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ABSTRACT 

In the mechanical design stage, engineers always meet with uncertainty, such as random 

variables, stochastic processes, and random processes. Due to the uncertainty, products may 

behave randomly with respect to time and space, and this may result in a high probability of failure, 

low lifetime, and low robustness. Although extensive research has been conducted on the 

component reliability methods, time- and space-dependent system reliability methods are still 

limited. This dissertation is motivated by the need of efficient and accurate methods for addressing 

time- and space-dependent system reliability and probabilistic design problems.  

The objective of this dissertation is to develop efficient and accurate methods for reliability 

analysis and design. There are five research tasks for this objective. The first research task develops 

a surrogate model with an active learning method to predict the time- and space-independent 

system reliability. In the second research task, the time- and space-independent system reliability 

is estimated by the second order saddlepoint approximation method. In the third research task, the 

time-dependent system reliability is addressed by an envelope method with efficient global 

optimization. In the fourth research task, a general time- and space-dependent problem is 

investigated. The envelope method converts the time- and space-dependent problem into time- and 

space-independent one, and the second order approximation is used to predict results. The last task 

proposes a new sequential reliability-based design with the envelope method for time- and space-

dependent reliability. The accuracy and efficiency of our proposed methods are demonstrated 

through a wide range of mathematics problems and engineering problems. 
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 INTRODUCTION 

1.1 Background 

Uncertainty always exists in the product design and development, and operations of 

engineering systems [1-5]. Uncertainty may significantly affect the reliability of products and 

systems. It is vital to predict system reliability in the design stage to maintain low lifecycle costs 

and avoid tragic system failures [6, 7]. System reliability is the probability that the system can 

work properly without any failure. Since a system is composed of multiple components, its 

reliability depends on the reliability of each component and the dependency between component 

states. 

Uncertainty can be classified into time- and space-independent uncertainty, namely static 

uncertainty, and time- and space-dependent uncertainty. Static uncertainty exists in random 

variables, which do not vary with respect to time and space, such as the randomness in dimensions 

of mechanical components. Time- and space-dependent uncertainty exists in random processes 

and random fields that change randomly over time and in space. Examples include random material 

properties, random loadings that vary at different time instances and locations, and random 

operation conditions.  

There are three types of methods for the system reliability analysis, and they are numerical 

methods, sampling-based methods, and surrogate model methods. Among numerical methods, the 

traditional first-order reliability method (FORM) is the most common method as it has a good 

trade-off between efficiency and accuracy [8-12]. When the limit-state functions (the functions to 

predict the state of a component and system for reliability analysis) are non-linear, using the 

second-order reliability method (SORM) can achieve higher accuracy in estimating the 

probabilities [13-15]. The saddlepoint approximation (SPA) method can also achieve higher 

accuracy without sacrificing computational efficiency [14, 16-20].  

Sampling-based methods can produce accurate results if the sample size is large enough. Such 

methods include Monte Carlo simulation (MCS) [21-23], importance sampling (IS) [24, 25], and 

subset simulation (SS) [26-28]. The advantage of MCS is its easy implementation and high 

accuracy. MCS can deal with highly nonlinear problems. But the computational cost will be 

extremely high if the reliability is high. IS provides a way to reduce the computational cost since 
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it generates more samples in the failure area. SS is also a powerful simulation tool for estimating 

small failure probabilities, which are expressed as a product of larger conditional failure 

probabilities by introducing intermediate failure events. 

Surrogate modeling methods overcome the drawbacks of the inefficiency of sampling methods 

[29-35]. A surrogate model as an approximate model is constructed based on inputs and outputs 

of the chosen training points. If the inexpensive surrogate model is close to the limit-state function, 

it can replace the expensive limit-state function for reliability analysis. Popular surrogate modeling 

methods include support vector machines [25][34], polynomial response surface method [26], 

neural networks [27], and Kriging [35-37].  

The above three types of methods are for reliability prediction. Reliability should also be 

considered in the design process. Reliability-based design (RBD) aims to mitigate the effects of 

uncertainty upon system performance and reduce the risk and cost in the design stage. When the 

system information is completely known, RBD determines optimal design variables by minimizing 

the cost and ensuring the satisfaction of the reliability requirement. It involves both optimization 

and reliability analysis. There are many mature RBD methodologies, such as double-loop methods 

[38], single loop approaches [39], sequential optimization method [40], and safety-factor 

approaches  [41].  

Most of the above methods are for static problems. There are still research needs in improving 

their performance. For instance, the most popular methods of the first and second-order reliability 

methods (FORM and SORM) for system reliability analysis may introduce large errors when limit-

state functions are highly nonlinear [42]. Therefore, the surrogate-based methods are used [43]. 

But the surrogate-based methods still have some limitations. For instance, the Kriging method [35] 

does not account for the covariance between responses at different inputs, which may affect the 

efficiency and accuracy of the results.  

Time- and space-dependent uncertainty, such as stochastic processes and random fields [44], 

is common in engineering applications. Time-dependent reliability methods can be solved by MCS, 

but the computational cost is much higher than those for static reliability methods [45-49]. The 

most common method is the Rice formular method [50]. It is efficient but may not be accurate 

when upcrossings (failure) events are strongly dependent [51].  Surrogate-modeling methods have 

therefore been proposed to improve the accuracy [52], but the accuracy is still not satisfactory for 

highly nonlinear limit-state functions. For the most general time- and space-dependent reliability 
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methods, MCS will be computationally expensive [53-55]. There is a critical need to develop 

methodologies to improve the accuracy and efficiency of time- and space-dependent reliability 

prediction. 

As for the time- and space-dependent RBD, to our best knowledge, there is no practical way 

to efficiently perform optimization with time- and space-dependent reliability constraints. There 

is a need to extend the time- and space-dependent reliability analysis into time- and space-

dependent RBD to achieve efficient time- and space-dependent RBD. 

1.2 Research Objective and Contributions  

The objective of this research is to predict component and system reliability and conduct 

reliability-based design efficiently and accurately with Kriging and Envelope methods. To achieve 

this objective, we propose five research tasks. The first research task develops a Kriging method 

with active learning to predict system reliability. The second research task employs a second order 

saddlepoint method to predict system reliability. The third research task proposes an envelope 

method with efficient global optimization to estimate time-dependent system reliability. The fourth 

research task extends the envelope method to deal with the most general time- and space-dependent 

problem. The fifth research task is reliability-based design under time- and space-dependent 

uncertainty with the envelope method. The five research tasks together improve the accuracy of 

reliability prediction results and enable time- and space-dependent reliability-based design, and 

the specific contributions of each research task are summarized below. 

Research task 1 proposes a new system reliability method that combines Monte Carlo 

simulation and the kriging method with improved accuracy and efficiency. A new learning 

function is proposed to select training points to relieve the computational burden greatly without 

jeopardizing the accuracy of the reliability prediction. Accurate surrogate models are created for 

limit-state functions with the minimal variance in the estimate of the system reliability, thereby 

producing high accuracy for the system reliability prediction.  

Research task 2 extends the second order SPA to system reliability analysis. The joint 

distribution of all the component responses is approximated by a multivariate normal distribution. 

To maintain high accuracy of the approximation, the proposed method employs the second-order 

SPA to accurately generate the marginal distributions of the component responses. The proposed 
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method estimates the covariance matrix of the multivariate normal distribution with the first order 

approximation to the component responses to achieve high efficiency. With the estimated marginal 

component distributions and covariance matrix, the very fast estimation for system reliability can 

be achieved. 

Research task 3 develops a time-dependent system reliability method, which uses the envelope 

method and second-order reliability method. The component reliability index is estimated using 

the existing second-order component reliability method for high accuracy. The covariance between 

component responses is estimated with the first-order approximations for high efficiency. The 

accurate prediction result is achieved by approximating the joint probability of all the component 

responses as a multivariate normal distribution with its mean vector being component reliability 

indexes and covariance being those calculated by the first order reliability method.  

Research task 4 proposes an envelope method for predicting the component reliability under 

time- and space-dependent reliability. It at first searches for the most probable point (MPP) of the 

envelope function using the sequential efficient global optimization in the domain of the space and 

time under consideration. The distinctive feature of the new method is the true second order 

approximation to envelope functions with its accurate Hessian matrix calculation, and then the 

envelope function of the time- and space-dependent limit-state function is evaluated at its worst-

case MPP with high accuracy. 

Research task 5 aims at introducing the envelope method into time- and space-dependent RBD. 

Sequential optimization is used to decouple the double-loop structure of optimization for releasing 

the computational cost. The accurate design results are achieved by a series cycle of deterministic 

optimization and reliability analysis with the envelope method.  

In summary, the results of the above research will enable engineers to accurately predict the 

reliability of engineering systems and to identify the optimal design results by ensuring satisfied 

reliability in the early design stage. Other areas that can benefit include uncertainty quantification, 

design under uncertainty, and reliability engineering. 

1.3 Organization of Dissertation  

The sequence of the dissertation is shown in Figure 1.1. The first four tasks are system 

reliability analysis, and the last task is reliability-based design. Tasks I and II address the gaps in 
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existing static reliability methodologies and prepare for time-dependent reliability analysis. Task 

III deals with gaps in time-dependent reliability. Task VI focuses on the time- and space-dependent 

reliability problem. Task V uses the above reliability analysis methods for the time- and space-

dependent reliability-based design problem. 

 

Figure 1.1 Organization of the dissertation 
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When limit-state functions are highly nonlinear, traditional reliability methods, such as the first 

order and second-order reliability methods, are not accurate. Monte Carlo simulation (MCS), on 

the other hand, is accurate if sufficient sample size is used, but is computationally intensive. This 

research proposes a new system reliability method that combines MCS and the Kriging method 

with improved accuracy and efficiency. Accurate surrogate models are created for limit-state 

functions with the minimal variance in the estimate of the system reliability, thereby producing 

high accuracy for the system reliability prediction. Instead of employing global optimization, this 

method uses MCS samples from which training points for the surrogate models are selected. By 

considering the autocorrelation of a surrogate model, this method captures the more accurate 

contribution of each MCS sample to the uncertainty in the estimate of the serial system reliability 

and therefore chooses training points efficiently. Good accuracy and efficiency are demonstrated 

by four examples. 

2.1 Background 

With the increasing complexity of engineering systems, the cost of system failures may also 

increase. To maintain low lifecycle costs and avoid tragic system failures, it is vital to predict the 

system reliability accurately in the design process. System reliability is the probability that a 

system performs its intended function without failures under given working conditions. With the 
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system reliability available, designers can make more reliable decisions on maintenance plans, 

warranty policies, and cost assessment [56, 57].  

In general, system reliability methods are classified into two major groups: analytical methods 

and sampling-based methods. The most popular analytical methods are the First and Second-Order 

Reliability Methods (FORM and SORM) [58-61], which employ a first and second-order 

approximation, respectively, to a limit-state function in the vicinity of the Most Probable Point 

(MPP). But for limit-state functions that are not linear or quadratic, significant errors could be 

introduced by FORM and SORM. Both methods may also produce large errors if multiple MPPs 

exist. Higher accuracy can be achieved by sampling-based methods. They include Monte Carlo 

simulation [62] and importance sampling [63-68]. MCS is widely used due to its easy 

implementation and high accuracy if a sufficiently large number of samples is used. MCS can deal 

with problems with almost any level of nonlinearity, but the computational cost is extremely high 

if reliability is high. Importance sampling methods could be used to reduce the computational cost 

because they generate more samples in the failure region. The importance sampling methods 

require the MPP to center the sample distributions at the MPP. For a large-scale problem, searching 

for the MPP is expensive, and this reduces the efficiency of importance sampling. 

In addition to the above two groups of methods, surrogate-based methods are increasingly used 

due to their ability to reduce computational cost by creating surrogate models, or meta-models [69, 

70]. A surrogate model is a computationally inexpensive model created to substitute the original 

expensive limit-state function. The goal of metamodeling is to make the surrogate model accurate 

at an affordable computational cost. The general process of metamodeling starts with generating a 

small number of initial sample points (training points or TPs) by Design of Experiments (DOE) 

[71]. Based on these samples, an initial surrogate model is built by a metamodeling technique. 

Then more TPs are added to improve the accuracy of the surrogate model. Learning functions are 

employed to select the best TPs intelligently, and the surrogate model is refined in a most efficient 

manner. 

Popular metamodeling techniques include the polynomial response surface method [72, 73], 

neural networks [74-76], support vector machines [77-79], polynomial chaos expansion [80], 

Kriging [81-83], etc. Kriging method could be used for interpolation. The prediction of an existing 

training point produces the exact value of the response at the point. Besides, due to its stochastic 

characteristics, Kriging provides not only the prediction of an untried point, but also the variance 
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of the prediction. The variance indicates the uncertainty of the prediction. Based on Kriging, Jones 

et al. developed the Efficient Global Optimization (EGO) method [84]. EGO uses the Expected 

Improvement Function (EIF) to achieve a good balance between exploiting areas of the design 

space where good solutions have been found, and exploring the design space where the uncertainty 

is high. Later, Bichon et al. proposed the Efficient Global Reliability Analysis (EGRA) [85] and 

extended it to system reliability prediction with multiple failure modes [86]. The latter method is 

called EGRA-SYS. The method uses the Expected Feasibility Function (EFF) to choose new TPs 

in the vicinity of the limit state and helps build an accurate surrogate model with fewer function 

evaluations. EGRA needs global optimization to find the optimum training point. Recently, Echard 

et al. proposed an active learning method to avoid global optimization. The method takes 

advantage of Kriging and Monte Carlo simulation (AK-MCS) [87], which chooses new TPs from 

a pre-sampled MCS population; as a result, no global optimization is needed. Fauriat and Gayton 

then applied AK-MCS to system reliability analysis [88]. 

The above methods make the Kriging predictions without exploiting the covariance between 

pairs of given points, and we referred to them as Independent Kriging Methods (IKM). As a matter 

of fact, the predictions from Kriging are realizations of a Gaussian process and therefore are 

dependent on one another. Considering the dependence could further improve the efficiency and 

accuracy of the active learning methods. Based on this strategy, Zhu and Du proposed a reliability 

method with MCS and dependent Kriging predictions, called Dependent Kriging Method (DKM) 

[89]. Accounting for dependence between Kriging predictions and focusing directly on the 

accuracy of reliability estimation, DKM achieves better accuracy and efficiency.  

DKM is applicable only for component reliability analysis. The objective of the present study 

is to extend DKM to system reliability analysis. The contributions of this study include the 

following: (1) the extension of the component DKM to system problems so that multiple failure 

modes can be considered, (2) a new learning function that uses selected candidate points to relieve 

the computational burden greatly without jeopardizing the accuracy of reliability estimation, and 

(3) the development of a numerical procedure allows for accurate system reliability prediction at 

an affordable cost. Since the proposed method is based on Kriging and DKM, we briefly review 

them in Section 2. In Section 3, the dependent Kriging method for systems (DKM-SYS) is 

explained in detail. Section 4 provides four examples to illustrate the implementation process and 

the effectiveness of the new method. Conclusions are made in Section 5. 
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With the increasing complexity of engineering systems, the cost of system failures may also 

increase. To maintain low lifecycle costs and avoid tragic system failures, it is vital to predicting 

the system reliability accurately in the design process. System reliability is the probability that a 

system performs its intended function without failures under given working conditions. With the 

system reliability available, designers can make more reliable decisions on maintenance plans, 

warranty policies, and cost assessment [56, 57].  

In general, system reliability methods are classified into two major groups: analytical methods 

and sampling-based methods. The most popular analytical methods are the First and Second-Order 

Reliability Methods (FORM and SORM) [58-61], which employ a first and second-order 

approximation, respectively, to a limit-state function in the vicinity of the Most Probable Point 

(MPP). But for limit-state functions that are not linear or quadratic, significant errors could be 

introduced by FORM and SORM. Both methods may also produce large errors if multiple MPPs 

exist. 

Higher accuracy can be achieved by sampling-based methods. They include Monte Carlo 

simulation [62] and importance sampling [63-68]. MCS is widely used due to its easy 

implementation and high accuracy if a sufficiently large number of samples is used. MCS can deal 

with problems with almost any level of nonlinearity, but the computational cost is extremely high 

if reliability is high. Importance sampling methods could be used to reduce the computational cost 

because they generate more samples in the failure region. Most importance sampling methods 

require the MPP to center the sample distributions at the MPP. For a large-scale problem, searching 

for the MPP is expensive, and this reduces the efficiency of importance sampling. 

In addition to the above two groups of methods, surrogate-based methods are increasingly used 

due to their ability to reduce computational cost by creating surrogate models, or meta-models [69, 

70]. A surrogate model is a computationally inexpensive model created to substitute the original 

expensive limit-state function. The goal of metamodeling is to make the surrogate model accurate 

at an affordable computational cost. The general process of metamodeling starts with generating a 

small number of initial sample points (training points or TPs) by Design of Experiments (DOE) 

[71]. Based on these samples, an initial surrogate model is built by a metamodeling technique. 

Then more TPs are added to improve the accuracy of the surrogate model. Learning functions are 

employed to select the best TPs intelligently, and the surrogate model is refined in a most efficient 

manner. 
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Popular metamodeling techniques include the polynomial response surface method [72, 73], 

neural networks [74-76], support vector machines [77-79], polynomial chaos expansion [80], 

Kriging [81-83], etc. Kriging method could be used for interpolation. The prediction of an existing 

training point produces the exact value of the response at the point. Besides, due to its stochastic 

characteristics, Kriging provides not only the prediction of an untried point, but also the variance 

of the prediction. The variance indicates the uncertainty of the prediction. Based on Kriging, Jones 

et al. developed the Efficient Global Optimization (EGO) method [84]. EGO uses the Expected 

Improvement Function (EIF) to achieve a good balance between exploiting areas of the design 

space where good solutions have been found, and exploring the design space where the uncertainty 

is high. Later, Bichon et al. proposed the Efficient Global Reliability Analysis (EGRA) [85] and 

extended it to system reliability prediction with multiple failure modes [86]. The latter method is 

call EGRA-SYS. The method uses the Expected Feasibility Function (EFF) to choose new TPs in 

the vicinity of the limit state and helps build an accurate surrogate model with less function 

evaluations. EGRA needs global optimization to find the optimum training point. Recently, Echard 

et al. proposed an active learning method to avoid global optimization. The method takes 

advantage of Kriging and Monte Carlo simulation (AK-MCS) [87], which chooses new TPs from 

a pre-sampled MCS population; as a result, no global optimization is needed. Fauriat and Gayton 

then applied AK-MCS to system reliability analysis [88]. 

The above methods make the Kriging predictions without exploiting the covariance between 

pairs of given points, and we referred to them as Independent Kriging Methods (IKM). As a matter 

of fact, the predictions from Kriging are realizations of a Gaussian process and therefore are 

dependent on one another. Accounting for dependence between Kriging predictions and focusing 

directly on the accuracy of reliability estimation, DKM achieves better accuracy and efficiency.  

DKM is applicable only for component reliability analysis. The objective of the present study 

is to extend DKM to system reliability analysis. The contributions of this study include the 

following: (1) the extension of the component DKM to system problems so that multiple failure 

modes can be considered; (2) a new learning function that uses selected candidate points to relieve 

the computational burden greatly without jeopardizing the accuracy of reliability estimation, and 

(3)the development of a numerical procedure allows for accurate system reliability prediction at 

an affordable cost. 
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 Since the proposed method is based on Kriging and DKM, we briefly review them in Section 

2. In Section 3, the dependent Kriging method for systems (DKM-SYS) is explained in detail. 

Section 4 provides four examples to illustrate the implementation process and the effectiveness of 

the new method. Conclusions are made in Section 5. 

2.2 Methodologies Review 

In this work, the component reliability is defined by 

𝑅 = Pr{𝑦 = 𝑔(𝐱) > 0} (1) 

where y is a component response and  is a random vector. If , the failure mode does 

not occur; otherwise, the failure occurs.  

Next, we herein review the methods that are needed by the proposed method.  

2.2.1 Kriging Method 

Kriging is an interpolation method since its prediction at an existing TP is the exact value of 

the response at the point. For a performance function , Kriging considers  being 

a realization of Gaussian process defined by 

   (2) 

where  is a determination term for the mean response,  is a vector of regression 

functions, and  is a vector regression coefficient.  is a stationary Gaussian process with zero 

mean and covariance 

   (3)  

where  is the process variance, and  is the correlation function. The commonly used 

Gaussian correlation is the anisotropic squared exponential model, which is given by 

   (4)  
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where  and  are the k-th components of  and , respectively, d is the dimensionality 

of , and  is a parameter that indicates the correlation between the points in dimension k. Due 

to the stochastic characteristics, Kriging provides not only the prediction at an untried point but 

also the variance of the prediction. The variance indicates the uncertainty of the prediction. At an 

untried point x, the Kriging predictor  follows a Gaussian distribution denoted by 

   (5) 

where  and  are the prediction and its variance, respectively. They are computed 

by [81]    

   (6)  

   (7) 

in which  is a vector of responses at the TPs, is a  matrix with rows , m is the 

number of TPs, and  is the correlation vector containing the correlation between  and each 

of the TPs.  

   (8) 

 is the correlation matrix, which is composed of correlation functions evaluated at each possible 

combination of the m TPs.  is given by 

   (9) 

 is the least square estimate of  given by  

  (10) 

and  are determined through  

  (11) 

The parameters  are determined through the maximum likelihood estimation, details of 

which are available in Ref. [81, 82]. 
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2.2.2 Review of AK-SYS and EGRA-SYS 

Both AK-SYS [88] and EGRA-SYS [86] are system reliability methods and are based on the 

Kriging method. Once surrogate models of all the limit-state functions are built, the two methods 

use MCS to estimate the system reliability using the surrogate models. They at first generate a 

sufficient number of sample points  by MCS and use a few initial TPs to create initial 

surrogate models. New TPs are then added one by one so that the surrogate models are continually 

updated. AK-SYS and EGRA-SYS select new TPs using the strategies in AK-MCS [87] and 

EGRA [30], respectively. AK-MCS selects a new TP with a learning function defined by  

   (12) 

 is related to the chance of making a mistake on the sign of the prediction. The smaller is , the 

higher is the likelihood. Consequently, the sample point with the smallest  is selected as a new 

TP. For a system with multiple components, a composite learning function is used by AK-SYS 

[88]  and is given by . For a series system,  is the minimal value 

among the predictions of all components at , and  is the corresponding standard deviation. 

EGRA-SYS [31] uses a different learning function, which is called the expected feasibility 

function (EFF) and is defined by  

  (13) 
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where , , in which  is the failure threshold, and  is usually chosen by 

.  and  are the cumulative density function (CDF) and probability density 

function (PDF) of a standard normal random variable. 

The process of AK-SYS and EGRA-SYS is as follows: 

(1) Generate a small number of initial TPs, denoted by ; evaluate the limit-state functions 

, where , and  is the number of components. 

(2) Build surrogate models . 

(3) Generate Monte Carlo samples for input random variables . 

(4) Evaluate the composite U function and EFF function at  using the predictions and 

standard deviations from . 

(5) Find the minimal value of the composite U learning function among those at all points in 

. For the EGRA method, find the maximal value of the composite EFF learning function 

among those at all points in . 

(6) Check the convergence: The process converges if  or , and then 

perform reliability analysis using ; otherwise, go to Step (7). 

(7) Identify a new TP  with the minimal composite learning function value  or the 

maximal composite learning function . 

(8) Calculate the component  or  with high uncertainty at , and check  or 

. 

 (9) Add  and the responses at  to the existing training point set and update the 

surrogate models. 

Repeat steps (2) through (9) till convergence.  

As discussed previously, the larger is U or EFF, the higher is the chance that the Kriging model 

is accurate. In Step 8, the threshold of 2 is taken for U to check the convergence. The threshold of 

EFF is taken 0.001. 
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The size of  is determined by the estimate of the probability of system failure  and 

the coefficient of variation 𝐶𝑂𝑉!"#. The relationship is given by 

   (14)  

where is the size of .  may vary so that 𝐶𝑂𝑉!"# ≤ 5%. 

Without the consideration of correlation, AK-SYS and EGRA-SYS use only mean predictions 

as shown in the following indicator function  

   (15) 

Then is estimated by  

   (16) 

where N is the number of samples in . 

2.2.3 Review of Dependent Kriging Method for Component Reliability 

The dependent Kriging method (DKM) accounts for dependence between predictions to 

achieve better accuracy and efficiency. DKM uses all the information of the surrogate model

, where  with correlation matrix . DKM computes 

 by 

   (17) 

where  is the indicator function defined by  

   (18) 
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𝑝# is a random variable since the domain of integration in Eq. (17) is random. The expectation 

of 𝑝#  is used to the estimate of the probability of failure [89] 

   (19)  

where  

   (20) 

The variance of  is used to estimate the error of  and is given by  

   (21) 

where  is the CDF of the bivariate normal distribution defined by 

means , standard deviations , and correlation . Eq. (21) indicates that  

is the sum of N terms of the N sample points. Each term can be considered as the contribution from 

each sample. The contribution of one sample i is defined as the learning function below. 

   (22)  

The learning function uses all the information of a Gaussian process, including its mean, 

variance, and correlation. As a result, it provides a more accurate and efficient way of select TPs 

to build surrogate models. In [89], selected candidate points (SCPs) are used to relieve the 

computational burden of the bivariate joint probability evaluation in Eq. (22).  is not calculated 

for all points in ,  and a smaller number of points in  are selected to form the SCPs. Then 

the evaluations of  are performed with only SCPs. The SCPs are selected based on two criteria. 

The first criterion is a small error in the estimate of , and this criterion requires a significant 

number of points fall into the failure region. The second criterion is a high contribution to . 
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Therefore, the SCPs consist of all the points in the failure region and other points with the highest 

indicator function variances in the safe region. Details of the implementation is given in [89]. 

2.3 Dependent Kriging Method for System Reliability 

The new dependent Kriging method for systems (DKM-SYS) is the extension of component 

DKM to system reliability analysis. Similar to the component DKM, DKM-SYS consists of the 

same components: the estimate of probability of failure, a learning function, a stopping criterion, 

and an implementation process. 

2.3.1 Estimate of 𝒑𝒔𝒇  

In this work, we consider a series system with k failure modes. For a series system, if at least 

one failure mode occurs, the system fails, and then the system reliability is computed by  

   (23) 

where  denotes intersection. The safe region  is therefore defined by 

   (24) 

The system is safe at point x if x falls into . Thus  is computed by  

   (25) 

where the system indicator function is defined by   

   (26) 

𝑅"	can be estimated by 

   (27) 
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   (28) 

Thus, the probability of system failure at  is  

   (29) 

In this work, we generate surrogate models for limit-state functions separately and assume the 

predictions of the k responses at the same point are independent. (The responses of a single limit-

state function at two points, however, are still dependent.) Thus the joint probability density 

functions (PDF) of the k responses at point  are the product of their marginal PDFs. Eq. (28) is 

then rewritten as 

   (30) 

At point , the reliability of component k is  

   (31) 

Thus                                    

   (32) 

   (33) 

The expectation of the system indicator at  is  

   (34) 

The variance of the system indicator is  
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Since  is a random variable, its expectation is used for the estimate of the system reliability; 

namely   

   (36) 

The probability of system failure  is 

   (37) 

The variance of  is the same with the variance of , which is calculated by 

   (38) 

 is determined by the covariance , which is given by  

   (39) 

where  

   (40) 

Let , Eq. (38) becomes 

   (41) 

where 

   (42) 

Eq. (42) is the probability of system safety at points  and . Since the predictions of all the 

responses are independent,   is given by 

   (43) 

where  is the probability that component k is safe at point i and j. 

sR

1 1 1

1 1[ ] [ ]
MN N

s Si ki
i i k

E R E I r
N N= = =

æ ö
= = ç ÷

è ø
å å Õ

sfp

1 1

1[ ] 1
MN

sf ki
i k

E p r
N = =

æ ö
= - ç ÷

è ø
å Õ

sfp sR

2 2
1 1 1

1 1[ ] [ ] [ [ ] 2 cov( , )]
N N N N

sf s Si si si sj
i i i j i

Var p Var R Var I Var I I I
N N= = = >

= = = +å å åå

[ ]sfVar p cov( , )si sjI I

cov( , ) [ ] [ ] [ ] Pr{ 1, 1} [ ] [ ]si sj si sj si sj si sj si sjI I E I I E I E I I I E I E I= - = = = -

1 1

[ ] [ ]
M M

si sj ki kj
k k

E I E I r r
= =

=Õ Õ

Pr{ 1, 1}si sjH I I= = =

2
1 11 1 1 1

1[ ] 1 2
M M M MN N N

sf ki kj ki kj
i i j ik k k k

Var p r r H r r
N = = >= = = =

ì üé ùæ ö æ öï ï= - + -í ýê úç ÷ ç ÷
è ø è øï ïë ûî þ

å ååÕ Õ Õ Õ

1 1ˆ ˆ ˆ ˆPr{ 1, 1} Pr{[ ( ) 0 ... ( ) 0] [ ( ) 0 ... ( ) 0]}si sj i k i j k jH I I g g g g= = = = > > > >x x x x! ! ! ! !

ix jx

H

1

ˆ ˆPr{ 1, 1} Pr{ 0, 0}
M

si sj ki kj kij
k

H I I g g r
=

= = = = > > =Õ

kijr



 

 

32 

Eq. (41) can be rewritten as 

   (44) 

or                                                       

   (45) 

where            

   (46) 

Therefore, the standard deviation of  is  

   (47) 

 is an indicator of the uncertainty associated with the estimate of the system reliability. If 

there was no model uncertainty,  would be zero. The higher  is, the higher the uncertainty 

associated with the system reliability estimated based on the surrogate models is. We therefore use 

 to measure the error of the system reliability prediction. 

2.3.2 Learning Function  

A learning function is used to select new TPs to refine the surrogate model. As indicated in Eq. 

(44), each TP contributes to  or . The sum of terms involving  in  is  

in Eq. (46). Thus, we use  as the learning function. Maximizing  identifies a new TP that has 

the highest contribution to the uncertainty of the estimate of system reliability; namely  

   (48) 

2
1 1,1 1 1 1 1

1[ ] 1 2
M M M M MN N

sf ki ki kij ki kj
i j j ik k k k k

Var p r r r r r
N = = ¹= = = = =

ì üæ ö æ ö
= - + -í ýç ÷ ç ÷

è ø è øî þ
å åÕ Õ Õ Õ Õ

2
1

1[ ]
N

sf i
i

Var p c
N =

= å

2
1 1,1 1 1 1 1

1 1 2
M M M M MN N

i ki ki kij ki kj
i j j ik k k k k

c r r r r r
N = = ¹= = = = =

ì üæ ö æ ö
= - + -í ýç ÷ ç ÷

è ø è øî þ
å åÕ Õ Õ Õ Õ

sfp

1

1
sf

N

p i
i
c

N
s

=

= å

sfp
s

sfp
s

sfp
s

sfp
s

sfp
s [ ]sfVar p ix [ ]sfVar p ic

ic ic

1,2,...,
arg max { }

x x

MCS

new h

ii N
h c

=

=ìï
í =ïî



 

 

33 

where is the h-th point in . Adding the highest contribution point as new TP is the most 

effective way to refine the surrogate model with fast convergence [89]. 

2.3.3 Stopping Criterion 

When  is small enough, no more new TPs are needed. Then the surrogate models are used 

to calculate . Let the confidence of the probability of system failure be  and the allowable 

relative error be 𝜀, and then the confidence interval of the estimate is computed by   

. 

The relative error is defined by  

   (49) 

If  is smaller than the allowable error, the process terminates. Thus, the stopping criterion is 

determined by 

   (50) 

2.3.4 Implementation 

Accounting for the dependence between responses requires calculations of bivariate 

probabilities given by 

   (51) 
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which are selected from . The size of  is much smaller than that of . To ensure a 

significant number of points fall into the failure region, we adjust the size of SCPs  using the 

following condition.   

   (52) 

where is the number of failure points in the SCPs. SCPs consist of all points in the failure 

region and the other points with highest indicator function variances in the safe region. Using SCPs, 

the computational effort needed is greatly reduced. In the examples in Sec.4, we use 200 SCPs. 

The stopping criterion in Eq. (50) needs to be modified accordingly. The probability of system 

failure using  is calculated by  

   (53) 

and   

   (54) 

The stopping criterion becomes  

   (55) 

The flowchart of the DKM-SYS is provided in Fig. 2.1 
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Figure 2.1 Flowchart of DKM-SYS 

2.3.5 Parallel Systems 

The above results can be extended to parallel systems. For a parallel system with k failure 

modes, the probability of failure can be computed by  

  (56) 
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Eq. (57) evaluates the probability of a union of n-events as Eq. (23) does. Hence the proposed 

method can be used to calculate Eq. (57), which leads to the parallel system reliability

. 

2.4 Examples 

The proposed method is evaluated with four examples. The first example is a mathematical 

problem, which clearly demonstrates the application details and effectiveness of DKM-SYS, while 

the other three examples show possible engineering applications. 

In all examples, initial TPs are generated by the Latin hypercube sampling (LHS) [90], and the 

initial sample size is 12. The efficiency is measured by the number of limit-state function calls. 

The accuracy is measured by the percentage error with respect to the direct MCS. The error is 

calculated by 

   (58) 

where and are probabilities of system failure from the direct MCS and the other method, 

respectively. Since Kriging-based reliability methods are stochastic methods, we run each method 

20 independently, and the average results are used for comparison. The standard deviation of the 

number of function calls and probabilities of system failure are also provided. A smaller standard 

deviation means that the results are concentrated closer to their mean values, and this indicates that 

the method tends to produce more stable results. We therefore use the standard deviation as an 

indicator of the robustness of the method. 

2.4.1 Example 1 

This example involves two random variables and three mathematical equations. For this two-

dimensional problem, it is easy to demonstrate the effectiveness of the proposed method.  The 

three limit-state functions are given by [91] 
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   (59) 

   (60) 

   (61) 

where . Figs. 2.2 and 2.3 show the TPs and surrogate models using AK-

SYS and DKM-SYS method, respectively. 

The average numbers of function calls and the average probabilities of system reliability based 

on direct MCS and LHS are provided in Table 2.1 and Table 2.2, respectively. The difference of 

results from the two sampling methods is not significant since the sample size is large. For this 

reason, we compare two different sampling methods for only this example.  

We also compare the probabilities of system failure from DKM-SYS, AK-SYS and EGRA-

SYS with those from the direct MCS and LHS.  In both tables, the results show that DKM-SYS is 

more accurate than AK-SYS and EGRA-SYS. DKM-SYS is also more efficient than AK-SYS and 

DKM-SYS since the former method has smaller average numbers of function calls. Limit-state 

function 3 is far away from the origin as shown in Figs. 2.2 and 2.3, and it is hard to obtain an 

accurate surrogate model. This function consumes most of the computational effort by DKM-SYS, 

AK-SYS and EGRA-SYS.   

 
(a) Training points                                        (b) Final surrogate models 

Figure 2.2 Training points and surrogate models of AK-SYS 
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                      (a) Training points                                     (b) Final surrogate models 

Figure 2.3 Training points and surrogate models of DKM-SYS 
 

Table 2.1 Average results from 20 runs based on direct MCS 

Method  ε (%) 
Number of function calls 

N1 N2 N3 

AK-SYS 2.7249×10-2  1.94 25.30  28.20  30.60  

EGRA-SYS 2.7241×10-2 1.97 26.05 29 32.05 

DKM-SYS 2.7403×10-2  1.37 17.85  22.25  22.45  

MCS 2.750×10-2 N/A 5×106 5×106 5×106 
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Table 2.2 Average results from 20 runs based on Latin hypercube sampling 

Method  ε (%) 
Number of function calls 

N1 N2 N3 

AK-SYS 2.7389×10-2  1.24 25.5 28.5 30.0 

EGRA-SYS 2.7472×10-2 1.26 26.4 28.7 29.4 

DKM-SYS 2.7403×10-2  1.23 18.8  22.6 23.6  

LHS 2.7474×10-2 N/A 5×106 5×106 5×106 

   

2.4.2 Exmaple 2 

This is an engineering problem with a small probability of system failure. This problem 

involves a liquid hydrogen fuel tank that is used on a space launch vehicle [86, 92, 93]. The tank 

has a honeycomb sandwich deign. It is subjected to stress caused by ullage pressure, head pressure, 

axial force due to acceleration, and bending and shear stress due to the weight of the fuel. There 

are three failure modes related to the von Mises strength, isotropic strength, and honeycomb 

bucking. The limit-state functions for the von Mises and isotropic strength are given by  

   (62) 

   (63) 

The limit-state function of honeycomb buckling is defined by a response surface generated 

from the structural sizing program and is given by [86, 93].  

   (64) 

where  

   (65) 

   (66) 
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   (67) 

The five independent random variables are given in Table 2.3. The reliability analysis results 

are provided in Table 4. 

 

Table 2.3 Random variables of example two 

 Random variables Distribution 

X1    

X2     

X3     

X4     

X5     

 

Table 2.4 shows that the average total function call of AK-SYS and EGRA-SYS are 56.1 and 

43.35 respectively, while the average total function call of DKM-SYS is 42.45. This demonstrates 

that DKM-SYS is more efficient. DKM-SYS is also more accurate than AK-SYS and EGRA-SYS, 

because the error of DKM-SYS is only 0.57% and the errors of the other two methods are relatively 

large. 

 

Table 2.4 Comparison of average results from 20 runs 

Method  ε (%) 
Number of function calls 

N1 N2 N3 

AK-SYS 6.9756×10-4 1.52 12 31.50 12.60 

EGRA-SYS 6.9603×10-4 2.01 12 18.10 13.25 

DKM-SYS 7.0107×10-4 0.57 12 19.10 12.40 

MCS 6.9855×10-4 N/A 2×107 2×107 2×107 

3
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2.4.3 Example 3 

This is an engineering problem that involves a relatively large set of input random variables. 

As shown in Fig. 2.4, a cantilever beam [19] with ten random variables is used to prove the 

robustness of DKM-SYS method.  

The beam is subjected to external forces F1 and F2, external moments M1 and M2, and external 

distributed loads denoted by  and . These forces, moments, distributed loads, 

together with the yield strength S and the maximum allowable shear stress  are normally 

distributed random variables. Their information is given in Table 2.5. The deterministic parameters 

are listed in Table 2.6. 

 

Figure 2.4 A cantilever beam 
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Table 2.5 Random variables of example 3 

 Random Variables Distribution 

   

   

   

   

   

   

   

   

   

   

 
The maximum normal stress of the beam should be smaller than its yield strength, and this is 

given by  

   (68) 

where the bending moment at the left end point of the beam is   

   (69) 

The deflection of the right end point of the beam should not greater than the allowable defection 

 cm. 

   (70) 

where is computed by  
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   (71) 

where the Young’s modulus is  Pa, and the moment of inertia is . P is 

the reaction force at the fixed end, which is given by  

   (72) 

The last limit-state function specifies that the shear stress should not be greater than the 

maximum allowable shear stress  

   (73) 

Table 2.6 Deterministic parameters 

Parameters Values 
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The results from Table 2.7 also show that DKM-SYS has better performance than AK-SYS 

and EGRA-SYS in accuracy, efficiency. The significant advantage of DKM-SYS over AK-SYS 

and EGRA-SYS in this example is the efficiency. On average, the total function calls of AK-SYS 

and EGRA-SYS are 353.64 and 477, while DKM-SYS just needs 129.5 function calls. 

Table 2.7 Comparison of average results from 20 runs  

Method  ε(%) 
Number of function calls 

N1 N2 N3 

AK-SYS 5.2592×10-3 1.74 245.89 12 95.75 

EGRA-SYS 5.2542×10-3 1.71 355 15 107 

DKM-SYS 5.2657×10-3 0.94 70.80 13.05 45.65 

MCS 5.2567×10-3 N/A 1×107 1×107 1×107 

 

2.4.4 Example 4 

This problem involves more failure modes than the previous examples. A crank-slider system 

is considered which has four components shown in Fig. 2.5 [94]. An external moment is applied 

to joint A to drive link AB rotating around A. The task is to predict the system reliability when 

 and five failure modes are considered for this system.  

 

  Figure 2.5 A crank-slider system 
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For link AB, the length is , and the width and height of the cross section are  and . The 

maximal normal stress  developed in the link AB should be smaller than the 

allowable normal stress  and this is given by 

   (74) 

For link BC, the length is , and the width and height of the cross section are  and . The 

force developed in the link  should be smaller than the critical force for buckling . 

   (75) 

where ,  and . 

For shaft DE, the length and diameter are  and . It has two failure modes caused by 

excessive deflection and excessive normal stress, respectively. The corresponding limit-state 

functions are given by 

   (76) 

where  is the allowable deflection, and  is the maximal deflection given by 

   (77) 

where  is the Young’s modulus of shaft DE.  is the allowable normal stress, and  is the 

maximal normal stress developed in the shaft and is calculated by 

   (78) 
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For spring DE, the outer diameter and inner diameter of the spring are D and d. The developed 

maximal shear stress  should not be greater than the allowable shear stress of the spring coils

. 

                                                               (79) 

where  is computed by 

   (80) 

All the random variables are listed in Table 2.8, and the deterministic parameters are listed in 

Table 2.9. The reliability analysis results are provided in Table 2.10. 

Table 2.8 Random variables      

 Random Variables Distribution 
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Table 2.9 Deterministic parameter 

Deterministic Parameters Values 

 200×109 

 200×109 

 1 

 0.95 

 0.30 

 400×106 

 460×106 

 0.0053 

 29.5×10-3 

 

Table 2.10 Comparison of average results from 20 runs   

Method  ε (%) 
Number of function calls 

N1 N2 N3 N4 N5 

AK-SYS 1.3638×10-2 1.92 149.95 215 12 12 77.45 

EGRA-SYS 1.3655×10-2 1.91 214.75 303.70 12 17.40 110.95 

DKM-SYS 1.3713×10-2 0.81 54.35 76.25 12.05 12.15 38.90 

MCS 1.3643×10-2 N/A 5×106 5×106 5×106 5×106 5×106 

 

Table 2.10 shows the comparison between AK-SYS, EGRA-SYS, DKM-SYS, and MCS. It is 

obvious that DKM-SYS can achieve better accuracy and efficiency than AK-SYS and EGRA-SYS. 

In particular, the total average function call of DKM-SYS is 193.7, while that of AK-SYS and 

EGRA-SYS are 466.4 and 658.8, respectively.  
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2.5 Summary 

This work develops a new system reliability method for series systems with multiple dependent 

failure modes using the Kriging method. High efficiency and accuracy are achieved through the 

following means: 1) the use of surrogate models from Kriging, 2) the use of all information from 

Kriging, such as the prediction and its standard deviation, in the estimate of the system reliability, 

and 3) an efficient way for selecting training points for refining surrogate models. Since the 

dependence between Kriging predictions at different points are considered and the error of system 

reliability estimate is directly quantified (instead of the error of surrogate models), the new method 

improves the performance of Kriging-based system reliability methods. 

The proposed method extends the Kriging method from component reliability analysis to 

system reliability in an efficient manner. It can be potentially used for system reliability-based 

design and robust system design.  
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The second order saddlepoint approximation (SPA) has been used for component reliability 

analysis for higher accuracy than the traditional second order reliability method. This work extends 

the second order SPA to system reliability analysis. The joint distribution of all the component 

responses is approximated by a multivariate normal distribution. To maintain high accuracy of the 

approximation, the proposed method employs the second order SPA to accurately generate the 

marginal distributions of the component responses; to simplify computations and achieve high 

efficiency, the proposed method estimates the covariance matrix of the multivariate normal 

distribution with the first order approximation to the component responses. Examples demonstrate 

the high effectiveness of the second order SPA method for system reliability analysis. 

3.1 Background 

One of the criteria for systems design is to avoid system failures or minimize the probability 

of system failures. It is therefore necessary to predict system reliability accurately and efficiently 

during the design process [95]. System reliability is typically measured by the probability that the 

system fulfills its intended function without failures [96]. There are multiple components in the 

system, and each component may have multiple failure modes. Suppose the i-th failure model has 

a limit-state function given by  

  (1) ( )  ( 1 )i iY g i= ,...,m= X
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where  is a component response, and  is the vector of random variables. If , the 

failure model does not occur; otherwise, the failure mode occurs. If we consider a failure model as 

a component, component reliability is then computed by 

  (2) 

where  is the component safe domain or the domain defined by , and 

 is the joint probability density function (PDF) of . For a series system, if one failure mode 

occurs, the system fails. System reliability is therefore given by 

  (3) 

where  is the system safe domain or the domain defined by , and m is the 

number of components in the system. 

In practice, it is difficult to integrate a multidimensional PDF over the safe domain in Eq. (3). 

Different approaches have therefore been developed to approximate the multi-dimensional integral. 

They include the bound approximation, surrogate approaches, and analytical approaches.  

Bound approximation methods predict system reliability with lower and upper bounds. The 

first order bound method for series systems assumes that all the component responses are 

completely dependent or mutually exclusive. Based on this assumption, upper and lower bounds 

are derived. Ditlevsen [97] developed the second-order bound method by taking into account all 

the single mode failure probabilities and all the pairwise mode intersection failure probabilities to 

narrow the first order bound. Song and Der Kuireghian [98] proposed a linear programming (LP) 

method to compute the system reliability bound. The LP bounds are independent of the ordering 

of the components and are guaranteed to produce the narrowest possible bounds. Another 

reliability bound method is the complementary intersection method [99]. It approximates the 

reliability of series systems with eigenvector dimension reduction and produces more accurate 

results compared with the first and the second order bound methods. More studies on system 

reliability bound methods can be found in Refs. [100, 101]. 

Surrogate approaches predict single-valued system reliability by creating surrogate models for 

component responses and using Monte Carlo simulation (MCS). Surrogate models are created first, 
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and then system reliability is estimated with MCS based on the surrogate models. The surrogate 

modeling methods include the polynomial chaos expansion (PCE) [102], Support Vector Machine 

(SVM) [103], and Kriging method [104-106]. The recent development in this area is to perform 

surrogate modeling and MCS simultaneously. For example, Bichon et al. [104, 105] applied the 

efficient global optimization to reliability assessment. This method uses the active learning 

function called the Expected Feasibility Function (EFF) to choose new training points in the 

vicinity of the limit state, resulting in building an accurate surrogate model with fewer function 

evaluations. Fauriat and Gayton [106] proposed to build the initial Kriging surrogate model and 

continually refine the model by choosing new training points from a pre-sampled MCS population. 

Wu and Du proposed a new kriging method to predict system reliability that combines MCS and 

the Kriging method with improved accuracy and efficiency[37]. 

Analytical methods use neither surrogate models nor MCS and also produce single-valued 

system reliability. They approximate nonlinear limit-state functions so that the system probability 

integral can be easily computed. The methods include the use of the First Order Reliability Method 

(FORM) [107, 108], Second Order Reliability Method (SORM) [109, 110], and Saddlepoint 

Approximation Method (SPA) [108, 111]. FORM is the most well-known method due to its good 

balance between accuracy and efficiency. It at first transforms random variables into standard 

normal variables and then it identifies the reliability index, which is the minimum distance from 

the origin to the linearized and transformed limit-state function at the most probable point (MPP). 

System reliability is then approximated by the multidimensional integration of the joint probability 

density function after the marginal distributions and correlation coefficients of component states 

are obtained by the first order approximation [107, 112]. Although the efficiency of such method 

is good, the accuracy may not be good if limit-state functions are highly nonlinear. Therefore, 

Madsen [110] presented an extension of FORM based on a more accurate approximation of the 

limit-state function, and the result shows smaller differences between the second order 

approximation and the exact result.  

Among the above methods, SPA can improve accuracy for problems with or without the non-

normal to normal transformation. Du estimated the system reliability by SPA without any 

transformation on random input variables, leading to more accurate result than the FORM [100]. 

But the method is still the first order approximation and produces bounds of system reliability. An 

extension of the first order SPA to the second order SPA on component reliability analysis has 
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also been proposed to accommodate quadratic functions, and the method is more accurate than the 

first order SPA and SORM without sacrificing computational efficiency [113]. Papadimitriou et 

al. proposed a new mean-value second-order saddlepoint approximation method for reliability 

analysis of nonlinear systems with correlated non-Gaussian and multimodal random variables, and 

the result is more accurate than FORM and SORM [114]. But these methods are for only the 

component reliability analysis. 

The purpose of this work is to extend the second-order SPA to system reliability analysis in 

order to achieve high accuracy. The joint distribution of all the component responses is 

approximated by a multivariate normal distribution. The second order SPA is used to approximate 

the marginal distributions of the component responses for higher accuracy. The covariance matrix 

of the multivariate normal distribution is estimated using the first order approximation.  

The second-order SPA for component reliability analysis is briefly reviewed in Section 2. The 

extension of the second-order SPA to system reliability analysis is discussed in Section 3 followed 

by examples in Section 4. Conclusions are made in Section 5. 

3.2 Review of Second Order SPA  

In this section, we review the second order SPA for component reliability analysis [113]. It is 

the basis of the proposed system reliability method in this work.  

3.2.1 MPP Search 

The method first approximates the limit-state function with a second order polynomial. It is 

the same approximation in the original SORM [115], which involves the MPP search in the 

standard normal space using FORM. With the assumption that all variables in  are independent, 

they are transformed into the standard normal variables U. The transformation is given by  

  (4) 

where and  are the cumulative distribution functions (CDFs) of  and , 

respectively. Then the transformed standard normal variables are  

  (5) 

After the transformation, the limit state function becomes 

X

( ) ( )i i iF X U=F

( )iF × ( )F × iX iU

1[ ( )]i i iU F X-=F
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  (6) 

Then, the minimum distance from the original to the limit-state surface  is identified. 

The distance is the reliability index . The minimum distance point is called the MPP. The model 

for searching for the MPP is given by 

  (7) 

where  means the length of a vector, namely 

  (8) 

The solution from Eq. (7) is the MPP . 

3.2.2 Quadratic Limit-state Function 

After the MPP is found, the limit-state function is approximated by 

  (9)  

where  is the gradient, and  is the Hessian matrix, 

given by 

  (10) 

The independent standard normal vector  can be easily generated as follows: 
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where D is an orthogonal matrix whose column vectors are the eigenvectors of , 

and  is a vector of independent standard normal random variables. 

Thus, Eq. (9) is expressed in the form of a quadratic polynomial function, as follows: 

  (12) 

in which  

  (13) 

Since  is diagonal, Eq. (12) can be written as sum of quadratic functions of different standard 

normal variables. 

  (14) 

where  

  (15) 

and n is the total number of random variables. 

 is further rewritten as follows  

  (16) 
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  (18) 

 is normally distributed and is denoted by , where the mean 𝜇'! is given by 

  (19) 

and the standard deviation 𝜎'! is given by 

  (20) 

 follows a noncentral chi-square distribution with freedom of 1 [116, 117]; 

namely , where  is a non-centrality parameter and given by 

  (21) 

The limit-state function in Eq. (16) in finally expressed by a linear combination of either 

noncentral chi-square variables or standard normal variables.  

  (22) 

3.2.3 Saddlepoint Approximation 

Saddlepoint approximation is used to recover a PDF from its cumulant generating function 

(CGF). The CGF of the noncentral chi-square  in Eq. (22) is given by 
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  (24) 

The CGF of  in Eq. (22) is then given by 

  (25) 

With all the above CGFs available, the CGF of the limit-state function in Eq. (12)  is then 

computed by  

  (26) 

After the CGF  is obtained, it is straightforward to find the PDF of the limit-state function, 

and this requires to find the saddlepoint , which is found by solving the following equation 

  (27) 

where  is the first derivative of . According to the Lugannani and Rice’s formula 

[118], the component reliability  is computed by 

  (28) 

where  and  are CDF and PDF of a standard normal distribution, respectively. 
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the second derivative of  with respect to t. 
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3.3 System Reliability with Second Order SPA 

In this section, we discuss the new second-order SPA method for system reliability analysis. 

We focus on only series systems; the method, however, can also be extended to parallel systems 

and the combination of series and parallel systems.  

System reliability can be estimated by integrating the joint PDF of all the input random 

variables in the safe region as indicated Eq. (3). To use SPA, we consider the PDF of component 

responses directly. The system state is determined by component responses predicted from 

component limit-state functions . System reliability is then computed by  

  (31) 

Eq. (31) requires the joint distribution of . This means that we need to consider 

both component reliability and dependencies between component responses. Hereby, we 

approximate the joint distribution of all the component responses as a multivariate normal 

distribution.  

If we consider only the first order terms of Eq. (9), the component limit-state function becomes 

  (32)  

If we divide both sides of Eq. (32) by the magnitude of the gradient, we obtain 

  (33)  

Or 

  (34) 

The event of the safe component  is equivalent to the event . We then 

define a new variable 

  (35)  
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We call  an equivalent component response. It is obvious that  follows a normal 

distribution. As a result, all the equivalent component responses follow a multivariate normal 

distribution.  

System reliability is then approximated by 

  (37) 

The multivariate normal distribution is denoted by , where  is the mean vector 

of  and  is the covariance matrix. System reliability thus becomes the CDF 

 of  at ; namely 

  (38) 

where  is the joint PDF of . 

Since we use the first approximation directly as indicated in Eq. (9), the method we have just 

discussed is the existing FORM for system reliability analysis.  

The accuracy of the multivariate normal integration in Eq. (38) is closely related to the 

accuracy of the mean vector and covariance matrix . In addition to high accuracy, we would 

also like to maintain high efficiency. There are mainly two ways to make the integration accurate 

and efficient. First, we improve the accuracy by determining  with the second order component 

reliability obtained from the second order SPA. This strategy is adapted from Ref. [119] where the 

traditional SORM is used. Since the second-order SPA is in general more accurate than the 

traditional SORM, the new method has higher accuracy. We use the second order SPA to 

approximate the marginal CDF of  at 0, which is the component reliability  

   (39) 

where  is calculated by the second-order SPA method given in Eq. (28). Then the 

associated reliability index is determined by 
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Since  is obtained from a more accurate reliability estimate, we use it to replace  in Eq. 

(35), resulting in . The mean vector of the multivariable distribution of  is then 

obtained. 

  (42) 

The above treatment ensures that the component reliability or the marginal distributions of 

component responses are accurately estimated by the second order approximation. 

In order to simplify computations and achieve high efficiency, we use the same strategy in Ref. 

[119] to estimate the covariance matrix . The idea is to use the first order approximation in Eq. 

(32). Let the components of  be . The covariance is given by  

  (43) 

Then  is given by  

  (44) 

The joint distribution of all component responses is now approximated by a multivariate 

normal distribution. With and  available, the joint PDF of  is expressed as  

  (45) 

Then system reliability  can be easily calculated by integrating the PDF in Eq. (38) from 

 to  and the system probability of failure is 
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high accuracy in estimating system reliability but also simplifies the computations while 

maintaining high efficiency.  

The procedure of the system reliability analysis with the second-order SPA is briefly 

summarized below. 

(1) Transform random variable X into U in the standard normal space. 

(2) Search for MPPs ; obtain the reliability index  and first and second derivatives of 

component limit-state functions at the MPPs. 

(3) Perform the second-order SPA for all components. 

(4) Use SPA results to find the means of equivalent component responses. 

(5) Use MPPs and reliability indexes to find the covariance matrix. 

(6) Form the multivariate normal PDF and integrate it to obtain system reliability. 

3.4 Examples 

In this section, four examples are presented. The first example is used to demonstrate the 

proposed method while the other three examples show possible engineering applications. The 

accuracy is measured by the percentage error with respect to a solution from MCS. The error is 

calculated by 

  (47) 

where  and  are probabilities of system failure from MCS and second order SPA 

method, FORM method or SORM method, respectively. 

3.4.1 Example 1 

The first example is mathematical example. A system consists of two physical components, 

and each component has one limit-state function. There are two basic random variables denoted 

by .  is normally distributed with mean  and standard deviation , 
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 and standard deviation , and the distribution is denoted by . The two 

limit-state functions are given by 

  (48) 

  (49) 

At first, MPPs, reliability indexes, and directional vectors of the two limit-state functions are 

obtained. The results are given in Table 3.1. 

Table 3.1 MPP, reliability index and directional vector 

    

 (-2.6981,-2.0057) 3.3602 (0.8025,0.5966) 

 (-2.5485, 1.8429) 3.1450 (0.8103,-0.5869) 

 

Next, the reliability of each component is calculated by the second-order SPA with 

 and R2=0.9994. The mean values of the two equivalent component responses 

 are then calculated by 

   

The correlation coefficients  are calculated by Eq. (43). For example, . 

Therefore, the covariance matrix is obtained.  

   

Using Eq. (38), we obtain the system probability of failure . 

When FORM and SORM are used, the covariance matrices are the same as , and the mean 

values of the two equivalent component responses are  and 

Based on Eq. (38), the system probabilities of failure based on 

FORM and SORM are  and  respectively. 

For MCS, a large sample size of  is used to compute the system reliability. All results are 

listed in Table 2, which shows that the errors of SOSPA, SORM and FORM are 0.289%, 1.35% 

and 12.% respectively. The results indicate that SOSPA is more accurate than FORM and SORM. 
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The number of function calls in Table 3.2 indicate that FORM is more efficient than SOSPA and 

SORM.  

 Table 3.2 Probability of system failure in Example 1 

Method   (%) Total function calls 

SOSPA 1.0702×10-3 

 
 

0.29 45 

SORM 1.0878×10-3 

 
1.35 45 

FORM 1.2111×10-3 

 
12.80 39 

MCS 1.0733×10-3 N/A 107 

 

3.4.2 Example 2 

Example 2 is an engineering example. Consider a roof structure [123], whose top boom and 

compression bars are made by concrete, while the bottom boom and all the tension bars are made 

of steel. Assume the bars bear a uniformly distributed load q. Let  and  be the cross-sectional 

area and elastic modulus of the concrete bars, respectively. Let  and  be the cross-sectional 

area and elastic modulus of the steel bars, respectively. The perpendicular deflection of the roof 

peak node C is calculated by  

  (52) 

A failure event occurs when the perpendicular deflection  exceeds 1.5 cm. The limit-state 

function is then defined by 

  (53) 

The second failure mode is that the internal force of bar AD exceeds its ultimate stress. The 

internal force of bar AD is , and the ultimate strength of the bar is , where  

is the compressive stress of the bar. The second limit-state function is given by 

  (54) 
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A failure occurs when the internal force of bar EC  exceeds its ultimate stress , 

where  is the tensile strength of the bar. Therefore, the third limit-state function is formulated by 

  (55) 

 and  are lognormally distributed, and the rest of random variables , and 

 are normally distributed. They are listed in Table 3.3. 

Table 3.3 Distribution of random variables 

 Variables Distribution 

   

   

   

   

   

   

   

   

 
After the MPPs are found, the reliability indexes and directional vectors are available.  

   

 

 

   

   

   

Similarly, the reliability of each component is calculated by the second-order SPA, which 

produces , , and . The mean values of the three equivalent 

component responses  are then calculated by  
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The covariance matrix  is 

   

Thus, the system probability of failure is estimated to be . 

When FORM is used, the covariance matrix remains the same, and the mean values of the three 

equivalent component responses are . Based on Eq. (38), the 

system probability of failure is . Similarly, the system probability of SORM is 

. The solution from MCS with a sample size of  serves as a benchmark 

for the accuracy comparison. All results are given in Table 3.4, which indicates that SOSPA is 

more accurate than FORM and SORM while the latter is more efficient than the former. 

 

Table 3.4 Probability of system failure in Example 2 

Method   (%) Total function calls 

SOSPA 3.6983×10-4 0.34 243 

SORM 3.6642×10-4 1.26 243 

FORM 3.5714×10-4 3.76 135 

MCS 3.7110×10-4 N/A 107 

 

3.4.3 Example 3 

This example has ten polynomial surface response functions used as a surrogate for a more 

computationally intensive numerical model of the various phenomena leading to failure [124, 125]. 

The system reliability is defined by 

  (56) 

The limit-state functions  are given below. 
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  (58) 

  (59) 

  (60) 

  (61) 

  (62) 

  (63) 

  (64) 

  (65) 

  (66) 

There are eleven random variables which are B-pillar inner ( ), B-pillar reinforcement ( ), 

floor side inner ( ), cross members ( ), door beam ( ), door belt line reinforcement ( ), 

roof rail ( ), B-pillar inner ( ), floor side inner ( ), barrier height ( ), and barrier hitting 

position ( ). All of them are normally distributed with parameters defined in the Table 3.5. 

The reliability indexes of all components are at first calculated by FORM, which yields 

, , , , , , 

, ,  and . Therefore, for FORM, the mean 

values of ten equivalent component responses  are  

   

The 10-by-10 covariance matrix is given by 
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The system probability of failure from FORM method is .  

When SOSPA method is used, the mean values of the ten equivalent component responses are 

given by 

   

Table 3.5 Distribution of random variables 

Random 

variable 
Distribution 

 (mm) N(0.500,0.030) 

 (mm) N(1.310,0.030) 

 (mm) N(0.500,0.030) 

 (mm) N(1.395,0.030) 

 (mm) N(0.875,0.030) 

 (mm) N(1.200,0.030) 

 (mm) N(0.400,0.030) 

 (GPa) N(0.345,0.006) 

 (GPa) N(0.192,0.006) 

 (mm) N(0.0,10.0) 

 (mm) N(0.0,10.0) 

 
The probability of system probability from SOSPA is then given by .  All results 

are given in Table 3.6, which also indicates that SOSPA is much more accurate than FORM and 

SORM while the latter is more efficient than the former. For this problem with 10 responses, the 

error from FORM and SORM are too large. 

10 10

1 0.7651 0.9021 0.5581
0.7651 1 0.9285 0.7498

0.9021 0.9285 1 0.7093
0.5581 0.7498 0.7093 1

Z

´

-é ù
ê ú- - -ê ú
ê ú=
ê ú-ê ú
ê ú-ë û

Σ

!

!

" " # " "

!

!

1 0.1390Sf Sp R= - =

SPA (9.3286,1.4495,4.0629,2.9759,1.2983,12.1274,15.4725,4.8079,3.7234,2.0335)Z =μ

1X

2X

3X
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11X
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Table 3.6 Probability of system failure in Example 3 

Method   Total function calls 

SOSPA 0.1777 3.31 1572 

SORM 0.1355 26.40 1572 

FORM 0.1391 24.30 912 

MCS 0.1838 N/A 107 

 

3.4.4 Example 4 

The final example involves an assembly system where a rectangular steel bar cantilevered to a 

steel channel with four identical tightly fitted bolts located at points A, B, C, and D as shown in 

Fig. 3.1. The rectangular bar is subjected to an external force F. All random variables are given in 

Table 3.7. 

 

 

Figure 3.1 A cantilever bar 
 

 

 

 

Sfp (%)e



 

 

68 

Table 3.7 Distribution of random variables 

 Variables Distribution 

𝑋( 𝐹	(N) N(1.6 × 10), 1.6 × 10*) 

𝑋+ 𝑆(	(Pa) LN(300 × 10-, 57 × 10-) 

𝑋* 𝑆+	(Pa) LN(300 × 10-, 57 × 10-) 

𝑋) 𝜏.	(Pa) LN(310 × 10-, 59 × 10-) 

𝑋/ 𝜏0	(Pa) LN(310 × 10-, 59 × 10-) 

𝑋- 𝜏1 	(Pa) LN(310 × 10-, 59 × 10-) 

𝑋2 𝜏3 	(Pa) LN(310 × 10-, 59 × 10-) 

𝑋4 𝑡(	(m) N(1.0 × 105+, 2.0 × 105)) 

𝑋6 𝑡+	(m) N(1.0 × 105+, 2.0 × 105)) 

𝑋(7 𝑑.	(m) N(1.6 × 105+, 3.2 × 105)) 

𝑋(( 𝑑0	(m) N(1.6 × 105+, 3.2 × 105)) 

𝑋(+ 𝑑1 	(m) N(1.6 × 105+, 3.2 × 105)) 

𝑋(* 𝑑3 	(m) N(1.6 × 105+, 3.2 × 105)) 

𝑋() 𝑙(	(m) N(3.2 × 105(, 6.4 × 105*) 

𝑋(/ 𝑙+	(m) N(5.0 × 105+, 1.0 × 105*) 

𝑋(- 𝑙*	(m) N(2.0 × 105(, 4.0 × 105*) 

𝑋(2 𝑙)	(m) N(1.5 × 105(, 3.0 × 105*) 

𝑋(4 𝑙/	(m) N(1.2 × 105+, 2.4 × 105*) 

𝑋(6 𝐴".	(m+) N(1.44 × 105), 2.88 × 105-) 

𝑋+7 𝐴"0	(m+) N(1.44 × 105), 2.88 × 105-) 

𝑋+( 𝐴"1	(m+) N(1.44 × 105), 2.88 × 105-) 

𝑋++ 𝐴"3 	(m+) N(1.44 × 105), 2.88 × 105-) 
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The centroid of the bolt group O is found by symmetry. The shear reaction 𝑉 passes through 

O, and the moment reaction 𝑀 is about O. They are given by 𝑉 = 𝐹, 𝑀 = 𝐹(𝑙( + 𝑙+ +
8"
+
). The 

distance from the centroid to the center of each bolt is 

𝑟 = 0.5[𝑙)+ + 𝑙/+ 

The primary shear load per bolt is 𝐹9 = :
)
. Since the secondary shear forces are equal, they 

become 𝐹99 = ;<
)<#

= ;
)<

. The resultants of the primary and secondary shear forces are obtained by 

using the parallelogram rule. The magnitudes are found to be  

𝐹= = 𝐹> = \(𝐹9)+ + (𝐹99)+ − 2𝐹9𝐹99𝑐𝑜𝑠𝜃( 

𝐹? = 𝐹@ = \(𝐹9)+ + (𝐹99)+ − 2𝐹9𝐹99𝑐𝑜𝑠𝜃+ 

where 𝜃( =
!&
+
+ arctan	(8"

8$
), and 𝜃+ =

!&
+
− arctan	(8"

8$
). 

The largest bearing stress is due to the pressing of the bolt against the channel web. The bearing 

area of the channel is 𝐴( = 𝑡(𝑑.. The maximum bearing stress of the channel should be smaller 

than its yield strength, which is given by 

  (67) 

Correspondingly, the limit-state function of the bar is defined by 

  (68) 

where 𝐴+ = 𝑡+𝑑. 

The critical bending stress in the bar occurs at the cross section A-B, where the bending moment 

is 𝑀( = 𝐹(𝑙( + 𝑙+). The second moment of area of the section is 

𝐼 = 𝐼0.< − 2f𝐼AB8C" + 𝑑̅+𝐴h =
𝑡+𝑙+*

12 − 2 i
𝑡+𝑑.*

12 +
𝑙/+

4 𝑡+𝑑.j 

The bending stress of the bar should be smaller than its yield strength, and this is given by  

  (69) 

where 𝐼 𝑐⁄  is the section modulus for the bar, 𝑐 = 𝑙* 2⁄ . 

1 1
1

( ) AFg S
A

= -X

2 2
2

( ) AFg S
A

= -X

1
3 2( ) Mg S

I c
= -X
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Bolt A and B are critical because they carry the largest shear load 𝐹= and 𝐹>. The shear stress 

of the bolts should not be greater than the allowable shear stress. Thus, the limit-state functions of 

bolts A and B are defined by 

   (70) 

  (71) 

where 𝐴". and 𝐴"0 are shear-stress areas. 

Similarly, the limit-state functions of bolts C and D are defined by  

  (72) 

  (73) 

where 𝐴"1 and 𝐴"3 are shear-stress areas. 

There are seven limit-state functions. The system probabilities of failure and the function calls 

from all methods are provided in Table 3.8. The results show that SOSPA is the most accurate 

method because its error is only 0.593% compared with the MCS result and the errors of SORM 

and FORM are much larger. FORM is the most efficient method since its number of function calls 

is the least. SOSPA and SORM call the limit-state functions with the same time.  

Table 3.8 Probability of system failure in Example 4 

Method  (%) Total function calls 

SOSPA 1.1672×10-3 1.71 2599 

SORM 1.0273×10-3 13.50 2599 

FORM 1.2292×10-3 3.51 828 

MCS 1.1875×10-3 N/A 107 
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3.5 Summary 

The proposed second order saddlepoint approximation (SOSPA) method is an alternative 

method for system reliability analysis. This method results in higher accuracy than the first order 

approximation method by combing the second order approximation and saddlepoint 

approximation. SOSPA accurately produces the marginal distributions of all component responses. 

This is achieved by employing the saddlepoint approximation after transforming the approximated 

second-order limit-state functions into linear combinations of noncentral chi-square variables. The 

dependences between component responses are considered with the only first approximation for 

the sake of efficiency. With the estimated marginal component distributions and component 

correlations, the joint distribution of all the component responses is formed by a multivariate 

normal distribution, which leads to a fast evaluation of the system reliability. 

The accuracy of the proposed is largely determined by the accuracy of the approximated limit-

state functions with second order Taylor expansion in the vicinity of the most probable points. The 

accuracy is also affected by the first order approximation for estimating correlations between 

component responses.  

How to estimate component correlations more accurately by a second order approximation 

needs a further investigation. The other future work is to incorporate the system reliability analysis 

in reliability-based design optimization. 
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System reliability is quantified by the probability that a system performs its intended function in a 

period of time without failures. System reliability can be predicted if all the limit-state functions 

of the components of the system are available, and such a prediction is usually time consuming. 

This work develops a time-dependent system reliability method that is extended from the 

component time-dependent reliability method using the envelope method and second order 

reliability method. The proposed method is efficient and is intended for series systems with limit-

state functions whose input variables include random variables and time. The component reliability 

is estimated by the second order component reliability method with an improve envelope approach, 

which produces a component reliability index. The covariance between component responses are 

estimated with the first order approximations, which are available from the second order 

approximations of the component reliability analysis. Then the joint distribution of all the 

component responses is approximated by a multivariate normal distribution with its mean vector 

being component reliability indexes and covariance being those between component responses. 

The proposed method is demonstrated and evaluated by three examples. 
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4.1  Background 

System reliability is measured by the probability that the system performs its intended function 

in routine circumstances during a specified period of time [7]. It is necessary to predict system 

reliability accurately and efficiently in the early design stage since it can be used to estimate the 

lifecycle cost, determine maintenance policies, and optimize the system performance [57, 126]. A 

mechanical system consists of multiple components, and each component may also have multiple 

failure modes. In this work, we consider a failure mode as a component. If the limit-state function 

of a failure mode is invariant over time, its reliability and probability of failure are constant. 

However, the limit-state function may vary over time in many engineering problems, such as 

function generator mechanisms [127] and bridges under stochastic loading [128]. Then a time-

dependent reliability method is required. 

Suppose the limit-state function of the i-th failure mode is given by 

𝑌& = 𝑔&(𝐗, 𝑡) (1) 

where 𝑌& is a component response, which is a function of time 𝑡; 𝐗 = (𝑋(, … , 𝑋D)E is the vector 

of independent input random variables. Then the time-dependent component reliability on a time 

interval [𝑡7, 𝑡"] is defined by 

𝑅(𝑡7, 𝑡") = Pr(𝑔(𝐗, 𝑡) ≥ 0, ∀𝑡 ∈ [𝑡7, 𝑡"]) (2) 

and the corresponding probability of failure is defined by 

𝑝#(𝑡7, 𝑡") = Pr(𝑔(𝐗, 𝑡) < 0, ∃𝑡 ∈ [𝑡7, 𝑡"]) (3) 

Eq. (3) indicates that if 𝑔(⋅) < 0 at any instant of time on [𝑡7, 𝑡"], the component fails.  

In this study, we focus on series system. For a series system, the entire series system fails if 

one failure mode occurs. For a time-dependent series system, the system fails if any failure mode 

occurs at any instant of time. The system reliability 𝑅"(𝑡7, 𝑡") and probability of system failure 

𝑝#"(𝑡7, 𝑡") are given by  

𝑅"(𝑡7, 𝑡") = Pr wx𝑔&(𝐗, 𝑡&)
F

&G(

≥ 0, ∀𝑡& ∈ [𝑡7, 𝑡"]y (4) 

and 

𝑃#"(𝑡7, 𝑡") = Prw{𝑔&(𝐗, 𝑡&)
F

&G(

< 0, ∃𝑡& ∈ [𝑡7, 𝑡"]y (5) 

where ∪ and ∩ stand for union and intersection, respectively. 
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Component reliability analysis is required for system reliability analysis. Methods of time-

dependent component reliability analysis include three groups: Rice’s formula based methods [46, 

129-131], meta-model based methods [132-135], and methods which convert time-dependent into 

time-independent reliability . Rice’s formula based methods are most commonly used [50]. For 

example, the PHI2 method [130] allows for time-variant reliability problems to be solved using 

classical time-invariant reliability method, the first order reliability method (FORM). Hu and Du 

then proposed the joint up-crossing rate method in estimating the time-dependent reliability [46]. 

Rice’s formula-based methods are in general more efficient than others but may lead to large errors 

if up-crossings are strongly dependent.  

Higher accuracy can be achieved by metamodeling methods. Hu and Du introduced a mixed 

efficient global optimization method employing the adaptive Kriging-Monte Carlo simulation 

(MCS) so that this high accuracy is achieved [134]. Wang and Wang developed a nested extreme 

response surface method by employing Kriging for reliability analysis with time-variant 

performance characteristics [135]. This group of methods may result in a high computational cost 

if the dimension of the problem is high.  

Converting a time-dependent problem into a time-independent counterpart is possible by using 

the extreme value of the limit-state function. The methods include the envelope function method 

[136], extreme value response method [137], and the composite limit-state function method [138]. 

Still, obtaining accurate distribution of the extreme value in an efficient way is complicated. Hu 

and Du recently employed sequential efficient global optimization (EGO) to transform the time-

dependent reliability problem into a time-independent problem with a second order method. The 

Hessian matrix is approximated by a quasi-Newton approach. It uses the gradients of the limit-

state function at the points before the MPP search converges to the MPP. The method is efficient, 

but it may not accurately approximate the Hessian matrix since the points may not be on the surface 

of the envelope function [139]. 

Many studies have been conducted on time-dependent system reliability as well. For instance, 

Song and Der Kiureghian developed a joint first-passage probability method based on the 

conditional distribution analysis in estimating the reliability of systems subjected to stochastic 

excitation [140]. Radhika et al. investigated nonlinear vibrating systems under stochastic 

excitations by implementing the asymptotic extreme value theory and Monte Carlo simulation 

(MCS) [141]. Yu et al. employed the combination of the extreme value moment and improved 
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maximum entropy method to access the time-variant system reliability with temporal parameters 

[142]. Gong and Frangopol proposed a new efficient method for time-dependent reliability which 

is formulated as a large-scale series system consisting of time-independent response functions 

[143]. Hu and Mahadevan proposed a novel and efficient methodology for time-dependent system 

reliability by considering the system as an equivalent Gaussian random field [144]. Jiang and Wei 

introduced an improved time-variant reliability analysis method based on stochastic process 

discretization, which transformed the time-variant reliability problem into time-invariant series 

system problem [145]. 

Time-independent system reliability can be approximated by the multidimensional integration 

of the joint probability density function (PDF) of random variables once the marginal distributions 

and correlation coefficients of component states are obtained by the second and first order 

approximations [8]. Wu and Du proposed a method of predicting the time-independent system 

reliability by approximating the marginal distributions with the second order saddlepoint method 

(SOSPA) [14].  

It is desirable to take advantages of methods for both time-dependent component reliability 

and time-independent system reliability. To this end, in this work we integrate the second order 

saddlepoint approximation [139] for both time-dependent component reliability and time-

independent system reliability. The distinctive feature of our new method is the ture second order 

approximaiton to component envelope functions with its accurate Hessian matrix calculation. The 

second derivatives of the envelope functions with repsect to the input random varaibles are exactly 

evalauted from the second derivatives of the corresponding component limit-state functions with 

respect to the input random varaibles and time. The second feature is that the second order 

approaxiamtion is extended from component reliabilty analysis to sytem reliabilty analysis.   

This paper is organized as follows: Section 2 reviews the first order reliability method for time 

dependent reliability analysis. Section 3 discusses the proposed method for time-dependent system 

reliability analysis. Section 4 presents three examples, and Section 5 provides conclusions and 

discusses possible future work. 
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4.2 Methodologies Review  

4.2.1 Time-Dependent Component Reliability 

The limit-state function of a component is given in Eq. (1), and its reliability is therefore a 

function of time (or timespan) as indicated in Eq. (2). The commonly used reliability method is 

FORM, which is reviewed below. 

FORM is originally used for time-independent reliability analysis, and it can also be used for 

time-dependent reliability analysis. It converts a general non-Gaussian process response into an 

equivalent Gaussian process response. 𝐗 is at first transformed into standard normal variables 𝐔. 

Then the most probable point (MPP) 𝐮∗ at 𝑡 is identified by the following model: 

�min\𝐔
E𝐔

s. t.		𝑔(𝐗, 𝑡) = 𝑔(T(𝐔), 𝑡) = 0
(6) 

where T(∙) is an operator of the transformation from 𝐔 to 𝐗. 

The limit-state function is linearized at 	𝐮∗	(𝑡) by  

𝑔(T(𝐔), 𝑡) = 𝑔(	𝐮∗	, 𝑡) +�
𝜕𝑔
𝜕𝑈&

I

&G(

�
𝐮∗

(𝑈& − 𝑢&∗) (7) 

= ∇𝑔(𝐮∗	, 𝑡)(𝐔 −	𝐮∗	)  

where  ∇𝑔(𝐮∗	, 𝑡) = i KL
KM&
�
𝐮∗
, … , KL

KM'
�
𝐮∗ 	
j is the gradient , and 𝑢&∗ is the i-th component of 𝐮∗. 

Then the probability of failure is computed by   

𝑝# = Pr(𝑔(𝐗, 𝑡) < 0, ∃𝑡 ∈ [𝑡7, 𝑡"]) (8) 

								 	= Pr(𝛽(𝑡) + 𝛂(𝑡)𝐔 < 0, ∃𝑡 ∈ [𝑡7, 𝑡"])  

where 𝛽(𝑡) is the time-dependent reliability index, given by 

𝛽(𝑡) =∥ 𝐮∗ ∥ (9) 

and 𝛂(𝑡) is the time-dependent unit gradient vector given by 

𝛂(𝑡) =
∇𝑔(𝑡)

∥ ∇𝑔(𝑡) ∥
= [	𝛼((𝑡), 𝛼+(𝑡), … , αN(𝑡)] (10) 

As Eq. (7) shows, the non-Gaussian process 𝑔(𝐗, 𝑡) has been transformed into an equivalent 

Gaussian process represented as a sum of standard normal random variables. After this, many 

methodologies are available for solving for the probability of failure, such as the upcrossing rate 

method [46, 130] and MCS [45]. 
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The time-dependent probability of failure can be evaluated by the extreme value of the limit-

state function. 

𝑝#(𝑡B , 𝑡") = Pr(𝑔(𝐗, 𝑡) < 0, ∃𝑡 ∈ [𝑡B , 𝑡"]) = Pr � min
O∈[O(,O)]

𝑔(𝐗, 𝑡) < 0� (11)	 

The extreme limit-state function is equivalent to the envelope function [136] or the composite 

limit-state function [138], and min
O∈[O(,O)]

𝑔(𝐗, 𝑡) is obtained by 

𝐺(𝐗) = min
O∈[O(,O)]

𝑔(𝐗, 𝑡) = 𝑔f𝐗, 𝑡̃(𝐗)h (12) 

where 𝐺(𝐗)  is the global minimum value of 𝑔(𝐗, 𝑡)  with respect to 𝑡 . 𝐺(𝐗)  is time 

independent and only depends on 𝐗.  𝑡̃ is the time instant when the global minimal value of 𝐺(𝐗) 

occurs. 𝑡̃ is the function of 𝐗. 

𝑡̃ = �𝑡̃| min
O∈[O(,O)]

𝑔(𝐗, 𝑡)� (13) 

The envelope function 𝐺(𝐗) is a surface tangent to all the instantaneous limit-state functions 

at different time instants. If FORM is used for envelope function, its MPP is obtained by 

�
min\𝐔E𝐔
s. t. min

O∈[O(,O)]
𝑔(T(𝐔), 𝑡) = 0 (14) 

Eq. (14) is a double loop optimization problem. The inner loop is the global optimization with 

respect to time 𝑡 while the outer loop is the MPP search with respect to 𝐔. The double loop is 

decoupled into a sequential single-loop process. 

The first cycle is FORM analysis, the MPP 𝐮(()∗  at the initial time 𝑡7 by 

�min\𝐔
E𝐔

s. t.		𝑔(T(𝐔), 𝑡7) = 0
(15) 

Then the time is updated by global optimization at 𝐮(()∗ , and the new time is denoted by 𝑡̃((), 

which is given by 

𝑡̃(() = argmin
O∈[O(,O)]

𝑔 �Tf𝐮(()∗ 	, 𝑡h� (16) 

In the next cycle, the new MPP 𝐮(+)∗   is located at the time instant 𝑡̃(() using Eq. (16). And then 

the time is updated to 𝑡̃(+) by performing global optimization at 𝐮(+)∗ . 

𝑡̃(+) = argmin
O∈O(,O)]

𝑔 �Tf𝐮(+)∗ 	, 𝑡h� (17) 

The above process is repeated until convergence. 
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The Efficient Global Optimization (EGO) is employed to solve the time 𝑡 [146]. EGO has been 

widely used in various areas because it can efficiently search for the global optimum [134, 147]. 

The task is to solve for the time so that 𝑔(𝑡) = 𝑔(T(𝐮VWW), 𝑡) is minimized. With a number of 

training points, the function is approximated by the following surrogate model: 

𝑦� = 𝑔(𝑡) = 𝑔(T(𝐮VWW), 𝑡) = 𝐹(𝑡)E𝛾 + Z(𝑡) (18) 

where 𝐹(𝑡)E𝛾 is a deterministic term, 𝐹(𝑡) is a vector of regression functions, 𝛾 is a vector of 

regression coefficients, and 𝑍(𝑡) is a stationary Gaussian process with zero mean and a covariance 

given by 

Covf𝑍(𝑡(), 𝑍(𝑡+)h = 𝜎'+𝑅(𝑡(, 𝑡+) (19) 

where 𝜎'+ is process variance, and 𝑅(∙,∙) is the correlation function. 

The output of the surrogate model is a Gaussian random variable following 

𝑦� = 𝑔(𝑡)~𝑁f𝜇(𝑡), 𝜎+(𝑡)h (20) 

where 𝜇(𝑡) and 𝜎(𝑡) are the mean and standard deviation of 𝑦�, respectively. 

After building the initial model, the expected improvement (EI) metric is used to identify the 

new training point with the highest probability to produce a better extreme value of the response. 

The improvement is defined by 

I = max(𝑦∗ − 𝑦, 0) (21) 

where 𝑦∗ = min
&G(,+,…,Y

𝑔(𝑡&) is the current minimum response.  

EI is computed by      

EI(𝑡) = E[max(𝑦∗ − 𝑦, 0)] (22) 

= f𝑦∗ − 𝜇(𝑡)hΦ¥
𝑦∗ − 𝜇(𝑡)
𝜎(𝑡) ¦ + 𝜎(𝑡)𝜙 ¥

𝑦∗ − 𝜇(𝑡)
𝜎(𝑡) ¦ 

where Φ(∙) and 𝜙(∙) are the cumulative distribution function (CDF) and PDF of a standard 

normal variable, respectively. 

The new training point 𝑡DCZ is identified as the time that minimizes the expected improvement. 

𝑡DCZ = argminEI
O

(𝑡) (23) 

The convergence criterion of EGO is set to 𝜀[\ = |𝑦∗| × 2%. By combining sequential strategy 

with EGO, the MPP 𝐮∗ of extreme limit-state function 𝐺(𝐗) can be obtained efficiently by solving 

Eq. (14). The probability of failure with FORM is estimated by      

𝑝#(𝑡B , 𝑡") = Pr(𝑔(𝐗, 𝑡) < 0, ∃𝑡 ∈ [𝑡B , 𝑡"]) (24) 
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													= Pr(𝐺(𝐗) < 0) = Φ(−𝛽) 

where 𝛽 =∥ 𝐮∗ ∥ is the first order reliability index. In general, the envelope function can be 

highly nonlinear and FORM may not be accurate enough. Thus, a second order method is preferred, 

and it uses the envelope theorem to obtain the second order information of the extreme limit-state 

function. Then SOSPA is used to estimate the probability of failure. 

4.3 Proposed Methods 

4.3.1 Overview 

The envelope function of a component (or limit-state function) is generally nonlinear as shown 

in Fig. 4.1. It is the reason we use a second order approximation for the envelope function. 

Specifically, we approximate the envelope function at its MPP with a quadratic function. As a 

result, we also need the gradient and the Hessian matrix of the envelope function at the MPP.  

It is shown that the MPP of the envelope function is the worst-case MPP of the limit-state 

function on [𝑡7, 𝑡"] [139]. In other words, the MPP is the closest point between the origin and all 

the instantaneous limit-state functions on [𝑡7, 𝑡"]. This is illustrated in Fig. 1. The MPP of the 

envelope function can be efficiently found using the sequential single loop method [139]. This 

MPP is also the MPP of the worst-case limit-state function; as a result, the gradient of the envelope 

function is equal to the gradient of the worst-case limit-state function [139].  

 

Figure 4.1 Relationship between the worst-case limit-state function and envelope function 
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The curvature of the envelope function, however, may not be the curvature of the worst-case 

limit-state function as shown in Fig. 1. This means that the Hessian matrix of the envelope function 

is in general not equal to that of the worst-case limit-state function. The Hessian matrix of the 

envelope function is approximated by the gradients of the instantaneous limit-state functions in 

[139], but the second derivative of the envelope function with respect to time is omitted. Hence 

the method in [139] may not always work. In this work, we derive analytical second derivatives 

of the envelope function with respect to both random input variables and time, and the Hessian 

matrix of the envelope function can then be obtained accurately. 

The general procedure of finding the second order information of the envelope is summarized 

below. At first we employ the method in [139] to find the MPP of the envelope function using Eq. 

(14). Once we find the MPP, we know the gradient of the envelope function because it is equal to 

the gradient of the limit-state function at the MPP. Next we determine the Hessian matrix of the 

envelope function with Eq. (35). The Hessian matrix consists of second derivatives of the limit-

state function with respect to random input variables 𝐗 and time 𝑡. The equations are derived in 

Sec. 3.2. When the MPP, gradient and Hessian matrix are available, we use the second order 

saddlepoint approximation to find the probability of component failure and then perform system 

reliability analysis. The method hereby is denoted by SOSPA. 

4.3.2 Hessian Matrix of the Envelope Function 

After the MPP of the envelope function is found, a quadratic envelope function is formulated 

as [14] 

𝐺(𝐔) = a + 𝐛E𝐔 + 𝐔E𝐂𝐔 (25) 

where      

⎩
⎪
⎨

⎪
⎧𝑎 =

1
2
(𝐮∗)E𝐇𝐮∗ − ∇𝐺(𝐮∗)E𝐮∗

𝐛 = ∇𝐺(𝐮∗) − 𝐇𝐮∗

𝐂 =
1
2
𝐇 = diag(𝑐̃(, 𝑐̃+, … , 𝑐̃N)

(26) 

 ∇G(𝐮∗) = � K]
^M&
�
𝐮∗
, … . , K]

^M*
�
𝐮∗
�
E

is the gradient of the envelope function. 𝐇  is the Hessian 

matrix, which is given by 



 

 

81 

𝐇 =

⎣
⎢
⎢
⎢
⎢
⎡ 𝜕+𝐺
𝜕𝑈(+

⋯
𝜕+𝐺

𝜕𝑈(𝜕𝑈D
⋮ ⋱ ⋮

𝜕+𝐺
𝜕𝑈D𝜕𝑈(

⋯
𝜕+𝐺
𝜕𝑈D+ ⎦

⎥
⎥
⎥
⎥
⎤

𝐮∗

(27) 

The envelope function 𝐺(𝐗) = 0 at 𝐮∗ is given by 

𝐺(𝐔) = min
O∈[O(,O)]

𝑔(𝐔, 𝑡) =𝑔(𝐔, 𝑡̃)|𝐮∗ (28) 

𝑡̃ is the worst-case time instant, and it is found by 

𝑔̇(𝐔, 𝑡) = 0 (29) 

where 𝑔̇ is the derivative of 𝑔 with respect to 𝑡. 

The first derivative of 𝐺(𝐔) with respect to a random input variable at 𝐮∗ is 

𝜕𝐺
𝜕𝑈&

=
∂𝑔
∂𝑈&

+
∂𝑔
∂𝑡̃

𝜕𝑡̃
𝜕𝑈&

(30) 

As 	𝑔̇(𝐔, 𝑡) = 0, Eq. (30) becomes 

𝜕𝐺
𝜕𝑈&

=
∂𝑔
∂𝑈&

(31) 

Eq. (31) indicates that the envelope function and the limit-state function have the same gradient 

at 𝐮∗. Then, the second derivative of 𝐺(𝐔) with respect random input random variables at 𝐮∗ is 

𝜕+𝐺
𝜕𝑈&𝜕𝑈_

=
𝜕
𝜕𝑈_

�
𝜕𝐺
𝜕𝑈&

� =
𝜕
𝜕𝑈_

�
𝜕𝑔
𝜕𝑈&

� 

										=
𝜕+𝑔

𝜕𝑈&𝜕𝑈_
+

𝜕+𝑔
𝜕𝑈&𝜕𝑡

∂𝑡
∂𝑈_

(32) 

We then take the derivative of Eq. (29) with respect to 𝑈_, and it is given by 

∂𝑔̇
∂𝑈_

+
∂𝑔̇
∂𝑡

∂𝑡
∂𝑈_

= 0 (33) 

∂𝑡
∂𝑈_

= −
∂𝑔̇
∂𝑈_

∂𝑔̇
∂𝑡¼ (34) 

Plugging Eqs. (29) and (34) into Eq. (32) yields the Hessian matrix H at 𝐮∗ and 𝑡̃. 

𝜕+𝐺
𝜕𝑈&𝜕𝑈_

½
𝐮∗	,Ò

=
𝜕+𝑔

𝜕𝑈&𝜕𝑈_
½
𝐮∗	,Ò

−
𝜕+𝑔
𝜕𝑈&𝜕𝑡

𝜕+𝑔
𝜕𝑈_𝜕𝑡

𝜕+𝑔
𝜕𝑡+

¼ ½
𝐮∗	,Ò

(35) 

The finite difference method can be used to calculate the Hessian matrix of the envelope 

function. 
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Next, the second order saddlepoint approximation is employed to estimate the probability of 

failure. Saddlepoint approximation has several excellent features. It yields an accurate probability 

estimation, especially in the tail area of a distribution [148, 149]. 

The cumulant generating function (CGF) of 𝐺(𝐔) is given by 

𝐾(𝑠) = −𝛽𝑠 +
1
2
𝑠+ −

1
2
� log(1 − 2𝑠𝑘&)
D5(

&

(36) 

where 𝑘& = 𝑐̃& 

The derivatives of CGF are      

𝐾9(𝑠) = −𝛽 + 𝑠 +�
𝑘&

1 − 2𝑠𝑘&

D5(

&G(

(37) 

𝐾99(𝑠) = 1 +�
𝑘&+

(1 − 2𝑠𝑘&)+

D5(

&G(

(38) 

The saddlepoint 𝑠" is obtained by solving the following equation:  

𝐾9(𝑡) = −𝛽 + 𝑠 +�
𝑘&

1 − 2𝑠𝑘&

D5(

&G(

= 0 (39) 

 Then the probability of failure is evaluated by 

𝑝#(𝑡B , 𝑡") = Pr(𝑔(𝐗, 𝑡) < 0, ∃𝑡 ∈ [𝑡B , 𝑡"])

									= Φ(𝑤) + 𝜙(𝑤) �
1
𝑤
−
1
𝑣�

(40)
 

where 

𝑤 = sgn(𝑠"){2[−𝐾(𝑠")]}
(
+ (41) 

𝑣 = 𝑠"[𝐾99(𝑠")]
(
+ (42) 

in which sgn(𝑠") = +1,−1, or 0, depending on whether 𝑠" is positive, negative, or zero. 

The detailed steps of time-dependent component reliability analysis using SOSPA are 

summarized below. 

Step 1: Set 𝑘 = 1. Use the initial time instant as the initial extreme value time 𝑡̃(7) = 𝑡7 and 

use a unit vector as the initial MPP 𝐮(()∗ = 𝐮7. 
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Step 2: Search for the MPP at time instant 𝑡̃(Y5() and obtain MPP 𝐮(Y)∗  in the 𝑘-th cycle by 

solving 

�min√𝐔
E𝐔

s. t.		𝑔fT(𝐔), 𝑡̃(Y5()h = 0
 

Step 3: Determine the optimal time 𝑡̃(Y)  and the corresponding minimum value 𝑔abc
(Y)  by 

implementing EGO method with	𝐮(Y)∗ . 

Step 4: Check convergence. The convergence criterion is defined as  

𝜀 = �𝑔abc
(Y) � ≤ 𝜀OB8 

If 𝜀 ≤ 𝜀OB8 , terminate the iteration. Otherwise, set 𝑘 = 𝑘 + 1 and return to Step 2. 

Step 5: Determine the gradient ∇𝐺 and Hessian matrix 𝐇 of the envelope function at 𝐮(Y)∗  and 

𝑡̃(Y). 

Step 6: Calculate 𝑝# using SOSPA. 

Note that the proposed method does not work when the extreme value of the limit-state 

function occurs at the beginning time instant 𝑡B or end time instant 𝑡", where Eq. (29) is invalid. 

4.3.3 System Reliability with SOSPA 

In this section, we discuss how to extend SOSPA for time dependent component reliability to 

time dependent system reliability analysis.  

System reliability can be estimated by integrating the joint PDF of all responses in the safe 

region. To use SOSPA, we consider the PDF of component responses directly. The system state is 

determined by component states predicted from component limit-state functions 𝑌& = 𝑔&(𝐗, 𝑡)	(𝑖 =

1,2, …𝑚). 

Given all the limit-state functions with time, the series system reliability is then determined by 

the   

𝑅d = Prwx𝑌& = 𝑔&(𝐗, 𝑡) > 0
F

&G(

, ∀𝑡 ∈ [𝑡7, 𝑡"]y (43) 

Eq. (43) enable us to consider component reliability and dependencies since it needs the joint 

PDF 𝑓𝐘(𝒚) of 𝐘 = (𝑌(, 𝑌+, … , 𝑌F). We approximate the joint PDF 𝑓𝐘(𝒚) by a multivariate normal 
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distribution. If we only consider the first order terms of the extreme limit-state function Eq. (25), 

it becomes 

𝐺&(𝐔) = −∇𝐺(𝐮&∗)E𝐮&∗ + ∇𝐺(𝐮&∗)E𝐔 (44) 

If we divide both sides of Eq. (44) by the magnitude of the gradient, we obtain 

𝐺&(𝐔)
‖∇𝐺(𝐮&∗)‖

= −
∇𝐺&(𝐮&∗)E

‖∇𝐺(𝐮&∗)‖
𝐮&∗ +

∇𝐺&(𝐮&∗)E

‖∇𝐺(𝐮&∗)‖
𝐔 (45) 

or 

𝐺&(𝐔)
‖∇𝐺(𝐮&∗)‖

= −𝛂&E𝐮&∗ + 𝛂&E𝐔 (46) 

where 𝛂& is the unit vector of ∇𝐺&(𝐮&∗). At the MPP, the reliability index is given by 

𝐮&∗ = −𝛽&𝛂& (47) 

Then event of the safe component 𝐺&(𝐔) > 0 is equivalent to the event 𝛽& + 𝜶&E𝐔 >0. We then 

define a new variable  

𝑍& = 𝛽& + 𝛂&E𝐔 (48) 

𝑍& is an equivalent component response. It is obvious that 𝑍& follows a normal distribution. As 

a result, all the equivalent component responses follow a multivariate normal distribution if the 

envelope functions of all the components are linearized at their MPPs. The system reliability is 

then approximated by 

𝑅d = Prwx = −𝑍&(𝐔) < 0
F

&G(

y (49) 

𝐙 = (𝑍(, 𝑍+, … , 𝑍F)E follows a multivariate normal distribution denoted by 𝑁(𝛍' , 𝚺'), where 

𝛍' is the mean vector and 𝚺' is the covariance matrix. −𝐙  also follows a multivariate normal 

distribution 𝑁(−𝛍' , 𝚺'). System reliability thus becomes the CDF ΦF(𝟎;−𝛍' , 𝚺') of −𝐙 at 0; 

namely  

𝑅d = ΦF(𝟎;−𝛍' , 𝚺') = Ð ⋯Ð 𝑓f
7

5g

7

5g
(𝐳)𝑑𝐳 (50) 

where 𝑓f(𝐳) is the joint PDF of −𝐙, given by 

𝑓'(𝐳) =
1

\(2𝜋)F|𝚺'|
exp ¥−

(𝐳 − 𝐮')E𝚺5((𝐳 − 𝐮')
2

¦ (51) 
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The accuracy of the mean vector 𝛍'	and covariance matrix 𝚺' determines the accuracy of the 

multivariate normal integration in Eq. (51). To maintain high accuracy, we use SOSPA to 

determine 𝛍'. The marginal CDF of 𝑍& at 0, which is the component reliability is given by 

𝑅hWi& = Pr(𝑍& > 0) (52) 

Then the associated reliability index is determined by  

𝛽hWi& = Φ5((𝑅hWi&) (53) 

and 𝛽hWi& is an equivalent reliability index. Since 𝛽hWi is estimated with higher accuracy in 

the estimated reliability, we use it to replace 𝛽 in Eq. (48). The mean vector of the multivariable 

distribution of Z becomes 

𝐮' = (𝛽hWi(, … , 𝛽hWiF) (54) 

The above treatment ensures that the component reliability or the marginal distributions of 

component responses are accurately estimated by the second order approximation. For higher 

efficiency, we use FORM or Eq. (48) to estimate the covariance matrix 𝚺'  [119]. Let the 

components of 𝚺' be 𝜌&_(𝑖 ≠ 𝑗, 𝑖, 𝑗	 = 1,2, … ,𝑚), which is given by   

𝜌&_ = 𝛂&E𝛂_ (55) 

Then 𝚺' is given by  

𝚺' = ×
1 ⋯ 𝜌(F
⋮ ⋱ ⋮

𝜌F( ⋯ 1
Ø
F×F

(56) 

With 𝐮' and 𝚺' available, the system reliability 𝑅" can be easily calculated by integrating the 

joint PDF in Eq. (51) from (−∞,… ,−∞) to (0, … ,0) and the time dependent probability of system 

failure is 

𝑝#" = 1 − 𝑅" (57) 

Many methods such as the first order multi-normal approximation (FOMN) [150] and Alan 

Genz method [151-153] are developed to integrate 𝑓'(𝐳) in Eq. (51).  The proposed method 

provides a new way to estimate the time dependent system reliability with nonlinear limit-state 

functions. The dependencies between component responses are automatically accommodated in 

the system covariance matrix, and component marginal CDFs can be obtained accurately using 

SOSPA. The procedure of the system reliability analysis is briefly summarized below. The 

flowchart of this procedure is given in Fig. 4.2. 
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Figure 4.2 Flowchart of time-dependent system reliability 

Step 1: Transform random variables 𝐗 into	𝐔 in the standard normal space. 

Execute Step 2 and 4 for all components in the system. 
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Step 2: Search for MPPs 𝐮∗, obtain the optimal time 𝑡̃ of the component limit-state function 

with the efficient global optimization method.  

Step 3: Determine the gradient ∇𝐺 and Hessian matrix 𝐇 of the envelope function. 

Step 4: Calculate the probability of component failure and use SOSPA to find the mean vector 

of equivalent component responses. 

Execute Steps 5 and 6 for system reliability analysis. 

Step 5: Use the MPPs and reliability indexes of all components to find the covariance matrix 

of component responses. 

Step 6: Form the multivariate normal PDF and integrate it to obtain time dependent system 

reliability. 

4.3.4 Extension to the Problems with Input Random Process 

When the limit-state function involves random processes, it becomes 𝑌 = 𝑔(𝐗, 𝐋(𝑡), 𝑡), where 

𝐋(𝑡) is a vector of random processes. Series expansion methods, such as the Karhunen–Loeve 

series expansion, the orthogonal series expansion, and the expansion optimal linear estimation 

method (EOLE) [154], can be used to convert them into independent random variables, and then 

the proposed method can still work. Take EOLE as an example for a Gaussian random process 

𝐿(𝑡). The time interval [𝑡7, 𝑡"] is evenly discretized into 𝑁 points, and the 𝑁 × 𝑁 autocorrelation 

coefficient matrix 𝚺 = [𝜌f𝑡& , 𝑡_h] , 𝑖 = 1,2, … , 𝑁, 𝑗 = 1,2, …𝑁  is obtained. Then the EOLE 

expansion is given by 

𝐿(𝐔, 𝑡) ≈ 𝜇(𝑡) + 𝜎(𝑡)�
𝑈Y
\𝜆_

<

_G(

𝛟_
E𝚺(: , 𝑡), 𝑘 = 1,2, … , 𝑟 (58) 

where	𝜇	(𝑡) and	𝜎(𝑡) are mean and standard deviation of 𝐋(𝑡), respectively. 𝑈Y, 𝑘 = 1,2, … 𝑟, 

are independent standard normal variables, 𝛌 = (𝜆(, 𝜆+, … , 𝜆<)k  is the eigenvalue vector, and 

𝛟(, 𝛟+, … ,𝛟< are the corresponding eigenvectors obtained from autocorrelation coefficient matrix 

𝚺. Note that 𝑟	is determined as the smallest integer that meets the following criterion: 
∑ 𝜆_<
_G(

∑ 𝜆_N
_G(

≥ 𝜂 (59) 
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where 𝜂 is a hyperparameter determining the accuracy of the expansion. It takes a value close 

to, but not larger than 1. The smaller is 𝜂, the less accurate is the expansion. If 𝜂 = 1, the expansion 

is exact. Normally, 𝜂 is set to 0.9999. 

4.3.5 Parallel Systems 

The above results can be extended to parallel systems. For a parallel system, the probability of 

failure can be computed by 

𝑝#d = Prw{𝑌& = 𝑔&(𝐗, 𝑡) < 0
F

&G(

, ∃𝑡 ∈ [𝑡7, 𝑡"], 𝑖 = 1,2, … ,𝑚y (60) 

Let 𝐺&(𝐗, 𝑡) = −𝑔&(𝐗, 𝑡), then 

𝑝#d = Prwx𝑌& = 𝐺&(𝐗, 𝑡) > 0
F

&G(

, ∃𝑡 ∈ [𝑡7, 𝑡"], 𝑖 = 1,2, … ,𝑚y (61) 

Eq. (61) evaluates the probability of an intersection of m events as Eq. (43) does for a series 

system. Hence the proposed method can be used to calculate Eq. (61), which leads to the system 

reliability 𝑅d = 1 − 𝑝#d . 

4.4  Examples 

In this section, three examples are presented to test SOSPA for system reliability analysis. 

Example 1 is a mathematical problem which is used to demonstrate the details of the proposed 

method. Examples 2 and 3 are engineering problems. The accuracy is measured by the percentage 

error with respect to a solution from MCS. The error is calculated by 

𝜀 =
ã𝑝#" − 𝑝#"Vlhã

𝑝#"Vlh
× 100% (62) 

where  𝑝#" is the result from SOSPA or FORM, and 𝑝#"Vlh is the result from MCS.  

4.4.1 Example 1: A Math Problem 

A series system consists of two components with random basic variables 𝐗 = (𝑋(, 𝑋+). 𝑋& 	(𝑖 =

1,2) is normally distributed with parameter 𝜇& = 3.5	 and 𝜎& = 0.3. The two limit-state functions 

are given by 
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𝑔((𝐗, 𝑡) = 𝑋(+𝑋+ − 5𝑋(𝑡 + (𝑋+ + 1)𝑡+ − 8.2 (63) 

𝑔+(𝐗, 𝑡) = (cos(5°)𝑋( + sin(5°) 𝑋+)+(− sin(5°)𝑋( + cos(5°) 𝑋+)	

−5(cos(5°) 𝑋( + sin(5°) 𝑋+)𝑡 + ((−sin(5°)𝑋( + cos(5°) 𝑋+ + 1)𝑡+ − 3.9 (64) 

where 𝑡 varies within [155]. 

Fig. 4.3 shows the parabolic curve of the envelope function of 𝑔((𝐗, 𝑡)  formed by the 

instantaneous limit-state surface at different time instants within the interval [155]. The contours 

of the analytical envelope functions of 𝐺( and 𝐺+ are plotted in Fig. 4.4. The shaded area represents 

the system failure region.  

To explain clearly how the SOSPA method works, we only show the details for 𝑔((𝐗, 𝑡). First, 

the MPP of the envelope function at 𝑡̃ is obtained using sequential EGO. The iteration history is 

shown in Table 4.1. Once the iteration is convergent, the MPP is found at (−1.0714,−3.1172)E. 

 

Figure 4.3 Envelope function formed by instantaneous limit-state surfaces 
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Figure 4.4 System extreme limit-state function 

The probabilities of failure for 𝑔( and 𝑔+ from SOSPA are 𝑝#( = 6.0040 × 105) and 𝑝#+ =

7.2248 × 105). The mean values of the two equivalent component responses 𝐙 = (𝑍(, 𝑍+)E are 

then given by 𝐮n = 𝛃hohWi = (−3.2387,−3.1855)E . The unit directional vectors of the two 

limit-state functions are 𝛂( = (0.3254,0.9456)E and 𝛂+ = (0.0098,1.0)E. Thus, the correlation 

coefficient between 𝑔( and 𝑔+ is 𝜌(+ = 𝛂(E𝛂+ = 0.9487, and the covariance matrix is obtained as 

follow. 

𝚺n = å 1 𝜌(+
𝜌+( 1 æ = ç 1 0.9487

0.9487 1 è 

 

The probability of system failure from SOSPA is 𝑝#" = 1 − 𝑅" = 9.4747 × 105) . When 

FORM is used, the covariance is the same as 𝚺n , and the mean values of the two equivalent 

component responses are below 

𝐮n = 𝛃poqV = (−3.2963,−3.2079)E 

The probability of system failure from FORM is 𝑝#" = 8.3738 × 105). The MCS solution 

with a sample size of 10- is also obtained. For MCS, the time interval is evenly discretized into 

100 points. The total number of function calls is therefore 2 × 104. The results are shown in Table 
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4.2 where the errors calculated by Eq. (62) are given in brackets. Table 4.2 shows that SOSPA is 

much more accurate than FORM which produces a large error due to the nonlinearity of the 

envelope functions. However, the total function calls of FORM and SOSPA are 365 and 410, 

respectively, showing FORM is more efficient. 

Table 4.1 Iteration history of MPP search for 𝑔( 

Iterations 𝐮∗ 𝑡̃ 

1 (−6.1450,−1.7052)E 1.4735 

2 (−2.1526,−2.9252)E 1.9689 

3 (−1.3877,−3.0305)E 2.1483 

4 (−1.1631,−3.0878)E 2.2063 

5 (−1.0941,−3.1096)E 2.2251 

6 (−1.0714,−3.1172)E 2.2314 

 

Table 4.2 Probability of system failure in Example 1 

Methods SOSPA FORM MCS 

𝑝#( 
6.0040 × 105) 

(2.81%) 

4.8989 × 105) 

(16.10%) 
5.840 × 105) 

𝑝#+ 
7.2248 × 105) 

(3.28%) 

6.6864 × 105) 

(10.50%) 
7.470 × 105) 

𝑝#" 
9.4747 × 105) 

(0.89%) 

8.3738 × 105) 

(12.40%) 
9.560 × 105) 

𝑁1.88" of 𝑔( 127 112 104 

𝑁1.88" of 𝑔+ 283 253 104 

Total 410 365 2 × 104 
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4.4.2 Example 2: A Roof Truss Structure 

A roof truss problem is modified as our second example shown in Fig. 4.5 The top boom and 

all the compression bars are made of concrete while the bottom boom and all the tension bars are 

made of steel. The bars bear a nonstationary Gaussian process whose autocorrelation coefficient 

function is given by  

𝜌(𝑡(, 𝑡+) = exp i−�
𝑡( − 𝑡+
6 �

+
j (65) 

𝐴?  and 𝐸?  are the cross-sectional area and elastic modulus of the concrete bars, respectively. 

𝐴d  and 𝐸d  are the cross-sectional area and elastic modulus of the steel bars, respectively. All 

parameters are independent and are listed in Table 4.3.  

 

Figure 4.5 A roof truss 
 
The perpendicular deflection of the roof peak node is calculated by  

∆𝐶 =
𝑞𝑙+

2 �
3.81
𝐴?𝐸?

+
1.13
𝐴d𝐸d

� (66) 

A failure occurs when the perpendicular deflection ∆𝐶 exceeds 1.6 cm at any instant of time 

period [0,10]. The limit-state function is then defined by 
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𝑔((𝐗, 𝑡) = 0.016 −
𝑞𝑙+

2 �
3.81
𝐴?𝐸?

+
1.13
𝐴d𝐸d

� (67) 

The second failure mode is that the internal force of one bar exceeds its ultimate stress. The 

internal force of the bar is 1.185𝑞𝑙, and the ultimate strength of the bar is 𝑓?𝐴? , where 𝑓?  is the 

compressive stress of the bar. The second limit-state function is then given by 

𝑔+(𝐗, 𝑡) = 𝑓?𝐴? − 1.185𝑞𝑙 (68) 

The third failure occurs when the internal force of another bar 0.75𝑞𝑙 exceeds its ultimate 

stress 𝑓d𝐴d, where 𝑓d is the tensile strength of the bar. Therefore, the third limit-state function is 

formulated by 

𝑔*(𝐗, 𝑡) = 𝑓d𝐴d − 0.75𝑞𝑙 (69) 

 

Table 4.3 Distribution of random variables 

Variabl

e (Unit) 
Mean 

Standard 

deviation 
Distribution 

𝑞(N/m) 14000(0.2 sin(0.25𝑡) + 0.8) 500 
Nonstationary 

Gaussian process  

𝐿(m) 12 0.12 Normal 

𝐴d(m+) 9.0´105) 9.0´105/ Normal 

𝐴?(m+) 5´105+ 5´105* Normal 

𝐸d(N/m+) 2´10(( 2´10(7 Lognormal 

𝐸?(N/m+) 3´10(7 3´106 Lognormal 

𝑓d(N/m+) 3.35´104 6.7´102 Normal 

𝑓?(N/m+) 1.34´102 2.68´10- Normal 

 

The time period [0,10] years is evenly discretized into 𝑁 = 50 points. With Eq. (65), the 

50 × 50  autocorrelation coefficient matrix 𝚺  of random process 𝑞  is obtained. The most 

significant five eigenvalues of 𝚺 are 35.54, 11.90, 2.24, 0.28, and 0.03. We use EOLE to generate 

the series expansion of 𝑞(𝑡) and only keep the first five orders. 

 SOSPA produces mean vector of the equivalent component responses: 
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𝛍f = (−2.6681,−3.4056,−2.7416)E 

and the covariance matrix is as follows: 

𝚺n = ×
1 𝜌(+ 𝜌(*
𝜌+( 1 𝜌+*
𝜌*( 𝜌*+ 1

Ø = ×
1 0.1564 0.2824

0.1564 1 0.0375
0.2824 0.0375 1

Ø 

The probability of system failure from SOSPA is 𝑝#" = 7.1017 × 105*. 

FORM and MCS are also used, and the sample size of MCS for each component is 	

5 × 104. The results from three methods are given in Table 4, showing that SOSPA has the higher 

accuracy than FORM with less efficiency.  

 

Table 4.4 Probability of system failure in Example 2 

Methods SOSPA FORM MCS 

𝑝#( 
3.8140 × 105* 

(3.74%) 

3.4370 × 105* 

(13.35%) 
3.9623 × 105* 

𝑝#+ 
3.3010 × 105) 

(2.16%) 

3.0768 × 105) 

(8.81%) 
3.3740 × 105) 

𝑝#* 
3.0569 × 105* 

(2.41%) 

2.8297 × 105* 

(9.66%) 
3.1324 × 105* 

𝑝#" 
7.1017 × 105* 

(2.78%) 

6.4885 × 105* 

(11.20%) 
7.3049 × 105* 

𝑁1.88" of 𝑔( 306 188 5 × 104 

𝑁1.88" of 𝑔( 599 363 5 × 104 

𝑁1.88" of 𝑔( 592 538 5 × 104 

Total 1797 1089 1.5 × 106 

4.4.3 Example 3: A Function Generator Mechanism System 

Fig. 4.6 shows a function generator mechanism system, which can achieve a desire motion. 

This system consists of two function generator mechanisms [10]. 
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Figure 4.6 A Function Generator Mechanism System 
 
Mechanism 1 is a four-bar linkage mechanism with links 𝐵(, 𝐵+, 𝐵*, and 𝐵), and it generates 

a sine function. Its motion error is the difference between the actual motion output and the required 

motion output. It is defined as 

𝜀((𝐗(, 𝛾) = 𝜅.(𝐗(, 𝛾) − 𝜅3(𝛾) (70) 

where 𝐗( = (𝐵(, 𝐵+, 𝐵*, 𝐵)) and links 𝐵+ and 𝐵/ are welded together. The two input angles 

satisfy 

𝛾 = 62∘ + 𝜃 (71) 

From the mechanism analysis,	𝜅.(𝐗(, 𝛾) and 𝜅3(𝛾)  can be obtained by 

𝜅.(𝐗(, 𝛾) = 2 arctanw
−𝐸( ±\𝐸(+ + 𝐷(+ − 𝐹(+

𝐹( − 𝐷(
y (72) 

and  

𝜅3(γ) = 60° + 60° sin ¥
3
4
(γ − 97°)¦ (73) 

where 𝐷( = 2𝐵)(𝐵( − 𝐵+𝑐𝑜𝑠𝛾) , 𝐸( = −2𝐵+𝐵)𝑠𝑖𝑛𝛾 , and 𝐹( = 𝐵(+ + 𝐵++ + 𝐵)+ − 𝐵*+ −

2𝐵(𝐵+𝑐𝑜𝑠𝛾. 

Mechanism 2 is the other four-bar linkage mechanism with links 𝐵(, 𝐵/, 𝐵-, and 𝐵2, and it 

generates a logarithm function. The motion error is given by 

𝜀+(𝐗+, 𝜃) = 𝜂.(𝐗+, 𝜃) − 𝜂3(𝜃) (74) 

where 𝐗+ = (𝐵(, 𝐵/, 𝐵-, 𝐵2). 
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𝜂.(𝐗+, 𝜃) = 2 arctan w
−𝐸+ ±\𝐸++ + 𝐷++ − 𝐹++

𝐹+ − 𝐷+
y (75) 

𝜂3(𝜃) = 60°log(7
[(𝜃 + 15°) 60°⁄ ]

log(7 2
(76) 

where 𝐷+ = 2𝐵2(𝐵( − 𝐵/𝑐𝑜𝑠𝜃) , 𝐸+ = −2𝐵/𝐵2𝑠𝑖𝑛𝜃 , and 𝐹+ = 𝐵(+ + 𝐵/+ + 𝐵2+ − 𝐵-+ −

2𝐵(𝐵/𝑐𝑜𝑠𝜃. 

Mechanism 1 is considered reliable if {𝑒+ < 𝜀((𝐗(, 𝛾) < 𝑒(}, where 𝑒( and 𝑒+ are allowable 

motion errors with 𝑒( = 1.4 and 𝑒+ = −0.8. When the motion error is positive, the limit-state 

function is defined by 

𝑔((𝐗(, 𝛾) = 𝑒( − 𝜀((𝐗(, 𝛾) (77) 

As for the negative motion error, the limit-state function is given by 

𝑔+(𝐗(, 𝛾) = 𝜀((𝐗(, 𝛾) − 𝑒+ (78) 

Similarly, the limit-state functions of mechanism 2 are as follows: 

𝑔*(𝐗+, 𝜃) = 𝑒* − 𝜀+(𝐗+, 𝜃) (79) 

𝑔)f(𝐗+, 𝜃)h = 𝜀+(𝐗+, 𝜃) − 𝑒) (80) 

in which 𝑒* = 1.0  and 𝑒) = −2.4 . The random variables are given in Table 4.5. The 

mechanism system performs its intended functions over an interval of  [𝜃7, 𝜃"]=	[45°, 95°]. The 

system is a series system with four components (limit-state functions).  

Table 4.5 Parameters in Example 3 

Variable 

  (Unit) 
Mean 

Standard 

deviation 
Distribution 

𝐵((mm) 100 0.3 Normal 

𝐵+(mm) 55.5 0.05 Normal 

𝐵*(mm) 144.1 0.05 Normal 

𝐵)(mm) 72.5 0.05 Normal 

𝐵/(mm) 79.5 0.05 Normal 

𝐵-(mm) 203 0.05 Normal 

𝐵2(mm) 150.8 0.05 Normal 
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Table 4.6 shows the results. It indicates that the accuracy of SOSPA is in general better than 

FORM. However, both methods produce almost identical results for 𝑝#+ and 𝑝#). The reason is 

that the extreme values of two corresponding limit-state functions occur at the beginning of the 

time period (at 45°). Thus, the Hessian matrices of the two envelope functions are not accurate, 

and SOSPA is not accurate for 𝑝#+ and 𝑝#). Since the two probabilities of component failure are 

much smaller than the other two probabilities, their effect on the probability of system failure is 

insignificant.  

Table 4.6 Probability of system failure in Example 3 

Methods SOSPA FORM MCS 

𝑝#( 
6.8663 × 105* 

(1.12%) 

5.6273 × 105* 

(18.94%) 
6.9440 × 105* 

𝑝#+ 
6.1088 × 105/ 

(4.55%) 

6.1088 × 105/ 

(4.55%) 
6.430 × 105/ 

𝑝#* 
2.5156 × 105* 

(0.17%) 

2.0006 × 105* 

(19.20%) 
2.520 × 105* 

𝑝#) 
4.3845 × 105) 

(11.80%) 

4.3845 × 105) 

(11.80%) 
4.970 × 105) 

𝑝#" 
7.5580 × 105* 

(1.11%) 

6.2230 × 105* 

(18.60%) 
7.6430 × 105* 

𝑁1.88" of 𝑔( 179 124 104 

𝑁1.88" of 𝑔+ 398 288 104 

𝑁1.88" of 𝑔* 320 210 104 

𝑁1.88" of 𝑔) 479 369 104 

Total 1376 991 4 × 104 

 

4.5 Summary 

The proposed time dependent system reliability method predicts system reliability with a 

second order approximation. It is therefore in general more accurate than the first order 



 

 

98 

approximation method. But it is less efficient than the latter method due to the need of second 

derivatives.  

The new method converts a time dependent problem into a time independent problem by using 

the envelope function or the extreme value of a limit-state function over the time span under 

consideration. The most probable point (MPP) of the envelope function is found with the help of 

efficient global optimization. Then the envelope function is approximated at the MPP with its 

gradient and Hessian matrix. The reliability of each component is calculated by the second order 

saddlepoint approximation, and the dependencies between component responses are considered 

with the first approximation for the sake of efficiency. Once the estimated marginal component 

distributions and component correlations are available, the joint distribution of all the component 

responses is formed by a multivariate normal distribution, which leads to a fast evaluation of the 

system reliability. 

The proposed envelope method works well if the envelope function is convex. The global MPP 

of the envelope function may not be found if the envelope function has multiple MPPs. For this 

case, the MPP search may start from different instants of time, and then the worst-case MPP is 

used. The proposed method does not work for a special case where the extreme value of a limit-

state function occurs at the beginning or end of the period of time under consideration, and the 

reason is that the derivations of the Hessian matrix of the envelope function are for the case where 

the extreme value occurs inside the period of time. 

Out future work will address the above two issues. The proposed method can also be further 

extended to time and space dependent problems where random processes and random fields are 

also involved.  
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Reliability can be predicted by a limit-state function, which may vary with time and space. This 

work extends the envelope method for a time-dependent limit-state function to a time- and space-

dependent limit-state function. The proposed method uses the envelope function of time- and 

space-dependent limit-state function. It at first searches for the most probable point (MPP) of the 

envelope function using the sequential efficient global optimization in the domain of the space and 

time under consideration. Then the envelope function is approximated by a quadratic function at 

the MPP, for which analytic gradient and Hessian matrix of the envelope function are derived. 

Subsequently, the second-order saddlepoint approximation method is employed to estimate the 

probability of failure. Three examples demonstrate the effectiveness of the proposed method. The 

method can efficiently produce an accurate reliability prediction when the MPP is within the 

domain of the space and time under consideration. 

5.1 Background 

Reliability is the probability that a product or component performs its intended function under 

a specific condition. Reliability can be predicted by a physics-based approach if the state of a 

component can be predicted by a physical model, which is called a limit-state function. A physics-

based reliability problem may be time- and space-independent, time-dependent, space-dependent, 

or time- and space-dependent.   
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A time- and space-independent reliability problem involves limit-state functions that do not 

vary with respect to time and space, and its inputs might involve random variables or random fields 

at a specific point in space. Many methods are available for this problem. Monte Carlo simulation 

(MCS) is one method. It is accurate when the sample size is sufficiently large, but it is 

computationally expensive [156, 157]. When failure probabilities are small in reliability analysis 

of engineering systems, subset simulation is an alternative method [27]. Importance sampling 

methods could be used to reduce the computational cost because they generate more samples in 

the failure region [4]. 

The first-order reliability method (FORM) [8, 158] is much more efficient because it linearizes 

the limit-state function. FORM can produce satisfactory accuracy for many engineering 

applications, but it is less accurate for highly nonlinear limit-state functions. The second-order 

reliability method (SORM) [13, 15] can produce higher accuracy than FORM due to the second-

order approximation but is less efficient than FORM. The accuracy of SORM may be further 

improved by the second-order saddlepoint approximation (SOSPA) since the saddlepoint 

approximation may yield a more accurate probability estimation, especially in the tail area of 

distribution [14, 16, 159]. Reliability can also be predicted by regressions, such as the Gaussian 

process method [37, 87, 160, 161] and the support vector machines method [31, 162, 163].  

The limit-state function may vary over time, which results in a time-dependent reliability 

problem. The input of the limit-state function may involve time and random processes. Rice’s 

formula-based methods are commonly used [46, 130, 132, 164]. They are in general more efficient 

than other methods but may lead to large errors if up-crossing events are strongly dependent [21]. 

Regression methods can also be used and may achieve higher accuracy if the surrogate model is 

well trained [29, 165-167]. Converting a time-dependent problem into a time-independent 

counterpart is possible by using the extreme value of the limit-state function [32, 126, 137, 168]. 

The methods include the envelope function method [168], extreme value response method [137], 

and the composite limit-state function method [126], 

The most general problems are those with time- and space-dependent limit-sate functions, 

which may take input of stochastic processes, random fields, and tempo-spatial variables [31-36]. 

Hu and Mahadevan developed a surrogate modeling approach for reliability analysis of a 

multidisciplinary system [169]. Shi et al. presented a method for the moment estimation of the 

extreme response using two strategies [170]. One strategy is combining the sparse grid technique 
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and the fourth-moment method while the other one is combining the dimensional reduction with 

the maximum entropy method. Shi and Lu proposed an active learning Kriging method [53]. Wei 

and Du combined FORM and SORM for the time- and space-dependent reliability analysis [54, 

171]. Despite the progress, there is still a need to improve the accuracy and efficiency of time- and 

space-dependent reliability prediction. 

The proposed method is an extension of the time-dependent methodology in Ref. [168]. This 

method converts a time- and space-dependent problem into a time- and space-independent problem 

by using the envelope function or the extreme value of a limit-state function over the time and the 

space span. The MPP of the envelope function is found by combing the sequential efficient global 

optimization (EGO) with FORM. Then the quadratic envelope function is approximated at the 

MPP with its gradient and Hessian matrix. Then the probability of failure is estimated by the 

second-order saddlepoint approximation method.  

The rest of the paper is organized as follows. Section 2 reviews FORM for time- and space-

dependent reliability. Section 3 discusses the proposed method. Section 4 presents three examples, 

and Section 5 provides the conclusions and future work. 

5.2 Review Fundamental Methodologies 

5.2.1 Problem Statement 

In this work, we consider a limit-state function given by 

𝑦 = 𝑔(𝐗, 𝐳) (1) 

in which 𝐗 = [𝑋(, … , 𝑋D]E are n input random variables. The time variable is 𝑧( ∈ [𝑧(, 𝑧(], and 

the spatial variables are 𝑧Y  with the following ranges: 𝑧Y ∈ õ𝑧Y , 𝑧Yö, (𝑘 = 2,… ,𝑚) . Then, 

𝐳 = [𝑧(, 𝑧+, … , 	𝑧F]E is a vector of the temporal/spatial variables bounded on 𝛀 = [𝑧Y , 𝑧Y]. 

The reliability over the temporal and spatial domain is defined by  

𝑅 = Pr{𝑔(𝐗, 𝐳) > 0, ∀𝐳 ∈ 𝛀} (2) 

where ∀ means “for all”. The associated probability of failure is given by 

𝑝# = Pr{𝑔(𝐗, 𝐳) ≤ 0, ∃𝐳 ∈ 𝛀} (3) 
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where ∃ means “there exists at least one”. Note that the spatio-temporal domain in Eq. (1) is 

rectangular. In reality, the domain may be non-rectangular. This study focuses on only a 

rectangular domain.   

5.2.2 First Order Reliability Method (FORM) 

FORM is the commonly used reliability method. It is originally intended for time- and space-

independent reliability analysis. In this work, we at first review the time- and space-independent 

reliability problem with the FORM method, then the discussion furtherly can be extended to the 

time- and space-dependent reliability problem. 

5.2.3 Time- and Space-independent Reliability Problem 

The time- and space-independent reliability is defined by 

𝑅 = 	Pr{𝑦 = 𝑔(𝐗) > 0} (4) 

where 𝑦 is response and 𝐗 is a random vector. FORM at first searches for the most probable 

point (MPP) in the standard normal space. At first, random variables 𝐗 are transformed into 

standard and independent normal variables 𝐔 [38]. Then, the minimum distance from the origin to 

the limit-state surface 𝑔(𝐗) = 0 is identified. The distance is the reliability index 𝛽. The minimum 

distance point is called the MPP. The model for searching for the MPP is given by  

�	min 	\𝐮
E𝐮

s. t.		𝑔(𝐗) = 𝑔(	T(𝐮)) = 0
(5) 

where T(∙) is an operator of the transformation from 𝐔 to 𝐗.  

𝛽 = ‖𝐮‖ = [𝑢(+ + 𝑢++ +⋯+ 𝑢D+ (6) 

The solution from Eq. (5) is the MPP 𝐮VWW. 

Lastly, the reliability is calculated by  

𝑅 = Pr{𝑦 = 𝑔(𝐗) > 0} ≈ Φ(𝛽) = Φ(‖𝐮VWW‖) (7) 

where Φ(∙) is the cumulative distribution function (CDF) of the standard normal distribution. 
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5.2.4 Time-Dependent Reliability Problem 

When it comes to the limit-state function that varies over time, FORM can still be used to find 

the MPP. The MPP 𝐮VWW at the time instant 𝑧( is identified by the following model: 

�min 	
‖𝐮‖

s. t.		𝑔(𝐗, 𝑧() = 𝑔(T(𝐮), 𝑧() = 0 (8) 

The limit-state function is linearized at 𝐮VWW(𝑧() by  

𝑔(T(𝐮), 𝑧() ≈ 𝑔(	𝐮VWW, 𝑧() +�
𝜕𝑔
𝜕𝑈&

I

&G(

�
𝐮+,,

(𝑈& − uVWW&) = ∇𝑔 × (𝐔 −	𝐮VWW	) (9)  

	where  ∇𝑔 = i KL
KM&
�
𝐮+,,

, … , KL
KM*

�
𝐮+,, 	

j  is the gradient, and the probability of failure is 

computed by  	

𝑝# = Prf𝑔(𝐗, 𝑧() ≤ 0, 𝑧( ∈ õ𝑧(, 𝑧(öh ≈ Prf𝛽(𝑧() + 𝛂(𝑧()𝐔 ≤ 0, 𝑧( ∈ õ𝑧(, 𝑧(öh (10) 

where 𝛽(𝑧() is the time-dependent reliability index, given by 

𝛽(𝑧() = ‖𝐮VWW‖ (11) 

and 𝛂(𝑧() is the time-dependent unit gradient vector given by 

𝛂(𝑧() =
∇𝑔(𝑧()

∥ ∇𝑔(𝑧() ∥
= [	𝛼((𝑧(), 𝛼+(𝑧(), … , αD(𝑧()] (12) 

As indicated in Eq. (9), the limit-state function 𝑔(𝐗, 𝑧()  is approximated as a linear 

combination of standard normal random variables. Many methodologies are available for solving 

for the probability of failures, such as Rice’s formula-based methods and metamodeling-based 

methods. 

5.3 Envelope Method for Time- and Space-dependent Problem  

The envelope function is tangent to all the instantaneous limit-state functions with respect to 

time and space. The envelope function of a limit-state function is in general nonlinear and can be 

approximated as a quadratic function at its MPP by the second-order approximation method. 

It is known that the MPP of the envelope function is the worst-case MPP of the limit-state 

function [37]. In other words, the MPP is the closest point between the origin and all the 

instantaneous limit-state functions. The MPP of the envelope function can be efficiently found by 

the sequential single-loop method [37]. Consequently, the gradient of the envelope function is 
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consistent with the gradient of the worst-case limit-state functions at MPP [37]. However, as the 

curvature of the envelope function may not be the curvature of the worst-case limit-state function, 

the analytical Hessian matrix of the envelope function is derived. In this paper, we extend our work 

in a more general situation. The second derivative of the envelope function with respect to random 

variables and multiple temporal/spatial variables is analytically derived. As a result, the Hessian 

matrix of the envelope function can be accurately obtained.  

Different from the existing method [37], the new method also covers problems where a single 

call of a limit-state function returns a complete response with respect to time and space. Hence the 

method can be used for the following two cases. 

Case 1: The input includes a realization of random variables 𝐗 , as well as a time 

instance/spatial location 𝐳, and the output is a single response. This case requires calling the limit-

state function repeatedly so that the worst-case response can be found.   

Case 2: The input includes a realization of random variables 𝐗 and the temporal/spatial domain  

𝛀 of 𝐳. Calling the limit-function returns a complete time- and space-dependent response with 

respect to 𝐳 in 𝛀. In this case, the output is a hypersurface of the response 𝑦(𝐳). For example, if 

we call a computational fluid dynamics (CFD) simulation, we obtain the 4-D pressure and velocity 

fields with respect to time and space. Since we know 𝑦(𝐳), the minimum value min
𝐳∈𝛀

𝑦(𝐳) is also 

known. 

In Sec. 3.1, we focus our discussions on Case 1 for limit-state function  𝑦 = 𝑔(𝐗, 𝐳). Since 

Case 2 is much easier than Case 1, we briefly discuss it at the end of Sec. 3.1. We then extend the 

method into a general problem with input random fields in Sec. 3.2.   

5.3.1 Problems with Random Variables, and Temporal/Spatial Parameters 

We now discuss Case 1 with the limit-state function is given in Eq. (1). For this case we need 

to search for the worst-case MPP. 

The time- and space-dependent probability of failure in the time span õ𝑧(, 𝑧(ö and the space 

span õ𝑧Y , 𝑧Yö can be evaluated by the extreme value of the limit-state function. 

𝑝# = Pr(𝑔(𝐗, 𝐳) < 0, ∃𝐳 ∈ 𝛀) = Pr �min
𝐳∈𝛀

𝑔(𝐗, 𝐳) < 0� (13)	 
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Eq. (13) indicates that a failure occurs if the minimum response is negative. The function of 

the extreme response is equivalent to the envelope function or the composite limit-state function 

[29], which is given by 

𝐺(𝐗) = min
𝐳∈𝛀

𝑔(𝐗, 𝐳) = 𝑔(𝐗, 𝐳ù) (14) 

where the envelope function 𝐺(𝐗) is the global minimum of 𝑔(𝐗, 𝐳) with respect to 𝐳, and the 

global minimum occurs at 𝐳ù. 

If FORM is used to linearize 𝐺(𝐗), the MPP is obtained by 

�min
\𝐮E𝐮

s. t. min
𝐳∈𝛀

𝑔(T(𝐮), 𝐳) = 0 (15) 

Eq. (15) requires a double loop optimization process because minimization appears in both the 

objective and constraint functions. The inner loop is for the minimum value of 𝑔(T(𝐮), 𝐳) relative 

to 𝐳 while the outer loop is the MPP search relative to 𝐮. In this work, we decouple the double 

loop into sequential single loops. 

The first loop is FORM analysis, the MPP 𝐮VWW
(()  at the initial 𝐳ù(7) = [𝑧(7, 𝑧+7, … 𝑧F7 ] is obtained 

by 

�min\𝐮
E𝐮

s. t.		𝑔(T(𝐮), 𝐳7) = 0
(16) 

Then 𝐳 is determined by fixing the random variables on its realization 𝐮VWW
(() , and 𝐳 is denoted 

by 𝐳ù((), which is given by 

𝐳ù (() = argmin
𝐳∈𝛀

𝑔 �T�𝐮VWW
(() �, 𝐳� (17) 

In the next loop, the new MPP 𝐮VWW
(+)   is located at point 𝐳ù(() using Eq. (16). And then 𝐳 is 

updated to 𝐳ù(+). 

𝐳ù (+) = argmin
𝐳∈𝛀

𝑔 �T�𝐮VWW
(+) �, 𝐳� (18) 

The above process is repeated until convergence, and the MPP is found. It is the worst-case 

MPP of the limit-state function with respect to 𝐳. 

The global minimum value of 𝐺(𝐗) occurs at 𝐳ù(() = [𝑧̃(
((), 𝑧̃+

((), … , 𝑧̃F
(()], which is given by 

𝐳ù(() = argmin
𝐳∈𝛀

𝑔(T(𝐮VWW), 𝐳) (19) 
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Note that finding the optimal point is still in the sequential loops. There are many methods to 

solve the optimal point 𝐳ù(() corresponding to the global minimum value of 𝐺(𝐗). The first partial 

derivative of the limit-state function with respect to 𝑧Y at MPP is as below: 

⎩
⎪
⎨

⎪
⎧
𝜕𝑔(T(𝐮VWW), 𝑧(, 𝑧+, … , 𝑧F)

𝜕𝑧(
= 0

⋮
𝜕𝑔(T(𝐮VWW), 𝑧(, 𝑧+, … , 𝑧F)

𝜕𝑧F
= 0

(20) 

The optimal point 𝐳ù(() = [zù(
((), zù+

((), … zùF
(()] can be obtained by solving Eq. (20). 

We use efficient global optimization (EGO) to find the MPP. EGO has been widely used in 

various areas because it can efficiently search for the global optimum [39]. Suppose we have called 

the limit-state function at several initial training points of 𝐳&D and the number of initial training 

points is 𝑛&D, which denote by as follows 

𝐳&D = û
𝑧(( ⋯ 𝑧F(
⋮ ⋱ ⋮

𝑧(
D!* ⋯ 𝑧F

D!*
ü 

and the associated responses are 𝐲&D = [𝑔(T(𝐮∗), 𝐳(), 𝑔(T(𝐮∗), 𝐳+), … , 𝑔(T(𝐮∗), 𝐳D!*)]E. An 

initial function is fitted from (𝐳&D, 𝐲&D) by the following surrogate model [39]: 

𝑦� = 𝑔(𝐳) = 𝑔(T(𝐮∗), 𝐳) = 𝐹(𝐳)E𝜸 + 𝑒(𝐳) (21) 

where 𝐹(𝐳)E𝜸 is a deterministic term, 𝑒(𝐳) is a vector of regression functions, 𝜸 is a vector of 

regression coefficients, and 𝑒(𝐳) is a stationary Gaussian process with zero mean and a covariance 

given by  

Covf𝑒(𝐳(), 𝑒(𝐳+)h = 𝜎C+𝑅(𝐳(, 𝐳+) (22) 

where 𝜎C+ is process variance, and 𝑅(∙,∙) is the correlation function. 

The output of the surrogate model is a Gaussian random variable following 

𝑦� = 𝑔(𝐳)~𝑁f𝜇(𝐳), 𝜎+(𝐳)h (23) 

where 𝜇(𝐳) and 𝜎(𝐳) are the mean and standard deviation of 𝑦�, respectively. 

The initial model is likely not accurate. The expected improvement (EI) metric [39] is used to 

identify new training points that will be added to refine the model. The improvement is defined by 

I = max(𝑦∗ − 𝑦, 0) (24) 

where 𝑦∗ = min
&G(,+,…,D!*

𝑔(𝐳&) is the minimum from the sampling training points. 



 

 

107 

EI is computed by      

EI(𝐳) = E[max(𝑦∗ − 𝑦, 0)] = f𝑦∗ − 𝜇(𝐳)hΦ¥
𝑦∗ − 𝜇(𝐳)
𝜎(𝐳) ¦ + 𝜎(𝐳)𝜙 ¥

𝑦∗ − 𝜇(𝐳)
𝜎(𝐳) ¦ (25) 

where 𝜙(∙) is the probability density function (PDF). 

A new training point 𝐳DCZ is identified by minimizing the expected improvement. 

𝐳DCZ = argminEI
𝐳

(𝐳) (26) 

By combining sequential strategy with EGO, 𝐮VWW of envelope function 𝐺(𝐗) can be obtained 

efficiently by solving Eq. (15). The probability of failure with FORM is estimated by      

𝑝# = Pr(𝑔(𝐗, 𝐳) < 0, ∃𝐳 ∈ 𝛀) ≈ Pr	(𝐺(𝐗) < 0) = Φ(−𝛽) (27) 

where 𝛽 =∥ 𝐮VWW ∥ is the first-order reliability index.  

In general, the envelope function is nonlinear, and FORM may not be accurate enough. Thus, 

a second-order method is preferred, and it uses the envelope theorem to obtain the second-order 

information of the extreme limit-state function. Then SOSPA is used to estimate the probability of 

failure. 

The envelope function is generally nonlinear, and we therefore approximate it as a quadratic 

function, instead of a linear function in FORM. As a result, we need the gradient ∇𝐺 and Hessian 

matrix 𝐇 at the MPP of the envelope function. The quadratic function is formed as follows [12]: 

	𝐺(𝐔) = a + 𝐛E𝐔 + 𝐔E𝐂𝐔 (28) 

where      

⎩
⎪
⎨

⎪
⎧𝑎 =

1
2
(𝐮VWW)E𝐇𝐮VWW − ∇𝐺(𝐮VWW)E𝐮VWW

𝐛 = ∇𝐺(𝐮VWW) − 𝐇𝐮VWW = (𝑏!(, 𝑏!+, … , 𝑏!D)

𝐂 =
1
2𝐇 = diag(𝑐̃(, 𝑐̃+, … , 𝑐̃D)

(29) 

∇𝐺(𝐮∗) = i K]
^M&
�
𝐮+,,

, … . , K]
^M*

�
𝐮+,,

j
E

is the gradient of the envelope function. 𝐇 is the Hessian 

matrix shown below. 

𝐇 =

⎣
⎢
⎢
⎢
⎢
⎡ 𝜕+𝐺
𝜕𝑈(+

⋯
𝜕+𝐺

𝜕𝑈(𝜕𝑈D
⋮ ⋱ ⋮

𝜕+𝐺
𝜕𝑈D𝜕𝑈(

⋯
𝜕+𝐺
𝜕𝑈D+ ⎦

⎥
⎥
⎥
⎥
⎤

𝐮+,,

(30) 
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The envelope function 𝐺(𝐗) at 𝐮VWW is given by 

𝐺(𝐔) = min
𝐳∈𝛀

𝑔(𝐔, 𝐳) =𝑔(𝐔, 𝐳ù)|𝐮+,, (31) 

where 𝐳ù = [zù(, … , zùF]  is the optimal point where the global minimum value of function 

𝑔(𝐔, 𝐳) occurs, and it is found by 

𝜕𝑔(𝐔, 𝐳)
𝜕𝑧(

=
𝜕𝑔(𝐔, 𝐳)
𝜕𝑧+

= ⋯ =
𝜕𝑔(𝐔, 𝐳)
𝜕𝑧F

= 0 (32) 

The envelope function satisfies the following equation:  

�
𝑔̇(𝐔, 𝑧̃(, 𝑧+, … , 𝑧F) = 0

⋮
𝑔̇(𝐔, 𝑧(, 𝑧+, … , 𝑧̃F) = 0

(33) 

where 𝑔̇ is the derivative of 𝑔 with respect to 𝑧&. 

Next, the first derivative of 𝐺(𝐔) with respect to a random input variable 𝑈& at 𝐮VWW is 

𝜕𝐺
𝜕𝑈&

=
𝜕𝑔
𝜕𝑈&

+
𝜕𝑔
𝜕zù(

𝜕zù(
𝜕𝑈&

+
𝜕𝑔
𝜕zù+

𝜕zù+
𝜕𝑈&

+⋯+
𝜕𝑔
𝜕zùF

𝜕zùF
𝜕𝑈&

(34) 

By plugging Eq. (33) into Eq. (34), it becomes 
𝜕𝐺
𝜕𝑈&

=
𝜕𝑔
𝜕𝑈&

(35) 

Eq. (35) indicates that the gradient of the envelope function ∇𝐺 is equal to the gradient of the 

limit-state function ∇𝑔 at the MPP. Subsequently, the second derivative of 𝐺(𝐔) with respect to 

the input random variables 𝑈_  at 𝐮∗ is 

𝜕+𝐺
𝜕𝑈&𝜕𝑈_

=
𝜕
𝜕𝑈_

�
𝜕𝐺
𝜕𝑈&

� =
𝜕
𝜕𝑈_

�
𝜕𝑔
𝜕𝑈&

� 		=
𝜕+𝑔

𝜕𝑈&𝜕𝑈_
+

𝜕+𝑔
𝜕𝑈&𝜕𝑧̃(

∂𝑧̃(
∂𝑈_

+⋯+
𝜕+𝑔

𝜕𝑈&𝜕𝑧̃F
𝜕𝑧̃F
𝜕𝑈_

(36) 

Take the derivative of Eq. (32) with respect to 𝑈_, and it is given by 

∂𝑔̇
∂𝑈_

+
∂𝑔̇
∂𝑧̃Y

∂𝑧̃Y
∂𝑈_

= 0 (37) 

∂𝑧̃Y
∂𝑈_

= −
∂𝑔̇
∂𝑈_

∂𝑔̇
∂𝑧̃Y

¼ = −
𝜕+𝑔

𝜕𝑧̃Y𝜕𝑈_
𝜕+𝑔
𝜕𝑧̃Y+

¼ (38) 

	The Hessian matrix H with respect to random variables and multiple temporal/spatial variables 

is obtained by plugging Eq. (38) into Eq. (36) at 𝐮VWW, 𝑧̃Y. 

𝜕+𝐺
𝜕𝑈&𝜕𝑈_

½
𝐮∗,nu-

=
𝜕+𝑔

𝜕𝑈&𝜕𝑈_
−�

𝜕+𝑔
𝜕𝑈&𝜕𝑧̃Y

𝜕+𝑔
𝜕𝑈_𝜕𝑧̃Y

𝜕+𝑔
𝜕𝑧̃Y+

¼
F

YG(

(39) 
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The forward finite difference method with step size 𝛿 = max	(|𝑢|/1000, 𝜖) and 𝜖 = 105) is 

employed to calculate the derivations in Eq. (39).  

Once the envelope function is approximated by a quadratic function, we use the second order 

saddlepoint approximation to estimate the probability of failure. The reason we use saddlepoint 

approximation is due to its high accuracy in the tail area of a distribution; a failure usually occurs 

in a tail area.  

Eq. (28) can be written as the sum of quadratic functions of different standard normal variables 

𝐺(𝐔) =�𝑄&f𝐔@h
D

&G(

=�f𝑎ù& + 𝑏!&𝑈@& + 𝑐̃&𝑈@&+h
D

&G(

(40) 

The cumulant generating function (CGF) of 𝐺(𝐔) is given by 

𝐾v(𝑡") =�𝐾v!(𝑡")
D

&G(

(41) 

After the CGF 𝐾v(𝑡") is obtained, it is straightforward to find the PDF of the limit-state 

function, and this needs to solve the saddlepoint 𝑡" , which is found by solving the following 

equation: 

𝐾v	
.(𝑡") = 0 (42) 

where 𝐾v	
.(𝑡") is the first derivative of 𝐾v(𝑡"). The details of the implementation of SOSPA 

refer to Ref. [14]. According to Lugannani and Rice’s formula, 

Then the probability of failure is evaluated by 

𝑝# ≈ Pr(𝐺(𝐔) < 0) 	= Φ(𝑤) + 𝜙(𝑤) �
1
𝑤 −

1
𝑣�

(43) 

where 

𝑤 = sgn(𝑡")%2õ−𝐾v(𝑡")ö&
(
+ (44) 

𝑣 = 𝑡"õ𝐾v99(𝑡")ö
(
+ (45) 

in which sgn(𝑡") = +1,−1, or 0, depending on whether 𝑡"  is positive, negative, or zero. 

𝐾v99(𝑡") is the second derivative of 𝐾v(𝑡") concerning 𝑡". Since the above method uses SOSPA and 

envelope theorem, we denote this method as SOSPA/ENV. 

Case 2: Calling the limit-function returns a complete time- and space-dependent response  
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In this case, the output is a hypersurface of the response 𝑦(𝐳). The complete response 𝑦(𝐳) is 

available, so the minimum value min
𝐳∈𝛀

𝑦(𝐳) is also known. We do not need to use the sequential 

single loops in case 1. Thus, the MPP in Eq. (15) can be obtained from the following model: 

�min
\𝐮E𝐮

s. t. min
𝐳∈𝛀

𝑦(𝐳) = 0 (46) 

where min
𝐳∈𝛀

𝑦(𝐳) is a function of 𝐮 and is obtained by calling the limit-state function once at 𝐮,	 

where 𝐮 is the vector of independent normal variables transformed from X. We just need a single-

loop MPP search, which is more efficient than the sequential loop approach. 

The model in Eq. (46) may have multiple MPPs [40]. The accuracy of the reliability prediction 

may be poor if only one MPP is used and if other MPPs also have significant contributions. There 

are three strategies to deal with multiple MPPs. The first strategy is to repeat the standard MPP 

search with different starting points and find different solutions if they exist. The second strategy 

is to use an optimization algorithm that can find multiple local optima. The methods include 

genetic algorithm [40] and particle swarm optimization [41]. The third strategy is to employ 

methodologies specifically designed for multiple MPP search [29,42]. Although there is no 

guarantee to find all possible MPPs, these strategies can significantly increase the chance of 

finding multiple MPPs [29,40-42]. Once all potential MPPs are identified, the corresponding limit-

state surfaces are linearized at these points as  

𝑄&(𝐔) = −∇𝐺(𝐮VWW&)E𝐮VWW& + ∇𝐺(𝐮VWW&)𝐔 (47) 

where 𝑖 = 1,2, … ,𝑚, in which 𝑚 is the number of MPPs. The reliability is calculated as the 

reliability of a series system. 

𝑅 = Pr wx𝑄&(𝐔) > 0
F

&G(

y = wx = −∇𝐺(𝐮VWW&)E𝐮VWW& + ∇𝐺(𝐮VWW&)𝐔 > 0
F

&G(

y (48) 

Since 𝑄&(𝐔)  follows a normal distribution, all the responses at their MPPs follow a 

multivariate normal distribution, whose joint probability density is integrated in the safe region, 

resulting the reliability. The second order method is used for higher accuracy. The method still 

uses a multivariate normal distribution, whose mean vector is obtained by the second order 

saddlepoint approximation and whose covariance matric is estimated by the first order 

approximation [12]. 
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5.3.2 Problems with Random Variables, Random Fields, and Temporal/Spatial Parameters  

We have discussed limit-state functions with random variables 𝐗  and temporal/spatial 

variables 𝐳. In this subsection, we discuss how to extend the method to limit-state functions with 

random variable 𝐗, random fields 𝓕(𝐳) and temporal/spatial variables 𝐳. A limit-state function is 

given by 𝑦(𝐳) = 𝒈(𝐗,𝓕(𝐳), 𝐳). The time- and space-dependent probability of failure is calculated 

by  

𝑝# = Pr(𝑔(𝐗,𝓕(𝐳), 𝐳) < 0, ∃𝐳 ∈ 𝛀) = Pr �min
𝐳∈𝛀

𝑦(𝐳) < 0� (49) 

Eq. (49) indicates that failure happens when the minimum value of the limit-state function 𝑔(𝐗, 

𝓕(𝐳),𝐳) is negative. There are still two cases: a single call of a limit-state function does not return 

a time- and space-dependent response and a single call of a limit-state function returns a complete 

response with respect to time and space. 

Case 1 requires calling the limit-state function repeatedly to obtain the worst-case response in 

𝛀. We need to convert random fields into time- and space-dependent random fields so that the 

proposed method can be used. The expansion optimal linear estimation method (EOLE) [40] can 

be used to convert the random fields 𝓕(𝐳) into independent standard Gaussian random variables 

𝛏 = (𝜉(, 𝜉+, … , 𝜉<), where r is the dimension of 𝛏. Take a two-dimensional random field ℱ(𝒛), 

where 𝒛 = (𝑧(, 𝑧+), as an example. 𝑧( and 𝑧+ are discretized into 𝑛f& and 𝑛f# points, respectively. 

The autocorrelation coefficient matrix is given by 

𝚺 = õ𝜌f𝐳& , 	𝐳_höD/&D/#×D/&D/#
(50) 

where 𝜌f𝐳& , 	𝐳_h  is the correlation between two points 𝐳& 	(𝑖 = 1,2, … , 𝑛f&𝑛f#)  and 𝐳_ 	(𝑗 =

1,2, … , 𝑛f&𝑛f#) in the domain of ℱ(𝐳). Then	ℱ(𝒛) is expanded by 

ℱ(𝛏, 𝐳) ≈ 𝜇(𝐳) + 𝜎(𝐳)�
𝜉Y
\𝜆Y

<

YG(

𝛟Y
E𝚺(: , 𝐳), 𝑘 = 1,2, … , 𝑟 (51) 

where	𝜇(𝐳) is the mean of ℱ(𝐳), and 𝜎(𝐳) is the standard deviation of ℱ(𝐳). 𝜉Y 	(𝑘 = 1,2, … 𝑟) 

are independent standard normal variables, 𝛌 = (𝜆(, 𝜆+, … , 𝜆<)  is the eigenvalue vector, and 

𝛟(, 𝛟+, … ,𝛟< are eigenvectors of 𝚺. Note that 𝑟	is determined as the smallest integer that meets 

the following criterion: 
∑ 𝜆Y<
_G(

∑ 𝜆Y
D/&D/#
_G(

≥ 𝜂 (52) 
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where 𝜂 is a hyperparameter determining the accuracy of the expansion. It takes a value close 

to, but not larger than 1. The smaller is 𝜂, the less accurate is the expansion. If 𝜂 = 1, the expansion 

is exact at the points of discretization. Normally, 𝜂 is set to 0.9999.  

Then the limit-state function becomes 𝑦 = 𝑔(𝐗@, 𝐳), where 𝐗@ = (𝐗, 𝛏). It is a function given in 

Eq. (1) and the proposed method in Sec. 3.1 of case 1 can be used.  

For Case 2, a single call of a limit-state function returns a complete response with respect to 

time and space. After random fields are expanded with respect to random variables, the problem 

becomes the one discussed in Sec. 3.1 for Case 2. The same method in Sec. 3.1 can then be used. 

5.3.3 Implementation 

The detailed steps of solving time- and space-dependent reliability problems using SOSPA are 

summarized below. 

Step 1: Transform random variables 𝐗 into	𝐔 in the standard normal space. 

Step 2: Set 𝑘 = 1. Generate a random point 𝐳 ∈ Ω as the initial optimal point 𝐳ù(7)  and use a 

unit vector as the initial MPP 𝐮VWW
(() = 𝐮7. 

Step 3: Perform the MPP search at the point 𝐳ù(Y5() , and obtain the MPP 𝐮VWW
(Y)  and the 

corresponding 𝛽(Y) by solving the following optimization model: 

�min
\𝐮E𝐮

s. t.		𝑔fT(𝐮), 𝐳ù(Y5()h = 0
 

Step 4: Determine the optimal point 𝐳ù(Y) implementing EGO method at 𝐮VWW
(Y) . The optimal 

point 𝐳ù(Y)  makes the limit-state function minimized. The initial number of training points to 

determine the time and spatial parameters is 𝑛&D=2. 

𝐳ù(Y) = argmin
𝐳∈𝛀

𝑔 �T�𝐮VWW
(Y) �, 𝐳� 

Step 5: Repeat step 3 and step 4 until convergence. The convergence criterion is defined as 

|𝛽(Y) − 𝛽(Y5()| ≤ 𝜀 

The tolerance 𝜀 can take a small positive value, for example, 105). If ã𝛽(Y) − 𝛽(Y5()ã ≤ 105), 

terminate the iteration. Otherwise, set 𝑘 = 𝑘 + 1, and return to step 3. Note that the method of a 

single-loop MPP search can be used if calling the limit-state function returns a complete time- and 

space-dependent response 
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Step 6: Calculate the gradient ∇𝐺 and Hessian matrix 𝐇 of the envelope function. 

Step 7: Calculate the probability of failure using SOSPA/ENV from the above information 

𝐮VWW
(Y) ,  gradient ∇𝐺, and Hessian matrix 𝐇. 

5.4 Examples 

In this section, three examples are used to demonstrate the proposed method. Example 1 is a 

mathematical problem that is used to show the details of the proposed method. The remaining 

examples are engineering problems. MCS is employed to provide accurate solutions for the 

accuracy comparison. SOSPA/ENV is compared with the FORM-based envelope method 

(FORM/ENV). The errors of SOSPA/ENV and FORM/ENV are calculated by 

𝜀 =
ã𝑝# − 𝑝#Vlhã

𝑝#Vlh
× 100% (53) 

where 𝑝# is the result from SOSPA/ENV or FORM/ENV, and 𝑝#Vlh is the result from MCS. 

We also use the number of function calls as a measure of efficiency. 

5.4.1 Example 1: A Math Problem 

This example is a math problem, which belongs to Case 1 without any random field input. The 

limit-state function 𝑔(𝐗, 𝑠, 𝑡) regarding random variables and explicit temporal/spatial parameter 

is defined by 

𝑔(𝐗, 𝑠, 𝑡) = 𝑋(+𝑋+ − 5𝑋(𝑡 + (𝑋+ + 1)𝑡+ − 2𝑋+s + 𝑋(𝑠+ − 8 (54) 

where 𝐗 = (𝑋(, 𝑋+), 𝑋& 	(𝑖 = 1,2) are normally distributed with parameters 𝜇& = 3.5	 and 𝜎& =

0.25. The temporal parameter is 𝑡 ∈ [0,5] and the spatial parameter is 𝑠 ∈. Therefore, 𝐳 = (𝑠, 𝑡), 

and Ω = {[0,5] × [0,5]}.  𝑋( and 𝑋+ are independent.  

We can easily plot the envelope function for this problem since an analytic envelope function 

𝐺(𝐗) is available for this problem. From the partial derivatives of the limit-state function with 

respective to 𝑡 and 𝑠 

⎩
⎪
⎨

⎪
⎧
𝜕𝑔(𝐗, 𝑠, 𝑡)

𝜕𝑡
= 0

𝜕𝑔(𝐗, 𝑠, 𝑡)
𝜕𝑠

= 0
(55) 
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we have 

⎩
⎨

⎧	𝑡 =
5𝑋(

2(𝑋+ + 1)

𝑠 =
𝑋+
𝑋(

(56) 

 Plugging Eq. (56) into Eq. (54) yields the envelope function.  

𝐺(𝐗) = 𝑋(+𝑋+ −
25𝑋(+

4(𝑋+ + 1)
−
𝑋++

𝑋(
− 8 (57) 

The envelope function at the limit state 𝐺(𝐗) = 0 is plotted in Fig. 5.1, and the failure region 

is colored grey. The figure shows that the envelope function is nonlinear. 

 

Figure 5.1 The envelope function 

Even though the envelope function has an explicit function, we treat it as a black box by 

following the numerical procedure discussed in Sec. 3. SOSPA/ENV searches for the worst-case 

MPP with the sequential EGO. Table 5.1 shows the iteration history of the MPP search. The worst-

case MPP is found at 𝐮VWW = (−2.1702,−2.6185) with 𝑡̃ = 1.8150 and 𝑠̃ = 0.8763. Fig. 5.2 

displays the convergence history of first-order reliability index 𝛽 . With FORM/ENV, the 

probability of failure is 𝑝# = 3.3575 × 105). 

Once the worst-case MPP is available, the gradient and Hessian matrix are computed at the 

MPP. The latter is given by 

∇+𝐺(𝐮VWW) = ç0.1200 0.5542
0.5542 −0.1494è 
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Table 5.1 Iteration history of searching for the worst-case MPP 

Iterations 𝐮∗ 𝑡̃ 𝑠̃ 

1 (−7.4573,−2.0392) 0.9157 1.2272 

2 (−3.9028,−1.4544) 1.2886 1.0077 

3 (−3.1172,−2.0203) 1.4821 0.8722 

4 (−2.7126,−2.3219) 1.5695 0.8059 

5 (−2.5333,−2.4574) 1.7458 0.9219 

6 (−2.3025,−2.5225) 1.7859 0.8956 

7 (−2.2254,−2.5784) 1.8030 0.8843 

8 (−2.1928,−2.6021) 1.8101 0.8795 

9 (−2.1928,−2.6120) 1.8131 0.8776 

10 (−2.1735,−2.6161) 1.8143 0.8767 

11 (−2.1712,−2.6178) 1.8148 0.8764 

12 (−2.1702,−2.6185) 1.8150 0.8763 

 

 

Figure 5.2 Convergence history of reliability index 𝛽 
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Then SOSPA/ENV produces 𝑝# = 4.9022 × 105). The number of simulations for MCS is 

𝑁? = 102. The time and space intervals are discretized evenly into 20 points, yielding 400 points. 

Accordingly, the number of function calls of MCS is 4 × 106. 

All the results are shown in Table 5.2. SOSPA/ENV is much more accurate than FORM/ENV 

as the error of the former is 3.5% while that of the latter is 33.9%. SOSPA/ENV, however, is less 

efficient than FORM/ENV.  

Table 5.2 Results of Example 1 

Method Probability of failure Error Number of function calls 

MCS 5.080 × 105)     - 4 × 106 

FORM/ENV 3.3575 × 105) 33.9% 314 

SOSPA/ENV 4.9022 × 105) 3.5% 333 

 

5.4.2 Example 2: A Truss Structure 

A truss structure is shown in Fig. 5.3. This example belongs to Case 1 without any random 

field input. The inputs of this truss structure are random variables, temporal parameter 𝑡 and spatial 

parameter ℎ. Each bar of the system has its cross-sectional area 𝐴& and the modulus of elasticity 

𝐸& , 𝑖 = 1,2,3 . The coefficient of thermal expansion of all bars is 𝛼 = 12 × 105-℃5( . The 

temperature change is related to the installation height of the truss structure and is given by ∆𝑇 =

𝑇𝑒57.7((∆A#y+∆Ay()#, where ∆ℎ ∈ [2,5]	m is the difference of two different installation heights. A 

downward force 𝑃 = 𝑃7(0.9 + 0.1cos	(0.2𝑡)) is applied at joint A, where 𝑡 ∈ [0,10] years. The 

domain Ω of 𝐳 = [∆ℎ, 𝑡] is {[2,5] × [0,10]}. All the random variables are given in Table 5.3.  

The perpendicular displacement of joint A is calculated by 

∆𝛿 =
𝐴
𝐵

(58) 

where  

𝐴 = 𝐿iz(𝑃𝐴(𝐸(𝐿ilcos𝜃(+ + 𝑃𝐴+𝐸+𝐿i{cos𝜃++ + 𝐴(𝐴*𝐸(𝐸*𝐿il𝑇𝛼cos𝜃(+

+ 𝐴+𝐴*𝐸+𝐸*𝐿i{𝑇𝛼cos𝜃++ + 𝐴(𝐴+𝐸(𝐸+𝑇𝛼(𝐿i{sin𝜃(cos𝜃++ + 𝐿ilsin𝜃+cos𝜃(+

+ 𝐿ilsin𝜃(cos𝜃+cos𝜃( + 𝐿i{sin𝜃+cos𝜃+cos𝜃()) 
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𝐵 = 𝐴(𝐴*𝐸(𝐸*𝐿ilcos𝜃(+ + 𝐴+𝐴*𝐸+𝐸*𝐿i{cos𝜃++ + 𝐴(𝐴+𝐸(𝐸+𝐿iz(sin𝜃++cos𝜃(+ + sin𝜃(+cos𝜃++

+ 2sin𝜃(sin𝜃+cos𝜃(cos𝜃+) 

𝜃( = arctan	 ¥
𝐿=@

\𝐿=>+ − 𝐿=@+
¦ 

𝜃+ = arctan	 ¥
𝐿=@

\𝐿=?+ − 𝐿=@+
¦ 

A failure occurs when ∆𝛿 > 0.65 mm. Thus, the limit-state function is defined by 

𝑔(𝐗, 𝑠, 𝑡) = 0.65 − ∆𝛿 (59) 

 

Figure 5.3 A truss structure 

102  samples are used for MCS and the domain of 𝐙 = (∆ℎ, 𝑡)  is discretized evenly into 

10 × 10 = 100 points. FORM/ENV and SOSPA/ENV are used to calculate the probability of 

failure. Table 5.4 shows the results. Even though FORM/ENV is more efficient than SOSPA/ENV, 

it produces a large error. SOSPA/ENV achieves higher accuracy than FORM/ENV although it 

needs more function calls. 
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Table 5.3 Random variables of Example 3 

Variable 
(Unit) Mean Standard 

deviation Distribution 

𝐴((mm+) 60 0.6 Normal 

𝐴+(mm+) 60 0.6 Normal 

𝐴*(mm+) 60 0.6 Normal 

𝐸((GPa) 200 20 Lognormal 

𝐸+(GPa) 200 20 Lognormal 

𝐸*(GPa) 200 20 Lognormal 

𝑃7(KN) 40 6 Normal 

𝐿i{(mm) 200 2 Normal 

𝐿iz(mm) 231 2.31 Normal 

𝐿il(mm) 283 2.83 Normal 

𝑇(℃) 35 7 Lognormal 

 

Table 5.4 Results of Example 3 

Method Probability of failure Error (%) Number of function calls 

MCS 3.0270 × 105)      - 106 

FORM/ENV 2.7654 × 105) 8.64% 189 

SOSPA/ENV 2.9958 × 105) 1.03% 305 

5.4.3 Example 3: An Electron Accelerator 

Fig. 5.4 shows an electron accelerator that accelerates electrons. The inputs of this example are 

random variable 𝐿 and random field 𝑉(𝑤, ℎ, 𝑡), calling the limit-state function return a complete 

time-and space-dependent responses by sampling the random field  𝑉(𝑤, ℎ, 𝑡). This problem 

belongs to Case 2 with an input random field, and it therefore requires single-loop MPP search. 

The device is placed horizontally. Electrons are emitted from the electrode and then enter the 
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electric field E in the accelerator, and finally fly out. The initial velocity of the electrons is a non-

stationary Gaussian random field 𝑉7(𝑤, ℎ, 𝑡), whose mean is 𝜇:0 = 10/𝑒57.77((Z#yA#y(O5-)#) m/s 

and standard deviation is 𝜎:0 = 10000	m/s. The spatial variable 𝑤 ∈ [−0.05,0.05] m is the width 

of the electrode, and ℎ ∈ [−0.05,0.05]	m is the height of the electrode. The temporal variable is 

𝑡 ∈ [0,10] s. The autocorrelation coefficient function of the Gaussian field is given by 

𝜌:0(𝑤(, ℎ(, 𝑡(; 𝑤+, ℎ+, 𝑡+) = exp i− �
𝑤( −𝑤+

5 �
+
− �

ℎ( − ℎ+
5 �

+

− �
𝑡( − 𝑡+
10 �

+
j (60) 

The length of the accelerator 𝐿 is normally distributed with 𝑁(1, 0.01+) m. The electric field 

𝐸(𝑤, ℎ) is a two-dimensional stationary Gaussian random field, whose mean 𝜇|  and standard 

deviation 𝜎| are 10 N/C and 1 N/C, respectively. Its autocorrelation coefficient function is given 

by 

 

 

Figure 5.4 An electron accelerator 
 

𝜌|(𝑤(, ℎ(; 𝑤+, ℎ+) = exp i− �
𝑤( −𝑤+

5 �
+
− �

ℎ( − ℎ+
5 �

+

j (61) 

 If the acceleration time and the interaction among the electrons are negligible, the velocity 

𝑉(𝑤, ℎ, 𝑡) of the electrons after acceleration is  

𝑉(𝑤, ℎ, 𝑡) = 32𝑞𝐸(𝑤, ℎ)𝐿
𝑚

+ 𝑉7+(𝑤, ℎ, 𝑡) (62) 

where 𝑞 = 1.6 × 105(6C and 𝑚 = 9.109 × 105*(kg are the electric quantity and mass of an 

electron, respectively. The target velocity is 𝑉O = 1.4519 × 10-  m/s. The domain Ω  of 𝐳 =

[𝑤, ℎ, 𝑡] is {[−0.05,0.05] × [−0.05,0.05] × [0,10]}.  The limit-state function is defined by  
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𝑔f𝐗, 𝑉(𝑤, ℎ, 𝑡)h = 	𝑉(𝑤, ℎ, 𝑡) − 𝑉O (63) 

in which a failure occurs if the velocity after acceleration is smaller than the target velocity.  

The EOLE method is used to generate the series expansion of the nonstationary Gaussian field 

𝑉7(𝑤, ℎ, 𝑡) . 𝑤, ℎ , and 𝑡  are evenly discretized into 10  points, so there are a total of 1000 

discretization points. The 1000 × 1000 autocorrelation coefficient matrix 𝚺:0 of the random field 

is obtained. The three most significant eigenvalues of 𝚺:0  are 841, 146, and 12, and therefore 

𝑉7(𝑤, ℎ, 𝑡)  can be expanded with three standard independent normal variables 𝜉Y , 𝑘 = 1,2,3 . 

Similarly, we use EOLE to generate the series expansion of 𝐸(𝑤, ℎ) and keep only the first two 

orders. With 1000 discretization expansions points of  𝑉(𝑤, ℎ, 𝑡) ,  the minimal value of  

𝑔abc(𝑤, ℎ, 𝑡) can be found. Then the traditional FORM method is employed to find the worst-case 

MPP 𝐮VWW = (−2.2726,−0.0164,−0.0038, 0.0014,−2.2726,−0.0050)  and the reliability 

index 𝛽 = 3.2140. Then FORM/ENV produces 𝑝# = 6.5558 × 105) with only 28 function calls 

which leading tremendous efficiency improvement instead of using sequential loops to find the 

worst-case MPP. SOSPA/ENV produces 𝑝# = 7.8862 × 105) with 87 function calls. MCS uses 

102  samples of all random variables at each of the 1000 discretization points of the 

temporal/spatial variables. The results are provided in Table 5.5. By using the sing-loop MPP 

search method, the function calls of both FORM/ENV and SOSPA/ENV methods are reduced 

tremendously.  SOSPA/ENV is more accurate than FORM/ENV but less efficient.  

Table 5.5 Results of Example 2 

Method Probability of failure Error (%) Number of function calls 

MCS 8,1360 × 105) - 102 

FORM/ENV 6.5558 × 105) 19.4% 28 

SOSPA/ENV 7.8862 × 105) 3.1% 87 

5.5 Summary 

In this work, the envelope method for time-dependent reliability is extended to time- and space-

dependent reliability analysis for limit-state functions with input of random variables, random 

fields, and temporal and spatial parameters. The envelope function is obtained with respect to 

temporal/spatial variables. Then the time- and space-dependent problem is converted into a time- 
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and space-independent counterpart, and the second order saddlepoint approximation method is 

used to estimate the reliability. Equations of the second derivatives of the envelope function are 

derived for the second order approximation. The major computational cost is the MPP search and 

second derivative calculations. In this case, efficient global optimization is used for the MPP 

search, and other global optimization methods can also be used. The first and second derivatives 

are evaluated by the finite difference method. The results show that the proposed method is much 

more accurate than the first-order approximation method since the envelope function is in general 

nonlinear. The new method, however, is less efficient than the first-order approximation method 

because it requires second derivatives of the envelope function. 

The new method shares the same drawbacks as the MPP-based reliability methods. Its accuracy 

may become poor if the envelope function has multiple MPPs. If the MPP occurs on the boundary 

of the time and space domain, a large error may be produced. How to address these problems needs 

further investigation.   
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Deterministic optimization may lead to unreliable design results if significant uncertainty exists. 

Including reliability constraints in reliability-based design optimization (RBDO) can solve such a 

problem. It is difficult to use current RBDO methods to deal with time- and space-dependent 

reliability when responses vary randomly with respect to time and space. This study employs an 

envelope method for time- and space-dependent reliability for the optimal design. To achieve high 

accuracy, we propose an inverse envelope method that converts a time- and space-dependent limit-

state function into a time- and space-independent counterpart, and then the second-order 

saddlepoint approximation is used to estimate the probability of failure. The strategy is to find an 

equivalent most probable point for a given permitted probability of failure for each of the reliability 

constraint. To achieve high efficiency, the new method uses a sequential optimization process to 

decouple the double-loop structure of RBDO. The overall optimization is performed with a 

sequence of cycles consisting of deterministic optimization and reliability analysis. The constraints 

of the deterministic optimization are formulated using the equivalent most probable points. The 

accuracy and efficiency are demonstrated with four examples, including one mathematical 

problem and three engineering problems.  
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6.1 Background 

Engineers always encounter uncertainty in material properties, component dimensions, 

manufacturing processes, and operational environments [1,2] in all stages of product design and 

development. RBDO is a typical methodology to manage uncertainty by identifying optimal design 

variables and ensuring satisfied reliability in the design stage [3-5]. 

RBDO minimizes a cost-type objective while maintaining reliability constraints. If responses 

are static, meaning that they are time and space invariant, we have static RBDO method, for which 

there are many mature methodologies, such as double-loop methods [6,7], single loop single 

variable approaches [8], sequential optimization method [4,9], and safety-factor approaches 

[10,11]. Some examples follow. Tu and Choi use a performance measure approach to main 

robustness and efficiency for evaluating reliability constraints [7]. Liang and Mourelatos proposed 

a computationally efficient RBDO approach using a single loop process where the search of the 

optimum design variables and the reliability analysis is performed simultaneously [8]. Wu 

demonstrated that the safety-factor based RBDO approach is efficient and robust with a new 

concept of the sequential loop procedure [11]. By generalizing Wu’s method to accommodate any 

continuous distributions, Du and Chen performed RBDO by sequential optimization and reliability 

analysis so that the search of design variables and reliability analysis are executed with a series of 

cycles of deterministic optimization and reliability analysis [4]. This reduces the computational 

time. Yin and Du developed a modified RBDO approach to mechanical component design so that 

the traditional safety factor design can be used without optimization and complex reliability 

analysis [10].  

Many responses are also time-dependent due to time-varying stochastic operation conditions 

and system aging [12]. For instance, the function generator mechanism [13] involves time-

dependent motion output. Static RBDO methods are not able to handle time-dependent problems. 

They were extended to time-dependent RBDO, and new time-dependent RBDO methods have 

been investigated. Several examples are given. In [14], a nested extreme response surface approach 

accurately carries out time-dependent reliability analysis and determines the optimal designs with 

efficacy. The sequential optimization and reliability analysis are extended to time-dependent 

problems with both stationary stochastic process loads and random loads, and it effectively solves 

design optimization with dependent reliability constraints [15]. The equivalent most probable point 

method is proposed to transform the original time-variant RBDO problem into an equivalent time-
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invariant RBDO problem formulated by performance measure approach [16]. The time-dependent 

concurrent reliability-based design optimization methods are developed to improve the confidence 

of design results with reduced experimental cost and increased computational efficiency [17]. In 

[18], a sequential Kriging modeling approach is introduced to deal with the reliability constraint 

for time variant RBDO involving stochastic processes.  

Although the time-dependent RBDO methods have been developed, the most general problems 

should be addressed where the limit-state functions may take input of stochastic processes, random 

fields, and tempo-spatial variables. It is still a challenge to address the time- and space-dependent 

RBDO as the research about this work is limited. Currently some time- and space-dependent 

reliability analysis methods have been proposed. Hu and Mahadevan developed a surrogate 

modeling approach for reliability analysis of a multidisciplinary system [19]. Shi et al. presented 

a method for the moment estimation of the extreme response using two strategies. One strategy is 

combining the sparse grid technique and the fourth-moment method while the other one is 

combining the dimensional reduction with the maximum entropy method [20]. Shi and Lu 

proposed an active learning Kriging method for dealing with dynamic reliability analysis for 

structure with temporal and spatial multi-parameter [21]. Wei and Du combined the first-order 

reliability method (FORM) and second-order reliability method (SORM) for the time- and space-

dependent reliability analysis [22,23]. Yu and Wang developed a general decoupling approach 

with a simulation-based method addressing reliability assessment for time and space-variant 

system reliability-based design optimization [24]. Motivating by the above method, we integrate 

the time- and space-dependent reliability analysis method into RBDO.   

This paper proposes a decoupling method for time- and space-variant RBDO using the 

envelope method. The time- and space-dependent RBDO start with the deterministic optimization, 

then the optimization results are passed to do the time- and space-dependent reliability analysis to 

satisfy the probability constraint. In the reliability analysis process, the envelope method converts 

a time- and space-dependent problem into a time- and space-independent counterpart. 

Subsequently, the MPP, gradient and Hessian matrix are available, the second-order saddle point 

approximation method can be used to estimate the reliability. The deterministic optimization and 

reliability analysis are performed cycle by cycle until the optimal design points are found. 
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The remainder of the paper is organized as follows. Section 2 gives a brief introduction of 

sequential RBDO. Section 3 introduces a time- and space-dependent RBDO model with the 

envelope method. Section 4 presents four examples, followed by conclusions in Section 5. 

6.2 Problem Statement  

In this section we give the problem that this study addresses. We also review the sequential 

RBDO, based on which the new method is developed.   

6.2.1 Problem Statement 

This study addresses the most general RBDO which includes time- and space-dependent 

reliability. The RBDO model is defined as  

⎩
⎪
⎨

⎪
⎧min𝒅,𝝁1

					 𝑓(𝐝)

𝑠. 𝑡. 						Pr{𝑦& = 𝑔&(𝐝, 𝐗, 𝐳) ≤ 0, ∃𝒛 ∈ 𝛀} ≤ 𝑝ù#&
														𝑖 = 1,2, … , 𝑛L
														𝐝� ≤ 𝐝 ≤ 𝐝M

(1) 

where 𝑓(𝐝) is the objective function, and 𝐝 is the vector of design variables with their lower 

and upper bounds𝐝� and 𝐝M, respectively. Pr{𝑦& = 𝑔&(𝐝, 𝐗, 𝐳) ≤ 0, ∃𝐳 ∈ 𝛀} is the probability of 

failure for i-th response 𝑦&. The associated reliability constraint is that the probability of failure 

should be smaller than or equal to the allowable probability of failure 𝑝ù#& or 1−𝑅!&, where [𝑅&] is 

desired reliability. 𝑛L is the number of constraints. In the constraint, the limit-state function is 

defined by 

𝑦& = 𝑔&(𝐝, 𝐗, 𝐳) (2) 

in which 𝐗 = [𝑋(, … , 𝑋D]E are input random variables. The time given by 𝑧( ∈ õ𝑧(, 𝑧(ö, and 

the spatial variables are 𝑧Y  with the following ranges: 𝑧Y ∈ õ𝑧Y , 𝑧Yö, (𝑘 = 2,… ,𝑚) . Then, 

𝐳 = [𝑧(, 𝑧+, … , 	𝑧F]E is a vector of the temporal and spatial variables bounded on 𝛀 = õ𝑧Y , 𝑧Yö. 

Note that 𝛀 is a rectangular domain.  

Accordingly, the probability of failure for a general response 𝑦	 is defined by 

𝑝# = Pr{𝑦 = 𝑔(𝐝, 𝐗, 𝐳) ≤ 0, ∃𝐳 ∈ 𝛀} (3) 

where ∃ means “there exists at least one”. 
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Solving the time- and space-dependent RBDO is time-consuming since evaluating𝑝# in Eq. (3) 

is computationally expensive and 𝑝# should be evaluated repeatedly during the optimization. 

6.2.2 Review of Sequential RBD 

Sequential RBDO methods in general are more efficient than double-loop methods. It 

decouples the optimization loop and reliability analysis loop and performs the two loops 

sequentially. Usually, the first-order reliability method (FORM) is used for reliability analysis. 

FORM searches for the Most Probable Most (MPP), from which the probability of failure is easily 

calculated.  

 The optimal design point is first found from the deterministic optimization loop and then 

FORM is performed to search for the MPP at this optimal point in the reliability analysis loop. The 

MPP is then used to modify a reliability constraint for the next deterministic optimization, which 

is followed by the next reliability analysis. This process repeats until iterative convergence.  

The deterministic optimization is formulated by 

�
min
𝐝
					 𝑓(𝐝)

𝑠. 𝑡. 						𝑔&(𝐝, T(𝐮�), 𝐳) ≤ 0	, 𝑖 = 1,2, … , 𝑛L
(4) 

where 𝐮� is the MPP in the standard normal space for the i-th reliability constraint from the 

reliability analysis. T(∙) is the transformation operator for transforming random variables 𝐗 to 

independent and standard normal variables 𝐔. The result of the optimization is the optimal design 

point 𝐝6.   

After the deterministic optimization, the reliability analysis or the MPP search is performed at 

𝐝6 for each constraint. The MPP is obtained through an optimization problem given by  

�
min
𝛍2
					 		𝑔&(𝐝, T(𝐮�), 𝐳)

𝑠. 𝑡.								‖𝐮�‖ = 𝛽&
(5) 

where 𝛽&  is the desired reliability index. It is calculated by 𝛽& = −𝛷5(f𝑝ù#&h, and 𝛷5((∙) is 

inverse cumulative density function.  

The final solution can be found after a few cycles of deterministic optimization and reliability 

analysis. As a result, the efficiency is higher than solving the original RBDO model directly. Since 

FORM may not be accurate for highly nonlinear limit-state functions, several studies employ the 

second-order reliability method (SORM) with lower efficiency.  
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6.3 Sequential RBDO with the Envelope Method 

6.3.1 Overview  

This work aims to include time- and space-dependent reliability constraints in optimization. 

To achieve high accuracy, we use second-order saddlepoint approximation to calculate the 

reliability. To achieve high efficiency, we use sequential RBDO. In the original sequential RBDO, 

the MPP is directly related to the permitted probability of failure by 𝑝ù#& = 𝛷(−‖𝐮�VWW‖). In the 

present study, the MPP is not directly related to the permitted time- and space-dependent 

probability of failure, and the relationship is unknown and nonlinear. The challenge is to find an 

equivalent MPP 𝐮8�VWW, which satisfies 

Pr{		𝑔&(𝐝, T(𝐮8�VWW), 𝐳) ≤ 0, ∃𝐳 ∈ 𝛀} = 𝑝ù#& (6) 

The model of searching for the equivalent MPP becomes 

9
min 		𝑔&(𝐝, T(𝐮�), 𝐳)
𝑠. 𝑡.		‖𝐮�‖ = 𝛽Y 	
𝑝#& = Pr	{𝑔&(𝐝, T(𝐮�), 𝐳) ≤ 0, ∃𝐳 ∈ 𝛀} = 𝑝ù#&

(7) 

The model gives the solution 𝐮� = 𝐮8�VWW. 

The envelope method can be used for reliability analysis when the equivalent MPP 𝐮8�VWW is 

available from Eq. (7). To solve Eq. (7), we at first search for the MPP using FORM at the optimal 

point of 𝐳 parameter that minimizes		𝑔&(⋅) , and then the probability of failure 𝑝#&  is calculated 

using the envelop method, and the flowchart of reliability analysis with envelope method is shown 

in Figure 6.1. We update 𝛽Y iteratively until 𝑝#& = 𝑝ù#&. The sequential RBDO with the envelope 

method involves cycles of deterministic optimization and equivalent MPP search (reliability 

analysis).  

 

Figure 6.1 Search for equivalent MPP with the envelope method 
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6.3.2 Time- and Space-dependent Reliability Analysis 

This subsection discusses the time- and space-dependent reliability using the envelope method. 

We have already developed an envelope method, but the envelope method in this study is different 

from the existing method. The existing method calculates the probability of failure directly given 

the limit state. The new method is for an inverse problem: given the probability of failure, find the 

equivalent MPP. The new method is more difficult.     

We use the envelope method for two case encounters in engineering applications.  

Case 1: Calling the limit-state function one time returns only one response at a specific time 

instant and spatial point, or a point of 𝐳 ∈ 𝛀. As a result, solving for the equivalent MPP in Eq. (5) 

needs a double-loop procedure. This double procedure will be discussed in Section 3.2.1. 

Case 2: Calling the limit-state function one time returns all responses at all specific time 

instants and spatial points, or all points of 𝐳 ∈ 𝛀. For instance, if we call a computational fluid 

dynamics (CFD) simulation, we obtain all 4-D pressure and velocity fields with respect to time 

and space. For this case, solving for the equivalent MPP in Eq. (5) needs only a single loop. 

Since Case 1 is much more difficult than Case 2. We focus our discussions primarily on Case 

1. The probability of failure can be evaluated by the extreme value of the limit-state function. 

𝑝# = Pr(𝑔(𝐝, T(𝐮), 𝐳) ≤ 0, ∃𝐳 ∈ 𝛀)

= Pr �min
𝐳∈𝛀

𝑔(𝐝, T(𝐮), 𝐳) ≤ 0�	 (8)
 

Eq. (8) indicates that a failure occurs if the minimum response is negative. The function of the 

extreme response is equivalent to the envelope function 

𝐺(𝐗) = min
𝐳∈𝛀

𝑔(𝐝, T(𝐮), 𝐳) = 𝑔(𝐝, T(𝐮), 𝐳ù) (9) 

where 𝐺(𝐗) is the envelope function and it is the global minimum of 𝑔(𝐝, T(𝐮), 𝐳ù). 𝐺(𝐗) is 

time- and space-independent and only depends on 𝐗. 

6.3.2.1 Search for the Equivalent MPP Using FORM 

There are two constraints in Eq. (7) and directly solving the model in Eq. (7) is too 

computationally expensive as it involves a double loop procedure. In this work, an alternative 

sequential procedure is proposed to find the worst-case MPP. 

At first, the MPP search is performed by giving the initial reliability index 𝛽  at 𝐳ù (7) =

[𝑧(7, 𝑧+7, … 𝑧F7 ] with the following model  
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!
min
𝐮
					 𝑔(𝐝, T(𝐮), 𝐳)

𝑠. 𝑡.						‖𝐮‖ = 𝛽
(10) 

Eq. (10) produces the MPP 𝐮VWW
(() . The next analysis is to find the optimal time and space 

parameter 𝐳ù(() by fixing the random variables on its realization 𝐮�VWW
(() . The next optimal 𝐳ù(() can 

be obtained by another optimization 𝐳ù(() = argmin
𝐳∈𝛀

𝑔 �𝐝, T�𝐮VWW
(() �, 𝐳�. The details of solving 𝐳ù(() 

is illustrated in Subsection 3.2.3. The process repeats until numerical convergence. The sequential 

procedure of the MPP search produces the worst-case MPP 𝐮�VWW and the optimal 𝐳ù. When the 

worst-case MPP is found, the probability of failure with FORM is estimated by 𝑝# =

Pr(𝑔(𝐝, T(𝐮), 𝐳) < 0, ∃𝐳 ∈ 𝛀) = 𝛷(−‖𝐮�VWW‖). However, FORM may not be accurate enough. 

As a result, we use the second-order reliability method to achieve higher accuracy. 

6.3.2.2 The Envelope Method 

To have higher accuracy, we use the SORM and envelope method. Generally, the envelope 

function is nonlinear, and it is tangent to all the instantaneous limit-state functions. It can be 

approximated by the second-order approximation method as a quadratic function at the MPP. As 

indicated by Ref. [14], the MPP of the envelope function is the worst-case MPP of the limit-state 

function. We also need the gradient ∇𝐺 and Hessian matrix 𝐇 at the MPP, of the envelope function. 

The quadratic function is formed as follows: 

	𝐺(𝐔) = a + 𝐛E𝐔 + 𝐔E𝐂𝐔 (11) 

where      

⎩
⎪
⎨

⎪
⎧𝑎 =

1
2
(𝐮�VWW)E𝐇𝐮�VWW − ∇𝐺(𝐮�VWW)E𝐮�VWW

𝐛 = ∇𝐺(𝐮�VWW) − 𝐇𝐮�VWW = (𝑏!(, 𝑏!+, … , 𝑏!D)

𝐂 =
1
2𝐇 = diag(𝑐̃(, 𝑐̃+, … , 𝑐̃D)

(12) 

∇𝐺(𝐮�VWW) = i K]
^M&
�
𝐮2+,,

, … . , K]
^M*

�
𝐮2+,,

j
E

is the gradient of the envelope function. 𝐇 is the 

Hessian matrix and is given by 
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𝐇 =

⎣
⎢
⎢
⎢
⎢
⎡ 𝜕+𝐺
𝜕𝑈(+

⋯
𝜕+𝐺

𝜕𝑈(𝜕𝑈D
⋮ ⋱ ⋮

𝜕+𝐺
𝜕𝑈D𝜕𝑈(

⋯
𝜕+𝐺
𝜕𝑈D+ ⎦

⎥
⎥
⎥
⎥
⎤

𝐮2+,,

(13) 

The envelope function 𝐺(𝐗) at 𝐮�VWW is given by 

𝐺(𝐔) = min
𝐳∈𝛀

𝑔(𝐝, 𝐔, 𝐳) =𝑔(𝐔, 𝐳ù)|𝐮2+,, (14) 

where 𝐳ù = [zù(, … zùF] is the optimal point where the global minimum of function 𝑔(𝐝, 𝐔, 𝐳) 

occurs. For an easier demonstration without loss of generality, we use a two-parameter case 𝐳ù =

[zù(, zù+] as an example to derive the envelope function’s Hessian matrix and gradient. The envelope 

function satisfies the following equations:  

�𝑔̇
(𝐝, 𝐔, 𝑧̃(, 𝑧+) = 0
𝑔̇(𝐝, 𝐔, 𝑧(, 𝑧̃+) = 0 (15) 

where 𝑔̇ is the derivative of 𝑔 with respect to 𝑧&. 

The first derivative of 𝐺(𝐔) at 𝐮�VWW is 

𝜕𝐺
𝜕𝑈&

=
𝜕𝑔
𝜕𝑈&

+
𝜕𝑔
𝜕zù(

𝜕zù(
𝜕𝑈&

+
𝜕𝑔
𝜕zù+

𝜕zù+
𝜕𝑈&

(16) 

Plugging Eq. (15) into Eq. (16) yields  

𝜕𝐺
𝜕𝑈&

=
𝜕𝑔
𝜕𝑈&

(17) 

The gradient of the envelope function ∇𝐺 is equal to the gradient of the limit-state function ∇𝑔 

at the MPP. Subsequently, the second derivative of 𝐺(𝐔)  with respect to the input random 

variables 𝑈_ at 𝐮�VWW is 

𝜕+𝐺
𝜕𝑈&𝜕𝑈_

=
𝜕
𝜕𝑈_

�
𝜕𝐺
𝜕𝑈&

� =
𝜕
𝜕𝑈_

�
𝜕𝑔
𝜕𝑈&

�

=
𝜕+𝑔

𝜕𝑈&𝜕𝑈_
+

𝜕+𝑔
𝜕𝑈&𝜕𝑧̃(

∂𝑧̃(
∂𝑈_

+
𝜕+𝑔

𝜕𝑈&𝜕𝑧̃+
𝜕𝑧̃+
𝜕𝑈_

(18)
 

Taking the derivative of Eq. (15) with respect to 𝑈_ 	yields 
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∂𝑔̇
∂𝑈_

+
∂𝑔̇
∂𝑧̃(

∂𝑧̃(
∂𝑈_

= 0 (19) 

Rearrange the equation, we have 

∂𝑧̃(
∂𝑈_

= −
∂𝑔̇
∂𝑈_

∂𝑔̇
∂𝑧̃(

¼ = −
𝜕+𝑔
𝜕𝑧̃(𝜕𝑈_

𝜕+𝑔
𝜕𝑧̃(+

¼ (20) 

Similarly, 

∂𝑧̃+
∂𝑈_

= −
∂𝑔̇
∂𝑈_

∂𝑔̇
∂𝑧̃+

¼ = −
𝜕+𝑔

𝜕𝑧̃+𝜕𝑈_
𝜕+𝑔
𝜕𝑧̃++

¼ (21) 

By plugging Eq. (20) and Eq. (21) into Eq. (18), we obtain the Hessian matrix at 𝐮� and 𝑧̃&. 

𝜕+𝐺
𝜕𝑈&𝜕𝑈_

½
𝐮∗,nu-

=
𝜕+𝑔

𝜕𝑈&𝜕𝑈_
−�

𝜕+𝑔
𝜕𝑈&𝜕𝑧̃Y

𝜕+𝑔
𝜕𝑈_𝜕𝑧̃Y

𝜕+𝑔
𝜕𝑧̃Y+

¼
+

YG(

(22) 

We use the forward finite difference method with step size 𝛿 = max	(|𝑢|/1000, 𝜖), where 

𝜖 = 105), to calculate the derivations in Eq. (22).  

The worst-case MPP 𝐮�VWW , gradient ∇𝐺 , and the Hessian matrix are now available. The 

second-order saddlepoint approximation (SOSPA) is then used to estimate the probability of 

failure 𝑝#& after the envelope function is approximated as a quadratic function. SOSPA in general 

is more accurate than FORM because it yields an accurate probability estimation especially in the 

tail area of distribution.  The details of the implementation of SOSPA are given in Ref [27]. If 𝑝#& 

is not equal to 𝑝ù#&, we should update the reliability index 𝛽& [28], and the MPP search is executed 

again using Eq. (10). The process is repeated until 𝑝#& = 𝑝ù#&. When the probability of failure is 

equal to the required probability of failure, it will produce the equivalent MPP 𝐮8�VWW. The detail 

procedure is given as follows.  

Step 1: Set the initial reliability index 𝛽(() . 𝛽(() = −Φ5(fõ𝑝#&öh, and 𝑘 =1. Set the initial 

optimal point 𝐳(7) and an initial MPP 𝐮VWW
(() = 𝐮7. 

Step 2: Search for the inverse MPP using Eq. (10) at 𝐳ù(Y5(), and obtain the MPP 𝐮VWW
(Y)  by 

solving the following optimization model: 
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�
min
𝐮
					 𝑔(𝐝, T(𝐮), 𝐳)

𝑠. 𝑡.						‖𝐮‖ = 	𝛽(Y)
(23) 

Step 3: Determine the optimal point 𝐳ù(Y) at 𝐮�VWW
(Y) . The optimal point 𝐳ù (Y) minimizes the limit-

state function. 

𝐳ù (Y) = argmin
𝐳∈𝛀

𝑔 �𝐝, T�𝐮�VWW
(Y) �, 𝐳� (24) 

(The optimization method we use in this study is Global Efficient Optimization or EGO [25].) 

Step 4: Check the iterative convergence criterion.  

𝑔F&D
(Y) − 𝑔F&D

(Y5() ≤ 𝜀( (25) 

The tolerance 𝜀(  takes a small positive value, for example, 105) . If 𝑔F&D
(Y) − 𝑔F&D

(Y5() ≤ 𝜀(  , 

terminate the iteration. Otherwise, set 𝑘 = 𝑘 + 1, and return to step 2. 

Step 5: Calculate the gradient ∇𝐺 and Hessian matrix 𝐇 of the envelope function at 𝐮�VWW
(Y) . 

Calculate the probability of failure 𝑝#&(Y)  using SOSPA from the above information 𝐮�VWW
(Y) ,  

gradient ∇𝐺, and Hessian matrix 𝐇. 

Step 6: Check the iterative convergent criterion.  

𝜀 = ½
𝑝#&(Y) − õ𝑝#&ö

õ𝑝#&ö
½ ≤ 𝜀+ (26) 

where 𝜀+ is a user-defined threshold. 

If the iterative convergence is reached, return the equivalent MPP 𝐮8�VWW and stop. Otherwise, 

update the reliability index 𝛽(Yy() and return to Step 2. 

6.3.2.3 Find the Optimal 𝒛ù 

The global minimum value of 𝑔(𝐝, T(𝐮�VWW), 𝐳) occurs at 𝐳ù = [𝑧̃(, 𝑧̃+], which is given by 

𝐳ù = argmin
𝐳∈𝛀

𝑔(𝐝, T(𝐮�VWW), 𝐳) (27) 

Finding the optimal point still needs sequential loops. The first partial derivatives of the limit-

state function with respect to 𝑧& at MPP are obtained as follows: 
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⎩
⎪
⎨

⎪
⎧𝜕𝑔(𝐝, T(𝐮VWW), 𝑧(, 𝑧+)

𝜕𝑧(
= 0

𝜕𝑔(𝐝, T(𝐮VWW), 𝑧(, 𝑧+)
𝜕𝑧+

= 0
(28) 

The optimal point 𝐳ù = [𝑧̃(, 𝑧̃+] can be obtained by solving Eq. (28). For an explicit and simple 

limit-state function, the solution of the derivative equations can be obtained analytically. For an 

implicit and complicated limit state function, EGO can be used. EGO has been widely used in 

various areas because it can efficiently search for the global optimum [25]. 

EGO generates the training points of the input𝐳&D = ç𝑧(
(&), 𝑧+

(&)è
&G(,+,…,A

= õ𝒛(&)ö
&G(,+,…,A

, where 

ℎ is the number of initial training points, and the training points of the output dataset are 𝐲&D =

õ𝑔fT(𝐮�VWW), 𝐳(&)hö&G(,+,…,A. Once the training datasetf𝐳&D, 𝐲&Dh is ready, the next step is to train 

the initial model using the Gaussian process regression. The initial surrogate model is 𝑦� = 𝑔(𝐳) =

𝑔(T(𝐮�VWW), 𝐳) = 𝐹(𝐳)E𝛾 + 𝑒(𝐳) , where 𝐹(𝐳)E𝛾  is a deterministic term, 𝑒(𝐳)  is a vector of 

regression functions, 𝛾 is a vector of regression coefficients, and 𝑒(𝐳) is a stationary Gaussian 

process with zero mean and covariance is Cov �𝑒(𝐳&), 𝑒f𝐳_h� = 𝜎C+𝐶f𝐳& , 𝐳_h, where 𝜎C+ is process 

variance, and 𝐶(∙,∙) is the correlation function [26]. The initial model may not be accurate; hence 

new training points are then added one by one so that the model is continuously refined. EGO 

select a new training point 𝐳DCZ using the expected improvement (EI) metric defined by 

𝐳DCZ = argminEI
𝐳

(𝐳) (29) 

where EI is computed by      

EI(𝐳) = E[max(𝑦∗ − 𝑦, 0)]

= f𝑦∗ − 𝜇(𝐳)h𝛷 ¥
𝑦∗ − 𝜇(𝐳)
𝜎(𝐳)

¦ + 𝜎(𝐳)𝜙 ¥
𝑦∗ − 𝜇(𝐳)
𝜎(𝐳)

¦ (30) 

where 𝑦∗ = min
&G(,+,…,Y

𝑔f𝐳&h , 𝜇(𝐳)  and 𝜎(𝐳)  are the mean and standard deviation of 𝑦� , 

respectively, and 𝜙(∙) is the probability density function (PDF).  
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6.3.3 Extension to Case 2 

We now discuss Case 2 where we have a complete time- and space-dependent responses with 

respect to 𝐳 in 𝛀 from a single call of the limit-sate function. This case has the most general limit-

state function 𝑦(𝐳) = 𝒈(𝐗,𝓕(𝐳), 𝐳).The probability of failure is calculated by  

𝑝# = Pr(𝑔(𝐗,𝓕(𝐳), 𝐳) ≤ 0, ∃𝐳 ∈ 𝛀) = Pr �min
𝐳∈𝛀

𝑦(𝐳) ≤ 0� (31) 

Eq. (31) indicates that failure happens when the minimum value of the limit-state function 𝑔(𝐗, 

𝓕(𝐳),𝐳) is negative. Since calling the limit-function returns a complete hypersurface of the 

response 𝑦(𝐳) with respect to time and space, the minimum value min
𝐳∈𝛀

𝑦(𝐳) is known. Thus, the 

MPP can be obtained from the following model: 

�min
\𝐮E𝐮

s. t. min
𝐳∈𝛀

𝑦(𝐳) = 0 (32) 

where min
𝐳∈𝛀

𝑦(𝐳)  is a function of 𝐮  and is obtained by calling the limit-state once at 𝐮 . 

Therefore, a single single-loop MPP is needed. This is more efficient than the sequential loop 

approach. The expansion optimal linear estimation method (EOLE) [29] is used to expand the 

random field response with respect to independent standard Gaussian random variables 𝛏 =

(𝜉(, 	𝜉+, … , 	𝜉<), where 𝑟 is the dimension of 𝛏. Then, the limit-state function becomes 𝑦 = 𝑔(𝐗@, 𝐳), 

where 𝐗@ = (𝐗, 𝛏). Thus, the proposed method can still work. Take EOLE as an example for a two-

dimensional random field ℱ(𝐳) with 𝐳 ∈ (z(, z+). 𝑧( and 𝑧+ are discretized into 𝑛f&𝑛f# points, and 

the autocorrelation coefficient matrix is given by 

𝚺 = õ𝜌f𝐳& , 	𝐳_höD/&D/#×D/&D/#
(33) 

where 𝜌f𝐳& , 	𝐳_h  is the correlation between two points 𝐳& 	(𝑖 = 1,2, … , 𝑛f&𝑛f#)  and 𝐳_ 	(𝑗 =

1,2, … , 𝑛f&𝑛f#) in the domain of ℱ(𝐳). 

Then the EOLE expansion is given by 

ℱ(𝛏, 𝐳) ≈ 𝜇(𝐳) + 𝜎(𝐳)�
𝜉Y
\𝜆Y

<

YG(

𝛟Y
E𝚺(: , 𝐳), 𝑘 = 1,2, … , 𝑟 (34) 

where	𝜇(𝐳) is the mean of ℱ(𝐳), and 𝜎(𝐳) is the standard deviation of ℱ(𝐳). 𝜉Y 	(𝑘 = 1,2, … 𝑟) 

are independent standard normal variables, 𝛌 = (𝜆(, 𝜆+, … , 𝜆<)  is the eigenvalue vector, and 
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𝛟(, 𝛟+, … ,𝛟< are the corresponding eigenvectors obtained from autocorrelation coefficient matrix 

𝚺. Note that 𝑟	is determined as the smallest integer that meets the following criterion: 

∑ 𝜆Y<
_G(

∑ 𝜆Y
D/&D/#
_G(

≥ 𝜂 (35) 

where 𝜂 is a hyperparameter determining the accuracy of the expansion. It takes a value close 

to, but not larger than 1. The smaller is 𝜂, the less accurate is the expansion. If 𝜂 = 1, the expansion 

is exact at the points of discretization. 𝜂 could be set to 0.9~0.99.  

6.3.4 Procedure of Sequential RBDO with Envelope Method 

After discussing all the details, we now summarize the procedure of the proposed method. The 

steps are summarized below. The flowchart of the SORA with envelop method is provided in Fig. 

6.2. 

Step 1: Initialize parameters. 

Step 2: Perform deterministic optimization. For 𝑘 = 1, solve deterministic optimization at 

means of a random variable. For 𝑘 > 1, perform the following deterministic optimization using 

the MPP 𝐮&,�VWW
(Y5()  obtained from the (𝑘 − 1)-th cycle. The solution is 𝐝(Y). 

:

min
𝐝,𝛍2

					 𝑓(𝐝)

𝑠. 𝑡. 						𝑔& �𝐝, T�𝐮&�VWW
(Y5() �, 𝐳� ≤ 0	, 𝑖 = 1,2, … , 𝑛

														𝐝� ≤ 𝐝 ≤ 𝐝M
(36) 

Step 3: Perform time- and space-dependent reliability analysis at 𝐝(Y)for each constraint. At 

first, search for the equivalent MPP given 𝛽(�). Obtain the 𝐮&�VWW
(Y) ,  gradient ∇𝐺�𝐮&�VWW

(Y) �, and 

Hessian matrix 𝐇𝐮!2+,,
(-) . Note that if the inputs of limit-state function are random variables and 

random fields, the method in section 3.3 is used to find the 𝐮&�VWW
(Y) . Next, calculate the probability 

of failure𝑝#&
(Y) using SOSPA. 

Step 4: Check the iterative convergent criterion by 

𝜀 = ½
𝑝#&(Y) − õ𝑃#&ö

õ𝑃#&ö
½ ≤ 𝜀+ (37) 
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If numerical convergence is reached, the optimal solution is found at𝐝(Y), and the process stops. 

Otherwise update the reliability index𝛽(�y() by 

𝐮&�VWW
(Yy() = 𝛽(Yy()

∇𝑔�𝐮&�VWW
(Y) �

;𝐮&�VWW
(Y) ;

(38) 

 

Figure 6.2 Sequential RBDO with the envelope method 

6.4 Examples 

A mathematical example is provided to show the feasibility of the proposed method. Three 

engineering examples are then used to demonstrate the computational efficiency and accuracy of 

the proposed method compared with double-loop method using the direct second-order reliability 

method (SORM/DL) and double-loop method with FORM (FORM/DL). The accuracy is assessed 
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by the probability of failure obtained from MCS at the optimal point while the efficiency is 

measured by the number of function calls. The percentage error is computed by 

𝜀 =
ã𝑝# − 𝑝#Vlhã

𝑝#Vlh
× 100% (39) 

where 𝑝# is the result from a non-MCS method while 𝑝𝑓Vlh is from MCS. 

6.4.1 Example 1: A Mathematical Problem 

Two independent random variables𝑋( and 𝑋+ are normally distributed with 𝑋(~𝑁f𝜇�& , 0.6h 

and  𝑋+~𝑁f𝜇�# , 0.6h. The time 𝑡 varies over the interval [0,1], and the spatial variable s changes 

over the interval [172]. The design variables are 𝜇�& and 𝜇�#. The limit-state function is defined 

by  

𝑔(𝐗, 𝑠, 𝑡) =
80

(𝑠+ − 𝑠 + 𝑋(+ + 8𝑋+ + 𝑡 − sin(𝑡) + 5)
− 1 (40) 

The RBD model is defined as follows: 

⎩
⎪
⎨

⎪
⎧
min			
�1&�1#

			𝑓 = −(𝜇�& + 𝜇�#)

s. t. 		Pr{𝑔(𝐗, 𝑠, 𝑡) > 0} ≥ Φ(𝛽)
										−5 ≤ 𝜇�& ≤ 10
										−5 ≤ 𝜇�# ≤ 10

(41) 

The allowable reliability index 𝛽  is 3. The problem is solved by the proposed method, 

SORM/DL and FORM/DL. The results are given in Table 6.1. 

Table 6.1 Results of Example 1 

Methods New method SORM/DL FORM/DL 

Obj −7.2867 −7.2867 −7.3096 

𝝁 (2.7177, 4.5691) (2.7177, 4.5691) (2.7275, 4.5821) 

𝑝𝑓Vlh 
(× 105*) 1.3679 1.3666 1.4942 

Error (%) 1.33 1.23 10.68 

𝑁1.88" 341 4317 747 
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The optimal result with the proposed method is shown in Fig. 6.3, which shows the optimal 

result is stable after 5 iterations. 

 

Figure 6.3 Iterative process of the objective function and design variables 

6.4.2 Example 2: Three Bar System 

A truss structure is shown in Fig. 6.4. Each bar of the system has its cross-sectional area 𝐴& 

and modulus of elasticity, 𝐸&, 𝑖 = 1,2,3. The coefficient of thermal expansion of all bars is 𝛼 =

12 × 105-℃5(. The temperature change is related to the installation height of the truss structure 

and is given by ∆𝑇 = 𝑇𝑒57.7(�∆A#y+∆A5+�
#
, where ∆ℎ ∈ [1,6]	m is the difference between two 

different installation heights. A downward force 𝑃 = 𝑃7(0.9 + 0.1 cos(0.2𝑡)) is applied at joint A, 

where 𝑡 ∈ [0,10] years. All the random variables are given in Table 6.2. The design variables are 

the cross-section areas of the bars 𝜇=&, 𝜇=# and 𝜇=6. 
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Figure 6.4 A truss structure 

 

Table 6.2 Random variables of Example 2 

Variable Mean Standard 
deviation 
 
 
 

Distribution 

𝐴((mm+) 𝜇=& 0.6 Normal 

𝐴+(mm+) 𝜇=# 0.6 Normal 

𝐴*(mm+) 𝜇=6 0.6 Normal 

𝐸((GPa) 200 20 Normal 

𝐸+(GPa) 200 20 Normal 

𝐸*(GPa) 200 20 Normal 

𝑃7(KN) 40 6 Normal 

𝐿i{(mm) 200 2 Normal 

𝐿iz(mm) 231 2.31 Normal 

𝐿il(mm) 283 2.83 Normal 

𝑇(℃) 35 7 Normal 

𝜎�&C83(GPa) 7.5 × 104 4× 102 Normal 
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The objective function is to minimize the weight given by  

𝑓 = 𝜇=&𝜇�78 + 𝜇=#𝜇�79 + 𝜇=6𝜇�78 

There are two failure modes for this truss structure. The first failure mode is that the 

perpendicular displacement of joint A, denoted as ∆𝛿, is greater than the allowable displacement 

𝛿7, and the limit-state function is defined by 

𝑔((𝐗, 𝑠, 𝑡) = 𝛿7 	− ∆𝛿 (42) 

where 𝛿7 = 0.64, and the perpendicular displacement of joint A is calculated by 

∆𝛿 =
𝐴
𝐵 

where  

𝐴 = 𝐿iz(𝑃𝐴(𝐸(𝐿ilcos𝜃(+ + 𝑃𝐴+𝐸+𝐿i{cos𝜃++ + 𝐴(𝐴*𝐸(𝐸*𝐿il𝑇𝛼cos𝜃(+

+ 𝐴+𝐴*𝐸+𝐸*𝐿i{𝑇𝛼cos𝜃++ + 𝐴(𝐴+𝐸(𝐸+𝑇𝛼(𝐿i{sin𝜃(cos𝜃++ + 𝐿ilsin𝜃+cos𝜃(+

+ 𝐿ilsin𝜃(cos𝜃+cos𝜃( + 𝐿i{sin𝜃+cos𝜃+cos𝜃()) 

𝐵 = 𝐴(𝐴*𝐸(𝐸*𝐿ilcos𝜃(+ + 𝐴+𝐴*𝐸+𝐸*𝐿i{cos𝜃++

+ 𝐴(𝐴+𝐸(𝐸+𝐿iz(sin𝜃++cos𝜃(+ + sin𝜃(+cos𝜃++ + 2sin𝜃(sin𝜃+cos𝜃(cos𝜃+) 

𝜃( = arctan¥
𝐿=@

\𝐿=>+ − 𝐿=@+
¦ 

𝜃+ = arctan ¥
𝐿=@

\𝐿=?+ − 𝐿=@+
¦ 

The second failure mode occurs when the stress at the joint is greater than the yield strength, 

and the limit-state function is defined by  

𝑔+(𝐗, 𝑠, 𝑡) = 𝜎� − 𝜎 (43) 

where   

𝜎 =
𝐶
𝐷 

𝐶 = 𝐴(𝐴+𝐴*+𝐸(𝐸+𝐸*𝑇𝛼(𝐿ilcos𝜃(+sin𝜃+ + 𝐿i{cos𝜃++sin𝜃( − 2𝐿izsin𝜃(sin𝜃+cos𝜃(cos𝜃+
+ 𝐿ilcos𝜃(cos𝜃+sin𝜃( + 𝐿i{cos𝜃(cos𝜃+sin𝜃+ − 𝐿izcos𝜃++sin𝜃(+

− 𝐿izcos𝜃(+sin𝜃++) + 𝐴+𝐴*𝐸+𝐸*𝐹𝐿i{𝐿i{cos𝜃++ + 𝐴(𝐴*𝐸(𝐸*𝐹𝐿ilcos𝜃(+ 

𝐷 = 𝐴(𝐴+𝐸(𝐸+𝐿iz(cos𝜃(+sin𝜃++ + cos𝜃++sin𝜃(+) + 𝐴(𝐴*𝐸(𝐸*𝐿ilcos𝜃(+ + 𝐴+𝐴*𝐸+𝐸*𝐿i{cos𝜃++

+ 2𝐴(𝐴+𝐸(𝐸+𝐿izsin𝜃(sin𝜃+cos𝜃(cos𝜃+ 
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The RBD model is given by  

⎩
⎪⎪
⎨

⎪⎪
⎧

min			
�:&�:#�:6

			𝑓 = 𝜇=&𝜇�78 + 𝜇=#𝜇�79 + 𝜇=6𝜇�78
s. t. 		Pr{𝑔((𝐗, 𝑠, 𝑡) = 𝛿7 − ∆𝛿 > 0} ≥ Φ(𝛽()
										Pr%𝑔+(𝐗, 𝑠, 𝑡) = 𝜎� − 𝜎 > 0& ≥ Φ(𝛽+)
										10 ≤ 𝜇=& ≤ 80
										10 ≤ 𝜇=& ≤ 80
										10 ≤ 𝜇=& ≤ 60

(44) 

The allowable reliability indexes are 𝛽& = 2.3, 𝑖 = 1,2. The optimal results shown in Table 6.3. 

The proposed method is more accurate than SORA/DL and FORM/DL. 

Table 6.3 Results of Example 2 

Method New method DL/SORM DL/FORM 

Obj 
(× 10)mm*) 3.6616 3.6624 3.7189 

𝝁(mm) (53.41,38.83,60) (53.31,38.95,60) (53.05,38.57,60) 

𝑝#(;?d 0.0107 0.0107 0.0148 

𝜀!;&(%) 0.25 0.46 4.89 

𝑝#+;?d 0.0107 0.0107 0.0112 

𝜀!;#(%) 0.24 0.46 4.89 

𝑁1.88" 2194 23500 7264 

6.4.3 Example 3: A Cantilever Beam 

Figure 6.5 shows that the end of cantilever beam is subjected to two forces 𝐹( and 𝐹+. The 

length of the cantilever beam 𝐿 is 100 in. The objective is to minimize the volume 𝑓 = 𝜇Z𝜇A𝐿, 

where 𝑤 and ℎ represent the width and height of the beam cross section, respectively. There are 

two failure modes. The first failure mode is that the stress at the fixed end is greater than the 

allowable yield stress 𝑆� ,and the second failure mode is that the tip displacement of the beam is 

greater than the allowable displacement 𝐷7 = 2.5 in. The two limit-state functions are given by  

𝑔((𝐗, 𝑠, 𝑡) = 𝑆� −
6𝐿
𝑤ℎ �

𝐹(
ℎ −

𝐹+
𝑤�

(45) 
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𝑔+(𝐗, 𝑠, 𝑡) = 𝐷7 −
4𝐿*

𝐸𝑤ℎ
3�
𝐹(
ℎ+�

+

+ �
𝐹+
𝑤+�

+
(46) 

 

 Figure 6.5 A cantilever beam 

The distributions of the random design variables and random parameters are in Table 6.4. The 

force 𝐹( is a non-stationary Gaussian random field, whose mean is 𝜇�& = 500𝑒7.7(��"5
&
#�
#
y(O5-)#� 

lbs and standard deviation is 𝜎�& = 50  lbs. The spatial variable is 𝑠 ∈ [0,1]  in and temporal 

variable is 𝑡 ∈ [0,10] years. The autocorrelation coefficient function of the Gaussian field is given 

by 

𝜌�&(𝑠(, 𝑡(; 𝑠+𝑡+) = exp i− �
𝑠( − 𝑠+
10 �

+
− �

𝑡( − 𝑡+
10 �

+
j (47) 

The RBDO model is formulated as  

⎩
⎪
⎨

⎪
⎧
min			
�<�=

			𝑓 = 𝜇Z𝜇A𝐿

s. t. 					Pr{𝑔((𝐗, 𝑠, 𝑡) > 0} ≥ Φ(𝛽()
													Pr{𝑔+(𝐗, 𝑠, 𝑡) > 0} ≥ Φ(𝛽+)
													1 ≤ 𝜇Z ≤ 4
														1 ≤ 𝜇A ≤ 4

(48) 

The allowable reliability indexes are 𝛽& = 3, 𝑖 = 1,2. The results are listed in Table 6.5. The 

optimal design variables are 𝑤 = 3.9541 in and ℎ = 2.2531 in, and the objective function value 

is 𝑓 = 890.9152 in* by the proposed method. The probabilities of failure obtained at the optimal 
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design variables by MCS are  𝑝#(;?d = 1.3633 × 105)and 𝑝#(;?d = 1.3645 × 105). The results are 

more accurate than those of DL/SORM and DL/FORM methods. In terms of the efficiency, the 

proposed method is the most efficient method as the number of function calls is 1358 compared 

with the function of calls of DL/SORM and DL/FORM are 12904 and 2098. In general, the 

proposed method is the best method due to high the accuracy and efficiency. 

 

Table 6.4 Distributions of variables in Example 3 

Variable Mean Standard 
deviation Distribution 

w(in) 𝜇� 5 × 105) Normal 

h(in) 𝜇� 5 × 105) Normal 

𝐹((lb) 1 × 105( 1 × 105* Normal 

𝐸(psi) 2.9 × 102 1 × 10/ Normal 

𝑆�(psi) 3.9 × 10) 500 Normal 

 

Table 6.5 Results of Example 3 

Method New method DL/SORM DL/FORM 

Obj 
(in*) 890.9152 890.9183 890.8754 

𝝁(in) (3.9541,2.2531) (3.9539,2.2533) (3.9578,2.2509)	

𝑝#(;?d 
(× 105)) 

1.3633 1.3623 1.3623 

𝜀!;&(%) 0.992 0.992 0.918 

𝑝#+;?d 
(× 105)) 

1.3645 1.3600 1.4397 

𝜀!;#(%) 0.748 1.081 6.652 

𝑁1.88" 1358 12904 2098 
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6.4.4 Example 4: Thermal Deflection of a Bimetallic Beam 

Thermal expansion or contraction of a bimetallic beam occurs due to temperature change. The 

temperature in the operating room varies during the day and night and is given by ∆𝑇 =

𝑇(0.01 sin(0.1t) + 1) , where 𝑡 ∈ [0,24]  hours. The typical bimetallic beam consists of two 

materials bonded together copper and invar. 𝐸l is the young’s modulus of the copper and 𝐸\ is the 

young’s modulus of the invar. The length of the beam depends on the location of the installation, 

which is given by 𝐿 = 𝐿7(−𝑠+ + 𝑠 + 1), where 𝑠 ∈ [0,1] m. When the temperature change as a 

thermal load applies on the beam, the beam will deflect in the perpendicular direction at the right 

end side shown in Fig. 6.6. The design variables are 𝒅 = (ℎ, 𝑤), where h and w represent the 

height and width of the cross-sectional area of the beam, and their means are 𝜇A and 𝜇Z,  which 

are to be determined. All the random variables are listed in Table 6.6.  

 

Figure 6.6 Deflection of the Bimetallic Beam 

 

The failure mode is that the deflection exceeds 𝛿 = 8 × 105*. The limit-state function is given 

by  

𝑔(𝐗, 𝑠, 𝑡) = 𝛿 − ∆(𝒅, 𝐸l, 𝐸\, ∆𝑇) (49) 

where ∆(𝒅, 𝐸l, 𝐸\, ∆𝑇) is solved by the finite element method (FEM), which proves that the 

proposed method can be used for black-box simulations. 

The objective is to minimize the weight of this beam. The RBD model is defined by  
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⎩
⎪
⎨

⎪
⎧min			�<�=

			𝑓 = 𝜇Z𝜇A
s. t. 		Pr{𝑔(𝐗, 𝑠, 𝑡) > 0} ≥ Φ(𝛽)
										8 × 105) ≤ 𝜇� ≤ 2 × 105*

										1 × 105) ≤ 𝜇� ≤ 1 × 105+

(50) 

All the results are listed in Table 6.7. The proposed method is the most efficient and accurate 

method among three methods as the error is only 3.04% and the number of function calls is 332. 

Table 6.6 Random variables 

Variable Mean Standard deviation Distribution 

𝑤(m) 𝜇Z 5 × 105) Normal 

ℎ(m) 𝜇A 5 × 105) Normal 

𝐿(m) 1 × 105( 1 × 105* Normal 

𝐸l(Pa) 1.37 × 10(( 1.37 × 102 Lognormal 

𝐸\(Pa) 1.30 × 10(( 1.3 × 102 Lognormal 

𝑇(℃) 130 13 Lognormal 

 

Table 6.7 Results of Example 4 

Method New method DL/SORM DL/FORM 

Obj 
(× 105-m+) 1.9197 1.9181 1.9312 

𝝁 
(× 105)m) (8,2.3996) (8,2.3975) (8,2.4319) 

𝑝𝑓Vlh 0.0013 0.0014 0.0012 

Error (%) 3.04 5.71 10.43 

N 332 3645 573 

 

6.5 Summary 

This paper develops a new sequential RBDO with the envelope method for time- and space-

dependent reliability. The challenge in this work is to search for the equivalent most probable point 
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(MPP), which can be found by iterating MPP search and updating the equivalent reliability index. 

When the limit-state functions are inputted with only random variables and random fields, the 

single loop inverse MPP search can be used instead of sequentially inverse MPP search. Once the 

equivalent MPP is available, the time- and space-dependent problem is transformed into a static 

counterpart and the second-order saddlepoint approximation is used to estimate the reliability with 

higher accuracy. The equivalent MPP assures that the overall optimization is performed 

sequentially in cycles of deterministic optimization and reliability analysis. The proposed strategy 

has been proven to be effective in four examples. 

The proposed method is more accurate than the first order methods since it uses second-order 

saddlepoint approximation to estimate the reliability. The new method, however, suffers from the 

same limitations as other MPP-based reliability methods. For instance, a local MPP, instead of the 

global MPP, may be found, thereby resulting in lower accurate in the reliability prediction. The 

other limitation is that the proposed method cannot handle the case where the MPP occurs on 

boundaries of the time and space domain. In this case, the accuracy of reliability prediction will 

deteriorate. Our future work will focus how to accommodate MPPs on the boundaries of the time 

and space domain. 
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 CONCLUSIONS AND FUTURE WORK 

7.1 Conclusions 

The objective of this dissertation is to predict reliability in the design phase and reliability-

based design with Kriging and Envelope methods. This dissertation includes five research tasks. 

In the first task, an accurate method based on the Gaussian regression with active learning method 

is developed to predict the system reliability. In the second task, we propose the second-order 

saddlepoint approximation method to predict the system reliability. In the third task, an accurate 

method based on envelope function, efficient global optimization, and the second-order 

approximation is developed to predict time-dependent system reliability. In the fourth task, we 

extend the envelope method to deal with the time- and space-dependent reliability analysis. In the 

last task, the envelope method for time- and space-dependent reliability-based design is proposed. 

This task uses the idea of sequential optimization to decouple the double loop optimization into 

deterministic optimization and reliability analysis. Based on results of the above research tasks, 

we provide conclusions as follows. 

The results of research task I (system reliability system with Kriging method) show that 

accounting for the dependence between responses at different input points can improve the 

accuracy and efficiency of the system reliability prediction. The use of active learning also helps 

reduce the computational time. The proposed method is more accurate than the independent 

kriging method giving the same computational time. The proposed method is also more efficient 

than the independent kriging method giving the same accuracy requirement. However, the 

proposed method does not consider the dependence among components. Considering the 

dependence among components could further improve accuracy and efficiency of the system 

reliability prediction.  

The results of research task II (system reliability analysis with second order approximation) 

indicate that second-order saddlepoint approximation method (SOSPA) is more accurate than 

second order reliability method (SORM) and first-order reliability method (FORM) with 

increasing function calls. SOSPA accurately produces the marginal distributions of all component 

responses. The dependences between component responses are considered with only the first-order 
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approximation for the sake of efficiency. The accuracy of the proposed method can be furtherly 

improved if we estimate component correlations more accurately by a second order approximation. 

The results of research task III (time-dependent system analysis with envelope method) show 

that the envelope method is an alternative method for predicting time-dependent system reliability. 

The envelope method with second-order approximation is in general more accurate than the first- 

order approximation method. The proposed method works well if the envelope function is convex. 

It does not work for a special case where the worst-case MPP occurs at the boundary of a time 

interval as the envelope function is not differentiable at the end points of an interval. 

The results of research task VI (time- and space-dependent reliability analysis with envelope 

method) prove that the proposed method can efficiently produce an accurate time- and space-

dependent reliability prediction with second-order approximation. The worst-case MPP can be 

found quickly by combining sequential efficient global optimization with the first-order reliability 

method. The major computational cost is the MPP search and second derivative calculations of the 

envelope function. 

The last task demonstrates that the new method can achieve the most accurate design result 

among all methods by employing the envelope method for time- and space-dependent reliability-

based design. The proposed method also shows that the sequential-loop method is much more 

efficient than the double-loop reliability-based design method. The new method still suffers from 

the same limitation as other MPP-based reliability methods. It may not work when multiple MPPs 

exist. 

7.2 Future Work 

This dissertation mainly focuses on series system reliability analysis. Our future work will 

address the following areas. (1) The accuracy of the system reliability analysis can be furtherly 

improved if we estimate the component correlations with the second-order approximation method. 

Besides, since the envelope function might have multiple MPPs, developing advanced methods to 

identify all important MPPs might achieve more accurate prediction results. (2) In terms of the 

applications of developed methods, we can apply our developed methods to more complicated 

engineering systems, such as parallel systems and mixed systems with multiple types of random 

variables, stochastic processes, and random processes. 
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