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ABSTRACT

In this work, we study a class of Markovian information theoretic optimization prob-

lems motivated by the recent interests in incorporating mutual information as performance

metrics which gives evident success in representation learning, feature extraction and clus-

tering problems. In particular, we focus on the information bottleneck (IB) and privacy

funnel (PF) methods and their recent multi-view, multi-source generalizations that gain at-

tention because the performance significantly improved with multi-view, multi-source data.

Nonetheless, the generalized problems challenge existing IB and PF solves in terms of the

complexity and their abilities to tackle large-scale data. To address this, we study both the

IB and PF under a unified framework and propose solving it through splitting methods, in-

cluding renowned algorithms such as alternating directional method of multiplier (ADMM),

Peaceman-Rachford splitting (PRS) and Douglas-Rachford splitting (DRS) as special cases.

Our convergence analysis and the locally linear rate of convergence results give rise to new

splitting method based IB and PF solvers that can be easily generalized to multi-view IB,

multi-source PF. We implement the proposed methods with gradient descent and empir-

ically evaluate the new solvers in both synthetic and real-world datasets. Our numerical

results demonstrate improved performance over the state-of-the-art approach with signifi-

cant reduction in complexity. Furthermore, we consider the practical scenario where there

is distribution mismatch between training and testing data generating processes under a

known bounded divergence constraint. In analyzing the generalization error, we develop

new techniques inspired by the input-output mutual information approach and tighten the

existing generalization error bounds.
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1. INTRODUCTION

Employing information theoretic metrics as objectives in optimizing machine learning models

has gained noticeable interests for the remarkable success in supervised and unsupervised

classification tasks, feature extraction and representation learning [1 ]–[4 ]. Among which,

the information bottleneck (IB) [5 ] and the privacy funnel (PF) [3 ] methods have drawn

substantial attention following the combination with deep neural networks (DNN) for efficient

optimization [2 ]. Perhaps the popularity is a consequence of the formulations that the IB

methods aim at finding a latent representation keeping maximum amount of meaningful

information while minimize the complexity of expression through processing the observations,

and that the PF methods target an optimal mapping with maximum utility at user end

whereas minimum leakage of private information [5 ], [6 ]. Recently, the IB and PF methods

are generalized to learning problems with multi-view, multi-source (multi-modal) data which

is expected to give improved performance over single modal data. This aligns with the

intuition that one would learn better with text and images given than with either one solely

[7 ]–[13 ]. However, the attraction comes with new challenges.

In multi-modal regime, the total dimension of data is much larger than the single modal

counterpart and existing IB and PF algorithms perform inefficiently or suffer from the “curse

of dimensionalty” due to the exponential growth of total number of variables to optimize [14 ].

Other works resort to heuristic surrogate objectives or rely on black-box DNN architecture

to work on multi-modal data that do not fully capture the inherent performance-complexity

trade-off with MvIB and MsPF methods. Beyond the empirical success, there is evidently a

need for theoretic understanding of the multi-modal representation learning tasks, in vision to

better exploit the relevant information within multi-modal data while enjoying significantly

reduced complexity. Or conversely, securing privacy within multi-modal data but providing

maximally utility to an end-user.

As the goal of representation learning is to achieve reasonable performance when tested

with unseen data, the analysis of the generalization error plays an important role for the

success of any representation learning approach. While a variety of recent works have adopted

IB and PF, or multi-modal generalization, as the objective to form a learning model, its
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generalization error analysis is less explored [15 ], [16 ]. The recently introduced input-output

mutual information-based generalization error bounds provide a new framework to shed light

on this direction [17 ], [18 ].

1.1 Contributions

Our contributions are summarized as follows. First, we formulate the single-modal IB and

PF problems into a unified framework and propose solving them with non-convex splitting

methods. The general framework includes a broad class of widely adopted algorithms in-

cluding alternating directional method of multiplier (ADMM), Peaceman-Rachford splitting

(PRS) and Douglas-Rachford splitting (DRS) approaches as special cases. Different from

existing ADMM solvers, we exploit the insight that the IB and PF problems can be decou-

pled into a convex-weak convex pair of sub-objectives, and hence simplifies the three-block

design of existing solvers to two-block, which significantly reduces the number of parameters

to optimize. Moreover, based on the insight, we develop new IB and PF solvers that can be

easily generalized to multi-modal settings. Theoretically, we prove the convergence of the

proposed solvers enabled by the recent non-convex ADMM convergence analysis for splitting

methods where we further relax some assumptions in literature. Therefore, our convergence

analysis is beyond IB and PF problems and applies to a broader class of problems satisfying

the convex-weakly convex decoupling. In addition, we prove that the rate of convergence

of the proposed approaches are locally linear exploiting the Kurdyka-Łojasiewicz inequality

that is recently exploited to characterize the rate of convergence for alternating optimization

approaches. The rate is on the same asymptotic order of benchmark solvers for IB and PF

known in literature with first-order optimization methods.

Second, we generalize the proposed solvers to multi-modal scenario, the multi-view IB

(MvIB) and multi-source PF (MsPF), which extends the splitting algorithms to multi-block,

consensus settings. In formulation, we adopt a top-down, information theoretic approach

based on the data-processing inequality which is in sharp contrast to existing ones in lit-

erature with bottom-up, heuristic design of the overall objective and therefore inherits the

relevance-complexity trade-off as in single-modal IB and PF methods, which serves as refer-
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ence for performance. We focus on MvIB as the solution easily applies to MsPF with minor

modifications. In solving the proposed MvIB objective, we propose two types of solvers cater-

ing to the two extremes in terms of the representation overlap. On one end, where there is

abundant overlap, we propose a two-step consensus-complement algorithm that first forms

a consensus latent representation among multi-view observations then extracts the residual,

distinct information that is relevant to the learning task individually given the consensus. On

the other end, where there is limited overlap, we propose an incremental-update approach

that formulates the latent representation by accumulating the relevant information succes-

sively from each view-specific observation. In both cases, we adopt non-convex multi-block

consensus ADMM algorithm and prove the convergence and show local linear rate of conver-

gence through the KŁ inequality and further shows that the theoretic convergence guarantee

applies to MsPF. Empirically, we implement the proposed MvIB algorithms and compare

them to the state-of-the-art deep neural network (DNN) based methods. Remarkably, our

results show that the two proposed MvIB algorithms can achieve better performance than the

compared method, which demonstrates the advantage of the proposed information-theoretic

formulation for representation consensus over the black-box DNN approaches and that our

proposed two solvers are endowed with the ability to handle both random and deterministic

representation mappings which distinguish them from existing greedy solvers.

Lastly, beyond fitting a known joint probability, we further consider a more general sce-

nario where the goal of the learned representations from a known training distribution is

then evaluated with some unknown testing joint distributions. Under this learning theoretic

scenario, we propose a new “minimax” framework that captures the distribution mismatch

between the learned model and the testing distributions. The framework connects to the

recent input-output mutual information generalization error upper bounds. Different from

these known results, we propose a novel technique based on the Pythagorean theorem which

can be easily applied to most existing bounds and improve the performance. Beyond ap-

plications to existing bounds, our theoretical results connect to the recent encoder-decoder

structure of learning models in machine learning and provide interpretation to their empir-

ical success. Furthermore, we evaluate our theoretic results on synthetic data and compare
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them to existing bounds. The results achieve significant improvements over existing bounds

in various supervised learning tasks.

1.2 Literature Review

1.2.1 Information Bottleneck and Privacy Funnel

We start with a review of the IB methods whose development results in the discovery of

its dual, the PF problem. Given the joint probability of observations X and a target variable

Y , the IB methods aim at finding a representation of raw observations that is minimal in

expression complexity but retaining a desired relevance information level toward the latent

target. Conventionally, this objective is formulated as the following constrained optimization

problem[5 ]:

minimize
p(z|x)

I(X; Z),

subject to I(Y ; Z) > I0,∑
z

p(z|x) = 1,∀x ∈ X ,

Y −X − Z Markov chain,

(1.1)

where X represents the observations, Y the relevant target and Z the latent representation.

The constant threshold I0 > 0 is the desired relevance level and hence controls the trade-off

between I(X; Z) and I(Y ; Z). In solving the IB problem, a common approach is through the

Lagrangian multiplier method, which gives the IB Lagrangian as the minimization objective:

LIB := γI(X; Z)− I(Y ; Z) +
∑

x

λx

(∑
z

p(z|x)− 1
)

, (1.2)

where {λi}i∈[|X |] are multipliers for the equality constraints, imposed to ensure that the con-

ditional probability valid, that is, p(z|x),∀x ∈ X , z ∈ Z stays in the compound probability

simplex; while the Lagrangian multiplier 0 < γ < 1 is the trade-off parameter controlling

the two mutual information I(Z; X), I(Z; Y ), known as the relevance-complexity trade-off

[6 ]. This trade-off can be revealed by considering the boundary cases. First, let γ = 0, then
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minimizing the IB Lagrangian is reduces to maximizing a convex function whose optimal

solutions are the cases where p(z|x) is equal to 0 or 1. In other words, the deterministic

mapping is the optimal solution for γ = 0. On the other hand, if γ = 1, then by data-

processing inequality (DPI) I(Z; X) ≥ I(Z; Y ), so the IB Lagrangian is non-negative. Then

consider the case where p(z|x) = 1/|Z|, that is, random mapping, the straightforward result

H(Z) = H(Z|X) = H(Z|Y ) implies I(Z; X) = I(Z; Y ) = 0. Combine this with DPI, we

conclude that the random mapping is the optimal solution for γ = 1. In fact, this results

is recently observed, known as the IB Learnability [19 ], which turns out to be useful in

developing our results in later chapters.

Besides these boundary points, the IB Lagrangian is in general difficult to solve. In liter-

ature, only certain types of joint distributions are fully characterized. One well-known exam-

ple is the Gaussian Information Bottleneck [20 ] where X, Y are jointly Gaussian distributed.

However, for general pairs of variables that might of practical interests, the non-convexity of

IB prevents a closed-form solution to fully characterize the relevance-complexity trade-off, i.e.

the optimal relevance rate I(Z; Y ) one can achieve given a fixed compression rate I(X; Z),

without empirically evaluating a given joint probability p(x, y). The non-convexity of the IB

problem can be easily revealed as follows. Given a fixed joint probability p(x, y), the mutual

information I(X; Z) is a convex function w.r.t. p(z|x); While the mutual information I(Y ; Z)

is also convex w.r.t p(z|y). From the Markov chain Y −X − Z. p(z|y) = ∑
x p(z|x)p(x|y) is

a convex combination of p(z|x) and therefore I(Y ; Z) is convex w.r.t. p(z|x). Because of the

non-convexity, existing algorithms solving the IB problem can assure convergence to local

minimizers only. Nonetheless, if the rate of convergence is fast enough, say is at least linearly

fast [21 ], then the price to pay for losing convexity is compensated by multiple trials with

random initialization, which is affordable given the advances of computational power today.

However, while there have been a variety of algorithms proposed to solve the IB problems,

few of them have convergence guarantee.

The most well-known IB algorithm, as first appeared in the seminal work [5 ], is the

Blahut-Arimoto (BA) typed solver [22 ]. The algorithm is derived through the first or-
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der functional derivative of the IB Lagrangian with respect to the conditional probability

p(z|x),∀z ∈ Z,∀x ∈ X , and iteratively update p(z|x) according to the following steps:

pk+1(z|x) = pk(z)
K(x, β) exp

{
− βDKL[p(y|x)||pk(y|z)]

}
,

K(x, β) =
∑

z

pk(z) exp{−βDKL[p(y|x)||pk(y|z)]},

pk+1(z) =
∑
x∈X

pk+1(z|x)p(x),

pk+1(z|y) =
∑
x∈X

pk+1(z|x)p(x|y),

(1.3)

where DKL(µ||ν) is the Kullback-Leibler (KL) divergence, K(x, β) is the normalization

function and the superscript k is the iteration counter. The BA-typed algorithm belongs to

a special class of optimization methods, the exponentiated gradient descent [23 ], which in

general is easier to implement as the normalization process automatically project the updated

variables to probability simplex. And different from a variety of algorithms inspired by it, the

BA-typed solver is non-greedy and has linear rate of convergence assurance [24 ]. However,

due to the general formulation of IB, the later-introduced algorithms, while being greedy

or having no theoretic convergence guarantee, have been successfully applied to a variety of

problems in various research fields [2 ], [3 ], [6 ], [25 ], [26 ]. Among them, the recent combination

of deep neural network and IB through variational inference [27 ] further encourages the

application of IB to supervised, unsupervised and reinforcement learning problems [28 ], [29 ],

which gains even more attention from researchers in various disciplines.

Another kind of algorithm, known as the agglomerative IB [6 ], limiting the class of condi-

tional probability corresponds to deterministic mapping, further inspires the development of

the the privacy funnel (PF) problem [3 ]. In PF, the variables X, Y now represent public and

sensitive information respectively while Z is the observation. This forms the same Markov

chain Y −X − Z and the variables to optimize p(z|x) as well. The goal of PF is to find the

optimal mapping from a public information to an observation that minimizes the privacy
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leakage I(Y ; Z) while maximally retaining the utility for the public information I(X; Z).

Hence the corresponding PF Lagrangian:

LP F := βI(Z; Y )− I(Z; X) +
∑

x

λx

(∑
z

1− p(z|x)
)

, (1.4)

where the multipliers {λx}x∈X are applied for p(z|x) to be valid conditional probability; and

β > 0 is the trade-off parameter. In solving (1.4 ), most existing works adopt the clustering

based agglomerative IB approaches. However, due to the limitation on deterministic map-

pings, this type of solvers is equivalently addressing clustering problems whose complexity

scale exponentially as the dimension of X increases. To reduce the difficulty, greedy algo-

rithms are proposed where in each iteration, two clusters are merged if the resultant PF

Lagrangian is smaller than treating them as two clusters. While recent works improve the

merging process by exploiting the submodularity of the mutual information in clustering

scenario [30 ], [31 ], the limitation on deterministic mappings remains.

In comparing the performance of existing IB and PF algorithms, a well-known approach

for performance evaluation is characterizing the relevance-complexity trade-off for IB, and

the privacy-utility trade-off for the PF of the obtained solutions. The evaluation method

requires sweeping through a range of the trade-off parameters γ, β and plotting the obtained

pairs of I(X; Z), I(Y ; Z) in x, y axes. This plot is known as the information plane [5 ], [6 ].

By referring an obtained solution of IB or PF to the information plane, one can evaluate

the performance. In IB, I(Y ; Z) that is higher for a fixed I(X; Z) is considered as a better

solution; whereas in PF, for a fixed I(X; Z), a smaller I(Y ; Z) is considered as a better

solution.

The recent success of applying IB methods to DNN through variational inference and

hence allows efficient estimation of the mutual information involved [2 ]. Interestingly, empir-

ical findings further show the learned representation through the VIB frameworks not only

deliver good performance in standard classification accuracy but are also provide robustness

to adversarial perturbation without further regularization[2 ], [32 ]. This variational IB (VIB

[2 ]) approach has gained significant attention in machine learning and data science commu-

nity and have been applied to more challenging unsupervised and reinforcement learning
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tasks achieving impressive performance. Meanwhile, the advances of machine learning bring

new challenges. For example, the ability to tackle large-scale, distributed learning tasks

and the privacy awareness in data collection. In these contexts, a class of well-known op-

timization methods, the alternating direction method of multipliers (ADMM [33 ]) or more

general splitting methods is a promising approach to take the new challenges. Notably, the

IB methods have recently been applied to splitting methods which is a timely discovery.

1.2.2 Non-Convex Optimization with Splitting Methods

Recently, [25 ] adopted ADMM to solve the IB Lagrangian introduced in the last part.

While empirically evaluated, there is no convergence guarantee. Inspired by this result,

our earlier work simplifies the design to the reference work and proves the convergence of

the proposed ADMM-IB solver therein [34 ]. This theoretic result is based on the recent

breakthrough for the convergence analysis of non-convex alternating optimization methods

[35 ].

Compared to the well-studied convex optimization counterpart, non-convex optimization

is less explored until recently. The main tool in studying the convergence of non-convex iter-

ative alternating, or the so called non-convex splitting methods, is the Kurdyka-Lojasiewicz

(KŁ) inequality [36 ]–[40 ]. The KŁ inequality has been successfully applied to the study of

non-convex, non-smooth problems and used to characterize the local convergence and the

associated rates for a broad class of first-order optimization methods including proximal

algorithms, ADMM, Peaceman-Rachford splitting (PRS [41 ]), Douglas-Rachford splitting

(DRS [42 ], [43 ]) and even multi-block consensus [44 ] or sharing algorithms [45 ].

While in most cases, the splitting methods do not converge if the problem is non-convex,

it is recently found that if the non-convexity is composed of a combination of weakly-convex

and convex sub-objective functions, then locally linear convergence can be shown through

the KŁ inequality under certain smoothness conditions [43 ], [46 ], [47 ].

To apply the KŁ inequality, certain conditions need to be satisfied, known as the KŁ

property [38 ]. The major breakthrough in applying this power tool is that a rich class of

functions, functions that are sub-analytic and semi-algebraic, are found to have the KŁ
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property [37 ], [48 ]. Otherwise, for general function, one needs to find its local convergence

behavior through determining of the corresponding Łojasiewicz exponent and then checking

each condition needed before applying the KŁ inequality. One of the benefits from applying

KŁ inequality is the characterization of the rate of convergence with respect to the associated

Łojasiewicz exponent. While explicitly determining the exponent is not a straightforward

task [49 ], once determined, one instantly knows the rate of convergence. For example, if the

exponent θ = 1/2 then it corresponds to linear rate. Another benefit is that the convergence

characterized by the KŁ inequality is point-wise. Therefore, if the rate of convergence is

linear, indicated by the KŁ inequality, then the convergence is Q-linear, a stronger sense of

linear convergence compared to R-linear rates [21 ].

This recent development of the fundamentals for non-convex, non-smooth optimization

meets the shift of interests toward large-scale data analysis and learning problems. As it

is well-known that, in convex settings, splitting methods decouple the objective functions,

allowing efficient parallel computing, the recent results on non-convex settings can bring this

computational gain to broader class of practical problems. Among which, the multi-view IB

and multi-source PF are perfect candidates to apply the non-convex splitting methods.

1.2.3 Multi-Modal Representation Learning

Owing to the advances in data science and machine learning, there is a recent surge of

interests in learning from multi-view data in the machine learning and data science commu-

nity (e.g., [11 ], [50 ]–[53 ]). What does a view mean? We define a view as a description or

observation about the source of data. For example, a news article can be written in different

languages, a video can be either colorful or gray scale and wireless signals can be represented

in either time or frequency domains. Intuitively, one will expect learning from multi-view

data can result in improved performance and several empirical evidence has been found to

encourage this approach by recent works [54 ]. While there is a recent surge of interests on

multi-view learning, the study of learning problems began quite early. In literature, the ap-

proaches in multi-view clustering and learning can be categorized into two groups: The first

group of methods treats the features of all views, forming a single giant view whereas the
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second group of paradigms extracts the relevant features of each view, forming a consensus

of representations as a low dimensional latent feature. The pros and cons of each group of

approaches are clear: combining all view of features into a single one keeps all the informa-

tion that each view has but the dimension of the giant view increases exponentially, which

makes it prohibitively complex to tackle; Whereas the formation of lower-dimensional con-

sensus features significantly reduces the complexity but finding the criterion and developing

a general method to construct consensus among all views are challenging tasks.

For the latter group, in search of a general criterion for the formation of consensus,

several works have attempted to generalize the single-view IB methods to multi-view IB

(MvIB) representation learning. In particular, exploiting the compression and regularization

effect by imposing the mutual information of observations and the learned representation,

[8 ] employed mutual information of view-specific observations/representations to the main

objective function. Their goal was to maximize the marginal of a linear classifier and the

focus was on binary tasks. By treating each view as a single-view IB problem followed by a

post-processing stage, [55 ] proposed maximizing the mutual information between the pairs

of view-specific representations to facilitate the formation of consensus among view-specific

clustering hypotheses. More recently, [7 ] proposed a bottom-up, heuristic MvIB objective

which is composed of a combination of view-specific information, view-shared information,

and inter-cluster correlation measured in mutual information between each information and

the latent feature. They propose maximizing the combination of the sub-objectives expressed

in mutual information while compressing the observations simultaneously. In minimizing

the overall objective function, the reference work resorts to using a class of off-the-shelf

greedy single-view IB algorithms, as reviewed in Chapter 1.2.1 , and select the best result

among them. In MvIB, the state-of-the-art method applies VIB to address the difficulty

in forming a consensus for all views. In [9 ] each view was pre-processed in single-view IB

fashion and then each individual-view representation was merged by an additional layer

of neurons whose output can be interpreted as the latent consensus of all representations,

with heuristic loss function imposed on the output aiming to maximize the relevance of the

combined representation to a target variable.
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On the other hand, in accordance with the duality of IB and PF, the dual problem

of MvIB, the multi-source PF (MsPF), where the private information in the original PF

formulation now generalized to a class of sensitive attributes [10 ], [12 ], [13 ]. Then, motivated

by the advantage in MvIB that prevents the exponential scaling of merging all attributes into

one, the goal is to find a mapping scheme from the public information to the observation at

the user end that minimize the privacy leakage to each sensitive attribute while maximally

maintains the utility of the observation for a user. The MsPF problem is less explored

and the existing solvers again resort to using clustering-based greedy algorithms which are

limited to deterministic mappings. Aiming at improving the exploration of the privacy-

utility trade-off in this generalized MsPF problem, we again apply the recent convergence

non-convex splitting methods to develop new class of algorithms that can tackle both random

and deterministic mappings and more importantly, provide convergence guarantee. For

convenience, in the following chapters, we will term the MvIB and MsPF together as the

multi-modal representation learning problems.

1.2.4 Information Theoretic Generalization Error Bounds

Representation learning, either with single or multi modals tasks, is a topic of learning

theory. The fundamental question for learning is how well a model performs when tested with

unseen samples, after trained with a finite number of available data. In other words, the goal

is hoping a model to acquire the informative features from history that allows it to infer the

future. In literature, the most popular approach in realizing this objective is known as the

empirical risk minimization (ERM [14 ]), where a certain surrogate loss function is imposed

on a learning model, then a set of algorithms is adopted to minimize the empirical estimate

of the loss with a finite number of training data. However, as mentioned earlier, the expected

value of the loss with the true data-generating distribution is what the learner care most. The

absolute difference between the two estimated losses is defined as the generalization error.

Intuitively, if the expected loss of ERM is close to that with the unknown data-generating

distribution then one can claim that the model learns well. Nonetheless, this depends on a
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judicious choice of the loss function and enough training data which is infeasible in general

learning tasks.

Finding a tight upper bound of the generalization error has been one of the main top-

ics in learning theory. Conventionally, the approaches adopted to study the generalization

error require defining certain complexity metrics that can be crudely categorized into two

ideas. The first one is based on the intuition that the cause of generalization error is due

to the finite sampling process, and therefore the generalization error can be reduces as the

number of training data samples increases for a finite hypothesis space, i.e. the collection

of learning models that one algorithm can produce. Some celebrated approaches include the

Rademacher Complexity and Vapnik-Chervonenkis (VC) dimension [14 ], [56 ]. The second

idea instead considers the stability of a learning algorithm, that a stable algorithm should in-

tuitively produce similar outcomes if the training data is replaced by a single sample. Based

on this intuition, the uniform stability [57 ] put more focuses on the learning algorithm where

certain regularization on the hypothesis space and Lipschitz smoothness conditions are im-

posed on the loss functions and hence take parts in the resultant generalization error upper

bounds. Recently, the so called input-output mutual information based generalization error

bounds approaches are introduced that can incorporate both the sample complexity and the

algorithmic stability into an information-theoretic framework for the generalization error

analysis [17 ], [18 ], [58 ]–[61 ]. Through the combination of the sub-Gaussian the assumption

along with the Donsker-Varadhan representation of the Kullback-Leibler (KL) divergence

[62 ]. This information-theoretic approach is recently found to achieve state-of-the-art tight

upper bounds owing to a variety of upper bound tightening techniques following its emer-

gence [59 ]–[61 ], [63 ], and hence gains significant attention fueled by the recent interests in

optimizing information-theoretic metrics as surrogate loss functions [64 ].

Most existing approaches, however, do not take the adversarial scenario into account.

The recent discovery of the existence of adversarial samples create new challenges to gen-

eralization error analysis. In adversary learning scenario, it is assumed there is an attacker

who craftily adding certain metric-bounded perturbation to clean samples, but dramatically

deteriorate the performance of a learning model that performs reasonably well on clean data

instead. As the concern for security and privacy draw significant attention along with the
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prevalent success of DNN in machine learning, one will also be interested in studying gener-

alization error bounds with the presence of an adversary. Since the discovery of adversarial

samples, new defense and attack approaches have been introduced but there is no telling who

triumph so far. This everlasting competition further urges the need of theoretic analysis of

generalization error bounds.

In an attempt to address the above-mentioned challenges. We view the generalization

error as distribution mismatch that might be caused from either sampling process of an

unknown data-generating process or a metric-bounded adversary [58 ], [61 ]. Different from

existing works that also consider distribution mismatch, we formulate the generalization

error problem into a minimax problem. In solving the proposed minimax problem, we

derive surrogate upper bound for the inner maximization problem that extends the mutual

information based upper bounds to cases where indirect partial knowledge of test distribution

are available, which is motivated by the fact that adversarial samples need to be plausible

to the clean data and hence fall within some bounded-divergence to training distribution,

providing additional information to exploit. Moreover, even without the partial knowledge,

we find that the derived bounds can tighten the existing mutual information based bounds

and apply to a variety of upper-bound tightening techniques. Notably, when imposed the

proposed framework on the recently popular encoder-decoder structural learning models, we

find that our results connect to the strong data-processing inequality can potentially provide

explanations to their empirical success that is less addressed in literature.
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2. MARKOVIAN INFORMATION THEORETIC

OPTIMIZATION

2.1 Problem Formulation

2.1.1 A General Framework

In this chapter, we study the following Markovian information theoretic Lagrangian:

L := ρzH(Z) + ρz|xH(Z|X) + ρz|yH(Z|Y ), (2.1)

where ρz, ρz|x, ρz|y are some constants to be decided, H(X) denotes the Shannon entropy

function of a random variable X whereas H(X|Y ) denotes the conditional entropy function

of X conditioned on Y . We focus on discrete random variables and leave the generalization to

continuous settings to future exploration. Note that since the negative (conditional) entropy

function is convex [65 ], if the coefficient ρ < 0, ρ ∈ {ρz, ρz|x, ρz|y}, then is becomes a convex

function. To further simplify (2.1 ), we define the following vectors.

pz :=
[
p(z1) · · · p(zK)

]T

, (2.2a)

pz|x :=
[
p(z1|x1) · · · p(z1|xN) p(z2|x1) · · · p(zK |xN)

]T

, (2.2b)

pz|y :=
[
p(z1|y1) · · · p(z1|yM) p(z2|y1) · · · p(zK |yM)

]T

, (2.2c)

where the cardinalities of the variables are denoted as K := |Z|, N := |X |, M := |Y| respec-

tively. From the above definition, pz|x, pz|y are cascaded conditional probabilities in vector

form. Similarly, we have the vector forms of the prior probabilities px, py. Moreover, if we ar-

range the conditional prior probability p(x|y) into a matrix Wx|y with the (i, j)-entry p(xi|yj),

then under the Markov chain Y −X − Z, we can express the relation as a linear equation

pz|y = Qx|ypz|x, and the marginal relation pz = Qxpz|x where Qx|y := IK⊗W T
x|y, Qx := IK⊗pT

x

with the operator ⊗ denotes the Kronecker product. With these definitions, the (conditional)

entropy functions can be expressed as real value functions that take vectors as inputs. Then
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we propose solving (2.1 ) with two-block splitting methods, which gives the following aug-

mented Lagrangian:

Lc(p, q, ν) := F (p) + G(q) + 〈ν, Ap−Bq〉+ c

2‖Ap−Bq‖2, (2.3)

where p, q are primal variables which can be one of pz, pz|x, pz|y or a cascaded long vector

with two of them. The design of p, q subsequently determines the functions F, G; ν denotes

the dual variables in vector form to approximate the Lagrange multipliers imposed on the

linear constraint Ap−Bq composed of the matrices A, B and primal variables. Since p, q are

probability vectors, the meaning of the linear constraint is simply the Markov or marginal

probability relation. Lastly, the penalty coefficient c > 0 is introduced along with the

squared 2-norm of the linear constraint, also known as the proximal term. This penalty

term is imposed on the augmented Lagrangian to encourage the constraint to be satisfied

which is in sharp contrast of standard Lagrange multiplier methods.

2.1.2 Examples: Information Bottleneck and Privacy Funnel

The proposed general Markovian Lagrangian (2.1 ) includes a broad range of problems,

that is, a different choice of the the coefficients ρz, ρz|x, ρz|y corresponds to a distinct problem.

Among which, we are particularly interested in the assignments of (ρz, ρz|x, ρz|y) such that

the overall Lagrangian corresponds to non-convex optimization problem. In all the non-

convex assignments, we show in the following that the IB and PF problems fall within this

non-convex subset. For the IB methods, by selecting the coefficients as:

ρz := γ − 1, ρz|x := −γ, ρz|y := 1,

whose corresponding Lagrangian is:

LIB := (γ − 1) H(Z)− γH(Z|X) + H(Z|Y ) = γI(Z; X)− I(Z; Y ).
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Note that γ ∈ (0, 1], which is due to the recent result that shows that γ ≥ 1 corresponds to

trivial solutions as shown in Chapter 1.2.1 . On the other hand, as for the PF problem, we

can instead select the coefficients as:

ρz := β − 1, ρz|x := 1, ρz|y := −β,

so that the Lagrangian is:

LP F := (β − 1) H(Z) + H(Z|X)− βH(Z|Y ) = βI(Z; Y )− I(Z; X),

where β > 0. As discussed in Chapter 1.2.1 , the IB and PF problems have attracted signif-

icant attention recently due to their success in machine learning and data science research,

and new challenges that come along with them. Hence, instead of finding more examples

that belong to the proposed generalized framework, in the rest of this chapter, we will focus

on the two problems and present a novel optimization-mathematics perspective of the IB

and PF problems.

2.2 Algorithms

In solving the augmented Lagrangian (2.3 ), we consider two types of iterative algorithms.

Both algorithms correspond to two-block splitting methods [46 ]. Note that this simplifies

the design and enjoys better convergence assurance than other existing splitting methods

based IB three-block solver [25 ], [34 ].
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2.2.1 First Kind: F -Dual Splitting Algorithm

Denote the superscript k as the iteration counter. The update of the primal and dual

variables from step k to step k + 1 follows:

νk+1
1/2 := νk − (1− α)c(Apk −Bqk), (2.4a)

pk+1 := arg min
p∈Ωp

Lc(p, qk, νk+1
1/2 ), (2.4b)

νk+1 := νk+1
1/2 + c(Apk+1 −Bqk), (2.4c)

qk+1 := arg min
q∈Ωq

Lc(pk+1, q, νk+1), (2.4d)

where νk
1/2 denotes the relaxation step with the corresponding relaxation coefficient α > 0.

We stress the difference of νk
1/2 to νk where the latter specifically indicates the dual variable

at step k.

2.2.2 Second Kind: G-Dual Splitting Algorithm

Alternatively, we have the second type of iterative algorithm that updates the primal

and dual variables from step k to step k + 1 according to the following iterative algorithm:

pk+1 := arg min
p∈Ωp

Lc(p, qk, νk), (2.5a)

νk+1
1/2 := νk − (1− α)c(Apk −Bqk), (2.5b)

qk+1 := arg min
q∈Ωq

Lc(pk+1, q, νk+1), (2.5c)

νk+1 := νk+1
1/2 + c(Apk+1 −Bqk). (2.5d)

The difference to the first algorithm is that the primal variables p, q are updated preceding

the relaxation step ν1/2 and the dual ascend of ν. As will be shown in the convergence

analysis, if assume smoothness on the sub-objective functions F, G and solved with first-

order optimization methods (gradient descent), the first algorithm has its dual variable

connects to the smoothness of F while the second links its dual variable to the smoothness
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of G instead. We exploit these connections to derive the convergence and the associated

rates.

2.3 Main Results

Our main results for this chapter are the theoretic convergence analysis (Chapter 2.4 )

of the two algorithms proposed to solve the general Markovian information-theoretic opti-

mization problem (4.20 ). Our optimization-mathematics approach in studying the general

problem allows us to prove not only the convergence but also the linear rate of convergence

of the algorithms in non-convex settings which is in sharp contrast to the well-studied con-

vex counterparts. We summarize the results in Table 2.1 which serves as a guidance in

designing algorithms to solve non-convex information theoretic optimization problems that

fall within the proposed framework (2.1 ). We apply the results to design new solvers for two

special cases of the proposed framework, the IB and PF problems (Chapter 2.5 ) that recently

gain significant research interests for its success in machine learning and data science studies.

Compared to existing algorithms in each problem, we prove that the proposed new IB solvers

achieve asymptotic convergence rate of benchmark solvers (e.g. Blahut-Arimoto typed [5 ],

[22 ]). Furthermore, in contrast to existing ADMM solvers [34 ] for IB, we simplify the design

where no additional regularization terms are imposed on the augmented Lagrangian, and

improves the performance in terms of the smallest penalty coefficient that assures conver-

gence. As for PF, our new DRS solver can tackle both random and deterministic mappings

and is therefore different from existing greedy algorithms that are limited to deterministic

mappings only. Empirically, we evaluate the new solvers (Chapter 2.6 ) on both synthetic and

real-world datasets and compare the performance to a range of existing solvers. The results

demonstrate that the new IB solvers achieve comparable performance in characterizing the

relevance-complexity trade-off [6 ], and that the new PF solvers can better characterize the

privacy-utility trade-off than existing algorithms.
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2.3.1 Formulating to Two-Block Augmented Lagrangian

We propose two ways to formulate the three-block Markovian Lagrangian (2.1 ) into two-

block augmented Lagrangian (2.3 ). The first technique is linear composition where we

impose pz|y = Qx|ypz|x to be strict equality, that is, the Markov relation between the two

probability vectors defined in (2.2 ). By linear composition, the variable pz|y reduces to a

linear transform of pz|x. Then the sub-objective function ρz|yH(Z|Y ) can then be expressed

as a function of pz|x. It turns out that for IB, imposing pz|y = Qx|ypz|x recovers our earlier

work [34 ] while in PF, imposing pz = Qxpz|x introduces a new class of non-greedy, linearly

convergent, splitting methods based solver. The second technique is stacking where two

of the three probability vectors involved in the Markovian Lagrangian are cascaded and

expressed as a giant vector. For example, by stacking q :=
[
pT

z pT
z|y

]T

, the equivalent sub-

objective function G(q) := ρzH(Z) + ρz|yH(Z|Y ) is then expressed as a function of q. In

section 2.5 , we show that by stacking, we can introduce a new type of splitting methods-based

IB solver that can easily be generalized to multi-view IB representation learning problems

(Chapter 3 ) while the other type cannot. Note that after applying any of the two techniques,

the associated sub-objective function may lose convexity/concavity in its original form. For

example, in IB, applying the linear composition pz|y = Qx|ypz|x makes G(pz|x) = −γH(Z|X)+

H(Z|Y ) a non-convex function w.r.t. pz|x. As a final remark, recall that the goal of solving

the Markovian Lagrangian is to find the mapping pz|x, so after “over-parameterizing” to adopt

the splitting methods, suppose the two-block splitting algorithms converge, then the next

step is to decompose the component p∗
z|x that solves both the augmented and the Markovian

Lagrangians as the solution. Because of this, the matrices A, B in the linear penalty Ap−Bq

that is applied to pz|x need to be at least full column rank.

2.3.2 Linearly Convergent Splitting Methods-Based Solvers

Besides introducing new formulations, we provide theoretical convergence analysis of the

proposed methods under three sets of assumptions that apply to two types of IB and one type

of PF solvers. The analysis closely follows the recent convergence results for non-convex non-

smooth alternating algorithms in first-order optimization methods [39 ], [45 ], [66 ]. Among a
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variety of formulations and assumptions considered in this line of research, we found that

the “convex-weakly convex” pair sub-objective functions setup is the closest one to ours

[46 ], [47 ]. As the name of this class suggested, the non-convexity of the original objective

function lies in the weakly-convex part of the sub-objective function. It turns out that if

the weakly convex sub-objective is also Lipschitz smooth, then convergence can be proven

by combining the smoothness and the first-order optimal conditions of the updates for the

variables ν and ν1/2. Moreover, the recent results also extend to the rate of convergence

analysis which is based on the Kurdyka-Łojasiewicz (KŁ) inequality [36 ]–[38 ]. The KŁ

inequality (Definition 2.4.7 ) characterizes the rate of convergence around the neighborhood

of a stationary point in terms of the associated Łojasiewicz exponent θ ∈ (0, 1) of a function

f . While determining the exponent is a difficult task in general [49 ], there is a broad class

of functions that is recently found to satisfy the KŁ inequality and whose exponents are

known [48 ]. Unfortunately, in our case, due to the reformulation to the two-block augmented

Lagrangian, we need to explicitly find the Łojasiewicz exponent θ = 1/2 (corresponds to the

linear rate of convergence) explicitly.

Following the discussion, the key element to connect to these recent results depends on

the smoothness of the sub-objective functions. However, in our case, the functions are either

(negative) entropy or conditional entropy which do not have uniform Lipschitz smoothness

as the gradients at the boundary points of the probability simplex are ill-defined. Inspired

by the smoothness assumptions in density and entropy estimation research, we define ε-

infimality (Definition 2.4.2 ), which avoids these undesired special cases. When imposed

on the probability vectors, then the smallest entry of each of the vectors is bounded away

from zero by a positive constant ε. In other words, the condition regularizes the feasible

sets when solving the augmented Lagrangian. Interestingly, the ε-infimality conditions are

realized when implementing the step-size selection algorithm for first-order methods. This

implies that the conditions are more than theoretical simplifications but also involve practical

aspects of the proposed methods, but this is beyond the scope of this work and will be left

for future explorations.

In the next section, we start with the most restricted set of assumptions, where the two

sub-objectives satisfy strong convexity and restricted weak convexity (Definition 2.4.4 ) and
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both sub-objective functions are smooth. The convergence can be shown by establishing

the sufficient decrease lemma (Lemma 2.4.6 ). And then by explicitly showing that the

Łojasiewicz exponent θ = 1/2 (Lemma 2.4.14 ), we can adopt the KŁ inequality (Lemma

2.4.10 ) to prove locally linear rate of convergence (Theorem 2.4.15 ). We apply this result to

develop the first type of DRS-based IB solver (Theorem 2.5.1 ).

To relax the first set of assumptions, we consider the objective function to be a “convex-

weakly convex” pair. Interestingly, now we only need to impose smoothness conditions on the

weakly convex part to prove convergence (Lemma 2.4.8 ) and rate of convergence (Theorem

2.4.18 ). Based on this result, we develop the second type of DRS-based IB solver (Theorem

2.5.2 ).

Lastly, for PF, after formulating to the augmented Lagrangian following the linear com-

position pz = Qxpz|x, it reveals that the two sub-objective is also the “convex-weakly

convex” pair. However, the rank conditions are in consistent with the second set of as-

sumptions. To address this, following the key result in [45 ], the M -Lipschitz continu-

ity of the weakly convex function provides the reverse control of the non-trivial relation

‖pk
z|x − pk+1

z|x ‖ ≤ M‖Qxpk
z|x − Qxpk+1

z|x ‖ and hence we arrive at the locally linear rate of con-

vergence (Theorem 2.4.20 ). This result gives rise to a new class of non-greedy PF solvers

(Theorem 2.5.4 ).

2.4 Convergence Analysis

In this section, we present the theoretic convergence analysis of the two algorithms (2.4 )

and (2.5 ) under three sets of assumptions. As will be shown in next section, the three dif-

ferent sets of assumptions correspond to two types of IB solvers and a class of PF solvers.

Continuing the proof, for each set of assumption, we follow the recent results for the con-

vergence analysis on non-convex the splitting methods but extend from ADMM to the more

general DRS through incorporating an additional relaxation step [43 ].
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2.4.1 Preliminaries

Definition 2.4.1. A function f : Rd 7→ [0,∞), with distinct x, y ∈ Ω is Lipschitz continuous

if:

|f(x)− f(y)| ≤M |x− y|.

Where M > 0 is the Lipschitz coefficient.

Note that if f ∈ Cd, d ≥ 1 and ∇f(x) is L-Lipschitz continuous, then the function f is

said to be a L-smooth function. To avoid confusion, we will denote the Lipschitz continuity

coefficient as M whereas the coefficient for smoothness is L.

Definition 2.4.2. A measure u(x) ∈ (X ,F) is said to be ε-infimal if there exists ε > 0, such

that infx∈X u(x) = ε.

The infimal measure condition is commonly assumed in non-parametric entropy/density

estimation to assure smoothness on the estimators and hence facilitate the optimization

process [67 ], [68 ]. A ε-infimal measure has its smallest mass strictly bounded away from

zero by a positive constant ε. As it turns out, the convergence of non-convex information-

theoretic optimization problems relies on this condition not only for theoretic analysis, but

also in practical application as the infimal coefficient ε translates to the step-size selection

algorithm when implemented with first-order gradient descent methods.

Lemma 2.4.1. let f(u) = ∑|µ|
i=1 µi log µi,

∑
x∈X µ(x) = 1 be the negative entropy function

where two distinct measures µ, ν ∈ (X ,F) are ε-infimal. Then f is | log ε|-Lipschitz contin-

uous and 1/ε-smooth

Proof. The Lipschitz continuity follows:

f(µ)− f(ν) =
∑

x

[µ(x)− ν(x)] log 1
ν(x) −DKL(µ||ν)

≤ (log 1
ε
)
∑

x

|µ(x)− ν(x)|

= | log ε|‖µ− ν‖.
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As for the smoothness condition, we have:

|∇f(µ)−∇f(ν)| ≤ |µ− ν|
minx∈X{µ(x), ν(x)} = |µ− ν|

ε
, (2.6)

where the inequality is due to the following identity and the fact that log x < x−1 for x > 0:


a > b, log a

b
≤ a

b
− 1 = a−b

b

b > a, log b
a
≤ b

a
− 1 = b−a

a

⇒
∣∣∣∣log a

b

∣∣∣∣ ≤ |a− b|
min{a, b}

.

Similarly, for conditional entropy, if assuming infimality on the associated conditional

probability vector, then we can establish the following smoothness condition.

Corollary 2.4.2. Let px be given, pz|x be ε-infimal, then the conditional entropy H(Z|X) =

−∑x p(x)∑z p(z|x) log p(z|x) is | log ε|-Lipschitz continuous and 1/ε-smooth.

Proof. Following lemma 2.4.1 , for two measures u, v ∈ Ωz|x, where Ωz|x denotes a compound

simplex for the conditional probability p(z|x), the Lipschitz continuity follows:

H(Zm|X)−H(Zn|X) ≤ |log ε|
∑

x

p(x)
∑

z

|p(zm|x)− p(zn|x)|

≤ |log ε| sup
x∈X

p(x)‖pm
z|x − pn

z|x‖

= |log ε| ‖pm
z|x − pn

z|x‖.

On the other hand, to prove the smoothness, like the right-hand side of the inequality (2.6 ),

we have:

|∇H(u)−∇H(v)| ≤ maxx∈X p(x)
ε

|u− v| ≤ |u− v|
ε

.

Definition 2.4.3. A differentiable function f : Rn 7→ [0,∞) is said to be σ-hypoconvex,σ ∈ R

if the following holds:

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ σ

2 ‖y − x‖2. (2.7)
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If σ = 0, (2.7 ) reduces to the definition of convex function; σ > 0 corresponds to strong

convexity whereas when σ < 0, it is known as the weak convexity [35 ], [43 ], [46 ].

A well-known example is the negative entropy function, which is 1-strongly convex in

1-norm [65 ], and due to the norm relation ‖x‖2 ≤ ‖x‖1, x ∈ R|X |, it is also 1-strongly

convex in 2-norm. Another example is the conditional entropy, which is weakly convex if the

corresponding conditional probability mass is ε-infimal as shown in the follow lemma.

Lemma 2.4.3. Let G(pz|y) = H(Z|Y ). If pz|y is a εz|y-infimal measure. Then the function

G is (2NzNy/εz|y)-weakly convex. Where Nz = |Z|, Ny = |Y| is the cardinality of the random

variables Z, Y respectively.

Proof. For two arbitrary pm
z|y, pn

z|y ∈ Ωg where the superscript here means two arbitrary

iteration count m, n ∈ N. Then, consider the following:

H(Zm|Y )−H(Zn|Y ) =
∑

y

p(y)[〈pm
z|Y − pn

z|Y ,− log pm
z|Y 〉 −DKL(pm

z|Y ||pn
z|Y )]

≥ 〈∇H(Zm|Y ), pm
z|y − pn

z|y〉 − Ey

[
1

εz|y
‖pm

z|Y − pn
z|Y ‖2

1

]

≥ 〈∇H(Zm|Y ), pm
z|y − pn

z|y〉 −
Nz|y

εz|y
‖pm

z|y − pn
z|y‖2

2,

where the first inequality follows the reverse Pinsker’s inequality [69 ] which holds when pz|y

is εz|y-infimal. And the second inequality is due to norm bound ‖x‖1 ≤
√

N‖x‖2,∀x ∈ RN .

Then by the definition of weakly convex function we complete the proof.

A closely related concept to hypo-convexity that we called restricted weakly convexity is

defined as follows:

Definition 2.4.4. A function f : Rd 7→ [0,∞), is ω-restricted weakly convex, ω > 0 w.r.t.

a matrix A ∈ Rk×d if f ∈ C1 and the following holds:

f(y) ≥ f(x) + 〈∇f(x), y − x〉 − ω

2 ‖Ay − Ax‖2. (2.8)

The restricted-weakly convex property is adopted in our earlier work [34 ] to prove the

convergence of an ADMM solver for IB. We further extend the application of restricted weak
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convexity to prove the locally linear rate of convergence for non-convex splitting methods.

This is based on the data-processing inequality [62 ], [65 ] and hence we have the following

result:

Lemma 2.4.4. Assume pz|x is εz|x-infimal. Let G(pz|x) := −γH(Z|X) + H(Z|Y ) and

Y − X − Z forms a Markov chain. If 0 < γ < 1, then for two pm
z|x, pn

z|x ∈ Ωz|x, where

Ωz|x := {p(z|x)|∑z p(z|x) = 1,∀z ∈ Z, x ∈ X}, G(pz|x) is ωG-restricted weakly convex w.r.t.

Qx.

G(pm
z|x)−G(pn

z|x) ≥ 〈∇G(pn
z|x), pm

z|x − pn
z|x〉 −

ωG

2 ‖Qxpm
z|x −Qxpn

z|x‖2,

where ωG := (2NzNxζ)/εz|x−γ, ζ := ∑
y ζ2(y)/p(y) and ζ(y) := supx∈X p(y|x)−infx∈X p(y|x).

Proof. As G(pz|x) consists of two conditional entropy functions, the proof consists of two

parts. For the first part:

−H(Zm|X) + H(Zn|X) =
∑

x

p(x)
{∑

z

[p(zm|x)− p(zn|x)] (log p(zn|x) + 1)
}

+ Ex[DKL(pm
z|X ||pn

z|X)]

≥〈pm
z|x − pn

z|x, p(x)(log pn
z|x + 1)〉+ DKL(Qxpm

z|x||Qxpn
z|x)

≥〈pm
z|x − pn

z|x, p(x)(log pn
z|x + 1)〉+ ‖Qxpm

z|x −Qxpn
z|x‖2

1

≥〈pm
z|x − pn

z|x, p(x)(log pn
z|x + 1)〉+ ‖Qxpm

z|x −Qxpn
z|x‖2

2,

(2.9)

where we use the log-sum inequality for the first and Pinsker’s inequality for the second [65 ]

follow by 2-norm bounds. For the second part, without loss of generality, let γ = 1:

H(Zm|Y )−H(Zn|Y ) =
∑

y

p(y)
[∑

z

(p(zm|y)− p(zn|y)) (− log p(zn|y))
]

− Ey[DKL(pm
z|Y ||pn

z|Y )]

=
∑
x,y,z

p(x, y) [p(zm|x)− p(zn|x)] [− log p(zn|y)]− Ey[DKL(pm
z|Y ||pn

z|Y )]

=〈pm
z|x − pn

z|x,∇z|xH(Zn|Y )〉 − Ey[DKL(pm
z|Y ||pn

z|Y )],

(2.10)
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Where ∇z|x denotes the gradient w.r.t. pz|x. Then for the second term of the last line of

(2.10 ), due to εz|y-infimality we can apply the reverse Pinkser’s inequality [69 ]:

Ey

[
DKL[pm

z|Y ||pn
z|Y ]

]
≤ Ey

[
Nz

εz|y
‖pm

z|Y − pn
z|Y ‖2

2

]
.

Then through similar techniques adopted in differential privacy [70 ], or equivalently, the

data-processing inequality with Qx|y as the transition kernel [62 ], we have:

p(zm|y)− p(zn|y) ≤
(

sup
x∈X

p(y|x)
p(y) − inf

x∈X

p(y|x)
p(y)

) ∣∣∣∣∣∑
x

p(zm|x)p(x)− p(zn|x)p(x)
∣∣∣∣∣ . (2.11)

Define ζ(y) := supx∈X p(y|x)− infx∈X p(y|x), substitute (2.11 ) into (2.10 ), we have:

H(Zm|Y )−H(Zn|Y ) ≥ 〈pm
z|x − pn

z|x,∇H(Zn|Y )〉 − NzNx

εz|x

[∑
y

ζ2(y)
p(y)

]
‖Qxpm

z|x −Qxpn
z|x‖2

2.

Combining the above with γ pre-multiplied to the second part, and then it is clear that

G(pz|x) satisfies the definite of ω-restricted weakly convex function with ω := NzNxζ/εz|x−γ

where ζ := ∑
y ζ2(y)/p(y).

For a smooth function, if it is also convex, then we have the following descent lemma

which is commonly used in first-order optimization methods [40 ], [71 ], [72 ].

Definition 2.4.5 (Theorem 2.1.12 [72 ]). If f : Rn 7→ [0, +∞) is σ-strongly convex and

L-smooth, for some σ, L > 0, then for any x, y, the following holds:

〈∇f(x)−∇f(y), x− y〉 ≥ σL

σ + L
‖x− y‖2 + 1

σ + L
‖∇f(x)−∇f(y)‖2. (2.12)

Notably, a recent result generalized Definition 2.4.5 to σ-hypoconvex functions f , which

can be found in the reference therein [43 ]. For convenience, in the following, we will assume

that pz is εz-infimal and pz|x is εz|x-infimal.

With ε-infimal measures, we can follow the standard two-block non-convex ADMM to

prove the convergence of the proposed algorithms by showing the corresponding augmented

Lagrangian satisfies the KŁ properties. [36 ], [37 ], [40 ]. Once having KŁ properties, the rate
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of convergence can be determined in terms of the Łojasiewicz exponent of the augmented

Lagrangian.

Definition 2.4.6. A function f(x) : R|X | 7→ R is said to satisfy the Łojasweicz inequality if

there exists an exponent θ ∈ [0, 1), δ > 0 and a critical point x∗ ∈ Ω∗ with a constant C > 0,

and a neighborhood ‖x− x∗‖ ≤ ε such that:

|f(x)− f(x∗)|θ ≤ Cdist(0,∇f(x)).

In literature, there is a broad class of functions known to satisfy the KŁ properties, for

example, the o-minimal structure (e.g., sub-analytic, semi-algebraic) [36 ], [37 ], [40 ], [48 ].

However, in general, verifying a given function satisfies KŁ properties and finding the cor-

responding Łojasiewicz exponent are difficult tasks [49 ]. The KŁ inequality characterized

the convergence rates around the neighborhood of a stationary point, hence applies to both

convex and non-convex functions, in our case, the sacrifice for not having convexity is that

the results from KŁ inequality can only assure convergence and the associated rate to local

minima.

Definition 2.4.7. A function f(x) : R|X | 7→ R is said to satisfy the Kurdyka-Łojasiewicz

inequality if there exists a neighborhood around q̄ and a level set Q := {q|q ∈ Ω, f(q) <

f(q̄) < f(q) + η} with a margin η > 0 and a continuous concave function ϕ(s) : [0, η)→ R+,

such that the following inequality holds:

ϕ̇(f(q)− f(q̄))dist(0, ∂f(q)) ≥ 1, (2.13)

where ∂f denotes the sub-gradient of f(·) for non-smooth functions, ϕ̇ denotes the first-order

derivative of ϕ, and dist(y, A) := infx∈A‖x − y‖ is defined as the distance of a set A to a

fixed point y if exists.

The following elementary identities are often used in the convergence proof presented in

the next section. We list them for self-containing purposes.

2〈u− v, w − u〉 = ‖w − v‖2 − ‖u− v‖2 − ‖u− w‖2. (2.14)
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‖(1− α)u + αv‖2 = (1− α)‖u‖2 + α‖v‖2 − α(1− α)‖u− v‖2. (2.15)

Lastly, by “linear” rate of convergence, we refer to the definition in [21 ]. We note that by

the following definition, the Q-linear rate can be considered as a stronger sense of rate of

convergence than R-linear, as its decay of the exponent of error is monotonic while it is not

in the R-linear case.

Definition 2.4.8. Let {wk} be a sequence in Rn that converges to a stationary point w∗

when k > K0 ∈ N. If it converges Q-linearly, then ∃Q ∈ (0, 1) such that

‖wk+1 − w∗‖
‖wk − w∗‖

≤ Q, ∀k > K0.

On the other hand, the convergence of the sequence is R-linear if there is Q-linearly convergent

sequence {µk},∀k ∈ N, µk ≥ 0 such that:

‖wk − w∗‖ ≤ µk,∀k ∈ N.

2.4.2 Proof of Convergence

In proving the convergence of the two algorithms, we consider three different sets of

assumptions. We start with the most restricted one since it requires strong convexity of the

sub-objective function F and restricted weakly convex on G. However, by exploiting these

extra properties, it turns out that they not only have simpler expression in theoretic results

but also easier to implement and optimize in practice. Continuing on the proof, the following

set of assumptions is paired with the algorithm (2.4 ):

Assumption A.

• There exists stationary points w∗ := (p∗, Bq∗, ν∗) that belongs to a set Ω∗ :=

{w|w ∈ Ω,∇Lc = 0}.

• F (p) is Lp-smooth, σF -strongly convex while G(q) is Lq-smooth and ωG-restricted

weakly convex.
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• A is positive definite.

• The penalty coefficient c > cmin, where cmin is defined as:

cmin := max{ωG, (LF + σF )/(αµ2
A)}.

We consider first-order optimization methods, which gives the following minimizer con-

ditions:

νk+1
1/2 = νk − (1− α) c

(
Apk −Bqk

)
,

∇F (pk+1) = −AT νk+1
1/2 − cAT

(
Apk+1 −Bqk

)
= −AT νk+1,

νk+1 = νk+1
1/2 + c

(
Apk+1 −Bqk

)
,

∇G(qk+1) = BT [νk+1 + c
(
Apk+1 −Bqk+1

)
].

(2.16)

Note that at a stationary point w∗ := (p∗, q∗, ν∗) the above reduces to:

Ap∗ = Bq∗, ∇F (p∗) = −AT ν∗, ν∗
1/2 = ν∗, ∇G(q∗) = BT ν∗. (2.17)

With the minimizer conditions shown above, we derive a sufficient decrease lemma for the

first algorithm-assumption pair, which gives the next result.

Lemma 2.4.5. Let Lc defined as in (2.3 ) and Assumption A is satisfied, then with algorithm

(2.4 ), we have:

Lc(pk, qk, νk)− Lc(pk+1, qk+1, νk+1) ≥ δp‖pk − pk+1‖2 + δq‖Bqk −Bqk+1‖2 + δν‖νk − νk+1‖2,

where the coefficients δp, δq, δν are defined as:

δp := σF Lp

Lp + σF

+ cµ2
A

( 1
α
− 1

2

)
, δq := c− ωG

2 , δν := µ2
A

Lp + σF

− 1
cα

,

where µA denotes the largest and smallest eigenvalue of the positive definite matrix A.
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Proof. The proof of the lemma simply follows the four relations below. We start with the

relaxation step.

Lc(pk, qk, νk)− Lc(pk, qk, νk+1
1/2 ) = − (α− 1) c‖Apk −Bqk‖2. (2.18)

Then for p-update, due to the σF -strong convexity and using Definition 2.4.5 , we have:

Lc(pk, qk, νk+1
1/2 )− Lc(pk+1, qk, νk+1

1/2 )

=F (pk)− F (pk+1) + 〈νk+1
1/2 , Apk − Apk+1〉+ c

2‖Apk −Bqk‖2 − c

2‖Apk+1 −Bqk‖2

≥〈∇F (pk+1) + AT νk+1
1/2 , pk − pk+1〉+ c

2‖Apk −Bqk‖2 − c

2‖Apk+1 −Bqk‖2

+ 1
Lp + σF

‖∇F (pk)−∇F (pk+1)‖2 + σF Lp

Lp + σF

‖pk − pk+1‖2

≥− c〈Apk+1 −Bqk, Apk − Apk+1〉+ c

2‖Apk −Bqk‖2 − c

2‖Apk+1 −Bqk‖2

+ µ2
A

Lp + σF

‖νk − νk+1‖+ σF Lp

Lp + σF

‖pk − pk+1‖2

= c

2‖Apk − Apk+1‖+ σF Lp

Lp + σF

‖pk − pk+1‖2 + µ2
A

Lp + σF

‖νk − νk+1‖,

(2.19)

where the first inequality is due to σF -strong convexity; the second is due to A is positive

definite. Then, for the dual update, we have:

Lc(pk+1, qk, νk+1
1/2 )− Lc(pk+1, qk, νk+1) = −c‖Apk+1 −Bqk‖2. (2.20)

Combine (2.18 ) and (2.20 ) using the identity (2.15 ), we get:

− c (α− 1) ‖Apk −Bqk‖2 − c‖Apk+1 −Bqk‖2

= − 1
cα
‖νk+1 − νk‖2 − c

(
1− 1

α

)
‖Apk − Apk+1‖2. (2.21)
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Lastly, for the q-update, since G is ωG-restricted weakly convex w.r.t. the matrix B:

Lc(pk+1, qk, νk+1)− Lc(pk+1, qk+1, νk+1)

=G(qk)−G(qk+1) + 〈νk+1, Bqk+1 −Bqk〉+ c

2‖Apk+1 −Bqk‖2 − c

2‖Apk+1 −Bqk+1‖2.

≥〈∇G(qk+1)−BT νk+1, qk − qk+1〉 − ωG

2 ‖Bqk −Bqk+1‖2 + c

2‖Apk+1 −Bqk‖2

− c

2‖Apk+1 −Bqk+1‖2

=c〈Apk+1 −Bqk+1, Bqk −Bqk+1〉 − ωG

2 ‖Bqk −Bqk+1‖2 + c

2‖Apk+1 −Bqk‖2

− c

2‖Apk+1 −Bqk+1‖2

=c− ωG

2 ‖Bqk −Bqk+1‖2,

(2.22)

Summing (2.19 )(2.21 )(2.22 ), and using (2.16 ), we have:

Lc(pk, qk, νk)− Lc(pk+1, qk+1, νk+1)

≥
[

µ2
A

Lp + σF

− 1
cα

]
‖νk − νk+1‖2 + c− ωG

2 ‖Bqk −Bqk+1‖2

+ c
( 1

α
− 1

2

)
‖Apk − Apk+1‖2 + σF Lp

Lp + σF

‖pk − pk+1‖2, (2.23)

Then by positive definiteness of A we have: ‖Apk − Apk+1‖ ≥ µA‖pk − pk+1‖, where µA

denotes the smallest eigenvalue of A. Substitute this into the above and we complete the

proof.

By Lemma 2.4.5 , the conditions that assure sufficient decrease are equivalent to the range

of the penalty coefficient c and the relaxation parameter α such that the coefficients δp, δq, δν

are non-negative. When the conditions are satisfied, the sufficient decrease lemma implies

the convergence of the algorithm (2.4 ).

Lemma 2.4.6. Suppose Assumption A is satisfied and 0 < α ≤ 2. Define the collective point

at step k as wk := (pk, Bqk, νk), the sequence {wk}k∈N obtained from the algorithm (2.4 ) is

convergent to a stationary point w∗ ∈ Ω∗.
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Proof. By Assumption A , the coefficients δp, δq, δν defined in Lemma 2.4.6 are non-negative,

so the next step is to show {Lk
c}k∈N is finite. Denote Lk

c := Lc(pk, qk, νk) for simplicity. From

the above, assume a penalty coefficient c∗ satisfies Assumption A , we have:

N−1∑
k=1
Lk

c − Lk+1
c = L1

c − LN
c ≥ C∗

N∑
k=1

[
‖pk − pk+1‖2 + ‖νk − νk+1‖2 + ‖Bqk −Bqk+1‖2

]
,

(2.24)

where C∗ = min{δp, δq, δν} > 0. Define the collective point at step k as wk := (pk, Bqk, νk),

then since there exist stationary points w∗, the l.h.s. of (2.24 ) is lower semi-continuous.

Let N → ∞ and denote the limit point w∞, since L1
c − L∞

c is finite, the r.h.s. of (2.24 )

is finite. This implies ‖wk − wk+1‖2 → 0 as k → ∞, since ∑∞‖wk − wk+1‖2 is a Cauchy

sequence. From this, we know that w∞ ∈ Ω∗, or equivalently, for k > N0 ∈ N sufficiently

large, wk → w∗ as k →∞, which proves that {wk}k∈N is convergent to w∗.

As a remark, the convergence is not point-wise. This can be observed as q in the collective

point wk = (pk, Bqk, νk) is pre-multiplied by the matrix B. In practice, take IB for example,

this corresponds to the symmetry of solutions [73 ], [74 ]. Nonetheless, in the information-

theoretic optimization considered, the point-wise convergence is not necessary as the mutual

information is invariant to symmetry.

As mentioned earlier, observe that Lemma 2.4.6 requires the function F to be strongly

convex and G be restricted weakly convex with respect to the matrix B. It turns out these

requirements can be relaxed. To see this, consider the second algorithm (2.5 ) paired with

the assumptions shown below. We can similarly develop a sufficient decrease lemma for this

alternative algorithm-assumption pair.

Assumption B.

• There exists stationary points w∗ := (Ap∗, q∗, ν∗) that belong to a set Ω∗ :=

{w|w ∈ Ω,∇Lc = 0},

• The function F (p) is Lp-smooth, convex while G(q) is Lq-smooth, σG-weakly

convex.
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• B is positive definite; A is full row rank.

• The penalty coefficient c satisfies:

c >
ασG +

√
α2σ2

G + 8(2− α)L2
q

(4− 2α)µ2
B

.

With the corresponding first-order minimizer conditions:

∇F (pk+1) = −AT [νk + c(Apk+1 −Bqk)],

νk+1
1/2 = νk − (1− α) c

(
Apk+1 −Bqk

)
,

∇G(qk+1) = BT [νk+1
1/2 + c

(
Apk+1 −Bqk+1

)
]

= BT νk+1,

νk+1 = νk+1
1/2 + c

(
Apk+1 −Bqk+1

)
.

(2.25)

Lemma 2.4.7. Let Lc defined as in (2.3 ) and Assumption B is satisfied, then with the

algorithm (2.5 ), we have:

Lc(pk, qk, νk)− Lc(pk+1, qk+1, νk+1) ≥ c

2‖Apk − Apk+1‖2 − σG

2 ‖q
k − qk+1‖2

+ c
( 1

α
− 1

2

)
‖Bqk −Bqk+1‖2 − 1

αc
‖νk − νk+1‖2.

Proof. First, by assumption F is convex and hence:

Lc(pk, qk, νk)− Lc(pk+1, qk, νk)

=F (pk)− F (pk+1) + 〈νk, Apk − Apk+1〉+ c

2‖Apk −Bqk‖2 − c

2‖Apk+1 −Bqk‖2

≥〈∇F (pk+1) + AT νk, pk − pk+1〉+ c

2‖Apk −Bqk‖2 − c

2‖Apk+1 −Bqk‖2

=− c〈Apk+1 −Bqk, Apk − Apk+1〉+ c

2‖Apk −Bqk‖2 − c

2‖Apk+1 −Bqk‖2

= c

2‖Apk − Apk+1‖2,

(2.26)
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where the last equality is due to the minimizer conditions (2.25 ). Then for the relaxation

step (2.5b ):

Lc(pk+1, qk, νk)− Lc(pk+1, qk, νk+1
1/2 ) = − (α− 1) c‖Apk+1 −Bqk‖2. (2.27)

On the other hand, by assumption, G is σG-weakly convex, so we have the following lower

bound for q-update (2.5c ):

Lc(pk+1, qk, νk
1/2)− Lc(pk+1, qk+1, νk

1/2)

=G(qk)−G(qk+1)− 〈νk+1
1/2 , Bqk −Bqk+1〉+ c

2‖Apk+1 −Bqk‖2 − c

2‖Apk+1 −Bqk+1‖2

≥〈∇G(qk+1)−BT νk+1
1/2 , qk − qk+1〉 − σG

2 ‖q
k − qk+1‖2 + c

2‖Apk+1 −Bqk‖2

− c

2‖Apk+1 −Bqk+1‖2

=c〈Apk+1 −Bqk+1, Bqk −Bqk+1〉 − σG

2 ‖q
k − qk+1‖2 + c

2‖Apk+1 −Bqk‖2

− c

2‖Apk+1 −Bqk+1‖2

= c

2‖Bqk −Bqk+1‖2 − σG

2 ‖q
k − qk+1‖2.

(2.28)

Lastly, for the dual ascend (2.5d ):

Lc(pk+1, qk+1, νk+1
1/2 )− Lc(pk+1, qk+1, νk+1) = −c‖Apk+1 −Bqk+1‖2. (2.29)

Combine the above using the identity (2.15 ), we get:

1
cα
‖νk − νk+1‖2 = ‖c

(
Apk+1 −Bqk+1

)
− c (1− α) [Apk+1 −Bqk]‖2

= c‖Apk+1 −Bqk+1‖2 + c (α− 1) ‖Apk+1 −Bqk‖2 − c
(

1− 1
α

)
‖Bqk −Bqk+1‖2, (2.30)
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Summing (2.26 )(2.28 )(2.30 ), we get:

Lc(pk, qk, νk)− Lc(pk+1, qk+1, νk+1) ≥ c

2‖Apk − Apk+1‖2 − σG

2 ‖q
k − qk+1‖2

+ c
( 1

α
− 1

2

)
‖Bqk −Bqk+1‖2 − 1

αc
‖νk − νk+1‖2,

(2.31)

which completes the proof.

Similar to the convergence results Lemma 2.4.6 implied by the sufficient decrease lemma

(Lemma 2.4.5 ), we have the following convergence result for the second algorithm (2.5 ) based

on Lemma 2.4.7 .

Lemma 2.4.8. Suppose Assumption B is satisfied and 0 < α < 2. Define wk := (Apk, qk, νk)

the collective point at step k. Then the sequence {wk}k∈N obtained from the algorithm (2.5 )

is convergent to a stationary point w∗ ∈ Ω∗.

Proof. By assumption, B is positive definite, denote its smallest eigenvalue µB and Lk
c :=

Lc(pk, qk, νk) for simplicity, we have:

‖qk − qk+1‖ = ‖(B−1B)qk − qk+1‖ ≤ ‖B−1‖‖Bqk −Bqk+1‖,

Note that ‖B−1‖ = 1/µB. On the other hand, for the dual variable, we have:

‖νk− νk+1‖ = ‖(B−T BT )(νk− νk+1)‖ ≤ ‖B−T‖‖∇G(qk)−∇G(qk)‖ ≤ Lq‖B−T‖‖qk− qk+1‖,

combining the two results above, we have the following lower bound to Lemma 2.4.7 :

Lk
c − Lk+1

c ≥
[
cµ2

B( 1
α
− 1

2)− σG

2 −
L2

q

αcµ2
B

]
‖qk − qk+1‖2 + c

2‖Apk − Apk+1‖2.

To make the scalar pre-multiplied ‖qk − qk+1‖2 be positive, it follows from elementary

quadratic programming, which gives the range of the penalty coefficient c to be:

c >
ασG +

√
α2σ2

G + 8(2− α)L2
q

(4− 2α)µ2
B

,
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which is satisfied as listed in Assumption B . Denote c∗ > 0 that satisfies the above condition,

we have:

Lk
c − Lk+1

c ≥ c∗
[
‖qk − qk+1‖2 + ‖Apk − Apk+1‖2

]
.

Then, consider the following:

N−1∑
i=1
Lk

c − Lk+1
c = L1

c − LN
c ≥ c∗

N−1∑
i=1

[
‖qk − qk+1‖2 + ‖Apk − Apk+1‖2

]
. (2.32)

Define the collective point at step k as wk := (Apk, qk, νk), since there exist stationary points

w∗ := (Ap∗, q∗, ν∗) by assumption, the l.h.s. of (2.32 ) is lower semi-continuous. Note that

the the r.h.s of (2.32 ) does not depends on the dual variable ν, we can further define a

condensed point at step k as zk := (Apk, qk). Then, by letting N →∞ and denote the limit

point z∞, since L1
c −L∞

c is finite, the r.h.s. of (2.32 ) is finite. This implies ‖zk− zk+1‖2 → 0

as k → ∞, since ∑∞‖zk − zk+1‖2 is a Cauchy sequence. From this we know that z∞ = z∗.

Moreover, by (2.25 ):

√
µBBT ‖νk − νk+1‖ ≤ ‖BT νk −BT νk+1‖ = ‖∇G(qk)−∇G(qk+1)‖ ≤ Lq‖qk − qk+1‖. (2.33)

Hence L2
qµBBT ‖qk− qk+1‖2 ≥ ‖νk− νk+1‖2 and hence ‖νk− νk+1‖2 → 0 as k →∞. In turns,

we know ν∞ = ν∗. So, together we have wk → w∗ as k → ∞ which proves that {wk}k∈N is

convergent to w∗.

Note that the convergence of the second algorithm (2.5 ) requires no strong-convexity for

the sub-objective function F (p), Moreover, the assumption on G(q) is more relaxed than

that of the algorithm 2.4 , hence potentially applies to more general problems. However, in

practice, the more relaxed conditions result in more variables to optimize.

Another major difference between Assumption A and B lies in the linear constraints. In

Assumption A , A is positive definite while B is positive definite in Assumption B instead.

In the Markovian information theoretic optimization problem, we considered (2.1 ), the lin-

ear constraints Ap − Bq are interpreted as the marginal/Markov relations of (conditional)

probabilities. Therefore, only one of the two matrices A, B is an identity matrix, while the
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other will be singular. Then for problems such as PF, whose convex sub-objective function

is not strongly convex, with A being positive definite instead of B, neither Assumption A 

nor Assumption B applies. Inspired by [45 ], where G is Lipschitz continuous and smooth,

we can relax Assumption A but keep the A to be positive definite as in Assumption B . This

addresses the previously mentioned technical difficulty, but we hence need the third set of

assumptions, which is summarized below.

Assumption C.

• There exists stationary points w∗ := (p∗, q∗, ν∗) that belongs to a set Ω∗ := {w|w ∈

Ω,∇Lc = 0},

• The function F (p) is Lp-smooth, convex while G(q) is Lq-smooth, σG-weakly

convex,

• In addition, G(q) is Mq-Lipschitz continuous,

• A is positive definite; B is full row rank,

• The penalty coefficient c satisfies:

c > Mq

MqασG +
√

M2
q α2σ2

G + 8(2− α)L2
qλ

2
B/µBBT

4− 2α

 .

When the above assumptions are imposed on the algorithm (2.5 ), which reuses the min-

imization conditions (2.25 ), we have the following sufficient decrease lemma.

Lemma 2.4.9. Suppose Assumption C is satisfied and 0 < α < 2. Define wk := (pk, qk, νk)

the collective point at step k, then the sequence {wk}k∈N obtained from the algorithm (2.5 )

is convergent to a stationary point w∗ ∈ Ω∗.

Proof. Following the steps (2.26 )(2.28 )(2.30 ), we start from (2.31 ).
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Define Lk
c := Lc(pk, qk, νk) the function value evaluated with variables at step k for

simplicity:

Lk
c − Lk+1

c ≥ c

2‖Apk − Apk+1‖2 − σG

2 ‖q
k − qk+1‖2 + c

( 1
α
− 1

2

)
‖Bqk −Bqk+1‖2

− 1
αc
‖νk − νk+1‖2

≥cµ2
A

2 ‖p
k − pk+1‖2 +

[
c

M2
q

( 1
α
− 1

2

)
−
(

σG

2 +
L2

qλ
2
B

αcµBBT

)]
‖qk − qk+1‖2,

(2.34)

where in the last inequality, the first term is by A being positive definite, and for the second

term, we follow [45 ] and use Lipschitz continuity of G to have ‖qk−qk+1‖ ≤Mq‖Bqk−Bqk+1‖;

we denote λB := ‖B‖ as the largest positive singular value of a matrix B and µB for the

smallest positive eigenvalue of B; For ‖νk−νk+1‖, since B is full row rank and G is Lq-smooth,

we have:

‖νk − νk+1‖ = ‖(BBT )−1BBT (νk − νk+1)‖

≤ λB√
µBBT

‖∇G(qk)−∇G(qk+1)‖

≤ λB√
µBBT

Lq‖qk − qk+1‖.

(2.35)

From elementary quadratic programming, the range in terms of the penalty coefficient c that

assures the second term of the last inequality in (2.34 ) is positive:

c > Mq

MqσGα +
√

(MqσGα)2 + 8(2− α)L2
qλ

2
B/µBBT

4− 2α


Then by assumption, c satisfies the above. Rewrite the coefficients as τp, τq > 0 for

simplicity, then there exists a τ ∗ := min{τp, τq} such that:

Lk
c − Lk+1

c ≥ τ ∗
(
‖pk − pk+1‖2 + ‖qk − qk+1‖2

)
,
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Then denote wk := (pk, qk, νk) the collective point at step k; Lk
c := Lc(wk) the function value

evaluated with wk. Summing both sides of the inequality (2.35 ), we have:

N−1∑
k=1
Lk

c − Lk+1
c = L1

c − LN
c ≥ τ ∗

N−1∑
k=1

(
‖pk − pk+1‖2 + ‖qk − qk+1‖2

)
,

By assumption the l.h.s. of the above inequality is lower semi-continuous and therefore is

finite. So as N → ∞, L1
c − L∞

c < +∞. This implies the r.h.s. is finite and therefore

‖pk − pk+1‖2 → 0 and ‖qk − qk+1‖2 → 0 as k → ∞. Due to (2.35 ), we know that ‖νk −

νk+1‖2 → 0 as well. Given the results, denote the limit points as w∞ := (p∞, q∞, ν∞), since

‖wk −wk+1‖2 → 0 as k →∞, w∞ = w∗ which proves that {wk}k∈N is convergent to w∗.

2.4.3 Rate of Convergence Analysis

In this part, based on the convergence results derived in the last section, we further prove

that the rate of convergence of three algorithm-assumption pairs are all achieving locally

linear. It turns out that the linear convergence we derived is independent of initialization

and the sequence obtained from the associated algorithm converges to local minimizers when

the current update of the variables lies around the neighborhood of them. This is consistent

with the recent results [45 ], [75 ], based on the KŁ inequality that characterize the rate of

convergence for splitting methods in a broad class of non-convex problems [36 ], [37 ], [40 ],

[71 ]. Overall, to adopt the KŁ inequality, it consists of two steps. First, we explicitly show

that the associated Łojasiewicz exponents θ = 1/2 of (2.3 ), solved with the two algorithms

(2.4 ) and (2.5 ). And the two cases both satisfy the KŁ properties. Then we apply the

following result, owing to [36 ], [40 ], [49 ], and hence prove the linear convergence rate.

Lemma 2.4.10 (Theorem 2 [36 ]). Assume that a function Lc(p, q, ν) satisfies the KŁ prop-

erties, define wk the collective point at step k, and let {wk}k∈N be a sequence generated by

either the alternating algorithm (2.4 ) or (2.5 ). Suppose {wk}k∈N is bounded and the following

relation holds:

‖∇Lk
c‖ ≤ C∗‖wk − wk−1‖,
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where Lk
c := Lc(pk, qk, νk) and C∗ > 0 is some constant. Denote the Łojasiewicz exponent of

Lc with {w∞} as θ. Then the following holds:

(i) If θ = 0, the sequences {wk}k∈N converges in a finite number of steps,

(ii) If θ ∈ (0, 1/2] then there exist τ > 0 and Q ∈ [0, 1) such that

|wk − w∞| ≤ τQk,

(iii) If θ ∈ (1/2, 1) then there exists τ > 0 such that

|wk − w∞| ≤ τk− 1−θ
2θ−1 ,

Proof. We only prove the case corresponds to θ = 1/2 as it is relevant to the following

discussion. The proof for other scenarios is referred to [36 ].

Lc(p, q, ν) satisfies the KŁ properties with an exponent θ = 1/2.

Denote Lk
c := Lc(pk, qk, νk), without loss of generality let L∗

c = 0 and define a concave

function Φ(s) := C0s
1−θ with C0, s > 0. For k > N0 ∈ N sufficiently large, by the concavity

of Φ (Note that the gradient is evaluated with wk):

(Lk
c )1−θ − (Lk+1

c )1−θ ≥ (1− θ) (Lk
c )−θ

[
Lk

c − Lk+1
c

]
≥ C (1− θ) (Lk

c )−θ‖wk+1 − wk‖2

≥ C (1− θ) ‖∇Lk
c‖−1‖wk+1 − wk‖2,

(2.36)

where C > 0 due to Lemma 2.4.6 ; and the last inequality is due to Lemma 2.4.14 .

Then, by assumption, for some constant C∗ > 0, we have:

‖∇Lk
c‖ ≤ C∗‖wk − wk−1‖. (2.37)

Substitute the above into (2.36 ), define C1 := C/C∗(1− θ), we get:

(Lk
c )1−θ − (Lk+1

c )1−θ ≥ C1
‖wk+1 − wk‖2

‖wk − wk−1‖
.
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Substitute the above into (2.37 ), we have:

2‖wk+1 − wk‖ ≤ ‖wk − wk−1‖+ C2
[
(Lk

c )1−θ − (Lk+1
c )1−θ

]
(2.38)

where we define C2 :=
√

1/(2C1). For the first inequality, we use the identity 2ab ≤ a2 + b2;

the second inequality is due to the non-increasing sequence {Lk
c}k∈N; the third inequality is

due to the KŁ properties, and the last inequality follows (2.37 ). Then, by defining ∆k :=∑∞
l=k‖wl+1 − wl‖, and summing both sides of (2.38 ) with k ∈ N, we have:

∆k ≤ (∆k−1 −∆k) + C4 (∆k−1 −∆k)
1−θ

θ . (2.39)

Finally, from Lemma 2.4.14 , θ = 1/2, we have (1− θ)/θ = 1 and therefore:

∆k ≤
K∗

1 + K∗ ∆k−1,

where K∗ = 1+C4 > 0. The above proves the locally linear rate of convergence. Specifically,

Q-linearly fast in terms of the Cauchy sequence ∆k.

The above result characterizes the rate of convergence in terms of the KŁ exponent, but

except for certain types of functions, the calculation of the KŁ exponent is difficult. The

following key result, due to [49 ], is useful in calculating the KŁ exponent of (2.3 ) and is

included for completeness.

Lemma 2.4.11 (Lemma 2.1 [49 ]). Suppose that f is a proper closed function, ∇f(w̄) 6= 0.

Then for any θ ∈ [0, 1), f satisfies the KŁ properties at w̄ with an exponent of θ there exists

η := 1
2‖∇f(w̄)‖ > 0 and δ ∈ (0, 1) such that ‖∇f(w)‖ > η whenever ‖w − w̄‖ ≤ ε and

f(w̄) < f(w) < f(w̄) + δ.

In literature, the KŁ inequality has been successfully adopted to find the rate of con-

vergence for alternating algorithms such as ADMM and recently PRS or DRS with α =

(1 +
√

5)/2. For more general DRS methods in terms of the relaxation parameter α, we find

that proving locally linear rate through the KŁ inequality only holds for 1 ≤ α ≤ 2. As
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for 0 < α < 1, inspired by the recent results that shows locally R-linear rate of convergence

for the primal ADMM [47 ], we adopt and extend the approach to the two algorithms (2.4 )

and (2.5 ) under the three sets of assumptions. Combining the two methods, we therefore

theoretically prove that the rates are locally linear for 0 < α ≤ 2.

Lemma 2.4.12. Let Lc defined as in (2.3 ) and let the sequence {wk}k∈N obtained through

either the algorithm (2.4 ) or (2.5 ) is bounded. Denote Lk
c := Lc(pk, qk, νk). Suppose the

following holds for some K∗ > 0:

Lk+1
c − Lk

c ≤ K∗
[
Lk

c − Lk+1
c + ‖wk+1 − w∗‖2

]
,

and there exists a neighborhood around a stationary point w∗, such that ‖w − w∗‖ < ε,

L∗
c < Lc < L∗

c + δ with δ, ε > 0. Then {Lk
c}k∈N is Q-linearly convergent and {wk}k∈N

converges R-linearly to w∗ around the neighborhood.

Proof. By assumption, denote ∆k
c := Lk

c − L∗
c , we have:

∆k+1
c ≤ K∗

[
(∆k

c −∆k+1
c ) + ‖wk+1 − w∗‖2

]
.

Then around a neighborhood of w∗, we get:

∆k+1
c

∆k
c

<
K∗

1 + K∗ + K∗ε2

1 + K∗

(
1

∆k
c

)
≤ K∗

1 + K∗ + K∗ε2

1 + K∗

(
1

∆k+1
c

)
<

K∗
1 + K∗ + K∗ε2/ξ

1 + K∗ ,

where the second inequality follows from the sufficient descent lemma and by definition,

δ > Lk+1
c −L∗

c > ξ > 0, as wk+1 /∈ Ω∗. Therefore, we can simply choose ε <
√

ξ/K∗ <
√

δ/K∗,

which shows the convergence of the sequence of function values {Lk
c}k∈N is Q-linear locally

around the neighborhood of a stationary point w∗. In turns, we have for n > N0 ∈ N:

ρp‖Apn − Apn+1‖2 ≤ Ln
c − Ln+1

c ≤ KpQn,

ρq‖qn − qn+1‖2 ≤ Ln
c − Ln+1

c ≤ KqQ
n,

ρν‖νn − νn+1‖2 ≤ Ln
c − Ln+1

c ≤ KνQn,
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for some Kp, Kq, Kν > 0 and 0 < Q < 1. Combine the above together, we have:

ρ̄‖wn − wn+1‖2 ≤ K̄Qn,

where K̄ = Kp + Kq + Kν and ρ̄ = min {ρp, ρq, ρν}. Now, for the sequence {wn}n∈N\[N0]

around w∗, by taking m > n ≥ N0, we have:

‖wn − wm‖2 ≤
m∑

i=n

‖wn − wn+1‖2 ≤ K̄Qn

ρ̄(1−Q) .

Since the above is a Cauchy sequence, by taking limit with m→∞, which gives wm → w∗

as m→∞, we get:

‖wn − w∗‖2 ≤ K̄Qn

ρ̄(1−Q) ,

and hence proving that {wn}n>N0 is R-linearly convergent.

Remarkably, the rate of convergence with KŁ inequality is Q-linear, or in other words,

monotonic convergence in terms of the error between variables ‖wk − wk−1‖ in consecutive

steps while the R-linear rate is non-monotonic, hence a weaker rate. However, the weaker

R-linear rate comes with milder assumptions imposed on the linear constraints as the full

row rank assumptions are lifted.

In the rest of this part, we aim at proving the sequence {wk}k∈N obtained from the

proposed two algorithms both satisfy the KŁ properties. The results are based on the

following lemmas. We start with that correspond to the first algorithm (2.4 ).

Lemma 2.4.13. Let Lc defined as in (2.3 ). For the sequence {wk}k∈N obtained from the

algorithm (2.4 ) where wk := (pk, Bqk, νk), if it is bounded and converges to a stationary point

w∗ satisfying (2.17 ), then we have:

Lk+1
c − L∗

c ≤
(

cλ2
A

2 − σF Lp

Lp + σF

)
‖pk+1 − p∗‖2 − c− ωG

2 ‖Bqk+1 −Bq∗‖2,

and

‖∇Lc(wk+1)‖2 ≥
(
c2µ2

A + 1
)
‖Apk+1 −Bqk+1‖2,
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where Lk
c := Lc(pk, qk, νk); λA, µA denote the largest and smallest eigenvalue of a positive

definite matrix A.

Proof. By the definition (2.3 ), the properties of F and G, following algorithm (2.4 ) with

the first order minimizer conditions (2.16 ), and denote Lk
c := Lc(pk, qk, νk) for simplicity, we

have:

Lk+1
c − Lc =F (pk+1) + G(qk+1) + 〈νk+1, Apk+1 −Bqk+1〉+ c

2‖Apk+1 −Bqk+1‖2

− F (p)−G(q)− 〈ν, Ap−Bq〉 − c

2‖Ap−Bq‖2

≤〈∇F (pk+1), pk+1 − p〉 − σF Lp

Lp + σF

‖pk+1 − p‖2 + 〈∇G(qk+1), qk+1 − q〉

+ ωG

2 ‖Bqk+1 −Bq‖2 + 〈νk+1, Apk+1 −Bqk+1〉 − 〈ν, Ap−Bq〉

+ c

2‖Apk+1 −Bqk+1‖2 − c

2‖Ap−Bq‖2

=〈νk+1 − ν, Ap−Bq〉+ c〈Apk+1 −Bqk+1, Bqk+1 −Bq〉+ ωG

2 ‖Bqk+1 −Bq‖2

− σF Lp

Lp + σF

‖pk+1 − p‖2 + c

2‖Apk+1 −Bqk+1‖2 − c

2‖Ap−Bq‖2,

(2.40)

where the first inequality is due to Definition 2.4.5 and restricted-weak convexity of G.

Substituting w∗ to w, that is Ap∗ = Bq∗, and using identity (2.14 ) for the second inner

product in the last line of (2.40 ), we get:

Lk+1
c − L∗

c ≤
(

cλ2
A

2 − σF Lp

Lp + σF

)
‖pk+1 − p∗‖2 − c− ωG

2 ‖Bqk+1 −Bq∗‖2,

where λA denotes the largest eigenvalue of the matrix A. Then, for the second part, consider

the following:

∇Lk+1
c =


∇F (pk+1) + AT [νk+1 + c

(
Apk+1 −Bqk+1

)
]

∇G(qk+1)−BT [νk+1 + c
(
Apk+1 −Bqk+1

)
]

Apk+1 −Bqk+1

 =


cAT

(
Apk+1 −Bqk+1

)
0

Apk+1 −Bqk+1

 ,

55



where the last equality follows from (2.16 ). By showing that ‖∇Lk+1
c ‖2 ≥ K‖Apk+1−Bqk+1‖2

with K := c2µ2
A + 1 where µA is the smallest eigenvalue of the matrix A, we complete the

proof.

Lemma 2.4.14. Suppose Assumption A is satisfied, if the augmented Lagrangian (2.3 ) is

solved with the algorithm (2.4 ), then it satisfies KŁ properties with an exponent θ = 1/2.

Proof. Using Lemma 2.4.13 , we simply add an additional positive squared norm ‖Apk+1 −

Bqk+1‖2:

Lk+1
c − L∗

c ≤
(

cλ2
A

2 − σF Lp

Lp + σF

)
‖pk+1 − p∗‖2 − c− ωG

2 ‖Bqk+1 −Bq∗‖2

≤
(

cλ2
A

2 − σF Lp

Lp + σF

)
‖pk+1 − p∗‖2

≤
(

cλ2
A

2 − σF Lp

Lp + σF

)
‖pk+1 − p∗‖2 + ‖Apk+1 −Bqk+1‖2

= cG‖pk+1 − p∗‖2 + ‖Apk+1 −Bqk+1‖2,

where we define cG := (cλ2
A)/2− (σF Lp)/(Lp + σF ). Then we have:

Lk+1
c − L∗

c ≤ cG‖pk+1 − p∗‖2 + ‖Apk+1 −Bqk+1‖2 ≤ cGε2 + 1
K1
‖∇Lk+1

c ‖2

≤ ‖∇Lk+1
c ‖2

[
cGε2

η2 + 1
K1

]
,

where K1 := c2µ2
A + 1 > 0; the first inequality is due to Lemma 2.4.13 and ‖wk+1 −w∗‖ < ε

around the neighborhood of w∗; the last inequality follows from Lemma 2.4.11 . By taking

square root of both sides, we complete the proof.

From Lemma 2.4.14 , the Lojasiewicz exponent θ = 1/2. By mapping the exponent

according to Lemma 2.4.10 , we can show the linear rate of convergence. Furthermore, we

can combine with the convergence (Lemma 2.4.6 ) together to have the following result.

Theorem 2.4.15. Suppose Assumption A is satisfied. For 0 < α ≤ 2, define wk :=

(pk, Bqk, νk) the collective point at step k. Then the sequence {wk}k∈N obtained from the
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algorithm (2.4 ) is bounded. Moreover, the sequence converges to a stationary point w∗ at

linear rate locally.

Proof. The convergence follows the sufficient decrease lemma (Lemma 2.4.6 ), so it suffices

to prove the rate of convergence. By assumption, the penalty coefficient is sufficiently large

such that Lemma 2.4.6 holds. In addition to convergence, for the corresponding rate, due

to Lemma 2.4.14 , Lc(p, q, ν) satisfies the KŁ properties with an exponent θ = 1/2. For the

gradient norm ‖∇Lc‖, by Lemma 2.4.13 we have:

‖∇Lk
c‖ ≤ ca‖Apk −Bqk‖ ≤ ca

(
‖Apk −Bqk−1‖+ ‖Bqk −Bqk−1‖

)
, (2.41)

where ca := c + λA. Then, suppose 1 ≤ α ≤ 2, by (2.21 ):

‖Apk −Bqk−1‖2 ≤ 1
α2c2‖ν

k − νk−1‖2 +
(

1− 1
α

)
‖Apk − Apk−1‖2.

Substitute the above into (2.41 ), we get:

‖∇Lk
c‖ ≤ cα

[
‖Bqk −Bqk−1‖+

( 1
α2c2‖ν

k − νk−1‖2 +
(

1− 1
α

)
‖Apk − Apk−1‖2

) 1
2
]

≤ c∗
α

[
‖νk − νk−1‖+ ‖pk − pk−1‖+ ‖Bqk −Bqk−1‖

]
= c∗

α‖wk − wk−1‖,

(2.42)

where c∗
α := max{cα/(α2c2), cαλA}. Then, following similar steps in (2.42 ), we conclude that,

for 1 ≤ α ≤ 2 and some constant cαt > 0, we have:

‖∇Lk
c‖ ≤ cαt‖wk − wk−1‖.

Then by Lemma 2.4.10 , we prove the locally linear rate of convergence for the case 1 ≤ α ≤ 2.

On the other hand, for 0 < α < 1, from Lemma 2.4.6 and Assumption A , there exists a

constant K∗ > 0 such that:

Lk
c − Lk+1

c ≥ K∗‖wk − wk+1‖2,
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Moreover, denote w∗ := (p∗, Bq∗, ν∗) a stationary point. Due to Lemma 2.4.13 , we have:

Lk+1
c − L∗

c ≤
(

cλ2
A

2 − σF Lp

Lp + σF

)
‖pk+1 − p∗‖2 − c− ωG

2 ‖Bqk+1 −Bqk‖2.

By Assumption A , there always exists K1 > 0 and a neighborhood around the stationary

point w∗ such that:

Lk+1
c −L∗

c ≤ K1‖wk+1−w∗‖2 ≤ K1‖wk−w∗‖2+ 1
K∗‖w

k+1−wk‖ ≤ K1‖wk+1−w∗‖2+Lk
c−Lk+1

c .

Then by Lemma 2.4.12 , we conclude that the sequence {wk}k>N0 , N0 ∈ N converges R-

linearly to w∗. This completes the proof for linear rate of convergence for the full range of

0 < α ≤ 2.

Similarly, for the second algorithm (2.5 ), we can show that the Łojasiewicz exponent of

the corresponding augmented Lagrangian is θ = 1/2 and the KŁ properties are satisfied.

However, it turns out that applying KŁ for this alternative algorithm-assumption pair re-

quires the matrix A to be full row rank. We later show that this additional assumption is

not necessary to prove locally linear in an alternative approach, but a weaker sense R-linear

rate as a result.

Lemma 2.4.16. Let Lc defined as in (2.3 ). For the sequence {wk}k∈N obtained from the

algorithm (2.5 ) where wk := (Apk, qk, νk), if it is bounded and converges to a stationary point

w∗ satisfying (2.17 ), 0 < α < 2, then we have:

Lk+1
c − L∗

c ≤ c‖Apk+1 −Bqk+1‖2 + σG

2 ‖q
k+1 − q∗‖2 − c

2‖Bqk+1 −Bq∗‖2

+ c(2− α)
2 ‖Bqk −Bq∗‖2 − c(2− α)

2 ‖Apk+1 −Bqk‖2 + c(α− 1)
2 ‖Apk+1 − Ap∗‖2,

where Lk
c := Lc(pk, qk, νk). Moreover, if AAT � 0, then:

‖∇Lc(wk+1)‖2 ≥ µAAT

[
‖νk − νk+1‖2 + c2‖Bqk −Bqk+1‖2 − 2cLq‖qk − qk+1‖2

]
,
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where µW denotes the smallest positive eigenvalue of a matrix W .

Proof. For the first part, denote Lk
c := Lc(pk, qk, νk) the function value evaluate with the

variables at step k, we have:

Lk+1
c − Lc =F (pk+1) + G(qk+1) + 〈νk+1, Apk+1 −Bqk+1〉+ σG

2 ‖q
k+1 − q‖2

+ c

2‖Apk+1 −Bqk+1‖2 − F (p)−G(q)− 〈ν, Ap−Bq〉 − c

2‖Ap−Bq‖2

≤〈∇F (pk+1), pk+1 − p〉+ 〈∇G(qk+1), qk+1 − q〉+ 〈νk+1, Apk+1 −Bqk+1〉

+ σG

2 ‖q
k+1 − q‖2 − 〈ν, Ap−Bq〉+ c

2‖Apk+1 −Bqk+1‖2 − c

2‖Ap−Bq‖2

=〈νk+1 − ν, Ap−Bq〉+ c

2‖Apk+1 −Bqk+1‖2 − c

2‖Ap−Bq‖2 + σG

2 ‖q
k+1 − q‖2

+ c〈Apk+1 −Bqk+1, Apk+1 − Ap〉 − c(2− α)〈Apk+1 −Bqk, Apk+1 − Ap〉,

(2.43)

where the first inequality follows from convexity of F and weak convexity of G. By assump-

tion 0 < α ≤ 2, we have:

c〈Apk+1 −Bqk+1, Apk+1 − Ap〉 − c(2− α)〈Apk+1 −Bqk, Apk+1 − Ap〉

= c

2
[
−‖Bqk+1 − Ap‖2 + ‖Apk+1 −Bqk+1‖2 + ‖Apk+1 − Ap‖2

]
− c(2− α)

2
[
−‖Ap−Bqk‖2

+‖Apk+1 −Bqk‖2 + ‖Apk+1 − Ap‖2
]

.

(2.44)

Substitute (2.44 ) into (2.43 ), using identities (2.14 )(2.15 ), and let w := w∗, which gives

Ap∗ = Bq∗, we have:

Lk+1
c − L∗

c ≤ c‖Apk+1 −Bqk+1‖2 − c

2‖Bqk+1 −Bq∗‖2 + σG

2 ‖q
k+1 − q∗‖2

+ c(α− 1)
2 ‖Apk+1 − Ap∗‖2 + c(2− α)

2 ‖Bqk −Bq∗‖2 − c(2− α)
2 ‖Apk+1 −Bqk‖2. (2.45)

By identity (2.15 ) and the minimizer conditions (2.25 ):

c‖Apk+1−Bqk+1‖2 = 1
cα
‖νk+1−νk‖2−c(α−1)‖Apk+1−Bqk‖2 +c

(
1− 1

α

)
‖Bqk−Bqk+1‖2.
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Substitute the above into (2.45 ), we have:

Lk+1
c − L∗

c ≤
1

cα
‖νk − νk+1‖2 + σG

2 ‖q
k+1 − q∗‖2 − c

2‖Bqk+1 −Bq∗‖2

+ c(α− 1)
2 ‖Apk+1 − Ap∗‖2 + c(2− α)

2 ‖Bqk −Bq∗‖2

− cα

2 ‖Apk+1 −Bqk‖2 + c
(

1− 1
α

)
‖Bqk −Bqk+1‖2,

(2.46)

and we complete the proof for the first part. For the second part, consider:

∇Lk+1
c =


∇F (pk+1) + AT

[
νk+1 + c(Apk+1 −Bqk+1)

]
∇G(qk+1)−BT

[
νk+1 + c(Apk+1 −Bqk+1)

]
Apk+1 −Bqk+1



=


AT [νk+1 − νk + c(Bqk −Bqk+1)]

−cBT (Apk+1 −Bqk+1)

Apk+1 −Bqk+1

 .

(2.47)

Denote the smallest positive eigenvalue of a matrix W as µW , by assumption, since AAT � 0,

we have:

‖∇Lk+1
c ‖2 ≥µAAT

[
‖νk − νk+1‖2 + c2‖Bqk −Bqk+1‖2 − 2c〈νk − νk+1, Bqk −Bqk+1〉

]
+
(
c2µBBT + 1

)
‖Apk+1 −Bqk+1‖2

≥µAAT

[
‖νk − νk+1‖2 + c2‖Bqk −Bqk+1‖2 − 2cLq‖qk − qk+1‖2

]
.

(2.48)

where in the last inequality, we use the minimizer condition (2.25 ) and Lq-smoothness of

G.

Lemma 2.4.17. Suppose Assumption B is satisfied and the matrix A is full row rank. For

0 < α < 2, if the augmented Lagrangian (2.3 ) is solved with the algorithm (2.5 ), then it

satisfies KŁ inequality with an exponent θ = 1/2.
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Proof. From Lemma 2.4.16 , bounding the terms with negative coefficients from the above

with 0 and using Cauchy-Schwarz inequality on ‖Bqk − Bq∗‖2, denote Lk
c := Lc(pk, qk, νk),

we have:

Lk+1
c − L∗

c ≤
1

αc
‖νk − νk+1‖2 + c

(
3− α− 1

α

)
‖Bqk −Bqk+1‖2

+ c(α− 1)
2 ‖Apk+1 − Ap∗‖2 +

[
σG

2 − cλ2
B( 1

2µ2
B

+ 2− α)
]+

‖qk+1 − q∗‖2,

(2.49)

where the first inequality follows applying Cauchy-Schwarz inequality ‖u + v‖2 ≤ 2(‖u‖2 +

‖v‖2) to ‖Bqk −Bq∗‖2. Note that for the coefficient of the term ‖Bqk −Bqk+1‖2, it follows

α + 1/α ≥ 2. Then by defining 2CG := [σG− cλ2
B(1/µ2

B + 4− 2α)]+ where [ · ]+ := max{0, ·},

we have:

Lk+1
c −L∗

c ≤
1

αc
‖νk − νk+1‖2 + cλ2

B‖qk − qk+1‖2 + c|α− 1|
2 ‖Apk+1−Ap∗‖2 + CG‖qk+1− q∗‖.

(2.50)

On the other hand, since B is positive definite by assumption, we can further find a lower

bound of (2.48 ):

‖∇Lk+1
c ‖2 ≥ µAAT

[
‖νk − νk+1‖2 +

(
c2µ2

B − 2cLq

)
‖qk − qk+1‖2

]
≥ K1

(
‖νk − νk+1‖2 + ‖qk − qk+1‖2

)
.

If we further assume c > 2Lq/µ2
B and define K1 := µAAT min{1, c2 − 2cLq}. Combining the

above, then there always exists a scalar K2 := max{1/(αc), cλ2
B} such that:

Lk+1
c − L∗

c ≤K2
(
‖νk − νk+1‖2 + ‖qk − qk+1‖2

)
+ c|α− 1|

2 ‖Apk+1 − Ap∗‖2 + CG‖qk+1 − q∗‖2

≤K2

K1
‖∇Lk+1

c ‖2 + K3
(
‖Apk+1 − Ap∗‖2 + ‖qk+1 − q∗‖2 + ‖νk+1 − ν∗‖2

)
=K2

K1
‖∇Lk+1

c ‖2
(

1 + K3‖wk+1 − w∗‖2

‖∇Lk+1
c ‖2

)

≤K2

K1
‖∇Lk+1

c ‖2
(

1 + K3ε
2

η2

)
,
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where K3 := max{c|α − 1|/2, CG} and the last inequality follows Lemma 2.4.11 , that is,

around a neighborhood of w∗ with ‖w−w∗‖ < ε there exists a η > 0 such that ‖∇Lk+1
c ‖ > η.

By taking square root of both sides of the above, we conclude that the Łojasiewicz exponent

θ = 1/2, which completes the proof.

As mentioned previously, in Lemma 2.4.17 , the matrix A is required to be a full row rank

matrix. This is necessary to prove Q-linear rate of convergence with KŁ inequality. It turns

out that we can relax this condition by showing local linear rate of convergence without

assuming A being full row rank.

To see this, observe that Lemma 2.4.18 implies that the sequence {Lk
c}k∈N is locally Q-

linear convergent, which in turns allow us to show locally R-linear rate of convergence of the

sequence {wk}k∈N obtained from the second algorithm (2.5 ).

Theorem 2.4.18. Suppose Assumption B is satisfied and the sequence {wk}k∈N with wk :=

(Apk, qk, νk) obtained from the algorithm 2.5 is bounded, then the sequence {wk} converges

linearly toward a stationary point w∗ locally around its neighborhood ‖w − w∗‖2 < ε and

L∗
c < Lc < L∗

c + η for some ε, η > 0.

Proof. Denote Lk
c := Lc(pk, qk, νk) for simplicity. From Lemma 2.4.7 , there always exists a

stationary point w∗ := (Ap∗, q∗, ν∗) where the sequence {Lk
c} is converging to. By assump-

tion, the penalty coefficient c is large enough such the sufficient decrease lemma holds, which

proves the convergence. For the corresponding rate, for 1 ≤ α < 2, by Lemma 2.4.17 , the

KŁ exponent θ = 1/2. In addition, from (2.47 ) we have the following:

‖∇Lk+1
c ‖2 ≤ ‖AT [νk+1 − νk + c(Bqk −Bqk+1)]‖2 + (1 + c2λ2

B)‖Apk+1 −Bqk+1‖2

≤ 2λAAT (‖νk+1 − νk‖2 + c2‖Bqk+1 −Bqk‖2) + (1 + cλ2
B)‖Apk+1 −Bqk+1‖2,

where the inequality follows that A is full row rank by assumption. Then, using the identity

(2.15 ) and minimizer conditions (2.25 ), we have:

‖Apk+1−Bqk+1‖2 + (α− 1) ‖Apk+1−Bqk‖2 = 1
c2α
‖νk+1− νk‖2 +

(
1− 1

α

)
‖Bqk+1−Bqk‖2.
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Since 1 ≤ α < 2, we have the following:

‖∇Lk+1
c ‖2 ≤

(
2λAAT + 1 + cλ2

B

c2α

)
‖νk+1 − νk‖2

+
[
2c2λAAT +

(
1 + cλ2

B

)(
1− 1

α

)]
‖Bqk+1 −Bqk‖2.

For the second term, since B is assumed to be positive definite, ‖Bqk+1−Bqk‖2 ≤ λ2
B‖qk+1−

qk‖2. Substitute into the above and define M∗ := max{2λAAT +(1+cλ2
B)/(c2α), λ2

B[2c2λAAT +

(1 + cλ2
B)(1 + 1/α)]}, we have:

‖∇Lk+1
c ‖2 ≤M∗‖wk+1 − wk‖2. (2.51)

Substitute (2.37 ) with (2.51 ), then by Lemma 2.4.10 , we prove that the sequence {wk}k>N0

for some N0 ∈ N converges Q-linearly to w∗ around its neighborhood. On the other hand,

for 0 < α < 1, from (2.50 ), we have:

Lk+1
c − L∗

c ≤
1

αc
‖νk − νk+1‖2 + cλ2

B‖qk − qk+1‖2 + c|α− 1|
2 ‖Apk+1 − Ap∗‖2

+ CG‖qk+1 − q∗‖

≤
[

L2
q

µ2
Bαc

+ cλ2
B

]
‖qk − qk+1‖2 + c|α− 1|

2 ‖Apk+1 − Ap∗‖2 + CG‖qk+1 − q∗‖2

≤
[

L2
q

µ2
Bαc

+ cλ2
B

]
‖qk − qk+1‖2

+ C∗
(
‖Apk+1 − Ap∗‖2 + ‖qk+1 − q∗‖2 + ‖νk+1 − ν∗‖2

)
,

where 2CG := [σG − cλ2
B(1/µ2

B + 4 − 2α)]+, C∗ := max{CG, c|α − 1|/2} and the second

inequality is due to the Lq-smoothness of the sub-objective function G. On the other hand,

from Lemma 2.4.7 , we have:

Lk
c − L∗

c − (Lk+1
c − L∗

c) ≥
[

c

µ2
B

( 1
α
− 1

2

)
− σG

2 −
µ2

BL2
q

cα

]
‖qk − qk+1‖2 = KG‖qk − qk+1‖2,
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where by assumption KG > 0. Then by combining the above two results and defining the

constants Cq := µ2
BL2

q/(αc) + cλ2
B/2, K∗ := max{Cq/KG, C∗}, denote ∆k := Lk

c − L∗
c , we

have:

∆k+1 ≤ K∗
(
∆k −∆k+1

)
+C∗‖wk+1−w∗‖2 ≤ max{K∗, C∗}

[(
∆k −∆k+1

)
+ ‖wk+1 − w∗‖2

]
.

Then by Lemma 2.4.12 , the sequence {wk}k>N0 , N0 ∈ N converges R-linearly to w∗. There-

fore, combining the results for 1 ≤ α < 2 and 0 < α < 1 together, we conclude that the rate

of convergence for 0 < α < 2 is locally linear.

Lastly, for the algorithm (2.5 ), under the Assumption C , we follow the same framework.

First, we prove the Łojasiewicz exponent in solving the augmented Lagrangian (2.3 ) is θ =

1/2. Second, we apply the KŁ inequality to show its convergence rate is Q-linear.

Compared to previous cases, the main difference of the Assumption C is that the sub-

objective function G is further required to be Lipschitz continuous. If this additional condi-

tion holds, then the inequality such as ‖qm − qn‖ ≤ Mq‖Bqm − Bqn‖ with B not necessary

be positive definite can be shown [45 ]. In the next result, we also first adopt this technique

to show θ = 1/2.

Lemma 2.4.19. Suppose Assumption C is satisfied and the matrix B is full row rank. For

0 < α < 2, if the augmented Lagrangian (2.3 ) is solved with the algorithm (2.5 ), then it

satisfies KŁ inequality with an exponent θ = 1/2.
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Proof. By construction, Lc is solved with the algorithm (2.5 ), from (2.46 ) of Lemma 2.4.16 ,

we have:

Lk+1
c − L∗

c ≤
1

cα
‖νk − νk+1‖2 + σG

2 ‖q
k+1 − q∗‖2 − c

2‖Bqk+1 −Bq∗‖2

+ c(α− 1)
2 ‖Apk+1 − Ap∗‖2 + c(2− α)

2 ‖Bqk −Bq∗‖2 − cα

2 ‖Apk+1 −Bqk‖2

+ c(1− 1
α

)‖Bqk −Bqk+1‖2,

≤ 1
αc
‖νk − νk+1‖2 + cλ2

B

(
3− 1

α
− α

)
‖qk+1 − qk‖2 + σG

2 ‖q
k+1 − q∗‖2

+ c
(3

2 − α
)
‖Bqk+1 −Bq∗‖2 + cλ2

A|α− 1|
2 ‖pk+1 − p∗‖2

≤ 1
αc
‖νk − νk+1‖2 + cλ2

B‖qk+1 − qk‖2 +
[
σG

2 + cλ2
B

∣∣∣∣32 − α
∣∣∣∣] ‖qk+1 − q∗‖2

+ cλ2
A|α− 1|

2 ‖pk+1 − p∗‖2,

where the second inequality follows from applying the Cauchy-Schwarz inequality ‖u+v‖2 ≤

2(‖u‖2 + ‖v‖2) on the term ‖Bqk−Bq∗‖2; the last inequality is because α + 1/α ≥ 2. Then,

by defining W1 := max{1/(αc), cλ2
B} and WG := max{σG/2 + cλ2

B|3/2 − α|, cλ2
A|α − 1|/2},

we have:

Lk+1
c − L∗

c ≤ W1(‖νk − νk+1‖2 + ‖qk+1 − qk‖2) + WG(‖qk+1 − q∗‖2 + ‖pk+1 − p∗‖2)

≤ W1(‖νk − νk+1‖2 + ‖qk+1 − qk‖2) + WG‖wk+1 − w∗‖2,
(2.52)

where wk := (pk, qk, νk) denotes the collective point at step k. On the other hand, for the

lower bound of ‖∇Lk+1
c ‖, from (2.48 ) we have:

‖∇Lk+1
c ‖2 ≥µ2

A

[
‖νk − νk+1‖2 + c2‖Bqk −Bqk+1‖2 − 2cLq‖qk − qk+1‖2

]
≥µ2

A

[
‖νk − νk+1‖2 + ( c2

M2
q

− 2cLq)‖qk − qk+1‖2
]

,
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where the second inequality follows Lipschitz continuity of G and (2.5c ), which gives ‖qm −

qn‖ ≤Mq‖Bqm−Bqn‖,∀m, n ∈ N as shown in [45 ]. Then if we further assume c > 2Lq/µBBT

and define W2 := µ2
A min{1, c2/M2

q − 2cLq}, we get:

‖∇Lk+1
c ‖2 ≥ W2

(
‖νk − νk+1‖2 + ‖qk − qk+1‖2

)
. (2.53)

Combining (2.52 ) and (2.53 ), we have:

Lk+1
c − L∗

c ≤
W1

W2
‖∇Lk+1

c ‖2 + WG‖wk+1 − w∗‖2

≤ W ∗‖∇Lk+1
c ‖2(1 + ‖w

k+1 − w∗‖2

‖∇Lk+1
c ‖2 )

≤ W ∗‖∇Lk+1
c ‖2(1 + ε2

η2 ),

where W ∗ := max{W1/W2, WG}; the last inequality is due to Lemma 2.4.11 and the definite

of a local neighborhood of a stationary point w∗. Finally, by taking square root on both

sides of the above inequality, we prove that the Łojasiewicz exponent θ = 1/2.

Theorem 2.4.20. Suppose Assumption C is satisfied. For 0 < α < 2, define wk :=

(pk, qk, νk) the collective point at step k. Then the sequence {wk}k∈N obtained from the

algorithm (2.5 ) is bounded. Moreover, the sequence converges to a stationary point w∗ at

linear rate locally.

Proof. The convergence of the sequence {wk}k∈N is due to the sufficient decrease lemma

(Lemma 2.4.9 ) and Assumption C . Moreover, by Lemma 2.4.19 , Lc satisfies the KŁ proper-

ties with an exponent θ = 1/2. As in (2.36 ), we have for some constant C > 0:

(Lk
c )1−θ − (Lk+1

c )1−θ ≥ C(1− θ)‖∇Lk
c‖−1‖wk+1 − wk‖2.

Then from (2.47 ), we have:

‖∇Lk
c‖2 ≤ λ2

A

[
‖νk − νk−1‖2 + (2cLq + c2λ2

B)‖qk − qk−1‖2
]

+ (c2λBBT + 1)‖Apk −Bqk‖2.

(2.54)
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Recall the following, due to the algorithm (2.5 ) and the identity (2.15 ):

‖Apk −Bqk‖2 = 1
c2α
‖νk − νk−1‖2 + (1− 1

α
)‖Bqk −Bqk−1‖2 − (α− 1)‖Apk −Bqk−1‖2.

If 1 ≤ α < 2, substitute the above into (2.54 ), we have:

‖∇Lk
c‖2 ≤λ2

A

[
‖νk − νk−1‖2 + (2cLq + c2λ2

B)‖qk − qk−1‖2
]

+ (c2λBBT + 1)
[ 1
c2α
‖νk − νk−1‖2 + (1− 1

α
)‖Bqk −Bqk−1‖2

]
≤[λ2

A + (c2λBBT + 1)
c2α

]‖νk − νk−1‖2 + [λ2
Ac(2Lq + cλ2

B) + λ2
B(1− 1

α
)]‖qk − qk−1‖2.

Define S∗ := max{λ2
A + (c2λBBT + 1)/(c2α), λ2

Ac(2Lq + cλ2
B) + λ2

B(1− 1/α)}, we have:

‖∇Lk
c‖ ≤ S∗‖wk − wk−1‖. (2.55)

Then, by Lemma 2.4.10 with (2.37 ) replaced by (2.55 ), we prove that the rate of convergence

for the case 1 ≤ α < 2 is Q-linear. On the other hand, for 0 < α < 1, by assumption, the

following holds, for some constant τ ∗ > 0, due to Lemma 2.4.9 :

Lk
c − Lk+1

c ≥ τ ∗(‖pk − pk+1‖2 + ‖qk − qk+1‖2).

In addition, from (2.46 ) with negative terms replaced with 0, we have:

Lk+1
c − L∗

c ≤
1

cα
‖νk − νk+1‖2 + σG

2 ‖q
k − qk+1‖2 + c(2− α)

2 ‖Bqk −Bq∗‖2

≤ 1
cα
‖νk − νk+1‖2 + σG

2 ‖q
k − qk+1‖2 + c(2− α)‖Bqk −Bqk+1‖2

+ c(2− α)‖Bqk+1 −Bq∗‖2

≤
[

µBBT λBL2
q

cα
+ σG

2 + cλ2
B(2− α)

]
‖qk − qk+1‖2 + cλ2

B(2− α)‖qk+1 − q∗‖2.
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The second line is by Cauchy-Schwarz inequality, that is, ‖Bqk−Bq∗‖2 ≤ 2(‖Bqk−Bqk+1‖2+

‖Bqk+1 − Bq∗‖2), and the third line is by Lq-smooth of G and full row rank assumption of

B. Define ρ1 := (µBBT λBL2
q)/(cα) + σG/2 + cλ2

B(2−α) > 0 and ρ∗ := cλ2
B(2−α), we have:

Lk+1
c −L∗

c ≤
ρ1

τ ∗‖L
k
c−Lk+1

c ‖2 +ρ∗‖wk+1−w∗‖2 ≤ max{ρ1

τ ∗ , ρ∗}
(
Lk

c − Lk+1
c + ‖wk+1 − w∗‖2

)
.

(2.56)

Apply (2.56 ) to Lemma 2.4.12 , we prove that the rate of convergence of the sequence

{wk}k>N0 with N0 ∈ N is R-linear for 0 < α < 1. Combine the result with that of 1 ≤ α < 2,

we conclude that the rate of convergence is locally linear for 0 < α < 2.

2.5 Applications

In this section, we apply the theoretical results developed in the last section to the IB

and PF problems, which results in new solvers for each problem and improves and simplifies

existing ones in terms of the convergence condition and regularization techniques. It turns

out that, for the IB methods, our new solvers can achieve the same asymptotic rate of

convergence to the Blahut-Arimoto (BA) typed solver, which often serves as a benchmark.

In addition, the new solver, under some mild assumptions, converges independent of the

choice of the trade-off parameter γ. This implies that the convergence is invariant to the

potential presence of phase transitions [76 ] that slows down IB solvers. On the other hand, as

for the PF, we develop a class of new solvers that can tackle both random and deterministic

mappings, which is better than the existing greedy solvers which are limited to deterministic

mappings only [3 ], [30 ]. Therefore, our new PF solvers can potentially characterize the

privacy-utility trade-off better than existing ones.

2.5.1 Douglas-Rachford Splitting Based IB Solvers

Recall in section 2.1.2 , we explicitly showed that the IB problem can be a special case

of the proposed generalized Lagrangian (2.1 ). Specifically, by selecting the set of coefficients

as ρz := γ − 1, ρz|x := −γ, ρz|y = 1, where 0 < γ < 1 for non-trivial solutions due to the

data-processing inequality [19 ]. It turns out that under this selection of parameters, there are
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two different types of DRS solvers that corresponds to the two types of algorithms discussed

in Chapter 2.2 . To see this, we present the two DRS-IB solvers next. The first type of the

proposed DRS-IB solver is called the “TH-DRS”, which has the following formulation:

p := pz, q := pz|x, pz|y = Qx|ypz|x,

F (p) := (γ − 1)H(Z),

G(q) = −γH(Z|X) + H(Z|Y ),

A = INz , B = Qx,

(2.57)

where the notation for (conditional) probability vectors and the structure of the matrices

Qx|y, Qx in the linear constraints are defined in (2.2 ). The name “TH-DRS” is chosen as

such because it is first proposed in our earlier work [34 ] but here we simplify the design

in which fewer parameters are required to decide and no additional regularization terms is

imposed to assure convergence. Note that for TH-DRS, the conditional probability vector

pz|y is treated as a equality constraint, that is, given a pz|x we always have pz|y = Qx|ypz|x,

which is in contrast to the linear penalty pz −Qxpz|x as the absolute difference decreases as

the algorithm iterates. In this sense, we can think of the TH-DRS solver relaxes the marginal

probability relation that pz should have during the optimization process and finally resumes

this physical meaning once converged. On the other hand, with a slight re-arrangement, we

obtain the second type of the DRS-IB solvers, which is called the “MV-DRS”:

p := pz|x, q :=
[
pT

z pT
z|y

]T

,

F (p) := −γH(Z|X),

G(q) := (γ − 1)H(Z) + H(Z|Y ),

A =
[
QT

x QT
x|y

]T

, B = INq ,

(2.58)

where Nq := |Z| × (|Y| + 1). The second type is called the “MV-DRS” as this type of IB

solvers can be easily generalized to multi-view IB problems that recently gain significant

attention for reduced complexity over treating all views of observations as a giant view and

improved the performance over single-view approaches in a variety of learning problems.
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We defer the discussion of the generalization to multi-view IB problem to Chapter 3 . Note

that the augmented variable in MV-DRS, q is constructed by stacking the (conditional)

probability vectors pz, pz|y together, and therefore the total number of variables to optimize

is more than that of the TH-DRS. Another observation is that since in IB the Markov chain

Y −X−Z is imposed on pz|x, MV-DRS can be viewed as relaxing the Markov chain relation

pz|y −Qx|ypz|x to a linear penalty constraint and retains this restriction upon converged.

After presenting the two formulations, we apply the theoretic convergence results to each

formulation respectively. Recall that the results are based on different sets of assumptions,

so the goal is to show that the two formulations satisfy the conditions listed in a set of

assumptions. Interestingly, we find that the TH-DRS satisfies Assumption A while the MV-

DRS satisfies Assumption B and therefore apply to Theorem 2.4.15 and Theorem 2.4.18 

respectively under infimal measure constraints. For the first type (2.57 ), observe that once

assumed εz-infimal for the primal variable pz and εz|x-infimal for the augmented variable pz|x,

one of its two sub-objective function F is strongly convex while G is a combination of convex

and concave functions. For G, by Lemma 2.4.4 , it satisfies the definition of restricted weak

convexity with respect to the matrix Qx. As a result, we have the following convergence

guarantee for the TH-DRS solver.

Theorem 2.5.1. Suppose pz is εz-infimal and pz|x is εz|x-infimal, then for 0 < α ≤ 2, the

IB problem formulated as in (2.57 ) satisfies:

• F (pz) is 1− γ-strongly convex and 1/εz-smooth.

• G(pz|x) is [(2NzNxζ)/εz − γ]-restricted weakly convex and Lq-smooth.

Moreover, the sequence {wk}k∈N, where wk := (pk
z , Qx|ypk

z|x, νk) converges at linear rate locally

to a stationary point when solved with the algorithm (2.4 ) with a penalty coefficient:

c > max
{

2NzNx

εz|x
,
1/εz + (1− γ)

α

}
.

Proof. Due to the ε-infimal assumptions, the Lipschitz smoothness coefficients for F and G

are Lp = 1/εz and Lq = 1/εz|x, respectively. Moreover, by the formulation (2.57 ), F (p) is a

scaled negative entropy function hence a strongly convex function with σF = 1− γ > 0. As
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for the function G(q), since pz|y = Qx|ypz|x is a strict restriction, from Lemma 2.4.4 , G(q) is

ωG-restricted weakly convex w.r.t. the full row rank matrix B = Qx with the coefficient:

ωG := 2NzNxζ

εz

− γ > 0,

where ζ is defined as in Lemma 2.4.4 . Lastly, since A is simply an identity matrix, λA =

µA = 1. By substituting the above coefficients into Lemma 2.4.5 to obtain the smallest

penalty coefficient that assures convergence, it is clear that Assumption A is satisfied, and

we therefore complete the proof.

On the other hand, for the second type (2.58 ), upon imposing εz|x-infimality on the

primal variables pz|x; εq-infimality on the augmented variables q, one of the two sub-objective

functions F is convex while the other, G is weakly convex. Hence, we can apply Theorem

2.4.18 to have the following result.

Theorem 2.5.2. Suppose pz, pz|y, pz|x are εz, εz|y, εz|x-infimal, respectively, then for 0 < α <

2, the IB problem formulated in (2.58 ) satisfies:

• F is convex and 1/εz|x-smooth

• G is (2NzNy)/εz|y-weakly convex and max{1/εz, 1/εz|y}-smooth.

• The matrix A :=
[
QT

x QT
x|y

]T

is full row rank.

Moreover, the sequence {wk}k∈N, where wk := (pk
z|x, qk, νk) converges at linear rate to a

stationary point when solved with the algorithm (2.5 ) with a penalty coefficient:

c >
ασG +

√
α2σ2

G + 8(2− α)L2
q

4− 2α
,

where Lq := 1/εq with εq := min{εz, εz|y} and σG := (2NzNy)/εz|y.

Proof. Due to the ε-infimal assumptions, the Lipschitz smoothness coefficients for the func-

tions F and G are Lp := 1/εz|x and Lq = max{1/εz, 1/εz|y}, respectively. Moreover, from the

formulation (2.58 ), F (p) is a negative conditional entropy which is a convex function w.r.t.
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pz|x. On the other hand, the function G(q) consists of a strongly convex function (1−γ)H(Z)

w.r.t. pz and a concave function H(Z|Y ) w.r.t. pz|x. The strongly convex part does not con-

tribute to the weak convexity of G so we can focus on pz|y. Then since we assume εz|y-infimal,

by Lemma 2.4.3 , H(Z|Y ) is weakly convex with the coefficient σG := (2NzNy)/εz|y. Lastly,

by construction, B = I, so µB = λB = µBBT = 1. Substitute the coefficients mentioned

above into Lemma 2.4.7 to obtain the smallest penalty coefficient that assures convergence,

hence Assumption B is satisfied. We therefore complete the proof.

From Theorem 2.5.1 and 2.5.2 , it is clear that the convergence guarantee heavily depends

on the infimality constraints. In literature, this assumption is commonly adopted in density

or entropy estimation research [67 ], [68 ] for smoothness purposes which is aligned with our

need. Another remark from the two theorems is that we can compare the two DRS-IB solvers

in terms of their smallest penalty coefficient. To avoid confusion, we denote them as c∗
T H , c∗

MV

respectively. The first observation is that c∗
T H depends on the infimality coefficient εz|x

whereas c∗
MV does not. The importance of this difference is that when γ → 1, pz|x converges

to deterministic mapping where the conditional probability is either 1 or 0 hence 1 � εz|x,

in turns results in c∗
T H � c∗

MV since c∗
MV is independent of εz|x. The second observation is

that c∗
MV is independent of the control parameter γ for the relevance-complexity trade-off.

This implies when using MV-DRS, one can fix a penalty c when sweeping a range of γ to

characterize the trade-off region. In other words, no change is needed for different choice of

γ for convergence assurance. However, as mentioned earlier, MV-DRS has more parameters

to optimize than that of TH-DRS. Lastly, in comparing the rate of convergence to existing

IB solvers, the locally linear rates of the two DRS IB implied by Theorem 2.5.1 and 2.5.2 

is the same asymptotic rate of the Blahut-Arimoto typed solver [24 ]. Therefore, our results

are in accordance to the rate of convergence for benchmark solvers. In Chapter 2.6.1 , we

will evaluate the new IB solvers, and compare them to existing ones, on synthetic datasets.
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2.5.2 Douglas-Rachford Splitting Based PF Solvers

In addition to IB, as demonstrated in chapter 2.1.2 , our general framework (2.1 ) includes

the PF problem as a special case by selecting the coefficients in (2.1 ) as:

ρz := β − 1, ρz|y := −β, ρz|x := 1, (2.59)

we decompose the PF problem into a combination of a convex function −βH(Z|Y ) w.r.t. pz|y

and (β−1)H(Z) w.r.t. pz. The latter sub-objective function is strongly convex if 0 < β < 1.

However, we empirically find that solutions for PF converge to non-trivial solutions only

when β > 1. Hence, (β − 1)H(Z) is a concave function w.r.t. pz. Observe that by Lemma

2.4.3 the positive (conditional) entropy function is weakly convex if it is smooth, we therefore

obtain the following formulation for the PF problem:

p := pz|y, q := pz|x, Qxpz|x = pz,

F (p) := −βH(Z|Y ),

G(q) := (β − 1)H(Z) + H(Z|X),

A = INzNy , B = Qx|y.

(2.60)

In (2.60 ), linear penalty Ap−Bq is simply the Markov chain relation:

p(z|y) =
∑

x

p(z|x)p(x|y),

so the formulation is similar to that of the MV-DRS (2.58 ). However, note that the matrices

for linear constraints in PF has A as the identity matrix while B is full row rank, this

violates the Assumption B as for the case of MV-DRS. On the other hand, one of the two

sub-objective functions F is convex, but not strongly convex while G is composed of two

concave functions, and therefore not restricted-weakly convex as required in Assumption A .

It turns out that, by the imposing infimality on pz|x, G satisfies both Lipschitz continuity

and smoothness and along with the fact that pz|x belongs to a compound simplex, we can

adopt the sub-minimization path technique [45 ] to address the rank deficient issues of the
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matrix B = Qx. Following this, our finding is that upon assuming εz|x-infimality on pz|x,

then the proposed DRS-PF solvers satisfy the Assumption C . To show that the G(q) in

(2.60 ) for DRS-PF is weakly convex, we need the following result.

Lemma 2.5.3. Given px, let G(q) be defined as in (2.60 ). If q = pz|x is εz|x-infimal, then

G(q) is σG-weakly convex w.r.t. q, where σG := max{2|β − 1|Nz/εz|x, 2NzNx/εz|x}.

Proof. Since in (2.60 ) G(pz|x) = (β− 1)H(Z) + H(Z|X), we can separate the proof into two

parts. The first part is (β − 1)H(Z) and the second is H(Z|X). For the first part, if β ≤ 1,

then the first part is a scaled negative entropy function which is (1 − β)-strongly convex

w.r.t. pz and hence to pz|x as pz = Qxpz|x is a restriction by definition. Note that due to this

restriction, εz = εz|x. To conclude the case for β ≤ 1, we can simply discard the positive

squared term introduced by strong convexity as a lower bound. On the other hand, if β > 1,

for two distinct pm
z , pn

z ∈ Ωz, we have:

H(Zm)−H(Zn) = 〈∇H(Zn), pm
z − pn

z 〉 −DKL(pm
z ||pn

z )

≥ 〈∇H(Zn), pm
z − pn

z 〉 −
1
εz

‖pm
z − pn

z‖2
1

≥ 〈∇H(Zn), pm
z − pn

z 〉 −
Nz

εz|x
‖pm

z − pn
z‖2

2,

(2.61)

where the first inequality follows from reversing the Pinsker’s inequality due to the εz|x-

infimal assumption. Then for the first term in the last inequality, by the marginal relation

Qxpz|x = pz:

〈∇zH(Zn), pm
z − pn

z 〉 = 〈QT
x∇zH(Zn), pm

z|x − pn
z|x〉 = 〈∇z|xH(Zn), pm

z|x − pn
z|x〉,

where ∇z denotes the gradient w.r.t. pz and ∇z|x w.r.t. pz|x. For the second term in the last

inequality, since pz = Qxpz|x, ‖Qx‖ = 1, we have:

‖pm
z − pn

z‖2 ≤ ‖Qx‖2‖pm
z|x − pn

z|x‖2 = ‖pm
z|x − pn

z|x‖2.
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Similarly, for H(Z|X), we have:

H(Zm|X)−H(Zn|X) =〈∇z|xH(Zn|X), pm
z|x − pn

z|x〉 − Ex[DKL(pm
z|X ||pn

z|X)]

≥〈∇H(Zn|X), pm
z|x − pn

z|x〉 −
NzNx

εz|x
‖pm

z|x − pn
z|x‖2.

Combining the two results, pre-multiplying |β−1| to that of H(Z), we conclude that G(pz|x)

is σG-weakly convex w.r.t. pz|x, where σG := max{2|β − 1|Nz/εz|x, 2NxNz/εz|x}.

Then since Assumption C is satisfied for DRS-PF, we can apply Theorem 2.4.20 to

provide convergence guarantee for the new class of solvers.

Theorem 2.5.4. Suppose pz|y, pz|x are εz|y, εz|x-infimal respectively, then for 0 < α < 2, the

PF problem formulated in (2.60 ) satisfies:

• F is convex and 1/εz|y-smooth.

• G is [2Nz(|β − 1| + Nx)]/εz|x-weakly convex, 1/εz|x-smooth and 2| log εz|x|-Lipschitz

continuous.

• The matrix B := Qx|y is full row rank.

Moreover, the sequence {wk}k∈N, where wk := (pk
z|y, pk

z|x, νk) converges at linear rate locally

to a stationary point when solved with the algorithm (2.5 ) with a penalty coefficient:

c > Mq

MqασG +
√

M2
q α2σ2

G + 8 (2− α) L2
qλ

2
B/µBBT

4− 2α

 ,

where σG := [2Nz(|β − 1|+ Nx)]/εz|x, Mq := 2| log εz|x|, and Lq := 1/εz|x.

Proof. By assumption, pz|y is εz|y-infimal, and pz|x is εz|x-infimal. Hence, by Corollary 2.4.2 ,

the Lipschitz smoothness coefficients for the functions F and G are Lp := 1/εz|y and Lq =

1/εz|x, respectively. Moreover, from the formulation (2.60 ), F (p) = −H(Z|Y ) is a convex

function w.r.t. p := pz|y as shown in Corollary 2.4.2 . On the other hand, for the function

G(q), by Lemma 2.5.3 , G is 2Nz[|β − 1|+ Nx]/εz|x-weakly convex w.r.t. q := pz|x. The εz|x-

infimal assumption implies the Lipschitz continuity of G, which can be shown by combining
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Lemma 2.4.1 and Corollary 2.4.2 . In turns, since the q-update (2.5c ) is equivalent to the

Lipschitz continuous function Φ(µ) := arg minq∈Ωq G(q) + c/2‖Bq − µ‖2, due to the fact

that Bq = p̂z|y is bounded, there exists a sub-minimization path [45 ] such that the following

holds:

‖qm − qn‖ ≤ ‖Φ (Bqm)− Φ (Bqn)‖ ≤Mq‖Bqm −Bqn‖,

where Mq := 2| log εz|x| denotes the Lipschitz continuity coefficient of G, and hence of Φ. As

for the linear constraints, since the matrix A = I, we have µA = λA = λAAT = 1 whereas

B = Qx|y as constructed in (2.60 ). Note that B is full row rank since each row corresponds

to a conditional prior probability and if there are identical rows, we can simply eliminate the

duplicate rows as they represent the same conditional distribution of the observations. As a

result, we have λBBT , µBBT as the largest and smallest eigenvalues of Qx|yQT
x|y. Substitute the

coefficients Mq, σG, λB, µBBT into Lemma 2.4.7 to obtain the smallest penalty coefficient that

assures convergence, and we conclude that the Assumption C is satisfied, which completes

the proof.

As a remark, from Theorem 2.5.4 , the proposed DRS-PF solvers converges linearly to

a stationary point, this result does not restrict the elements of the primal variables pz|x to

be either 1 or 0, which is often imposed for existing clustering based greedy algorithms [3 ],

[30 ]. Our new PF solvers are therefore capable of handling both deterministic and random

mappings so potentially can explore the privacy-utility trade-off [3 ] in PF research better

than existing ones. We empirically evaluate the proposed PF-DRS solvers and compare them

with existing ones in Chapter 2.6.2 .

2.6 Evaluation

In this section, we implement the proposed algorithms for IB and PF and evaluate them

on both synthetic and real-world datasets. In implementing the algorithms, we adopt gradi-

ent descent to update the primal variables pz, pz|x, pz|y. It is worth noting that, to make the
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gradient updates on the primal variables be valid probabilities, it turns out that the updated

becomes the mean-subtracted gradients, for example, when updating pk
z|x:

pk+1
z|x := pk

z|x − εk
z|x∇z|xL̄k

c ,

where ∇z|xL̄k
c := ∇z|xLk

c − 1
Nz

∑
z∇z|xLk

c , with a stepsize εz|x chosen to assure that the

updates remain valid (conditional) probabilities. Similarly, the other primal variables pz, pz|y

are updated in mean-subtracted gradients, but with respect to the parts in the augmented

Lagrangian they are involved in. We start with synthetic data to evaluate the proposed

DRS-IB solvers. The joint probability p(X, Y ), with dimensions Nx = Ny = Nz = 3, is as

follows.

p(Y |X) =


0.90 0.08 0.40

0.025 0.82 0.05

0.075 0.10 0.55

 , p(X) =
[

1
3

1
3

1
3

]T

.

2.6.1 Evaluation on a Synthetic IB Problem

As reviewed in Chapter 1.2.1 , the performance of solutions is evaluated on the information

plane [5 ], [6 ], which serves as a reference to find the maximum I(Y ; Z) one can achieve given

a fixed I(X; Z). By convention, we compare the solutions obtained from the proposed two

solvers, e.g. DRS-TH and DRS-MV, to those obtained from the BA-typed algorithm (as a

benchmark). In the following figures, the BA-typed solver will be denoted as BA. For the

proposed approaches, we denote the algorithm (2.4 ) as TH whereas (2.5 ) as MV. For the

relaxation parameters α, we choose α ∈ {1.0, 1.618, 2.0} corresponding to ADMM, DRS and

PRS. The choice of = 1+
√

5
2 ≈ 1.618 for the DRS is simply inspired by the known result that

this is the maximum possible relaxation parameter for DRS in convex settings [72 ]. Notably,

our earlier work, the two-block ADMM-IB solver [34 ], corresponds to the algorithm (2.4 )

with α = 1 (TH-ADMM ).

For each algorithm, we randomly initialize pz|x, pz and run the algorithm until it termi-

nates. This procedure is repeated for 100 times for each β ∈ [1.0, 10.0]. For the proposed
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Figure 2.1. Simulation results of IB on a synthetic joint probability p(X, Y )
with Nz = Nx = Ny = 3
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methods, the stopping criterion is either the residuals,
∥∥∥pk

z −Qxpk
z|x

∥∥∥2
1 for the algorithm (2.4 )

or
∥∥∥Apk − qk

∥∥∥2
1 for (2.5 ), is less than 2 × 10−6. This will be labeled as a convergent case.

Otherwise, if a maximum number of iterations is reached, then we label it as a divergent

case. Our simulation results are presented in Figure 2.1 . In Figure 2.1a , for each γ, we

collect the results from 100 runs including both convergent and divergent cases, but only the

convergent cases are scattered. In Figure 2.1b and 2.1c , TH is referred to the algorithm (2.4 )

whereas MV for (2.5 ). For each algorithm, we have three sub-labels PRS, DRS, ADMM,

corresponding to α = {2.0, 1.62, 1.0}. In Figure 2.1c ,L∗ = −0.411 bits and the penalty

coefficient for TH is cT H = 8.0 while cMV = 16.0.

In Figure 2.1a , we first compare the information plane characterized by the proposed split-

ting methods based solvers to that obtained from BA by mappings each [I(X; Z), I(Y ; Z)]

pair. Clearly, the correctness of the two splitting methods based algorithms can be confirmed

since the solutions obtained from them achieve comparable performance to that obtained

from the BA-typed solver. Note that in Figure 2.1a , there are local minima due to the

intrinsic non-convexity of the IB problems.

Then we focus on the splitting methods and the effect of the relaxation parameter α.

Observe that, from Theorem 2.5.1 and 2.5.2 the smallest penalty coefficient c∗ that assures

convergence is related to α, we therefore use the same synthetic joint probability matrix to

further evaluate the percentage of convergent cases empirically for the two types of solvers.

In Figure 2.1b , we fix a trade-off parameter γ = 0.286 and vary the penalty coefficient

c ∈ [1, 15]. In Figure 2.1b , we show the percentage of convergent cases versus c. Comparing

the convergence performance of TH and MV, we find that the percentage of convergent

cases is almost 100% even with c = 1 whereas the smallest penalty coefficient that assures

high convergent percentage for MV is c∗
MV ≈ 12.0. This is because there are more variables

to optimize for MV over TH. Interestingly, MV-PRS (α = 2.0) has highest c∗, and since

α ≈ 1.618 for the MV-DRS, our simulation results show that the the relaxation step improves

the convergence of the splitting methods in IB in the sense that a smaller c∗ is needed for

higher percentage of convergent cases.
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Lastly, as our theoretic convergence analysis implies that the corresponding rates of

convergence of the two algorithms are linear, we examine the progression of the loss, i.e.,

the augmented Lagrangian, over iteration. The result is shown in Figure 2.1c , where we fix

a γ = 0.154. The minimum loss L∗ ≈ −0.411 (bits) for the augmented Lagrangian (2.3 ),

which is found after the six types of solvers converged. For TH, we fix the penalty cTH = 8.0

whereas cMV = 16.0 for MV instead. In consistent with in the results for the percentage

of convergent cases, since TH has less variables to optimize, fewer iterations are performed

to reach convergence L∗. Then, focusing on the three types of solvers in either TH or MV

in Figure 2.1c , we find that ADMM (α = 1) requires less number of iteration to converge

in both TH and MV, so while α improves convergence, the rate is slower for a higher α.

Note that since we implement the algorithms with gradient descent, the rate of convergence

also depends on the selection of step size [21 ], [72 ], [77 ]. Based on our theoretic results,

e.g., Lemma 2.4.14 and 2.4.17 , we expect for a sufficient large c, the convergence is locally

linear. Clearly this is the case as Figure 2.1c shows. For TH, after about 500 iterations, it

converges linearly toward L∗ and similar behavior can be observed for MV, which happens

after around 1250 iterations instead. The empirical results therefore confirm our theoretical

analysis on the convergence and the locally linear rates.

2.6.2 Experiments for PF Solvers

For the proposed new splitting methods based PF solvers, we evaluate the algorithm on

real-world data. The dataset is named “Heart failure clinical records Data Set” [78 ] from

the UCI Machine Learning Repository [79 ]. It has 299 instances with 13 attributes. Among

which, we select 6 attributes including: “anaemia,” “high blood pressure,” “diabetes,” “sex,”

“smoking” and “death”. All selected attributes are binary. In preparing the joint probability,

we let Y := {“sex”,“death”} and the rest be X, which gives |Y | = 4, |X| = 16. The

joint probability is formed by counting the 299 instances with respect to each (Y, X) pair.

Afterward we add 10−3 to each entry of the counted results to avoid p(x, y) = 0. The sensitive

information Y , in PF context, consists of 2 binary labels {“death”,“sex”}. In Figure 2.2a , we

collect all the convergent pairs of [I(Z; X), I(Z; Y )] with varying β ∈ [1.0, 10.0], 2 ≤ |Z| ≤ 16
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and c = 7000. Then we show the minimum I(Z; Y ) for given a I(Z; X). In Figure 2.2b ,

PRS,DRS,ADMM corresponds to α = {2, 1.62, 1} respectively. For Figure 2.2b and 2.2c ,

we fix |Z| = 16 and set the penalty coefficient to 7000. We further let the three splitting

methods start from the same initial point and the minimum function value that is achieved

by the three methods is L̂∗
c = −2.46.

We implement the algorithm (2.5 ) based on (2.60 ). For the relaxation parameter, we

choose α = {1.00, 1.618, 2.00} correspond to ADMM, DRS, PRS respectively. For the com-

pared methods, we select two existing PF solvers that are clustering-based algorithms, the

first one [3 ] greedily merging two x1, x2 ∈ X to form a new cluster Znew that maximize

I(Zold; Y )− I(Znew). We denote this solver as merge two. Another solver we compared with

is [30 ], where it relaxes the sub-optimal pairwise merging approach, by using submodular-

supermodular optimization approach to consider subsets of more than two elements, however

it is limited to deterministic mappings as merge two. We denote the second greedy algorithm

as submodular.

Our experimental results are shown in Figure 2.2 . We start with evaluating the solution

obtained from the proposed DRS solvers to that from the two compared solvers. Note that,

since other choice of the relaxation parameter α gives similar results when scattered on

the information plane, for clarity purposes, we only show α = 1.00. In Figure 2.2a the

three methods give comparable performance on the information plane which verified the

correctness of our implementation. But different from the two clustering based approaches,

the proposed DRS based PF solvers are not limited to deterministic mappings, and therefore

can explore the area between the consecutive points obtained from the compared methods.

This can be observed from the regions I(X; Z) < 1 compared to merge two and I(X; Z) < 3.5

compared to submodular in Figure 2.2a .

To explore the information plane with the proposed DRS solver as in Figure 2.2a , we vary

the trade-off parameter β ∈ [1, 10] with random initialization for multiple times and collect

the solutions that converged. Note that before starting the proposed PF solvers, the penalty

coefficient c and α need to be determined. From Theorem 2.5.4 , there exists a smallest

penalty coefficient c that assures convergence and can be determined if the conditions listed

are satisfied, but in practice, one can increase c until a desired convergent percentage is
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reached. In Figure 2.2b we fix β = 3.5 and sweep c ∈ [1000, 8000]. For each c, we randomly

initialize pz|x and run the algorithm until a termination condition is reached. This procedure

is repeated for 2000 times for each method. Then we report the average percentage of

convergent cases. From the figure, observe that for a given percentage, PRS has a smallest

penalty coefficient than DRS, ADMM, this again demonstrate the relaxation α improves

convergence and is consistent with the insight we have for the IB problem in the last part.

Lastly, we evaluate the rate of convergence of the proposed DRS solvers for PF. In Figure

2.2c we fix an initial point for the three solvers and set the penalty coefficient c = 7 × 103.

The minimum value of the augmented Lagrangian among the three is L̂∗
c = −2.46. Recall

that by Theorem 2.4.20 we claim the rate of convergence of the DRS solver is locally linear,

the results shown in Figure 2.2c confirm our claim. Observe that around the iteration count

k = 100, the variables are getting closer toward a local minimum and converges linearly

fast afterward. Interestingly, contrary to the observation in the IB evaluation, in PF, PRS

reaches converges to the local minimum faster than DRS and ADMM, so the relaxation

parameter α in this experiment improves both convergence and its rate. Finally, we note

that there are implementation issues that affect the evaluation or the selection of c and

α. For example, the step size selection schemes [21 ] or acceleration techniques for gradient

descent algorithms [72 ], we leave these practical issues for future exploration.
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3. MULTI-MODAL IB AND PF REPRESENTATION

LEARNING

In this chapter, we generalize the single-modal IB and PF to multi-modal scenarios. For

clarity, we will focus on multi-view IB (MvIB) first and generalize to the multi-source PF

(MsPF) in section 3.2.3 . In multi-view learning literature, the basic assumption is the

conditional independence, that is, the joint probability of observations of all views {X}V
i=1

generated from a target variable Y has the relation: p(y, {x}V
i=1) = p(y)ΠV

i=1p(x(i)|y). Based

on this condition, we adopt an information-theoretic approach to formulate the MvIB and

MsPF.

3.1 Main Results

The novelty of this part is our new information-theoretic formulations of the MvIB and

MsPF problems. This is in sharp contrast to existing heuristic-based forms as (3.1 ) and

(3.16 ) reduce to single-view IB and PF respectively. This implies that the solutions under the

proposed formulations can map to the information plane in IB and PF to have performance

references. The new formulations are devoted to solving the two challenges in multi-modal

learning: the performance-complexity trade-off and the representation overlap. For the first

challenge, consider MvIB, the naïve approach is to merge all views into a giant view which

loses no information, but the observation dimension grows exponentially w.r.t. the number of

views. On the other hand, due to conditional independence, one can also pick the view that

outperforms the others which will have minimum complexity but exploit no performance gain

from multi-view observations. Therefore, the interpretation of the performance-complexity

trade-off is finding representations that avoid the exponential growth of the dimensions but

enjoy the performance improvement from multi-view observations.

As for the second challenge, consider a scenario where the observations consist of two

forms: images and videos, in this case, as videos can be thought of as a time sequence of

images, the two clearly have abundance of representation overlap. In contrast, suppose the

two forms are: images and audio, then the representation overlap is limited as it is not easy
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to learn color or shape from sounds. However, even with limited overlap, learning with both

views clearly provides a more complete representation than learning through each view alone.

In short, the challenge is learning representations from heterogeneous forms of observations

but whether the overlap is abundant or limited, enjoying performance gain from multi-view

learning is possible.

To jointly address the two challenges, we propose two new formulations that both sig-

nificantly reduce the complexity growth as compared to the merge-view approach inspired

by the two extremes of the abundance of the representation overlap. When there is sub-

stantial overlap, we propose the consensus-complement formulation (Section 3.2.1 ) whereas

when there is limited overlap, we propose the incremental update (Section 3.2.2 ). The nov-

elty is that through the associated restrictions imposed to reduce complexity growth in the

two formulations, the obtained Lagrangians (3.2 ) and (3.13 ), are both generalizations of the

single-view Markovian Lagrangian (2.1 ) studied in Chapter 2 and hence we propose solving

the two MvIB Lagrangians through the splitting methods.

Our key observation is that we can generalize the single-view approach introduced in the

last chapter to study the two proposed formulations. First, for the consensus-complement

form, we propose solving the overall objective function in two steps where in the first step a

consensus representation is learned then it becomes the side-information for learning view-

specific, complement representation independently across views. Through this simplifica-

tion, the extra sub-objectives in consensus Lagrangian (3.6 ) are all convex as compared to

(2.1 ) whereas the complement Lagrangian (3.6 ) have the same three-block set-up but each

sub-objective is conditioned on the consensus representation. It turns out that by Bayes’

rule and Markov relation, the additional conditional probabilities related to the consensus

representation can be treated as equivalent priors and recovers the single-view Markovian

Lagrangian. Overall, for the consensus-complement formulation, we can formulate both steps

to consensus augmented Lagrangians, (3.9 ) and (3.10 ) respectively, and solve it with con-

sensus ADMM (3.11 ) as the complement step is, by our formulation, is simply a special case

where there is only one view. Remarkably, as the extra sub-objective functions in consensus

augmented Lagrangian are all convex, we can easily extend the convergence results in last

chapter to prove locally linear rate of convergence for the proposed solver (Theorem 3.3.7 ).
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Second, for the incremental update formulation, the key idea is that if the overlap is limited,

then accumulating the learned representation view-by-view can be significantly simpler than

forming a consensus representation first. By imposing the restrictions to achieve this goal

(Section 3.2.2 ), the overall objective function is decomposed into a level-structured sum of

Lagrangians (3.14 ). By construction, the lower-level representations are accumulated and

provided as side-information for current-level representation learning. Therefore, each level

of the incremental update Lagrangian consists of three sub-objectives and hence can be re-

formulated to augmented Lagrangian as in the complement step of the last form. The only

difference is that before moving on to the next level, the accumulated representation, or the

equivalent prior probabilities, need to be updated (3.15 ). Since the algorithm for each level

of the incremental update is again a special case of the consensus ADMM, the convergence

analysis extends to this form as well.

In evaluation (Section 3.4 ), defining the complexity as the asymptotic growth of the di-

mensions of the mappings from observations to representations, we show that the complexity

for the consensus-complement form is linear w.r.t. the number of views while it is exponential

with the factor of the dimension of the representations for the incremental update. Notably,

compared to the merge-view approach whose complexity is exponential with the factor of

the dimension of the observations, we show that both the proposed formulations significantly

reduce the complexity compared to the merge-view approach as in general a low-dimensional

representation is preferred. Then, in evaluating the performance loss due to the associated

restrictions for the two proposed formulations, we show that both approaches suffer from

slight performance loss as compared to the merge-view approach (served as the optimal per-

formance reference) but the two both outperform the state-of-the-art DNN based solver in

a wide range of model configurations.

3.2 Information-Theoretic Formulation of Multi-View IB

The goal of MvIB is to design a set of representations {Z} with access to individual

view-specific observation X(i),∀i ∈ [V ] that maximize the relevance to a target variable Y ,

measured in mutual information I(Y ; {Z}) while minimizing the compression rate to all
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views of observations I({X(i)}V
i=1; {Z}). The objective can be expressed as the following

Lagrangian:

LM := γI({X}V
i=1; {Z})− I(Y ; {Z}), (3.1)

where γ > 0 is a fixed constant serves as the trade-off parameter between compression of each

X(i) and the relevance to Y . Note that if we design the representation set to have a single

element {Z} := Z∗, then (3.1 ) reduces to the single-modal case. Intuitively, one can combine

the observations from all views into a giant single view of observations, but the dimension

scales in multiplicative manner, that is, |X ∗| := ΠV
i=1|X (i)|. The exponential growth of the

complexity prevents this approach from solving practical large-scale views problems. In the

following, we propose two forms of MvIB that significantly reduce the complexity over the

single-modal approach but achieve comparable performance to it.

3.2.1 MvIB: Consensus-Complement Form

Inspired by the co-training methods in multi-view literature [80 ], in the first form, we

design the set of latent representations {Z} to have a consensus representation, denoted as

Zc and view-specific complement components, denoted as Z(i)
e , ∀i ∈ [V ]. Then, by the chain

rule of mutual information, the Lagrangian of (3.1 ) becomes the following:

Lcon = γI(Zc; {X})− I(Zc; Y )+
V∑

i=1
γI(Z(i)

e ; {X}|Zc, {Ze}i−1)− I(Y ; Z(i)
e |Zc, {Ze}i−1), (3.2)

where the sequence {Ze}j := {Z(1)
e , · · · , Z(j)

e } is defined to represent the accumulated com-

plement views. To further simplify the above formulation, the representation set is subjected

to the following conditions (similar to [9 ], [80 ]):

• There always exist constants κi,∀i ∈ [V ], independent of the observations {X}

such that κiI(Zc; X(i)) = I(Zc; X(i)|{X}i−1).

• Y → X(i) → Z(i)
e ← Zc forms a Markov chain. That is, Zc is the side information

for Z(i)
e .

• For each view i ∈ [V ], given the consensus Zc, {Ze} are independent.
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Under these constraints, we can then rewrite (3.2 ) as a superposition of two parts:

L := L̄ + ∑V
i=1 L(i)

e , where the first component L̄ is defined as the multi-view consensus

IB Lagrangian:

L̄ :=
V∑

i=1
γiI(Zc; X(i))− I(Zc; Y ), (3.3)

and the second consists of V terms with each one represents a complement sub-objective for

each individual view:

L(i)
e := γI(Z(i)

e ; X(i)|Zc)− I(Z(i)
e ; Y |Zc),∀i ∈ [V ]. (3.4)

With these additional conditions, we can recast L̄ in (3.3 ) as:

L̄ : = −
V∑

i=1
γiH(Z|X(i)) +

(
−1 +

V∑
i=1

γi

)
H(Z) + H(Z|Y )

=
V∑

i=1
Fi(pz|x,i) + G(pz, pz|y).

(3.5)

Similarly, we rewrite (3.4 ), ∀i ∈ [V ], as:

L(i)
e = −γH(Z(i)

e |Zc, X(i)) + (γ − 1) H(Z(i)
e |Zc) + H(Z(i)

e |Zc, Y ). (3.6)

By representing the discrete (conditional) probabilities as vectors/tensors, we can solve (3.5 )

and (3.6 ) with augmented Lagrangian methods. To show this, we define the following vectors:

pz|x,i :=
[
p(z1|x(i)

1 ) · · · p(z1|x(i)
Ni

) · · · p(zL|x(i)
Ni

)
]T

,

pz :=
[
p(z1) · · · p(zL)

]T

,

pz|y :=
[
p(z1|y1) · · · p(z1|yT ) · · · p(zL|yK)

]T

.

(3.7)

where Ni := |X (i)|, ∀i ∈ [V ], L := |Z|, K := |Y|. For clarity of expression, we denote the

primal variables for each individual view as pz|x,i := pi, and cascade the augmented variables
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into a single expression q :=
[
pT

zc
pT

zc|y

]T

. On the other hand, for the complement part, we

define the following tensors:

πx,i[m, n, r] := P (Z(i)
e = z(i)

e,m|Zc = zc,n, X(i) = x(i)
r ),

πy,i[m, n, r] := P (Z(i)
e = z(i)

e,m|Zc = zc,n, Y = yr),

πz,i[m, n] := P (Z(i)
e = z(i)

e,m|Zc = zc,n).

(3.8)

With the above definition, we present the consensus-complement MvIB augmented La-

grangian as follows. For the consensus part:

L̄c({pi}V
i=1, q, {νi}V

i=1) =
V∑

i=1

[
Fi(pi) + 〈νi, Aipi − q〉+ c

2‖Aipi − q‖2
]

+ G(q), (3.9)

where ‖·‖ is in 2-norm, c > 0 is the penalty coefficient and the linear penalty Aipi − q for

each view i ∈ [V ] encourages the variables q and each pi to satisfy the marginal probability

and Markov chain conditions. Specifically, let ⊗ denote the Kronecker product, Ax,i :=

I ⊗ pT
x(i) , A

(i)
x|y := I ⊗ P T

x(i)|y where Px(i)|y is the matrix form of the conditional distribution

p(x(i)|y) with each entry (m, n) equals to p(x(i)
m |yn) and Ai :=

[
AT

x,i A
(i)
x|y

]T

. As for the

complement part, let

Fe,i = −γH(Z(i)
e |Zc, X(i)),

Ge,i = (γ − 1)H(Z(i)
e ) + H(Z(i)

e |Zc, Y ).

For each realization (ze, zc) ∈ Ze ×Zc, define the cascaded vector:

πq,i[l, m, : ] :=
[
πz,i[l, m]T πy,i[l, m, : ]T

]T

, ∀(l, m) ∈ ([|Ze|], [|Zc|]),

where the notation : denotes all the entries along the indicated axis. Using the definitions,

we can recover the linear expression of the penalty term, to see this, by Bayes’ rule and the

Markov relation, we have:

p(z(i)
e |zc, y) =

∑
X(i) p(z(i)

e , zc|x(i))p(x(i)|y)
p(zc|y) .
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This implies that we can treat the denominator as an additional prior term for each zc ∈ Zc

because Zc is obtained in advance of the complement step. Based on this idea, we express

the linear penalty for each complement step as:

A(i)
e vec(πx,i) :=


Λ−1

zc|y(1)Q(i)
x|y 0 · · ·

0 . . . 0
... 0 Λ−1

zc|y(|Zc|)Q(i)
x|y




π(i)

x (zc = 1)
...

π(i)
x (zc = |Zc|)

 ,

where vec(·) denotes the vectorization operator of a tensor, Λzc|y(t) transforms a vector to a

matrix by mapping its entries to the diagonal and the inner parentheses indicate the index

t ∈ [|Zc|]. Using the definitions, the augmented Lagrangian for the i-th view’s complement

step can be expressed as:

L(i)
e,c = Fe,i(πx,i)+Ge,i(πq,i)+〈µi, A(i)

e vec(πx,i)−vec(πq,i)〉+
c

2‖Aevec(πx,i)−vec(πq,i)‖2, (3.10)

where c > 0 is the penalty coefficient.

Next, we propose a two-step algorithm to solve (3.2 ) and describe the steps as follows.

The first step is solving (3.9 ) through the following consensus ADMM algorithm. ∀i ∈ [V ]:

pk+1
i :=arg min

pi∈Ωi

L̄c({pk+1
<i }, pi, {pk

>i}, qk, {νk}), (3.11a)

νk+1
i :=νk

i + c
(
Aip

k+1
i − qk

)
, (3.11b)

qk+1 :=arg min
q∈Ωq

L̄c({pk+1
i }V

i=1, q, {νk+1}). (3.11c)

Then in the second step we solve (3.10 ) with two-block ADMM:

π
k+1
x,i := arg min

πx,i∈Π(i)
x

Le,c(πx,i, π
k
q,i, µk

i ), (3.12a)

µk+1
i := µk

i + c(A(i)
e vec(πk+1

x,i )− vec(πk
q,i)), (3.12b)

π
k+1
y,i := arg min

πy,i∈Π(i)
y

Le,c(πk+1
x,i , πy,i, µk+1

i ), (3.12c)
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where in (3.11 ), we define {pk+1
<i } := {pk+1

l }i−1
l=1 to denote the primal variables, up to i − 1

views that are already updated to the (k + 1)st step, and {pk
i<} := {pk

m}V
m=i+1 to denote

the rest that are still at the kth step. We define {pk+1
<0 } = {∅} = {pk

>V }; in (3.11 ) and

(3.12 ), the superscript k denotes the step index; each of Ωi, Ωq, Π(i)
x , Π(i)

y denotes a compound

probability simplex. The algorithm starts with (3.11a ), updating each view in succession.

Then the augmented variables are updated with (3.11c ). Finally, the difference between the

primal and augmented variables are added to the dual variables (3.11b ) to complete the k-th

iteration. After (3.11 ) converges, we perform the complement step (3.12 ) in similar fashion

for each view. This completes the full algorithm.

3.2.2 MvIB: Incremental Update Form

Intuitively, the consensus-complement form works well in the case where the represen-

tation overlap, or equivalently the common information, in the observations {X} across all

views is abundant. However, consider an extreme case where all views are almost distinct,

that is, each view is the complement to the others, then the consensus-complement form

will be inefficient in forming a consensus. To address this, we propose another formulation

of the MvIB that does not form consensus of all views in one instance. By restricting the

representation set to {Z(i)}V
i=1, the proposed incremental-update MvIB Lagrangian is given

by:

Linc :=
V∑

i=1
γI({X}; Z(i)|{Z}i−1)− I(Y ; Z(i)|{Z}i−1). (3.13)

Again, to simplify the above, the incremental-update form is subjected to the following

constraints:

• For each view i ∈ [V ], the corresponding representation Z(i) only access X(i), so

Y → X(i) → Z(i) ← {Z}i−1 forms a Markov chain.

With the restrictions above, in each step, we can replace the observations of all views {X}

with the view-specific observation X(i) and hence can rewrite (3.13 ) as:

Linc :=
V∑

i=1
γI(X(i); Z(i)|{Z}i−1)− I(Y ; Z(i)|{Z}i−1). (3.14)
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In solving (3.14 ), we consider the following algorithm, where at the ith step, we have:

P
(i)
z|x,z<i

:= arg min
P ∈Ω(i)

Linc(P, {P (j)
z|y,z<j

}i−1
j=1), (3.15a)

p(z(i)|y, z<i) =
∑

x(i) p(x(i)|y)p(z(i), z<i|x(i))
p(z<i|y) , (3.15b)

where step (3.15a ) is solved with algorithm (3.12 ) with priors replaced with P
(i)
z|x,z<i

, denoting

the tensor form of a conditional probability:

p(z(i)|x(i), z(i−1), · · · , z(1)),∀i ∈ [V ].

The above shown tensor is the primal variable for step i which belongs to a compound

simplex Ω(i) since it is in fact a conditional probability. In the algorithm, for each step

(3.15a ), we solve it with the algorithm (3.11 ) by setting V = 1 and treating the estimators

from the previous steps as additional priors. This can be easily shown through Bayes’ rule

and the conditional independence assumption. As an example, consider a two-view case with

the conditional probabilities p(z(2), x(2)|z(1)) = p(x(2)|z(1))p(z(2)|z(1), x(2)), and p(x(2)|z(1)) =∑
y p(x(2)|y)p(y|z(1)).

3.2.3 Multi-Source Privacy Funnel

As the duality of the single model IB and PF, in this part, we present the dual problem

of the MvIB, which we call the multi-source privacy funnels (MsPF). This generalization

of the single modal PF expands the sensitive information Y into a set of sensitive “files”

{Y (i)}S
i=1 with the joint probability of mapping the private information in each file Y (i) to a

public information X, denoted as p(x, y(i)),∀i ∈ [S] available at a server. Then the goal is

to find a representation Z that minimizes the privacy leakage of sensitive information in all

files {Y (i)}S
i=1 and maximizes the utility of the common information X accessible to a user.

The corresponding Markov chain is {Y (i)} −X − Z and the metrics of information leakage
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and utility are measured in mutual information I(Y (i); Z) and I(X; Z) respectively. We can

solve the MsPF problem through Lagrangian multiplier methods:

L(pz|x) := I({Y }S
i=1; Z)− γI(Z; X), (3.16)

where γ > 0 the trade-off parameter and the variable to optimize is the conditional prob-

ability vector p(z|x). In the following, we assume that the elements in the set Y (i)S

i=1 are

mutually exclusive, that is, I(Y (i); X|Yi−1) = 0, which corresponds to the case when the

sensitive information are non-overlapping, otherwise, one can merge the dependent pairs

Y (i), Y (j), i 6= j ∈ [S] into a single file. Under this assumption, we have:

I({Y (i)}S
i=1; Z) =

S∑
i=1

I(Y (i); Z|Yi−1), (3.17)

where I(Y (i); Z|Yi−1) := I(Y (i); Z|Y (1), · · · , Y (i−1)), and I(Y (1); Z|Y0) = I(Y (1); Z) by con-

vention [65 ]. Substitute (3.17 ) into (3.16 ), we obtain the MsPF Lagrangian

LMsP F : =
S∑

i=1
I(Y (i); Z)− γI(X; Z)

= −
S∑

i=1
H(Z|Y (i)) + H(Z|X) + (S − γ) H(Z).

(3.18)

Note that since the variable to optimize is p(z|x)∀x ∈ X , z ∈ Z and {Y (i)}S
i=1−X−Z forms

a Markov chain, we have ∀i ∈ [S]:

p(z|y(i)) =
∑

x

p(z|x)p(x|y(i)),

p(z) =
∑

x

p(z|x)p(x),

p(x) =
∑
y(i)

p(x, y(i)).
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Again, we propose solving (3.18 ) with the augmented Lagrangian. By reusing the vector

form of the (conditional) probability vectors (3.7 ), we further define:

pi := pz|y(i) , q := pz|x,

Fi(pi) := −H(Z|Y (i)),

G(q) := H(Z|X) + (S − γ)H(Z),

pi = Biq, ∀i ∈ [S],

(3.19)

where we treat p(z) := ∑
x p(z|x)p(x) as a strict equality constraint and the matrix Bi,∀i ∈

[S] is defined as Bi := IZ ⊗ P T
X|Y (i) with IZ a |Z| × |Z|-dimensional identity matrix, ⊗ the

Kronecker product, and PX|Y (i) the matrix form of a conditional probability whose (l, m)-th

entry is p(xl|y(i)
m ). Hence Bi is full row rank and block diagonal. Note that, by construc-

tion Fi(pi) is convex whereas G(q) is weakly convex by Lemma 2.5.3 . Following the above

formulation (3.19 ), the corresponding augmented Lagrangian is:

Lc({pi}S
i=1, q, {νi}S

i=1) :=
S∑

i=1
Fi(pi) + G(q) +

S∑
i=1

[
〈νi, pi −Biq〉+ c

2‖pi −Biq‖2
]

, (3.20)

where {νi}S
i=1 denotes the set of dual variables for all S sources while c > 0 is the fixed penalty

coefficient. Different from the case in MvIB, our goal for the proposed MsPF is to reduce the

complexity at the server to process the sensitive information which scales exponentially as

the number of sources S increase with the single modal PF solvers. To avoid the infeasible

complexity, we propose solving (3.20 ) with the following ADMM:

pk+1
i := arg min

pi∈Ω(i)
p

Lc({pk+1
i }<i, pi, {pk

i }>i, qk, {νk
i }S

i=1), (3.21a)

νk+1
i := νk

i + c
(
pk+1

i −Biq
k
)

, (3.21b)

qk+1 := arg min
q∈Ωq

Lc({pi}S
i=1, q, {νk+1

i }S
i=1), (3.21c)

where the superscript k ∈ N denotes the iteration counter and {< i} denotes the index set

{j|j < i, j ∈ N} and similarly for {> i} but we define {< 1} = {∅} = {> S}. Note that

the order in updating the dual variables {ν} is different from that of the MvIB consensus
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Table 3.1. Summary of Convergence and Complexity for MvIB and MsPF
Algorithms Dimension

Complexity Rate of Conv. Properties of Functions

Consensus
Complement O(|V ||X||Z|2) Locally Linear

Fi: convex,
Fi: Mi-Lipschitz Continuous
G: σG-weakly cvx, Lq-smooth

Incremental
Update O(|X||Z|V ) Locally Linear

Fi: convex
Fi: Mi-Lipschitz Continuous
G: σG-weakly cvx, Lq-smooth

Multi-source
Privacy Funnel O(|S||X||Z|) Locally Linear

Fi: convex,
G: σG-weakly cvx, Lq-smooth
G: Mq-Lipschitz Continuous

algorithm (3.11 ). Moreover, the difference can be observed from the minimizer conditions of

the augmented Lagrangian shown below.

0 = ∇Fi(pk+1
i ) + νk

i + c
(
pk+1

i −Biq
k
)

= Fi(pk+1
i ) + νk+1

i (3.22a)

νk+1
i = νk

i + c
(
pk+1

i −Biq
k
)

, (3.22b)

0 = ∇G(qk+1)−BT
i

[
νk+1

i + c
(
pk+1

i −Biq
k+1

)]
. (3.22c)

The assumptions and minimizer conditions will be adopted in proving the proposed MSPF

algorithm (3.21 ), which turns out to be Q-linearly fast toward a local stationary point w∗.

3.3 Convergence Analysis

In this part, we prove the convergence of the proposed two algorithms, i.e., (3.13 ) and

(3.11 ). Observe that in the consensus-complement form, it suffices to prove the convergence

of the consensus step (3.11 ) since the complement step (3.12 ) and the incremental algorithm

(3.15 ) are special cases with V = 1. For convenience of expression, in the rest of the

proof, we will denote L̄k
c := L̄c({pk}, qk, {νk}) the function value evaluated with wk, where

wk := ({pk}, qk, {νk}) the collective point at step k. In consistent to previous chapters, part

of the definitions and notations are in consistent with that used in section 2.4.1 .
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3.3.1 Locally R-Linear Rate of Convergence

In proving the convergence and the locally linear rate of convergence of the proposed

MvIB algorithms, we consider the case where the following assumptions are satisfied:

Assumption D.

• There exists stationary points w∗ := ({p∗
i }, q∗, {ν∗

i }) that belong to a set Ω∗ :=

{w|w ∈ Ω,∇Lc(w) = 0}.

• Fi(pi),∀i ∈ [V ] is Li-smooth, Mi-Lipschitz continuous and convex; G(q) is Lq-

smooth and σG-weakly convex.

• The penalty coefficient c satisfies:

c > max
i∈[V ]

σG

V
,
λAiLiMi

√
2

µAiAT
i

 .

From the first order minimizer conditions, we have:

0 = ∇Fi(pk+1
i ) + AT

i

[
νk

i + c(Aip
k+1
i − qk)

]
, (3.23a)

νk+1
i = νk

i + c
(
Aip

k+1
i − qk

)
, (3.23b)

0 = ∇G(qk+1)−
V∑

j=1

[
νk+1

j + c(Ajp
k+1
j − qk+1)

]
. (3.23c)

Note that at a stationary point w∗, the above-mentioned minimizer conditions (3.23 ) reduces

to the following. ∀i ∈ [V ]:

∇Fi(p∗
i ) = −AT

i ν∗, ∇G(q∗) = V ν∗, q∗ = Aip
∗
i . (3.24)

The first step of the proof, as in the case for single-modal DRS solvers, is to develop a

sufficient decrease lemma.
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Lemma 3.3.1. Suppose Assumption D is satisfied. Define L̄c({p}, q, {ν}) as in (3.9 ). If

(3.9 ) is solved with the algorithm (3.11 ), we have:

L̄k
c − L̄k+1

c ≥
V∑

i=1
ρp,i‖pk

i − pk+1
i ‖2 + ρq‖qk − qk+1‖2, (3.25)

where ρp,i := c/(2M2
i ) − λ2

Ai
L2

i /(cµ2
AiAT

i
), ρq := (cV − σG)/2. λB, µB denote the largest and

smallest singular value of a matrix B.

Proof. We simply expand the l.h.s. of (3.25 ) w.r.t. the consecutive update from step k

to k + 1 according to the algorithm (3.11 ). With a slight abuse of notation, skipping the

variables that are fixed in consecutive updates for clarity, by the pi-update for each view

i ∈ [V ], we have:

L̄c(pk
i )− L̄c(pk+1

i ) =Fi(pk
i )− Fi(pk+1

i ) + 〈νk
i , Aip

k − Aip
k+1〉

+ c

2‖Aip
k
i − qk‖2 − c

2‖Aip
k+1
i − qk‖2

≥〈∇Fi(pk+1
i ) + AT νk

i , pk
i − pk+1

i 〉+ c

2‖Aip
k
i − qk‖2 − c

2‖Aip
k+1
i − qk‖2

=− c〈Aip
k+1
i − qk, Aip

k
i − Aip

k+1
i 〉+ c

2‖Aip
k
i − qk‖2 − c

2‖Aip
k+1
i − qk‖2

= c

2‖Aip
k
i − Aip

k+1
i ‖2.

(3.26)
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where the inequality follows the convexity of Fi and the last equality follows the minimizer

condition (3.23a ). Then for the q update:

L̄c(qk)− L̄c(qk+1) =G(qk)−G(qk+1) +
V∑

i=1

[
〈νk+1

i , qk − qk+1〉

+ c

2‖Aip
k+1
i − qk‖2 − c

2‖A− ipk+1
i − qk+1‖2

]

≥〈∇G(qk+1) +
V∑

i=1
νk+1

i , qk − qk+1〉 − σG

2 ‖q
k − qk+1‖2

+ c

2‖Aip
k+1
i − qk‖2 − c

2‖Aip
k+1
i − qk+1‖2

=c
V∑

i=1
〈Aip

k+1
i − qk+1, qk − qk+1〉 − σG

2 ‖q
k − qk+1‖2

+ c

2‖Aip
k+1
i − qk‖2 − c

2‖Aip
k+1
i − qk+1‖2

=
(

c− σG

2

)
‖qk − qk+1‖2,

(3.27)

where the inequality is due to the weak convexity of G and the last equality follows (3.23c ).

Lastly, for the dual ascend:

L̄c({νk})− L̄c({νk+1}) = −1
c

V∑
i=1
‖νk

i − νk+1
i ‖2. (3.28)

To connect the dual ascend and the pi-update, consider the following:

‖νk
i − νk+1

i ‖ ≤ ‖(AiA
T
i )−1‖‖Ai‖‖AT

i νk
i − AT

i νk+1
i ‖

= λAi

µAiAT
i

‖∇Fi(pk
i )−∇Fi(pk+1

i )‖ ≤ λAiLi

µAiAT
i

‖pk
i − pk+1

i ‖, (3.29)

where µB, λB denotes the smallest and largest singular value of a matrix B respectively.

(3.29 ) is because Ai,∀i ∈ [V ] is full row rank, the minimizer condition (3.23a ) and Fi being

Li-smooth. In addition, using the sub-minimization path technique [45 ], observe that the

pi-update is equivalent to a convex proximal operator:

Wc(ζ) := arg min
pi∈Ωi

Fi(pi) + c

2‖ζ − Aipi‖2, (3.30)
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where by letting ζ = νk
i
c
− qk, we recover the pi-update (3.11a ). Then since pi is within a

compact compound simplex and Fi is Lipshitz continuous, which in turns means W (ζ) is

Mi-Lipschitz continuous:

‖W (Aip
k)−W (Aip

k+1)‖ = ‖pk − pk+1‖ ≤Mi‖Aip
k
i − Aip

k+1
i ‖. (3.31)

Applying (3.29 ) and (3.31 ) to (3.26 ), we get:

L̄c({pk
i }, qk, {νk})V

i=1 − L̄c({pk+1
i }, qk+1, {νk+1})V

i=1

≥cV − σG

2 ‖qk − qk+1‖2 +
V∑

i=1

[
c

2‖Aip
k
i − Aip

k+1
i ‖ − 1

c
‖νk

i − νk+1
i ‖2

]

≥cV − σG

2 ‖qk − qk+1‖2 +
V∑

i=1

 c

2M2
i
−

λ2
Ai

L2
i

cµ2
AiAT

i

 ‖pk
i − pk+1

i ‖2.

Finally, to make the coefficients pre-multiplied to the squared norm positive:

c > max
i∈[V ]

σG

V
,
λAiLiMi

√
2

µAiAT
i

 .

Note that Lemma 3.3.1 applies to any objective function that can be decomposed into

a convex-weakly convex pair including a special case in our formulation with V = 1. Re-

markably, V = 1 also applies to the complement step (3.12 ) and each individual step for all

V views of the incremental algorithm (3.15 ). The sufficient decrease lemma implies conver-

gence of the sequence {wk}k∈N obtained through the proposed algorithms. Moreover, it also

implies that the sequence of the function values {L̄k
c} converges R-linearly. To prove this,

we find an upper bound of the function value difference between the evaluation of w∗ and

that of the feasible solutions around its neighborhood, which gives the next lemma.
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Lemma 3.3.2. Define wk := ({Aip
k
i }V

i=1, qk, {νk
i }V

i=1) the collective point at step k and let w∗

be a stationary point. We have:

L̄k+1
c − L̄∗

c ≤
c

2‖q
k+1 − qk‖2 + σG

2 ‖q
k+1 − q∗‖2 + 1

c

V∑
i=1
‖νk+1

i − νk
i ‖2.

Proof. Consider the following:

L̄k+1
c − L̄∗

c =
V∑

i=1
Fi(pk+1

i )− Fi(p∗
i ) + 〈νk+1

i , Aip
k+1
i − qk+1〉

− 〈νi, Aip
∗
i − q∗〉+ G(qk+1)−G(q∗).

(3.32)

Then we separately consider each term Fi,∀i ∈ [V ]:

Fi(pk+1
i )− Fi(p∗

i ) ≤〈∇Fi(pk+1
i ), pk+1

i − p∗
i 〉

=− 〈νk
i + c

(
Aip

k+1
i − qk

)
, Aip

k+1
i − Aip

∗
i 〉,

where the inequality is due to convexity of Fi while the equality is by the minimizer condition

(3.23a ). Similarly, by the σG-weak convexity of G, we have:

G(qk+1)−G(q∗) ≤
V∑

i=1
〈νk+1

i , qk+1 − q∗〉+ σG

2 ‖q
k+1 − q∗‖2.

Substitute the above into (3.32 ), then using the identity (2.14 ) and the stationary point

conditions (3.24 ), we get:

L̄k+1
c − L̄∗

c ≤
c

2‖q
k+1 − qk‖2 + σG

2 ‖q
k+1 − q∗‖2 + c

V∑
i=1
‖Aip

k+1
i − qk+1‖2,

where the last term in the above follows from (3.11b ), that is νk+1
i − νk

i = c(Aip
k+1
i − qk+1),

and we complete the proof.

Combining Lemma 3.3.2 with the sufficient decrease lemma, we can derive the local linear

rate of convergence of the consensus step (3.11 ) of the proposed MvIB algorithm, and since

the incremental-update algorithm is a special case with V = 1, the proven results apply the

it as well.
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Theorem 3.3.3. Suppose Assumption D is satisfied. Define L̄c as in (3.9 ) and solved with

the algorithm (3.11 ). If the penalty coefficient c > cmin, then wk converges to a stationary

point w∗ linearly around a neighborhood of w∗ such that ‖w − w∗‖2 < ε, L̄∗
c < L̄c < L̄∗

c + δ,

where ε, δ > 0.

Proof. Define wk := ({Aip
k
i }V

i=1, qk, {νk
i }V

i=1) the collective point at step k. By Lemma 3.3.1 ,

if the penalty coefficient c satisfies D , then there exists a constant τ1 > 0 such that:

L̄k
c − L̄k+1

c ≥ τ1

[
‖qk − qk+1‖2 +

V∑
i=1
‖pk

i − pk+1
i ‖2

]
. (3.33)

On the other hand, by Lemma 3.3.2 , there exists a τ2 > 0 such that:

L̄k+1
c − L̄∗

c ≤τ2

[
‖qk+1 − q∗‖2 + ‖qk+1 − qk‖2 +

V∑
i=1
‖νk+1

i − νk
i ‖2

]

≤τ2

‖qk+1 − q∗‖2 + ‖qk+1 − qk‖2 +
V∑

i=1

L2
i

µAiAT
i

‖pk
i − pk+1

i ‖2


≤τ3

[
‖qk+1 − q∗‖2 + ‖qk+1 − qk‖2 +

V∑
i=1
‖pk

i − pk+1
i ‖2

]
,

(3.34)

where the second inequality is due to (3.29 ) and we define the constant:

τ3 := τ2 max
i∈[V ]
{1, L2

i /µAiAT
i
} > 0.

Substitute (3.33 ) into (3.34 ), we have:

L̄k+1
c − L̄∗

c ≤ τ3
(
L̄k

c − L̄∗
c −

(
L̄k+1

c − L̄∗
c

)
+ ‖qk+1 − q∗‖2

)
.

Rearranging the above, we get:

L̄k+1
c − L̄∗

c

L̄k
c − L̄∗

c

≤
(

τ3

1 + τ3

)
+
[(

τ3

1 + τ3

) ‖qk+1 − q∗‖2

L̄k
c − L̄∗

c

]
.
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From Lemma 3.3.1 , for c sufficient large, L̄k
c − L̄∗

c ≥ L̄k+1
c − L̄∗

c holds. In addition, by the

definition of a neighborhood around w∗, there exist ε, δ, ξ > 0 such that

δ > L̄k+1
c − L̄∗

c > ξ > 0,

for ‖wk+1 − w∗‖ < ε, L̄∗
c < L̄k+1

c < L̄∗
c + δ.

By choosing ε, δ, such that ε <
√

ξ/τ3 <
√

δ/τ3:

‖qk+1 − q∗‖2

L̄k
c − L̄∗

c

≤ ε2

ξ
<

1
τ3

holds for k sufficiently large, say k > N0, k, N0 ∈ N. Then the sequence {L̄i
c}i≥N0 is Q-linearly

convergent for each view i ∈ [V ]. In turns, this implies that ∑∞
k=1‖wk+1−wk‖2 is finite, and

hence there exist {M (i)
p }V

i=1, Mq, {M (i)
ν } > 0, where 0 < Q < 1, such that for k > N0 and

∀i ∈ [V ]:

ρp‖Aip
k
i − Aip

k+1
i ‖2 ≤ L̄k

c − L̄∗ ≤M (i)
p Qk,

ρq‖qk − qk+1‖2 ≤ L̄k
c − L̄∗ ≤MqQ

k,

ρν‖νk
i − νk+1

i ‖2 ≤ L̄k
c − L̄∗ ≤M (i)

ν Qk,

where the last inequality follows (3.23c ) and the Li smoothness of each Fi and (3.29 ). Com-

bining the above we get:

‖wm − wn‖2 ≤
n−1∑
k=m

‖wk − wk+1‖ ≤ M̄Qn

ρ̄(1−Q) ,

where M̄ := Mq +∑V
i=1 M (i)

p + M (i)
ν , ρ̄ := min {ρp, ρq, ρν}. Then since the above is a Cauchy

sequence, by taking limit with m→∞, that is, wm → w∗ we have:

‖wn − w∗‖2 ≤ K̄Qn

ρ̄(1−Q) ,

which proves that {wn}n>N0 is R-linearly convergent.
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As a remark, the convergence does not require any strong convexity of {Fi}V
i=1 but convex-

ity is still required. As for the convergence rate, Theorem 3.3.3 implies that the convergence is

not point wise, as each of the components {pk
i }V

i=1 in the collection point wk is pre-multiplied

by the matrices Ai,∀i ∈ [V ]. In turns, this hints that it is possible to have multiple solutions

that give the same MvIB losses. To interpret this, recall that the primal variables {pi}V
i=1 and

the augmented Lagrangian is consists of a combination of mutual information. As mutual

information is invariant to symmetry, point-wise convergence is not necessary. Finally, in

this part, while the convergence analysis is focused on MvIB, but following similar steps in

the proof, it can be shown that the MsPF algorithm can also achieve R-linear rate of con-

vergence. However, as will be shown in the next section, it turns out that we can adopt KŁ

inequality of prove Q-linear rates of convergence for both MvIB and MsPF. As Q-linear rate

is a stronger sense of rate of convergence than R-linear, we therefore defer the convergence

analysis of MsPF to the next section.

3.3.2 Locally Q-Linear Rate of Convergence through the KŁ Inequality

As in Chapter 2.4.3 , beyond R-linear rate of convergence, we can further improve the

theoretic rate of convergence guarantee to Q-linear through the KŁ inequality. Note that as

in the remark of the last chapter, both the R-linear and Q-linear rates of convergence results

are needed if we generalize the class of consensus algorithms (3.11 ) to DRS splitting methods

(with the relaxation 0 < α < 2). However, instead of complicating the discussion, we will

focus on ADMM (α = 1) for illustration purposes, the more general case that corresponds to

the DRS methods can be obtained through our results in single modal settings as presented

in the last chapter.

To apply the KŁ inequality, we need the additional results, presented the in following,

beyond the sufficient decrease lemma (Lemma 3.3.1 ). Similar to the single modal case,

the goal is to show that the Łojasiewicz exponent is 1/2 locally around a stationary point

w∗ := ({p∗
i }, q∗, {ν∗

i })V
i=1. The first step is to find an upper bound of the difference of the

augmented Lagrangian (3.9 ).
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Lemma 3.3.4. Let L̄k
c be defined as in (3.9 ). Denote wk := ({pk

i }, qk, {νk
i })V

i=1 the k-th entry

of a sequence {wk}k∈N obtained through the algorithm (3.11 ) and denote w∗ a stationary point

of L̄c whose local neighbor is such that L̄∗
c < L̄c < L̄∗

c + δ for all ‖w − w∗‖ < ε with some

constants δ, ε > 0. Then we have:

L̄k+1
c − L̄∗

c ≤
c

2

V∑
i=1
‖Aip

k+1
i − Aip

∗
i ‖2.

Proof. For simplicity of expression, in the following, we denote Lk
c : L̄c(wk). By the aug-

mented Lagrangian (3.9 ), we have:

Lk+1
c − Lc = G(qk+1) +

V∑
i=1

Fi(pk+1
i ) + 〈νk+1

i , Aip
k+1
i − qk+1〉+ c

2‖Aip
k+1
i − qk+1‖2

−
[
G(q) +

V∑
i=1

Fi(pi) + 〈νi, Aipi − q〉+ c

2‖Aipi − q‖2
]

(3.35)

First, for the Fi(pi), ∀i ∈ [V ], by the convexity of Fi and the minimizer conditions (3.23a ),

we have:

Fi(pk+1
i )− Fi(pi) ≤ 〈∇Fi(pk+1

i ), pk+1
i − pi〉

= 〈−AT
i

[
νk

i + c
(
Aip

k+1
i − qk

)]
, pk+1

i − pi〉

= c〈νk+1
i , Aipi − Aip

k+1
i 〉,

(3.36)

where the first inequality follows the convexity of Fi,∀i ∈ [V ]. Similarly, for the other

sub-objective function G(q), by its weak convexity:

G(qk+1)−G(q) ≤ 〈∇G(qk+1), qk+1 − q〉+ σG

2 ‖q
k+1 − q‖2

=
V∑

i=1
〈νk+1

i + c
(
Aip

k+1
i − qk+1

)
, qk+1 − q〉+ σG

2 ‖q
k+1 − q‖2,

(3.37)
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where the first inequality is due to the σG-weak convexity of G(q) and we last equality follows

the minimizer condition (3.23c ). Substitute (3.36 ) and (3.37 ) into (3.35 ), we have:

Lk+1
c − Lc ≤

V∑
i=1
〈νk+1

i , Aipi − q〉+ c
V∑

i=1
〈Aip

k+1
i − qk+1, qk+1 − q〉+ σG

2 ‖q
k+1 − q‖2

+ c

2

V∑
i=1

[
‖Aip

k+1
i − qk+1‖2 − ‖Aipi − q‖2

]
.

Substitute w with w∗, and note that at w∗, the relation Aip
∗
i = q∗,∀i ∈ [V ]. Putting these

together, we have:

Lk+1
c − L∗

c ≤ c
V∑

i=1
〈Aip

k+1
i − qk+1, qk+1 − q∗〉+ σG

2 ‖q
k+1 − q∗‖2 + c

2

V∑
i=1
‖Aip

k+1
i − qk+1‖2.

(3.38)

Then for each i ∈ [V ], we expand the inner product by the identity (2.14 ) as follows:

2
V∑

i=1
〈Aip

k+1
i − qk+1, qk+1 − q∗〉 =

V∑
i=1

[
‖Aip

k+1
i − Aip

∗
i ‖2 − ‖Aip

k+1
i − qk+1‖2 − ‖qk+1 − q∗‖2

]
.

Substitute the above into (3.38 ), we get:

Lk+1
c − L∗

c ≤
c

2

V∑
i=1
‖Aip

k+1
i − Aip

∗
i ‖2 + σG − cV

2 ‖qk+1 − q∗‖2 ≤ c

2

V∑
i=1
‖Aip

k+1
i − Aip

∗
i ‖2,

where the last inequality is by the range of c in Assumption D .

Then the second step is to establish the lower bound of the gradient norm of the aug-

mented Lagrangian, which is accomplished by the next lemma.

Lemma 3.3.5. Let the augmented Lagrangian L̄c be defined as in (3.9 ), denote {wk}k∈N the

sequence obtained from the algorithm (3.11 ) with wk := ({pk
i }, qk, {νk

i })V
i=1 denotes the k-th

entry of the sequence. Then we have:

‖∇L̄k+1
c ‖2 ≥

V∑
i=1

ηi‖Aip
k+1
i − qk+1‖2,
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where ηi := µ∗
AiAT

i
(c2 +1),∀i ∈ [V ], with the constants defined as µ∗

AAT := minv∈[V ] µAvAT
v

and

µB denotes the smallest singular value of a matrix B.

Proof. For convenience of expression, in the following, we denote Lk
c := Lc(wk) the aug-

mented Lagrangian evaluated at the k-th step collective point wk := ({pk
i }, qk, {νk

i })V
i=1.

With the notation and by the definition of the augmented Lagrangian (3.9 ), we have:

∇Lk+1
c =


∇Fi(pk+1

i ) + AT
i

[
νk+1

i + c
(
Aip

k+1
i − qk+1

)]
∇G(qk+1)−∑V

i=1

[
νk+1

i + c
(
Aip

k+1
i − qk+1

)]
Aip

k+1
i − qk+1



=


cAT

i

(
Aip

k+1
i − qk+1

)
0

Aip
k+1
i − qk+1

 ,

(3.39)

where we substitute the minimizer conditions (3.23 ) into (3.39 ). Then since Ai is full row

rank, there exists a positive singular value µAiAT
i

> 0, and hence we have:

‖∇Lk+1
c ‖2 ≥

V∑
i=1

(c2 + 1)‖AT
i

(
Aip

k+1
i − qk+1

)
‖2

≥
V∑

i=1
µAiAT

i
(c2 + 1)‖Aip

k+1
i − qk+1‖2.

By defining ηi := µAiAT
i
(c2 + 1), we complete the proof.

By combining Lemma 3.3.4 and Lemma 3.3.5 , around a local neighborhood of a stationary

point w∗, we obtain the desired results, that is, proving the Łojasiewicz exponent θ is 1/2.

The exponent θ = 1/2, in turns, allows us to adopt the KŁ to prove locally Q-linear rate of

convergence [36 ], [37 ]. We present the next lemma to show that the Łojasiewicz exponent

θ = 1/2 for the augmented Lagrangian defined in (3.9 ), solved with the proposed consensus-

complement algorithm (3.11 ).

Lemma 3.3.6. Let L̄c be defined as in (3.9 ). Suppose Assumption D is satisfied and the

sequence {wk}k∈N is obtained through the algorithm (3.11 ) where wk := ({pk
i }, qk, {νk

i })V
i=1
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denotes the collective point at step k. Then the Łojasiewicz exponent of the augmented

Lagrangian θ = 1/2 locally around a neighborhood of a stationary point w∗ with L̄∗
c < L̄k+1

c <

L̄∗
c + δ and ‖wk+1 − w∗‖ < ε for some constants δ, ε > 0.

Proof. Again, for the convenience of expression, we denote Lk
c := L̄c(wk). Then, by Lemma

3.3.4 and assumption D there must exists a constant Smax > 0 and a stationary point w∗

such that:

Lk+1
c − L∗

c ≤ Smax

[
V∑

i=1
‖Aip

k+1
i − Aip

∗
i ‖2 + ‖Aip

k+1
i − qk+1‖2

]
. (3.40)

On the other hand, by Lemma 3.3.5 , there also exists another constant Smin = mini∈[V ]{ηi} >

0 such that:

‖∇Lk+1
c ‖2 ≥ Smin

[
V∑

i=1
‖Aip

k+1 − qk+1‖2
]

. (3.41)

Combining (3.40 ) and (3.41 ), we have:

Lk+1
c − L∗

c ≤
Smax

Smin
‖∇Lk+1

c ‖2 + Smax‖qk+1 − q∗‖2

= Smax

Smin
‖∇Lk+1

c ‖2
(

1 + Smin‖qk+1 − qk‖2

‖∇Lk+1
c ‖2

)

≤ Smax

Smin
‖∇Lk+1

c ‖2
(

1 + Smin‖wk+1 − wk‖2

‖∇Lk+1
c ‖2

)
,

where in the last inequality, we follow the definition of a collective point wk at step k. Then

we apply Lemma 2.4.11 , which implies η > ‖∇Lk+1
c ‖ > ξ > 0 for some small constants

η, ξ > 0 around the neighborhood of w∗, as defined in the statement. Putting these together,

we have:

Lk+1
c − L∗

c ≤
Smax

Smin
‖Lk+1

c ‖2
(

1 + Smin‖wk+1 − w∗‖2

‖∇Lk+1
c ‖2

)
≤ Smax

Smin
‖Lk+1

c ‖2
(

1 + Sminε2

ξ2

)
.

Define the constant S∗ := (Smax/Smin)(1 + Sminε2/ξ2) > 0 and taking square-root on both

sizes of the above inequality which implies θ = 1/2 by Definition (2.4.6 ).
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Given the lemmas proved in this part, along with the sufficient decrease lemma, we can

then apply the KŁ inequality to show locally linear rate.

Theorem 3.3.7. Let L̄c defined as in (3.9 ). Suppose Assumption D is satisfied and the

sequence {wk}k∈N is obtained through the algorithm (3.11 ) where wk := ({pk
i }, qk, {νk

i })

denotes the collective point at step k. Then the sequence {wk}k∈N converges Q-linearly

toward a local stationary point w∗ around its neighborhood with L̄∗
c < L̄c < L̄∗

c + δ and

‖w − w∗‖ < ε for some constants δ, ε > 0.

Proof. By Lemma 3.3.6 , the Łojasiweicz exponent θ = 1/2 for the augmented Lagrangian

(3.9 ) solved with the algorithm (3.11 ). As in the single modal case, we need to find the

relation: ‖∇L̄k
c‖ ≤ S∗‖wk − wk−1‖, S∗ > 0, and then by the KŁ-inequality (Lemma 2.4.10 ),

the sequence {wk}k∈N converges to a stationary point w∗ locally at Q-linear rate, which is

the desired result.

First, by (3.39 ), we have:

‖∇L̄(wk)‖2 =
(
c2 + 1

) V∑
i=1
‖AT

i

[
Aip

k
i − qk

]
‖ ≤

(
c2 + 1

) V∑
i=1

λAiAT
i
‖Aip

k
i − qk‖2. (3.42)

where λA denotes the largest eigenvalue of a matrix A. For the first terms in the above

inequality, by Cauchy-Schwarz inequality:

‖Aip
k
i − qk−1 + qk−1 − qk‖2 ≤ 2‖Aip

k
i − qk−1‖2 + 2‖qk − qk−1‖2. (3.43)

On the other hand, for the second term, by the minimizer condition (3.23a ) and the Li-

smoothness of each sub-objective function Fi(pi) along with the condition that Ai is full row

rank, we have:

µAiAT
i
‖νk

i − νk−1
i ‖2 ≤ ‖AT

i νk
i − AT

i νk−1
i ‖2 ≤ L2

i ‖pk
i − pk−1

i ‖2, (3.44)
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where the second inequality is by the connection ∇F (pk
i ) = AT

i νk
i . Substitute (3.40 ) and

(3.41 ) into (3.42 ), we get:

‖∇L̄c(wk)‖2 ≤ 2(c2 + 1)
V∑

i=1

λAiAT
i
L2

i

µAiAT
i

‖pk
i − pk−1

i ‖2 + 2(c2 + 1)λAiAT
i
‖qk − qk−1‖2

≤ Sc

(
V∑

i=1
‖pk

i − pk−1
i ‖2 + ‖qk − qk−1‖2

)

≤ Sc‖wk − wk−1‖2.

where the positive constant Sc is defined as:

Sc := 2(c2 + 1) max
i∈[V ]

λAiAT
i
L2

i

µAiAT
i

, λAiAT
i

 .

Then, by taking square root on the both sides of the inequality above , we obtain the desired

relation ‖L̄c(wk)‖ ≤ Sc‖wk−wk−1‖. Then we can apply Lemma 2.4.10 which completes the

proof.

Theorem 3.3.7 shows that the rates of convergence for the proposed MvIB algorithms

(3.11 )(3.15 ) are Q-linear. However, the results cannot be directly generalized to the proposed

MsPF algorithm (3.21 ). This is due to limitations of the linear constraints, pi−Biq, ∀i ∈ [S],

as Bi is now full-row rank while in MvIB it is the identity matrix. Our next goal is to prove

the Q-linear rate of convergence of the MsPF algorithm. As in previous cases, we start with

developing the sufficient decrease lemma based on the following set of assumptions.

Assumption E.

• There exists stationary points w∗ := ({p∗
i }, q∗, {ν∗

i })S
i=1 that belong to a set Ω∗ :=

{w|w ∈ Ω,∇Lc(w) = 0} where Lc is defined in (3.20 ).

• Fi(pi) is Li-smooth ∀i ∈ [S] and convex while G(q) is Lq-smooth, σG-weakly

convex and Mq-Lipschitz continuous.

• The fixed penalty coefficient satisfies c > max{
√

2Li, M2
q σG},∀i ∈ [S].
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Lemma 3.3.8. Let Lc be defined as in (3.20 ). Suppose Assumption E is satisfied. Define

wk := ({pk
i }, qk, {νk

i })S
i=1 the collective point at step k obtained through the algorithm 3.21 .

Then we have:

Lc(wk)− Lc(wk+1) ≥
S∑

i=1

(
c

2 −
L2

i
c

)
‖pk

i − pk+1
i ‖2 +

(
c

2M2
q

− σG

2

)
‖qk − qk+1‖2.

Proof. For convenience of expression, we will denote Lk
c := Lc(wk) where wk is the collective

point defined in the statement. We separate the difference according to the steps in the

ADMM algorithm (3.21 ) as follows. First, for the convex Fi,∀i ∈ [S]:

Lc({pk+1
i }<i, pk

i , {pk
i }>i, qk, νk

i )− Lc({pk+1
i }<i, pk+1

i , {pk
i }>i, qk, νk

i )

= Fi(pk
i )− Fi(pk+1

i ) + 〈νk
i , pk

i − pk+1
i 〉+ c

2‖p
k
i −Biq

k‖2 − c

2‖p
k+1
i −Biq

k‖2.

Then by the convexity of Fi,∀i ∈ [S]:

Fi(pk
i )− Fi(pk+1

i ) + 〈νk
i , pk

i − pk+1
i 〉 ≥ 〈∇Fi(pk+1

i ), pk
i − pk+1

i 〉

= 〈−νk+1
i , pk

i − pk+1
i 〉+ 〈νk

i , pk
i − pk+1

i 〉

= −c〈pk+1
i −Biq

k, pk
i − pk+1

i 〉.

Then by the identity (2.14 ):

c〈pk+1
i −Biq

k, pk
i − pk+1

i 〉 = c

2
[
‖pk

i −Biq
k‖2 − ‖pk+1

i −Biq
k‖2 − ‖pk

i − pk+1
i ‖2

]
.

Putting the above results together, we have

Lc({pk+1
i }<i, pk

i , {pk
i }>i, qk, νk

i )− Lc({pk+1
i }<i, pk+1

i , {pk
i }>i, qk, νk

i )

= c

2‖p
k
i − pk+1

i ‖2 + c

2‖p
k+1
i −Biq

k‖2 − c

2‖p
k+1
i −Biq

k‖2. (3.45)
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Next, for the dual update:

Lc({pk+1
i }, qk, {νk+1

i }<i, νk
i , {νk

i })− Lc({pk+1
i }, qk, {νk+1

i }<i, νk
i , {νk

i }) = −c‖pk+1
i −Biq

k‖2.

(3.46)

Lastly, for the q-update, we have:

Lc({pi}, qk, {νk+1
i })− Lc({pi}, qk+1, {νk+1

i }) = G(qk)−G(qk+1)

+
S∑

i=1
〈νk+1

i , Biq
k+1 −Biq

k〉+ c

2

S∑
i=1

(
‖pk+1

i −Biq
k‖2 − ‖pk+1

i −Biq
k+1‖2

)
. (3.47)

Then by the weak convexity of G:

G(qk)−G(qk+1) ≥ 〈∇G(qk+1), qk − qk+1〉 − σG

2 ‖q
k − qk+1‖2.

Observe that:

〈∇G(qk+1), qk − qk+1〉+
S∑

i=1
〈νk+1

i , Biq
k+1 −Biq

k〉

=
S∑

i=1
〈Bi

[
νk+1

i + c
(
pk+1

i −Biq
k+1

)]
, qk − qk+1〉+

S∑
i=1
〈νk+1

i , Biq
k+1 −Biq

k〉

= c
S∑

i=1
〈pk+1

i −Biq
k+1, Biq

k −Biq
k+1〉

= c

2

S∑
i=1

[
−‖pk+1

i −Biq
k‖2 + ‖pk+1

i −Biq
k+1‖2 + ‖Biq

k −Biq
k+1‖2

]
,

(3.48)

where the last equality follows the identity (2.14 ). Substitute (3.48 ) into (3.47 ), along with

the weak convexity of G, we get:

Lc({pi}, qk, {νk+1
i })− Lc({pi}, qk+1, {νk+1

i }) ≥ −σG

2 ‖q
k − qk+1‖2

+ c

2

S∑
i=1

[
‖Biq

k −Biq
k+1‖2 − ‖pk+1

i −Biq
k‖2

]
. (3.49)
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Combining (3.45 ) (3.46 ) and (3.49 ), we arrive at:

Lk
c − Lk+1

c

≥ −σG

2 ‖q
k − qk+1‖2 + c

2

S∑
i=1

[
‖pk

i − pk+1
i ‖2 + ‖Biq

k −Biq
k+1‖2

]
− 1

c

S∑
i=1
‖νk

i − νk+1
i ‖2

≥
S∑

i=1

(
c

2 −
L2

i
c

)
‖pk

i − pk+1
i ‖2 + c

2‖Biq
k −Biq

k+1‖2 − σG

2 ‖q
k − qk+1‖2

≥
S∑

i=1

(
c

2 −
L2

i
c

)
‖pk

i − pk+1
i ‖2 +

S∑
i=1

(
σG

2 −
c

2M2
q

)
‖qk − qk+1‖2,

where the second inequality is due to the Li-smoothness of Fi and the minimizer condition

(3.22a ); whereas in the last inequality is due to the Mq-Lipschitz continuity of G and the

sub-minimization path technique [45 ]. The make the coefficients pre-multiplied by the square

norms be all non-negative and not all equal to zeros, we pick the penalty coefficient c∗:

c∗ > max
i∈[S]
{
√

2Li, σGM2
q },

which is satisfied under Assumption E .

Given the sufficient decrease lemma, the convergence of the MsPF algorithm follows.

To further prove the Q-linear rate of convergence, we again need to show the augmented

Lagrangian (3.20 ), solved with the algorithm (3.21 ) has the Łojasiewicz exponent θ = 1/2.

This can be achieved through the following two results. The first is an upper bound of the

difference Lc(wk+1)− Lc(w∗).

Lemma 3.3.9. Let Lc be defined as in (3.20 ). Suppose Assumption E is satisfied, then for

the sequence {wk}k∈N obtained through the algorithm (3.21 ), with wk := ({pk
i }, qk, {νk

i })S
i=1

denotes the collective point at step k, we have:

Lk+1
c − L∗

c ≤
S∑

i=1

(
σGM2

q − c

2 ‖Biq
k+1 −Biq

∗‖2 + c

2‖p
k+1
i − p∗

i ‖2
)

,

where Lk
c := Lc(wk) and w∗ denotes a stationary point whose local neighborhood is such that

for all ‖w − w∗‖ < ε, L∗
c < Lc < L∗

c + δ for some constants ε, δ > 0.
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Proof. First, by the convexity of Fi, ∀i ∈ [S]:

Fi(pk+1
i )− Fi(pi) ≤ 〈∇Fi(pk+1

i ), pk+1
i − pi〉 = −〈νk+1

i , pk+1
i − pi〉,

where the last equality is due to the minimizer condition (3.22a ). Second, by the weak

convexity of G(q):

G(qk+1)−G(q) ≤ 〈∇G(qk+1), qk+1 − q〉+ σG

2 ‖q
k+1 − q‖2

=
S∑

i=1
〈νk+1

i + c
(
pk+1

i −Biq
k+1

)
〉+ σG

2 ‖q
k+1 − qk‖2,

where we substitute the gradient of G with the minimizer condition (3.22c ) to obtain the

last equality. Combining the above results, we get:

Lc({pk+1
i }, qk+1, {νk+1

i })S
i=1 − Lc({pi}, q, {νi})S

i=1

≤
S∑

i=1
〈∇Fi(pk+1

i ), pk+1
i − pi〉+ 〈∇G(qk+1), qk+1 − q〉+ σG

2 ‖q
k+1 − q‖2

+
S∑

i=1

[
〈νk+1

i , pk+1
i −Biq

k+1〉 − 〈ν, pi −Biq〉
]

+ c

2

S∑
i=1

(
‖pk+1

i −Biq
k+1‖2 − ‖pi −Biq‖2

)

=
S∑

i=1
〈νk+1

i , pi −Biq〉+ c
S∑

i=1
〈pk+1

i −Biq
k+1, Biq

k+1 −Biq〉+ σG

2 ‖q
k+1 − q‖2

+ c

2

S∑
i=1

(
‖pk+1

i −Biq
k+1‖2 − ‖pi −Biq‖2

)
.

Substitute a stationary point w∗ into the above inequality. Note that at w∗, the relation

p∗
i = Biq

∗,∀i ∈ [S], we have the simplified expression:

Lc({pk+1
i }, qk+1, {νk+1

i })S
i=1 − Lc({p∗

i }, q∗, {ν∗
i })S

i=1

≤ c
S∑

i=1
〈pk+1

i −Biq
k+1, Biq

k+1 −Biq
∗〉+ σG

2 ‖q
k+1 − q∗‖2 + c

2

S∑
i=1
‖pk+1

i −Biq
k+1‖2.
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For the inner product in the above, by the identity (2.14 ), we have:

Lc({pk+1
i }, qk+1, {νk+1

i })S
i=1 − Lc({p∗

i }, q∗, {ν∗
i })S

i=1

≤ c

2

S∑
i=1

[
‖pk+1

i − p∗
i ‖2 − ‖Biq

k+1 −Biq
∗‖2
]

+ σG

2 ‖q
k+1 − q∗‖2

≤
S∑

i=1

(
σGM2

q − c

2 ‖Biq
k+1 −Biq

∗‖2 + c

2‖p
k+1
i − p∗

i ‖2
)

,

where the last inequality is due to the Mq-smoothness of the function G along with the

sub-minimization path technique [45 ].

The next lemma provides a relation of the square norm of the gradient ∇Lc, evaluated

with a step k + 1 solution.

Lemma 3.3.10. Let Lc be defined as in (3.20 ). Suppose Assumption E is satisfied, then for

the sequence {wk}k∈N where wk := ({pk
i }, qk, {νk

i })S
i=1 obtained through the algorithm (3.21 ),

we have:

‖Lc(wk+1)‖2 = (c2 + 1)
S∑

i=1
‖pk+1

i −Biq
k+1‖2.

Proof. By the definition of the augmented Lagrangian (3.20 ), we have for i ∈ [S]:

∇Lk+1
c =


∇Fi(pk+1

i ) + νk+1
i + c

(
pk+1

i −Biq
k+1

)
∇G(qk+1)−∑S

i=1 BT
i

[
νk+1

i + c
(
pk+1

i −Biq
k+1

)]
pk+1

i −Biq
k+1

 .

Substitute the minimizer conditions (3.22 ) into the above, we have:

∇Lk+1
c =


c
(
pk+1

i −Biq
k+1

)
0

pk+1
i −Biq

k+1

 .

Hence, ‖∇Lk+1
c ‖2 = (c2 + 1)‖pk+1

i −Biq
k+1‖2.

Then, by combining Lemma (3.3.9 ) and Lemma 3.3.10 , we can prove that the Łojasiewicz

exponent θ = 1/2 for the MsPF Lagrangian.
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Lemma 3.3.11. Let Lc be defined as in (3.20 ). Suppose Assumption E is satisfied and

the sequence {wk}k∈N is obtained from the algorithm (3.21 ), where wk := ({pk
i }, qk, {νk

i })S
i=1

denotes the collective point at step k, then the Łojasiewicz exponent of the augmented La-

grangian Lc is θ = 1/2 around a local neighborhood of a stationary point w∗ such that

‖w − w∗‖ < ε and L∗
c < Lc < L∗

c + δ for some constants δ, ε > 0.

Proof. By Lemma 3.3.9 , we have:

Lk+1
c − L∗

c ≤
S∑

i=1

(
σGM2

q − c

2 ‖Biq
k+1 −Biq

∗‖2 + c

2‖p
k+1
i − p∗

i ‖2
)

≤ c

2

S∑
i=1
‖pk+1

i − p∗
i ‖2

≤ c

2

S∑
i=1

(
‖pk+1

i − p∗
i ‖2 + ‖pk+1

i −Biq
k+1‖2

)
,

where the second inequality is due to the Assumption E , where c > maxi∈[S]{
√

2Li, σGM2
q }

and hence the first term is negative. Then by Lemma 3.3.10 , we have an upper bound of the

above inequality:

Lk+1
c − L∗

c ≤
c

2

S∑
i=1

(
‖pk+1

i − p∗
i ‖2 + 1

1 + c2‖∇L
k+1
c ‖2

)

= c

2‖∇L
k+1
c ‖2

S∑
i=1

(
1

1 + c2 + ‖p
k+1
i − p∗

i ‖2

‖∇Lk+1
c ‖2

)

≤ c

2‖∇L
k+1
c ‖2

(
S

1 + c2 + ‖w
k+1 − w∗‖2

‖∇Lk+1
c ‖2

)

≤ c

2‖∇L
k+1
c ‖2

(
S

1 + c2 + ε2

ξ2

)
,

where the last inequality is due to assumption that there the existence of a local neighborhood

around w∗, which implies that η > ‖∇Lk+1
c ‖ > ξ for some small constants η, ξ > 0, by Lemma

2.4.11 . Then by taking square root on the both sides of the last inequality, we complete the

proof.
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Finally, since the Łojasiewicz exponent θ = 1/2, we can apply Lemma 2.4.10 which

implies the corresponding rate of convergence is Q-linear, the desired result. We formulate

this result into the following theorem.

Theorem 3.3.12. Let the augmented Lagrangian Lc defined as in (3.20 ). Suppose Assump-

tion E is satisfied, and the sequence {wk}k∈N is obtained through the algorithm (3.21 ) where

wk := ({pk
i }, qk, {νk

i })S
i=1 denotes the collective point at step k, then {wk} converges to a

stationary point w∗ at Q-linear rate around the local neighborhood such that ‖w − w∗‖ < ε

and L∗
c < Lc < Lc + δ for some constants ε, δ > 0.

Proof. The proof consists of two parts, first we show that the sequence {wk}k∈N is conver-

gent toward a stationary point w∗. Then we adopt the KŁ inequality to prove the rate of

convergence is Q-linear locally around w∗. For the convergence, under Assumption E , and

the sufficient decrease lemma (Lemma 3.3.8 ), we have:

L0
c − LN

c ≥
N−1∑
k=0
Lk

c − Lk+1
c ≥ K∗

N−1∑
k=1

(
S∑

i=1
‖pk

i − pk+1
i ‖2 + ‖qk − qk+1‖2

)
,

for some constant K∗ > 0 such that the penalty coefficient c satisfies the Assumption E .

Then since Lc is lower semi-continuous due to the discrete setting, the left-hand-side of the

above inequality is finite ∀N ∈ N. Then, observe that the right-hand-side of the inequality

above is a Cauchy sequence, and hence is bounded. In turns, we have ∀i ∈ [S], ‖pk
i −pk+1

i ‖ →

0, ‖qk − qk+1‖ → 0 as k →∞. Moreover, due to Li-smoothness and the minimizer condition

(3.22b ), ‖νk
i − νk+1

i ‖ → 0,∀i ∈ [S]. This implies the convergence toward a stationary point

that belongs to a critical set Ω∗ := {w|∇Lc(w) = 0, ∀w ∈ Ω} where Ω is the set of all the

feasible solutions. In other words, we have wk → w∗ ∈ Ω∗ as k → ∞. This proves the

convergence of the sequence {wk} for k > N0 ∈ N sufficiently large. Then to apply the KŁ
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inequality, we need to establish the relation: ‖∇Lk
c‖ ≤ R∗‖wk − wk−1‖ for some constant

R∗ > 0. By Lemma 3.3.10 , we have:

‖∇Lk
c‖2 = (c2 + 1)

S∑
i=1
‖pk

i −Biq
k‖2

≤
(
c2 + 1

) S∑
i=1
‖pk

i −Biq
k−1 + Biq

k−1 −Biq
k‖2

≤ 2
(
c2 + 1

) S∑
i=1

(
‖pk

i −Biq
k−1‖2 + ‖Biq

k−1 −Biq
k‖2

)

= 2
(
c2 + 1

) S∑
i=1

( 1
c2‖ν

k
i − νk−1

i ‖2 + λBT
i Bi‖q

k − qk−1‖2
)

≤ 2(c2 + 1)λ∗
BT B‖wk − wk−1‖2,

where we apply Cauchy-Schwarz inequality to obtain the second inequality, followed by

the dual update νk
i = νk−1

i + c(pk
i − Biq

k); in the last inequality we define λ∗
BT B :=

maxi∈[S]{1/c2, λBT
i Bi} with λM denotes the largest eigenvalue of a matrix M . Then tak-

ing square root of both sides of the above inequality, we obtain the desired relation. Then

along with Lemma 3.3.11 , which gives θ = 1/2, we can apply Lemma 2.4.10 and prove the

corresponding rate of convergence is Q-linear.

As a remark, Theorem 3.3.7 and Theorem 3.3.12 demonstrate that the rates of conver-

gence of the MvIB (3.11 ) and MsPF (3.21 ) algorithms are both Q-linear. On the other

hand, while Theorem 3.3.3 only implies R-linear rate of convergence, we hypothesized that

the R-linear result is needed if we further generalize the algorithm to DRS methods, where

a relaxation parameter α > 0 is included, and a similar division of the region of linear rate

of convergence can be shown just as in the single modal cases. We leave this direction for

future exploration.

117



0.1 0.2 0.3 0.4 0.5 0.6 0.7

50

55

60

65

70

75

80

85

90

(a) Classification Accuracy

0.2 0.3 0.4 0.5 0.6 0.7

0

0.1

0.2

0.3

0.4

0.5

0.6

(b) Mutual information

Figure 3.1. Simulation results of the proposed and compared MvIB methods
on synthetic datasets

3.4 Evaluation

3.4.1 Synthetic Data: Classification Task

We evaluate the proposed two approaches with a synthetic dataset consisting of two

views of distributions. For convenience of expression, we denote the consensus-complement

approach as Cons-Cmpl while the incremental update approach as Increment.

We implement the the Bayes’ decoder for Cons-Cmpl as:

pcc(y|x(1), x(2)) =
∑

{z
(1)
e ,z

(2)
e ,z

(1)
c ,z

(2)
c }

p(y|z(1)
c , z(2)

c , z(1)
e , z(2)

e )p(z(1)
e , z(1)

c |x(1))p(z(2)
e , z(2)

c |x(2)),

On the other hand, the Bayes’ decoder for Increment is implemented as:

pinc(y|x(1), x(2)) =
∑

{z(1),z(2)}
p(y|z(1), z(2))p(z(1)|x(1))p(z(2)|z(1), x(2)).

For the parameters, we set c = 64, min{ε} = 10−11 and run the algorithms with random

initialization. For simplicity, we let γ1 = γ2 = γ. The termination criterion for both the

proposed algorithms is either when the total variation, i.e., the linear constraints, between

the primal and augmented variables DT V (Aipi||q) < 10−6,∀i ∈ [V ] (convergent case), or the

maximum number of iteration is reached (divergent case). Figure 3.1a follows the distribution
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given in (3.50 ) with the label Joint denoting the joint-view IB approach as a compared

method; The distribution in Figure 3.1b is given in (3.51 ).

We simulate a classification task and compare the performance of the two proposed

approaches to joint-view/single-view IB solvers [22 ]. The compared methods served as ref-

erences for the best and the worst case performance. We also compare the state-of-the-art

deep neural network-based method (DeepMvIB [9 ]), where we implemented with two layers

of 4-neuron, fully connected weights plus ReLU activation for each view. In generating the

data samples, given the joint distribution (3.50 ), we randomly sample 10000 pairs of out-

comes (y, x(1), x(2)) as testing data. Then we run the algorithms, sweeping through a range

of γ ∈ [0.1, 0.7] and record the best accuracy for each approach from 50 trials per γ. We use

Bayes’ decoder to predict the testing data, where we perform inverse transform sampling

for the cumulative distribution of the decoders to obtain ŷ for each pair of (x(1), x(2)). The

data-generating distribution is given as:

P (X(1)|Y ) =


0.75 0.05

0.20 0.20

0.05 0.75

 , P (X(2)|Y ) =

0.85 0.15

0.15 0.85

 , (3.50)

where P (Y ) =
[
0.5 0.5

]T

. The result is shown in Figure 3.1a . The dimension of each

of Zc, Z(2)
e , Z(2) is 2, and 3 for each of Z(1)

e , Z(1). The figure clearly shows that the two

proposed approaches can achieve comparable performance to that of the joint-view IB solver,

which served as the best performance reference. Moreover, both our solvers outperform

the deepMvIB over the range of the trade-off parameter γ we simulated. Interestingly, in

comparing the two proposed solvers, Cons-Cmpl outperforms Increment in the best accuracy

achieved. Intuitively, we hypothesize this might be due to the abundance of representation

overlap within the two joint distributions (3.50 ). To better investigate this hypothesis, we
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further consider a different set of distributions with dimensions of all representations given

as |Zc| = |Z(i)
e | = |Z(i)| = 3,∀i ∈ {1, 2}:

p(Y ) =
[

1
3

1
3

1
3

]T

, P (X(1)|Y ) :=


0.90 0.20 0.20

0.05 0.45 0.35

0.05 0.35 0.45

 ,

P (X(2)|Y ) :=


0.25 0.10 0.55

0.20 0.80 0.25

0.55 0.10 0.20

 . (3.51)

Observe that for each view in (3.51 ), there is one class (y1 in view 1 and y2 in view 2),

that is easy to infer through X(i), i ∈ {1, 2} while the remaining two are ambiguous. This

results in low representation overlap and hence, consensus is difficult to form. In Figure 3.1b 

we examine the components of the relevance rate I({Z}; Y ) where the Sum is: I(Zc; Y ) +∑2
i=1 I(Z(i)

e ; Y |Zc)) for Cons-Cmpl and I(Z(1); Y ) + I(Z(2); Y |Z(1)) for Increment. Step 1

indicates I(Zc; Y ) in Cons-Cmpl, and I(Z(1); Y ) in Increment. Observe that there is almost

no increase in I(Zc; Y ) over varying γ, and that Increment has a greater relevance rate

than Cons-Cmpl when γ < 0.4. Since it is known that the high relevance rate is related to

high prediction accuracy [15 ], this example favors the Increment. In interpreting this result,

since Increment, by design, increases the overall relevance rate view-by-view so it does not

form a consensus from all views in one instance, it works well in the case where there is

limited representation overlap. However, in the opposite case, as we demonstrated in the

first simulation, Cons-Cmpl can be a more advantageous algorithm.

3.4.2 Real-World Data: Feasibility for Large-Scale Problems

To show that the proposed framework can apply to real-world data and demonstrate

its feasibility. We use the celebrated MNIST dataset [81 ], consisting of hand-written digits.

In MNIST, each data sample is a 28 × 28 pixels grayscale digit with a ground-truth label

indicating what the digit represents. We pre-process the dataset into two views by clipping

the upper-half of an image (14× 28 pixels) as the first view and the lower-half of the image
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Figure 3.2. Comparing NumPy and Tensorflow Implementations

(14 × 28 pixels) as the second view. Instead of using all 10 digits, we select three of them:

[1, 6, 8] of the testing dataset of MNIST which corresponds to 3067 instances. For the joint

probability, we fit two deep variational IB (VIB [2 ]) for each of the two views of partial

digits respectively. Both VIB models attain above 96% testing accuracy. Then for the

partial digit in each view, we feed the images to the corresponding VIB model which give

two sets of soft prediction {p̂θ(y|x(1)
i ), p̂θ(y|x(2)

i )}. Then by collecting all i ∈ [N ] prediction

vectors into a matrix PY |X(1) whose columns are the prediction vectors, and assuming uniform

occurrence of each view observation p(x(1)) = 1/|X(1)|, p(x(2)) = 1/|X(2)| we obtain the

joint probability. Before presenting the result, we provide some implementation details to

support the feasibility of the proposed methods. To deal with the significant increase of

observation dimensions and maintain correctness on small-scale toy problem as in Section

3.4.1 , we implement both the consensus-complement and incremental update models on

both Tensorflow 2 [82 ] and NumPy [83 ] exploiting the large-scale capability of the former

and the easy-to-implement feature of the latter. Figure 3.2 compares the two models on

the toy problem in Section 3.4.1 for the incremental-update method, similar results hold

121



2 4 6 8 10

0.7

0.8

0.9

1

1.1

1.2

1.3

Figure 3.3. Relevance rate of the two-view MNIST predictions

for the consensus-complement model. We show the step-wise increase of the relevance rates

for the two implementations and the results verify that the conversion of the program to

different environments is successful. Then in Figure 3.3 , we present the modified multi-view

MNIST evaluation. For comparison purposes, two single-view results are shown along with

the one for the increment-update. Interestingly, the relevance rate cannot be improved with

multi-view observations, this is because even with partial digits, the accuracy for each view

is reasonably high (> %96), so there is no more representation overlap to exploit. In other

words, as there is no further improvement that can be made, the highest possible relevance

rate is dominated by the one that is most informative (view 1), and the incremental-update

method can achieve this value over a wide range of configurations.

3.4.3 Asymptotic Complexity

Finally, to demonstrate the complexity reduction from the proposed approaches, we

compare the complexity of the two approaches in terms of the number of dimensions for

the primal variables. For simplicity, let |X| = |X(i)|,|Z| = |Zc| = |Ze| = |Z(i)|. For Cons-
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Cmpl, the number of dimensions for the variables scales as O(V |X||Z|2) while for Increment,

it grows as O(|X||Z|V ). In MvIB literature, it is more desirable to find a low-dimensional

representation, |X| � |Z| in practice. Based on this common practice, the two methods both

improve over the joint view as their complexity values scale as O(|X|V |Z|). Remarkably,

the complexity for Cons-Cmpl scales linearly in the number of views V while we get an

exponential growth with factor |Z| for Increment. This complexity gain extends to the case

for MsPF and demonstrates the benefits of both the proposed formulation and the developed

algorithms.
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4. GENERALIZATION ERROR ANALYSIS UNDER

DISTRIBUTION MISMATCH

In this chapter, we present a new information-theoretic perspective of the generalization

error analysis, by viewing it as distribution mismatch. Different from previous works in this

topic that derive the error bound from bounding the generalization error gap between the

empirical risk and population risk, and then aiming at finding the theoretic performance

guarantee in terms of the number of data, or the cardinality of the space of learning models

within certain confidence level, or both, we formulate the generalization error problem into

a minimax framework and derive tighter bounds than existing ones [14 ], [17 ], [18 ], [56 ].

When viewing the problem as distribution mismatch, we find that our framework can

be applied to both the standard learning tasks, where the source of distribution mismatch

simply comes from the finite sampling process, and the recent adversarial learning scenario,

where an adversary have access to either the training data or learning model to create another

source of distribution mismatch in addition to sampling mismatch [58 ], [84 ].

In solving the new framework, we derive surrogate error upper bounds based on the

Pythagorean theorem which turns out to connect the recent input-output mutual information

bounds and tighten the results therein. In addition to this finding, we further show that

the proposed minimax framework connects to the IB methods for learning problems, which

recently attracts significant attention from machine learning and data science research. We

show through the strong data-processing inequality (SDPI [62 ], [85 ], [86 ]) that in minimizing

the surrogate loss upper bound, there is a close relationship between finding the minimum of

the generalization error in the proposed framework and the predictive IB Lagrangian known

in literature [87 ].

4.1 Preliminaries

In this part, some definitions that will facilitate the discussion in the rest of this chapter

will be stated. In literature, the mutual information-based bounds are based on the Donsker-
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Varadhan’s representation of the KL divergence, which can be shown through a broader class

of divergence known as the f -divergence [62 ].

Definition 4.1.1. Let (X ,F) be a measure space where the two probability distributions

P, Q belongs to and f : X 7→ R is a measurable function. Then the Donsker-Varadhan’s

representation of the KL divergence is:

sup
f :X 7→R

EP [f ]− log EQ[ef ] = DKL[P ||Q].

On the other hand, the sub-Gaussian assumption holds in a wide range of loss functions

used in practice. For example, in supervised learning context, a common choice of the loss

function is the zero-one loss, as it accounts for performance metrics such as average accuracy

rate in discriminative and classification tasks. And since its range is bounded over [0, 1] its

variance is bounded by 1/4 hence 1/2-sub-Gaussian.

Definition 4.1.2. A random variable X is said to be σ-sub-Gaussian if:

log E[ exp{λX}] ≤ λσ2

2 , ∀λ ∈ R.

The sub-Gaussian property is commonly assumed in studying concentration inequalities.

Some of the elementary inequalities in learning theory will be listed next.

Definition 4.1.3. For a non-negative random variable X such that X ≤ 1, the Chernoff

inequality holds with a probability of at least 1− δ:

P
(

X > log 1
δ

)
≤ E[ex]δ.

The above definition is a variant of its typical form in probability theory, which can be

easily shown by the relation E[esY ]/et ≤ e−t = δ for a negative-valued random variable Y and

some s > 0 such that X = esY . The Chernoff inequality introduces an additional parameter

s, which serves as an exponent to capture the rate of concentration. By maximizing it, one

could obtain a tighter bound.
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In addition to this result, if a random variable is also sub-Gaussian and has a bounded

range, then a variety of concentration inequalities applies and hence allowing one to establish

generalization error bounds.

Another line of research in studying tight generalization error bounds that also starts

with sub-Gaussian assumption for the loss functions and further shows that if the cumulant

generating function (CGF) of a random variable X is bounded above by a class of finite-

range functions, then it is possible to obtain tight upper bound to the probability when a

deviation event occurs.

The above-mentioned approaches, when incorporated with the input-output mutual in-

formation, are recently found to be special cases of a unified framework, by introducing the

α-information.

Definition 4.1.4. For α ∈ (0, 1)⋃(1,∞), the α information of two Borel-measurable p, q

with a compact support, the α-information of p and q is denotes as Dα(p||q) and is defined

as:

Dα(p||q) := 1
α− 1 log

∫
pαq1−αdµ.

4.2 Problem Formulation

In this part, we consider the following generalization error problem: Let pε(x, y) denote

an unknown joint distribution at testing phase with the random variables for the observations

are denoted as X while the target variable is denoted as Y . On the other hand, we denote

pφ(x, y) the joint distribution for training that is available at training phase. A learner is

given access to pφ(x, y) (training distribution) and knows that the testing distribution pε(x, y)

is within a bounded divergence to pφ(x, y), say DKL[pε(x, y)||pφ(x, y)] ≤ α. The learner then

develops an algorithm A which fits the training distribution to a desired level with a class

of learning model, which is parameterized with θ, equivalently, the learned model can be

expressed as a joint distribution pθ(x, y). The goal of the learner is to pick an optimal fitting

level, and hence θ∗, through a surrogate loss function that capture the partial knowledge at

testing phase, hoping that the learned model will achieve minimal the distribution mismatch

with respect to pε(x, y).
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The formulation can be expressed as the following minimax problem:

θ∗ = arg min
θ∈Θ(φ,A)

max
ε∈E(α,φ)

DKL[pε(x, y)||pθ(x, y)], (4.1)

where the testing phase distribution mismatch E(α, φ) is defined as:

E(α, φ) := {ε|DKL[pε(x, y)||pφ(x, y)] ≤ α, ε ∈ (X × Y ,F)} , (4.2)

where (X ×Y ,F) denote a measure space of ε. Whereas the set of learning model is defined

as:

Θ(φ,A) := {θ|θ ∈ A(φ)}, (4.3)

where the algorithmA depends on a training distribution φ. Note that (4.1 ) includes both the

standard learning theoretic settings, where the distribution mismatch comes from sampling

solely, and the adversarial machine learning where an adversary crafted a joint distribution

intended to worsen the performance of a learned model. To see this, if the set E(α, φ) contains

a single element, corresponds to the unknown data-generating distribution then (4.1 ) recovers

the standard learning theoretic setting; To see that (4.1 ) can include adversarial learning

settings, consider from a learner’s two-step decision process in solving the proposed minimax

problem as follows. At the first step, the learner assumes the worst-case scenario with the

indirect partial knowledge to the training data (i.e., DKL[pε(x, y)||pφ(x, y)] ≤ α). Then at

the second step, the learner picks the optimal learning model θ∗ with desired fitting level

to the training distribution pφ(x, y), which equivalently, gives the joint distribution p∗
θ(x, y),

believing that it can withstand the worst attack from a potential adversary whose power is

limited to E(α, φ). Then clearly, the inner maximization problem and the outer minimization

problem together fall within the context of (4.1 ).

Remarkably, the formulation connects to the formulation of the so-called input-output

mutual information bounds [17 ], [18 ] where the input corresponds to φ and the output W ,

representing a hypothesis is generated from a stochastic kernel p(W |φ). Compared to the

proposed framework, the stochastic kernel corresponds to (4.3 ) but can be thought of as a

“maxmini” problem instead. Comparison to the approach will be deferred to Chapter 4.4.3 .
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4.3 Main Results

Our main results are the incorporation of side information about distribution mismatch

to tighten the existing mutual information bounds. Moreover, we generalize the developed

techniques to the α-information-based approaches which includes a broader class of infor-

mation divergence.

Theorem 4.3.1. Let pε(x, y), pφ(x, y) be two Borel-measurable density functions defined in

a measure space S := (X ×Y ,F). Given pφ(x, y), define the following convex set, for ξ ∈ S:

E(α, ξ) := {ε : S 7→ R, DKL[pε(x, y)||pξ(x, y)] ≤ α} ,

then we have:

DKL[pε(x, y)||pφ(x, y)] ≤M(ε||φ).

where:

M(ε||φ) := max{m(ε, φ), m(φ, ε)},

and m(ε, φ) := Iε(X; Y )− Iφ(X; Y ) + DKL[pε(x)||pφ(x)] + DKL[pε(y)||pφ(y)].

Proof. First, due to the asymmetry of KL divergence, we have:

DKL[pε(x, y)||pφ(x, y)] ≤ max {DKL[pε(x, y)||pφ(x, y)], DKL[pφ(x, y)||pε(x, y)]} .

Then without loss of generality, assume that DKL[pε(x, y)||pφ(x, y)] > DKL[pφ(x, y)||pε(x, y)],

then consider the following:

DKL[pε(x, y)||pφ(x, y)] =
∑
x,y

pε(x, y) log pε(x, y)
pφ(x, y)

=
∑
x,y

pε(x, y) log pε(x, y)
pε(x)pε(y)

pε(x)pε(y)
pφ(x)pφ(y)

pφ(x)pφ(y)
pφ(x, y)

= Iε(X; Y ) + DKL[pε(x)||pφ(x)] + DKL[pε(y)||pφ(y)]

+
∑
x,y

pε(x, y) log pφ(x)pφ(y)
pφ(x, y)

≤ Iε(X; Y )− Iφ(X; Y ) + DKL[pε(x)||pφ(x)] + DKL[pε(y)||pφ(y)]
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where in the last inequality we apply the Pythagorean theorem [65 ]:

DKL[P ||Q] ≥ DKL[P ||P ∗] + DKL[P ∗||Q],

where P ∗ := infP ∈E DKL[P ||Q] and we substitute P = pε(x, y), Q = pφ(x)pθ(y) and P ∗ =

pθ(x, y). The proof is complete by defining a convex set E. It is straightforward to show

that E(α, ξ) in the statement is convex, two joint probability ε1, ε2 ∈ E(α, ξ) and λ ∈ [0, 1]:

α ≥ λDKL[ε1||ξ] + (1− λ) DKL[ε2||φ] ≥ DKL[ελ||ξ] ∈ E(α, ξ),

where ελ := λε1 +(1−λ)ε2 and the second inequality follows the convexity of KL divergence.

Note that while in deriving the result, we limit the focus on discrete random variables for

simplicity, but the result can be easily generalized to continuous settings by substituting the

summation with integration.

Remarkably, by setting the joint probability pφ(x, y) = pε(x)pε(y), that is, making it the

product measure, then Theorem 4.3.1 recovers the recent input-output mutual information

generalization error upper bounds [17 ], [18 ].

The key step in deriving Theorem 4.3.1 is by the Pythagorean theorem. Our goal is

to demonstrate that the technique we proposed can be easily applied to various existing

bounds or tightening techniques and therefore achieve improvements in the application of

each method. To provide some examples, in Chapter 4.4 , we apply Theorem 4.3.1 to a

variety of existing mutual information-based bounds. Moreover, we find that the proposed

technique can provide insights to the recent success of representation learning though the

IB methods. Furthermore, beyond combining with existing approaches, our results can

be applied to adversarial learning scenarios that recently gain significant attention as the

discovery of adversarial samples in deep neural networks and the increasing concern over

privacy leakage in data collection processes. In addition to theoretic results, in Chapter 4.5 ,

we provide empirical evaluation of the proposed approaches to support the derived theoretical

generalization error upper bounds. Interestingly, we find that our bounds are tighter than

the existing ones due to the better exploitation of the training distribution.
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4.4 Applications

4.4.1 Tight Upper Bound for Standard Learning Problem

In this part, we apply Theorem 4.3.1 to standard learning theoretic scenario, where the

source of the distribution mismatch is sampling process solely. As mentioned in Chapter

4.2 , the minimax problem (4.1 ) includes the standard learning theoretic scenario as a special

case, here we explicitly describe the setup.

Consider the scenario where there is an unknown true data-generating joint distribution

pε(x, y) and a sampled version of the joint distribution pφ(x, y), estimated from a finite

training dataset of m samples, and is denoted as Sm := {zi}m
i=1, zi = (xi, yi) ∼ pε(x, y), ∀i ∈

[m]. A learner develops an algorithm A to optimize a learning model, parameterized by θ ∈

Θ(A) through a surrogate loss function L(Sm, θ) = DKL[pS(x, y)||pθ(x, y)], equivalently, the

learned model can be expressed as another joint distribution pθ(x, y). Given these resources,

the goal of the learner is hoping to find the optimal p∗
θ(x, y) with minimum distribution shift

with respect to the true joint distribution pε(x, y), expressed as:

θ∗ := arg min
θ∈Θ(A)

DKL[pε(x, y)||pθ(x, y)]. (4.4)

Note that in the above setup, since E(α) only has a single element, i.e., the unknown

true data-generating distribution pε(x, y), the inner maximization problem in Theorem 4.3.1 

degenerates.

In solving (4.4 ), since pε(x, y) is unknown, we resort to finding a tight upper bound of

the inner maximization problem that can be evaluated without knowing the true joint distri-

bution pε. Then in the outer minimization problem, we can instead optimize the surrogate

upper bound and obtain the minimal loss (i.e., the distribution divergence) and the corre-

sponding θ̂. The hope is that θ̂ is close to θ∗, the global optimal of the minimax problem

(4.4 ). In the following, we present a tight upper bound that incorporates the testing phase

distribution shift constraint.

Theorem 4.4.1. Consider three joint distributions ε, φ, θ ∈ (X ×Y ,F) defined on a compact

measure space. Suppose the following conditions are satisfied:
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• The marginal probabilities pφ(x) = pθ(x),∀x ∈ X ,

• DKL[pε(x, y)||pφ(x, y)] ≤ α,

• there exists a constant δ > 0 such that Ey(δ) := {ζ|DKL[p(ζ)
y ||p(φ)

y ] ≤ δ} is convex.

then we have:

DKL[pε(x, y)||pθ(x, y)] ≤ Iφ(X; Y )− Iθ(X; Y ) + α + ‖p(ε)
y − p(φ)

y ‖
√

V (log p
(φ)
y )

+ ‖p(ε)
x − p(φ)

x ‖
√

V (H(φ)
y|X) +

√
Eε,x

[
‖p(ε)

y|X − p
(φ)
y|X‖2

]
Eε,x

[
V (log p

(φ)
y|X)

]
+ DKL[p(φ)

y ||p(θ)
y ],

where Hθ(Y |X) is the Shannon conditional entropy of pθ(x, y); p(θ)
y denotes the vector form of

the marginal probability of pθ(y) while p
(θ)
y|x denotes a |Y | dimensional conditional probability

vector given a realization of x ∈ X ; The expectation Eθ,x[ · ] is taken with respect to the

marginal probability pθ(x); V (a) := ∑|a|
i=1(ai − ā)2 with ā := 1

|a|
∑|a|

i=1 ai, which resembles the

equally weighted sample variance; Finally, H
(θ)
y|x is a |X |-dimensional vector whose i-th entry

is [H(θ)
y|x]i := −∑y pθ(y|xi) log pθ(y|xi), ∀i ∈ [|X |].

Proof. Applying Theorem 4.3.1 , assuming m(ε, θ) > m(θ, ε), we have:

DKL[pε(x, y)||pθ(x, y)] ≤ Iε(X; Y )−Iθ(X; Y )+DKL[pε(x)||pφ(x)]+DKL[pε(y)||pθ(y)], (4.5)

where pφ(x) = pθ(x) and pθ(y) = ∑
x pθ(y|x)pφ(x) are because of the assumptions in the

statement. Then by the variational form of the mutual information, we rewrite:

Iε(X; Y )− Iθ(X; Y ) = Hε(Y )−Hθ(Y )−Hε(Y |X) + Hθ(Y |X)

= Hε(Y )−Hφ(Y ) + Hφ(Y )−Hθ(Y )

−Hε(Y |X) + Hφ(Y |X)−Hφ(Y |X) + Hθ(Y |X),

= Iφ(X; Y )− Iθ(X; Y ) + Hε(Y )−Hφ(Y )−Hε(Y |X) + Hφ(Y |X)

131



where in the last equality we include the condition entropy of pφ(x, y) to the equation. Then

we find upper bounds for the first pair Hε(Y ) − Hφ(Y ) and the second pair Hε(Y |X) −

Hφ(Y |X) separately. For the first pair, we have:

Hε(Y )−Hφ(Y ) =
∑

y

pε(y) log 1
pε(y) − pφ(y) log 1

pφ(y)

=
∑

y

pε(y) log 1
pε(y)

pφ(y)
pφ(y) − pφ(y) log 1

pφ(y)

= −DKL[pε(y)||pφ(y)] +
∑

y

[pε(y)− pφ(y)]
[
log 1

pφ(y) − c

]
.

(4.6)

Note that the constant c in the last line of the above equation can be any number independent

of y. We simply pick c as the sample mean when treating − log pφ(y) as a vector of samples,

that is:

c̄ := 1
|Y |

|Y |∑
i=1

log 1
pφ(yi)

. (4.7)

Substitute (4.7 ) into (4.6 ), we arrive at:

Hε(Y )−Hφ(Y ) = −DKL[pε(y)||pφ(y)] +
∑

y

[pε(y)− pφ(y)]
[
log 1

pφ(y) − c̄

]
.

Then for the last term in the above equation, applying Cauchy-Schwarz inequality to it, we

obtain:

Hε(Y )−Hφ(Y ) = −DKL[pε(y)||pφ(y)] + ‖p(ε)
y − p(φ)

y ‖
√

V (log p
(φ)
y ), (4.8)

where p(φ)
y is the vector form of the marginal probability pφ(y) and V (·) the sample variance

as defined in the statement of Theorem 4.4.1 . Then by assumption, the set Ey(δ) is a convex

set for some δ > 0, applying the Pythagorean theorem [65 ], we have:

DKL[p(ε)
y ||p(θ)

y ]−DKL[p(ε)
y ||p(φ)

y ] ≥ DKL[p(φ)
y ||p(θ)

y ]. (4.9)
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On the other hand, for the second term −Hε(Y |X) + Hφ(Y |X), we have:

−Hε(Y |X) + Hφ(Y |X) =
∑
x,y

pε(x)pε(y|x) log pε(y|x)− pφ(x)pφ(y|x) log pφ(y|x)

=
∑
x,y

pε(x)pε(y|x) log pε(y|x)

−
∑
x,y

[pφ(x)− pε(x) + pε(x)] pφ(y|x) log pφ(y|x)

=
∑

x

pε(x)
[∑

y

pε(y|x) log pε(y|x)− pφ(y|x) log pφ(y|x)
]

+
∑

x

[pε(x)− pφ(x)]
[∑

y

pφ(y|x) log pφ(y|x)− b̄(x)
]

≤
∑

x

pε(x)
[∑

y

pε(y|x) log pε(y|x)− pφ(y|x) log pφ(y|x)
]

+ ‖p(ε)
x − p(φ)

x ‖
√

V (H(φ)
y|X),

(4.10)

where the constant b̄(x), conditioned on x ∈ X , introduced for the same reason as in (4.6 ),

is defined as:

b̄(x) := 1
|Y|

∑
y

pφ(y|x) log pφ(y|x).

Then, for the first term in the last inequality of (4.10 ), we have:

∑
x

pε(x)
[∑

y

pε(y|x) log pε(y|x)− pφ(y|x) log pφ(y|x)
]

=
∑

x

pε(x)
[∑

y

pε(y|x) log pε(y|x)pφ(y|x)
pφ(y|x) −

∑
y

pφ(y|x) log pφ(y|x)
]

=Ex,ε {DKL [pε(y|x)||pφ(y|x)]}+
∑

x

pε(x)
{∑

y

[pε(y|x)− pφ(y|x)]
[
log pφ(y|x)− k̄(x)

]}

≤Ex,ε {DKL [pε(y|x)||pφ(y|x)]}+ Ex,ε

[
‖p(ε)

y|X − p
(φ)
y|X‖

√
V (log p

(φ)
y|X)

]

≤Ex,ε {DKL [pε(y|x)||pφ(y|x)]}+
√

Ex,ε

[
‖p(ε)

y|X − p
(φ)
y|X‖2

]
Ex,ε

[
V (log p

(φ)
y|X)

]
,

(4.11)
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where we apply Cauchy-Schwarz inequality twice for the last two inequalities; and the con-

stant k̄(x), conditioned on x ∈ X , is defined as:

k̄(x) := 1
|Y |

∑
y

log pφ(y|x).

Finally, for the first term in the last inequality of (4.10 ), we can exploit the assumption and

obtain an upper bound that includes α:

DKL[pε(x, y)||pφ(x, y)] = DKL[pε(x)||pφ(x)] + Ex,ε {DKL [pε(y|x)||pφ(y|x)]} ≤ α. (4.12)

Putting all the pieces together, continuing from (4.5 ), we get:

DKL[pε(x, y)||pθ(x, y)]

≤Hε(Y )−Hφ(Y )−Hε(Y |X) + Hφ(Y |X) + DKL[pε(x)||pφ(x)] + DKL[pε(y)||pθ(y)]

+ Iφ(X; Y )− Iθ(X; Y )

≤‖p(ε)
y − p(φ)

y ‖
√

V (log p
(φ)
y )−Hε(Y |X) + Hφ(Y |X) + DKL[pε(x)||pφ(x)]

+ Iφ(X; Y )− Iθ(X; Y ) + DKL[pε(y)||pθ(y)]−DKL[pε(y)||pφ(y)]

≤‖p(ε)
y − p(φ)

y ‖
√

V (log p
(φ)
y )−Hε(Y |X) + Hφ(Y |X) + DKL[pε(x)||pφ(x)]

+ Iφ(X; Y )− Iθ(X; Y ) + DKL[pφ(y)||pθ(y)]

≤‖p(ε)
y − p(φ)

y ‖
√

V (log p
(φ)
y ) + ‖p(ε)

x − p(φ)
x ‖

√
V (H(φ)

y|X) + DKL[pε(x)||pφ(x)]

+ Ex,ε {DKL [pε(y|x)||pφ(y|x)]}+
√

Ex,ε

[
‖p(ε)

y|X − p
(φ)
y|X‖2

]
Ex,ε

[
V (log p

(φ)
y|X)

]
+ Iφ(X; Y )− Iθ(X; Y ) + DKL[pφ(y)||pθ(y)]

≤‖p(ε)
y − p(φ)

y ‖
√

V (log p
(φ)
y ) + ‖p(ε)

x − p(φ)
x ‖

√
V (H(φ)

y|X) + α

+
√

Ex,ε

[
‖p(ε)

y|X − p
(φ)
y|X‖2

]
Ex,ε

[
V (log p

(φ)
y|X)

]
+ Iφ(X; Y )− Iθ(X; Y ) + DKL[pφ(y)||pθ(y)],

where the last four inequalities follow (4.8 ), (4.9 ), (4.10 ), (4.11 ) and (4.12 ) sequentially.

While the upper bound in Theorem 4.4.1 still depends on the unknown distribution ε,

but observe that the dependency is related to the 2-norm on the difference of probability
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measures between the true ε and its estimate φ from finite sampling. Since any probability

density is bounded between [0, 1], by elementary results in learning theory, with enough

number of samples m, the terms with 2-norm diminish to zero at a rate O(1/
√

m) with high

probability [14 ], [15 ], [88 ]. In this case, the upper bound reduces to:

DKL[pε(x, y)||pθ(x, y)] ≤ α + Iφ(X; Y )− Iθ(X; Y ).

The results imply that if the learner have enough samples about the true distribution,

even when the learning model completely fits the training distribution pφ(x, y), i.e., when

Iθ(X; Y ) = Iφ(X; Y ), the generalization error (distribution divergence) always reaches α

eventually. In other words, if α is within an acceptable level to a learner, then there is

no need to worry about overfitting once there is enough data to give accurate estimate of

the data-generating distribution. However, this insight is based on the premise that enough

samples about the true distribution are available to the learner, which is infeasible in general

learning tasks.

Based on Theorem 4.4.1 , we can further demonstrate the asymptotic sample complexity

in standard learning settings under some additional assumptions commonly adopted in lit-

erature [15 ], [16 ]. The first tool to show this is an elementary concentration inequality in

learning theory, which is summarized as follows [88 ]: Given m samples of a random vector

X with dimension n, denoted the collection of samples as S, and define a vector function

φ(x) : Rn 7→ Rd. The true mean is Ex[φ(x)] while the estimated one from S is denoted as

φS = (1/m)∑m
i=1 φ(xi). If for any x ∈ X , there exists a positive constant C := supx∈X‖φ(x)‖.

Then with probability of least 1− δ, the estimation error for φ(x) satisfies:

‖φS − Ex[φ(X)]‖ ≤ C√
m

2 +
√

2 log 1
δ

 . (4.13)

The above technique can be applied to the norms of the probability vectors since, for exam-

ple, the probability vector p(ε)
y corresponds to the true distribution while p(φ)

y is the empirical

estimate from S and supy∈Y p(y) = 1. Therefore, we can replace ‖p(ε)
x − p(φ)

x ‖, ‖p(ε)
y − p(φ)

y ‖

and ‖p(ε)
y|x − p

(φ)
y|x‖ with (4.13 ), to get an estimate of rate the concentration of the general-
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ization error, and hence the asymptotic sample complexity. As for the sample variances

involved in Theorem 4.4.1 , for discrete settings the entropy is bounded from both sides

0 ≤ H(Y |x) ≤ log |Y | whereas if smoothness assumptions are imposed on the (conditional)

probability vectors, i.e., the ξ-infimality (Definition 2.4.2 ) holds for p(φ)
y , p

(φ)
y|x,∀x ∈ X , y ∈ Y ,

then V (log p(φ)
y ) and V (log p

(φ)
y|x) are bounded as the variance of a bounded variable x ∈ [a, b]

satisfies V [X] ≤ (b− a)2/4. Putting these results together, we have the following theorem.

Theorem 4.4.2. Suppose the conditions in Theorem 4.4.1 are satisfied. In addition, if the

followings hold:

• p(ε)
y , p(φ)

y are ξy-infimal.

• p
(ε)
y|x is ξy|x-infimal ∀x ∈ X and ξ∗

y|x := infx∈X ξy|x.

Then with probability of at least 1 − δ and m samples drawn from the data-generating

distribution pε(x, y), the following inequality holds:

DKL[pε(x, y)||pθ(x, y)] ≤ Iφ(X; Y )− Iθ(X; Y ) + α +

√
log |X |

δ√
m

[
C(ξy) + C(ξ∗

y|x)
]

.

where the constants C(ξy), C(ξ∗
y|x) are defined as:

C(ξy) :=
√

C∗

2

[
log |Y|

ξy(1− ξy)

]
, C(ξ∗

y|x) := −C∗

4 log ξ∗
y|x(1− ξ∗

y|x),

with C∗ ≥
(

2 +
√

2 log |X |+2
δ

)2
/ log |X |

δ
is some small constant.

Proof. By Theorem 4.4.1 , and (4.13 ), adjusting the confidence to δ
|X |+2 due to the union

bound on each term ‖p(ε)
y − p(φ)

y ‖, ‖p(ε)
x − p(φ)

x ‖ and ‖p(ε)
y|x − p

(φ)
y|x‖ for each given x ∈ X . Then

with probability of at least 1− δ, we have:

‖p(ε)
y − p(φ)

y ‖ ≤
2 +

√
2 log |X |+2

δ√
m

≤

√√√√C∗ log |X |
δ

m
, (4.14)

where the small constant C∗ is defined as in the statement of the theorem. We can derive

similar results for the other |X |+1 norm of difference of probability vectors similarly. On the
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other hand, for the variances, by assumption p(φ)
y is ξy-infimal, which equivalently expressed

as log (1− ξy) ≥ log pφ(y) ≥ log ξy,∀y ∈ Y . Hence, we have:

V (log p(φ)
y ) ≤ [log εy(1− εy)]2

4 . (4.15)

Note that we can derive similar result for V (log pφ
y|x), ∀x ∈ X . Lastly, for V (Hφ

Y |x),∀x ∈ X ,

because Hφ
Y |x is the entropy function and we assume discrete Y , hence each 0 ≤ Hφ

Y |x ≤

log |Y|, and we have:

V ar(Hφ
Y |x) ≤ (log |Y|)2

4 . (4.16)

Substitute (4.14 )for norm of the difference of probability vectors, (4.15 ) and (4.16 ) for the

variance function, and the fact that expectation of a constant gives the constant itself, we

complete the proof.

Theorem 4.4.2 implies that the asymptotic sample complexity for a confidence level δ

reduces at a rate of O( 1√
m

) with m denotes the number of samples needed. This rate

improves over that in literature, which is O(
√

log m
m

) [15 ]. However, the bound depends

on the dimension of the observations as the asymptotic dependence is
√

log |X |, which is

undesirable given the scale and amount of data in modern learning problems of practical

interests. In addition, due to the additional assumptions of the smoothness of the marginal

and conditional probability vectors (ξy, ξ∗
y|x), the bound in Theorem 4.4.2 , as in literature, is

sensitive to the “outliers”. While this weakness can be addressed through data-preprocessing,

it is of the fundamental interests to incorporate these rare events into a unified theoretic

framework. We leave this direction for future exploration.

4.4.2 Connection to Learning through IB Methods

In this part, we connect the proposed framework to the IB methods that have recently

been applied to DNN through variational inference and therefore allows efficient estimation

[2 ]. Consider a supervised-learning scenario, where the random variable X denotes the

observation; Y the target and Z the latent features. Then recall in IB methods, the Markov

chain: Y −X − Z holds and one attempts to find a set of encoders conditional probability
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p(z|x) from training distribution such that Z attains maximal relevance measured in I(Y ; Z)

while minimal complexity I(X; Z) is achieved for a given trade-off constraint controlled by a

Lagrangian multiplier β > 0. Due to the Markov chain, by strong data-processing inequality

(SDPI [85 ], [86 ], [89 ]): ηF I(Z; X) ≥ I(Z; Y ), where ηF denotes the SDPI coefficient with

0 < ηF ≤ 1. However, prior works often treated the target variable Y as the prediction Ŷ for

convenience of expression while the full Markov chain involved is Y −X−Z− Ŷ , as identified

recently [90 ]. Focusing on the Markov chain that involved in the prediction process at the

testing phase, that is X−Z− Ŷ , by SDPI, we have I(Ŷ ; X) ≤ ηBI(Z; X), where ηB denotes

the SDPI coefficient where 0 < ηB ≤ 1. We can incorporate this relation to Theorem 4.4.1 ,

which gives the next result.

Theorem 4.4.3. For the prediction Markov chain X − Z − Ŷ , then we have:

DKL[pε(x, y)||pθ(x, ŷ)] ≤ Iφ(X; Ŷ ) + ηBIθ(Z; X)− Iθ(X; Ŷ ) + α

+ ‖p(ε)
y − p(φ)

y ‖
√

V (log p
(φ)
y ) + ‖p(ε)

x − p(φ)
x ‖

√
V (H(φ)

y|X)

+ DKL[p(φ)
y ||p(θ)

y ] +
√

Eε,x

[
‖p(ε)

y|X − p
(φ)
y|X‖2

]
Eε,x

[
V (log p

(φ)
y|X)

]
,

where ηKL denotes the strong data-processing coefficient with 0 < ηB ≤ 1 and is defined as:

ηB := sup
pθ(y,z)∈Θ

Iθ(X; Ŷ )
Iθ(Z; X) .

Proof. Without loss of generality, assume m(ε, θ) > m(θ, ε). By the Markov chain X−Z−Ŷ ,

we adopt the strong data-processing inequality:

ηBIθ(Z; X) ≥ Iθ(X; Ŷ ).

This implies that ηBI(Z; X)− I(Ŷ ; X) ≥ 0, which serves as a regularized upper bound and

aligns with the common practice in recent research. Substitute the above into the inequality

of Theorem 4.4.1 , we complete the proof.
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Recall that in the proposed framework, Theorem 4.4.3 serves as a surrogate upper bound

of the inner maximization problem, when minimizing this upper bound with respect to the

learning model θ, the equivalent loss reduces to:

Lθ := ηBIθ(Z; X)− Iθ(X; Ŷ ),

which reveals the predictive IB Lagrangian as adopted in recent works [87 ]. Note that the

term DKL[p(φ)
y ||p(θ)

y ] = 0 under the Markov chain Y − X − Z − Ŷ which can be shown

easily along with the Bayes’ rule. On the other hand, although in Theorem 4.4.3 we assume

m(ε, θ) > m(θ, ε), if the opposite holds instead, then the corresponding upper bound is the

same. To see this, denote the equivalent loss function of the later case as L̄θ:

L̄θ := Iθ(X; Ŷ )− Iφ(X; Y ) ≤ ηBIθ(X; Z)− Iθ(X; Ŷ ),

where the first inequality follows the predictive Markov chain X − Z − Ŷ and the second

inequality follows from data-processing inequality, that is, the learned model cannot acquire

more mutual information than the training data has. This result demonstrates that the IB

methods is a surrogate loss upper bound in our framework, we evaluate it in a synthetic

dataset in Chapter 4.5.2 .

Remarkably, due to the Markov chain involved, this result extends to a broader class of

learning model with the encoder-decoder architecture [91 ].

As for the SDPI coefficient ηB with the Bayes’ decoders obtained through IB, there are

existing results in finding ηB numerically [73 ], [74 ], [90 ]. These works study the second order

statistics of IB methods from the viewpoint of bifurcation theory, probability theory respec-

tively and more recently [76 ] that linked the SDPI coefficient of IB to the maximum corre-

lation coefficient and generalizes them to continuous settings through perturbation analysis.

Among which, [74 ] provides the simplest form that suits our purpose in applying Theorem

4.4.3 . The result is summarized as follows:
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Assume the joint probability p(x, y) is known. Suppose the Markov chain Y − X − Z

holds and the conditional probability p(z|x) satisfies:

p(z|x) := arg min
p(z|x)∈Ω

ηKLI(X; Z)− I(Y ; Z).

Define λ2(z),∀z ∈ Z as the second largest singular value of the matrix: Qz := Λ− 1
2

y|z PY |XΛ
1
2
x|z.

Then we have ηKL := maxz∈Z λ2(z). Note that QT
z Qz is the Hessian matrix, conditioned on

z ∈ Z, of the IB Lagrangian functional with p(z|x) as the variables.

4.4.3 Tightening Existing Upper Bounds

In this part, we aim at applying Theorem 4.3.1 on the existing mutual information-based

generalization error upper bounds. But before presenting the results, we first establish the

common ground for comparison. In literature, the mutual information is measured between

the input and output of a learning model. The input, denoted as S(µ)
m , is the dataset of m

samples of observation-label pairs (X, Y ) drawn i.i.d from a certain data-generating process

µ, which gives

S(µ)
m := {zi}m

i=1, zi = (xi, yi) ∼ µ ∈ X × Y .

On the other hand, the output refers to the hypothesis θ ∈ Θ(A), generated with an algorithm

A. The hypothesis, or equivalently, the learned model θ is produced through a Markov kernel

p(Θ|S(µ)
m ). Then, given a σ-sub-Gaussian measurable loss function l(s, θ), the population risk

with an unknown data-generating distribution µ is Lµ(θ) := Eµ[L(S∞, θ)] while the empirical

risk LN
S (θ) := (1/N)∑N

i=1 l(zi, θ),∀zi ∈ SN . Note that we can think of the population

risk, whose evaluation still needs a realization of a hypothesis θ ∈ Θ. In this setup, the

generalization error is defined as:

gen(A, Sm, Θ) := |Eθ [Lµ(Θ)− Lm
S (Θ)]| , (4.17)
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Then by the Donsker-Varadhan’s representation of the KL divergence as shown in literature

[18 ]:

gen(A, Sm, Θ) ≤
√

2σ2I(S; Θ).

Note that the outer expectation provides the hypothesis class for the inner expectations

and hence they can be evaluated accordingly. Mathematically, the corresponding mutual

information is:

I(S, Θ) :=
∑
s,θ

p(s)p(θ|s) log p(θ|s)p(s)
p(θ) =

∑
x,y

pµ(x)pθ(y|x) log pθ(y|x)
pθ(y) .

Observe that to make the expression to be a mutual information, the denominator must

satisfy pθ(y) = ∑
x pµ(x)pθ(y|x), or equivalently seeing it as a divergence metric, the KL

divergence between joint measure pµ(x)pθ(y|x) to its product measure pµ(x)pθ(y). To relax

the above-mentioned restrictions, we propose another form of the generalization error gap

from a reverse direction compared to previous works.

Our motivation is the insights learned through Theorem 4.4.1 , where it implies that

overfitting is not an issue if there are enough number of samples, or the distribution mis-

match is within an acceptable threshold. Therefore, different from existing formulation, we

consider the case where the learning model also depends on the data samples, or equiva-

lently, the training distribution. In details, define a σ-sub-Gaussian measurable function

λf(Sm, Θ(Sm, A)) which is viewed as the sample average of the single instance loss function

l(z, θ) for some λ ∈ R. The hypothesis space Θ(Sm, A) depends on the available data, or

equivalently the training distribution and output a hypothesis θ through an algorithm A.

Then we consider the following difference:

Eε[λf(S∞, Θ(S∞))]− Eφ[λf(Sm, Θ(Sm))],

where if ε is the unknown data-generating distribution, then by weak law of large number

the first term of the above is equivalent to:

Eε[λf(S∞, Θ(S∞))] = lim
m→∞

1
m

m∑
i=1

l(zi, θm). (4.18)
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On the other hand, the second term is the empirical risk, where φ is viewed as the empirical

estimate of ε from the available finite samples:

Eφ[λf(Sm, θm)] = 1
m

m∑
i=1

l(zi, θm) (4.19)

Note that in this set up, a realization of the learning model θm depends on the available

samples. Another observation is that in (4.19 ), the m samples are drawn from the unknown

distribution ε which takes the intrinsic sampling distribution mismatch into account, since

Sm = {zi}m
i=1 ∼ ε but the learning model θm is fitting toward the empirical distribution φ,

which is estimated from Sm. Following this formulation, we define the generalization error

gap as:

gen(A, Sm, Θ) := |Eθ [Eε[L(S∞, Θ∞)]− Eφ[L(Sm, Θm)]]| , (4.20)

where we rewrite L(Sm, Θm) := λf(Sm, Θm). Compared to previous form, the main difference

of (4.20 ) is that: we include the training distribution, estimated from the finite samples

and therefore the model intrinsically deviates from the true data-generating distribution

if overfitted. Then due to the σ-sub-Gaussian of the loss function, the KL divergence in

the upper bound can be expressed similarly to that derived in the input-output mutual

information. But now, the upper bound that corresponds to the proposed form is:

gen(A, Sm, Θ) ≤
√

2σ2DKL[pε(x, y)||pθ(y|x)pφ(x)].

Then clearly, we can apply Theorem 4.3.1 to the KL divergence. In comparing to existing

bounds, it turns out that this form can result in a better estimate of the generalization error

gap than that obtained from (4.20 ).

Theorem 4.4.4. Let ε, φ be two Borel measurable functions defined over a compact support

B := {µ|µ(z) > 0,∀z = (x, y) ∼ µ : (X ,Y) 7→ R} and gen(A, Sm, Θ) is defined as in (4.20 ).

Suppose the loss function L(S, Θ) of a finite dataset S and the hypothesis space Θ(A) is

σ-sub-Gaussian, then we have:

gen(A, Sm, Θ) ≤
√

2σ2 max{m(ε, θ), m(θ, ε)},
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where the function of two joint measures ε, φ ∈ B is defined as:

M(ε, θ) := Iε(X; Y )− Iθ(X; Y ) + DKL[pε(x)||pφ(x)] + DKL[pε(y)||pθ(y)],

Proof. The proof starts from the similar steps of of [17 ], that is, the Donsker-Varadhan’s

representation of the KL divergence:

Eε,θ[L(S∞, θ∞)]− Eφ,θ[L(Sm, Θm)] ≤
√

2σ2DKL[pε(x, y)||pθ(x, y)].

Then we apply Theorem 4.3.1 to the KL divergence in the above inequality. Since the

generalization error gap is defined as the absolute difference between the two expectations,

by interchanging the order of ε and φ in the above inequality and we complete the proof.

As a remark, in Theorem 4.4.4 , if we substitute pθ(x, y) = pε(x)pε(y) then we recover

the results in [17 ], [18 ], so our results generalize the mutual information-based general-

ization error bounds to mismatch distributions beyond the product measures. In addi-

tion, as commonly assumed in this line of research, a divergence constraint is imposed on

the feasible set of hypotheses, or the stability conditions [17 ], [18 ], [60 ]: Iε(X; Y ) ≤ α.

If we generalize the product measure in the mutual information to the joint distribution

of the training data pφ(x, y), then the stability conditions is simply the KL divergence:

DKL[pε(x, y)||pφ(x, y)] ≤ α, which is the distribution mismatch constraint defined in our

problem formulation 4.2 .

4.4.4 Application on Existing Tightening Techniques

In this part, to demonstrate the benefit of the proposed methods, we apply our main

results to various existing upper-bound tightening techniques for the input-output mutual

information generalization error bounds. As discussed in chapter 1.2.4 , [60 ] relaxes the

sub-Gaussian assumption by treating the process of maximizing rate of decay of the de-

viation probability due to the application of the Chernoff inequality as a general inverse

of a finite upper bound of the CGF of a random variable, assuming the existence of such

function. This assumption is easily satisfied because of the Donsker-Varadhan’s represen-
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tation of the KL divergence. To better highlight the difference before and after apply-

ing our results, we summarize the results of [60 ] for self-contained purposes. Denote the

CGF of a Borel-measurable function f(x, y) ∈ B := {µ|µ(x, y) > 0,∀µ ∈ X × Y} as

K(s) := log Eµ[exp{sf(x, y)− sE[f(X, Y )]}] for s ∈ (c−, c+), c+ > 0, c− < 0, assume that

there exists some functions Ψ+(s), Ψ−(s) such that K(s) ≤ Ψ+(s) for s ∈ [0, c+) while

K(s) ≤ Ψ−(−s) for s ∈ (c−, 0], and Ψ+(0) = Ψ−(0) = Ψ+(0) = Ψ−(0) = 0. Starting from

the KL divergence between two joint measures µ, ν ∈ B, for s ∈ [0, c+) we have:

DKL[pµ(x, y)||pν(x, y)] ≥ sEµ[pµ(x, y)]− log Eν [ exp{spν(x, y)}]

≥ s [Eµ[f(x, y)]− Eν [f(x, y)]]−Ψ+(s),
(4.21)

then by the definition of the generalized inverse [92 ], (4.21 ) can be written as:

Eµ[f(x, y)]− Eν [f(x, y)] ≤ inf
s∈[0,c+)

DKL[pµ(x, y)||pν(x, y)] + Ψ+(s)
s

.

On the other hand, for the case where s ∈ (c−, 0], following similar steps (deferring the

details to [60 ]), we get:

Eµ[f(X, Y )]− Eν [f(X, Y )] ≤ inf
s∈[0,−c−)

DKL[pµ(x, y)||pν(x, y)] + Ψ−(s)
s

= Ψ∗−1(DKL[µ||ν]).

Note that the exchange of the order of µ, ν is due to the range of s ∈ (c−, 0]. This result

generalizes the sub-Gaussian assumptions and hence includes a broader class of loss functions.

Remarkably, this result recovers the σ-sub-Gaussian case as Ψ∗−1
+ (y) = Ψ∗−1

− (y) =
√

2σ2y. In

addition, observe that the result generalizes the mutual information upper bounds based on

the choice of the two measures as µ = p(s, w), ν = p(s)p(w), we can simply apply Theorem

4.3.1 on the KL divergence in 4.21 for two arbitrary joint measure, which results in the

following generalization beyond sub-Gaussian satisfying loss functions:

Theorem 4.4.5. Define the K(s) := log Eε[ exp{s(f − E[f ])}] the CGF of a measurable

function f ∈ B. Suppose there exists some functions Ψ+(s) and Ψ−(s) with Ψ+(0) = Ψ−(0) =
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Ψ+(0) = Ψ−(0) = 0 such that K(s) ≤ Ψ+(s),∀s ∈ [0, c+) and K(s) ≤ Ψ−(−s),∀s ∈ (c−, 0]

are satisfied. Then for two measures ε, φ ∈ B, we have:

Eε[f(x, y)]− Eφ[f(x, y)] ≤ inf
s∈[0,c+)

M(ε, φ) + Ψ+(s)
s

,

and

Eφ[f(x, y)]− Eε[f(x, y)] ≤ inf
s∈[0,−c−)

M(ε, φ) + Ψ−(s)
s

.

where M(µ, ν) := max{m(µ, ν), m(ν, µ)} and:

m(µ, ν) := Iµ(X; Y )− Iν(X; Y ) + DKL[p(µ)
x ||p(ν)

x ] + DKL[p(µ)
y ||p(ν)

y ].

Proof. By the Donsker-Varadhan’s representation of the KL divergence, we have:

Eε[sf(x, y)]− log Eφ[ exp{sf(x, y)}] ≤ DKL[ε||φ], ∀s ∈ R.

Then by assumption, for s ∈ [0, c+), the CGF of f(x, y) measured in φ is upper bounded by

Ψ+(s), that is K(s) := log Eφ[ exp{s(f − Eφ[f ])}] ≤ Ψ+(s), which gives:

sEε[f(x, y)]− sEφ[f(x, y)] ≤DKL[pε(x, y)||pφ(x, y)] + Ψ+(s)

≤DKL[pε(x, y)||pφ(x, y)] + K(s)

≤
[
Iε(X; Y )− Iφ(X; Y ) + DKL[p(ε)

x ||p(φ)
x ]

+DKL[p(ε)
y ||p(φ)

y ]
]

+ Ψ+(s),

=m(ε, φ) + Ψ+(s)

≤M(ε, φ) + Ψ+(s),

where we apply Theorem 4.3.1 to have the third inequality. Then optimizing the upper

bound over s, followed by the definition of the generalized inversion [92 ], we complete the
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first part of the theorem. On the other hand, for the case where s ∈ (c−, 0], we have similar

results as shown in the following:

|s| (Eφ[f(x, y)]− Eε[f(x, y)]) ≤ DKL[ε||φ] + Ψ−(|s|)

≤M(ε, φ) + Ψ−(|s|).

Combining the two inequality we complete the proof.

Another line of research that generalizes the mutual information-based bounds is by

including a broader class of information-theoretic divergence, known as the α-information.

In resemblance of the Pythagorean theorem [65 ] for the KL divergence, the Generalized

Pythagorean theorem [63 ] is introduced along with the notion of α-convexity to generalize

the convex set conditions as in the case for the Pythagorean theorem. Based on these

results, we generalize Theorem 4.3.1 to the α-information-based divergence measures and

hence show that our results apply to the upper-bound tightening techniques introduced in

[63 ]. Similarly, before presenting Theorem 4.4.6 , we summarize the results, mostly follows

[58 ], [63 ] and refers the details therein. To begin with, this method is based on the Chernoff

inequality:

P
(

exp{sf(x, y)} ≥ 1
δ

)
≤ E[ exp{sf(x, y)}]δ, (4.22)

where f(x, y) ∈ B is some measurable function defined over a compact support. Then if

there exists a non-negative random variable U := sf(x, y) with U ≤ 1, then (4.22 ) can

equivalently rewritten as:

P
(

exp{sf(x, y)} <
1
δ

)
≥ 1− δ.

This results can be adopted to establish learning-theoretic type of generalization error

bounds, specifically, a deviation event happens with a probability that is dependent on

to a confidence level. Consider the generalization error gap due to mismatch between the
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unknown data-generating distribution ε and the sampling distribution φ. Since the learning

model θ depends on the sample distribution φ:

gen(φ, θ) = Eφ[L(S, θ)]− Eε[L(S, θ)].

If in addition, the loss function L(S, θ) is σ-sub-Gaussian, then for all λ ∈ R, we have:

Eφ [exp {λ [Eφ[L(S, θ)]− Eε[L(S, θ)]]}] ≤ exp
{

λ2σ2

2

}
,

which can be rearranged to:

Eφ

[
exp

{
λ [Eφ [L(S, θ)]− Eε[L(S, θ)]]− λ2σ2

2

}]
≤ 1.

Note that the outer expectation is taken with respect to the sampling measure φ but we are

interested in the case where the expectation is taken with respect to the true data-generating

distribution ε. By “change of measure”, we have:

Eφ

[
exp

{
λ [Eφ [L(S, θ)]− Eε[L(S, θ)]]− λ2σ2

2

}]

=
∫

dε
dφ

dε
exp

{
λ [Eφ [L(S, θ)]− Eε[L(S, θ)]]− λ2σ2

2

}

= Eε

[
exp

{
log dφ

dε
+ λ [Eφ [L(S, θ)]− Eε[L(S, θ)]]− λ2σ2

2

}]
,

where dφ/dε denotes the Radon-Nikodym derivative [93 ]. Substituting the above into (4.22 )

results in an expression of the probability of the occurrence of the deviation event of interests:

Pε

(
exp

{
log dφ

dε
+ λ [Eφ[L(S, θ)]− Eε[L(S, θ)]]− λ2σ2

2

}
≥ 1

δ

)
≤ δ.

Equivalently, this implies with a probability at least 1− δ, the following inequality holds:

λ {Eφ[L(S, θ)]− Eε[L(S, θ)]} ≤1−δ log dε

dφ
+ λ2σ2

2 + log 1
δ

, (4.23)
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where the subscript in ≤1−δ denotes the confidence level of the inequality as denoted in

literature [58 ], [63 ]. Next, we focus on the ratio dε/dφ. Recall the definition of α-information:

Dα(ε||φ) = 1
α− 1 log

∫
dε

(
dε

dφ

)α−1

.

Applying the Chernoff inequality to the logarithmic of the ratio of the measures: log dφ/dε,

with a constant α > 1, we have:

Pε

(
log dε

dφ
≥ t

)
≤ Eε

[
exp

{
(α− 1) log dε

dφ

}]
· exp {− (α− 1) t}

= Eε

exp

log
(

dε

dφ

)α−1

 · exp {− (α− 1) t}

= exp {(α− 1) Dα(ε||φ)− (α− 1) t} .

Then by letting t = Dα(ε||φ) + 1
α−1 log 1

δ
, we conclude that with a probability of at least

1− δ:

log dε

dφ
≤1−δ Dα(ε||φ) + 1

α− 1 log 1
δ

. (4.24)

Substitute (4.23 ) into (4.23 ), which is done by the union bound for the event when both

cases occur, we have for α > 1, the following inequality holds:

λ [Eφ[L(S, θ)]− Eε[L(S, θ)]] ≤1−δ∗
λ2σ2

2 + Dα(ε||φ) +
(

α

α− 1

)
log 2

δ∗ , ∀λ ∈ R,

where we rewrite δ = δ∗/2, for the conciseness of expression. Since the above holds for all

λ, and observe that it can be viewed as a quadratic programming problem with respect to

λ, the corresponding discriminant must be negative, which results in:

Eφ[L(S, θ)]− Eε[L(S, θ)] ≤1−δ∗

√
2σ2

[
Dα(ε||φ) +

(
α

α− 1

)
log 2

δ∗

]
, (4.25)

where α > 1. Observe that in the range of α > 1, the coefficient pre-multiplied by the

α-information Dα(ε||φ) is positive, which allow us to apply the Generalized Pythagorean

theorem [94 ] to (4.25 ). However, as mentioned in the reference work, the generalization

148



requires a notion known as the α-convexity which is defined in Now we are ready to present

the next theorem.

Theorem 4.4.6. Suppose a loss function L(S, θ) defined over a finite data samples and a

learning model θ is σ-sub-Gaussian. For α ∈ (1,∞), let ε, θ belong to an α-convex set of

distributions A and φ be an arbitrary distribution. If θ := arg inf
µ∈A

Dα(µ||φ),∀µ ∈ A, then

with probability 1− δ:

Eφ[L(S, θ)]− Eε[L(S, θ)] ≤1−δ

√
2σ2

[
Dα(ε||φ)−Dα(θ||φ) +

(
α

α− 1 log 2
δ

)]
.

Proof. The proof is based on the Generalized Pythagorean theorem [94 ], which states that

for α ∈ (0,∞):

Dα(P ||Q) ≥ Dα(P ||P ∗) + Dα(P ∗||Q),

where P ∈ A with A be a α-convex set and P ∗ := arg infP ∈ADα(P ||Q). In applying this

result, we assign P ← ε, Q← φ and P ∗ ← θ. And since (1,∞) ⊂ (0,∞), we can apply this

to (4.25 ) and complete the proof.

Remarkably, by the well-known property of the α-information in literature [94 ]:

lim
α→1

Dα(P ||Q) = DKL(P ||Q),

letting pφ(x, y) = pε(x)pε(y), then we have:

DKL[pε(x, y)||pε(x)pε(y)]−DKL[pφ(x, y)||pε(x)pε(y)]

= Iε(X; Y )− Iφ(X; Y ) + DKL[pε(x)||pφ(x)] + DKL[pε(y)||pφ(y)],

which recovers Theorem 4.3.1 .

4.5 Numerical Results

In this part, we evaluate a variety of the generalization error upper bounds derived

through the proposed technique on some synthetic datasets. We compare the results to the
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input-output mutual information generalization upper bound that is recently introduced and

actively studied. As shown in the Chapter 4.4 , since the proposed technique applies to most

existing tightening methods, for the compared bound, we will focus on the basic form [17 ],

[18 ].

The simulation is divided into three parts. First, we consider standard learning task

in supervised learning scenario where the goal is to bound the generalization error gap,

that is, the absolute difference of the accuracy rates between training and testing phases.

Second, we examine empirically the performance of IB methods in minimizing the maximum

generalization error with the focus on comparing the optimal level of fitting between training

and testing distributions. Lastly, we consider the most challenging, adversarial scenario

where the goal is to find a proper level of fitting that minimize the distribution mismatch

that is caused by both the sampling process and an adversary who has access to training

data but is under some divergence constraints.

4.5.1 Standard Supervised Learning Task

In this part, we consider standard supervised learning task where there are two sets of

data, where one is for training a learning model while the other is used to evaluate the

performance of the learned model. To generate the two sets of data, we perform inverse

transform sampling on the following synthetic joint probability.

P (Y |X) =

0.90 0.76 0.06

0.10 0.24 0.94

 , P (X) =
[

1
3

1
3

1
3

]
. (4.26)

As for the learning model, we focus on the Bayes’ decoder obtained through the IB objective

with the training joint distribution estimated through counting the occurrence of the labels

and observations. The benefit of this specific type of learning model is that the level of

fitting the training distribution is reduced to a specific choice of the trade-off parameter γ.
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Figure 4.1. Comparing generalization error gap upper bounds in a synthetic
standard supervised learning tasks

For γ → 0, this corresponds to overfitting case while γ → 1 a complete uniformly randomized

model. The Bayes’ decoder is obtained as follows:

pθ(ŷ|x) =
∑

z

p(ŷ|z)p(z|x) =
∑

z

p(z|x)
∑

x p(z|x)p(x, y)∑
x p(z|x)p(x) .

Note that pθ(ŷ) = ∑
x p(x)p(ŷ|x) = p(y). The simulation starts with sampling the corre-

sponding joint probability from (4.26 ) for m times, where m ∈ {100, 500, 1000, 5000} as

training dataset and each data is a pair of (xi, yi), i ∈ [m]. Then we also sample an addi-

tional set of size 5000 as the testing data. As (4.26 ) is a simple example, 5000 samples is
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a relatively large number, and we therefore assume the distribution mismatch in sampling

testing data is negligible. Continuing the simulation, we run the IB algorithm with the joint

probability p̂φ(x, y) comes from counting the training dataset. Then we can sweep through

γ ∈ (0.01, 1) where for each given γ, we restart the IB algorithm for 100 times and pick

the encoder probability pθ(z|x) with the highest I(Ŷ ; X) as the kernel to form the output

hypothesis pθ(y|x).

The results are shown in Figure 4.1 . We compare the proposed bound (Theorem 4.3.1 )

to the existing mutual information bounds (denoted as “MI bound”) in terms of the gener-

alization error gap. The gap is calculated by the absolute difference of the accuracy rates

from testing and training data. We run the testing phase for 200 times and take average of

the obtained generalization error gap. The results shown in the figure clearly demonstrate

that the proposed new technique can significantly improve the tightness over the mutual

information-based bound and this observation holds for all four cases of m. It is worthwhile

to highlight that for 1/γ < 5, the proposed bound captures the increase in error gap while

the compared bound failed to.

4.5.2 Generalization Error Minimization through the IB Methods

In Chapter 4.4.3 , we demonstrate that in the proposed minimax framework, minimizing

the surrogate KL divergence upper bound results in optimizing the predictive IB Lagrangian

if the Markov chain X −Z− Ŷ is satisfied. Following the setup in the last section, we adopt

the same synthetic joint measure and the same class of learning model. Our goal here is to

solve the proposed minimax problem through the IB methods as surrogate upper bound and

compare the optimal solutions of the true mismatch divergence and the surrogate bound.

Most importantly, how close they are when mapped on the parameter γ. In Figure 4.2 we

first vary the number of samples in sampling and observe the shape of the surrogate bounds

in each case. Observe that when the number of samples are limited (m = 100 in this case),

as 1/γ → 100, the total error does not converge to zero but a finite value due to the sampling

mismatch. And as the number of samples becomes more and more sufficient, the total error

for γ → decreases to an infinitesimal value. In Figure 4.2a , the minimum of the total error is
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Figure 4.2. Using IB as surrogate loss function in a synthetic standard su-
pervised learning tasks

around 1/γ ≈ 20 and about the same location, the red line (Predictive) has a local maxima.

The same phenomenon occurs in all m. Based on this observation, we heuristically implement

a simple scheme to detect the local maximum whose associated parameters in turns become

the candidates of the selected learning model. This heuristic approach corresponds to the

common practice in modern machine learn, known as the gradient-based learning [95 ], where

the first-order methods converges to either a local maximum or minimum. We use findpeak

in MATLAB where we use the function to locate the γ̂IB that attains a local maxima to

form a candidate set ΓIB. Then we compare each candidate model γ̂IB for the predictive

IB bound to that achieving the global minima for the total error, denoted as γ∗
min. For any

γ̂IB ∈ ΓIB, if the difference |γ̂IB − γ∗
min| is within a predetermined threshold (in percentage

153



10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a) Local maxima as candidates

10
2

10
3

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

(b) Global minima as candidates

Figure 4.3. Evaluation of the Predictive IB Surrogate Bounds

of a range of γ), then we claim it is accurate. In Figure 4.3 , we show that even with this

heuristic method, for a threshold that < 20% of the range of γ, the candidate set that is

formed by finding the local maxima reaches about 70% accuracy and around 55% accuracy

if further restricting the thresholds to < 5%. However, this approach works well only when

the number of samples is limited. We further show another more intuitive approach that

simply compares the global minima of the predictive IB bound. As shown in Figure 4.3b ,

the second approach improves as the number of samples increases. The two results hint a

transition of the usefulness that favors the local maxima approach toward the global minima

method. Remarkably, if solving the predictive IB Lagrangian with gradient descent, then

since this common practice cannot differentiate between local minima and local maxima, it

is possible to obtain these specific models. This result sheds light on why learning through

the IB methods has been successful at least in supervised learning case. As a final remark,

this result can connect to the more general encoder-decoder architecture-based models as

the Markov chain X − Z − Ŷ holds in this class of architectures.

4.5.3 Adversarial Learning Tasks

The last simulation result for this chapter is the more challenging adversarial learning

scenario. For simplicity, we consider a classification task, also we limit the focus on a specific
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Figure 4.4. Accuracy-Robustness Trade-off in the Proposed Framework

type of adversary who has “read-only” access to the training data and aims at worsening the

performance of a learning model by maximizing the divergence mismatch. Note that if given

“read-write” access to an adversary, then this corresponds to the scenario of the poisoning

attack in literature. Continuing the “read-only” adversary settings, we assume that the

learner is aware of the potential presence of the adversary, then intuitively, the learner will

avoid fitting the training data completely (overfitting). Here we provide simulation results

on some simple but illuminating examples in the following.

First, we explain the adversary’s capability in detail. From the proposed minimax frame-

work, which is in fact from a learner’s perspective, the learner will pick the worst-case dis-

tribution mismatch to mimic the presence of an adversary withing the bounded-divergence

controlled through a threshold α, i.e., DKL[pζ(x, y)||pφ(x, y)] ≤ α, where ζ corresponds to

the distribution from an adversary while φ denotes the joint training distribution. In prac-

tice, the learner then needs to find the worst-case attack within the bounded range then find

the best hypothesis class θ to achieve optimal robustness against the potential adversary.

Note that this procedure is in close resemblance to the best defense strategy today known

as the adversarial training [96 ]. Fortunately, due to the simplicity of the synthetic dataset

we focused on for now, we can brute-force search over the joint probability simplex of the

worst-case adversarial joint distribution pζ(x, y) by dividing the simplex into grids.
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Then, for the learner, in selecting the hypothesis space or the learning models, we again

reuse the predictive IB model as elaborated in 4.5.1 . The learner also has finite samples

of size m, and hence a training distribution pφ(x, y). And a predictor is chosen in the

following criterion to learn from the m available samples: given a fixed trade-off parameter

γ ∈ [0.01, 1.0], we randomly initialization an IB solver for 200 times and pick the set of

conditional probability pz|x that attains the highest I(X; Ŷ ) then obtain the associated Bayes’

decoder as the predictor.

Our goal is to compare the solution from the proposed minimax framework and provide

insights on the challenging adversary learning problems. Therefore, we compare two types

of solutions of the proposed minimax problem, corresponding to the standard (Std.) and

adversary scenarios (Adv.). The results are shown in Figure 4.4 . The threshold is set to

α = 0.75 and we compare two sets of different training distribution with number of samples

m1 = 100, m2 = 2000. The label φmin and εmin are the trade-off parameters γ∗
φ, γ∗

ζ that each

attains the minimum loss DKL[ζ||θ(φmin)], DKL[ζ||θ(ζmin)] respectively. Then the results

provide insights on the recent empirical discovery that after being adversarially trained, a

learning model’s performance with clean data degrades. This phenomenon, known as the

accuracy-robustness trade-off can be explained through our results, even in this simple and

limited case. When the learner’s goal is to make the model robust to distribution mismatch,

then εmin is the optimal choice. However, when tested with clean samples, that is, mapping

the γ∗
ε to the blue line and hence gives φrobust, there is an increase of the divergence loss

as compared to the optimal φmin in standard learning counterpart. Quantitatively, we can

measure the percentage of increase of the extra divergence as φrobust/φmin − 1. In Figure

4.4a the divergence increases 28.15% more than the optimal φmin while in Figure 4.4b , the

divergence increases 75.85% more than the optimal divergence. This result implies that the

challenging adversarial learning problem can be studied through distribution mismatch, as

in the proposed framework. As a remark, due to the limitation of computation resources, we

are limited to this small-scale problem and restricted hypothesis class, but from our results, it

is also clear that more insights are needed before involving more complex, non-linear models

or large-scale dataset. This direction of generalization will be left as future works.
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5. CONCLUSION AND FUTURE WORKS

5.1 Concluding Remarks

To conclude, in this dissertation, we studied two specific non-convex information-theoretic

optimization problems, the IB and PF, that recently attracted significant attention for their

successful application in a variety of representation learning or unsupervised clustering prob-

lems. Different from previous studies, we approach the two problems from an optimization-

mathematics perspective, which is based on the recent breakthrough in non-convex opti-

mization with splitting methods. We propose two types of algorithms in solving the IB and

PF problems and prove the convergence and linear rate of convergence of them. In proving

the results, we show that the key is the smoothness conditions that allows the application

of the powerful KŁ inequality. Based on the theoretic results, new algorithms for both IB

and PF are developed. The new solvers simplify the design and relax the convergence con-

ditions for existing solvers and stand out from other greedy algorithm-based solvers as the

new ones can handle both random and deterministic mappings. Moreover, we empirically

showed that the new solvers can better characterize the relevance-complexity trade-off for

IB and privacy-utility trade-off for PF compared to existing solvers.

In response to the recent trend on harvesting the improved performance with learning

with multi-modal data. We generalize the proposed splitting methods-based algorithms to

MvIB and MsPF, which extends the well-known advantage of splitting methods in convex

setting to non-convex optimization context. Inspired by the two extremes in multi-modal rep-

resentation learning, where on one end there is abundance of representation overlap whereas

on the other end there is limited overlap. We developed two distinct information-theoretic

formulations and propose two algorithms catering to the two opposite scenarios, in sharp

contrast to existing heuristic-based methods. By extending the convergence analysis re-

sults for two-block non-convex splitting methods to multi-block consensus generalization, we

again proved the linear rate of convergence of the proposed algorithms for both the MvIB and

MsPF. We empirically evaluated the new solvers and showed that they avoid the exponential

growth of the dimensional complexity in optimal view-merging approach and outperform the

state-of-the-art DNN method, which finds representation consensus through based on black-
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box neural networks. The results demonstrate the benefits of the new information-theoretic

formulations and shed light on the dependency of representation overlap and multi-modal

learning gain.

Beyond fitting a given training distribution, by viewing the generalization error in learn-

ing problems as distribution mismatch, we propose new framework that formulates the anal-

ysis into a minimax problem which can take the standard learning and the more recent

adversarial learning tasks into account. In solving the minimax problem, we develop new

surrogate upper bound based on the Pythagorean theorem which gives tighter upper bounds

than existing ones. Moreover, we demonstrate that the proposed Pythagorean theorem-

based technique applies to a variety of existing bound-tightening techniques and extends to

a broader class of distribution mismatch metrics, i.e., the α-information through the Gener-

alized Pythagorean theorem. Our results further connect to the IB methods for learning that

extend to the celebrated encoder-decoder architecture in modern machine learning practices.

Using SDPI, we show that solving the predictive IB Lagrangian is equivalent to optimizing

over a distribution mismatch caused by sampling process or a potential adversary. Empir-

ically, we compare the derived upper bounds to existing methods in a standard supervised

learning task with synthetic data, our results give significantly tighter bound compared to

the recent input-output mutual information bounds. In addition, when adopting predictive

IB as the surrogate upper bound in solving the proposed minimax problem, we find that it

can produce robust learning models that are close to the optimal choice. Lastly, again based

on the perspective of distribution mismatch, we evaluate the proposed framework on an ad-

versarial learning task and provide insights on the accuracy-robustness trade-off discovered

recently.

5.2 Future works

Beyond the results obtained in this dissertation, we identify the open challenges and

directions for future exploration in the following.
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5.2.1 Application to Graph-Based Geometric Clustering Problems

In literature, IB methods have already been applied to clustering and graph-based mul-

tivariate problems [6 ], [97 ], but recently due to the surging interests in the graph neural

network (GNN) in modern machine learning research, driven by the state-of-the-art per-

formance in various learning problems, the IB methods for graph-based applications regain

attention lately. Equipped with modern optimization and machine learning advances, the

graph-based IB methods today are adopted to extract latent features from highly struc-

tured or geometric-dependent data. Applications following this resurgence include natural

language processing, geometric clustering and adversarial machine learning [98 ]–[100 ]. Mean-

while, ADMM has recently been extended to solve index programming problem [101 ], which

applies to clustering. On the other hand, in clustering with (Mv)IB methods, or (Ms)PF

alike, restrictions on deterministic mappings are often needed which makes the optimization

problem non-smooth. In this sense, the extension for ADMM to index programming can

potentially generalize our theoretic results to clustering problem as the KŁ inequality also

applies to non-smooth problems [36 ], [66 ].

5.2.2 Generalization to Continuous Settings

While we limit our focus on discrete random variables in this dissertation mostly but

a natural question that follows is how much results derived from the discrete settings still

hold when applied to continuous settings? In this direction, the vector form of (conditional)

probabilities needs to be “parameterized”, a commonly adopted approach in density or en-

tropy estimation research [102 ]–[105 ], and since the sub-objective functions are in fact a

combination of entropy and conditional entropy functions, or in continuous cases the differ-

ential entropy. If some smoothness conditions are imposed, so that the differential entropy

are well-defined, then the primal and augmented variable updates in discrete settings can

be generalized to parameter updates by treating the decoupled sub-objectives as separate

entropy estimation problems. However, the update algorithms would inevitably need to be

modified to stochastic gradient descent (SGD [106 ]). Fortunately, SGD has been intensively

studied in machine learning research, so there are off-the-shelf optimizers available for the
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convenience of empirical evaluation and further applies to splitting methods recently [107 ]–

[110 ]. However, as the theoretic study of SGD is still an active field, not only the theoretic

analysis but the practical implementation are significantly more challenging.

5.2.3 Adversarial Generalization Error Analysis

In Chapter 4 we present a new information-theoretic framework for the generalization

error analysis from the perspective of distribution mismatch. We develop new techniques to

solve the proposed minimax problem. While for standard learning tasks the new technique

gives tighter bounds then existing ones, when applied the same technique to more challenging

adversarial settings, we find that the proposed upper bound only holds for a restricted region

in terms of the level of fitting for an adopted learning model. Based on our insights from

distribution mismatch, we plan to study slightly more complicated, but well-studied learning

models, such the support vector machine [111 ] and then generalize to DNN and more recent

architectures. In addition, while for convenience we limit the focus on adversaries with

“read-only” access to training data, we also expect to apply the results we have from the

relatively passive setting to “read-write” access adversaries in an online learning scenario

which corresponds to the poisoning attack [112 ], [113 ] that attracts significant attention in

modern machine learning research recently.
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