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LIST OF SYMBOLS

∆v delta v (change in velocity)

m mass

v velocity

µ standard gravitational parameter

a semi-major axis

e eccentricity

ω argument of periapsis

f true anomaly

C Earth planetary symbol

D Mars planetary symbol

J performance index

m mass

c exhaust velocity

Isp specific impulse (impulse per unit mass)

Tmax maximum available thrust

δm throttle (fraction of max thrust used)

ε smoothing parameter
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ABBREVIATIONS

2BP two-body problem

CR3BP circular restricted three-body problem

EP electric propulsion

FCN fully-cascaded network

FFNN feed-forward neural network

GA genetic algorithm (note: not gravity assist)

IMLEO initial mass in low-Earth orbit

LEO low-Earth orbit

LVLH local-vertical, local-horizontal

MEE Modifed Equinoctial Elements

MLP Multi-Layer Perceptron

MTE missed-thrust event

NEAT NeuroEvolution of Augmenting Topologies

NN neural network

RBDO Reliability-Based Design Optimization

ReLU rectified linear unit

RNN recurrent neural network

RL reinforcement learning

SOI sphere of influence

tanh hyperbolic tangent

TOF time-of-flight

TPBVP two-point boundary value problem
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ABSTRACT

The missed-thrust problem is a modern challenge in the field of mission design. While

some methods exist to quantify its effects, there still exists room for improvement for algo-

rithms which can fully anticipate and plan for a realistic set of missed-thrust events. The

present work investigates the use of machine learning techniques to provide a robust con-

troller for a low-thrust spacecraft. The spacecraft’s thrust vector is provided by a neural

network controller which guides the spacecraft to the target along a trajectory that is robust

to missed thrust, and the controller does not need to re-optimize any trajectories if it veers

off its nominal course. The algorithms used to train the controller to account for missed

thrust are supervised learning and neuroevolution. Supervised learning entails showing a

neural network many examples of what inputs and outputs should look like, with the net-

work learning over time to duplicate the patterns it has seen. Neuroevolution involves testing

many neural networks on a problem, and using the principles of biological evolution and sur-

vival of the fittest to produce increasingly competitive networks. Preliminary results show

that a controller designed with these methods provides mixed results, but performance can

be greatly boosted if the controller’s output is used as an initial guess for an optimizer. With

an optimizer, the success rate ranges from around 60% to 96% depending on the problem.

Additionally, this work conducts an analysis of a novel hyperbolic rendezvous strategy

which was originally conceived by Dr. Buzz Aldrin. Instead of rendezvousing on the out-

bound leg of a hyperbolic orbit (traveling away from Earth), the spacecraft performs a

rendezvous while on the inbound leg (traveling towards Earth). This allows for a relatively

low ∆v abort option for the spacecraft to return to Earth if a problem arose during ren-

dezvous. Previous work that studied hyperbolic rendezvous has always assumed rendezvous

on the outbound leg because the total ∆v required (total propellant required) for the in-

sertion alone is minimal with this strategy. However, I show that when an abort maneuver

is taken into consideration, inserting on the inbound leg is both lower ∆v overall, and also

provides an abort window which is up to a full day longer.
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1. INTRODUCTION

1.1 Motivation

Electric propulsion is a very efficient form of propulsion compared to traditional chemical

propulsion, but the high efficiency comes at the cost of low levels of thrust. To compensate

for the low amount of thrust provided, spacecraft that use electric propulsion must thrust

for long periods of time. In cislunar space, this could mean days to months of thrusting;

for trajectories to Mars or beyond, this could mean months to years of thrusting. For such

long time spans, system reliability becomes a significant concern as the probability of safe-

mode events occurring on the spacecraft due to failures of components increases. During a

safe-mode event, the spacecraft shuts down most major functions, including propulsion [ 1 ].

Thus, if a safe-mode event occurs when the spacecraft should be thrusting, the spacecraft

would “miss” its thrust, and the spacecraft would now be off its nominal trajectory. This

possibility of missed thrust, and the attempts to mitigate its risks, is called the missed-thrust

problem. A representative diagram of a missed-thrust event is shown in Figure  1.1 .

Figure 1.1. Representative diagram of a missed-thrust event. When a space-
craft experiences an outage when it should be thrusting, it can drift away from
the nominal trajectory. Once its operations resume, the spacecraft’s trajectory
must be re-optimized to reach the target.

Looking at data regarding safe mode events from historical missions over the past 40

years, we see that safe mode events are actually more likely to occur during a mission than
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not [ 1 ]. Thus, there is great motivation to be able to effectively quantify the effects of missed-

thrust events as well as develop robust methods to prepare for, mitigate, and recover from

such events.

Previous attempts to address the missed-thrust problem involve using traditional tra-

jectory design techniques to create a nominal trajectory, discretizing this trajectory into

several subsections, and then observing the effects when the spacecraft is forced to coast

for each subsection [ 2 ]–[ 4 ]. All of these forced-coast arcs result in a new trajectory, each of

which then needs to be re-optimized to reach the target. However, each new trajectory can

also experience future missed-thrust events, and the process needs to be repeated for every

one [ 5 ]. Performing such an analysis yields approximate margins on propellant mass and

time-of-flight, but it does not directly mitigate the risk, and it is very time-consuming both

computationally and in terms of human effort. If there are any sections of the trajectory

that are discovered to be particularly sensitive to a missed-thrust event, mission designers

must manually adjust what the thrust history of the spacecraft should be to reduce risk [ 6 ].

Recently, new types of analyses using machine learning have been suggested. Ozaki et

al. used stochastic differential dynamic programming to perform low-thrust trajectory opti-

mization [  7 ]. The addition of stochastic disturbances during training enabled their method

to perform favorably compared to a model that did not have such disturbances in training.

While promising, the stochastic disturbances that they applied are smaller in magnitude

than typical missed-thrust events, so future work could involve testing their controller on a

more representative test problem.

Independently, papers by Izzo, Sprague, and Tailor, and Rubinsztejn, Sood, and Laipert

looked into using supervised learning to train a neural network to control a spacecraft [ 8 ],

[ 9 ]. Izzo et al. looked at the problem from a trajectory design perspective, and did not

explicitly consider missed thrust. They looked at a 3D, elliptical transfer from Earth to

Mars with promising results. Rubinsztejn et al. used the algorithm as a way to address the

missed-thrust problem. They found that training a neural network on optimized trajectories

within a small range of boundary conditions was successfully able to guide the spacecraft

to its target, and that including missed-thrust events in the training data did not increase

the neural network’s success rate. However, their problem of interest was a 2D, circular,
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co-planar, Mars-to-Earth transfer with a fixed time of flight. Future work in this area should

include proving that such an algorithm could be applied to more complex problems.

From the work that has been performed to date, we can see that there are a few margin-

based options to quantify the effects of missed-thrust events on a trajectory, and there are a

few machine-learning-based approaches to creating a robust controller that can account for

missed thrust. With this information and based on prior personal experience, I believe that a

different type of machine learning with strengths of Ozaki et al., Izzo et al., and Rubinsztejn

et al. can serve as a robust controller to a broad range of complex missed-thrust trajectories.

Ozaki et al. include stochastic disturbances in their training, and these disturbances

allow them in theory to move towards a more globally-optimal solution. This ability to step

out of a local optimum is desirable. However, I want to account for more than just small

disturbances. Rubinsztejn et al. use supervised learning to train a neural network to account

for missed thrust on a simple problem. I use a neural network as a controller to account for

missed thrust as they do, but I would like to explore options aside from supervised learning

since supervised learning is not able to provide solutions of a different form from what is in

the training data set.

As I tried to frame my research, my initial goal became to use a genetic algorithm to train

a neural network which acts as a controller that is robust to missed-thrust events. Properly

training such a neural network would mean that, in the event of a missed-thrust event, the

spacecraft would be able to guide itself to the target from its new state without needing

to optimize any new trajectories. The genetic algorithm enables searching for a globally-

optimal solution, and it can be applied to arbitrarily complex problems since there are no

constraints on continuity or derivatives. Unlike with supervised learning, a training data set

does not need to be generated. In fact, using an evolutionary method allows the spacecraft

to learn behaviors that may not be present in any training data that would be used—that

is, a robust trajectory may include features that are not present in a typical fuel-optimal

trajectory. Also, since reinforcement learning is not being used, I do not need to worry about

formulating an intermediate cost function and back-propagating the weight updates. Instead,

I just need the boundary conditions for the trajectory problem I am trying to solve, set up

an appropriate terminal cost function, and let the algorithm run. The resulting trajectories
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may not be fuel-optimal when missed thrust is not considered, but they are likely to use less

propellant or experience fewer delays when missed-thrust events are allowed to occur.

The algorithm is general enough that it can be applied to the two-, three-, or n-body

problem, it can include missed-thrust events or not, and the cost function can be a complex

weighted function of many factors and constraints. As I show, there is a special type of

genetic algorithm that is formulated to evolve neural networks known as Neuro-Evolution

of Augmenting Topologies (NEAT). Using NEAT, I demonstrate that a neural network con-

troller can successfully guide a spacecraft to its target in the presence of missed-thrust events

and can even handle variable boundary conditions.

While NEAT has its advantages, the fact that it does not use derivatives is a double-

edged sword. There are numerous very capable calculus-based trajectory optimization and

control algorithms available to optimize a single trajectory at a time. We can utilize these

existing techniques to create large sets of optimal trajectories, which a neural network can

then learn from using supervised learning. By training a network with supervised learning

in addition to NEAT, we can understand more fully the pros and cons of each strategy.

While different missions have different objectives, in this dissertation I will primarily look

at fuel-optimal trajectories; that is, trajectories which use as little propellant as possible to

complete a desired transfer while satisfying all of the problem constraints.

A neuroevolution-based algorithm that is similar to what I use was formerly demonstrated

by Dachwald and Seboldt, who used it to design solar-sailcraft, dlow-thrust, and low-thrust

gravity-assist trajectories [  10 ]–[ 13 ]. In their work, they successfully demonstrate that a

genetic algorithm can be used to find the weights of a neural network that provides a near-

optimal steering law for various complex mission scenarios. However, they did not look at

the missed-thrust problem, and they used a plain genetic algorithm instead of NEAT.

A benefit of using a neural-network-based controller is that once the network is trained,

no more trajectory optimization or training is required. The neural network can be used

during trajectory propagation, which is a much more computationally light operation than

optimization. This feature could allow neural networks to be deployed on a flight computer,

where computational resources are very limited, and prevents mission designers on the ground

from needing to quickly find a new optimal trajectory. The controller could act as an initial
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recovery method if a safe-mode event occurred while mission designers on Earth determine

what the full recovery plan should be.

1.2 Overview

Chapter 2 provides a background of the existing algorithms and underlying principles

used in this dissertation. Generally speaking, this includes neural networks, genetic algo-

rithms, the missed-thrust problem, the forces that I include which act on the spacecraft, and

indirect optimal control.

Chapter 3 uses neuroevolution to train a neural network that acts as a controller for a

low-thrust spacecraft. First, a standard implementation of neuroevolution is used to compare

the performance of a recurrent neural network compared to a feed-forward neural network.

After this, a more complex version of neuroevolution called NEAT is used to look at the

missed-thrust problem.

Chapter 4 discusses trajectory design using supervised learning. This includes describing

the algorithm used to generate a large training data set, strategies to use intermediate

versions of the neural network to boost the overall training time, and presents preliminary

results using this method. The chapter then goes a step further to measure its performance

on the missed-thrust problem.

Chapter 5 compares supervised learning and NEAT and discusses the pros and cons

of each method. Each algorithm is applied to a more challenging trajectory design prob-

lems, both with and without missed thrust. Additionally, a brute force method is used

to benchmark the performance of the neural networks against traditional trajectory design

techniques.

Chapter 6 analyzes a novel hyperbolic insertion paradigm for human missions to desti-

nations beyond cislunar space that was originally conceived by Dr. Buzz Aldrin. Dr. Aldrin

reached out to Professor Longuski’s research group requesting an analysis on his idea, and

in this chapter I discuss the results.

Chapter 7 provides a brief discussion regarding conclusions from the work, as well as

options for future research.
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1.3 Dissertation Contributions

In this dissertation I investigate the performance of neural-network-based controllers in

the context of interplanetary trajectory design. The major contributions of this work include

the following points.

1. A new method for trajectory design using NeuroEvolution of Augmenting Topologies

is presented. This method is very computationally expensive compared to traditional

methods when considering a single TPBVP, but it is more competitive when taking

into account the more complex missed-thrust problem. Additionally, NEAT enables

searching for a globally optimal solution that local optimizers may struggle to find.

However, NEAT does not guarantee a locally optimal solution. NEAT struggles when

moving from 2D to 3D, and may perform better if given access to additional computing

resources.

2. The effectiveness of a controller based on a neural network trained with supervised

learning is investigated in the context of the missed-thrust problem. A neural net-

work’s performance is shown to improved by increasing its size and the amount of

training data, although this comes at the cost of greatly increased computational re-

sources. Using the output of a neural network trained with supervised learning directly

has mixed results, but passing the outputs to an optimizer shows greatly improved per-

formance.

3. The two training methods, NEAT and supervised learning, are compared to each other

as well as a non-neural-network-based trajectory design strategy to show their relative

performance. NEAT was not able to successfully train a neural network to complete

this problem. Supervised learning showed a clear increase in effectiveness compared to

the brute force method.

4. A novel method for an abort maneuver during hyperbolic rendezvous is presented.

This method is demonstrated to have a lower propellant cost than other methods in

literature when an abort maneuver is taken into consideration.
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2. BACKGROUND

This chapter is meant to provide a brief description of the existing algorithms and concepts

that are foundational to the research performed later in this dissertation. I explain the

theory and computation of neural networks, genetic algorithms, the missed-thrust problem,

and the indirect optimal control problem.

2.1 Neural Networks

In this section, I discuss the motivation behind neural networks as well as some types of

topologies and training methods.

2.1.1 Overview

Artificial neural networks, typically referred to as neural networks, are inspired by the

parallel information processing scheme of living creatures’ brains and provide a mathematical

framework for representing nonlinear functions or relationships between sets of inputs and

outputs [  14 ]. A neural network is composed of processing nodes called neurons which take

an incoming signal or set of signals, apply a nonlinear function, and generate an output.

This process is an abstraction of an organic neuron receiving inputs from other neurons, and

then firing once a threshold has been reached. By chaining many neurons together in series

and in parallel, a neural network can represent very complex functions. In fact, it has been

shown that a single-layer neural network can approximate any bounded, continuous mapping

between two Euclidean spaces with arbitrary accuracy given sufficient hidden nodes through

the universal approximation theorem [ 15 ].

Each connection between individual neurons, sometimes referred to as perceptrons or

nodes, is assigned a weight, and the output of the earlier neuron is multiplied by the weight

of the connection. Each neuron computes the sum of its incoming signals, adds a scalar bias,

applies an activation function to the sum, and outputs a single scalar value. This output

value is then passed to neurons downstream in the network. A diagram of the computation

across one neuron is shown in Figure  2.1 . The equation to compute the output of a neuron is
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shown in Equation ( 2.1 ), where xi are the inputs, wi are the weights connecting each input

to the neuron, b is the bias, Σ represents the summation function, σ represents an activation

function, and y is the output.

Figure 2.1. A single neuron receives weighted inputs (green arrows) and a
bias (blue arrow), sums them together, and applies an activation function to
get its output (orange arrow).

y “ σ

˜

n
ÿ

j“0
wjxj ` b

¸

(2.1)

Many neurons can be combined together both in serial or in parallel. A group of neurons

placed in parallel connections with each other is commonly referred to as a layer, and layers

can be serially connected to one another. Internal layers of a neural network (i.e. layers

other than the inputs or outputs) are called hidden layers. A diagram of a simple neural

network with one hidden layer of three neurons connecting two inputs and two outputs is

shown in Figure  2.2 . Here the dimensions of the input space and output space are each two,

but they can each be any arbitrary positive integer.

To compute the output of a network, the computations must flow from the input layer

through the hidden layer(s) to the output layer. The computation can be simplified by

writing Equation ( 2.1 ) in vector notation as shown in Equation ( 2.2 ).

y “ σpwT x ` bq (2.2)
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Figure 2.2. A neural network with two inputs (green squares), three hidden
nodes (purple circles), and two output nodes (orange circles).

Now, computing the weighted sum of the inputs to each neuron in a layer can be per-

formed simultaneously using matrix operations as shown in Equation ( 2.3 ) [  16 ]. Here, y

and b (bold face) are vectors and W (capital letter) is a matrix. Additionally, σp¨q operates

element-wise on the vector output of the term Wx ` b. Finally, Equation (  2.4 ) shows how

the output of the network is obtained by recursively repeating Equation ( 2.3 ) for each layer,

where x1 is the input layer and, assuming the computation is repeated n ´ 1 times, xn is the

output layer. Each layer will have its own set of weights, biases, and activation functions.

y “ σpWx ` bq (2.3)

xi`1 “ σipWixi ` biq, i P t1, ..., n ´ 1u (2.4)

Activation functions are an abstraction of the concept of a real neuron “firing” when

a threshold has been met. Mathematically this can be represented by the Heaviside step

function, where zero represents being inactive and one represents being active. However,

the Heaviside function is discontinuous at zero and its derivative is zero everywhere, which

is problematic when training a neural network. To overcome this, researchers started using

the standard logistic function, which is a type of sigmoid function. In the machine learning

community the standard logistic function is commonly referred to simply as sigmoid. Sigmoid

is a monotonically increasing function with a range of p0, 1q on the domain p´8, `8q. Over
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time, hyperbolic tangent (tanh) began replacing sigmoid as an activation function due to its

stronger gradient near zero and its lack of bias in the gradient [  17 ]. Hyperbolic tangent is

defined on the range p´1, 1q with domain p´8, `8q and its derivative is in the range p0, 1s,

compared to sigmoid’s derivative’s range of p0, 0.5s. Figure  2.3 shows a comparison of the

Heaviside, sigmoid, and hyperbolic tangent functions, and Equation (  2.5 )-( 2.7 ) provide the

definitions of each function, respectively.

Figure 2.3. The Heaviside function represents a binary switch from “off”
(zero) to “on” (one). The sigmoid function is monotonically increasing with a
positive derivative defined at all points. Hyperbolic tangent is centered around
zero with a larger gradient at zero than sigmoid.

Hpxq “

$

&

%

1 if x ą 0

0 if x ď 0
(2.5)

Spxq “
1

1 ` e´x
(2.6)

tanhpxq “
ex ´ e´x

ex ` e´x
(2.7)
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Both sigmoid and hyperbolic tangent, and squashing functions in general, suffer from

the “vanishing gradient” problem. This term refers to the reduction in the gradient of the

functions as the input moves farther from zero. The result of this problem is that networks

can have a hard time learning when the inputs are large because there is little information

provided by the gradients. To get around this, researchers began moving to the rectified

linear unit (ReLU). “Rectified” means that negative values are set to zero, so ReLU means

that the function is zero when x is negative, and the function is x when x is positive. Figure

 2.4 shows ReLU around zero and Equation (  2.8 ) provides its mathematical definition. Also,

due to the simple nature of the function, ReLU’s derivative is much faster to calculate

than sigmoid and tanh which both require computing the relatively expensive exponential

function.

Figure 2.4. The ReLU function returns zero when the input is negative, and
returns the input when it is positive.

ReLUpxq “

$

&

%

x if x ą 0

0 if x ď 0
(2.8)
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The activation functions discussed above prove sufficient for this work, although it is

worth noting that there has been much research into the effectiveness of modifications or

alternatives to these functions, and other applications may benefit from other types of acti-

vation functions.

2.1.2 Types of Neural Networks Topologies

A network which does not contain any feedback loops between nodes is called a feed-

forward neural network (FFNN). A FFNN that is organized into discrete layers is called a

multi-layer perceptron (MLP). Figure  2.2 shows an example of an MLP with one hidden

layer where every node connects to nodes farther down the network. MLPs are commonly

used for function regression or classification tasks.

Recurrent neural networks, or RNNs, are similar to FFNNs, except they have an addi-

tional feedback loop in the network. At each sequence step, hidden nodes receive as input

their output from the previous sequence step. An RNN is shown in Figure  2.5 with the

feedback connections shown in light blue. RNNs are used for sequence modeling, such as

time series forecasting or language processing.

Figure 2.5. A recurrent neural network has feedback connections between
some or all of its neurons.

Neural networks do not require explicit layers, but rather can take very complicated

topologies. Fully-cascaded networks (FCN), sometimes called cascade-forward networks, are

a class of FFNNs in which every neuron has a connection to every subsequent neuron as

27



shown in Figure  2.6 . The top network in the figure shows the same FFNN as in Figure  2.2 

but rearranged to help show similarities with the bottom network. The new connections

are shown in light blue. FCNs are generally used for the same types of problems as MLPs,

and FCNs typically need far fewer neurons than an MLP due to the increased number of

connections within the network.

Figure 2.6. The top network is the same as the network in Figure  2.2 , but
with the hidden neurons rearranged. The bottom network shows a cascade-
forward network, where each neuron connects to each subsequent neuron.

Neural networks can have a mix of connections amongst inputs, outputs, and hidden

nodes without following a strict structure. An example of a neural network without any par-

ticular layered structure is shown in Figure  2.7 . This network has a connection from an input

directly to an output node, connections to a hidden node from both another hidden node

and an input, and has hidden nodes that pass their output to only some of the subsequent

hidden nodes or output nodes.

There are many other network topologies that are outside the scope of this work. Some

such types include: 2D and 3D convolutional neural networks, which are used for image and

video processing; Long Short-Term Memory (LSTM) networks and Gated Recurrent Units

(GRU), which are used for sequence modeling and natural language processing (NLP); and

Generative Adversarial Networks (GAN), which are commonly used for image generation.

28



Figure 2.7. A network can have complicated connections between inputs,
outputs, and hidden nodes.

2.1.3 Training Methods

The process of finding appropriate weights and biases so that a neural network produces

the desired function or relationship is called training. When a neural network is created, its

weights and biases are generated with random values. This is similar to an infant’s brain

at birth. It has an immense capacity to learn, but it does not yet possess any “knowledge”

(beyond instinctive behavior). When a network is initialized, the relationship between the

inputs and outputs is nothing meaningful, and we need some way to update the weights

such that the network represents our desired function. I discuss two methods of training.

Supervised learning is where the network learns from patterns that it is shown. This method

is analogous to an infant learning to say words when its parents say words to it, or to the

expression “monkey see, monkey do”. The other method is called neuroevolution, where

many networks with different weights are compared to each other, and the higher performers

move to subsequent iterations. This method is analagous to survival of the fittest, where

stronger animals will have more offspring in future generations. It also has similarities

to reinforcement learning, such as learning that touching a hot stove is bad, eating candy

provides instant gratification, and studying and researching for a PhD provides (very) delayed

gratification.

Supervised Learning

Supervised learning requires a training data set which is composed of pairs of inputs and

the corresponding desired outputs. During training, the network is given the inputs and its
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output is computed. The error between the actual and desired outputs is computed, and

this error can be back-propagated through the network so that the network outputs the

desired value when given that set of inputs. By repeating this process for a sufficiently large

training set, a neural network can “learn” to produce very complex, nonlinear relationships.

The process of computing the error and updating the weights is called back-propagation[ 18 ].

Back-propagation works by computing the gradient of the error with respect to each

element of the network via the chain rule. Let us look at an example with a simple MLP

with an input layer, two hidden layers, and an output layer. Forward propagation through

the network be computed by Equation (  2.9 ). Here x is the input, zpjq is the vector of weighted

sums of inputs and biases for the jth layer, apjq is the vector of activations (outputs) for the

jth layer, W pjq is the weight matrix connecting the jth layer to the pj ` 1qth layer, b is the

vector of biases for the jth layer, and f pjq is the activation function for the jth layer, and p

is the linear activation of the output layer.

x “ ap1q

zp2q
“ W p1qx ` bp1q

ap2q
“ fpzp2q

q

zp3q
“ W p2qap2q

` bp2q

ap3q
“ fpzp3q

q

p “ W p3qap3q
` bp3q

(2.9)

Now we can compute the error between the neural network’s output and the target value

using a cost function. Common cost functions are mean squared error for regression and

cross-entropy for classification. Regression is, generally speaking, the task of finding the

best curve fit for data (such as fitting a linear relationship to scattered data). Classification

is the task of picking one choice from many options (e.g. an image contains either a cat or

a dog). For mean squared error, the cost C can be computed by Equation ( 2.10 ).
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Cpp, yq “
1
2

n
ÿ

k“0

›

›y2
k ´ p2

k

›

› (2.10)

With the cost computed, we can begin back-propagating to update the weights. Equation

( 2.11 ) shows the computation of the gradient of the cost C with respect to the weight wj
ik,

where i is input index for the current layer, j is the layer index, and k is the output index

for the current layer.

BC

Bwj
ik

“
BC

Bzj
i

Bzj
i

Bwj
ik

zj
i “

m
ÿ

k“1
wj

ikaj´1
k ` bj

i

Bzj
i

Bwj
ik

“ aj´1
k

BC

Bwj
ik

“
BC

Bzj
i

aj´1
k

(2.11)

The biases bj
i can be computed in a similar manner, shown in Equation ( 2.12 ).

BC

Bbj
i

“
BC

Bzj
i

Bzj
i

Bbj
i

Bzj
i

Bbj
i

“ 1

BC

Bbj
i

“
BC

Bzj
i

(2.12)

The common term in both Equation ( 2.11 ) and ( 2.12 ) is called the local gradient.

δj
i “

BC

Bzj
i

(2.13)

The local gradient can be computed by finding the partial derivative of the activation.

δj
i “

BC

Bzj
i

“
BC

Baj
i

Baj
i

Bzj
i

(2.14)
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The equation for the partial derivative of the activation with respect to the sum depends

on the activation function itself. The derivatives of sigmoid, hyperbolic tangent, and ReLU

are shown in Equation ( 2.15 ).

B

Bz
σpzq “ σpzqp1 ´ σpzqq

B

Bz
tanhpzq “ 1 ´ tanh2

pzq

B

Bz
ReLUpzq “

$

&

%

1 if z ą 0

0 if z ď 0

(2.15)

Starting from the output, every partial derivative in the network can be computed. Since

the derivatives are computed from the output “backwards” towards the inputs, the process

is called back-propagation. Once all of the derivatives have been computed, we can update

weights and biases by Equation ( 2.16 ).

W “ W ´ ε
BC

BW

b “ b ´ ε
BC

Bb

(2.16)

The term ε is called the learning rate, and it affects the amount by which the current

iteration’s error should affect the weight and bias updates. The process of computing the

gradients and updating the weights is repeated until terminal conditions are met such as the

cost function reaching an optimum or an iteration limit being reached.

Neuroevolution

There are several other categories of training aside from supervised learning including

neuroevolution, unsupervised learning, reinforcement learning, generative adversarial net-

works, and more. Neuroevolution is the process of training a neural network using an evolu-

tionary algorithm. With neuroevolution, a network’s weights are set as the design variables

of a genetic algorithm (or another evolutionary algorithm) and the network’s performance
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on a desired task is measured to determine its fitness (for more information on genetic algo-

rithms, see section  2.2 ). In this way, the network is trained to produce a desired function,

but no training data is required a priori. Neuroevolution can be used in a similar manner

to reinforcement learning, in which an agent takes actions to interact with its environment

with the goal to maximize cumulative reward.

A popular method of neuroevolution is called NeuroEvolution of Augmenting Topologies

(NEAT) [  19 ]. As the name suggests, NEAT adjusts not only the weights of a neural network

but also the topology. The topology of a network includes the number of nodes, connec-

tions between nodes, and activation functions of nodes. During training, NEAT can add or

remove nodes and connections, allowing it to find an appropriate amount of complexity to

solve the problem. Other forms of neuroevolution typically begin with a fixed structure or

topology - that is, the number of nodes and the connections between them are fixed. By

enabling the ability to have variable topology, NEAT optimizes and “complexifies” solutions

simultaneously.

Each genome is composed of a set of connection genes and node genes. Node genes are

assigned an integer value to represent each of the input, hidden, and output nodes that can

be connected, whereas connection genes specify the in-node, out-node, weight, whether or

not the gene is expressed, and innovation number. The innovation number is simply an index

or ID number that uniquely identifies every connection in the network. During crossover,

only connections with the same innovation number can be combined. Genes that are not

included in both parents are called disjoint or excess, depending on whether the innovation

number is less than the maximum innovation number of the other parent. This scheme of

crossover enables any two networks in the population to be crossed over with each other,

even if they have different sizes. Disjoint and excess genes are inherited from the more fit

parent.

During the mutation phase, connections can be added or removed from existing nodes, or

new nodes can be placed along a connection, splitting it into two. Since a change in topology

can have a significant impact on the fitness of the network, NEAT utilizes the concept of

speciation to protect new members for a short time to allow them to be optimized somewhat

before being compared to the broader population. Speciation divides the total population
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based on the similarity of networks to one another, and only individuals within each species

will be compared to each other. It is common for networks generated by NEAT to have

asymmetric, non-layered structures such as the network shown in Figure  2.7 due to the

random nature of how the structure is generated.

NEAT biases the search toward minimal-dimensional spaces by starting with the minimum-

size network - direct connections from the inputs to the outputs with no hidden nodes. The

algorithm introduces new structure incrementally as mutations occur, and only the muta-

tions that provide a benefit survive. Thus, by finding a minimal-dimension (or near-minimal)

solution, NEAT offers significant computational advantages compared to other training ap-

proaches that begin with often much larger spaces. Here, minimum dimension refers to

the dimension of the training space, or the number of trainable parameters. These include

the weights and biases of the network, which are dependent on the number of nodes and

connections within the network.

2.2 Genetic Algorithms

Genetic algorithms are global search algorithms based on natural selection and biological

evolution [  20 ], [ 21 ]. First, a set of designs is created where each design is randomly generated

such that its design variables fall within acceptable bounds. Each design is evaluated using

a cost function that determines the design’s “fitness”. The fitness represents how well an

individual achieves a specified task. Next, a subset of the designs is randomly selected,

with higher-fitness designs having a higher probability of being selected. From this subset

of “parent” designs, new “children” designs are generated with combinations of the parents

as well as random mutations. The children designs are then evaluated by the cost function

to obtain their fitnesses. In principle, subsequent iterations or generations have a higher

probability of containing high-fitness designs since more fit individuals from each generation

are used to create the next. This process of reproduction (selecting the parents), crossover

(choosing traits from each parent), and mutation (randomly altering some traits in the

children) is repeated until some stopping criteria is met - typically after some number of
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generations, a number of generations with no improvement (stagnation), or a target fitness

value has been reached.

The design variables or traits can be represented by binary encoding, real-value encoding,

and integer encoding. Binary and integer encoding allow for discrete optimization such as

launch vehicle choice (SLS vs. Falcon Heavy vs. Atlas V) or material choice (steel or

aluminum) where there cannot be an intermediate value between two options. Real-value

encoding is useful for continuous design variables such as time-of-flight or V8 magnitude,

although binary and integer encoding can also handle continuous variables by discretizing

them into many choices within acceptable bounds.

Reproduction or selection is the process of choosing individuals to pass to the next genera-

tion. In general, we want the most fit individuals to continue. However, to enable exploration

of the design space (as opposed to exploitation only) we can make selection probabilistic in

nature. A common method is called roulette wheel selection or fitness proportionate selec-

tion. With roulette wheel selection, an individual’s probability of being passed to the next

generation is its fraction of the population’s total fitness. For a population of size N , the

probability pi of an individual with fitness fi being selected is given by Equation ( 2.17 ). This

process can also be visualized in Figure  2.8 .

pi “
fi

řN
j“1 fj

(2.17)

Equation (  2.17 ) is useful when the fitness values are positive and the objective is to

maximize the fitness. Another approach to the optimization problem is to have negative

fitness values which represent a cost or error that should be driven to zero. In this case

we need to modify the method by which the probabilities are selected. Two options include

taking the inverse of fi, shown by Equation (  2.18 ), and taking the exponential, shown in

Equation ( 2.19 ).

pi “

1
fi

řN
j“1 fj

(2.18)
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Figure 2.8. A visual representation of roulette wheel selection, where the area
of each section represents its probability of being selected, and is proportionate
to its fitness.

pi “
efi

řN
j“1 fj

(2.19)

A comparison of these functions is shown in Figure  2.9 . Here we see that the inverse

greatly favors the high performers, with a very small chance of selecting any individuals

towards the low end. The exponential provides a more balanced distribution that still favors

the high performers but allows for a non-negligible chance of having lower fitness individuals

being chosen. It can be advantageous to enable lower fitness individuals to occasionally pass

through because this allows for more exploration of the design space. When only the best

individuals are selected, the algorithm will often quickly settle into a local minimum and

struggle to get out.

Crossover is the process by which new “children” individuals are created from the “par-

ent” individuals selected during the previous step. In general, crossover aims to mix the

features of two individuals. For binary encoding, this can be achieved by selecting a point

along the bit string to “cut”, and then taking the first part of the bit string from the first

parent, and the latter part of the bit string from the second parent. This procedure is shown

in Figure  2.10 . This method can be extended by choosing multiple points to crossover, se-
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Figure 2.9. Two options for probability distributions during selection are
compared. The inverse strongly prefers higher performance individuals, while
the exponential has a more balanced profile.

lecting bits randomly from parents, or performing binary operations (AND, OR, ...) to get

new individuals.

Figure 2.10. Crossover takes part of each parent’s bit string to make new individuals.

For real encoding, either the values that compose each individual can be pulled directly

from the parents in a similar manner to binary encoding, or a combination of the values

can be used. For example, Equation (  2.20 ) can be used to compute a value of the offspring,

where ε is a uniform random number in the interval r0, 1s.

x3 “ εx1 ` p1 ´ εqx2 (2.20)
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Once the children have been created, the mutation operator is applied to create small

random perturbations in the population. During mutation, a small number of individuals

from the population is selected and parts of them are perturbed. For binary encoding, a

random part of the bit string is inverted (0 to 1 or 1 to 0). For real encoding, the values

can receive a small perturbation drawn from a normal distribution or can multiplied by a

random number close to 1.

2.2.1 Application to Trajectory Design and Optimization

Genetic algorithms have been studied previously with applications in trajectory design.

Many of the studies include a hybrid optimization approach, where a genetic algorithm

changes variables such as the launch and arrival dates, V8, launch vehicle choice, and other

boundary conditions [  22 ]–[ 26 ]. Sometimes other global search algorithms are used in place

of a genetic algorithm, although the principle is the same [ 27 ]–[ 30 ]. In other problem for-

mulations, the genetic algorithm directly optimizes the thrust vectors along the trajectory

[ 31 ]–[ 33 ]. In this dissertation I use a genetic algorithm to train a neural network which

acts as a controller for a spacecraft. This has been shown to work previously for low-thrust

spacecraft and solar-sail-craft [ 12 ], [ 13 ], [ 34 ]–[ 36 ].

2.3 The Missed-Thrust Problem

In the event of an unforeseen problem with a component or subsystem, spacecraft enter

a minimally-functional operational mode whose purpose is to prevent further cascading fail-

ures, reestablish communication with Earth, and enter a steady-state, power-positive, and

thermally stable configuration until the issues have been resolved. This operational mode

is often called a “safe mode”, and its occurrence is termed a “safe mode event” or “safing

event” [ 1 ].

When a spacecraft enters a safe mode, its electric propulsion (EP) engines are typically

considered non-essential, and thus no orbit-transfer thrust maneuvers can be performed.

Because of this, safe mode events can cause the spacecraft to coast during planned thrust

arcs - a missed-thrust event (MTE). Other factors can cause a spacecraft to miss thrust, such
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as an improperly aligned thrust vector or having a partial thrust (as opposed to no thrust).

However, there are not accessible data to determine the rate at which such other types of

missed-thrust events occur, so for the purpose of this dissertation, I assume that the only

source of missed thrust comes from safe mode events. This means that, in the context of

this work, modeling safe mode events is the same as modeling missed-thrust events.

2.3.1 Modeling Safe Mode Events

Imken et al. published a study of safe mode events in space missions over the past 30

years [  1 ]. The missions included satellites in Low-Earth Orbit (LEO), cis-lunar space, and

interplanetary space with missions ranging from a few months to many years. In order to

normalize the information, they used two metrics to model the data: time between safe mode

events, and recovery duration. Both metrics can be fit using Weibull distributions, a type

of distribution commonly used in failure analysis. The parameters they selected are shown

in Table  2.1 and the curves are shown in Figures  2.11 and  2.12 . Equation ( 2.21 ) gives the

Weibull probability density function, where k is the shape and λ is the scale.

Figure 2.11. Weibull fit for time between the start of missed-thrust events.
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Figure 2.12. Weibull fit for recovery duration, or the time required for the
spacecraft to resume operations.

Table 2.1. Weibull parameters for time-between-events and recovery duration.

Metric Type Scale Shape
Time-between-events (years) 0.62 0.87

Recovery duration (days) 2.41 1.17

f px; k, λq “

$

&

%

k
λ

`

x
λ

˘k´1
e´

`

x
λ

˘k

if x ě 0

0 if x ă 0
(2.21)

Imken et al. modeled safe mode events by breaking missions into a few discrete phases.

First, there is a discovery delay between when the safe mode occurs and when the ground

team actually learns that the event has occurred. The length of this delay is dependent

upon the frequency of the communications passes. Next, the recovery duration is composed

of the time to investigate the issue, find a solution, and upload the command to exit safe

mode. This duration is one of the parameters being modeled. Finally, there is a delay while

the spacecraft incrementally resumes functionality before it is fully operational. Multiple

safe mode events can occur during a mission, so the elapsed time between events is modeled

as well. Imken et al. suggest using a random uniform distribution for the discovery delay
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(usually between 1 to 3 days), and using a fixed 12-hr duration for time the spacecraft needs

to resume full operational capability.

2.3.2 Quantifying the Effects of Missed Thrust

Early efforts to account for missed thrust simply involved applying a duty cycle, especially

before newer techniques emerged. More recently, efforts to quantify the effects of missed

thrust involve system margins, namely the propellant margin and time-of-flight margin (or

lateness). These metrics are useful when comparing a trajectory with missed thrust to a

nominal trajectory. However, since they are each a scalar value, they do not provide the

full story. Other strategies to get a more complete picture are to compute the ∆v required

to recover from a fixed-length outage at each point along a trajectory, and the maximum

outage that can be sustained at each point [  2 ], [  3 ], [  6 ], [  37 ], [  38 ]. These analyses provide

a better look at the varying sensitivity of sections of trajectory to missed-thrust events.

Performing these types of analysis can be computationally expensive since tens to hundreds

of intermediate trajectories need to be optimized to create a plot for one base trajectory.

Duty Cycle

Applying a duty cycle can be considered adding margin on the performance of the electric

propulsion system. This is computed by Equation (  2.22 ).

Duty cycle “

ˆ

1 ´
Useful operating time
Thrust arc duration

˙

˚ 100% (2.22)

During preliminary mission design, a duty cycle can be used to limit the amount of

thrust applied along the trajectory. Applying a duty cycle will prevent the trajectory from

becoming fully thrust-saturated, meaning that there is some guarantee of having extra time

to recover from a missed-thrust event. However, there is no guarantee that the coast arcs

will provide sufficient time or that the spacecraft will have enough extra propellant to suc-

cessfully recover from a missed-thrust event. As a “quick and dirty” preliminary method,

however, this appears to provide a very computationally cheap way to insert some amount
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of robustness into the trajectory. Another practical use for duty cycle is to account for the

fact that spacecraft periodically need to reorient to contact Earth or adjust their pointing

for navigation, science, or other requirements/constraints [  39 ]. A value of 90% is common,

although lower values can be used for more conservative estimates [ 4 ], [ 27 ], [ 39 ]–[ 42 ].

Propellant and Time-of-Flight Margins

Propellant margin M is the fraction of extra propellant required to recover from missed-

thrust events along a trajectory with respect to the nominal amount of propellant needed.

This quantity is computed in Equation ( 2.23 ), where m˚
f is the final mass of the nominal

trajectory (no missed thrust), m̃f is the final mass of a trajectory that experiences missed

thrust, and mprop is the propellant mass.

M “
m˚

f ´ m̃f

mprop

(2.23)

Lateness L is the amount of extra time required to arrive at the destination after a

missed-thrust event compared to the nominal time-of-flight. It is computed in Equation

( 2.24 ), where T̃f is the time-of-flight of the missed-thrust case, and Tf is the time-of-flight

of the nominal case.

L “ T̃f ´ T ˚
f (2.24)

These two metrics are closely related, because when one margin is decreased, the other

typically increases. Laipert and Longuski created a Pareto front using the cost function

shown in Equation ( 2.25 ), where η is a constant between 0 and 1 [ 4 ].

min J “ ηM ` p1 ´ ηqL (2.25)

When η is close to 0, L will be prioritized, meaning that the spacecraft will use more

propellant to try to arrive on-time. Conversely, when η is close to 1, M will be prioritized,

meaning that the spacecraft will conserve extra propellant but will take longer to arrive.

The value of η can be tuned by the mission designer to satisfy mission requirements.
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When performing a missed-thrust analysis many trajectories will generated, and each

trajectory will have a corresponding M and L. Looking into the statistics of these values

can provide insight, such as the max, min, average, and the extremal percentiles like 5%

and 95%. With these values, mission designers can provide confidence intervals, such as

there being a 99% chance that the spacecraft will arrive within an acceptable time with an

acceptable amount of propellant.

Computing Margins Along a Trajectory

Some authors have used the following strategies to perform missed-thrust analysis on

an existing nominal trajectory to determine propellant and time-of-flight margins along the

entire trajectory [  6 ], [  37 ]. First, a forced-coast arc of several days is implemented, and an

optimizer then computes the cost to recover from such an outage. The cost could either

be extra propellant required to reach the target within an acceptable time, or extra mission

duration required to recover given the amount of available propellant. Repeating this analysis

along each point of the trajectory reveals which sections are most sensitive to a missed-thrust

event. Once sensitive regions are identified, heuristic methods can be applied such as forcing

a coast-arc immediately before a gravity assist or rendezvous [  43 ], [ 44 ]. Another similar

method involves computing the maximum duration outage that can be sustained at each

point along the trajectory while still meeting terminal constraints. Both strategies provide

a more comprehensive look at the effect of missed thrust on a trajectory, but are relatively

computationally intensive because many trajectory optimizations must be performed. Also,

this method assumes that only a single outage occurs.

2.4 Force Models

The analysis performed in this dissertation assumes that the spacecraft is acted upon

by two forces: gravity and thrust. Unless otherwise noted, the problems use the two-body

problem (2BP) model for gravity, which assumes that the gravity affecting a small body

(such as a spacecraft) comes from only one source (such as a planet or the sun), and that

the mass of the small body is negligible compared to the gravitating mass. Additionally,
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the spacecraft is assumed to be a point-mass, and aside from the thrust there are no other

forces or moments from gravitational torques, oblate (non-spherical) gravity models, solar

radiation pressure, n-body gravity, or any other sources.

2.4.1 Gravity

For many interplanetary trajectories, especially during the preliminary trajectory design

phase, a two-body gravity model is an acceptable assumption. The two-body problem (2BP)

assumes that one of the two bodies is so much greater than the other that the mass of the

second body can be ignored (such as the sun and a spacecraft). The sun and planets can be

approximated as spheres, and the gravitational field (above the surface) of a sphere and a

point mass are equivalent. Small bodies such as rockets and artificial satellites are negligibly

small in terms of size and mass, so they can be approximated as a point mass as well. Using

these assumptions of point masses, the inertial frame can then be shifted and fixed at the

center of the massive body, providing the following relative vector equation of motion for

the motion of the second body around the first [ 45 ]:

:r “ ´
µ

r2 r̂ (2.26)

Equation (  2.26 ) shows that the gravitational force at a point in space is inversely propor-

tional to the square of the radial distance from that point to the center of the attracting body,

and acts in the direction of the attracting body. Such a system provides solutions known

as conic sections, and the resulting orbits take the form of circles, ellipses, parabolas, or

hyperbolas. For all of the work described in this paper, a heliocentric two-body environment

will be used.

2.4.2 Electric Propulsion

Electric propulsion (EP) is a very efficient form of propulsion which in general uses elec-

tric and magnetic forces to accelerate propellant to very high exhaust velocities [  46 ]. From

Newton’s third law, we know that every action has an equal and opposite reaction [ 47 ].
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Thus, if we want to make a rocket engine as efficient as possible, we want to impart as much

kinetic energy as possible to the propellant, which in effect means we want to expel the

propellant as fast as possible. EP engines are very good at accelerating small amounts of

propellant, which lowers the total amount of propellant required. Since only a small amount

of propellant is expelled per unit time, the overall propulsive force is quite low compared to

traditional chemical propulsion. A major drawback to EP with respect to chemical propul-

sion is that EP needs an external source of power. Conversely, chemical propulsion uses

the chemical potential energy contained within the propellant, and no external source (aside

from something to ignite it initially) is required to maintain a propulsive force. Two general

type of EP are solar electric propulsion (SEP), which converts energy from light emitted by

the sun into electric energy, and nuclear electric propulsion (NEP), which converts thermal

energy from a nuclear power source into electric energy. SEP engines are less complex, do

not require radioactive material, and have been used in space before, whereas NEP engines

are still being researched and developed. However, NEP engines offer the potential for much

greater power generation than SEP which translates to both higher efficiency and higher

thrust. Additionally, their power generation capacity is not dependent on distance from the

sun, which falls off approximately according to the inverse square law for SEP.

To model the thrust from a EP engine, we add the acceleration (or control) vector ū

to the right-hand-side of Equation (  2.26 ). We must also account for the change in mass of

the spacecraft as it expends propellant. Equation ( 2.27 ) shows the augmented acceleration

EOM, and Equation ( 2.28 ) shows the rate of change of mass. T is the thrust magnitude,

and depends on the available power Pa, and time t. Pa is a function of heliocentric distance

r (for SEP only) and t. Mass flow rate 9m depends on the thrust magnitude, Earth-sea-level

acceleration g0, and specific impulse Isp.

:r “ ´
µ

r2 r̂ `
T pPa pr, tq , tq

m
ū (2.27)

9m “ ´
T pPa pr, tq , tq

g0Isp pPa pr, tqq
(2.28)
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In preliminary trajectory design, Pa can be assumed to be constant when the range of r

does not greatly vary over the trajectory, and engine performance degradation can be ignored

when missions are not more than a few years. If Pa is constant and engine degradation is

neglected, then T and Isp are constant.

2.5 Indirect Optimal Control

The optimal control problem is defined by minimizing the performance index given by

the Bolza form of the cost functional in Equation ( 2.29 ).

J “ φrxptf q, tf s `

ż tf

0
Lrxptq, uptq, tsdt (2.29)

Here, the scalar function φ represents a terminal cost and the function inside the integral

represents the cost accumulated across the entire trajectory. For a trajectory optimization

problem, Equation (  2.29 ) is subject to the system dynamics which can represented as dif-

ferential constraints in Equation (  2.30 ), as well as any additional terminal constraints as in

Equation ( 2.31 ).

9xptq “ f rxptq, uptq, ts (2.30)

Ψptf , xf q “ 0 (2.31)

With the system dynamics specified, the problem becomes a matter of finding the optimal

control uptq along the trajectory for t P r0, tf s. To do this we use calculus of variations and

the Euler-Lagrange theorem, which states that if the control u is optimal, then there exist a

time-varying vector λ and a constant vector ν of Lagrange multipliers which define a set of

necessary conditions as well as the transversality condition [  48 ]. The Lagrange multipliers

in λ are called costates because each value corresponds to one of the state variables. The

Hamiltonian H is defined according to Equation (  2.32 ), and the augmented terminal cost

function Φ is defined in Equation ( 2.33 ).
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Hpt, x, u, λq ” Lpt, x, uq ` λT fpt, x, uq (2.32)

Φptf , xf q ” φptf , xf q ` νT Ψptf , xf q (2.33)

The necessary conditions that we gain from the Euler-Lagrange theorem are defined in

Equation ( 2.34 ).

9λT
“ ´

BH

Bx “ ´Hx

λT
ptf q “

BΦ
Bxf

Hu “ 0T

(2.34)

However, the third equation in Equation (  2.34 ) only holds if the control is unbounded.

If the control is bounded, then we must apply Pontryagin’s Minimum Principle as shown in

Equation (  2.35 ). Generally speaking, the Minimum Principle states that the optimal control

u˚ptq is that which minimizes the value of the Hamiltonian while also reaching the optimal

state x˚ptq.

H rt, x˚
ptq, u˚

ptq, λptqs ď H rt, x˚
ptq, uptq, λptqs (2.35)

The transversality condition is defined in Equation (  2.36 ) in both its algebraic and differ-

ential forms. The algebraic form leads to the “adjoined” method, and the differential form

leads to the “un-adjoined” method.

Ωptf , xf , uf q ” Lf `
dΦ
dtf

“ 0

Hfdtf ´ λT
f dxf ` dφ “ 0

(2.36)

At this point we can simplify the results of applying the Euler-Lagrange theorem by

stating that the following conditions in Equation ( 2.37 ) must be true, following the un-
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adjoined methodology. Additionally, the problem is subject to the differential form of the

transversality condition in Equation (  2.36 ), to the Minimum Principle in Equation (  2.35 ),

and to the boundary conditions in Equation ( 2.38 ).

9x “ HT
λ

9λ “ ´HT
x

(2.37)

xpt0q “ x0

Ψpxf , tf q “ 0
(2.38)

Finally, to solve the optimal control problem, we must find the set of Lagrange multipliers

at the initial time λ0 “ λpt0q that satisfy the above conditions. This process can be per-

formed by a variety of numerical solvers such as MATLAB’s bvp4c or fsolve, or Python’s

scipy.integrate.solve_bvp [ 49 ]–[ 51 ]. I use fsolve for any indirect optimization work in

this dissertation. Once the initial costates are found (or the costates at any point in time),

the entire problem is solved.

2.6 Coordinate Systems

One of the biggest drawbacks to indirect optimization is the sensitivity to the initial

guess of costates. If the guessed values of the costates are too far away from their optimal

values, then the solver will fail to converge. The distance away from the optimal values that

the initial guesses can be and still converge is called the radius of convergence. In general,

a large radius of convergence is desirable because a low accuracy guess is sufficient for the

problem to converge. Thus, it is beneficial to modify the problem in any reasonable way we

can to increase the radius of convergence.

One such way is to change the coordinate system in which we represent the state variables.

The intuitive first choice of coordinates for most people would be the Cartesian coordinate

system, in which there are 3 orthogonal position coordinates x, y, z and 3 corresponding
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velocity components vx, vy, vz. The equations of motion of a spacecraft with mass m subject

to the gravitational force of one body with gravitational parameter µ, as well as thrust force

from propulsion T are shown in Equation ( 2.39 ).

9x “ vx

9y “ vy

9z “ vz

9vx “ ´
µx

r2 `
Tx

m

9vy “ ´
µy

r2 `
Ty

m

9vz “ ´
µz

r2 `
Tz

m

(2.39)

While this coordinate system is easy to visualize, all six of its state variables are consid-

ered “fast”. One way to describe this would be look at the change in values when a spacecraft

is one side of the planet versus the other while in a circular orbit. On one side, the position

variables might all be positive with a magnitude of the spacecraft’s radial distance, and

the velocity variables might all be negative with a magnitude of the spacecraft’s tangential

velocity. However, on the other side of the orbit, the signs of these values have all flipped.

This means across the orbit each of the six values has on average changed by roughly twice

their current value (from -100 to +100 is a change of +200). Having six fast state variables

has been shown to lead to fairly small radii of convergence.

An alternative choice of coordinate system is the classical orbital elements (COE). This

coordinate system is composed of the semi-major axis a, the orbital eccentricity e, the orbital

inclination i, the longitude of the ascending node Ω, the argument of periapsis ω, and the

true anomaly f .

Finally, an even better choice of coordinate system that has five slow variables and one

fast variable is Modified Equinoctial Elements (MEE), sometimes called Modified Equinoc-

tial Orbital Elements. This coordinate system exhibits well-behaved numerical properties
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including a large radius of convergence on many problems [ 52 ]–[ 54 ]. The MEE state variables

are listed in Equation ( 2.40 ) in terms of COE.

p “ ap1 ´ e2
q

f “ e cos pω ` Ωq

g “ e sin pω ` Ωq

h “ tan
ˆ

i

2

˙

cos Ω

k “ tan
ˆ

i

2

˙

sin Ω

L “ Ω ` ω ` f

(2.40)

Using the MEE coordinate system, we can rewrite the EOMs from Equation ( 2.39 )

as Equation (  2.41 ). The thrust vector T is now represented in the local-vertical, local-

horizontal (LVLH) frame which has components in the radial (r), tangential (θ), and normal

(n) directions. When there is no thrust present, the only nonzero derivative is the true

longitude L, which is very efficient to numerically integrate.

9p “
2p

w

c

p

µ
Tθ

9f “

c

p

µ

"

Tr sin L ` rpw ` 1q cos L ` f s
Tθ

w
´ ph sin L ´ k cos Lq

gTn

w

*

9g “

c

p

µ

"

´Tr cos L ` rpw ` 1q sin L ` gs
Tθ

w
` ph sin L ´ k cos Lq

gTn

w

*

9h “

c

p

µ

s2Tn

2w
cos L

9k “

c

p

µ

s2Tn

2w
sin L

9L “
?

µp

ˆ

w

p

˙2

`
1
w

c

p

µ
ph sin L ´ k cos Lq Tn

(2.41)

where
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α2
“ h2

´ k2

s2
“ 1 ` h2

` k2

r “ p{w

w “ 1 ` f cos L ` g sin L

(2.42)

2.7 Equations of Motion

The system state xMEE and its derivatives 9xMEE are in the form given in Equation (  2.43 ),

with the state being represented in the MEE coordinate system. To distinguish these six

variables describing the position and velocity of the spacecraft from the full 7D state that

includes mass m, I use the subscript MEE for these variables in particular.

xMEE “

”

p f g h k L
ıT

9xMEE “

”

9p 9f 9g 9h 9k 9L
ıT

(2.43)

The EOMs for the system can be written as shown Equation (  2.44 ), where u is the

control vector represented in the LVLH frame. The EOM for the change in mass is given by

Equation (  2.45 ). In these equations, µ is the gravitational parameter of the central body,

Tmax is the magnitude of the maximum thrust force that can be applied, c is the exhaust

velocity of the engine, and δ is the throttle.

9xMEE “ AxMEE ` Bu (2.44)

where
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u “ Tmaxδû
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c
δ (2.45)
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3. TRAJECTORY OPTIMIZATION USING

NEUROEVOLUTION

In the previous chapter, I explored the ability of a neural network trained using supervised

learning to control a spacecraft. In this chapter, I investigate a different training method

called neuroevolution. First, I explore the efficacy of neuroevolution on a FFNN and a RNN

to determine if providing a feedback loop improves performance. Next I use a method called

NeuroEvolution of Augmenting Topologies (NEAT) to see if I can get further performance

enhancements.

3.1 Evolutionary Neurocontrol

3.1.1 Introduction

Some previous work has used neuroevolution to train a controller for the spacecraft,

and aptly called the work an evolutionary neurocontroller. In this work, a neural network’s

weights are set using a genetic algorithm with the objective function to provide an optimal

spacecraft steering law [  10 ], [ 11 ], [ 55 ]. This technique of evolutionary neurocontrol stems

from previous work in genetic reinforcement learning, which is the use of genetic algorithms

to train neural networks for the solution of reinforcement learning problems[  56 ]. The current

work aims to explore and expand upon previous work by investigating the advantages and

disadvantages of using an RNN as the controller instead of a FFNN.

Recurrent neural networks are networks that include a feedback connection such that

at least one hidden layer receives its previous state as an input to itself. This feedback

connection allows the RNN to have a “memory” of past events which in turn allows for

time-dependent relations to be represented. Additionally, most efforts in neuroevolution use

a genetic algorithm as the optimizer, but other global search algorithms may show improved

convergence. For this reason, particle swarm is also tested as a method for training the

networks [ 57 ]–[ 59 ].
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3.1.2 Training

While there are many architectures of RNNs such as Long Short-Term Memory (LSTM)

and Gated Recurrent Unit (GRU), we felt that for the purpose of time-series prediction of a

dynamical system a single layer network with one time delay would be sufficient [  60 ], [ 61 ].

Since an RNN depends on its internal state at the previous time step, the backpropagation

algorithm must account for all previous time steps when calculating the weight updates. To

account for this fact, the RNN can be “unraveled” back through time and trained like an a

multi-layer FNN. While there are many algorithms available to perform backprogation, the

default method used by MATLAB’s train function is the Levenberg-Marquardt algorithm

[ 62 ].

In the framework of neuroevolution, the process of supervised learning is no longer re-

quired. Instead, a genetic algorithm (or other evolutionary algorithm) takes the weights and

biases of the neural network as its optimization variables. This type of problem is similar to

reinforcement learning, in which an actor takes an action that moves it from its current state

to a future state, and this future state is given a reward based on the new state’s perceived

“fitness”. However, a spacecraft trajectory is often evaluated by its final values, such as time

of flight or final mass delivered, and these properties cannot be reliably estimated in the

middle of a trajectory. Since these values of interest are not known until the end of the

trajectory, the entire trajectory must be integrated to determine the fitness of a given neural

network. Thus, for a given set of initial conditions, a neural network uniquely specifies a

trajectory.

Let us look at how the computation of an RNN differs from that of an MLP. If we combine

Equation (  2.3 ) and Equation (  2.6 ) we get Equation ( 3.1 ), the activation from a sigmoid node

in an MLP.

σpxq “
1

1 ` e´pW x`bq
(3.1)

σtpxq “
1

1 ` e´pW xt`Uxt´1`bq
(3.2)
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When feedback connections are introduced, the output of at time t is of the form of

Equation ( 3.2 ), where U is the matrix of weights connecting the current layer back to itself,

and the subscripts represent the time step.

nvar,F NN “ pninqpnhidq ` pnhidqpnoutq ` nhid ` nout (3.3)

nvar,RNN “ pninqpnhidq ` pnhidqpnhidq ` pnhidqpnoutq ` nhid ` nout (3.4)

As shown in Equation (  3.1 ) and Equation (  3.2 ), the only difference between the calcu-

lation of a node in an FNN and RNN is the inclusion of the matrix U which specifies the

weights from the hidden nodes back to themselves. The number of variables for which the

optimizer must solve for in an FNN and an RNN are shown in Equation (  3.3 ) and Equation

( 3.4 ), respectively. Here, W1 is the matrix of weights from the input layer to the hidden

layer, which has dimension nin ˆ nhid; U is the matrix of weights from the hidden layer back

to the hidden layer, which has dimension nhid ˆ nhid; W2 is the matrix of weights from the

hidden layer to the output layer, which has dimension nhid ˆ nout; bh is the vector of biases

added to the hidden layer, which has dimension nhid; and bo is the vector of biases added to

the output layer, which has dimension nout.

3.1.3 Method of Solution

The trajectory optimizer consists of the two major parts: the numerical integrator, and

the optimizer. A high-level flow chart of the algorithm logic is shown in Figure  3.1 . The

integrator computes the position and velocity of the spacecraft subject to gravity from any

number of gravitating bodies as well as the thrust. Analytical ephemerides for the planets

are used to increase run time [  63 ]. The thrust vector (direction and magnitude) at each

time step is calculated by querying the neural network with the spacecraft’s current state

vector, any gravity-assist body state vectors, the target body state vector, and the current

spacecraft mass as inputs. A coplanar model is used, so each state vector has four total

values from the position and velocity vectors, bringing the total number of inputs to thirteen
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(assuming one gravity-assist body). When using an FNN, these inputs are independent of

time (explicitly), so a variable step-size integrator is acceptable. However, when using an

RNN, its inputs also include its previous internal state. Therefore, either a fixed step-size

integrator must be used, or a variable step-size integrator must be used in a way such that

the RNN can be used at fixed times throughout the integration.

Figure 3.1. The algorithm receives boundary conditions from the user, speci-
fiying the target body, bounds on the time of flight and launch date, and any
gravity-assist bodies to target. These boundary conditions are passed to the
optimizer, which evaluates individuals based on the final objective function.

Time was initially used as an input to the network, but when training the neural network,

the weights were usually set such that values other than time were “zeroed out” and the

network simply became a function of time. While this may be useful in specific circumstances,

the network does not actually learn anything about the relation between the dynamics of

the solar system and the optimal thrust vector. We believe that while using time may be

useful if the problem is posed correctly, it was unnecessary for the present problem.

The optimizer takes the weights and biases of the neural network as its optimization

variables such that the design vector or an “individual” uniquely specifies a neural network.
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In turn, since the weights and biases of a network are constant for an entire trajectory,

the objective function for the resulting trajectory can then be used to assign a fitness to the

neural network. The optimizer therefore works to minimize the objective function (final mass

delivered or time of flight) by modifying the neural network and calculating the resulting

trajectory. The evolutionary search algorithms used are a genetic algorithm (GA) whose

operators are tournament selection and uniform crossover with empirically-derived meta-

parameters, and the MATLAB implementation of particle swarm [  64 ]. Since these algorithms

can take any number of inputs and since a trajectory is specified by its neural network,

additional parameters relevant to the trajectory optimization problem such as launch date

and time of flight can also be added to an individual.

The only inputs required by the mission designer are the target body and any gravity-

assist bodies (all trajectories are assumed to start at Earth with the sun as the central body),

and the range of launch dates and times of flight to consider. After this the optimizer creates

an initial population of random individuals, and proceeds until termination criteria are met.

Termination criteria include bit string affinity (how closely the individuals in a population

match each other) and a maximum number of generations.

Since a GA only sees the objective function and does not inherently handle constraints

aside from bounds on the design variables, constraint violations must be appended to the

objective function. Constraints imposed upon the trajectory include terminal constraints for

position and velocity vectors, closest approach to the sun (so the spacecraft does not get too

hot), and any desired features such as proximity to a desired gravity assist body. Permitting

proximity to a specified planetary body as a constraint allows the mission designer to specify

bodies the spacecraft should fly by. While only the final position and velocity vectors are

required, additional or dynamic constraints can be added to help “lead” the GA to find

solutions more easily. For this reason, we changed the terminal constraints to include angular

momentum magnitude, radius, speed, eccentricity, and true anomaly.

The present analysis is structured with the assumption that the spacecraft can thrust

with some percentage of a fixed value along the entire trajectory, regardless of distance

from the sun. One such propulsion method that adheres to this assumption and that also

offers high performance is nuclear electric propulsion (NEP). The propulsion system used
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here has a characteristic acceleration a0 of 0.11 mm{s2 and a specific impulse Isp of 6000 s.

These values are within the ranges used by Yam investigating similar problems [  65 ]. The

maximum allowable thrust is calculated from the characteristic acceleration and the initial

mass (specified by the mission designer) by Equation (  3.5 ). The mass flow rate is then

determined using the relation in Equation (  3.6 ), where the magnitude of T is determined by

the neural network.

a0 “
|Tmax|

m0
(3.5)

9m “ ´
|T|

g0Isp

(3.6)

3.1.4 Results

Earth-to-Mars Transfer

To start, the optimizer was created using the traditional approach of neuroevolution,

meaning that an FNN and GA were used. Using the spacecraft position, velocity, and mass

as inputs with only four hidden nodes, the simple planar circular-to-circular orbit transfer

with a fixed time of flight of 400 days shown in Figure  3.2 was found. Here the spacecraft had

an initial mass of 10,000 kg, and could vary its launch date with respect to Mars by ˘2 years

(since they are circular and coplanar there are no additional factors concerning eccentricity

of the orbits). The arrows in the figure represent the direction and magnitude (relative to

the other arrows) of thrust vector at each point. The thrust vector is held constant and is

numerically integrated between points along the trajectory. Similar problems that include

one or two revolutions also are not challenging for this implementation, and the solution

typically takes on the order of 15-30 minutes to find depending on complexity.

Next, the FNN was replaced with an RNN and the same problem was attempted using

the same GA structure. For the same inputs and number of hidden nodes, the RNN was

able converge upon a similar solution, although the exact spacing of the thrust vectors was

slightly different since a fixed time step integrator was used instead of a variable time step
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Figure 3.2. Example trajectory depicting a planar orbital tranfer from an
Earth-radius to a Mars-radius circular orbit with a 400 day time of flight.

integrator. As per Equation (  3.3 ) and ( 3.4 ), changing from the FNN to RNN increases the

number of weights and biases from 30 to 46. This increase in the number of optimization

variables caused an increase in the average run time at around 30-45 minutes. Thus, for

around a 50 percent increase in number of optimization variables, the runtime increased by

a similar proportion.

Gravity-Assist Low-Thrust Trajectories

Since the concept was successfully demonstrated on relatively simple cases, the optimizer

was tested on more difficult trajectories that would require or be improved by a gravity assist.

The first test case considered was an Earth-Jupiter-Uranus trajectory using the spacecraft

described previously with an initial mass of 20,000 kg. The launch date was bounded between

August 01, 2018 ˘6 years, and the time of flight was bounded between 9 years and 18 years.

The terminal constraints included zero hyperbolic excess velocity at launch from Earth and
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arrival at Uranus. Proximity to Jupiter was added as an additional parameter to minimize,

thus forcing the optimizer to perform the gravity assist.

The increased complexity of the problem made it much harder for the optimizer to find

solutions that result in trajectories that are close to feasible, meaning much more time

was spent finding a neural network that could satisfy all the constraints as opposed to

optimizing the trajectory. In fact, no neural network produced a trajectory that satisfied

every constraint. The constraints that were not satisfied and the types of trajectories found

were not necessarily similar between runs, either. Sometimes the solution would successfully

perform a close flyby of Jupiter but would not make it to Uranus or would overshoot Uranus.

Other times it would get into a near-circular orbit in a different phase near Uranus’ orbit,

and sometimes the solution would not be close at all.

Run time became an issue, with a single run of the optimizer taking anywhere from 5 to 15

hours before terminating, with the termination due to the maximum number of generations

reached (as opposed to convergence on an optimal solution). The GA was switched out for a

particle swarm algorithm using MATLAB’s builtin particleswarm function, with a similar

lack of convergence.

Despite not finding any valid solutions, we believe that this method could find solutions,

and that we were simply unable to in this study. With further tuning of the model, we would

expect to find a solution.

3.2 NeuroEvolution of Augmenting Topologies

One of the problems with the neuroevolution strategy used above is that usually either

the network is so small that it is difficult to learn complex relationships, or it is so large

that the number of optimization variables is too high and the algorithm cannot effectively

learn in a reasonable amount of time. To address, another method has been developed called

NeuroEvolution of Augmenting Topologies (NEAT). NEAT encodes the structure of a neural

network in such a way that the genetic operators crossover and reproduction can be applied

even when two networks have different structures. By enabling these genetic operators,

NEAT can change the structure of the network over the course of the optimization. The
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variable structure can be exploited by starting with a small neural network that has relatively

few parameters, and then gradually adding additional nodes or connections as they help the

network. Similarly, nodes or connections that do not help can be removed.

3.2.1 Problem Description

Boundary Conditions

To test this algorithm, I start with a transfer from Earth to Mars. To simplify the

problem, I assume that their orbits are coplanar so that the problem is two-dimensional.

There is no fundamental difference between a 2D and a 3D formulation of this problem with

regard to the neural network design aside from a smaller input and output dimensionality. A

2D problem converges faster due to its smaller dimensionality, and is thus a more convenient

test problem to start with.

Each trajectory has a fixed time-of-flight of 1000 days (2.74 yr). The spacecraft will have

an initial mass of 13, 000 kg, a dry mass of 10, 000 kg, maximum thrust of 1.2 N, and an

Isp of 2780 sec. The engine parameters correspond to two HERMeS EP engines, where the

available power is assumed to be sufficient to provide the maximum thrust along the entire

trajectory (ą 25 kW) [  66 ]. The available propellant can provide up to 7.15 km/s of ∆v,

compared to the minimum-∆v solution from a planar elliptical-to-elliptical Hohmann-like

transfer of 5.58 km/s.

Objective Function

Several considerations must be taken into account to assign a fitness value to a neural

network controller. Since the trajectory integration is forward-propagation only, the terminal

boundary condition will not be met exactly. To incentivize the network to end the integration

as close to the target as possible, the difference between the target final state and the actual

final state is calculated. Then we multiply by a weighting term, take the square, and then

sum each of the state errors to obtain a scalar measure of error. To improve the convergence

of the algorithm, we calculate the error in terms of classical orbital elements instead of

Cartesian elements. Also, to be able to handle cases with circular orbits (where eccentricity
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is zero), we use apoapsis radius ra and periapsis radius rp instead of semi-major axis a and

eccentricity e. For a 2D problem, we also have argument of periapsis ω and true anomaly f ,

so that the state vector is x̄ “ ra, e, ω, f s. The state error is computed by Equation (  3.7 ).

δx̄ “
|x̄˚

f ´ x̄f |

|x̄˚
f |

(3.7)

Next, we multiply each component of the state errors by a weighting term, and choose

the maximum of the quadratic or linear term as shown in Equation (  3.8 ). The quadratic

term dominates when the spacecraft is far away and is useful to drive all terms towards zero

initially. The linear term helps to continue to funnel the error to zero as the spacecraft gets

closer to the target when the quadratic term becomes very small.

Jx̄ “

4
ÿ

i“1
max

`

α2
x,iδx2

i , αx,i |δxi|
˘

(3.8)

In some cases, we can choose to add two impulsive maneuvers at the end of the integration

to target the terminal boundary condition exactly. To penalize the network from relying on

this final correction maneuver, Equation (  3.9 ) computes the extra TOF as a fraction of the

original TOF, and then multiplies by a weighting term.

JT OF “ αT OF

ˆ

t˚
f

tf

´ 1
˙

(3.9)

The objective function that we want to minimize is the propellant mass used. Equation

( 3.10 ) computes the fraction of propellant used to propellant available and multiplies by a

weighting term.

Jm “ αm

ˇ

ˇ

ˇ

ˇ

m0 ´ mf

m0 ´ mdry

ˇ

ˇ

ˇ

ˇ

(3.10)

Finally, Equation (  3.11 ) adds each of the intermediate costs together to get the total

fitness.

J “ Jx̄ ` JT OF ` Jm (3.11)
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Since the algorithm works by maximizing fitness, but TOF, consumed propellant mass,

and state error are all positive quantities which should be minimized, I make the final fitness

negative. Thus, the algorithm will drive the fitness as positive as possible, which corresponds

to making each term as close to zero as possible.

3.2.2 Algorithm Details

The location and duration of missed-thrust events that occur on a mission are not known

beforehand. Therefore, we want to design a controller that can recover from any arbitrary

sequences of missed-thrust events that can realistically be expected to occur. By creating a

series of test problems which have random missed-thrust events, and by choosing a neural

network that performs well on many of these randomized tests, we can find a network that

produces trajectories which are more resilient to missed-thrust events.

There are a few ways to approach the design of a neural network for this problem. If

the desired initial and final states are known and fixed, then these can be held constant

during training. If these boundary states are not known or do not need to be fixed but

can be bounded, then during training we can sample randomly from within the bounds

and test the network on these varying cases. Furthermore, we can choose to include or omit

missed-thrust events during the trajectory propagation, which can cause the network to learn

different behaviors. For the case of fixed boundary conditions without missed-thrust events,

we only need to propagate a single trajectory, because the result will be same every time.

However, if the boundary conditions can change between runs or if missed-thrust events

are allowed to occur, then several trajectories should be propagated to get a statistically

representative evaluation of the network. The four types of cases that can be tested are:

1. Fixed boundary conditions without missed-thrust events

2. Fixed boundary conditions with missed-thrust events

3. Variable boundary conditions without missed-thrust events

4. Variable boundary conditions with missed-thrust events

Additionally, each type of case can have three progressively more complex tasks:
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a. Circular to circular fixed-time orbital transfer (requires a, e)

b. Elliptical to elliptical fixed-time orbital transfer (requires a, e, ω)

c. Elliptical to elliptical fixed-time rendezvous (requires a, e, ω, f)

When the boundary conditions are fixed, the network on needs the current state, the

time ratio, and the mass ratio as inputs (6 total). It does not need the target state, because

proper training would enable the network to implicitly learn the target state. When the

boundary conditions are variable, the target state also needs to be an input to the network

(10 total).

Thus, there are 12 cases that can be evaluated to determine the ability of this technique

to address the missed-thrust problem. Cases 1a-c provide tests to ensure that the algorithm

can successfully optimize a trajectory, while the remaining cases provide measures for how

capable the neural network is. Cases 2a-c train a neural network to transfer between fixed

points in the presence of missed-thrust events, providing both a potential on-board controller

as well as a relatively low sensitivity nominal trajectory. Cases 3 and 4 are similar to 1 and 2,

respectively, except that during training the boundary conditions can shift. These pose more

difficult problems for the neural network to solve, but can lead to a more robust controller

(since it will be exposed to a wider range of states during training) as well more flexibility

in the presence of a wide launch and/or arrival window. A diagram of the algorithm logic is

shown in Figure  3.3 .

3.2.3 Implementation Details

I am using Python 3.6 to implement this algorithm, with the library neat-python as a

complete implementation of NEAT, and Boost.Python for a compiled Runge-Kutta-Fehlberg

7-8 integrator written in C++ that provides significant speed improvements compared to the

standard Python integrator, scipy.odeint. An input file contains the boundary conditions and

defines the problem to be solved. This file is parsed, and converts the problem into one that

NEAT can readily solve. The task of evaluating the fitness of every individual in a population

in a genetic algorithm is considered “embarrassingly parallel” - that is, each member can

be evaluated in parallel with no dependence on the other individuals. Thus, significant run
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Figure 3.3. Algorithm logical flow-chart. Boundary conditions are given
to the GA, which evaluates each network by testing it on several trajectories
that each have a series of random missed-thrust events. The GA repeats until
stopping conditions are met.

time improvements are gained when many compute threads are available. Purdue’s ECN

offers several compute servers which are available to graduate students, so I typically send

jobs to run on 55 threads (out of 56 on the machine) operating at 2.8 GHz. Using this

setup, I can evaluate around 700 trajectories/second with 150 nodes/trajectory or around

150 trajectories/second with 1000 nodes/trajectory.

While it can vary depending on the complexity of the problem, I set NEAT to have

a population size of 400 individuals, either 6 inputs (4 for current state, 1 for mass ratio,

1 for time ratio) or 10 inputs (plus 4 for target state), 2 outputs (thrust magnitude and

thrust angle), 5 initial hidden nodes, initial connections between nodes with an occurrence

rate of 0.8, node and connection addition and deletion mutation rates of 0.01 and 0.005,
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weight and bias initial mean and standard deviation of 0 and 0.05, weight and bias mutation

rates of 0.05, max allowable stagnation period of 50 generations, an elitism of 2, among

many other small hyperparameters. I selected these values after experimenting on several

test problems and observing the effects of changing each. The integrator has relative and

absolute tolerances of 1e-9 with an adaptive step size. Trajectories have 200 points at which

the control is updated. These points are equally spaced in time, giving 199 possible thrust-

or coast-arcs. For a 1000 day TOF, each leg is approximately 5 days.

3.2.4 Missed-Thrust Trajectory Design

The algorithm described by Figure  3.3 was successfully implemented and tested on a

progressively more difficult test cases. Figure  3.4 shows the nominal case for an Earth-Mars

transfer assuming the boundary conditions described in section  3.2.1 , where the launch date

is set to September 27, 2019 and the arrival date is June 23, 2022. During training, each

neural network was tested on 6 random test cases and its fitness was the average of the cases.

In the plot, green indicates thrust, black is coasting, orange denotes direction and magnitude

of thrust, magenta is the target state, and blue is the actual final state. Table  3.1 shows the

final mass and state error when the trained neural network was tested on 100 random test

cases.

Table 3.1. Performance statistics on 100 test cases after training.

Mean St. Dev.
Final Mass (kg) 10,486 17.23
Position Error (km) 1.480e7 8.742e6
Velocity Error (km/s) 1.809 1.164

The trajectory shown in Figure  3.4 is the trajectory created by the neural network when

no missed-thrust events are present. This trajectory can be thought of as the baseline or

reference trajectory. When considering which trajectory to use for a mission, this baseline

missed-thrust trajectory should be considered instead of the fuel-optimal trajectory. While

the fuel-optimal trajectory has the lowest propellant mass when missed thrust is not taken
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Figure 3.4. Baseline trajectory when trained with missed-thrust events.

into account, the missed-thrust baseline trajectory has the lowest expected value of propellant

mass when missed thrust is considered.
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4. TRAJECTORY OPTIMIZATION USING SUPERVISED

LEARNING

In this chapter I investigate using supervised learning to train a neural network to be able

to generate optimal spacecraft trajectories. I use two strategies: predicting the optimal

costates at a particular state, and predicting the optimal thrust vector at a particular state.

When the network predicts the optimal costates at a given point along the trajectory, these

costates specify the entire trajectory from the current state to the final state as discussed

in section  2.5 . However, integrating a trajectory with costates requires complex derivatives

to be analytically calculated ahead of time, and these analytical derivatives can place limits

on the types of constraints which can be incorporated into the problem. Also, the radius

of convergence of the costates places a soft limit on the complexity of problems that can

be effectively solved with this method, because too complex of problems will have an im-

practically small radius of convergence. To get around these shortcomings associated with

costates, the second strategy shown in this chapter is to predict the optimal thrust vector

at a given point on the trajectory. Because the output is simply a force vector, it can be

easily added to rest of the forces acting on the spacecraft to compute the net resultant force.

While I only examine thrust and gravity, other forces could include solar radiation pressure,

n-body gravity, non-spherical gravity perturbations, rigid body dynamics, or any other high

fidelity force models. A drawback to predicting the thrust vector at a point along the tra-

jectory is that the thrust vector is only useful at that exact point. The thrust vector can

be used to integrate the spacecraft state forward for a short period, but then the neural

network must predict a new thrust vector. This process must be repeated many times from

the beginning to the end of the trajectory, and with each neural network prediction comes

the chance for error to be introduced. Therefore we need to be mindful about the possibility

of error stacking up over time, forcing the neural network away from the optimal trajectory

and into a region for which the neural network was not trained.
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4.1 Problem Definition

With supervised learning, we provide a neural network with examples of the desired

relationship to be learned, and then try to minimize error between the network’s outputs

and the desired outputs for a set of inputs. Before jumping in to training a neural network,

we must first define the problem to be solved. Since the goal is ultimately to investigate

the missed-thrust problem, I use a trajectory defined by Laipert and Longuski on which the

authors perform missed-thrust analysis [ 4 ]. By using the same problem, I can compare the

final results to help determine the effectiveness of a neural-network-based controller.

The trajectory is defined by a spacecraft traveling from Earth to Mars in the heliocentric

two-body problem (2BP). The spacecraft has a launch date from Earth of 24 Aug 2024, a

30-day checkout period ending 23 Sep 2024 during which no thrusting can occur, and an

arrival date at Mars of 07 Nov 2025. The states for Earth and Mars are determined using

NASA Jet Propulsion Laboratory’s SPICE ephemeris system at the corresponding dates

which provides 3D, elliptical orbits for both bodies [  67 ], [  68 ]. In the paper, the spacecraft

has a final mass of 2643 kg, a propellant mass of 655 kg, a launch C3 of 3.12 km2/s2 and a

total ∆v of 3.97 km/s. The spacecraft is assumed to have two XR-5 Hall thrusters which

each have a maximum thrust of 281 mN and Isp of 1850 s at max power (20 kW). Laipert

and Longuski model thrust and Isp as functions of available power, which itself is function of

distance from the sun. In the current work I assume a constant available maximum thrust

(i.e. the spacecraft has sufficient solar panels to produce sufficient power for the thrusters at

all points along the trajectory). Figure  4.1 shows a north-pole plot of the nominal case for this

trajectory. The arrows represent the thrust vectors along the trajectory. Launch from Earth

occurs at (1), the checkout period ends at (2), and arrival at Mars occurs at (3). Figure  4.2 

shows the corresponding thrust profile along the trajectory, including the throttle (fraction

of maximum thrust used) and the three components of the thrust vector expressed in the

local-vertical, local-horizontal (LVLH) frame. This trajectory is composed of two segments

with maximum thrust and one segment of zero thrust, with the thrust direction primarily

in the tangential direction but with varying levels in the radial and normal directions.

69



Figure 4.1. The nominal fuel-optimal trajectory with 20kW from Laipert
and Longuski [ 4 ]. Green is Earth’s orbit, blue is the transfer orbit, and red is
Mars’s orbit. The orange arrows represent the direction and magnitude of the
thrust at each location along the transfer.

To allow the neural network to provide reliable predictions to recover from missed-thrust

events, the training data must include examples in a range around the nominal trajectory

- otherwise, if the spacecraft got off-course, then the network would see inputs that it has

never encountered before, and would not be able to provide a useful output. Starting from

the nominal trajectory described above, I include a launch window and arrival window of

˘ 20 days. Due to the nature of the problem, the launch date can only move forward up

to around 7 to 10 days and depends on the arrival date. If it is pushed out farther than

that then the problem becomes infeasible and it is not possible for the spacecraft to reach

the destination within the given constraints. To simplify the problem, I use a maximum

forward launch date offset of 7 days. Thus the actual date range being considered is an

arrival window of ˘20 days and a launch window bounded between ´20 days and `7 days.
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Figure 4.2. The corresponding thrust profile for the nominal trajectory in  4.1 .

4.2 Training Data Generation

Before we can train a neural network to guide a spacecraft, we must consider what the

purpose of the network should be. There are some elements of the problem that must be

determined early on. What does the network need as inputs? What should the outputs be

and how should they be interpreted? For this problem, I want the neural network to provide a

control law for the spacecraft during trajectory integration. That is, given some formulation

of the spacecraft’s current state, target state, available propellant, time-to-go, time before

the next thrust update, and available thrust or power, the network should provide either

the optimal thrust vector or the optimal costates at the current state. Since solving for

the optimal control law of a spacecraft is performed by solving a two-point boundary value

problem (TPBVP) and this is the step which is desired to be replaced by a neural network,

the neural network needs as inputs all of the components of the TPBVP to perform the task

well.
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In this work I represent the spacecraft state using a 3-dimensional representation in the

MEE coordinate system, plus the mass of the spacecraft. Although mass can be removed

from the state in certain problem formulations, it is an input to the neural network and so

it is needed when propagating the state [  69 ]. Thus, it is included to avoid unnecessarily

complicating the math.

A large dataset of optimal input-output pairs is needed to train a neural network to

predict either optimal costates or optimal thrust vectors. Since the optimal thrust vector

can be obtained from the costates, we only need to worry about collecting costate information

as we are building the dataset. To generate a sufficiently large number of pairs in a reasonable

amount of time, ironically we need a tool to do what we are trying to replace - a fast and

robust method for indirect optimization that can converge on a feasible solution without a

particularly accurate initial guess. To do this, I use the algorithm presented in Taheri et al.

that uses homotopy (sometimes called continuation) to step from an easier problem with a

large radius of convergence to the more sensitive minimum-fuel problem with the familiar

“bang-bang” control scheme [ 53 ]. In their work, they augment the performance index for a

minimum-fuel trajectory given by Equation (  4.1 ) with a “logarithmic barrier” as developed

in Bertrand and Epenoy to form the perturbed performance index in Equation ( 4.2 ) [ 70 ].

J “ ´mptf q “
Tmax

c

ż tf

ti

δmdt (4.1)

J “
Tmax

c

ż tf

ti

tδm ´ ε r´δm log pδmq ´ p1 ´ δmq log p1 ´ δmqsu dt (4.2)

When ε “ 1, the resulting thrust profiles are generally smooth without sharp discontinu-

ities, and have a comparatively large radius of convergence. However, as ε Ñ 0 the problem

reduces to the minimum-fuel problem. Once we solve for ε “ 1, this solution can be used as

an initial guess for a problem with a reduced value of ε. This process can be repeated until

ε is sufficiently small. Around 10´4 is generally acceptable, although the value is somewhat

problem dependent. Near regions where the form of the solution bifurcates, such as going

from two thrust arcs to three thrust arcs, a smaller value of ε may be desired to maintain

accuracy. Decreasing ε by a factor of 10 between iterations is close enough to converge from
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a previous solution, so going from ε “ 1 to ε “ 10´4 requires 5 total optimizations. The

motivation for using the homotopy approach to find the solution is that with the augmented

logarithmic barrier performance index, a nonlinear solver such as MATLAB’s fsolve can

successfully converge with a less accurate initial guess. A random uniform guess in the range

r0, 1s for each costate and ε “ 1 succeeds around 60 ´ 65% of the time in my experience.

Figure  4.3 shows the throttle profile of the fuel-optimal trajectory for the problem described

in Section  4.1 with values of ε between 1 and 10´4.

Figure 4.3. The throttle profile is relatively smooth for ε “ 1, and approaches
the “bang-bang” control scheme as ε Ñ 0.

4.3 Training Setup

With the problem defined and the training data generation method identified, we can

now proceed to create the training data set. To start, I set up a network with 14 inputs

and 7 outputs. The inputs are the current state in MEE frame, current mass, target state

in MEE frame, and time-to-go. The outputs are the 7 costates at the current time. To help
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the training process, I normalize all the inputs and targets aside from time-to-go to have

a mean of zero and standard deviation of one [  71 ]. I do not normalize time-to-go in this

manner because its values need to be greater than or equal to zero, and since the input time

is divided by the time unit its values are typically less than 5-10 already.

I use two different training methods, depending on size of the network. For relatively

small networks (less than around 40 hidden nodes total), training was performed using MAT-

LAB’s trainlm function, which performs Levenberg-Marquardt back-propagation [ 51 ]. This

algorithm computes the Jacobian and an approximate Hessian which enables the algorithm

to approach second-order training speed. Due to the required Jacobian calculation, train-

ing is limited to a CPU, but empirical testing has shown that this method outperforms

GPU-based back-propagation algorithms such as Adam (in Python’s Tensorflow package)

and stochastic conjugate gradient via MATLAB’s trainscg. However, the training time

scales with the square of the number of trainable parameters as well as size of training data,

so Levenberg-Marquardt back-propagation is only practical for fairly small networks (up to

around a few hundred trainable parameters). A network with 14 inputs, 7 outputs, and 40

hidden nodes has p14 ` 7q ˆ 40 ` p40 ` 7q “ 887 trainable parameters. CPU training was

performed on an AMD Ryzen Threadripper 3970X with 32 cores at 4.0 GHz with 64 GB

of memory. Since Levenberg-Marquardt back-propagation is very computationally intensive

it is recommended not to use more workers in parallel than the number of physical cores.

That means that although the processor can support 64 threads via hyper-threading, it is

actually faster to just use 32 threads (and therefore 32 workers in MATLAB).

For networks that are larger than those described above, I use Tensorflow’s Adam op-

timizer. Tensorflow is a Python library, although the underlying code is compiled C++.

Tensorflow enables training on GPUs, which facilitate much larger computations. CPUs

typically have fairly few cores (4-32), but each core can operate independently. GPUs have

many cores (1000+), but each core performs the same operation at each time step on a

different chunk of data. GPUs were originally developed to work with images and videos,

where the same operation needs to performed on many pixels at the same time. This com-

putational paradigm also lends itself nicely to large-scale matrix operations such as those
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required in machine learning. GPU training was performed on an Nvidia GeForce RTX 2080

Ti, which has 4352 CUDA cores operating at 1350 MHz with 11 GB of memory.

When using MATLAB for training, I use elliotsig as the activation functions of the

hidden nodes. elliotsig is a symmetric sigmoid function with a range of r´1, 1s on the

domain r´8, 8s, and can be used as a replacement for hyperbolic tangent. elliotsig does

not require exponential or trigonometric functions and is therefore faster to compute than

hyperbolic tangent or sigmoid. The two activation functions are compared in Figure  4.4 .

Figure 4.4. elliotsig is a faster alternative to hyperbolic tangent with
similar qualitative behavior.

4.4 Evaluating a Trajectory

When generating the training data set, there will be some cases in which the optimizer

will think that it has not converged due to numerical difficulties resulting from the behavior

of many factors including relative changes in the cost function between iterations or the

approximated Jacobian. However, some of these cases might actually have a low terminal

error in state and could serve as useful training data. This scenario is particularly true
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for more sensitive problems, which occurs as ε decreases in value. Thus, instead of simply

listening to the exit flag returned by the optimizer, I determine whether the optimizer has

“converged” based on the final value of the cost function. For the TPBVP, the cost function

is defined by the terminal state error as well as one terminal costate value. I have found

that, generally speaking, if the final error in radial distance is low then the solution can be

considered more reliable. However, since every time the optimizer runs it will inherently have

some amount of error. The error may be very small, even approaching machine precision,

but it is still there. Therefore, I have to choose a cutoff value on the position error below

which I will consider the trajectory a success, and above which I will consider the trajectory

a failure. While this cutoff value can be picked somewhat arbitrarily, I set the limit to be

the sphere-of-influence (SOI) of Mars. In other words, if the trajectory ends within Mars’

SOI, then it is a success. While this limit allows the velocity error to be uncapped, I will

show later that it remains reasonably low in all cases that the position error is low.

In addition to evaluating cases returned from an optimizer, I also need to evaluate trajec-

tories that result from directly integrating the costates returned by a neural network. The

same metric as above—the terminal position error—can be used for the integrator as well,

since the optimizer’s success criterion is set post-optimization. The same cutoff value is used

in this situation as well.

Later in this dissertation I use the phrase “optimizer success” to mean success as defined

by the terminal position error after receiving the initial guess from the neural network,

sending the initial guess through the optimizer, and then integrating the optimized values

of the costates. Similarly, I use the phrase “integrator success” to mean success as defined

by the terminal position error after receiving the initial guess from the neural network and

then integrating the trajectory using these values directly.

4.5 Predicting Optimal Costates at the Initial State

I started by training a neural network to predict the optimal costates only at the be-

ginning of the trajectory as opposed to during any time along the trajectory. This network

served both a test case and also as a utility to help speed up the training data genera-
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tion process. For the network architecture, I used an MLP with 1 hidden layer of 40 nodes,

elliotsig as the activation function of the hidden nodes, and a linear activation for the out-

put nodes. The costates’ values are unbounded, so a bounded activation function like tanh

or sigmoid would not be acceptable. A diagram of the network, generated with MATLAB’s

Deep Learning Toolbox, is shown in Figure  4.5 .

Figure 4.5. A schematic of the neural network architecture used for predicting
the optimal costates produced by MATLAB’s built-in neural network viewing
tool.

First, I tried 1000 random sets of boundary conditions with random guesses for the

costates and ε “ 1 to get a baseline for the performance of the data generation algorithm.

Of the 1000 cases, 603 converged in 32.4 seconds, giving an optimizer convergence success rate

of around 60%. In this test case, I stepped ε down from 1 to 10´4 by an order of magnitude at

a time, giving the following intermediate values: r1, 0.1, 10´2, 10´3, 10´4s. Next, I attempted

the same problem but with ε starting at 10´1 instead of 1. No cases converged. Repeating

the test starting at each of the lower values of ε all failed in every case. The fact that no

cases were successful unless ε “ 1 proves that, for the vast majority of cases, if the neural

network’s output does converge when starting at a smaller value of ε, then the convergence

was due to the neural network and not random chance.

To bump the success rate up from 60%, I decided to retry failed cases with a new guess

of random costates up to a maximum of 5 times. With this new method, I was able to get

981 successes out of 1000 cases in 54.5 sec. There were no cases which converged at a higher

value of ε and failed at a lower value of ε, and no cases that converged at lower values if they

failed at higher values. Thus, we can attribute the success rate to the largest of the ε values

used—in this case, ε “ 1. I then trained a network to these data with the knowledge that the
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network would not be perfect, but could possibly give a better estimate than random with

the limited information it had. The network trained for 610 iterations in 1:33 (1 minute, 33

seconds). Even with such a small initial training set, using the neural network’s output as

the initial guess for the solver worked on 916 out of 1000 test cases. When testing a neural

network, I use its output as the initial guess for the optimizer with ε set the to smallest value

from training unless specified otherwise. In this case, that means the network had a 91.6%

success rate when ε “ 10´4. I also tested the network when ε “ 10´3, with a success rate of

99.4%.

Next, I used this network to generate initial conditions for 100,000 new trajectories with

ε “ r10´3, 10´4s. Of these, 97,085 converged in 30:48. I then trained a new neural network

on this new data set, which lasted for 1000 iterations in 36:31 and had a final MSE of

6.80 ˆ 10´6. The new neural network was able to provide initial guesses which converged in

998 out of 1000 test cases for ε “ 10´4. The results of the data generation up to this point

are summarized in Table  4.1 . From the first to the second iteration, there was a large jump

in the relative number of successes at the cost of a slight reduction in overall efficiency of

number of successes generated per second. Both of these iterations relied on random initial

guesses for the costates. The third iteration is when the neural network is used to provide

initial guess for the costates. Here the efficiency of number of successes generated per second

increases nearly by a factor of 3, which in turn reduces overall runtime by a factor of 3.

Table 4.1. Results of different data generation strategies. The success rate
can be increased by reattempting failed cases multiple times, but this comes
at a slight cost in efficiency. Using a trained neural network to provide initial
guesses for the costates yields both a high success rate and a high efficiency.

Total Cases Successes Attempts Initial Guess Total Time [sec] Successes/sec

1000 603 1 random 32.4 18.6
1000 981 5 random 54.5 18.0

100,000 97,085 1 NN 1848 52.5

The convergence status of the neural network as a function of launch and arrival date

offset when its output is used as an initial guess for the optimizer is shown in Figure  4.6 

and has a success rate of 99.8%. The only failures that occur are near the boundary of the
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launch and arrival windows when both moved forward by around 20 days. The fact that

the errors only occur in this corner suggests that providing more training data in this region

could improve accuracy in this region. Similarly, Figure  4.7 shows the convergence status

when the neural network’s output is used directly as the initial conditions for the integrator.

This method gave a success rate of 77.5%, with the failures forming a distinct pattern in the

region where the arrival date is pushed back.

Figure 4.6. Convergence status within the launch and arrival windows for
ε “ 10´4 when the solver uses the neural network’s guess as initial conditions.
Green signifies a success, and red means the case failed.

To gain some additional insight into the problem, we can directly investigate the outputs

of the network to determine if there are any patterns we can detect. Since it looks like there

is some structure to the failed cases in Figure  4.7 , we should see if there are any similar

trends either within the values of the costates or within the network’s error in predicting the

costates. Figures  4.8 ,  4.9 ,  4.10 ,  4.11 ,  4.12 ,  4.13 , and  4.14 show contour plots of the outputs

of the neural network corresponding to λp, λf , λg, λh, λk, λL, and λm, respectively, on the

left, and the error of the network output compared to the output from the optimizer on the

right. In the error plots, the size of the marker at each point is proportional to the magnitude
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Figure 4.7. Convergence status within the launch and arrival windows for
ε “ 10´4 when minimum miss distance is used as the success criterion. Green
cases succeeded and red cases failed.

of the error at that point, and the color signifies the sign of the error. In the value plots,

white represents higher (more positive) values, while black represents lower values. We can

see that, in general, the magnitudes of the errors are much lower than the magnitudes of the

actual values.

After looking at these figures, we can see that two trends where the neural network

struggles the most. First, there is a region occurring around a launch offset of ´2 days and

all arrival offsets (vertical line) that has high relative error in most of the costates. Second,

there is a region that appears as a diagonal line on the error plots that moves back along

the launch date and forward along the arrival date (diagonal up and to the left). By looking

at trajectories around these points, we can see that around these regions the qualitative

behavior of the thrust history bifurcates as the number of thrust arcs required changes from

(moving forward across the launch offsets) three arcs to two arcs and back to three arcs. The

region between these two bifurcations corresponds to where two thrust arcs are required, and

is also approximately the area where the network fails without the optimizer. This suggests
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Figure 4.8. Value of and error in the prediction for λp.

Figure 4.9. Value of and error in the prediction for λf .

Figure 4.10. Value of and error in the prediction for λg.
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Figure 4.11. Value of and error in the prediction for λh.

Figure 4.12. Value of and error in the prediction for λk.

Figure 4.13. Value of and error in the prediction for λL.
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Figure 4.14. Value of and error in the prediction for λm.

that the network is not as effective on this problem when two thrust arcs are required. One

possible explanation is that this region is simply more sensitive than the surrounding region,

so initial guesses would need to have more precision to be successful. Another possibility

could be that more of the training data includes three thrust arcs, so the network is more

likely to produce solutions which include three thrust arcs.

The costate value and error figures all correspond to the case when ε “ 10´4. However,

we can test how well these costate predictions work for other values of ε. Table  4.2 shows the

percent of successful cases for both optimizing, and directly integrating. It should be noted

that in all of these cases the same neural network was used, and that the neural network

was trained to predict costates for the ε “ 10´4 problem. We see that for higher values of

ε, the optimizer is able to successfully utilize the large radius of convergence of the problem

despite the error becoming quite large. As ε decreases, the optimizer loses a few cases but

still performs reasonably well. When using the neural network output as initial conditions

for the integrator, accuracy with respect to the correct values is important. This means that

when using higher values of ε the integrator does not perform well because the difference

in expected states and costates grows too large. As ε decreases, integrator performance

improves up to a maximum of around 77.7%, with the problematic region shown in Figure

 4.7 .
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Table 4.2. Percent of successful test cases for different values of ε when the
neural network output is used as an initial guess for the optimizer versus when
they are used as initial conditions for an integrator.

ε Optimizer Success Rate [%] Integrator Success Rate [%]

1 100 0
0.1 100 6.3
10´2 100 70.8
10´3 99.8 77.5
10´4 82.2 39.1
10´5 81.6 77.6

Depending on the application of this neural network, these results can be quite promising.

If this network is used to find the optimal costates for new problems with the intent to use an

optimizer, then we can start by using the network with ε “ 10´2 or 10´3 to take advantage of

the near-100% convergence in this area and quickly step down to the target ε “ 10´4. If this

network is used for initial conditions for an integrator, we could set bounds on its applicable

region according to Figure  4.7 and use it anywhere outside the problematic region.

4.6 Predicting Optimal Costates at Arbitrary Times Along the Trajectory

With the neural network to predict the optimal costates at the initial time working, I

broadened the scope of the problem and looked to train a new neural network to attempt

to predict the optimal costates at any time along any trajectory within the same region

of launch and arrival dates as before. If the neural network can successfully complete this

objective, then it should be able to work as a controller for a spacecraft subject to missed

thrust since it would be able to find the optimal path to the target from any point that the

spacecraft would reasonably reach.

As before, the training data set was generated with assistance from the initial-costate

neural network. Of the 100,000 trajectories, 99,926 converged in 31:06 using ε “ r10´3, 10´4s.

Each successful case was then integrated to the final time, and 20 random samples from each

trajectory was collected. This provides just under 2 million training data pairs. Next, the new

neural network was trained over 1000 iterations in 14:41:40, with a final MSE of 7.01 ˆ 10´4.
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To test the network, I generate sample trajectories and randomly select states along each

one to serve as initial conditions for the neural network. The same success criterion defined

in section  4.4 is used for this problem. The results of testing with the optimizer are shown

in Figure  4.15 , and with the integrator in Figure  4.16 .

Figure 4.15. Successes and failures when using the neural network output as
an initial guess for the optimizer with ε “ 10´4.

These results are clearly not as strong overall when compared to the results from section

 4.5 , although there are still some strong points. When the output is used as initial conditions

for the integrator, it only succeeds 43.9% of the time. When it is used as an initial guess for

the optimizer, the success rate bumps up 70.0%. If we first set ε “ 10´2 and then step down

to ε “ 10´4, however, the success rate with the optimizer jumps up to 99.1%. Table  4.3 

shows the success rates for the optimizer and integrator for each value of ε. At this stage,

it is not very reliable to use the output of the neural network as the initial costates directly

considering they reach the destination less than half the time. However, the output is still

usable if it is first passes through an optimizer. Performance would likely be boosted if a

larger neural network was used, the training data set was larger, and/or the neural network

was trained for longer.
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Figure 4.16. Successes and failures when using the neural network output as
initial conditions for the integrator with ε “ 10´4.

Table 4.3. Success rates for the optimizer and integrator when trained with
2 million data pairs and a network with 40 hidden nodes. Using an optimizer
with higher values of ε yields a high success rate, but without an optimizer
the neural network struggles.

ε Optimizer Success Rate [%] Integrator Success Rate [%]

10´2 99.1 43.0
10´3 90.6 43.4
10´4 70.0 43.9

To test the theory that the network and training data set are too small, I augmented

the training data set to include 1 million random pairs of launch and arrival times, with

25 random samples along each trajectory. In total, the training data set now includes 25

million input-output pairs, up from 2 million before. Additionally, I increased the neural

network size from one hidden layer of 40 neurons to 3 hidden layers of 200 neurons each.

A schematic of this network is shown in Figure  4.17 . Considering that a network with

887 trainable parameters and a data set with 2 million input-output pairs took over 14
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hours, using Levenberg-Marquardt back-propagation on a network with 84,807 trainable

parameters and 25 million input-output pairs would lead to an impractically long training

time. To accommodate the increase in the problem size, I switched to Tensorflow’s Adam

optimizer to train using a GPU. I also changed the hidden layer activations to ReLU since

Tensorflow does not support elliotsig and the number of back-propagation computations is

scaled up tremendously. Also, as the number of layers increase, ReLU’s advantages become

clearer. Table  4.4 shows the results of this training.

Figure 4.17. A neural network with three hidden layers. Each hidden layer
has 200 neurons and uses ReLU as the activation function. The output layer
has a linear activation.

Table 4.4. Success rates for the optimizer and integrator when trained with
25 million data pairs and a network with 3 hidden layers of 200 neurons. All
of the metrics have been boosted, although an optimizer is still needed for
reliable results.

ε Optimizer Success Rate [%] Integrator Success Rate [%]

10´2 100 56.9
10´3 99.3 58.7
10´4 95.1 58.9

We see that increasing the network size and amount of training data does improve per-

formance, especially when used as an initial guess for the optimizer. The optimizer success

rate at ε “ 10´4 jumps 25.1% from 70.0% to 95.1% and the integrator success rate jumps

15.0% from 43.9% to 58.9%. While the integrator success rate is still not great, the optimizer

success rate is now quite good, especially when using a higher value of ε first. At ε “ 10´3,

the optimizer success rate is over 99%, and at ε “ 10´2, every test case converged. Moving

forward, we should keep in mind that small networks probably won’t have sufficient capacity
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to fully model the design space, and that moderately sized networks with at least a few

hundred hidden nodes are necessary.

To see if there can be any more improvement in performance from a further increase in

network size, I trained a network with 4 hidden layers of 500 hidden neurons each. This

increase in size changes the number of trainable parameters (weights and biases) from just

under 85,000 to just over 750,000. A schematic of this network is shown in Figure  4.18 , and

the results of training are shown in Table  4.5 .

Figure 4.18. A neural network with four hidden layers. Each hidden layer
has 500 neurons and uses ReLU as the activation function. The output layer
has a linear activation.

Table 4.5. Success rates for the optimizer and integrator when trained with
25 million data pairs and a network with 4 hidden layers of 500 neurons. The
optimizer success rate continues to approach 100%, and while the integra-
tor success rate is higher compared to the smaller networks, it is still rather
unreliable.

ε Optimizer Success Rate [%] Integrator Success Rate [%]

10´2 100 62.4
10´3 99.8 68.3
10´4 98.8 68.3

While there was an additional increase in performance, the network size was increased

by nearly a factor of 10. The optimizer success rate increased from 95.1% to 98.8%, and

the integrator success rate increased from 58.9% to 68.3%. These modest increases in per-

formance came at the cost of much longer training. Increasing the network size any further

will likely lead to marginal increasing returns in performance, although it is possible that

with enough training data and with a large enough network that the integrator success rate

could approach 100% as well.

88



Up to this point, I have only considered variable boundary conditions - not missed thrust.

Now I introduce missed thrust into the problem to evaluate the robustness of the controller.

Using the parameters described in section  2.3.1 , I can accurately represent the frequency

and duration of missed-thrust events that would be expected in real missions. To simulate a

single trajectory, I perform the following steps. First, I generate the boundary conditions and

compute the time of flight. Once the time of flight is known, a sequence of missed-thrust

events that lies within the allowable time frame is generated. After I have the sequence

of missed-thrust events, I alternate the type of integration according to whether thrust is

allowed or not. If the spacecraft is operating normally on a particular leg of a trajectory,

then I use the neural network to compute the costates at the initial state of the leg and

use these costates to integrate until the end of the leg. If the spacecraft is experiencing a

missed-thrust event, then a simple 2BP propagation is used to compute the spacecraft state

at the end of the leg.

I simulated 10,000 trajectories subject to random missed-thrust events using the nominal

boundary conditions. The results of this analysis are shown in Figure  4.19 on a log-log plot

with terminal velocity error on the x-axis and terminal position error on the y-axis. The

horizontal line in the figure corresponds to the radial distance of Mars’ SOI. Trajectories

whose final positions are within this threshold are considered successful, and trajectories

outside this are unsuccessful. Of the 10,000 trajectories simulated, 7189 converged.

Next, I simulated 10,000 more trajectories with random boundary conditions within the

acceptable launch and arrival windows that are subject to random sequences of missed-thrust

events. The results of this analysis are shown in Figure  4.20 . 5839 of the 10,000 cases were

successful, a decrease of 13.5% from the nominal boundary condition analysis.

4.7 Predicting Optimal Thrust Vectors with Missed-Thrust Events

With the technique of predicting optimal costates along the trajectory and simulating

missed thrust now demonstrated, we can move to predicting the optimal thrust vectors. The

methodology for predicting optimal thrust vectors is essentially the same as that to predict
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Figure 4.19. Terminal position and velocity error dispersion for 10,000 ran-
dom sequences of missed-thrust events for the nominal boundary conditions
when using an optimizer on the neural network output. Cases that have a
final position error within Mars’ sphere-of-influence are considered successful.
The success rate is 71.9%.

the optimal costates, except the costates in the prior training data set are converted to thrust

vectors.

In section  4.6 , we saw that a network with four layers of 500 hidden nodes performed

decently, but that further increases in size were likely going to provide marginal benefit. I use

the same size neural network to predict the thrust vectors, except the output layer has four

nodes with tanh activations. The four nodes correspond to throttle (fraction of maximum

thrust used) and the three components of the thrust direction represented in the LVLH

frame. Hyperbolic tangent is used for the activations since all four outputs are bounded.

The throttle can be rescaled from r´1, 1s to r0, 1s, and the direction components all have a

magnitude in the range r´1, 1s already. A schematic of this network is shown in Figure  4.21 .

I trained this network on the 25 million pair data set for 2500 iterations in a time of 7:54:17,

with a final MSE of 0.0018 on the test set.
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Figure 4.20. Terminal position and velocity error dispersion for 10,000 ran-
dom sequences of missed-thrust events with random boundary conditions when
using an optimizer on the neural network output. Cases that have a final po-
sition error within Mars’ sphere-of-influence are considered successful. The
success rate is 58.4%.

Figure 4.21. A neural network with four hidden layers. Each hidden layer
has 500 neurons and uses ReLU as the activation function. The output layer
has a linear activation.

Testing this neural network involves integrating the trajectory in multiple legs in the same

way as in Chapter  3 . The thrust vector that the neural network outputs is only valid at the

state at which the network predicts the values. In this problem the direction components

do not change rapidly, so each thrust vector prediction can be used for a few days along the

trajectory. After a short period, the neural network predicts a new thrust vector based on its

new state. The thrust vector is held constant in the LVLH frame for the duration of each leg.

Figures  4.22 and  4.23 show the trajectory and thrust history, respectively, of a test case with

91



the nominal boundary conditions and 50 intermediate updates. With a total time-of-flight

of just over 400 days, each leg is set to 8 days long. Note that the thrust history is not

smooth; rather, it is composed of short segments of fixed value. The final position error is

1.64 ˆ 106 km, or 2.84 Mars SOI radii. Based on the threshold of being within Mars’ SOI,

this test case is considered a failure.

Figure 4.22. North pole plot of a trajectory from Earth to Mars, using a
neural network which provides a prediction for the optimal thrust vector every
8 days.

To further test the network, I simulated 10,000 missed-thrust trajectories with variable

boundary conditions. We see in Figure  4.24 that most cases failed with only 154 successes out

of 10,000 cases. These results are striking, although not as surprising as it may seem at first

glance with respect to the costate results. Looking at the integrator success rates in Table

 4.5 , we see that the neural network is successful around two-thirds of the time. Individual

predictions of the thrust vector may have similar accuracy, with some predictions being

close to optimal, and others being inaccurate. Since integrating to the end of the trajectory

requires many predictions, the error from each prediction can compound. Especially as the

network moves closer to the edge of the states seen in the training data set, the error will
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Figure 4.23. The thrust history corresponding to the trajectory shown in Figure  4.22 .
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Figure 4.24. Terminal position and velocity error dispersion for 10,000 ran-
dom sequences of missed-thrust events with the neural network output used
as the thrust vector. The success rate was 1.54%.

continue to increase. Once the network has moved out of this region, it will almost certainly

diverge from the optimal solution because it is encountering previously unseen inputs.

One way to test this theory is to compute the full state history of an optimal trajectory,

and then pass a random sample of states to the neural network. We can then compare its

output to the optimal solution. Figure  4.25 shows the trajectory with nominal boundary

conditions, with the neural network’s predictions overlaid along the trajectory. The optimal

solution is shown as a solid line, and the neural network’s predictions are dots. In this figure

we see that, given the optimal state, the neural network gives reasonably close outputs along

the entirety of the trajectory. The mean square error of these predictions with respect to

the optimal solution is 1.76 ˆ 10´3.

One factor to keep in mind is that the input space has a dimension of 14. If any one

of these inputs is significantly different from the the neural network has seen in training,

that will cause error in the output. Variations that could induce these errors include for

example if the spacecraft has more or less propellant at a certain position compared to the
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Figure 4.25. The optimal solution with the neural network’s predictions
overlaid. The optimal solution is shown by the solid lines, and the predictions
are shown as the dots. There is good agreement along the trajectory, although
small errors are still present.

optimal solutions, or if there is more or less time-to-go when the spacecraft is at a particular

state. Additionally, being located a far distance away or large velocity away from the typical

optimal solutions will cause errors in the thrust vector predictions.
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5. COMPARISON OF RESULTS

This chapter compares the NEAT and supervised learning training methods on a new and

more complex problem than the problems previously investigated. The goal of this compar-

ison is to highlight the utility of each training method with respect to each other, as well as

their general shortcomings.

Additionally, a new method is introduced which is a derivative of the supervised learning

method. I refer to this method as “brute force”, and it entails repeatedly attempting to solve

the problem without any prior knowledge. This method does not require machine learning,

and is meant to represent a comparison to more traditional optimization techniques.

5.1 Additional Method - Brute Force Optimization

When generating the data set for supervised learning, I used a homotopy-based indirect

optimization method to solve the TPBVP. A notable feature of this algorithm is that it

is able to converge even with a relatively poor initial guess. Considering that one of the

potential purposes of using a neural network is to provide a prediction for the costates at a

given point, it would be useful to compare its performance to a method that does not use a

neural network. We saw in Table  4.1 that while a neural network was able to boost the speed

at which optimal solutions could be generated, using multiple attempts at a high value of ε

was still able to provide a strong convergence rate. We could try this method either with a

completely random guess, or we could use a small amount of intuition for the initial guess

and use the optimal costates corresponding to the nominal initial conditions with a small

perturbation added.

5.2 Earth-to-Venus Transfer

For a direct comparison of the methods, I use an Earth to Venus transfer using a low-

thrust spacecraft that requires multiple thrust arcs and revolutions to reach the destination.

This problem is 3D and considers only solar gravity. The nominal trajectory has a launch

date of 05 May 2025 and an arrival date of 02 September 2027 for a total TOF of 850 days.
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The spacecraft has a dry mass of 2150 kg, a propellant mass of 850 kg, a maximum thrust

of 0.281 N (corresponding to one XR-5 Hall thruster at max power), and an Isp of 1850

s. The transfer is shown in the inertial heliocentric frame in Figure  5.1 and  5.2 , and the

corresponding thrust profile is shown in  5.3 . Figure  5.1 shows the trajectory, looking down

the inertial “north” vector. There are nearly three full revolutions, with thrust occurring

on several arcs. Figure  5.2 exaggerates the Z components of the trajectory to highlight the

plane change aspect of the problem, and how the direction of thrust is dependent on location

along the trajectory. In Figure  5.3 we see there are five distinct full-thrust arcs with four

null-thrust arcs.

Figure 5.1. A fuel-optimal low-thrust orbit transfer from Earth to Venus with
a time-of-flight of 850 days and multiple alternating thrust and coast arcs.

This problem offers a challenge due to the multiple spirals and multiple thrust arcs that

are required. An early outage affects every thrust arc later along the trajectory, which,

especially early on, can be difficult for a neural network to compensate for when the time

horizon is still very long.
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Figure 5.2. This figure exaggerates the Z-component of the transfer to high-
light the out-of-plane component of the thrust vectors.

Figure 5.3. The optimal Earth to Venus transfer has five thrust arcs and
four coast arcs, and a clear oscillation in the required out-of-plane thrust.
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5.2.1 NEAT

In this section I investigate the performance of a neural network trained with NEAT on

the Earth to Venus transfer problem defined above with variable launch and arrival dates. I

attempted several configurations of hyperparameters to reliably converge, but in all attempts

the network struggled to reach a final position error within Venus’ SOI. The position errors

after each attempt were typically around 5-10 million km, or around 8-16 Venus SOI radii.

The network configurations included various combinations of the parameters shown in Table

 5.1 . Because training with NEAT was not able to succeed with variable boundary conditions

without missed thrust, I did not consider the more challenging problem of variable boundary

conditions with missed thrust.

Table 5.1. Hyperparameter values used during testing for the Earth-to-Venus
transfer with variable boundary conditions. The underlined values correspond
to the case shown below in Figure  5.4 .

Parameter Values
initial hidden neurons 0, 2, 4, 6, 8, 10, 15, 20, 30
initial connection rate 0.5, 0.6, 0.7, 0.8, 0.9, 1
allow direct connections yes, no
weight mutation rate 0.1, 0.3, 0.5, 0.6, 0.7, 0.8
weight mutation power 0.1, 0.3, 0.5, 0.7, 1
weight replacement rate 0.01, 0.05, 0.1
bias mutation rate 0.1, 0.3, 0.5, 0.6, 0.7, 0.8
bias mutation power 0.1, 0.3, 0.5, 0.7, 1
bias replacement rate 0.01, 0.05, 0.1
activation function replace rate 0.01, 0.025, 0.05, 0.1
hidden activations tanh, sigmoid, relu, sin, gauss, step
connection add rate 0.01, 0.05, 0.1
connection delete rate 0.01, 0.05, 0.1
node add rate 0.01, 0.05, 0.1
node delete rate 0.01, 0.05, 0.1
population size 500, 1000, 1500, 2000
number of cases per iteration 5, 10, 15, 20, 25, 50, 100, 150
iterations 100, 150, 250, 500
stagnation period 50, 100, 150
terminal Lambert arc yes, no
input frame Cartesian, COE, MEE
output frame VNC, LVLH
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Other factors not listed in Table  5.1 include elitism, survival threshold, compatibility

threshold, weight and disjoint compatibility coefficient, response mutation parameters, ag-

gregation parameters, maximum and minimum weight and bias limits, and initial mean and

standard deviation for weights and biases. In all of the cases tested, the inputs to the network

were current state, target state, time to go, and spacecraft mass (all scaled to approximately

order 1), and the outputs were throttle and the three components of the thrust direction

vector. The terminal state error was computed in the MEE frame, scaled by a weighting fac-

tor, and added to the total propellant mass consumption to determine each neural network’s

fitness function. If the terminal state is within Venus’ SOI, then the state error would not

be included in the fitness function—only the total propellant mass consumption would be

considered. The results of a “typical” run are shown in below in Figure  5.4 using the under-

lined values in Table  5.1 . This particular trajectory has the nominal boundary conditions,

with a terminal position error of 6.54 ˆ 106 km or around 10.6 Venus SOI radii.

Figure 5.4. The resulting trajectory when using a neural network trained
with NEAT with variable boundary conditions.
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In addition to trying different hyperparameters on separate runs, I also attempted multi-

phase training that starts with high variability parameters (e.g. weight mutate rate = 0.8,

weight mutate power = 0.5) and then changes to smaller variability parameters (e.g. weight

mutate rate = 0.3, weight mutate power = 0.1) later in training. The intent behind this

strategy was to begin with a more global search to investigate a large area of the solution

space, and then end with a more local search once a promising region has been identified to

more closely approach a local minimum. In practice, however, the multi-phase training did

not provide significant differences compared to single-stage training.

An interesting finding from working with NEAT was the variability in qualitative behavior

of the output. Sometimes the neural network would output a constant (body-fixed) thrust

vector that performs well on a few cases and poorly on others. Other times the output

would have a clear sinusoidal behavior. In some cases the output has a more complex

behavior, but the contributing functions can be fairly clearly made out within the response.

Figures  5.5 ,  5.6 , and  5.7 show control histories with nearly constant, sinusoidal, and more

complex values, respectively. The clear dependence of the output on a single function is likely

the result of having fairly few (0 to 10) hidden neurons, and could be alleviated by either

including more initial neurons or by increasing the probability of neurons and connections

being added. However, as more neurons and connections are introduced into networks, the

time to evaluate and reproduce between generations increases. Also, it is best practice to

scale the number of individuals of the population with the number of trainable parameters,

which leads a further increase on run time [ 64 ].

Another empirical finding came from adjusting the number of cases to evaluate per it-

eration. When the number of cases per iteration is relatively low (i.e. less than 10), it is

common at some point during the training for a network that performs well in one partic-

ular region to get many samples in that region on one random run, which is then set as

the best network. Because this network “got lucky” once, it is difficult for other networks

to make improvements against it. Alternatively, when the number of cases per iteration is

relatively high (i.e. greater than 50), the solutions often tend to find a solution that ends

in an “average” state; these solutions perform well in the middle of the launch and arrival

windows, but poorly on the ends. In theory, it would be preferable to evaluate a network
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Figure 5.5. A control history from a neural network trained with NEAT that
results in constant values.

Figure 5.6. A control history from a neural network trained with NEAT that
results in sinusoidal values.

Figure 5.7. A control history from a neural network trained with NEAT that
results in more complex values than the other two examples.
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on as many cases per iteration as possible to get a statistically meaningful measure of the

network’s performance. However, the run time directly scales with the number of cases per

iteration. Training with 50 cases per iteration will take 10 times longer than training with 5

cases per iteration.

To put the run time issue into perspective, consider that a population of 1500 individuals

with 150 sample cases per generation requires integrating 225,000 trajectories per genera-

tion. To let the algorithm run for 500 iterations would require integrating over 112 million

trajectories. If we can integrate at a rate of 1000 trajectories per second, it would take over

31 hours to complete 500 iterations. Two other factors that impact run time are hyper-

parameter selection and performing validation runs. Hyperparameter selection and tuning

requires multiple runs to find the best parameters for the problem. While this process does

not necessarily need to be performed when using a very high number of individuals, cases per

generation, and total generations, it still requires many runs overall. Due to the stochastic

nature of evolutionary algorithms, it is considered best practice to run the algorithm several

times to verify that the same or similar final solutions are found each time. With high-

performance computing (HPC) resources, this would be a more tractable problem; however,

on a single CPU computer, the run time can be excessively long (with consumer-grade CPUs

that exist in 2022).

5.2.2 Supervised Learning

First, I investigate the performance of a neural network trained with supervised learning

when the launch and arrival dates are variable. Next, I take it a step further and look at

the performance when missed-thrust events are included in the trajectory.

As in Chapter  4 , I must start by creating a training data set of optimal trajectories

from which the network can learn. A method to help speed up the process is to train a

network to predict the optimal costates at the beginning of a trajectory, given information

about its current (initial) state and target state. Such a network can then be used to

provide initial guesses for other trajectories which can then converge faster than when a

random guess for the costates is provided. The initial-guess network was originally trained
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on 100 trajectories with a 10-day launch and arrival window. This network was then used to

generate 1000 trajectories in a 20-day launch and arrival window. The intermediate initial-

guess network was used to generate 100,000 trajectories with a 40-day launch and arrival

window. Each variant of the initial-guess network had one hidden layer of 40 neurons and

elliotsig activation, with a linear output activation. Using these intermediate networks to

help generate additional trajectories was not necessary, but resulted in decreasing the total

time required to create the training data set.

The fully-trained version of the initial-guess network was used to help generate an ad-

ditional 100,000 trajectories which were each then integrated to their final time, with 20

random samples along each trajectory being saved. The original 100,000 trajectories from

the initial-guess network were integrated and collected into the data set. In total, this pro-

vided 200,000 trajectories ˆ 20 samples per trajectory “ 4 million training data pairs. A

neural network with 4 hidden layers of 500 neurons with ReLU activation and a linear output

activation (same as shown in Figure  4.18 ) was trained on this data set.

To first test the network’s performance, I simulated 500 random trajectories with 20

points sampled randomly along each for a total of 10,000 test cases. Integrating the neural

network’s costate predictions directly succeeded in 8643 cases, and using the optimizer with

ε “ 10´4 before integrating succeeded in every case. Next, I simulated 10,000 random missed-

thrust sequences with variable boundary conditions. The results of this analysis are shown

in Figure  5.8 . 9600 cases reached Venus’ SOI successfully when using an optimizer, and cases

reached Venus’ SOI when directly integrating the costates. An interesting point to note is

the decrease in success rate between non-missed-thrust and missed-thrust analyses. Even

though the network is given and is predicting the same information for both scenarios, the

network performs worse when the states at which it is predicting result from missed-thrust

events instead of being on an already optimal trajectory.

5.2.3 Brute Force

Now I demonstrate the performance of using a brute force method to directly solve

the Earth-to-Venus TPBVP for both a standard trajectory optimization problem and with
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Figure 5.8. Terminal position and velocity error dispersion for 10,000 random
sequences of missed-thrust events with random boundary conditions when us-
ing an optimizer on the neural network’s prediction for optimal costates. Cases
that have a final position error within Venus’ sphere-of-influence are consid-
ered successful. The success rate is 96.0%.

missed thrust included. Using the method described in Section  5.1 , I first investigated

computing the optimal costates along many trajectories without considering missed thrust.

To do this, I generate a batch of random boundary conditions within the allowable launch

and arrival windows, and for each pair I attempt to find the optimal costates at the initial

time. Once the initial costates are found, I integrate each trajectory to the final time and

take samples at random times along the trajectory. Once I have a data set of random states,

I attempt to find the corresponding optimal costates at each state.

I performed a test with a launch and arrival window of 40 days, 1000 random boundary

conditions, and 10 random samples along each trajectory. Of the 1000 sets of boundary

conditions, I was able to successfully compute the initial costates for each case. Of the

10,000 total cases, I successfully compute the costates in 9984 cases. Next, I tested the

method by introducing missed-thrust events. Of the 10,000 random cases, 6850 converged.

The results are shown in Figure  5.9 .
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Figure 5.9. Terminal position and velocity error dispersion for 10,000 random
sequences of missed-thrust events with random boundary conditions when us-
ing an optimizer with random initial guesses for the costates. Cases that have
a final position error within Venus’ sphere-of-influence are considered success-
ful. The success rate is 68.5%.

5.3 Discussion

After comparing NEAT and supervised learning as training methods on the same prob-

lem, we can see some clear pros and cons. NEAT was not able to train a neural network

to successfully guide a spacecraft to the target given a range of launch and arrival dates

without considering missed thrust. Despite trying many different configurations of hyperpa-

rameters, I was not able to train a consistently reliable network. I believe the sizes of the

neural networks that I investigated were too small to be able to guide the spacecraft with

the required level of accuracy. With additional computational resources that enable training

larger networks, this problem may become more tractable. Conversely, a neural network

trained with supervised learning was able to guide a spacecraft to the target in the presence

of missed thrust 96% of the time, compared to the baseline performance of the brute force

method which has a success rate of 68.5%.
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The fact that both supervised learning and brute force had a lower success rate when

missed thrust events were included suggests that the sensitivity of the costates after missed

thrust events is higher compared to costates along an optimized trajectory. To account

for this increase in sensitivity, future work could examine including states resulting from

missed-thrust events into the training data set.
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6. HYPERBOLIC ABORT OPTIONS FOR HUMAN MISSIONS

TO MARS

6.1 Introduction

Missions to Mars will require hyperbolic rendezvous of one form or another, since ev-

ery interplanetary mission to Mars has in a sense performed a rendezvous with Mars after

departing Earth with a hyperbolic velocity. However, the more standard use of the phrase

“hyperbolic rendezvous” has one vehicle rendezvous with another in a span of days, not

months. A typical scenario has a cycler vehicle in a hyperbolic trajectory with a taxi vehicle

launching from Earth that must dock to the cycler.

The comparison between launching to Mars or to a cycler as a form of hyperbolic ren-

dezvous is to highlight a feeling of unease that only appears whenever the idea of hyperbolic

rendezvous is discussed in relation to a cycler. Research has shown that simple guidance

algorithms are capable of performing rendezvous with a cycler [  72 ]. Now, I discuss the re-

maining fear associated with hyperbolic rendezvous to show that several abort strategies

exist with compelling capabilities that can reduce risk.

Traditionally, a cycler vehicle is a massive spacecraft similar in scope to the International

Space Station that travels between Earth and Mars without stopping. Many such cycler

trajectories have been studied including the original Aldrin cycler [ 73 ]–[ 79 ].

The taxi vehicle is typically much smaller and is designed to carry crew and supplies from

the surface of Earth or Mars to the cycler. Two examples of this scenario have even appeared

recently in popular culture in the movie The Martian. The first is when supplies are launched

from Earth to rendezvous with the crew ship, The Hermes, as it flies by Earth before heading

back to Mars. The second example is Mark Watney launching from the surface of Mars to

rendezvous with the crew vehicle. Both times the cycler vehicle is traveling at hyperbolic

velocities past the planets.
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6.2 Overview of Previous Studies Regarding Hyperbolic Rendezvous

Previous work has investigated the relationship between the taxi and the cycler vehicle

when attempting to minimize the initial mass in low Earth orbit (IMLEO) [ 80 ], [  81 ], and

propellant required for hyperbolic rendezvous in general [  76 ], [  82 ]–[ 91 ]. Minimizing IMLEO

is a standard practice because sending mass to orbit is extremely expensive—on the order of

$10,000 per kg. Studies that have looked into decreasing the risks of hyperbolic rendezvous

found a 10 percent increase in IMLEO when various safety measures and redundant systems

were employed [ 72 ], [ 92 ]. Figure  6.1 shows the general strategy of these studies.

Figure 6.1. Previously studied hyperbolic insertion and rendezvous strategy.
The spacecraft starts from an elliptical orbit whose perigee is aligned with
that of the target orbit, performs a maneuver at periapsis to launch it onto a
hyperbolic transfer orbit, and then performs a small correction maneuver far
from Earth to enter onto the target orbit.

Therefore, when investigating abort strategies, we must be aware of any additional in-

crease in the ∆v requirements. The ∆v can be thought of as a mass ratio between the

required spacecraft final mass after the propellant has been spent, and the initial mass when

the required propellant is still inside the spacecraft. Most hyperbolic rendezvous strategies

use an outbound rendezvous where the spacecraft departs from a low parking orbit or pe-

riapsis around the Earth or Mars before a small burn is used to complete rendezvous with

the cycler around 24 hours later [ 72 ].
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6.3 Proposed Method

While the rendezvous (and more generally, orbital insertion) strategy discussed above

may be optimal to simply enter into the hyperbolic orbit, it does not consider the ∆v that

would be required if the spacecraft has to divert back to Earth in the event of an emergency

or other anomaly. With humans on board, there is no tolerance for error. Therefore, a new

hyperbolic insertion approach is presented with this concern in mind. Instead of performing

the orbital insertion on the outbound leg, the spacecraft enters a highly elliptical orbit and

then performs a maneuver along the inbound leg of the target hyperbolic orbit. Doing so

allows for an early abort option with a low additional cost as well as a second abort option

several hours later when the spacecraft reaches periapsis. Figure  6.2 shows an overview of

this orbital insertion strategy. Starting from LEO, the spacecraft performs a maneuver that

puts it into the blue taxi orbit. After the spacecraft passes apoapsis and approaches the

target orbit, it performs a small maneuver to put it on the red transfer orbit which crosses

paths with the target orbit. Finally, the spacecraft performs a maneuver at the specified

location to enter into the yellow target orbit.

Using this technique results in a lower IMLEO than attempting to abort on the outbound

arc when the taxi is already outside of most of Earth’s gravity well, which can require several

km/s of ∆v to recapture into an elliptical orbit. Therefore, when abort strategies are included

in the design of a taxi vehicle, an inbound hyperbolic orbit injection appears to be a safer

and cheaper solution than an outbound orbit injection.

6.3.1 Orbital Insertion

The following assumptions are made for this analysis. First, the analysis only investigates

insertion into the hyperbolic orbit corresponding to the flyby of a cycler in the S1L1 orbit in

2035 [  78 ]. The S1L1 cycler orbit is one of the leading candidates for cycler trajectories, and

its approach in 2035, as well as the preceding and following approaches, are characterized in

Table  6.1 . Also, since the point of the analysis is to create a safe method for orbital insertion,

all transfers are elliptic and the spacecraft only has C3 ą 0 after the final maneuver. In other

words, the spacecraft is guaranteed to stay in cis-lunar space (in the short term) up until the
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Figure 6.2. Representative orbital insertion sequence. The spacecraft starts
in a circular low-Earth orbit, performs a maneuver to enter the taxi orbit
(blue), performs a small maneuver to enter the transfer orbit (red), and then
performs a final maneuver to enter the target orbit (yellow).

final maneuver is complete. The spacecraft starts from a 200 km altitude circular orbit and

is co-planar with the target orbit. The period of the taxi orbit is limited to 10 days, which

corresponds to a maximum eccentricity of approximately 0.966 and, with the 200 km altitude

periapsis, to an apoapsis of roughly 385,000 km. This apoapsis radius is close to the Moon’s

semi-major axis of 384,400 km. Furthermore, all maneuvers are impulsive, and low-thrust

is not considered. Finally, orbital insertion is only considered for distances closer than the

radius of the Moon’s orbit. The 10-day limit on the taxi orbit period was selected based on

the Orion capsule’s 21-day undocked lifetime requirement [  93 ]. A taxi orbit period of half

of the acceptable operational lifetime of a representative taxi vehicle allows for extra time if

the vehicle must abort at any point leading up to or during the rendezvous. If necessary, the

taxi vehicle could safely stay in its orbit for a second revolution before needing to return to

Earth. Having a relatively long 10-day abort period also reduces the ∆v requirements when

compared to having a shorter window.
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Table 6.1. Parameters defining the 2033, 2035, and 2037 approaches of the
S1L1 cycler trajectory by Earth.

Year rp [km] V8 [km/s]
2033 33100 4.41
2035 16100 3.75
2037 15400 4.25

Two methods are pursued to find the minimum ∆v to insert into the target hyperbolic

orbit at an arbitrary true anomaly. First, assuming a constant periapsis altitude, there exists

a single taxi orbit for each true anomaly along the target orbit such that the taxi orbit is

tangent at that point. However, the required transfers are parabolic or hyperbolic past a

certain true anomaly, so this transition point acts as an upper limit. Since this analysis aims

to insert on the inbound leg, we are naturally limited to only elliptical cases. The results of

this analysis are shown in Figure  6.3 . This figure shows the orbital insertion ∆v as a function

of the true anomaly of insertion along the target orbit. The blue line represents the ∆v to

transfer from the parking orbit to the taxi orbit, the red line represents the ∆v to transfer

from the taxi orbit to the target orbit, and the yellow line represents the total of these two

maneuvers. Inserting close to periapsis on the target orbit requires less ∆v to transfer from

the parking orbit to the taxi orbit, but requires more ∆v to transfer to the target orbit

since the difference in energy between these orbits is greater. As the orbital insertion moves

farther from the target orbit periapsis, these trends flip since more energy must be put into

the taxi orbit in the first maneuver. The Oberth effect states that a maneuver that occurs at

higher speeds results in a greater change in total mechanical energy compared to the same

maneuver occurring at a lower speed. Thus, performing more of the total required ∆v in

the parking orbit will be more efficient from an orbit insertion perspective. The total ∆v

required is highest at the target orbit periapsis, and decreases slightly at farther distances.

The minimum total ∆v for this method occurs at the farthest distance for which the taxi

orbit is still elliptical, which in this analysis occurs at true anomalies of around ˘1050. Due

to the symmetry of conic orbits and the vis-viva equation, the ∆v magnitudes are symmetric

about periapsis. Examples of these trajectories are shown in Figure  6.4 .
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Figure 6.3. ∆v to perform orbital insertion on a tangent taxi orbit. As more
∆v is performed closer to Earth, the total ∆v decreases.

Figure 6.4. Orbital insertion sequence for various true anomalies of arrival
using the tangent constraints.
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The second method of finding the minimum ∆v to perform orbital insertion involves

direct optimization. This method implements a local optimizer whose optimization variables

include the argument of perigee of the taxi orbit, the eccentricity of the taxi orbit, the true

anomaly of departure from the taxi orbit, and the time of flight of the transfer orbit. Since

the periapsis altitude of the taxi orbit is fixed to 200 km (coming from the 200 km circular

parking orbit), the eccentricity also specifies the semi-major axis. The argument of perigee

is measured with respect to that of the target S1L1 orbit. A Lambert arc can be found

using the radius of the taxi orbit at the departure location, the radius of the target orbit at

the arrival location, the transfer angle between the two radial vectors, and the time of flight

optimization variable—this is the transfer orbit. A locally optimal total ∆v can be found

at a specified arrival true anomaly along the hyperbolic orbit, and sweeping along the entire

hyperbolic trajectory provides the lowest ∆v required to perform orbital insertion at any

point along the trajectory. The results of this analysis are shown in Figure  6.5 . Examples

of these trajectories are shown in Figure  6.6 .

6.3.2 Abort Options

The need to abort from a hyperbolic insertion may arise for many reasons. To cover as

many scenarios as possible, I assume that the spacecraft needs to abort after already being

placed on the target orbit to find a worst-case estimate of the ∆v. I assume that the burns

are impulsive and can happen instantaneously after entering the target orbit, and that the

spacecraft has not lost any control or functionality of its engines. I define an acceptable

abort orbit in this analysis to mean any non-hyperbolic trajectory.

Two methods to abort from a hyperbolic orbit are considered. The first method uses a

direct optimizer to find the minimum ∆v Lambert arc that has a periapsis altitude of 100

km while staying within the 10-day time-of-flight constraint. The other method performs

a deflection maneuver such that the periapsis of the new orbit has a periapsis altitude of

100 km, the flight path angle is negative (the spacecraft is descending), and the spacecraft

maintains the same orbital energy. Therefore, the deflection maneuver changes the flight

path angle, but doesn’t affect the velocity magnitude. Assuming the spacecraft has a heat
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Figure 6.5. Minimum ∆v to perform orbital insertion using direct optimiza-
tion to compute the optimal taxi orbit size and orientation.

shield rated for Earth re-entry (e.g. Orion), the low pass at 100 km through the atmosphere

allows it to aerobrake and eventually re-enter. This abort method is very advantageous when

the spacecraft is far away from Earth on the inbound leg since the change in flight path angle

is very small. However, it becomes impractical as the spacecraft moves closer to Earth, and

even more so on the outbound leg as the change in flight path angle approaches 1800.

Although aerobrake trajectories were not specifically targeted, the difference between

a 100 km altitude and 0 km altitude periapsis or between a 100 km and 200 km altitude

periapsis is within ˘75 m/s at all points along the trajectory and approaches 0 m/s moving

away from periapsis. Since this study investigates trends as opposed to specific, high-fidelity

computations, these differences are not included and a targeting a 100 km altitude periapsis

in all cases is considered sufficient.
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Figure 6.6. Orbital insertion sequence for various true anomalies of arrival.
These trajectories were found using the direct optimization method and include
a small transfer orbit. The gray dashed line represents the Moon’s orbital
radius, and the black line represents the target S1L1 orbit.

Figure  6.7 shows the magnitudes of the two types of aborts maneuvers, with the ∆v is

plotted as a function of both true anomaly and time past periapsis. While the plot with true

anomaly may seem like the low-∆v benefits occur only when far away, on the plot with time

we see that the spacecraft is only within a true anomaly of ˘1000 for a relatively short time,

and that most of the time is spent towards the extremes. Thus, in addition to the lower ∆v

requirements, the inbound leg strategy also allows for a longer time to abort. If a spacecraft

had a redundant stage that could provide 2 km/s, that would enable the spacecraft to abort

at any location before a true anomaly of 1050 according to the scenario shown in Figure  6.7 .

If the spacecraft performed orbital insertion on the inbound leg, it would have until 2.6 hours

before periapsis to perform an abort maneuver for under 1 km/s. Depending on where the

rendezvous maneuver is planned to occur, the crew could have around a full day of time to

perform checkout maneuvers while keeping the option to perform a low-cost abort. When
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performing orbital insertion on the outbound leg, the cost to abort continues to increase as

soon as the spacecraft enters the hyperbolic trajectory.

Figure 6.7. ∆v required to perform an abort maneuver as a function of the
true anomaly at which the maneuver occurs along the hyperbolic orbit. The
deflection abort maneuver is very effective far away from Earth on the inbound
leg, but becomes impractically large as it approaches and passes Earth. The
parabolic abort maneuver is lowest at and symmetric about perigee.

In Figure  6.7 , we see that the cost to abort is much lower on the inbound leg compared

to the outbound leg. We also see that on the inbound leg, the optimal ∆v is very close to

the ∆v to perform the deflection maneuver described above. The similarity between these

two on the inbound leg demonstrates the geometric advantage between the two sides of the
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trajectory. Additionally, the fact that the optimal abort is lower than deflection maneuver

on the outbound leg is due to the 10-day abort window. This abort window is also why the

∆v drops after periapsis until around 900 true anomaly. If the 10-day period was shortened

for mission requirements or for a time-dependent emergency such as a life-threatening injury

or loss of life support, then the optimal abort magnitude would increase and approach that

of the deflection maneuver.

6.4 Results

Figure  6.8 compares the maneuver magnitudes for orbital insertion, abort, and the sum

of the two. From this figure we can see that the total ∆v including the orbital insertion

maneuver and the abort maneuver is lower when orbital insertion is performed on the inbound

leg of the hyperbolic orbit. This figure also shows the minimum available abort magnitude

if the spacecraft can wait until a future point—essentially the minimum abort magnitude

between the current and all future locations. The total ∆v on the inbound leg stays below

6.75 km/s until a true anomaly of around 1010 or 2.91 hr after periapsis, with the minimum

of 5.88 km/s occuring at 3.38 hr before periapsis or at a true anomaly of ´107.50.

Future work could investigate the relative ∆v required for different S1L1 approaches.

Only the orbit for the 2035 is examined, so the effects of varying V8 and rp on the abort

maneuver cost has not been determined. Additionally, the orbital insertion maneuvers in this

analysis were subject to constraints on TOF and orbital energy. Relaxing these constraints

would lower the magnitude of the orbital insertion maneuver. Further analysis could investi-

gate the cost and risk trade-off between keeping the TOF and/or orbital energy constraints

or not.
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Figure 6.8. Total ∆v required when considering both the orbital insertion
and abort maneuvers.
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7. CONCLUSIONS AND FUTURE WORK

This dissertation has touched on multiple different topics. Here I weigh the conclusions of

each chapter and discuss opportunities for future research.

7.1 Neuroevolution

7.1.1 Evolutionary Neurocontrol with an RNN

The current investigation has shown that the proposed method of using an RNN as a

controller was not able to provide meaningful advantages over using an FFNN. The genetic

algorithm and particle swarm algorithm both have long run times to find a single trajectory

on the order of minutes to hours. The RNN did not demonstrate any significant additional

generalization capability or improved convergence compared to an FFNN used in the same

capacity for the cases studied. While the trajectory considered to test the RNN is likely

too simple to showcase its full effectiveness, I believe it is unlikely for an RNN to be able

to effectively control a spacecraft in a manner that an FFNN cannot and decided to forgo

further study.

7.1.2 NEAT

Using NEAT to train a neural network yielded mixed results when performing missed-

thrust trajectory design. Because it does not require prior knowledge of the problem via a

training data set, it can be applied to problems which would otherwise be very difficult or

even intractable for other types of solvers. However, because it is powered by a global search

algorithm as opposed to a local optimizer, the final solution is not guaranteed to be locally

optimal. Similarly, due to the stochastic nature of genetic algorithms, running the algorithm

on the same problem multiple times may yield different results. There are many avenues for

improvement of the current work and exploration into new applications. With an improved

speed of the implementation and additional computational resources, this algorithm has the

potential to provide solutions to problems where other methods may fail. One drawback

to NEAT is the importance of hyperparameter tuning (e.g. mutation rate, population size,
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initial weight values, etc.), since these values have a strong effect on convergence and quality

of the final solutions.

Another drawback to NEAT is that the solution is not guaranteed to be locally optimal.

One avenue for future work could be to look into using a gradient-based optimizer on the

final nominal trajectory to “clean up” the final result. The optimizer could either minimize

propellant usage, or it could minimize a measure of sensitivity along the trajectory. Such a

measure could involve minimizing the amount that the ∆v will change for a change in the

state x̄.

Genetic algorithms are powerful global search algorithms, but especially for high-dimension

problems we see that the run time can become a limiting factor. With randomly initialized

weights and biases, a neural network “knows” nothing about the problem and most of the

computational effort is spent training the network to get in the neighborhood of the final

solution, as opposed to finding the final solution itself. Thus, it would be beneficial if the

network were already trained such that it could output a reasonable initial guess based on

known trajectories. With a more reasonable starting point, the algorithm could then take

less time to satisfy boundary conditions and convergence could be reached more rapidly.

One such way to do this would be to train a network using supervised learning, and then

pass that solution to a genetic algorithm.

When training a neural network on a stochastic problem such as the missed-thrust prob-

lem, there is no guarantee that it will produce suitable results in every case if it is tested only

a few times. To get a more statistically representative metric, we can use Reliability-Based

Design Optimization (RBDO) [  20 ]. Using an RBDO formulation, a reliability constraint is

introduced so that the probability of violating the original constraints is less than a specified

value. For the current problems, such a formulation could be given by Equation (  7.1 ), where

E pmpropq is the expected value of the propellant mass required, δx̄ are the constraint viola-

tions, δx̄max are the maximum allowable constraint violations, and ε is a value to measure

the reliability (smaller is more reliable).

min J “ E pmpropq

s.t. Ppδx̄ ą δx̄maxq ă ε
(7.1)
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7.2 Supervised Learning

My work with supervised learning showed generally promising results. My work in Chap-

ter  5 demonstrated that a neural-network-based controller is able to guide a spacecraft to

the target destination in the presence of missed thrust with a 96% success rate when used

in conjunction with a local optimizer. However, we see this method’s problem dependency

with Chapter  4 ’s success rate of 58%. This problem dependency is more a reflection of the

varying difficulty and sensitivities of different trajectory design problems, but it noted that

these variations are shown in the success rate.

Previous work by other authors have demonstrated success rates approaching 100%, so

a 58% success rate at first glance may seem concerning [  94 ]–[ 97 ]. However, these previ-

ous studies have all used a 2D environment, and in some of the studies the disturbances

were fairly small compared to what may be expected from the model described in section

 2.3.1 . Furthermore, in LaFarge et al., the authors had access to HPC resources that, on the

computer used for the simulations in this dissertation, would have taken over two years to

match. Given the available computing resources and the increase of problem complexity, the

drop in success rate makes sense while still providing evidence that a neural-network-based

controller can guide a spacecraft in the presence of missed thrust.

There are many opportunities for future work in this area. In this dissertation I considered

inputs in the inertial and MEE frames, and I did not do a direct comparison between the

two. It would be useful to perform an experiment comparing a network’s performance when

given inputs in inertial, polar, MEE, COE, and possibly other coordinates to see if the choice

of coordinate system affects a neural network’s ability to learn. Similarly, the output vector

was only interpreted in the LVLH coordinate system. Future study could examine VNC,

inertial, or perifocal coordinate systems. There could also be a direct comparison between

2D vs. 3D as well as elliptical vs. circular orbits to see the effect of adding each additional

variable into consideration. A comparison between different types of inputs, such as taking

the difference between target and current state instead of each individually, or one or the

other, could be useful. Furthermore, the network could predict other values such as switching

function instead of or in addition to thrust and/or costates. Additionally, duplicating this
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work with additional computing resources to generate larger data sets and/or train for longer

could provide stronger results. Finally, a deeper analysis into where the missed-thrust events

occur along the trajectories for the failed cases could provide further insight into the problem.

7.3 Comparison

After using NEAT and supervised learning to train neural networks for the same problem,

we can see that supervised learning was much more successful. Supervised learning in cases

without missed thrust and utilizing an optimizer was successful in 100% of cases whereas

missed thrust with the optimizer was 96%. NEAT did not reach the target in any cases even

without taking into account missed thrust. Utilizing the brute force method, a method not

dependent on neural networks, yielded a success rate of 68.5%. From these results we can

easily see that training a neural network with supervised learning is a more useful method

than training with NEAT for this problem.

NEAT was unable to successfully train a neural network to guide a spacecraft to the

target even with a large variety of hyperparameter combinations. This could be due to a

limitation with small neural networks and may prove to have more utility with capabilities

that allow for training larger networks.

A drawback to both of the training methods with respect to the brute force method is

that neural networks will only give a valid output when the inputs are in the range of what

has been seen during training. If an input is given that is outside of the training data input

space, the network will most likely give an erroneous or nonsensical answer. This could

mean, for example, if the launch or arrival dates are pushed outside of the windows seen in

training, the mass of the spacecraft is higher or lower than it normally would be at a certain

position compared to in training, or if the spacecraft drifts too far away from the nominal

trajectory. The brute force method does not depend on any previous training, so changing

the problem parameters will not affect the method’s effectiveness (aside from changes in

problem sensitivity). While a neural network trained on a launch window of ˘20 days could

handle a tightened launch window of ˘10 days, it would not be expected to work well on an

expanded launch window of ˘40 days for the dates between ˘20-40 days.
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7.4 Hyperbolic Abort

As astronauts inevitably travel away from Earth on their way to Mars and beyond, they

must be placed into a hyperbolic orbit. In the scenario where the astronauts must rendezvous

with another spacecraft on a hyperbolic orbit, there is an inherent risk to the crew and to the

mission. It is therefore desirable to drive the likelihood of this risk down as much as possible.

Landau and Longuski investigated the risks of hyperbolic rendezvous along the outbound

leg and found that, while most errors had viable recovery strategies, a failure during the

maneuver to transfer to the hyperbolic orbit did not have a successful recovery strategy [ 72 ].

The analysis presented in this paper provides a new strategy for hyperbolic orbital insertion

that seeks to minimize the risk while accounting for the ∆v of an abort maneuver. It is

shown that performing orbital insertion along the inbound leg of the target hyperbolic orbit

offers much cheaper abort options when compared to orbital insertion along the outbound

leg. This insertion provides the spacecraft and crew with a much longer opportunity to abort,

allowing them to work through issues as they arise. Furthermore, using the tangent taxi orbit

case is simpler than the 3-burn strategy along either the inbound or the outbound leg since

the tangent taxi orbit eliminates the transfer orbit altogether. This strategy reduces the

number of maneuvers simplifying the process from an operations perspective and decreasing

the overall risk involved.
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