
INCREASING POLICY NETWORK SIZE

DOES NOT GUARANTEE BETTER PERFORMANCE
IN DEEP REINFORCEMENT LEARNING

by

Zachery Berg

A Thesis

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Master of Science

Department of Computer Science

West Lafayette, Indiana

May 2022

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Yexiang Xue, Chair

School of Science

Dr. Kamyar Azizzadenesheli

School of Science

Dr. Bruno Ribeiro

School of Science

Approved by:

Dr. Kihong Park

2

ACKNOWLEDGMENTS

To everyone who has taught me something, I appreciate all of it. Most recently, to my

advisor Yexiang and my mentor Masudur. I thank the both of you for teaching me about

deep reinforcement learning research essentially from square one.

3

TABLE OF CONTENTS

LIST OF TABLES . 6

LIST OF FIGURES . 7

ABSTRACT . 8

1 INTRODUCTION . 9

2 RELATED WORK . 11

2.1 Reinforcement Learning . 11

2.2 DQN and PPO (RL Algorithms) . 12

2.2.1 Deep Q-Networks (DQN) . 12

2.2.2 Proximal Policy Optimization (PPO) 12

2.3 Cartpole and HalfCheetah (RL Environments) 13

2.3.1 Cartpole . 13

2.3.2 HalfCheetah . 14

2.4 Deep RL Overparameterization . 14

2.5 Deep RL Generalization . 15

2.5.1 Train/Test Setup . 16

2.6 Double Descent . 16

3 METHODOLOGY . 19

3.1 Calculating Bias and Variance . 19

3.2 Specific Experimental Setups . 20

3.2.1 Experiment 1 Setup . 20

3.2.2 Experiment 2 Setup . 21

3.2.3 Experiment 3 Setup . 22

4 RESULTS AND DISCUSSION . 25

4.1 (Mostly) Monotonically Increasing Performance (Experiment 1) 25

4.2 (Mostly) Optimal Performance (Experiment 2) 27

4

4.3 Bell-Shaped Return Curve (Experiment 3) 29

4.4 Summary and Implications of Results . 31

5 CONCLUSION . 33

REFERENCES . 34

5

LIST OF TABLES

3.1 Summary of the setup for each experiment. We experience a different shape of
the return curve depending on the setup. 20

3.2 Relevant hyperparameters for Experiment 1 (DQN agents trained on distract-
ing Cartpole). All hyperparameters, including the ones shown, are the default
settings. 21

3.3 Hyperparameters that we set for Experiment 2 (PPO agents trained on distract-
ing Cartpole). All other hyperparameters are the default settings, except for the
varying width. 22

3.4 Hyperparameters that we set for Experiment 3 (PPO agents trained on con-
founded HalfCheetah). Besides changing the policy network size, all of these
values match the tuned hyperparameters provided by the authors of Brax. . . . 23

4.1 Shape of the return curve and size of the policy and/or value network for each
experiment at the performance drop. 25

6

LIST OF FIGURES

2.1 Visualizations of the Cartpole and HalfCheetah environments. We add distract-
ing or confounded features to these environments for our experiments. 13

2.2 Our train/test setup using Contextual MDPs. + represents concatenation of the
true state and the context, while ∼ represents choosing a specific context from
the train or test context distribution. The dotted line indicates that the context
may be confounded from the true state. 17

4.1 Return and risk curves for DQN agents of varying width trained on a distracting
Cartpole environment. Average return is monotonically increasing except near
the variance mode, where both the train and test return drop. Surprisingly,
the drop occurs in moderately-performing agents. The return curve shows the
median and interquartile range across 20 runs (10 unique seeds × 2 train sets). . 26

4.2 Return and risk curves for PPO agents of varying width trained on a distracting
Cartpole environment. There is a sharp increase in average return from 1 to 2
hidden neurons, which is stable until the test return decreases around the variance
mode, then recovers. The return curve shows the median and interquartile range
across 40 runs (20 unique seeds × 2 train sets). 28

4.3 Median and interquartile range of return over 20 seeds of PPO agents of varying
width trained on a confounded HalfCheetah environment. In Region 1, both the
train and test return increase as expected. In Region 2, the test return decreases
while the train return continues to increase. In Region 3, the train return also
decreases. 30

7

ABSTRACT

The capacity of deep reinforcement learning policy networks has been found to affect the

performance of trained agents. It has been observed that policy networks with more param-

eters have better training performance and generalization ability than smaller networks. In

this work, we find cases where this does not hold true. We observe unimodal variance in the

zero-shot test return of varying width policies, which accompanies a drop in both train and

test return. Empirically, we demonstrate mostly monotonically increasing performance or

mostly optimal performance as the width of deep policy networks increase, except near the

variance mode. Finally, we find a scenario where larger networks have increasing performance

up to a point, then decreasing performance. We hypothesize that these observations align

with the theory of double descent in supervised learning, although with specific differences.

8

1. INTRODUCTION

Deep reinforcement learning (RL) has achieved tremendous success in recent times, primarily

due to its ability to harness high-capacity neural networks as function approximators. Recent

work in RL generalization has adapted the train/test setup from supervised learning, where

conventional wisdom states that larger neural networks both train and generalize better than

smaller networks. Henderson, Islam, Bachman, et al. [1] and Neal and Mitliagkas [2] showed

that policy network architectures affect performance of various RL algorithms, while Cobbe,

Hesse, Hilton, et al. [3] and Song, Jiang, Tu, et al. [4] observed that overparameterized policy

networks achieve greater train and test performance than underparameterized networks.

Our work connects this observation to the studies of bias and variance in supervised learn-

ing. Classical machine learning theory identifies the bias-variance trade-off, where models

with few parameters have low variance but high bias and models with many parameters

have low bias but high variance [5]. The bias-variance trade-off leads to a single descent, or

U-shape, of the empirical risk curve.

Yet it is known that overparameterization improves generalization in deep neural net-

works, contradicting the classical bias-variance trade-off. Neal, Mittal, Baratin, et al. [6]

propose that networks with a large number of parameters actually have decreasing variance

due to initialization, leading to lower test error. Yang, Yu, You, et al. [7] find that the

variance is actually unimodal, and the variance peak occurs when the model interpolates

the training data, i.e. reaches zero train error. The unimodality of the variance agrees with

the historical bias-variance tradeoff, where the U-shaped risk curve is a special case of suffi-

ciently large variance. By increasing the model complexity past the variance peak, the single

descent risk curve becomes a “double descent” risk curve, named as such by Belkin, Hsu,

Ma, et al. [8] and observed by Geiger, Jacot, Spigler, et al. [9], Yang, Yu, You, et al. [7], and

Nakkiran, Kaplun, Bansal, et al. [10].

To estimate bias and variance, we train deep RL agents of varying width (number of

neurons per hidden layer) on a distribution of contextual environments and obtain their

average zero-shot return on a held-out test context set from the same distribution. This

work contributes empirical evidence that a phenomenon similar to double descent can occur

9

in deep RL, manifesting as a “double ascent” of the return curve, with the second ascent

occurring past the variance peak. However, we do not observe the variance mode at the

location of interpolation, as would be expected by double descent theory, nor do we observe

the mode in the same relative location across experiments.

In the first experiment, we observe the variance mode (and second ascent) in moderately

performing DQN agents trained on the discrete Cartpole environment with distracting noise

added to the input. The existing double descent theory does not explain this phenomenon, as

it expects the variance mode at a location of zero train error (high-performing models). The

theory also expects that only the test performance should suffer, as the variance is related to

overfitting of the model. Yet, we find the variance mode accompanies a small drop in both

train and test return. We propose that agents of this particular size are in a transition stage

- slightly smaller agents are too small to ignore the noise in the observation while slightly

larger agents are large enough to always ignore the noise. Meanwhile, agents that appear to

have moderate performance ignore the noise only sometimes.

In the second experiment, we observe the variance mode using PPO agents trained on the

Cartpole environment with static distractions that are easier to ignore. The variance peaks

(and the second ascent in test return occurs) in a range of policy network sizes that have

high train performance, similar to double descent occurring at low train error. Yet, these

policies are considerably larger than the first interpolating (achieving maximum train return)

policies. We consider that policies experiencing a performance drop may fail to ignore the

noise (like the first experiment), or that they are indeed overfitting to the noise but implicit

regularization allows for generalization in larger models.

In the third and final experiment, we increase the difficulty by training larger PPO agents

on a confounded version of the HalfCheetah environment. We find a policy network size that

begins to look like a double ascent, as the median train return increases but the median test

return eventually decreases, but the second ascent does not occur and instead increasing

the size of the policy networks causes a drop in train return as well as test return. This

experiment highlights the need to train very-large agents successfully before they can be

exploited for increased performance.

10

2. RELATED WORK

This chapter covers the background information and related literature required to understand

our experiments. We cover reinforcement learning (RL), the RL algorithms and environments

used in our experiments, and existing literature regarding overparameterization in deep RL,

generalization in deep RL, and the double descent phenomenon.

2.1 Reinforcement Learning

In reinforcement learning, an agent interacts with an environment by taking actions and

receives a reward from the environment after every action. The goal of the agent is to learn

a policy (selecting an action given an observation of the environment) that maximizes its ex-

pected cumulative reward. Typically the agent’s interaction with the environment is defined

as a Markov Decision Process (MDP), denoted by M = (S, A, P , r, s0). The environment

begins (time t = 0) at an initial state s0 and at every timestep t the agent chooses an

action at from the action space A and receives a reward rt while the environment moves

to a new state st+1 in the environment’s state space S based on the transition probability

P(st+1 | st, at). That is, the next state in the environment is assumed to only depend on

the previous state and the action chosen, and not on any earlier states. The agent learns

a policy π by interacting with the environment. To maximize expected cumulative reward,

also referred to as the return, the agent estimates the value function or action-value function

(Q-function) given the state of the environment. The value function estimates the value of

a state by calculating the expected return starting in state s and always acting according

to the same policy π. The Q-function estimates the value of an action a by calculating the

expected return if the agent starts in state s, takes action a, then acts according to the policy

π. Recently, so-called deep RL has made use of a neural network architecture to represent

the policy and approximate the value function of a given environment. In Experiment 1 we

use the DQN [11] algorithm, which approximates the Q-function so that the policy selects

an action based on the highest expected Q-value across the possible actions. Experiments

2 and 3 use the PPO [12] algorithm, which directly represents the policy and estimates the

value function. We describe these algorithms in more detail in the next section.

11

2.2 DQN and PPO (RL Algorithms)

2.2.1 Deep Q-Networks (DQN)

We make use of the DQN [11] algorithm in Experiment 1. DQN uses Q-learning to

update its policy, and approximates the value of the Q-function of an environment using a

deep neural network, called a Q-network. Every gradient update, the agent samples from

a replay buffer of its past experiences and maximizes its expected return, assuming that it

will act optimally after the next action. Sampling from the replay buffer reduces the impact

of the large variance between sequential samples from the environment. DQN is inherently

off-policy, that is, estimating the value of the Q-function using experience gained from a

different policy than the current one. DQN also uses a separate network, called a target

network, to estimate the optimal return. This target network is simply an older version of

the current Q-network. In our experiments we vary the width (number of neurons in the

hidden layer) of a single-layer fully-connected Q-network.

2.2.2 Proximal Policy Optimization (PPO)

In Experiments 2 and 3, we train agents using the popular PPO [12] algorithm. PPO

is comparatively simple to implement, parallelizable, and offers state-of-the-art performance

on many tasks. It directly maximizes its estimated advantage (expected cumulative reward

gained by updating its policy) subject to a constraint on the size of the policy update. The

constraint is upheld either by clipping the policy update to within a factor ε of the old policy,

also referred to as PPO-Clip, or by adding a penalty on the KL divergence between the old

and new policy, called PPO-Penalty. PPO is considered an on-policy algorithm because the

agent takes a set of actions, then updates its policy based on its expected return using the

current policy. In our experiments we use PPO-Clip, with a clipping value of ε = 0.3. We

use one neural network with one input, the agent’s observation, and two activation outputs

- one output determines the action of the agent (the agent’s policy), while the other output

estimates the value (expected return) given the current observation, which is used to estimate

12

Figure 2.1. Visualizations of the Cartpole and HalfCheetah environments.
We add distracting or confounded features to these environments for our ex-
periments.

the advantage. We vary the width (number of hidden neurons) of this neural network in our

experiments.

2.3 Cartpole and HalfCheetah (RL Environments)

2.3.1 Cartpole

We train and evaluate agents in the Cartpole environment in Experiments 1 and 2.

Cartpole is a classic reinforcement learning environment first proposed in Barto, Sutton,

and Anderson [13]. In this environment, a pole is attached upright to a cart that moves

horizontally along a track. The environment gives a reward of +1 every timestep that the

pole has not fallen over and the cart has not gone off the track. The episode ends when either

of these has occurred or after a fixed number of timesteps, the horizon. We use the discrete

formulation of this environment, where the action space consists of just two discrete actions:

push the cart left or push the cart right with some constant force. A more challenging version

of this environment makes the action space continuous, so the agent must also decide how

much force should be exerted on the cart. In our experiments, we use a fixed horizon of 200

13

timesteps, so an optimal policy in this environment achieves a return of 200 every episode.

We use the version of Cartpole implemented in OpenAI Gym [14], as seen in Figure 2.1 .

2.3.2 HalfCheetah

We use the HalfCheetah environment in Experiment 3. This environment, first described

in Wawrzynski [15], tasks the agent with moving in a forward direction by learning to run.

The environment gives a positive reward based on the forward velocity of the agent as well

as a small negative reward for the amount of force applied to each joint, considered a control

cost. The action space is continuous and 6-dimensional, applying force to each of the 6

joints at every timestep. We use a horizon of 1000 timesteps in our experiments. Because

the reward is a function of the agent’s forward velocity, the cumulative reward achievable by

an optimal policy is not obvious to compute. We use the Brax [16] version of HalfCheetah

in our experiments, which can be seen in Figure 2.1 .

2.4 Deep RL Overparameterization

Until recently, the size of deep RL policies was not given much consideration. Islam,

Henderson, Gomrokchi, et al. [17] and Henderson, Islam, Bachman, et al. [1] highlight that

the architectures of policy networks have a direct impact on the performance of deep RL

agents. Neal and Mitliagkas [2], Cobbe, Klimov, Hesse, et al. [18], and Cobbe, Hesse, Hilton,

et al. [3] present evidence supporting the theory that larger policy networks have increased

performance. Specifically, Neal and Mitliagkas [2] train deep RL policies of varying widths on

four environments from OpenAI Gym [14]. They find that overparameterization (extremely

wide policies) improves policy performance in three of those environments (with Cartpole

being one of them), despite using hyperparameters that were tuned for only one network

width. They only consider training performance, and do not study generalization to a test

set. Meanwhile, Cobbe, Hesse, Hilton, et al. [3] find that increasing the size of the IMPALA

[19] architecture, commonly used in deep RL, improves sample efficiency and generalization

in benchmark tasks, though with diminishing returns.

14

Song, Jiang, Tu, et al. [4] study deep RL overparameterization in the context of obser-

vational overfitting, where the agent overfits to spurious features in its observation, such as

the background of an environment, that do not generalize to other settings. They define an

(f, g)-scheme for studying observational overfitting, where a function f describes invariant

(important) features in the MDP while a function g describes latent (unimportant) fea-

tures such as the background dependent on a set of parameters θ. A combination function

h combines the outputs of the two functions together to produce the agent’s observation

φθ(s) = h(f(s), gθ(s)). Song, Jiang, Tu, et al. [4] find that implicit regularization due to

overparameterization potentially helps with observational overfitting in linear quadratic reg-

ulators (LQR), Gym environments that are projected to a higher-dimensional space, and the

CoinRun [18] environment.

Our setup for confounding the HalfCheetah environment is similar to their method of

projecting Gym environments to higher-dimensional space, while our overall findings lend

support to the overparameterization hypothesis in deep RL with the caveat that increased

complexity does not guarantee better performance in every case.

2.5 Deep RL Generalization

Early experiments to test the capabilities of deep RL agents reported scores on the

exact same environments on which the agent was trained, colloquially “training on the test

set”. Zhang, Vinyals, Munos, et al. [20] identify the need for distinct training and testing

environments in deep RL. Farebrother, Machado, and Bowling [21] use different game modes

and difficulties of games in the Arcade Learning Environment as a test set, while Nichol,

Pfau, Hesse, et al. [22] split different levels from Sonic the HedgehogT M into training and

testing levels. Procedural generation has become a popular method for generating unique

training and testing environments, both by extending existing environments like Gridworld

[20] and GVG-AI [23] and developing new environment testbeds such as Procgen [3]. In

a similar vein to Song, Jiang, Tu, et al. [4], benchmarks such as Distracting Control Suite

[24] have been developed to test the abilities of agents in the context of visual distractions.

Kirk, Zhang, Grefenstette, et al. [25] define a formalism, based on previous literature, for

15

the train-test setup used in deep RL, referred to as a Contextual Markov Decision Process

(CMDP). We turn readers to Kirk, Zhang, Grefenstette, et al. [25] for an in-depth discussion

of both RL generalization benchmarks and methods.

2.5.1 Train/Test Setup

We consider the Contextual Markov Decision Process [25]–[28] (CMDP) in our experi-

ments. Using the formalism and similar notation to Kirk, Zhang, Grefenstette, et al. [25], in

a CMDP Mc each state s ∈ S can be decomposed into the underlying state s′ and a context

c from a context set C. The agent is trained on a set MCtrain of i.i.d. “train levels” and eval-

uated either on a held-out set MCtest or the full set MC . Ctrain and Ctest are disjoint subsets

of the context set C, unless we choose to use the full context set C for testing. Formally,

the context is sampled from a uniform probability distribution over all possible contexts;

c ∼ p(C). During training, the context is sampled from a uniform distribution over just the

training context set; c ∼ p(Ctrain). We assume Ctrain is generated from a distribution p(C ′)

that generates sets of i.i.d. contexts. The context changes every episode.

In the general case a context may determine the reward function, transition function,

initial state distribution, and emission function. For our experiments the context only affects

the agent’s observation, as the context appends either distracting or confounded features to

the true state of the underlying MDP. An agent that can distinguish the true features from

the context will perform equally well on any level of the CMDP. Figure 2.2 shows a visual

overview of our train/test setup. In Experiment 2, the context adds distracting features that

are unchanging throughout the episode. In the case of Experiments 1 and 3, the context

adds dynamically changing distracting features. This is further explained in Section 3.2 .

2.6 Double Descent

The term “double descent” was first coined in Belkin, Hsu, Ma, et al. [8], where they

observed a decrease, increase, then another decrease in the test risk with increasing model

complexity of various neural networks as well as random forests. The increase in empirical

risk occurs near the interpolation threshold, when the model is just large enough to be

16

Figure 2.2. Our train/test setup using Contextual MDPs. + represents
concatenation of the true state and the context, while ∼ represents choosing
a specific context from the train or test context distribution. The dotted line
indicates that the context may be confounded from the true state.

able to reach zero train error. At this point, there are a small number of solutions that

can interpolate the training data. Most of these solutions overfit to noise in the training

data, leading to an increase in test error. Past the interpolation threshold, more complex

models find low-norm (simpler) solutions that are more generalizable to unseen samples.

Double descent has been observed in other deep neural networks, including convolutional

neural networks (CNNs) such as Resnet and VGG [7], [9], [10] as well as transformers [10].

Nakkiran, Kaplun, Bansal, et al. [10] also observe double descent across epochs and non-

monotonicity of test loss across the number of training samples, adding further parameters

to the notion of model complexity.

Neal, Mittal, Baratin, et al. [6] find that variance decreases with width and increases

with depth, supporting the observation that overparameterization benefits neural networks

as noted by Neyshabur, Tomioka, and Srebro [29] and Zhang, Bengio, Hardt, et al. [30] and

corroborated by many others. Yang, Yu, You, et al. [7] explain the double descent phe-

nomenon by showing that increasingly wide neural networks have monotonically decreasing

bias and unimodal variance, with the variance mode occurring directly before the interpola-

tion threshold. Since test risk is the sum of bias and variance, double descent in the overall

test risk may or may not occur at the variance’s mode depending on the scale of the de-

creasing bias. Multiple works have further decomposed the variance into variance due to

17

initialization of parameters, variance due to the training data samples, and variance due to

label noise. In classical ML, ensembling and bagging are used to reduce the variance due to

initialization and samples respectively. Increasing the label noise has been empirically found

to increase the effect of double descent [10], and Lin and Dobriban [31] show that this is due

to the interaction of label noise with samples and initialization. Lin and Dobriban [31] and

Adlam and Pennington [32] prove in similar settings that the variance at the interpolation

threshold is dominated by the interaction between the samples and initialization.

To our knowledge, we are the first to consider the theory of double descent in deep

reinforcement learning agents. We find that a similar phenomenon can occur; an increase,

decrease, and then increase of the average return, but we do not find that the decrease in

performance occurs at the exact interpolation threshold. For this reason, as well as differences

in experimental setup, we cannot fully conclude that the phenomenon of double descent is

occurring.

18

3. METHODOLOGY

3.1 Calculating Bias and Variance

Yang, Yu, You, et al. [7] provide a method for estimating the random-design bias and

variance of a neural network learning a classification task, which we adapt to reinforcement

learning policy networks. We assume the agent is tasked with maximizing its return on a

CMDP MC , which is a single MDP with a context set C. The agent is trained on a CMDP

MCtrain , where Ctrain is a subset of the full context set C. We assume that the set Ctrain

is generated from a distribution p(C ′), which generates sets of i.i.d. contexts while a single

context c is generated from a uniform distribution denoted by p(C) over the full context set

C. The formalism for CMDPs and train/test sets is also described in Section 2.5.1 .

We define R(π, Mc) as the return of a policy π on a particular level Mc of the CMDP.

Our definition of risk is the expected squared difference between the return achievable by

an optimal policy π∗ and the return achieved by a policy trained on the training context set

πCtrain . The risk definition decomposes into squared bias and variance as follows:

Ec∼p(C)ECtrain∼p(C′)[‖R(π∗, Mc) − R(πCtrain , Mc)‖2
2] Risk

= Ec∼p(C)[‖R(π∗, Mc) − ECtrain∼p(C′)[R(πCtrain , Mc)]‖2
2] Bias2

+Ec∼p(C)ECtrain∼p(C′)[‖R(πCtrain , Mc) − ECtrain∼p(C′)[R(πCtrain , Mc)]‖2
2] Variance

(3.1)

We can estimate the variance using N > 1 disjoint sets of training contexts

Ctrain = C1 ∪ C2 ∪ ... ∪ CN and the unbiased estimator from Yang, Yu, You, et al. [7]:

V̂ar(Mc, Ctrain) = 1
N − 1

N∑
j=1

‖R(πCj , Mc) −
N∑

j=1

1
N

R(πCj , Mc)‖2
2 (3.2)

In our experiments we use N = 2. Training agents with different initializations (seeds)

increases the accuracy of R(πCj , Mc), the return on level Mc after training on the training

19

Table 3.1. Summary of the setup for each experiment. We experience a
different shape of the return curve depending on the setup.

Experiment Algorithm Environment # Context Feats Context Type
1 DQN Cartpole 50 Dynamic noise
2 PPO Cartpole 3 Static noise
3 PPO HalfCheetah 17 Confounded state

set Cj. Finally, we calculate the bias as the difference between the risk and the estimated

variance.

This calculation of bias and variance is not the same as other measures of the same name.

Typically, bias and variance in RL refers to the agent’s value estimate across samples, such

as the reason for random sampling from a replay buffer in DQN [11]. This work studies the

risk, bias, and variance of the return received by an agent.

3.2 Specific Experimental Setups

In section 2.5.1 we described the general train/test setup in deep RL. Combined with

the method described in Section 3.1 , we can estimate the bias and variance of any deep RL

policy on any environment. In this section we detail the setup for our specific experiments,

including how we modify existing RL environments. Table 3.1 provides a summary of each

setup, including how we add context to existing RL environments.

3.2.1 Experiment 1 Setup

We train DQN [11] agents implemented in RLLib [33] (Ray version 1.3.0) for 5 million

timesteps on a contextual Cartpole environment, with a single fully-connected layer for the

Q-network. We use the base DQN implementation (SimpleQTrainer) that does not have any

architectural optimizations, and vary the size of the network. The Q-networks of varying

size all use the same hyperparameters. Relevant hyperparameters are shown in Table 3.2 ,

and they are all default RLlib values.

We add distracting features to the Cartpole environment, and the context c consists

of 50 real values sampled from the standard normal distribution (c1, c2, ..., c50) ∼ N (0, 1).

20

https://github.com/ray-project/ray/blob/master/rllib/agents/dqn/simple_q.py

Table 3.2. Relevant hyperparameters for Experiment 1 (DQN agents trained
on distracting Cartpole). All hyperparameters, including the ones shown, are
the default settings.

Description Variable Name Value
Number of timesteps to train timesteps_total 5,000,000

Gamma (reward discount factor) gamma 0.99
Learning rate lr 0.0005

Initial exploration rate (else greedy action) initial_epsilon 1.0
Final exploration rate final_epsilon 0.02

Timesteps over which to anneal epsilon epsilon_timesteps 10000
Update target network every X timesteps target_network_update_freq 500

Timesteps in the replay buffer buffer_size 50000

This formulation is similar to adding a dynamically changing, distracting background to the

environment. We make use of the train/test setup described in Section 2.5.1 , with 56 held-

out test levels and two disjoint train sets of 50 levels each. An integer for each level serves as

a seed for sampling from the distribution, so when an agent revisits a level it will experience

the same noise every time. We obtain the agent’s average train and (zero-shot) test return by

evaluating each agent for 10 episodes in each level, to account for the environment’s random

initial state. Figure 4.1 shows the median and quartiles of the return over 20 runs per policy

width (10 unique seeds × 2 train sets), as well as the estimated risk, bias, and variance

between the two disjoint train sets.

3.2.2 Experiment 2 Setup

For this experiment we train PPO [12] agents implemented in RLLib [33] (Ray version

1.3.0) for 5 million timesteps on a contextual Cartpole environment that is different from

Experiment 1. The agent’s policy and value networks share a single fully-connected layer,

with separately learned transformation outputs. Other than varying the network width, each

agent uses the same set of hyperparameters, for which the full hyperparameter settings can

be seen in Table 3.3 .

We generate the context c = [R, G, B] by taking the level number modulo 8, converting it

to a binary value, then multiplying each digit by the level number. For example, level 14 has

21

Table 3.3. Hyperparameters that we set for Experiment 2 (PPO agents
trained on distracting Cartpole). All other hyperparameters are the default
settings, except for the varying width.

Description Variable Name Value
Number of timesteps to train timesteps_total 5,000,000

Gamma (reward discount factor) gamma 0.99
Learning rate lr 0.0003

Clipping parameter (ε) clip_param 0.3
Normalize the observation observation_filter MeanStdFilter

Iterations of SGD per policy update num_sgd_iter 6
Coefficient of value function loss vf_loss_coeff 0.01
Linear activations between layers fcnet_activation linear
Shared policy and value network vf_share_layers True

Use Pytorch (instead of TensorFlow) framework torch

context 14 mod 8 = 6 → [1, 1, 0] → [14, 14, 0]. Because the features do not change during

an episode, this formulation is similar to adding a static background to the environment.

The disjoint train context sets are levels 0-99 and 100-199, and the test context set is levels

200-255. We obtain the agent’s train and (zero-shot) test return by evaluating each agent

for 50 episodes in each level. The median and quartiles of the return are shown in Figure

 4.2 over 40 runs per policy width (20 unique seeds × 2 train sets), as well as the estimated

risk, bias, and variance between the two disjoint train sets. We smooth the risk curve using

exponential moving average (smoothing = 0.6).

3.2.3 Experiment 3 Setup

For our third and final experiment, we train PPO agents implemented in Brax [16],

which is written in JAX [34] and makes use of TPUs to run faster. We train for 100 million

timesteps, using a policy network with 4 layers and a separate value network with 5 layers.

Increasing the policy width by 2x results in approximately 16x parameters. We keep the

value network at a fixed width of 256 neurons. Both the policy and value networks use the

SiLU activation function between layers.

22

Table 3.4. Hyperparameters that we set for Experiment 3 (PPO agents
trained on confounded HalfCheetah). Besides changing the policy network
size, all of these values match the tuned hyperparameters provided by the
authors of Brax.

Description Variable Name Value
Number of timesteps to train num_timesteps 100,000,000

Learning rate learning_rate 3e-4
Clipping parameter (ε) ppo_epsilon 0.3

Horizon (number of timesteps per episode) episode_length 1000
Normalize observations normalize_observations True

Number of episodes between policy updates unroll_length 20
Number of minibatches num_minibatches 32

Epochs of optimization per policy update num_update_epochs 8
Discount factor (gamma) discounting 0.95

Scale of entropy loss entropy_cost 0.001
Number of parallel environments num_envs 2048

Batch size batch_size 512

For this experiment we add confounding features to the HalfCheetah environment. To

create the confounding features, we utilize a method similar to the method used by Song,

Jiang, Tu, et al. [4] to create projected Gym environments, where the true state is passed

through a randomly initialized single-layer network. Each level has a unique confounding

network, and with a small enough number of training levels the agent overfits to the con-

founding networks. We use 3 training levels in this experiment. We set the number of

confounding features in the context c to be equal to the number of features in the true state

s′, which is 17 features. The reported test return is the average return over 128 episodes on a

single level from the test context set. This single test level is the same across the evaluation

episodes, network widths, and seeds. All networks use the same set of hyperparameters, seen

in Table 3.4 , except for the varying policy network width. The hyperparameters come from

the Colab Notebook ‘Brax Training with TPU’ created by the authors of Brax, while the

policy and value networks are the default Brax networks . We report the performance of each

agent at its highest train reward during training, not necessarily at 100 million timesteps.

Although, in most cases the highest train reward is at 100 million timesteps. The results in

23

https://colab.research.google.com/github/google/brax/blob/main/notebooks/training.ipynb
https://github.com/google/brax/blob/1baf25d5a713bd5dbc8588a004a5754723626bd0/brax/training/networks.py#L110

Figure 4.3 show the median and quartiles of the average train and test return over 20 seeds

per policy width.

24

4. RESULTS AND DISCUSSION

In this section we discuss the results of our three experiments, then we discuss the implica-

tions of these results. In every experiment, we surprisingly observe a drop in performance

as we increase the size of an agent’s policy network. Table 4.1 summarizes the shape of the

return curve across policy sizes as well as the size of the policy and/or value network when

the performance drops.

4.1 (Mostly) Monotonically Increasing Performance (Experiment 1)

In Figure 4.1 we observe mostly monotonically increasing train and test return, as would

be expected as policies become larger. However, at a width of 21 neurons both the train

and test return drop slightly. This occurs right after the variance peaks, at a width of 20

neurons. The interquartile range across seeds also exhibits more variability in the transition

between low-performing and high-performing agents, which highlights the observations by

Henderson, Islam, Bachman, et al. [1] and Agarwal, Schwarzer, Castro, et al. [35] about the

performance uncertainty of deep RL agents. Past the performance drop, the return increases

again, leading to a “double ascent” of the return curve.

The shape of the curve draws a connection to the theory of double descent from super-

vised learning, yet in double descent only the test error undergoes two descents as model

complexity increases. Meanwhile, the train error should be monotonically decreasing. Thus

it is interesting that the drop in performance occurs in both the train and test return.

Furthermore, the theory of double descent expects a performance drop in high-performing

Table 4.1. Shape of the return curve and size of the policy and/or value
network for each experiment at the performance drop.

Experiment Return Shape Policy Width at Drop Policy Params at Drop
1 Monotonically increasing 21 1200
2 Mostly optimal 50-100 550-1100
3 Bell-shaped 192 119,000

25

Figure 4.1. Return and risk curves for DQN agents of varying width trained
on a distracting Cartpole environment. Average return is monotonically in-
creasing except near the variance mode, where both the train and test return
drop. Surprisingly, the drop occurs in moderately-performing agents. The re-
turn curve shows the median and interquartile range across 20 runs (10 unique
seeds × 2 train sets).

agents that have close to zero train error. Yet, in our setting the variance peaks and the

performance drops in moderately-performing agents.

What could cause this performance drop? Since the train and test return of agents closely

matches throughout the varying policy sizes (there is no generalization gap), it suggests that

this is an optimization problem rather than a generalization problem related to overfitting.

The higher variance at a width of 20 neurons indicates that agents of this size do not

find policies that achieve the same return on the same levels. The variance could be a

manifestation of the fact that the context appends noise to the agent’s observation, and

policies of this particular size are only able to ignore the noise in some cases. Perhaps

policies that are smaller (17 hidden neurons or less) are consistently unable to learn anything

26

meaningful because they are too low-capacity to ignore the noise. Meanwhile, policies that

are larger (22 hidden neurons or more) can ignore the noise in most cases. In every situation,

we would expect policies that can ignore the noise to solve the relatively simple Cartpole

problem - for example, policies with just two hidden neurons in Experiment 2 are able to

perform well.

The minimal generalization gap could also be a result of the similarity between different

contexts in the context set. Both the train and test contexts consist of noise from the stan-

dard normal distribution N (0, 1). A sufficiently large network or sufficiently large amount of

training samples (or both) can lead a policy to learn the distribution, resulting in no differ-

ence between train and test performance. Test contexts that are meant to be distinct from

the train contexts may in fact be so similar that the agent does not notice the difference.

Although the boxes are not checked to call this double descent in the supervised learning

sense, the outcome is similar - there is a select range of policies that do not perform as

well as expected because they are in a transition stage between too small and large enough.

Even though the performance drop appears to be an optimization problem rather than an

overfitting problem, it is worth further investigation, perhaps by reproducing the result in

other algorithms or environments.

4.2 (Mostly) Optimal Performance (Experiment 2)

In Figure 4.2 we observe mostly optimal policies except for the initial performance jump

from 1 to 2 hidden neurons and a range of policy sizes for which the test return decreases,

then increases back to optimal. The median across seeds of the average test return drops to

slightly below optimal near a width of 50 neurons, accompanied by an increase in the variance

of these agents. After 100 neurons, the test return becomes optimal again. For the rest of

the policy sizes, performance is close to optimal (even for small policies) because the context

of the environment (three static features in each level) is not difficult to ignore. This results

in small values for the bias, variance, and risk. It is surprising then that further increasing

the complexity of the policy networks does not maintain the same level of performance.

27

Figure 4.2. Return and risk curves for PPO agents of varying width trained
on a distracting Cartpole environment. There is a sharp increase in average
return from 1 to 2 hidden neurons, which is stable until the test return de-
creases around the variance mode, then recovers. The return curve shows the
median and interquartile range across 40 runs (20 unique seeds × 2 train sets).

Unlike the previous experiment, the drop in performance is around a larger range of

policy sizes. Because we see a drop in test performance but not a drop in train performance,

we can draw a closer relationship to double descent in this case. However, unlike double

descent, the drop in test performance does not occur near the interpolation threshold, which

we could assume is at 2 hidden neurons. Furthermore, the experimental setup is a source of

uncertainty for the cause behind the test performance drop. Because the context appends

unimportant features to the observation, an agent that generalizes to a test context may

either a) ignore the unimportant features altogether or b) be able to generalize to within-

distribution contexts, similar to the previous experiment. Thus, it is not entirely clear if

the test performance drop is an inability to ignore the noise or a failure to generalize to the

noise.

28

The first explanation is similar to the explanation for the previous experiment’s results.

Looking more closely at Figure 4.2 , the interquartile range of the seeds (the light orange

shading) is larger in policies of less than 100 width. Although the median performance

appears to be optimal up to widths of 50, the interquartile range indicates these policies can

also fail to generalize. Meanwhile, past a width of 100 both the median seed and interquartile

range of seeds is closer to optimal. Policies of width less than 100 may be small enough to

occasionally be distracted by the context, despite their apparent interpolation, while wider

policies consistently ignore the context.

The second explanation, inability to generalize, more closely aligns with double descent

theory. Yet, the aforementioned fact that the performance drop is not at the assumed

interpolation threshold hurts this theory. We may instead consider a broader explanation

such as implicit regularization. Larger networks (greater than 100 width) could perfectly

generalize while smaller networks do not generalize perfectly.

4.3 Bell-Shaped Return Curve (Experiment 3)

In the previous experiment, we found that the test performance of an agent was surpris-

ingly lower in a set of policies that achieved optimal train performance. In these cases, the

generalization gap was quite small due to a sufficient number of training levels and a context

of unimportant, noisy features. With our confounded HalfCheetah environment, we provide

the agent with fewer training levels (only 3) and a confounded version of the true state

which can lead the policy to learn spurious associations between the confounded features

and reward. Thus, we observe a case where the train and test return are not similar and

wider policies do not serve as a replacement for an insufficient number of training contexts

to successfully ignore the true context.

Figure 4.3 shows three regions of performance. In the first region (up to a width of

160), the train and test return of agents increases as the size of the policy network increases.

This is what past literature has come to expect. In the second region (from widths of 160

to 192), we observe only a minor increase in the median train return, accompanied by a

minor decrease in the median test return. In the final region, the train return surprisingly

29

Figure 4.3. Median and interquartile range of return over 20 seeds of PPO
agents of varying width trained on a confounded HalfCheetah environment.
In Region 1, both the train and test return increase as expected. In Region
2, the test return decreases while the train return continues to increase. In
Region 3, the train return also decreases.

begins to decrease, while the test return increases (from widths of 192 to 224) and then also

decreases. More specifically, out of the 20 seeds evaluated, we observe in 6 of them that the

policy network size that has the highest train performance does not also have the highest test

performance. We did not observe a similar phenomenon when the agent was given enough

training levels (30) to close the generalization gap.

As with the other two experiments, the three regions appear to show a first ascent,

then descent, of the train and test return. However, we do not see the anticipated second

ascent. Neal and Mitliagkas [2] observed training instability in very-wide PPO policies on

the MountainCar environment and attributed it to a lack of hyperparameter tuning across

30

the large range of widths. We similarly observed stable training in Regions 1 and 2, after

which point only some policies were stable during training. Cobbe, Klimov, Hesse, et al. [18]

and Cobbe, Hesse, Hilton, et al. [3] find that larger agents have no issues while training, but

they experience diminishing returns. We observe the same diminishing returns in Region 2

as the train return curve becomes flatter, but exceedingly large agents (Region 3) do not

continue this trend. Rather, the agents with stable training in Region 3 do not reach the

same maximum return as stable agents in Region 2. Henderson, Romoff, and Pineau [36]

observe a similar phenomenon when varying the learning rate of deep RL agents, including

PPO agents trained on HalfCheetah and optimized using Adam as done in our experiment.

They find that a small range of learning rate values performs the best, with smaller learning

rates performing better with Adam optimization. We use a learning rate of 0.0003 in this

experiment, which compares to the smallest values tested by Henderson, Romoff, and Pineau

[36], but our policy networks are larger than the network they use.

4.4 Summary and Implications of Results

In all three experiments conducted we observe a return curve with a similar shape to

“double ascent”, but none of them exactly match double descent in supervised learning.

Nonetheless, our results indicate that policy size is an important hyperparameter to con-

sider when training deep RL agents. In Experiment 1, we find that policies may not have

monotonically increasing performance in the transition from low- to high-performing agents.

In Experiment 2, we find that not all high-performing agents of a particular size will gen-

eralize well, highlighting the need to ensure train and test stability. In Experiment 3, we

find that naively increasing the size of policy networks could lead to decreased performance,

though this could be related to a lack of hyperparameter tuning. Current work in RL gener-

alization tends to use the same architecture across experiments, such as IMPALA [19]. While

this is beneficial for comparing solutions, we encourage deep RL researchers to confirm (for

example, by training across many seeds and/or on disjoint train sets) that their solutions

and results are low-variance. If they are not, changing the size of their policy networks could

bring the networks to a model complexity of lower variance.

31

As an aside, the notion of interpolation is closely tied to double descent in supervised

learning. However, this concept does not easily translate to reinforcement learning. The dis-

cussion of Experiments 1 and 2 considers the interpolation threshold to be when the median

train return across seeds is maximal. Yet, the HalfCheetah environment in Experiment 3

and many real-world examples do not have an upper limit on the achievable train return.

This makes it difficult or impossible to define a set of policies with zero train error. Al-

though, it does not prevent us from estimating the variance of return of different policy sizes

and recovering the variance mode. Even if the model size of highest variance (the expected

interpolation location in supervised learning) is not the smallest model size that achieves

high train return, the variance mode is still important to consider.

In our experiments, we only consider a select number of RL environments and algorithms.

However, we observe both on-policy and off-policy RL algorithms, as well as both discrete-

and continuous-action environments. The setup we describe can be used with other RL

algorithms and environments, as well as other architectural modifications such as increased

depth or different activations between layers. We believe the size of policy networks is an

important area for future research, as it is not often considered in deep RL literature.

Future work can explore the effect of other noisy contexts like Experiments 1 and 2 as

well as confounding contexts like Experiment 3 on other algorithms or environments. It

may be worth considering noisy contexts that are out-of-distribution, such as a different

noise distribution for the testing context set of Experiment 1. A more comprehensive set of

results on CMDPs that affect more than just the observation, such as the popular Procgen

[3] benchmark, should also be worthwhile. Lastly, further consideration of the definitions of

interpolation and model complexity of reinforcement learning policies should prove insightful

to more rigorously observe double descent in deep reinforcement learning.

32

5. CONCLUSION

In this work, we observe cases where more complex policy networks do not always translate

to greater performance in deep reinforcement learning. We measure the bias and variance of

the policy networks representing these agents and recover unimodal variance, as previously

observed in supervised learning. Then, we find a case where the performance increases up

to a point, then begins to decrease.

Specifically, we observe mostly monotonically increasing performance by training DQN

agents on a distracting Cartpole environment, and mostly optimal performance when training

PPO agents on an easier distracting Cartpole environment. On a confounded HalfCheetah

environment, we observe increasing train performance followed by decreasing train perfor-

mance in PPO agents. In all three cases, we do not observe strictly monotonically increasing

performance as the size of policy networks increases. We present multiple hypotheses for

this phenomenon and compare to the phenomenon of double descent in supervised learning.

Although our results are similar, we find specific differences from double descent.

There is evidence that the recently-discovered regime of overparameterization in machine

learning could apply to reinforcement learning, but it remains to be seen whether the same

findings apply in every case. Either way, it is clear that policy size directly impacts the

performance of deep RL agents. We hope that future work will help to confirm our prelim-

inary results, which could be extended to more RL algorithms, different environments and

contexts, and other architectures.

33

REFERENCES

[1] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger, “Deep Rein-
forcement Learning that Matters,” arXiv:1709.06560 [cs, stat], Jan. 2019, arXiv: 1709.06560.
[Online]. Available: http://arxiv.org/abs/1709.06560 .

[2] B. Neal and I. Mitliagkas, “In Support of Over-Parametrization in Deep Reinforcement
Learning: An Empirical Study,” en, in International Conference on Machine Learning, 2019,
p. 9.

[3] K. Cobbe, C. Hesse, J. Hilton, and J. Schulman, “Leveraging Procedural Genera-
tion to Benchmark Reinforcement Learning,” arXiv:1912.01588 [cs, stat], Jul. 2020, arXiv:
1912.01588. [Online]. Available: http://arxiv.org/abs/1912.01588 .

[4] X. Song, Y. Jiang, S. Tu, Y. Du, and B. Neyshabur, Observational overfitting in rein-
forcement learning, 2019. arXiv: 1912.02975 [cs.LG] .

[5] S. Geman, E. Bienenstock, and R. Doursat, “Neural networks and the bias/variance
dilemma,” Neural Computation, vol. 4, no. 1, pp. 1–58, 1992. doi: 10.1162/neco.1992.4.1.1 .

[6] B. Neal, S. Mittal, A. Baratin, V. Tantia, M. Scicluna, S. Lacoste-Julien, and I. Mitliagkas,
“A Modern Take on the Bias-Variance Tradeoff in Neural Networks,” arXiv:1810.08591 [cs,
stat], Dec. 2019, arXiv: 1810.08591. [Online]. Available: http://arxiv.org/abs/1810.08591 .

[7] Z. Yang, Y. Yu, C. You, J. Steinhardt, and Y. Ma, “Rethinking Bias-Variance Trade-
off for Generalization of Neural Networks,” arXiv:2002.11328 [cs, stat], Dec. 2020, arXiv:
2002.11328. [Online]. Available: http://arxiv.org/abs/2002.11328 .

[8] M. Belkin, D. Hsu, S. Ma, and S. Mandal, “Reconciling modern machine learning
practice and the bias-variance trade-off,” arXiv:1812.11118 [cs, stat], Sep. 2019, arXiv:
1812.11118. [Online]. Available: http://arxiv.org/abs/1812.11118 .

[9] M. Geiger, A. Jacot, S. Spigler, F. Gabriel, L. Sagun, S. d’Ascoli, G. Biroli, C. Hon-
gler, and M. Wyart, “Scaling description of generalization with number of parameters in
deep learning,” Journal of Statistical Mechanics: Theory and Experiment, vol. 2020, no. 2,
p. 023 401, Feb. 2020, arXiv: 1901.01608, issn: 1742-5468. doi: 10.1088/1742-5468/ab633c .
[Online]. Available: http://arxiv.org/abs/1901.01608 .

[10] P. Nakkiran, G. Kaplun, Y. Bansal, T. Yang, B. Barak, and I. Sutskever, “Deep Double
Descent: Where Bigger Models and More Data Hurt,” arXiv:1912.02292 [cs, stat], Dec. 2019,
arXiv: 1912.02292. [Online]. Available: http://arxiv.org/abs/1912.02292 .

34

http://arxiv.org/abs/1709.06560
http://arxiv.org/abs/1912.01588
https://arxiv.org/abs/1912.02975
https://doi.org/10.1162/neco.1992.4.1.1
http://arxiv.org/abs/1810.08591
http://arxiv.org/abs/2002.11328
http://arxiv.org/abs/1812.11118
https://doi.org/10.1088/1742-5468/ab633c
http://arxiv.org/abs/1901.01608
http://arxiv.org/abs/1912.02292

[11] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M.
Riedmiller, “Playing atari with deep reinforcement learning,” arXiv preprint arXiv:1312.5602,
2013.

[12] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal Policy
Optimization Algorithms,” arXiv:1707.06347 [cs], Aug. 2017, arXiv: 1707.06347. [Online].
Available: http://arxiv.org/abs/1707.06347 .

[13] A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike adaptive elements that
can solve difficult learning control problems,” IEEE Transactions on Systems, Man, and
Cybernetics, vol. SMC-13, no. 5, pp. 834–846, 1983. doi: 10.1109/TSMC.1983.6313077 .

[14] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W.
Zaremba, “OpenAI Gym,” arXiv:1606.01540 [cs], Jun. 2016, arXiv: 1606.01540. [Online].
Available: http://arxiv.org/abs/1606.01540 .

[15] P. Wawrzynski, “Learning to control a 6-degree-of-freedom walking robot,” in EURO-
CON 2007 - The International Conference on ”Computer as a Tool”, 2007, pp. 698–705.
doi: 10.1109/EURCON.2007.4400335 .

[16] C. D. Freeman, E. Frey, A. Raichuk, S. Girgin, I. Mordatch, and O. Bachem, Brax -
a differentiable physics engine for large scale rigid body simulation, version 0.0.10, 2021.
[Online]. Available: http://github.com/google/brax .

[17] R. Islam, P. Henderson, M. Gomrokchi, and D. Precup, Reproducibility of benchmarked
deep reinforcement learning tasks for continuous control, 2017. arXiv: 1708.04133 [cs.LG] .

[18] K. Cobbe, O. Klimov, C. Hesse, T. Kim, and J. Schulman, “Quantifying Generalization
in Reinforcement Learning,” en, in International Conference on Machine Learning, ISSN:
2640-3498, PMLR, May 2019, pp. 1282–1289. [Online]. Available: http://proceedings.mlr.
press/v97/cobbe19a.html .

[19] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward, Y. Doron, V. Firoiu,
T. Harley, I. Dunning, S. Legg, and K. Kavukcuoglu, “IMPALA: Scalable Distributed Deep-
RL with Importance Weighted Actor-Learner Architectures,” arXiv:1802.01561 [cs], Jun.
2018, arXiv: 1802.01561. [Online]. Available: http://arxiv.org/abs/1802.01561 .

[20] C. Zhang, O. Vinyals, R. Munos, and S. Bengio, “A Study on Overfitting in Deep
Reinforcement Learning,” arXiv:1804.06893 [cs, stat], Apr. 2018, arXiv: 1804.06893. [Online].
Available: http://arxiv.org/abs/1804.06893 .

[21] J. Farebrother, M. C. Machado, and M. Bowling, “Generalization and Regularization
in DQN,” arXiv:1810.00123 [cs, stat], Jan. 2020, arXiv: 1810.00123. [Online]. Available:

 http://arxiv.org/abs/1810.00123 .

35

http://arxiv.org/abs/1707.06347
https://doi.org/10.1109/TSMC.1983.6313077
http://arxiv.org/abs/1606.01540
https://doi.org/10.1109/EURCON.2007.4400335
http://github.com/google/brax
https://arxiv.org/abs/1708.04133
http://proceedings.mlr.press/v97/cobbe19a.html
http://proceedings.mlr.press/v97/cobbe19a.html
http://arxiv.org/abs/1802.01561
http://arxiv.org/abs/1804.06893
http://arxiv.org/abs/1810.00123

[22] A. Nichol, V. Pfau, C. Hesse, O. Klimov, and J. Schulman, “Gotta Learn Fast: A
New Benchmark for Generalization in RL,” arXiv:1804.03720 [cs, stat], Apr. 2018, arXiv:
1804.03720. [Online]. Available: http://arxiv.org/abs/1804.03720 .

[23] N. Justesen, R. R. Torrado, P. Bontrager, A. Khalifa, J. Togelius, and S. Risi, “Illu-
minating Generalization in Deep Reinforcement Learning through Procedural Level Gener-
ation,” arXiv:1806.10729 [cs, stat], Nov. 2018, arXiv: 1806.10729. [Online]. Available: http:
//arxiv.org/abs/1806.10729 .

[24] A. Stone, O. Ramirez, K. Konolige, and R. Jonschkowski, The distracting control suite
– a challenging benchmark for reinforcement learning from pixels, 2021. arXiv: 2101.02722
[cs.RO] .

[25] R. Kirk, A. Zhang, E. Grefenstette, and T. Rocktäschel, A survey of generalisation in
deep reinforcement learning, 2022. arXiv: 2111.09794 [cs.LG] .

[26] A. Hallak, D. D. Castro, and S. Mannor, Contextual markov decision processes, 2015.
arXiv: 1502.02259 [stat.ML] .

[27] F. Doshi-Velez and G. Konidaris, “Hidden parameter markov decision processes: A semi-
parametric regression approach for discovering latent task parametrizations,” in Proceedings
of the Twenty-Fifth International Joint Conference on Artificial Intelligence, ser. IJCAI’16,
New York, New York, USA: AAAI Press, 2016, pp. 1432–1440, isbn: 9781577357704.

[28] D. Ghosh, J. Rahme, A. Kumar, A. Zhang, R. P. Adams, and S. Levine, “Why gen-
eralization in RL is difficult: Epistemic pomdps and implicit partial observability,” CoRR,
vol. abs/2107.06277, 2021. arXiv: 2107.06277 . [Online]. Available: https://arxiv.org/abs/
2107.06277 .

[29] B. Neyshabur, R. Tomioka, and N. Srebro, In search of the real inductive bias: On the
role of implicit regularization in deep learning, 2015. arXiv: 1412.6614 [cs.LG] .

[30] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Understanding deep learning
requires rethinking generalization,” CoRR, vol. abs/1611.03530, 2016. arXiv: 1611.03530 .
[Online]. Available: http://arxiv.org/abs/1611.03530 .

[31] L. Lin and E. Dobriban, “What causes the test error? Going beyond bias-variance
via ANOVA,” arXiv:2010.05170 [cs, math, stat], Feb. 2021, arXiv: 2010.05170. [Online].
Available: http://arxiv.org/abs/2010.05170 .

[32] B. Adlam and J. Pennington, “Understanding Double Descent Requires a Fine-Grained
Bias-Variance Decomposition,” arXiv:2011.03321 [cs, stat], Nov. 2020, arXiv: 2011.03321.
[Online]. Available: http://arxiv.org/abs/2011.03321 .

36

http://arxiv.org/abs/1804.03720
http://arxiv.org/abs/1806.10729
http://arxiv.org/abs/1806.10729
https://arxiv.org/abs/2101.02722
https://arxiv.org/abs/2101.02722
https://arxiv.org/abs/2111.09794
https://arxiv.org/abs/1502.02259
https://arxiv.org/abs/2107.06277
https://arxiv.org/abs/2107.06277
https://arxiv.org/abs/2107.06277
https://arxiv.org/abs/1412.6614
https://arxiv.org/abs/1611.03530
http://arxiv.org/abs/1611.03530
http://arxiv.org/abs/2010.05170
http://arxiv.org/abs/2011.03321

[33] E. Liang, R. Liaw, P. Moritz, R. Nishihara, R. Fox, K. Goldberg, J. E. Gonzalez,
M. I. Jordan, and I. Stoica, “RLlib: Abstractions for Distributed Reinforcement Learning,”
arXiv:1712.09381 [cs], Jun. 2018, arXiv: 1712.09381. [Online]. Available: http://arxiv.org/
abs/1712.09381 .

[34] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula,
A. Paszke, J. VanderPlas, S. Wanderman-Milne, and Q. Zhang, JAX: Composable transfor-
mations of Python+NumPy programs, version 0.2.5, 2018. [Online]. Available: http://github.
com/google/jax .

[35] R. Agarwal, M. Schwarzer, P. S. Castro, A. C. Courville, and M. G. Bellemare, “Deep
reinforcement learning at the edge of the statistical precipice,” CoRR, vol. abs/2108.13264,
2021. arXiv: 2108.13264 . [Online]. Available: https://arxiv.org/abs/2108.13264 .

[36] P. Henderson, J. Romoff, and J. Pineau, “Where did my optimum go?: An empirical
analysis of gradient descent optimization in policy gradient methods,” CoRR, vol. abs/1810.02525,
2018. arXiv: 1810.02525 . [Online]. Available: http://arxiv.org/abs/1810.02525 .

37

http://arxiv.org/abs/1712.09381
http://arxiv.org/abs/1712.09381
http://github.com/google/jax
http://github.com/google/jax
https://arxiv.org/abs/2108.13264
https://arxiv.org/abs/2108.13264
https://arxiv.org/abs/1810.02525
http://arxiv.org/abs/1810.02525

	TITLE PAGE
	COMMITTEE APPROVAL
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	INTRODUCTION
	RELATED WORK
	Reinforcement Learning
	DQN and PPO (RL Algorithms)
	Deep Q-Networks (DQN)
	Proximal Policy Optimization (PPO)

	Cartpole and HalfCheetah (RL Environments)
	Cartpole
	HalfCheetah

	Deep RL Overparameterization
	Deep RL Generalization
	Train/Test Setup

	Double Descent

	METHODOLOGY
	Calculating Bias and Variance
	Specific Experimental Setups
	Experiment 1 Setup
	Experiment 2 Setup
	Experiment 3 Setup

	RESULTS AND DISCUSSION
	(Mostly) Monotonically Increasing Performance (Experiment 1)
	(Mostly) Optimal Performance (Experiment 2)
	Bell-Shaped Return Curve (Experiment 3)
	Summary and Implications of Results

	CONCLUSION
	REFERENCES

