
UNDERSTANDING GENOME REGULATION OF THE AGING 

DROSOPHILA EYE 
by 

Juan Pablo Jauregui Lozano 

 

A Dissertation 

Submitted to the Faculty of Purdue University 

In Partial Fulfillment of the Requirements for the degree of 

 

Doctor of Philosophy 

 
 

Department of Biochemistry 

West Lafayette, Indiana 

May 2022 

  



 
 

2 

THE PURDUE UNIVERSITY GRADUATE SCHOOL 

STATEMENT OF COMMITTEE APPROVAL 

Dr. Vikki M. Weake 

Department of Biochemistry 

Dr. Scott Briggs 

Department of Biochemistry 

Dr. Pete Pascuzzi 

Purdue University Libraries 

Dr. Jennifer Wisecaver  

Department of Biochemistry 

 

 

Approved by: 

Dr. Andrew Mesecar 

 

 



 
 

3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To my parents, Alicia and Enrique, and my sister, Natalia, who inspire me to be the best version 

of myself every day.  

 

  



 
 

4 

ACKNOWLEDGEMENTS 

I would also like to thank my PhD advisor, Dr. Vikki Weake, for giving me the opportunity to join 

her lab, provide mentoring and continuous support, and always fostering a creative environment 

that allowed me to become the scientist that I am today.  

 

I would like to thank my thesis committee members, Drs Scott Briggs, Pete Pascuzzi, and Jennifer 

Wisecaver, for their critical feedback and guidance throughout my time in graduate school. I would 

also like to thank former and present members of the Weake lab.  

 

I would like to thank Dr. Hana Hall, for introducing me to the world of R-loops, and always 

encouraging me to think critically about my data.   

 

Lastly, the work presented in this doctoral thesis was possible through the generous funding of the 

National Eye Institute/National Institute of Health, and the Department of Biochemistry, through 

the Bird Stair Graduate Research Fellowship and the Ross-Lynn Research Scholar Fund.  

  



 
 

5 

TABLE OF CONTENTS 

ABSTRACT .................................................................................................................................... 6 

STATEMENT OF PUBLISHED WORK ...................................................................................... 8 

INTRODUCTION .......................................................................................................................... 9 

 IN VIVO TISSUE-SPECIFIC CHROMATIN PROFILING IN DROSOPHILA 
MELANOGASTER USING GFP-TAGGED NUCLEI. .............................................................. 12 

1.1 Introduction ....................................................................................................................... 12 

1.2 Results ............................................................................................................................... 14 

1.3 Discussion ......................................................................................................................... 24 

1.4 Methods............................................................................................................................. 26 

1.5 Figures............................................................................................................................... 31 

 THE CLOCK: CYCLE COMPLEX IS A MAJOR TRANSCRIPTIONAL 
REGULATOR OF DROSOPHILA PHOTORECEPTORS THAT PROTECTS THE EYE FROM 
RETINAL DEGENERATION AND OXIDATIVE STRESS ..................................................... 38 

2.1 Introduction ....................................................................................................................... 38 

2.2 Results ............................................................................................................................... 40 

2.3 Discussion ......................................................................................................................... 50 

2.4 Methods............................................................................................................................. 53 

2.5 Figures............................................................................................................................... 57 

 PROPER CONTROL OF R-LOOP HOMEOSTASIS IS REQUIRED FOR 
MAINTENANCE OF GENE EXPRESSION AND NEURONAL FUNCTION DURING AGING
  ........................................................................................................................... 62 

3.1 Introduction ....................................................................................................................... 62 

3.2 Results ............................................................................................................................... 64 

3.3 Discussion ......................................................................................................................... 73 

3.4 Figures.................................................................................................................................. 76 

 CONCLUSIONS ................................................................................................. 83 

REFERENCES ............................................................................................................................. 85 

VITA ........................................................................................................................................... 101 

 

 

  



 
 

6 

ABSTRACT 

Aging is characterized by changes in transcriptional outputs that correlate with physiological 

changes observed as we age, including decreased function, and increased cell death. Importantly, 

many of these changes are conserved across tissues and organisms . Because one of the molecular 

hallmarks of aging is epigenetic dysregulation, we are interested in understanding how age-

associated changes in chromatin contribute to the aging transcriptome. To accomplish this, we use 

the Drosophila visual system as a model for aging, with a particular focus on photoreceptor 

neurons.  

 

To perform cell-type specific genomic studies in Drosophila, we previously developed a nuclei 

immuno-enrichment method that was compatible with RNA-seq. However, due to low nuclei 

yields, this protocol was not amenable to chromatin-based studies, such as ChIP-seq and ATAC-

seq. In Chapter 1, we developed an improved approach to isolate Drosophila melanogaster nuclei 

tagged with a GFPKASH protein that increased yields without compromising efficiency. We further 

demonstrate that this protocol is compatible with several chromatin profiling techniques, such as 

Assay of Transposable-Accessible Chromatin (ATAC)-seq, Chromatin Immunoprecipitation 

(ChIP-seq), and CUT&Tag.  

 

Chromatin accessibility is enriched for transcription factors. Thus, in Chapter 2, we profiled 

accessible chromatin in aging photoreceptors and integrated this data with RNA-seq to identify 

transcription factors that showed differential activity in aging Drosophila photoreceptors. 

Surprisingly, we found that 57 transcription factors had differential binding activity during aging, 

including two circadian regulators, Clock and Cycle, that showed sustained increased activity 

during aging. When we disrupted the Clock:Cycle complex by expressing a dominant negative 

version of Clock (ClkDN) in adult photoreceptors, we observed changes in expression of 15–20% 

of genes including key components of the phototransduction machinery and many eye-specific 

transcription factors. Using ATAC-seq, we showed that expression of ClkDN in photoreceptors 

leads to changes in activity of 37 transcription factors and causes a progressive decrease in global 

levels of chromatin accessibility in photoreceptors. Supporting a key role for Clock-dependent 

transcription in the eye, expression of ClkDN in photoreceptors also induced light-dependent 
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retinal degeneration and increased oxidative stress, independent of light exposure. Together, our 

data suggests that the circadian regulators Clock and Cycle act as neuroprotective factors in the 

aging eye by directing gene regulatory networks that maintain expression of the phototransduction 

machinery and counteract oxidative stress. 

 

Previous work in the Weake lab found that long, highly expressed genes were more susceptible to 

be downregulated with age. DNA:RNA hybrids are co-transcriptional structures that form when 

the nascent RNA hybridizes with the template strand, resulting in a displaced non-template 

ssDNA. Importantly, accumulation of R-loops is associated with transcriptional inhibition and 

genomic instability, both hallmarks of aging. In Chapter 3, I characterized R-loop in maintaining 

proper transcriptional outputs and regulating visual function during aging. Bulk assays to measure 

R-loop levels revealed a significant increase in nuclear R-loops with age. Further, genome-wide 

mapping of R-loops revealed that transcribed genes accumulated R-loops over gene bodies during 

aging, which correlated with decreased expression of long and highly expressed genes. 

Importantly, while photoreceptor-specific down-regulation of Top3β, a DNA/RNA topoisomerase 

associated with R-loop resolution, lead to decreased visual function, over-expression of Top3β or 

nuclear-localized RNase H1, which resolves R-loops, enhanced positive light response during 

aging.  

 

Together, these studies underscore the importance of understanding how age-related changes in 

genomic processes, such as circadian transcription and maintenance of R-loops, contribute to 

physiological changes observed during aging.  
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INTRODUCTION 

Aging is defined as “a persistent decline in the age-specific fitness components of an organism due 

to internal physiological deterioration” (1). Importantly, studies across multiple organisms have 

shown that aging is accompanied by several molecular phenotypes, including dysregulation of 

protein homeostasis, metabolic imbalance and differential epigenetic regulation of gene expression 

(2). Defining precise molecular mechanisms that contribute to age-associated changes has been 

proven to be difficult, partially because majority of aging studies have been focused on whole 

organisms (3). Importantly, there is growing amount of evidence that supports a model of different 

tissues aging at a different rate (4). However, cell-type specific studies during aging are difficult 

to perform in vertebrate aging models and studies based on tissue dissection tend to buffer cell-

type specific changes because of cellular heterogeneity and contamination with neighboring tissues 

(5), therefore making it nearly impossible to determine how each cell type responds and adapts to 

aging itself. Thus, these observations highlight the need to perform aging studies in the context of 

single tissues or cell types. 

In our lab, we are interested in understanding the biology of the aging eye. One of the hallmarks 

of the aging eye, as well as many age-related eye diseases, is the loss of particular cell types within 

the retina, including photoreceptor neurons, such as rods and cones (6,7). While recent studies in 

mice have shown that vision can be restored by inducing re-differentiation of precursor cells into 

mature photoreceptors by expressing reprogramming transcription factor cocktails (8,9), we still 

have a primitive understanding of the genomic regulation processes that are required to maintain 

photoreceptor health during aging. Importantly, defining these processes may provide avenues to 

prevent or slow-down photoreceptor degeneration, leading to reduced incidence of age-related eye 

diseases. 

Proper maintenance of transcriptional outputs is critical, because dysregulation of transcription 

can lead to altered cellular states, leading to disease. Further, proper transcriptional outputs require 

a tight regulation of every step, such including initiation, elongation, and termination. However, 

not much is known about how age affects the transcriptional machinery. We and others have shown 

that the transcriptional processes, such as splicing, become affected with age (2). Additionally, 

decreasing transcript levels of splicing factors, which lead to dysregulation of splicing outcomes, 
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in an eye-specific manner, lead to accelerated decrease in visual function, mimicking what is seen 

in older flies with normal levels of splicing factors (10). However, to our knowledge, there is no 

comprehensive understanding of how transcription factors, which initiate transcription by 

recruiting the RNA Polymerase II complex, contribute to the aging transcriptome. Thus, 

understanding what are the mechanisms that contribute to the maintenance of transcriptional 

outputs in visual neurons is an outstanding question in the field of biology of the eye (Figure 1). 

Since we and others have shown that modulation of factors associated with transcriptional 

regulation can lead to changes in eye physiology, we are interested in gaining a better 

understanding of the molecular changes that contribute to age-associated loss of photoreceptor 

function and survival. To study this, we use the Drosophila eye as model, with a focus on outer 

photoreceptor neurons. Outer photoreceptor neurons are homologs to mammalian rods, which are 

the photoreceptors involved in mediating peripheral vision, and also more abundant relative to 

cone cells (11). In order to perform our transcriptional studies in a tissue-specific manner, we 

previously developed a tissue-specific nuclear immuno-precipitation (NIE) approach that was 

compatible with RNA-seq (12), and we have extensively used this approach to profile the 

transcriptome of photoreceptor neurons under aging and blue-light stress (13,14). Additionally, 

this approach has been adapted in other labs to profile the transcriptome of different cell types (15–

18). However, our previous protocol yielded low nuclei numbers, which made performing 

chromatin profiling and obtaining material from rare cell populations challenging.  

My thesis was divided in firstly improving our tissue-specific nuclei immuno-enrichment 

approach, and validate several approaches to profile genome-wide aspects of chromatin biology, 

such as chromatin accessibility and histone modifications. Then, I applied these methods to aging 

photoreceptor neurons, and discovered a role for circadian transcription factors in promoting visual 

health by preventing light-dependent retinal degeneration and contributing to the response to 

increasing oxidative stress, which is often a hallmark of aging. Last, in collaboration with Dr. Hana 

Hall, I uncovered a novel role for regulation of RNA:DNA hybrid, or R-loop metabolism  in 

maintenance of visual function during aging.  
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Figure 1. Age-associated changes to the transcriptional machinery (taken from (2)). 
Age-associated impairment of transcriptional regulation processes might contribute to the aging 
transcriptome of Drosophila photoreceptor neurons. We and others have shown that 10-15% of the 
transcriptome has differential gene expression with age. In addition, we have observed 
dysregulation of splicing patterns. However, studies further evaluating age-associated changes in 
processes such as transcription factor occupancy, elongation rate, or termination efficiency, are 
lacking.   
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 IN VIVO TISSUE-SPECIFIC CHROMATIN PROFILING 
IN DROSOPHILA MELANOGASTER USING GFP-TAGGED NUCLEI. 

Declaration of collaborative work 

The work described in this chapter was the collaborative work of Juan Jauregui-Lozano and 
Kimaya Bakhle, under the supervision of Vikki M. Weake. Kimaya Bakhle performed the 
quantitative PCR experiments. All other experiments, as well as data visualization were performed 
by Juan Jauregui-Lozano. The original draft was written by Juan Jauregui-Lozano, and edited by 
Juan Jauregui-Lozano and Vikki Weake 

1.1 Introduction 

Dynamic regulation of the epigenome is crucial to replication, transcription, and DNA repair. For 

instance, accessible chromatin is associated with gene regulatory sequences, such as enhancers, 

promoters and transcription factor binding sites, and contributes to transcription initiation (19). In 

addition, chromatin-associated proteins, such as histones, transcription factors or chromatin 

remodelers, modulate several processes, including nucleosome occupancy (20), heterochromatin 

maintenance (21), and recruitment of DNA repair factors (22). Thus, genome-wide chromatin 

profiling across different physiological states can help us understand how chromatin-mediated 

processes impact cell homeostasis.  

The wide array of genetic manipulation tools, a highly mapped and annotated genome, relatively 

short lifespan, and ease of growth have made Drosophila one of the most widely used model 

organisms for studying the basic molecular mechanisms of eukaryotic cells (23). Further, the tissue 

homology between Drosophila and humans can be leveraged to uncover regulatory mechanisms 

associated with human relevant conditions, such as aging, neurodegeneration, and diabetes (24–

27). Since epigenetic dysregulation is one of the hallmarks of many diseases, including cancer and 

neurodegeneration (28,29), profiling chromatin states in a tissue-specific context using Drosophila 

might improve our understanding of how chromatin-associated changes contribute to disease 

onset. However, profiling cell type-specific chromatin states in vivo is challenging. Although tissue 

dissection can be coupled with bulk and single-cell genome wide experiments, manual tissue 

dissection is technically demanding and contamination from surrounding tissues can often 

confound results.  
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To overcome these limitations, alternative techniques have been developed based around epitope 

labeling of nuclei by transgenic expression of an epitope tag driven by a cell-type specific promoter 

followed by purification (30). This approach has been coupled with Fluorescence-Activated Cell 

Sorting (FACS)-based nuclei isolation, such as the “Batch Isolation of Tissue-Specific” (BiTS) 

approach (31), as well as bead-based purification, such as the “Isolation of Nuclei Tagged in 

specific Cell Types” (INTACT) method (32). In addition, INTACT has been applied to tissue-

specific experiments in Arabidopsis (33,34), Drosophila (35–38), Xenopus (39), and mice (40); 

FACS-based BiTS has also been extensively applied to purify different tissues from Drosophila 

embryos and mice (41). In Drosophila, these nuclei labeling approaches often rely on genetic tools 

for binary expression of transgenes, such as the well-established Gal4-UAS system (42). Currently, 

more than 8000 stocks that express Gal4 under control of different cell-type specific promoters are 

available through the Bloomington Drosophila Stock Center (BDSC). Thus, these nuclei tagging 

approaches combined with the Gal4-UAS expression system provide a powerful and flexible tool 

to manipulate and examine many cell-types in Drosophila.  

We previously developed a Gal4-UAS based nuclei immuno-enrichment (NIE) protocol to isolate 

nuclei from specific Drosophila cell types labeled with an outer nuclear membrane localized 

GFPKASH protein (12,13). The GFPKASH protein consists of the Klarsicht, ANC-1, Syne Homology 

(KASH) domain of Muscle-specific protein 300 kDa (Msp300; FBgn0261836) fused to the C-

terminus of EGFP, and localizes GFP to the outer nuclear membrane facing the cytoplasm (43). 

This GFPKASH-based NIE approach was successfully applied to transcriptomic studies in specific 

cell populations, such as larval glial cells (44), adult photoreceptor neurons (13,14), and olfactory 

sensory neurons (15). However, our previous protocol yielded low nuclei numbers, which made 

performing chromatin profiling and obtaining material from rare cell populations challenging. In 

this study, we sought to optimize the NIE protocol to increase nuclei yield and stringency over 

background. Using this ‘improved’ GFPKASH-based NIE protocol, we applied transcriptome and 

chromatin profiling techniques to NIE-purified adult Drosophila photoreceptor nuclei. We 

demonstrate the reproducibility and quality of datasets obtained profiling nuclear RNA-seq, an 

improved Assay for Transposable Accessible Chromatin followed by sequencing (ATAC-seq), 

called Omni-ATAC, and Chromatin immunoprecipitation followed by sequencing (ChIP-seq) and 

Cleavage Under Targets and Tagmentation (CUT&Tag) of histone modifications.  
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1.2 Results 

1.2.1 Optimization of tissue-specific nuclei immuno-enrichment (NIE) from adult 
Drosophila 

As a starting point for profiling chromatin states in specific cell types in Drosophila, we sought to 

improve nuclei yields obtained with the NIE protocol using flies that express the GFPKASH tag in 

outer photoreceptor neurons driven by Rh1-Gal4 (herein referred as Rh1>GFPKASH) (Mollereau et 

al., 2000). We reasoned that isolating nuclei in a buffer designed to retain the integrity of the 

nuclear envelope would increase the availability of the GFPKASH epitope, which is anchored to the 

outer nuclear membrane with GFP facing the cytoplasm (46). Previous studies have shown that 

perinuclear proteins are retained when nuclei are purified using a detergent-containing isotonic 

buffer (47), suggesting that the outer nuclear membrane remains intact under these conditions. 

Based on this rationale, we replaced the hypotonic/hypertonic buffers used in the homogenization, 

incubation, and washing steps of our previous NIE method with detergent-containing isotonic 

buffers. We also decreased the relatively high concentration of NP-40 detergent used for 

homogenization during the immunoprecipitation steps to decrease background binding (see 

methods). We refer to our previous and new NIE approaches as the ‘standard’ and ‘improved’ 

methods, respectively (Figure 1A). 

We first assessed how nuclei yields varied based on the NIE method used. To do this, we quantified 

DNA after each NIE reaction (n=4). We used DNA yield as a measure of nuclei yield because the 

magnetic beads used in the NIE auto fluoresce, making it difficult to quantify nuclei accurately 

using microscopy-based techniques (Figure 1B). The ‘improved’ method yielded 1.2 ng of DNA 

per fly, compared to 0.2 ng of DNA for the ‘standard’ method (Figure 1C). Considering that there 

are ~7200 outer photoreceptors per fly, and that a diploid Drosophila nucleus typically contains 

~0.36 pg DNA (48), the ‘improved’ method yields around 45% of the tagged nuclei compared 

with 13% for the ‘standard’ approach. We note that the starting material for each NIE reaction was 

400 age-matched Rh1>GFPKASH flies homozygous for both Gal4 and UAS transgenes; nuclei yield 

decreased approximately two-fold when GFPKASH-based NIE was performed using flies 

heterozygous for both transgenes, suggesting that higher GFPKASH expression levels can further 

improve purification efficiency. 
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Next, we evaluated if the NIE-purified nuclei were enriched relative to background cell types. To 

do this, we mixed an equivalent number of Rh1>GFPKASH flies with Rh1>mCherry-FLAGKASH, 

performed GFP-based NIE, and extracted DNA before (PRE) and after (POST) immuno-

enrichment. We then quantified the relative genomic copies of GFP and mCherry in each sample 

using quantitative PCR (qPCR). If nuclei from the POST sample are depleted of the mCherryKASH-

positive nuclei upon GFP-based NIE, then the ratio of GFP/mCherry for the POST sample will be 

higher than the value of one observed in the PRE sample, which contains an equivalent number of 

GFP and mCherry labeled nuclei. Using this approach, we observed 24-fold enrichment of GFP 

nuclei over mCherry using the ‘improved’ method, which compared favorably with the 20-fold 

enrichment observed using the ‘standard’ method (Figure 1D).    

1.2.2 The transcriptome of nuclei purified with the “improved” approach is depleted of 
genes enriched in other cell types relative to the ‘standard’ approach 

Because we had previously generated high-quality nuclear RNA-seq from outer photoreceptor 

nuclei using the ‘standard’ approach (13), we profiled the nuclear transcriptome of NIE-purified 

outer photoreceptor nuclei (Rh1>GFPKASH) using the ‘improved’ method and compared the 

transcriptome between methods; we note that the identical genotype, sex, and age were used for 

both studies, and that both library sets were generated using the same amount of RNA. We first 

analyzed similarity between the two datasets by calculating Spearman correlation for gene counts 

(Figure 2A). Spearman’s rank scores between replicates were high for both methods (p<0.97), and 

samples clustered together based on the method used for NIE. Further, we also observed similar 

clustering by NIE approach using Principal Component Analysis (PCA). Notably, the variation 

between biological replicates slightly decreased using the improved method.  

The observation that samples clustered by method suggested there were differences between the 

datasets obtained using the different NIE methods. We sought to identify the differences in gene 

expression associated with each NIE method by analyzing differentially expressed genes (DEGs) 

(n=3). Surprisingly, we identified 2046 DEGs (FDR < 0.01, FC > 2) between the two NIE methods, 

despite their identical genotypes, sex, and age (Figure 2B). Amongst these genes, 824 genes were 

upregulated in the improved dataset, and 1224 genes were upregulated in the standard dataset, 

representing improved- or standard-enriched genes, respectively. RNA-seq libraries for each 
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experiment were made using different RNA-seq kits (see methods). Since we used a kit designed 

for low-input material (200 pg – 10 ng RNA) to make the improved dataset libraries, we wondered 

if genes enriched in the improved dataset were being quantified as lowly-expressed in the standard 

dataset. However, the identified DEGs spanned a wide range of expression levels, including low, 

medium, and highly-expressed genes (Figure 2C), suggesting that differences in amplification of 

lowly abundant transcripts do not account for the differences in expression observed between the 

two approaches. Instead, inspection of the top DEGs in each condition revealed that several 

rhodopsin genes (Rh3, Rh4, and Rh6) were enriched in the standard method relative to the 

improved method. These rhodopsin proteins are highly enriched in inner photoreceptors (R7-R8) 

and are also expressed in the Johnston organ (49,50), but are not expressed in outer photoreceptors; 

conversely, Rh1-Gal4 is expressed only in the outer photoreceptors (45). Since inner 

photoreceptor-specific genes were enriched in the standard dataset, these observations suggest that 

the ‘improved’ method yields a more tissue-specific enriched nuclei pool relative to our previous 

approach. GO-term analysis of genes that were upregulated in each dataset revealed that the 

standard-enriched DEGs were enriched for categories such as neuropeptide signaling pathway, 

muscle contraction, and muscle structure development (Figure 2D, top). Further, gene-concept 

network analysis revealed enrichment of 42 genes associated with non-photoreceptor cell types in 

the standard-enriched DEGs, including ventral lateral neuron-expressed Pdf (FBgn0023178), 

protocerebrum-enriched Dsk (FBgn0000500), and muscle-enriched Unc-89 (FBgn0053519) 

(Figure 2E) (51,52). In contrast, GO terms over-represented in the improved-enriched DEGs were 

associated with processes related to protein folding and polytene chromosome puffing (Figure 2D, 

bottom). Gene-concept network analysis revealed that the over-representation of these GO-term 

categories were driven by a modest enrichment of five Heat Shock Protein (Hsp) genes (Figure 

2F).  

Because of a statistically significant over-representation of biological processes associated with 

other cell types in ‘standard’ enriched dataset, these findings suggest that nuclei purified using the 

‘improved’ NIE method have higher enrichment of tissue-specific transcripts compared to the 

‘standard’ approach. However, we note that these experiments were performed at different times, 

and therefore batch effects and other variables might also influence our observations. Considering 

that the ‘improved’ method also had higher nuclei yields, we proceeded to optimize the subsequent 
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chromatin profiling methods with NIE-purified outer photoreceptor nuclei from Rh1>GFPKASH 

flies using this method.  

1.2.3 Profiling chromatin accessibility (Omni-ATAC) in NIE-purified nuclei 

We next sought to profile accessible chromatin of NIE-purified nuclei using Omni-ATAC, a 

recently modified ATAC-seq technique which yields higher quality data, especially with lower 

input (53). ATAC-seq techniques, including Omni-ATAC, require optimization of the number of 

nuclei or cells used for each reaction to generate appropriate DNA fragment sizes and avoid either 

under- or over-tagmentation. Normally, cultured cells are counted to achieve precise numbers of 

cells per assay. However, nuclei bound to magnetic beads cannot be easily quantified using an 

automatic cell counter because the free magnetic beads interfere with the identification of 

individual nuclei (see Figure 1B). To overcome this limitation, we isolated genomic DNA from a 

fraction of the purified nuclei and normalized input material for Omni-ATAC reactions based on 

this quantification (Figure 3A). We note that because our protocol begins with NIE-purified nuclei, 

mitochondria are already depleted from the initial starting material, as shown by qPCR analysis of 

mitochondrial DNA present in the PRE and POST NIE samples. To evaluate whether differences 

in starting material would substantially alter data quality, we performed Omni-ATAC using either 

50 or 100 ng of DNA (corresponding to approximately 125,000 and 250,000 nuclei, respectively) 

with a fixed amount of Tn5.  

Tapestation analysis of Omni-ATAC libraries revealed similar DNA laddering patterns with both 

amounts of input nuclei. We then sequenced these libraries, and evaluated the size  distribution of 

the mapped fragments. We observed the expected nucleosomal phasing distribution in both 

libraries (Figure 3B), with the first peak (80-120 bp) corresponding to nucleosome-depleted region 

(NDR)-associated DNA, followed by a peak around 180 bp corresponding to mononucleosome-

associated fragments. Genome browser inspection of the data revealed discrete peaks with similar 

enrichment profiles obtained under each condition (Figure 3C). Since the Omni-ATAC signal 

should be enriched around transcriptional start sites (TSS), we next evaluated read distribution 

around the TSS of protein-coding genes (Figure 3D). We observed a significant enrichment of 

Omni-ATAC signal around the TSS with no differences between the 50 ng- and 100 ng- associated 
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datasets. This finding was further corroborated by heatmap plots of all protein-coding genes ranked 

based on their Omni-ATAC signal enrichment around the TSS.   

Next, we evaluated the genomic distribution of peaks from both samples (Figure 3E). As expected 

from the observed enrichment of Omni-ATAC signal around the TSS (Figure 3C), 70% of the 

peaks mapped to promoters with no discernible differences in distribution between the two 

samples, and samples had a Spearman’s score of 0.98. Because accessible chromatin is enriched 

for active promoters, we next evaluated if chromatin accessibility levels correlated with transcript 

levels detected by nuclear RNA-seq (see Figure 2). To do this, we divided the 13930 genes in the 

Drosophila genome based on their position on the heatmap into six groups, where genes are ranked 

based on the Omni-ATAC signal around the TSS (Figure 3G), and plotted the transcript level (log2 

transcript per million - TPM) for all genes in each cluster (Figure 3H). We observed a positive 

correlation between the levels of chromatin accessibility at the TSS and transcript expression 

levels. Altogether, these observations suggest that high-quality chromatin accessibility data can be 

obtained from NIE-purified nuclei using as little as 50 ng of DNA equivalent of starting material, 

when coupled with Omni-ATAC. 

1.2.4 Omni-ATAC of NIE-purified nuclei does not require high sequencing depth  

To benchmark the quality and reproducibility of the Omni-ATAC protocol using the NIE-purified 

nuclei, we sought to systematically evaluate different quality control metrics of ATAC-seq 

datasets. We performed Omni-ATAC on NIE-purified nuclei equivalent to 100 ng of DNA in four 

independent biological samples, processing and analyzing each replicate individually (n=4). We 

first calculated the Spearman’s correlation based on read distribution over a 500-bp binned 

genome, and found high reproducibility between samples, with Spearman’s p scores above 0.90 

(Figure 4A). Next, we plotted the Omni-ATAC signal around the TSS of protein coding genes 

(Figure 4B). We observed that the enrichment profiles around the TSS were highly consistent 

between replicates, corroborating the Spearman’s correlation analysis. Next, we sought to evaluate 

the quality of peak-based analysis for each sample. Genome browser inspection of Omni-ATAC 

signal next to the peaks corresponding to each replicate showed high consistency, as determined 

by signal intensity of peaks (Figure 4C). Further, 88% of peaks presented significant overlap 

amongst all four replicates (Figure 4C). Similarly, we observed high concordance by 
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Irreproducible Discovery Rate (IDR) analysis of peaks between replicates, with all pair-wise 

comparisons having an IDR value above 0.61. The Fraction of Reads in Peaks (FRiP) score is a 

common quality control metric for genomic datasets, such as ChIP-seq and ATAC-seq, that 

measures overall signal-to-background ratio, as defined by ENCODE guidelines (54).  According 

to ENCODE, good quality ATAC-seq datasets are defined as having FRiP score higher than 0.3. 

Thus, we next evaluated how FRiP scores varied based on sequencing depth. To do this, we down-

sampled each replicate to 0.5, 1, 2.5, 5, 10, 20, 30, 40, and 50 million mapped fragments, and 

obtained its corresponding FRiP score (Figure 4E). FRiP scores did not vary significantly between 

replicates, and surprisingly, there was no substantial improvement in FRiP scores past 10 million 

mapped fragments. Further, visual inspection of the down-sampled data on a genome browser 

revealed similar enrichment of peaks at only 0.5 million fragments, resembling that observed using 

50 million fragments. Next, we evaluated the number of peaks called for each sample based on the 

number of fragments (Figure 4G). As expected, peak calling benefited from the higher sequencing 

depth. However, when the number of peaks identified was normalized to the sample with greatest 

sequencing depth (50 million mapped fragments), we found that obtaining 20 million fragments 

identified approximately 80% of all possible peaks. Taken together, these observations imply that 

Omni-ATAC datasets do not require high sequencing depth for consistent gene- and peak-based 

analysis, and that 10-20 million reads is likely sufficient for most peak-based analyses in 

Drosophila samples.  

1.2.5 The histone methylation landscape of adult Drosophila photoreceptors 

Chromatin Immunoprecipitation (ChIP) is one of the most commonly used techniques in the 

genomics field, whereby sonicated chromatin is used to immunopurify a protein-DNA complex, 

followed by purification of the enriched DNA. Coupled with qPCR or high-throughput sequencing 

(ChIP-seq), it allows researchers to interrogate if a protein of interest is bound to a particular locus, 

or assay its genome-wide distribution, respectively. We sought to optimize a ChIP protocol 

suitable for use with NIE-purified nuclei. During development of the protocol, we initially found 

that fixing the nuclei during homogenization led to an increase in background nuclei upon NIE 

(data not shown), leading us to modify the protocol so that the chromatin was cross-linked while 

the nuclei were immobilized on the magnetic beads, immediately following NIE (Figure 5A). 

Chromatin was then sonicated, and ChIP performed using standard approaches (see methods).  
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To benchmark the ChIP protocol, we examined genome-wide distribution of two histone methyl 

marks, Histone H3 Lysine 4 tri-methylation (H3K4me3) and H3 Lysine 36 tri-methylation 

(H3K36me3), both of which have been widely characterized by ChIP-qPCR and ChIP-seq studies 

in Drosophila and other organisms. We also examined the distribution of bulk histone H3, as well 

as an input sonicated chromatin control. First, we assessed the enrichment of each antibody by 

evaluating the overall distribution of reads over gene bodies for all protein-coding genes. Histone 

H3 is distributed throughout both active and repressed chromatin, and is usually slightly depleted 

around the TSS of transcribed genes (55). In Drosophila, as well as in Saccharomyces cerevisiae 

and in humans, H3K4me3 is enriched at the TSS whereas H3K36me3 localizes to gene bodies 

(56). Consistent with this expected distribution, we observed depletion of histone H3 and 

enrichment of H3K4me3 around the TSS, while H3K36me3 was enriched towards the 3´ region 

of the gene body (Figure 5B). Further, genome browser inspection of individual genes, such as the 

photoreceptor-enriched genes trp and trpl, corroborated the enrichment for H3K4me3 around the 

TSS and H3K36me3 over the gene body. In contrast, the inner photoreceptor-expressed Rh3 

showed no enrichment for either histone mark, as expected based on its lack of expression in outer 

photoreceptors (Figure 5C).  

Next, we assessed the reproducibility between the replicates obtained using our ChIP-seq 

approach. Given the semi-quantitative nature of ChIP-seq, there has been growing interest in 

adding exogenous chromatin prior to immunoprecipitation, using the reads that map to the 

“reference” genome for spike-in normalization (57). To facilitate this spike-in normalization 

approach, we added 5% of Arabidopsis thaliana chromatin to Drosophila samples before each 

immunoprecipitation. To evaluate how the similarity between individual samples varied based on 

the normalization method, we normalized the data using the Arabidopsis spike-ins (as described 

in (58) or calculated traditional counts per million or CPMs. We then calculated the Spearman 

correlation of read coverage over the binned genome for H3K4me3 and H3K36me3 separately 

(Figure 5D-E). Interestingly, the H3K4me3 samples clustered based on the normalization method 

used, although there were no major differences between Spearman’s rank scores obtained for 

individual samples using either approach. Replicate correlation was high for both normalization 

methods (p > 0.96 for both normalization methods). Strikingly, the H3K36me3 samples clustered 

together based on replicate rather than normalization approach, and each replicate had a p=1, with 

its normalization counterpart. Corroborating the heatmap findings, metaplot analysis of the 
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H3K4me3 distribution around the TSS and H3K36me3 distribution over gene bodies showed no 

substantial differences between biological replicates using either normalization approach. To 

further assess similarity between the replicates based on antibodies used, we next evaluated 

Spearman’s correlation of CPM-normalized data for H3, H3K4me3, and H3K36me3 (Figure 5F). 

Corroborating the findings from the global read distribution over gene bodies, samples clustered 

together based on antibody. Moreover, the correlation between replicates for each antibody was 

also high (p > 0.96). We also found that normalizing histone methylation ChIP-seq data to the 

corresponding input did not affect the correlation findings based on samples clustering with 

antibodies, although Spearman’s rank scores slightly decreased between biological replicates (p > 

0.71, p > 0.80 and p > 0.90 for H3, H3K4me3 and H3K36me3, respectively). Moreover, genome 

browser inspection revealed that the H3 samples also presented the same amplification bias as 

input, suggesting that H3 normalization was sufficient for between-sample comparisons. 

Moreover, normalizing the histone methyl marks to histone H3 also controls for nucleosome 

occupancy.  

Because H3K4me3 and H3K36me3 are histone modifications associated with active transcription, 

we next asked if H3K4me3 and H3K36me3 ChIP-seq signal levels positively correlated with gene 

expression. To do this, we ranked all protein-coding genes based on H3-normalized H3K4me3 

signal around the TSS (Figure 5G, left) or H3-normalized H3K36me3 signal over gene bodies 

(Figure 5H, right), and separated all 13930 genes into six clusters based on their level of the 

respective histone mark. We then examined gene expression for each cluster by plotting transcript 

levels for each gene in the cluster (log2 transcript per million -TPM) (Figure 5H). Similar to our 

observations for the Omni-ATAC clusters, H3K4me3 and H3K36me3 levels positively correlated 

with active transcription.  

Overall, these observations demonstrate that chromatin obtained from NIE-purified nuclei 

accurately reflect the transcriptional state of these cells and can be used for profiling of chromatin 

accessibility and histone modifications. Furthermore, in our hands, adding a reference genome for 

spike-in normalization does not outperform traditional CPM normalization. We note that although 

the ChIP-seq data shown here was generated from libraries that used 2 ng of DNA as starting 

material, libraries made with as little as 100 pg of DNA showed comparable profiles, suggesting 

that this ChIP-seq protocol is amenable to low-input starting material. We also performed qPCR 
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on ChIP samples obtained using this protocol, demonstrating that this approach may be useful for 

researchers interested in examining individual genes rather than performing genome-wide studies. 

1.2.6 NIE-purified nuclei are compatible with CUT&Tag for profiling histone marks 

Last, we sought to apply CUT&Tag to NIE-purified nuclei. CUT&Tag is a recently developed 

technique used to profile chromatin, whereby a fusion protein (pAG-Tn5) targets an antibody-

bound chromatin target, followed by tagmentation and release of enriched DNA (59). CUT&Tag 

has several advantages over ChIP-seq, including shorter sample processing times and lower 

background signal, therefore requiring less sequencing depth to identify high probability binding 

sites for proteins of interest. Further, CUT&Tag yields sequencing-ready libraries with no need 

for an additional library construction step. Based on these advantages, we sought to develop a 

CUT&Tag approach suitable for use with NIE-purified nuclei using commercially available 

Protein A/Protein G-Tn5 (pAG-Tn5). 

Standard CUT&Tag protocols require cell/nuclei immobilization with Concanavalin A beads. 

However, NIE-purified nuclei are already bound to Protein G-magnetic Beads (PGBe), providing 

an initial starting point for CUT&Tag protocols. Our first H3K4me3 CUT&Tag trials with NIE-

purified nuclei using PGBe were unsuccessful, and we wondered if the rabbit anti-H3K4me3 

antibodies were being adsorbed by the excess protein G in our nuclei preparations (Figure 6A). To 

test this possibility, we performed NIE using Mouse IgG-coupled magnetic Beads (MIBe) instead 

of PGBe. Strikingly, performing NIE with MIBe led to successful purification of DNA following 

CUT&Tag, suggesting that PGBe were interfering with CUT&Tag steps. We then performed 

H3K4me3 CUT&Tag using age and sex-matched photoreceptor nuclei in order to compare the 

data with H3K4me3 ChIP-seq, since both datasets were obtained using the same antibody. 

TapeStation profiles of the four replicates detected sub-, mono- and di-nucleosomal fragments, 

with significant enrichment for mononucleosome-associated DNA (Figure 6B). We then 

proceeded with paired-end sequencing of the libraries. Genome browser inspection of CPM-

normalized H3K4me3 CUT&Tag, H3K4me3 ChIP-seq, and Omni-ATAC signal (Figure 6C) 

revealed that H3K4me3 CUT&Tag signal had a more similar distribution to ChIP-seq than Omni-

ATAC based on the number of “pseudo-peaks”, or high signal points. Notably, background levels 

in H3K4me3 CUT&Tag were much lower than ChIP-seq, as shown by signal in intergenic regions. 
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To further assess the correlation between each CUT&Tag replicate, we calculated Spearman’s 

correlation rank scores. Because CUT&Tag data had very low levels of background relative to 

ChIP-seq, we calculated the correlation based on read coverage over the narrow peaks obtained 

from the H3K4me3 ChIP-seq data instead of the binned genome. As expected from the above 

comparisons, samples clustered together based on technique. Using this approach, ChIP-seq 

samples had higher correlation values between individual replicates (p>0.9) compared with 

CUT&Tag replicates (p>0.83).  

Since CUT&Tag replicates had a relative lower similarity compared to ChIP-seq, we next 

evaluated genome-wide signal distribution of H3K4me3 ChIP-seq and CUT&Tag around the TSS 

using metaplots. Signal distribution of H3K4me3 ChIP-seq around the TSS was highly consistent 

between replicates (Figure 6E-top), which further corroborated the Spearman’s analysis. 

Surprisingly, H3K4me3 CUT&Tag signal was highly variable between replicates, both in intensity 

and signal distribution (Figure 6E-bottom). In addition, metaplots revealed that CUT&Tag 

replicates 1, 2 and 3 had a substantial increase in signal around the TSS that resembled the Omni-

ATAC signal. To further assess to what extent the CUT&Tag signal originated from H3K4me3-

associated DNA, we obtained heatmaps of CPM-normalized signal over gene bodies and compared 

ChIP-seq, CUT&Tag and Omni-ATAC. Heatmaps revealed that overall, CUT&Tag replicates 

showed similar signal distribution over gene bodies, with similar distribution to ChIP-seq (Figure 

6F). Notably, Omni-ATAC signal was highly enriched around the TSS, with no significant 

enrichment over gene bodies. Last, we evaluated the signal to background ratio for H3K4me3 

CUT&Tag data compared to H3K4me3 ChIP-seq using the CUT&Tag replicate that most closely 

resembled ChIP-seq (R4). To do this, we obtained FRiP scores for the H3K4me3 CUT&Tag 

replicate 4 and H3K4me3 ChIP-seq by down-sampling the H3K4me3 CUT&Tag-R4 and ChIP-

seq samples to 0.5, 1, 2.5, 5, 10, and 15 million mapped fragments (Figure 6D). Notably, 

CUT&Tag substantially outperformed ChIP-seq with a FRiP score of 0.367 for CUT&Tag data 

even at only 0.5 million mapped fragments. In comparison, the FRiP score for ChIP-seq data only 

reached 0.266 at 15 million fragments. 

Taken together, these observations indicate that a slight modification to the NIE reagents makes it 

possible to apply CUT&Tag to NIE-purified nuclei, providing a cost effective and efficient way 

of examining the genome-wide distribution of DNA-binding proteins. However, we note that the 
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increased variability observed between CUT&Tag replicates relative to ChIP-seq samples, as well 

as the presence of accessible DNA in some of the CUT&Tag datasets, suggests that further 

optimization to the protocol is required to improve the quality of the datasets. 

1.3 Discussion 

Here, we demonstrate the feasibility of chromatin profiling in specific cell types using immuno-

enriched nuclei as starting material and show that profiling of chromatin accessibility and histone 

modifications associated with active transcription correlate with the transcriptional state of the 

profiled cell type. Our NIE approach enables isolation of nuclei within one hour, that can be 

subsequently used for RNA, DNA, and chromatin extraction, therefore enabling the application of 

RNA-seq, ATAC-seq, ChIP-seq, and CUT&Tag (Figure 7A). Compared to our ‘standard’ 

approach, the ‘improved’ NIE approach increased the nuclei yield 4-fold, as shown by genomic 

DNA quantification. In our hands, we have found that  quantifying genomic DNA was the simplest 

and most robust approach to normalizing input amounts for samples because we could easily 

extract DNA from a small fraction of each sample, and process and quantify multiple samples 

within ~20 – 30 minutes. This allowed for robust and reproducible quantification of several 

samples at the same time. Nonetheless, it is possible to use different quantification techniques to 

assess nuclei yields, such as nuclei counting using a hemocytometer, since nuclei can be easily 

stained with DAPI and counted manually using a fluorescent microscope.   

By isolating nuclei, rather than cells, we can obtain highly pure nuclear RNA that provides a view 

of the actively transcribed genome. While these data correlate with the adult photoreceptor 

transcriptome determined in our previous studies using a similar approach (13), our modified NIE 

protocol results in significant decrease in transcript levels of genes associated with other cell types. 

However, we cannot conclude on whether these differences are biological or technical, or both, 

because these experiments were performed at different times and there could be artifacts induced 

by differences in the experimental conditions that could also influence gene quantification, such 

batch effects and different library preparation kits. Combining this improved NIE approach with 

library construction kits developed for low RNA inputs, such as the one used in this study, will 

facilitate RNA-seq studies on much rarer cell populations, or on cells labeled in mosaic animals, 

that have previously been difficult to analyze using other techniques. 
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In addition to RNA-seq, we profiled accessible chromatin at a genome-wide scale in the NIE-

purified nuclei using Omni-ATAC. To our knowledge, this is the first report of cell-type specific 

chromatin accessibility data in adult Drosophila, although ATAC-seq studies have been performed 

in different embryonic cell-types isolated using the INTACT method (36) and in dissected larval 

imaginal discs (60). Here, we show that using as little as 50 ng DNA equivalent of NIE-purified 

nuclei was sufficient to produce high-quality genome-wide chromatin accessibility data, 

suggesting that this technique should be suitable for lowly abundant cell types. Published reports 

have shown that ATAC-seq and Omni-ATAC can be applied to as little as 500 human cells (53,61), 

indicating that these chromatin profiling approaches are highly amenable to low input samples. 

We also applied two approaches to profile genome-wide distribution of histone modifications, 

ChIP-seq and CUT&Tag. Our ChIP-seq protocol is amenable to incorporation of exogenous 

chromatin for spike-in normalization, although in our hands, normalizing the ChIP-seq data with 

a published spike-in normalization approach did not outperform traditional CPM normalization. 

We note that there has been discussion of the caveats for spike-in normalization with regard to 

ChIP-seq data (Refer to Dickson, 2020). Last, we switched the beads used for NIE from protein-

G Dynabeads to mouse IgG Dynabeads, allowing successful application of H3K4me3 CUT&Tag 

to NIE-purified nuclei. To our knowledge, this work is the first report of tissue-specific CUT&Tag 

in Drosophila. Although the H3K4me3 CUT&Tag data showed increased variability, and yielded 

a combination of accessible and H3K4me3 associated DNA, FRiP score evaluation showed that 

even at a low sequencing depth (1x106 mapped fragments), H3K4me3 CUT&Tag signal-to-

background ratio outperformed the ChIP-seq data obtained using the same antibody. We expect 

NIE-purified nuclei to be compatible with CUT&RUN techniques using a similar approach to that 

described in this study, since both techniques are based on the same principle; CUT&RUN uses 

MNase to digest and release enriched DNA (62).  

Together, our data demonstrate that combining the improved NIE protocol with commonly used 

chromatin profiling techniques provides a feasible approach to characterizing the transcriptome 

and epigenome of specific cell types in Drosophila. In our hands, purifying nuclei using 

homozygous Rh1-Gal4, UAS-GFPKASH yield 1.2 ng and 0.67 ng of DNA and RNA, respectively, 

per fly. Based on these estimations, we have calculated how many nuclei would be required to 

perform all the experiments presented in this manuscript (Figure 7B). In addition, the NIE 
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approach will facilitate researchers interested in profiling different aspects of chromatin biology 

using a single biological sample because purified nuclei can be split for RNA, DNA and chromatin 

extraction. Nuclei resuspended in Trizol or a Trizol-derivative are stable and can be kept for later 

RNA extraction. In addition, in our hands, nuclei can be incubated on ice for 1 hour before 

tagmentation without loss of chromatin integrity. Based on the wealth of available Gal4 drivers 

for cell type-specific expression in Drosophila, the NIE approach described here provides a 

flexible and resourceful chromatin profiling toolkit for researchers to interrogate chromatin-

associated processes in a tissue-specific context. Additionally, we have generated fly stocks 

expressing the GFPKASH tag under the Q binary expression system (63) as well as UAS lines that 

tag nuclei with either mCherry-FLAG, 6xmyc or mCherry-FLAG/GFP, to provide additional 

flexibility for studies in Drosophila. These stocks are available at Bloomington Drosophila Stock 

Center (Figure 7C).  

1.4 Methods 

1.4.1 Fly strains  

Flies homozygous for Rh1>GFPKASH = P{ry+t7.2=rh1-GAL4}3, ry506, P {w+mC = UAS-GFP-

Msp300KASH}attP2 or Rh1>mCherryKASH, P{ry+t7.2=rh1-GAL4}3, ry506, P{w+mC = UAS-

Msp300KASH-mCherry-Flag}attP2} (Hall et al., 2017) were raised in 12:12 h light:dark cycle at 

25°C on standard fly food. Flies were maintained in population cages with a density of ~1000 

flies/cage. Fresh food was switched every other day. For all the biological replicates, male flies 

were collected at 10 days post-eclosion at Zeitgeber time 6 (-/+ 1 hour).  

1.4.2 Nuclei Immuno-Enrichment (NIE)  

NIE was performed as described previously (Hall et al., 2017; Ma & Weake, 2014) with minor 

modifications to the buffers used through-out the protocol. Briefly, fly heads from 400 age-

matched flies were collected by freezing flies in 5 cycles of flash-freezing and vortexing. Fly heads 

were collected using frozen sieves and transferred to a 1 mL Dounce homogenizer containing 1 

volume of homogenization buffer (40 mM HEPES, pH 7.5, 120 mM KCl and 0.4% v/v NP-40). 

Flies were homogenized using 10 strokes with ‘loose pestle’ followed by 10 strokes with ‘tight’ 

pestle. Homogenized lysate was then filtered using 40 μm cell strainers (Corning, Tewksbury MA, 
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Catalog# 352340), and NP-40 was diluted to 0.1% final concentration by adding 3 volumes of 

Dilution buffer (40 mM HEPES, pH 7.5 and 120 mM KCl). Nuclei were immuno-enriched using 

40 μL of Dynabeads Protein G (ThermoFisher, Waltham MA, Catalog #10004D) pre-coupled with 

4 μg of mouse anti-GFP antibody (Sigma Aldrich, St. Louis MO, Catalog #11814460001) for 

RNA-seq, ChIP-seq and Omni-ATAC experiments. For CUT&Tag, nuclei were immunoenriched 

using 40 μL of Dynabeads Pan Mouse IgG (ThermoFisher. Catalog #11041) pre-coupled with 4 

g of mouse anti-GFP antibody (Sigma Aldrich, Catalog #11814460001). Beads and nuclei were 

incubated at 4°C for 30 min with constant rotation, followed by 3 x 5-min washes with 

homogenization buffer at 4°C. 

1.4.3 Quantitative PCR  

DNA was purified with Quick-DNA Microprep Plus Kit (Zymo Research, Irvine CA, Catalog 

#D4074) and qPCR was performed using Bullseye EvaGreen qPCR 2X master mix-ROX (Midsci, 

Valley Park, MO, Catalog #BEQPCR-R) following the manufacturer's instructions. 

1.4.4 RNA-seq 

Purified nuclei were resuspended in 100 μL TRI reagent (Zymo Research, Catalog #R2050-1-200). 

RNA was purified using Direct-zol™ RNA Microprep (Zymo Research, Catalog, #R2061) and 

quantified with Qubit™ RNA HS Assay Kit. 10 ng of nuclear RNA were used for construction of 

cDNA libraries with Ovation SoLo RNA-seq System with Drosophila-specific anyDeplete 

technology for rRNA depletion (Tecan, Redwood City, CA, Catalog #0502-32). Up to 16 libraries 

were pooled in one lane for paired-end 150 bp Illumina HiSeq sequencing.  

1.4.5 Omni-ATAC 

Transposition was performed as published (Corces et al., 2017). Briefly, a fraction of 

immunoprecipitated nuclei were purified with Quick-DNA Microprep Plus kit (Zymo Research, 

Catalog #D4074). Nuclei corresponding to 50 or 100 ng were aliquoted and resuspended in 50 μL 

of Transposition mix (25 μL 2x TD buffer, 16.5 μL PBS, 0.05 μL 1% v/v Digitonin, 0.05 μL 10% 

v/v Tween and 2.5 μL TDE1 enzyme (Illumina, San Diego CA, Catalog #20034198). Tagmented 

DNA was purified with Zymo DNA clean & concentrator-5 kit (Zymo Research #D4013). 
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Libraries were constructed using IDT for Illumina Nextera DNA Unique Dual Indexes Set A 

(Illumina, Catalog #20027213) and 7 PCR cycles were used to amplified libraries using NEBnext 

High-Fidelity 2X PCR Master Mix (New England Biolabs, Ipswich MA, Catalog #M0541S) and 

SYBR Green I (ThermoFisher, Catalog #S7563). To determine additional cycles, Nextera primers 

1 and 2 were used. Purified libraries were submitted to a round of double-size selection with 

AMPure XP beads (Beckman Coulter, Brea CA, Catalog #A63880) with a 0.5X-1.0X ratio. The 

fragment size distribution of libraries was assessed with TapeStation High-Sensitivity D1000 

Screentapes (Agilent, Santa Clara CA, Catalog #5067-5584). Up to 16 libraries were pooled in one 

lane for paired-end 150 bp Illumina HiSeq sequencing.  

1.4.6 ChIP-seq 

Chromatin extraction (Drosophila): Immunoenriched nuclei were resuspended in 1 mL of A1 

buffer (15 mM HEPES, pH 7.5, 15 mM NaCl, 60 mM KCl, 4 mM MgCl2, 0.5% Triton X-100 v/v) 

and cross-linked with 1% methanol-free formaldehyde (ThermoFisher #28906) for 2 min at room 

temperature. Fixed nuclei were quenched with 125 mM Glycine, pH 7.5 for 5 min, followed by 

sonication in 130 μL of Nuclei Lysis Buffer (50 mM Tris-HCl, pH 8.0, 10 mM EDTA, 1% v/v 

SDS) in Covaris E220 with the following conditions: 10 min, 2% duty cycle, 105 Watts and 200 

c.p.b. to obtain an average fragment size of ~320 bp. Chromatin was centrifuged at 14,000 rpm, 

10 min, 4°C, and the soluble chromatin supernatant was diluted with X-ChIP dilution buffer (16.7 

mM Tris, pH 8.0, 167 mM NaCl, 1% Triton X-100 v/v, 1.2 mM EDTA pH 8.0), flash-frozen in 

liquid nitrogen, and stored at -20°C. Chromatin extraction (Arabidopsis): 2.5 g of 10-day old ref4-

3MED15FLAG Arabidopsis thaliana seedlings were ground to a fine powder using liquid nitrogen 

and resuspended in 20 mL of cold EB1 buffer (0.44 mM sucrose, 10 mM Tris, pH 8.0, 10 mM 

MgCl2, 5 mM B-Me, 0.1 mM PMSF). The solution was filtered through two layers of miracloth 

and centrifuged at 3,000 x g, 20 min, 4°C. The pellet was then resuspended in 1 mL of cold EB2 

Buffer (Sucrose 0.25M, 10 mM Tris, pH 8.0, 10 mM MgCl2, 1% v/v Triton X-100, 5 mM -Me, 

0.1 mM PMSF) and centrifuged at 4°C, 12,000 g for 10 min. The pellet was resuspended in 300 

μL of cold EB3 buffer (sucrose 1.7M, 10 mM Tris, pH 8.0, 2 mM MgCl2, 0.15% v/v Triton X-

100, 5 mM -Me, 0.1 mM PMSF) and the sample was overlaid on top of 300 μL of cold EB3 and 

centrifuged at 4°C, 16,000 x g for 1 hour. Supernatant was transferred to a low-retention tube, 

snap-frozen and stored at -20°C. 
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Chromatin immunoprecipitation: ChIP was performed as described (Deal & Henikoff, 2010) with 

the following modifications. Briefly, 380 ng of Drosophila chromatin (DNA) was mixed with 20 

ng of Arabidopsis chromatin as a spike-in control (5%), and incubated with 1 μg of each of the 

following antibodies: H3 (Abcam, Cambridge MA, Catalog #1791), H3K4me3 (Abcam, Catalog 

#8580) and H3K36me3 (Abcam, Catalog #9050) for 12 to 18 hours at 4°C. Immunoprecipitated 

histone-DNA complexes were incubated with 25 μL Dynabeads protein G (ThermoFisher, Catalog 

#10004D) for 2 hours at 4°C, followed by 5-min washes with 1 mL Low Salt Buffer (20 mM Tris-

HCl, pH 8.0, 150 mM NaCl, 0.1% v/v SDS, 1% v/v Triton X-100, 2 mM EDTA), 1 mL High Salt 

Buffer (20 mM Tris, pH 8.0, 500 mM NaCl, 0.1% v/v SDS, 1% v/v Triton X-100, 2 mM EDTA), 

1 mL LiCl Wash buffer (10 mM Tris, pH 8.0, 250 mM LiCl, 0.1% v/v Na-Deoxycholate, 1% v/v 

NP-40 substitute, 1 mM EDTA) and 1 mL TE (10 mM Tris, pH 8.0, 1 mM EDTA). Histone-DNA 

complexes were eluted from the magnetic beads with X-ChIP elution buffer (100 mM NaHCO3, 

1% v/v SDS), treated with RNAse A (ThermoFisher, Catalog #EN0531) at 37°C for 30 min and 

Proteinase K (ThermoFisher, Catalog #AM2546) at 55°C for 12 to 18 hours. DNA was purified 

with Zymo Research ChIP DNA clean & concentrator kit (Zymo Research, Catalog #D5205). 

Purified DNA was quantified with Qubit 1X HS DNA kit (ThermoFisher, Catalog #Q33230). Input 

sample fragment size was determined with TapeStation High-Sensitivity D5000 Screen tapes 

(Agilent, Catalog #5067-5592) 

ChIP-seq library prepation: 2 ng of DNA were used for ChIP-seq libraries constructed with Tecan 

Ovation Ultralow V2 DNA-Seq Library Preparation Kit-Unique Dual Indexes (Tecan, Catalog 

#9149-A01). Following amplification, purified libraries were submitted to a round of double-size 

selection with AMPure XP beads (Beckman Coulter, Catalog# A63880) with a 0.61X-0.8X ratio. 

Libraries fragment size distribution was assessed with TapeStation High-Sensitivity D1000 

Screentapes (Agilent, Catalog #5067-5584). Up to 16 libraries were pooled in one lane for paired-

end 150 bp Illumina HiSeq sequencing.  

1.4.7 CUT&Tag 

CUT&Tag was performed using CUTANA™ CUT&Tag reagents (Epicypher, Durham NC, #15-

1017, #15-1018, #13-0047) following manufacturer’s “Direct-to-PCR CUT&Tag Protocol” with 

minor modifications: Briefly, purified nuclei were washed 1 times with cold Antibody150 buffer, 
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and protocol was started at Section III “Binding of Primary and Secondary antibodies” and 

followed as described: https://www.epicypher.com/content/documents/protocols/cutana-cut&tag-

protocol.pdf, last accessed on May 15th, 2021. 

1.4.8 Data processing 

Raw reads were trimmed using Trimmomatic version 0.39 (64) to filter out low quality reads 

(Q>30) and clean adapter reads. Cleaned reads were aligned to the Drosophila melanogaster 

genome (BDGP Release 6 + ISO1 MT/dm6 from UCSC) using splicing-aware aligner STAR 

version 1.3 (65) for RNA-seq, and Bowtie2 version 2.3.5.1 (66) for Omni-ATAC, ChIP-seq and 

CUT&Tag using –sensitive settings. Samtools version 1.8 (67) was used to obtain, sort and index 

BAM files. For genome browser inspection as well as further analyses, bigwig files were generated 

by normalizing datasets to count-per-million CPM coverage tracks using deepTools version 3.1.1 

(68) using --normalizeUsing CPM settings. Spearman’s correlation scores were calculated using 

deepTools’ subpackages multiBigwigSummary and plotCorrelation.  Metaplots and genomic 

distribution heatmaps were made with deepTools’ subpackages computeMatrix, plotHeatmap and 

plotProfile. GO term analysis was performed using R package clusterProfiler (69). Spike-in 

normalization: FastQ Screen version 0.13.0 (70) was used to separate reads that uniquely mapped 

to either the genome of Drosophila melanogaster (BDGP Release 6 + ISO1 MT/dm6 from UCSC) 

or Arabidopsis thaliana (Tair10 – Arabidopsis.org) using the filter option and with sensitive 

parameters. Each fastq file was aligned and processed separately, and alignment rates to each 

genome file were used to calculate spike-in factors (Orlando et al., 2014). Calculated spike-in 

factors were used to convert bam files into normalized bigwig files using deepTools bamCoverage 

subpackage, with –scaleFactor setting, generating Reference-adjusted Reads Per Million (RRPM) 

files with a 10-bp resolution. Encode blacklist regions were removed. Spearman correlation scores 

were calculated by partitioning the mappable genome into 500-bp bins and obtaining the RRPM 

within each bin. Omni-ATAC narrow peaks were obtained using MACS2 version 2.1.2 (71) with 

settings: “--nolambda --nomodel --extsize 150 --shift 75 --keep-dup all”, and H3K4me3 ChIP-seq 

and CUT&Tag peaks were obtained with settings: “--nolambda --nomodel --keep-dup all”. FRiP 

scores were calculated using FeatureCounts of Subread version 1.6.1 (72). Peak overlap and 

genomic distribution of peaks was determined using R package ChIPseeker (73). 

https://www.epicypher.com/content/documents/protocols/cutana-cut&tag-protocol.pdf
https://www.epicypher.com/content/documents/protocols/cutana-cut&tag-protocol.pdf
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1.5 Figures 

 

Figure 1.1 Schematic diagram depicting the nuclear immuno-enrichment (NIE) protocol 
highlighting major differences in buffer composition between the ‘standard’ and ‘improved’ 
methods. Heads from flies expressing Rh1>GFPKASH were homogenized, followed by bead-
antibody incubation and washes. B. Microscopy images of POST sample using the ‘improved’ 
method. Scale bars: 50 µM. White arrowhead: bead-bound nuclei. Black arrowhead: single bead. 
C. Bar plot showing DNA yields when Rh1>GFPKASH nuclei were enriched using either the 
‘standard’ or ‘improved’ NIE method (mean ± standard deviation (SD), n=4, p-value t-test). D. 
Bar plot showing qPCR enrichment for GFP and mCherry in the PRE and POST-NIE samples 
comparing ‘methods (mean ± SD; n=3, p-value t-test). 
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Figure 1.2 A. Spearman correlation heatmap of gene expression profiles from nuclear RNA-seq of 
nuclei extracted with standard and improved method (n=4). Scores between 0 and 1 shown in each 
box correspond to Spearman’s rank score. B. Volcano plot showing the differentially expressed 
genes between methods. Genes with significant differential expression (FC > 2, FDR < 0.01) are 
highlighted in red. C. Scatter plot showing log2-transformed transcript per million (TPM) values 
between methods. DEGs highlighted in red, as in panel B. D. Gene Ontology (GO) term analysis 
on genes that are overrepresented in either the ‘standard’ or ‘improved’ method. E. Gene Concept 
Network plot (Cnetplot) highlighting linkage of individual genes and associated functional 
categories of genes over-represented in standard (top) and improved (bottom) dataset. Color 
intensity represents fold change between conditions. 
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Figure 1.3 A. Diagram depicting Omni-ATAC approach applied to NIE-purified nuclei. After NIE 
purification, a fraction of nuclei is used for genomic DNA extraction and quantification to 
determine the input material for Omni-ATAC. Nuclei remain on ice until tagmentation, followed 
by two washes with tagmentation buffer without Tn5 enzyme. Upon washes, nuclei are tagmented 
using standard ATAC-seq conditions. B. Fragment size distribution of Omni-ATAC libraries using 
50 ng (light green) or 100 ng (light red) as starting material. C. Genome browser views of counts 
per million (CPM)-normalized Omni-ATAC signal with genes shown in blue. D. Metaplot of 
CPM-normalized Omni-ATAC signal around the transcription start site (TSS) averaged for all 
protein-coding genes in the 50 ng and 100 ng samples. E. Genomic distribution of accessible peaks 
of 50 ng- and 100 ng- associated dataset. F. Spearman correlation heatmap of Omni-ATAC read 
distribution over binned genome. Scores between 0 and 1 shown in each box correspond to 
Spearman’s rank score. G. Heatmap showing CPM-normalized Omni-ATAC signal around TSS 
of protein-coding genes of 100 ng-associated dataset. Clusters used for transcript boxplot are 
highlighted. H. Boxplot showing log2-transformed TPM scores for each cluster defined in 3G. 
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Figure 1.4 A. Spearman correlation heatmap of Omni-ATAC read distribution over binned 
genome. Scores between 0 and 1 shown in each box correspond to Spearman’s rank score. B. 
Metaplot of CPM-normalized Omni-ATAC signal around TSS averaged for all protein-coding 
genes comparing replicates (n=4). C. Genome browser inspection of CPM-normalized Omni-
ATAC signal for each replicate, coupled with narrow peaks (pink). Genes are shown in blue. D. 
Venn diagram showing peak overlap/similarity between replicates. E. Fraction of Reads in Peaks 
(FRiP) scores of Omni-ATAC peaks comparing replicates down-sampled from 0.5 to 50 million 
mapped fragments. F. Percentage of peaks called relative to peaks called using the Omni-ATAC 
replicate #1, with 50x106 mapped fragments as absolute percent of peaks. 
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Figure 1.5 A. Diagram depicting Chromatin Immunoprecipitation (ChIP)-seq approach coupled to 
NIE-purified nuclei. Before adding the ChIP antibody, a fraction of soluble Drosophila chromatin 
(input) is quantified, to adjust final amount of chromatin per replicate, as well as to define amount 
of spike-in genome (In this case, 5% of Arabidopsis chromatin). B. Metaplots of H3 (dark blue), 
H3K4me3 (light blue) and H3K36me3 (yellow) ChIP-seq signal (CPM) over gene bodies averaged 
for all protein-coding genes. C. Genome browser inspection of H3, H3K4me3 and H3K36me3 
ChIP-seq signal(CPM) around the inner photoreceptor-specific gene Rh3, which is not expressed 
in outer photoreceptors, and two highly expressed outer photoreceptor-specific genes trp and trpl. 
D. Spearman correlation heatmap of H3K4me3 ChIP-seq data comparing Spike-in and CPM 
normalization. Spearman’s rank scores are based on read distribution over binned genome. E. 
Spearman correlation heatmap of H3K36me3 ChIP-seq data comparing Spike-in and CPM 
normalization. Spearman’s rank scores are based on read distribution over binned genome. F. 
Spearman correlation heatmap of reads that align to binned genome for all replicates of H3, 
H3K4me3 and H3K36me3 ChIP-seq datasets. G. Heatmap showing signal for all protein coding 
genes of H3-normalized H3K4me3 (left) and H3-normalized H3K36me3 (right). F. Boxplots 
showing transcript level expressions of H3K4me3 (top) or H3K36me3 clusters (bottom). 
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Figure 1.6 Schematic diagram representing the major difference between bead-antibody 
conjugation necessary to perform CUT&Tag in NIE-purified nuclei. Protein-G Dynabeads 
recognize both rabbit and mouse antibodies, while Mouse Pan IgG Dynabeads only recognize 
mouse antibodies. Nuclei preparation contains excess Dynabeads, therefore the protein G can 
interfere with CUT&Tag because it can bind the rabbit antibodies used to tag chromatin targets, 
such as H3K4me3. B. Tape Station profiles of H3K4me3 CUT&Tag libraries. C. Genome browser 
inspection (IGV) of CPM-normalized H3K4me3 ChIP-seq (top), H3K4me3 CUT&Tag replicates 
(medium) and Omni-ATAC (bottom). All samples were obtained from 10-day old male flies. 
Genes are shown in blue. D. FRiP score comparison between H3K4me3 CUT&Tag replicate 4 
and H3K4me3 ChIP-seq replicate 1. Both samples were down sampled from 0.5 to 15 million 
mapped fragments. E. Metaplots of CPM-normalized H3K4me3 ChIP-seq (top) and H3K4me3 
CUT&Tag (bottom) (n = 4 for each method). F. Heatmaps showing CPM-normalized H3K4me3 
ChIP-seq (left-most) and H3K4me3 CUT&Tag signal for all replicates, with rows representing the 
same gene across all heatmaps. G. Spearman correlation heatmap of read distribution over 
H3K4me3 peaks called using ChIP-seq datasets. Correlation was calculated for H3K4me3 ChIP-
seq and CUT&Tag replicates. 
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Figure 1.7 A. Schematic diagram representing the two versions of the “improved” NEI-method. 
The first version (top) uses protein G-coupled magnetic Dynabeads, and can be coupled with RNA-
seq, Omni-ATAC and ChIP-seq. The second version (bottom) uses Mouse IgG-coupled magnetic 
beads, and can be coupled with CUT&Tag, RNA-seq, Omni-ATAC and ChIP-seq. B. Table 
describing the available fly lines to perform NIE either using the Gal4-UAS or the QF-QUAS 
system. 
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 THE CLOCK: CYCLE COMPLEX IS A MAJOR 
TRANSCRIPTIONAL REGULATOR OF DROSOPHILA 

PHOTORECEPTORS THAT PROTECTS THE EYE FROM RETINAL 
DEGENERATION AND OXIDATIVE STRESS  
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2.1 Introduction 

One of the hallmarks of the aging eye, as well as many age-related eye diseases, is the loss of 

photoreceptor function and survival (6,7). The aging epigenome and transcriptome of cells in the 

retina undergo changes that correlate with decreased visual function and increased cell death 

(13,74,75). Importantly, disruption of epigenetic mechanisms is associated with the onset of age-

related eye diseases, such as age-related macular degeneration (76,77), suggesting that 

transcriptional regulation contributes to the changes in homeostasis that are observed in the aging 

eye. However, we still have only a basic understanding of how the molecular mechanisms that 

drive the age-associated changes in the transcriptome increase the risk of ocular disease with 

advanced age.  

Transcription factors (TF) function as regulatory hubs of gene expression programs in a highly-

tissue specific manner. While several conserved pathways contribute to changes in the aging 

transcriptome across tissues, such as the longevity-associated FOXO and Insulin axis (78–80), 

age-associated changes in gene regulatory networks can be highly specific to individual cell types 

(3,75). The emergence of bioinformatic and computational approaches that combine chromatin 
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accessibility data with transcription factor binding sites (TFBS) has allowed researchers to 

interrogate unbiasedly how transcription factor activity changes at a genome-wide scale in 

different biological conditions by estimating changes in chromatin accessibility around TFBS (see 

(81) for review on chromatin accessibility data analysis). The majority of chromatin accessibility 

studies in the eye have focused on development in invertebrate (60) or vertebrate models (82), and 

TF activity in the developing eye has often been assessed based on transcriptomic-based co-

expression inference rather than chromatin accessibility (83). Further, ATAC-seq analysis of 

retinal pigmented epithelium from patients with age-related macular degeneration identified global 

changes in chromatin accessibility at the onset of the disease state, suggesting that differential 

activity of regulatory elements strongly contributes to the initial stages of age-associated ocular 

disease (84). Thus, identification of TFs with differential activity in the aging eye could provide 

insight into the mechanisms that contribute to the increased risk of retinal degeneration during 

aging.  

Drosophila melanogaster, like humans, experience an age-dependent decline in visual function 

coupled with increased risk of retinal degeneration (10,13). Although flies possess a compound 

eye that differs anatomically from the vertebrate eye, much of the phototransduction machinery is 

conserved between flies and mammals, with the outer fly photoreceptors resembling vertebrate 

rods in function (85,86). There are six outer photoreceptors (R1 – R6 cells) within each 

ommatidium that express the light-sensing protein Rhodopsin 1 (Rh1) and are responsible for 

motion vision and phototaxis, which decline with age (3,18,19). Considering its relatively short 

lifespan, Drosophila provides a useful model system for studying the processes involved in normal 

aging within specific tissues, such as the eye (26). To profile the transcriptome and epigenome of 

specific cell types in the eye, we have developed a cell type-specific nuclei immunoenrichment 

technique that we have previously used to examine gene expression in aging photoreceptors 

(12,13,87). Here, we applied this technique to profile the transcriptome and chromatin accessibility 

landscapes of Drosophila photoreceptors across an extended time course into relatively old age. 

By integrating these aging data from photoreceptors, we identified 57 TF motifs that were 

differentially accessible during aging, suggesting age-dependent changes in TF activity. Amongst 

these “age-regulated TFs”, we identified the binding motif of the master circadian regulators, 

Clock (Clk) and Cycle (Cyc), which showed sustained increases in activity with age. Using a 

dominant negative mutant of Clock (ClkDN) that disrupts the Clk:Cyc complex and abolishes 
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rhythmic transcription, we showed that the Clk:Cyc complex has an integral role in controlling 

gene expression of 15-20% of active genes, and maintaining global levels of chromatin 

accessibility in photoreceptors. Further, we show that expression of ClkDN in photoreceptors leads 

to progressive retinal degeneration, which was suppressed when flies were reared in constant 

darkness. Our data identify a novel neuroprotective role for the circadian clock in the Drosophila 

eye, and suggest that this role may become increasingly critical in advanced age to prevent retinal 

degeneration. 

2.2 Results 

2.2.1 Tissue-specific profiling of the photoreceptor nuclear transcriptome reveals 
significant changes during early and late aging 

To profile the transcriptome of aging Drosophila photoreceptors, we used our recently improved 

tissue-specific nuclei immunoenrichment approach (87). Briefly, we tag nuclei using a Green 

Fluorescent Protein (GFP) fused to the “Klarsicht, ANC-1, Syne Homology” (KASH) domain, 

which anchors GFP to the outer nuclear membrane and allows for nuclei purification; GFPKASH is 

expressed in outer photoreceptors under Rh1-Gal4 control, herein referred as Rh1>GFPKASH 

(Fig.1A). Similar to wild-type strains, such as OregonR and Canton-S (88), Rh1>GFPKASH flies 

begin to show a substantial decline in viability after day 60, with 50% of male flies dying by day 

70 (13). Thus, to generate a comprehensive aging dataset, we purified photoreceptor nuclei over 

10-day windows from day 10 until day 60 and performed RNA-seq using 400 age-matched male 

flies per biological replicate (Fig. 1B).  

We assessed the overall variability of the RNA-seq samples using Principal component analysis 

(PCA). The RNA-seq samples clustered together with 48.3% of the variation separating the 

samples by age in a progressive manner (Fig 1C). We also observed a similar grouping by age 

using Pearson’s correlation analysis with high concordance between the three biological replicates 

(Pearson’s r > 0.91) (S1 Fig). These observations reveal progressive changes in transcription 

during aging in photoreceptors, similar to previous studies from our group that aged flies to day 

40 (D40) (13). Differential expression analysis of each time point relative to day 10 (D10), the 

youngest state, revealed significant changes in gene expression during aging (p-adj<0.05) (Fig. 

1D-S1 table). Hierarchical clustering of the genes that were differentially expressed between any 
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age and D10 revealed that 1412 and 982 genes showed progressive increases, or decreases in 

expression, respectively. Gene Ontology (GO) term analysis revealed that the genes that were age-

upregulated (Clusters 2 and 3) were enriched for several processes including cytoplasmic 

translation and double strand break repair (Fig. 1E). In contrast, the genes that were age-

downregulated (Cluster 5) were enriched for neuronal processes, such as cognition and regulation 

of nervous system development. Although 75% of the differentially expressed genes (2394 out of 

3156) exhibit progressive changes, we also identified two clusters with expression changes only 

during early aging (D20; Clusters 1 and 4). We note that while D20 was separated by age from the 

other samples along PC1, it was also separated from its nearest time points (D10 and D30) along 

PC2 (Fig. 1C), consistent with these early and transient changes in gene expression in aging 

photoreceptors. Interestingly, Cluster 4, which contained genes that showed an early decrease in 

transcription but increased levels again at later time points, was enriched for protein folding. These 

age-associated transcriptomic signatures are consistent with our previous observations in aging 

photoreceptors and with aging studies from other tissues (13,74). 

2.2.2 Photoreceptors undergo substantial changes in transcription factor activity during 
aging 

To identify mechanisms that contribute to the age-associated transcriptomic changes in 

photoreceptors, we sought to evaluate changes in TF activity. TFs regulate transcriptional outputs 

of their targets by acting as activators or repressors of gene expression at the transcriptional level. 

Importantly, TF activity can be affected by several factors, including protein levels, localization, 

and post-translational modifications (89,90). Because of the technical complexity of isolating 

intact photoreceptors for proteomic studies, and the relatively low protein abundance of TFs in the 

eye (91), we used our RNA-seq data to assess how transcript levels of genes associated with the 

GO category “DNA-binding transcription factor activity, RNA polymerase II-specific” 

(GO:0000981) changed during aging. Notably, 23% of TFs showed significant differential 

expression during aging at the nuclear transcript level (Fig. 2A), suggesting that differential TF 

activity could contribute to the aging transcriptome of photoreceptors. To identify TFs with 

differential activity during aging, we used diffTF, a software package that estimates genome-wide 

changes in TF motif/binding activity based on differences in aggregate ATAC-seq signal around 

predicted/validated TF binding sites, or TFBS (92). We refer to TF motif/binding activity as “TF 
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activity”, as defined in the diffTF study (27). Although diffTF analysis provides an estimate of TF 

activity, rather than a direct measurement of TF binding to DNA, diffTF was highly ranked as an 

approach to assay genome-wide changes in TF activity (93). Thus, we first profiled the chromatin 

accessibility landscape of aging photoreceptors at the same time-points as for RNA-seq. PCA of 

ATAC-seq samples revealed that 69.7% of the variation could be explained by age (Fig. 2B), and 

Pearson correlation analysis showed high concordance between biological replicates. 

Additionally, accessible peak annotation revealed a stable distribution of peaks through-out aging 

(S2A Fig). Together with the RNA-seq aging time course, these data indicate that the chromatin 

accessibility and transcriptional landscape of photoreceptors undergo progressive changes during 

aging. We then used diffTF to compare all time points relative to D10. The TFBS used for this 

analysis were generated by CIS-BP, which provides a comprehensive dataset of experimentally 

validated TFBS (94). We also examined de novo and known motifs identified using Homer (95) 

(Fig. 2C). We took advantage of the aging RNA-seq time series data to perform diffTF analysis in 

integrative mode, enabling us to discard TFs that were not expressed in adult photoreceptors. Using 

this approach, we identified 57 TFs whose binding sites showed significant differential activity 

during aging (FDR<0.001) (Fig. 2C), herein referred to as “age-regulated TFBSs”. Most of these 

age-regulated TFs showed continuous changes in activity with age, with nearly two thirds showing 

increased activity with age. We observed an almost two-fold increase in the number of age-

regulated TFs identified at D50 and D60 relative to younger ages, suggesting that late aging is 

associated with distinct changes in gene regulatory networks (Fig. 2D). Hierarchical clustering of 

these age-regulated TFs by the mean weighted difference between each age comparison resulted 

in grouping of TFs that are known to associate in vivo, such as Motif 1 Binding Protein (M1BP), 

DNA replication element factor (Dref) and Boundary element-associated factor of 32kD 

(BEAF32), which bind topologically associating domains (Ramirez, 2018). We refer to TF 

proteins here using their gene name and symbol (non-italicized), and provide a complete list of all 

genes/proteins referred to in this study with their corresponding Flybase ID numbers in Table S3. 

We also identified Moira (mor), which physically interacts with Similar (sima) (96). Additionally, 

we identified Seven up (svp) and PvuII-PstI homology 13 (Pph13), which physically interact to 

regulate eye-specific transcriptional programs together with Eyeless (ey) (97). Considering that 

svp, ey, and Pph13 show modest but significant increases in TF activity with age, our data also 

indicate that photoreceptor identity remains distinct even at advanced age in flies. 
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The stress response is transcriptionally regulated during aging across a broad range of tissues (98). 

Accordingly, we identified several TFs that are involved in the regulation of stress response genes 

as having differential activity with age including the Drosophila JUN-FOS complex that is formed 

by Jun-related antigen (Jra) and Kayak (kay) (99), the Drosophila homolog of Hypoxia response 

factor HIF-1a, sima (100), Heat shock factor (Hsf) (101), and Activating transcription factor-2 

(Atf-2) (102,103). We also identified Cropped (crp), which has previously been associated with 

aging through in silico analysis due to interactions with DNA repair pathways (104).  

One of the most interesting changes in TF activity during aging was in the activity of the master 

circadian regulators Clock (Clk) and Cycle (Cyc), which showed a progressive increase in TF 

activity during aging. Clk and Cyc bind the same CACGTG motif upon heterodimerization, 

explaining the identification and clustering of both factors in the diffTF analysis, which uses DNA 

sequence motifs as the TFBS source (S2B Fig). The circadian clock is a molecular time keeper 

that controls rhythmic behaviors, such as locomotor behavior, which is coordinated by pacemaker 

neurons located in the brain (105). In Drosophila, many peripheral tissues also contain working 

clocks, including the fat body, Malpighian tubule cells, and the retina (106). Importantly, aging 

has been associated with changes in the circadian clock (107,108). We note that flies for the aging 

time course experiment were raised under a 12:12 hour light-dark cycle, and were harvested at 

relative Zeitgeber time (ZT) 6 +/- 1 hour (see Methods), suggesting that the enrichment of Clk and 

Cyc in the diffTF analysis is not simply due to a time-of-day bias in sample collection. Taken 

together, our data identify a subset of TFs that exhibit significant changes in activity during aging 

in photoreceptors, including TFs associated with stress response and circadian rhythm. 

2.2.3 Clock regulates the transcriptional output of phototransduction genes in 
photoreceptors  

Clk and Cyc are basic Helix-Loop-Helix (bHLH)-TFs that form a heterodimer (Clk:Cyc) to control 

rhythmic expression of their targets. Canonical transcriptional targets of the Clk:Cyc complex 

include core clock genes, such as vrille (vri), PAR-domain protein 1 (Pdp1), timeless (tim), period 

(per), and clockwork orange (cwo). However, Clk and Cyc also regulate transcription of many 

other genes either directly or indirectly, and these genes are often referred as “Clock-output genes”, 

and can include tissue-specific genes (109,110). To evaluate the biological role of Clock-
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dependent transcription specifically in photoreceptors, we disrupted the Clk:Cyc complex by 

expressing a dominant negative version of Clk (ClkDN) specifically in outer photoreceptors under 

Rh1-Gal4 control. ClkDN lacks the basic DNA binding domain, impairing its recruitment to DNA 

without disrupting its ability to form a heterodimer with Cyc (Fig. 3A) (111). Expression of ClkDN 

inhibits Clock-dependent transcription and rhythmic behaviors in vivo when expressed in 

pacemaker or antennal neurons (111). To facilitate nuclei immuno-enrichment for RNA-seq 

analysis, we co-expressed UAS-GFPKASH. As a control, we profiled the transcriptome of 

photoreceptors that expressed LacZ, herein referred as Rh1>Ctrl. We collected both Rh1>ClkDN 

and Rh1>Ctrl flies at ZT 9, when Clock-dependent transcription is active (112,113), harvesting 

flies at D1 and D10 to study the progressive effect of disrupting the circadian clock in adult 

photoreceptors (Fig. 3B). We note that Rh1-Gal4 activity begins in the very late stages of pupal 

development (45); thus Rh1>ClkDN flies have a disrupted Clk:Cyc complex in adult 

photoreceptors, but not in the developing eye. 

Differential gene expression (DGE) analysis of Rh1>ClkDN relative to Rh1>Ctrl at either D1 or 

D10 revealed a consistent downregulation of direct Clk:Cyc targets such as vri, per, tim and Pdp1 

(Fig. 3C-S2A Fig). We also observed a significant upregulation of Clk itself, which we showed by 

qPCR reflects expression of ClkDN rather than the endogenous wild-type Clk (S2B Fig). When we 

compared the control D1 and D10 flies, we did not observe differential expression of core clock 

genes (i.e. vri, tim, per), suggesting there is little change in the circadian clock in the early stages 

of adult life. In addition, only 147 genes changed in control flies between D1 and D10, indicating 

there is relatively little change in gene expression in general at these early stages of adult life in 

photoreceptors. In contrast, expression of ClkDN led to significant changes in expression of 15% 

and 22% of actively transcribed genes in photoreceptor at D1 and D10, respectively. These data 

demonstrate that continued expression of ClkDN leads to progressive dysregulation of gene 

expression in photoreceptors at nearly a quarter of expressed genes.  

To further identify direct versus indirect targets of the Clk:Cyc complex, we compared previously 

published high-confidence binding sites identified for Clk and Cyc using ChIP-seq in Drosophila 

heads and bodies (114) with our list of accessible peaks obtained with ATAC-seq data from D10 

photoreceptors. Genomic overlap analysis revealed that 10% of accessible peaks contained an 

experimentally identified Clk:Cyc TFBS (Fig. 3D). Next, we annotated these photoreceptor-
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specific TFBS (n=1461) to their nearest transcription start site (TSS) and found that 1004 

photoreceptor-expressed genes contained a potential Clk:Cyc binding site. We refer to these 1004 

genes as “Clock-bound genes” or CBGs (Fig. 3E), which we compared to genes that were 

differentially expressed in Rh1>ClkDN relative to Rh1>Ctrl at either D1 or D10. We reasoned that 

if a gene is bound by Clk:Cyc and is differentially expressed, then it can be classified as a “direct 

target” of Clk:Cyc. Using these criteria, we identified 475 direct Clk:Cyc targets in photoreceptors. 

In contrast, we identified a far greater number of genes (2253) that are likely to be indirect targets 

of Clk:Cyc regulation, at least based on the available ChIP-seq data from whole heads (114). 

Consistent with the predicted role of Clk:Cyc as transcriptional activators, Clk:Cyc direct targets 

were more likely to be downregulated relative to indirect targets upon expression of ClkDN (S3C 

Fig). GO term analysis of direct Clk:Cyc targets showed significant enrichment of genes associated 

with several biological processes, including phototransduction and circadian rhythm (Fig. 3F). 

However, both direct and indirect Clk:Cyc targets were enriched for processes including TF 

activity and eye development. This is consistent with previous reports that have proposed that the 

Clk:Cyc complex acts at the top of a TF hierarchy, directly regulating transcript levels of key TFs 

in specific cell types, thereby indirectly regulating expression of their target genes (114,115). 

Notably, individual inspection of the TFs that were classified as direct Clk:Cyc targets confirmed 

that several eye-specific TFs such as ocelli (oc/otd) and eyeless (ey) are bound at their promoters 

directly by Clk and Cyc (Fig. 3G). To further identify the magnitude of changes in expression of 

these pathways upon disruption of Clk:Cyc, we performed gene set enrichment analysis comparing 

ClkDN vs Control at either D1 or D10 and obtained ridge plots showing the density of fold change 

for the genes associated with each pathway. Whereas upregulated genes showed significant 

enrichment of several biological processes, including TF activity, downregulated genes were 

associated with several phototransduction-associated pathways, including deactivation of 

rhodopsin signaling (Fig. 3H, S3D-E Fig).  

Because light entrains the circadian clock to activate Clock-mediated transcription, we next 

performed RNA-seq in photoreceptors from Rh1>GFPKASH flies reared in constant darkness (DD). 

Under these conditions, we observed differential expression of genes associated with several 

biological processes, including phototransduction and circadian rhythm in dark raised flies relative 

to LD (S3F-G Fig). Because these processes were also enriched in the genes with differential 
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expression upon disruption of Clk:Cyc  activity, our data suggest that these biological processes 

are normally regulated by the circadian clock in photoreceptors in response to the light/dark cycle.  

Taken together, these data show that the Clk:Cyc complex is a major transcriptional regulator of 

the photoreceptor transcriptome, including the phototransduction pathway. Additionally, our data 

suggest that Clk activity regulates gene regulatory networks by regulating expression of TFs that 

in turn direct expression of a large proportion of the transcriptome in photoreceptors.  

2.2.4 Expression of ClkDN leads to genome-wide changes in TF activity and a widespread 
decrease in chromatin accessibility  

Because expression of ClkDN led to transcriptional dysregulation of TFs, we further investigated 

the TFs that showed changes in transcript level upon disruption of the Clk:Cyc complex. Gene 

Concept Network (cnet) plots demonstrated significant enrichment of 62 TFs amongst the 

upregulated genes in flies expressing ClkDN (Fig. 4A). Based on these changes in TF expression, 

we wondered if expression of ClkDN would also lead to significant changes in TF activity relative 

to Rh1>Ctrl flies. To test this, we profiled chromatin accessibility in Rh1>ClkDN versus control, 

and integrated the RNA-seq and ATAC-seq data using the diffTF approach, as in Fig. 2. PCA 

analysis of the accessible chromatin landscape revealed that 77% of the variation was explained 

by expression of ClkDN (Fig. 4B). In addition, Clk:Cyc targets, such as tim, per, vri and Pdp1, 

exhibited significant decreases in accessibility through-out their gene bodies upon expression of 

ClkDN (Fig. 4C). Importantly, genomic annotation of accessible peaks revealed a stable distribution 

of peaks in all samples (S4A Fig), suggesting that disruption of the Clk:Cyc complex does not lead 

to overall changes in the genome-wide distribution of accessible peaks. Rather, these data show 

that the Clk:Cyc complex promotes chromatin accessibility at target genes, consistent with the 

well characterized role of Clk:Cyc in transcription activation (116). 

Using diffTF, we identified 37 TFs with differential activity upon expression of ClkDN, or “Clock-

regulated TFs”. Whereas 15 TFs had decreased activity, 22 showed increased activity in 

Rh1>ClkDN relative to Rh1>Ctrl (Fig. 4D). Interestingly, several of the genes encoding these 

Clock-regulated TFs are also directly bound by Clk and Cyc at their promoters (see Figure 3), 

including the eye-specific TFs oc/Otd and ey, as well as Xrp1, onecut, crp, and Trl. We also 

identified increased TF activity of the circadian regulator vri, which represses transcription of Clk 
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(117). Consistent with the reported role of vri as a repressor, we observed decreased levels of wild-

type Clk transcript in Rh1>ClkDN flies using qPCR with primers that differentiate between the 

wild-type and dominant negative version (see S2B Fig). Thus, these data suggest that the Clk:Cyc 

complex contributes to the maintenance of gene regulatory networks in photoreceptors by 

regulating transcript levels and/or TF motif/binding activity of many transcription factors.  

Visual inspection of chromatin accessibility tracks showed that the Rh1>ClkDN flies had an overall 

decrease in chromatin accessibility around promoters and throughout gene bodies (Fig. 4C). To 

further evaluate this, we obtained gene metaplots averaging the ATAC-seq signal around 

promoters for all actively expressed genes in Rh1>ClkDN and Rh1>Ctrl flies. Strikingly, we 

observed that expression of ClkDN led to a widespread decrease in chromatin accessibility around 

transcription start sites, and this decrease in global accessibility was exacerbated at D10 relative 

to D1 (Fig. 4E). These gene-based observations were corroborated by peak-based quantification 

(S4B Fig). Thus, our data suggest that disruption of the Clk:Cyc complex results in a global 

decrease in chromatin accessibility in photoreceptors, even though Clk and Cyc only have 475 

direct gene targets in this cell type (Fig. 3E). To further gain insight if these changes in accessibility 

were progressive between D1 and D10 for a given gene, we obtained heatmaps of ATAC-seq fold 

change signal for actively expressed genes at either D1 or D10 in which both heatmaps were sorted 

identically (Fig. 4F). These heatmaps revealed that genes that had decreased accessibility at D1 

also showed sustained decreases in accessibility at D10, suggesting that disruption of the Clk:Cyc 

complex has a role in promoting chromatin accessibility in photoreceptors at a large fraction of 

actively expressed genes, although our data does not identify if this role is direct or indirect. 

Taken together, our data shows that expression of ClkDN leads to dysregulation of TF levels and/or 

activity, suggesting the Clk:Cyc modulates gene regulatory networks associated with these TFs. 

In addition, expression of ClkDN leads to a widespread decrease in chromatin accessibility that is 

independent from changes in gene expression, suggesting that the circadian clock contributes to 

the global maintenance of chromatin remodeling of actively expressed genes in Drosophila 

photoreceptors.  
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2.2.5 Disruption of Clock activity leads to light-dependent retinal degeneration and light-
independent accumulation of oxidative stress 

Disruption of the phototransduction machinery by mutations in phototransduction genes that leads 

to loss of function or decreased expression is often associated with retinal degeneration (118). 

Consistent with the GSEA analysis (see Fig. 3H), cnet plots evaluating RNA-seq fold change for 

genes associated with phototransduction revealed significant decreases in transcript levels of 22 

genes in flies expressing ClkDN (Fig. 5A-S5 Fig). These genes included many phototransduction 

components whose loss leads to light-dependent retinal degeneration, such as Cds, Arr2, rdgB, trp, 

rdgC, and ninaC (marked with a red asterisk, Fig. 5A) (118). Thus, we hypothesized that 

expression of ClkDN in Drosophila photoreceptors would lead to retinal degeneration. To test this, 

we examined photoreceptor integrity using optical neutralization (see Methods) in Rh1>ClkDN and 

Rh1>Ctrl flies that were maintained in either standard 12:12 hour light:dark (LD) or free-running, 

constant darkness (DD) conditions. We note that all of the flies used in this study had pigmented 

eyes (S5B fig), and were not susceptible to light-mediated damage as is the case for w1118 flies. 

We found that Rh1>ClkDN flies presented progressive retinal degeneration starting at day 5, when 

raised under standard light:dark (LD) conditions relative to Rh1>Ctrl flies (Fig. 5B top and 5C-

left). Importantly, photoreceptors were intact at earlier adult stages just after eclosion (D1), 

although qPCR analysis from 1-day old heads shows that the ClkDN transcript is already expressed 

at this age (S3B Fig). We observed retinal degeneration in two independent UAS-ClkDN lines 

inserted on different chromosomes, suggesting that retinal degeneration is unlikely to result from 

insertion position of the transgene; moreover, all experiments were performed in progeny 

hemizygous for the UAS-ClkDN transgene. To test if the retinal degeneration resulting from ClkDN 

expression was dependent on light exposure, we raised Rh1>Ctrl and Rh1>ClkDN flies in constant 

darkness (DD) and monitored retinal degeneration. Strikingly, rearing Rh1>ClkDN flies in constant 

darkness prevented the onset of retinal degeneration in both ClkDN lines (Fig. 5B-bottom and 5C-

right) demonstrating that expression of ClkDN results in light-dependent retinal degeneration in 

adult Drosophila photoreceptors. Since ClkDN expression resulted in light-dependent retinal 

degeneration, we next asked if expression of the analogous dominant negative for its partner Cycle 

(CycDN) caused a similar phenotype.  Surprisingly, we did not observe any retinal degeneration in 

Rh1>CycDN flies reared in standard LD conditions at either D5 or D10 (S5C Fig). When we 

examined the relative level of Clk and cyc transcripts in photoreceptors, we found that Clk 
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transcripts are 10-times more abundant than cyc (S5D Fig). In addition, proteomic analysis of fly 

heads during the day revealed that there are about 5-fold fewer peptides corresponding to Cyc 

versus Clk (112). Thus, the differences in phenotype between ClkDN and CycDN flies could arise 

because of differences in protein abundance; however, it remains possible that Clk and/or Cyc 

have independent functions in photoreceptors outside of the canonical Clk:Cyc complex.  

The circadian clock has also been shown to be necessary to protect cells against oxidative stress. 

For example, flies carrying the ClkJrk allele, which produces a mis-spliced Clk transcript and leads 

to decreased clock activity (119), show increased levels of reactive oxygen species (ROS) in aging 

brains (120). Since light is a major source of oxidative stress in the eye (121) and Rh1>ClkDN 

showed light-dependent retinal degeneration, we hypothesized that Rh1>ClkDN flies exposed to 

light had increased oxidative stress levels relative to Rh1>Ctrl flies or flies reared in DD 

conditions. To test this, we performed a targeted metabolite assay to measure the ratio of reduced 

and oxidized glutathione (GSH:GSSG) in Rh1>ClkDN and Rh1>Ctrl flies reared in LD or DD 

conditions at D1 and D10. In this assay, a lower GSH:GSSG ratio is indicative of increased 

oxidative stress levels (122). We note that given the technical limitations for isolation of intact 

photoreceptors, we performed these targeted metabolite assays using dissected eyes. Using this 

approach, we found that oxidative stress levels did not show significant changes at D1 in any 

condition (Fig. 5D-left). Unexpectedly, we observed a significant decrease in the GSH:GSSG ratio 

in Rh1>ClkDN flies relative to Rh1>Ctrl flies raised in either LD and DD conditions at D10 (Fig. 

5D-right). Thus, our data shows that Clock activity protects the Drosophila eye against oxidative 

stress. However, since expression of ClkDN only caused retinal degeneration in flies reared in LD, 

it is unlikely that the increased ROS levels are responsible for the retinal degeneration observed in 

ClkDN flies at D10.  

Together, these data suggest that the disruption in expression of the phototransduction machinery 

in photoreceptors that lack Clock activity is likely responsible for the light-dependent retinal 

degeneration that we observed upon expression of ClkDN. When we performed GO term analysis 

of genes that were differentially expressed in Rh1>ClkDN at both D10 and D1, we observed 

significant upregulation of genes associated with response to unfolded protein and response to 

topologically incorrect protein, including many heat shock proteins and chaperones (Fig. 5E-5F). 

When the light-sensing Rhodopsin 1 (Rh1) is not properly inactivated, photoreceptor neurons 
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experience substantial protein misfolding and ER stress, which leads to retinal degeneration in a 

light-dependent manner (118). Since many of the genes that regulate Rhodopsin folding and 

inactivation were downregulated in Rh1>ClkDN relative to Rh1>Ctrl flies, our data suggest that 

the circadian clock directly contributes to Rhodopsin maintenance in Drosophila photoreceptors. 

Importantly, the onset of light-dependent retinal degeneration associated with failures in Rh1 

inactivation can be caused by several factors, including excessive endocytosis of Rh1 and 

increased Ca2+ influx (118,123–125). We propose that Clock activity is protective in the retina 

because it promotes expression of genes that contribute to proper recycling of Rh1 upon light-

exposure. However, our data also uncover an additional neuroprotective role of Clock by 

contributing to the response to oxidative stress, which might be important for additional tissues 

that do not contain the phototransduction machinery. This secondary role of Clock in the cellular 

response to oxidative stress might become increasingly important in advanced age, since 

accumulation of ROS is one of the hallmarks of aging.   

2.3 Discussion 

The circadian clock maintains daily biological rhythms by controlling the expression of target 

output genes, and is highly conserved between Drosophila and humans (105). Since many genes 

are rhythmically expressed in the retina including most of the phototransduction machinery 

(114,126,127), these observations suggest that the circadian clock plays a role in homeostatic 

regulation of the Drosophila retina. Here, we report that retina-specific expression of a dominant 

negative mutant of Clk in Drosophila leads to progressive light-dependent retinal degeneration 

and oxidative stress, showing that the circadian clock is required to maintain Drosophila 

photoreceptor integrity. Importantly, this role for the circadian clock in maintaining visual health 

is conserved in mammals because retina-specific disruption of BMAL1, the mice homolog of cyc, 

accelerates the loss of cone viability and function in aging chx10Cre;Bmal1Fl/Fl mice, which 

otherwise show a normal lifespan (128). Further, disruption of BMAL1 leads to loss of spectral 

identity and integrity of cone cells in Crx-Cre;Bmal1Fl/Fl (129), and the rat retina shows a 

circadian-dependent loss of resistance to light-mediated damage (130,131). The circadian clock 

also plays a broader role in maintaining health during aging because mice deficient in BMAL1 in 

all tissues have reduced lifespan and several symptoms of premature aging including cataracts and 

neurodegeneration (132–134). Moreover, homozygous Perluc mice exhibit age-dependent 
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photoreceptor degeneration and premature aging of the retinal pigment epithelium (135). Since the 

PER::LUCIFERASE fusion protein is wild type and is used as a model for studying circadian 

rhythms (136), this observation suggests that even very mild changes in the expression or function 

of core circadian clock regulators can negatively impact the health of the aging eye. Notably, 

disruption of circadian rhythms in the human eye contributes to glaucoma and is also implicated 

in development of myopia (137,138). We note that while preparing this manuscript, a preprint 

showed that expression of ClkDN under the photoreceptor-specific trpl-Gal4 driver caused 

decreased phototactic behavior in young flies relative to an age-matched control (139), which is 

consistent with the rhabdomere loss observed in our study. However, rhabdomere integrity was 

not tested by the authors of this study. Therefore, our studies suggest that the Drosophila retina 

serves as a useful model to study circadian-dependent regulation of photoreceptor homeostasis. It 

is important to note that Clk and Cyc could also have Clock-independent roles, as shown 

previously for aging brains (120). Therefore, it will be important for future studies to establish 

Clock-dependent and -independent functions of Clk and Cyc in fly photoreceptors.  

How does disruption of the circadian clock in photoreceptors lead to light-dependent retinal 

degeneration? Our data suggest that although Clk-dependent transcription is necessary to prevent 

high levels of oxidative stress in the eye, this is not the proximal cause of retinal degeneration in 

young flies. Instead, we favor a model in which Clk:Cyc directly binds and activates expression 

of genes encoding the phototransduction machinery in photoreceptors, maintaining the continued 

expression of these proteins that have an integral role in photoreceptor structure and function. 

Numerous studies have demonstrated that complete loss of function of individual 

phototransduction genes results in retinal degeneration, often dependent on light exposure (118). 

Our data show a significant and substantial decrease in transcript levels of multiple 

phototransduction genes, and we propose that the cumulative decrease in expression of their 

corresponding proteins causes the light-dependent retinal degeneration in flies expressing ClkDN. 

However, because disrupting Clk:Cyc activity in photoreceptors had widespread effects on gene 

expression and chromatin accessibility, we cannot exclude the possibility that other pathways such 

as autophagy (140), Ca2+ signaling (141) and phosphoinositide metabolism (142) also contribute 

to the onset of light-dependent retinal degeneration.  
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The circadian clock has been implicated in the oxidative stress response in Drosophila (120,143) 

and in mammals (144). Since the onset of many age-related eye diseases is particularly sensitive 

to disruptions in oxidative stress response (145), an increase in ROS levels in Rh1>ClkDN eyes 

suggests an overall neuroprotective role for the circadian clock regulators in the retina, one which 

might become increasingly important with advanced age. Under standard laboratory conditions, 

wild-type flies with pigmented eyes only begin to exhibit the first signs of retinal degeneration 

after D50 (146). Thus, we hypothesize that the increase in Clk:Cyc activity in aging photoreceptors 

protects against retinal degeneration in part, by promoting expression of genes that combat 

oxidative stress. Supporting this hypothesis, several stress response genes exhibit cyclic expression 

patterns in the head only in older flies (D55), and this cyclic expression is dependent on both Clk 

and oxidative stress (126). However, because these studies were performed in female white-eyed 

w1118 flies (126), which already show substantial retinal degeneration by D15 to D30 (147), it 

remains to be elucidated if these age-associated changes in cyclic transcription also occur in flies 

with pigmented eyes.  

Here, we identified an age-dependent increase in Clk and Cyc TF activity in photoreceptors via an 

unbiased integrative ATAC-seq and RNA-seq approach, which focused on identifying changes in 

TF activity during aging based on changes in chromatin accessibility around TF binding sites. 

Thus, our initial approach was not focused on circadian biology and the data was obtained from 

single time-point comparisons; samples were collected at ZT6 +/- 1 for aging experiments and at 

ZT9 +/- 1 for the ClkDN experiments. Because of these sampling differences, the increase in 

Clk:Cyc TF activity in aging could reflect a change in the phase of Clk:Cyc binding to DNA  during 

the day, as shown for Monarch butterfly brains (148), an increase in amplitude of binding activity, 

or both. Supporting the latter possibility, circadian analysis of the transcriptome of aging fly heads 

showed both an increase in the amplitude and a slight shift in phase of tim and per expression, 

moving earlier in the day as flies aged (126). Other studies have observed a decrease in protein 

levels of the Clock repressor PER with age in Drosophila photoreceptors but not in pacemaker 

neurons (149,150), suggesting that the increased Clk:Cyc activity observed in our study could in 

fact reflect an increase in DNA binding of Clk:Cyc in old flies mediated by decreased repression 

by the Per:Tim complex. Nonetheless, the mechanisms underlying the age-associated changes in 

the circadian clock and Clk:Cyc TF activity in fly photoreceptors remain to be elucidated. 
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Overall, our work identifies a central role for the circadian clock in regulating the photoreceptor 

transcriptome. We observed that Clk:Cyc contributes to the expression of many thousands of genes 

in adult photoreceptors, consistent with reports from mammalian cells showing that Clock activity 

regulates the expression of 15% of expressed genes (116). Clk and Cyc have been proposed to act 

at the top of a regulatory hierarchy to control widespread cyclic transcription in many cell types 

by regulating the expression of TFs (21,22). Our data from photoreceptors are consistent with 

Clk:Cyc regulating expression of several important eye-specific TFs in Drosophila 

photoreceptors, suggesting a mechanism through which Clk and Cyc control expression of many 

genes indirectly. This is likely a widespread phenomenon across Drosophila tissues because gene 

regulatory network analysis of cyclic transcripts in brain, gut, Malphigian tubules, and fat bodies 

also identified many Clock-regulated TFs, including h, hth, Mitf, and GATAd (151).  

Interestingly, per (per01) and tim (tim01) male mutants have extended lifespan, mediated by a loss 

of PER in intestine cells (152), suggesting that increased Clock activity in a particular tissue can 

lead to positive outcomes associated with health- and lifespan in a tissue- and sex-specific manner. 

Thus, identifying the molecular mechanism that underlie the age-associated changes in Clk:Cyc 

activity in aging photoreceptors and their impact on cellular homeostasis, which may be specific 

to the retina or other peripheral clocks in flies, will be an important area of research for future 

studies. 

2.4 Methods 

2.4.1 Fly collection and maintenance 

Rh1-Gal4>UAS-GFPKASH (w1118;; P{w+mC=[UAS-GFP-Msp300KASH}attP2, P{ry+t7.2=rh1-

GAL4}3, ry506) (13) flies were maintained on standard fly food as previously described. For aging 

experiments, flies were collected in a 3 day window after eclosion and transferred to population 

cages. For ClkDN experiments, flies were collected in a 24 hour period and transferred to population 

cages. D1 corresponds to flies that were collected the first day immediately after eclosion. Flies 

for both aging and ClkDN experiments were maintained in a 25ºC incubator with a 12:12 hour 

light:dark cycle, where relative Zeitgeber Time (ZT) 0 corresponds to when the light cycle begins. 

For aging experiments, male flies were collected and flash-frozen at ZT6 (-/+) 1 hour. For ClkDN 

experiments, male flies were collected and flash-frozen at ZT9 (-/+) 1 hour. We note that UAS-
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GFPKASH and additional tagged KASH or QUAS flies (87) are available at Bloomington 

Drosophila Stock Center (BDSC) for nuclei immunoprecipitation in different tissues (#92580 for 

the UAS-GFPKASH flies used in this study). Rh1-Gal4 (BDSC #8691), UAS-ClkDN [#1] (BDSC 

#36319), UAS-ClkDN [#2] (BDSC #36318) and UAS-LacZ (BDSC #8529) fly lines were obtained 

from BDSC. UAS-CycDN were generously provided by Dr. Daniel Cavanaugh (Loyola University) 

2.4.2 Chromatin accessibility and transcriptome analysis of photoreceptors 

Nuclei immuno-enrichment (NIE), Omni-ATAC, quantitative PCR (qPCR), and RNA-seq were 

performed on male Rh1-Gal4>UAS-GFPKASH flies at the indicated ages as previously described 

(87). Briefly, for NIE experiments, we processed 400 age-matched male flies per replicate. Three 

independent biological replicates were obtained and analyzed for all RNA-seq and ATAC-seq 

samples. RNA-seq and ATAC-seq data analysis were performed as described in (87,146); details 

specific to this study are described below.  

Primers for quantitative PCR 

Primer name Sequence (5’ – 3’) 
ClkDN_Fwd CGACAAGGATGATACAGATCAG 
ClkWT_Fwd GCGAGAAGAAGCGACGAGAT 
Clk_Rev ATTGCTGAGGAACGCAGGCT 
eIF1a_Fwd GCTGGGCAACGGTCGTCTGGAGGC 
eIF1a_Rev CGTCTTCAGGTTCCTGGCCTCGTCCGG 
Rpl32_Fwd GCTAAGCTGTCGCACAAATG 
Rpl32_Rev CGTTGTGCACCAGGAACTT 

 

Note: We used the same Clk_Rev (reverse) primer to detect either WT or DN transcript by 

combining with corresponding Forward primer (Fwd). 

RNA-seq fold change heatmap analysis: Heatmaps were obtained using log2-transformed fold 

change values obtained from pair-wise comparisons using DESeq2 (153). For aging heatmaps, 

DEGs obtained from each comparison with D10 were pooled and de-duplicated. Plots were 

obtained using R (v4.0.3) package pheatmap (v1.0.12). 



 
 

55 

Differential TF activity using diffTF: DiffTF (92) analysis was performed using the default 

parameters: analytical approach (nPermutations=0), integration mode using raw counts obtained 

from STAR (--quantMode GeneCounts) (65), narrow peaks obtained using MACS2 (71). TFBS 

bed files were obtained from PWMScan (154) using the Aug 2014 BDGP Rel6 + ISO1 MT/dm6 

target genome with the 353 available motifs from the CIS-BP library (94) with default parameters 

(p-value<0.00001, Bg base composition 0.29,0.21,0.21,0.29). Identified TFs were classified as 

significant if they had an FDR lower than 0.001 in at least one of the pair-wise aging comparisons 

with D10, or in either D1 or D10 analysis for the ClkDN comparisons. Detailed protocols for NIE, 

RNA-seq, Omni-ATAC, ChIP-seq, and CUT&Tag are available at:  

dx.doi.org/10.17504/protocols.io.buiqnudw. 

Clk ChIP-seq peak and photoreceptor ATAC-seq overlap: Previously published high-confidence 

peaks obtained from Clk and Cyc ChIP-seq data (114) were downloaded, and genomic coordinates 

were transformed from the dm3 to dm6 genome using the LiftOver tool from the UCSC Genome 

Browser website (155). Genomic overlap was calculated using R (v4.0.3) packages ChIPpeakAnno 

(v3.24.2) and GenomicRanges (v.1.42.0).  

Transcript per million (TPM) scatter plots: TPM values for each sample and replicate were 

obtained using TPMCalculator (156). TPMs were averaged between biological replicates and used 

for scatter plot generation using R package ggplot2 (v3.3.3). DEGs obtained with DESeq2 were 

colored on the TPM scatter plots.  

2.4.3 Optic neutralization  

Optic neutralization and retinal degeneration quantification were performed as previously 

described (10,157). Briefly, flies were glued to a glass slide using transparent nail-polish, and eyes 

imaged using bright-field microscopy. We note that optical neutralization using bright-field 

microscopy (with white light) is only possible with flies that have pigmented eyes, which is the 

case for all the flies tested in the present manuscript. Five biological replicates were analyzed for 

each sample, and retinal degeneration scores were assessed blindly.  
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2.4.4 Targeted GSH:GSSG metabolomic assay 

25 eyes per sample were collected from male flies of the indicated age, condition, and genotype (n 

= 3). Eyes were placed in a Covaris MicroTube with 110 µl of blocking solution (62.5 mg NEM, 

3 mg EDTA, 5 mg NaHO3 disolved in 2 mL of 3:2 parts Water/MeOH (v/v)). Once all eyes were 

added to the blocking solution 10 µl of 100ng/ul of each internal standard was added 13C2-15N-

GSH-NEM and 13C4-15N2-GSSG. Samples were homogenized using a Covaris Ultra Sonicator 

with the following settings: peak power: 200; duty factor: 10%; cycles per burst: 200; time: 300 

seconds. Samples were then processed using an Agilent 1260 Rapid Resolution liquid 

chromatography (LC) system coupled to an Agilent 6470 series QQQ mass spectrometer (MS/MS) 

to analyze glutathione (158). (Agilent Technologies, Santa Clara, CA). A Waters T3 2.1 mm x 100 

mm, 1.7 µm column was used for LC separation (Water Corp, Milford, MA). The buffers were A) 

water + 0.1% formic acid and B) acetonitrile + 0.1% formic acid. The linear LC gradient was as 

follows: time 0 minutes, 0 % B; time 2 minutes, 0 % B; time 8 minutes, 30 % B; time 9 minutes, 

95 % B; time 9.1 minutes, 0 % B; time 15 minutes, 0 % B. The flow rate was 0.3 mL/min. Multiple 

reaction monitoring was used for MS analysis. Data were acquired in positive electrospray 

ionization (ESI) mode. The jet stream ESI interface had a gas temperature of 350°C, gas flow rate 

of 9 L/minute, nebulizer pressure of 35 psi, sheath gas temperature of 300°C, sheath gas flow rate 

of 9 L/minute, capillary voltage of 4000 V in positive mode, and nozzle voltage of 1000 V. The 

ΔEMV voltage was 450 V. Agilent Masshunter Quantitative analysis software was used for data 

analysis (version 8.0). 
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2.5 Figures 

 

Figure 2.1 A. Schematic of the Drosophila compound eye, composed of ommatidia that contain 
six outer photoreceptors that express Rhodopsin 1 (Rh1). Outer photoreceptor nuclei are labeled 
with GFPKASH. B. Experimental design for the aging RNA-seq time course. C. Principal 
Component Analysis (PCA) of aging RNA-seq samples based on gene counts. D. Hierarchically 
clustered heatmap of aging RNA-seq samples. Only genes that were identified as being 
differentially expressed in any condition relative to D10 are shown. Z-scores are calculated based 
on normalized counts obtained using DESeq2, and the heatmap is divided into five clusters based 
on the dendrogram. E. Gene Ontology (GO) term analysis of significantly enriched genes in each 
cluster. 
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Figure 2.2 A. Heatmap of RNA-seq fold change during aging for significantly differentially 
expressed genes (DEGs; p-adj<0.05, |FC|>1.5 relative to D10) associated with the GO term “RNA 
polymerase II-specific DNA-binding transcription factor binding” (GO:0061629). Genes are 
hierarchically clustered by log2 fold change values. B. PCA of aging ATAC-seq samples based on 
the read distribution over binned genome. C. Schematic of differential transcription factor (TF) 
analysis approach using diffTF. D. Bar plot indicating the number of significant age-regulated TFs 
at each age relative to D10 (p-adj<0.001). E. Hierarchical clustered heatmap of age-regulated TFs 
with significant changes in activity between any age and D10 (asterisk, p-adj<0.01). Scale 
represents the relative change in TF activity with red showing higher TF activity in old samples 
relative to D10, and blue indicating an age-associated decrease in activity. TFs that bind a common 
motif and cluster together are indicated by a vertical line. 
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Figure 2.3 A. Schematic of Clk:Cyc activity. Expression of ClkDN disrupts Clock-dependent 
transcription because it binds Cyc but does not contain the DNA binding domain. B. Schematic 
for the RNA-seq experiments. Flies that express the GFPKASH tag and either ClkDN or LacZ 
(control) in photoreceptors were aged to D1 or D10 prior to NIE. Flies were harvested at the 
indicated ZT. C. Scatter plot of mean expression (TPM, n=3) for the indicated pair-wise 
comparisons. Up- and down-regulated DEGs (p-adj<0.05, |FC|>1.5) are colored in red and blue, 
respectively. Core clock genes Clk, cyc, vri, per, Pdp1 and tim are highlighted. D. Genomic overlap 
of accessible peaks in photoreceptors and Clk:Cyc binding sites identified using ChIP-seq in (114). 
E. Venn diagram comparing overlap of Clock-bound genes (CBGs-green) with genes that were 
differentially expressed (adj p <0.05, |FC|>1.5) in Rh1>ClkDN relative to control. F. GO term 
analysis of Clock direct and indirect targets. G. Table showing selected genes identified as Clock 
direct target genes that were associated with the indicated biological processes. H. Ridge plot of 
selected GO terms in flies expressing ClkDN versus control at D1 identified using Gene Set 
Enrichment Analysis.  
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Figure 2.4 A. Cnet plot of genes associated with the GO term “DNA-binding transcription factor 
activity”. Color represents change in expression in ClkDN relative to control at D1. B. PCA of 
ClkDN and control ATAC-seq samples based on the read distribution over a 10-kb binned genome. 
C. Genome browser inspection of CPM-normalized ATAC-seq signal for selected core Clock 
genes (per, tim, vri and Pdp1). Scale is normalized to the same height in each comparison. ATAC-
seq from Ctrl flies is labeled in black, and ClkDN in yellow. D. Hierarchical clustered heatmap of 
significant Clock-regulated transcription factors identified between Rh1>ClkDN and Rh1>Ctrl at 
either D1 or D10. Scale represents the relative change in TF activity. E. CPM-normalized gene 
metaplots of ATAC-seq signal centered around Transcription Start Sites (TSS). F. ATAC-seq fold 
change heatmaps of signal centered around TSS for all actively expressed genes in photoreceptors. 
Fold change is obtained by dividing signal from Rh1>ClkDN relative to Rh1>Ctrl, and log2 

transformed to center changes around zero (no change). 
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Figure 2.5 A. Cnet plot of DEGs (p-adj<0.05,|FC|>1.5) in Rh1>ClkDN relative to Rh1>Ctrl at D1, 
associated with phototransduction-related GO terms. Genes associated with light-dependent and -
independent retinal degeneration based on published literature are indicated by accent or asterisks. 
B. Representative images of eyes from flies expressing ClkDN versus control at the indicated age 
reared in light:dark (LD – top) or constant dark (DD - bottom) conditions. Images were obtained 
using optical neutralization (see Methods). Arrows indicate position of missing/degenerated 
rhabdomeres. C. Scatter plot showing quantification of retinal degeneration in panel B. Individual 
eyes are shown as circles with means shown as horizontal black lines overlaying large circle (n=5). 
The distribution for each LD reared sample was compared with the DD control for the same age 
using ANOVA followed by Tukey-HSD comparing ages, samples, and condition (L:D vs D:D). 
“n.s.” = not significant, “*” = FDR<0.05, “**” = FDR<0.005). D. 
Reduced(GSH):Oxidized(GSSG) Glutathione ratios in dissected eyes from flies of the indicated 
genotype, age, and condition. Statistics were performed as in panel C. E. Bar plots representing 
enriched GO terms amongst the genes that were upregulated in Rh1>ClkDN at D10 relative to D1. 
F. Cnet plots of genes identified in panel E. 
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  PROPER CONTROL OF R-LOOP HOMEOSTASIS IS 
REQUIRED FOR MAINTENANCE OF GENE EXPRESSION AND 

NEURONAL FUNCTION DURING AGING 
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with Dr. Hana Hall. 

3.1 Introduction 

Aging is a process characterized by a time-dependent decline in physiological homeostasis that 

eventually leads to a loss of organismal function and increased incidence of death. Characteristic 

functional changes include loss of gene and protein expression, mitochondrial dysfunction, cellular 

senescence, and stem cell exhaustion (1). Aging is also a major contributor to development of 

many chronic diseases including ocular disease (6). Age-related vision loss and maculopathy have 

been associated with decreased density of retinal cells, including photoreceptors. Specifically, the 

age-related decline in photoreceptors affects predominantly rods rather than cones (159). In 

addition, emerging evidence links age-related neurological diseases, including retinal 

neuropathies, to defects in gene expression and RNA metabolism (75). Nonetheless, the molecular 

mechanisms that contribute to the age-associated susceptibility of the eye to disease development 

are poorly understood. 

R-loops are three-stranded nucleic acid structures consisting of an RNA-DNA hybrid and a 

misplaced single strand of DNA (160). They typically form during transcription in organisms 

ranging from yeast to humans and play a significant role in normal cellular physiology, being 

required for the initiation of mitochondrial replication and class switch recombination. Notably, 

recent studies suggest that R-loops can dynamically regulate gene expression (161); for example, 
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due to their enrichment at gene termini, R-loops can modulate gene expression by preventing DNA 

methylation or limiting transcription factor access to promoters and facilitating efficient 

transcription termination at 3’-ends (Boque-Sastre et al. 2015; Skourti-Stathaki et al. 2014). 

Moreover, R-loop formation correlates positively with active transcription, gene length, GC 

content and DNA topology (165).  Importantly, recent studies have shown that resolution of 

topological stress during transcription mediated by topoisomerases is critical for proper neuronal 

function (166). Topoisomerase 3β (Top3β) is a member of the type IA superfamily of 

topoisomerases, which unwind negatively supercoiled DNA formed during transcription and 

replication, an activity that prevents R-loop formation (165). Loss of Top3β is associated with 

neurological disorders (165) and has been shown to reduce lifespan in mice (167). 

Although R-loops are normal biological structures, their persistent formation is a major source of 

spontaneous DNA damage that can lead to transcriptional dysregulation and genome instability 

(160); two early hallmarks of aging. Given that aging is a main risk factor for development of 

chronic diseases, including neurodegenerative disease, it is conceivable that R-loops could play a 

significant role in age-associated mis-regulation of cellular functions. However, our understanding 

on R-loop biology during aging, and particularly in neurons, is quite limited. Due to high levels of 

transcription and alternative splicing, retinal cells and particularly photoreceptor neurons may be 

highly sensitive to RNA metabolism dysregulation. Drosophila compound eye contains 

approximately 800 units called ommatidia with each consisting of 20 cells, including eight 

photoreceptor (PR) neurons. The six outer PRs (R1-R6) expressing Rhodopsin 1 (Rh1) are mainly 

responsible for black and white vision and motion, and are similar to human rods. The inner PRs 

(R7 and R8) express Rh3/4 and Rh5/6, respectively, are responsible for color vision and resemble 

human cones. To characterize how aging impacts the genomic R-loop landscape in Drosophila 

photoreceptors, we isolated genetically labeled outer PRs using our recently improved nuclei 

immuno-enrichment method (5) and performed MapR coupled with next generation sequencing 

(168). Here, we show that R-loop levels in photoreceptor neurons increased progressively with age 

and were associated with genic characteristics, such as transcript levels and GC content. Further, 

our data show that majority of genes that decrease expression during aging contained R-loops. 

Finally, photoreceptor-specific depletion of DNA/RNA topoisomerase Top3β resulted in increased 

R-loop levels, reduced expression of long genes with neuronal function and reduced visual 

response. Importantly, overexpression of either Top3β or human RNASEH1, an enzyme that 
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resolves R-loops, in the eyes resulted in enhanced visual response during aging. Together, our data 

show that aging is associated with increased levels of R-loops over transcribed genes, potentially 

disrupting transcriptional outcomes that contribute to age-associated changes in neuronal function, 

including visual response to light.  

3.2 Results 

3.2.1 Aging photoreceptor neurons show increased global R-loop levels that correlate with 
loss of function and precede age-associated retinal degeneration 

To examine the global R-loop levels in photoreceptor neurons, we tagged the outer nuclear 

membrane of R1-R6 with GFP fused to the KASH domain of Msp300 protein using the Rh1-Gal4 

driver and isolated outer PR nuclei from the head homogenate with our tissue-specific method (5). 

Next, we aged flies over the course of 50 days post-eclosion (emergence from the pupae) and 

extracted genomic DNA from isolated PR nuclei at three time points (Figure 1A). We then assessed 

the global R-loop signal with a DNA slot blot assay using the S9.6 antibody, which recognizes 

RNA-DNA hybrids. Specificity of S9.6 antibody towards RNA-DNA hybrids was shown by pre-

treatment of DNA with ribonuclease H1 (RNase H1) that resulted in significant decrease of S9.6 

signal (Figure 1B). Signal quantification showed approximately 30% increase in R-loop levels in 

PRs isolated from middle-aged, 30-day old flies as compared to that in young, 10-day old flies. 

This trend continued with a significant increase of nearly 50% in global R-loop levels at day 50 

(Figure 1B-C). These data show that R-loops start accumulating early during photoreceptor aging, 

at a time point where flies show decreased visual function (170). Importantly, using optical 

neutralization, which measures photoreceptor structural integrity with light microscopy, we 

observed no retinal degeneration by middle age, with a stochastic loss of rhabdomeres occurring 

after day 40. Thus, our data show that process of R-loop accumulation precedes age-related retinal 

degeneration, thus suggesting that increased R-loop formation may contribute to loss of function 

and possibly neuronal cell loss during aging. 

3.2.2 Profiling genome-wide R-loop distribution in PR neurons reveals age-associated 
changes 

To determine the genomic R-loop landscape in aging PRs, we coupled our NIE approach with 

MapR, a recently published R-loop mapping strategy based on the specificity of RNase H1 enzyme 
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to RNA-DNA hybrids, combined with the micrococcal nuclease (MNase)-based CUT&RUN 

technology. MapR uses a recombinant mutant form of MNase-fused RNase H1, which binds but 

does not degrade the RNA moiety within an RNA-DNA hybrid (ΔRH). Upon binding of the RNA-

DNA hybrid by ΔRH-MNase, MNase activation by Ca2+ addition results in cleavage of 

surrounding DNA and a subsequent release of R-loop associated DNA fragment, which is used for 

library preparation coupled with high-throughput sequencing (Figure 2A). Surprisingly, we found 

that coupling NIE-purified photoreceptor nuclei with the standard MapR protocol yielded signal 

over genic regions resembling MNase-seq rather than R-loop specific enrichment. Our data 

showed MapR signal depletion around the Transcription Start Site (TSS) of genic regions, 

suggesting that our samples were being over-digested by MNase. We therefore modified the 

standard MapR protocol based on the recently published improvement of the CUT&RUN method, 

which incorporates high salt with low calcium washing steps, and also decreased digestion time 

(see Methods in Supporting Information). To evaluate the quality of our modified protocol, we 

first compared our MapR data in Drosophila PRs to the original MapR data obtained in human 

HEK293T cells and found that the metagene profiles over the gene bodies showed similar R-loop 

distribution, with signal enrichment around the TSS and the Transcription Termination Site (TTS) . 

In contrast, when we next compared our MapR data with R-loop mapping data obtained from 

Drosophila embryos using DRIP-seq (171), we observed that DRIP-seq showed signal enrichment 

over gene bodies with a slight depletion around TSS; discrepancies that have been shown 

previously to result from different affinities of S9.6 antibody used in DRIP-seq, as opposed to 

RNase H1 used in MapR, for RNA-DNA hybrids. In addition, the Alecki dataset was obtained 

during Drosophila early embryonic developmental stages. Thus, some differences in signal 

enrichment in our studies might arise from tissue-specific and method-specific effects.  

To validate the specificity of our MapR method, we treated NIE-purified PR nuclei with RNase-

H1 prior to performing MapR, which led to a complete loss of signal enrichment as shown by 

individual gene examples (Figure 2B) and gene metaplots (Figure 2C). In addition, when we 

normalized MapR signal by obtaining a ratio from RNaseH1 non-treated relative to treated 

samples, we found that the MapR signal distribution did not show significant changes in 

enrichment over genes bodies. We note that the standard MapR protocol includes a separate 

negative control where nuclei are incubated with MNase alone to account for MNase binding. 
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However, in our hands, the MNase control yielded no purifiable DNA, as shown by TapeStation 

profiles.  

Based on these observations, we performed MapR in aging PRs at day 10, 30 and 50 post-eclosion 

using our modified approach in three independent biological replicates which generated at least 

3.5x107 uniquely mapped fragments per sample. Spearman's correlation analysis based on read 

distribution over a 1000-bp binned genome revealed a strong positive association amongst the 

three biological replicates (Spearman’s p ≥ 0.96). In contrast, when we compared the samples 

between different age time points, we observed lower positive association between day 10 and day 

50 (Spearman’s p ≥ 0.93), suggesting that the R-loop landscape changes were age-dependent 

(Figure 2D). Similarly, Principal Component Analysis (PCA) of the normalized R-loop 

distribution revealed that 53.8% variance amongst the samples for all biological replicates was 

attributed to age (Figure 2E). Notably, while samples clustered by age, the similarity amongst the 

biological replicates decreased with age (PC2 13.6%), suggesting that aging is associated with 

increased heterogeneity in R-loop distribution.  

To further assess the quality of our sequencing datasets, we performed peak calling using the 

Model-based Analysis for ChIP-Seq (MACS2) algorithm using default settings and measured 

quality control metrics. To account for the differences in the number of mapped fragments in each 

sample, we called the peaks using bam files that were down-sampled to the same number of 

mapped fragments (3.5x106). Evaluation of the Fraction of Reads in Peaks (FRiP) score, which 

measures the quality of signal enrichment as defined by modENCODE, showed consisted FRiP 

scores higher than 0.37 for all samples. Furthermore, we found that peak distribution was stably 

maintained during aging, with approximately 60% of peaks being annotated to promoters (TSS ± 

2kb) and approximately 25% of peaks annotated to introns, which is consistent with previously 

reported genome-wide R-loop distribution.  

Taken together, our data demonstrate that we successfully applied the MapR method to tissue-

specific samples in Drosophila, by purifying photoreceptor nuclei from the whole organism, and 

produced high quality R-loop mapping data. Furthermore, application of MapR in aging PRs 

showed that the genome-wide R-loop distribution changes in an age-dependent manner.  
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3.2.3 Age-associated R-loop accumulation over gene bodies correlates with high GC 
content, gene length and transcriptional levels 

Given that R-loops typically form co-transcriptionally (172), we next examined global and locus-

specific distribution of age-associated changes in R-loops across actively transcribed genes, 

defined as having more than seven transcripts per million (TPM). First, we analyzed global R-loop 

signal over gene bodies for actively expressed genes and compared the average signal across the 

gene, as counts per million (CPM). As expected, gene metaplots revealed that R-loop signal was 

enriched mainly over TSS and towards the 3’ ends of genes across all age time points (Figure 3A), 

which is consistent with previously reported R-loop distribution (Ginno et al. 2012; Sanz et al. 

2016a; Nadel et al. 2015; Chen et al. 2017). Importantly, there was a widespread increase in R-

loop levels over gene bodies during aging, most notably at day 50. Genome browser inspection of 

the averaged signal tracks for each time point for two individual genes showed changes in R-loop 

signal, including an early decrease or late increase. To further evaluate the molecular 

characteristics of R-loop coverage during aging, we asked whether the age-associated increase in 

R-loops could be a consequence of broadening of the peaks. Consistent with our gene metaplots, 

MapR signal around the peaks showed that overall, R-loop coverage increased with age (Figure 

3B), suggesting that R-loops might either extend or form at higher rate with age. To further assess 

an age-associated increase in R-loop occupancy, we quantified signal coverage, as defined by the 

sum of peak width for each time point. Notably, R-loop peaks covered approximately 18.7 

megabases (Mb) of the genome at day 50, compared to 18.1 Mb at day 10, showing a modest but 

significant increase in coverage during aging (t-test, p<0.022) (Figure 3C). Supporting this data, 

violin plots depicting the peak width for all peaks revealed a slight but consistent increase in peak 

width at day 30 and day 50 as compared to that at day 10. Taken together, these observations show 

that R-loop signal over the genome accumulates with age, corroborating our findings from bulk 

R-loop levels using slot blots (see Figure 1). We note that the Drosophila genome has a total size 

of 180 Mb, and our data in Drosophila PRs showed that R-loops covered approximately 10% of 

the genome, which is similar to the genomic R-loop coverage obtained from other organisms, 

including mammals (160).  

To gain further insight into age-associated changes in R-loops, we compared the fold change in R-

loop signal around TSS (±3 kb) or TTS (±3 kb) in old and young PRs. Heatmap plots of actively 

expressed genes ranked based on their fold change showed that the majority of the TSS-associated 
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R-loops increased with age, while only approximately 50% of genes had an increase in R-loop 

signal around TTS (Figure 3D). Because R-loop formation is typically associated with specific 

genic characteristics such as gene expression level, torsional stress, and GC content (Chedin & 

Benham, 2020), we wondered if such genomic features were associated with an age-associated 

accumulation of R-loops over actively expressed genes. To test this, we clustered the genes from 

each heatmap from Figure 3D into four quartiles (Q1-4, with Q1 having the highest R-loop gain 

and Q4 having the highest R-loops loss), and assessed GC content, gene length and expression 

levels, respectively. Genes with TSS-enriched R-loops showed higher GC content than genes with 

R-loop losses (Wilcoxon-test, p<2.2x10-5), with no statistically significant association with long 

or highly expressed genes (Figure 3E-top). However, genes with TTS-enriched R-loops had high 

GC content, and were highly expressed and long (Kruskal-Wallis, p<4.5x10-2, p<4.5x10-4, and 

p<2.1x10-9, respectively) (Figure 3E-bottomC). Thus, these data show that age-associated 

accumulation of R-loops correlates with high GC content, length and expression levels.   

3.2.4 Accumulation of R-loops in long genes correlates with decreased transcript levels in 
aging PRs  

We previously showed that genes which decrease expression in aging PRs tend to be highly 

expressed and longer than genes that either increase or do not change expression (170). Moreover, 

aging Drosophila exhibit decrease in positive light response which correlates with decreased 

expression of long genes with neuronal function. Interestingly, recent reports have shown similar 

correlations between gene length and function in a variety of aging tissues and organisms, 

including humans (175,176). Because our current data showed that long genes accumulated R-

loops with age, and R-loops can lead to RNA polymerase II arrest and transcription inhibition 

(177,178), we next investigated if there was an association between accumulation of R-loops and 

decreased gene expression during aging. Transcriptome profiling of PRs isolated from flies at day 

10 and 50 revealed that 1700 genes (18%) were differentially expressed (DEG), with 722 genes 

(7%) decreasing expression and 978 genes (8%) increasing expression (p-adj<0.05, |FC|>1.5) 

(Figure 4A). To further evaluate the relationship between genic R-loop accumulation and gene 

expression, we identified R-loop containing genes (RCGs), by annotating high confidence peaks 

to the nearest TSS, and compared them to DEGs during aging. Venn diagram analysis revealed 

that 1388, or 69% genes were age-regulated at a transcript level and also contained at least one R-
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loop (RCGs/DEGs) (Figure 4B). Further, gene length analysis of each category showed that 

RCG/DEGs were significantly longer than either DEGs or RCGs alone (Figure 4C), suggesting 

that accumulation of R-loops in long genes could contribute to gene expression changes during 

aging (Wilcoxon test, adjusted p-value < 2.22e-16).  

To gain further insight into the biological processes associated with RCG/DEGs, we first used 

hierarchical clustering and identified 613 genes (46%) to be up-regulated and 775 genes (54%) 

being down-regulated. Importantly, we found that overall, nearly 80% of the genes that decreased 

expression during aging accumulated R-loops, while only 58% of the genes that increased 

expression during aging contained R-loops (Figure 4D). Gene Ontology (GO) term analysis 

revealed that down-regulated RCG/DEGs were enriched for functional and neuronal categories, 

including cognition and regulation of nervous system development, whereas up-regulated 

RCG/DEGs were enriched for metabolic processes, such as peptide biosynthesis and translation 

(Figure 4E). To further characterize the RCG/DEGs, we used literature mining tool BioLitMine 

and identified medical subject heading (MeSH) terms associated with RCG/DEGs that were 

significantly enriched for several eye- and brain-relevant diseases, such as epilepsy, eye 

abnormalities, and retinal and nerve degeneration (Figure 4F). Collectively, our data showed that 

R-loops accumulated at both age up- and down-regulated genes, suggesting that R-loops may 

contribute to gene expression regulation via multiple mechanisms. For example, transcription can 

be blocked by direct collision of RNAP by pre-formed R-loops from previous transcription rounds 

or alternatively, can be inhibited by an intrinsic R-loop formation in the wake of ongoing RNAP. 

However, increased R-loop levels in age up-regulated genes may be simply a result of increased 

expression of these genes. Importantly, given that R-loops accumulated at most of the age down-

regulated genes, which are enriched for long genes with neuronal function, it suggests that R-loops 

may contribute to regulation of biological pathways relevant for eye-specific functions.   

3.2.5 Top3β depletion in Drosophila PR neurons leads to increased R-loop levels and 
decreased visual function 

The neuronal transcriptome is enriched for long and highly expressed genes, that undergo high 

level of torsional stress during transcription (179,180). To solve DNA and RNA topological 

problems, cells use conserved topoisomerase enzymes that play a critical role in a wide range of 
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fundamental metabolic processes in the genome (181,182). One of the enzymes is Top3β, a highly 

conserved, dual-activity topoisomerase in animals that can change the topology of both DNA and 

RNA (183) and unwind negatively supercoiled DNA that forms during transcription, an activity 

that prevents formation of R-loops (174). Loss of Top3β is associated with increased R-loop levels 

in mammalian cells (184) and has been shown to reduce lifespan in mice (167). In addition, 

mutations in Top3β are linked to neurological disorders, thus highlighting the critical role of Top3β 

in neuronal function (185). Interestingly, our recent proteomic study of the aging Drosophila eye 

(186) revealed a 20% decrease in Top3β protein levels (Figure 5A), suggesting that the aging eye 

might be sensitive to the loss of Top3β activity. Thus, we hypothesized that decreased Top3β levels 

could contribute to changes in R-loop homeostasis and neuronal function in aging PRs. To test 

this, we first depleted Top3β with ubiquitous RNAi in larvae (tubP-Gal4>UAS-RNAi) and 

measured bulk R-loop levels. Using DNA slot blot and RNA-DNA-specific antibody S9.6, we 

detected a 10% increase in R-loop levels in Top3β-depleted samples as compared to a control 

expressing non-specific RNAi (Figure 5B-C). Pre-treatment of DNA samples with RNase H1 led 

to a complete loss of the signal (Figure 5B-right), thus showing the specificity of the signal for 

RNA-DNA hybrids. In addition, qPCR analysis of Top3β transcript levels showed approximately 

80% reduction in Top3β-depleted samples as compared to a control, thus validating the efficiency 

of the knockdown. Taken together, these data show that Top3β in Drosophila has a conserved role 

in maintenance of R-loop homeostasis. 

Since loss of Top3β in Drosophila and mice leads to several neuronal phenotypes, such as 

disruption of synapse formation and behavioral impairments, we were next interested to see if 

depletion of Top3β specifically in PR neurons had any impact on visual function. Like most flying 

insects, Drosophila move towards light, thus exhibiting positive phototaxis (187). Importantly, we 

and others showed that positive phototaxis declines with age in flies (Carbone et al., 2016; Hall et 

al., 2017). To assess changes in visual behavior upon loss of Top3β, we depleted Top3β transcripts 

specifically in photoreceptors using Rh1-Gal4>UAS-RNAi and performed phototaxis assays at 

days 10 and 30 post-eclosion. As expected, there was approximately 15% decrease in positive 

phototaxis in the control flies between day 10 and day 30 (Figure 5D). Notably, while flies with 

PR-specific depletion of Top3β showed no significant difference in the phototactic response at day 

10, they showed approximately 60% decrease in visual behavior at day 30 as compared to a control 

(Wilcoxon test, p-value<0.47, and <0.015, respectively). Importantly, this decrease in visual 
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behavior was not due to the loss of PR neurons, as optical neutralization showed no retinal 

degeneration in Rh1-Gal4>UAS-RNAi flies at day 30 post-eclosion (Figure 5E). Thus, our data 

show that Top3β is required for maintenance of proper visual function in aging Drosophila 

photoreceptor neurons. 

3.2.6 Top3β regulates expression of a subset of long genes associated with neuronal 
function in photoreceptors 

Given the role of Top3β in the resolution of torsional stress during transcription, we next 

hypothesized that Top3β might be required to regulate the expression of genes with neuronal 

function, which tend to be long and highly expresses (191). To test this hypothesis, we analyzed 

the transcriptome of PR neurons depleted for Top3β in Rh1-Gal4>UAS-RNAi; UAS-GFPKASH flies 

at day 30 using our NIE protocol. Differential expression analysis using DESeq2 between Top3β-

RNAi and control, revealed that expression of approximately 1% of genes was regulated by Top3β 

(66 out 6500, FDR<0.05) (Figure 6A). Additionally, quantitative analysis of gene length based on 

whether a gene was differentially expressed in Top3β depleted PRs revealed, that genes with 

decreased expression were highly and significantly enriched for long genes relative to genes that 

either increased or did not change expression (Figure 6B). These data thus suggest that 

transcriptional regulation of long genes in the eye is particularly sensitive to decreased Top3β 

levels. Gene Ontology (GO) enrichment analysis of all Top3β-dependent genes revealed that genes 

with decreased expression were highly enriched for genes with neuronal functions as shown by 

the gene concept network analysis (Cnetplot) (Figure 6C). These genes included Tenascin major 

(Ten-m; FBgn0004449) and Tenascin accessory (Ten-a; FBgn0267001), which form a 

transmembrane heterodimer involved in synapsis regulation, Tripartite motif containing 9 (Trim9; 

FBgn0051721), a E3 ubiquitin ligase involved in neurogenesis, axon guidance, and eye 

development, and knockout (ko; FBgn0020294), a storkhead-box protein involved in axon 

guidance. Importantly, GO term analysis of up-regulated genes did not lead to any significant 

biological category enrichment. Thus, our data show that in PR neurons, Top3β is required to 

maintain gene expression levels of long genes that are involved in neuronal function. 

Next, we asked whether the expression of Top3β-dependent genes was mis-regulated during in 

aging PR neurons. To do this, we compared genes that were down-regulated either during aging 
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or upon depletion of Top3β. Venn diagram revealed that 30% of Top3β-dependent genes were also 

down-regulated during aging (“shared genes”), with the overlap being statistically significant 

(Figure 6D). Further, individual inspection of these shared genes revealed that majority of them 

were long and showed similar changes in fold change expression during aging and Top3β 

depletion. Thus, our data show that during aging, several long genes important for neuronal 

function decrease expression in a Top3β-dependent manner. Further, age- and Top3β-shared genes 

were significantly longer than Top3β-dependent genes (Figure 6E), suggesting that expression of 

longer genes is particularly sensitive to loss of Top3β during aging. However, gene length analysis 

of genes differentially expressed during aging in PRs revealed that down-regulated genes were 

significantly longer than up-regulated genes (Figure 6F-left). In addition, gene length analysis of 

our previously published RNA-seq data from aging eyes of Rh1>GFPKASH flies (192) revealed a 

similar trend (Figure 6F-right) indicating that expression of the long genes in the aging retina is 

particularly sensitive to dysregulation of molecular mechanisms that include Top3β.  

Collectively, our data showed that Top3β is required to maintain expression of a specific subset of 

genes with neuronal function that tend to be very long and thus are most likely sensitive to loss of 

topoisomerase activity due to high levels of torsional stress. This suggests that during aging, proper 

levels of Top3β are required to maintain R-loop homeostasis and expression of genes important 

for visual function.  

3.2.7 Overexpression of Top3β or RNaseH1 enhances visual function during aging 

To further validate the role of topoisomerase activity and maintenance of R-loop homeostasis in 

visual function during aging, we over-expressed either Top3β or human, nuclear localized, 

RNASEH1 in Drosophila eyes under the control of longGMR-GAL4 driver, which induces high 

expression in PRs and assessed visual behavior using phototaxis in 10-, 20-, and 30-day old flies. 

Importantly, we validated that RNASEH1 is expressed using qPCR and showed that bulk R-loop 

levels are decreased upon expression of RNASEH1 relative to a no driver control. In addition, we 

over-expressed Top3β under control of longGMR in a Top3β null background (Top3β-/-; 

longGMR>Top3β). Our data showed that at day 10, over-expression of Top3β in the eyes of Top3β 

null flies resulted in similar light response as that of control flies (Rh1>siControl, see Figure 5D) 

or longGMR>siControl flies (192) (Figure 6G). Furthermore, Top3β-/-; longGMR>Top3β flies 
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showed an age-associated decrease in positive light response which is consistent with control 

Rh1>siControl flies (Figure 6G-grey). Importantly, flies with Top3β over-expression (Top3β+/+; 

longGMR>Top3β) showed an enhanced positive light response at either day 10 or day 20 (Figure 

6G-light blue), corroborating that proper levels of Top3β contribute to visual response in flies. 

Moreover, over-expression of RNase H1 in Drosophila eyes (Top3β+/+; longGMR>RNaseH1) 

showed enhanced visual response in 10- and 20-day old flies as compared to control flies, similar 

to that of flies with Top3β over-expression (Figure 6G). These data suggest that Top3β function 

and R-loop resolution by RNase H1 contribute to proper visual function in Drosophila. Notably, 

qPCR analysis performed in flies with RNase H1 over-expression showed no significant difference 

in Top3β transcript level as compared to that in wild type flies suggesting that the enhanced visual 

response in these flies is a result of increased R-loop removal. However, all tested genotypes 

showed decreased positive phototaxis at 30 days post-eclosion. Optical microscopy imaging of the 

eyes did not show any changes in the eye morphology in 30-day old flies and over-expression of 

Top3β using longGMR driver resulted in approximately 50% decrease in R-loop levels in eyes 

from 10-day old flies. These data imply that additional aging mechanisms contribute to regulation 

of visual function in the eye, possibly including R-loops accumulated as a result of aberrant 

expression of additional R-loop metabolism-associated factors 

3.3 Discussion 

While R-loops were previously considered to be mere byproducts of transcription, it has been 

demonstrated that R-loops play a significant physiological role in cellular biology of multiple 

organisms, including humans. Notably, there is a growing body of evidence that links R-loop 

accumulation to transcriptional imbalance and genomic instability, two main hallmarks of aging 

(1). Furthermore, dysregulation of R-loop homeostasis has been linked to human pathologies, 

including neurodegeneration (193). Since age is the main risk factor for many neurodegenerative 

diseases, our current study focused on characterizing the changes in R-loop landscape induced 

during aging and evaluating the impact of R-loops on the gene expression, specifically in 

Drosophila photoreceptor neurons. 

Characterization of global R-loop levels in aging PRs showed an increase in R-loops by middle 

age, with an additional significant increase late in aging. To our knowledge, this is the first 
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published report demonstrating changes in R-loop levels in a specific tissue during aging. To 

further evaluate the R-loop distribution genome-wide, we modified a recently published R-loop 

mapping strategy, called MapR, coupled with high-throughput sequencing that can be useful when 

material is limiting. In addition, given that this method involves incubation of isolated nuclei/cells 

with a recombinant mutant form of RNase H1 tethered with MNase and therefore does not require 

modification of the organismal genome, it is well-suited for studies in whole animals. Using this 

approach, our data demonstrated that R-loops covered approximately 10% of the Drosophila PR 

genome, which is similar to the reported genomic distribution of R-loops in other organisms 

(194,195). Consistent with previous reports, R-loops were associated with known genomic hot-

spots such as gene termini and specific genic features such as high GC content, gene length and 

expression level. The aging transcriptomes of multiple organisms and cell types show a positive 

correlation between transcriptional downregulation and specific genic features, such as gene length 

and GC content (176) and R-loops are known to play a key physiological role in transcription 

regulation due to their presence at promoters and terminators, where they regulate transcription 

initiation and termination, respectively (161). Thus, R-loop accumulation over these genomic 

regions may be a conserved mechanism that contributes to gene expression regulation in multiple 

cell types, including neurons.  

Further, we observed a significant increase in R-loop signal over gene bodies and importantly, 

age-associated broadening of R-loop peak signal, suggesting that aging neurons accumulate R-

loops at higher rate or R-loops are more persistent and potentially extend with age. Transcriptome 

of neurons is biased for longer transcript relative to non-neuronal cell types (191). Notably, long 

genes accumulate high topological stress during transcription and loss of topoisomerase activity 

has been shown to preferentially inhibit expression of (López-Otín et al. 2013) long genes (179). 

Since age-associated R-loop gains were particularly localized at long and highly expressed genes, 

we sought to further explore the impact of decreased topoisomerase activity on the maintenance 

of photoreceptor neuron homeostasis. DNA/RNA topoisomerase Top3β dysfunction is associated 

with increased R-loop levels in mammalian cells and mutations in Top3β are linked to neurological 

disorders, thus highlighting the critical role of Top3β in neuronal function (185). Importantly, 

Top3β protein levels decrease in aging Drosophila eyes (186). Here, we demonstrate that normal 

Top3β levels are important for maintenance of neuronal function, as shown by an age-associated 

decrease in visual behavior upon photoreceptor-specific downregulation of Top3β. In addition, 
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depletion of Top3β in PRs lead to decreased expression of a subset of long genes with neuronal 

function. Moreover, genes down-regulated during Top3β depletion contained higher R-loop levels 

than genes down-regulated during both aging and Top3β depletion, suggesting that regulation of 

R-loop homeostasis and expression of long genes in PR neurons are highly sensitive to loss of 

Top3β function. Moreover, Top3β or RNase H1 over-expression in the eyes enhanced positive 

light response in flies and mitigated age-dependent loss of visual function in middle-aged flies. 

However, systematic and integrative studies should be used to characterize how processes 

associated with late aging impact the pathways associated with R-loop homeostasis maintenance. 

Collectively, our data suggest that Top3β may function in regulation of gene expression and 

maintenance of R-loop homeostasis in a subset of long genes required for neuronal function in 

aging photoreceptors. Thus, imbalance in R-loop homeostasis during aging could make postmitotic 

neurons particularly susceptible to dysregulation of gene expression and loss of function leading 

to increased risk of age-related neurodegeneration.  

Aging is accompanied by elevated incidence of ocular diseases such as age-related macular 

degeneration and glaucoma, which exhibit characteristics of neurodegenerative diseases including 

loss of function and irreversible neuronal cell loss. How does aging impact development and 

progression of age-associated chronic diseases is one of the key questions in the biology of aging. 

Our current studies demonstrate a novel finding that Drosophila photoreceptor neurons 

progressively accumulate R-loops during aging, mostly at long and highly expressed genes. 

Importantly, integration of our transcriptomic and R-loop mapping data shows that majority of 

genes that decrease expression in aging PRs accumulate R-loops, thus suggesting that R-loops 

could be involved in cell physiology of aging neurons via inhibition of gene expression. Moreover, 

persistent formation of R-loops often leads to increased DNA damage, which is associated both 

with aging and neurodegeneration. Given that mutations in number of proteins involved in R-loop 

biology are implicated in neurodegenerative disease, our studies suggest that both aging and 

neurodegeneration may be sensitive to dysfunction in similar pathways. 
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3.4 Figures 

 

Figure 3.1 A Schematic of experimental outline to detect global levels of R-loops in aging 
photoreceptor neurons.  
Top: diagram of the cellular localization of the GFPKASH protein. Dark blue lines represent each 
lipid layer within the nuclear membrane. Bottom: diagram of an ommatidium, a structural subunit 
in the Drosophila compound eye. Each ommatidium is composed of 8 photoreceptor neurons, 
labeled R1 to R8. Outer photoreceptors (R1-R6) express the ninaE (Rh1) gene. B. Slot blot analysis 
of R-loop levels from photoreceptor nuclei at day 10, 30 and 50 post-eclosion treated with (right) 
or without (left) RNase H1. Slot blots were performed using RNA-DNA hybrid-specific S9.6 
antibody (top) and ssDNA for loading control (bottom). C. Quantification of S9.6 slot blot signal 
in aging PRs from (b). Values above 1 represent increase signal relative to day 10. Mean +/- 
Standard Deviation (SD). p-value is obtained using t-test, (n=4).  
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Figure 3.2 A. Schematic diagram of the R-loop mapping technique used in this study (MapR). 
Immuno-enriched nuclei are incubated with ΔRNaseH1-MNase (ΔRH-MNase), where ΔRH binds 
to R-loops. Ionic activation of MNase results in cleavage of surrounding DNA and subsequent R-
loop enriched DNA release, which is purified and used for sequencing library preparation. B. 
Genome browser inspection of MapR track data on integrated genomic viewer (IgV) for a selected 
genomic region. Three independent biological replicates (R1-R3) from 10-day old flies’ samples 
not pre-treated with RNaseH1 are shown in black, and a sample from nuclei that were pre-treated 
with RNaseH1 prior to MapR (see Methods) is shown in blue. Peaks obtained using MACS2 for 
each sample are also shown as bars under each corresponding sample track. C. Metaplot of CPM-
normalized MapR signal over gene bodies for samples that were pre-treated with (blue) or without 
(black) RNase H1 prior to MapR (from b). D. Spearman correlation heatmap of Aging MapR read 
distribution over 1000-bp binned genome. Scores between 0 and 1 shown in each box correspond 
to Spearman’s rank score. E. Principal component analysis (PCA) of Aging MapR samples based 
on read distribution over 1000-bp binned genome.  
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Figure 3.3 A. Metaplot of CPM-normalized MapR signal over gene bodies for all genes across 
age-timepoints. Signal is an average obtained from three independent biological replicates per age-
timepoint. TSS indicates Transcription Start Site and TTS indicates Transcription Termination 
Site. B. Metaplot of CPM-normalized Aging MapR signal around peaks obtained using MACS2 
during aging. C. Boxplot of genomic coverage of Aging MapR signal as defined by the total sum 
of peak width obtained at each time point. Peaks that mapped to scaffold or non-defined 
chromosomes were excluded from analysis. We used Wilcoxon Rank-Sum test to compare pair-
wise differences in the distribution of genomic coverage amongst ages, (n=3). D. Heatmap 
showing log2 ratios of Aging MapR signal around the TSS (top) or TTS (bottom), comparing day 
50 to day 10. Genes are ranked based on their fold change value and divided in four groups 
(quartiles) based on their position on the heatmap. E. Boxplot analysis of GC content, gene length 
and expression levels for each group of genes divided in four groups based on the Aging MapR 
fold changes around TSS (top) and TTS (bottom). p-value is obtained using Wilcoxon test.  
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Figure 3.4 A. Volcano plot representing differentially expressed genes (DEGs) between day 50 
and day 10. DEGs are obtained using DESeq2 (adjusted p-value < 0.05, |FC|>1.5). B. Venn 
diagram representing the overlap between R-loop containing genes (RCGs) and DEGs from (a). 
C. Box plot analysis of gene length for differentially expressed genes, R-loop containing genes, or 
RCG/DEGs from (b). p-value is obtained using Wilcoxon test. D. Hierarchically clustered heatmap 
of RNA-seq data for RCG/DEGs from (b). Normalized Z-scores are calculated based on 
normalized counts obtained using DESeq2, and the heatmap is divided into genes that were either 
up- or down-regulated with age. E. Dot plot of biological processes identified as significantly 
enriched in Gene Ontology (GO) term analysis for genes that were either up- or down-regulated 
from (d). F. Scatter plot depicting an enrichment analysis of diseases associated with genes that 
were down-regulated with age and contained at least one R-loop. Analysis performed using 
literature mining tool BioLitMine (197). A lower score (x-axis) represents higher enrichment.  
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Figure 3.5 A Comparison of Top3β protein levels in aging eyes from Rh1>GFPKASH flies, shown 
as normalized protein abundance. Proteomic samples were prepared from 10- and 40-day old flies, 
100 eyes/sample (n=4). Raw data taken from (186). B. Slot blot analysis of R-loop levels from 3rd 
instar larvae ubiquitously expressing siRNA against mCherry (siControl) or against Top3β 
(siTop3β). Samples were treated with (right) or without (left) RNase H1. Slot blots were performed 
using S9.6 antibody (top) and ssDNA for loading control (bottom). C. Quantification of S9.6 slot 
blot from (b). S9.6 signal is normalized to ssDNA slot blot signal, (n=3). D. Box plots showing 
the light preference indices (positive phototaxis) for Rh1>GFPKASH, mCherry-RNAi (siControl) 
or Rh1>GFPKASH, Top3β-RNAi (siTop3β) at day 10 and 30 (6 biological replicates for each time 
point or RNAi, 27 - 33 male flies/replicate; total number of flies per fly strain=150-180). p value 
obtained using Wilcoxon test. E. Optic neutralization of siControl and siTop3β at day 10 and 30 
post-eclosion from (d). Retinal degeneration (RD) scores were obtained by blindly quantifying 5 
biological replicates. Score of 0% means there was no observable loss of rhabdomere or 
ommatidia. 
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Figure 3.6 A. Volcano plot representing differentially expressed genes (DEGs) between siTop3β 
and siControl-expressing photoreceptors at day 30 post eclosion. DEGs obtained using DESeq2 
(adjusted p-value < 0.05, |FC|>1.5). Size of each point reflect the gene length of the whole gene as 
defined as most upstream TSS and most downstream TTS. B. Box plots showing the gene length 
(as log2-transformed bp) for genes identified as down-, up- or not regulated using DESeq2 in 
siTop3β photoreceptors relative to siControl (adjusted p-value < 0.05, |FC|>1.5). p-value obtained 
using Wilcoxon test. C. Gene concept network analysis (Cnetplot) of genes downregulated in 
siTop3β photoreceptors relative to siControl. Gene length in kilobases is shown next to each gene. 
D. Venn diagram representing the overlap of genes that were down-regulated in either aging (D50 
vs D10) or upon loss of Top3β (siTop3β vs siControl). Overlap significance is denoted as a 
“overlapping p-value”, obtained with a hypergeometric test. Odds ratio and Jaccard index are 
measurements of similarity. E. Box plots showing the gene length (as log2-transformed bp) for 
genes in the overlap identified in (d) or genes that were regulated by Top3β but not during aging. 
p-value is obtained using Wilcoxon test. F. Box plots showing the gene length (as log10-
transformed bp) for genes that were identified as down- or up-regulated in either aging PRs (left) 
or eyes (right). Eye data was obtained from (192). G. Box plots showing the light preference 
indices (positive phototaxis) for Top3β-/-; longGMR>Top3β, Top3β-/-; longGMR>Top3β, and 
longGRM>RNaseH1 at day 10, 20, and 30 post-eclosion (6 biological replicates for sample; 29 - 
31 male flies/experiment; total number of flies ~180). p-value obtained using Wilcoxon test. 
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 CONCLUSIONS 

Here, I improved our previously published nuclear immuno-enrichment method to isolate cell-type 

specific nuclei. While I demonstrated that this protocol could be coupled with ChIP-seq and 

ATAC-seq to produce high-quality data, I found that CUT&Tag was not reproducible between 

technical replicates. Thus, in the future, it will be important to improve the CUT&Tag protocol. 

This will be important, since CUT&Tag has been shown to produce data of higher quality relative 

to traditional ChIP-seq. In addition, it will be important to establish if these nuclei immuno-

enrichment protocol is amenable to single nuclei RNA-seq.  

 

In addition, I discovered a role for Circadian-mediated transcription in maintaining visual health 

in Drosophila.  In addition, I found that aging photoreceptors experience an age-associated 

increase in circadian transcription factor binding based on bioinformatic analysis. The caveat of 

our datasets is that samples were collected at one time point during the day. Since the transcription 

factor activity of circadian transcription factors changes during the day, one of the outstanding 

questions from my project is what are the specific changes in circadian, or rhythmic transcription 

that are observed during aging. To tackle this question, future studies in the lab will require to 

profile the nuclear transcriptome in a 24-hour cycle at different time points during age. Further, 

these studies should be couple with determining the genomic binding of circadian transcription 

factors  (i.e. Clock and Cycle) via ChIP-seq or CUT&TAG. These sets of experiment will allow 

us to determine what are the age-associated changes in circadian transcription, and what biological 

processes in the retina are regulated in a circadian manner during aging. To further determine what 

are the molecular mechanisms that regulate CLK and CYC transcription factor activity, we will 

need to determine the genome-wide distribution of several factors involved in the core clock 

machinery that contribute to CLK and CYC binding, such as the CLK:CYC repressors TIM 

(timeless), PER (period), and CWO (clockwork orange). This is considered a promising avenue to 

follow up on since previous studies in other labs have shown decreased PER protein levels in aging 

photoreceptors. Under the rationale that less PER would lead to increased CLK:CYC binding to 

DNA, we hypothesized that decreased PER explains the increased CLK:CYC TF activity that we 

observed during aging.  
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Further, our studies also uncovered a role of circadian transcription in preventing retinal 

degeneration. Preliminary data in our lab shows that RNAi-mediated downregulation of  transcript 

levels of histone methyltransferases involved in adding a third methyl group to Histone H3 Lysine 

4 (H3K4) and Lysine 36 tri-methylation (H3K36), Set1 and Set2, respectively (Fig 4A), increased 

the risk of retinal degeneration with age (Escobedo Spencer, unpublished, not shown).  Histone 

methylation is critical for maintenance of transcriptional outputs by regulating recruitment of 

splicing factors, or maintaining transcriptional fidelity. Further, other labs have shown that histone 

methylation is required  to regulate rhythmic transcription. Interestingly, when I performed ChIP-

seq of histone modifications H3K4me3 and H3K36me3 in aging photoreceptor neurons, I observed 

a widespread decrease in ChIP-seq signal over actively transcribed genes (Figure 4B). These data 

suggest that active histone modifications contribute to the aging transcriptome and are required to 

maintain circadian transcription. Given that loss of circadian rhythms and loss of histone 

modifications leads to retinal degeneration, it will be important to determine how loss of histone 

methylation (i.e. using RNAi) affects circadian transcription, and whether restoring histone 

methylation levels with age prevents retinal generation. 

 
Figure 2. Aging photoreceptors neurons experience an age-associated decrease in histone 
methylation of Histone H3 lysine 4 (K4) and lysine 36 (K36).  
 

A. In Drosophila, H3K4me3 can be deposited by three histone modifiers, Set1, trr, and trx. 

However, Set1 is the enzyme involved in deposition of bulk H3K4me3. H3K36me3 

however, is deposited exclusively by Set2. B. Gene metaplots of H3-normalized H3K4me3 

and H3K36me3 signal over actively expressed genes. Four independent biological 

replicates were assessed. Young (or 10-day old flies) are colored in green and old (or 40-

day old flies) are colored in red.  
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