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PREFACE

This is an article-based dissertation consisting of two published journal papers and one

manuscript submitted to a journal for publication.

Pages 19–45 were initially published in the proceedings of ASME 2021 International

Design and Engineering Technical Conferences & Computers and Information in Engineering

Conference, and then were selected to publish in ASME Journal of Mechanical Design.

Pages 46–81 have been published in Structural Safety. Minor changes are applied to

address the comments from committee members.

Pages 82–109 are preparing to submit to a journal for publication, whose preliminary

work has been published in the proceedings of AIAA SciTech 2022 Forum.

All papers have been prepared in the style utilized by Purdue University.
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ABSTRACT

Uncertainty exists everywhere in scientific and engineering applications. To avoid poten-

tial risk, it is critical to understand the impact of uncertainty on a system by performing

uncertainty quantification (UQ) and reliability analysis (RA). However, the computational

cost may be unaffordable using current UQ methods with high-dimensional input. Moreover,

current UQ methods are not applicable when numerical data and image data coexist.

To decrease the computational cost to an affordable level and enable UQ with special

high dimensional data (e.g. image), this dissertation develops three UQ methodologies with

high dimensionality of input space. The first two methods focus on high-dimensional numer-

ical input. The core strategy of Methodology 1 is fixing the unimportant variables at their

first step most probable point (MPP) so that the dimensionality is reduced. An accurate

RA method is used in the reduced space. The final reliability is obtained by accounting

for the contributions of important and unimportant variables. Methodology 2 addresses the

issue that the dimensionality cannot be reduced when most of the variables are important

or when variables equally contribute to the system. Methodology 2 develops an efficient

surrogate modeling method for high dimensional UQ using Generalized Sliced Inverse Re-

gression (GSIR), Gaussian Process (GP)-based active learning, and importance sampling. A

cost-efficient GP model is built in the latent space after dimension reduction by GSIR. And

the failure boundary is identified through active learning that adds optimal training points

iteratively. In Methodology 3, a Convolutional Neural Networks (CNN) based surrogate

model (CNN-GP) is constructed for dealing with mixed numerical and image data. The

numerical data are first converted into images and the converted images are then merged

with existing image data. The merged images are fed to CNN for training. Then, we use

the latent variables of the CNN model to integrate CNN with GP to quantify the model

error using epistemic uncertainty. Both epistemic uncertainty and aleatory uncertainty are

considered in uncertainty propagation.

The simulation results indicate that the first two methodologies can not only improve

the efficiency but also maintain adequate accuracy for the problems with high-dimensional

numerical input. GSIR with active learning can handle the situations that the dimensionality

12



cannot be reduced when most of the variables are important or the importance of variables are

close. The two methodologies can be combined as a two-stage dimension reduction for high-

dimensional numerical input. The third method, CNN-GP, is capable of dealing with special

high-dimensional input, mixed numerical and image data, with the satisfying regression

accuracy and providing an estimate of the model error. Uncertainty propagation considering

both epistemic uncertainty and aleatory uncertainty provides better accuracy. The proposed

methods could be potentially applied to engineering design and decision making.
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1. INTRODUCTION

1.1 Background

Uncertainty [  1 ] is the opposite of certainty, a state of limited knowledge or lack of in-

formation to understand the exact state of physical systems or the future outcome which is

called quantify of interest (QoI). Unfortunately, uncertainty or natural variation is inevitable

in scientific and engineering applications, such as manufacturing error, heterogeneous ma-

terial properties, and varied system load. Those uncertain parameters are the input of the

uncertainty quantification (UQ) task. Given the distributions of the input, UQ is to obtain

the probability density function (PDF) or cumulative density function (CDF) of QoI so the

effect of uncertainty on QoI could be understood.

Reliability [ 2 ] is the probability that a component or system fulfills its intended function

without failure given the existence of uncertainty. Reliability analysis (RA) is a special case

of UQ and also is one of the most applications of UQ, which usually focuses on extreme

events or tail events with low probability. By identifying the failure boundary between the

safe and failure region of model response and integrating the join PDF of input variables in

the safe region, reliability is obtained.

UQ and RA are important for managing and avoiding the potential risks at the design

stage of products, such as aircraft [  3 ]–[ 5 ], automobiles [ 6 ]–[ 10 ], and many infrastructures

[ 11 ]–[ 14 ]. Without knowing the effect of uncertainty on the target product, catastrophic

consequences could be introduced.

To investigate the impact of uncertainty, computer simulations are increasingly used

for UQ and RA in facing the prevalent existence of uncertainty in the physical world. It

repeats the simulation with considerable times. The model can be physical models which

represent the sophisticated physical principles solved by numerical methods or can be data-

based models. However, those models usually are either computationally demanding or too

expensive in collecting enough data for sufficient accuracy.

Current UQ methods can be categorized into three types. The first is called sampling

methods or simulation methods, such as Monte Carlo Simulation (MCS) [  15 ], [  16 ], Impor-

tance Sampling (IS) [  17 ], [  18 ], and Subset Simulation (SS) [  19 ], [  20 ]. MCS is the most

14



accurate method with sufficient samples, which induces high computational costs. IS and

SS focus on the extreme events or part of the probability space. Their computational cost

is lower than MCS, but a relatively large number of samples are essential to obtain accurate

results. Also, IS and SS may not be accurate in the whole probability space. The com-

putational cost of those methods usually is unaffordable for engineering design when the

computation model is black-box simulations, although those methods are insensitive to the

dimensionality of the input space.

The second type is the most probable point (MPP) based approximation methods [ 21 ]–

[ 24 ]. Typical approximation methods include the first-order reliability method (FORM) [ 22 ],

the second-order reliability method (SORM) [ 22 ], and the first-order/second-order saddle-

point point approximation (SPA) methods [  25 ]–[ 27 ]. These methods simplify the original

computational model by Taylor expansion at the MPP. The first order and second order

represent the Taylor expansion order. In general, the second-order methods are more accu-

rate than the first-order methods with the increasing nonlinearity of the given computation

model, but the efficiency is worse than the latter. The computational cost of those methods

is directly related to the dimensionality of the input space. The complicated engineering

systems nowadays bring challenges due to the high dimensionality and nonlinearity.

The third type is called meta-modeling or surrogate-modeling methods [  28 ]–[ 31 ]. Those

methods create computationally economical regression models using response surface method

(RSM) [  29 ], classical machine learning (ML) methods [ 30 ], [  32 ], [  33 ], or deep learning (DL)

[ 34 ]–[ 36 ]. The commonly used classical ML methods are Gaussian Process (GP) modeling (or

Kriging) [ 30 ], [ 37 ], [ 38 ], Support Vector Machine (SVM) [ 32 ], [ 39 ], [ 40 ], and shallow Artificial

Neural Networks (ANN) [  33 ], [ 41 ]. Many meta-modeling methods have been developed

in the past years and have achieved considerable success. However, severe over-fitting or

under-fitting exist in those methods in high-dimensional probability space without sufficient

samples. Generating more samples means increasing cost.

In addition, the current meta-modeling methods for UQ target numerical input but are

not able to accommodate image data or mixed data. In the age of data exploration, we have

more complicated data forms with high dimensionality, such as images and videos. For exam-

ple, doctors use engineering tools, Computational Fluid Dynamics (CFD), to help with the

15



severity assessment of stenosis [  42 ]–[ 44 ]. The spatial domain of CFD simulation is extracted

from the CT image of patients. If a regression model that is capable of handling image data

with limited CFD simulations can be obtained, the time-consuming CFD simulation can be

replaced by the cheap regression model.

In summary, to improve the efficiency of UQ in high-dimensional probability space, in-

tegrating dimension reduction techniques to current UQ methods is critical. Also, novel

regression methods that are capable of handling special high-dimensional data (e.g., image

data) are needed for UQ. This dissertation attempts to solve the above problems. The pro-

posed methods can potentially reduce the design cost in engineering design and lower the cost

to an affordable level. Other areas, such as engineering management, reliability engineering,

and statistics, could also benefit from the proposed methods in this dissertation.

1.2 Research Objective

The objective of this dissertation is to mitigate the curse of dimensionality of current

UQ and improve the efficiency of UQ for high-dimensional problems. Three research tasks

labeled as RT1, RT2, and RT3 are carried out to achieve the objective. RT1 and RT2 can be

considered as a two-stage dimension reduction to achieve efficient reliability analysis. RT3

is to develop a methodology that can deal with special high-dimensional input, the mixed

image and numerical data. In this dissertation, we assume that the numerical inputs are

independent. When the inputs are dependent, we can transform them into independent

variables [ 45 ].

The first stage dimension reduction (RT1) focuses on the problems that their high-

dimensional input variables can be divided into two groups, important and unimportant

variables according to their influence on the response [ 46 ], [  47 ]. Traditional methods fix

the unimportant variables at their means and overlook their coupled influence in reliability

analysis. However, their influence may not be insignificant so that the error is introduced.

The proposed method counts the influence of both important and unimportant variables.

The unimportant variables are fixed at their one-step MPP or their percentiles so that the

dimensionality is reduced. After that, reliability analysis is performed in a low-dimensional
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space with high efficiency. The final reliability is obtained by counting the influence of both

the important and unimportant variables.

The second stage dimension reduction (RT2) is to address the situation that the dimen-

sionality cannot be reduced after the first stage dimension reduction. A nonlinear dimension

reduction technique from sufficient dimension reduction (SDR) theory [  48 ], [  49 ], called gen-

eralized sliced inverse regression (GSIR) [  50 ], is used for dimension reduction. Theoretically,

SDR can preserve the distribution of the model response after dimension reduction. Combin-

ing with GP and active learning, the computational cost of reliability analysis is significantly

decreased.

RT3 aims to develop an accurate regression model that can not only deal with special

high-dimensional input, mixed data (image and numerical data), but also predict model un-

certainty along with the prediction. The proposed regression model is then used for UQ. The

strategy is first converting numerical data into image data and then merging them with ex-

isting images. The merged images are fed to Convolutional Neural Network (CNN) [ 51 ]–[ 53 ]

for model training. Then, the latent variables are retrieved by treating CNN as a supervised

dimension reduction process. A GP model is constructed with respect to the latent variables

and model response. The ultimate model named CNN-GP is used for prediction and UQ.

This work could fill up the gap in dimension scalability with a set of enabling tools that

can be used practically in large-scale design. The designers could perform what-if analysis

and optimization to come up with cost-efficient, reliable designs.

1.3 Dissertation Organization

To address the aforementioned three search tasks, three dimension reduction aided UQ

methodologies are proposed resulting in three research papers which are provided in Chapter

 2 , Chapter  3 , and Chapter  4 . As shown in Figure  1.1 , the three research tasks serve for the

same objective, UQ with high dimensionality, forming of the main body of the dissertation.

Chapter  2 (RT1) focuses on the high-dimensional numerical input that can be divided into

important and unimportant variables according to their influence on the system. Chapter  3 

(RT2) proposes another high dimensional UQ method to address the issue that RT1 may not
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Uncertainty 
Quantification

with high 
dimensionality

Chapter 1

RT1
High-dimension 
numerical inputs 
consists of important 
and unimportant 
variables. 

RT2
Dimension is not 
reduced after RT1. 
Another dimension 
reduction technique is 
needed.  

RT3
High-dimension inputs 
include not only 
numerical inputs but 
also image data.  

Chapter 2

Chapter 3

Figure 1.1. Structure of the dissertation.

be applicable: most of the input variables are important and the dimensionality cannot be

reduced by RT1. In Chapter  4 (RT3), the high-dimensional space is extended where image

data and numerical data coexist. An UQ method that can accommodate both image and

numerical data is proposed. Conclusions are provided in Chapter  5 .
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2.1 Background

In engineering design, physics-based reliability is commonly used to predict the probabil-

ity of failure using physical models derived from physical principles. Such a model is called

a limit-state function and is given by

Y = g(X) (2.1)

where X is a vector to represent input random variables, and Y is a response that indicates

the occurrence of a failure.

Physics-based reliability methods can be divided into three categories: numerical meth-

ods [  21 ]–[ 23 ], [  54 ], [  55 ], surrogate methods [ 28 ]–[ 31 ], [  56 ], [  57 ], and simulation methods [ 58 ]–
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[ 61 ]. Typically, numerical methods simplify the limit-state function using the first or second

order Taylor expansion. The reliability is approximated by the simplified function. The

surrogate methods construct an easy-access model utilizing sensitivity analysis, Design of

Experiments (DOE), active learning methods, etc., and the reliability obtained by calling

the surrogate model instead of the original limit-state function. However, both numerical

and surrogate methods suffer from the curse of dimensionality that makes reliability analysis

computationally expensive for high-dimensional problems. Because reliability prediction re-

peatedly calls limit-state functions which are typically complex, resource-intensive numerical

models. The number of function calls grows drastically as the increase of dimensionality of

the input variables. Although the efficiency of simulation methods, such as Monte Carlo

Simulation (MCS) [  62 ] and Importance Sampling (IS) method [  63 ], is not affected by the

dimensionality, they are still computationally expensive when the reliability is high and may

not be practically used in engineering design.

High-dimensional reliability analysis is encountered in many engineering and science fields

[ 64 ]–[ 69 ]. Current high-dimensional reliability analysis methods are roughly classified into

three types. The first type [ 70 ]–[ 73 ] uses high-dimensional model representation (HDMR)

to decompose a high dimensional limit-state function g(X) into the sum of several lower-

dimensional functions. The moments (means, variance, etc.) of the response can be ap-

proximated by several low dimensional numerical integrations. However, the accuracy of

the reliability obtained by HDMR may not be accurate enough if the interaction terms are

dominant. The low dimensional functions are usually approximated by Taylor expansion,

which also could introduce errors. Although the accuracy of the reliability assessment can

be improved by increasing the approximation order, the number of function evaluations may

increase drastically. Several recent studies [  74 ]–[ 76 ] combine adaptive metamodeling ap-

proaches (Polynomial Chaos Expansion, Kriging) and statistical model selection methods.

Their goal is to find the optimal integration points or training points for metamodeling. The

balance between the prediction accuracy and efficiency is still a challenge.

The second type of method [  35 ], [  77 ]–[ 79 ] combines dimension reduction with surrogate

modeling and machine learning. Three steps are usually involved. Step 1 is the dimension

reduction performed by the sliced inverse regression (SIR) [  48 ], [ 79 ], or other methods [  70 ],
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[ 78 ] at specific training points , usually generated through DOE [  80 ]. Important input

variables are identified. In Step 2, a surrogate model is constructed with respect to important

input variables in the reduced dimensional space. Many regression and machine learning

methods could be used for this purpose, including Polynomial Chaos Expansion (PCE)

[ 81 ], Gaussian Process Regression (GPR) [ 82 ], Support Vector Machines (SVM) [ 83 ], and

Neural Networks (NNs) [  35 ]. Step 3 is the surrogate model validation. After the accuracy

of the surrogate model is validated by MCS, it is used to estimate the reliability. Sufficient

training points are needed to ensure good accuracy of the surrogate model. The number of

training points, thereby the number of function calls, increases greatly with the increase of

dimensionality of input variables.

The third most commonly used method is principal component analysis (PCA) [ 84 ],

[ 85 ]. PCA reduces the dimension of the input variables by making use of the correlations

between the input variables. Therefore, PCA works well for the elements of input variables

that are strongly correlated. When the input variables are independent or only weakly

correlated, PCA may not work well for dimension reduction. Besides, PCA does not use

the information of the response Y , and it is, therefore, an unsupervised dimension reduction

technique. Although dimension reduction is optimal in the given data space, it may be

suboptimal for the entire regression space.

Overall, despite the progress, numerous challenges remain in the path toward routinely

accommodating high dimensional problems in reliability analysis. In most of the successful

applications, only dozens of random input variables can be practically handled except the

special cases involving functional data [ 77 ], [  81 ]. However, the dimension in input variables

could easily add up to hundreds or thousands in system design. For example, the aircraft

wing optimization design [ 86 ] involves structural mechanics and aerodynamics. The numbers

of design variables, random variables, and constraints could be in hundreds or thousands.

Moreover, when the reliability requirement is high, accurately predicting the reliability is

extremely computational demanding.

In real engineering applications, not all the elements of X contribute significantly to the

response Y . The majority elements of X may have insignificant effects that are therefore

unimportant variables. Their total effect, however, may not be negligible because the unim-
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portant variables may count for most of X. Traditional dimension reduction methods usually

neglect the contribution of the unimportant variables because they are fixed at their means,

which can lead to a error.

In this study, we account for the total effect of unimportant variables by fixing them at

their percentiles so that the dimension is reduced but the influence of unimportant variables

is not neglected. The proposed method does not require random sampling for dimension

reduction; instead, it bases on a numerical method, specifically the First Order Reliability

Method (FORM). After dimension reduction, any reliability method with higher accuracy

can be used to predict the reliability since the computational effort will be reduced signifi-

cantly in the reduced space. Then the predicted reliability is integrated with the contribution

of the unimportant variables to produce the final reliability prediction.

The remainder of this paper is organized as follows. Section  2.2 reviews the methodologies

that this study uses. Section  2.3 discusses the details of the proposed method, followed by

three examples in Section  2.4 . The conclusions are provided in Section  2.5 .

2.2 Review

In this section, we briefly review the basic knowledge that is related to the proposed

method, including FORM, the Second Order Reliability Method (SORM), and the Second

Order Saddlepoint Approximation (SOSPA). The rules of symbols in this paper are: 1) a

capitalized letter in bold denotes a vector of random variables (e.g. X or U), 2) a italicized

lower-case letter in bold denotes a vector of deterministic variables (e.g. x or u), 3) an

italicized capital letter denotes a random variable (e.g. X or U), and 4) an italicized lowercase

letter of denotes a deterministic variable (e.g. x or u).

2.2.1 FORM and SORM

The reliability is defined by the following probability:

R = Pr{g(X) ≥ 0} (2.2)
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The probability of failure pf is then given by

pf = 1 −R = Pr{g(X) < 0} =
∫
g(X)<0

fX(x) < 0dx (2.3)

where fX(x) is the joint probability density function (PDF) of X. The limit-state function

g(X) is usually a nonlinear function. In this study, we assume all the elements in X are inde-

pendent. Directly integrating the PDF in the failure region (g(X) < 0) is often impractical

and computationally expensive. It is the reason that many approximation methods have

been developed, including FORM [ 21 ] and SORM [ 22 ], where three steps are involved.

1) Transform X to be the standard normal variables U by

FXi (Xi) = Φ (Ui) (2.4)

where FXi(·) and Φ(·) represent the cumulative density function (CDF) of Xi and Ui,

respectively. Denote the transformation by X = T (U), and Eq. (  2.3 ) is rewritten as

Pr{g(X) < 0} =
∫
g(T (U))<0

fU(T (u)) < 0du (2.5)

where fU(·) is the joint PDF of U.

2) Find the most probable point (MPP) which is a point with the highest PDF on the

surface of g(U) = 0. Geometrically, MPP has the shortest distance from the surface

to the origin in U-space, and then MPP (u∗) is found by

min
u

β = ‖u‖

s.t. g(U) = 0
(2.6)

where ‖ · ‖ stands for the length of a vector. β = ‖u∗‖ is the reliability index because

it is related to the probability of failure as will be shown in Eq. (  2.9 ).
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3) Approximate the limit-state function linearly (FORM) or quadratically (SORM) at u∗.

The use of u∗ can minimize the error of the approximation. The two approximations

are given by

g(U) ≈ g (u∗) + ∇g (u∗)T (U − u∗) (2.7)

g(U) ≈ g (u∗) + ∇g (u∗)T (U − u∗) + 1
2 (U − u∗)T H (u∗) (U − u∗) (2.8)

where ∇g (u∗) and H (u∗) are the gradient and the Hessian matrix of g(T (U)) with

respect to u∗, respectively.

After the three steps, the probability of failure calculated by FORM is given by

pf = Φ(−β) (2.9)

As mentioned previously, β is called the reliability index. When FORM is used, β also is

the magnitude of the MPP as indicated in Eq. ( 2.6 ). Therefore, we call β from FORM the

FORM-reliability index throughout the paper. The solution from SORM is more accurate

in general and is obtained by multiplying Eq. (  2.9 ) with a correction term [ 22 ].

2.2.2 SOSPA

SOSPA [ 26 ] is a second-order approximation method based on SORM and saddlepoint

approximation (SPA) [ 25 ], [ 87 ]. SOSPA uses the cumulant generating function (CGF)KY (t),

which can be derived analytically from the approximated response in Eq. (  2.8 ). Once KY (t)

is available, the saddlepoint ts is obtained by solving

K ′
Y (t) = 0 (2.10)

where K ′
Y (t) is the first order derivative of the CGF. Then, pf is computed by [ 88 ]

pf = Φ(ω) + φ(ω)
( 1
ω

− 1
v

)
(2.11)
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where φ(·) represents the PDF of the standard normal distribution.

ω = sgn (ts) {2 [−KY (ts)]}
1
2 (2.12)

v = ts [K ′′
Y (ts)]

1
2 (2.13)

where sgn(·) is the signum function, which equals to 1, -1, or 0 when ts is positive, negative

or zero; K ′′
Y (ts) is the second order derivative of the CGF with respect to t.

2.3 Methodology

The distinctive strategy of the proposed method is to use an accurate reliability method

in the reduced space and accounts for the contributions of both important and unimportant

input variables to the reliability.

2.3.1 Overview

The purpose of dimension reduction is to identify important and unimportant variables

in X. We will use FORM to perform dimension reduction since the MPP from FORM can

directly measure the importance of input variables for two reasons. First, the reliability is

determined by the FORM-reliability index or the magnitude of the MPP since β = ‖u∗‖ =√∑n
i=1 (u∗

i )
2; second, the components of the MPP u∗ = (u∗

i )i=1,n determine the importance

of the elements of X or their contributions to the reliability. As shown in Figure  2.1 , a

farther distance from the mean (or median) means a larger value of the MPP component

and therefore a higher contribution. Hence, we can use the MPP components to identify both

important and unimportant input variables. Since the MPP components of the unimportant

input variables do not change significantly during the MPP search, we propose to use the

MPP obtained from the first iteration of the MPP search. This can greatly reduce the

computational effort.

Once the MPP is obtained from the first iteration, important and unimportant input

variables are identified by their MPP components. Then, the subsequent analysis will be
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Figure 2.1. Percentile of a random variable.

conducted with only important variables. A reliability method with higher accuracy can

be used with the unimportant input variables fixed at their MPP components. Using a

high accurate reliability method is affordable because the number of function calls can be

reduced in the reduced space. Then the final reliability is obtained by integrating the relia-

bility obtained in the reduced space and the FORM-reliability index of unimportant input

variables.

The proposed method involves three steps: 1) dimension reduction, 2) reliability analysis

in the reduced space, and 3) reliability analysis in the original space.

2.3.2 Dimension Reduction

The purpose of the first step is to identify important and unimportant input variables.

This step involves the first iteration of the MPP search that starts from the origin of the

U-space. By Setting the initial point at the origin u0 = (0, 0, . . . , 0)T, we obtain the gradient

∇g (u0) and approximate the limit-state function by

g(U) ≈ g (u0) + ∇g (u0)T U (2.14)
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The unit vector α of ∇g (U) at u0 is given by

α = ∇g (u0)
‖∇g (u0)‖

(2.15)

Then the FORM-reliability index of one-step MPP is obtained by

β1 = β0 + g (u0)
‖∇g (u0)‖

= g (u0)
‖∇g (u0)‖

(2.16)

Using the fact that the MPP vector is in the opposite direction of the gradient [  89 ], we have

the first iteration of the MPP u1.

u1 = −β1α = −g (u0) ∇g (u0)
‖∇g (u0)‖2 (2.17)

And it can be proved that β1 = ‖u1‖ holds for Eqs. (  2.16 ) and ( 2.17 ).

We now discuss how to distinguish important input variables from unimportant ones by

using the first-iteration MPP. The probability of failure is approximated by pf = Φ (−β1) =

Φ
(

−
√
u2

11 + u2
12 + . . . u2

1n

)
, where u1i is the i-th component of u1. The magnitudes of the

components of u1 therefore indicate their importance to the probability of failure. More

specifically, we examine the sensitivity of pf with respect to the components of u1. The

sensitivity is defined by

si = ∂pf
∂ui

= −ϕ (−β1)
u1i

β1
(2.18)

Since ϕ (−β1) is a constant in Eq. ( 2.18 ), u1i
β1

indicates the relative importance of each

component. We can therefore use the following indicator to identify unimportant input

random variables,

ci = |u1i|
β1

(2.19)

If ci is less than a threshold cthres, Xi is considered unimportant. The higher is the

threshold, the more input random variables will be classified as unimportant ones, and the

higher dimensions will be reduced. Using different thresholds, a user can know how many

important variables will be included for the subsequent accurate reliability analysis. The

user will then be able to determine an appropriate threshold given his or her computational
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budget. Based on our experience with from the test problems, we recommend that the user

could start from cthres = 3% or 5% when searching for a suitable threshold.

We group the important variables into a vector Ū and group the unimportant variables

into a vector U with the dimensions of n̄ and n, respectively. Then the input variables are

partitioned into two parts.

U = (Ū; U) (2.20)

Accordingly, the first-iteration MPP is also partitioned into two parts.

u1 = (ū1; u1) (2.21)

where ū1 and u1 are the important and unimportant elements of u1, respectively. Therefore,

we have

β1 = ‖u1‖ = ‖ū1; u1‖ =
√

‖ū1‖2 + ‖u1‖
2 (2.22)

We let β̄1 and β1 to be the FORM-reliability index of the important and unimportant

portion of u1, respectively, which are denoted by

β̄1 = ‖ū1‖ (2.23)

β1 = ‖u1‖ (2.24)

The overall FORM-reliability index is obtained by

β1 =
√
β̄2

1 + β2
1 (2.25)

The final MPP elements of the unimportant variables will be different from u1, but the

difference will be insignificant because the contributions of the unimportant variables are

relatively small. For this reason, we fix the unimportant variables U at u1, but we will still

consider their contributions indicated by their FORM-reliability index β1 in the final stage of
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the reliability analysis. Then the limit-state function becomes a function of Ū with reduced

dimension. The new function is given by

Y = G(Ū) = g
(
Ū; u1

)
(2.26)

For brevity, we denote the limit-state function as G(Ū).

2.3.3 Reliability Analysis in the Reduced Space

We next perform reliability analysis in the reduced dimensional space (Ū). Once the

dimension is reduced, the reliability can be solved either by numerical methods (FORM,

SORM, SOSPA, etc.) or surrogate methods (Kriging, PCE, Machine Learning, etc.).

In this study, we use SOSPA for demonstration. SOSPA is a second order numerical

method and is used to obtain the probability of failure of G(Ū). The first step of SOSPA

is to find the MPP of G(Ū) which is Ū∗
G by Eq. ( 2.6 ). The magnitude of Ū∗

G or the

FORM-reliability index is

β̄G = ‖ū∗
G‖ (2.27)

Once Ū∗
G is available, we approximate G(Ū) at Ū∗

G by the second order Taylor expansion

using Eq. (  2.8 ) and have

G(Ū) ≈ G (ū∗
G) + ∇G (ū∗

G)T
(
Ū − ū∗

G

)
+ 1

2
(
Ū − ū∗

G

)T
H (ū∗

G)
(
Ū − ū∗

G

)
(2.28)

Then the CGF KG(t) of G(Ū) is derived analytically by Eq. (  2.28 ). The detail derivations

can be found in [  26 ]. The Saddlepoint tS is obtained by solving K ′
G(t) = 0. The probability

of failure of G(Ū) is calculated by Eq. ( 2.11 ), whose solution is denoted by p̄f . The reliability

index from SOSPA then is given by

β̄G,SPA = |Φ−1 (p̄f )| (2.29)
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If all the derivatives are evaluated by the finite difference method, the number of function

evaluations with respect to the dimension of Ū is k(n̄+1)+ 1
2 n̄(n̄+1), where k is the number

of iterations of the MPP search.

2.3.4 Final Reliability Analysis

The final step is to integrate the reliability results from Steps 1 and 2 so that the contri-

butions of both important and unimportant variables are accommodated. Next, we derive

the equation for the integration. We first look at the case where we do not do any dimension

reduction. Let the MPP obtained without any dimension reduction be u∗, it is partitioned

into

u∗ = (ū∗; u∗) (2.30)

where ū∗ and u∗ are the important and unimportant elements of the MPP u∗. According to

Eqs. (  2.23 ), ( 2.24 ), and ( 2.25 ), we have β̄ = ‖ū∗‖, β = ‖u∗‖, and therefore

β =
√

‖ū∗‖2 + ‖u∗‖2 =
√
β̄2 + β2 (2.31)

We now look at the case with dimension reduction. As discussed in Step 1, we assume

the MPP of unimportant variables to be the MPP from the first iteration, namely, u∗ = u1.

Then we have

β ≈ ‖u1‖ (2.32)

In Step 2, we also perform the MPP search in the reduced space with unimportant

variables fixed at u1. This produces the MPP ū∗ and FORM-reliability index β̄G = ‖u∗
G‖.

Next, we prove that ū∗
G = ū∗, and therefore β̄ = β̄G. Then we can use Eq. (  2.31 ) to integrate

the results in Steps 1 and 2.

Because, in the original space, u∗ is found at the limit state g(T (U)) = 0, which means

g (T (u∗)) = g (T (ū∗; u∗)) = 0 (2.33)
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In the reduced space, for the same reason we have

G (ū∗
G) = 0 (2.34)

Assume that the MPPs of g
(
T
(
Ū; U

))
and G(Ū) are unique, in other words, u∗ =

(ū∗; u∗) and u∗
G are unique.

By substituting the MPP u∗ into Eqs. (  2.15 ) and ( 2.17 ), we have

u∗ = −βα = −β

(
∂g(T (u∗))

∂u∗
i

)
1,2,...,n

‖∇g (T (u∗))‖ (2.35)

Therefore, the important elements of the MPP can be expressed as

ū∗ = −βᾱ = −β

(
∂g
∂Ūi

)
1,n̄

∣∣∣∣
u∗

‖∇g (T (u∗))‖ = − β′
(
∂g

∂Ūi

)
1,n̄

∣∣∣∣
u∗

(2.36)

β′ = β

‖∇g (T (u∗))‖ (2.37)

Now we relate
(
∂g
∂Ūi

)
1,n̄

∣∣∣∣
u∗

with the reduced space.

(
∂g

∂Ūi

)
1,n̄

∣∣∣∣∣∣
u∗

=
∂g

(
T
(
Ū; u∗

))
∂Ūi


1,n̄

∣∣∣∣∣∣∣
ū∗

=
(
∂G

∂Ūi

)
1,n̄

∣∣∣∣∣∣
ū∗

= ∇G (ū∗) (2.38)

where ∇G (ū∗) is the gradient of G(Ū) at ū∗.

Then ū∗ is rewritten as

ū∗ = −β′∇G (ū∗) (2.39)

which indicates that ū∗ is perpendicular to G(Ū) = 0. Since g(u∗) = g(ū∗; u∗), we have

G(ū∗) = 0, which means that ū∗ is on the surface of G(Ū) = 0 and is in the opposite

direction of the gradient ∇G (ū∗). Therefore, ū∗ is the shortest distance point from the
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original to the limit state surface G(ū∗) = 0 in the space of Ū and is the MPP of G(Ū),

namely

ū∗ = ū∗
G (2.40)

Since β̄ = ‖ū∗‖ and β̄G = ‖ū∗
G‖, we have

β̄G = β̄ (2.41)

Then Eq. (  2.31 ) can be rewritten as

β =
√
β̄2
G + β2 (2.42)

Because u1 ≤ c, β = ‖u1‖ is far less than β̄G, namely, β � β̄G, which means that β̄G
dominates the accuracy of β. We now replace the FORM-reliability index β̄G with the more

accurate reliability index β̄G,SPA in Eq. (  2.29 ), and then we obtain the final reliability index

βoverall =
√
β̄2
G,SPA + β2 (2.43)

Then the final probability of failure is obtained by

pf, overall = Φ (−βoverall ) (2.44)

2.3.5 Numerical Procedure

The numerical procedure of the proposed high dimensional reliability analysis method is

summarized below.

1) Dimension reduction: Perform one-iteration FORM to obtain one-step MPP u1; iden-

tify the important and unimportant random variables by u1i ≤ c and partition input

variables the corresponding MPP as U = (Ū; U) and u1 = (ū1; u1); then calculate

FORM-reliability index β = ‖u1‖; by fixing the unimportant variables U at u1, a new

limit-state function G(Ū) = g
(
Ū; u1

)
is obtained with reduced dimension.
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2) Reliability analysis in U space: Use an accurate reliability method such as SOSPA

to find the probability of failure p̄f based on G(Ū) and calculate the corresponding

reliability index, which is β̄G,SPA if SOSPA is used.

3) Final reliability analysis: Calculate the final reliability index by βoverall =
√
β̄2
G,SPA + β2

and the final probability of failure by pf, overall = Φ (−βoverall ).

2.4 Examples

In this section, we use three examples to demonstrate the proposed method. Example 1

is a mathematical problem with all the input variables normally distributed. It is presented

step by step to show all the details of the proposed method so that an interested reader can

easily repeat the process and reproduce the result. Example 2 involves a cantilever beam

with over 200 random variables, some of which follow non-normal distributions. Example 3

shows a truss system with 52 bars and 110 random variables, some of which follow extreme

value distributions, and the limit-state function is a black-box function. For all the examples,

we use the same threshold value cthres = 3% to divide the input variables into important and

unimportant variables.

For comparison, we use MCS, FORM, SOSPA, HDMR-SOSPA (specifically univariate

dimension reduction), and DR-SOSPA for all examples. MCS, FORM, and SOSPA are

performed without dimension reduction. For HDMR-SOSPA, we first decompose the original

limit-state function into n univariate functions and then create surrogate models for all

univariate functions with three and five points; after this the reliability is calculated by

SOSPA based on the surrogate models. The two HDMR methods denoted by HDMR-3-

SOSPA and HDMR-5-SOSPA. DR-SOSPA is the proposed method that employs SOSPA

in the reduced dimensional space and accounts for the effects of eliminated variables. To

evaluate the advantage of accounting for the effects of eliminated variables, we also compare

DR-SOSPA with the method that employs SOSPA in the reduced dimensional space, but the

eliminated variables are fixed at their means. We denoted the latter method DR-SOSPA-M.
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The result of MCS is served as a reference for accuracy comparison, and the relative error

of a non-MCS method with respect to MCS is defined by

ε =
∣∣∣∣∣pf − pf,MCS

pf,MCS

∣∣∣∣∣× 100% (2.45)

where pf and pf,MCS are the probabilities of failure obtained by non-MCS and MCS, respec-

tively. The number of function calls (FC) and the coefficient of efficiency (CoE) are used to

measure the efficiency. The latter is defined by

CoE = The number of function calls
The dimension of original limit state function

(2.46)

2.4.1 A Mathematical Problem

The mathematical problem is a parabolic function given by

g(U) = 20 − 3
5∑

i=1
Ui (1 + 0.1Ui) −

100∑
i=6

kiUi (2.47)

where Ui, i = 1, 2, . . . , 100 are all independent standard normal random variables, namely

Ui ∼ N (0, 12), ki is the coefficient of a linear term, ki = 0.08 for i = 6, 7, . . . , 100.

Following the procedure in Section  2.3.5 , we first perform one-iteration FORM to obtain

the one-iteration MPP u1. By setting the threshold cthres = 3% and using |u1i|
β

> Cthres

to identify important variables, we find that five variables are important that are Ū =

(U1, U2, U3, U4, U5)T. The unimportant variables are U = (U6, U7, . . . , U100)T. Then u1 is

partitioned into (ū1; u1), accordingly. The reliability index of unimportant variables is given

by β = ‖u1‖ = 0.3419. It represents the contribution of the unimportant variables to the

reliability. Then, we fix U at u1 and have

g(U) ≈ G(Ū) = 20 − 3
5∑

i=1
Ui (1 + 0.1Ui) −

100∑
j=6

kju1j (2.48)

Thus, the dimension is reduced to 5 from 100.
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Next, we conduct reliability analysis in the Ū space. We first perform the MPP search

for G(Ū), which results in the MPP ū∗
G = (1.1770, 1.1770, 1.1770, 1.1770, 1.1770)T. We then

calculate the Hessian matrix of G(Ū) at ū∗
G. Using SOSPA, we have the probability of failure

that is p̄f = 6.7352 × 10−3. Then the reliability index of the important variables is obtained

that is β̄G,SPA = 2.4711. The total reliability index, which accommodates both important

and unimportant variables, is calculated by βoverall =
√
β̄2
G,SPA + β2 = 2.4946. The final

probability of failure is given by pf, overall = Φ (−βoverall ) = 6.3044 × 10−3. The results of all

the methods are summarized in Table  2.1 .

Table 2.1. Results of different methods for Example 1
Methods pf Error (%) FC CoE
MCS 6.3416 × 10−3 - 1e7 1e5

FORM 3.9966 × 10−3 36.98 404 4.04
SOSPA 6.3515 × 10−3 0.16 5,555 55.55

DR-SOSPA-M 6.1501 × 10−3 3.02 146 1.46
HDMR-3-SOSPA 1.792 × 10−3 71.7 201 2.01
HDMR-5-SOSPA 1 - 401 4.01

DR-SOSPA 6.3044 × 10−3 0.59 146 1.46

As shown in Table  2.1 , SOSPA, DR-SOSPA, and DR-SOSPA-M accurately predict the

probability of failure. Compared with the results of SOSPA with 5,555 function calls and an

error of 0.16%, the proposed method needs 146 function calls and CoE = 1.46, only increasing

the error to 0.59%. Although DR-SOSPA-M maintains the same efficiency as the proposed

method, the accuracy of DR-SOSPA-M is worse than DR-SOSPA because it ignores the joint

influence of the unimportant variables. FORM does not produce an accurate result. The two

HDMR methods cannot produce accurate results for this example either. To find the cause

of inaccuracy, we perform MCS directly using the surrogate models from HDMR instead of

SOSPA and obtain almost the same results as those of HDMR-SOSPA. This indicates that

the surrogate models from HDMR are not accurate. The Hessian matrixes of the surrogate

models are significantly different from those of the original limit-state function.
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2.4.2 A Cantilever Beam

A cantilever is shown in Figure  2.2 . It is subjected to 106 random forces on the top

surface, in which six of them (Fi, i = 1, 2, . . . , 6) are lognormally distributed and the rest

(Fi, i = 7, 8, . . . , 106) follow normal distributions. The locations of the forces are random

variables that are normally distributed, which are denoted by lFi , i = 1, 2, . . . , 106. The width

w, height h, and yield strength Sy are normally distributed. All the random variables are

independent. The distributions are shown in Table  2.2 .

Figure 2.2. A cantilever beam

Table 2.2. Distributions of random variables in Example 2
Random variables Distribution Mean Standard deviation

Sy (MPa) Normal 720 60
w (m) Normal 0.2 0.001
h (m) Normal 0.4 0.001

Fi, i = 1, 2, . . . , 6 (kN) Lognormal 30 + 5i 2.4 + 0.4i
lFi , i = 1, 2, . . . , 6 (m) Normal 4.3 + 0.1i 0.01

Fi, i = 7, 8, . . . , 106 (kN) Normal 10 1
lFi , i = 7, 8, . . . , 106 (m) Normal 0.02i 0.01

The serviceability state depends on the stress in the beam. The maximal stress should

not exceed the yield strength, and then the limit-state function is given by

g(X) = Sy − 6∑106
i=1 FilFi

wh2 (2.49)
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We first perform the one-iteration FORM to obtain the first-step MPP u1. Using cthres =

3%, we obtain nine important variables Ū = (Sy, w, h, F1, F2, . . . , F6)T and the reliability

index of unimportant variables β = 0.1666. By performing reliability analysis in Ū space

using SOSPA, we have p̄f = 1.9481×10−6 and the corresponding reliability index is β̄G,SPA =

4.6168. The total reliability index, which accommodates both important and unimportant

variables, is calculated by βoverall =
√
β̄2
G,SPA + β2 = 4.6199. The probability of failure for

the original limit state function is given by pf, overall = Φ (−βoverall ) = 1.9201 × 10−6. The

results are summarized in Table  2.3 .

Table 2.3. Results of different methods for Example 2
Methods pf Error (%) FC CoE
MCS 1.9106 × 10−6 - 1.6 × 109 7.4 × 106

FORM 1.7964 × 10−6 6.0 648 3.0
SOSPA 1.9200 × 10−6 0.5 24,084 112.0

DR-SOSPA-M 1.8926 × 10−6 1.0 301 1.4
HDMR-3-SOSPA 1.8158 × 10−6 5.0 431 2.0
HDMR-5-SOSPA 3.4526 × 10−6 80.7 861 4.0

DR-SOSPA 1.9201 × 10−6 0.5 301 1.4

As the results indicate, FORM is the least accurate although it is efficient. SOSPA has

an error of 0.5%, but its efficiency is the worst with 24,084 function calls and CoE=112.

DR-SOSPA outperforms other methods with the same accuracy (0.5%) as SOSPA and the

highest efficiency (FC=301 and CoE=1.4).

2.4.3 A Truss System

This example is modified from [  90 ]. The dome truss system consists of 52 bars with 21

nodes, as shown in Figure  2.3 . The truss structure is similar to the roof of a stadium. To

distinguish the difference between nodes and bars, the numbers with a dot mean nodes and

the numbers without dot denote bars. All the nodes lie on the imaginary hemisphere with

a radius of 240 in. The young’s moduli and the cross-sectional areas of bars follow normal

distributions. The structure is subjected to six random forces at nodes 1 − 13, where F1

is applied to node 1, F2 is applied to nodes 2 and 4, F3 is applied to nodes 3 and 5, F4 is
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applied to nodes 6 and 10, F5 is applied to nodes 8 and 12, and F6 is applied to nodes 7, 9,

11, and 13. The directions of all the forces point to the center of the imaginary hemisphere.

All the random variables are independent and their distributions are shown in Table  2.4 .

Figure 2.3. A 52-bars truss system

Table 2.4. Distributions of random variables in Example 3
Random variables Distribution Mean Standard deviation
Ei, i = 1 ∼ 50 (ksi) Normal 2.5 × 104 1000

Ai, i = 1 ∼ 8, and 29 ∼ 36 (in2) Normal 2 0.001
Ai, i = 9 ∼ 16 (in2) Normal 1.2 0.0006

Ai, i = 17 ∼ 28, and 37 ∼ 52 (in2) Normal 0.6 0.0003
F1 (kip) Normal 45 3.6
F2 (kip) Extreme 40 6.0
F3 (kip) Extreme 35 5.25
F4 (kip) Normal 30 4.5
F5 (kip) Normal 25 3.75
F6 (kip) Normal 20 3
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The limit-state function is given in Eq. (  2.50 ) and is solved by the finite element method

(FEM).

Y = δ0 − g(E; A; F) (2.50)

where, δ0 the threshold displacement of node 1. A failure occurs when the displacement of

node 1 exceeds δ0 = 0.7 in. E = [E1, E2, . . . , E52]T and A = [A1, A2, . . . , A52]T are vectors

of the young’s moduli and cross-sectional areas, respectively. F = [F1, F2, . . . , F6]T is the

vector of the loads.

Following the procedure in Section  2.3.5 , we obtain the one-iteration MPP. Nine variables

are identified as important variables by setting cthres = 3%, which are [F1, . . . , F5, E1, . . . , E4]T.

Then, the probability of failure is obtained by integrating the influence of important and

unimportant variables. The results are summarized in Table  2.5 . FORM produces a large

error. SOSPA produces the most accurate result, but its efficiency is poor as it needs 6,660

function calls with CoE=60.54. The error of DR-SOSPA is 2.29%, which is smaller than the

error of DR-SOSPA-M and is larger than SOSPA, and its computational burden is relieved

significantly with only 206 function calls and CoE=1.87. The proposed method DR-SOSPA

is better than HDMR-SOSPA both in accuracy and efficiency.

Table 2.5. Results of different methods for Example 3
Methods pf Error (%) FC CoE
MCS 5.10 × 10−3 - 107 9.09 × 104

FORM 5.7678 × 10−3 13.09 444 4.03
SOSPA 5.0481 × 10−3 1.02 6,660 60.54

DR-SOSPA-M 4.8532 × 10−3 4.84 179 1.63
HDMR-3-SOSPA 4.3053 × 10−3 15.6 221 2.01
HDMR-5-SOSPA 4.6776 × 10−3 8.3 441 4.01

DR-SOSPA 4.9833 × 10−3 2.29 206 1.87

We also modify this example to examine a case with a large probability of failure by

reducing the threshold value δ0 in Eq. (  2.50 ) to 0.5 in. The threshold is still 3% and nine

variables are important. The results show that the proposed method is effective for a large

probability of failure problems as well.

39



Table 2.6. Results of large probability of failure for Example 3
Methods pf Error (%) FC CoE
MCS 0.2781 - 105 909
FORM 0.2978 7.10 333 3.03
SOSPA 0.2763 0.65 6,549 59.54

DR-SOSPA-M 0.2756 0.90 196 1.78
HDMR-3-SOSPA 0.2669 4.02 221 2.01
HDMR-5-SOSPA 0.4730 70.1 441 4.01

DR-SOSPA 0.2758 0.84 196 1.78

The main computer code of the truss example can be found in Supplementary Material

A. Interested readers can test the proposed method or other methods based on the code

using the truss example.

2.5 Summary

The proposed method partitions the input random variables into two parts, important

and unimportant variables, which is achieved by using the information from the first iteration

of FORM. With the unimportant random variables fixed at their percentile values obtained

from one-iteration FORM, the dimension is reduced to the dimension of important input

random variables. Then the probability of failure is found by an accurate reliability method

in the reduced space. The final probability of failure is obtained by integrating the probability

of failure in the reduced space and the contributions of unimportant variables. Hence, the

dimension is reduced, and the contributions of all input variables are also accommodated,

resulting in high accuracy and efficiency of high-dimensional reliability analysis.

The proposed method works better if fewer important input variables are important. It

cannot effectively reduce the dimension, however, when all input variables are important.

If dimension is not reduced, the proposed dimension reduction strategy will not affect the

performance of the method used in the second step (the high accurate reliability method

in the reduced space in Section  2.3.5 . In this case, one may use other dimension reduction

methods that can reduce the dimension of the linear combinations of the original input

variables. Another limitation is that the proposed method may not be accurate for highly
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nonlinear problems since the one-iteration MPP may not be accurate to identify the real

importance of random variables. More iterations of the MPP search may be helpful in

finding the real importance of the variables, but the efficiency will deteriorate.

Our future work will improve the proposed method when most of the input variables are

important. We will also study the possibility of applying the proposed method to reliability-

based design optimization.
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3.1 Background

Reliability is measured by the probability that a system performs its intended function

without failure. Reliability analysis is a core task in engineering design, where the probability

of failure is predicted for a given design. If the probability of failure exceeds the design

requirement, the design is updated, and the reliability analysis is performed again. This

process repeats until the reliability target is achieved. The probability of failure can be

predicted by physical models derived from physical principles or data-driven models. It is

given by

pf = Pr{Y = g(X) < 0} (3.1)
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where X = (X1, X2, . . . , Xp)T is a vector of input random variables, g(X) is a performance

function that could be a physical model derived from physical principles or a regression model

based on data, and Y is a response that indicates the state of the product. Conventionally,

when Y < 0, a failure occurs. In this study, we assume the input random variables X are

independent. If they are not independent, they could be transformed into independent ones

[ 45 ].

There are three types of reliability analysis methods: 1) approximation methods [ 21 ],

[ 22 ], [ 91 ], 2) meta-modeling methods [  28 ]–[ 30 ], [ 56 ], [ 92 ]–[ 95 ], and 3) sampling methods [  60 ],

[ 63 ], [ 96 ]–[ 98 ]. Commonly used approximation methods include the first order reliability

method (FORM) [  21 ] and the second order reliability method (SORM) [  22 ]. They approxi-

mate the performance function by making use of Taylor expansion. Meta-modeling methods

construct a surrogate model to replace the performance function using regression or inter-

polation methods. Design of Experiments (DoE) [ 80 ] is a commonly used tool to generate

optimal training points to build the surrogate model. The efficiency of mate-modeling based

reliability analysis methods can be improved by active learning [  99 ]. Sampling methods,

such as Monte Carlo Simulation (MCS) [ 100 ], importance sampling (IS) [ 101 ], and subset

simulation (SS) [  19 ], are not affected by the dimensionality. However, their computational

effort is still very high regardless of the dimension, especially when the probability of failure

is low. Although meta-modeling approaches may be more efficient, a dimension reduction is

still needed to handle high-dimension problems.

A commonly used dimension reduction approach is the principal component analysis

(PCA) [  84 ], [  85 ], [  102 ]. PCA reduces the dimension of random variables by exploiting their

correlation structure. If the random variables are strongly correlated, PCA can effectively

reduce the dimension by linear combinations of the random variables, resulting in the so-

called principal components. It does not work well for independent random variables. PCA

is an unsupervised method that does not use the information of the response Y . High-

dimensional model representation (HDMR) [ 70 ]–[ 72 ] is another high-dimensional reliability

method, which decomposes g(X) into the sum of several low- dimensional functions. How-

ever, when the interaction terms dominate the performance function, the accuracy is poor.
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Machine learning and regression methods have recently been used in high dimensional

reliability analysis. Several studies [ 35 ], [  77 ]–[ 79 ], [  81 ], [  103 ] combine meta-modeling and

dimension reduction techniques. Two steps are typically involved. A low dimensional latent

subspace is identified by the sliced inverse regression (SIR) [ 48 ], which is a linear sufficient

dimension reduction (SDR) technique, or other dimension reduction methods [ 78 ], [  103 ], [  104 ]

using training points generated by DoE. A surrogate model of the performance function is

then constructed in the low dimensional latent subspace and is refined by cross validation.

Since the training points are pre-defined by DoE in the first step, there is no guarantee that 1)

a suitable latent subspace exists, and 2) the accuracy of the surrogate model is satisfactory.

An active learning based meta-modeling approach combined with dimension reduction is

reported in [  79 ]. It combines AK-MCS [ 30 ] with a dimension reduction technique called

active subspace (AS) [  104 ] to iteratively select the optimum training points in the original

high dimensional space, and good accuracy and efficiency are achieved. SIR and AS, however,

are both linear dimension reduction techniques, and they may not work well for problems

that need nonlinear dimension reduction.

It is desirable to use nonlinear dimension reduction approaches for high dimensional reli-

ability analysis. Nonlinear dimension reduction techniques can be classified into two groups,

supervised nonlinear dimension reduction [  105 ], [ 106 ] and unsupervised nonlinear dimension

reduction [  107 ], [  108 ]. Similar to PCA, unsupervised nonlinear dimension reduction, such

as Kernel PCA [  107 ], autoencoder [  35 ], and diffusion maps [ 109 ], do not make use of the

information of the model response or labels in the dimension reduction process. For the

supervised dimension reduction methods, studies in [  50 ], [  110 ], [  111 ] combine the so-called

kernel trick [ 112 ], [  113 ] with SDR to overcome the limitation of linear SDR, making super-

vised nonlinear sufficient dimension reduction feasible. The approaches include the kernel

canonical correlation analysis (KCCA) [  111 ], kernel SIR (KSIR) [  110 ], and generalized SIR

(GSIR) [  50 ]. GSIR not only relaxes the stringent conditions required by linear SDR where

the reduced subspace is the linear combination of the original random variables, but also

relieves the assumption of KSIR that the subspace is the linear combination of a set of

nonlinear functions. Given the advantages of GSIR, it is worth investigating its use in high

dimensional reliability analysis.
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This work develops a high dimensional reliability method that combines GSIR with GP,

IS, and active learning. The proposed method inherits the advantage of GSIR, which is

more general and robust no matter if the linear or nonlinear dimension reduction is required.

The computational cost of constructing the surrogate model used for reliability analysis is

decreased drastically due to the dimension reduction by GSIR. Since the use of IS requires

less computational effort than MCS based methods, the proposed method can also handle

small probabilities of failure.

The rest of the paper is organized as follows. Section  4.2.2 reviews the related method-

ologies used in this paper. Section  3.3 presents the details of the proposed method followed

by four examples in Section  3.4 . Concluding remarks are provided in Section  3.5 .

3.2 Literature Review

3.2.1 Generalized Sliced Inverse Regression (GSIR)

GSIR is an approach belonging to sufficient dimension reduction (SDR). Given input

variables X ∈ Rn×p and the response Y ∈ Rn×1 that depends on X, SDR seeks a function

R(X) to map X to a subspace. The sufficiency is achieved when the distribution of Y given

X is the same as that given R(X), where n is the number of training points, and p is the

dimension of X. For linear SDR, R(X) contains one or more linear combinations of X, and

the task is to find a matrix β ∈ Rp×d such that

Y ⊥⊥ X | βTX (3.2)

where d is the dimension of the subspace, and d < p; ⊥⊥ denotes independence, meaning

that the distribution of Y is conditionally independent of X given βTX. Different from SDR,

nonlinear SDR searches for a set of nonlinear functions f1(X), . . . , fd(X) such that

Y ⊥⊥ X | f1(X), . . . , fd(X) (3.3)

Since d < p, the dimension is reduced from p to d.
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The nonlinear functions may be hard to define in practice. But the use of the kernel trick

could allow dimension reduction to proceed without defining the nonlinear function. This is

done by projecting X and Y to the kernel space.

GSIR [  50 ] is a nonlinear dimension reduction method that stems from the nonlinear SDR

theory. The conditional expectation of X given Y is denoted by

EX|Y = Σ−1/2
Y Y RYXΣ1/2

XX (3.4)

where RYX is called the correlation operator denoted by

RYX = Σ−1/2
Y Y ΣYXΣ−1/2

XX (3.5)

and Σ is the covariance operator.

If a data set of training points are available with (x1, . . . ,xn) and (y1, . . . , yn), then

ΣXX = ΣYX = 1
n
GX = 1

n
QKXQ = 1

n
Q


K (x1,x1) · · · K (x1,xn)

... . . . ...

K (xn,x1) · · · K (xn,xn)

Q (3.6)

ΣY Y = 1
n
GY = 1

n
QKYQ = 1

n
Q


K (y1, y1) · · · K (y1, yn)

... . . . ...

K (yn, y1) · · · K (yn, yn)

Q (3.7)

where Q = In − 1n1Tn/n; GX and GY are the centered versions of the kernel matrixes KX

and KY ; In is an n× n identity matrix; and 1n is an n× 1 vector with all elements being 1.

The kernel function used in this paper is the anisotropic squared-exponential function and

is defined by

K (xi,xj) = exp
(
−θx (xi − xj)2

)
, i.j = 1, . . . , n (3.8)
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K (yi, yj) is obtained by replacing θX (xi − xj)2 with θy (yi − yj)2 in Eq. (  3.8 ). θX is computed

by

1
θX

=

 n

2


−1∑

i<j
|xi − xj|2 (3.9)

θY is obtained by replacing |xi − xj| with |yi − yj| in Eq. (  3.9 ). Similar to other kernel-based

methods, such as GP and SVM, we can choose a kernel from several well established options

[ 114 ]. Anisotropic squared-exponential function or squared-exponential function is a good

starting point when we are short of knowledge about a problem.

Substituting ΣY Y , ΣXX, and ΣYX into Eqs. (  3.4 ) and ( 3.5 ) yields the correlation operator

and conditional expectation.

RYX = G
†1/2
Y GXG

†1/2
X (3.10)

EX|Y = G†
YGXG

†1/2
X G

1/2
X (3.11)

where † means the Moore–Penrose inverse [ 115 ] of a matrix in a general sense. In the

numerical computation, the Moore-Penrose inverses G†
X and G†

Y are replaced by the ridge-

regression-type regularized inverses (GX + εXIn)−1 and (GY + εY In)−1, respectively, where

εX and εY are the penalty terms. The first d eigenvectors ξ1, ξ2, . . . , ξd used to form the

sufficient predictors are obtained by performing the eigen-analysis of the matrix in Eq. (12).

G†
X

[
EX|Y

]T
G2
Y

[
EX|Y

]
G†

X = (GX + εXIn)−3/2 G
3/2
X (GY + εY In)−1

G2
Y (GY + εY In)−1 G

3/2
X (GX + εXIn)−3/2

(3.12)

After the dimension reduction (training) is complete, predictions of new input variables

can be made. Given a new set of input variables (x̂1, . . . , x̂m), denote their responses by

Ŷ = (ŷ1, . . . , ŷm), and their predictors can be obtained as follow.
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The kernel matrix of the training points and new points are obtained by

KXX̂ =


K (x1, x̂1) · · · K (x1, x̂m)

... . . . ...

K (xn, x̂1) · · · K (xn, x̂m)

 (3.13)

Then, the sufficient predictor f̂i is given by

f̂i = ξTi QKXX̂, i = 1, . . . , d (3.14)

The corresponding eigenvalues of the eigenvectors (ξ1, ξ2, . . . , ξd) are sorted in a descend-

ing order, as is the importance of the corresponding eigenvectors. The first sufficient pre-

dictor f̂1 is therefore the most important predictor. As indicated in [  50 ], the relationship

between f̂1 and the response Ŷ is usually monotonic, and Spearman’s correlation is used to

measure the monotonic relationship. The monotonicity is an advantage of GSIR over many

other dimension reduction methods [  50 ] since the monotonic relationship can clearly classify

a training point into either the safe region or the failure region for the reliability prediction.

The advantage is also demonstrated in this study as will be shown in Section  3.4 . It is

therefore possible to reduce the original dimension p to 1 because f̂1 is in a one-dimensional

space.

The GSIR algorithm is summarized as follows.

Algorithm 1 Generalized sliced inverse regression [ 50 ]
1: Collect training points (x1, . . . ,xn) and (y1, . . . , yn).
2: Select the ridge parameters εX and εY and compute θX, θY by Eq. (  3.9 ).
3: Solve for the first d eigenvectors ξ1, ξ2, . . . , ξd of the matrix in Eq. (  3.12 ).
4: Form the sufficient predictors by Eq. (  3.14 ).

3.2.2 Importance Sampling (IS)

Importance sampling (IS) is a sampling method that approximates a mathematical ex-

pectation with respect to a target distribution by a weighted average of random draws from
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another distribution (called an importance distribution). For high reliability problem, if

samples are drawn from the joint (target) distribution of the original random variables, the

chance of getting samples in the failure region is low. Such a chance will be much higher

if the samples are drawn from a suitable importance distribution, thereby increasing the

computational efficiency. Therefore, it is desirable to use an importance distribution that is

centered in the region where the failure is most likely. In risk analysis literature, the Most

Probable Point (MPP) [  99 ] is usually used as the center of the importance distribution. The

MPP belongs to the limit state surface, and this point has the highest probability density

in the standard normal space (U-space).

To solve for MPP, we first transformed X to U, whose components are independent stan-

dard normal variables [  45 ]. The transformation is denoted by X = T (U). The performance

function then becomes Y = g(T (U)) = G(U). The next step is to obtain the IS center.

There is no need to search for the true MPP in practice. We can use the point from the

one-iteration FORM as the IS center to reduce the computation time. Although it may not

be close to the true MPP, the one-iteration MPP allows the IS samples centered around

it to cover a sufficiently large area of failure region if a proper sample size is used. The

one-iteration MPP is obtained by

u∗ = −G (u0) ∇G (u0)
‖∇G (u0)‖2 (3.15)

where u0 = (0, . . . , 0)T is the origin of the U-space. For the highly nonlinear problems, more

iterations of the MPP search may be needed to approach the failure boundary.

With the approximate MPP u∗, we shift the center of the probability density to u∗,

resulting in importance probability density ϕU(·), represented by the new distribution Ûi ∼

N (u∗
i , 12), where u∗

i is the i-th component of u∗. In this paper, we use the same standard

deviations of standard normal variables. The probability of failure is estimated with density

φU(·) of U and the importance density ϕU(·).

pf =
∫
IF (u)φU(u)

ϕU(u)ϕU(u)du (3.16)
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where IF (·) is an indicator function and is defined as

IF (u) =

 0, G(U) > 0

1, G(U) ≤ 0
(3.17)

With the samples drawn from the importance density φU(u), pf in Eq. ( 3.16 ) is estimated

by

pf ≈ p̂f = 1
NIS

NIS∑
i=1

IF (ûi)
φU (ûi)
ϕU (ûi)

(3.18)

where ûi, i = 1, . . . , NIS, are the samples generated from φU(u). The variance of the proba-

bility of failure is estimated by

Var (p̂f ) = 1
NIS

 1
NIS

NIS∑
i=1

IF (ûi)
(
φU (ûi)
ϕU (ûi)

)2
− p̂2

f

 (3.19)

If a proper importance distribution is chosen, Var (p̂f ) is less than the variance of MCS,

therefore increasing the computational efficiency.

The coefficient of variation δIS of p̂f is calculated by

δIS =

√
Var (p̂f )
p̂f

(3.20)

3.2.3 Gaussian Process (GP) Modeling

GP modeling [  116 ] views a function G(U) as a realization of a Gaussian process. Given

a set of training points, a GP model is obtained by

Ĝ(u) = f(u)Tβ + Z(u) (3.21)

where f(u)Tβ is a deterministic term, providing the trend and the mean response; f(u) =

(f1(u), f2(u), . . . , fp(u))T is a vector of regression functions; β = (β1, β2, . . . , βp)T is a vector
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of regression coefficients; Z(·) is a stationary Gaussian process with zero mean and covari-

ance. The covariance is denoted by

Cov (Z (ui) , Z (uj)) = σ2
ZR (ui,uj) (3.22)

where σ2
Z is the process variance, R (·, ·) is the correlation function, specifically the squared-

exponential kernel used in this work. GP can also provide the variance of the prediction as

the GP predictor Ĝ(u) follows a normal distribution, denoted by

Ĝ(u) ∼ N
(
µG(u), σ2

G(u)
)

(3.23)

where µG(·) and σ2
G(·) represent the mean GP prediction and GP variance, respectively.

3.2.4 AK-IS

AK-IS [  99 ] is an active learning method combining Kriging (GP modeling) with IS for

reliability analysis. AK-IS at first uses the MPP-centered importance distribution to generate

samples, called the IS population. It then constructs the GP model by the point used

for solving the MPP and refines the model by adding training points selected from the IS

population. A new training point is selected by a learning function and is added to the set

of training points, which allows for an update of the GP model. The process stops once

the desired accuracy is achieved. The size of the IS population will be increased if a target

coefficient of variation is unsatisfied. The learning function is defined by

U(û) = |µG(û)|
σ2
G(û) (3.24)

where û is a point in the IS population, and µG(·) and σ2
G(·) are given in Eq. (  3.23 ). A

lower U(û) means a higher probability that the point is misclassified. Then the point with

the minimum U(û) in the IS population is selected as the new training point. The learning

process stops when minU(û) ≥ 2.
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3.3 Methodology

The purpose of this study is to explore the use of GSIR in high dimensional reliability

analysis to reduce computational efforts. The central strategy is reducing the dimension

of input variables by GSIR so that a GP model can be constructed in a low dimensional

subspace. The following three steps are involved and are illustrated in Figure  3.1 , where TP

stands for training point.

Figure 3.1. Schematic of the proposed method

1) Determine the importance distribution: we first obtain the one-iteration MPP which

is the importance distribution center. Samples are generated from the importance

distribution as described in Section  3.3.1 to form the importance population.

2) Initialization and dimension reduction by GSIR. Initially, training points U are gen-

erated by Latin Hypercube sampling, centered at the origin of the U-space, and the

corresponding responses are obtained by calling the performance function Y = G(U).

GSIR then trains sufficient predictors using the set of training points and associated

responses. In subsequent iterations, new training points are selected by active learning

from the IS population.

3) Surrogate model creation in subspace: the GP model is constructed in the one-

dimensional space of the sufficient predictor (Eq. ( 3.14 )). The input of the model

is the first sufficient predictor from step 2), and the output is the prediction of the

response Y for the GP model.
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Since the sufficient predictor and GP model may not be accurate, steps 2 and 3 are

performed iteratively to refine the GP model by selecting new training points from the IS

population through an active learning strategy. In each iteration, only one new training

point is added. The model update completes once the convergence criterion is met. When

the algorithm converges, the probability of failure is obtained by the IS estimation method

discussed in Section  3.3.1 . Next, we provide detailed descriptions of the three major steps.

3.3.1 Importance Distribution

The first step of the proposed method is to generate a sample population that supplies

candidate training points during active learning. As discussed in Section , if the sample

population covers both safe and failure regions where the probability density is high, the

variance of the estimated probability of failure will be reduced, thereby increasing computa-

tional efficiency.

We first transform random variables X in the X-space to U in the U-space. The perfor-

mance function then becomes Y = G(U). Then all the derivations will be performed with

respect to U. After the transformation, the one-iteration MPP u∗ is obtained by Eq. ( 3.15 )

and serves as the IS center [  99 ]. The computational cost for the one-iteration MPP is n+ 1

evaluations of the performance function.

As mentioned in Section , the importance probability density ϕU(·) results in new dis-

tributions Ûi ∼ N (u∗
i , 12), i = 1, . . . , n, where u∗

i is the i-th component of u∗. We then

draw samples Û = (û1, . . . , ûNIS
) from ϕU(·) to establish an IS population denoted by PIS.

The IS population can cover both safety and failure regions with balanced samples in both

regions. It is recommended that the size of IS population should be sufficiently large (e.g.,

104), especially for high dimensional problems. If the coefficient of variation in Eq. ( 3.20 )

is large, the population size should be increased accordingly. If the one-iteration MPP is

far away from the true MPP, we can also increase the importance sampling size or increase

the standard deviations of U to cover the critical failure region. The added training points

during the active learning stage are selected from the IS population.
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3.3.2 Initialization and Dimension Reduction by GSIR

The initial training points are generated by Latin Hypercube sampling and are centered

at the origin of the U-space, which is denoted by Ut = (ut1, . . . ,utn) ,ut1 ∈ Rp×1. Then, the

corresponding responses Yt = (yt1, . . . , ytn) , yt1 ∈ R1×1 are obtained by calling the perfor-

mance function at Ut. It is recommended that the sample size of initial training points is

three to five times of the input dimension. This number of initial training points can help

create an accurate initial model and can therefore reduce the number of new training points

in the subsequent iterations. It is also possible to use fewer initial training points, and the

number of new training points will be likely increase.

Once the training points (Ut, Yt) are available, GSIR is used to reduce the dimension of

input variables such that the GP model can be constructed in a low dimensional space. We

first obtained the kernel matrices KUt and KYt by

KUt =


K (ut1,ut1) · · · K (ut1,utn)

... . . . ...

K (utn,ut1) · · · K (utn,utn)

 (3.25)

KYt =


K (yt1, yt1) · · · K (yt1, ytn)

... . . . ...

K (ytn, yt1) · · · K (ytn, ytn)

 (3.26)

where K (·, ·) is the kernel function defined in Eq. ( 3.8 ). The centered kernel matrices of KUt

and KYt are obtained by GUt = QKUtQ and GYt = QKYtQ. Then the correlation operator

and conditional expectation are obtained by

RYtUt = G
†1/2
Yt

GUtG
†1/2
Ut

(3.27)

EUt|Yt = G†
Yt
GUtG

†1/2
Ut

G
1/2
Ut

(3.28)
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The first d eigenvectors ξ1, ξ2, . . . , ξd, which are used to form sufficient predictors, are calcu-

lated by performing eigen-analysis to the following matrix:

G†
Ut

[
EUt|Yt

]T
G2
Yt

[
EUt|Yt

]
G†

Ut
= (GUt + εUtIn)−3/2 G

3/2
Ut

(GYt + εYtIn)−1

G2
Yt

(GYt + εYtIn)−1 G
3/2
Ut

(GUt + εUtIn)−3/2
(3.29)

As mentioned in Section  3.2.1 , the first sufficient predictor
(
f̂1
)
and the real response

Yt are in a good monotonic relationship. We now denote
(
f̂1
)
by fGSIR. Then the training

points Ut are mapped to a one-dimensional space through the sufficient predictor

fGSIR (Ut) = ξT1 QKUt (3.30)

Predictions of the sufficient predictor can be made for new untried points U = (u1, . . . ,ul)

by

fGSIR(U) = ξT1 QKUtU (3.31)

where

KUtU =


K (ut1,u1) · · · K (ut1,ul)

... . . . ...

K (utn,u1) · · · K (utn,ul)

 (3.32)

The next step is to construct a functional relationship between the real response Y and

the sufficient predictor fGSIR.

3.3.3 GP Modeling in Subspace

As discussed in Section  3.3.2 , the sufficient predictor fGSIR does not provide the pre-

diction of the true response Y , but both have a monotonic relationship. The task now is

to transform the sufficient predictor fGSIR to the response Y . Despite the monotonicity

feature, the relationship may be nonlinear. Many regression techniques can be used for this

task, such as GP, support vector machine (SVM), polynomial chaos expansions (PCEs), and

Neural Networks (NNs). In this study, we use GP modeling as an example to illustrate
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the process. The GP method can not only handle nonlinearity well but also provide the

uncertainty estimate of the prediction, enabling an active learning process.

Given a set of training points (Ut, Yt), the sufficient predictor fGSIR(Ut), which is a one-

dimensional variable, is obtained by Eq. (  3.30 ) as discussed in Section  3.3.2 . Then we con-

struct a one-dimensional GP model using the low dimensional training points (fGSIR(Ut), Yt)

denoted by

Y = Ĝ (fGSIR) = f (fGSIR)T β + Z (fGSIR) (3.33)

Since fGSIR is obtained from training points (Ut, Yt), it is a function of U. Eq. (  3.33 )

can be rewritten as

Y = Ĝ (fGSIR(U)) = f (fGSIR(U))T β + Z (fGSIR(U)) (3.34)

For an untried point u, fGSIR(u) is obtained by Eq. (  3.32 ), and the Gaussian predictor

Ĝ (fGSIR(u)) follows a normal distribution as follow.

Y = Ĝ (fGSIR(u)) ∼ N
(
µG (fGSIR(u)) , σ2

G (fGSIR(u))
)

(3.35)

where µG (fGSIR(u)) is the prediction of the mean value of Y at u, and σG (fGSIR(u)) mea-

sures the uncertainty in the prediction. The accuracy of the prediction will be gradually

improved during the learning process discussed in Section  3.3.4 .

3.3.4 Active Learning

The dimension reduction and regression discussed above are executed iteratively to im-

prove the accuracy of the GP model. The accuracy depends on the size and location of the

training points, which can be hard to be determined beforehand. To have the best balance

between accuracy and efficiency, we gradually improve the accuracy of the regression model

by an active learning strategy that adds new training points one by one selected from the

IS population. The GSIR dimension reduction and the GP model are updated and refined

until the convergence criterion is met. Next, we discuss how to select a new training point
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and how to measure the accuracy. We adopt the U-learning function 2RN8 to select the

next training point at each iteration. Since the GP model is created in the space of sufficient

predictor fGSIR(U), given the IS population Û = (û1, . . . , ûNIS
), the sufficient predictor

fGSIR(Û) = (fGSIR (û1) , . . . , fGSIR (ûNIS
)) is obtained by Eq. ( 3.32 ). Then the learning

function is denoted by

U (fGSIR (ûi)) = |µG (fGSIR (ûi))|
σ2
G (fGSIR (ûi))

(3.36)

As discussed in Section  3.2.4 , the value of the learning function indicates the probability

of misclassification of the GP model. The smaller is U (fGSIR (ûi)), the higher chance the

point is misclassified. Therefore, the next training point is the point that U (µG (fGSIR (ûi)))

is the smallest and is therefore found by

fGSIR (unew) = min
ûi∈PIS

U (fGSIR (ûi)) (3.37)

Then, the corresponding response Ynew is available by evaluating the performance func-

tion Ynew = G(unew). (unew, Ynew) is then added to the existing training points. The indi-

cator function in the low dimensional space is IF (fGSIR(u)) = 0 if Ĝ (fGSIR(u)) > 0 or 1 if

Ĝ (fGSIR(u)) < 0. The probability of failure (pf ) is obtained by Eq. ( 2.18 ). Here we use the

original joint PDF φU(·) of U and the importance density ϕU(u) to estimate the probability

of failure instead of using the joint PDF in the subspace after dimension reduction. First, it

is difficult or almost impossible to estimate the joint PDF of the variables in the subspace.

Second, the sufficiency maintained by the sufficient dimension reduction means that the in-

formation in the original space is preserved after dimension reduction. Based on the two

reasons, we use the original joint PDF φU(·) of U and the importance density ϕU(u).

The U-learning function is adapted from the lower confidence bounding (lcb) function

[ 117 ]. The value of U (fGSIR (ûi)) reflects the least confidence level that the indicator func-

tion IF (fGSIR (ûi)) is classified into the correct group (safe or failure). Thus, the stopping

criterion is set to be minU (fGSIR (ûi)) ≥ 2, which means that, at the lowest confidence level,

the probability of IF (fGSIR (ûi)) being accurately classified is Φ(2) = 97.7%, where Φ(·) is
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the cumulative density function (CDF) of a standard normal variable. The iterative process

terminates until the stopping criterion is satisfied.

Since the probability of failure is calculated in every iteration with the updated GP

model, the final probability of failure is obtained from the last iteration. It is recommended

that if the coefficient of variation in Eq. (  3.20 ) is high, for example, 5%, the IS population

size should be increased.

3.3.5 Numerical Procedure

The numerical procedures are summarized below.

Algorithm 2 GSIR-GP-IS
1: Initialization
2: Determine the approximate MPP and importance distribution..
3: Generate IS population Û = (ûi)NIS

1 .
4: Select ridge parameters εX, εY .
5: Define initial TPs (Ut, Yt) by Latin hypercube sampling.
6: while Convergence is false do
7: Perform dimension reduction GSIR, and obtain the first eigenvector (ξ1) of the suf-

ficient predictor in Eq. (  3.30 ) and fGSIR (Ut) = ξT1 QKUt .
8: Construct the GP model Ĝ (fGSIR(U)) using the low-dimensional training points

(fGSIR(U), Yt).
9: Obtain the sufficient predictor at Û: fGSIR(Û) = ξT1 QKUtÛ.
10: Run the GP model at fGSIR(Û) to have Ĝ

(
fGSIR(Û)

)
, the probability of failure pf

is obtained by Eq. (  3.18 ).
11: if minU (fGSIR (ûi)) < 2 then
12: Find the next training point (unew) using Eqs. (  3.36 ) and (  3.37 ); obtain Ynew =

G(unew).
13: Add (unew, Ynew) to TPs.
14: else if minU (fGSIR (ûi)) ≥ 2 then
15: Stop.
16: if δIS (Eq. (  3.20 )) and accuracy of pf is satisfied then
17: Stop.
18: else
19: Go to Initialization and increase NIS (the size of IS population).
20: Output: pf and associated error.
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3.4 Examples

In this section, four examples are provided to demonstrate the proposed method. The first

example is a mathematical problem followed by three engineering examples. We compare the

proposed method with MCS, FORM, the second order saddlepoint approximation (SOSPA),

and SIR-GP-IS. SOSPA [  115 ] is a second-order approximation method based on SORM and

saddlepoint approximation (SPA). SIR-GP-IS uses the same settings as the proposed method

but using the linear dimension reduction method. Since the first example has been studied

by SS-SVM [  116 ] and SIR-SPCE [  81 ], we also compare the two methods for the first example.

Since constructing a GP model in the high dimensional space is more expansive than in a

subspace, we only use GP-IS, the algorithm without dimension reduction, to evaluate the

first case of example 1 to show the necessity of dimension reduction for high-dimensional

problems.

A weak penalty is applied for the four examples, and the ridge parameters εX and εY

of GSIR are set to be 10−5. Since the proposed method is a sampling-based meta-modeling

method, we run the method 20 times to assess its performance. We then report the medians

of the results, including the probability of failure, the error, and the number of function calls.

The accuracy of different methods is assessed by the error relative to MCS. The relative error

is defined by

ε =
∣∣∣∣∣pf − pf,MCS

pf,MCS

∣∣∣∣∣× 100% (3.38)

where pf is the probability obtained by a non-MCS method. The efficiency is measured

by the number of function calls and the coefficient of efficiency (CoE). CoE describes the

efficiency with respect to the dimension and is defined by

CoE = The number of performance function calls
The dimension of input random variables

(3.39)
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3.4.1 A Mathematical Problem

The mathematical example is given in [ 118 ] and is further studied in [ 81 ], [  119 ]. The

performance function is defined by

g(X) = n+ 3σ
√
n−

n∑
i=1

xi (3.40)

in which xi, i = 1, . . . , n, are independent and lognormally distributed with means and stan-

dard deviations being 1 and 0.2, respectively. We study three cases that n is equal to 40,

100, and 250. The corresponding initial DoE sample sizes are 200, 400, and 1000. The IS

population sizes NIS are 104, 104, and 3 × 104 for the three cases. The IS population sizes

are large enough to cover the major failure boundaries. If this condition was not satisfied, a

larger sample size (e.g.,105 or 106) would be needed.

The results of dimension reduction are presented in Figures.  3.2 ,  3.3 , and  3.4 , in which

TPs means training points. The sufficient predictor, which is obtained by GSIR using Eq.

( 3.32 ), is in the one-dimensional space. The three cases show that the sufficient predictor and

the real response have perfect monotonicity, for which Spearman’s correlations are 0.9993,

0.9999, and 1.0 for the three cases. It is found that the added learning points are concentrated

on the failure boundary or the limit state, which means that the GSIR-aided dimension

reduction method can identify points in the vicinity of the failure boundary and alleviate

the curse of dimensionality.

In addition to the proposed method (GSIR-GP-IS), other methods are also performed,

including MCS, FORM, and SOSPA, GP-IS, SIR-GP-IS. We only run MCS for one time with

sufficient samples. FORM and SOSPA are also run for one time since these approximation

methods are not influenced by randomness. The results of SS-SVM and SIR-SPCE are

directly from the literatures as mentioned previously. The results are summarized in Table

 3.1 .

FORM is the most efficient, but least accurate method. When n = 40, the proposed

method outperforms SOSPA, SS-SVM, and SIR-SPCE with respect to both accuracy and

efficiency. Its error and number of function calls are 0.37% and 401.7, respectively. For the
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Figure 3.2. Sufficient predictor versus real response of Case 1

Figure 3.3. Sufficient predictor versus real response of Case 2

case n = 100, GSIR-GP-IS obtains an error of 1.03% with 715.4 function calls. Although

SS-SVM has a slightly smaller error (0.58%), it calls the performance function 3,729 times.

The proposed method performs well for the high dimensional case (n = 250). Although

SS-SVM and SIR-SPCE are more accurate than the proposed method, their efficiency is

much poorer with CoEs of 40.8 and 40, respectively. The proposed method produces an

accurate solution (2.25% error) with much fewer function calls (CoE = 6.2). GP-IS, the

algorithm without dimension reduction, cannot converge within the prespecified number of

iterations (1000) for the case with the lowest dimension (n = 40). SIR-GP-IS, the algorithm
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Figure 3.4. Sufficient predictor versus real response of Case 3

Table 3.1. Results of different methods for Example 1
n Methods pf Error(%) FCs CoE
40 MCS 1.97 × 10−3 - 107 2.5 × 105

FORM 2.152 × 10−4 89.1 164 4.1
SOSPA 2.028 × 10−3 2.96 1,025 25.6
GP-IS 7.41 × 10−2 3600 1241 31.0

SIR-GP-IS 1.14 × 10−3 42.04 1241 31.0
SS-SVM 1.95 × 10−3 1.5 3,729 93.2
SIR-SPCE 1.88 × 10−3 3.3 1,200 30
GSIR-GP-IS 1.98 × 10−3 0.37 400.65 10.0

100 MCS 1.72 × 10−3 - 107 105

FORM 4.204 × 10−5 97.55 404 4.0
SOSPA 1.796 × 10−3 4.42 5,555 5.6

SIR-GP-IS 0.1614 9283 559 5.59
SS-SVM 1.74 × 10−3 0.58 6036 60.4
SIR-SPCE 1.63 × 10−3 5.6 3,000 30

GSIR- GP-IS 1.74 × 10−3 1.03 715.4 7.2
250 MCS 1.56 × 10−3 - 107 4 × 104

FORM 2.82 × 10−6 99.82 1004 4.0
SOSPA 1.673 × 10−3 7.24 32,630 130.5

SIR-GP-IS 0.1487 9431 1281 5.1
SS-SVM 1.61 × 10−3 1.26 10,707 42.8
SIR-SPCE 1.59 × 10−3 0.6 10,000 40
GSIR-GP-IS 1.60 × 10−3 2.25 1,548.6 6.2
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with the linear dimension reduction, cannot converge either within 1000 iterations for the

same case. The results reported in Table  3.1 are from the last iteration of the two methods.

Although SIR-GP-IS displays a fast convergence rate for the other two cases, the algorithm

does not work as the errors are 9283% and 9341%, respectively. Since the surrogate model

construction in a high dimensional space is time-consuming, we only run GP-IS for n = 40

to demonstrate the necessity of dimension reduction.

To analyze the uncertainty of the result from the proposed method, we also provide

box plots in Figure  3.5 for the probabilities of failure and errors from the 20 runs. The

medians of the probability of failure and the corresponding errors are (1.98 × 10−3, 0.37%),

(1.74 × 10−3, 1.03%), and (1.60 × 10−3, 2.25%) for the three cases, where the errors here are

obtained by comparing the median probability of failure with the MCS by Eq. ( 3.38 ). The

error plot is from the 20 simulations whose median errors are 1.06%, 2.98%, and 2.41%. The

standard deviations of errors are 1.77%, 2.80%, and 3.01%. The highest error is smaller than

6%.

Figure 3.5. Box plot of 20 simulations

As mentioned in Section  3.2.1 , the nonlinearity between the sufficient predictors and real

response is ascending. Figure  3.6 shows the first ten sufficient predictors versus the real

response based on the result of case 1 (n = 40). Since the other cases and the other three

examples also have the same pattern, we provide the figure for illustration for only case 1 in

this example. For GSIR, the first d sufficient predictors are obtained, and we use the first
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Figure 3.6. The relationship between sufficient predictors and real response

one for GP modeling and active learning. After the algorithm converges, we plot the first

10 sufficient predictors versus the real response. It is clear that the added training points

by active learning cluster at the failure boundary for all sufficient predictors. Therefore, we

need to use only the first sufficient predictor.

3.4.2 A Cantilever Beam

The second example is a beam (Figure  3.7 ) that is subjected to 106 random forces on

the top. Six forces (F1, . . . , F6) are lognormally distributed, and the rest of the forces

(F7, . . . , F106) are normally distributed. The locations (lF1 , . . . , lF106) that the forces, the

width (w), height (h), and the yield strength (Sy) are also normally distributed. All the 215

random variables are independent. Their distributions are given in Table  3.2 .

A failure would occur if the yield strength Sy is smaller than the maximum stress, and

the performance function is therefore given by

g(X) = Sy − 6∑106
i=1 FilFi

wh2 (3.41)
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Figure 3.7. A cantilever beam

Table 3.2. Distributions of random variables in Example 2
Random variables Distribution Mean Standard deviation

Sy (MPa) Normal 720 60
w (m) Normal 0.2 0.001
h (m) Normal 0.4 0.001

Fi, i = 1, 2, . . . , 6 (kN) Lognormal 30 + 5i 2.4 + 0.4i
lFi , i = 1, 2, . . . , 6 (m) Normal 4.3 + 0.1i 0.01

Fi, i = 7, 8, . . . , 106 (kN) Normal 10 1
lFi , i = 7, 8, . . . , 106 (m) Normal 0.02i 0.01

Figure 3.8. Sufficient predictor versus real response of Example 2

There are 600 initial training points in this example. We project the 215 input random

variables in the high dimensional space to the sufficient predictor, and the relationship be-
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tween the sufficient predictor and the real response is shown in Figure  3.8 . A good monotonic

relationship is obtained with the Spearman’s correlation being 0.9991. The added training

points are concentrated on the failure boundary.

The results of the proposed method with 20 runs are provided in Figure  3.9 . The proba-

bility of failure and the corresponding error are within the intervals [1.85 × 10−6, 2.08 × 10−6]

and [0.02%, 2.08%], respectively. And the median failure probability is 1.9448 × 10−6 with

the corresponding error of 2.83%. In addition to the proposed method, MCS, FORM,

Figure 3.9. Statistical results of Example 2

Table 3.3. Results of different methods for Example 2
Methods pf Error (%) FC CoE
MCS 1.9106 × 10−6 - 1.6 × 109 7.4 × 106

FORM 1.7964 × 10−6 6.0 648 3.0
SOSPA 1.9200 × 10−6 0.5 24,084 112.0

SIR-GP-IS 2.3097 × 10−6 20.89 1816 8.45
GSIR-GP-IS 1.9448 × 10−6 2.83 1040.4 4.84

SOSPA, and SIR-GP-IS are also used. The results are listed in Table  3.3 . Although FORM

calls the performance function only 648 times, its error is 5.9%. SOSPA is the most accurate

method, but its computational cost is extremely high, with 24,084 function calls and a CoE

of 112. SIR-GP-IS cannot converge within the maximum of 1,000 iterations. The results
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shown in Table 3 are from the last iteration. GSIR-GP-IS maintains a good balance between

accuracy and efficiency with an error of 2.83% and a CoE of 4.84.

3.4.3 A Truss System

A dome-truss [  120 ] consists of 52 bars with 21 nodes as shown in Figure  3.10 , where

numbers without dots represent bars and the others with dots mean nodes. All the nodes lie

on an imaginary hemisphere with a radius of 240 in. The cross-section areas and the young’s

moduli of the bars are normally distributed. Six random forces (F1, . . . , F6) that point to

the center of the imaginary hemisphere are applied to nodes 1-13. The forces are applied

as follows: F1 to node 1, F2 to nodes 2, 4, F3 to nodes 3, 5, F4 to nodes 6, 10, F5 to nodes

8, 12, and F6 to nodes 7, 9, 11, and 13. The random variables are independent and their

distributions are summarized in Table  3.4 .

Table 3.4. Distributions of random variables in Example 3
Random variables Distribution Mean Standard deviation
Ei, i = 1 ∼ 50 (ksi) Normal 2.5 × 104 1000

Ai, i = 1 ∼ 8, and 29 ∼ 36 (in2) Normal 2 0.001
Ai, i = 9 ∼ 16 (in2) Normal 1.2 0.0006

Ai, i = 17 ∼ 28, and 37 ∼ 52 (in2) Normal 0.6 0.0003
F1 (kip) Normal 45 3.6
F2 (kip) Extreme 40 6.0
F3 (kip) Extreme 35 5.25
F4 (kip) Normal 30 2.4
F5 (kip) Normal 25 2.0
F6 (kip) Normal 20 1.6

The performance function is given in Eq. (  3.42 ).

Y = g(X) = δ0 − δ(E; A; F) (3.42)

where δ0 = 0.7 in is the allowed maximum displacement of node 1, and δ0 is the actual

displacement of the same node, which is obtained by the finite element method (FEM).
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Figure 3.10. A 52-bars truss system

E = [E1, E2, . . . , E52]T and A = [A1, A2, . . . , A52]T are vectors of the young’s moduli and

cross-sectional areas, respectively, F = [F1, F2, . . . , F6]T is a force vector.

We have Figure  3.11 shows that the sufficient predictor is monotonic to the real response

that the Spearman’s correlation is 0.9996. The failure boundary is identified by making use

of the monotonic relationship through active learning.

The statistical results of the proposed method are given in Figure  3.12 . For the 20 runs,

most of the errors are smaller than 6%, and the maximum error is about 8.5%.

The results of all the methods are given in Table  3.5 . GSIR-GP-IS is less accurate than

SOSPA but is far more efficient than SOSPA. GSIR-GP-IS has only 764.4 function calls and

a CoE of 6.95 while SOSPA has 6,771 function calls with a CoE of 61.55. The accuracy of

FORM is poor, and its error is 15.77%. SIR-GP-IS cannot converge with a subspace of 1 in

1000 iterations and the results reported are from the last iteration.
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Figure 3.11. Sufficient predictor versus real response of Example 3

Figure 3.12. Statistical results of Example 3

Table 3.5. Results of different methods for Example 3
Methods pf Error (%) FC CoE
MCS 3.506 × 10−3 - 107 9.09 × 104

FORM 4.059 × 10−3 15.77 555 5.05
SOSPA 3.529 × 10−3 0.65 6,771 61.55

SIR-GP-IS 3.046 × 10−3 13.11 1,511 13.7
GSIR-GP-IS 3.4148 × 10−3 3.02 764.4 6.95
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3.4.4 Nonlinear Seismic Dynamic Analysis of A Shear Frame

This example involves a 25-story shear frame structure (Figure  3.13 ) under stochastic

seismic excitation. The masses (m1, . . . ,m25) of all stories are normal variables with means of

3×105 kg and coefficients of variation (C.O.V) of 0.05. The inter-story stiffnesses (k1, . . . , k25)

follow lognormal distributions with means of 1.2 × 108 N/m and C.O.V. of 0.1. The motion

of the shear frame under seismic ground motions is characterized by the extended Bouc-Wen

model [ 121 ] given by

MẌ + CẊ + αhKX + (1 − αh) KZ = −M üg(t) (3.43)

where Ẍ, Ẋ, and X are vectors of acceleration, velocity, and displacement, respectively;

M , C and K are the mass matrix, damping matrix, and stiffness matrix, respectively; αh
is a weighting parameter regarding hysteresis; Z is a vector of hysteretic displacement; üg(t)

denotes the random ground motion and is given by

Figure 3.13. Schematic of a shear frame
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üg(t) = ξNSüNS(t) + ξWEüWE(t) (3.44)

where ξNS and ξWE are independent extreme-value variables whose means and C.O.V both

are 1 and 0.1, respectively; üNS(t) and üWE(t) are accelerations in the N-S and W-E di-

rections, respectively, obtained from the EI Centro Earthquake [  122 ]. There are 52 random

variables in this example. The 13 parameters of the extended Bouc-Wen model used in this

paper are A = 1, αh = 0.04, βh = 30, γh = 10, n = 1, δν = 2000, δη = 2000, ζs = 0.99,

q = 0.25, p = 1000, ψ = 0.05, δψ=5, λ = 0.5.

The damping matrix is C = αM + βK, where α and β are the damping coefficients,

which are given by α = 0.02 and β = 0.01. The maximum displacement of the first floor dmax
is obtained by solving the nonlinear Ordinary Differential Equations system in Eq. (  3.43 ).

dmax = max
t∈[0,T ]

ψ1 (m1, . . . ,m25, k1, . . . , k25, ξNS, ξWE) (3.45)

where ψ1(·) denotes the function of the displacement of the first floor over time. When the

maximum displacement exceeds a threshold (dthres = 32mm), the shear frame fails. The

performance function of the shear frame is defined by

Y = dthres − dmax (3.46)

For this example, we have 200 initial training points and the IS population is 1 × 104. As

shown in Figure  3.14 , the proposed method can successfully identify the failure boundary for

the nonlinear system, although some points are not at the failure boundary at the beginning

stage of active learning. Figure  3.15 shows that the proposed method maintains a good

accuracy for most of the 20 simulations.

The results of all the methods are provided in Table  3.6 . GSIR-GP-IS outperforms other

methods with an error of 2.39%, and 367.25 average function calls, and CoE of 6.93. SIR-

GP-IS has a slightly larger average error of 6.02%, but its efficiency is much worse since it

needs 938 function calls. The MPP search of FORM cannot converge in 50 iterations with
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Figure 3.14. Sufficient predictor versus real response of Example 4

Figure 3.15. Statistical results of Example 4

Table 3.6. Results of different methods for Example 4
Methods pf Error (%) FC CoE
MCS 8.46 × 10−2 - 105 1.92 × 103

FORM∗ 0.4869 476 2,650 50.96
SOSPA∗ 0.8878 949 4,081 78.48

SIR-GP-IS 8.97 × 10−2 6.02 938 18.04
GSIR-GP-IS 8.32 × 10−2 2.39 367.25 7.06
*The MPP search does not converge in 50 iterations. Results are reported
based on the MPP obtained at the 50th iteration.
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2650 function calls. The reported pf for FORM is from the last iteration. Since SOSPA is

based on the result of the MPP from FORM, SOSPA also has a large error for this example.

3.5 Summary

The proposed method combines the generalized sliced inverse regression (GSIR), im-

portance sampling (IS), Gaussian process (GP), and active learning to relieve the curse of

dimensionality of high dimensional reliability analysis. A GP model is constructed in a sub-

space after dimension reduction by GSIR. Then, active learning is used to refine the GP

model. By iteratively adding new training points to the training set, the failure boundary

is identified, which results in an accurate probability of failure. The four examples demon-

strate that GSIR can successfully relieve the curse of dimensionality. The proposed method

has a good potential to predict the reliability of high dimensional problems accurately and

efficiently.

The proposed method has some limitations. It requires a sufficient number of initial

training points, and this may not be computationally efficient for large-scale problems. It

is possible that the use of a univariate subspace (the first sufficient predictor) may not be

accurate enough for highly nonlinear problems. The proposed method may also produce

a large error if multiple failure regions exist. To address the first two limitations, we will

study the optimal balance between the number of initial training points and the number of

added training points; we will also investigate the use of multiple predictors. For the third

limitation, we will explore the possibility of using importance sampling centered at the most

probable points of the multiple failure regions.
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4.1 Background

Computer simulation models, derived from physical laws and principles, play a key role

in engineering analysis and design. Their typical applications include prediction, sensitivity

analysis, uncertainty quantification (UQ), what-if analysis, optimization, design space ex-

ploration, and systems design, which need to run the simulation many times. The models

representing sophisticated physical details across wide spatial and time domains, however,

are usually computationally demanding.

Models built from regressions are increasingly used as surrogates for computationally

expensive computational models [  123 ]–[ 128 ]. A computational model is run for a limited
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number of times, producing a set of labeled training points, based on which a surrogate model

is built. Surrogate models can be built using the traditional Response Surface Modeling

(RSM) [ 129 ] and can also be built with Machine Learning (ML) methods [  130 ], such as

Gaussian Process (GP) [  131 ], [  132 ], Support Vector Machines (SVM) [  39 ], and Artificial

Neural Networks (ANN) [  36 ]. However, the computational cost soars with the increase of

dimensionality.

Several methods [  91 ], [ 133 ]–[ 136 ] have been proposed to improve the efficiency of UQ

for high-dimensional problems. For example, a high dimensional reliability analysis method

differentiates the contribution of important and unimportant variables to ensure high effi-

ciency [  91 ]. After dimension reduction, computations are performed in the reduced space

of the important variables. Yin and Du [  133 ] developed an active learning approach with

dimension reduction by generalized sliced inverse regression (GSIR) to mitigate the curse

of dimensionality. A deep neural network approach was developed in [  35 ] to handle high-

dimensional problems using auto-encoder and GP. These methods, however, are not efficient

or applicable when image data exist.

In many applications, such as medicine, computational mechanics, material design, and

additive manufacturing, both image and numerical data coexist. For example, in the severity

assessment of stenosis [  42 ]–[ 44 ], in addition to the patient image data, other numerical data,

such as material properties and boundary conditions, are also inputted to computational

fluid dynamics (CFD) simulation. The simulation can then replace a painful and costly

invasive pressure measurement. As shown in Figure  4.1 , the patient CT image is converted

into a computer geometric model, and the geometry is meshed into a number of discrete

elements for the subsequent hemodynamics (CFD) simulation, which then yields simulated

velocity and pressure fields for decisions on diagnosis and potential treatment. Since there

are at least thousands of meshed elements, the dimension of the input data to the CDF

simulation is very high. Another example is the multidisciplinary optimization design of

aircraft wings [ 86 ], [  137 ] by finite element analysis (FEA). The structure or the geometry

of the wings can be considered as image data; loading, material properties, and boundary

conditions are numerical data.
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Figure 4.1. CDF simulation for stenosis severity assessment [ 43 ], [ 44 ].

If an accurate surrogate model is built with a limited number of expensive simulations

(e.g. CFD, FEA), the inexpensive surrogate model can replace the original model for analysis

and design. However, it is impossible or inconvenient to use typical surrogate modeling

methods (RSM, GP, and SVM) to accommodate image data. Although the mixed input

problem with both image and numerical data can be handled by a multi-input network

[ 138 ], the implementation is complicated, and the efficiency may not be satisfactory.

Convolutional Neural Networks (CNN) [  51 ]–[ 53 ] is a deep learning method that can deal

with the high dimensional image input data. It is specifically designed to handle image

data. CNN can recognize built-in features of the image directly through several convolution

layers without relying on manual feature selection. It has achieved extraordinary successes

in computer vision, image recognition, speech recognition, and engineering applications.

Although CNN is designed to deal with only image-like data, recent studies [  139 ] have shed

light on the new use of CNN with numerical data. These methods convert numerical data

into image data and enable a new capability of treating pure numerical data. Inspired by the

studies, we develop a new concept to explore possible ways of using CNN for both image and

numerical data. Also, motivated by the existing studies of GP [  140 ], [  141 ] and the mixed

CNN [  142 ], we propose to combine CNN with GP to overcome the shortcoming of CNN:

it cannot provide the epistemic uncertainty to quantify the model error for the predicted

response.
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This work develops a CNN-based framework for high-dimensional UQ, which can accom-

modate both image and numerical data. The proposed method combines CNN with GP

for UQ, providing the epistemic uncertainty associated with the prediction. Both epistemic

uncertainty and aleatory uncertainty are considered when the CNN based surrogate model

is used for uncertainty propagation, which results in more accurate statistical moments of

the prediction. Besides, the CNN-based supervised dimension reduction technique avoids

the curse of dimensionality of GP.

The rest of the paper is organized as follows. Section  4.2 reviews the basics of CNN and

GP. Section  4.3 provides the procedure of converting numerical data into image data and

merging converted images with existing images. In Section  4.4 , we show how to integrate GP

with CNN and perform UQ. In Section  4.5 , we present three examples followed by conclusions

in Section  4.6 .

4.2 Literature Review

4.2.1 Convolutional Neural Networks

CNN [  51 ], [  52 ] is a class of ANN, designed for dealing with images and can be used for

classification and regression. Unique features are extracted from images by the Convolution-

Pooling operation that the dimension of images is reduced and optimal hyper-parameters of

CNN are obtained. Fully connected layers are added to the end of convolutional and pooling

layers to project the features to the output space. At the end of the fully connected layers,

there is a classification layer or regression layer depending on the task.

The main layers of CNN are briefly discussed below.

• Convolutional layer: This layer is for extracting the features of input images. With a

set of filters that scan across the image, the convolved feature is obtained by computing

the dot product of filter and image elements. The extracted feature depends on the

choice of filter. Different filters will result in different feature maps, which may influence

the accuracy of the CNN model. Note that it is unnecessary to define the components

of the filters beforehand; the parameters of filters are learned at the end of the training

process.
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• Pooling layer: This layer is for downsampling to reduce the dimension of the feature

maps but keep the most important information. In this process, the number of param-

eters in the training process is decreased. Common pooling methods include average

pooling, max pooling, and sum pooling. Average pooling means that only the average

values of every sub-region are retained. Max pooling only keeps the maximum values

of the sub-regions. Sum pooling is to sum all the elements of the sub-regions.

• Fully connected layer: This layer is after several folds of the convolution-pooling

process. The output features of the last convolution-pooling, which is the input of the

fully connected layer, are usually flattened into a one-dimensional array (a vector).

4.2.2 Gaussian Process Regression

Gaussian process regression (GPR) [  114 ] is a kernel-based probabilistic method. A gen-

eral form of the regression model is given by

G(x) = f(x)T
β + ξ (4.1)

where G(x) is the response to be predicted; x is a vector of input variables; f(x) is a vector

of the basis functions; β is a vector of coefficients; ξ is the noise term and follows a Gaussian

distribution with the mean of 0 and the variance of σ2, namely, ξ ∼ N (0, σ2).

Given the training data X = {x(1), . . . ,x(n)}, the prior distribution of observed values

G(X) is

G(X) ∼ N
(
0, K(X,X) + σ2In

)
(4.2)

where K(X,X) is a n× n symmetric covariance matrix; In is an n-dimensional unit matrix;

and n is the number of training points. Since it is assumed that the data can be represented

as a sample from a multivariate Gaussian distribution, the joint prior distribution of the

training data X and the predictions at m test points X∗ = {x(1∗), . . . ,x(m∗)} is given by

 G(X)

G(X∗)

 ∼ N

0,

 KXX + σ2In KT
XX∗

KXX∗ KX∗X∗


 (4.3)
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where KXX = K(X,X) denotes the covariance matrix of training points; KXX∗ = KT
XX∗

is the covariance matrix between test points X∗ and training points X; and KX∗X∗ is the

covariance matrix of the test points. In this work, the Gaussian correlation function [  114 ] is

used as the kernel function. Then, the posterior distribution of a test point is given by

G(x∗) ∼ N
(
µG(x∗), σ2

G(x∗)
)

(4.4)

where

µG(x∗) = K∗
[
K + σ2In

]−1
G(x) (4.5)

σ2
G(x∗) = K∗∗ −K∗ ×

[
K + σ2In

]−1
KT

∗ (4.6)

Therefore, the mean µG(x∗) and variance σ2
G(x∗) of the prediction are obtained. It is

assumed that µG(x∗) provides the best estimate of the prediction while σ2
G(x∗) indicates the

model uncertainty of the prediction.

4.3 Convolutional Neural Network with Mixed Data

As mentioned previously, image data and numerical data could coexist in many applica-

tions. CNN is designed for dealing with images. In this section, we introduce how to convert

numerical data into image data and how to merge the converted numerical data to exiting

image data.

4.3.1 Overview

A model with mixed inputs is constructed when numerical and image data coexit, which

is given by

y = g(x, im) (4.7)

where x is a vector of numerical input variables or a 1D array, and x ∈ Rnx×1 with nx rows

and 1 column; im is the input image, and im ∈ Rnim×mim×cim with nim rows, mim columns,

and cim channels which demotes the depth of the image; y is the model response. The model
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in Eq. ( 4.7 ), however, is usually computationally expensive, and we then build its surrogate

model, given by

y = ĝ(x, im) (4.8)

The central strategy of the proposed method is to convert the numerical data x into

images. Mathematically, it is a task to transform a 1D array into a 3D array. After the

transformation, numerical data x becomes an image imx as a 3D array. Denote the trans-

formation by T (·); namely

x = T (imx) (4.9)

Then the new image imx is merged with image im. Denote the aggregated image by

Im = (imx, im), and the input is now Im. The surrogate model in Eq. (  4.8 ) is usually built

by CNN. After the conversion in Eq. ( 4.9 ), CNN can be used without any modifications,

producing a surrogate or regression model

y = ĝCNN(Im) (4.10)

Once the surrogate model is built, a prediction can be made for a test point (x∗, im∗) as

follows

y = ĝCNN (x∗, im∗) = ĝCNN (T (im∗
x) , im∗) = ĝCNN (Im∗) (4.11)

where Im∗ = (im∗
x, im∗) and im∗

x = T−1(x∗), and T−1(·) denotes the inverse transformation.

Next, we introduce how to convert numerical data into image data.

4.3.2 Conversion of Numerical Data into Image Data

There are many ways to convert a 1D array of numerical data into a 3D array (an image).

Herein we discuss two of them. One is the bar graph, and the other is the grayscale graph.

Both ways can represent the measurable features of the numerical data. The dataset of x is

first normalized to [0, 1].

For the bar graph [ 139 ], there are many possible ways of transformation (numerical data

to image data) for a given dataset. An example is shown in Figure  4.2 using a data point
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u = (0.2, 0.5, 0.3, 0.5, 0.8). The height of the image in pixels is h = βnx + γ(nx + 1), where

β is the width of a single bar, and γ is the width of a gap between bars. We denote the

maximum length of the bar by w, which is the width of transformed image. The actual

heights of the bars are uw, where u = (u1, u2, . . . , unx) are the normalized numerical data in

a general sense.

Figure 4.2. A converted bar graph.

The width of the image w influences the resolution of numerical features since the number

of pixels is an integer. A continuous variable u is discretized into w intervals. The larger is

w, the higher is the resolution of numerical features, but a longer time is needed to process

the image. In practice, we set w to be the maximum value of (nim,mim).

w = max (nim,mim) (4.12)

If we have higher-dimensional numerical features, it is possible to merge the converged image

using the height (h). Then, we can set w to be a larger value to preserve more accurate

numerical feature.

The grayscale method is to transform the normalized data into grayscale images. The

normalized value decides how dark or bright the pixels are. A pixel is black when the

normalized value is 0 and white when the normalized value is 1. There are several ways to

transform the normalized data into images. An example is shown in Figure  4.3 with the
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same data point u = (0.2, 0.5, 0.3, 0.5, 0.8). The image height is h = βnx, and the width still

is w, We convert the numerical data as a band image, where β is the width of a band.

Figure 4.3. A converted grayscale graph.

The grayscale transformation is insensitive to the width of the image (w) since numerical

features are embedded in the gray levels but are not impacted by the converted image size.

However, this transformation method is limited by the gray level. For the commonly used

8-bit color format of grayscale images, the color from black to white is discretized to 256

different shades of color whose range is 0-255. Black is 0 and white is 255. The numerical

features are, therefore, discretized to 256 intervals, which means the resolution is fixed.

Also, the numerical features are not influenced by the orientation of the image for both

transformation methods.

The width of bars or bands for the two conversion methods used in Figures  4.2 and  4.3 

are large for a demonstration purpose. Based on our experience, the accuracy of CNN is

insensitive to the value of the width, and a smaller value is preferred for a lower computational

cost. Now we have converted images and original image data. Next, we discuss how to merge

them to serve as the input of CNN.

4.3.3 Combination of Images

After numerical features x are converted into image imx, where imx ∈ Rh×w×ci , we merge

it into the existing image im, where im ∈ Rnim×mim×cim . Letting w = max (nim,mim) = mim,

we merge the two images vertically, which results in an aggregated image Im = (imx; im),

where Im ∈ R(nim+w)×mim×cim . We can merge the transformed images in Figures  4.2 and
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 4.3 to an existing image as shown in Figure  4.4 . Figure  4.4 (a) indicates that the converted

image imx ∈ R22×28×1 is merged to the existing image im ∈ R28×28×1 vertically, which results

in the aggregated image Im ∈ R50×28×1. Similarly, as shown in Figure  4.4 (b), we combine

imx ∈ R15×28×1 and im ∈ R28×28×1, resulting in Im ∈ R43×28×1.

Figure 4.4. An example of aggregated images.

Alternatively, the transformed images can also be merged to other sides of the existing

image if they are rotated to suitable orientations. The orientations of the transformed images

do not have a strong influence on the result of the CNN training.

After the transformed images are merged to the existing images, the aggregated images

are loaded to CNN for regression. However, given an untried image, it is difficult to know the

prediction error (model uncertainty) by calling the trained CNN model. In the next section,

we present the detailed procedures of combining CNN with GP to estimate the model error

by epistemic uncertainty.

4.4 Uncertainty Quantification by CNN-GP with Mixed Data

The CNN training process is straightforward. Once the CNN structure is determined, the

CNN model ĝCNN is obtained using a set of training data
{(

Im(1), y(1)
)

; . . . ; (Im(n), y(n))
}
.

Given a new untried image Im(∗), we can predict its response ŷ(∗). However, we do not know
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how accurate the prediction is unless we run the original computational model, which is

against the purpose of regression. The discrepancy between the true response and predicted

response is the model error whose uncertainty is called epistemic uncertainty. We can use

epistemic uncertainty to estimate the model error. In this study, we combine CNN with GP

to quantify the epistemic uncertainty of the surrogate model.

The purpose of regression is to build a surrogate model that can accurately replace the

computational model. For the training data from physics-based simulations, the input data

are assumed perfect without data uncertainty, and only epistemic uncertainty exists in the

surrogate model. When the surrogate model is used to make predictions, however, the model

inputs are random in most applications, such as stochastic loading, material properties, and

other random parameters. This kind of uncertainty is called aleatory uncertainty or data

uncertainty. As a result, we should quantify the effects of both types of uncertainty on the

model output.

4.4.1 CNN-GP

The objective of this task is to quantify the epistemic uncertainty of the CNN prediction.

However, CNN is not able to provide the model uncertainty of the prediction. This study

estimates the model uncertainty by combining CNN with GPR because GPR is capable of

quantifying epistemic uncertainty [ 57 ], [ 143 ]–[ 145 ].

Since GPR suffers from the curse of dimensionaltiy, dimension reduction is needed. As

illustrated in Figure  4.5 , we treat CNN as a supervised dimension reduction process by

several folds of convolution, pooling, and activation layers. The high dimensional image is

projected to the Z-latent space (one of the FC layers) with nz latent variables. The latent

variables are denoted by z. Once the CNN model is built, we obtain the relationship between

z and image input. Then we use GP to obtain the relationship between the response y and

z. Thus, the combination of CNN and GP yields the estimate of the prediction error by

quantifying the epistemic uncertainty at a test point.

Recall that we use the training data
{(

Im(1), y(1)
)

; . . . ; (Im(n), y(n))
}
to construct the

CNN model (ĝCNN). Once the model is obtained, we can easily project the image from high
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Figure 4.5. Illustration of CNN-GP.

dimensional space to the Z-latent space by retrieving the hyperparameters of CNN. The

projection function is given by

z = Aretri (Im, θh) (4.13)

where θh denotes the hyperparameters of the trained CNN model. Therefore, the original

high dimension images IM =
{
Im(1), . . . , Im(n)

}
that are used to train the CNN model is

projected to the Z-latent space.

Using the latent space variables Z = {z(1), . . . , z(n)} and the corresponding labels Y =

{y(1), . . . , y(n)} as the training data, we construct a GP model which is denoted by

y = G(z) = G (Aretri (Im, θh)) (4.14)

And the prior distribution of observed values G(z) is given by

G(Z) ∼ N
(
0, K(Z,Z) + σ2In

)
(4.15)

where K(Z,Z) is a n× n symmetric covirance matrix of Z, which is simplified as KZZ; the

other parameters are introduced in Section  4.2.2 . Givenm untried points Z∗ = {z(1∗), . . . , z(m∗)}

85



which are obtained by Eq. (  4.13 ) based on m new images IM∗ = {Im(1∗), . . . , Im(m∗)}, the

joint distribution of the training points and the untried points is given by

 G(Z)

G(Z∗)

 ∼ N

0,

 KZZ + σ2In KT
ZZ∗

KZZ∗ KZ∗Z∗


 (4.16)

where KZZ∗ is the covariance matrix between the training points and untried points; KZ∗Z∗

is the covariance matrix of the untried points. The posterior distribution of an untried point

is given by

G(z∗) ∼ N
(
µG(z∗), σ2

G(z∗)
)

(4.17)

where µG(z∗) is the prediction mean and σ2
G(z∗) is the variance of the prediction� and they

are obtained by

µG(z∗) = KZZ∗

[
KZZ + σ2In

]−1
Y (4.18)

σ2
G(z∗) = KZ∗Z∗ −KZZ∗ ×

[
KZZ + σ2In

]−1
KT

ZZ∗ (4.19)

After dimension reduction using Eq. ( 4.13 ), z variables preserve the most important

features of image data Im. Therefore, we have following approximations,

KII ≈ KZZ (4.20)

KII∗ ≈ KZZ∗ (4.21)

KI∗I∗ ≈ KZ∗Z∗ (4.22)

where KII is the covariance matrix between the training images IM; KII∗ is the covariance

matrix between the training images and test images IM∗; KI∗I∗ is the covariance matrix
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between the test images. Then, we can obtain the prediction mean of CNN-GP and its

variance in terms of Im which are given by

µG(Im∗) = KII∗

[
KII + σ2In

]−1
Y ≈ KZZ∗

[
KZZ + σ2In

]−1
Y (4.23)

σ2
G(Im∗) = KI∗I∗ −KII∗ ×

[
KII + σ2In

]−1
KT

II∗ ≈ KZ∗Z∗ −KZZ∗ ×
[
KZZ + σ2In

]−1
KT

ZZ∗

(4.24)

It is known that µG(Im∗) provides the best prediction and that σ2
G(Im∗) represents the

epistemic uncertainty which can used to estimate the error of CNN-GP at test points.

4.4.2 Uncertainty Quantification

As mentioned previously, epistemic uncertainty exists in surrogate models. When the

surrogate model is used to propagate the uncertainty from input space to output space in a

real application, there is aleatory uncertainty in the model input and epistemic uncertainty

in the model itself. If the two types of uncertainty are not properly considered in the

prediction, the results may not be reliable. Therefore, it is important to quantify both types

of uncertainty.

In real applications, users are interested in knowing the mean (average) and the variance

(uncertainty) of the response. Now, we discuss how to obtain the first two moments (the

mean and variance) of the prediction. The use of the proposed approach is not limited

to GP-based methods; it can be used for other meta-modeling techniques, such as SVM,

polynomial chaos expansion (PCE), and ANN.

Recall that the prediction of CNN-GP has two parts, the mean prediction (µG (Im)) and

its variance (σ2
G (Im)). When CNN-GP is used to make predictions at test points, there is

epistemic uncertainty and aleatory uncertainty since the input may not be deterministic and

CNN-GP may not be accurate at the test points. Next, we discuss how to integrate the two

types of uncertainty in the quantification of the first two moments.
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The mean and variance are given by

µy =
∫
yp(y)dy (4.25)

σ2
y = E

(
(y − µy)2

)
=
∫

(y − µy)2 p(y)dy (4.26)

where p(·) is the probability density function (PDF) of y.

The response y is obtained by evaluating the expensive computational model with high

dimensional input (numerical and image input) as shown in Eq. ( 4.7 ). It is expensive or

impossible to obtain the first two moments using the integration method. Since we already

have the computationally inexpensive CNN-GP model, we can use MCS to find the mean

and variance. Given the MCS samples
{
Im(1), . . . , Im(N)

}
, we have the model responses{

y(1), . . . , y(N)
}
by calling the CNN-GP model in Eq. (  4.14 ). The mean and variance can be

estimated by

µy =
∫
yp(y)dy ≈ 1

N

N∑
i=1

y(i) (4.27)

σ2
y = E

(
(y − µy)2

)
=
∫

(y − µy)2 p(y)dy ≈ 1
N − 1

N∑
i=1

(
y(i) − µy

)2
(4.28)

The mean from Eq. (  4.27 ) is with respect to aleatory uncertainty, which is rewritten as

EA(y) = µy = 1
N

N∑
i=1

y(i) (4.29)

As shown in Eqs. ( 4.23 ) and (  4.24 ), the predicted response by CNN-GP follows a normal

distribution, y(i) ∼ N
(
µG(Im(i)), σ2

G(Im(i))
)
. The mean prediction µG(Im(i)) represents

the best estimate of the prediction, and σ2
G(Im(i)) represents the epistemic uncertainty at

Im(i). Taking the epistemic uncertainty into account, we obtain the mean response with

both aleatory uncertainty and epistemic uncertainty.

E(y) = EA(EE(y)) = 1
N

N∑
i=1

EE(y(i)) = 1
N

N∑
i=1

uG(Im(i)) (4.30)

88



where E(·), EE(·), and EA(·) are all expectation operations. The subscripts E and A denote

epistemic and aleatory, respectively.

The variance with respect to aleatory uncertainty is given by

VA(y) = 1
N − 1

N∑
i=1

(
y(i) − EA(y)

)2
(4.31)

where VA(·) represents the variance operation. VA(y) is random due to the epistemic uncer-

tainty of y(i). The mean of VA(y) with respect to epistemic uncertainty is given by

EE (VA(y)) = 1
N − 1

N∑
i=1

EE
(
y(i) − E(y)

)2

= 1
N − 1

N∑
i=1

(
EE(y(i)) − E(y)

)2
+ 1
N − 1

N∑
i=1

VE
(
y(i) − E(y)

)2
(4.32)

where (
EE(y(i)) − E(y)

)2
=
(
uG(Im(i)) − 1

N

N∑
i=1

uG(Im(i))
)2

(4.33)

VE
(
y(i) − E(y)

)2
= σ2

G(Im(i)) (4.34)

Plugging Eqs. ( 4.30 ), (  4.33 ) and (  4.34 ) into Eq. (  4.32 ), the expected variance of the predic-

tion is given by.

V (y) = EE(VA(y)) = 1
N − 1

N∑
i=1

(
uG(Im(i)) − 1

N

N∑
i=1

uG(Im(i))
)2

+ 1
N − 1

N∑
i=1

σ2
G(Im(i))

(4.35)

Now we obtained the first two moments for the model response, which provides the best

estimate of the prediction and the uncertainty of the prediction.

4.5 Examples

We provide three examples in this section. In the first example, we use the well-known

MNIST dataset [  146 ] to test the concept and show the detailed procedure. The second

and the third examples are real engineering problems, which involve steady-state nonlinear
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heat transfer and transient nonlinear heat transfer. The accuracy of UQ is evaluated by

comparisons with the results of MCS. For comparison with other machine learning methods,

we provide the results of GP [ 147 ] and SVM [ 148 ] for the second and third examples.

4.5.1 Dynamics Problem using MNIST

MNIST is a database containing grayscale images of handwritten digits, which are com-

monly used for training and testing image processing systems. We change the problem to a

dynamics problem so that we relate it with potential engineering applications.

The size of each image in MNIST is 28 × 28 pixels, and each digit has an associated

label, which is the angle θ that the digit rotates. We convert the original problem into a

dynamics problem. Since the MNIST dataset contains only image input, we modify it by

adding numerical input variables. We assume that each digit is a rigid body and that its

position in MNIST is its initial position. We use digit ”6” as an example for demonstration.

As shown in Figure  4.6 , initially the rigid body rotates about its center of mass at an initial

angular velocity of ω0 (rad/s), and the initial angular displacement of the body with respect

to the vertical axis is θ (rad). To rotate the body back so that it is aligned with the vertical

axis, we apply a moment M (N·m) in the opposite direction of ω0. The body reaches an

angular velocity ω (rad/s) in its final position when θ = 0.

Figure 4.6. Illustration of the dynamics problem using a rigid body of a digit.
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The task is as follows: Given the shape of the rigid body, its initial position θ, its initial

angular velocity ω0, and the external moment M , we find its final angular velocity ω. The

input therefore includes im ∈ R28×28×1 in MNIST and numerical variables x = (ω0, M)T,

and the output is ω. Then, we have both image and numerical data in the input. The data

of ω0 and M are generated randomly with a uniform distribution in the range of [0, 1].

We now discuss how to generate data for label y. At first, we need to extract a rigid

body from an image to calculate the inertia properties of the body. This is the task of

segmentation. We define a threshold value for the segmentation. After testing with different

threshold values, we found that a threshold of 0.2 is the best to keep the shapes of the

extracted bodies smooth. The digit in Figure  4.6 is an example of the extracted body.

Assume the rigid body is placed on a smooth horizontal surface. From the law of energy

conservation, we have
1
2Iω

2
0 +Mθ = 1

2Iω
2 (4.36)

where I is the moment of inertia about the center of mass, 1
2Iω

2
0 and 1

2Iω
2 are the initial and

final kinetic energy, respectively, and Mθ is the work functioned by the moment. The final

angular velocity ω is obtained by solving Eq. ( 4.36 ). In other words, the numerical inputs

are ω0 and θ, and the model output is ω.

We next follow the proposed strategy to transform the numerical vector x = (ω0,M)T

into image imx and then merge imx into the extracted rigid body im. Using the bar graph

transformation, we set β = 1 and γ = 0, and w = 28; thereby we have imx ∈ R2×28×1 and

Im ∈ R30×28×1.

The merged image data (Im) is fed to CNN to perform the regression task. There are

10,000 samples of which half of them are for training and the rest are for validation. We

employ four-fold convolution layers. The CNN structure and parameters are listed in Table

 4.1 .

The accuracy of the CNN regression with the bar graph transformation is shown in Figure

 4.7 . The scatter plot shows that the predictions against the true values are distributed around

the 45◦ line, which indicates that the proposed method can well handle the mixed numerical

and image data. The root-mean-square error (RMSE) of the validation is 0.67 rad/s.
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Table 4.1. CNN structure for Example 1
Layer Filter size Filter number Stride Activation

Convolution layer 1 3 × 3 8 - relu
Average pooling 2 × 2 - 2 -

Convolution layer 2 3 × 3 16 - relu
Average pooling 2 × 2 - 2 -

Convolution layer 3 3 × 3 32 relu
Convolution layer 4 3 × 3 32 - tanh

Fully connected layer 1 8 neurons - - -
Fully connected layer 2 1 neuron - - -

Figure 4.7. CNN regression accuracy of Example 1 with the bar transformation.

Following the procedure in Section  4.4.1 , we estimate the model error using epistemic

uncertainty. We first retrieve the variables in a latent space (z), then the dimension of

original high-dimension images is reduced. According to the CNN structure in Table  4.1 ,

there are eight neurons in the first fully connected layer. Thus, we reduce the dimension of

the images (30 × 28) to eight variables. Then, a GP model is constructed with respect to

the eight variables in z and the model response y. Once we have the CNN-GP model, we

can easily obtain the mean response and its standard deviation at a test point. We use the

CNN-GP model and obtain the mean responses and standard deviations at 20 test points.

The results are shown in Figure  4.8 , where the circles represent the mean responses. The

length of an error bar gives a 95% confidence interval (CI). Therefore, we know the confidence
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of the predictions with the epistemic uncertainty at the test points. The true responses or

labels from MNIST are also plotted in Figure  4.8 .

Figure 4.8. Model responses with epistemic uncertainty of Example 1.

This example is for only a demonstration of how to quantify model uncertainty. In the fol-

lowing two examples, we show the proposed method can be used in engineering applications

with both epistemic uncertainty and aleatory uncertainty.

4.5.2 Steady-state Nonlinear Heat Transfer

This example involves a heat transfer analysis of a thin rectangle plate. The spatial

domain is shown in Figure  4.9 . The temperature is fixed along the left boundary (b1) and is

a random variable following a uniform distribution. The other three boundaries are thermal

isolation without heat transfer. The temperature of point p1 is the quantity of interest or

the output.

The nonlinear heat transfer is governed by a partial differential equation (PDE) given by

−ktz∇2T + 2hcT + 2εσT 4 = 2hcTa + 2εσT 4
a (4.37)

where k is the thermal conductivity and is an uncertain parameter; tz is the plate thickness;

hc is the convection coefficient; ε is the emissivity of the plate surface; σ is the Stefan-

Boltzmann constant; Ta is the ambient temperature. Except for k, the other parameters
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Figure 4.9. The spatial domain of the heat transfer problem.

are all constant. The randomness of k is characterized by a Gaussian random field, which

is modeled by the truncated Karhunen-Loeve (K-L) expansion. The K-L expansion is given

by

H(X) = µ(X) +
m∑

i=1

√
λiϕi(X)ξi (4.38)

where µ (·) is the mean function of the random field; X is a 2D vector representing the

spatial location; λi and ϕi are the eigenvalues and eigenfunctions of the auto-correlation

function, respectively; ξi is a set of independent standard normal random variables; m is

the truncation number. In this work, we use the squared exponential kernel for the auto-

correlation function. The correlation between two arbitrary points is given by

ρi,j = exp

−
(

‖X i − X j‖
d

)2
 (4.39)

where d is the correlation length; X i and X j are two arbitrary points; and ‖ · ‖ represents

the norm of a vector.

Once the mesh and random variables are known, we can generate realizations of the

random field, which are represented by images. Boundary conditions are given as numerical

data. We convert the numerical data into images and merge them to the corresponding

realizations of the random field, which results in the merged image data for CNN.
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We generate 10,000 samples, among which 1,600 samples are used for training, and the

rest are for testing. Four examples of the combined images are shown in Figure  4.10 . The

dark bars represent different boundary conditions with different gray scales, and the rest are

different realizations of the random field. All the labels (the temperature at p1) are obtained

by the Stochastic Finite Element Method (SFEM). The CNN structure is given in Table  4.2 .

Figure 4.10. Examples of merged image data in Example 2.

Table 4.2. CNN structure of Example 2
Layer Filter size Filter number Stride Activation

Convolution layer 1 5 × 5 32 - relu
Average pooling 2 × 2 - 2 -

Convolution layer 2 3 × 3 28 - relu
Average pooling 2 × 2 - 2 -

Convolution layer 3 3 × 3 24 - relu
Convolution layer 4 3 × 3 16 - relu
Convolution layer 5 2 × 2 8 - tanh

Fully connected layer 1 8 neurons - - -
Fully connected layer 2 1 neuron - - -

The regression result of CNN is shown in Figure  4.11 . The predictions and true labels

of test points scatter around the 45◦ line compactly. Recall that a mixed network CNN-GP

is used to quantify the prediction uncertainty. A GP model is constructed with respect to

the output of the first fully connected layer of the CNN. Since the layer has eight neurons,

the dimension of the GP model input is eight. In other words, the CNN model serves as
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Figure 4.11. True label versus the predicted label by CNN of Example 2.

a supervised dimension reduction process, and the reduced dimension is eight. After the

CNN-GP model is obtained, we have the mean prediction with uncertainty information.

We randomly evaluate 20 test points using the CNN-GP model. We obtain the epistemic

uncertainty at the test points as shown in Figure  4.12 .

Figure 4.12. Mean predictions with epistemic uncertainty of Example 2.

We compare the accuracy of different methods using relative errors between predictions

and true responses, which are given in Table  4.3 . In the all tables, Std means standard

deviation. In general, CNN-GP is more accurate than CNN. The average error and maximum

error of CNN-GP are reduced compared with those of CNN. Besides, the standard deviations
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of the errors decrease as well for both training and test points. The GP model has the best

accuracy for the training points, but the maximum error at the test points is the largest

(6.42%). SVR has the largest standard deviations of errors.

Table 4.3. Regression accuracy of different methods of Example 2.
Methods Samples Error (%)

Average Max Std

GP Training points 0 0 0
Test points 0.14 6.42 0.26

SVM Training points 0.46 3.35 0.67
Test points 0.70 5.38 0.65

CNN Training points 0.68 3.55 0.53
Test points 0.70 5.64 0.57

CNN-GP Training points 0.65 3.12 0.51
Test points 0.67 5.48 0.55

We also compare the results of uncertainty propagation due to aleatory uncertainty (the

random field k) and epistemic uncertainty for the GP model and CNN-GP using the 8,400

test points as shown in Table  4.4 . The results of SVM and CNN only contain the effect of

aleatory uncertainty because these two methods cannot quantify epistemic uncertainty. The

results of the GP model and CNN-GP contain the effect of both types of uncertainty. The

results from MCS are the ground truth because we use SFEM to obtain true response. It is

shown that CNN-GP is more accurate than CNN and has a subtle difference compared with

MCS. CNN is also accurate enough with the errors of mean and standard deviation being

0.11% and 3.79%, respectively. GP and SVM have better accuracy for the mean but with a

larger error for the standard deviation compared with CNN-GP.

Table 4.4. Results of uncertainty propagation of Example 2.
Methods Mean Error (%) Std Error (%)
MCS 542.87 - 23.18 -
GP 542.92 0.01 22.78 1.74
SVM 542.91 0.01 20.15 13.06
CNN 542.28 0.11 22.30 3.79

CNN-GP 542.79 0.02 23.10 0.35
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4.5.3 Transient Nonlinear Heat Transfer

The third example is concerned with transient nonlinear heat transfer in a thin plate.

The domain is the same as Example 2 shown in Figure  4.9 . The boundary conditions are the

same: the temperature at b1 follows a uniform distribution and other boundaries are thermal

isolation. Still, the temperature at point p1 is the quantity of interest. The difference between

this example and Example 2 is that the heat transfer is transient or time dependent. The

governing equation is given by

ρCptz
∂T

∂t
− ktz∇2T + 2hcT + 2εσT 4 = 2hcTa + 2εσT 4

a (4.40)

where ρ is the material density; Cp is the heat capacity with randomness that is characterized

by a Gaussian random field; t is the time. Other parameters have been introduced in Example

2. Therefore, we have two random fields and one random variable in this example. Each

random field is realized using 20 independent standard normal random variables.

Similarly, we generate random samples and mesh to have image data using Eqs. ( 4.38 )

and ( 4.39 ). Since we have two random fields, the images are with two channels. Using the

same methods, we convert the temperature of the left boundary into images and merge with

the existing images (random field realizations). One merged image data with two channels

is shown in Figure  4.13 .

Figure 4.13. An example of the merged two-channel image data.
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Figure 4.14. True label versus the predicted label by CNN of Example 3.

Table 4.5. Regression accuracy of different methods of Example 3.
Methods Samples Error (%)

Average Max Std

GP Training points 0 0 0
Test points 0.43 7.62 0.57

SVM Training points 0.29 1.47 0.18
Test points 0.46 2.55 0.36

CNN Training points 0.42 2.10 0.31
Test points 0.45 2.38 0.34

CNN-GP Training points 0.36 2.05 0.28
Test points 0.39 2.15 0.30

Table 4.6. Results of uncertainty propagation
Methods Mean Error (%) Std Error (%)
MCS 446.61 - 11.94 -
GP 446.55 0.01 11.18 6.37
SVM 446.32 0.07 10.34 13.40
CNN 446.90 0.06 11.54 3.35

CNN-GP 446.54 0.02 11.83 0.89

There are 10,000 samples generated in total. We use 2,500 samples for CNN-GP model

training and 7,500 samples left are for testing. The true labels are obtained by the SFEM.

This example uses the same CNN structure in Table  4.2 .
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Figure 4.15. Mean predictions with epistemic uncertainty of Example 3.

The regression accuracy is shown in Figure  4.14 . The true response and predicted re-

sponse at test points are located around the 45◦ line. We quantitatively compare the accuracy

of different methods in Table  4.5 using the percentage error. The GP model has the best

accuracy for training points. Although CNN-GP has larger errors than the GP model for

training points, it has the best accuracy at test points compared with other methods. The

UQ results in Table  4.6 indicate that CNN-GP performs better for standard deviation with

an error of 0.89%. The results of the mean for all methods are accurate enough. Overall,

CNN-GP has the best performance.

4.6 Summary

This study proposes a regression method combining Convolutional Neural Network (CNN)

and Gaussian Process Regression (GPR) for mixed numerical and image data. It also quan-

tifies the epistemic uncertainty of the regression model. The strategy is to first transform

numerical data into image data and then merge the converted images to existing images.

Thus, the model input becomes pure image data that can then be fed into CNN for regression

without any further modifications. The quantification of the model uncertainty is fulfilled by

the integration of CNN and GPR. As a result, the output of the regression model contains the

mean prediction and standard deviation of the prediction, which provides an estimate of the
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model error. With this distinctive feature, the proposed method can be potentially applied

to engineering problems where numerical and image data coexist and can be employed for

non-deterministic analysis and design where aleatory uncertainty exists in the model input.

Potential applications include reliability-based design, robust design, and risk-based design.

In the future, we will use CNN-GP for reliability analysis (extreme events) and perform

regression with the image-like model response. In this work, we use regular CNN with-

out including the filter size, filter number, and the convolutional layer numbers of CNN as

learnable parameters. The reasons are as follows: 1) How to efficiently include those param-

eters in optimization is still a challenging problem and is another ongoing research work.

2) The computational complexity will be increased when the parameters are added to the

optimization as design variables. 3) The results of CNN constructed manually have good

accuracy.
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5. CONCLUSIONS

5.1 Contributions of The Dissertation

Uncertainty Quantification (UQ) is critical for engineering designs. High-dimensional

problems are inevitably encountered in scientific and engineering fields. Current UQ methods

are suffered from the curse of dimensionality which makes UQ computationally expensive in

high-dimensional space. Besides, current UQ methods are not applicable when more compli-

cated high-dimensional data (e.g. images) exist. To address those issues, three methodologies

are proposed in this dissertation.

In the first methodology, we focus on the problems with high-dimensional numerical input

which can be divided into important and unimportant variables according to their influence

on the system. The unimportant variables are fixed at their first step MPP components

so that the dimension is reduced. An accurate reliability analysis method is utilized in the

reduced space. The final reliability is obtained by accounting for the contribution of both

important and unimportant variables.

In the second methodology, we address one issue of the first method that the dimension is

not reduced using the first method since the most of the variables are important or variables

equally contribute to the system. Generalized Sliced Inverse Regression (GSIR) is used

to reduce the dimension of numerical input variables. Combined with Gaussian Process

(GP) modeling, importance sampling, and active learning, an accurate surrogate model for

reliability analysis is built with limited performance function evaluations.

In the third methodology, we propose a UQ method based on Convolutional Neural

Networks (CNN), which can accommodate both image and numerical data. We first convert

numerical data into image data and merge the converted image data with existing images.

Then, the aggregated image data are fed to CNN for training a CNN surrogate model. After

the training process is finished, a Gaussian Process Regression (GPR) model is built with

respect to the latent variables of CNN and true response (label) for UQ.

Based on the experiment results, we reach the following conclusions.

• In high dimensional problems, the contributions of random variables are different. We

can divide them into important and unimportant variables according to their contri-
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butions. When most of the variables are unimportant variables, the dimensionality

can be significantly reduced by fixing the unimportant variables to their percentiles,

thereby with improve the efficiency. High accuracy reliability is obtained by counting

the influence of both important and unimportant variables.

• When most of the variables are important or variables have similar contributions, GSIR

can be used for dimension reduction to alleviate the curse of dimensionality.

• After dimension reduction by GSIR, active learning executed in the subspace largely

improves the efficiency of meta-modeling methods with satisfying accuracy.

• The proposed CNN-based surrogate model, CNN-GP, can accommodate both image

and numerical data with satisfying regression accuracy. This is achieved by first con-

verting numerical data into image data and then merging the converted images to the

existing images. The aggregated images serve as the input of CNN.

• The epistemic uncertainty is quantified to estimate the model error by integrating CNN

with GPR. The accuracy of Uncertainty Propagation from input (mixed image and

numerical input) to output is improved by accounting for both epistemic uncertainty

and aleatory uncertainty.

5.2 Recommendations of Future Research

This dissertation provides three cost-efficient UQ methods to deal with uncertainty in

high dimensional space. Several research topics could be further investigated to refine the

tools developed.

The first research issue is the highly nonlinear problems for Method 1. Method 1 uses the

first-step most probable point (MPP) components to determine the importance of variables.

However, when the performance function is high nonlinear, the first-step MPP may not be

accurate to determine the importance of variables. Although more MPP search iterations can

potentially alleviate the problem, the efficiency will deteriorate. Other advanced sensitivity

analysis methods may eligible to replace the first-step MPP approach.
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The second research issue is that multiple failure regions exist in the design space. It is

assumed that only one MPP exists in the first two methods. When multiple failure regions

exist, there will be multiple MPPs, which could introduce errors. In system reliability

analysis and highly nonlinear problems, it is common to have multiple MPPs. The advanced

sampling methods instead of MPP-based importance sampling may be helpful to overcome

this problem.

The third research issue is to apply CNN-GP to extreme events UQ, reliability analysis.

The current UQ by CNN-GP focuses on the whole probability space to obtain the first two

moments of the quantity of interest (QoI). When we perform reliability analysis, our focus will

be the subdomain close to the failure boundary. Current CNN-GP may waste computational

resources on unnecessary subdomains. To improve efficiency, integrating active learning is a

possible solution for reliability analysis by CNN-GP.

In addition, the proposed methods could be applied to engineering design and opti-

mization where uncertainty exists. For example, the proposed methods could be used for

Reliability-based Design Optimization (RBDO) and Robust Design (RD). The efficient UQ

methods in this dissertation could be used to evaluate the reliability with reduced computa-

tional cost in RBDO and RD until the reliability constraints are satisfied.
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