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PREFACE

This journey started at one afternoon in the first year of my high school, that I hap-

pened to be in the seminar, where the teacher illustrate how HIV virus escapes our immune

surveillance by integrating its genetic information with our genome. It was like a thunder

strike. I was amazed by how living beings adopted surprising strategies for life and make

the planet earth a complected but wonderful ecological system.

After high school, I entered University of Science and Technology of China (USTC) to

pursue my bachelor degree in Biology. As the name revealed, USTC is very focus on the

scientific training. In the first two years, all the undergraduate students are required to take

classes from every department. Thus, even I am majored in Biology, I was required to study

programming language, quantum physics, organic chemistry, calculus, etc, which build the

foundation for me to conduct interdisciplinary researches. Moreover, USTC encourages and

provides external research internships. At my senior year, I was interned at Rice University,

where I was trying to conduct high throughput screens to study the genetic interactions in

C.elegans. This internship serves as a wake up call that make me realize biological research

is not only about conducting good experiments but also how to embrace and interpret the

big data generated from experiments.

Purdue Electrical and Computer Engineering Ph.D program is the exact training I need to

formulate my modeling skills to understand, interpret and generate knowledge from biological

data. This thesis serves as a report of my five year training and endeavour on utilizing current

resources and technologies to reveal the discrete signals in gene expression. Primarily, I

focus on the genome arrangement and identify gene expression state from single cell RNA

sequencing data. In each chapter, I mathematically formulate one specific problem in biology

and propose our novel solutions. Noted, our proposed methods can be applied to problem

in other field with similar formulations.
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ABSTRACT

Gene expression is an intricate process that determines different cell types and func-

tions in metazoans, where most of its regulation is communicated through discrete signals,

like whether the DNA helix is open, whether an enzyme binds with its target, etc. Un-

derstanding the regulation signals of the selective expression process is essential to the full

comprehension of biological mechanism and complicated biological systems. In this research,

we seek to reveal the discrete signals in gene expression by utilizing novel machine learning

approaches. Specifically, we focus on two types of data chromatin conformation capture (3C)

and single cell RNA sequencing (scRNA-seq). To identify potential regulators, we utilize a

new hypergraph neural network to predict genome interactions, where we find the gene co-

regulation may result from the shared enhancer element. To reveal the discrete expression

state from scRNA-seq data, we propose a novel model called LTMG that considered the

biological noise and showed better goodness of fitting compared with existing models. Next,

we applied Boolean matrix factorization to find the co-regulation modules from the identi-

fied expression states, where we revealed the general property in cancer cells across different

patients. Lastly, to find more reliable modules, we analyze the bias in the data and proposed

BIND, the first algorithm to quantify the column- and row-wise bias in binary matrix.

We will first introduce the background of the thesis in the first chapter. In the second

chapter, we will discuss how we formulate the genome interaction prediction task as hyper-

edge prediction problem and proposed a theoretically driven neural network HIGNN which

achieved 30% performance increase comparing with other methods. Next, we thought to

identify the discrete gene expression states. Specifically, in the third chapter, we proposed

a left truncated mixture Gaussian model that retrieve the state information from single

cell RNA sequencing data. In the fourth and fifth chapter, we introduce fast and efficient

Boolean matrix/tensor factorization method to identify functional patterns from the expres-

sion states. In the sixth and seventh chapter, we further discussed the bias issue in binary

data and proposed the first bias aware Boolean matrix factorization method that mitigate

the impact from row- and column-wise bias in a binary matrix.
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1. INTRODUCTION

The live beings of metazoans (multicellular animals), are started from a single zygote. Under

the same genome, this zygote reproduces and differentiates into multitude of cell types that

forms individual systems with distinct functionalities. For example, in our human genome,

there are over 26000 genes [ 1 ]. Selective expression of specific genes established approximately

37.2 trillions cells with different functionalities that shape our blood system, cardiovascular

system, digestive system, etc [ 2 ].

As eukaryotic genomes are finely packaged in the nucleus of cells, gene expression is an

intricate process [  3 ]–[ 5 ] (Figure  1.1 ). To start the expression of a gene, RNA polymerase

recognize its promoter region and open up the DNA duplex structure for mRNA synthesis

[ 5 ]. The newly generated mRNA undergoes prepossessing and is transported to cytoplasm

[ 6 ], where it binds with ribosome and translate into protein [  4 ]. These processes are majorly

regulated by discrete signals. For example, on genome level, histone modification and DNA

methylation impact the DNA accessiblity to RNA polymerases [  7 ]–[ 9 ]. On transcription level,

transcription factors (TF) can bind near promoter or enhancer that guides RNA polymeraze

to the promoter of target genes [  5 ], [  10 ], [  11 ]. And on protein level, the binding between

eukaryotic initiation factors and mRNA determines its translation into protein [ 12 ].

In this thesis, we mainly focus on the gene expression up to its transcription, where

we regard the generation of mRNA representing the formation of different cell types [ 5 ],

[ 13 ]. Specifically, we focus on the arrangement of the genome and analysis of mRNA, where

Genome RNA Protein

Figure 1.1. Overview of gene expression, adopted from [ 3 ]
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Figure 1.2. Hyperedge reflects higher order genome interactions, A is adopted from [ 20 ]

we apply different machine learning approaches to reveal the discrete signals of the genes

expression.

1.1 Problem formulation and available resources

Biological research has embraced the fast development of the genetic sequencing technolo-

gies, where it provides unprecedented resolution on different levels of gene expression [ 14 ].

In this research, we are particular focusing on two techniques, chromosome conformation

capture (3C) and single cell RNA sequencing (scRNA-seq) [ 15 ], [ 16 ].

1.1.1 Modeling chromosome 3D arrangement as hypergraph

How the genome organize in three dimensional space (3D) is the first step in regulating

gene expression, where the arrangement of different genetic elements in the nucleus impacts

the accessibility of target genes [  7 ], [  8 ] (Figure  1.2 A). Chromosome conformation capture

(3C) is the technique to characterize such information [ 17 ]. Specifically, in this research, we

focus on the ligation-free 3C techniques like SPRITE and GAM [ 18 ], [ 19 ]. Conveniently, we

could model the genome organization as hypergraph, where each node is the genetic elements

(enhancer, promoter, gene, etc), and each hyperedge is a cluster of the genetic elements that

are close in 3D (Figure  1.2 B,C) [  18 ]. Noted, such closeness is determined by experimental

measurement. For example in SPRITE, after DNA cross-linking and digestion, the cluster

is the remaining DNA elements that are still connected together (for detail refer to [ 18 ]).

The limited experimental resolution of 3C methods restricted the fully elucidation of

DNA connections in the nucleus. To fill the missing pieces, here we formulated this problem
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Figure 1.3. Single cell RNA sequencing and gene expression, A is adopted from [ 21 ]

as hyperedge link prediction tasks. Given the captured DNA interaction (hypregeraph), we

want to predict the existence of potential hyperedges that reveals different cooperation of

genetic elements in 3D. In chapter 2, we will discuss in detail about our hypergraph neural

network for hyperedge prediction. The novelty of our work is that we focus on the ambiguities

issue of graph neural networks for link prediction task in the case of hypergraph, namely

node-level ambiguity and edge-level ambiguity. As a result, our proposed neural network

model achieved 30% performance increase on the F1 score for hyperedge prediction. Our

top prediction also potentially revealed the co-expression of two genes is related to a shared

enhancer in 3D.

1.1.2 Gene expression state from single cell RNA sequencing

Single cell RNA sequencing is to detect RNA molecules of different genes in every in-

dividual cell [ 16 ], [  22 ]. In general, it could be considered as non-negative matrix (Figure

 1.3 A), where every row represent one of the 26000 genes and every column is one of the in-

dividual cells in the biological sample. Conventional approaches aim to reveal the property

of different cell types, which treat each column of the matrix as the vector representation

of the cell. Then it utilize dimension reduction and clustering methods to find the different

cell cluster that showed phenotipic variance [  21 ], [ 23 ], [ 24 ]. In this research, rather than the

individual cell, we focus on the expression of genes across different cells. Here we regard gene

expression is multimodal across different cell types, where captured RNA expression is the

manifesto of the expression states resulted from varied upstream regulations in different cell
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types. For example, whether they connected to different enhancer elements, or they have

better mediator that boosted the expression of genes in the cells (Figure  1.3 B).

In this thesis, we focus on two problems in terms of gene expression state. 1. How to

accurately infert gene expression state? 2. How to utilize the gene expression state to reveal

the cell type property? Capturing the gene expression in the single cell is a difficult task with

a strong background noise. How to deal with the noise is the core issue to reveal different

expression state. In chapter 3, we propose a left truncated mixture Gaussian distribution

(LTMG) for this task. LTMG treated the undetectable expression as left censored data and

identify different expression state as mixture Gaussian peaks. For the second task, we utilize

Boolean matrix factorization (BMF) to find the different cell type behavior over the identified

gene expression state information. As BMF is an NP-hard problem [ 25 ], in chapter 3 and 4,

we propose our fast and efficient Boolean matrix factorization method MEBF and Boolean

tensor factorization method GETF that could deal with the large size of gene expression

data. Moreover, we also discuss the bias issue in binary data in chapter 6 and proposed

another BMF method BABF that could deal with bias and conduct Boolean factorization

simultaneously in chaper 7.

1.2 Contribution of this thesis

• We seeks to reveal the discrete signals in regulating gene expression in the complicated

biological systems.

• We focus on two data resources 3C and scRNA-seq, and formulated the problem as

hyperedge prediction, statistical modeling and matrix factorization.

• We propose a novel hypergraph neural network that deals ambiguities issue in the

hyperedge prediction tasks, which achieved 30% performance increase compared with

existing model.

• We propose a sophisticated designed model, LTMG to accurately capture gene expres-

sion state while dealing with noise.
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• We propose first of its kind fast and efficient Boolean matrix and tensor factorization

methods, MEBF and GETF to reveal the data patterns in binary data.

• We also discussed bias issue in binary data and proposed the first bias-aware BMF

approache, BABF.
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2. HYPERGRAPH NEURAL NETWORK FOR HYPEREDGE

PREDICTION

Graph has been broadly utilized to study relational data in various domains such as e-

commence, drug design, social network analysis, and recommendation system [ 26 ]–[ 30 ].

While many methods have been devoted to represent pair-wise relations in ordinary graphs,

it has been recognized that many real world relationships are characterized with more than

two participating partners and thus not bilateral [  31 ]–[ 35 ]. Taking the genetic interaction

as an example (Figure  2.1 A,  2.1 B). An accurate characterization of gene expression involves

the joint interaction among gene, promoter and enhancer, and capturing only their pair-wise

interaction (enhancer-promoter, promoter-gene or gene-enhancer) will not fully recapitulate

the gene regulatory relationship (Figure  2.1 B) [  5 ], [  36 ], [  37 ]. The same issue also exists in

the analysis of multi-component drug design (Figure  2.1 C), multi-ingredient recipes (Figure

 2.1 D), where multilateral relationships are not compatible with ordinary graph edges [ 38 ]–

[ 40 ]. To overcome such conceptual limitations, hypergraph has been developed to model the

higher-order interaction data [ 41 ]. In a hypergraph, any higher-order connection is repre-

sented by a hyperedge that could join an any number of entities (blue shadow Figure  2.1 B,

 2.1 C,  2.1 D). Hence, predicting the higher-order relation is transformed into a hyperedge

prediction problem in a hypergraph.

Earlier works on hyperedge prediction rely on structural heuristics of hypergraph clique

expansion, such as common neighbor, geometric mean, Adar index [  29 ], as well as random

Figure 2.1. Hyperedge reflects higher-order interaction in many real world
data. A adopted from [  20 ]
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walk related methods [  42 ]. Yoon et al showed that combining clique expansion and higher

order information of hypergraph enhances the prediction accuracy [ 43 ]. However, these

methods are often restricted to predicting specific k-node hyperedges with mixed generaliza-

tion power. Zhang et al leveraged matrix factorization to predict hyperedges from a given

pool [  40 ]. On the other hand, GNN has been introduced as a powerful method for hyper-

edge prediction, and showed improved performance [ 32 ], [  34 ], [  35 ], [  44 ], [  45 ]. Essentially,

most existing methods can be considered as integrating information of individual nodes for

hyperedge representations.

However, these methods could suffer from severe ambiguity issues. For instance, two

hypergraphs can have nodes with identical pair-wise connections but different hyperedges

(such as {v1, v2} in Figure  2.2 A and {v1, v2} in Figure  2.2 B). Methods based on pair-wise

node relationship (clique expansion) like common neighbor, geometric mean will fail to tell

such differences. Another example is to consider two different hyperedges whose connected

nodes themselves are highly similar ({v1, v2, v3} and {v2, v3, v6} in Figure  2.2 D). Methods like

GNNs that rely on aggregating node embeddings as hyperedge representations will wrongly

predict these two hyperedges to be the same (Figure  2.2 D).

In this chapter, we formalize the above ambiguity issues into two classes, namely node-

level ambiguity and edge-level ambiguity, which cause the major challenges of the

link-prediction problem in hypergraphs compared to ordinary graphs. Such size flexibility

enables different arrangement of hyperedges. As a result, hypergraph can no longer be

bijectively mapped with pair-wise graph (node-level ambiguity). Also unlike two-node edge in

graph, whose characteristics could largely be explained by aggregating the node information.

Whereas in the case of hypergaph, the aggregation scheme could not represent the hyperedge

in full as it omits the information of the node dependency within the hyperedge (edge-level

ambiguity).

To address these issues for a better representation/prediction of hyperedges, we propose

HIGNN which utilizes a bipartite GNN and hyperedge-specific node structural features to

avoid such information loss. Compared with most recent models, HIGNN achieved a large

margin of performance increase on the hyperedge prediction task. We also applied HIGNN

to higher order genome interaction data, where HIGNN showed consistent stability across
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Figure 2.2. Ambiguity of different hypergraphs and isomorphic nodes.

different chromosomes. Moreover, HIGNN gives plausible DNA interaction prediction as the

top predicted result is validated by existing literature [ 46 ].

We summarize our contributions as:

1. We mathematically describe the two challenges in hyperedge representation learning

as node- and edge-level ambiguities, which prevent simple models from learning good

hyperedge representations

2. We introduce a general framework HIGNN to tackle the two ambiguities, i.e., by using

bipartite graph neural network to handle node-level ambiguity and hyepredge-specific

node structure features to handle edge-level ambiguity.

3. Experiments show consistent performance improvement compared with recent state-

of-the-art models for hyperedge prediction.

2.1 The two ambiguities in hyperedge representation

We first introduce the notations used in this work. Denote a set as an uppercase character

(e.g. X), elements in a set as lowercase characters (x), a vector as a bold lower case character

(x), and a matrix as a bold uppercase character (X), respectively. The dimension and

indices of entries of a matrix are represented by its upper-script (e.g. Xn×m) and lower-

script (e.g. i-th row: Xi:, j-th column: X:j, and the entry of the i-th row and j-th column:

Xij), respectively. Let H = (V, E) represent a hypergraph, where V is the vertex set V =

{v1, .., vn} and E is the edge set E = {S1, ..., Sm}, E ⊆ P (V ), and P (V ) represents the
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powerset of V . The cardinality of a hyperedge S is defined by the number of nodes in S, which

is denoted by ‖S‖. The incidence matrix of a hypergraph is defined as H ∈ {0, 1}‖V ‖×‖E‖, in

which Hij = 1 indicates vi ∈ ej, and otherwise Hij = 0. Denote a hyperedge representation

learning function as f : S, H → Rk, S ⊂ V . The hyperedge prediction problem can be

generally formulated as training f as well as a prediction function p that takes f(S, H) as

input, by which p(f(S, H)) predicts if S forms a hyperedge. Collectively, we denote the

overall prediction function p(f(S, H)) as p ◦ f . When H is clear from the context, we

sometimes also write f(S, H) as f(S).

In this work, we only consider undirected and non-attributed hypergraph, so that the

representation learning function f only captures the topological characteristics of the hy-

pergraph. Nevertheless, the method described in this study can be easily extended to the

representation learning of hypergraphs with directions and node-/edge-attributes.

Definition 2.1.1. Hypergraph isomorphism. Two hypergraphs H = (V, E) and H′ =

(V ′, E ′) are isomorphic if ∃ a bijective mapping π : V → V ′, s.t. π(V ) = V ′ and π(E) =

{π(S)‖S ⊂ E} = E ′, where π(S) = {π(v)‖v ∈ S}. Such a bijective mapping is called

an isomorphic mapping. Specifically, a permutation operation π : V → V is isomorphic if

π(E) = E (automorphism). As isomorphic permutations are exchangeable, we can define the

set of all isomorphic permutations of (V, E) as ΠI . For any node v, its isomorphic node set

is defined by I(v) = {v′‖∃ π ∈ ΠI s.t. π(v) = v′} (orbit), and isomorphic edge set of any

edge S is defined by ΠI(S) = {S ′‖∃π ∈ ΠI s.t. π(S ′) = S} (edge orbit). It is noteworthy

that ΠI generates a segmentation of P (V ), denoted as ΠI(H), which can be represented as

ΠI(H) = {ΠI(S(i))‖S(i) ∈ P (V );∪ΠI(S(i)) = P (V ); ΠI(S(i)) ∩ ΠI(S(j)) = ∅,∀i, j}.

Definition 2.1.2. Isomorphic invariance. A hyperedge representation learning function

f is called isomorphic-invariant if for ∀S ⊂ V and ∀π ∈ ΠI , f(S, H) = f(π(S), π(H)).

Intuitively, a good hyperedge learning function f should be isomorphic invariant, as

it ensures the generalization of f on isomorphic hyperedges, i.e., hyperedge with identical

topological structure will get same representation. The isomorphic invariant property of f

is a necessary but insufficient condition of a valid hyperedge predictor (ΠI(S)). To measure
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the efficacy of f , we introduce F-invariance (Πf (S)) as follows. Noted, isomorphic invariant

f is a sufficient but unnecessary condition of the isomorphic invariant property of p ◦ f .

Definition 2.1.3. F-invariance. Two hyperedges S and S ′ are F-invariant w.r.t a iso-

morphic invariant hyperedge representation function f , if ∃π : V → V ′ s.t. f(S, H) =

f(π(S ′), π(H ′)). Here, we define the F-invariant edge set of S ∈ V as Πf (S) = {S ′‖∃π ∈

Πn s.t. f(S) = f(π(S ′))} (edge orbit w.r.t f).

Similarly to isomorphic permutations, Πf also generates a segmentation of P (V ), which is

defined by Πf (H) = {Πf (S(i))‖S(i) ∈ P (V );∪Πf (S(i)) = P (V ); Πf (S(i)) ∩ Πf (S(j)) = ∅,∀i, j}.

Lemma 2.1.1. Any isomorphic invariant function f(S, H) is permutation invariant, and

∀S ⊂ V , ΠI(S) ⊆ Πf (S).

Proof. If a hypergraph does not have any non-trivial isomorphic permutation, ∀S ⊂ V , ΠI(S)

only has one element, ΠI(S) ⊆ Πf (S). For a hypergraph having at least one non-trivial iso-

morphic permutation, and an isomorphic invariant function f , f(S, H) = f(π(S ′), π(H)) =

f(S ′, H),∀S ′ ∈ ΠI(S), i.e., S and all of its isomorphic hyperedge S ′ ∈ ΠI(S) share the same

output of f . Hence f is permutation invariant and ΠI(S) ⊆ Πf (S).

Lemma 2.1.2. For a hyperedge S ⊂ V , if ∃ a permutation π s.t.f(S, H) = f(π(S), π(H))

and f is isomorphic invariant, then π(S) ∈ Πf (S).

Proof. Considering the bijective mapping π0 : π0(S) = π(S), π0(π(S)) = π−1(π(S)) = S,

and π0(v) = v, v ∈ V \ (S ∪ π(S)), π0 is a permutation. Since f(S, H) = f(π(S), π(H))

and f is permutation invariant, f(A) = f(π0(A)), ∀A ⊂ (S ∪ π(S)). And π0 is an identical

mapping for v ∈ V \ (S ∪ π(S)). Hence, π0 is an F-invariant permutation w.r.t. f , i.e.,

π(S) ∈ Πf (S).

Lemma  2.1.1 suggests that the segmentation ΠI(H) is always finer than Πf (H). Because

p(f(S, H)) has the same output for S ⊂ Πf (S). Specifically, Πf (S) \ ΠI(S) could reflect

the ratio of false-discoveries in distinguishing ΠI(S). Lemma  2.1.2 characterizes a general

condition of the hyperedges in a same F-invariant edge set. For two permutation invariant

functions f1 and f2, if ∀S ⊂ V , Πf1(S) ⊆ Πf2(S), we call f1 is more informative than f2 in
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representing H. Thus, the objective of hyperedge prediction task, or in general hyperedge

representation task, is to find the permutation invariant representation function f , whose

F-invariant edge set Πf (S) is expected to be close to the isomorphic set of hyperedges, i.e.,

Πf (S) ≈ ΠI(S). In the following, we discuss current heuristic and GNN based methods for

hyperedge prediction and illustrate edge- and node-level ambiguity that lead to ΠI(S) ⊂

Πf (S), i.e., ∃S1, S2 s.t. S2 ∈ Πf (S1), S2 /∈ ΠI(S1).

2.1.1 Heuristics and GNNs for hyperedge prediction

A classic way to represent hyperedge is to utilize structural heuristics [  29 ]. Take common

neighbor (CN) as an example. Let N(v) denote the neighbor set of node v in hypergraph

H. The hyperedge S could be represented as

fCN(S, H) = ∩v∈SN(v).

Logistic regression p on the output of f is then used to predict the existence of hyperedge.

Recent development of GNN on representation learning tasks also achieved unprecedented

performance [ 47 ]–[ 49 ]. The representation learning of GNN takes a general form as

X l+1 = σ(D−1/2AD−1/2X lW l),

where X ∈ R‖V ‖×k represents the learned node embedding, σ is a non-linear activation

function, A ∈ {0, 1}‖V ‖×‖V ‖ is the adjacency matrix of the input graph. In hypergraph

embedding, the adjacency matrix is defined by a clique expansion of the incidence matrix,

A = sign(HHT ) ∈ {0, 1}‖V ‖×‖V ‖, in which Aij = 1 if node vi and vj belong to at least one

hyperedge, and otherwise, Aij = 0 [ 50 ]. Dii = ∑
j Aij is the degree matrix and W l ∈ Rk×k

is the layer-specific weight matrix for the lth layer. A hyperedge S is then represented by

aggregating information from the learned node embedding X in a permutation invariant

fashion (e.g. sum-pooling, mean-pooling, max-pooling et al), i.e.,

fGNN(S, A) = AGG(Xv:‖v ∈ S).
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We abuse the notation of Xv: to represent the node embedding of v. Since Xv: could be

considered as the output of fGNN(v, A), the function f could also be written as

fGNN(S, A) = AGG(fGNN(v, A)‖v ∈ S).

Followed by a fully connected neural network p as prediction function, GNN-based methods

(p ◦ f) could be trained end to end, compared with heuristic approaches.

2.1.2 Node-level ambiguity

Node-level ambiguity is defined as a false assignment of identical node embeddings to

non-isomorphic nodes. Adjacency matrix over-simplifies the topological characteristics of

a hypergraph, which can cause a node-level ambiguity as showcased in Figure  2.2 A,  2.2 B,

 2.2 C. Clearly, any two nodes from two hypergraphs H1 = {V1, E1} and H2 = {V2, E2} are

not isomorphic. However, due to H1 and H2 having the same clique expansion AH1 = AH2 ,

fCN and fGNN assign the same common neighbor or node embedding to any nodes from

them. Hence, for ∀S1 ⊂ V1, S2 ⊂ V2, where S1 and S2 have the same cardinality, CN and

GNN have p(f(S1)) = p(f(S2)), i.e. S2 ∈ Πf (S1) and S2 6∈ ΠI(S1).

2.1.3 Edge-level ambiguity

Edge-level ambiguity is defined by a false assignment of identical embeddings to non-

isomorphic edges.

Lemma 2.1.3. For any isomorphic invariant edge representation learning function fol-

lows f(S, H) = AGG(f(v1, H), f(v2, H), ..., f(vm, H)), v1, ..., vm ∈ S, and ∀S ′ = {v′
1 ∈

Πf (v1), v′
2 ∈ Πf (v2), ..., v′

m ∈ Πf (vm)}, then S ′ ∈ Πf (S).

Proof. As f is isomorphic invariant, f(S, H) = f(S ′, H), and by Lemma  2.1.2 , S ′ ∈ Πf (S).

A simple aggregation of node embedding ensures a high computational feasibility and

an easy handling of the edges of different cardinality. However, Lemma  2.1.3 suggests that
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Figure 2.3. Node-level ambiguity is caused by different hyperedges with
same clique expansion.

isomorphic invariant f ignores the topological dependency of nodes with S when it adopts

the aggregation based formulation, i.e. f(S, H) ⊥ H‖{f(v1, H), f(v2, H), ..., f(vm, H)}.

Hence, all aforementioned methods suffer an over-simplified edge embedding. Figure  2.2 D

illustrates one example of edge-level ambiguity caused by such over-simplification. In the

hypergraph, {v1, v2, v5, v6} are isomorphic and {v3, v4} are isomorphic. If f satisfies Lemma

 2.1.3 , f(v1) = f(v6), then p(f(v1, v2, v3)) = p(AGG(f(v1), f(v2), f(v3))) = p(f(v2, v3, v6)).

However, the node sets S1 = {v1, v2, v3} and S2 = {v2, v3, v6} clearly have different topolog-

ical structures, i.e. S2 ∈ Πf (S1) and S2 6∈ ΠI(S1).

2.2 Methodology

In this section, we discuss techniques to solve the above two ambiguities. Specifically, (1)

to address the node-level ambiguity, we adopt a bipartite message passing neural network;

and (2) to address the edge-level ambiguity, we propose Hyperedge-Specific Node Structural

Features which encode each node’s structural relationship w.r.t. the target hyperedge to

predict. We show that by using these two techniques, the two ambiguities can be effectively

alleviated.

2.2.1 Bipartite message passing neural network.

Considering each hyperedge as an individual object, the hypergraph H = (V, E) could

be manifested as a bipartite graph, where one partite represents nodes V and the other
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represents the hyperedges E (Figure  2.3 ). The edge-node bipartite graph is equivalent to

the incidence matrix H , which conceive more information than the clique expansion A =

sign(HHT ). Bipartite message passing neural networks have been utilized in previous

studies [ 51 ], [ 52 ], that takes the general form as

X l+1
E = σ(HT X l

V WE) X l+1
V = σ(HX l

EWV )

The nonlinear activation in updating XE and XV enables a flexible and optimized in-

formation retrieval from H , which is more informative than a clique expansion based repre-

sentation (A), i.e.

Hσ(HT XV WE)WV 6= W ′AXV WV (?)

The awareness of H distinguishes edges of different cardinality (? left hand side). Thus, it

avoids the node-level ambiguity introduced by clique expansion in general graph neural

network models (? right hand side).

In HIGNN, we apply this framework with a slight modification by introducing a one-side

normalization term D−1
E when updating XE,

X l+1
E = σ(HT X l

V D−1
E WE) X l+1

V = σ(HX l
EWV )

Empirically, the one-sided normalization approach can balance the trade off between

degree bias and representation power [  52 ]. Our experiments suggested that the one-sided

normalization has a better performance than normalizing both XV and XE or no normal-

ization .

2.2.2 Hyperedge-specific node structural features

We first visualize the edge-level ambiguity by taking GNN and the hypergraph in Fig-

ure  2.4 A as an example. Without distinguishing node features, GNN learns the embed-

ding of node v by retrieving its relationship with every node while traversing the whole

hypergraph (v1 − v6). Owing to isomorphic invariant property of GNN, it is easy to de-
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Figure 2.4. Edge-level ambiguity is caused by isomorphic nodes

rive that fGNN(v1, H) = fGNN(v2, H) = fGNN(v5, H) = fGNN(v6, H) and fGNN(v3, H) =

fGNN(v4, H) as v2, v5, v6 ∈ ΠI(v1) and v4 ∈ ΠI(v3). Following lemma  2.1.3 , by aggregating

the node embeddings, GNN incurs edge-level ambiguity that recognise two different hyper-

edges S1 = {v1, v2, v3} (Figure  2.4 B) and S2 = {v2, v3, v5} (Figure  2.4 D) as the same when

AGG(fGNN(v1), fGNN(v2), fGNN(v3)) = AGG(fGNN(v2), fGNN(v3), fGNN(v5)).

This example shed light on edge-level ambiguity (Figure  2.4 A,B,D). Essentially, the struc-

ture specificity of S1 and S2 are reflected upon the relations between the nodes in the hyper-

graph and the nodes within the hyperedge. Here we reflect this relationship with hyperedge-

specific affinity matrix as P S ∈ R‖V ‖×‖S‖ (Specifically, P S1 and P S2 in Figure  2.4 C,  2.4 E).

GNN does not incorporate such specificity by only considering the node relations of whole

hypergraph. Thus, it wrongly identified v1, v5 with same embedding w.r.t S1 and S2, while

f(v1, H‖S1) and f(v5, H‖S2) should not be considered as equal since P S1
v1: 6= P S2

v5: (Figure

 2.4 D,  2.4 F). As consequence, the edge-level ambiguity is caused while ignoring the depen-

dency between nodes v1, v5 and the specific hyperedge S1, S2.

Definition 2.2.1. Hyperedge-specific node structural features. Given the hypergraph

H, we define hyperedge-specific matrix P S ∈ R‖V ‖×‖S‖ as hyepredge-specific node structure

feature of a hyperedge (or a target nodes set of interest) S, where P S
ij = ζ(vi, vj) and ζ is an

nodes pair affinity measure function. P S reveals the structural relationship between the nodes

within the hyperedge and nodes from the hypergraph. For ease of illustration, in this chapter,

we use shortest path distance (smallest number of edges that link two nodes) as the affinity

measure function, i.e., ζSP D, whereas other affinity functions could be similarly applied.
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To encode such dependency, here we define the hyperedge-specific affinity matrix as

hyperedge-specific node structure feature, where: 1) row of the matrix P S
vi: can be regarded

as the structure feature for node vi w.r.t S, and moreover 2). P S as whole can be considered

as a feature of hyperedge S. Considering the information in P S ease edge-level ambiguity

as any permutation invariant f is more likely to distinguish hyperedges. For instance, since

P S1
v1: 6= P S2

v5: , by adding such information, GNN can easily differentiate S1 and S2. Also

because of P S, even the same node would have different effect towards specific hyperedges,

(e.g., P S1
v2: 6= P S2

v2: and P S1
v3: 6= P S2

v3:) (Figure  2.4 ). Noted, P S will still be the same for

isomorphic hyperedges. If S1 = π(S2), it is easy to derive P S1 = π(P S2).

Definition 2.2.2. Hyperedge-specific local representation. Given a hyperedge (or

a target nodes set) S, its q-hop neighbor nodes set V S
(q), edges set ES

(q), incidence ma-

trix HS
(q) and hyperedge-specific local node structure feature P S

(q) are defined as follows:

V S
(q) = {vj‖ζSP D(vi, vj) ≤ q, ∀vj ∈ V, ∀vi ∈ S}. ES

(q) = {ei‖ei ⊆ V S
(q), ∀ei ∈ E}. HS

(q) ∈

{0, 1}‖V S
(q)‖×‖ES

(q)‖, where HS
(q)ij

= 1 if V S
(q)i
∈ ES

(q)j
, otherwise HS

(q)ij
= 0. P S

(q) ∈ R‖V S
(q)‖×‖S‖,

where P S
(q)ij

= ζSP D(vi, vj‖vi ∈ V S
(q), vj ∈ S) .

Encoding the structural information of affinity matrix causes additional computation. To

ensure the computational feasibility, instead of the representation with entire graphs, hyper-

edge local representation only requires q-hop enclosing subgraph HS
(q) around S. Practically,

q ≤ 2 is sufficient for a good prediction performance. We argue that q ≤ 2 is a practical

setting in real-world analysis, because (1) exact isomorphic nodes are rare in real-world hy-

pergraphs, utilizing local information to determine similar nodes can increase the inductive

power of the model; (2) For the task of hyperedge prediction, the nodes beyond 2-hop are

less deterministic for the existence of a hyperedge; (3) q ≤ 2 bounds the size of HS
(q) and

P S
(q) that dramatically reduce the computational cost and can be directly implemented in

the message passing neural network. We present our model rooted in f(S, P S
(q), HS

(q)) for the

hypergraph edge representation/prediction task in the next section.
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2.3 HIGNN for hyperedge prediction

In this section, we represent our model HIGNN to solve the ambiguity issues in hyper-

edge representation and prediction problems. HIGNN integrates two isomorphic invariant

functions: 1) Structural representing Neural network fSN(S, P S
(q), HS

(q)) that awares the hy-

peredge size differences (node-level ambiguity) by utilizing bipartite graph neural network

and offsets the aggregating impact in lemma  2.1.3 with structural features as node features

(edge-level ambiguity). 2) hyperedge Local Spectrum fLS(S, P S
(q)) that reflects the low-rank

property of P S indicating the joint interactions between hyperedge and its local environment.

2.3.1 Structural representing neural network.

A series of work has explored the fixed k-node edge representation with affinity matrix

P S
(q) ∈ R‖V S

(q)‖×k, which grants new labels for each node in the presentation of edge S by

imposing a permutation invariant function on every row of P S
(q) (figure  2.4 ). For instance,

to predict the link in graph, i.e., k = 2, SEAL considered a specific type of node labeling by

tracking distances of a node to the target two nodes and showed superior performance over

existing methods [  47 ], [  53 ]. Li et al, further generalized such a definition to the case with S

of arbitrary sizes but they still work on graphs instead of hypergraphs [  54 ]. Mathematically,

Li et al. characterized the expressive power of the obtained GNNs which solve the edge-level

ambiguity issue previously observed in graphs [  55 ]. Motivated by these works, we propose

fSN , which integrates structural feature P S
(q) by using a bipartite graph neural network.

Unlike k-size edge representation, the affinity matrix P S
(q) ∈ R‖V S

(q)‖×‖S‖ has varied dimension

depending on the size of hyperedge, i.e. ‖S‖. To construct a uniformed input, we first

process P S
(q) by using a set neural network (setNN) developed in precisely deepsets [  56 ].

Specifically, by treating each row of P S
(q) as an individual set vector, setNN acted as a

permutation invariant function to standardize the node-wise feature into a feature matrix of

a fixed dimension d. This feature matrix is then served as the input node features to initiate

the message passing in the bipartite neural network, i.e.,

X0
V S

(q)
= fsetNN(P S

(q)), X0
V S

(q)
∈ R‖V S

(q)‖×d
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Figure 2.5. The overall framework of HIGNN

X l+1
ES

(q)
= σ((HS

(q))T X l
V S

(q)
D−1

ES
(q)

W l
E)

X l+1
V S

(q)
= σ(HS

(q)X
l
ES

(q)
W l

V ),

Such that, fSN(v‖v ∈ S) = XV S
(q)v:

and fSN(S) also follows the aggregation form, i.e.

fSN(S) = AGG(fSN(v‖v ∈ S)).

2.3.2 Spectrum of the structure feature matrix

The utilization of P S in fSN alleviates the edge-level ambiguity in representing hyperedge

with aggregating based graph neural network. However, such integration omits the matrix

structure of P S and does not represent it in full. In sight of this, we propose fLS, a function

based on the singular values P S
(q), i.e., the spectrum of the subgraph HS

(q). The rationale is

that singular values reflects the low rank property of P S
(q), i.e., the topological structure of

HS
(q). Intuitively, the affinity matrix with a higher low-rankness suggests the nodes in S are

of higher topological similarity. As the singular value decomposition is invariant to row and

column wise shuffles, fLS based on the singular values of P S
(q) is also isomorphic invariant.

However, fLS does not follow the aggregation form. Also, to cope with hyperedge of varied
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sizes, i.e., ‖S‖ ≥ 2, currently fLS only takes the two largest singular value into account, the

ratio between is sufficient to characterize the level of low-rankness of P S
(q),

fLS(S, P S
(q)) = f(Σ11, Σ22), P S

(q) = UΣV T

Together, we present the HIGNN framework (Figure  2.5 ) that integrates two permuta-

tion invariant functions, the Structure Neural network fSN and Local Spectrum information

of structural feature matrix fLS. Follows by a dense layer as prediction function p, HIGNN

determines the existence of the hyperedges by

p(concat(fSN(S, P S
(q), HS

(q)), fLS(S, P S
(q))))

2.4 Experiments

In this section, we briefly introduce the experimental setup and evaluate the performance

of HIGNN with state-of-the-art GNN-based and structural heuristic based models.

2.4.1 Datasets

Following [ 35 ], twelve hypergraph datasets 

1
 were utilized in our evaluation.

• DAWN: Patient drug use in emergency room visits.

• Email-Eu: Emails with multiple email addresses.

• Email-Enron: Emails with multiple email addresses.

• NDC-classes: Drugs with multiple classification labels.

• NDC-substances: Drugs consist of multiple substances.

• Threads-ask: Users Q&A on askubuntu.com

• Threads-math: Users Q&A on math.stackexchange.com.
1

 ↑ All data are retrieved from www.cs.cornell.edu/∼arb/data/
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• Tags-ask: Questions with tags on askubuntu.com.

• Tags-math: Questions with tags on math.stackexchange.com.

• Contact-High: People in contact at high school.

• Contact-Primary: People in contact at primary school.

• Congress: Legislative bill with the sponsor representative.

Table 2.1. Dataset statistics, for edge and node degree, we report the mean
value along with its standard derivation.

Statistic
Data DAWN email-Eu email-Enron NDC-classes NDC-substances threads-ask threads-math tags-ask tags-math contact-high contact-primary congress

No. Edge 138742 24399 1457 1047 6264 115987 535323 145053 169259 7818 12704 83105
No. Node 2290 979 143 1149 3438 90054 153806 3031 1627 327 242 1718
Edge degree 3.987(2.207) 3.488(2.849) 3.085(1.942) 6.115(4.839) 7.964(5.910) 2.309(0.635) 2.610(0.933) 3.427(0.992) 3.497(0.945) 2.327(0.531) 2.419(0.550) 8.812(6.853)
Node degree 241.554(1055.753) 86.935(114.531) 31.434(24.058) 5.572(15.708) 14.510(42.724) 2.974(21.754) 9.087(91.405) 164.558(606.784) 363.801(1040.086) 55.633(27.063) 126.979(55.148) 426.261(475.654)

For each dataset, we only keep the hyperedges containing at least two nodes. Detailed

statistics of the twelve datasets are summarized in table  2.1 . We also report the mean

value of edge and node degree along with its standard derivation. We argue these datasets

represent different scenarios in hypergraphs, including sparse (NDC-classes, threads-ask,

threads-math), medium (NDC-substance, email-Enron, contact-high), and dense (DAWN,

email-Eu, tags-ask, tags-math, contact-primary, congress) hypergraphs. We believe these

datasets form a comprehensive benchmark set to will evaluate the performance and robust-

ness of each model. Following [ 35 ], for each dataset, we generate 5 times negative hyperedges

to the real ones as negative training data.

2.4.2 Benchmark with GNN-based models

Our first baseline method HGNN [  32 ], [  34 ] utilizing the incidence matrix H to replace

A in the representation learning function , i.e.

X l+1 = σ(D−1/2
v HW l

ED−1
e HT D−1/2

v X lW l
V )

. This approach along with its variants could be regarded as a weighted clique expansion,

i.e, HWED−1
e HT ≈W ′A, where W ′ is a weighting matrix, are expected to be affected by
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both ambiguities. As introduced previously, the second baseline method employes relational

graph neural network on node-edge bipartite expansion (HRGCN) to offset node-level am-

biguity [  35 ], but not edge-level ambiguity. The third baseline, NHP, also takes the general

form bipartite graph neural network but applies an additional scoring layer to preserve the

higher order properties for hyperedge prediction [ 44 ]. Most recently, as our fourth baseline,

Srinivasan et al developed a hyperedge family (FamilySet) based representation learning

function. In addition to above methods, FamilySet updates node-/edge-wise embeddings

with their nearby nodes/edges, whose representation function follows [ 35 ]

X l+1
E = σ(concat(AEX l

E, HT X l
V )W l

E)

X l+1
V = σ(concat(AV X l

V , HX l
E)W l

V )

, where AV is the clique expansion that records nearby nodes information and concat rep-

resents concatenation. AE is the line graph for connected hyperedges [  57 ], where AEij = 1

if ∃v ∈ V s.t v ∈ Si, v ∈ Sj, otherwise AEij = 0. The adaptation of clique expansion and

line graph is expected to avoid node-level ambiguity and partially edge-level ambiguity. For

our fifth baseline, we access method that deal with edge-level ambiguity but are affected by

node-level ambiguity. A series of work try to amend such differences in edge presentation

by adding additional affinity labels to each nodes[  47 ], [ 53 ]–[ 55 ]. Among them, SEAL is the

SOTA algorithm in utilizing structure feature as node label for link prediction[  47 ]. To adopt

SEAL in hyperedge prediction, we propose setSEAL that also take the output of deepsets,

i.e., we change the labeling method in SEAL with X0
(q) as node feature for graph neural net-

work. SetSEAL is expected to be affected by node-level ambiguity. For our model HIGNN,

we also compared the performance with or without fLS to illustrate the necessity to add the

spectrum information.

Following [  35 ], using 5-fold cross validation, we report the mean and standard deviation

of the F1-scores for GNN-based methods in Table  2.2 . SetSEAL showed better performance

than other baseline methods, indicating the more profound impact of edge-level ambiguity

over node-level ambiguity. By tackling both node- and edge-level ambiguity, HIGNN on
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Table 2.2. Model performance comparison on F1 score for the comparison of
GNN-based methods

Methods
Data DAWN email-Eu email-Enron NDC-classes NDC-substances threads-ask threads-math tags-ask tags-math contact-high contact-primary congress

HGNN 0.624(0.010) 0.664(0.003) 0.618(0.032) 0.614(0.005) 0.421(0.014) 0.425(0.007) 0.453(0.007) 0.545(0.005) 0.599(0.009) 0.759(0.030) 0.645(0.031) 0.412(0.003)
HRGCN 0.634(0.003) 0.661(0.006) 0.599(0.040) 0.676(0.049) 0.525(0.006) 0.464(0.010) 0.487(0.006) 0.545(0.006) 0.572(0.003) 0.739(0.012) 0.669(0.012) 0.544(0.004)
NHP 0.667(0.000) 0.668(0.002) 0.668(0.001) 0.669(0.003) 0.669(0.002) 0.670(0.003) 0.669(0.002) 0.669(0.002) 0.668(0.002) 0.671(0.003) 0.668(0.001) 0.667(0.001)
FamilySet 0.677(0.004) 0.687(0.002) 0.685(0.016) 0.768(0.004) 0.512(0.032) 0.605(0.002) 0.586(0.002) 0.605(0.002) 0.642(0.006) 0.786(0.033) 0.716(0.034) 0.566(0.011)
SetSEAL 0.814(0.013) 0.758(0.011) 0.667(0.032) 0.822(0.015) 0.868(0.019) 0.581(0.015) 0.483(0.021) 0.798(0.018) 0.833(0.015) 0.783(0.023) 0.772(0.016) 0.777(0.073)

HIGNN(fSN) 0.840(0.012) 0.780(0.010) 0.793(0.007) 0.880(0.021) 0.914(0.007) 0.623(0.024) 0.627(0.018) 0.823(0.009) 0.869(0.006) 0.832(0.003) 0.823(0.003) 0.893(0.010)
HIGNN(fSN , fLS) 0.838(0.010) 0.785(0.011) 0.793(0.016) 0.896(0.020) 0.918(0.006) 0.714(0.019) 0.654(0.027) 0.822(0.012) 0.869(0.006) 0.832(0.009) 0.834(0.002) 0.893(0.008)

Table 2.3. Model performance comparison on AUC score in predicting 2-
nodes hyperedges.

Methods
Data DAWN email-Eu email-Enron NDC-classes NDC-substances threads-ask threads-math tags-ask tags-math contact-high contact-primary congress

GM 0.557(0.007) 0.630(0.010) 0.769(0.013) 0.606(0.015) 0.660(0.010) 0.500(0.000) 0.500(0.000) 0.540(0.008) 0.554(0.012) 0.616(0.003) 0.656(0.006) 0.734(0.015)
HM 0.609(0.011) 0.700(0.015) 0.830(0.011) 0.692(0.028) 0.720(0.012) 0.501(0.001) 0.501(0.000) 0.594(0.013) 0.629(0.019) 0.706(0.004) 0.730(0.006) 0.811(0.014)
AM 0.609(0.011) 0.700(0.015) 0.830(0.011) 0.692(0.028) 0.720(0.012) 0.501(0.001) 0.501(0.000) 0.594(0.013) 0.629(0.019) 0.706(0.004) 0.730(0.006) 0.811(0.014)
CN 0.783(0.023) 0.866(0.011) 0.855(0.017) 0.675(0.025) 0.714(0.018) 0.504(0.002) 0.504(0.002) 0.813(0.026) 0.884(0.012) 0.930(0.005) 0.864(0.004) 0.904(0.009)
JC 0.759(0.024) 0.867(0.011) 0.882(0.015) 0.682(0.026) 0.732(0.022) 0.496(0.002) 0.496(0.002) 0.770(0.027) 0.841(0.010) 0.930(0.004) 0.891(0.001) 0.915(0.007)
AA 0.786(0.023) 0.870(0.011) 0.869(0.015) 0.678(0.026) 0.728(0.020) 0.504(0.002) 0.504(0.002) 0.816(0.026) 0.886(0.012) 0.932(0.005) 0.871(0.004) 0.908(0.008)

HIGNN 0.838(0.017) 0.887(0.008) 0.902(0.014) 0.828(0.015) 0.920(0.015) 0.850(0.031) 0.828(0.045) 0.873(0.015) 0.887(0.015) 0.995(0.001) 0.897(0.002) 0.911(0.009)

Table 2.4. Model performance comparison on AUC score in predicting 3-
nodes hyperedges.

Methods
Data DAWN email-Eu email-Enron NDC-classes NDC-substances threads-ask threads-math tags-ask tags-math contact-high contact-primary congress

GM 0.896(0.008) 0.935(0.008) 0.969(0.010) 0.714(0.032) 0.887(0.017) 0.500(0.001) 0.504(0.004) 0.788(0.010) 0.877(0.006) 0.977(0.004) 0.977(0.003) 0.891(0.007)
HM 0.924(0.010) 0.951(0.004) 0.793(0.014) 0.794(0.026) 0.933(0.011) 0.521(0.005) 0.524(0.005) 0.877(0.006) 0.927(0.003) 0.834(0.009) 0.729(0.010) 0.875(0.008)
AM 0.943(0.010) 0.970(0.004) 0.973(0.006) 0.795(0.025) 0.940(0.012) 0.521(0.005) 0.524(0.005) 0.883(0.005) 0.940(0.003) 0.989(0.002) 0.977(0.003) 0.938(0.011)
CN 0.935(0.010) 0.948(0.005) 0.944(0.008) 0.716(0.029) 0.863(0.015) 0.524(0.008) 0.527(0.004) 0.875(0.008) 0.927(0.005) 0.973(0.005) 0.924(0.003) 0.967(0.009)
JC 0.918(0.011) 0.942(0.006) 0.949(0.007) 0.716(0.029) 0.866(0.017) 0.524(0.008) 0.527(0.004) 0.834(0.008) 0.969(0.004) 0.970(0.006) 0.941(0.002) 0.969(0.008)
AA 0.937(0.010) 0.949(0.005) 0.949(0.007) 0.716(0.029) 0.872(0.015) 0.524(0.008) 0.527(0.004) 0.877(0.008) 0.929(0.005) 0.974(0.005) 0.928(0.003) 0.969(0.009)
HIGNN 0.971(0.004) 0.984(0.006) 0.982(0.006) 0.869(0.006) 0.973(0.009) 0.881(0.036) 0.889(0.011) 0.960(0.007) 0.978(0.004) 0.995(0.001) 0.980(0.001) 0.971(0.006)

Table 2.5. Model performance comparison on AUC score in predicting 4-
nodes hyperedges.

Methods
Data DAWN email-Eu email-Enron NDC-classes NDC-substances threads-ask threads-math tags-ask tags-math contact-high contact-primary congress

GM 0.977(0.006)3 0.977(0.009)3 0.982(0.016)4 0.880(0.053)2 0.916(0.016)2 0.519(0.011)2 0.514(0.005)2 0.919(0.012)3 0.969(0.005)3 1.000(0.000)2 0.988(0.001)2 0.928(0.021)3
HM 0.919(0.009)2 0.881(0.026)4 0.943(0.027)3 0.933(0.029)3 0.944(0.012)2 0.565(0.029)3 0.551(0.013)3 0.952(0.004)3 0.961(0.002)3 0.980(0.017)3 0.965(0.008)4 0.742(0.038)4
AM 0.987(0.005)2 0.991(0.007)3 0.983(0.012)4 0.939(0.028)3 0.952(0.014)2 0.565(0.029)2 0.551(0.013)2 0.970(0.003)3 0.989(0.003)3 1.000(0.000)3 0.998(0.001)3 0.963(0.008)3
CN 0.967(0.006)3 0.962(0.010)4 0.949(0.021)3 0.725(0.054)3 0.877(0.014)2 0.540(0.005)2 0.533(0.008)2 0.902(0.013)3 0.934(0.011)3 0.988(0.004)3 0.946(0.014)3 0.971(0.010)3
JC 0.955(0.006)4 0.958(0.010)4 0.947(0.017)4 0.725(0.054)4 0.875(0.018)2 0.540(0.005)2 0.533(0.008)2 0.862(0.010)3 0.905(0.014)3 0.984(0.984)3 0.942(0.013)3 0.974(0.008)4
AA 0.968(0.007)3 0.963(0.010)3 0.953(0.021)3 0.726(0.054)4 0.882(0.015)2 0.540(0.005)2 0.533(0.008)2 0.904(0.013)3 0.936(0.011)3 0.987(0.004)3 0.947(0.013)3 0.972(0.010)3

HIGNN 0.988(0.004) 0.992(0.005) 0.994(0.004) 0.942(0.028) 0.984(0.005) 0.885(0.030) 0.916(0.013) 0.984(0.003) 0.994(0.001) 1.000(0.000) 0.994(0.005) 0.984(0.005)
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average achieves better performance increase over all baseline methods. Compared with

HIGNN(fSN), adding the local spectrum information, namely, HIGNN(fSN , fLS), further

increases model performance in some datasets while maintained the same performance in

others.

2.4.3 Benchmark with heuristic models

Structural heuristic based methods also showed comparative performance in hyperedge

prediction. Whereas not following the aggregation form in lemma  2.1.3 , most of the methods

are free from edge-level ambiguity. Shown in a recent study [  43 ], node-level ambiguity could

also be alleviated by involving higher order heuristics. However, the introduction of higher

order information restrict heuristic methods to predict specific k-size hyperedges. Following

[ 43 ], we benchmark HIGNN with heuristic methods (Geometric Mean (GM), Harmonic Mean

(HM), Arithmetic mean (AM), Common neighbors (CN), Jaccard coefficient (JC), and ◦

Adamic-Adar index (AA)) in [  43 ] on 2-, 3- and 4-nodes hyperedges tasks, and report the

mean and standard variance of AUC of ROC in table  2.3 ,  2.4 and  2.5 . Though in some cases,

heuristic methods showed comparable performance, HIGNN still manage to deliver a stable

and better results in all three prediction scenarioes.

2.5 Ablation study

We proposed the theoretical driven HIGNN framework that tackles the ambiguities issues

in hyperedge prediction task. Thus, our key ablation design was to test the performance

differences between our method that consider the ambiguities issue and baseline methods

without such considerations. Specially, the baseline methods HGNN, setSEAL and struc-

tural heuristic methods suffer node-level ambiguity while HRGCN, NHP, and familyset suffer

edge-level ambiguity. The performance increase of HIGNN over the baseline methods were

listed in table  2.2 ,  2.3 ,  2.4 and  2.5 , which validated our theoretical analysis and advocated

the necessity in considering the ambiguities. We also evaluate the impact of spectrum in-

formation that illustrates its functionality for the task (table  2.2 ). Nonetheless, HIGNN is

a complicated framework that utilized many components each serving different purposes.
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Beside the general comparison, in the rest of the section, we evaluate the other main com-

ponents in the HIGNN framework.

2.5.1 Set neural network frameworks

The hyperedge-specific node structure feature P S
(q) characterizes the within hypergraph

dependency of each node. By implementing structure feature within the bipartite graph

neural network, fSN collectively tackles both edge- and node-level ambiguities. One key

component or requirement for fSN is that P S
(q) ∈ R‖V(q)‖×‖S‖ have different dimensions for

different hyperedge S. However, the bipartite graph neural network requires a fixed feature

matrix X0
V S

(q)
as the input. To fill this gap, we utilize set neural network (setNN), precisely

deepsets [  56 ] to standardize P S
(q) ∈ R‖V S

(q)‖×‖S‖ into X0
V S

(q)
∈ R‖V S

(q)‖×d, i.e., for each row of

P S
(q)i:

, we transfer it to a uniformed vector X0
V S

(q)i:
.

We also noted such information is in overlap with the spectrum information (fLS). Since

the singular values represent the low rank property of the affinity matrix, fLS characterizes

the local topological characteristics of a node set when predicting if they form a hyperedge.

As one of our contribution, we integrated the spectrum information in HIGNN in predicting

hyperedges. Showed in previous section, our experiments demonstrated introducing fLS

consistently improved the model performance on all benchmark datasets, especially when

GNN-based models did not performed well.

To thoroughly investigate the power of set neural network and also justify the necessity of

fLS, we ask if the spectrum information could be directly learned by the set neural network

models, i.e., if we change the setting of our set neural network model in fSN , would the

enhanced fSN alone achieves the same performance as HIGNN(fSN + fLS). To this end,

we replaced the deepsets module with set transformer [ 58 ], which is capable to learn higher

order interactions within the set. Such property corresponds well with the joint interaction

between hyperedge with its local environment. To evaluate, we constructed four scenarios

of different setNN with and without fLS: 1) deepsets, 2) deepsets fLS, 3) settransformer, 4)

settransformer fLS.
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Here we report the AUC results of these scenarios in predicting hyperedge in table  2.6 .

For both setNN, the inclusion of fLS maintains or strengthens the overall performance.

Esepecially in the case that fSN alone could not deliver a satisfactory performance (threads-

ask, threads-math). We next focus on the comparison between settransformer and deepsets

fLS. We regard the former one as learned higher order interactions and the later one as

retrieved higher order interactions. In most of the cases, deepsets plus fLS outperforms

settransformer. This result suggest that to directly learn the higher order interaction by

changing neural network structure is unlikely to match the performance of the integrating

the spectrum information fLS. We then integrate set transformer with fLS to test whether

the combined effect could achieve better performance. Surprisingly, in many cases, these

two information contradict with each other, which resulted a poor performance compared

with settransformer or deepsets fLS (DAWN, email-Eu, threads-ask, threads-math). Also

settransformer has higher computational cost compared with deepsets. Subsequently, we fail

to finish training the model for NDC-class dataset in three days and did not report results

here. Overall, this experiment revealed that higher order information is a nontrivial task

for fSN . Even we include more advanced framework, like set transformer, the information

learned may not necessarily reflect the true property of the hyperedge. This result further

advocate the necessity of fLS for the representation of hyperedge.

Table 2.6. F1 results of different set neural network scenarios.
Method

Data DAWN email-Eu email-Enron NDC-class NDC-substance threads-ask threads-math tags-ask tags-math contact-high contact-primary congress

deepsets 0.972(0.004) 0.952(0.004) 0.956(0.003) 0.973(0.008) 0.988(0.002) 0.850(0.026) 0.876(0.007) 0.967(0.001) 0.981(0.002) 0.965(0.002) 0.940(0.002) 0.988(0.002)
deepsets fLS 0.971(0.03) 0.954(0.005) 0.954(0.006) 0.973(0.009) 0.989(0.002) 0.895(0.033) 0.886(0.014) 0.966(0.003) 0.981(0.002) 0.964(0.003) 0.940(0.002) 0.988(0.002)
settransformer 0.970(0.003) 0.951(0.006) 0.957(0.004) 0.979(0.005) NA 0.866(0.019) 0.827(0.044) 0.966(0.001) 0.981(0.002) 0.964(0.003) 0.940(0.002) 0.988(0.001)
settransformer fLS 0.968(0.004) 0.950(0.005) 0.960(0.003) 0.978(0.006) NA 0.863(0.021) 0.805(0.040) 0.966(0.002) 0.980(0.001) 0.965(0.002) 0.940(0.002) 0.988(0.001)

2.5.2 Pooling methods in set neural network

To deal with different size of hyperedge local structure, we introduce set neural network

to compress and standardize such information for each nodes in the hyperedge local environ-

ment. Because of permutation invariant property of S, any row-wise operation on P S
(q) should

also be permutation invariant. SetNN fits this property perfectly as it regards P S
(q)i:

as a set

rather than an ordered vector. Moreover, most setNN models like deepsets are very efficient
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Table 2.7. AUC results of different pooling methods for set neural network.
Method

Data DAWN email-Eu email-Enron NDC-class NDC-substance threads-ask threads-math tags-ask tags-math contact-high contact-primary congress

max 0.888(0.008) 0.862(0.019) 0.952(0.004) 0.865(0.029) 0.819(0.047) 0.875(0.010) 0.893(0.013) 0.885(0.024) 0.943(0.016) 0.961(0.003) 0.937(0.002) 0.985(0.002)
mean 0.936(0.021) 0.930(0.013) 0.940(0.004) 0.930(0.013) 0.947(0.015) 0.844(0.051) 0.892(0.008) 0.877(0.025) 0.932(0.019) 0.964(0.002) 0.939(0.002) 0.986(0.002)
sum 0.956(0.011) 0.940(0.004) 0.956(0.003) 0.957(0.010) 0.964(0.012) 0.906(0.013) 0.888(0.010) 0.941(0.014) 0.969(0.007) 0.965(0.002) 0.940(0.002) 0.988(0.002)

Table 2.8. AUC results of different normalization scenarios for different hypergraph data.
Method

Data DAWN email-Eu email-Enron NDC-class NDC-substance threads-ask threads-math tags-ask tags-math contact-high contact-primary congress

Scenario 1 0.945(0.006) 0.930(0.013) 0.952(0.005) 0.933(0.013) 0.967(0.007) 0.920(0.008) 0.893(0.007) 0.945(0.011) 0.959(0.013) 0.964(0.001) 0.939(0.002) 0.988(0.002)
Scenario 2 0.956(0.011) 0.940(0.004) 0.956(0.003) 0.957(0.010) 0.964(0.012) 0.906(0.013) 0.888(0.010) 0.941(0.014) 0.969(0.007) 0.965(0.002) 0.940(0.002) 0.988(0.002)
Scenario 3 0.941(0.006) 0.939(0.005) 0.952(0.005) 0.936(0.014) 0.956(0.012) 0.867(0.041) 0.880(0.013) 0.914(0.026) 0.943(0.026) 0.964(0.002) 0.939(0.002) 0.988(0.002)
Scenario 4 0.950(0.006) 0.939(0.005) 0.946(0.005) 0.933(0.019) 0.960(0.019) 0.857(0.049) 0.874(0.017) 0.928(0.017) 0.967(0.008) 0.965(0.002) 0.939(0.002) 0.988(0.003)

to train and apply. One important parameter of setNN is the choice of pooling methods.

Theoretically, any permutation invariant pooling methods (max-/mean-/sum-pooling) would

maintain the permutation invariant property of setNN [  56 ]. As for the case of hyperedge

prediction, we recommend using sum-pooling which could reflect the edge–size information

better than max or mean pooling. We also report their differences in table  2.7 , as expected,

sum-pooling enjoys better and stable performance compared with max and mean pooling.

2.5.3 Normalization on bipartite graph neural network

The non-linear activation function in bipatite graph neural network captures the non-

linear dependency of hyperedge with different edge-degrees, which introduce additional flex-

ibility to the edge-embedding XE than the clique expansion based GNNs. Bipartite graph

neural network is capable for representing hyperedge with different edge size. One important

step in the bipartite graph neural network is to normalize node and edge embedding by their

degree or size. Essentially, such normalizations balance the local topological characteristics

and degree bias in embedding a single node or edge. Noted, an over-normalization could

eliminate contextual meaningful topological characteristics while none or less normalization

causes a degree or size bias, i.e., the difference of embedding of nodes and edges is not in

agreement with its topological characteristics but heavily influenced by its node degree or

edge size. To test the impact of different levels of normalization on the model performance,

we test the following four normalization scenarios:

Scenario 1: X l+1
E = σ(HT X l

V W l
E), X l+1

V = σ(HX l
EW l

V )
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Scenario 2: X l+1
E = σ(HT X l

V D−1
E WE), X l+1

V = σ(HX l
EWV )

Scenario 3: X l+1
E = σ(HT X l

V WE), X l+1
V = σ(D−1/2

V HX l
ED

−1/2
V WV )

Scenario 4: X l+1
E = σ(HT X l

V D−1
E WE), X l+1

V = σ(D−1/2
V HX l

ED
−1/2
V WV )

Specifically, scenario 1 corresponds to none normalization on both node and edge, which

relies on WE and WV to compensate the degree impact. Scenario 2 and 3 that correspond

to conducting the normalization on only edge-side or node-side, respectively. And scenario

4 normalizes both edge- and node-side. We compared the impact of the four normalization

scenarios on HIGNN on the benchmark datasets by fixing all other parameters.

We report the AUC results of different normalization scenarios for different hypergraph

data in table  2.8 . Compared with none (scenario 1), node-side (scenario 3) and two-side

normalization (scenario 4), edge-side normalization (scenario 2) consistently shows a better

performance in all the eight benchmark datasets. Empirically, we argue that the one-side

normalization would better balance the information loss and degree bias, such that it out-

performs scenario 1 and 4. For the better performance of scenario 2 than scenario 3, we

speculate a major reason is that we utilize the node-embedding rather than edge embedding

to predict hyperedge. By omitting the normalization on node-side, the pipeline would take

advantage of node embedding difference for a better prediction. Such that, in HIGNN, we

utilize the edge-size normalization scheme for the updating of node and edge embedding.

We also noticed other works that introduce latent parameters to control the normalization

[ 52 ]. This framework could certainly integrated in further improvement of HIGNN.

2.5.4 Complexity

To tackle the ambiguities problems in the hyperedge prediction task, HIGNN utilized

different components for specific task. Such integration adds more computational burdens

to the framework, wherein the extraction of structure features plays the key role. Theoreti-

cally, retrieving the structure feature of a hyperedge requiring the transverse of whole graph,

which adds an order of computation and makes it not feasible for large datasets. Though

the extra computation is inevitable, we could reduce the cost in several ways. First, not all

the information in the structure feature is important for the representation of hyperedge,
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especially for the nodes that are far away from the hyperedge. Restraining the structure

information within local neighbors of the hyperedge, i.e., local structure information, is suf-

ficient to restore most of the information for the model generalization and also save great

computation by limiting the transverse within q-hop. Empirically, without loss of general-

ization power [  49 ], for dense hypergraphs where each hyperedge has a large number of nodes

within their q-hop neighborhood, sampling the neighborhood is also a feasible way to reduce

the computational cost. Noted, the added computation does not prevent the application of

HIGNN on very large hypergraph (exceed the memory of GPU) as the framework fits very

well with mini-batch training scheme (extracts subgraphs for target nodes set).

2.6 Predicting DNA interactions

In mammalian cells, the 3D genome organization is proven to function in many biolog-

ical processes, and the higher-order chromatin organizations are frequently linked to long-

distance gene regulation that could control development and cell fate commitment [ 59 ], [ 60 ].

As introduced earlier, genetic interactions are higher-order connections that involve multiple

entities, such as gene, enhancer, promoter, et al [ 5 ], [  36 ], [  37 ]. Current methods for analyz-

ing the genome organization data are still limited to pair-wise connections, while efficient

tools/methods are lacking for the exploration of higher order interactions in 3D genome data

[ 18 ], [ 19 ], [ 61 ].

As a proof of concept study, here we utilize HIGNN to predict the genome higher-order

interactions (hyperedge) of mouse embryonic cells. We retrieve the 3D genome connection

data from [  18 ]. Similarly, we only keep the hyperedges that have at least two nodes, and

constructed the negative training data by generating five negative hyperedges for each hyper-

edge observed. We first test whether our model could achieve consistent performance across

different chromosomes. For each of the 17 autosomals in mouse genome, we randomly se-

lected 5 autosomals to study the interactions, resulting in 85×85 pair-wise cross validations.

We compared HIGNN with the strongest baseline method setSEAL and report the Area

under ROC curve (AUC) in figure  2.6 A. In general, HIGNN outperforms setSEAL across all

the test conditions. More importantly, the performance of HIGNN is very stable, since it
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HIGNN SetSEAL

Figure 2.6. HIGNN gives plausible prediction of higher order genetic interaction.

did not show any bias towards specific chromosomes, unlike setSEAL on chromosome 2 and

17.

We then apply HIGNN to predict the 4-way genetic interactions in chromosome 11. One

hyperedge corresponding to the interactions of the bin elements 5521, 5589, 5602, 5630, is

predicted by HIGNN that is not captured by original assay. These bins are located within

the same topological associated domain (TAD) [  62 ]. Furthermore, we find genes Map2k6,

Kcnj2 and enhancer E0524334 are located within 5521, 5589, 5602, respectively (figure  2.6 B).

The co-regulation in expression of Map2k6 and Kcnj2 has been experimentally reported in

[ 46 ]. Together, these indicate that the co-regulation may be a result of the same enhancer.

In summary, we demonstrated the reliability of HIGNN in predicting genetic higher-order

interactions, as well as the potential of using hyperedge prediction to fully evaluate the effect

of higher-order genetic interactions on gene expression.

2.7 Discussion

In this chapter, we formulate the genome interactions prediction task as hyperedge predic-

tion task. Specifically, we mathematically discussed the ambiguity issues for current model

in hyperedge structural representing tasks, i.e., node- and edge-level ambiguities. Motivated

by such derivation and previous works we present HIGNN framework to predict higher-order

interactions in hypergraph. In doing so, HIGNN utilizes bipartite graph neural network to

avoid node-ambiguity caused by different arrangment of hyperedges and applying structure

features to alleviate edge ambiguity introduced by aggregating based methods. Moreover,
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HIGNN retrieved the spectrum information of the structure features, which reflects the joint

interaction between the hyperedge and its local environment. Such information could not be

easily learned under the framework of current graph neural network. As a result, HIGNN

achieved better performance over most recent models.

Though HIGNN provides a plausible solution for hyperedge represenation tasks. There

are still rooms to achieve the exact partition, i.e., Πf (S) ≈ ΠI(S). For example, the struc-

tural features defined in this chapter is rooted from pair-wise affinity, the explainable power

is in term limited for the clique expansion of hypergraph. Introducing higher-order struc-

tural features is likely to strength presentation as combining higher order heuristics improves

prediction accuracy for empirical methods [  43 ], [  63 ]. We propose fLS to reflect the low-rank

property of XS that we argue it captures (or partially) the joint interactions of hyperedge

with its local environment. Currently, due to the hyperedge size difference, we only use

top 2 singular value for fLS. Such information retrieval comes with limited power resulting

selective performance increase in certain datasets. Utilizing more singular value or a better

way to retrieve the low rank information of XS would also help the representation. Further-

more, we could also improves the explainable power by integrating advanced components

like attention mechanism that already showed empirical success in hypergraph related tasks

like node classification and recommendation tasks [ 45 ], [ 64 ], [ 65 ].

In the next chapter, we will shift our gear to scRNA-seq data, where we proposed a

sophistically designed statistical model to identify the discrete gene expression states.
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3. LTMG: A NOVEL STATISTICAL MODELING OF GENE

EXPRESSION STATES IN SCRNA-SEQ DATA

Single-cell RNA sequencing (scRNA-seq) has gained extensive utilities in many fields, among

which, the most important one is to investigate the heterogeneity and/or plasticity of cells

within a complex tissue micro-environment and/or development process [  24 ], [  66 ], [  67 ]. This

has stimulated the design of a variety of methods specifically for single cells: modeling the

expression distribution [  68 ]–[ 70 ], differential expression analysis [  71 ]–[ 76 ], cell clustering [ 77 ],

[ 78 ], non-linear embedding based visualization [  79 ], [ 80 ] and gene co-expression analysis [  78 ],

[ 81 ]. etc. Gene expression in a single cell is determined by the activation status of the gene’s

transcriptional regulators and the rate of metabolism of the mRNA molecule. In single cells,

owing to the dynamic transcriptional regulatory signals, the observed expressions could span

a wider spectrum, and exhibit a more distinct cellular modalities, compared with those ob-

served on bulk cells [ 78 ]. In addition, the limited experimental resolution often results in a

large number of expression values under detected, i.e. zero or lowly observed expressions,

which are generally noted as ‘dropout’ events. How to decipher the gene expression multi-

modality hidden among the cells, and unravel them from the highly noisy background, forms

a key challenge in accurate modeling and analyses of scRNA-seq data.

Clearly, all the analysis techniques for single cells RNA-Seq data including differential

expression, cell clustering, dimension reduction, and gene co-expression, heavily depend on

an accurate characterization of the single cell expression distribution. Currently, multiple

statistical distributions have been used to model scRNA-Seq data [  68 ], [  69 ], [  73 ], [  74 ]. All

the formulations consider a fixed distribution for zero or low expressions disregarding the

dynamics of mRNA metabolism, and only the mean of expression level and proportion of the

rest is maintained as target of interest. These methods warrant further considerations: (i) the

diversity of transcriptional regulatory states among cells, as shown by the single molecular in

situ hybridization (smFISH) data [  82 ]–[ 84 ], would be wiped off with a simple mean statistics

derived from non-zero expression values; (ii) some of the observed non-zero expressions could

be a result of mRNA incompletely degraded, rather than expressions under certain active

regulatory input, thus they should not be accounted as true expressions; (iii) zero-inflated
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unimodal model has an over-simplified assumption for mRNA dynamics, particularly, the

error distribution of the zero or low expressions are caused by different reasons, negligence

of this may eventually lead to a biased inference for the multi-modality encoded by the

expressions on the higher end.

To account for the dynamics of mRNA metabolism, transcriptional regulatory states as

well as technology bias contributing to single cell expressions, we developed a novel left

truncated mixture Gaussian (LTMG) distribution that can effectively address the challenges

above, from a systems biology point of view. The multiple left truncated Gaussian distribu-

tions correspond to heterogeneous gene expression states among cells, as an approximation of

the gene’s varied transcriptional regulation states. Truncation on the left of Gaussian distri-

bution was introduced to specifically handle observed zero and low expressions in scRNA-seq

data, caused by true zero expressions, ‘dropout’ events and low expressions resulted from

incompletely metabolized mRNAs, respectively. Specifically, LTMG models the normalized

expression profile (log CPM, count per million reads) of a gene across cells as a mixture

Gaussian distribution with K peaks corresponding to suppressed expression (SE) state and

active expression (AE) state(s). We introduced a latent cutoff to represent the lowest ex-

pression level that can be reliably detected under the current experimental resolution. Any

observed expression values below the experimental resolution are modeled as left censored

data in fitting the mixture Gaussian model. For each gene, LTMG conveniently assigns each

single cell to one expression state by reducing the amount of discretization error to a level

considered negligible, while the signal-to-noise ratio and the interpretability of the expres-

sion data are largely improved. Based on the LTMG model, a differential expression test, a

co-regulation module detection and a cell clustering algorithm were further developed.

A systematic method validation was conducted with the following key results: (i) LTMG

achieves the best goodness of fitting in 23 high quality data sets, compared with four com-

monly utilized multimodal models of scRNA-seq data; (ii) using a set of mRNA kinetic data,

we confirmed the validity of treating a significant portion of the low but non-zero expres-

sions as a result of incompletely degraded mRNA in LTMG, which should not be considered

as true expressions under active regulations; (iii) on a cancer single cell RNA-seq data, we

demonstrated that single cell groups defined by distinct gene expression states captured
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by LTMG, are in good agreement with known sub cell types, i.e. exhausted CD8+T cell

population and subclasses of fibroblast cells, in other words, the multi-modality setting in

LTMG uncovers the heterogeneity among single cells; (iv) non-linear embedding and cell

clustering based on LTMG discretized expression states produces more informative clusters.

A user-friendly R package with all the key features of the LTMG model was released through

https://github.com/clwan/LTMGSCA.

3.1 Methods

3.1.1 Mathematical model linking gene expression states in single cell to tran-
scriptional regulation

A gene’s expression in a mammalian cell is the result of the interactions between its DNA

template and a collection of transcriptional regulatory inputs (TRIs) including: (i) transcrip-

tional regulatory factors (TFs) (cis-regulation); (ii) miRNA or lncRNA; (iii) enhancer and

super-enhancer and (iv) epigenetic regulatory signals [ 85 ], [  86 ]. For a gene with N possible

transcriptional regulation inputs, [TRIi] , i = 1, ..., N , the probability of its promoter being

bound by an RNA polymerase, Pb , which is proportional to the rate of its transcription, can

be modeled by a Michaelis–Menten equation [ 87 ], [ 88 ].

Pb =
R0 + R1[T RI1]

K1
+ ... + RN [T RIN ]

KN
+ R1,2[T RI1][T RI2]

K1,2
+ ... + R1,2...,N [T RI1][T RI2]...[T RIN ]

K1,2,...,N

1 + [T RI1]
K1

+ ... + [T RIN ]
KN

+ [T RI1][T RI2]
K1,2

+ ... + [T RI1][T RI2]...[T RIN ]
K1,2,...,N

=
∑

Ω∈M{1,...,N}
RΩ
KΩ

∏
i∈Ω[T RIi]∑

Ω∈M{1,...,N}
1

KΩ

∏
i∈Ω[T RIi]

(3.1)

Where Ri, [TRIi], Ki denote production rate, concentration and kinetic parameters as-

sociated with the ith TRI; M{1, ..., N} is the power set of {1, ..., N}, RΩ, KΩ denote the

production rate and kinetic parameters associated with the interactive effects of TRIs in Ω,

where Ω ∈ M{1, ..., N}. The set of active TRIs in a single cell fully determines the tran-

scription rate of the gene, and thus its transcriptional regulatory state (TRS). Note that in

a single cell each TRI can be rationally simplified to have two states: present or absent from
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the DNA molecule, thus the TRIi is a Boolean variable and equation  3.1 becomes a discrete

function with at most ‖M(1, ..., N)‖ = 2N values:

Pb(Current TRS = {TRI, i ∈ Ω}) =

Pb({[TRIi]� 0, [TRIj] = 0‖i ∈ Ω, j /∈ Ω, Ω ∈M}) = RΩ

(3.2)

Such discretization of gene’s transcriptional rate greatly simplified the kinetic model and

has achieved satisfactory performances in deriving the transcriptional regulatory dependency

between the gene’s expression state and its TRIs, which has been commonly utilized in

thermodynamic modeling of transcriptional regulation [  89 ]–[ 91 ]. For a mammalian cell, the

total number of combinations of TRIs can be substantially large, especially considering the

epi-genetic regulators [  85 ]. However, the number of TRSs of a gene in a single cell RNA-seq

experiment is always much smaller. The reason being: (i) the phenotypic diversity of the cells

measured in one experiment is relatively small; (ii) local interactive effects among multiple

TRIs are exerted on the same regulatory element [ 86 ] and (iii) some master repressors such

as chromatin folding or certain TFs can dominate the regulation of the gene’s expression

[ 86 ].

Denote MX as the set of all possible TRS of gene X and αX
Ω as the probablity of sampling

a cell with TRS Ω, Ω ∈MX , from the cell population. By introducting a Gaussian error to

the simplified model describe above, the probability density function of the transcriptional

rate of X in a single cell can be modeled as a mixture Gaussian distribution:

f(P X
b ) =

∑
Ω∈MX

αX
Ω

1√
2πσX

Ω

e
−

(P X
b

−RX
Ω )2

2(σX
Ω )2

s.t.
∑

Ω∈MX

σX
Ω = 1 (3.3)

where the mixing probability, mean and standard deviation, αX
Ω , RX

Ω and σX
Ω correspond

to the frequency, transcription rate, and variance of the TRS Ω. Single cell RNA-seq measures

the abundance of mature mRNA in cytosol, which is determined by the transcription and

degradation rate of the mRNA. The gene expression pattern we eventually observe is mainly

shaped by the (i) cytosol mRNA abundance, compounded with (ii) observation errors and

(iii) experimental resolution. Based on several common transcriptional regulation models,
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Figure 3.1. LTMG model for gene expression from scRNA-seq

including constant transcriptional regulatory input and transcriptional bursting [  92 ], we

extend the multimodality of transcription inputs and rates defined in (  3.2 ) and ( 3.3 ) to the

multimodality of observed mRNA abundance.

Denote x̂j, j = 1, ..., N as the normalized gene expression (such as log CPM or TPM)

of gene X in a scRNA-seq experiment with individual library constructed for N cells and

measured with high sequencing depth. Based on the derivations above, we illustrated the

relationship between the repertoire of the TRSs of X, multi-modality of mRNA abundance,

and its observed gene expression profile in Figure  3.1 A. A mixture Gaussian model is utilized

to characterize the distribution of observed normalized gene expression level of X through

multiple cells. Gene expressions falling into a same peak are considered to have the same

gene expression state (GES), that share the same TRS or different TRS with a similar mean

pattern; while the expressions falling into different peaks are more likely to have different

TRSs. We index the Gaussian peaks by their means and denote the one with smallest mean

as peak 1, and define ZX,GESi
Bound as the boundary for the (i + 1)th and ith peak, which can be

easily obtained by maximum likelihood.

For robust characterization of the single cell expression distribution, a key challenge

is to address the observed zero and low expressions. These low expressions could be a

result of multiple factors, such as technical errors, incompletely degraded mRNAs and varied

experimental resolutions. We introduced a latent threshold ZX
cut where when x̂j > ZX

cut, x̂j is

modeled by mixture Gaussian distribution. Otherwise, we conclude that x̂j cannot be reliably
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quantified under the current experimental resolution. Correspondingly, peaks with mean

smaller or larger than ZX
cut were defined as suppressed expression (SE) or active expression

(AE) peaks. ZX
cut differentiates the large expression values that are more likely to be under

active expression state, from those low expression values that are not reliably quantifiable.

In scRNA-seq data, other than a small number of housekeeping genes, an SE peak generally

exists for most genes.

Figure  3.1 A and B illustrates the relationship between the expression states of X, ob-

served expression level x̂j, and ZX
cut. Specifically, when x̂j is observed to be lower than ZX

cut,

it can be

1 true non-expression or expressions under an suppressed expression state.

2 true active expression with low observed values, i.e. ‘drop-outs’.

3 true non expression but observed to have non-zero expression value, probably due to

sequencing error, or a delay in mRNA degradation.

4 true active expression state but falsely observed to have low expression, called Type II

error.

5 true suppressed expression state but falsely observed to have high expression, called

Type I error.

6 true active expression state.

Based on the derivations above, we could model a single cell’s gene expression profile as

a multimodal distribution, with observations smaller than ZX
cut left truncated. Hence, active

expression states, i.e. the AE peaks, can be robustly inferred as mixture Gaussian is highly

sensitive to outliers; and the unquantifiable non-zero low expressions, i.e. the SE peak(s),

can be effectively handled.
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3.1.2 Left Truncated Mixture Gaussian (LTMG) distribution for gene expres-
sion modeling

To accurately and robustly model the gene expression profile of scRNA-seq data, we de-

veloped a Left Truncated Mixture Gaussian model, namely LTMG, to fit the log transformed

normalized gene expression measures of gene X, such as TPM, CPM or RPKM, over N cells

as X = (x1, x2, , xN) . We assume that xi follows a mixture Gaussian distribution with K

Gaussian peaks corresponding to different SE and AE peaks. We introduce a parameter ZX
cut

and consider the log transformed zero and low expression values smaller than Zcut as left

censored data. With the left truncation assumption, X is divided into reliably measured

expressions (xj ≥ ZX
cut) and left-censored gene expressions (xj < ZX

cut ). The density function

of X can be written as:

p(X‖Θ) =
N∏

j=1
p(xj‖Θ) =

M∏
j=1

K∑
i=1

aipi(xj‖θi, xj ≥ ZX
cut)×

N∏
j=M+1

K∑
i=1

aipi(xj‖θi, xj < ZX
cut)

=
M∏
j=1

K∑
i=1

ai
1√
2πσi

e
−

(xj−µi)2

2σ2
i ×

N∏
j=M+1

K∑
i=1

aipi(xj‖θi, xj < ZX
cut) = L(Θ‖X)

(3.4)

where parameters Θ = {ai, µi, σi‖i = 1, ..., K} and ai, µi and σi are the mixing probability,

mean and standard deviation of the K Gaussian distributions, corresponding to K expression

states, M is the number of observations xj that are larger than ZX
cut, N is the total number

of observations. Θ can be estimated using EM algorithm given ZX
cut and K. Here we first

define the Q function as:

Q(Θt, Θt−1) =
K∑

i=1

M∑
j=1

log(αt
ipi(xj‖µt

i , σt
i ))p(yj = i‖xj, Θt−1)+

N∑
j=M+1

∫ ZX
cut

−∞

K∑
i=1

log(αt
ipi(Zj‖µt

i , σt
i ))p(yj = i‖Zj, Θt−1p(Zj‖xj, Θt−1))dZj

where pi(xj‖µt
i , σt

i ) = 1√
2πσt

i
e

−
(xj−µt

i )2

2(σt
i )2 , Zj is a latent variable for the true value of xj if xj < ZX

cut,

i.e., left censored data. yj = 1, ..., K are latent variables indicating that xj comes from the jth
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Gaussian peak, and t is the current iteration step. For the tth interaction of the algorithm,

with computed parameter set Θt−1, the pdf of Zj and probability of yj are:

f(Zj‖Θt−1) =

∑
i=1,...,K

1√
2πσ)t−1

i
e

−
(Zj−µt−1

i )2

2(σt−1
i )2

∑
i=1,...,K

∫ ZX
cut

−∞
1√

2πσ)t−1
i

e
−

(Zj−µt−1
i )2

2(σt−1
i )2

dy

p(yj = k‖Θt−1, xj ≥ ZX
cut) =

1√
2πσt−1

k

e
−

(xj−µt−1
k

)2

2(σt−1
k

)2

∑
i=1,...,K

1√
2πσt−1

i
e

−
(xj−µt−1

i )2

2(σt−1
i )2

, k = 1, ..., K

p(yj = k‖Θt−1, xj < ZX
cut) =

∫ ZX
cut

−∞
1√

2πσt−1
k

e
−

(y−µt−1
k

)2

2(σt−1
k

)2
dy

∑
i=1,...,K

∫ ZX
cut

−∞
1√

2πσt−1
i

e
−

(y−µt−1
i )2

2(σt−1
i )2

dy

, k = 1, ..., K

Then the Q function could be rewrite as:

Q(Θ, Θt−1) =
K∑

i=1

M∑
j=1

log(ai)p(yi = i‖xj, Θt−1) +
K∑

i=1

M∑
j=1

log(pi(xj‖µi, σi))p(yi = i‖xj, Θt−1)

+
∑
i=1

N∑
j=M+1

∫
log(pi(xj‖µi, σi))p(Zj‖xj, Θt−1)dZjp(yj‖xj, Θt−1)

=
K∑

i=1

M∑
j=1

log(ai)p(yi = i‖xj, Θt−1) +
K∑

i=1

M∑
j=1

log(pi(xj‖µi, σi))p(yi = i‖xj, Θt−1)

+
K∑

i=1

N∑
j=M+1

1
2σ2

i
p(yj = i‖xj, Θt−1)

E(Z2
j ‖µt−1

i , σt−1
i , Zj < Zcut)

− 2µiE(Zj‖µ
t−1,σt−1

i ,Zj<Zcut

i ) + µ2
i


+

K∑
i=1

N∑
j=1

log(ai)p(yi = i‖Zj, Θt−1)
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Let H(x) = φ(x)
Φ(x) , where φ(x) and Φ(x) are the pdf and cdf of standard normal distribution.

Such that the M step could be written as:

∂Q

∂ai
= 0→ at

i = 1
N

(
M∑
j=1

P (i‖xj, Θt−1)) +
N∑

j=M+1
P (i‖Zj, Zcut, Θt−1)

∂Q

∂µi
= 0→ µt

i =
∑M

j=1 xjP (i‖xj, Θt−1) + ∑N
j=M+1(µt−1

i − σt−1
i H(Zcut−µt−1

i
σt−1

i
))P (i‖Zj, Zcut, Θt−1)∑M

j=1 P (i‖xj, Θt−1) + ∑N
j=M+1 P (i‖Zj, Zcut, Θt−1)

∂Q

∂σi
= 0→ (σt

i )2 =
∑M

j=1 P (i‖xj, Θt−1)(xj − µt−1
i )2∑M

j=1 P (i‖xj, Θt−1) + ∑N
j=M+1 P (i‖Zj, Zcut, Θt−1)

+
(σt−1

i )2 ∑N
j=M+1(1−

Zcut−µt−1
i

σt−1
i

∗H(Zcut−µt−1
i

σt−1
i

))P (i‖Zj, Zcut, Θt−1)∑M
j=1 P (i‖xj, Θt−1) + ∑N

j=M+1 P (i‖Zj, Zcut, Θt−1)

And the E step is:

E(Zj‖µt−1
i , σt−1

i , Zj < Zcut) = µt−1
i + σt−1

i E(εj‖ε <
Zcut − µt−1

i

σt−1
i

)

= µt−1
i + σt−1

i
∫ Q−µt−1

i
σt−1

i
−∞ wφ(w)dw

Φ(Zcut−µt−1
i

σt−1
i

)
= µt−1

i +
σt−1

i φ(Zcut−µt−1
i

σt−1
i

)

Φ(Zcut−µt−1
i

σt−1
i

)

= µt−1
i + σt−1

i H(Zcut − µt−1
i

σt−1
i

)

Similarly,

E(Z2
j ‖µt−1

i , σt−1
i , Zj < Zcut) = (µt−1

i )2 + (σt−1
i )2 − σt−1

i (Zcut + µt−1
i )H(Zcut − µt−1

i

σt−1
i

)

Θ can be estimated by iteratively running the E and M step in the above algorithm given

Q, X and K.
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3.2 Experiments

3.2.1 Dataset and existing methods

To conduct a comprehensive evaluation of our model, we collected 23 datasets totaling

66780 human and mouse cells across different cell extraction and sequencing platforms with

varied experimental designs. It is noteworthy there are multiple scRNA-seq protocols that

differ by cell capture, lyse and sequencing methods. These methods either construct indi-

vidual libraries for each cell, or an overall library for thousands of cells at once, the latter of

which is known as ‘drop-seq’ based method. Recent reviews suggested that the Smart-Seq2

protocols achieve best performance among the methods with individual libraries, and 10×

Genomics Chromium is the most utilized commercialized pipeline [  93 ]. Our data collection

comprehensively covers human and mouse data generated by Smart-seq/Smart-Seq2, 10x

Genomics and inDrops platforms from January 2016 to June 2018 in the GEO database.

Hence, we consider this collection as unbiased testing data that can represent the general

characteristics of the single cell data generated from the two types of protocols. Since each

dataset has different levels of complexity, we reorganized the datasets into sub datasets with

comparable levels of complexities. The sub datasets were generated to represent three differ-

ent types of sample complexities: (i) pure condition, where each sub dataset contains cells

of one type under a specific experimental condition; (ii) cell cluster, where each sub dataset

belongs to a priori computationally clustered cells and (iii) complete data, where each sub

dataset contains multiple mixed cell population, such as cells from one cancer tumor tissue.

In total, sub datasets with 51 pure condition, 49 cell cluster and 78 complete data were

extracted from the 23 large data sets. It is noteworthy that each sub data set consists of

only cells from one of the 23 original data set, to avoid causing batch effect from single cell

RNA sequencing.

We compared LTMG with Zero-inflated mixed Gaussian (ZIMG), MAST[  68 ] and Beta

Poisson (BPSC) [  69 ]. We use MAST with default parameters, and for each gene, only

non-zero values were used and fitted with Gaussian distribution. For BPSC, to achieve a

reliable estimation, only genes with non-zero expressions in at least 25 single cells were kept.

ZIMG was used with default parameters. Kolmogorov Statistic (KS) is used to measure
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Figure 3.2. Model comparison of LTMG and existing methods

gene-wise goodness of fitting. For each gene, the KS score is assessed by using the none zero

observations for ZIMG, MAST and BPSC models and normalized by dividing the KS score

by the none zero proportions, due to their zero inflation assumption. Only genes kept for

all four models are used for downstream evaluations. For each extracted sub dataset, we

defined a goodness fitting score for each method using the mean and standard deviation of

gene-wise KS values:

GFscore = 1
2(K̄S + σ(KS))

where K̄S is the mean value of gene-wise KS scores from a dataset and σ(KS) is the standard

deviation. The GF score evaluates each method on both overall accuracy (lower K̄S value)

and stability (lower σ(KS) ), and smaller GF indicates better goodness of fitting.
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3.2.2 LTMG achieved better goodness of fitting

We first applied LTMG, ZIMG, MAST and BPSC to fit the expression profile of each

gene in all the 178 sub data sets. Kolmogorov Statistics (KS) [ 94 ] was applied to evaluate

the goodness of fitting of each gene, and for each dataset using each method. The mean

and standard deviation of the KS values over all the genes for each dataset and method

was calculated, and the 178 sub datasets were ordered in increasing order by the mean KS

values calculated based on LTMG.And the comparisons on the top 91 datasets were shown

in Figure  3.2 A, which suggested: (a) LTMG has significantly better goodness of fitting

compared with BPSC and MAST in all the analyzed data sets and outperforms ZIMG in

most of the datasets (Figure  3.2 A); (b) LTMG generally has a smaller number of outliers

with poor fitting through all the datasets (Figure  3.2 B), suggesting the higher robustness of

LTMG comparing to others. Our analysis suggested that the average proportion of genes

fitted with one, two, and more than two peaks are 42.5%, 44.9% and 12.6% in pure condition,

16.6%, 65.7% and 17.6% in cell cluster, and 25.4%, 51.5% and 23.1% in complete data sets,

respectively.

In addition to investigating the goodness of fitting over all the genes, we focused on

a more detailed comparison of gene groups that are fitted with different number of peaks

under LTMG. We compared the goodness of fitting between LTMG and ZIMG, MAST, on

all the genes, genes fitted with one, two and multiple peaks. Here, BPSC was dropped

from the comparison, since it has much lower performance than other models. Figure  3.2 C

shows the top 30 sub datasets in each of the three cases: pure condition, cell cluster and

complete data, that has the smallest KS values based on LTMG model respectively. Within

the cell cluster and complete data sets, LTMG consistently outperformed ZIMG (120/127)

and MAST (127/127), for genes fitted with different peaks. In the pure condition datasets,

LTMG outperformed MAST in all the sub data sets (51/51), outperformed ZIMG (42/51)

for the genes fitted with more than two Gaussian peaks, and have comparable performance

as ZIMG (23/51) for the genes that are fitted with one or two peaks. A possible reason for

the less significant performance of LTMG on the pure condition datasets could be that the

sample size of the PC datasets is generally small (�115 cells on average) compared to cell
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cluster (�388 cells) and complete (�622 cells) data sets. A consequence is that the half bell

shaped SE peak (Figure  3.1 A) is not significantly different from a full Gaussian peak when

the sample size is small. Notably, ZIMG tends to overfit, as the non-zero expression caused

by incompletely degraded mRNA could inflate the number of AE peaks, while LTMG can

effectively handle the non-zero low expressions by the left truncation assumption.

We also applied the LTMG model to three recent data sets of purified T cells collected

from liver, lung and colon cancer tissues [ 95 ]–[ 97 ]. These data sets all consist of pure T

cell with large sample sizes (5063, 11 138, and 12 346 cells). In these data sets, LTMG also

achieved the best goodness of fitting comparing to ZIMG and MAST. LTMG identified more

than 44.5% (4893/10 874), 69.73% (7093/10 172) and 69.95% (7551/10 794) of significantly

expressed genes with at least one SE peak and two AE peaks in the three datasets, respec-

tively. We further utilized a stringent criterion to select only the genes with at least two AE

peaks, each of which covers significant proportion of the total cells and is distinct to other

peaks. This results in 26.56% (2888/10 874), 22.67% (2306/10 172) and 24.56% (2651/10

794) of the genes with at least two distinct AE peaks in the three data sets, demonstrat-

ing the prevalence of multi-modality in gene expression states in large data sets, and the

heterogeneity of single T cell expressions in tumor micro-environment.

3.2.3 LTMG handles zero and low expressions properly

The observed low expression depicted as 3 and 4 in Figure  3.1 A are generally seen

in all the analyzed data sets, which on average take 27.9%, 16.3% and 14.5% of non-zero

values in the PC, CC and CD data. We hypothesized that one major contributor of the low

expression is the incompletely degraded mRNA under the regulation of a TRS of suppressed

state, which should be distinguished from those TRSs under active states, namely, 6 (Fig-

ure  3.3 A). To validate this hypothesis, we collected a data set of experimentally measured

mRNA kinetics of mouse fibroblast cells [  98 ], and two scRNA-seq data set (GSE99235 and

GSE98816) of mouse fibroblast cells [ 99 ], [ 100 ]. We examined the correlations between the

mRNA half-lives and the estimated proportion of incompletely degraded mRNA. Specifi-

cally, positive correlations between (i) the proportions of uncensored observations in the SE
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Figure 3.3. LTMG can handle experimental noise

peak, defined by 3 + 4
1 + 2 + 3 + 4

in Figure  3.1 A, and (ii) mRNA half-life, were consistently

observed in both data sets (Figure  3.1 B), suggesting that genes with more uncensored expres-

sions regulated by suppressing regulators are probably a result of longer mRNA half-life. It

is noteworthy the AE peaks for higher mean expression suffer less impact from the non-zero

low expressions. To adjust for this bias, we examined the correlations of mRNA half-life with

the proportion of uncensored observations conditional on the mean of AE peak. Significant

positive correlations (P < 0.05) were observed for the genes with a relatively larger mean of

AE peak, and the correlations tend to be stronger among the genes with larger AE peaks,

in both of the analyzed data sets (Figure  3.3 C), further validated the relationship between

the observed low expression and incompletely degraded mRNA.

3.3 Biological applications

3.3.1 Modeling the transcriptomic heterogeneity among cells

The multi-modality characteristic of LTMG unravels the transcriptomic heterogeneity

among a cell population. We then ask how cells behave with respect to our identified SE

and AE peaks. For a gene, we denoted the cells with non-zero expression as ‘Exp’, the cells

assigned to the AE peaks as ‘AE’ and the cells assigned to the SE peaks as ‘SE’. We tested
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Figure 3.4. LTMG captures transcriptomic heterogeneity

for cell marker genes, how the cells of known cell type labels are distributed through the

‘AE’, ‘Exp’ and ‘SE’ cell groups, with regards to different marker genes. Our hypothesis is

that for the cells with a certain identity such as cytotoxic T cells, they are expected to overly

express specific cell marker genes like granzymes, such that their expression level is more

likely to be in an AE peak rather than an SE peak. On the other hand, T cells are more

likely to be enriched in certain AE peaks of granzymes but are excluded in SE peaks. In

addition, since LTMG identifies certain low non-zero expressions to SE peak, we hypothesize

that a cell type will be more strongly enriched to the AE peaks rather than all the cells with

non-zero expression value of a marker gene.

We applied LTMG on a head and neck cancer (HNSC) data set (GSE103322) consisting

of 5902 cells of nine cell types namely B cell, T cell, Myocyte, Macrophage, Endothelial,

Dendritic and Mast cell, with pre-annotated cell labels and uniquely expressed maker genes

[ 24 ]. We defined an enrichment score to evaluate the association between cell type and the
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cell expression states, namely, ‘AE’, ‘Exp’ and ‘SE’, for each marker gene. Not surprisingly,

our analysis showed that a cell type always significantly enriches the ‘AE’ expression state

if the gene is specific to the cell type, suggesting that the AE state identified by LTMG

is a good characterization of the true active expression state, comparing to other methods.

Figure  3.4 A shows the enrichment score of T and fibroblast cells associated with ‘AE’, ‘Exp’

and ‘SE’ states, for eight T cell marker genes (top eight rows) and eight fibroblast marker

genes (bottom eight rows). Figure  3.4 B and C illustrate the LTMG fitted curves of GZMK, a

cytotoxic T cell marker, and COL6A3, a fibroblast marker. Figure  3.4 D shows on a clustering

visualization using 2D-tSNE plot of the nine cell types, the distribution of all the cells with

the AE and uncensored SE states of these two genes. We observed that the CD8+ T cells

with the AE expressions or uncensored SE expressions of GZMK were clearly separated

to high cytotoxic and exhausted CD8+ T cells in the HNSC microenvironment [ 101 ]–[ 103 ]

(Figure  3.4 E). Similarly, the fibroblast cells with an AE or an uncensored SE expression of

COL6A3 were differentially distributed as two sub fibroblast types (Figure  3.4 F). Moreover,

cells that expressed in SE peak are scattered outside T cell or Fibroblast cell region, validated

that SE peak does not representing cell type identity and should be de-noised for further

analysis.

3.3.2 Single-cell clustering based on inferred modality by LTMG

Our analysis suggested that the gene expression states inferred by LTMG can reflect the

cell type specific gene expression characteristics by effectively removing the noise of the low

but non-zero expressions. Here we show that this denoising approach can largely benefit the

cell clustering analysis and visualization of the single cell data collected from complicated

microenvironment such as cancer and peripheral blood samples.

Five dimension reduction and clustering methods including: (i) UMAP; (ii) t-SNE; (iii)

UMAP on LTMG denoised data, called LTMG UMAP; (iv) t-SNE on LTMG denoised

data, called LTMG t-SNE and (v) SIMLR, were compared on three datasets: GSE103322,

GSE72056, and 10× PBMC with annotated cell types. We compared LTMG UMAP, LTMG

t-SNE, UAMP, t-SNE and SIMLR by using the Silhouette width, the higher value of which
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suggests a better consistency between predicted cell clusters and true cell labels. 2D visu-

alization of cell clustering and the Silhouette width were shown in Figure  3.5 . Our analysis

suggested the cell clusters inferred from LTMG denoised data outperform the clusters iden-

tified by using original data, for both UMAP and t-SNE. In the GSE72056 and GSE103322

dataset, cell surface markers and predicted copy number variations were used to identify

true malignant cells, which were composed by multiple subclasses of cells due to inter-tumor

heterogeneity, as illustrated by the red colored cells in Figure 4. We observed the malignant

cells, as well as other normal cells, are more spreaded over the 2D UAMP and t-SNE of

the original data while the LTMG UMAP and LTMG t-SNE well manage the subclass of

malignant cells from different patients (Figure  3.5 ). In addition, different types of immune

and stromal cells were better distinguished from malignant cells and each other in the LTMG

UMAP and LTMG t-SNE based embedding. A possible explanation is that the LTMG based

transformation of gene expression states can better characterize the inter-cell type varied ex-

pression states via removing the intra-cell type gene expression variations that do not form

varied expression states.

3.4 Discussion

We developed LTMG as a statistical model specifically for scRNA-Seq data. LTMG

considers the heterogeneity of transcriptional regulatory and gene expression states, and in

handling the low expressions, LTMG considers the metabolism rates of mRNA molecules, and

experimental resolution in modeling scRNA-seq data, from a systems biology perspective.

Our comprehensive model evaluations demonstrated that LTMG can accurately infer the

multi-modality of genes expression states, better handle low expressions caused by suppressed

regulation and incompletely degraded mRNA, and has a significantly improved goodness of

fitting, compared to other existing models.

LTMG is designed for analysis of scRNA-seq with a comparable sequencing depth for each

cell. Application of LTMG on drop-seq based data such as 10x Genomics data demonstrated

that the model also outperforms other models in goodness of fitting and can successfully infer

multimodality from single gene’s expression profile. However, in cases where a wide span of
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total reads among the cells in the drop-seq data exist, the distribution of the normalized gene

expression may be severely affected by variations in total sequenced reads. We noticed that,

the inference of varied expression states heavily relies on sample size. For the cells collected

from a pure condition, on average, LTMG only identified 200–1500 genes with more than one

distinct AE peaks when the sample size is several hundreds, while >2000 of such genes can be

identified when the sample size is larger than 5000. SC2P introduced a cell wise sequencing

resolution to account for the discrepancies in library sizes [ 74 ]. A possible future direction of

LTMG is to incorporate a similar cell wise factor into the current model, so it will improve the

characterization of varied expression resolution and SE peak for drop-seq based scRNA-Seq

data. LTMG characterize the heterogenous gene expression states via a mixture Gaussian

model on log normalized gene expression data. Log-normal assumption has been commonly

utilized to model the active expressions, i.e. non-zero expressions, in MAST, scImpute,

and SC2P. However, as derived in the above method, gene expression regulated by high

frequency transcriptional bursting or highly dynamic regulatory signals, may unnecessarily

follow distinct gene expression states that fits the mixture Gaussian assumption. High

resolution data such as large scale smFISH data would be needed for inference of the gene

expression states in this case, with more sophisticated model.

Our analysis also suggested that the cell clustering conducted on LTMG inferred gene

expression states performs better than clustering on the raw expression data, either using

the same or different clustering techniques. This indicates that to distinguish cell types, it

suffices to use the distinct expression states of the genes, which forms a good characterization

of the difference among cell types, and more importantly, the discretized expression states

are more robust to noise and outliers. We believe that the cell type specifically expressed

genes tend to form distinct gene expression states across a large cell population, compared

with those non-specific genes, such as housekeeping genes, which could usually be fitted with

one Gaussian peak of large variance. The flexibility in selecting the best number of peaks in

LTMG can thus identify the genes with significantly varied expression states, that are more

likely to be cell type specific markers. Actually, regulation of the cell type specific genes

is more commonly seen through constant regulatory inputs, which best fits the assumption

of LTMG model. Successfully distinguishing the cell type and phenotypic genes not only
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Figure 3.5. Clustering visualization of LTMG inferred states

increase the specificity of cell type clustering analysis, but also helps to extract the low rank

structure in scRNA-seq data and provides more biologically meaningful visualization. LTMG

model can also fit into cases with transcriptional bursting regulations, when considering the

bi-state property observed from transcriptional bursting. A straightforward link between

LTMG inferred peaks and the transcriptional bursting model is that the proportion and

mean of each peak in LTMG directly corresponds to the frequency and expression level

of each input signal [ 13 ]. Eventually, we hope the LTMG model based inference of gene

expression states will shed new light on deducing the mechanisms transcriptional regulation

by using scRNA-seq data.

LTMG transferred the continuous scRNA-deq data into discrete gene expression state

data, which is a binary matrix, where every row is a gene expression state and every column

is a cell. In the next chapter, we will introduce a machine learning approach, Boolean matrix

factorization, that would be utilized to identify functional cell types from LTMG inferred

discrete expression states.
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4. FAST AND EFFICIENT BOOLEAN MATRIX

FACTORIZATION BY GEOMETRIC SEGMENTATION

4.1 Overview

Binary data gains more and more attention during the transformation of modern living

[ 104 ], [  105 ]. It consists of a large domain of our everyday life, where the 1s or 0s in a binary

matrix can physically mean whether or not an event of online shopping transaction, web

browsing, medical record, journal submission, etc, has occurred or not. The scale of these

datasets has increased exponentially over the years. Mining the patterns within binary data

as well as adapting to the drastic increase of dimensionality is of prominent interests for

nowadays data science research. Recent study also showed that some continuous data could

benefit from binary pattern mining. For instance, the binarization of continuous single cell

gene expression data to its on and off state, can better reflect the coordination patterns of

genes in regulatory networks [  13 ]. However, owing to its two value characteristics, the rank

of a binary matrix under normal linear algebra can be very high due to certain spike rows

or columns. This makes it infeasible to apply established methods such as SVD and PCA

for BMF [ 106 ].

Boolean matrix factorization (BMF) has been developed particularly for binary pattern

mining, and it factorizes a binary matrix into approximately the product of two low rank

binary matrices following Boolean algebra, as shown in Figure 1. The decomposition of

a binary matrix into low rank binary patterns is equivalent to locating submatrices that

are dense in 1. Analyzing binary matrix with BMF shows its unique power. In the most

optimal case, it significantly reduces the rank of the original matrix calculated in normal

Figure 4.1. BMF, the addition of rank 1 binary matrices
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linear algebra to its log scale [  107 ]. Since the binary patterns are usually embedded within

noisy and randomly arranged binary matrix, BMF is known to be an NP-hard problem [ 25 ].

4.2 Background

BMF was first introduced as a set basis problem in 1975 [  108 ]. This area has received

wide attention after a series of work by Mittenin et al [  25 ], [  109 ], [  110 ]. Among them, the

ASSO algorithm performs factorization by retrieving binary bases from row-wise correlation

matrix in a heuristic manner [ 25 ]. Despite its popularity, the high computational cost of

ASSO makes it impracticable when dealing with large scale data. Recently, an algorithm

called Nassua was developed by the same group [  110 ]. Nassua optimizes the initialization

of the matrix factorization by locating dense seeds hidden within the matrix, and with im-

proved performance comparing to ASSO. However, optimal parameter selection remains a

challenge for Nassua. A second series of work called PANDA was developed by Claudio et al

[ 111 ], [  112 ]. PANDA aims to find the most significant patterns in the current binary matrix

by discovering core patterns iteratively [  111 ]. After each iteration, PANDA only retains a

residual matrix with all the non-zero values covered by identified patterns removed. Later,

PANDA+ was recently developed to reduce the noise level in core pattern detection and

extension [ 112 ]. These two methods also suffer from inhibitory computational cost, as they

need to recalculate a global loss function at each iteration. More algorithms and applica-

tions of BMF have been proposed in recent years. FastStep [  113 ] relaxed BMF constraints to

non-negativity by integrating non-negative matrix factorization (NMF) and Boolean thresh-

olding. But interpreting derived non-negative bases could also be challenging. With prior

network information, Kocayusufoglu et al, decompose binary matrix in a stepwise fashion

with bases that are sampled from given network space [  104 ]. Bayesian probability map-

ping has also been applied in this field . Ravanbakhsh et al proposed a probability graph

model called “factor-graph” to characterize the embedded patterns, and developed a message

passing approach, called MP [  114 ]. On the other hand, Ormachine, proposed by Rukat et

al, provided a probabilistic generative model for BMF [  115 ]. Similarly, these Bayesian ap-
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proaches suffer from low computational efficiency. In addition, Bayesian model fitting could

be highly sensitive to noisy data.

4.2.1 Notations

A matrix is denoted by a uppercase character with a super script n ×m indicating its

dimension, such as Xn×m, and with subscript Xi,:, X:,j, Xij indicating ith row, jth column,

or the (i, j)th element, respectively. A vector is denoted as a bold lowercase character,

such as a, and its subscript ai indicates the ith element. A scalar value is represented

by a lowercase character, such as a, and [a] as its integer part. ‖X‖ and ‖x‖ represents

the `1 norm of a matrix and a vector. Under the Boolean algebra, the basic operations

include ∧(AND, 1 ∧ 1 = 1, 1 ∧ 0 = 0, 0 ∧ 0 = 0), ∨(OR, 1 ∨ 1 = 1, 0 ∨ 1 = 1, 0 ∨ 0 = 0),

¬(NOT,¬1 = 0,¬0 = 1). Denote the Boolean element-wise sum, subtraction and product

as A ⊕ B = A ∨ B, A 	 B = (A ∧ ¬B) ∨ (¬A ∧ B) and A ~ B = A ∧ B, and the Boolean

matrix product of two Boolean matrices as Xn×m = An×k⊗Bk×m, where Xij = ∨k
l=1Ail∧Blj.

4.2.2 Problem statement

Given a binary matrix X ∈ {0, 1}n×m and a criteria parameter τ , the BMF problem is

defined as identifying two binary matrices A∗ and B∗, called pattern matrices, that minimize

the cost function γ(A, B; X) under criteria τ , i.e., (A∗, B∗) = argminA,B(γ(A, B; X)‖τ). Here

the criteria τ could vary with different problem assumptions. The criteria used in the current

study is to identify A∗ and B∗ with at most k patterns, i.e., A ∈ {0, 1}n×k, B ∈ {0, 1}k×m,

and the cost function is γ(A, B; X) = ‖X 	 (A⊗ B)‖. We call the lth column of matrix A

and lth row of matrix B as the lth binary pattern, or the lth basis, l = 1, ..., k.

4.3 MEBF Algorithm Framework

4.3.1 Motivation of MEBF

BMF is equivalent to decomposing the matrix into the sum of multiple rank 1 binary

matrices, each of which is also referred as a pattern or basis in the BMF literature [ 111 ].
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Figure 4.2. Three simplified scenarios for UTL matrices with direct SC1P.
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Figure 4.3. A schematic overview of the MEBF pipeline for three data sce-
narios where the matrix is roughly UTL with SC1P.

Lemma 4.3.1 (Submatrix detection). Let A∗,B∗ be the solution to

arg min
A∈{0,1}n×k,B∈{0,1}k×m

‖X 	 (A⊗B)‖,

then the k patterns identified in A∗, B∗ correspond to k submatrices in X that are dense

in 1’s. In other words, finding A∗, B∗ is equivalent to identify submatrices XIl,Jl
, Il ⊂

{1, . . . , n}; Jl ⊂ {1, . . . , m}, l = 1, ..., k, s.t.‖XIl,Jl
‖ ≥ t0(‖Il‖ ∗ ‖Jl‖). Here ‖Il‖ is the

cardinality of the index set Il, t0 is a positive number between 0 and 1 that controls the noise

level of XIl,Jl
.

Proof. ∀l, it suffices to let Il be the indices of the lth column of A∗ , such that A∗
:,l = 1; and

let Jl be the indices of the lth row of B∗ such that B∗
l,: = 1.
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Motivated by Lemma  4.3.1 , instead of looking for patterns directly, we turn to identify

large submatrices in X that are enriched by 1, such that each submatrix would correspond

to one binary pattern or basis.

Definition 4.3.1 (Direct consecutive-ones property, direct C1P). A binary matrix

X has direct C1P if for each of its row vector, all 1’s occur at consecutive indices.

Definition 4.3.2 (Simultaneous consecutive-ones property, SC1P). A binary matrix

X has direct SC1P, if both X and XT have direct C1P; and a binary matrix X has SC1P,

if there exists a permutation of the rows and columns such that the permutated matrix has

direct SC1P.

Definition 4.3.3 (Upper Triangular-Like matrix, UTL). A binary matrix Xm×n is

called an Upper Triangular-Like (UTL) matrix, if 1) ∑m
i=1 Xi1 ≤

∑m
i=1 Xi2 ≤ · · · ≤

∑m
i=1 Xin;

2) ∑n
j=1 X1j ≥

∑n
j=1 X2j ≥ · · · ≥

∑n
j=2 Xmj. In other words, the matrix has non-increasing

row sums from top down, and non-decreasing column sums from left to right.

Lemma 4.3.2 (UTL matrix with direct SC1P). Assume X has no all-zero rows or

columns. If X is an UTL matrix and has direct SC1P, then an all 1 submatrix of the largest

area in X is seeded where one of its column lies in the medium column of the matrix, or one

of its row lies in the medium row of the matrix, as shown in Figure  4.2 .

Figure  4.2 presented three simplified scenarios of UTL matrix that has direct SC1P. In

(a), (b), the 1’s are organized in triangular shape, where certain rows in (a) and certain

columns in (b) are all zero, and in (c), the 1’s are shaped in block diagonal. After removing

all-zero rows and columns, the upper triangular area of the shuffled matrix is dense in 1. It

is easy to show that a rectangular with the largest area in a triangular is the one defined

by the three midpoints of the three sides, together with the vertex of the right angle of

the triangular, as colored by red in Figure  4.2 . The width and height of the rectangular

equal to half of the two legs of the triangular, i.e. (m
2 , n0

2 ), (m0
2 , n

2 ), (m
2 , n

2 ) for the three

scenarios in Figure  4.2 respectively. According to Lemma  4.3.2 , this largest rectangular

contains at least one row or one column (colored in yellow) of the largest all 1 submatrix in

the matrix. Consequently, starting with one row or column, expansions with new rows or
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columns could be done easily if they show strong similarity to the first row or column. After

the expansion concludes, one could determine whether to retain the submatrix expanded

row-wise or column-wise, whichever reduces more of the cost function.

It is common that the underlying SC1P pattern may not exist for a binary matrix, and

we turn to find the matrix with closest SC1P.

Definition 4.3.4 (Closest SC1P). Given a binary matrix X and a nonnegative weight

matrix W , a matrix X̂ that has SC1P and minimizes the distance dW (X, X̂) is the closest

SC1P matrix of X.

Based on Lemma  4.3.2 , we could find all the submatrices in Lemma  4.3.1 by first per-

mutating rows and columns of matrix X to be an UTL matrix with closest direct SC1P,

locating the largest submatrix of all 1’s, to be our first binary pattern. Then we are left

with a residual matrix whose entries covered by existing patterns are set to zero. Repeat the

process on the residual matrix until convergence. However, finding matrix of closest SC1P

of matrix X is NP-hard [ 116 ], [ 117 ].

Lemma 4.3.3 (Closest SC1P). Given a binary matrix X and a nonnegative weight matrix

W , finding a matrix X̂ that has SC1P and minimizes the distance dW (X, X̂) is an NP-hard

problem.

The NP-hardness of the closest SC1P problem has been shown in [ 116 ], [  117 ]. Both

exact and heuristic algorithms are known for the problem, and it has also been shown if the

number of rows or columns is bounded, then solving closest SC1P requires only polynomial

time [  118 ]. In our MEBF algorithm, we attempt to address it by using heuristic methods

and approximation algorithms.

4.3.2 MEBF algorithm

Overall, MEBF adopted a heuristic approach to locate submatrices that are dense in

1’s iteratively. Starting with the original matrix as a residual matrix, at each iteration,

MEBF permutates the rows and columns of the current residual matrix so that the 1’s are

gathered on entries of the upper triangular area. This step is to approximate the permutation
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operation it takes to make a matrix UTL and direct SC1P. Then as illustrated in Figure  4.2 

and Figure  4.3 , the rectangular of the largest area in the upper triangular, and presumably, of

the highest frequencies of 1’s, will be captured. The pattern corresponding to this submatrix

represents a good rank-1 approximation of the current residual matrix. Before the end of

each iteration, the residual matrix will be updated by flipping all the 1’s located in the

identified submatrix in this step to be 0.

Algorithm 1 MEBF
Inputs: X ∈ {0, 1}n×m, t ∈ (0, 1),τ
Outputs: A∗ ∈ {0, 1}n×k, B∗ ∈ {0, 1}k×m

MEBF (X, t, τ):
Xresidual ← X, γ0 ← inf
A∗ ← NULL, B∗ ← NULL
while !τ do

(a, b)← bidirectional_growth(Xresidual, t)
Atmp ← append(A∗, a)
Btmp ← append(B∗, b)
if γ(Atmp, Btmp; X) > γ0 then

(a, b)← weak_signal_detection(Xresidual, t) Atmp ← append(A∗, a)
Btmp ← append(B∗, b)

else if γ(Atmp, Btmp; X) > γ0 then
break

end if
A∗ ← append(A∗, a)
B∗ ← append(B∗, b)
γ0 ← γ(A∗, B∗; X)
Xresidualij ← 0 when (a⊗ b)ij = 1

end while

Shown in Figure  4.3 a, for an input Boolean matrix (a1), MEBF first rearranges the

matrix to obtain an approximate UTL matrix with closest direct SC1P. This was achieved

by reordering the rows so that the row norms are non-increasing, and the columns so that the

column norms are non-decreasing (a2). Then, MEBF takes either the column or row with

medium number of 1’s as one basis or pattern (a3). As the name reveals, MEBF then adopts a

median expansion step, where the medium column or row would propogate to other columns

or rows with a bidirectional growth algorithm until certain stopping criteria is met. Whether

to choose the pattern expanded row-wise or column-wise depends on which one minimizes the
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cost function with regards to the current residual matrix. Before the end of each iteration,

MEBF computes a residual matrix by doing a Boolean subtraction of the newly selected

rank-1 pattern matrix from the current residual matrix (a4). This process continues until

the convergence criteria was met. If the patterns identified by the bidirectional growth step

stopped deceasing the cost function before the convergence criteria was met, another step

called weak signal detection would be conducted (a6,a7). Figure  4.3 b illustrated a special

case, where the permutated matrix is roughly block diagonal (b1), which corresponds to

the third scenario in Figure  4.2 . The same procedure as shown in 3a could guarantee the

accurate location of all the patterns. The computational complexity of bidirectional growth

and weak signal detection algorithms are both O(nm) and the complexity of each iteration

of MEBF is O(nm). The main algorithm of MEBF is illustrated below:

4.3.3 Bidirectional Growth

For an input binary (residual) matrix X, we first rearrange X by reordering the rows

and columns so that the row norms are non-increasing, and the column norms are non-

decreasing. The rearranged X, after removing its all-zero columns and rows, is denoted as

X ′, the median column and median row of X ′ as X ′
:,med and X ′

med,:. Denote X:,(med) and

X(med),: as the column and row in X corresponding to X ′
:,med and X ′

med,:. The similarity

between X:,(med) and columns of X can be computed as a column wise correlation vector

m ∈ (0, 1)m, where mi = <X:,i,X:,(med)>

<X:,(med),X:,(med)>
. Similarly, the similarity between X(med),: and rows

of X can be computed as a vector n ∈ (0, 1)n,nj = <Xj,:,X(med),:>

<X(med),:,X(med),:>
. A pre-specified threshold

t ∈ (0, 1) was further applied, and two vectors e and f indicating the similarity strength of

the columns and rows of X with X:,(med) and X(med),:, are obtained, where ej = (mj > t)

and fi = (ni > t). Here the binary vectors e and f each represent one potential BMF

pattern . In each iteration, we select the row or column pattern whichever fits the current

residual matrix better, i.e. the column pattern if γ(X:,(med), e; X) < γ(f, X(med),:; X), or the

row pattern otherwise. Here, the cost function is defined as γ(a, b; X) = ‖X	(a⊗b)‖. This

is equivalent to selecting a pattern that achieves lower overall cost function at the current

step. Obviously here, a smaller t could achieve higher coverage with less number of patterns,

73



while a larger t enables a more sparse decomposition of the input matrix with greater number

of patterns. Patterns found by bidirectional growth do not guarantee a constant decrease of

the cost function. In the case the cost function increases, we adopt a weak signal detection

step before stopping the algorithm.

Algorithm 2 Bidirectional Growth
Inputs: X ∈ {0, 1}n×m, t ∈ (0, 1]
Outputs: (a,b)
bidirectional_growth(X, t) :
X ′ ← UTL operation on X
d← X:,(med), e← {(<X:,j,d>

<d,d>
> t), j = 1, ..., m}

f← X(med),:, g← {(<Xi,:,f>
<f,f> > t), i = 1, ..., n}

if γ(d, e; X) > γ(g, f; X) then
a← g; b← f

else
a← d; b← e

end if

4.3.4 Weak Signal Detection Algorithm

Algorithm 3 Weak Signal Detection
Inputs: X ∈ {0, 1}n×m, t ∈ (0, 1]
Outputs: (a, b)
Weak_signal_detection(X, t)
X ′ ← UTL operation on X
d1 ← X ′

:,m ∧X ′
:,m−1

e1 ← {(<X:,j,d1>

<d1,d1>
> t), j = 1, ..., m}

e2 ← X ′
1,: ∧X ′

2,:

d2 ← {(<Xi,:,e2>

<e2,e2>
> t), i = 1, ..., n}

l← arg minl=1,2 γ(dl, el, X)
a← dl; b← el

The bidirectional growth steps do not guarantee a constant decrease of the cost function,

especially when after the ”large” patterns have been identified and the ”small” patterns are

easily confused with noise. To identify weak patterns from a residual matrix, we came up

with a week signal detection algorithm to locate the regions that may still have small but
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Figure 4.4. Performance comparisons of MEBF, ASSO, PANDA and MP on
the accuracy of decomposition.

true patterns. Here, from the current residual matrix, we search the two columns with the

most number of 1’s and form a new column that is the intersection of the two columns; and

the two rows with the most number of 1’s and form a new row that is the intersection of the

two rows. Starting from the new column and new row as a pattern, similar to bidirectional

growth, we locate the rows or columns in the residual matrix that have high enough similarity

to the pattern, thus expanding a single row or column into a submatrix. The one pattern

among the two with the lowest cost function with regards to the residual matrix will be

selected. And if addition of the pattern to existing patterns could decrease the cost function

with regards to the original matrix, it will be retained. Otherwise, the algorithm will stop.

4.4 Experiment

4.4.1 Simulation data

We first compared MEBF  

1
 with three state-of-the-art approaches, ASSO, PANDA and

Message Passing (MP), on simulated datasets.

A binary matrix Xn×m is simulated as

Xn×m = Un×k ⊗ V k×m +f E

where

Uij, Vij ∼ Bernoulli(p0) Eij ∼ Bernoulli(p)
1

 ↑ The code is available at https://github.com/clwan/MEBF
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Figure 4.5. Performance comparison of MEBF, ASSO, PANDA and MP on
computational cost.

” +f ” is a flipping operation, s.t.

Xij =


∨k

l=1Uil ∧ Vlj, Eij = 0

¬ ∨k
l=1 Uil ∧ Vlj, Eij = 1

Here, p0 controls the density levels of the true patterns, and E is introduced as noise that

could flip the binary values, and the level of noise could be regulated by the parameter p.

We simulated two data scales, a small one, n = m = 100, and a large one n = m = 1000.

For each data scale, the number of patterns k, is set to 5, and we used two density levels,

where p0 = 0.2, 0.4, and two noise levels p = 0, 0.01. 50 simulation was done for each data

scale at each scenario.

We evaluate the goodness of the algorithms by considering two metrics, namely the

reconstruction error and density [ 115 ], [ 119 ], as defined below:

Reconstruction error := ‖(U ⊗ V )	 (A∗ ⊗B∗)‖
‖U ⊗ V ‖
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Density := ‖A
∗n×k‖+ ‖B∗k×m‖
(n + m)× k

Here, U , V are the ground truth patterns while A∗ and B∗ are the decomposed patterns

by each algorithm. The density metric is introduced to evaluate whether the decomposed

patterns could reflect the sparsity/density levels of the true patterns. It is notable that

with the same reconstruction error, patterns of lower density, i.e., higher sparsity are more

desirable, as it leads to more parsimonious models.

In Figure  4.4 and  4.5 , we show that, compared with ASSO, PANDA and MP, MEBF is

the fastest and most robust algorithm. Here, the convergence criteria for the algorithms are

set as: (1) 10 patterns were identified; (2) or for MEBF, PANDA and ASSO, they will also

stop if a newly identified pattern does not decrease the cost function.

As shown in Figure  4.4 , MEBF has the best performance on small and big sized ma-

trices for all the four different scenarios, on 50 simulations each. It achieved the lowest

reconstructed error with the least computation time compared with all other algorithms.

The convergence rate of MEBF also outperforms PANDA and MP. Though ASSO converges

early with the least number of patterns, its reconstruction error is considerably higher than

MEBF, especially for high density matrices. In addition, ASSO derived patterns tend to

be more dense than the true patterns, while those derived from the other three methods

have similar density levels with the true patterns. By increasing the number of patterns,

PANDA stably decreased reconstruction error, but it has a considerably slow convergence

rate and high computation cost. MP suffered in fitting small size matrices, and in the case

of low density matrix with noise, MP derived patterns would not converge. The standard

deviations of reconstruction error and density across 50 simulations is quite low, and was

demonstrated by the size of the shapes. The computational cost and its standard deviation

for each algorithm is shown as bar plots in Figure  4.5 , and clearly, MEBF has the best

computational efficiency among all.
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Figure 4.6. MEBF analysis of Chicago crime data over the years.

4.4.2 Real world data application

We next focus on the application of MEBF on two real world datasets, and its perfor-

mance comparison with MP. Both datasets, Chicago Crime records  

2
 (X ∈ {0, 1}6787×752) and

Head and Neck Cancer Single Cell RNA Sequencing data  

3
 (X ∈ {0, 1}344×5902), are publicly

available. The computational cost of ASSO and PANDA are too inhibitive to be applied to

datasets of such a large scale, so they were dropped from the comparisons. Due to a lack of

ground-truth of the two low rank construction matrices and the possible high noise level in

the real world datasets, it may not be reasonable to examine the reconstruction error with

respect to the original matrix. Instead, we focused on two metrics, the density and coverage

levels. Density metric was defined as in the simulation data, and coverage rate is defined as

Coverage rate := ‖(X · (A
∗ ⊗B∗))‖
‖X‖

With the same reconstruction error, binary patterns are more desirable to have high

sparsity, meaning low density levels, as it makes further interpretation easier and avoids
2

 ↑ Chicago crime records downloaded on August 20, 2019 from https://data.cityofchicago.org/Public-Safety
3

 ↑ This head and neck sequencing data can be accessed at https://www.ncbi.nlm.nih.gov/geo/-
query/acc.cgi?acc=GSE103322
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Table 4.1. Comparison of MEBF and MP on real world data
Coverage(MEBF/MP) Density(MEBF/MP) Time/s(MEBF/MP)

Crimek=5 0.835/0.812 0.019/0.027 2.913/333.601
Crimek=20 0.891/0.807 0.030/0.066 10.608/992.011
Single cellk=5 0.496/0.463 2.06e-4/2.86e-4 1.846/137.623
Single cellk=20 0.626/0.580 3.34e-4/7.22e-4 5.954/390.217

possible overfitting. On the other hand, in many real world data, 0 is more likely to be a

false negative occurrence, compared with 1 being a false positive occurrence. In this regard,

a higher coverage rate, meaning higher recovery of the 1’s, would be a more reasonable metric

than lower reconstruction error to the noisy original matrix, as 0’s are more likely to be noisy

observations than 1’s.

We compared MEBF and MP for k = 5 and k = 20, and the density and coverage rate

of the derived patterns and computation time of the two algorithms are presented in Table

 4.1 . Overall, as shown in Table  4.1 , for both k = 5 and k = 20, MEBF outperforms MP

in all three measures� higher coverage rate, roughly half the density levels to MP, and the

computation time of MEBF is approximately 1% to that of MP.

Next we discuss in detail the application of BMF on discrete data mining and continuous

data mining, and present the findings on the two datasets using MEBF.

Discrete data mining

Chicago is the most populous city in the US Midwest, and it has one of the highest crime

rates in the US. It has been well understood that the majority of crimes such as theft and

robbery have strong date patterns. For example, crimes were committed for the need to

repay regular debt like credit cards, which has a strong date pattern in each month. Here we

apply MEBF in analyzing Chicago crime data from 2001 to 2019 to find crime patterns on

time and date for different regions. The crime patterns is useful for the allocation of police

force, and could also reflect the overall standard of living situation of regions in general.
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We divided Chicago area into ∼ 800 regions of roughly equal sizes. For each of the 19 years,

a binary matrix Xn×m
d for the dth year is constructed, where n is the total dates in each year

and m represents the total number of regions, and Xdi,j = 1 means that crime was reported

at date i in region j in year d, Xdi,j = 0 otherwise. MEBF was then applied on each of

the constructed binary matrices with parameters (t = 0.7, k = 20) and outputs An×k
d and

Bk×m
d . The reconstructed binary matrix is accordingly calculated as Xd∗ = An×k

d ⊗ Bk×m
d .

A crime index was defined as the total days with crime committed for regions j in year d,

Cdj = ∑m
i=1 Xdi,j .

Figure  4.6 shows the crime patterns over time, and only even years were shown due

to space limit. In Figure  4.6 A, from year 2002-2018, the crime index calculated from the

reconstructed matrix, namely, Cd∗
j

= ∑m
i=1 Xd∗

i,j
was shown on the y-axis for all the regions

on x-axis, In Figure  4.6 A, points colored in red indicate those regions with crime index equal

to total dates of the year, i.e., 365 or 366, meaning these regions are heavily plagued with

crimes, such that there is no day without crime committed. Points colored in green shows

vice versa, indicating those regions with no crimes committed over the year. Points are

otherwise colored in gray. Figure  4.6 B shows the crime index on the original matrix, and

clearly, the green and red regions are distinctly separated, i.e. green on the bottom with

low crime index, and red on the top with high crime index. This shows the consistency of

the crime patterns between the reconstructed and original crime data, and thus, validate

the effectiveness of MEBF pattern mining. Notably, the dramatic decrease in crime index

starting from 2008 as shown in figure  4.6 A and B correlates with the reported crime decrease

in Chicago area since 2008. figure  4.6 C shows the crime trend over the years on the map

of Chicago. Clearly, from 2008 to now, there is a gradual increase in the green regions,

and decrease in the red regions, indicating an overall good transformation for Chicago. This

result also indicate that more police force could be allocated in between red and green regions

when available.
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Figure 4.7. Visualization of single cell clustering before and after MEBF.

Continuous data denoising

Binary matrix factorization could also be helpful in continuous matrix factorization, as

the Boolean rank of a matrix could be much smaller than the matrix rank under linear

algebra. Recently, clustering of single cells using single-cell RNA sequencing data has gained

extensive utilities in many fields, wherein the biggest challenge is that the high dimensional

gene features, mostly noise features, makes the distance measure of single cells in clustering

algorithm highly unreliable. Here we aim to use MEBF to denoise the continuous matrix

while clustering.

We collected a single cell RNA sequencing (scRNAseq) data [ 24 ], that measured more than

300 gene expression features for over 5,000 single cells, i.e., X5000×300. We first binarize

original matrix X into X∗, s.t. X∗
ij = 1 where Xij > 0,and X∗

ij = 0 otherwise. Then, applying

MEBF on X∗ with parameters (t = 0.6, k = 5) outputs An×k, Bk×m. Let X∗∗ = A⊗ B and

Xuse be the inner product of X∗ and X∗∗, namely, Xuse = X~X∗∗. Xuse represents a denoised

version of X, by retaining only the entries in X with true non-zero gene expressions. And

this is reconstructed from the hidden patterns extracted by MEBF.
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As shown in Figure  4.7 , clustering on the denoised expression matrix, Xuse, results in

much tighter and well separated clusters (right) than that on the original expression matrix

(left), as visualized by t-SNE plots shown in Figure  4.7 . t-SNE is an non-linear dimensional

reduction approach for the visualization of high dimensional data [ 120 ]. It is worth noting

that, in generating Figure  4.7 , Boolean rank of 5 was chosen for the factorization, indicating

that the heterogeneity among cell types with such a high dimensional feature space could

be well captured by matrices of Boolean rank equal to 5. Interestingly, we could see a

small portion of fibroblast cell (dark blue) lies much closer to cancer cells (red) than to

the majority of the fibroblast population, which could biologically indicate a strong cancer-

fibroblast interaction in cancer micro-environment. Unfortunately, such interaction is not

easily visible in the clustering plot using original noisy matrix.

4.5 Discussion

We sought to develop a fast and efficient algorithm for boolean matrix factorization,

and adopted a heuristic approach to locate submatrices that are dense in 1’s iteratively,

where each such submatrix corresponds to one binary pattern in BMF. The submatrix iden-

tification was inspired by binary matrix permutation theory and geometric segmentation.

Approximately, we permutate rows and columns of the input matrix so that the 1’s could be

”driven” to the upper triangular of the matrix as much as possible, and a dense submatrix

could be more easily geometrically located. Compared with three state of the art methods,

ASSO, PANDA and MP, MEBF achieved lower reconstruction error, better density and

much higher computational efficiency on simulation data of an array of situations. Addi-

tionally, we demonstrated the use of MEBF on discrete data pattern mining and continuous

data denoising, where in both case, MEBF generated consistent and robust findings.

In the next chapter, we will extend this framework for Binary tensor data, which could

mimic complicated biological data scenarios.
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5. GEOMETRIC ALL-WAY BOOLEAN TENSOR

DECOMPOSITION

5.1 Overview

A tensor is a multi-dimensional array that can effectively capture the complex multidi-

mensional features. A Boolean tensor is a tensor that assumes binary values endowed with

the Boolean algebra. Boolean tensor has been widely adopted in many fields, including

knowledge graph, recommendation system, spatial-temporal data etc [  121 ]–[ 125 ]. Tensor

decomposition is a powerful tool in extracting meaningful latent structures in the data, for

which the popular CANDECOMP/PARAFAC (CP) decomposition is a generalization of the

matrix singular value decomposition to tensor [  126 ]. However, these algorithms are not di-

rectly usable for Boolean tensors. In this study, we focus on Boolean tensor decomposition

(BTD) under similar framework to the CP decomposition.

As illustrated in Figure  5.1 , BTD factorizes a binary tensor X as the Boolean sum of

multiple rank 1 tensors. In cases when the error distribution of the tensor data is hard

to model, BTD applied to binarized data can retrieve more desirable patterns with better

interpretation than regular tensor decomposition [  115 ], [  127 ]. This is probably due to the

robustness of logic representation of BTD. BTD is an NP-hard problem [  127 ]. Existing BTD

methods suffer from low efficiency due to high space/time complexity, and particularly,

most BTD algorithms adopted a least square updating approach with substantially high

computational cost [ 128 ], [  129 ]. This has hindered their application to either large scale

datasets, such as social network or genomics data, or tensors of high-order.

We proposed an efficient BTD algorithm motivated by the geometric underpinning of

rank-1 tensor bases, namely GETF (Geometric Expansion for all-order Tensor Factorization).

To the best of our knowledge, GETF is the first algorithm that can efficiently deal with all-

order Boolean tensor decomposition with an O(n) complexity, where n represents the total

number of entries in a tensor. Supported by rigorous theoretical analysis, GETF solves the

BTD problem via sequentially identifying the fibers that most likely coincides with a rank-1

tensor basis component. Our synthetic and real-world data based experiments validated

the high accuracy of GETF and its drastically improved efficiency compared with existing
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Figure 5.1. Boolean tensor decomposition

methods, in addition to its potential utilization on large scale or high order data, such as

complex relational or spatial-temporal data. The key contributions of this study include: (1)

Our proposed GETF is the first method capable of all-order Boolean tensor decomposition;

(2) GETF has substantially increased accuracy in identifying true rank-1 patterns, with

less than a tenth of the computational cost compared with state-of-the-art methods; (3) we

provided thorough theoretical foundations for the geometric properties for the BTD problem.

5.2 Preliminaries

5.2.1 Notations

Notations in this study follow those in [  130 ]. We denote the order of a tensor as k,

which is also called ways or modes. Scalar value, vector, matrix, and higher order tensor

are represented as lowercase character x, bold lowercase character x, uppercase character X,

and Euler script X, respectively. Super script with mark × indicates the size and dimension

of a vector, matrix or tensor while subscript specifies an entry. Specifically, a k-order tensor

is denoted as Xm1×m2...×mk and the entry of position i1, i2, , ik is represented as Xi1i2ik . For a

3-order tensor, we denote its fibers as X:i2i3 , Xi1:i3 or Xi1i2: and its slices Xi1::, X:i2:, X::i3 . For a

k-order tensor, we denote its mode-p fiber as Xi1...ip−1:ip+1...ik with all indices fixed except for ip.

‖X‖ represents the norm of a tensor, and ‖X‖ the L1 norm in particular. The basic Boolean

operations include ∧(and, 1∧1 = 1, 1∧0 = 0, 0∧0 = 0), ∨(or, 1∨1 = 1, 1∨0 = 1, 0∨0 = 0),

and ¬(not,¬1 = 0,¬0 = 1). Boolean entry-wise sum, subtraction and product of two

matrices are denoted as A⊕B = A∨B, A	B = (A∧¬B)∨ (¬A∧B) and A~B = A∧B.

The outer Boolean product in this paper is considered as the addition of rank-1 tensors,

which follows the scope of CP decomposition [ 126 ]. Specifically, a three-order Rank-1 tensor
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can be represented as the Boolean outer product of three vectors, i.e. Xm1×m2×m3 = am1 ⊗

bm2 ⊗ cm3 . Similarly, for higher order tensor, Xm1×m2...×mk of rank l is the outer product

of Am1×l,1, Am2×l,2, ..., Amk×l,k, i.e. Xm1×m2...×mk = ∨l
j=1(A

m1×l,1
:j ⊗ Am2×l,2

:j ... ⊗ Amk×l,k
:j ) and

Xi1i2,...,ik = ∨l
j=1(A

m1×l,1
i1j ∧Am2×l,2

i2j ...Amk×l,k
ikj ), j = 1...l represents the rank-1 tensor components

of a rank l CP decomposition of X. In this paper, we denote Ami×l,i, i = 1...k as the pattern

matrix of the ith order of X, its jth column Ami×l,i
:j as the jth pattern fiber of the ith order,

and Am1×l,1
:j ⊗ Am2×l,2

:j ...⊗ Amk×l,k
:j as the j-th rank-1 tensor pattern.

5.2.2 Problem statement

As illustrated in Figure  5.1 , for a binary k-order tensor X ∈ {0, 1}m1×m2...×mk and a

convergence criteria parameter τ , the Boolean tensor decomposition problem is to identify

low rank binary pattern matrices Am1×l,1∗, Am2×l,2∗, ...Amk×l,k∗, the outer product of which

best fit X, where Am1×l,1∗, Am2×l,2∗, ..., Amk×l,k∗ are matrices of l columns. In other words,

(Am1×l,1∗, Am2×l,2∗, ...Amk×l,k∗) = argminA1,A2,...,Ak(γ(Am1×l,1, Am2×l,2, ..., Amk×l,k;X)‖τ) Here

γ(Am1×l,1, Am2×l,2, ...Amk×l,k;X) is the cost function. In general, γ is defined to the recon-

struction error γ(Am1×l,1∗, ...Amk×l,k∗;X) = ‖X	(Am1×l,1∗⊗...⊗Amk×l,k∗)‖Lp , and p is usually

set to be 1.

5.2.3 Related work

In order of difficulty, Boolean tensor decomposition consists of three major tasks, Boolean

matrix factorization (BMF, k = 2) [ 108 ], three-way Boolean tensor decomposition (BTD,

k = 3) and higher order Boolean tensor decomposition (HBTD, k > 3) [ 131 ]. All of them

are NP hard [ 127 ]. Numerous heuristic solutions for the BMF and BTD problems have been

developed in the past two decades [ 25 ], [ 109 ]–[ 112 ], [ 128 ], [ 132 ], [ 133 ].

For BTD, Miettinen et al thoroughly defined the BTD problem (k = 3) in 2011 [ 132 ],

and proposed the use of least square update as a heuristic solution. To solve the scalability

issue, they further developed Walk’N’Merge, which applies random walk over a graph in

identifying dense blocks as proxies of rank 1 tensors [  133 ]. Despite the increase of scalability,

Walk’N’Merge tends to pick up many small patterns, the addition of which doesn’t necessarily
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decrease the loss function by much. The DBTF algorithm introduced by Park et al. is

a parallel distributed implementation of alternative least square update based on Khatri-

Rao matrix product [ 129 ]. Though DBTF reduced the high computational cost, its space

complexity increases exponentially with the increase of tensor orders due to the khatri-

Rao product operation. Recently, Tammo et al. proposed a probabilistic solution to BTD,

called Logistical Or Machine (LOM), with improved fitting accuracy, robustness to noises,

and acceptable computational complexity [  122 ]. However, the high number of iterations it

takes to achieve convergence of the likelihood function makes LOM prohibitive to large data

analysis. Most importantly, to the best of our knowledge, none of the existing algorithms

are designed to handle the HBTD problem for higher order tensors.

5.3 GETF Algorithm and Analysis

GETF 

1
 identifies the rank-1 patterns sequentially: it first extracts one pattern from

the tensor; and the subsequent patterns will be extracted sequentially from the residual

tensor after removing the preceding patterns. We first derive the theoretical foundation

of GETF. We show that the geometric property of the largest rank-1 pattern in a binary

matrix developed in [  121 ] can be naturally extended to higher order tensor. We demonstrated

the true pattern fiber of the largest pattern can be effectively distinguished from fibers of

overlapped patterns or errors by reordering the tensor to maximize its overlap with a left-

triangular-like tensor. Based on this idea, the most likely pattern fibers can be directly

identified by a newly develop geometric folding approach that circumvents heuristic greedy

searching or alternative least square based optimization.

5.3.1 Theoretical analysis

We first give necessary definitions of the slice, re-order and sum operations on a k order

tensor and an theoretical analysis of the property of a left-triangular-like (LTL) tensor.

Definition 5.3.1. (p-order slice). The p-order slice of a tensor Xm1×...×mk indexed by P is

defined by Xi1,...,ik , where ik is a fixed value ∈ {1, ..., mk} if k ∈ P̄, and ik is unfixed (ik =:)
1

 ↑ Code can be accessed at https://github.com/clwan/GETF
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if k ∈ P, here p = ‖P‖ and P̄ = {1, ..., k} \ P. Specifically, we denote a ‖P‖ order slice of

Xm1×...×mk with the index set ‖P‖ unfixed as Xm1×...×mk
P,IP̄

or XP,IP̄
, in which P is the unfixed

index set and IP̄ are fixed indices.

Definition 5.3.2. (Index Reordering Transformation, IRT). The index reordering transfor-

mation (IRT) transforms a tensor Xm1×,...×mk to X̃ = XP1,P2,...,Pk
, where P1, ..., Pk are any

permutation of the index sets, {1, ..., m1}, ..., {1, ..., mk}.

Definition 5.3.3. (Tensor slice sum). The tensor slice sum of a k-order tensor Xm1×...×mk

with respect to the index set P is defined as

Tsum(X,P) ,
mi1∑
i1=1

...

mi‖P‖∑
i‖P‖=1

X:...:i1:...:i‖P‖:....:, i1, ..., i‖P‖ ∈ P.

Tsum(X,P) results in a k − ‖P‖ order tensor.

Definition 5.3.4. (p-left-triangular-like, p-LTL). A k-order tensor Xm1×...×mk is called p-

LTL, if any of its p-order slice, XP,IP̄
, P ⊂ {1, ..., k} and ‖P‖ = p, and ∀j ∈ P, 1 ≤ j1 < j2 ≤

mj, Tsum(XP,IP̄
,P \ {j})j1 ≤ Tsum(XP,IP̄

,P \ {j})j2.

Definition 5.3.5. (flat 2-LTL), A k-order 2-LTL tensor Xm1×...×mk is called flat 2-LTL

within an error range ε, if any of its 2-order slice, XP,IP̄
, P ⊂ {1, ..., k} and ‖P‖ = p, and

∀j ∈ P, 1 ≤ j1 < j2 ≤ mj, ‖Tsum(XP,IP̄
,P \ {j})j1 + Tsum(XP,IP̄

,P \ {j})j2 − 2Tsum(XP,IP̄
,P \

{j})(j1+j2)/2‖ < ε

The Definition  5.3.5 indicates the tensor sum of over any 2-order slice of a flat 2-LTL

tensor is close enough to a linear function with the largest error less than ε. Figure  5.2 A,C

illustrate two examples of flat 2-LTL matrix and 2-LTL 3-order tensor. By the definition,

the non-right angle side of a flat 2-LTL k-order tensor is close to a k − 1 dimension plane,

which is specifically called as the k-1 dimension plane of the flat 2-LTL tensor in the rest

part of this paper.

Lemma 5.3.1 (Geometric segmenting of a flat 2-LTL tensor). Assume X is a k-order flat

2-LTL tensor and X has none zero fibers. Then the largest rank-1 subarray in X is seeded
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Figure 5.2. Optimal rank 1 subarray

where one of the pattern fibers is paralleled with the fiber that anchored on the 1/k segmenting

point (entry {‖m1‖/k, ‖m2‖/k, ..., ‖mk‖/k}) along the sides of the right angle.

Figure  5.2 A,C illustrate flat 2-LTL matrix and 3-order tensor. Figure  5.2 B,D illustrate

the position (yellow dash lines) of the most likely pattern fibers in the flat 2-LTL matrix

and 3-order tensor. We will first prove Lemma  5.3.1 holds for matrix and three-way tensor.

Then we will generalize Lemma  5.3.1 to all-way tensor.

Proof. (Lemma  5.3.1 holds for k-order flat 2-LTL tensor, k > 3) Since lemma  5.3.1 holds for

matrix and three-way tensor, the generality of lemma  5.3.1 for all-way flat 2-LTL tensor is

introduced by mathematical induction. We assume lemma  5.3.1 holds for flat 2-LTL tensor

with order of k−1. And the largest subarray has volume fk−1(y1, y2, ..., yk−1). For k-way flat

2-LTL tensor, f(y1, y2, ..., yk−1, yk) = yk(xk−yk

xk
)k−1fk−1(y1, y2, ..., yk−1), where fmax =

∏k

i=1 xi
kk

is achieved when yk = xk

k
. By induction, yi = k−1

k
· k−2

k−1 · ... ·
1
2xi = xi

k
, ∀i ∈ [1, k − 1]. In all,

Lemma  5.3.1 holds for all-way flat 2-LTL tensor.

Proof. (Lemma  5.3.1 holds for 3-way flat 2-LTL tensor) In figure  5.2 D, 3-order flat 2-LTL

tensor is depicted as right tetrahedron with three right-angle sides of length x1, x2 and

x3, respectively. We also let f(y1, y2, y3) represents the volume of the cuboid of interest.

Integrating geometric constrain with Proof 1, y1 = x1
2 , y2 = x2

2 , y1
x1

= y2
x2

= x3−y3
x3

. s.t.,

f(y1, y2, y3) = y3 · (1
2 ·

x3−y3
x3
· x1) · (1

2 ·
x3−y3

x3
· x2) = y3 · (x3−y3

x3
)2 · 1

4x1x2. When y3 = x3
3 , f get

the maximum value fmax = 1
27x1x2x3. Additionally, y1 = x1

3 , y2 = x2
3 . As indicated in Figure

 5.2 C, the optimal basis (yellow colored) is paralleled with lines (pink colored) anchored on

the 1/3 segmenting point.
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Figure 5.3. Suboptimal subarray for k − 1 LTL tensor

Proof. (Lemma  5.3.1 holds for k-order flat 2-LTL tensor, k > 3) Since lemma  5.3.1 holds for

matrix and three-way tensor, the generality of lemma  5.3.1 for all-way flat 2-LTL tensor is

introduced by mathematical induction. We assume lemma  5.3.1 holds for flat 2-LTL tensor

with order of k−1. And the largest subarray has volume fk−1(y1, y2, ..., yk−1). For k-way flat

2-LTL tensor, f(y1, y2, ..., yk−1, yk) = yk(xk−yk

xk
)k−1fk−1(y1, y2, ..., yk−1), where fmax =

∏k

i=1 xi
kk

is achieved when yk = xk

k
. By induction, yi = k−1

k
· k−2

k−1 · ... ·
1
2xi = xi

k
, ∀i ∈ [1, k − 1]. In all,

Lemma  5.3.1 holds for all-way flat 2-LTL tensor.

Lemma 5.3.2. (Geometric perspective in seeding the largest rank-1 pattern) For a k order

tensor X sparse enough and a given tensor size threshold λ, if its largest rank-1 pattern

tensor is larger than λ, the IRT that reorders X into a (k-1)-LTL tensor reorders the largest

rank-1 pattern to a consecutive block, which maximize the size of the connected solid shape

overlapped with the k − 1 dimension plane over a flat 2-LTL tensor larger than λ.

Proof. The (k-1)-LTL IRT may reorder the indices of these overlapped patterns to the most

bottom left position instead of the largest rank-1 pattern. However, if the tensor is sparse

enough, i.e., the overlapped region among rank-1 patterns is relative small, the largest rank-1

patterns will be reordered to form a block in the (k-1)-LTL IRT. In addition, if the size of the

overlapped pattern is significant enough, e.g. larger than a given threshold, the overlapped

patterns can be identified as a distinct pattern. Otherwise, the largest rank-1 pattern has a

distinct solid shape when intersecting with the k-1 dimension plane of the flat 2-LTL tensor

that most cross it (Figure  5.3 C,D), while the overlapped patterns in the (k-1)-LTL IRT will

intersect with the k-1 dimension plane of the flat 2-LTL tensor most cross it in a ring shape

(Figure  5.3 A,B).
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Figure 5.4. GETF sequentially decompose k − 1 LTL tensor.

Lemma 5.3.3. If a k-order tensor Xm1×...×mk can be transformed into a p-LTL tensor by

IRT, the p-LTL tensor is unique.

Proof. If the indices of the p-LTL tensor is not unique there are two p-LTL tensor can be

achieved by IRT of Xm1×...×mk , denoted as XA1A2...Ak
and XB1B2...Bk

, where A1, ..., Ak and

B1, ..., Bk are two permutations of the index sets {1, ..., m1}, ..., {1, ..., mk}. Then any p

order slice, XP,IP̄
of XA1A2,...,Ak

has an identical slice in XB1B2,...,Bk
, which can be denoted

as XP,I′
P̄
. By the definition of p-LTL, ∀j ∈ P, 1 ≤ j1 < j2 ≤ mj, Tsum(XP,IP̄

,P \ {j})j1 ≤

Tsum(XP,IP̄
,P \ {j})j2 and Tsum(XP,I′

P̄
,P \ {j})j1 ≤ Tsum(XP,I′

P̄
,P \ {j})j2 . Hence, either both

Tsum(XP,I′
P̄
,P\{j})j and Tsum(XP,IP̄

,P\{j})j are identical with respect to j, or the index order

of the jth order are identical in XP,IP̄
and XP,I′

P̄
, suggesting the uniqueness of the p-LTL tensor

achieved by IRT of X.

Lemma 5.3.4. If a k-order tensor is p-LTL, then it is x-LTL, for all the x=p,p+1,...,k.

Proof. For any of its P+1 order slice of X, denoted as XP+1,I ¯P+1
and ∀j ∈ P+ 1, 1 ≤ j1 < j2 ≤

mj, Tsum(XP+1,I ¯P+1
,P+1\{j}) = ∑mt

q=1 Tsum(XP+1,I ¯P+1
,P+1\{j, t}):,q, where P+1 represents

a set of indices with ‖P‖+ 1 elements, XP+1,I ¯P+1
is a ‖P‖+ 1 order slice, and {t} = P + 1\P.

Noting Tsum(XP+1,I ¯P+1
,P + 1 \ {j, t}) is a tensor slice sum that takes a ‖P‖ + 1 order slice

as the input and outputs a matrix, which is equivalent to separately compute the tensor

slice sum that takes a ‖P‖ order slice with fixed index on the tth order as the input and

outputs a vector, i.e. Tsum(XP+1,I ¯P+1
,P + 1 \ {j, t}):,q = Tsum(XP,I ¯P+1∪{it=q},P \ {j}). By the

definition of p−LTL, Tsum(XP+1,I ¯P+1
,P+1\{j}, t)j1 = ∑mt

q=1 Tsum(XP+1,I ¯P+1
,P+1\{j, t})j1,q ≤∑mt

q=1 Tsum(XP+1,I ¯P+1
,P + 1 \ {j, t})j2,q = Tsum(XP+1,I ¯P+1

,P + 1 \ {j}, t)j2
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5.3.2 GETF algorithm

Based on the geometric property of the largest rank-1 pattern and its most likely pattern

fibers, we developed an efficient BTD and HBTD algorithm—GETF, by iteratively recon-

structing the to-be-decomposed tensor into a k − 1 LTL tensor and identifying the largest

rank-1 pattern. The main algorithm of GETF is formed by the iteration of the following five

steps.

1. For a given tensor Xm1×m2...×mk , in each iteration, GETF first reorders the indices of

the current tensor into a (k-1)-LTL tensor by IRT (Figure  5.4 A,D).

2. GETF utilizes 2_LTL_projection algorithm to identify the flat 2-LTL tensor that

maximizes the overlapped region between its k − 1 dimension plane and current (k-

1)-LTL tensor (Figure  5.4 B,E).

3. A Pattern_fiber_finding algorithm is applied to identify the most likely pattern

fiber of the overlap region of the 2-LTL tensor and the (k-1)-LTL tensor, i.e., the

largest rank-1 pattern (Figure  5.5 ).

4. A Geometric_folding algorithm is applied to reconstruct the rank-1 tensor compo-

nent from the identified pattern fiber that best fit the current to-be-decomposed tensor

(Figure  5.6 ).

5. Remove the identified rank-1 tensor component from the current to-be-decomposed

tensor (Figure  5.4 C,F).

The inputs of GETF include the to-be-decomposed tensor X, a noise tolerance threshold t

parameter, a convergence criterion τ and a pattern fiber searching indicator Exha. In Algo-

rithm  4 , o represents a direction of geometric folding, which is a permutation of {1, ..., k}.

The 2_LTL_projection utilizes a project function and a scoring function to identify the

flat 2-LTL tensor that maximizes the solid overlapped region between its k − 1 dimension

plane and a (k-1)-LTL tensor. The Pattern_fiber_finding and Geometric_folding

algorithm are described below. Noted, there are k directions of pattern fibers and k! com-

binations of the orders in identifying them from a k-order tensor or reconstructing a rank-1
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pattern from them. Empirically, to avoid duplicated computations, we tested conducting k

times of geometric folding is sufficient to identify the fibers and reconstruct the suboptimal

rank-1 pattern. GETF also provides options to set the rounds and noise tolerance level of

geometric folding in expanding a pattern fiber via adjusting the parameters Exha and t.

Algorithm 4 GETF
Inputs: X ∈ {0, 1}m1×m2...×mk , t ∈ (0, 1),τ , Exha ∈ {0, 1}
Outputs: A1∗ ∈ {0, 1}m1×l, A2∗ ∈ {0, 1}m2×l, ... Ak∗ ∈ {0, 1}mk×l

GETF (X, t, τ, Exha):
XResidual ← X, A1 ← NULL,..., Ak ← NULL
Ω← Generate set of directions for geometric-folding(k, Exha)
while !τ do

γ0 ← inf , a1∗ ← NULL,..., ak∗ ← NULL
for each direction o in Ω do

X2−LT L ← 2_LTL_projection(X)
Pattern f iber∗ ← Pattern_fiber_finding(X2−LT L, o)
(a1, ..., ak)← Geometric_folding(XResidual, Patternf iber∗, o, t)
if γ(a1, ..., ak‖X) < γ0 then

(a1∗, ..., ak∗)← (a1, ..., ak); γ0 ← γ(a1, ..., ak‖X)
end if

end for
if γ0 6= inf then

XResidual
i1i2...ik ← 0 when (a1∗ ⊗ a2∗...⊗ ak∗)i1i2...ik = 1

Aj∗ ← append(Aj∗, aj∗), j ∈ {1, 2, ..., k}
end if

end while

5.3.3 Auxiliary algorithms

Before we illustrate 2_LTL_projection, Pattern_basis_f inding and Geometric_folding,

we will introduce some auxiliary algorithms first.

Direction generation There are in total k! directions to construct a k− 1 LTL tensor.

The first step for GETF is to construct such directions set Ω, where o ∈ Ω is the non repetitive

combination of 1 to k. Empirically, most of the k! direction will generate the duplicated

output resulted from the same or closely related end k − 1 LTL structural. Such that,

normally, k directions are more than enough to generate the suboptimal rank 1 tensor. Still,

we provide an Exha Boolean parameter represents exhaustive searching, where Exha = 1,
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Ω′ = Ω while Exha = 0, Ω′ is the k sample of Ω. The final Ω′ is the direction set to apply

Geometric_folding.

Find the segmenting coordinate As stated in Pattern_f iber_f inding algorithm, an

essential step is to retrieve the 1/n coordinate point. This POS algorithm is designed for

this task. The input for POS is a vector d, on which to get the segmenting coordinate p, n

is the denominator of the segmenting ratio and s is the noise level.

Algorithm 6 POS
Inputs: d, n, s
Outputs: p
POS(d, n, s):
m← the index of d > s
if length(m) < n then

return 0 # no need to segment
else

q ← length(m)//n
m′ ← order(dm, decreasing) return m’q

end if

Algorithm 7 TENS_FOLD
Inputs: a k-order tensor Xm1×m2...×mk , the fiber f to be fold upon, and directions of this
fiber o
Outputs: the (k − 1) order tensor H

TENS_FOLD(X, o,f):
d← diff(range(m), o) #the fold dimension H ∈ {0}m1×...×md−1×md+1...×mk # initialization
Hi1i2...id−1id+1...ik ← Xi1i2...id−1:id+1...ik · f
return H

Folding tensor based on fiber This TENS_FOLD algorithm allows an efficient

folding of k order tensor into k − 1 order tensor by one dimension on the basis of a specific

fiber as mentioned in the main content.

5.3.4 2 LTL projection

From Lemma  5.3.1 , the 1/k segmentation pinpoint the optimal pattern basis for the

flat 2− LTL tensor. We could easily derive the (k-1)-LTL throught IRT. However, owing
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to the impact of different levels of noise, lemma  5.3.1 does not hold on (k− 1)−LTL tensor

in definite. The 2_LTL_projection algorithm is to fill this gap. 2_LTL_projection finds

a proper searching space that maintains the flat 2 − LTL tensor property with limited

noise. With 2_LTL_projection, we could find the biggest rank 1 tensor patterns in the first

iteration, the second biggest patterns in the second iteration, so on and so forth. In practise,

we omitted this process to further accelerate GETF. Without the 2_LTL_projection, the

order of pattern size may vary with its sequential order. But it does not impact the overall

decomposition efficiency. A similar study on Boolean matrix can be found in [  121 ].

Algorithm 8 2_LTL_projection
Inputs: a k-order K-1 LTL tensor X ∈ {0, 1}m1×m2...×mk and the range of flat 2-LTL
tensor {ml

1, ..., mh
1}⊗, ...,⊗{ml

k, ..., mh
k}

Outputs: the flat 2-LTL tensor maximizes the overlap between its k-1 dimension plane
and X

S ← 0(mh
1 −m1

1+1)×...×(mh
k−m1

k+1)

for (i1, i2, ...ik) ∈ {1, ..., mh
1 −ml

1 + 1}⊗, ...,⊗{1, ..., mh
k −ml

k + 1} do
Xprojected ← project(X,Plane(i1, i2, ...ik))
Si1,i2,...ik ← sum(neighbor_weighted_scoring(Xprojected))

end for
i∗1, i∗2, ...i∗k ← argmax{S}
return(i∗1, i∗2, ...i∗k)

5.3.5 Pattern fiber finding

The Pattern_fiber_finding algorithm is developed based on Lemma  5.3.1 . Its input

include a k-order tensor and a direction vector. Even the input is the entry-wise product of

a flat 2-LTL tensor and the largest rank-1 pattern in a (k-1)-LTL tensor, it may still not

be 2-LTL due to the existence of errors. We propose a recursive algorithm that recurrently

rearrange an order of the input tensor and reports the coordinate of the pattern fiber on this

order. The output is the position of the pattern fiber.

Assume we find the pattern fiber along the direction o ∈ {1, ...k}. Derive from lemma

 5.3.1 . The candidate pattern fiber is revealed recursively. The recursive algorithm first

computes tensor slice sum of X through mode o1 to ok−1, i.e., from Tsum(X, {o1}) to
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Tsum(X, {o1, ..., ok−1}) and identify the first coordinate on the mode ok as the 1/k seg-

menting point of the computed slice sum. Then in each recursive iteration n, there are

k − 1 computed coordinates for the mode of ok−n+1 to ok and the k − n order tensor of

the slice sum of X through mode o1 to ok−n computed previously, which together form a

vector, on which the 1/(n + 1) segmenting point is computed as the coordinate for the mode

ok−n. Denote (i01, ..., i0o1−1, i0o1+1, ..., i0k) as the identified coordinates, the mode-o1 pattern fiber

amo1 ×1,o1 = Xi01...i0o1−1i0o1+1,...i0
k
.

Algorithm 9 Pattern_fiber_finding
Inputs: a k-order tensor X ∈ {0, 1}m1×m2...×mk , the finding direction o as defined in
algorithm  4 , a segmentation denominator n and the noise control prarmeter s.
Outputs: the coordinates (i1, ..., io1−1, io1+1, ..., ik) of the mode-o1 basis fiber.
Pattern_f iber_f inding(X, o, s) :
if is.vector(X) then

return POS(X, n + 1, s)
else

n← n + 1 #total order of the current X

X← TENS_FOLD(X, on) #compute the Tsum(X, {on}) for the current on mode.
Cor ← Pattern_f iber_f inding(X, o, s) # recursion starts for folding next dimension

and return coordinates.
ion−n ← POS(X:...:ion−n+1:...:ion :...:,n+1,s)∗
Cor ← append(Cor, ion−n) #integrate coordinates information
return Cor

end if
∗ion−n+1, ..., ion are currently computed n coordinates of the mode on − n + 1 to ok of the
pattern fiber.

The recursive algorithm first computes the tensor slice sum of X through mode {o1}

to {ok−1} and identify the first coordinate on the mode ok as the 1/k segmenting point

of the computed tensor slice sum. Then in each recursive iteration n, there are k − 1

computed coordinates for the mode of ok−n+1 to ok and the k − n order tensor of the

slice sum of X through mode o1 to ok−n that computed previously, which together form a

vector, on which the 1/(n + 1) segmenting point is computed as the coordinate for the mode

ok−n. Denote (i01, ..., i0o1−1, i0o1+1, ..., i0k) as the identified coordinates, the mode-o1 pattern fiber

amo1 ×1,o1 = Xi01...i0o1−1i0o1+1,...i0
k
.
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Figure 5.5. Illustration of finding pattern fiber in 3D

Figure 5.6. Illustration of Geometric_folding in 3D

Here in Figure  5.5 , we illustrates the pattern fiber finding approach for a 3-order flat

2-LTL tensor Xm1×m2×m3 . To identify the coordinates of the yellow colored pattern fiber

with unfixed index of the 1st order X:i2i3 (Figure  5.5 A), its coordinate of the 2nd order is

anchored on the 1/3 segmenting point of Tsum(X, {2}), denoted as i2 (Figure  5.5 B), and its

coordinate of the 3rd order is on the 1/2 segmenting point of Tsum(Xm1×m2×m3
:i2: , {2}) (Figure

 5.5 C).

Owing to the recursive property of Pattern_fiber_finding, for the ith iteration of a tensor

has the size of mk, the computational cost is mi for TENS_FOLD and mlog(m) for POS.

Such that, the overall computational cost for Pattern_fiber_finding is ∑k
i=1 mi +mlog(m) =

mk+1−m
m−1 + kmlog(m).
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5.3.6 Geometric folding

The geometric folding approach is to reconstruct the rank-1 tensor pattern best fit X

from the pattern fiber identified by the Pattern_fiber_finding algorithm. For a k-order

tensor X and the identified position of pattern fiber, the pattern fiber is denote as X:i02...i0
k

(Figure  5.6 A). The algorithm computes the inner product between X:i02...i0
k

and each fiber

X:i2...ik to generate a new k − 1 order tensor Hm2×...×mk , Hi2...im = ∑m1
j=1 Xji02...i0

k
∧ Xji2...ik

(Figure  5.6 B). This new tensor is further discretized based on a user defined noise tolerance

level and generates a new binary k-1 order tensor X′m2×m3...×mk (Figure  5.6 C). This approach

is called as geometric folding of a k-order tensor into a k-1 order tensor based on the pattern

fiber X:i02...i0
k
. This approach will be iteratively conducted to fold the k-way tensor into a 2

dimensional matrix with k-2 rounds of Pattern_fiber_finding and Geometric_folding

and identifies k-2 pattern fibers. The pattern fibers of the last 2 dimensional will be identified

as a BMF problem by using MEBF [  121 ]. The output of Geometric_folding is the set of

k pattern fibers of a rank-1 tensor (Figure  5.6 E).

Algorithm 10 Geometric_folding
Inputs: A k-order tensor Xm1×m2...×mk , the direction of pettern fiber finding and geometric
folding o as defined in algorithm 1 and a noise tolerance parameter t
Outputs: Bases of the rank-1 tensor component a1, a2, ..., ak

Geometric_folding(X, o, t):
Xoriginal ← X

s← NOISE_CONTROL(X) # detect the noise level in X

ooriginal ← o
for i = 1, ..., k − 2 do

no← ooriginal
i...k

‖o‖ = k − i + 1, oj = oj − 1, if oj > oi−1
(i01, ..., i0o1−1, i0o1+1, ..., i0‖o‖)← Pattern_f iber_f inding(X, o, s)
amo1 ×1,o1 = Xi01...i0o1−1i0o1+1...i0‖o‖

Hi1i2...i‖o‖ ←
∑mo1

j=1 Xi01...i0o1−1i0o1+1...i0o‖o‖
∧ Xi1...io1−1io1+1...io‖o‖

X← H · 0
Xi1...io1−1io1+1...i‖o‖ ← 1 if Hi1...io1−1io1+1...i‖o‖ ≥ t · ‖a‖

end for
(amok−1 ×1,ok−1 , amok

×1,ok)←MEBF (X, t, s)
aoi ← amoi ×1,oi , i = 1, ..., k
return a1, ..., ak
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Figure 5.7. Performance analysis on simulated data

5.3.7 Complexity analysis

Assume k-order tensor has n = mk entries. The computation of 2_LTL_projection is

fixed based on its screening range, which is smaller than O(mk). To further accelerate GETF,

we omitted the projection step as it does not affect the overall decomposition efficiency in

practise. The computation of each Pattern_fiber_finding is mk+1−m
m−1 + kmlog(m). Geo-

metric_folding is a loop algorithm consisted of additions and Pattern_fiber_finding.

The computation for Geometric_folding to fold a k-order tensor takes 2mk+2−mk

(m−1)2 + 1−2m2

(m−1)2−
km

m−1 + k(k+1)
2 mlog(m) computations. GETF conducts k times Geometric_folding in each

iteration to extract the suboptimal rank-1 tensor, by which, the overall computing cost on

each iteration is k(2mk+2−mk

(m−1)2 + 1−2m2

(m−1)2 − km
m−1 + k(k+1)

2 mlog(m)) ∼ O(mk). Hence GETF is an

O(mk) = O(n) complexity algorithm.

5.4 Experimental Results on Synthetic Datasets

We generated synthetic tensors with k = 2, 3, 4, 5 that correspond to the BMF, BTD,

4-order HBTD and 5-order HBTD problems, and for each order k, 4 scenarios are further

created: (1) low density tensor without error, (2) low density tensor with error, (3) high

density tensor without error and (4) high density tensor with error. Under each scenario,

we fixed the number of true patterns as 5 and set the convergence criteria as 1) 10 patterns
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have been identified, 2) the cost function stopped decreasing with newly identified patterns.

We compared GETF with MP on BMF and LOM on BTD settings, which represent best

performance for BMF and BTD problems respectively [ 114 ], [ 122 ]. The evaluation focuses

on two metrics, time consumption and reconstruction error [  114 ], [  115 ]. For 4-order and 5-

order HBTD, we only conducted GETF as other methods cannot handle or fail to converge

in analyzing such high order tensors.

GETF significantly outperformed MP in reconstruction error (Figure  6.3 A,B) and time

consumption (Figure  6.3 C) for all the four scenarios. Noted, the top five patterns iden-

tified by GETF coincided with the five true patterns in all scenarios. Similarly GETF

outperformed LOM in all four scenarios, except for the high density with high noise case,

where GETF and LOM performed comparatively in terms of reconstruction error (Figure

 6.3 G,H,I). GETF maintains the most favorable performance with over 10 times higher in

computational efficiency. Figure  6.3 D-F,J-L show the capability of GETF on decomposing

high order tensor data. Notably, the reconstruction error curve of GETF flattened after

reaching the true number of components (Figure  6.3 A,B,D,E,G,H,J,K), suggesting its high

accuracy in identifying true number of patterns. The error bar stands for standard derivation

of time consumption in Figure  6.3 C,F,I,L. Importantly, when the tensor order increases, its

size increases exponentially. The high memory cost is regarded as an outstanding challenge

for higher order tensor decomposition, for which an O(n) algorithm like GETF is desirable.

GETF showed consistent performance with respect to different noise levels. For a 5-way

tensor with more than 3 ∗ 108 elements, GETF reached convergence in less than 1 minute.

Overall, our experiments on synthetic datasets advocated the efficiency and robustness of

GETF for the data with different tensor orders, data sizes, signal densities and noise levels.

5.5 Experimental Results on Real-world Datasets

We applied GETF on two real-world datasets, the Chicago crime record data  

2
 , and a

breast cancer spatial-transcriptomics data  

3
 , which represents two scenarios with relatively

lower and higher noise. We benchmarked GETF with LOM on the two data sets, and focused
2

 ↑ Chicago crime records downloaded on March 1st, 2020 from https://data.cityofchicago.org/Public-Safety
3

 ↑ Breast cancer data is retrieved from https://www.spatialresearch.org/resources-published-datasets
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on comparing their reconstruction error and interpreting the pattern tensors identified by

GETF.

We retrieved the crime records in Chicago from 2001 to 2019 and organized them into a

4D tensor, with four dimensions representing: 436 regions, 365 dates, 19 years and two crime

categories (severe, and non-severe), respectively, i.e., X436×365×19×2. An entry in the tensor

has value 1 if a crime category was observed in the region for the day of the year. We first

benchmark GETF with LOM on the 3D slice, X:::1 ∈ {0, 1}436×365×19. GETF showed a clear

advantage over LOM, including a less reconstruction error and higher interpretability. GETF

converged after identifying two large patterns, while LOM identied more than eight patterns

to achieve same level of reconstruciton error (Figure  5.8 B). We only presented the results

of GETF on the application of the 4-order tensor, on which LOM failed to converge, and

used the top two patterns to reconstruct the original tensor, denoted as X∗. To look for the

crime date pattern, the crime index of a region defined as the total days of a year with crime

occurrences in the region were associated with the identified low rank tensor patterns. We

showed that X∗ reconstructed from the CP decomposition is a denoised form of the origincal

data. In Figure  5.8 C, the high and low crime index were red and blue colored. Clearly,

GETF reconstructed tensor is able to distinguish the two regions (Figure  5.8 C). However,

such a clear separation is less clear in the original data (Figure  5.8 D). Next we examined the

validity of the two regions with an outsider factor, regional crime counts, defined as the total

number of crimes from 2001 to 2019 for that region. As shown in Figure  5.8 E, the regions

with higher crime index according to GETF consitently correspond to the regions of higher

regional crime counts, and vice versa. In summary, we show that GETF is able to reveal the

overall crime patterns by denoising the original tensor.
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Figure 5.8. Real data benchmark and applications

The breast cancer spatial transcriptomics dataset [ 134 ], [ 135 ], as in Figure  5.8 F, was

collected on a 3D space with 1020 cell positions (x × y × z = 15 × 17 × 4), each of which

has expression values of 13,360 genes, i.e., X13360×15×17×4. The tensor was first binarized,

and it takes value 1 if the expression of the gene is larger than zero. We again benchmarked

the performance of GETF and LOM on a 3D slice, X:::1. LOM failed to generate any useful

information seen from the non-decreasing reconstruction error, possibly because of the high

noise of the transcriptomics data. On the other hand, GETF manage to derive patterns

gradually (Figure  5.8 I). We applied GETF only to the 4D tensor, and among the top 10

patterns, we analyzed two extremest patterns: one the most sparse (red) and the other

the most dense (blue) (Figure  5.8 F). The sparse pattern has 24 cell positions all expressing

232 genes (232 × 4 × 4 × 2), the dense pattern has 90 cells positions expressing 40 genes

(40 × 15 × 3 × 2). A lower dimensional embedding of the 114 cells using UMAP [  136 ]

demonstrated them to be two distinct clusters (Figure  5.8 J). We also conducted functional

annotations using gene ontology enrichment analysis for the genes of the two patterns. Figure

 5.8 K,L showed the −log(p) of the top 5 pathways enriched by the genes in each pattern,

assessed by hypergeometric test. It implies that genes in the most dense pattern maintains

the vibrancy of the cancer by showing strong activities in transcription and translation; while

genes in the most sparse pattern maintains the tissue structure and suppress anti-tumor
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immune effect. Our analysis demonstrated that the GETF is able to reveal the complicated

but integrated spatial structure of breast cancer tissue with different functionalities.

5.6 Discussion

In this paper, we proposed GETF as the first efficient method for the all-way Boolean

tensor decomposition problem. We provided rigorous theoretical analysis on the validity

of GETF and conducted experiments on both synthetic and real-world datasets to demon-

strate its effectiveness and computational efficiency. In the future, to enable the integration

of prior knowledge, we plan to enhance GETF with constrained optimization techniques

and we believe it can be beneficial for broader applications that desire a better geometric

interpretation of the hidden structures.

In the next chapter, we will discuss the bias inside binary data for us to better find

meaning patterns from data.
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6. INDIVIDUAL BIAS IN BINARY DATA

6.1 Motivation

Binary matrix has been commonly utilized in multiple fields. Low rank pattern in a

binary matrix is defined as rank-1 sub matrices formed by the product of two binary bases.

Comparing to continuous data, recent studies demonstrated the rank-1 sub-matrices in bi-

narized data is more robust for mechanism interpretation or sub-space representation [ 115 ],

[ 121 ], because binary data in general bears reduced noise than continuous data. However,

variations of the probability of 1s of rows or columns may lead to varied element-wise prob-

ability, causing a fairness issue in low rank representation of binary data [ 137 ].

An intuitive example is binary transaction records data (figure  6.1 ), in which 1s represent

the purchase of items (each column) by users (each row). Different items or users are with

varied activities in conducting purchasing. For example, super-users make more purchase,

which can be independent to items, and popular items are more likely to be purchased.

The transactions made between super users and popular items unnecessarily imply good

recommendations since it can be simply caused by the high purchase chance. On the other

hand, the group of items having a strong purchase preference within a certain group of users

comparing to their background purchase rate is more valuable for recommendation. However,

Popular items

Su
pe

r u
se

r

Purchase pattern

Super user/ Popular items

Other purchase

Binary transcation records Latent pattern visulization

Figure 6.1. Individual bias in binary transaction records data
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the fairness issue in the low rank representation of binary data due to varied element-wise

background probability was rarely considered in existing formulations [ 138 ].

Here, we propose BIND, a BINary data Denoising method via considering that data is

generated from the mixture of to-be-identified rank-1 patterns and an unknown background

of element-wise probability, plus i.i.d. errors. BIND estimates the mixture distribution of

the probabilities of 1s from rank-1 patterns and background in each row and column, by

which the rows or columns that are more likely with true rank-1 patterns are distinguished

by the over-represented 1s comparing to the background.

Key contributions of this work include:

1. BIND is the first of this kind of binary data denoising method via considering non-

identical background distribution.

2. BIND can be easily implemented with state-of-the-arts BMF or CC methods for a

fairer rank-1 pattern detection.

3. rigorous mathematical derivations are provided to characterize the property of dis-

parate background distribution.

6.2 Background

6.2.1 Notations

We denote matrix, vector and scalar by uppercase, bold lowercase and lowercase character

X, x, x. Superscript with × indicates dimensions, while subscript implies index, such as

Xm×n
ij and xm×1

i . Pij , P (Xij = 1) denotes the element-wise probability of 1 at the element

Xij. ‖x‖ and ‖X‖ represent the l1 norm of vector and matrix, and ◦ represents Hadamard

product.

6.2.2 Related work

Existing methods of binary matrix low rank representation fall into two major categories,

namely binary matrix decomposition (BMF) and co-clustering (CC). BMF aims to decom-

104



pose a binary matrix as the product of two low rank binary matrix by maximizing its overall

fitting to the original matrix. The formulation of BMF is thus generalized as

Xm×n = Um×kV k×n + Em×n

, where U and V are the low rank pattern matrices, and E is the flipping error with p(1→

0) = p(0→ 1) = p0. BMF problem is NP-hard, for which multiple heuristic algorithms have

been developed. One representative method is ASSO, which retrieves candidate patterns by

using row-/column-wise correlation [ 25 ]. More recently, Bayesian probability measure and

geometrical identification largely improved the efficiency and accuracy of BMF [ 115 ], [ 121 ].

In contrast, the co-clustering (CC) method, also named as bi-clustering in statistics and

computational biology, maximizes the enrichment of 1s in the detected patterns based on

certain thresholds[  139 ]. For given Xm×n, most CC methods aim to identify the cardinality

of index set Il × Jl, l = 1, ..., k, where Il ∈ {1, ..., m} and Jl ∈ {1, ..., n},

s.t. Pij =


pl, if i, j ∈ Il × Jl

p0, if i, j /∈ Il × Jl

∀l = 1, ..., k

Noted, both BMF and CC methods assume the binary data is formed by the sum of to-

be-identified rank-1 submatrices and an i.i.d error, where individuals bias has not been

investigated.

6.2.3 Problem formulation

We consider the observed binary data with disparate element-wise background probability

that is generated by:

X = Um×kV k×n + X0 + E ′ + E (6.1)

Compared with the formulation of BMF, X0 is the background matrix. E ′ is the pattern

wise observation error that each element from pattern l has a probability of 1 − pl to be
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Figure 6.2. Quantile shift denoising

zero, while the elements outside patterns will not be impacted, i.e., P E′
ij (1→ 0) = 1− pl, if

i, j ∈ Il × Jl, P E′
ij (1→ 0) = 0, if i, j /∈ Il × Jl, ∀l = 1, ..., k.

Under this definition, by considering X0 are 0, current BMF and CC described in 2.2

are special case of (  6.1 ), and were designed to handle the pattern observation error E ′ and

elment-wise flipping error E. Thus, the bottleneck of a fair binary submatrix detection lies

in differentiating true patterns from the background X0. We consider the assumption of

P (X0
ij = 1) ∝ p0,r

i · p
0,c
j that can cover most of the binary data with disparate background,

when X0
ij are conditionally independent with fixed row or column index, like the purchase

transaction data in figure  6.1 with items of different popularity and users of different activ-

ity. We denote the row/column-wise background probability as pm×1, 0,row and pn×1, 0,column,

shorted as p0,r and p0,c, where p0,r
i ∝ p̂0,r

i = ‖X0
i:‖

n
and p0,c

j ∝ p̂0,c
j = ‖X0

:j‖
m

, and P (X0
ij = 1)

can be unbiasedly estimated as ‖X0
i:‖·‖X0

:j‖
‖X0‖ .
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6.3 BIND framework

Here we propose the BIND 

1
 framework to identify the rank-1 patterns (U, V ) from binary

data X with disparate background X0. Denoting P (X0
ij = 1) as P 0

ij , the element-wise

probability Pij , P (Xij = 1) can be derived as:

Pij =


P 0

ij ∝ p0,r
i · p

0,c
j , ij /∈ any Il × Jl

1− (1− P 0
ij )(1− pl) = p0

ij + (1− p0
ij)pl, ij ∈ Il × Jl

(6.2)

Specifically, the row and column probability pr
i and pc

j can be estimated by p̂r
i = ‖Xi:‖

n

and p̂c
j = ‖X:j‖

m
. Noted, pr and pc are formed by the mixture distribution of p0,r, p0,c and pl.

Analogous to BMF and CC problem, direct inference of p0,r, p0,c and pl from pr and pc is

NP-hard. As shown in Figure  6.2 A-D, instead of computing p0,r, p0,c and pl, BIND identifies

the rows and columns that are most likely conceiving patterns comparing to others. The

elements of the intersection of the identified rows and columns more likely represent true

rank-1 patterns (figure  6.2 F-J). For this task, we introduce the quantile_shift algorithm with

thorough mathematical proof.

Quantile_shift algorithm is designed to distinguish rows or columns that are more likely

conceiving rank-1 patterns. First, we introduce the concept of empirical distribution of row-

/column-wise probability, denoted as Fr and Fc (figure  6.2 A,B), which are sampled from p̂r

and p̂c with probability P (Fr = p̂r
i ) ∝ p̂r

i and P (Fc = p̂c
j ) ∝ p̂c

j . The observed probability

of hits Fh of any row i0 or column j0 is defined by Fh,r,i0 = {p̂c
j‖j with Xi0j = 1} and

Fh,c,j0 = {p̂r
i ‖i with Xij0 = 1}. Here Fr and Fc characterize the distribution of p̂r and

p̂c of the 1s randomly drawn from p̂r and p̂c. Intuitively, if a row or column conceives

a distinct pattern, the quantile function Qh of Fh will shift drastically from the quantile

function Qc of Fc or Qr of Fr (figure  6.2 C). On the other hand, Qh will be similar to Qc or

Qr if the row or column does not contain any pattern (figure  6.2 D). Hence the shift between

Qh and Qr or Qc can serve as a weight s to differentiate the rows or columns more likely

conceiving a pattern (figure  6.2 E). Noted, here Fr and Fc serve as proxy of F0,r and F0,c,
1

 ↑ Code and material can be access at https://github.com/clwan/BIND
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which are the empirical distribution of the true background probability of p0,r and p0,c. In

the following content, we prove s approximates the pattern size within each row or column,

i.e., s ≈ ‖(UV + E ′)i:‖ or ‖(UV + E ′):j‖ with certain bounds.

The input of Quantile_shift algorithm include a row or column index i0/j0, and p̂c or

p̂r, by which the empirical distribution Fc or Fr will be sampled, and the probability of hit

of the row or column Fh will be computed. The output is weight s of the row or column.

Without loss of generality, we illustrate the Quantile_shift algorithm for computing the

weight of row i0 below, and detailed mathematical proofs as follows:

Algorithm 11 Quantile_shift
Inputs: Row index i0, Estimated column-wise probability p̂c

Outputs: Estimated weight of significance of row i0, sr
i0

Quantile_shift(i0, p̂c):
Fc ← sampled from p̂c with probability p̂c

Fh ← {p̂c
j‖j with Xi0j = 1}

F(h) ← sort(Fh), a← length(Fh)
Qc(p) = sup(b) s.t. ‖Fc<b‖

length(Fc) ≤ p and ‖Fc>b‖+1
length(Fc) > p

for j=1...a do
if F(h)

j > Qc( j
a
) then

tj ← the column index s.t. F(h)
j = p̂c

tj
& Xi0tj = 1

s← s + F(h)
j −Qc( j

a
)

1−p̂c
tj

end if
end for

Lemma 6.3.1. If p̂r and p̂c are unbiased estimation of p0,r and p0,c. The weight computed

by quantile_shift is an unbiased estimation of the sum of E(Um×kV k×n + E ′) with respect to

that column or row.

Proof. If p̂r and p̂c are unbiased estimation of p0,r and p0,c, Fr or Fc generated from p̂r

and p̂c form unbiased empirical distribution of row-/column-wise probability of 1s of X0,

i.e. P (F0,r = p0,r
i ) ∝ p0,r

i and P (F0,c = p0,c
j ) ∝ p0,c

j . Without loss of generality, we prove

the lemma for the computation of the weight of the i0th row. Denote t = {j‖Xi0j = 1} and
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a = length(t), by Algorithm  11 and ( 6.2 ), ∀ j ∈ {1, ..., a} :

If i0tj /∈ any Il × Jl,

E(F(h)
j −Q( j

a
)) = E(p̂c

tj
− sup(b‖ ‖F

c < b‖
length(Fc) ≤

j
a

)) = 0

Else, i0tj ∈ Il × Jl for certain l,

E(F(h)
j −Q( j

a
)) = E(p̂c

tj
+ (1− p̂c

tj
)pl − sup(b‖ ‖F

c < b‖
length(Fc) ≤

j
a

))

= (1− p̂c
tj

)pl

Such that

E(
a∑

j=1

F(h)
j −Q( j

a
)

1− p̂c
tj

) =
∑

l

a∑
j=1

plI = ‖E(Um×kV k×n + E ′)i0:‖

Lemma 6.3.2. For X in (  6.1 ), and P 0
ij , P (X0

ij) ∝ p0,r
i · p

0,c
j , the probability estimated by

p̂r
i = ‖Xi:‖

n
and p̂c

j = ‖X:j‖
m

are bounded by ‖p̂r
i − p0,r

i ‖ ≤
∑k

l=1 1(i∈Il)pl‖Jl‖
n

, and ‖p̂c
j − p0,c

j ‖ ≤∑k

l=1 1(j∈Jl)pl‖Il‖
m

.

Lemma  6.3.2 can be derictly derived from ( 6.1 ) and ( 6.2 ).

Lemma 6.3.3. The weight of the i0th row (or similarly j0th column) is with a bias led by

the biasedly estimated p̂c and p̂r, which is bounded by

E(s− ‖(UV + E ′)i0:‖) ≤
max(Fc) + max(‖E(UV +E′):j‖

m
)(‖Fc‖+ 1)

min(1− ph)‖Fc‖
.

We still use the computation of the i0th row to illustrate the proof. The case for columns

can be similarly derived.

Proof. By Lemma  6.3.2 , p̂c is a biased estimation of p0,c, where p̂c
j = ‖X:j‖

m
≥ p0,c

j = ‖X0
:j‖

m
, j =

1, ..., m. Hence F(h) ≥ F0,(h), suggesting 1−F0,(h) ≥ 1−F(h) and Qc( j
a
) ≥ Q0,c( j

a
), by which

∥∥∥∥∥∥F0,(h)
j −Q0,c( j

a
)

1− p̂0,c
tj

−
F(h)

j −Qc( j
a
)

1− p̂c
tj

∥∥∥∥∥∥ ≤ 2

∥∥∥∥∥∥∥
max

z∈(0,1)
{Qc(z)−Q0,c(z)}

1− p̂c
tj

∥∥∥∥∥∥∥
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By lemma  6.3.2 , the bias of ‖p̂c
j − p̂c,0

j ‖ is bounded by ‖E(UV +E′):j‖
m

. So the max shift caused

in the quantile function max
z∈(0,1)

{Qc(z) − Q0,c(z)} is bounded by max(p̂c)+max(
‖E(UV +E′):j‖

m
)

‖p̂c‖ +

max(‖E(UV +E′):j‖
m

). Hence the cumulative bias is bounded by

E(s− ‖E(UV + E ′)i0:‖) ≤
a(max(p̂c) + max(‖E(UV +E′):j‖

m
)(‖p̂c‖+ 1)))

min(1− p̂c)‖p̂c‖

Lemma  6.3.1 suggests ‖Qh − Q0‖ is an unbiased estimation of the expected number of

1s in the rank-1 patterns and Lemma 2-3 provide the bound of the bias of ‖Qh −Q‖ when

Q0 is biasedly estimated as Q.

Theorem 6.3.4 (Quantile_shift). For a relative sparse binary matrix, the weight calculated

by Quantile_shift sufficiently characterizes the indices of the patterns with largest Pl‖Il‖ and

Pl‖Jl‖.

Proof. For i0th row (or similarly for the j0th column),

E(s− ‖(UV + E ′)i0:‖) ≤
a(max(p̂c) + max(‖E(UV +E′):j‖

m
)(‖p̂c‖+ 1)))

min(1− p̂c)‖p̂c‖

≈ a

min(1− p̂c)max{max(p̂c)
‖p̂c‖

, max(‖E(UV + E ′):j‖
m

)}

, suggests that when the input matrix and rank-1 patterns are relatively sparse, the weight

s approximates (UV + E)i0:, i.e. largest values in sr and sc correspond to the rows and

columns of the patterns with largest Pl‖Il‖ and Pl‖Jl‖.

BIND framework is developed to implement Quantile_shift algorithm with a BMF or

CC method, denoted as F , for a fairer rank-1 pattern identification under the formulation of

( 6.1 ). As illustrated in figure  6.2 F-J, Quantile_shift denoises the majority of the background

signal and enables a BMF or CC method better detects Um×k and V k×n. A cutoff τ is

needed to differentiated the weight of the rows or columns with true patterns (figure  6.2 E).

Empirically, τ could be set from 0.05 to 0.1 in BIND algorithm.
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Table 6.1. Jaccard index before/after denoising synthetic data

p
pk single pattern Multiple pattern

0.8 0.9 1.0 0.8 0.9 1.0

0.5 0.17/0.67 0.18/0.79 0.20/0.88 0.28/0.59 0.31/0.73 0.34/0.84
0.6 0.13/0.48 0.14/0.61 0.16/0.73 0.23/0.47 0.26/0.59 0.28/0.69
0.7 0.11/0.29 0.11/0.37 0.13/0.47 0.19/0.34 0.21/0.40 0.22/0.52

BIND is capable for one direction denoising. The Quantile_shift algorithm is O(n) or

O(m) for row or column weight computation and the BIND algorithm is O(mn), which is

smaller than most of current BMF and CC methods. The BIND algorithm is detailed below:

Algorithm 12 BIND
Inputs: Input data Xm×n, Threshold τ , BMF/CC method F
Outputs: Pattern matrices Um×k and V k×n

BIND(X, τ,F):
Xuse ← 0 ·X, sr ← 0m×1, sc ← 0n×1

p̂r
i = ‖Xi:‖

n
∀i = 1, ..., m and p̂c

j = ‖X:j‖
m
∀j = 1, ..., n

for i=1...m do
sr

i = Quantile_shift(i, p̂c)
end for
for j=1...n do

sc
j = Quantile_shift(j, p̂r)

end for
Ir ← I(sr > τ), Ic ← I(sc > τ), Xuse ← X ◦ (Ir · IcT )
U, V ← F(Xuse, ...)

6.4 Experiment

We evaluate BIND on synthetic and real-world movie-lens data sets across different data

scenarios. We demonstrate the implementation of BIND with different BMF and CC meth-

ods can significantly improve fairness in detecting rank-1 pattern from binary matrix with

disparate background probability. We also highlight the application of BIND for better

interpretation on real-world Movielens data.

We simulate synthetic data sets X100×100 with fixed size by following (  6.1 ): X = Um×kV k×n+

E ′ + X0 + E, with different pattern size ∈ {10, 15, 20}, pattern number k ∈ {1, 2}, obser-
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Figure 6.3. Performance on simulated and Movielens data

vation error pk ∈ {0.8, 0.9, 1.0}, background probability p0,r, p0,c, and element-wise flip-

ping error p0 ∈ {0, 0.05}. Specifically, background probabilities were generated from uni-

form distribution p0,r, p0,c ∼ U [0.1, p], where p ∈ {0.5, 0.6, 0.7} corresponds to different

background probabilities. We deem 108 data scenarios from the above parameter set-

tings and simulated 30 replicates for each scenario to form a test-bed. Jaccard index

D = ‖X∩UV ‖
‖X∪UV ‖ (X = original or denoised data) is used as the evaluation metric. For each

data scenario, denoising performance is evaluated by the averaged Jaccard index on the 30

replicates. We first compare the performance with respect to different significance threshold

τ = {0, 0.05 − 1}, where τ = 0 represents the data without denoising. As shown in figure

 6.3 A, the denoising process on average increased the Jaccard index by 2.6 fold and denoising

efficiency is slightly increased with τ . Table  6.1 lists the denoising performance with respect

to different number of patterns k, background probability p and observation probability pk,

where pattern size is set as 15 and τ = 0.1.

We benchmark BIND by implementing with recently developed BMF method LOM and

CC method Biclust, which showed top performance among similar state-of-the-arts methods

[ 115 ], [  139 ]. The implementation of BIND largely increased the accuracy in detecting true
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patterns, which results in an averaged 7.5 (LOM) and 2.6 (Biclust) fold increase of the

Jaccard index (figure  6.3 B,C) .

We also demostrate that BIND increases the interpretation and denoising in real-world

Movielens data, in which Xij = 1 represents the interest of user i (row) in rating/watching

movie j (column). Category label of each movie is provided. Intuitively, disparate back-

ground probablities naturally exist in this data due to different popularity of movies and

activity of users. Data is divided into four regions by the Ir and Ic computed in Algorithm

 12 (figure  6.3 D,E), where 1© is the region most likely with patterns, and 2©, 3© and 4© are

denoised regions. Users in region 1© watched more movies but less categories comparing

to other regions (figure  6.3 F), suggesting potential recommendation. In addition, region 1©

has smallest dispersion of the number of rated movies with respect to different categories,

suggesting more stable rating preference of users towards their preferred movie types in this

region (figure  6.3 G).

6.5 Discussion

In this chapter, we focus on the individual bias of binary data. Specially we try to

mitigate the ”super user” effect in identifying the true patterns. Here we propose BIND, the

first algorithm to quantify the bias effect of individual column or row. Though BIND gives

the description of the individual bias. Currently, there is no method that could identify the

bias and conduct matrix factorization simultaneously.

In the next chapter, we will propose the first method that identify bias and patterns

simultaneously in a probabilistic manner.
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7. BIAS AWARE PROBABILISTIC BOOLEAN MATRIX

FACTORIZATION

7.1 Overview

Boolean matrix is a one type of data representation with binary entries that originates

from a wide range of applications including recommendation system, network analysis, col-

laborative filtering, and biological gene expression [  104 ], [  105 ], [  140 ]–[ 142 ]. The goal of

Boolean matrix factorization(BMF) is to discover hidden patterns from binary data,

where it finds a pair of low-rank binary matrices (X ∈ {0, 1}m×k, Y ∈ {0, 1}k×n) (Figure

 7.1 A,B,C), whose Boolean product approximates the original input matrix (A ∈ {0, 1}m×n),

i.e.,

A ∼ X ⊗ Y, Aij ∼ ∨k
l=1Xil ∧ Ylj.

Such low-rank decomposition can capture the local dependency between subsets of ob-

jects (row of A) and subsets of features (column of A). Specifically, in each rank-1 submatrix

resulted from the decomposition into X, Y , i.e., X:l⊗Yl:, it indicates a group of objects (i.e.,

nonzero entries in X:l) sharing the same behavior on a set of features (i.e., nonzero entries

in Yl:). Here we denote the overall pattern matrix as Z := X ⊗ Y . For the background error

distribution, existing BMF methods tend to assume homoscedastic error distribution, or a

universal flipping error with a flipping rate of pf = p(Aij = 0‖Zij = 1) = p(Aij = 1‖Zij = 0).

In other words, the objective of BMF is to find the a decomposition of A such that

A = (Z + E) mod 2 ; s.t.Z = X ⊗ Y, p(Eij = 1) = pf

where Z, E minimize a certain cost function τ(Z, A) = ‖E‖ = ‖A 	 (X ⊗ Y )‖ (Figure

 7.1 A,B,C). Here, mod2 represents the modulo operation with a quotient of 2, and ‖ · ‖

represents a certain norm measure defined by the cost function τ(·).

Unfortunately, the assumption on homoscedastic error distribution is often violated when

applied to complex real-world data, where the individual objects or features may have its
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Figure 7.1. BMF with homoscedastic noise model and bias aware BMF with
column- and row-specific bias.
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specific bias pattern that result in heteroscedastic error distribution. Existing BMF

methods fail to account for such object- or feature-specific bias, which could severly im-

pact our ability to identify the true pattern Z, as the error matrix E may display row- or

column-specific bias [  143 ]. Take the online transaction records data as an example. The ob-

served transaction records data from customers (row) and items (column) are constituted by

three components: pattern, bias and flipping error (Figure  7.1 D), meaning that aside from

stochastic error, to determine whether or not a buyer would purchases a certain item, one

should not only look at the purchase pattern that he/she belongs to (Figure  7.1 E), but also

his/her innate personal purchase preferences and the popularity of the item (Figure  7.1 G).

For example, a super-buyer, or someone with impulsive buying habits, is very likely to make

a purchase regardless of the properties of the items; while a super-item, or a popular item,

is also likely to be purchased by users with different characteristics (Figure  7.1 B,H).

To mend the gap in binary data analysis, we propose BABF (Bias Aware Boolean

matrix Factorization), the first tool to derive the latent binary pattern (Z), in the presence

of individual row-wise and column-wise bias (Figure  7.1 D-H), denoted as two real-valued

probability vectors µ, ν, with µi ∈ [0, 1]∀i ∈ {1, ..., m} and νj ∈ [0, 1]∀j ∈ {1, ..., n}. These

two vectors represent processes that are object- and feature-specific, and are independent

from the pattern generation process, or the homoscedastic background error. In other words,

they capture the individual bias generation process that can’t be captured by the existing

model.

In this work, our contribution is three-fold: 1) BABF is the first method that considers

a heteroscedastic error model resulted from object- and feature-specific bias, which is more

suitable for modeling real world data; 2) BABF is a highly efficient algorithm in capturing

the low rank structures in binary matrix in the presence of individual bias, and showed

robust performance in deriving the true patterns across different data scenarios; 3) As a

byproduct of pattern discovery, BABF-derived individual bias patterns are highly consistent

with the true bias pattern in simulated data and reasonable in real world data, which may

lead to practical interpretations depending on different application scenarios.

116



7.2 Problem formulation

In this section, we formally address our objective to derive the latent Boolean patterns

while considering the individual row- and column-wise bias in a probabilistic framework. We

first introduce the notations used across this paper, then report the existing probabilistic

BMF framework in [ 114 ], [ 115 ], and then our bias-aware BMF model, BABF.

7.2.1 notation

Matrix, vector and scalar values are denoted by uppercase (A), bold lowercase (a) and

lowercase character (a), respectively. The upper-script represents the dimension of the object

(e.g. Am×n), while the lower-script indicates the element indices (e.g. i-th row: Ai:, j-

th column: A:j, and ij-th element: Aij). ‖ · ‖ represents a certain type of norm measure.

Under Boolean arithmetic, the and, or, and not operations are denoted by ∧, ∨, and ¬.

Subsequently, the Boolean element-wise sum and subtraction are defined as X ⊕Y = X ∨Y

and X 	 Y = (¬X ∨ Y )∧ (X ∨¬Y ). The Boolean matrix product is defined as Z = X ⊗ Y ,

where Zij = ∨k
l=1Xik ∧ Ylj.

7.2.2 Existing homoscedastic BMF model

Following [  114 ], [  115 ], each observed entry in a matrix A, i.e. Aij ∈ {0, 1}, is assumed to

be generated from the latent pattern Zij with a homoscedastic error model with universal

flipping probability pf , where the likelihood function is defined as

p(Aij‖Zij) =


1− pf , if Aij = Zij

pf , if Aij 6= Zij

p(A‖Z) =
m×n∏

ij
p(Aij‖Zij)

As Z = X ⊗ Y , individual Bernoulli prior is applied on every element of X and Y , i.e.,

p(X) =
m×k∏

il
p(Xij) p(Y ) =

k×n∏
lj

Yjl
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Figure 7.2. The factor graph representation of BMF and Bias-aware BMF.
Noted, A is adopted from [ 114 ]

Under this formulation, BMF is equivalent to a Maximum A posterior (MAP) inference

problem of X and Y that maximize the overall likelihood function

p(X, Y ‖A) ∝ p(X)p(Y )p(Z‖X, Y )p(A‖Z)

Following [  114 ], we assume identical Bernoulli prior on X, Y , represented by factor h, e.g.,

h(Xil) = log(p(Xil)), h(Ylj) = log(p(Ylj)). Here, p(Z‖X, Y ) encodes the hard constraint that

ensures the equality of the Boolean product, i.e., Z = X ⊗ Y . By introducing an auxiliary

tensor W ∈ {0, 1}m×n×k, where Wijl = Xil ∧ Ylj, Zij = ∨k
l=1Wijl, this hard constraint is

dispersed onto each element in W , and can be reformulated as an identity constraint as

p(Wijl‖Xil, Ylj) = I(Wijl = Xil ∧ Ylj)

where for I, we have I(true) = 1 and I(false) = 0. Obviously, if Wijl 6= Xil ∧ Ylj,

the factor f(Wijl, Xil, Ylj) = log(p(Wijl‖Xil, Ylj)) will be evaluated to be −∞. Finally, factor

g({Wijl},∀l ∈ {1, ..., k}) = log(p(Aij‖Zij)) assess the likelihood of observed variable Aij given
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the latent pattern Zij. Overall, we have the factor graph representation of the log-likelihood

p(X, Y ‖A) (Figure  7.2 A, adopted from [ 114 ]) as

log(p(X, Y ‖A)) =
m×n∑

ij
h(Xij) +

k×n∑
lj

h(Ylj) +
m×n×k∑

ijl
f(Wijl, Xil, Ylj) +

m×n∑
ij

g({Wijl}l)

Owing to the NP-hard complexity of BMF [ 108 ], it is intractable to infer the MAP of

the log-likelihood. Alternatively, focusing on the marginal-MAP often yield good empirical

success [ 114 ], [ 115 ], e.g.,

arg max
Xil

log(p(Xil‖A)) = arg max
Xil

∑
Xi′l′ \Xil,Yl′j′

log(p(Xi′l′ , Yl′j′‖A))

Max-sum belief propagation and Gibbs sampling have been reported to achieve good per-

formance under such strategy [ 114 ], [ 115 ].

7.2.3 Proposed bias Aware BMF model

The probabilistic BMF model presented above provides a good framework for us to

account for the feature- and object-wise bias. Comparing with the homoscedastic setting,

the core advancement of our work is to consider the observed data as generated from a process

that is more realistic: aside from stochastic error, or the homoscedastic error distribution

as in [ 114 ], [  115 ], we consider that the observed data is generated not only from the latent

pattern Z = X ⊗Y , but also from independent object/feature behavior process governed by

a bias matrix B ∈ {0, 1}m×n, where B is determined by a row- and column-wise bias vector

µ and ν in such way that

pBij = p(Bij = 1) = µiνj

And the generation process of A is hence

A = B ⊕ ((Z + E) mod 2).
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The new likelihood of each observations can be characterized in the following four sce-

narios:

p(Aij = 1‖Zij = 0) = 1− (1− pf )(1− µiνj)

p(Aij = 0‖Zij = 0) = (1− pf )(1− µiνj)

p(Aij = 1‖Zij = 1) = 1− pf (1− µiνj)

p(Aij = 0‖Zij = 1) = pf (1− µiνj)

The new posterior probability could then be written as

p(X, Y, µ, ν‖A) = p(X)p(Y )p(Z‖X, Y )p(µ)p(ν)p(A‖Z, µ, ν)

Factor graph representation of the new posterior is shown in Figure  7.2 B. Comparing to

the existing probabilistic BMF model introduced in 2.2, the new factor graph involves the

row- and column-wise bias vectors µ, ν. Given no prior knowledge of the two variables, we

assume a uniform prior on µ, ν, thus factor b(µi), b(νj) evaluate to 0 in the graph. And the

likelihood factor g is also related to µ, ν in the new formulation.

Same as BMF, the new bias aware formulation is still an NP-hard problem, and we

also turn to find the marginal-MAP, which corresponds to optimally estimating individual

variables, while the other variables are marginalized. In the next section, we introduce BABF

algorithm to derive the decomposition.

7.3 The algorithm of BABF

While we assume our observations A is generated from two sources, latent pattern Z and

Bias B; these two sources themselves can be considered as independent from each other. Such

independence is also reflected on the factor graph (Figure  7.2 B). Though the likelihood factor

g and the auxiliary variables W are involved with both {X, Y } and {µ, ν}, the direct message

update of {X, Y } and {µ, ν} are independent with each other. Conveniently, {X, Y, W} and

{µ, ν, W} can be considered as two individual systems to be treated separately.
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Algorithm 13 BABF, Bias Aware BMF
Inputs:A, k, pX , pY , pf , tall, tMF , tBI

BABF:
while t ≤ tall and not converged messages do

µt+1, νt+1 ←Bias_infer(A, X t, Y t, tBI)
X t+1, Y t+1 ← prob_BMF(A, k, pX , pY , pf , µt+1, νt+1, tMF )

end while

Bias_infer:
Z := X ⊗ Y
while t ≤ tBI and error_now < error_all do

error_all := error_now

µt+1
i :=

∑n

j=1,Zij=0 Aijνt
j∑n

j=1,Zij=0 νt
j
∀i ∈ {1, ..., m}

νt+1
j :=

∑m

i=1,Zij=0 Aijµt
i∑m

i=1,Zij=0 µt
i
∀j ∈ {1, ..., n}

error_now := ∑
ij,Zij=0(Aij − µiνj)2

end while

prob_BMF:
p(Aij‖Zij)← calculate based on µ, ν.
Initialize Ψ0

ijl, Ψ̂0
ijl, Φ0

ijl, Φ̂0
ijl, Γ0

ijl, Γ̂0
ijl,∀i, j, l

while t ≤ tMF and not converged messages do
Φt+1

ijl := max(Γt
ijl + Ψ̂t

ijl, 0)−max(Ψt
ijl, 0)

Ψt+1
ijl := max(Γt

ijl + Φ̂t
ijl, 0)−max(Φt

ijl, 0)
Φ̂t+1

ijl := log(1−pf

pf
) + ∑

j′ 6=j Φt
ij′l

Ψ̂t+1
ijl := log(1−pf

pf
) + ∑

i′ 6=i Ψt
i′jl

Γt+1
ijl := min(log(p(Aij‖1)

p(Aij‖0) + ∑
l′ 6=l max(Γt

ijl′)), max(0,−maxl′ 6=l Γ̂t
ijl′))

Γ̂t+1
ijl := min(Φ̂t

ijl + Ψ̂t
ijl, Ψ̂k

ijl, Φ̂t
ijl)

end while

Xil =

1 if log(1−pf

pf
) + ∑m

i=1 Φt
ijl > 0

0 otherwise.

Ylj =

1 if log(1−pf

pf
) + ∑m

i=1 Ψt
ijl > 0

0 otherwise.

Outputs: X, Y, µ, ν
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Here we introduce BABF in algorithm  13 . BABF has two core components, prob_BMF

and Bias_infer, corresponding to the derivations of {X, Y } and {µ, ν}. Other than the input

data A, BABF takes the pattern number parameters k, the Bernoulli prior of X, Y , filling

error pf and the maximum iterations for the overall algorithm as well as core components

(tall, tMF , tBI) as input, and outputs the decomposition X, Y and the bias vectors µ, ν.

When fixing bias vectors µ, ν, the only differences between bias aware BMF and the

existing BMF is that each likelihood factor gij would evaluate to different probability assign-

ments by referencing µi, νj. Following [  114 ], we utilize the max-sum belief propagation (BP)

strategy to approximate the overall likelihood in prob_BMF. Correspondingly, the message

Γijl that propagates the likelihood information to auxiliary variable W would be different

from [ 114 ] with individualized probabilities.

The inference of the marginal-MAP of µ, ν is a non-trivial task even with accurate

pattern information Z, as for any bias variable µi, any observation related to this variable

is related to a different νi, and vice versa. To circumvent this computational challenge,

we adopted two modifications. 1) we only consider the observations that are not covered

by pattern Z for bias inference. We argue the pattern related observations have marginal

contribution to the bias inference and could be omitted. 2) Instead of deriving exact MAP

of likelihood, we treat this as an optimization problem, where we could utilize conventional

loss functions to achieve the same objective that optimize the difference between µ, ν and

background information. Inspired from [  143 ], we apply a modified mean square loss. Take

µi as an example, the loss function takes the form of

Ωi =
n∑

j=1,Zij=0
νt

j (Aij − µt
i)2

The most important benefit of this modified loss is that it ensures the probability of each µi

would be from [0,1] and still consider the impact from νj for each observation Aij. Moreover, it

is with high computational feasibility as the updated µt+1
i could be easily derived as µt+1

i :=∑n

j=1,Zij=0 Aijνt
j∑n

j=1,Zij=0 νt
j

Correspondingly, νt+1
j :=

∑m

i=1,Zij=0 Aijµt
i∑n

i=1,Zij=0 µt
i

. Here, we implement this strategy in

Bias_infer. Empirically, it is robust for the bias inference across different scenarios, which

we will introduce in detail in the experiments section.
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7.4 Message passing

Despite the dense connections in the factor graph, max-sum belief propagation achieved

admirable performance in the case of approximate the MAP of Boolean matrix factorization

[ 114 ]. Here we also utilize this strategy that not only derive the MAP of matrix decom-

position X and Y , but also infer the background row- and column-wise bias µ, ν. Though

the information of µ, ν and X, Y communicates through likelihood factor g and auxiliary

variable W , their independence of each other resulted in disconnected message update be-

tween µ, ν and X, Y . Conveniently, {X, Y, W} and µ, ν, W} can be considered as two

separate systems. In this paper we focus on the message update of {µ, ν, W}, and adopt

the algorithm in [ 114 ] for {X, Y, W}.

7.4.1 update X,Y,W

Variables to factor message.

Conveniently, all the variables in {X, Y, W} are binary variables (Xil, Ylj, Wijl ∈ {0, 1}).

Following the notation in [  114 ], we denote the message between factors and variables as m

(e.g., mXil→fijl(Xij) : {0, 1} → R). Max-sum BP is utilized to calculate the outgoing message,

while consideration all incoming messages from neighbor factors, despite the receiving one,

e.g.,

mXil→fijl(Xij)t+1 = mhil→Xill(Xil)t +
∑
j′ 6=j

mfij′l→Xil(Xil)t

Our objective is to achieve the maximum likelihood, which align with the difference

between the message of mXil→fijl(Xij = 1) and mXil→fijl(Xij = 0), i.e.,

Φ̂ = mXil→fijl(1)−mXil→fijl(0)

In the case of individual variable Xil to the factor fijl

Φ̂t+1
ijl = (mhil→Xill(1)t +

∑
j′ 6=j

mfij′l→Xil(1)t)− (mhil→Xill(0)t +
∑
j′ 6=j

mfij′l→Xil(0)t)

= log(p(Xil = 1)
p(Xil = 0)) +

∑
j′ 6=j

Φt
ij′l

123



Similarly, the message Ψ̂ can be derived as

Ψ̂ijl = log(p(Ylj = 1)
p(Ylj = 1)) +

∑
i′ 6=i

Ψt
i′jl

For W , since each variable Wijl has exact two factor neighbors gij, fijl, the message from

Wijk to either factors is the message from the other factor, i.e.,

mWijl→gij(Wijl) = mfijl→Wijl(Wijl)

mgij→Wijl(Wijl) = mWijl→fijl(Wijl)

We will discuss in detail of the message involve factor g in next section.

factor to variable message

For factor h, it only connect to the single variable Xil or Ylj, which works as prior

knowledge for the sparsity of X and Y , where their information is passed through

hil(Xil = 1)− hil(Xil = 0) = log(p(Xil = 1)
p(Xil = 0))

hlj(Ylj = 1)− hlj(Ylj = 0) = log(p(Ylj = 1)
p(Ylj = 0))

Factor f links X, Y with the auxiliary variable W , that ensures Wijl = Xil ∧ Ylj, i.e.,

f(Xil, Ylj, Wijl) = log(I(Wijl = Xil ∧ Ylj))

Notably, f(Xil, Ylj, Wijl)→ −∞ if Wijl 6= Xil∧Ylj. Such that it restrict the message scenarios

when passing the information from f to X, Y . Here, we use mfijl→Xil(Xil) as example, where

mfijl→Ylj(Ylj) can be similarly derived. For Xil to equal to 1, if Ylj = 1, restricted by f ,

Wijl = 1, and if Ylj = 0, Wijl = 0, thus,

mfijl→Xil(1)t+1 = max(mYlj→fill(1)t + mWijl→fijl(1)t, mYlj→fill(0)t + mWijl→fijl(0)t)
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While if Xil = 0, Wijl = 0 regardless the value of Ylj, i.e.,

mfijl→Xil(0)t+1 = max(mYlj→fill(1)t + mWijl→fijl(0)t, mYlj→fill(1)t + mWijl→fijl(0)t)

Since Ψ̂ijl = mYlj→fijl(1)−mYlj→fijl(0), and Γijl = mWijl→fijl(1)−mWijl→fijl(0) the message

from f to X can be derived as

Φijl = mfijl→Xil(1)−mfijl→Xil(0) = max(Γijl + Ψ̂ijl, 0)−max(Ψ̂ijl, 0)

Similarly, we have

Ψijl = mfijl→Yil(1)−mfijl→Yil(0) = max(Γijl + Φ̂ijl, 0)−max(Φ̂ijl, 0)

Following the same strategy, while considering the message from factor f to variable W ,

if Wijl = 1, Xil = Ylj = 1, whereas if Wijl = 0, either Xil or Ylj should equal to zero, i.e.,

mfijl→Wijl(1)t+1 = mYlj→fill(1)t + mXil→fijl(1)t

mfijl→Wijl(0)t+1 = max(mYlj→fill(1)t + mXil→fijl(0)t, mYlj→fill(0)t + mXil→fijl(1)t,

mYlj→fill(0)t + mXil→fijl(0)t)

Such that

Γ̂ijk = mfijl→Wijl(1)−mfijl→Wijl(0) = min(Φ̂ijl + Ψ̂ijl, Φ̂ijl, Ψ̂ijl)

7.4.2 update µ, ν, W

In the previous section, we have derived the messages passing between the X, Y and W .

In this section, we derive the message passing between µ, v and W , where they all related

to the likelihood factor g. Also, different with binary variable W , µ and ν are Bernoulli

variable, that the simplified singleton message does not applied for their message update.
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We first reinstate the log likelihood function of each element (Aij) that represent the factor

g.

p(Aij = 1‖Zij = 0) = 1− (1− pf )(1− µiνj)

p(Aij = 0‖Zij = 0) = (1− pf )(1− µiνj)

p(Aij = 1‖Zij = 1) = 1− pf (1− µiνj)

p(Aij = 0‖Zij = 1) = pf (1− µiνj)

In the case of Bernoulli variables µi, the incoming message from factor g to µi is certainly

the likelihood information,

Ωi = log(
n∏

j=1
p(Aij))

while the message from µi to g would be the MAP of the posterior distribution, i.e.,

Ω̂i = arg max
µi

log(
n∏

j=1
p(Aij)p(µi)) = arg max

µi
(

n∑
j=1

log(p(Aij)) + bi(µi))

Given no knowledge on the bias before hand, here we impose a uniform prior on the

Bernoulli variable, such that bi(µi) = 0. In addition, the log posterior is related to 4 situa-

tions,

Ωi =
n∑

j=1,Aij=1,Zij=0
log(1− (1− pf )(1− µiνj)) +

n∑
j=1,Aij=1,Zij=1

log(1− pf (1− µiνj))

+
n∑

j=1,Aij=0,Zij=0
log((1− pf )(1− µiνj)) +

n∑
j=1,Aij=0,Zij=1

log(pf (1− µiνj)

Here we assume Pf → 0, such that pf (1 − µivi) → 0, and both ∑n
j=1,Aij=1,Zij=1 log(1 −

pf (1 − µiνj)) and ∑n
j=1,Aij=0,Zij=1 log(pf (1 − µiνj) can be approximate by a constant that

does not contribute to the inference of Ω̂i. Also (1− pf )(1− µiνj) can be approximated by

(1−µiνj). It also has practical meanings, that for the inference of background bias, we only

consider the values that are not covered by the latent pattern X, Y . While our objective is to

infer µi that better reflect the background information of Ai:. However, it is still non-trivial

to derive Ω̂i as every observation is related to a different vj. Instead of deriving exact MAP
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of likelihood, we treat this as an optimization problem, where we could utilize conventional

loss function to achieve the same objective that optimize the difference between µi with Ai:.

Here, we apply a modified mean square loss, i.e.,

Ω =
n∑

j=1,Zij=0
vj(Aij − µi)2

The most important benefit of this modified loss is that it ensures the probability of each µi

would be from [0, 1] and still consider the impact from vj for each observations. Conveniently,

Ω̂i is inferred from the derivative of Ω, i.e.,

Ω̂ = arg max
µi

Ω =
∑n

j=1,Zij=0 Aijvj∑n
j=1,Zij=0 vj

Similarly, we have

Θj =
m∑

i=1,Zij=0
µi(Aij − vj)2

Θ̂j =
∑m

i=1,Zij=0 Aijµi∑n
i=1,Zij=0 µi

Now we have derived all messages in the likelihood despite Γijl : mgij→Wijl that passed

the information from the likelihood factor to each of auxiliary variable Wijl. Overall, the

message take the form of

mgij→Wijl(Wijl)t+1 = max
Wijl′ ,l

′ 6=l
(gij(Zij, µi, vj) +

∑
l′ 6=l

mWijl′ →gij(Wijl′)t)

When updating Wijl, we consider two scenarios: 1. Zij = ∨k
l=1Wijl = 1 with likelihood

factor p(Aij‖Zij = 1) and 2. ∨k
l=1Wijl = 0, p(Aij‖Zij = 0).

Wijl = 1 falls into the situation of scenarios 1, that no matter the value of Wijl′ , Zij =

∨Wijl = 1. The message for Wijl = 1 can be derived as

mgij→Wijl(1) = max
Wijl′ ,l

′ 6=l
(gij(Zij, µi, vj) +

∑
l′ 6=l

mWijl′ →gij(Wijl′)t)

= log(p(Aij‖1)) +
∑
l′ 6=l

max(mWijl′ →gij(1), mWijl′ →gij(0))
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Wijl = 0 could involve both cases. If Zij = 0, all Wijl′ = 0, i.e.,

mgij→Wijl(0) = log(p(Aij‖0)) +
∑
l′ 6=l

mWijl′ →gij(0)

If Zij = 1, at least one of Wijl′ equal to zero. To achieve the maximum likelihood, the Wijl′

with the maximum likelihood difference on 0 or 1 should be set as 1, we denote it as Wijl∗ ,

where l∗ = arg maxl′ 6=l(mWijl′ →gij(1)−mWijl′ →gij(0)), such that we have

mgij→Wijl(0) = log(p(Aij‖1)) +
∑
l′ 6=l

max(mWijl′ →gij(1), mWijl′ →gij(0))−mWijl∗→gij(0)

Taken together,

mgij→Wijl(0) = max(log(p(Aij‖0)) +
∑
l′ 6=l

mWijl′ →gij(0), log(p(Aij‖1))

+
∑
l′ 6=l

max(mWijl′ →gij(1), mWijl′ →gij(0))−mWijl∗→gij(0))

Therefore

Γijl = mgij→Wijl(1)−mgij→Wijl(0) = log(p(Aij‖1)) +
∑
l′ 6=l

max(mWijl′ →gij(1), mWijl′ →gij(0))

−max(log(p(Aij‖0)) +
∑
l′ 6=l

mWijl′ →gij(0), log(p(Aij‖1)) +
∑
l′ 6=l

max(mWijl′ →gij(1), mWijl′ →gij(0))

−mWijl∗→gij(0)) = min(log(p(Aij‖1)
p(Aij‖0)) +

∑
l′ 6=l

max(0, Γ̂t
ijl′), max(0,−maxl′ 6=lΓ̂t

ijl′))

7.5 Experiments

We evaluate the performance of our bias aware model on both synthetic and real world

datasets. We first introduce related methods for BMF and report the benchmark perfor-

mance across different simulated data scenarios. We then highlight the practical use of

BABF in our analysis of a movielens and gene expression data.

In this section we illustrate the performance of BABF, the first tool to simultaneously

derive both {X, Y } and {µ, ν}.
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Figure 7.3. Performance comparison on simulated data

7.5.1 related work

In addition to the probabilistic methods introduced above [  114 ], [ 115 ], different heuristic

methods have been developed to solve the BMF problem. Previously [  143 ] systematically

discussed the bias issue in BMF, but their focus is to explore the identifiability of the patterns

in the presence of bias in the noise model. For the rest of the methods, none of them

considered the heteroscesdastic issue of the error distribution. Among these methods, ASSO

represents a series of work from Miettinen et al [ 25 ], [ 110 ], [ 144 ], [ 145 ]. ASSO first generates

a pool of column basis from row-wise correlation matrix, and iteratively search for the best

column and row basis following a pre-defined cost function. PANDA is another series of

heuristic methods that embed the cost function in the search of top_k core patterns [ 111 ],

[ 112 ]. Formal Concept Analysis also showed empirical success in BMF [ 146 ]–[ 148 ]. More

recently, [  121 ] proposed a fast algorithm by formulating submatrix pattern identification in

a geometric perspective. [ 149 ] formulates BMF as an integer program problem and utilize
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Figure 7.4. BABF inferred bias is highly correlated with ground truth bias

column generation framework to search for the best solutions. Here, we benchmark the

performance of BABF with MP [ 114 ], CG [  149 ], MEBF [  121 ], ASSO [  25 ] and PANDA [  111 ]

and believe that this set of methods represent the state-of-the-art performance of BMF in

different perspectives.

7.5.2 benchmark on simulated data

We simulate an observed binary matrix A by the following model:

A = B ⊕ ((Z + E) mod 2).

Here, B, Z, E represent the column-/row-wise bias matrix, pattern matrix and error ma-

trix respectively. Each entry in B, E ∈ {0, 1}m×n is simulated to follow Bernoulli distribution

with success probabilities p(Bij) ∝ µiνj and p(Eij) = pf . The latent pattern matrix is gen-

erated by Z = X ⊗ Y , where X ∈ {0, 1}m×k, Y ∈ {0, 1}k×n, and entries in X, Y also follow

Bernoulli distributions with success probabilities p(Xil) = pX and p(Ylj) = pY . To compre-

hensively evaluate the methods, we generate varied data scenarios by considering different

pattern numbers (k ∈ {3, 4, 5}), and flipping error (pf ∈ {0, 0.05}). We also use different

levels of pX , pY to simulate pattern matrices of different density levels, where low density

has pX = pY = 0.2 while high density has pX = pY = 0.4. The bias level is controlled by

µ, ν. In case of low bias, we sample every µi, νj uniformly from [0.1, 0.8], which yields a

overall bias level of ¯pBij ∼ 0.2. For the high bias case, µi, νj is sampled from [0.3, 0.9] that
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Figure 7.5. Performance comparison on simulated data without individual bias
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result a bias probabilities of each variable at ¯pBij ∼ 0.36. Altogether, we resulted in 24 data

scenarios. For each scenarios, we set m = n = 100 and simulate 20 replicates.

Performance on reconstruction error

We report the benchmark results in Figure  7.3 . We utilize default setting of the bench-

marking methods in our analysis. As for BABF, we assume the prior of X, Y as Bernoulli

distribution with pX = pY = 0.5 and a flipping error of pf = 0.01. The maximum iterations

of tall, tBI , tMF are set at 20, 5 and 50.

For each method, we compare their performance using reconstruction_error, i.e, ‖Ẑ −

Z‖ as evaluation metric. Here, ‖ · ‖ represents the L1 norm, and Ẑ denotes the derived

pattern matrix by each method. Lower reconstruction error indicates a better performance.

It is anticipated that heuristic approaches like CG, MEBF, ASSO, PANDA would show

varied performances respect to different data scenarios as different bias level would result

in different impact on their underlying heuristic assumptions. Probabilistic method MP

showed an overall stable performance but still struggles with high bias level. As expected,

BABF achieves the most desirable performance with different bias levels, which highlight the

importance to consider individual bias. Additionally, BABF revealed its robustness towards

different data scenarios.

Evaluate inferred bias

We explore whether BABF could reliably recover the bias levels µ, ν. Here, we denote

BABF inferred row- and column-wise bias as µ̂, ν̂. Since it is easy to find a scalar value r,

s.t., µi · νj = rµ̂i · 1
r
ν̂j, we do not seek to directly compare the difference of values between

µi, µ̂i, or νj, ν̂j, but instead analyze the correlation between the inferred bias and true bias for

every input matrix A, i.e., corr(µ, µ̂), corr(ν, ν̂). We report the correlation results across

different data scenarios with pattern number (k = 4) in Figure  7.4 . Every scenario has

20 replications. Figure  7.4 A,B show the row- and column-wise bias across different data

scenarios. In most cases, BABF inferred bias achieved over 0.8 correlation with ground

truth. Even in the worst case, the correlation is as high as 0.4. To give a more intuitive idea,
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Figure 7.6. Model selection of pattern number k

we reveal the inferred bias and true bias of the first input matrix from each scenario as an

example in Figure  7.4 C,D. The high correlation suggests desirable performance of BABF to

infer the individual bias associated with the objects and the features.

Performance on data without bias

Next, we wish to test how BABF performs on data without bias ( µi = νj = 0,∀i, j).

In other words, we want to see if BABF is only suitable to model biased data scenarios.

In Figure  7.3 , we report the reconstruction error of the methods across 12 data scenarios

all without background bias. In general, BABF and MP showed reliable performance. In

some high density cases, BABF performs slightly worse than MP, but the difference is only

marginal. Overall, BABF showed robust performance towards different data scenarios.

Selection of the pattern number

In our setting, the pattern number k is the most important hyper-parameter that directly

determines the number of variables in the factor graph. Under the probabilistic framework,

we could utilize different statistic metric to select the most optimal pattern numbers. Here

we test three metrics, including cross validation (CV), Akaike information criterion (AIC)

and Bayesian information criterion (BIC) for the model selection of k. For CV, we use 90%

of the data for fitting and the rest 10% for testing [  150 ]. For AIC and BIC, we utilize the

formulation in [ 151 ]. For all the methods, we evaluate the metrics on k = {2, ..., 6} and
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Figure 7.7. Goodness of fitting on the decomposition for real-world data

select the best k following their formulation. We tested above metrics across all 24 data

scenarios and report the pattern number selections results in box plots (Figure  7.6 ). Here

red dash marked the ground truth of k. Overall, CV showed consistently accurate selection

of pattern number, with only marginal derivations for a small number of cases. AIC and

BIC are impacted by the size of input data given a rather large number of variables in the

model. Particular, BIC tends to always identify the smallest k for the model.

7.5.3 Analysis on real-world data

We tested the performance of BABF on three real world datasets, movie lens data from

[ 152 ] and two biological gene expression datasets, head and neck cancer and melanoma single

cell RNAseq (scRNA-seq) data from [  21 ], [  24 ]. The choice of the dataset as well as the pre-

processing procedure follows previous works [ 115 ], [  153 ]. In movie lens data we have 943

users, that rated/not rated 1682 films. In head and neck, and melanoma data, we have

5902 cells that express/not express 7954 genes, and 4486 cells that express/not express 8210

genes. For each dataset, we first identify the number of patterns k ∈ {2, 20} through cross

validation, which yield 5 patterns in movie lens, 3 patterns in melanoma and 6 patterns

in head and neck. BABF is then applied to retrieve X̂, Ŷ , µ̂ and ν̂ following the specific

pattern number for each dataset. We mainly focus on addressing two questions: 1. Would

the consideration of individual bias benefit our interpretation of real world data? 2. Does

the inferred bias carry any practical meaning?
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Data interpretation

Since the underlying true patterns of real world data is not accessible, instead of com-

paring decomposed pattern Ẑ with input matrix A, where A is constituted of not only the

true pattern matrix Z but also likely noise matrix E and bias matrix B, we use a likeli-

hood metric. Specifically, we evaluate the goodness of model fitting as the overall likelihood,

where a larger likelihood indicating a better fitting of the data. We compare the likelihood

of BABF with the probabilistic BMF method MP. Similar to [  114 ], [  115 ], we investigate

the methods’ performance by only keeping a certain percentage of the observations, called

observation level, while masking the rest of the observations. At every observation level, we

replicate the analysis for five times and report the mean log-likelihood value. We report the

likelihood results in Figure  7.7 A,B,C. On all three datasets, BABF showed higher overall

likelihood compared with MP, which suggests that the individual bias assumption is more

realistic for real-world data, that movie viewers or cells could be vastly different from each

other even in the same pattern group, and such bias is independent with the latent pattern.

This advocates the necessity to consider the individual bias in the BMF problem.

To further test the interpretability of the patterns, we examined how the patterns coincide

with cell type labels in the two expression datasets, and the movie genres in the movielens

dataset, using adjusted rand index, where a higher value corresponds to a greater similarity

[ 154 ]. Figure  7.7 D shows the peformance of BABF and MP on three datasets. Though both

BABF and MP perform poorly on movie lens data, the decomposition from BABF showed

higher similarity with given labels in both biological data, which partially revealed a better

decomposition of BABF compared with MP.

Practical meaning of inferred bias

The individual bias assumption allows BABF to outperform or have comparable perfor-

mance with the existing BMF methods, whether such bias is present or not. Here, we want

to understand whether the inferred bias could reflect certain practical meaning. Inspired by

[ 143 ], in movie lens data, we want to explore the inferred bias on individual user with their

taste on movie types. In our hypothesis, if a user only focus on certain genres of movie,

135



Figure 7.8. Interpretation analysis on inferred bias

then their behavior could be majorly explained by pattern information Z, while with less

effect from B. Here we design the focus index to quantify such effect. Specifically if a user

watched a numbers of movies in c categories, i.e., a = b1 + ... + bc, the focus index of this

user is calculated as focus_index := ∑c
i=1( bi

a
)2. As anticipated, inferred bias is negatively

correlated with the focus index (Figure  7.8 A, corr = −0.19, p = 3.67e− 6). This significant

negative correlation revealed that the inferred bias partially revealed certain taste of the

movie viewers.

In the case of gene expression, we focus on two group of genes, housekeeping genes and

non-housekeeping genes [ 155 ]. As the name revealed, housekeeping genes are to maintain the

basic activities of the cells, that each cell, regardless of their cell types, will all express these

genes. On the other hand, non-housekeeping genes will be the ones that reflect the cell-type

specificity. For example, T cells will express T cell marker genes like CD3D,CD3E [ 156 ],

[ 157 ]. Figure  7.8 B,C are the density plot visualization of the inferred bias on housekeeping

and non-housekeeping genes. As expected, housekeeping genes have a much bigger effect

from bias as their expression behavior is not related with any patterns. On the other hand,

since the non-housekeeping genes revealed the specificity of the cell, its behavior is largely

covered by the latent pattern, such that we witness a small bias in µ̂ on both datasets.
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7.6 Discussion

In this paper, we propose a bias aware model, BABF, which is the first algorithm to

derive Boolean matrix decomposition in the presence of individual object- and feature-wise

bias. Compared with other methods, BABF is a highly efficient approach, which not only

results in good approximation of the true binary pattern with low reconstruction error, but

also infers individual bias with high consistency with ground truth. The bias inference from

BABF could lead to interesting interpretations depending on different data scenarios.
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8. CONCLUSION AND BEYOND

In this research, we aim to reveal the discrete signals that regulate gene expression. Specif-

ically, we focus on two types of data, 3C and scRNA-seq. For 3C, we try to regain the

full elucidation of genome arrangement, which we regard as the very first step to understand

gene expression regulation. Owing to the limited experimental resolution, we applied a novel

hypergraph neural network to predict the unseen interactions in the genome, where our top

predictions reveals potential mechanism of gene co-expression by sharing the same enhancer

element. Next we shift our focus to identify gene expression state from scRNA-seq data.

We proposed a novel statistical model LTMG that could identify the expression state but in

the meantime mitigate the impact of data noise. LTMG is with better goodness of fitting

compared with other methods. Moreover, the identified expression state has better reflec-

tion of cell type property. To utilize the discretized gene expression state to characterize

the cell type functionalities, we referenced a machine learning approach, namely, Boolean

matrix/tensor factorization. To alleviate its NP-hard complexity, we proposed the fast and

efficient BMF and BTD methods, MEBF and GETF that revealed the functional linkage

between a set of genes with a distinct cell type. We then take a step further to evaluate the

row- and column-wise bias in binary data. And proposed the first bias aware BMF method.

In doing so, we wish to eliminate the bias impact either from experiments or intrinsically

from the data, and generate the patterns that of better biological meanings.

As revealed in Figure  1.1 , gene expression is a complicated process that have different

levels of regulations. In this research, we mainly focus on two levels, genome arrangement

and transcription. We proposed a series of methods that aims to reveals the gene regulation

utilizing limited data resources. However, they only characterize partial information at cur-

rent stage. There is still a long way to connect every dots and achieve the full understanding

of gene expression. In the future, we could focus different levels of data, like ATAC-seq,

Chip-seq, etc. Moreover, we could reference causal learning approaches to identify the true

causes of the regulation at different expression level. In the meantime, we could further

embrace the technological development like spatial transcripts, multi-omics sequencing to

integrate information from different dimensions.
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