
ON HIGHER ORDER GRAPH REPRESENTATION
LEARNING

by

Balasubramaniam Srinivasan

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

Department of Computer Science

West Lafayette, Indiana

May 2022

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Bruno Ribeiro, Chair

Department of Computer Science

Dr. Vinayak Rao

Department of Statistics

Department of Computer Science

Dr. Pan Li

Department of Computer Science

Dr. Daisuke Kihara

Department of Biological Sciences

Department of Computer Science

Approved by:

Dr. Kihong Park

2

To the loving memory of my father

3

ACKNOWLEDGMENTS

I wouldn’t have come to this stage of my PhD without the help of many people, and I

would like to thank them all sincerely from the bottom of my heart, for all their contributions.

First, I would like to thank my advisor Prof. Bruno Ribeiro. Prof. Ribeiro has always been

a supportive advisor and his enthusiasm towards performing fundamental research has left

a lasting impression on me. Right from first day of my PhD, he has been very invested in

improving my research skills and taught me almost everything that I know about research

– asking the right research questions, communicating clearly and good writing practices.

Additionally, he taught me how to formalize my ideas and always encouraged me to attend

conferences, serve as a reviewer and go for internships — aiding my overall development. I

would also like to thank Prof. Ribeiro for his patience with me and most importantly for

helping me rekindle my love for math - and for this I will always be grateful.

I would also like to thank my thesis committee members – Profs. Vinayak Rao, Pan Li

and Daisuke Kihara for their guidance and suggestions in improving my work. Prof. Rao has

been extremely encouraging, right from the first days of my PhD, providing valuable ideas,

especially while working on the projects of Janossy Pooling and Relational Pooling. Prof. Li

has provided valuable feedback to improve my writing and has always made himself available

to discuss different research ideas on graphs. Prof. Kihara has been very helpful while working

on the project on conditional invariances and provided valuable domain specific insights to

help improve my models. Beyond my thesis committee, I would like to thank Prof. Jennifer

Neville for the discussions and her ideas while working on the project on knowledge graphs.

I would also like to thank Prof. Kiril Datchev who taught me differential geometry and

graciously made himself available to discuss ideas outside class hours, even while I was only

auditing the course. I must also thank Profs. Leo Porter and Fragkiskos Malliaros (from

my time at UC San Diego), Dr Satish Raghunath (from my time at Salesforce) and Dr.

Suresh Srinivasan (from my time at ARM), who encouraged me to pursue my PhD and also

introduced me to graph representation learning.

I was fortunate to go for internships at Amazon during my PhD and both my intern-

ships at Amazon were extremely rewarding. Prof. George Karypis was very polite and

4

approachable, and apart from providing thoughtful ideas and suggestions in my projects,

made me feel at home at Amazon. I am extremely delighted with the prospect of working

with Prof. Karypis again, in the next phase of my career. I would also like to thank my

other collaborators at Amazon - Da Zheng, Vassilis Ioannidis and Soji Adeshina.

I would also like to thank my lab mates at Purdue - with whom I have built friendships

to last a lifetime. Ryan Murphy, my collaborator during my first two works at Purdue,

mentored me during the first year of my PhD and imbibed in me, the work ethic required of

a PhD student. I would like to thank S. Chandra Mouli, Mayank Kakodkar and Leonardo

Teixeira - for our weekly math reading meetings (and I hope the meetings continue, long after

we complete our PhDs), for making themselves always available when I wanted to discuss

research or brainstorm ideas, for proof reading all my paper submissions, for listening and

critiquing my practice talks and being a source of support and motivation. I would also like to

thank Beatrice Bevilacqua, Leonardo Cotta, Jason Meng, Jianfei Gao, Josue, Shishang Wu

and Yangze Zhou for all our thoughtful discussions. Additionally, I would also like to thank

Susheel Suresh for collaborating with me on the knowledge graphs project. My roommates

over the past few years at Purdue – Vivekanandan, Suraj and Ravishankar (who was also

my Physics teacher) treated me as family and were extremely helpful during my times of

deadlines. They made my time during graduate school fulfilling and enjoyable, and for this

I will always be thankful to them. I would also like to offer my thanks to the administrative

staff (Lacey Siefers and Monica Shively) for patiently answering all my questions, helping

me with a lot of documentation and travel procedures.

Going further back, I would like to thank Prof. S.K. Nandy, my undergraduate thesis

advisor – who introduced me to research and my high school math teacher Mrs. Vijayalakshmi

Raman who has always been a well wisher of mine. I would also like to thank my friends

from my undergraduate days – Vignesh Balaji and Kaushik Raj, who helped with the PhD

application process and provided encouragement during difficult times during my PhD. I

would also like to thank my aunt and uncle (Lakshmi and Ganesh), who have been a constant

source of support and encouragement during my 10 years of combined undergraduate and

graduate study.

5

Finally, I need to thank the most important people in my life, my parents (Geetha and

Srinivasan). They have always put me before themselves and none of this would have ever

been possible without them. My mother has always been there for me, especially during

my difficult times. Even after losing my father at very young age, she has hid her own

disappointments and sadness from me and has always given me complete freedom to pursue

my dreams. And while my father is not here with me today, I believe his blessings will always

be with me and is the reason for where I am today. This thesis belongs to my parents as

much as it does to me.

6

TABLE OF CONTENTS

LIST OF TABLES . 10

LIST OF FIGURES . 11

ABSTRACT . 13

1 INTRODUCTION . 15

1.1 An Overview of Graph Representation Learning 16

1.2 Contributions . 17

1.3 Thesis Outline and Previously Published Work 19

2 EQUIVALENCE BETWEEN STRUCTURAL GRAPH REPRESENTATIONS AND

POSITIONAL NODE EMBEDDINGS . 21

2.1 Preliminaries . 25

2.2 A Unifying Theoretical Framework of Node Embeddings and Structural Rep-

resentations . 26

2.2.1 On Structural Representations . 28

2.2.2 On (Positional) Node Embeddings 31

2.3 Results . 34

2.3.1 Quantitative Results . 35

2.3.2 Qualitative Results . 38

2.4 Related Work . 39

2.5 Conclusions . 41

3 LEARNING EXPRESSIVE STRUCTURAL REPRESENTATIONS FOR NOVEL

TASKS ON HYPERGRAPHS . 42

3.1 Preliminaries . 44

3.2 Theory . 48

3.3 Learning Framework . 51

3.3.1 Hyperedge Classification . 51

7

3.3.2 Hyperedge Completion . 52

3.4 Results . 55

3.5 Conclusions . 59

4 CONDITIONAL INVARIANCES FOR CONFORMER INVARIANT PROTEIN

REPRESENTATION LEARNING . 60

4.1 Conditional Invariances for Proteins . 62

4.2 Obtaining Viable Conformations . 65

4.2.1 Efficiently sampling viable conformations. 65

4.2.2 Sampling Conformers via MCMC . 69

4.3 Learning Framework . 70

4.4 Related Work . 73

4.5 Results . 75

4.6 Conclusions . 77

REFERENCES . 78

A APPENDIX TO CHAPTER 2 . 91

A.1 Preliminaries . 91

A.2 Proof of Theorems, Lemmas and Corollaries 91

A.3 Colliding Graph Neural Networks (CGNNs) 99

A.4 CGNN Algorithms . 100

A.5 Further Results . 100

A.6 Description of Datasets and Experimental Setup 101

B APPENDIX TO CHAPTER 3 . 104

B.1 Additional Examples: . 104

B.2 Proofs of Properties, Remarks and Theorems 104

B.3 Description of Datasets and Experimental Setup 107

C APPENDIX TO CHAPTER 4 . 109

C.1 Group Theory Preliminaries . 109

8

C.2 Proofs of Propositions . 109

C.3 Details about datasets and tasks . 111

9

LIST OF TABLES

2.1 Micro F1 score on three distinct tasks averaged over 12 runs with standard deviation in
parenthesis. The number within the parenthesis beside the model name indicates the
number of Monte Carlo samples used in the estimation of the structural representation.
MC-SVD†(1) denotes the SVD procedure run until convergence with one Monte Carlo
sample for the representation. Bold values show maximum empirical average, and
multiple bolds happen when its standard deviation overlaps with another average.
Results for Citeseer are provided in the Appendix in Table A.1 36

3.1 F1 scores for the hyperedge classification task (Higher is better). 57

3.2 Normalized Set Difference scores for the hyperedge expansion task (lower is better) 57

4.1 GVP-GNN - Baseline vs SOTA vs Conformation Invariant Strategies for four
different tasks on proteins from the ATOM3D [146] dataset. Corresponding to
the metric, ↑ indicates that higher is better, while ↓ indicates that lower is better.
Bold values indicate best results for a given row. The values for GVP-GNN were
obtained from [107] and for the SOTA from [108], [146]. Gray colored cells
indicates that the augmented model outperforms the baseline model. 75

4.2 GNN - Baseline vs SOTA vs Conformation Invariant Strategies for four different
tasks on proteins from the ATOM3D [146] dataset. Corresponding to the metric,
↑ indicates that higher is better, while ↓ indicates that lower is better. Bold
values indicate best results for a given row. The values for GNN were obtained
from [146] and for the SOTA from [108], [146]. Gray colored cells indicates that
the augmented model outperforms the baseline model. 76

A.1 Micro F1 score on three distinct tasks over the Citeseer dataset, averaged over 12 runs
with standard deviation in parenthesis. The number within the parenthesis beside
the model name indicates the number of Monte Carlo samples used in the estimation
of the structural representation. MC-SVD†(1) denotes the SVD procedure run until
convergence with one Monte Carlo sample for the representation. Bold values show
maximum empirical average, and multiple bolds happen when its standard deviation
overlaps with another average. 102

A.2 Summary of the datasets . 103

B.1 Summary of the datasets . 108

C.1 Summary of the datasets . 112

10

LIST OF FIGURES

2.1 A food web example showing two disconnected components - the boreal forest [18]
and the antarctic fauna [19]. The positional node embedding of the lynx and the orca
can be different while their structural representation must be the same (due to the
isomorphism). 22

2.2 (Best in color) Food web graph of Figure 2.1 with node colors that map a two
dimensional representation from a 1-WL GNN (GIN - [9]) into the [0, 255] interval
of blue and red intensity of RGB colors respectively. GIN is used a representative
of structural representation of nodes. Structurally isomorphic nodes, obtain the
same representation and are hence end up being visualised with the same color.
Consequently, it is clear why structural node representations are used for node
and graph classification, but not for link prediction. 23

2.3 (Best in color) Food web graph of Figure 2.1 with node colors that map the values
of the two leading (SVD) eigenvectors over the undirected graph into the [0, 255]
interval of blue and red intensity of RGB colors, respectively. SVD (run until
convergence) is used as a representative of positional node embedding methods.
The graph is made undirected, otherwise the left and right eigenvectors will be
different and harder to represent visually. Note that nodes which are a part of the
same connected component, obtain embeddings which are close in latent space,
visually shown as similar colors. Consequently, it is clear that positional node
embeddings can be used for link prediction and clustering. 24

2.4 Structural Representations for nodes and links using multiple samples obtained using
MC-SVD on the disconnected food web graph shown in Figure 2.1 39

3.1 A Hypergraph(a) with 5 nodes v1, v2, . . . v5 and 3 hyperedges e1 = {v1, v2}, e2 =
{v1, v2, v3}, e3 = {v3, v4, v5} , its incidence matrix(b), its clique expansion (c), its star
expansion (d) and its line graph(e) . 42

4.1 Magnified image of side chain of a single generic amino acid (with 6 atoms in
the side chain with a specified connectivity) in a protein molecule. A protein
molecule typically contains tens to hundreds of amino acids 61

4.2 Directed tree corresponding to a set with 5 points which exhibits conditional invariances.
Our proposed model, for example, allows node 2 and its descendants to transform its
coordinates about node 1 (its parent) upon actions from group G(g1·~a)

2 , g1 ∈ G1. In
practice, for protein molecules we use G1 = SO(3) and G(·,·)

i = SO(3)∀i 6= 1. We note
that in protein molecules not all transformations about a node would be allowed due
to steric repulsions between atoms as well as potential overlaps of atoms. 66

11

4.3 Maximum flexibility allowed by our candidate sampling process when the group associ-
ated with every node in the tree is SO(3) (the special orthogonal group in 3 dimensions).
While not candidate is likely to be accepted such a candidate generation process pro-
vides the flexibility for every node to be rotated about its immediate parent while
preserving bond lengths. 68

A.1 Latent variable model for Colliding Neural Networks . Observed evidence vari-
ables in gray . 101

12

ABSTRACT

Research on graph representation learning (GRL) has made major strides over the past

decade, with widespread applications in domains such as e-commerce, personalization, fraud

& abuse, life sciences, and social network analysis. Despite its widespread success, funda-

mental questions on practices employed in modern day GRL have remained unanswered.

Unraveling and advancing two such fundamental questions on the practices in modern day

GRL forms the overarching theme of my thesis.

The first part of my thesis deals with the mathematical foundations of GRL. GRL is used

to solve tasks such as node classification, link prediction, clustering, graph classification, and

so on, albeit with seemingly different frameworks (e.g. Graph neural networks for node/-

graph classification, (implicit) matrix factorization for link prediction/ clustering, etc.). The

existence of very distinct frameworks for different graph tasks has puzzled researchers and

practitioners alike. In my thesis, using group theory, I provide a theoretical blueprint that

connects these seemingly different frameworks, bridging methods like matrix factorization

and graph neural networks. With this renewed understanding, I then provide guidelines to

better realize the full capabilities of these methods in a multitude of tasks.

The second part of my thesis deals with cases where modeling real-world objects as a

graph is an oversimplified description of the underlying data. Specifically, I look at two such

objects (i) modeling hypergraphs (where edges encompass two or more vertices) and (ii) us-

ing GRL for predicting protein properties. Towards (i) hypergraphs, I develop a hypergraph

neural network which takes advantage of the inherent sparsity of real world hypergraphs,

without unduly sacrificing on its ability to distinguish non isomorphic hypergraphs. The

designed hypergraph neural network is then leveraged to learn expressive representations of

hyperedges for two tasks, namely hyperedge classification and hyperedge expansion. Ex-

periments show that using our network results in improved performance over the current

approach of converting the hypergraph into a dyadic graph and using (dyadic) GRL frame-

works. Towards (ii) proteins, I introduce the concept of conditional invariances and leverage

it to model the inherent flexibility present in proteins. Using conditional invariances, I pro-

vide a new framework for GRL which can capture protein-dependent conformations and

13

ensures that all viable conformers of a protein obtain the same representation. Experiments

show that endowing existing GRL models with my framework shows noticeable improvements

on multiple different protein datasets and tasks.

14

1. INTRODUCTION

Deep learning research has seen a rapid growth in the past decade, both in academia and

industry. This can be partly attributed to its ability to be applied to different modalities of

data. Moreover, deep learning is able to efficiently leverage web scale datasets to improve

performance on unseen data by tapping into the computational power and memory of modern

day GPUs and CPUs. Prior to the last 5 years however, deep learning research has largely

been restricted to tasks on images (CNN’s), text, speech (RNN’s) while not many advances

were pursued on semi-structured and unstructured data. Specifically, research on graph data

(where the input is a graph) only started garnering widespread attention over the past five

years [1], [2].

Graphs are particularly special because of their ability to capture information about

different entities (vertices/ nodes) as well as model relations (links/ edges) between them.

For example, a molecule is a graph where atoms are nodes and two atoms are connected if

there is a bond between them, a social network is a graph where people are entities and two

people are connected with each other if they are friends and so on. More specifically, graphs

are objects

• where the characteristics of an entity may not be completely summarizable by the

attributes of just the entity, but require knowing its connectivity with other entities in

the input data, i.e. the input data is longer i.i.d.,

• where an entity can have connections (edges) with an arbitrary number of other entities,

• with the property that relabeling the nodes/ permuting the adjacency matrix leaves

the underlying data unchanged (permutation symmetry).

An input graph G is typically represented as a tuple (V,E,Xv,Xe) where V is the vertex

set, E ⊆ V × V denotes the edge set and Xv,Xe are the features associated with the nodes

and edges respectively.

15

1.1 An Overview of Graph Representation Learning

Graph representation learning, as the name suggests, entails learning low dimensional

representations of graphs which captures important properties about the nodes, links (edges)

and the graph as a whole. It finds a plethora of applications in domains such as e-commerce,

personalization, fraud and abuse, life science and social network analysis.

Note: When I say graphs, I refer to dyadic graphs where the edges are restricted to being

incident on two nodes. In the case where this restriction isn’t imposed, I refer to them as

hypergraphs.

Tasks on graphs have primarily been categorized as

• Node level tasks - which involves learning low dimensional representations of nodes

with the goal to classify nodes (node classification))/ predict real valued properties

associated with individual nodes.

• Edge level tasks - which involves predicting the existence/ non-existence (or the prop-

erties) of edges between any two entities in the graph and commonly finds applications

in knowledge graphs, recommender systems, etc.

• Graph level tasks - which involves classifying/ predicting real valued properties of the

graph as a whole (e.g. predicting molecular properties).

By and large, graph representation learning frameworks for the above tasks have been

broadly categorized into two frameworks, those which learn (a) structural node represen-

tations aka frameworks which learn permutation invariant representations of nodes where

isomorphic nodes obtain identical representations (e.g. graph neural networks) and (b)posi-

tional node embeddings where homophily usually dictates the embedding that a node receives

(e.g. ([1], [3] and other low rank matrix approximations, factor analysis, etc [4]–[6])).

Graph neural networks [2], [7], [8] or frameworks which learn structural node representa-

tions have been the preferred technique to perform node level tasks, whereas positional node

embedding techniques have been employed for tasks such as link prediction and clustering.

For graph level tasks, graph neural networks [9], [10] have again been employed — where the

16

representation of the graph is obtained by using a permutation invariant pooling function

over the individual node representations.

1.2 Contributions

Despite its widespread success, two fundamental questions on practices employed in mod-

ern day graph representation learning have remained unanswered. I briefly describe them

and provide my solutions below:

1. The predominant downstream tasks associated with graph representation learning are

node classification, link prediction, clustering and graph classification. These tasks

have leveraged seemingly different learning frameworks to achieve their objectives.

For instance, graph neural networks (and more generally, structural representation

methods) are primarily used for node and graph classification, while (implicit) matrix

factorization methods (and more generally, positional embedding methods) are primar-

ily used for link prediction and clustering tasks. Are these learning frameworks (and

correspondingly, structural representations and positional embeddings) fundamentally

different? Can they perform each other’s tasks?

In my thesis I provide a theoretical blueprint that connects positional node embeddings

and structural graph representations, bridging methods like matrix factorization and

graph neural networks. Using tools from group theory, I show that the relationship

between structural node representations and positional node embeddings is analogous

to the statistical relation between distributions and their samples. With this renewed

understanding, my work provides guidelines to better realize the full capabilities of

these methods in a multitude of tasks.

2. In many real world scenarios, modeling the underlying data as a graph can be an

over-simplified description of the data. How do we capture the properties of the data

which are lost while using modern day graph representation learning frameworks on

the data? Specifically:

17

(a) Graph representation learning has primarily been focused on solving downstream

tasks over dyadic graphs (graphs where edges are restricted to being incident

on two nodes/ or self loops). However, in most cases, interactions may occur

between more than two entities, and different interactions may occur between a

different number of entities(hypergraphs). For example, consider a dataset where

politicians are nodes and co-sponsoring a bill is an interaction — note that more

than two politicians can co-sponsor the same bill. This raises the question: can we

learn representations on hypergraphs for a task where we would like to accurately

predict the nature of an unseen bill, given the set of co-sponsors (problem of

hyperedge classification)? Additionally, given a partial set of co-sponsors of an

unseen bill, can we accurately predict other politicians likely to co-sponsor the

bill (problem of hyperedge expansion)?

Here, I develop a hypergraph neural network which works on real world sparse

hypergraphs which have hyperedges of different cardinalities. I provide a frame-

work to learn provably expressive representations of hyperedges for the two tasks

(hyperedge classification, hyperedge expansion) which result in improved perfor-

mance over the current standard approach of converting the hypergraph into a

dyadic graph and using (dyadic) graph representation learning frameworks.

(b) The underlying data can exhibit invariances to transformations in addition to

the symmetries of graphs. For instance consider a protein modeled as a graph

(using its contact map), and the associated task of predicting its binding affinity

with a given ligand. Modeling the protein as a graph alone, doesn’t capture

that the 3D spatial description of the protein (and the ligand jointly) can be

rotated, translated as whole, without changing the outcome. Additionally, some

proteins have multiple different conformations (3D structure) all of which are not

observed in the training data. These different protein conformations, in most

cases, also have the exact same binding affinity with the ligand. The question

here is, can we make predictions about the protein regardless of the specific

18

conformation present in the dataset or equivalently learn non trivial conformer

invariant representations?

Here, I introduce the concept of conditional invariances and provide a framework

which can capture protein dependent conformations and ensures that all viable

conformers of a protein (including non-isometric transformations) obtain the same

representation. Experiments show that endowing existing models with my frame-

work shows noticeable improvements on multiple different protein datasets and

tasks.

1.3 Thesis Outline and Previously Published Work

This thesis is organized as follows:

1. In Chapter 2 , I use tools from invariant theory and causality to develop a unified the-

oretical framework that clarifies the differences between positional node embeddings

and structural graph representations and emphasizes their correspondence.More specif-

ically, (a) I show that structural representations and positional node embeddings have

the same relationship as distributions and their samples; (b) I prove that all tasks that

can be performed by positional node embeddings can also be performed by structural

representations and vice-versa. Moreover, (c) I introduce new guidelines to creating

and using positional node embeddings, which I hope will replace the less-than-optimal

standard operating procedures used today. Finally, (d) I show that the concepts of

transductive and inductive learning —commonly used to describe relational methods—

are unrelated to the concepts of positional node embeddings and structural represen-

tations. This work was published as “On the equivalence between positional node

embeddings and structural graph representations” Srinivasan and Ribeiro 2020 [11].

2. In Chapter 3 , I propose a hypergraph neural network which exploits the incidence

structure and hence works on real world sparse hypergraphs which have hyperedges of

different cardinalities. Secondly, I provide a framework to learn provably expressive

representations of the hypergraph which preserves properties of hypergraph and hy-

peredge isomorphism. Additionally, I introduce a new task on hypergraphs — namely

19

the variable sized hyperedge expansion (where given a partially observed hyperedge

i.e. not all of its constituent vertices are known, the goal is to find nodes from the rest

of the hypergraph which complete it — e.g. completing a partially known recipe) and

also perform variable sized hyperedge classification. Finally, I demonstrate improved

performance over existing baselines on majority of the hypergraph datasets using my

proposed model. This work was published as “Learning over Families of Sets - Hy-

pergraph Representation Learning for Higher Order Tasks” Srinivasan, Zheng, and

Karypis 2021 [12].

3. In Chapter 4 , I (a) introduce conditional invariances and provide a few guiding prin-

ciples of conditional invariant representations as inductive biases, which serves as a

generalization of group invariant neural networks (b) leverage conditional invariances

to provide a framework to learn conformer invariant representations of proteins (c)

propose a principled strategy to sample conformations for any given protein from the

support of its protein conformer distribution (which consists of all its viable protein

conformations) which captures their true flexibility [13], [14], while adhering to do-

main specific constraints such as those on dihedral angles, steric repulsions, among

others (d) develop a Markov chain Monte Carlo learning framework which guides the

sampling of protein conformations in such a way – so as to provide theoretical guaran-

tees that the representations obtained by all conformations of a protein are identical.

Finally, I demonstrate the empirical advantages of the proposed approach, wherein

endowing baseline models with my proposed strategy shows noticeable improvements

on four different tasks on proteins. This work is under submission as “Conditional

Invariances for Conformer Invariant Protein Representations” Srinivasan, Ioannidis,

Adeshina, Kakodkar, Karypis, and Ribeiro 2022 [15].

20

2. EQUIVALENCE BETWEEN STRUCTURAL GRAPH

REPRESENTATIONS AND POSITIONAL NODE

EMBEDDINGS

The theory of structural graph representations is a recently emerging field. It creates a link

between relational learning and invariant theory. Interestingly, or rather unfortunately, there

is no unified theory connecting node embeddings — low-rank matrix approximations, factor

analysis, latent semantic analysis, etc.— with structural graph representations. Instead,

conflicting interpretations have manifested over the last few years, that further confound

practitioners and researchers alike.

For instance, consider the direction, word embeddings→ structural representations, where

the structural equivalence between men → king and women → queen is described as being

obtained by just adding or subtracting their node embeddings (positions in the embedding

space) [16], [17]. Hence, can all (positional) node embeddings provide structural relationships

akin to word analogies? In the opposite direction, structural representations → node em-

beddings, graph neural networks (GNNs) are often optimized to predict edges even though

their structural node representations are provably incapable of performing the task. For in-

stance, the node representations of the lynx and the orca in Figure 2.1 are indistinguishable

due to an isomorphic equivalence between the nodes, making any edge prediction task that

distinguishes the edges of lynx and orca a seemly futile exercise.

To illustrate this visually, I provide an example using the food web of Figure 2.1 . I do this

by showcasing the difference between structural representations (Figure 2.2) and positional

node embeddings (Figure 2.3) obtained by graph neural networks and SVD, respectively, on

the same graph.

Figure 2.2 shows a 2-dimensional (R2) structural representation of nodes obtained by

a standard GNN (obtained by the 1-WL GNN of [9]), optimized to try to predict links

without the addition of any random edges). Node colors represent the mapping of the learned

structural representation in R2 into the red and blue interval of RGB space [0, 255]2. Note

that isomorphic nodes are forcibly mapped into the same structural representations (have

the same color), even though the representation is trained to predict links. Specifically, the

21

White Spruce Snowshoe Hare

Red Squirrel

Lynx
Coyote

Red Fox

Ground Squirrel

Zooplankton Krill

Pelagic Fish

Orca
Seal

Baleen Whale

Penguin

Figure 2.1. A food web example showing two disconnected components - the
boreal forest [18] and the antarctic fauna [19]. The positional node embedding of
the lynx and the orca can be different while their structural representation must be
the same (due to the isomorphism).

lynx and the orca in Figure 2.2 get the same color since they are isomorphic, while the lynx

and the coyote have different structural representations (different colors). The lynx, like the

orca, is a top predator in the food web while the coyote is not a top predator. Hence, it

is quite evident why GNN’s are not traditionally used for link prediction: as the structural

node representation is a color, using these representations is akin to asking “is a light pink

node in Figure 2.2 connected to a light blue node?” We cannot answer this question unless

we also specify which light pink (i.e. coyote or seal) and which light blue (i.e. orca or lynx)

we are talking about. Hence, the failure to predict links.

Positional node embeddings, on the other hand, are often seen as a lower-dimensional

projection of the rows and columns of the adjacency matrix A from Rn to Rd, d < n, that

preserves relative positions of the nodes in a graph. In Figure 2.3 I show the same food

web graph, where now node colors map the values of the two leading (SVD) eigenvectors (of

the undirected food web graph) into the [0, 255] interval of blue and red intensity of RGB

colors, respectively. The graph is made undirected, otherwise the left and right eigenvectors

will be different and harder to represent visually. SVD is used here as a representative of

positional node embedding methods. Note the lynx and the coyote now have close posi-

tional node embeddings (represented by colors which are closer in the color spectrum), while

the positional node embeddings of the lynx and the orca are significantly different. Node

22

Zooplankton Krill

Seal

Baleen Whale

Penguin

Orca

Pelagic Fish

White Spruce Snowshoe Hare

Coyote

Red Fox

Ground Squirrel

Lynx

Red Squirrel

Figure 2.2. (Best in color) Food web graph of Figure 2.1 with node colors
that map a two dimensional representation from a 1-WL GNN (GIN - [9]) into
the [0, 255] interval of blue and red intensity of RGB colors respectively. GIN
is used a representative of structural representation of nodes. Structurally
isomorphic nodes, obtain the same representation and are hence end up being
visualised with the same color. Consequently, it is clear why structural node
representations are used for node and graph classification, but not for link
prediction.

embeddings are often seen as encoding the fact that the lynx and the coyote are part of a

tightly-knit community, while the lynx and orca belong to distinct communities.

It is evident from Figure 2.3 why positional node embeddings are not traditionally used

to predict node classes: predicting that the lynx, like the orca, is a top predator based on

their node colors is difficult, since the coyote’s color is very similar to that of the lynx, while

the orca obtains a completely different color to the lynx. Relying on color shades (light and

dark) for node classification is unreliable, since nodes with completely different structural

positions in the food chain may have similar color shades.

On the other hand, link prediction using the colors in Figure 2.3 is rather trivial, since

similar colors mean “closeness” in the graph. For instance, we may easily predict that the

baleen whale also eats zooplankton.

Hence, this leads us to the question, are structural representations in general — and

GNNs in particular — fundamentally incapable of performing link (dyadic) and multi-ary

(polyadic) predictions tasks? GNNs, however, can perform node classification tasks, which

23

Zooplankton Krill

Seal

Baleen Whale

Penguin

Orca

Pelagic Fish

White Spruce Snowshoe Hare

Coyote

Red Fox

Ground Squirrel

Lynx

Red Squirrel

Figure 2.3. (Best in color) Food web graph of Figure 2.1 with node colors
that map the values of the two leading (SVD) eigenvectors over the undi-
rected graph into the [0, 255] interval of blue and red intensity of RGB colors,
respectively. SVD (run until convergence) is used as a representative of posi-
tional node embedding methods. The graph is made undirected, otherwise the
left and right eigenvectors will be different and harder to represent visually.
Note that nodes which are a part of the same connected component, obtain
embeddings which are close in latent space, visually shown as similar colors.
Consequently, it is clear that positional node embeddings can be used for link
prediction and clustering.

is a task not associated with positional node embeddings. The goal of this chapter is to

exactly address the above question (and more), and I start off with the contributions of this

chapter.

Contributions: In this chapter I use invariant theory and axiomatic counterfactuals

(causality) to develop a unified theoretical framework that clarifies the differences between

node embeddings and structural representations and emphasizes their correspondence. More

specifically, (a) I show that structural representations and node embeddings have the same

relationship as distributions and their samples; (b) I prove that all tasks that can be per-

formed by node embeddings can also be performed by structural representations and vice-

versa. Moreover, (c) I introduce new guidelines to creating and using node embeddings,

which we hope will replace the less-than-optimal standard operating procedures used today.

Finally, (d) I show that the concepts of transductive and inductive learning —commonly used

24

to describe relational methods— are unrelated to node embeddings and structural represen-

tations.

2.1 Preliminaries

This section introduces some basic definitions, attempting to keep the mathematical

jargon in check, sometimes even sacrificing generality for clarity. I recommend [20] for a

more formal description of some of the definitions in this section.

Definition 2.1.1 (Graph). Consider either a directed or an undirected attributed graph,

denoted by G= (V,E,X,E), where V is a set of n = |V | vertices, E is the set of edges in

V × V , with matrix X ∈ Rn×k, k > 0 and 3-mode tensor E ∈ Rn×n×k′
, k′ > 0 representing

the node and edge features, respectively. The edge set has an associated adjacency matrix

A ∈ {0, 1}n×n. In order to simplify notation, I compress E and A into a single tensor

A ∈ Rn×n×(k′+1). When explicit vertex and edge features and weights are unavailable, I

consider X = 11T and A = A, where 1 is a n × 1 vector of ones. I will slightly abuse

notation and denote the graph as G = (A,X). Without loss of generality, I define number

the nodes in V = {1, . . . , n} following the same ordering as the adjacency tensor A and the

rows in X. I denote ~S and a vector of the elements in S ∈ P?(V) sorted in ascending order,

where P?(V) is the power set of V without the empty set.

One of the most important operators in our mathematical toolkit will be that of a per-

mutation action, orbits, G-invariance, and G-equivariance:

Definition 2.1.2 (Permutation action π). A permutation action π is a function that acts

on any vector, matrix, or tensor defined over the nodes V , e.g., (Zi)i∈V , and outputs an

equivalent vector, matrix, or tensor with the order of the nodes permuted. I define Πn as the

set of all n! such permutation actions.

Definition 2.1.3 (Orbits). An orbit is the result of a group action Πn acting on elements

of a group correspond to bijective transformations of the space that preserve some structure

of the space. The orbit of an element is the set of equivalent elements under action Πn, i.e.,

Πn(x) = {π(x) | π ∈ Πn} .

25

Definition 2.1.4 (G-equivariant and G-invariant functions). Let Σn be the set of all possible

attributed graphs G of size n ≥ 1. More formally, Σn is the set of all tuples (A,X)

with adjacency tensors A and corresponding node attributes X for n nodes. A function

g : Σn → Rn×· is G-equivariant w.r.t. valid permutations of the nodes V , whenever any

permutation action π ∈ Πn in the Σn space associated with the same permutation action of

the nodes in the Rn×· space. A function g : Σn → R· is G-invariant whenever it is invariant

to any permutation action π ∈ Πn in Σn.

Definition 2.1.5 (Graph orbits & graph isomorphism). Let G = (A,X) be a graph with

n nodes, and let Πn(G) = {(A′,X ′) : (A′,X ′) = (π(A), π(X)), ∀π ∈ Πn} be the set of all

equivalent (isomorphic) graphs under the permutation action π. Two graphs G1 = (A1,X1)

and G2 = (A2,X2) are said isomorphic iff Πn(G1) = Πn(G2).

Definition 2.1.6 (Node orbits & node isomorphism). The equivalence classes of the vertices

of a graph G under the action of automorphisms are called vertex orbits. If two nodes are

in the same node orbit, we say that they are isomorphic.

In Figure 2.1 , the lynx and the orca are isomorphic (they have the same node orbits). I

now generalize Definition 2.1.6 to subsets of nodes S ∈ P?(V), where P?(V) is the power

set of V without the empty set.

Definition 2.1.7 (Vertex subset orbits and joint isomorphism). The equivalence classes of

k-sized subsets of vertices S ∈ P?(V) of a graph G under the action of automorphisms between

the subsets are called vertex subset orbits, k ≥ 2. If two proper subsets S1, S2 ∈ P?(V)\V

are in the same vertex subset orbit, we say they are jointly isomorphic.

Next I define the relationship between structural representations and node embeddings.

2.2 A Unifying Theoretical Framework of Node Embeddings and Structural
Representations

How are node embeddings and structural representations related? This section starts with

a familiar, albeit naïve, view of the differences between node embeddings and structural rep-

resentations, preparing the groundwork to later broadening and rectifying these into precise

26

model-free mathematical statements using invariant theory. This broadening is needed since

model-free node embeddings need not be related to node closeness in the graph (or to lower

dimensional projections for that matter), as it is impossible to have a model-free definition

of closeness.

A familiar interpretation of node embeddings: Node embeddings are often seen as a

lower-dimensional projection of the rows and columns of the adjacency matrix A from Rn

to Rd, d < n, that preserves relative positions of the nodes in a graph [21], [22]; for instance,

in Figure 2.1 , the lynx and the coyote would have close node embeddings, while the node

embeddings of the lynx and the orca would be significantly different. Node embeddings

are often seen as encoding the fact that the lynx and the coyote are part of a tightly-

knit community, while the lynx and orca belong to distinct communities. The structural

representation of a node, on the other hand, shows which nodes have similar roles (structural

similarities) on a graph; for instance, the lynx and the orca in Figure 2.1 must have the

same structural representation, while the lynx and the coyote likely have different structural

representations. The lynx, like the orca, is a top predator in the food web while the coyote

is not a top predator.

The incompatibility of the familiar interpretation with the theory of structural graph

representations: The above interpretation of node embeddings must be tied to a model

that defines closeness. Structural graph representations are model-free. Hence, we need

a model-free definition of node embedding to connect it with structural representations.

Unfortunately, one cannot define closeness without a model. Hence, in the remainder of this

paper, I abandon this familiar interpretation in favor of a model-free definition.

Roadmap: In what follows, I restate some existing model-free definitions of structural

graph representation and introduce some new ones. Then, I introduce a model-free definition

of node embeddings. I will retain the terminology node embedding for historical reasons, even

though our node embedding need not be an embedding (a projection into lower dimensional

space).

27

2.2.1 On Structural Representations

In what follows I use the terms link and edge interchangeably. Proofs are left to the

Appendix.

Definition 2.2.1 (Structural node representations). The structural representation of node

v ∈ V in a graph G = (A,X) is the G-invariant representation Γ(v,A,X), where Γ : V ×

Σn → Rd, d ≥ 1, such that ∀u ∈ V , Γ(u,A,X) = Γ(π(u), π(A), π(X)) for all permutation ac-

tions ∀π ∈ Πn. Moreover, for any two isomorphic nodes u, v ∈ V , Γ(u,A,X) = Γ(v,A,X).

Definition 2.2.2 (Most-expressive structural node representations Γ?). A structural rep-

resentation of a node v ∈ V , Γ?(v,A,X), is most-expressive iff, ∀u ∈ V , there exists a

bijective measurable map between Γ?(u,A,X) and the orbit of node u in G = (A,X) (Defi-

nition 2.1.7).

Trivially, by Definitions 2.1.6 and 2.2.2 , two graphs G1 = (A1,X1) and G2 = (A2,X2)

are isomorphic (Definition 2.1.5) iff the most-expressive structural node representations

(Γ?(u,A1,X1))u∈V and (Γ?(v,A2,X2))v∈V are the same up to a valid permutation π ∈ Πn

of the nodes. In what follows P? is the power set excluding the empty set.

I now describe the relationship between structural node representations and node iso-

morphism.

Lemma 1. Two nodes v, u ∈ V , have the same most-expressive structural representations

Γ?(v,A,X) = Γ?(u,A,X) iff u and v are isomorphic nodes in G = (A,X).

Having described representation of nodes, I now generalize these representations to sub-

sets of V .

Definition 2.2.3 (Joint structural representation Γ). A joint structural representation of

a graph with node set V is defined as Γ : P?(V) × Σn → Rd, d ≥ 1. Furthermore, Γ is

G-invariant over all node subsets, i.e., ∀S ∈ P?(V) and ∀(A,X) ∈ Σn, it must be that

Γ(~S,A,X) = Γ(π(~S), π(A), π(X)) for all permutation actions ∀π ∈ Πn. Moreover, for any

two isomorphic subsets S, S ′ ∈ P?(V), Γ(~S,A,X) = Γ(~S ′,A,X).

I now mirror Definition 2.2.2 in our generalization of Γ:

28

Definition 2.2.4 (Most-expressive joint structural representations Γ?). A structural rep-

resentation Γ?(~S,A,X) of a non-empty subset S ∈ P?(V), of a graph (A,X) ∈ Σn, is

most-expressive iff, there exists a bijective measurable map between Γ?(~U,A,X) and the

orbit of U in G (Definition 2.1.7), ∀U ∈ P?(V) and ∀(A,X) ∈ Σn.

Note, however, the failure to represent the link (lynx, coyote) in Figure 2.1 using the most-

expressive node representations of the lynx and the coyote. A link needs to be represented by a

joint representation of two nodes. For instance, we can easily verify from Definition 2.2.4 that

Γ?((lynx,coyote),A,X) 6= Γ?((orca,coyote),A,X), even though Γ?(lynx,A,X) = Γ?(orca,A,X).

Next I show that joint prediction tasks only require joint structural representations. But

first we need to show that any causal model defined through axiomatic counterfactuals [23]

can be equivalently defined through noise outsourcing [24], a straightforward result that I

was unable to find in the literature.

Lemma 2 (Causal modeling through noise outsourcing). Definition 1 of [23] gives a causal

model as a triplet

M = 〈U, V ′, F 〉,

where U is a set of exogenous variables, V ′ is a set of endogenous variables, and F is a

set of functions, such that in the causal model, v′
i = f(~pai, u) is the realization of random

variable V ′
i ∈ V ′ and a sequence of random variables ~PAi with PAi ⊆ V \V ′

i as the endogenous

variable parents of variable V ′
i as given by a directed acyclic graph. Then, there exists a pure

random noise ε and a set of (measurable) functions {gu}u∈U such that for Vi ∈ V ′, V ′
i can be

equivalently defined as v′
i

a.s.= f(~pai, gu(εu)), where εu has joint distribution (εu)∀u∈U
a.s.= g′(ε)

for some Borel measurable function g′ and a random variable ε ∼ Uniform(0, 1). The latter

defines M via noise outsourcing [24].

The proof of Lemma 2 is given in the Appendix. Lemma 2 defines the causal model

entirely via endogenous variables, deterministic functions, and a pure random noise random

variable.

We are now ready for our theorem showing that joint prediction tasks only require (most-

expressive) joint structural representations.

29

Theorem 2.2.1. Let S ⊆ P?(V) be a set of non-empty subsets of the vertices V . Let

Y (S,A,X) = (Y (~S,A,X))S∈S be a sequence of random variables defined over the sets

S ∈ S of a graph G = (A,X), that are invariant to the ordering of ~S, S ∈ S, such

that Y (~S1,A,X) d= Y (~S2,A,X) for any two jointly isomorphic subsets S1, S2 ∈ S (Defi-

nition 2.1.7), where d= means equality in their marginal distributions. Then, there exists

a measurable function ϕ such that, Y (S,A,X) a.s.= (ϕ(Γ?(~S,A,X), εS))S∈S , where εS is

the random noise that defines the exogenous variables of Lemma 2 , with joint distribution

p((εS′)∀S′∈S) independent of A and X.

Theorem 2.2.1 extends Theorem 12 of [20] in multiple ways: (a) to all subsets of nodes,

S ∈ P?(V), (b) to include causal language, and, most importantly, (c) to showing that

any prediction task that can be defined over S, requires only a most-expressive joint struc-

tural representation over S. For instance, any task with |S| = 2 predicting a missing link

(u, v) on a graph G = (A,X), requires only the most-expressive structural representation

Γ?((u, v),A,X). Note that, in order to predict directed edges, we must use Γ?((u, v),A,X)

to also predict the edge’s direction: →, ←, ↔, but a detailed procedure showing how to

predict directed edges is relegated to a future journal version of this paper. Theorem 2.2.1

also includes node tasks for |S| = 1, hyperedge tasks for 2 < |S| < n, and graph-wide tasks

for S = V .

Remark 1 (GNNs and link prediction). Even though structural node representations of

GNNs are not able to predict edges, GNNs are often still optimized to predict edges (e.g., [7],

[9]) in transfer learning tasks. This optimization objective guarantees that any small topolog-

ical differences between two nearly-isomorphic nodes without an edge will be amplified, while

differences between nodes with an edge will be minimized. Hence, the topological differences

in a close-knit community will be minimized in the representation. This procedure is an

interesting way to introduce homophily in structural representations and should work well for

node classification tasks in homophilic networks (where node classes tend to be clustered).

We now turn our attention to node embeddings and their relationship with joint repre-

sentations.

30

2.2.2 On (Positional) Node Embeddings

Definition 2.2.5 (Node Embeddings). The node embeddings of a graph G = (A,X) are

defined as joint samples of random variables (Zi)i∈V |A,X ∼ p(·|A,X), Zi ∈ Rd, d ≥ 1, where

p(·|A,X) is a G-equivariant probability distribution on A and X, that is, π(p(·|A,X)) =

p(·|π(A), π(X)) for any permutation π ∈ Πn.

Essentially, Definition 2.2.5 says that the probability distribution p(Z|A,X) of a node

embedding Z must be G-equivariant on A and X. This is the only property we require to

define a node embedding. Next, I show that the node embeddings given by Definition 2.2.5

cover a wide range of embedding methods in the literature.

Corollary 1. The node embeddings in Definition 2.2.5 encompass embeddings given by matrix

and tensor factorization methods —such as Singular Value Decomposition (SVD), Non-

negative Matrix Factorization (NMF), implicit matrix factorization (a.k.a. word2vec)–, latent

embeddings given by Bayesian graph models —such as Probabilistic Matrix Factorizations

(PMFs) and variants—, variational autoencoder methods and graph neural networks that

use random lighthouses to extract node embedddings.

The proof of Corollary 1 is in the Appendix, along with the references of each of the

methods mentioned in the corollary. The output of some of the methods described in Corol-

lary 1 is deterministic, and for those, the probability density p(Z|A,X) is a Dirac delta.

In practice, however, even deterministic methods use algorithms whose outputs depend on

randomized initial conditions, which will also satisfy Corollary 1 .

I now show that permutation equivariance implies two isomorphic nodes (or two subsets

of nodes) must have the same marginal distributions over Z:

Lemma 3. The permutation equivariance of p in Definition 2.2.5 implies that, if two proper

subsets of nodes S1, S2 ∈ P?(V)\V are isomorphic, then their marginal node embedding dis-

tributions must be the same up to a permutation, i.e., p((Zi)i∈S1|A,X) = π(p((Zj)j∈S2|A,X))

for some appropriate permutation π ∈ Πn.

Hence, the critical difference between the structural node representation vector (Γ(v,A,X))v∈V

in Definition 2.2.1 and node embeddings Z in Definition 2.2.5 , is that the vector (Γ(v,A,X))v∈V

31

must be G-equivariant while Z need not be —even though Z’s distribution must be G-

equivariant. This seemly trivial difference has tremendous consequences, which I explore in

the reminder of this section.

Next, I show that node embeddings Z cannot have any extra information about G that

is not already contained in a most-expressive structural representation Γ?.

Theorem 2.2.2 (The statistical equivalence between node embeddings and structural rep-

resentations). Let Y (S,A,X) = (Y (~S,A,X))S∈S be as in Theorem 2.2.1 . Consider a graph

G = (A,X) ∈ Σn, n ≥ 2. Let Γ?(~S,A,X) be a most-expressive structural representation of

nodes S ∈ P?(V) in G. Then,

Y (~S,A,X) ⊥⊥Γ?(~S,A,X) Z|A,X, ∀S ∈ S,

for any node embedding matrix Z that satisfies Definition 2.2.5 , where A ⊥⊥B C means A

is independent of C given B. Finally, ∀(A,X) ∈ Σn, there exists a most-expressive node

embedding Z?|A,X such that,

Γ?(~S,A,X) = EZ? [f (|S|)((Z?
v)v∈S)|A,X], ∀S ∈ S,

for some appropriate collection of functions {f (k)(·)}k=1,...,n.

The proof of Theorem 2.2.2 is given in the Appendix. Note that the most-expressive

embedding Z?|A,X extends the insight used to make GNNs more expressive in [25] to a

more general procedure.

Theorem 2.2.2 implies that, for any graph prediction task, node embeddings carry no infor-

mation beyond that of structural representations. A less attentive reader may think this cre-

ates an apparent paradox, since one cannot predict a property Y ((lynx,coyote),Afood web,Xfood web)

in Figure 2.1 from structural node embeddings, since Γ(lynx,A,X) = Γ(orca,A,X). The res-

olution of the paradox is to note that Theorem 2.2.2 describes the prediction of a link through

a pairwise structural representation Γ((lynx,coyote),Afood web,Xfood web), and we may not be

able to do the same task with structural node representations alone. An interesting ques-

32

tion for future work is how well can we learn distributions (representations) from (node

embeddings) samples, extending [26] to graph representations.

Other equally important consequences of Theorem 2.2.2 are: (a) any sampling approach

obtaining node embeddings Z is valid as long as the distribution is G-equivariant (Defini-

tion 2.2.5), noting that isomorphic nodes must have the same marginal distributions (per

Lemma 3). (b) Interestingly, convex optimization methods for matrix factorization can be

seen as variance-reduction techniques with no intrinsic value beyond reducing variance. (c)

Methods that give unique node embeddings —if the embedding of any two isomorphic nodes

are different— are provably incorrect when used to predict graph relationships since they

are permutation-sensitive.

Remark 2 (Some GNN methods give node embeddings not structural representations).

The random edges added by GraphSAGE [7] and GIN [9] random walks make these methods

node embeddings rather than structural node representations, according to Definition 2.2.5 .

To transform them back to structural node representations, one must average over all such

random walks.

The following corollaries describe other consequences of Theorem 2.2.2 :

Corollary 2. The link prediction task between any two nodes u, v ∈ V depends only on the

most-expressive tuple representation Γ?((u, v),A,X). Moreover, Γ?((u, v),A,X) always exists

for any graph (A,X) and nodes (u, v). Finally, given most-expressive node embeddings Z?,

there exists a function f such that Γ?((u, v),A,X) = EZ? [f(Z?
u,Z

?
v)], ∀u, v.

A generalization of Corollary 2 is also possible, where Theorem 2.2.2 is used to allow us

to create joint representations from simpler node embedding sampling methods.

Corollary 3. Sample Z according to Definition 2.2.5 . Then, we can learn a k-node structural

representation of a subset of k nodes S ∈ P?(V), |S| = k, simply by learning a function f (k)

whose average Γ(~S,A,X) = E[f (k)((Zv)v∈S)] can be used to predict Y (~S,A,X).

The proof of Corollary 3 is in the Appendix. Finally, I show that the concepts of transduc-

tive and inductive learning are unrelated to the notions of node embeddings and structural

representations.

33

Corollary 4. Transductive and inductive learning are unrelated to the concepts of node

embeddings and structural representations.

Corollary 4 clears a confusion that, I believe, arises because traditional applications

of node embeddings use a single Monte Carlo sample of Z|A,X to produce a structural

representation (e.g., [17]). Inherently, a classifier learned with such a poor structural repre-

sentation may fail to generalize over the test data, and will be deemed transductive.

Corollary 5. Merging a node embeddings sampling scheme with GNNs can increase the

structural representation power of GNNs.

Corollary 5 is a direct consequence of Theorem 2.2.2 , with [25] showing RP-GNN as a

concrete method to do so.

2.3 Results

This section focuses on applying the lessons learned in Section 2.2 in four tasks, divided

into two common goals. The goal of the first three tasks is to show that, as described in

Theorem 2.2.2 , node embeddings can be used to create expressive structural embeddings

of nodes, tuples, and triads. These representations are then subsequently used to make

predictions on downstream tasks with varied node set sizes. The tasks also showcase the

added value of using multiple node embeddings (Monte Carlo) samples to estimate structural

representations, both during training and testing. Moreover, showcasing Theorem 2.2.1 and

the inability of node representations to capture joint structural representations, these tasks

show that structural node representations are useless in prediction tasks over more than one

node, such as links and triads. The goal of fourth task is to showcase how multiple Monte

Carlo samples of node embeddings are required to observe the fundamental relationship

between structural representations and node embeddings predicted by Theorem 2.2.2 .

An important note: The proposed theoretical framework is not limited to the way I

generate node embeddings. For example, the theoretical framework can use SVD in an in-

ductive setting, where I train a classifier in one graph and test in a different graph, which

was thought not possible previously with SVD. SVD with our theoretical framework is de-

noted MC-SVD, to emphasize the importance of Monte Carlo sampling in building better

34

structural representations. Alternatively, more expressive node embeddings can be obtained

using Colliding Graph Neural Networks (CGNN), as I show in the Appendix (Section A.3

and Section A.4)

2.3.1 Quantitative Results

In what follows, I evaluate structural representations estimated from four node embedding

techniques, namely GIN [9], RP-GIN [25], 1-2-3 GNN [10], MC-SVD and CGNN. I classify

GIN, RP-GIN and 1-2-3 GNN as node embedding techniques, as they employ the unsuper-

vised learning procedure of [7]. These were chosen because of their potential extra link and

triad representation power over traditional structural representation GNNs. All node embed-

ding methods are evaluated by their effect in estimating good structural representation for

downstream task accuracy. I partition G = (A,X) into three non-overlapping induced sub-

graphs, namely Gtrain = (Atrain,Xtrain), Gval = (Aval,Xval) and Gtest = (Atest,Xtest), which

I use for training, validation and testing, respectively. In learning all four node embedding

techniques, I only make use of the graphs Gtrain and Gval. All the four models used here have

never seen the test graph Gtest before test time —i.e., all our node embedding methods, used

in the framework of Theorem 2.2.2 , behave like inductive methods.

Monte Carlo joint representations during an unsupervised learning phase: A key com-

ponent of our optimization is learning joint representations from node embeddings —as per

Theorem 2.2.2 . For this, at each gradient step (in practice, I do at each epoch), I perform

a Monte Carlo sample of the node embeddings Z|A,X. This, procedure optimizes a proper

upper bound on the empirical loss, if the loss is the negative log-likelihood, cross-entropy,

or a square loss. The proof is trivial by Jensen’s inequality. For GIN, RP-GIN and 1-2-3

GNN, I add random edges to the graph following a random walk at each epoch [7]. For the

MC-SVD procedure, I use the left eigenvector matrix obtained by: (1) a random seed, (2)

a random input permutation of the adjacency matrix, and (3) a single optimization step,

rather than running SVD until it converges. I also present results with MC-SVD†, which is

the same procedure as before, but runs SVD until convergence —noting that the latter is

likely to give deterministic results in large real-world graphs.

35

Table 2.1. Micro F1 score on three distinct tasks averaged over 12 runs with
standard deviation in parenthesis. The number within the parenthesis beside the
model name indicates the number of Monte Carlo samples used in the estimation
of the structural representation. MC-SVD†(1) denotes the SVD procedure run until
convergence with one Monte Carlo sample for the representation. Bold values show
maximum empirical average, and multiple bolds happen when its standard deviation
overlaps with another average. Results for Citeseer are provided in the Appendix
in Table A.1 .

Node Classification Link Prediction Triad Prediction
Cora Pubmed PPI Cora Pubmed PPI Cora Pubmed PPI

Random 0.143 0.333 0.5121 0.500 0.500 0.500 0.250 0.250 0.250
GIN(1) 0.646(0.021) 0.878(0.006) 0.533(0.003) 0.526(0.029) 0.513(0.048) 0.604(0.018) 0.280(0.010) 0.430(0.019) 0.400(0.006)
GIN(5) 0.676(0.031) 0.880(0.003) 0.535(0.004) 0.491(0.019) 0.517(0.028) 0.609(0.012) 0.284(0.017) 0.422(0.024) 0.397(0.004)

GIN(20) 0.678(0.024) 0.880(0.002) 0.536(0.003) 0.514(0.026) 0.512(0.042) 0.603(0.010) 0.281(0.010) 0.422(0.028) 0.399(0.004)
RP-GIN(1) 0.655(0.023) 0.879(0.002) 0.534(0.005) 0.506(0.016) 0.616(0.048) 0.605(0.011) 0.283(0.013) 0.423(0.024) 0.400(0.005)
RP-GIN(5) 0.681(0.022) 0.881(0.004) 0.534(0.004) 0.498(0.016) 0.637(0.038) 0.612(0.006) 0.285(0.025) 0.429(0.024) 0.399(0.009)

RP-GIN(20) 0.675(0.032) 0.879(0.005) 0.533(0.003) 0.518(0.017) 0.619(0.032) 0.603(0.007) 0.279(0.011) 0.418(0.011) 0.393(0.003)
1-2-3 GNN(1) 0.319(0.017) 0.412(0.005) 0.403(0.003) 0.501(0.007) 0.495(0.018) 0.502(0.005) 0.280(0.010) 0.416(0.020) 0.250(0.003)
1-2-3 GNN(5) 0.321(0.008) 0.395(0.065) 0.405(0.001) 0.501(0.018) 0.500(0.002) 0.501(0.003) 0.285(0.015) 0.418(0.029) 0.251(0.005)

1-2-3 GNN(20) 0.324(0.010) 0.462(0.113) 0.401(0.007) 0.501(0.007) 0.499(0.002) 0.501(0.008) 0.285(0.014) 0.419(0.026) 0.254(0.008)
MC-SVD†(1) 0.665(0.014) 0.810(0.009) 0.523(0.005) 0.588(0.029) 0.807(0.024) 0.755(0.010) 0.336(0.038) 0.515(0.077) 0.532(0.010)
MC-SVD(1) 0.667(0.017) 0.825(0.007) 0.521(0.006) 0.583(0.020) 0.818(0.032) 0.755(0.008) 0.304(0.034) 0.518(0.065) 0.529(0.006)
MC-SVD(5) 0.669(0.013) 0.842(0.015) 0.556(0.009) 0.572(0.019) 0.848(0.038) 0.754(0.006) 0.306(0.037) 0.567(0.061) 0.544(0.008)

MC-SVD(20) 0.672(0.013) 0.855(0.010) 0.591(0.009) 0.580(0.021) 0.868(0.029) 0.762(0.010) 0.300(0.033) 0.546(0.029) 0.550(0.007)
CGNN(1) 0.468(0.026) 0.686(0.020) 0.545(0.010) 0.682(0.026) 0.587(0.027) 0.661(0.015) 0.352(0.028) 0.404(0.014) 0.414(0.009)
CGNN(5) 0.641(0.022) 0.808(0.008) 0.637(0.014) 0.707(0.027) 0.585(0.037) 0.704(0.012) 0.414(0.045) 0.417(0.018) 0.463(0.026)

CGNN(20) 0.726(0.024) 0.831(0.010) 0.707(0.015) 0.712(0.041) 0.581(0.039) 0.738(0.011) 0.405(0.034) 0.419(0.017) 0.498(0.021)

Monte Carlo joint representations during a supervised learning phase: During the

supervised phase, I first estimate a structural joint representation Γ̂(~S,A,X) as the average

of m ∈ {1, 5, 20} Monte Carlo samples of a permutation-invariant function [27], [28] (sum-

pooling followed by an MLP) applied to a sampled node embedding (Zv)v∈S|A,X. Then,

using Γ̂(~S,A,X), I predict the corresponding target variable Y (S,A,X) of each task using

an MLP. The node sets of our tasks S ⊆ V , have sizes |S| ∈ {1, 2, 3}, corresponding to node

classification, link prediction, and triad prediction tasks, respectively.

Datasets: I consider four graph datasets used by [7], namely Cora, Citeseer, Pubmed [29],

[30] and PPI [31]. Cora, Citeseer and Pubmed are citation networks, where vertices represent

papers, edges represent citations, and vertex features are bag-of-words representation of the

document text. The PPI (protein-protein interaction) dataset is a collection of multiple

graphs representing the human tissue, where vertices represent proteins, edges represent

interactions across them, and node features include genetic and immunological information.

Train, validation and test splits are used as proposed by [32] (see Table A.2 in the Appendix).

Further dataset details can be found in the Appendix.

36

Node classification task: This task predicts node classes for each of the four datasets.

In this task, structural node representations are enough. The structural node representation

is used to classify nodes into different classes using an MLP, whose weights are trained in a

supervised manner using the same splits as described above. In Cora, Citeseer and Pubmed,

each vertex belongs only to a single class, whereas in the PPI graph dataset, nodes could

belong to multiple classes.

Link prediction task: Here, I predict a small fraction of edges and non-edges in the

test graph, as well as identify all false edges and non-edges (which were introduced as a

corruption of the original graph) between different pairs of nodes in the graph. Specifically, I

use joint tuple representations Γ((u, v),A,X), for u, v ∈ V , as prescribed by Theorem 2.2.2 .

Since, datasets are sparse in nature, and a trivial ‘non-edges’ predictor would result in a

very high accuracy, we balance the train and validation and test splits to contain an equal

number of edges and non-edges.

Triad prediction task: This task involves the prediction of triadic interaction as well

as identification of possible fake interactions in the data between the three nodes under

consideration. In this case, I use joint triadic representations Γ((u, v, h),A,X), for u, v, h ∈

V , as prescribed by Theorem 2.2.2 . Here, I ensure that edge corruptions are dependent. I

treat the graphs as being undirected in accordance with previous literature, and predict the

number of true (uncorrupted) edges between the three nodes. Again, to handle the sparse

nature of the graphs, I use a balanced dataset for train, validation, and test.

In Table 4.2 I present Micro-F1 scores for all four models over the three tasks. First, I

note how more Monte Carlo samples at test time tend to increase test accuracy. In node clas-

sification tasks, we note that structural node representations from CGNN node embeddings

significantly outperform other methods in two of the three datasets (the harder tasks). In

link prediction tasks, the low accuracy of GNN-based methods (close to random) showcases

the little extra-power of GIN and RP-GIN sampling schemes have over the the inability of

structural node representations to predict links. Surprisingly, in triads predictions, the accu-

racy of GNN-based methods is much above random in some datasets, but still far from other

node embedding methods. In link and triad prediction tasks, MC-SVD and CGNN share

the lead with MC-SVD winning on Pubmed and PPI, and CGNN being significantly more

37

accurate on Cora. Although, the 1-2-3 GNN is based on the two-Weisfeiler-Lehman (2-WL)

algorithm (pairwise Weisfeiler-Lehman algorithm [33]), which provides tuple representations

that can be exploited towards link prediction, it is however an approximation primarily de-

signed for graph classification tasks. Unfortunately, the 1-2-3 GNN performs quite poorly

on all our tasks (node classification, link and triad prediction), indicating the need for a

task-specific approximation of 2-WL GNN’s. Results for Citeseer, in the Appendix, show

similar results.

2.3.2 Qualitative Results

I now investigate the transformation of node embedding into node and link structural

representations. Theorem 2.2.2 shows that the average of a function over node embedding

Monte Carlo samples gives node and link embedding. In this experiment, I empirically test

Theorem 2.2.2 , by creating structural representations from the node embedding random ma-

trix Z, defined as the left eigenvector matrix obtained through SVD (ran until convergence),

with the sources of randomness being due to a random permutation of the adjacency matrix

given as input to the SVD method and the random seed it uses. Consider m such embedding

matrices Monte Carlo samples, Z(m) = {Z(i)}m
i=1.

Structural node representations from node embeddings: According to Theorem 2.2.2 , the

average E[Zv,·|A] is a valid structural representation of node v ∈ V in the adjacency matrix

A of Figure 2.1 . To test this empirically, I consider the unbiased estimator µ̂(v,Z(m)) =
1
m

∑m
i=1 Z(i)

v,· , v ∈ V , where limm→∞ µ̂(v,Z(m)) a.s.= E[Zv,·|A]. Figure 2.4a shows the Euclidean

distance between the empirical structural representations µ̂(orca,Z(m)) and µ̂(lynx,Z(m))

as a function of m ∈ [1, 200]. As expected, because these two nodes are isomorphic,

‖µ̂(orca,Z(m)) − µ̂(lynx,Z(m))‖ → 0 as m grows, with m = 100 giving reasonably accu-

rate results.

Structural link representations from node embeddings: According to Theorem 2.2.2 ,

the average E[f (2)(Zu,·,Zv,·)|A] of a function f (2) is a valid structural representation of

a link with nodes u, v ∈ V in the adjacency matrix A of Figure 2.1 . As an example, I

use f (2)(a, b) = ‖a − b‖, and define the unbiased estimator µ̂(u, v,Z(m)) = 1
m

∑m
i=1 ‖Z(i)

u −

38

0 25 50 75 100 125 150 175 200
Number of Monte Carlo Samples

0.0

0.5

1.0

1.5

2.0

orca-lynx

(a) Difference in avg. structural node representa-
tions.

0 25 50 75 100 125 150 175 200
Number of Monte Carlo Samples

0

1

2

3

orca-coyote

orca-lynx

lynx-coyote

(b) Average structural link representations

Figure 2.4. Structural Representations for nodes and links using multiple samples
obtained using MC-SVD on the disconnected food web graph shown in Figure 2.1 .

Z(i)
v ‖, ∀u, v ∈ V , where limm→∞ µ̂(u, v,Z(m)) a.s.= E[‖Zu,· − Zv,·‖|A]. Figure 2.4b shows

the impact of increasing the number of Monte Carlo samples m over the empirical struc-

tural representation of links. We observe that although the empirical node representations

of the orca and the lynx seem to converge to the same value, limm→∞ µ̂(orca,Z(m)) =

limm→∞ µ̂(lynx,Z(m)), their empirical joint representations with the coyote converge to dif-

ferent values, limm→∞ µ̂(lynx, coyote,Z(m)) 6= limm→∞ µ̂(orca, coyote,Z(m)), as predicted

by Theorem 2.2.2 . Also note a similar (but weaker) trend for limm→∞ µ̂(orca, lynx,Z(m)) 6=

limm→∞ µ̂(orca, coyote,Z(m)), showing these three tuples to be structurally different.

2.4 Related Work

Node Embeddings vs Structural Representations: Prior works have categorized themselves

as one of either node embedding methods or methods which learn structural representations.

This artificial separation, consequently led to little contemplation of the relation between

the two, restricting each of these approaches to a certain subsets of downstream tasks on

graphs. Node embeddings were arguably first defined in 1904, through Spearman’s common

factors. Ever since, there has never been a universal definition of node embedding: node

embeddings were simply the product of a particular method. This literature features a

myriad of methods, e.g., matrix factorization [35]–[38], implicit matrix factorization [1], [3],

[5], [17], [39], Bayesian factor models [4], [6], and some types of neural networks [40]–[43].

Arguably, the most common interpretation of node embeddings borrows from definitions

of graph (node) embeddings in metric spaces: a measure of relative node closeness [21],

39

[22], [44]–[50]. Even in non-metric methods, such as word2vec [17] and Glove [51], the

embeddings have properties similar to those of metric spaces [52]. Note that the definition

of close varies from method to method, i.e., it is model-dependent. Still, this interpretation of

closeness is the reason why their downstream tasks are often link prediction and clustering.

However, once the literature started defining relative node closeness with respect to structural

neighborhood similarities (e.g., [53]–[55]), node embeddings and structural representations

became more strangely entangled.

Structural representations have an increasing body of literature focused on node and

whole-graph classification tasks. Theoretically, these works abandon metric spaces in favor

of a group-theoretic description of graphs [20], [25], [56]–[58], with connections to finite ex-

changeability and prior work on multilayer perceptrons [59]. Graph neural networks (GNNs)

(e.g., [2], [7], [9], [60]–[62] among others) exploit this approach in tasks such as node and

whole-graph classification. [10] proposes a higher-order Weisfeller-Lehman GNN (WL-k-

GNN), which is shown to get better accuracy in graph classification tasks than traditional

(WL-1) GNNs. Unfortunately, [10] focused only on graph-wide tasks, missing the fact that

WL-2 GNN should be able to also perform link prediction tasks (Theorem 2.2.1), unlike

WL-1 GNNs. More recently, graph neural networks have also been employed towards re-

lational reasoning as well as matrix completion tasks [63]–[67]. However, these GNN’s, in

general, learn node embeddings rather than structural node representations, which are then

exploited towards link prediction. GNN-like architectures have been used to simulate dy-

namic programming algorithms [68], which is unrelated to graphs and outside the scope of

this work.

To the best of our knowledge, our work is the first to provide the theoretical founda-

tions connecting node embeddings and structural representations. A few recent works have

classified node embedding and graph representation methods arguing them to be fundamen-

tally different (e.g., [69]–[72]). Rather, our work shows that these are actually equivalent for

downstream classification tasks, with the difference being that one is a Monte Carlo method

(embedding) and the other one is deterministic (representation).

Inductive vs Transductive Approaches: Another common misconception our work un-

covers, is that of qualifying node embedding methods as transductive learning and graph

40

representation ones as inductive (e.g., [7], [32]). In their original definitions, transductive

learning [73], [74], [75] and inductive learning [76], [77] are only to be distinguished on the

basis of generalizability of the learned model to unobserved instances. However, this has

commonly been misinterpreted as node embeddings methods being transductive and struc-

tural representations being inductive. Models which depend solely only on the input feature

vectors and the immediate neighborhood structure have been classified as inductive, whereas

methods which rely on positional node embeddings to classify relationships in a graph have

been incorrectly qualified as transductive.

The confusion seems to be rooted in researchers trying to use a single sample of a node

embedding method and failing to generalize. Corollary 4 resolves this confusion by showing

that transductive and inductive learning are fundamentally unrelated to positional node em-

beddings and graph representations. Both node embeddings and structural representations

can be inductive if they can detect interesting conceptual patterns or reveal structure in

the data. The theory provided by our work strongly adheres to this definition. Our work

additionally provides the theoretical foundation behind the performance gains seen by [78]

and [79], which employ an ensemble of node embeddings for node classification tasks.

2.5 Conclusions

This chapter provided an invaluable unifying theoretical framework for node embeddings

and structural graph representations, bridging methods like SVD and graph neural networks.

Using invariant theory, it was shown (both theoretically and empirically) that relationship

between structural representations and node embeddings is analogous to that of a distri-

bution and its samples. Moreover, I proved that all tasks that can be performed by node

embeddings can also be performed by structural representations and vice-versa. Our empiri-

cal results show that node embeddings can be successfully used as inductive learning methods

using our framework, and that non-GNN node embedding methods can be significantly more

accurate in most tasks than simple GNNs methods. Finally, this chapter introduced new

practical guidelines to the use of node embeddings, which we expect will replace today’s

naïve direct use of node embeddings in graph tasks.

41

3. LEARNING EXPRESSIVE STRUCTURAL

REPRESENTATIONS FOR NOVEL TASKS ON

HYPERGRAPHS

The last chapter discussed the connections between graph representation learning strategies.

However, graphs can only capture interactions involving pairs of entities (which limits the

power of node subset structural representations) whereas in many of the aforementioned

domains any number of entities can participate in a single interaction. For example, more

than two substances can interact at a specific instance to form a new compound, study

groups can contain more that two students, recipes contain multiple ingredients, shoppers

purchase multiple items together, etc. Node subset structural representations therefore find

their natural habitat in Hypergraphs [80] (see Figure 3.1 (a) for example) — which serve as

the natural extension of dyadic graphs.

(a) Hypergraph

1 1 0

1 1 0

0 1 1

0 0 1

0 0 1

(b) Incidence Matrix

(c) Clique Expansion (d) Star Expansion (e) Line Graph

Figure 3.1. A Hypergraph(a) with 5 nodes v1, v2, . . . v5 and 3 hyperedges
e1 = {v1, v2}, e2 = {v1, v2, v3}, e3 = {v3, v4, v5} , its incidence matrix(b), its clique
expansion (c), its star expansion (d) and its line graph(e)

Due to the ubiquitous nature of hypergraphs, learning on hypergraphs has been stud-

ied extensively for more than a decade [81], [82]. Early works on learning on hypergraphs

employed random walk procedures [83]–[85] and the vast majority of them were limited to

hypergraphs whose hyperedges have the same cardinality (k-uniform hypergraphs). More

recently, with the growing popularity and success of message passing graph neural networks

42

[2], [7], message passing hypergraph neural networks learning frameworks have been pro-

posed [86]–[90]. These works rely on constructing the clique expansion (Figure 3.1 (c)), star

expansions (Figure 3.1 (d)), or other expansions of the hypergraph that preserve partial in-

formation. Subsequently, structural node representations are learned using GNN’s on the

graph constructed as a proxy of the hypergraph. These strategies are insufficient as either

(1) there does not exist a bijective transformation between a hypergraph and the constructed

clique expansion (loss of information); (2) they do not accurately model the underlying de-

pendency between a hyperedge and its constituent vertices (for example, a hyperedge may

cease to exist if one of the nodes were deleted); (3) they do not directly model the interac-

tions between different hyperedges. The primary goal of this work is to address these issues

and to build models which better represent hypergraphs.

Corresponding to the adjacency matrix representation of the edge set of a graph, a

hypergraph is commonly represented as an incidence matrix (Figure 3.1 (b)), in which a

row is a vertex, a column is a hyperedge and an entry in the matrix is 1 if the vertex

belongs to the hyperedge. In this work, I directly seek to exploit the incidence structure of

the hypergraph to learn representations of nodes and hyperedges. Specifically, for a given

hypergraph, I synchronously learn vertex and hyperedge representations that simultaneously

take into consideration both the line graph (Figure 3.1 (e)) and the set of hyperedges that a

vertex belongs to in order to learn provably expressive representations. The jointly learned

vertex and hyperedge representations are then used to tackle higher-order tasks such as

expansion of partially observed hyperedges and classification of unobserved hyperedges.

While the task of hyperedge (node subset) classification has been studied before, set

expansion for relational data has largely been unexplored. For example, given a partial set

of substances which are constituents of a single drug, hyperedge expansion entails completing

the set of all constituents of the drug while having access to composition to multiple other

drugs. A more detailed example for each of these tasks is presented in the Appendix -

Section B.1 . For the hyperedge expansion task, I propose a GAN framework [91] to learn

a probability distribution over the vertex power set (conditioned on a partially observed

hyperedge), which maximizes the point-wise mutual information between a partially observed

hyperedge and other disjoint vertex subsets in the vertex power set.

43

The contributions in this chapter can be summarized as: (1) Propose a hypergraph

neural network which exploits the incidence structure and hence works on real world sparse

hypergraphs which have hyperedges of different cardinalities. (2) Provide provably expressive

representations of vertices and hyperedges, as well as that of the complete hypergraph which

preserves properties of hypergraph isomorphism. (3) Introduce a new task on hypergraphs

– namely the variable sized hyperedge expansion and also perform variable sized hyperedge

classification. Furthermore, I demonstrate improved performance over existing baselines on

majority of the hypergraph datasets using my proposed model.

3.1 Preliminaries

In my notation for this chapter, I shall use capital case characters (e.g., A) to denote a

set or a hypergraph, bold capital case characters (e.g., A) to denote a matrix, and capital

characters with a right arrow over it (e.g.,
−→
A) to denote a sequence with a predefined ordering

of its elements. I shall use lower characters (e.g., a) to denote the element of a set and bold

lower case characters (e.g., a) to denote vectors. Moreover, I shall denote the i-th row of a

matrix A with Ai·, the j-th column of the matrix with A·j, and use Am to denote a subset

of the set A of size m i.e., Am ⊆ A; |Am| = m.

Definition 3.1.1 (Hypergraph). Let H = (V,E,X,E) denote a hypergraph H with a finite

vertex set V = {v1, . . . , vn}, corresponding vertex features X ∈ Rn×d; d > 0, a finite hyper-

edge set E = {e1, . . . , em}, where E ⊆ P ∗(V) \ {∅} and
m⋃

i=1
ei = V , where P ∗(V) denotes the

power set on the vertices, the corresponding hyperedge features E ∈ Rm×d; d > 0. I use E(v)

(termed star of a vertex) to denote the hyperedges incident on a vertex v and use SH , a set

of tuples, to denote the family of stars where SH = {(v, E(v)) : ∀v ∈ V } called the family of

stars of H. When explicit vertex and hyperedge features and weights are unavailable, I will

consider X = 1n1n
T , E = 1m1m

T , where 1 represents a n × 1 or m × 1 vector of ones

respectively. The vertex and edge set V,E of a hypergraph can equivalently be represented

with an incidence matrix I ∈ {0, 1}|V |×|E|, where Iij = 1 if vi ∈ ej and Iij = 0 otherwise.

Isomorphic hypergraphs either have the same incidence matrix or a row/column/row and

column permutation of the incidence matrix i.e., the matrix I is separately exchangeable. I

44

use LH to denote the line graph (Figure 3.1 (e)) of the hypergraph, use H? to denote the dual

of a hypergraph. Additionally, I define a function LGH , a multi-valued function termed

line hypergraph of a hypergraph - which generalizes the concepts line graph and the dual of

a hypergraph and defines the spectrum of values which lies between them. For the scope of

this work, I limit myself for LGH to be a dual valued function - using only the two extremes,

such that LGH(0) = LH and LGH(1) = H?. Also, I use Σn,m to denote the set of all possible

attributed hypergraphs H with n nodes and m hyperedges. More formally, Σn,m is the set of

all tuples (V,E,X,E) — for vertex node set size n and hyperedge set size m.

Next, I reintroduce 1-WL test for graphs (not hypergraphs) as well as the general form

of message passing graph neural networks.

Definition 3.1.2 (1-Weisfeiler-Leman(1-WL) Algorithm). Let G = (V,E) be a graph, with a

finite vertex set V and let s : V → ∆ be a node coloring function with an arbitrary co-domain

∆ and s(v), v ∈ V denote the color of a node in the graph. Correspondingly, I say a labeled

graph (G, s) is a graph G with a complete node coloring s : V → ∆. The 1-WL Algorithm

[92] can then be described as follows: let (G, s) be a labeled graph and in each iteration,

t ≥ 0, the 1-WL computes a node coloring c(t)
s : V → ∆, which depends on the coloring

from the previous iteration. The coloring of a node in iteration t > 0 is then computed as

c(t)
s (v) = HASH

((
c(t−1)

s (v),
{
c(t−1)

s (u) | u ∈ N(v)
}))

where HASH is bijective map between

the vertex set and ∆, and N(v) denotes the 1-hop neighborhood of node v in the graph. The

1-WL algorithm terminates if the number of colors across two iterations does not change,

i.e., the cardinalities of the images of c(t−1)
s and c(t)

s are equal. The 1-WL isomorphism test,

is an isomorphism test, where the 1-WL algorithm is run in parallel on two graphs G1, G2

and the two graphs are deemed non-isomorphic if a different number of nodes are colored as

κ in ∆.

Definition 3.1.3 (Graph Neural Networks (GNNs)). For a graph G = (V,E,X), modern
GNNs use the edge connectivity and node features X to learn a representation vector of a
node, hv, or the entire graph, hG. They employ a neighborhood aggregation strategy, where
the representation of a node is iteratively updated by an aggregation of the representations

45

of its neighbors. Multiple layers are employed to capture the k-hop neighborhood of a node.
The update equation of a GNN layer can be written as

hk
v = COMBINE(hk−1

v , AGGREGATEk({hk−1
u : u ∈ N(v)}))

where hk
v is the representation of node v after k layers and N(v) is the 1-hop neighborhood

of v in the graph. [9], [10] showed that message passing GNNs are no more powerful than

the 1-WL algorithm.

Next, I introduce some group theoretic preliminaries and notions of permutation actions,

orbits, equivalence classes and invariant functions specifically in the context of hypergraphs.

Definition 3.1.4 (Finite Symmetric Group Sn). A finite symmetric group Sm is a dis-

crete group G defined over a finite set of size m symbols (w.l.o.g. I shall consider the set

{1, 2, . . . ,m}) and consists of all the permutation operations that can be performed on the m

symbols. Since the total number of such permutation operations is m! the order of Sm is m!.

Definition 3.1.5 (Group Action (left action)). If A is a set and G is a group, then A is a

G-set if there is a function φ : G ×A → A, denoted by φ(g, a) 7→ ga, such that:

(i) 1a = a for all a ∈ A, where 1 is the identity element of the group G

(ii) g(ha) = (gh)(a) for all g, h ∈ G and a ∈ A

Definition 3.1.6 (Orbit). Given a group G acting on a set A, the orbit of an element a ∈ A

is the set of elements in A to which a can be moved by the elements of G. The orbit of a is

denoted by O(a) = {g · a|g ∈ G} ⊂ A.

Definition 3.1.7 (Vertex Permutation action πV). A vertex permutation action π ∈ Sk is

the application of a left action φ : Sk×Vk → Vk with the element π on a sorted sequence of k

vertices represented as
−→
Vk = (v1, . . . , vk) of a hypergraph to output a corresponding permuted

sequence of vertices i.e., φ(π,−→Vk) = −→Vkπ
= (vπ(1), . . . , vπ(k)). A permutation action π ∈ Sn

can also act on any vector, matrix, or tensor defined over the nodes V , e.g., (Xi·)i∈V , and

output an equivalent vector, matrix, or tensor with the order of the nodes permuted e.g.,

(Xπ(i)·)π(i)∈V .

46

Definition 3.1.8 (Hyperedge Permutation Action πE). A hyperedge permutation action

π ∈ Sk is the application of a left action ψ : Sk × Ek → Ek with the element π on a

sorted sequence of m hyperedges represented as
−→
Ek = (e1, . . . , ek) of a hypergraph to output

a corresponding permuted sequence of hyperedges i.e., ψ(π,−→Ek) = −→Ekπ
= (eπ(1), . . . , eπ(k)). A

permutation action π ∈ Sm can also act on any vector, matrix, or tensor defined over the

hyperedges E, e.g., (Ei·)i∈E, and output an equivalent vector, matrix, or tensor with the order

of the hyperedges permuted e.g., (Eπ(i)·)π(i)∈E.

It is crucial to note that a vertex permutation action can be simultaneously performed

along with the hyperedge permutation. I represent a joint permutation on the entire edge

set E as π2(π1(E)), and for a hyperedge e ∈ E as π2(π1(e)) where πi ∈ Sn, π2 ∈ Sm

Definition 3.1.9 (Node Equivalence Class/ Node Isomorphism). The equivalence classes of

vertices v ∈ V of a hypergraph H under the action of automorphisms between the vertices

are called vertex equivalence classes or vertex orbits. If two vertices v1, v2 ∈ V are in the

same vertex orbit, I say they are node isomorphic and are denoted by v1 ∼= v2.

Definition 3.1.10 (Hyperedge Orbit/ Isomorphism). The equivalence classes of non empty

subsets of vertices e ∈ P?(V)\∅; e ∈ E of a hypergraph G under the action of automorphisms

between the subsets are called hyperedge orbits. If two proper subsets e1, e2 ∈ P ∗(V)\∅ are in

the same hyperedge orbit, we say they are hyperedge isomorphic and are denoted by e1 ∼= e2.

Definition 3.1.11 (Hypergraph Orbit and Isomorphism). The hypergraph orbit of a hy-

pergraph H, given by the application of the elements π of the finite symmetry group Sn on

the vertex set V / Sm on the edge set E/ or any combination of the two and appropriately

modifying the associated matrices X,E, I of the hypergraph. Two hypergraphs H1 and H2

are said to be isomorphic (equivalent) denoted by H1 ∼= H2 iff there exists either a vertex

permutation action or hyperedge permutation action or both such that H1 = π · H2. The

hypergraph orbits are then the equivalence classes under this relation; two hypergraphs H1

and H2 are equivalent iff their hypergraph orbits are the same.

Definition 3.1.12 (G-invariant functions). A function φ acting on a hypergraph H given

by φ : Σn,m → R◦ is G-invariant whenever it is invariant to any vertex permutation/

47

edge permutation action π ∈ S· in the Σn,m symmetric space i.e., φ(π · H) = φ(H) and all

isomorphic hypergraphs obtain the same representation. Similarly, a function ρ : P ∗(V)\∅ →

R·acting on a hyperedge for a given hypergraph H, is said to be G-invariant iff all isomorphic

hyperedges obtain the same representation.

Task Descriptions:

I now provide, the descriptions of the tasks which I introduce on hypergraphs which

primarily rely on structural representations of node subsets.

Partially observed hyperedge expansion: Consider a hypergraphH = (V,E ′,X,E)

where a small fraction of hyperedges in the hyperedge set are partially observed and let E

be the completely observed hyperedge set. A partially observed hyperedge implies ∃e′
i ∈ E ′,

∃vj ∈ V, vj 6∈ e′
i but vj ∈ ei, ei ∈ E, where ei is the corresponding completely observed hyper-

edge of e′
i The task here is, given a partial hyperedge e′ ∈ E ′, e′ 6∈ E but e′ ⊂ e, e ∈ E, to

complete e′ with vertices from V so that after hyperedge expansion e′ = e.

Unobserved hyperedge classification: Consider a hypergraph H = (V,E ′,X,E′)

with an incompletely observed hyperedge set E ′ and let E be the corresponding completely

observed hyperedge set with E ′ ⊂ E. An incomplete hyperedge set implies ∃e ∈ E; e 6∈ E ′

where |E ′| < |E| = m. It is important to note that in this case, if a certain hyperedge is

present in E ′, then the hyperedge is not missing any vertices in the observed hyperedges. The

task here is, for a given hypergraph H, to predict whether a new hyperedge e was present

but unobserved in the noisy hyperedge set i.e., e 6∈ E ′ but e ∈ E.

3.2 Theory

Previous works on hypergraph neural networks [86]–[88], employ a proxy graph to learn

vertex representations for every vertex v ∈ V , by aggregating information over its neigh-

borhood. Hyperedge representations (or alternatively, hypergraph) are then obtained, when

necessary, by using a pooling operation (e.g. sum, max, mean, etc) over the vertices in the

hyperedge (vertex set of the hypergraph). However, such a strategy, fails to (1) preserve

properties of equivalence classes of hyperedges/hypergraphs and (2) capture the implicit

48

higher order interactions between the nodes/ hyperedges, and fails on higher order tasks as

shown by [11].

To alleviate these issues, in this work, I use a message passing framework on the incidence

graph representation of the observed hypergraph, which synchronously updates the node and

observed hyperedge embeddings as follows:

hk
e = σ(W k

E · (h(k−1)
e ⊗ fk({(h(k−1)

v ⊗ pk({h(k−1)
e′

: e′ 3 v})) : ∀v ∈ e where v ∈ V, e, e′ ∈ E})))
(3.1)

hk
v = σ(W k

V · (h(k−1)
v ⊗ gk({h(k−1)

e ⊗ qk({h(k−1)
v′

: v′ ∈ e})) : ∀e 3 v where v, v′ ∈ V, e ∈ E})))
(3.2)

where, ⊗ denotes vector concatenation, fk, gk, pk, qk are injective set, multiset functions

(constructed via [27], [28], [93]) in the kth layer, hk
e ,h

k
v are the vector representations of the

hyperedge and vertices after k layers, W k
V ,W

k
E are learnable weight matrices and σ is an

element-wise activation function. I use K (in practice, K=2) to denote the total number

of convolutional layers used. From Equation (3.2) it is clear to see that a vertex not only

receives messages from the hyperedges it belongs to, but also from neighboring vertices in

the clique expansion. Similarly, from Equation (3.1), a hyperedge receives messages from its

constituent vertices as well as neighboring hyperedges in the line graph of the hypergraph.

However, the above equations, standalone do not present a framework to learn repre-

sentations of unobserved hyperedges for downstream tasks. In order to do this, post the

convolutional layers, the representation of any hyperedge (observed or unobserved) are ob-

tained using a function Γ : P ?(V)× Σn,m → Rd as:

Γ(e′, H; Θ) = φ({hK
vi : vi ∈ e′})⊗ ρ({hK

e : e 3 vi ∀vi ∈ e′})

where vi ∈ V, e ∈ E′
(3.3)

where φ, ρ are injective set, multiset functions respectively, and Θ denotes the model pa-

rameters of the entire hypergraph neural network (convolutional layers, set functions). Cor-

49

respondingly, the representation of the complete hypergraph is obtained using a function

Γ : Σn,m → Rd as:

Γ(H; Θ) = φ({hK
v : v ∈ V })⊗ ρ({hK

e : e ∈ E})) (3.4)

In what follows, I list the properties of the vertex/ hyperedge representations. All proofs

are presented in the Supplementary Material (arXiv version) [94].

Property 3.2.1 (Vertex Representations). The representation of a vertex v ∈ V in a

hypergraph H learnt using Equation (3.2) is a G-invariant representation Φ(v, V, E,X,E)

where Φ : V × Σn,m → Rd, d ≥ 1 such that

Φ(v, V, E,X,E) = Φ((π1(v), π1(V), π2(π1(E)), π1(X), π2(π1(E)))

∀π1∀π2 where π1 ∈ Sn and π2 ∈ Sm. Moreover, two vertices v1, v2 which belong to the same

vertex equivalence class i.e. v1 ∼= v2 obtain the same representation.

Property 3.2.2 (Hyperedge Representations). The representation of a hyperedge e ∈ E in

a hypergraph H learnt using Equation (3.1) is a G-invariant representation Φ(e, V, E,X,E)

where Φ : P ?(V)× Σn,m → Rd, d ≥ 1 such that

Φ(e, V, E,X,E) = Φ((π2(π1(e)), π1(V), π2(π1(E)), π1(X), π2(π1(E)))

∀π1∀π2 where π1 ∈ Sn and π2 ∈ Sm Moreover, two hyperedges e1, e2 which belong to the same

hyperedge equivalence class i.e. e1 ∼= e2 obtain the same representation.

Next, I restate a theorem from [95] which provides a means to deterministically distin-

guish non isomorphic hypergraphs. Subsequently, I characterize the expressivity of my model

to distinguish non-isomorphic hypergraphs.

Theorem 3.2.1 ([95]). Let H1, H2 be hypergraphs without isolated vertices whose line hy-

pergraphs LGH1 , LGH2 are isomorphic. Then H1 ∼= H2 if and only if there exists a bijection

β : V LGH1 → V LGH2 such that β (SH1) = SH2 , where SHi is the family of stars of the

hypergraph Hi

50

Theorem 3.2.2. Let H1, H2 be two non isomorphic hypergraphs with finite vertex and

hyperedge sets and no isolated vertices. If the Weisfeiler-Lehman test of isomorphism decides

their line graphs LH1 , LH2 and the star expansions of their duals H?
1 , H

?
2 to be not isomorphic

then there exists a function Γ : Σn,m → Rd (via Equation (3.4)) and parameters Θ that maps

the hypergraphs H1, H2 to different representations.

I now, extend this to the expressivity of the hyperedge representations and then show

that the property of separate exchangeability [96] of the incidence matrix is preserved by the

hypergraph representation.

Corollary 6. There exists a function Γ : P ?(V)× Σn,m → Rd (via Equation (3.3)) and pa-

rameters Θ that maps two non-isomorphic hyperedges e1, e2 to non identical representations.

Remark 3 (Separate Exchangeability). The representation of a hypergraph H learnt using

the function Γ : Σn,m → Rd (via Equation (3.4)) preserves the separate exchangeability of

the incidence structure I of the hypergraph.

3.3 Learning Framework

I now describe the learning procedures for the two tasks, namely variable size hyperedge

classification and variable size hyperedge expansion.

3.3.1 Hyperedge Classification

For a hypergraph H, let E ′ denote the partially observed hyperedge set in my data corre-

sponding to the true hyperedge set E. The goal here is to learn a classifier r : Rd → R over the

representations of hyperedges (obtained using Equation (3.3)) s.t σ(r(Γ({vi, v2, . . . , vM}, H)))

is used to classify if an unobserved hyperedge e = {v1, v2, . . . , vM} exists i.e. e 6∈ E ′ but e ∈ E

where all vi ∈ V for i ∈ {1, 2, . . . ,M}, and σ is the logistic sigmoid.

Now, for the given hypergraph H, let Y H ∈ {0, 1}|P ?(V)\∅| be the target random variables

associated with the vertex power set of the graph. Let YH ∈ {0, 1}|P ?(V)\∅| be the corre-

sponding true values attached to the vertex subsets in the power set, such that YH
e = 1 iff

51

e ∈ E. Next, I model the joint distribution of the hyperedges in the hypergraphs by making

a mean field assumption as:

P (H) =
∏

e∈P ?(V)\∅
Bernoulli(Y G

e = YG
e |r(Γ(e, H); Θ)) (3.5)

Subsequently, to learn the model parameters Θ - I make a closed world assumption and

treat only the observed hyperedges in E ′ as positive and all other edge as false and seek to

maximize the log-likelihood.

Θ = arg max
Θ

∑
e∈E′

log p(Y H
e = 1|r(Γ(e, H)); Θ)+

∑
e∈P ?(V)\{E′,∅}

log p(Y H
e = 0|r(Γ(e, H)); Θ)

(3.6)

Since the size of vertex power set (2|V |), grows exponentially with the number of vertices,

it is computationally intractable to use all negative hyperedges in the training procedure.

My training procedure, hence employs a negative sampling procedure (in practice, I use 5

distinct negative samples for every hyperedge in every epoch) combined with a cross entropy

loss function, to learn the model parameters via back-propagation. This framework can

trivially be extended to perform multi class classification on variable sized hyperedges.

3.3.2 Hyperedge Completion

The set expansion task introduced in [28] makes the infinite de-Finetti assumption i.e.

the elements of the set are i.i.d. When learning over finite graphs and hypergraphs, this

assumption is no longer valid - since the data is relational - i.e. a finite de-Finetti [97]

assumption is required. Additionally, the partial exchangeability of the structures (adjacency

matrix/ incidence matrix) [96] have to be factored in as well.

This raises multiple concerns: (1) computing mutual information of a partial vertex set

with all other disjoint vertex subsets in the power set is computationally intractable; (2) to

learn a model in the finite de-Finetti setting, we need to consider all possible permutations for

a vertex subset. For example, under the conditions of finite exchangeability, the point-wise

52

mutual information between two random variables X,Y - where both are disjoint elements

of the vertex power set (or hyperedges) i.e. X,Y ∈ P ?(V) \ ∅, X ∩ Y = ∅ is given by:

s(X|Y) = log p(X ∪ Y |α)− log p(X |α)p(Y |α) (3.7)

where α is a prior and each of p(X|α), p(Y |α), P (X ∪ Y |α) cannot be factorized any further

i.e.

p(X|α) = 1
|X|!

∑
π∈ΠX

log p(vπ(1), vπ(2), . . . , vπ(|X|) |α) (3.8)

where vi ∈ X, i ∈ {1, 2, . . . , |X|} and ΠX denotes the set of all possible permutations of the

elements of X. The inability to factorize Equation (3.8) any further, leaves no room for any

computational benefits by a strategic addition of vertices - one at a time (i.e. no reuse of

computations, whatsoever).

As a solution to this computationally expensive problem, I propose a GAN framework

[91] to learn a probability distribution over the vertex power set, conditioned on a partially

observed hyperedge, without sacrificing on the underlying objective of maximizing point-wise

mutual information between X,Y (Equation (3.7)). I describe the working of the generator

and the discriminator of the GAN, with the help of a single example below.

Let e denote a partially observed hyperedge and Γ(e, G) denote the representation of the

partially observed hyperedge obtained via Equation (3.3). Let VK , VK denote the true and

predicted vertices respectively to complete the partial hyperedge e, where VK , VK ⊆ V \ {e}.

Generator(G?)

The goal of the generator is to accurately predict VK as VK . I solve this using a two-fold

strategy - first predict the number of elements K, missing in the partially observed hyperedge

e and then jointly select K vertices from V \ e. Ideally, the selection of the best K vertices

should be performed over all vertex subsets of size K (where vertices are sampled from V \ e

without replacement). However, this is computationally intractable even for small values

e.g., K = 2, 3 for large graphs with millions of nodes.

I predict the number of elements missing in a hyperedge, K, using a function a1 : Rd → N

over the representation of the partial hyperedge, Γ(e, G). To address the problem of jointly

53

selecting a set of k vertices without sacrificing on computational tractability, I seek to employ

a variant of the Top-K problem often used in computing literature.

The standard top-K operation can be adapted to vertices as: given a set of vertices of a

graph {v1, v2, · · · vn} = V \ {e}, to return a vector A = [A1, . . . , An]> such that

Ai =

 1, if vi is a top- K element in V \ e

0, otherwise.

However a standard top-K procedure, which operates by sampling vertices (from the vertex

set - a categorical distribution) is discrete and hence not differentiable. To alleviate the issue

of differentiability, Gumbel softmax [98], [99] could be employed to provide a differentiable

approximation to sampling discrete data. However, explicit top-K Gumbel sampling (com-

puting likelihood for all possible sets of size k over the complete domain) is computationally

prohibitive and hence finds limited applications in hypergraphs with a large number of nodes

and hyperedges.

In this work, I sacrifice on exact differentiability and focus on scalability. I limit the vertex

pool (which can complete the hyperedge) to only vertices in the two hop neighborhood (in

the clique expansion CH) of the vertices in the partial hyperedge. For real world datasets,

even the reduced vertex pool consists of a considerable number of vertices - and explicitly

computing all sets of size K is still prohibitive. In such cases, I sample uniformly at random a

large number of distinct vertex subsets of size k from the reduced vertex pool, where k is the

size predicted by the generator. In practice, the large number is typically min(
(

P
k

)
, 100,000),

where P is the number of vertices in the reduced vertex pool. Subsequently, I compute the

inner product of the representations of these subsets (computed using Equation (3.3)) with

the representation of the partially observed hyperedge. I then use a simple Top-1 to select

the set of size k which maximizes the inner product.

Discriminator(D?)

The goal of the discriminator is to distinguish the true, but unobserved hyperedges from

the others. To do this, I obtain representations of Γ(e, G),Γ(VK , G),Γ(e ∪ VK , G) (and

similarly for the predicted VK using the generator G?) and employ the discriminator in the

54

same vein as Equation (3.7). As a surrogate for the log-probablities, I learn a function

g : Rd → Rd over the representations of Γ(e, G),Γ(VK , G),Γ(e ∪ VK , G) (log-probabilities

in higher dimensional space). Following this, I apply a function f : Rd → R+ ∪ {0}, as a

surrogate for the mutual information computation. The equation of discriminator can then

be listed as:

D?(VK |e, H) = σ(f(g(Γ(e ∪ VK , H))

−g(Γ(e, H))− g(Γ(VK , H))))
(3.9)

and correspondingly for D?(G?(VK |e, G)), where σ is the logistic sigmoid.

My training procedure for the GAN, over the hypergraph H, can then be summarized

as follows. Let V † denote the value function and let E ′ denote a set of partial hyperedges

and E denote the corresponding set with all hyperedges completed. Let VKe , VKe denote the

corresponding true and predicted vertices to complete the hyperedge. The value function

can then be written as:

min
G?

max
D?

V †(D?, G?) =
∑

e′∈E′

log D?(VKe′ |e′, H)+

log(1−D?(G?(e′, H)))
(3.10)

In practice, the model parameters of the GAN are learnt using a cross entropy loss and

back-propagation. An MSE loss is employed to train the function a1, the function that

predicts the number of missing vertices in a hyperedge, using ground truth information

about the number of missing vertices in the partial hyperedge.

3.4 Results

I first briefly describe the datasets and then present our experimental results on the two

hypergraph tasks.

Datasets

I use the publicly available hypergraph datasets from [100] to evaluate the proposed

models against multiple baselines (described below). I ignore the timestamps in the datasets

and only use unique hyperedges which contain greater than 1 vertex. Moreover, none of the

55

datasets have node or hyperedge features. I summarize the dataset statistics in the Sup-

plementary material. I briefly describe the hypergraphs and the hyperedges in the different

datasets below.

• Online tagging data (tags-math-sx; tagsask-ubuntu). In this dataset, nodes are tags

(annotations) and a hyperedge is a set of tags for a question on online Stack Exchange

forums.

• Online thread participation data (threads-math-sx; threads-ask-ubuntu): Nodes are

users and a hyperedge is a set of users answering a question on a forum.

• Two drug networks from the National Drug Code Directory, namely (1) NDC-classes:

Nodes are class labels and a hyperedge is the set of class labels applied to a drug (all

applied at one time) and (2) NDC-substances: Nodes are substances and a hyperedge

is the set of substances in a drug.

• US. Congress data (congress-bills): Nodes are members of Congress and a hyperedge

is the set of members in a committee or cosponsoring a bill.

• Email networks (email-Enron; email-Eu): Nodes are email addresses and a hyperedge

is a set consisting of all recipient addresses on an email along with the sender’s address.

• Contact networks (contact-high-school; contact-primary-school): Nodes are people and

a hyperedge is a set of people in close proximity to each other.

• Drug use in the Drug Abuse Warning Network (DAWN): Nodes are drugs and a hyper-

edge is the set of drugs reportedly used by a patient before an emergency department

visit.

Experimental Results

Hyperedge Classification

In this task, I compare my model against five baselines. The first is a trivial predictor,

which always predicts 1 for any hyperedge (in practice, I use 5 negative samples for every

real hyperedge). The second two baselines utilize a GCN [2] or GraphSAGE [7] on the

clique expansion of the hypergraph. GCN on the clique expansion on the hypergraph is the

model proposed by [86] as HGNN. For the fourth baseline, I utilize the star expansion of the

hypergraph - and employ a heterogeneous RGCN to learn the vertex, hyperedge embeddings.

56

Table 3.1. F1 scores for the hyperedge classification task (Higher is better).

Trivial
Clique Expansion-

GCN
(HGNN)

Clique Expansion-
SAGE

Star Expansion -
Heterogenous -

RGCN
Ours

NDC-classes 0.286 0.614(0.005) 0.657(0.020) 0.676(0.049) 0.768(0.004)
NDC-substances 0.286 0.421(0.014) 0.479(0.007) 0.525(0.006) 0.512(0.032)
DAWN 0.286 0.624(0.010) 0.664(0.006) 0.634(0.003) 0.677(0.004)
contact-primary-school 0.286 0.645(0.031) 0.681(0.014) 0.669(0.012) 0.716(0.034)
contact-high-school 0.286 0.759(0.030) 0.724(0.009) 0.739(0.012) 0.786(0.033)
tags-math-sx 0.286 0.599(0.009) 0.635(0.003) 0.572(0.003) 0.642(0.006)
tags-ask-ubuntu 0.286 0.545(0.005) 0.597(0.007) 0.545(0.006) 0.605(0.002)
threads-math-sx 0.286 0.453(0.017) 0.553(0.012) 0.487(0.006) 0.586(0.002)
threads-ask-ubuntu 0.286 0.425(0.007) 0.512(0.007) 0.464(0.010) 0.488(0.012)
email-Enron 0.286 0.618(0.032) 0.594(0.046) 0.599(0.040) 0.685(0.016)
email-EU 0.286 0.664(0.003) 0.651(0.019) 0.661(0.006) 0.687(0.002)
congress-bills 0.286 0.412(0.003) 0.530(0.055) 0.544(0.004) 0.566(0.011)
1 A 5-fold cross validation procedure is used - numbers outside the parenthesis are the mean values and the

standard deviation is specified within the parenthesis
2 Bold values show maximum empirical average, and multiple bolds happen when its standard deviation

overlaps with another average.

Table 3.2. Normalized Set Difference scores for the hyperedge expansion task
(lower is better)

Simple Recursive Ours

NDC-classes 1.207(0.073) 1.163(0.015) 1.107(0.007)
NDC-substances 1.167(0.000) 1.161(0.009) 1.153(0.004)
DAWN 1.213(0.006) 1.197(0.022) 1.088(0.018)
contact-primary-school 0.983(0.006) 0.986(0.001) 0.970(0.005)
contact-high-school 0.990(0.014) 1.000(0.000) 0.989(0.001)
tags-math-sx 1.012(0.025) 1.003(0.014) 0.982(0.011)
tags-ask-ubuntu 1.008(0.003) 1.005(0.003) 0.972(0.001)
threads-ask-ubuntu 0.999(0.000) 0.999(0.000) 0.981(0.003)
email-Enron 1.152(0.045) 1.182(0.015) 1.117(0.049)
email-EU 1.199(0.002) 1.224(0.010) 1.116(0.013)
congress-bills 1.186(0.004) 1.189(0.001) 1.107(0.004)
1 A 5-fold cross validation procedure is used - numbers outside

the parenthesis are the mean values and the standard deviation
is specified within the parenthesis

2 Bold values show minimum empirical average, and multiple
bolds happen when its standard deviation overlaps with another
average.

57

In each of the baselines, unobserved hyperedge embeddings are obtained by aggregating the

representations of the vertices it contains, using a learnable set function [27], [28]. I report

F1 scores on the eight datasets in Table 3.1 . More details about the experimental setup is

presented in the Supplementary material (arXiv version) [94].

Hyperedge Expansion

Due to lack of prior work in hyperedge expansion, here I compare my strategy against two

other baselines for hyperedge expansion (with the an identical GAN framework and setup

to predict the number of missing vertices, albeit without computing joint representations of

predicted vertices) : (1) Addition of Top-K vertices, considered independently of each other

(2) Recursive addition of Top-1 vertex. Since all the three models are able to accurately

(close to 100% accuracy) predict the number of missing elements, I introduce normalized

set difference, as a statistic to compare the models. Normalized Set difference (permutation

invariant) is given by the number of insertion/ deletions/ modifications required to go from

the predicted completion to the target completion divided by the number of missing elements

in the target completion. For example, let {7,8,9} be a set which we wish to expand. Then

the normalized set difference between a predicted completion {3,5,1,4} and target completion

{1,2} is computed as by (1+2)/2 = 1.5 (where there is 1 modification and 2 deletions). It is

clear to see that, a lower normalized set difference score is better and a score of 0 indicates

a perfect set prediction. Results are presented in Table 3.2 .

In the hyperedge classification task, from Table 3.1 it is clear to see that the proposed

model model which with provable expressive properties performs better than the baselines,

on most datasets. All three non-trivial baselines appear to suffer from their inability to

capture higher order interactions between the vertices in a hyperedge. Moreover, the loss in

information by using a proxy graph - in the form of the clique expansion - also affects the

performance of the SAGE and GCN baselines. The SAGE baseline obtaining better F1 scores

over GCN suggests that the self loop introduced between vertices in the clique expansion

appears to hurt performance. The lower scores of the star expansion models can be attributed

to its inability in capturing vertex-vertex and hyperedge-hyperedge interactions.

For the hyperedge expansion task, from Table 3.2 it is clear to see that adding vertices

in a way which captures interactions amongst them performs better than adding vertices

58

independently of each other or in a recursive manner. The relatively weaker performance

of adding vertices recursively, one at a time can be attributed to a poor choice of selection

of the first vertex to be added (once an unlikely vertex is added, the sequence cannot be

corrected).

3.5 Conclusions

In this chapter, I developed a hypergraph neural network to learn provably expressive

representations of vertices, hyperedges and the complete hypergraph. I proposed frameworks

for hyperedge classification and a novel hyperedge expansion task, evaluated performance on

multiple real-world hypergraph datasets, and demonstrated consistent, significant improve-

ment in accuracy, over state-of-the-art models.

59

4. CONDITIONAL INVARIANCES FOR CONFORMER

INVARIANT PROTEIN REPRESENTATION LEARNING

In this chapter, I look at data, which are represented as graphs for the sake of convenience -

but exhibit symmetries more than that of permutation equivariance (invariance). Specifically,

I look at the case of protein molecules.

Learning on proteins (and 3D macromolecular structures in general) is a rapidly growing

application area in geometric deep learning, [101], [102] which presents itself with challeng-

ing domain specific information but a seemingly boundless number of real world applications

[103]. Traditionally, proteins have been modeled as either 3D images or graphs and subse-

quently standard 3D CNNs [104], [105], graph neural networks (GNNs) [2], [7], transformers

[106] have been employed to learn low dimension embeddings of the protein which are then

used for downstream tasks. More recently, several works [107]–[110] have enriched the afore-

mentioned standard neural network models, with inductive biases such as being equivariant

(invariant) to transformations from the Euclidean and rotation groups. While equivariance

(invariance) to the transformations in these groups are necessary properties for the model,

unfortunately, they are limited to only capture rigid transformations of the input object.

Proteins, however, are not rigid structures and different proteins have multiple differ-

ent conformations [13], [14]. However, in nearly all publicly available datasets, only one

conformer per protein is observed in the dataset. Current models therefore could lead to

the different conformers of the same protein obtaining different representations, where they

should get the same representation. In light of this limitation, a question naturally arises:

Is it possible to learn conformer-invariant protein representations?

The literature on geometric deep learning has achieved much success with neural network

that explicitly model equivariances (invariances) to group transformations [2], [57], [111]–

[113]. Among applications to physical sciences, group equivariant graph neural networks

and transformers have specifically found applications to small molecules, as well as larger

molecules such as proteins with tremendous success [107]–[110], [114]–[119]. However, these

models do not yet account for all invariances. The transformations they are invariant to

do not depend on the input. For instance, invariance to the Euclidean group restricts the

60

N C C

O

O

Side Chain
Atoms

} Backbone Atoms

Just the alpha carbon and the side chain atom

C

SC1

SC3

SC6

SC2

SC4

SC5

Single amino acid in a protein

Figure 4.1. Magnified image of side chain of a single generic amino acid (with
6 atoms in the side chain with a specified connectivity) in a protein molecule.
A protein molecule typically contains tens to hundreds of amino acids

protein representation to act as if the protein were a rigid structure, regardless of the protein

under consideration.

Our Approach: I propose a representation method where the set of symmetries

in the task are input-dependent, which I denote conditional symmetries. For my specific

application, I model every protein as a directed forest, where every amino acid forms a

directed tree. I leverage the constructed directed forest of the protein to sample viable

protein conformations (where viability is checked with Protein structure validation tools

such as Molprobity [120]–[122]), which is additionally coupled with an MCMC framework

used to create data augmentations to train the neural network to learn conformer invariant

representations. The directed tree associated with an amino acid allows us to transform the

positional coordinates associated with atoms in the side chain (Figure 4.1) - where a node

can be transformed about its immediate parents or any of its ancestors.

Our contributions can be summarized as follows:

• I provide a principled strategy to sample conformations for any given protein from the

support of its protein conformer distribution (which consists of all its viable protein

conformations) which captures their true flexibility [13], [14]. Viable conformations

respect domain specific constraints such as those on dihedral angles, steric repulsions,

among others. This is particularly useful in the scenario when the set of viable trans-

formations is different across different proteins.

61

• Further, I develop a Markov chain Monte Carlo learning framework which guides the

sampling of protein conformations in such a way – so as to provide theoretical guaran-

tees that the representations obtained by all conformations of a protein are identical.

• I then provide a few guiding principles of conditional invariant representations as in-

ductive biases, which serves as a generalization of group invariant neural networks.

• Finally, I perform experimental evaluation of the proposed approach, where endowing

baseline models with our proposed strategy shows noticeable improvements on four

different tasks on proteins.

4.1 Conditional Invariances for Proteins

The symmetry of an object is the set of transformations that leaves the object invariant.

The notion of symmetries, expressed through the action of a group on functions defined on

some domain, has served as a fundamental concept of geometric deep learning. In this sec-

tion, I start by defining the concept of input-dependent conditional symmetries and then then

proceed to specifically tailor these conditional symmetries that are both computationally ef-

ficient and useful for representing protein conformations. Some group theoretic preliminaries

are presented in Section C.1 .

Definition 4.1.1 (Conditionally symmetric-invariant functions). A function f : Ω→ R, is

said to be conditionally symmetric-invariant if

f(tx · x) = f(x) ,∀tx ∈ Sx, ∀x ∈ Ω,

where Sx is a set of transformations unique to element x and tx : Ω→ Ω.

It is easy to see that conditionally invariant functions are a generalization of group

invariant functions where Sx ≡ G ∀x ∈ Ω where G is a group. The above definition is

motivated by the fact that representation for proteins may not necessarily limited to be

invariant just to group actions, but to a more general set of protein specific transformations.

I detail this motivation next.

62

A protein molecule is composed of amino acids (say n amino acids), where each atom in

the protein belongs to one amino acid ∈ {1, . . . , n}. Excluding the hydrogen atoms, every

amino acid contains four atoms known as the backbone atoms (shown in Figure 4.1), and

other atoms which belong to the side chain. We shall use m to denote the number of atoms in

the protein. Traditionally, protein structures are solved by X-ray crystallography or cyro-EM

and the obtained structure is normally considered a unique 3D conformation of the molecule.

Molecules available via the Protein Data Bank [123] generally include only unique sets of

coordinates to demonstrate the 3D structures, which lead to the unique answer as ‘gold

standard’ in structure prediction, such as protein structure prediction competitions - CASP

[124]. Under these assumptions protein side-chain conformations are usually assumed to

be clustered into rotamers, which are rigid conformations represented by discrete side-chain

dihedral angles.

However, recent works [13], [14] have observed that — while the backbone atoms of all

n amino acids in a protein molecule together (i.e. 4n atoms) form a rigid structure, its side

chains can exhibit very flexible (continuous and discrete) conformations not restricted to just

clustered rotamers. The underlying goal of my work is to capture this inherent flexibility

of proteins and to ensure different conformers of the same protein get identical representa-

tions. The above problem of capturing protein conformations is further compounded by the

fact that protein conformations are often times unique to the protein - i.e. conformations

exhibited by a protein are input (protein) specific. The desiderata, therefore is a model

which outputs conformation invariant representations when the conformations (symmetries)

exhibited by a protein varies across proteins when access to only a single protein conformer

is available.

I denote a protein as a tuple p = (V,Xs,Xp) (data from pdb files) where V is the set

of atoms in the protein, Xs ∈ Rm×d, d ≥ 1 is the scalar atom feature matrix associated

with the atoms, Xp ∈ Rm×3 are the positional coordinates associated with the atoms in the

protein. Without loss of generality, we number the nodes in V = {1, ..., n} following the

same ordering of the rows in Xs,Xp.

63

Definition 4.1.2 (Rigid Backbone Protein Conformations). For an m-atom protein p with

atom positional coordinates Xp ∈ Rm×3 (recall that by definition p contains information about

Xp), where Cp ⊂ Rm×3 denotes the set of viable conformations of p, which keeps the positional

coordinates associated with the backbone fixed. I use Tp ⊂ Rm×3×3 (where a 3x3 matrix is

associated with every single atom) to denote the set of non-isometric transformations of p,

which yield the set Cp i.e. ∀cp ∈ Cp, ∃tp ∈ Tp, s.t. for an atom with index i ∈ {1, . . . ,m},

the new position of atom i is Xp[i]tp[i]T = cp[i], Xp[i] ∈ R1×3, tp[i] ∈ R3×3.

Tp forms a set of transformations which acts on the protein atomic coordinates via matrix

multiplication. Two elements of Tp (with corresponding matrices of individual atoms and

then aggregating for the protein as a whole) may or may not combine via matrix multipli-

cation (as the binary operation) to result in another element of Tp i.e. matrix multiplication

(atom corresponding) is not necessarily closed in Tp.

Unfortunately, sampling transformations from Tp to obtain viable protein conformations

is an unattainable task, since this would entail first sampling a transformation from Rm×3×3

and then verifying if the transformation is viable (and the vast majority of transformations

are not viable). I shall address this issue using an MCMC method - which can then be

combined with MCGD training of the neural network [125] to learn conformation invariant

protein representations where different viable conformations are obtained via MCMC are

used in every batch. But first, I specify the invariance requirements for learning representa-

tions of proteins.

A symmetric-invariant function for proteins (per Definition 4.1.1), should be invariant

to (i) transformations which change its atomic coordinates to any of its rigid backbone

conformations in Cp (ii) transformations which change the atomic coordinates of all its atoms

via rigid transformations — group actions such as rotations/ translations (iii) a combination

of the two above which transforms it into one of its viable conformations and is then further

acted upon by rigid transformations.

64

4.2 Obtaining Viable Conformations

Before I describe my Markov chain Monte Carlo procedure that will sample atomic co-

ordinates from the set of rigid backbone conformations Cp of protein p (Definition 4.1.2), we

need a way to sample from the local neighborhood of a conformation.

4.2.1 Efficiently sampling viable conformations.

To efficiently sample a candidate conformation from Cp, we will follow a multi-step ap-

proach: First, we (i) construct a directed tree for every amino acid in the protein to capture

the inherent flexibility in protein structures. Then, we (ii) leverage a directed forest of the

protein (described next) to transform its atomic coordinates and check for viability.

Part 1. Directed forest construction.

Using the input protein molecule, we construct a directed forest using the following three

step procedure:

S1. Each amino acid in the protein gets its own directed tree. The atoms in the amino

acid’s backbone form the base (root) nodes (i.e., there can be multiple base nodes in

every amino acid). This is illustrated as node 1 in Figure 4.2 ’s tree. The set of base

nodes of all the amino acids in the protein are jointly referred to as the base nodes of

the protein. We will also refer to them as the base nodes of the directed forest.

S2. The atoms adjacent to the amino acid’s backbone via a covalent bond become their

immediate children in the tree. For example, the node SC1 forms the child of αC in

the fig. 4.1 .

S3. The other covalent bonds of the children establish the grandchildren of the root, and

so on, until all the atoms in the amino acid are a part of the tree. For example, SC2

and SC3 become the children of the node SC1 in the directed tree constructed for

Figure 4.1 .

Figure 4.2 is an illustration of some directed tree constructed with the above procedure,

where node 1 is the root node, with nodes 2, 4 as its children and so on.

65

It is important to note that, the above procedure ensures that in the constructed tree,

each (non-root) node has a single parent and may have arbitrarily many children. Further,

cycles/rings which are present in the molecule are broken on the basis of bond length, i.e.,

larger bonds are chosen before smaller bonds. Ties between same-length bonds are broken

arbitrarily.

5

1

2 4

3

Figure 4.2. Directed tree corresponding to a set with 5 points which exhibits
conditional invariances. Our proposed model, for example, allows node 2 and its
descendants to transform its coordinates about node 1 (its parent) upon actions
from group G(g1·~a)

2 , g1 ∈ G1. In practice, for protein molecules we use G1 = SO(3)
and G(·,·)

i = SO(3)∀i 6= 1. We note that in protein molecules not all transformations
about a node would be allowed due to steric repulsions between atoms as well as
potential overlaps of atoms.

Next, we shall look at how the atomic coordinates are transformed using the directed

tree.

Part 2. Conditional transformations of atomic coordinates.

Let Xp be the available input atomic coordinates of the protein. To obtain a new

candidate protein conformation (say X ′
p ∈ Rm×3), we sample uniformly, one of the directed

trees from the forest.

Next, we transform the atomic coordinates only of the subset of atoms represented in

this directed tree. This set is denoted by A ⊂ V . That is, in the candidate conformation,

X ′
p[i] = Xp[i], ∀i ∈ V \ A — or equivalently tp[i] = I, ∀i ∈ V \ A.

Starting with the root node, we traverse the directed tree using breadth first search and

update all the descendants of the node currently being considered. For the backbone atoms,

66

we leave Xp[i] = X ′
p[i] (or equivalently tp[i] = I), i.e., atomic coordinates are unchanged for

atoms in the backbone of the amino acid.

Next, we will describe approximate transformations on a given protein through a directed

tree using pointed sets.

Definition 4.2.1 (Pointed sets). A pointed set is an ordered pair (X, x0), where X is a set

and x0 ∈ X is called the basepoint.

For instance, let Mi = {Xp[j] : j ∈ Ni}, where Ni is the set containing i and all its

descendants in its directed tree. Then, (Mi,Xp[i]) is a pointed set.

Let parent of node i be denoted by ◦ and let G(g◦·Xp[◦])
i (in practice, SO(3)) be the

group from which actions gi ∈ G(g◦·Xp[◦])
i are sampled uniformly — that can transform the

positional coordinates of node i and its descendants about its parents in the directed tree,

where g◦ ·Xp[◦] is the transformed atomic coordinates of the parent of node i (recall, we

are using breadth first search - so a top down approach). In the case of the root node (for

example 1 in fig. 4.2), the actions are just drawn from Groot (or G1 in fig. 4.2).

The associated transformations of the atomic coordinates of the atoms in Ni can be

given by the mapping hi : (Mi,Xp[i])→ (R|Ni|×3, g◦ ·Xp[◦] + gi · (Xp[i]−Xp[◦])) where the

coordinates of node j ∈ Ni are updated as:

X ′
p[j]← g◦ ·Xp[◦] + gi · (Xp[j]−Xp[◦]) (4.1)

If the node j 6= i, its coordinates, i.e., X ′
p[j] can be further updated as we traverse the tree.

When G
(g◦·Xp[◦])
i = SO(3) ∀i ∈ V , every node in the directed tree can be rotated about its

parents as shown in Figure 4.3 - which is the side chain of the amino acid shown in Figure 4.1 .

However, each candidate X ′
p obtained via the above transformation process may not

belong to Cp. To that end protein structural validation tools may be used to check the validity

of these candidates. Molprobity [120]–[122] is such a tool,which outputs scores corresponding

to different metrics (such as number of dihedral (torsion) angles outside the allowed threshold,

number of atom-atom clashes arising due to steric repulsions, etc) which can be compared

67

C

SC1

SC3

SC6

SC2

SC4

SC5

R 1

R 6

R 3 R 4

R 2

R 5

Figure 4.3. Maximum flexibility allowed by our candidate sampling process when
the group associated with every node in the tree is SO(3) (the special orthogonal
group in 3 dimensions). While not candidate is likely to be accepted such a candidate
generation process provides the flexibility for every node to be rotated about its
immediate parent while preserving bond lengths.

Algorithm 1 Sampling a viable conformation of cp

1: Input: Conformation cp of protein p
2: Obtain the directed forest corresponding to the protein with n directed trees where n is

the number of amino acids in the protein.
3: repeat
4: Sample y ∼ unif({1, 2, · · · , n}) and obtain the corresponding directed tree
5: Traverse through directed tree via BFS and update atomic coordinates via Equa-

tion (4.1) to obtain c′
p a candidate conformation of cp— where group actions are

always sampled uniformly from SO(3).
6: Check if c′

p is a valid protein conformation via protein structure validation tools
7: until c′

p is a valid conformation
8: Return: c′

p, a valid conformation of cp

with the originally provided conformation Xp. Note, that while Molprobity is not perfect

and we may end up developing models more invariant than just to viable conformations,

alternative (more precise) tools can be employed to check validity. Additionally, the goal

of this work is not to use Molprobity/ other protein structure validation tools as a part of

generative models and a more invariant model does not necessarily affect performance on

unseen but valid protein test data.

Our algorithm to sample viable conformations is summarized in Algorithm 1 . The

repeat-loop proposes a conformation in the neighborhood of the current conformation cp

68

which is only accepted when the proposed conformation c′
p is a valid conformation. As such

it is an acceptance-rejection sampling algorithm. We will see later that the actual sampling

probability distribution is not required to be known by our procedure. Our MCMC proce-

dure defined next only requires Algorithm 1 to follow certain conditions which we argue it

follows.

4.2.2 Sampling Conformers via MCMC

We now describe the MCMC procedure that, starting at any conformer configuration

c(0)
p ∈ Cp will, in steady state, sample conformations according to a unique stationary distri-

bution which depends on the protein p, where Cp is the set of all viable conformations of p

as defined in Definition 4.1.2 .

To that end we first define the transition kernel of the Markov chain. Algorithm 1

samples a conformation c′
p in the neighborhood of a given conformation cp using directed a

forest. The neighborhood N (cp) of the conformation cp is loosely defined as the set of all

possible conformations c′
p which may result from running Algorithm 1 with cp as input. We

denote the probability distribution induced by Algorithm 1 as the transition kernel κ(c′
p | cp)

which has support N (cp).

Definition 4.2.2 (Conformer Sampling Markov Chain (CSMC) Φp). We define the con-

former sampling Markov chain Φp as a time-homogenous Markov chain over the state space

Cp with transition kernel κ as defined above, where Cp is the set of valid conformations

associated with given protein p as defined in Definition 4.1.2 .

The consistency of our learning procedure does not depend on the precise definition of κ.

However, our procedure relies on the fact that any conformer c′
p ∈ Cp can be sampled by κ

in a finite number of steps, starting from a conformer cp. We will use this fact later to show

that the chain Φp converges to to a unique stationary distribution regardless of the initial

conformer. All proofs are given in the Section C.2 .

Proposition 4.2.1. Given the CSMC Φp from Definition 4.2.2 whose transitions are gov-

erned by κ which is implicitly defined by Algorithm 1 as described above. For any pair of

69

conformers cp, c
′
p ∈ Cp, there exists τp < ∞, independent of cp, such that P τp

Φp
(cp, c

′
p) > 0,

where P τp

Φp
is the τp step transition probability.

Next, we show the existence of a unique steady state distribution of our Markov chain.

Proposition 4.2.2. The CSMC Φp defined in Definition 4.2.2 is uniformly ergodic if Propo-

sition 4.2.1 is satisfied. Specifically there exists a unique steady state distribution πp such

that for all cp ∈ Cp, | P n
Φp

(cp, ·)− πp(·) |≤ c rn, where c <∞ and r < 1 are constants that

depend on Φp, P n
Φp

is the n step transition probability and | · | is the `1 norm.

Given that we now have the ability to draw samples from a Markov chain which achieves

a unique stationary distribution πp on Cp, we shall leverage this fact, next, in our learning

framework to learn conformer invariant representations of proteins.

4.3 Learning Framework

We shall employ a learning strategy, where we use the viable conformations obtained via

the Markov chain to learn a function which outputs conformer invariant representations.

Let D = {(xj, yj)}N
j=1 be the input data (where we have a single conformer for every

protein in the dataset). We shall consider a single data point (xj, yj) henceforth, where

xj = (V,Xs,Xp) is the input protein. We consider a supervised learning setting where yj is

the associated target. We consider both classification and regression tasks.

Let Cj = {cji} be the set of viable conformations of protein xj. We only consider viable

conformations which defer only in the atomic coordinates matrix Xp. For a given protein

xj, we shall use xji to denote protein xj but with Xp of the original protein modified by cji ,

and use Sj = {xji} to denote the set of all viable xji i.e. the state space.

Let f : Ω→ Rd, d > 0 be any function with learnable parameters θf , (for e.g. any neural

network model such as 3D CNN, GNN, Transformer, LSTM, etc.) which takes a protein (in

the form (V,Xs,Xp)) as input and outputs protein representations. The function f need not

necessarily output conformer invariant representations of the protein xj. Then, a simple way

to obtain conformer invariant representations of protein xj (apart from using trivial functions

such as a constant function or function independent of Xv) is computing its expected value

70

over all its viable conformations. We shall denote f to denote a function which outputs

conformer invariant representations of a protein.

f(xj; θf) = EX∼πj [f(X; θf)] (4.2)

where πj(·) is the steady state distribution of the Markov chain associated with the protein

xj. As such, f(xj; θf) = f(x′
j; θf) for any viable protein conformation x′

j ∈ Sj. Subsequently,

to learn an optimal f (which we denote by f ?), we wish to minimize the loss, defined as

follows:

L(D; θf , θρ) = 1
N

N∑
j=1

L̂(yi, ρ(f(xj; θf); θρ))

= lim
k→∞

1
N

N∑
j=1

L̂(yi, ρ(
1
k

k∑
i=1

f(xi
j; θf); θρ)) (4.3)

where L̂ is a convex loss function e.g. cross entropy loss, ρ is some differentiable function

with parameters θρ (in practice, an MLP) and lim
k→∞

1
k

∑k
i=1 f(xi

j; θf) can be employed as an

asymptotically unbiased and consistent estimate of f where xi
j is the ith sample from the

Markov chain corresponding to the protein xj

Since Equation (4.3) is computationally intractable, we employ a surrogate for the loss

given by:

J(D; θf , θρ) = lim
k→∞

1
N

N∑
j=1

1
k

k∑
i=1

L̂(yi, ρ(f(xk
j ; θf); θρ)) (4.4)

Observe that in Equation (4.4), the expectation over the conformations is now outside the L̂

and ρ functions while still remaining conformation invariant (however, the optimal param-

eters corresponding to minimizing J are different from miniming L). Following [25], [27],

we note that, when ρ is the identity function, Equation (4.4) serves as an upper bound for

Equation (4.3) via Jensen’s inequality.

71

Making the case for simplicity, we next show convergence properties using the full batch

setting. Note that is procedure and proofs are equally applicable in the mini-batch setting

with minor modifications.

Full-batch training: We consider the entire dataset as a single batch B = {(x1, y1), . . . , (xj, yj), . . . (xN , yN)}

and for a data point (xj, yj) we denote the corresponding steady state distributions of the

corresponding Markov chains using πj and the corresponding state space as Sj.

We denote all learnable parameters of ρ ◦ f as θ ≡ (θf , θρ) and consider θ ∈ Θ ⊆ Rm,

m > 0 such that the function ρ ◦ f may be non-convex for some values of θ.

We consider a sequence of step sizes (γk)∞
k=0 which satisfy:

∑
k

γk = +∞,
∑

k

ln k · γ2
k < +∞ (4.5)

and follow a gradient scheme where parameters are updated as:

θk = θk−1 − γkZk, k > 0 (4.6)

where Zk = 1
N

N∑
j=1
∇θL̂(yj, ρ(f(xk−1

j ; θf
k−1); θ

ρ
k−1)) and xk−1

j is the k − 1th sample from the

Markov chain corresponding to the data point (xj, yj) and employ the Markov chain gradient

descent procedure [125] where the loss in epoch k, k > 0 of training is obtained by

Ĵk = 1
N

N∑
j=1

L̂(yj, ρ(f(xk−1
j ; θf

k−1); θ
ρ
k−1)).

and minimizes the surrogate loss given in eq. (4.4) when k is sufficiently large so that the

Markov chain has converged to its unique steady state distribution.

Next, we list the set of assumptions we make to ensure convergence of our conformer

invariant MCGD procedure.

Assumption 1. We make the following assumptions:

1. For any θ ∈ Θ and xk
j ∈ Sj, the function f is differentiable ∀j

2. supθ∈Θ,xk
j ∈Sj{|| ∇θ ρ ◦ f(xk

j) ||} < +∞ i.e. the gradients are bounded.

72

3. ∀xk
j ∈ Sj, ∀θ1, θ2 ∈ Θ, || ∇θ1 ρ ◦ f(xk

j)−∇θ2 ρ ◦ f(xk
j) ||< L || θ1− θ2 || for some L ≥ 0

i.e., the gradients are L−Lipschitz.

4. Exk
j ∼πj [∇θ ρ ◦ f(xk

j)] = ∇θ Exk
j ∼πj [ρ ◦ f(xk

j)]

Next, we formally state the convergence of our optimization procedure to optimal pa-

rameters θ? which yield conformer invariant protein representations.

Proposition 4.3.1. Let the step sizes satisfy (4.5) and the function parameters θ be updated

as (4.6) and Assumption 1 hold, then the MCGD optimization enjoys properties of almost

sure convergence to the optimal θ.

The use of Markov chain gradient descent procedure to optimize the conformer invariant

learning procedure optimizes the objective J in Equation (4.4), and thus has the following

implication on how outputs should be calculated at inference time: Inference time:

We estimate f using an empirical average of f evaluated over conformations visited by

the Markov chain defined in Definition 4.2.2 :

f̂k(xj; θf) = 1
k

k∑
i=1

f(x(i)
j ; θf) , (4.7)

where x
(i)
j is the ith state visited by the Markov chain started at xj. Since the Markov

chain has a unique steady state distribution, f̂k(xj; θf) is both asymptotically unbiased and

consistent. That is lim
k→∞

f̂k(xj; θf) a.s.= f(xj; θf).

4.4 Related Work

Group Equivariant Neural Networks: Group equivariant neural networks [57], [111],

[113], [116], [117], [126]–[128] help capture discrete and continuous symmetries of elements

(e.g. images) by introducing group theoretic constraints as inductive biases in the neural net-

work. While group equivariant neural network capture global symmetries, local symmetries

of manifold spaces can be captured via gauge equivariant networks [129], [130]. [101], [102],

[126] provide a complete review of the theoretical aspects and a wide variet of applications

of group equivariant neural networks.

73

Graph Neural Networks: Graph Neural Networks [2], [7], [9], [65] have gained

renewed focus over the past few years and have found applications in recommender systems,

biology, chemistry, and many other real world problems which can be formulated as graphs

and currently serve as the state of the art in majority of node and graph classification/

regression tasks. Graph neural networks work on the principles of permutation equivariance/

invariances (also groups) and have exploited a message passing framework to learn powerful

and expressive representations of nodes/ graphs.

Group Equivariant Graph Neural Networks: These networks combine continuous

symmetries (lie groups) with permutation equivariances and has found applications with

resounding success on small molecules [114], [115], [118], [119] which exhibit rigid body

characteristics. More recently, they have also been applied to learning representations of

proteins, which is discussed below.

Neural Networks for Representation Learning of Proteins: Protein represen-

tation has gained a lot of attention especially with the tremendous successes of Alphafold

and Alphafold2. A variety of neural network architectures including 3D CNNs, LSTM’s and

Transformers (treating the protein as a sequence) as well as graph neural networks have

been employed to exploit the rigid body symmetries of proteins [104], [105], [107], [108],

[110], [131]–[133].

Generative Models: Conformation generation models [134]–[140] have also recently

gained attend where the goal of the model is to predict 3d structure of molecules given input

2d structure - our objective in this work is completely different, but can be used to improve

predictions of the aforementioned models.

Non-Rigid Body Dynamics: Non-Rigid Body Dynamics of objects has long been

studied both by physicists and in the fields of computer vision to understand and capture

the geometric deformations of objects [141], [142]. To the best of our knowledge, there exists

no prior work in deep learning which captures the non rigidity of protein molecules (which

cannot be modeled as Ck manifolds).

Unrelated Work with similar names: Non classical and conditional symmetries

of solutions to ODE’s and PDE’s have been discussed in the past - these works while they

74

share a similar title with this work, they have very little in common as we are not dealing

with jet spaces or manifolds [143]–[145].

4.5 Results

We evaluate our proposed augmentation procedure on four different tasks from the

ATOM3D dataset [146], which we describe next. Results are provided in Table 4.1 and

Section 4.5 .

Table 4.1. GVP-GNN - Baseline vs SOTA vs Conformation Invariant Strate-
gies for four different tasks on proteins from the ATOM3D [146] dataset. Cor-
responding to the metric, ↑ indicates that higher is better, while ↓ indicates
that lower is better. Bold values indicate best results for a given row. The
values for GVP-GNN were obtained from [107] and for the SOTA from [108],
[146]. Gray colored cells indicates that the augmented model outperforms the
baseline model.

Task Metric
Baseline

(GVP GNN)
[108]

SOTA
(Various methods)

Non MCMC
Augmented
GVP-GNN

(Ours)

MCMC
Augmented
GVP-GNN

(Ours)

PSR Global Rs ↑ 0.845 ± 0.004 0.845 ± 0.004 0.806 ± 0.011 0.852± 0.006
LEP AUROC ↑ 0.628 ± 0.055 0.740 ± 0.010 0.739 ± 0.060 0.704 ± 0.039

LBA RMSE ↓ 1.594 ± 0.073 1.416 ± 0.021 1.635 ± 0.007 1.435 ± 0.007

MSP AUROC ↑ 0.680 ± 0.015 0.680 ± 0.015 0.799 ± 0.016 0.857 ± 0.049

Tasks on Atom3D Datasets

ATOM3D [146] is a unified collection of datasets concerning the 3D structure of pro-

teins. These datasets are specifically designed to provide a benchmark for machine learning

methods which operate on 3D molecular structure, and represent a variety of important

structural, functional, and engineering tasks. As part of our evaluation, we perform the

(a) Protein Structure Ranking (PSR) (b) Protein Mutation Stability Prediction (MSP) (c)

Ligand Binding Affinity (LBA) (d) Ligand Efficacy Prediction (LEP) tasks. We describe

75

Table 4.2. GNN - Baseline vs SOTA vs Conformation Invariant Strategies for
four different tasks on proteins from the ATOM3D [146] dataset. Correspond-
ing to the metric, ↑ indicates that higher is better, while ↓ indicates that lower
is better. Bold values indicate best results for a given row. The values for GNN
were obtained from [146] and for the SOTA from [108], [146]. Gray colored
cells indicates that the augmented model outperforms the baseline model.

Task Metric
Baseline
(GNN)
[146]

SOTA
(Various methods)

Non MCMC
Augmented

GNN
(Ours)

MCMC
Augmented

GNN
(Ours)

PSR Global Rs ↑ 0.755 ± 0.004 0.845 ± 0.004 0.766 ± 0.001 0.761 ± 0.004

LEP AUROC ↑ 0.740 ± 0.010 0.740 ± 0.010 0.657 ± 0.008 0.672 ± 0.012

LBA RMSE ↓ 1.570 ± 0.025 1.416 ± 0.021 1.520 ± 0.022 1.519 ± 0.022

MSP AUROC ↑ 0.621 ± 0.009 0.680 ± 0.015 0.610 ± 0.021 0.662 ± 0.008

each of the four tasks in detail in Section C.3 . For all four datasets and tasks we report the

same metrics as proposed by the authors.

Model, Baselines and Discussion

We endow the vector gated GVP-GNN (a group invariant graph neural network) model

[108] and a GNN using GCN [2] layers with conditional transformations from our proposed

MCMC method. It is important to note that when the positions of the atoms are altered

the contact graph which are inputs to the base encoders are changed appropriately in every

epoch. We also provide a strategy where all the transformations are created from “gold

standard” Xp rather than via the MCMC method, i.e., the MCMC is restarted at every

epoch during training. We compare our proposed framework against the GVP-GNN model,

as well as 3DCNN models [105], [146] - and list the SOTA among the currently available

models in Table 4.2 . We note that our proposed models outperform the current SOTA in 3

of the 4 tasks and is very close to SOTA performance on the fourth task as well. Moreover,

the MCMC method tends to outperform the non MCMC method, which can be attributed

to the guarantees it provides to the learning framework.

76

4.6 Conclusions

This work addresses the limitations of current protein representation learning methods

which are unable to learn conformer invariant representations — and hence unable to capture

the inherent flexibility present in protein side chains. To address these, we introduced condi-

tional transformations to capture protein structure, while respecting the restrictions posed by

constraints on dihedral (torsion) angles and steric repulsions between atoms. Subsequently,

we introduced a Markov chain Monte Carlo based framework to learn representations that

are invariant to these conditional transformations. Our results have corroborated our pro-

posed strategy on four different protein tasks wherein endowing existing baseline models

with these conditional transformations helped improve their performance without sacrificing

computational cost.

77

REFERENCES

[1] A. Grover and J. Leskovec, “Node2vec: Scalable feature learning for networks,” in Pro-
ceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and
data mining, ACM, 2016, pp. 855–864.

[2] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional
networks,” arXiv preprint arXiv:1609.02907, 2016.

[3] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of social represen-
tations,” in Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, ACM, 2014, pp. 701–710.

[4] A. Mnih and R. R. Salakhutdinov, “Probabilistic matrix factorization,” in Advances in
neural information processing systems, 2008, pp. 1257–1264.

[5] S. Chen, J. L. Moore, D. Turnbull, and T. Joachims, “Playlist prediction via metric
embedding,” in Proceedings of the 18th ACM SIGKDD international conference on Knowledge
discovery and data mining, ACM, 2012, pp. 714–722.

[6] P. Gopalan, F. J. Ruiz, R. Ranganath, and D. Blei, “Bayesian nonparametric poisson
factorization for recommendation systems,” in Artificial Intelligence and Statistics, 2014,
pp. 275–283.

[7] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on large
graphs,” in Advances in Neural Information Processing Systems, 2017, pp. 1024–1034.

[8] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio, “Graph
attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[9] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph neural networks?”
arXiv preprint arXiv:1810.00826, 2018.

[10] C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. E. Lenssen, G. Rattan, and M. Grohe,
“Weisfeiler and leman go neural: Higher-order graph neural networks,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 33, 2019, pp. 4602–4609.

[11] B. Srinivasan and B. Ribeiro, “On the equivalence between positional node embeddings
and structural graph representations,” in International Conference on Learning Representa-
tions, 2020. [Online]. Available: https://openreview.net/forum?id=SJxzFySKwH .

[12] B. Srinivasan, D. Zheng, and G. Karypis, “Learning over families of sets-hypergraph
representation learning for higher order tasks,” in Proceedings of the 2021 SIAM International
Conference on Data Mining (SDM), SIAM, 2021, pp. 756–764.

78

https://openreview.net/forum?id=SJxzFySKwH

[13] Z. Miao and Y. Cao, “Quantifying side-chain conformational variations in protein struc-
ture,” Scientific reports, vol. 6, no. 1, pp. 1–10, 2016.

[14] P. Gainza, K. E. Roberts, and B. R. Donald, “Protein design using continuous rotamers,”
PLoS computational biology, vol. 8, no. 1, e1002335, 2012.

[15] B. Srinivasan, V. Ioannidis, S. Adeshina, M. Kakodkar, G. Karypis, and B. Ribeiro,
“Conditional invariances for conformer invariant protein representations,” in Under Submis-
sion, 2022.

[16] S. Arora, Y. Li, Y. Liang, T. Ma, and A. Risteski, “A latent variable model approach to
pmi-based word embeddings,” Transactions of the Association for Computational Linguistics,
vol. 4, pp. 385–399, 2016.

[17] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed represen-
tations of words and phrases and their compositionality,” in Advances in neural information
processing systems, 2013, pp. 3111–3119.

[18] N. C. Stenseth, W. Falck, O. N. Bjørnstad, and C. J. Krebs, “Population regulation in
snowshoe hare and canadian lynx: Asymmetric food web configurations between hare and
lynx,” Proceedings of the National Academy of Sciences, vol. 94, no. 10, pp. 5147–5152, 1997.

[19] M. L. Bates, S. M. B. Nash, D. W. Hawker, J. Norbury, J. S. Stark, and R. A. Cropp,
“Construction of a trophically complex near-shore antarctic food web model using the conser-
vative normal framework with structural coexistence,” Journal of Marine Systems, vol. 145,
pp. 1–14, 2015.

[20] B. Bloem-Reddy and Y. W. Teh, “Probabilistic symmetry and invariant neural net-
works,” arXiv preprint arXiv:1901.06082, 2019.

[21] R. L. Graham and P. M. Winkler, “On isometric embeddings of graphs,” Transactions
of the American mathematical Society, vol. 288, no. 2, pp. 527–536, 1985.

[22] N. Linial, E. London, and Y. Rabinovich, “The geometry of graphs and some of its
algorithmic applications,” Combinatorica, vol. 15, no. 2, pp. 215–245, 1995.

[23] D. Galles and J. Pearl, “An axiomatic characterization of causal counterfactuals,” Foun-
dations of Science, vol. 3, no. 1, pp. 151–182, 1998.

[24] T. Austin, “On exchangeable random variables and the statistics of large graphs and
hypergraphs,” Probability Surveys, vol. 5, pp. 80–145, 2008.

[25] R. L. Murphy, B. Srinivasan, V. Rao, and B. Ribeiro, “Relational pooling for graph
representations,” arXiv preprint arXiv:1903.02541, 2019.

79

[26] S. Kamath, A. Orlitsky, D. Pichapati, and A. T. Suresh, “On learning distributions from
their samples,” in Conference on Learning Theory, 2015, pp. 1066–1100.

[27] R. L. Murphy, B. Srinivasan, V. Rao, and B. Ribeiro, “Janossy pooling: Learning deep
permutation-invariant functions for variable-size inputs,” arXiv preprint arXiv:1811.01900,
2018.

[28] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov, and A. J. Smola,
“Deep sets,” in Advances in neural information processing systems, 2017, pp. 3391–3401.

[29] G. Namata, B. London, L. Getoor, B. Huang, and U. EDU, “Query-driven active sur-
veying for collective classification,” in 10th International Workshop on Mining and Learning
with Graphs, 2012, p. 8.

[30] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-Rad, “Collective
classification in network data,” AI magazine, vol. 29, no. 3, pp. 93–93, 2008.

[31] M. Zitnik and J. Leskovec, “Predicting multicellular function through multi-layer tissue
networks,” Bioinformatics, vol. 33, no. 14, pp. i190–i198, 2017.

[32] Z. Yang, W. W. Cohen, and R. Salakhutdinov, “Revisiting semi-supervised learning
with graph embeddings,” ICML, 2016.

[33] M. Fürer, “On the combinatorial power of the weisfeiler-lehman algorithm,” in Interna-
tional Conference on Algorithms and Complexity, Springer, 2017, pp. 260–271.

[34] C. Spearman, “” general intelligence,” objectively determined and measured,” The Amer-
ican Journal of Psychology, vol. 15, no. 2, pp. 201–292, 1904.

[35] M. Belkin and P. Niyogi, “Laplacian eigenmaps and spectral techniques for embedding
and clustering,” in Advances in neural information processing systems, 2002, pp. 585–591.

[36] S. Cao, W. Lu, and Q. Xu, “Grarep: Learning graph representations with global struc-
tural information,” in Proceedings of the 24th ACM international on conference on informa-
tion and knowledge management, ACM, 2015, pp. 891–900.

[37] A. Ahmed, N. Shervashidze, S. Narayanamurthy, V. Josifovski, and A. J. Smola, “Dis-
tributed large-scale natural graph factorization,” in Proceedings of the 22nd international
conference on World Wide Web, ACM, 2013, pp. 37–48.

[38] M. Ou, P. Cui, J. Pei, Z. Zhang, and W. Zhu, “Asymmetric transitivity preserving
graph embedding,” in Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining, ACM, 2016, pp. 1105–1114.

80

[39] S. Arora, S. Rao, and U. Vazirani, “Expander flows, geometric embeddings and graph
partitioning,” Journal of the ACM (JACM), vol. 56, no. 2, p. 5, 2009.

[40] J. You, R. Ying, and J. Leskovec, “Position-aware graph neural networks,” arXiv preprint
arXiv:1906.04817, 2019.

[41] D. Liang, R. G. Krishnan, M. D. Hoffman, and T. Jebara, “Variational autoencoders for
collaborative filtering,” in Proceedings of the 2018 World Wide Web Conference, International
World Wide Web Conferences Steering Committee, 2018, pp. 689–698.

[42] D. Tang, D. Liang, T. Jebara, and N. Ruozzi, “Correlated variational auto-encoders,”
arXiv preprint arXiv:1905.05335, 2019.

[43] A. Grover, A. Zweig, and S. Ermon, “Graphite: Iterative generative modeling of graphs,”
ICML, 2019.

[44] I. Abraham, Y. Bartal, and O. Neimany, “Advances in metric embedding theory,” in
Proceedings of the thirty-eighth annual ACM symposium on Theory of computing, ACM,
2006, pp. 271–286.

[45] J. Bourgain, “On lipschitz embedding of finite metric spaces in hilbert space,” Israel
Journal of Mathematics, vol. 52, no. 1-2, pp. 46–52, 1985.

[46] E. J. Candès and B. Recht, “Exact matrix completion via convex optimization,” Foun-
dations of Computational mathematics, vol. 9, no. 6, p. 717, 2009.

[47] R. Kleinberg, “Geographic routing using hyperbolic space,” in IEEE INFOCOM 2007-
26th IEEE International Conference on Computer Communications, IEEE, 2007, pp. 1902–
1909.

[48] Y. Rabinovich and R. Raz, “Lower bounds on the distortion of embedding finite metric
spaces in graphs,” Discrete & Computational Geometry, vol. 19, no. 1, pp. 79–94, 1998.

[49] B. Recht, M. Fazel, and P. A. Parrilo, “Guaranteed minimum-rank solutions of linear
matrix equations via nuclear norm minimization,” SIAM review, vol. 52, no. 3, pp. 471–501,
2010.

[50] B. Shaw, B. Huang, and T. Jebara, “Learning a distance metric from a network,” in
Advances in Neural Information Processing Systems, 2011, pp. 1899–1907.

[51] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors for word represen-
tation,” in Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP), 2014, pp. 1532–1543.

81

[52] A. Nematzadeh, S. C. Meylan, and T. L. Griffiths, “Evaluating vector-space models of
word representation, or, the unreasonable effectiveness of counting words near other words.,”
in CogSci, 2017.

[53] K. Henderson, B. Gallagher, T. Eliassi-Rad, H. Tong, S. Basu, L. Akoglu, D. Koutra,
C. Faloutsos, and L. Li, “Rolx: Structural role extraction & mining in large graphs,” in
Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and
data mining, ACM, 2012, pp. 1231–1239.

[54] L. F. Ribeiro, P. H. Saverese, and D. R. Figueiredo, “Struc2vec: Learning node repre-
sentations from structural identity,” in Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ACM, 2017, pp. 385–394.

[55] C. Donnat, M. Zitnik, D. Hallac, and J. Leskovec, “Learning structural node embeddings
via diffusion wavelets,” in Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, ACM, 2018, pp. 1320–1329.

[56] Z. Chen, S. Villar, L. Chen, and J. Bruna, “On the equivalence between graph isomor-
phism testing and function approximation with gnns,” NeruIPS, 2019.

[57] R. Kondor and S. Trivedi, “On the generalization of equivariance and convolution in
neural networks to the action of compact groups,” ICML, 2018.

[58] H. Maron, H. Ben-Hamu, N. Shamir, and Y. Lipman, “Invariant and equivariant graph
networks,” ICML, 2019.

[59] J. Wood and J. Shawe-Taylor, “A unifying framework for invariant pattern recognition,”
Pattern Recognition Letters, vol. 17, no. 14, pp. 1415–1422, 1996.

[60] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel, A. Aspuru-
Guzik, and R. P. Adams, “Convolutional networks on graphs for learning molecular finger-
prints,” in Advances in neural information processing systems, 2015, pp. 2224–2232.

[61] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neural message
passing for quantum chemistry,” in Proceedings of the 34th International Conference on
Machine Learning-Volume 70, JMLR. org, 2017, pp. 1263–1272.

[62] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The graph
neural network model,” IEEE Transactions on Neural Networks, vol. 20, no. 1, pp. 61–80,
2008.

[63] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. Van Den Berg, I. Titov, and M. Welling,
“Modeling relational data with graph convolutional networks,” in European Semantic Web
Conference, Springer, 2018, pp. 593–607.

82

[64] M. Zhang and Y. Chen, “Link prediction based on graph neural networks,” in Advances
in Neural Information Processing Systems, 2018.

[65] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zambaldi, M. Ma-
linowski, A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, et al., “Relational inductive
biases, deep learning, and graph networks,” arXiv preprint arXiv:1806.01261, 2018.

[66] R. v. d. Berg, T. N. Kipf, and M. Welling, “Graph convolutional matrix completion,”
arXiv preprint arXiv:1706.02263, 2017.

[67] F. Monti, M. Bronstein, and X. Bresson, “Geometric matrix completion with recurrent
multi-graph neural networks,” in Advances in Neural Information Processing Systems, 2017,
pp. 3697–3707.

[68] K. Xu, J. Li, M. Zhang, S. S. Du, K.-i. Kawarabayashi, and S. Jegelka, “What can
neural networks reason about?” arXiv preprint arXiv:1905.13211, 2019.

[69] W. L. Hamilton, R. Ying, and J. Leskovec, “Representation learning on graphs: Methods
and applications,” arXiv preprint arXiv:1709.05584, 2017.

[70] R. A. Rossi, D. Jin, S. Kim, N. K. Ahmed, D. Koutra, and J. B. Lee, “From community
to role-based graph embeddings,” arXiv preprint arXiv:1908.08572, 2019.

[71] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A comprehensive survey on
graph neural networks,” arXiv preprint arXiv:1901.00596, 2019.

[72] J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, and M. Sun, “Graph neural networks: A
review of methods and applications,” arXiv preprint arXiv:1812.08434, 2018.

[73] A. Gammerman, V. Vovk, and V. Vapnik, “Learning by transduction,” in Proceedings
of the Fourteenth conference on Uncertainty in artificial intelligence, Morgan Kaufmann
Publishers Inc., 1998, pp. 148–155.

[74] X. Zhu, Z. Ghahramani, and J. D. Lafferty, “Semi-supervised learning using gaussian
fields and harmonic functions,” in Proceedings of the 20th International conference on Ma-
chine learning (ICML-03), 2003, pp. 912–919.

[75] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf, “Learning with local and
global consistency,” in Advances in neural information processing systems, 2004, pp. 321–328.

[76] R. S. Michalski, “A theory and methodology of inductive learning,” in Machine learning,
Springer, 1983, pp. 83–134.

83

[77] M. Belkin, P. Niyogi, and V. Sindhwani, “Manifold regularization: A geometric frame-
work for learning from labeled and unlabeled examples,” Journal of machine learning re-
search, vol. 7, no. Nov, pp. 2399–2434, 2006.

[78] A. Epasto and B. Perozzi, “Is a single embedding enough? learning node representations
that capture multiple social contexts,” in The World Wide Web Conference, ACM, 2019,
pp. 394–404.

[79] P. Goyal, D. Huang, S. R. Chhetri, A. Canedo, J. Shree, and E. Patterson, “Graph
representation ensemble learning,” arXiv preprint arXiv:1909.02811, 2019.

[80] C. Berge, Hypergraphs: combinatorics of finite sets. Elsevier, 1984, vol. 45.

[81] S. Agarwal, K. Branson, and S. Belongie, “Higher order learning with graphs,” in Pro-
ceedings of the 23rd international conference on Machine learning, 2006, pp. 17–24.

[82] D. Zhou, J. Huang, and B. Schölkopf, “Learning with hypergraphs: Clustering, clas-
sification, and embedding,” in Advances in neural information processing systems, 2007,
pp. 1601–1608.

[83] L. Lu and X. Peng, “High-ordered random walks and generalized laplacians on hyper-
graphs,” in International Workshop on Algorithms and Models for the Web-Graph, Springer,
2011, pp. 14–25.

[84] A. Bellaachia and M. Al-Dhelaan, “Random walks in hypergraph,” in Proceedings of the
2013 International Conference on Applied Mathematics and Computational Methods, Venice
Italy, 2013, pp. 187–194.

[85] U. Chitra and B. J. Raphael, “Random walks on hypergraphs with edge-dependent
vertex weights,” arXiv preprint arXiv:1905.08287, 2019.

[86] Y. Feng, H. You, Z. Zhang, R. Ji, and Y. Gao, “Hypergraph neural networks,” in Pro-
ceedings of the AAAI Conference on Artificial Intelligence, vol. 33, 2019, pp. 3558–3565.

[87] S. Bai, F. Zhang, and P. H. Torr, “Hypergraph convolution and hypergraph attention,”
arXiv preprint arXiv:1901.08150, 2019.

[88] N. Yadati, M. Nimishakavi, P. Yadav, V. Nitin, A. Louis, and P. Talukdar, “Hypergcn:
A new method for training graph convolutional networks on hypergraphs,” in Advances in
Neural Information Processing Systems, 2019, pp. 1509–1520.

[89] R. Zhang, Y. Zou, and J. Ma, “Hyper-sagnn: A self-attention based graph neural network
for hypergraphs,” arXiv preprint arXiv:1911.02613, 2019.

84

[90] C. Yang, R. Wang, S. Yao, and T. Abdelzaher, “Hypergraph learning with line expan-
sion,” arXiv preprint arXiv:2005.04843, 2020.

[91] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.
Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in neural information
processing systems, 2014, pp. 2672–2680.

[92] L. Babai, P. Erdos, and S. M. Selkow, “Random graph isomorphism,” SIaM Journal on
computing, vol. 9, no. 3, pp. 628–635, 1980.

[93] E. Wagstaff, F. B. Fuchs, M. Engelcke, I. Posner, and M. Osborne, “On the limitations
of representing functions on sets,” arXiv preprint arXiv:1901.09006, 2019.

[94] B. Srinivasan, D. Zheng, and G. Karypis, “Learning over families of sets – hypergraph
representation learning for higher order tasks,” CoRR, vol. abs/2101.07773, 2021. [Online].
Available: https://arxiv.org/abs/2101.07773 .

[95] R. Tyshkevich and V. E. Zverovich, “Line hypergraphs,” Discrete Mathematics, vol. 161,
no. 1-3, pp. 265–283, 1996.

[96] D. J. Aldous, “Representations for partially exchangeable arrays of random variables,”
Journal of Multivariate Analysis, vol. 11, no. 4, pp. 581–598, 1981.

[97] P. Diaconis, “Finite forms of de finetti’s theorem on exchangeability,” Synthese, vol. 36,
no. 2, pp. 271–281, 1977.

[98] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with gumbel-softmax,”
arXiv preprint arXiv:1611.01144, 2016.

[99] C. J. Maddison, A. Mnih, and Y. W. Teh, “The concrete distribution: A continuous
relaxation of discrete random variables,” arXiv preprint arXiv:1611.00712, 2016.

[100] A. R. Benson, R. Abebe, M. T. Schaub, A. Jadbabaie, and J. Kleinberg, “Simplicial
closure and higher-order link prediction,” Proceedings of the National Academy of Sciences,
vol. 115, no. 48, E11221–E11230, 2018.

[101] M. M. Bronstein, J. Bruna, T. Cohen, and P. Veličković, “Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges,” arXiv preprint arXiv:2104.13478, 2021.

[102] J. E. Gerken, J. Aronsson, O. Carlsson, H. Linander, F. Ohlsson, C. Petersson, and
D. Persson, “Geometric deep learning and equivariant neural networks,” arXiv preprint
arXiv:2105.13926, 2021.

85

https://arxiv.org/abs/2101.07773

[103] K. K. Yang, Z. Wu, and F. H. Arnold, “Machine-learning-guided directed evolution for
protein engineering,” Nature methods, vol. 16, no. 8, pp. 687–694, 2019.

[104] M. Karimi, D. Wu, Z. Wang, and Y. Shen, “Deepaffinity: Interpretable deep learning
of compound–protein affinity through unified recurrent and convolutional neural networks,”
Bioinformatics, vol. 35, no. 18, pp. 3329–3338, 2019.

[105] G. Pagès, B. Charmettant, and S. Grudinin, “Protein model quality assessment using
3d oriented convolutional neural networks,” Bioinformatics, vol. 35, no. 18, pp. 3313–3319,
2019.

[106] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
and I. Polosukhin, “Attention is all you need,” in Advances in neural information processing
systems, 2017, pp. 5998–6008.

[107] B. Jing, S. Eismann, P. Suriana, R. J. Townshend, and R. Dror, “Learning from protein
structure with geometric vector perceptrons,” arXiv preprint arXiv:2009.01411, 2020.

[108] B. Jing, S. Eismann, P. N. Soni, and R. O. Dror, “Equivariant graph neural networks
for 3d macromolecular structure,” arXiv preprint arXiv:2106.03843, 2021.

[109] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunya-
suvunakool, R. Bates, A. Žı́dek, A. Potapenko, et al., “Highly accurate protein structure
prediction with alphafold,” Nature, p. 1, 2021.

[110] P. Hermosilla, M. Schäfer, M. Lang, G. Fackelmann, P.-P. Vázquez, B. Kozlikova, M.
Krone, T. Ritschel, and T. Ropinski, “Intrinsic-extrinsic convolution and pooling for learning
on 3d protein structures,” in International Conference on Learning Representations, 2021.

[111] T. Cohen and M. Welling, “Group equivariant convolutional networks,” in International
conference on machine learning, PMLR, 2016, pp. 2990–2999.

[112] H. Maron, H. Ben-Hamu, N. Shamir, and Y. Lipman, “Invariant and equivariant graph
networks,” arXiv preprint arXiv:1812.09902, 2018.

[113] M. Finzi, S. Stanton, P. Izmailov, and A. G. Wilson, “Generalizing convolutional neu-
ral networks for equivariance to lie groups on arbitrary continuous data,” in International
Conference on Machine Learning, PMLR, 2020, pp. 3165–3176.

[114] J. Klicpera, J. Groß, and S. Günnemann, “Directional message passing for molecular
graphs,” arXiv preprint arXiv:2003.03123, 2020.

[115] B. Anderson, T.-S. Hy, and R. Kondor, “Cormorant: Covariant molecular neural net-
works,” arXiv preprint arXiv:1906.04015, 2019.

86

[116] F. B. Fuchs, D. E. Worrall, V. Fischer, and M. Welling, “Se (3)-transformers: 3d roto-
translation equivariant attention networks,” arXiv preprint arXiv:2006.10503, 2020.

[117] M. J. Hutchinson, C. Le Lan, S. Zaidi, E. Dupont, Y. W. Teh, and H. Kim, “Lietrans-
former: Equivariant self-attention for lie groups,” in International Conference on Machine
Learning, PMLR, 2021, pp. 4533–4543.

[118] V. G. Satorras, E. Hoogeboom, and M. Welling, “E (n) equivariant graph neural net-
works,” arXiv preprint arXiv:2102.09844, 2021.

[119] S. Batzner, T. E. Smidt, L. Sun, J. P. Mailoa, M. Kornbluth, N. Molinari, and B. Kozin-
sky, “Se (3)-equivariant graph neural networks for data-efficient and accurate interatomic
potentials,” arXiv preprint arXiv:2101.03164, 2021.

[120] V. B. Chen, W. B. Arendall, J. J. Headd, D. A. Keedy, R. M. Immormino, G. J. Kapral,
L. W. Murray, J. S. Richardson, and D. C. Richardson, “Molprobity: All-atom structure
validation for macromolecular crystallography,” Acta Crystallographica Section D: Biological
Crystallography, vol. 66, no. 1, pp. 12–21, 2010.

[121] I. W. Davis, A. Leaver-Fay, V. B. Chen, J. N. Block, G. J. Kapral, X. Wang, L. W.
Murray, W. B. Arendall III, J. Snoeyink, J. S. Richardson, et al., “Molprobity: All-atom
contacts and structure validation for proteins and nucleic acids,” Nucleic acids research,
vol. 35, no. suppl_2, W375–W383, 2007.

[122] C. J. Williams, J. J. Headd, N. W. Moriarty, M. G. Prisant, L. L. Videau, L. N. Deis,
V. Verma, D. A. Keedy, B. J. Hintze, V. B. Chen, et al., “Molprobity: More and better
reference data for improved all-atom structure validation,” Protein Science, vol. 27, no. 1,
pp. 293–315, 2018.

[123] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N.
Shindyalov, and P. E. Bourne, “The protein data bank,” Nucleic acids research, vol. 28,
no. 1, pp. 235–242, 2000.

[124] A. Kryshtafovych, T. Schwede, M. Topf, K. Fidelis, and J. Moult, “Critical assessment
of methods of protein structure prediction (casp)—round xiii,” Proteins: Structure, Function,
and Bioinformatics, vol. 87, no. 12, pp. 1011–1020, 2019.

[125] T. Sun, Y. Sun, and W. Yin, “On markov chain gradient descent,” Advances in neural
information processing systems, vol. 31, 2018.

[126] J. E. Lenssen, M. Fey, and P. Libuschewski, “Group equivariant capsule networks,”
arXiv preprint arXiv:1806.05086, 2018.

87

[127] F. B. Fuchs, E. Wagstaff, J. Dauparas, and I. Posner, “Iterative se (3)-transformers,”
arXiv preprint arXiv:2102.13419, 2021.

[128] N. Dehmamy, Y. Liu, R. Walters, and R. Yu, “Lie algebra convolutional neural networks
with automatic symmetry extraction,” 2020.

[129] T. Cohen, M. Weiler, B. Kicanaoglu, and M. Welling, “Gauge equivariant convolutional
networks and the icosahedral cnn,” in International Conference on Machine Learning, PMLR,
2019, pp. 1321–1330.

[130] P. De Haan, M. Weiler, T. Cohen, and M. Welling, “Gauge equivariant mesh cnns:
Anisotropic convolutions on geometric graphs,” arXiv preprint arXiv:2003.05425, 2020.

[131] J. Ingraham, V. K. Garg, R. Barzilay, and T. Jaakkola, “Generative models for graph-
based protein design,” 2019.

[132] A. Strokach, D. Becerra, C. Corbi-Verge, A. Perez-Riba, and P. M. Kim, “Fast and
flexible protein design using deep graph neural networks,” Cell Systems, vol. 11, no. 4,
pp. 402–411, 2020.

[133] F. Baldassarre, D. Menéndez Hurtado, A. Elofsson, and H. Azizpour, “Graphqa: Protein
model quality assessment using graph convolutional networks,” Bioinformatics, vol. 37, no. 3,
pp. 360–366, 2021.

[134] E. Mansimov, O. Mahmood, S. Kang, and K. Cho, “Molecular geometry prediction
using a deep generative graph neural network,” Scientific reports, vol. 9, no. 1, pp. 1–13,
2019.

[135] G. N. Simm, R. Pinsler, G. Csányi, and J. M. Hernández-Lobato, “Symmetry-aware
actor-critic for 3d molecular design,” arXiv preprint arXiv:2011.12747, 2020.

[136] O. Ganea, L. Pattanaik, C. Coley, R. Barzilay, K. Jensen, W. Green, and T. Jaakkola,
“Geomol: Torsional geometric generation of molecular 3d conformer ensembles,” Advances
in Neural Information Processing Systems, vol. 34, 2021.

[137] M. Xu, W. Wang, S. Luo, C. Shi, Y. Bengio, R. Gomez-Bombarelli, and J. Tang, “An
end-to-end framework for molecular conformation generation via bilevel programming,” in
International Conference on Machine Learning, PMLR, 2021, pp. 11 537–11 547.

[138] M. Xu, S. Luo, Y. Bengio, J. Peng, and J. Tang, “Learning neural generative dynamics
for molecular conformation generation,” arXiv preprint arXiv:2102.10240, 2021.

[139] C. Shi, S. Luo, M. Xu, and J. Tang, “Learning gradient fields for molecular conformation
generation,” in International Conference on Machine Learning, PMLR, 2021, pp. 9558–9568.

88

[140] S. Luo, C. Shi, M. Xu, and J. Tang, “Predicting molecular conformation via dynamic
graph score matching,” Advances in Neural Information Processing Systems, vol. 34, 2021.

[141] J. Taylor, A. D. Jepson, and K. N. Kutulakos, “Non-rigid structure from locally-rigid
motion,” in 2010 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, IEEE, 2010, pp. 2761–2768.

[142] J. Masci, D. Boscaini, M. Bronstein, and P. Vandergheynst, “Geodesic convolutional
neural networks on riemannian manifolds,” in Proceedings of the IEEE international confer-
ence on computer vision workshops, 2015, pp. 37–45.

[143] A. Joseph, “The theory of conditional invariance. i,” Proceedings of the Royal Society
of London. Series A. Mathematical and Physical Sciences, vol. 305, no. 1482, pp. 405–427,
1968.

[144] V. Fushchich and R. Zhdanov, “Conditional symmetry and reduction of partial differ-
ential equations,” Ukrainian Mathematical Journal, vol. 44, no. 7, pp. 875–886, 1992.

[145] P. J. Olver and E. M. Vorob’ev, “Nonclassical and conditional symmetries,” CRC hand-
book of Lie group analysis of differential equations, vol. 3, pp. 291–328, 1996.

[146] R. J. Townshend, M. Vögele, P. Suriana, A. Derry, A. Powers, Y. Laloudakis, S. Bal-
achandar, B. Anderson, S. Eismann, R. Kondor, et al., “Atom3d: Tasks on molecules in three
dimensions,” arXiv preprint arXiv:2012.04035, 2020.

[147] O. Kallenberg, Foundations of modern probability. Springer Science & Business Media,
2006.

[148] P. K. Gopalan, L. Charlin, and D. Blei, “Content-based recommendations with poisson
factorization,” in Advances in Neural Information Processing Systems, 2014, pp. 3176–3184.

[149] D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix factorization,” in
Advances in neural information processing systems, 2001, pp. 556–562.

[150] O. Levy and Y. Goldberg, “Neural word embedding as implicit matrix factorization,”
in Advances in neural information processing systems, 2014, pp. 2177–2185.

[151] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to algorithms.
MIT press, 2009.

[152] T. N. Kipf and M. Welling, “Variational graph auto-encoders,” arXiv preprint arXiv:1611.07308,
2016.

89

[153] S. Fan and B. Huang, “Recurrent collective classification,” arXiv preprint arXiv:1703.06514,
2017.

[154] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint arXiv:1312.6114,
2013.

[155] J. Gonzalez, Y. Low, A. Gretton, and C. Guestrin, “Parallel gibbs sampling: From col-
ored fields to thin junction trees,” in Proceedings of the Fourteenth International Conference
on Artificial Intelligence and Statistics, 2011, pp. 324–332.

[156] C. Meng, J. Yang, B. Ribeiro, and J. Neville, “Hats: A hierarchical sequence-attention
framework for inductive set-of-sets embeddings,” in KDD, 2019.

[157] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[158] M. Wang, D. Zheng, Z. Ye, Q. Gan, M. Li, X. Song, J. Zhou, C. Ma, L. Yu, Y. Gai,
T. Xiao, T. He, G. Karypis, J. Li, and Z. Zhang, “Deep graph library: A graph-centric,
highly-performant package for graph neural networks,” arXiv preprint arXiv:1909.01315,
2019.

[159] S. P. Meyn and R. L. Tweedie, Markov chains and stochastic stability. Springer Science
& Business Media, 2012.

[160] J. Jankauskaitė, B. Jiménez-Garcı́a, J. Dapkūnas, J. Fernández-Recio, and I. H. Moal,
“Skempi 2.0: An updated benchmark of changes in protein–protein binding energy, kinetics
and thermodynamics upon mutation,” Bioinformatics, vol. 35, no. 3, pp. 462–469, 2019.

[161] R. Wang, X. Fang, Y. Lu, and S. Wang, “The pdbbind database: Collection of binding
affinities for protein- ligand complexes with known three-dimensional structures,” Journal
of medicinal chemistry, vol. 47, no. 12, pp. 2977–2980, 2004.

[162] Z. Liu, Y. Li, L. Han, J. Li, J. Liu, Z. Zhao, W. Nie, Y. Liu, and R. Wang, “Pdb-wide
collection of binding data: Current status of the pdbbind database,” Bioinformatics, vol. 31,
no. 3, pp. 405–412, 2015.

[163] R. A. Friesner, J. L. Banks, R. B. Murphy, T. A. Halgren, J. J. Klicic, D. T. Mainz,
M. P. Repasky, E. H. Knoll, M. Shelley, J. K. Perry, et al., “Glide: A new approach for rapid,
accurate docking and scoring. 1. method and assessment of docking accuracy,” Journal of
medicinal chemistry, vol. 47, no. 7, pp. 1739–1749, 2004.

90

A. APPENDIX TO CHAPTER 2

A.1 Preliminaries

Noise outsourcing, representation learning, and graph representations: The

description of our proofs starts with the equivalence between probability models of graphs

and graph representations. We start with the concept of noise outsourcing [24 , Lemma 3.1]

applied to our task —a weaker version of the more general concept of transfer [147 , Theorem

6.10] in pushforward measures.

A probability law Z|(A,X) ∼ p(·|(A,X)), (A,X) ∈ Σn, can be described [147 , Theorem

6.10] by pure random noise ε ∼ Uniform(0, 1) independent of (A,X), passing through a

deterministic function Z = f((A,X), ε) —where f : Σn × [0, 1] → Ω, where Ω in our task

will be a matrix Ω = Rn×d defining node representations, d ≥ 1. That is, the randomness in

the conditional p(z|(A,X)) is entirely outsourced to ε, as f is deterministic.

Now, consider replacing the graph G = (A,X) by a G-equivariant representation Γ(A,X)

of its nodes, the output of a neural network Γ : Σn → Rn×m, m ≥ 1, that gives an

representation to each node in G. If a representation Γ?(A,X) is such that ∃f ′ where

Z = f(A,X, ε) = f ′(Γ?(A,X), ε), ∀(A,X) ∈ Σn and ∀ε ∈ [0, 1], then Γ?(A,X) does not

lose any information when it comes to predicting Z. Statistically [147 , Proposition 6.13],

Z ⊥⊥Γ?(A,X) (A,X). We call Γ?(A,X) a most-expressive representation of G with respect to

Z. A most-expressive representation (without qualifications) is one that is most-expressive

for any target variable.

Representation learning is powerful precisely because it can learn functions Γ that are

compact and can encode most of the information available on the input. And because the

most-expressive Γ? is G-equivariant, it also guarantees that any G-equivariant function over

Γ? that outputs Z is also G-equivariant, without loss of information.

A.2 Proof of Theorems, Lemmas and Corollaries

We restate and prove Lemma 1

91

Lemma 4. Two nodes v, u ∈ V , have the same most-expressive structural representation

Γ?(v,A,X) = Γ?(u,A,X) iff u and v are isomorphic nodes in G = (A,X) (Definition 2.1.6).

Proof. In this proof, we consider both directions.

(⇒) Consider two nodes v, u ∈ V which satisfy the condition, Γ?(v,A,X) = Γ?(u,A,X)

but are not isomorphic in G = (A,X). By contradiction, suppose u and v have different

node orbits. This is a contradiction, since the bijective mapping of Definition 2.2.2 would

have to take the same input and map them to different outputs.

(⇐) By contradiction, consider the two nodes u, v ∈ V which are isomorphic in G =

(A,X) but with different most expressive structural representations i.e. Γ?(v,A,X) 6=

Γ?(u,A,X). This is a contradiction, because as per Definition 2.1.6 two nodes should have

the same structural representation, which would imply the most expressive structural rep-

resentation is not a structural representation. Hence, the two nodes should share the same

most expressive structural representation.

Next, we restate and prove Lemma 2

Lemma 5 (Causal modeling through noise outsourcing). Definition 1 of [23] gives a causal

model as a triplet

M = 〈U, V, F 〉,

where U is a set of exogenous variables, V is a set of endogenous variables, and F is a

set of functions, such that in the causal model, vi = f(~pai, u) is the realization of random

variable Vi ∈ V and a sequence of random variables ~PAi with PAi ⊆ V \Vi as the endogenous

variable parents of variable Vi as given by a directed acyclic graph. Then, there exists a pure

random noise ε and a set of (measurable) functions {gu}u∈U such that for Vi ∈ V , Vi can be

equivalently defined as vi
a.s.= f(~pai, gu(εu)), where εu has joint distribution (εu)∀u∈U

a.s.= g′(ε)

for some Borel measurable function g′ and a random variable ε ∼ Uniform(0, 1). The latter

defines M via noise outsourcing [24].

Proof. By Definition 1 of [23], the set of exogenous variables U are not affected by the set

of endogeneous variables V . The noise outsourcing lemma (Lemma 3.1) of [24] (or its more

complete version Theorem 6.10 of [147]) shows that any samples of a joint distribution over

92

a set of random variables U can be described as (u)∀u∈U
a.s.= g(ε), for some Borel measurable

function g and a random variable ε ∼ Uniform(0, 1). As the composition of two Borel

measurable functions is also Borel measurable, it is trivial to show that there exists Borel

measurable functions {gu}u∈U and g′, such that u a.s.= gu(εu) and (εu)∀u∈U
a.s.= g′(ε). The latter

is trivial since gu can just be the identity function, gu(x) = x.

Next, we restate and prove Lemma 3

Lemma 6. The permutation equivariance of p in Definition 2.2.5 implies that, if two proper

subsets of nodes S1, S2 (V are isomorphic, then their marginal node embedding distributions

must be the same up to a permutation, i.e., p((Zi)i∈S1|A,X) = π(p((Zj)j∈S2|A,X)) for some

appropriate permutation π.

Proof. From Definition 2.2.5 , it is trivial to observe that two isomorphic nodes u, v ∈ V

in graph G = (A,X) have the same marginal node embedding distributions. In this proof

we extend this to node sets S ⊂ V where |S| > 1. We marginalize over (Zi)i6∈S1 to obtain

p((Zi)i∈S1 |A,X) and in the other case over (Zi)i6∈S2 to obtain p((Zi)i∈S2|A,X) respectively.

We consider 2 cases as follows:

Case 1: S1 = S2: This is the trivial where S1 and S2 are the exact same nodes, hence

their marginal distributions are the identical as well by definition.

Case 2: S1 6= S2: Since S1 and S2 are also given to be isomorphic, it is clear to see that

every node in S1 has an isomorphic equivalent in S2. In a graph G = (A,X), the above

statement conveys that S2 can be written as a permutation π on S1, i.e S2 = π(S1). Now,

employing Definition 2.2.5 , it is clear to see that p((Zi)i∈S1|A,X) = π(p((Zj)j∈S2 |A,X))

Next, we restate and prove Theorem 2.2.1

Theorem A.2.1. Let S ⊆ P(V) be a set of subsets of V . Let Y (S,A,X) = (Y (~S,A,X))S∈S

be a sequence of random variables defined over the sets S ∈ S of a graph G = (A,X),

such that we define Y (~S,A,X) := Y~S|A,X and Y (~S1,A,X) d= Y (~S2,A,X) for any two

jointly isomorphic subsets S1, S2 ∈ S in (A,X) (Definition 2.1.7), where d= means equality

in their marginal distributions. Then, there exists a deterministic function ϕ such that,

93

Y (S,A,X) a.s.= (ϕ(Γ?(~S,A,X), εS))S∈S , where εS is a pure source of random noise from a

joint distribution p((εS′)∀S′∈S) independent of A and X.

Proof. The case S = V is given in Theorem 12 of [20]. The case S = ∅ is trivial. The case S (

V , S 6= ∅, is described as follows with a constructive proof. First consider the case of two iso-

morphic sets of nodes S1, S2 ∈ S. As by definition Y (~S1,A,X) d= Y (~S2,A,X), we must as-

sume p(Y~S1
|A,X) = p(Y~S2

|A,X). We can now use the transfer theorem [147 , Theorem 6.10]

to obtain a joint description Y~S1
|A,X a.s.= φ1(~S1,A,X, ε) and Y~S2

|A,X a.s.= φ2(~S2,A,X, ε),

where ε is a common source of independent noise. As S1 and S2 are joint isomorphic

(Definition 2.1.7), there exists an isomorphism S1 = iso(~S2), where φ1(iso(~S2),A,X, ε) =

φ1(~S1,A,X, ε). Because the distribution given by φ1(·, ε) must be isomorphic-invariant

in (A,X) and S1 and S2 are also isomorphic in (A,X) then, for all permutation actions

π ∈ Πn, there exists a new isomorphism iso′ such that φ1(π(iso(~S2)), π(A), π(X), ε) d=

φ1(iso′(π(~S1)), π(A), π(X), ε), which allows us to create a function ϕ′ that incorporates

iso′ into φ1. Due to the isomorphism between S1 and S2, we can do the same process

for S2 to arrive at the same function ϕ′. We can now apply Corollary 6.11 [147] over

(Y~S1
|A,X, Y~S2

|A,X) along with a measure-preserving mapping f to show that Y~S1
|A,X a.s.=

ϕ′(~S1,A,X, ε1) and Y~S2
|A,X a.s.= ϕ′(~S2,A,X, ε2), where (ε1, ε2) = f(ε). If S1 and S2 are not

joint isomorphic, we can simply define ϕ′(Si, ·) := φi(Si, ·). Definition 2.2.4 allows us to

define a function ϕ from which we rewrite ϕ′(~Si,A,X, εi) as ϕ(Γ?(~Si,A,X), εi). Applying the

same procedure to all S ∈ S concludes our proof.

Next, we restate and prove Theorem 2.2.2

Theorem A.2.2 (The statistical equivalence between node embeddings and structural rep-

resentations). Let Y (S,A,X) = (Y (~S,A,X))S∈S be as in Theorem 2.2.1 . Consider a graph

G = (A,X) ∈ Σn. Let Γ?(~S,A,X) be a most-expressive structural representation of nodes

S ∈ S in (A,X). Then,

Y (~S,A,X) ⊥⊥Γ?(~S,A,X) Z|A,X, ∀S ∈ S,

94

for any node embedding matrix Z that satisfies Definition 2.2.5 , where A ⊥⊥B C means A

is independent of C given B. Finally, ∀(A,X) ∈ Σn, there exists a most-expressive node

embedding Z?|A,X such that,

Γ?(~S,A,X) = EZ? [f (|S|)((Z?
v)v∈S)|A,X], ∀S ∈ S,

for some appropriate collection of functions {f (k)(·)}k=1,...,n.

Proof. In the first part of the proof, for any embedding distribution p(Z|A,X), we note

that by Theorem 2.2.1 , y(~S,A,X) a.s.= f ′(Γ?(~S,A,X), εS). Hence, Y (~S,A,X) ⊥⊥Γ?(~S,A,X)

Z|A,X, ∀S ∈ S, is a direct consequence of Proposition 6.13 in [147].

In the second part of the proof, we construct an orbit over a most-expressive representa-

tion of a graph (A,X) of size n, with permutations that act only on unique node ids (node

orderings) added as node features: Π′(A,X) = {((Γ?(v,A, [X, π(1, . . . , n)T]))∀v∈V }∀π∈Πn ,

where [A, b] concatenates column vector b as a column of matrix A. Define Z?|A,X as

the random variable with a uniform measure over the set Π′(A,X). We first prove that

Z?|A,X is a most-expressive node embedding. Clearly, Z?|A,X is a node embedding, since

the uniform measure over Π′(A,X) is G-equivariant. All that is left to show is that we can

construct Γ? of any-size subset S ∈ S from Z?|A,X via

Γ?(~S,A,X) = EZ? [f (|S|)((Z?
v)v∈S)|A,X],

for some function f (|S|). This part of the proof has a constructive argument and comes in

two parts.

Assume S ∈ S has no other joint isomorphic set of nodes in S, i.e., @S2 ∈ S such that

S and S2 are joint isomorphic in (A,X). For any such subset of nodes S ∈ S, and any

element Rπ ∈ Π′(A,X), there is a bijective measurable map between the nodes in S and

their positions in the representation vector Rπ = (Γ?(v,A, [X, π(1, . . . , n)T]))∀v∈V , since all

node features are unique and there are no isomorphic nodes under such conditions. Consider

the multiset

OS(A,X) := {(Γ?(v,A, [X, π(1, . . . , n)T]))∀v∈S}∀π∈Πn

95

of the representations restricted to the set S. We now show that there exists an surjec-

tion between OS(A,X) and Γ?(~S,A,X). There is a surjection if for all S1, S2 ∈ P?(V)

that are non-isomorphic, it implies OS1(A,X) 6= OS2(A,X). The condition is trivial if

|S1| 6= |S2| as |OS1(A,X)| 6= |OS2(A,X)|. If |S1| = |S2|, we prove by contradiction. As-

sume OS1(A,X) = OS2(A,X). Because of the unique feature ids and because Γ? is most-

expressive, the representation Γ?(v,A, [X, π(1, . . . , n)T]) of node v ∈ V and permutation

π ∈ Πn is unique. As S1 is not isomorphic to S2, and both sets have the same size, there

must be at least one node u ∈ S1 that has no isomorphic equivalent in S2. Hence, there exists

π ∈ Πn that gives a unique representation Γ?(u,A, [X, π(1, . . . , n)T]) that does not have a

matching Γ?(v,A, [X, π(1, . . . , n)T]) for any v ∈ S2 and π′ ∈ Πn. Therefore, ∃a ∈ OS1(A,X),

where a 6∈ OS2(A,X), which is a contradiction since we assumed OS1(A,X) = OS2(A,X).

Now that we know there is such a surjection, a possible surjective measurable map be-

tween OS(A,X) and Γ?(~S,A,X) is a multiset function that takes OS(A,X) and outputs

Γ?(~S,A,X). For finite multisets whose elements are real numbers R, [93] shows that a

most-expressive multiset function can be defined as the average of a function f (|S|) over the

multiset. The elements of OS(A,X) are finite ordered sequences (ordered according to the

permutation) and, thus, can be uniquely (bijectively) mapped to the real line with a measur-

able map, even when A and X have edge and node attributes defined over the real numbers

R. Thus, by [93], there exists some surjective function f (|S|) whose average over OS(A,X)

give Γ?(~S,A,X).

Now assume S1, S2 ⊆ V are joint isomorphic in (A,X), S1, S2 6= ∅. Then, we have con-

cluded that OS1(A,X) = OS2(A,X). Fortunately, by Definition 2.2.3 , this non-uniqueness

is a required property of the structural representations of Γ?(S1,A,X) and Γ?(S2,A,X),

which must satisfy Γ?(S1,A,X) = Γ?(S2,A,X) if S1 and S2 are joint isomorphic, which

concludes our proof.

Next, we restate and prove Corollary 1

Corollary 7. The node embeddings in Definition 2.2.5 encompass embeddings given by matrix

and tensor factorization methods —such as Singular Value Decomposition (SVD), Non-

negative Matrix Factorization (NMF), implicit matrix factorization (a.k.a. word2vec)–, latent

96

embeddings given by Bayesian graph models —such as Probabilistic Matrix Factorizations

(PMFs) and variants—, variational autoencoder methods and graph neural networks that

use random lighthouses to extract node embedddings.

Proof. In Probabilistic Matrix Factorization [4], we have Auv ∼ N (ZT
u Zv, σ

2
aI) where Zu ∼

N (0, σ2I), Zv ∼ N (0, σ2I). We note that the posterior of P (Z|A) is clearly equivariant,

satisfying definition 2.2.5 , as a permutation action on the nodes requires the same permuta-

tion on the σ2I matrix as well to obtain Z. The proof for Poisson Matrix Factorization [6],

[148] follows a similar construction to the above, wherein the Normal assumption is replaced

by the Poisson distribution.

Moreover, any matrix factorization algorithm gives an equivariant distribution of embed-

dings if the input matrices are randomly permuted upon input. Specifically, any Singular

Value Decomposition (SVD) method satisfies Definition 2.2.5 as the distribution of the eigen-

vector solutions to degenerate singular values —which are invariant to unitary rotations in

the corresponding degenerate eigenspace— will trivially be G-equivariant even if the algo-

rithm itself outputs values dependent on the node ids. Same is true for non-negative matrix

factorization [149] and implicit matrix factorization [17], [150].

PGNN’s [40] compute the shortest distances between every node of the graph with a

predetermined set of ‘anchor’ nodes to encode a distance metric. By definition, using such a

distance metric would make the node embeddings learned by this technique G-equivariant.

The shortest path between all pairs of nodes in a graph can be seen equivalently as a function

of a polynomial in Ak. Alternatively, this can also be represented using the adjacency matrix

and computed using the Floyd-Warshall algorithm [151]. The shortest distance is thus a

function of A ignoring the node features X. Since the inputs to the GNN comprises of the

distance metric, A and X, the node embeddings Z can equivalently seen as a function of A,

X and noise. The noise in this case is characterized by the randomized anchor set selection.

In variational auto-encoder models such as CVAE’s, GVAE’s, Graphite [42], [43], [152]

the latent representations Z are learned either via a mean field approximation or are sampled

independently of each other i.e. Z ∼ P (·|A,X). We note that in the case of the mean field

approximation, the probability distribution is a Dirac Delta. It is clear to see that the Z

97

learned in this case is G-equivariant with respect to any permutation action of the nodes in

the graph.

Next, we restate and prove Corollary 2

Corollary 8. The link prediction task between any two nodes u, v ∈ V depends only on the

most-expressive tuple representation Γ?((u, v),A,X). Moreover, Γ?((u, v),A,X) always exists

for any graph (A,X) and nodes (u, v). Finally, given most-expressive node embeddings Z?,

there exists a function f such that Γ?((u, v),A,X) = EZ? [f(Z?
u,Z

?
v)], ∀u, v.

Proof. It is a consequence of Corollary 3 with |S| = 2.

Next, we restate and prove Corollary 3

Corollary 9. Sample Z according to Definition 2.2.5 . Then, we can learn a k-node structural

representation of a subset of k nodes S ⊆ V , |S| = k, simply by learning a function f (k)

whose average Γ(~S,A,X) = E[f (k)((Zv)v∈S)] can be used to accurately predict Y (~S,A,X).

Proof. This proof is a direct application of Theorem 2.2.2 which shows the statistical equiv-

alence between node embeddings and strucutral representations.

Note that f (k)((Zv)v∈S) can equivalently be represented as f (k)(ϕ(Γ(v,A,X)v∈S, εS))

using Theorem 2.2.2 and that the noise εS is marginalized from the noise distribution of

Theorem 2.2.1 , still preserving equivariance. With an assumption of the most powerful f ′(k),

which is able to capture dependencies within the node set [27] and noise εS, we can replace

the above with f ′(k)(ϕ(Γ(S,A,X), εS)) and subsequently compute an expectation over this

function to eliminate the noise.

Next, we restate and prove Corollary 4

Corollary 10. Transductive and inductive learning are unrelated to the concepts of node

embeddings and structural representations.

98

Proof. By Theorem 2.2.2 , we can build most-expressive any-size joint representations from

node embeddings, and we can get node embeddings from any-size most-expressive joint

representations. Hence, given enough computational resources, node embeddings and graph

representations can have the same generalization performance over any tasks. This shows

they are unrelated with the concepts of transductive and inductive learning.

Next, we restate and prove Corollary 5

Corollary 11. A node embeddings sampling scheme can increase the structural representa-

tion power of GNNs.

Proof. The proof follows as a direct consequence of Theorem 2.2.2 , along with [25] which

demonstrates RP-GNN as a concrete method to do so. More specifically, appending unique

node ids to node features uniformly at random, makes the nodes unique, and can be seen as a

strategy to obtain node embeddings which satisfy Definition 2.2.5 using GNN’s. By averaging

over multiple such node embeddings gives us structural representations more powerful than

that of standalone GNN’s.

A.3 Colliding Graph Neural Networks (CGNNs)

In this section we propose a new variational auto-encoder procedure to obtain node em-

beddings using neural networks, denoted Colliding Graph Neural Networks (CGNNs). Our

sole reason to propose a new auto-encoder method is because we want to test the expressive-

ness of node embedding auto-encoders —and, unfortunately, existing auto-encoders, such

as [43], do not properly account for the dependencies introduced by the colliding variables in

the graphical model. In our experiments, shown later, we aggregate multiple node embed-

ding sampled from CGNN to obtain structural representations of the corresponding nodes

and node sets.

Node Embedding Auto-encoder.

In CGNN’s, we adopt a latent variable approach to learn node embeddings. Cor-

responding to each evidence feature vector Xi,· ∈ Rk ∀ i ∈ V , we introduce a latent

99

variable Zi,· ∈ Rk. In addition, our graphical model also consists of observed variables

Ai,j,· ∈ Rd ∀ i, j ∈ V . These are related through the joint distribution p(A,X|Z) =∏
i,j∈V ×V p(Ai,j,·|Zi,·,Zj,·)

∏
h∈V p(Xh,·|Zh,·), which is summarized by the Bayesian network in

Figure A.1 in the Appendix. Note that Ai,j,· is a collider, since it is observed and influenced

by two hidden variables, Zi,·,Zj,·. A neural network is used to learn the joint probability

via MCMC, in an unsupervised fashion. The model learns the parameters of the MCMC

transition kernel via an unrolled Gibbs Sampler, a templated recurrent model (an MLP with

shared weights across Gibbs sampling steps), partially inspired by [153].

The unrolled Gibbs Sampler, starts with a normal distribution of the latent variables

Z
(0)
i,· , ∀i ∈ V, with each Z

(0)
i,· ∼ N (0, I) independently, where I is the identity matrix.

Subsequently at time steps t = 1, 2, . . ., in accordance with the graphical model, each variable

Z
(t)
i,· is sequentially sampled from its true distribution conditioned on all observed edges of

its corresponding node i, in addition to the most-up-to-date latent variables Z’s associated

with its immediate neighbors. The reparametrization trick [154] allows us to backpropogate

through the unrolled Gibbs Sampler. Algorithm 2 in the Appendix details our method.

Consequently, this procedure has an effect on the run-time of this technique, which we

alleviate by performing Parallel Gibbs Sampling by constructing parallel splashes [155]. Our

unsupervised objective is reconstructing the noisy adjacency matrix.

A.4 CGNN Algorithms

The procedure to generate node embeddings used by the CGNN is given by Algorithm 2 .

Structural representations are computed as an unbiased estimate of the expected value of a

function of the node embedding samples as given by Algorithm 3 via a set of sets function

[156].

A.5 Further Results

In Table A.1 we provide the results on node classification, link prediction and triad

prediction on the Citeseer dataset.

100

Algorithm 2 Node Embeddings from the Unrolled Gibbs Sampler
input : A, X, num-times
output: Z
initialization: Zu ∼ N (0, 1) ∀ u ∈ V
while num-times > 0 do

for u ∈ V do
∀v ∈ V such that Auv = 1
hidden ← f({Zv}); // f is a permutation invariant function
visible ← g({Xv}); // g is a permutation invariant function
Zu ← MLP (hidden, visible, Xu) + Noise // With Reparametrization Trick
// Equivalently, Zu ∼ P (·|{Zv}, {Xv}, {Auv}, Xu)

end
num-times ← num-times - 1

end

 XiZi

ij

i ∈ [1, n] i ∈ [1, n]

i, j ∈ [1, n]

Figure A.1. Latent variable model for Colliding Neural Networks . Observed
evidence variables in gray

A.6 Description of Datasets and Experimental Setup

A detailed description of the datasets and the splits are given in Table A.2 . Our im-

plementation is in PyTorch using Python 3.6. The implementations for GIN and RP-GIN

are done using the PyTorch Geometric Framework. We used two convolutional layers for

GIN, RP-GIN since it had the best performance in our tasks (we had tested with 2/3/4/5

convolutional layers). Also since we perform tasks based on node representations rather than

graph representations, we ignore the graph wide readout. For GIN and RP-GIN, the em-

bedding dimension was set to 256 at both convolutional layers. All MLPS, across all models

have 256 neurons. Optimization is performed with the Adam Optimizer [157]. For the GIN,

RP-GIN the learning rate was tuned in {0.01, 0.001, 0.0001, 0.00001} whereas for CGNN’s

101

Algorithm 3 Structural Representations from the Node Embedding Samples
input : {Z(i)}m

i=1, k ;// node embedding samples, node set size
output: g({Z}S); S = {S1}∀S1⊂V :|S1|=k //structural representations, S is a set of sets
initialization: g({Z}S) = {~0}
for i ∈ [1,m] do

for S ∈ S do
g({Zu}u∈S) ← g({Zu}u∈S) + 1

m
f({Z(i)

u }u∈S) // f is a permutation invariant function
end

end

Table A.1. Micro F1 score on three distinct tasks over the Citeseer dataset, aver-
aged over 12 runs with standard deviation in parenthesis. The number within the
parenthesis beside the model name indicates the number of Monte Carlo samples
used in the estimation of the structural representation. MC-SVD†(1) denotes the
SVD procedure run until convergence with one Monte Carlo sample for the represen-
tation. Bold values show maximum empirical average, and multiple bolds happen
when its standard deviation overlaps with another average.

Node Classification Link Prediction Triad Prediction
Random 0.167 0.500 0.250
GIN(1) 0.701(0.038) 0.543(0.024) 0.309(0.009)
GIN(5) 0.706(0.044) 0.525(0.040) 0.311(0.022)
GIN(20) 0.718(0.034) 0.530(0.023) 0.306(0.012)
RP-GIN(1) 0.719(0.031) 0.541(0.034) 0.313(0.005)
RP-GIN(5) 0.703(0.026) 0.539(0.025) 0.307(0.013)
RP-GIN(20) 0.724(0.020) 0.551(0.030) 0.307(0.017)
1-2-3 GNN(1) 0.189(0.026) 0.499(0.002) 0.306(0.010)
1-2-3 GNN(5) 0.196(0.042) 0.506(0.018) 0.310(0.012)
1-2-3 GNN(20) 0.192(0.029) 0.502(0.014) 0.310(0.020)
MC-SVD†(1) 0.733(0.007) 0.552(0.021) 0.304(0.011)
MC-SVD(1) 0.734(0.007) 0.562(0.017) 0.297(0.015)
MC-SVD(5) 0.739(0.006) 0.556(0.022) 0.302(0.009)
MC-SVD(20) 0.737(0.005) 0.565(0.020) 0.299(0.015)
CGNN(1) 0.689(0.010) 0.598(0.024) 0.305(0.009)
CGNN(5) 0.713(0.009) 0.627(0.048) 0.301(0.013)
CGNN(20) 0.721(0.008) 0.654(0.049) 0.296(0.008)

the learning rate was set to 0.001. Training was performed on Titan V GPU’s. For more

details refer to the code provided.

102

Table A.2. Summary of the datasets
CHARACTERISTIC CORA CITESEER PUBMED PPI
Number of Vertices 2708 3327 19717 56944, 2373a

Number of Edges 10556 9104 88648 819994, 41000a

Number of Vertex Features 1433 3703 500 50
Number of Classes 7 6 3 121b

Number of Training Vertices 1208 1827 18217 44906c

Number of Validation Vertices 500 500 500 6514c

Number of Test Vertices 1000 1000 1000 5524c

a The PPI dataset comprises several graphs, so the quantities marked with an “a”, represent
the average characteristic of all graphs.

b For PPI, there are 121 targets, each taking values in {0, 1}.
c All of the training nodes come from 20 graphs while the validation and test nodes come from

two graphs each not utilized during training.

103

B. APPENDIX TO CHAPTER 3

B.1 Additional Examples:

Let A denote the complete set of substances which are possible components in a pre-

scription drug. Now, given a partial set of substances X ′ ⊂ A part of a single drug, the

hyperedge expansion entails completing the set X ′ as X with a set of substances from A,

(which were unobserved due to the data collection procedure for instance), with the set X

chosen s.t. X = arg maxX′⊆X⊆A pdata(X) − pdata(X ′). On the other hand, an example of a

hyperedge classification tasks involves determining whether a certain set of substances can

form a valid drug or alternatively classifying the nature of a prescription drug. From the

above examples, it is clear to see that the hyperedge expansion and hyperedge classification

necessitate the framework to jointly capture dependencies between all the elements of an

input set (for instance, the associated outputs in these two tasks, requires us to capture all

interactions between a set of substances, rather than just the pairwise interactions between a

single substances and its neighbors computed independently - as in node classification) and

hence are classed as higher order tasks. Additionally, for the hyperedge expansion task, the

associated output is a finite set and hence in addition to maximizing the interactions between

the constituent elements it is also required to be permutation invariant. For instance, in the

expansion task, the training data X ∈ X as well as the associated target variable Y ∈ Y to

be predicted are both sets. The tasks are further compounded by the fact that the training

data and the outputs are both relational i.e. the representation of a vertex/ hyperedge also

depends on other sets (composition of other observed drugs) in the family of sets i.e. the

data is non i.i.d.

B.2 Proofs of Properties, Remarks and Theorems

We restate the properties, remark and theorems for convenience and prove them.

104

Property B.2.1 (Vertex Representations). The representation of a vertex v ∈ V in a

hypergraph H learnt using Equation (3.2) is a G-invariant representation Φ(v, V, E,X,E)

where Φ : V × Σn,m → Rd, d ≥ 1 such that

Φ(v, V, E,X,E) = Φ((π1(v), π1(V), π2(π1(E)), π1(X), π2(π1(E)))

∀π1∀π2 where π1 ∈ Sn and π2 ∈ Sm. Moreover, two vertices v1, v2 which belong to the same

vertex equivalence class i.e. v1 ∼= v2 obtain the same representation.

Proof. Part 1: Proof by contradiction. Let π, π′ ∈ Sn be two different vertex permutation

actions and let Φ(π(v), π(V), E, π(X),E) 6= Φ(π′(v), π′(V), E, π′(X),E). This implies that

the same node gets different representations based on an ordering of the vertex set. From

eq. (3.2) it is clear to see that the set function gk ensures that the vertex representation is

not impacted by the edge permutation action. Now let k = 1 Expanding eq. (3.2) for both

vertex permutation actions and applying the cancellation law of groups, h1
v is independent

of the permutation action. Since h0
v is identical for both, it means the difference arises from

the edge permutation action, which is not possible. Now, we can show using induction,

the contradiction holds for a certain k, k ≥ 2, then it holds for k + 1 as well. Hence,

Φ(π(v), π(V), E, π(X),E) = Φ(π′(v), π′(V), E, π′(X),E)

Part2: Proof by contradiction Let v1, v
′
2 ∈ V be two isomorphic vertices and let Φ(v1, V, E,X,E)

6= Φ(v2, V, E,X,E) This implies hk
v1 6= hk

v2 ∀k ≥ 0 However, by the definition, the two ver-

tices are isomorphic, i.e. they have the same initial node features (if available) i.e. h0
v1 = h0

v2

and they also posses an isomorphic neighborhood. Equation (3.2) is deterministic, hence the

representations obtained by the vertices v1, v2 are also identical after 1 iteration i.e. h1
v1 = h1

v2

. Now using induction we can show that, the representations for hk
v1 is the same as hk

v2 for

any k ≥ 2 Hence Φ(v1, V, E,X,E) = Φ(v2, V, E,X,E) when v1 ∼= v2

Property B.2.2 (Hyperedge Representations). The representation of a hyperedge e ∈ E in

a hypergraph H learnt using Equation (3.1) is a G-invariant representation Φ(e, V, E,X,E)

where Φ : P ?(V)× Σn,m → Rd, d ≥ 1 such that

Φ(e, V, E,X,E) = Φ((π2(π1(e)), π1(V), π2(π1(E)), π1(X), π2(π1(E)))

105

∀π1∀π2 where π1 ∈ Sn and π2 ∈ Sm Moreover, two hyperedges e1, e2 which belong to the same

hyperedge equivalence class i.e. e1 ∼= e2 obtain the same representation.

Proof. Proof is similar to the two part G-invariant vertex representation proof given above.

Replace the vertex permutation action with a joint vertex edge permutation action and

similarly use the cancellation law of groups twice.

Theorem B.2.1 ([95]). Let H1, H2 be hypergraphs without isolated vertices whose line hy-

pergraphs LGH1 , LGH2 are isomorphic. Then H1 ∼= H2 if and only if there exists a bijection

β : V LGH1 → V LGH2 such that β (SH1) = SH2 , where SHi is the family of stars of the

hypergraph Hi

Proof. Theorem is a direct restatement of the theorem in the original work. Please refer to

[95] for the proof.

Theorem B.2.2. Let H1, H2 be two non isomorphic hypergraphs with finite vertex and

hyperedge sets and no isolated vertices. If the Weisfeiler-Lehman test of isomorphism decides

their line graphs LH1 , LH2 or the star expansions of their duals H?
1 , H

?
2 to be not isomorphic

then there exists a function Γ : Σn,m → Rd (via Equation (3.4)) and parameters Θ that maps

the hypergraphs H1, H2 to different representations.

Proof. Part 1: Proof by construction, for the line graph LH . Consider Equation (3.1).

By construction, make the set function p as an injective function with a multiplier of a

negligible value i.e. → 0. This implies, a hyperedge only receives information from its

adjacent hyperedges. Since we use injective set functions, following the proof of [9] Lemma 2

and Theorem 3, by induction it is easy to see that if the 1-WL isomorphism test decides that

the line graphs are non-isomorphic, the representations obtained by the hyperedges through

the iterative message passing procedure are also different.

Part 2: Proof by construction, for the dual graph H? Again, consider Equation (3.1). By

construction, associate a unique identifier with every node and hyperedge in the hypergraph.

Construct p as an identity map, this implies, a hyperedge preserves information from which

vertices it receives information as well. Since the above p is injective, again following the proof

of [9] Lemma 2 and Theorem 3, by induction it is easy to see that if the 1-WL isomorphism

106

test decides that the dual of a hypergraph are non-isomorphic, the representations obtained

by the hyperedges through the iterative message passing procedure are also different.

Part 3: From part 1 and part 2 of the proof above, we see that if either the line graphs

or the dual of the hypergraphs are distinguishable by the 1-WL isomorphism test as non-

isomorphic then our proposed model is able to detect it as well. From the property of vertex

representations it also seen that isomorphic vertices obtain the same representation - hence

preserving the family of stars representation as well. Now consider Equation (3.4) Now, if the

line hypergraphs LGH1 and LG2 are distinguishable via the line graphs or the dual graphs

then the representation obtained by hyperedge aggregations are different. Correspondingly

if the family of stars - does not preserve a bijection across the two hypergraphs, then the

representation of the graphs are distinguishable using the vertex aggregation.

Corollary 12. There exists a function Γ : P ?(V) × Σn,m → Rd (via Equation (3.3)) and

parameters Θ that map two non-isomorphic hyperedges e1, e2 to different representations.

Proof. Proof is a direct consequence of the above theorem, eq. (3.3) and above property of

hyperedges.

Remark 4 (Separate Exchangeability). The representation of a hypergraph H learnt using

the function Γ : Σn,m → Rd (via Equation (3.4)) preserves the separate exchangeability of

the incidence structure I of the hypergraph.

Proof. From Equation (3.4), it is clear that once the representations of the observed vertices

and hyperedges are obtained, the vertex permutation actions don’t affect the edge permu-

tation and vice versa - i.e. the set functions φ, ρ act independently of each other. From

Equation (3.4) and through the use of set functions, it is also clear that the representation

of the hypergraph is invariant to permutations of both vertex and edge.

B.3 Description of Datasets and Experimental Setup

In Table B.1 we list the number of vertices and hyperedges for each of the datasets we

have considered.

107

Table B.1. Summary of the datasets
Vertices # Hyperedges

NDC-classes 1161 679
NDC-substances 5556 4916
contact-primary-school 242 4036
contact-high-school 327 1870
threads-math-sx 201863 177398
threads-ask-ubuntu 200974 18785
email-Enron 148 577
email-EU 1005 10631

Our implementation is in PyTorch using Python 3.6. For the hyperedge classification

task, we used 5 negative samples for each positive sample. For the hyperedge expansion

task, the number of vertices to be added varied from 2 to 7. The implementations for graph

neural networks are done using the Deep Graph Library [158]. We used two convolutional

layers for all the baselines as well as our model since it had the best performance in our tasks

(we had tested with 2/3/4/5 convolutional layers). For all the models, the hidden dimension

for the convolutional layers, set functions was tuned from {8,16,32,64}. Optimization is

performed with the Adam Optimizer and the learning rate was tuned in {0.1, 0.01, 0.001,

0.0001, 0.00001}. For the set functions we chose from [28] and [27]. For more details refer

to the code provided.

108

C. APPENDIX TO CHAPTER 4

C.1 Group Theory Preliminaries

Definition C.1.1 (Group). A group is a set G equipped with a binary operation · : G×G→ G

obeying the following axioms:

• for all g1, g2 ∈ G, g1 · g2 ∈ G (closure).

• for all g1, g2, g3 ∈ G, g1 · (g2 · g3) = (g1 · g2) · g3 (associativity).

• there is a unique e ∈ G such that e · g = g · e = g for all g ∈ G (identity).

• for all g ∈ G there exists g−1 ∈ G such that g · g−1 = g−1 · g = e (inverse).

Definition C.1.2 (Group invariant functions). Let G be a group acting on vector space V .

We say that a function f : V → R is G-invariant if f(g · x) = f(x) ∀x ∈ V, g ∈ G.

Definition C.1.3 ((Left) Group Action). For a group G with identity element e, and X is

a set, a (left) group action α of G on X is a function α : G × X → X that satisfies the

following two conditions:

1. Identity: α(e, x) = x, ∀x ∈ X

2. Compatibility: α(g, α(h, x)) = α(gh, x)

We will use a short hand of g · x for α(g, x) when the action being considered is clear from

context.

C.2 Proofs of Propositions

First, we restate and prove Proposition 4.2.1 .

Proposition C.2.1. Given the CSMC Φp from Definition 4.2.2 whose transitions are gov-

erned by κ which is implicitly defined by Algorithm 1 as described above. For any pair of

conformers cp, c
′
p ∈ Cp, there exists τp < ∞, independent of cp, such that P τp

Φp
(cp, c

′
p) > 0,

where P τp

Φp
is the τp step transition probability.

Proof. Proof by construction. We prove the proposition by showing that one can construct

a path (c(1)
p = cp, . . . , c

(t)
p = c′

p) such that c(i)
p ∈ Cp and κ(c(i+1)

p | c(i)
p) > 0, for all 0 < i < t,

and t ≤ Tp. The trivial case where cp ≡ c′
p is proved since every group contains the identity

109

element — sampling the identity element for every node in the directed tree yields the

same conformation. Since we consider only non backbone transforming conformations, for

the non trivial case, a maximum of m − 4n atoms can differ in positions between any two

conformations - where m is the number of atoms in the protein and n is the the number

of amino acids in the protein n. Both m,n are finite and we are dealing with continuous

conformers (and continuous group actions about every node — groups are closed under

their associated binary action, and SO(3) is path connected). So we can traverse between

conformers (until we reach the desired conformer) sequentially in a finite number of steps,

by using the constructed directed forest - selecting a amino acid (which doesn’t violate the

viability), fixing the positions of all other amino acids in the protein and rotating the side

chain atoms in a single conformer to the final desired state. While this process may result

in some side chains being visited multiple times (due to viability constraints), considering

continuous conformers and the SO(3) group (which is path connected) ensures we will never

reach a state of deadlock. The second condition is satisfied because every group action has an

inverse and we only use transformations from SO(3) for every node in the directed trees.

Next, we restate and and prove proposition 4.2.2

Proposition C.2.2. The CSMC Φp defined in Definition 4.2.2 is uniformly ergodic if Propo-

sition 4.2.1 is satisfied. Specifically there exists a unique steady state distribution πp such

that for all cp ∈ Cp,

midP n
Φp

(cp, ·)− πp(·)

mid ≤ c rn, where c < ∞ and r < 1 are constants that depend on Φp, P n
Φp

is the n step

transition probability and

mid ·

mid is the `1 norm.

Proof. By Proposition 4.2.1 , Φp satisfies Doeblin’s condition as defined in page 396 of Meyn

and Tweedie [159] which states that for cp, c
′
p ∈ Cp, P Tp

Φp
(cp, c

′
p) > ε for some ε > 0

1
 . The

1
 ↑ We note that this is a simplified version of the actual statement which is defined on the σ-algebra over Cp

denoted by σ(Cp). Our proof holds when c′
p ∈ σ(Cp)

110

uniform ergodicity then holds due to Theorems 16.2.3 and 16.2.1 from Meyn and Tweedie

[159].

Next, we restate and prove Proposition 4.3.1 . We also restate the required assumptions for

the proposition.

Assumption 2. We make the following assumptions:

1. For any θ ∈ Θ and xk
j ∈ Sj, the function f is differentiable ∀j

2. supθ∈Θ,xk
j ∈Sj{|| ∇θ ρ ◦ f(xk

j) ||} < +∞ i.e. the gradients are bounded.

3. ∀xk
j ∈ Sj, ∀θ1, θ2 ∈ Θ, || ∇θ1 ρ ◦ f(xk

j)−∇θ2 ρ ◦ f(xk
j) ||< L || θ1− θ2 || for some L ≥ 0

i.e., the gradients are L−Lipschitz.

4. Exk
j ∼πj [∇θ ρ ◦ f(xk

j)] = ∇θ Exk
j ∼πj [ρ ◦ f(xk

j)]

Proposition C.2.3. Let the step sizes satisfy (4.5) and the function parameters θ be updated

as (4.6) and Assumption 1 hold, then the MCGD optimization enjoys properties of almost

sure convergence to the optimal θ.

Proof. Given that each protein has an associated time homogeneous Markov Chain with a

unique steady state, independent of other proteins, the set of proteins in a mini-batch also

form a Markov chain with a unique steady state. We then leverage Corollary 2 (Page 12) of

Sun, Sun, and Yin [125] along with Proposition 4.3.1 to ensure almost sure convergence to

the optimal θ.

C.3 Details about datasets and tasks

PSR: This task utilizes data from the structural models submitted to the Critical

Assessment of Structure Prediction competition (CASP - [124] - a blind protein structure

prediction competition) to rank protein structures from the experimentally determined struc-

ture of the protein. The problem is formulated as a regression task, where we predict the

global distance test of each structural model from the experimentally determined structure.

As prescribed by the dataset authors, the dataset is split by competition years.

MSP: The goal of this task is to identify mutations that stabilize a protein’s interactions

which forms an important step towards the design of new proteins. This task is significant as

111

probing mutations experimentally techniques are labor-intensive. Atom3D [146] derives this

dataset by collecting single-point mutations from the SKEMPI database [160] and model

each mutation into the structure to produce a mutated structure. The learning problem

is then formulated as a binary classification task where the goal is to predict whether the

stability of the complex increases as a result of the mutation. We employ the same splits

as suggested by the dataset authors wherein the protein complexes are split such that no

protein in the test dataset has more than 30% sequence identity with any protein in the

training dataset.

LBA: This task deals with the problem of predicting the strength (affinity) of a candidate

drug molecule’s interaction with a target protein. The dataset is constructed using the

PDBBind database [161], [162], a curated database containing protein-ligand complexes

from the PDB and their corresponding binding strengths (affinities). The task is formulated

as a regression task with the goal to predict pK = − log10(K), where K is the binding

affinity in Molar units. The splits are created such that no protein in the test dataset has

more than 30% sequence identity with any protein in the training dataset.

LEP: The shape of protein impacts whether a protein is in an on or off state which plays

an important role in predicting the shape a protein will favor during drug design.This dataset

is obtained by curating proteins from several families with both “active” and “inactive” state

structures, and model in 527 small molecules with known activating or inactivating function

using the program Glide [163]. The task is formulated as a binary classification task where

the goal is to predict whether a molecule bound to the structures will be an activator of the

protein’s function or not. We use the same split as recommended by the ATOM3D authors.

Table C.1. Summary of the datasets
Task # Train # Val # Test Original Source

MSP 2864 937 247 SKEMPI [160]
LBA 3563 448 452 PDBBlind [161]
LEP 304 110 104 PDB [123]
PSR 25400 2800 16099 CASP [124]

112

	TITLE PAGE
	COMMITTEE APPROVAL
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	INTRODUCTION
	An Overview of Graph Representation Learning
	Contributions
	Thesis Outline and Previously Published Work

	EQUIVALENCE BETWEEN STRUCTURAL GRAPH REPRESENTATIONS AND POSITIONAL NODE EMBEDDINGS
	Preliminaries
	A Unifying Theoretical Framework of Node Embeddings and Structural Representations
	On Structural Representations
	On (Positional) Node Embeddings

	Results
	Quantitative Results
	Qualitative Results

	Related Work
	Conclusions

	LEARNING EXPRESSIVE STRUCTURAL REPRESENTATIONS FOR NOVEL TASKS ON HYPERGRAPHS
	Preliminaries
	Theory
	Learning Framework
	Hyperedge Classification
	Hyperedge Completion

	Results
	Conclusions

	CONDITIONAL INVARIANCES FOR CONFORMER INVARIANT PROTEIN REPRESENTATION LEARNING
	Conditional Invariances for Proteins
	Obtaining Viable Conformations
	Efficiently sampling viable conformations.
	Sampling Conformers via MCMC

	Learning Framework
	Related Work
	Results
	Conclusions

	REFERENCES
	APPENDIX TO CHAPTER 2
	Preliminaries
	Proof of Theorems, Lemmas and Corollaries
	Colliding Graph Neural Networks (CGNNs)
	CGNN Algorithms
	Further Results
	Description of Datasets and Experimental Setup

	APPENDIX TO CHAPTER 3
	Additional Examples:
	Proofs of Properties, Remarks and Theorems
	Description of Datasets and Experimental Setup

	APPENDIX TO CHAPTER 4
	Group Theory Preliminaries
	Proofs of Propositions
	Details about datasets and tasks

