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ABSTRACT 

There has been a growing interest within the aerospace industry for shifting towards a 

digital twin approach, for reliable assessment of individual components during the product 

lifecycle - across design, manufacturing, and in-service maintenance, repair & overhaul (MRO) 

stages. The transition towards digital twins relies on continuous updating of the product lifecycle 

datasets and interoperable exchange of data applicable to components, thereby permitting 

engineers to utilize current state information to make more-informed downstream decisions. In 

this thesis, we primarily develop a framework to store, track, update, and retrieve product lifecycle 

data applicable to a serialized component, its features, and individual locations.  

From a structural integrity standpoint, the fatigue performance of a component is inherently 

tied to the component geometry, its material state, and applied loading conditions. The 

manufacturing process controls the underlying material microstructure, which in turn governs the 

mechanical properties and ultimately the performance. The processing also controls the residual 

stress distributions within the component volume, which influences the durability and damage 

tolerance of the component. Hence, we have demonstrated multiple use cases for fatigue life 

assessment of critical aerospace components, by using the developed framework for efficiently 

tracking and retrieving (i) the current geometric state, (ii) the material microstructure state, and 

(iii) residual stress distributions. 

Model-based definitions (MBDs) present opportunities to capture both geometric and non-

geometric data using 3D computer-aided design (CAD) models, with the overarching aim to 

disseminate product information across different stages of the lifecycle. MBDs can potentially 

eliminate error-prone information exchange associated with traditional paper-based drawings and 

improve the fidelity of component details, captured using 3D CAD models. However, current CAD 

capabilities limit associating the material information with the component’s shape definition. 

Furthermore, the material attributes of interest, viz., material microstructures and residual stress 

distributions, can vary across the component volume. To this end, in the first part of the thesis, we 

implement a CAD-based tool to store and retrieve metadata using point objects within a CAD 

model, thereby creating associations to spatial locations within the component. The tool is 

illustrated for storage and retrieval of bulk residual stresses developed during the manufacturing 

of a turbine disk component, acquired from process modeling and characterization. Further, 
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variations in residual stress distribution owing to process model uncertainties have been captured 

as separate instances of the disk’s CAD models to represent part-to-part variability as an analogy 

to track individual serialized components for digital twins. The propagation of varying residual 

stresses from these CAD models within the damage tolerance analysis performed at critical 

locations in the disk has been demonstrated. The combination of geometric and non-geometric 

data inside the MBD, via storage of spatial and feature varying information, presents opportunities 

to create digital replica or digital twin(s) of actual component(s) with location-specific material 

state information. 

To fully realize a digital twin description of components, it is crucial to dynamically update 

information tied to a component as it evolves across the lifecycle, and subsequently track and 

retrieve current state information. Hence, in the second part of the thesis, we propose a dynamic 

data linking approach to include material information within the MBDs. As opposed to storing 

material datasets directly within the CAD model in the previous approach, we externally store and 

update the material datasets and create data linkages between material datasets and features within 

the CAD models. To this end, we develop a model-based feature information network (MFIN), a 

software agnostic framework for linking, updating, searching, and retrieving of relevant 

information across a product’s lifecycle. The use case of a damage tolerance analysis for a 

compressor bladed-disk (blisk) is demonstrated, wherein Ti-6Al-4V blade(s) are linear friction 

welded to the Ti-6Al-4V disk, comprising well-defined regions exhibiting grain refinement and 

high residuals stresses.  By capturing the location-specific microstructural information and residual 

stress fields at the weld regions, this information was accessed within the MFIN and used for 

downstream damage tolerant analysis.  The introduction of the MFIN framework facilitates access 

to dynamically evolving as well as location-specific data for use within physics-based models. 

In the third part of thesis, we extend the MFIN framework to enable a physics-based, 

microstructure sensitive and location-specific fatigue life analysis of a component. Traditionally, 

aerospace components are treated as monolithic structures during lifing, wherein microstructural 

information at individual locations are not necessarily considered. The resulting fatigue life 

estimates are conservative and associated with large uncertainty bounds, especially in components 

with gradient microstructures or distinct location-specific microstructures, thereby leading to 

under usage of the component’s capabilities. To improve precision in the fatigue estimates, a 

location-specific lifing framework is enabled via MFIN, for tracking and retrieval of 
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microstructural information at distinct locations for subsequent use within a crystal plasticity-

based fatigue life prediction model. A use case for lifing dual-microstructure heat treated LSHR 

turbine disk component is demonstrated at two locations, near the bore (fine grains) and near the 

rim (coarse grains) regions. We employ the framework to access (a) the grain size statistics and (b) 

the macroscopic strain fields to inform precise boundary conditions for the crystal plasticity finite-

element analysis. The illustrated approach to conduct a location-specific predictive analysis of 

components presents opportunities for tailoring the manufacturing process and resulting 

microstructures to meet the component’s targeted requirements. 

For reliably conducting structural integrity analysis of a component, it is crucial to utilize 

their precise geometric description. The component geometries encounter variations from nominal 

design geometries, post manufacturing or after service. However, traditionally, stress analyses are 

based on nominal part geometries during assessment of these components. In the last part of the 

thesis, we expand the MFIN framework to dynamically capture deviations in the part geometry 

via physical measurements, to create a new instance of the CAD model and the associated 

structural analysis.  This automated workflow enables engineers for improved decision-making by 

assessing (i) as-manufactured part geometries that fall outside of specification requirements during 

the materials review board or (ii) in-service damages in parts during the MRO stages of the 

lifecycle.  We demonstrate a use case to assess the structural integrity of a turbofan blade that had 

experienced foreign object damage (FOD) during service.  The as-designed geometry was updated 

based on coordinate measurements of the damaged blade surfaces, by applying a NURBS surface 

fit, and subsequently utilized for downstream finite-element stress analysis. The ramifications of 

the FOD on the local stresses within the part are illustrated, providing critical information to the 

engineers for their MRO decisions. The automated flow of information from geometric inspection 

within structural analysis, enabled by MFIN, presents opportunities for effectively assessing 

products by utilizing their current geometries and improving decision-making during the product 

lifecycle. 
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 INTRODUCTION 

1.1 Background 

Across the product lifecycle stages of a component, from design, manufacturing, in-service 

use to retirement, enormous amounts of data is gathered and archived, which can be potentially 

utilized for improved decision making, while designing newer versions of the component or within 

downstream stages of a specific component’s lifecycle [1]. However, typically within industrial 

practice, the lifecycle information is siloed and archived in disconnected databases, as well as 

scattered in different file formats. Consequently, it is challenging to seamlessly access, interpret, 

and utilize relevant information for assessment of components without errors, often-times 

involving the need for humans to intercede within this loop.  

The concept of the digital twin aims to create a digital representation of a serializable 

component or system, which can be used to predict its future performance based on the current 

available knowledge [2,3].  To fully realize a digital twin representation of a component requires: 

(i) state information, which is dynamically or periodically updated, (ii) prognosis, which can come 

from a range of sources, including data driven models, analytical models, or physics-based 

simulations  [2–4], and (iii) a representation of the physical component in a form in which it can 

be appropriately interpreted [4]. The state information is constantly evolving throughout the 

product lifecycle [1]. The current thesis proposes a framework for data exchange, archival, and 

retrieval, as well as dynamically updating pertinent information throughout the lifecycle of a 

component to realize the digital twin representation, which can be effectively used for prognosis 

of the component. 

In aerospace components, fatigue failure is prevalent [5,6] due to the dynamic loads 

experienced during their service. Hence, evaluation of the fatigue life plays a crucial role in 

component analysis for (i) initial design estimates, (ii) post-manufacturing certification purposes, 

and (iii) estimating remaining service life of fielded components during maintenance, repair and 

overhaul stages. Physics-based relationships incorporating the underlying microstructure and 

micromechanical descriptors of the material can be used within prognosis efforts to reduce the 

uncertainties within life predictions [7].  Classical fatigue life prediction methods involve 

regression fits through empirical test data.  While the specimens used for these tests are, on average, 
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representative of the material within the component, they are not specific to a serialized component 

or its geometry. Based on the underlying physical structure and material, each component responds 

differently (defined as its behavior) to its encountered environments, such as experienced 

thermomechanical deformation during the manufacturing process or applied loads during service. 

Hence, firstly, it is critical to account for a component’s precise geometry while estimating the in-

service stresses, to improve precision in our estimates during the structural integrity analysis. 

Secondly, the material performance is dictated by process to structure to property relationships [8]. 

The material’s microstructure is a result of the manufacturing history (processing route) and 

governs the properties [9]. Hence, by tracking the processing path and resulting microstructure, 

the ultimate performance of the material, at any instance within the component, can be more 

systematically determined. Therefore, an efficient methodology for storing and exchanging the 

material’s process-structure-properties information is required, in order to integrate these 

relationships and apply them towards the evaluation of the component’s structural performance. 

A structured methodology for storing and updating material information is desired to maintain 

associations between datasets and enable their seamless exchange across the lifecycle.  Digital 

material databases and external network drive(s) can be used to store and collate material lifecycle 

data, including manufacturing process parameters, microstructural descriptors, mechanical 

properties, simulated data, and in-service usage conditions [10–13].  Since these datasets could be 

created or evolve as the material’s lifecycle progresses, dynamically updating the information 

stored within the database is necessary to facilitate downstream engineering analysis.  Moreover, 

it is crucial to maintain associations between the material datasets and the geometric features of 

the component. 

Product lifecycle metadata can be associated with the component’s design geometry through 

the usage of model-based definitions (MBDs), by using computer-aided design (CAD) models  

[14–16].  Classically, MBDs have been limited to exchanging geometric form, feature dimensional 

tolerance, and manufacturing process planning metadata [15,16].  In the present thesis, our 

objective is to expand MBDs for including and exchanging material information across the 

lifecycle as shown in Figure 1.1. Material information, not only evolves across the lifecycle, but 

could also vary spatially across the volume of the component (i.e. location-specific material 

definitions) [9]. This further necessitates tools to associate the material definition to its geometric 

location or features within the computer-aided design (CAD) models. To address the gaps and to 
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develop a framework for enabling digital twin, the following pertinent questions were addressed 

in this research work: 

• How do we expand MBDs to store and retrieve spatially varying material datasets? 

• Can we enable dynamic tracking, updating and retrieval of material datasets tied to 

specific serialized components and their geometric features? 

• Is it possible to develop a holistic framework which accounts for the following 

characteristics: (a) allows retrieval and usage of precise geometric and material state 

information within structural analysis tools and life prediction models, (b) is 

expandable for tracking and retrieving other pertinent product lifecycle datasets (and 

not limited only to material datasets), (c) software agnostic framework to facilitate 

integration with other commercial engineering software(s) and code(s)? 

• Can we develop a methodology to inform location-specific microstructure information 

within physics-based, microstructure-sensitive fatigue life prediction models?   

• By accessing and utilizing precise material state information within predictive analysis 

via analytical and physics-based models, can we demonstrate improved precision in 

fatigue life estimates associated to a component? 

• Can we develop a workflow for utilizing geometric inspection measurements from 

manufactured or fielded components to inform precise geometric definitions within 

structural analysis tools? 
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Figure 1.1. Expanding model-based definitions by integrating material definitions across the 

product lifecycle, in order to facilitate the realization of a component’s digital twin. 

1.2 Research Contributions 

The research contributions in this thesis can be summarized as follows: 

(1) Implemented a data embedding method (described in Chapter 3) for storing and retrieval of 

spatially varying material information within CAD models by using point cloud objects. 

• Demonstrated a use case to store and retrieve processing-induced residual stress fields 

within a turbine disk component, for usage within a damage tolerance analysis 

conducted at critical locations. The part-to-part variations in predicted the fatigue lives 

owing to variations in residual stress fields has been illustrated (presented in Chapter 

3). 

(2) Developed a data linking framework (model-based feature information network or MFIN) 

(described in Chapter 4) to enable dynamic tracking, updating and retrieval of material 
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lifecycle data. The data linking mechanism was achieved by creating a neutral framework to 

map individual features and spatial locations of a component originating from the CAD model 

with externally stored and updated metadata in material databases(s) or network drives.  

 

• Demonstrated improved precision in fatigue life estimates obtained via a damage 

tolerance analysis of a linear friction welded bladed disk component by incorporating 

manufacturing induced material state information (residual stress fields and 

microstructural attributes) within the analysis. (Presented in Chapter 4). 

 

(3) Extended the MFIN framework to enable physics-based, microstructure-sensitive and location-

specific fatigue life predictions in a component. The MFIN framework was expanded to 

include data linkages for information pertinent to sub-scale micromechanical modeling (via 

crystal plasticity finite-element or CPFE analysis).   

• Demonstrated improved precision in fatigue life predictions tied to a dual-

microstructure heat treated turbine disk component by enabling and realizing a 

location-specific lifing approach via accounting for local microstructures. The MFIN 

framework was utilized to access (i) grain size statistics and (ii) the macroscopic strain 

fields to inform precise boundary conditions for the CPFE analysis.  (Presented in 

Chapter 5).  

 

(4) Developed an automated workflow to utilize geometric inspection measurements within 

structural analysis tools via the MFIN framework, thereby facilitating analysis of components 

by using current geometric state.   

• Demonstrated the creation of a CAD model (and associated stress analysis) of an in-

service turbofan component by utilizing geometric inspection data, thereby capturing 

any modifications to its surfaces due to foreign object damages. This was achieved by 

integrating the scanned coordinate measurement data (acquired during a component’s 

maintenance) to surface features via MFIN, which was retrieved and fitted using 

freeform surfaces (via an external code), followed by finally updating the surface 

geometries within the nominal CAD model of the component with fitted surfaces 

(presented in Chapter 6). 
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 LITERATURE REVIEW 

2.1 Evolution of digital engineering 

Traditional component design practice has largely been based on the geometry of the product. 

Two-dimensional, paper-based drawings have been used to represent the geometric shape and 

tolerances of an object (with different views as shown in Figure 2.1) with associated component 

design details for centuries. These drawings have been used to exchange the design definitions 

through different stages in the product lifecycle, such as manufacturing, quality inspection, and 

maintenance [17]. Typically, components are manufactured as specified by the geometric shape in 

the design, followed by physical testing to qualify the components, in order to meet the desired 

minimum performance per the design intent. This process of physically producing and then 

qualifying components is associated with multiple manufacturing trials that incur high costs and 

increased development time [18]. Based on the underlying physical structure and material 

composition, components respond differently to their encountered environments [19], during 

manufacturing and service. The material behavior evolved during the processing route of a 

component, plays a crucial role in determining its final performance capabilities. Inclusion of 

behavioral information with the geometric shape in the design definition has an opportunity to aid 

in forecasting the component’s performance upfront in the design process, thereby reducing 

expensive manufacturing trials and enabling the exploration of a larger parameter space for new 

designs to meet the performance requirements, due in part to its inclusion within the digital artifact 

rather than in a separate, siloed location. 

With the advancement in digital technology, predictive models have been evolving to simulate 

the manufacturing process and to determine the component behavior. In parallel, the design 

function has shifted from paper-based, 2D drawings to using 3D Computer-aided design (CAD) 

models to represent and communicate design definitions [20,21]. Utilizing predictive models to 

simulate behavior and capturing these definitions in 3D CAD models provides an opportunity to 

include behavioral information in the earlier stages of design, which provides opportunities to 

centralize within a secure location versus multiple disparate locations. However, current CAD 

models (shown in Figure 2.1(b)) are limited to capturing the shape and geometric definitions 
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(explicit definitions) and have very limited capability to include implicit definitions, such as the 

behavior developed as a result of the component’s structure.  

 

 

Figure 2.1. The overarching vision to transition towards a digital twin by capturing the behavior 

definition within the design context. The figure represents this transition in design definition 

from (a) 2D paper drawing based, to (b) CAD based to (c) MBD-CAD based to (d) Virtual 

Environment based [22] to (e) Lifecycle based [23]. 

The use of 3D CAD models to include detailed product definitions, and replace 2D paper-

based technical drawings, is also a goal of the concept of model-based definition (MBD). The aim 

is to use MBD-CAD models to communicate product definitions, in order to improve the quality 

of the exchanged product information and eliminate errors originating due to manual human 

intervention and interpretation of product metadata; both of which can lead to significant cost 

savings and acceleration of the design process cycle [17,20,24] . With this motive, CAD models 

have been used as an input to manufacturing processes, communicating the desired component 

geometry and the tolerances applied to its features [25]. However, the purpose of using the model-

based approach has been expanding, beyond communication, for supplying the driving inputs 
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within the downstream manufacturing stages and spanning across the entire product lifecycle [26–

29]. With inclusion of the behavioral information within CAD models (Figure 2.1(c)), the level 

and type of information captured and exchanged using MBD techniques exceed those of a simple 

geometric model.  

Further, the MBD approaches can be expanded to include contextual information, such as the 

operating environment details or the process environment details. The contextual information from 

the MBD can provide details for simulating (Figure 2.1(d)) a virtual product environment. Hence, 

by means of MBDs, we could potentially create a digital prototype of the designed component or 

the as-designed digital twin, as shown in Figure 2.1(e). These as-designed twin, also known as 

product twin, can be used to simulate the component to forecast the performance capability during 

the design stage and prior to the production [4,30]. Since the product lifecycle information tied to 

component evolves across the product lifecycle, this requires as-designed digital twin to be 

dynamically updated for creating as-manufactured digital twins post the manufacturing process 

and as-used digital twin to replicate fielded components. In order to progress towards this vision 

of realizing digital twin, the current thesis firstly, addresses on closing the gap for storing and 

exchanging behavioral definitions via CAD models (specifically material definitions). Next, we 

develop a strategy for dynamically updating material behavioral information associated to 

geometric features in a CAD model.  

2.2 Significance of incorporating processing-induced residual stresses within fatigue life 

analysis of components 

The concept of the MBD can be applied to include manufacturing process-induced residual 

stresses within design definitions of a component, as the residual stresses influence the component 

production process and performance such as durability and damage tolerance [31]. Residual 

stresses influence the fabrication of a component, especially in a multi-stage manufacturing 

process. Components encounter thermomechanical loads during processes such as forging or heat 

treatment, that induces permanent localized strain gradients. These strain gradients manifest as 

residual stress distributions within the component [32]. These stresses are classified as bulk 

residual stresses or Type I, when they equilibrate over the length scale of the component 

dimensions. The residual stresses redistribute after each stage during the manufacturing process, 

and influence the succeeding manufacturing steps [33]. Due to excessive residual stresses, 
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components can distort during the machining stages, exceeding the geometric tolerances of 

specific features [34,35]. Incorporating residual stress distributions from process modeling steps 

within the design definition can provide the residual stress distribution knowledge and enable 

optimizing the process parameters to avoid part distortion and scrap for a fixed design of the 

component. Process modeling tools, such as DEFORM [36], simulate the manufacturing process 

steps to predict these bulk residual stress distributions from each manufacturing step.  

Post manufacturing, the residual stress distribution developed within the component, 

influences its performance, especially the fatigue life of the component [37,38]. For a crack or a 

flaw at a location within the component, compressive residual stress fields inhibit crack growth 

and delays fatigue failure, whereas tensile residual stress fields accelerate crack growth and debit 

the fatigue life. However, residual stresses are not typically included in lifetime analyses. By 

accounting for residual stresses during the lifing process, more informed decisions can be made 

about the inspection and maintenance schedules and can even result in life extensions of the 

components. For instance, John et al. [21] have observed an approximate twofold increase in 

lifetime based on a damage tolerant analysis by including the 30% retained compressive residual 

stress from shot peening. Enright et al. have demonstrated the integration of residual stress fields 

from DEFORM process model with probabilistic damage tolerant analyses, specifically DARWIN 

(Design Assessment of Reliability with INspection), for life prediction analysis at critical zone 

locations [39]. Including residual stress fields from models within design definition, and their 

inclusion for structural analysis and lifing models, requires a method to store and exchange the 

spatially varying residual stresses in a form that will persist when used within multiple software 

tools across the lifecycle.  

2.3 Significance of enabling microstructure-sensitive and location-specific fatigue life 

analysis of components 

As previously introduced in Chapter 1, the performance of a component and the underlying 

material is governed by process-structure-property relationship [8]. Hence, by controlling the 

processing conditions, we could intentionally tailor the material’s microstructure to meet the 

targeted performance requirements and develop next generation components. A dual-

microstructure heat treated (DMHT) turbine disk [40–42] is an example of a component produced 

with distinct microstructures at individual locations to meet the desired location-specific 
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performance requirements. To maximize fatigue resistance in the bore region of the Ni-based 

superalloy disk, fine grain microstructures are produced by exposing the bore region to a sub-

solvus (below the γ′ solvus temperature) heat treatment process. On the other hand, for achieving 

improved resistance to creep and dwell fatigue at higher temperatures, coarse grain microstructures 

are produced in the rim region of the disk via a super-solvus heat treatment. For such gradient 

microstructures, new methodologies are needed for location specific lifing approaches by 

accounting for the effects of the underlying microstructure.  

Traditionally, while lifing a component, the minimum allowable fatigue life in the material 

is identified through fatigue testing using specimens which are representative of the component. 

While following this approach, we treat the entire component as a monolithic structure (i.e. 

assuming all the locations having similar microstructures and mechanical properties) and the 

fatigue test data, regardless of the origins of the excised test specimens relative to the component 

location, is combined for statistical analysis as a single population, often-times resulting in large 

uncertainty bounds [9]. The minimum allowable life to crack initiation is classically identified as 

either (i) the -3 standard deviations (-3σ) from the mean value of the material’s low cycle fatigue 

life or (ii) the lower bound life corresponding to probability of failure of 1/1000 (i.e. the B0.1 life), 

which could lead to overly conservative estimates [7,43]. However, to life microstructure-tailored 

components with gradient microstructures across the volume of the component, opportunities exist 

to utilize a location-specific fatigue life analysis approach by treating separate datasets, 

corresponding to the distinct microstructures, in individual regions/locations of the component [9]. 

The location-specific lifing approach presents the potential to (i) reduce the uncertainties in fatigue 

life predictions originating from traditional lifing approach and (ii) identify life limiting locations 

in the component which require special attention during inspection and maintenance or additional 

considerations for design modifications [9,44]. 

Microstructure-sensitive fatigue life prediction frameworks via crystal plasticity finite-

element (CPFE) simulations, presents opportunities to utilize a physics-based approach to evaluate 

location-specific fatigue life in a component. Within crystal plasticity [45,46], microstructural 

grain-level information is utilized and elastic and plastic anisotropies are incorporated while 

evaluating distributions of strain accumulation and stresses. Energy-based fatigue indicative 

metrics [47–51] have been proposed to predict the fatigue crack initiation by combining the 

contributions of both the plastic strain (which captures dislocation motion) and shear stress (the 
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resistance to the dislocation motion). Bandyopadhyay et al. [49] presented a single energy-based 

fatigue indicative metric (critical value of accumulated plastic strain energy density or Wcriticial
p

), 

applicable for predicting fatigue crack initiation across multiple loading [49] and temperature 

conditions [50]. However, to effectively utilize this type of modeling approach for conducting 

location-specific fatigue life analysis of components within a workflow, the results of the 

manufacturing process and precise microstructural descriptors are required to instantiate the crystal 

plasticity models. In this work, we create connectivity between component’s geometric definitions 

and its location-specific microstructural information, for use within the crystal-plasticity analysis. 

Additionally, the individual locations in the component are exposed to varying stresses and strains 

during service, which is a function of the component geometry, applied loading conditions, and 

the gradient material structure. These stress/strain states at distinct locations are crucial inputs to 

inform precise boundary and loading conditions for the sub-scale CPFE analysis for the life 

analysis of components.  Component-scale finite-element (FE) simulations with in-service loading 

conditions can be utilized to obtain the stress/strain distributions. Hence, we require a methodology 

to utilize stress/strain fields from component-scale FE analysis for informing boundary conditions 

within sub-scale CPFE simulations. With this overarching aim, we develop a holistic framework 

(Figure 2.2), to efficiently assess fatigue life of components with tailored and/or gradient 

microstructures, by utilizing a microstructure-sensitive computational approach. As shown in 

Figure 2.2, we start creating a digital twin of the component by including manufacturing induced-

material state description and subsequently enable using the information within component lifing. 
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Figure 2.2. Overarching digital twin framework for conducting location-specific fatigue life 

analysis of components with direct connectivity to design and manufacturing data workflows and 

in-service loading states via microstructure-sensitive crystal plasticity-based life predictions. 
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2.4 Significance of utilizing current geometric description during structural integrity 

analysis of components 

 Components encounter geometric deviations from the design during the manufacturing 

process, thereby necessitating decision-making regarding their disposition. During quality 

inspection, the manufactured components are assessed to evaluate if the geometries meet the 

allowable geometric tolerances and materials specifications. A materials review board (MRB) 

process [1] is required to analyze and assess out of tolerance components, in order to make 

decisions regarding their usability and certification. Common dispositions include accepting the 

part as is, accepting with concessions, repairing the part with secondary manufacturing processes, 

or scrapping it altogether (Figure 2.3). In some instances, these decisions are based on experience 

and engineering intuition, while in other cases, time consuming, one-off analyses need to be 

conducted.  Structural analysis can be used to simulate the in-service loading conditions and 

evaluating the performance capabilities of these manufactured components, by utilizing their 

precise geometries post manufacturing. However, the structural analysis tools currently require 

manual creation of the geometric models to instantiate the manufactured components via 

interpreting physical measurements from the quality inspection process, which can be time-

consuming, error prone, and is often forgone to meet production schedule needs.  

 For capturing the deviations in the surface geometry of a component, coordinate measuring 

machines (CMM) can be utilized to acquire position coordinates by scanning physical surfaces 

[52]. Reverse engineering techniques for fitting surfaces to point cloud coordinate measurement 

data has been developed extensively [53,54]. Non-uniform rational B-spline (NURBS)-based 

fitting approaches enable capturing complex surface profiles efficiently by allowing local control 

of the shape [55–57]. These fitting algorithms are usually standalone code(s), which require input 

from the relevant CMM datasets. In doing so, it is crucial to track the measured surface in the 

component and the applicable CMM dataset, for ultimately creating the geometric model of the 

component. In the present work, we utilize a methodology to create connectivity between the 

CMM datasets and measured surfaces by means of MBDs (Figure 2.3), with the overarching aim 

of facilitating assessment of components while using their current geometric description within 

the product lifecycle. 
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Figure 2.3. Vision of utilizing model-based definitions for exchanging data across the product 

lifecycle in order to enable more informed decision-making regarding the disposition of a 

component.
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 DATA STORING OR EMBEDDING APPROACH  

The contents of this chapter were published in Gopalakrishnan S, Hartman NW, Sangid MD. 

Integrating materials model-based definitions into design, manufacturing, and sustainment: a 

digital twin demonstration of incorporating residual stresses in the lifecycle analysis of a turbine 

disk. Journal of Computing and Information Science in Engineering (2021) 21(2). 

 

For integrating material datasets to spatial locations within a CAD model, initially, a CAD-

based tool was implemented to store and retrieve metadata using point objects, which is described 

in this chapter. The tool enables importing externally stored metadata into the CAD software’s 

environment, thereby facilitating storage and retrieval of metadata at spatial locations within a 

CAD model. The initial developments of the tool are presented in [58], which was extended and 

implemented in the current work. The methodology and software framework for the data 

embedding tool are described in Section 3.1 and 3.2, respectively. The developed tool has been 

illustrated with a use case (introduced in Section 3.3) for storage and retrieval of bulk residual 

stresses developed during the manufacturing of a turbine disk component, for downstream usage 

within damage tolerance analysis of the component. The results and discussion for this chapter is 

presented in Section 3.4.   

3.1 Embedding Methodology Background 

For associating metadata to a component’s feature locations, a tool has been developed to 

create spatial points within the CAD model to store the metadata. Points have been used to store 

data as they are fundamental geometric objects that can be used to create other geometric entities 

such as lines, arcs, surfaces, and solids. This enables storing the metadata with precision on fine 

topological features such as a vertex, on the component edges, and surfaces or even within the 

bulk volume. Within the CAD environment, each point object is defined by its location coordinates 

(x,y,z). The tool has been developed to store metadata as name value pairs attached to these point 

objects, which defines the attribute name and the value of the attribute. Once stored, the location 

of each of the points within the geometric space of the model acts as a spatial index for the 

associated metadata. The point objects along with the stored metadata values are henceforth 

referred to as attribute markers in the current chapter. An attribute marker can store multiple 

metadata attributes. For instance, multiple material definitions that apply to a particular location 
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can be associated using a single point. This capability can be applied for storing the components 

of tensorial quantity, such as residual stresses. The data types that can be stored currently using 

the tool are numbers and textual information. Attribute markers follow a schema which is as 

follows: [(x position), (y position), (z position), (Name of Attribute 1), (Value of Attribute 1), 

(Name of Attribute 2), (Value of Attribute 2) … (Name of Attribute n), (Value of Attribute n)]. The 

attribute names are user defined and can comprise alphanumeric data with spaces, whereas the 

attribute values must be a numeric value of floating-point data type. The tool has been developed 

to allow importing and storing datasets, which are structured by nature, and by following this 

schema, they enable querying and searching for data retrieval.  

3.2 Software Framework 

The embedding tool has been developed as a plug-in for the CAD tool, executed by the 

user while launching the CAD software (Figure 3.1(a)). The integration of the embedding tool 

with the CAD software has been performed using the CAD tool’s Software Development Kit 

(SDK), which allows making use of the command-structure functions specific to the CAD tool. 

The only CAD-dependent functionalities used for integration are the loading and unloading 

process of the plug-in, while opening and closing the CAD software, respectively. Thus, the 

embedding plug-in can be easily switched and used with a different CAD tool by using the CAD 

tool’s specific SDK’s functionalities. The current implementation of the tool is shown for Siemens 

NX 10.0 CAD tool. Once the tool is loaded within the CAD software, the user can interact with 

the model to include external datasets by storing and retrieving the stored metadata directly from 

the CAD model. 

The workflow for the metadata storage process using the tool is represented by the flow 

diagram shown in Figure 3.1(b). The process is initiated by the selection for a data storage option. 

The tool allows two methods of importing metadata. For small sets of data, attribute markers can 

be created manually by clicking the location where the markers apply within the CAD model. On 

the other hand, larger sets of metadata can be imported using the bulk data import option. The bulk 

import method creates a collection of attribute marker points or a point cloud, each with its 

associated metadata set. In order to utilize this method of storage, the imported data must be 

structured following the attribute marker schema (described in Section 3.1) in a comma space 

value (CSV) file. While creating the CSV file and defining the spatial coordinates of the attribute 
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markers, if there are differences in the coordinate systems between the CAD model and the external 

software / data sources where the attribute marker datasets originate, a suitable correction using 

translations and/or rotations must be applied manually to ensure consistent storage of the spatial 

metadata within the component’s CAD model. During the import process, the CSV file is imported 

from the database and the tool generates attribute markers from the available datasets. In the 

current study, material behavioral definitions across the entire component geometry have been 

captured using the bulk import mechanism.  

 

 

Figure 3.1. A flowchart describing the CAD-based embedding tool's software architecture, 

including the: (a) integration of the tool with the CAD software, (b) data storage process, and (c) 

data retrieval process. 

 

The search and retrieval of stored metadata can be initiated using the attribute marker 

entities via one of the following options: either the attribute name or the attribute marker location. 
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The metadata retrieval workflow has been presented in Figure 3.1(c). To search based on attribute 

names, the embedding tool filters and extracts all the spatial locations which have the particular 

attribute defined, and to extract attribute values from a specific location within the model, the tool 

executes a Python script that searches for an attribute marker using its location coordinates within 

the CAD model, with the attribute markers being displayed using the CAD tool. For locations 

within the model where there is no stored metadata, the current implementation extracts and returns 

the nearest attribute marker. The extraction capability of the tool enables communicating the 

location-specific metadata directly using the CAD model, which provides a significant advantage 

since many embedded attribute values are typically lost or corrupted during data translation using 

neutral data formats. 

3.3 Residual Stress Use Case  

In order to illustrate how the developed tool enhances a CAD model to store material 

behavioral information and starts forming a model-based definition, a use case has been 

implemented for storage and retrieval of bulk residual stresses [32] generated during the 

manufacturing process of a turbine disk. Residual stresses directly influence the component’s 

production process and performance such as its durability and damage tolerance [31]. By taking 

residual stresses into account during the damage tolerance analysis, more informed decisions can 

be made about the inspection and maintenance schedules and can even result in life extensions of 

the components [59,60]. Hence, the goal here is to associate residual stress fields to locations 

within the component’s CAD model and exchange the stored residual stresses for damage 

tolerance analyses, directly using the CAD model. For implementing the use case, various 

tools/software(s), data sources, and codes have been utilized along with the embedding tool. The 

flow of data between them is shown in Figure 3.2. From a prior Metals Affordability Initiative 

Foundational Engineering Program (MAI-FEP) study [61], residual stress data have been acquired 

from both experimental characterization, as well as from a process modeling tool (DEFORM), 

both of which are stored within the CAD model using the embedding tool. Additionally, in order 

to produce in-service stresses in the component for damage tolerance analysis, a finite-element 

analysis tool has been used to simulate the structural characteristics of the component. Herein, the 

CAD model provides the component geometry for the analysis and the resulting in-service stress 

fields are further stored within the CAD model using the embedding tool. Finally, both the stored 
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residual stresses and in-service stresses are retrieved from the CAD models via the embedding tool 

and utilized within a damage tolerance analysis code. With the overarching aim of implementing 

the use case, the following sections describes the component model creation, residual stress data 

acquisition techniques, and data preparation for storing using the tool. 

 

 

Figure 3.2. A schematic representing the flow of data between various tools/software(s), codes, 

and other data sources for implementing the use case. 

3.3.1 Turbine disk CAD model   

The first step was to create a CAD model, representing the geometric definition of the 

turbine disk. Figure 3.3(a) represents the trimetric view of the turbine disk component model. A 

disk is an axisymmetric component (Figure 3.3(c)), which is to say the geometry is symmetric 

about the z-axis passing through the centroid of the disk and shown as a 3D model in Figure 3.3(b)). 

This CAD model represents the as-designed nominal disk geometry.  
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Figure 3.3. Views of the turbine disk model, namely the (a) trimetric view, (b) front view, and (c) 

2D axisymmetric view. The section view A-A shows the 2-D axisymmetric view of the turbine 

disk. 

3.3.2 Residual stress data acquisition and import dataset preparation  

The residual stress data has been acquired using experimental characterization techniques 

within the MAI-FEP program [61], namely hole-drilling and slitting, performed at feature 

locations 1-11 and 2-3, respectively (as defined in Figure 3.4), within the disk. Process modeling, 

using DEFORM, has been used to determine the full field residual stresses across the entire 

component. Further, cases of variations in the residual stress distribution, arising due to 

uncertainties in the process modeling [62], have been also been generated. These residual stress 

datasets have been structured following the attribute marker schema and stored at locations (as 

displayed in Figure 3.4) within the CAD model of the disk.  
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Figure 3.4. Locations in the CAD model of the turbine disk, where residual data are being stored, 

as represented on the 2D axisymmetric view of the disk. 

Residual stress Data Acquisition: Experimental Characterization  

The first characterization method that has been used to acquire residual stress data is hole-

drilling. Hole-drilling is a mechanical characterization technique used to determine the near-

surface residual stresses as a function of depth. The technique involves drilling of a hole in steps 

from the component surface along the thickness direction, which leads to relaxation of the residual 

stresses and deforming of the component accumulated during initial manufacturing. A strain gage 

rosette is placed on the surface, to measure the associated deformation at each step. The schematic 

of the hole-drilling setup is shown in Figure 3.5(a). The measured deformation is used to back 

calculate the in-plane residual stress components, originally present, at the hole location from the 

surface.  

Hole-drilling measurements have been performed on a physical turbine disk component at 

locations 1-11, as shown in Figure 3.4, at positions around the disk’s axis at 15°, 105°, 195° and 

285° to capture the variation in the measured residual stresses around the 3D component. In feature 

locations 1-5 and 11, distribution parameters of hoop ( 𝜎𝜃𝜃 ), axial ( 𝜎𝑧𝑧 ), and shear ( 𝜎𝜃𝑧 ) 

components of the residual stress have been obtained, whereas in locations 6-10, statistics of radial 

(𝜎𝑟𝑟), hoop (𝜎𝜃𝜃), and shear (𝜎𝑟𝜃) stress components have been obtained. This dataset has been 
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organized, with distribution parameters for each stress component as a scalar entry, as follows: 

[x,y,z, Mean (Hoop Stress), Numeric value, Standard Deviation (Hoop Stress), Numeric value, 

Mean (Axial Stress), Numeric value, Standard Deviation (Axial Stress), Numeric value, Mean 

(Shear Stress), Numeric value, Standard Deviation (Shear Stress), Numeric value] at locations 1-

5 and 11 and [x,y,z, Mean (Radial Stress), Numeric value, Standard Deviation (Radial Stress), 

Numeric value, Mean (Hoop Stress), Numeric value, Standard Deviation (Hoop Stress), Numeric 

value, Mean (Shear Stress), Numeric value, Standard Deviation (Shear Stress), Numeric value ] 

at locations 6-10 . Further, at locations 2 and 3 (Figure 3.4), the measured axial residual stress 

component (𝜎𝑧𝑧) is stored as a function of distance from the surface. Following the schema, the 

dataset has been created in a CSV file as follows: [x,y,z, Axial Stress (HOLE-DRILLING), Numeric 

Value], wherein y=0 and z=constant for each feature location with varying x position in the dataset. 

Slitting analyses has been used as the second technique to generate residual stress data for 

the turbine disk component. Similar to hole-drilling, slitting also uses a strain relaxation approach 

to measure the associated deformation. Unlike drilling of holes, slitting involves cutting of slits 

from the surface, in steps along the thickness direction with a strain gage placed on the end surface 

orthogonal to the slit to measure the associated deformation (Figure 3.5(b)). The measured 

deformation is used to back calculate the originally present axial residual stress (𝜎𝑧𝑧) component 

as a function of slit depth. Slitting has been performed on the turbine disk, starting at locations 2 

and 3, as shown in  Figure 3.4. Following the schema, the dataset has been created in a CSV file 

as follows: [x,y,z, Axial Stress (SLITTING), Numeric Value] wherein y=0 and z=constant for each 

feature location with varying x position in the dataset. 

 

Residual Stress Data Acquisition: Process Modeling  

The manufacturing processing route of the turbine disk that includes forging, heat treat, 

and machining operations has been simulated to determine the induced residual stress distributions 

using DEFORM [36], as part of the MAI-FEP [61]. The inputs to the simulation include the initial 

billet geometry, process parameters, material properties, and the final nominal geometry shape 

(Figure 3.5(c)). The analysis has been performed using axisymmetric quadrilateral elements. The 

mesh included 2756 elements with average mesh size of 0.7 mm. For each of these elements, four 

residual stress components, namely the radial stress (𝜎𝑟𝑟), hoop stress (𝜎𝜃𝜃), axial stress (𝜎𝑧𝑧), and 

shear stress (𝜎𝑟𝑧), are generated. The element centroids from the process model are used to create 
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attribute markers, in which the four residual stress components are stored. Since there was no 

coordinate system mismatch between the CAD model and the process model, the coordinates of 

elemental centroids can be directly used to create the attribute markers. A MATLAB script has 

been written to create the import dataset for the embedding tool from the process modeling results 

file (DEFORM keyword file). Following the schema, the attribute markers dataset in a CSV file 

have been created as follows: [x,y,z, Radial Stress, Numeric Value, Hoop Stress, Numeric Value, 

Axial Stress, Numeric Value, Shear Stress, Numeric Value], wherein x,y,z are the elemental 

centroid positions. 

 

 

Figure 3.5. Residual stress data acquisition techniques: (a) schematic of the hole-drilling 

experiment, (b) schematic of slitting experiment, and (c) flow diagram representing the 

DEFORM process modeling. 

 

 

 



 

 

42 

Residual Stress Data Acquisition: Process Modeling Variations due to Model Uncertainty  

In order to demonstrate potential part-to-part variations that can be forecasted in the as-

designed digital twins or tracked among individual components of the as-built digital twins, 

variations in the residual stresses were studied based on the reported uncertainties of the available 

dataset [62]. Three cases of varying residual stress distributions have been created, in addition to 

the available nominal residual stress distribution for this study, to represent cases of part-to-part 

variations. To create these updated residual stress distributions, the nominal radial stress values 

were initialized as pre-defined stress fields with perturbations at locations L1 and L2 (as shown in 

Figure 3.6(a)) within an ABAQUS finite element model, followed by a relaxation step to 

redistribute and equilibrate the stress fields to generate new residual stress distributions. All the 

surfaces of the 2D axisymmetric disk model were constrained from displacing in the normal 

direction, similar to a heat treatment process analysis. The choices of percentage changes for the 

perturbation were made, such that the change in the final radial residual stresses from the nominal 

values, after running the analysis step, were within the radial stress uncertainty bounds reported 

for a location between L1 and L2 in [62]. The updated final radial residual stress percentage 

changes for the three generated cases at location L1 were 87%, -20.35% and 67.26% and at 

location L2 were 159%, 109.09%, -172%. The contour plots of the original nominal radial residual 

stress distribution, and the three instances of distributions arising due to model uncertainty 

(analogous to part-to-part variation), are represented in the Figure 3.6(a) and Figure 3.6(b)-(d), 

respectively. 
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Figure 3.6. Visualization of the predicted radial component (𝜎𝑟𝑟) of residual stress datasets, with 

variations arising due to process modeling uncertainties highlighted at locations L1 and L2: (a) 

Nominal residual stress distribution from DEFORM simulation defined as Turbine Disk Model 

1; (b), (c), (d) Three cases of varying residual stress distributions generated to represent process 

modeling variations termed as Turbine Disk Model 2, Turbine Disk Model 3 and Turbine Disk 

Model 4, respectively. 

3.4 Results and Discussion 

3.4.1 Inclusion of residual stress fields within CAD model of turbine disk 

The residual stress datasets, that have been acquired and re-organized (Section 3.3.2) as per 

the attribute marker schema (described in Section 3.1), have been imported and stored within the 

CAD model of the turbine disk using the embedding tool. The four cases of residual stress fields, 

representing part-to-part variability, have been stored within four instances of CAD models, as 

shown in Figure 3.7(a)(i-iv) based on the nominal turbine disk geometry, using the bulk data 

import method in the developed tool. The detailed representation of the enhanced CAD model of 
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the disk with nominal residual stresses (Figure 3.7(a) (i)) obtained from process modeling and 

characterization techniques is shown in Figure 3.7(b). The attribute markers are represented as ‘+’, 

which is the default representation of a point object in the CAD software used in this study. In the 

process of including the residual stresses, the pre-processing steps involved (a) preparation of the 

CSV import file with point object information and (b) importing the data to create point objects 

within the CAD model, both being computationally feasible and taking less than two minutes. 

After storing the residual stress datasets, the native CAD model’s file size increased moderately, 

from 166 kilobytes to 742 kilobytes, while remaining as a sufficiently small file size to promote 

data exchange.   

 

 

Figure 3.7. (a) Four instances (cases) of the turbine disk CAD model stored with residual stress 

definitions from: (i) Turbine Disk CAD Model 1 (nominal residual stresses from the process modeling) 

and (ii), (iii), and (iv) Turbine Disk CAD Model 2-4, respectively with residual stress data to represent 

part-to-part variations; (b) 2D Axisymmetric view of the 3D CAD model of the turbine disk with attribute 

markers storing the nominal residual stress data; (c) Example of an attribute marker with residual stress 

data from process model, following the schema structure (attribute name followed by attribute value, in 

pairs, storing multiple attributes); and (d) Example of an attribute marker with residual stress data from 

experimental characterization (Slitting), following the schema structure (attribute name followed by 

attribute value, at a measurement location). 
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Attribute markers have been created across the component volume to store residual stress 

fields from process modeling for all of the 2D axisymmetric components (Radial Stress (𝜎𝑟𝑟), 

Hoop Stress (𝜎𝜃𝜃), Axial Stress (𝜎𝑧𝑧), Shear Stress (𝜎𝑟𝑧)) of the stress tensor (shown in Figure 

3.7(c)), enabled by the capability of the framework to store multiple attributes at a single location. 

This capability has also been used to capture the variations in measured residual stress components 

from hole-drilling at feature locations 1-11, by creating attribute markers on the surface of the disk 

at these feature locations. The use of point objects allows storing of metadata with fine precision. 

For instance, the measured gradient of the axial stress component ( 𝜎𝑧𝑧)  near the surface at 

locations 2 and 3 have been captured by creating attribute markers at the hole drilling measurement 

locations. To store axial residual stress (𝜎𝑧𝑧) from slitting, 37 attribute markers have been created 

within 7.62 mm from the surface – one such marker shown in Figure 3.7(d). To store the near 

surface residual stresses from hole-drilling, 20 attribute markers have been created within a 0.9652 

mm width from the surface. The demonstrated ability to store experimentally measured data, 

alongside the predicted model data, is necessary for the verification, validation, and uncertainty 

quantification procedures to build trust in the predictive models [63] and is needed to certify the 

usage of individual components whose design relies on modeling results. This demonstrated ability 

also becomes critically important for changing business models across product portfolios with 

increasingly long lifecycles, particularly as it relates to sourcing and provisioning maintenance and 

sustainment services. 

3.4.2 Incorporation of residual stress definitions in fatigue life analysis 

The stored residual stress fields can be retrieved from the CAD models using the presented 

tool and utilized, along with the stresses generated within the disk during its service, for damage-

tolerant based fatigue life analysis. During service, turbine disks encounter varying rotation speeds 

and are subjected to fatigue loading. In order to obtain the in-service stresses generated in these 

disks, a finite element (FE) simulation has been performed. The analysis has been performed for 

the maximum load case, while assuming the minimum applied load to be zero, i.e. when the disk 

is at rest (hence the fatigue stress ratio is R=0). The model used for this analysis, with the loads, 

boundary conditions, and the mesh are as shown in Figure 3.8(a). The inner bore region of the disk 

has been imposed with a displacement constraint in the radial direction (𝑢𝑟𝑟 = 0) and the upper 

surface has been constrained in the axial direction (𝑢𝑧𝑧 = 0) to simulate the constraints imparted 
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by the shaft on the disk. For this simulation, the only load that has been considered is the load 

applied due to spinning of the disk. A centrifugal load has been applied on the disk with a spin 

speed of  𝜔 = 15,000 𝑟𝑝𝑚 [64]. The outer blade loads and shrink fit loads due to attaching the 

disk to the shaft, have been ignored. Linear elastic, isotropic material properties of IN718, which 

are the Young’s Modulus E = 170 GPa  and Poisson’s ratio (ν) = 0.3 at 600 ℃ [64], as well as 

the density ( ρ) = 8220 kg/m3 , have been applied to the disk section. Linear quadrilateral 

elements have been used to mesh the model with element size of 0.7 mm and 2765 elements, 

similar to process modeling simulation (Section 3.2.2). 

 

 

Figure 3.8. Finite element model of the in-service disk: (a) 2D axisymmetric model geometry 

with quadrilateral mesh elements, centrifugal load, and boundary conditions and (b) Maximum 

principal stress distribution generated in the disk, from in-service rotation, marked with two 

selected high stress zones for damage tolerant based lifing analysis. 

 

The maximum principal stress (𝜎𝐼,𝑚𝑎𝑥) distribution within the disk, obtained from the FE 

analysis is as shown in Figure 3.8(b). In order to store these in-service stresses within the turbine 

disk model, so as to extract and use them for life analysis, a new CAD instance of the disk was 

created. From the analysis model, the location coordinates of FE centroids have been computed 

using the nodal coordinates. The elemental centroid locations along with the maximum principal 

stresses at each of these elements, form the attribute markers to be imported and stored within the 

new CAD model instance. To account for the difference in coordinate systems between the FE 

model and the CAD model (as discussed in Section 3.2), a manual correction has been applied to 

the position coordinates of the attribute markers using suitable rigid body translations, prior to 
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importing the dataset. Finally, by using the embedding tool, these attribute markers with 𝜎𝐼,𝑚𝑎𝑥 

have been imported and stored at these locations within the disk.  

In order to perform fatigue life prediction analysis based on damage tolerant approach, two 

zones have been selected from the high stress regions within the disk (shown in Figure 3.8(b)). 

The maximum principal stresses in these zones are 𝜎𝐼,𝑚𝑎𝑥 = 986 𝑀𝑃𝑎  in zone 1 and 𝜎𝐼,𝑚𝑎𝑥 =

590 𝑀𝑃𝑎 in zone 2. In each of these zones, a blunt tip crack with the shape of a U notch of initial 

length 𝑎𝑖 = 0.10 𝑚𝑚, that can be missed during crack inspection [65],  has been assumed to be 

present. The analysis has been formulated such that the maximum principal tensile stresses will 

lead to opening of the crack, following mode I crack growth. Since the directions of 𝜎𝐼,𝑚𝑎𝑥 in these 

zones are along the radial direction (𝑒𝑟̂ ), the crack is assumed to be growing along the axial 

direction of the disk (𝑒𝑧̂), such that the tensile maximum principal stresses at these zone locations 

act as the crack opening stresses. The estimated life for this crack to grow to a critical final crack 

length 𝑎𝑓 has been computed. The final length (𝑎𝑓) for each zone has been determined as the 

length at which stress intensity factor (𝐾𝐼 ) [66] reaches the fracture toughness (𝐾𝐼𝐶) (𝐾𝐼𝐶 =

85 𝑀𝑃𝑎√𝑚  [64]). To estimate the number of cycles (𝑁𝑓) for the initial crack length (𝑎𝑖) to grow 

into a final crack length (𝑎𝑓), a formulation incorporating both the residual stresses and the service 

stresses has been used [67]. 

The Paris law (Eq. (3.1)) provides the relationship during stage II crack growth, between 

the rate of crack propagation (da/dN) and effective stress intensity factor (∆Keff), which is the 

driving force for the crack growth. 𝐶 , 𝑛  are Paris constants for IN718, with values taken as 

2.83 𝑋 10−17
(

𝑚𝑚

𝑐𝑦𝑐𝑙𝑒
)

𝑀𝑃𝑎√𝑚𝑚
 𝑎𝑛𝑑 3.213  respectively  at R ~ 0 at elevated temperature [68]. 

 

da

dN
=   C(∆Keff)

n  (3.1) 

  

The Walker model [69] modifies the effective stress intensity range (∆Keff) in the Paris law 

(Eq. (3.1)) as shown in Eq. (3.2), to account for the effects of changes in the R ratio on the crack 

growth rate. Using this formulation, the effect of residual stress has been incorporated in the stress 

ratio R (shown in Eq. (3.3)), by linear superposition of the maximum principal applied stresses 

(i.e. σI,min corresponding to the minimum applied load and σI,max corresponding to maximum 
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applied load) with the residual stress component (σRS)  along the direction of the maximum 

principal applied stress. Eq. (3.3) is valid for R ≥ 0 and takes the value of 0 for cases when R <

0. In the present analysis, σI,min = 0 and σI,max is obtained from the FE analysis. m is the material 

dependent Walker exponent (m = 0.5) [70]. 

    ∆Keff = Kmax(1 − R)m (3. 2) 

 

R =  
σI,min + σRS

σI,max + σRS
 

(3.3) 

 

 

Kmax is the stress intensity factor corresponding to maximum load, which has also been 

superimposed with residual stress as shown in Eq. (3.4), wherein F(a/w)  is the geometric 

correction factor, w is the width of the section and a is the crack length. 

 

 
Kmax =  (σI,max + σRS)F (

a

w
) (πa)

1
2 (3.4) 

 

F(a/w) varies for the crack placed in each of the zones and is a function of a and w. The 

width of the two sections in the zones analyzed are w1 = 27.21 mm and are w2 = 5.89 mm, 

respectively. A FE approach was used to obtain the geometric correction factor for the turbine disk, 

for details please refer to Appendix A. Using the critical stress intensity factor, KIC , and 

appropriate geometric correction factor, the final crack length has been calculated for each of the 

zones as af,Zone1 = 0.6742 mm and af,Zone 2 = 0.6832 mm. 

By substituting Eq. (3.2)-(3.4) in Eq. (3.1) and rearranging dN in terms of da, we can 

obtain the expression to compute the life in each zone for the crack to grow from the initial to final 

length by integrating between ai to af (as shown in Eq. (3.5)).  

 

 
                     Nf =

1

(C(σI,max + σRS)(1 − R)m)
n ∫

da

(F (
a
w) (πa)

1
2)

n

af

ai

 
(3.5) 

 

For extracting σI,max and σRS from the CAD models, the location-based retrieval method 

of the developed tool has been used. The spatial coordinates of the geometric location ahead of the 
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initial (assumed) crack were searched in each of the two zone locations, from the CAD model with 

predicted in-service stresses and the four CAD models containing residual stress fields, in which 

the radial stress component (σrr) values were located. In zone 1, the σRS values obtained from the 

four turbine disk models are: σRS = -113 MPa, σRS = -14 MPa, σRS = -136 MPa, σRS = -37 MPa, 

respectively. Whereas, in zone 2, the σRS values obtained from the four turbine disk models are: 

σRS = 22 MPa, σRS = 57 MPa, σRS = 46 MPa, σRS = -16 MPa, respectively. For the case of this 

simplified analysis, the residual stress field did not evolve or redistribute for the four CAD models, 

as the crack was propagating. Since the turbine disk CAD models each have the same nominal 

geometry, the coordinate systems are the same between the models. Hence, the metadata from a 

particular location has been extracted without any associated issues in mismatch between the 

coordinate systems. After obtaining all the required stress fields, Eq. (3.5) is used to calculate the 

predicted life for the crack to grow to a critical length in the presence of the predicted residual 

stress fields. The crack growth (a) vs number of cycles (N) for the two zones are as shown in 

Figure 3.9.  

As shown in Figure 3.9(a) and Figure 3.9(b), the variations in residual stresses from the 

process modeling efforts, analogous to part-to-part variations, have resulted in variability or scatter 

in the estimated life at the two zones of interest. The inclusion of predicted behavior definitions 

within the design definition, and its exchange using the CAD models for forecasting component 

performance, has been enabled by the developed tool. By doing so, the potential for a network of 

models that define the component’s behavior under particular operating conditions exists, which 

would begin to form the as-designed digital twin of the turbine disk by closing the loop between 

design, manufacturing and use. After the disk components are retired from application, the 

collection of digital material behavioral attributes embedded in the CAD models contribute as a 

source of knowledge for design, repair, or re-design activities. By comparing the performance of 

the as-built disks, the variations can be evaluated for two purposes:1) to inform the decision-

making during design and manufacturing of the newer disk component, and 2) to update and 

improve the accuracy of existing predictive models used in the digital twin framework. By 

analyzing a representative sample of disks according to similar techniques, after they have been 

removed from use at end of life (as-used), additional behavioral and contextual data can be 

gathered to increase the accuracy and validity of the product’s model-based definition. 
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Figure 3.9. Crack length versus number of cycles in the two critical locations: (a) Zone 1 and (b) 

Zone 2, including the resulting variability in performance based on the part-to-part variation of 

the residual stress fields. 
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The use case presented in this section demonstrated the capability of the developed tool to 

integrate material behavioral definitions into CAD models during the design stage in order to 

enable the as-designed digital twin. However, this capability of integrating models and exchanging 

stored lifecycle definitions (as shown in Figure 3.10), from one model to another, can be 

incorporated to form the as-built digital twins or virtual replica of a produced component [71]. 

During the manufacturing of turbine disk components, geometric variations are inevitable, 

originating from the manufacturing process variability. The geometric variations in the 

manufactured disks can be directly measured and modeled by creating varying geometric instances 

of the CAD models, representing serialized part numbers for each disk of the as-built geometry 

and the model-based definition of the residual stress distributions (given the geometric variation). 

By being able to associate material characterizations to geometric definitions in specific places on 

the topology of the model, the ability to track that connection through the lifecycle becomes easier 

and less prone to error. 

Using the procedure to evaluate the location-specific, damage-tolerant fatigue life, in-

service inspection schedules can be formulated uniquely for each manufactured disk - governed 

by their underlying residual stress distributions. For example, inspection and maintenance intervals 

are typically planned and performed at 50% of the remaining predicted life [72]. Based on the 

knowledge of the as-built geometry and corresponding model-based definition of residual stress 

for this geometry, a reasonable interval for inspection and maintenance can be identified with a 

reduced level of uncertainty for each serialized disk (Figure 3.10). As shown in the present use 

case, the embedding tool can enable this propagation of process models (in this case residual stress 

analysis) to downstream performance analysis (e.g. damage tolerance analysis of the fatigue 

lifetime).  
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Figure 3.10. Diagram representing the flow of data across the product lifecycle using digital 

models. 
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 DATA LINKING FRAMEWORK VIA A MODEL-BASED FEATURE 

INFORMATION NETWORK (MFIN)  

The content of this chapter were published in Gopalakrishnan S, Hartman NW, Sangid MD. 

Model-based feature information network (MFIN): a digital twin framework to integrate 

location-specific material behavior within component design, manufacturing, and performance 

analysis. Integrating Materials and Manufacturing Innovation (2020) 9(4):394-409. 

 

For creating dynamic connectivity to materials information as the information evolves 

continuously or periodically across the product lifecycle, the earlier developed data embedding 

approach presents a few key challenges. Firstly, the embedding methodology would require the 

creation of new instances of MBD-CAD models, for capturing each new revision/update to a 

component’s material data. This might result in a collection of a large number of MBD-CAD 

instances over the entire product lifecycle and would require manual version controlling to 

precisely retrieve relevant information for downstream analysis. Furthermore, from a collection of 

stored MBD-CAD models, an instance could either contain the updated material information from 

a newer stage of a serialized component’s lifecycle or could also contain definitions associated to 

another serialized version of the same component. There exists no systematic means to interpret 

the context of information captured in each of the MBD-CAD instances and is highly dependent 

on how the data is structured and stored. In order to address these challenges, a framework with 

data linking mechanism has been developed, namely the model-based feature information network 

(MFIN). Herein, we still use the earlier developed point cloud methodology to associate material 

definitions to spatial locations within the component, however the material information is stored 

and updated externally within a materials database software and linked to individual locations in 

the CAD model by means of the developed linking strategy, presented in this chapter in Section 

4.1. Additionally, the access to material datasets within structural analysis tools is also enabled via 

the MFIN framework, which is presented in Section 4.2. A use case to demonstrate the MFIN 

framework has been presented in Section 4.3, followed by discussion regarding the scope of MFIN 

framework to ultimately enable digital twin in Section 4.4. 
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4.1 MFIN Framework Methodology 

The MFIN framework has been created by expanding an existing model-based definition 

capability for storing and exchanging quality inspection data, provided by an ANSI standard, 

namely the Quality Information Framework (QIF) 2.1 [73]. The primary focus in this section is to 

describe the MFIN framework and illustrate the implementation of the MFIN to enable storing, 

retrieving and updating of material definitions and structural analysis information, with an 

emphasis on location-specific material data.  With the motive of introducing the implemented 

framework, the current section describes: (a) necessary background on the existing QIF framework 

and its data structure, followed by (b) expansion of the framework to develop linking mechanism 

between features and externally stored material datasets and analysis information. 

The premise for choosing QIF as the baseline for developing the MFIN is due to the 

advantages offered by the framework to define feature specific information. QIF is a data model 

in the form of a neutral file format, namely extensible markup language (XML) (herein saved as a 

“.qif” file),  which is obtained by converting the model definition of a component in a CAD model 

to an equivalent definition in XML. In the current demonstration, Siemens NX 11.0 CAD tool [74] 

is used, while the framework is general to integrate any commercial CAD tool.  The translation of 

CAD to QIF is performed using a tool, namely MBDVidia [75], which converts the geometry, 

geometric features, geometric tolerances, and metadata associated to these features (including 

manufacturing information (PMI) [73]) to the XML definitions. Being a neutral file format, which 

is both human and machine readable, the QIF file can be used as an input for providing both the 

component geometry and associated metadata to several applications and systems. The data 

structure and mechanism used by QIF to leverage storing, indexing, and retrieving feature specific 

information has been utilized to expand the framework to develop the MFIN – to include additional 

product lifecycle data. Lastly, the QIF data model is supported by the International Organization 

for Standardization (ISO 23952:2020) as a recognized standard for authoring, storing, and 

exchanging information [76]. 

 Within the QIF file, the structure and organization of the data elements and their associated 

datatypes is defined by its XML schema documents (XSD documents) [73], similar to other 

standard XML documents. The data within the QIF file is governed by two categories of schemas, 

namely QIF libraries and QIF applications. The QIF libraries schema contain structure of the data 

elements to define the product’s geometry (e.g. points, curves, surfaces, etc.), topology (e.g. 
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vertices, edges, faces, etc.), as well as the features which are defined using the geometry (e.g.  hole, 

pocket, thread, fillet, etc.). Whereas, the QIF applications schema is intended to describe the 

structure of the data elements for the product lifecycle metadata, which currently include schemas 

only for capturing inspection and measurement datasets. For extending the framework to include 

additional product lifecycle metadata and creating the MFIN, the existing QIF applications schema 

were appended with new schemas to define the structure of the data elements, which are 

collectively referred to as MFIN application schemas.  All the XML data elements, which are 

generated following the QIF libraries schema and MFIN applications schema are grouped together 

within a top level element,  namely, the QIFDocument [73], which creates a single QIF XML 

document (from here on referred to as MFIN XML).   

In order to create logical relationships between the product lifecycle metadata and the 

associated features within the MFIN XML, a mechanism used by the existing QIF framework is 

to index data elements with unique identifiers. Firstly, in order to enable serialization and tracking 

of the datasets applicable to each individual component, the schema defines a unique identifier to 

its corresponding MFIN XML document. These identifiers are generated during the creation of 

MFIN XML as Universally Unique Identifiers (UUID) objects made of 128-bit numbers that 

follows the RFC 4122 standard [77]. An example of UUID is "25244977-74f1-4ba8-adea-

2f7ef0367888". Secondly, every data element within each MFIN XML is indexed with a local 

identifier using a positive integer that take values incrementally as new data elements are added. 

These local identifiers can be used for cross referencing a data element within other data elements. 

Following this approach, each feature receives a local identifier used for referencing the specific 

feature within a product lifecycle metadata element, in order to establish a relationship between 

the metadata and the feature.  Finally, the collection of local identifiers of all the metadata elements, 

with reference to a specific feature, form a network of lifecycle data mapped to all possible features, 

which can be used for tracking and extracting the feature specific datasets.  

While creating new MFIN application schemas to include new metadata, an important 

factor to be considered is the choice of storing metadata externally in databases, local hard drives, 

or network drives. The associations between externally stored datasets and features within the 

MFIN XML have been created using a data linking mechanism. The choice of storing datasets 

externally and creating linkages to the MFIN as opposed to storing datasets directly within the 

MFIN has been made due to the following advantages. Firstly, it enables a dynamic capability 
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wherein the externally stored data can be updated, and the revised data can be tracked and retrieved 

at any given point of time. Secondly the voluminous data across the lifecycle can lead to an 

oversized single file, while storing directly, which can be avoided by linking data and creating a 

smaller sized MFIN file that is easier to share and exchange. Within the overall MFIN framework, 

provision for different definitions of a linkage have been accommodated, such as using a web 

hyperlink for cloud storage, file path of the files stored in local hard drives or network drives, or 

data identifiers specific to a database utilized for storing the datasets. For the current 

implementation, materials information is stored in material database software and information 

pertinent to structural analysis is stored on a local hard drive. Correspondingly, two new schemas 

have been created, namely (i) MFINMaterialDefinition.xsd and (ii) MFINAnalysis.xsd, to facilitate 

the necessary data linkages. 

(i) The MFINMaterialDefinition.xsd schema defines the data structure based on the 

methodology for organization of datasets that prevails in the material database tools. A common 

structure within material database tools were the use of Graphical User Interface IDs (GUIDs) to 

reference individual material records and “Attribute IDs” to reference individual material datasets 

within each record. Hence, the MFINMaterialDefinition schema has been defined to create 

material definition linkages by grouping the material GUIDs and Attribute IDs with the 

corresponding local identifiers of features within the MFIN. This linking strategy enables using 

the flexibility of storing material datasets of different datatypes such as tabular, functional form, 

images or raw data files within the materials database.  Furthermore, the data linkages are 

independent of the schema or the structure in which the datasets are organized and stored, since 

they are only dependent on the data identifiers. A common structure or schema is preferable to 

record and pass the material datasets without ambiguity, especially across supply chains. For 

instance, in the case of multiple material vendors, the material datasets and pedigree information 

can be stored following a common structure to ensure seamless tracking and reviewing of datasets. 

User-defined schemas can be created to structure and store datasets in the material databases and 

these datasets can be seamlessly exchanged across the lifecycle via the data linkages enabled by 

the MFIN. Additionally, the access restrictions typically applicable to material datasets, can be 

controlled by the access control filters in the materials database tool, while the MFIN only provides 

the paths to the data. The new schema has a provision for including metadata related to access 

control restrictions, user details, date and time of linkage creation for tracking purposes. 
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(ii) The MFINAnalysis schema defines a new MFINAnalysis element, which is created 

within the MFIN XML, for each performed analysis. In each of these data elements, the sub-

elements primarily include the linkages for the analysis input file and the overall results file, which 

are stored either in the local hard drive (a link defined by the file path) or within the materials 

database (a link using a material GUID and the corresponding attribute ID). Being a data linkage, 

these files can be of any format either depending on the analysis software being used or customized 

result files generated by the user. Furthermore, within the schema, metadata elements capturing 

the type, date, and time of the analysis have been included.  

In order to create new data linkages in MFIN XML, as well as retrieving information using 

the existing linkages, application program interfaces (APIs) or MFIN APIs have been created for 

enabling programming against the developed schemas. The current framework uses Python scripts 

to link to the developed APIs, thus the framework is software tool agnostic and can work with a 

multitude of commercial softwares. For every data element within the schemas, an API has been 

generated in the form of a Python class, using an automated process of generating source code 

binding [78].  Using the MFIN APIs, wrapper code(s) were developed for creating new linkages 

and retrieving datasets using existing linkages, which have been used for integrating the MFIN 

framework with materials database tool and structural analysis tool [79]. 

4.2 Integration of materials information and structural analysis within MFIN 

The integration of materials databases within the MFIN framework was implemented and 

tested with two materials database tools, namely Granta MI [80] and MSC MaterialCenter [81]. 

Both databases have their own APIs to enable programmatic storing and retrieval of materials 

datasets. For the current demonstration, Granta’s materials database is used. A wrapper code has 

been developed using Granta’s APIs to generate a user interface, which facilitates browsing the 

database and selection of the material definitions, in order to create material definition linkages 

(i.e. the material record GUID and the Attribute IDs) to exchange via the MFIN APIs within the 

MFIN XML.  

Material definitions apply to the bulk of the component, hence requiring the creation of 

linkages to volumetric features within the MFIN. The currently available volumetric feature 

definitions comprise of typical geometries originating from the CAD tools, which are defined 

using its bounding surface entities (e.g. a cube is defined using its bounding faces made of edges 
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and vertices). However, since the material definitions could potentially vary spatially across the 

volume of a component, a new mechanism to define these features has been adopted within the 

MFIN framework.  The approach uses datum points to define these features, since points (i) are 

the most fundamental objects in 3D modeling and (ii) enable defining individual locations within 

the volume for defining location-specific properties. The MFIN schema defines the PointClouds 

to generate the datum points, which do not necessarily get used for defining the geometry but can 

be used for the material definition associated with each point. In order to programmatically create 

the point features, a code has been created using the MFIN APIs, which accepts input point datasets 

(i.e. its spatial coordinates, X, Y, Z). These point datasets are supplied using a text file or a comma-

space valued (CSV) file to the program. Hence, the process of creating material definition linkages 

to the spatial locations within the component is a semi-automated process, such that the material 

datasets for the selected spatial points are identified using the previously described wrapper code 

to browse and select the material definitions from the materials database. As opposed to generating 

the point clouds programmatically while creating data linkages, alternatively, the creation of datum 

points can also be accomplished with the original CAD model, which are translated while 

generating the MFIN XML.  

The integration of the MFIN framework with finite-element (FE) analysis tools enables the 

exchange, storage, and retrieval of structural analysis results based on the component geometry 

and material definitions within the MFIN. The overall software architecture for this data 

integration is shown in Figure 4.1. The integration of structural analysis within the MFIN 

framework was implemented and tested with two FE tools, namely MSC Patran/Nastran [82,83] 

and Dassault’s ABAQUS [84].  The APIs specific to the FE tools have been used to complete the 

implementation and ensure the importing/exporting functionalities of data. For the current 

demonstration, Dassault’s ABAQUS is shown. 
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Figure 4.1. Software architecture for integration of the MFIN with a FE analysis tool, with 

programmatic steps to (a) import analysis model geometry and material data within the FE tool, 

(b) overlay point features on the analysis model mesh, (c) extract and incorporate material data 

linked to the point features within a user defined material model, (d) exporting analysis input and 

results files from the FE tool, and (e) generate feature specific results. 

The analysis model generation process has been developed as a semi-automated process, 

to retrieve the component geometry and material definitions from the MFIN XML (as shown in 

Figure 4.1(a)). The process is initiated from the FE analysis tool, using a user input form that 

requires two inputs, namely (a) the location of the MFIN XML file and (b) the MFIN UUID. First, 

the model geometry is retrieved from the MFIN for importing within the FE tool. Due to the current 

limitations with the FE tool to directly import the model geometry using a QIF file format, an 

alternative neutral file format, namely ISO STEP AP 214 [85] has been used. The STEP file is 

generated by translating the native CAD file, which has been done using the in-built STEP 

translators in Siemens NX 11.0 CAD tool and   linked to the MFIN XML via the file’s location. 
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Next, the materials definition linkages within the MFIN are utilized to dynamically retrieve the 

materials data from the database in a CSV file format. For each materials data file that gets 

generated, the corresponding feature information (including point features) is retrieved from the 

MFIN for use within the structural analysis tool. Both the features and the material data file paths 

are grouped and stored in a feature correlation file, which informs the relationship between the 

spatial position and the material datasets within the imported STEP geometry.  

After importing the model geometry and material data files within the FE tool, the analysis 

model is manually meshed, loads and boundary conditions are applied, following which an input 

model definition file (INP file) is generated. For incorporating location-specific material 

definitions in the analysis, firstly, the point cloud features are programmatically extracted from the 

feature correlation file and overlaid on the analysis model mesh (shown in the step in Figure 4.1(b)). 

Afterwards, the mesh elements are mapped to the nearest point feature from its centroid position, 

thereby picking and applying the material data linked to the corresponding point feature in semi-

automated fashion. Based on the analysis requirements, a customized script is to be used (shown 

in the step in Figure 4.1(c)), to utilize the location-specific material data within the material model. 

Since the retrieval and utilization of materials information within the analysis is programmatically 

executed via the MFIN point clouds with minimal human involvement, the MFIN enhances the 

analysis process by reducing chances for human in the loop errors, as well as significantly 

decreasing the time for generation of an analysis model.  

At the end of an analysis, the input file (INP file) and the overall results file (ODB file) are 

exported from the FE tool (as shown in the step in Figure 4.1(d)) and archived by creating new 

linkages within the MFIN, following the MFINAnalysis schema. Additionally, if feature specific 

result files and plots are extracted using the overall results file (shown in Figure 4.1(e)), linkages 

are generated to the corresponding features within MFIN XML. Once the linkages for analysis 

information are created within the MFIN, these datasets can be retrieved and used for lifecycle 

analysis, as illustrated with a use case in the next section. 

4.3 Use Case: Analysis of a Ti-6Al-4V compressor blisk  

A linear friction welded (LFW) [86] bladed-disk component, also referred to as blisk, is 

demonstrated as a use case for the MFIN framework to include spatially varying material 

definitions for incorporating within damage tolerant analysis. The intent is to emphasize that the 
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presented methodology for including and exchanging location-specific material information can 

be utilized to provide material state information across a component to inform life predictions.  For 

the present use case, a Ti-6Al-4V blisk is used based on its geometric complexity and location 

specific material state near the weld.  The LFW process results in steep thermal gradients across 

the weld region, leading to the generation of spatially varying microstructures and residual stresses 

across the weld region [86–89]. While the current section presents a demonstration of the MFIN 

applicability, the material’s data is obtained from past studies published in the literature [89–91].  

Using the MFIN framework, the microstructural information and residual stresses is spatially 

linked within the component’s geometric model for subsequent damage tolerance analysis. One of 

the fundamental tenets of the digital twin is that by including this updated material state definitions, 

the resulting uncertainty in the subsequent lifing analysis can be reduced.  Accordingly, a 

comparison has been performed to demonstrate the variations generated in the resulting fatigue 

life with and without using location-specific material definitions.  

First, a blisk component with 48 blades was created as a CAD model, with approximate 

geometric dimensions similar to [92]. Since the blisk sections are axisymmetric about the z axis, 

1/48th of the blisk was modeled, as shown in Figure 4.2(a)-(c). For the axisymmetric portion of the 

component, three features were defined: the disk, weld region, and blade as shown in Figure 4.2(c). 

The disk section was modeled as a 2D sketch in x-z plane as shown in Figure 4.2(d), which was 

revolved by 7.5° about the z direction. The weld region and the blade region were modeled as 

shown in Figure 4.2(e) and Figure 4.2(f), respectively. Within the weld region, a datum reference 

frame X-Y-Z has been defined, which is used for defining location-specific material definitions. 

The origin of this new reference frame is situated at the center of the weld region, with the X axis 

orthogonal to the weld interface (Figure 4.2 (e)). The CAD file was converted into derivative QIF 

(i.e. the MFIN XML) and STEP file formats.   
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Figure 4.2. CAD model of the blisk component with different views, namely the (a) top view, (b) 

front view, (c) trimetric view along with 1/48th axisymmetric sector marked with the three 

features in the blisk, namely, (d) the disk region, (e) the weld region, and (f) the blade region. 

 

A customized material record of Ti-6Al-4V was created within the Granta MI database and 

comprised of physical, elastic, and mechanical properties of the material, as well as spatially 

varying information across the component, which include residual stress field and the average 

grain size of the material relative to the LFW (based on characterization data reported in [89]).  

After optimal parameters were determined for linear friction welding of  Ti-6Al-4V to Ti-6Al-4V 

plates [89], the average grain sizes (𝑑𝑎𝑣𝑔) for the globular 𝛼-phase was characterized at 7 locations 

across the weld region [89], as shown in Figure 4.3(a) and Figure 4.3(c).  The average grain sizes, 

𝑑𝑎𝑣𝑔 , of the microstructure were 1.65 𝜇𝑚  at the weld interface and 9.62 𝜇𝑚, 8.90 𝜇𝑚,

11.06 𝜇𝑚, respectively, moving away from both sides of the weld center in a symmetric fashion 

[89] and these values were archived in the database. For the disk and the blade regions, a uniform 

𝑑𝑎𝑣𝑔 value of 11.06 𝜇𝑚 has been defined.  Finally, the residual strain distributions characterized 
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in [89] were used to create the residual stress components (σxx(X), σyy(X), σzz(X) , for which the 

details are described in Appendix B), as a function of the distance from the weld interface (X axis), 

as shown in (Figure 4.3(b)).  

 

 

Figure 4.3. Spatially varying material definitions stored within the materials database and linked 

to the weld region in the MFIN using point features: (a) weld region with 7 locations linked to 

the average grain size information, (b) residual stress components (𝜎𝑥𝑥, 𝜎𝑦𝑦, 𝜎𝑧𝑧) as a function of 

locations across the weld region in X direction, (values for the 7 locations shown here with 

markers), and (c) corresponding microstructure images (shown here for 5 of these locations). 

By including the process induced residual stresses and microstructural information, more 

precise damage tolerant assessment of components can be determined [59,60]. First, the in-service 

stresses in the blisk were obtained using a structural analysis via the FE method, in which the 

average grain size information of the Ti-6Al-4V material is used to inform the constitutive 

response of the material.  A simple elastoplastic material model has been chosen based on the 

Johnson-Cook [93] type hardening rule as shown in Eq. (4.1), wherein the flow stress (σ̅)  is a 
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function of the equivalent plastic strain (ε̅) and temperature (T). The parameters A, B, n, m, Troom, 

and  Tmelt correspond to the yield stress, strain hardening coefficient, strain hardening exponent, 

temperature exponent, room temperature, and melting temperature, respectively, whose values 

used for Ti-6Al-4V [90,91] are shown in Table 4.1. 

 

 

σ̅ = (A + Bε̅n)[1 − (
T − Troom

Tmelt − Troom
)

m

] (4.1) 

 
  

Table 4.1. Material properties of Ti-6Al-4V at room temperature (Troom = 298 K) stored within 

materials database and linked to MFIN XML of the blisk component. 

Material definition attributes Attribute values 

Density (ρ) (kg/m3 ) [90] 4420 

Young’s Modulus (E) (GPa) [90] 114 

Poisson’s ratio (ν) [90] 0.33 

Friction stress or resistance (AHP) (MPa) [90] 783.14 

Hall-Petch strengthening coefficient (KHP) (MPa. μm1/2) [90] 503.34 

Strain hardening coefficient (B) (MPa) [90] 563.1 

Strain hardening exponent (n) [90] 0.45 

Temperature exponent (m) [90] 0.7 

Melting temperature (Tmelt)(℃) [90] 1668 

Paris’ law coefficient (C) ( (
mm

cycle
) / MPa√mm) [91] 3.98 𝑋 10−17 

Paris’ law exponent (n) [91] 6.88 

Walker exponent (m) [91] 0.57 
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The  grain size dependency has been incorporated in Eq. (4.1) wherein the yield stress (A) 

follows a Hall-Petch [94,95] relationship as shown in Eq. (4.2). The friction stress (AHP) and the 

Hall-Petch strengthening coefficient (KHP) values for Ti-6Al-4V [90] are shown in Table 4.1.  

 

 

A = AHP + KHPdavg

−
1
2   (4.2) 

 

Two FE models have been created: (Model 1) considering a constant average grain size for 

the entire blisk of 11.06 𝜇𝑚 and (Model 2) incorporating location-specific grain size information 

across the weld region. The variations in the average grain size and the corresponding yield stress 

(A) (computed using Eq. (4.2)) across the weld region, for the two models, are shown in Figure 

4.4(a). Herein, the A values are computed dynamically by extracting the davg values from the 

database using the MFIN linkages while creating the analysis model. 

 

 

Figure 4.4. Material definitions, applied loading, and boundary conditions for the finite-element 

analysis model: (a) for Models 1 and 2, the average grain size (𝑑𝑎𝑣𝑔) and the corresponding 

Johnson-Cook model’s yield stress (A) parameter defined at different locations across the weld 

region and (b) axisymmetric model of blisk with centrifugal load about the z axis and fixed 

displacement boundary conditions defined on the disk region’s inner surface labelled as S. 
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The compressor blisk was simulated from its rest condition to an overspeed condition 

above its typical maximum rotational speed [64] during service for the present demonstration.  To 

acquire the maximum loads, a static analysis has been performed on an axisymmetric sector of the 

blisk (1/48th of the blisk), as shown in Figure 4.4(b). A centrifugal load has been applied on the 

blisk about the z axis, with a spin speed of ω = 15,500 rpm at room temperature (Figure 4.4(b)).  

The shrink fit loads, due to the interference fit between the shaft and the blisk, have been ignored 

in the current analysis. For the boundary conditions, a displacement constraint has been applied on 

the inner surface S of the bore, in all the three directions (u𝑥 = u𝑦 = u𝑧 = 0) (Figure 4.4(b)). 

Firstly, due to the complexity in the blisk geometry, especially in the weld region (which is also 

of primary interest in this study), a mesh constituting quadratic tetrahedral elements has been used 

for this region (the use of quadratic elements also provides higher resolution due to additional 

integration points as compared to linear elements). Further, to ensure a conformal mesh near the 

interfaces between disk and weld as well as weld and the blade region (i.e. to avoid distorted 

tetrahedral elements in the disk and blade region near their interfaces with weld region), linear 

hexahedral elements were defined throughout for the disk and the blade regions. Hence, a 

combination of hexahedral and tetrahedral elements has been used for the entire blisk. Based on a 

sensitivity analysis performed by running a series of simulations by decreasing the mesh element 

size until the maximum principal stresses in the locations within the weld region did not change 

with further element size reduction (i.e. a converged mesh), linear hexahedral mesh elements of 

average size 0.5 mm were determined and used in the disk and blade regions, while quadratic 

tetrahedral mesh elements of average size 0.7 mm were determined and used for the weld region. 

Additionally, due to the different mesh types used, tie constraints have been applied between the 

interfacial regions of the disk and weld, as well as the blade and weld. Lastly, the residual stresses 

were not included in the FE model; for simplicity, this information is reserved for the damage 

tolerant analysis that follows.  

At the end of the FE analysis, the analysis input and output files for Models 1 and 2 have 

been stored in a local hard drive and archived as file linkages within the MFIN. The stress fields 

were extracted for all the three regions of the blisk component, and the maximum principal stresses 

(σI) were computed for each element for both the models (shown in Figure 4.5(a)). The σI values 

were stored within the Granta database along with the associated centroidal positions of the 

elements.  In order to visualize the variation in the maximum principal stress distribution across 
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the weld region, between the two models, a line scan along X direction (shown in Figure 4.5(a) 

and same as shown in Figure 4.3(a)) was performed to probe values, which is shown in Figure 

4.5(b). The values were probed at 0.5 mm interval, wherein the maximum principal stress at a 

particular location was picked from the nearest elemental centroid position. The increasing trend 

observed in maximum principal stresses along X for both Models 1 and 2 (Figure 4.5(b)) was as 

expected since (i) the applied centrifugal load is a function of radius and it increases as we move 

radially outward (i.e. along +X direction) and (ii) the blisk section area is thinner as we move from 

disk to weld to blade region. Between Models 1 and 2, since the average grain size variations and 

correspondingly the variations in yield stress are maximum at the center of the weld region (Figure 

4.5(a)), one would expect to observe significant differences in the maximum principal stresses at 

this location (i.e. at X = 0). However, in the present loading scenario, the locations near the weld 

center does not experience yielding and since the grain size dependency in Model 2 is active only 

after yielding, the differences observed in resulting stresses between the two models are not 

necessarily highest at the weld center. Furthermore, yielding is experienced in the locations within 

the weld region closer to the blade region. Although, at these locations, the variations in σI (Figure 

4.5(b)) between Models 1 and 2 are small in magnitude, as they possess minor variations in their 

yield stress as shown in Figure 4.5(a). However, due to equilibrium after the FE simulation, the 

differences in the maximum principal stresses between Models 1 and 2 are observed at other 

locations near the weld center (between X = 0 and X = 3).  
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Figure 4.5. Maximum principal stress (σI) distribution generated in the blisk component: (a) 

contour plots for the entire blisk component using Models 1 and 2 (i.e. without and with using 

average grain-size information, respectively).  The stress variation in the two models is very 

subtle and to articulate this minor difference, (b) shows the variation in σI across the weld region 

(along the X axis) for Models 1 and 2. The values of σI at the two locations of interest for 

damage tolerance analysis have been highlighted wherein the direction of σI is also oriented 

along the X axis. 

 

A conventional damage-tolerance analysis [65] was followed (similar to the formulation in 

Section 3.4.2), which is typically performed at locations with high stress within the component, 

that are deemed as critical. At the selected locations, the presence of a crack is assumed, with an 

initial length 𝑎𝑖 representing the largest flaw that can be missed during the inspection process. The 

crack is oriented perpendicular to the applied stress direction, such that the crack grows under the 

applied stress, following mode I crack growth.  Typically, the number of life cycles for the crack 

to grow to a final crack length 𝑎𝑓, corresponding to the crack length at which the stress intensity 

(KI) factor reaches the critical value related to the fracture toughness of the material (KIC), is 

computed as the number cycles to failure. Conventionally, engine components are pulled out of 

service and inspected for a crack and if its length reaches 0.76 mm (1/33 of an inch), the component 

is retired and if otherwise, the components are returned back to service[96]. Hence, in the current 
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analysis, the number of cycles for the initial crack to grow to this standard length (herein 𝑎𝑓 =

0.76𝑚𝑚) has been estimated, which can be used to decide and plan the inspection interval for the 

component under consideration.  

Two locations have been selected from the FE analysis (shown in Figure 4.5(a) and Figure 

4.5(b)) for placement of a crack. The first location was chosen wherein the difference in the 

maximum principal stresses between the two models (Model 1 and 2) was maximum. Hence, 

within the weld region, a location which is at a distance of 1 mm from the weld center along the 

X direction was selected, with values of σI being 759 MPa and 700 MPa for Model 1 and Model 

2 (oriented along the X direction) (Figure 4.5(b)), respectively. The second location for the analysis 

was selected at a location wherein the tensile residual stress component is maximum along the 

maximum principal stress direction. For this purpose, a location at a distance of 2.5 mm from the 

weld center along the X direction (shown in Figure 4.5(b) with σI values of 927 MPa and 960 MPa 

for Model 1 and Model 2, respectively) was selected, wherein the direction of maximum principal 

stress was along +X and the corresponding component of residual stress (σxx) (shown in Figure 

4.3(b)) was maximum. An embedded elliptical crack is assumed to be present at the selected 

locations, with initial length 𝑎𝑖 = 0.10 𝑚𝑚 (semi-minor axis length) and constant semi-major axis 

length of 𝑐 = 0.76 mm. In both these locations, the direction of σI is to be oriented orthogonal to 

crack faces (representing an opening mode). Since the direction of the maximum principal stress 

is along the +X direction at both the locations, the crack plane is oriented parallel to the weld center 

plane (as shown in Figure 4.6(a) and Figure 4.6(b)), at a distance of 1 mm and 2.5 mm, respectively, 

along the X axis and propagating along the Z direction.   

For estimating the number of cycles to final crack length (𝑁𝑓) while incorporating residual 

stresses along with in-service stresses, the formulation presented in Eq.(3.5) has been used. The 

σxx component of the residual stress has been used as σRS for both locations of interest (since σI 

is along X). The values of σRS has been computed by first retrieving the functional form σxx(X) 

from the materials database and evaluating for both the locations of interest (i.e. X = 1 and X = 

2.5), with values σRS = 16.68 MPa  and σRS = 35.59 MPa , respectively. For an embedded 

elliptical crack in the current case study, an approximate geometric correction factor from [97], 

has been utilized, which is applicable for crack lengths 𝑎 much smaller than the width of crack 

growth plane such as in the current case. The Walker exponent (m) and Paris constants (C and n) 

for Ti-6Al-4V at 𝑅~0 and at room temperature have been used for the present analysis. Finally, 
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the crack length (a) versus the number of cycles (𝑁) has been plotted for each of the locations as 

shown in Figure 4.6(a) and Figure 4.6(b). In each of these plots, the fatigue life curves have been 

generated for both the cases - with and without using location specific material definitions.  

 

 

Figure 4.6. Variation in the crack length (a) versus number of cycles (N) between the two cases, 

without (shown in blue) and with (shown in red) using spatially varying average grain size and 

residual stress information for locations at a distance of (a) 1 mm and (b) 2.5 mm from the weld 

center along the +X direction. 

4.4 Discussion 

In Figure 4.6, the variation in the estimated fatigue life, (𝑁𝑓), while including location-

specific material information (i.e. average grain size and residual stresses) within the damage-

tolerance analysis has been shown. For the two locations within the weld region considered in this 

analysis, we have demonstrated cases of overly conservative prediction (shown in Figure 4.6(a))  

and potentially inaccurate prediction (shown in Figure 4.6(b)) of fatigue life while not including 

the location-specific material information in the analysis. In the present illustration, the uncertainty 

in estimating the number of cycles and corresponding inspection interval for a component in 

service, could be potentially reduced by including location-specific material information. The 

access to location-specific material information and its inclusion within the lifing analysis has been 

achieved by utilizing the data linkages enabled by the MFIN framework. The location-specific 
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definitions in the present use case were an outcome of the manufacturing process of the compressor 

blisk component, i.e., representing the underlying material state within the component at the end 

of its manufacturing. The inclusion of process-induced material state information, and its usage in 

performance analysis, demonstrates the usage of process-structure-property-performance 

relationship.  Model 1 is the historical approach, which treats each portion of the blisk component 

as a monolithic structure in its approach to analysis. In Model 2, specific material location 

information is captured, via the MFIN framework, thus enabling a higher degree of precision in 

the design, production, inspection, and sustainment of the blisk. While the demonstration case is 

intended to provide a simple proof of concept, the MFIN framework enables the use of more 

sophisticated physics-based models by providing connectivity and therefore accessibility to 

pertinent process history induced materials information (undertaken in Chapter 5).  By using the 

location-specific linking strategy presented in this work, the necessary material state information 

can be linked to specific component features, which reduces the uncertainty in our predictive 

models by harnessing the history and state of the material.  

It is important to note that there are two viewpoints for defining the digital twin. One 

viewpoint suggests the requirement of a physical asset as a necessary ingredient prior to creating 

a digital twin, whereas the other viewpoint suggests that a digital twin or a digital prototype can 

be created before the physical production of a component or a system [4]. Other than this primary 

difference, both viewpoints share potential applications and benefits of the digital twin, which 

includes the usage of information at various stages throughout the life cycle and the fusion of 

modeling and simulation with physical testing and measurements. In this work, we did not 

necessarily want to exclude either definition, as our primary intent is to describe and illustrate the 

MFIN framework.  For the present use case, we have illustrated the digital twin from an as-

designed stage. Hence, the microstructural and residual stress state information have been included 

in the nominal part definition of the component. Additionally, the MFIN framework can be used 

to create digital twins after the production of the component, by following a similar approach 

including state information from the post-production stages. 

  The use of data linking approach meets the requirement for several critical elements, 

necessary for creating a digital twin.  Specifically, the approach creates dynamic connectivity to 

material datasets, enabling tracking and providing updated data regarding the material state at any 

given point in the lifecycle of the component. The availability of the current material state 
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information can be utilized to make future predictions of the component’s performance. In this 

work, the material data linkages have been used to provide material information to a commercial 

FE analysis code, for performing an analysis. Within the digital twin framework, the access to 

other commercial engineering software/code(s) which are useful for design and analysis of a 

component can be achieved by using necessary schemas and wrapper code(s). Herein, the material 

data linkages can be utilized to inform the material information pertinent to a component using an 

approach similar to the presented work.  

Further, the methodology of linking, tracking and retrieving material data can be expanded 

to other datasets produced during different stages of the product lifecycle. Since the linkages are 

created between a feature and the information applicable at the feature, a network of lifecycle data 

applicable to the feature can be created by the MFIN. This starts to form a complete digital thread 

[98] of lifecycle data, which is necessary for supplying relevant information and creating the digital 

twin of the component. Hence, the MFIN framework would potentially complement data 

management systems, such as product lifecycle management systems [99], which are used to store 

product lifecycle data, by serving as a portal to access, exchange, and utilize feature specific 

lifecycle metadata. For retrieval of datasets specific to a feature, a user-interface can be developed 

(as shown in a schematic in Figure 4.7(a)), wherein the desired datasets can be retrieved using its 

feature’s unique identifier. For instance, during the maintenance and repair of the component, an 

image of the component with a crack developed during its service, in a specific location (shown in 

an illustration in Figure 4.7(b) and Figure 4.7(c)) can be linked and accessed using the MFIN. 

During the design of the newer version of the component, the prior knowledge from the digital 

twins of predecessor components can be used to identify critical feature locations and explore 

newer opportunities to design and develop manufacturing processes for achieving desirable 

properties at these critical locations in the component. 
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Figure 4.7. An illustration of using (a) a graphical user interface which can be created for the 

MFIN, to retrieve specific lifecycle data (for example maintenance data) applicable to either a 

specific feature and/or its component, by specifying its feature ID and UUID, respectively, 

leading to either (b) the retrieval of an image of the entire component (part level search) or (c) 

retrieval of an image of a feature (feature level search) with a crack detected during its 

maintenance and repair inspections.
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 ENABLING MICROSTRUCTURE-SENSITIVE LOCATION-SPECIFIC 

FATIGUE LIFE ASSESSMENT OF COMPONENTS VIA MFIN 

FRAMEWORK 

The contents of this chapter have been submitted for publication in Gopalakrishnan S, 

Bandyopadhyay R, Sangid MD. A framework to enable microstructure-sensitive location-specific 

fatigue life analysis of components and connectivity to the product lifecycle. Submitted, under 

review (2022). 

 

In the previous chapter, we introduced the MFIN framework, and demonstrated a 

simplified use case for incorporating location-specific material data within a damage tolerance 

analysis of a component. The dynamic linking capabilities for accessing location-specific material 

information within the MFIN framework can be leveraged for use within physics-based predictive 

analysis, thereby incorporating the local microstructural knowledge for fatigue life analysis of 

components. In this chapter, we extend the MFIN framework to dynamically track and retrieve 

location-specific (i) microstructural definitions, and (ii) in-service stresses/strains fields (from 

component level-FE analysis), for use within a crystal plasticity-based fatigue life prediction 

model.  We present the expansion of the MFIN framework to create data linkages with information 

pertinent for crystal plasticity finite-element (CPFE) analysis in Section 5.1. We demonstrate 

location-specific lifing of a dual-microstructure heat treated (DMHT) turbine disk. The component 

geometry, manufacturing processing, and material’s microstructural description are described in 

Section 5.2. The crystal plasticity-based fatigue life prediction framework is described in Section 

5.3. A component-level FE analysis to simulate in-service stress/strain states is detailed in Section 

5.4. Finally, we present the predictions of material allowable fatigue life, the location-specific 

fatigue life of the component, and considerations for the utilization of this overarching framework 

in Section 5.5. 

5.1 Expanding MFIN framework to include information pertinent to CPFE analysis   

In Figure 5.1, to provide a visual overview of the MFIN framework, we have summarized 

the types of information which can be potentially included, at both the component level and at the 

location-specific level. At the component level, we can capture the as-designed geometric 

definitions of the component and its features (from nominal CAD model), processing history, 
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loading conditions during service and deviations in the part geometry post manufacturing (from 

as-built CAD models) (presented later in Chapter 6). In Section 4.1 of Chapter 4, we presented the 

newly developed application schemas to define data linkages to externally stored (i) material 

datasets and (ii) datasets pertinent to finite-element (FE) analysis of the component. At the 

location-specific level, we had demonstrated linking and retrieval of microstructural attributes and 

mechanical properties in Chapter 4. In this chapter, we develop a new schema to include 

information relevant to sub-scale crystal plasticity finite element (CPFE) analysis for connectivity 

to specific locations within the component. 

 

 

Figure 5.1. Information captured within the digital twins of serialized components and their 

individual locations via MFIN. 

  

Hence, we have created a new MFIN application schema (“MFINCPFEAnalysis.xsd”). The 

“MFINCPFEAnalysis” element within the MFIN XML is linked to specific locations via point 
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features (using their corresponding local identifier).  The sub-elements within the 

“MFINCPFEAnalysis” element have provisions to capture linkages to (i) the virtual discretized 

(fully meshed) microstructure (in .inp file format), (ii) grain-level information (i.e., files with grain 

identifiers, including grain orientations or Type II residual stresses), (iii) user-defined material sub-

routine or UMAT file (.f file format) applicable for the CPFE analysis, (iv)  boundary conditions 

to be enforced for the CPFE simulation, and (v) the resulting micromechanical field variables 

extracted from the CPFE analysis (Figure 5.1). A programmatic process has been developed to 

utilize component-level FE analysis results via the MFIN XML, to inform location-specific 

boundary conditions within CPFE analysis. Based on the location of interest (given by its position 

coordinates) within the component, the wrapper code extracts stresses/strain fields from the 

“MFINAnalysis” element and updates the sub-element capturing the corresponding CPFE 

boundary condition within the “MFINCPFEAnalysis” element. Hence, the MFIN framework 

enables hierarchical exchange of location-specific FE analysis results for conducting location-

specific CPFE analysis, which has been demonstrated for fatigue life assessment of a DMHT 

turbine disk component. 

5.2 Dual-microstructure heat treated (DMHT) disk: Component, material and methods. 

To demonstrate location-specific fatigue life analysis of microstructure tailored components 

via the MFIN framework, we present a use case for lifing a dual microstructure heat treated turbine 

disk. In this section, firstly, the manufacturing process of the disk and characterization conducted 

in [40]. Next, we present the creation of the CAD model (and corresponding MFIN XML instance) 

of the component and the microstructure definitions across the disk. Finally, we describe creation 

of virtual microstructures for conducting location-specific crystal plasticity analysis. 

5.2.1 Processing route and material characterization 

The DMHT disk was manufactured via a powder metallurgy processing route followed by a 

specialized heat-treatment process [40,41,100,101] to produce fine grains in and surrounding the 

bore regions of the disk and coarse grains in and surrounding the rim regions. The disk component 

utilized for the present study was developed by NASA, and the production of the disk was 

conducted at PCC Wyman-Gordon Forgings (initial forging and machining) and Ladish Company 
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Inc. (specialized heat treatment) [40,41]. Initially, the LSHR powder of particle sizes < 55 μm was 

hot compacted and extruded into billets. The billets were isothermally forged, followed by 

machining, to obtain the disk with an outer diameter of approximately 30 cm, a maximum bore 

thickness of 5 cm, and a maximum rim thickness of 3.8 cm [40,41]. An initial sub-solvus heat 

treatment was conducted at 1135℃ for 2 hours, followed by air cooling to produce uniform grains 

across the disk with sizes ranging between 5 − 10 𝜇𝑚 [40,41]. Next, the dual microstructure heat 

treatment was performed, wherein a temperature gradient was maintained between the bore and 

the rim region by means of placing a heat sink [40,41] in the bore region. This resulted in the bore 

region with fine grain microstructures ( 5 − 10 𝜇𝑚 ) and the rim region with coarse grain 

microstructures (30 – 80 𝜇𝑚) [40,41].   

 Grain size distribution and texture for LSHR at different regions of the disk were 

characterized using the electron backscattered diffraction (EBSD) technique by Gabb et al. [40]. 

The characterization was conducted at multiple locations within the transition zone in the DMHT 

disk, which is a region spanning between the bore and the rim region as we move radially outward, 

wherein the microstructure changes from fine grains to coarse grains. The average grain size for 

the transition zone near the bore region was 5.8 𝜇𝑚, with as-large-as (ALA) grain size of 22  𝜇𝑚 

[40]. The average grain size for the transition zone near the rim region was quantified to be 55 𝜇𝑚, 

with ALA grain size of 413 𝜇𝑚 [40]. The characterized grain sizes in the near-bore region were 

reported to be similar to the bore region, and likewise, for the near-rim region to the exterior rim 

region [40]. Hence, in this work, we have consistently utilized an average grain size of 5.8 𝜇𝑚 at 

the bore and the near-bore region and an average grain size of 55 𝜇𝑚 across the rim and the near-

rim region. The grain sizes followed lognormal distributions for both the bore and the rim region 

[40]. Additionally, in the central portion of the transition region, an average grain size of 38 𝜇𝑚 

was characterized, with ALA grain size of 410 𝜇𝑚 [40]. Throughout the disk, we have defined a 

random texture, based on the characterization of LSHR reported in [40,102]. Within the MFIN 

XML, data linkages are created between these three regions and the associate grain size attributes, 

which are used for the crystal plasticity-based fatigue life predictions. However, we would like to 

emphasize that the framework allows for defining an unlimited number of regions; hence, more 

refined gradient structures can be realized. Moreover, the approach can be extended to incorporate 

other microstructure artifacts, such as grain boundary structure, precipitate distributions, and the 

likelihood of pores or inclusions, obtained via characterization [42] or modeling [103]. 
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5.2.2 Creation of CAD model of the disk  

 For the geometric definition of the component, a CAD model of the DMHT turbine disk 

was created. We utilized the approximate geometric dimensions reported in [40] and also 

summarized in Section 5.2.1 to create a 2D axisymmetric section of the disk (shown in Figure 

5.2(a))). The axisymmetric section was revolved about the Z-axis to generate the 3D CAD model 

of the DMHT disk as shown in Figure 5.2(b) and (c). The microstructural features are defined in 

the three regions (bore/near-bore, transition, and rim/near-rim) using semantic notes in the CAD 

model tagged to datum points within these regions, as shown in Figure 5.2(a). The CAD model 

and the associated notes were translated into MFIN XML file using the process described in 

Section 4.1 of Chapter 4. For this study, we have chosen two distinct locations, Location A (fine 

grain microstructure) in the bore region and Location B (coarse grain microstructure) in the rim 

region, as shown in Figure 5.2(a) and (b), respectively, with their associated microstructures - to 

conduct crystal plasticity-based fatigue life predictions. The locations were selected where the 

highest stress during service is expected (also verified later in Section 5 via component-level FE 

analysis) since there is a sharp change in the cross-section of the disk. 
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Figure 5.2. Dual-microstructure heat treated (DMHT) turbine disk component: (a) 2D 

axisymmetric cross-section of the disk shown with average grain size information varying from 

fine grains (average grain size = 5.8 μm) in the bore region to coarse grains (average grain size = 

55 𝜇𝑚) in the rim region, (b) CAD model of the disk with a 270° trimetric view, (c) top view of 

the entire CAD model of the disk, and (d) discretized virtual microstructures corresponding to 

locations A and B. 

5.2.3 Generation of location-specific discretized virtual microstructures  

 We utilized the grain size statistics reported by Gabb et al. [40] and summarized in Section 

5.2.1, to create 3D synthetic virtual microstructures for both Location A (fine grain microstructure) 

and Location B (coarse grain microstructure). The detailed process for utilizing microstructure 

descriptors (grain size, texture, twin area fraction) and creating virtual microstructures, followed 

by mesh generation via a DREAM.3D pipeline is explained in [104]. Following this approach, we 

have generated multiple virtual microstructures, referred to statistically equivalent microstructures 

(SEMs), corresponding to each location, by ensuring that the grain sizes are statistically equivalent 

to the characterized values in [40]. For Location A (fine grain microstructure), 8 SEMs have been 
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generated with average grain size of 5.8 μm and the SEM domain size was 35 μm x 35 μm x 35 

μm. For Location B (coarse grain microstructure), 8 SEMs have been generated with the SEM 

domain size was 325 μm  x 325 μm  x 325 μm . For both locations, each SEM consists of 

approximately 230 grains, based on a sensitivity study with respect to number of grains within the 

simulation volume and boundary conditions to fatigue life distribution [51]. Linear tetrahedral 

(C3D4) mesh elements were utilized to discretize the SEMs and the element sizes were chosen 

based on mesh sensitivity analysis conducted in [105], wherein a suitable choice of refined mesh 

satisfied the following criteria, 
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑠𝑖𝑧𝑒

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑔𝑟𝑎𝑖𝑛 𝑠𝑖𝑧𝑒
≤

3 μm

48 μm 
= 0.063 . In our case, an average 

element size of 0.33 μm was chosen for Location A and an average element size of 2.99 μm was 

chosen for Location B, which is in accordance with the criteria. The SEMs were linked to 

individual locations in the component via MFIN XML and utilized for conducting crystal plasticity 

finite-element simulations. 

5.3 Crystal plasticity-based fatigue life prediction framework 

Calibration of the model is necessary to conduct fatigue life predictions at two levels: (i) the 

crystal plasticity (CP) model parameters and (ii) the critical value of the fatigue indicator metric, 

known as the critical accumulated plastic strain energy density (Wcritical
p

). In Section 5.3.1, we 

introduce the crystal plasticity model utilized for this work, boundary conditions for CPFE, 

followed by the calibration of CP model parameters. Next, we elucidate the fatigue life prediction 

model using Wcritical
p

 in Section 5.3.2. Finally, we present the calibration of Wcritical
p

 parameter 

using experimental life datasets via a Bayesian inference approach in Section 5.3.3.  

5.3.1 Crystal plasticity constitutive model and parameter calibration 

The crystal plasticity model used in this work is based on the continuum mechanics 

description of slip via dislocation glide. The total deformation gradient (𝐅) at a material point can 

be described using a multiplicative decomposition into an elastic part (𝐅𝐞) (which captures the 

elastic stretching and rotations) and a plastic part (𝐅𝐩) (which captures the plastic deformation via 

crystallographic slip) as shown in Eq. (5.1). 

 𝐅 = 𝐅𝐞. 𝐅𝐩 (5.1) 
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The velocity gradient (𝐋𝐩) associated with the plastic part of the deformation is related to 𝐅𝐩 using 

Eq. (5.2).  

 𝐋𝐩 =  𝐅𝐩̇(𝐅𝐩)−𝟏 (5.2) 

  

Further, 𝐋𝐩 can be described using shear strain rate ( γj̇), slip direction 𝐬𝐣 and slip plane normal 𝐧𝐣 

associated with the jth slip system and summed over all the active slip systems using Eq. (5.3). 

 

𝐋𝐩 =  ∑ γj̇

𝟏𝟐

𝐣=𝟏

(𝐬𝐣⨂𝐧𝐣) 

 

(5.3) 

The shear strain rate (γj̇ ) can be related to resolved shear stress (τj) on the jth slip system using 

Hutchinson flow rule [106] and has a power law relationship as shown in Eq. (5.4). 

 
γj̇ =  γ0

j̇
|
τj

gj
|

n

sgn (τj) 
(5.4) 

γ0
j̇
 and n are the initial shearing rate and the inverse strain rate sensitivity exponent, respectively. 

The reference stress (gj) or the resistance to shearing offered by the slip system, which also evolves 

with plastic deformation, is described using a Taylor-type hardening law as shown in Eq. (5.5). g0 

is the initial slip resistance and ρj is the total dislocation density. The terms μ, b, and hn represent 

the shear modulus, the Burgers vector, and a kinetics-based scaling parameter, respectively. 

 gj = g0 + bμ√hnρj (5.5) 

The evolution of ρj is captured via a Kocks-Mecking [107,108] relationship (Eq. (5.6)), which 

constitutes a dislocation storage term, k1, and a dislocation annihilation term, k2(ε̇, T). 

 ρj̇ =  |γj̇|(k1√ρj − k2(ε̇, T)ρj) (5.6) 

Finally, the constants k1 and k2(ε̇, T) are related using Eq. (5.7) [109] with the temperature T and 

the applied strain rate ε̇. This relationship is applicable for dislocation glide mediated plasticity 

wherein 10−5s−1 ≤  ε̇ ≤ 103 s−1 . Here, Γact  is the activation energy term, k is the Boltzmann 

constant, ε̇0 is the reference strain rate, and D is a scaling constant.  
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 k2(ε̇, T)

k1
=

hnb

Γact
[1 −

kT

Db3
ln (

ε̇

ε̇0
)] (5.7) 

Hence, in the crystal plasticity model, there are eleven parameters, which are to be calibrated using 

the experimental data. These include plasticity terms γ0̇, n, g(0), ρ(0), k1, Γact, D, and  hn and the 

anisotropic elastic constants C11, C12,C44.  

Prior to calibration of crystal plasticity model parameters, we introduce the two different 

types of boundary conditions (shown in Figure 5.3) for the CPFE analyses in this study. Firstly, 

for the purposes of calibration of the CP model parameters and critical value of the fatigue indicator 

metric, we utilize uniaxial boundary conditions for simulating the experimental test conditions as 

shown in Figure 5.3 (a). The normal displacements are constrained in three mutually orthogonal 

faces of the SEMs, corresponding to X=0, Y=0 and Z=0, respectively. A non-zero normal 

displacement is specified along the Y direction. The remaining two surfaces of the SEMs are 

unconstrained and act as free surfaces in the simulation. Next, for conducting the CPFE 

simulations based on the hierarchical component analysis to aid in the location-specific fatigue life 

predictions of the DMHT disk component, we utilize multiaxial displacement boundary conditions 

as shown in Figure 5.3 (b). As opposed to applying non-zero displacements along Y direction alone 

(i.e., on one of the surfaces) in the uniaxial displacement boundary conditions, we apply non-zero 

displacements on three mutually orthogonal surfaces (Figure 5.3(b)), along the X, Y and Z 

directions. Hence, all the six faces of the SEM are constrained in this case. The choice of 

displacements is determined via component-level FE analysis, by simulating the in-service loading 

conditions and retrieving location-specific strain states in the component (explained in Section 

5.4). 
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Figure 5.3. Boundary conditions for the crystal plasticity finite element simulations of the 

discretized microstructures: (a) uniaxial displacement boundary condition to simulate 

experimental loading conditions and (b) multiaxial displacement boundary conditions to simulate 

the applied strain state at individual locations in the component. 

Linear tetrahedral (C3D4) elements are used to mesh the SEMs, which provides a 

conformal mesh but offers drawbacks. The  values of micromechanical field variables from CPFE 

analysis is prone to spurious numerical oscillations arising from (i) volumetric locking [110], 

(ii) lack of mesh refinement near the grain boundaries resulting in steep gradients in field variables 

across grains, or (iii) poor quality of tetrahedral elements near grain boundaries and twin 

boundaries. To compensate for these aspects, a slip-system based averaging scheme, namely non-

local averaging was proposed [51].  At each of the integration points of the finite elements, we 

consider three mutually orthogonal directions corresponding to the slip direction, slip plane normal, 



 

 

84 

and a transverse direction for the 𝑗𝑡ℎ slip system, which bound a cuboidal volume about a center 

coinciding with the integration point. The micromechanical field variables are averaged over all 

the elements whose centroids lie within the bounding volume. Since we are dealing with a FCC 

material, we have 12 active slip systems (i.e., j=12) and hence twelve such bounding volumes are 

considered for each integration point for averaging. Finally, after computing average values 

corresponding to each of the twelve bounding volumes, the maximum value amongst the averages 

is assigned as the slip-system averaged quantity of the micromechanical variable at the integration 

point of interest. In our current analysis, we have used an averaging volume of 5 - 3 - 3 elements 

along the slip direction - plane normal - transverse direction, which was determined via a 

sensitivity study in [50]. The averaging volumes are truncated to ensure the non-local average is 

contained within a single grain, e.g. does not cross a grain boundary.  Additionally, to avoid 

spurious values in the micromechanical fields due to boundary effects, for all the CPFE analyses 

in this study, the micromechanical field values near the boundary conditions (approximately 5-

element thickness) are discarded. 

 The fatigue analyses in this study are focused on a single isothermal temperature, 427℃ , 

and due to the availability of data, the CP model parameters are calibrated at 593℃  with 

appropriate scaling laws to account for temperature dependencies.  For each the fine grain and 

coarse grain microstructures, the CP model parameters, (γ0̇, n, g(0), ρ(0), k1, Γact, D, and  hn), 

were separately calibrated using uniaxial monotonic stress-strain data (Figure 5.4). The elastic 

constants, (C11, C12,C44), of LSHR are based on reported values in [111]. The starting point for the 

calibration of g(0), ρ(0), k1, for each of the fine grain and coarse grain microstructures, are based 

on a Kocks-Mecking approach (details included in Appendix). Additionally, the values of Γact, 

D,  hn,  γ0̇ , and n are considered to be independent of grain size, and hence constant for both 

microstructures. The model parameters were iteratively adjusted until a match between the 

experimental stress-strain curves and the crystal plasticity model was achieved (as shown in Figure 

5.4(a) and (b)). The elastic constants C11 , C12 ,C44  are temperature dependent, and hence, the 

values obtained at 593℃  were scaled up by 5.05% based on [102], to obtain applicable values at 

427℃. The yield stress was reported to be insensitive between 427℃ and 593℃, hence the values 

of g(0) calibrated at 593℃ was utilized at 427℃. Lastly, the parameter hn  is also temperature 

dependent, however, we have assumed it to be insensitive to temperature changes between 427℃ 

and 593℃.  The final calibrated values of the model parameters for LSHR applicable at 427℃,  is 
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summarized in Table 5.1, which were subsequently stored in a CSV file and linked to locations A 

and B in the DMHT disk via the MFIN XML.  

 

 

Figure 5.4. Comparison of experimental and simulated macroscopic stress–strain curves from a 

SEM using calibrated crystal plasticity parameters for LSHR at 593℃ for (a) fine grain 

microstructure and (b) coarse grain microstructure. 
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Table 5.1. Calibrated values of CP model parameters for LSHR at 427℃ corresponding to the 

fine grain and coarse grain microstructures. 

Parameter Fine grain microstructure Coarse grain microstructure 

C11 (GPa) 257.899 228.035 

C12 (GPa) 103.352 91.384 

C44 (GPa) 77.273 68.233 

γ0̇ 0.0001 0.0001 

n 40 40 

g(0) (MPa) 460 386 

ρ(0) (1/mm2) 106 106 

k1 (1/mm) 7 X 105 4.5 X 105 

hn 0.09 0.09 

Γact 2.88 X 10−3 2.88 X 10−3 

D (MPa) 53280 53280 

5.3.2 Fatigue life prediction model using critical value of plastic strain energy density 

(𝐖𝐜𝐫𝐢𝐭𝐢𝐜𝐚𝐥
𝐩

) 

A single critical value of an energy-based fatigue metric is used to predict fatigue life. From 

historical origins [112], the work done by external forces during fatigue loading contributes to an 

elastic portion of energy (which is recoverable on unloading) and an internal plastic work (non-

recoverable upon unloading). A portion of the internal plastic work is stored within the material, 

and this contributes to the formation of dislocation structures and sub-structures. Here at the meso-

scale, we utilize the stored portion of the internal plastic work for predicting fatigue life relative to 

microstructural features, as the accumulated plastic strain energy density [49], which has been 
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experimentally validated, c.f. Ref. [50,113,114].  From the CPFE analysis, plastic strain energy 

density at a material point (x) within a SEM, is computed by accounting for contributions from 

individual slip systems. For the yth  loading cycle, the incremental plastic strain energy density 

(∆wy
p(x)) is computed using Eq. (5.8). 

 

∆wy
p(x) =  ∮ (∑ τk(x, t)

12

k=1

γk̇(x, t)) dt 
 

(5.8) 

The accumulated plastic strain energy density wy
p(x) over the y loading cycles is computed by 

summing over the accumulated cycles, ∆wy
p(x), as shown in Eq. (5.9) 

 

wy
p(x) = ∑ ∆wi

p(x)

y

i=1

 

(5.9) 

A reduced number of cycles (Ns ) is explicitly simulated, which is sufficient for the 

dislocation configurations in the material and the macroscopic hysteresis loop to stabilize and 

corresponds to a saturation in the values of ∆wy
p(x). To identify a reasonable choice for Ns, a SEM 

corresponding to the coarse grain microstructure was simulated for 20 cycles. After the simulation 

was completed, ∆wy
p

(x) were extracted, followed by averaging via non-local averaging scheme 

described in Section 5.3.1. Finally, we extract and plot ∆wy
p
 values at a critical location x = x∗  

(Figure 5.5), which corresponds to the location with the maximum value of the accumulated plastic 

strain energy density.  The values of ∆wy
p

(x∗) saturate after a few loading cycles. A similar 

analysis was repeated for the fine grain microstructure as well. Based on this analysis, all the CPFE 

simulations in the remainder of the work were performed for 14 cycles (Ns=14 cycles) and the 

values of wNs

p (x∗) and ∆wNs

p (x∗) were extracted and utilized for life predictions. After Ns, the 

increment in plastic strain energy density ∆wy
p

(x∗) is constant, with the values equal to ∆wNs

p (x∗). 

The extracted CPFE values associated with each SEM, are linked to the corresponding location 

within the DMHT disk, via the MFIN framework. 
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Figure 5.5. Saturation of plastic strain energy density per cycle evaluated at the critical location 

x* (shown for a SEM corresponding to the location with coarse grain microstructure). 

 

 The critical value of the accumulated plastic strain energy density Wcritical
p

 corresponding 

to a predicted fatigue life, Nf, is based on linear extrapolation using ∆wNs

p (x∗) from Ns to the 

experimentally reported fatigue life distributions (Nf
exp

) [40] as shown in Eq. (5.10).  

 

 Wcritical
p

=  wNs

p (x∗) +  (Nf
exp

− Ns)∆wNs

p (x∗)  (5.10) 

 

The Wcritical
p

 value, which is postulated to be a material property, is calibrated based on a set of 

experimental results using a Bayesian inference approach.    
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5.3.3 Calibration of accumulated plastic strain energy density (𝐖𝐜𝐫𝐢𝐭𝐢𝐜𝐚𝐥
𝐩

) using Bayesian 

inference approach  

There is inherent scatter associated with fatigue life, which has been attributed to variability 

in the microstructure features [115].  In the current framework, the statistical variability in the 

microstructural features is captured by creating various instantiations of virtual microstructures, 

SEMs.  Each SEM will result in a calculated wy
p(x) evolution and an associated predicted lifetime 

to crack initiation, which can be compared to a series of experimental test specimen results.  We 

calibrate a the value of Wcritical
p

 using a Bayesian inference approach (please refer [49] for full 

details), based on the set of SEMs simulation results compared to the distribution of the 

experimentally determined cycles to failure.  To calibrate Wcritical
p

 for each of the coarse grain and 

fine grain microstructures, CPFE simulations were performed under loading conditions similar to 

uniaxial cyclic loading conditions (Figure 5.3(a)) utilized in the experiments reported in [40]. The 

experimental fatigue tests were conducted at an applied strain range  ∆𝜀=0.6 %, fatigue load ratio 

R=0, and at 427℃ . For each of the two types of microstructures, tests were conducted on six 

specimens and the fatigue life data was reported in  [40]. Hence, for calibrating Wcritical
p

, we utilize 

six fatigue life data points and 8 SEMs, per microstructure. 

By rearranging Eq. (10) and replacing Nf
exp 

with predicted life Nf
predict 

, we can describe 

Nf
predict 

 as a function of Wcritical
p

  as shown in Eq. (11).  This equation depicts the fatigue life 

prediction model used in this work. The values of wNs

p (x∗) and ∆wNs

p (x∗) are obtained from CPFE 

simulations for each SEM and Wcritical
p

 is the parameter in Eq. (5.11) which is to be calibrated. 

 

 
Nf

predict 
=

Wcritical
p

− wNs

p
(x∗) 

ΔwNs

p (x∗)
+ Ns 

 

(5.11) 

The predicted fatigue life and experimental life can be related using Eq. (5.12) [49], wherein the 

term δ  accounts for the errors originating from experiments and the limitations in the crystal 

plasticity model to capture the underlying physics. The term δ can be described using a normal 

distribution with zero mean and a standard deviation (s) [49]. Hence, the parameter set for the 

Bayesian calibration process is described as α = {Wcritical
p

, s}. 
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 Nf
exp 

=  Nf
predict 

+ δ (5.12) 

The inputs required for Bayesian calibration include experimental observation (i.e., the 

fatigue life data) and prior distributions for the model parameters α. The output of the Bayesian 

calibration process is the posterior distributions for α . The calibration process is separately 

conducted for coarse grain and fine grain microstructures. Finally, the expected values of Wcritical
p

 

is extracted from the posterior distributions and utilized for fatigue life prediction.   

Initially, we assume uniform prior distributions (π0(α)), which is systematically updated 

based on a Bayesian inference method using experimental observations (D) and likelihood 

function π(D|α). The posterior distribution π(α|D) can be evaluated using Bayes’ theorem as 

shown in Eq. (5.13). 

 

 π(α|D) =
π(D|α)π0(α)

π(D)
=

π(D|α)π0(α)

∫ π(D|α)π0(α)dα
  (5.13) 

The likelihood term π(D|α) in the denominator of Eq. (5.13) can be expressed using Eq. (5.14). 

The term t is the product of number of SEMs (n1) times the number experimental data points (n2). 

 

 
π(D|α) =

1

(2πs2)
t
2

exp(−
SSE(α)

2s2
) 

(5.14) 

 

SSE(α) is the sum of square errors for the parameter set α, which is described using Eq. (5.15). In 

the present work, for both the coarse grain and fine grain microstructures, we have 8 SEMs (i.e., 

n1=8) and 6 experimentally reported [40] fatigue life data points (i.e., n2=6). 

 

SSE(α) =  ∑ ∑ (Ni
exp

− Nj
predict(α))

2
n2

j=1

n1

i=1

 
(5.15) 

However, while evaluating the posterior distributions of the parameter set α  using Eq. 

(5.13), computation of the integral term in the denominator term can be challenging. To overcome 

this challenge, a Markov chain Monte-Carlo (MCMC) sampling approach is used.  Please see [49] 
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for detailed description of the MCMC approach. A brief overview of the MCMC approach, 

pertinent to the current work, is explained in Appendix D.  The posterior distributions of Wcritical
p

 

was obtained using the Bayesian calibration, as shown in Figure 5.6. These results correspond to 

converged MCMC solutions, wherein the value of the convergence metric Rαr
 [49] was closest to 

1. The posterior distributions of Wcritical
p

  follows a normal distribution.  For the fine grain 

microstructure (average grain size of 5.8 μm ), we obtained mean value of Wcritical
p

 =11,984.8 

MJ/m3  and standard deviation of Wcritical
p

 =1,264.6 MJ/m3 . Whereas, for the coarse grain 

microstructure (average grain size of 55 μm ), we obtained the mean value of Wcritical
p

 =488.6 

MJ/m3 and standard deviation of Wcritical
p

=69.4 MJ/m3. The value of Wcritical
p

 is higher for the 

fine grain microstructure than the coarse grain microstructure. It has been reported [116–118] that 

the fatigue crack initiation life in certain materials is higher for fine grains than coarse grains, 

under low plastic strain amplitudes and ambient temperatures, since coarser grains are more prone 

to the formation of persistent slip bands (PSBs) [118,119] leading to strain localization. The metric 

Wcritical
p

  is postulated as a material property which is analogous to fatigue strength to crack 

initiation and is inherently related to the energy utilized to form stable dislocation structures and 

sub-structures such as PSBs. Hence, the observed trend in Wcritical
p

  with average grain size is 

consistent.  Future work could be conducted to explore the exact relationship between Wcritical
p

 

and average grain sizes.      
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Figure 5.6. Posterior distributions of calibrated accumulated plastic strain energy density 

(Wcritical
p

)  parameter for (a) fine grain microstructure and (b) coarse grain microstructure.  

 

A probability of failure plot versus number of cycles to failure is shown for the simulations 

compared to the experimental results from [40], in Figure 5.7. The simulation based predicted life 

and experimental datasets compare well in terms of range and slope, and both follow a lognormal 

distribution. 

 



 

 

93 

 

Figure 5.7. Probability of failure plot comparing experimental fatigue life data (at ∆ε=0.6 %, 

R=0, 427℃) from [40]  and predicted fatigue life data (each data point corresponds to a SEM) 

using the calibrated values of Wcritical
p

 for fine grain and coarse grain microstructures.   

5.4 Component-level FE analysis  

The micromechanical fields of the DMHT turbine disk were modeled for in service 

conditions from rest to an overspeed at an operating temperature of 427℃. A static analysis has 

been performed on an axisymmetric section of the disk to acquire stresses and strains 

corresponding to the maximum loading condition, while assuming the minimum applied load to 

be zero (therefore, the fatigue stress ratio is R=0). A centrifugal load has been applied on the disk, 

with a spin speed of ω = 37500 rpm. To enforce the constraints on the disk due to the shaft, a 

displacement constraint was applied on the inner surface of the disk in both the radial and axial 

direction. The analysis model with the mesh, applied loads, and boundary conditions are shown in 

Figure 5.8 (a). Linear quadrilateral elements are used with an average element size of 0.3 mm, 

based on a mesh sensitivity analysis. 
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Figure 5.8. Finite element model of the disk: (a) axisymmetric model geometry with 

quadrilateral mesh elements, centrifugal load, and boundary conditions and (b) maximum 

principal stress distribution generated in the disk during service wherein the principal stresses 

are σI = 1251 MPa, σII = 774 MPa, σIII = 40 MPa and principal strains are εI = 0.0051, 

εII = 0.0021, εIII = −0.0027 at location A and σI = 1206 MPa, σII = 939 MPa, σIII =
39 MPa, εI = 0.0053, εII = 0.0033, εIII = −0.003 at location B. 

An elastoplastic material model was used for the FE analysis following a Johnson-Cook [120] 

type hardening rule (Eq. (5.16)), wherein the flow stress (σ̅) is a function of the equivalent plastic 

strain (ε̅) and applied temperature (T). In Eq. (5.16), the parameters σYS, B, c1, c2, Tref  , Tmelt   

refer to the yield stress, strain hardening coefficient, strain hardening exponent, temperature 

exponent, reference temperature and melting temperature, respectively.  

 

 
 σ̅ = (σYS + Bε̅c1) [1 − (

T − Tref

Tmelt − Tref
)

c2

] (5.16) 

Additionally, we also utilize elastic model parameters, Young’s modulus (E) and Poisson’s 

ratio (ν) , as well as physical properties, mass density (ρ) [102].   The material properties assigned 

to different regions (bore region, transition region, and rim region) of the disk are based on the 

original average grain size definitions within the MFIN XML (Figure 5.2 (a)).  For each element 

in the component FE model, the average grain size is extracted from the nearest point feature (as 

shown previously in Chapter 4).  The material properties of LSHR were individually calibrated for 
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the bore region (fine grain microstructure) and the rim region (coarse grain microstructure) based 

on reference stress-strain data at 593℃ (Figure 5.4). The material property of LSHR corresponding 

to different regions of the disk are summarized in Table 5.2. 

Using the calibrated Johnson-Cook plasticity parameters (B and c1) and Young’s modulus (E) 

for bore and rim region, the corresponding parameters for the transition region were determined 

through interpolation, based on the average grain size value of 38 μm.  The physical, elastic, and 

plastic parameter values are stored in individual CSV files and linked to distinct regions of the 

DMHT disk, using the earlier created point features within the MFIN XML. Subsequently, the 

temperature dependent terms in Eq. (5.16) were used to conduct the FE analysis for the application 

temperature of 427℃. 

Table 5.2. Material property values of LSHR at 427℃ which were utilized for the FE analysis, 

corresponding to the three regions (as shown in Figure 5.2 (a)) of the DMHT disk. 

Material Properties Bore region 

(Average grain 

size = 5.8 μm  ) 

Transition 

region 

(Average grain 

size = 38 

μm  ) 

Rim region 

(Average grain 

size = 55 μm  ) 

Density (ρ) (kg/m3) 8359 8359 8359 

Young’s Modulus (E) (GPa) 199.595 181.736 176.484 

Poisson’s ratio (ν) 0.286 0.286 0.286 

Yield stress (σYS) (MPa) 1209 1112 1101 

Strain hardening coefficient (B)(MPa) 3641 3078 2697 

Strain hardening exponent (c1) 0.81 0.76 0.73 

Temperature exponent (c2) 1 1 1 

Melting temperature (Tmelt)(℃) 1297 1297 1297 

 

 The principal stresses and strains across the component were calculated via the FE analysis 

and exported within a CSV file along with the corresponding element centroid location coordinates. 
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Thereby, point features are created within the MFIN XML of the DMHT disk, and the FE analysis 

results are linked to individual locations (Section 4.2). The maximum principal ( σI ) stress 

distribution across the disk is shown in Figure 5.8 (b). As expected, we observe high stresses in 

the region of the two locations of interest (i.e., the Locations A and B), due to the steep variation 

in cross section of the disk at these locations. Additionally, the discrete change in material 

properties associated to the three distinct regions of varying average grain sizes occurs at locations 

sufficiently far from the Locations A and B. The principal strains from Locations A and B are used 

to inform multiaxial displacement boundary conditions for the CPFE analysis, in a hierarchical 

fashion via the MFIN framework. The CPFE analysis tied to locations A and B are subsequently 

utilized for location-specific fatigue life predictions in the DMHT disk. 

5.5 Results and discussion  

The framework is used to systematically identify, store, and retrieve site specific material 

microstructure and associated properties across a component.  The data is seamlessly exchanged 

to generate (i) CPFE simulations to identify material allowables through uniaxial loading 

conditions, (ii) component level FE analysis, and (iii) hierarchical CPFE simulations with site 

specific boundary and loading conditions from the component analysis.   

5.5.1 Simulation based uniaxial minimum fatigue life for LSHR 

 For establishing the materials allowables by identifying the minimum fatigue life, this 

framework is beneficial to (i) complement experimental results with simulated predictions, thereby 

accounting for additional cases of extreme value statistics of microstructural features to identify 

the minimum life (as described in this section) and (ii) connect to component lifing analysis 

(Section 5.5.2).  Here, we present the predicted fatigue life results obtained via CPFE simulations, 

while applying a constant uniaxial loading condition (∆𝜀=0.6 %, R=0, 427℃)  for all the SEMs 

(akin to fatigue testing using virtual specimens). The probability of failure versus loading cycles 

plot is shown in Figure 5.9. In this plot, we have data points corresponding to the fine and coarse 

grain microstructures, representing the predicted fatigue life obtained from their respective SEMs.  

In addition, the lognormal fits of these datasets are included. The plot in Figure 5.9 provides: (i) 

the predicted life corresponding to the fine grain microstructure, (ii) the predicted life 
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corresponding to the coarse grain microstructure, and (iii) the predicted life for the combined 

dataset as a single distribution (i.e., similar to the traditional approach of assuming uniform 

microstructure across the component).  

 

 

Figure 5.9. Probability of failure plot versus cycles to failure with B0.1 life values obtained by 

treating the datasets as individual samples per location based on the underlying microstructure 

(blue data points correspond to SEMs from coarse grain microstructure and red data points 

correspond to fine grain microstructure) compared to treating the entire dataset as one single 

sample (independent of the microstructure). 

 

 The significance of the presented result is two-fold. Firstly, the use of microstructure-

sensitive life predictions presents opportunities to reduce the overall number of tests needed to 

identify the allowable material life. Secondly, we observe reduced uncertainties in the reported 

fatigue life by treating datasets corresponding to individual locations as separate distributions, 

which was enabled by the tracking capabilities of location-specific microstructures in the MFIN 

framework. For identifying the minimum allowable life of the material using the B0.1 approach, 

we utilized the lognormal fits and extrapolated the value corresponding to the probability of failure 

of 1/1000 for each of the three cases shown in Figure 5.9.  The B0.1 life corresponding to the 
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coarse grain microstructure was estimated as 3,630 cycles, whereas the B0.1 life corresponding to 

the fine grain microstructure was estimated as 220,000 cycles. On the other hand, while using the 

traditional approach of treating all the fatigue life datasets from a single loading condition as one 

single distribution (assuming a monolithic component), we obtain a significantly lower minimum 

allowable B0.1 life of 60 cycles. Hence, by accounting for precise microstructure descriptions of 

the material (i.e. location-specific microstructures), while estimating the minimum allowable life 

of the material, we could potentially reduce uncertainties and shift our estimates to a higher 

minimum life. The analysis demonstrated in this work could be particularly beneficial while 

estimating the material allowable(s) for next-generation components with gradient microstructures.  

5.5.2 Component level: Location-specific fatigue life predictions for the DMHT disk  

Next, we describe the location-specific fatigue life predictions connected to the component 

(i.e., component lifing) by using pertinent location-specific loading conditions within CPFE 

simulations in a hierarchical fashion. As explained in Section 5.4, each of the SEMs, corresponding 

to Location A (fine grain microstructure) were simulated with multiaxial displacement boundary 

conditions, identified through the component scale FE analysis (Section 5.4) by using the principal 

strains, εI = 0.0051, εII = 0.0021, εIII = −0.0027 and R = 0. Similarly, the SEMs corresponding 

to Location B (coarse grain microstructure) were simulated with εI = 0.0053 , εII = 0.0033 , 

εIII = −0.003 and R = 0, based on the component FE results. The MFIN framework was utilized 

to track and retrieve the principal strains across the component from in-service type loading 

conditions at locations of interest, determined via component level FE analysis, and utilized to 

hierarchically inform the multiaxial displacement boundary conditions for the CPFE analysis 

(Figure 5.8 (b)). 

The probability of failure versus loading cycles plot corresponding to Locations A (near 

bore) and B (near rim) in the component is shown in Figure 5.10. Each data point in the plot 

corresponds to the predicted life from a SEM simulation. The predicted life for each multiaxial 

SEM was computed using Eq. (5.11), wherein the corresponding  wNs

p (x∗) and ∆wNs

p (x∗)  values 

were obtained from the CPFE analysis. Since Wcritical
p

 was shown to be applicable independent of 

loading conditions [49], we utilized the earlier calibrated Wcritical
p

  values, i.e. Wcritical
p

=

11984.8 MJ/m3  for SEMs corresponding to the fine grain microstructure (Location A) and 
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Wcritical
p

= 488.6 MJ/m3 for SEMs corresponding to the coarse grain microstructure (Location B) 

in Eq. (11). In Figure 5.10, to represent the uncertainties associated in our fatigue life predictions, 

we have included a prediction range corresponding to 95% confidence level. For calculating this 

prediction range, we incorporated two sources of variability [50], which include (i) the standard 

deviation of Wcritical
p

 from the posterior distribution obtained via the Bayesian calibration process 

(Section 5.3.3) and (ii) uncertainties associated with calibration of the CP model parameters 

propagating to the wNs

p (x∗) values, as described in [121]. 

 

 

Figure 5.10. Probability of failure plot corresponding to location A (fine grain microstructure) 

and location B (coarse grain microstructure) obtained via crystal plasticity simulations (each data 

point in the plot corresponds to a SEM). 

 

 By identifying and tracking site-specific microstructures in the DMHT disk and conducting 

associated CPFE analysis via the MFIN framework, we were able to isolate fatigue life predictions 

connected to individual locations in the component, as shown in Figure 5.10. The result shown in 

Figure 5.10 is indicative of critical locations in the component from the context of fatigue crack 

initiation, thereby providing insights to the designer on when and where a crack initiates first, 

given the location-specific microstructural information and loading conditions. In the current 

demonstration, wherein we have conducted analysis at two distinct locations, it is evident that 
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Location B (in the rim region) is prone to crack initiation at an earlier cycle count. From the context 

of planning the maintenance and inspection schedules during the service of the disk, the site-

specific likelihood of failure is useful information.  Additionally, the predictive analysis approach 

presents opportunities to determine lifecycles, after which inspection and maintenance of a 

serialized component should be scheduled [122]. We would like to emphasize that the modeling 

framework used in this work focuses on fatigue life predictions for crack initiation. However, 

depending on the local microstructure and local geometric constraints at the site of crack initiation 

within the component, the crack growth rates will vary. In the near-threshold regime, coarse grain 

microstructures are typically more tolerant to crack growth as opposed to fine grain 

microstructures [123]. However, the presented MFIN framework and its location-specific tracking 

capabilities of local microstructure and loading states can be extended for evaluating the location-

specific fatigue life via a damage tolerance analyses, including the incorporation of residual stress 

information (Section 3.4 and Section 4.3). 

5.5.3 Considerations for the microstructure-sensitive location specific life predictions  

 The transition towards a physics-based, microstructure-sensitive approach for lifing 

components, as demonstrated via the DMHT study, presents numerous advantages. By including 

more physics-based predictive analysis via simulating multiple SEMs, we can improve our 

understanding of the cause-effect relationships in the material system. We can also reduce the 

number of experiments needed for determining the minimum fatigue life, thereby reducing the 

overall costs incurred in the material qualification process. For component lifing, we presented a 

hierarchical approach to utilize the stress/strain states from the component-level FE analysis within 

the microstructure-sensitive CPFE analysis. The approach is computationally tractable since it 

does not rely on modeling the entire component’s microstructure. Based on the component 

geometry, applied loading conditions, as well as legacy records from the lifecycle of prior versions 

of the component, lifing engineers can determine critical locations to perform lower length scale 

CPFE simulations. Moreover, the approach does not rely on homogenization; hence we can 

directly incorporate microstructural variability at each component location of interest by 

simulating multiple SEMs and therefore account for extreme values of microstructural attributes 

while predicting fatigue life. The CPFE analysis used in this work utilized individual sets of model 

parameters corresponding to distinct microstructures. Further work can include strain gradient 
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CPFE approaches [124], which can explicitly capture grain size effects via a single set of crystal 

plasticity model parameters applicable to multiple locations in the component. Lastly, this 

modeling framework can be extended to include finer discretization in the microstructure attributes 

across the spatial regions or include more rich microstructural information, including precipitate 

distribution, the likelihood of porosity/inclusions, residuals stresses, or surface effects. 

 The capability of the MFIN framework has been presented for storing, tracking, and 

updating material microstructural information tied to individual locations in the component. The 

use of the data linking approach within the MFIN framework allows dynamically updating the 

material state of the component and its individual locations. Hence, the MFIN framework presents 

opportunities to continually update material microstructural description from characterizations 

conducted at different stages of the product lifecycle, such as during the individual stages of 

manufacturing, acceptance of material from various vendors, and during periodic inspections of 

the component accounting for time-dependent degradation or damage. By enabling the dynamic 

updating of data and seamless data exchange, the MFIN framework provides the use of precise 

microstructural descriptions within the subsequent microstructure-sensitive predictive analysis of 

a component, thereby further reducing uncertainties in the input microstructures and associated 

predicted life distributions. Hence, the MFIN framework presents opportunities to create the digital 

twin of a serialized component to assist in decision-making during the product lifecycle. 

 The use of the MFIN framework for fatigue life assessment of components via physics-

based simulations provides new opportunities to design the component and tailor the 

microstructure simultaneously, thus aiding in understanding the fatigue tradeoffs upfront during 

the product design stage. The framework can be extended by developing new MFIN schemas and 

wrapper code(s) to link to process modeling-related code(s) for predicting residual stress 

distributions, precipitates, grain sizes, texture evolution as well as property code(s) to compute 

strength by using structure-property linkages. By assessing current design strategies and 

understanding location-specific minimum life, engineers can potentially utilize a fully model-

based approach to iteratively redesign by modifying the geometry and/or the processing route to 

alter site-specific microstructures to optimize location-specific performance. 
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 CREATING CONNECTIVITY BETWEEN GEOMETRIC 

INSPECTION AND STRUCTURAL ANALYSIS VIA MFIN 

FRAMEWORK FOR ASSESSING AS-BUILT AND AS-USED 

COMPONENTS  

The contents of this chapter have been submitted for publication in Gopalakrishnan S, Hartman 

NW, Sangid MD. A digital engineering framework to facilitate automated data exchange 

between geometric inspection and structural analysis. Submitted, under review (2022). 

  

 In Chapters 4 and 5, we presented the use of the MFIN framework with the primary focus 

of tracking and using material information applicable to a component. However, during structural 

integrity analysis of components, we rely on estimating stress distributions within a component 

during service, and the use of the precise geometric description of the component (i.e., its current 

geometry) for such analyses is crucial. In this chapter, we utilize the MFIN framework to create a 

workflow for automated data exchange between geometric inspection and structural analysis tools. 

In Chapter 4, we presented an integration between the MFIN and structural analysis tools, to 

programmatically feed component geometry and materials information for the analysis. In this 

chapter, we expand the MFIN framework to utilize coordinate measurement data and update 

geometric features within the nominal CAD model of a component, thereby creating CAD models 

of manufactured components or after-use components. In Section 6.1, we present the data 

integration methods via MFIN used for developing this workflow. In Section 6.2, we present a use 

case to capture deviations in the surfaces of a turbofan component from a maintenance, repair, and 

overhaul (MRO) standpoint. In Section 6.3, we discuss the scope of this automated workflow to 

support engineering decision making for MRO and materials review board (MRB)  

6.1 Data integration methodology and framework 

 For this work, we use the earlier developed integration between MFIN and structural 

analysis tools for supplying model geometry and material properties (Chapter 4). Additionally, in 

this section, we present the application of the framework for linking and retrieval of the coordinate 

measurement results applicable to geometric features (specifically surfaces), and the process of 

programmatically using this data within external surface fitting code(s) in Section 6.1.1. Next, we 

present a programmatic process (in Section 6.1.2) to update the surfaces within the nominal CAD 
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model with the fitted surfaces from measured data, thereby creating CAD models of manufactured 

components and capturing any geometric deviations to the surfaces.  

To capture the deviations in the surfaces, we develop and use a programmatic workflow 

(Figure 6.1) to link and retrieve coordinate measurement datasets pertaining to individual surfaces 

in the component, thereby utilizing the measurement datasets to fit surfaces and update the nominal 

CAD model.   Additionally, a summary of all the essential MFIN data elements, schemas and API 

functions used in the workflow is shown in Table 6.1. 

 

 

 

Figure 6.1 Process of creating CAD models of as-manufactured/in-service components by 

utilizing coordinate measurement data via the MFIN framework, wherein (a) the nominal CAD 

model (design model) along with the product manufacturing information (PMI) notes are 

translated into a derivative file format (MFIN XML), (b) measurement data procured from a 

coordinate measurement machine (CMM) is integrated with the corresponding scanned surfaces 

within the MFIN XML, (c) a surface fitting algorithm (external code) is applied to fit freeform 

surfaces onto the measurement data, and (d) the surfaces in the nominal CAD model are 

programmatically updated. 
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Table 6.1. Summary of essential data elements, schemas and API functions utilized within the 

workflow presented in Figure 6.1. 

Name of the data 

elements/schemas/API 

functions 

Purpose/Description Connectivity to 

the workflow in 

Figure 6.1. 

“QIFDocument” 

 

The top-level data element of MFIN XML, which 

contains all the other data elements as its sub-

elements. 

Created in 6.1(a). 

“QIFDocument.xsd” Schema file defining the structure of 

“QIFDocument” element. 

Used in 6.1(a). 

“QIFDocument.py” A Python class with API functions to facilitate 

programmatic linking and retrieval of data using 

MFIN XML. 

Used throughout 

the workflow. 

“QPId” Data element to record universally unique 

identifier (UUID) assigned to each MFIN XML 

file. 

Created in 6.1(a). 

Used throughout 

the workflow. 

“localId” Local identifiers of individual data elements within 

the MFIN XML for tracking and retrieval 

purposes. 

Created in 6.1(a). 

Used in 6.1(b), 

6.1(c). 

“QIFResults.xsd” Schema file defining data elements specific to 

inspection and measurements. 

Used in 6.1(b) and 

6.1(c). 

“MeasurementResultSet” Data element capturing information related to all 

measurement events in a product.  

Created in 6.1(b) 

and used in 6.1(c). 

“MeasurementResult” Data element containing information related to a 

specific measurement event. 

Created in 6.1(b) 

and used in 6.1(c). 

“featureId” Data element used for tracking measured 

geometric features within a MFIN XML instance 

and takes the value of a feature’s “localId”. 

Created in 6.1(b) 

and used in 6.1(c). 

“ExternalFileReferences” Data element capturing the file paths of the 

measurement result datasets. 

Created in 6.1(b) 

and used in 6.1(c). 

“MFINAnalysis.xsd” Schema file defining data elements to capture file 

linkages to analysis model geometry, input and 

output files. 

Used at the end of 

the workflow. 

“MeasuredFeature” PMI note tag for tracking the measured features 

within the CAD model. 

Created in 6.1(a) 

and used in 

6.1(b), 6.1(c) and 

6.1(d). 

“CreateBsurfThruPts” NX API  function to generate NURBS surfaces in 

CAD tool by using the control point coordinates. 

Used in 6.1(d). 
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6.1.1 Integration of coordinate measurement data with geometric features 

For capturing coordinate measurement results applicable to geometric features within a 

product, the MFIN XML already consists of an element inherited from the QIF standard, namely 

the “QIFResults.xsd”  [125]. However, the existing schema facilitates only storing the results 

directly within the MFIN XML, which has two associated challenges - (i) we could potentially end 

up with large sized files (especially for components with many features or with multiple instances 

of measurement results procured for individual features) and (ii) limits dynamic access to the most 

recent version and historically recorded measurement data. In this work, the MFIN schemas were 

modified to create linkages between a geometric entity in the model and externally stored CMM 

datasets. Hence, the “QIFResults.xsd” schema was modified to group file paths of externally stored 

measurement datasets with geometric features (using its corresponding “localId"). The updated 

“QIFResults” schema generates the following structure of data elements – “MeasurementResultSet” 

at the top level to group all the measurement result datasets applicable to the product and each 

measurement result recorded as sub-elements with the element name “MeasurementResults”. 

Following the overall structure of the MFIN XML (Section 4.1), each “MeasurementResults” 

element consists of its own corresponding “localId” to track and retrieve the measurement result 

information from a specific measurement event. The “MeasurementResults” element comprises 

of two primary sub-elements namely, the “featureId” (which takes the value of a feature’s “localId” 

and informs the geometric feature to which the measurement results were linked) and the 

“ExternalFileReference” (which records the file paths to the measurement results). Additionally, 

there are other sub-elements to capture metadata such as the file description, file type information, 

user who logs the measurement results, and measurement device identifier which was used for 

procuring the data.  

A programmatic process has been developed for linking measurement datasets with 

relevant surfaces by utilizing the PMI notes. A pre-requisite step in the current process is to create 

PMI notes in the native CAD model with tags “MeasuredFeature1”, “MeasuredFeature2”, ... , 

“MeasuredFeatureX” corresponding to each geometric feature of interest, prior to generating an 

MFIN XML instance (Figure 6.1(a)). The programmatic process (Figure 6.1(b)) to create 

measurement result linkages follows: (a) reading the PMI note with the “MeasuredFeature” tag 

and recognizing the surface wherein the measurement dataset is linked (using its “localId” in the 

MFIN XML), (b) selecting CMM result files (could be one or multiple files) and (c) creating data 
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linkages in the “MeasurementResult” element within the MFIN XML. After iteratively linking the 

measurement results to each of the surfaces containing the “MeasuredFeature” tag, the datasets 

are available for downstream retrieval and usage via the MFIN XML. 

6.1.2 Process of applying surface fitting and updating the CAD Model  

For the retrieval of measurement datasets corresponding to specific surfaces and their use 

within an external surface fitting code, a programmatic method (Figure 6.1(c)) has been created 

and used. A wrapper code has been developed to search for the PMI note with the tag 

“MeasuredFeature” and identifying the surface (using the “featureId”) to which the note applies. 

Within the “MeasurementResultSets” element in the MFIN XML, the CMM dataset files linked to 

the surface is searched (for a specific “featureId”) and finally the data within the files are retrieved 

within the external surface fitting code (which was a MATLAB script in this present work). The 

process is iteratively repeated for each surface linked with measurement data.  

After the surface fitting code is executed, in order to update the surfaces in the nominal CAD 

model with the fitted surface definitions, a wrapper code has been developed using the APIs 

provided with the CAD tool (we used Siemens NX APIs for the current work). For speeding up 

the process of creating a wrapper code, the macro code generation capability was utilized, which 

is prevalent in commercial CAD software(s). This involves, manually performing the CAD 

operations such as surface deletion and creating new surfaces for a single time, thereby enabling 

the creation of a wrapper code to repeat similar operations.  The output from the surface fitting 

algorithm is utilized as inputs within the wrapper code, for updating the surfaces in the CAD model 

(Figure 6.1(d)).  The PMI notes are used for tracking the surface, which is to be updated. The 

existing surfaces in the nominal CAD model with the PMI note are deleted, followed by creating 

new surfaces representative of the physical surface in the product. Finally, a new MFIN XML 

instance is generated using the updated CAD model and linked as a sub-element (using its UUID 

and MFIN XML file path) within the original MFIN XML corresponding to the nominal model. 

Hence, the geometric definitions within the updated CAD model informed by coordinate 

measurement data is readily available for structural analysis via the MFIN XML, which is 

illustrated with a use case in this work. 
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6.2 Use case: Analysis of a turbofan blade with foreign object damages during service 

In this section, we demonstrate the developed process (presented in Section 6.1) to capture 

deviations in the surfaces of a component for a maintenance, repair, and overhaul (MRO) use case, 

however the methodology can be generally applied more broadly during the lifecycle, including 

materials review board decisions of a manufactured part. 

During service, jet engine components such as the turbofan can be prone to possible 

collisions from foreign objects (Figure 6.2(a)), inducing damage to individual components and 

sub-assemblies.  The blades in these turbofan assemblies incur geometric deviations (Figure 6.2 

(b)), thereby necessitating the decision on their further usage – either use as-is, repair and re-use, 

or retire. Hence, in this study, we have undertaken a use case for the analyses of a turbofan 

assembly made of a titanium alloy, namely Ti-6Al-4V, subjected to foreign object damage of a 

single blade.  We demonstrate the process of creating a CAD model of the turbofan assembly with 

its damaged blade, replicating the after-use state, by utilizing coordinate measurement scans and 

subsequently applying a NURBS-based surface fitting algorithm, via the MFIN framework. 

Further, we illustrate conducting structural analysis by utilizing the after-use geometric model and 

present the variations in the local stress fields in the region of damage compared to a case of using 

the nominal design geometry (or as-designed), which is the more conventional approach. 

 

 

 

Figure 6.2. Foreign object damage induced in aircraft engine components during service: (a) a 

schematic of turbofan blades being exposed to a foreign object and (b) an example of damaged 

blades [126] with modified surface geometries. 
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6.2.1 CAD model of nominal turbofan assembly 

First, we created a nominal CAD model for a turbofan assembly with 30 blades, with 

geometric dimensions from Ref. [127]. The turbofan assembly consists of the hub section and the 

blades(s) (Figure 6.3 (a)) (we have ignored the nose section of the turbofan in this use case for 

simplicity). Since the turbofan assembly is axisymmetric about the Z axis, a sector of the hub with 

an angle of 12° along with a single blade geometry was created (shown in Figure 6.3 (b)) and 

revolved about the Z-axis to create the entire turbofan assembly (Figure 6.3 (a) and Figure 6.3 (c)). 

The blade geometry comprises of four surfaces, which are referred to as the front surface, the back 

surface, and the two lateral surfaces in this chapter.  For facilitating linking and retrieval of 

measurement data to the front and the back surfaces of the blade (Figure 6.3 (c)), PMI notes have 

been attached following the process presented in Section 6.1. Finally, the nominal CAD model of 

the turbofan assembly and the PMI notes associated to its surfaces are translated into the derivative 

MFIN XML file format.  
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Figure 6.3. Geometry of the turbofan assembly considered for the use case: (a) CAD model of 

the nominal geometry, (b) 1/30th axisymmetric sector and PMI notes associated to the blade’s 

surfaces, (c) top view of the nominal CAD model, and (d) a synthetically generated modification 

to the surface profile of the blade - representing a foreign object damage. 

6.2.2 Foreign object damage – CMM data acquisition 

To provide a general case of a damaged blade, we created synthetic datasets emulating 

CMM measurements from a blade with a dent. Firstly, we created coordinate measurements of the 

nominal blade using the CAD tool, by overlaying datum points on its surfaces. Datasets with 20-

line scans corresponding to 20-curve sections were created for both the front and the back surfaces 

(similar to the example shown in Figure 6.4(a)). Along each line scan, we generated 400 pseudo 

coordinate measurement data points. A choice of 400 scanned points along each curve section 

would imply a scanned point for every 0.8 to 0.95 mm distance which is feasible to probe and 

measure using both contact and non-contact based CMMs. The position coordinates of points were 

manually modified to replicate a dent in the front surface similar to Figure 6.3(d). For each section 

curve, the scanned coordinate measurement datasets were stored in distinct files with a comma-
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space value (CSV) file format.  The CSV files were programmatically linked with the applicable 

surfaces (by utilizing the PMI notes) within the MFIN XML, by following the process presented 

in Section 6.1.1.  

 

 

Figure 6.4. Schematic of the surface fitting procedure wherein (a) the CMM point cloud on a 

surface (shown in the parametric space (u-v)) is (b) fit with non-uniform rational B-spline 

(NURBS) curves (along u) and (c) a surface is generated by skinning or lofting across the curve 

sections (along v). 

6.2.3 Surface fitting approach using NURBS 

To create the surface geometries of a damaged blade using the coordinate measurement 

dataset, we apply a classical two-step surface fitting approach: (i) fitting NURBS curves to 

generate section curves of the blade, followed by (ii) skinning or lofting [128] across the section 

curves. The use of NURBS curves leverages local control on the shape of individual section curves, 

particularly useful for surfaces with complex curvatures such as in the case of a blade. The surface 

fitting code has been developed in MATLAB for the current use case. The set of 20 measurement 

datasets (CSV files) applicable to both the front and the back surfaces are programmatically fed 

into the MATLAB code (as described in Section 6.1.2 ), one surface at a time to conduct the surface 

fitting operation. 

  In step (i), our goal is to fit NURBS curves 𝐶𝑟(𝑢) to each line scan of CMM points along 

the u-direction as shown in Figure 6.4 (b). In our case we have 20-line scans per surface and hence 
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r ranges from 1 to 20.  Firstly, we parameterize the scanned data points 𝑄𝑡 = {𝑥𝑡̅ , 𝑦𝑡̅, 𝑧𝑡̅}𝑡=1,2,..,𝑚  

in the u-direction (Figure 6.4) for each curve section, by using centripetal parameterization scheme 

[129] as shown in Eq. (6.1). The use of centripetal parameterization is conventionally preferred 

for surfaces wherein the measured points could be non-uniformly spaced such as in a blade surface 

with complex curvatures, and therefore chosen for the current demonstration. Hence, for each of 

the line scans, coordinate measurement points range between 0 and 1 after parameterization. 

 

  

𝑢1 = 0 

 

𝑢𝑡 = 𝑢𝑡−1 +   
‖𝑄𝑡 − 𝑄𝑡−1‖

∑ ‖𝑄𝑗+1 − 𝑄𝑗‖𝑚−1
𝑗=1

,    2 ≤ 𝑡 ≤ 𝑚    

 

 

(6.1) 

 

A standard NURBS curve [130] made of piecewise polynomials of order k is defined as 

shown in Eq. (6.2). 𝐶(𝑢)  represents the coordinates of the points on the NURBS curve, 𝑣𝑖 

represents the coordinates of the control points which control the shape of the piecewise 

polynomials forming the NURBS curve and 𝑤𝑖  represents the scalar weights corresponding to 

each control point for providing additional local control on its shape.  

 

 
𝐶(𝑢) =  

∑ 𝑤𝑖𝑣𝑖𝐵𝑖,𝑘(𝑢)𝑛
𝑖=1

∑ 𝑤𝑖𝐵𝑖,𝑘(𝑢)𝑛
𝑖=1

 
(6.2) 

 

The B-spline basis function (𝐵𝑖,𝑘(𝑢)) for the i-th control point is defined as shown in Eq. 

(6.3), following De-Boor’s recursive formula  [130], which is a function of the parameter value (u) 

and the knot vector (U). 

 

 
𝐵𝑖,𝑘(𝑢) =

(𝑢 − 𝑈𝑖)𝐵𝑖,𝑘−1(𝑢)

𝑈𝑖+𝑘−1 − 𝑈𝑖
+

(𝑈𝑖+𝑘 − 𝑢)𝐵𝑖+1,𝑘−1(𝑢)

𝑈𝑖+𝑘 − 𝑈𝑖_+1
 

 

𝐵𝑖,1(𝑢) = {
1, 𝑖𝑓 𝑈𝑖 ≤ 𝑢 ≤ 𝑈𝑖+1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒            
 

 

 

(6.3) 

 

The knot vector (U) comprises of parameter values, where the piecewise polynomials 

forming the NURBS curve join and are dependent on the choice of number of control points (n) 
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and degree of the piecewise polynomial (p). U can be computed using Eq. (6.4), where p is the 

spline degree, which is one less than the order of the piecewise polynomial k. We have used a 

conventional averaging method [56] (Eq. (6.4)) for generating the knot vector and utilized a 

constant value of p = 3 (i.e. k = 4) for this demonstration.  

 

  

      𝑈0 = ⋯ = 𝑈𝑝 = 0           

𝑈𝑛 = ⋯ = 𝑈𝑛+𝑝 = 1 

𝑈𝑗+𝑝 =
1

𝑝
∑ 𝑢𝑖

𝑗+𝑝−1

𝑖=𝑗
    𝑓𝑜𝑟 𝑗 = 1, 2, … , 𝑛 − 𝑝 

 

 

 

(6.4) 

 

In order to determine the NURBS curve, which fits the parameterized points u, the 

unknown control point coordinates (𝑣𝑖 = {𝑥𝑖, 𝑦𝑖, 𝑧𝑖}) and weights (𝒘 = [𝑤𝑖]) must be identified.  

For programmatic convenience, we setup the NURBS formulation in a compact matrix form 

similar to [56]. The detailed formulation is shown in the Appendix E. The matrices defining the 

basis functions (B), homogeneous coordinates of control points (X,Y,Z) and weights (w) are shown 

in Eq. (E.2), whereas the matrix arrangement of the coordinates of measured points (𝑿̅, 𝒀̅, 𝒁̅) is 

shown in Eq. (E.6).  Using the Eq. (E.7), we can solve for the unknown homogeneous coordinates 

of control points (X,Y,Z) and the corresponding weights (w) for a given choice for the number of 

control points (n). In our present study, for simplicity, we used a constant value of weights, w = 1, 

for every control point. Hence, we can re-arrange Eq. (E.7) to obtain Eq. (6.5), using which we 

can compute the unknown homogeneous coordinates of control points (X,Y,Z). 

 

 𝑩𝑻𝑩𝑿 =  𝑿̅𝑩𝒘 
𝑩𝑻𝑩𝒀 =  𝒀̅𝑩𝒘 
𝑩𝑻𝑩𝒁 =  𝒁̅𝑩𝒘 

 

(6.5) 

 

Once, X,Y,Z values are computed for a given choice of number of control points (n), the 

location coordinates of the control points are conventionally evaluated using Eq. (6.6). In our case, 

𝑤𝑖 = 1, the location coordinates are the same as the homogeneous coordinates of control points. 

 

 𝑥𝑖 = 𝑋𝑖/𝑤𝑖 
                                     𝑦𝑖 = 𝑌𝑖/𝑤𝑖       for i = 1, 2, …, n 

𝑧𝑖 = 𝑍𝑖/𝑤𝑖 

 

(6.6) 
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After the control points are evaluated, we compute the fitting error using Eq. (6.7), wherein 

the root-mean square error (RMSE) of distances between the measured points and the points on 

the fitted curve are evaluated. The RMSE value is computed for each of the section curves and 

represents the average fitting error per curve.  

 

 

𝑅𝑀𝑆𝐸 =  √∑ (𝑄𝑡
̅̅ ̅ − 𝐶(𝑢𝑡))

2𝑚
𝑡=1

𝑚
 

 

(6.7) 

 

The process is iteratively repeated for different choices of number of control points (n), in 

order to obtain an ideal choice of n for which the fitting error is reduced to a value below a user 

defined tolerance. The value of n could vary from k = 4 (i.e. order of the piecewise polynomial) to 

m = 400 (the number of measurement points). Typically, for computational efficiency, the choice 

of n is chosen as the smallest value at which the RMSE values of each of the section curves reaches 

a value lower than the tolerance value. In our use case, due to the relatively lower number of 

control points (less than or equal to 400 points per curve section), the execution time for the fitting 

process was within 10 minutes for all possible choices of n. The choice of tolerance value is user-

defined, and we have chosen a value of 10−3 mm for this use case, which is a relatively small error 

margin, while considering all the points across a curve section, thereby ensuring a reasonable fit. 

The decrease in RMSE values versus number of control points has been plotted using the boxplot 

function [131] in MATLAB, as shown in Figure 6.5. For each choice for the number of control 

points, there are 20 RMSE data points corresponding to 20 curve sections. The box represents the 

values within the interquartile range with the line within the box representing the median value. 

RMSE values which are 1.5 times the interquartile range away from the top or bottom of the box 

are classified as outliers while using the boxplot function. As expected, the RMSE values decreases 

by increasing n for both the front (Figure 6.5 (a)) and the back (Figure 6.5 (b))  surfaces and reaches 

a value below 10−3 mm for all the curves at n = 390 for the front surface and n = 350 for the back 

surface, respectively, which are used for the present analysis. The coordinates of the control points 

are programmatically written into a CSV file and passed to the CAD tool. The fitting process is 

repeated for both the measured surfaces (i.e. the front surface and the back surface) of the blade in 

this use case.  
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Figure 6.5. Decreasing fitting error (each boxplot consists of 20 data points corresponding to the 

RMSE values computed in each of the 20 curve sections) with increasing number of control 

points for (a) the front surface and (b) the back surface. 
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Finally, we apply a surface skinning approach [128,132] to interpolate a NURBS surface 

through the section curves by utilizing the control point coordinates, directly via a wrapper code 

developed using the NX APIs. A surface 𝑆(𝑢, 𝑣𝑟) is interpolated through the r section curves 

𝐶𝑟(𝑢) such that  𝑆(𝑢, 𝑣𝑟) = 𝐶𝑟(𝑢). A function to interpolate across the NURBS section curves 

was available via the NX APIs, namely “CreateBsurfThruPts”, which was used for importing the 

coordinates of control points and degree of the piecewise polynomials within the CAD tool and 

ultimately creating new front and back surfaces within the nominal CAD model. Additionally, the 

lateral surfaces were updated corresponding to the new front and back surfaces of the blade. The 

capability to track the relevant surfaces by means of the feature identifiers and the PMI notes 

within the MFIN (as explained in Section 6.1.2) was used to delete and update the appropriate 

nominal surfaces corresponding to the extracted measurement datasets.  

6.2.4 Structural analysis of the turbofan assembly with damaged blade 

After creating the MFIN XML instance of the after-use turbofan assembly with a damaged 

blade, we utilize the framework to conduct a finite-element analysis for evaluating the in-service 

stresses. We created two FE models – (i) with nominal design geometry or the “as-designed” case 

and (ii) with the updated geometry or the “after-use” case. The geometries for both the models 

were retrieved from their respective MFIN XML instances using programmatic methods 

(described in Section 4.1.2 in Chapter 4). In both the models, the turbofan assembly was simulated 

at the typical maximum rotational speeds during service. As shown in Figure 6.6, a static analysis 

was performed on the axisymmetric sector (1/30th of the turbofan) with the maximum load 

corresponding to 𝜔 = 3000 rpm at an inlet temperature of 288℃ [133]. To emulate the constraint 

imposed by a shaft on the turbofan, a displacement constrained boundary condition (urr = uθθ =

uzz = 0) was applied at the inner surface of the hub (Figure 6.6). The shrink fit loads between the 

hub and the shaft have been ignored for the current analyses. Due to the complexity of the 

geometries in each of the two models, they were meshed with quadratic tetrahedral elements in 

both the hub and the blade regions. The average element size chosen for the analyses was 10 mm, 

which was selected after conducting a mesh sensitivity analysis such that the maximum principal 

stresses did not change by further reducing the size of the mesh elements. Additionally, a tie 

constraint was applied at the intersecting nodes between the hub and the blade to prevent rigid 

body translation during the FE simulation.   
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Figure 6.6. The applied loads and boundary conditions for the finite-element analysis model 

(shown here for the nominal geometry). 

 

For the FE analysis, we used a classical elastoplastic material model following Johnson-

Cook type hardening rule (Eq. (6.8)) [93], wherein the flow stress (σ̅) is a function of the equivalent 

plastic strain (ε̅ ) and temperature (T). The parameters A, B, c1, c2, Troom , Tmelt in Eq. (6.8) 

correspond to the yield stress, strain hardening coefficient, strain hardening exponent, temperature 

exponent, room temperature and melting temperature, respectively. Additionally, the mass density 

(ρ) and the elastic properties, namely the Young’s modulus (E) and the Poisson’s ratio (ν) were 

utilized for the analysis. The values used for these properties for Ti-6Al-4V at the applied 

temperature (T=288℃) is shown in Table 6.2 [134]. After completing the analysis for both the as-

designed and after-use cases, the maximum principal stress fields were exported in individual CSV 

files, comprising the element coordinates (i.e. corresponding to individual locations within the 

turbofan) followed by the magnitude of the maximum principal stress values and linked within the 

corresponding MFIN XML files for downstream access (Section 4.2). 
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σ̅ = (A + Bε̅c1) [1 − (

T − Troom

Tmelt − Troom
)

c2

] 

   

 

(6.8) 

 

 

Table 6.2. Material properties of Ti-6Al-4V at 288 ℃ which were utilized for the FE 

analysis.[134] 

Material properties Values  

Density (ρ) (kg/m3) 4420 

Young’s Modulus (E) (GPa) 92.22 

Poisson’s ratio (ν) 0.357 

Yield stress (A) (MPa) 728.7 

 Strain hardening coefficient (B) (MPa) 498.4 

Strain hardening exponent (c1) 0.28 

Temperature exponent (c2) 1 

Melting temperature (Tmelt)(℃) 1599 
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Figure 6.7. Maximum principal stress (𝜎𝐼)  distribution in the turbofan assembly with variations 

observed in the local stresses (at regions within the blade) while using (a) the nominal geometry 

(or as-designed) versus (b) the updated geometry with FOD (or after-use). 

 

Local variations in the maximum principal stress distribution were observed between the 

two models as shown in Figure 6.7. While using the after-use model, the maximum principal stress 

in the region of foreign-object damage is significantly larger in magnitude (σI = 831 MPa as 

shown in Figure 6.7(b)) as opposed to the as-designed model (σI = 133 MPa as shown in Figure 

6.7(a)). The increased local stresses observed in the after-use model are due to the sharp geometric 

cusps leading to stress concentrations in the blade due to the foreign object damages on its surfaces, 

which was effectively captured in the analysis.  The demonstration illustrates the importance of 

using the appropriate geometry in the stress analysis to capture the precise stress distribution. 

Conducting stress analysis is a crucial step for assessing the structural integrity of the component, 
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including conducting downstream high cycle fatigue, damage tolerance, and creep analyses, and 

ensuring that the component is fit for purpose under operating conditions. Failures often tend to 

originate when cracks develop at regions of high stresses and these regions are considered critical 

for estimating the remaining life of the entire component (Section 3.4.2 and Section 4.3).  Hence, 

the process illustrated in this work to inform the after-use geometry for the analysis by effectively 

utilizing coordinate measurement datasets, enabled by the MFIN framework, presents 

opportunities to reduce errors in structural integrity analysis and effectively aid in decision-making 

during the MRO process. Moreover, the linking methodology utilized in the framework also 

enables dynamic access to the most recent measurement datasets, thereby capturing the current 

geometric state of the product - which can be subsequently utilized for downstream analysis. We 

would like to point out that the use case of FODs on turbofan blades presented in this work is an 

illustration, however, a similar workflow can be applied for in-service incidents with minor wear 

in the blades and systematic analysis can be conducted with minimal manual interventions - to 

make decisions regarding using the part as-is, repairing the part or retiring from service. 

6.3 Discussion 

We presented a use case for facilitating improved precision during the MRO decision stages 

of the lifecycle, but a similar approach can be applied during the MRB process during the 

acceptance and certification of as-manufactured components. The MFIN framework and the 

developed workflow can be used to capture geometric deviations in the manufactured components 

by utilizing the coordinate measurement datasets and for creating as-manufactured geometries to 

facilitate further analysis prior to decision-making regarding the disposition of individual 

components. Additionally, the framework and its programmatic process is setup in a way, which 

provides flexibility to replace the surface fitting algorithm code(s) utilized in the current work with 

another code depending on the product under consideration, requiring minimal changes to the 

overall workflow.  To conduct structural analysis of components during MRB, a primary challenge 

has been that the geometric inspection data, material data, and performance requirements 

documents are scattered in multiple systems due to the involvement of multiple teams across the 

product lifecycle from both the supplier side as well as the original equipment manufacturers [122]. 

The MFIN framework acts as a portal to access pertinent datasets applicable to a component and 

can potentially enable MRB engineers to conduct analyses seamlessly on individual non-
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conformal components and arrive at a more-informed decision (e.g. accepting the part as is, 

accepting with concessions, repairing the part with secondary manufacturing processes, or 

scrapping it altogether). The decisions made for each non-conformal component can be tracked 

using its MFIN UUIDs, which can provide knowledge for aiding engineers in decision-making 

when a similar non-conformance occurs again. Since MFIN starts to integrate the product lifecycle 

datasets for each serialized component, we start creating digital twins [2] of the components.  

Moreover, this work supports a digital engineering framework, whereas the automated flow of 

information within the analysis tools supports more informed decision-making during the various 

lifecycle stages of the individual components.  
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 CONCLUSION AND FUTURE SCOPE 

7.1 Chapter 3: Data Embedding approach 

In Chapter 3, we presented a data embedding approach to store and retrieve spatially varying 

material definitions tied to a component, directly via CAD models. The approach uses point objects 

(or datum points) within CAD models as containers for storing the metadata. These points, defined 

by their location coordinates, act as spatial attribute markers and naturally provide context of where 

the stored metadata is applicable within the component domain. This capability was developed as 

a plug-in for the CAD software, thereby allowing engineers to use CAD models as a medium to 

exchange geometric and non-geometric data across the product lifecycle. Hence, by means of the 

data embedding tool, we expanded the model-based definitions (MBDs) capabilities to include 

spatially varying material behavioral information. 

 

The key findings from this work can be summarized as follows:  

1) The use of MBDs to store and exchange material behavioral data directly via the CAD 

model of a part can reduce the likelihood of error caused by more direct human interaction 

with the data.  

2) A specific use case has been demonstrated using residual stress data, predicted via process 

modeling, and experimentally characterized, and stored spatially within the CAD model of 

a turbine disk. Part-to-part variations have been captured based on the uncertainty in the 

residual stress models and propagated to identify the subsequent variability in the predicted 

fatigue life, via a damage tolerance analysis, at specific locations within the turbine disk. 

Historically, this type of information would have been captured in textual form, often 

paper-based, with no direct ability to connect it consistently to the geometry to which it 

was related. By being able to capture this information digitally within the model, the 

designers (and other engineers) will be able to maintain the connectivity and provenance 

of information.  

3) Lastly, this approach presents new opportunities to utilize location-specific material 

behavioral information as an additional design parameter during the product development 

stages and to explore newer performance-based designs. 
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7.2 Chapter 4: Data linking framework via MFIN  

In Chapter 4, we developed a framework, namely a Model-based Feature Information 

Network (MFIN) for tracking, updating and retrieving material information applicable to a 

component throughout its product lifecycle, in order to ultimately realize a digital twin 

representation. The framework involves a data model in an XML file format (MFIN XML), 

defined by its schemas (MFIN application schemas), to create data linkages between the 

component’s geometry and feature definitions originating from its CAD model and material 

definitions stored in a materials database software. For defining location-specific material 

definitions within a component, the framework has adopted the use of datum points to define 

distinct locations within its design model, wherein linkages to the applicable material datasets have 

been created. In order to create the linkages of material definitions or utilizing the existing linkages 

to extract material datasets applicable to a feature, programmatic methods or wrapper code(s) have 

been created by using application-program interface (API) functionalities of both the MFIN and 

material database software. These wrapper code(s) have been utilized to provide material 

definitions for structural analysis, thereby creating a data integration between the MFIN and FE 

analysis tool. Additionally, the MFIN application schemas have been created to capture the 

analysis model definition and analysis result datasets, for future usage and to make decisions 

during the product lifecycle. The key benefits from the presented work are as follows: 

• The developed linking methodology creates dynamic linkages to the material data, 

thereby allowing continual updating of the material information applicable to the 

component and its features. The linkages provide access to the current material state 

information at a given point in its lifecycle, which can be retrieved and utilized to 

forecast the future performance of the component.  

• The capability to include and exchange location-specific material definitions has been 

illustrated with a use case, wherein a linear friction welded Ti-6Al-4V compressor blisk 

component has been used. Within the regions in the blisk component, manufacturing 

process induced microstructure information (i.e. average grain size) and residual stress 

fields have been included and utilized for damage tolerance analysis. The variation in 

the estimated fatigue life, with and without including location-specific material 

information has been demonstrated. Hence, by including and utilizing location-specific 
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material state definitions, we can effectively improve precision in fatigue life estimates 

of the components.   

• Furthermore, the demonstrated capability to track and retrieve processing-induced 

location-specific material information can also be extended for informing other 

sophisticated physics-based predictive models. This opens up newer opportunities to 

explore for improved precision in fatigue life estimates by applying information 

physics-based relationships. 

 

Furthermore, the MFIN framework and methodology is expandable to meet other needs for 

realizing a digital twin as follows: 

(1) The data integration between the MFIN and a commercial FE analysis code has been 

presented in this chapter, wherein the material information applicable to a component is 

provided using linkages in the MFIN, for the analysis. Similarly, the framework can be 

expanded to access and utilize other commercial software code(s), which could be useful 

for design and analysis of a component, by including necessary schemas and wrapper 

code(s) to create the data integration. 

(2) The MFIN framework presented in this thesis has been limited with the focus on capturing 

material data applicable to the component. However, the same approach is expandable to 

form linkages to store and exchange other product lifecycle data which are applicable to 

the component and its features. While doing so, the MFIN starts to form a network of 

lifecycle data mapped to the features in the component, thereby creating a digital thread 

for data exchange. Hence, for each serialized component, there will be a MFIN file, 

containing the linkages to the lifecycle data from design to retirement. These data linkages, 

from a fleet of components, can be used to provide datasets for informing decision making 

during the design, manufacturing and sustainment stages of a newer version of the 

component. 
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7.3 Chapter 5: Enabling microstructure-sensitive location-specific fatigue life assessment 

via MFIN 

 In Chapter 5, we extend the MFIN framework to inform pertinent material state 

information of component within a physics-based fatigue life prediction model. Hence, a paradigm 

shift in component analysis is proposed through the development of a holistic framework for 

microstructure-sensitive, location-specific lifing of components. The MFIN framework was 

utilized for tracking and retrieval of processing-induced microstructural information and 

stress/strain states resulting from in service loading conditions at distinct locations in the 

component for use within a crystal plasticity fatigue life prediction model. A use case for lifing a 

dual-microstructure heat treated (DMHT) LSHR turbine disk component is demonstrated at two 

locations, near the bore (fine grains) and near the rim (coarse grains) regions.  The conclusions 

from this chapter are twofold: 

1) Identifying material allowable life by utilizing location-specific microstructural knowledge in 

the component: 

• We demonstrated reduced uncertainties in the fatigue life distributions of LSHR in the 

DMHT turbine disk component and the associated minimum life (B0.1 life) by treating 

datasets corresponding to individual locations as separate distributions, which was enabled 

by the MFIN framework. The fatigue life predictions were obtained via crystal-plasticity 

finite element (CPFE) analysis, using statistically equivalent microstructures (SEMs) of 

the material, which were simulated under uniaxial loading conditions, akin to fatigue 

testing using virtual specimens. This approach presents opportunities to improve precision 

while determining the allowable minimum life by accounting for underlying 

microstructures at distinct locations in the component as opposed to the conventional 

approach of treating the entire component as a single monolithic structure with uniform 

microstructure.  

• The use of the microstructure-sensitive predictive analysis demonstrated in this study also 

presents opportunities to (i) reduce the overall number of tests needed to identify the 

minimum life, (ii) better understand the process-structure-property-performance 

relationship in the material by simulating multiple SEMs and (iii) reduce time and costs 

associated with material testing during the product development stages. 
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2)  A physics-based approach to assess fatigue life of components: 

• A significant advancement in the present work is the extension of CPFE simulations to 

inform component scale life predictions. The principal strains from locations of interest in 

the component, calculated from component-level FE analysis, were precisely retrieved, and 

utilized in the MFIN framework to inform multiaxial displacement boundary conditions in 

the sub-scale CPFE analysis. The location-specific fatigue life predictions facilitate 

opportunities to determine the critical or life-limiting locations of components with 

gradient microstructures.  

• The framework and the lifing approach presented in this work provides new opportunities 

to design the component and tailoring site-specific microstructures simultaneously, thereby 

evaluating the fatigue tradeoffs upfront during the product design stage. By identifying 

location corresponding to minimum life, one could potentially explore revisions to the 

design of the component geometry and/or the site-specific microstructure, for ultimately 

enhancing the performance of the overall component.  

• The hierarchical modeling approach does not rely on performing CPFE simulations for the 

entire component, thus providing judicious use of computational resources. Based on the 

combination of the component geometry, applied loading state, process and microstructure 

information, as well as legacy records tied to prior versions of the component, lifing 

engineers can down-select the critical locations of components and utilize the proposed 

framework to perform higher fidelity CPFE simulations. Additionally, the framework 

inherently addresses for the microstructural variability via simulating multiple SEMs, 

avoiding microstructure homogenization approaches, thus accounting for extreme values 

of the microstructural attributes while lifing components. 

7.4 Chapter 6: Creating connectivity between geometric inspection and structural 

analysis via MFIN 

In Chapter 6, the MFIN framework was expanded to enable data connectivity between geometric 

inspection and stress analysis by facilitating automated flow of geometric information of a product 

within the structural analysis tools.  

• The presented workflow is valuable for engineers to make more informed decisions during 

the product lifecycle (i) by assessing as-manufactured part geometries that fall out of 
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specifications during the materials review board (to decide whether to accept the part as is, 

accept with concessions, repairing the part with secondary manufacturing processes, or 

scrapping it altogether) and (ii) by inspecting in-service damages in parts during the 

maintenance, repair, or overhaul (MRO) process (to decide whether to use as-is, repair or 

retire). Often in these cases, the decision-making relies on engineering intuition (based on 

nominal designs) or one-off analyses that are time-intensive and costly. These barriers are 

removed by utilizing the automated workflow, which enables using the inspection data for 

informing current part geometries within the stress analysis. 

• The use case presented in this work is based on aiding decision-making by an MRO 

engineer performing inspection on fielded turbofan blades, after an in-service usage 

experiencing foreign object damage (FOD). We utilize coordinate measurement datasets 

to capture deviations in the blade surfaces due to FOD and incorporate the after-use 

geometry within stress analysis, by means of the developed workflow, thereby 

demonstrating the implications of the FOD on the local stresses in the part. The use case 

illustrates the importance of using precise geometry of a product within the stress analysis 

for improving downstream decision-making, and the presented workflow enables 

seamlessly conducting these types of analyses. 

 

For creating this workflow, the MFIN framework was utilized to link and retrieve coordinate 

measurement datasets applicable to individual geometric features within the component. 

Programmatic wrapper code(s) were utilized to access the pertinent measurement datasets and 

updating the nominal geometries in the CAD file with current geometric definitions of the part. 

For the use case presented in this chapter, we used a two-step surface fitting process to effectively 

capture the deviations in the surfaces of the blade with minimal errors, which involved fitting 

NURBS curves to the measurement datasets and generating section curves of the blade, followed 

by skinning or interpolating a surface across the section curves. The workflow is flexible to 

incorporate utilization of a different external code to inform the geometry instead of a NURBS 

surface fitting code, with minimal changes to the programmatic process. The MFIN framework 

enabled automating the process of creating the next instantiation of the CAD model for the specific 

fielded component by using the tracking capability and updating the appropriate surfaces within 

the nominal CAD model with the fitted surfaces.  Finally, by using the programmatic connectivity 
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of MFIN to stress analysis tools, we inform the geometry data and the materials information for 

seamlessly performing the stress analysis. 

 

Lastly, the MFIN framework presents opportunities for developing workflows to reduce manual 

intervention by engineers and speeding up the assessment of parts during the product lifecycle.  

Historically, the information accumulated during the product lifecycle is collected and stored in 

siloed databases, with no direct ability to maintain associativity to the serialized part and its 

geometry. By means of the presented framework, we can potentially maintain connectivity 

between lifecycle datasets and the geometric features within the design model of a serialized part, 

thereby allowing engineers to harness the information readily and use them for decision-making. 

7.5 Future opportunities for component assessment via a digital twin approach  

Based on the research presented in this thesis, the following future work is suggested:  

(1) For the case studies presented in this work, we have utilized fatigue loading with a constant 

amplitude. However, we know that aerospace components encounter complex loads with 

varying amplitudes during service and each serialized component is exposed to distinct 

loading experience. By means of the MFIN framework and its unique identifier mechanism 

to track product lifecycle data pertinent to a component, we can start to record the loading 

spectrum tied to each serialized component during its service, and further use the 

information for fatigue life analysis via predictive models. In the approach presented in 

Chapter 5, we can conduct component-scale FE analysis with actual loads, to ultimately 

obtain more precise boundary conditions for the CPFE analysis. We could also use the 

MFIN framework to inform the variable amplitude loading for CPFE simulations. Hence, 

by using more realistic loading conditions, via the digital twin approach, we can explore 

further improvement in precision within life prediction analyses for (i) selecting number of 

lifecycles after which a specific component requires inspection and (ii) make improved 

decisions regarding life extension of the component.  

(2) The MFIN framework is expandable to enable a fully model-based approach for assessing 

components upfront during the design stages. By creating necessary MFIN schemas and 

wrapper code(s), we can integrate process models and associated code(s), for predicting: 

(i) full field residual stress distributions in a component, and location-specific (ii) grain 
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size distributions, (iii) precipitate distributions, (iv) porosities, (v) inclusions, and (vi) 

surface treatments. Thereby, we can potentially start using the MFIN framework to inform 

additional microstructural descriptors within the microstructure-sensitive location-specific 

lifing framework and subsequently explore further improvement in the fatigue life 

predictions by accounting for additional physics-based knowledge. Furthermore, the 

integration of the MFIN framework with predictive process models, can facilitate new 

opportunities to optimize manufacturing process parameters for meeting targeted location-

specific performance, upfront during product development stages. 
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APPENDIX A. DETERMINATION OF GEOMETRIC CORRECTION 

FACTOR EXPRESSION APPLICABLE FOR THE TURBINE DISK IN 

CHAPTER 3 

In Chapter 3, a finite-element approach was used to determine the geometric correction 

factors (F(a/w)), that apply for cracks at locations 1 and 2 (shown in Figure 3.8(b)) of the turbine 

disk. The process involves simulating the nominal stresses without the presence of a crack in the 

model and simulating the stress response with explicitly insertion of cracks at these model 

locations. Simulations have been repeated with cracks of increasing lengths at each zone location 

to obtain the stress fields ahead of the crack in each simulation. The ratio of the maximum stress 

field ahead of the crack tip versus the stress present in the simulations without a crack (Section 

3.4.2) forms the dataset for obtaining the geometric correction factor as a function of crack length 

for each location. A blunt tip crack with the shape of a U notch has been explicitly modeled in 

each location, with the initial crack length (ai ) of length a = 0.10 mm and constant width (w =

0.5 mm). Material properties applied to the crack section were E=10 Pa (several magnitudes lower 

than the material property in disk section), ν = 0.3 and a density ρ = 0.599 kg/m3 (density of air 

at 600 ℃). Linear, quadrilateral mesh elements have been used for the analysis. The mesh has 

been refined around the crack geometry and a mesh sensitivity analysis was performed to identify 

the appropriate resolution ahead of the crack tip. The simulations have been performed using the 

same loads and boundary conditions as described in Section 3.4.2 for six different increasing crack 

sizes in each zone to obtain the maximum principal stresses ahead of the crack tip. For each zone, 

the datasets are fit using a second-order and third-order polynomials to obtain the F (
a

w
)

Zone 1
  and 

F (
a

w
)

Zone 2
, respectively, as shown in Eq. (A. 1) and Eq. (A. 2). 
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APPENDIX B. ACQUISITION OF RESIDUAL STRESS DATASETS FOR 

LINEAR FRICTION WELDED BLISK COMPONENT  

For creating residual stress data in Chapter 4, the reported characterization data [89] 

obtained using energy dispersive X-ray diffraction (EDD) were used as a starting point. A sample 

of linear friction welded Ti-6Al-4V to Ti-6Al-4V plate was characterized by the diffracted 

intensity of high energy X-rays captured with detectors, by performing rotations to the sample, 

thereby obtaining the lattice strains in the α and β phases of Ti-6Al-4V corresponding to different 

families of planes along a series of scanned locations relative to the weld region. Using the 

acquired datasets, the elastic strain tensor at each scanned location has been computed and reported 

in [89]. This process was repeated for multiple locations spatially near the weld, by performing 

multiple line scans across the sample. From the reported residual strain tensors, for the present 

work, we acquired datasets corresponding to the α phase of Ti-6Al-4V, having family of planes 

with Miller indices (i.e. three digit Miller indices{h,k,l}) values of {102}. A coordinate mapping 

was performed to associate the reported residual strain datasets with the coordinate system used in 

the current work (i.e. ε11, ε22, ε33 in [89] correspond to εZZ, εXX, εYY, respectively). For each of the 

reported spatially varying residual strain components, data were extracted at 91 locations within 

the weld region (45 locations on each side of the weld interface and 1 location at the weld interface). 

The Young’s modulus (Ehkl) and Poisson ratio (νhkl) corresponding to {102} were computed 

using Eq. (B.1)  and Eq. (B.2) [135], which are necessary for computing the residual stress 

components.  
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In Eq. (B.1)  and Eq. (B.2), the lattice parameters a = 2.931 Å and c = 4.660 Å for the α-

phase were used [89]. The elastic compliance matrix terms (sij) were obtained from the elastic 

stiffness matrix (Cij), for which C11 = 169.66 GPa, C12 = 88.66 GPa, C13 = 61.66 GPa, C33 =

181 GPa,  C44 = 42.50 GPa,   C66 = 40.5 GPa values corresponding to the α-phase of Ti-6Al-4V 

[136] have been used. 

The residual stress components σxx, σyy, σzz were computed using the tensorial equation 

(Eq. (B.3)), wherein 𝑖, 𝑗 are the free indices and 𝜆𝑖𝑗 represents the Kronecker delta.  

 

 
σij =

Ehkl

1 + νhkl
εij +  

(Ehkl νhkl)

(1 + νhkl)(1 − 2νhkl)
 εkkλij 

(B.3) 

 

After obtaining the residual stress components (in MPa) for each of the 91 locations within 

the weld region, a regression fit is applied, in order to create a functional form to define the residual 

stress distribution. A Fourier type fit was chosen to fit the residual stress data [137,138], and the 

function form of the residual components σXX(X), σYY(X), σZZ(X) used for the case study is shown 

below in Eqs. (B.4)-( B.6). In the study [89], the symmetry of εXX and εZZ components of residual 

strains across the weld center were reported, however, we observe an asymmetry in the σXX, 

σYY and σZZ components of the residual stresses about the weld center (shown in Figure 4.3(b)), 

which is due to the contribution of the asymmetry in εYY  component that is included while 

evaluating the stress components using Eq. (B.3). 

 

 σXX(X) =  −8.296 + 16.23 cos(0.57X) + 30.6 sin(0.57X) − 11.83 cos(1.14X)

− 0.29sin (1.14X) 

(B.4) 

   

 σYY(X) =  129.8 − 312.7 cos(0.3X) + 7.89 sin(0.3X) + 110.7 cos(0.6X)

+ 73.04sin (0.6X) 

(B.5) 

 

 σZZ(X) =  215.6 + 361.2 cos(0.76X) + 21.76sin (0.76X) (B.6) 
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APPENDIX C. ESTIMATING INITIAL VALUES FOR CRYSTAL 

PLASTICITY MODEL PARAMETERS VIA A MACROSCOPIC 

OPTIMIZATION SCHEME USING THE KOCKS -MECKING 

FORMULATION 

 To obtain initial estimates for the crystal plasticity model parameters described in Chapter 

5 initial reference stress g(0), initial dislocation density ρ(0), constant corresponding to dislocation 

storage ( k1)  and constant corresponding to dislocation annihilation ( k2) , we adapted the 

formulation proposed in [107] and conducted a optimization process to calibrate against the 

macroscopic stress-strain data.   This approach aids us in selecting reasonable model parameter 

values as starting points, which can be suitably modified via a trial-and-error approach to calibrate 

the final CP model parameters (presented in Section 5.3.1). This analysis also provides us insights 

on how the Kocks-Mecking parameters k1  and k2  vary based on the grain size in the 

microstructure. Additionally, the presented optimization scheme is computationally less intensive 

and allows us to run multiple iterations for selecting reasonable initial estimates. This process was 

repeated for calibration of CP model parameters for both the fine and the coarse grain 

microstructures of LSHR in the present work. 

 Let us consider the evolution of total dislocation density (ρ) with incremental plastic strain 

(εpl) via a Kocks-Mecking type expression [107], with a dislocation storage term and a dislocation 

annihilation term. The terms k1  and k2  are constants corresponding to dislocation storage and 

dislocation annihilation, respectively. 

 dρ

dεpl
= k1√ρ − k2ρ 

(C.1) 

Upon integrating Eq. (C.1), we can obtain an analytical expression of the dislocation density (ρ) 

as a function of plastic strain (εpl), initial dislocation density (ρ(0)), and the terms k1 and k2 as 

shown in Eq. (C.2). The initial dislocation density (ρ(0)) was obtained as the integration constant, 

by substituting  εpl = 0. 
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ρ (εpl, k1, k2, ρ(0)) =

exp(−k2εpl) (√(k1 − k2√ρ(0))
2

− k1exp (
k2εpl

2 ))

2

k2
2  

 

(C.2) 

 Next, we utilized the expression obtained for ρ(εpl, k1, k2, ρ(0)) and substituted it within 

the Taylor hardening description as shown in Eq. (C.3). The macroscopic flow stress evaluated 

using Eq. (C.3) is denoted as σmodel. The constant term α is referred to as the interaction constant, 

which is typically of the order of unity and is dependent on the strength of dislocation-dislocation 

interactions [109]. The term ρ(0)  represents initial resistance to yielding and μ  is the shear 

modulus. 

 
σmodel = σ0 + αμb√ρ(εpl, k1, k2, ρ(0)) 

(C.3) 

 

 

Figure C.1. Uniaxial tension test data for LSHR at 593℃ corresponding to the fine grain and 

coarse grain microstructures: (a) stress-strain data and (b) tangent modulus (dσ/dϵ) scaled over 

Young’s modulus (E) versus stress (σ) scaled over yield stress (σYS ). 

 

 To determine the unknowns σ0, ρ(0), k1 and k2, we setup an optimization scheme. We 

utilize the stress strain data obtained from uniaxial tension tests (shown in Figure C.1.(a)) for this 
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purpose. The objective is to minimize the error (denoted as f(x)) between σmodel from Eq. (C.3) 

and the flow stress (σexp) from the uniaxial tension tests, as shown in Eq. (C.4). 

 Minimize :    f(εpl, k1, k2, ρ(0)) = ‖  σexp −  σmodel‖2
 (C.4) 

 For solving the optimization problem described in Eq. (C.4), the initial guesses for the 

unknown parameters were chosen as follows. The values of macroscopic yield stress were used as 

initial guesses for σ0. For fine grain microstructure, an initial guess of σ0 = 1209 MPa was used 

whereas for the coarse grain microstructure, an initial guess of σ0 = 1074 MPa was used. In Ni-

based superalloys, we typically expect ρ(0) on the order of 105 − 106 (
1

𝑚𝑚2). For both the fine 

grain and coarse grain microstructures, we assume a starting value of 106 (
1

𝑚𝑚2) in this analysis. 

Based on  [107], a reasonable initial estimate for k1 is 1/100αb. We utilized a value of 2.54 Ȧ for 

the Burger’s vector (b).  Since, α typically ranges between 0.1 and 1 [109], we assumed a constant 

value of α = 0.3. Finally, since we know from previous works [50,139], the value of k2 is in the 

order 10, we assume a starting value of k2 = 10, for both the microstructures. For accommodating 

a broader search space, random perturbations were applied to the initial guesses and 1000 

optimization iterations were repeated. 

 Finally, using the optimization routine, we obtained the following estimates for the 

unknown quantities σ0, ρ(0), k1 and k2 that minimized the error function f(εpl, k1, k2, ρ(0)). For 

the fine grain microstructure, we determined σ0 = 1183 MPa , ρ(0) = 106  
1

mm2 , k1 =

2.85 X 106 1

mm
  and k2 = 30.38.  For the coarse grain microstructure, the values of σ0 =

1120 MPa, ρ(0) = 106 
1

mm2
, k1 = 1.68 X 106 1

mm
  and k2 = 19.77 were identified. We observe 

that the values of  k1 and k2 for the fine grain microstructure is greater than the values obtained 

for the coarse grain microstructure. It was reported in [107] that k1 is typically proportional to 

shear modulus μ. In our analysis, we utilize μ = 77.273 GPa for fine grain microstructure and μ 

= 68.324 GPa for coarse grain microstructure, hence, the trends observed for k1  were in 

accordance. Since, LSHR constitutes random texture, we can obtain initial resistance at the slip 

system level for the CP model parameter g0 from σ0, by dividing with the Taylor factor, which is 

3.06. Hence, we obtain an initial estimate of g0 = 387 MPa for the fine grain microstructure and 
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g0 = 366 MPa for the coarse grain microstructure. The chosen initial estimates for g(0), ρ(0), k1 

and k2 are summarized in Table C.1. 

Table C.1. Initial estimates for crystal plasticity (CP) model parameters g0, ρ(0),  k1, k2,  for 

both the fine grain and the coarse grain microstructures of LSHR. 

Parameters Fine grain microstructure Coarse grain microstructure 

g(0) (MPa) 386 366 

ρ(0) (
1

mm2) 106 106  

k1 (
1

mm
) 2.85 X 106 1.68 X 106 

k2 30.38 19.77 

 

 In addition to the parameters listed in Table C.1, we require choosing reasonable values for 

the constant parameters  Γact, D, hn in the expression which relates k1 and k2 (Eq. (5.7)). The term 

hn  is related to the interaction constant α, i.e., hn = α2 . Hence, we assign hn = 0.09  for the 

present work. For the purposes of determining Γact and D, we utilize the values of  
k2

k1
 for both the 

fine grain and coarse grain microstructures and substitute the values within Eq. (5.7) in Section 

5.3.1. We obtained 
k2

k1
= 1.12 𝑋 10−5 for the fine grain microstructure and  

k2

k1
= 1.06 𝑋 10−5 for 

the coarse grain microstructure. Hence, we determine a combination of values for Γact =

2.88 X 10−3 and D = 53280 MPa by trial and error, which satisfies the estimates of the ratios 
k2

k1
 

for both the microstructures, in Eq. (5.7). Lastly, it is worth noting that the values 
k2

k1
 from our 

initial estimates were approximately equal in magnitude. The equal values of the ratio of 
k2

k1
 

observed in our analysis is further supported by Figure C.1(b). By using the experimental dataset 

and plotting the (dσ/dϵ)/E (wherein E is the Young’s modulus) versus σ/σYS (wherein σYS is the 
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yield stress) for both the microstructures, we can observe that the slope  dσ/dϵ eventually becomes 

equal, as pointed out in Figure C.1(b). Physically, this was in also in accordance to the expected 

behavior [109], i.e.,  as the material is strained, the rate of dislocation annihilation or removal 

eventually becomes equal to the rate of dislocation storage such that a steady state dislocation 

density is reached.  
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APPENDIX D. MARKOV CHAIN MONTE-CARLO SAMPLING AND 

METROPOLIS-HASTINGS ALGORITHM APPROACH FOR BAYESIAN 

INFERENCE ANALYSIS  

To overcome the computational challenges in evaluating the integral of the likelihood 

function in Eq. (5.13), we resort to using Markov chain Monte-Carlo (MCMC) sampling approach, 

originally implemented in [49]. A Markov chain comprises a series of random variables wherein 

𝑧𝑡ℎ  term in the series depends only on the (z − 1)𝑡ℎ  term. We use Monte-Carlo sampling to 

identify the 𝑧𝑡ℎ term, which is chosen based on a proposal distribution. Finally, the Metropolis-

Hastings algorithm is utilized to evaluate whether the proposed candidate will be accepted as the 

𝑧𝑡ℎ term of the series. The algorithm involves computing a parameter p using Eq. (D.1). The term 

αr
z−1 is the (z − 1)𝑡ℎ term in the Markov chain and corresponds to 𝑟𝑡ℎ parameter (r = 1 represents 

to Wcritical
p

   and r = 2 represents hyperparameter s) and the term αr
∗  represents the proposed 

candidate for the 𝑧𝑡ℎ term.  

 

 
p = min (1,

π(D|αr
∗)π0(αr

∗)π(αr
∗|αr

z−1)

π(D|αr
z−1)π0(αr

z−1)π(αr
z−1|αr

∗)
) 

 

(D.1) 

 

The term π(αr
∗|αr

z−1) is the proposal distribution, which is proposes a candidate αr
∗ based on αr

z−1. 

We can simplify the Eq. (D.1) to obtain Eq. (D.2), by assuming that π(αr
∗|αr

z−1) is symmetric.  

 

 
p = min (1,

π(D|αr
∗)π0(αr

∗)

π(D|αr
z−1)π0(αr

z−1)
) 

 

(D.2) 

 

The Metropolis-Hastings relies on comparing the value of p obtained from Eq. (D.2) with a 

random number ∅ which takes the value between 0 and 1. The proposed candidate αr
∗ is selected 

as the 𝑧𝑡ℎ term if ∅ ≤ p. Otherwise, the 𝑧 − 1𝑡ℎ term is assigned as the 𝑧𝑡ℎ term. The process is 

repeated until a convergence is achieved.  
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The convergence is determined by running M Markov chains in parallel.  The variance of αr 

between the Markov chains and within a Markov chain is described using Wαr
 and Bαr

, 

respectively. Hence, a net variance (Vαr
) tied to the parameter αr is determined by using Eq. (D.3). 

 

 
Vαr

=
(M − 1)

M
Wαr

+
1

M
Bαr

 

 

(D.3) 

Finally, we evaluate the convergence metric Rαr
, by utilizing the values for Vαr

 and Wαr
, as shown 

in Eq. (D.4). As the value of Rαr
  approaches unity, a converged posterior distribution of the 

parameter αr is obtained. 

 

 

Rαr
=  √

Vαr

Wαr

 

 

(D.4) 

For the Bayesian inference analyses in this work, we utilized two Markov chains in parallel (i.e., 

M=2) and continued MCMC simulations up to 5 X 105  iterations. The calibration results for 

Wcritical
p

  is shown in Figure 5.6. The calibrated hyperparameters(s) followed lognormal 

distributions for both the microstructures. For fine grain microstructure, the mean value of the 

hyperparameter (s) was identified as 1,11,540 cycles and the corresponding standard deviation was 

32184 cycles. Whereas, for the coarse grain microstructure, the mean value of the hyperparameter 

(s) was identified as 6710 cycles and the corresponding standard deviation was 1980 cycles. 
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APPENDIX E. COMPACT MATRIX FORM TO DESCRIBE NURBS 

CURVE FITTING PROBLEM 

To satisfy the objectives in Chapter 6, to identify the modifications to the as-designed 

geometry based on the metrology measurements post-manufacturing, a framework is needed to 

mathematically define the surface geometry.  For mathematical and programmatic convenience, 

we setup the NURBS curve fit in a compact matrix form similar to the approach proposed in [56]. 

Let the coordinates of points on the NURBS curve C(u) be denoted with x(ui), y(ui), z(ui). By 

re-writing the terms in Eq. (2) in matrix form, followed by moving the denominator to the other 

side and swapping the left and right sides of the equation, we obtain Eq. (E.1).  

 

  𝐛𝐓(𝐮𝐢). 𝐗 =  x(ui). 𝐛𝐓(𝐮𝐢). 𝐰 

𝐛𝐓(𝐮𝐢). 𝐘 =  y(ui). 𝐛𝐓(𝐮𝐢). 𝐰 

𝐛𝐓(𝐮𝐢). 𝐙 =  z(ui). 𝐛𝐓(𝐮𝐢). 𝐰 

 

for i= 1, 2, …, n 

 

(E.1) 

 

X, Y, Z are vectors of size n x1 representing the homogeneous coordinates of control points and 

w represents a n x 1 vector with scalar weights corresponding to control points as shown in Eq. 

(E.2). The basis functions corresponding to each control point are organized in a vector 𝐛 of size 

n x 1 as shown in Eq. (E.2). 

 

 𝐗 = [x1w1, x2w2, … . , xnwn]T 

𝐘 = [y1w1, y2w2, … . , ynwn]T 

𝐙 =  [z1w1, z2w2, … . , znwn]T 

𝐰 =  [w1, w2, … . , wn]T 

𝐛 = [B1(u), B2(u), … … … … Bn(u)]T 

 

 

(E.2) 

 

For fitting the measurement data Qt = {[xt̅, yt̅, zt̅]T}t=1,2,..,m  with a NURBS curve, we replace 

x(ui), y(ui), z(ui) in Eq. (A.1) with xt̅, yt̅, z̅t, respectively, to obtain Eq. (E.3).  

 

  𝐛𝐓(𝐮𝐭). 𝐗 =  xt̅. 𝐛𝐓(𝐮𝐭). 𝐰   
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𝐛𝐓(𝐮𝐭). 𝐘 =  yt̅. 𝐛𝐓(𝐮𝐭). 𝐰 

𝐛𝐓(𝐮𝐭). 𝐙 =  zt̅. 𝐛𝐓(𝐮𝐭). 𝐰 

 for t= 1, 2, …, m (E.3) 

 

By expanding the matrices in Eq. (E.3) and grouping the known and unknown terms, we can re-

write the problem in a compact matrix form as shown in Eq. (E.4). Hence, by using Eq. (E.4), we 

can solve for the least-squares solutions for X, Y, Z and w. 

 

           [
𝐁 𝟎 𝟎 −𝐗̅. 𝐁
𝟎 𝐁 𝟎 −𝐘̅. 𝐁
𝟎 𝟎 𝐁 −𝐙̅. 𝐁

]

3mX4n

. [

𝐗
𝐘
𝐙
𝐰

]

4nX1

= [𝐎]4nX1 

 

(E.4) 

 

The matrices 𝐁 and 𝐗̅, 𝐘̅, 𝐙̅ are shown in Eqs. (E.5) and (E.6), respectively. 

  

 

  𝐁 =  [

B1(u1) B2(u1) ⋯ Bn(u1)

B1(u2) B2(u2) ⋯ Bn(u2)
⋮ ⋮ ⋱ ⋮

B1(um) B2(um) ⋯ Bn(um)

]

mXn

  

 

(E.5) 

 

 𝐗̅ = diagnol{x1̅, x2̅̅̅, … . , xm̅̅ ̅̅ } 

𝐘̅ = diagnol{x1̅, x2̅̅̅, … . , xm̅̅ ̅̅ } 

𝐙̅ = diagnol{z1̅, z2̅, … . , zm̅̅̅̅ } 

 

(E.6) 

 

Based on the choices of m and n, Eq. (E.4) can be an overdetermined or underdetermined system. 

For convenience, we pre-multiple the Eq. (E.4) with the transpose of the coefficient matrix, 

followed by simplification using row operations to obtain Eq. (E.7) 

 

 

     [

𝐁𝐓𝐁 𝟎 𝟎 −𝐁𝐓𝐗̅𝐁
𝟎 𝐁 𝟎 −𝐁𝐓𝐘̅𝐁
𝟎 𝟎 𝐁 −𝐁𝐓𝐙̅𝐁
𝟎 𝟎 𝟎 𝐌

]

4nX4n

. [

𝐗
𝐘
𝐙
𝐰

]

4nX1

= [𝐎]4nX1 

 

(E.7) 

 

where,  
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 𝐌 = 𝐌𝐱 + 𝐌𝐲 + 𝐌𝐳 (E.8) 

 

 𝐌𝐱 = 𝐁𝐓𝐗̅𝟐𝐁 − (𝐁𝐓𝐗̅𝐁)(𝐁𝐓𝐁)−𝟏(𝐁𝐓𝐗̅𝐁) 

𝐌𝐲 = 𝐁𝐓𝐘̅𝟐𝐁 − (𝐁𝐓𝐘̅𝐁)(𝐁𝐓𝐁)−𝟏(𝐁𝐓𝐘̅𝐁) 

𝐌𝐳 = 𝐁𝐓𝐙̅𝟐𝐁 − (𝐁𝐓𝐙̅𝐁)(𝐁𝐓𝐁)−𝟏(𝐁𝐓𝐙̅𝐁) 

 

(E.9) 

 

Hence, using Eq. (E.7), we can solve for the unknown homogeneous coordinates of control points 

(X,Y,Z) and the corresponding weights (w) for a given choice of number of control points (n). 
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