer starts from (1, 0) and z matters

the free energy if the polymer starts from (0, 1), we only use one superscript when writing

the free energy.

Lemma 4.4.2. Let m,n ∈ Z>0 and λ ∈ R≥0, w ∈ [0, µ) and z ∈ (0, µ], then

1. logE
[(
I(1,0)Z

w
(1,0)(m,n)

)λ]
≤ Lλ,w,hor(m,n),

2. logE
[(
J(0,1)Z

z
(0,1)(m,n)

)λ]
≤ Lλ,z,ver(m,n).

Proof. To check the first inequality, we can only consider the case where λ < µ− w, or the

right hand side is +∞ makes the inequality trivial.

Notice that I(1,0)Z
w
(1,0)(m,n) ≤ Zw,w+λ(m,n) and I(1,0)Z

w
(1,0)(m,n) ≤ I(1,0)Z

ζ−
λ

(1,0)(m,n)

when w ≤ ζ−
λ , we have

logE
[(
I(1,0)Z

w
(1,0)(m,n)

)λ]
≤ logE

[(
Zw,w+λ(m,n)

)λ]
(4.43)

and

logE
[(
I(1,0)Z

w
(1,0)(m,n)

)λ]
≤ logE

[(
Zζ−

λ
,ζ+

λ (m,n)
)λ]

(4.44)

when w ≤ ζ−
λ . Combine with part 1 in lemma  4.4.1 , we have the first inequality holds. The

proof of the second inequality is almost the same.
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Define

Iw,hors (x, y) = sup
u,v∈(w,µ),u≤v

{
(v − u)s−

∫ v

u
γt(x, y)dt

}
(4.45)

Iz,ver
s (x, y) = sup

u,v∈(0,z),u≤v

{
(v − u)s−

∫ v

u
γt(x, y)dt

}
(4.46)

Iw,zs (x, y) = Iw,hors (x, y) ∧ Iz,ver
s (x, y). (4.47)

By this definition, together with Lemma  4.4.1 , we have Iw,hors (x, y) +Lλ,w,hor(x, y) ≥ λs and

Iz,ver
s (x, y) + Lλ,z,ver(x, y) ≥ λs immediately.

We also care about when the equations hold for the above two inequalities. For s >

γ(x, y), define ξ−
s (x, y) and ξ+

s (x, y) in (0, µ) such that

ξ−
s < ξ+

s , γ
ξ−

s (x, x) = γξ
+
s (x, y) = s, (4.48)

i.e. ξ−
s is the smaller root of the equation γt(x, y) = s and ξ+

s is the larger root. The

definition of ξ−
s is well-defined for all s > γ(x, y), while for ξ+

s it is defined for all s > θ in all

but beta models. In beta model (BI and BII with corresponding range of (x, y)), ξ+
s is only

defined for γ(x, y) < s < 0 since the shape function γt(x, y) has limit zero as t→∞.

Lemma 4.4.3. Let x, y ∈ R>0, λ ∈ R≥0, w ∈ [0, µ), z ∈ (0, µ], and s ∈ R,

1. Iw,hors (x, y) + Lλ,w,hor(x, y) ≥ λs with equality holds iff s > inft∈(w,µ) γ
t(x, y), λ =

ξ+
s − ξ−

s ∨ w or s ≤ inft∈(w,µ) γ
t(x, y), λ = 0.

2. Iz,ver
s (x, y) + Lλ,z,ver(x, y) ≥ λs with equality holds iff s > inft∈(0,z) γ

t(x, y), λ = ξ+
s ∧

z − ξ−
s or s ≤ inft∈(0,z) γ

t(x, y), λ = 0.

Proof. We prove part 1 of the lemma and part 2 is thus similarly proved. The sufficient

condition “⇐” is easy to check. To see the other direction of the statement is true, if

s ≤ inft∈(w,µ) γ
t(x, y), then inside the sup of Iw,hors (x, y) is always non-positive and takes value

0 when u = v. While Lλ,w,hor(x, y) > λs as long as λ > 0 since Lλ,w,hor(x, y) is an integral

of γt(x, y) on some interval of t with length λ by Lemma  4.4.1 and the integrable equation

( 4.5 ). So the only value for λ to make equation holds in the case s ≤ inft∈(w,µ) γ
t(x, y) is 0.
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If s > inft∈(w,µ) γ
t(x, y), then u, v ∈ (w, µ) should satisfy u ≥ ξ−

s and v ≤ ξ+
s since if not,

we can adjust u or v closer to θ to make the sup larger since we subtract a negative value.

If w ≤ ξ−
s which means u = ξ−

s and v = ξ+
s are admissible, then

Iw,hors (x, y) = (ξ+
s − ξ−

s )s−
∫ ξ+

s

ξ−
s

γt(x, y)dt. (4.49)

And the equation of the lemma holds when Lλ,w,hor(x, y) =
∫ ξ+

s

ξ−
s
γt(x, y)dt, which means

λ = ξ+
s − ξ−

s by Lemma  4.4.1 . If w > ξ−
s , then the best value of u we can choose is u = w.

Therefore

Iw,hors (x, y) = (ξ+
s − w)s−

∫ ξ+
s

w
γt(x, y)dt. (4.50)

And the equation of the lemma holds when Lλ,w,hor(x, y) =
∫ ξ+

s
w γt(x, y)dt, which means

λ = ξ+
s − w by Lemma  4.4.1 .

This lemma tells us for any s ∈ R, we can find λhor(s) and λver(s) such that two equations

hold. We are now ready to give the upper bound of the right tail of the free energy.

Lemma 4.4.4. Let m,n ∈ Z>0, w ∈ [0, µ), z ∈ (0, µ], and s ∈ R,

1. logP
[
log

(
I(1,0)Z

w
(1,0)(m,n)

)
≥ s

]
≤ −Iw,hors (m,n).

2. logP
[
log

(
J(0,1)Z

z
(0,1)(m,n)

)
≥ s

]
≤ −Iz,ver

s (m,n).

3. logP [logZw,z(m,n) ≥ s+ log 2] ≤ −Iw,zs (m,n) + log 2.

Proof. The first two inequalities hold by taking exponential Markov inequality for λ = λhor(s)

and λ = λver(s) then using Lemma  4.4.2 and lemma  4.4.3 . To check the third inequality,

logP [logZw,z(m,n) ≥ s+ log 2] (4.51)

= logP
{
log

[
I(1,0)Z

w
(1,0)(m,n) + J(0,1)Z

z
(0,1)(m,n)

]
≥ s+ log 2

}
(4.52)

≤ log
{
P
[
log

(
I(1,0)Z

w
(1,0)(m,n)

)
≥ s

]
+ P

[
log

(
J(0,1)Z

z
(0,1)(m,n)

)
≥ s

]}
(4.53)

≤ log 2 + logP
[
log

(
I(1,0)Z

w
(1,0)(m,n)

)
≥ s

]
∨ logP

[
log

(
J(0,1)Z

z
(0,1)(m,n)

)
≥ s

]
(4.54)

≤ log 2 + (−Iw,hors (m,n)) ∨ (−Iz,ver
s (m,n)) = log 2− Iw,zs (m,n). (4.55)
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Finally, to prove the main theorem in log-gamma model, let w′ = w ∨ θ(m,n), z′ =

z ∧ θ(m,n). Define c0 = c0(δ) small enough and N0 = N0(δ,K, p, s0) large enough such that

for s0 ≤ s ≤ c0(m+ n)2/3 and m,n ≥ N0, the following condition holds,

K

(m+ n)1/3+p ≤
√
s

σ
< (z′ − ε) ∧ (µ− ε− w′). (4.56)

From the above condition, one can conclude that both w′ and w′ +
√
s/δ are in (ε, µ − ε),

which means we can apply Lemma  4.2.1 and Lemma  4.2.5 to the shape function γt(m,n) for

t ∈ [w′, w′ +
√
s/δ]. Notice that

Iw,horM+σs(m,n) = sup
u,v∈(w,µ),u≤v

{
(v − u)(M + σs)−

∫ v

u
γt(m,n)dt

}

≥
√
s

σ
(M + σs)−

∫ w′+
√
s/σ

w′
γt(m,n)dt

(4.57)

holds by choosing u = w′ and v = w′ +
√
s/δ. Thus

Iw,horM+σs(m,n) ≥
√
s

σ
(M + σs)−

∫ w′+
√
s/σ

w′
γt(m,n)dt (4.58)

≥ s3/2 − σ3

3

{
(w′ +

√
s

σ
− θ)3 − (w′ − θ)3

}
(4.59)

− C1(m+ n)
{

(w′ +
√
s

σ
− θ)4 + (w′ − θ)4

}
(4.60)

= 2s3/2

3 − σ3

3

{
(w′ +

√
s

σ
− θ)3 − (w′ − θ)3 − (

√
s/σ)3

}
(4.61)

− C1(m+ n)
{

(w′ +
√
s

σ
− θ)4 + (w′ − θ)4

}
(4.62)

≥ 2s3/2

3 − C0

(
Ks

(m+ n)p + s2

(m+ n)1/3

)
(4.63)

for some constant C0 = C0(δ, c0(δ), C1(δ)) > 0. The last inequality holds since 0 ≤ w′ − θ ≤
√
s/δ.
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When s > S = c(m+ n)2/3 for some c ∈ [s0(m+ n)−2/3, c0], notice that

Iw,horM+σs(m,n) ≥
√
S

σ
(M + σs)−

∫ w′+
√
S/σ

w′
γt(m,n)dt (4.64)

=
√
S(s− S) +

√
S

σ
(M + σS)−

∫ w′+
√
S/σ

w′
γt(m,n)dt (4.65)

≥
√
S(s− S) + 2S3/2

3 − C0

(
KS

(m+ n)p + S2

(m+ n)1/3

)
. (4.66)

Combine the above two bounds together, for t = s ∧ S,

Iw,horM+σs(m,n) ≥
√
S(s− t) + 2t3/2

3 − C0

(
Kt

(m+ n)p + t2

(m+ n)1/3

)
. (4.67)

The same bound holds for Iz,ver
M+σs(m,n) via similar arguments. By Lemma  4.4.4 , the desired

result is proved.

4.4.3 Proof of Theorem  4.3.3 

In this subsection we try to give a uniform proof that can cover all models (SI Beta II

excluded, since it is a coordinate system-flip model of SI Beta I). First, three core lemmas

that are required in the main proof are given below.

Lemma 4.4.5. In all four models, let (x, y), (x+∆, y) ∈ Sδ/2, then there exist c0 = c0(δ) > 0,

C0 = C0(δ) > 0 such that

c0∆(x+ y)−1 ≤ |θ(x+ ∆, y)− θ(x, y)| ≤ C0∆(x+ y)−1. (4.68)

Proof. Since (x, y), (x+ ∆, y) ∈ Sδ/2, by part 1 in Lemma  4.2.1 in LG or analogue lemmas

in the other models, there exist 0 < ε = ε(δ/2) < E = E(δ/2) <∞ such that θ(x, y), θ(x +

∆, y) ∈ (ε, µ− ε) or θ(x, y), θ(x + ∆, y) ∈ (ε, E), depending on different models. Recall the

definition of θ in every model,

hµ,ν(θ(x, y)) = y

x
, and hµ,ν(θ(x+ ∆)) = y

x+ ∆ . (4.69)
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where functions hµ,ν(z) in different models are shown below.

Model hµ,ν(z)

LG Ψ1(µ−z)
Ψ1(z)

G Ψ1(µ+z)
Ψ1(z)−Ψ1(µ+z)

BI Ψ1(µ+z)−Ψ1(µ+ν+z)
Ψ1(z)−Ψ1(µ+z)

IB Ψ1(µ−z)−Ψ1(µ+ν−z)
Ψ1(µ+ν−z)+Ψ1(z)

Notice that for all z ∈ (ε, µ − ε) in LG, IB or z ∈ (ε, E) in gamma and beta models, there

exist c = c(δ) > 0, C = C(δ) > 0,

C(δ) ≤
∣∣∣∣hµ,ν(z)∣∣∣∣ ≤ c(δ). (4.70)

Thus, there exists c0 = c0(δ) > 0, C0 = C0(δ) > 0 such that

c0∆(x+y)−1 ≤
(
y

x
− y

x+ ∆

) 1
c
≤ |θ(x, y)−θ(x+∆, y)| ≤

(
y

x
− y

x+ ∆

) 1
C
≤ C0∆(x+y)−1.

(4.71)

Lemma 4.4.6. Let (x, y) ∈ Sδ/2 and ε = ε(δ) given in part 1 of Lemma  4.2.1 in LG or

analogue lemmas in other models, then there exists C1 = C1(δ) > 0 and Λ = Λ(δ) > 0 such

that for all 0 < λ < ε ∧ Λ,

|ζ−
λ (x, y)− θ(x, y) + λ

2 | = |ζ
+
λ (x, y)− θ(x, y)− λ

2 | ≤ C1λ
2 (4.72)

Proof. First notice that ζ+
λ − ζ−

λ = (θ + λ/2) − (θ − λ/2) = λ, so either θ + λ/2 ≤ ζ+
λ or

ζ−
λ ≤ θ − λ/2 holds. Assume θ + λ/2 ≤ ζ+

λ holds, since (x, y) ∈ Sδ/2 and λ < ε, we have

θ(x, y) ± λ/2 ∈ (ε/2, E + ε/2) in gamma and beta models, or θ(x, y) ± λ/2 ∈ (ε/2, µ − ε/2)

in LG and IB. The following inequality holds

γθ+λ/2(x, y) ≤ γζ
+
λ (x, y) = γζ

−
λ (x, y) ≤ γθ−λ/2(x, y). (4.73)
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Moreover, by Lemma  4.2.5 , there exists C = C(δ) > 0,

∣∣∣∣γθ+λ/2(x, y)− γθ−λ/2(x, y)
∣∣∣∣ ≤ C(x+ y)λ3. (4.74)

Recall that θ + λ/2 ≤ ζ+
λ and the derivative of γt(x, y) is increasing in (θ,∞), we have

|ζ+
λ − θ − λ/2|

d

dt

(
γt(x, y)

)∣∣∣∣∣
t=θ+λ/2

≤
∣∣∣∣γθ+λ/2(x, y)− γζ

+
λ (x, y)

∣∣∣∣ ≤ C(x+ y)λ3. (4.75)

Next, we need a lower bound for [γt(x, y)]
′′
, notice that for all ε < t < µ− ε,

∣∣∣∣ [γt(x, y)
]′′

−
[
γθ(x, y)

]′′ ∣∣∣∣ ≤ 3(x+ y)|t− θ| [|Ψ3(ε)|] . (4.76)

Thus, let Λ = Λ(δ) > 0 small enough such that as long as |t− θ| < Λ,
∣∣∣∣ [γt(x, y)]

′′
−[

γθ(x, y)
]′′ ∣∣∣∣ ≤ c(x+ y)/2 where c is defined as the lower bound constant in Lemma  4.2.1 in

LG or analogue lemmas in other models. This also implies

d

dt

(
γt(x, y)

)∣∣∣∣∣
t=θ+λ/2

≥ c

2(x+ y)
[
θ + λ

2 − θ
]

= c(x+ y)λ
4 . (4.77)

Combine ( 4.75 ) and ( 4.77 ), we have proved the lemma.

Lemma 4.4.7. Under the same assumption as in Lemma  4.4.6 , there exists C2 = C2(δ) > 0,

such that ∣∣∣∣Lλ(x, y)− λγ(x, y)− λ3σ3

12

∣∣∣∣ ≤ C2(x+ y)λ4. (4.78)

Proof. Since Lλ(x, y) =
∫ ζ+

λ

ζ−
λ

γt(x, y)dt, the lemma can be checked straightforwardly from

Lemma  4.2.5 and Lemma  4.4.6 .

Now we turn back to the proof of Theorem  4.3.3 . Let N0 = N0(δ,K) > 0 such that

whenever (x, y) ∈ Sδ/2 ∩ R2
≥N0 , |w − θ(x, y)| ≤ K(x + y)−1/3 implies w ∈ (ε, µ − ε) or

w ∈ (ε, E), where 0 < ε = ε(δ/4) < E = E(δ/4) <∞ are functions of δ/4 and are determined

by Lemma  4.2.1 in LG, Lemma  4.2.2 in gamma model, Lemma  4.2.3 in IB, or Lemma  4.2.4 

in beta model. Let s0 = s0(δ,K) large enough(to be determined later) satisfies (this is one
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of the condition) C0s0 ≥ 2K where C0 is the constant shown in Lemma  4.4.5 . Notice that

if s ≥ (m+ n)1/3 then the theorem is trivial. We will prove the theorem first under the case

s0 ≤ s ≤ c0(m+ n)1/3 where c0 = c0(δ) > 0 small enough such that for all k = s(m+ n)2/3,

(m− k, n) ∈ Sδ/2.

Let λ = ηs(m + n)−1/3 < 1 where η ∈ (0, 1) is small in a manner to be specified later.

0 < e0 = e0(η, s0) ≤ ηs will also be specified later. Notice that as long as |w − z| ≤

e0(m+ n)−1/3 ≤ λ,

Qw,z(Exit > k) ≤ Qz+λ,z(Exit > k). (4.79)

This is by the definition ( 4.13 ),

Qw,z(Exit > k) =
k+1∏
j=1

I(j,0)Z
w
(j,0)(m,n)

Zw,z
(j−1,0)(m,n) =

k+1∏
j=1

1−
ω((j−1,0),(j−1,1))Z

z
(j−1,1)(m,n)

Zw,z
(j−1,0)(m,n)

 . (4.80)

If w is increased, then Zw,z
(j−1,0)(m,n) is also increased, so is Qw,z(Exit > k) by the inverse-

CDF coupling. By Chebyshev inequality, Hölder’s inequality, and the independence of the

weights on edges, we have the following bound for the annealed exit time tail.

E [Qw,z(Exit > k)] ≤ E
[
Qz+λ,z(Exit > k)

]
=
∫ 1

0
P


[∏k+1

i=1 I(i,0)
]
Zz+λ

(k+1,0)(m,n)
Zz+λ,z

(0,0) (m,n)
≥ t

 dt
≤
∫ 1

0
t−

λ
2 dt

√√√√√E
( k∏

i=1
I(i,0)

)λ√E [(I(k+1,0)Z
z+λ
(k+1,0)(m,n)

)λ]√
E
[(
Zz+λ,z

(0,0) (m,n)
)−λ

]
.

(4.81)

By shift invariance property, shift the coordinate to the left by k units, the second square

root term is the same as
√
E
[(
I(1,0)Z

z+λ
(1,0)(m− k, n)

)λ]
. Moreover, by part 1 in Lemma  4.4.2 

in LG and analogue lemmas in other models, the explicit formula of l.m.g.f in section 1, and

the distribution of I, we are able to solve the value or bound the above terms as follows,

2 logE [Qw,z(Exit > k)] ≤ −2 log
(

1− λ

2

)
+ k

(
logE[Iλ] + E[I−λ]

)
+Lλ,z+λ,hor(m− k, n) + Lz+λ,z(m− k, n).

(4.82)
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The first term in the above inequality requires 1 − λ/2 > 0. Also a simple inequality holds

− log(1− a) ≤ 2a when a ≤ 1/2, this can be achieved by taking η < 1. Hence, the first term

on the right hand side is bounded by 2λ for η sufficiently small.

The second term in the above inequality can be bounded by b0kλ
2 = b0η

2s3 for some

b0 = b0(δ) > 0 and for λ ≤ η small enough (depending only on δ). This has already been

checked in the previous subsections.

To estimate the third and last term in (  4.82 ), first we claim that for η small enough,

z+λ ≤ ζ−
λ (m−k, n). To check this, by the definition of N0 and the choice of c0, both (m,n)

and (m− k, n) are in Sδ/2. Apply Lemma  4.4.5 ,

|θ(m,n)− θ(m− k, n)| ≥ C0k(m+ n)−1 = C0s(m+ n)− 1
3 . (4.83)

Recall C0s0 ≥ 2K and s ≥ s0, we have

|z − θ(m− k, n)| ≥ C0s

2(m+ n) 1
3
. (4.84)

Moreover, it’s easy to see θ(m− k, n) ≥ θ(m,n), so |z − θ(m− k, n)| = θ(m− k, n)− z. Let

η < C0/4, then

θ(m− k, n)− z − 2λ ≥
(
C0

2 − 2η
)

s

(m+ n) 1
3
> 0. (4.85)

Now combine Lemma  4.4.6 and let η < 1/(2C1), we have

z + λ < θ(m− k, n)− λ ≤ ζ−
λ (m− k, n). (4.86)
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By Lemma  4.4.1 in LG or analogue lemmas in other models, ( 4.86 ) shows that Lλ,z+λ,hor(m−

k, n) = Lλ(m − k, n). Next, use the estimations in Lemma  4.2.5 and lemma  4.4.7 . There

exists constant C3 = C3(δ) > 0, such that

Lλ(m− k, n) + Lz+λ,z(m− k, n) ≤
(
λγ(m− k, n) + λ3σ3(m− k, n)

12

)

−
[
λγ(m− k, n) + σ3(m− k, n)

3
(
(θ(m− k, n)− z)3 − (θ(m− k, n)− z − λ)3

)]
+ C3(m+ n)λ4

≤σ3(m− k, n)
[
−λ(θ(m− k, n)− z)2 + λ2(θ(m− k, n)− z)

]
+ C3(m+ n)λ4

≤σ
3(m− k, n)

2
[
−λ (θ(m− k, n)− z)2

]
+ C3(m+ n)λ4.

(4.87)

Last inequality holds since θ(m − k, n) − z ≥ 2λ. Recall k = s(m + n)2/3 ≤ c0(m + n),

the definition of σ(m − k, n), and the order of σ(m − k, n) is (m − k + n)1/3, there exists

c1 = c1(δ) > 0 that only depends on δ, let η < c1, we have

Lλ(m− k, n) + Lz+λ,z(m− k, n) ≤ −4C4(m+ n)λ (θ(m− k, n)− z)2 ≤ −C4C
2
0ηs

3 (4.88)

for some C4 = C4(δ) > 0. Last inequality holds since (  4.84 ).

Collect all the estimations of the upper bound of the right hand side in ( 4.82 ) together,

we have

2 logE [Qw,z(Exit > k)] ≤ 2λ+ b(δ)η2s3 − C4C
2
0ηs

3. (4.89)

Let η small enough, such that 2bη2 ≤ C4C0η. Meanwhile, collect all the previous restrictions

on η, one can find that there exist η0 = η0(δ) > 0 that only depends on δ, such that as long

as η ≤ η0, all the previous restrictions on η are satisfied. By this choice of η, we have

2 logE [Qw,z(Exit > k)] ≤ 2λ− 1
2C4C

2
0ηs

3 ≤ 2η − 1
2C4C

2
0ηs

3 = 1
2η
(
4− C4C

2
0s

3
)
. (4.90)

Now, let s0(δ,K) = max{2/ 3
√
C4C2

0 , 2K/C0}, and let c = c(δ) = C4C
2
0η0/8 > 0, (  4.90 )

becomes

logE [Qw,z(Exit > k)] ≤ −cs3 (4.91)
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for s0 ≤ s ≤ c0(m + n)1/3 and for |w − z| ≤ λ. Finally, let e0 = e0(η0, s0) = η0s0, then

obviously, |w − z| ≤ e0(m+ n)−1/3 ≤ λ.

When c0(m+ n)1/3 ≤ s ≤ (m+ n)1/3, notice that

logE
[
Qw,z(Exit > s(m+ n) 2

3 )
]
≤ logE [Qw,z(Exit > c0(m+ n))] ≤ −cc3

0(m+ n) ≤ −cc3
0s

3

(4.92)

where cc3
0 > 0 is a constant only depends on δ. In the end, the upper bound for the horizontal

exit time is proved for all s ≥ s0.

The analogous upper bound for the vertical exit time can be proved by the similar

method. Notice that the value of e0 = η0s0 might be changed, but it will be okay if we

finally choose the minimum one. Then a union bound completes the proof.

4.4.4 Proof of Theorem  4.3.4 

Our aim is to find the lower bound of logE[(Z(m,n))λ]. To reach our final goal, first we

need lower bound estimations of logE[(Zw,z(m,n))λ], logE[(Zw,z,k,l(m,n))λ] where Zw,z,k,l is

the partition function of a truncated multi-parameter model, and upper bound estimations

of the exit time event E[Qw(Exit > 0)] and E[Qw(Exit < 0)]. We try to write one version of

all lemmas that can cover all 4 models(BII can be treated as a coordinate-flip model of BI,

thus we omit here since many conditions in BII is totally the reverse side of BI so that it’s

tedious to repeat it again).

Lemma 4.4.8 (first step exit time upper bound). Fix δ > 0. Let (m,n) ∈ Sδ ∩Z2
>0 (in

Beta models extra assumption (m,n) ∈ Bδ(ξ∗)+ in SI Beta I is needed, this extra assumption

will only be mentioned here and will be omitted in the rest of this section), θ = θ(m,n) and

w ∈ (0, µ) or w ∈ (0,∞), depending on the models. There exists a constant c = c(δ) > 0

and C = C(δ) > 0 such that

logE[Qw(Exit > 0)] ≤ −c(m+ n)(θ − w)3 if w + C

(m+ n) 1
3
< θ, and

logE[Qw(Exit < 0)] ≤ −c(m+ n)(w − θ)3 if w − C

(m+ n) 1
3
> θ.

(4.93)
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Proof. The proof is similar to the one in the previous subsection, and it’s even more simple

than that. To check the first inequality above, first we consider the case when w ≥ ε/2,

where ε = ε(δ) is the lower bound of θ that is defined in all models previously. Under this

extra condition, we are able to use Taylor expansion estimations for γt(m,n) when t ≥ w.

Follow the previous step in the proof of exit time upper bound, let λ = η(θ − w) where

η = η(δ) > 0 is a small manner which will be determined later. We have

E [Qw(Exit > 0)] ≤ E
[
Qw+λ,w(Exit > 0)

]
=
∫ 1

0
P


[
I(1,0)

]
Zw+λ

(1,0) (m,n)
Zw+λ,w

(0,0) (m,n)
≥ t

 dt
≤
∫ 1

0
t−

λ
2 dt

√
E
[(
I(1,0)Z

w+λ
(1,0) (m,n)

)λ]√
E
[(
Zw+λ,w

(0,0) (m,n)
)−λ

]
.

(4.94)

Combine with the estimations on the two terms inside the square root, we have

2 logE [Qw(Exit > 0)] ≤ −2 log
(

1− λ

2

)
+ Lλ,w+λ,hor(m,n) + Lw+λ,w(m,n). (4.95)

Now, let η < 1/2, then ζ−
λ ≥ θ − λ ≥ w + λ and thus Lλ,w+λ,hor(m,n) = Lλ(m,n). Use the

fact that Lλ(m,n) ≤ Lθ,θ+λ(m,n), there exists constant C3 = C3(δ) > 0 such that

Lλ(m,n) + Lw+λ,w(m,n) ≤ Lθ,θ+λ(m,n)− Lw,w+λ(m,n)

≤
(
λM + λ3σ3

3

)
−
[
λM + σ3

3
(
(θ − w)3 − (θ − w − λ)3

)]
+ C3(m+ n)λ4

≤σ3
[
−λ(θ − w)2 + λ2(θ − w)

]
+ C3(m+ n)λ4 ≤ −σ

3

2 λ(θ − w)2 + C3(m+ n)λ4

≤− C4(m+ n)η(θ − w)3.

(4.96)

Last inequality holds since the order of σ is (m+ n)1/3 and for η small enough. Let η small

enough (e.g. η < 1/(2µ) in LG and IB or η < 1/(2E) in gamma and beta models) such that

− log(1−λ/2) ≤ λ. Combine with the above upper bound estimation, let η = η0 = η0(δ) > 0

that satisfies all the above requirements of η, we have

2 logE [Qw(Exit > 0)] ≤ 2λ− C4(m+ n)η0(θ − w)3 ≤ η0
[
2(µ ∨ E)− C4(m+ n)(θ − w)3

]
.

(4.97)
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Finally, let (θ − w)3(m + n) > C = C(δ) > 0 such that 2(µ ∨ E) − C4(m + n)(θ − w)3 ≤

−C4(m+ n)(θ−w)3/2. This finishes the proof for w ≥ ε/2. When 0 ≤ w ≤ ε/2, notice that

θ − w ≤ µ ∨ E , by the monotonicity of Qw,

logE [Qw(Exit > 0)] ≤ logE
[
Q

ε
2 (Exit > 0)

]
≤ −c(m+ n)(θ − ε

2)3 ≤ −c
(
ε

2

)3 1
(µ ∨ E)3 (m+ n)(θ − w)3

(4.98)

the desired inequality still holds after adjusting c by a constant factor that depends only on

δ.

The vertical first step exit time upper bound uses the similar proof. Under LG and IB,

consider w ≤ µ− ε/2 first. Under the s-w and beta model, there is no need to separate the

range of w because the Taylor expansion estimation for γt(m,n) holds for all t ∈ (ε,∞).

Lemma 4.4.9 (lower bound multi-para model). Let (m,n) ∈ Z>0, w, z ∈ (0, µ) or

(0,∞), depending on different models. λ > 0 such that λ ≥ z − w. Then

logE
[
(Zw,z(m,n))λ

]
≥ Lλ,w,z(m,n). (4.99)

Proof. First consider the case when λ < min{µ−w, z} in LG and IB or just λ < z in gamma

and beta model, by the monotonicity of Zw,z and Lemma  4.4.1 for LG and the analogue

lemmas for all other models, we have

logE
[
(Zw,z(m,n))λ

]
≥ max{logE

[(
Zw,w+λ(m,n)

)λ]
, logE

[(
Zz−λ,z(m,n)

)λ]
}

= max{Lw,w+λ(m,n), Lz−λ,z(m,n)}

≥ max{Lλ,w,hor(m,n),Lλ,z,ver(m,n)} = Lλ,w,z(m,n).

(4.100)

When λ ≥ min{µ−w, z} or λ ≥ z, it’s easy to see the left hand side is infinity, which makes

the inequality trivial.
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Define the truncated multi-parameter model as follows,

Zw,k,hor(m,n) =
k∑

i=1

[
Zw(i, 0)ω(i,0),(i,1)Z(i,1)(m,n)

]
= I(1,0)Z

w
(1,0)(m,n)−

k+1∏
i=1

I(i,0)Z
w
(k+1,0)(m,n)

Zz,l,ver(m,n) =
l∑

j=1

[
Zz(0, j)ω(0,j),(1,j)Z(1,j)(m,n)

]
= J(0,1)Z

z
(0,1)(m,n)−

l+1∏
j=1

I(0,j)Z
z
(0,j+1)(m,n)

Zw,z,k,l(m,n) = Zw,k,hor(m,n) + Zz,l,ver(m,n)
(4.101)

Lemma 4.4.10 (lower bound truncated m-p model). Fix δ > 0, There exist positive

constants C0 = C0(δ) > 1, c0 = c0(δ) < 1, K0 = K0(δ), and N0 = N0(δ) such that

logE
[(
Zw,z,k,l(m,n)

)λ]
≥ Lλ(m,n)− log 3 (4.102)

whenever (m,n) ∈ Sδ ∩ Z2
≥N0, λ ∈ [C0(m + n)−1/3, c0], w = ζ−

λ (m,n), z = ζ+
λ (m,n), and

k ≤ m, l ≤ n with

min{k, l} ≥ K0(m+ n) 1
2λ− 1

2 max{1, λ2(m+ n) 1
2}. (4.103)

Proof. Set C0 = C0(δ), c0 = c0(δ) < 1, K0 = K0(δ), and N0 = N0(δ) to be determined later.

Let (m,n) ∈ Sδ ∩ Z2
≥N0 , λ ∈ [C0(m + n)−1/3, c0], w = ζ−

λ (m,n), z = ζ+
λ (m,n). N0 large

enough to make sure the preceding intervals are non-empty. Define

Rm,n,λ = K0(m+ n) 1
2λ− 1

2 max{1, λ2(m+ n) 1
2}, (4.104)

and consider k, l ∈ [Rm,n,λ, 2Rm,n,λ]. Let c0 = c0(δ,K0) small enough, N0 = N0(δ, C0, K0)

large enough such that both (m− k, n), (m,n− l) are in Sδ/2.

Notice that

Zw,z(m,n) = Zw,z,k,l(m,n) +
k+1∏
i=1

I(i,0)Z
w
(k+1,0)(m,n) +

l+1∏
j=1

J(0,j)Z
z
(0,l+1)(m,n), (4.105)
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together with Lemma  4.4.9 , Lemma  4.4.2 for l-g model and analogue lemmas for other three

models, recall λ ≤ c0 < 1 we have

Lλ,w,z(m,n) ≤ log 3 + max{logE
[(
Zw,z,k,l(m,n)

)λ]
,

k logE[Iλ] + logE
[(
I(k+1,0)Z

w
(k+1,0)(m,n)

)λ]
, l logE[Jλ] + logE

[(
J(0,l+1)Z

z
(0,l+1)(m,n)

)λ]
}

≤max
{

logE
[(
Zw,z,k,l(m,n)

)λ]
, k logE[Iλ] + Lλ,w,hor(m− k, n), l logE[Jλ] + Lλ,z,ver(m,n− l)

}
+ log 3.

(4.106)

Next step is to show both k logE[Iλ]+Lλ,w,hor(m−k, n) and l logE[Jλ]+Lλ,z,ver(m,n−l)

are less than Lλ,w,z(m,n)− log 3 for big enough k, l and small enough λ. To check this, first

notice that if w = ζ−
λ (m,n) and z = ζ+

λ (m,n), then Lλ,w,z(m,n) = Lλ(m,n) = Lw,z(m,n),

and Lw,z(m,n)−k logE[Iλ] = Lw,z(m−k, n) as well as Lw,z(m,n)−l logE[Jλ] = Lw,z(m,n−

l).

In order to get Lλ,w,hor(m− k, n) = Lλ(m− k, n), we need w = ζ−
λ (m,n) ≤ ζ−

λ (m− k, n).

For all the four models ,there is a momotonicity for θ with different parameters (m,n), that

is

θ(m− k, n) ≥ θ(m,n) ≥ θ(m,n− l) (4.107)

as long as k, l ≥ 0. This can be easily seen in the proof of the uniqueness of θ, that g is

a decreasing function (This does not include the case in BII, but as we mentioned at the

beginning, BII is just a coordinate system-flip BI, hence we don’t consider it here).

Moreover, by Lemma  4.4.6 , for λ small enough (c0 = c0(δ) small enough), ζ−
λ ∈ [θ−λ/2−

C1λ
2, θ− λ/2 +C1λ

2]. Thus, to reach our goal, we need θ(m− k, n)− θ(m,n) ≥ 2C1λ
2. By

Lemma  4.4.5 , we need
k

m+ n
≥ cλ2 (4.108)

for some c = c(δ) > 0. This can be satisfied by letting λ ≤ c0 = c0(δ,K0) small enough since

Rm,n,λ/(m+ n) ≥ K0λ
3/2.
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Write θ = θ(m,n), θ̃ = θ(m− k, n), and σ̃ = σ(m− k, n). The last step is to check

Lλ(m− k, n)− Lw,z(m− k, n) < − log 3. (4.109)

In order to control w − θ̃ and z − θ̃, by Lemma  4.4.5 again, there exists C = C(δ) > 0, as

long as
k

m+ n
≤ Cλ, (4.110)

then θ̃ − θ ≤ λ and thus max{|w − θ̃|, |z − θ̃|} ≤ 2λ. ( 4.110 ) can be satisfied as long as

C0 = C0(δ,K0) large enough and c0 = c0(δ,K0) small enough since

2Rm,n,λ

(m+ n)λ ≤ max{ 2K0

(m+ n) 1
2λ

3
2
, 2K0λ

1
2} ≤ max{2K0C

− 3
2

0 , 2K0c
1
2
0 } (4.111)

By Lemmas  4.2.5 ,  4.4.5 ,  4.4.6 , and  4.4.7 , we have

Lλ(m− k, n)− Lw,z(m− k, n)

≤ σ̃
3

3

[
λ3

4 −
(
θ̃ − w

)3
+
(
θ̃ − z

)3
]

+ C2(m+ n)λ4

≤ σ̃
3

3

λ3

4 −
(
θ̃ − θ + λ

2

)3

+
(
θ̃ − θ − λ

2

)3
+ C3(m+ n)λ4

=− σ̃3λ(θ̃ − θ)2 + C3(m+ n)λ4

≤− C4
k2λ

m+ n
+ C3(m+ n)λ4 ≤ −C4

2 K2
0

(4.112)

for some positive constants C2 = C2(δ), C3 = C3(δ), C4 = C4(δ). The last inequality holds

since if λ ≤ (m + n)−1/4, then let K0 = K0(δ) large enough, −C4K
2
0 + C3 ≤ −C4K

2
0/2. If

λ > (m+ n)−1/4, then

−C4
k2λ

m+ n
+ C3(m+ n)λ4 ≤

[
−C4K

2
0 + C3

]
(m+ n)λ4 ≤ −C4K

2
0

2 (4.113)

for K0 = K0(δ) large enough and C0 > 1. Finally, let K0(δ) large enough such that b0K
2
0 >

log 3, which will finish our proof under the case k, l ∈ [Rm,n,λ, 2Rm,n,λ]. When k, l ≥ 2Rm,n,λ,

by the monotonicity of Zw,z,k,l, ( 4.102 ) still holds.
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Now we turn to prove Theorem  4.3.4 . First, let C0, c0, K0, N0 be constants that are

determined in Lemma  4.4.10 , their values will be adjusted later in the proof. Introduce

parameter q ∈ [1, 2] that will be determined later. Pick (m,n) ∈ Sδ ∩ Z2
≥N0 and λ ∈

[C0(m+ n)−1/3q, c0q]. Let λq = λ/q, abbreviate ζ− = ζ−
λq

(m,n), ζ+ = ζ+
λq

(m,n) and

k = dK0(m+ n) 1
2λ

− 1
2

q max{1, λ2
q(m+ n) 1

2}e. (4.114)

In the proof of Lemma  4.4.10 , k is such a integer that both (m− k, n) and (m,n− k) are in

Sδ/2. By the same lemma, we have

Lλq(m,n)− log 3 ≤ logE
[(
Zζ−,ζ+,k,k(m,n)

)λq
]

≤ max{logE
[(
Zζ−,k,hor(m,n)

)λq
]
, logE

[(
Zζ+,k,ver(m,n)

)λq
]
}+ log 2.

(4.115)

The last inequality holds since λq ≤ c0 ≤ 1. Due to symmetry, we can assume that

logE
[(
Zζ−,k,hor(m,n)

)λq
]
≥ Lλq(m,n)− log 6 (4.116)

holds.

Next step is to estimate the ratio between Zζ−,k,hor(m,n) and Z(m,n). Introduce

increment-stationary model Zz(m,n) where z = θ − Rλq, R = R(δ) ≥ 1 to be determined

below. Couple this model with SI model Zζ−(m,n) as follows. For (i, j) ∈ N2
≤(m,n),

Z
ζ−

(i,j)(m,n) = Z(i,j)(m,n) = Zz
(1,1)(m+ 1− i, n+ 1− j). (4.117)

i.e. couple all the bulk weights inside the first quadrant in the way ωζ
−

e = ωz(m+1,n+1)−e.

Moreover, the boundary weights in Zz is independent of the ones in SI model Zζ− . Decrease

c0 = c0(R) if necessary to make sure z ∈ (0, θ). Define the event

Ez = {I(1,0)Z
z
(1,0)(m,n) ≤ J(0,1)Z

z
(0,1)(m,n)}. (4.118)
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Then let C0 = C0(R) large enough to apply Lemma  4.4.8 , we have

P (Ec
z) = P

(
I(1,0)Z

z
(1,0)(m,n) > J(0,1)Z

z
(0,1)(m,n)

)
= P

(
Qz(Exit > 0) > 1

2

)
≤ 2E [Qz(Exit > 0)] ≤ 2exp{−c(m+ n)(θ − z)3}.

(4.119)

With the event Ez defined above, simply separate the LHS in ( 4.116 ) into two parts,

Lλq(m,n)− log 12 ≤ max{logE
[
1Ez

(
Zζ−,k,hor(m,n)

)λq
]
, logE

[
1Ec

z

(
Zζ−,k,hor(m,n)

)λq
]
}.

(4.120)

We will prove, under the event Ez, Zζ−,k,hor(m,n) and Z(m,n) are close to each other.

While under the event Ec
z,

logE
[
1Ec

z

(
Zζ−,k,hor(m,n)

)λq
]
< Lλq(m,n)− log 12. (4.121)

To check ( 4.121 ), apply Holder’s inequality with p = 1 + R−3, together with Lemma  4.4.1 

and  4.4.2 ,

logE
[
1Ec

z

(
Zζ−,k,hor(m,n)

)λq
]
≤ 1
p

logE
[(
I(1,0)Z

ζ−

(1,0)(m,n)
)pλq

]
+ p− 1

p
logP (Ec

z)

≤ 1
p
Lpλq ,ζ−,hor(m,n)− 1

p
c(m+ n)λ3

q

= 1
p
Lζ

−,ζ−+pλq(m,n)− 1
p
c(m+ n)λ3

q.

(4.122)

The last equation holds since ζ−
pλq
≤ ζ−

λq
= ζ−. Apply Taylor expansion estimation on L by

taking c0 = c0(δ) small enough, together with Lemma  4.4.6 , we have

logE
[
1Ec

z

(
Zζ−,k,hor(m,n)

)λq
]
≤ 1
p
Lζ

−,ζ−+pλq(m,n)− 1
p
c(m+ n)λ3

q

≤ λqM + σ3

3p
[
(θ − ζ−)3 − (θ − ζ− − pλq)3

]
+ C1p

3λ4
q(m+ n)− 1

p
c(m+ n)λ3

q

≤ λqM + σ3λq
3

12 + σ3λq
3

6 (2p− 1)(p− 1) + C2λ
4
q(m+ n)− 1

p
c(m+ n)λ3

q

≤ Lλq(m,n) + a0R
−3λq

3(m+ n) + C3λ
4
q(m+ n)− 1

2c(m+ n)λ3
q.

(4.123)
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Let R = R(δ) large enough, then λq ≤ c0 = c0(δ, R) small enough, and C0 = C0(δ) large

enough, we have

logE
[
1Ec

z

(
Zζ−,k,hor(m,n)

)λq
]
≤ Lλq(m,n)− 1

8c(m+ n)λ3
q

≤ Lλq(m,n)− 1
8cC

3
0 < Lλq(m,n)− log 12,

(4.124)

which finishes the proof of ( 4.121 ).

The last step of the proof is to bound Zζ−,k,hor(m,n)/Z(m,n) under the event Ez. To

this end, notice that the following inequalities hold,

Zζ−,k,hor

Z(1,1)(m,n) =
k∑

i=1

Zζ−(i, 0)ω(i,0)(i,1)Z(i,1)(m,n)
Z(1,1)(m,n)

=
k∑

i=1
Zζ−(i, 0)ω(i,0)(i,1)

Zz
(1,1)(m+ 1− i, n)
Zz

(1,1)(m,n)

≤
k∑

i=1
Zζ−(i, 0)ω(i,0)(i,1)

Zz
(0,1)(m+ 1− i, n)
Zz

(0,1)(m,n)

≤ 2
k∑

i=1
Zζ−(i, 0)ω(i,0)(i,1)

Zz
(0,0)(m+ 1− i, n)
Zz

(0,0)(m,n)

(4.125)

The second line is by the coupling of Zζ− and Zz, the third line is by “crossing lemma”

Lemma 4.4.11 (Crossing lemma for the positive temperature model). Let Z(m,n)

be the partition function of any positive temperature model(i.e. Zw,z(m,n) is also allowed).

For any 4 integer points in the first quadrant v1, v2, v3, v4, as long as if we run the loop

v1 → v2 → v3 → v4 → v1, the loop does not intersect with itself and form a quadrilateral,

the following inequality holds.

Zv1(v3)Zv2(v4) ≤ Zv1(v2)Zv3(v4). (4.126)

The last inequality of ( 4.125 ) holds since in the event Ez, 2J(0,1)Z
z
(0,1)(m,n) ≥ Z(m,n).
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From (  4.125 ), recall Zz is the partition function of a stationary- increment model, for

1 ≤ i ≤ m, define

Mi = logZζ−

(1,0)(i, 0)−(i−1)E
[
log I(ζ−)

]
+logZz(m+1−i, n)−logZz(m,n)+(i−1)E

[
log I(z)

]
(4.127)

where I(ζ−) and I(z) means the horizontal boundary weights in Zζ− and Zz, respectively.

Then

Zζ−,k,hor

Z(1,1)(m,n) ≤ 2I(ζ−)
(1,0)e

max1≤i≤k Mi+k

∣∣∣∣E[log I(z)
]
−E
[

log I(ζ−)
]∣∣∣∣ k∑

i=1
ω(i,0)(i,1). (4.128)

Moreover, I(ζ−)
(0,1) , logZ(1,1)(m,n) + max1≤i≤kMi, and ω(i,0)(i,1) are independent of each other

(this is due to the coupling we construct). Combine ( 4.120 ), (  4.121 ), and ( 4.128 ), recall

λq ≤ λ ≤ 1 then apply Jensen’s inequality, we have

Lλq(m,n)− log 12 ≤ logE
[(
Z(1,1)(m,n)

)λq eλq max1≤i≤k Mi

]
+ log 2

+ λqk
∣∣∣∣E [log I(z)

]
− E

[
log I(ζ−)

] ∣∣∣∣+ logE
[(
I(ζ−)

)λq
]

+ log k + logE
[(
ω(1,0)(1,1)

)λq
]
.

(4.129)

The terms λqk
∣∣∣∣E [log I(z)

]
− E

[
log I(ζ−)

] ∣∣∣∣+ logE
[(
I(ζ−)

)λq
]

+ logE
[(
ω(1,0)(1,1)

)λq
]

can be

bounded by A0kRλq
2 for some A0 = A0(δ) large enough and c0 = c0(δ) small enough such

that |ζ− − θ| ≤ λq. One can check with explicit distribution functions of all those weights

in all four models to see it is true. Using mean value theorem the first term is bounded by

A0λqk|ζ− − z|. The last two terms are of order λq, but with kλq >> 1 they can also be

bounded of order kλ2
q.

By the definition of k it’s easy to check kλ2
q >> (m + n)p for some p > 0. Thus, let

N0 = N0(c0, C0, R, δ) large enough, log k < A0kRλ
2
q. Finally, with all the bounds we get,
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apply Holder’s inequality to the first term on the RHS in ( 4.129 ), together with simple

inequality Z(1,1)(m,n) ≤ Z(m,n), we have

Lλq(m,n)− A0(1 + kRλ2
q) ≤

1
q

logE
[
(Z(m,n))λ

]
+ q − 1

q
logE

[
e

λ
q−1 max1≤i≤k Mi

]
. (4.130)

Using Lemma  4.4.12 which is an estimate of the right tail of the maximum of a martingale

which will be shown at the very end of the proof, there exist b0 = b0(δ) and B0 = B0(δ) such

that

E
[
e

λ
q−1 max1≤i≤k Mi

]
≤ B0 + B0k

1
2λ

q − 1 e
B0kλ2

(q−1)2 ≤ B0e
B0kλ2

(q−1)2 (4.131)

provided that λ/(q − 1) ≤ b0. We will show later in this page with our choice of q, this

inequality will be satisfied. The last inequality holds after increase B0 and let N0 = N0(c0, δ)

large enough.

Combine the above two inequalities together, and apply Lemma  4.4.7 ,

1
q

logE
[
(Z(m,n))λ

]
≥ Lλq(m,n)− A0(1 + kRλ2

q)−
B0kλ

2

q − 1

≥ λqM +
λ3
qσ

3

12 − A0
(
λ4(m+ n) + 1 + kRλ2

)
− B0kλ

2

q − 1

(4.132)

after replacing kRλ2
q by kRλ2 since λq ≤ λ ≤ 2λq and adjusting A0 = A0(δ). Multiply both

sides by q ∈ (1, 2], apply Lemma  4.4.7 again with parameter λ, and use the choice of k to

obtain

logE
[
(Z(m,n))λ

]
− Lλ(m,n) ≥ −D0

[
λ4(m+ n) + 1 + kλ2

q − 1 + (q − 1)λ3(m+ n)
]

≥−D0

λ4(m+ n) + 1 + (q − 1)λ3(m+ n) + λ
3
2 (m+ n) 1

2

q − 1 max{1, λ2(m+ n) 1
2}


(4.133)

for some constant D0 = D0(δ, A0, B0, K0, R) > 0.

Now choose the value of q and check it indeed satisfies our previous conditions. Let

q = 1 + λ− 3
4 (m+ n)− 1

4 max{1, λ(m+ n) 1
4}, (4.134)
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then q > 1 is obvious. Moreover, q ≤ 1 + max{(C0)−3/4, (qc0)1/4} will guarantee q < 2

once C0 large enough and c0 small enough. After we ’ve checked q ∈ (1, 2), q ≥ 1 + λ1/4 ≥

1 +λ(2c0)−3/4 will let λ/(q−1) ≤ b0 hold by choosing c0 = c0(δ) small enough. Thus (  4.134 )

gives an admissible value of q that we use throughout the proof.

Back to ( 4.133 ), with the value of q we choose, the last two terms inside the bracket on

the last line are equal, with lower bounds

λ
9
4 (m+ n) 3

4 max{1, λ(m+ n) 1
4} ≥ λ

13
4 (m+ n) ≥ λ4(m+ n) (4.135)

provided c0 < 1 and

λ
9
4 (m+ n) 3

4 max{1, λ(m+ n) 1
4} ≥ (C0)

9
4 ≥ 1 (4.136)

provided C0 > 1. Hence,

logE
[
(Z(m,n))λ

]
− Lλ(m,n) ≥ −4D0λ

9
4 (m+ n) 3

4 max{1, λ(m+ n) 1
4} (4.137)

for λ ∈ [2C0(m + n)−1/3, c0]. The equivalent statement in the theorem holds since ( 4.133 )

still holds if we replace Lλ(m,n) by λM + λ3σ3/12 and adjusting D0 by applying Lemma

 4.4.7 .

The lemma that we mentioned above without clarify is

Lemma 4.4.12. Let n ≥ 0 and {Xi}ni=1 be a collection of i.i.d. random variables with tail

distribution P (|X1| ≥ x) ≤ Ce−xI for some positive constants C, I and for all x > 0. Define

M0 = 0 and

Mk =
k∑

i=1
[Xi − E(Xi)] (4.138)

for 0 ≤ k ≤ n. Then the following inequalities holds for some c = c(C, I) > 0.

P
(

max
0≤k≤n

Mk ≥ x
)
≤ e−cxmin{ x

n
,1} (4.139)
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for x ≥ 0 and

E
[
eλmax0≤k≤n Mk

]
≤ 1 + λ

√
n

c
e

nλ2
4c + λ

c− λ
e−(c−λ)n (4.140)

for 0 ≤ λ < c.

Proof. Let λ < I, since the tail distribution of X1 is bounded of order e−Ix, then E[eλX1 ] is

finite as well as E[Xm
1 ] for all m ≥ 1. Therefore,

E
[
eλMk

]
=
[
E(eλX1)

]k
e−kE[X1] <∞. (4.141)

The sequence {eλMk}0≤k≤n is a submartingale. Applying Doob’s maximal inequality leads

to
P
(

max
0≤k≤n

Mk ≥ x
)
≤ E

[
eλMk

]
e−λx

= exp{n
[
logE[eλX1 ]− λE[X1]

]
− λx}.

(4.142)

Consider logE[eλX1 ] as a function of λ, then use Taylor expansion up to the second order,

there exists Λ = Λ(C, I) > 0 such that for 0 < λ ≤ Λ

logE[eλX1 ]− λE[X1] ≤
V ar(X1) + 1

2 λ2. (4.143)

Hence, write V = V ar(X1) <∞,

P
(

max
0≤k≤n

Mk ≥ x
)
≤ exp{n(V + 1)

2 λ2 − λx} (4.144)

given λ ≤ min{Λ, I/2}. Let λ = min{Λ, I/2, x/(nV + n)}, then there exists c = c(C, I) > 0

such that

P
(

max
0≤k≤n

Mk ≥ x
)
≤ −1

2 min{Λx, xI2 ,
x2

n(V + 1)} ≤ −cmin{x
n
, 1}. (4.145)

The last inequality needs V ≤ E[X2
1 ] ≤ 2C/I2 that can be checked by the tails bound of X1.

( 4.140 ) can be checked simply by taking integral of ( 4.139 ) from x = 0 to ∞ (since

M0 = 0, for x < 0 the probability is always equal to 1, that’s the reason why a 1 appears in

( 4.140 )).
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A. Gamma and Beta distributions

We denote Ga(α, β) for α, β > 0 be the gamma distribution which has probability density

function

f(x) = 1
Γ(α)β

αxα−1e−βx (A.1)

supported on (0,∞), where Γ(α) =
∫∞

0 yα−1e−ydy is the gamma function. We denote

InvGa(α, β) for α, β > 0 be the inverse gamma distribution which means if X ∼ Ga(α, β),

then X−1 ∼ InvGa(α, β). The probability density function of InvGa(α, β) is

f(x) = 1
Γ(α)β

αx−α−1e
β
x (A.2)

supported on (0,∞).

We denote Be(α, β) for α, β > 0 be the beta distribution which has probability density

function

f(x) = Γ(α + β)
Γ(α)γ(β)x

α−1(1− x)β−1 (A.3)

supported on (0, 1). We denote InvBe(α, β) for α, β > 0 be the inverse beta distribution

which means if X ∼ Be(α, β), then X−1 ∼ InvBe(α, β). The probability density function of

InvBe(α, β) is

f(x) = Γ(α + β)
Γ(α)γ(β)

(1
x

)α+β
(x− 1)β−1 (A.4)

supported on (1,∞).
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