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ABSTRACT

In the mechanical design stage, engineers always meet with uncertainty, such as random
variables, stochastic processes, and random processes. Due to the uncertainty, products may
behave randomly with respect to time and space, and this may result in a high probability of failure,
low lifetime, and low robustness. Although extensive research has been conducted on the
component reliability methods, time- and space-dependent system reliability methods are still
limited. This dissertation is motivated by the need of efficient and accurate methods for addressing
time- and space-dependent system reliability and probabilistic design problems.

The objective of this dissertation is to develop efficient and accurate methods for reliability
analysis and design. There are five research tasks for this objective. The first research task develops
a surrogate model with an active learning method to predict the time- and space-independent
system reliability. In the second research task, the time- and space-independent system reliability
is estimated by the second order saddlepoint approximation method. In the third research task, the
time-dependent system reliability is addressed by an envelope method with efficient global
optimization. In the fourth research task, a general time- and space-dependent problem is
investigated. The envelope method converts the time- and space-dependent problem into time- and
space-independent one, and the second order approximation is used to predict results. The last task
proposes a new sequential reliability-based design with the envelope method for time- and space-
dependent reliability. The accuracy and efficiency of our proposed methods are demonstrated

through a wide range of mathematics problems and engineering problems.
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1. INTRODUCTION

1.1 Background

Uncertainty always exists in the product design and development, and operations of
engineering systems [1-5]. Uncertainty may significantly affect the reliability of products and
systems. It is vital to predict system reliability in the design stage to maintain low lifecycle costs
and avoid tragic system failures [6, 7]. System reliability is the probability that the system can
work properly without any failure. Since a system is composed of multiple components, its
reliability depends on the reliability of each component and the dependency between component
states.

Uncertainty can be classified into time- and space-independent uncertainty, namely static
uncertainty, and time- and space-dependent uncertainty. Static uncertainty exists in random
variables, which do not vary with respect to time and space, such as the randomness in dimensions
of mechanical components. Time- and space-dependent uncertainty exists in random processes
and random fields that change randomly over time and in space. Examples include random material
properties, random loadings that vary at different time instances and locations, and random
operation conditions.

There are three types of methods for the system reliability analysis, and they are numerical
methods, sampling-based methods, and surrogate model methods. Among numerical methods, the
traditional first-order reliability method (FORM) is the most common method as it has a good
trade-off between efficiency and accuracy [8-12]. When the limit-state functions (the functions to
predict the state of a component and system for reliability analysis) are non-linear, using the
second-order reliability method (SORM) can achieve higher accuracy in estimating the
probabilities [13-15]. The saddlepoint approximation (SPA) method can also achieve higher
accuracy without sacrificing computational efficiency [14, 16-20].

Sampling-based methods can produce accurate results if the sample size is large enough. Such
methods include Monte Carlo simulation (MCS) [21-23], importance sampling (IS) [24, 25], and
subset simulation (SS) [26-28]. The advantage of MCS is its easy implementation and high
accuracy. MCS can deal with highly nonlinear problems. But the computational cost will be

extremely high if the reliability is high. IS provides a way to reduce the computational cost since
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it generates more samples in the failure area. SS is also a powerful simulation tool for estimating
small failure probabilities, which are expressed as a product of larger conditional failure
probabilities by introducing intermediate failure events.

Surrogate modeling methods overcome the drawbacks of the inefficiency of sampling methods
[29-35]. A surrogate model as an approximate model is constructed based on inputs and outputs
of the chosen training points. If the inexpensive surrogate model is close to the limit-state function,
it can replace the expensive limit-state function for reliability analysis. Popular surrogate modeling
methods include support vector machines [25][34], polynomial response surface method [26],
neural networks [27], and Kriging [35-37].

The above three types of methods are for reliability prediction. Reliability should also be
considered in the design process. Reliability-based design (RBD) aims to mitigate the effects of
uncertainty upon system performance and reduce the risk and cost in the design stage. When the
system information is completely known, RBD determines optimal design variables by minimizing
the cost and ensuring the satisfaction of the reliability requirement. It involves both optimization
and reliability analysis. There are many mature RBD methodologies, such as double-loop methods
[38], single loop approaches [39], sequential optimization method [40], and safety-factor
approaches [41].

Most of the above methods are for static problems. There are still research needs in improving
their performance. For instance, the most popular methods of the first and second-order reliability
methods (FORM and SORM) for system reliability analysis may introduce large errors when limit-
state functions are highly nonlinear [42]. Therefore, the surrogate-based methods are used [43].
But the surrogate-based methods still have some limitations. For instance, the Kriging method [35]
does not account for the covariance between responses at different inputs, which may affect the
efficiency and accuracy of the results.

Time- and space-dependent uncertainty, such as stochastic processes and random fields [44],
is common in engineering applications. Time-dependent reliability methods can be solved by MCS,
but the computational cost is much higher than those for static reliability methods [45-49]. The
most common method is the Rice formular method [50]. It is efficient but may not be accurate
when upcrossings (failure) events are strongly dependent [51]. Surrogate-modeling methods have
therefore been proposed to improve the accuracy [52], but the accuracy is still not satisfactory for

highly nonlinear limit-state functions. For the most general time- and space-dependent reliability
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methods, MCS will be computationally expensive [53-55]. There is a critical need to develop
methodologies to improve the accuracy and efficiency of time- and space-dependent reliability
prediction.

As for the time- and space-dependent RBD, to our best knowledge, there is no practical way
to efficiently perform optimization with time- and space-dependent reliability constraints. There
is a need to extend the time- and space-dependent reliability analysis into time- and space-

dependent RBD to achieve efficient time- and space-dependent RBD.

1.2 Research Objective and Contributions

The objective of this research is to predict component and system reliability and conduct
reliability-based design efficiently and accurately with Kriging and Envelope methods. To achieve
this objective, we propose five research tasks. The first research task develops a Kriging method
with active learning to predict system reliability. The second research task employs a second order
saddlepoint method to predict system reliability. The third research task proposes an envelope
method with efficient global optimization to estimate time-dependent system reliability. The fourth
research task extends the envelope method to deal with the most general time- and space-dependent
problem. The fifth research task is reliability-based design under time- and space-dependent
uncertainty with the envelope method. The five research tasks together improve the accuracy of
reliability prediction results and enable time- and space-dependent reliability-based design, and
the specific contributions of each research task are summarized below.

Research task 1 proposes a new system reliability method that combines Monte Carlo
simulation and the kriging method with improved accuracy and efficiency. A new learning
function is proposed to select training points to relieve the computational burden greatly without
jeopardizing the accuracy of the reliability prediction. Accurate surrogate models are created for
limit-state functions with the minimal variance in the estimate of the system reliability, thereby
producing high accuracy for the system reliability prediction.

Research task 2 extends the second order SPA to system reliability analysis. The joint
distribution of all the component responses is approximated by a multivariate normal distribution.
To maintain high accuracy of the approximation, the proposed method employs the second-order

SPA to accurately generate the marginal distributions of the component responses. The proposed
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method estimates the covariance matrix of the multivariate normal distribution with the first order
approximation to the component responses to achieve high efficiency. With the estimated marginal
component distributions and covariance matrix, the very fast estimation for system reliability can
be achieved.

Research task 3 develops a time-dependent system reliability method, which uses the envelope
method and second-order reliability method. The component reliability index is estimated using
the existing second-order component reliability method for high accuracy. The covariance between
component responses is estimated with the first-order approximations for high efficiency. The
accurate prediction result is achieved by approximating the joint probability of all the component
responses as a multivariate normal distribution with its mean vector being component reliability
indexes and covariance being those calculated by the first order reliability method.

Research task 4 proposes an envelope method for predicting the component reliability under
time- and space-dependent reliability. It at first searches for the most probable point (MPP) of the
envelope function using the sequential efficient global optimization in the domain of the space and
time under consideration. The distinctive feature of the new method is the true second order
approximation to envelope functions with its accurate Hessian matrix calculation, and then the
envelope function of the time- and space-dependent limit-state function is evaluated at its worst-
case MPP with high accuracy.

Research task 5 aims at introducing the envelope method into time- and space-dependent RBD.
Sequential optimization is used to decouple the double-loop structure of optimization for releasing
the computational cost. The accurate design results are achieved by a series cycle of deterministic
optimization and reliability analysis with the envelope method.

In summary, the results of the above research will enable engineers to accurately predict the
reliability of engineering systems and to identify the optimal design results by ensuring satisfied
reliability in the early design stage. Other areas that can benefit include uncertainty quantification,

design under uncertainty, and reliability engineering.

1.3 Organization of Dissertation

The sequence of the dissertation is shown in Figure 1.1. The first four tasks are system

reliability analysis, and the last task is reliability-based design. Tasks I and II address the gaps in
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existing static reliability methodologies and prepare for time-dependent reliability analysis. Task
IIT deals with gaps in time-dependent reliability. Task VI focuses on the time- and space-dependent
reliability problem. Task V uses the above reliability analysis methods for the time- and space-

dependent reliability-based design problem.

Task ITI Task I

Time-depepder}t System Reliability System Reliability Analysis with
Analy51§ w1th second Order . . Autocorrelated Kriging Prediction

Reliability Method Probabilistic Design and
System Reliability
Prediction
Task VI
. Task II

E[Swelor_) %Memngdnftol;T;lim;iia:nd System Reliability Analysis with

pace- Lependent Rellability Second Order Reliability Analysis
Prediction

Task V
Envelope Method for Time- and
Space-Dependent Reliability-Based
Design

Figure 1.1 Organization of the dissertation
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2. SYSTEM RELIABILITY ANALYSIS WITH AUTOCORRELATED
KRIGING PREDICTIONS

Hao Wu!, Xiaoping Du?
School of Mechanical Engineering, Purdue University, West Lafayette, IN, United States
2Department of Mechanical and Energy Engineering, Indiana University - Purdue University
Indianapolis, IN, United States
Published in ASME. J. Mech., doi: https://doi.org/10.1115/1.4046648
Authors’ contribution: H.-W. and X.D. designed the study and contributed to the writing of
the manuscript. H.W. developed detailed methodology and the code.

When limit-state functions are highly nonlinear, traditional reliability methods, such as the first
order and second-order reliability methods, are not accurate. Monte Carlo simulation (MCS), on
the other hand, is accurate if sufficient sample size is used, but is computationally intensive. This
research proposes a new system reliability method that combines MCS and the Kriging method
with improved accuracy and efficiency. Accurate surrogate models are created for limit-state
functions with the minimal variance in the estimate of the system reliability, thereby producing
high accuracy for the system reliability prediction. Instead of employing global optimization, this
method uses MCS samples from which training points for the surrogate models are selected. By
considering the autocorrelation of a surrogate model, this method captures the more accurate
contribution of each MCS sample to the uncertainty in the estimate of the serial system reliability
and therefore chooses training points efficiently. Good accuracy and efficiency are demonstrated

by four examples.

2.1 Background

With the increasing complexity of engineering systems, the cost of system failures may also
increase. To maintain low lifecycle costs and avoid tragic system failures, it is vital to predict the
system reliability accurately in the design process. System reliability is the probability that a

system performs its intended function without failures under given working conditions. With the
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system reliability available, designers can make more reliable decisions on maintenance plans,
warranty policies, and cost assessment [56, 57].

In general, system reliability methods are classified into two major groups: analytical methods
and sampling-based methods. The most popular analytical methods are the First and Second-Order
Reliability Methods (FORM and SORM) [58-61], which employ a first and second-order
approximation, respectively, to a limit-state function in the vicinity of the Most Probable Point
(MPP). But for limit-state functions that are not linear or quadratic, significant errors could be
introduced by FORM and SORM. Both methods may also produce large errors if multiple MPPs
exist. Higher accuracy can be achieved by sampling-based methods. They include Monte Carlo
simulation [62] and importance sampling [63-68]. MCS is widely used due to its easy
implementation and high accuracy if a sufficiently large number of samples is used. MCS can deal
with problems with almost any level of nonlinearity, but the computational cost is extremely high
if reliability is high. Importance sampling methods could be used to reduce the computational cost
because they generate more samples in the failure region. The importance sampling methods
require the MPP to center the sample distributions at the MPP. For a large-scale problem, searching
for the MPP is expensive, and this reduces the efficiency of importance sampling.

In addition to the above two groups of methods, surrogate-based methods are increasingly used
due to their ability to reduce computational cost by creating surrogate models, or meta-models [69,
70]. A surrogate model is a computationally inexpensive model created to substitute the original
expensive limit-state function. The goal of metamodeling is to make the surrogate model accurate
at an affordable computational cost. The general process of metamodeling starts with generating a
small number of initial sample points (training points or TPs) by Design of Experiments (DOE)
[71]. Based on these samples, an initial surrogate model is built by a metamodeling technique.
Then more TPs are added to improve the accuracy of the surrogate model. Learning functions are
employed to select the best TPs intelligently, and the surrogate model is refined in a most efficient
manner.

Popular metamodeling techniques include the polynomial response surface method [72, 73],
neural networks [74-76], support vector machines [77-79], polynomial chaos expansion [80],
Kriging [81-83], etc. Kriging method could be used for interpolation. The prediction of an existing
training point produces the exact value of the response at the point. Besides, due to its stochastic

characteristics, Kriging provides not only the prediction of an untried point, but also the variance
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of the prediction. The variance indicates the uncertainty of the prediction. Based on Kriging, Jones
et al. developed the Efficient Global Optimization (EGO) method [84]. EGO uses the Expected
Improvement Function (EIF) to achieve a good balance between exploiting areas of the design
space where good solutions have been found, and exploring the design space where the uncertainty
is high. Later, Bichon et al. proposed the Efficient Global Reliability Analysis (EGRA) [85] and
extended it to system reliability prediction with multiple failure modes [86]. The latter method is
called EGRA-SYS. The method uses the Expected Feasibility Function (EFF) to choose new TPs
in the vicinity of the limit state and helps build an accurate surrogate model with fewer function
evaluations. EGRA needs global optimization to find the optimum training point. Recently, Echard
et al. proposed an active learning method to avoid global optimization. The method takes
advantage of Kriging and Monte Carlo simulation (AK-MCS) [87], which chooses new TPs from
a pre-sampled MCS population; as a result, no global optimization is needed. Fauriat and Gayton
then applied AK-MCS to system reliability analysis [88].

The above methods make the Kriging predictions without exploiting the covariance between
pairs of given points, and we referred to them as Independent Kriging Methods (IKM). As a matter
of fact, the predictions from Kriging are realizations of a Gaussian process and therefore are
dependent on one another. Considering the dependence could further improve the efficiency and
accuracy of the active learning methods. Based on this strategy, Zhu and Du proposed a reliability
method with MCS and dependent Kriging predictions, called Dependent Kriging Method (DKM)
[89]. Accounting for dependence between Kriging predictions and focusing directly on the
accuracy of reliability estimation, DKM achieves better accuracy and efficiency.

DKM is applicable only for component reliability analysis. The objective of the present study
is to extend DKM to system reliability analysis. The contributions of this study include the
following: (1) the extension of the component DKM to system problems so that multiple failure
modes can be considered, (2) a new learning function that uses selected candidate points to relieve
the computational burden greatly without jeopardizing the accuracy of reliability estimation, and
(3) the development of a numerical procedure allows for accurate system reliability prediction at
an affordable cost. Since the proposed method is based on Kriging and DKM, we briefly review
them in Section 2. In Section 3, the dependent Kriging method for systems (DKM-SYS) is
explained in detail. Section 4 provides four examples to illustrate the implementation process and

the effectiveness of the new method. Conclusions are made in Section 5.
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With the increasing complexity of engineering systems, the cost of system failures may also
increase. To maintain low lifecycle costs and avoid tragic system failures, it is vital to predicting
the system reliability accurately in the design process. System reliability is the probability that a
system performs its intended function without failures under given working conditions. With the
system reliability available, designers can make more reliable decisions on maintenance plans,
warranty policies, and cost assessment [56, 57].

In general, system reliability methods are classified into two major groups: analytical methods
and sampling-based methods. The most popular analytical methods are the First and Second-Order
Reliability Methods (FORM and SORM) [58-61], which employ a first and second-order
approximation, respectively, to a limit-state function in the vicinity of the Most Probable Point
(MPP). But for limit-state functions that are not linear or quadratic, significant errors could be
introduced by FORM and SORM. Both methods may also produce large errors if multiple MPPs
exist.

Higher accuracy can be achieved by sampling-based methods. They include Monte Carlo
simulation [62] and importance sampling [63-68]. MCS is widely used due to its easy
implementation and high accuracy if a sufficiently large number of samples is used. MCS can deal
with problems with almost any level of nonlinearity, but the computational cost is extremely high
if reliability is high. Importance sampling methods could be used to reduce the computational cost
because they generate more samples in the failure region. Most importance sampling methods
require the MPP to center the sample distributions at the MPP. For a large-scale problem, searching
for the MPP is expensive, and this reduces the efficiency of importance sampling.

In addition to the above two groups of methods, surrogate-based methods are increasingly used
due to their ability to reduce computational cost by creating surrogate models, or meta-models [69,
70]. A surrogate model is a computationally inexpensive model created to substitute the original
expensive limit-state function. The goal of metamodeling is to make the surrogate model accurate
at an affordable computational cost. The general process of metamodeling starts with generating a
small number of initial sample points (training points or TPs) by Design of Experiments (DOE)
[71]. Based on these samples, an initial surrogate model is built by a metamodeling technique.
Then more TPs are added to improve the accuracy of the surrogate model. Learning functions are
employed to select the best TPs intelligently, and the surrogate model is refined in a most efficient

manncr.
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Popular metamodeling techniques include the polynomial response surface method [72, 73],
neural networks [74-76], support vector machines [77-79], polynomial chaos expansion [80],
Kriging [81-83], etc. Kriging method could be used for interpolation. The prediction of an existing
training point produces the exact value of the response at the point. Besides, due to its stochastic
characteristics, Kriging provides not only the prediction of an untried point, but also the variance
of the prediction. The variance indicates the uncertainty of the prediction. Based on Kriging, Jones
et al. developed the Efficient Global Optimization (EGO) method [84]. EGO uses the Expected
Improvement Function (EIF) to achieve a good balance between exploiting areas of the design
space where good solutions have been found, and exploring the design space where the uncertainty
is high. Later, Bichon et al. proposed the Efficient Global Reliability Analysis (EGRA) [85] and
extended it to system reliability prediction with multiple failure modes [86]. The latter method is
call EGRA-SYS. The method uses the Expected Feasibility Function (EFF) to choose new TPs in
the vicinity of the limit state and helps build an accurate surrogate model with less function
evaluations. EGRA needs global optimization to find the optimum training point. Recently, Echard
et al. proposed an active learning method to avoid global optimization. The method takes
advantage of Kriging and Monte Carlo simulation (AK-MCS) [87], which chooses new TPs from
a pre-sampled MCS population; as a result, no global optimization is needed. Fauriat and Gayton
then applied AK-MCS to system reliability analysis [88].

The above methods make the Kriging predictions without exploiting the covariance between
pairs of given points, and we referred to them as Independent Kriging Methods (IKM). As a matter
of fact, the predictions from Kriging are realizations of a Gaussian process and therefore are
dependent on one another. Accounting for dependence between Kriging predictions and focusing
directly on the accuracy of reliability estimation, DKM achieves better accuracy and efficiency.

DKM is applicable only for component reliability analysis. The objective of the present study
is to extend DKM to system reliability analysis. The contributions of this study include the
following: (1) the extension of the component DKM to system problems so that multiple failure
modes can be considered; (2) a new learning function that uses selected candidate points to relieve
the computational burden greatly without jeopardizing the accuracy of reliability estimation, and
(3)the development of a numerical procedure allows for accurate system reliability prediction at

an affordable cost.
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Since the proposed method is based on Kriging and DKM, we briefly review them in Section
2. In Section 3, the dependent Kriging method for systems (DKM-SYYS) is explained in detail.
Section 4 provides four examples to illustrate the implementation process and the effectiveness of

the new method. Conclusions are made in Section 5.

2.2 Methodologies Review

In this work, the component reliability is defined by
R="Priy =g(x) >0} (1)
where y is a component response and X is a random vector. If y >0, the failure mode does

not occur; otherwise, the failure occurs.

Next, we herein review the methods that are needed by the proposed method.

2.2.1 Kiriging Method

Kriging is an interpolation method since its prediction at an existing TP is the exact value of

the response at the point. For a performance function y = f(x), Kriging considers y = f(X) being

a realization of Gaussian process defined by

G(x) =f(x)'p+Z(x) 2)

where f(X)TB is a determination term for the mean response, f(X) is a vector of regression

functions, and P is a vector regression coefficient, Z(-) 1s a stationary Gaussian process with zero

mean and covariance

CofZ(x,),Z(x,)] = 05 R(X,,X,) (3)

whereo is the process variance, and g(.,.) is the correlation function. The commonly used

Gaussian correlation is the anisotropic squared exponential model, which is given by

R(Xi’xj) =CXp {_iek(xik _'xjk)z:| 4)

k=1
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where x; and x ; are the k-th components of X; and X, respectively, d is the dimensionality

of X, and 0, is a parameter that indicates the correlation between the points in dimension k. Due

to the stochastic characteristics, Kriging provides not only the prediction at an untried point but
also the variance of the prediction. The variance indicates the uncertainty of the prediction. At an

untried point x, the Kriging predictor g(x) follows a Gaussian distribution denoted by
(%)~ N(u5(x), 05(%)) 5)
where £,(X) and 0(2; (x) are the prediction and its variance, respectively. They are computed

by [81]

H(x)=f(x)' B+r(x)R" (y ~FP) (6)
o, =62{1-r(x)' R'r(x)+[F'R'r(x) - f(x)]"(F'R"F) '[F R 'r(x) - f(x)]} (7)
in which y is a vector of responses at the TPs, Fis a mx p matrix with rows f(X)", m is the
number of TPs, and r(.) is the correlation vector containing the correlation between X and each

of the TPs.
r(x) =[R(x,X,), R(X,X,),..., R(x,x,)]' (8)

R is the correlation matrix, which is composed of correlation functions evaluated at each possible

combination of the m TPs. R is given by
R=[R(x;,x))], |<i<m1<j<m )

B is the least square estimate of B given by
B=F"R'F)'F Ry (10)

and ¢, are determined through
o 1 AT A
GﬁZZ(Y—FB)TR (y—FB) (11)

The parameters 0, are determined through the maximum likelihood estimation, details of

which are available in Ref. [81, 82].
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2.2.2 Review of AK-SYS and EGRA-SYS

Both AK-SYS [88] and EGRA-SYS [86] are system reliability methods and are based on the
Kriging method. Once surrogate models of all the limit-state functions are built, the two methods

use MCS to estimate the system reliability using the surrogate models. They at first generate a
sufficient number of sample points X, by MCS and use a few initial TPs to create initial

surrogate models. New TPs are then added one by one so that the surrogate models are continually
updated. AK-SYS and EGRA-SYS select new TPs using the strategies in AK-MCS [87] and
EGRA [30], respectively. AK-MCS selects a new TP with a learning function defined by

U(x)=% (12)

U is related to the chance of making a mistake on the sign of the prediction. The smaller is v, the
higher is the likelihood. Consequently, the sample point with the smallest v is selected as a new

TP. For a system with multiple components, a composite learning function y*is used by AK-SY'S

[88] and is given by U (x) =‘ ,u;(x)‘ / o,(x). For a series system, ,u;(x) is the minimal value

among the predictions of all components at X, and 0; (x) is the corresponding standard deviation.

EGRA-SYS [31] uses a different learning function, which is called the expected feasibility

function (EFF) and is defined by
EFF(x) = (1,(x)—e) {2@ [%&(5‘)] - @Le_;*—‘(‘;;x)} _® [e;—‘égx)ﬂ
o[ (i) (i) (e -pm
_“g(x{w( 7 ] "{ 7 J "{ 7 ﬂ )

+5[cp (—8+ ~ A (X)J—cb(—e_ i (X)H
o,(x) o,(x)
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where e" =e— 5, e" =e+ 5, in which e is the failure threshold, and & is usually chosen by
o= 20'; (X). d(-) and ¢(-) are the cumulative density function (CDF) and probability density

function (PDF) of a standard normal random variable.

The process of AK-SYS and EGRA-SYS is as follows:

(1) Generate a small number of initial TPs, denoted by X, ; evaluate the limit-state functions
Y.y =& (X,;), where k=1,2,...,M ,and M is the number of components.

(2) Build surrogate models J, = g,(X,;).

(3) Generate Monte Carlo samples for input random variables X, .

(4) Evaluate the composite U function and EFF function at X, using the predictions and
standard deviations from y, = g, (X,;).

(5) Find the minimal value of the composite U learning function among those at all points in
X,cs- For the EGRA method, find the maximal value of the composite EFF learning function
among those at all points in X ..

(6) Check the convergence: The process converges if U ;nn >2 or EFFr:ax <0.001, and then
perform reliability analysis using J, = g, (X,;); otherwise, go to Step (7).

(7) Identify a new TP X, with the minimal composite learning function value U ;m or the
maximal composite learning function EFF,_ .

(8) Calculate the component U, or EFF, with high uncertainty at X, , and check U, <2 or

EFF, >0.001.

(9) Add x,,, and the responses at X, to the existing training point set and update the

surrogate models.

Repeat steps (2) through (9) till convergence.

As discussed previously, the larger is U or EFF, the higher is the chance that the Kriging model
is accurate. In Step 8, the threshold of 2 is taken for U to check the convergence. The threshold of
EFF is taken 0.001.
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The size of X, is determined by the estimate of the probability of system failure p . and

the coefficient of variation COV),¢. The relationship is given by

1—-
cov,, = |—2« (14)
Dy Nycs

where N, is the size of X,;. N, may vary so that COV,sf < 5%.

Without the consideration of correlation, AK-SYS and EGRA-SY'S use only mean predictions

as shown in the following indicator function

1, 1 (x)<0
1) ={ > e (15)
0, otherwise
Then p,is estimated by
1 N
Py = 2 Ix) (16)
i=1

where N is the number of samples in X .

2.2.3 Review of Dependent Kriging Method for Component Reliability

The dependent Kriging method (DKM) accounts for dependence between predictions to

achieve better accuracy and efficiency. DKM uses all the information of the surrogate model
$ = 8(x) = pu(x) + £(x), where &(x) ~ N(0,0°(x)) with correlation matrix R. DKM computes
p; by

pr= [ Sfdx=[100f(x)dx=E[I(x)] (17

#(x)+e(x)<0

where 7(.) is the indicator function defined by

(18)

I(x) = L y=28(x)=pux)+e(x)<0
0, otherwise
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Dy is a random variable since the domain of integration in Eq. (17) is random. The expectation

of ps is used to the estimate of the probability of failure [89]

1 & 1 &
Elp,)=5 2 EU) =526 (19)
where
6, = (- X)) (20)
a(x,)

The variance of p; is used to estimate the error of p, and is given by
1 N N
Var(pf) :FZ[%(I_%)"" z (e;‘j _eie_/)] (21)
i=l i=l, j#i

where e, = Pr{g(x;) <0,g(x;) <0} is the CDF of the bivariate normal distribution defined by

means (4, i4,], standard deviations [0;,0], and correlation 7. Eq. (21) indicates that Var(p,)

is the sum of N terms of the N sample points. Each term can be considered as the contribution from

each sample. The contribution of one sample 7 is defined as the learning function below.

¢ =el-e)+ Y (¢,—ce)) 22)

i=1, j#i

The learning function uses all the information of a Gaussian process, including its mean,
variance, and correlation. As a result, it provides a more accurate and efficient way of select TPs

to build surrogate models. In [89], selected candidate points (SCPs) are used to relieve the

computational burden of the bivariate joint probability evaluation in Eq. (22). ¢; is not calculated
for all points in X, and a smaller number of points in X, ., are selected to form the SCPs. Then
the evaluations of ¢; are performed with only SCPs. The SCPs are selected based on two criteria.
The first criterion is a small error in the estimate of p,, and this criterion requires a significant

number of points fall into the failure region. The second criterion is a high contribution to Var(p P ).
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Therefore, the SCPs consist of all the points in the failure region and other points with the highest

indicator function variances in the safe region. Details of the implementation is given in [89].

2.3 Dependent Kriging Method for System Reliability

The new dependent Kriging method for systems (DKM-SYS) is the extension of component
DKM to system reliability analysis. Similar to the component DKM, DKM-SYS consists of the
same components: the estimate of probability of failure, a learning function, a stopping criterion,

and an implementation process.

2.3.1 Estimate of py

In this work, we consider a series system with & failure modes. For a series system, if at least

one failure mode occurs, the system fails, and then the system reliability is computed by

R =Pr{g,(x)>001g,(x)>0(1....Ng,(x) >0} (23)

where M denotes intersection. The safe region Q is therefore defined by
Q={x]g,x)>0MNg,(x)>0M....N g, (x)>0} (24)

The system is safe at point x if x falls into Q. Thus R is computed by

R, = [ f(x)dx = [1,(x)f(x)dx = E[1,(x)] (25)

where the system indicator function is defined by

I () I, xeQ (26)
AX) =
* 0, otherwise
R, can be estimated by
1 & 1 &
R=—>»I1xx)=—)>1_ 27
SN;S(,) NZ 27)

where I, =1 (X,). The system reliability at X; € X, is
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Pr{l, =1} =Pr{g,(x) > 0N &,(x,) > 0N....Ng, (x) > 0} (28)
Thus, the probability of system failure at X; € X, is

py=1-R=1-—>"1, (29)

In this work, we generate surrogate models for limit-state functions separately and assume the
predictions of the & responses at the same point are independent. (The responses of a single limit-

state function at two points, however, are still dependent.) Thus the joint probability density
functions (PDF) of the k responses at point X; are the product of their marginal PDFs. Eq. (28) is

then rewritten as

Pr{l, =1} =1M—[Pr{§k(xi) >0} (30)

At point X,, the reliability of component £ is

Pr{g, (x,) >0} = @(%) =7 31)

Thus
Pril; =1} = lM_[ Vi (32)
Pr{l =0} =1-][r (33)

The expectation of the system indicator at X; is
M
E[1,]=1-(Pr{l, =1})+0-(Pr{l, =0 =[ | . (34)
k=1

The variance of the system indicator is

Var(l;]= E[(Isi)z]_(E[Isi])z :Hrki _(Hrmj :(I_HrkiJHrki (35)
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Since R is a random variable, its expectation is used for the estimate of the system reliability;

namely
1 N N M
E[RS]:—Z Z(Hrklj
N i=1
The probability of system failure p, is
Elp,] 1——Z[Hrk,j
The variance of p . is the same with the variance of R, which is calculated by

ZVar ] +ZZZCOV(]W,

i=l j>i

Var[p,]=Var[R]=— Varz

Var[p, ] is determined by the covariance cov(/;, /;), which is given by

si>Tsj

cov(l,,,1,)=E[I 1,1~ E[I,1E[l

si? Si™sj Si N ]

=Pr{l, :19[sj =1} - E[1,]E[1,]

5j

where
H%Hm
k=1 k=1

Let H=Pr{l = =11, = 1}, Eq. (38) becomes

Var[psf]=%{ﬂ( H”“jnr"’}ﬂzz(li Hrk’Hrlgj}

i=1 i=l j>i

where

(36)

(37)

(38)

(39)

(40)

(41)

H=Pr{l, =11, =1} =Pr{[g,(x) > 0N..N&(x)> 0)N[&(x,) > 0N..N & (x,) > 0]} (42)

Eq. (42) is the probability of system safety at points X; and X;. Since the predictions of all the

responses are independent, H is given by

H=Pr{l,=11,=1}= HPr{g,ﬂ>O gy, >0 =r,

k=1

where r,; is the probability that component £ is safe at point i and /.
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Eq. (41) can be rewritten as

vt 1111 1102 3 ({1 [T 11 )

i=1 J=1j#i

or

where

=NL2{ Hrkl]HrlirZZ(Hrk, Haﬂ@j}

J=Lj#i

Therefore, the standard deviation of p, is

1 N
px’ N i=1 '

(44)

(45)

(46)

(47)

o, 1s an indicator of the uncertainty associated with the estimate of the system reliability. If

of

there was no model uncertainty, o, , would be zero. The higher o, . is, the higher the uncertainty

associated with the system reliability estimated based on the surrogate models is. We therefore use

o, tomeasure the error of the system reliability prediction.

of

2.3.2 Learning Function

A learning function is used to select new TPs to refine the surrogate model. As indicated in Eq.

(44), each TP contributes to o, or Var[p,]. The sum of terms involving X; in Var[p] is ¢

in Eq. (46). Thus, we use ¢; as the learning function. Maximizing ¢, identifies a new TP that has

the highest contribution to the uncertainty of the estimate of system reliability; namely

Xnew Xh
h=arg max {c}

i=1,2,....Nyscs
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where X, is the A-th point in X,,,. Adding the highest contribution point as new TP is the most

effective way to refine the surrogate model with fast convergence [89].

2.3.3 Stopping Criterion

When o, is small enough, no more new TPs are needed. Then the surrogate models are used
to calculate p,, . Let the confidence of the probability of system failure be 1-« and the allowable
relative error be €, and then the confidence interval of the estimate is computed by

Elp,]+®(a/20, .

The relative error is defined by

) ‘E[ p 10 @/ Do, ~Elp,]
B Elp,]

O (a/ 2)0'” |
Elp,] |

n (49)

If 7; is smaller than the allowable error, the process terminates. Thus, the stopping criterion is

determined by

| i | (50)
Elp,]1 | (a/2)]

2.3.4 Implementation

Accounting for the dependence between responses requires calculations of bivariate
probabilities given by
g =Prig, >0,g, > 0}, (k=1.M;i,j=1,2,---,N,i # j) (51)

Calculating r,;is time consuming. For example, if the size of X, is 10°, the number of

N(@+N) _10°(1+10°)
2

calculating the joint probability in 7, is ~1.5x10" . To relieve the

computational burden, we use the so-called selected candidate points (SCPs), denoted by X,
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which are selected from X5 - The size of X is much smaller than that of X wcs - To ensure a

significant number of points fall into the failure region, we adjust the size of SCPs N_, using the

sel

following condition.

NF sel
25% <=1 <750, (52)

sel
where N, g, is the number of failure points in the SCPs. SCPs consist of all points in the failure
region and the other points with highest indicator function variances in the safe region. Using SCPs,

the computational effort needed is greatly reduced. In the examples in Sec.4, we use 200 SCPs.

The stopping criterion in Eq. (50) needs to be modified accordingly. The probability of system

failure using X is calculated by

1 Nsel
Elp,  1=1-— ) r, (53)
e Nsel i=l
and
L (54)
st ,se N
The stopping criterion becomes
o
Pysel n | (55)

E[psf,sel] - (D_l(a/2)|

The flowchart of the DKM-SYS is provided in Fig. 2.1

34



Generate initial TPs x,,

and obtain y,,=g(x,;)

Y

Build surrogate model | 4

V=8 (X,)

'

Generate

MC samples X,

Y

Compute the failure ratio Chang Update TPs
= NF’WI /NWI NMCS XkT :[XI(T ’Xnew]’ykT :[YkT ’yk,new]
A A
@ Compute yk,new =gk (XI‘IL’W)
ifU, <2
‘ Form SCPs x, ‘ A
* Compute
Compute the contributions U, =, (x,0,)|/04 (%)
of X, A
‘ Identify x,,, with the maximum
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based on §, =g, (X, )

Figure 2.1 Flowchart of DKM-SYS

2.3.5 Parallel Systems

The above results can be extended to parallel systems. For a parallel system with £ failure

modes, the probability of failure can be computed by
Pys =Pr{g,(x) <0 g,(x) <0M....Ng,(x) <0} (56)

Let G/(X)=-g,(X), then

P, =Pr{G,(x) > 0N G,(x) >00....N G, (x) > 0} (57)
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Eq. (57) evaluates the probability of a union of n-events as Eq. (23) does. Hence the proposed
method can be used to calculate Eq. (57), which leads to the parallel system reliability

R =1-p,.

2.4 Examples

The proposed method is evaluated with four examples. The first example is a mathematical
problem, which clearly demonstrates the application details and effectiveness of DKM-SY'S, while
the other three examples show possible engineering applications.

In all examples, initial TPs are generated by the Latin hypercube sampling (LHS) [90], and the
initial sample size is 12. The efficiency is measured by the number of limit-state function calls.
The accuracy is measured by the percentage error with respect to the direct MCS. The error is

calculated by
MCS
o= Py ~ Py

MCS
sf°

x100% (58)

where p;;cs and p . are probabilities of system failure from the direct MCS and the other method,

respectively. Since Kriging-based reliability methods are stochastic methods, we run each method
20 independently, and the average results are used for comparison. The standard deviation of the
number of function calls and probabilities of system failure are also provided. A smaller standard
deviation means that the results are concentrated closer to their mean values, and this indicates that
the method tends to produce more stable results. We therefore use the standard deviation as an

indicator of the robustness of the method.

2.4.1 Example1

This example involves two random variables and three mathematical equations. For this two-
dimensional problem, it is easy to demonstrate the effectiveness of the proposed method. The

three limit-state functions are given by [91]
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g, (x)= (xf +11)(x, =1)/5-cos(3x,) -5 (59)
2,(X) = (x, +x,—5)* 30+ (x, —x, —12)* /1201 cos(3x,) / 10 (60)
2,(x) =80/(x? +8x, —5)—cos(3x,) /10 -1 (61)

where x, ~ N(4,0.7%), i =1,2. Figs. 2.2 and 2.3 show the TPs and surrogate models using AK-

SYS and DKM-SYS method, respectively.

The average numbers of function calls and the average probabilities of system reliability based
on direct MCS and LHS are provided in Table 2.1 and Table 2.2, respectively. The difference of
results from the two sampling methods is not significant since the sample size is large. For this
reason, we compare two different sampling methods for only this example.

We also compare the probabilities of system failure from DKM-SYS, AK-SYS and EGRA-
SYS with those from the direct MCS and LHS. In both tables, the results show that DKM-SYS is
more accurate than AK-SYS and EGRA-SYS. DKM-SYS is also more efficient than AK-SY'S and
DKM-SYS since the former method has smaller average numbers of function calls. Limit-state
function 3 is far away from the origin as shown in Figs. 2.2 and 2.3, and it is hard to obtain an
accurate surrogate model. This function consumes most of the computational effort by DKM-SY'S,

AK-SYS and EGRA-SYS.

Initial TPs 6 \<~<

= Original model

glTps || | A | |sesssssen

g2 TPs

Surrogate model

/
A

(a) Training points (b) Final surrogate models

Figure 2.2 Training points and surrogate models of AK-SYS
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2
*
4 -2 2 4 6 -4 -2 0 2 4 6
U1 U‘
(a) Training points (b) Final surrogate models
Figure 2.3 Training points and surrogate models of DKM-SY'S
Table 2.1 Average results from 20 runs based on direct MCS
Number of function calls
Method Py & (%)
N N> N3
AK-SYS 2.7249x102 1.94 25.30 28.20 30.60
EGRA-SYS 2.7241x10? 1.97 26.05 29 32.05
DKM-SYS 2.7403x102 1.37 17.85 22.25 22.45
MCS 2.750%102 N/A 5%10° 5%10° 5%10°
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Table 2.2 Average results from 20 runs based on Latin hypercube sampling

Number of function calls
Method Dy & (%)
N1 N> N3
AK-SYS 2.7389x1072 1.24 25.5 28.5 30.0
EGRA-SYS 2.7472x1072 1.26 26.4 28.7 29.4
DKM-SYS 2.7403x1072 1.23 18.8 22.6 23.6
LHS 2.7474x1072 N/A 5x%10° 5x%10° 5x10°

2.4.2 Exmaple 2

This is an engineering problem with a small probability of system failure. This problem
involves a liquid hydrogen fuel tank that is used on a space launch vehicle [86, 92, 93]. The tank
has a honeycomb sandwich deign. It is subjected to stress caused by ullage pressure, head pressure,
axial force due to acceleration, and bending and shear stress due to the weight of the fuel. There
are three failure modes related to the von Mises strength, isotropic strength, and honeycomb

bucking. The limit-state functions for the von Mises and isotropic strength are given by

84000z,
g (X) = ——— —-1 (62)
JN2+N-NN,+3N.
840007
g,(X) = ——"= -1 (63)
V|

The limit-state function of honeycomb buckling is defined by a response surface generated
from the structural sizing program and is given by [86, 93].

2,(X) =0.847+0.96y, +0.986y, —0.216y, +0.077 7

(64)
+0.11y5 +0.007y; +0.378y, v, —0.106y,y, —0.11y,,
where
yl = 4(tplate - 0075) (65)
», =20(¢, =0.1) (66)
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Yy = —6000(NL +0.003) (67)

xy

The five independent random variables are given in Table 2.3. The reliability analysis results

are provided in Table 4.

Table 2.3 Random variables of example two

Random variables | Distribution

X e N(0.07433,0.005)
X, t, N(0.1,0.01)

X N, N(13,60)

X N, N(4751,48)

Xs N, N(-684,11)

Table 2.4 shows that the average total function call of AK-SYS and EGRA-SYS are 56.1 and
43.35 respectively, while the average total function call of DKM-SYS is 42.45. This demonstrates
that DKM-SY'S is more efficient. DKM-SYS is also more accurate than AK-SYS and EGRA-SYS,
because the error of DKM-SYSS is only 0.57% and the errors of the other two methods are relatively

large.

Table 2.4 Comparison of average results from 20 runs

Number of function calls
Method Dy e (%)

N N> N3

AK-SYS | 6.9756x10* | 1.52 12 31.50 | 12.60

EGRA-SYS | 6.9603x10* | 2.01 12 18.10 | 13.25

DKM-SYS | 7.0107x10* | 0.57 12 19.10 | 12.40

MCS 6.9855x10* | N/A | 2x107 | 2x107 | 2x10’
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2.4.3 Example3

This is an engineering problem that involves a relatively large set of input random variables.
As shown in Fig. 2.4, a cantilever beam [19] with ten random variables is used to prove the
robustness of DKM-SYS method.

The beam is subjected to external forces F and F>, external moments M; and Ma, and external

distributed loads denoted by (g,,,4,,) and (¢,,,q,,). These forces, moments, distributed loads,
together with the yield strength S and the maximum allowable shear stress 7 are normally

distributed random variables. Their information is given in Table 2.5. The deterministic parameters

are listed in Table 2.6.

Ql Q2
qLi gri qL2
e T
Z! .
7 \ h
? L Mt’ . A
n T~
< bl
”i dl ] »
< a >
« = ,
< b2 ]
a
<@ d2 ] »
€ 7 >

Figure 2.4 A cantilever beam
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Table 2.5 Random variables of example 3

Random Variables Distribution
X, M, (Nm) N(50x10%,5%10%)
X, M,(Nm) N(30x10°,3x10%)
X, F;(m) N(1.8x10*,2x10%)
X, F,(m) N(3x10%,3x10%)
X, q,,(N/m) N(3x10*,1x10%)
X, qp (N/m) N(2x10*,1x10%)
X, q,,(N/m) N(2x10%,1x10%)
X, o (N/m) N(1x10°,10)
X, S(Pa) N(4.5x107,4.5x10%)
X, r_ (Pa) N(3.5x10°,5x10°)

The maximum normal stress of the beam should be smaller than its yield strength, and this is

given by

gX)=5-

6M
wh?

where the bending moment at the left end point of the beam is

-c,)(2d; +c;)

M = Zlel +iEbi +22: qLi(d[ _Cé)(d[ +C,-) +22: (CIR,- _qLi)(di
i=l =l i=l i=1

6

(68)

(69)

The deflection of the right end point of the beam should not greater than the allowable defection

1)

allowable

=2 cm.

gZ (X) = 5 - 5allowable

where & is computed by
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lML PL3 2 M. (L 2 F(L-b (L—
_ Z(a)z( )ZCI( C)

EI 2 = = = 24 71)
(QRZ q; )(L ¢ ) qu (qRi — 45 )(L B di )5
; 120(d, — Z i Z‘ 120(d, —¢,) |

where the Young’s modulus is £ =2x10" Pa, and the moment of inertia is 7 = wh® /12. P is

the reaction force at the fixed end, which is given by

2 2 2 o . d-_C-
R 72

The last limit-state function specifies that the shear stress should not be greater than the

maximum allowable shear stress

3P
X)=r_ —r=7_ —— 73
g3( ) Tmax v Tmax 2Wh ( )

Table 2.6 Deterministic parameters

Parameters Values
a,(m) 1.5
a,(m) 4.5
b,(m) 0.75
b,(m) 25
¢,(m) 0.25
¢,(m) 1.75
d,(m) 1.25
d,(m) 4.75
L(m) 5
w(m) 0.2
h(m) 0.4
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The results from Table 2.7 also show that DKM-SYS has better performance than AK-SYS
and EGRA-SYS in accuracy, efficiency. The significant advantage of DKM-SYS over AK-SYS
and EGRA-SYS in this example is the efficiency. On average, the total function calls of AK-SY'S

and EGRA-SYS are 353.64 and 477, while DKM-SYS just needs 129.5 function calls.

Table 2.7 Comparison of average results from 20 runs

Number of function calls

Method Dy &(%)
' N N> N3

AK-SYS | 5.2592x107 | 1.74 | 245.89 12 95.75

EGRA-SYS | 5.2542x103 | 1.71 355 15 107

DKM-SYS | 5.2657x103 | 0.94 | 70.80 | 13.05 | 45.65

MCS 5.2567x10° | N/A | 1x107 | 1x107 | 1x10’

2.44 Example 4

This problem involves more failure modes than the previous examples. A crank-slider system
is considered which has four components shown in Fig. 2.5 [94]. An external moment is applied
to joint A to drive link AB rotating around A. The task is to predict the system reliability when

6, = /2 and five failure modes are considered for this system.

Figure 2.5 A crank-slider system
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For link AB, the length is /,, and the width and height of the cross section are b, and 4, . The

M(h /2)

3 developed in the link AB should be smaller than the
bh 112

maximal normal stress S, =

allowable normal stress S, and this is given by
& (X)=58,-5, (74)

For link BC, the length is /,, and the width and height of the cross section are b, and 4, . The

force developed in the link £, . should be smaller than the critical force for buckling P, .

g, (X)=F, —Fy (75)
T’El bi
2

For shaft DE, the length and diameter are /; and d,. It has two failure modes caused by

excessive deflection and excessive normal stress, respectively. The corresponding limit-state

functions are given by

g (X)=9,,-0.
{ 3 3705 (76)
g,(X)=S5,-5,
where ¢, is the allowable deflection, and J; is the maximal deflection given by
s _Fye sin(7z/2—91)l4(l32—lj)y2 77
=

93 LE,(x/4)d,/2)*

where E, is the Young’s modulus of shaft DE. S, is the allowable normal stress, and §, is the

maximal normal stress developed in the shaft and is calculated by

M, Fysin(z/2-6)(,~1,)d,/2)
1, (z/4)d,/2)"

s, (78)
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For spring DE, the outer diameter and inner diameter of the spring are D and d. The developed

maximal shear stress 7, should not be greater than the allowable shear stress of the spring coils

as”’
g&X)=7,—7; (79)

where 7, is computed by

(80)

_ _ Fyecos(z/2-6)D( 4D-d +0.615d]
i wd’ 4D-4d D

All the random variables are listed in Table 2.8, and the deterministic parameters are listed in

Table 2.9. The reliability analysis results are provided in Table 2.10.

Table 2.8 Random variables

Random Variables Distribution
X, M, (Nm) N(350,65)
X, [,(m) N(0.3,107)
X, 1, (m) N(0.9,2x107)
X, b,(m) N(0.022,5x107)
X h, (m) N(0.019,5x107")
X, b, (m) N(0.015,5x107")
X, h,(m) N(0.009,5x107)
X, d,(m) N(0.0228,1x10™)
X, D(m) N(34.7x107,1x10™")
X, 7, (m) N(50x10°,10x10°)
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Table 2.9 Deterministic parameter

Deterministic Parameters Values
£, (Pa) 200x10°
E,(Pa) 200x10°

K 1

l;(m) 0.95
[, (m) 0.30
S, (Pa) 400x10°
S.4(Pa) 460x10°
0,,(m) 0.0053
d(m) 29.5%107

Table 2.10 Comparison of average results from 20 runs

Number of function calls
Method Py & (%)
‘ M N> Ns Ns Ns
AK-SYS 1.3638x107 | 192 |149.95| 215 12 12 | 77.45
EGRA-SYS 1.3655%102 1.91 | 214.75 | 303.70 12 17.40 | 110.95
DKM-SYS 1.3713x102 0.81 | 54.35 | 76.25 | 12.05 | 12.15 | 38.90
MCS 1.3643x102 N/A | 5x10° | 5x10° | 5x10¢ | 5x10° | 5x10°

Table 2.10 shows the comparison between AK-SYS, EGRA-SYS, DKM-SYS, and MCS. It is
obvious that DKM-SY'S can achieve better accuracy and efficiency than AK-SYS and EGRA-SYS.
In particular, the total average function call of DKM-SYS is 193.7, while that of AK-SYS and
EGRA-SYS are 466.4 and 658.8, respectively.

47



2.5 Summary

This work develops a new system reliability method for series systems with multiple dependent
failure modes using the Kriging method. High efficiency and accuracy are achieved through the
following means: 1) the use of surrogate models from Kriging, 2) the use of all information from
Kriging, such as the prediction and its standard deviation, in the estimate of the system reliability,
and 3) an efficient way for selecting training points for refining surrogate models. Since the
dependence between Kriging predictions at different points are considered and the error of system
reliability estimate is directly quantified (instead of the error of surrogate models), the new method
improves the performance of Kriging-based system reliability methods.

The proposed method extends the Kriging method from component reliability analysis to
system reliability in an efficient manner. It can be potentially used for system reliability-based

design and robust system design.
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The second order saddlepoint approximation (SPA) has been used for component reliability
analysis for higher accuracy than the traditional second order reliability method. This work extends
the second order SPA to system reliability analysis. The joint distribution of all the component
responses is approximated by a multivariate normal distribution. To maintain high accuracy of the
approximation, the proposed method employs the second order SPA to accurately generate the
marginal distributions of the component responses; to simplify computations and achieve high
efficiency, the proposed method estimates the covariance matrix of the multivariate normal
distribution with the first order approximation to the component responses. Examples demonstrate

the high effectiveness of the second order SPA method for system reliability analysis.

3.1 Background

One of the criteria for systems design is to avoid system failures or minimize the probability
of system failures. It is therefore necessary to predict system reliability accurately and efficiently
during the design process [95]. System reliability is typically measured by the probability that the
system fulfills its intended function without failures [96]. There are multiple components in the
system, and each component may have multiple failure modes. Suppose the i-th failure model has

a limit-state function given by

Y=g(X) (i=1..,m) ey
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where Y, is a component response, and X is the vector of random variables. If ¥, <0, the

failure model does not occur; otherwise, the failure mode occurs. If we consider a failure model as

a component, component reliability is then computed by

R =Pr(g,(X)<0)= [ f()dx (i=1,2,...,m) )

where €, is the component safe domain or the domain defined by {X:Y, = g,(X) <0}, and

f(x) is the joint probability density function (PDF) of X. For a series system, if one failure mode

occurs, the system fails. System reliability is therefore given by

R, =Pr(ﬁgi<X) <oj= [ooof Fx (oo 3)

where Q¢ is the system safe domain or the domain defined by {X : ﬁ g (X)} <0, and m is the
i=1

number of components in the system.

In practice, it is difficult to integrate a multidimensional PDF over the safe domain in Eq. (3).
Different approaches have therefore been developed to approximate the multi-dimensional integral.
They include the bound approximation, surrogate approaches, and analytical approaches.

Bound approximation methods predict system reliability with lower and upper bounds. The
first order bound method for series systems assumes that all the component responses are
completely dependent or mutually exclusive. Based on this assumption, upper and lower bounds
are derived. Ditlevsen [97] developed the second-order bound method by taking into account all
the single mode failure probabilities and all the pairwise mode intersection failure probabilities to
narrow the first order bound. Song and Der Kuireghian [98] proposed a linear programming (LP)
method to compute the system reliability bound. The LP bounds are independent of the ordering
of the components and are guaranteed to produce the narrowest possible bounds. Another
reliability bound method is the complementary intersection method [99]. It approximates the
reliability of series systems with eigenvector dimension reduction and produces more accurate
results compared with the first and the second order bound methods. More studies on system
reliability bound methods can be found in Refs. [100, 101].

Surrogate approaches predict single-valued system reliability by creating surrogate models for

component responses and using Monte Carlo simulation (MCS). Surrogate models are created first,
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and then system reliability is estimated with MCS based on the surrogate models. The surrogate
modeling methods include the polynomial chaos expansion (PCE) [102], Support Vector Machine
(SVM) [103], and Kriging method [104-106]. The recent development in this area is to perform
surrogate modeling and MCS simultaneously. For example, Bichon et al. [104, 105] applied the
efficient global optimization to reliability assessment. This method uses the active learning
function called the Expected Feasibility Function (EFF) to choose new training points in the
vicinity of the limit state, resulting in building an accurate surrogate model with fewer function
evaluations. Fauriat and Gayton [106] proposed to build the initial Kriging surrogate model and
continually refine the model by choosing new training points from a pre-sampled MCS population.
Wu and Du proposed a new kriging method to predict system reliability that combines MCS and
the Kriging method with improved accuracy and efficiency[37].

Analytical methods use neither surrogate models nor MCS and also produce single-valued
system reliability. They approximate nonlinear limit-state functions so that the system probability
integral can be easily computed. The methods include the use of the First Order Reliability Method
(FORM) [107, 108], Second Order Reliability Method (SORM) [109, 110], and Saddlepoint
Approximation Method (SPA) [108, 111]. FORM is the most well-known method due to its good
balance between accuracy and efficiency. It at first transforms random variables into standard
normal variables and then it identifies the reliability index, which is the minimum distance from
the origin to the linearized and transformed limit-state function at the most probable point (MPP).
System reliability is then approximated by the multidimensional integration of the joint probability
density function after the marginal distributions and correlation coefficients of component states
are obtained by the first order approximation [107, 112]. Although the efficiency of such method
is good, the accuracy may not be good if limit-state functions are highly nonlinear. Therefore,
Madsen [110] presented an extension of FORM based on a more accurate approximation of the
limit-state function, and the result shows smaller differences between the second order
approximation and the exact result.

Among the above methods, SPA can improve accuracy for problems with or without the non-
normal to normal transformation. Du estimated the system reliability by SPA without any
transformation on random input variables, leading to more accurate result than the FORM [100].
But the method is still the first order approximation and produces bounds of system reliability. An

extension of the first order SPA to the second order SPA on component reliability analysis has
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also been proposed to accommodate quadratic functions, and the method is more accurate than the
first order SPA and SORM without sacrificing computational efficiency [113]. Papadimitriou et
al. proposed a new mean-value second-order saddlepoint approximation method for reliability
analysis of nonlinear systems with correlated non-Gaussian and multimodal random variables, and
the result is more accurate than FORM and SORM [114]. But these methods are for only the
component reliability analysis.

The purpose of this work is to extend the second-order SPA to system reliability analysis in
order to achieve high accuracy. The joint distribution of all the component responses is
approximated by a multivariate normal distribution. The second order SPA is used to approximate
the marginal distributions of the component responses for higher accuracy. The covariance matrix
of the multivariate normal distribution is estimated using the first order approximation.

The second-order SPA for component reliability analysis is briefly reviewed in Section 2. The
extension of the second-order SPA to system reliability analysis is discussed in Section 3 followed

by examples in Section 4. Conclusions are made in Section 5.

3.2 Review of Second Order SPA

In this section, we review the second order SPA for component reliability analysis [113]. It is

the basis of the proposed system reliability method in this work.

3.2.1 MPP Search

The method first approximates the limit-state function with a second order polynomial. It is
the same approximation in the original SORM [115], which involves the MPP search in the
standard normal space using FORM. With the assumption that all variables in X are independent,
they are transformed into the standard normal variables U. The transformation is given by

F(X;) =) (4)

where F(-) and ®(-) are the cumulative distribution functions (CDFs) of X, and U, ,

respectively. Then the transformed standard normal variables are
U, =@ '[F/(X))] (5)

After the transformation, the limit state function becomes
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Y =g(X)=G(U) (6)
Then, the minimum distance from the original to the limit-state surface G(U) =0 is identified.
The distance is the reliability index £ . The minimum distance point is called the MPP. The model

for searching for the MPP is given by

min || u || o
subjectto G(u)=0

where ||-|| means the length of a vector, namely

n
B=lull=u +ug 4wy =3 uf (8)
i=1

The solution from Eq. (7) is the MPP u” = (i ,u5,...,u)).

n

3.2.2 Quadratic Limit-state Function

After the MPP is found, the limit-state function is approximated by

O(U) = %(u*)T VG ' -VG)'u' +(VG(u) -V’ GuHu' )T U+ %UTVQG(u*)U 9)

. oG oG .
where VG(u )=| —| .,...,——| . | is the gradient, and V’G(u’) is the Hessian matrix,
oU/u 0U, |u
given by
PG PG PG|
ouU;  oU,U, oU,U,
G G G
V:Gu')=| oU,U, oU; oU,U, (10)
G G %G
| oUU, oU,U, ou,; |.

The independent standard normal vector fJ = ((}1 Ui (}n) can be easily generated as follows:

U=D"'U (11)
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where D is an orthogonal matrix whose column vectors are the eigenvectors of lsz(u*),
2

and U= (l} s (}2,...,&H) is a vector of independent standard normal random variables.

Thus, Eq. (9) is expressed in the form of a quadratic polynomial function, as follows:
O(U)=a+b"U+U"CU (12)

in which

a= %(u*)T V:GuHu -VGu)'u

b=D"b=(b,b,,...h) (13)

C=D'CD =diag(¢,,é,,....¢,)

Since C is diagonal, Eq. (12) can be written as sum of quadratic functions of different standard

normal variables.

o(U) = ZQ;(fJ) = Z(d[ + l;le + EiUiz) (14)
i=1 i=1
where
g=2 (15)
and 7 is the total number of random variables.
Q.(U) is further rewritten as follows
b b’
(JeU, +—=) +a,———
2,/¢. 4c
\/E~ ' . Z}+d, ¢>0
~ ~ b, b,
(U) =L —(|-CU ———=) +a4 ——=-7*+d. ¢ <0 (16)
Ql() ( i 2\/€) i 45[ I~~l i
-~ a+bU ¢=0
di +bl i
where d; is constant and is determined by the following equation
b’
(17)

Z; is obtained by a linear transformation of U;
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Z :\/Eﬁi+2L\/i5 >0
P
2-¢

(18)

Z,=-¢U, -

Z, is normally distributed and is denoted by Z, ~ N(u, ,o, ), where the mean iz, is given by
;
N

b,

1

NS

(19)

¢, ¢<0

{\/E &> 0
0, = (20)

V.=(Z /o, )* follows a noncentral chi-square distribution with freedom of 1 [116, 117];

namely V, ~ »?(1,1), where A is a non-centrality parameter and given by
A=(ny 1)
o,

The limit-state function in Eq. (16) in finally expressed by a linear combination of either
noncentral chi-square variables or standard normal variables.
oV, +d, >0
Q(U)=4-0,V,+d, ¢ <0 (22)
a+bU =0

3.2.3 Saddlepoint Approximation

Saddlepoint approximation is used to recover a PDF from its cumulant generating function

(CGF). The CGF of the noncentral chi-square V; in Eq. (22) is given by

1

At 1
K, (t)=—"———log(1-2¢ 23
v (1) =y 20g( ) (23)

The CGF of the standard normal variable U, in Eq. (22) is given by
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K. _Llp (24)
2

U;

The CGF of Q,(U) in Eq. (22) is then given by

Aot 1, (1-2020)+dt & >0
1-205t 2 s A
oot 1
K, (t)={-—="———log(1+20,t)+dt ¢ <0 (25)
Q[( ) 1+2O_§At 2 g( Z; ) i i
dt+lbl.2t2 ¢ =0
2

With all the above CGFs available, the CGF of the limit-state function in Eq. (12) Q(U) is then

computed by
Ky(t)=) K, (1) (26)
i=1

After the CGF K, (¢) is obtained, it is straightforward to find the PDF of the limit-state function,
and this requires to find the saddlepoint 7, , which is found by solving the following equation

Ky(#)=0 (27)

where K, (¢) is the first derivative of K (r). According to the Lugannani and Rice’s formula

[118], the component reliability R ,, is computed by

Repy = PrQ(D) < 0} = () + p(n)(——1) (8)

where ®(-) and ¢(-) are CDF and PDF of a standard normal distribution, respectively.
w=sgn(t,) {2[-K, (1)1} (29)
v=t[K,()]"” (30)

where sgn(z,) =+1,—1 or 0, depending on whether #, is positive, negative or zero; K, (r) is

the second derivative of K, (r) with respect to .
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3.3 System Reliability with Second Order SPA

In this section, we discuss the new second-order SPA method for system reliability analysis.
We focus on only series systems; the method, however, can also be extended to parallel systems
and the combination of series and parallel systems.

System reliability can be estimated by integrating the joint PDF of all the input random
variables in the safe region as indicated Eq. (3). To use SPA, we consider the PDF of component
responses directly. The system state is determined by component responses predicted from

component limit-state functions ¥ = g,(X) (i =1,2,...,m). System reliability is then computed by
RS:Pr(ﬂYl:gl.(X)<O, i=1,2,...,mj (31
i=1

Eq. (31) requires the joint distribution of ¥, (i =1,2,...m). This means that we need to consider

both component reliability and dependencies between component responses. Hereby, we
approximate the joint distribution of all the component responses as a multivariate normal
distribution.
If we consider only the first order terms of Eq. (9), the component limit-state function becomes
0,(U)=-VG(u)" u; +VG,(u))U (32)
If we divide both sides of Eq. (32) by the magnitude of the gradient, we obtain
o) _ VGu)' . VG(u)

Vo] Vo] +HvG(u;) v (33)
Or
oW _
Vo)~ Y (34)

The event of the safe component Q.(U) <0 is equivalent to the event —f +a,U < 0. We then
define a new variable
Z=-p+0.U (35)
where @, is the directional vector and is given by

VG(u;) _u

" Vo] 4 0

®
L
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We call Z an equivalent component response. It is obvious that Z follows a normal

distribution. As a result, all the equivalent component responses follow a multivariate normal
distribution.

System reliability is then approximated by
RSZPr(ﬂ Qi(U)<Oj=Pr(ﬂaiU—ﬂi <0j=Pr(ﬂZi<0) (37)
i=1 i=1 i=1

The multivariate normal distribution is denoted by N(p,,X,), where p, is the mean vector
of Z=(Z,,Z,,...,Z,) and ¥, is the covariance matrix. System reliability thus becomes the CDF

® (0;p,,X,) of Z at 0; namely

0 0
Ry=@,(0:n,, X)) = .| f,(2)dz (38)
where £, (z) is the joint PDF of Z.

Since we use the first approximation directly as indicated in Eq. (9), the method we have just
discussed is the existing FORM for system reliability analysis.
The accuracy of the multivariate normal integration in Eq. (38) is closely related to the

accuracy of the mean vector p,and covariance matrix X ,. In addition to high accuracy, we would

also like to maintain high efficiency. There are mainly two ways to make the integration accurate

and efficient. First, we improve the accuracy by determining p, with the second order component

reliability obtained from the second order SPA. This strategy is adapted from Ref. [119] where the

traditional SORM is used. Since the second-order SPA is in general more accurate than the

traditional SORM, the new method has higher accuracy. We use the second order SPA to
approximate the marginal CDF of Z at 0, which is the component reliability

F, (0) = Pr(Z, <0) = Rypy, (39)

where R, 1s calculated by the second-order SPA method given in Eq. (28). Then the

associated reliability index is determined by

Ry =®(87) (40)
We call p°"*an equivalent reliability index, which is given by
ﬁz‘SPA =@ (RSPAi) (41)
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Since pB°"* is obtained from a more accurate reliability estimate, we use it to replace 8, in Eq.
(35), resulting in Z, = —B°™ +a,U. The mean vector of the multivariable distribution of Z is then

obtained.
n, =B BB (42)
The above treatment ensures that the component reliability or the marginal distributions of
component responses are accurately estimated by the second order approximation.
In order to simplify computations and achieve high efficiency, we use the same strategy in Ref.

[119] to estimate the covariance matrix X,. The idea is to use the first order approximation in Eq.

(32). Let the components of X, be p,, i,j=1,2,...,m, i # j. The covariance is given by

py=ae, (43)
Then X, is given by
1 plZ plm
1
ZZ _ p21 ] p?m (44)
A
pml pm2 o 1 mxm

The joint distribution of all component responses is now approximated by a multivariate

normal distribution. With p,and X, available, the joint PDF of Z =(Z,,Z,,...,Z,) is expressed as

(45)

1, =mexp(—%(z—uzle(z—uz)]

Then system reliability R, can be easily calculated by integrating the PDF in Eq. (38) from
(—o0,...,—0) to (0,...,0) and the system probability of failure is

Py =1-R; (46)

Many algorithms are available for integrating f,(z) in Eq. (45) such as the first order multi-

normal approximation (FOMN) [120], the product of conditional marginal method (PCM) [121],
and Alan Genz method [122]. The proposed method provides a new way to estimate the system
reliability with nonlinear limit-state functions. The dependencies between component responses
are automatically accommodated in the system covariance matrix, and component marginal CDFs

can be obtained accurately by using the second-order SPA. Thus this method not only achieves
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high accuracy in estimating system reliability but also simplifies the computations while
maintaining high efficiency.

The procedure of the system reliability analysis with the second-order SPA is briefly
summarized below.

(1) Transform random variable X into U in the standard normal space.

(2) Search for MPPs u;; obtain the reliability index B and first and second derivatives of

component limit-state functions at the MPPs.
(3) Perform the second-order SPA for all components.
(4) Use SPA results to find the means of equivalent component responses.
(5) Use MPPs and reliability indexes to find the covariance matrix.

(6) Form the multivariate normal PDF and integrate it to obtain system reliability.

3.4 Examples

In this section, four examples are presented. The first example is used to demonstrate the
proposed method while the other three examples show possible engineering applications. The
accuracy is measured by the percentage error with respect to a solution from MCS. The error is

calculated by

py — Py
g="2 L 1x100% 47)
Psr

where pgi® and pg, are probabilities of system failure from MCS and second order SPA

method, FORM method or SORM method, respectively.

3.4.1 Example1

The first example is mathematical example. A system consists of two physical components,
and each component has one limit-state function. There are two basic random variables denoted

by X=(X,,X,). X, is normally distributed with mean g, =4 and standard deviation &, =0.7,

and the distribution is denoted by x, ~ N(4,0.7). X, is lognormally distributed with mean
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M, =4 and standard deviation &, =1, and the distribution is denoted by x, ~ LN (4,1). The two

limit-state functions are given by
gX)=5-X,X, (48)
2 (X)=—-X-X,"-7X,+16X, 40 (49)
At first, MPPs, reliability indexes, and directional vectors of the two limit-state functions are

obtained. The results are given in Table 3.1.

Table 3.1 MPP, reliability index and directional vector

u’ ) a
g (-2.6981,-2.0057) 3.3602 (0.8025,0.5966)
g, (-2.5485, 1.8429) 3.1450 (0.8103,-0.5869)

Next, the reliability of each component is calculated by the second-order SPA with

R, =0.9995 and R»=0.9994. The mean values of the two equivalent component responses
Z.=(Z,,Z,) are then calculated by
w, =B = (B, = (D (R)),,, = (3.3083,3.2358)
The correlation coefficients p, are calculated by Eq. (43). For example, p,, = a,a; =0.3007.

Therefore, the covariance matrix is obtained.

s [0 om] [ 1 03007
7, 103007 1

Using Eq. (38), we obtain the system probability of failure p, =1- R, =1.0702x107.

When FORM and SORM are used, the covariance matrices are the same as X, and the mean
values of the two equivalent component responses are p, =p"* =(3.3620,3.1450) and
n, =™ =(3.3086,3.2274) Based on Eq. (38), the system probabilities of failure based on
FORM and SORM are p, =1.2111x107 and pg =1.0878x107 respectively.

For MCS, a large sample size of 107 is used to compute the system reliability. All results are
listed in Table 2, which shows that the errors of SOSPA, SORM and FORM are 0.289%, 1.35%
and 12.% respectively. The results indicate that SOSPA is more accurate than FORM and SORM.
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The number of function calls in Table 3.2 indicate that FORM is more efficient than SOSPA and
SORM. 1.0878x10°°

Table 3.2 Probability of system failure in Example 1

Method Psr g (%) Total function calls
SOSPA 1.0702x1073 0.29 45
SORM 1.0878x1073 1.35 45
FORM 1.2111x107 12.80 39
MCS 1.0733x10 N/A 107

3.4.2 Example 2

Example 2 is an engineering example. Consider a roof structure [123], whose top boom and
compression bars are made by concrete, while the bottom boom and all the tension bars are made
of steel. Assume the bars bear a uniformly distributed load q. Let 4. and E,. be the cross-sectional

area and elastic modulus of the concrete bars, respectively. Let 4 and E be the cross-sectional

area and elastic modulus of the steel bars, respectively. The perpendicular deflection of the roof

peak node C is calculated by

2
AC:ﬂ( 381 1.13j 52)
2 \AE.  AE,

A failure event occurs when the perpendicular deflection Ac exceeds 1.5 cm. The limit-state

function is then defined by

ql’
gl(X):T

(3.81 1.13

+ ~0.015 (53)
ACEC ASES

The second failure mode is that the internal force of bar AD exceeds its ultimate stress. The

internal force of bar AD is N, =1.35¢/, and the ultimate strength of the bar is f.A4., where f_

is the compressive stress of the bar. The second limit-state function is given by

g2,(X)=1.185¢/ - 1A, (54)
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A failure occurs when the internal force of bar EC N . =1.3¢/ exceeds its ultimate stress f; A,

where f; is the tensile strength of the bar. Therefore, the third limit-state function is formulated by
8,(X) =0.65q/ — f 4, (55)

E. and E; are lognormally distributed, and the rest of random variables g, /, A, 4., f.,and

f. are normally distributed. They are listed in Table 3.3.

Table 3.3 Distribution of random variables

Variables Distribution
X, g (N/m) N(14000,1400)
X, L (m) N(12,0.12)
X, 45 (m?) N(9.00x107,0.54x107)
X, A, (m?) N(5x107,4x107)
X, E; (N/m?) LN(2x10",0.12x10")
X, E. (N/m?) LN(3x10",0.18x10")
X, fs (N/m?) N(3.35x10°,0.60x10%)
X, fo (N/m?) N(1.34x107,0.24x10")

After the MPPs are found, the reliability indexes and directional vectors are available.

B, =4.6396
B, =3.8122
B, =3.4440
a, = (0.7054,0.1857,-0.4890,-0.2122,-0.4147,-0.1465,0,0)
a, = (0.1686,0.0179,0,-0.1504,0,0,0,—0.9740)
a, =(0.2009,0.0215,-0.1325,0,0,0,—0.9704,0)

Similarly, the reliability of each component is calculated by the second-order SPA, which

produces R =1.0, R, =0.9999, and R, =0.9997. The mean values of the three equivalent

component responses Z =(Z,,Z,,Z,) are then calculated by
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n, = BSPA = (,Bl.SPA ),-:1,2,3 =P (Rl.),,:u’3 =(4.5985,3.7999,3.4358)
The covariance matrix X, is

1 py P 1 01542 0.2092
X,=lp, 1 py|=|01542 1 0.0343
Py pn 1| 02092 00343 1

Thus, the system probability of failure is estimated to be p,. =3.6983x107".

When FORM is used, the covariance matrix remains the same, and the mean values of the three

equivalent component responses are p, =(4.6396, 3.8122, 3.4440) . Based on Eq. (38), the
system probability of failure is p, =3.5714x107*. Similarly, the system probability of SORM is
Py =3.6642x107*. The solution from MCS with a sample size of 1x10” serves as a benchmark

for the accuracy comparison. All results are given in Table 3.4, which indicates that SOSPA is

more accurate than FORM and SORM while the latter is more efficient than the former.

Table 3.4 Probability of system failure in Example 2

Method Pss g (%) Total function calls
SOSPA 3.6983x10* 0.34 243
SORM 3.6642x10* 1.26 243
FORM 3.5714x10* 3.76 135
MCS 3.7110x10* N/A 107

3.43 Example3

This example has ten polynomial surface response functions used as a surrogate for a more
computationally intensive numerical model of the various phenomena leading to failure [124, 125].

The system reliability is defined by
Ry =Pr(g,(X)<0Ng,(X)<0/M...Ngy(X)<0MNg,,(X)<0) (56)
The limit-state functions g,(-) are given below.

2,(X)=1.16—0.3717.X,X, —0.00931.X, X, —0.484X, X, +0.01343X, X,, -1 (57
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2,(X)=4.72-0.5X,—0.19X,X, —0.0122.X, X,

(58)
+0.009325X,X,, +0.000191X2 —4.01
g,(X)=28.98+3.818X, —4.2X X, +0.0207.X.X,, +6.63X X, 59)
~7.7X,X, +0.32X,X,, 32
2,(X)=33.86+2.95X, +0.1792X,, - 5.057.X X, 11X, X, )
~0.0215X,X,, —9.98X, X, - 22X, X, —32
g.(X)=46.36-9.9X, ~12.9X,X, +0.1107X,X,, —32 (61)
g,(X)=0.261-0.0159.X,.X, —0.188.X, X, —0.019X, X, +0.0144.X, X, )

+0.0008757.X,.X,, —0.32

g,(X)=0.214+0.00817.X, —0.131.X, X, —0.0704X X, +0.03099.X, X,
~0.018X,.X, +0.0208X, X, +0.121X, X, — 0.00364X, X, (63)
+0.0007715X,.X,, —0.0005354.X, X, +0.00121.X, X, —0.32

2,(X)=0.74—0.61X, —0.163.X, X, +0.001232X,X,, —0.166.X, X,

(64)
+0.227.X; 32
2,(X)=10.58-0.674X X, -1.95X, X, +0.02054 X, X, —0.0198X X, (65)
+0.028X,X,,-9.9
2,0(X) =16.45-0.489.X, X, —0.843.X, X, +0.0432.X, X, —0.0556 X, X, (66)

—0.0003X; —15.69
There are eleven random variables which are B-pillar inner (X, ), B-pillar reinforcement ( X,),
floor side inner (X,), cross members (X, ), door beam ( X;), door belt line reinforcement ( X),
roof rail (X,), B-pillar inner ( X;), floor side inner ( X,), barrier height (X,,), and barrier hitting
position ( X,,). All of them are normally distributed with parameters defined in the Table 3.5.

The reliability indexes of all components are at first calculated by FORM, which yields
B, =93064 , B,=18772 , B,=4.0596 , B,=29767 , B, =12968 , B, =12.1197 ,

B, =15.5223, B, =4.8357, B, =3.7118 and p,=1.8782. Therefore, for FORM, the mean
values of ten equivalent component responses Z=(Z,,Z,,-+,Z,,) are

p, =(9.3064,1.8772,4.0596,2.9767,1.2968,12.1197,15.5223,4.8357,3.7118,1.8782)

The 10-by-10 covariance matrix is given by
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1 —-0.7651
—-0.7651 1

0.9021 —-0.9285
| 0.5581  —0.7498

0.9021  0.5581 ]

—0.9285 -0.7498

1 0.7093
0.7093 1

J10x10

The system probability of failure from FORM method is p,, =1—R; =0.1390.

When SOSPA method is used, the mean values of the ten equivalent component responses are

given by

™ =(9.3286,1.4495,4.0629,2.9759,1.2983,12.1274,15.4725,4.8079,3.7234,2.0335)

Table 3.5 Distribution of random variables

Random Distribution

X, (mm) N(0.500,0.030)
X, (mm) N(1.310,0.030)
X, (mm) N(0.500,0.030)
X, (mm) N(1.395,0.030)
X, (mm) N(0.875,0.030)
X, (mm) N(1.200,0.030)
X, (mm) N(0.400,0.030)
X, (GPa) N(0.345,0.006)
X, (GPa) N(0.192,0.006)
X,, (mm) N(0.0,10.0)

X,, (mm) N(0.0,10.0)

The probability of system probability from SOSPA is then given by p,. =0.1777. All results

are given in Table 3.6, which also indicates that SOSPA is much more accurate than FORM and

SORM while the latter is more efficient than the former. For this problem with 10 responses, the

error from FORM and SORM are too large.
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Table 3.6 Probability of system failure in Example 3

Method Dsy £(%) Total function calls
SOSPA 0.1777 3.31 1572
SORM 0.1355 26.40 1572
FORM 0.1391 24.30 912

MCS 0.1838 N/A 107

3.44 Example 4

The final example involves an assembly system where a rectangular steel bar cantilevered to a
steel channel with four identical tightly fitted bolts located at points 4, B, C, and D as shown in
Fig. 3.1. The rectangular bar is subjected to an external force F. All random variables are given in

Table 3.7.

A
w h v fh ﬂ ‘"
L1l A L1l I
| F
V’\/r\/‘“i Y
c A I B )
RO O
V !O . I5
I S L]

W—\ h

Figure 3.1 A cantilever bar
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Table 3.7 Distribution of random variables

Variables Distribution

X, F (N) N(1.6 x 10%,1.6 x 10%)
X, S; (Pa) LN(300 x 108,57 x 10°)
X; S, (Pa) LN(300 x 108,57 x 10°)
X, 7, (Pa) LN(310 x 10,59 x 10°)
X5 7, (P) LN(310 x 10,59 x 10°)
Xe 7. (Pa) LN(310 x 10,59 x 10°)
X5 74 (Pa) LN(310 x 10,59 x 10°)
Xg t; (m) N(1.0 x 1072,2.0 x 107%)
X t, (m) N(1.0 x 1072,2.0 x 107%)
X1 d, (m) N(1.6 x 1072,3.2 x 107%)
X11 dp (m) N(1.6 x 1072,3.2 x 107%)
X1, d. (m) N(1.6 x 1072,3.2 x 107%)
X3 dg (m) N(1.6 x 1072,3.2 x 107%)
Xi4 [, (m) N(3.2x1071,6.4 x 1073)
Xis [, (m) N(5.0 x 1072,1.0 x 1073)
Xi6 l; (m) N(2.0 x 1071,4.0 x 1073)
X7 l, (m) N(1.5x 1071,3.0 x 1073)
Xig s (m) N(1.2 x 1072,2.4 x 1073)
Xi9 Agq (m?) N(1.44 x 107%,2.88 x 107°)
X500 Agp (m?) N(1.44 x 107%,2.88 x 107°)
X5 As. (m?) N(1.44 x 107%,2.88 x 107°)
X502 Agy (m?) N(1.44 x 107%,2.88 x 107°)
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The centroid of the bolt group O is found by symmetry. The shear reaction V passes through
O, and the moment reaction M is about O. They are given by V. =F, M = F(l; + |, + %4) The

distance from the centroid to the center of each bolt is

r=05 |12 +12

The primary shear load per bolt is F' = E. Since the secondary shear forces are equal, they

Mr

become F” - - . The I‘esultants Of the rima] y and Secondal‘ Shear fOI‘CGS are Obtained b
412 Ar

using the parallelogram rule. The magnitudes are found to be

F, = Fy = /(F))? + (F")? — 2F'F" cosb,

Fo = Fp =+/(F)2 + (F'"")2 — 2F'F" cos®,

i l i l
where 6, = % + arctan (l—“), and 0, = % — arctan (1_4)'
5 5

The largest bearing stress is due to the pressing of the bolt against the channel web. The bearing
area of the channel is A; = t;d,. The maximum bearing stress of the channel should be smaller
than its yield strength, which is given by

g(X)="1os, (67)
AI
Correspondingly, the limit-state function of the bar is defined by
&%) =", (68)
A2
where 4, = t,d,
The critical bending stress in the bar occurs at the cross section 4-B, where the bending moment

is M; = F(l; + ;). The second moment of area of the section is

- t, 13 t,d3 12
Izlbar_z(lholes-l'd A):E_z 12 +Zt2da

The bending stress of the bar should be smaller than its yield strength, and this is given by
M,
I/c

where I /c is the section modulus for the bar, ¢ = [5/2.

2,(X)= -5, (69)
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Bolt 4 and B are critical because they carry the largest shear load F, and F. The shear stress
of the bolts should not be greater than the allowable shear stress. Thus, the limit-state functions of

bolts 4 and B are defined by

2,(X) =§—A—ra (70)
g5<X)=j—B—rb (71)

sb
where A, and Ag, are shear-stress areas.

Similarly, the limit-state functions of bolts C and D are defined by

2,(X) = j— . (72)
g,(X) = j—D—rd (73)

sd

where A, and Ag, are shear-stress areas.

There are seven limit-state functions. The system probabilities of failure and the function calls
from all methods are provided in Table 3.8. The results show that SOSPA is the most accurate
method because its error is only 0.593% compared with the MCS result and the errors of SORM
and FORM are much larger. FORM is the most efficient method since its number of function calls

is the least. SOSPA and SORM call the limit-state functions with the same time.

Table 3.8 Probability of system failure in Example 4

Method P & (%) Total function calls
SOSPA 1.1672x1073 1.71 2599
SORM 1.0273x1073 13.50 2599
FORM 1.2292x1073 3.51 828

MCS 1.1875%1073 N/A 107
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3.5 Summary

The proposed second order saddlepoint approximation (SOSPA) method is an alternative
method for system reliability analysis. This method results in higher accuracy than the first order
approximation method by combing the second order approximation and saddlepoint
approximation. SOSPA accurately produces the marginal distributions of all component responses.
This is achieved by employing the saddlepoint approximation after transforming the approximated
second-order limit-state functions into linear combinations of noncentral chi-square variables. The
dependences between component responses are considered with the only first approximation for
the sake of efficiency. With the estimated marginal component distributions and component
correlations, the joint distribution of all the component responses is formed by a multivariate
normal distribution, which leads to a fast evaluation of the system reliability.

The accuracy of the proposed is largely determined by the accuracy of the approximated limit-
state functions with second order Taylor expansion in the vicinity of the most probable points. The
accuracy is also affected by the first order approximation for estimating correlations between
component responses.

How to estimate component correlations more accurately by a second order approximation
needs a further investigation. The other future work is to incorporate the system reliability analysis

in reliability-based design optimization.
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4. TIME-DEPENDENT SYSTEM RELIABILITY ANALYSIS WITH
SECOND ORDER RELIABILITY METHOD

Hao Wu!, Zhangli Hu?, Xiaoping Du?
School of Mechanical Engineering, Purdue University, West Lafayette, IN, United States
2Department of Mechanical and Aerospace Engineering, Missouri University of Science and
Technology, Rolla, MO, United States
3Department of Mechanical and Energy Engineering, Indiana University - Purdue University
Indianapolis, IN, United States
Published in ASME. J. Mech., https://doi.org/10.1115/1.4048732
Authors’ contribution: H.-W. and X.D. designed the study. All authors contributed to the

writing of the manuscript. H.W. detailed methodology and the code.

System reliability is quantified by the probability that a system performs its intended function in a
period of time without failures. System reliability can be predicted if all the limit-state functions
of the components of the system are available, and such a prediction is usually time consuming.
This work develops a time-dependent system reliability method that is extended from the
component time-dependent reliability method using the envelope method and second order
reliability method. The proposed method is efficient and is intended for series systems with limit-
state functions whose input variables include random variables and time. The component reliability
is estimated by the second order component reliability method with an improve envelope approach,
which produces a component reliability index. The covariance between component responses are
estimated with the first order approximations, which are available from the second order
approximations of the component reliability analysis. Then the joint distribution of all the
component responses is approximated by a multivariate normal distribution with its mean vector
being component reliability indexes and covariance being those between component responses.

The proposed method is demonstrated and evaluated by three examples.
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4.1 Background

System reliability is measured by the probability that the system performs its intended function
in routine circumstances during a specified period of time [7]. It is necessary to predict system
reliability accurately and efficiently in the early design stage since it can be used to estimate the
lifecycle cost, determine maintenance policies, and optimize the system performance [57, 126]. A
mechanical system consists of multiple components, and each component may also have multiple
failure modes. In this work, we consider a failure mode as a component. If the limit-state function
of a failure mode is invariant over time, its reliability and probability of failure are constant.
However, the limit-state function may vary over time in many engineering problems, such as
function generator mechanisms [127] and bridges under stochastic loading [128]. Then a time-
dependent reliability method is required.

Suppose the limit-state function of the i-th failure mode is given by

Y, =g:X0) 1)
where Y; is a component response, which is a function of time t; X = (X, ..., X,;)T is the vector
of independent input random variables. Then the time-dependent component reliability on a time
interval [t,, t5] is defined by
R(to, ts) = Pr(g(X,t) = 0,Vt € [to, t5]) (2)
and the corresponding probability of failure is defined by
ps(to ts) = Pr(g(X,t) < 0,3t € [to, t5]) (3)

Eq. (3) indicates that if g(-) < 0 at any instant of time on [t,, ts], the component fails.

In this study, we focus on series system. For a series system, the entire series system fails if
one failure mode occurs. For a time-dependent series system, the system fails if any failure mode

occurs at any instant of time. The system reliability R, (%, t;) and probability of system failure

prs(to, ts) are given by

RS(tO' ts) = Pr (ﬂ gi(xr tl) 2 0) th € [tO' t5]> (4)
i=1
and
Prs(to, ts) = Pr (U gi(X,t;) <0,3t; € [t,, ts]) (5)
i=1

where U and N stand for union and intersection, respectively.
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Component reliability analysis is required for system reliability analysis. Methods of time-
dependent component reliability analysis include three groups: Rice’s formula based methods [46,
129-131], meta-model based methods [132-135], and methods which convert time-dependent into
time-independent reliability . Rice’s formula based methods are most commonly used [50]. For
example, the PHI2 method [130] allows for time-variant reliability problems to be solved using
classical time-invariant reliability method, the first order reliability method (FORM). Hu and Du
then proposed the joint up-crossing rate method in estimating the time-dependent reliability [46].
Rice’s formula-based methods are in general more efficient than others but may lead to large errors
if up-crossings are strongly dependent.

Higher accuracy can be achieved by metamodeling methods. Hu and Du introduced a mixed
efficient global optimization method employing the adaptive Kriging-Monte Carlo simulation
(MCS) so that this high accuracy is achieved [134]. Wang and Wang developed a nested extreme
response surface method by employing Kriging for reliability analysis with time-variant
performance characteristics [135]. This group of methods may result in a high computational cost
if the dimension of the problem is high.

Converting a time-dependent problem into a time-independent counterpart is possible by using
the extreme value of the limit-state function. The methods include the envelope function method
[136], extreme value response method [137], and the composite limit-state function method [138].
Still, obtaining accurate distribution of the extreme value in an efficient way is complicated. Hu
and Du recently employed sequential efficient global optimization (EGO) to transform the time-
dependent reliability problem into a time-independent problem with a second order method. The
Hessian matrix is approximated by a quasi-Newton approach. It uses the gradients of the limit-
state function at the points before the MPP search converges to the MPP. The method is efficient,
but it may not accurately approximate the Hessian matrix since the points may not be on the surface
of the envelope function [139].

Many studies have been conducted on time-dependent system reliability as well. For instance,
Song and Der Kiureghian developed a joint first-passage probability method based on the
conditional distribution analysis in estimating the reliability of systems subjected to stochastic
excitation [140]. Radhika et al. investigated nonlinear vibrating systems under stochastic
excitations by implementing the asymptotic extreme value theory and Monte Carlo simulation

(MCS) [141]. Yu et al. employed the combination of the extreme value moment and improved
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maximum entropy method to access the time-variant system reliability with temporal parameters
[142]. Gong and Frangopol proposed a new efficient method for time-dependent reliability which
is formulated as a large-scale series system consisting of time-independent response functions
[143]. Hu and Mahadevan proposed a novel and efficient methodology for time-dependent system
reliability by considering the system as an equivalent Gaussian random field [144]. Jiang and Wei
introduced an improved time-variant reliability analysis method based on stochastic process
discretization, which transformed the time-variant reliability problem into time-invariant series
system problem [145].

Time-independent system reliability can be approximated by the multidimensional integration
of the joint probability density function (PDF) of random variables once the marginal distributions
and correlation coefficients of component states are obtained by the second and first order
approximations [8]. Wu and Du proposed a method of predicting the time-independent system
reliability by approximating the marginal distributions with the second order saddlepoint method
(SOSPA) [14].

It is desirable to take advantages of methods for both time-dependent component reliability
and time-independent system reliability. To this end, in this work we integrate the second order
saddlepoint approximation [139] for both time-dependent component reliability and time-
independent system reliability. The distinctive feature of our new method is the ture second order
approximaiton to component envelope functions with its accurate Hessian matrix calculation. The
second derivatives of the envelope functions with repsect to the input random varaibles are exactly
evalauted from the second derivatives of the corresponding component limit-state functions with
respect to the input random varaibles and time. The second feature is that the second order
approaxiamtion is extended from component reliabilty analysis to sytem reliabilty analysis.

This paper is organized as follows: Section 2 reviews the first order reliability method for time
dependent reliability analysis. Section 3 discusses the proposed method for time-dependent system
reliability analysis. Section 4 presents three examples, and Section 5 provides conclusions and

discusses possible future work.

75



4.2 Methodologies Review

4.2.1 Time-Dependent Component Reliability

The limit-state function of a component is given in Eq. (1), and its reliability is therefore a
function of time (or timespan) as indicated in Eq. (2). The commonly used reliability method is
FORM, which is reviewed below.

FORM is originally used for time-independent reliability analysis, and it can also be used for
time-dependent reliability analysis. It converts a general non-Gaussian process response into an
equivalent Gaussian process response. X is at first transformed into standard normal variables U.
Then the most probable point (MPP) u* at t is identified by the following model:

{min\/ﬁ 6)
s.t. giX,t) = g(T(U),t) =0
where T(*) is an operator of the transformation from U to X.

The limit-state function is linearized at u* (t) by

N
0
9,0 = g(w', 0+ ) S (U= ) @

=Vgu,)(U—u")

ag
o euy

U, ot

where Vg(u*,t) = la—g l is the gradient , and u; is the i-th component of u*.

Then the probability of failure is computed by
pr = Pr(g(X,t) < 0,3t € [t,,t;]) (8)
= Pr(B(t) + a(t)U < 0,3t € [t,, ts])
where B(t) is the time-dependent reliability index, given by

() =llu | 9
and a(t) is the time-dependent unit gradient vector given by
a(®) = R [0,(0) ay(), . an (©)] (10)
Il Vg(t) I

As Eq. (7) shows, the non-Gaussian process g (X, t) has been transformed into an equivalent
Gaussian process represented as a sum of standard normal random variables. After this, many
methodologies are available for solving for the probability of failure, such as the upcrossing rate

method [46, 130] and MCS [45].
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The time-dependent probability of failure can be evaluated by the extreme value of the limit-

state function.
pr(to,ts) = Pr(g(X,t) < 0,3t € [t,,t5]) = Pr <te‘{t‘“} ]g(x, t) < 0) (11)

The extreme limit-state function is equivalent to the envelope function [136] or the composite

limit-state function [138], and ter[rgirg | g(X, t) is obtained by

G(X) = ter[r%ir} | 9gX 0 =g(X, X)) (12)

where G(X) is the global minimum value of g(X,t) with respect to t. G(X) is time
independent and only depends on X.  is the time instant when the global minimal value of G (X)

occurs. t is the function of X.

P= {ﬂ min g(X, t)} (13)

te[to,ts]
The envelope function G (X) is a surface tangent to all the instantaneous limit-state functions
at different time instants. If FORM is used for envelope function, its MPP is obtained by

{min\/UTU

: _ (14)
s.t. terﬁll,,r%s] g(TU),t) =0

Eq. (14) is a double loop optimization problem. The inner loop is the global optimization with
respect to time t while the outer loop is the MPP search with respect to U. The double loop is
decoupled into a sequential single-loop process.

The first cycle is FORM analysis, the MPP u, at the initial time ¢, by

{min\/ﬁ (15)
s.t. g(T(U),t,) =0
Then the time is updated by global optimization at ug;,, and the new time is denoted by £,

which is given by

tM = argmin g (T(“a) ,t)) (16)

tE[tots]

In the next cycle, the new MPP “Ez) is located at the time instant £ using Eq. (16). And then

the time is updated to £ by performing global optimization at up,).

t@ = argming (T(uzz) ,t)) (17)

tE€tots]

The above process is repeated until convergence.
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The Efficient Global Optimization (EGO) is employed to solve the time ¢t [146]. EGO has been
widely used in various areas because it can efficiently search for the global optimum [134, 147].
The task is to solve for the time so that g(t) = g(T(uypp), t) is minimized. With a number of
training points, the function is approximated by the following surrogate model:

9 =91 =g(T(umpp), t) = FO)Ty + Z(t) (18)
where F(t)Ty is a deterministic term, F(t) is a vector of regression functions, y is a vector of
regression coefficients, and Z(t) is a stationary Gaussian process with zero mean and a covariance
given by
Cov(Z(ty), Z(ty)) = aZR(ty, t5) (19)
where o is process variance, and R(:,") is the correlation function.

The output of the surrogate model is a Gaussian random variable following

9 = g(O~N(u(®), () (20)
where u(t) and o(t) are the mean and standard deviation of J, respectively.

After building the initial model, the expected improvement (EI) metric is used to identify the
new training point with the highest probability to produce a better extreme value of the response.

The improvement is defined by

I'=max(y" —y,0) (21)
where y* = _rlnzin . g(t;) is the current minimum response.
EI is computed by
EI(t) = E[max(y* — v, 0)] (22)

s y*—u(t) y* —pu(t)
= (v u(t))cb( o) ) + a(t)¢>< o)
where @ () and ¢ (+) are the cumulative distribution function (CDF) and PDF of a standard
normal variable, respectively.

The new training point t,,,,, is identified as the time that minimizes the expected improvement.

tnew = argminEI(t) (23)

t

The convergence criterion of EGO is set to eg; = |y*| X 2%. By combining sequential strategy
with EGO, the MPP u* of extreme limit-state function G (X) can be obtained efficiently by solving
Eq. (14). The probability of failure with FORM is estimated by

Pr(to, ts) = Pr(g(X,t) < 0,3t € [t,, t5]) (24)
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=Pr(G(X) < 0) = &(—p)
where f =I|| u* || is the first order reliability index. In general, the envelope function can be
highly nonlinear and FORM may not be accurate enough. Thus, a second order method is preferred,
and it uses the envelope theorem to obtain the second order information of the extreme limit-state

function. Then SOSPA is used to estimate the probability of failure.

4.3 Proposed Methods

4.3.1 Overview

The envelope function of a component (or limit-state function) is generally nonlinear as shown
in Fig. 4.1. It is the reason we use a second order approximation for the envelope function.
Specifically, we approximate the envelope function at its MPP with a quadratic function. As a
result, we also need the gradient and the Hessian matrix of the envelope function at the MPP.

It is shown that the MPP of the envelope function is the worst-case MPP of the limit-state
function on [ty, t;] [139]. In other words, the MPP is the closest point between the origin and all
the instantaneous limit-state functions on [t,, ts]. This is illustrated in Fig. 1. The MPP of the
envelope function can be efficiently found using the sequential single loop method [139]. This
MPP is also the MPP of the worst-case limit-state function; as a result, the gradient of the envelope

function is equal to the gradient of the worst-case limit-state function [139].

Limit-state function
g(u,0)=0

»

Failure region

Envelope function
G(u)=0
»

>
Uh

Figure 4.1 Relationship between the worst-case limit-state function and envelope function
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The curvature of the envelope function, however, may not be the curvature of the worst-case
limit-state function as shown in Fig. 1. This means that the Hessian matrix of the envelope function
is in general not equal to that of the worst-case limit-state function. The Hessian matrix of the
envelope function is approximated by the gradients of the instantaneous limit-state functions in
[139], but the second derivative of the envelope function with respect to time is omitted. Hence
the method in [139] may not always work. In this work, we derive analytical second derivatives
of the envelope function with respect to both random input variables and time, and the Hessian
matrix of the envelope function can then be obtained accurately.

The general procedure of finding the second order information of the envelope is summarized
below. At first we employ the method in [139] to find the MPP of the envelope function using Eq.
(14). Once we find the MPP, we know the gradient of the envelope function because it is equal to
the gradient of the limit-state function at the MPP. Next we determine the Hessian matrix of the
envelope function with Eq. (35). The Hessian matrix consists of second derivatives of the limit-
state function with respect to random input variables X and time t. The equations are derived in
Sec. 3.2. When the MPP, gradient and Hessian matrix are available, we use the second order
saddlepoint approximation to find the probability of component failure and then perform system

reliability analysis. The method hereby is denoted by SOSPA.

4.3.2 Hessian Matrix of the Envelope Function

After the MPP of the envelope function is found, a quadratic envelope function is formulated

as [14]

G(U)=a+bTU+UTCU (25)
where
1
a=3 (u)THu* — VG (u)Tu?
b = VG (u*) — Hu* (26)
1
C = EH = dlag(ﬁl, 62, ey EN)
aG aG T
VGua*) =|—| ,....,—— is the gradient of the envelope function. H is the Hessian
AUy | AUl 4

matrix, which is given by
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%G 0%G

Uz au,aU,
H= : : (27)
0%G 0%G
oU,0U, auz 1.
The envelope function G(X) = 0 at u* is given by
G(U) = min g(U,t) =g(U, )l (28)

t is the worst-case time instant, and it is found by
gU,t) =0 (29)
where g is the derivative of g with respect to t.

The first derivative of G (U) with respect to a random input variable at u* is

dG _dg dg ot

9 30
au; au; + at aU; (30)
As g(U,t) = 0, Eq. (30) becomes
G dg
= 31
au;, au; (1)

Eq. (31) indicates that the envelope function and the limit-state function have the same gradient

at u*. Then, the second derivative of G (U) with respect random input random variables at u* is

0’6 0 <66)_ 0 <ag)
oU0U; — aU; \oU;) — aU; \av;
_ 0d%g N d0%g ot
~ 0U;0U;  dU;0t aU;

(32)

We then take the derivative of Eq. (29) with respect to U}, and it is given by
dg dg ot
2 +2 " ) 33
au, " 3t au, (33)
dt ag /0g
—=—/= 34
aU; au;/ at (34

Plugging Egs. (29) and (34) into Eq. (32) yields the Hessian matrix H at u* and ¢.
0%G _ d%g 0%g 0%g /0%g
oU0U;| .. 0UdU;| .. aU;0tdU;at/ at?

t t

* ~
u, u*f

(35)

u*,
The finite difference method can be used to calculate the Hessian matrix of the envelope

function.
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Next, the second order saddlepoint approximation is employed to estimate the probability of
failure. Saddlepoint approximation has several excellent features. It yields an accurate probability
estimation, especially in the tail area of a distribution [148, 149].

The cumulant generating function (CGF) of G (U) is given by

K(s) = —Bs+ %sz - %Z log(1 — 2sk;) (36)

where k; = ¢;

The derivatives of CGF are

n-1
k:
K,(S):_B+S+Zl——2l.5‘l(- (37)
i=1 ¢
n-1 kz
KII — 1 Z i
=1+ Nemsre (38)
1=

The saddlepoint s, is obtained by solving the following equation:
n-1 k
K'(t) = — — =0 39
®) “”le—Zski (39)
1=

Then the probability of failure is evaluated by
pr(to, ts) = Pr(g(X,t) < 0,3t € [, t])

= o) + o) (1 —2) (40)

where
w = sgn(s){2[-K(s))2 (a1)
v = s [K"(s)]2 (42)

in which sgn(s;) = +1, —1, or 0, depending on whether s, is positive, negative, or zero.

The detailed steps of time-dependent component reliability analysis using SOSPA are
summarized below.

Step 1: Set k = 1. Use the initial time instant as the initial extreme value time £(®) = t, and

use a unit vector as the initial MPP ug;) = u,.
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Step 2: Search for the MPP at time instant £*~1) and obtain MPP u’(‘k) in the k-th cycle by
solving
{min uTuU
s.t. g(T(U), t*k-D) =0
Step 3: Determine the optimal time £*) and the corresponding minimum value gr(:i)n by
implementing EGO method with u,.

Step 4: Check convergence. The convergence criterion is defined as

(k)

&= |gm1n S gtol

If € < &; , terminate the iteration. Otherwise, set k = k + 1 and return to Step 2.

Step 5: Determine the gradient VG and Hessian matrix H of the envelope function at u’(‘k) and
£,

Step 6: Calculate p; using SOSPA.

Note that the proposed method does not work when the extreme value of the limit-state

function occurs at the beginning time instant t,, or end time instant tg, where Eq. (29) is invalid.

4.3.3 System Reliability with SOSPA

In this section, we discuss how to extend SOSPA for time dependent component reliability to
time dependent system reliability analysis.

System reliability can be estimated by integrating the joint PDF of all responses in the safe
region. To use SOSPA, we consider the PDF of component responses directly. The system state is
determined by component states predicted from component limit-state functions ¥; = g;(X,t) (i =
1,2,..m).

Given all the limit-state functions with time, the series system reliability is then determined by

the

R = Pr(ﬂ Y, = g;(X,t) > 0,Vt € [t,, t5]> (43)

=1
Eq. (43) enable us to consider component reliability and dependencies since it needs the joint

PDF fy(y) of Y = (Y, Y>, ..., ¥;). We approximate the joint PDF fy(y) by a multivariate normal
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distribution. If we only consider the first order terms of the extreme limit-state function Eq. (25),

it becomes
G;(U) = -v6(u)Tu; + VG (u)TU (44)
If we divide both sides of Eq. (44) by the magnitude of the gradient, we obtain
G;(U) VG (u)t VG )T
IVG ()| IVG (ap)li IVG (u)]|
or
Gi (U) T T
———=—o;u; +o; U (46)
IVG ()| o

where a; is the unit vector of VG; (u;). At the MPP, the reliability index is given by
u; = —piay (47)
Then event of the safe component G;(U) > 0 is equivalent to the event B; + a; U >0. We then
define a new variable
Z; =B +ajU (48)
Z; s an equivalent component response. It is obvious that Z; follows a normal distribution. As
a result, all the equivalent component responses follow a multivariate normal distribution if the

envelope functions of all the components are linearized at their MPPs. The system reliability is

R = Pr(ﬂ - —7,(U) < 0) (49)

i=1

then approximated by

Z=(2,,Zy, ..., Zy)" follows a multivariate normal distribution denoted by N(pu, £;), where
K is the mean vector and X, is the covariance matrix. —Z also follows a multivariate normal
distribution N(—pz, ). System reliability thus becomes the CDF &,,(0; —p,, Z;) of —Z at 0;

namely

Rs = ®p(0; — iz, E7) = f f £, (@)dz (50)

where f,(z) is the joint PDF of —Z, given by

fz(z) =

_ (z - uz)Tz_l(Z - uz)) (51)

1
Jaorg,) ( 2
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The accuracy of the mean vector p,; and covariance matrix X, determines the accuracy of the
multivariate normal integration in Eq. (51). To maintain high accuracy, we use SOSPA to
determine p;. The marginal CDF of Z; at 0, which is the component reliability is given by

Rspai = Pr(Z; > 0) (52)

Then the associated reliability index is determined by

Bspai = @7 (Rgpai) (53)

and Sspa; 1s an equivalent reliability index. Since Bsp, is estimated with higher accuracy in

the estimated reliability, we use it to replace f in Eq. (48). The mean vector of the multivariable
distribution of Z becomes

uz = (Bspa - Bspam) (54)

The above treatment ensures that the component reliability or the marginal distributions of
component responses are accurately estimated by the second order approximation. For higher
efficiency, we use FORM or Eq. (48) to estimate the covariance matrix X, [119]. Let the
components of X, be p;;(i # j, i,j =1,2,...,m), which is given by

Then X, is given by
(I
ZZ = E ", E (56)
pm1 1L

With u, and X, available, the system reliability R; can be easily calculated by integrating the
joint PDF in Eq. (51) from (—oo, ..., —00) to (0, ...,0) and the time dependent probability of system
failure is

Prs =1 —Rg (57)

Many methods such as the first order multi-normal approximation (FOMN) [150] and Alan
Genz method [151-153] are developed to integrate f;(z) in Eq. (51). The proposed method
provides a new way to estimate the time dependent system reliability with nonlinear limit-state
functions. The dependencies between component responses are automatically accommodated in
the system covariance matrix, and component marginal CDFs can be obtained accurately using
SOSPA. The procedure of the system reliability analysis is briefly summarized below. The

flowchart of this procedure is given in Fig. 4.2.
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Transform variables X to U

A 4

MPP search and Efficient Global optimization

g {W

s.t. g(T(U),E*Y) =0
¢ u®
MPP

min g (T (ufﬁ,p) : t)

z(k) (%)
£ )‘gmin

A4

Hessian Approximation
(Quasi-Newton approach with Eq. (26) and
envelope theorem with Eq. (30))

k=k+1

u{p, VG, H®)

Converge ?

Calculate R; of component i using SOSPA

A

Calculate all the equivalent indexes Bsgco/spas
with Eq. (52) and the directional
vector a;with Eq. (47)

A4

Form the mean value
u; = (ﬁSEGO/spAi: ---IBSEGO/SPAm)
> -
and the covariance p;; = a; @;

y

Calculate the system reliability with Eq. (49)

Figure 4.2 Flowchart of time-dependent system reliability
Step 1: Transform random variables X into U in the standard normal space.

Execute Step 2 and 4 for all components in the system.
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Step 2: Search for MPPs u*, obtain the optimal time £ of the component limit-state function
with the efficient global optimization method.

Step 3: Determine the gradient VG and Hessian matrix H of the envelope function.

Step 4: Calculate the probability of component failure and use SOSPA to find the mean vector
of equivalent component responses.

Execute Steps 5 and 6 for system reliability analysis.

Step 5: Use the MPPs and reliability indexes of all components to find the covariance matrix
of component responses.

Step 6: Form the multivariate normal PDF and integrate it to obtain time dependent system

reliability.

4.3.4 Extension to the Problems with Input Random Process

When the limit-state function involves random processes, it becomes Y = g(X, L(t), t), where
L(t) is a vector of random processes. Series expansion methods, such as the Karhunen—Loeve
series expansion, the orthogonal series expansion, and the expansion optimal linear estimation
method (EOLE) [154], can be used to convert them into independent random variables, and then
the proposed method can still work. Take EOLE as an example for a Gaussian random process
L(t). The time interval [ty, ts] is evenly discretized into N points, and the N X N autocorrelation

coefficient matrix X = [p(ti,tj)] ,1=12,..,N,j=12,..N is obtained. Then the EOLE

expansion is given by
<!
LU, ©) ~ u(t) + o (t) Z—" TEC,E k=127 (58)
SNy
j=1

where u (t) and o(t) are mean and standard deviation of L(t), respectively. Uy, k = 1,2, ...7,
are independent standard normal variables, A = (14, 4,, ..., 4,.)T is the eigenvalue vector, and
¢4, d,, ..., §, are the corresponding eigenvectors obtained from autocorrelation coefficient matrix

X. Note that r is determined as the smallest integer that meets the following criterion:
-y

=1
Zﬁy=1 4

(59)
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where 7 is a hyperparameter determining the accuracy of the expansion. It takes a value close
to, but not larger than 1. The smaller is 7, the less accurate is the expansion. If n = 1, the expansion

is exact. Normally, 7 is set to 0.9999.

4.3.5 Parallel Systems

The above results can be extended to parallel systems. For a parallel system, the probability of

failure can be computed by

m
pfS = Pr (U Yl = gi(xl t) < Oiat € [to, tS]Pi = 1;2; rm> (60)
i=1

Let G;(X,t) = —g;(X, t), then

m
Dfs = Pr(ﬂ Y, =G;(X,t) > 0,3t € [ty t,],i = 1,2, m) (61)

i=1
Eq. (61) evaluates the probability of an intersection of m events as Eq. (43) does for a series
system. Hence the proposed method can be used to calculate Eq. (61), which leads to the system

reliability Rg = 1 — pys .

4.4 Examples

In this section, three examples are presented to test SOSPA for system reliability analysis.
Example 1 is a mathematical problem which is used to demonstrate the details of the proposed
method. Examples 2 and 3 are engineering problems. The accuracy is measured by the percentage

error with respect to a solution from MCS. The error is calculated by

=

MCS
pfs

where pg; is the result from SOSPA or FORM, and p}l’écs is the result from MCS.

X 100% (62)

4.4.1 Example 1: A Math Problem

A series system consists of two components with random basic variables X = (X, X;). X; (i =
1,2) is normally distributed with parameter y; = 3.5 and g; = 0.3. The two limit-state functions

are given by
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g2(X,t) = (cos(57) X; + sin(5") X;)?(—sin(57)X; + cos(5) X;)
—5(cos(57) X; + sin(5°) X,)t + ((—sin(57)X; + cos(5°) X, + 1)t? — 3.9 (64)

where t varies within [155].

Fig. 4.3 shows the parabolic curve of the envelope function of g;(X,t) formed by the
instantaneous limit-state surface at different time instants within the interval [155]. The contours
of the analytical envelope functions of G; and G, are plotted in Fig. 4.4. The shaded area represents
the system failure region.

To explain clearly how the SOSPA method works, we only show the details for g, (X, t). First,
the MPP of the envelope function at £ is obtained using sequential EGO. The iteration history is
shown in Table 4.1. Once the iteration is convergent, the MPP is found at (—1.0714, —3.1172)T.

10F 1
5 b -
Al
2 0 Envolope funcion
-5

Figure 4.3 Envelope function formed by instantaneous limit-state surfaces
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—— Extreme limit-state function G;
---- Extreme limit-state function G>
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U,

Figure 4.4 System extreme limit-state function
The probabilities of failure for g, and g, from SOSPA are p;; = 6.0040 X 10~* and Dr2 =
7.2248 X 10~*. The mean values of the two equivalent component responses Z = (Z;,Z,)T are
then given by u, = Bsospa = (—3.2387,—3.1855)T. The unit directional vectors of the two
limit-state functions are a; = (0.3254,0.9456)T and a, = (0.0098,1.0)T. Thus, the correlation
coefficient between g, and g, is p;, = &} &, = 0.9487, and the covariance matrix is obtained as

follow.

z = [ 1 plZ] = [ 1
2o lpyr 1 0.9487

0.9487]
1

The probability of system failure from SOSPA is pss = 1 — R; = 9.4747 x 10™*. When
FORM is used, the covariance is the same as X,, and the mean values of the two equivalent
component responses are below

u, = Brorm = (—3.2963,—-3.2079)7T

The probability of system failure from FORM is pys = 8.3738 X 10~*. The MCS solution

with a sample size of 10° is also obtained. For MCS, the time interval is evenly discretized into

100 points. The total number of function calls is therefore 2 X 108. The results are shown in Table
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4.2 where the errors calculated by Eq. (62) are given in brackets. Table 4.2 shows that SOSPA is
much more accurate than FORM which produces a large error due to the nonlinearity of the
envelope functions. However, the total function calls of FORM and SOSPA are 365 and 410,

respectively, showing FORM is more efficient.

Table 4.1 Iteration history of MPP search for g,

Iterations u* t
1 (—6.1450,—1.7052)T 1.4735
2 (—=2.1526,—2.9252)T 1.9689
3 (—1.3877,—3.0305)T 2.1483
4 (-1.1631,—-3.0878)T 2.2063
5 (—=1.0941,-3.1096)T 2.2251
6 (=1.0714,-3.1172)T 2.2314

Table 4.2 Probability of system failure in Example 1

Methods SOSPA FORM MCS
6.0040 x 10~* 4.8989 x 104
Pr1 5.840 x 10~
(2.81%) (16.10%)
7.2248 x 1074 6.6864 x 10~*
Pr2 7.470 X 1074
(3.28%) (10.50%)
9.4747 x 10~* 8.3738 x 10~*
Dfs 9.560 x 107*
(0.89%) (12.40%)
N.qus of g1 127 112 108
N.aus of g5 283 253 108
Total 410 365 2% 108
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4.4.2 Example 2: A Roof Truss Structure

A roof truss problem is modified as our second example shown in Fig. 4.5 The top boom and
all the compression bars are made of concrete while the bottom boom and all the tension bars are
made of steel. The bars bear a nonstationary Gaussian process whose autocorrelation coefficient

function is given by

p(ts, ;) = exp [— (2= t)] (65)

A and E are the cross-sectional area and elastic modulus of the concrete bars, respectively.
Ag and E are the cross-sectional area and elastic modulus of the steel bars, respectively. All

parameters are independent and are listed in Table 4.3.

C

D F

A/\ B

(1) N/m

E G
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S, 02787 02221 025 025
I~ gb b b

Figure 4.5 A roof truss

The perpendicular deflection of the roof peak node is calculated by

ql? /381 1.13
=7( + )

AC
AcE;  AgEg

(66)

A failure occurs when the perpendicular deflection AC exceeds 1.6 cm at any instant of time

period [0,10]. The limit-state function is then defined by
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X,t) =0.016 — —

ql? (3.81 1.13) 7

The second failure mode is that the internal force of one bar exceeds its ultimate stress. The
internal force of the bar is 1.185ql, and the ultimate strength of the bar is f-A., where f, is the
compressive stress of the bar. The second limit-state function is then given by

92X, t) = fcAc — 1.185q! (68)

The third failure occurs when the internal force of another bar 0.75ql exceeds its ultimate

stress fgAg, where fs is the tensile strength of the bar. Therefore, the third limit-state function is

formulated by
93X, t) = fsAs — 0.75¢l (69)
Table 4.3 Distribution of random variables
Variabl Standard o
Mean o Distribution
¢ (Unit) deviation
Nonstationary
q(N/m) 14000(0.2 sin(0.25¢t) + 0.8) 500 .
Gaussian process
L(m) 12 0.12 Normal
Ag(m?) 9.0x10~* 9.0x107° Normal
Ac(m?) 5x1072 5x1073 Normal
E¢(N/m?) 2x1011 2x1010 Lognormal
E-(N/m?) 3x1010 3x10° Lognormal
fo(N/m?) 3.35x108 6.7x107 Normal
fc(N/m?) 1.34x107 2.68x10° Normal

The time period [0,10] years is evenly discretized into N = 50 points. With Eq. (65), the
50 X 50 autocorrelation coefficient matrix X of random process g is obtained. The most
significant five eigenvalues of X are 35.54, 11.90, 2.24, 0.28, and 0.03. We use EOLE to generate
the series expansion of q(t) and only keep the first five orders.

SOSPA produces mean vector of the equivalent component responses:
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n, = (—2.6681,—3.4056,—2.7416)7T

and the covariance matrix is as follows:

P12 P13 0. 1564 0.2824
[P21 ,023] = 10. 1564 0.0375
P31 P32 0.2824 0. 0375 1

The probability of system failure from SOSPA is pys = 7.1017 X 1073,

FORM and MCS are also used, and the sample size of MCS for each component is
5 X 108. The results from three methods are given in Table 4, showing that SOSPA has the higher
accuracy than FORM with less efficiency.

Table 4.4 Probability of system failure in Example 2

Methods SOSPA FORM MCS
3.8140 x 1073 3.4370 x 1073
Pr1 3.9623 x 1073
(3.74%) (13.35%)
3.3010 X 1074 3.0768 x 1074
Pr2 3.3740 X 1074
(2.16%) (8.81%)
3.0569 x 1073 2.8297 x 1073
Pr3 3.1324 x 1073
(2.41%) (9.66%)
7.1017 x 1073 6.4885 x 1073
Drs 7.3049 x 1073
(2.78%) (11.20%)
Neaus of g1 306 188 5x 108
Neaus of g1 599 363 5x 108
Neaus of g1 592 538 5x 108
Total 1797 1089 1.5 x 10°

4.4.3 Example 3: A Function Generator Mechanism System

Fig. 4.6 shows a function generator mechanism system, which can achieve a desire motion.

This system consists of two function generator mechanisms [10].
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Figure 4.6 A Function Generator Mechanism System

Mechanism 1 is a four-bar linkage mechanism with links B;, B,, B, and B,, and it generates
a sine function. Its motion error is the difference between the actual motion output and the required
motion output. It is defined as
e1(X1,7) = ko Xy, ¥) — Kka(¥) (70)
where X; = (B4, B3, B3, B,) and links B, and Bs are welded together. The two input angles
satisfy
y=62°"+6 (71)

From the mechanism analysis, k,(X;,¥) and k4 (y) can be obtained by

—E, +/EZ + DZ — F2
Ko(Xy,7) =2 arctan( 1 £ VEf ! 1) (72)
Fy =Dy
and
o o 3 )
Kq(y) = 60 + 60 sin <Z (y —97 )) (73)

where D; = 2B,(B; — B,cosy) , E; = —2B,B,siny , and F, = B> + B2 + B} — B% —
2B, B;cosy.
Mechanism 2 is the other four-bar linkage mechanism with links B,, Bs, B, and B, and it
generates a logarithm function. The motion error is given by
&,(X2,0) =1a(X2,6) —nq(6) (74)
where X, = (B4, Bs, Bg, B7).
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—E, + \EZ + D7 — F}
Na(X5,0) =2 arctan( 2 £ VE} +D; 2) (75)
F, =D,
, [(6 +157)/607]
na(8) = 60 logy, (76)

logo 2
where D, = 2B,(B; — Bscos0) , E, = —2BsB,sinf , and F, = B? + B¢ + B — B¢ —
2B, Bscos6.
Mechanism 1 is considered reliable if {e, < & (X;,¥) < e;}, where e; and e, are allowable
motion errors with e; = 1.4 and e, = —0.8. When the motion error is positive, the limit-state

function is defined by

91Xy, y) = e; — & (Xy,7) (77)
As for the negative motion error, the limit-state function is given by
92Xy, 7) = &1(Xy,7) — e (78)
Similarly, the limit-state functions of mechanism 2 are as follows:
93(X3,0) = e3 — £,(X;,0) (79)
94((X2,0)) = £2(X;,6) — e, (80)
in which e; = 1.0 and e, = —2.4. The random variables are given in Table 4.5. The

mechanism system performs its intended functions over an interval of [6,, 8s]=[45",95]. The

system is a series system with four components (limit-state functions).

Table 4.5 Parameters in Example 3

Variable Standard
Mean Distribution

(Unit) deviation
B; (mm) 100 0.3 Normal
B,(mm) 55.5 0.05 Normal
B3;(mm) 144.1 0.05 Normal
B,(mm) 72.5 0.05 Normal
Bs(mm) 79.5 0.05 Normal
Bg(mm) 203 0.05 Normal
B, (mm) 150.8 0.05 Normal
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Table 4.6 shows the results. It indicates that the accuracy of SOSPA is in general better than
FORM. However, both methods produce almost identical results for ps, and ps,. The reason is
that the extreme values of two corresponding limit-state functions occur at the beginning of the
time period (at 45°). Thus, the Hessian matrices of the two envelope functions are not accurate,
and SOSPA is not accurate for ps, and pg,. Since the two probabilities of component failure are

much smaller than the other two probabilities, their effect on the probability of system failure is

insignificant.
Table 4.6 Probability of system failure in Example 3
Methods SOSPA FORM MCS
6.8663 x 1073 5.6273 x 1073
Pr1 6.9440 x 1073
(1.12%) (18.94%)
6.1088 x 10~° 6.1088 x 10~°
Pr2 6.430 X 107°
(4.55%) (4.55%)
2.5156 x 1073 2.0006 x 1073
Prs3 2.520x 1073
(0.17%) (19.20%)
4.3845 x 10~* 4.3845 x 10~*
Pra 4970 x 1074
(11.80%) (11.80%)
7.5580 x 1073 6.2230 x 1073
Drs 7.6430 x 1073
(1.11%) (18.60%)
Neaus of g1 179 124 108
Nequs of g- 398 288 108
Neaqus of g3 320 210 108
Nequs of ga 479 369 108
Total 1376 991 4 %108

4.5 Summary

The proposed time dependent system reliability method predicts system reliability with a

second order approximation. It is therefore in general more accurate than the first order
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approximation method. But it is less efficient than the latter method due to the need of second
derivatives.

The new method converts a time dependent problem into a time independent problem by using
the envelope function or the extreme value of a limit-state function over the time span under
consideration. The most probable point (MPP) of the envelope function is found with the help of
efficient global optimization. Then the envelope function is approximated at the MPP with its
gradient and Hessian matrix. The reliability of each component is calculated by the second order
saddlepoint approximation, and the dependencies between component responses are considered
with the first approximation for the sake of efficiency. Once the estimated marginal component
distributions and component correlations are available, the joint distribution of all the component
responses is formed by a multivariate normal distribution, which leads to a fast evaluation of the
system reliability.

The proposed envelope method works well if the envelope function is convex. The global MPP
of the envelope function may not be found if the envelope function has multiple MPPs. For this
case, the MPP search may start from different instants of time, and then the worst-case MPP is
used. The proposed method does not work for a special case where the extreme value of a limit-
state function occurs at the beginning or end of the period of time under consideration, and the
reason is that the derivations of the Hessian matrix of the envelope function are for the case where
the extreme value occurs inside the period of time.

Out future work will address the above two issues. The proposed method can also be further
extended to time and space dependent problems where random processes and random fields are

also involved.
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Reliability can be predicted by a limit-state function, which may vary with time and space. This
work extends the envelope method for a time-dependent limit-state function to a time- and space-
dependent limit-state function. The proposed method uses the envelope function of time- and
space-dependent limit-state function. It at first searches for the most probable point (MPP) of the
envelope function using the sequential efficient global optimization in the domain of the space and
time under consideration. Then the envelope function is approximated by a quadratic function at
the MPP, for which analytic gradient and Hessian matrix of the envelope function are derived.
Subsequently, the second-order saddlepoint approximation method is employed to estimate the
probability of failure. Three examples demonstrate the effectiveness of the proposed method. The
method can efficiently produce an accurate reliability prediction when the MPP is within the

domain of the space and time under consideration.

5.1 Background

Reliability is the probability that a product or component performs its intended function under
a specific condition. Reliability can be predicted by a physics-based approach if the state of a
component can be predicted by a physical model, which is called a limit-state function. A physics-
based reliability problem may be time- and space-independent, time-dependent, space-dependent,

or time- and space-dependent.
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A time- and space-independent reliability problem involves limit-state functions that do not
vary with respect to time and space, and its inputs might involve random variables or random fields
at a specific point in space. Many methods are available for this problem. Monte Carlo simulation
(MCS) is one method. It is accurate when the sample size is sufficiently large, but it is
computationally expensive [156, 157]. When failure probabilities are small in reliability analysis
of engineering systems, subset simulation is an alternative method [27]. Importance sampling
methods could be used to reduce the computational cost because they generate more samples in
the failure region [4].

The first-order reliability method (FORM) [8, 158] is much more efficient because it linearizes
the limit-state function. FORM can produce satisfactory accuracy for many engineering
applications, but it is less accurate for highly nonlinear limit-state functions. The second-order
reliability method (SORM) [13, 15] can produce higher accuracy than FORM due to the second-
order approximation but is less efficient than FORM. The accuracy of SORM may be further
improved by the second-order saddlepoint approximation (SOSPA) since the saddlepoint
approximation may yield a more accurate probability estimation, especially in the tail area of
distribution [14, 16, 159]. Reliability can also be predicted by regressions, such as the Gaussian
process method [37, 87, 160, 161] and the support vector machines method [31, 162, 163].

The limit-state function may vary over time, which results in a time-dependent reliability
problem. The input of the limit-state function may involve time and random processes. Rice’s
formula-based methods are commonly used [46, 130, 132, 164]. They are in general more efficient
than other methods but may lead to large errors if up-crossing events are strongly dependent [21].
Regression methods can also be used and may achieve higher accuracy if the surrogate model is
well trained [29, 165-167]. Converting a time-dependent problem into a time-independent
counterpart is possible by using the extreme value of the limit-state function [32, 126, 137, 168].
The methods include the envelope function method [168], extreme value response method [137],
and the composite limit-state function method [126],

The most general problems are those with time- and space-dependent limit-sate functions,
which may take input of stochastic processes, random fields, and tempo-spatial variables [31-36].
Hu and Mahadevan developed a surrogate modeling approach for reliability analysis of a
multidisciplinary system [169]. Shi et al. presented a method for the moment estimation of the

extreme response using two strategies [170]. One strategy is combining the sparse grid technique
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and the fourth-moment method while the other one is combining the dimensional reduction with
the maximum entropy method. Shi and Lu proposed an active learning Kriging method [53]. Wei
and Du combined FORM and SORM for the time- and space-dependent reliability analysis [54,
171]. Despite the progress, there is still a need to improve the accuracy and efficiency of time- and
space-dependent reliability prediction.

The proposed method is an extension of the time-dependent methodology in Ref. [168]. This
method converts a time- and space-dependent problem into a time- and space-independent problem
by using the envelope function or the extreme value of a limit-state function over the time and the
space span. The MPP of the envelope function is found by combing the sequential efficient global
optimization (EGO) with FORM. Then the quadratic envelope function is approximated at the
MPP with its gradient and Hessian matrix. Then the probability of failure is estimated by the
second-order saddlepoint approximation method.

The rest of the paper is organized as follows. Section 2 reviews FORM for time- and space-
dependent reliability. Section 3 discusses the proposed method. Section 4 presents three examples,

and Section 5 provides the conclusions and future work.

5.2 Review Fundamental Methodologies

5.2.1 Problem Statement

In this work, we consider a limit-state function given by
y=9X1z) (1)
in which X = [Xj, ..., X,,]T are n input random variables. The time variable is z; € [z;,%;], and
the spatial variables are z;, with the following ranges: z; € [gk, Ek], (k=2,..,m). Then,
Z = [24,2y, ..., Zy]" is a vector of the temporal/spatial variables bounded on Q = [z, Z].
The reliability over the temporal and spatial domain is defined by
R =Pr{g(X,z) > 0,Vz € Q} (2)
where ¥V means “for all”. The associated probability of failure is given by

pr =Pr{gX,z) < 0,3z € Q} 3)
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where 3 means “there exists at least one”. Note that the spatio-temporal domain in Eq. (1) is
rectangular. In reality, the domain may be non-rectangular. This study focuses on only a

rectangular domain.

5.2.2 First Order Reliability Method (FORM)

FORM is the commonly used reliability method. It is originally intended for time- and space-
independent reliability analysis. In this work, we at first review the time- and space-independent
reliability problem with the FORM method, then the discussion furtherly can be extended to the

time- and space-dependent reliability problem.

5.2.3 Time- and Space-independent Reliability Problem

The time- and space-independent reliability is defined by
R = Pr{y = g(X) > 0} (4)
where y is response and X is a random vector. FORM at first searches for the most probable
point (MPP) in the standard normal space. At first, random variables X are transformed into
standard and independent normal variables U [38]. Then, the minimum distance from the origin to
the limit-state surface g(X) = 0 is identified. The distance is the reliability index . The minimum
distance point is called the MPP. The model for searching for the MPP is given by
{ min v/ uTu (5)
s.t. gX) =g(T(u)) =0

where T(*) is an operator of the transformation from U to X.

B = llul = Ju% Fud et ©)

The solution from Eq. (5) is the MPP uypp.
Lastly, the reliability is calculated by

R =Pr{y = g(X) > 0} = ®(B) = ©(|lumpepl)) (7

where @ (+) is the cumulative distribution function (CDF) of the standard normal distribution.
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5.2.4 Time-Dependent Reliability Problem
When it comes to the limit-state function that varies over time, FORM can still be used to find
the MPP. The MPP uypp at the time instant z; is identified by the following model:

(8)

min [|ull
{S-t- 9(X,zy) = g(T(u),z) =0

The limit-state function is linearized at uypp(2;) by

g
U,

(U; — umppi) = Vg X (U — uppp ) 9

umMpp

N
9T, ) ~ g( e, 21) + ).

where Vg = laa_li e’ ’;Tgn - l is the gradient, and the probability of failure is
computed by
D = Pr(g(X,z,) <0,z € [2,7,]) = Pr(B(z,) + a(z))U < 0,2, € [21,7,]) (10)
where (z,) is the time-dependent reliability index, given by
B(z1) = llupppll (11)
and a(z,) is the time-dependent unit gradient vector given by
Q) = o B = (), @), ) (12)

As indicated in Eq. (9), the limit-state function g(X,z;) is approximated as a linear
combination of standard normal random variables. Many methodologies are available for solving
for the probability of failures, such as Rice’s formula-based methods and metamodeling-based

methods.

5.3 Envelope Method for Time- and Space-dependent Problem

The envelope function is tangent to all the instantaneous limit-state functions with respect to
time and space. The envelope function of a limit-state function is in general nonlinear and can be
approximated as a quadratic function at its MPP by the second-order approximation method.

It is known that the MPP of the envelope function is the worst-case MPP of the limit-state
function [37]. In other words, the MPP is the closest point between the origin and all the
instantaneous limit-state functions. The MPP of the envelope function can be efficiently found by

the sequential single-loop method [37]. Consequently, the gradient of the envelope function is
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consistent with the gradient of the worst-case limit-state functions at MPP [37]. However, as the
curvature of the envelope function may not be the curvature of the worst-case limit-state function,
the analytical Hessian matrix of the envelope function is derived. In this paper, we extend our work
in a more general situation. The second derivative of the envelope function with respect to random
variables and multiple temporal/spatial variables is analytically derived. As a result, the Hessian
matrix of the envelope function can be accurately obtained.

Different from the existing method [37], the new method also covers problems where a single
call of a limit-state function returns a complete response with respect to time and space. Hence the
method can be used for the following two cases.

Case 1: The input includes a realization of random variables X, as well as a time
instance/spatial location z, and the output is a single response. This case requires calling the limit-
state function repeatedly so that the worst-case response can be found.

Case 2: The input includes a realization of random variables X and the temporal/spatial domain
Q of z. Calling the limit-function returns a complete time- and space-dependent response with
respect to z in 2. In this case, the output is a hypersurface of the response y(z). For example, if
we call a computational fluid dynamics (CFD) simulation, we obtain the 4-D pressure and velocity

fields with respect to time and space. Since we know y(z), the minimum value mi(l)"l y(z) is also
ZE

known.
In Sec. 3.1, we focus our discussions on Case 1 for limit-state function y = g(X,z). Since
Case 2 is much easier than Case 1, we briefly discuss it at the end of Sec. 3.1. We then extend the

method into a general problem with input random fields in Sec. 3.2.

5.3.1 Problems with Random Variables, and Temporal/Spatial Parameters

We now discuss Case 1 with the limit-state function is given in Eq. (1). For this case we need
to search for the worst-case MPP.

The time- and space-dependent probability of failure in the time span [51,21] and the space

span [gk, Ek] can be evaluated by the extreme value of the limit-state function.

pr =Pr(g(X,z) < 0,3z € Q) =Pr (ming(X, z) < 0) (13)
YA Y]
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Eq. (13) indicates that a failure occurs if the minimum response is negative. The function of
the extreme response is equivalent to the envelope function or the composite limit-state function
[29], which is given by

G(X) =ming(X,z) = g(X,2) (14)
where the envelope function G (X) is the global minimum of g(X, z) with respect to z, and the
global minimum occurs at Z.
If FORM is used to linearize G (X), the MPP is obtained by

minyuTu

s.t.min g(T(u),z) = 0 (15)

Eq. (15) requires a double loop optimization process because minimization appears in both the
objective and constraint functions. The inner loop is for the minimum value of g(T(u), z) relative
to z while the outer loop is the MPP search relative to u. In this work, we decouple the double
loop into sequential single loops.

The first loop is FORM analysis, the MPP ul(\,}g,P at the initial Z(® = [2?, 22, ... z3,] is obtained
by

{min uTu (16)
s.t. g(T(u),z,) =0
Then z is determined by fixing the random variables on its realization ul(v}%,P, and z is denoted

by Z(M, which is given by

7 = arzgerging (T(ul(v}g,P), z) (17)

In the next loop, the new MPP u® s located at point 2 using Eq. (16). And then z is
p MPP p g kq

updated to Z().

7@ = arzgerging (T(uﬁgp), z) (18)

The above process is repeated until convergence, and the MPP is found. It is the worst-case
MPP of the limit-state function with respect to z.
2D 0 ;W

The global minimum value of G (X) occurs at Z) = [ ., Zy" |, which is given by

7 = argmin g(T(uypp), Z) (19)
zEQ
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Note that finding the optimal point is still in the sequential loops. There are many methods to
solve the optimal point Z(P corresponding to the global minimum value of G (X). The first partial
derivative of the limit-state function with respect to z; at MPP is as below:

ag(T(uMPP)' Z1yZ)) ey Zm)

=0
dz,

: (20)
09 (T(umpp), 21, Z2, «vvs Zm)

=0
0z,

71 70, . ZM] can be obtained by solving Eq. (20).

The optimal point 2P = [
We use efficient global optimization (EGO) to find the MPP. EGO has been widely used in
various areas because it can efficiently search for the global optimum [39]. Suppose we have called
the limit-state function at several initial training points of z"" and the number of initial training

points is n;,, which denote by as follows

Z11 eee ZE;‘L

zin — : :
Nin Nin

Z1 eee Zm

and the associated responses are y"* = [g(T(u*),z'), g(T(u*),z?), ..., g(T(u*),z"n)]T. An
initial function is fitted from (z™*, y™) by the following surrogate model [39]:
y=9@) =g(T)z)=F@)"y+e() (21)
where F(z)Ty is a deterministic term, e(Z) is a vector of regression functions, ¥ is a vector of
regression coefficients, and e(z) is a stationary Gaussian process with zero mean and a covariance
given by
Cov(e(zl),e(zz)) = 02R(z,,2,) (22)
where a2 is process variance, and R(,") is the correlation function.
The output of the surrogate model is a Gaussian random variable following
9 = 9@ ~N(u(2),0%@) (23)
where u(z) and o(z) are the mean and standard deviation of y, respectively.
The initial model is likely not accurate. The expected improvement (EI) metric [39] is used to
identify new training points that will be added to refine the model. The improvement is defined by
[ = max(y* —y,0) (24)

where y* = 1nzlin g(z") is the minimum from the sampling training points.
i= .

=L,4,. in
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EI is computed by

EI(2) = Elmax(y” — y,0)] = (v* —M(Z))CD(y —k (Z)) + o) (y K (Z)) (25)

o(z) o(z)
where ¢ () is the probability density function (PDF).
A new training point z,,,,, is identified by minimizing the expected improvement.

Znew = argminEl(z) (26)
z

By combining sequential strategy with EGO, uypp of envelope function G (X) can be obtained

efficiently by solving Eq. (15). The probability of failure with FORM is estimated by
pr =Pr(g(X,z) < 0,3z € ) = Pr (G(X) < 0) = ®(—p) (27)

where § =|| uypp |l is the first-order reliability index.

In general, the envelope function is nonlinear, and FORM may not be accurate enough. Thus,
a second-order method is preferred, and it uses the envelope theorem to obtain the second-order
information of the extreme limit-state function. Then SOSPA is used to estimate the probability of
failure.

The envelope function is generally nonlinear, and we therefore approximate it as a quadratic
function, instead of a linear function in FORM. As a result, we need the gradient VG and Hessian

matrix H at the MPP of the envelope function. The quadratic function is formed as follows [12]:

G(U) =a+bTU+UTCU (28)
where
a= E (uMPP)THuMPP - VG (UMPP)TUMPP
b = VG (uypp) — Huypp = (51' Bz' Ty Bn) (29)
1
C = EH == dlag(fl, 62, ...,6-”_)
T
VG(u*) = 26 e 96 is the gradient of the envelope function. H is the Hessian
au au
Tupmpp nluppp
matrix shown below.
0%G 2%G
6U12 au,au,
H= : : (30)
0%G 2%G
au,dU, au? upipp
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The envelope function G (X) at uypp is given by
G(U) = ming(U,z) =g, 2)|uyp €2Y)

where Z = [Zy, ..., Z;,| 1s the optimal point where the global minimum value of function

g(U,z) occurs, and it is found by

ag(y, ag(Uu, dg(U,
9U,2) _9g( z):...:MZO (32)
0z, 0z, 0z,
The envelope function satisfies the following equation:
gW,z,,z5,..,2,) =0
: (33)
g(U,Zl,Zz, ...,Zm) = 0
where g is the derivative of g with respect to z;.
Next, the first derivative of G (U) with respect to a random input variable U; at uypp is
oG 0 dg 0Z, 0dg 0% dg 07
S A s B B (34)
aUl' aUl 621 aUl aZZ aUl aZm aUl
By plugging Eq. (33) into Eq. (34), it becomes
dG  adg
= 35
ou; 0dU; (35)

Eq. (35) indicates that the gradient of the envelope function VG is equal to the gradient of the
limit-state function Vg at the MPP. Subsequently, the second derivative of G (U) with respect to

the input random variables U; atu” is

0%G Jd (0G d (0 02 0%g 07 0%g 0z
Take the derivative of Eq. (32) with respect to U;, and it is given by
g 0dg 0z
s S (37)
0z ag /0g 02 02
Zk, _ 99 /09 _ g g (38)

au; ~  ou;/ 0z, 0%,0U;/ 832
The Hessian matrix H with respect to random variables and multiple temporal/spatial variables

is obtained by plugging Eq. (38) into Eq. (36) at uypp, Z.
_ d%g = d%g 0%g 9%g
aU;0U; o] 0U;0%, 0U;02,/ 0z}

9%G
U;0U;

(39)

u*,ik
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The forward finite difference method with step size § = max (Ju|/1000,¢) and € = 10~ * is
employed to calculate the derivations in Eq. (39).

Once the envelope function is approximated by a quadratic function, we use the second order
saddlepoint approximation to estimate the probability of failure. The reason we use saddlepoint
approximation is due to its high accuracy in the tail area of a distribution; a failure usually occurs
in a tail area.

Eq. (28) can be written as the sum of quadratic functions of different standard normal variables
G(U) =ZQi(fj) = Z(ai + b,U; + ¢,0?) (40)
The cumulant generating function (CGF) of G (U) is given by
n
Kots) = ) Ko,(t) (41)
i=1

After the CGF K, (t;) is obtained, it is straightforward to find the PDF of the limit-state
function, and this needs to solve the saddlepoint ¢y, which is found by solving the following
equation:

Ko(t) =0 (42)
where KQ’ (ts) is the first derivative of K, (t,). The details of the implementation of SOSPA

refer to Ref. [14]. According to Lugannani and Rice’s formula,

Then the probability of failure is evaluated by

1 1
b = Pr(GU) < 0) = OW) + p(w) (- 1) (43)
where
w = sgn(ts){z [—1’((,(1:5)]}E (44)
v = ts[Ky (t)]? (45)

in which sgn(t;) = +1,—1, or 0, depending on whether ¢t is positive, negative, or zero.
K (t) is the second derivative of Kj(t,) concerning t,. Since the above method uses SOSPA and

envelope theorem, we denote this method as SOSPA/ENV.

Case 2: Calling the limit-function returns a complete time- and space-dependent response
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In this case, the output is a hypersurface of the response y(z). The complete response y(z) is

available, so the minimum value mi{rzl y(z) is also known. We do not need to use the sequential
VAS

single loops in case 1. Thus, the MPP in Eq. (15) can be obtained from the following model:

{mim/ uTu (46)

s.t.miny(z) =0
min y(z)
where miél y(z) is a function of u and is obtained by calling the limit-state function once at u,
VAS

where u is the vector of independent normal variables transformed from X. We just need a single-
loop MPP search, which is more efficient than the sequential loop approach.

The model in Eq. (46) may have multiple MPPs [40]. The accuracy of the reliability prediction
may be poor if only one MPP is used and if other MPPs also have significant contributions. There
are three strategies to deal with multiple MPPs. The first strategy is to repeat the standard MPP
search with different starting points and find different solutions if they exist. The second strategy
is to use an optimization algorithm that can find multiple local optima. The methods include
genetic algorithm [40] and particle swarm optimization [41]. The third strategy is to employ
methodologies specifically designed for multiple MPP search [29,42]. Although there is no
guarantee to find all possible MPPs, these strategies can significantly increase the chance of
finding multiple MPPs [29,40-42]. Once all potential MPPs are identified, the corresponding limit-
state surfaces are linearized at these points as

Q;(U) = —=VG (uypp;) "uypp; + VG (uypp;)U (47)
where i = 1,2, ..., m, in which m is the number of MPPs. The reliability is calculated as the

reliability of a series system.

m

R =Pr (ﬂ Q;(U) > 0) = (ﬂ = —VG (uppp;) "Umpp; + VG (Uypp)U > 0) (48)

i=1
Since Q;(U) follows a normal distribution, all the responses at their MPPs follow a
multivariate normal distribution, whose joint probability density is integrated in the safe region,
resulting the reliability. The second order method is used for higher accuracy. The method still
uses a multivariate normal distribution, whose mean vector is obtained by the second order
saddlepoint approximation and whose covariance matric is estimated by the first order

approximation [12].
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5.3.2 Problems with Random Variables, Random Fields, and Temporal/Spatial Parameters

We have discussed limit-state functions with random variables X and temporal/spatial
variables z. In this subsection, we discuss how to extend the method to limit-state functions with
random variable X, random fields F(z) and temporal/spatial variables z. A limit-state function is
given by y(z) = g(X, F(z),z). The time- and space-dependent probability of failure is calculated
by

pr =Pr(g(X,¥(z),z) <0,3z€ Q) = Pr (Iznelél y(z) < 0) (49)

Eq. (49) indicates that failure happens when the minimum value of the limit-state function g(X,
F(z),z) is negative. There are still two cases: a single call of a limit-state function does not return
a time- and space-dependent response and a single call of a limit-state function returns a complete
response with respect to time and space.

Case 1 requires calling the limit-state function repeatedly to obtain the worst-case response in
Q. We need to convert random fields into time- and space-dependent random fields so that the
proposed method can be used. The expansion optimal linear estimation method (EOLE) [40] can
be used to convert the random fields F(z) into independent standard Gaussian random variables
§=(&,¢&,, ...,&), where r is the dimension of §. Take a two-dimensional random field F(z),
where z = (z,, z,), as an example. z; and z, are discretized into n,, and n,, points, respectively.

The autocorrelation coefficient matrix is given by

X = [p(z; z;)] (50)

Ny Mgy XNy Ny,
where p(zi, Zj) is the correlation between two points z; (i = 1,2,..,n, n,, ) and z; (j =

1,2,...,n;,n,,) in the domain of F(z). Then F(2) is expanded by

o &
FEz) ~uz+0(@ ) —b2G,2),k=12,.., (51)
§,z) ~ u(z) +o(z ;m¢k yA T

where p(z) is the mean of F(z), and o(z) is the standard deviation of F(z). &, (k = 1,2, ...7)
are independent standard normal variables, A = (44, 4,, ..., 4,.) is the eigenvalue vector, and
¢4, d,, ..., P, are eigenvectors of X. Note that r is determined as the smallest integer that meets
the following criterion:
Yj=1k

j=1

(52)
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where 7 is a hyperparameter determining the accuracy of the expansion. It takes a value close
to, but not larger than 1. The smaller is 7, the less accurate is the expansion. If n = 1, the expansion
is exact at the points of discretization. Normally, 7 is set to 0.9999.

Then the limit-state function becomes y = g(X, z), where X = (X, £). It is a function given in
Eq. (1) and the proposed method in Sec. 3.1 of case 1 can be used.

For Case 2, a single call of a limit-state function returns a complete response with respect to
time and space. After random fields are expanded with respect to random variables, the problem

becomes the one discussed in Sec. 3.1 for Case 2. The same method in Sec. 3.1 can then be used.

5.3.3 Implementation

The detailed steps of solving time- and space-dependent reliability problems using SOSPA are
summarized below.

Step 1: Transform random variables X into U in the standard normal space.

Step 2: Set k = 1. Generate a random point z €  as the initial optimal point Z(® and use a

unit vector as the initial MPP ul(\/}%P = ug.

Step 3: Perform the MPP search at the point Z(*= and obtain the MPP ul(\f[?,P and the
corresponding 8 by solving the following optimization model:
{min\/ﬂ
s.t. g(T(w),zkD) =0
Step 4: Determine the optimal point Z¥) implementing EGO method at ul(JfP),P. The optimal

point Z%) makes the limit-state function minimized. The initial number of training points to

determine the time and spatial parameters is n;,=2.

7 = argmin g (T(ul(\fff),P), z)

ZEQ

Step 5: Repeat step 3 and step 4 until convergence. The convergence criterion is defined as
B9 — oD < e
The tolerance & can take a small positive value, for example, 10, If | pw —p (k_1)| <107,
terminate the iteration. Otherwise, set k = k + 1, and return to step 3. Note that the method of a
single-loop MPP search can be used if calling the limit-state function returns a complete time- and

space-dependent response
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Step 6: Calculate the gradient VG and Hessian matrix H of the envelope function.
Step 7: Calculate the probability of failure using SOSPA/ENV from the above information

ul(\fff),P, gradient VG, and Hessian matrix H.

5.4 Examples

In this section, three examples are used to demonstrate the proposed method. Example 1 is a
mathematical problem that is used to show the details of the proposed method. The remaining
examples are engineering problems. MCS is employed to provide accurate solutions for the
accuracy comparison. SOSPA/ENV is compared with the FORM-based envelope method
(FORM/ENYV). The errors of SOSPA/ENV and FORM/ENYV are calculated by

oy ]

p]l}/ICS

where py is the result from SOSPA/ENV or FORM/ENV, and p}’lcs is the result from MCS.

x 100% (53)

We also use the number of function calls as a measure of efficiency.

5.4.1 Example 1: A Math Problem

This example is a math problem, which belongs to Case 1 without any random field input. The
limit-state function g(X, s, t) regarding random variables and explicit temporal/spatial parameter
is defined by

gX,s,t) = X?X, — 5X;t + (X, + 1)t?2 — 2X,s + X;5s2 — 8 (54)

where X = (X1, X,), X; (i = 1,2) are normally distributed with parameters y; = 3.5 and g; =

0.25. The temporal parameter is t € [0,5] and the spatial parameter is s €. Therefore, z = (s, t),
and Q = {[0,5] X [0,5]}. X; and X, are independent.

We can easily plot the envelope function for this problem since an analytic envelope function
G (X) is available for this problem. From the partial derivatives of the limit-state function with

respective to t and s

dg(X,s,t)
- T = 0
ot
dg(X,s,t) (55)
- T = 0
ds
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we have

‘= 5X;
2%, + 1)
X (56)
s= X,
Plugging Eq. (56) into Eq. (54) yields the envelope function.
25X7 X?
GX) =X Xy ——————— 7
( ) 142 4(X2 +1) X1 8 (5 )

The envelope function at the limit state G(X) = 0 is plotted in Fig. 5.1, and the failure region

is colored grey. The figure shows that the envelope function is nonlinear.

10

\— Extreme limit-state function G \

Envolope funcion

-10
-10 -5 0 5 10

Figure 5.1 The envelope function

Even though the envelope function has an explicit function, we treat it as a black box by
following the numerical procedure discussed in Sec. 3. SOSPA/ENV searches for the worst-case
MPP with the sequential EGO. Table 5.1 shows the iteration history of the MPP search. The worst-
case MPP is found at uypp = (—2.1702,—2.6185) with £ = 1.8150 and § = 0.8763. Fig. 5.2
displays the convergence history of first-order reliability index . With FORM/ENV, the
probability of failure is p; = 3.3575 x 10™*.

Once the worst-case MPP is available, the gradient and Hessian matrix are computed at the

MPP. The latter is given by

0.1200 0.5542

2 —
ViG(umer) = [0'scgn  —0.1494
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Table 5.1 Iteration history of searching for the worst-case MPP

*

Iterations u t S
1 (=7.4573,-2.0392) 0.9157 1.2272
2 (—3.9028, -1.4544) 1.2886 1.0077
3 (—3.1172,-2.0203) 1.4821 0.8722
4 (—2.7126,—-2.3219) 1.5695 0.8059
5 (—2.5333,—2.4574) 1.7458 0.9219
6 (—2.3025,-2.5225) 1.7859 0.8956
7 (—2.2254,—-2.5784) 1.8030 0.8843
8 (—2.1928,-2.6021) 1.8101 0.8795
9 (—2.1928,-2.6120) 1.8131 0.8776
10 (—2.1735,-2.6161) 1.8143 0.8767
11 (—2.1712,-2.6178) 1.8148 0.8764
12 (—2.1702,-2.6185) 1.8150 0.8763

Reliability index

1 1 1 L L
2 3 4 5 6

Iteration
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Figure 5.2 Convergence history of reliability index




Then SOSPA/ENV produces py = 4.9022 X 10™*. The number of simulations for MCS is
N, = 107. The time and space intervals are discretized evenly into 20 points, yielding 400 points.
Accordingly, the number of function calls of MCS is 4 x 10°.

All the results are shown in Table 5.2. SOSPA/ENV is much more accurate than FORM/ENV
as the error of the former is 3.5% while that of the latter is 33.9%. SOSPA/ENYV, however, is less
efficient than FORM/ENV.

Table 5.2 Results of Example 1

Method Probability of failure Error Number of function calls

MCS 5.080 x 10~* - 4 x10°
FORM/ENV 3.3575 x 1074 33.9% 314
SOSPA/ENV 49022 x 1074 3.5% 333

5.4.2 Example 2: A Truss Structure

A truss structure is shown in Fig. 5.3. This example belongs to Case 1 without any random
field input. The inputs of this truss structure are random variables, temporal parameter t and spatial
parameter h. Each bar of the system has its cross-sectional area A; and the modulus of elasticity
E;, i = 1,2,3. The coefficient of thermal expansion of all bars is @ = 12 X 107°C™1. The

temperature change is related to the installation height of the truss structure and is given by AT =

Te~001(8h*+20n+1)® "ywhere AR € [2,5] m is the difference of two different installation heights. A
downward force P = Py(0.9 + 0.1cos (0.2t)) is applied at joint A, where t € [0,10] years. The
domain Q of z = [Ah, t] is {[2,5] x [0,10]}. All the random variables are given in Table 5.3.

The perpendicular displacement of joint 4 is calculated by

A
A = B (58)

where
A = Lyp(PAE LyccosO? + PALE,LpgcosOs + Ay A3E E3LycTacost?
+ A, A3E,EsLagTacos87 + A1 Ay E E;Ta(Lagsing; cosf2 + Lycsind,cosf?

+ Lpcsinf, cosf,cos0, + Lagsind,cosf,cosb,))
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B = AjA3E E3Lyccos0% + Ay A3E,E3Lagcosf? + A Ay E E,Lap (sinf%cos67 + sinfZcosfz

+ 2sinf, sinf,cosb, cosb,)

L
0, = arctan <$>

vV L,%lB - wa
L
6, = arctan <$>
v L124€ - L,24D
A failure occurs when A§ > 0.65 mm. Thus, the limit-state function is defined by
g(X,s,t) = 0.65— A6 (59)

LB[) Ll)( )
- ]

ava

B 01 4 D 02

AiP

Figure 5.3 A truss structure
107 samples are used for MCS and the domain of Z = (Ah, t) is discretized evenly into
10 X 10 = 100 points. FORM/ENV and SOSPA/ENV are used to calculate the probability of
failure. Table 5.4 shows the results. Even though FORM/ENYV is more efficient than SOSPA/ENV,
it produces a large error. SOSPA/ENV achieves higher accuracy than FORM/ENV although it

needs more function calls.
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Table 5.3 Random variables of Example 3

V(%EE)I © Mean Séi?i?(r)i Distribution
A;(mm?) 60 0.6 Normal
A,(mm?) 60 0.6 Normal
A;(mm?) 60 0.6 Normal
E,(GPa) 200 20 Lognormal
E,(GPa) 200 20 Lognormal
E;(GPa) 200 20 Lognormal
Py(KN) 40 6 Normal
Lag(mm) 200 2 Normal
Lap(mm) 231 2.31 Normal
Lac(mm) 283 2.83 Normal
T(°C) 35 7 Lognormal

Table 5.4 Results of Example 3

Method Probability of failure Error (%) Number of function calls
MCS 3.0270 x 107* - 10°
FORM/ENV 2.7654 x 1074 8.64% 189
SOSPA/ENV 2.9958 x 1074 1.03% 305

5.4.3 Example 3: An Electron Accelerator

Fig. 5.4 shows an electron accelerator that accelerates electrons. The inputs of this example are
random variable L and random field V (w, h, t), calling the limit-state function return a complete
time-and space-dependent responses by sampling the random field V(w,h,t). This problem
belongs to Case 2 with an input random field, and it therefore requires single-loop MPP search.

The device is placed horizontally. Electrons are emitted from the electrode and then enter the
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electric field £ in the accelerator, and finally fly out. The initial velocity of the electrons is a non-
stationary Gaussian random field V,(w, h, t), whose mean is py, = 10° @~ 0-001 (W2 +h+(t=6)%) py/g
and standard deviation is o, = 10000 m/s. The spatial variable w € [—0.05,0.05] m is the width

of the electrode, and h € [—0.05,0.05] m is the height of the electrode. The temporal variable is

t € [0,10] s. The autocorrelation coefficient function of the Gaussian field is given by

Wy — w2 (hy —h\® ity — )2
pv,(Wy, hy, t1; Wy, hy, ;) = exp l_ (%) _< : 5 2) _< 110 2)] (60)

The length of the accelerator L is normally distributed with N(1,0.01?) m. The electric field
E(w, h) is a two-dimensional stationary Gaussian random field, whose mean uy and standard

deviation oy are 10 N/C and 1 N/C, respectively. Its autocorrelation coefficient function is given

by

electrode
V(w,h,t)
S
Vy(w,h,t)
Figure 5.4 An electron accelerator
pe(Wy, hy; wy, hy) = exp l_ (T) - < 5 ) (61)

If the acceleration time and the interaction among the electrons are negligible, the velocity

V(w, h, t) of the electrons after acceleration is

quE(w, h)L
Vw,ht) = [ 4 VR by 0) (62)

where ¢ = 1.6 X 1071°C and m = 9.109 x 1073kg are the electric quantity and mass of an
electron, respectively. The target velocity is V, = 1.4519 X 10°® m/s. The domain Q of z =
[w, h, t] is {[—0.05,0.05] X [—0.05,0.05] X [0,10]}. The limit-state function is defined by
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gX,V(w,h ) = V(w,ht) =V, (63)
in which a failure occurs if the velocity after acceleration is smaller than the target velocity.
The EOLE method is used to generate the series expansion of the nonstationary Gaussian field

Vo(w,h,t). w,h, and t are evenly discretized into 10 points, so there are a total of 1000
discretization points. The 1000 X 1000 autocorrelation coefficient matrix Xy, of the random field
is obtained. The three most significant eigenvalues of Xy, are 841, 146, and 12, and therefore
Vo(w, h,t) can be expanded with three standard independent normal variables &,k = 1,2,3.
Similarly, we use EOLE to generate the series expansion of E(w, h) and keep only the first two
orders. With 1000 discretization expansions points of V(w,h,t), the minimal value of
Imin(W, h, t) can be found. Then the traditional FORM method is employed to find the worst-case
MPP uypp = (—2.2726,—0.0164,—0.0038,0.0014, —2.2726,—0.0050) and the reliability
index B = 3.2140. Then FORM/ENYV produces p; = 6.5558 X 10~* with only 28 function calls
which leading tremendous efficiency improvement instead of using sequential loops to find the
worst-case MPP. SOSPA/ENV produces py = 7.8862 X 10~* with 87 function calls. MCS uses
107 samples of all random variables at each of the 1000 discretization points of the
temporal/spatial variables. The results are provided in Table 5.5. By using the sing-loop MPP
search method, the function calls of both FORM/ENV and SOSPA/ENV methods are reduced
tremendously. SOSPA/ENV is more accurate than FORM/ENV but less efficient.

Table 5.5 Results of Example 2

Method Probability of failure Error (%) Number of function calls
MCS 8,1360 x 10~* - 107
FORM/ENV 6.5558 x 1074 19.4% 28
SOSPA/ENV 7.8862 x 1074 3.1% 87

5.5 Summary

In this work, the envelope method for time-dependent reliability is extended to time- and space-
dependent reliability analysis for limit-state functions with input of random variables, random
fields, and temporal and spatial parameters. The envelope function is obtained with respect to

temporal/spatial variables. Then the time- and space-dependent problem is converted into a time-

120



and space-independent counterpart, and the second order saddlepoint approximation method is
used to estimate the reliability. Equations of the second derivatives of the envelope function are
derived for the second order approximation. The major computational cost is the MPP search and
second derivative calculations. In this case, efficient global optimization is used for the MPP
search, and other global optimization methods can also be used. The first and second derivatives
are evaluated by the finite difference method. The results show that the proposed method is much
more accurate than the first-order approximation method since the envelope function is in general
nonlinear. The new method, however, is less efficient than the first-order approximation method
because it requires second derivatives of the envelope function.

The new method shares the same drawbacks as the MPP-based reliability methods. Its accuracy
may become poor if the envelope function has multiple MPPs. If the MPP occurs on the boundary
of the time and space domain, a large error may be produced. How to address these problems needs

further investigation.
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Deterministic optimization may lead to unreliable design results if significant uncertainty exists.
Including reliability constraints in reliability-based design optimization (RBDO) can solve such a
problem. It is difficult to use current RBDO methods to deal with time- and space-dependent
reliability when responses vary randomly with respect to time and space. This study employs an
envelope method for time- and space-dependent reliability for the optimal design. To achieve high
accuracy, we propose an inverse envelope method that converts a time- and space-dependent limit-
state function into a time- and space-independent counterpart, and then the second-order
saddlepoint approximation is used to estimate the probability of failure. The strategy is to find an
equivalent most probable point for a given permitted probability of failure for each of the reliability
constraint. To achieve high efficiency, the new method uses a sequential optimization process to
decouple the double-loop structure of RBDO. The overall optimization is performed with a
sequence of cycles consisting of deterministic optimization and reliability analysis. The constraints
of the deterministic optimization are formulated using the equivalent most probable points. The
accuracy and efficiency are demonstrated with four examples, including one mathematical

problem and three engineering problems.
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6.1 Background

Engineers always encounter uncertainty in material properties, component dimensions,
manufacturing processes, and operational environments [1,2] in all stages of product design and
development. RBDO is a typical methodology to manage uncertainty by identifying optimal design
variables and ensuring satisfied reliability in the design stage [3-5].

RBDO minimizes a cost-type objective while maintaining reliability constraints. If responses
are static, meaning that they are time and space invariant, we have static RBDO method, for which
there are many mature methodologies, such as double-loop methods [6,7], single loop single
variable approaches [8], sequential optimization method [4,9], and safety-factor approaches
[10,11]. Some examples follow. Tu and Choi use a performance measure approach to main
robustness and efficiency for evaluating reliability constraints [7]. Liang and Mourelatos proposed
a computationally efficient RBDO approach using a single loop process where the search of the
optimum design variables and the reliability analysis is performed simultaneously [8]. Wu
demonstrated that the safety-factor based RBDO approach is efficient and robust with a new
concept of the sequential loop procedure [11]. By generalizing Wu’s method to accommodate any
continuous distributions, Du and Chen performed RBDO by sequential optimization and reliability
analysis so that the search of design variables and reliability analysis are executed with a series of
cycles of deterministic optimization and reliability analysis [4]. This reduces the computational
time. Yin and Du developed a modified RBDO approach to mechanical component design so that
the traditional safety factor design can be used without optimization and complex reliability
analysis [10].

Many responses are also time-dependent due to time-varying stochastic operation conditions
and system aging [12]. For instance, the function generator mechanism [13] involves time-
dependent motion output. Static RBDO methods are not able to handle time-dependent problems.
They were extended to time-dependent RBDO, and new time-dependent RBDO methods have
been investigated. Several examples are given. In [14], a nested extreme response surface approach
accurately carries out time-dependent reliability analysis and determines the optimal designs with
efficacy. The sequential optimization and reliability analysis are extended to time-dependent
problems with both stationary stochastic process loads and random loads, and it effectively solves
design optimization with dependent reliability constraints [15]. The equivalent most probable point

method is proposed to transform the original time-variant RBDO problem into an equivalent time-
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invariant RBDO problem formulated by performance measure approach [16]. The time-dependent
concurrent reliability-based design optimization methods are developed to improve the confidence
of design results with reduced experimental cost and increased computational efficiency [17]. In
[18], a sequential Kriging modeling approach is introduced to deal with the reliability constraint
for time variant RBDO involving stochastic processes.

Although the time-dependent RBDO methods have been developed, the most general problems
should be addressed where the limit-state functions may take input of stochastic processes, random
fields, and tempo-spatial variables. It is still a challenge to address the time- and space-dependent
RBDO as the research about this work is limited. Currently some time- and space-dependent
reliability analysis methods have been proposed. Hu and Mahadevan developed a surrogate
modeling approach for reliability analysis of a multidisciplinary system [19]. Shi et al. presented
a method for the moment estimation of the extreme response using two strategies. One strategy is
combining the sparse grid technique and the fourth-moment method while the other one is
combining the dimensional reduction with the maximum entropy method [20]. Shi and Lu
proposed an active learning Kriging method for dealing with dynamic reliability analysis for
structure with temporal and spatial multi-parameter [21]. Wei and Du combined the first-order
reliability method (FORM) and second-order reliability method (SORM) for the time- and space-
dependent reliability analysis [22,23]. Yu and Wang developed a general decoupling approach
with a simulation-based method addressing reliability assessment for time and space-variant
system reliability-based design optimization [24]. Motivating by the above method, we integrate
the time- and space-dependent reliability analysis method into RBDO.

This paper proposes a decoupling method for time- and space-variant RBDO using the
envelope method. The time- and space-dependent RBDO start with the deterministic optimization,
then the optimization results are passed to do the time- and space-dependent reliability analysis to
satisfy the probability constraint. In the reliability analysis process, the envelope method converts
a time- and space-dependent problem into a time- and space-independent counterpart.
Subsequently, the MPP, gradient and Hessian matrix are available, the second-order saddle point
approximation method can be used to estimate the reliability. The deterministic optimization and

reliability analysis are performed cycle by cycle until the optimal design points are found.

124



The remainder of the paper is organized as follows. Section 2 gives a brief introduction of
sequential RBDO. Section 3 introduces a time- and space-dependent RBDO model with the

envelope method. Section 4 presents four examples, followed by conclusions in Section 5.

6.2 Problem Statement

In this section we give the problem that this study addresses. We also review the sequential

RBDO, based on which the new method is developed.

6.2.1 Problem Statement

This study addresses the most general RBDO which includes time- and space-dependent
reliability. The RBDO model is defined as

min  f(d)

d,px

s.t.  Pr{y; =g,(d,X,2) < 0,3z € Q} < py; (1)
i=12..,n4
d-<d<d

where f(d) is the objective function, and d is the vector of design variables with their lower
and upper boundsd’ and dY, respectively. Pr{y; = g;(d,X,z) < 0,3z € Q} is the probability of
failure for i-th response y;. The associated reliability constraint is that the probability of failure
should be smaller than or equal to the allowable probability of failure pf; or 1—R;, where [R;] is
desired reliability. ng is the number of constraints. In the constraint, the limit-state function is
defined by
yi = 9i(d, X z) (2)
in which X = [X,, ..., X,,]T are input random variables. The time given by z; € [gl,El], and
the spatial variables are z, with the following ranges: z;, € [gk,fk], (k=2,..,m). Then,
Z = [z4,2,, ..., Zy|" is a vector of the temporal and spatial variables bounded on Q = [gk,fk].
Note that Q is a rectangular domain.
Accordingly, the probability of failure for a general response y is defined by
pr =Pr{y = g(d,X,z) < 0,3z € Q} 3)

where 3 means “there exists at least one”.
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Solving the time- and space-dependent RBDO is time-consuming since evaluatingpy in Eq. (3)

is computationally expensive and py should be evaluated repeatedly during the optimization.

6.2.2 Review of Sequential RBD

Sequential RBDO methods in general are more efficient than double-loop methods. It
decouples the optimization loop and reliability analysis loop and performs the two loops
sequentially. Usually, the first-order reliability method (FORM) is used for reliability analysis.
FORM searches for the Most Probable Most (MPP), from which the probability of failure is easily
calculated.

The optimal design point is first found from the deterministic optimization loop and then
FORM is performed to search for the MPP at this optimal point in the reliability analysis loop. The
MPP is then used to modify a reliability constraint for the next deterministic optimization, which
is followed by the next reliability analysis. This process repeats until iterative convergence.

The deterministic optimization is formulated by

{mdin f(@)

s.t.  gi(d,T(uy),z) <0,i=12,..,n4

(4)

where uy is the MPP in the standard normal space for the i-th reliability constraint from the
reliability analysis. T(+) is the transformation operator for transforming random variables X to
independent and standard normal variables U. The result of the optimization is the optimal design
point d.

After the deterministic optimization, the reliability analysis or the MPP search is performed at
d for each constraint. The MPP is obtained through an optimization problem given by

{min 9:(d, T(uy), z)
Hx
st Nugll =B;

where f; is the desired reliability index. It is calculated by f; = —®~(fy;), and ®~1(") is

(5)

inverse cumulative density function.

The final solution can be found after a few cycles of deterministic optimization and reliability
analysis. As a result, the efficiency is higher than solving the original RBDO model directly. Since
FORM may not be accurate for highly nonlinear limit-state functions, several studies employ the

second-order reliability method (SORM) with lower efficiency.
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6.3 Sequential RBDO with the Envelope Method

6.3.1 Overview

This work aims to include time- and space-dependent reliability constraints in optimization.
To achieve high accuracy, we use second-order saddlepoint approximation to calculate the
reliability. To achieve high efficiency, we use sequential RBDO. In the original sequential RBDO,
the MPP is directly related to the permitted probability of failure by pr; = @ (—|luxmppll). In the
present study, the MPP is not directly related to the permitted time- and space-dependent
probability of failure, and the relationship is unknown and nonlinear. The challenge is to find an
equivalent MPP Uy pp, Which satisfies
Pr{ g;(d, T(Uixmpp),z) < 0,3z € Q} = p; (6)
The model of searching for the equivalent MPP becomes
min g;(d, T(ux),z)

s.t. luyll = B* 7
pri = Pr{g;(d, T(ux),z) < 0,3z € Q} = py

The model gives the solution uy = Ugypp-

The envelope method can be used for reliability analysis when the equivalent MPP Uyypp is
available from Eq. (7). To solve Eq. (7), we at first search for the MPP using FORM at the optimal
point of z parameter that minimizes g;(-) , and then the probability of failure py; is calculated
using the envelop method, and the flowchart of reliability analysis with envelope method is shown
in Figure 6.1. We update ¥ iteratively until Pri = Dri- The sequential RBDO with the envelope
method involves cycles of deterministic optimization and equivalent MPP search (reliability

analysis).

(k)
min  g(d,u,z*) Unpp
— u
st lull = g*

Z0) = arlggnr:in g (T (“g(k.;/)IPP) 2 z)

(k) (k-1)
llo%n = a%2
<g

(k) F(k;
wonpp 240

P = Pr(g(d,X,z) < 0,3z € 9) = Pr(G(X) < 0)

Figure 6.1 Search for equivalent MPP with the envelope method
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6.3.2 Time- and Space-dependent Reliability Analysis

This subsection discusses the time- and space-dependent reliability using the envelope method.
We have already developed an envelope method, but the envelope method in this study is different
from the existing method. The existing method calculates the probability of failure directly given
the limit state. The new method is for an inverse problem: given the probability of failure, find the
equivalent MPP. The new method is more difficult.

We use the envelope method for two case encounters in engineering applications.

Case 1: Calling the limit-state function one time returns only one response at a specific time
instant and spatial point, or a point of z € . As a result, solving for the equivalent MPP in Eq. (5)
needs a double-loop procedure. This double procedure will be discussed in Section 3.2.1.

Case 2: Calling the limit-state function one time returns all responses at all specific time
instants and spatial points, or all points of z € . For instance, if we call a computational fluid
dynamics (CFD) simulation, we obtain all 4-D pressure and velocity fields with respect to time
and space. For this case, solving for the equivalent MPP in Eq. (5) needs only a single loop.

Since Case 1 is much more difficult than Case 2. We focus our discussions primarily on Case
1. The probability of failure can be evaluated by the extreme value of the limit-state function.

pr = Pr(g(d,T(u),z) < 0,3z € Q)
= Pr (rznelsrzl g(d,T(u),z) < 0) (8)

Eq. (8) indicates that a failure occurs if the minimum response is negative. The function of the

extreme response is equivalent to the envelope function
GO0 = min g(d, T(w), 2) = g(d, T(w),2) 9
where G(X) is the envelope function and it is the global minimum of g(d, T(u), Z). G (X) is

time- and space-independent and only depends on X.

6.3.2.1 Search for the Equivalent MPP Using FORM

There are two constraints in Eq. (7) and directly solving the model in Eq. (7) is too
computationally expensive as it involves a double loop procedure. In this work, an alternative
sequential procedure is proposed to find the worst-case MPP.

At first, the MPP search is performed by giving the initial reliability index g at 2@ =

(20,23, ... 23] with the following model
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{muin g(d, T(u),z)

10
s.t.  |lulf=p 4o

Eq. (10) produces the MPP ul(v}%P. The next analysis is to find the optimal time and space

parameter 21 by fixing the random variables on its realization ug(llalpp. The next optimal ZV can

be obtained by another optimization Z = argmin g (d, T(ul(\/}%P)' z). The details of solving ZV
ZEQ

is illustrated in Subsection 3.2.3. The process repeats until numerical convergence. The sequential
procedure of the MPP search produces the worst-case MPP uyypp and the optimal Z. When the
worst-case MPP is found, the probability of failure with FORM is estimated by py =
Pr(g(d, T(u),z) < 0,3z € Q) = &(—||luxmppll). However, FORM may not be accurate enough.

As a result, we use the second-order reliability method to achieve higher accuracy.

6.3.2.2 The Envelope Method

To have higher accuracy, we use the SORM and envelope method. Generally, the envelope
function is nonlinear, and it is tangent to all the instantaneous limit-state functions. It can be
approximated by the second-order approximation method as a quadratic function at the MPP. As
indicated by Ref. [14], the MPP of the envelope function is the worst-case MPP of the limit-state
function. We also need the gradient VG and Hessian matrix H at the MPP, of the envelope function.

The quadratic function is formed as follows:
G(U)=a+bTUu+UTCU (11

where

a= E(UXMPP)THUXMPP - VG(UXMPP)TUXMPP

b = VG (uxmpp) — Hugmpp = (b, by, ..., by) (12)
1
C = EH = dlag(ﬁl, 62, ey 61’1)
T
VG(uxpmpp) = 96 , ....,a—G is the gradient of the envelope function. H is the
U1luympp Unluympp

Hessian matrix and is given by
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%G %G

auz  aU,aU,
H = : : (13)
0%G 0%G
aU,,0U, aU? P
The envelope function G (X) at uxypp is given by

where Z = [Z;, ... Zp,] is the optimal point where the global minimum of function g(d, U, z)
occurs. For an easier demonstration without loss of generality, we use a two-parameter case Z =
[Z1,Z,] as an example to derive the envelope function’s Hessian matrix and gradient. The envelope

function satisfies the following equations:

g(d, U, Zl' Zz) - O
{g(d' U' Z1122) = O (15)
where g is the derivative of g with respect to z;.
The first derivative of G (U) at uxypp is
G 0 dg 07 dg 07
=9, 29, 0 (16)
aUl' aUl 621 aUl (322 aUl
Plugging Eq. (15) into Eq. (16) yields
G adg
= 17
au; aU; 17)

The gradient of the envelope function VG is equal to the gradient of the limit-state function Vg
at the MPP. Subsequently, the second derivative of G(U) with respect to the input random

variables U; at uyypp is

9’6 0 (9G\ 0 <ag)
oU;0U;  aU; (aui) ~aU; \av;

_ d%g N d%g azl+ 0%g 0z,
~9U;0U;  0U;0%, 0U; ~ 0U;0%, 0U;

(18)

Taking the derivative of Eq. (15) with respect to U; yields
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dg g 0z,

ou, " 97,90, = (19
Rearrange the equation, we have
04, __0g j99 _ _ 9°g /o%g (20)
aU; au;/ 0z, 0Z,0U;/ 97%
Similarly,
92, __99 /99 _ _ 0% 99 (21)
aU; aU;/ 07, 02,0U;/ 073

By plugging Eq. (20) and Eq. (21) into Eq. (18), we obtain the Hessian matrix at uy and Z;.

_ d%g & 0%g 0%g 9%g
00U 0U;02, 0U;02,/ 022

u*,Z k=1

92G
9U,dU;

(22)

We use the forward finite difference method with step size § = max (Ju|/1000, €), where

€ = 107%, to calculate the derivations in Eq. (22).

The worst-case MPP uyxypp, gradient VG, and the Hessian matrix are now available. The
second-order saddlepoint approximation (SOSPA) is then used to estimate the probability of
failure py; after the envelope function is approximated as a quadratic function. SOSPA in general
is more accurate than FORM because it yields an accurate probability estimation especially in the
tail area of distribution. The details of the implementation of SOSPA are given in Ref [27]. If pg;
is not equal to Py;, we should update the reliability index f; [28], and the MPP search is executed
again using Eq. (10). The process is repeated until ps; = pr;. When the probability of failure is
equal to the required probability of failure, it will produce the equivalent MPP Uyypp. The detail
procedure is given as follows.

Step 1: Set the initial reliability index B, B = —d~1([ps;]), and k =1. Set the initial

optimal point z(® and an initial MPP ul(v}%p = Ug.

Step 2: Search for the inverse MPP using Eq. (10) at 2%~ and obtain the MPP ul(\ffP),P by

solving the following optimization model:
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{m&n g(d, T(u),z) 23)

s.t. Jull= g®
Step 3: Determine the optimal point 2 at u)(gelpp. The optimal point Z*) minimizes the limit-

state function.

7 = arzgerging (d, T(u)((lﬁpp), z) (24)

(The optimization method we use in this study is Global Efficient Optimization or EGO [25].)

Step 4: Check the iterative convergence criterion.

I — I S &1 (25)
The tolerance &, takes a small positive value, for example, 10™*. If gr(r'fi)n - g,(:i:ll) <é&,
terminate the iteration. Otherwise, set k = k + 1, and return to step 2.
(k)

Step 5: Calculate the gradient VG and Hessian matrix H of the envelope function at Uyypp.

(k)

Calculate the probability of failure pfi(k) using SOSPA from the above information Uyypp,

gradient VG, and Hessian matrix H.

Step 6: Check the iterative convergent criterion.

pfi(k) - [Pfi]

°T ‘ [Pfi]

‘ < 26)

where €, is a user-defined threshold.

If the iterative convergence is reached, return the equivalent MPP tixypp and stop. Otherwise,

update the reliability index 8%+ and return to Step 2.

6.3.2.3 Find the Optimal Z

The global minimum value of g(d, T (uxmpp), Z) occurs at Z = [Z;, Z,], which is given by

Z = argmin g(d, T(uxypp), Z) 27)

ZEQ

Finding the optimal point still needs sequential loops. The first partial derivatives of the limit-

state function with respect to z; at MPP are obtained as follows:
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ag (d' T(uMPP); Z1, ZZ) —

0z 0
i 28
dg(d, T(umpp), 21, 2) —0 (28)
0z,

The optimal point Z = [Z;, Z,] can be obtained by solving Eq. (28). For an explicit and simple
limit-state function, the solution of the derivative equations can be obtained analytically. For an
implicit and complicated limit state function, EGO can be used. EGO has been widely used in

various areas because it can efficiently search for the global optimum [25].

EGO generates the training points of the inputz® = [zii), Zéi)]i=1 T [Z(i)]i=1,2,...,h’ where

h is the number of initial training points, and the training points of the output dataset are y* =

[g (T(uXMpP), z("))]i=1 b Once the training dataset(zi”, yi") is ready, the next step is to train

the initial model using the Gaussian process regression. The initial surrogate model is y = g(z) =
g(T(uxmpp), z) = F(2)Ty + e(z), where F(z)Ty is a deterministic term, e(z) is a vector of
regression functions, y is a vector of regression coefficients, and e(z) is a stationary Gaussian
process with zero mean and covariance is Cov (e (z), e(zj)) =02C (zi, zj), where o2 is process
variance, and C(+,") is the correlation function [26]. The initial model may not be accurate; hence
new training points are then added one by one so that the model is continuously refined. EGO

select a new training point Z,,,, using the expected improvement (EI) metric defined by

Znew = argminEl(z) (29)

Z

where EI is computed by
El(z) = E[max(y" -y, 0)]

. y" —u(z) Y —u(z)
=@ u(z))cb( = )+a(z)¢( = (30)
where y* = ,_rlnzin . g(zi) , u(z) and o(z) are the mean and standard deviation of ¥,

respectively, and ¢ (+) is the probability density function (PDF).
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6.3.3 Extension to Case 2

We now discuss Case 2 where we have a complete time- and space-dependent responses with
respect to z in £ from a single call of the limit-sate function. This case has the most general limit-

state function y(z) = g(X, F(z), z).The probability of failure is calculated by
pr =Pr(g(X,¥(z),z) < 0,3z € Q) = Pr (miny(z) < 0) (31)
ZEQ
Eq. (31) indicates that failure happens when the minimum value of the limit-state function g(X,
F(z),z) is negative. Since calling the limit-function returns a complete hypersurface of the

response y(z) with respect to time and space, the minimum value mi(rll y(z) is known. Thus, the
VAS

MPP can be obtained from the following model:

minyuTu

s.t. min y(z) =0

(32)

where mi(rll y(z) is a function of u and is obtained by calling the limit-state once at u.
ZE

Therefore, a single single-loop MPP is needed. This is more efficient than the sequential loop
approach. The expansion optimal linear estimation method (EOLE) [29] is used to expand the
random field response with respect to independent standard Gaussian random variables § =
(&1, &, ..., &), where 1 is the dimension of €. Then, the limit-state function becomes y = g(X, z),
where X = (X, €). Thus, the proposed method can still work. Take EOLE as an example for a two-
dimensional random field F (z) with z € (z,,2;). z; and z, are discretized into n, n,, points, and

the autocorrelation coefficient matrix is given by

2 =[p(z 7] (33)

Ny Mgy XNz Ny,
where p(zi, Zj) is the correlation between two points z; (i = 1,2,..,n, n,, ) and z; (j =
1,2, ...,n,,n,,) in the domain of F(z).

Then the EOLE expansion is given by
i
F(&2) ~ u(z) + 0(z) Z Ok TG z) k=12, .7 (34)
k=1V Z

where u(z) is the mean of F(z), and o(z) is the standard deviation of F(z). & (k = 1,2, ...1)

are independent standard normal variables, A = (44, 4,, ..., 4,.) is the eigenvalue vector, and
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¢4, ., ..., P, are the corresponding eigenvectors obtained from autocorrelation coefficient matrix
X. Note that r is determined as the smallest integer that meets the following criterion:
Ty A
ananZ ﬂ.k =]

j=1

(35)

where 7 is a hyperparameter determining the accuracy of the expansion. It takes a value close
to, but not larger than 1. The smaller is 7, the less accurate is the expansion. If n = 1, the expansion

is exact at the points of discretization. n could be set to 0.9~0.99.

6.3.4 Procedure of Sequential RBDO with Envelope Method

After discussing all the details, we now summarize the procedure of the proposed method. The
steps are summarized below. The flowchart of the SORA with envelop method is provided in Fig.
6.2.

Step 1: Initialize parameters.

Step 2: Perform deterministic optimization. For k = 1, solve deterministic optimization at

means of a random variable. For k > 1, perform the following deterministic optimization using
the MPP ugg(;dlgp obtained from the (k — 1)-th cycle. The solution is d©,
min  f(d)
d,px
s.t. g (d,T(ug)'zl\_,&,)P), z) <0,i=12,..,n (36)
d-<d<d?
Step 3: Perform time- and space-dependent reliability analysis at d*for each constraint. At

first, search for the equivalent MPP given &, Obtain the “g&ppa gradient VG (ugzl)wpp), and

Hessian matrix Hu(k) . Note that if the inputs of limit-state function are random variables and
iXMPP

random fields, the method in section 3.3 is used to find the “E)lzl)vlpr Next, calculate the probability

of failurep; using SOSPA.

Step 4: Check the iterative convergent criterion by

_ pr® = [Pri]

<& (37)
[Pr:] ’
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If numerical convergence is reached, the optimal solution is found atd®’, and the process stops.

Otherwise update the reliability indexf &+ by

Vg ul®
- o i) -

Initialize d* z'and “SI)? =u,
assign B0 = —o~1([Py)).

min  f(d)
dux
s.t. g (d,T(uE;ﬁ},)p),z("‘l)) <0,i=12,..,74%

dl<d<ad’
l 4®

+1
Time-and-space-dependent reliability analysis = = = = = = j

Optimal design point d

pﬂ(k) [Pﬂ]|
[Pr]

i (k)
{m“m g9(d®,u,z) N

s.t. |l = g®

709 = argming (T (“Eﬁapp) , z)

(k-1)
1XMPP ulXMPP

P %) = pr(g(d®,X,2z) < 0,3z € Q) = Pr(G(X) < 0)

Update gk+1)

(k)
ulD ﬁ(k+l)—vg (ui"”"")
Uixmpp =

||uiXMPP”

Figure 6.2 Sequential RBDO with the envelope method

6.4 Examples

A mathematical example is provided to show the feasibility of the proposed method. Three
engineering examples are then used to demonstrate the computational efficiency and accuracy of
the proposed method compared with double-loop method using the direct second-order reliability

method (SORM/DL) and double-loop method with FORM (FORM/DL). The accuracy is assessed
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by the probability of failure obtained from MCS at the optimal point while the efficiency is

measured by the number of function calls. The percentage error is computed by

oy ]

p]ly[CS

x 100% (39)

where py is the result from a non-MCS method while pf MCS is from MCS.

6.4.1 Example 1: A Mathematical Problem

Two independent random variablesX; and X, are normally distributed with X; ~N (,qu, 0.6)
and X,~N (sz, 0.6). The time t varies over the interval [0,1], and the spatial variable s changes
over the interval [172]. The design variables are uy, and py,. The limit-state function is defined
by

80
(52—s+X12+8X2-H:—sin(t)+5)_1
The RBD model is defined as follows:

min  f = _(.“X1 + #xz)

Uxq UX,

s.t. Pr{g(X,s,t) >0} = ®(p) (41)
=5 <y, <10

-5 SMXZ <10

gX,s,t) = (40)

The allowable reliability index £ is 3. The problem is solved by the proposed method,
SORM/DL and FORM/DL. The results are given in Table 6.1.

Table 6.1 Results of Example 1

Methods New method SORM/DL FORM/DL
Obj —7.2867 —7.2867 —7.3096
T (2.7177,4.5691) | (2.7177,4.5691) | (2.7275,4.5821)
(fzflhgc_i) 1.3679 1.3666 1.4942
Error (%) 1.33 1.23 10.68
Neauss 341 4317 747
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The optimal result with the proposed method is shown in Fig. 6.3, which shows the optimal

result is stable after 5 iterations.
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Figure 6.3 Iterative process of the objective function and design variables

6.4.2 Example 2: Three Bar System

A truss structure is shown in Fig. 6.4. Each bar of the system has its cross-sectional area 4;
and modulus of elasticity, E;, i = 1,2,3. The coefficient of thermal expansion of all bars is a =

12 x 107%°C™1. The temperature change is related to the installation height of the truss structure

2
and is given by AT = Te~001(8h*+28h-2)" "y here AR € [1,6] m is the difference between two
different installation heights. A downward force P = Py(0.9 + 0.1 cos(0.2t)) is applied at joint 4,
where t € [0,10] years. All the random variables are given in Table 6.2. The design variables are

the cross-section areas of the bars py,, ta, and py, .
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Lb’l)

Figure 6.4 A truss structure

Table 6.2 Random variables of Example 2

Variable Mean (81:\1/?;122(111 Distribution
A;(mm?) Ua, 0.6 Normal
A,(mm?) Ua, 0.6 Normal
A3 (mm?) Ha, 0.6 Normal

E,(GPa) 200 20 Normal

E,(GPa) 200 20 Normal

E;(GPa) 200 20 Normal

Py(KN) 40 6 Normal
Lag(mm) 200 2 Normal
Lap(mm) 231 2.31 Normal
Lac(mm) 283 2.83 Normal

T(°C) 35 7 Normal
Oyieta(GPa) | 7.5 x 108 | 4x 107 Normal

139




The objective function is to minimize the weight given by
f = ta, e Ha,linp + Ragliye
There are two failure modes for this truss structure. The first failure mode is that the
perpendicular displacement of joint 4, denoted as AJ, is greater than the allowable displacement

&y, and the limit-state function is defined by

gl(x, S, t) == 50 - A6 (42)
where §, = 0.64, and the perpendicular displacement of joint 4 is calculated by
A = A
"B

where
A = Lyp(PAE LyccosO? + PALE,LpgcosOs + Ay A3E E;LycTacosf?
+ Ay A3E,EsLagTacos87 + A1 Ay E E;Ta(Lagsind; cosf2 + Lycsind,cosf?
+ Lpcsinf, cosf,cos6, + Lagsind,cosf,cosb,))
B = AjA3EE3Lyccos0% + A,A3E,E5Lygcosf?

+ A A,E E,Lyp(sinf2cosf? + sinfZcosh? + 2sinf,sinf,cosb; cosb,)

L
6, = arctan ($>

v L,chB - L,24D
6, = arctan (LA+D>
v L,ch - L?w
The second failure mode occurs when the stress at the joint is greater than the yield strength,
and the limit-state function is defined by
9.X,s,t) =0, —0 (43)

where

O':B

C = AjA,A%ZE E,E;Ta(Lpccosf2sing, + Lygcosf7sind, — 2Lapsind;sinf,cosd; cosb,
+ Lpccos@;cosf,sinf; + Lygcosf;cosh,sind, — LypcosfZsing?
— Lapcos0?2sind2) + Ay A3E,EsFLygLagcos0 + Ay A3E EsFLyccos6?
D = A AyE E;Lyp(cosB2sinf2 + cosB2sinf?) + AjA3E1E3Lyccos0f + A,A3E,E5Lygcosf?
+ 2A,A,EE; Lapsind,sinf,cos6,cosb,
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The RBD model is given by

( min [ =ta b, lal,y + Hagti e

BagHa,BAg
s.t. Pr{g,(X,s,t) =6, — A6 > 0} = ®(B,)
{ Pr{g,(X,s,t) = 0, — 0 > 0} > ®(B,) (44)
10 < p,, < 80
10 < py, <80

\ 10 < py, <60
The allowable reliability indexes are ; = 2.3, i = 1,2. The optimal results shown in Table 6.3.
The proposed method is more accurate than SORA/DL and FORM/DL.

Table 6.3 Results of Example 2

Method New method DL/SORM DL/FORM
(x ﬁ)lijmmg) 3.6616 3.6624 3.7189
p(mm) (53.41,38.83,60) | (53.31,38.95,60) |  (53.05,38.57,60)
P 0.0107 0.0107 0.0148
Eps, (%) 0.25 0.46 4.89
pry’ 0.0107 0.0107 0.0112
Epy, (%) 0.24 0.46 4.89
Neaus 2194 23500 7264

6.4.3 Example 3: A Cantilever Beam

Figure 6.5 shows that the end of cantilever beam is subjected to two forces F; and F,. The
length of the cantilever beam L is 100 in. The objective is to minimize the volume f = w,, uL,
where w and h represent the width and height of the beam cross section, respectively. There are
two failure modes. The first failure mode is that the stress at the fixed end is greater than the

allowable yield stress S, ,and the second failure mode is that the tip displacement of the beam is

greater than the allowable displacement D, = 2.5 in. The two limit-state functions are given by

X5 =5,-— (7 - —) (45)
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Figure 6.5 A cantilever beam

The distributions of the random design variables and random parameters are in Table 6.4. The

2
_ —_a)2
force F; is a non-stationary Gaussian random field, whose mean is up, = SOOeO'OI((S ) (=0 )
Ibs and standard deviation is oz = 50 lbs. The spatial variable is s € [0,1] in and temporal

variable is t € [0,10] years. The autocorrelation coefficient function of the Gaussian field is given

by

Sl - SZ 2 tl - t2 2
Pr, (51, t1; S2t;) = exp [_( 10 ) _< 10 ) l (47)

The RBDO model is formulated as
min  f = u,upl

Hwlh

s.t.  Pr{gi(X s, t) > 0} = ®(By)
Prig,(X,s,6) > 0} > B(B,) (48)
1<y, <4

The allowable reliability indexes are f; = 3,1 = 1,2. The results are listed in Table 6.5. The
optimal design variables are w = 3.9541 in and h = 2.2531 in, and the objective function value

is f = 890.9152 in3 by the proposed method. The probabilities of failure obtained at the optimal
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design variables by MCS are pf*® = 1.3633 x 10~*and pf,*® = 1.3645 x 10™*. The results are
more accurate than those of DL/SORM and DL/FORM methods. In terms of the efficiency, the
proposed method is the most efficient method as the number of function calls is 1358 compared

with the function of calls of DL/SORM and DL/FORM are 12904 and 2098. In general, the

proposed method is the best method due to high the accuracy and efficiency.

Table 6.4 Distributions of variables in Example 3

Variable Mean Star}dgrd Distribution
deviation

w(in) JT. 5x 107 Normal

h(in) Un 5x 107 Normal

F;(Ib) 1x107t | 1x1073 Normal

E (psi) 29x107 | 1x10° Normal

Sy(psi) | 3.9x10* 500 Normal

Table 6.5 Results of Example 3
Method New method DL/SORM DL/FORM
((i)nt?) 890.9152 890.9183 890.8754
u(in) (3.9541,2.2531) (3.9539,2.2533) (3.9578,2.2509)
pHCs
It 1.3633 1.3623 1.3623
(x10™%)
Eps, (%) 0.992 0.992 0.918
pHMCs
Iz 1.3645 1.3600 1.4397
(x10™%)

Eps,(%0) 0.748 1.081 6.652
N_qus 1358 12904 2098
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6.4.4 Example 4: Thermal Deflection of a Bimetallic Beam

Thermal expansion or contraction of a bimetallic beam occurs due to temperature change. The
temperature in the operating room varies during the day and night and is given by AT =
T(0.01sin(0.1t) + 1), where t € [0,24] hours. The typical bimetallic beam consists of two
materials bonded together copper and invar. E¢ is the young’s modulus of the copper and Ej is the
young’s modulus of the invar. The length of the beam depends on the location of the installation,
which is given by L = Ly(—s? + s + 1), where s € [0,1] m. When the temperature change as a
thermal load applies on the beam, the beam will deflect in the perpendicular direction at the right
end side shown in Fig. 6.6. The design variables are d = (h,w), where & and w represent the
height and width of the cross-sectional area of the beam, and their means are y; and p,,, which

are to be determined. All the random variables are listed in Table 6.6.

N
o

Figure 6.6 Deflection of the Bimetallic Beam

The failure mode is that the deflection exceeds § = 8 x 1073, The limit-state function is given
by
gX,s,t) =6 — A(d, Ec, Ey, AT) (49)
where A(d, E¢, E;, AT) is solved by the finite element method (FEM), which proves that the
proposed method can be used for black-box simulations.

The objective is to minimize the weight of this beam. The RBD model is defined by
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All the results are listed in Table 6.7. The proposed method is the most efficient and accurate

method among three methods as the error is only 3.04% and the number of function calls is 332.

min
UwHlp

f = Uwlin

s.t. Pr{g(X,s,t) > 0} = ®(p)
8x107*<pu, <2x1073
1x107*<p, <1x1072

Table 6.6 Random variables

Variable Mean Standard deviation Distribution
w(m) Uy 5x107% Normal
h(m) Un, 5x107% Normal
L(m) 1x 107t 1x1073 Normal

E:(Pa) 1.37 x 101 1.37 x 107 Lognormal
E((Pa) 1.30 x 10! 1.3 x 107 Lognormal
T(°C) 130 13 Lognormal
Table 6.7 Results of Example 4
Method New method DL/SORM DL/FORM
(x 10_062.12) 1.9197 1.9181 1.9312
(x 1(‘)‘_4m) (8,2.3996) (8,2.3975) (8,2.4319)
pfMEs 0.0013 0.0014 0.0012
Error (%) 3.04 5.71 10.43
N 332 3645 573

6.5 Summary

This paper develops a new sequential RBDO with the envelope method for time- and space-

dependent reliability. The challenge in this work is to search for the equivalent most probable point
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(MPP), which can be found by iterating MPP search and updating the equivalent reliability index.
When the limit-state functions are inputted with only random variables and random fields, the
single loop inverse MPP search can be used instead of sequentially inverse MPP search. Once the
equivalent MPP is available, the time- and space-dependent problem is transformed into a static
counterpart and the second-order saddlepoint approximation is used to estimate the reliability with
higher accuracy. The equivalent MPP assures that the overall optimization is performed
sequentially in cycles of deterministic optimization and reliability analysis. The proposed strategy
has been proven to be effective in four examples.

The proposed method is more accurate than the first order methods since it uses second-order
saddlepoint approximation to estimate the reliability. The new method, however, suffers from the
same limitations as other MPP-based reliability methods. For instance, a local MPP, instead of the
global MPP, may be found, thereby resulting in lower accurate in the reliability prediction. The
other limitation is that the proposed method cannot handle the case where the MPP occurs on
boundaries of the time and space domain. In this case, the accuracy of reliability prediction will
deteriorate. Our future work will focus how to accommodate MPPs on the boundaries of the time

and space domain.
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7. CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

The objective of this dissertation is to predict reliability in the design phase and reliability-
based design with Kriging and Envelope methods. This dissertation includes five research tasks.
In the first task, an accurate method based on the Gaussian regression with active learning method
is developed to predict the system reliability. In the second task, we propose the second-order
saddlepoint approximation method to predict the system reliability. In the third task, an accurate
method based on envelope function, efficient global optimization, and the second-order
approximation is developed to predict time-dependent system reliability. In the fourth task, we
extend the envelope method to deal with the time- and space-dependent reliability analysis. In the
last task, the envelope method for time- and space-dependent reliability-based design is proposed.
This task uses the idea of sequential optimization to decouple the double loop optimization into
deterministic optimization and reliability analysis. Based on results of the above research tasks,
we provide conclusions as follows.

The results of research task I (system reliability system with Kriging method) show that
accounting for the dependence between responses at different input points can improve the
accuracy and efficiency of the system reliability prediction. The use of active learning also helps
reduce the computational time. The proposed method is more accurate than the independent
kriging method giving the same computational time. The proposed method is also more efficient
than the independent kriging method giving the same accuracy requirement. However, the
proposed method does not consider the dependence among components. Considering the
dependence among components could further improve accuracy and efficiency of the system
reliability prediction.

The results of research task II (system reliability analysis with second order approximation)
indicate that second-order saddlepoint approximation method (SOSPA) is more accurate than
second order reliability method (SORM) and first-order reliability method (FORM) with
increasing function calls. SOSPA accurately produces the marginal distributions of all component

responses. The dependences between component responses are considered with only the first-order
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approximation for the sake of efficiency. The accuracy of the proposed method can be furtherly
improved if we estimate component correlations more accurately by a second order approximation.

The results of research task III (time-dependent system analysis with envelope method) show
that the envelope method is an alternative method for predicting time-dependent system reliability.
The envelope method with second-order approximation is in general more accurate than the first-
order approximation method. The proposed method works well if the envelope function is convex.
It does not work for a special case where the worst-case MPP occurs at the boundary of a time
interval as the envelope function is not differentiable at the end points of an interval.

The results of research task VI (time- and space-dependent reliability analysis with envelope
method) prove that the proposed method can efficiently produce an accurate time- and space-
dependent reliability prediction with second-order approximation. The worst-case MPP can be
found quickly by combining sequential efficient global optimization with the first-order reliability
method. The major computational cost is the MPP search and second derivative calculations of the
envelope function.

The last task demonstrates that the new method can achieve the most accurate design result
among all methods by employing the envelope method for time- and space-dependent reliability-
based design. The proposed method also shows that the sequential-loop method is much more
efficient than the double-loop reliability-based design method. The new method still suffers from
the same limitation as other MPP-based reliability methods. It may not work when multiple MPPs

exist.

7.2 Future Work

This dissertation mainly focuses on series system reliability analysis. Our future work will
address the following areas. (1) The accuracy of the system reliability analysis can be furtherly
improved if we estimate the component correlations with the second-order approximation method.
Besides, since the envelope function might have multiple MPPs, developing advanced methods to
identify all important MPPs might achieve more accurate prediction results. (2) In terms of the
applications of developed methods, we can apply our developed methods to more complicated
engineering systems, such as parallel systems and mixed systems with multiple types of random

variables, stochastic processes, and random processes.
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