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ABSTRACT 

Cerebral aneurysms are presented in 3-5% of the population and account for approximately 

10% of all strokes. The clinical decision on treating unruptured aneurysms should not be taken 

lightly because a majority of the asymptomatic cerebral aneurysm will not rupture, while both 

endovascular and microsurgical treatments carry the risk of morbidity and mortality. Thus, there 

is a need for objective risk assessment to reliably predict the high-risk aneurysms to intervene. 

Recent studies have found that the blood flow hemodynamic metrics such as pressure and wall 

shear stress (WSS) are related to the growth and rupture of the aneurysms. 4D flow magnetic 

resonance imaging (MRI) measures time-resolved three-dimensional velocity fields in the 

aneurysms in vivo, allowing for the evaluation of hemodynamic parameters. This work presents 

the developments of flow-physics constrained data enhancement and augmentation methods for 

4D flow MRI to assist the risk stratification of cerebral aneurysms. First, a phase unwrapping and 

denoising method is introduced to enhance the dynamic range and accuracy of 4D flow MRI 

velocity measurement by incorporating the divergence-free constraint of incompressible flow. 

Moreover, methods are developed to improve the estimation of hemodynamic parameters from 4D 

flow data including pressure and WSS. The pressure reconstruction method is also applied to the 

flow data acquired using particle imaging velocimetry (PIV) and particle tracking velocimetry 

(PTV) and shows superior performance as compared to the existing methods by solving the 

pressure Poisson equation. We also proposed a framework to estimate the uncertainty of the 

PIV/PTV based pressure estimation by propagating the velocity uncertainty. In addition, a multi-

modality approach is introduced to enhances the resolution and accuracy of 4D flow data with 

sparse representation, which improves the reliability of the hemodynamic evaluation. Finally, we 

present a method to measure the left ventricular flow propagation velocity from cardiac imaging 

to help in assessing the diastolic function. 



 
 

20 

 INTRODUCTION 

1.1 Motivation and background 

Unruptured cerebral aneurysms are found in approximately 3.2% of the adult population 

worldwide (Vlak, Algra, Brandenburg, & Rinkel, 2011), and they are being discovered incidentally 

with an increasing frequency because of the widespread use of high-resolution magnetic resonance 

imaging (MRI) scanning (Thompson et al., 2015). A ruptured cerebral aneurysm can cause 

subarachnoid hemorrhage (SAH) with mortality rates ranging from 8% to 67% and a significant 

morbidity rate among survivors (Øie et al., 2020; Rivero Rodríguez et al., 2015). The large 

majority of the unruptured cerebral aneurysms will never rupture as the annual risk of rupture was 

reported to be 0.7% for aneurysms<10 mm and 4% for those≥10 mm (Rinkel, Djibuti, Algra, & 

Van Gijn, 1998). The management options for unruptured aneurysms include conservative 

management, surgical clipping, and endovascular treatment (Ajiboye, Chalouhi, Starke, Zanaty, 

& Bell, 2015). Conservative management is usually recommended for patients over the age of 60 

years and for small (<7 mm) asymptomatic aneurysms without strong family history of SAH. 

Microsurgical clipping requires access to the aneurysm via an open craniotomy. Findings from 

one meta-analysis reported a mortality rate of 1% and a major morbidity rate of 4% (Raaymakers, 

Rinkel, Limburg, & Algra, 1998). The different endovascular techniques include packing the 

aneurysm with coils, flow diverting stents, and liquid embolic agents. Data from meta-analysis 

suggests that the risk of unfavorable outcomes from endovascular management is approximately 

4% to 5%, with a risk of mortality of 1% to 2% (Naggara, Lecler, Oppenheim, Meder, & Raymond, 

2012). Optimal management should involve the comparison of the risk of an unruptured aneurysm 

without any intervene with the risks of surgical clipping or endovascular treatment.  

1.1.1 Hemodynamic factors for risk stratification of unruptured cerebral aneurysm 

Prediction of the risk of the aneurysm rupture has been focused on population 

(geographical location), hypertension, age, sex, tobacco smoking, size of aneurysm, earlier SAH 

from another aneurysm, and the location of the aneurysm (Ajiboye et al., 2015; Thompson et al., 

2015). Several characteristics of the aneurysm morphology (bottleneck shape, the ratio of size of 

aneurysm to parent vessel) has been associated with rupture status (Lall, Eddleman, Bendok, & 
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Batjer, 2009; Sato & Yoshimoto, 2011; Wermer, Van Der Schaaf, Algra, & Rinkel, 2007; You et 

al., 2010). There is increasing interest in the relationship of hemodynamics (complex flow pattern, 

low wall shear stress, high oscillatory shear index) to aneurysm grow and rupture. CFD holds a 

prominent position in obtaining the hemodynamic parameters for the patient-specific evaluation 

of cerebral aneurysms. Based on the WSS distributions obtained from CFD simulations, Boussel 

et al. (Boussel et al., 2008) concluded that aneurysm growth is likely to occur in regions where the 

endothelial layer lining the vessel wall is exposed to abnormally low WSS. With the hemodynamic 

factors obtained by patient-specific CFD models, Sforza et al. (Sforza et al., 2016) found that 

growing aneurysm tend to have complex intrasaccular flow patterns that include non-uniform wall 

shear stress (WSS) distributions with areas of concentrated high WSS and large areas of low WSS. 

Regarding the conflicting findings on the relationship between WSS and aneurysm rupture, several 

studies have been conducted based on CFD models, and suggested that both high and low WSS 

can drive cerebral aneurysm growth and rupture, hypothesized through cell-mediated and 

inflammatory cell-mediated destructive remodeling pathways, respectively (Meng, Tutino, Xiang, 

& Siddiqui, 2014; J. Xiang, Tutino, Snyder, & Meng, 2014; G. Zhou, Zhu, Yin, Su, & Li, 2017). 

The vortex and complex flow structures were also studied and suggested to be relevant with the 

rupture of cerebral aneurysms (Amili et al., 2018; Gambaruto & João, 2012; Sunderland, Haferman, 

Chintalapani, & Jiang, 2016; Varble, Trylesinski, Xiang, Snyder, & Meng, 2017). The pressure 

distribution on the rupture of cerebral aneurysms were also investigated, and the correlation 

between high pressure with low WSS regions were found (Baek, Jayaraman, & Karniadakis, 2009). 

However, there was not strong evidence on the direct relevance between high pressure due to flow 

impinges with the aneurysm rupture (Shojima et al., 2005). Concerns have been risen regarding 

using CFD for the risk assessments of the cerebral aneurysm because of the conflicting findings 

reported in the literature and the growing number of hemodynamic parameters (Kallmes, 2012). 

In addition, the fidelity and reliability of CFD simulations are limited by the uncertainty in vessel 

geometries and assumptions for boundary conditions. Despite using the same image data and 

inflow conditions, clear differences have been observed between hemodynamic quantities obtained 

from independent CFD simulations or between the CFD simulations and PTV measurements 

(Brindise et al., 2019; Voß, Beuing, Janiga, & Berg, 2019). Moreover, conducting CFD 

simulations for the aneurysms of patient may not be feasible in clinical practices due to the 

overwhelming effort, time, and expertise. Recently, in vitro volumetric flow measurements have 
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been conducted using particle imaging velocimetry (PIV) or particle tracking velocimetry (PTV) 

to resolve the complex flow and determine the hemodynamic factors in patient-specific CAs 

(Brindise et al., 2019; Ford et al., 2008; Roloff, Stucht, Beuing, & Berg, 2019). However, similar 

fidelity issues also affected the in vitro methods (Brindise et al., 2019), and the experimental efforts 

and difficulties severely limit its clinical usage. Thus, it is preferable to acquire in vivo flow 

measurement to determine hemodynamic parameters for the risk evaluation of unruptured cerebral 

aneurysms. 

1.1.2 4D flow MRI for in vivo measurements of hemodynamic factors of cerebral aneurysm 

4D flow magnetic resonance imaging (MRI) allows for the in vivo acquisition of time-

resolved three-dimensional (3D) blood flow (Dyverfeldt et al., 2015; M Markl et al., 2016; Michael 

Markl, Frydrychowicz, Kozerke, Hope, & Wieben, 2012; Nayak et al., 2015; Stankovic, Allen, 

Garcia, Jarvis, & Markl, 2014; Sträter et al., 2018), enabling quantitative evaluation of 

hemodynamic parameters to assist in the risk stratification of unruptured cerebral aneurysms 

(Boussel et al., 2009; Hope et al., 2010; Isoda et al., 2010; Kecskemeti et al., 2012; Meckel et al., 

2008; Schnell et al., 2014; Wetzel et al., 2007). However, the accuracy of the flow-derived 

hemodynamic quantities is affected by the limited resolution and noise inherent to 4D flow MRI. 

The WSS magnitude derived from in-vivo 4D flow MRI measurement in CAs was about 60% 

lower than the results from computational fluid dynamics (CFD) due to PC-MRI’s low spatial 

resolution (Van Ooij et al., 2013). The resolution of velocity data also influences the vortex 

identification and analysis in CAs (Sunderland et al., 2016). Moreover, the dynamic range of 4D 

flow MRI is affected by the predefined velocity encoding parameter (venc). If chosen too low, 

phase wraps may happen, making the imaged blood flow running on the opposite direction. Also, 

venc should not be set too high as it is inversely proportional to the velocity-to-noise ratio (VNR). 

The dual-venc techniques can be used to improve both the VNR and dynamic velocity range of 

4D flow MRI (Ha et al., 2016; Schnell et al., 2017) but requires longer scan time in general. Thus, 

it is essential to enhance the resolution, accuracy, and dynamic range of 4D flow MRI data in order 

to reliably evaluate the flow-derived hemodynamic parameters.  
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1.2 Objective and tasks 

Flow-physics constraints can be employed to enhance 4D flow MRI data. Blood is typically 

modelled as incompressible fluid, suggesting divergence-free velocity fields based on the 

conservation of mass. Therefore, a group of velocity filtering or reconstruction methods were 

developed to correct and smooth the flow field by eliminating the spurious divergence in the 

measured velocity field (Busch, Giese, Wissmann, & Kozerke, 2013; Michael Loecher, 

Kecskemeti, Turski, & Wieben, 2012; Ong et al., 2015; Santelli et al., 2016; X. Zhou, 

Papadopoulou, Leow, Vincent, & Tang, 2019). The objective of the dissertation is to develop and 

apply the flow-physics constrained data enhancement and augmentation methods for 4D flow MRI 

in cerebral aneurysms. The following tasks are completed to accomplish the objective.  

Task 1: Develop a novel data-enhancement method for unwrapping and denoising the 4D 

flow MRI data. The gradients of the phase fields from 4D flow MRI are corrected based on the 

spatiotemporal continuity of the velocity fields, and the unwrapped phase fields are obtained by 

integrating the corrected phase gradients. The divergence-free constraint derived from COM is 

employed to regularize the resulting flow fields via least-squares formulations, thus improving the 

robustness of unwrapping and denoising the velocity fields. The developed method is tested with 

synthetic, in vitro, and in vivo datasets and compared to the current state-of-the-art algorithm to 

assess its performance. 

Task 2: Develop and demonstrate novel data-augmentation methods for evaluating the 

hemodynamic quantities including pressure and WSS from 4D flow data. The calculations of 

instantaneous pressure and WSS are formulated as optimization problems incorporating both COM 

and COLM, which are solved using a robust least-squares approach. The methods are validated 

with synthetic and in vitro flow-data and demonstrated with in vivo 4D flow MRI data. 

Additionally, the proposed pressure reconstruction method is applied to the flow data measured 

with other techniques including particle imaging velocimetry (PIV) and particle tracking 

velocimetry (PTV).  

Task 3: Improve the resolution and accuracy of 4D flow MRI data using a multi-modality 

approach with sparse representation. The high-resolution flow data from CFD and PIV is used to 

construct a high-resolution flow-library, and the flow field of 4D flow MRI is reconstructed as a 

sparse linear combination of the library components using the robust Lasso regression. The method 

is assessed with synthetic 4D flow MRI data and demonstrated with in vivo measurements. 
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Task 4: Develop a new method to measure the left ventricular (LV) diastolic flow 

propagation velocity (Vp) from multi-dimensional cardiac flow imaging to assist the evaluation of 

LV diastolic function. The flow propagation velocity is determined from the velocity fields 

acquired in the left ventricle by fitting the first order wave equation to the velocity gradients. The 

method is applied to in vivo cardiac flow-data measured with pc-MRI and 4D flow MRI to 

demonstrate the relationship between the Vp with the LV diastolic function. 

1.3 Innovation and broader impact 

The most important innovation of the work is in developing approaches to enhance the flow 

data and flow-derived parameters from 4D flow MRI by incorporating flow-physics constraints 

using robust mathematical formulations and advanced numerical methods. Previous developments 

have only demonstrated the use of divergence-free constraints to filter and reconstruct the velocity 

fields from phase-contrast MRI. In task 1, we incorporate the divergence-free constraints for phase 

unwrapping with a robust weighted least-squares method. In task 2, we use the constraints derived 

from COM and COLM to improve the calculation of pressure and WSS with least-squares 

methods. In task 3, the flow physics is incorporated implicitly by preparing the flow-library using 

CFD simulation and PIV measurement, and the robust LASSO regression is used for the 

reconstruction. In task 4, the propagation of the diastolic inflow in the left ventricle is extracted 

from velocity fields based on the first order wave equation via least-squares optimization. 

Successful completion of the project provides valuable tools for the data enhancement and 

augmentation of 4D flow MRI, thus enables the framework of using in vivo 4D flow MRI to 

determine hemodynamic metrics for the risk stratification of unruptured cerebral aneurysms. 

Unlike a majority of the previous studies which focused on the flow-metrics obtained from CFD 

models, the novel data enhancement and augmentation methods allow for the reliable evaluation 

of hemodynamic factors during the clinically scheduled MRI session to benefit the clinical 

decisions. 

The data enhancement and augmentation methods developed for this work are also 

applicable to the 4D flow MRI measurements in other part of the cardiovascular system besides 

the cerebral vessels, which potentially leads to improved hemodynamic analysis for a wider range 

of clinical applications. The flow-physics constrained phase unwrapping method proposed in task 

1 has been applied to flow data in thoracic aorta. In task 4, the calculation of the flow propagation 
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velocity is applied to left ventricular flow to evaluate the diastole function of the subject. The 

proposed methods can also be applied to flow data acquired using other techniques. We have 

demonstrated the pressure-reconstruction method introduced in task 2 with the laminar and 

turbulent flows acquired using PIV and PTV. 

1.4 Structure of dissertation 

This dissertation consists of seven manuscripts which deliver on the tasks outlined in 

Section 1.1. Chapter 2 presents the proposed method to unwrap and denoise the 4D flow MRI data. 

In Chapter 3, a novel method for reconstructing the pressure field from 4D flow velocity data is 

introduced and applied. Chapter 4 introduces a WSS estimation method for 4D flow MRI using 

Navier Stokes equation correction. Chapter 5 presents the method that uses the velocity 

measurement uncertainty to improve the pressure reconstruction from PIV/PTV velocity data. 

Chapter 6 investigates the uncertainty propagation from velocity data to the reconstructed pressure 

field for PIV/PTV. Chapter 7 introduces a multi-modality framework to enhance the resolution 

and accuracy of the 4D flow data with sparse representation. Chapter 8 introduces and 

demonstrates the method to determine the left ventricular flow propagation velocity from multi-

dimensional cardiac imaging. Finally, the conclusions and proposed future work are provided in 

Chapter 9.  
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 DIVERGENCE-FREE CONSTRAINED PHASE UNWRAPPING AND 
DENOISING FOR 4D FLOW MRI USING WEIGHTED LEAST-

SQUARES 

This chapter is reproduced with permission from: Zhang, J., Rothenberger, S.M., Brindise, M.C., 
Scott, M.B., Berhane, H., Baraboo, J.J., Markl, M., Rayz, V.L., Vlachos, P.P., 2021. Divergence-
Free Constrained Phase Unwrapping and Denoising for 4D Flow MRI Using Weighted Least-
Squares. IEEE Trans. Med. Imaging 40, 3389–3399. https://doi.org/10.1109/TMI.2021.3086331 

2.1 Background and literature review 

4D flow magnetic resonance imaging (MRI) allows for in vivo acquisition of time-resolved 

three-dimensional (3D) blood flow, thus enabling quantitative analysis of volumetric, time varying 

hemodynamic quantities such as flow rates, wall shear stress (WSS), pressure difference, etc 

(Brindise et al., 2019; Donati, Figueroa, Smith, Lamata, & Nordsletten, 2015; Guzzardi et al., 2015; 

Ha et al., 2017; Michael Markl et al., 2012; Michael Markl, Wallis, & Harloff, 2011; Nayak et al., 

2015; Potters, Ooij, & Nederveen, 2012; Stalder et al., 2008b; Stankovic et al., 2014; Zhang et al., 

2019). 4D flow MRI has demonstrated its potential to improve the diagnostics of cardiovascular 

and cerebrovascular diseases (Dyverfeldt et al., 2015; Guzzardi et al., 2015; M Markl et al., 2016; 

Michael Markl et al., 2012; Nayak et al., 2015; Schnell et al., 2017; Stankovic et al., 2014; Sträter 

et al., 2018). 4D flow MRI is based on the phase contrast (PC) technique which encodes the blood 

velocity along all dimensions into the MRI signal phase data. A predefined velocity encoding 

sensitivity parameter (venc) determines the maximum and minimum velocity that can be recorded 

in the phase data as 𝜋 and −𝜋, respectively. Therefore, the velocity field can be obtained by 

multiplying the phase with venc/π. Whenever a velocity component is greater than venc or lower 

than -venc, the acquired phase is wrapped and leads to velocity aliasing. To avoid aliasing, the 

venc is suggested to be set approximately 10% higher than the maximum expected velocity 

(Dyverfeldt et al., 2015; Sträter et al., 2018). However, high venc leads to high noise level since 

the velocity-to-noise ratio (VNR) is inversely proportional to venc (Lee, Bruce Pike, & Pelc, 1995). 

One strategy to capture the wide dynamic range associated with physiologic blood flow 

while maintaining the low noise level associated with low venc data is to perform acquisitions with 

a set of two or more vencs (Aristova et al., 2019; Carrillo, Osses, Uribe, & Bertoglio, 2019; Ha et 

al., 2016; Lee et al., 1995; Michael Loecher & Ennis, 2018; Nett et al., 2012; Schnell et al., 2017). 
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The acquired high-venc data can then be employed for unwrapping the low-venc data. However, 

despite the efforts to accelerate the multi-venc acquisition (Schnell et al., 2017), the total scan time 

with a 4-point low venc encoding is still unavoidably longer than a single scan, which is the major 

limitation of the approach. Using undersampled parallel encoding methods and Bayesian 

processing of phase data can further accelerate the 4D flow acquisition and enable flexible choice 

of velocity encoding ranges (Binter, Knobloch, Manka, Sigfridsson, & Kozerke, 2013; Rich et al., 

2016, 2019). Another strategy is algorithmically unwrapping the wrapped phase data. Several 

algorithms have been proposed for 4D flow MRI (Bhalerao, Westin, & Kikinis, 1997; M. Loecher, 

Johnson, Landgraf, & Wieben, 2011; Michael Loecher, Schrauben, Johnson, & Wieben, 2016; M 

F Salfity, Huntley, Graves, Marklund, & Cusack, 2006; Q. Xiang, 1995). However, these 

algorithms are either untested or unreliable for low-venc acquisitions with large aliased areas or 

repeatedly wrapped regions. Phase noise also dramatically affects the performances of the 

unwrapping algorithms. 

The purpose of this study was to introduce and evaluate a robust and reliable phase 

unwrapping method for 4D flow MRI. The proposed method, divergence-free constrained 

weighted least-squares (CWLS), incorporates the divergence-free constraint of incompressible 

flow with the estimated phase variations to formulate an optimization problem. The divergence-

free constraint has been used in previous studies to reconstruct the velocity field from 3D phase 

contrast MRI and 4D flow MRI (Buonocore, 1994; Busch et al., 2013; Ong et al., 2015). The 

unwrapped phase is obtained using WLS with weights generated based on the phase variation 

uncertainty. CWLS also utilizes the temporal phase information to enhance the robustness by 

unwrapping from timepoints least-likely to be wrapped towards those likely to be wrapped. The 

CWLS method was tested using synthetic phase data of left ventricular (LV) flow and in vitro 

Poiseuille flow measured using 4D flow MRI. The method is then applied to in vivo aortic 4D flow 

MRI data from 30 subjects. 

2.2 Theory 

Phase wrapping in 4D flow MRI can be presented as: 

 
𝜓 = 𝒲(𝜙) = 𝜙 + 2𝑛𝜋	𝑤𝑖𝑡ℎ	𝑛 = −𝑟𝑜𝑢𝑛𝑑 c !

"#
d ∈ 𝑍,		 (2-1)	
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where 𝜓 is the wrapped phase, 𝜙 is the unwrapped phase, 𝒲() represents the wrapping operation 

which adds a multiple of 2𝜋  to 𝜙  such that 𝜓  is within the range (−𝜋 , 𝜋 ), 𝑟𝑜𝑢𝑛𝑑()  means 

rounding to the nearest integer, and 𝑍  is the set of integers. 𝜙  is related with the underlying 

velocity component v as 𝜙 = #
$%&'

𝑣. If v is out of the dynamic range (-venc, venc), phase wrapping 

occurs as 𝜓 differs from 𝜙 by a multiple of 2𝜋. The objective of phase unwrapping is to find 𝜙 

based on the acquired 𝜓 so that the underlying velocity can be properly determined.  

To unwrap the phase field, one common approach is to integrate the phase variation 

estimated as: 

 
𝛥𝜙l = 𝒲(𝛥𝜓),	 (2-2)	
	
where Δ𝜓 is the spatial or temporal variation of the acquired (wrapped) phase, Δ𝜙l  is the estimated 

variation for the unwrapped phase by wrapping Δ𝜓 as in (2-1). Equation (2-2) assumes that the 

phase variation between neighboring voxels is within the range of (−𝜋, 𝜋), which is generally 

valid since the blood velocity varies continuously across the field. The phase variation integration 

can be treated as an optimization process and solved in a least-squares sense (Ghiglia & Romero, 

1994; Pritt & Shipman, 1994; Song, Napel, Pelc, & Glover, 1995). This approach has been tested 

with 2D synthetic phase images, and the robustness can be improved by assigning proper weights 

to the objective function (Ghiglia & Romero, 1994). The weighted least-squares (WLS) method 

has been demonstrated to improve the pressure integration with the weights generated based on 

the accuracy of pressure variation (Zhang et al., 2019). A similar WLS approach can be developed 

and applied to the phase unwrapping of 4D flow MRI. Moreover, the divergence-free constraint 

can be incorporated into the WLS minimization to further improve the accuracy of the unwrapping 

and denoise the phase field.  
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2.3 Methodology 

2.3.1 Phase Unwrapping with CWLS 

The procedure of phase unwrapping with CWLS is presented in Figure 2.1 (a). First, the 

phase variation Δ𝜓 was calculated from the wrapped phase field 𝜓. Specifically, the spatial phase 

variation was the difference between neighboring voxels, and the temporal phase variation was the 

difference between consecutive cardiac frames. Then Δ𝜙l  was estimated using (2-1). The phase 

gradient was calculated as the phase variation divided by the corresponding spatial or temporal 

resolution, e.g.,  

 
𝛻(𝜙l = 𝛥(𝜙l /𝛥𝑟,	 (2-3)	
	

Figure 2.1 (a) Procedure of phase unwrapping with CWLS (b) The sequence of temporal phase 
unwrapping start from the time point with lowest average velocity at t0 to the time point with 

highest average velocity at tN along the forward and backward directions in a cyclic manner. The 
waveform demonstrates the flow rate in one cardiac cycle. 
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where ∇)𝜙l  is the spatial phase gradient, Δ)𝜙l  is the spatial phase variation, and Δ𝑟 is the voxel size. 

The subscript r represents the spatial dimension. The unwrapped phase 𝜙o is spatially related to the 

phase gradient ∇(𝜙l  as: 

 
𝐷(𝜙o = 𝛻(𝜙l ,	 (2-4)	
	
where 𝐷( is the discrete spatial gradient operator consisting of 𝐷*, 𝐷+, and 𝐷,. In addition, the 

divergence-free constraint reveals the following relationship between the phases of u, v, and w 

velocity components (denoted as 𝜙-, 𝜙$, and 𝜙.) as: 

 
𝛻 ∙ 𝑢r⃑ ≡ 𝐷*𝑢 + 𝐷+𝑣 + 𝐷,𝑤 = $%&'!

#
𝐷*𝜙- +

$%&'"
#

𝐷+𝜙$ +
$%&'#
#

𝐷,𝜙. = 0,	 (2-5)	

	
where ∇ ∙ represents the discrete divergence operator, 𝑢r⃑  is the velocity vector containing three 

components as 𝑢r⃑ = [𝑢, 𝑣, 𝑤]/ , 𝑣𝑒𝑛𝑐- , 𝑣𝑒𝑛𝑐$ , and 𝑣𝑒𝑛𝑐.  are the vencs used for measuring the 

three velocity components u, v, and w, 𝐷* , 𝐷+ , and 𝐷,  are the discrete gradient operators 

constructed as matrices, and 𝜙- , 𝜙$ , and 𝜙.  are the vectors of phases for the three velocity 

components. Equations (4) and (5) formulate a minimization problem which can be solved using 

weighted least-squares as: 

 

𝜙o = 𝑎𝑟𝑔𝑚𝑖𝑛! {|𝑊}𝐷(𝜙 − 𝛻(𝜙l ~|
"
" + 𝑠�$%&'!

#
𝐷*𝜙- +

$%&'"
#

𝐷+𝜙$ +
$%&'#
#

𝐷,𝜙.�
"

"
�,		 (2-6)	

with	𝑊 = 𝑑𝑖𝑎𝑔 � 0
1$%&'
( �,		 (2-7)	

	
where ‖ ‖" represents the L2 norm, 𝐷( is the combined discrete gradient operator constructed by 

vertically stacking 𝐷*, 𝐷+, and 𝐷,, 𝜙 is the vector consisting of 𝜙-, 𝜙$, and 𝜙., ∇(𝜙l  is the vector 

of the spatial phase gradients determined using (2-3), W is the weight matrix generated based on 

the uncertainty of the phase gradient 𝜎∇%!3 , 𝑑𝑖𝑎𝑔() generates the diagonal matrix with the given 

diagonal elements, and 𝑠 is the constant controlling the level of regularization by the divergence-

free constraint. The term |𝑊}𝐷(𝜙 − ∇(𝜙l ~|
"
 is the weighted residual of phase variations, and the 

term �$%&'!
#

𝐷*𝜙- +
$%&'"
#

𝐷+𝜙$ +
$%&'#
#

𝐷,𝜙.�
"
 is the velocity divergence. The divergence-free 

constraint is considered to be more reliable than the phase gradients since the divergence-free 
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constraint is based on the flow-physics while the phase gradients were estimated from the 

measurement containing noise and errors. In order to minimize the velocity divergence, s was 

assigned to be significantly larger than the mean of the phase gradient weights (𝑊� ). The residual 

divergence in the resulting velocity fields can be completely eliminated by using an s value greater 

than 104𝑊� , thus s was set to 105𝑊�  unless specified otherwise in this work. LSQR, an iterative 

algorithm for sparse least-squares problems (Paige & Saunders, 1982b, 1982a), was employed to 

obtain the solution from (2-6). The discrete gradient and divergence operators were constructed 

using the second order central (SOC) difference scheme. 

2.3.2 Field of View (FOV) Division 

To properly apply the divergence-free constraint, the FOV was divided into three regions 

denoted as the region of blood flow (𝒟678), the reference points (𝒟(%9), and the rest of the FOV. 

The divergence minimization in Equation 2-6 was only applied to the voxels within 𝒟678 since the 

divergence-free constraint might be invalid outside the flow. The 𝒟(%9 is defined as a layer of 

voxels surrounding the 𝒟678 , and was obtained by performing one iteration of morphological 

dilation of 𝒟678 then subtracting 𝒟678 from the dilated region. 𝒟(%9 located in the tissue adjacent 

to the blood flow, which can be dynamic or static depending on the imaging location. The phase 

values in 𝒟(%9 were set to zeros prior to the unwrapping for noise elimination, and used as the 

boundary condition for the CWLS phase unwrapping via gradient integration. The term 

|𝑊}𝐷(𝜙 − ∇(𝜙l ~|
"

 in (2-6) was minimized in the combined region 𝒟678 ∩ 𝒟(%9 . The phase 

unwrapping via gradient integration was first performed with an arbitrary point set to zero. Then 

the median of 𝜙o in 𝒟(%9 was evaluated and subtracted from the 𝜙o in the whole field in order to 

enforce a zero median of 𝜙o in 𝒟(%9  in order to be consistent with the boundary condition and 

ensure the robustness since the median is not affected by the extreme values obtained in 𝒟(%9 due 

to noise. The rest of the FOV was excluded from the CWLS unwrapping to save computational 

effort. 
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2.3.3 Uncertainty Estimation of Phase Variation 

The uncertainty 𝜎∇%!3  of each ∇(𝜙l  value needed for generating the weight matrix W in (2-7). 

𝜎∇%!3  was estimated as the standard deviation of the distribution of the phase variation error 𝜖∇%!3 ≡

∇(𝜙l − ∇(𝜙, where ∇(𝜙 is the true phase gradient. 𝜖∇%!3  can be decomposed into two components: 

 
𝜖:%!; = 𝜖:%!;

< + 𝜖:%!;
𝒲 ,	 (2-8)	

	
where 𝜖∇%!3

<  is the error component due to the measurement noise in 𝜓, and 𝜖∇%!3
𝒲 ≡ 𝜖>)!3

𝒲 /Δ𝑟 is 

caused by the incorrect phase variation estimation by (2-2). Since the two error components in (2-

8) are uncorrelated, the uncertainty 𝜎∇%!3  can be determined as  

 

𝜎:%!; = �c𝜎:%!;
< d

"
+ c𝜎:%!;

𝒲 d
"
,	 (2-9)	

	
where 𝜎∇%!3

<  and 𝜎∇%!3
𝒲  are the uncertainties of 𝜖∇%!3

<  and 𝜖∇%!3
𝒲 , respectively. 

The magnitude of 𝜖>%!3
𝒲  can be inferred from the integration of ∇(𝜙l  along closed loops in 

space (Cusack & Papadakis, 2002). The smallest possible loops are 2 × 2 voxel rectangular loops 

denoted as loop elements. The integration (∮∇(𝜙l ) of each loop element equals the sum of the four 

𝜖>)!3
𝒲  values on the loop element. Since each Δ(𝜙l  value can be on multiple loop elements, the phase 

variation uncertainty 𝜎>%!3
𝒲  was approximated as the sum of 0

4
�∮ ∇(𝜙l � from all the loop elements. 

The ∮∇(𝜙l  was calculated for all possible 2 × 2 voxel loop elements in the 3D field, and the value 

of 𝜎>%!3
𝒲  was additively updated. The phase gradient uncertainty 𝜎∇%!3

𝒲  was then determined as 

𝜎>%!3
𝒲 /Δ𝑟. 

The uncertainty 𝜎∇%!3
<  for the noise component was estimated based on the spurious 

divergence of the velocity field as well as the intensity magnitude field I. First, the velocity-

divergence field ∇ ∙ 𝑢  was calculated from ∇(𝜙l  using (2-5). According to the divergence-free 

constraint, ∇ ∙ 𝑢 is related to the phase noise 𝜖!?
< as: 

 
$%&'!
#

𝐷*𝜖!!;
< + $%&'"

#
𝐷+𝜖!";

< + $%&'#
#

𝐷,𝜖!#;
< = 𝛻 ∙ 𝑢r⃑ .	 (2-10)	
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Similar to the velocity error estimation from velocity divergence (Zhang et al., 2019), 𝜖!?

<  was 

obtained by solving (10) in a least-squares sense. The 𝜖!?
< was convolved with a 3D Gaussian kernel 

with a width of 2Δ𝑟 corresponding to the three-point stencil-size of the SOC scheme to obtain the 

phase uncertainty field 𝜎!?
<,A . In addition, the root-mean-square (RMS) of 𝜖!?

<  in 𝒟BCD  was 

calculated to represent the global phase noise level as 𝜎�!?
<. Since the noise in the phase is inversely 

proportional to the intensity magnitude (Conturo & Smith, 1990; Lee et al., 1995), the ratio 

between the local and global phase noise uncertainty equals the reciprocal of the ratio between the 

local and global intensity. Thus, the phase noise uncertainty can be estimated based on the intensity 

field and the global phase noise uncertainty 𝜎�!?
< as:  

 
𝜎!?
<,8 = 𝜎�!?

<𝐼/̅𝐼,	 (2-11)	

	
where 𝐼 ̅ is the average of the intensity magnitudes in 𝒟BCD . The quadratic mean of the two 

estimations of phase noise uncertainty was calculated as: 

 

𝜎!?
< = �0

"
�c𝜎!?

<,Ad
"
+ c𝜎!?

<,8d
"
�,	 (2-12)	

	
which was then propagated through the calculations of phase variation and phase gradient to 

acquire the phase gradient uncertainty 𝜎∇%!3
< .  

2.3.4 Sequential Frame Unwrapping 

Based on the temporal continuity of the velocity field, an unwrapped frame can be used to 

infer the temporally neighboring frames (Q. Xiang, 1995) as: 

 
𝜙oE±0G = 𝜙oE +𝒲(𝛥G𝜓),	with	𝛥G𝜓 = 𝜓E±0 − 𝜓E ,	 (2-13)	

where 𝜙oE is the unwrapped phase at ith cardiac frame, ΔG𝜓 is the temporal phase variation, and 

𝜙oE±0G  is the temporally unwrapped phase at the neighboring frames 𝑖 ± 1 . The temporally 

unwrapped phase 𝜙oG was utilized in the CWLS unwrapping. First, the spatial variation of 𝜙oG was 

combined with the estimation from (2-2) to obtain the spatial phase variation as: 
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𝛥(𝜙l = 0

"
c𝛥(𝜙oG +𝒲(𝛥(𝜓)d,	 (2-14)	

	
which was employed in the phase variation integration by (2-6). Second, the deviation between 

Δ(𝜙oG and 𝒲(Δ(𝜓) was used to update the phase gradient uncertainty as: 

 

𝜎:%!; = �c𝜎:%!;
< d

"
+ c𝜎:%!;

𝒲 d
"
+ cH%!

? *I𝒲(H%K)
H(

d
"
,	 (2-15)	

	
which was employed to generate the weight matrix W in (2-7). In addition, 𝜙oG was used as the 

initial field for solving (6) with the iterative LSQR algorithm. 

Since the reliability of 𝜙oE±0G  depends on the accuracy of 𝜙oE, it is preferable to perform the 

temporal phase unwrapping from a less-wrapped frame towards a more-wrapped one. We adopted 

the frame sequences to start from the frame with lowest average velocity magnitude towards the 

frame with highest average velocity magnitude along both the forward and backward temporal 

directions as demonstrated in Figure 2.1(b). The frame with highest flow rate was unwrapped twice 

with the two temporal sequences as both neighboring timeframes had lower flow rates. Each of 

the two unwrapping operations on the frame with highest flow rate was performed independently 

and initialized with one of the neighboring frames, yielding two unwrapping results which were 

similar in general. The average of the two unwrapped fields were taken as the final result since 

taking the average can reduce the uncertainty compared to a single sample. The proposed temporal 

sequences can prevent the propagation of unwrapping errors from severely wrapped frames to the 

less-wrapped ones. The starting and the ending timepoints can be approximated as the peak 

diastole or peak systole depending on the locations in the cardiovascular system. 

2.3.5 Synthetic Phase Data Generation 

To evaluate the performance of the CWLS method, synthetic phase data was generated from 

computational fluid dynamics (CFD) simulated left ventricular (LV) flow velocity fields 

(Londono-hoyos et al., 2018). The CFD results were obtained on unstructured computational mesh 

with 180,000 tetrahedral cells and linearly interpolated to a fine Cartesian grid with spatial 

resolution of 0.2 mm. Complex-valued signal was generated at each grid node based on each 

velocity component as: 
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𝑀9E&% = 𝐼𝑒𝑥𝑝 c E#-

$%&'
d,		 (2-16)	

	
where 𝑀9E&% denotes the complex signal at the fine grid node, I is the signal magnitude, and u is 

the velocity component at grid node. Another Cartesian grid with a resolution of 2.5 mm was 

employed as the MRI grid (𝒢M68) with each grid point corresponding to a voxel-center, in order to 

be consistent with the typical resolutions of heart scans (Sträter et al., 2018). The complex-valued 

signal at each voxel-center of the synthetic 4D flow MRI data was generated by convolving the 

signal on the fine Cartesian grid with a sinc-function kernel (K) as: 

 
𝐾(𝑥, 𝑦, 𝑧) = 𝑠𝑖𝑛𝑐 c *

H*
d × 𝑠𝑖𝑛𝑐 c +

H+
d × 𝑠𝑖𝑛𝑐 c ,

H,
d,		 (2-17)	

	
with 𝑠𝑖𝑛𝑐(𝑥) = NE&(#*)

#*
, where Δ𝑥, Δ𝑦, and Δ𝑧 represent the spatial resolution of the MRI grid. 

Previous studies have shown that the spatial blurring of Cartesian 4D flow MRI measurement due 

to limited coverage of the k-space equals to the convolution with the sinc-function kernel (Rispoli, 

Nielsen, Nayak, & Carvalho, 2015), and convolving with the sinc-function kernel has been used 

to simulate 4D flow MRI acquisitions (Jochimsen, Schäfer, Bammer, & Moseley, 2006; Latta, 

Gruwel, Jellúš, & Tomanek, 2010; Töger et al., 2020b). One reference (𝑀O) and 3 flow-sensitive 

datasets (𝑀-, 𝑀$, and 𝑀.) were simulated following a four-point reference method. Each flow-

sensitive dataset was created based on the field of a velocity component, and the reference dataset 

was generated from a zero phase field such that the phase difference between the flow-sensitive 

and the reference datasets was consistent with the velocity field as in real applications. The signal 

noise 𝜖 in each component of the complex-valued data was assumed to be normally distributed 

with a standard deviation of 𝜎8 = 𝐼/̅𝑆𝑁𝑅8 , where 𝑆𝑁𝑅8  is the intensity magnitude based SNR 

(Dietrich, Raya, Reeder, Reiser, & Schoenberg, 2007). The wrapped phase data 𝜓  for each 

velocity component was generated from the complex-valued data, e.g.: 

 
𝜓- = 𝑎𝑛𝑔𝑙𝑒(𝑀- ∗ 𝑀O

∗),	 (2-18)	
	
where 𝜓-  is the phase for u velocity component, 𝑀O

∗  is the complex conjugate of 𝑀O , and 

𝑎𝑛𝑔𝑙𝑒( ) means calculating the angle from a complex signal as: 
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𝑎𝑛𝑔𝑙𝑒(𝑎 + 𝑏𝑖) = 𝑎𝑟𝑐𝑡𝑎𝑛 cQ
R
d.	 (2-19)	

	
Since the reference dataset was shared among the three flow-sensitive datasets, the phase noise of 

different velocity components were correlated in a similar way as the real phase data (Friman et 

al., 2011).  

The intensity magnitude field 𝐼	was allowed to vary spatially as commonly seen from the 

FOV of 4D flow MRI. The spatial distribution of 𝐼 was defined as: 

 
𝐼 = 1.0 − 0.5 c *

S+,-./0
d,		 (2-20)	

	
where 𝐿TUVRE&  is the total length of the FOV along the x direction. The I outside DROI was 

multiplied with 0.2 to mimic the low intensity outside the lumen. In addition to the predefined bulk 

variation, I would also vary locally due to the noise and the intravoxel dephasing effect caused by 

the spatiotemporal variation of velocity.  

Since the SNR of MRI acquisitions can be greater than 100 for in vitro measurements and 

less than 10 for in vivo measurements (Difrancesco et al., 2008; Ha et al., 2016; Nett et al., 2012; 

Schnell et al., 2017; Yu, Agarwal, Stuber, & Schär, 2012), we employed the following 6 values to 

represent a wide range of SNRI as: 100, 50, 20, 10, 5, and 2. A wide range of vencs was also 

employed to test CWLS on different levels of phase wrapping. The venc ratio (VR) defined as the 

ratio between the venc and the maximum flow velocity was varied from 0.1 to 0.9 in increments 

of 0.1. In total, 54 test cases were created with different combinations of SNRI and VR. 

To determine the effect of spatial resolution on CWLS unwrapping, several additional 

datasets were created using the same approach with MRI grid resolution varying from 2 to 6 mm 

in increments of 1 mm. For each spatial resolution, 10 datasets were created with an SNR of 10 

and VR from 0.1 to 1.0 in increments of 0.1. 

The mask of 𝒟678 was generated for each dataset and each time frame based on the geometry 

available from the CFD simulation. A voxel was considered to be in the blood flow domain if the 

voxel-center was within the geometry at the time instant.  
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2.3.6 In vitro 4D Poiseuille Flow Measurement 

Steady, laminar Poiseuille flow in a circular pipe was measured using 4D flow MRI with 

different vencs. The working fluid was a blood mimicking water-glycerol (60:40 by volume) 

solution with a density of 1110 kg/m3 and viscosity of 0.00372 Pa×s. A small amount (0.66 mg/mL) 

of Gadolinium contrast was added to enhance the SNR of the scan without altering the rheology 

of the fluid. A computer-controlled gear pump was used to drive the working fluid at a steady flow 

rate of 7.6 mL/s. The diameter of the pipe was 12.7 mm, and the length was sufficiently long prior 

to entering the FOV such that the velocity profile was fully developed. Three dual-venc (DV) 

acquisitions (Schnell et al., 2017) (denoted as A, B, and C) were performed on a Siemens 3T 

PRISMA scanner with a spatial resolution of 0.85 × 0.85 × 0.8	𝑚𝑚W. The dual-venc acquisitions 

were split up, and the low and high venc acquisitions were analyzed separately, thus yielding 6 

datasets with vencs ranging from 4 to 16 cm/s as presented in Table 1. The expected maximum 

velocity in the field was 12 cm/s. Each dataset contained 12 time frames with a temporal resolution 

of 120.4 ms. The echo time (TE) and repetition time (TR) are presented in Table 1. The bandwidth 

was 455 kHz and flip angle was 15°. The mask of 𝒟678 was generated based on the position and 

radius of the pipe. A voxel was considered to be within the flow if the distance from its center to 

the centerline of the pipe was less than the pipe radius. The SNRI values were calculated for each 

acquisition as 𝑆𝑁𝑅8 = 𝐼/̅𝜎8, where 𝜎8 is the standard deviation of I across the 12 frames, and 𝐼 ̅is 

the average of I within 𝒟678. The SNRI values are given in Table 2.1. 

2.3.7 In vivo Aortic 4D Flow MRI Measurement 

In vivo aortic 4D flow MRI data was used to evaluate the performance of CWLS. Aortic 

flow was measured from 12 patients with bicuspid aortic valve (BAV), 12 patients with tricuspid 

aortic valve and aortic aneurysm (TAV-AA), and 6 healthy control subjects with tricuspid aortic 

valve. The scans were performed in a sagittal oblique volume on a 1.5 T scanner (MAGNETOM 

Avanto, Aera, Siemens, Erlangen, Germany) with prospective ECG gating and during free-

breathing. All patients (BAV and TAV-AA) except the control subjects were imaged with 

gadolinium-based contrast (Magnevist, Ablavar, or Gadavist). The voxel sizes were 2-2.5 mm 

isotropic in-plane with a slice thickness of 2.4-3.2 mm. The temporal resolution was 37.6-39.2 ms 

with 10-25 cardiac time frames. TE/TR were 2.184-2.463 ms/4.6-4.9 ms, flip angle was 7° in 
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controls and 15° in patients, and the bandwidth was 446-460 kHz. A single venc was used for each 

scan. The venc was 150-350 cm/s for BAV patients, 150-200 cm/s for TAV-AA patients, and 150 

cm/s for control subjects. All patient data for this HIPPA compliant and IRB approved study were 

retrospectively included with waiver of consent. The mask of 𝒟678  for each dataset was 

approximated by thresholding the time-averaged product of the intensity and the magnitude of the 

phase components }𝐼 ∙ �𝜓-" + 𝜓$" + 𝜓." ~ (J. Bock, Kreher, Hennig, & Markl, 2007) and manually 

corrected by an expert observer using Mimics (Materialise NV, Belgium).   

In vivo datasets were assessed for aliasing, with four TAV-AA and four BAV datasets 

containing velocity aliasing, while no velocity aliasing was observed in the remaining 22 datasets. 

Phase unwrapping was applied to the datasets with velocity aliasing, and the resulting velocity 

fields were analyzed to assess the performance. For datasets without aliasing, the phase data were 

artificially wrapped based on virtual vencs that were lower than the vencs from original scans as 

𝒲c #X
$%&'

d , where 𝑉  is the original velocity data and 𝑣𝑒𝑛𝑐  is the virtual venc. This wrapping 

operation maintains the mathematical relationship between wrapped and unwrapped phase data 

without bringing additional noise or error to the phase field. Five VRs ranging from 0.1 to 0.5 were 

employed to set the virtual vencs based on the maximum velocity value within the blood flow. 

Outliers were excluded from the maximum velocity calculation using universal outlier detection 

(UOD) (Westerweel & Scarano, 2005) followed by median filtering on the unaliased velocity data. 

The originally unaliased datasets were used as the benchmark to assess unwrapping performance. 

Since the measurement noise in the benchmark datasets could affect the error analysis on the 

unwrapped phase fields, UOD was applied to the benchmark phase field to remove outliers. 

2.3.8 Performance evaluation 

The performance of CWLS on phase unwrapping and denoising was assessed by analyzing 

the unwrapped phase field as well as the resulting velocity field obtained by multiplying the 

unwrapped phase by venc/π. The current state-of-the-art 4D single-step Laplacian algorithm 

(Michael Loecher et al., 2016) (4D Lap) was also employed in this study and compare to CWLS. 

4D Lap unwraps time-resolved phase data along temporal dimension and all three spatial 

dimensions by evaluating the phase Laplacian with Fourier transform. All of the preprocessing 
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was kept constant between CWLS and 4D Lap such that the input phase data were same between 

the unwrapping techniques. 

To assess the overall performance on each test case for the synthetic phase data of LV flow, 

the unwrapped phase 𝜙o was compared to the true phase 𝜙 generated from CFD results voxel by 

voxel at each cardiac frame. A voxel was considered as wrapped if the deviation �𝜙o − 𝜙� was 

greater than 𝜋. The success rate (SR) of phase unwrapping was calculated as: 

 
𝑆𝑅 = 1 −

<𝒲,&3

<𝒲,4
,		 (2-21)	

	
where 𝑁𝒲,!?  is the total number of wrapped voxels in the unwrapped data, and 𝑁𝒲,K is the total 

number of wrapped voxels in the synthetic data. 𝑁𝒲,!?  and 𝑁𝒲,K were counted within 𝐷678 for 

each of the 3 velocity components at each frame, which were then summed together as 𝑁𝒲,!? =

	∑ c𝑁𝒲,!!;
E + 𝑁𝒲,!";

E + 𝑁𝒲,!#;
E d<

EY0 , where the superscript i indicates the ith cardiac frame. SR=1 

means that all voxels were correctly unwrapped. The SR can be less than 0 if the unwrapping 

created more wrapped voxels than the original data. The error in the resulting velocity (𝜖X) was 

calculated as the deviation from the CFD results. To evaluate the accuracy of the resulting velocity 

fields, the velocity error level (Verror) was calculated as: 

 
𝑉%((U( =

6MZ([5)
|X|]]]] × 100%,	 (2-22)	

	
where |𝑉|���� is the average velocity magnitude in 𝐷678, and 𝑅𝑀𝑆(𝜖X) represents the RMS velocity 

error in 𝐷678.  

For the in vitro 4D Poiseuille flow, the unwrapped phase 𝜙o data was compared with the true 

phase 𝜙 generated from the analytical velocity fields described by: 

 
𝑢( = 0,	𝑢^ = 0,	𝑢,(𝑟) =

"_
#66

(𝑅" − 𝑟"),		 (2-23)	

	
where ur is the radial velocity component, uθ is the circumferential velocity component, uz is the 

axial (along z-axis) velocity component (m/s), r is the radial distance from the pipe centerline (m), 

R is the pipe radius (m), and Q is the volumetric flow rate (m3/s). The number of wrapped voxels 
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𝑁𝒲,K and 𝑁𝒲,!?  were calculated from the acquired phase fields and the unwrapped phase fields, 

respectively. To quantify the noise level, the VNRs were determined from the resulting velocity 

fields as: 

 
𝑉𝑁𝑅 = |X|]]]]

6MZ(15)
,	 (2-24)	

	
where 𝜎X is the velocity standard deviation across 12 frames, and 𝑅𝑀𝑆(𝜎X) is the RMS of all the 

𝜎X within 𝐷678. The wrapped voxels were excluded from the VNR calculation such that the VNR 

only represented the noise level. From the unwrapped velocity fields using CWLS and 4D Lap, 

the WSS was calculated from the velocity gradients determined using thin-plate spline radial basis 

function interpolation (Brindise et al., 2019; Karri, Charonko, & Vlachos, 2009) with the non-slip 

(zero velocity) boundary condition applied on the wall. The WSS error (𝜖`ZZ) was determined by 

comparing the magnitude of the WSS vector to the analytical value determined as: 

 
|𝑊𝑆𝑆| = 4a_

#67
,		 (2-25)	

	
where 𝜇  is the dynamic viscosity of the fluid (Pa×s). For each dataset, the relative 𝜖`ZZ  was 

calculated as the RMS of 𝜖`ZZ in DROI normalized by the analytical WSS magnitude.  

To evaluate the performance with the in vivo aortic 4D flow data, the SRs defined by (2-21) 

on the artificially wrapped datasets were determined by comparing the unwrapped phase to the 

benchmark (the originally unaliased datasets). Because benchmark data is not available for the 

eight datasets with real aliasing, the error in the resulting velocity fields were estimated based on 

the velocity divergence using the least-squares algorithm (Zhang et al., 2019), which was then 

employed to calculate the Verrors using (2-22). To indicate the level of wrapping in the original 

phase data, the venc ratio was estimated based on the average of the maximum velocity values 

from the CWLS and 4D Lap unwrapped fields. 
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2.4 Results 

2.4.1 Synthetic Phase Data of LV Flow 

The u velocity field at peak diastole on the MRI grid is shown in Figure 2.2 (a). The 

generated phase and magnitude intensity fields for VR=0.2 and SNRI=10 are shown in Figure 2.2 

(b-c). The unwrapped u-component velocity fields at peak diastole are compared in Figure 2.2 (d) 

and (e) for the case of SNRI=10 and VR=0.2. With 4D Lap, the large region of wrapped voxels in 

inflow jet remained, while all voxels were correctly unwrapped by CWLS. The SRs and Verrors of 

all the cases are compared in Figure 2.2 (a) between CWLS and 4D Lap. The CWLS completely 

unwrapped the phase data for most cases with VR³0.2 and 𝑆𝑁𝑅8 ≥ 5. Even with significant 

amount of noise (𝑆𝑁𝑅8 = 2), the SRs were consistently greater than 0.8. Compared to 4D Lap, 

CWLS was more robust to noise and more reliable for low-venc acquisitions. The CWLS method 

effectively reduced the Verror in most cases compared to 4D Lap. The improvement was significant 

for the cases where 4D Lap failed to unwrap all the voxels and led to Verror reduction as much as 

500%. It is also worth noting that CWLS reduced the Verrors by around 20% compared the 4D Lap 

results for the low-SNRI cases where both methods completely unwrapped the phase.  

 

The effects of spatial resolution on the performances of CWLS and 4D Lap were presented 

in Figure 2.3 (b) in terms of the SRs and Verrors from the datasets with an SNR of 10, VR from 

0.1 to 1.0, and grid size from 2 to 6 mm. The SR by CWLS remained around 1.0 for all the cases 

Figure 2.2 (a) The u velocity field at peak diastole on the center x-z plane. (b-c) The u phase and 
magnitude intensity fields at peak diastole for the case with VR=0.2 and SNRI=10. (c-d) The 

resulting u velocity fields on the center x-z plane at peak diastole unwrapped with CWLS and 4D 
Lap, respectively, for the same case. 
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with VR>0.1, whereas the SR by 4D Lap decreased with the increase of grid size for cases for VR 

from 0.2 to 0.4. Thus, greater improvement was achieved by CWLS compared to 4D Lap for cases 

with larger voxel size. The Verrors by CWLS were consistently lower than 4D Lap for all the cases 

with VR>0.1. At each VR, the Verror by CWLS slightly increased with the increase of grid size 

due to the voxel-averaging effect.  

 

 

The effect of the uncertainty-based weighting and the divergence-free regularization was 

demonstrated by comparing CWLS with the unwrapping frameworks with unity weights or zero 

regularization constant s. With a SNR of 10 and VR from 0.2 to 1.0, the SRs and Verrors of the 

different unwrapping frameworks are presented in Fig. 4 as functions of VR. The method of “unity 

weights” means applying unity weights while “s=0” means setting s to zero, and “unity weights, 

s=0” employed both unity weights and zero regularization constant. As shown in Figure 2.4, 

CWLS yielded a SR around 1.0 for all the cases. Without either the uncertainty-based weighting 

Figure 2.3 (a) The unwrapping SRs and Verrors (%) by CWLS and 4D Lap for the synthetic cases 
with different VRs and SNRs on 2.5 mm resolution grid. (b) The SRs and Verrors (%) on the 

synthetic datasets of LV flow generated with a SNR of 10, grid resolution from 2 to 6 mm, and 
VR from 0.1 to 1.0. 
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or the divergence-free regularization, the SRs were affected for cases with VR<0.4, indicating that 

both operations improved the unwrapping results at low VR. The “unity weights, s=0” yielded the 

lowest SRs for all cases with VR<0.8. For the cases with VR≥0.8, the phase data were unwrapped 

completely by all the methods as SR=1.0, and the Verrors of the two methods with divergence-free 

regularization were lower than the other two, indicating the denoising effect of the divergence-free 

regularization.  

2.4.2 In vitro 4D Poiseuille Flow 

For the Poiseuille flow, the analytical solution had a maximum axial velocity (𝑤VR*) of 12 

cm/s at centerline. The VRs of the 6 acquisitions were determined accordingly and given in Table 

1. The intensity magnitude and phase fields from 3 datasets are presented in Figure 2.5. The 

intensity magnitude was higher near the center of the FOV, while it was lower near the pipe wall 

(partial volume effect(Miguel Ángel, Zisserman, & Brady, 2002)) and on the edges of the FOV. 

The voxels along the centerline of the phase field were wrapped twice at venc=4 cm/s and were 

wrapped once at venc=8 cm/s.  

  

Figure 2.4 The SRs and Verrors (%) by the four different unwrapping methods with or without 
the uncertainty-based weighting and the divergence-free regularization for the synthetic cases 

with VRs from 0.2 to 1.0 and SNRs of 5, 10, 20, and 50. 
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The unwrapped phase 𝜙o  data was compared with the true phase 𝜙  generated from the 

analytical velocity fields. The number of wrapped voxels 𝑁𝒲,K and 𝑁𝒲,!?  are presented in Table 

1. As a reference, the total number of voxels within 𝐷678 (𝑁678) was 63720. One aliased voxel 

existed in the dataset with venc=16 cm/s, which was due to measurement noise. The 4D Lap 

unwrapped most of the voxels and failed to unwrap 2 to 104 wrapped voxels for each dataset, 

while CWLS completely unwrapped 5 datasets and failed to unwrap only 1 wrapped voxel for 

venc=4 cm/s. With venc=16 cm/s, the 4D Lap created 9 more wrapped voxels compared to the 

unprocessed data. The VNRs of the resulting velocity fields are presented in Table 2.1 together 

with the percentage increase of VNR by CWLS compared to 4D Lap. Compared to 4D Lap, the 

CWLS VNRs were 40-61% higher, demonstrating the denoising effect by CWLS unwrapping on 

velocity accuracy. With CWLS, the VNR was 131% higher using a venc of 4 cm/s than the VNR 

at a venc of 16 cm/s. 

 The mean WSS and relative 𝜖`ZZ from the velocity fields unwrapped with CWLS and 4D 

Lap are presented in Table 1 for the six datasets, together with the error reduction achieved by 

CWLS compared to 4D Lap. As a reference, the analytical WSS magnitude is 0.141 Pa. The WSS 

accuracy was consistently higher with CWLS for all datasets, with an error reduction of as much 

as 130% compared to 4D Lap. The relative 𝜖`ZZ was lowest for the CWLS-processed velocity 

fields at venc of 6 cm/s. Using a venc of 4 or 6 cm/s improved the relative 𝜖`ZZ by 31 and 43%, 

respectively, compared to using a venc of 16 cm/s. 

Figure 2.5 The intensity magnitude fields (a) and the streamwise velocity phase fields (b) from 3 
acquisitions with vencs of 4, 8, and 16 cm/s. The fields are shown on the x-z plane along the 

centerline of the pipe. 
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Table 2.1 The venc, intensity based signal-to-noise ratio (SNRI), number of wrapped voxels 
(𝑁𝒲), velocity-to-noise ratio (VNR), mean WSS magnitude, and relative WSS magnitude error 

(𝜖`ZZ) for the each in vitro Poiseuille flow dataset with CWLS and 4D Lap unwrapping 
DV acquisitions A B C A B C 

venc (cm/s) 4 6 8 8 12 16 
TE (ms) 7.47 6.47 5.87 7.47 6.47 5.87 
TR (ms) 10.2 9.2 8.6 10.2 9.2 8.6 

SNRI 60.9 54.1 47.9 60.9 54.1 47.9 
𝑁𝒲 41919 32819 24128 23434 3925 1 

𝑁𝒲 CWLS 1 0 0 0 0 0 
4D Lap 104 2 20 38 4 10 

VNR CWLS 33.2 38.4 28.1 16.0 18.5 14.4 
4D Lap 23.7 26.4 17.5 10.7 13.3 9.4 

VNR improve (%) 40 46 61 50 39 53 
mean 

WSS (Pa) 
CWLS 0.17 0.16 0.17 0.20 0.18 0.20 
4D Lap 0.20 0.17 0.19 0.23 0.20 0.22 

relative 
𝜖899 

CWLS 0.45 0.37 0.42 0.68 0.51 0.65 
4D Lap 0.70 0.56 0.78 1.38 1.02 1.50 

𝜖899 reduction (%) 56 53 85 105 102 130 

2.4.3 In vivo Aortic 4D Flow MRI 

The SRs of 22 datasets for each VR are presented in Figure 2.6 (a) using boxplot (Frigge et 

al., 1989). The p-values from paired sample t-test between the SRs by CWLS and 4D Lap are also 

reported in  Fig. 6(a), which indicated statistically significant difference (p-value<0.05) between 

the performances of the two methods at VRs of 0.1 to 0.4. The median SR is given in Table 2.2. 

Compared to 4D Lap, the improvement by CWLS was dramatic for VRs at 0.2 and 0.3. At a VR 

of 0.2, the median SR value was 81% higher by CWLS compared to 4D Lap. Examples of the 

unwrapped phase fields are given in Figure 2.6 (b) for a BAV dataset with a VR of 0.3 together 

with the benchmark 𝜙 and the wrapped phase 𝜓. Doubly-wrapped voxels can be observed in 𝜓 

near the aortic valve and in the descending aorta. CWLS completely unwrapped these voxels, 

while a large portion of wrapped voxels still remained from 4D Lap. 

 

Table 2.2 The median success rates (SR) for each venc ratio (VR) of the artificially wrapped in 
vivo aortic datasets with CWLS and 4D Lap 

VR 0.1 0.2 0.3 0.4 0.5 
median 
of SRs 

CWLS 0.43 0.87 0.98 0.99 1.0 
4D Lap 0.23 0.48 0.86 0.98 1.0 
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The VRs and Verrors for the in vivo datasets with real velocity aliasing are given in Table 

2.3. The Verrors of the 4D Lap processed fields were minimally 10 times higher than the Verrors 

of the CWLS results. The unwrapped phase fields from one BAV case and one TAV-AA case with 

real aliasing are presented in Figure 2.6 (c) and (d). With 4D Lap unwrapping, phase jumps were 

observed near the aortic valve for the BAV case, as well as wrapped voxels in the descending aorta 

for the TAV-AA case. The CWLS completely unwrapped the voxels in the displayed field. The 

computational costs by CWLS on the aliased in vivo datasets were quantified with respect to the 

number of voxels (Nvoxels) within 𝐷678 ∪ 𝐷(%9. As Nvoxels increased from 17640 to 35574, both 

the number of LSQR iterations and time-cost per iteration increased, resulting in a linear increase 

of the total time-cost per timeframe from 100 to 310 s. It should be noted that the computations 

were carried using a workstation with 16 cores (Intel Xeon CPU E5-2450 v2), and the time-cost 

may change with different computational capacity. 

 

Table 2.3 The venc ratios (VR) of the acquisitions and the velocity error levels (Verror) of the 
resulting velocity fields for the 8 in vivo aortic datasets with real aliasing by CWLS and 4D Lap 

unwrapping 

BAV 
VR 0.51 0.70 0.63 0.72 

Verror (%) CWLS 2.9 2.6 2.3 1.9 
4D Lap 55.9 34.0 41.9 30.8 

TAV-
AA 

VR 0.54 0.64 0.95 0.71 

Verror (%) CWLS 1.7 2.1 1.7 2.8 
4D Lap 36.7 30.1 30.5 35.3 
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2.5 Discussion  

The proposed CWLS method algorithmically unwraps the phase data without the need of 

additional high-venc acquisition. The performance of CWLS was evaluated and demonstrated with 

synthetic phase data, in vitro measurement of Poiseuille flow, and in vivo aortic 4D flow data. By 

incorporating the divergence-free constraint and using the robust WLS integration algorithm, 

CWLS reliably and robustly unwrapped the phase data with a venc as low as 20% of the maximum 

velocity and a SNR as low as 5, and also reduces the phase noise. As a consequence, CWLS 

improved the accuracy of the obtained velocity and hemodynamic quantities.  

Figure 2.6 (a) Boxplots of the statistical distributions of SRs from the 22 artificially wrapped 
datasets for each VR. The centerline of each box indicates the median, while the edges are the 
25th and 75th percentiles. (b) The u phase fields on the center x-y plane at peak systole of an 
artificially wrapped BAV dataset with VR=0.3. (c-d) With real-aliasing, the u phase fields at 

peak systole on the center x-y plane at peak systole for one BAV dataset (c) and one TAV-AA 
dataset (d) where the patient additionally had a repaired coarctation causing a high speed jet in 

the proximal descending aorta. 
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The CWLS method allows for the use of lower venc to obtain more accurate velocity and 

subsequent hemodynamic quantities in clinical applications of 4D flow MRI. Overall, a VNR 

increase of more than 100% can be achieved by using lower-venc acquisitions and the CWLS 

unwrapping according to the analysis on the in vitro Poiseuille flow. In addition, the CWLS 

method does not require any change in the 4D flow MRI acquisition in comparison with the multi-

venc approaches which need additional high-venc acquisition with a 25-75% increase in scan time 

(Nett et al., 2012; Schnell et al., 2017). In applications where two 4D flow MRI scans are typically 

required for measuring venous and arterial flow with different vencs such as in the liver or brain, 

CWLS can reduce the scan time by omitting the high-venc acquisition and unwrapping the low-

venc data. 

Compared to 4D Lap, CWLS is more reliable for severely wrapped data, and more robust to 

noise and low spatial resolution. Unlike the 4D Lap method which unwraps along 4 dimensions in 

a single step (Michael Loecher et al., 2016), CWLS sequentially unwraps each time frame and 

employs WLS for spatial unwrapping. The time sequence proposed in section III-D prevents the 

error propagation from more-wrapped frames to less-wrapped frames, and the WLS integration 

mitigates the error propagation across the field. Moreover, CWLS incorporates the divergence-

free constraint to regularize and denoise the phase field. Thus, CWLS better handles phase 

singularity and reduces noise during unwrapping. The advantage of 4D Lap over CWLS is its ease 

of use and low computational cost. Neither method needs aliasing-free reference timeframes as 

required by other temporal unwrapping algorithms (Q. Xiang, 1995). Compared to the unwrapping 

method which resolves phase singularity with branch cut surfaces (María F Salfity et al., 2006), 

the CWLS method does not rely on the estimation of phase singularity loops, making it more 

scalable for large and complex datasets. The advantage of CWLS over the 4D gradient based phase 

unwrapping (M. Loecher et al., 2011) is that CWLS can unwrap voxels wrapped multiple times 

and large wrapped regions.      

There are several limitations of the CWLS method. First, the computational cost of CWLS 

was expensive compared to 4D Lap. Using a workstation with 16 cores (Intel Xeon CPU E5-2450 

v2), the processing of each in vivo dataset took 1-2 hrs, whereas 4D Lap completed the unwrapping 

within seconds. Another limitation of CWLS was that the FOV needed to be segmented prior to 

unwrapping, which can be difficult for acquisitions with tissue movement despite the recent 

development on 3D segmentation algorithms (Berhane et al., 2020). The segmentation applied to 
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the in vivo aortic data based on the time-averaged quantity did not consider the motion of aorta 

and might affect the CWLS unwrapping. However, the CWLS still showed superior performance 

compared to 4D Lap on the in vivo aortic data with this segmentation. It is also worth noting that 

the CWLS unwrapping depends on the phase variation estimated using (2-2) with the assumption 

that the phase variation between neighboring voxels are within (−𝜋,𝜋). Using an extremely low 

venc can violate the assumption and therefore affect the performance of CWLS as suggested by 

the low SRs from the cases with VR=0.1 in Fig. 3.  

Furthermore, there are a number of limitations of this study. First, the benchmark phase data 

for the eight real-aliasing in vivo datasets was unavailable to evaluate the SR of unwrapping. 

Instead, we estimated the velocity errors from the velocity divergence and compared the Verrors 

between results from CWLS and 4D Lap. However, it should be noted that this divergence-based 

error metric could underestimate the error level from CWLS which penalized the velocity 

divergence during phase unwrapping. In vivo dual-venc datasets can be acquired in future studies 

and used as benchmark to evaluate the performance of phase unwrapping on low-venc acquisitions. 

Moreover, further investigation on CWLS unwrapping needs to be performed for severely wrapped 

in vivo datasets with VRs lower than 0.5. In addition, the intra-voxel phase dispersion due to the 

aortic valve pathologies was not considered in the synthetic data generation or the in vitro 

experiment, limiting the performance evaluation of CWLS on data with this artifact.  

In conclusion, this study introduces a divergence-free constrained phase unwrapping method 

for 4D flow MRI and evaluates its performance with synthetic phase data, in vitro measurement 

of Poiseuille flow, as well as in vivo aortic 4D flow data. The proposed method is reliable with 

severely wrapped data and robust to noise. The method also denoises the phase field and thus 

enhances the VNR of the resulting velocity data. The method can benefit clinical applications of 

4D flow MRI as it improves the accuracy of acquired velocity and hemodynamic quantities. 
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 4D FLOW MRI PRESSURE ESTIMATION USING VELOCITY 
MEASUREMENT-ERROR BASED WEIGHTED LEAST-SQUARES 

This chapter is reproduced with permission from: Zhang, J., Brindise, M.C., Rothenberger, S., 
Schnell, S., Markl, M., Saloner, D., Rayz, V.L., Vlachos, P.P., 2020. 4D Flow MRI Pressure 
Estimation Using Velocity Measurement-Error-Based Weighted Least-Squares. IEEE Trans. Med. 
Imaging 39, 1668–1680. https://doi.org/10.1109/TMI.2019.2954697 

3.1 Background and literature review 

Pressure measured from the cardiovascular system is widely used to diagnose disease. Many 

pressure-based clinical biomarkers, such as pulmonary wedge pressure (Oliveira et al., 2014), are 

single point measurements typically acquired by placing a pressure catheter in the region of interest 

(Wood, Leusen, Warner, & Wright, 1954). However, this approach is invasive and still only 

provides a point measurement. Conversely, a spatial pressure distribution can provide a more 

complete view of the hemodynamics in the cardiovascular system. For example, the pressure 

distribution in the posterior communicating artery bifurcation has been explored and its correlation 

with the locations of the rupture of infundibulae or progression to aneurysms was established 

(Baek et al., 2009). Further, such pressure distributions can be obtained noninvasively. One such 

noninvasive approach includes estimating the pressure difference from Doppler echocardiography 

and is typically employed for evaluating intra-ventricular pressure difference (Nagueh et al., 2009; 

Vlachos, Niebel, Chakraborty, Pu, & Little, 2014). However, conventional Doppler Ultrasound 

only measures one component of the velocity which limits the accuracy of the estimated pressure 

difference. Pressure fields can also be obtained using computational fluid dynamics (CFD) 

simulations, but fidelity of the simulation depends on the accuracy of segmentation and flow 

boundary conditions prescribed to the solver. These assumptions, as well as solver parameters have 

been shown to have a significant effect on the resulting flow field (Berg et al., 2014; Brindise et 

al., 2019; Voß et al., 2019), the flow fields and flow-derived metrics were compared across cerebral 

aneurysm flow data obtained with in vivo 4D flow, in vitro PTV, and CFD. Minor flow field 

variations were found between modalities due to differences in the modeling assumptions and 

resolution limitations. High-resolution CFD simulations are also computationally expensive. 

Pressure reconstruction methods have become increasingly of interest with the development of 

flow measurement techniques such as 4D flow magnetic resonance imaging (MRI) which 
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measures time-resolved velocity fields. However, several error sources and limitations inherent to 

in vivo 4D flow MRI result in unreliable pressure fields. The setting of velocity encoding (venc) 

parameter for a 4D flow acquisition is determined by the maximum velocity expected in the region 

of interest. Velocity greater than the venc leads to velocity aliasing, while higher venc settings lead 

to increased noise which affects 4D flow measurements in low velocity regions (Ha et al., 2016). 

Artifacts such as concomitant gradient fields and eddy currents affect the accuracy of measured 

phase differences (Dyverfeldt et al., 2015). The partial volume effect and intravoxel dephasing are 

also common sources of systematic errors, especially for voxels near lumen boundaries (Nayak et 

al., 2015). For in vivo measurements, the limited scan time results in decreased spatiotemporal 

resolution and increased image artifacts (Dyverfeldt et al., 2015). Thus, a robust algorithm is 

needed to accurately reconstruct the pressure field from 4D flow MRI.  

Several algorithms have been proposed to evaluate the pressure field from measured flow 

data. Most algorithms contain two major steps. The pressure gradient fields are first calculated 

from the velocity fields, which are then spatially integrated to obtain the instantaneous pressure 

fields. 

For blood flow, the pressure gradient can be calculated using the incompressible Navier-

Stokes momentum equation in the following form (Charonko, King, Smith, & Vlachos, 2010; R. 

De Kat & Van Oudheusden, 2012; Roeland de Kat, van Oudheusden, & Scarano, 2009; Tronchin, 

David, & Farcy, 2015; Violato, Moore, & Scarano, 2011): 

 
𝛻𝒑 = −𝜌 cb𝒖

bG
+ (𝒖 ∙ 𝛻)𝒖d + 𝜇𝛻"𝒖,	 (3-1)	

	
where 𝒑 is pressure (Pa), ∇ is the spatial gradient operator such that ∇𝒑 is the pressure gradient 

(Pa/m), 𝜌 and 𝜇 are the density (kg/m3) and dynamic viscosity (Pa·s) of the fluid, respectively, 𝒖 

is the velocity (m/s), and t is time (s). 𝜇∇"𝒖 represents viscous diffusion. d𝒖
dG

 and (𝒖 ∙ ∇)𝒖 represent 

the local and convective accelerations (m/s2), respectively. The body force term has been ignored 

in (3-1) and in the following equations but it could be included.  

With pressure gradients calculated from velocity data using (3-1), the pressure field can be 

reconstructed by spatially integrating the pressure gradient field. One approach to this 

reconstruction calculates the pressure at each point in the flow field by integrating the pressure 

gradient along one path or multiple paths (Liu & Katz, 2006; Tronchin et al., 2015). Path 
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integration methods are rarely employed for 3D flow data due to the high computational cost. The 

most common approach for reconstructing pressure fields from 3D velocity data is by solving the 

pressure Poisson equation (PPE) in the following from (R. De Kat & Van Oudheusden, 2012; 

Roeland de Kat et al., 2009; N. J. Neeteson et al., 2016; Schneiders, Pröbsting, Dwight, van 

Oudheusden, & Scarano, 2016; Violato et al., 2011):  

 
𝛻"𝒑 = 𝛻 ∙ 𝒑𝒈𝒓𝒂𝒅,𝒖 = −𝜌𝛻 ∙ (𝒖 ∙ 𝛻𝒖),	 (3-2)	

	
where 𝒑𝒈𝒓𝒂𝒅,𝒖  is the pressure gradient field evaluated from the velocity field and	(∇ ∙) is the 

divergence operator which evaluates the divergences from a vector field. This approach has been 

successfully applied to both engineering applications (R. De Kat & Van Oudheusden, 2012; 

Roeland de Kat et al., 2009; N. J. Neeteson et al., 2016; Schneiders et al., 2016; Violato et al., 

2011) and cardiovascular velocity measurements from phase-contrast MRI (Jelena Bock et al., 

2011; Donati, Nordsletten, Smith, & Lamata, 2014; Ebbers & Farnebäck, 2009; Krittian et al., 

2012; Lamata et al., 2014). For incompressible flow, equation (3-2) is valid for both steady and 

unsteady conditions. Boundary conditions are required for solving (3-2), which can be Dirichlet 

boundary conditions with prescribed pressure values, Neumann boundary conditions with 

prescribed pressure gradient values, or a mix of the two types. As discussed in (van Oudheusden, 

2013), both the path integration method and the method of solving the pressure Poisson equation 

can be regarded as global optimization formulations of the pressure-gradient spatial integration. 

Another method that falls into this category is a least-squares reconstruction method referred to as 

ordinary least-squares (OLS) reconstruction in this study (Jeon, Gomit, Earl, Chatellier, & David, 

2018). For OLS, the pressure integration is performed by solving the following linear system:  

 
𝐺𝒑 = 𝒑𝒈𝒓𝒂𝒅,𝒖,		 (3-3)	

	
where 𝐺 is the discrete gradient matrix, and 𝒑 is the unknown pressure field written as a column 

vector. Equation (3-3) is an over-determined linear system for 2D and 3D flow data. The OLS 

method solves the pressure field by minimizing the pressure gradient residuals in a least-squares 

sense as: 

 
𝑝7SZ ≡ 𝑎𝑟𝑔𝑚𝑖𝑛

i
}|𝛻𝒑 − 𝒑𝒈𝒓𝒂𝒅,𝒖|~,	 (3-4)	
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where ‖ ‖ is the L2 norm. In matrix form, equation (4) becomes: 

 
𝐺/𝐺𝒑 = 𝐺/𝒑𝒈𝒓𝒂𝒅,𝒖.	 (3-5)	

	
As stated in (C. Y. Wang, Gao, Wei, Li, & Wang, 2017), OLS reconstruction and Poisson share 

the same theoretical foundation, and solving the pressure Poisson equation with Neumann 

boundary conditions is mathematically equivalent to the solving the OLS formulation. 

Due to the measurement inaccuracies in the in vivo 4D flow MRI, the calculated pressure 

gradient fields contain propagated errors. However, the above-mentioned pressure reconstruction 

methods do not have any way to account for or reduce the effect of such erroneous pressure 

gradient values. In order to improve the accuracy of reconstructed pressure fields, a weighted least-

squares (WLS) reconstruction method for spatial integration of pressure gradients is introduced in 

this work. In this method, pressure fields are solved by minimizing the WLS of the pressure 

gradient residuals. The weights are determined based on estimated pressure gradient errors. To 

estimate such pressure gradient errors, velocity errors are calculated from the velocity divergence 

for incompressible flow and propagated through (3-1). Smaller weights are assigned to inaccurate 

pressure gradient values such that their effects are reduced during spatial integration. The 

performance of WLS was tested using synthetic velocity fields and in vitro Poiseuille flow 

measured using 4D flow MRI. The method was then applied to in vivo 4D flow MRI velocity data 

acquired for two aneurysms and in vitro PTV velocity data collected in patient-specific aneurysm 

models. 

3.2 Methodology 

3.2.1 Pressure reconstruction using weighted least-squares 

Pressure gradient fields were calculated from velocity fields using (3-1). Velocity data 

employed in this study were on Cartesian grids with velocity values located on grid nodes. A 

second order central (SOC) difference scheme was employed to evaluate the temporal and spatial 

derivatives of the velocity fields. Pressure gradient values were calculated on grid nodes, then 

linearly interpolated to the face centers of each grid cell. The SOC scheme and grid arrangement 

are demonstrated in Figure 3.1. SOC computes the gradient at each point from its neighboring 
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points, e.g., bi
b*
(𝑖, 𝑗) = i(Ej0,k)Ii(EI0,k)

">*
, where Δ𝑥  is the grid size. The reconstructed pressure 

values are on grid nodes. 

The pressure field is obtained by solving 

 
𝐺/𝑊𝐺𝒑 = 𝐺/𝑊𝒑𝒈𝒓𝒂𝒅,𝒖,	 (3-6)	

	
which gives the pressure result that minimizes the least-squares of pressure gradient residuals as 

 
𝒑𝑾𝑳𝑺 ≡ 𝑎𝑟𝑔𝑚𝑖𝑛

i
}𝑊|𝛻𝒑 − 𝒑𝒈𝒓𝒂𝒅,𝒖|~,	 (3-7)	

	
where 𝑊 is the weight matrix. 𝑊 is a diagonal matrix containing positive elements as weights for 

pressure gradient values 𝒑𝒈𝒓𝒂𝒅,𝒖 . Greater weights are assigned to pressure gradient values 

anticipated to be more accurate. Unlike the Poisson equation, WLS reconstruction does not require 

boundary conditions to be explicitly assigned as the Poisson equation does. A minimum of one 

pressure reference point is needed. Pressure at the reference point can be obtained from direct 

measurement or a far-field pressure condition. If only the pressure differences between points in 

the flow field are of interest, the selection of reference point and reference pressure is arbitrary, 

e.g., zero pressure can be assigned at one point along the boundary.  

 

Figure 3.1 Grid arrangement and SOC scheme demonstrated using a 2D Cartesian grid. The grid 
nodes are labeled by dots. A grid cell is drawn using dashed lines. Cell face centers are labeled 

by “X” marks 
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3.2.2 Velocity error estimation from spurious divergence 

For incompressible flow, the divergence of the true velocity field should be zero, expressed 

mathematically as: 

 
𝛻 ∙ 𝒖𝑻 = 0,	 (3-8)	
	
where 𝒖𝑻 is the true velocity field. Because measured velocity data inevitably contain errors, the 

divergence of the measured velocity field is typically nonzero. The spurious divergence equals the 

divergence of the velocity error field as 

 

𝛻 ∙ 𝒖𝑴 = 𝛻 ∙ 𝝐𝒖,	 (3-9)	
	
where 𝒖𝑴  is the measured velocity field, 𝝐𝒖  is the velocity error field, and 𝝐𝒖 = 𝒖𝑴 − 𝒖𝑻 . 

Equation (3-9) forms an underdetermined linear system as there are less rows than columns in the 

discretized divergence operator (∇ ∙). Thus, 𝝐𝒖  cannot be uniquely determined from (3-9). We 

estimate 𝝐𝒖 by finding the least-squares solution to (3-9) as 

 
𝝐�̈� = (𝛻 ∙)/(𝛻")I0(𝛻 ∙ 𝒖𝑴) ≡ 𝑎𝑟𝑔𝑚𝑖𝑛

[!
(‖𝛻 ∙ 𝝐𝒖 − 𝛻 ∙ 𝒖𝑴‖),	 (3-10)	

	
where 𝝐�̈�  is the estimated velocity error field. Previous studies have similarly employed the 

spurious velocity divergences to estimate the uncertainty of velocity data measured using 

tomographic particle image velocimetry (PIV) (Azijli & Dwight, 2015). 

3.2.3 Generation of weight matrix 

The pressure gradient error field is estimated by propagating 𝝐�̈� through (3-1) as 

 
𝝐𝜵�̈� = 𝑓:i(𝒖𝑴) − 𝑓:i(𝒖𝑴 − 𝝐�̈�),	 (3-11)	

	
where 𝝐𝛁�̈� is the estimated pressure gradient error field and 𝑓∇i(∙) denotes evaluating (3-1) using 

the given velocity field.  
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Accuracy of the 𝒑𝒈𝒓𝒂𝒅,𝒖 at each point from each time frame is determined from the weighted 

standard deviation (WSTD) of the estimated pressure gradient errors from neighboring points 

given as 

𝝈𝜵�̈� = ª∑ ./u𝝐𝜵𝒑w x
/
(0

/<=

∑ ./0
/<=

,	 (3-12)	

	
where 𝝈𝛁�̈� is an estimation of the pressure gradient uncertainty and 𝑛 is the number of points that 

are employed in the WSTD calculation. Weights 𝑤E for WSTD calculations are determined using 

a bivariate Gaussian function:  

 

𝑤E = 𝑒𝑥𝑝 {− 0
"
c(*
y*
d
"
− 0

"
c(>
y>
d
"
�,	 (3-13)	

	
where 𝑟G and 𝑟N are the spatial and temporal separations from the neighboring points to the point 

of interest, respectively. 𝛿G  and 𝛿N  are the correlation lengths along the temporal and spatial 

dimensions which are determined by the numerical difference scheme. Based on the SOC scheme 

employed for 𝑝z(RT,- calculation, neighboring 𝑝z(RT,- values should not be correlated farther than 

2Δ𝑥 spatially and Δ𝑡 temporally. Thus, the correlation lengths were chosen to be 𝛿G = Δ𝑡 and 

𝛿N = 2Δ𝑥. In addition, only points within the 𝑟G ≤ Δ𝑡 and 𝑟* ≤ 2Δ𝑥 neighborhood were employed 

in the WSTD calculation. 

The weight matrix for WLS reconstruction is given by 

 

𝑊 = 𝑑𝑖𝑎𝑔 { 0
𝝈𝜵𝒑w

(�,	 (3-14)	

	
where 𝑑𝑖𝑎𝑔(∙)  is the diagonal matrix generated from given diagonal elements. To avoid 

singularities due to zero weights, a lower bound of weights is given as 10I| multiplied by the 

average of all weight elements. 

3.2.4 Implementation of pressure reconstruction methods 

The method of solving the PPE (denoted as ‘Poisson’ herein) was employed in this study to 

compare to the WLS method for evaluating its performance. The same formulation of PPE was 
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employed in the present study as in (Jelena Bock et al., 2011; Donati et al., 2014; Ebbers & 

Farnebäck, 2009; Krittian et al., 2012; Lamata et al., 2014) which considered both inertial and 

viscous effects of the blood flow. For the Poisson algorithm, pressure gradient fields were 

calculated from (3-1) by SOC and the grid arrangement described in section II-A. Divergence of 

the pressure gradients were calculated using SOC and employed as the source term for the pressure 

Poisson equation. At least one grid point along the boundary was prescribed with zero pressure as 

the Dirichlet boundary condition for both methods. Pressure gradients at all the other boundary 

points were employed as the Neumann boundary condition for solving the pressure Poisson 

equation. SuperLU, a general-purpose library for the direct solution of large, sparse, nonsymmetric 

systems of linear equations (Li, 2005), was employed to solve (3-2) and (3-6) for the reconstructed 

pressure fields.  

3.2.5 Synthetic flow fields 

Two flow fields were used for validating and analyzing the pressure reconstruction methods. 

The first is a 2D Lamb-Oseen vortex ring flow field which consists of two counter-rotating vortices. 

Velocity of each vortex can be described by 

 

𝑢^ = 𝑢^VR* c1 +
0
"}
d (-.?

(
�1 − 𝑒0I}~

%
%-.?

�
(

�,	 (3-15)	

	
where 𝑢^  is the angular velocity, 𝑟  is the distance from the center of the vortex, 𝑟VR*  is the 

distance where the maximum angular velocity 𝑢^VR* = 0.5	𝑚/𝑠 is reached, and 𝑟VR* = √𝛼 × 𝑟' 

with 𝑟' = 0.01	𝑚. The constant 𝛼 was set to be 1.25643 according to (Devenport & Rife, 1996). 

The center points of vortices were separated by 2𝑟O  with 𝑟O = 0.01	𝑚. A free stream velocity 

component 𝑢9N was added to make the flow steady as 

 

𝑢9N = 𝑢^VR* c1 +
0
"}
d (-.?

"(=
�1 − 𝑒0I}~

%
%-.?

�
(

�.	 (3-16)	

	
The exact velocity fields were generated on a uniform Cartesian grid with 65" grid points. The 

size of the domain was 0.1	𝑚	 × 	0.1	𝑚. The exact pressure field was obtained by numerically 

integrating the pressure gradients on a denser Cartesian grid with 129" points. Fluid density was 
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1	𝑘𝑔/𝑚W and the flow was inviscid. Figure 3.2 (a) and (b) present the exact velocity and pressure 

field, respectively.  

The second is 2D pulsatile flow between two parallel infinite plates driven by the unsteady 

pressure gradient given as 

 
T�
T*
= 𝜌𝐾 + 𝛾𝜌𝐾𝑐𝑜𝑠𝜔𝑡,	 (3-17)	

	
where the x direction is streamwise, 𝛾 is the ratio between the magnitude of the steady pressure 

gradient component and the amplitude of the oscillating pressure gradient component, K is the 

constant controlling the overall strength of the pressure gradient, and 𝜔 is the angular speed of the 

oscillating component. The velocity profile can be expressed as 

𝑢 = 𝑢VR* c1 −
+(

�(
d + ��

E�
{1 − 'UN�u+/�√E�x

'UN�u√E�x
� 𝑒𝑥𝑝(𝑖𝜔𝑡),	 (3-18)	

	
with 𝜆 = ℎ�

�
a�

, where y is the spanwise direction, h is the channel half-width, and 𝑢VR* is the 

centerline velocity of the steady flow component. In this paper the flow field contains a 20 mm 

long channel with a h of 4 mm. Blood-mimicking fluid properties were employed with 𝜌 of 1110 

𝑘𝑔/𝑚W and 𝜇 of 0.0033 Pa·s. 𝜔 was set to be 2π rad-1 and the Womersley number of the flow was 

5.75. 𝑢VR* was set to be 1m/s, and the other parameters were given as 𝐾 = 0.38	𝑚/𝑠", 𝛾 = 8.28, 

and 𝜆 = 5.75. Figure 3.2 (c) shows the waveforms of pressure gradient and centerline streamwise 

velocity component within one cycle. Figure 3.2 (d) shows the streamwise velocity profile at 4 

phases in a cycle. The flow fields were generated on a uniform Cartesian grid with a spatial 

resolution of 0.4´0.4 mm2, yielding 21´51 grid points in the field. This type of flow was employed 

in (Charonko et al., 2010) to assess the performances of pressure reconstruction methods. 

In order to test the robustness of the pressure reconstruction methods to errors in the velocity 

data, noise was added to the velocity fields in a manner similar to that done in (Azijli & Dwight, 

2015; Charonko et al., 2010), which is designed to mimic experimental noise. Noise was added as 

a vector with a normally distributed magnitude and random direction at each point. The error 

magnitude can be expressed by  

 
𝝐𝒖𝒊 = 𝒩}0, 𝜆�𝑢E�~,	 (3-19)	
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where 𝜆  is the error percentage level. For the vortex ring flow, two types of velocity noise 

distributions were considered which are referred to as ‘Uniform Noise Distribution (UND)’ and 

‘Spatially Varying Noise Distribution (SVND)’ in this study. For UND, the measurement quality 

was uniform across the field, and 𝜆 was set to be consistent across the field. 26 UND test cases 

were generated with 𝜆 varying linearly from 1 to 51%. For SVND, the flow field was divided into 

a “top half” and “bottom half” with different values of	𝜆 applied to each half. A total of 7 cases 

were generated with 𝜆GUi varying exponentially from 8% to 64%, and 𝜆QUGGUV set to 8% for all 

cases. For each test case with UND or SVND, 100 time frames were created with a sampling 

frequency of 50 Hz (Δ𝑡 = 0.02	𝑠). 0 Pa was assigned at the left end of the dashed horizontal line 

in Fig. 2(a) as the reference pressure. For the pulsatile flow, 26 UND test cases were generated 

with 𝜆 varying linearly from 1 to 51%. 1000 frames were created for a time span of 50 cycles, 

yielding 20 frames per cycle and a temporal resolution of 0.05 s. Dirichlet boundary condition with 

zero pressure was applied to the inlet of the 2D channel as the reference pressure. 

 

Figure 3.2 (a) Exact velocity field of the 2D Lamb-Oseen vortex ring. The vectors indicate the 
flow direction and color scale of the contours corresponds to velocity magnitude. The flow field 
is divided by the black dashed line into top and bottom halves. (b) Exact pressure field of the 2D 
vortex ring flow. (c) Waveforms of pressure gradient and centerline streamwise velocity within 
one cycle of the 2D pulsatile flow. (d) Streamwise velocity profiles at 4 time points in a cycle of 

the 2D pulsatile flow. 



 
 

60 

3.2.6 In vitro 4D Poiseuille flow 

Experimental measurements of steady, laminar Poiseuille flow in a circular pipe were 

acquired using 4D-flow MRI. The Poiseuille flow allowed the usage of an analytical pressure field 

as the benchmark to assess the accuracy of the reconstructed pressure. A blood mimicking water-

glycerol solution with a density and viscosity of 1110 kg/m3 and 0.00372 Pa·s, respectively, was 

used as the working fluid. The volume ratio between water and glycerol was 60:40. A small amount 

(0.66 mg/mL) Gadolinium contrast was added to enhance the signal-to-noise ratio (SNR) of the 

4D flow MRI scan without altering the rheology of the fluid. A computer-controlled gear pump 

drove the working fluid at a steady flow rate of 7.6 mL/s. The diameter of the pipe was 12.7 mm 

and the length was sufficiently long prior to entering the MRI field of view to ensure a fully 

developed velocity profile. The 4D flow MRI scan was performed on a Siemens 3T PRISMA 

scanner at a spatial resolution of 0.85 × 0.85 × 0.8 mm3. A total of 12 time frames were collected. 

The venc of this 4D flow MRI scan (prospectively triggered time-resolved 3D PC MRI with 3-

directional velocity encoding) was set to 16 cm/s, which is sufficiently high to avoid velocity 

wrapping. The echo time (TE) and repetition time (TR) were 5.87 ms and 8.60 ms, respectively. 

The yielded temporal resolution was 120.4 ms. The bandwidth was 455 kHz and flip angle was 

15º. The 4D-flow MRI images were pre-processed (phase offset correction, noise filtering) using 

a customized Matlab-based software package, Velomap-Tool, developed at University Medical 

Center Freiburg (J. Bock et al., 2007). 

The analytical velocity field of the Poiseuille flow is given by: 

 
𝑊 = − 0

4a
T�
T,
(𝑅" − 𝑟"),	 (3-20)	

	
where 𝑊 is the axial (along z-axis) velocity component (m/s),  𝑟 is the radial distance from the 

pipe centerline (m) which equals to �𝑥" + 𝑦" and T�
T,

 is the axial pressure gradient (Pa/m). The 

velocity components along other axes (𝑈 and 𝑉) are 0. The axial pressure gradient is defined by: 

 
T�
T,
= − �a_

#66
,	 (3-21)	
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where 𝑄 is the volumetric flow rate (m3/s). This yields a linear analytical pressure drop along the 

pipe. The analytical velocity and pressure fields were considered as the ground truth for error 

analysis. 

3.2.7 In vivo and in vitro flow in cerebral aneurysms 

In vivo flow data in a basilar tip aneurysm were acquired at San Francisco VA Medical 

Center and an internal carotid artery (ICA) aneurysm was imaged at Northwestern Memorial 

Hospital (NMH). Both aneurysms were acquired with 4D flow MRI on a 3T MRI scanner (Skyra, 

Siemens Healthcare, Erlangen, Germany). An ECG-gated RF spoiled 4D-flow MRI sequence 

(Siemens WIP sequence) was used with gadolinium contrast for imaging the basilar tip aneurysm, 

while no contrast was used for the ICA aneurysm. Aliasing, phase offsets, and noise were corrected. 

Velocity data from the in vivo measurements were obtained on Cartesian grids. The spatial 

resolution was 1.25´1.25´1.33 mm3  for the basilar tip aneurysm and 1.09´1.09´1.30 mm3 for the 

ICA aneurysm. The temporal resolutions were 40.5 ms (20 frames per cycle) and 44.8 ms (13 

frames per cycle) for the basilar tip aneurysm and the ICA aneurysm, respectively.  

In vitro PTV velocity data was obtained using a 1:1 scale models of the patient-specific 

aneurysms. To reproduce the in vivo flow field, the inflow was driven by a computer-controlled 

gear pump with the inlet flow based on the in vivo data. DaVis 10.0 (LaVision Inc.) was used to 

process the particle images. Shake the Box (STB), a particle tracking method, was used to compute 

the velocity fields. The unstructured STB velocity fields were interpolated to Cartesian grids. For 

the basilar tip aneurysm, the grid size was 0.3 mm and the temporal resolution was 2.5 ms. For the 

ICA aneurysm, the grid size was 0.4 mm and the temporal resolution was 1.5 ms. Blood mimicking 

fluids composed of water-glycerol-urea were employed with the details provided in Table 3.1 

(Brindise, Busse, & Vlachos, 2018). More details on the in vivo and in vitro measurements can be 

found in (Brindise et al., 2019). To mimic the in vivo 4D flow data, another dataset was created 

for each aneurysm by virtual spatial voxel averaging the in vitro PTV data, then temporally 

downsampling to the same frequency as the 4D flow measurement. Thus, the voxel-averaged and 

subsampled dataset (referred to as ‘PTV-voxavg’ herein) had the same spatial and temporal 

resolution as the corresponding in vivo 4D flow MRI dataset.  
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Table 3.1 Composition and properties of blood mimicking fluids used for in vitro measurements 
Geometry Composition (%wt) Density 

(kg/m3) 
Kinematic 
Viscosity 

(m2/s) 
Water Glycerol Urea 

Basilar tip 44.8 32.8 22.4 1103 3.04´10-6 
ICA 45.3 29.7 25.0 1132 3.50´10-6 

 

3.3 Results 

3.3.1 Lamb-Oseen vortex ring 

Velocity and pressure gradient error estimation 

To validate the error estimation algorithm employed in this study, the estimated velocity and 

pressure gradient errors were compared with the exact errors from all the Lamb-Oseen vortex cases. 

As a demonstration, the distributions of estimated and exact errors from the case with 𝜆QUGGUV and 

𝜆GUi being 8 and 32%, respectively, are shown in Figure 3.3. Figure 3.3 (a) and (b) present the 

comparisons on velocity error magnitudes ( |𝜖-̈|  versus |𝜖-| ) and pressure gradient error 

magnitudes ( �𝜖∇ï�  versus �𝜖∇i�), respectively. Figure 3.3 (c) compares 𝜎∇ï  with the pressure 

gradient uncertainty (𝜎∇i) evaluated as the root-mean-square (RMS) of 𝜖∇i from all time frames. 

For both estimated and exact errors, the magnitudes were greater in the top half of the field than 

in the bottom half, and greater in the vortices than in the ambient regions, as suggested by the 

spatial distributions. The estimated magnitudes were lower than the corresponding exact 

magnitudes as suggested by the medians from the histograms in Figure 3.3. The median of |𝜖-̈|	was 

5.5% while it was 6.0% for |𝜖-|. The medians of �𝜖∇ï� and �𝜖∇i� were 4.5% and 6.3%, respectively. 

The median of 𝜎∇ï was 6.6% while it was 8.6% for 𝜎∇i. The error estimation algorithm performed 

consistently for all the cases.  
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Pressure error analysis 

The errors in the pressure fields reconstructed using Poisson and WLS were analyzed and 

compared. Pressure errors (𝜖i) were quantified as the deviation between the reconstructed pressure 

and the exact pressure. 𝜖i and 𝜖- were normalized by the RMS of the exact pressure field and 

Figure 3.3 Examples of the estimated error distributions compared with the exact error 
distributions from the SVND case with 𝜆𝑡𝑜𝑝 being 32% and 𝜆𝑏𝑜𝑡𝑡𝑜𝑚 being 8% for the 2D vortex 

ring flow. The first two columns are the spatial distributions. The last column shows histograms 
of error magnitudes. The dashed vertical lines represent the medians of the distributions. (a) 

Comparison between exact velocity error magnitudes and estimated velocity error magnitudes. 
(b) Comparison between exact pressure gradient error magnitudes and estimated pressure 

gradient error magnitudes. (c) Comparison between the pressure gradient uncertainties and the 
WSTD of the estimated pressure gradient errors. 
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velocity field, respectively. The distributions of velocity and pressure error magnitudes are shown 

in Figure 3.4 for three cases with 𝜆QUGGUV being 8% while 𝜆GUi being 8%, 32%, and 64%. The 

spatial distributions in Figure 3.4 presents the RMS of normalized errors from all time frames. As 

suggested by both the spatial distributions and the histograms, the pressure error magnitudes for 

WLS (�𝜖i,`SZ�) were lower than those for Poisson (�𝜖i,�UENNU&�). The medians of �𝜖i,`SZ� and 

�𝜖i,�UENNU&� were 0.8% and 1.2%, respectively, with 𝜆GUi  being 8%, 1.6% and 3.6% with 𝜆GUi 

being 32%, and 2.4% and 8.3% with 𝜆GUi being 64%.  

 

Figure 3.4 The spatial distributions of normalized velocity error magnitudes (1st column), 
normalized pressure error magnitudes (2nd and 3rd columns), and the histograms of 

normalized pressure error magnitudes (last column) for three test cases of the 2D vortex 
ring flow. The errors were normalized by the RMS of the exact fields. The vertical 

dashed lines in the histograms are medians of the distributions. The vertical dotted lines 
are the lower and upper limits of pressure error magnitudes. (a) 𝜆GUi = 8%, 𝜆QUGGUV =

8%. (b) 𝜆GUi = 32%, 𝜆QUGGUV = 8%. (c) 𝜆GUi = 64%, 𝜆QUGGUV = 8%. 
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The performances of the pressure reconstruction methods are compared in Figure 3.5 (a) 

using results from all test cases with UND. The velocity error level for each case was determined 

as the median of the normalized velocity error magnitudes. As 𝜆 changed from 1 to 51%, the 

velocity error ranged from 0.39 to 19.9%. Similarly, the pressure error levels were determined as 

the median of the normalized pressure error magnitudes. For the noise level range used here, the 

pressure error for WLS increased from 0.10 to 6.0%, while it increased from 0.15 to 9.9% for 

Poisson. Thus, WLS maintained a 50% improvement on median pressure error over Poisson. 

Additionally, the lower and upper limits of the pressure errors were given as the 15.75th and 

84.25th percentiles of the absolute error distribution, respectively. The upper limit for WLS 

increased from 0.28 to 17.3%, while it increased from 0.40 to 27.3% for Poisson. The lower limit 

for WLS increased from 0.025 to 1.44%, while it increased from 0.037 to 2.39% for Poisson.  

Figure 3.5 (b) compares the error levels for the two methods from all cases with SVND. As 

𝜆GUi changed from 8 to 64% and 𝜆QUGGUV stayed at 8%, the overall velocity error level increased 

from 3.1 to 7.9%. The pressure error for WLS increased from 0.8 to 2.4%, while the it increased 

from 1.2 to 8.3% for Poisson. The lower error limit ranged from 0.2 to 0.6% for WLS and from 

0.3 to 2.1% for Poisson. The upper limit ranged from 2.4 to 9.7% for WLS and from 3.4 to 23.0% 

for Poisson. In addition to the overall pressure error level, the pressure error level within each half 

of the field was quantified and presented in Figure 3.5 (c) and (d), respectively. The pressure error 

level in the top half ranged from 0.8 to 4.9% for WLS and from 1.2 to 11.4% for Poisson, while 

that in the bottom half ranged from 0.8 to 1.4% for WLS and from 1.2% to 6.4% for Poisson. 
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3.3.2 2D Pulsatile flow 

The pressure fields were calculated from velocity fields for all cases using Poisson and WLS. 

Velocity and pressure errors were quantified by comparing to the analytical solutions. Figure 3.6 

(a) shows the pressure error levels as a function of the velocity error levels for results at 4 temporal 

phases. The velocity error level was evaluated as the median of the absolute velocity errors at all 

grid points normalized by 𝑢VR*. The pressure error level was the median of the absolute pressure 

errors at all grid points, and the pressure error limits were 15.75th and 84.25th percentiles. The 

pressure scale employed for the normalization was given as 0
"
𝜌𝑢VR*" 	which was the dynamic 

pressure based on 𝑢VR*. As 𝜆 changed from 1 to 51%, the velocity error level increased from 0.3 

to 15.3%. The ranges of pressure error levels were different at different phases. At peak systole 

(t/T=0.25), the pressure error level for Poisson increased from 0.6 to 40.6% and it increased from 

0.7 to 20.1% for WLS. WLS reduced the pressure error level by around 100% for cases with 

velocity errors greater than 10%. At peak diastole, both methods accurately estimated the pressure 

fields as the pressure error levels were less than 3% for all cases.  

Figure 3.6 (b) shows the pressure and velocity error distributions as a function of Y 

(spanwise direction) for the case of 𝜆 = 33% with a velocity error level of 9.9%. WLS improved 

Figure 3.5 The pressure error level versus velocity error level from the test cases of the 2D 
vortex ring flow. The error levels were determined as the medians of error magnitudes. The 

shaded areas are bounded by the upper and lower limits of pressure error magnitudes. (a) Results 
from UND cases with 𝜆 changing from 1% to 51%. (b) Results from SVND cases with 𝜆GUi 

changing from 8% to 64% and 𝜆QUGGUV  being 8%. (c) Pressure error levels in the top half of the 
flow fields shown as a function of velocity error levels for SVND cases. (d) Pressure error levels 

in the bottom half of the flow fields for SVND cases. 
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the pressure accuracy significantly in regions with lower velocity error level (near the walls). 

Figure 3.6 (c) compares the statistical distributions of the pressure error magnitudes by the two 

methods for the same case. The medians of �𝜖i,`SZ�  and �𝜖i,�UENNU&�  were 4.2% and 6.8%, 

respectively. 

 

 

3.3.3 In vivo 4D Poiseuille flow 

The analytical velocity field is shown in Figure 3.7 (a) together with a time frame from the 

measured velocity data. Figure 3.7 (b) compares the velocity errors (𝜖-) evaluated as the deviations 

between the analytical velocity and measured velocity with the velocity errors estimated based on 

velocity divergence (𝜖-̈). The error magnitudes were normalized by the centerline velocity of the 

analytical field. For both 𝜖- and 𝜖-̈, the magnitudes were greater near the wall or close to the ends 

of the pipe.  

Instantaneous pressure fields were reconstructed using Poisson and WLS from the measured 

velocity fields. The origin (r=0 mm, z=0 mm) was selected as the reference point with zero 

pressure. The pressure errors were evaluated as the deviation between analytical pressure and 

Figure 3.6 (a) The pressure error level versus velocity error level from the test cases of 2D 
pulsatile flow at four time phases. The error levels were determined as the medians of 

normalized error magnitudes. The shaded areas are bounded by the upper and lower limits of 
pressure error magnitudes. (b) The normalized error distributions of velocity and reconstructed 

pressure fields as a function of y (spanwise) for the case of 𝜆=33% (velocity error level at 9.9%). 
(c) Histograms of the pressure error magnitudes for the two methods from the case of 𝜆=33%. 

The vertical dashed lines represent the medians and the vertical dotted lines are the error limits. 
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reconstructed pressure, then normalized by the analytical pressure drop across the measurement 

region (Δ𝑝R&R�+GE'R� ). Spatial distributions of the normalized pressure error magnitudes are 

presented as functions of r and z in Figure 3.7 (c). The pressure in the middle region of the pipe 

had significantly lower error when using WLS. To confirm this notion, the histograms of the 

relative pressure error magnitudes are shown in Figure 3.7 (d). The median of pressure error 

magnitude was 24.6 % for WLS and 35.6% for Poisson. The lower error limit was 7.8 % for WLS 

and 11.2% for Poisson. The upper error limit was 53.1% for WLS and 64.5% for Poisson. 

 

 

3.3.4 Patient specific aneurysmal flow 

The velocity fields at peak systole are presented using 3D pathlines in Figure 3.8 (a) and 2D 

contours with arrows in Figure 3.8 (b) for the in vivo 4D flow and in vitro PTV data. The pressure 

fields reconstructed from the PTV data at peak systole using WLS are given in Figure 3.8 (c). 

Suggested by the 3D pathlines, the flow structures of the 4D flow and the PTV datasets are 

consistent for each aneurysm. For the basilar tip aneurysm, the inflow comes from the basilar 

artery and forms a vortical structure in the aneurysmal sac. For ICA aneurysm, the inflow comes 

from the curving ICA. Some of the flow enters the aneurysmal sac and forms the vortical flow 

Figure 3.7 (a) The velocity profiles of laminar pipe flow from analytical solution (left) and 
measurement (right). The velocity profiles are shown on x-y plane at z=0 mm and on x-z 

plane at y=0 mm. (b) The spatial distributions of normalized velocity errors shown as 
functions of r and z. (c) The spatial distributions of normalized pressure errors for Poisson 

and WLS. (d) Histograms of the pressure error magnitudes from the pressure fields 
reconstructed using Poisson and WLS. 
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structure inside before exiting through the distal ICA. The comparisons for the inflow rate and 

waveform were made across all modalities of the two aneurysms (Brindise et al., 2019). The flow 

rate values, and general waveform trends showed reasonable agreement. However, the PTV data 

was obtained with higher spatiotemporal resolution and was contaminated with less noise for both 

aneurysms. For the basilar tip aneurysm, the average flow rate error (difference between inflow 

and outflow flow rates normalized by the maximum flow rate for each modality) was 24.0% for 

the 4D flow data, and 6.9% for the PTV data. For the ICA aneurysm, the average flow rate errors 

were 17.3 and 3.6% for 4D flow and PTV, respectively. The lower average flow rate errors suggest 

better accuracy for PTV. The limited spatial resolution of the 4D flow MRI acquisition resulted in 

under-resolved velocity profiles and a lack of pathlines in the basilar and ICA aneurysms (Fig. 8a). 

As demonstrated in (Hofinan et al., 1995), at least 5-6 voxels across vessel diameter are required 

for accurate flow quantification. There were less than 4 image voxels across the basilar artery (Fig. 

8b), which reduced the accuracy of velocity measurements and the subsequently computed flow 

metrics. In addition, a low MR signal region was identified in the ICA upstream of the aneurysmal 

sac, which also contributed to the discontinuity of the pathlines in Figure 3.8 (a) and the low 

velocity region in Figure 3.8 (b). These factors would cause greater errors in velocity fields as well 

as reconstructed pressure fields in those regions of 4D flow data. 
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As the flow structures are consistent, similar pressure fields are anticipated for the in vivo 

data and in vitro data. Thus, even given the noisy and under-resolved in vivo 4D-flow data, a robust 

pressure reconstruction method should be capable of obtaining similar pressure fields to those 

reconstructed from the in vitro PTV data. Pressure fields were reconstructed from each dataset 

using WLS and Poisson for each aneurysm. Figure 3.9 compares the time series of pressure 

differences between several pairs of spatial points within the flow field. The locations of the points 

were labeled in Figure 3.8 (c). The discrepancies between the pressure differences of the three 

modalities were quantified for each pair of points and for each method. The RMS of the 

discrepancies was calculated and presented in Table 3.2. WLS reduced the RMS discrepancies for 

most locations, with some reductions being more than 100%. The lower RMS discrepancies 

suggested better consistency between the pressure results from different modalities for WLS. The 

Figure 3.8 (a) Velocity fields at peak systole represented using 3D pathlines from in vivo 
4D flow MRI and in vitro PTV measurements for the basilar tip aneurysm and the ICA 

aneurysm. Shaded regions represent the geometries of the aneurysms. (b) Velocity fields on 
orthogonal slices represented using 2D contours with arrows. One arrow was drawn for 
each voxel from 4D flow data, while each arrow represents the velocity of 9 voxels for 

PTV data.  (c) The pressure fields reconstructed using WLS method from PTV data. The 
planes correspond to the locations of the slices in (b). 
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reduced signal in the 4D flow measurements of the ICA affected the calculated pressure difference 

between the inlet and sac shown in Figure 3.9 (b). Poisson overpredicted the pressure difference 

greatly, while WLS underestimated the pressure difference due to the low velocity caused by 

reduced signal in the ICA. WLS reduced the RMS discrepancy by 135% for this pair of locations. 

In general, WLS was more robust to velocity errors and the calculated pressure fields were more 

consistent with the measured flow field. 

 

 

Figure 3.10 compares the spatial distributions of pressure within the aneurysmal sacs from 

the in vivo 4D flow data and in vitro PTV and PTV-voxavg data. For 4D flow data, the pressure 

near the wall was not calculated due to the low signal intensity in near-wall voxels such that those 

measurements were less reliable. In addition, the pressure in the small branches were not calculated 

due to the insufficient number of voxels to perform the numerical differences. Thus, the pressure 

in these regions was not included in the following comparisons with pressure calculated from in 

Figure 3.9 The time series of pressure differences between several points within the flow field. 
The pressure fields were reconstructed using the two methods from the datasets of basilar tip 

aneurysm (a) and ICA aneurysm (b). The locations of the points are given in Fig. 8(c). 
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vitro data. The spatial distributions were shown on the 2D planes whose locations were given in 

Figure 3.8 (c). The pressure fields were normalized by the maximum pressure difference within 

the aneurysmal sac (Δ𝑝VR*) from each modality. Additionally, the probability density function 

(PDF) histograms of the reconstructed pressure values in the aneurysmal sac from the entire 

cardiac cycle are shown in Figure 3.10. For the basilar tip aneurysm given in Figure 3.10 (a), WLS 

showed better agreement across all datasets than Poisson in both the spatial distributions as well 

as the histograms. The median pressure values by Poisson were -0.4 Pa for 4D flow, -8.9 Pa for 

voxavg, and -7.1 Pa from PTV. The median values obtained using WLS were -4.1 Pa for 4D flow, 

-4.7 Pa for PTV-voxavg, and -5.5 Pa for PTV. The standard deviation of the medians was 3.7 Pa 

for Poisson and 0.6 Pa for WLS. This indicates that WLS maintained a tighter spread of the 

pressure values and more similarity across modalities, suggesting it is more robust to low-

resolutions and high-noise velocity fields. To quantify the amount of change made by WLS 

compared to Poisson on the reconstructed pressure fields from each modality, the deviations 

between the pressure fields reconstructed by WLS and the pressure fields reconstructed by Poisson 

were quantified and normalized by Δ𝑝VR* . The total RMS of the normalized deviations was 

defined as the “effectiveness” of WLS on improving pressure reconstruction for each modality. 

The effectiveness was 28.7% for 4D flow, 17.9% for PTV-voxavg, and 8.7 % for PTV. For the 

ICA aneurysm given in Figure 3.10 (b), the median pressure value by Poisson was 0.06 Pa for 4D 

flow, 0.24 Pa for PTV-voxavg, and 0.52 Pa for PTV. The median by WLS was -0.07 Pa for 4D 

flow, 0.47 Pa for PTV-voxavg, and 0.25 Pa for PTV. The standard deviation of the medians was 

0.19 Pa for Poisson and 0.22 Pa for WLS. The effectiveness of WLS was 34.2% for 4D flow, 6.8% 

for PTV-voxavg, and 11.9% for PTV. 

 

Table 3.2 RMS discrepancies of pressure differences (Pa) 

Basilar 
tip 

Locations Inlet - tip Inlet - center Tip - center 
Poisson 9.1 13.3 6.3 
WLS 3.8 7.6 6.5 

ICA 
Locations Inlet - sac Sac – outlet1 Sac – outlet2 
Poisson 16.7 13.2 18.3 
WLS 7.1 11.0 9.9 
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3.4 Discussion  

In this study we introduced a method which uses weighted least-squares for pressure 

integration. By assigning lower weights to less accurate velocity measurements and thus pressure 

gradient values, the WLS method reduces the effects of noisy measurements during the spatial 

integration, and improves the accuracy of the reconstructed pressure. Poisson and OLS can be seen 

as particular cases of WLS with uniform weights assigned to the pressure gradients. Compared to 

Poisson, the improvement made by WLS was a combination of the noise mitigation and the 

differences in the basic equations. However, the exact contribution of each aspect was not well 

understood, which is a limitation of this study. The accuracy of WLS relies on proper weight 

assignment. In this study, the weights were informed by the estimated velocity errors based on 

velocity divergence. Comparisons between exact velocity error and estimated velocity error 

Figure 3.10 Spatial and probability density distributions of pressure fields within the aneurysm 
sacs reconstructed using Poisson and WLS from each modality of the basilar tip aneurysm (a) 
and the ICA aneurysm (b). The spatial distributions are presented by the normalized pressure 

values on a x-y plane and a y-z plane cutting through the aneurysm sac at peak systole. Locations 
of the planes are given in Fig. 8(c). Shaded regions correspond to the geometry of the aneurysm. 

The probability distributions are evaluated using the values on all grid points at all cardiac 
phases within the aneurysm sac. 
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demonstrated that the velocity error estimation algorithm used here was capable of recognizing 

high-error regions such that lower weights were assigned to the less accurate pressure gradients in 

these regions. Although the velocity and pressure gradient error magnitudes were found to be 

slightly underestimated by this algorithm, this is not expected to affect the performance of WLS. 

This is because underestimating the error magnitudes would have a similar effect as normalizing 

the weights by a constant greater than 1. Further, the weight matrix W appears on both sides of (6), 

therefore the weights can be normalized by any arbitrary nonzero, real constant while the pressure 

results remain the same. Thus, the spatial distribution of the estimated error is primarily what 

effects the accuracy of WLS as opposed to the error values themselves. It should also be noted that 

the weights can be informed by the pressure gradient reliabilities estimated using other algorithms. 

For velocity fields measured using PIV, there are algorithms to estimate the spatial distributions 

of velocity uncertainties (Bhattacharya, Charonko, & Vlachos, 2018; Xue, Charonko, & Vlachos, 

2015) and the pressure gradient uncertainties (Azijli, Sciacchitano, Ragni, Palha, & Dwight, 

2016a). However, a corresponding algorithm for 4D-flow data has not been developed. The 

divergence-based algorithm employed in this study can be applied to velocity data measured from 

incompressible flows regardless of the measurement modality.  

The WLS method reduces the spatial propagation of errors during pressure integration. From 

the spatial distributions of pressure errors for the synthetic Lamb-Oseen vortex flow in Figure 3.4, 

it can be observed that WLS reduced pressure errors in the ambient regions as the greater errors 

were more confined to the vortices. In addition, �𝜖i,`SZ� in the bottom half of SVND cases was 

significantly less affected by the increase of 𝜆GUi as compared with �𝜖i,�UENNU&�. As observed in 

Figure 3.5 (d), as 𝜆GUi increased from 8% to 64% and 𝜆QUGGUV stayed at 8%, the increase of the 

pressure error in the bottom half was 433% for Poison while only 75% for WLS. From the 

spanwise distributions of pressure errors for the 2D pulsatile flow in Figure 3.6 (b), WLS reduced 

pressure errors in the near-wall regions significantly as the greater errors were more confined 

around the centerline. This is also suggested by the spatial distributions of pressure errors from in 

vitro Poiseuille flow in Figure 3.7 (b) and (c). WLS confined the pressure errors to the regions 

with greater velocity errors (near the ends of the pipe) compared with Poisson. In previous studies, 

the spatial error propagation was reduced by segmenting the flow field into subdomains based on 

local velocity reliability, then reconstructing the pressure field in each subdomain sequentially in 

a descending order of reliability (Jeon et al., 2018). However, such an algorithm requires that the 
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different levels of measurement reliability are spatially separable in the flow field such that the 

subdomains can be properly segmented. The WLS method proposed here does not require any 

segmentation, making it more usable across a larger variety of flow fields. 

Improvement on pressure accuracy by WLS was more significant for velocity data with a 

greater range of errors. Results from synthetic Lamb-Oseen vortex flow fields demonstrated that 

the improvement by WLS was more significant for SVND cases with greater 𝜆GUi. Given in Figure 

3.5(b), the pressure error level for Poisson was 240% larger than that for WLS with 𝜆GUi of 64%, 

and 50% when 𝜆GUi was 8%. This was also reflected by the results from the aneurysmal flows. 

Among the three datasets of the basilar tip aneurysm, the in vivo 4D flow data contained the widest 

range of velocity errors. The pressure fields reconstructed from 4D flow data using WLS were 

more consistent with the observed flow structure compared with Poisson as suggested by Figure 

3.10 (a). Specifically, the center of the aneurysmal sac was expected to be a low-pressure region 

given the vortical flow in that region, and the high-pressure regions were expected to be near the 

inlet and the tip of the aneurysmal sac based on the flow deceleration. These anticipated 

distributions were observed using WLS, but not using Poisson. However, the pressure fields 

reconstructed from the in vitro datasets using the two methods were all consistent with the expected 

pressure distribution. The corresponding effectiveness of WLS was highest (28.7%) for 4D flow 

data compared with other datasets (17.9% for PTV-voxavg and 8.7% for PTV). For the ICA 

aneurysmal flow, the effectiveness of WLS was also higher (34.2%) for 4D flow data compared 

to other datasets (6.8% for PTV-voxavg and 11.9% for PTV). Overall, the analyses here suggest 

that WLS improved the pressure reconstruction from less accurate velocity data as compared to 

the Poisson method.  

The improvement by WLS was more significant at time points with greater flow rates for 

pulsatile flows. Given in Figure 3.6 (a), WLS reduced the pressure error levels at peak systole by 

around 100% for 2D pulsatile flow cases with velocity errors greater than 10%, and the error 

reduction by WLS was not as significant at other phases. At peak diastole with the lowest flow 

rate, both methods were able to calculate the pressure accurately. This was also suggested by the 

results from the aneurysmal flows given in Figure 3.9. WLS improved the pressure differences of 

4D flow effectively at time points around peak systole (0.45 s for basilar tip aneurysm, 0.25 s for 

ICA aneurysm) reflected by the reduction in the discrepancy between the results across modalities.  
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A limitation of this study is that no benchmark pressure was available for the comparison 

between the pressure fields reconstructed from the aneurysm flow data and, therefore, the errors 

in the reconstructed pressure fields could not be quantified. A comparison of the reconstructed 

pressure to a direct pressure measurement would improve the WLS pressure accuracy assessment 

and will be explored in future work. Instead, we could only compare the pressure fields calculated 

from in vivo data and in vitro data based on the notion that the pressure fields should be similar as 

the flow structures are consistent. Although the in vivo and in vitro flow data were found to be in 

good agreement (Brindise et al., 2019), they were not exactly the same and thus the pressure fields 

could maintain inherent differences. As given in Figure 3.10(b), the spatial distributions of 

pressure within the aneurysmal sac of the ICA aneurysm suggested a clear discrepancy between 

4D flow and PTV.   

There are also several limitations of the WLS pressure reconstruction method. The error 

estimation algorithm employed in this study can only be applied to incompressible flows as the 

divergence-free assumption is invalid for compressible flows. In addition, the algorithms for error 

estimation and pressure gradient calculation are only applicable to velocity data which fully 

resolves the gradients along all dimensions. For 3D flows, volumetric data with all 3 velocity 

components are required. 2D planar velocity data or 3 velocity components captured on a 2D plane 

measured from 3D flow would not be sufficient because the velocity gradient perpendicular to the 

measurement plane is not resolvable. However, this algorithm can be applied to 2D planar data if 

the flow is uniform along the perpendicular dimension, such as the 2D synthetic flows employed 

in this study. Another limitation of WLS is that the velocity data need to be temporally and spatially 

resolved to ensure accurate derivative evaluation. The pressure in small vessel branches (less than 

3 voxels across the lumen diameter) cannot be estimated due to the insufficient number of voxels 

for numerical difference. However, this is a limitation for most pressure reconstruction methods.  
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 WALL SHEAR STRESS ESTIMATION FOR 4D FLOW MRI USING 
NAVIER-STOKES EQUATION CORRECTION 

4.1 Background and literature review 

Vascular wall shear stress (WSS) is an important determinant of endothelial function and 

phenotype (Malek, Alper, & Izumo, 1999). WSS has emerged as an essential feature of 

atherogenesis (Cecchi et al., 2011; Cunningham & Gotlieb, 2005). The low WSS due to disturbed 

blood flow promotes atherogenesis (Cecchi et al., 2011; Chiu & Chien, 2011), while high WSS is 

associated with plaque rupture (Groen et al., 2007). Abnormal WSS is also related to the growth 

and rupture of intracranial aneurysms (Boussel et al., 2008; Castro, Putman, Sheridan, & Cebral, 

2009; Jou, Lee, Morsi, & Mawad, 2008; Meng et al., 2014). Additionally, WSS and WSS-derived 

metrics such as oscillatory shear index (OSI) are correlated with aortopathy. The distribution of 

low WSS and high OSI resembles the regions of aortic atherosclerotic lesions (Frydrychowicz et 

al., 2009; Michael Markl et al., 2013), and the abnormal WSS in the Bicuspid Aortic Valve (BAV) 

patients was associated with the aortic dilation (Barker, Lanning, & Shandas, 2010; Barker et al., 

2012; van Ooij et al., 2015). Therefore, the information on the magnitude, distribution, and 

variation of WSS can provide valuable insights for predicting and assessing vascular diseases.  

WSS can be estimated from the velocity gradient at the vascular wall. 4D flow magnetic 

resonance imaging (MRI) resolves blood flow in space and time in vivo, enabling the estimation 

of WSS (Michael Markl et al., 2012; Stankovic et al., 2014). Stalder et al. (Stalder et al., 2008a) 

introduced a method to evaluate the aortic WSS from the B-spline interpolation of the 4D flow 

velocity on manually positioned 2D planes. However, this method only resolves the WSS on the 

2D slices, and the plane selection can be laborious. Several methods were introduced later to 

resolve the 3D WSS distribution on the vessel wall from the velocity profile along the wall-normal 

direction at each wall point (Bieging et al., 2011; Boussel et al., 2009; Potters, Van Ooij, 

Marquering, VanBavel, & Nederveen, 2015). The method proposed by Potters et al. (Potters et al., 

2015) uses smooth spline fitting of the velocity along the wall-normal direction and assumes no-

slip boundary condition to evaluate the velocity gradients and WSS. The method has been applied 

to 4D flow data acquired in the aorta (Potters et al., 2015; van Ooij et al., 2015), carotid arteries 

(Cibis et al., 2016; Potters et al., 2015), and intracranial aneurysms (Van Ooij et al., 2013).  
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The accuracy of the WSS estimated from 4D flow data is affected by the spatial resolution 

and segmentation (Cibis et al., 2016; Perinajová, Juffermans, Mercado, et al., 2021; Potters et al., 

2015). A significant inverse relationship was found between the estimated WSS and the spatial 

resolution of 4D flow data (Cibis et al., 2016). The WSS estimated from in vivo 4D flow MRI was 

inconsistent with the results from high-resolution modalities, including computational fluid 

dynamics (CFD) and in vitro particle imaging velocimetry (PIV), potentially due to the limited 

resolution of MRI. The aortic WSS estimated from in vivo 4D flow data was 0-2 Pa (Barker et al., 

2012; Stalder et al., 2008a; van Ooij et al., 2015), while patient-specific CFD models yielded a 

range of 0-30 Pa (Leuprecht, Kozerke, Boesiger, & Perktold, 2003; Perinajová, Juffermans, 

Westenberg, et al., 2021; Rinaudo & Pasta, 2014). The WSS estimated from 4D flow MRI was 

also lower than the CFD results in intracranial aneurysms and carotid bifurcations, and the 

differences were more significant in regions of higher WSS (Szajer & Ho-Shon, 2018). Several 

multi-modality studies showed that the mean WSS evaluated from in vivo 4D flow MRI in the 

intracranial aneurysms was less than half of the results from patient-specific CFD simulations and 

in vitro PIV measurements (Brindise et al., 2019; Van Ooij et al., 2013). Because of the 

discrepancy in WSS magnitudes, the normalized parameters such as the normalized WSS and OSI 

are usually preferred for clinical and physiological investigations as they possess qualitatively 

similar distributions between MRI and other modalities (Brindise et al., 2019; Perinajová, 

Juffermans, Mercado, et al., 2021; Szajer & Ho-Shon, 2018). 

This study aims to introduce a method to enhance the WSS estimation with 4D flow MRI. 

The proposed method, termed pressure-gradient induced velocity-gradient correction (PG-VGC), 

corrects the velocity gradient based on the reconstructed pressure field gradient to improve the 

estimated WSS’s accuracy. The conservation laws of mass and linear momentum are incorporated 

to formulate a linear system. This linear system is used to estimate the velocity-gradient errors 

with a least-squares approach. The error is then subtracted from the velocity gradient to improve 

the assessment of WSS. The method was first tested with synthetic 4D flow data of Womersley 

flow and flow in two cerebral aneurysms. The method was then applied to in vivo 4D flow data 

acquired in the cerebral aneurysms and aortas. 
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4.2 Materials and Methods 

4.2.1 Wall shear stress estimation with Navier-Stokes equation correction 

The WSS vector 𝜏 can be calculated as: 

 

𝜏 = 2𝜇𝜀̿ ⋅ 𝑛r⃑ ,	 (4-1)	
	
where 𝜇  is the dynamic viscosity of the blood, 𝑛r⃑  is the inward wall-normal vector with a 

magnitude of 1, and 𝜀̿ is the deformation or strain rate tensor. The WSS value represents the 

magnitude of 𝜏 in this study, and the time-averaged WSS (TAWSS) denotes the WSS averaged 

arithmetically over a cardiac cycle. The deformation tensor can be expressed as: 

 

𝜀̿ = 0
"
c𝛻𝑢¸̧¸̧ + }𝛻𝑢¸̧¸̧ ~

/
d,	 (4-2)		

	

where ∇𝑢¸̧¸̧  is the velocity gradient tensor which can be determined from the velocity field of the 

blood flow using numerical differentiation or interpolation (Bieging et al., 2011; Boussel et al., 

2009; Potters et al., 2015). 

Figure 4.1 (a) presents the proposed WSS estimation procedure with PG-VGC. The velocity 

gradient and the pressure field are first calculated from the 4D flow data. The spatial gradient of 

the pressure field is employed to correct the velocity gradient based on the conservation of mass 

(COM) and conservation of linear momentum (COLM). The WSS is then determined from the 

corrected velocity-gradient. Figure 4.1 (b) demonstrates that PG-VGC uses the data in the whole 

region with blood flow (ROI) for estimating WSS. The details of the algorithm are provided as 

follows: 
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Pressure reconstruction with wall-distance-based weighted least-squares 

The wall points where the WSS is of interest and the center points of the 4D flow voxels 

within the blood flow are combined to a list of 𝑁  spatial points. The instantaneous pressure 

gradients at these spatial points were estimated from the velocity field based on the COLM (Zhang, 

Brindise, et al., 2020) as: 

 

𝜵𝒊𝒑 = −𝜌 cb𝒖𝒊
bG
+ 𝒖 ∘ 𝐺*𝒖𝒊 + 𝒗 ∘ 𝐺+𝒖𝒊 +𝒘 ∘ 𝐺,𝒖𝒊d + 𝜇𝛻"𝒖𝒊,	 (4-3)	

	

where the subscript 𝑖 ∈ {𝑥, 𝑦, 𝑧} indicates the spatial dimension. 𝛁𝐢𝒑 is the column vector (∈ ℝ𝑵) 

of the pressure-gradient along each dimension at the spatial points. 𝒖𝒙 ≡ 𝒖, 𝒖𝒚 ≡ 𝒗, and 𝒖𝒛 ≡ 𝒘 

represent the column vectors (∈ ℝ𝑵) of the velocity component along each encoded direction. ∘ 

represents the Hadamard (elementwise) product, and 𝜌  is the fluid density. The temporal 

derivatives of velocity were calculated using the second order central (SOC) difference scheme. 

𝐺*, 𝐺+, and 𝐺, are the discrete gradient operators (matrices) with a size of 𝑁 × 𝑁. The coefficients 

in the operators were determined using the RBF-generated finite difference method (RBF-FD) (G. 

B. Wright & Fornberg, 2006), which is a meshless computational method based on the localized 

RBF-interpolant in a compact finite-difference mode. The discrete Laplacian operator was 

generated from the gradient operators as: 

 

Figure 4.1 (a) The flow chart of the WSS estimation procedure with PG-VGC method. (b) The 
schematic demonstrates that the flow data in the whole region of interest (ROI) is used for 

enhancing the WSS estimation. The green box and red box indicate the data in the core-flow and 
near-wall regions, respectively. 



 
 

81 

𝛻" = 𝐺*𝐺* + 𝐺+𝐺+ + 𝐺,𝐺, .	 (4-4)	

	
The pressure field in the whole ROI was reconstructed by spatially integrating the pressure 

gradients with weighted least-squares (WLS) (Zhang, Brindise, et al., 2020) as: 

 

𝒑𝑾𝑳𝑺 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝒑

(‖𝒲(𝐺𝒑 − 𝜵𝒑)‖),	 (4-5)	

with 𝐺 = Á
𝐺*
𝐺+
𝐺,
Â and 𝛁𝒑 = Á

𝛁𝐱𝒑
𝛁𝐲𝒑
𝛁𝐳𝒑

Â, 

 

where 𝒑𝑾𝑳𝑺 ∈ ℝ𝑵 is the column vector containing the reconstructed pressure at the spatial points, 

‖∙‖ represents the L2 norm, and the weight matrix 𝒲 is a diagonal matrix with a size of 3𝑁 × 3𝑁. 

Each diagonal element of 𝒲  corresponds to a spatial point and controls the influence of the 

pressure gradients at the point on the resulting pressure field. The weight was specified as: 

 

𝓌TERz = (𝓌VR* −𝓌VE&)
N

N-.?
+𝓌VE&,		 (4-6)	

with 𝓌VE& = 1 and 𝓌VR* = 10, 

 

where 𝓌TERz > 0 is the diagonal element, 𝑠 is the distance from the corresponding point to its 

closest wall point, 𝑠VR* is the maximum 𝑠 in the ROI and corresponds to the radius of the largest 

artery in the ROI, and 𝓌VE& and 𝓌VR* are the minimum and maximum weights, respectively. 

Equation (4-6) specifies the weights to increase linearly with the increase of the distance from the 

wall, therefore amplifying the effect of the core-flow pressure-gradient on the reconstructed 

pressure. It should be noted that the exact values of 𝓌VE& and 𝓌VR* do not affect the pressure 

result if the ratio 𝑤VR*/𝑤VE& remains constant.  

Pressure-gradient-induced velocity-gradient correction  

The velocity gradient (∇𝑢¸̧¸̧ ) evaluated from 4D flow data can be decomposed into a true 

component (∇𝑢¸̧¸̧ G(-%) and an error component (∇𝑢¸̧¸̧ %(() as: 
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𝛻𝑢¸̧¸̧ = 𝛻𝑢¸̧¸̧ G(-% + 𝛻𝑢¸̧¸̧ %(( .	 (4-7)	
	

∇𝑢¸̧¸̧ %(( arises from the velocity measurement errors and gradient calculation. The COLM and COM 

can be expressed with the velocity gradient tensor as: 
b-��⃑
bG
+ 𝑢r⃑ ∙ 𝛻𝑢¸̧¸̧ − 𝜈𝛻 ∙ 𝛻𝑢¸̧¸̧ + 0

�
𝛻𝑝 = 0,	 (4-8)	

𝛻 ∙ 𝑢r⃑ ≡ b-
b*
+ b$

b+
+ b.

b,
= 𝐼̿ ∶ 𝛻𝑢¸̧¸̧ = 0,	 (4-9)	

	

where 𝑢r⃑ = [𝑢 𝑣 𝑤]𝑻 is the flow velocity vector, 𝑝 is the pressure, ∇ represents the gradient 

operator, “∇ ∙” represents the divergence operator, and 𝜈 = a
�
 is the kinematic viscosity. IE̿k = 𝛿Ek 

is the identity tensor, and “∶” is the double dot product such that I̿ ∶ ∇𝑢¸̧¸̧ = 𝛿Ek∇𝑢¸̧¸̧ Ek. The left-hand-

side of (4-8) and (4-9) can be nonzero because of ∇𝑢¸̧¸̧ %(( and the errors in 𝑢r⃑  and ∇𝑝. Assuming that 

∇𝑢¸̧¸̧ %(( is the major source of error, the equalities of (4-8) and (4-9) can be achieved by replacing 

∇𝑢¸̧¸̧  with ∇𝑢¸̧¸̧ G(-%, and the following equations can be subsequently derived from (4-8) and (4-9) by 

substituting ∇𝑢¸̧¸̧ G(-% for ∇𝑢¸̧¸̧ − ∇𝑢¸̧¸̧ %(( according to (4-7) as: 

 

(𝑢r⃑ − 𝜈𝛻) ∙ 𝛻𝑢¸̧¸̧ %(( =
b-��⃑
bG
+ 𝑢r⃑ ∙ 𝛻𝑢¸̧¸̧ − 𝜈𝛻 ∙ 𝛻𝑢¸̧¸̧ + 0

�
𝛻𝑝,	 (4-10)	

𝐼 ̿ ∶ 𝛻𝑢¸̧¸̧ %(( = 𝐼̿ ∶ 𝛻𝑢¸̧¸̧ .	 (4-11)	
	

Equations (4-10) and (4-11) relate ∇𝑢¸̧¸̧ %(( to the residuals of (4-8) and (4-9), respectively, and can 

be used to estimate ∇𝑢¸̧¸̧ %((. 

 With the reconstructed pressure 𝒑𝑾𝑳𝑺, the following linear system can be constructed based 

on (4-10):  

 

[𝒖 − 𝜈𝐺* 𝒗 − 𝜈𝐺+ 𝒘− 𝜈𝐺,] Á
𝜵𝒙𝒖𝒊,𝒆𝒓𝒓
𝜵𝒚𝒖𝒊,𝒆𝒓𝒓
𝜵𝒛𝒖𝒊,𝒆𝒓𝒓

Â	

= b𝒖𝒊
bG
+ 𝒖 ∘ 𝐺*𝒖𝒊 + 𝒗 ∘ 𝐺+𝒖𝒊 +𝒘 ∘ 𝐺,𝒖𝒊 − 𝜈𝛻"𝒖𝒊 +

0
�
𝐺E𝒑𝑾𝑳𝑺,	 (4-12)	
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where the subscript 𝑖 ∈ {𝑥, 𝑦, 𝑧}  indicates the spatial dimension. 𝜵𝒙𝒖𝒊,𝒆𝒓𝒓 ∈ ℝ𝑵  is the column 

vector containing the errors in b-/
b*

, and this convention also applies to other velocity-gradient error 

terms. 𝐺E𝒑𝑾𝑳𝑺 is the spatial gradient of the reconstructed pressure. Three linear systems can be 

constructed from (4-12) for the COLM along x, y, and z dimensions. A linear system for the COM 

can be formulated based on (4-11) as: 

 

[𝐼 𝐼 𝐼] Á
𝜵𝒙𝒖𝒆𝒓𝒓
𝜵𝒚𝒗𝒆𝒓𝒓
𝜵𝒛𝒘𝒆𝒓𝒓

Â = 𝐺*𝒖 + 𝐺+𝒗 + 𝐺,𝒘,	 (4-13)	

	
where 𝐼 represents the identity matrix with a size of 𝑁 × 𝑁. The linear systems of (4-12) and (4-

13) were combined to form a linear system with 4N equations and 9N unknown velocity-gradient 

errors. The combined linear system was solved with least-squares using the LSQR algorithm 

implemented in Python (Paige & Saunders, 1982b). The velocity gradients initially evaluated using 

the discrete gradient operators were corrected by subtracting the estimated velocity gradient errors, 

e.g., 

 

𝜵𝒙𝒖𝒄𝒐𝒓𝒓 = 𝐺*𝒖 − 𝜵𝒙𝒖𝒆𝒓𝒓,	 (4-14)	
	
And the WSS was determined from the corrected velocity-gradient according to (4-1) and (4-2). 

4.2.2 Aneurysmal flow acquisition and simulation 

To test the proposed PG-VGC method with physiological flows, in vivo 4D flow MRI data 

were acquired in a basilar tip (BT) aneurysm at San Francisco VA Medical Center and an internal 

carotid artery (ICA) aneurysm at Northwestern Memorial Hospital with a 3T MRI scanner (Skyra, 

Siemens Healthcare, Erlangen, Germany). The 4D flow data were on Cartesian grids with the 

spatial resolution of 1.25 × 1.25 × 1.33	𝑚𝑚W for the BT aneurysm and 1.09 × 1.09 × 1.30	𝑚𝑚W 

for the ICA aneurysm. The temporal resolution was 40.5 ms (20 frames per cycle) and 44.8 ms (13 

frames per cycle) for the BT and ICA aneurysms, respectively. The contrast-enhanced magnetic 

resonance angiography (CE-MRA) data was also acquired for the BT aneurysm with the spatial 

resolution of 0.7 × 0.7 × 0.7	𝑚𝑚W . For the ICA aneurysm, non-contrast time of flight (TOF) 
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angiography was acquired with a spatial resolution of 0.4 × 0.4 × 0.6	𝑚𝑚W. The CE-MRA and 

TOF images were segmented to create surfaces (STL) of the vessel wall. The wall points and wall-

normal extracted from the STL surfaces were used for evaluating and analyzing the WSS. 

Approval of all ethical procedures and protocols was granted by the institutional review boards 

(IRB) at Purdue University, Northwestern Memorial Hospital, and San Francisco VA Medical 

Center. 

Additionally, CFD simulations were performed using FLUENT 18.1 (ANSYS) with the 

created surfaces and the flow waveforms obtained from 4D flow data as the inflow and outflow 

boundary conditions. The flow was assumed to be laminar, incompressible, and Newtonian. The 

walls of the vessel were assumed to be rigid. The density and dynamic viscosity used for the 

simulations were 1060	𝑘𝑔/𝑚W and 0.0035	𝑃𝑎 ∙ 𝑠. More details on the in vivo imaging and CFD 

simulations can be found in (Brindise et al., 2019). 

4.2.3 In vivo aortic 4D flow MRI acquisition 

In vivo 4D flow data were acquired in the aortas from three subjects to evaluate the 

performance of PG-VGC, including a patient with bicuspid aortic valve (BAV), a patient with 

tricuspid aortic valve and an aortic aneurysm (TAV-AA), and a health control subject with 

tricuspid aortic valve. The scans were performed in a sagittal oblique volume on a 1.5T scanner 

(MAGNETOM Avanto, Aera, Siemens, Erlangen, Germany) at Northwestern Memorial Hospital 

with prospective ECG gating and during free breathing. Gadolinium-based contrast (Magnevist, 

Ablavar, or Gadavist) were used for imaging the two patients, while no contrast was used on the 

control subject. The resolutions and scan parameters were presented in Table 4.1. The venc was 

150 cm/s for the TAV-AA and control scans and 175 cm/s for the BAV scan. No velocity aliasing 

was observed. The patient data for this IRB approved study were retrospectively included with 

waiver of consent. The healthy control subject underwent a research cardiac MRI after written 

informed consent was obtained from the study participant. A static mask of the blood vessel was 

created for each dataset based on the magnitude image and the time-averaged velocity magnitude, 

which was manually corrected by an expert observer using Mimics (Materialise NV, Belgium). A 

smooth surface (STL) was then generated from the mask to represent the vessel walls. The wall 

points and wall-normal from the surfaces were used for estimating the WSS. 



 
 

85 

Table 4.1 The spatial and temporal resolutions, the number of cardiac timeframes (Ntime), the flip 
angle, echo time (TE), and repetition time (TR) for the in vivo aortic scans 
Subject Voxel size 

 (mm3) 
Δ𝑡 (ms) Ntime Flip angle (°) TE/TR 

(ms) 
TAV-AA 2.375×2.375×3 37.6 21 15 2.3/4.7 
BAV 2.125×2.125×2.5 38.4 24 15 2.4/4.8 
Control 2.375×2.375×2.4 38.4 21 7 2.5/4.8 

 

4.2.4 Performance evaluation and WSS error analysis method 

The proposed method’s performance was first evaluated on synthetic 4D flow datasets of 

the analytical Womersley flow with varying Womersley number and spatial resolution as given in 

Appendix A, and the WSS from the analytical solution was employed as the “ground truth”. 

Additionally, the method was tested on synthetic 4D flow datasets created based on the velocity 

fields from the CFD simulations of the cerebral aneurysms with the same spatial and temporal 

resolutions as the in vivo acquisition and a velocity-to-noise ratio (VNR) of 10%, and the WSS 

from the CFD was considered as the “ground truth”. 

The WSS error level of each test case was represented by the root-mean-square error (RMSE) 

evaluated as: 

 

𝑅𝑀𝑆𝐸 = ª∑ ∑ u`ZZ/,AI`ZZ*%!B,/,Ax
(C#.DD

A<E
C*
/<E

<*×<#.DD
,	 (4-15)	

	
where 𝑁G  and 𝑁.R��  represent the number of timeframes and the number of wall points, 

respectively. The relative RMSE was determined as the RMSE normalized by the root-mean-

square of the ground truth WSS.  
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To demonstrate the improvement by PG-VGC, the state-of-the-art method introduced by 

Potters et al. was employed in this study and referred to as “Spline” since it evaluates the WSS 

with the smooth-spline fitting of the velocity profile. WSS was also estimated using (4-1) and (4-

2) from the uncorrected velocity gradients and was referred to as “Vgrads”. The accuracy of Spline 

and Vgrads was also assessed and compared to the PG-VGC method.  

 

Figure 4.2 (a) The streamwise velocity and velocity gradient profiles for Womersley flow with 
different Womersley numbers (𝛼). The velocity is normalized by the centerline velocity 

(𝑤'%&G%(), and the velocity gradient is normalized by 𝑤'%&G%(/𝑅.  (b) The time-dependent median 
and interquartile range (IQR) of the streamwise pressure-gradient estimated at the wall points 
and in the core-flow region. Pgrad-u denotes the pressure gradient evaluated from the local 

velocity data, and Pgrad-p indicates the gradient of the reconstructed pressure field. The pressure 
gradients were normalized by the amplitude of the streamwise pressure-gradient from the 

analytical solution. (c) The time-dependent median and IQR of the WSS estimated from different 
methods in one flow cycle. 
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4.3 Results 

4.3.1 Error analysis with synthetic 4D flow data  

Figure 4.2 (a) presents the normalized streamwise velocity profile and the velocity gradient 

with respect to radius (dw/dr) at the peak flow rate from the analytical solutions of the Womersley 

flow with different Womersley number (𝛼). With an increase of 𝛼, the shear layer became thinner 

leading to a steeper velocity gradient near the wall. Figure 4.2 (b) shows the time-dependent 

median of the streamwise pressure gradient (dp/dz) estimated from the flow data with 𝛼 of 4 and 

12 and a spatial resolution of D/9. The pressure gradient directly evaluated from velocity field with 

(4-3) is denoted as “Pgrad-u”, while “Pgrad-p” represents the gradient of the reconstructed 

pressure field. The legends “wall” and “core” indicate the pressure gradient at the wall points and 

in the core-flow region with 𝑟 < 0.5𝑅, respectively. For both datasets, the Pgrad-u in the core-

flow matched the true dp/dz with errors less than 0.1 for most timeframes, while the Pgrad-u at the 

wall deviated from the true solution by as much as 0.5 for 𝛼 = 4 and up to 0.8 for 𝛼 = 12. The 

Pgrad-p at the wall achieved similar accuracy as the Pgrad-u in the core-flow and was more reliable 

than the Pgrad-u at the wall. Figure 4.2 (c) compares the WSS estimated using different methods 

with the “ground truth” from the analytical solution, and the WSS was normalized by the amplitude 

of the true WSS. The Spline and PG-VGC methods estimated similar WSS results at 𝛼 = 4 and 

were more accurate than the estimation by Vgrads. With 𝛼=12, Spline and Vgrads underestimated 

the WSS amplitude by 40% with a phase shift of approximately 0.1 s, while PG-VGC 

underestimated the WSS amplitude by 20%.  

Figure 4.3 presents the relative RMSE of the estimated WSS from the synthetic Womersley 

flow datasets with different 𝛼, grid resolution, and noise level. The cases with a grid resolution 

less than 0.5 mm or greater than 3.5 mm were uncommon in practical applications and were 

excluded from the analysis. The wedge area corresponds to the relative RMSE of each method, 

and the color on the wedge indicates the RMSE by Spline or Vgrads as compared to PG-VGC. A 

red wedge suggests higher RMSE by Spline or Vgrads than PG-VGC, while a blue wedge indicates 

that the WSS estimated by Spline or Vgrads were more accurate than PG-VGC. The proposed PG-

VGC method yielded more accurate WSS for most datasets than Spline and Vgrads. Greater 

improvement was achieved by PG-VGC for higher 𝛼 with more than 100% improvement at 𝛼 of 

12 and 16. The estimated WSS’s accuracy was affected by the resolution and 𝛼. The 10% noise 
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led to slightly increased RMSE for several cases with relatively fine resolution as compared to the 

results without noise. 

 

 

4.3.2 Synthetic and in vivo aneurysmal 4D flow 

The velocity fields at peak systole from the CFD simulations, the synthetic 4D flow data, 

and the in vivo 4D flow data were shown in Figure 4.4 for the BT and ICA aneurysms. For the BT 

Figure 4.3 The relative RMSE of WSS estimated from synthetic Womersley 4D flow datasets 
with 0% noise (a) and 10% noise (b). The area of each wedge corresponds to the relative RMSE 
by each method, and the color scale indicates the comparison between the RMSE from Spline or 

Vgrads with PG-VGC as expressed by the formula over the colorbar. 

Figure 4.4 The velocity fields at peak systole of the BT (a) and ICA (b) aneurysms from CFD, 
synthetic MRI, and in vivo MRI. 
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aneurysm, the flow entered from the basilar artery, circulated in the aneurysmal sac, and then 

exited primarily through the posterior cerebral arteries (PCAs). For the ICA aneurysm, the flow 

entered from the ICA, circulated in the aneurysmal sac, and exited through the distal ICA and the 

middle cerebral artery (MCA).  

 

The Bland-Altman plots in Figure 4.5 (a) compare the CFD WSS with the WSS estimated 

by Spline, Vgrads, and PG-VGC from the synthetic aneurysmal data. The mean WSS from CFD 

was 2.1 Pa and 1.9 Pa for the BT aneurysm and ICA aneurysm, respectively, while the mean WSS 

was underpredicted by 0.59 to 1.23 Pa by the three methods as presented in Figure 4.5 (a). The 

PG-VGC method reduced the WSS underestimation by 39% to 50% and improved the robustness 

compared to the other methods, as suggested by the lower bias values and standard deviations. 

Figure 4.5 (b) compares the spatial distributions of the TAWSS from CFD and synthetic MRI. 

High WSS regions were observed in the anterior view and superior view of the BT aneurysmal sac 

in CFD results, which PG-VGC also predicted, but absent in the results obtained by Spline and 

Vgrads. For the ICA aneurysm, the PG-VGC method predicted the high WSS region at the tip of 

the aneurysmal sac from the superior view, which was missing from Spline and Vgrads results. 

Figure 4.5 (a) The Bland-Altman plots comparing the WSS estimated from synthetic 4D flow 
data with the WSS from CFD, with the mean and standard deviation (std) of the WSS differences 

presented in the plots. (b) The spatial distributions of the TAWSS estimated from the synthetic 
4D flow data and from CFD. 
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Moreover, PG-VGC yielded higher WSS in the ICA than Spline and Vgrads, which was more 

consistent with CFD.  

 

Figure 4.6 (a) compares the statistical distributions of the TAWSS estimated from the in vivo 

aneurysmal data. The mean TAWSS estimated by Spline was 46% and 33% lower than that 

estimated by PG-VGC for the BT and ICA aneurysm, respectively, while the mean TAWSS 

obtained by Vgrads was 31% and 50% lower than that from PG-VGC for the BT and ICA 

aneurysm respectively. Figure 4.6 (b) presents the time-dependent median and IQR of the 

estimated WSS for the two aneurysms. The different methods obtained similar WSS waveforms; 

however, PG-VGC predicted higher WSS than the other methods at all timeframes. Figure 4.6 (c) 

shows the spatial distributions of the estimated TAWSS. PG-VGC predicted additional high WSS 

regions in the BT aneurysmal sac as shown on the anterior and superior views. The three methods 

yielded qualitatively similar TAWSS distributions for the ICA aneurysm, with higher WSS 

predicted by PG-VGC than the other two methods around the “neck” of the aneurysmal sac. 

Figure 4.6 (a) The statistical distributions and mean values of the TAWSS estimated from 
in vivo 4D flow data of the BT aneurysm and the ICA aneurysm. (b) The time-dependent 
median and IQR of the WSS estimated from the in vivo 4D flow data in a cardiac cycle. 

(c) The spatial distributions of the TAWSS estimated from the in vivo 4D flow data. 
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4.3.3 In vivo aortic 4D flow MRI 

Figure 4.7 (a) compares the statistical distributions of the TAWSS estimated from the in vivo 

aortic data of the three subjects. The mean TAWSS by PG-VGC was 5.6 to 6.6 times the mean 

TAWSS assessed by Spline and 3.7 to 4.7 times the mean TAWSS assessed by Vgrads. Similar 

profiles of the time-dependent median of WSS were obtained from all methods as shown in Figure 

4.7 (b), while PG-VGC predicted higher WSS and larger IQR for all the timeframes. The median 

WSS estimated at peak systole was 5 to 7 Pa by PG-VGC and 1 to 2 Pa by Spline and Vgrads.  

 

Figure 4.8 presents the velocity field, the vortical structure (VS), the pressure distribution 

on the wall, and the relative WSS. The relative WSS is defined as the WSS normalized by its 

global average at peak systole for the three subjects. The velocity fields are represented using 3D 

pathlines whose color corresponds to the velocity magnitude. The VSs are included because it has 

shown to be correlated with high WSS in the aorta (Biasetti, Hussain, & Gasser, 2011). The VSs 

were detected using the Q-criterion (Hunt, Wray, & Moin, 1998) and are represented by the iso-

surfaces in Figure 4.8 (a). Both the right-anterior (R-A) and the posterior-left (P-L) views were 

presented. The green circles in the PG-VGC WSS distributions indicate the high WSS regions 

predicted by PG-VGC but are absent from the Spline or Vgrads estimations. For all subjects, VSs 

were observed in the ascending aorta near the aortic root and in the descending aorta near the aortic 

Figure 4.7 (a) The statistical distributions and mean values of the TAWSS estimated from the in 
vivo aortic data. (b) The time-dependent median and IQR of the estimated WSS in the cardiac 

cycle. 
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arch, with a corresponding location of the local minimum pressure. For the control subject, high 

WSS regions around the VSs were calculated by all three methods, as shown on the R-A view. 

However, only PG-VGC predicted the marked high WSS regions on the P-L view. For the TAV-

AA subject, PG-VGC predicted the high WSS region in the aneurysm at the aortic arch, which 

was missing from the results obtained with Spline and Vgrads. PG-VGC also yielded the high 

WSS region next to the VS in the ascending aorta near the P-L wall. For the BAV subject, PG-

VGC predicted multiple regions with high WSS in the ascending aorta corresponding to the VSs 

near the R-A and P-L wall, which were not seen in the Spline or Vgrads results. 

 

 

4.4 Discussion 

This study introduced, evaluated, and applied a method for WSS estimation from 4D flow 

MRI. The proposed method, PG-VGC, improves the WSS estimation by enhancing the near-wall 

Figure 4.8 (a) The velocity fields represented using 3D pathlines, the vortical structure indicated 
by iso-surfaces, the pressure distribution on the wall, and (b) the relative WSS estimated by the 

three methods at peak systole from the in vivo 4D flow data of the three subjects. The green 
circles in the PG-VGC WSS distributions indicate the high WSS regions predicted by PG-VGC 

but are absent from the Spline or Vgrads estimations. 
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velocity gradients. The near-wall velocity-gradient calculation from 4D flow data is commonly 

unreliable because of the systematic velocity errors caused by the partial-volume effects and 

intravoxel phase dispersion (Rothenberger et al., 2022; Wolf, Ehman, Riederer, & Rossman, 1993). 

Moreover, the velocity gradient near the wall is typically higher than the core-flow region, 

therefore increasing the bias error in the gradient calculation in cases with limited spatial resolution. 

The uncertainty in the wall location also affects the velocity-gradient’s accuracy if the wall points 

are incorporated in the gradient evaluation. The velocity-gradient correction by PG-VGC was 

based on the flow physics constraints of COLM and COM. At the stationary wall, the COLM is 

reduced to the balance between the pressure force and the viscous diffusion and directly relates the 

velocity gradient to the pressure gradient. The near-wall pressure gradient evaluated using (4-3) 

based on the near-wall velocity gradient can be unreliable, while the pressure gradient estimated 

in the core-flow is more accurate as shown in Figure 4.2(b). We reconstructed the pressure field 

in the ROI by spatially integrating the pressure-gradients using WLS. This WLS approach is a 

global optimization process, dominated by the pressure-gradients in the core-flow regions due to 

their greater weights. The spatial gradient of the reconstructed pressure in the near-wall region is 

more reliable than the uncorrected pressure-gradient as shown by comparing Pgrad-u and Pgrad-p 

in Figure 4.2(b). Therefore, the more reliable Pgrad-p was used and proved to be effective for 

correcting the near-wall velocity-gradient.  

The PG-VGC method improves the mean and the range of WSS estimated from 4D flow 

data. A previous study has shown that the WSS estimated in intracranial aneurysms depend on the 

spatial resolution of the phase-contrast MRI data with 50 to 60% underestimation of the mean 

WSS at a resolution of 1 mm (Van Ooij et al., 2013). Therefore, the 31 to 50% increase on the 

mean WSS prediction by PG-VGC as compared to Spline and Vgrads improved the accuracy of 

the WSS estimation in the cerebral aneurysms. For the in vivo aortic data, Spline and Vgrads 

yielded a median WSS of 1 to 2 Pa at peak systole, which was consistent with the results in 

previous studies using similar methods (Barker et al., 2012; Stalder et al., 2008a; van Ooij et al., 

2015). However, the common range of mean aortic WSS at peak systole was 5 to 20 Pa according 

to CFD studies (Leuprecht et al., 2003; Perinajová, Juffermans, Mercado, et al., 2021; Perinajová, 

Juffermans, Westenberg, et al., 2021; Rinaudo & Pasta, 2014). The underestimation of WSS in the 

aorta with 4D flow MRI was due to the low spatial resolution of the imaging data. Perinajová et 

al. (Perinajová, Juffermans, Mercado, et al., 2021) estimated the WSS from spatially downsampled 
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CFD data in a flow phantom of aortic coarctation, and the mean WSS was underestimated by 34% 

at a resolution of 0.2 mm and by 63% at a resolution of 0.7 mm. In the present study, the spatial 

resolution of in vivo aortic MRI data was 2-3 mm, which was expected to cause greater WSS 

underestimation compared to higher resolutions. PG-VGC predicted 4 to 6 times higher mean WSS 

than Spline and Vgrads resulting in better agreement with the results from previous CFD studies 

(Leuprecht et al., 2003; Perinajová, Juffermans, Mercado, et al., 2021; Perinajová, Juffermans, 

Westenberg, et al., 2021; Rinaudo & Pasta, 2014). The overall increase of the WSS magnitude 

computed by PG-VGC can potentially resolve the inconsistency between the WSS obtained from 

different modalities as observed in previous studies (Brindise et al., 2019; Szajer & Ho-Shon, 2018; 

Van Ooij et al., 2013). The improvements achieved by PG-VGC method promote the use of WSS 

in addition to the normalized parameters such as relative WSS and OSI for the investigation of 

WSS-related cardiovascular diseases with 4D flow MRI. 

The PG-VGC method also improves the prediction of the relative WSS distribution. From 

the synthetic aneurysmal flow data, PG-VGC recovered the high WSS regions absent in the Spline 

and Vgrads results, as shown in Fig. 5(b). PG-VGC also predicted additional high WSS regions 

for the in vivo BT aneurysm data that were absent in results computed with the other methods as 

shown in Figure 4.6(c), thus obtaining WSS distribution more consistent with the CFD results 

shown Figure 4.5(b). Based on in vivo aortic 4D flow data, PG-VGC predicted high WSS in 

regions corresponding to near the VSs, which is consistent with the previous finding that high 

WSS correlates with VSs in the aorta (Biasetti et al., 2011). The Spline and Vgrads methods failed 

to predict several of these high WSS regions, as highlighted in Figure 4.8. The improved prediction 

of relative WSS distribution by PG-VGC is valuable for detecting regions with abnormal WSS, as 

these are related to cardiovascular disease progression such as growth and rupture of intracranial 

and aortic aneurysms.  

There are several limitations of the PG-VGC method. First, time-resolved flow data is 

needed to determine the temporal derivative of velocity for pressure-gradient estimation. The in 

vivo 4D flow data employed in this study had 13-24 timeframes per cycle, which is standard in 

clinical acquisitions and was shown to be adequate for PG-VGC to enhance the WSS estimation. 

Moreover, the uncertainty on the wall locations can affect the WSS’s accuracy. However, this is a 

limitation for most WSS estimation methods, and PG-VGC is expected to be more robust than the 
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other methods since it should also reduce the velocity-gradient errors caused by the inaccurate wall 

location.  

There are several additional limitations in this study. First, the “ground truth” WSS was 

unavailable for assessing the WSS errors for the in vivo 4D flow data. Moreover, Newtonian flow 

was assumed for the WSS calculations and the CFD simulations, which may not be ideal in low 

WSS regions. Additionally, rigid walls were assumed for the cerebral aneurysms and the aorta. 

Although the rigid wall assumption is reasonable for modeling the flow in cerebral arteries as cine 

MR images showed no appreciable movements of these vessels over the cardiac cycle in a previous 

investigation (Boussel et al., 2008), it may not be appropriate for the aortic wall. However, this 

limitation should not affect the comparison between different WSS estimation methods.  

In conclusion, this study introduced a novel WSS estimation method for 4D flow MRI. The 

method uses the pressure gradient estimated from the flow data in the whole ROI and flow physics 

constraints to correct the velocity gradient, therefore enhancing the WSS estimation. The method’s 

performance was evaluated using synthetic and in vivo 4D flow data in cerebral aneurysms and 

thoracic aortas. The proposed method showed reliable estimation of the mean and the relative 

distribution of WSS with as much as 100% improvement in WSS accuracy. The method can benefit 

clinical applications of 4D flow MRI as it improves the accuracy of the WSS estimation. 
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 USING UNCERTAINTY TO IMPROVE PRESSURE FIELD 
RECONSTRUCTION FROM PIV/PTV FLOW MEASUREMENTS 

This chapter is reproduced with permission from: Zhang, J., Bhattacharya, S., Vlachos, P.P., 2020. 
Using uncertainty to improve pressure field reconstruction from PIV/PTV flow measurements. 
Exp. Fluids 61, 131. https://doi.org/10.1007/s00348-020-02974-y 

5.1 Nomenclature 

x, y, z spatial coordinates  𝑝(%9 reference pressure 
Δ𝑥, Δy grid sizes  𝜖i%BF error in the reference pressure 
Δ𝑡 time interval between 

consecutive frames 
 𝒑𝒈𝒓𝒂𝒅,𝒖 pressure gradient calculated 

from the measured velocity 
u, v, w velocity components  𝒑𝒈𝒓𝒂𝒅,𝒕 true pressure gradient 
𝒖 velocity vector  𝝐𝛁𝒑 error in the calculated pressure 

gradient 
𝒖𝒎 measured velocity  𝝈𝛁𝒑 standard deviation of pressure 

gradient errors 
𝒖𝒕 true velocity  Σ∇i covariance matrix of pressure 

gradient errors 
𝝐𝒖 error in measured velocity  𝜖iz(RT* streamwise pressure gradient 

errors 
Σ- covariance matrix of velocity 

errors 
 𝜎iz(RT* standard deviation of 

streamwise pressure gradient 
errors 

𝝈𝒖 standard deviation of velocity 
errors  

 𝜌iz(RT* auto-correlation coefficients 
between streamwise pressure 
gradient errors 

𝜌-0,-" auto-correlation coefficient 
between velocity errors 

 𝜌 fluid density 

𝐶𝑜𝑣-0,-" covariance between velocity 
errors 

 𝜇 fluid dynamic viscosity 

𝑝 pressure  STD standard deviation 
𝜖i error in the reconstructed 

pressure 
 RMS root mean square 

 

5.2 Background and literature review 

Measurement of pressure in a fluid flow is important in engineering applications as well as 

in investigations of flow physics. Pressure measurement devices such as wall pressure ports, static 
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tubes, pressure-sensitive painting (PSP) etc, are either invasive, provide point measurements or a 

surface distribution (McKeon and Engler, 2007). Further, most pressure measurement techniques 

have limitations in dynamic range and resolvable frequency bandwidth. With the development of 

flow measurement techniques such as particle image velocimetry (PIV) and particle tracking 

velocimetry (PTV), the velocity fields can be obtained and utilized for instantaneous pressure 

evaluation (Charonko et al., 2010; Fujisawa, Tanahashi, & Srinivas, 2005; Huhn, Schanz, 

Gesemann, & Schröder, 2016; Liu & Katz, 2006; Nathan J. Neeteson & Rival, 2015). Most 

pressure reconstruction methods require two major steps to calculate the pressure fields from 

velocity measurements. The pressure gradient fields are first evaluated from the velocity fields 

using the Navier-Stokes momentum equation, which are then spatially integrated to reconstruct 

the pressure fields. For incompressible flows, the momentum equation can be expressed in the 

following form:  

 

𝛻𝑝 = −𝜌 d𝒖
dG
+ 𝜇𝛻"𝒖,	 (5-1)	

	
where 𝑝 is the pressure, 𝒖 is the velocity, 𝜌 and 𝜇 are the density and dynamic viscosity of the 

fluid, respectively. ∇ represents the divergence operator and ∇" is the Laplacian operator. d𝒖
dG

 is the 

material acceleration which can be evaluated using the Eulerian approach from gridded velocity 

data (Charonko et al., 2010; Roeland de Kat et al., 2009; Fujisawa et al., 2005; Tronchin et al., 

2015). d-
dG

 can also be evaluated from particle tracks obtained using PTV (Gesemann, Huhn, 

Schanz, & Schröder, 2016; Huhn et al., 2016; Nathan J. Neeteson & Rival, 2015) or time-resolved 

PIV with pseudo-tracking approach (R. de Kat & Van Oudheusden, 2012; Ghaemi, Ragni, & 

Scarano, 2012; Liu & Katz, 2006; P. L. Van Gent, Schrijer, & Van Oudheusden, 2018a, 2018b; 

Violato et al., 2011). For pressure integration, one common approach is path-integration (also 

referred to as spatial-marching) which integrates the pressure gradient along paths across the flow 

domain (Dabiri, Bose, Gemmell, Colin, & Costello, 2014; Liu & Katz, 2006; Tronchin et al., 2015). 

Most path-integration schemes employ redundant number of paths to reduce the influence of 

erroneous pressure gradient values. The path-integration approach is rarely employed for 3D flow-

data due to its high computational cost. The most widely used pressure integration approach is 

solving the pressure Poisson equation (PPE) (R. de Kat & Van Oudheusden, 2012; Fujisawa et al., 
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2005; Nathan J. Neeteson & Rival, 2015; Schneiders & Scarano, 2016; Violato et al., 2011). The 

performances of PIV-based pressure calculation methods have been explored by Charonko et al. 

(2010), and a comparative assessment of pressure field reconstructions from PIV and PTV have 

been performed by van Gent et al. (2017) based on a simulated experiment. 

However, the pressure reconstruction from flow measurements have inherent limitations. 

First, spatio-temporally resolved velocity measurements are normally required to accurately 

reconstruct the instantaneous pressure fields. Schneiders et al. (2014) proposed a vortex-in-cell 

based algorithm for time-supersampling of 3D PIV measurements. Schneiders and Scarano (2016) 

developed a dense velocity reconstruction method for tomographic PTV. Gesemann et al. (2016) 

employed a B-splines based global minimization method to obtain high-resolution pressure fields 

from particle tracks by STB method. Moreover, the accuracy of the reconstructed pressure fields 

is significantly affected by the measurement error in the velocity fields (Azijli, Sciacchitano, Ragni, 

Palha, & Dwight, 2016b; Charonko et al., 2010; Pan, Whitehead, Thomson, & Truscott, 2016). 

The velocity errors propagate through the pressure gradient calculation and pressure integration to 

the reconstructed pressure fields with an error amplification of as much as 100 times depending 

on the type of flow, the governing equation, and the prescribed boundary conditions (Charonko et 

al., 2010). Smoothing and filtering can be employed to mitigate errors during pressure gradient 

evaluation (Charonko et al., 2010; Schiavazzi, Nemes, Schmitter, & Coletti, 2017; Z. Wang, Gao, 

Wang, Wei, & Wang, 2016). In order to reduce error propagation during pressure integration, 

Tronchin et al. (2015) and Jeon et al. (2018) employed approaches which divided the flow field 

into subdomains with respect to local velocity reliabilities, then performed pressure integration in 

the subdomains in descending order of the reliabilities. The reliability of each subdomain could be 

defined by the Frobenius norm of the velocity gradient tensor (Tronchin et al., 2015) or the 

Frobenius norm of the pressure gradient tensor (Jeon et al., 2018). Consequently, the evaluated 

pressure in a more reliable subdomain was not affected by the erroneous velocity measurements 

in a less reliable subdomain. This type of approaches is particularly effective for flow fields that 

can be segmented into regions with different levels of measurement accuracy. One example is the 

flow field around an airfoil which can be divided into outer-region, wake-region, near-body region, 

and near-edge region with descending accuracy (Jeon et al., 2018).  

Since the pressure reconstruction process is significantly affected by the errors in the 

estimated velocity field, the uncertainty bounds on each velocity measurement can also be used as 
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a measure of reliability to subsequently optimize the error propagation in pressure field estimation. 

The standard uncertainty is estimated as the standard deviation of the error distribution and 

provides a bound on the error distribution with certain confidence. For flow measurements using 

PIV, recent developments have enabled the uncertainty estimation for each velocity vector in the 

flow field (Bhattacharya, Charonko, & Vlachos, 2017; Bhattacharya et al., 2018; Charonko et al., 

2010; Schneiders & Sciacchitano, 2017; Xue, Charonko, & Vlachos, 2014; Xue et al., 2015). The 

local and instantaneous velocity uncertainty has been used to denoise the velocity fields using a 

spatial averaging scheme (B Wieneke, 2017) and can be propagated to estimate the uncertainty in 

the calculated pressure gradient fields as well as the reconstructed pressure fields (Azijli et al., 

2016b). However, to the best of the authors’ knowledge, the uncertainty information has not been 

utilized to improve the pressure integration. 

 

In the present study, a robust pressure reconstruction method is proposed which employs the 

velocity uncertainty to improve the accuracy of reconstructed pressure fields. A linear-

transformation based uncertainty propagation algorithm is developed to acquire the pressure 

gradient uncertainty as variances and covariances. The pressure integration on a discretized 

domain is formulated as an overdetermined linear system involving pressure gradients and 

Figure 5.1 Procedure of the GLS pressure reconstruction. The velocity uncertainty can be 
obtained from the flow measurements (green arrow) or estimated from the velocity fields (red 

arrow) using the divergence-based algorithm. 
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pressure boundary conditions. The generalized least-squares (GLS) is employed to reconstruct the 

pressure fields with the estimated pressure gradient uncertainty. The performance of the GLS 

pressure reconstruction method is tested with synthetic velocity fields and applied to volumetric 

flow-data measured using PTV. 

5.3 Methodology 

5.3.1 Uncertainty-based pressure reconstruction with generalized least-squares 

The procedure of the pressure reconstruction using uncertainty information with GLS is 

presented in Figure 5.1. The pressure gradient calculation is described in Sect. 5.4.1.1 The linear-

transformation based uncertainty propagation algorithm is introduced in Sect. 5.4.1.2. The pressure 

integration methods and numerical schemes are introduced in Sects. 5.4.1.3 and 5.4.1.4, 

respectively. In Sect. 5.4.1.5, a velocity-divergence based uncertainty estimation algorithm is 

introduced as a substitute to provide velocity uncertainty for GLS reconstruction. 

Pressure gradient calculation  

The pressure gradient field is estimated by substituting the velocity field in the Navier-Stokes 

equations. As the velocity fields employed in the present study were on Cartesian grids, the 

pressure gradient fields were calculated using the Eulerian approach as:  

 

𝒑𝒈𝒓𝒂𝒅,𝒖 = −𝜌 cb𝒖𝒎
bG

+ 𝒖𝒎 ∙ 𝛻𝒖𝒎d + 𝜇𝛻"𝒖𝒎,	 (5-2)	

	

where 𝒑𝒈𝒓𝒂𝒅,𝒖 is the pressure gradient evaluated from the measured velocity 𝒖𝒎, b𝒖𝒎
bG

 is the local 

acceleration, and 𝒖𝒎 ∙ ∇𝒖𝒎 is the convective acceleration. The spatial and temporal derivatives 

were calculated using the second-order central difference scheme for grid points in the domain. 

The first-order one-sided scheme was used at the boundaries for spatial derivatives and at the first 

and last frames for the temporal derivatives. The evaluated pressure gradient values were on the 

same grid points as the velocity. The pressure gradient calculation is carried out using 

matrix/vector operations. At each frame, the velocity field and the calculated pressure gradient 

field were organized as column vectors containing all the components from all the grid points, i.e., 
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𝒖𝒎 = [𝑢	𝑣	𝑤]/ and 𝒑𝒈𝒓𝒂𝒅,𝒖 = ÍTi
T*
	Ti
T+
	Ti
T,
Î
/
for volumetric flow-data. The discretized gradient and 

Laplacian operators were 2D matrices with respect to the selected difference schemes. 

Pressure gradient uncertainty estimation using linear transformations 

The proposed pressure reconstruction methods requires both pressure gradients and the 

pressure gradient uncertainty for pressure integration. To estimate the uncertainty in 𝒑𝒈𝒓𝒂𝒅,𝒖, we 

implemented a linear-transformation based uncertainty propagation algorithm.  

Considering the measurement errors, 𝒖𝒎  and 𝒑𝒈𝒓𝒂𝒅,𝒖  can be decomposed into true 

components and error components as,  

 

𝒖𝒎 = 𝒖𝒕 + 𝝐𝒖,	 (5-3)	
𝒑𝒈𝒓𝒂𝒅,𝒖 = 𝒑𝒈𝒓𝒂𝒅,𝒕 + 𝝐𝜵𝒑,	 (5-4)	

	
where the subscript t suggests the true component, 𝝐𝒖 and 𝝐𝛁𝒑	 are error components of velocity 

and pressure gradient, respectively. With the assumption that the velocity fields are acquired with 

sufficient spatiotemporal resolutions such that the numerical truncation errors are negligible, the 

true pressure gradient can be evaluated as, 

 

𝒑𝒈𝒓𝒂𝒅,𝒕 = −𝜌 cb𝒖𝒕
bG
+ 𝒖𝒕 ∙ 𝛻𝒖𝒕d + 𝜇𝛻"𝒖𝒕.	 (5-5)	

	
Combining Eqns. 5-2, 5-4 and 5-6, the pressure gradient error can be obtained in terms of the 

measured velocity 𝒖𝒎 and the velocity error 𝝐𝒖 as follows:   

 

𝝐𝜵𝒑 = −𝜌cb𝝐𝒖
bG
+ 𝒖𝒎 ∙ 𝛻𝝐𝒖 + 𝝐𝒖 ∙ 𝛻𝒖𝒎 − 𝝐𝒖 ∙ 𝛻𝝐𝒖d + 𝜇𝛻"𝝐𝒖,	 (5-6)	

Assuming that 𝝐𝒖  is sufficiently less than the velocity 𝒖𝒎 , the term 𝝐𝒖 ∙ ∇𝝐𝒖  can be 

neglected (Pan et al., 2016). Therefore, equation 5-7 can be simplified and expressed using 

matrix/vector operations as: 

 

𝝐𝜵𝒑 = 𝑀j𝝐𝒖𝒊j𝟏 +𝑀I𝝐𝒖𝒊I𝟏 +𝑀𝝐𝒖𝒊 ,	
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with	𝑀j = − �	
HG
𝐼,	𝑀I =

�	
HG
𝐼,	and	𝑀 = −𝜌 c𝑑𝑖𝑎𝑔(𝒖𝒎𝒊 ) ∙ 𝛻 + 𝑑𝑖𝑎𝑔(𝛻𝒖𝒎𝒊 )d + 𝜇𝛻",	 (5-7)	

	

where	𝝐𝒖𝒊  is the column vector containing velocity errors from the ith frame, 𝐼 is the identity matrix 

whose dimension is same with the length of 𝝐𝒖𝒊 , and the function 𝑑𝑖𝑎𝑔() constructs a diagonal 

matrix with the diagonal elements from the given column vector. Equation 8 estimates the pressure 

gradient errors at the ith frame as the linear transformations of velocity errors at frames i, i-1, and 

i+1. The transformation coefficients in 𝑀j, 𝑀I, and 𝑀 are decided by the measured velocity field 

and the selected discretization schemes. By stacking the transformation matrices and concatenating 

the velocity error vectors, Eqn. 5-7 can be written as: 

 

𝝐𝜵𝒑 = [𝑀j 𝑀I 𝑀] Á
𝝐𝒖𝒊j𝟏

𝝐𝒖𝒊j𝟏

𝝐𝒖𝒊
Â ≡ 𝑀'𝝐𝒖𝒄 ,	 (5-8)	

 

where 𝑀' , and 𝝐𝒖𝒄  are the combined transformation matrix and error vector, respectively. The 

uncertainty of pressure gradient can be determined as Σ∇iE = 𝑀'Σ-'𝑀'
/, where Σ-'  is the covariance 

matrix of 𝝐𝒖𝒄  containing the spatiotemporal correlations between velocity errors. Due to the lack of 

an established tool to estimate the temporal correlation of velocity errors for PIV/PTV, the velocity 

errors at different frames are assumed to be independent in the present study. The uncertainty of 

pressure gradient can be determined as: 

 

𝛴:iE = 𝑀j𝛴-Ej0𝑀j
/ +𝑀I𝛴-EI0𝑀I

/ +𝑀𝛴-E𝑀/ ,	 (5-9)	
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where Σ-E  and Σ∇iE  are the covariance matrices of velocity errors and pressure gradient errors at the 

ith frame, respectively. The velocity uncertainty 𝜎- forms the diagonal elements of Σ-, while the 

covariances of the spatially-correlated velocity errors are stored as the off-diagonal elements of 

Σ-. 

 

Pressure integration 

The pressure field is inherently related to the pressure gradient field as, 

 

𝐺𝒑 = 𝑀S𝒑𝒈𝒓𝒂𝒅,𝒖	,	 (5-10)	

	
where 𝒑 is a column vector of the estimated pressure field, G is the discretized gradient operator 

constructed with a staggered grid arrangement similar as employed by Jeon et al. (2018), and 𝑀S 

is the transformation matrix that linearly interpolates 𝒑𝒈𝒓𝒂𝒅,𝒖 from grid points to staggered nodes. 

As demonstrated in Figure 5.2, the grid points are represented with circles, the arrow heads indicate 

the staggered nodes for the interpolated pressure gradients, and the arrow directions indicate the 

component of pressure gradients. As an example, the staggered grid interpolations in x and y 

directions at points 𝑥 + Δ𝑥/2, 𝑦  and 𝑥, 𝑦 + Δ𝑦/2  can be written as, Ti
T*
Ò
*j>*/",+

= 0
"
{Ti
T*
Ò
*,+
+

Ti
T*
Ò
*j>*,+

�	 and Ti
T+
Ò
*,+j>+/"

= 0
"
�Ti
T+
Ò
*,+
+ Ti

T+
Ò
*,+j>+

�, respectively. The filled circles (mentioned 

Figure 5.2 Demonstration of the grid arrangement for the pressure integration with generalized 
least-squares. dp/dx and dp/dy represent the pressure gradients along x and y directions, 
respectively. 𝚫𝒙 and 𝚫𝒚 are the grid sizes. 𝒑𝒓𝒆𝒇 represents the reference pressure values. 
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as reference points in the present study) are the grid points with prescribed pressure values. The 

following equation relates the reference points with the reconstructed pressure field as 

 

𝐿𝒑 = 𝒑𝒓𝒆𝒇,	 (5-11)	

	
where 𝐿 is a labeling matrix consisting of zeros and ones, and 𝒑𝒓𝒆𝒇 is the column vector containing 

the reference pressure values which can be obtained by direct measurement. With the errors in the 

pressure gradient fields and the pressure reference values, a linear system can be constructed by 

combining Eqs. 5-10 and 5-11 as 

 

�
𝑀S𝒑𝒈𝒓𝒂𝒅,𝒖
𝒑𝒓𝒆𝒇 � = Í𝐺 0

0 𝐿Î𝒑 + �
𝑀S𝝐𝜵𝒑
𝝐𝒑𝒓𝒆𝒇

�,	 (5-12)	

 

where 𝝐𝒑𝒓𝒆𝒇 is the column vector of possible errors in the reference pressure values. For the sake 

of simplicity, we denote [𝑀S𝒑𝒈𝒓𝒂𝒅,𝒖 𝒑𝒓𝒆𝒇]/  by b, Í𝐺 0
0 𝐿Î by A, and Ó𝑀S𝝐𝛁𝒑 𝝐𝒑𝒓𝒆𝒇Ô

/  by 𝝐𝒃 . 

Since 𝝐𝛁𝒑  are uncorrelated with 𝝐𝒑𝒓𝒆𝒇 , the covariance matrix 𝛴Q  of the error term 𝝐𝒃  can be 

obtained as 

 

𝛴Q = Õ
𝑀S𝛴:i𝑀S

/ 0
0 𝛴i%BF

Ö,	 (5-13)	

 

where 𝛴i%BF is the covariance matrix of 𝝐𝒑𝒓𝒆𝒇. The pressure field can be estimated (𝒑×) from Eqn. 

5-12 using GLS which minimizes the following equation as 

 

𝒑× = 𝑎𝑟𝑔𝑚𝑖𝑛
i

(𝒃 − 𝐴𝒑)/ 𝛴QI0(𝒃 − 𝐴𝒑).	 (5-14)	

	

𝒑× can be obtained as the solution of the following equation 

 

(𝐴/𝛴QI0𝐴)	𝒑× = 𝐴/𝛴QI0𝒃.	 (5-15)	
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To avoid singularity, at least one pressure reference point is required. In addition, the variance 

terms in the diagonal elements in 𝛴Q must be greater than 0 for the inverse 𝛴QI0 to be taken. For 

𝒑𝒓𝒆𝒇 with negligible uncertainty, the standard deviation of 𝝐𝒑𝒓𝒆𝒇 can be set at a small fraction of 

the pressure scale, e.g. 10IW𝑝O, where 𝑝O is the characteristic pressure of the flow.  

Two other variants of the least-squares reconstruction were also implemented, namely 

ordinary least-squares (OLS) and weighted least-squares (WLS). Both OLS and WLS calculate 

pressure fields using Eqn. 5-15 with extra assumptions compared to GLS. OLS assumes 

independent and homoscedastic errors in 𝝐𝒃 such that 𝛴Q can be ignored or treated as an identity 

matrix, while WLS assumes independent errors in 𝝐𝒃, thus the off-diagonal elements (covariances) 

are zeros in 𝛴Q. The least-squares method proposed by Jeon et al. (2018) can be considered as an 

OLS approach. 

The pressure reconstruction by solving the PPE was employed as the baseline method. The 

following form of PPE was selected which generates the source term as the divergence of pressure 

gradients as 

 

𝛻"𝒑 = 𝛻 ∙ 𝒑𝒈𝒓𝒂𝒅,𝒖.	 (5-16)	

 

where the Laplacian operator ∇" was discretized using the second-order central difference scheme 

with a five-point stencil for planar data and a seven-point stencil for volumetric data. The boundary 

conditions for solving the PPE were assigned with reference pressure values (Dirichlet BC) or 

pressure gradients (Neumann BC). For Neumann BC, the pressure gradients were given as the 

𝒑𝒈𝒓𝒂𝒅,𝒖 calculated at the boundary points. 

Numerical schemes for solving linear systems 

For pressure integration using GLS, solving the linear system of Eq. 5-15 is prohibited as it 

requires matrix operations involving 𝛴QI0. Although the covariance matrix 𝛴Q is sparse due to the 

fact that the pressure gradient errors are only correlated within a small neighborhood, the inverse 

matrix 𝛴QI0 is normally dense with a dimension of approximately 2Npts´2Npts for planar data or 

3Npts´3Npts for volumetric data, where Npts is the total number of grid points in the flow field. By 

introducing the vector 𝝀 = 𝛴QI0(𝒃 − 𝐴𝒑), the following equation can be solved for 𝒑 (Rao 1973) 
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�𝛴Q 𝐴
𝐴/ 0

� �𝝀𝒑� = Í𝒃0Î.	 (5-17)	

 

which avoids the operations involving the large dense matrix 𝛴QI0 . Therefore, more efficient 

algorithms can be employed to solve the sparse linear system. For OLS and WLS, the pressure 

fields can be solved from Eq. 5-15 since 𝛴Q is ignored or treated as a diagonal matrix such that 

𝛴QI0 is also a diagonal matrix.  

To solve the linear systems of Eqs. 15-17, different numerical schemes were selected 

depending on the size of the flow-data. For planar data and small volumetric data, SuperLU, a 

general-purpose library for the direct solution of large, sparse, nonsymmetric systems of linear 

equations (Li, 2005), was employed. For large volumetric flow-data, the linear systems were 

solved using Conjugate Gradient iteration (Björck, 1996). 

Divergence-based velocity uncertainty estimation 

For some flow measurement techniques such as volumetric PIV and PTV, the estimation of 

local and instantaneous velocity uncertainty is still unestablished or limited. To inform the GLS 

pressure reconstruction, a divergence-based approach can be employed to estimate the velocity 

uncertainty directly from the velocity fields. For incompressible flow, the velocity errors cause 

nonzero velocity divergence as: 

 

𝛻 ∙ 𝝐𝒖 = 𝛻 ∙ 𝒖𝒎,	 (5-18)	
 

which can be solved in a least-squares sense to estimate the velocity errors 𝝐Û𝒖 as: 

 

𝝐Û𝒖 = (𝛻 ∙)/(𝛻")I0(𝛻 ∙ 𝒖𝒎)	 (5-19)	

	
This approach was employed by (Zhang et al., 2019) to estimate velocity errors which were then 

propagated for 𝝐𝒑𝒈𝒓𝒂𝒅 to inform the weighted least-squares pressure reconstruction. In the present 

study, the velocity uncertainty at each grid point of each frame can be estimated as the weighted 

standard deviation (WSTD) of 𝝐Û𝒖 from the spatiotemporally neighboring points as:  
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𝝈×𝒖 = �∑.(𝝐𝒖w)(

∑.
	with		

𝑤 = 𝑒𝑥𝑝 {− 0
"
cHN%
H*
d
"
− 0

"
cHN*
HG
d
"
�,	 (5-20)	

 

where Δ𝑠(  and Δ𝑠G  are the spatial and temporal separations from the neighboring points to the 

point of interest, respectively. Only the points within the Δ𝑠( ≤ Δ𝑥 and Δ𝑠G ≤ Δ𝑡 neighborhood 

are employed for the 𝝈×𝒖	calculation to ensure the local and instantaneous dependency of 𝝈×𝒖.  

 

 

 

5.3.2 Synthetic flow fields 

Following Charonko et al. (2010), the synthetic velocity fields of a 2D pulsatile flow 

between two infinite parallel plates were employed to test the uncertainty estimation algorithm and 

assess the performances of the pressure reconstruction methods. The pulsatile flow is driven by 

the oscillating streamwise pressure gradient as  

 

Figure 5.3(a) The domain arrangement of the 2D pulsatile flow. (b) The streamwise 
centerline velocity and pressure gradient waveforms within a cycle. (c) The streamwise 

velocity profile at 4 temporal phases. 
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Ti
T*
= 𝜌𝐾 + 𝛾𝜌𝐾𝑐𝑜𝑠𝜔𝑡,	 (5-21)	

 

and the streamwise velocity profile can be expressed as 

 

𝑢 = 𝑢VR* c1 −
+(

�(
d + ��

E�
{1 − 'UN�u+/�√E�x

'UN�u√E�x
� 𝑒𝑥𝑝(𝑖𝜔𝑡)	 (5-22)	

 

with 𝜆 = ℎ�
�
a�

, where 𝛾  is the ratio between the magnitude of the steady pressure gradient 

component and the amplitude of the oscillating pressure gradient component, K is the constant 

controlling the overall strength of the pressure gradient, ω is the angular speed of the oscillating 

component, h is the channel half-width, and 𝑢VR* is the centerline velocity of the steady flow 

component. The parameters were selected as 𝜔 = 2𝜋 rad/s (period T = 1 s), 𝑢VR* = 1	𝑚/𝑠, and 

𝛾 = 25.13. A flow domain with h=4 mm and a length of 20 mm was employed as shown in Figure 

5.3(a). The pressure along the inflow boundary was set to be 0 Pa, which was employed as Dirichlet 

BC for solving the PPE and as the reference points for the least-squares based methods. The fluid 

properties were given as 𝜌 = 1000	𝑘𝑔/𝑚W  and 𝜇 = 1 × 10IW  Pa×s. The velocity fields were 

generated on a uniform Cartesian grid with a grid size of 0.1 mm, yielding 101´41 grid points. For 

each test case, 1000 velocity fields were generated with a span of 50 cycles at a sampling rate of 

20 Hz. The waveforms of streamwise centerline velocity and pressure gradient are shown in Figure 

5.3(b) for one cycle. The streamwise velocity profiles at 4 phases are shown in Figure 5.3(c). The 

characteristic velocity and pressure are defined as 𝑢O = 𝑢VR* and 𝑝O =
0
"
𝜌𝑢O", respectively.  

To test the robustness of pressure reconstruction methods, Gaussian noise with different 

levels of spatial auto-correlation was added to the true velocity fields. Spatially correlated errors 

have been reported by Sciacchitano and Wieneke (2016) for PIV fields and are anticipated in 

gridded velocity fields interpolated from PTV measurements since the error of each single particle 

track can affect the velocity values on multiple grid points. Three levels of spatial correlation were 

considered, namely uncorrelated (UC), weakly correlated (WC), and strongly correlated (SC). The 

spatial auto-correlation coefficient was specified as  
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𝜌-0,-" = 𝑒𝑥𝑝 {−𝑠 c(E,(
H*
d
"
�,	 (5-23)	

 

where 𝜌-0,-" is the auto-correlation coefficient between velocity errors at two points denoted as 1 

and 2, 𝑟0," is the spatial distance between the two points, Δ𝑥 is the grid size, and 𝑠 is a positive 

constant controlling the strength of the correlation. 𝑠 is zero for UC errors, and was set at 0.22 and 

0.88 for WC and SC errors, respectively. The SC 𝜌-0,-"  was similar to the results of PIV 

measurements with 32 × 32 pixels interrogation window and 75% overlap (Sciacchitano & 

Wieneke, 2016). The covariance was then calculated based on the auto-correlation coefficient as 

 

𝐶𝑜𝑣-0,-" = 𝜌-0,-"𝜎0𝜎",		 (5-24)	

 

where 𝐶𝑜𝑣-0,-"  is the covariance between velocity errors at points 1 and 2 whose standard 

deviations are 𝜎0 and 𝜎". The velocity error standard deviation was defined as a fraction of the true 

velocity magnitude at each point as 

 

𝜎 = 𝛼|𝒖𝒕|,	 (5-25)	
 

where 𝛼  controls the level of imposed errors. To mimic the noise of double-pulse PIV 

measurements, the errors at different time frames were assumed to be uncorrelated. In addition, 

the velocity noise was assumed to be uncorrelated between different velocity components due to 

the lack of an established model for the cross-component correlation within the existing literature. 

The covariance matrix Σ- was constructed based on the specified variances and covariances, then 

the spatially correlated velocity errors were generated by multiplying the Cholesky decomposition 

of Σ- to a vector containing uncorrelated, unbiased, and Gaussian distributed random noise with 

unity standard deviation (Azijli & Dwight, 2015). To test the pressure reconstruction methods for 

a wide range of error levels, 11 test cases were created for each correlation level with 𝛼 varying 

from 1% to 50%, resulting 33 test cases in total.  

 



 
 

110 

5.3.3 Pipe flow measurements 

The laminar flow and transitional flow in in a circular pipe were measured using a volumetric 

PTV experiment and were employed to validate and demonstrate the GLS pressure reconstruction 

method. The schematic illustration of the experimental setup is shown in Figure 5.4. More details 

about the experiment can be found in the work by Bhattacharya and Vlachos (2019). The flow was 

driven using a gear pump with a steady flow rate Q of 0.17 L/min for the laminar case and with 

0.93 L/min for the transitional case. The flow rate upstream and downstream of the pipe was 

measured using an ultrasonic flowmeter and the average flow rate was used to determine the true 

velocity profile. A clear FEP tube of diameter (𝑅iEi%) 0.25 inch was used for the experiment. The 

working fluid inside the pipe was distilled water-urea (90:10) solution with a density of 1015 kg/m3 

and dynamic viscosity of 0.915 mPas. The Reynolds number was 630 and 3447 for the laminar 

case and transitional case, respectively. The pipe was also immersed within the water-glycerol 

solution such that it is refractive index matched. The measurement volume was 9´6.5´6.5 mm3 

and was illuminated by a continuum Terra-PIV laser with appropriate optical setup. The time-

resolved measurements were taken at 6 kHz with 4 cameras, and the image size was 640´624 

pixels. The effective angle estimated from the self-calibrated mapping function was about 15° for 

the left and right cameras and about 18° for the bottom camera, where each angle was measured 

Figure 5.4 Schematic of laminar pipe flow set up showing the flow loop and camera 
arrangement. 
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normal to the illuminated laser volume. 24-micron fluorescent particles were used with a particle 

Stokes number of 0.0005. For the laminar case, the particle images were processed using in-house 

camera calibration, particle reconstruction and tracking code. A polynomial mapping function 

(Soloff, Adrian, & Liu, 1997) was used to establish a relation between image coordinates and 

physical coordinates. Three iterations of volumetric self-calibration (B. Wieneke, 2008) were done 

to eliminate any disparity between the measurement volume and calibration target location or 

alignment. The 3D triangulation (Maas, Gruen, & Papantoniou, 1993) was used to reconstruct the 

particle positions in physical coordinate system and subsequently the 3D particle locations were 

tracked using a “nearest-neighbor” pairwise tracking algorithm. A total of 499 velocity frames 

were obtained from 500 snapshots of particle images, and the number of tracked particles was 

around 850 in each frame. For the transitional case, the particle images were processed using STB 

in Lavision software Davis 10.0.5 with self-calibration and 4 iterations of inner and outer loop for 

IPR (Schanz, Gesemann, & Schröder, 2016; Bernhard Wieneke, 2013). A total of 200 velocity 

frames were obtained with around 1500 tracked particles in each frame. For both cases, the velocity 

values at particle locations were interpolated to a uniform Cartesian grid using “FlowFit” 

(Gesemann et al., 2016). The grid resolution was 0.385 mm for the laminar case and 0.268 mm for 

the transitional case. Some measurements at the pipe wall and the edges of the measurement 

volume were trimmed to avoid the significant errors due to lack of tracked particles in those regions.  

To reconstruct the pressure fields of the laminar pipe flow, the proposed GLS method was 

applied to the gridded velocity fields. A zero reference pressure was assigned at the center point 

of inflow plane, while Neumann BC was given at the rest of the boundaries with the pressure 

gradients calculated from the velocity data. The velocity standard deviation (STD) between all the 

499 frames were calculated at each spatial point, which was then utilized to generate the covariance 

matrix Σ-,Z/d for GLS reconstruction. In addition, another set of covariance matrix Σ-, <¡ 	was 

generated from 𝝈×𝒖 estimated using the velocity-divergence based algorithm introduced in Sect. 

5.2.1.5. The covariances were assumed to be zero in both Σ-,Z/d  and Σ-, <¡ . The GLS 

reconstructions with Σ-,Z/d and Σ-, <¡  are denoted as GLS STD and GLS UNC, respectively. In 

addition, the PPE method and the sequential least-squares method (OLS SEQ) introduced by Jeon 

et al. (2018) were applied to the pipe flow for the validation of the GLS method. Following Jeon 

et al. (2018), the Frobenius norm of the pressure gradient was calculated to determine the reliability 

of the velocity measurements. The flow field was divided into the less reliable near-wall region 
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(𝑟 > 0.5𝑅) and the more reliable core-region (𝑟 ≤ 0.5𝑅). The pressure field was sequentially 

reconstructed in the core-region followed by the near-wall region with OLS. The zero pressure 

reference point at the center of inflow plane was the Dirichlet boundary condition for the core-

region reconstruction, and the resulting pressure at the edge of the core region was served as the 

Dirichlet boundary condition for the pressure reconstruction in the near-wall region. For PPE, the 

same boundary conditions were given as the GLS reconstruction. To provide a reference of the 

expected pressure field, the analytical solution of the laminar pipe flow was obtained as: 

 

𝑈 = − 0
4a

T�
T*
}𝑅iEi%" − 𝑅"~,	with		

T�
T*
= �a_

#6M/MB
6 ,	 (5-26)	

 

where x is the streamwise direction, R is the radial distance, and U is the streamwise velocity. The 

centerline velocity magnitude 𝑈'%&G%(�E&%  was employed as the characteristic velocity, and the 

characteristic pressure 𝑝O was 0
"
𝜌𝑈'%&G%(�E&%" . 

For the pressure reconstruction of the transitional flow, both GLS and PPE were employed 

with the same BC arrangement as the laminar case. The velocity covariance matrix Σ-, <¡ 	required 

by GLS was generated from the 𝝈×𝒖  estimated using the velocity-divergence based algorithm 

introduced in Sect. 5.2.1.5. The reference value of the pressure drop (Δ𝑝) along the pipe was 

estimated using the empirical Darcy-Weisbach pressure loss equation as: 

 

𝛥𝑝 = 𝑓 S
d
� ¢(

"
,	 (5-27)	
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where 𝑓 is the friction factor, L is the axial length, D is the diameter of the pipe. and 𝑈� is the 

average streamwise velocity. Since the flow was in transitional regime, the possible value of 𝑓 was 

between 0.03 and 0.045 (Moody, 1944) for the smooth FEP pipe.  

 

5.4 Results 

5.4.1 Synthetic flow fields 

Pressure gradient uncertainty estimation 

For the 2D pulsatile flow fields, the relative velocity error magnitudes (|𝜖𝒖|) were calculated 

as �𝜖-" + 𝜖$" 𝑢OÜ . The overall velocity error level for each test case was represented as the median 

|𝜖𝒖|  from all the points in space and time. The pressure gradient fields were calculated as 

introduced in Sect. 5.2.1.1, and the relative pressure gradient errors 𝝐𝛁𝒑 were evaluated as the 

deviations from the analytical solutions, then normalized by 𝑝O/Δ𝑥 . To validate the linear-

transformation based uncertainty propagation algorithm for both instantaneous and local 

prediction, the root mean square (RMS) value of the estimated uncertainty distributions were 

compared with the RMS of the true error distributions in time and space since the RMS error 

should match the RMS uncertainty for a successful prediction (Sciacchitano et al., 2015). In Figure 

Figure 5.5 For the case with 9.6% SC velocity errors, (a) The RMS of streamwise relative 
pressure gradient errors ϵpgradx and uncertainties σpgradx at all temporal phases for the grid points 
along centerline (R=0 mm) and at R=3 mm. (b) The spanwise distributions of RMS errors and 

uncertainties at t/T=0.25 and at t/T=0.75. 
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5.5(a), the temporal variations of the RMS values of the estimated relative streamwise pressure 

gradient uncertainty (𝜎Ûiz(RT*) and the relative streamwise pressure gradient errors (�𝜖iz(RT*�) 

were compared for the test case with 9.6% SC velocity errors (a=15%) at two spatial locations 

(along the centerline and at R=3mm), and the RMS values of 𝜎Ûiz(RT* were consistent with those 

of �𝜖iz(RT*� for both spatial locations at all time points. In Figure 5.5(b), the spanwise distributions 

of the RMS values of �𝜖iz(RT*� and 𝜎Ûiz(RT* were compared at two phases (t/T=0.25 and 0.75). 

Greater �𝜖iz(RT*� and 𝜎Ûiz(RT* were found near the centerline of the flow field for both phases, and 

the RMS values of 𝜎Ûiz(RT*  were consistent with those of �𝜖iz(RT*�. Overall, the comparisons 

suggested that the proposed algorithm was capable of predicting the instantaneous and local 

uncertainty of the calculated pressure gradients.  

 

 

The estimated auto-correlation coefficients 𝜌Ûiz(RT*  were validated by comparing to the 

statistically quantified coefficients 𝜌iz(RT* based on the true errors. For each test case and each 

time phase, the 𝜌iz(RT* between all pairs of spatial points were quantified using the errors across 

all the frames as 

 

Figure 5.6 (a) The median absolute auto-correlation coefficients of 𝝆𝒑𝒈𝒓𝒂𝒅𝒙 as a function of 
normalized spatial separation 𝒓/𝚫𝒙. The statistically quantified 𝝆𝒑𝒈𝒓𝒂𝒅𝒙 from 𝝐𝒑𝒈𝒓𝒂𝒅𝒙 (left 

quadrant) is compared with the estimated 𝝆×𝒑𝒈𝒓𝒂𝒅𝒙 using proposed linear-transformation based 
algorithm (right quadrant). The distributions of 𝝆×𝒑𝒈𝒓𝒂𝒅𝒙 (b) and 𝝆𝒑𝒈𝒓𝒂𝒅𝒙 (c) around the center 

point at t/T=0.25. 
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𝜌iz(RT* =
¡U$u[MN%.+?,E,[MN%.+?,(x

1MN%.+?,E1MN%.+?,(
	 (5-28)	

 

where 𝐶𝑜𝑣}𝜖iz(RT*,0, 𝜖iz(RT*,"~ is the covariance between pressure gradient errors at points 1 and 

2, while 𝜎iz(RT*,0  and 𝜎iz(RT*,"  are the STDs of pressure gradient errors at the two points, 

respectively. The median absolute 𝜌iz(RT*  was determined to illustrate the auto-correlation 

strength for each spatial separation r. As a demonstration, the median absolute 𝜌iz(RT*  as a 

function of 𝑟/Δ𝑥  is shown in Figure 5.6(a), for the test cases with 9.6% velocity errors. The 

estimated coefficients on the right quadrant were consistent with the quantified coefficients on the 

left quadrant. In general, the auto-correlation of 𝜖iz(RT* was stronger for smaller r as well as for 

the test case with stronger correlated 𝝐𝒖. At 𝑟 = Δ𝑥, the median absolute 𝜌iz(RT* was 0.07 for UC 

case, while the values were 0.32 and 0.71 for WC and SC cases, respectively. The corresponding 

𝜌Ûiz(RT*  values were 0.03 for UC, 0.36 for WC, and 0.72 for SC. To validate the local and 

instantaneous prediction of auto-correlation coefficients, the 𝜌iz(RT* and 𝜌Ûiz(RT* values between 

the center point (x=10 mm and y=0 mm) and its neighboring points are presented in Figure 5.6(b) 

and (c), respectively, for the test case with 9.6% SC velocity errors at phase t/T=0.25. The 

estimated values were also in good agreement with quantified results. The 𝜌iz(RT*  decreased 

monotonically from the center point along both spanwise and streamwise directions, and the 

decreasing rate was greater along streamwise direction than the spanwise direction with negative 

coefficients near the edges. The 𝜌iz(RT* distributions were also investigated for other regions as 

well as other phases of the flow and were found to be dependent on the local and instantaneous 

flow conditions. The proposed uncertainty estimation algorithm was able to estimate the 𝜌iz(RT* 

accurately for all the investigated locations and phases. 

Pressure reconstruction 

The instantaneous pressure fields were reconstructed using the methods introduced in 

Section 5.2.1. From each test case, the pressure errors were calculated as the deviations from 

analytical solution at all the points in space and time, then normalized by 𝑝O. Three pressure error 

metrics were employed to evaluate the performances of the methods. The median absolute pressure 

error was used to represent the overall pressure error level, while the 15.75th and 84.25th percentiles 
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of the probability distribution of absolute pressure error were defined as the lower-bound (LB) and 

upper-bound (UB), respectively. The pressure error metrics as functions of the velocity error levels 

are compared in Figure 5.7(a) between PPE and GLS, and in Figure 5.7 (b) between least-squares 

based methods. In addition, the pressure error level was also determined based on the bias error 

and the random error separately. The bias error at temporal phase 𝜙 and spatial location 𝒓 was 

quantified as 𝜖QERN
!,𝒓 = 0

<OPODB
∑ 𝜖i

£,!,𝒓<OPODB
£Y0 , where 𝑁'+'�% = 50 is the total number of cycles, and 

𝜖i
£,!,𝒓 is the pressure error at cycle 𝑘, temporal phase 𝜙, and spatial location 𝒓. The random error 

was then evaluated by subtracting the bias error from the total error as 𝜖(R&TUV
£,!,( = 𝜖i

£,!,𝒓 − 𝜖QERN
!,𝒓 . 

As shown in Figure 5.7, with 𝛼 in Eqn. 25 varied from 1 % to 50 %, the velocity error level 

increased from 0.64% to 32.1%. The GLS method was more robust to velocity errors compared 

with the other methods. For the case with 32.1% UC velocity errors, the total pressure error was 

20.3% by PPE and only 5.8% by GLS as suggested in Figure 5.7 (a). For the same case, WLS and 

OLS yielded 6.9% and 20.4% pressure errors, respectively, as suggested in Figure 5.7 (b). The 

error bounds of GLS were also lower than those by PPE, OLS, and WLS. The improvement by 

GLS was more significant for cases with greater velocity errors. Compared to PPE, the GLS 

method reduced the total pressure error level by 50% (2.4% vs 3.6%) with 9.6% UC velocity errors, 

and by 250% (5.8% vs 20.3%) with 32.1% UC velocity errors.  
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The spatial correlation of velocity errors amplified the pressure errors by PPE, OLS, and 

WLS, as suggested in Fig. 7. With 32.1% velocity errors, the pressure error levels by PPE as 20.3% 

for UC, 24.3% for WC, and 32.9% for SC. In contrast, GLS yielded lower pressure errors for cases 

with stronger correlated velocity errors. With 32.1% velocity errors, the pressure error levels were 

5.8% for UC, 5.1% for WC, and only 2.9% for SC. At around 10% SC velocity level, the pressure 

Figure 5.7 Comparisons of the pressure reconstruction methods for a wide range of velocity error 
levels and three correlation levels. (a) Comparison between GLS and PPE. (b) Comparison 

between GLS, WLS, and OLS. From top to bottom, the correlation levels are uncorrelated (UC), 
weakly correlated (WC), and strongly correlated (SC). 
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error level by GLS plateaued, and the increase of velocity error level no longer amplified the 

resulted pressure error level. As a consequence, the improvement by GLS was more significant for 

cases with spatial correlated velocity errors. The WLS had similar performances as GLS for cases 

with UC velocity errors, but not for WC or SC cases as shown in Figure 5.7 (b). 

However, the GLS method yielded greater pressure errors for cases with minimal velocity 

errors compared to PPE and OLS. As suggested in Figure 5.7, the total pressure error level by GLS 

was 0.96% with 0.64% UC velocity errors, while it was 0.24% and 0.27% by PPE and OLS, 

respectively. GLS created more bias errors for cases with low velocity errors compared to OLS 

and PPE. With 0.64% UC velocity errors, the bias error level was 0.93% by GLS, while it was 

0.10% and 0.12% by PPE and OLS, respectively. With 9.6% UC velocity errors, the bias error 

levels were 1.58% by GLS, 0.89% by PPE, and 0.89% by OLS. The bias error in the reconstructed 

pressure was also amplified by the spatial correlation of velocity errors. With 9.6% SC velocity 

errors, the bias error levels were 1.96% by GLS, 1.15% by PPE, and 1.14% by OLS. The random 

errors were consistently reduced by GLS across all the cases compared to the other methods. Since 

the random errors were more significant than bias errors in most cases, the GLS reduced the overall 

pressure error levels. For the cases with higher velocity error levels (greater than 20%), GLS 

reduced both bias and random errors, therefore improved the pressure accuracy significantly.  

The effect of temporal resolution on the performances of different pressure reconstruction 

methods were studied by using different number of timeframes (from 2 to 20) to reconstruct the 

pressure fields for each cycle of the Womersley flow. The total error, bias error, and random error 

levels of the reconstructed pressure fields as a function of Δ𝑡 normalized by the cycle period is 

reported in Figure 5.8. As the normalized Δ𝑡 increased from 0.05 to 0.5, the bias error levels by 

PPE and OLS increased from 1% to 6% due to the increase in the truncation error for evaluating 

the temporal derivatives, while the bias error by GLS or WLS remained at around 2%. The GLS 

and WLS created greater bias errors than PPE or OLS for the majority of tested Δ𝑡 but better 

suppressed the increase of bias error for severely under-resolved data. The random error levels 

were not significantly affected by the change of Δ𝑡 by all the methods, and GLS consistently 

yielded the least amount of random error. 
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The performance of GLS was investigated at different time phases of the pulsatile flow. 

Figure 5.9 compares the pressure error levels and error bounds between GLS and PPE at each 

phase for the test cases with 9.6% velocity errors. The pressure errors were greater for the phases 

with stronger flow. With SC velocity errors, the pressure error level by GLS was 3.2% for the 

whole cycle, while it was 8.7% at t/T=0.25 (maximum flow rate) and 1.2% at t/T=0.75 (minimum 

flow rate). For phases with low flow rates (t/T between 0.6 to 0.8), both GLS and PPE yielded 

accurate pressure fields with error levels less than 5%. However, GLS improved the pressure 

accuracy significantly for the phases with greater flow rates. At t/T=0.25 with SC velocity errors, 

the pressure error level by PPE was 21.7% , while it was 8.7% by GLS.  

Figure 5.8 Comparison between PPE, OLS, WLS, and GLS for the pressure reconstruction 
with different temporal resolutions with 9.6% SC velocity errors 

Figure 5.9 Comparison between GLS and PPE at all time phases for the cases with 9.6% 
velocity error level. 
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The spatial distributions of relative RMS pressure errors are compared in Figure 5.10 

between GLS and PPE at phase t/T=0.25 for the cases with 9.6% velocity errors. The RMS 

pressure errors were greater near the centerline of the flow field due to the greater pressure gradient 

errors as suggested in Figure 5.5(b). Compared to PPE, the GLS constrained the high pressure 

errors within the centerline region and dramatically reduced the pressure errors in near-wall 

regions. In addition, the improvement by GLS was more significant for test cases with spatial 

correlated velocity errors. With SC errors, the GLS reduced the pressure errors significantly for 

both centerline region and the near-wall regions. 

 

The GLS pressure reconstruction was also performed for WC and SC cases with the 

assumption of zero velocity error covariances (GLS 0Cov). Compared to GLS, the GLS 0Cov 

underestimated the covariances of 𝜖∇i  due to the ignorance of the auto-correlation of velocity 

errors, and the captured 𝜖∇i  covariances were caused by the numerical differentiations during 

pressure gradient calculation. The pressure error levels as functions of velocity error levels were 

compared between PPE, GLS, and the GLS 0Cov in Figure 5.11. As the velocity error level 

increased from 0.64% to 32.1%, the pressure error level by GLS 0Cov changed from 1.0 to 7.1 % 

for WC cases and from 1.0 to 8.8 % for SC cases. By neglecting the velocity error covariances, 

the GLS 0Cov had a slightly worse performance than GLS for WC cases, while the performance 

deficit became more dramatic for SC cases due to the significance of velocity error auto-

correlations. With 16.1% velocity errors, the pressure error level by GLS 0Cov was 8% larger than 

GLS for the WC case and 70% larger for the SC case. Compared to the baseline method PPE, GLS 

Figure 5.10 The spatial distributions of pressure RMS errors by GLS (top row) and PPE 
(bottom row) for the test cases with 9.6% velocity error level. 
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0Cov still reduced the pressure errors dramatically for most cases. With 16.1% velocity errors, the 

pressure error reduction by GLS 0Cov was 110% for the WC case and 138% for the SC case.  

 

5.4.2 Laminar pipe flow 

For the experimental validation case of laminar pipe flow, the parabolic streamwise (along 

X direction) velocity profile is shown in Figure 5.12(a) as a function of Y and Z using the averaged 

values across all the frames and Y-Z slices. The velocity errors were calculated as the deviations 

between the gridded velocity data and the analytical solution given by Eqn. 26 then normalized by 

the characteristic velocity 𝑈'%&G%(�E&%. To assess the accuracy of the measurement, the histograms 

of the relative velocity error magnitudes (|𝝐𝒖|), velocity STD magnitudes (|𝝈𝒖|), and velocity 

uncertainty magnitudes (|𝝈×𝒖|) estimated using the divergence-based algorithm introduced in 2.1.5 

are shown in Figure 5.12 (b). The RMS values was 12.0% for |𝝐𝒖|, 10.9% for |𝝈𝒖|, and 5.9% for 

|𝝈×𝒖|, as suggested by the vertical lines. The spatial distributions of |𝝈𝒖| and |𝝈×𝒖| as functions of 

radial location 𝑅 = √𝑌" + 𝑍"  and streamwise location X were shown in Figure 5.12 (c), and 

greater |𝝈𝒖| was found near the wall of the pipe. In general, the |𝝈×𝒖| had a 50% underprediction 

and less spatial variation. The relative errors of the calculated pressure gradients 𝝐𝛁𝒑  were 

determined as the deviations from the analytical solution then normalized by 𝑝O/Δ𝑥. Two sets of 

pressure gradient uncertainties were estimated using the proposed linear-transformation based 

Figure 5.11 Comparisons between pressure reconstruction using PPE, GLS with full velocity error 
covariances, and GLS with zero velocity error covariances for the test cases with WC velocity 

errors (a) and SC velocity errors (b). 
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algorithm from 𝝈𝒖  and 𝝈×𝒖 , and are denoted as 𝝈×𝛁𝒑(𝝈𝒖)  and 𝝈×𝛁𝒑(𝝈×𝒖) , respectively. The 

histograms of the relative errors and uncertainties are shown in Figure 5.12 (d). The RMS values 

were 198% for �𝝐𝛁𝒑�, 200% for �𝝈×𝛁𝒑(𝝈𝒖)�, and 109% for �𝝈×𝛁𝒑(𝝈×𝒖)� as suggested by the vertical 

lines. The spatial distributions of the STD of pressure gradients (𝝈𝛁𝒑) and the uncertainties are 

shown in Figure 5.12 (e) as functions of R and X. The 𝝈×𝛁𝒑(𝝈𝒖) was consistent with the 𝝈𝛁𝒑 in 

terms of the histograms and the spatial distributions, while 𝝈×𝛁𝒑(𝝈×𝒖) yielded an underprediction 

and less spatial variation since it was based on 𝝈×𝒖. In addition to the uncertainty of the pressure 

gradient, the Frobenius norm of the pressure gradient tensor (‖∇𝑝‖¤) was calculated to indicate 

the local reliability of the flow measurement for setting up the OLS SEQ subdomains as introduced 

by Jeon et al. 2018. The ‖∇𝑝‖¤ normalized by its global L2 norm was presented in Figure 5.12 (f) 

as a function of R and X. The distribution of ‖∇𝑝‖¤ also suggested that the measurement near the 

wall was less reliable than the region near the centerline. 
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The errors of the reconstructed pressure fields were quantified as the deviations from the 

analytical solution then normalized by the characteristic pressure 𝑝O. The pressure STDs over the 

499 velocity frames were also calculated to assess the precision of the pressure results. The 

histograms of the absolute pressure errors (�𝜖i�) and pressure STDs (𝜎i) were compared in Figure 

5.13 (a) and (b), respectively. The median of �𝜖i� was 219% for PPE, 164% for OLS SEQ, 112% 

for GLS STD, and 135% for GLS UNC, as suggested by the vertical dashed lines in Figure 5.13 

(a). Compared to PPE, the error reduction was 96% by GLS STD and 62% by GLS UNC in terms 

of median �𝜖i�. The median of 𝜎i was 308% for PPE, 244% for OLS SEQ, 165% for GLS STD, 

Figure 5.12 (a) The average streamwise velocity profile as a function of Y and Z. (b) The 
histograms of the magnitudes of velocity errors (|𝜖-|), standard deviations (𝜎-) and estimated 

uncertainties (𝜎Û-). The vertical lines represent the RMS values of the distributions. (c) The 
spatial distributions of 𝜎- and 𝜎Û-. (d) The histograms of the magnitudes of pressure gradient 
errors (�𝜖∇i�), the uncertainties estimated from 𝜎- (𝜎Û∇i(𝜎-)), and the uncertainties estimated 
from 𝜎Û- (𝜎Û∇i(𝜎Û-)). The vertical lines represent the RMS values of the distributions. (e) The 

spatial distributions of the magnitudes of pressure gradient STD (𝜎∇i) and the estimated 
uncertainties 𝜎Û∇i(𝜎-) and 𝜎Û∇i(𝜎Û-). (e) The spatial distribution of ‖∇𝑝‖¤ normalized by its 

global L2 norm. 
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and 200% for GLS UNC, which suggested a precision improvement of 87% by GLS STD and 54% 

by GLS UNC compared to PPE. The spatial distributions (as functions of R and X) of the RMS 𝜖i 

were compared in Figure 5.13 (c) between PPE, OLS SEQ, and GLS reconstructions. The pressure 

errors were lower near the center of inflow plane where the reference pressure was assigned, and 

increased towards the outflow plane and pipe walls. The GLS method mitigated the error 

propagation across the field and therefore effectively improved the pressure accuracy. The OLS 

SEQ method improved the accuracy of the reconstructed pressure compared to PPE as it prevented 

the error propagation from the unreliable wall region to the reliable core region. A hybrid method 

which performed the GLS reconstruction sequentially in subdomains (GLS SEQ) were also tested 

on the laminar pipe flow with velocity STD employed as the velocity uncertainty. GLS SEQ 

provided more accurate pressure than OLS SEQ. However, the global GLS reconstructions still 

had better performances than GLS SEQ. 

To study the effect of time-resolution on the pressure reconstruction methods, the 499 time 

frames of velocity data were downsampled by skipping frames to create four additional datasets 

with Δ𝑡 of 2 times, 4 times, 8 times, and 16 times of the original Δ𝑡O =
0

5OOO
 s. The pressure fields 

were reconstructed from each dataset using PPE, OLS SEQ, GLS STD, and GLS UNC with the 

same settings as the original full time-resolution dataset. The relative median absolute pressure 

errors were presented in Figure 5.13 (d) as a function of the normalized time-resolution Δ𝑡/Δ𝑡O. 

The pressure error levels were effectively reduced by the increase of Δ𝑡  with a first order 

relationship for the laminar pipe flow. The analysis also suggested that the improvement by GLS 

was not affected by Δ𝑡 as GLS consistently provided the best performances among the tested 

methods on the datasets different Δ𝑡. 
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5.4.3 Transitional pipe flow 

The pressure drop related to inflow plane was evaluated along 431 axial lines from 200 

frames of the reconstructed pressure fields by GLS and PPE. The mean pressure drop as a function 

of X location by GLS and PPE were presented in Figure 5.14 together with the estimation using 

the empirical equation. The shaded region for the reconstructed pressure corresponds to the 

uncertainty of the mean calculated as 𝜎>i/√𝑛 with 𝜎>i being the STD of the Δ𝑝 and n being the 

number of samples (431 × 200). The shaded regions of the empirical estimation indicated the 

uncertainty in the friction coefficient as 0.03 ≤ 𝑓 ≤ 0.045. The mean of the total Δ𝑝 along the 

reconstructed 8.3 mm pipe length was 6.44 Pa by GLS and 8.87 Pa by PPE. The empirical 

Figure 5.13 Histograms of the absolute pressure errors �𝝐𝒑� (a) and pressure STDs 𝝈𝒑 (b) by 
PPE, OLS SEQ and the GLS reconstructions with different velocity uncertainty sources (GLS 
STD with 𝝈𝒖 and GLS UNC with 𝝈×𝒖). The vertical dashed lines represent the medians. (c) The 
spatial distributions of pressure RMS errors as functions of R and X. (d) The relative median 
absolute pressure errors by PPE, OLS SEQ, and GLS reconstructions as a function of time-

resolution. 
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estimation of the total Δ𝑝 ranged from 4.77 to 7.15 Pa. The Δ𝑝 by GLS was more consistent with 

the empirical estimation, and the total pressure drop was within the range of the empirical 

estimation.  

 

The spatial distributions of vorticity and reconstructed pressure fields are presented in Figure 

5.15 on the X-Y plane at center Z location for one time frame. The out-of-plane vorticity 𝜔, was 

shown in Figure 5.15 (a) with the velocity vectors representing the in-plane flow direction. The 

vortices were detected using the Q criteria, and the contours in Figure 5.15 corresponded to 

Q=1e+4 1/s2 (thin line) and Q=5e+4 1/s2 (thick line). The reconstructed pressure fields normalized 

by the characteristic pressure 𝑃O = 𝜌𝑈� were presented in Figure 5.15 (b) and (c) for GLS and PPE, 

respectively. Both GLS and PPE captured the regions of local minimum pressure around the vortex 

cores as observed in Figure 5.15 (b-c).   

Figure 5.14 The mean pressure drop related to the inflow plane as a function of X location 
evaluated from reconstructed pressure fields by GLS and PPE, and the empirical estimation of 
pressure drop using Eqn. 27. The shaded red/black area corresponds to the uncertainty in the 
mean of the reconstructed pressure drop, and the shaded green area represents the range of 

empirical estimation. 
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5.5 Discussion 

In this study we introduced a novel pressure reconstruction method using uncertainty-based 

generalized least-squares. By propagating the velocity uncertainty with the proposed linear-

transformation based algorithm, the pressure gradient uncertainty are estimated in the form of 

covariance matrices of the heteroscedastic and correlated pressure gradient errors. The pressure 

integration was formulated as solving an overdetermined linear system involving pressure gradient 

fields and boundary conditions. The error mitigation by GLS was the result of incorporating the 

pressure gradient uncertainty into the pressure integration. The OLS method, which solves the 

same linear system (Eqn. 5-15) as GLS without utilizing the uncertainty, yielded a similar 

performance as PPE for all the synthetic flow cases. This suggested that the change of formulation 

alone (the overdetermined linear system compared to the PPE) does not affect the robustness of 

pressure reconstruction, which was consistent with the statement by Wang et al. (2017) that PPE 

and OLS are mathematically identical given the same stencil and boundary conditions. The 

comparisons between OLS, WLS, and GLS in Figure 5.7(b) indicated that both the variance and 

covariance of the pressure gradient errors contributed to the improvement of pressure accuracy. 

The WLS method, which only employs the variances, had a better performance than OLS. By 

considering both variances and covariances, the GLS method further improved the pressure 

accuracy compared to WLS. With stronger correlated velocity errors, the covariances of pressure 

Figure 5.15 (a) The in-plane velocity (vectors) and out-of-plane vorticity (color scale) on the 
X-Y plane at center Z location for a time frame. (b) The normalized pressure distribution on 
the center X-Y plane reconstructed by GLS. (c) The normalized pressure distribution on the 

center X-Y plane reconstructed by PPE. Vortices were identified using Q criteria and the 
contours correspond to Q=1e+4 1/s2 (thin line) and Q=5e+4 1/s2 (thick line). 
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gradient errors became more significant as suggested by Figure 5.6(a), thus the GLS was more 

effective as it utilized the covariances for pressure reconstruction as suggested in Figure 5.7.  

The proposed linear-transformation based algorithm was capable of predicting the variances 

and covariances of the pressure gradient errors locally and instantaneously, as suggested in Figure 

5.5 and Figure 5.6. Compared with the approaches introduced by Azijli et al. (2016) which 

performed exact uncertainty propagation assuming Gaussian-distributed velocity errors or carried 

out Monte Carlo simulations, the proposed algorithm does not assume any particular form of the 

velocity error distribution and is more computationally efficient due to the linearization of the error 

propagation. The formulation of Eqn. 5-7 and the analyses in Sect. 5.3.1.1 also suggested that the 

pressure gradient uncertainty is dependent on many factors including the velocity uncertainty, the 

discretization scheme, the spatiotemporal resolution, the local velocity profile, etc. As a 

consequence, the variances and covariances of the pressure gradient errors usually differ from 

those of velocity errors. One example is the auto-correlation coefficients 𝜌iz(RT* around the center 

point in Figure 5.6(b-c). Although the 𝜌-0,-" (as defined by Eqn. 5-23) varied isotropically with 

nonnegative values, the variation of 𝜌iz(RT*  was anisotropic with both positive and negative 

correlations. In addition, the error magnitudes of the calculated pressure gradient can be 

significantly different from those of the measured velocity. For the laminar pipe flow, the RMS 

error amplification from velocity to pressure gradient was 16.5 as suggested in Figure 5.12(b) and 

(d). This dramatic error amplification was due to the small time separation Δ𝑡 (1/6000 s) of the 

flow measurement. As discussed by van Oudheusden (2013), decreasing Δ𝑡 reduces the truncation 

error of finite difference, but increases the effect of velocity error on pressure gradient calculation 

with Eulerian approach. For steady flows, using a large Δ𝑡 would effectively reduce the error 

amplification as suggested in Figure 5.13 (d). For the unsteady Womersley flow, the effect of Δ𝑡 

was less significant as suggested in Figure 5.8. The GLS method created more bias error than PPE 

or OLS but better suppressed the increase of bias error for severely under-resolved data.  

The performance of GLS pressure reconstruction was affected by the reliability of the 

provided velocity uncertainty. Since the a-posterior method to estimate velocity uncertainty from 

volumetric PTV has not been established, the uncertainty of the laminar pipe flow data was 

obtained from the velocity fields with two approaches in this study. The first approach took the 

STD over all the velocity frames (𝝈𝒖) and was a reliable estimation for the steady flow. The second 

approach estimated 𝝐Û𝒖	from the spurious velocity-divergence of the incompressible flow then 
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estimated the 𝝈×𝒖 as the WSTD of 𝝐Û𝒖. As the 𝝐Û𝒖 was calculated from Eqn. 5-19 in a least-squares 

sense, an underestimation of 𝝈×𝒖 was caused as suggested in Figure 5.12(b). With the less reliable 

𝝈×𝒖, the GLS UNC had a slightly worse performance than GLS STD, while both GLS UNC and 

GLS STD still effectively improved the pressure accuracy compared to PPE.  

The performance of GLS was also affected by the completeness of the provided velocity 

uncertainty. To ensure an accurate prediction of the pressure gradient uncertainty, both the 

variances and covariances of the velocity errors are required. However, there has not been any 

established method to estimate the covariances of velocity errors for PIV/PTV. A more practical 

condition was considered in this study by performing the GLS with zero velocity covariances (GLS 

0Cov) on the synthetic flow fields with correlated velocity errors (nonzero covariances). As 

suggested in Figure 5.11, the GLS 0Cov had slightly worse performances than GLS, while still 

effectively improved the pressure accuracy compared to PPE. For the experimental laminar pipe 

flow, the velocity error covariances were also unavailable and assumed to be zero, and the GLS 

pressure reconstructions yielded more accurate pressure estimations than PPE as suggested in 

Figure 5.13. These analyses indicated the practical benefits of using GLS for pressure 

reconstruction even without the velocity error covariances. 

There are several limitations of the GLS pressure reconstruction method. First, the GLS 

method requires the velocity uncertainty to be estimated instantaneously and locally. For 

planar/stereo PIV measurements, there are several methods to estimate the velocity uncertainty 

(Bhattacharya et al., 2017, 2018; Charonko & Vlachos, 2013; Timmins, Wilson, Smith, & Vlachos, 

2012; Xue et al., 2015). However, these methods remain untested for volumetric PIV, and only 

one recent development has covered the a-posterior uncertainty quantification for volumetric PTV 

(Bhattacharya & Vlachos, 2019). The velocity-divergence based algorithm introduced in Section 

5.2.1.5 can provide velocity uncertainty regardless of the measurement technique. However, the 

algorithm underestimates the velocity uncertainty as it is based on the least-squares estimation of 

velocity error from velocity-divergence using Eqn 5-19. Moreover, none of these methods can 

provide the covariances of velocity errors. The performance of GLS with the velocity uncertainty 

estimated using the existing uncertainty quantification methods can be explored in future work. In 

addition, the GLS method created greater pressure bias error compared to PPE and OLS for cases 

with low velocity noise level (less than 10%) as suggested in Figure 5.7. Furthermore, the GLS 

method has greater computational cost than the other methods employed in the present study. As 
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described in Section 5.2.1.4, the GLS reconstruction needs to solve the augmented linear system 

to avoid operations with the dense matrix 𝛴QI0. The augmented systems are approximately 3 times 

and 4 times as large as the linear systems of PPE for planar data and volumetric data, respectively. 

Thus, more computational effort is required for GLS reconstruction compared to PPE, OLS, or 

WLS. For the laminar pipe flow data with 3772 grid points within the flow field, the average 

elapsed time per frame using a workstation with 16 cores (Intel Xeon CPU E5-2450 v2) was 1.45 

s for PPE, 1.18 s for OLS, 2.37 s for WLS, and 28.0 s for GLS. For larger volumetric flow fields, 

the WLS method is preferred which requires much less computational cost than GLS as suggested 

by the elapsed time. The WLS reconstruction was demonstrated with synthetic flow fields and 

showed significant improvement compared to PPE as suggested in Figure 5.7(b). The WLS has 

also been employed to estimate the instantaneous pressure fields from velocity fields measured 

using PTV in patient-specific aneurysm models (Zhang et al., 2019). In addition, the proposed 

GLS pressure reconstruction can only be applied to incompressible flow fields since the 

formulations of pressure gradient calculation and uncertainty propagation are only valid for 

incompressible flows. Also, the current framework of GLS pressure reconstruction and the 

pressure gradient uncertainty estimation algorithm are only applicable to gridded velocity data 

with the Eulerian approach for pressure gradient calculation. For Lagrangian approach with 

material acceleration acquired from particle tracks, additional error sources such as interpolation 

errors and propagation position errors need to be considered (Van Gent et al. 2018a, b). To ensure 

the accuracy of numerical differentiations, the GLS method requires spatiotemporal resolved 

velocity measurements. 

This study presented an instantaneous pressure reconstruction method using uncertainty 

information with generalized least-squares. The pressure gradient fields were calculated from the 

velocity fields measured by PIV/PTV, and a linear-transformation based algorithm was introduced 

to estimate the local and instantaneous pressure gradient uncertainty-based on the velocity 

uncertainty. The pressure fields are reconstructed by GLS which utilizes the pressure gradient and 

its uncertainty. The performance of GLS was tested for synthetic flow fields with a wide range of 

velocity error levels and both correlated and uncorrelated velocity errors. The GLS method 

effectively reduced the random errors in the pressure fields compared to the baseline method of 

solving the PPE. The error mitigation by GLS is due to the utilization of both variances and 

covariances of the pressure gradient errors. The improvement by GLS was more significant for 
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cases with greater velocity errors. Compared to PPE, the pressure error reduction by GLS was 50% 

and 250% with 9.6% and 32.1% velocity errors, respectively. With spatially correlated velocity 

errors, the GLS was more effective as it utilized the stronger correlation of pressure gradient errors 

during reconstruction. For velocity data with high accuracy, the PPE or OLS should be used as 

they create less bias error in the reconstructed pressure field compared to GLS. The laminar pipe 

flow measured by volumetric PTV was employed to demonstrate the GLS pressure reconstruction, 

and a 96% error reduction was achieved compared to PPE. The GLS also predicted reasonable 

estimations on the pressure drop as well as the spatial pressure distribution for the transitional pipe 

flow. Overall, the present study successfully demonstrates the framework of employing 

uncertainty information to improve the pressure reconstruction from 2D or 3D velocity fields. 

Further development could include the usage of estimated velocity uncertainty from flow 

measurements for the GLS pressure reconstruction. 
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 UNCERTAINTY OF PIV/PTV BASED EULERIAN PRESSURE 
ESTIMATION USING VELOCITY UNCERTAINTY 

This chapter is reproduced with permission from: Zhang, J., Bhattacharya, S., Vlachos, P.P., 2022. 
Uncertainty of PIV/PTV based Eulerian pressure estimation using velocity uncertainty. Meas. Sci. 
Technol. 33, 065303. https://doi.org/10.1088/1361-6501/ac56bf 

6.1 Background and literature review 

Pressure reconstruction from velocity measurements using particle image velocimetry (PIV) 

and particle tracking velocimetry (PTV) provides instantaneous pressure fields without invasively 

altering the flow (Charonko et al., 2010; Fujisawa et al., 2005; Huhn et al., 2016; Liu & Katz, 2006; 

Nathan J. Neeteson & Rival, 2015). The PIV/PTV-based pressure reconstruction starts with 

calculating the pressure-gradients from velocity fields using the Navier-Stokes equation, which is 

then spatially integrated to obtain the pressure fields. The pressure gradients can be calculated 

using Eulerian approaches from gridded data (Charonko et al., 2010; Roeland de Kat et al., 2009; 

Fujisawa et al., 2005; Tronchin et al., 2015) or Lagrangian approaches from particle tracks (R. De 

Kat & Van Oudheusden, 2012; Gesemann et al., 2016; Ghaemi et al., 2012; Huhn et al., 2016; Liu 

& Katz, 2006; N. J. Neeteson et al., 2016; P. L. Van Gent et al., 2018a, 2018b) with different 

formulations for evaluating the material acceleration. The pressure-gradients are usually integrated 

using the path-integration algorithms (Dabiri et al., 2014; Liu & Katz, 2006; Tronchin et al., 2015), 

by solving the pressure Poisson equation (PPE) (R. De Kat & Van Oudheusden, 2012; Fujisawa 

et al., 2005; Nathan J. Neeteson & Rival, 2015; Schneiders et al., 2016; Violato et al., 2011), or 

using least-squares methods (Jeon et al., 2018; P. L. Van Gent et al., 2018a; Zhang, Bhattacharya, 

& Vlachos, 2020; Zhang et al., 2019). 

Previous studies have assessed the accuracy of the pressure fields reconstructed from 

PIV/PTV measurements with different methods (Charonko et al., 2010; McClure & Yarusevych, 

2017b; P. L. Van Gent et al., 2018a, 2018b; P. van Gent et al., 2017; van Oudheusden, 2013; Zhang, 

Bhattacharya, et al., 2020). The error analysis results suggested that several factors can affect the 

accuracy of the pressure-gradients and subsequently the pressure fields, including the spatial and 

temporal resolutions, the velocity measurement error levels and error profiles, the level of out-of-

plane motion for planar measurement, and the approaches for calculating the material acceleration 
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(Charonko et al., 2010; R. De Kat & Van Oudheusden, 2012; Faiella, Grant Jeon Macmillan, 

Whitehead, & Pan, 2021; van Oudheusden, 2013). Moreover, the accuracy of the obtained pressure 

fields also depends on the algorithms for pressure-gradient integration, the type and reliability of 

the pressure boundary conditions, and the size, shape, and dimension of the domain (Charonko et 

al., 2010; Faiella et al., 2021; Pan et al., 2016; Zhang, Bhattacharya, et al., 2020; Zhang et al., 

2019).  

In addition to the many factors that affect the reconstructed pressure’s accuracy, it is also 

essential to understand the error propagation characteristics for estimating the pressure uncertainty. 

De Kat and Van Oudheusden (R. De Kat & Van Oudheusden, 2012) used a simplified linear 

propagation for modeling the noise propagation from velocity to pressure gradient and compared 

the sensitivity of the Eulerian and Lagrangian approaches. Following this, Laskari et al. (Laskari, 

de Kat, & Ganapathisubramani, 2016) proposed the uncertainty propagation formulations for the 

pressure-gradient calculation with the Eulerian, pseudo-Lagrangian, and Talyor’s hypothesis 

approaches. However, these two approaches did not consider the spatial variation of velocity 

uncertainty or the propagation through the pressure-gradient integration. Several methods have 

also been proposed to use the physical and mathematical constraints to estimate the pressure 

uncertainty.  Azijli et al. (Azijli et al., 2016b) introduced a Bayesian framework that estimates the 

velocity uncertainty from velocity divergence and propagates the posterior covariance matrix of 

velocity field to the pressure field, assuming normal-distributed errors. McClure and Yarusevych 

(McClure & Yarusevych, 2017a, 2017b) estimated the instantaneous pressure-gradient error based 

on the divergence and curl of the pressure-gradient field and used a line-integration approximation 

to model the uncertainty propagation from pressure-gradient to pressure field. Focusing on the the 

pressure integration, Pan et al. (Pan et al., 2016) investigated the dynamics of error propagation 

through PPE and quantified the error bounds of the pressure field related to the uncertainty in the 

pressure gradient and the boundary condition. Faiella et al. (Faiella et al., 2021) also quantified the 

effect of the location and profile of the error in the data field on the resultant error in the 

reconstructed pressure field, which was achieved by analyzing the Green’s function of the PPE 

and the eigenvalue of a Poisson operator. Liu and Moreto (Liu & Moreto, 2020) analyzed the error 

propagation characteristics of the pressure-gradient integration carried with the omni-directional 

method. 
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Besides modeling the error propagation dynamics, the error level and error profile in the 

measured velocity fields are needed to estimate the uncertainty of the reconstructed pressure fields. 

The existing uncertainty quantification algorithms can provide the local and instantaneous 

uncertainty of the velocity measurement with PIV (Bhattacharya et al., 2018; Charonko & Vlachos, 

2013; Sciacchitano, 2019; Sciacchitano, Wieneke, & Scarano, 2013; Timmins et al., 2012; 

Bernhard Wieneke, 2015; Xue et al., 2014, 2015) and PTV (Bhattacharya & Vlachos, 2020), which 

can be used to infer the pressure uncertainty. The velocity uncertainty is typically defined as the 

standard deviation of the velocity error distribution (standard uncertainty) or the confidence 

interval for a predefined probability (expanded uncertainty) (Sciacchitano, 2019). This study 

introduces a method to propagate the standard velocity uncertainty to the reconstructed pressure 

field. The uncertainty propagations through the calculation and integration of the pressure-gradient 

were modeled as linear transformations, which were able to reproduce the effects of the 

spatiotemporal resolutions, numerical schemes, the integration algorithms, and the pressure 

boundary conditions on the pressure accuracy. The method was first validated with synthetic 

velocity fields contaminated with artificial velocity errors correlated in space, time, and between 

components. The method was then applied to experimental flow fields measured using PIV and 

PTV.  

6.2 Methods 

The procedures of PIV/PTV-based pressure reconstruction and pressure uncertainty 

estimation are demonstrated in Figure 6.1. The pressure-gradient field is calculated from the 

measured velocity fields using the Navier-Stokes momentum equation, and the pressure field is 

reconstructed by spatially integrating the pressure gradients. The pressure-gradient uncertainty was 

estimated by propagating the velocity covariance matrix consisting of the velocity uncertainty and 

the covariances between velocity errors. The covariances were determined by modeling the 

correlation coefficients for PIV measurements or estimated based on the spatial interpolation of 

particle tracks to gridded velocity data for PTV measurements. The pressure uncertainty is then 

determined by propagating the pressure-gradient uncertainty through the integration process. The 

details on the methodology are presented in sections 6.2.1 and 6.2.2.  
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6.2.1 Pressure-gradient calculation and uncertainty propagation 

The pressure-gradient can be calculated from the velocity field using the Navier-Stokes 

momentum equation as: 

 

𝜵𝒑 = −𝜌 d𝒖
dG
+ 𝜇𝛻"𝒖,	 (6-1)	

	

where 𝑝 is the pressure, 𝒖 is the velocity, 𝜌	is density, 𝜇 is dynamic viscosity, d𝒖
dG

 is the material 

acceleration, and 𝜇∇"𝒖 is the viscous diffusion. For gridded velocity data, the pressure-gradient 

can be calculated using the Eulerian approach, which determines the material acceleration as the 

combination of the local acceleration (b𝒖
bG

) and the convective acceleration (𝒖 ∙ ∇𝒖) as:  

 

𝜵𝒑 = −𝜌cb𝒖𝒎
bG

+ 𝒖𝒎 ∙ 𝛻𝒖𝒎d + 𝜇𝛻"𝒖𝒎,	 (6-2)	

 

The temporal derivative b𝒖𝒎
bG

 was evaluated as the differences between the velocity fields at 

neighboring time points normalized by the time separation. The velocity fields were organized into 

column vectors with 3𝑁 elements by concatenating all the velocity components (u, v, and w) from 

Figure 6.1 The schematic demonstrating the procedure of PIV/PTV based pressure 
reconstruction (a, blue arrows) and the estimation of pressure uncertainty (b, red arrows). 
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all the N grid points in the field, and the spatial differentiation was conducted with the discrete 

linear operators (2D matrices). Therefore, equation Error! Reference source not found. was 

evaluated using matrix/vector operations, and 𝛁𝒑	was obtained as a column vector with 3N 

elements including all the pressure-gradient components (Ti
T*

, Ti
T+

, and Ti
T,

) from all the grid points. 

The present study employed the second-order central (SOC) difference scheme to calculate the 

spatial and temporal derivatives except for the boundary points where the first-order one-sided 

scheme was used.  

With the assumptions that the truncation error is negligible compared to the random error, 

and the velocity error (𝝐𝒖) is significantly less than 𝒖𝒎, the pressure-gradient error (𝝐𝛁𝒑) can be 

derived from equation (6-3) as: 

 

𝝐𝜵𝒑 = −𝜌cb𝝐𝒖
bG
+ 𝒖𝒎 ∙ 𝛻𝝐𝒖 + 𝝐𝒖 ∙ 𝛻𝒖𝒎d + 𝜇𝛻"𝝐𝒖.	 (6-3)	

	
Like equation (6-2), equation (6-3) was evaluated using matrix/vector operations as: 

 

𝝐𝜵𝒑 = [𝑀I 𝑀 𝑀j] Á
𝝐𝒖𝒊I𝟏

𝝐𝒖𝒊

𝝐𝒖𝒊j𝟏
Â ≡ 𝑀'𝝐𝒖𝒄 ,	 (6-4)	

with 𝑀j = − �
>G
𝐼, 𝑀I =

�
>G
𝐼,  

and 𝑀 = −𝜌 c𝑑𝑖𝑎𝑔(𝒖𝒎𝒊 ) ∙ ∇ + 𝑑𝑖𝑎𝑔(∇𝒖𝒎𝒊 )d + 𝜇∇", 

 

where the superscript i corresponds to the i-th timeframe, 𝐼 is the identity matrix, and 𝑑𝑖𝑎𝑔() 

represents the diagonal matrix with the diagonal elements from the given vector. The matrices 𝑀, 

𝑀I, and 𝑀j transform the velocity errors from the previous, current, and following timeframes 

denoted as 𝝐𝒖𝒊I𝟏, 𝝐𝒖𝒊 , and 𝝐𝒖𝒊j𝟏 to the components of the pressure-gradient error 𝝐𝛁𝒑. The matrix 

𝑀' ≡ [𝑀I 𝑀 𝑀j]  represents the combined transformation corresponding to the combined 

velocity errors 𝝐𝒖𝒄 ≡ [𝝐𝒖𝒊I𝟏 𝝐𝒖𝒊 𝝐𝒖𝒊j𝟏]/. 

The standard uncertainty of the velocity measurement with PIV and PTV was used to 

construct the covariance matrix of 𝝐𝒖 . For volumetric measurement with three velocity-

components, the covariance matrix Σ- with a shape of 3𝑁 × 3𝑁 can be expressed as: 
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𝛴𝒖 = Þ
𝛴-- 𝛴-$ 𝛴-.
𝛴-$ 𝛴$$ 𝛴$.
𝛴-. 𝛴$. 𝛴..

ß.	 (6-5)	

	
Each diagonal block (Σ-- , Σ$$ , and Σ.. ) of Σ𝒖  has a shape of 𝑁 × 𝑁  and represents the 

covariance matrix of each velocity component. The diagonal elements in the diagonal blocks are 

the variances of the velocity errors, while the off-diagonal elements correspond to the 

autocorrelation between different grid points. The off-diagonal blocks of Σ𝒖  consist of the 

covariances between the errors from different velocity components indicated by the subscripts and 

are null-matrices if different velocity components are uncorrelated. The dimension of Σ𝒖 becomes 

smaller for planar two-component data by removing the blocks associated with the w-component. 

The covariance matrix for the combined error vector 𝜖-' 	containing multiple timeframes can be 

constructed accordingly as: 

 

𝛴-' = à
𝛴-
EI0,EI0 𝛴-

E,EI0 𝛴-
EI0,Ej0

𝛴-
E,EI0 𝛴-

E,E 𝛴-
E,Ej0

𝛴-
EI0,Ej0 𝛴-

E,Ej0 𝛴-
Ej0,Ej0

á,	 (6-6)	

	
where the diagonal blocks are the covariance matrices for the velocity errors at frame 𝑖 − 1, 𝑖, and 

𝑖 + 1 as indicated by the superscript. The off-diagonal blocks contain the covariances between the 

velocity errors from different timeframes, which are zeros for temporally uncorrelated errors. The 

pressure-gradient uncertainty can be determined by propagating Σ-'  through equation (6-4) as: 

 

𝛴:i = 𝑀'𝛴-'𝑀'
/ 	 (6-7)	

	
where Σ∇i  is the covariance matrix of 𝜖∇i  whose diagonal elements are the variances of the 

pressure-gradient errors at each grid point, and the off-diagonal elements correspond to the 

correlation in space or between different pressure-gradient components. This linear-

transformation-based uncertainty propagation has been applied to synthetic flow fields with 

spatially correlated velocity errors and could predict both variances and covariances of the 

pressure-gradient errors (Zhang, Bhattacharya, et al., 2020). 
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6.2.2 Pressure field calculation and uncertainty propagation 

The present study considered the uncertainty propagation through the pressure-gradient 

integration with the PPE method and the least-squares methods, estimated as linear transformations.  

Pressure Poisson equation 

The PPE can be formulated as: 

 

𝛻"𝒑 = 𝛻 ∙ 𝜵𝒑 ≡ 𝒔,	 (6-8)	
 

where 𝒑 is a column vector containing the pressure to be solved, and the source term 𝒔 is evaluated 

as the divergence of the pressure-gradient calculated from equation (6-2). The Laplacian (∇") and 

divergence (∇ ∙) calculations were performed using discrete linear operators constructed with the 

SOC scheme. At the boundary points with known pressure values, Dirichlet boundary condition 

can be imposed by: 

 

𝐿𝒑 = 𝒑𝑩𝑪,	 (6-9)	
 

where 𝐿 is the labeling matrix consisting of ones and zeros,  and 𝒑𝑩𝑪 is the column vector of the 

known pressure values at the boundary points. The linear system of PPE with Dirichlet boundary 

condition is denoted as: 

 

𝐴��§𝒑 = 𝒃𝑷𝑷𝑬,	 (6-10)	
 

with 𝐴��§ ≡ Í∇
"

𝐿
Î  and 𝒃𝑷𝑷𝑬 ≡ Í

𝐬
𝒑𝑩𝑪Î . The covariance matrix of the source term s can be 

determined by propagating the uncertainty of the pressure-gradients Σ∇i through equation (6-8) as: 

 

𝛴𝒔 = (𝛻 ∙)𝛴:i(𝛻 ∙)/ 	 (6-11)	

 

The covariance matrix of the combined source term 𝒃𝑷𝑷𝑬 can be obtained as: 
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𝛴Q,��§ = Õ
𝛴𝒔

𝛴i,«¡
Ö,	 (6-12)	

 

where Σi,«¡  is the covariance matrix for the Dirichlet boundary condition, which is a null-matrix 

if there is no uncertainty in the Dirichlet values. Thus, the pressure and the pressure uncertainty 

can be obtained by solving equation (10) and propagating ΣQ (Azijli et al., 2016b),  respectively: 

 

𝒑 = 𝐴��§I0 𝒃𝑷𝑷𝑬,	 (6-13)	

𝛴i = 𝐴��§I0 𝛴Q,��§𝐴��§I/ .	 (6-14)	

 

where Σi is the covariance matrix of the reconstructed pressure field.  

Least-squares methods 

Least-squares methods reconstruct the pressure field based on the following relationship: 

 

𝐺𝒑 = 𝑀S𝒑𝒈𝒓𝒂𝒅,𝒖,	 (6-15)	

 

where 𝐺 is the discrete gradient operator, and 𝑀S is a linear operator that interpolates the 𝒑𝒈𝒓𝒂𝒅,𝒖 

on the grid nodes to the staggered points located in the middle between neighboring grid nodes 

(Jeon et al., 2018; Zhang, Bhattacharya, et al., 2020). The Dirichlet boundary condition can be 

applied by incorporating equation (6-9) as: 

 

Í𝐺𝐿Î 𝒑 = �𝑀S𝒑𝒈𝒓𝒂𝒅,𝒖
𝒑𝑩𝑪

�,	 (6-16)	

 

The least-squares solution of equation (6-16) can be directly solved from: 

 

(𝐴SZ/ 𝐴SZ)𝒑 = 𝐴SZ/ 𝒃𝑳𝑺,	 (6-17)	

with 𝐴SZ = Í𝐺𝐿Î and 𝑏SZ = �𝑀S𝒑𝒈𝒓𝒂𝒅,𝒖
𝒑𝑩𝑪

�. 
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This pressure reconstruction approach is referred to as the ordinary least-squares (OLS) in this 

study, and the reconstructed pressure field is obtained as: 

 

𝒑 = (𝐴SZ/ 𝐴SZ)I0𝐴SZ/ 𝒃𝑳𝑺.	 (6-18)	
 

The uncertainty of the right-hand side of equation (6-18) can be estimated as: 

 

𝛴Q,SZ = Õ
𝑀S𝛴:i𝑀S

/

𝛴i,«¡
Ö,	 (6-19)	

 

which can be propagated through equation (6-17) to the reconstructed pressure field as: 

 

𝛴i = ((𝐴SZ/ 𝐴SZ)I0𝐴SZ/ )𝛴Q,SZ((𝐴SZ/ 𝐴SZ)I0𝐴SZ/ )/ .	 (6-20)	

 

The pressure-gradient uncertainty can be used to improve the pressure reconstruction with the 

weighted least-squares (WLS) or the generalized least-squares (GLS) methods (Zhang, 

Bhattacharya, et al., 2020; Zhang et al., 2019) by incorporating a weight matrix (𝑊) to equation 

(6-17) as: 

 

(𝐴SZ/ 𝑊𝐴SZ)𝒑 = 𝐴SZ/ 𝑊𝒃𝑳𝑺.	 (6-21)	
 

For WLS reconstruction, W is constructed as a diagonal matrix containing the reciprocals of the 

variances from Σ(�N. For GLS, 𝑊 = Σ(�NI0  and can be a dense matrix. The pressure uncertainty from 

WLS and GLS reconstructions can be estimated by propagating Σ(�N as: 

 

𝛴i = ((𝐴SZ/ 𝑊𝐴SZ)I0𝐴SZ/ 𝑊)𝛴Q,SZ((𝐴SZ/ 𝑊𝐴SZ)I0𝐴SZ/ 𝑊)/ .	 (6-22)	

 

To improve the numerical stability, the following augmented linear system was formulated by 

introducing the vector 𝝀 = ΣQ,SZI0(𝒃𝑳𝑺 − 𝐴SZ𝒑) and solved for the GLS reconstruction (Zhang, 

Bhattacharya, et al., 2020) in the present study: 
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�
𝛴Q,SZ 𝐴SZ
𝐴SZ/ 0 � �𝝀𝒑� = Í𝒃𝑳𝑺0 Î,	 (6-23)	

 

and therefore, the uncertainty of the pressure field was determined as: 

 

�
𝛴� 𝛴�,i
𝛴�,i 𝛴i

� = �
𝛴Q,SZ 𝐴SZ
𝐴SZ/ 0 �

I0

Í𝛴Q,SZ 0
0 0

Î �
𝛴Q,SZ 𝐴SZ
𝐴SZ/ 0 �

I/

.	 (6-24)	

 

6.2.3 Validation using synthetic velocity fields and experimental datasets 

Synthetic velocity fields 

The uncertainty propagation algorithm was first tested with the synthetic velocity fields of a 

2D pulsatile flow between two infinite parallel plates (Charonko et al., 2010; Zhang, Bhattacharya, 

et al., 2020). The streamwise oscillating pressure gradient and velocity profile can be expressed 

as: 

 
Ti
T*
= 𝜌𝐾 + 𝛾𝜌𝐾𝑐𝑜𝑠𝜔𝑡,	 (6-25)	

𝑢 = 𝑢VR* c1 −
+(

�(
d + ��

E�
{1 − 'UN�u+/�√E�x

'UN�u√E�x
� 𝑒𝑥𝑝(𝑖𝜔𝑡),	 (6-26)	

 

with 𝜆 = ℎ�
�
a�

. ℎ  is the channel half-width, 𝛾  represents the ratio between the steady and 

oscillating pressure-gradients, and 𝜌𝐾 is the pressure-gradient caused by a steady flow with a 

centerline velocity of 𝑢VR*. The same parameters were used here as in (Zhang, Bhattacharya, et 

al., 2020), with 𝜔 = 2𝜋	rad/s, 𝑢VR* = 1	m/s, and 𝛾 = 25.13. The fluid properties were 𝜌 = 1000 

kg/m3 and 𝜇 = 1 × 10IW	Pa s. The characteristic velocity and pressure were 𝑢O = 𝑢VR* and 𝑝O =
0
"
𝜌𝑢O", respectively. The distance between the two plates (the channel width) was 8 mm. Only the 

bottom half of the channel (y from -4 to 0 mm) was used to save computational effort. The 

streamwise length of the domain was 20 mm. The velocity fields were generated on a Cartesian 

grid with a grid size of 0.1 × 0.1 mm2 and 101 × 21 grid points in the domain. One thousand 
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timeframes were generated with a sampling rate of 20 Hz across 50 cycles. The uncertainty of the 

velocity fields was introduced by adding Gaussian noise to each component of the velocity field 

with the standard deviation proportional to the local velocity magnitude as: 

 

𝜎 = 𝛼|𝒖𝒕|,	 (6-27)	
 

where 𝜎 is the standard deviation of the noise, 𝒖𝒕 is the actual velocity, and 𝛼 represents the noise 

level. To investigate the effect of velocity noise level on the pressure uncertainty, eight datasets 

were created with 𝛼 ranging from 1% to 30%. Additional datasets were created to mimic the noise 

from PIV and PTV measurements with the artificial noise correlated in space, time, or between 

different velocity components (Sciacchitano & Wieneke, 2016). The spatial and temporal 

autocorrelations were prescribed using a Gaussian function of the spatial or temporal separation 

as:  

 

𝜌'U(( = 𝑒𝑥𝑝(−𝑠 × 𝑟"),	 (6-28)	
 

where 𝜌'U(( is the autocorrelation coefficient between two measurements separated spatially or 

temporally, 𝑟  represents the spatial separation normalized by the grid resolution ℎz(ET 

Alternatively, the temporal separation normalized by the time resolution Δ𝑡 , and 𝑠  is the 

coefficient that controls the strength of the autocorrelation. Two levels of autocorrelation were 

considered with 𝑠 being 0.22 and 0.88, leading to 𝜌'U(((𝑟 = 1) of 0.8 and 0.4, respectively. Four 

levels of component-wise correlation coefficients (𝜌-,$) were considered, including 0.25, 0.5, 0.75, 

and 0.9. The correlated noise still follows equation (6-23) with a noise level of 10%. Only one type 

of correlation (spatial, temporal, or component-wise) was considered for each dataset to separate 

and investigate the effects of different correlations. The pressure fields were reconstructed with 

each dataset's PPE, OLS, WLS, and GLS methods. The information on the imposed velocity 

uncertainty and the correlations were used for estimating the pressure uncertainty. 

Planar PIV measurement of a laminar vortex ring 
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The uncertainty estimation algorithm was tested with the planar PIV measurements of the 

vortex ring flow obtained from the central camera images of case E in the fourth PIV challenge 

(Kähler et al., 2016). The PIV processing was carried using Prana and DaVis 8.2, with standard 

cross-correlation (SCC) and iterative window deformation (Scarano, 2002). Four passes were 

performed with a window overlap of 75% for the first pass and 87.5% for the following three 

passes. The window size was 64 × 64 pixels for all the passes, and the windows were masked by 

a 50% Gaussian filter (Eckstein & Vlachos, 2009), such that the effective window resolutions (WR) 

were 32. The obtained velocity fields contain 81 × 81 grid points in the domain with Δ𝑥 = Δ𝑦 =

0.67 mm. A total of 50 timeframes were collected with a sampling rate of 1000 Hz. The moment 

of correlation (MC) (Bhattacharya et al., 2018) and image matching (IM) (Sciacchitano et al., 2013) 

methods were used to estimate the velocity uncertainty from the prana processing, while the 

velocity uncertainty from DaVis processing was obtained with the correlation statistics (CS) 

(Bernhard Wieneke, 2015) method. The pressure fields were reconstructed from the velocity fields 

using PPE, OLS, WLS, and GLS methods, and the pressure uncertainty from each reconstruction 

was estimated based on velocity uncertainty from MC, IM, or CS. The center point on the left 

boundary of the domain was assigned with 0 Pa as the Dirichlet boundary condition. To simulate 

the effect of the interrogation window overlap on the spatial autocorrelation of velocity errors 

(Sciacchitano & Wieneke, 2016), the autocorrelation coefficient 𝜌'U((  was approximated as a 

Gaussian function of the spatial separation: 

 

𝜌'U(( = 𝑒𝑥𝑝}𝑙𝑛}𝑤Ui~ × 𝑟"~,	 (6-29)	

 

where 𝑤Ui is the window overlap, and 𝑟 is the spatial separation normalized by the grid resolution. 

Thus, 𝜌'U(( = 𝑤Ui  between neighboring velocity measurements. The modeling of 𝜌'U((  with 

equation (6-29) was validated with the PIV fields processed using different window overlaps. For 

calculating the temporal derivatives, a more prolonged time separation is preferred to reduce noise 

amplification. A time separation of 10Δ𝑡 was selected for this dataset as: 

 

T-
TG

E
= -/QRI-/SR

0OHG
,	 (6-30)	
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where the superscript indicates the frame number. The obtained temporal derivatives were 

compared to the results with shorter time separations, and the comparison suggested that using 

10Δ𝑡  was sufficient to resolve the temporal variations of this flow data. The temporal 

autocorrelation between the frames (i-5) and (i+5) were assumed to be zero. To assess the accuracy 

of the velocity and pressure fields, the reference velocity fields were obtained from the three-

dimensional tomographic PIV measurement using the images from all five cameras (Kähler et al., 

2016). The velocity data were temporally smoothed using a 3rd order polynomial fitting to reduce 

the measurement noise and improve the reliability of the temporal derivative evaluation for 

estimating the “ground truth” pressure. The "ground truth" velocity fields were on a 121 × 121 

grid with an isotropic resolution of 0.45 mm. The pressure fields reconstructed from the "ground 

truth" velocity fields using PPE and OLS methods were employed as the "ground truth" pressure 

for the PPE and least-squares reconstructions, respectively. The characteristic velocity (𝑢O) of the 

vortex ring flow was determined as the root-mean-square (RMS) of the velocity magnitudes from 

the "ground truth", and the characteristic pressure was defined as 𝑝O =
0
"
𝜌𝑢O". 

Volumetric PTV measurement of a laminar pipe flow 

The uncertainty estimation was applied to the laminar flow in a circular pipe measured with 

volumetric PTV (Bhattacharya & Vlachos, 2020). A gear pump drove the flow at a steady flow-

rate 𝑄 of 0.17 L/min in a FEP tube of diameter (2𝑅iEi%) of 0.25 inches. The working fluid inside 

the pipe was distilled water urea (90:10) solution with a density of 1015 kg/m3 and dynamic 

viscosity of 0.915 mPas, and the Reynolds number was 630. The images were acquired at 6 kHz 

with a size of 640 × 624 pixels. The velocity fields were obtained using the triangulation (Maas et 

al., 1993) and Iterative Particle Reconstruction (IPR) (Bernhard Wieneke, 2013) based 

reconstruction and nearest-neighbor tracking, and the uncertainties from both methods were 

quantified using the algorithms introduced in (Bhattacharya & Vlachos, 2020). The velocity and 

velocity-uncertainty were determined as: 

 

𝑢E =
(*/QEI*/)

HG
,	 (6-31)	

𝜎-/
" = 𝜎*T

" + 𝜎*/
" + 𝜎*/QE

" − 2𝜌*/*/QE𝜎*/𝜎*/QE ,	 (6-32)	
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where the subscript 𝑖 indicate the timeframe number, 𝜎*T
"  is the bias uncertainty of the particle 

positions, and 𝜌*/*/QE represents the correlation coefficient between the particle positions from the 

two neighboring frames. The velocity obtained at particle positions was interpolated using inverse 

distance weighting (IDW) to a Cartesian grid with an isotropic resolution of 0.42 mm, yielding 

around 15 grid points across the diameter of the pipe. The IDW interpolation was carried as a linear 

transformation: 

 

𝑢z = 𝑀z𝑢i,	 (6-33)	

 

where 𝑢z and 𝑢i are the velocity values on the grid nodes and the particle positions, respectively. 

𝑀z represents the coefficient matrix for the IDW interpolation. Therefore, the uncertainty of the 

gridded velocity data was determined as: 

 

𝛴-N = 𝑀z𝛴-M𝑀z
/ ,	 (6-34)	

 

where Σ-N and Σ-M are the covariance matrices for the gridded and particle velocity, respectively. 

The covariances of 𝑢i were assumed to be zeros, while the covariances in the obtained Σ-N were 

due to the IDW interpolation. The pressure fields were reconstructed from the gridded velocity 

fields using PPE, OLS, WLS, and GLS methods. Same as equation (6-30), the temporal derivatives 

were evaluated with a time separation of 10Δ𝑡 to reduce noise amplification. The center node of 

the inflow plane at X=0 and R=0 was assigned with 0 Pa as the Dirichlet boundary condition, while 

Neumann boundary was applied to the rest of the boundary points based on the local pressure 

gradients. The analytical solution of the laminar flow based on the flow rate was used as the 

"ground truth" for velocity and pressure: 

 

𝑢 = − 0
4a

T�
T*
}𝑅iEi%" − 𝑅"~,	

with		T�
T*
= − �a_

#6M/MB
6 ,	 (6-35)	
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where x is the streamwise direction, u is the streamwise velocity, and 𝑅 is the radial distance from 

the centerline. The streamwise velocity along the pipe centerline from the analytical solution was 

employed as the characteristic velocity (𝑢O) of the flow, and the characteristic pressure was 𝑝O =
0
"
𝜌𝑢O". 

6.3 Results 

6.3.1 Synthetic flow fields 

The errors in the reconstructed pressure fields were determined as the deviation from the 

analytical solution, and the pressure uncertainties were estimated by propagating the imposed 

velocity uncertainty using the proposed method. The pressure errors and uncertainties were 

normalized by the flow's characteristic pressure (𝑝O). For the case with 10% uncorrelated velocity 

noise, the normalized error and uncertainty histograms were compared in Figure 6.2. An agreement 

was found between the RMS error and RMS uncertainty of each reconstruction as suggested by 

the vertical lines, which were 0.04 for PPE and OLS, and 0.026 for WLS and GLS. The spatial 

distributions of the pressure error and uncertainty were shown in Figure 6.4 using the RMS values 

evaluated at each spatial point. The pressure errors were lower near the wall (𝑦 = −4 mm) than 

the channel's centreline (𝑦 = 0 mm). This is because the velocity errors were lower near the wall 

since the standard deviation of the imposed velocity errors was proportional to the local velocity 

magnitude as expressed in equation (6-27). Compared to the results from PPE and OLS, better 

pressure accuracy was achieved in both the near-wall region and the core-flow region by WLS and 

GLS, leading to improved accuracy near the wall. The estimated uncertainty was consistent with 

the pressure error in terms of the distributions and the magnitudes for the reconstruction with each 

method. The pressure errors and uncertainties temporal variations were presented in Figure 6.3 

using the RMS from all the spatial points at each temporal phase. The pressure uncertainty 

reproduced the temporal waveform of the pressure error, and the RMS uncertainty was within 10% 

of the corresponding RMS error at all the temporal phases for each reconstruction method.  
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To study the effect of velocity noise level on the pressure errors and uncertainties, the RMS 

errors and uncertainties were determined from the cases with different 𝛼 and presented in Figure 

6.5. As 𝛼 increased from 1 to 30%, the RMS pressure error increased from 0.3 to 14% for PPE 

and OLS and from 0.7 to 9% for WLS and GLS. Compared to PPE and OLS, the WLS and GLS 

methods yielded higher pressure errors for the cases with 𝛼 <5%, while it was more accurate for 

the cases with more significant velocity noise. For PPE and OLS reconstructions, the RMS 

Figure 6.2 The histograms of the normalized errors and uncertainties of the pressure fields 
reconstructed using different methods from the synthetic flow fields with 10% uncorrelated 

velocity noise. The vertical lines represent the RMS values for error and uncertainty. 

Figure 6.3 The temporal variations of the normalized errors and uncertainties of the pressure 
fields reconstructed using different methods from the synthetic flow fields with 10% 

uncorrelated velocity noise. 
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uncertainty matched the RMS error with 𝛼 <10% but was overestimated by about 10% for the 

cases with 𝛼 >15%. At low noise levels (𝛼 ≤5%), the WLS and GLS reconstructions' RMS 

uncertainty was underestimated by 40-60%, while the RMS uncertainty was within 10% of the 

RMS error for the remaining noise levels. At high noise levels (𝛼 >10%), the RMS uncertainty 

was overestimated by about 3% for WLS while underestimated by 5% for GLS. Similar errors and 

uncertainties were obtained from the PPE and OLS reconstructions, owning to the fact that the 

PPE and OLS share the same theoretical foundation as discussed in the work by Wang et al. (C. 

Y. Wang et al., 2017). Previous study has also shown similar performances of PPE and OLS on a 

synthetic 2D vortex ring flow (Zhang, Bhattacharya, et al., 2020).  

 

The pressure error and uncertainty were obtained from the cases with spatially or temporally 

correlated noise to investigate the effect of the autocorrelation of velocity errors. Figure 6.6 (a) 

and (b) compares the pressure RMS errors and uncertainties for the cases with 10% noise (𝛼 =10%) 

and different levels of spatial and temporal autocorrelations, respectively. The correlation levels 

were represented by the correlation coefficient between neighboring spatial or temporal points 

(𝜌'U(((𝑟 = 1)). As shown in Figure 6.6 (a), the RMS errors increased as the spatial correlation 

became stronger, e.g., the RMS error by PPE increased from 0.04 to 0.07 as the correlation 

coefficient increased from 0 to 0.8. The estimated uncertainties for PPE, OLS, and WLS were 

consistent with the corresponding pressure errors. For GLS reconstruction, the pressure uncertainty 

was underestimated by about 10% with uncorrelated noise and 20% with strongly correlated noise 

Figure 6.4 The spatial distributions of the normalized errors and uncertainties of the pressure 
fields reconstructed using different methods from the synthetic flow fields with 10% 

uncorrelated velocity noise. 
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(𝜌'U(((𝑟 = 1) =0.8). As suggested in Figure 6.6 (b), the temporal autocorrelation between 

velocity errors had a negligible effect on the pressure error and uncertainty from this flow data. 

Figure 6.6 (c) presented the RMS error and uncertainty with respect to the level of component-

wise correlation of velocity errors. Compared to the case with uncorrelated velocity error, a 𝜌-,$ 

of 0.9 increased the pressure error by 15% for OLS and reduced the pressure error by 20% for 

GLS, while the pressure errors and uncertainties were not significantly affected by the component-

wise correlation for PPE and WLS. The estimated pressure uncertainties replicated the trends of 

the pressure errors for PPE, WLS, and GLS reconstructions with the change of 𝜌-,$. 

 

Figure 6.5 The normalized RMS errors and uncertainties of the pressure fields reconstructed 
using different methods from the synthetic flow fields with velocity noise levels from 1% to 

30%. 
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6.3.2 Planar PIV of the vortex ring flow 

Figure 6.7 (a) presents the streamwise (U) velocity fields at the first timeframe for the 

"ground truth" from tomographic PIV and for the measurements using planar PIV with prana and 

DaVis. The velocity errors were quantified as the deviations from the "ground truth", and the 

velocity uncertainties were estimated using MC, IM, and CS methods. The histograms of the 

normalized velocity errors and uncertainties by the characteristic velocity (𝑢O) are presented in 

Figure 6.7 (b). Regarding the RMS values, the MC and IM uncertainties underestimated the 

velocity errors from prana by 28% and 60%, respectively, while the CS uncertainty was 47% lower 

than the velocity error from DaVis. Moreover, the velocity errors had broader distributions than 

the velocity uncertainties. The spatial distributions of the velocity errors and uncertainties are 

compared in Figure 6.7 (c) using the RMS at each spatial point normalized by the RMS of the 

whole field. Although the uncertainties predicted the locations of higher velocity errors, the 

uncertainties around the vortex cores were significantly underestimated, leading to more uniform 

spatial distributions than the velocity errors.  

Figure 6.6 The normalized RMS errors and uncertainties of the pressure fields 
reconstructed using different methods from the synthetic flow fields with (a) spatially 

correlated velocity errors, (b) temporally correlated velocity errors, and (c) component-
wise correlated velocity erros. 
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The pressure errors from the reconstructions using PPE, OLS, WLS, and GLS were 

determined as the deviations from the "ground truth", and the pressure uncertainties were estimated 

using the proposed method based on the MC, IM, and CS velocity uncertainties. The histograms 

of the absolute pressure errors and uncertainties normalized by the characteristic pressure (𝑝O) are 

presented in Figure 6.8 (a) and (b) for the prana and DaVis datasets, respectively. Since the WLS 

and GLS reconstructions use both velocity and velocity uncertainty, different pressure results were 

obtained for prana velocity fields with different velocity uncertainties (MC and IM). As shown in 

Figure 6.8, the RMS uncertainties were underestimated compared to the RMS errors, and the 

distributions of pressure uncertainties were tighter than the pressure errors. The RMS errors and 

uncertainties were provided in Table 6.1 for the velocity and reconstructed pressure fields.  

 

 

 

 

Figure 6.7 The streamwise velocity fields at the first timeframe from the “ground truth” and from 
the planar PIV measurement with prana and DaVis. (b) The histograms of the normalized 

velocity errors and uncertainties estimated with MC, IM, and CS. The RMS errors and 
uncertainties are indicated using vertical lines. (c) The spatial distributions of the normalized 

velocity errors and uncertainties. 
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Table 6.1 The normalized RMS errors and uncertainties (%) of the velocity fields and the 
reconstructed pressure fields from the vortex ring flow measured with planar PIV 

  velocity PPE OLS WLS GLS 
prana 
+MC 

error 5.65 84.9 82.8 77.8 81.7 
unc 4.09 66.8 64.9 59.2 21.4 

prana 
+IM 

error 5.65 84.9 82.8 82.5 89.7 
unc 2.29 40.0 39.1 36.9 17.3 

DaVis 
+CS 

error 5.40 84.6 82.6 77.4 96.6 
unc 2.88 50.1 48.5 42.6 40.8 

 

 

Figure 6.10 shows the uncertainty coverage results for the velocity measurements and the 

pressure reconstructed with PPE, OLS, WLS, and GLS methods. The uncertainty coverage was 

calculated as the percentage of estimates for which the errors were contained within the standard 

uncertainty, and the target coverage is determined as the coverage of the standard deviation of the 

true errors and is shown as black squares in the figure. The velocity uncertainties were 

underestimated, yielding a coverage of 57% by MC, 33% by IM, and 44% by CS. Consequently, 

the pressure uncertainties obtained by propagating the velocity uncertainties were underestimated, 

yielding coverages of 34% to 55% for PPE, OLS, and WLS reconstructions, and only 17% to 35% 

for GLS reconstructions.  

 

 

Figure 6.8 The histograms of the absolute pressure errors and the pressure uncertainties 
normalized by the characteristic pressure.  The pressure uncertainties were estimated based on 

the velocity uncertainties obtained with MC and IM methods from the prana dataset (a) and with 
the CS method from the DaVis dataset (b). 
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The spatial distributions of the pressure errors and uncertainties obtained from the prana 

velocity fields based on the MC uncertainty are presented in Figure 6.9 using the RMS values at 

each spatial point normalized by the RMS from the whole field. For all the reconstructions with 

different methods, the pressure errors and uncertainties increased from the reference point at the 

center of the left boundary to the right side of the domain. The pressure uncertainties were 

Figure 6.10 The uncertainty coverage for the velocity and reconstructed pressure with PPE, OLS, 
WLS, and GLS methods for the vortex ring flow. The three velocity uncertainty methods:  

moment of correlation (MC), image matching (IM), and correlation statistics (CS). 

Figure 6.9 The spatial distributions of the normalized pressure errors and the normalized 
uncertainties estimated based on the MC velocity uncertainty for the reconstructions of the prana 

velocity fields using different pressure reconstruction methods. 
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underestimated around the vortex cores compared to the pressure errors, resulting in more uniform 

spatial distributions. 

 

6.3.3 Volumetric PTV of the laminar pipe flow 

The error and uncertainty were determined for the velocity fields obtained using 

triangulation and IPR reconstructions and normalized by the characteristic velocity (𝑢O). The 

histograms of the normalized absolute error and the uncertainty for the streamwise component of 

the gridded velocity fields are presented in Figure 6.11(a). Regarding the RMS values presented 

in Table 6.2, the velocity uncertainty was 20% higher than the error for the triangulation 

reconstructed velocity fields, while the uncertainty was overestimated by 17% for the IPR 

reconstructed velocity fields. The spatial distributions of the normalized velocity errors and 

uncertainties are presented in Figure 6.12 (a) as a function of the streamwise location (X) along 

the centerline and as a function of the radial location (R) at X=2.5 mm. The normalized RMS 

errors ranged from 0.18 to 0.25 and from 0.23 to 0.32 for the triangulation and IPR reconstructions, 

respectively, while the range of normalized RMS uncertainties was 0.15 to 0.2 for the triangulation 

reconstructed velocity and was 0.17 to 0.22 for the IPR reconstructed velocity.  

 

Figure 6.11 The histograms of the normalized absolute errors and uncertainties of (a) the 
streamwise velocity component and (b) the reconstructed pressure fields using different 
methods from the triangulation and IPR reconstructed velocity fields. The vertical lines 

indicate the RMS errors and RMS uncertainties. 
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The histograms of the absolute pressure errors and uncertainties normalized by the 

characteristic pressure (𝑝O) are shown in Figure 6.11 (b), and the RMS errors and uncertainties are 

given in Table 6.2. For the triangulation reconstructed datasets, the RMS pressure uncertainties 

were 25% higher than the corresponding RMS errors for the results by PPE and OLS, while the 

RMS uncertainty was overestimated by 10% for WLS and underestimated by 10% for GLS. For 

the pressure results from the IPR datasets, the RMS uncertainties were 5 to 10% higher than the 

RMS errors for PPE and OLS, while they were 20 to 25% lower than the RMS errors for WLS and 

GLS. The spatial variations of normalized RMS pressure errors and uncertainties are presented in 

Figure 6.12 (b) as a function of the streamwise location (X) along the centerline and as a function 

of the radial location (R) at X=2.5 mm. The pressure errors and the predicted uncertainties were 

lowest at X=0 mm along the centerline where the accurate Dirichlet pressure boundary condition 

was applied. Faiella et al. (Faiella et al., 2021) has shown and provided theoretical proof that the 

Dirichlet boundary condition can tame the error propagation in the velocity-based pressure 

reconstruction problem. The normalized RMS pressure errors and uncertainties increased by about 

0.3 with the increase of the radial location R from 0 mm to 2.5 mm.  

Figure 6.12 The spatial variations of the normalized RMS errors and uncertainties for the 
streamwise velocity (a) and the reconstructed pressure fields (b) from the PTV measurements 

with triangulation-based reconstruction and IPR reconstruction. The normalized RMS errors and 
uncertainties were shown as a function of the streamwise location (X) along the pipe centerline 

and as a function of the radial location (R) at X=2.5 mm. 
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Table 6.2 The normalized RMS errors and uncertainties (%) of the gridded velocity fields and 
the reconstructed pressure fields of the laminar pipe flow measured with volumetric PTV 

  velocity PPE OLS WLS GLS 
Triangulation error 16.5 116.6 56.8 43.0 34.7 

unc 20.8 150.2 73.8 47.5 32.0 
IPR error 21.5 162.8 75.4 66.8 51.9 

unc 25.2 173.4 79.4 52.1 40.9 
 

The standard uncertainty coverage results of velocity and pressure are presented in Figure 

6.13 and are compared to the targe coverage calculated as the coverage of the standard deviation 

of the true errors. The coverage was 84% for the velocity obtained using triangulation 

reconstruction and 81% for the velocity from IPR reconstruction. The uncertainty coverage results 

were 67% to 81% for the pressure reconstructed from triangulation reconstructed velocity fields, 

while the coverages were 58% to 72% for the pressure reconstructed from IPR reconstructed 

velocity fields. 

6.4 Discussion 

This study introduced and applied a method to estimate the uncertainty in the pressure fields 

reconstructed from PIV/PTV measurements based on the velocity uncertainty. The standard 

velocity uncertainty was used to construct the covariance matrix of the velocity field, which was 

then propagated through the calculation and integration of the pressure-gradients to obtain the 

covariance matrix of the pressure field, therefore providing the local and instantaneous pressure 

Figure 6.13 The uncertainty coverage for the velocity and pressure reconstructed with PPE, OLS, 
WLS, and GLS methods for the laminar pipe flow measured using PTV with triangulation and 

IPR reconstructions. 
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uncertainty. The uncertainty propagation was modeled as a linear transformation by neglecting the 

high-order error terms such as 𝝐𝒖 ∙ ∇𝝐𝒖 in the calculation of pressure gradients, and the uncertainty 

propagation was performed using matrix operations as detailed in sections 6.2.1 and 6.2.2.  

The proposed method can reproduce the effects of several characteristics of the velocity 

errors on the reconstructed pressure fields. First, the amount of measurement noise affects the 

accuracy of the calculated pressure-gradients and the reconstructed pressure fields, as shown in 

Figure 6.4, and the estimated pressure uncertainty was consistent with the pressure errors at 

varying velocity noise levels. In addition, the spatial autocorrelation of the measurement errors 

affects the accuracy of the reconstructed pressure fields. Higher correlation can lead to more low-

frequency components in the velocity errors, which results in more amplified pressure error as 

shown in previous studies (R. De Kat & Van Oudheusden, 2012; Faiella et al., 2021). Figure 6.6 

(a) shows that a stronger spatial correlation led to more significant pressure errors, captured by the 

proposed uncertainty estimation. It should be noted that the covariances need to be prescribed 

appropriately to capture the effect. However, the existing velocity uncertainty estimation methods 

do not provide covariances for PIV and PTV. In the present study, the velocity covariance was 

modeled as a function of the spatial distance and the window overlap as expressed in equation (6-

29) for planar PIV measurement of the vortex ring flow. For the PTV measurement of the laminar 

pipe flow, the covariances of the gridded velocity data came from the IDW velocity interpolation 

from particle locations to the Cartesian grid points since the velocity at different grid points can 

be interpolated from the velocity in similar sets of particle positions, and the covariances were 

determined accordingly using equation (6-34). Moreover, the temporal autocorrelation of the 

measurement errors affect the accuracy of the calculated local acceleration b𝒖𝒎
bG

 and thereby the 

reconstructed pressure fields, and the effect can be captured by specifying the temporal 

covariances in equation (6-6) for the uncertainty estimation. As suggested in Figure 6.6 (b), the 

change in the temporal autocorrelation coefficient had a negligible effect on the pressure errors 

and uncertainties for the synthetic flow fields, which was because of the error in b𝒖𝒎
bG

 was negligible 

compared to the total error of all the terms in (6-2). As discussed in (van Oudheusden, 2013), the 

errors in the local acceleration b𝒖𝒎
bG

 and the convective acceleration 𝒖𝒎 ∙ ∇𝒖𝒎  with 0
>G

 and 0
�

, 

respectively. Since Δ𝑡 = 0.05	𝑠  and ℎ = Δ𝑥 = Δ𝑦 = 0.1	𝑚𝑚  for the synthetic flow data, the 

errors in b𝒖𝒎
bG

 were roughly 0.2% of the errors in 𝒖𝒎 ∙ ∇𝒖𝒎, therefore, the effect of the temporal 
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correlation on the pressure accuracy was unnoticeable for this flow data. For the experimental 

vortex ring flow and the laminar pipe flow in this study, the b𝒖𝒎
bG

 was calculated from the velocity 

fields separated by 10 frames, and therefore the measurement errors were assumed to be 

uncorrelated. Also, the component-wise correlation between velocity errors can affect the pressure 

accuracy, as shown in Figure 6.6 (c). However, the effect was significant only when the correlation 

coefficient was greater than 0.5, which is improbable from actual measurements. 

The proposed uncertainty estimation method also considers several other factors in pressure 

reconstruction. The effects of spatial and temporal resolutions on the reconstructed pressure’s 

accuracy has been investigated by de Kat and van Oudheusden (R. De Kat & Van Oudheusden, 

2012) using numerical simulations and analytical derivations. In the present study, the spatial and 

temporal resolutions were considered in the linear transformations constructed for the error 

propagation from velocity to pressure. Specifically, the temporal resolution was considered in the 

transformation matrix 𝑀' in equation (6-4) for computing the pressure-gradients, while the spatial 

resolutions were embedded in the discrete linear operators such as ∇ and ∇" for computing spatial 

derivatives. The numerical schemes that affect the error propagation dynamics were also 

incorporated in the discrete linear operators. The accuracy of the pressure fields also depends on 

several factors in the pressure-gradient integration, including the boundary condition, the domain 

setup, and the integration method. Faiella et al. (Faiella et al., 2021) used the theory of vibrating 

elastic bodies to reveal the error dynamics of the velocity-based pressure reconstruction and 

analytically quantified the effects of these factors on the resulting pressure errors. These factors 

can control the form of the linear system for solving the pressure fields, as introduced in section 

6.2.2. Using the pressure solver's transformation to construct the linear transformation for the 

uncertainty propagation, the effects of these factors can be reproduced in the estimated pressure 

uncertainty. As shown in Figure 6.2, the pressure fields reconstructed using different methods 

yielded different RMS errors, which were correctly predicted in the estimated uncertainty. Figure 

6.3 showed that the area on the bottom left of the domain had lower pressure errors than the other 

regions due to the Dirichlet boundary point, which was also captured in the predicted uncertainty 

distributions.  

The performance of the proposed uncertainty estimation method depends on the accuracy of 

the velocity uncertainty. For the experimental vortex ring flow, the velocity uncertainties obtained 

for the PIV measurements had different levels of underestimation as compared to the velocity 
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errors, as shown in Table 6.1. The relative underestimation was 28% by MC, 60% by IM, and 47% 

by CS in terms of the RMS values. The pressure uncertainty obtained based on the velocity 

uncertainty also underpredicted the pressure errors, e.g., the RMS uncertainty for the PPE pressure 

was underestimated by 22% with MC uncertainty, 54% with IM uncertainty, and 42% with CS 

uncertainty as compared to the RMS errors. For the experimental laminar pipe flow, the velocity 

uncertainty was 10-20% higher than the velocity errors, and the pressure uncertainty also 

overpredicted the pressure errors for the reconstructions with PPE and OLS methods as suggested 

by the RMS values in Table 6.2. However, the pressure uncertainties predicted for the GLS 

reconstructions were lower than the pressure errors for all the vortex ring flow and the laminar 

pipe flow, suggesting that the proposed method tends to underestimate the pressure uncertainty 

from GLS. 

Moreover, the spatial distribution of the velocity uncertainty also affects the spatial 

distribution of the estimated pressure uncertainty. As shown in Figure 6.7 (c), the spatial 

distributions of the velocity uncertainties were more uniform than the velocity errors, with the 

uncertainty in the vortex cores being significantly underestimated. Consequently, the estimated 

pressure uncertainty shown in Figure 6.10 distributed more uniformly across the field than the 

pressure errors and did not capture the high-pressure errors in the vortex cores.  

There are several limitations of the proposed pressure uncertainty estimation method. First, 

this method does not apply to the pressure-gradient calculation using a Lagrangian approach, 

which has different error propagation than the Eulerian approach considered in the present study. 

Since the Lagrangian approach is less sensitive to the velocity-error than the Eulerian approach (R. 

De Kat & Van Oudheusden, 2012), the pressure-gradient uncertainty from the Lagrangian 

approach is expected to be lower than the uncertainty estimated for the Eulerian approach. 

Moreover, the method only applies to the pressure-gradient integration using a linear solver, i.e., 

the pressure Poisson solver and the least-squares methods, since the error propagation from 

pressure-gradient to the integrated pressure field can be considered as a linear transformation. The 

error propagation characteristics for the omni-directional integration method (Liu & Katz, 2006) 

can be found in (Liu & Moreto, 2020). In addition, the proposed method does not account for the 

pressure uncertainty due to the truncation errors from numerical differentiation and integration, 

which can be an important source of error for flow data with low noise levels or low spatiotemporal 

resolutions. The numerical uncertainty estimation for the pressure-reconstruction will be 
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investigated in future work. Also, the uncertainty propagation through the pressure-gradient 

integration was carried with operations of large dense transformation matrices, which is 

computationally expensive and can be infeasible for large datasets, e.g., volumetric data with a 

large number of grid points along each dimension.  

There are several limitations to this study. First, the covariances between velocity errors need 

to be specified to reproduce the effects of the autocorrelations of velocity errors on the pressure 

results. However, this information usually is unavailable from the existing velocity uncertainty 

estimation methods. Thus, the spatial correlation coefficients were modelled empirically for PIV 

measurement on the experimental vortex ring flow based on the analysis from (Sciacchitano & 

Wieneke, 2016), while the velocity errors at particle positions were assumed to be spatially 

uncorrelated for the PTV measurements of the laminar pipe flow. The model and assumption on 

the velocity-error autocorrelation can yield inaccurate covariances and affect the uncertainty 

estimation's performance. The pressure uncertainty can be underpredicted by as much as 30-50% 

if the covariances were assumed to be zero as indicated by the comparison between the cases with 

different levels of spatial correlation as shown in Figure 6.6 (a). However, the uncertainty 

estimation without the velocity error covariances can still capture the effects of other factors 

including the spatiotemporal resolutions, the boundary conditions, etc., on the pressure uncertainty. 

Also, the "ground truth" data for the vortex ring flow was from the tomographic PIV measurement, 

which also contains errors and may affect the error assessment.  

In conclusion, a practical framework was introduced to estimate the uncertainty in the 

pressure fields reconstructed from velocity measurements with PIV/PTV by propagating the 

velocity uncertainty through the pressure reconstruction. The analyses with the synthetic flow 

fields shows that the proposed method can predict the local and instantaneous pressure uncertainty 

and reproduce the effects of several characteristics of the velocity errors on the reconstructed 

pressure fields, including the noise level, the autocorrelation, and the component-wise correlation 

between velocity errors. In addition, the method can capture the differences between the 

uncertainties of pressure fields reconstructed with different methods and boundary conditions. The 

method was applied to the PIV measurement of a vortex ring flow and the PTV measurement of a 

laminar pipe flow. From the analyses of the experimental results, it is found that the performance 

of the proposed uncertainty estimation method depends on the accuracy of the velocity uncertainty.  
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 A MULTI-MODALITY APPROACH FOR ENHANCING 4D FLOW 
MRI VIA SPARSE REPRESENTATION 

This chapter is reproduced with permission from: Zhang, J., Brindise, M.C., Rothenberger, S.M., 
Markl, M., Rayz, V.L., Vlachos, P.P., 2022. A multi-modality approach for enhancing 4D flow 
magnetic resonance imaging via sparse representation. J. R. Soc. Interface 19. 
https://doi.org/10.1098/rsif.2021.0751 

7.1 Background and literature review 

Cerebral aneurysms (CAs) present in about 3% of the population and are a significant health-

care burden (Rinkel et al., 1998; Vlak et al., 2011). Risk stratification of unruptured cerebral 

aneurysms is critical for appropriate clinical management, as rupture yields high mortality while 

surgical intervention carries an inherent risk of complication (Asgari, Wanke, Schoch, & Stolke, 

2003; International Study of Unruptured Intracranial Aneurysms Investigators, 1999; Komotar, 

Mocco, & Solomon, 2008; Rayz et al., 2015). In addition to multiple clinical (e.g., age, sex, 

comorbidities) and morphological factors (e.g., aneurysm location, size, shape) (International 

Study of Unruptured Intracranial Aneurysms Investigators, 1999; Komotar et al., 2008; Thompson 

et al., 2015), recent studies have shown that hemodynamic metrics such as wall shear stress (WSS) 

(Boussel et al., 2008; Jou et al., 2008; Meng et al., 2014) and vortex structures (Varble et al., 2017) 

are correlated with the growth and rupture of CAs.  

4D flow magnetic resonance imaging (MRI) allows for the in vivo acquisition of time-

resolved three-dimensional (3D) blood flow, enabling evaluation of hemodynamic quantities for 

CAs (Brindise et al., 2019; M Markl et al., 2016; Schnell et al., 2017; Zhang, Brindise, et al., 2020). 

However, the accuracy of flow-derived hemodynamic quantities is affected by the limited spatial 

and temporal resolution and noise inherent to 4D flow MRI. The WSS magnitude derived from in-

vivo 4D flow MRI measurement in CAs was about 60% lower than the results from computational 

fluid dynamics (CFD) due to 4D flow MRI’s low spatial resolution (Van Ooij et al., 2013). The 

spatio-temporal resolution of velocity data also influences the vortex identification and analysis in 

CAs (Sunderland et al., 2016) and the reconstruction of pressure fields (Zhang, Brindise, et al., 

2020).  

Computational fluid dynamics (CFD) have been used to evaluate hemodynamic quantities 

for patient-specific CAs with high resolution and precision (Boussel et al., 2008; Jou et al., 2008; 
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Meng et al., 2014; Sunderland et al., 2016; Varble et al., 2017). Recently, in-vitro volumetric flow 

measurements using particle imaging velocimetry (PIV) (Ford et al., 2008; Roloff et al., 2019) or 

particle tracking velocimetry (PTV) (Brindise et al., 2019) were performed to resolve the flow and 

determine hemodynamic factors in patient-specific CAs. However, the fidelity and reliability of in 

silico CFD simulations and in vitro flow measurements are limited by the uncertainty in vessel 

geometries and assumptions for boundary conditions. The fidelity of in vitro flow measurements 

is also influenced by the difficulty in model fabrication and pulsatile-flow matching. Despite using 

the same image data and inflow conditions, differences have been observed between hemodynamic 

quantities obtained from independent CFD simulations (Voß et al., 2019) or between the CFD 

simulations and PTV measurements (Brindise et al., 2019). Adjoint-based optimization 

approaches have been introduced to minimize the differences between the CFD and in vivo 4D 

flow MRI measurements (De Hoon, Van Pelt, Jalba, & Vilanova, 2014; Mohd Adib, Ii, Watanabe, 

& Wada, 2017; Töger et al., 2020a) to achieve higher fidelity. The patient-specific CFD solutions 

have also been used to enhance 4D flow MRI data with data fusion techniques (Bakhshinejad et 

al., 2017; Fathi et al., 2018; Perez-Raya et al., 2020). 

Initially developed for image recognition and reconstruction (J. Wright, Member, Yang, 

Ganesh, & Sastry, 2009), the library-based sparse representation has been used for estimating 

complex flow structures from limited measurements (Brunton, Tu, Bright, & Kutz, 2014; 

Callaham, Maeda, & Brunton, 2019) with superior performance compared to least-squares 

regression. Previous studies have demonstrated that the sparse representation of a flow-library 

consisting of the proper orthogonal decomposition (POD) basis obtained from CFD snapshots 

could denoise and enhance the spatial resolution of 4D flow MRI (Fathi et al., 2018). The present 

study aims to apply a multi-modality approach incorporating both CFD and PTV to enhance the 

blood flow measurements with 4D flow MRI and evaluate the improvement to the hemodynamic 

analysis in cerebral aneurysms. The approach, named Multi-modality Sparse Representation 

(MSR), reconstructs the velocity field from 4D flow MRI by searching for a sparse representation 

in a library of high-resolution velocity fields obtained from CFD and in vitro PTV. The MSR 

method was tested using synthetic 4D flow MRI datasets of a basilar tip (BT) aneurysm and an 

internal carotid artery (ICA) aneurysm. The method was then applied to the in vivo 4D flow MRI 

data in two patients with cerebral aneurysms. 
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7.2 Materials and Methods 

7.2.1 Flow reconstruction via library-based sparse representation 

The MSR reconstruction assumes that the measurement process of 4D flow MRI can be 

modeled as: 

 

𝒖 = 𝐶𝑼 + 𝝐,	 (7-1)	
	
where 𝑼 ∈ ℝ< represents the underlying velocity field on a fine grid 𝒢9E&% with N grid points, 𝒖 ∈

ℝ&  contains the 4D flow MRI measured velocity values at 𝑛  voxel-center locations, 𝐶  is the 

measurement matrix with a shape of 𝑛 × 𝑁 which transforms 𝑼 on 𝒢9E&% to the coarse MRI grid 

𝒢M68 , and 𝝐 ∈ ℝ&  represents the measurement noise. The vectors 𝑼  and 𝒖  contain only one 

velocity component, and the measurement process modeled by (7-1) applies to each of the three 

velocity components acquired using 4D flow MRI. In the present study, each velocity-component 

field was reconstructed individually such that the optimization problem has a lower rank for 

enabling a sparse representation and a lower dimension to save computational cost. The smoothing 

effect of Cartesian 4D flow MRI due to finite k-space coverage was modeled by convolving the 

underlying velocity field with a truncated sinc-function kernel 𝒦 (Rispoli et al., 2015) as: 

 

𝒦(𝑥, 𝑦, 𝑧) = æ𝑠𝑖𝑛𝑐 c
*
H*
d × 𝑠𝑖𝑛𝑐 c +

H+
d × 𝑠𝑖𝑛𝑐 c +

H+
d , *

H*
, +
H+
, ,
H,
∈ (−2,2)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
	 (7-2)	

 

where Δ𝑥, Δ𝑦, and Δ𝑧 correspond to the grid sizes of 4D flow MRI. Therefore, the coefficients in 

the measurement matrix 𝐶 were assigned based on the kernel function values at the grid nodes 

related to each MRI voxel. The row number of the matrix 𝐶 was used to index the MRI voxels, 

and the columns were linked to the grid points of 𝒢9E&%. The coefficient at the ith row and jth 

column of 𝐶 was given as the kernel function value based on the distance between the ith voxel-

center and the jth grid point normalized by the sum of the kernel function values from all grid 

points related to the ith voxel-center. 
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Using the high-resolution flow-data acquired from CFD simulations and in vitro PTV 

measurements, a flow-library {𝚿𝒌}  with 𝚿𝒌 ∈ ℝ<  and 𝑘 = 1,2, … ,𝑚  can be constructed. The 

library-components 𝚿𝒌  can be generated as a snapshot (Callaham et al., 2019) or the mode 

extracted from the high-resolution flow-data (Bakhshinejad et al., 2017; Brunton et al., 2014; Fathi 

et al., 2018; Kramer, Grover, Boufounos, Nabi, & Benosman, 2017) on the grid 𝒢9E&%. If the flow-

library contains an extensive collection of representative examples of the probable flow structures 

in the same aneurysm geometries, 𝑼 can be accurately expressed as a linear combination of the 

library components as: 

 

𝑼 ≈ 𝛹𝒔,	 (7-3)	
	
where 𝒔 ∈ ℝV is the vector of library coefficients, and Ψ contains the library-components Ψ£ as 

its columns. To find the coefficient vector 𝒔Û such that the MSR-reconstructed velocity field (𝑼ì) 

obtained as 𝑼ì = Ψ𝒔Û accurately reproduces the underlying velocity field 𝑼, the LASSO regression 

(Tibshirani, 2016) was used in the MSR flow-reconstruction: 

 

𝒔Û = 𝑎𝑟𝑔𝑚𝑖𝑛
N

(‖𝒖 − 𝐶𝛹𝒔‖" + 𝛼‖𝒔‖0),	 (7-4)	

 

where ‖𝒖 − 𝐶Ψ𝒔‖" represents the L2 norm of the fitting residuals, and 𝛼 > 0 is the parameter that 

controls the strength of the regularization term 𝛼‖𝒔‖0 . The hyperparameter 𝛼  was optimized 

iteratively using 5-fold cross-validation, and the optimization of (7-4) was carried using the Python 

scikit-learn subroutine “LassoCV” (Friedman, Hastie, & Tibshirani, 2010; Kim, Koh, Lustig, 

Boyd, & Gorinevsky, 2007). The penalization of ‖𝒔‖0 in (7-4) promotes a sparse representation, 

i.e., most of the coefficients in 𝒔Û are zeros. However, minimizing ‖𝒔‖0 also tends to reduce the 

amplitude of the MSR-reconstructed field since	𝑈ì = Ψ𝒔Û. Thus, the obtained flow field is rescaled 

to keep the same L1-norm between the measured velocity data 𝒖 and the reproduced velocity 

measurement 𝒖× = 𝐶Ψ𝒔Û as 

 

𝑼ì = ‖𝒖‖E
‖𝒖®‖E

𝛹𝒔Û = ‖𝒖‖E
‖¡¯𝒔°‖E

𝛹𝒔Û.	 (7-5)	
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The procedure of the MSR reconstruction is shown schematically in Figure 7.1(a).  

 

For complex flow fields such as the aneurysmal flow, it may not be feasible to construct a 

flow-library containing representative examples of all the probable global flow fields. However, 

local flow regions may have a lower rank and enable sparse representation as demonstrated in 

previous studies (Callaham et al., 2019). As shown in Figure 7.1 (b), the aneurysmal flow fields 

were divided into subdomains whose centers were located on Cartesian grids with resolutions ℎN-Q 

of 2 times of the MRI resolutions for the BT and ICA aneurysms. Each subdomain contains a 

region within 2ℎN-Q  from the center 𝒓𝒔𝒖𝒃  and overlaps with neighboring subdomains. The 

subdomains located near the wall only contain the regions within the blood flow. The MSR flow 

reconstruction was performed in each subdomain, and the global velocity field was subsequently 

constructed as the weighted superposition of the local reconstructions as: 

 

𝑈ì(𝒓) = ∑ .U ?U(𝒓)V
U<E
∑ .UV
U<E

,	 (7-6)	

with	𝑤£ = 𝑒𝑥𝑝 {− |𝒓I𝒓𝒔𝒖𝒃|(

�>!T
( �,	 (7-7)	

 

where 𝑈ì(𝒓) represents the combined velocity value at spatial location 𝒓, K is the total number of 

subdomains that contain 𝒓, 𝑈ì£(𝒓) means the velocity value reconstructed in the kth subdomain 

Figure 7.1 (a) Schematic of the multi-modality sparse representation flow reconstruction. (b) 
Schematic of the localized flow reconstruction. The MSR reconstruction was performed in 

each subdomain, and the global velocity field was subsequently constructed as the weighted 
superposition of the local reconstructions with a Gaussian kernel function. 
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whose center locates at 𝒓𝒔𝒖𝒃, and 𝑤£ is the weight based on the spatial distance between	𝒓 and 

𝒓𝒔𝒖𝒃.  

7.2.2 Multi-modality flow-data acquisition and flow library construction 

In vivo flow data in a basilar tip (BT) aneurysm and an internal carotid artery (ICA) aneurysm 

were acquired using 4D flow MRI on a 3T scanner (Skyra, Siemens Healthcare, Erlangen, 

Germany). MRI acquisition of the BT aneurysm was performed at San Francisco VA Medical 

Center, and the ICA aneurysm was imaged at Northwestern Memorial Hospital (NMH). 

Gadolinium contrast was used for the BT aneurysm, whereas no contrast was used for the ICA 

aneurysm. The sac diameter was 7 mm and 10 mm for the BT aneurysm and ICA aneurysm, 

respectively. The in vivo flow-data were on Cartesian grids with the spatial resolution of 

1.25 × 1.25 × 1.33	𝑚𝑚W  for the BT aneurysm and 1.09 × 1.09 × 1.30	𝑚𝑚W  for the ICA 

aneurysm, resulting in about 5 and 9 voxels across the diameter of the aneurysmal sac for the BT 

aneurysm and ICA aneurysm, respectively. The temporal resolution Δ𝑡 was 40.5 ms (20 frames 

per cycle) and 44.8 ms (13 frames per cycle) for the BT and ICA aneurysms, respectively. The 

encoding velocity sensitivity (venc) was 100 cm/s for the BT aneurysm and 120 cm/s for the ICA 

aneurysm. Approval of all ethical and experimental procedures and protocols was granted by the 

institutional review boards at Purdue University, Northwestern Memorial Hospital, and San 

Francisco VA Medical Center. 

In vitro flow measurements were done using PTV in 1:1 scaled silicone models of the two 

aneurysms with blood-mimicking fluids composed of water-glycerol-urea (Brindise et al., 2018). 

The flow phantom for each aneurysm was fabricated as follows: Based on the segmented vessel 

geometry, a positive-space model was 3D printed and embedded into a tear-resistant silicone block. 

The model was then cut from the block and replaced by a low melting point metal (Cerrobend 158 

Bismuth alloy). The block was cut away and embedded in a block of optically clear 

polydimethylsiloxane silicone (PDMS-Slygard 184). The metal was then melted out after the 

PDMS was hardened. The time-dependent inflow waveform was driven by a computer-controlled 

gear pump and designed to match the waveform obtained from the in vivo 4D flow MRI data. The 

acquired particle images were processed using DaVis 10.0 (LaVision Inc.) with the Shake-the-Box 

(STB) method. The temporal resolution was 2.5 ms for the BT aneurysm and 1.5 ms for the ICA 

aneurysm. CFD simulations were performed using FLUENT 18.1 (ANSYS) for the two aneurysms. 
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An unstructured tetrahedral mesh generated using HyperMesh 14.0 (Altair Engineering, Troy, MI, 

USA) was employed with a nominal cell size of 0.15 mm. The flow-rate waveforms obtained from 

the in vivo 4D flow MRI were used as the boundary conditions for the CFD models. Newtonian 

fluid and rigid wall were assumed in the CFD models. The rigid wall was assumed because the 

previous investigation with cine MRI imaging showed no observable wall movement of 

intracranial vessels over the cardiac cycle (Boussel et al., 2008), and the aneurysm disease can 

reduce the elasticity of the arterial wall (Humphrey & Na, 2002). For each aneurysm, three cardiac 

cycles were simulated with a temporal resolution of 1.5 ms, and the results of the last cycle were 

used in the present study. More details on the in vivo imaging, in vitro measurement, and CFD 

models can be found in (Brindise et al., 2019).  

The unstructured PTV and CFD data were linearly interpolated to Cartesian grids 𝒢9E&% with 

isotropic resolutions of 0.3 and 0.4 mm for the BT and ICA aneurysms, respectively, with more 

than 20 grid points across the diameter of each aneurysmal sac. Instead of the basis from proper 

orthogonal decomposition (Bakhshinejad et al., 2017; Fathi et al., 2018), the velocity fields were 

directly used as the library-components. For each CA geometry and each velocity-component, the 

flow-library was constructed as a collection of 100 timeframes randomly selected from the high 

resolution PTV and CFD data on 𝒢9E&%. Different flow-libraries were constructed with different 

numbers of timeframes from CFD and PTV data. The flow-libraries with an equal number (50 

each) of PTV and CFD components were referred to as the balanced flow-libraries. The flow-

libraries with more PTV components than CFD were PTV-dominant, while the flow-libraries with 

more components from CFD than PTV were CFD-dominant.  

7.2.3 Synthetic 4D flow MRI data generation 

To evaluate MSR's performance, synthetic 4D flow MRI datasets were generated from the 

high-resolution PTV and CFD datasets. For each velocity component, the complex-valued signal 

was created as: 

 

𝑀- = 𝐼𝑒𝑥𝑝 cE#-F/0B
$%&'

d,	 (7-8)	
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where 𝑀- means the signal created for the u velocity component from the high-resolution data 

(𝑢9E&%), and 𝐼 is the signal magnitude which was set as 1.0 inside the blood flow while 0.2 outside 

the blood flow. The signal of the 4D flow MRI data was generated by spatially and temporally 

smoothing 𝑀- as: 

 

𝑀-,M68 = 𝑀- ∗ 𝒯 ∗ 𝒦,	 (7-9)	

with	𝒯(𝑡) = æ𝑒𝑥𝑝 c−
"G(

HG(
d , 𝑡 ∈ (−𝛥𝑡, 𝛥𝑡)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
,	 (7-10)	

 

where ∗ denotes convolution, 𝒦 is the spatial smoothing kernel function defined as (7-2), and 𝒯 

represents the temporal smoothing kernel function with Δ𝑡 being the temporal resolution of the 

MRI data. Following a four-point reference method, one reference signal (𝑀O) was generated from 

a zero field. The phase data 𝜓 for each velocity component were generated from the flow-sensitive 

and the reference signals, e.g., 

 

𝜓- = 𝑎𝑛𝑔𝑙𝑒}𝑀-,M68 ×𝑀O
∗~,	 (7-11)	

 

where 𝜓-  is the phase for u velocity component, 𝑀O
∗  is the complex conjugate of 𝑀O , and 

𝑎𝑛𝑔𝑙𝑒( ) means calculating the angle (between −𝜋 to 𝜋) of a complex value. The velocity data 

was obtained from the phase data as: 

 

𝑢M68 =
$%&'
#
𝜓-.	 (7-12)	

 

For each CA, two synthetic 4D flow MRI datasets with the same spatio-temporal resolutions 

as the in vivo measurements, named CFD-synMRI and PTV-synMRI, were created from the CFD 

data and the PTV data, respectively. To test the robustness of MSR, normally distributed noise 

was added to the complex-valued signal with the standard deviation defined as: 

 

𝜎8 =
8

Z<6Y
= 8

X<6
#
√"

X¢

$%&'
,	 (7-13)	
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where 𝑆𝑁𝑅8 is the signal to noise ratio, 𝑉�  is the mean velocity magnitude, and 𝑉𝑁𝑅 is the velocity 

to noise ratio (Lee et al., 1995). The reciprocal of the VNR is defined as the noise level of the 

synthetic dataset, and four noise levels (5, 10, 15, and 20%) were considered in the present study. 

To test the performance of MSR on different MRI grid resolutions, additional synthetic MRI 

datasets were created with grid sizes varying from 2 to 5 times of the grid sizes of the CFD and 

PTV data on 𝒢9E&%. 

7.2.4 Methods for velocity and hemodynamic analysis 

The CFD and PTV velocity fields at the corresponding timeframes of the synthetic 4D flow 

MRI data were considered as the ground truth for CFD-synMRI and PTV-synMRI, respectively. 

To assess the accuracy of the synthetic MRI and the MSR-reconstructed velocity fields, velocity 

error was determined as the difference from the ground truth, and the velocity error level for each 

dataset was quantified as the root-mean-square (RMS) of the velocity error magnitudes normalized 

by the RMS of the velocity magnitudes from the ground truth. It should be noted that the velocity 

fields from the ground truth timeframes were excluded from the flow-library for the reconstruction 

of CFD-synMRI and PTV-synMRI data such that the “ground truth” was not embedded in the 

flow-library.  

To study the effects of the MSR reconstruction on the flow-derived hemodynamic quantities, 

pressure and WSS were computed from the MRI and the MSR-reconstructed velocity fields. The 

pressure reconstruction was carried using the measurement-error based weighted least-squares 

method (Zhang, Brindise, et al., 2020). A pressure of 0 Pa was assigned at the inflow locations of 

the aneurysmal sac as the reference pressure for both CAs. The WSS was calculated from the near-

wall velocity using thin-plate spline radial basis functions (Brindise et al., 2019), and the time-

averaged WSS (TAWSS) were subsequently obtained by averaging the WSS magnitudes across 

the full cardiac cycle. The pressure and WSS evaluated from the high-resolution ground-truth 

velocity fields were employed as the ground truth for the error analysis of the pressure and WSS 

from the synthetic MRI cases. 
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7.3 Results 

7.3.1 Multi-modality velocity fields 

The velocity fields at peak systole for all three modalities and the synthetic MRI data are 

presented in Figure 7.2 for both aneurysms. For the BT aneurysm, the basilar artery's flow swirled 

in the aneurysmal sac and exited mainly through the posterior cerebral arteries (PCAs). For the 

ICA aneurysm, the flow entered from the ICA, swirled in the aneurysmal sac, and exited through 

the distal ICA and middle cerebral artery (MCA). In the BT aneurysmal sac, the maximum 

descending velocity was 0.4 m/s from MRI and CFD, while it was 0.3 m/s from PTV. In the ICA 

aneurysm, a stronger inflow towards the aneurysmal sac was observed from CFD compared to the 

other two modalities, with the maximum velocity around the “neck” of the aneurysmal sac being 

0.55 m/s from CFD, 0.35 m/s from MRI, and 0.3 m/s from PTV.  Compared to the corresponding 

Figure 7.2 Velocity fields at peak systole represented using 3D pathlines from in vivo 4D flow 
MRI, CFD simulations, in vitro PTV measurements, and synthetic MRI datasets for the basilar 
tip aneurysm (a) and internal carotid artery aneurysm (b). The synthetic MRI data has the same 
spatial resolutions as the in vivo 4D MRI data and with 10% noise. R-PCA and L-PCA indicate 
the left and right posterior cerebral arteries, respectively. MCA stands for the middle cerebral 

artery. The angle of view is the anterior view. 
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CFD/PTV data, the flow structures observed from the synthetic MRI were similar but were under-

resolved in the near-wall regions and smaller vessels. 

Figure 7.3 (a) The velocity error levels of the synthetic MRI data (synMRI) with the in vivo MRI 
resolutions and the MSR-reconstructed flow data (MSR) using balanced flow-library as 

functions of the noise level of the synthetic MRI data. (b) The velocity error levels of the 
synthetic MRI data and the MSR-reconstructed flow data using balanced flow-library as 

functions of the spatial resolution of the synthetic MRI data (ℎN+&M68). The grid size of the MSR-
reconstructed fields (ℎMZ6) is 0.3 mm for the BT aneurysm and 0.4 mm for the ICA aneurysm. 

The synthetic MRI datasets contain 10% noise. 
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7.3.2 Reconstruction of synthetic 4D flow MRI 

The velocity error level for each synthetic MRI dataset is presented in Figure 7.3(a) as a 

function of the noise levels. Even without noise, the error level of synthetic MRI velocity data was 

more than 0.27 due to the smoothing effect. As the noise level increased from 0 to 20%, the 

velocity error level increased by 0.06 to 0.1. The error levels of the MSR-reconstructed velocity 

fields were lower than 0.15 for all the cases as shown in Figure 7.3 (a), leading to an error reduction 

of more than 70% for each case. The increase of the MSR-reconstructed velocity’s error level due 

to the increase of noise level was less than 0.04. The velocity error levels as functions of the spatial 

resolution of the synthetic MRI data are presented in Figure 7.3 (b). As the MRI resolution 

increased from 2 to 5 times of the MSR-reconstructed resolution ℎMZ6, the velocity error level of 

synthetic MRI increased by more than 0.1 due to greater spatial smoothing effect, while the error 

level of the MSR-reconstructed velocity fields increased by only 0.03 and did not exceed 0.13. 

 

To investigate the effect of the flow-library on the MSR’s performance, flow-libraries 

consisting of different numbers of components from CFD and PTV data were used for the 

reconstruction of the synthetic MRI data. The MSR-reconstructed velocity error level as a function 

of the library-composition is shown in Figure 7.4(a) for the synthetic datasets with the in vivo MRI 

resolution and 10% noise. The library-composition was represented by the fraction of library-

components from the CFD data, with the rest of the PTV data components, and the total number 

of components was 100 for all the flow-libraries. For the reconstruction of CFD-synMRI datasets, 

Figure 7.4 Using the flow libraries with different number of components from CFD and PTV 
data, the MSR-reconstructed velocity error level (a), relative reconstruction contribution from 

CFD components (b), and the sparsity of the obtained coefficients (c) for the MSR 
reconstructions of the synthetic MRI datasets as functions of the flow-library composition 

represented using the fraction of library components from CFD data. The synthetic MRI data 
was generated with the in vivo MRI resolutions and 10% noise. 
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the velocity error levels were greater than 0.4 if the flow-library did not contain any components 

from CFD data. In contrast, the velocity error levels were lower than 0.1 if there were at least 10 

library components from CFD. Similarly, the reconstructions of PTV-synMRI datasets resulted in 

velocity error levels greater than 0.45 with libraries containing only CFD components, while the 

velocity error level was less than 0.18 with at least 10 PTV components. For the MSR-

reconstructed flow fields, the relative contribution from the CFD library-components was 

determined as the L1-norm of the coefficients in �̂� corresponding to the CFD library-components 

normalized by the total L1-norm of �̂� , with the rest of the contribution from PTV library-

components. Figure 7.4 (b) presents the relative contribution from the CFD library-components 

for the reconstructions of synthetic MRI datasets as a function of the library-composition. With 

the flow-libraries containing a mix of CFD and PTV components, the reconstructions of CFD-

synMRI datasets yielded relative contributions from CFD of more than 0.7, while the 

reconstructions of PTV-synMRI datasets relied less than 0.3 on the CFD components. Fig. 4(c) 

shows the sparsity of the MSR reconstruction defined as the number of zero-valued coefficients 

divided by the total number of coefficients in �̂� as a function of the library-composition. The 

reconstructions of PTV-synMRI datasets with flow-libraries containing only CFD components 

yielded sparsity less than 0.8, and the reconstructions of CFD-synMRI datasets with flow-libraries 

containing only PTV components had a sparsity less than 0.78. The reconstructions from other 

cases showed relative sparsity of above 0.85.  

To assess the accuracy of the flow-derived hemodynamic quantities, Bland-Altman analysis 

was performed to compare the pressure and WSS evaluated from the synthetic MRI and from the 

MSR-reconstructed data with the ground truth as shown in Figure 7.5. In addition, the statistical 

distributions of these hemodynamic parameters were compared in Fig. 5 using probability density 

functions (PDFs) with the mean values indicated using vertical lines. Compared to the synthetic 

MRI data created from the CFD and PTV data, the hemodynamic quantities derived from the MSR-

reconstructed fields were more consistent with the ground truth as suggested by the lower bias and 

STDs of the differences in the Bland-Altman plots. As suggested in Figure 7.5, The WSS derived 

from synthetic MRI data also showed greater underestimation with greater mean WSS values, 

while the WSS from the MSR-reconstructed data did not have this correlation. Moreover, the PDFs 

of the WSS and pressure from MSR-reconstructed fields closely resembled those of the ground 
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truth. The mean of the WSS from the synthetic MRI data was underestimated by 40-60% compared 

to the ground truth. 

 

 

 

 

 

 

 

 

 

Figure 7.5 Bland-Altman analysis and the statistical distributions of pressure and WSS obtained 
from synthetic 4D flow MRI data with the in vivo MRI resolutions and 10% noise and the MSR-
reconstructed data in the BT aneurysm (a) and ICA aneurysm (b). For the Bland-Altman plots, 
the mean differences from the ground truth are indicated by the solid blue lines while the 95% 

confidence intervals are given as the dashed blue lines. For the statistical distributions, the mean 
values are indicated by the vertical lines. 
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7.3.3 Reconstruction of in vivo 4D flow MRI 

The MSR flow-reconstruction was applied to the in vivo 4D flow MRI data acquired for the 

same two CAs using the balanced flow-libraries with 50 CFD components and 50 PTV 

components. The flow fields at peak systole, pressure fields at peak systole, and TAWSS obtained 

from the in vivo MRI and from the MSR-reconstructed flow fields are presented in Figure 7.6(a) 

and (b) for the BT and ICA aneurysms, respectively. For both aneurysms, the MSR-reconstructed 

flow structures in the aneurysmal sacs were qualitatively similar with the in vivo MRI data, while 

the flow in the near-wall region and small vessels were better resolved by the MSR reconstruction. 

Compared to the in vivo MRI, the MSR-reconstructed flow-data yielded more distinct low-pressure 

Figure 7.6 The comparison on the flow structure, pressure distribution, and TAWSS between the 
in vivo 4D flow MRI data and the MSR-reconstructed data for the basilar tip aneurysm (a) and 
the internal carotid artery aneurysm (b). The flow structure is presented using pathlines on the 
anterior view. The pressure distribution is shown on the anterior view, and the pressure on the 
middle slice of the aneurysmal sac is shown on the lateral view. The TAWSS is shown on the 

anterior view and superior view. 
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region around the center of the aneurysmal sac as clearly shown on the lateral view. For the BT 

aneurysm, the minimum relative pressure observed around the core of the aneurysmal sac was 0 

Pa and -25 Pa from the in vivo MRI and MSR-reconstructed flow data, respectively. For the ICA 

aneurysm, the relative pressure was -5 Pa and -10 Pa around the center of the aneurysmal sac for 

the in vivo MRI and MSR-reconstructed flow data, respectively. The TAWSS obtained from the 

MSR-reconstructed fields were higher than the TAWSS from in vivo MRI. The TAWSS of the BT 

aneurysm calculated from the MSR-reconstructed data also had different spatial distributions 

compared to the TAWSS from the MRI data as suggested by the anterior and superior views. For 

example, regions with TAWSS as high as 4 Pa were observed from the anterior and superior views 

of the MSR-reconstructed data for the BT aneurysm, which were absent from the in vivo MRI data. 

For the ICA aneurysm, the high TAWSS region (greater than 3 Pa) around the neck of the 

aneurysmal sac was smaller from the in vivo MRI data compared to the MSR-reconstructed data.  

 

The time-dependent median and the interquartile range of velocity magnitudes, WSS, and 

pressure obtained from the MRI and MSR-reconstructed data are presented in Figure 7.7 at all 

timepoints within the cardiac cycle. As suggested by the median values, the velocity and WSS 

magnitudes of the MSR-reconstructed fields were greater at around peak systole (at 𝑡/𝑇 ≈ 0.7 for 

Figure 7.7 The statistical distributions of velocity magnitudes, WSS, and pressure at all time 
points in the cardiac cycle from the in vivo 4D flow MRI data and the MSR-reconstructed data 
for the basilar tip aneurysm (a) and the internal carotid artery aneurysm (b). The median of the 

statistical distributions were represented using solid lines, while the shaded regions corresponded 
to the range between the 1st and 3rd quartiles. 
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the BT aneurysm and 𝑡/𝑇 ≈ 0.4 for the ICA aneurysm), while preserved similar waveforms with 

MRI. The MSR reconstruction increased the mean velocity magnitudes by 13% and 6% compared 

to the MRI data of the BT and ICA aneurysms, respectively, while the mean WSS were increased 

by 60% and 51% for the BT and ICA aneurysms, respectively. As a reference, the mean WSS from 

CFD was 39% and 61% higher than the MRI data of the BT and ICA aneurysms, respectively, 

while the mean WSS from PTV was 47% and 60% higher than the MRI data of the BT and ICA 

aneurysms, respectively. As shown in Figure 7.7, the MSR-reconstruction altered the pressure 

waveforms and reduced the median pressure at peak systole by 30 Pa and 5 Pa for the BT and ICA 

aneurysms, respectively. The reduction on the median pressure was due to the improvement on the 

spatial resolution by the MSR reconstruction, which allowed the pressure estimation to better 

resolve the low-pressure region around the center of the aneurysmal sac corresponding to the core 

of the vortical flow structure as shown in Figure 7.6. The contributions of the CFD and PTV 

library-components were also obtained for the reconstructions of the in vivo 4D flow MRI data. 

The 2D histograms in Figure 7.8 show the distributions of the relative contributions of the CFD 

library-components in all subdomains as a function of time. The relative contribution from CFD 

library-components varied from 20-70% for the BT aneurysm, while it was 40-80% for the ICA 

aneurysm. The sparsity of the reconstruction was 0.88 for the BT aneurysm and 0.8 for the ICA 

aneurysm. 

 

Figure 7.8 The distributions of the relative contributions of the CFD library-components in all 
subdomains as a function of time for the reconstructions of the in vivo 4D flow MRI data in the 

basilar tip aneurysm (a) and the internal carotid artery aneurysm (b). 
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7.4 Discussion 

This study evaluated and applied a multi-modality approach to enhance the flow 

measurement and hemodynamic evaluation in cerebral aneurysms with 4D flow MRI. From the 

low-resolution MRI data, the MSR method reconstructed the velocity fields as sparse 

representation of the high-resolution velocity fields from PTV measurements and CFD simulations. 

The MSR enhanced the 4D flow MRI data in two aspects. First, the spatial resolution was 

substantially improved as the MSR-reconstructed velocity fields were on the same grid as the high-

resolution data from CFD and PTV. The MSR reconstruction can provide up to a five-fold increase 

in the spatial resolution of the flow fields as suggested in Figure 7.3(b). Second, the MSR 

reconstruction improved the accuracy of the velocity data. Multiple factors affected the 4D flow 

MRI data's accuracy, including the spatio-temporal smoothing effect and the measurement noise. 

The MSR reconstruction overcame the spatial smoothing with the design of the measurement 

matrix, which performs the discrete convolution with the spatial smoothing kernel. Thus, the MSR 

reconstruction could retrace the measurement process to recover the underlaying velocity field 

prior to the spatial smoothing. The robustness of MSR was ensured by searching for a sparse 

representation with the penalization on ‖𝑠‖0 in (7-4) to avoid overfitting the measurement noise. 

As a result, the MSR led to more than 70% error reduction compared to the 4D flow MRI data, as 

suggested in Figure 7.3(a).  

The enhanced 4D flow MRI data from the MSR-reconstruction improved the hemodynamic 

analysis of the cerebral aneurysms. The synthetic MRI data showed a significant (40-60%) 

underestimation on the mean WSS as shown in Figure 7.5, which was consistent with the findings 

of previous studies (Roloff et al., 2019; van Ooij et al., 2015). The MSR reconstruction of the 

synthetic 4D flow MRI provided WSS more consistent with the ground truth, as suggested by the 

Bland-Altman analysis in Figure 7.5, owing to its ability to increase the spatial resolution and 

correct the spatial smoothing. With the improved spatial resolution by the reconstruction, 

visualization of the near-wall flow structures was enabled, and the pressure in the near-wall regions 

and smaller vessels could be obtained, as shown in Figure 7.6. The increase in velocity magnitude 

and WSS by MSR shown in Figure 7.7 suggests the accuracy of these quantities was improved, 

since 4D flow MRI underestimates the velocity magnitude by 10-20% (Roloff et al., 2019) and the 

WSS by 40-50% (Van Ooij et al., 2013) in cerebral aneurysms. Additionally, the WSS values from 

the MSR-reconstructed fields were more similar to those from the CFD and PTV results since they 
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were 39-61% higher than the 4D flow MRI results. Moreover, the low-pressure regions predicted 

at the vortex-cores around the center of the aneurysmal sac from the MSR-reconstructed data in 

Figure 7.7 were consistent with the previously published pressure distribution in cerebral aneurysm 

(Amili et al., 2018), while these low-pressure regions were absent from the pressure fields obtained 

from in vivo 4D flow data. Consequently, the more accurate hemodynamic quantities obtained 

from the MSR reconstruction would potentially allow for a more reliable risk evaluation of 

cerebral aneurysms with in vivo 4D flow MRI. 

The MSR reconstruction’s performance was affected by the flow-library composition as 

suggested by the error analysis with synthetic MRI data in Figure 7.4(a). The reconstruction of the 

CFD-synMRI data failed when using a flow-library containing only PTV components, while the 

reconstruction of PTV-synMRI data failed with the flow-library containing only CFD components. 

As presented in Figure 7.2, the flow fields from PTV and CFD had noticeable differences, 

suggesting that the velocity fields from one modality were not representative of the other 

modality's flow field. Thus, the assumption that the flow-library contains a sufficiently extensive 

collection of representative flow fields was violated, and the underlying flow field could not be 

reconstructed as a sparse representation of the library-components, leading to low-fidelity 

reconstruction and the less sparse coefficients as shown in Figure 7.4(c). For the MSR clinical 

application to in vivo 4D flow MRI data, a sufficiently extensive flow-library may be constructed 

using the flow fields obtained from multiple patient-specific CFD simulations with varying flow-

boundary conditions within the uncertainty of the in vivo measurement. If there is also significant 

uncertainty in the aneurysm geometry, the results from several segmentations of the imaged 

geometries should also be collected to extend the flow-library. Since the aneurysmal flow can be 

complex due to the pulsatile inflow conditions and the tortuous vessel geometries, obtaining a 

proper sparse representation is challenging. Thus, we adopted the localized reconstruction strategy 

from (Callaham et al., 2019), such that the MSR only needs to find the sparse representation in 

each subdomain. This localized approach moderates the requirement on the extensiveness of the 

flow-library as finding the sparse representation in a smaller region with fewer measurements and 

lower rank is easier than the global reconstruction (Fathi et al., 2018). Since the radius of the 

subdomain was defined as 4 times of the spatial resolution of the 4D flow data, a subdomain 

located at the center of the aneurysmal sac could almost cover the bulk flow in the sac. However, 

the subdomain is still smaller than the whole region of interest (ROI) and therefore eliminates the 



 
 

181 

effect of the flow-data acquired in further upstream or downstream regions on the reconstruction 

within the subdomain. For example, the flow-reconstruction at the tip of the BT aneurysmal sac 

does not depend on the flow data in the R-PCA or L-PCA, which helps finding the sparse 

representation and avoids overfitting, therefore improving the robustness of the reconstruction. In 

the present study, the sparsity of the MSR-reconstructions of the in vivo aneurysmal 4D flow data 

was above 0.8, and different coefficients were obtained in different subdomains as suggested by 

the broad distributions of the relative contributions in Figure 7.8.  

There are several limitations of MSR for reconstructing the aneurysmal flow measurement 

by 4D flow MRI. First, constructing an extensive flow-library requires several patient-specific 

CFD simulations or in vitro PTV measurements, which can be time-consuming and expensive to 

conduct. Patient-specific computational modeling of the cerebral aneurysmal flow typically takes 

several hours to complete, while the in vitro PTV measurements require special expertise and can 

be challenging due to the difficulties in the phantom fabrication, flow-loop building, particle 

imaging, and image processing procedures. Also, the flow-library prepared for one 4D flow MRI 

acquisition may be inappropriate for the data acquired at a different time point in a longitudinal 

study because of the possible morphological changes of CAs in time. Thus, the flow-library needs 

to be constructed for each 4D flow MRI acquisition, which is a limitation of MSR for clinical 

applications. Efficient flow-library generation approaches need to be developed in future studies. 

Alternatively, the recently introduced deep learning network based methods (Fathi et al., 2020; 

Ferdian et al., 2020) may be applied without the need for constructing flow-library for each 

reconstruction. Moreover, the linear matrix C may not be able to represent the measurement 

process of 4D flow MRI which is nonlinear in practice.  

There are some additional limitations in this study. First, the construction of the 

measurement matrix C only considers the spatial smoothing effect of the 4D flow MRI 

measurement approximated as the convolution with a smoothing kernel. However, 4D flow MRI 

also causes temporal smoothing of the velocity field. Moreover, the kernel functions employed in 

this study may not accurately reproduce the smoothing effects of in vivo 4D flow MRI 

measurements which can also be affected by the encoding settings, the use of parallel imaging and 

compressive sensing techniques, etc. Also, the flow-library constructed for the in vivo 4D flow 

MRI data in this study contained only two datasets (one from CFD and one from PTV) for each 

CA, which might not be sufficiently extensive. More CFD simulations and in vitro PTV 
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measurements can be performed with different flow boundary conditions and used to extend the 

flow-library in future investigations. In addition, the CFD simulations did not consider the wall 

motion or fluid-tissue iterations, and the present study did not consider the blood density variance 

or the variability in RR intervals. The Newtonian fluid assumption may introduce additional errors 

in the CFD simulations, especially in regions with low shear rates.  
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 EVALUATION OF LEFT VENTRICULAR FLOW PROPAGATION 
VELOCITY FROM MULTI-DIMENSIONAL CARDIAC IMAGING 

8.1 Background and literature review 

The propagation velocity of the inflow jet during the left ventricular (LV) early diastole is 

dependent on the LV relaxation and has been used to assess the diastolic function (Hernandez-

Suarez, Palm, Lopez-Menendez, Mesa Pabon, & Lopez-Candales, 2017; Nagueh, 2020; Nagueh 

et al., 2016). The normal LV relaxation creates a pressure drop from mitral orifice towards apex 

(De Boeck et al., 2005; Steine, Stugaard, & Smiseth, 1999) and enhances the vortex ring at the 

mitral valve tips (Charonko, Kumar, Stewart, Little, & Vlachos, 2013), aiding the early diastolic 

filling. The Vp of normal filling can exceed the speed of the blood cell (De Boeck et al., 2005; 

Sessoms, Lisauskas, & Kovács, 2002) and resembles the motion of an entire column of blood with 

short delay between the occurrence of peak velocity at mitral tip and apical region (Steine et al., 

1999). With left ventricular diastolic dysfunction (LVDD), the LV relaxation is impaired, reducing 

the pressure force towards the apex and subsequently slowing the flow propagation (De Boeck et 

al., 2005; Steine et al., 1999).  

The conventional propagation velocity (Vp) is determined from the spatiotemporal velocity 

map provided by Color M-mode (CMM) echocardiography as the slope of the iso-velocity contour 

corresponding to the front of the inflow wave (Brun et al., 1992; Garcia et al., 2000; Garcia, 

Thomas, & Klein, 1998; Kelley C. Stewart et al., 2011; M. Stugaard, Brodahl, Torp, & Ihlen, 1994; 

Marie Stugaard, Smiseth, Risöe, & Ihlen, 1993; Takatsuji et al., 1996; Yotti et al., 2005). Vp can 

also be quantified based on the time difference between the occurrences of peak velocity in the 

apical region and at the mitral tip (Steine et al., 1999; M. Stugaard et al., 1994; Marie Stugaard et 

al., 1993). These methods assume a constant Vp during early diastole, while the inflow wave front 

shows a curvilinear feature (Sessoms et al., 2002; Kelley C. Stewart et al., 2011), suggesting that 

the Vp is spatially and temporally varying, and therefore multiple Vp values can be extracted from 

a single image based on different iso-velocity contours (De Boeck et al., 2005; Thomas, 2011). As 

a consequence, large differences were found between the Vp obtained using different methods due 

to a lack of consensus on the definition of Vp (Sessoms et al., 2002).  Recent developments 

consider the spatiotemporal variation of Vp and improved the classification ability (Chakraborty, 

Meyers, Iwano, Hall, & Vlachos, 2021; Kelley C. Stewart et al., 2011). However, the existing Vp 
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measurement methods are only applicable to CMM echocardiography which provides one-

dimensional measurement, and the accuracy of the velocity and Vp is affected by the angle 

between M-mode cursor and flow (Nagueh et al., 2016).  

The objective of the present study is to introduce a new method for determining flow 

propagation velocity from cardiac flow data and to resolve the spatiotemporal variations of Vp. 

This enables investigation of the correlation between Vp and the complex flow structures observed 

in the LV. The method was validated using synthetic flow data of a self-induced vortex ring. The 

method was demonstrated using in vivo data acquired using two-dimensional phase-contrast 

magnetic resonance imaging (pc-MRI) and 4D flow MRI. 

 

 

Figure 8.1 (a) The schematic demonstrates the common approach to measure Vp from the 
spatiotemporal velocity map. The black contour represents the velocity at 50% of the peak 

diastolic transmitral velocity. The Vp is estimated as the slope of green dashed line which is the 
linear approximation of the E-wave front based on the iso-velocity contour. (b) The schematic 

demonstrates the relationship between the Vp and the velocity values at different spatiotemporal 
points within the region of the velocity map indicated using the black dashed box shown in (a). 
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8.2 Methods 

8.2.1 Theory 

Figure 8.1 (a) illustrates the conventional approach to measure Vp from the spatiotemporal 

velocity map as the slope of a linear approximation of the iso-velocity contour (Garcia et al., 2000; 

Sessoms et al., 2002). This approach estimates the flow propagation by tracking the spatiotemporal 

occurrence of the contour-level velocity, e.g., from (𝑥, 𝑡) to (𝑥 + Δ𝑥, 𝑡 + Δ𝑡) with 𝑉𝑝 = Δ𝑥/Δ𝑡 

as demonstrated in Figure 8.1 (b). Alternatively, the propagation can be inferred from the following 

relationship between the velocity values and gradients at different spatiotemporal points as: 

 

𝑢(𝑥, 𝑡 + 𝛥𝑡) = 𝑢(𝑥 + 𝛥𝑥, 𝑡 + 𝛥𝑡) − b-
b*
𝛥𝑥 = 𝑢(𝑥, 𝑡) + b-

bG
𝛥𝑡,	 (8-1)	

 

where b-
bG

 and b-
b*

 are the temporal (t) and spatial (x) velocity gradients, respectively. Since both 

(𝑥, 𝑡) and (𝑥 + Δ𝑡, 𝑡 + Δ𝑡) are on the iso-velocity contour line, 𝑢(𝑥, 𝑡) = 𝑢(𝑥 + Δ𝑡, 𝑡 + Δ𝑡), and 

the following formulation can be derived from equation (8-1) as: 

 
b-
bG
+ 𝑉𝑝 b-

b*
= 0.		 (8-2)	

 

Equation (8-2) is the first order wave equation governing the propagation of a waveform denoted 

by 𝑢(𝑥, 𝑡). With multi-dimensional and multi-component velocity data 𝑢r⃑ (𝑥, 𝑡), Equation (8-2) can 

be modified as: 

 
b-��⃑
bG
+ 𝑉𝑝rrrrr⃑ ⋅ 𝛻𝑢r⃑ = 0,	 (8-3)	

 

where ∇ represents the spatial gradient operator, and 𝑉𝑝rrrrr⃑  is the vector consisting of the propagation 

velocity along all spatial dimensions. Equations (8-2) and (8-3) suggest that Vp can be estimated 

from the velocity gradients. We use Vprop to denote the propagation velocity estimated based on 

the first order wave equation herein, which is a scalar if estimated from one-dimensional data and 

a vector if estimated from multi-dimensional data.  
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8.2.2 Vprop estimation with weighted least-squares 

The Vprop was estimated from the velocity gradients numerically calculated from the velocity 

fields using second order central (SOC) difference scheme. For each timeframe, the Vprop at each 

spatial point was determined by the weighted least-squares (WLS) fitting of the wave propagation 

equation (8-3) as: 

 

𝑉i(Ui = 𝑎𝑟𝑔𝑚𝑖𝑛 {∑ 𝑤E" Ò
b-��⃑
bG
+ 𝑉i(Ui ⋅ 𝛻𝑢r⃑ Ò

E

"
&
E �,	 (8-4)	

	
where n is the total number of data points within the field, and 𝑤E is the weight for the i-th data 

point which was generated based on its spatial distance |Δ�⃑�| from the point of interest as: 

 

𝑤E = æ𝑒𝑥𝑝 c−
|H*⃑|(

S=
d 𝑖𝑓	|𝛥�⃑�| < 𝐿O

0 𝑒𝑙𝑠𝑒
,	 (8-5)	

 

where 𝐿O = 0.5	𝑐𝑚  is the length scale, yielding a kernel width of 1 cm which corresponds 

approximately to the radius of the mitral valve. The weight decreases with the increase of the 

distance |Δ�⃑�| , and only the data within 𝐿O  is employed for the fitting. The proposed WLS 

optimization will yield Vprop that is dependent on the local flow structure and ensures the 

robustness of the fitting. 

To quantify the relative strength of the propagation, the Vprop component along the direction 

from mitral orifice towards the apex is extracted and spatially integrated in the LV. The integral at 

each timeframe is normalized by the average of all the timeframes during diastole and is named as 

the propagation intensity (Iprop). 

8.2.3 Synthetic vortex ring flow 

Synthetic flow fields of a self-induced Lamb-Oseen vortex ring were created to assess the 

accuracy of the proposed Vprop calculation method. The radius of the circular vortex ring (𝑟O) is 

2	𝑐𝑚, and the angular velocity relative to the ring’s circular axis can be expressed as: 
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𝑢^ = 𝑢VR* c1 +
0
"}
d (-.?

(
�1 − 𝑒

I} %(

%-.?( �,	 (8-7)	

 

where 𝑢VR* = 0.5	𝑚/𝑠 is the maximum angular velocity, 𝑟VR* = √𝛼 × 𝑟' is the distance from the 

vortex core where the maximum angular velocity is reached, 𝑟' = 0.5	𝑐𝑚 is the vortex core radius, 

and the constant 𝛼 = 1.25643 (Devenport & Rife, 1996). The self-induction velocity (𝑢O) of the 

vortex ring is along the z-axis and can be determined from: 

 

𝑢O = 𝑢VR* c1 +
0
"}
d (-.?

"(=
ð1 − 𝑒

I} %=
(

%-.?( ñ,	 (8-8)	

 

which is considered as the “ground truth” propagation velocity of the vortex ring flow. Three-

dimensional (3D) velocity fields were created on a Cartesian grid with a spatial resolution of 2 mm 

in a domain spanning from −2𝑟O to 2𝑟O along each spatial dimension. A total of 41 timeframes 

were uniformly sampled during the time when the vortex ring propagated from 𝑧 = −𝑟O to 𝑧 = 𝑟O, 

yielding a sampling rate at 98 Hz. In addition to the 3D data, two-dimensional (2D) and one-

dimensional (1D) datasets were extracted at the center z-x plane and along the z-axis, respectively. 

To test the robustness of the proposed method against measurement noise, normally distributed 

random noise was added to the velocity data with the standard deviation varying from 0% to 20% 

of the maximum velocity magnitude along the z-axis. 

8.2.4 Cardiac Magnetic Resonance (CMR) Image acquisition 

Two-dimensional pc-MRI measurements were acquired from three patients, one with normal 

filling and two with LVDD, in accordance with the pre-established Institutional Review Board 

guidelines. The scans were performed at the Wake Forest University Baptist Medical Center in 

Winston-Salem, NC on an Avanto 1.5T scanner from Siemens Medical Solutions. Velocity 

encoding (VENC) was 100–130 cm/s, with a repetition time (TR) of 20 ms and an echo time (TE) 

of 3.3 ms. Flip angle was 20°, and the spatial resolution was 1.25 mm/pixel in-plane with a 5-mm 

slice thickness. Retrospective ECG gating was used for the acquisition with 40 or 45 reconstructed 

phases depending on patient heart rate. The pc-MRI images were segmented based on a separate 



 
 

188 

high signal-to-noise ratio imaging scan acquired over the same field of view, and the time-

dependent LV boundaries were created for the pc-MRI fields. These data have been used in 

previous studies (Brindise, Meyers, & Vlachos, 2020; K. C. Stewart, Charonko, Niebel, Little, & 

Vlachos, 2012). 

4D flow MRI data were acquired for three subjects with normal LV diastole at the Children’s 

National Hospital in an Institutional Review Board-approved retrospective study (Loke et al., 

2021). A Siemens 1.5-T scanner was used for acquiring the CMR data, with the field of view (FOV) 

of 280-480 × 140-230 mm and a matrix of 160×77. The TE was 2.19 ms, and the TR was 37.9-

59.4 ms. The flip angle was 15°, and the VENC was 2-2.5 m/s. The slice size was 1.8 mm or 2.75 

mm, and the pixel size was 1.75 or 2.735 mm, depending on the patient size. The number of 

reconstructed phases was 20-30 of a cardiac cycle. The time-dependent LV boundaries for the 4D 

flow data were created based on the long-axis and short-axis cine images acquired for the same 

subjects. 

8.2.5 Velocity data preprocessing 

The following preprocessing procedure was performed on the velocity fields of the synthetic 

data and the in vivo cardiac flow prior to the Vprop estimation. The spurious velocity measurements 

were detected using the universal outlier detection (UOD) method (Westerweel & Scarano, 2005) 

based on the local variation of velocity in the neighborhood containing 3 pixels along each spatial 

dimension, and the outlier measurements were replaced with the median of the neighborhood. To 

ensure the smoothness of the velocity field, the velocity profile along each dimension was 

reconstructed as an ensemble of radial basis functions (RBFs): 

 

𝑢(𝑥) = ∑ 𝑠k𝑇k}𝑟k~<
kY0 ,	 (8-9)	

with	𝑇(𝑟) = 𝑟4𝑙𝑛	 𝑟,	 (8-10)	
 

where N is the total number of RBFs, 𝑠k is the amplitude of the j-th RBF 𝑇k, and 𝑟k = �𝑥 − 𝑥k� is 

the distance to the j-th RBF centered at 𝑥k. The 4-th order thin-plate spline is employed for the 

RBF as expressed in equation (10). The RBFs were distributed uniformly along each dimension 

with 5 mm separation. The RBF amplitudes were determined as: 
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𝑠k = 𝑎𝑟𝑔𝑚𝑖𝑛 c�∑ 𝑠k𝑇k}𝑟k~<
kY0 − 𝑢�"d,		 (8-11)	

 

which minimizes the least-squares residual between the original velocity profile with the RBF 

representation to ensure the fidelity of the reconstruction.  

8.2.6 Postprocessing methods 

Instantaneous pressure fields were estimated from the LV velocity fields using the 

measurement-error based WLS method (Zhang, Brindise, et al., 2020). The pressure gradients 

(𝑝z(RT) were calculated using the Navier-Stokes momentum equation, which were then spatially 

integrated to obtain the pressure field (𝑝`SZ) as: 

 

𝑝`SZ = 𝑎𝑟𝑔𝑚𝑖𝑛 c�𝑊}𝛻𝑝 − 𝑝z(RT~�
"d,	 (8-12)	

 

where 𝑊 is the weight matrix generated based on the velocity error predicted from the spurious 

divergence of the velocity field. A 0 Pa reference pressure was assigned at the mitral orifice such 

that the estimated pressure is relative to the mitral orifice. The pressure difference between the 

mitral orifice and the apical region is defined as the intraventricular pressure difference (IVPD). 

A positive IVPD means that the pressure at the mitral orifice is higher than the pressure in the 

apical region.  
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The vortical structures were identified from the LV velocity fields based on the local swirling 

strength denoted as 𝜆'E which is quantified as the imaginary part of the complex eigenvalues of 

the velocity gradient tensor (J. Zhou, Adrian, Balachandar, & Kendall, 1999). Vortices were 

identified as the connected regions where the absolute value of 𝜆'E is above 4% of the maximum 

value measured in the LV over the diastole. 

 

8.3 Results 

8.3.1 Error analysis with synthetic vortex ring flow 

Figure 8.2 (a) and (b) show the velocity field in the 3D volume and on the center x-z plane, 

respectively, from the middle timeframe when the vortex ring center is located at 𝑧 = 0	𝑚𝑚. 

Figure 8.2 (c) presents the spatiotemporal velocity map of the 1D data sampled along the z-axis. 

The errors in the estimated Vprop were assessed as the differences from the vortex ring’s self-

induction velocity 𝑢O. For each dataset, the quartiles of the absolute Vprop errors were determined 

in a moving region defined as |𝑧 − 𝑧U| < 𝑟O, where 𝑧U is the z-location of the vortex ring center 

which propagates from −𝑟O to 𝑟O during the sampled time. The quartiles are normalized by 𝑢O and 

shown in Figure 8.3 as a function of the velocity noise level. The normalized median absolute error 

in the Vprop estimated from the 1D data increases from 0.007 to 0.82 as the velocity noise level 

Figure 8.2 (a) The three-dimensional velocity field of the vortex ring flow from the middle 
timeframe. The color of the arrows corresponds to the local velocity magnitude. (b) The two-

dimensional velocity field of the vortex ring flow on the center x-z plane from the middle 
timeframe. The background color suggests the local velocity magnitude. (c) The spatiotemporal 

velocity map sampled along the z-axis. 



 
 

191 

increases from 0% to 20%, while the normalized median absolute Vp error increases from 0.008 

to 0.37 and from 0.004 to 0.29 for the estimations from 2D and 3D datasets, respectively. 

 

8.3.2 Results from two-dimensional pc-MRI 

Figure 8.4 (a) shows the waveforms of the mitral inflow, the IVPD, and the propagation 

intensity (Iprop) during LV diastole for the normal filling patient. At the beginning of the normal 

LV filling, the IVPD and Iprop increases as the inflow velocity increases. The peak Iprop coincides 

with the peak IVPD at around 0.05 s after the start of the LV diastole. The IVPD quickly drops to 

negative when the peak inflow velocity is reached, suggesting that the pressure in the apical region 

becomes higher than the mitral orifice pressure. The secondary peaks of the Iprop and IVPD can be 

observed during the atrial filling around 0.4 s. For LVDD patients shown in Figure 8.5 (a), the 

peaks of the mitral inflow velocity and IVPD during early diastole are lower than the normal filling. 

The peaks of Ip and IVPD are higher during the atrial filling at around 0.3 s than the peaks during 

Figure 8.3 The normalized absolute error in the Vprop calculated using the proposed method from 
the 1D, 2D, and 3D data of the vortex ring flow as a function of the velocity noise level. The 

lines suggest the median absolute error, and the shaded region indicates the interquartile range of 
the error distribution. 
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early diastole for the HCM patient, while the DCM patient shows no prominent peaks of IVPD or 

Iprop during the entire diastole.  

 

Figure 8.4 (a) The waveforms of the mitral inflow velocity, the intraventricular pressure 
difference (IVPD), and the propagation intensity (Iprop) during the LV diastole of the normal 

filling patient imaged with two-dimensional pc-MRI. (b) The fields of the blood flow velocity, 
the Vp, and the relative pressure from the timeframes indicated using the dotted lines in the 

waveform plots in (a). 
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The fields of flow velocity, Vprop, and relative pressure in the LV at three consecutive 

timeframes during early diastole are presented in Figure 8.4 (b) and Figure 8.5 (b) for the normal 

filling and LVDD patients, respectively. The plotted timeframes are indicated using the vertical 

dotted lines in the corresponding waveform plots. The black contours in the fields identify the 

borders of the vortex structures. For the normal filling, a vortex ring is formed near the mitral valve 

tips around the inflow jet, and strong flow propagation towards apex can be observed downstream 

of the vortex ring. The pressure decreases from the mitral orifice to the apex at the first timeframe, 

while the pressure in the apical region rises and becomes higher than the pressure around the mitral 

orifice at the third timeframe. From the LVDD patients, both the inflow jet and the flow 

propagation are weaker than the normal filling. The flow propagation of the LVDD patients also 

Figure 8.5 (a) The waveforms of the mitral inflow velocity, the intraventricular pressure 
difference (IVPD), and the propagation intensity (Iprop) during the LV diastole of the LVDD 

patients imaged with two-dimensional pc-MRI. The left column shows the HCM patient, and the 
right column corresponds the DCM patient. (b) The fields of the blood flow velocity, the Vp, and 
the relative pressure from the timeframes indicated using the dotted lines in the waveform plots 

in (a). 
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shows a shorter penetration than the normal filling, as the filling Vprop is only found near the vortex 

ring from the LVDD patients, while the filling Vprop is still significant further downstream of the 

vortex ring into the apical region of the normal LV. The Vp downstream of the vortex ring is more 

aligned towards the apex in the normal LV, while the Vprop’s direction quickly diverges after 

passing the vortex ring in the LVDD patients. The pressure has a more uniform distribution in the 

LV of the LVDD patients than in the normal LV. 

 

Figure 8.6 (a) The waveforms of the mitral inflow velocity, the intraventricular pressure 
difference (IVPD), and the propagation intensity (Iprop) during the LV diastole determined from 
the 4D flow MRI data of a normal filling subject. (b) The fields of the blood flow velocity, the 
Vprop, and the relative pressure on the four-chamber view from the timeframes indicated using 

the dotted lines in the waveform plots in (a). 
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8.3.3 Results from 4D flow MRI 

The waveforms of the mitral inflow, the IVPD, and Iprop determined from the 4D flow data 

of a normal subject are presented in Figure 8.6 (a). Positive IVPD is found at the beginning of the 

diastole as the mitral inflow increases and drops to negative when the peak inflow is reached. The 

peak of Iprop during early diastole is found between the peak IVPD and peak mitral inflow. Three 

timeframes during early diastole with increasing mitral inflow are selected as indicated by the 

vertical dotted lines. Figure 8.6 (b) shows the in-plane velocity, Vprop, and relative pressure fields 

during the selected timeframes on the four-chamber view. Like the results from the normal filling 

patient shown in Figure 8.4, a vortex ring forms with the mitral inflow, and the relative pressure 

in the apical region rises as the inflow jet reaches the apex. As shown in the middle frame in Figure 

8.5 (b), the region with significant filling Vprop towards apex is located downstream of the vortex 

ring. The waveforms and the fields of the other two subjects are provided in Appendix B. 

8.4 Discussion  

This study introduces a method to measure the LV filling propagation velocity from multi-

dimensional cardiac flow imaging. The proposed method estimates the Vprop at each spatiotemporal 

point by fitting the first order wave equation to the velocity gradients in the neighborhood. The 

method’s performance was evaluated with synthetic vortex ring flow data, and the error analysis 

results suggested that more accurate Vprop can be obtained from multi-dimensional data (2D and 

3D) than from 1D data. Compared to the result from 1D data with 20% noise, the median absolute 

Vprop error was 55% and 65% lower from the 2D data and 3D data with the same noise level, 

respectively. Determining Vprop from multi-dimensional data also avoids the limitation of the one-

dimensional CMM that the measurement accuracy is affected by the angle between the M-mode 

cursor and the flow. The Vprop estimated from multi-dimensional data is also directional as shown 

in the Vprop fields from Figure 8.4, Figure 8.5, and Figure 8.6.  

The proposed method provides the spatial distribution and the temporal evolution of Vprop, 

which helps in understanding the mechanism of the LV filling propagation and its relationship 

with the pressure gradient and the vortical structures. For the normal filling shown in Figure 8.4, 

the peak flow propagation in terms of Iprop occurs around the time when the maximum IVPD is 

reached with relatively low mitral inflow. At the later timeframes with the peak mitral inflow, the 
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inflow jet reaches the apical region and increases the apical pressure. The pressure gradient no 

longer aids LV filling, and the Vprop becomes lower than the previous timeframes despite the 

stronger convection caused by the blood flow towards apex. This suggests that the pressure 

gradient created by the LV relaxation has a stronger effect on the flow propagation during early 

diastole than the local convection, which is consistent with the previous findings based on CMM 

echocardiography (De Boeck et al., 2005; Sessoms et al., 2002). For the LVDD patients, the timing 

of the peak Iprop also coincides with the peak IVPD during the early diastole as shown in Fig. 4, 

although the mitral inflow, IVPD, and Vprop are significantly lower than the values from the normal 

filling patient. Additionally, the Vprop is correlated with the vortex ring formed near the mitral 

valve tips during the early diastole. As shown in Figure 8.4, Figure 8.5, and Figure 8.6, the flow 

propagation towards apex is mainly found at the front of the inflow jet downstream of the vortex 

ring. For the normal filling, the vortex ring creates a virtual channel, allowing the inflow jet to 

propagate into the LV without spreading (Charonko et al., 2013). For the LVDD patients, the 

vortex ring at the mitral valve tips is smaller in size and closer to the base of the ventricle, leading 

to the shorter penetration of the flow propagation which quickly diverges after passing the vortex 

ring as shown in Figure 8.5.  

There are some limitations of the proposed method. First, the Vprop is estimated from the 

velocity gradients whose accuracy is sensitive to the noise in the velocity data. We performed 

UOD followed by the RBF reconstruction to enhance the smoothness and the fidelity of the 

velocity data and therefore to ensure the reliability of the velocity gradient evaluation. Moreover, 

the Vprop measurement requires time-resolved velocity data. The maximum resolvable Vprop from 

the proposed method can be approximated as 0.5𝐿i/Δ𝑡, where 𝐿i is the flow propagation distance, 

and Δ𝑡 is the time difference between acquired phases. The factor 0.5 is due to the SOC scheme 

which estimates the temporal derivative from two timeframes separated by 2Δ𝑡. With a typical 𝐿i 

of 4 cm, the minimum sampling rate required to resolve a common normal filling Vprop at 1 m/s is 

50 Hz (Δ𝑡 = 25	𝑚𝑠), which can be difficult to achieve for some imaging modality such as 4D flow 

MRI. In the present study, the maximum normal filling Vprop obtained from the 4D flow MRI is 

around 0.4 m/s, which is lower than the maximum Vprop determined from the two-dimensional pc-

MRI data at about 0.8 m/s. This may be caused by the difference in the temporal resolutions as the 

4D flow data was acquired with a Δ𝑡 of 28-46 ms, while the two-dimensional pc-MRI has a Δ𝑡 of 

18 ms.  
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Overall, this study introduces a novel flow propagation velocity measurement method for 

multi-dimensional cardiac flow imaging. The method estimates the Vprop by fitting the first order 

wave equation to the velocity gradients and can resolve the spatiotemporal variation of Vprop. The 

error analysis with synthetic vortex ring flow suggests that measuring Vprop from multi-

dimensional data is more robust than from 1D data. The method was applied to the multi-

dimensional CMR data and demonstrated the Vprop’s distribution in the LV and the evolution 

during the diastole. The results also reveal that the flow propagation during the early diastole is 

mainly driven by the pressure gradient, and the vortex ring formation near the mitral valve tips can 

aid the flow propagation.  
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 CONCLUSIONS AND FUTURE WORK 

9.1 Conclusions 

The present works introduce and apply the flow-physics constrained data enhancement and 

augmentation methods for 4D flow MRI to help the risk stratification of unruptured cerebral 

aneurysms. A divergence-free constrained phase unwrapping method is introduced in Chapter 2, 

which improves the dynamic range of the 4D flow measurement. The method also denoises the 

phase field and thus enhances the velocity-to-noise ratio of the resulting velocity data. Additionally, 

the evaluation of hemodynamic parameters is improved by the pressure reconstruction and WSS 

estimation methods introduced in Chapter 3 and 4. The proposed pressure reconstruction method 

with WLS reduces the pressure error by 50% to 200% as compared to the method by solving the 

pressure Poisson equation (PPE), and the proposed WSS estimation method reduces the 

underestimation of mean WSS by 39% to 50% for the aneurysmal flow. Moreover, a multi-

modality approach is introduced and applied to enhance the blood flow measurements and the 

hemodynamic analysis with 4D flow MRI in cerebral aneurysms as presented in Chapter 7. Using 

a library of high-resolution velocity fields from patient-specific CFD simulations and in vitro PTV 

measurements, the flow field of 4D flow MRI data is reconstructed as the sparse representation of 

the library. The reconstruction increased the velocity and WSS by 6-13% and 39-61%, respectively, 

suggesting the accuracy of these quantities was improved since the raw MRI data underestimated 

the velocity and WSS by 10-20% and 40-50%, respectively. We also proposed a method to 

measure the LV flow propagation velocity (Vprop) from cardiac flow imaging including 4D flow 

MRI as presented in Chapter 8. The method estimates Vprop based on the first order wave equation 

and exhibits the capability of resolving the spatiotemporal variation of Vprop, and the mechanisms 

of Vprop during early LV diastole was revealed. The proposed Vprop measurement method provides 

a more comprehensive investigation and potentially improves the evaluation of LV diastolic 

function. 

The present works also demonstrate the flow-physics data enhancement and augmentation 

approach on the flow data acquired using other techniques. An instantaneous pressure 

reconstruction method for PIV/PTV is introduced in Chapter 5, which uses the uncertainty 

information from PIV/PTV and reconstructs the pressure fields with generalized least-squares 
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(GLS). The method improves the pressure reconstruction from 2D or 3D velocity fields including 

laminar and turbulent flow conditions with as much as 96% error reduction in the reconstructed 

pressure field. Additionally, a practical framework to estimate the reconstructed pressure’s 

uncertainty is introduced in Chapter 6 by propagating the velocity uncertainty from PIV/PTV 

through the pressure reconstruction. The framework is shown to be able to predict the local and 

instantaneous pressure uncertainty and reproduce the effects of velocity error characteristics, 

boundary conditions, and the pressure integration method on the reconstructed pressure fields. 

Moreover, we have developed data enhancement and augmentation methods to improve the 

density field measurement with background oriented schlieren (BOS) (Rajendran, Zhang, Bane, 

& Vlachos, 2020) and the measurement of concentration-dependent diffusion coefficient 

(Ahmadzadegan, Zhang, Ardekani, & Vlachos, 2022). 

9.2 Limitations and future work 

There are several limitations of the present study. First, the vessel wall was assumed to be 

rigid, and the wall motion or fluid-tissue iterations were not considered. Although the rigid wall 

assumption is reasonable for modeling the flow in cerebral arteries as cine MR images showed no 

appreciable movements of these vessels over the cardiac cycle in a previous investigation (Boussel 

et al., 2008), it may not be appropriate for the aortic wall. Moreover, the Newtonian flow was 

assumed, which may not be ideal in low WSS regions. The present studies did not consider the 

blood density variance or the variability in RR intervals, which may lead to additional errors in the 

calculations of hemodynamic parameters. Additionally, the proposed methods require the blood 

flow region (ROI) to be segmented prior to the processing, which can be difficult for acquisitions 

with tissue movement. The uncertainty in the wall location may affect the accuracy of the WSS 

estimation. Another limitation of the present works is the lack of ground truth for the in vivo 4D 

flow data, which prevents the error analysis of the velocity measurement and the derived 

hemodynamic parameters from the in vivo datasets. We overcame this limitation by investigating 

the consistency between the results across different modalities and by analyzing the correlation 

between the results with the flow structures to assess the proposed methods’ performance on in 

vivo 4D flow data.  

Several future works are proposed for the present study. First, the flow-physics constrained 

data enhancement and augmentation methods will be applied to a suitable cohort containing a 
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sufficiently large number of patients with longitudinal recordings in order to evaluate and establish 

the statistical correlation of the hemodynamic factors with the growth and rupture of cerebral 

aneurysms. Furthermore, biomarkers will be derived from the flow propagation velocity measured 

using the proposed method in Chapter 8 to improve the diagnosis of the LV diastolic dysfunction. 

We also propose to expand the application of the data enhancement and augmentation methods to 

other parts of the cardiovascular system including the carotid artery and pulmonary artery and 

investigate the correlation between hemodynamic metrics with cardiovascular diseases. Moreover, 

further developments on the flow-physics constrained data enhancement and augmentation 

methods will be conducted, including an efficient flow-library generation approach for the multi-

modality flow reconstruction with sparse representation. We will also explore using machine 

learning methods such as artificial neural network to incorporate flow-physics constraints for 

enhancing 4D flow data.  
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APPENDIX A. WSS ERROR ANALYSIS WITH SYNTHETIC 4D FLOW 
MRI DATA  

Synthetic 4D flow MRI data generation methodology 

Synthetic 4D flow MRI datasets were created based on the velocity fields from CFD 

simulations and analytical Womersley flow. The flow sensitive MRI signal corresponding to the 

u velocity component was generated as: 

 

𝑀- = 𝐼VRz𝑒𝑥𝑝 c
E#-
$%&'

d,	 (A-1)	

	
where 𝑀- is the complex-valued MRI signal for u velocity, 𝐼VRz represents the signal magnitude, 

and venc is the velocity encoding sensitivity parameter. The value of 𝐼VRz was set as 1.0 in the 

flow (𝑟 < 𝑅) and 0.2 elsewhere, yielding a saturation raito of 0.2. The synthetic 4D flow data were 

generated on a Cartesian grid with a voxel size of Δ𝑥 × Δ𝑦 × Δ𝑧. To mimic the spatial smoothing 

effect of 4D flow MRI, the MRI signal at each grid point was generated by convolving 𝑀- with a 

sinc-function kernel 𝒦 as: 

 

𝑀.,M68 = 𝑀. ∗ 𝒦,	 (A-2)	

with 𝒦(𝑥, 𝑦, 𝑧) = 𝑠𝑖𝑛𝑐 c *
>±
d 𝑠𝑖𝑛𝑐 c +

>²
d 𝑠𝑖𝑛𝑐 c ,

>³
d, 

 

where ∗  denotes the convolution operation. The sinc-function kernel has been employed to 

simulate the spatial blurring of Cartesian 4D flow MRI due to limited k-space coverage in previous 

studies (Rispoli et al., 2015; Zhang et al., 2022, 2021). The MRI signals for the other velocity 

components (𝑀$,M68  and 𝑀.,M68 ) were created similar to (A-1). According to a four-point 

acquisition method, the reference MRI signal (𝑀O,M68) was created from a zero-velocity field such 

that the phase difference between the flow-sensitive signal and 𝑀O,M68 matched the corresponding 

velocity component. To consider the measurement noise, normally distributed noise (𝜖M68) was 

added to the complex-valued MRI signal (den Dekker & Sijbers, 2014). This complex noise is 

defined as: 
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𝜖M68 = 𝜖6§ + 𝑖𝜖8M ,		 (A-3)	
with 𝜖6%, 𝜖8V ∈ 𝒩(0, 𝜎"), 

 

where 𝜖6§  and 𝜖8M  indicate the noise added to the real and imaginary parts, respectively. The 

standard deviation 𝜎 was set based on the predefined velocity-to-noise ratio (VNR) (Lee et al., 

1995) as: 

 

𝜎 = 8-.N

X<6
#
√"

X¢

$%&'
	 (A-4)	

	

where 𝑉�  is the mean velocity in the flow field. The 4D flow velocity data was then obtained from 

the MRI signal, e.g., for the u component as: 

 

𝑢M68 =
$%&'
#
𝜓- =

$%&'
#
𝑎𝑛𝑔𝑙𝑒}𝑀-,M68𝑀O,M68

∗ ~,		 (A-5)	

 

where 𝜓-  is the phase difference, 𝑀O,M68
∗  is the complex conjugate of 𝑀O,M68 , and 𝑎𝑛𝑔𝑙𝑒(∙) 

evaluates the angle of the complex number.  

 

Synthetic 4D flow data of analytical Womersley flow 

Womersley flow is representative of pulsatile flow in a circular pipe driven by an oscillatory 

pressure gradient and has been used to represent arterial flow in the cardiovascular system 

(Womersley, 1955). The streamwise velocity component (w along z-direction) can be analytically 

expressed as: 

 

𝑤(𝑟, 𝑡) = 𝑅𝑒𝑎𝑙 æ∑ E�0´
�&�

Õ1 −
µ=~}&E/(E7/(

%
[�

µ=u}&E/(E7/(x
Ö&YO 𝑒E&�Gó,	 (A-6)	

 

where 𝑟  is the radial coordinate, R is the pipe radius, 𝜔  is the angular frequency of the first 

harmonic of the oscillatory pressure gradient Ti
T,

, 𝛼 = 𝑅 c��
a
d
0/"

 represents the Womersley number, 

𝑃&′ is the pressure gradient magnitude for the harmonic at frequency 𝑛𝜔, 𝐽O(∙) is the zeroth-order 
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Bessel function of the first kind, 𝑖 is the imaginary number, and 𝑅𝑒𝑎𝑙{∙} takes the real component 

of a complex number. The velocity components along other spatial dimensions are zero. The WSS 

can be determined analytically as 

 

𝜏.(𝑡) = 𝑅𝑒𝑎𝑙 ö∑ 𝑃&′
6
¶0&YO

µE(¶0)
µ=(¶0)

𝑒E&�G÷,	 (A-7)	

with Λ& = 𝛼𝑛0/"𝑖W/",  

 

where 𝐽0(∙) is the first-order Bessel function of the first kind. The oscillatory pressure gradient was 

specified as: 

 
Ti
T,
(𝑡) = 𝑃O 𝑠𝑖𝑛(2𝜋𝑡),	 (A-8)	

 

with 𝜔 = 2𝜋 rad/s corresponding to a heart rate of 60 bpm. The velocity profile and WSS of the 

Womersley flow depend on the Womersley number, 𝛼. We considered the following 𝛼 values to 

cover the typical range in the cardiovascular system: 1, 2, 4, 8, 12, 16, which lead to the following 

pipe diameters: 1.5, 3.1, 6.2, 12.4, 18.6, and 24.8 mm, with 𝜌 = 1100	𝑘𝑔/𝑚W, 𝜇 = 0.004	𝑃𝑎 ∙ 𝑠, 

and 𝜔 = 2𝜋.  

Synthetic 4D flow data were created from the analytical solution of the Womersley flow 

using the approach described in section S1. The venc was 1.5 times the maximum velocity in the 

flow field to avoid velocity aliasing. The synthetic 4D flow data were generated on a Cartesian 

grid in a 4R long pipe section. The isotropic voxel sizes were 1/2, 1/3, 1/4, 1/5, 1/7, 1/9, 1/11, and 

1/14 of the pipe diameter (D), and the temporal resolution (Δ𝑡) was 50 ms, yielding 20 frames per 

cycle. For each Womersley number and spatial resolution, one dataset without noise and one 

dataset with a VNR of 10 (10% noise) were created. For each dataset, 100 wall points were selected 

for the WSS evaluation and analysis. 
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APPENDIX B. FLOW PROPAGATION VELOCITY ESTIMATED FROM 
4D FLOW DATA 

 The figures in this appendix present the results evaluated from the 4D flow data of two 

normal filling subjects. (a) The waveforms of the mitral inflow velocity, the intraventricular 

pressure difference (IVPD), and the propagation intensity (Iprop) during the LV diastole determined 

from the 4D flow MRI data of a normal filling subject. (b) The fields of the blood flow velocity, 

the Vprop, and the relative pressure on the four-chamber view from the timeframes indicated using 

the dotted lines in the waveform plots in (a). 

 



 
 

205 

 

 

 

  



 
 

206 

REFERENCES 

Ahmadzadegan, A., Zhang, J., Ardekani, A., & Vlachos, P. P. (2022). Spatiotemporal 
Measurement of Concentration-Dependent Diffusion Coefficient. Authorea, (March 31). 
https://doi.org/10.22541/au.164873358.86144442/v1 

Ajiboye, N., Chalouhi, N., Starke, R. M., Zanaty, M., & Bell, R. (2015). Unruptured Cerebral 
Aneurysms: Evaluation and Management. Scientific World Journal, 2015. 
https://doi.org/10.1155/2015/954954 

Amili, O., Schiavazzi, D., Moen, S., Jagadeesan, B., Pierre- Francois Van de Moortele, & Coletti, 
F. (2018). Hemodynamics in a giant intracranial aneurysm characterized by in vitro 4D flow 
MRI. PLoS ONE, 13(1), e0188323. https://doi.org/https://doi.org/ 
10.1371/journal.pone.0188323 

Aristova, M., Vali, A., Ansari, S. A., Shaibani, A., Alden, T. D., Hurley, M. C., … Schnell, S. 
(2019). Standardized Evaluation of Cerebral Arteriovenous Malformations Using Flow 
Distribution Network Graphs and Dual-venc 4D Flow MRI. Journal of Magnetic Resonance 
Imaging, 50(6), 1718–1730. https://doi.org/10.1002/jmri.26784 

Asgari, S., Wanke, I., Schoch, B., & Stolke, D. (2003). Recurrent hemorrhage after initially 
complete occlusion of intracranial aneurysms. Neurosurgical Review, 26(4), 269–274. 
https://doi.org/10.1007/s10143-003-0285-6 

Azijli, I., & Dwight, R. P. (2015). Solenoidal filtering of volumetric velocity measurements using 
Gaussian process regression. Experiments in Fluids, 56(198). https://doi.org/10.1007/s00348-
015-2067-7 

Azijli, I., Sciacchitano, A., Ragni, D., Palha, A., & Dwight, R. P. (2016a). A posteriori uncertainty 
quantification of PIV-based pressure data. Experiments in Fluids, 57(5), 1–15. 
https://doi.org/10.1007/s00348-016-2159-z 

Azijli, I., Sciacchitano, A., Ragni, D., Palha, A., & Dwight, R. P. (2016b). A posteriori uncertainty 
quantification of PIV-based pressure data. Experiments in Fluids, 57(5), 72. 
https://doi.org/10.1007/s00348-016-2159-z 

Baek, H., Jayaraman, M. V., & Karniadakis, G. E. (2009). Wall Shear Stress and Pressure 
Distribution on Aneurysms and Infundibulae in the Posterior Communicating Artery 
Bifurcation. Annals of Biomedical Engineering, 37(12), 2469–2487. 
https://doi.org/10.1007/s10439-009-9794-y 

Bakhshinejad, A., Baghaie, A., Vali, A., Saloner, D., Rayz, V. L., & D’Souza, R. M. (2017). 
Merging computational fluid dynamics and 4D Flow MRI using proper orthogonal 
decomposition and ridge regression. Journal of Biomechanics, 58, 162–173. 
https://doi.org/10.1016/j.jbiomech.2017.05.004 



 
 

207 

Barker, A. J., Lanning, C., & Shandas, R. (2010). Quantification of hemodynamic wall shear stress 
in patients with bicuspid aortic valve using phase-contrast MRI. Annals of Biomedical 
Engineering, 38(3), 788–800. https://doi.org/10.1007/s10439-009-9854-3 

Barker, A. J., Markl, M., Bürk, J., Lorenz, R., Bock, J., Bauer, S., … Von Knobelsdorff-
Brenkenhoff, F. (2012). Bicuspid aortic valve is associated with altered wall shear stress in 
the ascending aorta. Circulation: Cardiovascular Imaging, 5(4), 457–466. 
https://doi.org/10.1161/CIRCIMAGING.112.973370 

Berg, P., Stucht, D., Janiga, G., Beuing, O., Speck, O., & Thévenin, D. (2014). Cerebral blood 
flow in a healthy circle of willis and two intracranial aneurysms: Computational fluid 
dynamics versus four-dimensional phase-contrast magnetic resonance imaging. Journal of 
Biomechanical Engineering, 136(4), 1–9. https://doi.org/10.1115/1.4026108 

Berhane, H., Scott, M., Elbaz, M., Jarvis, K., Mccarthy, P., Carr, J., … Markl, M. (2020). Fully 
automated 3D aortic segmentation of 4D flow MRI for hemodynamic analysis using deep 
learning. Magnetic Resonance in Medicine, 00, 1–15. https://doi.org/10.1002/mrm.28257 

Bhalerao, A., Westin, C.-F., & Kikinis, R. (1997). Unwrapping Phase in 3D MR Phase Contrast 
Angiograms (pp. 193–202). 

Bhattacharya, S., Charonko, J. J., & Vlachos, P. P. (2017). Stereo-particle image velocimetry 
uncertainty quantification. Measurement Science and Technology, 28(1), 015301. 
https://doi.org/10.1088/1361-6501/28/1/015301 

Bhattacharya, S., Charonko, J. J., & Vlachos, P. P. (2018). Particle image velocimetry ( PIV ) 
uncertainty quantification using moment of correlation ( MC ) plane. Measurement Science 
and Technology, 29, 115301. https://doi.org/https://doi.org/10.1088/1361-6501/aadfb4 

Bhattacharya, S., & Vlachos, P. P. (2019). Volumetric Particle Tracking Velocimetry ( PTV ) 
Uncertainty Quantification. ArXiv Preprint ArXiv:1911.12495. 

Bhattacharya, S., & Vlachos, P. P. (2020). Volumetric particle tracking velocimetry (PTV) 
uncertainty quantification. Experiments in Fluids, 61(9), 197. 
https://doi.org/10.1007/s00348-020-03021-6 

Biasetti, J., Hussain, F., & Gasser, T. C. (2011). Blood flow and coherent vortices in the normal 
and aneurysmatic aortas: a fluid dynamical approach to intra-luminal thrombus formation. 
Journal of The Royal Society Interface, 8(63), 1449–1461. 
https://doi.org/10.1098/rsif.2011.0041 

Bieging, E. T., Frydrychowicz, A., Wentland, A., Landgraf, B. R., Johnson, K. M., Wieben, O., & 
François, C. J. (2011). In vivo three-dimensional mr wall shear stress estimation in ascending 
aortic dilatation. Journal of Magnetic Resonance Imaging, 33(3), 589–597. 
https://doi.org/10.1002/jmri.22485 

 



 
 

208 

Binter, C., Knobloch, V., Manka, R., Sigfridsson, A., & Kozerke, S. (2013). Bayesian multipoint 
velocity encoding for concurrent flow and turbulence mapping. Magnetic Resonance in 
Medicine, 69(5), 1337–1345. https://doi.org/10.1002/mrm.24370 

Björck, A. (1996). Numerical Methods Least Squares Squares. Society for Industrial and Applied 
Mathematics, Philadelphia. 

Bock, J., Kreher, B. W., Hennig, J., & Markl, M. (2007). Optimized pre-processing of time-
resolved 2D and 3D phase contrast MRI data. In Proc. Intl. Soc. Mag. Reson. Med (Vol. 15, 
p. 3138). 

Bock, Jelena, Frydrychowicz, A., Lorenz, R., Hirtler, D., Barker, A. J., Johnson, K. M., … Markl, 
M. (2011). In vivo noninvasive 4D pressure difference mapping in the human aorta: Phantom 
comparison and application in healthy volunteers and patients. Magnetic Resonance in 
Medicine, 66(4), 1079–1088. https://doi.org/10.1002/mrm.22907 

Boussel, L., Rayz, V., Martin, A., Acevedo-bolton, G., Lawton, M. T., Higashida, R., … Saloner, 
D. (2009). Phase-Contrast MRI measurements in intra-cranial aneurysms in-vivo of flow 
patterns, velocity fields and wall shear stress: A comparison with CFD. Magn Reson Med., 
61(2), 409–417. https://doi.org/10.1002/mrm.21861.Phase-Contrast 

Boussel, L., Rayz, V., McCulloch, C., Martin, A., Acevedo-Bolton, G., Lawton, M., … Saloner, 
D. (2008). Aneurysm growth occurs at region of low wall shear stress: Patient-specific 
correlation of hemodynamics and growth in a longitudinal study. Stroke, 39(11), 2997–3002. 
https://doi.org/10.1161/STROKEAHA.108.521617 

Brindise, M. C., Busse, M. M., & Vlachos, P. P. (2018). Density- and viscosity-matched 
Newtonian and non-Newtonian blood-analog solutions with PDMS refractive index. 
Experiments in Fluids, 59(11), 1–8. https://doi.org/10.1007/s00348-018-2629-6 

Brindise, M. C., Meyers, B. A., & Vlachos, P. P. (2020). Universality of vortex ring decay in the 
left ventricle. Journal of Biomechanics, 103, 109695. 
https://doi.org/10.1016/j.jbiomech.2020.109695 

Brindise, M. C., Rothenberger, S., Dickerhoff, B., Schnell, S., Markl, M., Saloner, D., … Vlachos, 
P. P. (2019). Multi-modality cerebral aneurysm haemodynamic analysis: in vivo 4D flow 
MRI, in vitro volumetric particle velocimetry and in silico computational fluid dynamics. 
Journal of The Royal Society Interface, 16(158), 20190465. 
https://doi.org/10.1098/rsif.2019.0465 

Brun, P., Tribouilloy, C., Duval, A. M., Iserin, L., Meguira, A., Pelle, G., & Dubois-Rande, J. L. 
(1992). Left ventricular flow propagation during early filling is related to wall relaxation: A 
color M-mode Doppler analysis. Journal of the American College of Cardiology, 20(2), 420–
432. https://doi.org/10.1016/0735-1097(92)90112-Z 

 

 



 
 

209 

Brunton, S. L., Tu, J. H., Bright, I., & Kutz, J. N. (2014). Compressive sensing and low-rank 
libraries for classification of bifurcation regimes in nonlinear dynamical systems. SIAM 
Journal on Applied Dynamical Systems, 13(4), 1716–1732. 
https://doi.org/10.1137/130949282 

Buonocore, M. H. (1994). Algorithms for improving calculated streamlines in 3‐D phase contrast 
angiography. Magnetic Resonance in Medicine, 31(1), 22–30. 
https://doi.org/10.1002/mrm.1910310104 

Busch, J., Giese, D., Wissmann, L., & Kozerke, S. (2013). Reconstruction of divergence-free 
velocity fields from cine 3D phase-contrast flow measurements. Magnetic Resonance in 
Medicine, 69(1), 200–210. https://doi.org/10.1002/mrm.24221 

Callaham, J. L., Maeda, K., & Brunton, S. L. (2019). Robust flow reconstruction from limited 
measurements via sparse representation. Physical Review Fluids, 4(10), 103907. 
https://doi.org/10.1103/PhysRevFluids.4.103907 

Carrillo, H., Osses, A., Uribe, S., & Bertoglio, C. (2019). Optimal Dual-VENC Unwrapping in 
Phase-Contrast MRI. IEEE Transactions on Medical Imaging, 38(5), 1263–1270. 

Castro, M. A., Putman, C. M., Sheridan, M. J., & Cebral, J. R. (2009). Hemodynamic patterns of 
anterior communicating artery aneurysms: A possible association with rupture. American 
Journal of Neuroradiology, 30(2), 297–302. https://doi.org/10.3174/ajnr.A1323 

Cecchi, E., Giglioli, C., Valente, S., Lazzeri, C., Gensini, G. F., Abbate, R., & Mannini, L. (2011). 
Role of hemodynamic shear stress in cardiovascular disease. Atherosclerosis, 214(2), 249–
256. https://doi.org/10.1016/j.atherosclerosis.2010.09.008 

Chakraborty, S., Meyers, B. A., Iwano, H., Hall, M. E., & Vlachos, P. P. (2021). A Wavelet 
Approach to the Estimation of Left Ventricular Early Filling Wave Propagation Velocity from 
Color M-Mode Echocardiograms. Ultrasound in Medicine and Biology, 47(5), 1397–1407. 
https://doi.org/10.1016/j.ultrasmedbio.2021.01.009 

Charonko, J. J., King, C. V, Smith, B. L., & Vlachos, P. P. (2010). Assessment of pressure field 
calculations from particle image velocimetry measurements. Measurement Science and 
Technology, 21(10), 105401. https://doi.org/10.1088/0957-0233/21/10/105401 

Charonko, J. J., Kumar, R., Stewart, K., Little, W. C., & Vlachos, P. P. (2013). Vortices formed 
on the mitral valve tips aid normal left ventricular filling. Annals of Biomedical Engineering, 
41(5), 1049–1061. https://doi.org/10.1007/s10439-013-0755-0 

Charonko, J. J., & Vlachos, P. P. (2013). Estimation of uncertainty bounds for individual particle 
image velocimetry measurements from cross-correlation peak ratio. Measurement Science 
and Technology, 24(6), 065301. https://doi.org/10.1088/0957-0233/24/6/065301 

Chiu, J. J., & Chien, S. (2011). Effects of disturbed flow on vascular endothelium: 
Pathophysiological basis and clinical perspectives. Physiological Reviews, 91(1), 327–387. 
https://doi.org/10.1152/physrev.00047.2009 



 
 

210 

Cibis, M., Potters, W. V., Gijsen, F. J., Marquering, H., Van Ooij, P., Van Bavel, E., … Nederveen, 
A. J. (2016). The effect of spatial and temporal resolution of cine phase contrast MRI on wall 
shear stress and oscillatory shear index assessment. PLoS ONE, 11(9), 1–15. 
https://doi.org/10.1371/journal.pone.0163316 

Conturo, T. E., & Smith, G. D. (1990). Signal-to-Noise in Phase Angle Reconstruction : Dynamic 
Range Extension Using Phase Reference Offsets. Magnetic Resonance in Medicine, 15, 420–
437. 

Cunningham, K. S., & Gotlieb, A. I. (2005). The role of shear stress in the pathogenesis of 
atherosclerosis. Laboratory Investigation, 85(1), 9–23. 
https://doi.org/10.1038/labinvest.3700215 

Cusack, R., & Papadakis, N. (2002). New Robust 3-D Phase Unwrapping Algorithms: Application 
to Magnetic Field Mapping and Undistorting Echoplanar Images. NeuroImage, 16(3), 754–
764. https://doi.org/10.1006/nimg.2002.1092 

Dabiri, J. O., Bose, S., Gemmell, B. J., Colin, S. P., & Costello, J. H. (2014). An algorithm to 
estimate unsteady and quasi-steady pressure fields from velocity field measurements. Journal 
of Experimental Biology, 217(Pt 3), 331–336. https://doi.org/10.1242/jeb.092767 

De Boeck, B. W. L., Oh, J. K., Vandervoort, P. M., Vierendeels, J. A., Van Der Aa, R. P. L. M., 
& Cramer, M. J. M. (2005). Colour M-mode velocity propagation: A glance at intra-
ventricular pressure gradients and early diastolic ventricular performance. European Journal 
of Heart Failure, 7(1), 19–28. https://doi.org/10.1016/j.ejheart.2004.03.010 

De Hoon, N., Van Pelt, R., Jalba, A., & Vilanova, A. (2014). 4D MRI flow coupled to physics-
based fluid simulation for blood-flow visualization. Computer Graphics Forum, 33(3), 121–
130. https://doi.org/10.1111/cgf.12368 

de Kat, R., & Van Oudheusden, B. W. (2012). Instantaneous planar pressure determination from 
PIV in turbulent flow. Experiments in Fluids, 52(5), 1089–1106. 
https://doi.org/10.1007/s00348-011-1237-5 

De Kat, R., & Van Oudheusden, B. W. (2012). Instantaneous planar pressure determination from 
PIV in turbulent flow. Experiments in Fluids, 52(5), 1089–1106. 
https://doi.org/10.1007/s00348-011-1237-5 

de Kat, Roeland, van Oudheusden, B. W., & Scarano, F. (2009). Instantaneous Pressure Field 
Determination Around a Square-Section Cylinder Using Time-Resolved Stereo-PIV. In 39th 
AIAA Fluid Dynamics Conference (pp. 1–10). https://doi.org/10.2514/6.2009-4043 

den Dekker, A. J., & Sijbers, J. (2014). Data distributions in magnetic resonance images: A review. 
Physica Medica, 30(7), 725–741. https://doi.org/10.1016/j.ejmp.2014.05.002 

Devenport, B. W. J., & Rife, M. C. (1996). The structure and development of a wing-tip vortex. 

 



 
 

211 

Dietrich, O., Raya, G., Reeder, S. B., Reiser, M. F., & Schoenberg, S. O. (2007). Measurement of 
Signal-to-Noise Ratios in MR Images : Influence of Multichannel Coils , Parallel Imaging , 
and Reconstruction Filters. Journal of Magnetic Resonance Imaging, 26, 375–385. 
https://doi.org/10.1002/jmri.20969 

Difrancesco, M. W., Rasmussen, J. M., Yuan, W., Pratt, R., Dunn, S., Dardzinski, B. J., & Holland, 
S. K. (2008). Comparison of SNR and CNR for in vivo mouse brain imaging at 3 and 7 T 
using well matched scanner configurations. Medical Physics, 35(9), 3972–3978. 
https://doi.org/10.1118/1.2968092 

Donati, F., Figueroa, C. A., Smith, N. P., Lamata, P., & Nordsletten, D. A. (2015). Non-invasive 
pressure difference estimation from PC-MRI using the work-energy equation. Medical Image 
Analysis, 26(1), 159–172. https://doi.org/10.1016/j.media.2015.08.012 

Donati, F., Nordsletten, D. A., Smith, N. P., & Lamata, P. (2014). Pressure mapping from flow 
imaging: Enhancing computation of the viscous term through velocity reconstruction in near-
wall regions. In 2014 36th Annual International Conference of the IEEE Engineering in 
Medicine and Biology Society (pp. 5097–5100). IEEE. 
https://doi.org/10.1109/EMBC.2014.6944771 

Dyverfeldt, P., Bissell, M., Barker, A. J., Bolger, A. F., Carlhäll, C., Ebbers, T., … Markl, M. 
(2015). 4D flow cardiovascular magnetic resonance consensus statement. Journal of 
Cardiovascular Magnetic Resonance, 17(72), 1–19. https://doi.org/10.1186/s12968-015-
0174-5 

Ebbers, T., & Farnebäck, G. (2009). Improving computation of cardiovascular relative pressure 
fields from velocity MRI. Journal of Magnetic Resonance Imaging, 30(1), 54–61. 
https://doi.org/10.1002/jmri.21775 

Eckstein, A., & Vlachos, P. P. (2009). Assessment of advanced windowing techniques for digital 
particle image velocimetry (DPIV). Measurement Science and Technology, 20(7). 
https://doi.org/10.1088/0957-0233/20/7/075402 

Faiella, M., Grant Jeon Macmillan, C., Whitehead, J. P., & Pan, Z. (2021). Error propagation 
dynamics of velocimetry-based pressure field calculations (2): on the error profile. 
Measurement Science and Technology, 32(8), 084005. https://doi.org/10.1088/1361-
6501/abf30d 

Fathi, M. F., Bakhshinejad, A., Baghaie, A., Saloner, D., Sacho, R. H., Rayz, V. L., & D’Souza, 
R. M. (2018). Denoising and spatial resolution enhancement of 4D flow MRI using proper 
orthogonal decomposition and lasso regularization. Computerized Medical Imaging and 
Graphics, 70, 165–172. https://doi.org/10.1016/j.compmedimag.2018.07.003 

Fathi, M. F., Perez-Raya, I., Baghaie, A., Berg, P., Janiga, G., Arzani, A., & D’Souza, R. M. (2020). 
Super-resolution and denoising of 4D-Flow MRI using physics-Informed deep neural nets. 
Computer Methods and Programs in Biomedicine, 197, 105729. 
https://doi.org/10.1016/j.cmpb.2020.105729 



 
 

212 

Ferdian, E., Suinesiaputra, A., Dubowitz, D. J., Zhao, D., Wang, A., Cowan, B., & Young, A. A. 
(2020). 4DFlowNet: Super-Resolution 4D Flow MRI Using Deep Learning and 
Computational Fluid Dynamics. Frontiers in Physics, 8(May), 1–14. 
https://doi.org/10.3389/fphy.2020.00138 

Ford, M. D., Nikolov, H. N., Milner, J. S., Lownie, S. P., DeMont, E. M., Kalata, W., … Steinman, 
D. A. (2008). PIV-measured versus CFD-predicted flow dynamics in anatomically realistic 
cerebral aneurysm models. Journal of Biomechanical Engineering, 130(2), 1–9. 
https://doi.org/10.1115/1.2900724 

Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization Paths for Generalized Linear 
Models via Coordinate Descent. Journal of Statistical Software, 33(1), 1–22. 
https://doi.org/10.1016/j.expneurol.2008.01.011 

Frigge, M., Hoaglin, D. C., Iglewicz, B., Frigge, M., Hoaglin, D. C., & Iglewicz, B. (1989). Some 
Implementations of the Boxplot. The American Statistician, 43(1), 50–54. 

Friman, O., Hennemuth, A., Harloff, A., Bock, J., Markl, M., & Peitgen, H. O. (2011). 
Probabilistic 4D blood flow tracking and uncertainty estimation. Medical Image Analysis, 
15(5), 720–728. https://doi.org/10.1016/j.media.2011.06.002 

Frydrychowicz, A., Stalder, A. F., Russe, M. F., Bock, J., Bauer, S., Harloff, A., … Markl, M. 
(2009). Three-dimensional analysis of segmental wall shear stress in the aorta by flow-
sensitive four-dimensional-MRI. Journal of Magnetic Resonance Imaging, 30(1), 77–84. 
https://doi.org/10.1002/jmri.21790 

Fujisawa, N., Tanahashi, S., & Srinivas, K. (2005). Evaluation of pressure field and fluid forces 
on a circular cylinder with and without rotational oscillation using velocity data from PIV 
measurement. Measurement Science and Technology, 16(4), 989–996. 
https://doi.org/10.1088/0957-0233/16/4/011 

Gambaruto, A. M., & João, A. J. (2012). Flow structures in cerebral aneurysms. Computers and 
Fluids, 65, 56–65. https://doi.org/10.1016/j.compfluid.2012.02.020 

Garcia, M. J., Smedira, N. G., Greenberg, N. L., Main, M., Firstenberg, M. S., Odabashian, J., & 
Thomas, J. D. (2000). Color M-mode Doppler flow propagation velocity is a preload 
insensitive index of left ventricular relaxation: Animal and human validation. Journal of the 
American College of Cardiology, 35(1), 201–208. https://doi.org/10.1016/S0735-
1097(99)00503-3 

Garcia, M. J., Thomas, J. D., & Klein, A. L. (1998). New doppler echocardiographic applications 
for the study of diastolic function. Journal of the American College of Cardiology, 32(4), 
865–875. https://doi.org/10.1016/S0735-1097(98)00345-3 

Gesemann, S., Huhn, F., Schanz, D., & Schröder, A. (2016). From Noisy Particle Tracks to 
Velocity , Acceleration and Pressure Fields using B-splines and Penalties. In 18th 
International Symposium on the Application of Laser and Imaging Techniques to Fluid 
Mechanics. 



 
 

213 

Ghaemi, S., Ragni, D., & Scarano, F. (2012). PIV-based pressure fluctuations in the turbulent 
boundary layer. Experiments in Fluids, 53(6), 1823–1840. https://doi.org/10.1007/s00348-
012-1391-4 

Ghiglia, D. C., & Romero, L. A. (1994). Robust two-dimensional weighted and unweighted phase 
unwrapping that uses fast transforms and iterative methods. Journal of the Optical Society of 
America A, 11(1), 107. https://doi.org/10.1364/JOSAA.11.000107 

Groen, H. C., Gijsen, F. J. H., Van Der Lugt, A., Ferguson, M. S., Hatsukami, T. S., Van Der Steen, 
A. F. W., … Wentzel, J. J. (2007). Plaque rupture in the carotid artery is localized at the high 
shear stress region: A case report. Stroke, 38(8), 2379–2381. 
https://doi.org/10.1161/STROKEAHA.107.484766 

Guzzardi, D. G., Barker, A. J., Van Ooij, P., Malaisrie, S. C., Puthumana, J. J., Belke, D. D., … 
Fedak, P. W. M. (2015). Valve-Related Hemodynamics Mediate Human Bicuspid Aortopathy: 
Insights From Wall Shear Stress Mapping. Journal of the American College of Cardiology, 
66(8), 892–900. https://doi.org/10.1016/j.jacc.2015.06.1310 

Ha, H., Kim, G. B., Kweon, J., Kim, Y., Kim, N., Yang, D. H., & Lee, S. J. (2016). Multi-VENC 
Acquisition of Four-Dimensional Phase- Contrast MRI to Improve Precision of Velocity 
Field Measurement. Magnetic Resonance in Medicine, 75, 1909–1919. 
https://doi.org/10.1002/mrm.25715 

Ha, H., Lantz, J., Ziegler, M., Casas, B., Karlsson, M., Dyverfeldt, P., & Ebbers, T. (2017). 
Estimating the irreversible pressure drop across a stenosis by quantifying turbulence 
production using 4D Flow MRI. Scientific Reports, 7(November 2016), 1–14. 
https://doi.org/10.1038/srep46618 

Hernandez-Suarez, D. F., Palm, D., Lopez-Menendez, F., Mesa Pabon, M., & Lopez-Candales, A. 
(2017). Left Ventricular Velocity of Propagation: A Useful Non-Invasive Measurement 
When Assessing Hemodynamic Alterations in Pulmonary Arterial Hypertension. Cardiology 
Research, 8(2), 44–51. https://doi.org/10.14740/cr541w 

Hofinan, M. B. M., Visser, F. C., Rossum, A. C. Van, Vink, G. Q. M., Sprenger, M., & Westerhof, 
N. (1995). In Vivo Validation of Magnetic Resonance Blood Volume Flow Measurements 
with Limited Spatial Resolution in Small Vessels. Magnetic Resonance in Medicine, 33(6), 
778–784. 

Hope, T. A., Hope, M. D., Purcell, D. D., von Morze, C., Vigneron, D. B., Alley, M. T., & Dillon, 
W. P. (2010). Evaluation of intracranial stenoses and aneurysms with accelerated 4D flow. 
Magnetic Resonance Imaging, 28(1), 41–46. https://doi.org/10.1016/j.mri.2009.05.042 

Huhn, F., Schanz, D., Gesemann, S., & Schröder, A. (2016). FFT integration of instantaneous 3D 
pressure gradient fields measured by Lagrangian particle tracking in turbulent flows. 
Experiments in Fluids, 57, 151. https://doi.org/10.1007/s00348-016-2236-3 

Humphrey, J. D., & Na, S. (2002). Elastodynamics and Arterial Wall Stress. Annals of Biomedical 
Engineering, 30(4), 509–523. https://doi.org/10.1114/1.1467676 



 
 

214 

Hunt, J. C. R., Wray, A. A., & Moin, P. (1998). Eddies, streams, and convergence zones in 
turbulent flows. In Studying turbulence using numerical simulation databases, 2. In: 
Proceedings of the 1988 summer program; (pp. 193–208). 

International Study of Unruptured Intracranial Aneurysms Investigators. (1999). Unruptured 
intracranial aneurysms - risk of rupture and risks of surgical intervention. N Engl J Med, 
340(9), 744. 

Isoda, H., Ohkura, Y., Kosugi, T., Hirano, M., Takeda, H., Hiramatsu, H., … Sakahara, H. (2010). 
In vivo hemodynamic analysis of intracranial aneurysms obtained by magnetic resonance 
fluid dynamics (MRFD) based on time-resolved three-dimensional phase-contrast MRI. 
Neuroradiology, 52(10), 921–928. https://doi.org/10.1007/s00234-009-0635-3 

Jeon, Y. J., Gomit, G., Earl, T., Chatellier, L., & David, L. (2018). Sequential least-square 
reconstruction of instantaneous pressure field around a body from TR-PIV. Experiments in 
Fluids, 59(2), 27. https://doi.org/10.1007/s00348-018-2489-0 

Jochimsen, T. H., Schäfer, A., Bammer, R., & Moseley, M. E. (2006). Efficient simulation of 
magnetic resonance imaging with Bloch-Torrey equations using intra-voxel magnetization 
gradients. Journal of Magnetic Resonance, 180(1), 29–38. 
https://doi.org/10.1016/j.jmr.2006.01.001 

Jou, L.-D., Lee, D. H., Morsi, H., & Mawad, M. E. (2008). Wall Shear Stress on Ruptured and 
Unruptured Intracranial Aneurysms at the Internal Carotid Artery. American Journal of 
Neuroradiology, 29(9), 1761–1767. https://doi.org/10.3174/ajnr.A1180 

Kähler, C. J., Astarita, T., Vlachos, P. P., Sakakibara, J., Hain, R., Discetti, S., … Cierpka, C. 
(2016). Main results of the 4th International PIV Challenge. Experiments in Fluids, 57(6), 97. 
https://doi.org/10.1007/s00348-016-2173-1 

Kallmes, D. F. (2012). Point: CFD - Computational fluid dynamics or confounding factor 
dissemination. American Journal of Neuroradiology, 33(3), 395–396. 
https://doi.org/10.3174/ajnr.A2993 

Karri, S., Charonko, J., & Vlachos, P. P. (2009). Robust wall gradient estimation using radial basis 
functions and proper orthogonal decomposition ( POD ) for particle image velocimetry ( PIV ) 
measured fields. Measurement Science and Technology, 20(045401). 
https://doi.org/10.1088/0957-0233/20/4/045401 

Kecskemeti, S., Johnson, K., Wu, Y., Mistretta, C., Turski, P., & Wieben, O. (2012). High 
Resolution 3D Cine Phase Contrast MRI of Small Intracranial Aneurysms using a Stack of 
Stars k-Space Trajectory. J Magn Reson Imaging, 35(3), 518–527. 
https://doi.org/10.1002/jmri.23501.High 

Kim, S., Koh, K., Lustig, M., Boyd, S., & Gorinevsky, D. (2007). An Interior-Point Method for 
Large-Scale l1 -Regularized Least Squares. IEEE Journal of Selected Topics in Signal 
Processing, 1(4), 606–617. 



 
 

215 

Komotar, R. J., Mocco, J., & Solomon, R. A. (2008). Guidelines for the surgical treatment of 
unruptured intracranial aneurysms: the first annual J. Lawrence Pool memorial research 
symposium-controversies in the management of cerebral aneurysms. Neurosurgery, 62(1), 
183–194. https://doi.org/10.1227/01.NEU.0000296982.54288.12 

Kramer, B., Grover, P., Boufounos, P., Nabi, S., & Benosman, M. (2017). Sparse sensing and 
DMD-based identification of flow regimes and bifurcations in complex flows. SIAM Journal 
on Applied Dynamical Systems, 16(2), 1164–1196. https://doi.org/10.1137/15M104565X 

Krittian, S. B. S., Lamata, P., Michler, C., Nordsletten, D. A., Bock, J., Bradley, C. P., … Smith, 
N. P. (2012). A finite-element approach to the direct computation of relative cardiovascular 
pressure from time-resolved MR velocity data. Medical Image Analysis, 16(5), 1029–1037. 
https://doi.org/10.1016/j.media.2012.04.003 

Lall, R. R., Eddleman, C. S., Bendok, B. R., & Batjer, H. H. (2009). Unruptured intracranial 
aneurysms and the assessment of rupture risk based on anatomical and morphological factors: 
Sifting through the sands of data. Neurosurgical Focus, 26(5), 1–7. 
https://doi.org/10.3171/2009.2.FOCUS0921 

Lamata, P., Pitcher, A., Krittian, S., Nordsletten, D., Bissell, M. M., Cassar, T., … Smith, N. P. 
(2014). Aortic Relative Pressure Components Derived from Four-Dimensional Flow 
Cardiovascular Magnetic Resonance. Magnetic Resonance in Medicine, 72, 1162–1169. 
https://doi.org/10.1002/mrm.25015 

Laskari, A., de Kat, R., & Ganapathisubramani, B. (2016). Full-field pressure from snapshot and 
time-resolved volumetric PIV. Experiments in Fluids, 57(3), 1–14. 
https://doi.org/10.1007/s00348-016-2129-5 

Latta, P., Gruwel, M. L. H., Jellúš, V., & Tomanek, B. (2010). Bloch simulations with intra-voxel 
spin dephasing. Journal of Magnetic Resonance, 203(1), 44–51. 
https://doi.org/10.1016/j.jmr.2009.11.019 

Lee, A. T., Bruce Pike, G., & Pelc, N. J. (1995). Three-Point Phase-Contrast Velocity 
Measurements with Increased Velocity-to-Noise Ratio. Magnetic Resonance in Medicine, 
33(1), 122–126. https://doi.org/10.1002/mrm.1910330119 

Leuprecht, A., Kozerke, S., Boesiger, P., & Perktold, K. (2003). Blood flow in the human 
ascending aorta: A combined MRI and CFD study. Journal of Engineering Mathematics, 
47(3–4), 387–404. https://doi.org/10.1023/B:ENGI.0000007969.18105.b7 

Li, X. S. (2005). An Overview of SuperLU : Algorithms , Implementation , and User Interface. 
ACM Transactions on Mathematical Software, 31(3), 302–325. 

Liu, X., & Katz, J. (2006). Instantaneous pressure and material acceleration measurements using 
a four-exposure PIV system. Experiments in Fluids, 41(2), 227–240. 
https://doi.org/10.1007/s00348-006-0152-7 

 



 
 

216 

Liu, X., & Moreto, J. R. (2020). Error propagation from the PIV-based pressure gradient to the 
integrated pressure by the omnidirectional integration method. Measurement Science and 
Technology, 31(5). https://doi.org/10.1088/1361-6501/ab6c28 

Loecher, M., Johnson, K., Landgraf, B., & Wieben, O. (2011). 4D Gradient Based Phase 
Unwrapping for PC-MR Flow Data. In Proc. Intl. Soc. Mag. Reson. Med (Vol. 19, p. 3284). 

Loecher, Michael, & Ennis, D. B. (2018). Velocity reconstruction with nonconvex optimization 
for low-velocity-encoding phase-contrast MRI. Magnetic Resonance in Medicine, 80(1), 42–
52. https://doi.org/10.1002/mrm.26997 

Loecher, Michael, Kecskemeti, S., Turski, P., & Wieben, O. (2012). Comparison of divergence-
free algorithms for 3D MRI with three-directional velocity encoding. Journal of 
Cardiovascular Magnetic Resonance, 14(S1), W64. https://doi.org/10.1186/1532-429x-14-
s1-w64 

Loecher, Michael, Schrauben, E., Johnson, K. M., & Wieben, O. (2016). Phase unwrapping in 4D 
MR flow with a 4D single-step laplacian algorithm. Journal of Magnetic Resonance Imaging, 
43(4), 833–842. https://doi.org/10.1002/jmri.25045 

Loke, Y. H., Capuano, F., Cleveland, V., Mandell, J. G., Balaras, E., & Olivieri, L. J. (2021). 
Moving beyond size: vorticity and energy loss are correlated with right ventricular 
dysfunction and exercise intolerance in repaired Tetralogy of Fallot. Journal of 
Cardiovascular Magnetic Resonance, 23(1), 1–15. https://doi.org/10.1186/s12968-021-
00789-2 

Londono-hoyos, F. J., Swillens, A., Cauwenberge, J. Van, Meyers, B., Koppula, M. R., Vlachos, 
P., … Segers, P. (2018). Assessment of methodologies to calculate intraventricular pressure 
differences in computational models and patients. Med Biol Eng Comput, 56, 469–481. 
https://doi.org/10.1007/s11517-017-1704-0 

Maas, H. G., Gruen, A., & Papantoniou, D. (1993). Particle tracking velocimetry in three-
dimensional flows - Part 1. Photogrammetric determination of particle coordinates. 
Experiments in Fluids, 15(2), 133–146. https://doi.org/10.1007/BF00190953 

Malek, A. M., Alper, S. L., & Izumo, S. (1999). Hemodynamic Shear Stress and Its Role in 
Atherosclerosis Adel. JAMA: The Journal of the American Medical Association, 282(21), 
2035–2042. 

Markl, M, Schnell, S., Wu, C., Bollache, E., Jarvis, K., Barker, A. J., … Rigsby, C. K. (2016). 
Advanced flow MRI: emerging techniques and applications. Clinical Radiology, 71(8), 779–
795. https://doi.org/10.1016/j.crad.2016.01.011 

Markl, Michael, Brendecke, S. M., Simon, J., Barker, A. J., Weiller, C., & Harloff, A. (2013). Co-
registration of the distribution of wall shear stress and 140 complex plaques of the aorta. 
Magnetic Resonance Imaging, 31(7), 1156–1162. https://doi.org/10.1016/j.mri.2013.05.001 

 



 
 

217 

Markl, Michael, Frydrychowicz, A., Kozerke, S., Hope, M., & Wieben, O. (2012). 4D Flow MRI. 
J Magn Reson Imaging, 36(5), 1015–1036. https://doi.org/10.1002/jmri.23632 

Markl, Michael, Wallis, W., & Harloff, A. (2011). Reproducibility of Flow and Wall Shear Stress 
Analysis Using Flow-Sensitive Four-Dimensional MRI. Journal of Magnetic Resonance 
Imaging, 33, 988–994. https://doi.org/10.1002/jmri.22519 

McClure, J., & Yarusevych, S. (2017a). Instantaneous PIV/PTV-based pressure gradient 
estimation: a framework for error analysis and correction. Experiments in Fluids, 58(8), 1–
18. https://doi.org/10.1007/s00348-017-2369-z 

McClure, J., & Yarusevych, S. (2017b). Optimization of planar PIV-based pressure estimates in 
laminar and turbulent wakes. Experiments in Fluids, 58(5), 1–18. 
https://doi.org/10.1007/s00348-017-2337-7 

Meckel, S., Stalder, A. F., Santini, F., Radü, E. W., Rüfenacht, D. A., Markl, M., & Wetzel, S. G. 
(2008). In vivo visualization and analysis of 3-D hemodynamics in cerebral aneurysms with 
flow-sensitized 4-D MR imaging at 3 T. Neuroradiology, 50(6), 473–484. 
https://doi.org/10.1007/s00234-008-0367-9 

Meng, H., Tutino, V. M., Xiang, J., & Siddiqui, A. (2014). High WSS or Low WSS? Complex 
interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: 
Toward a unifying hypothesis. American Journal of Neuroradiology, 35(7), 1254–1262. 
https://doi.org/10.3174/ajnr.A3558 

Miguel Ángel, G. B., Zisserman, A. P., & Brady, M. (2002). Estimation of the partial volume 
effect in MRI. Medical Image Analysis, 6, 389–405. 

Mohd Adib, M. A. H., Ii, S., Watanabe, Y., & Wada, S. (2017). Minimizing the blood velocity 
differences between phase-contrast magnetic resonance imaging and computational fluid 
dynamics simulation in cerebral arteries and aneurysms. Medical and Biological Engineering 
and Computing, 55(9), 1605–1619. https://doi.org/10.1007/s11517-017-1617-y 

Moody, L. F. (1944). Friction Factor for Pipe Flow. Transactions of the ASME, 66(8), 671–684. 

Naggara, O. N., Lecler, A., Oppenheim, C., Meder, J. F., & Raymond, J. (2012). Endovascular 
treatment of intracranial unruptured aneurysms: A systematic review of the literature on 
safety with emphasis on subgroup analyses. Radiology, 263(3), 828–835. 
https://doi.org/10.1148/radiol.12112114 

Nagueh, S. F. (2020). Left Ventricular Diastolic Function: Understanding Pathophysiology, 
Diagnosis, and Prognosis With Echocardiography. JACC: Cardiovascular Imaging, 13(1), 
228–244. https://doi.org/10.1016/j.jcmg.2018.10.038 

Nagueh, S. F., Appleton, C. P., Gillebert, T. C., Marino, P. N., Oh, J. K., Smiseth, O. A., … 
Evangelisa, A. (2009). Recommendations for the evaluation of left ventricular diastolic 
function by echocardiography. European Journal of Echocardiography, 10(2), 165–193. 
https://doi.org/10.1093/ejechocard/jep007 



 
 

218 

Nagueh, S. F., Smiseth, O. A., Appleton, C. P., Byrd, B. F., Dokainish, H., Edvardsen, T., … 
Waggoner, A. D. (2016). Recommendations for the Evaluation of Left Ventricular Diastolic 
Function by Echocardiography: An Update from the American Society of Echocardiography 
and the European Association of Cardiovascular Imaging. European Heart Journal – 
Cardiovascular Imaging, 17(12), 1321–1360. https://doi.org/10.1093/ehjci/jew082 

Nayak, K. S., Nielsen, J., Bernstein, M. A., Markl, M., Gatehouse, P. D., Botnar, R. M., … 
Oshinski, J. N. (2015). Cardiovascular magnetic resonance phase contrast imaging. Journal 
of Cardiovascular Magnetic Resonance, 17(71), 1–26. https://doi.org/10.1186/s12968-015-
0172-7 

Neeteson, N. J., Bhattacharya, S., Rival, D. E., Michaelis, D., Schanz, D., & Schröder, A. (2016). 
Pressure-field extraction from Lagrangian flow measurements: first experiences with 4D-
PTV data. Experiments in Fluids, 57(6), 1–18. https://doi.org/10.1007/s00348-016-2170-4 

Neeteson, Nathan J., & Rival, D. E. (2015). Pressure-field extraction on unstructured flow data 
using a Voronoi tessellation-based networking algorithm: a proof-of-principle study. 
Experiments in Fluids, 56(44), 44. https://doi.org/10.1007/s00348-015-1911-0 

Nett, E. J., Johnson, K. M., Frydrychowicz, A., Munoz, A., Rio, D., Schrauben, E., … Wieben, O. 
(2012). Four-Dimensional Phase Contrast MRI With Accelerated Dual Velocity Encoding. 
JOURNAL OF MAGNETIC RESONANCE IMAGING, 35, 1462–1471. 
https://doi.org/10.1002/jmri.23588 

Øie, L. R., Solheim, O., Majewska, P., Nordseth, T., Müller, T. B., Carlsen, S. M., … Gulati, S. 
(2020). Incidence and case fatality of aneurysmal subarachnoid hemorrhage admitted to 
hospital between 2008 and 2014 in Norway. Acta Neurochirurgica, 162(9), 2251–2259. 
https://doi.org/10.1007/s00701-020-04463-x 

Oliveira, R. K. F. De, Ferreira, E. V. M., Ramos, R. P., Messina, C. M. S., Kapins, C. E. B., Silva, 
C. M. C., & Ota-arakaki, J. S. (2014). Usefulness of pulmonary capillary wedge pressure as 
a correlate of left ventricular fi lling pressures in pulmonary arterial hypertension. Journal of 
Heart and Lung Transplantation, 33(2), 157–162. 
https://doi.org/10.1016/j.healun.2013.10.008 

Ong, F., Uecker, M., Tariq, U., Hsiao, A., Alley, M. T., Vasanawala, S. S., & Lustig, M. (2015). 
Robust 4D Flow Denoising Using Divergence-Free Wavelet Transform. Magnetic Resonance 
in Medicine, 73, 828–842. https://doi.org/10.1002/mrm.25176 

Paige, C. C., & Saunders, M. A. (1982a). Algorithm 583: LSQR: Sparse Linear Equations and 
Least Squares Problems. ACM Transactions on Mathematical Software (TOMS), 8(2), 195–
209. https://doi.org/10.1145/355993.356000 

Paige, C. C., & Saunders, M. A. (1982b). LSQR: An Algorithm for Sparse Linear Equations and 
Sparse Least Squares. ACM Transactions on Mathematical Software (TOMS), 8(1), 43–71. 
https://doi.org/10.1145/355984.355989 

 



 
 

219 

Pan, Z., Whitehead, J., Thomson, S., & Truscott, T. (2016). Error propagation dynamics of PIV-
based pressure field calculations: How well does the pressure Poisson solver perform 
inherently? Measurement Science and Technology, 27(084012), 084012. 
https://doi.org/10.1088/0957-0233/27/8/084012 

Perez-Raya, I., Fathi, M. F., Baghaie, A., Sacho, R. H., Koch, K. M., & D’Souza, R. M. (2020). 
Towards multi-modal data fusion for super-resolution and denoising of 4D-Flow MRI. 
International Journal for Numerical Methods in Biomedical Engineering, 36(9), 1–20. 
https://doi.org/10.1002/cnm.3381 

Perinajová, R., Juffermans, J. F., Mercado, J. L., Aben, J. P., Ledoux, L., Westenberg, J. J. M., … 
Kenjereš, S. (2021). Assessment of turbulent blood flow and wall shear stress in aortic 
coarctation using image-based simulations. BioMedical Engineering Online, 20(1), 1–20. 
https://doi.org/10.1186/s12938-021-00921-4 

Perinajová, R., Juffermans, J. F., Westenberg, J. J. M., van der Palen, R. L. F., van den Boogaard, 
P. J., Lamb, H. J., & Kenjereš, S. (2021). Geometrically induced wall shear stress variability 
in CFD-MRI coupled simulations of blood flow in the thoracic aortas. Computers in Biology 
and Medicine, 133(April). https://doi.org/10.1016/j.compbiomed.2021.104385 

Potters, W. V., Van Ooij, P., Marquering, H., VanBavel, E., & Nederveen, A. J. (2015). Volumetric 
arterial wall shear stress calculation based on cine phase contrast MRI. Journal of Magnetic 
Resonance Imaging, 41(2), 505–516. https://doi.org/10.1002/jmri.24560 

Potters, W. V, Ooij, P. Van, & Nederveen, A. (2012). Vectorial wall shear stress calculations in 
vessel structures using 4D PC-MRI. Journal of Cardiovascular Magnetic Resonance, 
14(Suppl 1(W5). https://doi.org/10.1186/1532-429X-14-S1-W5 

Pritt, M. D., & Shipman, J. S. (1994). Least-Squares Two-Dimensional Phase Unwrapping Using 
FFT’s. IEEE Transactions on Geoscience and Remote Sensing, 32(3), 706–708. 
https://doi.org/10.1109/36.297989 

Raaymakers, T. W. M., Rinkel, G. J. E., Limburg, M., & Algra, A. (1998). Mortality and morbidity 
of surgery for unruptured intracranial aneurysms: A meta-analysis. Stroke, 29(8), 1531–1538. 
https://doi.org/10.1161/01.STR.29.8.1531 

Rajendran, L., Zhang, J., Bane, S., & Vlachos, P. (2020). Uncertainty-based weighted least squares 
density integration for background-oriented schlieren. Experiments in Fluids, 61(11), 239. 
https://doi.org/10.1007/s00348-020-03071-w 

Rayz, V. L., Abla, A., Boussel, L., Leach, J. R., Acevedo-Bolton, G., Saloner, D., & Lawton, M. 
T. (2015). Computational Modeling of Flow-Altering Surgeries in Basilar Aneurysms. Annals 
of Biomedical Engineering, 43(5), 1210–1222. https://doi.org/10.1007/s10439-014-1170-x 

Rich, A., Potter, L. C., Jin, N., Ash, J., Simonetti, O. P., & Ahmad, R. (2016). A Bayesian model 
for highly accelerated phase-contrast MRI. Magnetic Resonance in Medicine, 76(2), 689–701. 
https://doi.org/10.1002/mrm.25904 



 
 

220 

Rich, A., Potter, L. C., Jin, N., Liu, Y., Simonetti, O. P., & Ahmad, R. (2019). A Bayesian approach 
for 4D flow imaging of aortic valve in a single breath-hold. Magnetic Resonance in Medicine, 
81(2), 811–824. https://doi.org/10.1002/mrm.27386 

Rinaudo, A., & Pasta, S. (2014). Regional variation of wall shear stress in ascending thoracic aortic 
aneurysms. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of 
Engineering in Medicine, 228(6), 627–638. https://doi.org/10.1177/0954411914540877 

Rinkel, G. J. E., Djibuti, M., Algra, A., & Van Gijn, J. (1998). Prevalence and risk of rupture of 
intracranial aneurysms: A systematic review. Stroke, 29(1), 251–256. 
https://doi.org/10.1161/01.STR.29.1.251 

Rispoli, V. C., Nielsen, J. F., Nayak, K. S., & Carvalho, J. L. A. (2015). Computational fluid 
dynamics simulations of blood flow regularized by 3D phase contrast MRI. BioMedical 
Engineering Online, 14(1), 1–24. https://doi.org/10.1186/s12938-015-0104-7 

Rivero Rodríguez, D., Scherle Matamoros, C., Cúe, L. F., Miranda Hernández, J. L., Pernas 
Sánchez, Y., & Pérez Nellar, J. (2015). Predictor’s of mortality in patients with aneurysmal 
subarachnoid haemorrhage and reebleding. Neurology Research International, 2015. 
https://doi.org/10.1155/2015/545407 

Roloff, C., Stucht, D., Beuing, O., & Berg, P. (2019). Comparison of intracranial aneurysm flow 
quantification techniques: Standard PIV vs stereoscopic PIV vs tomographic PIV vs phase-
contrast MRI vs CFD. Journal of NeuroInterventional Surgery, 11(3), 275–282. 
https://doi.org/10.1136/neurintsurg-2018-013921 

Rothenberger, S. M., Zhang, J., Brindise, M. C., Schnell, S., Markl, M., Vlachos, P. P., & Rayz, 
V. L. (2022). Modeling Bias Error in 4D flow MRI Velocity Measurements. IEEE 
Transactions on Medical Imaging, xx(X), 1–1. https://doi.org/10.1109/TMI.2022.3149421 

Salfity, M F, Huntley, J. M., Graves, M. J., Marklund, O., & Cusack, R. (2006). Extending the 
dynamic range of phase contrast magnetic resonance velocity imaging using advanced higher-
dimensional phase unwrapping algorithms. Journal of the Royal Society Interface, 3, 415–
427. https://doi.org/10.1098/rsif.2005.0096 

Salfity, María F, Ruiz, P. D., Huntley, J. M., Graves, M. J., Cusack, R., & Beauregard, D. A. 
(2006). Branch cut surface placement for unwrapping of undersampled three-dimensional 
phase data : application to magnetic resonance imaging arterial flow mapping. Applied Optics, 
45(12), 2711–2722. 

Santelli, C., Loecher, M., Busch, J., Wieben, O., Schaeffter, T., & Kozerke, S. (2016). Accelerating 
4D Flow MRI by Exploiting Vector Field Divergence Regularization. Magnetic Resonance 
in Medicine, 75, 115–125. https://doi.org/10.1002/mrm.25563 

Sato, K., & Yoshimoto, Y. (2011). Risk profile of intracranial aneurysms: Rupture rate is not 
constant after formation. Stroke, 42(12), 3376–3381. 
https://doi.org/10.1161/STROKEAHA.111.625871 



 
 

221 

Scarano, F. (2002). Iterative image deformation methods in PIV. Measurement Science and 
Technology, 13(13), 1–19. 

Schanz, D., Gesemann, S., & Schröder, A. (2016). Shake-The-Box: Lagrangian particle tracking 
at high particle image densities. Experiments in Fluids, 57, 70. 
https://doi.org/10.1007/s00348-016-2157-1 

Schiavazzi, D. E., Nemes, A., Schmitter, S., & Coletti, F. (2017). The effect of velocity filtering 
in pressure estimation. Experiments in Fluids, 58, 50. https://doi.org/10.1007/s00348-017-
2314-1 

Schneiders, J. F. G., Dwight, R. P., & Scarano, F. (2014). Time-supersampling of 3D-PIV 
measurements with vortex-in-cell simulation. Experiments in Fluids, 55(1692), 1692. 
https://doi.org/10.1007/s00348-014-1692-x 

Schneiders, J. F. G., Pröbsting, S., Dwight, R. P., van Oudheusden, B. W., & Scarano, F. (2016). 
Pressure estimation from single-snapshot tomographic PIV in a turbulent boundary layer. 
Experiments in Fluids, 57(53), 53. https://doi.org/10.1007/s00348-016-2133-9 

Schneiders, J. F. G., & Scarano, F. (2016). Dense velocity reconstruction from tomographic PTV 
with material derivatives. Experiments in Fluids, 57, 139. https://doi.org/10.1007/s00348-
016-2225-6 

Schneiders, J. F. G., & Sciacchitano, A. (2017). Track benchmarking method for uncertainty 
quantification of particle tracking velocimetry interpolations. Measurement Science and 
Technology, 28, 065302. https://doi.org/10.1088/1361-6501/aa6a03 

Schnell, S., Ansari, S. A., Vakil, P., Wasielewski, M., Carr, M. L., Hurley, M. C., … Markl, M. 
(2014). 3D Hemodynamics in Intracranial Aneurysms: Influence of Size and Morphology. J 
Magn Reson Imaging, 39(1), 1–7. https://doi.org/10.1161/CIRCULATIONAHA.110.956839 

Schnell, S., Ansari, S. A., Wu, C., Garcia, J., Murphy, I. G., Rahman, O. A., … Markl, M. (2017). 
Accelerated dual-venc 4D flow MRI for neurovascular applications. Journal of Magnetic 
Resonance Imaging, 46(1), 102–114. https://doi.org/10.1002/jmri.25595 

Sciacchitano, A. (2019). Uncertainty quantification in particle image velocimetry. Measurement 
Science and Technology, 30(9). https://doi.org/10.1088/1361-6501/ab1db8 

Sciacchitano, A., Neal, D. R., Smith, B. L., Warner, S. O., Vlachos, P. P., Wieneke, B., & Scarano, 
F. (2015). Collaborative framework for PIV uncertainty quantification: comparative 
assessment of methods. Measurement Science and Technology, 26(7), 074004. 
https://doi.org/10.1088/0957-0233/26/7/074004 

Sciacchitano, A., & Wieneke, B. (2016). PIV uncertainty propagation. Measurement Science and 
Technology, 27(084006), 084006. https://doi.org/10.1088/0957-0233/27/8/084006 

 



 
 

222 

Sciacchitano, A., Wieneke, B., & Scarano, F. (2013). PIV uncertainty quantification by image 
matching. Measurement Science and Technology, 24(4). https://doi.org/10.1088/0957-
0233/24/4/045302 

Sessoms, M. W., Lisauskas, J., & Kovács, S. J. (2002). The left ventricular color M-mode Doppler 
flow propagation velocity Vp: In vivo comparison of alternative methods including 
physiologic implications. Journal of the American Society of Echocardiography, 15(4), 339–
348. https://doi.org/10.1067/mje.2002.117899 

Sforza, D. M., Kono, K., Tateshima, S., Viñuela, F., Putman, C., & Cebral, J. R. (2016). 
Hemodynamics in growing and stable cerebral aneurysms. Journal of NeuroInterventional 
Surgery, 8(4), 407–412. https://doi.org/10.1136/neurintsurg-2014-011339 

Shojima, M., Oshima, M., Takagi, K., Torii, R., Nagata, K., Shirouzu, I., … Kirino, T. (2005). 
Role of the Bloodstream Impacting Force and the Local Pressure Elevation in the Rupture of 
Cerebral Aneurysms. Stroke, 36(9), 1933–1938. 
https://doi.org/10.1161/01.STR.0000177877.88925.06 

Soloff, S. M., Adrian, R. J., & Liu, Z. C. (1997). Distortion compensation for generalized 
stereoscopic particle image velocimetry. Measurement Science and Technology, 8(12), 1441–
1454. https://doi.org/10.1088/0957-0233/8/12/008 

Song, S. M., Napel, S., Pelc, N. J., & Glover, G. H. (1995). Phase Unwrapping of MR Phase 
Images Using Poisson Equation. IEEE Transactions on Image Processing, 4(5), 667–676. 

Stalder, A. F., Russe, M. F., Frydrychowicz, A., Bock, J., Hennig, J., & Markl, M. (2008a). 
Quantitative 2D and 3D Phase Contrast MRI : Optimized Analysis of Blood Flow and Vessel 
Wall Parameters. Magnetic Resonance in Medicine, 60, 1218–1231. 
https://doi.org/10.1002/mrm.21778 

Stalder, A. F., Russe, M. F., Frydrychowicz, A., Bock, J., Hennig, J., & Markl, M. (2008b). 
Quantitative 2D and 3D phase contrast MRI: Optimized analysis of blood flow and vessel 
wall parameters. Magnetic Resonance in Medicine, 60(5), 1218–1231. 
https://doi.org/10.1002/mrm.21778 

Stankovic, Z., Allen, B. D., Garcia, J., Jarvis, K. B., & Markl, M. (2014). 4D flow imaging with 
MRI. Cardiovascular Diagnosis and Therapy, 4(2), 173–192. 
https://doi.org/10.3978/j.issn.2223-3652.2014.01.02 

Steine, K., Stugaard, M., & Smiseth, O. A. (1999). Mechanisms of Retarded Apical Filling in 
Acute Ischemic Left Ventricular Failure. Circulation, 99(15), 2048–2054. 
https://doi.org/10.1161/01.CIR.99.15.2048 

Stewart, K. C., Charonko, J. C., Niebel, C. L., Little, W. C., & Vlachos, P. P. (2012). Left 
ventricular vortex formation is unaffected by diastolic impairment. AJP: Heart and 
Circulatory Physiology, 303(10), H1255–H1262. 
https://doi.org/10.1152/ajpheart.00093.2012 



 
 

223 

Stewart, Kelley C., Kumar, R., Charonko, J. J., Ohara, T., Vlachos, P. P., & Little, W. C. (2011). 
Evaluation of LV diastolic function from color M-mode echocardiography. JACC: 
Cardiovascular Imaging, 4(1), 37–46. https://doi.org/10.1016/j.jcmg.2010.09.020 

Sträter, A., Huber, A., Rudolph, J., Berndt, M., Rasper, M., Rummeny, E. J., … Radiology, I. 
(2018). 4D-Flow MRI: Technique and Applications. Fortschr Röntgenstr, 190(11), 1025–
1035. 

Stugaard, M., Brodahl, U., Torp, H., & Ihlen, H. (1994). Abnormalities of left ventricular filling 
in patients with coronary artery disease: Assessment by colour m-mode doppler technique. 
European Heart Journal, 15(3), 318–327. 
https://doi.org/10.1093/oxfordjournals.eurheartj.a060497 

Stugaard, Marie, Smiseth, O. A., Risöe, C., & Ihlen, H. (1993). Intraventricular early diastolic 
filling during acute myocardial ischemia: Assessment by multigated color M-mode doppler 
echocardiography. Circulation, 88(6), 2705–2713. https://doi.org/10.1161/01.CIR.88.6.2705 

Sunderland, K., Haferman, C., Chintalapani, G., & Jiang, J. (2016). Vortex analysis of intra-
aneurismal flow in cerebral aneurysms. Computational and Mathematical Methods in 
Medicine, 2016. https://doi.org/10.1155/2016/7406215 

Szajer, J., & Ho-Shon, K. (2018). A comparison of 4D flow MRI-derived wall shear stress with 
computational fluid dynamics methods for intracranial aneurysms and carotid bifurcations — 
A review. Magnetic Resonance Imaging, 48(November 2017), 62–69. 
https://doi.org/10.1016/j.mri.2017.12.005 

Takatsuji, H., Mikami, T., Urasawa, K., Teranishi, J. I., Onozuka, H., Takagi, C., … Kitabatake, 
A. (1996). A new approach for evaluation of left ventricular diastolic function: Spatial and 
temporal analysis of left ventricular filling flow propagation by color M-mode Doppler 
echocardiography. Journal of the American College of Cardiology, 27(2), 365–371. 
https://doi.org/10.1016/0735-1097(96)81240-X 

Thomas, J. D. (2011). Flow propagation analysis: Computer or eyeball? JACC: Cardiovascular 
Imaging, 4(1), 47–49. https://doi.org/10.1016/j.jcmg.2010.11.009 

Thompson, B. G., Brown, R. D., Amin-Hanjani, S., Broderick, J. P., Cockroft, K. M., Connolly, 
E. S., … Torner, J. (2015). Guidelines for the Management of Patients With Unruptured 
Intracranial Aneurysms: A Guideline for Healthcare Professionals From the American Heart 
Association/American Stroke Association. Stroke; a journal of cerebral circulation (Vol. 46). 
https://doi.org/10.1161/STR.0000000000000070 

Tibshirani, R. (2016). Regression Shrinkage and Selection via the Lasso. Journal of the Royal 
Statistical Society. Seires B (Methological), 58(1), 267–288. 

Timmins, B. H., Wilson, B. W., Smith, B. L., & Vlachos, P. P. (2012). A method for automatic 
estimation of instantaneous local uncertainty in particle image velocimetry measurements. 
Experiments in Fluids, 53(4), 1133–1147. https://doi.org/10.1007/s00348-012-1341-1 



 
 

224 

Töger, J., Zahr, M. J., Aristokleous, N., Markenroth Bloch, K., Carlsson, M., & Persson, P.-O. 
(2020a). Blood flow imaging by optimal matching of computational fluid dynamics to 4D-
flow data. Magnetic Resonance in Medicine, (February), 1–15. 
https://doi.org/10.1002/mrm.28269 

Töger, J., Zahr, M. J., Aristokleous, N., Markenroth Bloch, K., Carlsson, M., & Persson, P. O. 
(2020b). Blood flow imaging by optimal matching of computational fluid dynamics to 4D-
flow data. Magnetic Resonance in Medicine, 1–9. https://doi.org/10.1002/mrm.28269 

Tronchin, T., David, L., & Farcy, A. (2015). Loads and pressure evaluation of the flow around a 
flapping wing from instantaneous 3D velocity measurements. Experiments in Fluids, 56(7), 
7. https://doi.org/10.1007/s00348-014-1870-x 

Van Gent, P. L., Schrijer, F. F. J., & Van Oudheusden, B. W. (2018a). Assessment of the pseudo-
tracking approach for the calculation of material acceleration and pressure fields from time-
resolved PIV: Part I. Error propagation. Measurement Science and Technology, 29(4), 045204. 
https://doi.org/10.1088/1361-6501/aaa0a5 

Van Gent, P. L., Schrijer, F. F. J., & Van Oudheusden, B. W. (2018b). Assessment of the pseudo-
tracking approach for the calculation of material acceleration and pressure fields from time-
resolved PIV: Part II. Spatio-temporal filtering. Measurement Science and Technology, 29(4), 
045206. https://doi.org/10.1088/1361-6501/aaab84 

van Gent, P., Michaelis, D., van Oudheusden, B. W., Weiss, P.-E., de Kat, R., Laskari, A., … 
Schrijer, F. (2017). Comparative assessment of pressure field reconstructions from particle 
image velocimetry measurements and Lagrangian particle tracking. Experiments in Fluids, 
58(33), 33. https://doi.org/10.1007/s00348-017-2324-z 

van Ooij, P., Potters, W. V., Collins, J., Carr, M., Carr, J., Malaisrie, S. C., … Barker, A. J. (2015). 
Characterization of Abnormal Wall Shear Stress Using 4D Flow MRI in Human Bicuspid 
Aortopathy. Annals of Biomedical Engineering, 43(6), 1385–1397. 
https://doi.org/10.1007/s10439-014-1092-7 

Van Ooij, P., Potters, W. V., Guédon, A., Schneiders, J. J., Marquering, H. A., Majoie, C. B., … 
Nederveen, A. J. (2013). Wall shear stress estimated with phase contrast MRI in an in vitro 
and in vivo intracranial aneurysm. Journal of Magnetic Resonance Imaging, 38(4), 876–884. 
https://doi.org/10.1002/jmri.24051 

van Oudheusden, B. W. (2013). PIV-based pressure measurement. Measurement Science and 
Technology, 24(3), 032001. https://doi.org/10.1088/0957-0233/24/3/032001 

Varble, N., Trylesinski, G., Xiang, J., Snyder, K., & Meng, H. (2017). Identification of vortex 
structures in a cohort of 204 intracranial aneurysms. Journal of the Royal Society Interface, 
14(130). https://doi.org/10.1098/rsif.2017.0021 

Violato, D., Moore, P., & Scarano, F. (2011). Lagrangian and Eulerian pressure field evaluation 
of rod-airfoil flow from time-resolved tomographic PIV. Experiments in Fluids, 50(4), 1057–
1070. https://doi.org/10.1007/s00348-010-1011-0 



 
 

225 

Vlachos, P. P., Niebel, C. L., Chakraborty, S., Pu, M., & Little, W. C. (2014). Calculating 
Intraventricular Pressure Difference Using a Multi-Beat Spatiotemporal Reconstruction of 
Color M-Mode Echocardiography. Annals of Biomedical Engineering, 42(12), 2466–2479. 
https://doi.org/10.1007/s10439-014-1122-5 

Vlak, M. H. M., Algra, A., Brandenburg, R., & Rinkel, G. J. E. (2011). Prevalence of unruptured 
intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: A 
systematic review and meta-analysis. The Lancet Neurology, 10(7), 626–636. 
https://doi.org/10.1016/S1474-4422(11)70109-0 

Voß, S., Beuing, O., Janiga, G., & Berg, P. (2019). Multiple Aneurysms AnaTomy CHallenge 
2018 ( MATCH )— Phase Ib : Effect of morphology on hemodynamics. PLOS ONE, 14(5). 

Wang, C. Y., Gao, Q., Wei, R. J., Li, T., & Wang, J. J. (2017). Spectral decomposition-based fast 
pressure integration algorithm. Experiments in Fluids, 58(84), 84. 
https://doi.org/10.1007/s00348-017-2368-0 

Wang, Z., Gao, Q., Wang, C., Wei, R., & Wang, J. (2016). An irrotation correction on pressure 
gradient and orthogonal-path integration for PIV-based pressure reconstruction. Experiments 
in Fluids, 57, 104. https://doi.org/10.1007/s00348-016-2189-6 

Wermer, M. J. H., Van Der Schaaf, I. C., Algra, A., & Rinkel, G. J. E. (2007). Risk of rupture of 
unruptured intracranial aneurysms in relation to patient and aneurysm characteristics: An 
updated meta-analysis. Stroke, 38(4), 1404–1410. 
https://doi.org/10.1161/01.STR.0000260955.51401.cd 

Westerweel, J., & Scarano, F. (2005). Universal outlier detection for PIV data. Experiments in 
Fluids, 39(6), 1096–1100. https://doi.org/10.1007/s00348-005-0016-6 

Wetzel, S., Meckel, S., Frydrychowicz, A., Bonati, L., Radue, E. W., Scheffler, K., … Markl, M. 
(2007). In vivo assessment and visualization of intracranial arterial hemodynamics with flow-
sensitized 4D MR imaging at 3T. American Journal of Neuroradiology, 28(3), 433–438. 

Wieneke, B. (2008). Volume self-calibration for 3D particle image velocimetry. Experiments in 
Fluids, 45(4), 549–556. https://doi.org/10.1007/s00348-008-0521-5 

Wieneke, B. (2017). PIV anisotropic denoising using uncertainty quantification. Experiments in 
Fluids, 58(94), 94. https://doi.org/10.1007/s00348-017-2376-0 

Wieneke, Bernhard. (2013). Iterative reconstruction of volumetric particle distribution. 
Measurement Science and Technology, 24, 024008. https://doi.org/10.1088/0957-
0233/24/2/024008 

Wieneke, Bernhard. (2015). PIV uncertainty quantification from correlation statistics. 
Measurement Science and Technology, 26(7). https://doi.org/10.1088/0957-
0233/26/7/074002 

 



 
 

226 

Wolf, R. L., Ehman, R. L., Riederer, S. J., & Rossman, P. J. (1993). Analysis of systematic and 
random error in MR volumetric flow measurements. Magnetic Resonance in Medicine, 30(1), 
82–91. https://doi.org/10.1002/mrm.1910300113 

Womersley, J. R. (1955). Method for the calculation of velocity, rate of flow and viscous drag in 
arteries when the pressure gradient is known. The Journal of Physiology, 127(3), 553–563. 
https://doi.org/10.1113/jphysiol.1955.sp005276 

Wood, E. H., Leusen, I. R., Warner, H. R., & Wright, J. L. (1954). Measurement of Pressures in 
Man by Cardiac Catheters. Circulation Research, 11. 

Wright, G. B., & Fornberg, B. (2006). Scattered node compact finite difference-type formulas 
generated from radial basis functions. Journal of Computational Physics, 212(1), 99–123. 
https://doi.org/10.1016/j.jcp.2005.05.030 

Wright, J., Member, S., Yang, A. Y., Ganesh, A., & Sastry, S. S. (2009). Robust Face Recognition 
via Sparse Representation. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND 
MACHINE INTELLIGENCE, 31(2), 210–227. 

Xiang, J., Tutino, V. M., Snyder, K. V., & Meng, H. (2014). CFD: Computational fluid dynamics 
or confounding factor dissemination? the role of hemodynamics in intracranial aneurysm 
rupture risk assessment. American Journal of Neuroradiology, 35(10), 1849–1857. 
https://doi.org/10.3174/ajnr.A3710 

Xiang, Q. (1995). Temporal phase unwrapping for CINE velocity imaging. Journal of Magnetic 
Resonance Imaging, 5(5), 529–534. 

Xue, Z., Charonko, J. J., & Vlachos, P. P. (2014). Particle image velocimetry correlation signal-
to-noise ratio metrics and measurement uncertainty quantification. Measurement Science and 
Technology, 25(11), 115301. https://doi.org/10.1088/0957-0233/25/11/115301 

Xue, Z., Charonko, J. J., & Vlachos, P. P. (2015). Particle image pattern mutual information and 
uncertainty estimation for particle image velocimetry. Measurement Science and Technology, 
26(074001), 074001. https://doi.org/10.1088/0957-0233/26/7/074001 

Yotti, R., Bermejo, J., Antoranz, J. C., Desco, M. M., Cortina, C., Rojo-Álvarez, J. L., … García-
Fernández, M. A. (2005). A noninvasive method for assessing impaired diastolic suction in 
patients with dilated cardiomyopathy. Circulation, 112(19), 2921–2929. 
https://doi.org/10.1161/CIRCULATIONAHA.105.561340 

You, S. H., Kong, D. S., Kim, J. S., Jeon, P., Kim, K. H., Roh, H. K., … Hong, S. C. (2010). 
Characteristic features of unruptured intracranial aneurysms: Predictive risk factors for 
aneurysm rupture. Journal of Neurology, Neurosurgery and Psychiatry, 81(5), 479–484. 
https://doi.org/10.1136/jnnp.2008.169573 

Yu, J., Agarwal, H., Stuber, M., & Schär, M. (2012). Practical Signal-to-Noise Ratio 
Quantification for Sensitivity Encoding: Application to Coronary MRA. J Magn Reson 
Imaging, 33(6), 1330–1340. https://doi.org/10.1002/jmri.22571.Practical 



 
 

227 

Zhang, J., Bhattacharya, S., & Vlachos, P. P. (2020). Using uncertainty to improve pressure field 
reconstruction from PIV/PTV flow measurements. Experiments in Fluids, 61(6), 131. 
https://doi.org/10.1007/s00348-020-02974-y 

Zhang, J., Brindise, M. C., Rothenberger, S. M., Markl, M., Rayz, V. L., & Vlachos, P. P. (2022). 
A multi-modality approach for enhancing 4D flow magnetic resonance imaging via sparse 
representation. Journal of The Royal Society Interface, 19(186). 
https://doi.org/10.1098/rsif.2021.0751 

Zhang, J., Brindise, M. C., Rothenberger, S., Schnell, S., Markl, M., Rayz, V. L., & Vlachos, P. P. 
(2019). 4D Flow MRI Pressure Estimation Using Velocity Measurement-Error based 
Weighted Least-Squares. IEEE Transactions on Medical Imaging. 
https://doi.org/10.1109/TMI.2019.2954697 

Zhang, J., Brindise, M. C., Rothenberger, S., Schnell, S., Markl, M., Saloner, D., … Vlachos, P. 
P. (2020). 4D Flow MRI Pressure Estimation Using Velocity Measurement-Error-Based 
Weighted Least-Squares. IEEE Transactions on Medical Imaging, 39(5), 1668–1680. 
https://doi.org/10.1109/TMI.2019.2954697 

Zhang, J., Rothenberger, S. M., Brindise, M. C., Scott, M. B., Berhane, H., Baraboo, J. J., … 
Vlachos, P. P. (2021). Divergence-Free Constrained Phase Unwrapping and Denoising for 
4D Flow MRI Using Weighted Least-Squares. IEEE Transactions on Medical Imaging, 
40(12), 3389–3399. https://doi.org/10.1109/TMI.2021.3086331 

Zhou, G., Zhu, Y., Yin, Y., Su, M., & Li, M. (2017). Association of wall shear stress with 
intracranial aneurysm rupture: Systematic review and meta-analysis. Scientific Reports, 7(1), 
1–8. https://doi.org/10.1038/s41598-017-05886-w 

Zhou, J., Adrian, R. J., Balachandar, S., & Kendall, T. M. (1999). Mechanisms for generating 
coherent packets of hairpin vortices in channel flow. Journal of Fluid Mechanics, 387, 353–
396. https://doi.org/10.1017/S002211209900467X 

Zhou, X., Papadopoulou, V., Leow, C. H., Vincent, P., & Tang, M. X. (2019). 3-D Flow 
Reconstruction Using Divergence-Free Interpolation of Multiple 2-D Contrast-Enhanced 
Ultrasound Particle Imaging Velocimetry Measurements. Ultrasound in Medicine and 
Biology, 45(3), 795–810. https://doi.org/10.1016/j.ultrasmedbio.2018.10.031 

 

  



 
 

228 

PUBLICATIONS 

Zhang, J., Bhattacharya, S., & Vlachos, P. P. (2022). Uncertainty of PIV/PTV based Eulerian 
pressure estimation using velocity uncertainty. Measurement Science and Technology, 
33(6), 065303. https://doi.org/10.1088/1361-6501/ac56bf 

Zhang, J., Brindise, M. C., Rothenberger, S. M., Markl, M., Rayz, V. L., & Vlachos, P. P. (2022). 
A multi-modality approach for enhancing 4D flow magnetic resonance imaging via sparse 
representation. Journal of The Royal Society Interface, 19(186). 
https://doi.org/10.1098/rsif.2021.0751 

Ahmadzadegan, A., Zhang, J., Ardekani, A., & Vlachos, P. P. (2022). Spatiotemporal 
Measurement of Concentration-Dependent Diffusion Coefficient. Authorea, March 31. 
https://doi.org/10.22541/au.164873358.86144442/v1 

Rothenberger, S. M., Zhang, J., Brindise, M. C., Schnell, S., Markl, M., Vlachos, P. P., & Rayz, 
V. L. (2022). Modeling Bias Error in 4D flow MRI Velocity Measurements. IEEE 
Transactions on Medical Imaging, xx(X), 1–1. https://doi.org/10.1109/TMI.2022.3149421 

Zhang, J., Rothenberger, S. M., Brindise, M. C., Scott, M. B., Berhane, H., Baraboo, J. J., Markl, 
M., Rayz, V. L., & Vlachos, P. P. (2021). Divergence-Free Constrained Phase Unwrapping 
and Denoising for 4D Flow MRI Using Weighted Least-Squares. IEEE Transactions on 
Medical Imaging, 40(12), 3389–3399. https://doi.org/10.1109/TMI.2021.3086331 

Rajendran, L.*, Zhang, J.*, Bane, S., & Vlachos, P. (2020). Uncertainty-based weighted least 
squares density integration for background-oriented schlieren. Experiments in Fluids, 
61(11), 239. https://doi.org/10.1007/s00348-020-03071-w 

Zhang, J., Bhattacharya, S., & Vlachos, P. P. (2020). Using uncertainty to improve pressure field 
reconstruction from PIV/PTV flow measurements. Experiments in Fluids, 61(6), 131. 
https://doi.org/10.1007/s00348-020-02974-y 

Rajendran, L. K., Zhang, J., Bhattacharya, S., Bane, S. P. M., & Vlachos, P. P. (2020). Uncertainty 
quantification in density estimation from background-oriented Schlieren measurements. 
Measurement Science and Technology, 31(5), 054002. https://doi.org/10.1088/1361-
6501/ab60c8 

Singh, B., Rajendran, L. K., Zhang, J., Vlachos, P. P., & Bane, S. P. M. (2020). Vortex rings drive 
entrainment and cooling in flow induced by a spark discharge. Physical Review Fluids, 
5(11), 114501. https://doi.org/10.1103/PhysRevFluids.5.114501 

Zhang, J., Brindise, M. C., Rothenberger, S., Schnell, S., Markl, M., Saloner, D., Rayz, V. L., & 
Vlachos, P. P. (2020). 4D Flow MRI Pressure Estimation Using Velocity Measurement-
Error-Based Weighted Least-Squares. IEEE Transactions on Medical Imaging, 39(5), 
1668–1680. https://doi.org/10.1109/TMI.2019.2954697 

* indicates shared co-authorship between primary authors  
 


