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ABSTRACT

In recent years there has been a growing interest in data mining and graph machine

learning for techniques that can obtain frequencies of k-node Connected Induced Subgraphs

(k-CIS) contained in large real-world graphs. While recent work has shown that 5-CIS s can

be counted exactly, no exact polynomial-time algorithms are known that solve this task for

k > 5. In the past, sampling-based algorithms that work well in moderately-sized graphs

for k ≤ 8 have been proposed. In this thesis I push this boundary up to k ≤ 16 for graphs

containing up to 120M edges, and to k ≤ 25 for smaller graphs containing between a million

to 20M edges. I do so by re-imagining two older, but elegant and memory-efficient algorithms

– FANMOD and PSRW– which have large estimation errors by modern standards. This is

because FANMOD produces highly correlated k-CIS samples and the cost of sampling the

PSRW Markov chain becomes prohibitively expensive for k-CIS s larger than k > 8.

In this thesis, I introduce:

(a) RTS: a novel regenerative Markov chain Monte Carlo (MCMC) sampling procedure

on the tree, generated on-the-fly by the FANMOD algorithm. RTS is able to run on

multiple cores and multiple machines (embarrassingly parallel) and compute confidence

intervals of estimates, all this while preserving the memory-efficient nature of FAN-

MOD. RTS is thus able to estimate subgraph statistics for k ≤ 16 for larger graphs

containing up to 120M edges, and for k ≤ 25 for smaller graphs containing between a

million to 20M edges.

(b) R-PSRW: which scales the PSRW algorithm to larger CIS-sizes using a rejection

sampling procedure to efficiently sample transitions from the PSRW Markov chain.

R-PSRW matches RTS in terms of scaling to larger CIS sizes.

(c) Ripple: which achieves unprecedented scalability by stratifying the R-PSRW Markov

chain state-space into ordered strata via a new technique that I call sequential stratified

regeneration. I show that the Ripple estimator is consistent, highly parallelizable, and

scales well. Ripple is able to count CISs of size up to k ≤ 12 in real world graphs

containing up to 120M edges.

13



My empirical results show that the proposed methods offer a considerable improvement

over the state-of-the-art. Moreover my methods are able to run at a scale that has been

considered unreachable until now, not only by prior MCMC-based methods but also by

other sampling approaches.

Optimization of Restricted Boltzmann Machines. In addition, I also propose a re-

generative transformation of MCMC samplers of Restricted Boltzmann Machines (RBMs).

My approach, Markov Chain Las Vegas (MCLV) gives statistical guarantees in exchange for

random running times. MCLV uses a stopping set built from the training data and has a

maximum number of Markov chain step-count K (referred as MCLV-K). I present a MCLV-

K gradient estimator (LVS-K) for RBMs and explore the correspondence and differences

between LVS-K and Contrastive Divergence (CD-K). LVS-K significantly outperforms CD-

K in the task of training RBMs over the MNIST dataset, indicating MCLV to be a promising

direction in learning generative models.
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1. INTRODUCTION

In this thesis, I consider the task of computing the average of some user-defined function f

over the set S(k) of all Connected Induced Subgraphs of a size k (k-CISs) contained in a large

real-world graph. The ability to compute this average – avg(S(k); f) – is a key component

of multiple tasks. For example, in social network analysis and in biological networks, one

is interested in estimating the distribution (i.e. relative frequency) of induced subgraphs

which are isomorphic to a given pattern (e.g. a clique, a cycle, a star) [1 ]–[5 ]. The pattern

distribution is essentially the average of a 0–1 function that indicates when a subgraph is

isomorphic to the pattern of interest. More generally, for many graph machine learning

models, the loss function is defined as the average of a neural network embedding applied

over all k-node CISs [6 ]–[12 ].

Exactly computing this function average avg(S(k); f), which is formally defined in Sec-

tion 2.2.1 , is not always tractable, in particular for large graphs and/or large CIS sizes, since

the enumeration of all CISs contained in a graph is #W[1]-hard [13 ]. Ergo, we do not yet

know an algorithm to enumerate all k-CISs contained in an input graph Gin = (Vin, Ein)

in O(γ(k)|Vin|o(1)) time, where γ(·) is arbitrary but finite. While an exact algorithm exists

for the special case of computing pattern distributions for 5-CISs [14 ], the general task for

k > 5 is significantly harder [15 ]. As such, multiple algorithms have been proposed that can

estimate avg(S(k); f) via sampling [16 ]–[21 ].

For a CIS sampling algorithm to be practical to be used in real world tasks that require

estimating function averages of the form avg(S(k); f), specially in large graphs and for large

CIS sizes, the algorithm (a) needs to be memory efficient – preferably fully in memory, (b)

should produce estimates that converge to the true average in reasonable time – the ability

to parallelize is an added benefit, and (c) cannot be restricted to certain subgraph sizes or

pattern types. While state of the art methods work well in the paradigms they were designed

for, their scalability is limited because they sacrifice at least one of the above desiderata.

Specifically, many algorithms that estimate avg(S(k); f) by Monte Carlo sampling CISs

slow down significantly for large k due to the cost of computing the sampling probability,

which is often factorial in k [16 ], [22 ], [23 ]. On the other hand, methods such as MOSS-5 [24 ],
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Escape [14 ] and IMPRG [20 ] work extremely well when k ≤ 5 but cannot be extended for

larger k. Similarly, Turán-Shadow [2 ] and PEANUTS [1 ] are not general purpose CIS

methods since they are restricted to cliques and near-clique CISs. Sampling the PSRW [18 ]

Markov chain is not scalable to larger k, due to the large number of connectivity checks

(which require O(k2) time each) required to enumerate the neighborhood of a CIS. A newer

method that scales to general CISs of size k > 5 – Motivo [19 ], [25 ], [26 ] – has memory

complexity exponential in k. This exponential memory requirement is compensated for,

using memory mapped files and using a highly compressed representation of CISs. For the

largest evaluated graph (Orkut, see Table A.1 ), Motivo can sample and estimate function

averages for k up to 8 using high speed SSDs and a large RAM. Using commodity hardware

(HPC cluster with network storage) however, it fails to scale beyond 5 node CISs for the

same graph.

This thesis explores methods to estimate CIS-statistics using regenerative Markov chain

Monte Carlo (MCMC) methods. I develop Markov chains, from which transitions can be

efficiently sampled in poly(k) time and memory1
 , which allows them to be used in settings

where other methods fail due to their complexity being exponential in k as described above.

In particular, I improve the per-iterate running time of the state of the art CIS-sampling

MCMC algorithm PSRW [18 ] allowing it to scale to larger k. In addition, I propose a

novel Markov chain on the tree, which is implicitly built on-the-fly and traversed by the

FANMOD [17 ] algorithm. In both these chains, I then use regenerations [27 ], [28 ] in the

form of tours – sample paths that begin and end at a pre-designated regeneration point – to

estimate the CIS statistics.

These tours are i.i.d. due to the Regenerative Cycle Theorem [28 , Chap 2, Thm 7.4]. This

fact, allows them to be sampled in an embarrassingly parallel fashion, taking full advantage

of multi-core systems. The independence can further be leveraged to assess convergence via

confidence intervals and in some cases reduce bias. Specifically, in Section 2.3.4 , jackknife

resampling [29 ], [30 ] is used to estimate the variance of the estimator and to reduce bias,

and in Section 3.4.3 , this independence is used to auto-decide the number of tours required

to be sampled to achieve a desired accuracy. Tour-based estimators can further be used to
1↑ poly(k) refers to an asymptotic order of complexity which is polynomial in k.
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estimate un-normalized function sums of the form µ(S(k); f) = ∑
s∈S(k) f(s) evaluated over

S(k), the set of all CISs contained in the input graph – an objective that traditional MCMC

methods cannot estimate.

While the methods I propose are closely tied to the problem of estimating CIS statistics,

they are in essence applicable to other problems where Monte Carlo simulation using a

finite state reversible Markov chain is performed. As an exemplar, we apply regenerative

sampling on the Gibbs Sampling [31 ] Markov chain that is used to train Restricted Boltzmann

Machines (RBMs) [32 ]–[34 ], a class of energy-based generative neural network models.

1.1 Contributions

My specific contributions to the task of estimating CIS statistics are

(a) RTS: I propose using weighted random walks on the tree, generated on-the-fly by the

FANMOD algorithm. We use the fact that each k-depth leaf in this tree uniquely rep-

resents a k-CIS and the stationary distribution over such leaves is uniform to estimate

CIS statistics. Regenerations are then used to (embarrassingly) parallelize the proce-

dure, reduce bias and assess convergence. RTS retains the memory-efficient nature of

FANMOD and therefore is able to estimate subgraph statistics for k ≤ 16 for larger

graphs containing up to 120M edges, and for k ≤ 25 for smaller graphs containing

between a million to 20M edges.

(b) R-PSRW: Although, the PSRW [18 ] algorithm has been shown to be extremely effec-

tive in estimating CIS statistics, it fails to scale to large CIS sizes due to the large order

of complexity of sampling transitions from the PSRW-Markov chain. I propose a rejec-

tion sampling procedure to improve this time complexity in expectation, which allows

us to sample transitions in the PSRW-chain for very large subgraph sizes. The resulting

procedure, denoted R-PSRW matches the scalability of RTS described above, and in

some cases produces faster converging estimates in practice (despite being a single-core

procedure). A distinct rejection sampling procedure also forms the backbone of the

Ripple algorithm described next.
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(c) Ripple: Unlike RTS, sampling regenerations in the R-PSRW Markov chain is not

trivial due to the tour lengths (and consequently the running time per tour) being

very high. I propose a recursive procedure, named sequential stratified regeneration,

which combines the idea of using state-aggregations in the form of supernodes [35 ] and

stratification to control this running time. Using a single Breadth-First Traversal on

the input graph, Ripple stratifies the state space of the R-PSRW chain without explicit

enumeration. This stratification is then used to control the running time to the extent

that the total number of random walk steps is linear in the number of tours, diameter

and maximum degree – and invariant to the number of vertices and edges of the input

graph. I show that the Ripple estimator is consistent, highly parallelizable, and is able

to count CISs of size up to k ≤ 12 in real world graphs containing up to 120M edges.

In addition to estimating CIS statistics, I show that tours can be used in other finite-state

reversible MCMC settings by using them to train RBMs:

While a useful tool for unsupervised learning, the primary challenge in using RBMs lies in

the intractability of computing their partition function and of computing the gradient. Both

these quantities can be expressed as an expectation of a function under a probability distri-

bution over a very large state space. I propose a regenerative transformation of the MCMC

algorithm denoted CD-K, which is traditionally used to train RBMs. I call my approach

Markov Chain Las Vegas (MCLV). MCLV gives statistical guarantees in exchange for random

running times by using a stopping set built from the training data. By appealing to the fact

that the distribution of tour lengths is not heavy tailed (formalized in Theorem 4.2.2 ), my

procedure discards tours which are longer than a hyper-parameter K. My gradient estimator

LVS-K, outperforms baselines in training RBMs over the MNIST dataset. I then explore the

correspondence and differences between LVS-K and Contrastive Divergence (CD-K). LVS-

K significantly outperforms CD-K in training RBMs over the MNIST dataset, indicating

MCLV to be a promising direction in learning generative models.

1.2 Outline and Previously Published Work

This thesis is organized as follows:
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(a) In Chapter 2 I detail, both, the RTS and R-PSRW procedures. Further I show in

this chapter that these methods scale to larger CIS sizes and their estimates of CIS-

function averages converge to the ground truth faster in terms of wall-clock time com-

pared to the state of the art. This chapter is under submission as “Regenerative Tree

Sampling: Efficient Subgraph Statistics via Random Walks on Trees” Kakodkar and

Ribeiro 2022 [36 ].

(b) Chapter 3 talks about Ripple, which in turn uses an alternate version of R-PSRW

(which is more compatible with the sequential stratification procedure compared to

the version from Chapter 2 ). I show that for the task of estimating CIS-function sums,

Ripple scales better than the current state of the art method – Motivo [26 ]. This

chapter was published as “Sequential stratified regeneration: MCMC for large state

spaces with an application to subgraph count estimation” Teixeira, Kakodkar, Dias, et

al. 2022 [37 ].

(c) Finally, in Chapter 4 , I introduce Restricted Boltzmann Machines (RBMs) and the

task of estimating its gradient and partition function. Further I detail the MCLV

procedure, the LVS-K gradient estimator and experimental results that show that

LVS outperforms baselines in training RBMs over the MNIST dataset. This chapter

was published as “From Monte Carlo to Las Vegas: Improving Restricted Boltzmann

Machine Training Through Stopping Sets” Savarese, Kakodkar, and Ribeiro 2018 [38 ].
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2. REGENERATIVE TREE SAMPLING

2.1 Introduction

Consider the task of computing the average of some user-defined function f over the set

S(k) of all Connected Induced Subgraphs of a size k (k-CISs) of a graph. The ability to

compute this average – avg(S(k); f) – is a key component of state-of-the-art graph based

machine learning models [6 ]–[12 ] and data mining tasks such as social and biological network

analysis [1 ]–[5 ].

This chapter proposes Regenerative Tree Sampling (RTS), a method that estimates

bounded function averages over all k-CISs of an input graph by using a specific type of

random walk over the FANMOD [17 ] tree. The FANMOD tree is built-on-the-fly, and its

vertices at depth k represent k-CISs in the original input graph. The original FANMOD algo-

rithm [17 ] samples a randomized depth-first traversal on the tree and uses the leaves visited

by the traversal to estimate subgraph counts. In RTS, I significantly improve this sampling

method with a weighted random walk on the FANMOD tree that samples k-CISs uniformly

at random in steady-state. Since the FANMOD tree is built on-the-fly, my procedure is

highly memory-efficient. A key idea is the use of regenerations in the form of Random Walk

Tours (RWTs), which are short random walks that begin and end at the initial node (root

node in my case) and have been extensively used in Markov Chain Monte Carlo methods [35 ],

[37 ]–[40 ]. The use of tours allow us to spawn many samplers in an embarrassingly parallel

fashion, and their i.i.d. nature can be leveraged to better assess convergence compared to

traditional random walk-based estimators. Furthermore, I provide a simple heuristic to set

edge weights in the FANMOD tree to improve the quality of estimates.

In addition, I propose R-PSRW, an extension to the PSRW [18 ] algorithm which efficiently

samples transitions of the PSRW Markov chain using a rejection sampling procedure. While

the worst-case mixing times of the PSRW Markov chain are theoretically high [41 ], [42 ], in

my experiments, R-PSRW estimates of CIS function averages converge to the true value

better than all the other baselines I tested (and in a few cases even better than RTS).

My results show that both RTS and R-PSRW can estimate function averages for CISs of

size up to k = 16 on a wide variety of input graphs (see Table A.1 ) and in smaller graphs,
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up to k = 25. This phenomenon can be observed in Figure 2.1 where I show that RTS and

R-PSRW estimators have lower error and converge faster compared to all the other tested

baselines, with RTS estimates showing superior convergence more often.

Method: RTS (Ours) R-PSRW (Ours) Motivo Knuth-FM RecEdge+

Graph: Amazon DBLP Google Patents Pokec LiveJournal Orkut
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(f) k = 25

Figure 2.1. RTS and R-PSRW accuracy in the CIS edge density estimation
task from Section 2.6.2 . The average edge density of all CISs is estimated
using each method over 10 runs with wall-clock limits of 1 hour and 31/2 hours.
Figures 2.1a to 2.1d show the convergence properties of the CIS edge den-
sity estimates for k ∈ {8, 16, 20, 25} and all methods and real-world graphs.
The x-axis represents the NRMSE of the 1 hour estimates computed using the
median of 31/2 hour estimates of the same method as the ground-truth. The
y-axis represents the reduction in variance between the 1 hour and 31/2 hour
estimates. Marker shapes represent various methods, colors represent graphs,
and larger markers represent larger graphs. For each color, methods corre-
sponding to markers closer to the bottom-right corner have better convergence
properties. RTS and R-PSRW estimates have better convergence properties
compared to the other tested baseline methods, with RTS estimates showing
superior convergence more often. In Figures 2.1e and 2.1f I show that the
estimates of my proposed RTS and R-PSRW for k ∈ {16, 25} agree, which I
take (in the absence of ground-truth) as strong evidence that these estimates
are accurate.
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2.2 Preliminaries

Before I describe the CIS sampling tasks, first we need some notation:

The original input graph is any finite graph, with or without node and edge features,

and may contain multi-edges, self-loops, etc. Any such graph can be converted to a simple

and undirected graph Gin = (Vin, Ein) by encoding properties such as edge directions, etc.

as vertex and edge features, which are accessible to any function defined on Gin and the

CISs it contains. As such Gin, which is henceforth denoted the input graph, does not contain

self-loops and each pair of vertices share at most one edge.

Without loss of generality we can write the vertex set as Vin = {1, 2, . . . , |Vin|}. Moreover,

edges of Gin are undirected (u, v) ≡ (v, u) and , hence, are only counted once in the edge-

set Ein. The neighborhood of a set of vertices V ′ ∈ Vin is defined as N(V ′) , ∪u∈V ′{v ∈

Vin : (u, v) ∈ Ein , v /∈ V ′} and with a slight abuse of notation, N(u) ≡ N({u}). The degree

of a vertex is then deg(u) , |N(u)|. The volume of Gin is Vol(Gin) = ∑
u∈Vin deg(u) = 2|Ein|.

The vertices and edges of Gin are simply referred as vertices and edges. The vertices

and edges of the FANMOD tree T (k) (defined in Section 2.2.2 ) will be referred as tree-nodes

and tree-edges to avoid confusion. All the trees considered in this chapter are rooted with

a single root, denoted as ρ. The set of children of a tree-node x are denoted C(x), and the

parent of x is given by P(x). The tree-width at node x is defined as |C(x)|. The depth of

x, depth(x), is the number of edges in the shortest path between the root ρ and x, i.e. the

root itself would be at depth zero.

2.2.1 Task

Having defined the input graph, we now define CISs:

Definition 2.2.1 (Connected Induced Subgraph (CIS)). Consider as given, an input graph

Gin = (Vin, Ein), which is assumed to be simple and undirected (defined above). A Connected

Induced Subgraph of size k or k-CIS is a simple, connected and undirected graph Gin (V ′) =

(V ′, E ′) whose vertex set V ′ ⊂ Vin follows |V ′| = k and whose edge set is given by E ′ =

{(u, v) ∈ Ein : u, v ∈ V ′}. Additionally, S(k) is the set of all k-CIS contained in Gin.
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Practitioners are usually interested in methods which estimate the average of an arbitrary

function f (generally with a real-vector image) over S(k), the set of all CISs contained in

Gin.

Definition 2.2.2 (CIS Average Task). Assume as given, an input graph Gin, CIS size k,

and a bounded real vector-valued function f : S(k) → R(·). The CIS Average Task requires

estimating

avg(S(k); f) = 1
|S(k)|

∑
s∈S(k)

f(s) , (2.1)

where S(k) denotes the set of all k-CISs in Gin from Definition 2.2.1 .

The above task-definition extends to many real-world applications of CIS sampling, for

example:

• k-CIS distributions: When fpat(s) is a vector-valued function, which one-hot encodes

the pattern (graph-isomorphism based equivalence class) that s is isomorphic to, the task

of estimating avg(S(k); fpat) is equivalent to the quintessential CIS pattern distribution

estimation task, which is central to multiple CIS sampling works [16 ]–[18 ], [20 ], [21 ], [26 ],

[37 ].

• Graph representation learning: More generally, setting fml(s) to be the decision

function output of a Machine Learning (ML) model applied to the CIS, leads to the loss

functions used in recent work in graph ML [6 ]–[12 ].

2.2.2 FANMOD tree and its original algorithm

Before I describe RTS, we briefly introduce the built-on-the-fly tree used in the FANMOD

algorithm [17 ]. Given the graph Gin and a CIS size k, the FANMOD tree T (k) associated

with Gin, is a k-depth, rooted tree. The root node corresponds to the empty CIS. Every

other tree-node at a depth k′ corresponds to a k′-CIS contained in Gin. Depth k tree-nodes

are leaves and represent k-CISs.

Since the number of CISs of size k in Gin is exponential in k, explicitly constructing

T (k) is not tractable. As such, the tree is explored via Child Queries, where we define a
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function that returns the children C(x) of a given tree-node x. To that end, we first define

the properties of a tree node.

Definition 2.2.3 (Tree-node properties). Each tree-node x in the FANMOD tree T (k), is

endowed with three properties, vsetx ⊂ Vin denotes the vertex set that makes up the corre-

sponding CIS, mainx ∈ Vin is the main vertex which corresponds to the 1-depth ancestor of

x and extx ⊂ Vin which contains candidate vertices which may be added to vsetx to expand

the CIS. The root node is a special case denoted by ρ and does not have any of the above

properties.

Next we use these definitions to further define the child query used to explore/generate

the FANMOD tree as follows.

Definition 2.2.4 (FANMOD). Given the input graph Gin whose vertices are assumed to be

Vin = {1, 2, . . . , |Vin|} by convention, the set of children of any tree-node x in the FANMOD

tree for sampling k-CISs, T (k), is defined as follows:

• When x represents a k-CIS, i.e. |vsetx| = k, x is a leaf node, i.e. C(x) = ∅.

• When x is the root node, for each u ∈ Vin, there exists a child y ∈ C(x) where vsety = {u},

mainy = u and exty = {v ∈ N(u) : v > u}.

• When x is any other tree-node, there exists a child y ∈ C(x) corresponding to each vertex

u ∈ extx where vsety = vsetx ∪ {u}, mainy = mainx and exty = {w ∈ extx : w >

u} ∪ {v ∈ Nexcl(u,vsetx) : v > u}

where the tree-node properties main, ext and vset are from Definition 2.2.3 and the

exclusive neighborhood of a vertex u ∈ Vin relative to a set V ′ ⊂ Vin\{u} is given by

Nexcl(u, V ′) , N(u)\N(V ′).

From the above definition, it is clear that the FANMOD tree, T (k) is a rooted tree, with

maximum depth k. Moreover, the extensive manipulation of the the extension-set ensures

that each k-CIS, s ∈ S(k) contained in Gin is uniquely represented by k-depth leaf in T (k). As

visualized in Figure 2.2 , a one-one correspondence exists between each CIS and tree-node.

More formally:
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⍴

({1}, {2,3,5}, 1)

({2}, {}, 2)

({3}, {4}, 3)

({4}, {5}, 4)

({5}, {}, 5)

({1,2}, {3,5}, 1)

({1,3}, {5,4}, 1)

({1,5}, {4}, 1)

({3,4}, {5}, 3)

({4,5}, {}, 4)

({3,4,5}, {}, 3)

({1,2,3}, {5,4}, 1)

({1,2,5}, {}, 1)

({1,3,5}, {4}, 1)

({1,3,4}, {}, 1)

({1,5,4}, {}, 1)

Figure 2.2. The FANMOD tree, T (3), for sampling 3-CISs in Gin, rooted
at ρ. Each tree-node contains the (vset,ext,main) properties from Defini-
tion 2.2.3 . Note how each 3-CIS member of S(3) is uniquely represented in the
FANMOD tree.
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Theorem 2.2.1 (Wernicke [17 ] Theorem 2). Recall S(k), the set of all k-CISs from Defini-

tion 2.2.1 . For each CIS s ∈ S(k), there exists exactly one leaf at depth k of the FANMOD

tree T (k) generated by the algorithm defined in Definition 2.2.4 .

Theorem 2.2.1 was exploited in the original FANMOD algorithm: the leaves sampled

by a randomized Depth First Traversal (DFT) on the tree, are drawn uniformly at random

from S(k). Specifically, FANMOD chooses to explore edges with a certain probability which

depends on the depth of the edge.

FANMOD significantly improved upon the O(k!) time to compute the sampling bias in

RecEdge [16 ], which also sampled CISs via recursive expansion, but without the book-keeping

introduced by FANMOD. Despite having an elegant implementation and being memory

efficient, FANMOD has two drawbacks:

• FANMOD requires careful hand-tuning of parameters, especially when k is large, because

a high acceptance probability will lead to an extremely large number of samples, and hence

a higher time complexity. Terminating the procedure mid-way is not an option, because

the guarantee that leaves are sampled uniformly only holds when the entire procedure is

complete.

• The samples drawn via the randomized DFT are highly correlated. The correlation is

because, when an edge leading up to a tree-node is dropped, the entire subtree is dropped

and vice-versa.

Consequently, FANMOD estimates suffer larger error compared to subsequently proposed

methods such as PSRW [18 , Sec 4]. As such I aim to leverage the basic insight of FANMOD–

the fact that each k-CIS can be represented uniquely as the leaves of an arbitrarily large tree

– to build a better CIS sampling algorithm without sacrificing the memory efficiency.

2.3 Regenerative Tree Sampling

In what follows I propose my method, abbreviated as RTS. I begin by describing the

Markov chain on the FANMOD tree, and show that, in steady state, this chain samples k

node subgraphs (CISs) uniformly at random from S(k), the set of all k-CISs contained in
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Gin as defined in Definition 2.2.2 . I then define a Random Walk Tour on the above chain,

used to estimate the average of any bounded function f over S(k). Next, I show that the

RTS estimator can be computed embarrassingly in parallel, and discuss practical methods

to analyze the quality of estimates. Finally, I describe how RTS is implemented in practice

and its memory complexity.

2.3.1 Motivation: Knuth-sampling the FANMOD tree

I motivate my method (RTS) by examining an alternate leaf sampling algorithm, different

than the original weighted DFT but applied to the same FANMOD tree. Specifically I look

at Knuth’s leaf sampling algorithm [43 ]. Knuth’s algorithm samples a non-backtracking

random walk from the root to a k-depth leaf, X0, . . . , Xk, where X0 = ρ (the root node)

and subsequently, Xt ∼ unif(C(Xt−1)), C(·) being the child query from Definition 2.2.4 .

The k-depth leaf Xk corresponds to a k-CIS whose probability of sampling is denoted by

b(Xk) = ∏k−1
i=0

1/|C(Xi)|.

Lemma 1. Consider the FANMOD tree T (k) generated according to Definition 2.2.4 and the

subgraph-function f as in Definition 2.2.2 . Run Knuth’s leaf sampling algorithm n times.

Let k-CISs, Xk,1, . . . , Xk,n be the n FANMOD leaves sampled by the algorithm. Then, the

importance sampled Knuth-estimator given by

µ̂knuth
(
{Xk,i}ti=1 ; f

)
=
(∑t

i=1
f(Xk,i)
b(Xk,i)

)
/
(∑t

i=1
1

b(Xk,i)

)
, (2.2)

is an asymptotically unbiased estimator of avg(S(k); f) – the average of f over all the k-CISs

contained in Gin per Definition 2.2.2 .

While Knuth’s algorithm is hyperparameter-free and eliminates the correlation between

samples, the variance of µ̂knuth is very large due to the very disparate probabilities of sam-

pling different k-CISs as shown next:

Proposition 2.3.1. Let P (Xk = s) be the probability of sampling a k-CIS s ∈ S(k) using

Knuth’s algorithm. The variability of b(Xk) defined as max
s∈S(k) P (Xk=s)/min

s∈S(k) P (Xk=s) is in

O(k!∆k
in), where ∆in is the maximum vertex degree in the input graph Gin.
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Hence, using Knuth’s algorithm to estimate the function average avg(S(k); f) (Defini-

tion 2.2.2 ) for large k becomes impractical due to the high variance of the estimator µ̂knuth

in Equation (2.2 ).

2.3.2 Fast and parallel uniform leaf sampling

When the FANMOD-tree is treated like an undirected graph, all k-depth leaves have

equal degree. The stationary distribution of a simple random walk (RW) will hence be the

same for all leaves, since it is proportional to the node’s degree. But, using a RW has other

challenges:

• Since undirected-unweighted trees have a low conductance [44 , Section 5], RWs on the

FANMOD tree will mix very slowly, which in turn creates sampling biases.

• Samples generated via RWs are correlated, which is precisely the drawback that the orig-

inal FANMOD algorithm had and that the Knuth-sampling algorithm from Section 2.3.1 

was designed to fix.

• It is non-trivial to assess the mixing of RW-based estimates in practice. Mixing also

imposes constraints to the usefulness of running multiple RWs in parallel (since the bias

due to mixing does not go down with the number of parallel random walks).

Towards addressing these challenges, I first improve mixing by increasing the conductance

of the FANMOD tree via an edge-weighting scheme. I then use Regenerations in the form of

Random Walk Tours (RWTs) [35 ], [37 ]–[40 ], which are short walks that begin and end at the

root node to estimate the function average avg(S(k); f) from Definition 2.2.2 . By definition,

these RWTs can be sampled embarrassingly in parallel. Moreover, their independence can

be leveraged to assess estimator convergence and reduce bias. Their independence also limits

the correlation between samples (although samples from the same tour are correlated, those

in two different tours are uncorrelated). In particular, due to the independence of RWTs,

the variance of my estimator reduces as O(1/n), where n is the number of RWTs.
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2.3.3 RTS on the FANMOD tree

The basic building-block of the RTS method is a weighted random walk on the FANMOD

tree, which is defined as follows:

Definition 2.3.1 (Tree Sampling Markov chain (TSMC Φ(k))). Given the FANMOD-tree

T (k) whose k-depth leaves represent the set of k-CISs contained in Gin. Let X be the set of

tree-nodes contained in T (k). We define the TSMC, Φ(k), as a Markov chain with state space

X and with transition probability between x, y ∈ X given by

pΦ(k)(y|x) ∝


αdepth(x) when y ≡ P(x)

1 when y ∈ C(x)
, (2.3)

where depth(x) is the depth of the tree-node x, α0, . . . , αk are positive parameters indexed

by the depth, which define the probability of choosing the parent node P(x) relative to a child

in C(x). Since the root-node ρ does not have parents, we assume α0 = 0, and since k-depth

tree-nodes don’t have children, αk = 1.

The TSMC is a (simple) random walk on an undirected, carefully weighted version of the

FANMOD tree T (k). The weights are defined such that, for a tree-node at depth depth(x),

an edge leading to a parent has weight which is αdepth(x) times that of an edge leading to

a child. Note that the actual edge weights are a function of the α(·) parameters and are

precisely defined in Section A.3 -Proposition A.3.1 . I defer the discussion on setting these

weights to Section 2.3.5 . The TSMC sampling can be nearly as memory-efficient as the

Knuth-sampling algorithm on the FANMOD tree:

Proposition 2.3.2. Consider the access model, where our algorithm has apriori access solely

to the root-node ρ of the FANMOD-tree from Definition 2.2.4 . All other states can only be

accessed using the child queries C(·) from Definition 2.2.4 .The TSMC Φ(k) can be sampled

as long as the algorithm has enough memory to store k tree-nodes.

Next, I state some basic properties of the TSMC.
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Lemma 2. The weighted random walk Φ(k) of Definition 2.3.1 over the tree-nodes X of

the FANMOD tree T (k) is a time-homogenous, reversible, irreducible Markov chain with a

unique steady-state. If L ⊂ X is the set of leaves of T (k) at depth k, then for any x, y ∈ L,

πΦ(k)(x) = πΦ(k)(y).

Lemma 2 states that if we initialize a chain Φ(k) at the root-node ρ and sample it for a

sufficiently long number of steps, the sampling distribution asymptotically becomes uniform

on k-depth leaves. The required number of steps to converge, is formally referred to as

the mixing time of the chain, and after that many steps, states visited by the chain are

distributed according to πΦ(k) .

Since πΦ(k) is the same for all k-depth leaves (recall that a leaf in T (k) is a k-CIS), the

random walk sampling can be used to sample k-CISs uniformly at random. Moreover, due

to the Convergence Theorem [44 , Thm 2.2], a simple average over the leaves visited by this

chain asymptotically converges to avg(S(k); f), the average of any bounded function f over

S(k) of Definition 2.2.2 .

2.3.4 Estimators from Φ(k) regenerations

Next, I propose using regenerations in the form of tours to compute the estimates of

avg(S(k); f), the average of the function f over the set of all k-CISs contained in Gin. Doing

so makes our algorithm embarrassingly parallel and aids in estimating its convergence. To

this end, we first need to define rooted random walk tours.

Definition 2.3.2 (Rooted Random Walk Tour (RWT)). Given the TSMC Φ(k) of Defini-

tion 2.3.1 over the tree-nodes X of the FANMOD tree T (k), the RWT R is the sample path of

Φ(k) between two consecutive visits to the root-node ρ. Formally, R = (X1, X2, . . . , Xξ) where

Xi ∈ X , i = 1, . . . , ξ and X1 = ρ. Transitions are sampled according to Xj+1 ∼ pΦ(k)(x|Xi)

(Definition 2.3.1 ) and the tour length ξ is a random variable such that Xξ is the last state

visited by the chain before returning to ρ (that is, Xξ+1 = ρ).

RWTs are independent and identically distributed due to the Regenerative Cycle Theo-

rem [45 , Thm 2.5.11]. Moreover, when stitched together, the concatenated sample path is
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governed by Φ(k) due to the strong Markov property [45 , Thm 2.5.11]. This fact can be used

to estimate avg(S(k); f), the average of any function f over S(k) using a set of RWTs as

follows:

Theorem 2.3.1 (Ratio of Tours Estimate). Given a set of n RWTs R(n) = {R1, . . . ,Rn}

sampled according to Definition 2.3.2 , the Ratio of Tours Estimate is defined as

µ̂rot(R(n); f) =
∑n

i=1

∑ξi
j=1 1{Xi,j∈L}f(Xi,j)/

∑n

i=1 ξi (2.4)

where ξi is the length of the i-th tour, Xi,j is the j-th state visited by the i-th tour and L ⊂ X

is the set of k-depth leaves. We assume that f(X) is the function f evaluated on the CIS

associated with the leaf node X. Then, the Ratio of Tours Estimate is an asymptotically

unbiased (in the number of tours) estimate of avg(S(k); f), i.e. limn→∞ µ̂rot(R(n); f) a.s.=

avg(S(k); f).

Recall the traditional MCMC estimator, which computes an empirical average over states

visited by a long Markov chain. It is clear that the Ratio of Tours Estimate from Equa-

tion (2.4 ) is essentially an empirical average computed over the sample path obtained by

concatenating RWTs. However, there is a key difference. Unlike a traditional MCMC sam-

ple path of pre-defined length, the RWT-concatenated sample path is guaranteed to contain

i.i.d. sub-sequences. This fact can be leveraged to empirically assess convergence – which is

non-trivial for traditional MCMC.

We can now use the jackknife resampling technique [29 ], [30 ], which for i = 1, . . . , n,

computes jackknife replicates µ̂rot(R(n)
−i ; f), where, R(n)

−i is the set of RWTs, with the i-

th RWT removed. The set of replicates {µ̂rot(R(n)
−1 ; f), . . . , µ̂rot(R(n)

−n; f)} then gives us

an approximation of the distribution of estimates, whose empirical mean and variance can

be used to compute the final estimate and the variance of Equation (2.4 ). The jackknife

estimator also allows us to reduce the (finite n) bias of Equation (2.4 ) [29 , Comment 6]:

µ̂jack
rot (R(n); f) = n µ̂rot(R(n); f)− n− 1

n

n∑
i=1

µ̂rot(R(n)
−i ; f). (2.5)
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One can also estimate the variance of µ̂rot(R(n); f) using Taylor-series approximations, when

the variance of RWT-lengths is small [46 ].

Another advantage of the Ratio of Tours Estimate is its embarrassingly parallel com-

putation (i.e., without inter-thread communication). Let us define toursum (Ri) =∑ξi
j=1 1{Xi,j ∈ L}f(Xi,j), which is the inner sum in the numerator of Equation (2.4 ). We can

then task each thread i ∈ {1, . . . , n} to sample Ri and compute toursum (Ri). These, per-

thread estimates can then be reduced to yield the estimate in Equation (2.4 ). Additionally,

all methods discussed above to compute confidence intervals and reduce bias are compatible

with this reduction step. This makes RTS very scalable.

The variance of the Ratio of Tours Estimate is O(1/n), where n is the number of RWTs

sampled [46 , Sec 2], a fact which is used in Section 2.3.5 to set edge weights which maximize

the number of tours per unit time.

2.3.5 RTS in practice: Setting edge weights

The asymptotic unbiasedness of the Ratio of Tours Estimate from Theorem 2.3.1 guar-

antees that RTS estimates will eventually converge to avg(S(k); f), the average of f over

the set of all k-CIS s in the input graph. In practice, this convergence depends both on the

probability of sampling k-depth leaves in an RWT, and on the probability of returning to the

root-node. In the entire procedure defined above, the only hyperparameters that are avail-

able to be tuned to control this behavior are the relative backtracking weights, α1, . . . , αk−1

from Definition 2.3.1 . I propose the following heuristic to set these hyperparameters.

First I simplify the task, by using a single hyperparameter w > 0 which RTS uses to

set the edge weights. For each i = 1, . . . , k − 1, I set the relative backtracking weight as

αi = wd̄i, where d̄i is the estimated, average tree-width of all tree-nodes at depth i. Recall

that the tree-width for each tree-node x is defined as the number of its children, |C(x)|. These

estimates of the average depth-wise tree widths are computed by sampling leaves using a

small number of non-backtracking random walks from the root to k-depth leaves, similar to

the Knuth-sampling algorithm in Section 2.3.1 .
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Intuitively, setting the hyper-parameter w to be very low, would lead to very long RWTs

and consequently, large running times. Alternately, a large value of w would lead to RWTs

that do not visit leaves. This can also be seen in the idealized case, where the average

tree-widths are known before hand:

Proposition 2.3.3. Assume that the average tree-width at each depth di is known exactly

for each i = 1, . . . , k − 1. When the relative back-tracking edge weights are set as αi = wdi,

the expected length of an RWT from Definition 2.3.2 is in O(1/w) and the number of leaves

sampled in each such RWT is in O(1/wk−1).

As such we need to choose a value of w which is large enough to reduce the tour length

but not so large, that it does not sample leaves. To find such a parameterization in practice,

I run a grid-search over various values of w, and choose values that maximize the number of

RWTs that contained leaves that were sampled per unit wall-clock time.

In fact, the interplay between the requirement that the RWT, both, returns to the root

node and samples a k-depth node is the limiting factor in scaling my method to larger k. As

we will see later, this dependence on memory is negligible (linear in k without any further

optimization).

2.3.6 Memory complexity

Since the FANMOD tree only provides child-query access in Definition 2.2.4 , to enable

parent-query access we store the ancestors of the tree-node the random walker is at. As

such:

Proposition 2.3.4 (RTS Memory Requirement). The memory requirement of sampling the

TSMC from Definition 2.3.1 is in O(k|Vin|).

While Theorem 2.2.1 can be exploited to reduce the memory requirement to O(|Vin|) in

lieu of increasing time complexity, I prefer to cache the ancestors, since the linear complexity

was not a limiting factor in my experiments. If the memory complexity of storing estimates

is ignored (which are of the size of the desired output), there is no further memory overhead

in the RTS procedure.
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2.4 Scaling PSRW to Large k

The PSRW algorithm proposed by Wang, Lui, Ribeiro, et al. [18 ], estimates function

averages avg(S(k); f) (Definition 2.2.2 ) over the set of k-CISs using stationary random walks

on the Higher Order Network (HON) defined as follows.

Definition 2.4.1 (Higher Order Network). Given the input graph Gin and the CIS size of

interest k, the k − 1-th order HON is a simple, undirected graph G(k−1) = (S(k−1), E (k−1)),

whose set of vertices is equivalent to the set of all k − 1-CISs contained in Gin (Defini-

tion 2.2.1 ) and where an edge exists between a pair of CISs if they share k−2 vertices. That

is (x, y) ∈ E (k−1) if |V (x)∩ V (y)| = k− 2, where V (s) refers to the vertices of s in the input

graph.

It is easy to see that each edge (x, y) ∈ E (k−1) corresponds to a k-CIS, since |V (x)∪V (y)| =

k and these k vertices are necessarily connected. The fact that the stationary of the random

walk on the HON is uniform on its edges and the number of repetitions of each CIS in E (k−1)

can be efficiently computed is used by PSRW to estimate avg(S(k); f).

These random walks are memory efficient, since only one CIS needs to be kept in memory

and reservoir sampling over the neighbors can be used to sample transitions. For large

k, however, enumerating the neighborhood of a k − 1-CIS gets prohibitively expensive.I

significantly reduce this complexity via the rejection sampling procedure in Algorithm 1 .

Proposition 2.4.1. Given the k − 1-HON defined above, the naive procedure to enumerate

the neighbors of a CIS x requires O(k|N(V (x))|) graph traversals (over a k-CIS), where

V (x) is the set of vertices contained in the CIS, x. The rejection sampling procedure from

Algorithm 1 samples a CIS from the neighborhood of the original CIS, x, uniformly at random

in O(|apx|) ∈ O(k) expected graph traversals, where apx is the set of articulation points [47 ]

of x.

In practice, we observe that the number of rejections is � N(V (·))k, allowing R-PSRW

to scale much better than PSRW. The rest of the algorithm is exactly the same as PSRW and

I refer the reader to the original paper for the exact form of the estimator and to Matsuno

and Gionis [41 ] and Bressan [42 ] for upper bounds on the mixing time. Our proposed
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neighborhood sampling technique may also help scale variants of PSRW, such as the shotgun

sampler [48 ].

Algorithm 1: R-PSRW Neighborhood Sampling
1 Input: CIS x ∈ S(k−1).
2 Output: k − 1-CIS, uniformly sampled from NG(k−1)(x).
3 Let apx be the set of articulation points [47 ] of x.
4 while true do
5 Sample an anchor-vertex a ∼ V (x) with probability ∝ deg(a) and further sample

v ∼ N(a).
6 if v /∈ V (x) then
7 Let z = Gin (V (x) ∪ {v}) be the CIS obtained by adding v to the original

CIS.
8 Let Nz (·), be the neighborhood within z.
9 if unif(0, 1) < 1

|Nz(v)| then
10 Sample u from V (x) uniformly at random.
11 if u = a or u ∈ APx then
12 if Gin (V (x) ∪ {v}\{u}) is connected then
13 return Gin (V (x) ∪ {v}\{u})
14 else
15 return Gin (V (x) ∪ {v}\{u})

2.5 Related Work

Since my method samples k-CISs by posing it as the problem of sampling k-depth leaves

of the FANMOD [17 ] tree, and then uses regenerations in a random walk on this tree, I

divide the related work into logical sub-sections for the reader’s convenience.

2.5.1 Random walk-based CIS Sampling.

Random walk based CIS sampling techniques use a Markov chain, which samples CISs

with a bias (known up to a constant) to estimate function averages over CISs contained in

the input graph (Definition 2.2.2 ). Methods like GUISE [21 ], RSS [41 ], PSRW [18 ] define

chains over the state-space of CISs. Alternately, Waddling [49 ] and IMPRG [20 ] sample

sequences of vertices via walks on the input graph Gin and use specialized estimators to
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sample up to 5-node CISs. RGPM [50 ] and Ripple [50 ] use regenerations in the PSRW chain

to parallelize it.

2.5.2 Other CIS-sampling methods.

Specialized methods exist that sample CISs for k ≤ 5 extremely efficiently [20 ], [24 ].

For larger k, however, their scalability is limited by the cost of computing the sampling

probability, which usually requires an iteration over all permutations of the vertices that

were sampled [16 ], [22 ], [23 ], [48 ]. FANMOD [17 ] improves this by enforcing an ordering over

the sampled vertices, but suffers from a large error. Efficient methods that sample dense

CISs are unfortunately not extensible to all patterns [1 ], [2 ]. Similarly, methods for sparse

graphs do not scale to arbitrary graphs Bera, Pashanasangi, and Seshadhri [51 ]. Motivo [19 ],

[25 ], [26 ] is unique in that it uses a color-coding [52 ], [53 ] based index of non-induced trees to

sample CISs which requires memory exponential in k. While faster methods to sample CISs

exist in theory, they are yet to be evaluated in practice [42 ], [54 ]. An extensive survey of CIS

sampling methods can be found in Ribeiro, Paredes, Silva, et al. [55 ]. Recently proposed

methods such as HOPS [56 ], MaNIACS [57 ] and TieredSampling [58 ] are closely related,

but focus on sampling non-induced sub-trees, frequent patterns (in terms of MNI ), and in

streaming settings, respectively.

2.5.3 Regenerations in Random Walks.

Multiple techniques exist which split MCMC sample paths into i.i.d. tours to compute

ergodic sums in parallel and with confidence intervals [27 ], [46 ], [59 ]–[61 ]. Random walks on

graphs, however are restricted to Regeneration point-based methods [35 ], [38 ]–[40 ], [50 ], [62 ].

Cooper, Radzik, and Siantos [39 ] and Massoulié, Le Merrer, Kermarrec, et al. [40 ] first used

tours to estimate graph properties. Avrachenkov, Ribeiro, and Sreedharan [35 ], Savarese,

Kakodkar, and Ribeiro [38 ], Teixeira, Cotta, Ribeiro, et al. [50 ], and Avrachenkov, Borkar,

Kadavankandy, et al. [62 ] used state aggregations or supernodes to reduce running times.

Ripple [37 ] further improves on the running times of these methods via stratification.
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2.5.4 Tree Sampling.

The task of sampling leaves of large trees occurs in various problems, like in back-tracking

algorithms [63 ] for combinatorial problems and in the task of sampling leaves uniformly

from B+ trees [64 ]. One solution to this task is Knuth’s algorithm [43 ] (discussed in detail

in Section 2.3.1 ). Methods such as [65 ]–[68 ] attempt to reduce the variance of the Knuth

estimate. To the best of the authors’ knowledge, no method exists that does so via weighted

random walks and RWTs.

2.6 Empirical Evaluation

I now evaluate myRTS and R-PSRW based estimators against the previously mentioned

baselines that are capable of sampling large CISs on real-world graphs. Specifically, I compare

against the following methods which scale to k > 5 in large real-world graphs with reasonable

accuracy. I defer the description of the graphs used in my evaluation and my experimental

setup to Section A.1 . The methods I evaluate against are:

• Motivo: Motivo [19 ] uses Color Coding to create an index of non-induced trees, which it

then uses to sample CISs. I observed in my experiments that the crucial index creation

step in Motivo is very resource intensive. Once created however, sampling from this index

is very fast and estimates converge fairly quickly. Motivo estimates, however, have a bias

which depends on the initial coloring of the graph. A bias-free version can be constructed,

where the graph is recolored multiple times, at the expense of having the index rebuilt

every time. This unbiased version, however, is impractical since in many of my tasks,

even a single indexing is unable to finish by the 31/2-hour deadline.

• Ripple: In Ripple [37 ] the underlying Markov chain is a rejection sampled version of

PSRW [18 ]. Ripple is distinct from my approach since it was designed to estimate sums

and not function averages. Moreover, Ripple estimates suffer from a bias (which depends

on k) due to the stratification it introduces to control running times [37 , Theorem 2].

Even for small values of k, myR-PSRW implementation comprehensively outperforms
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Ripple in the CIS pattern distribution task defined later. I defer a comprehensive set of

Ripple results to Figure A.1 in Section A.1 .

• Knuth-FM: I use Knuth’s sampling procedure on the FANMOD [17 ] tree as defined in

Lemma 1 in order to better control the number of samples and to measure the efficacy

of using RWTs on the FANMOD tree as opposed to this much simpler (in terms of

implementation) alternative.

• RecEdge+: I implement a highly efficient version of the RecEdge algorithm [16 ], using

memoization and articulation points [47 ] to reduce the time to compute the sampling

probability, which is O(k!) in the worst case.

2.6.1 CIS pattern distribution estimation task

Since CIS function averages for size k = 5 can be computed exactly using Escape [14 ],

I consider the 5-CIS pattern distribution estimation task of Wang, Lui, Ribeiro, et al. [18 ].

I define a set of non-isomorphic patterns H, where each H ∈ H is a 5-CIS. The goal is to

compute the distribution of all such 5-CIS patterns in the input graph. By Definition 2.2.2 ,

my goal is to compute avg(S(5); fpat), where fpat(s) = (1{s ∼ H})H∈H and ∼ denotes graph

isomorphism.

Figure 2.3 evaluates the L2 norm between the estimates and true value of avg(S(5); fpat),

which is the distribution of 5-CIS patterns in the input graph. More precisely, for each

method, I evaluate the estimates generated after 31/2 hours and compare the quartiles of

the L2 error relative to the exactly computed value of avg(S(5); fpat) over 10 runs. RTS

consistently performs either similar to the best baseline or better than all of the other

baselines. R-PSRW is comparable to RTS in some of the tasks, and has the lowest error for

DBLP. Motivo exceeds memory limits and crashes for the larger graphs, LiveJournal and

Orkut.
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Figure 2.3. RTS Accuracy in the 5-CIS pattern distribution estimation task
(Section 2.6.1 ) in various real-world graphs. Each box-plot represents quartiles
of the L2 error (10 runs) relative to the true pattern distribution computed
by Escape [14 ]. Estimates are computed after running each method for 31/2

hours (Motivo could not finish the indexing of LiveJournal and Orkut by the
deadline). RTS estimates are consistently as accurate as or better than the
other methods. R-PSRW matches RTS in some graphs, and is optimal for
DBLP.
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2.6.2 Average CIS edge-density estimation task

Since enumerating CISs of size k > 5 is prohibitively expensive, the task defined in

Section 2.6.1 cannot be used to evaluate my method for large k, since it requires one to

compute the ground truth pattern distribution. Additionally, I cannot compute CIS pattern

distributions for k = 16 (like I did for k = 5) since the number of patterns is large enough

that storing the pattern distribution in memory is already prohibitively expensive. Previous

work have used their own proposed method (running for a longer time) as ground-truth [19 ],

[37 ], but I fear this evaluation would give an unfair advantage towards my method.

Therefore, I propose a task that summarizes information of all CISs: I define the edge

density function as fed(s) = |E(s)|/(|V (s)|
2 ), where E(s) and V (s) are the set of edges and

vertices of the CIS s. The task, then, is to compute avg(S(k); fed), which according to

Definition 2.2.2 is the average edge density of all CISs in S(k). Since this task does not favor

specific patterns (e.g. sparse patterns or cliques) it is a good candidate task to evaluate the

utility of RTS.

Since we no longer have access to ground-truth, I run experiments for k ∈ {8, 16, 20, 25},

and evaluate the convergence of each method using the following two quantities:

• Initial Error: I use the median over 10 runs of the estimates computed after running

each algorithm for 31/2 hours as the ground truth and compute the normalized root mean

square error (NRMSE) of the estimates computed after 1 hour of runtime. Note that the

NRMSE of each method uses their own 31/2 hour estimates as “ground truth estimates”.

The lower the initial error, the better the method.

• Variance Reduction: I compute the ratio of the variance in the estimates computed

by running each method for 31/2 hours to the variance of the 1 hour estimates. When

comparing two methods, a smaller value indicates that the method converges faster to

the true value compared to the other method.

In Figures 2.1a to 2.1d , each method is plotted as a point whose x-coordinate represents

the initial error and y-coordinate, the variance reduction, described above. I use different

colors for different input graphs, and marker sizes represent the size of the input graph.
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Marker shapes represent various methods. Our RTS and R-PSRW estimates have better

convergence properties (they tend to be situated in the bottom left hand corner) compared

to the other tested baseline methods, with myRTS estimates showing superior convergence

more often compared to myR-PSRW estimates. Note that Motivo does not run for k ≥ 8

(even for k = 8 Motivo does not run for large input graphs).

In Figures 2.1e and 2.1f I plot the median of the 31/2 hour k-CIS edge-density estimates of

R-PSRW against that of RTS for k ∈ {16, 25}, for all graphs where I obtained estimates. De-

spite having very different sampling strategies, the points lie on the diagonal, indicating that

R-PSRW and RTS estimates converge to the same value for all tested graphs. I take this as

strong evidence that both methods’ estimates are correct, even though the computationally

intractable ground-truth for k ∈ {16, 25} is not known.

2.7 Summary

This chapter introduced two estimators of k-CIS function averages, RTS and R-PSRW,

that push the state of the art from k = 12 to k = 16 for larger graphs and k = 25 for smaller

graphs. By introducing regeneration and weighted random walks to the FANMOD tree,

RTS is able to scale function estimation to an unprecedented range of k. R-PSRW proposes

adding a novel randomized estimator to PSRW [18 ] that allows it to scale from k = 8 of the

original algorithm to k = 25 over the same graphs. My empirical results show that RTS is

the most consistently accurate method across all graphs, followed by R-PSRW, followed by

the baselines (as distant 3rd places for larger k).
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3. SEQUENTIAL STRATIFIED REGENERATIONS

3.1 Introduction

This chapter considers the following general task: Let G = (V , E) be a simple graph,

where V is the set of vertices, E is the set of edges, and E contains at most a single edge

between any pair of vertices and no self-loops. Our goal is to efficiently estimate the sum of

a bounded function over all the edges of G,

µ(E) =
∑

(u,v)∈E
f(u, v) (3.1)

where f : E → R, f(·) < B is a bounded function for some constant B ∈ R under the

following query model from [69 ].

Assumption 1 (Query Model). Assume we are given arbitrary seed vertices and can query

the neighborhood N(u) , {v ∈ V : (u, v) ∈ E} for any vertex u ∈ V such that accessing the

entire graph G is prohibitively expensive.

This setting arises naturally in the subgraph counting problem, which we study in Sec-

tion 3.4 . Simple Monte Carlo procedures are not useful because random vertex and edge

queries are not directly available, and reservoir sampling would require iteration over all

edges. Standard Markov chain Monte Carlo (MCMC) methods cannot estimate the quantity

in Equation (3.1 ) and are limited to estimate µ(E)/|E|, because |E| in our task is unknown [70 ].

Generally, under Assumption 1 , Equation (3.1 ) is estimated using specialized MCMC esti-

mators that use a random-walk-like Markov chain that has a uniform distribution over the

edges E as its equilibrium distribution. However, these estimators [69 ] are impractical in

large graphs because their running time is O(|E|).

Traditional MCMC methods are limited by their reliance on the Markov chain on G

reaching equilibrium or burning in. Because the rate of convergence to equilibrium depends

on the spectral gap [44 ], a significant number of Markov chain steps is needed to burn in in

order to produce accurate estimates of Equation (3.1 ), particularly in large graphs. Parallel

approaches that divide the state space into disjoint “chunks”, which are to be processed in

parallel [71 ], [72 ], offer no respite because we cannot access the entire graph. In fact, G
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may not even have disconnected components (i.e., disjoint chunks) that can be parallelized.

Therefore, traditional MCMC on G offers no meaningful parallelization opportunities and

running times may be arbitrarily long.

Contributions. This work introduces sequential stratified regeneration (Ripple), a novel

parallel MCMC technique that expands the application frontier of MCMC to large state-

space graphs G. Ripple stratifies the underlying Markov chain state space into ordered

strata that need not be disjoint chunks, rather, they need to be connected. Markov chain

regeneration [27 ] is then used to compute estimates in each stratum sequentially, using

a recursive method, which improves regeneration frequencies and reduces variance. Ripple

offers an unprecedented level of efficiency and parallelism for MCMC sampling on large state-

space graphs while retaining the benefits of MCMC-based algorithms, such as low memory

demand (polynomial w.r.t. output).

Surprisingly, the parallelism of Ripple comes from the regeneration rather than the strati-

fication: the strata’s job is to keep regeneration times short. I demonstrate that the estimates

obtained by Ripple are consistent, among other theoretical guarantees. In addition, I empir-

ically show the power of Ripple in a real-world application by specializing Equation (3.1 ) to

subgraph counting in multi-million-node attributed graphs–to the best of my knowledge, a

task at a scale that has been thought unreachable by any other MCMC method. My spe-

cific contributions to the subgraph counting problem include streaming-based optimizations

coupled with a parallel reservoir sampling algorithm, novel efficiency improvements to the

random walk on the HON [18 ] and a theoretical analysis of scalability in terms of running

time and memory w.r.t. the subgraph size, verified empirically on large datasets.

3.2 Background and Prior Work

The MCMC random-walk-like Markov chain over the graph G is defined as:

Definition 3.2.1 (Random Walk on G). Given a simple graph G = (V , E), a simple random

walk is a time-homogenous Markov chain Φ with state space V and transition probability

pΦ(u, v) = 1/d(u), when (u, v) ∈ E and 0 otherwise, where d(u) = |N(u)| is the degree of u in

G and N(u) = {v : (u, v) ∈ E} is the neighborhood of u.
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It is easy to check that the above random walk can be sampled under Assumption 1 and

that on a connected graph, this walk samples edges uniformly at random in a steady state

(check Section B.2.1 for details). My notation is summarized in Section B.1 .

3.2.1 Regenerations in Discrete Markov Chains

The rate of convergence to stationarity of the random walk Φ from Definition 3.2.1 

depends on the spectral gap1
 [44 ]. As such, practitioners are encouraged to run a single,

long sample path, which prevents them from splitting the task among multiple cores. Usually,

because the spectral gap is unknown or loosely bounded, practitioners use various diagnostics

to eyeball if the chain has mixed [73 ]. The variance of an estimate computed from a stationary

chain [70 ] also depends on the spectral gap.

A solution to the above problems is to split [27 ] the Markov chain using regenerations.

Discrete Markov chains regenerate every time they enter a fixed state, which is referred to

as a regeneration point. This naturally yields the definition of a random walk tour (RWT).

Definition 3.2.2 (RWT over Φ). Given a time-homogenous Markov chain Φ over finite

state space V and a fixed point x0 ∈ V, an RWT X = (Xi)ξi=1 is a sequence of states visited

by Φ between two consecutive visits to x0, that is, X1 = x0 and ξ = min{i > 1: Xi+1 = x0}

is the first return time to x0.

Because of the strong Markov property [28 , Chap-2, Thm-7.1], RWTs started at x0 are

i.i.d. and can be used to estimate µ(E) from Equation (3.1 ) when |E| is unknown [38 ]–[40 ],

[50 ], [62 ], [69 ].

Lemma 3 (RWT Estimate). Given the graph G = (V , E) and the random walk Φ from

Definition 3.2.1 , consider f : E → R bounded by B, and T , a set of m RWTs started at

x0 ∈ V (Definition 3.2.2 ) sampled in a parallel z core environment assuming each core

samples an equal number of tours. Then,

µ̂∗(T ; f,G) = d(x0)
2m

∑
X∈T

|X|∑
j=1

f(Xj, Xj+1) , (3.2)

1↑ The spectral gap is defined as δ = 1−max{|λ2|, |λ|V||}, where λi denotes the i-th eigenvalue of the transition
probability matrix of Φ.
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is an unbiased and consistent estimator of µ(E) = ∑
(u,v)∈E f(u, v) if G is connected, where

each Xj refers to the jth state in the RWT X ∈ T .

The expected running time for sampling m tours is O
(
m/z 2|E|

d(x0)

)
, and when G is non-

bipartite, the variance of the estimate is bounded as

Var (µ̂∗(T )) ≤ 3B2

m

|E|2

δ(Φ) , (3.3)

where δ(Φ) is the spectral gap as defined in the beginning of this section.

The RWT Estimate can be considered a Las Vegas transformation of MCMC, which

takes random time but yields unbiased estimates of objectives, such as Equation (3.1 ). The

parallelism in the expected running time in Lemma 3 is directly due to the independence

of RWTs. Moreover, confidence intervals for the RWT Estimate can be computed, because
√
m µ̂∗(T )−µ(E)

σ̂(T ) approaches the standard normal distribution for sufficiently large m, where

σ̂(T )2 is the empirical variance of µ̂∗(X), the RWT Estimate computed using an individual

tour X ∈ T .

3.2.2 Improving the Regeneration Frequency

From Lemma 3 , it is clear that increasing the degree of the regeneration point d(x0) and

spectral gap δ(Φ) and decreasing |E| reduces the variance as well as the running time of the

RWT Estimate. [69 ] showed that using the supernode in a contracted graph as a regeneration

point achieves the above reductions.

Definition 3.2.3 (Contracted Graph). [69 ] Given a graph G = (V , E) from Definition 3.2.1 

and a set of vertices I ⊂ V, a contracted graph is a multigraph GI formed by collapsing I

into a single node ζI . The vertex set of GI is then given by V\I ∪ {ζI}, and its edge multiset

is obtained by conditionally replacing each endpoint of each edge with ζI if it is a member of

I and removing self-loops on ζI . We refer to the set I and the vertex ζ as the supernode.

Contractions benefit RWTs because the supernode degree dGI (ζI) in GI and the spectral

gap δ(ΦI) of the random walk on the contracted graph increase monotonically with |I| [69 ].

Moreover, RWTs can be sampled on GI without explicit construction, as we see next.
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Remark 1. Let the multi-set N(ζI) , ]u∈ING(u)\I be the neighborhood of the supernode

in GI from Definition 3.2.3 . Let ΦI be the simple random walk on GI . An RWT (Xi)ξi=1 on

ΦI from ζI is sampled by setting X1 = ζI , sampling X2 u.a.r. from N(ζI) and subsequently

sampling transitions from Φ until the chain enters I, i.e., ξ = min{i > 1: Xξ+1 ∈ I}.

This construction naturally stratifies E and decomposes µ(E) as µ(E∗)+µ(E\E∗), where we

can exactly compute the µ(E∗) and compute an RWT Estimate of µ(E\E∗) on the contracted

graph. However, to compute the supernode degree, dGI (ζI); furthermore, to sample from

N(ζI), we need to enumerate the set of the edges incident on I in G given by E∗ ⊂ E . As such,

a massive supernode I (which is crucial when |E| is large) makes enumerating E∗ prohibitively

expensive. We overcome these issues and gain additional control over regenerations by further

stratifying |E|.

3.3 Sequential Stratified Regenerations

Ripple controls regeneration times through a sequential stratification of the vertices and

edges of G into ordered strata as illustrated in Figure 3.1 , which allows us to control the

regeneration frequency and the RWT Estimate variance. For each stratum, we then construct

a graph in which the supernode is created by collapsing all prior strata, from which RWTs

can be sampled. We use the RWTs from the previous strata to estimate the degree of and

sample transitions from the supernode. The core idea is described in two steps: Section 3.3.1 

details the stratification and conditions that it needs to satisfy and Section 3.3.2 describes

the recursion. Finally, we see that the estimator bias converges to zero asymptotically in the

number of tours. Particularly for subgraph counting, I show that Ripple’s time complexity

is independent of the (higher-order) graph size (|E|) and only depends polynomially on the

diameter and maximum degree of the input graph and the subgraph size (Section 3.4 ).

3.3.1 Sequential Stratification

Consider the following vertex and edge stratification procedure.
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Figure 3.1. Figure 3.1a shows a simple graph G that is stratified into four
strata {I1, I2, I3, I4}. Figures 3.1b to 3.1d show the second, third and fourth
graph strata constructed by Definition 3.3.2 . In the multi-graph G2 (Fig-
ure 3.1b ), vertices in I1 are collapsed into ζ2 and only edges incident on I2
are preserved. The edge set therefore contains J2 and the edges between ζ2
and I2. Consequently, self-loops on ζ2 and edges between I3:4 are absent. Fig-
ures 3.1c and 3.1d follow suit. In each stratum Gr, RWTs from ζr are started
by sampling u.a.r. from the dotted edges and estimates are computed over the
solid edges.
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Definition 3.3.1 (Sequential Stratification). Given G = (V , E) from Definition 3.2.1 , a

function ρ : V → {1, . . . , R} induces the stratification (Ir,Jr)Rr=1 if s ∈ Iρ(s), for each s ∈ V,

and (u, v) ∈ Jmin(ρ(u),ρ(v)), for each (u, v) ∈ E.

Note that these strata are pairwise disjoint and their union is the set of vertices and edges

of the graph. Next, I describe the contracted graph over which RWTs are to be sampled in

each stratum.

Definition 3.3.2 (r-th Graph Stratum). Let Ai:j , ∪j
x=iAx be defined for any ordered tuple

of sets. Let (Ir,Jr)Rr=1 be the stratification induced by ρ from Definition 3.3.1 on G = (V , E).

The r-th graph stratum Gr = (Vr, Er), r > 1, is obtained by removing all edges not incident

on Ir and vertices that do not neighbor vertices in Ir and subsequently contracting I1:r−1

into ζr according to Definition 3.2.3 . Further, let Φr denote the simple random walk on Gr.

It can be shown that the vertex set Vr contains the r-th stratum Ir, the r-th supern-

ode ζr, obtained by collapsing I1:r−1, and vertices from subsequent strata neighboring Ir,

∪u∈IrN(u)∩Ir+1:R. The edge multiset Er is the union of Jr and edges that connect ζr to ver-

tices in Ir resulting from the graph contraction. A detailed example is shown in Figure 3.1 .

Note that when R = 2, Ripple reduces to the estimator from [69 ].

Ergodicity-Preserving Stratification. Because the RWT Estimate is consistent only if

the underlying graph is connected according to Lemma 3 , we have the following definition:

Definition 3.3.3 (Ergodicity-Preserving Stratification (EPS)). The stratification due to ρ

from Definition 3.3.1 is an Ergodicity-Preserving Stratification if each graph stratum from

Definition 3.3.2 is connected, i.e., Φr, r > 1, is irreducible.

I propose necessary and sufficient conditions on ρ that yield an EPS.

Proposition 3.3.1. ρ yields an EPS if the following three conditions are satisfied:

(a) for at least one vertex in each connected component of G, ρ evaluates to 1;

(b) for each u : ρ(u) = r, there exists v ∈ N(u) such that ρ(v) ≤ r; and

(c) there exists (u0, v0) ∈ E such that ρ(u0) = r and ρ(v0) < r.
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Although the optimal stratification would depend on G and the quantity being estimated,

an ideal stratification would yield graph strata wherein the supernode degree and connec-

tivity are maximized (Lemma 3 ) while minimizing the number of strata (because of the bias

propagation described in Theorem 3.3.2 ). ρ needs to be efficient as well because we will

see that it is evaluated at each step of the random walk and the Ripple estimators from

Definitions 3.3.5 and 3.3.6 heavily depend on it. In Proposition B.5.1 I show that return

times to the supernode are inversely proportional to the fraction of vertices in Ir connected

to I1:r−1.

3.3.2 Recursive Regenerations

Assume for the moment that in each stratum, r = 2, . . . , R, we know the degree of the

supernode d(ζr) and can sample directly from pΦr(ζr, ·), which is the transition probability

out of ζr in the graph stratum Gr. We could then sample RWTs Tr and compute stratum-

wise RWT Estimates, which when combined as µ(J1) + ∑R
r=2 µ̂r(Tr) provide an unbiased

estimate of µ(E) as a direct consequence of Lemma 3 and the linearity of expectations.

Unfortunately, the impracticality of this assumption, especially under Assumption 1 (when

R > 2), necessitates the following relaxation.

Definition 3.3.4 (Supernode Estimates, d̂(ζr) and p̂Φr(ζr, ·)). Given an EPS of G (Defini-

tion 3.3.3 ), the supernode estimates in the r-th graph stratum Gr consist of the estimate of the

degree d̂(ζr) and a sample from some approximate transition probability out of the supernode

p̂Φr(ζr, ·). Let Φ̂r be the random walk on Gr, where transitions are sampled according to Φr

everywhere except ζr, where they are sampled from p̂Φr(ζr, ·).

Although Φ̂r may not be reversible, RWTs on Φ̂r retain pairwise independence and the

benefits stated after Lemma 3 . We leverage this fact in the following recursive solution that

computes supernode estimates in the current stratum using supernode estimates and tours

sampled in the previous strata.

Definition 3.3.5 (Ripple’s Recurrence Relation). Given a graph G stratified according to ρ

(Definition 3.3.3 ) and some stratum r, 1 < r ≤ R, assume access to the result of previous re-

cursive steps, i.e., the set of mq RWTs (T †q ), supernode degree estimates d̂(ζq) and estimated
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transition probabilities out of the supernode p̂Φq(ζq, ·) (Definition 3.3.4 ) for all 2 ≤ q < r.

The estimate of the number of edges between Iq and Ir is given by

β̂q,r = d̂(ζq)
|T †q |

∑
X∈T †q

|X|∑
j=2

1{ρ(Xj) = r} , (3.4)

where Xj is the j-th state visited in tour X, and by convention, β̂1,r = |E ∩ I1×Ir| is exactly

computed. The r-th supernode degree is then estimated as

d̂(ζr) =
r−1∑
q=1

β̂q,r . (3.5)

Transitions from p̂Φr(ζr, ·) are sampled by sampling q ∈ {1, . . . , r − 1} with probability β̂q,r
and then sampling u.a.r. from Ûq,r, which is defined as

Ûq,r = ]X∈T †q ]
|X|
j=2 {Xj : ρ(Xj) = r} , when q > 1 , (3.6)

and as ]u∈I1N(u) ∩ Ir by convention when q = 1, where ] is the multi-set union. Ûq,r,

q > 1, is thus the multi-set of all states in Ir visited by RWTs on Φ̂q. An RWT so started

stops when it reaches some state X ′, where ρ(X ′) = r.

Proposition B.3.1 (Section B.3 ) contains additional details for sampling RWTs on Φr.

The above recursion therefore allows us to estimate supernode degrees and sample RWTs to

compute an estimate of µ(E) from Equation (3.1 ) as follows:

Definition 3.3.6 (Ripple’s µ Estimator). Given the supernode degree estimates d̂(ζr) and

RWTs T †r sampled in each graph stratum from Definition 3.3.5 and the edge strata Jr,

2 ≤ r ≤ R based on an EPS of G from Definition 3.3.3 , the Ripple estimate is defined as

µ̂Ripple =µ(J1) +
R∑
r=2

µ̂
(
T †2:r; f

)
, (3.7)

where, µ̂
(
T †2:r; f

)
= d̂(ζr)

2|T †r |
∑

X∈T †r

|X|−1∑
j=2

f(Xj, Xj+1) , (3.8)
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and Xj is the jth state visited by the RWT X ∈ T †r . The dependence of T †r and d̂(ζr) on

T †2:r−1 is suppressed for brevity.

This estimate of µ(E) is unbiased when the number of tours is infinite.

Theorem 3.3.1. The Ripple estimate from Definition 3.3.6 is a consistent estimator of

µ(E) (asymptotically unbiased in the number of tours), that is,

lim
|T †2 |→∞

. . . lim
|T †R|→∞

µ(J1) +
R∑
r=2

µ̂
(
T †2:r; f

)
a.s.= µ(E) .

In the finite regime, however, there exists a bias in each stratum that depends on the

estimation bias in the previous strata, which we quantify as follows:

Theorem 3.3.2. Given the random walk Φr on the EPS-stratum Gr from Definitions 3.3.2 

and 3.3.3 , the estimates of the degree and transition probability at the supernode d̂(ζr) and

p̂Φr(ζr, ·) from Definition 3.3.4 , and assuming aperiodic Φr, the bias of the Ripple estimate

in the rth stratum from Equation (3.8 ) is given by

∣∣∣E [µ̂ (T †2:r; f
) ∣∣∣T †2:r−1

]
− µ(Jr)

∣∣∣ ≤ (λrνr + |1− λr|)
√

3B|Er|√
δr

,

where δr is the spectral gap of Φr, B is the upper bound of f , νr = ‖p̂Φr(ζr, ·)− pΦr(ζr, ·)‖2

is the L2 distance between transition probabilities out of ζr [44 ](Definition B.3.2 ) and λr =
d̂(ζr)/d(ζr).

Therefore, the bias in each stratum affects the bias in subsequent strata. Consequently,

we control the empirical variance in each stratum by increasing the number of tours sampled

(I detail this for subgraph counting in Section 3.4 ).

3.4 Applying Ripple to Count Subgraphs

We now focus on a concrete implementation of Ripple to count subgraphs on a given

simple input graph G = (V,E, L) with vertices V , edges E, and attribute function L, which

is assumed to be finite and undirected. In general, a subgraph induced by any V ′ ⊂ V on
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G is given by G (V ′) = (V ′, E ∩ (V ′ × V ′), L). However, in this chapter, I am interested in

subgraphs G (V ′) that are connected and where |V ′| = k, referred to as a connected, induced

subgraph (CIS) of size k or k-CIS. As such, the task is defined as

Definition 3.4.1 (Subgraph Count). Let V(k) be the set of all k-CISs of graph G, let ∼

denote the graph isomorphism equivalence relation (or any equivalence relation), and let H

be an arbitrary set of pairwise nonequivalent k-CISs. The subgraph count is defined as the

|H|-dimensional vector C(k) = (C(k)
H )H∈H, where C(k)

H = ∑
s∈V(k) 1{s ∼ H}, and 1{·} is the

indicator function.

Therefore, C(k) contains the count of subgraphs in V(k) equivalent to each subgraph in H.

I suppress the dependence of C(k) on H for simplicity.

Subgraph counting is challenging when k > 3 in real-world input graphs because V(k)

is not tractably enumerable and naively sampling k vertices to obtain CISs is challenging

because |V(k)|/|V |k → 0 (as evidenced by Table 3.1 ). Next, I address this issue by reducing the

subgraph counting problem to an edge sum (Equation (3.1 )) over a higher-order graph that

only provides neighborhood query access for large-real-world input graphs. I also propose

a stratification strategy compatible with the access model and introduce novel solutions to

improve speed and memory requirements. I defer the straightforward aspects to Section B.5 ,

wherein I summarize the entire algorithm (Algorithm 3 ).

3.4.1 MCMC on the Subgraph Space

[18 ] proposed a network over subgraphs called the HON, which exposes neighborhood

query access from Assumption 1 and is therefore amenable to MCMC solutions (which I

optimize in Algorithm 2 ).

Definition 3.4.2 (Higher-Order Network (k-HON) [18 ]). The higher-order network or HON

G(k) = (V(k), E (k)) is a graph whose vertices are the set of all k-CIS contained in the input

graph G, and (u, v) form an edge in E (k) if they share all but k− 1 vertices, that is, |V (u)∩

V (v)| = k − 1.
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In the k−1-HON, the subgraph induced by an edge (u, v) ∈ E (k−1), i.e., G (V (u) ∪ V (v)),

is a k-CIS. Thus, the subgraph counts from Definition 3.4.1 can then be expressed as an edge

sum over G ≡ G(k−1) as

C(k) = µ(E (k−1)) =
∑

(u,v)∈E(k−1)

(
1{G (V (u) ∪ V (v)) ∼ H}

γ(u, v)

)
H∈H

, (3.9)

where γ(u, v) = |{(ü, v̈) ∈ E : V (u) ∪ V (v) ≡ V (ü) ∪ V (v̈)}| is the number of edges that

represent the same subgraph as (u, v). The set of edges sampled by a random walk on G(k−1)

is called the pairwise subgraph random walk (PSRW). Having reduced the subgraph counting

task to Equation (3.1 ), we proceed with implementing Ripple.

3.4.2 Ergodicity-Preserving Stratification for Subgraph Counting

Toward using Ripple, I propose an Ergodicity-Preserving Stratification of G via the strat-

ification function ρ.

Proposition 3.4.1 (EPS for subgraphs). Consider the set of n1 seed subgraphs I1 whose

vertex sets in G are pairwise non-intersecting. Let V (I1) , ∪s̈∈I1V (s̈) be the set of all

vertices in G forming subgraphs in I1. Let dist(u) be the shortest path distance from u ∈ V

to any vertex in V (I1). Define ρ as

ρ(s) = 1 +
∑

u∈V (s)
(dist(u) + 1{u ∈ V (I1)\V ∗)}) ,

where V ∗ is the largest connected subset of V (s) such that V ∗ ⊆ V (s̈) for some seed vertex

s̈ ∈ I1 with ties broken arbitrarily. If I1 contains a subgraph from each connected component

of G, the stratification from Definition 3.3.1 generated using ρ is an Ergodicity-Preserving

Stratification (Definition 3.3.3 ).

dist can be precomputed for all u ∈ V using a single BFS in O(|V | + |E|), and ρ can

be computed in O(k). Although R is unknown a priori, it is upper bounded as (k− 1) ·DG,

where DG is the diameter of G and the Ripple estimator simply ignores empty strata, i.e.,
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strata in which the estimated degree of the supernode d(ζr) = 0. To control bias, we aim to

reduce maxu∈V dist(u) by recruiting seed subgraphs in I1, which are far apart in G.

3.4.3 Miscellaneous Optimizations

Controlling Memory through Streaming. In each pair of strata r < t, Definition 3.3.5 

uses tours T †r to compute µ̂(T †2:r; f), β̂r,t and Ûr,t, which are, respectively, the estimates of

µ(Jr) and the size of and sample from the set of vertices in It connected to Ir. Although

µ̂(T †2:r; f) and β̂r,t can be computed as running sums, storing Ûr,t requires memory on the

order of the sum of all tour lengths, which is random. My solution is to use Algorithm

R [74 ], to sample a fixed-size (m) sample without replacement from all the tours in T †r (See

Section B.5.1 ). Note that although the hyperparameter m controls memory, it may introduce

bias when the number of tours |T †r | > m due to (possible) oversampling, which we observe

in Figure B.3 (Section B.6 ).

Speeding up Subgraph RandomWalks. To sample a random walk in the HON, naively

sampling u.a.r. from the neighborhood of a k − 1-CIS requires O(k4∆G) operations, where

∆G is the maximum degree in the input graph (see Section B.5.2 ). In Algorithm 2 , I propose

a rejection sampling algorithm that does so efficiently using articulation points [47 ].

Algorithm 2: Efficient Neighborhood Sampling in G(k−1)

Input: k − 1-CIS s, Graph G
Output: x ∼ unif(NG(k−1)(s))

1 Let degs = ∑
u∈V (s) d(u) and As be the articulating points of s

2 while True do
3 Sample u from V (s) w.p. ∝ degs−d(u) ; // u is the vertex to remove
4 Sample a from V (s)\{u} w.p. ∝ d(a)
5 Sample v ∼ unif(N(a)) ; // v is the vertex to add
6 bias = |N(v) ∩ V (s)\{u}|; // v’s sampling bias
7 if unif(0, 1) ≤ 1/bias then
8 x = G (V (s) ∪ {v}\{u})
9 if u 6= v and (u /∈ As or x is connected) then

10 return x ; // Connectivity Check
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Proposition 3.4.2. Given a subgraph s ∈ V(k−1), Algorithm 2 samples u.a.r. from NG(k−1)(s)

in O(k2 ∆s+k|As|
k−|As| ) expected time, where ∆s , maxu∈V (s) dG(u) is the maximum degree of

vertices in s, and As contains articulation points of s.

Therefore, the running time of Algorithm 2 is ∈ O(k∆s + k2) when s is dense (|As| ≈ 0)

and increases to O(k2∆s+k4) for sparse subgraphs, which is faster than the naive algorithm.

From Error Bounds to Tour Counts. Ripple auto-decides the number of RWTs required

in each stratum based on an approximate error bound ε provided as input such that the

number of tours → ∞ as ε → 0, and the Ripple estimate converges to the ground truth

(Theorem 3.3.1 ). Specifically, RWTs are sampled until we satisfy

σ̂(T †r ;f1)/
√
|T †r | ≤ ε µ̂(T †r ; f1) , (3.10)

where µ̂(T †r ; f1) is the Ripple estimate from Equation (3.8 ) of the number of edges in the

r-th graph stratum Gr (i.e., f1 (·) = 1), and σ̂2(T †r ; f1) = V̂arX∼T †r (µ̂(X; f1)) is the former’s

empirical variance over tours.

Performance Guarantees. Ignoring the complexity of loading the input graph into mem-

ory, I show that for subgraph counting, the memory and time requirements of Ripple are a

polynomial in k. In Section B.5 , I state and prove a detailed version in which the complexity

also depends polynomially on the diameter and maximum degree of G and is invariant to

|V | and |E|.

Proposition 3.4.3. Assuming a constant m RWTs sampled per stratum and ignoring graph

loading, the Ripple estimator for k-CIS counts detailed in Section B.5 -Algorithm 3 has total

memory and time complexity in Ô(k3 + |H|) and Ô(k7 + |H|), respectively, when all factors

other than k and |H| are ignored.

More details for subgraph counting with Ripple are provided in Section B.5 .

3.5 Experiments and Results

I now evaluate the Ripple estimator for k-node subgraph (k-CIS) counts on large-real-

world networks. I show that Ripple outperforms the state-of-the-art method in terms of time
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Table 3.1. The graphs that I used along with their diameter DG, maximum
degree ∆G and the estimated orders of magnitude of k-CIS counts, |V(k)|.

Graph |V| |E| DG ∆G
Magnitude of Est. # of CISs
|V(6)| |V(8)| |V(10)| |V(12)|

Amazon 334, 863 925, 872 44 549 1011 1015 1019 1022

DBLP 317, 080 1, 049, 866 21 343 1012 1016 1019 1023

Cit-Pat. 3, 774, 768 16, 518, 948 22 793 1014 1018 1022 1026

Pokec 1, 632, 803 30, 622, 564 11 14,854 1018 1025 1032 1038

LiveJ. 3, 997, 962 34, 681, 189 17 14,815 1019 1025 1032 1038

Orkut 3, 072, 441 117, 185, 083 9 33,313 1021 1028 1035 1043

and space and that Ripple converges to the ground truth for various pattern sizes as hyperpa-

rameters are varied. Additional experiments that evaluate the parallelism, etc., are deferred

to Section B.6 . My code is available at https://github.com/PurdueMINDS/Ripple.

• Execution environment. My experiments were performed on a dual Intel Xeon Gold 6254

CPU with 72 virtual cores (total) at 3.10 GHz and 392 GB of RAM. In addition, this

machine is equipped with a fast SSD NVMe PCIex4 with 800 GB of free space available.

• Baselines. I use Motivo [19 ], a fast and parallel C++ system for subgraph counting, as

the baseline because it is the only method capable of counting large patterns (k>6), to the

best of my knowledge. Additionally, notice that existing MCMC methods for subgraph

counting, such as IMPRG [20 ] and RGPM [50 ], cannot count beyond k = 5 in practice.

• Datasets. I use large networks from SNAP [75 ], representing diverse domains, which have

been used to evaluate many subgraph counting algorithms [19 ], [25 ]. Table 3.1 presents the

basic features of these datasets, including the order of magnitude of the Ripple estimates

of the subgraph counts |V(k)|, k = 6, 8, 10, 12.

• Hyper-parameters I1, m and ε. Finally, I evaluate the trade-off between accuracy and

resource consumption by varying the aforementioned hyperparameters, detailed in Sec-

tions 3.4.2 and 3.4.3 . (m is evaluated in Section B.6 .)
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3.5.1 Scalability Assessment

I start by assessing the scalability of the methods when estimating k-CIS counts for k ≥ 6.

To the best of my knowledge, Motivo is the only existing method capable of estimating these

patterns. Motivo has two phases: a build-up phase, which constructs an index table in the

disk, and a sampling phase that queries this table. I only measure the time taken by the

build-up phase and the out-of-core (disk) usage because this is a bottleneck for Motivo. As

such, I report the best-case scenario for Motivo, and the reported values are lower bounds

for the actual time and space requirement. For Ripple, I report the total time and the RAM

usage as the space cost because my method works purely in memory. Both methods were

executed using all threads available.

In Tables 3.2 and 3.3 , I compare the running time and space usage of Ripple and Motivo.

I also report their rate of increase in terms of the subgraph size k in columns Time(k)/Time(k−2)

and Space(k)/Space(k−2). I fix ε = 0.003, |I1| = 104 and m = 107 based on the analysis in

Section 3.5.2 and Section B.6 . For Motivo, I follow the authors’ suggestions. In Section B.6 -

Table B.2 , I report the dispersion max−min
mean of the Ripple estimates generated in the measured

runs to ensure that the results are not arbitrary.

Running time Scalability (Table 3.2 ). Although Motivo outperforms Ripple for k =

6, 8, it does not scale well for k = 10, 12, where the execution terminates because of insuf-

ficient storage space. Particularly, for DBLP, Motivo required approximately 10 minutes to

process 10-CIS but almost 9 hours for 12-CIS, a growth rate of 58×. On the other hand, Rip-

ple not only succeeded in all configurations in less than 4 hours on average but also exhibited

a smoother growth in running time, with the largest increase ratio being 2.7×, observed for

DBLP and LiveJournal when k went from 8 to 10. Furthermore, Time(k)/Time(k−2) < (k/(k-2))7

in all cases according to Proposition B.5.1 .

Space Scalability (Table 3.3 ). The trends in space usage mirror those of the running

time, where we see an almost exponential increase w.r.t. k for Motivo compared to a near

constant increase for Ripple despite its polynomial complexity (Proposition B.5.1 ). For

example, in Amazon, Motivo’s space demand increases by 7.5× when k goes from 6 to 8 and
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Table 3.2. Running time comparison between Ripple and Motivo. The last
column shows that for large k, Ripple provides gains of up to 9 hours when
Motivo can run to completion. Motivo crashes for large k on large graphs.

Motivo Build-up only Ripple (ε = 0.003) Ripple
gain (hrs)Dataset k Time (hrs) Time(k)

Time(k−2) Time (hrs) Time(k)

Time(k−2)

Amazon

6 0.002± 0.000 − 0.020± 0.000 − -0.018
8 0.006± 0.000 3× 0.029± 0.000 1.4× -0.023
10 0.082± 0.000 13.7× 0.056± 0.000 1.9× +0.026
12 3.630± 0.002 44.3× 0.095± 0.002 1.7× +3.535

DBLP

6 0.002± 0.000 − 0.013± 0.000 − -0.011
8 0.007± 0.000 3.5× 0.030± 0.000 2.3× -0.023
10 0.156± 0.000 22.3× 0.082± 0.000 2.7× +0.074
12 9.099± 0.002 58.3× 0.105± 0.002 1.3× +8.994

Patents

6 0.022± 0.000 − 0.033± 0.000 − -0.011
8 0.098± 0.000 4.5× 0.051± 0.000 1.5× +0.047
10 > 1.1 hrs, crashed − 0.090± 0.001 1.8× −
12 > 0.5 hrs, crashed − 0.117± 0.003 1.3× −

Pokec

6 0.012± 0.000 − 0.459± 0.142 − -0.447
8 0.128± 0.000 10.7× 0.759± 0.282 1.7× -0.631
10 5.965± 0.000 46.6× 1.400± 0.592 1.8× +4.565
12 > 1.5 hrs, crashed − 1.469± 0.334 1× −

LiveJ.

6 0.024± 0.000 − 0.351± 0.009 − -0.327
8 0.205± 0.000 8.5× 0.642± 0.074 1.8× -0.437
10 > 2.3 hrs, crashed − 1.76± 1.550 2.7× −
12 > 0.7 hrs, crashed − 2.189± 1.350 1.2× −

Orkut

6 0.032± 0.000 − 0.669± 0.026 − -0.637
8 0.585± 0.006 18.3× 1.744± 0.983 2.6× -1.159
10 > 8.9 hrs, crashed − 2.633± 1.065 1.5× −
12 > 1.8 hrs, crashed − 3.967± 3.162 1.5× −
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Table 3.3. Space usage comparison between Ripple and Motivo.Motivo runs
out of disk space for larger datasets in which k ≥ 10, while Ripple scales almost
linearly. Ripple saves up to 600 GB of space when Motivo can run.

Motivo Build-up only Ripple (ε = 0.003) Ripple
gain (GB)Dataset k Space (GB) Space(k)

Space(k−2) Space (GB) Space(k)

Space(k−2)

Amazon

6 0.53± 0.00 − 4.69± 0.06 − -4.16
8 4.00± 0.00 7.5× 5.73± 0.12 1.2× -1.73
10 48.00± 0.00 12× 7.38± 0.36 1.3× +40.62
12 559± 0.00 11.6× 9.09± 1.02 1.2× +549.91

DBLP

6 0.50± 0.00 − 4.58± 0.02 − -4.08
8 4.00± 0.00 8× 6.31± 0.00 1.4× -2.31
10 50.00± 0.00 12.5× 7.99± 0.01 1.3× +42.01
12 611.00± 0.00 12.2× 10.45± 0.02 1.3× +600.55

Patents

6 7.00± 0.00 − 11.50± 0.05 − -4.5
8 66.00± 0.00 9.4× 13.80± 0.03 1.2× +52.2
10 > 800, crashed − 15.85± 0.08 1.1× > 800
12 > 800, crashed − 18.12± 0.10 1.1× > 800

Pokec

6 3.7± 0.00 − 13.69± 0.06 − -9.99
8 36.00± 0.00 9.7× 17.17± 0.03 1.3× 18.83
10 407.00± 0.00 11.3× 20.31± 0.01 1.2× +386.69
12 > 800, crashed − 22.82± 0.03 1.1× > 800

LiveJ.

6 7.70± 0.00 − 18.26± 0.02 − -10.56
8 73.00± 0.00 9.5× 21.26± 0.00 1.2× +51.74
10 > 800, crashed − 24.43± 0.72 1.1× > 800
12 > 800, crashed − 27.75± 0.00 1.1× > 800

Orkut

6 7.90± 0.00 − 40.38± 0.00 − -32.48
8 78.00± 0.000 9.9× 43.49± 0.00 1.1× +34.51
10 > 800, crashed − 46.63± 0.00 1.1× > 800
12 > 800, crashed − 49.73± 0.00 1.1× > 800
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Figure 3.2. Accuracy and convergence analysis for 5-CIS s. I plot the L2-
norm between the Ripple estimate and the exact value of the count vector
C(5) (Equation (3.9 )) of all non-isomorphic subgraph patterns against various
configurations of the parameters ε and |I1|. As expected, the accuracy improves
as the error bound ε decreases and the number of seed subgraphs |I1| increases.
Each box and whisker represents 10 runs.

increases to 12× from 10 to 12. Ripple’s largest rate of increase is 1.4× when k goes from 6

to 8 for DBLP, and it saves up to 600 GB of space when Motivo does not crash.

3.5.2 Accuracy and Convergence Assessment

Next, I evaluate the accuracy and convergence of Ripple on small and large subgraph

patterns, where the former refers to subgraph sizes in which the number of isomorphic

subgraphs can be exactly computed using ESCAPE [14 ], i.e., k ≤ 5.
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Accuracy on Small k.

For k ∈ {3, 5}, I evaluate the L2-norm between the Ripple estimate and the exact value

of the count vector C(k) (Equation (3.9 )) of all non-isomorphic subgraph patterns. Figure 3.2 

shows results for k = 5 (where the number of patterns of interest |H| = 21) for different

settings of the parameters ε and |I1|. In all datasets, we note that the L2-norm decreases as ε

decreases from 0.3 to 0.003 and as |I1| increases from 100 to 104. Between the worst setting,

(ε, |I1|) = (0.3, 100), and the best (ε, |I1|) = (0.003, 104), we see an error reduction close to an

order of magnitude. This is due to Theorem 3.3.2 and Lemma 3 because reducing ε increases

the number of tours, lowers the error and therefore leads to reduced error propagation.

Increasing I1 also reduces the number of strata and therefore error propagation. Results for

k = 5 using the L-∞ norm are deferred to Section B.6 -Figure B.2 .

Convergence for Large k.

When k > 5, subgraph counts for real-world graphs are computationally intractable.

Therefore, I show that Ripple converges in these cases as I increase the computing effort.

Consider the hypothesis that sparse patterns are frequent in power-law networks as k in-

creases. To glean empirical evidence for this, I choose an appropriate pattern set H and

equivalence relationship in Definition 3.4.1 , and I use Ripple to compute the total number

of k-CIS s and the number of sparse subgraphs and stars. A subgraph is defined as sparse

if its density lies between 0 and 0.25, according to [76 ]. In Figure 3.3 , I show that Ripple

converges for all datasets, and as expected, most patterns are sparse, with close to half of

the patterns in many of the studied networks being stars. This proportion is attenuated in

DBLP and Patents, where dense substructures naturally emerge from collaboration/citation

among the authors that these graphs represent.

3.6 Related Work

For better presentation, I split this section into two parts: (1) parallel MCMC techniques

and (2) methods for subgraph counting.
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Figure 3.3. Convergence of Ripple estimates of 12-CIS pattern counts. I
estimate the total number of subgraphs |V(12)| and the number of sparse pat-
terns and stars. Estimates over 10 runs are presented as box and whiskers
plots, which exhibit a reduction in variance as ε increases. Indeed, almost all
patterns are sparse, and the most frequent substructure is a star.
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3.6.1 Parallel MCMC through Splitting.

Since [27 ], [59 ], multiple techniques have been proposed to circumvent the burn-in period

by splitting the chain into i.i.d. sample paths. This approach allows practitioners to compute

unbiased estimates in parallel and determine confidence intervals. Perfect sampling methods

based on coupling [61 ] require the transitions to be monotonic w.r.t. some ordering over the

state space, and annealing/tempering [77 ] methods require some notion of temperature,

which are absent in general graph random walks. Methods such as [46 ], [60 ], [78 ] require a

minorization condition to hold, albeit implicitly.

Regeneration point-based methods on finite state chains [38 ]–[40 ], [50 ], [62 ], [69 ] are more

general because they only rely on standard ergodicity conditions. Although [39 ], [40 ] used

tours to estimate graph properties, [62 ], [69 ] proposed supernodes to reduce running times.

The studies in [38 ], [50 ] further used supernode-based tours to estimate gradients in RBM s

and to count subgraphs. To the best of my knowledge, no existing regeneration point method

controls running times through stratification.

3.6.2 Subgraph Counting through Sampling.

Many random walk algorithms have been proposed to sample subgraphs, with some

methods only capable of estimating subgraph pattern distributions, which is much easier than

estimating counts. The studies of GUISE [21 ] and RSS [41 ] use a Metropolis-Hastings [79 ]

walk, and the latter improves the mixing time of the underlying Markov chain using canonical

paths [80 ]. Waddling [49 ] and IMPRG [20 ] perform a simple random walk over the input

graph and use specialized estimators to sample 5-node patterns. Although PSRW [18 ] first

proposed the HON-based random walk and RGPM [50 ] used tours on it to estimate subgraph

counts, both are limited to k ≤ 5 due to the size of the HON.

Multiple attempts to Monte Carlo sample subgraphs have been proposed whose scaling

is limited because of the complexity of computing either the importance weights, rejection

rate or variance [16 ], [17 ], [22 ]–[24 ]. Efficient methods that sample dense regions/subgraphs

are unfortunately not extensible to sparse patterns [1 ], [2 ]. Motivo [19 ], [25 ] is an example of

color-coding methods in which an index table is built using a deterministic dynamic program-
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ming algorithm, which is then exploited to sample subgraphs uniformly and independently.

However, CC methods suffer from the exponential time and space complexities associated

with building and accessing the index table. Motivo proposed succinct index tables and

efficient out-of-core I/O mechanisms to ameliorate this issue and extended the applicability

of CC methods to larger subgraphs. Please, check [55 ] for an extensive survey on subgraph

counting methods.

3.7 Summary

In this chapter, I propose the Ripple estimator that uses sequentially stratified regener-

ations to control the running time of a random walk tour-based MCMC. I prove that the

estimator is consistent (w.r.t. the number of random walk tours) and that the time and

memory complexity of my implementation for the subgraph counting problem is linear in

the number of patterns of interest and polynomial in the subgraph size. I empirically verify

my claims on multiple graph datasets and show that Ripple can accurately estimate subgraph

counts with a smaller memory footprint compared to that of the state-of-the-art Motivo [19 ].

Ripple is currently the only subgraph pattern count estimator that can estimate k = 10, 12

node patterns in million-node graphs. Beyond my specific application, Ripple provides a

promising way to expand the sphere of influence of regenerative simulation in finite-state

reversible MCMC.
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4. IMPROVING RBM TRAINING THROUGH STOPPING

SETS

4.1 Introduction

Despite the significant recent advances in training discriminative neural network models,

training generative models has proven more elusive. As with most neural network training

methods, algorithms for training Restricted Boltzmann Machines (RBMs) [32 ]–[34 ], a class of

energy-based generative neural network models, are unreasonably effective. Though, some

argue, not yet effective enough for modern applications. In this chapter I seek to better

understand and improve the training of RBMs.

RBM is a family of energy-based models with probability distribution over a state vector

x = (v,h) (assumed discrete w.l.o.g.), v ∈ {0, 1}nV (e.g. an image) and binary latent

variables h ∈ {0, 1}nH ,

p(x; W) = 1
Z(W)e−E(x;W), (4.1)

where Z(W) = ∑
x e−E(x;W) is a partition function with finite mean, E[Z(W)] < ∞, and

E(x; W) is an energy function given by

E
(
x = (v,h); W = (W′,b, a)

)
= −vTW′h− bTv− aTh.

RBMs proved highly successful in many tasks, such as data generation [32 ], [33 ], [81 ] and

as a pre-training step for feedforward neural networks [82 ], among others (see Bengio and

Delalleau [83 ] and Erhan, Bengio, Courville, et al. [84 ]).

As computing Z(W) directly is intractable for large state spaces, Markov Chain Monte

Carlo (MCMC) methods are widely used to compute statistics of these models (including

estimating the gradient ∂p(x; W)/∂W). MCMC works by running a Markov chain (MC)

Φ(W) with steady state p(x; W) to equilibrium. Metropolis-Hastings and Gibbs sampling

are two general such approaches.

However, in the real world, one is expected to run the MC Φ(W) for only K steps,

returning a state x ∼ π̂(K), “approximately sampled” from the Markov chain’s true steady
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state distribution p(x; W). Starting from a random state, K needs to be quite large for this

method to work.

Contrastive Divergence (CD-K) [32 ], [33 ], improves this procedure by starting the MC

from the visible states of the training data. Empirically, CD-K works tremendously well to

train RBMs with few hidden units (nH small) even for K as low as K = 1 [32 ], [33 ], [85 ].

For high-dimensional RBMs, CD-K is less efficient and the reason is conjectured to be the

longer mixing times [86 ], although concrete evidence is anecdotal as mixing times are hard to

assess in high dimensions. While not the main focus of my work, armed with my techniques,

I will further empirically explore possible reasons for this high-dimensional difficulty.

A Las Vegas transformation of RBM training. The main focus of this chapter is to

recast MCMC estimation of RBMs as a Markov chain algorithm with stopping sets obtained

from the training data. The size of the stopping set is a hyper-parameter that can be

dynamically adapted during training based on computational trade-offs.

In standard RBM training using MCMC, the MC stops after a predefined number of

K steps. In my approach, the MCMC can also stop if it reaches one of the states in the

stopping set. Thus, MCMC running times are random (and are, in average, shorter than

K). This approach is closer to a Las Vegas algorithm than a Monte Carlo algorithm: we

aim to get perfect samples of a quantity with an algorithm that has random running times.

I denote this approach Markov Chain Las Vegas with K maximum steps (MCLV-K).

I show that, by dynamically adapting K, MCLV-K can find unbiased estimates of the

direction of the RBM gradient. Moreover, in contrast to standard MCMC, MCLV-K has

an extra piece of information: whether or not the stopping set has been reached. I show

that this knowledge provides novel ways to estimate gradients and partition functions of

energy-based models.

And perhaps, one of the most interesting observations in this chapter comes from the

correspondence between CD-K and MCLV-K. MCLV-1 is quite similar to CD-1

except for an added S-stopped flag, where S is a set of stopping states defined later. Clearly,

for K ≥ 2, MCLV-K is distinct from CD-K, as the MC of MCLV-K may stop before

performing all K steps.
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Analyzing CD-K through my Las Vegas transformation, it is clear that CD-K has an un-

intended inspection paradox bias that can be corrected to further improve the RBM learning.

Using the reached-stopping-set flag of MCLV-K, I design a new gradient estimator, denoted

Las Vegas Slope (LVS), that empirically gives significantly better parameter estimates than

standard CD-1 and CD-10 over the MNIST dataset according to the model’s likelihood. MNIST

is used in my experiments due to the long history of RBM development over this dataset.

Contributions. I claim the following contributions: (1) I introduce Markov Chain Las

Vegas (MCLV-K). I show MCLV-K gives finite-sample unbiased and asymptotically consis-

tent estimates of a variety of statistics of RBMs; further, I give two convergence bounds. I

also show how to theoretically and empirically reduce the MCLV-K random running times

using the training examples. (2) I show how MCLV-K can be used to design new ways to

train Restricted Boltzmann Machines; I use MCLV-K to propose a novel RBM gradient esti-

mator, Las Vegas Slope (LVS), which my empirical results show (for K ∈ {1, 3, 10}) improves

parameter estimates of RBM over CD-1 and CD-10, over the MNIST dataset.

4.2 MCLV-K Estimation with Statistical Guarantees

In what follows I introduce some of the definitions used throughout this chapter. I

introduce the concept of a tour (a MC which returns to the same state) and show that the

return probability can be increased by collapsing a set of stopping states into a single state

in Definition 4.2.1 . The MC stops when it either reaches K steps or one of the states in the

stopping set. Corollary 1 describes how this collapsing can be performed while preserving

the statistical properties of the MC.

Theorem 4.2.1 introduces the MCLV-K estimator (that, among others, can estimate the

partition function) and proves it is consistent, giving error bounds. And Theorem 4.2.2 

shows that this estimator is also finite-running-time unbiased. The first results provides

unbiased estimates of the partition function, and generalize these unbiased estimates to a

broad family of functions.
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The reader only interested in RBM gradient estimates can safely skip to the next section

on training RBMs, after reading the preliminaries and the definition of the RBM stopping

sets.

Preliminaries. We define state x = (v,h) to consist of a visible vector, v ∈ V , and a

hidden vector h ∈ H, where H and V are the set of all hidden and visible states, respectively.

Let Φ(W) be an irreducible Markov chain with steady state p(x; W) over the states Ω :=

V ×H. A MC is irreducible if all states communicate, which is trivially true for RBMs since

the co-domain of the logistic function is (0, 1) for any input in R. If the Markov chain Φ(W)

starts in equilibrium (or runs until equilibrium), the next transition gives us one independent

sample x from the steady state p(x; W). The set {vn}Nn=1 denotes the N visible examples

of the training data. We often use (·), as in g(·), to denote that the statement over g is true

for any valid input value.

RBMs can be trained by optimizing its parameters W in order to maximize the likelihood

of the training data. Taking partial derivatives with respect to the weights results in a

surprisingly simple update rule for W:

1
N

N∑
n=1

∂ log(∑h p(x = (vn,h); W))
∂W

=
∑
h∈H

( 1
N

N∑
n=1

p(h|vn; W)vnhT −
∑
v∈V

p((v,h); W)vhT
)

= 1
N

N∑
n=1

vnEW[h|vn]T − EW[vhT ],

(4.2)

where the l.h.s. term of eq. (4.2 ) (also called positive statistics) is easily calculated from

the training data. However, the r.h.s. term of eq. (4.2 ) (negative statistics) corresponds

to the gradient of the partition function Z(W), which is generally intractable to compute.

More specifically, computing E[vhT ] requires collecting model statistics p(v,h), either by

running the MCMC Markov chain Φ(W) to equilibrium from any starting state or by direct

computation of the expected value if we know the partition function Z(W).

If the Markov chain Φ(W) is not run until equilibrium the gradient estimates have an

unknown bias. In what follows we use Markov chain tours to take care of this bias.
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Tours and Stopping Sets. Define a tour to be a sequence of ξ steps of the Markov chain

(X(1), . . . ,X(ξ)) s.t. the state of the (ξ + 1)-st step is the same as the starting state, i.e.,

X(1) = X(ξ + 1). Let Ξ(r) = (X(r)(1), . . . ,X(r)(ξ(r))) denote the r-th tour, r ≥ 1. The

strong Markov property guarantees that if s 6= r, the sequences Ξ(r) are independent of

Ξ(s). This independence guarantees that both Ξ(r) and Ξ(s) are sample paths obtained from

the equilibrium distribution of the Markov chain. We will later use this property to obtain

unbiased estimators of the partition function.

However, as is, tours are not a practical concept for RBMs because in such a large state

space Ω, the tour is unlikely to return to the same starting state. We will, however, use a

Markov chain property common to Metropolis-Hastings and Gibbs sampling Markov chains

to significantly increase the probability of return by collapsing a large number of states into

a single state.

RBM stopping set. Our stopping set S uses sampled hidden states from the training

data, H(m)
N = {h(1)

n , . . . ,h(m)
n : hn ∼ p(h|vn; W)}, where {vn}Nn=1 is the training data. Often

we will use m = 1, but we can change the size of H(m)
N by changing m. The stopping set

contains all hidden states in H(m)
N and all possible visible states

S(m)
HN =

⋃
h∈H(m)

N ,v∈V

{(v,h)}, (4.3)

and p(h|v; W) is the conditional probability of h given v using model parameters W. Most

of our theoretical results apply to any stopping set that is a proper subset of the state space,

S ⊂ Ω. In practice, note that we do not store S(m)
HN in memory, rather we only keep H(m)

N in

memory, as reaching a hidden state in H(m)
N is enough to guarantee we need to stop. This

requires only O(mN) space, where N is the number of training observations.

Definition 4.2.1 (Stopping-set-Collapsed MC). Consider an arbitrary stopping set S ⊂ Ω.

A state-collapsed MC is a transformation of MC Φ(W) with state space Ω, into a new MC

Φ′(W) with state space Ω′ = Ω\S ∪ {S}, where S is a new state formed by collapsing all the
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states in S. The transition probabilities between states Ω′∩Ω are the same as in Φ(W). The

transition probabilities from S to states in Ω′\{S} are

pΦ′(S,x) =
∑

y∈S e−E(y;W)pΦ(y,x)
ZS(W) , ∀x ∈ Ω′\{S},

where ZS(W) = ∑
y∈S e−E(y;W), and pa indicates the probability transition matrix of MC a.

The transitions from states Ω′\{S} to state S are

pΦ′(x, S) =
∑
y∈S

pΦ(x,y), ∀x ∈ Ω′\{S}.

It is important to distinguish the MC in Definition 4.2.1 from general MC state aggre-

gation methods such as lumpability [87 ] and interactive aggregation-disaggregation meth-

ods [88 ]. In the following corollary, we see that the MC in Definition 4.2.1 affects the

steady state, unlike general MC aggregation methods that leave the steady state undisturbed.

Thankfully, later we will be able to correct the distortion imposed by Definition 4.2.1 because

we know the steady state distribution of the states inside S up to a normalizing constant.

Corollary 1 (Simulating Φ′(W) from Φ(W)). For any MC Φ(W) resulting from standard

Gibbs sampling or Metropolis-Hastings (MH) MCMCs, we can cheaply simulate the transi-

tions in and out of S of Def inition 4.2.1 by: (a) pΦ′(S,x), we first sample a state y with

replacement from S with probability e−E(y;W)/ZS(W) and then perform a transition pΦ(y,x);

(b) pΦ′(x, S) is also simulated by performing a transition pΦ(x,y), and stopping the MC if

y ∈ S. The simulated Φ′(W) is ergodic and time-reversible.

The proof is in the appendix. It follows from the fact that Φ(W) is the MC of Gibbs sam-

pling and MH and, thus, time-reversible [89 ]. Time reversibility imposes a set of necessary

and sufficient conditions in the form of detailed balance equations [90 , Theorem 6.5.2]. A

little algebra shows that the sampling procedure in Corollary 1 using Φ(W) is stochastically

equivalent to Φ′(W).
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4.2.1 MCLV-K Estimator

Following Corollary 1 , a tour starts by sampling the initial tour state x and stopping

when the tour reaches the stopping set S. We now want to truncate all return times of

tours greater than some value K ≥ 1, i.e., we will only observe the complete r-th tour

(x,X(r)(2), . . . ,X(r)(ξ(r))) if ξ(r) ≤ K. Otherwise, we observe only the first K states of the

tour: (x,X(r)(2), . . . ,X(r)(K)). The S-stopped flag for tour r is true if ξ(r) ≤ K, otherwise

it is false.

Lemma 4 (Perfect sampling of tours). Let

Ck = {(x,X(i)(2), . . . ,X(i)(k))}i

be a set of tours of length k ≤ K, with x sampled from S according to some distribution.

Then, there exists a distribution Gk such that the random variables

Gk ≡ {g(σ) : ∀σ ∈ Ck}

are i.i.d. samples of Gk, with g defined over the appropriate σ-algebra (e.g., k RBM states)

with ‖g(·)‖1 ≤ ∞.

Moreover, if we perform M tours, these tours finish in finite time and {ξ(r)}Mr=1 is an

i.i.d. sequence with a well-defined probability distribution p(ξ(·) = k).

The Las Vegas parallel is observed when we notice that any MCMC metric can be per-

fectly sampled from the tours. The tour lengths are sampled from a distribution p(ξ(·) = k).

And, for any given tour length k, the metric of interest g is perfectly sampled from Gk. The

maximum tour length K only cuts off the tail of p(ξ(·) = k) beyond k > K, which allows us

to bound the sampling error.

Theorem 4.2.1 (MCLV-K RBM Estimator). Let p(x; W), E(x; W), and Z(W) be as

described in eq.(4.1 ). Let

F (W, f) = Z(W)
∑
x∈Ω

f(x)p(x; W), (4.4)
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where f : Ω → Rn, n ≥ 1, ‖f(·)‖1 < ∞, and ‖ · ‖1 is the l1 norm. Let Φ(W) be a time-

reversible MC with state space Ω and steady state distribution {p(x; W)}x∈Ω. Let S ⊂ Ω be

a proper subset of the states of Φ(W).

Sample x′ ∈ S with probability e−E(x′;W)/ZS(W) and let

(X(r)(1) = x′,X(r)(2), . . . ,X(r)(ξ(r)))

be a sequence of discrete states of the r-th S-stopped tour, where we stop the tour if one of

two conditions are met: (a) we have reached K steps, or (b) when we reach any state in S,

i.e., X(r)(ξ + 1) ∈ S. Then, for R ≥ 1 tours, let C(R)
k be the set of finished tours in k ≤ K

steps, (as defined in Lemma 4 ). For the sake of simplicity, we henceforth refer to C(R)
k simply

as Ck. The estimator

F̂ (K,R)(W, f) = 1∑K
k=1 |Ck|

∑
y∈S

e−E(y;W) ×
K∑
k=1

∑
(X(1),X(2),...,X(k))∈Ck

k∑
h=1

f(X(h)) (4.5)

is an estimate of F (W, f) in eq. (4.4 ) with a bias upper bounded by B · (E[ξ]−∑K−1
k=1 p(ξ >

k)), where p(ξ > k) is the probability that a tour has length greater than k and B ≥

supx∈Ω ‖f(x)‖1.

Theorem 4.2.1 gives a basic estimator from the MCMC tours. The gradient estimates

will be explicitly derived in the next section. In my experiments I show how to estimate

p(ξ > k). For the partition function and gradient estimates, it is also trivial to obtain a

bound on B using the RBM weights W [83 ].

Theorem 4.2.2 (Geometrically Decaying Tour Length Tails). Let p(ξ > k) be the prob-

ability that a tour has length greater than k. If there exists a constant ε > 0 s.t.

infx∈Ω\S
∑

y∈S pΦ(x,y) ≥ ε then, there exists 0 < α < 1, log p(ξ > k) = k logα + o(k),

i.e., ξ has a geometrically decaying tail.

Theorem 4.2.2 shows conditions of a geometric decay in the tail of p(ξ > k). And in

practice it means that tours cannot be “heavy tail” long and, thus, making the bound in

Theorem 4.2.1 tighter.
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4.2.2 MCLV-K Finite-Sample Unbiasedness

In what follows we dynamically increase K until the MC reaches a state in the stopping

set.

The following theorem shows that this procedure gives unbiased estimates of F (W, f).

Theorem 4.2.3 (Unbiased Partition-scaled Function Estimates by Dynamic Adaptation of

K). Consider the estimator in Theorem 4.2.1 and let us dynamically grow K (denoted Kdyn)

until the MC reaches a stopping state in S. Then, for R ≥ 1 tours,

E[F̂ (Kdyn,R)(W, f)] = F (W, f), (4.6)

is an unbiased estimator and the estimator is consistent, that is, almost surely

lim
R→∞

F̂ (Kdyn,R)(W, f) = F (W, f) ,

and Kdyn is finite.

Moreover, for ε > 0,

p
(∥∥∥F̂ (Kdyn,R)(W, f)− F (W, f)

∥∥∥
1
≥ ε

)
≤ αR,ZS(W),

where, R is the number of tours, αR,ZS(W) = B2

ε2R

(
(Z(W))2

(ZS(W))2δ
+ 1

)
, B ≥ supx∈Ω ‖f(x)‖1 is an

upper bound on the absolute value of f(·) over the state space Ω, δ is the spectral gap of the

transition probability matrix of Φ(W).

Corollary 2 (Unbiased Partition Function Estimation). Let f1(x) = 1, then

E[F̂ (Kdyn,R)(W, f1)] = Z(W),

is an unbiased estimator of the partition function.
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4.3 Training Restricted Boltzmann Machines

In what follows I explore the connections between MCLV-K and learning RBMs using

MCMC methods. First, I show how MCLV-K can provide a finite-sample unbiased and

asymptotically consistent estimate of the direction of the RBM gradient.

4.3.1 MCLV-K Gradient Estimates

In what follows I will provide an estimate of the gradient of the negative log-likelihood

of RBMs using MCLV-K. My gradient will have a scaling factor but the gradient direction

is the same as the original gradient:

∇WLZ = Z(W)
ZS(W)

(
1
N

N∑
n=1

vT
nEW[h|vn]− EW[vTh]

)
.

The scaling Z(W)/ZS(W) is constant given W. In my current implementation, I use Corol-

lary 2 to estimate Z(W)/ZS(W) and divide the gradient by it, compensating for the scaling

at essentially no computational or memory cost.

Corollary 3 (LVS-K: The Las Vegas Slope Estimator). Let Φ(W), S, x, the tour (x,X(r)(2)

, . . . ,X(r)(ξ(r))), R, K, and Ck be as defined in Theorem 4.2.1 . Then, for a learning rate

η > 0,

̂∇WLLVS(K,R) = η

 Ê[ξ]
N

N∑
n=1

∂E(xn; W)
∂W

−
∑K
k=1

∑
(X(1),...,X(k))∈Ck

∑k
i=1

∂E(X(r)(k);W)
∂W∑K

k=1 |Ck|

,
(4.7)

is a consistent (K,R→∞) estimator of the energy-model gradient in eq.(4.2 ), where Ê[ξ] =∑K

k=1 |Ck|k∑K

k=1 |Ck|
is the empirical expectation of the tour lengths.

Moreover, the contribution of a tour of length k to the negative statistics of the gradient

is proportional to

P [ξ = k] · k · E[∂E(X̃k; W)/∂W],
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where X̃k is a random state of a tour of length k. If the Markov chain Φ(W) satisfies the

conditions of Theorem 4.2.2 , then P [ξ = k] · k = e−O(k), so that extremely long tours do not

influence the gradient.

Corollary 4 (Unbiased Gradient Direction Estimator: LVS-Kdyn). Consider the estimator

in Corollary 3 and let us dynamically grow K (denoted Kdyn) until the MC reaches a stopping

state in S. Then,

E
[

̂∇WLLVS(Kdyn, R)
]
∝ ∇WLZ ,

is an unbiased estimate of the RBM gradient direction.

The proofs of the two above corollaries follow directly from Theorems 4.2.1 and 4.2.3 ,

respectively.

4.3.2 Correspondence and Differences Between LVS-K and CD-K

In this section I explore a correspondence between LVS-K (proposed in Corollary 3 ) and

CD-K to train RBMs. I will also emphasize some differences that will give us some new

insights into CD-K. The correspondence is as follows: (a) consider a mini-batch of training

examples {vi}Ni=1; (b) the stopping set is S(m)
HN , described in eq.(4.3 ); (c) the number of tours

R of LVS-K is the number of training examples in the mini-batch N , i.e., R = N .

One can readily verify that the Gibbs sampling updates of LVS-K and CD-K are similar

except for the following key differences: (i) LVS-K starts at a state x of S(m)
HN with probability

proportional to exp(−E(x; W)), CD-K starts uniformly over the training examples. Thus,

the negative phase of LVS-K tends to push the model away from unbalanced probabilities

over the training examples. (ii) at every Markov chain step, LVS-K stops early if it has

reached a state in S(m)
HN , while CD-K will always perform all K steps. (iii) the gradient

estimates of LVS-K use only the completed tours, while CD-K uses all tours; (iv) the

gradient estimates of LVS-K use all states visited by the MC during a tour, while CD-K

uses only the last visited state.

A long sequence of states visited by the CD-K Gibbs sampler can be broken up into tours

if the stopping state contains only the starting state. Figure 4.1 illustrates three MCMC
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runs starting at visible states representing “7”, “3”, and “4”, broken up into tours whenever

the starting hidden state is sampled again. Starting from visible state “7”, CD-K ignores

the completed tour Tour 1, which LVS-K uses for its gradient estimate; and CD-K proceeds

to use the state in the middle of Tour A for its gradient estimate. CD-K also uses a state

in the incomplete Tour 2, which LVS-K ignores as incomplete. Finally, CD-K ignores Tour

3 and proceeds to use the state in the beginning of Tour B for its gradient estimate.

This means that, for K ≥ 2, CD-K is more likely to sample states from longer tour than

shorter tours. This bias is the inspection paradox [91 ]. Interestingly, this bias makes CD-K,

K ≥ 2, significantly different from CD-1, which has no such bias. Note that LVS-K has the

opposite bias: it ignores tours longer than K; the bias of LVS is measurable (Theorem 4.2.1 )

if we can estimate the average tour length.

K steps
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Figure 4.1. CD-
k bias towards longer
tours for k ≥ 2;

4.3.3 Computational Complexity

In this section I give the time and space complexities of LVS-K and CD-K. Let |W|

denote the number of elements in W, = nV ∗nH and nX = nV +nH . In terms of space, LVS-

K needs O(N mnX) space to store the H(m)
N which is m times the requirement for CD-K. At

every epoch, LVS-K samples a stopping set, which involves a matrix multiplication followed

by algebraic operations over a matrix. The matrix multiplication which takes O(Nm|W|)

upper bounds the time. Computing the free energies of the hidden state also takes the same

time. Adding the states of the stopping set to a heap for easier sampling takes O(Nm) time

and allows us to sample starting states for the tours in O(N log(Nm)). Every Gibbs step is
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again bounded by the time taken for matrix multiplication which takes a total of O(N |W|K)

time. Checking stopping set membership takes O(NKnX) amortized time assuming that

standard algorithms used by hash sets, e.g. MD5, take O(nX) time to evaluate. Computing

the gradient and updating W takes O(N |W|) time.

Therefore LVS-K takes O(NKnX +Nm|W|+NK|W|) ≡ O(N |W|(m+K)) time, com-

pared to CD-K which takes O(NK|W|). In the general case m ∈ O(K), ∴ the asymptotic

complexity of CD-K and LVS-K are the same.

4.4 Related Work

AIS, MC changes, and CD-K extensions. Annealed Importance Sampling (AIS) [92 ],

[93 ] uses two distinct Markov transitions kernels and has been applied by Salakhutdinov and

Murray [94 ] to obtain unbiased estimates of the partition function of an RBM. Like AIS, the

Russian roulette pseudo-marginal likelihood is also a Markov chain modification to sample

from the steady state distribution [95 ]. These modifications cannot be readily applied to the

original RBM Markov chain, nor they provide insights into the learning process. MCLV-K is

a new tool that can be used from visual inspection of convergence to proposing new gradient

estimators, as seen in my empirical results.

RBMs are powerful models [96 ] and the analysis of CD-K has a long history [33 ]. A

few past studies have focused on how CD-K learns well RBMs [85 ], [97 ], have some fix-

able issues learning RBMs [98 ]–[100 ], may approximate some objective function [32 ], or do

not approximate any objective function [83 ], [86 ]. Orthogonally, Persistent Contrastive Di-

vergence (PCD) [101 ] improves CD-K in some problems by using the starting state of the

CD-K Markov chain as the end state of the previous training epoch (simulating a single

sample path, assuming the MC does not change much between epochs, which is not always

true [98 ]). Clearly, PCD could be adapted as a MCLV method, which I see as future work.

The presence of training data is key to the practicality of MCLV. Without training data,

obtaining error bounds with MCLV can be prohibitively expensive. In the worst-case, there

is no polynomial time algorithm that can estimate the probabilities of an RBM model within

a constant factor [102 ], assuming P 6=NP. But most real-world machine learning problems are

77



supposed to be much easier than general MCMC results would have us believe. We are given

a good hint of what should be a larger number of high-probability states in the steady state:

the states containing the training examples. Unfortunately, vanilla MCMC methods do not

incorporate this extra information to speed up convergence in a principled way. I believe

the lessons learned in this chapter will be invaluable to design new classes of Markov chain

methods tailored to machine learning applications.

Las Vegas algorithms for Markov chain sampling. Perfect Sampling [61 ], [103 ]–[107 ]

is an example of a Las Vegas algorithm for MCMC applications. Unfortunately, energy-

based models can easily reach trillions of states while perfect sampling methods rarely scale

well unless some specific MC structure can be exploited. I are unaware of clever CFTP

constructions for arbitrary energy-based models.

Mykland, Tierney, and Yu [46 ] with a few follow-up works first proposed the use of

regeneration in the context of MCMC to estimate mixing times, however these techniques

are mostly of theoretical interest [108 ]–[111 ] rather than of practical utility for energy-based

models. Path coupling is another alternative to estimate mixing times [112 ]. More recently,

path coupling was used to develop a theory of Ricci curvature for Markov chains [113 ]. The

connections between Ricci curvature estimation and MCLV-K are worth exploring in future

work.

4.5 Empirical Results

My experiments use the MNIST dataset, which consists of 70,000 images of digits ranging

from 0 to 9, each image having 28 × 28 pixels (a total of 784 pixels per image), divided

into 55,000 training examples and 15,000 test examples. I use this dataset for historical

reasons. MNIST is arguably the most extensively studied dataset in RBM training, e.g. [32 ],

[33 ], [81 ]–[83 ], [85 ], [101 ]. My goal is to show that MCLV-K is able to give new insights

into RBM training (and improved performance) even in a studied-to-death dataset such as

MNIST. The experimental details of my empirical results are presented in the appendix. I use

LVS-1 to train the RBM model used in the following experiments (CD-K tends to give very
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high probability to a few examples in the training data). I observe little difference between

LVS-1, LVS-3, and LVS-10 (for reasons that will be clear soon).

RBM learning. My first set of empirical results compares LVS-K, K ∈ {1, 3, 10}, CD-

K, K ∈ {1, 10} and PCD-K, K ∈ {1, 10} by training an RBM using stochastic gradient

descent, where the gradient estimates are computed using the respective methods. I train

RBMs with nH = 32 hidden neurons for a total of 100 epochs (inclusive of 15 warm-up epochs

of CD-1 for LVS-K), using a learning rate of 0.1 which decays according to a Robbins-Monro

schedule. Weight decay and momentum were not used. The initial W weights are sampled

uniformly from U
(

−0.1√
nV +nH

, 0.1√
nV +nH

)
, where nV and nH denote the number of visible and

hidden neurons, respectively. Hidden biases are initialized as zero, while visible biases are

initialized as log(pi/(1 − pi)) [33 ], where pi is the empirical probability of feature i being

active.

The small number of hidden units is to enable me to evaluate the true performance: I

compute the exact partition function of the trained RBM and calculate the average log-

likelihood 1
N

∑N
n=1 log p(vn). All results are means calculated from 10 executions. In all

LVS-K experiments I use m = 1, for simplicity. The negative log-likelihood of LVS-K,

PCD-K and CD-K are presented in Table 4.1 .

Subsequently, in order to compare my results with those presented in Tieleman (2008), I

train RBMs with nH = 25 and initial learning rates between 10−4 and 1. I observe that larger

learning rates (10−1 to 1) are more appropriate for LVS-K, resulting in faster convergence

and increased performance. Small rates (e.g. 10−4) cause tours to rarely finish, severely

slowing down the training. On the other hand, CD-K and PCD-K fail to converge with

learning rates slightly larger than 10−2. The results for this experiment, along with the best

learning rates for each method, are presented in Table 4.2 .

In conclusion, LVS-K drastically (and paired t-test significantly) outperforms CD-K and

PCD-K w.r.t. the log-likelihood in all settings, even LVS-1 performs significantly better than

PCD-10. However I was unable to reproduce the likelihood of ≈ −130 for PCD achieved by

Tieleman (2008).

Tours lengths and stopping state. I now analyze the tour lengths as a function of: (a)

nH , the number of hidden units, and (b) the size of the stopping set |S(m)
NH |, where S

(m)
NH is
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Table 4.1. (Higher is better) Average log-likelihood on the MNIST dataset
using a RBM with 32 hidden neurons. Results are means over 10 executions
after 100 epochs.

Method Training Testing
CD-1 -167.3 (2.7) -166.6 (2.8)
CD-10 -154.3 (3.3) -153.4 (3.3)
PCD-1 -153.0 (4.9) -152.1 (4.7)
PCD-10 -139.3 (3.2) -138.5 (3.3)
LVS-1 -134.0 (1.0) -133.3 (1.0)
LVS-10 -133.3 (1.0) -132.6 (1.0)
LVS-3 -133.7 (0.8) -132.9 (0.7)

Table 4.2. (Higher is better) Average log-likelihood on the MNIST dataset
using a RBM with 25 hidden neurons. Results are means over 10 executions
after 100 epochs, using appropriate learning rates for each method.

Method Learning Rate Training Testing
CD-1 0.01 -169.8 (2.6) -169.0 (2.6)
CD-10 0.01 -156.4 (0.5) -155.6 (0.5)
PCD-1 0.01 -147.8 (0.5) -147.0 (0.5)
PCD-10 0.01 -147.4 (0.5) -146.7 (0.5)
LVS-1 0.1 -138.3 (1.3) -137.5 (1.4)
LVS-10 0.1 -138.1 (1.1) -137.4 (1.2)
LVS-3 0.1 -138.2 (1.0) -137.5 (1.1)

built from the training data as defined in eq.(4.3 ). Note that the r-th tour ends at state

X(r)(ξ) =
(
v(r)(ξ),h(r)(ξ)

)
whenever X(r)(ξ + 1) ∈ SNH , and that the stopping criteria only

truly depends on h(r)(ξ + 1) since S(m)
NH contains all possible visible states.

Figure 4.2a shows the CCDF of the tour lengths for different values of nH . Most tours are

extremely short for RBMs with few hidden neurons (for nH = 16, more than 99% have length

one), but significantly increase as we increase nH with a very heavy tail. Thus, it is expected

that we see little difference between LVS-1, LVS-3, and LVS-10. Moreover, these heavy tails

likely causes strong inspection-paradox biases for CD-K in high-dimensional RBMs.

Most importantly, Figure 4.2a shows that tours either return within one step or are

unlikely to return for a very long time. A closer inspection at these one-step tours, shows

that over 99% of the cases have the hidden state being the starting state. Thus, it seems that

RBMs (even with few hidden neurons) are just memorizing the training data, not learning
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how to generate new digits. I conjecture, however, that if my training could force the tours to

stop at distinct hidden states, and requires the tours to be possibly longer (but not too-long),

the RBM might be taught how to generate new digits.

Using nH = 32 hidden neurons, Figure 4.2b shows the probability that a tour takes

more than k steps, as we increase the number of stopping states by setting the values of

m ∈ {1, 4, 7} in S(m)
NH . We see that the probability of tours finishing in a single step increases

as we add more states to the stopping state. Thus, increasing the stopping set size can

significantly shorten the tours, which in turn improves the estimates of MCLV-K and LVS-

K, and is an avenue to ameliorate MCMC issues in high-dimensional RBMs.

100 101 102 103

Tour Length (k)

10−4

10−3

10−2

10−1

100

p(
ξ
>
k

)

nH = 16

nH = 20

nH = 32

nH = 64

(a)

100 101 102 103

Tour Length (k)

10−2

10−1

100

p(
ξ
>
k

)

S(1)
HN

S(4)
HN

S(7)
HN

(b)
Shorter tours

Longer tours

(c)

Figure 4.2. (a) Tour lengths CCDF for nH = log2 |H| ∈ {16, 20, 32, 64} for
LVS-1; (b) Tour lengths CCDF variation for LVS-10 with nH = 32, using larger
Stopping Sets; (c) Comparison of frequencies of short and long tours starting
from labeled states on a trained RBM

Distribution modes of the learned RBM. Overall, we may want to ask which digits

(pictures) the model is learning to reproduce well.

Figure 4.2c shows the length of the tours split by the type of digit starting the tour. Note

that the RBM seems to learn well digits that are more consistent across the training data

(e.g., numbers one and six) and have more trouble with digits that have more variability

(e.g., numbers four and eight).
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As a visual inspection, Figure 4.3 shows the next visible states of extremely short (length

= 1) and long (unfinished after 99,999 steps) tours, for nH = 32 hidden neurons. There

is a clear relation between long tours and not-so-common examples in the training data.

The first and third rows show the training examples; the next row shows their first visible

state after one Gibbs sampling step. Note that the majority of the training examples are

easy-to-recognize digits, with still recognizable digits after sampling.

The second part of Figure 4.3 shows the training example and first visible samples of long

tours. Note that the long tours tend to be digits that are either thicker (rarer in the data),

or come in a not-so-standard shape than the digits in the first row. Note that in half of

the examples, their first Gibbs samples are not too similar to the original digit. This shows

that the model is having trouble learning these less standard digits. That long tours tend to

start in odd-looking-examples, should help us better understand and avoid fantasy particles

(visible states v ∈ V that are not characteristic of the dataset but have high probability

nonetheless [101 ]).

(a) Short Tours (b) Long Tours

Figure 4.3. Visible states of tours for nH = 32 neurons. The first and third rows
of each image show the visible states from the training data, whereas the second and
fourth show the next visible state obtained through Gibbs Sampling

Estimating the partition function. I use MCLV-Kdyn to estimate the partition function

Z(W) = ∑
v
∑

h e−E((v,h);W) as specified in Corollary 2 using an RBM with nH = 32, so that

I can easily compute the true partition function for comparison. I note that computing

ZS(W) is fast as it is in the order of the number of training examples (as stated earlier).

Following Corollary 2 , I estimate Z(W) with F̂ (Kdyn,R)(W, f1), with f1(x) = 1. The

average tour length in this example is estimated to be close to one (see Figure 4.1 ). Thus,

F̂ (Kdyn,R)(W, f1) ≈ ZS(W) = 1.46× 10100 in this example. In fact, F̂ (Kdyn,R)(W, f1) and the

true partition function Z(W) report the same value up to nearly machine precision (10-th

decimal place).
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4.6 Summary

This chapter proposes a Las Vegas transformation of Markov Chain Monte Carlo

(MCMC) for RBMs, denoted Markov Chain Las Vegas (MCLV). MCLV gives statistical

guarantees in exchange for random running times. My empirical results show MCLV-K is

a powerful tool to learn and understand RBMs, with a gradient estimator LVS-K that can

better fit RBMs to the MNIST dataset than standard MCMC methods such as Contrastive

Divergence (CD-K).
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5. CONCLUSION

This thesis proposed multiple MCMC based algorithms to sample k node Connected Induced

Subgraphs (k-CIS) with the aim of estimating CIS statistics of an input graph. The over-

arching theme being that these algorithms are parsimonious in terms of memory and their

per-iterate running time.

First, in Chapter 2 , I introduced two estimators of k-CIS function averages, RTS and R-

PSRW, that push the state of the art of CIS statistic estimation to k = 16 for larger graphs

and k = 25 for smaller graphs. By introducing regeneration and weighted random walks to

the FANMOD tree, RTS is able to scale function estimation to an unprecedented range of

k. R-PSRW proposes adding a novel randomized estimator to PSRW [18 ] that allows it to

scale from k = 8 of the original algorithm to k = 25 over the same graphs. Our empirical

results show that RTS is the most consistently accurate method across all graphs, followed

by R-PSRW, followed by other baselines (as distant 3rd places for larger k).

Then, in Chapter 3 , I propose the Ripple estimator that uses sequentially stratified re-

generations to control the running time of a random walk tour-based MCMC. Ripple is

consistent (w.r.t. the number of random walk tours). Its time and memory complexity for

the CIS counting problem is linear in the number of patterns of interest and polynomial in

the CIS size. Ripple can accurately estimate CIS counts with a smaller memory footprint

compared to that of the state-of-the-art Motivo [26 ]. Beyond my specific application, Ripple

provides a promising way to expand the sphere of influence of regenerative simulation in

finite-state reversible MCMC.

Finally, Chapter 4 proposes a Las Vegas transformation of Markov Chain Monte Carlo

(MCMC) for RBMs, denoted Markov Chain Las Vegas (MCLV). MCLV gives statistical

guarantees in exchange for random running times. My empirical results show MCLV-K is

a powerful tool to learn and understand RBMs, with a gradient estimator LVS-K that can

better fit RBMs to the MNIST dataset than standard MCMC methods such as Contrastive

Divergence (CD-K).
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A. DETAILS FOR CHAPTER 2 

A.1 Additional Results

Table A.1 shows statistics of the graphs used in my evaluation, obtained from the

SNAP [75 ] repository.

Environment. I run all the baselines and my own algorithms on a community High Per-

formance Computing cluster which provides an AMD Rome CPU at 2Ghz with 64 cores and

128 GB memory per process. I ensure no memory swapping via ulimit and provide access

to 200TB of disk space on a Lustre file system. All processes run with a wall clock time limit

of 31/2 hours and I produce partial estimates at the 1 hour mark, which are used to evaluate

convergence as described later. All methods except Motivo (which is written in C++) were

implemented by me in Julia [114 ] (in order to speed them up for a fair comparison). My

code will be made available in the final version of the publication as a Julia library.

In Figure A.1 we compare Ripple with R-PSRW on the 5-CIS pattern distribution esti-

mation task from Section 2.6.1 and show that R-PSRW outperforms Ripple in all graphs.

Table A.1. Input graphs that were used for evaluating my method RTS
against state of the art baselines. Each dataset is available from SNAP [75 ]
via the identifier in the parentheses. I also report the number of vertices, edges
and maximum degree for each graph (largest connected component only).

Input Graph Gin |Vin| |Ein| |∆in|

Amazon (com-amazon) 335K 926K 549
DBLP (com-dblp) 317K 1.05M 343
Google (web-google) 856K 4.29M 6.33K
Patents (cit-patents) 3.76M 16.5M 793
Pokec (soc-pokec) 1.63M 22.3M 14.9K
LiveJournal (com-livejournal) 4M 34.7M 14.8K
Orkut (com-orkut) 3.07M 117M 33.3K

A.2 Proofs preliminaries

Before the main proofs, I state and prove some preliminaries.

Definition A.2.1. The simple random walk on a weighted, undirected, simple graph G =

(V,E), with a positive, finite, and symmetric edge weighting function wt(u, v) is a time
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Figure A.1. RTS Vs Ripple Accuracy in the 5-CIS pattern distribution esti-
mation task (Section 2.6.1 ). I compare Ripple with R-PSRW by running ripple
with the Partition-Error-Bound parameter set to 0.003 as was done in Ripple’s
evaluation [37 ]. I compare the error of Ripple estimates with that of R-PSRW
estimates given the same wall clock time, and show box plots representing 10
runs. It is clear that R-PSRW converges to the ground truth faster on all the
datasets I tested.

homogenous Markov chain, over the state space V , with transition probability psrw(u, v) ∝

wt(u, v), for all u, v ∈ V and where wt(u, v) = 0 ⇐⇒ (u, v) /∈ E.

Lemma 5. Let Φ denote the simple random walk on the weighted graph G, defined in

Definition A.2.1 . Assuming G is connected, Φ is irreducible. Further, Φ is reversible and

has a unique stationary distribution given by πΦ(u) = deg(u)
Vol(G) , for all u ∈ V , where deg(u) =∑

v∈N(u) wt(u, v) and Vol(G) = ∑
u∈V deg(u). Given an RWT X1 = x0, X2, X3, . . . , Xξ,

beginning and ending at some x0 ∈ V as defined in Definition 2.3.2 , and some bounded

function g : V → R,

E

πΦ(x0)
ξ∑

j=1
g(Xj)

 a.s.= EπΦ [g] ,
∑
u∈V

πΦ(u)g(u). (A.1)

Proof of Lemma 5 . Φ is irreducible when G is connected because connectivity implies that

all states in V communicate with each other [45 , Def 2.3.5]. The reversibilty and the specific
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form of the stationary distribution are a direct consequence of the detailed balance test [45 ,

Def 2.4.1]. That is for any u, v ∈ V

πΦ(u)pΦ(u, v) = deg(u)
Vol(G)

wt(u, v)
deg(u) = πΦ(v)pΦ(v, u) .

The uniqueness of the stationary distribution is due to irreducibility.

By the Regenerative Cycle Theorem [45 , Thm 2.5.11], RWTs are i.i.d. Further, let

Y = ∑ξ
j=1 g(Xj). Since Φ is finite and irreducible, it is positive recurrent [45 , Thm 3.2.8].

Therefore RWTs have finite length, and since g is bounded, E[Y ] <∞.

The Regenerative Cycle Theorem also stipulates that the concatenation of multiple RWTs

is a sample path from Φ. Given a set of concatenated RWTs let t index this sequence. Let

N(t) be the counting process, which counts the number of RWTs completed up to time t.

Then, by the Renewal Reward Theorem [45 , Thm 3.3.6],

E[Y ]
E[ξ] = lim

t→∞

∑N(t)
n=1 Yn
t

= lim
t→∞

∑N(t)
n=1 Yn∑N(t)
n=1 ξn

, (A.2)

where Yn and ξn denote the reward and length of the n-th RWT and the final equality is

because

lim
t→∞

t∑N(t)
n=1 ξn

= 1 + lim
t→∞

t−∑N(t)
n=1 ξn∑N(t)

n=1 ξn
= 1 ,

since positive recurrence guarantees that RWT lengths are finite.

By the Ergodic Theorem [45 , Thm 3.3.2], Equation (A.2 ) yields E[Y ] = EπΦ [g]
E[ξ] . The fact

that E[ξ] = 1
πΦ(x0) [44 , Lem 2.5] completes the proof.

A.3 Proofs for RTS

Proof of Lemma 1 . The probability of sampling the i-th FANMOD leaf Xk,i, is given by

b(Xk,i). Consider the numerator of the Knuth-estimator under the limit t→∞,

lim
t→∞

1
t

t∑
i=1

f(Xk,i)
b(Xi)

a.s.= Eb

[
f(Xk,·)
b(X·)

]
,
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where Eb is the expectation under the probability of sampling a FANMOD leaf using Knuth’s

algorithm and the almost sure convergence is due to the SLLN [45 , Thm 1.4.10] and since f

is bounded according to Definition 2.2.2 . Moreover,

Eb

[
f(Xk,·)
b(X·)

]
=

∑
s∈S(k)

b(s)f(s)
b(s) =

∑
s∈S(k)

f(s) .

The denominator similarly converges to an estimate of |S(k)|, which completes the proof.

Proof of Proposition 2.3.1 . Let s be the sampled CIS and b(s) its sampling probability. Let

X0, . . . , Xk, denote the samples from root to leaf, that led to the CIS s ≡ Xk. The highest

sampling probability occurs, when the tree width (which is equal to the size of the extension

set, ext from Definition 2.2.4 ) is minimized for each ancestor, and vice versa. The tree

width of X0 is constant and equal to |Vin|. The width at depth 1 can be as low as 1 and as

high as ∆in, when all the neighbors of the vertex are added to ext. The width at depth 2

can be as low as 1 and as high as 2∆in, when the newly added vertex adds, ∆in new vertices

to ext, and so on. Expanding this argument recursively and taking the ratio completes the

proof.

Proof of Proposition 2.3.2 . Consider the following procedure to sample transitions of the

TSMC Φ(k), from a state x. With a probability αdepth(x)
αdepth(x)+|C(x)| , we back-track to the parent

P(x), and otherwise, choose a child at random. Note that all of the required information

above, except P(x) is directly accessible via the child queries, C(·) from Definition 2.2.4 .

Given the list of ancestors (at most k tree-nodes) of x, we can identify the parent tree-node

is constant order time. This list can be kept updated during the walk by manipulating the

head in constant time.

Proposition A.3.1. Given the TSMC from Definition 2.3.1 over the FANMOD tree T (k),

and the relative edge-weight parameters defined therein, α0 = 0, α1 . . . , αk = 1. The TSMC is

equivalent to the simple random walk over the weighted FANMOD tree from Definition A.2.1 ,

where the edge weight between two tree-nodes x and y, where x is the parent of y is given

by wt(x, y) = ∏k
l=depth(y) αl. For the root-node ρ, wt(ρ, y) = ∏k−1

l=1 αl, and edges incident on

leaves have unit weight.
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Proof of proposition A.3.1 . Consider the node x, defined in the statement above. For any

given child y ∈ C(x), the edge weight is given by wt(x, y) = ∏k
l=depth(x)+1 αl. Similarly,

wt(P(x), x) = ∏k
l=depth(x) αl. By Definition A.2.1 , a simple random walk will choose a child

uniformly and the parent edge with a probability αdepth(x) times that of a child, making it

equivalent to the TSMC.

Proof of Lemma 2 . By Proposition A.3.1 the TSMC is a simple random walk (by Defini-

tion A.2.1 ) on the FANMOD tree with weights given by Proposition A.3.1 . Since T (k) is

connected the stated properties of the chain hold. By Lemma 5 , for any k-depth leaf, x ∈ L,

the set of leaves at depth k, πΦ(k)(x) ∝ deg(x) = αk = 1.

Proof of Theorem 2.3.1 . The numerator and denominator of Equation (2.4 ) are unbiased

estimates of 1
π(ρ)

∑
s∈S(k) f(s) and 1

π(ρ) |S
(k)|, respectively due to Lemma 5 , where π(ρ) is the

stationary distribution at ρ. The ratio is however biased since it is a ratio of two random

variables (estimates). This bias goes to 0 as the number of tours → ∞ due to the almost

sure convergence of the numerator and denominator.

Proof of Proposition 2.3.3 . The total number of tree-nodes at depth l in T (k) is given by∏l−1
i=0 di For a tree-node x at the same depth l, the weight of any edge connecting x to P(x)

has weight ∏k
j=l αj. Vol(T (k)) is thus

Vol(T (k)) =
k∑
l=1

l−1∏
i=0

di

k∏
j=l
αj =

k∑
l=1

wk−l
k−1∏
i=0

di .

By Aldous and Fill [44 , Lem 2.5], the expected length of an RWT is given by

E[1/ξ] = Vol(T (k))
deg(ρ) =

∑k−1
l=1 w

l∏k−1
i=0 di

wk−1∏k−1
i=0 di

=
k−1∑
l=1

w−l ∈ O(1/w) .

The number of leaves sampled per RWT, using linearity of expectations and Aldous and

Fill [44 , Lem 2.6], is given by

# leaves
sampled = deg(leaf)

deg(ρ) |L| =
1

wk−1∏k−1
i=0 di

k−1∏
i=0

di ∈ O( 1
wk−1 ) .
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Proof of Proposition 2.3.4 . Proposition 2.3.4 draws directly from the fact that each tree-

node contains at most |Vin| vertices and requires as much memory. This is due to the fact

that for a tree-node x, vsetx and extx as defined in Definition 2.2.3 cannot have repetitions

and are mutually exclusive. Additionally, the k term is because I need to store at most k

ancestors at any point of time.

A.4 Proofs for R-PSRW

Proof of Proposition 2.4.1 . A neighbor of a CIS x in G(k−1) can be obtained by replacing a

vertex in V (x) with some other vertex not in V (x). The number of potential neighbors of

x in the HON is k |N(V (x))|. For each potential neighbor, a graph traversal is required to

check connectivity.

In Algorithm 1 , Line 6 ensures that the output is indeed a k−1-CIS. If the main rejection

step from Line 9 is not performed, the algorithm would sample the vertex to be added, v,

with a probability which is proportional to the number of edges it shares with vertices in

the original CIS V (x). At Line 10 , therefore we have v sampled uniformly from N(V (x))

and u from V (x). The connectivity check is not required if u is neither the anchor vertex a

nor an articulation point of x, because a non articulating point, will not become articulating

if a vertex is added, unless the anchor a is the only vertex in V (x), that v is connected to.

As such the rest of the procedure, trivially samples from NG(k−1)(x), where NG(k−1)(x) is the

neighborhood of x in G(k−1).

We require one traversal in Line 5 , see Hopcroft and Tarjan [47 ]. The algorithm, after

Line 10 proposes v from N(V (x)) choices and a possible u|v from k−1 choices. The procedure

ends when a pair (u, v) which corresponds to a neighbor in the HON is chosen. The number

of rejections is therefore geometrically distributed with parameter |NG(k−1) (x)|/(k−1)|N(V (x))|,

where NG(k−1)(x) is the neighborhood of x in G(k−1). The expected number of trials is

thus O((k−1)|N(V (x))|/|NG(k−1) (x)|). Now note that |NG(k−1)(x)| ≥ |N(V (x))|, because for every

v ∈ N(V (x)), there exists at least one non-articulating u ∈ V (x) which can be removed

to yield a neighbor in NG(k−1)(x). This is because assuming k >= 3, x with v added, is
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connected and has at least 2 non-articulating points. As such, the expected number of trials

is O(k)

Of these trials, a connectivity check (via a graph traversal) is only required if u is the

anchor or articulation point. Such a u is chosen with probability at most 1+|APx|
k

, completing

the proof.
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B. DETAILS FOR CHAPTER 3 

B.1 Notation

The most important notations from Chapter 3 are summarized in Table B.1 .

B.2 Proofs for Section 3.2 

B.2.1 MCMC Estimates

Given a graph G, when the |E| is unknown, the MCMC estimate of µ(E)/|E| is given by:

Proposition B.2.1 (MCMC Estimate [31 ], [79 ], [115 ]). When G from Definition 3.2.1 is

connected, the random walk Φ is reversible and positive recurrent with stationary distribution

πΦ(u) = d(u)/2|E|. Then, the MCMC estimate

µ̂0
(
(Xi)ti=1

)
= 1
t− 1

t−1∑
i=1

f(Xi, Xi+1) ,

computed using an arbitrarily started sample path (Xi)ti=1 from Φ is an asymptotically un-

biased estimate of µ(E)/|E|. When G is non-bipartite, i.e., Φ is aperiodic, and t is large, µ̂0

converges to µ(E)/|E| as ∣∣∣∣E[µ̂0
(
(Xi)ti=1

)
]− µ(E)/|E|

∣∣∣∣ ≤ B
C

tδ(Φ) ,

where δ(Φ) is the spectral gap of Φ and C ,
√

1−πΦ(X1)
πΦ(X1) such that f (·) ≤ B.

Asymptotic unbiasedness. Because G is undirected, finite and connected, Φ is a finite state

space, irreducible, time-homogeneous Markov chain and is therefore positive recurrent [28 ,

3-Thm.3.3]. The reversibility and stationary distribution holds from the detailed balance

test [28 , 2-Cor.6.1] because

πΦ(u) pΦ(u, v) = πΦ(v) pΦ(v, u) = 1{(u, v) ∈ E}
2|E| .
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Table B.1. Table of Notations
Symbol Explanation
G = (V , E) The graph where we have neighbor query access and whose edge sum

is being computed.
N(u), d(u) Neighborhood and degree of a vertex in G if no subscript is specified.
µ(E) The sum over edges in E (or some subset) of some function f .
Φ, pΦ(u, v), πΦ(u) The random walker on G, its transition probability and stationary

distribution.
X, ξ, T an RWT (tour), its length and a set of m RWTs.
µ̂∗(T ; f,G) an RWT Estimate of µ(E).
δ The spectral gap of the transition probability matrix of a chain.
σ̂(·)2 Empirical variance of an RWT Estimate.
ζI , GI Collapsed state and graph obtained by collapsing I ⊂ V .
q < r < t Strata ids always used in the same order 1 ≤ q < r < t ≤ R .
ρ : V → {1, . . . , R} Stratification function.
Ir,Jr r-th vertex and edge stratum.
Gr = (Vr, Er) r-th graph stratum.
ζr, Tr Supernode in each stratum and a set of mr perfectly sampled tours

from ζr.
d(ζr), pΦr(ζr, ·) Degree and transition probability out of the supernode.
d̂(ζr), p̂Φr(ζr, ·) Estimated degree and transition probability out of the supernode.
T †q mq RWTs samples using supernode estimates.
β̂q,r The estimate of the number of edges between Iq and Ir.
Ûq,r Multiset of states visited by T †q that lie in Ir.
µ̂Ripple, µ̂

(
T †2:r; f

)
Overall and per-stratum Ripple estimate.

δr, νr, λr Spectral gap and the errors in the supernode estimates in the r-th
stratum.

G = (V,E, L) The labelled input graph in which we want to count subgraphs.
G (V ′) Subgraph induced by V ′ in G.
H Nonequivalent (non-isomorphic) patterns of interest.
C(k) = (C(k)

H )H∈H The subgraph pattern count vector.
G(k) = (V(k), E (k)) The k-HON that provides neighborhood query access and is used to

count subgraphs.
γ(u, v) Number of edges in E (k−1) that represent the same subgraph as (u, v).
dist(u) Shortest path distance from u ∈ V to any seed vertex in V (I1).
V ∗ The largest connected subset of V (s) that constitutes an intersection

between s and s̈ ∈ I1.
m Reservoir size.
∆G, DG Maximum degree in and diameter of G.
As Articulation points in s.
ε Per-stratum error bound used to control tour count.

The ergodic theorem [28 , 3-Cor.4.1] then applies because f is bounded and we have

lim
t→∞

1
t− 1

t−1∑
i=1

f(Xi, Xi+1) =
∑

(u,v)∈V×V
πΦ(u) pΦ(u, v)f(u, v) = µ(E)

|E|
.
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Bias. Let the i-step transition probability of Φ be given by pi
Φ(u, v). The bias at the i-th

step is given by

biasi =
∣∣∣∣E [f(Xi, Xi+1)]−

∑
(u,v)∈V×V

πΦ(u) pΦ(u, v)f(u, v)
∣∣∣∣

=
∣∣∣∣ ∑

(u,v)∈V×V
pi

Φ(X1, u) pΦ(u, v)f(u, v)−
∑

(u,v)∈V×V
πΦ(u) pΦ(u, v)f(u, v)

∣∣∣∣
≤ B

∣∣∣∣ ∑
u∈V

pi
Φ(X1, u)

∑
v∈V

pΦ(u, v)−
∑
u∈V

πΦ(u)
∑
v∈V

pΦ(u, v)
∣∣∣∣

≤ B

∣∣∣∣ ∑
u∈V

pi
Φ(X1, u)−

∑
u∈V

πΦ(u)
∣∣∣∣ ≤ B

∑
u∈V

∣∣∣∣pi
Φ(X1, u)− πΦ(u)

∣∣∣∣ ,
where f (·) ≤ B, and the final inequality is due to Jensen’s inequality. From [116 , Prop-3],

biasi ≤ B

√√√√1− πΦ(X1)
πΦ(X1) βi

∗ ,

where β∗ = 1 − δ(Φ) is the SLEM of Φ. Because of Jensen’s inequality and by summing a

GP, ∣∣∣∣E[µ̂0
(
(Xi)ti=1

)
]− µ(E)
|E|

∣∣∣∣ ≤ 1
t− 1

t−1∑
i=1

biasi ≤
B

t− 1

√√√√1− πΦ(X1)
πΦ(X1)

1− βt∗
1− β∗

.

Assuming that βt∗ ≈ 0 and t− 1 ≈ t when t is sufficiently large completes the proof.

Lemma 6 ([69 ]). Let Φ be a finite state space, irreducible, time-homogeneous Markov chain,

and let ξ denote the return time of RWT started from some x0 ∈ S as defined in Defini-

tion 3.2.2 . If Φ is reversible, then

E
[
ξ2
]
≤ 3

πΦ(x0)2δ(Φ) , (B.1)

where πΦ(x0) is the stationary distribution of x0, and δ(Φ) is the spectral gap of Φ. When

Φ is not reversible, the second moment of return times is given by Equation (B.2 ).
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Proof. Using [44 , Eq 2.21], we have

E
[
ξ2
]

= 1 + 2EπΦ(Tx0)
πΦ(x0) , (B.2)

where EπΦ(Tx0) is the expected hitting time of x0 from the steady state. Combining [44 ,

Lemma 2.11 & Eq 3.41] and accounting for continuization yields

EπΦ(Tx0) ≤ 1
πΦ(x0)δ(Φ) . and therefore, E

[
ξ2
]
≤

1 + 2
πΦ(x0)δ(Φ)

πΦ(x0) <
3

πΦ(x0)2δ(Φ) ,

because πΦ(x0) and δ(Φ) lie in the interval (0, 1).

Proposition B.2.2. Given a positive recurrent Markov chain Φ over state space S and a

set of m RWTs T and assuming an arbitrary ordering over T , where X(i) is the ith RWT in

T , X(i) and |X(i)| are i.i.d. processes such that E[|X(i)|] <∞, and when the tours are stitched

together as defined next, the sample path is governed by Φ. For t ≥ 1, define Φt = XNt
t−RNt

,

where Ri = ∑i−1
i′=1 |Xi| when i > 1 and R1 = 0 and Nt = max{i : Ri < t}.

Proof. Ri is a sequence of stopping times. Therefore, the strong Markov property [28 , 2-

Thm.7.1] states that sample paths before and after Ri are independent and are governed by

Φ. Because Φ is positive recurrent and x0 is visited i.o., the regenerative cycle theorem [28 ,

2-Thm.7.4] states that these trajectories are identically distributed and are equivalent to the

tours T sampled according to Definition 3.2.2 . E[|X(i)|] <∞ due to positive recurrence.

B.2.2 Proof of Lemma 3 

Unbiasedness and Consistency. Because G is connected, Φ is positive recurrent with steady

state πΦ(u) ∝ d(u) due to Proposition B.2.1 . Consider the reward process F (i) =∑|X(i)|
j=1 f(X(i)

j , X
(i)
j+1), i ≥ 1. From Proposition B.2.2 , F (i) and |X(i)| are i.i.d. sequences

with finite first moments, because F (i) ≤ B|X(i)|. Let Nt and Ri be as defined in Proposi-

tion B.2.2 .
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Therefore, from the renewal reward theorem [28 , 3-Thm.4.2], we have

E[F (i)]
E[|X(i)|] = lim

t→∞

∑Nt
i=1 F

(i)

t
= lim

t→∞

∑Nt
i=1 F

(i)

RNt

· RNt

t
=
∑Nt

i=1 F
(i)

RNt

,

where the final equality holds because limt→∞
RNt
t

= 1 − limt→∞
t−RNt

t
, and limt→∞

t−RNt
t

converges to 0 as t→∞ because |X(·)| <∞ w.p. 1 because Φ is positive recurrent.

From Proposition B.2.2 and the definition of F (i), ∑Nt
i=1 F

(i) = ∑RNt
j=1 f(Φj,Φj+1), and

because f and πΦ are bounded, we have from the ergodic theorem [28 , 3-Cor.4.1],

E[F (i)]
E[|X(i)|] = lim

t→∞

∑RNt
j=1 f(Φj,Φj+1)

RNt

a.s.=
∑

(u,v)∈V×V
πΦ(u)pΦ(u, v)g(u, v) = 2µ(E)

2|E| .

From Kac’s formula [44 , Cor.2.24], 1/E[|X(i)|] = πΦ(x0) = d(x0)
2|E| , and

E

[
d(x0)

2 F (i)
]
a.s.= µ(E) .

µ̂∗(T ; f,G) is unbiased by linearity of expectations on the summation over T , and consistency

is a consequence of Kolmogorov’s SLLN [28 , 1-Thm.8.3].

Running Time. From Kac’s formula [44 , Cor.2.24], E[|X(i)|] = 2|E|
d(x0) . From Proposition B.2.2 ,

tours can be sampled independently and thus parallelly. All cores will sample an equal

number of tours in expectation, yielding the running time bound.

Variance. Because f (·) < B, and tours are i.i.d., the variance is given by

Var (µ̂∗(T )) = Var
d(x0)

2m
∑
X∈T

|X|∑
j=1

f(Xj, Xj+1)
 ≤ d(x0)2B2

4m Var (|X|) .

From Lemma 6 and Kac’s formula [44 , Cor.2.24], Var (|X|) is given by

Var (|X|) ≤ 3
πΦ(x0)2δ(Φ) −

1
πΦ(x0)2 ≤

3
πΦ(x0)2δ(Φ) = 12|E|2

d(x0)2δ(Φ) .
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B.3 Proofs for Section 3.3 

Assumption 2. For each Gr, 1 < r ≤ R from Definition 3.3.2 , assume d(ζr) is known and

that pΦr(ζr, ·) can be sampled from.

Proposition B.3.1 (RWTs in Φr). Under Assumption 2 , given access only to the original

chain Φ and stratifying function ρ, let Φr be the random walk in the graph stratum Gr from

Definition 3.3.2 . To sample an RWT (Xi)ξi=1 over Φr from the supernode ζr, we set X1 = ζr,

sample X2 ∼ pΦr(ζr, ·), and then, until ρ(Xξ+1) < r, we sample

Xi+1 ∼ unif (NGr (Xi)) ≡


unif(NG(Xi)) if ρ(Xi) = r

unif(NG(Xi) ∩ Ir) if ρ(Xi) > r

.

Proof. The proof is a direct consequence of Definition 3.3.2 and Definition 3.2.1 .

Proposition B.3.2 (Perfectly Stratified Estimate). Under Assumption 2 , given the EPS

(Definition 3.3.3 ) stratum Gr (Definition 3.3.2 ), bounded f : E → R and a set of m RWTs

Tr over Φr from ζr from Proposition B.3.1 , the per stratum estimate is given by

µ̂(Tr; f,Gr) = d(ζr)
2m

∑
X∈Tr

|X|−1∑
j=2

f(Xj, Xj+1) , (B.3)

where Xj is the jth state visited in the RWT X ∈ Tr. For all r > 1, µ̂(Tr; f,Gr) is an

unbiased and consistent estimator of µ(Jr) = ∑
(u,v)∈Jr f(u, v), where Jr is the r-th edge

stratum defined in Definition 3.3.1 .

Proof. Define f ′ : Er → R as f ′(u, v) , 1{u, v 6= ζr}f(u, v). By Definition 3.2.2 , in each

RWT X ∈ Tr, f ′(X1, X2) = f ′(X|X|, X|X|+1) = 0, and therefore, µ̂(Tr; f,Gr) = µ̂∗(T ; f ′,Gr),

where µ̂∗ is the RWT Estimate from Lemma 3 . Moreover, because Gr is connected,

E [µ̂(Tr; f,Gr)] = E [µ̂∗(T ; f ′,Gr)] =
∑

(u,v)∈Er
f ′(u, v) =

∑
(u,v)∈Jr

f(u, v) ,

where the final equality holds because Er is the union of Jr and edges incident on the

supernode. Consistency is also due to Lemma 3 .

106



B.3.1 Proof of Proposition 3.3.1 

Proof. Proposition  3.3.1 (a) is necessary because when Proposition  3.3.1 (a) does not hold,

there exists a component such that the minimum value of ρ in that component is r̈ > 0 such

that in Gr̈ (Definition 3.3.2 ), and the supernode ζr̈ will be disconnected from all vertices.

If Proposition  3.3.1 (b) is violated, a vertex ü exists that is disconnected in Gρ(ü), and if

Proposition  3.3.1 (c) is violated, the supernode is disconnected. Finally, it is easily seen that

these conditions sufficiently guarantee that each stratum is connected, and the stratification

is an EPS.

B.3.2 Proof of Theorem 3.3.1 

We begin by defining the multi-set containing the end points of edges between vertex

strata.

Definition B.3.1. Given G stratified into R strata, ∀1 ≤ q < t ≤ R define border multi-sets

as

Bq,t , {v ∀(u, v) ∈ E : u ∈ Iq and v ∈ It} .

The degree of the supernode in Gr (Definition 3.3.2 ) is then given by d(ζr) = ∑r−1
q=1 |Bq,r|, and

transitions out of ζr can be sampled by sampling q ∈ {1, . . . , r− 1} w.p. ∝ |Bq,r| and then by

uniformly sampling from Bq,r.

Proposition B.3.3. Given the setting in Definitions 3.3.5 and 3.3.6 , for all 1 ≤ r < t ≤ R,

lim
|T †2 |→∞

. . . lim
|T †r |→∞

β̂r,t
a.s.= |Br,t| , (B.4)

lim
|T †2 |→∞

. . . lim
|T †r |→∞

Ûr,t ∼ unif(Br,t) , (B.5)

lim
|T †2 |→∞

. . . lim
|T †r |→∞

pΦ̂r
(X) = pΦr(X) , ∀X ∈ T †r . (B.6)

i.e., each tour in T †r is perfectly sampled from Φr.
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By Strong Induction. The base case for r = 1 holds by the base case in Definition 3.3.5 .

Now assume that Proposition B.3.3 holds for all strata up to and including r − 1. Because

of the inductive claim and by Definition B.3.1 ,

lim
|T †2 |→∞

. . . lim
|T †r−1|→∞

d̂(ζr) =
r−1∑
q=1

β̂q,r
a.s.=

r−1∑
q=1
|Bq,r| = d(ζr) ,

and similarly, lim
|T †2 |→∞

. . . lim
|T †r−1|→∞

p̂Φr(ζr, ·) ≡ pΦr(ζr, ·)

because the inductive claim makes the procedure of sampling transitions out of ζr in Defi-

nition 3.3.5 equivalent to Definition B.3.1 . Equation (B.6 ) holds because transition proba-

bilities at all states other than ζr are equivalent in Φr and Φ̂r according to Definition 3.3.4 .

Now recall that

β̂r,t = d̂(ζr)
|T †r |

∑
X∈T †r

|X|∑
j=2

1{ρ(Xj) = t} .

Because d̂(ζr) = d(ζr) and the tours are sampled perfectly,

lim
|T †2 |→∞

. . . lim
|T †r−1|→∞

β̂r,t = µ̂∗
(
T †r ; f ′

)
,

where f ′(u, v) = 1{ρ(v) = t} and µ̂∗ is from Lemma 3 , from which we also use the consistency

guarantee to show that under an EPS, Equation (B.4 ) holds as

lim
|T †2 |→∞

. . . lim
|T †r |→∞

β̂r,t
a.s.=

∑
(u,v)∈Er

f ′(u, v) = |Br,t| .

Because of Proposition B.2.2 , concatenating tours X ∈ T †q yields a sample path from Φr,

and these samples are distributed according to πΦr as |T †r′ | → ∞, r′ ≤ r. Therefore,

lim
|T †2 |→∞

. . . lim
|T †r |→∞

]X∈T †q ]
|X|
j=2 {Xj : ρ(Xj) = t} ∼ π

′
Φr
,

where π′Φr
(u) ∝ 1{ρ(u) = t}dGr(u), which is equivalent to unif(Br,t) by Definitions B.3.1 

and 3.3.2 , thus proving Equation (B.5 ).
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Main Theorem. Combining Proposition B.3.3 and Proposition B.3.2 proves Theorem 3.3.1 .

B.3.3 Proof of Theorem 3.3.2 

Definition B.3.2 (L2 Distance between π̂ and π [44 ] ). The L2 distance between discrete

probability distribution π̂ and reference distribution π with sample space Ω is given by ‖π̂ −

π‖2 = ∑
i∈Ω

(̂π(i)−π(i))2

π(i) .

Definition B.3.3 (Distorted chain). Given a Markov chain Φ over finite state space S and

an arbitrary x0 ∈ S, let Φ̂ be the distorted chain such that ∀u 6= x0, pΦ̂(u, ·) = pΦ(u, ·),

and pΦ̂(x0, ·) is an arbitrary distribution with support supp(pΦ̂(x0, ·)) ⊆ supp(pΦ(x0, ·)). The

distortion is given by ‖pΦ̂(x0, ·)− pΦ(x0, ·)‖ as defined in Definition B.3.2 .

Lemma 7. Given a finite state, positive recurrent Markov chain Φ over state space S, let

Φ̂ be the chain distorted at some x0 ∈ S from Definition B.3.3 . Let

X = {(X1, . . . , Xξ) : X1 = x0 , ξ = min{t > 0: Xt+1 = x0} , pΦ(X1, . . . , Xξ) > 0} ,

denote the set of all possible arbitrary lengths RWTs that begin and end at x0 from Defi-

nition 3.2.2 . Given a tour Y ∈ X sampled from Φ and a bounded function F : X → R,

EΦ

[
pΦ̂(Y1, Y2)
pΦ(Y1, Y2)F (Y)

]
= EΦ̂ [F (Y)] , (B.7)

where EΦ and EΦ̂ are expectations under the distribution of tours sampled from Φ and Φ̂.

Proof. All tours in X are of finite length because of the positive recurrence of Φ. The ratio

of the probability of sampling the tour Y = (Y1, . . . , Yξ′) from the chain Φ̂ to Φ is given by

pΦ̂(Y)
pΦ(Y) =

∏ξ′

j=1 pΦ̂(Yj, Yj+1)∏ξ′

j=1 pΦ(Yj, Yj+1)
=
pΦ̂(Y1, Y2)
pΦ(Y1, Y2) , (B.8)

because pΦ(Yj, ·) = pΦ̂(Yj, ·), ∀1 < j ≤ ξ′ because Yj 6= x0 by the definitions of X and

Φ̂. Because supp(pΦ̂(x0, ·)) ⊆ supp(pΦ(x0, ·)), supp(pΦ̂(Y)) ⊆ supp(pΦ(Y)). The theorem
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statement therefore directly draws from the definition of importance sampling [117 , Def 3.9]

with the importance weights derived in Equation (B.8 ).

Lemma 8. Given a simple random walk Φ on the connected non-bipartite graph G from

Definition 3.2.1 , let Φ̂ be the chain distorted at some x0 ∈ S from with distortion ν Defini-

tion B.3.3 . Let λ = d̂(x0)/d(x0). Let f : E → R bounded by B, and F (X) = ∑|X|
j=1 f(Xj, Xj+1),

where X is an RWT as defined in Section B.2.2 . The bias of an RWT Estimate (Equa-

tion (3.2 )) computed using tours sampled over Φ̂ and using d̂(x0) as the degree is given

by

bias =
∣∣∣∣∣EΦ̂

[
d̂(x0)

2 F (X)
]
− µ(E)

∣∣∣∣∣ ≤ (λν + |1− λ|)
√

3B|E|√
δ

,

where δ is the spectral gap of Φ, and B is the upper bound of f .

Proof. From Lemma 7 and Lemma 3 we have, respectively,

EΦ̂

[
d̂(x0)

2 F (X)
]

= EΦ

[
d̂(x0)

2
pΦ̂(X1, X2)
pΦ(X1, X2)F (X)

]
,

µ(E) = EΦ

[
d(x0)

2 F (X)
]
.

Subtracting the two, squaring both sides and using the Cauchy-Schwarz inequality decom-

poses the squared bias into

bias =
∣∣∣∣∣EΦ

[(
d̂(x0)
d(x0)

pΦ̂(X1, X2)
pΦ(X1, X2) − 1

)
d(x0)

2 F (X)
]∣∣∣∣∣ .

bias2 ≤ E

( d̂(x0)
d(x0)

pΦ̂(x0, X2)
pΦ̂(x0, X2) − 1

)2
︸ ︷︷ ︸

biasdist

E

(d(x0)
2 F (X)

)2


︸ ︷︷ ︸
biasspectral

,

where the expectation is under Φ. Using definitions from the theorem statement,

biasdist = d̂(x0)2

d(x0)2 E

(pΦ̂(x0, X2)
pΦ(x0, X2)

)2
+ 1− 2 d̃(x0)

d(x0)E

[
pΦ̂(x0, X2)
pΦ(x0, X2)

]

=λ2(1 + ν2) + 1− 2λ = λ2 + λ2ν2 + 1− 2λ

=λ2ν2 + (1− λ)2 ≤ (λν + |1− λ|)2 .

110



Because F (X) ≤ Bξ, the tour length, from Lemma 6 , we see that

biasspectral ≤
d(x0)2B2

4
3

πΦ(x0)2δ
= 3B2|E|2

δ
,

and combining both biases completes the proof for bias.

Main Theorem. Note that by linearity of expectations

E
[
µ̂
(
T †2:r; f

) ∣∣∣T †2:r−1

]
=E

 d̂(ζr)
2|T †r |

∑
X∈T †r

|X|−1∑
j=2

f(Xj, Xj+1)

 ,
=EX∼Φ̂r

 d̂(ζr)
2

|X|∑
j=1

f ′(Xj, Xj+1)
 ,

where X is an RWT on Φ̂r that depends on T †2:r−1 and f ′(u, v) , 1{u, v 6= ζr}f(u, v). Ap-

plying Lemma 8 completes the proof because Φ̂r is a distorted chain by Definition B.3.3 .

B.4 Proofs for Section 3.4 

B.4.1 Proof of Proposition 3.4.1 

Proof. From [18 , Thm-3.1], we know that each disconnected component of G leads to a

disconnected component in G(k−1), and if I1 contains a subgraph in each connected compo-

nent, Proposition  3.3.1 (a) is satisfied. We now prove that ∀ s ∈ V(k−1), if ρ(s) = r > 1,

∃ s′ ∈ N(s) : ρ(s′) < r which simultaneously satisfies Proposition  3.3.1 (b) and Proposi-

tion  3.3.1 (c) .

W.l.o.g. let the vertex with the smallest distance from the seed vertices be denoted by

û = argminu∈V (s) dist(u). When dist(û) > 0, there exists v ∈ NG(û) such that dist(v) <

dist(û) by the definition of dist. More concretely, v would be the penultimate vertex in

the shortest path from the seed vertices to û. Let v′ 6= û be a non-articulating vertex of s,

which is possible because any connected graph has at least 2 non-articulating vertices. Let

s1 = G (V (s)\{v′} ∪ {v}) ∈ V(k−1). Now, ρ(s1) < ρ(s) because v′ has been replaced with a

vertex at necessarily a smaller distance and because the indicator in the definition of rho
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will always be 0 in this case. Moreover, s1 ◦ s = G (V (s) ∪ {v}) ∈ V(k), and hence an edge

exists between the two.

When dist(û) = 0, there exists v ∈ NG(û) such that dist(v) = 0. There exists a non-

articulating v′ ∈ V (s)\V ∗ because otherwise V ∗ would have been disconnected. Observing

that dist(v′) + 1{v′ ∈ V (I1)\V ∗)} > 0 completes the proof of ergodicity.

B.4.2 Proof of Proposition 3.4.2 

Sampling Probability. Consider the lines Lines 3 to 5 . The probability of sampling the pair

(u, v) from V (s)×NG (V (s)) is given by

P (u, v) =
∑

a∈V (s)\{u}
P (v|a, u)P (a|u)P (u)

=
∑

a∈V (s)\{u}

1{v ∈ N(a)}
d(a)

d(a)
degs−d(u)

degs−d(u)
(k − 1− 1) degs

∝
∑

a∈V (s)\{u}
1{v ∈ N(a)} = |N(v) ∩ V (s)\{u}| = bias ,

where bias is defined in Line 6 and corrected for in Line 7 . After the rejection, therefore,

(u, v) ∼ unif(V (s)×NG (V (s))).

Line 9 constitutes an importance sampling with unit weight for pairs (u, v), where re-

moving u from and adding v to V (s) produces a k − 1-CIS and zero otherwise. In Line 9 ,

because removing a non-articulating vertex and adding another vertex to s cannot lead to a

disconnected subgraph, we can avoid a DFS when u /∈ As. This completes the proof.

Time Complexity. Assuming access to a precomputed vector of degrees, the part up to Line 1 

is O(k − 12). In each proposal, Lines 3 and 4 are O(k − 1), and Line 5 is O(∆s). Line 6 is

O(k− 1), and the expected complexity of Line 9 is O(k− 12 |As|/k−1) because in expectation

only |As|/k−1 graph traversals will be required. The acceptance probability is ≥ 1/k−1 is Line 7 

and ≥ k−1−|As|
k−1 . The expected number of proposals is therefore ≤ k−12

k−1−|As| . As such, the

expected time complexity is O(k − 12(1 + ∆s+k−1|As|
k−1−|As| )).
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RW steps

Tour - 1

Tour - 2

Tour - m

(a) T2, the set of RWTs sampled in G2.

2

3

4

5

2 3 4 5

(b) The reservoir matrix, Ûr,t for 2 ≤ r <
t ≤ R.

Figure B.1. Parallel RWTs and Reservoirs: Figure B.1a shows the set of m
RWTs sampled on G2 in parallel, where the supernode ζ2 is colored black. The
gray, blue, red and green colors represent states in stratum 2–5, respectively.
Figure B.1b shows the upper triangular reservoir matrix in which the cell in
the r-th row and t-th column contains samples from Ûr,t.

B.5 Additional Implementation Details

B.5.1 Parallel Sampling with a Reservoir Matrix.

Given a reasonably large m and the number of strata R, we initialize an upper triangular

matrix of empty reservoirs [Ûr,t]2≤r<t≤R and a matrix of atomic counters [m̂q,r]2≤r<t≤R ini-

tialized to 0. In each stratum r, while being sampled in parallel whenever a tour enters the

t-th stratum, m̂r,t is incremented, and with a probability min(1, m/m̂r,t), the state is inserted

into a random position in the reservoir Ûr,t and rejected otherwise. The only contention

between threads in this scheme is at the atomic counter and in the rare case where two

threads choose the same location to overwrite, wherein ties are broken based on the value of

the atomic counter at the insertion time, guaranteeing thread safety. The space complexity

of a reservoir matrix is therefore O(R2m).

A toy example of this matrix is presented in Figure B.1 , where R = 5, and the RWTs

are being sampled on the graph stratum G2. Whenever (non-gray) states in I3:5 are visited,

they are inserted into the corresponding reservoirs–Û2,5 is depicted in detail.
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B.5.2 PSRW Neighborhood

The neighborhood of a k-CIS s in G(k) is the set of all vertices u, v ∈ V such that replacing

u with v in s yields a k-CIS. Formally,

NG(k)(s) ≡
{

(u, v) ∈ V (s)×NG (V (s)) : G (V (s) ∪ {v}\{u}) ∈ V(k)
}
, (B.9)

where NG(V (s)) = ∪x∈V (s)NG(x) is the union of the neighborhood of each vertex in s. The

size of the neighborhood is then O(kNG(V (s))) ∈ O(k2∆G) because NG(V (s)) ∈ O(k∆G),

where ∆G is the maximum degree in G. Each potential neighbor further requires a con-

nectivity check in the form of a BFS or DFS, which implies that the naive neighborhood

sampling algorithm requires O(k4∆G) time.

Articulation Points

Apart from the rejection sampling algorithm from Algorithm 2 , we use articulation points

to efficiently compute the subgraph bias γ from Equation (3.9 ). Specifically, given the k−1-

CIS, s, γ(s) =
(
κ−As

2

)
, As is the set of articulation points of s. This draws directly from [18 ,

Sec-3.3] and the definition of articulation points. [47 ] showed that for any simple graph s

the set of articulation points can be computed in O(|V (s)|+ |E(s)|) time.

B.5.3 Proof of Proposition 3.4.3 

Proposition B.5.1 (Extended Version of Proposition 3.4.3 ). We assume a constant number

of tours m in each stratum and ignore graph loading. The Ripple estimator of k-CIS counts

described in Algorithm 3 has space complexity in

O(k3D2
Gm + |H|) ≡ Ô(k3 + |H|) ,

where Ô ignores all factors other than k and |H|, m is the size of the reservoir from Sec-

tion 3.4.3 , DG is the diameter of G, and |H| is the number of patterns of interest.
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Algorithm 3: Ripple for Subgraph Counting
Input: Input graph G, Order k, Set of subgraph patterns H of interest
Input: Initial vertex stratum I1, Reservoir Size m and Error Bound ε
Output: µ̂, an asymptotically unbiased estimate of C(k)

/* Initialization */
1 µ̂ = 0, β̂q,t = 0, Ûq,t = ∅, ∀1 ≤ q < t ≤ R;
2 Run BFS for stratification ρ : V(k−1) → {1, . . . , R}, with I1 (Proposition 3.4.1 )

/* Exact computation in the first stratum */
3 foreach u ∈ I1, v ∈ NG(k−1)(u) do
4 Update β̂1,ρ(v) += 1 , Û1,ρ(v) ∪= v

5 Update µ̂+=
(

1{u◦v∼H}
γ(u◦v)

)
H∈H

; // Equation (3.9 )

/* Estimate remaining strata */
6 for r ∈ 2, . . . , R do
7 Initialize µ̂r = 0, mr = 0
8 parallel while Equation (3.10 ) is not satisfied do
9 Sample q from {1, . . . , r − 1} w.p. β̂q,r

10 Sample u from Ûq,r ; // Equation (3.6 )
11 Sample v ∼ unif(NG(k−1)(u)) ; // Algorithm 2 

12 while ρ(v) ≥ r do
13 Update µ̂r +=

(
1{u◦v∼H}
γ(u◦v)

)
H∈H

; // Equation (3.8 )
14 if ρ(v) > r then
15 Update β̂r,ρ(v) += 1 ; // Equation (3.4 )
16 Update Ûr,ρ(v) ∪= v ; // Equation (3.6 )
17 u := v

/* Proposition B.3.1 and Algorithm 2 */
18 if ρ(u) = r then
19 Sample v ∼ unif(NG(k−1)(u))
20 else
21 while ρ(v) 6= r do
22 Sample v ∼ unif(NG(k−1)(u))
23 mr+ = 1
24 Compute d̂egr = ∑r−1

q=1 β̂q,r ; // Equation (3.5 )

25 µ̂+= d̂egr
2mr µ̂r ; // Equations (3.7 ) and (3.8 )

26 Update β̂r,t *= d̂egr
mr

, ∀t > r ; // Equation (3.4 )
27 return µ̂

The total number of random walk steps is given by O(k3mDG∆GCrej), where Crej is the

number of rejections in Line 21 of Algorithm 3 , ∆G is the largest degree in G, and the total

time complexity is Ô(k7 + |H|).
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Remark 2. In practice, we adapt the proposals in Algorithm 2 to minimize Crej using

heuristics over the values of dist (·) from Proposition 3.4.1 .

Lemma 9. Given a graph stratum Gr from Definition 3.3.2 , for some r > 1, define αr =
|{u∈Ir : N(u)∩I1:r−1 6=∅}|/|Ir| as the fraction of vertices in the r-th vertex stratum that share an

edge with a previous stratum. The return time ξr of the chain Φr to the supernode ζr ∈ Vr
follows EΦr [ξr] ≤ 2d̄r

αr
, where d̄r is the average degree in G of all vertices in Ir.

Proof. Because αrIr vertices have at least one edge incident on ζr, dGr(ζr) ≥ αrIr. From

Definition 3.3.2 , because all edges not incident on Ir are removed from Gr, Vol(Gr) ≤

2∑u∈Ir dG(u). Therefore, from Lemma 3 ,

EΦr [ξr] = Vol(Gr)
d(ζr)

≤ 2∑u∈Ir dG(u)
αrIr

= 2d̄r
αr

.

Proposition B.5.2. The Ergodicity-Preserving Stratification from Proposition 3.4.1 is such

that αr = 1 for all r > 1 as defined in Lemma 9 , and consequently, the diameter of each

graph stratum is ≤ 4. The total number of strata R ∈ O(k DG), where DG is the diameter

of G.

Proof. We show in Section B.4.1 that for each vertex s ∈ V(k−1), if ρ(s) = r > 1, there

exists s′ ∈ N(s) such that ρ(s′) < r. This implies that αr = 1. In Gr, therefore, from ζr,

all vertices in Ir are at unit distance from ζr, and vertices in N(Ir)\Ir are at a distance of

2 from ζr. Because no other vertices are present in Gr, this completes the proof of the first

part. Trivially, R ≤ (k − 1) ·maxu∈V dist(u) ∈ O(k ·DG).

Memory Complexity. From Algorithm 3 , we compute a single count estimate per stratum

and maintain reservoirs and inter-partition edge count estimates for each 2 ≤ q < t ≤ R.

Because a reservoir Ûq,t needs O(km) space (Section B.5.1 ), the total memory requirement is

O(R2 km), where R is the number of strata. From Proposition B.5.2 , plugging R ∈ O(kDG),

and because storing the output µ̂ requires O(|H|) memory the proof is completed.
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Time Complexity. The stratification requires a single BFS ∈ O(|V |+|E|) from Section 3.4.2 .

In Line 3 , the estimation phase starts by iterating over the entire higher-order neighborhood

of each subgraphs in I1. Based on Section B.5.2 , Line 5 is in O(k2). Because the size of

the higher-order neighborhood of each subgraph is O(k2∆G) from Section B.5.2 , the initial

estimation phase will require O(|I1| k4∆G) time.

In all other strata r = 2, . . . , R, we assume that m tours are sampled in Line 8 . Starting

each tour (Lines 9 to 11 ) requires order of magnitude R time, leading to a total time of

O(mR2) ∈ O(mk2D2
G) because R ∈ O(kDG) from Proposition B.5.2 . The total time for

these ancillary procedures is O(mk2D2
G + |I1| k4∆G)

Therefore, the time complexity of bookkeeping and setup is O(mk2D2
G+ |I1| k4∆G+ |V |+

|E|) ∈ Ô(k4). The time complexity at each random walk step is O(k−12∆G+k−14) ∈ Ô(k4)

from Section B.4.2 and Section B.5.2 . We assume that the expected number of rejections in

Line 21 is given by Crej. The total number of random walk steps is given by O(RmCrej)

times the expected tour length. By Lemma 9 and proposition B.5.2 , the expected tour

length is O(∆G(k−1)) ≡ O(k2∆G). Therefore, the total number of random walk steps is

O(k3mDG∆GCrej).

O(|H|) time is to print the output µ̂. We assume that updating µ̂ is amortized in constant

order if we use a hashmap to store elements of the vector, and because updating a single key

in said hashmap is by Equation (3.9 ) increments, the proof is completed.

B.6 Additional Results

I now present the results of additional experiments performed on Ripple. Table B.2 shows

the dispersion, max−min
mean , of the estimates that were used to measure the running time and

space utilization of Ripple in Section 3.5.1 . Figure B.2 shows the L-∞ norm from the ground

truth for k = 5 with m = 107 while ε and I1 vary.

Trade-off between Convergence and Reservoir size. Next, I measure the effect of

the reservoir capacity m on accuracy, as discussed in Section 3.4.3 . I vary m from 50000 to

107 while keeping the other parameters fixed as ε = 0.003 and |I1| = 104 and measure the

L2-norm between the Ripple estimate and the exact value of the count vector C(5), such as
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Table B.2. Dispersion, max−min
mean , of Ripple’s estimates of |V(k)| computed

using ε = 0.003, |I1| = 104 and m = 107 for k = 6, 8, 10, 12 used in the analysis
in Section 3.5.1 . The selected hyper-parameters provide reasonably similar
estimates over 10 independent runs. Orkut for k = 8 exhibits the largest
dispersion because of the presence of a single outlier.

Graph Rel. dispersion of estimates
6 8 10 12

Amazon 0.203 0.241 0.285 0.268
DBLP 0.023 0.023 0.041 0.054
Patents 0.037 0.083 0.093 0.123
Pokec 0.065 0.044 0.037 0.046
LiveJ. 0.050 0.060 0.033 0.066
Orkut 0.021 0.761 0.053 0.031
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Figure B.2. Accuracy and convergence analysis for 5-CIS s using L-∞ norm.
The y-axes show the L-∞ norm between the Ripple estimate and the ground
truth vector C(5), containing counts of all possible non-isomorphic subgraph
patterns for various settings of ε and I1. As expected, the accuracy improves
as ε decreases and |I1| increases. Each box and whisker represents 10 runs.
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Figure B.3. Sensitivity of Ripple to the reservoir capacity m for k = 5. I verify
that a larger reservoir improves the accuracy of Ripple estimates in all graphs
because it reduces oversampling bias. Each box and whisker plot represents
10 runs.

in Section 3.5.2 . We see that larger reservoirs reduce oversampling bias and improve the

convergence and accuracy in all datasets.

Scalability on Number of Threads (Figure B.4 ). In this experiment, because of

Equation (3.10 ), I set ε = 0.001 to force a larger number of tours, thereby increasing the

load per core and ensuring a sufficient workload. Further, I fix k = 5, set |I1| = 104, m = 107

and compute running times over 10 executions while excluding the graph read time, which is

not parallel. We observe that my implementation does not scale linearly: as we double the

number of cores, the running time decreases by ≈ 1/4 rather than 1/2. Local profiling using

hardware performance counters (Linux’s perf ) suggests that this overhead is an outcome of

increased random-access patterns of in-memory graph data, which limits the overall use of

the underlying processing pipeline. Indeed, sub-optimal access patterns of graph data are a

known issue that is currently handled by dedicated accelerator hardware deploying optimized
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Figure B.4. Scalability w.r.t. the Number of Threads for 5-CIS. Despite a
noticeable reduction in running time, the scalability is not linear. In fact, as
we double the number of cores, the running time decreases by approximately
a quarter instead of half, which may be due to the memory bandwidth limit
coupled with the lack of memory locality, which is a ubiquitous problem in
graph mining algorithms.

and specific caching mechanisms and memory access policies for workloads dominated by

subgraph enumeration [118 ].
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C. DETAILS FOR CHAPTER 4 

C.1 Proof of Corollary 1 

Proof. Collapse the states of S into a single state S to form a state-collapsed MC Φ′(W),

with transition probabilities given by Definition 4.2.1 .

Let (S,X(·)(2), . . . ,X(·)(ξ(·))) be a sequence of discrete states of the r-th tour of the state-

collapsed MC Φ′(W). Note that S is the renewal state of the tour Ξ(·), i.e., X(·)(1) = S.

The time reversibility of Φ(W) implies that p(x; W)pΦ(x,y) = p(y; W)pΦ(y,x), where

pa indicates the probability transition matrix of MC a. Let ZS(W) = ∑
y∈S e−E(y;W). We

now show that Φ′(W) is time-reversible using the fact that the steady state distribution of

Φ(W) is known up to a constant factor. Thus, we “guess” the steady state distribution in

Φ′(W) of S as p(S; W) = ZS(W)/Z(W) and verify that, because S is a proper subset of Ω,

the balance equations of Φ′(W) are time reversible:

p(S; W)pΦ′(S,x) := ZS(W)
Z(W)

∑
y∈S

e−E(y;W)

ZS(W) pΦ(y,x)

=
∑
y∈S

p(y; W)pΦ(y,x)

=
∑
y∈S

p(x; W)pΦ(x,y) see†

= p(x; W)pΦ′(x, S),

†from the time reversibility of Φ(W). Thus, all states x ∈ Ω′\{S} in Φ′(W) have the same

steady state distribution as in Φ(W): p(x; W).

C.2 Proof of Lemma 4 

Lemma (Perfect sampling of tours). Let

Ck = {(x,X(i)(2), . . . ,X(i)(k))}i

be a set of tours of length k ≤ K, with x sampled from S according to some distribution.
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Then, there exists a distribution Gk such that the random variables

Gk := {g(σ) : ∀σ ∈ Ck} (C.1)

are i.i.d. samples of Gk, with g defined over the appropriate σ-algebra (e.g., k RBM states)

with ‖g(·)‖1 ≤ ∞.

Moreover, if we perform M tours, these tours finish in finite time and {ξ(r)}Mr=1 is an

i.i.d. sequence with a well-defined probability distribution p(ξ(·) = k).

Proof. Consider an infinite run of the MCMC Φ′(W): X(1),X(2), . . ., starting at state

X(1) = S. Divide this infinite run into tours, the longest segments of consecutive states

that start at state S but do not contain S in any other states in the segment. Let ξ(r) be

the length of the r-th tour. Because Φ′(W) is an irreducible Markov chain, it is positive

recurrent [90 , Theorem 6.3.8], and we can use Kac’s theorem [119 , Theorem 10.2.2] to assert

that E[ξ(·)] <∞, which also implies ξ(·) <∞ almost surely (i.e., except for a set of measure

zero). Define Rr+1 = Rr + ξ(r+1), with R0 = 0. Define

Gk = {g(X(Rr−1), . . . ,X(Rr − 1)) : r = 1, . . . ,M, ξ(r) = k},

with M > 1. By the strong Markov property, there exists a distribution Gk such that Gk is

an iid sequence from Gk. Note that {ξ(r)}Mr=1 is also iid. Further, note that by Corollary 1 

we can equivalently consider the MC Φ(W), starting at state x sampled from the stopping

set S, which concludes the proof.

C.3 Proof of Theorems 4.2.1 and 4.2.3 

Proof. For simplicity, in what follows we combine the proofs of Theorems 4.2.1 and 4.2.3 ,

specializing on each case when necessary. Define for all r ≥ 0, Rr+1 = Rr + ξ(r+1) and for
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t ≥ 0, N(t) = argmaxr 1{Rr−1<t}, with R0 = 0. N(t) counts how many of the tours in the

sequence {ξ(r)}r≥1 are needed to add up to the largest number smaller than t. Let

Y
(r)
K = 1{ξ(r) ≤ K}

Rr∑
t=Rr−1+1

f(X(r)(t−Rr−1)).

By Lemma 4 , both {Y (r)
K }r≥1 and {ξ(r)}r≥1 are iid sequences. Also, even in the case K →∞,

E[‖Y (·)
K ‖1] ≤ E[ sup

x
ξ(·)‖f(x)‖1] = E[ξ(·)] sup

x
‖f(x)‖1 <∞,

as by definition ‖f(·)‖1 <∞ and we know E[ξ(·)] <∞ (see Lemma 4 ). The Renewal-Reward

Theorem [28 , Chap 3-Thm 4.2] yields, r ≥ 1

lim
t→∞

∑N(t)
r=1 Y

(r)
K

t
=

E
[
1{ξ(·)≤K}

∑ξ(·)

k=1 f(X(·)(k))
]

E[ξ(·)] . (C.2)

Note that,

∑N(t)
r=1 Y

(r)
K

t
=

1{ξ(N(t′))≤K}
∑RN(t)
t′=1 f(X(N(t′))(t′ −RN(t′)−1))

t

=
∑RN(t)
t′=1 1{ξ(N(t′))≤K}f(X(N(t′))(t′ −RN(t′)−1))

RN(t)
·
RN(t)

t
.

Most importantly, limt→∞
RN(t)
t

= 1, because by definition RN(t) + ξ(N(t)+1) > t, and further,

limt→∞
ξ(N(t)+1)

t
= 0, otherwise an infinitely large ξ(N(t)+1) would have non-zero measure, thus

contradicting E[ξ(N(t)+1)] <∞. This yields,

lim
t→∞

∑N(t)
r=1 Y

(r)
K

t
= lim

t→∞

∑RN(t)
t′=1 1{ξ(N(t′))≤K}f(X(N(t′))(t′ −RN(t′)−1))

RN(t)
.

(Theorem 4.2.3 ) The case of Kdyn: As Kdyn is finite almost surely (see proof of

Lemma 4 ), it makes the condition 1{ξ(N(t′))≤Kdyn} := 1. Note that the sequence {X(N(t′))(t′ −

RN(t′)−1)}RN(t)
t′=1 is just a single sample path of our MC starting at state x′, taking RN(t) steps.
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As our MC is irreducible and time-reversible, there is solution and the solution is unique [90 ,

Theorem 6.3.8], and thus we can use the ergodic theorem to show

lim
t→∞

∑RN(t)
t′=1 f(X(N(t′))(t′ −RN(t′)−1))

RN(t)
=
∑
x
f(x)p(x; W),

and substituting the above equation in (C.2 ), yields

E

 ξ(·)∑
k=1

f(X(·)(k))
 = E[ξ(·)]

∑
x
f(x)p(x; W), r ≥ 1. (C.3)

Finally, by Kac’s theorem [119 , Theorem 10.2.2],

E[ξ(·)] = 1
p(x′; W) = Z(W)

e−E(x′;W) , (C.4)

as p(x′; W) is the steady state probability of visiting state x′. Replacing (C.4 ) into (C.3 )

and multiplying it by e−E(x′;W) on both sides concludes the unbiasedness proof. Thus, if

F̂
(Kdyn)
r (W, f) denotes the estimator F̂ in eq.(4.5 ) applied to only a single tour r = 1, . . . , R.

Then, E[F (Kdyn)
r (W, f)] = F (W, f) and the sequence {F (Kdyn)

r (W, f)}r≥1 is trivially iid

by the strong Markov property. This iid sequence guarantees the following convergence

properties.

Error bound: Note that ∑ξ(r)

k=1
∂E(X(r)(k);W)

∂W is upper bounded by ξ(r)B. As Φ(W) is time-

reversible, it is equivalent to a random walk on a weighted graph. Thus, Lemma 2(i) of

Avrachenkov, Ribeiro, and Sreedharan [35 ] applies with Z(W) = 2dtot, ZS(W) = dSn , and

we have

var(F̂ (Kdyn)
1 (W)) ≤ B2

(
(Z(W))2/(ZS(W)δ) + 1

)
.

By the strong Markov property the tours are independent, thus, var(F̂ (Kdyn,R)(W)) =

var(F̂ (Kdyn)
1 (W))/R by the Bienaymé formula. And we have already shown that the esti-

mate of F̂ (Kdyn)
1 (W) is unbiased. Finally, we obtain the bound through the application of

Chebyshev’s inequality.
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(Theorem 4.2.1 ) The case of K: From above, F̂ (Kdyn,R)(W, f) is an unbiased estimate

of F (W, f). The remaining of the proof is straightforward. The tours are independent.

Thus E[F̂ (K,R)(W)] = E[F̂ (K,1)(W)]. Note that

E[ξ(·)]−
K−1∑
k=1

kP [ξ(·) = k] =
∞∑
k=K

kP [ξ(·) = k],

and as B upper bounds ‖f(·)‖1, then the bias E[F̂ (Kdyn,1)(W)− F̂ (K,R)(W)] can be at most

(E[ξ(·)]−∑K−1
k=1 kP [ξ(·) = k]) ·B.

Theorem 4.2.2 

Proof of Theorem 4.2.2 . Note that the condition

inf
x∈Ω\S

∑
y∈S

pΦ(x,y) ≥ ε

ensures that the MC Φ′(W) satisfies Doeblin’s condition, and therefore Φ′(W) is geometri-

cally ergodic with convergence rate (1− ε) [120 , pp. 30]. Finally, by Kendall’s theorem [119 ,

Theorem 15.1.1], a geometric ergodicity and a geometric decay in the tail of the return time

distribution are equivalent conditions.

Proof of Corollary 3 

Proof. An unbiased estimate of ∇WLZ for one tour is obtained from F (Kdyn,R)(W, f) in

eq. (4.6 ) of Theorem 4.2.3 with f(y) = 1
N

∑N
n=1

∂E(xn;W)
∂W − ∂E(y;W)

∂W . Averaging the gradient

of each tour over R ≥ 1 tours gives the desired result.

Source Code

My source code and detailed results are hosted at https://github.com/PurdueMINDS/MCLV-RBM.
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