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ABSTRACT

Earth-orbiting space debris poses a severe threat to current and future space missions. To

combat the dangers of debris, countries (and companies) perform collision avoidance using

catalogs of space objects. Better technology has also led to the detection of more space

objects, increasing the amount of data in these catalogs. With this increase in data comes a

greater need for a single comprehensive catalog without duplicates, and this work proposes

two methods of catalog correlation to address this need. These methods are tested using

the publicly available Space-Track (US) and Vimpel (Russian) catalogs. The first method,

called direct catalog comparison, directly correlates the Space-Track and Vimpel catalogs to

determine the same objects between them. This method is validated using the datefirst.txt

file – a file from Vimpel which lists Space-Track and Vimpel object pairs. When correlating

the Vimpel objects in the datefirst.txt file to the Space-Track catalog, the direct catalog

comparison method produces over 90% of these pairs. It is also found that the datefirst.txt

file pairing for Vimpel 92400 should be NORAD 42075 and not NORAD 41879. The second

method, arc correlation, uses optical observations received from the Purdue Optical Ground

Station and the German Aerospace Center to correlate optical observations to both of the

catalogs. By matching observations to objects in the catalogs, these catalog objects are

indirectly correlated to each other. This method is validated using tracking data messages

containing observation sets of tasked Space-Track objects in various orbits. For all tasked

Space-Track objects, even ones in a cluster, the tracking data messages are appropriately

matched to the Space-Track catalog. For the cases where Vimpel objects are associated with

these Space-Track objects – as claimed by the datefirst.txt file (except for the case listed

above) – the appropriate Vimpel objects are matched to the tracking data messages. When

observation sets of unknown objects are tested, the arc correlation method produces distinct

and viable candidate matches for both catalogs. Overall, the direct catalog combination and

arc correlation methods can be used together to effectively correlate the Space-Track and

Vimpel catalogs, aiding the development of a comprehensive catalog of space objects.
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1. INTRODUCTION

The National Aeronautics and Space Administration (NASA) defines space debris as “both

natural meteoroid and artificial (human-made) orbital debris” and further defines orbital

debris as “any human-made object in orbit about the Earth that no longer serves a useful

function” [  1 ]. As of January 5th, 2022, the European Space Agency (ESA) reported about

4900 active human-made satellites, 36500 orbital debris greater than 10 cm, one million

orbital debris between 1-10 cm, and 330 million orbital debris between 1 mm to 1 cm [ 2 ].

New launches and payloads continue to increase these numbers. Figure  1.1 shows the history

of annual launches and deployed payloads.

Figure 1.1. Historical launch and payload data from space-track.org [ 3 ]

Figure  1.1 is relatively constant throughout the earlier years of space operations; however,

the last decade shows a spike in the number of deployed payloads culminating with over 1700

payloads released in 2021 alone. With an increase in satellites and debris, collisions become

more likely. Collisions in space are dangerous because space objects travel with very high

velocities – up to 7.8 km/s in Low Earth Orbit (LEO) [  4 ] – allowing even the smaller debris

to damage or destroy active spacecraft [ 1 ].
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The increase in spacecraft and debris point to a need for debris mitigation and removal.

There are currently no consistent methods for active space debris removal; however, objects

in a low enough orbit will naturally decay over time and be removed from the space envi-

ronment. For LEO payloads in their post mission phase, NASA requires that they deorbit

within 25 years [ 5 ] as a way to mitigate some space debris. Unfortunately, this requirement

is not always met. Figure  1.2 – taken from the ESA’s 2021 Space Environment Report –

gives information on the percentage of payloads compliant with this 25-year standard.

Figure 1.2. Percentage of payloads meeting the 25-year deorbit standard [ 6 ]

Figure  1.2 is a histogram with the percentage of payloads by count on the vertical axis

and the end-of-life (EOL) year on the horizontal axis. The EOL year marks when a satellite

is no longer active and is in its final orbit. The dark green, green, and blue sections make

up the percentage of payloads that deorbit within 25 years post-mission, and the red and

maroon areas show the percentage of payloads that do not meet this standard. HS stands

for Human Spaceflight, and these missions are excluded from this graph. Figure  1.2 shows

a 40% increase in payloads meeting the 25-year standard from the late 1990s to the late

2010s. While this standard will help limit the number of new debris introduced into the

space environment, it does not attack the problem of debris already in space.
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Until an effective solution for debris removal is implemented, mitigation techniques such

as collision detection and avoidance keep active payloads in flight and operational. These

techniques require access to complete and accurate catalogs of space objects. By propagating

cataloged objects forward in time, potential collisions can be detected and avoided. When

there are future methods of space debris removal, they will also likely rely on the accurate

locations of space debris stored within these catalogs.

Catalogs of space objects are created with sensor networks. One such network is the

United States Space Surveillance Network (SSN). The SSN consists of “30+ ground based

radars and optical telescopes” and 6 space-based sensors [  7 ]. Radars provide range, topocen-

tric right ascension, and topocentric declination observations. Optical telescopes provide

topocentric right ascension and declination observation pairs – defined in Section  3.3.4 . De-

pending on the radar or optical telescope, rate values (range rate, right ascension rate,

declination rate) may also be included with the observations. Space-based sensors provide

optical observations for space objects.

The ESA estimates 30630 space objects are tracked and cataloged within all sensor net-

works [ 2 ]. As of January 2022, the United States (US) Space-Track catalog (defined in

Section  2.1 ) contains 25184 of those objects [  3 ], and the rest reside in various other catalogs

like the Russian Vimpel catalog (defined in Section  2.2 ). Ideally, there would exist a single

database containing all 30630 objects. Data stored within multiple catalogs would be merged

into this database, reducing the condition of propagating the same object more than once.

Decreasing the amount of downloaded and processed data would increase the efficiency of

debris mitigation algorithms currently using multiple catalogs. As more debris continues to

be cataloged, the need for this complete database also continues to rise.

1.1 Current Methods of Space Object Correlation

Single target tracking and multiple target tracking (MTT) are two broad categories of

methods used to create and upkeep the catalogs of space objects. Single target tracking

uses one measurement per optical observation to create a tracklet (or a “short series of

17



astrometric positions” [  8 ]) for a single object. Other detections from these observations

are marked as clutter since they do not pertain to the tracklet for the single object [ 9 ];

however, these observations may be used later to create a tracklet for a different object.

These tracklets are then matched to known catalog objects or used to establish new objects.

Multiple target tracking (MTT) methods focus on taking all measurements from optical

sensor readings and classifying them as catalog objects, new objects, or clutter. Unlike

single target tracking, MTT methods work with one or more measurements per observation.

The underlying assumption for these methods is that each object is only measured once per

observation.

Some common MTT methods include the Bayesian method and the nearest neighbor

method. These methods can be run independently of the catalogs to produce tracklets of

solely “new” objects. When given the uncertainty distribution for measurements, a Bayesian

error classification works very well in producing tracklets and identifying clutter [ 10 ]. When

this uncertainty is unknown, the nearest neighbor method proves simple and effective. The

nearest neighbor method creates tracklets using measurements in close proximity to each

other over the observation period. Initial measurements are used to establish another new

tracklet or as clutter. When more observations are added, the nearest neighbor acts as a

multi-object Kalman filter, updating each tracklet with the closest new measurement [ 9 ].

[ 11 ] improved upon the nearest neighbor method for objects which cross paths by developing

an inertial nearest neighbor (INN) method. INN takes into account the direction of motion

of the measurements over time when choosing the closest neighbor for the Kalman filter

update step. When working with a catalog, MTT operates in a similar fashion as described

above. The only difference is that an MTT algorithm will first attempt to correlate a new

measurement with the catalog before classifying it as a new object or clutter.

1.1.1 Catalog Correlation

This thesis relies on the catalog correlation theory for single target tracking and multi-

ple target tracking methods. For these methods, there are two well known algorithms for
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catalog correlation: initial orbit determination (IOD) correlation and arc correlation. IOD

correlation algorithms take observations, determine/refine a full state orbit (position and

velocity), and then correlate them with the full states of the catalog objects. Arc correla-

tion algorithms use catalog object’s states to produce computed tracklets at the time of the

observations. The measurements are then correlated to these computed tracklets.

The first IOD algorithm was created in 1780 by Laplace followed shortly after by Gauss

in 1809 [  12 ]. These IOD methods run by taking in three optical observations and returning a

determined state at the second observation time. To work effectively, these three observations

should be far enough apart in space but close enough together in time – preferably within a

single revolution. In 1997, Gooding created an IOD algorithm which more accurately deter-

mines an orbit when given observations spanning multiple revolutions [  13 ]. The challenge of

accurately determining orbits from closely spaced observations still persists today.

It is simple to obtain multiple observations for a single object within a short period

as many optical telescopes deliver tracklets for each observed object. Unfortunately, using

three observations from a single tracklet for IOD will likely fail as tracklets usually contain

observations that are too close together. Milani et al. attacks the problem of single tracklet

orbit determination by producing admissible regions and, from them, multiple hypothetical

orbits [  14 ]. With the emergence of a new class of optical detectors known as photon counting

devices, optical observations can give both angle and angle rate information [ 15 ]. Angle rates

can sometimes also be extracted from the tracklets themselves. [ 16 ] uses these angle rates to

reduce the hypothetical IODs for a given tracklet. [  17 ] addresses this problem by correlating

multiple tracklets of unknown objects observed in an sensor network to each other using a

full least-squares solution. If the least-squares solution converges for a collection of tracklets,

then it is likely that these tracklets all pertain to the same object. Better yet, the success

of the least-squares algorithm results in an initially determined orbit for the object related

to these tracklets. A similar least-squares process is used later in this thesis to correlate

unknown tracklets from the German Aerospace Center (DLR).
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With a successful initial orbit determination, the orbits for observed objects can be

correlated to the orbits of cataloged objects. [  18 ] provides a method for correlating objects

based on their Keplerian states which is built upon and used in this thesis. Another method

of catalog correlation – arc correlation – skips the initial orbit determination process entirely.

Arc correlation reverses the IOD process by taking the determined orbits of catalog objects

and computing tracklets from them. The computed tracklets for the catalog objects are for

the same epoch as the observed tracklet. After this computation, the observed tracklet is

correlated to the computed tracklets for the catalog objects. [  19 ] uses this method to develop

a working correlation algorithm which proves very successful but relies heavily on accurate

uncertainty information for the cataloged objects.

In many catalogs available today, little to no error data for an object is provided. TLEs,

the data format used in the Space-Track catalog, do not provide error information. The Vim-

pel catalog provides a single error value for the in-track direction of an object but does not

give any error information for the cross-track or out-of-plane directions. Thus, error estima-

tion is a crucial component in the overall process of space object correlation. Current research

in this error estimation focuses on the TLEs and observations of known objects. Specifically,

[ 20 ] takes TLEs from objects in the geostationary orbit (GEO) and high-eccentricity orbit

(HEO) regimes and computes extrinsic errors by correlating optical observations from the

Zimmerwald Laser and Astrometry Telescope (ZimLAT), the Zimmerwald Small Robotic

Telescope (ZimSMART), and the ESA Space Debris Telescope (ESASDT). This work pulls

on research from [  8 ] which performed a similar error analysis using data from the DISCOS

catalog. [  20 ] found the errors between the observations and TLEs were about 25 km in-track

and 10 km cross-track for GEO objects and 35 km in-track and 25 km cross-track for HEO

objects. This data is discussed in Section  4.2 for the error estimation of TLEs for this thesis.

Newer research in the correlation of space objects also uses radar observations. [ 21 ]

capitalizes on the range parameter provided by radar to perform catalog correlation with

just a single observation. The algorithm starts by applying two filters – one for the field of

view of the radar during the observation time and the other for the height of the observation
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– to reduce the number of potential catalog matches. Then, a maximum error prism in

the RSW coordinate system is created using defined error estimates. The RSW coordinate

system – further defined in Section  3.3.5 – has an origin, O, located at the center of the space

object. The R-axis points in the radial direction (from the center of the Earth), the S-axis

points perpendicular to the R-axis in the direction of the velocity vector, and the W-axis

is normal to the orbital plane. If the relative position of a catalog object to the observed

object falls within this prism, the observation is matched to the catalog object. Otherwise,

the observation remains unmatched. The filters help reduce the computational intensity of

the algorithm, and the error prism enables an appropriate correlation between observed and

cataloged objects. Both of these techniques are used in this thesis for efficient and effective

catalog correlation.

Another challenge in the correlation of space objects is spacecraft maneuvers. When a

spacecraft performs a maneuver, its past observations will no longer accurately describe its

orbit. For this reason, a known catalog object can be identified as a new object after its

maneuver. [ 22 ] attacks this problem by establishing a set of criteria for determining whether

a newly identified object is just a known object that has performed a maneuver or if it is new.

One of the challenges of catalog combination is the potential for one catalog to have pre-

maneuver information for an object and the other catalog to have post maneuver information

for an object. This information mismatch would result in an improper correlation. This issue

is noted as a possible source of error for active payloads but is not addressed further in this

thesis.

1.2 Thesis Scope and Outline

This thesis focuses on correlating the Space-Track and Vimpel catalogs to determine and

verify the same objects between them. This correlation is performed using a modified nearest

neighbor approach which relies on the closest mahalanobis distance between the cataloged

objects themselves and from optical observations to the catalog objects. In Chapter 2, the

necessary background on the Space-Track catalog, Vimpel catalog, and datefirst.txt file (used
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for validation) is given. Chapter 3 provides the orbital theory and systems that are needed

when performing single and multi-target tracking for Earth orbiting space objects. Chapter

4 dives into the specific theory behind the two modified nearest neighbor algorithms used in

this thesis to directly (direct catalog correlation) and indirectly (arc correlation) correlate the

Space-Track and Vimpel catalogs, and Chapter 5 outlines these methods. The direct catalog

correlation algorithm is tested against 99 pairs of Space-Track and Vimpel catalogs ranging

from January 2019 through December 2021, and the arc correlation algorithm is tested using

optical observations of tasked objects received from the Purdue Optical Ground Station

(POGS) and from the German Aerospace Center (DLR). Chapter 6 shows the validation

and results of these catalog correlation methods and tests. Lastly, Chapter 7 summarizes

the conclusions drawn from this research and gives future recommendations on research that

could stem from this thesis.
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2. SPACE OBJECT CATALOGS

Two publicly available catalogs of space objects are the are the US (Space-Track) and Rus-

sian (Vimpel) catalogs. On a large scale, catalogs of space objects offer Space Situational

Awareness (SSA) which “refers to keeping track of objects in orbit and predicting where they

will be at any given time” [ 23 ]. SSA for both active satellites and space debris are provided

within the Space-Track and Vimpel catalogs, making them useful for space debris mitigation.

For these catalogs, Coordinated Universal Time (UTC) is used – defined in Section  3.2 .

2.1 The Space-Track Catalog

The Space-Track catalog (www.space-track.org) is owned by the United States Space

Command (USSPACECOM) and the Combined Force Space Component Command (CF-

SCC) and managed/populated by the 18th Space Control Squadron (18 SPCS) [ 24 ]. Surveil-

lance data of unclassified objects in the form of two-line elements (TLEs) or three-line ele-

ments (3LEs) are available to general users [  3 ]. TLEs use the True Equator Mean Equinox

(TEME) Earth Centered Inertial (ECI) reference frame described in Section  3.3.2 .

The TLE format was created by the North American Aerospace Defense Command (NO-

RAD) as a standard for cataloging space objects. These “two 69-character lines of data” are

used with NORAD’s simplified general perturbations (SGP4) model or NORAD’s simplified

deep-space perturbations (SDP4) model – defined in Section  3.6.1 – to output the position

and velocity of the TLE object [  25 ]. The TLE/3LE format is described using definitions

from [ 25 ] and is shown in Figure  2.1 .

Line 0: (Only included in a 3LE)

• Name of Satellite: The alphanumeric designator of an object.

Line 1:

• Satellite Number: The assigned NORAD ID to each object in the catalog. The ‘U’

stands for unclassified (all public objects have this classification).
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Figure 2.1. Example TLE/3LE [ 26 ]

24



• International Designator: An additional designator assigned by the World Data Center-

A for Rockets and Satellites (WDC-A-R&S). The first two numbers are the last two

digits of the launch year. The remaining numbers note the launch number of the year

(Launch 123 in the case of Figure  2.1 ). The alphabetic term refers to the piece of the

launch.

• Epoch Year & Julian Day Fraction: The epoch is the reference time for the TLE (the

time this data corresponds to). The first two digits are the last two digits of the year.

The remaining digits correspond to the fractional day of that year.

• 1st and 2nd derivatives of Mean Motion: These fields show the change in mean motion

over time. They are not used with the SGP4 or SDP4 models. The decimal point is

assumed for the 2nd derivative of Mean Motion.

• Drag term or radiation pressure coefficient: This term is the BSTAR term and is a

SGP4 drag coefficient. It gives an idea of how susceptible an object is to drag – the

higher the number, the more susceptible. The decimal point is assumed for this term.

• Ephemeris Type: Represents the model used to generate the data (distributed sets

have a value of zero).

• Element Number & Check sum: All digits except the last digit in this section pertain to

the element set number. This number is ideally incremented every time a new element

set is generated. The last digit in each line is a modulo-10 checksum of the data in

this line (sum all numbers in the line – giving minus signs a value of 1 and ignoring all

other characters – and see if the last digit of the sum equals the last digit of the line).

Line 2:

• Satellite Number: As in line 1, this ID is the NORAD ID assigned to the object. It

must match the satellite number in line 1 for this TLE to be valid.
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• Orbital Elements: Inclination (0-180 degrees), Right Ascension of the Ascending Node

(0-360 degrees), Eccentricity (unitless, decimal point assumed), Argument of Perigee

(0-360 degrees) and Mean Anomaly (0-360 degrees).

• Mean Motion: The number of revolutions per day.

• Revolution number at epoch & check sum: All digits in this section except the last

digit pertain to the number of revolutions this object has completed from launch until

the given epoch time. The last digit is the modulo-10 checksum of the data in this line

(the same as in line 1).

Unfortunately, TLEs do not give any covariance data. Estimates of this covariance are

needed for both catalog correlation and the correlation of observations to a single catalog.

Section  1.1 describes some of the methods other researchers have used to estimate the error

for TLE objects. Section  4.2 discusses the methods of covariance estimation used within this

thesis.

2.2 The Vimpel Catalog

The Vimpel catalog is owned and maintained by Russia, and the following information

about this catalog is from the Vimpel website (http://spacedata.vimpel.ru) [  27 ]. The Joint

Stock Corporation (JSC) and the Keldysh Institute of Applied Mathematics (IAM) partner

with Russia to collect, process, and analyze optical observations. This catalog focuses on

objects with an orbital period of over 200 minutes – mainly objects with GEO or HEO orbits.

There are some differences between the Vimpel and Space-Track catalogs. First, objects

in this catalog are in the J2000 ECI reference frame – described in Section  3.3.2 – not the

TEME ECI reference frame. Second, all data is stored in a single line (instead of two or

three lines in TLEs or 3LEs). There are fifteen parameters stored for each observed object,

separated by commas. Figure  2.2 shows a few lines of Vimpel data from January 29th, 2018.
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Figure 2.2. Section of Vimpel orbital data from 01/29/2018 [ 27 ]

Parameters (columns):

1. Sequence Number: The line number – starts with 1 and increments by one for each

line (“1, 2, 3” seen in Figure  2.2 )

2. The Space Object (SO) number: The assigned Vimpel ID to each cataloged object.

3. The date of the first measurement of the object: In day, month, year [DDMMYYY]

format.

4. The reference (epoch) time of the data: In day, month, year, hours, minutes, seconds

[DDMMYYYY HHMMSS] format.

5. The gap time: Note how each object’s argument of latitude at its reference time (#10)

in Figure  2.2 is around 0 degrees (or 360 degrees). Each object in the Vimpel catalog

is propagated from its last known observation to the time of the ascending node closest

to the catalog date – 01/29/2018 in the case of Figure  2.2 . This closest time is the

reference time (#4). The gap time is the number of days between the last observation

of an object and its reference time.

6. Semi-major axis: [km]

7. Inclination: [degrees]

8. Right Ascension of the Ascending Node: [degrees]

9. Eccentricity: [unitless]

10. Argument of latitude at the reference time: [degrees]

11. Argument of perigee: [degrees]

12. Average value of effective area to mass: Used to calculate the effects of drag, [m2/kg]
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13. SO magnitude: The apparent magnitude of the space object, [m]

14. Time uncertainty of object longitudinal position at a confidence level of 0.5, [minutes]

15. Position uncertainty at reference time for the confidence level of 0.5, [km]

The Vimpel catalog is published weekly. As stated in the description of the gap time

parameter, the data for each object is propagated from its last known observation to its

reference time. These propagated parameters are all stored in osculating Keplerian elements

referred to the epoch J2000. Osculating elements are the exact value of these parameters

at the reference time. A numerical propagator taking into account the Earth’s gravitational

field, the gravitational field of the Sun and the Moon, Solar radiation pressure, and the

Earth’s atmosphere is used to propagate these objects to the reference time. The Space

Information Dynamics (SID) research group’s numerical propagator, discussed in Section

 3.6.2 , is used to propagate Vimpel data for this thesis.

2.2.1 The Datefirst.txt File

Russia also provides a ‘datefirst.txt’ file on the Vimpel website. This file lists the Vimpel

objects appearing in the Space-Track catalog, paring Vimpel IDs to NORAD IDs, and a

section of it is shown in Figure  2.3 . The first column, Nvym, contains the Vimpel ID and

the third column contains its paired Space-Track NORAD ID, Nnor. t_det_v is the date of

detection of the Vimpel object, and t_det_n is the date of first information of the Space-

Track object in the website space-track.org.

Figure 2.3. Top portion of datefirst.txt file from 7 January 2022
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The datefirst.txt file for 7 January 2022 is used to validate the results for the direct catalog

comparison method described in Section  5.1 , and it contains 902 pairs of Space-Track and

Vimpel objects. A drawback of the datefirst.txt file is that there is no justification provided

from Vimpel for these pairings. In Section  6.1.2 , it is shown that at least two of the pairings

are incorrect.
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3. ORBITAL THEORY

3.1 Two-Body Motion

The fundamental equation of motion for an object in a near-Earth orbit is the relative

two-body equation. [ 28 ] uses Newton’s second law of motion and Newton’s law of gravitation

to derive this equation. Newton’s second law relates the Force, F , acting on a body to the

body’s mass, m, and inertial acceleration, ¨̄ri. Newton’s law of gravitation gives the force of

gravity of one body acting on a second body.

F̄ = m¨̄ri (3.1)

F̄g = −Gm⊕msat

r3
⊕,sat

r̄⊕,sat (3.2)

G is the universal gravitational constant, m⊕ is the mass of the Earth (body 1), msat

is the mass of the spacecraft (body 2), r̄⊕,sat is relative position vector from the Earth

to the spacecraft, and r⊕,sat is the magnitude of r̄⊕,sat. Using Equations  3.1 and  3.2 , the

gravitational forces on the spacecraft (with respect to the Earth) and on the Earth (with

respect to the spacecraft) are derived.

F̄gsat = msat
¨̄rsat = −Gm⊕msat

r3
⊕,sat

r̄⊕,sat (3.3)

F̄g⊕ = m⊕ ¨̄r⊕ = Gm⊕msat

r3
⊕,sat

r̄⊕,sat (3.4)

¨̄rsat and ¨̄r⊕ are inertial accelerations with respect to an inertially fixed point in space

(the center of mass of the Earth, spacecraft system). Eliminating the like mass terms from

Equations  3.3 and  3.4 and subtracting them gives the equation for the relative acceleration

between the two bodies.

¨̄r = ¨̄rsat − ¨̄r⊕ = −Gm⊕

r3
⊕,sat

r̄⊕,sat − Gmsat

r3
⊕,sat

r̄⊕,sat (3.5)
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¨̄r = −G(m⊕ +msat)
r3

⊕,sat

r̄⊕,sat (3.6)

Four assumptions are given in [ 28 ]:

1. The mass of the spacecraft is negligible when compared that of the Earth

2. The coordinate system is inertial with the origin at the center of the Earth (the ECI

coordinate frame is used – defined in Section  3.3.1 )

3. The Earth and spacecraft bodies are spherically symmetric with uniform density – can

be treated as point masses

4. No other forces act on the system

Applying the first assumption and replacing Gm⊕ with µ (the Earth’s gravitational

parameter) reduces Equation  3.6 to:

¨̄r = − µ

r3
⊕,sat

r̄⊕,sat (3.7)

This equation is the basic relative two-body equation for an object in an Earth orbit.

With the assumptions, Equation  3.7 fully models the orbit of a spacecraft. Unfortunately,

assumptions 3 and 4 are not accurate enough for the long term propagation of space objects.

Therefore, the acceleration terms for the perturbations in Section  3.5 are added to Equation

 3.7 and used to propagate the catalog objects.

3.2 Time

Before diving into the perturbations accounted for in space object propagation, it is

important to discuss the time systems, coordinate frames, and orbital elements used to

represent spacecraft states and observations. This section focuses on time and draws from

[ 29 ]. A solar day is the traditional day of 86400 seconds (24 hours), and it is measured

by subsequent meridian transits of the Sun. A sidereal day is defined as the period of the
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Earth’s rotation – the time between successive meridian passes of the vernal equinox – and it

is about 4 minutes shorter than the solar day. This time difference is due to the Sun’s right

ascension changing about a degree per day. Figure  3.1 illustrates this difference between a

solar and sidereal day.

Figure 3.1. Sidereal Day vs. Solar Day [  29 ]

The Earth’s motion around the Sun is also affected by the elliptical orbit of the Earth

around the Sun and the Earth’s rotation axis not being orthogonal to the ecliptic plane.

These factors, along with others, affect time calculations and give a need for well defined time

scales. Common time scales include Universal Time (UT) – an Earth time scale defined with

respect to the mean Sun, Terrestrial Time (TT) – a conceptually uniform time scale measured

in 86400 second days, International Atomic Time (TAI) – a practically realized uniform

time scale offset from TT by 32.184 seconds and taking the existing clock imperfections into

account, Greenwich Mean Sidereal Time (GMST) – the hour angle of the vernal equinox at

Greenwich (defined in Section  3.2.1 ), Universal Time UT1 – the mean solar time in today’s

standards, and Coordinated Universal Time (UTC) – an offset integer of seconds from TAI

that is also kept in close agreement with UT1. In addition to time scales, the Julian Date

(JD) is a widely used parameter which gives the exact date in number of days since noon,

32



12h, on January 1, 4713 BC. A modified Julian date (MJD) is also commonly used and is

defined as the number of days since November 17, 1858 at midnight, 0h.

MJD = JD − 2400000.5 (3.8)

3.2.1 Sidereal Time

The sidereal time is the in-plane hour angle between the vernal equinox and a position

on the Earth. The Greenwich sidereal time is known as the specific hour angle between

the vernal equinox and the prime meridian (longitude = 0°), while the local sidereal time is

the sidereal time of an observer at any longitude value. Sidereal times can measured from

the vernal equinox in the “true” or “mean” system – defined in Section  3.3.2 . The sidereal

times measured from the true equinox are known as apparent sidereal times, and these

times include the the Greenwich Apparent Sidereal Time (GAST) Θapp and Local Apparent

Sidereal Time (LAST) θapp. The sidereal times measured from the mean equinox include the

the Greenwich Mean Sidereal Time (GMST) Θ and Local Mean Sidereal Time (LMST) θ.

The GAST, LAST, GMST, and LMST are shown in Figure  3.2 .

Figure 3.2. Apparent and Mean Sidereal Times [ 29 ]
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To obtain the local sidereal time, the Greenwich sidereal time is calculated and then a

longitude shift is applied. [  29 ] gives a mathematical expression to compute the GMST when

given the current Julian Date.

Θ(UT ) = 24110.54841sec+ 8640184.812866sec · T0 + 0.093104 · T 2
1

− 0.0000062 · T 3
1 + 1.0027279093 · UT [sec]

(3.9)

T0 = JD0 − 2451545
36525 T1 = JD − 2451545

36525 , (3.10)

JD is the Julian Date of the observation time, JD0 is the Julian Date of midnight (0h)

on the observation date, and UT [sec] is the elapsed time in seconds from JD0 to JD [ 29 ].

Once the Greenwich sidereal time is known, the local sidereal time is calculated by adding

the observers longitude, λ, to Θ.

θ(UT ) = Θ(UT ) + λ(1[hour]/15[deg]) (3.11)

Equation  3.11 can also be rewritten for apparent sidereal times.

θapp(UT ) = Θapp(UT ) + λ(1[hour]/15[deg]) (3.12)

3.3 Coordinate Frames

[ 29 ] defines a coordinate frame using the following quantities:

• origin

• fundamental plane

• direction of reference

• handedness (right/left handed)

• Cartesian or non-Cartesian (spherical, cylindrical)
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Coordinate frames such as the Earth Centered Inertial (ECI) and Geocentric Equatorial

frames are inertial (non-accelerating) in nature. These two inertial frames have fixed axes

with a reference direction (x-axis) pointing towards the vernal equinox. Due to Earth rota-

tional effects (such as nutation and precession), the vernal equinox direction does not remain

fixed over time. Therefore, for proper coordinate system transformations, the inertial frames

are further defined with respect to J2000 or TEME by Vimpel and Space-Track respectfully.

For catalog comparison, the Space-Track objects are transformed from TEME ECI to J2000

ECI. Non-inertial Earth based coordinate frames include the Earth Centered Earth Fixed

(ECEF) frame and the Topocentric Equatorial frame. These frames are useful for locat-

ing topocenters (ECEF) and for representing spacecraft observations from these topocenters

(topocentric equatorial). Satellite fixed frames are another type of coordinate frame, and

they are useful when working with the local reference plane of space objects. Two satellite

fixed frames are the RSW frame and the In-Track, Cross-Track, Out-Of-Plane (ICO) frame.

3.3.1 Inertial Frames: ECI, Geocentric Equatorial

The Earth Centered Inertial (ECI) frame has an origin located at the center of the Earth.

Since this frame is inertial, its origin is assumed to be stationary or moving at a constant

velocity. The fundamental plane is the Earth’s equator, and the reference direction points

through the intersection of the ecliptic and equatorial planes to the vernal equinox at a fixed

equinox. Lastly, the frame is right handed and Cartesian.

The Geocentric Equatorial frame has the same characteristics as the ECI frame except

that is in spherical coordinates. The coordinates are right ascension α, declination δ, and

radial distance r. α is the in-plane angle and is zero in the direction of the vernal equinox, δ

is the angle above or below the equator (South −π/2, North π/2), and r is the magnitude of

the position vector [  29 ]. Figures  3.3 and  3.4 show the ECI and Geocentric Equatorial frames

respectfully.
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Figure 3.3. ECI frame [ 30 ]

Figure 3.4. Geocentric Equatorial frame [ 29 ]
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3.3.2 Reference Epochs, Mean Systems, and True Systems (TEME, J2000)

As discussed, the direction of the vernal equinox changes over time due to rotational

effects on the Earth. These effects are defined in [  29 ] as precession and nutation and shown

in Figure  3.5 . Precession describes the change between the orientation of the Earth’s rotation

axis and the equinox, and it is caused by the torque exerted on the Earth from the Sun,

the Moon, and the other planets in the solar system. The orientation due to precession

repeats every 26,000 years. Nutation describes the short-term periodic variations between

the equator and the vernal equinox due to solar and lunar torques, and these variations

repeat on the scale of months.

Figure 3.5. Precession and nutation of Earth from solar and lunar torques [ 31 ]

With the constant change in the direction to the vernal equinox over time, it is essential

to choose a specific reference direction to base the ECI or Geocentric Equatorial coordinate

frames on. This reference vernal equinox direction is defined first with respect to an epoch
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and second with respect to the “mean” or “true” systems at the epoch. The epoch is simply

a chosen time. For J2000, this epoch is noon on January 1st, 2000. For mean of date

(MOD), true of date (TOD), and true equator mean equinox (TEME), the epoch is the

current time of the given spacecraft state. The “mean” system is of mean equator and mean

equinox, and it is calculated using only the precession of the Earth at a given epoch. The

“true” system is of true equator and true equinox, and it is calculated using both the secular

(precession) effects along with the short-periodic motion (nutation) of the Earth at a given

epoch. Figure  3.6 shows the vernal equinox (Υ) directions at a current epoch in the “mean”

system (ΥMOD), “true” system (ΥT OD) and TEME system (ΥT EME).

Figure 3.6. MOD, TOD, TEME vernal equinox directions [ 32 ]

To transform between the MOD, TOD, and TEME systems for a given epoch, rotation

matrices are used. These rotation matrices use ε, ∆ε, and ∆ψ to angles of rotation. ε is

the mean obliquity of the ecliptic, ∆ε is the difference between the true and mean obliquity

of the ecliptic, and ∆ψ is the longitude of the mean vernal equinox in relation to the true

vernal equinox. [  29 ] gives equations to approximate ε, ∆ε, and ∆ψ.

ε = 23.43929111° − 46.8150′′ · T − 0.00059′′ · T 2 + 0.001813′′ · T 3 (3.13)

38



∆ε = 9.203′′ cos(Ω) − 0.090′′ cos(2Ω) − 0.547′′ cos(2(F −D + Ω))

+ 0.098′′ cos(2(F + Ω))
(3.14)

∆ψ = − 17.200′′ sin(Ω) + 0.202′′ sin(2Ω) − 1.319′′ sin(2(F −D + Ω))

+ 0.143′′ sin(l) − 0.227′′ sin(2(F + Ω))
(3.15)

T is the centuries since noon on 1 January 2000 (J2000) measured in terrestrial time

(TT), l is the mean anomaly of the Sun, F is the mean distance between the nodes of the

moon, D is the mean distance from the Sun to the moon, and Ω is the mean longitude of

the moon.

T = (JD − 2451545.0)/36525 (3.16)

l = 357.525 deg +35999.049 deg ·T (3.17)

F = 93.273 deg +483202.019 deg ·T (3.18)

D = 297.850 deg +445267.111 deg ·T (3.19)

Ω = 125.045 deg −1934.136 deg ·T (3.20)

Using ε, ∆ε, and ∆ψ, a 3x1 position vector, r̄, or velocity vector, v̄, can be rotated from

TEME to TOD to MOD.

r̄tod = R3(−∆ψ cos(ε+ ∆ε)) · r̄teme (3.21)

v̄tod = R3(−∆ψ cos(ε+ ∆ε)) · v̄teme (3.22)

r̄mod = NT · r̄tod (3.23)

v̄mod = NT · v̄tod (3.24)

N = R1(−ε− ∆ε) · R3(−∆ψ) · R1(ε) (3.25)

R1 and R3 are defined as the first and third axis rotation matrices for an angle θ,

respectfully. A positive θ means the system is rotating in the mathematical positive direction.
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R1(θ) =


1 0 0

0 cos(θ) sin(θ)

0 − sin(θ) cos(θ)

 (3.26)

R3(θ) =


cos(θ) sin(θ) 0

− sin(θ) cos(θ) 0

0 0 1

 (3.27)

For completeness, the second axis rotation matrix R2 for an angle θ is

R2(θ) =


cos(θ) 0 − sin(θ)

0 1 0

sin(θ) 0 cos(θ)

 . (3.28)

Equations  3.21 -  3.25 allow for the transformation between “mean”, “true”, and TEME

systems at a specific epoch. For this research the mean J2000 reference system is used.

Thus, mean equator and equinox of the observation epoch T (MOD) vectors need to be

transformed to mean equator and equinox of J2000 vectors. [  29 ] gives three Euler angles (ζ,

θ, and z) that can be used to create a rotation matrix to transform 3x1 position and velocity

vectors from MOD to mean of J2000.

r̄J2000 = P T · r̄mod (3.29)

v̄J2000 = P T · v̄mod (3.30)

P = R3(−z) · R2(θ) · R3(−ζ) (3.31)

ζ = 2306.2181′′ · T + 0.30188′′ · T 2 + 0.017998′′ · T 3 (3.32)

θ = 2004.3109′′ · T − 0.42665′′ · T 2 − 0.041833′′ · T 3 (3.33)

z = ζ + 0.79280′′ · T 2 + 0.000205′′ · T 3 (3.34)
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3.3.3 Earth Centered Earth Fixed (ECEF) Frame

The rest of the frames discussed are non-inertial coordinate frames. This first frame,

ECEF, has an origin located at the center of the Earth with a reference direction pointing to

the intersection of the prime meridian and the equator (latitude = 0°, longitude = 0°). The

fundamental plane is the Earth’s equator, and the frame is right handed and Cartesian. Since

the reference direction is set to a point on the Earth, the ECEF frame is useful for identifying

the positions of observation sites (topocenters) as they are just the latitude, longitude, and

altitude of the site transformed into Cartesian coordinates.

To transform a position from the ECEF frame to the ECI frame, the the Greenwich

sidereal time Θ is used, and the Greenwich sidereal time is calculated from the current

Julian Date in Equation  3.9 . Using the R3 rotation matrix, a position or velocity vector in

the ECEF frame can be transformed into the ECI frame.

r̄eci = R3(−Θ) · r̄ecef (3.35)

v̄eci = R3(−Θ) · v̄ecef (3.36)

Another rotational effect on the Earth is known as polar motion. Polar motion describes

the short periodic variations (up to 10 meters) between the Earth pole and the ephemeris

pole. Because of these variations, the true transformation between the ECEF and ECI

frames would need to take into account both the polar motion and the sidereal time. Since

the effects of polar motion are so small compared to other errors, however, this research only

uses the sidereal time for transforming between the ECEF and ECI frames.

3.3.4 Topocentric Equatorial Frame

A frame used when taking observations from observation sites is the topocentric equato-

rial frame. This frame has an origin on the surface of the Earth, centered at an observer’s

location. The fundamental plane is the plane parallel to the equator at a fixed equinox, the

reference direction is the vernal equinox direction at a fixed equinox, and the frame is right
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handed. The coordinate system is in spherical coordinates – right ascension α′, declination

δ′, (range ρ) – as shown in Figure  3.7 . The local sidereal time θ is used in Equation  3.35 to

transform the position vector of the observation site from ECEF coordinates, R̄ecef , to ECI

coordinates, R̄eci.

Figure 3.7. Topocentric Equatorial Frame (α := α′, δ := δ′) [ 29 ]

When α′, δ′, and ρ are known, the ECI range vector ρ̄eci can be computed. To get the

ECI position vector r̄eci, ρ̄eci is added to R̄eci.

ρ̄eci =


ρ cos(α′) cos(δ′)

ρ sin(α′) cos(δ′)

ρ sin(δ)

 (3.37)

r̄eci = R̄eci + ρ̄eci (3.38)

3.3.5 Satellite Reference Frame: RSW

A common satellite based coordinate frame is the RSW frame. The origin is located at

the spacecraft’s center, the fundamental plane is the orbital plane, the reference direction
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points in the radial direction (from the Earth to the spacecraft), and the frame is right

handed and Cartesian. From Figure  3.8 , R is the radial direction from the center of the

Earth, W is the two-body orbit angular momentum direction, and S is the direction of the

cross product between W and R – where dot product between S and the spacecraft’s velocity

vector is positive.

Figure 3.8. RSW frame [ 30 ]

3.3.6 Satellite Reference Frame: In-Track, Cross-Track, Out-Of-Plane (ICO)

Another satellite based coordinate frame is the In-Track, Cross-Track, Out-Of-Plane

(ICO) frame. Like the RSW frame, the origin is located at the spacecraft’s center, the

fundamental plane is the orbital plane, and the frame uses Cartesian coordinates. Unlike

RSW, the reference direction points is in the direction of motion (the velocity direction) and

the frame is left handed. From Figure  3.9 , in-track is the velocity direction of the spacecraft,

out-of-plane is the two-body orbit angular momentum direction (W from RSW), and cross-

track is the direction orthogonal to both in-track and out-of-plane and pointing away from

the center of the Earth. Since little uncertainty information is known for the cataloged

objects, this frame is used to establish a propagated covariance around them as discussed in

Section  4.2 .
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Figure 3.9. ICO frame overlaid onto RSW frame
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3.4 Classical Orbital Elements

For two-body orbits, there are a few ways to represent the state of a spacecraft. In

an inertial coordinate system, the six Classical Orbital Elements (COEs) – also known as

the Keplerian elements – can be used. The COEs are six scalar parameters which describe

the size, shape and orientation of an elliptical two-body orbit, along with the spacecrafts

location on the orbit. They include the semi-major axis a, the eccentricity e, the inclination

i, the right ascension of the ascending node Ω, the argument of perigee ω (perigee for Earth,

perihelion for Sun, periapsis for a general body), and the true anomaly ν. i, Ω, ω, and ν are

depicted in Figure  3.10 .

Figure 3.10. Visual representation of the COEs [ 29 ]

The semi-major axis a is a measure of the size of an orbit. Specifically it is half of

the value of the major axis of the ellipse representing the orbit and is normally given in

kilometers in the ECI frame. The eccentricity e for an elliptical orbit is a non-dimensional

value between 0 and 1. The larger the value, the more elliptical the orbit is. The inclination

i is the angle from the fundamental plane of the inertial frame (The equatorial plane in the

ECI frame) to the orbital plane. The right ascension of the ascending node Ω is the angle
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from the reference direction of the inertial frame (the vernal equinox direction in the ECI

frame) to the ascending node of the orbit. The ascending node is the point in the orbit where

the spacecraft crosses the fundamental plane moving in the +z direction. The argument of

perigee ω is the angle from the ascending node to perigee. Perigee (or periapsis) is the

closest point on the orbit to Earth (or the body being orbited). The furthest away is known

as apogee (or apoapsis). The true anomaly ν is the angle from perigee to the spacecraft’s

location on the orbit. Figure  3.10 depicts the latter four COEs.

3.5 Perturbations

At the end of Section  3.1 , it is noted that perturbation acceleration terms need to be

added to the relative two-body equation (Equation  3.7 ) to accurately propagate objects

around the Earth. These added acceleration terms address the fact that the Earth is not a

point mass or a perfect sphere, other bodies – the Sun and the Moon – have gravitational

effects on the Earth and the spacecraft, the Earth’s atmosphere is present in lower Earth

orbits, and there is Solar Radiation Pressure (SRP) from the Sun.

3.5.1 Spherical Harmonics

The Earth is not a spherically symmetric body with uniform density. Therefore, the

two-body assumption that the Earth is a point mass is not sufficient, and a different rep-

resentation of Earth’s gravitational potential is needed. To achieve this representation, the

Earth’s spherical harmonics must be considered. [ 29 ] demonstrates how the spherical har-

monics of Earth can be modeled by a series of Legendre polynomials, Pl,m, where l and m are

the respective degree and order for each polynomial. The spherical harmonics can further

be broken up into three sections: zonal harmonics (m = 0), sectoral harmonics (l = m),

and tesseral harmonics (l 6= m 6= 0). Figure  3.11 shows how each section models the mass

distribution of the Earth.
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Figure 3.11. Zonal, Tesseral and Sectoral Harmonics [ 33 ]

Basically, the zonal harmonics deal with the Earth’s horizontal mass distribution, the

sectoral harmonics represent the vertical mass distribution, and the tesseral harmonics give

a mass distribution grid. The commonly known Jl perturbation terms, with J2 being the

most impactful term, all fall under zonal harmonics. Through proper modeling of the Earth’s

spherical harmonics with Legendre polynomials, [  29 ] delivers an equation representing the

Earth’s gravitational potential, U .

U = µ

r
+ µ

r

inf∑
l=2

l∑
m=0

(RE

r
)lPl,m[ sin (φgc,sat)](Cl,m cos (mλsat) + Sl,m sin (mλsat)) (3.39)

RE is the mean radius of the Earth, φgc,sat is the geocentric latitude of the spacecraft, λsat

is the longitude of the spacecraft, and Cl,m and Sl,m are gravitational coefficients. Equation

 3.39 can be reduced to a function of the position of the spacecraft in the Earth Centered

Earth Fixed (ECEF) frame, rECEF , and the collection of model parameters, θ. The ECEF

frame is defined in Section  3.3.3 .

U = U(rECEF ,θ) (3.40)

The ECEF acceleration is given by
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aECEF
g (rECEF ,θ) =

[
∂U(rECEF ,θ)

∂rECEF

]T

, (3.41)

and is rotated to the ECI frame using the transformation of the fixed reference frame to

the inertial reference frame, T ECI
ECEF .

aECI
g = T ECI

ECEF aECEF
g (rECEF ,θ) (3.42)

3.5.2 Third Body Effects

While the gravitational effects of the Earth are the largest for near Earth orbiting space-

craft, other bodies have non-negligible gravitational effects. The Sun and Moon are two

commonly considered bodies for the near Earth system. Equation  3.3 shown for the two-

body problem in Section  3.1 can be expanded for the n-body problem.

msat
¨̄rsat = −G

n∑
i=1

mimsat

r3
i,sat

r̄i,sat (3.43)

[ 28 ] reduces Equation  3.43 to the relative n-body problem where ¨̄r is the relative accel-

eration of the spacecraft, body 1 is the Earth (⊕), and body 2 is the Spacecraft (sat).

¨̄r = −G(m⊕ +msat)
r3

⊕,sat

r̄⊕,sat +G
n∑

i=3
mi(

r̄sat,i

r3
sat,i

− r̄⊕,i

r3
⊕,i

) (3.44)

The first term on the right hand side of Equation  3.44 is the two-body acceleration. The

third body acceleration is the summation term from this equation. If only the Sun and Moon

gravitational effects are taken into account, then the acceleration becomes

āthird_body = Gm�( r̄sat,�

r3
sat,�

− r̄⊕,�

r3
⊕,�

) +Gmmoon( r̄sat,moon

r3
sat,moon

− r̄⊕,moon

r3
⊕,moon

) (3.45)

where � is the Sun and moon is the Moon.
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3.5.3 Drag

Another perturbation which affects near Earth objects is drag. The Earth’s atmosphere

extends far into the LEO regime, significantly perturbing objects in this region. [  31 ] models

the force of drag as Equation  3.46 

ādrag = −1
2CD

A

msat

ρvv̄ (3.46)

where CD is the drag coefficient of the satellite, A is its cross-sectional area, msat is its

mass, ρ is the atmospheric density at its location, v̄ is its relative velocity vector, and v is the

magnitude of v̄. The drag coefficient is a dimensionless quantity describing the interaction of

the atmosphere with the satellite’s surface. Common values of CD range between 1.5 − 3.0,

and in 1966, [  34 ] estimated the CD for spherical spacecraft to be 2.2. The atmospheric

density is obtained by using mathematical atmospheric models. More accurate models will

take into account the exospheric temperature, geomagnetic activity, solar flux values, semi-

annual variations, and other space weather analysis when calculating a density. Well known

atmospheric models include the 1959 ARDC Atmosphere model, the Harris-Priester model,

the 1976 US Standard Atmosphere model, the Jacchia 1970 model, the Jacchia-Roberts

model, the Mass Spectrometer Incoherent Scatter (MSIS) 1986 and 1990 models, and the

NRLMSISE-00 model which builds upon MSIS-90 [ 35 ].

3.5.4 Solar Radiation Pressure

Solar radiation pressure (SRP) is the perturbing force on a satellite due to the absorption

or reflection of photons from solar radiation [  31 ]. A common assumption is to assume the

spacecraft is a spherical object. Using this assumption, [  29 ] models the SRP experienced by

a spacecraft as

āSRP = −A

m

E

c

AU2

r2
sat,�

(1
4 + 1

9Cd) r̄sat,�

rsat,�
(3.47)
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where A/m is the area-to-mass ratio (AMR) of the spacecraft, E is the solar constant at

the Earth’s surface, c is the speed of light, AU is the astronomical unit, r̄sat,� is the vector

from the spacecraft to the sun, rsat,� is the magnitude of r̄sat,�, and Cd is the coefficient of

diffuse reflection of the spacecraft. The Cd varies based on the spacecraft’s surface material.

3.6 Propagators

For this research, catalog objects are either propagated to each other for catalog correla-

tion or propagated to observation times for arc correlation. Therefore, it is necessary to define

the types of propagation models and the specific models used for the Space-Track and Vim-

pel catalogs. Three types of propagation models exist: analytic, numeric and semi-analytic.

Analytic models use equations to approximate the motion of an object over time, resulting

in fast propagation times and, usually, less accurate propagated states. Numerical models

propagate objects by numerically integrating their equations of motion. These models have

longer run times, as more computations are required, but tend to be the most accurate type

of propagator. Semi-analytic models attempt to find a common ground between analytic

and numerical models. To find this middle ground, semi-analytic models typically approxi-

mate the secular and long-period components of motion with analytic equations while using

numerical integration to compute the short period components. For Space-Track objects,

the Simplified General Perturbations 4 (SGP4) semi-analytic model is used in this research.

For Vimpel objects, an in-house numerical propagator is used.

3.6.1 Simplified General Perturbation 4 (SGP4)

In Section  2.1 , it is noted that Space-Track objects are given in two-line element (TLE)

format. [  36 ] explains that this format consists of mean object elements obtained through

the removal of periodic variations in a specific manner. Thus, to accurately propagate a

TLE object, these variations must be reconstructed in the same manner by which they were

removed. The Simplified General Perturbations (SGP) family contains six models which are

suitable for the reconstruction of TLE variations and the propagation of TLEs. They are

SGP, SGP4, SDP4, SGP8, SDP8, and the new SGP4-XP model.
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The first model, SGP, is an analytic propagator developed in 1966 by Hilton and Kuhlman

for the propagation of near-Earth satellites [ 36 ]. By 1969, the number of cataloged space

objects being propagated with SGP was too large for computers of the time to handle, so a

simplification of the Lane and Cranford analytic theory was developed and implemented in

1970 [ 37 ]. This method, known as SGP4, is the primary method for near-Earth propagation.

As objects with larger orbits around the Earth began to arise, a semi-analytic deep-space

model was introduced. In 1977, the Simplified Deep Space 4 (SDP4) model, which includes

lunar and solar gravitational effects and geopotential resonance effects for objects with peri-

ods greater than or equal to 225 minutes, was fully merged with the near-Earth SGP4 model

to produce the SGP4 model used today [  36 ] [ 37 ]. The SGP8/SDP8 methods were created to

“alleviate deficiencies of SGP4/SDP4 for the special cases of orbital decay and reentry” [ 28 ],

but there is no evidence suggesting these models are used for operational TLE formulations.

The newest model, SGP4-XP, was briefed to the US Space Force on 7 February 2021. It

uses improved and additional perturbation models of SRP, atmospheric drag, and deep space

altitudes to obtain 1 to 2 orders of magnitude more accuracy than the current SGP4 routine

used today while still maintaining comparable run times [  38 ]. From these results, it is likely

that the SGP4-XP routine will soon replace the current SGP4 routine for general TLE use.

The SGP4 routine used in this research was written by Vallado (2006). This routine is a

hybrid SGP4/SDP4 routine that uses a near-Earth model for objects with periods less than

225 minutes and a deep-space model for objects with periods greater than or equal to 225

minutes. It works by taking in a TLE and propagation time and outputting a propagated

object state in the TEME ECI frame referred to the epoch of the propagated state – Section

 3.3.2 .

3.6.2 Numerical Propagators

Before publishing a catalog, Vimpel propagates its objects to the ascending node closest

to the published date. For its propagations, Vimpel uses a numerical propagator that takes

into account “perturbations from the Earth’s gravitational field (geopotential harmonics up

to the eighth inclusive), the gravitational field of the Moon and the Sun (as point-masses
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in accordance with DE-405 model), the Earth’s atmosphere (in accordance with GOST

R 25645.166-2004), [and] Sun radiation pressure” [ 27 ]. A numerical propagator developed

in-house by the Space Information Dynamics (SID) group that takes into account the per-

turbations the Earth’s spherical harmonics (Equations  3.39 – 3.42 ; up to l=4, m=4), the Sun

and Moon third body effects (Equation  3.45 ), drag (Equation  3.46 ; in accordance with the

Jacchia 1970 density model [ 39 ]), and solar radiation pressure (Equation  3.47 ), is used to

further propagate these Vimpel objects. Vimpel objects are given and propagated in the

ECI frame with respect to the epoch J2000.

52



4. CATALOG CORRELATION THEORY

To correlate the US and Russian catalogs of space objects with each other and with obser-

vations, a modified nearest neighbor approach is taken. This section provides the theory

behind this approach.

4.1 The Mahalanobis Distance

For this research, squared mahalanobis distances are used to correlate Vimpel objects to

propagated Space-Track objects and optical observations to either catalog. The mahalanobis

distance, d, is the number of standard deviations from a point, y, to a distribution. The

distribution around a propagated catalog object is assumed to be a Gaussian, N(µ,Σ),

ellipsoid as defined in Section  4.2 , and the mahalanobis distance between y and N(µ,Σ) is

taken from [ 40 ].

d =
√

(y − µ) · Σ−1 · (y − µ)T (4.1)

Squaring Equation  4.1 gives the md2, d2, equation.

d2 = (y − µ) · Σ−1 · (y − µ)T (4.2)

4.2 Uncertainty Distributions

To use the squared mahalanobis distance, the covariance information for the propagated

catalog objects is needed. Unfortunately, TLEs do not provide any covariance information

and most (but not all) Vimpel objects come with a single positional in-track uncertainty

value. Since the catalogs do not provide enough information to establish covariance matrices

around the given states of their objects, this research seeks to establish viable covariance

matrices around the final propagated states of these catalog objects. From [ 20 ], the largest

uncertainty should be in the in-track direction of a spacecrafts ICO frame. To test this

theory, and to determine an approximate covariance matrix for propagated catalog objects,
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several Monte Carlo simulations were run. The first simulation was for 100 objects in a

spherical N(µ,Σ) distribution. Using a two-body numerical propagator, these objects were

propagated for a single 24 hour period and the characteristics were noted.

µ =



42121.836 km

0

0

0

3.0777427 km/s

0


ECI

(4.3)

Σ =



100 km2 0 0 0 0 0

0 100 km2 0 0 0 0

0 0 100 km2 0 0 0

0 0 0 1 (m/s)2 0 0

0 0 0 0 1 (m/s)2 0

0 0 0 0 0 1 (m/s)2


ECI

(4.4)

Figure  4.1 shows that the initial spherical distribution elongates to an ellipsoidal distri-

bution after the 24 hour propagation. As is the case from [ 20 ], the in-track direction contains

the most uncertainty while the cross-track and out-of-plane directions have lower amounts

of uncertainty. Figures  4.2 and  4.3 are from 24 hour Monte Carlo simulations similar to

the initial simulation but with varying inclinations for the orbit. From these simulations it

is found that changing the inclination has a very small effect on the shape and size of the

final uncertainty distribution. When varying the time of propagation, or the initial position

and velocity variance values, a much larger effect on the final distribution was obtained.

Figure  4.4 is a 10 day Monte Carlo simulation for the 25° inclined initial GEO orbit, and it

shows that as the propagation time increases, the uncertainty moves so far along the in-track

direction that the shape is no longer ellipsoidal.
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Figure 4.1. 1 day Monte Carlo GEO uncertainty simulation (i = 0°, n=100)

Figure 4.2. 1 day Monte Carlo GEO uncertainty simulation (i = 25°, n=100)
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Figure 4.3. 1 day Monte Carlo GEO uncertainty simulation (i = 45°, n=100)

Figure 4.4. 10 day Monte Carlo GEO uncertainty simulation (i = 25°, n=1000)
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Figure  4.4 shows that the Gaussian assumption is only valid for short period propagations.

A few more tests resulted in a valid Gaussian assumption for about 4 days of propagation

using the same position and velocity standard deviations. For this research, the largest

propagation times are about half a week. Therefore, the general assumption used in this

research is that, for short period propagations, the uncertainty distribution of a propagated

catalog object is Gaussian and ellipsoidal in nature with the largest uncertainty being in the

in-track direction.

To determine the shape of the positional uncertainty ellipsoid, the ratios between the

in-track standard deviation and the cross-track and out-of-plane standard deviations are

calculated for each simulation. The ratio between the in-track and cross-track standard

deviations is called the itct ratio, and the ratio between the in-track and out-of-plane standard

deviations is called the itoop ratio. The covariance matrix is created by assigning an in-track

standard deviation size term s and then dividing it by the the respective ratio to get the

cross-track and out-of-plane standard deviations.

ΣICO =


s2 0 0

0 (s/itct)2 0

0 0 (s/itoop)2

 (4.5)

To get the specific ratio values, a 1000 object, 24 hour Monte Carlo simulation for the

25° inclined Geosynchronous object scenario with position and velocity standard deviations

of 10 km and 1 m/s, respectfully, is used. The values obtained from this simulation are:

itct = 5.608 (4.6)

itoop = 5.663 (4.7)

It is important to note that other values for these ratios would also work for the represen-

tation of the propagated uncertainty distribution. These ratios are solely two ratios which

fit the criteria and work well for this research.
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The size of the uncertainty distribution (the standard deviation, s, for the in-track term)

is kept as the same parameter s for each propagated object. For the propagated Space-Track

objects, their s term can be assumed to be equal since there is no uncertainty information is

provided by TLEs. Unlike Space-Track, most Vimpel objects come with an in-track position

uncertainty value which could be used as the value of s. However, some Vimpel objects do not

come with this information. For the objects that do, this value ranges from a few kilometers

for one object to hundreds of kilometers for another object. Therefore, to eliminate the

potential bias posed by extremely large covariance matrices and remove the need to guess s

values for the Vimpel objects with no given in-track uncertainty, the size of the covariance

matrix for each Vimpel object is likewise set to the same parameter s. In the future, when

more covariance information is known for the catalog objects, a numerical value can be given

for s. Also, from Equations  4.1 and  4.5 , s is seen to be inversely proportional to d. It is

important to note that an s value is not required for this research as the main focus is to

determine a “closest” object match. This closest match – and the match order – is only

dependent on the shape of the uncertainty distribution when each catalog object has the

same uncertainty distribution size.

In the direct catalog comparison method, the Space-Track objects are propagated to each

Vimpel object and assigned an uncertainty distribution. Figure  4.5 is a scenario showing two

propagated and transformed Space-Track objects with assigned covariance matrices near a

Vimpel object projected into 2D space. In each image, the Space-Track objects have the

same size and shape distributions with respect to their ICO frame. The top frame shows the

Vimpel object’s position as inside the position distribution of Space-Track object 2, while

being outside the distribution of Space-Track object 1. Therefore, Space-Track object 2 is

more closely matched to the Vimpel object than Space-Track object 1. When the distribution

sizes are reduced for the bottom frame, the match order remains the same.

To rotate the covariance matrix defined in Equation  4.5 to the ECI frame, a rotation

matrix is built using the unit vectors of the ICO frame defined with respect to the ECI
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Figure 4.5. 2D projection of Gaussian ellipsoids – size comparison
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frame. These unit vectors are obtained using the ECI position and velocity vectors for an

object.

R =


ˆin-trackx

ˆcross-trackx
ˆout-of-planex

ˆin-tracky
ˆcross-tracky

ˆout-of-planey

ˆin-trackz
ˆcross-trackz

ˆout-of-planez

 (4.8)

ΣECI = RΣICOR
T (4.9)

4.3 ECI to Topocentric Equatorial Transformations

When using arc correlation to correlate catalog objects to optical observations, the prop-

agated catalog object’s Gaussian distributions need to be further transformed from the ECI

frame to the 2D topocentric right ascension and declination frame.

To transform a catalog object’s mean ECI position vector into a topocentric equatorial

range, right ascension, and declination, the topocenter position vector needs to be known.

In the case of spacecraft observations, the topocenter is an observation site. Using the the

local sidereal time of the observer (θ), the latitude of the observer (φ), and the magnitude of

the site vector (R), an observation site position vector (R̄eci) can be calculated in the TOD

ECI frame [ 29 ], and this vector can be transformed from TOD to J2000 using the methods

described in Section  3.3.2 .

R̄eci =


R cos(φ) cos(θ)

R cos(φ) sin(θ)

R sin(φ)


ECI_T OD

(4.10)

Using the position vector of the observation site in the J2000 ECI frame (R̄eci), a catalog

object’s mean ECI position vector (µeci = r̄eci) can be transformed into its mean topocentric

range vector (ρ̄eci).
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ρ̄eci = r̄eci − R̄eci (4.11)

ρ̄eci can be represented as a vector in the ECI frame depicted by Figure  3.3 .

ρ̄eci = xx̂+ yŷ + zẑ (4.12)

Using this representation, ρ̄eci can then be transformed into the range ρ, topocentric right

ascension α′, and topocentric declination δ′ spherical coordinates.

ρ =
√
x2 + y2 + z2 (4.13)

ρ̃ =
√
x2 + y2 (4.14)

δ′ = π

2 , 0,−
π

2 for ρ̃ = 0 and z > 0, z = 0, z < 0 (4.15)

δ′ = arctan(z
ρ̃

) for ρ̃ 6= 0 (4.16)

α′ = 0 for x = 0 and y = 0 (4.17)

α′ = φ for x >= 0 and y >= 0 (4.18)

α′ = 2π + φ for x >= 0 and y <= 0 (4.19)

α′ = π − φ for x <= 0 (4.20)

φ = arctan(y
x

) (4.21)

For this research, the transformed ECI to topocentric equatorial mean of a catalog object

distribution, µρα′δ′ , is defined as:

µρα′δ′ =


ρ

α′

δ′

 . (4.22)
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To transform the covariance matrix of a catalog object from the ECI frame (ΣECI) to

the topocentric equatorial frame (Σρα′δ′), a linear transformation is used. To perform this

transformation, the equations relating ρ, α′, and δ′ to the components of ρ̄eci (as defined by

Equation  4.12 ) are taken from [  29 ] and used to compute a Jacobian matrix – a matrix of

partial first derivatives.

x = ρ cos(α′) cos(δ′) (4.23)

y = ρ sin(α′) cos(δ′) (4.24)

z = ρ sin(δ′) (4.25)

Using Equations  4.23 – 4.25 , the the Jacobian matrix which linearly transforms a vector

in the topocentric equatorial frame to the ECI frame is constructed.

Jxyz = ∂(x, y, z)
∂(ρ, α′, δ′) =


∂x
∂ρ

δx
∂α′

∂x
∂δ′

∂y
∂ρ

∂y
∂α′

∂y
∂δ′

∂z
∂ρ

∂z
∂α′

∂z
∂δ′

 (4.26)

Jxyz =


cos(α′) cos(δ′) −ρ sin(α′) cos(δ′) −ρ cos(α′) sin(δ′)

sin(α′) cos(δ′) ρ cos(α′) cos(δ′) −ρ sin(α′) sin(δ′)

sin(δ′) 0 ρ cos(δ′)

 (4.27)

Since the transformation needed is from the ECI frame to the topocentric equatorial

frame, Jxyz is inverted.

Jρα′δ′ = J−1
xyz (4.28)

Σρα′δ′ = Jρα′δ′ΣECIJ
T
ρα′δ′ (4.29)

Equations  4.13 – 4.21 and  4.29 are used to transform a N(µeci,ΣECI) ECI Gaussian ellip-

soid into a N(µρα′δ′ ,Σρα′δ′) topocentric equatorial Gaussian ellipsoid. Since the observations

for this research are optical, 2D, (α′, δ′) pairs, the catalog object range information is unnec-
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essary for the correlation process. Therefore, the 3D Gaussian N(µρα′δ′ ,Σρα′δ′) is transformed

into a 2D Gaussian N(µα′δ′ ,Σα′δ′) retaining only the α′ and δ′ information.

µα′δ′ =
[
0 1 1

]
µρα′δ′ (4.30)

Σα′δ′ =

0 1 0

0 0 1

 Σρα′δ′


0 0

1 0

0 1

 (4.31)

4.3.1 Linear Covariance Matrix Transformation Validation

To verify the accuracy of the linear covariance matrix transformation, a Monte Carlo

simulation is run to linearly (Equation  4.29 ) and non-linearly (Equations  4.13 – 4.21 ) trans-

form a 3D uncertainty distribution for the GPS satellite NORAD 29486 (in a MEO orbit)

from the 3D ECI frame to the 3D topocentric equatorial frame. Equations  4.30 and  4.31 

are used to transform these points into the 2D topocentric right ascension (α′) and decli-

nation (δ′) frame. An initial Gaussian distribution for 100 km of in-track uncertainty in

the ECI frame is shown in Figure  4.6 where the orange dot is the mean and the blue dots

are simulated points in the distribution. Figure  4.7 shows these points linearly transformed

from the 3D ECI frame to 2D topocentric frame. Figure  4.8 shows the linear transformed

points overlayed by the true (non-linearly) transformed points. This figure shows that for

100 km of in-track uncertainty, the linear transformation is a very accurate representation

of the actual uncertainty distribution in the topocentric frame. Figure  4.9 shows that even

for an in-track uncertainty of 1000 km, the linear transformation still decently represents

the actual uncertainty distribution. In Figure  4.10 , it is seen that the linearly transformed

covariance matrix is a very bad representation of the actual uncertainty distribution for an

in-track uncertainty of 10000 km.
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Figure 4.6. ECI uncertainty ellipsoid

Figure 4.7. ra (α′), dec (δ′) linear transformation
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Figure 4.8. ra (α′), dec (δ′) linear vs true transformation: s = 100 km

Figure 4.9. ra (α′), dec (δ′) linear vs true transformation: s = 1000 km
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Figure 4.10. ra (α′), dec (δ′) linear vs true transformation: s = 10000 km

For this research, it is assumed that the in-track uncertainty will be less than 1000 km,

and Figures  4.11 and  4.12 show further testing for an s of 1000 km for LEO and GEO objects.

From these figures, and from Figure  4.9 , it is assumed that a linearly transformed covariance

matrix is a good representation of the true uncertainty distribution for an object in the

topocentric frame. These assumptions are reasonable since the average in-track uncertainty

given for a Vimpel object is less than 100 km, and [  20 ] states that GEO and HEO TLEs

have an average of 25 and 35 km of in-track uncertainty, respectfully.
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Figure 4.11. LEO object (ISS – NORAD 25544) ra (α′), dec (δ′) linear vs
true transformation: s = 1000 km

Figure 4.12. GEO object (WGS 9 – NORAD 42075) ra (α′), dec (δ′) linear
vs true transformation: s = 1000 km
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4.4 The Topocentric Right Ascension Rate and Declination Rate Frame

Another frame used for the comparison of optical observations to catalog objects is the

topocentric right ascension rate, ∆α′, and declination rate, ∆δ′, frame. This frame is created

between two observations in an observation set by subtracting the first observation from the

second observation. To illustrate this frame, Figures  4.13 and  4.14 show two consecutive

observations from a set in the α′, δ′ frame that are subtracted from each other to obtain

velocity observations and distributions in the ∆α′, ∆δ′ frame.

Figure 4.13. Two observations with one potential Space-Track object in the α′, δ′ frame

Figure 4.14. Change between the two observations in Figure  4.13 in the ∆α′, ∆δ′ frame
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To compute the velocity, vobs, of an observed object between two observations in the ∆α′,

∆δ′ frame, the first optical observation, yobs1 = (α′
obs1, δ

′
obs1), is subtracted from the second

optical observation, yobs2 = (α′
obs2, δ

′
obs2).

∆α′
obs = α′

obs2 cos(δ′
obs2) − α′

obs1 cos(δ′
obs1) (4.32)

∆δ′
obs = δ′

obs2 − δ′
obs1 (4.33)

vobs = (∆α′
obs,∆δ′

obs)/∆t (4.34)

∆t is the change in time between the two observations. For subtracting catalog object

distributions between the two observations – where N(µα′δ′1,Σα′δ′1) and N(µα′δ′2,Σα′δ′2)

are the distributions for an object in the first and second observations, respectfully – the

equations for subtracting random variables from page 381 in [ 41 ] are used.

µ∆α′∆δ′ = µα′δ′2 − µα′δ′1 (4.35)

Σ∆α′∆δ′ = Σα′δ′2 + Σα′δ′1 (4.36)

To obtain velocity values, Equations  4.35 and  4.36 are modified to account for the change

in time between the observations.

µ∆α′∆δ′ = (µα′δ′2 − µα′δ′1)/∆t (4.37)

Σ∆α′∆δ′ = (Σα′δ′2 + Σα′δ′1)/∆t2 (4.38)
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4.5 Likelihoods and Log Likelihoods

The likelihood, L, is defined as the likeliness of a point belonging to a distribution. It is

indirectly related to the cumulative distribution function, F , of the point.

L = 1 − F (4.39)

In this research, the likelihood is used to measure how likely a catalog object is to being

the observed object in an observation set. Individual position and velocity likelihoods are

calculated in the α′, δ′ and ∆α′, ∆δ′ frames, respectfully, and both of these frames are in two

dimensions with the catalog objects being modeled as 2D Gaussian distributions. For a 2D

Gaussian distribution, [ 42 ] shows that the cumulative distribution function, F , for a point

can be represented as a function of its mahalanobis distance, d. Therefore, the likelihood

can also be represented as a function of the Mahalanobis distance.

F = 1 − e−d2/2 (4.40)

L = e−d2/2 (4.41)

To mitigate the effects of large squared mahalanobis distance values, log likelihoods are

used and converted back to likelihoods when necessary. The log likelihood, l, is simply the

natural log of Equation  4.41 , and like the squared mahalanobis distance, l is also inversely

proportional to s2.

l = ln(L) = −d2

2 (4.42)

L = el (4.43)

l ∝ 1
s2 (4.44)
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4.6 Two-Body Least Squares

Later in this research, a two-body least squares algorithm is used to take tracklets of

observations which might pertain to the same catalog object and see if a two-body orbit can

be fit to them. To use this algorithm, an initial orbit is determined using the potential catalog

object. Next, the optical observations given in the tracklets are used together to iteratively

improve the initial orbit using a batch least squares (LUMVE) method as defined in [ 29 ]

from pages 183 to 201. Two variables λ and Λ are used to update the initially determined

orbit.

λ = λ+HTR−1δz (4.45)

Λ = Λ +HTR−1H (4.46)

For this least squares algorithm, no prior information is assumed, so the initial λ and

Λ values are set to a 6x1 zero vector and a 6x6 matrix of zeros, respectfully. H is the

multiplication of the measurement mapping matrix and the state transition matrix at the

kth observation time, R is the least squares weighting matrix for an assumed noise of 2

arcseconds,

R =

22 0

0 22


−1

, (4.47)

and δz is the difference between the kth observation and the reference state measurement

at the time of the kth observation. After λ and Λ are computed and updated using all of the

observations, a batch update of the orbit state, x̂, and covariance, P , is performed.

δx̂ = Λ−1λ (4.48)
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x̂ = x̂+ δx̂ (4.49)

P = Λ−1 (4.50)

Since the least squares algorithm is not guaranteed to converge, a fixed number of iter-

ations (seven for this research) are used to update the initial orbit state with observations.

This final orbit is then marked as either determined or undetermined.
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5. CATALOG CORRELATION METHODS

Two methods of catalog correlation are constructed in this thesis. The first method directly

compares Space-Track objects to Vimpel objects, using multiple filters to determine the

closest object pairing. The second method uses arc correlation to match optical observations

to each catalog. These methods are validated against the datefirst.txt file.

5.1 Method 1: Direct Catalog Comparison

To directly and efficiently compare Space-Track objects to Vimpel objects, the method

outlined below is used.

1. Download a pair of Space-Track and Vimpel catalogs

2. Split the catalogs into buckets based on orbital regimes

3. Determine the closest Space-Track object to each Vimpel object for a bucket

5.1.1 Download Space-Track and Vimpel Catalogs

The first step is to download the catalogs of space objects. Tomoki Koike, a 2021 Purdue

graduate, developed code to query the Space-Track and Vimpel catalog websites – space-

track.org and spacedata.vimpel.ru – for recent catalogs. This code is modified and used to

pull Space-Track and Vimpel catalogs referenced to a specific date. Since Vimpel catalogs are

published weekly, downloading the Vimpel catalog pertaining to a specific date is simply a

matter of choosing the catalog published closest to that date. Unlike Vimpel, the Space-Track

catalog is continuously updated, and the only “published” catalog is the catalog containing

the most recent TLEs for each object. To obtain a Space-Track catalog referenced to a

specific date, a search is performed which collects all the TLEs generated up to three days

prior to the desired date. For each object, its closest TLE to the date is kept and all others

are thrown out. Lastly, Space-Track and Vimpel catalogs pertaining to the same date are

downloaded and compared in order to minimize the propagation error. For this research,

99 catalog pairs ranging from January of 2019 to December of 2021 are downloaded and
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compared. Also, since the Space-Track and Vimpel catalogs are pulled and compared with

respect to the same reference date, the largest propagation time for any of the Space-Track

object to the Vimpel object will be no longer than a few days, with most propagations being

less than a day. Therefore, the covariance matrix for a propagated Space-Track object in

this method can be assumed to be ellipsoidal.

5.1.2 Split Catalogs into Buckets

As of 2021, a full Space-Track catalog contains about 25000 objects and a full Vimpel

catalog contains about 7000 objects. Comparing 25000 Space-Track objects to 7000 Vimpel

objects results in 175 million comparisons. One way to reduce the number of comparisons is

to group the catalog objects into buckets based on their orbital regime. Since most Space-

Track objects are in near-Earth orbits and most Vimpel objects have periods greater than

200 minutes, this grouping results in many near-Earth Space-Track objects being compared

to only a few near-Earth Vimpel objects and vice versa.

Therefore, the next step after downloading and selecting a Space-Track and Vimpel

catalog pair is to split the catalogs into buckets based on the orbital regimes. Five buckets

are used in this research. The first four buckets contain objects which fit into the LEO,

Mid-Earth Orbit (MEO), GEO/Geosynchronous Orbit, and High-Eccentricity Orbit (HEO)

regimes. The last bucket contains all objects which do not fit into any of the first four

buckets. The buckets are defined with respect to an object’s perigee and apogee altitudes.

1. LEO bucket – perigee ≥ 80 km, apogee < 2000 km

2. MEO bucket – perigee ≥ 2000 km, apogee < 36000 km

3. GEO bucket – perigee ≥ 35586 km, apogee < 35986 km

4. HEO bucket – perigee < 2000 km, apogee > 35000 km

5. Other bucket – all objects which don’t meet the above criteria

The perigee/apogee bounds for the LEO, MEO and HEO buckets are obtained from [ 43 ].

The listed average perigee and apogee altitudes for HEO objects are 1000 km and 36000
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km, respectfully, but a 1000 km buffer is added to catch any slightly less than average HEO

objects. The GEO/Geosynchronous bounds are obtained from [  29 ], and any objects placed

into the GEO bucket are excluded from the MEO bucket. Using these buckets, the number

of necessary Space-Track to Vimpel comparisons is reduced by an order of magnitude –

from about 175 million comparisons to less than 12 million comparisons. A source of error

that comes with using these buckets is the chance for two Space-Track and Vimpel catalog

objects which pertain to the same space object to be sorted into two different buckets. This

error could happen if the perigee/apogee values for these catalog objects border the bounds

between buckets, and the possibility for this error will increase as the number of buckets

increase.

5.1.3 Match Space-Track Objects to Vimpel Objects – Within a Bucket

After splitting the catalogs into buckets, a bucket is chosen to be compared (e.g. the

GEO bucket). For each Vimpel object in a chosen bucket, all of the Space-Track objects

in the same bucket are propagated to the reference time of the Vimpel object. The Space-

Track objects are then transformed from the TEME ECI frame to the J2000 ECI frame as

described in Section  3.3.2 and put through two filters to match the most likely Space-Track

object to the Vimpel object.

Filter 1: Squared Mahalanobis Distance (Md2) Filter

The first filter calculates a positional squared mahalanobis distance (md2) between each

Space-Track object and the Vimpel object. To compute this distance, an ellipsoidal covari-

ance matrix with a constant size s is built around each propagated Space-Track object in the

J2000 ECI frame as described by Equations  4.5 – 4.9 . Equation  4.2 is then used to calculate

positional d2 values for each Space-Track object where y is the position vector of the Vimpel

object, µ is the position vector of the Space-Track object, and Σ is the covariance matrix

of the Space-Track object. Once a md2 value is computed for each Space-Track object, the

objects with md2 values below a chosen md2 threshold are marked as potential matches and

put through a second filter to match a single Space-Track object to the Vimpel object.
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Squared Mahalanobis Distance (Md2) Threshold

The md2 threshold is defined as the largest md2 a Space-Track object can have from

a Vimpel object and still be considered a potential match. Since the second filter used to

match a Space-Track object to a Vimpel object is more robust, the md2 threshold is set

so a feasible number of potential Space-Track object matches are run through the second

filter. If this threshold was set to infinity, all the Space-track objects in the bucket would

be potential matches for the Vimpel object – ordered from closest to furthest with respect

to their md2s. Figure  5.1 shows the case where the md2 threshold is set to infinity for the

GEO bucket. (The notably larger purple sphere in the center is the Earth)

Figure 5.1. Md2 threshold set to ∞ – case for a Vimpel object 79504

For this research, the md2 threshold is chosen to be 1×106/s2. If no Space-Track objects

have md2s below this threshold, then the Vimpel object is said to be “unmatched” to the

Space-Track catalog. This threshold is found to retain a sufficient level of potential Space-

Track matches; however, more testing would be necessary to find the best threshold value

for direct catalog comparison.

76



Filter 2: Classical Orbital Element (COE) Filter

Once all the potential Space-Track matches are identified for a Vimpel object, the orbital

elements of these potential matches are compared to those of the Vimpel object using a COE

filter. This filter draws upon the work of [  18 ] and has the following steps:

1. Compute the six classical orbital elements (COEs – described in Section  3.4 ) for each

potential Space-Track object

2. Establish five correlation parameters based on the COEs

3. For each Space-Track object, compute the error between its parameters and the Vimpel

object’s parameters

4. Normalize the error for each correlation parameter

5. Compute a confidence value for each normalized parameter error

6. Compute coplanar (Cp), co-orbital (Co), and same object (Cs) confidence levels

7. Scale the Cs by the mahalanobis distance of the potential Space-Track object to get a

Cs_scaled value

8. Match the Space-Track object with the largest Cs_scaled value to the Vimpel object

The first step is to take the potential Space-Track objects labeled by the md2 filter and

compute their six classical orbital elements (a [m], e, i [rad], Ω [rad], ω [rad], ν [rad]). Using

these elements, five correlation parameters are established:

• a: semi-major axis [m]

• e: eccentricity

• i: inclination [rad]

• Ω: right ascension of the ascending node (raan) [rad]

• λ = ω + ν: argument of perigee + true anomaly [rad]
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The first four parameters used are just the first four COEs. The fifth parameter combines

the argument of perigee and the true anomaly is used to reduce the error when comparing

nearly circular orbits. Step three is to compute the error between the correlation parameters

for the Space-Track (st) and Vimpel (v) objects.

∆x = |xst − xv|; x = (a, e, i,Ω, λ) (5.1)

To normalize the parameter error, ∆a is divided by 6, 378, 140 meters (the radius of the

Earth) and ∆i, ∆Ω, and ∆λ are divided by 2π radians. A confidence value (ranging from

[0.001, 1]) for each parameter is computed using the normalized errors.

Cx = 1
1 + 999 · ∆x ; x = (a, e, i,Ω, λ) (5.2)

Using these confidence parameter values, coplanar (Cp), co-orbital (Co), and same object

(Cs) confidence values are computed (ranging from [1 × 10−9, 1]). The coplanar confidence

value is based off of the inclination and raan confidence values because these COEs define the

plane of an orbit. A small difference between the inclinations and raans of the Space-Track

and Vimpel objects will result in a high coplanar confidence value. A Space-Track object in

the same orbit as a Vimpel object – but not necessarily in the same location on the orbit –

will be in the same orbital plane with the same size and shape orbit. Therefore, the co-orbital

confidence level is based off of the semi-major axis and eccentricity COEs along with the

coplanar confidence level. The same object confidence level uses the co-orbital confidence

and the λ value – the spacecrafts angular position in its orbit – to determine the confidence

of the Space-Track and Vimpel objects being the same object.

Cp = 1
2(Ci + CΩ) (5.3)

Co = Cp · 1
3(Cp + Ca + Ce) (5.4)

Cs = Co · 1
2(Co + Cλ) (5.5)
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For this research, the Cs value is taken since this filter is being used to match the same

objects between the Space-Track and Vimpel catalogs. The last step is to take this Cs value

for a Space-Track object and weight it by its mahalanobis distance. This weighting allows

the mahalanobis distance information from the md2 filter to be retained in the COE filter.

Cs_scaled = Cs

d
(5.6)

The potential Space-Track object with the largest Cs_scaled value is matched to the Vimpel

object.

5.2 Method 2: Optical Observation Correlation

The optical observation correlation method focuses on taking sets of optical observations

(tracklets) and correlating them to both the Space-Track and Vimpel catalogs. Through

matching observed objects to each catalog, the catalog objects themselves can be correlated.

This method takes in an observation set and outputs a log likelihood, lOS, value for each

potential object match sorted from most likely to least likely. The most likely object for

each catalog is “matched” as the object being observed by the tracklet, and the full process

is outlined below.

1. Pull catalogs closest in date to the time of the first observation in a set

2. Determine potential catalog object matches for the observation set

3. Calculate a log likelihood value for each potential object

4. Match the potential object with the highest likelihood

5.2.1 Pull Close Catalogs

Section  5.1.1 describes how this research acquires Space-Track and Vimpel catalogs. Each

downloaded catalog comes with an associated date that the catalog is referenced to, and

pulling the catalogs referenced to dates closest to the Julian Date of the first observation in
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a set reduces the propagation time for each catalog object. Reducing the propagation time

should increase the accuracy since shorter propagation times should result in less propagation

error. This research uses the Space-Track and Vimpel catalog pairs discussed in Section  5.1 ,

and these pairs are spaced out in weekly intervals. Therefore, the longest propagation time

for any catalog object in this algorithm should be about half a week. This propagation time

falls within the definition of a short period propagation from Section  4.2 , which means the

covariance matrices assigned to propagated Space-Track and Vimpel objects can be assumed

to be Gaussian ellipsoids. The next steps in the method are performed separately for the

Space-Track and Vimpel catalogs.

5.2.2 Determine Potential Catalog Object Matches

To determine a potential catalog object match for an observation, each object is prop-

agated to the observation time, transformed into the J2000 ECI frame if necessary, and

assigned a Gaussian uncertainty ellipsoid in the ECI frame, N(µeci,ΣECI). From here, the

catalog objects are transformed into the same frame as the observations – the topocentric

right ascension and declination frame – as described in Section  4.3 . Once all the catalog

objects are represented as 2D N(µα′δ′ ,Σα′δ′) Gaussian distributions, a positional squared

mahalanobis distance, d2
p, is calculated from each catalog object to the observation, yobs.

The objects with md2s less than the chosen threshold of 1 × 106/s2 (the same threshold cho-

sen in Section  5.1.3 ) are marked as potential matches for an observation. Figure  5.2 shows

an observation with its potential Space-Track objects in the α′, δ′ frame.

d2
p = (yobs − µα′δ′) · Σ−1

α′δ′ · (yobs − µα′δ′)T (5.7)

Lastly, the potential matches for an observation set are just the combined potential

matches for all of the observations in the set.

80



Figure 5.2. Space-Track potential matches for an observation
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5.2.3 Calculate Log Likelihoods for Potential Objects

For each potential object in an observation set, an observation set log likelihood, lOS, is

calculated. The lOS is a measure of how likely a catalog object is to being the observed object

in the set, and it ranges from (−∞, 0]. To calculate the lOS, a series of position and velocity

log likelihoods are used. For each object, a position log likelihood is calculated for each

observation in the set and a velocity log likelihood is calculated for each consecutive pair of

observations. So, if there are six observations (labeled 1 through 6) in a set, there will be six

position log likelihoods [l1, l2, l3, l4, l5, l6] and five velocity log likelihoods [l1:2, l2:3, l3:4, l4:5, l5:6].

Position and velocity log likelihoods are calculated using Equation  5.2.3 where d2 is the

position or velocity md2 value, respectfully. Position log likelihoods are represented as

li; (i = 1, ..., n), where n is the number of observations in a set. To calculate li for a catalog

object, N(µα′δ′ ,Σα′δ′), with respect to an optical observation, yobs, a positional md2 value,

d2
p, is calculated using Equation  5.7 and plugged into Equation  4.42 .

li =
−d2

p

2 (5.8)

Velocity log likelihoods are represented as li:i+1; (i = 1, ..., n−1), where n is the number of

observations in a set. To calculate li:i+1 for a catalog object, two consecutive observations are

subtracted to find an observation velocity, vobs, and a catalog object velocity distribution,

N(µ∆α′∆δ′ ,Σ∆α′∆δ′), in the ∆α′, ∆δ′ frame – as described in Section  4.4 . Next, the vobs,

µ∆α′∆δ′ , and Σ∆α′∆δ′ values are plugged into Equation  4.2 to determine a velocity md2 value,

d2
v. Then, by inputting d2

v into Equation  4.42 , the velocity log likelihood is calculated.

d2
v = (vobs − µ∆α′∆δ′) · Σ−1

∆α′∆δ′ · (vobs − µ∆α′∆δ′)T (5.9)

li:i+1 = −d2
v

2 (5.10)

Using all of the position and velocity log likelihoods for a catalog object in an observation

set, the observation set log likelihood, lOS, can be computed. The lOS is computed by taking
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the average of the mean position log likelihood, lp, and mean velocity log likelihood, lv.

These log likelihoods are computed for the n-observation case.

lp =
∑n

i=1 li
n

(5.11)

lv =
∑n−1

i=1 li:i+1

n− 1 (5.12)

lOS = lp + lv
2 (5.13)

Tracking Data Message (TDM) Likelihood

Most of the data used to validate and test this algorithm is provided in Tracking Data

Messages (TDMs) from the German Aerospace Center (DLR). TDMs contain many observa-

tion sets that usually pertain to a single object. For each TDM, a TDM log likelihood, lT DM ,

can be computed for each potential catalog object. The lT DM is a measure of how likely a

catalog object is to being the observed object when taking into account all of the observation

sets in the TDM. It is computed by taking the average of all the object’s observation set log

likelihoods in the TDM. The calculation of a TDM log likelihood for an object is shown for

the j-observation set case.

lT DM =
∑j

i=1 lOSi

j
(5.14)

Something to note is that all the log likelihoods calculated in this research maintain the

inverse relationship to s2 shown in Equation  4.44 .

5.2.4 Match the Potential Object with the Highest Likelihood

Once observation set or TDM log likelihoods are found, the catalog object with the

highest (most positive) log likelihood value is matched to the observation set or TDM,
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respectfully. Since the s parameter is left as a variable for the catalog objects, all of the

likelihoods and log likelihoods will contain an s2 term. When any numerical value for s is

used, all log likelihood values will range from (−∞, 0] and all likelihoods will range from

(0, 1]. To gain some understanding of the outputs from this algorithm, this method is tested

for an s parameter of 25 km – which is within the range of GEO and HEO TLE in-track

uncertainties defined by [ 20 ].
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6. VALIDATION AND RESULTS

This section dives into the validation of both the direct catalog comparison and the arc corre-

lation methods developed in this research. The direct catalog comparison method is validated

against the datefirst.txt file (described in Section  2.2.1 ) using 99 pairs of Space-Track and

Vimpel catalogs ranging from January, 2019 to December, 2021. The arc correlation method

is validated using observations from the Purdue Optical Ground Station (POGS) and three

sets of TDMs from the German Aerospace Center (DLR).

6.1 Direct Catalog Comparison

6.1.1 Validation Against the Datefirst.txt File

The first test run is on the GEO buckets for Space-Track and Vimpel catalogs referenced

to 3 February 2020. Table  6.1 shows that for an md2 threshold of 1 × 106/s2, the method

matches 92.5% of the Vimpel GEO objects listed in the datefirst.txt file to their appropriate

Space-Track GEO pair.

Table 6.1. GEO bucket combination for catalogs referenced to 3 February
2020 with an md2 threshold of 1 × 106/s2

Combined GEO buckets – 3 Feb 2020
bucket md2 thresh Correctly

Matched
Incorrectly
Matched

Unmatched

GEO 1 × 106/s2 37/40 (92.5%) 3/40 (7.5%) 0/40 (0.0%)

This test for a single catalog shows that the direct catalog comparison method correctly

produces most the Vimpel and Space-Track object pairs shown in the datefirst.txt file. In

order to further validate the performance of this algorithm, the GEO buckets of 99 catalog

pairs are combined. Table  6.2 shows that from these 99 combined GEO buckets, 93.80% of

the Vimpel objects in the datefirst.txt file are matched to the correct Space-Track object

when the md2 threshold is 1 × 106/s2.
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Table 6.2. GEO bucket combination for 99 catalog pairs ranging from Jan-
uary, 2019 through December, 2021

Combined GEO buckets – 99 Space-Track and Vimpel catalog pairs
bucket md2 thresh Avg Correctly Matched
GEO 1 × 106/s2 93.80%

After running a full test (all 99 pairs) on the GEO buckets, a full test is run on the other

four buckets.

Table 6.3. All buckets combination for 99 catalog pairs ranging from January,
2019 through December, 2021 with an md2 threshold of 1 × 106/s2

All combined buckets – 99 Space-Track and Vimpel catalog pairs
bucket md2 thresh Avg Correctly Matched
LEO 1 × 106/s2 97.17%
MEO 1 × 106/s2 97.23%
GEO 1 × 106/s2 93.80%
HEO 1 × 106/s2 98.30%
Other 1 × 106/s2 98.16%

From the full test of each bucket it is seen that the direct catalog combination method

is able to pair over 90% of the Vimpel objects in the datefirst.txt file to their appropriate

Space-Track object. It is important to note that one of the key parameters for this method

is the md2 threshold. Going back to the two catalogs referenced to 3 February 2020, it is

seen that as the md2 threshold is increased from Table  6.1 to  6.4 , the number of correctly

matched objects in the datefirst.txt file also increases. This trend is verified by a full test of

all the buckets for an order of magnitude larger md2 threshold in Table  6.5 .

Table 6.4. GEO bucket combination for catalogs referenced to 3 February
2020 with an md2 threshold of 1 × 107/s2

Combined GEO buckets – 3 Feb 2020
bucket md2 thresh Correctly

Matched
Incorrectly
Matched

Unmatched

GEO 1 × 107/s2 38/40 (95%) 2/40 (5%) 0/40 (0.0%)
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Table 6.5. All buckets combination for 99 catalog pairs ranging from January,
2019 through December, 2021 with an md2 threshold of 1 × 107/s2

All combined buckets – 99 Space-Track and Vimpel catalog pairs
bucket md2 thresh Avg Correctly Matched
LEO 1 × 107/s2 98.05%
MEO 1 × 107/s2 97.38%
GEO 1 × 107/s2 93.83%
HEO 1 × 107/s2 98.32%
Other 1 × 107/s2 98.57%

As the md2 threshold increases, the number of correctly matched objects from the date-

first.txt file also tends to increase (until the threshold reaches a large enough value). However,

as the md2 threshold increases, the number of matched Space-Track and Vimpel objects in

a bucket also increases. In the case of Table  6.1 there are 113 Vimpel GEO objects with

40 of them being in the datefirst.txt file. For a md2 threshold of 1 × 106/s2, 107 Vimpel

objects are paired to Space-Track objects with 37 of them being correct pairings as given

by the datefirst.txt file. When the md2 threshold is increased to 1 × 107/s2 – as in Table

 6.4 – 112 of these 113 Vimpel objects are paired to Space-Track objects with 38 of them

being correct pairings as given by the datefirst.txt file. Table  6.6 shows the error relationship

between the md2 threshold and the pairing of Vimpel to Space-Track objects. As the md2

threshold increases, the number of Type 1 errors increase. As the md2 threshold decreases,

the number of Type 2 errors increase.

Table 6.6. Error analysis of the md2 threshold
Error analysis of the md2 threshold

same objects different objects
matched correct false positive (Type 1 error)

unmatched false negative (Type 2 error) correct

For this research, a md2 threshold value which adequately minimizes both the Type 1

and Type 2 error was unable to be found when using the datefirst.txt file as the truth. It

is possible that the datefirst.txt file contains an accurate subset of the same Space-Track

and Vimpel objects but not the full set of Space-Track and Vimpel object pairs. For this
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case, the datefirst.txt file validates the accurate pairing ability of the algorithm while leaving

ambiguity for more Space-Track and Vimpel pairs to be found using this algorithm.

6.1.2 Inconsistency in the Datefirst.txt File

When debugging the md2 filter for the direct catalog comparison method, a table of

incorrectly paired Vimpel objects from the datefirst.txt file was created for the GEO buckets

of the catalogs referenced to 3 February 2020. Table  6.7 shows the md2s for the algorithm

predicted Space-Track object match versus the md2s for the datefirst.txt file true Space-Track

object match for each Vimpel object.

Table 6.7. Incorrectly Matched Objects from the datefirst.txt file - 3 Feb 2020
Incorrectly Matched Objects from the datefirst.txt file - 3 Feb 2020

vimpel
satnum

predicted
space-track
satnum

min md2 true
space-track
satnum

true md2

82200 41879 6.0912 × 104/s2 42075 6.4380 × 1010/s2

92400 42075 5.0579 × 104/s2 41879 6.3123 × 1010/s2

It is seen that the md2 filter predicts Vimpel 82200 to be NORAD 41879 and Vimpel

92400 to be NORAD 42075 while the datefirst.txt file claims the opposite pairing. It can also

be seen that the “true” squared mahalanobis distances are six orders of magnitude larger

than the predicted squared mahalanobis distances. Because of the large discrepancies in the

squared mahalanobis distance values, some online digging was done to see what the actual

pairing of these Vimpel and Space-Track objects should be. Figure  6.1 shows the NORAD

IDs next to their satellite names in the Space-Track catalog. Figure  6.2 shows a section

of the ESA Classification of Geosynchronous objects, issue 21. This section relates Vimpel

object 92400 to WGS 9 (NORAD 42075). Therefore, [  3 ] and [  44 ] give enough evidence to

claim that the datefirst.txt file is wrong, and that Vimpel object 92400 should be matched

to NORAD 42075 as predicted in Table  6.7 . It is further possible that the datefirst.txt file

flipped its object pairings and that Vimpel object 82200 should be matched to NORAD

41879 as well.
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Figure 6.1. Space-Track catalog objects 41879 and 42075 [ 3 ]

Figure 6.2. ESA Classification of Geosynchronous Objects, Issue 21, pairing
WGS 9 to Vimpel 92400 [ 44 ]
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6.2 Arc Correlation

6.2.1 Validation using the Purdue Optical Ground Station (POGS)

The initial couple tests of the arc correlation method are run using observation sets from

the Purdue Optical Ground Station (POGS). The first test is run on an observation set

containing 222 observations of NORAD 29486. Since NORAD 29486 is a GPS satellite, its

location is well known and the SID group is confident that these observations pertain to

it. Table  6.8 shows the algorithm matched Space-Track object to this observation set, its

observation set (OS) log likelihood value with the ‘s2’ term included, and an OS likelihood

value for an s value of 25 km – this value is chosen since it coincides with the GEO uncertainty

listed in [ 20 ].

Table 6.8. Test on an observation set containing 222 observations of NORAD
29486 taken by POGS

29486_PRN31_workspace
Algorithm Matched Object OS Log Likelihood lOS LOS for s = 25 km
NORAD 29486 −15.8932/s2 0.9749

These results show that the arc correlation method accurately matches the observation set

to NORAD 29486. For an s of 25 km, there is a 97.49% likelihood that NORAD 29486 is the

observed object from this set. Figure  6.3 shows an observation (blue asterisk) and NORAD

29486 distribution (light blue mean point and 3σ covariance ellipse) at the observation time

in the topocentric equatorial frame. From this figure, it is seen that the mean point of

NORAD 29486 almost directly overlays the observation, and this trend is found for all 222

observations in the set. This trend coincides with the high likelihood value and makes sense

in the case of a GPS satellite since the positions of these objects are more accurately known

than the positions of many other space objects. For further validation and testing of the arc

correlation method, sets of TDMs provided by DLR are used.
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Figure 6.3. Difference between NORAD 29486 distribution (light blue) and
observation position (blue asterisk) for newly processed POGS observations
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6.2.2 DLR TDM Set 1

The first set of data sent by DLR consists of six TDMs containing observation sets for

six different objects. The first five TDMs contain observations for tasked TLE objects, with

TDMs two through five containing observations for the clustered ASTRA objects 1KR, 1L,

1M, and 1N, respectfully. The last TDM contains observations for an unknown object. Table

 6.9 shows the claimed observed object for each TDM by DLR, the arc correlation matched

object, the TDM log likelihood for each matched object and the TDM likelihood for an

s of 25 km. From this table it is seen that the first five TDMs are all matched to their

claimed observed object by DLR, and the unknown TDM is matched to the ARIANE 5 R/B

(NORAD 38993). Another thing to note is that none of these TDMs closely match to any

objects in the Vimpel catalog – this finding is consistent with the datefirst.txt file.

Table 6.9. Arc Correlation test on 6 DLR TDMs
Matched Space-Track Objects to TDMs

TDM Claimed Observed
Object (by TDM)

Algorithm Matched
Object

TDM Log Likeli-
hood (lT DM)

LT DM for
s = 25 km

1 METEOSAT 8 METEOSAT 8 −26850.3/s2 2.201 × 10−19

2 ASTRA 1KR ASTRA 1KR −214.378/s2 0.7096
3 ASTRA 1L ASTRA 1L −362.579/s2 0.5598
4 ASTRA 1M ASTRA 1M −1110.98/s2 0.1690
5 ASTRA 1N ASTRA 1N −1315.88/s2 0.1218
6 UNKNOWN ARIANE 5 R/B −63.3361/s2 0.9036

TDM 1: METEOSAT 8

For the first TDM, 19 out of the 20 observation sets – containing 6 or 7 observations a

piece – returned METEOSAT 8 (NORAD 27509) as the most likely object. For the specific

observation sets in the TDM, the OS log likelihood for METEOSAT 8 varies greatly from

around −3/s2 in some sets to around −7 × 104/s2 in others. This wide range results in an

average TDM log likelihood of −26850.3/s2. The next closest potential object is NORAD

9009 as seen in Table  6.10 . This table shows that even though METEOSAT 8 is matched
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with a low TDM likelihood value, it still significantly more likely than the next closest

Space-Track object.

Table 6.10. TDM 1: Likely Space-Track objects
TDM 1: Most Likely Space-Track objects

NORAD ID Space-Track satname lT DM LT DM for s = 25 km
29055 METEOSAT 8 −26850.3/s2 2.201 × 10−19

9009 PALAPA 1 −437071/s2 1.958 × 10−304

TDMs 2–5: ASTRA Cluster

The second through fifth TDMs contain observation sets for the clustered ASTRA objects

1KR, 1L, 1M, and 1N. Clustered objects have very similar orbits which makes them the

hardest objects to distinguish from each other. Specifically, this ASTRA cluster makes up

the most densely populated region in GEO. Figures  6.4 – 6.6 show some of the observations

tasked for ASTRA 1KR in TDM 2, highlighting the overlapping nature of the ASTRA cluster

in the 2D observation frame.

Figure 6.4. ASTRA cluster in the observation frame for an observation in TDM 2 OS 7
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Figure 6.5. ASTRA cluster in the observation frame for an observation in TDM 2 OS 8

Figure 6.6. ASTRA cluster in the observation frame for an observation in TDM 2 OS 9
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Even with this challenge, the arc correlation method was able to correctly pair all the

TDMs to their claimed object by DLR. Tables  6.11 – 6.14 show the log likelihoods for each

clustered ASTRA object with respect to TDMs 2 through 5.

Table 6.11. TDM 2: Likely Space-Track objects
TDM 2: Most Likely Space-Track objects

NORAD ID Space-Track satname lT DM LT DM for s = 25 km
29055 ASTRA 1KR −214.378/s2 0.7096
31306 ASTRA 1L −2468.30/s2 0.01926
33436 ASTRA 1M −5754.78/s2 1.003 × 10−4

37775 ASTRA 1N −6147.10/s2 5.352 × 10−5

Table 6.12. TDM 3: Likely Space-Track objects
TDM 3: Most Likely Space-Track objects

NORAD ID Space-Track satname lT DM LT DM for s = 25 km
31306 ASTRA 1L −362.578/s2 0.5598
29055 ASTRA 1KR −2704.48/s2 0.01320
37775 ASTRA 1N −6749.79/s2 2.041 × 10−5

33436 ASTRA 1M −11398.1/s2 1.202 × 10−8

Table 6.13. TDM 4: Likely Space-Track objects
TDM 4: Most Likely Space-Track objects

NORAD ID Space-Track satname lT DM LT DM for s = 25 km
33436 ASTRA 1M −1110.98/s2 0.1690
29055 ASTRA 1KR −2690.33/s2 0.01351
37775 ASTRA 1N −3166.57/s2 6.304 × 10−3

31306 ASTRA 1L −5726.08/s2 1.050 × 10−4

Table 6.14. TDM 5: Likely Space-Track objects
TDM 5: Most Likely Space-Track objects

NORAD ID Space-Track satname lT DM LT DM for s = 25 km
37775 ASTRA 1N −1315.88/s2 0.1218
31306 ASTRA 1L −3321.51/s2 4.920 × 10−3

33436 ASTRA 1M −5996.38/s2 6.812 × 10−5

29055 ASTRA 1KR −6552.07/s2 2.800 × 10−5
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It is seen in these tables that the arc correlation method appropriately pairs the correct

ASTRA object while assigning the rest of the objects significantly lower log likelihood values

than the paired object. Therefore, the arc correlation method is shown to work in identi-

fying clustered objects from observations. Looking at the observation sets for each TDM

(containing, on average, 6 to 7 observations per set), 13/15 sets are matched to ASTRA

1KR in TDM 2, 13/17 sets are matched to ASTRA 1L in TDM 3, 9/15 sets are matched to

ASTRA 1M in TDM 4, and 11/16 sets are matched to ASTRA 1N in TDM 5.

One potential source of error for these TDMs (especially 4 and 5) is that not all of the

observation sets in the TDMs are matched to the claimed object being observed. Since

the ASTRA cluster is very dense, it is possible that some of these observation sets actually

pertain to a different cluster object than the one claimed to be being observed. For example,

in TDM 5 OS 6, ASTRA 1KR is matched to the set with an lOS of −85.4019/s2. The next

closest object is ASTRA 1L with an lOS of −2001.50/s2, and then ASTRA 1N (the claimed

object) is matched with an lOS of −5209.93/s2. The large difference in log likelihood values

between ASTRA 1KR and ASTRA 1N for this observation set may mean that OS 6 in TDM

5 should really be an observation set in TDM 2.

TDM 6: Unknown

The last TDM in this set contains 20 observation sets of an unknown object that are all

matched to the ARIANE 5 R/B (NORAD 38993) by the arc correlation method. Table  6.15 

shows the most likely Space-Track objects for TDM 6, and it shows that the next closest

object after NORAD 38993 is NORAD 41384 with a TDM log likelihood of −424265/s2.

Therefore, it is very likely that the observation sets in TDM 6 contain observations of the

ARIANE 5 R/B and highly unlikely that these observation sets pertain to any other object

in the Space-Track and Vimpel catalogs.
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Table 6.15. TDM 6: Likely Space-Track objects
TDM 6: Most Likely Space-Track objects

NORAD ID Space-Track satname lT DM LT DM for s = 25 km
38993 ARIANE 5 R/B −63.3361/s2 0.9036
41384 IRNSS 1F −424265/s2 1.551 × 10−295

6.2.3 DLR TDM Set 2

The second set of data sent by DLR consists of two TDMs. The first TDM contains 70

observation sets of WGS 9 spanning from January 2019 through October 2019. The second

TDM contains 80 unknown observation sets ranging from 13 February 2020 to 22 February

2020. This second TDM is the only TDM containing observation sets that do not necessarily

pertain to the same object.

TDM 1 (2017-16A): WGS 9

Looking back to Section  6.1.2 , it is discussed that datefirst.txt file paired Vimpel objects

82200 and 92400 to the incorrect Space-Track objects. To further test this theory, DLR sent a

TDM containing 70 observation sets tasked for WGS 9 – having an average of 7 observations

per set. This 2017-16A TDM is processed and matched to objects in both the Space-Track

and Vimpel catalogs, and the results are shown in Table  6.16 . Since the arc correlation

method matches the 2017-16A TDM to NORAD 42075 (with an lT DM of −6612.60/s2) in

the Space-Track catalog and to Vimpel 92400 (with an lT DM of −7793.64/s2) in the Vimpel

catalog, NORAD 42075 is indirectly matched to Vimpel 92400. This finding further validates

the claim made in Section  6.1.2 .

Table 6.16. Arc Correlation results for 2017-16A TDM
TDM 1 (2017-16A) - Claimed object: WGS-9

Catalog Algorithm Matched Object lT DM LT DM for s = 25 km
Space-Track NORAD 42075 (WGS-9) −6612.60/s2 2.542 × 10−5

Vimpel Vimpel 92400 −7793.64/s2 3.841 × 10−6
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For the Space-Track catalog, 61 of the 70 observation sets matched NORAD 42075 as the

closest object with the majority of the lOS values ranging from around −100/s2 to −10000/s2.

For the Vimpel catalog, 68 of the 70 observation sets matched Vimpel 92400 as the closest

object with the majority of these lOS values range from −1000/s2 to −13000/s2. Tables  6.17 

and  6.18 show the TDM log likelihoods for the closest matched Space-Track objects and

Vimpel objects to this TDM. These tables show that NORAD 42075 is reasonably the most

likely observed object for the Space-Track catalog and that Vimpel 92400 is by far the most

likely observed object for the Vimpel catalog. It is also seen that Vimpel object 92400 has a

closer lT DM than any of the other closely matched Space-Track objects (excluding NORAD

42075).

Table 6.17. TDM 1: Likely Space-Track objects
TDM 1: Most Likely Space-Track objects

NORAD ID Space-Track satname lT DM LT DM for s = 25 km
42075 WGS 9 −6612.60/s2 2.542 × 10−5

36032 NSS 12 −13121.2/s2 7.628 × 10−10

39612 EXPRESS AT1 −95105.2/s2 8.206 × 10−67

42698 INMARSAT 5-F4 −214091/s2 1.714 × 10−149

40258 LUCH (OLYMP) −459158/s2 8.799 × 10−320

Table 6.18. TDM 1: Likely Vimpel objects
TDM 1: Most Likely Space-Track objects

Vimpel ID lT DM LT DM for s = 25 km
92400 −7793.64/s2 3.841 × 10−6

145303 −425166/s2 3.666 × 10−296

TDM 2 (unassociated)

The second TDM for this set contains 80 observation sets pertaining to various unknown

objects. Each observation set – labeled by an assigned ID from DLR – contains about 3

to 5 observations and is matched to the Space-Track and Vimpel catalogs using the arc

correlation method. Table  6.19 gives all of the matched Space-Track objects with lOS values

greater than −2.5 × 104/s2. This table is sorted first by the largest likelihood and second
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by the NORAD ID, so that the observation sets which matched to the same Space-Track

object are grouped together. For Vimpel, the matched objects with lOS values greater than

−2.5 × 104/s2 are shown in Table  6.20 . This table is sorted like Table  6.19 – first by the

largest likelihood and second by the Vimpel ID.

For the observation sets which are grouped together, further testing is run to determine

if these observation sets likely pertain to the same object. For this testing, the groups of

observation sets matching a single catalog object are put through a two-body least squares

orbit determination algorithm – as described in Section  4.6 . The initial orbit used in this

algorithm is the orbit of the matched catalog object at the time of the earliest observation

in all the sets. If an orbit is determined, then the groups of observation sets likely pertain

to the same object. If an orbit fails to be determined, then these observation sets may not

pertain to the same objects. The last column in Tables  6.19 and  6.20 states whether or not

a two body least squares orbit could be determined for each group of observation sets.

Table 6.19. TDM 2 Space-Track object matches

Matched Space-Track Objects to Observation Sets with lOS > −2.5 × 104/s2

DLR OS ID NORAD ID lOS LOS (s = 25 km) Orbit det?

2394777 27441 −0.15277/s2 0.9998

2135840 21726 −5.11460/s2 0.9919

2394745 28094 −6.02070/s2 0.9904

2394835 22930 −7.04715/s2 0.9888

2394845 34264 −12.1284/s2 0.9808

2394839 25175 −12.8207/s2 0.9797

2135858 23111 −12.8912/s2 0.9796

2394822 36745 −15.7417/s2 0.9751 Yes. Likely

2394843 36745 −16.6320/s2 0.9737 pertain to

2394829 36745 −16.9018/s2 0.9733 same object

2394850 36745 −17.9267/s2 0.9732
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2154836 23717 −16.9725/s2 0.9717

2135827 19928 −22.2181/s2 0.9651

2394741 20696 −27.5930/s2 0.9568

2394700 23247 −37.2368/s2 0.9422

2394792 23966 −47.7347/s2 0.9265

2394727 21803 −51.8796/s2 0.9203

2144228 21223 −65.1479/s2 0.9010

2394802 16295 −77.1919/s2 0.8838

2135848 41593 −84.9964/s2 0.8728

2394774 36746 −95.8843/s2 0.8578

2394782 26721 −109.114/s2 0.8398

2394861 44475 −124.543/s2 0.8193 Yes. Likely

2394844 44475 −139.351/s2 0.8001 pertain to

2394831 44475 −149.366/s2 0.7874 same object

2394824 44475 −163.605/s2 0.7823

2144240 38780 −153.435/s2 0.7697

2394855 44803 −185.165/s2 0.7436 No.

2154840 44803 −258.748/s2 0.7151 Anomaly

2394755 19857 −209.607/s2 0.6610

2394848 44186 −549.919/s2 0.4148 Yes. Likely

2394827 44186 −582.282/s2 0.3939 same object

2135830 44867 −798.930/s2 0.2785

2135157 40534 −1381.13/s2 0.1097

2144231 44545 −3950.81/s2 0.001798 Yes. Likely

2144229 44545 −4066.19/s2 0.001496 same object

2135152 32373 −11473.0/s2 1.066 × 10−8

2394737 14497 −21688.0/s2 8.504 × 10−16 No. Likely

2394735 14497 −22034.0/s2 4.889 × 10−16 different
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2394736 14497 −22053.0/s2 4.743 × 10−16 objects

Table 6.20. TDM 2 Vimpel object matches

Matched Vimpel Objects to Observation Sets with lOS > −5 × 105/s2

DLR OS ID Vimpel ID lOS LOS (s = 25 km) Orbit det?

2135862 143513 −93.2613/s2 0.8613 Yes. Likely

2394719 143513 −142.689/s2 0.7959 pertain to

2144237 143513 −146.402/s2 0.7912 same object

2394700 144502 −94.3920/s2 0.8598

2394815 140912 −330.534/s2 0.5893

2394685 86100 −11609.2/s2 8.573 × 10−9

2394689 33500 −14611.0/s2 7.035 × 10−11

2144231 47200 −16649.9/s2 2.694 × 10−12
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Tables  6.19 and  6.20 show the results of the arc correlation algorithm for the observation

sets in the unassociated TDM. When looking specifically at the groups of observation sets, it

is seen that a least squares two-body orbit is determined for the observation sets pertaining

to NORAD objects 36745, 44475, 44186, and 44545 and Vimpel object 143513. Figure  6.7 

shows the observations, initial guess orbit, and determined least squares two-body orbit for

the NORAD 36745 group – note that this plot is not to scale. Figures  6.8 and  6.9 show the

right ascension and declination residuals for this case. The convergence seen in these figures

is also seen in the rest of the groups with determined two-body least squares orbits.

Figure 6.7. Determined least squares two-body orbit for the observation sets
pertaining to NORAD 36745

For the observation sets in last group of Table  6.19 , a two-body least squares orbit is

not determined. Looking at Figure  6.10 it is clear that the initial orbit for NORAD 14497

does not match the observations. Therefore, it is likely that these observation sets are not

matched to any of the objects in the Space-Track catalog. This result is not the case for the

group pertaining to NORAD 44803 as seen in Figure  6.11 .
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Figure 6.8. Right Ascension residuals for the NORAD 36745 two-body least
squares orbit determination

Figure 6.9. Declination residuals for the NORAD 36745 two-body least
squares orbit determination
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Figure 6.10. Undetermined least squares two-body orbit for the observation
sets pertaining to NORAD 14497

Figure 6.11. Undetermined least squares two-body orbit for the observation
sets pertaining to NORAD 44803
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Figure  6.11 shows the initial guess for NORAD 44803, the observations in the group, and

the two-body least squares determined orbit. It is seen that, even though the least squares

algorithm does not converge, the initial guess orbit nearly overlays the observations. Further

digging on space-track.org reveals that NORAD 44803 is in an elliptical orbit with an average

perigee height of 229 km, an average apogee height of 29284 km, and an average period of

509.61 minutes [  3 ]. Additionally, the time between the observation sets in the NORAD 44803

group is nearly 1 day (1440 minutes). This means that NORAD 44803 would have passed

perigee at least two times between the first and second observation sets in the group. As its

perigee is so close to the Earth, it is probable that the effects of drag were too large for a

two-body orbit estimate to be accurate in this case. Therefore, while the observation sets

pertaining to NORAD 44803 do not converge for a two-body least squares solution, they are

still assumed to pertain to NORAD 44803 and labeled as an anomaly. In future work, this

assumption should be tested using a least-squares algorithm which takes into account the

perturbations listed in Section  3.5 .

Since the two-body least squares algorithm does not converge in the NORAD 14497 case,

objects which match with log likelihoods in these areas can be deemed unlikely matches. A

greater confidence is given to the matches with log likelihoods closer than −4000/s2 since

the least squares algorithm was able to converge for matched objects in this case. When

running the least squares method on single tracklets, using the matched object as an initial

guess, it was found that NORAD 32373, NORAD 14497, Vimpel 86100, Vimpel 33500, and

Vimpel 47200 are all very unlikely matches to their observation set. Firstly, the two body

least squares algorithm does not converge for these objects, and secondly, the initial guess

locations of these objects do not match the observation locations. While more tests would

need to be run to determine a clear confidence threshold, it can be reasonably assumed that

any objects matched with log likelihoods lower than −1.2 × 104/s2 – or likelihoods lower

than 1 × 10−8 for s = 25 km – are unlikely matches.
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6.2.4 DLR TDM Set 3

The third set of data sent by DLR consists of 14 TDMs of known objects. These TDMs

consist of 1 to 7 observation sets with an average of 4 observations per set, and their arc

correlation results are shown in Tables  6.21 – 6.34 . Space-Track and Vimpel objects are said

to be unmatched if their lT DM falls below −1 × 105/s2, and and all the Space-Track and

Vimpel pairs are referenced to the datefirst.txt file. For the Vimpel matched object in TDM

9, an anomaly is found.

Table 6.21. Arc Correlation results for 1993-056A TDM
TDM 1 (1993-056A.tdm) - Claimed object: UFO 2 (USA 95)

Catalog Algorithm Matched Object lT DM LT DM for s = 25 km
Space-Track NORAD 22787 (UFO 2) −676.474/s2 0.3388
Vimpel Vimpel 143522 (UFO 2) −23008.6/s2 1.028 × 10−16

Table 6.22. Arc Correlation results for 1994-035A TDM
TDM 2 (1994-035A.tdm) - Claimed object: UFO 3 (USA 104)

Catalog Algorithm Matched Object lT DM LT DM for s = 25 km
Space-Track NORAD 23132 (UFO 3) −4.26997/s2 0.9932
Vimpel Vimpel 143701 (UFO 3) −147.628/s2 0.7896

Table 6.23. Arc Correlation results for 1996-042A TDM
TDM 3 (1996-042A.tdm) - Claimed object: UFO 7 (USA 127)

Catalog Algorithm Matched Object lT DM LT DM for s = 25 km
Space-Track NORAD 23967 (UFO 7) −2.25734/s2 0.9964
Vimpel Vimpel 143613 (UFO 7) −542.246/s2 0.4200

Table 6.24. Arc Correlation results for 1999-063A TDM
TDM 4 (1999-063A.tdm) - Claimed object: UFO 10 (USA 146)

Catalog Algorithm Matched Object lT DM LT DM for s = 25 km
Space-Track NORAD 25967 (UFO 10) −0.67127/s2 0.9989
Vimpel Vimpel 143618 (UFO 10) −8326.31/s2 1.637 × 10−6
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Table 6.25. Arc Correlation results for 2002-001A TDM
TDM 5 (2002-001A.tdm) - Claimed object: USA 164

Catalog Algorithm Matched Object lT DM LT DM for s = 25 km
Space-Track NORAD 27168 (USA 164) −3.85762/s2 0.9938
Vimpel Vimpel 143523 (USA 164) −4684.19/s2 5.560 × 10−4

Table 6.26. Arc Correlation results for 2002-040A TDM
TDM 6 (2002-040A.tdm) - Claimed object: EUTE 12 WEST A (AB 1)

Catalog Algorithm Matched Object lT DM LT DM for s = 25 km
Space-Track NORAD 27508 (AB 1) −26.3860/s2 0.9587
Vimpel Unmatched N/A N/A

Table 6.27. Arc Correlation results for 2005-049B TDM
TDM 7 (2005-049B.tdm) - Claimed object: METEOSAT 9 (MSG 2)

Catalog Algorithm Matched Object lT DM LT DM for s = 25 km
Space-Track NORAD 28912 (MSG 2) −7.41843/s2 0.9882
Vimpel Vimpel 25701 −36279.0/s2 6.177 × 10−26

Table 6.28. Arc Correlation results for 2006-012A TDM
TDM 8 (2006-012A.tdm) - Claimed object: ASTRA 1KR

Catalog Algorithm Matched Object lT DM LT DM for s = 25 km
Space-Track NORAD 29055 (ASTRA 1KR) −2230.46/s2 0.02819
Vimpel Unmatched N/A N/A

Table 6.29. Arc Correlation results for 2007-046A TDM
TDM 9 (2007-046A.tdm) - Claimed object: WGS F1 (USA 195)

Catalog Algorithm Matched Object lT DM LT DM for s = 25 km
Space-Track NORAD 32258 (WGS F1) −106.538/s2 0.8433
Vimpel Vimpel 143629 (WGS F1) −313112/s2 2.676 × 10−218

Table 6.30. Arc Correlation results for 2009-017A TDM
TDM 10 (2009-017A.tdm) - Claimed object: WGS F2 (USA 204)

Catalog Algorithm Matched Object lT DM LT DM for s = 25 km
Space-Track NORAD 34713 (WGS F2) −89.4020/s2 0.8667
Vimpel Vimpel 143637 (WGS F2) −13797.8/s2 2.584 × 10−10
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Table 6.31. Arc Correlation results for 2010-039A TDM
TDM 11 (2010-039A.tdm) - Claimed object: AEHF 1 (USA 214)

Catalog Algorithm Matched Object lT DM LT DM for s = 25 km
Space-Track NORAD 36868 (AEHF 1) −0.96300/s2 0.9985
Vimpel Vimpel 143644 (AEHF 1) −5818.64/s2 9.053 × 10−5

Table 6.32. Arc Correlation results for 2012-035B TDM
TDM 12 (2012-035B.tdm) - Claimed object: METEOSAT 10 (MSG 3)

Catalog Algorithm Matched Object lT DM LT DM for s = 25 km
Space-Track NORAD 38552 (MSG 3) −2.97371/s2 0.9953
Vimpel Unmatched N/A N/A

Table 6.33. Arc Correlation results for 2015-034A TDM
TDM 13 (2015-034A.tdm) - Claimed object: METEOSAT 11 (MSG 4)

Catalog Algorithm Matched Object lT DM LT DM for s = 25 km
Space-Track NORAD 40732 (MSG 4) −110.919/s2 0.8374
Vimpel Unmatched N/A N/A

Table 6.34. Arc Correlation results for 2017-016A TDM
TDM 14 (2017-016A.tdm) - Claimed object: WGS 9 (USA 275)

Catalog Algorithm Matched Object lT DM LT DM for s = 25 km
Space-Track NORAD 42075 (WGS 9) −80.3346/s2 0.8794
Vimpel Vimpel 92400 (WGS 9) −13034.8/s2 8.760 × 10−10

The first thing to note is that all the Space-Track objects are appropriately matched

to the DLR claimed observed object for each TDM. Using the datefirst.txt file (and the

direct catalog comparison algorithm for TDM 14) it is also found that the Vimpel objects

matched in TDMs 1-5, 9-11, and 14 are appropriately matched to their respective TDM

and Space-Track object – even for the Vimpel objects with lT DMs less than −1.2 × 104/s2.

Another thing to note is that the Vimpel objects all match with lower lT DM values than

their Space-Track counterparts. This result may be due to the fact that DLR performs its

tasking assignments using the Space-Track catalog.
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One anomaly found is that Vimpel object 25701 is matched to TDM 7. When using the

datefirst.txt file and the direct catalog comparison algorithm, the Vimpel 25701 to NORAD

28912 object pairing was not confirmed. Since TDM 7 only contains a single observation set,

a test was run to see if Vimpel object 25701 is just a close object passing by to the observation

rather than the actual object being observed. Figures  6.12 – 6.14 show the location of Vimpel

25701 with respect to the observation for the three observations in the set. From these figures

it is seen that Vimpel 25701 is not actually the object being observed, but that it is just an

object passing close by at the time of the observations. Since only one observation set with

a small number of tracklets was provided with TDM 7, Vimpel object 25701 was able to be

matched closer than the confidence threshold to TDM 7.

Figure 6.12. TDM 7: Vimpel object 25701 at first observation in set

Another anomaly is that Vimpel object 143629 matches to TDM 9 with a very small

likelihood value (the lT DM is −313112/s2). Looking at the two observation sets in this

TDM, Vimpel 143629 matches with a lOS of −134.247/s2 to the first one and it matches

with an lOS of −626090/s2 to the second one. The matching to the second observation set is

significantly worse, and it explains why the lT DM is so poor. To determine potential sources

of error, a test was done using different Vimpel catalogs for the weeks prior to and later
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Figure 6.13. TDM 7: Vimpel object 25701 at second observation in set

Figure 6.14. TDM 7: Vimpel object 25701 at third observation in set
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than the Vimpel catalog being used by the algorithm. Since the first observation set was

taken on 1 August 2021 and the second observation set was taken on 4 August 2021, the

algorithm chosen Vimpel catalog is referenced to 2 August 2021. When forcing the algorithm

to propagate the Vimpel objects from the 26 July 2021 and 9 August 2021 catalogs, the lT DMs

obtained for Vimpel 143629 are −12227.7/s2 and −19929.4/s2, respectfully. Both of these

lT DMs are significantly better than the lT DM for the closer Vimpel catalog (2 August 2021). It

is possible that the Vimpel catalog for 2 August 2021 has an error in one of the perturbation

parameters for Vimpel 143629 which is not introduced in the shorter propagation to the

first observation set but is introduced in the longer propagation to the second observation

set. This error, then, would not be present in the 26 July 2021 or 9 August 2021 catalogs

resulting in a better matching of Vimpel 143629 from these catalogs to both observation

sets and better lT DM values. Further testing is needed to verify any definite error in the

osculating parameters provided for Vimpel 143629 in the 2 August 2021 catalog.
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7. SUMMARY

7.1 Conclusions

Two techniques for catalog correlation are developed and tested in this thesis. These

methods both rely on a modified nearest neighbor approach to determine the closest potential

catalog objects with respect to another catalog or to optical observations. The first method,

direct catalog correlation, focuses on the direct correlation of the Space-Track and Vimpel

catalogs. This method uses three steps: making buckets, determining potential object Space-

Track object matches for each Vimpel object, and determining the most likely Space-Track

object match for each Vimpel object, and it is validated against the datefirst.txt file – a

file provided by Vimpel that claims which Space-Track and Vimpel objects are the same

between the catalogs.

The direct catalog combination method is validated by running 99 pairs of Space-Track

and Vimpel catalogs ranging from January 2019 to December 2021 through the algorithm and

checking the results against the datefirst.txt file. For a very inclusive squared Mahalanobis

distance threshold, over 90% of all the Vimpel objects in the datefirst.txt file are paired to

their claimed Space-Track object match. Thus, the method works in pairing Vimpel objects

to their associated Space-Track object. The next challenge was to determine a squared

Mahalanobis distance threshold that maximizes the number of correctly matched Space-

Track and Vimpel objects while minimizing the number of incorrect matches. A value for

this threshold was not able to be found. One reason could be that the datefirst.txt file only

contains an accurate subset of the Space-Track and Vimpel object pairs but not the full set of

catalog object pairs. Therefore, the datefirst.txt file is used to validate the pairing ability of

the algorithm without limiting the potential for more Space-Track and Vimpel object pairs

to be found.

The last discovery made in this research using the direct catalog correlation method is the

incorrect pairing of Vimpel object 92400 in the datefirst.txt file. Data from [  3 ] and [  44 ] give

the evidence needed to verify the algorithm predicted pairing of Vimpel 92400 to NORAD

42075 over the datefirst.txt claimed pairing of Vimpel 92400 to NORAD 41879. By extension,
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this finding results in Vimpel 82200 also being paired incorrectly in the datefirst.txt file (as

it was claimed to be NORAD 42075). The algorithm predicted pairing of Vimpel 82200 is

to NORAD 41879.

The second method, arc correlation, focuses on the correlation of optical observations (in

the form of observation sets) to both the Space-Track and Vimpel catalogs. By correlating

a tracklet to objects in both catalogs, the method indirectly matches the catalog objects to

each other. First, this method takes in optical observation sets and determines potential

catalog object matches to the sets using positional mahalanobis distances in the topocentric

equatorial frame. Then, an observation set log likelihood value is calculated for each potential

object. This likelihood claims how likely the object is to be the observation set. For the

tracking data messages (TDMs) sent by the German Aerospace Center, a TDM log likelihood

is also computed. These likelihood values are a function of the in-track uncertainty term, s,

in an object’s covariance matrix. For these results, s is assigned to be 25 km as this value is

the average in-track uncertainty for Geosynchronous two-line element objects [ 20 ].

An observation set from the Purdue Optical Ground Station is used to validate the

arc correlation method. This set consists of 222 observations tasked for NORAD 29486 (a

GPS satellite), and the test results in a 97.49% likelihood that NORAD 29486 is the object

observed by the observation set for an s equal to 25 km. Further validation is performed

using the first five TDMs sent by the German Aerospace Center. These TDMs contain

observation sets of tasked Space-Track objects, and they are all appropriately matched by

the arc correlation algorithm to their tasked object. Four of the five TDMs pertain to the

ASTRA Cluster 1KR, 1L, 1M, and 1N – this cluster makes up the most densely populated

region in GEO.

A TDM consisting of observation sets tasked for NORAD 42075 is used to further corre-

late NORAD 42075 to Vimpel 92400 (as claimed by the direct catalog comparison method).

When processing this TDM for both catalogs, it is found that NORAD 42075 and Vimpel

92400 match as the closest objects in their respective catalog to the TDM, so they are indi-

rectly matched to each other! When processing 14 more TDMs of tasked objects from DLR,
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the arc correlation algorithm appropriately pairs these TDMs to their tasked Space-Track

object. For the 14 TDMs, TDMs 1-5, 7, 9-11, and 14 are matched to Vimpel objects. Of

this group, TDMs 1-5, 9-11, and 14 are appropriately matched to their respective TDM and

Space-Track object pair as claimed by the datefirst.txt file and the direct catalog comparison

algorithm (for TDM 14). The Vimpel object matching to TDM 7 is an anomaly where a

near object, but not the real observed object, is closely matched. For this case, the actual

object being observed is not in the Vimpel catalog.

The German Aerospace Center also sent TDMs of unknown objects. The first of these

unknown TDMs contains observation sets for a single unknown object, and it is matched

to the ARIANE 5 R/B (NORAD 38993) with a TDM likelihood of 90.36% for s = 25 km.

No other objects are closely matched to this TDM. The second TDM contains 80 unknown

observation sets for potentially different objects. For each observation set, the arc correlation

algorithm is run, and the observation sets matching to Space-Track and Vimpel catalog

objects with observation set log likelihood values closer than −2.5 × 104/s2 are listed. From

the two-body least squares method, it is found that the objects with log likelihood values

better than −1.2 × 104 – or likelihoods greater than 1 × 10−8 for s = 25 km – are likely

catalog matches.

7.2 Recommendations and Future Work

For the direct catalog comparison method, a squared Mahalanobis distance filter is used

to find potential Space-Track object matches for each Vimpel object. The current filter

assigns an uncertainty ellipsoid to each Space-Track object while keeping the Vimpel objects

as points in space. It would be interesting to see how the filter works when an uncertainty

distribution is also assigned to the Vimpel objects since this distribution would retain the

Vimpel object’s velocity information. Instead of computing a Mahalanobis distance (the

distance from a point to a distribution); however, this case would compute the distance

between two distributions. Since covariance matrix information is not presently available for

either catalog, the size and shape of these distributions would still have to be approximated.

Something else to note is that the direct catalog comparison method currently correlates the
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99 pairs of Space-Track and Vimpel catalogs independently of each other. It would be useful

to establish a database that retains information on paired catalog objects throughout the 99

correlations. This database would show which object pairings are more likely – as they are

matched in the majority of the catalog pairs – versus which object pairings are less likely.

For the arc correlation method, uncertainty distributions of the same size are assigned to

each catalog object in the 3D Earth Centered Inertial frame. When rotating from the Earth

Centered Inertial frame to the 2D angular topocentric equatorial frame, objects at lower

altitudes will have larger 2D covariance matrices. It would be interesting to see the effects of

forcing the topocentric covariance matrix for each catalog object to be the same size. This

constraint may help reduce the improper correlation of lower regime objects to observation

sets of objects in higher orbits.

It would also benefit both methods if more accurate uncertainty information could be

known for the cataloged objects. Most of this work relies on the Gaussian uncertainty distri-

bution model used to represent the covariance matrix for a propagated space object. When

using short period propagations, this distribution gives a decent representation of the actual

propagated covariance matrix for an object. For longer propagations, the representation is

not as accurate. Therefore, it would be useful to establish an uncertainty distribution that

models the two body trajectory of an object. This way, the in-track direction of the uncer-

tainty would follow the trajectory of the object rather than just extending in the direction

of the current velocity vector. As for the results provided in this thesis, they should be used

to aid in the determination of previously unknown Space-Track and Vimpel object pairs and

the validation of some currently postulated catalog object pairs.
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